N

N

Towards expressive, well-founded and correct
Aspect-Oriented Programming
Mario Stidholt

» To cite this version:

Mario Sudholt. Towards expressive, well-founded and correct Aspect-Oriented Programming. Soft-
ware Engineering [cs.SE|. Université de Nantes, 2007. tel-00486842

HAL Id: tel-00486842
https://theses.hal.science/tel-00486842
Submitted on 27 May 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00486842
https://hal.archives-ouvertes.fr

Rapport scientifique
présené pour obtenir une
Habitation a diriger des recherches

de l'universié de Nantes.

Specialite Informatique

Towards expressive, well-founded and correct
Aspect-Oriented Programming

Mario Sudholt

Projet OBASCO
Ecole des Mines de Nantes — INRIA

Laboratoire d’'Informatique de Nantes Atlantique (LINA)

Soutenue le 11 juillet 2007 devant la commission d’examen coagpds

Charles CONSEL Profa TENSEIRB, Bordeaux Rapporteur
Karl LIEBERHERR Prof.a la Northeastern University, Boston Rapporteur
Jan VITEK Prof.a la Purdue University, West-Lafayette =~ Rapporteur
Frederic BENHAMOU Prof.a l'universié de Nantes Risident
Thomas JENSEN Directeur de recherches, CNRS, Irisa, Rennes

Pierre COINTE Profa I'école des mines de Nantes

Acknowledgments

The lion’s share of the results reported on in this thesis has been achighedOBASCO project at
Ecole des Mines de Nantes, to a large part by means of different caitidots involving almost all of
my colleagues there. These are acknowledged in the text, as some tiomgexéh other researchers,
as the corresponding work is presented. Here, | would just like to sgpng gratitude to all of them
for having contributed the competences, advice and effort necdssaignificant work in a research
field that covers much of software engineering as well as related obsaiad application domains.

I am much indebted to Pierre Cointe, head of OBASCO project, who haseindlyy provided
me with strategic advice how to orient my research and consistently insisted ¢daking on this
habilitation work.

Special thanks go to Daniel Le Metayer who welcomed me on my arrival incErin Lande
group at INRIA/IRISA institute in Rennes and Pascal Fradet who rasedfostered my interest in
the rigorous treatment of aspects there. | am also grateful to Claude diabitor of INRIA-Rennes,
for having supported my successful bid for a two-year secondmdhRIA that has provided the
necessary leeway to initiate the more recent research directions | am glessénmt here.

Some of my work has been the result of cooperations or influenced bysentiscussions with
different foreign researchers. Wim Vanderperren, Theo D’Hamdl Viviane Jonckers from SSEL
and PROG groups at Vrije Universiteit Brussel have contributed signifig to some of the results
presented here and to my views on the associated research issuegielddrom Purdue University
has always been a good friend whose support and different ahgievo on software engineering
issues and research in general has proved very helpful over ding ye

Finally, my most affectionate thanks go to MaThomas and Manue who, in particular, granted
me much more of their patience during the last three months than | probablyg $tawe asked for.

Preface

This habilitation thesis presents the main results of my research work coddiscpart of OBASCO
(“Objects, Aspects, Components”) project, a joint project with INRIA ibatiso part of the “Labora-
toire d’Informatique de Nantes Atlantique” (LINA), in the computer scienepattment oEcole des
Mines de Nantes. This work has focused on modularization and softwalien problems inves-
tigated as part of the emerging research domain of Aspect-OrientedaRmamng, in particular, the
foundation and design of aspect languages, the relationship betwegocent-based programming
and aspects, as well as aspect-oriented support for distributechprogng.

Similar problems had already been the subject of my previous work. Asopany PhD the-
sis at TU Berlin | investigated the parallelization of functional programs bynsied a skeleton-
based approach. This work can, in today’s terminology, easily be framdde definition of several
domain-specific aspect languages for parallel execution at difflenesis of abstraction, ranging from
a high-level language to languages directly representing architecfupasatiel machines. | have also
provided an implementation in terms of a calculus allowing the transformation betiestraction
levels, a method very similar to aspect weaving.

In my following year of post-doc studies at IRISA/INRIA-Rennes, | enypl shape types — a
notion of graph-based types initially developed to provide better structuggort for data types in
the C language — to devise new abstraction and reasoning mechanisméi@rasarchitectures.
Such graph-based types allow, in particular, to formally define softwalgtactures underlying typi-
cal component-based systems and, based on a notion of refinementdyrma®ic evolution of these
systems.

On my arrival at OBASCO group in 1997, | started working on refleatibct-oriented systems,
but became rapidly interested by the subject domain | report on in this habilitdéhie lack of means
for the modularization of so-called crosscutting functionalities as a fundamamblem for the en-
gineering of large-scale applications. Originating at Xerox PARC within tbegheaded by Gregor
Kiczales (but more generally influenced by the reflection programming contyhuthis problem has
sparked in 1996 the development of a new style of programming featurdtet®merging research
domain of Aspect-Oriented Programming [Kic96, KLo97, ACEF04].

My studies at OBASCO group, which are presented in this document,ddawus three funda-
mental problems with then and current aspect languages. First, most &sppiages use what is
called the “atomic pointcut model” in this thesis, i.e., only allow pointcuts to denotetatgelated
execution events. This model, however, frequently leads to verbosdiffindlt to understand aspect
definitions. The main thread running through my work has been the questgect languages which
allow the direct formulation of relations between execution events and tippeosLithe concise for-
mulation of complex aspects. Second, the first full-fledged aspect lgaguaAspectJ being the best
known among them, for a long time lacked formal semantics and did not (amddstr still do not)
support reasoning about aspect-oriented programs.

I have been interested from the start in providing a foundation of atgegtiages by means of

precise semantic frameworks, in particular, striving for a notion of “prgpbased” AOP. Further-
more, while the main application domain of AOP is, in principle, that of distributednamming,
the large majority of AOP approaches study aspect languages in the ttohgequential program-
ming. Most recently, in the context of the European Network of ExcelléAGSD-Europe”, | have
therefore aimed at explicit support for concurrent and distributedcsgpiented programming. Fi-
nally, while most of my work on aspects focuses on aspect languagendssiges, almost all of this
research work has been employed in different application domainsgngafigm standard sequential
crosscutting concerns, via concerns at the level of systems progranamihgperating systems, to
concerns of large-scale distributed applications, such as cache tigplifa distributed component-
based systems. This document also presents some of the main charactribtese application-
related results.

Besides aspect-oriented programming, component-based systems coastitaoed focus of my
work. More precisely, | have investigated notions of components with ékpliotocols in their
interfaces. By means of protocols of different levels of expresss®m wide range of component
properties can be captured: interactions among components, in partcanane defined precisely

and analyzed. Moreover, as shown in this thesis these features algtoappmponent-based systems
that are subject to modification by aspects.

Contents

11
1.2

2.1
2.2
2.3

2.4

2.5

3.1

3.2

3.3
3.4

4.1

4.2

4.3

Introduction
Research directions e
Presentation of thisthesis

A case for expressive aspect languages
Motivation: modularization of complex crosscutting concerns.
A taxonomy of advanced aspect language features
The atomicaspectmodel
2.3.1 Characteristics o
232 Drawbacks
Event-based AOP: beyond atomic pointcuts
241 Characteristics
Conclusion and perspectives,

Foundations of AOP
Formal semantics for statefulaspects
3.1.1 Presentation framework
3.1.2 Aspects with functional pointcuts
3.1.3 Regularaspects
3.14 VPA-basedaspects
Propertiesofaspects
3.2.1 Static analysis of interactions among aspects
3.2.2 Applicability conditions foraspects
Aspectcomposition L e
Conclusion and perspectives

Expressive aspects for component-based and systems pragrming
Components with explicit protocols

411 TheCwEPmodel
4.1.2 Manipulation of protocols usingaspects
4.1.3 Industrial component modelsand AOP

Expressive aspects for system-level applications

4.2.1 Expressive aspects for C: language and |mplementat|on
422 Formalsemantics
Conclusion and perspectives,

....... 22
...... 24

....... 25

....... 30

....... 31

....... 33
....... 36

........ 39
...... 41

CONTENTS
5 Aspects for explicit distributed and concurrent programming 57
5.1 Aspects with explicit distribution 0L 85
511 Language e e e 59
5.1.2 Implementation e 61
5.2 Coordination-centric concurrency control usingaspects 62
5.2.1 Abstractions for AO concurrency control 63
64

5.2.2 Concurrent Event-based AOP,
5.3 Conclusionand perspectives e 65

6 Conclusion and perspectives 67

Bibliography 70
Publications by Mario 8dholt (categorized) 70

73

Publications by other authors (not categorized)

Chapter 1

Introduction

A key insight of recent software engineering research is that antigsg functionalities — i.e., func-
tionalities that cannot be modularized using traditional structuring meartsasuabjects and compo-
nents — constitute a major problem for the development of virtually all largevacé applications.
This problem has been identified, for instance, in such different doraaiocemponent-based software
engineering, feature-based telephone switching networks, opergstgrs and software product
lines. Starting with Dijkstra’s [Dij74] and Parnas’s [Par72] seminal woek tespectively introduced
the concepts of “separation of concerns” and “modularization”, musbkareh has focused on meth-
ods to modularize such functionalities, in particular, based on techniqumgsmstaprogramming and
computational reflection. Relatively few of these approaches, howesree provided dedicated lan-
guage support featuring declarative means for the definition of artisgg functionalities. Recently,
Aspect-Oriented Software Development (AOSD) has emerged as treraiedield striving for new
declarative modularization mechanisms to tackle crosscutting functionalitidsalrstraction levels
(from software architectures via programs to executing code) as wellragg all software develop-
ment phases (from requirements engineering, via analysis and design toiempégion and software
maintenance, including adaptation).

AOSD techniques have stirred considerable interest, both in the resgamchunity and the soft-
ware industry. It has, for instance, been included in 2001 in the MITt®fisechnologies that “will
change the world” [KicO1]. AOSD has proved highly interesting from aademic point of view
especially because of the inherent complexity of the definition and implementdtianguages for
the modularization of crosscutting functionalities, be they used for applicdésign, programming
or implementation. Furthermore, AOSD is at the crossroads of a large nuiinte¢aited research do-
mains: notable research work has been done, among others, on its redgifmgramming language
design and implementation, component-based programming, middleware aatrapsystems. Fi-
nally, AOSD techniques are of eminent practical relevance due to the impert crosscutting
functionalities, such as distribution and transactional behavior in, e.g.,@wnpbased 3-tier appli-
cations.

While research in AOSD has brought into focus crosscutting as a centtalem for large-scale
software engineering and proposed first solutions to some of the pon@isg modularization prob-
lems, the available body of work on AOSD and related fields has revealethéproblems that have
not been addressed satisfactorily by mainstream approaches to A®S&e problems comprise the
following three that are of fundamental nature to the field of AOSD as wedl #ee larger domain of
software engineering:

1. Thelevel of abstractiorof mainstream aspect languages is too low to modularize many intricate

CHAPTER 1. INTRODUCTION 8

crosscutting concerns effectively.

2. The relation betweeAO abstractions and traditional modularizing mechanidmas not yet
been sufficiently clarified and their synergetic use for the constructidargé-scale software
systems is an open issue.

3. Modularization problems dfistributed and concurrent prograntgve only been tackled rudi-
mentarily.

Before dwelling on the research directions underlying the work pregémthis thesis, let us have
a closer look at these challenges.

Level of abstraction. Most fundamentally, the current level of abstraction of mainstream layegua
for AOP impedes the effective modularization of many non-trivial crosggauconcerns.

AO languages are typically defined in terms of pointcuts, which determine gwigen points
of a base application where aspects modify a software system, and aghick define how the base
application is to be modified. Currently, the predominant model for AOP istbaisevhat we call in
this thesis th@tomic pointcut modelThis model is characterized by pointcuts that denote individual
execution points or sets thereof. Relationships between execution pointatiesto be defined over
the execution history of a software system cannot be explicitly reprebanterms of such pointcuts
and have to be expressed using some external notion of auxiliary state.

However, crosscutting functionalities are frequently most naturally esprein terms of such
relationships between different execution points. Consider, for instatata replication as part of
some caching strategy in a distributed application. The point of time when data be replicated
as well as the data itself typically depend on different previous executiiisp the point when data
enters the cache obviously, but also previous points pertaining to thekohtoncurrent executions
relevant to this replication action, such as transaction management.

The resulting lack of high-level abstractions has three major banefskguences:

e The definition of concerns that exhibit non-trivial dependencies anesagution events (like
the data replication concern mentioned above) cannot be expressed.

e Correctness properties of aspects for such concerns are nohatdys amenable to formaliza-
tion and automatic reasoning.

e Means for the composition of aspects are lacking and aspect compositiemdotte typically
left implicit. This is particularly pernicious to the use of aspects as a gen@gigm structuring
method of large systems that typically rely on many aspects.

Interaction with existing modularization mechanisms. AOSD mechanisms are not intended to
supersede existing program structuring mechanisms but to complement tihemci®sscutting con-
cerns, which are scattered over many different parts of an applicgt@rade traditional module
structures, such as software components and Modula-2 like modules)ebtiomn arises how to rec-
oncile aspects and traditional approaches to modularization as they segadaiory at first sight.
The integration of these two concepts entails a large set of intricate probtemeraing all of the
software lifecyle and software development levels.

CHAPTER 1. INTRODUCTION 9

Lack of support for non-sequential applications. Non-sequential, that is, distributed and concur-
rent applications, constitute one of the most important classes of applicataireathbe targeted by
AOSD techniques because of their many crosscutting concerns andllyyjfacge size. However,
there is almost no explicit support for aspects for non-sequentiatamoging. Instead, almost all
current approaches to such applications, for example distributed syistdlinssing software compo-
nents, rely on sequential aspect language that are used to manipulagequamtial infrastructures.
Such approaches only support insufficient modularization of distributated concerns because,
for example, functionalities that require modifications on different machiags to be implemented
using different programs on the different involved machines.

1.1 Research directions

Most of my work over the last seven years has focused on solutionthdése three fundamental
problems of AOSD and has been aimed at resolving the resulting softwgirgeening challenges.
The leitmotiv of my research has been the development of expressigetdapguages and associ-
ated formal frameworks to support the concise and correct modularizatimtricate crosscutting
functionalities in large-scale sequential and distributed software systems.

In general terms, | have initiated and participated in the definition of a larggeraf aspect sys-
tems and languages that providéigher level of abstractionespecially at the pointcut level, as
mainstream aspect languages. This work has given rise to severa fifstiresults on théounda-
tions of AOPIn the form of formal semantics for expressive (nhon-atomic) aspetemsgsand auto-
matic reasoning methods about the properties of AO programs. We hawsetbon two of the most
fundamental properties: aspect interaction and aspect applicabilitgniesp

Furthermore, we have explored means forititegration of aspects and traditional modulariza-
tion techniquedn the context of component-based programming and systems programmitngveé/e
in particular, proposed more expressive notions of component ingsrtaat, in turn, have allowed to
tackle the integration of software components and aspects.

Finally, | have initiated the development of the currently most compreheaspect system for ex-
plicitly distributed programmings well as participated in the first approach allowingdberdination
of concurrent aspects

1.2 Presentation of this thesis

This habilitation thesis presents the main results of this body of work in termstahiregions of a
general modelEvent-based AOFEAOP), the first non-atomic model for the definition of expressive
aspect languages we have developed in 2000.

This thesis aims at two different goals. Firstirdform presentation of the major relevant research
resultson EAOP-based expressive aspects. We motivate that these instanteatadsie aspects to
be defined more concisely and provide better support for formal mgagover AO programs than
standard atomic approaches and other proposed non-atomic apgro&creretely, four groups of
results are presented in order to substantiate these claims:

1. TheEAOP modelwhich features pointcuts defined over the execution history of an lyader
ing base program. We present a taxonomy of the major language desiga [s=taining to
non-atomic aspect languages, such as pointcut expressiveneséirfegegstate based, turing-
complete) and aspect composition mechanisms (e.g., precedence speatfieatioturing-
complete composition programs).

CHAPTER 1. INTRODUCTION 10

2. Support for the formal definition of aspect-oriented programmingdasedifferent seman-
tic paradigms (among others, operational semantics and denotation semdrdiitegrmore,
we have investigated thatatic analysis of interactionamong aspects as well as applicability
conditions for aspects. The corresponding foundational work on A@¥also permitted to
investigate different weaver definitions that generalize on those uselddnapproaches.

3. Several instantiations of the EAOP model for aspects concerningsiguprogram execu-
tions, in particular, focomponent-based and system-level programmiftge former has re-
sulted in formally-defined notions of aspects for the modification of comggmetocols, while
the latter has shown, in particular that expressive aspects can be impldrmeafgerformance-
critical domain with negligible to reasonable overhead.

4. Two instantiations of the EAOP modeldéstributed and concurrent programmirigat signifi-
cantly increase the abstraction level of aspect definitions by means ofrdspeific abstrac-
tions.

Moreover, we discuss a number pérspectivesanging from technical advances which can be
attained directly from the presented results to solutions to fundamental proldeAOP (and the
field of software engineering as a whole). We consider, in particulay, the presented approach
provides a basis to address three fundamental problems of concaratsam

e The quest for a well-defined notion aiSpectual moduléshat reconciles aspects, i.e., modules
for crosscutting functionalities, with standard notions of modules (or at feadular reason-

ing).

e A comprehensive framework afspects for distributed component-based programntivag
fosters a pattern-based approach to the development of distributedsdipplc This way recent
results on the the synergy between AOP and pattern-based progrigm aed implementation
for sequential programs can be leveraged to distributed programming.

e Generalizanodel-driven engineerindprough the use of expressive aspect languages of differ-
ent level of abstractions.

While this document presents a large part of my work, several resultsoadge detailed here,
mainly because they would distract the reader’s attention from the main thirasgliment focused on
here: the motivation, definition and application of non-atomic aspect laegifagthe modularization
of crosscutting concerns. Most notably, | do not discuss work | ltawvee on computational reflec-
tion and advanced concepts on object-oriented languages [3-DEI80@b, 7-DS00a, 4-CND0D4].
While AOP can be seen as being historically based on reflection and whike ahera number of
important conceptual, methodological and technical commonalities betweeddrothins, the rela-
tionship between the two domains is not essential for the work presented Beecific links be-
tween reflection and AOP are, however, mentioned in the text and the tetresder is referred
to [BLO4, Lop04] for further information. A second subject of my worlaths not discussed in
this document is work on aspects for operating systenfsi[S+03, 7ALSMO03, 5-MLMS04]. This
work features a non-atomic pointcut language defined using the tempgied [OTL that is statically
woven using a transformational system. | do not either expose the veryfirk on a formal defi-
nition of AOP as general transformational systems [7-FS98, 7-FS909| tia&e pursued with Pascal
Fradet in 1998/99. Finally, | won't elaborate on early work on a fornpgdraach to the definition
and analysis of software architectures | have participated during my stande group at INRIA-
Rennes [5-HPS97].

CHAPTER 1. INTRODUCTION 11

Structure of this document

The remainder of this document is structured in five chapters. Chaptere&smalase for non-atomic
pointcut languages and introduces the EAOP model on which most of tHe described here is

based. This chapter introduces, in particular, the language design aleiemation issues for as-
pects we are concerned with by presenting a taxonomy of languageefe&wmmon-atomic aspect
languages. In Chapter 3, our work on the foundations of AO languaga®sented, covering dif-

ferent formal semantics for AO programs we have devised, propergsA®D programs we have

considered and corresponding support for property analysis exifitgtion. Chapter 4 introduces a
second set of instantiations of the EAOP model geared towards softerapooents and system-level
programming. Chapter 5 discusses the extension of the EAOP model to thieutistrand concur-

rent cases: the recent work on explicitly-distributed AO programming dsase first approach to

concurrent aspects that allows to directly coordinate the concurreatiggn of aspects and (concur-
rent) base programs. A conclusion as well as more fundamental (aspgutive) perspectives our
approach paves the way for are presented in Chapter 6.

Chapter 2

A case for expressive aspect languages

The lack of modularization techniques for crosscutting functionalities, i.agtifunalities that are
scattered all over an application and tangled with the code of other funiiiiegiaconstitute a fun-
damental engineering problem for large-scale software systems. AQ8§&ligates such crosscutting
concerns and promises a solution to this problem, essentially through new miratida mechanisms
as part of aspect languageaspect languages are typically structured in terms of two sublanguages:
a pointcut language that defines when or where a crosscutting furitisteould modify an under-
lying base application, and an advice sublanguage that defines how to/rttalifase. A major goal
of AOSD research is the definition of simple but also expressive aspapidges allowing the con-
cise (and hence easy to understand) definition of aspects. Howeventthnow predominant aspect
model, which is embodied by the Aspect] [KHB1L, Asp], focuses on pointcuts that denote individual
(“atomic”) execution events or sets thereof but does not allow to declalpatielate execution events
in terms of the history of execution. This seriously impedes the concise defioiticomplex cross-
cutting concerns and the development of correct AO programs (both agswé informal judgement
or formal verification techniques).

This chapter presents three contributions which are central to ouragipto overcome this fun-
damental expression and correctness problem of AOSD. First, one &irldamental contributions
of AOSD has been the identification of crosscutting as a fundamental praiflall large-scale ap-
plications. However, until now many applications of aspects are of rattmgles structure (e.g., the
infamous “logging aspect”). We present an analysis of a richly strudiueal-world crosscutting
problem: distribution and transactional behavior in a large-scale replicatde infrastructure, JBoss
Cache [jbob]. We show that these two concerns are crosscutting indberpe of (traditional) means
for modularization and that the concerns are governed by non-traf@ionships. Second, we an-
alyze to what extent mainstream (i.e., atomic) models for AOP are suitable fondbalarization
of complex crosscutting concerns. We show that these models are sibgecious deficiencies for
such an endeavour. As a solution approach we present a taxonordyasfced features for aspect
languages that address these deficiencies. Third, we propose theah&sent-Based AOP as an
alternative model for the modularization of complex crosscutting conc@&iris.is achieved through
three distinctive features of the EAOP model: (i) support for expressdpect languages that allow,
in particular, relationships between execution points to be representetlydoe the pointcut level,
(ii) an explicit notion of aspect composition, and (iii) the possibility to apply atp® aspects.

1The importance of these two basic contributions of AOSD — identification/aisabj crosscutting concerns and defini-
tion of suitable aspect languages — has already been at the heart afitHé\DSD papers published by Gregor Kiczales'’s
group at Xerox research, see [Kic96, KL0o97].

12

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 13

The results presented in this chapter, in particular, the analysis of atomitytolanguages
and the EAOP model for expressive aspect languages have beslopml as part of the FP5 Eu-
ropean IST project on software composition “EasyComp” [EAS] in coajpen with several other
researchers and students. Most notably, my colleagume! Rouence and me have started the work on
non-atomic relationships for aspect languages in 2000 and developeEd@i@ model. Luis Daniel
Benavides Navarro and me have performed the original study of critisgcconcerns in replicated
caches [5-BNSV06a], an extended version of which is presented in this text.

The remainder of this chapter is structured as follows: Section 2.1 preberdsalysis of cross-
cutting concerns in a large-scale infrastructure for replicated cac8ifion 2.3 discusses the main-
stream (atomic) models for aspect languages in more detail, followed in Sedlitny the presenta-
tion of the model of Event-based AOP that forms the basis of our workidpez.5 gives a conclusion
and presents some perspectives.

2.1 Motivation: modularization of complex crosscutting concerns

We first turn to the problem of crosscutting concerns that lies at the beA@SD. One of the main
motivation of our work has been that, despite its fundamental charactasoutting has been ap-
proached in a shallow manner only. Most work on AOP considers only sionpsscutting concerns
as exemplified by numerous articles considering aspects like logging outexedracing. Rela-
tively few researchers have considered more intricate crosscuttinipnslaips. A notable exception
are results relating to AspectJ-style control flow relationships betweeanutxe events relevant for
crosscutting. Following this idea, Coady et al. [CKFS01, CKO03] investigetgetching in file sys-
tems expressed in terms of chains of nested calls between different sofewveals of an operating
system. Finally, almost all work is focused on single aspects, even iftasecfrequently subject to
interactions among one another.

In this section, we consider crosscutting in such a general setting. €elycwe extend one of our
previous studies on the modularization of distributed systems with the AWEDs{StBNSV'06a]
on distribution and transactions in a industrial-strength replicated cacbss I&che [jbob]. Here we
present (partially new) results showing that general relationships betdiéferent execution events
are crucial for the concise definition of aspects modularizing complescutting concerns and that
refactoring of the underlying object-oriented application is not able tdweghis kind of modular-
ization problem. More concretely, our analysis of JBoss Cache consibmtbese two fundamental
characteristics of crosscutting as follows:

e Type of relationships governing crosscuttingrosscutting generally does not consist of unre-
lated scattered and tangled actions but of actions that have to be exegutspécting (fre-
quently implicit) protocols. Hence, they cannot be reasonably descriltedms of individual
execution events but only by making explicit the relationships betweendtiffevents. Repli-
cation and transactional behavior in replicated caches, as showrohdioks Cache, is nicely
illustrating this: both concerns are highly scattered, tangled with one anatheiprotocols,
e.g., involving the initialization and later use of caches and transactionsrui@ldo their
correct use.

e Resistance to refactoringVhile it is well-known that all functionalities of large software sys-
tems cannot be modularized at the same time using traditional program stsy(seee¢he notion
of the “tyranny of the dominant decomposition” introduced by Tarr et BDHB99)), it is an

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 14

open question whether the modular structure of existing crosscutting foakities can be rea-
sonable improved by refactoring using traditional programming means.Bdss Zache code
base has undergone substantial restructuring from March 2008qnel.2.1, which is the ver-
sion analyzed in our previous publication [5-BNS86a]) to August 2006 (the current version
1.4.0, which is considered here). This restructuring is partly targetetietter modularization
of the transaction concern. However, we show below that crosscuttieglacation and trans-
actional behavior still is an issue in the latest version, thus providing esgdinat crosscutting
is resistant to restructuring of the underlying code base in large applisation

Analysis of replication and transaction concerns. JBoss Cache is a replicated cache which allows
to install caches onto a set of machines, a “cluster”, in a distributed Jsedtsystem among which
data is to be replicated. In its current version it supports three diffeastiing strategies: (i) no
replication, (ii) replication among all machines in the cluster, and (iii) replicatinorey a subset of
the cluster (“buddy replication”; this last strategy was not part of the gEeche version studied
in our previous work). JBoss Cache is a large application: it is implementad abject-oriented
framework of a little over 50,000 lines of code (LOC) and consists of 16 magkages including
about 250 classes.

Figure 2.7 shows elements of a crosscutting analysis for two of the main parts of theviake
the classlr eeCache (see Fig. 2.1a) that implements the tree data structure stored in the replicated
cache nodes and thent er cept or s package (see Fig. 2.1b) that is used as an OO abstraction to
separate functionalities in the code. Both parts are quite largeTrteCache class, version 1.4,
counts over 6,300 LOC, thient er cept or s package contains 33 classes with a total of more than
7,000 LOC.

We have considered five different functionalities that crosscut theslBache code base (These
are colored in the figure according to the color coding defined in Fig. 2. Totee of these crosscut-
ting concerns are part of the replication and transactional behavier.rérhaining two relate to the
use of interceptors within JBoss Cache. We consider the latter to evaluafiésttieseness of standard
OO modularization mechanisms in the presence of crosscutting concemze@dy, Fig. 2.1 shows
the code distribution of the following functionalitiés

1. Distribution, more precisely use of the JGroups library for multicast conwation between
caches [JGr].

2. Buddy replication, i.e., replication to subsets of clusters (even if bugjalication is part of the
replication code we present it separatedly because this functionality isoniwe latest JBoss
Cache version).

3. Transactional behavior, i.e., calls to the J2EE transaction service.
4. Calls between different classes within the er cept or s package.

5. Calls from the nt er cept or s package to thér eeCache class.

2The illustrations have been generated using the AspectJ plugin 1.4 foclibeeEplatform, version 3.2.

SNote that Fig. 2.1 represents a lower bound of the correspondingstatering: all colored code parts are part of the
corresponding functionalities but there are instructions part of thetibradities that have not been colored. In fact, the
corresponding approximation has been easier to generate, is sufficgrpport our claims and is tight enough to provide
an accurate picture of the concerns.

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES

(a) classIreeCache, versions 1.2 (left) and 1.4 (right)

Jndl

1y
[LTI

aprasaasaaraannanamaam
— O]
—

(b) package nt ercept ors, versions 1.2 (left) and 1.4 (right)

Distribution

Buddy replication (1.4 only)

Transactions

Interceptor callsi(nt er cept or package only)
Calls intoTr eeCache (i nt er cept or package only)

(c) Aspects and color coding

Figure 2.1: Crosscutting in JBoss Cache versions 1.2 (left) and 1.4 (right)

[FR(11Y

10

12

14

16

18

20

22

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 16

protected void _createService() throws Exception

{
if (this.tmlookup == null && this.tmlookup_class != null)

{

Cass clazz =
Thread. current Thread() . get Cont ext Cl assLoader (). 1 oadd ass(t hi s.tm | ookup_cl ass);
thi s.tmlookup = (TransactionManager Lookup) clazz. new nstance();

}

/1 build interceptor chain
interceptor_chain = new InterceptorChai nFactory().buildlnterceptorChain(this);

swi t ch (cache_node)

{

case REPL_SYNC

JmxConfi gurator. registerChannel (
channel, server, "JGoups:channel =" + channel . get Channel Nane() , true);

Figure 2.2: Excerpt of methott eeCache. _creat eServi ce

public Object put(Fgn fgn, Cbject key, Object value) throws CacheException
{
G obal Transaction tx = get Current Transaction();
Met hodCal | m = Met hodCal | Factory. creat e(Met hodDecl ar ati ons. put KeyVal Met hodLocal ,
new Object[]{tx, fqgn, key, value, Boolean. TRUE});
return invokeMethod(m;
}

Figure 2.3: Methodr eeCache. put

The left-hand sides of Figs. 2.1a and 2.1b reprint the illustrations of calysia of JBoss Cache
version 1.2 [5-BNSV 06a], while the right-hand sides show the corresponding illustrationgfsion
1.4. These clearly suggest extensive crosscutting with respect todlwfigidered functionalities for
both versions.

This conjecture is confirmed by a detailed analysis of the code. Figurea@ 2 &show two key
methods that are part of the replication code in clageCache: the former shows part of the creation
protocol of the replication service, the second one of the central megowesning replication when
a data element is put in the cache. Both methods also include transactiod-celd¢e This is the case
although JBoss Code has been restructured between the old and seaw verparticular, to achieve
better modularization of these crosscutting concerns: the latest versioddsca new interceptor
specifically introduced for transaction-related behavior. This intercéptughlighted by the boxed
column in the illustration concerning theat er cept or s package in the right-hand side of Fig. 2.1b.
Note that crosscutting of distribution-related code and transaction-retatezlis present as well in
this new interceptor as in the remaining classes (albeit, for the transactioeropto a lesser degree
than for JBoss Cache version 1.2).

10

12

14

16

18

20

22

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 17

al | aspect CollaborativeCachePolicy {

poi nt cut get Cache(Cache ¢, String key):
cal | (* Cache.get(String)) && host (cacheG oup)
&& target(c) & args(key);

poi nt cut repl Policy(Cache c):
repl P: seq(s0: initCache(c) -> sl
sl. getCache(c, k1) -> s2,
s2: putCache(c, k2, val) && eq(kl, k2) -> si);

around(Cache c, String key): step(replP, sl) & args(c, key) {
bj ect obj = c.get(key);
if (obj ==null) {
obj = proceed();
if(obj '=null) { c.put(key, obj); cacheM sses++; }
}
updat eSummari es();
return obj;

Figure 2.4: Aspect-based cooperative cache (excerpt from [S\B06a])

Since the replication code is tangled with transaction code at the differgstai¢he replication
protocol — such as cache initialization, getting and storing information — the lagzation of the
two concerns has to take into account their respective protocols andtdag reasonably done by
manipulation of single steps. Figure 2.4 presents, for example, an exafespt extension to the
JBoss Cache replication strategy by a collaborative cache strategy best idefined in terms of the
(repeated) sequence of the three events mentioned above (see thetmriritmes 7— 10).

There is a large number of other crosscutting concerns which requies-tiased relationships.
Two other noteworthy domains where such relationships have been iratesdtig- albeit only in se-
quential contexts and without considering the pertinence of aspectdimer— are system-level
communication protocols and business rules. Communication protocols, subBR frequently
crosscut the code of networking applications, such as web caché®ngke Internet [5-DFL05].

If such protocols are to be modified, a coordinated modification to the behafvepme or all of
constituting steps must be implemented. Business rules crosscut applicagber®rprise informa-
tion systems [CD06, 6-DS03]. The corresponding crosscutting costgpically require to set some
initial state, to record information at different execution events, and tty gpmodification at a later
event. In the case of billing functionality, for example, these execution poartgrise product se-
lections by clients, points at which discounts become applicable and the gunttive client checks
out its purchases [6-DS03].

To conclude this investigation, note that these examples provide conciddeew for the two gen-
eral issues of crosscutting relevant for our work. First, complexscrdting concerns in large-scale
applications need protocols to be captured in order to enable their conaikdaripation. Second, as
we have shown for replicated caching, appropriate means for modtienizae all the more impor-
tant because extant crosscutting cannot be fully remedied using tratlitiechanisms even through
extensive refactoring of the crosscutting code.

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 18

2.2 Ataxonomy of advanced aspect language features

We now turn to the second fundamental contribution of AOSD: new langleagé constructs for
the modularization of crosscutting concerns. These constructs arelty@ittactured in terms of
aspect languages that consist of a number of sublanguages. Théssgsiages include pointcut and
advice languages, the best-known abstraction mechanisms of aspeetdasgbut also sublanguages
governing other aspect relationships, such as aspect compositionsaactistion of aspects. Most
aspect languages only provide support for few such relationshigp&xsting support frequently is
limited. The EAOP model, however, has been developed as a compraehéasiework to explore
diverse relationships among aspects and between aspects and bizstiapg

In this section, we first present a taxonomy of advanced languagededtr aspect languages
as a basis for comparison of aspect languages. We illustrate the taxoryousinlg it to classify
selected existing aspect languages and systems. This taxonomy also alkoveimmarize the main
characteristics of the Aspectd model of AOP, which is the de-facto stmdadel of AOP, and to
motivate why our EAOP model addresses some drawbacks of the atomit asyiel.

A comparison of aspect languages and models should be based on targexismprehensive
and largely accepted taxonomy, metamodel or other classification suppmsiever, in the case of
aspects there is no such support. Currently all published work thatdswucetthis issue address it only
in a very partial manner. Masuhara and Kiczales [MKO3Db], e.g., proardabstract framework for
the definition of pointcuts and advice in terms of general domains and fusatdeting them; their
approach, however, provides only very coarse-grained meansnpacte AOP models. Hanenberg et
al. [SHUO06] provide means for the abstract definition and comparisoiffefeht pointcut languages
but do not consider other features of aspects.

In contrast, we have chosen to built on an on-going effort to constrctimprehensive meta-
model for AOP that is pursued as part of AOSD-Europe, the Europeswork of Excellence in
AOSD [AOS]. An initial version of this model has been released in Felgr2@®6 [BMN™06]. More
precisely, we augment and refine a taxonomy of aspect languageefe#at is part of that meta-
model in order to provide better support for a fine-grained classificafi@ivanced aspect models.
We focus on the precise characterization of languages for the definftipmirdcuts, advice and as-
pect compositions, in particular concerning the level of expressigehey provide. To this end, we
provide finer categorizations for the pointcut and advice sublanga@agkintroduce four advanced
features, in particular aspect composition mechanisms, in the taxonomy.

Our taxonomy is shown in Table 2.1: it consists of six main features each ingpof up to three
levels of subcategories (here categories are set in sans serif fgnPntcut)). In the following we
illustrate and discuss the main categories of the taxonomy in some more detalil.

Pointcuts

There exists a large variety of pointcut languages that differ from anthar mainly with respect to
three different characteristics:

e The level of expressiveness of the pointcut language (representeategoryExpressiveness
in Table 2.1), in particular whether it provides mechanisms to explicitly dentdagamships
between join points.

e The underlying programming paradigm: object-oriented languages, fianices, partially re-
quire other abstractions than logic languages (categamdigm).

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 19

Pointcut . —Expressiveness:
— Atomic
— History: Finite-state, Vpa, Context-free, Turing-complete
— Paradigm: Object-oriented, Functional, Logic
— Generality: General-purpose, Domain-specific
Advice : Same as for featurointcut
Composition : —Type:
— Implicit: Non-deterministic, Deterministic, Undefined
— Explicit
—Mechanism:
— Precedence: Partial, Total
— Operator
— Program
— Object: Aspect, Advice
— Scope: All, Stateful — Expressiveness: Finite-state, Turing-complete

State . General, Restricted
Instantiation : Machine, Class, Object, Cflow, Binding
Activation : Init, Arbitrary

Table 2.1: Summary of taxonomy of aspect language features

e Pointcut languages may be designed as general-purpose languagsespperting the expres-
sion of arbitrary aspects, or domain-specific ones (categengrality).

In this text we mostly abstract from the first issue by considering pointoyisessed over calls,
which may equally well denote object-oriented method calls, functional or ettigerfunction calls,
and component-based service calls. However, we touch on this issuedarttext of the design of
pointcut languages for the C language. We also consider severabhfypnepose as well as domain-
specific pointcut languages, in particular for distributed programming.

We focus on an investigation of pointcut languages of different exp&sessExpressiveness).
With respect to this criterion, pointcut languages, or better constructsiofcpit languages, can be
classified ag\tomic or History-based. An atomic pointcut construct can be defined solely in terms of
an individual execution event, while history-based ones must be ddfinediating different execution
events occurring over time. Note that languages that essentially rely on atonstructs must have
recourse to means external to the pointcut language in order to expstesnporal relationships.
This is further discussed in Sec. 2.3.

Many different approaches have been put forward to define hiiased execution events, to
cite just some examples, logic languages [DD99, BMDO02], automata-bagedaghes [5-DFS02b,
SVJ03], and grammar-based approaches [WV04]. Adaptive progiag [LLO4] provides history-
based pointcuts that are defined using predicates of different si@aess on the class graph of an
object-oriented base application.

These approaches can be classified with respect to the level of gixpresss they provide, e.g.,
with respect to the Chomsky hierarchy or other complexity classes (seerhab et al. [LPS05] for
an example of the latter). Such a classification is useful because it idek#fiestructures that are
expressible and that are not: pointcut languages of at least corgexéxpressiveness, for instance,
can employ well-balanced structures of execution events, while finite-staggl lpointcut languages
can not. The classification also provides an indication which kind of foreedaning the pointcut

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 20

language can be subjected to. Approaches based on regular lasgioagestance, may allow model
checking techniques to be applied to analyze properties, such as sspettion properties, which
is not possible for turing complete pointcut languages. One of the main dgdails thesis is to make
a case for the usefulness of history-based pointcut languagesrogpttee full-range of expressive-
ness levels, in particular, in order to improve understandability of complegrams by augmenting
conciseness and declarativeness of aspects.

Advice

From a language-design viewpoint advice shares the essential tehestacs of pointcuts. The advice
language may be restricted to constructs of a certain level of expres#ivityite-state based advice
language is useful, for instance, in the context of the manipulation of nregtd¢ocols in order to

preserve opportunities for reasoning about the resulting AO prograing model checking. The
advice language may also contain constructs specific to the underlyingapmogng paradigm, as
e.g., advice for an object-oriented language that allows the manipulationaot afghe inheritance

hierarchy that is relevant to a class. Finally, advice may be construcied gsneral-purpose or
domain-specific instructions. Instructions specific to the domain of seciaitgxample, might only

allow to abort program execution in the presence of a security violation.

Aspect composition

Composition of aspects is one of the most fundamental relationship betwgertsgsespecially be-
cause different aspects may interact. Interacting aspects should lm@tlgxpomposed in order to
resolve interactions unambiguously. Depending on how fine-grainedot@m composition is pro-
vided, we distinguish three different cases.

Most fundamentally, aspect composition may be implicit, or explicitly defined otatiguage
level (categorylype). In most aspect systems composition is (at least partially) implicit. Composition
properties may, for instance, not be expressible at the language teattlbait determined by the
order in which aspects are applied to the weaver. In this case, the senudrasgect compositions
may be undefined (i.e., solely determined by an essentially unknown weavemeation), non-
deterministic or equivalent to some deterministic composition scheme. In Asfdtdstance, the
composition of aspects is undefined if no precedences are declamdi{f@oncrete weavers often
implement a deterministic compaosition by, e.g., ordering aspect compositionslaccto the order
of occurrence in the source code). Aspect composition may, howswerxplicitly specified on the
language level, in particular, using explicit precedence specificationsooe general specification
mechanisms.

Second, aspect compositions can be classified according to the mecht@sare available for
their definition. The most wide-spread means for explicit control of asmeuposition, in particular
for the resolution of interactions, is the definition of precedence or priscityemes (categoBrece-
dence). These schemes allow the definition of partial or total orderings on &spiet have to be
respected by the weaver when applying aspects to a base applicatioratdsased approaches
(categoryOperator) allow aspects to be composed explicitly using aspect composition operators.
Such approaches are more general than precedence-based schéenigave defined, for instance,
several instances of our EAOP model that provide such operatamstpeg reordering of aspects
or deactivation of aspects in case of interactions (e.g., composition oggefatoregular aspects,
see [5-DFS02b]). Finally, aspects may be composed using generabsibimip programs (category
Program). The JAsCo aspect system, for example, provides the notion of haokasition to this

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 21

end [SVJO3].

Furthermore, all aspect composition mechanisms may compose entire aspketsestricted
to advice composition (catego@bject). Composition mechanisms also differ with respect to how
the scope can be defined during which aspect composition takes effdet@ryScope). Aspect
compositions may be defined invariably for all of the execution of an AOnaragor defined in a
stateful manner that allows aspects to be combined differently over antexedepending on the
current runtime state. Finally, approaches to stateful composition may bffepédt expressiveness
(categoryExpressiveness): there are, for example, turing-complete ones, e.g., JAsCo’s composition
mechanisms, and approaches of more limited expressiveness, as, eapertter-based approach to
aspect composition we have proposed.

Aspect-specific state

Aspects may incorporate local state which can be manipulated and used aéthea other aspect
abstractions, mainly pointcut and advice. This state may be gei@nadéral), that is, defined using
the same mechanisms as state of the underlying base applications. In Afprertstance, local
aspect state comes in form of fields that can be manipulated using all avaitalslenechanisms.
Local state may also come in more limited fornegtricted), e.g., finite-state automata used to
impose restrictions on the matching of pointcuts and application of advice.

Aspect instantiation

Aspect instantiation denotes mechanisms for the creation of new aspeostasta: including alloca-
tion and initialization of fresh copies of the aspect state — depending on therences of execution
events of the base application or aspects themselves. Aspect instandes tieato a large set of dif-
ferent execution events: creation of virtual machines in which aspexexacutedNachine), events
belonging to classe€£(ass), creation of individual object instance3i{ject), matching of AspectJ-like
cflow constructors@flow), or bindings of variables in a sequence point®itding). While most as-
pect languages do not provide more general instantiation mechanismsdbamtbvided by AspectJ
(which essentially consists of mechanisms of tyldeshine, Class, andCflow), aspects may support
very general instantiation models, such as our initial Java-based EA@Rtiation [6-DS03, 9-DS02]
that supports arbitrary reflection-style aspect instantiation of Qtpect.

Aspect activation

Aspects may be activated only during some periods of the program execltiig for instance, often
reasonable, to apply an aspect only after some initialization has been taker(yit). Alternatively,
activation conditions for aspects may be specified using arbitrary ptedidsote that this is related
to but not the same as aspect composition and aspect instantiation. Furtheagpect activation can
frequently be expressed simply by specific predicates to be used in pojrihaits, without having
recourse to a full-fledged language for activation.

2.3 The atomic aspect model

We now turn to the currently predominant model of AOP, whose main repiases is AspectJ. We
call this model atomic because of its main characteristics, atomic pointcut leegirathe sense of
the taxonomy above.

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 22

The atomic aspect model is important for our investigation because it peogide facto, very
well known standard set of abstractions that has to be adopted with atmimastvariations by a large
number of aspect-oriented systems besides AspectJ. Such systems &sgadelanguages, such as
AspectC++ [SGSPO02], for other base languages, but also framsv@rROP, i.e., without dedicated
language support for aspects, such as frameworks for distributedaents like JBoss AOP [JBoa]
and Spring AOP [Spr]. Moreover, a large number of scientific investigatid crosscutting concerns,
for instance Coady’s work on concerns in operating systems usingcASgEKFSO01], has been
conducted on the basis of an atomic aspect model. A direct consequietiig gredominance of
the atomic aspect model is that many users of AO technology (including sdpists) do not
know about or seriously consider more expressive aspect modeldyijLts characteristics and
deficiencies is therefore an important element of motivation for our approa

2.3.1 Characteristics

Atomicity of pointcuts has implications on the remaining features of the aspectlmbtest im-
portantly, the limited facilities for the directly expression of relationships batves@cution points
on the pointcut level have to be offset by other means to record oooasef events that influence
matching of later events. This is typically achieved by manipulating aspect-#ahtstiate using ad-
vice. Moreover, atomic pointcuts impede the precise but flexible definitionwf compose aspects:
mainstream aspect languages therefore only provide very limited sdppaspect composition. We
now consider these characteristics in detail.

Atomic pointcuts

Aspect languages for object-oriented base languages typically contah aet of basic pointcut
constructors and a small set of operators over pointcuts, in particudaral@perators. Basic pointcut
constructors typically belong to the following four categories:

e Calls and fields:Such constructors match calls, related execution events (such as otiakt in
izations and exception handlers), as well as field set and get operations

e Class: constructors matching on the static structure of classes or manipulating theembie
modifying the class hierarchy or by introducing new interfaces and clegisYi

e Control flow: constructors allowing execution events to be matched that occur fronea gal
to the corresponding return or a subregion thereof.

e General predicateconstructors that allow to make depend pointcuts on general conditions.

Aspectd includes such a set of basic pointcut constructors: matchimdgjotan distinguish between
caller and callee sides by respectively usingdhkel andexecuti on constructors, calls may be re-
stricted to occur within methods statically defined within a class, “intertype adidas” allow to
introduce new fields in class definitions or to modify the class hierarchyradiow based matching
may exclude the originating caltfl owbel ow), and thei f -constructor allows arbitrary Java predi-
cates to be used in pointcuts.

Two of the four constructor categories — calls/fields constructors amiaidlow constructors —
designate execution events. The other two categories can be interetedizgates defining static or,
in the case of thef -constructor, dynamic scopes. (We do not consider intertype declasakiecause
their modifications of the static structure of a program are not relevanbitaay base paradigms.)

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 23

All call and field constructors denote individual events, i.e., they are atpwiitcut constructors.
Control flow constructors are non-atomic— in fact, the only non-atomictoactsrs in Aspect] — in
that they relate all execution events between a call event and the cord#sg return event. However,
all of these pointcut constructors provide only very limited means to conginictcuts that match
subsequences of the execution history.

Furthermore, the few operators that can be commonly applied to pointagssigns do not im-
prove on this state-of-affairs. For instance, logical operations ortqdbuilt using atomic pointcut
do not allow to express non-atomic relationships.

Aspect-specific state

In order to offset this lack of expressiveness, a general notiotatg and corresponding manipulation
mechanisms are typically used. Three kinds of mechanism are common. §jstteamay define
internal state that can be used to record information about previoustexeevents and used to
restrict the matching of or provide additional information for later events.efi-ktnown example of
the latter are memoization aspects. Second, aspects may access state ¢ tygphiaation and, in
most systems, also modify it. This can often be done implicitly through some espagion of the
state at the execution point a pointcut matches; in AspectJ, for instanaeebgctive access using the
t hi sJoi nPoi nt variable. Third, the state of the base program can often be manipulatedstsiic
mechanisms, most notably, by using aspects to add state variables to cfabedsase application.

Turing-complete advice

In order to manipulate advice-internal state and the state of the base applieagowerful advice
language is necessary. Commonly, advice is implemented using a turing-cotapigtege that
frequently results from enriching the base language by a small set ettagpecific mechanisms.
In AspectJ, for instance, the advice-specific pseudo-mephodeed is used to call matched base
functionality and the hi sJoi nPoi nt mechanism for reflective access to contextual information.

Limited composition mechanisms

The atomic aspect model provides only very limited means to handle the compadiispects. In
terms of the taxonomy summarized in Fig. 2.1, aspect composition is typically left imghiat is,
not explicitly controlled on the language level or governed using explieitgadence specifications.
AspectJ provides another mechanism that belongs to the category euprogtic composition fea-
tures: pointcuts may test whether an execution event occurs in the scapeadvice that is defined
in other aspects by means of thévi ceexecut i on constructor.

None of these three mechanisms comes close to a general notion of ojpassedror program-
matic aspect composition. Defining composition implicitly yields at best difficultrtdenstand com-
position semantics, prioritization often is too inflexible, and the available pnogegtic means in
AspectJ are too fine-grained. Note that all of these problems are (atpadmlly) grounded in
the lack of expressive means to define pointcuts relating execution pointsciirapmposition and
precedence specifications do not take into account individual exacsifes but compose aspects
uniformly over the entire execution of an application; to the contrary, fragrgd advice execution
control does not provide declarative control over sequencesecixion events.

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 24

2.3.2 Drawbacks

Because of these characteristics the atomic aspect model is subject to twtaimhpooblems. First,

crosscutting concerns that can only be modularized in terms of traces ekdgation history can

be described only cumbersomely. Second, the correctness of ACapiegleveloped in this style is
often very difficult to judge and almost always impossible to ascertain formilyhis section, we

briefly review these two problems.

Lack of conciseness of aspect definitions

As motivated in Sec. 2.1 many crosscutting concerns require differemtswccurring during an
execution trace to be accounted for in order to modularize them. Suchrosr@@mnot be concisely
modularized using atomic aspect languages because of a lack of stiffieigoressive mechanisms
in the pointcut language. Hence, these concerns can be implemented otgalyng down the
dependencies into atomic pointcuts. In particular, it is very frequently o&xiple to use control-flow
pointcut constructors, because the calls corresponding to later reéxeution events are not nested
in the control flow of the previous ones. Concretely, the correspornlipgementations of trace-based
crosscutting relationships are therefore structured in three parts usmgcaspect languages:

¢ An atomic pointcut definition is defined for each relevant execution point.

e A suitable state is set up that allows to record all information of previousuéxecpoints that
are required at later points. This concern-specific state commonly invdbaisated aspect-
internal state but frequently reuses state already part of the baseatipplic

e Each pointcut definition triggers advice that updates the concern-spsteife and applies the
necessary modifications to the base application.

The resulting implementations are characterized by a large number of eparamplicitly re-
lated pointcut and advice definitions. Frequently, the pointcuts and adwicdase higher-level ab-
stractions, such as finite-state automata, that could be used to expresexjasitly using more
expressive aspect systems. Both issues obviously lead to AO prograintescthconcision and there-
fore are difficult to understand.

Program correctness

AOP generally poses a hard correctness problem because tradidasahing mechanisms that have
been developed for non-crosscutting programming structures arpplatable to AO programs. Tra-
ditional reasoning mechanisms rely, in fact, on composition and encapsyatiparties that do not
hold for modifications on an application induced by aspects. Consequiefbiynal justification of
the correctness of AO programs as well as their formal, possibly automaidation and verification
remains a mostly open issue. While we consider the general problem lateapieCI3, it is impor-
tant for the present discussion to note that the atomic aspect modelletesathe aspect correctness
problem to a large extent.

The most obvious handle to express and ensure properties aboadudtivgy concerns are prop-
erties of pointcuts. However, the limited expressiveness of pointcuts irdheaaspect model only
allows very simple and coarse-grained properties to be captured thigwwmayable example address-
ing properties on the execution of AO programs is the work by Kiczales asmiVi[KMO05], which
permits to determine coarse-grained upper bounds on which parts oé applécation are affected

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 25

by aspects and to ensure certain control flow properties. Such gegpeould, however, be of lim-
ited use in case of the trace-based relationships discussed aboveorfl sextable group of work
investigates the effects of intertype declarations in AspectJ-like langudigése et al. [HNBAOE],
for instance, present an algorithm that can be used to detect ambigemasations, i.e., that result in
non-deterministic aspect weaving.

Another problem for the evaluation of the correctness of atomic AO pragjisithe use of aspect-
specific state and turing-complete advice languages to handle that stédallpaspect-internal state
constitutes a global state with respect to advice and application-level staniglebal with respect
to different aspects. This means that the formulation of correctnesentiey their analysis and
verification is subject to all problems arising from globally shared state thatleeady present in the
base paradigm in addition to the correctness issues originating from thet-@gecific abstractions.

Finally, the atomic aspect model also impedes expression and verificatioopafpes because of
its limited means for aspect composition. This is particularly problematic becaakedst entirely
inhibits reasoning about interactions of aspects. Consequently, tieeoalgirvery few approaches to
tackle this very important problem and the corresponding results are typreay imprecise. Fur-
thermore, most aspect programmers currently only use very coasedrtechniques to identify
interactions that are often provided on the level of development envinoismehe Aspectd Eclipse
plugin, for example, marks different advice that may match the same method call.

2.4 Event-based AOP: beyond atomic pointcuts

We are now ready to introduce a general aspect model, the model of-Based Aspect-Oriented
Programming (EAOP)that Remi Douence and me have started developing in 2000 in order to address
the issues of the atomic model introduced above.
2.4.1 Characteristics
The EAOP model has been developed as an aspect model having therfgltoain characteristics:

e Language support for expressive aspects

e Language support for explicit aspect composition

e Support for reasoning about properties of AO programs

¢ Integration with mainstream base languages

e Reasonably efficient implementation

The first three directly address the drawbacks of the atomic aspect misdaksed in the previ-
ous section. The fourth is motivated by the observation that many apg®émhexpressive aspect
languages are based on other programming paradigms, such as logiagasgisuch approaches,
while providing rich facilities to express relationships, cannot simply be wgt#dobject-oriented
and imperative languages. The last is useful because some interegtingsixe aspect languages are
inherently difficult to implement efficiently, e.g., Masuhara et al’'s data-flomgguts [MKO03a].

4Note that, strictly speaking, EAOP is a metamodel in the sense that it defieesfageneral characteristics that we have
then instantiated by different concrete aspect languages. Since¢hermads to the EAOP metamodel and the instantiations
cannot give rise to confusion in the present text, we refer to EAOP siagpdn “aspect model”.

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 26

Non-atomic pointcuts

The main motivation for our work has been the need for aspect langadgesng to represent rela-
tionships between execution events of an application. Many differemtaiiems and programming
paradigms may serve as a basis for such an endeavor, for instansedogdicas Prolog and temporal
logics, functional calculi, grammars and automata. Today, most of theseeahes have been and are
under active investigation but, when we started our work in 1999 on whdater called the EAOP
model, only the AspectJ model was known.

After a first approach defining pointcuts in a functional setting [5-DM80We have decided to
focus on pointcut languages that are based on different forrasitoimata in particular, finite-state
automata, counter automata, and visibly pushdown automata (VPA) [AM04].

This choice is justified by four different advisements. First, the most basid jpractically rel-
evant) relationship between execution events that extends the atomic paoioek (including con-
trol flow-relationships) are pointcuts over sequences of events: thesea natural special case of
automata-based pointcut languages. Second, automata-based pointstlyshane quiteintuitive
interpretations(e.g., finite-state automata as regular expressions and regular gramiiArbased
structures in terms of well-balanced contexts) and the resulting pointcuéssipns therefore are
easily understandable. Third, many automata-based pointcut languagex drovide for turing-
complete relationships: they thus enable specialized, effective and)lgagfiecient formal methods
to be used to reason over pointcut expressions. Fourth, the runtime ngatélntomata-based ex-
pressions is supported by a large body of work treating their optimized imptatizen

Explicit support for aspect compaosition

Our work has been guided by the desire to provide powerful and flexibbns for aspect composition
on the language level, in particular improving on the drawbacks of the atoqéciasiodel in this
respect. Concretely, we have strived to meet the three following chastice First, aspect compo-
sition should beexplicit the model should support composition specifications over aspects assentitie
of their own. Second, aspect composition shouldtagefu) that is, flexibly composable in terms of
the runtime state of an AO application, in particular, the states of pointcut &siprs. Stateful as-
pect composition subsumes support for the composition mechanisms of atgedtsa@n particular,
precedence schemes, Aspectdlgi ceexecut i on) but also includes operators that compose aspects
differently over different parts of the execution of an AO program. dhive are interested in inves-
tigating composition of aspects, aka. aspects of aspects: the need to theneltiects of aspects on
other aspects rapidly arises if aspects are used as a general meamsstoucting applications.

Support for reasoning about aspects

The key characteristic that differentiates EAOP from atomic aspect mauttsatomic pointcuts,
is instrumental to informally establish properties of aspects and next to imdigple in order to
establish them formally. Important properties of aspects that should besséd by a model for
AOSD include interaction properties of non-independent aspect®atoess properties of specific
aspects and optimization properties enabling the efficient implementation ofdgbeapns.

Limiting the expressiveness of pointcut expressions allows programmenmssp the meaning
of aspect definitions much easier. Furthermore, defining applicationg spetialized well-known
classes of languages is a well-known means to support better undargtahgrograms by develop-
ers and users: finite-state machines, for instance, have been usedyiappéination domains to this

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 27

end. Limited expressiveness also much augments the opportunities fot fordhan particular auto-
mated reasoning about properties, compared to the atomic pointcut modglstfirstures based on
finite-state automata or visibly pushdown automata allow standard operatichss product opera-
tions, to be used for the analysis of aspect programs. Furthermordylsitastractions can be used
to automatize formal verification tasks efficiently, for instance, through seeafi model checking
techniques.

Integration with mainstream languages

Relationships between execution events relevant for aspects can beerpdidé using fundamen-
tally different formalisms and supporting techniques. As indicated befiffereht logics, calculi,
grammar-based approaches, etc., have been proposed to this end. BYimether an aspect system
can be integrated smoothly with an underlying base programming paradigenatehowever, on
the combination of aspect language and base paradigm at hand: thatiotegf general logic pro-
gramming languages and object-oriented runtime systems, for instance, is atithae open research
issue.

To the contrary, the automata-based aspect structures we have begnhwoaked on are par-
ticularly well-suited for several reasons for the integration of aspegulages with object-oriented
and imperative base applications. First, implementations of automata in form afidédbrand OO
frameworks can be used to implement automata-based aspect systems, gpetied syntax exten-
sions are not necessarily needed. Second, modifications to the bdisatappmay in general have
repercussions on the state that governs the matching of pointcuts. In satoased approaches
such modifications can be readily expressed in terms of modifications to autetasgs. Finally,
automata-based approaches are also appealing from a pragmatic pdew dfecause of the many
existing software implementation of the base operations, model checkerghatcan be reused in
an AO context.

Reasonably efficient implementation

AOSD is a relatively recent research domain and, as such, efficignayptementations has mostly
been an issue of minor importance. While this general consideration is sti#lct@o some extent,
efficiency is important and sometimes crucial to various of its applications. IMidde and systems
software, in particular, constitute two large application domains of this kire[g&s€JS06] for a more
detailed discussion).

In a model with non-atomic pointcuts, the complexity of the pointcut languagésaingplementa-
tion is of foremost importance as far as efficiency of implementation is coedeRointcut languages
may easily include features which by principle can not be implemented withrrelksoefficiency, for
instance, if the pointcut language relies on full-fledged logical inferencgeneral dataflow relation-
ships (as, e.g., in Masuhara et al's approach [MKO03a]). Automateebaspect structures are very
attractive in this respect because their overhead (i) is determined by m@llrklanguage properties,
(ii) can be kept small to very small with reasonable effort, and (iii) can tyiyite evaluated well by
programmers.

Besides the pointcut language, advice may also cause AO-specifieadei®@ne issue is whether
advice may generate new execution events that are subject to weavinig:dagh, repeated execution
of event generation by advice followed by pointcut matching and reapiplicaf advice may result
in resource-intensive weaving. Most aspect models do not suppchtgeneral weaving strategies,
which are akin to powerful intercession mechanisms in systems using compatagéiection. As-

CHAPTER 2. A CASE FOR EXPRESSIVE ASPECT LANGUAGES 28

pectJ, for instance, is designed to allow weaving through compile-time causfdrenation, which
simplifies the task of keeping weaving efficient. The EAOP model has bgangkeseric enough
to allow the investigation of such alternative weaving strategies (We will corok tioethe issue of
visibility of advice to weaving and corresponding weaving strategies in €h&p).

Finally, the remaining features of aspect models introduced in Sec. 2.3.ibf#ismce efficiency.
Aspect instantiation, in particular, may be problematic if aspect instancdseggenerated at runtime.
Per object instances of aspects that are instantiated at runtime, for mstacier a non-negligible
overhead. Furthermore, manipulation of aspect-specific state may be farsthgtance, if such state
may be shared in a distributed environment. The composition of aspects ocaraake execution
overhead, especially if it is performed at runtime. Once again, in contrasore restricted models,
the genericity of the EAOP model allows exploration of these issues asnpedsi@ the following
chapters.

2.5 Conclusion and perspectives

The main motivation of our work on expressive aspect models has beeasieevation that many
interesting crosscutting concerns can be defined only in terms of comjdéiomship between exe-
cution events and cannot be modularized well using atomic aspect systantssystems fall short
to provide concise aspect definitions and the correctness of aspaatst tee formally established.
The EAOP model allows to tackle these shortcomings by making explicit su@ndepcies, yield-
ing better structured and formally defined aspect languages that arallmémmanual or automatic
property verification.

Perspectives. The results reported on in this section pave the way to address a numbigreof o
important open problems.

Stateful pointcut and aspect languages are a tool of much wider apfiticgian explored by
us. Our notion of regular stateful aspects has been integrated by thed®8@p at Vrije Universiteit
Brussel into the aspect system JAsCo [VSCDF05] and applied, amoag dbHbusiness rules and web
services. In a subsequent cooperation, we have applied statefataépr web services to distributed
web service compositions [5-BNSVVO06].

We have underlined the facilities for aspect composition provided by theFEAOdel. How-
ever, composition properties of aspects are not limited to the compositionstrection of aspects
or composition of aspects with one another but also raise the question ofohioegrate aspects
with existing composition mechanisms, such as software components and mddubssresearch is
currently under way on this issue. We come back to the perspectivesepprby our work in Sec. 6.

Chapter 3

Foundations of AOP

We now turn to the fundamental problem of how AOP can be given a rigoimundation. While
semantics of programming languages as well as analysis, verification fordesnent of their prop-
erties is a well-established field in the domain of traditional programming parad®@i requires
new formalisms and techniques to be developed for the rigorous treatmerasstutting relation-
ships. Work on the formal treatment of AO programs has only started anthefehe nineties and
therefore still is rather immature, essentially applying existing formalisms to grep®f AO lan-
guages. Concretely, this work focuses on formalisms and techniquesdgfite the semantics of
AO programs and (ii) to determine properties of aspects and supportenfent of properties over
aspects.

To cite a few examples, this exploration of existing formal frameworks ford#feition of the
semantics of aspect languages has led to the development of diffeeatiopal semantics AmO02,
5-DFS02b], denotational semantics [WKDO04] and process calculi(AnBJJR04] for aspects. Fur-
thermore, a variety of properties of AO programs have been investigaigd,safety properties of
aspects [DWO06], yielding in particular different classifications of atp®ith respect to their se-
mantic effects on the base program [Kat06]. Finally, the automatic analypi®pérties using, for
instance, static analysis techniques [DWO06] and model checking [K2E3)éen considered.

In this chapter we present our work on the formal semantics and sUdppproperties of so-called
stateful aspectsa term we have introduced in [5-DFS02b] to designate languages wiihiesppport
for aspects defined in terms of the execution history of an AO progranis (@hm has been taken
over by other researchers since then, see, e.g., [VSCDFO05, VI&jgretely, the results presented
here address three different categories of problems:

e Semantics of aspect languag®¥e briefly motivate and describe two different semantic frame-
works — a functional and an operational one — we have developedsadf time first semantics
for AOP.

e Properties of aspectsWe present static analysis techniques we have developed for two of
the most fundamental properties of AO programs: interaction among aspetthe correct
application of aspects to base programs.

e Aspect compositionWe also detail means for the rigorous treatment of aspect composition
issues, in particular based on stateful aspect composition operators.

We concentrate here on mechanisms for the semantics of aspects thattdhmtnaspecific aspect
languages and specific uses of aspects. As an example of semantipedificsaspect languages,

29

CHAPTER 3. FOUNDATIONS OF AOP 30

two formal transformational semantics of aspects for C programs aresdiextin Sec. 4.2.2. We do,
however, not present our work on the formalization of aspects aretaggaving through program
transformation [7-FS98, 7-FS99] that Pascal Fradet and me hatedstath and also do not present
the work using the temporal logic CTL for the formalization of pointcuts in ternsets of paths over

the control flow graph of C-programs [35I-_S+03].

The work presented in this chapter has been done in the context oedifiesllaborations. Most
of the work on the semantics for and properties of stateful aspects basibae with my colleague
Rémi Douence and Pascal Fradet from INRIA. The recent work oA-b&sed aspects has been
started as part of Ha Nguyen’s PhD thesis that | am currently supegvisin

The remainder of this chapter is structured as follows. Section 3.1 prebegaglifferent seman-
tics for stateful aspects of different expressiveness by extendagrtiiorm description framework
we have introduced in [1-DFS04b]. In Section 3.2, we consider howagati®n properties and ap-
plicability conditions of AO programs can be defined and analyzed usindudtaspects. A formal
approach to aspect composition is set forth in Section 3.3.

3.1 Formal semantics for stateful aspects

The core of our work on formal semantics for aspect languages leasmetivated by two key obser-
vations. First, the absence of any formal foundation for aspect lgeguahen we started our studies
in this domain in 1997. Second, most aspect languages — and hencsponwang formal frame-
works — have been instances of the atomic aspect model as introducedpiretieus chapter. The
resulting poor representation of the semantic relationships that goverctasas set off our quest for
more expressive semantic frameworks that make explicit such relationstgpdeast support their
analysis.

Our response to this challenge consisted in a series of different bigtdslemantic frameworks for
the formalization of aspects defined over the history (that is, traces) ekdwition of AO programs.
Furthermore, the expressiveness of the aspect languages ofrdmasevbrks has been chosen so that
properties over aspects can be formally established.

3.1.1 Presentation framework

We first turn to the problem to giving precise semantics to aspect languages following, we give
a unifying presentation of three semantic frameworks for stateful aspedtave developed:

e Aspects whose pointcuts are defined using a functional calculus [SERMST-DMSO01Db].
¢ Finite-state based, i.e. regular, aspects [5-DFS02b, 9-DFS02aSb4af:
¢ Visibly pushdown automata (VPA) based aspects [NS06].

These three approaches cover a large part of the aspect langesige dpace. First, the three as-
pect languages are of different expressiveness ranging froneldtésely limited regular aspects, via
VPA-based aspects that allow a form of well-balanced contexts to bessgut and manipulated, to
the turing-complete pointcuts defined using a functional calculus. Sedoeyl have been defined
using different semantic frameworks: an equational theory in the casspafcts with functional
pointcuts, regular aspects and VPA-based aspects by means of a smalpestational semantics, the
latter of which defined after a translation into plain VPAs. Third, the threeuages admit different

CHAPTER 3. FOUNDATIONS OF AOP 31

techniques to be used for property verification: equational reasohimg &unctional pointcuts, static
analysis in the case of regular and VPA-based aspects.

The main characteristics of these language can concisely be preseagztidrathe following
general definition for stateful languages (which is a slight extensiorabfiéfined in [1-DFS04b]):

A = P>l |P ; basic aspect
| ALA ; sequence
| ALOA ; choice (3.1)
| paA ; recursive definition
| a ; recursive call

This grammar allows the definition of aspeétshat are constructed from basic aspects using three
aspect composition operators: sequencing ‘; ’, choidg and repetition fla...a’. Basic aspects
define pointcut® that may trigger inserts, that is advidéeempty inserts may be omitted.

The generality of the terms admitted by this grammar, in particular compared to iteestate
aspects considered later, results from recursive calls can occii@égy places in terms. The cor-
responding class of languages accommodates a high degree of variapi(ijydifferent concrete
definitions for pointcuts and advice (e.g., to introduce composition operatdhe advice sublan-
guagel), (ii) different semantics for the basic operations (e.g., deterministic va-deterministic
choice) and (iii) structural restrictions (e.g., restricting recursive difirs to tail recursions).

In the following, this formal framework is extended compared to the presentia [1-DFS04b]
in two respects. First, we show how to include means for aspects baseily pushdown automata
besides turing-complete and regular aspects. Second, we accommolgaentiihechanisms for the
composition of aspects on the pointcut and advice level.

3.1.2 Aspects with functional pointcuts

One of the reasons of the popularity of atomic aspect models, such astAsgiems from the fact that
they typically allow to easily define arbitrary pointcuts. As discussed in thequs chapter, complex
pointcuts have then to be implemented using atomic pointcuts and pointcut-esteteathus impair-
ing understandability of aspect definitions and essentially foreclosirspméay about pointcuts. A
solution to this trade-off between generality and tractability can be develisppdan analogous
situation in traditional programming: imperative programming also suffers Biomiar tractability
problems. Alternative programming paradigms, such as functional progirgg and logic program-
ming, have been developed as a remedy. The trade-off induced by atoimicuyts languages can be
similarly addressed. To this end, we have explored the definition of poirgstitsctional expressions
that are defined in terms of monadic parser expressions [HM98].

Language. We have considered pointcuts defined as values over a recursivgpgatiaat include,
inter alia, constructors for the matching (and extraction of information) d/iehgial joinpoints, a
sequence constructor and a parallel constructor that realizes a fatisjunction. Specific binding
constructors may be used to pass values extracted from one joinpointelopattis of a pointcut
definition.

The essentials of such a language can be easily represented in term&oanmaar 3.1: recur-
sive definitions, sequencing, and the parallelization operator aresesyiesl by the operatops ; , [,
respectively. Individual joinpoints may be represented by recucsimstructor terms involving vari-
ables in argument positions, the latter to extract data from joinpoints for ls¢eiNote that we abstract

CHAPTER 3. FOUNDATIONS OF AOP 32

here from the specifics of joinpoint matching, e.g., return types and widuoatching. Furthermore,
pointcuts may test for arbitrary conditions usingifftonstructor. We represent value binding by
distinguishing between assignment of variables, natied variablev from variable uses.

Example: An aspect for updating information on files and trust of their respectiveigers as
part of an P2P application can be defined as follows:

uaf = localCache (if (f # null);a
O if (f = null); (pubfilesquery b; files replyr> updateFileInfoa
O petrust.query, c; trust.reply> update Trustinfpa))

This aspect first looks up a file in a local cache and, if it has not baamdfthere, updates the
local cache after a recursive file query or a recursive trust query

Semantics. An aspect language providing expressive pointcuts can be definatis ¢ a monitor
that observes the base program execution, matches pointcuts andstadgare execution when ap-
propriate. Functional pointcuts, which form a sublanguage of purea(sside-effect free) functional
programming languages [Hud89], are particular attractive in this cordeghifee reasons. First, pure
functional languages come equipped with formally-defined and relativelyls semantics. Hence,
functional pointcuts can be formally defined by translating them into plairtiomel programs. Sec-
ond, the corresponding interpreters can be implemented directly in termsatitiial programming
languages. Third, functional pointcuts are referentially transpalremd9], which enables equational
reasoning to be used to establish formal properties over pointcuts. fodies this property carries
over to aspects built using functional pointcuts as long as the aspechdbesly on and modify
(aspect internal or base program) state through advice.

We have harnessed this method by defining a translation of functional piEitiito the pure func-
tional language Haskell [Has]: recursive composition is translated iotosive functions, sequences
into nested function applications and the two branches of a choice opesati@xplored (on the se-
mantic level) in parallel until the first match is encountered, the decision beinglaterministic in
case both match at the same point. (The reader might have reckoned tiwétettas to be resolved
based on the first event encountered after the choice point: this isanadds alternative semantics
that we have explored as part of the regular aspects discussed iB.58c) Concretely, this trans-
lation has been realized in form of an equational system relating diffemerdtructor terms, which
includes the following three laws

filter(p)(return(e) O p2) = return(e) O filter(p)(p2)
Pu; (P20 P3) = (P1;p2) U (Pa; Pa)
(P1;ps) D (P2ipa) = (P1ip2) U s

stating, respectively, that filtering on branches continues as long anatbhas not yet been fully
explored (i.e., until a match is returned) and that sequencing distributeslmiees from the left and
from the right.

This equation system induces a rewriting system that has been used ttyatefime and imple-
ment a monitor-based weaver for functional pointcuts.

CHAPTER 3. FOUNDATIONS OF AOP 33

Aspect properties and equational reasoning. As mentioned above, functional pointcuts are ame-
nable to equational reasoning because they are referentially transpHnés allows common equiv-
alences over functional programs, including, for example, inductigeam®ing over recursive equa-
tions, to be used to prove properties over aspects. Furthermore, egllaBasoning over func-
tional pointcuts is supported by the equational definition of the basic poiconistructors. We have
shown [5-DMS014a], for instance, how inductive reasoning and tphéagbion of the laws linking se-
guences and choices can be used to prove the equivalence of artJAecflowpointcut constructor
using a runtime stack to a constructor not needing a stack, an optimizatiorathhebn the subject
(in more general settings) of a number of later publications by other @ssa{MKD02, ACH 05].
Since functional programming languages are turing complete, these paorofa general not be au-
tomatized, but they are facilitated by the large number of existing propertesuonctional programs,
especially the so-called theory of lists [Bir89].

3.1.3 Regular aspects

While functional pointcuts support the formal definition and reasoningia®0 programs, equational
reasoning over turing-complete expressions cannot be automatize@veipivis well known that the
automatic or semi-automatic analysis of program properties is useful to haordbetness issues es-
pecially of large scale programs (to which application of manual technidungdysis too unwieldy).
Restricting the expressiveness of the aspect language therefors Bigighly worthwhile if it bolsters
automation. The class of languages with the most substantial automatic sigooralysis of cor-
rectness properties are regular languages, i.e., languages that defineel in terms of finite-state
automata. This language class especially supports correctness psofaetied using static analysis
techniques, such as abstract interpretation [JN94] and model chgCKaP9].

A notion of regular aspects, which constrains the semantics of aspeadingie-state automata,
therefore seems to be a natural means to leverage existing analysis teshritguthermore, regular
aspects are still expressive enough to capture a large number of timgmesn-atomic relationships
between joinpoints, see, e.g., Allan et al. [AAQ5] for a series of examples from the domain of
program development.

However, there are several non-trivial issues in the definition oflaegspects. A first question
is if regularity is only required of pointcuts or should express constrairgs pointcuts and advice.
Regular pointcuts could be defined e.g., by restricthtp regular expressions in the language of
Grammar 3.1. Allan et al. [AACO05] have introduced “tracematches” that also define pointcuts as
regular expressions. Regular pointcuts raise the problem that theyt ddove to define and analyze
properties of complete aspects: the main question in this context being hovetmtalaccount the
effects of advice. If advice can generate joinpoints of its own, i.e., advigsible to aspect weaving,
the behavior of the aspect cannot be simply defined in terms of the compaditiegular pointcuts.
We have therefore opted to define a notion of regular aspects whettaniggconstrains the execution
of complete aspects and to address the problem of the visibility of advice iyplic

A second issue is how to integrate dependencies introduced by varisdtiasdlassigned and used
as part of matching in regular pointcuts. Depending on the scope of adefinitions, regularity can
be violated: a dynamic notion of scope which allows to shadow variables sathe name assigned in
a later iterations of a repetitive definition, for instance, cannot be repted by regular expressions.
Allan et al. [AAC"05] impose suitable restrictions by requiring variables to be bound corntbjstien
the same value over all occurrences. Our solution presented belowgslafimotion of dynamic scope
where a variable binding extends from one binding to the next bindingdogun an execution trace
(or the end of the term representing the current aspect).

CHAPTER 3. FOUNDATIONS OF AOP 34

We are now ready to present our specialization of Grammar 3.1 for reggpacts:

P = fT1...T, ; (atomic) pointcuts

T = £fT...Th | X | X

A = uaA : recursive definition (3.2)
| P>LA|PA ; prefixing
| Pr>l;a| Pa ; end of sequence
| ALOA ; choice

where the set of term variablesand the set of recursion variablass to be disjoint. Pointcut® are
nested constructor terms, that may assign variables, fptbrtbugh matching and use them, noted

to restrict matching. Aspecis are restricted compared to Grammar 3.1 in that recursive definitions
may not end in the middle of sequences: this ensures tail-recursiveinessutar aspects and thus
equivalence to regular expressions.

Note that this language is a simplified version compared to our previous wades not include
pointcuts constructed from logical operators (as [5-DFS04a]) does)n contrast to [Far03, NS06]
only a restricted set of regular pointcuts is included (in form of varianggrefixing and sequences
with omitted advice, i.e skipadvice). Both of these features are not essential to the discussign here
since they do not interfere with the formal definition of a semantics for suahguage and analysis
of aspect-specific properties.

Example 3.1.1: Reconsider the example of file queries in the P2P domain, we now cannot
express aspects about recursive queries anymore, becauks stguctures do not allow to
correctly match nested structures. Regular aspects can, howeverxstése many useful
relationships between joinpoints, e.g., abortable file queries over onealithat update file
information on the current node only in case the query is completed:

uaf = localCache (lisNull(f);a
O isNull(f); pbfiles query, (files replyr> updateFileInfob
[abort a))

Semantics. The semantics of functional pointcuts has been defined in terms of a trans$tatidhe
functional programming language Haskell in order to harness the ladjediaesults of the equa-
tional theory over pure functional languages. However, in order tsitigate fundamental properties
of aspect languages, such as interaction among aspects and diffeasrnibg models, a lower-level
semantics, which allows to define and reason about arbitrarily fine-gr@weuation steps of an
AO program seems better suited. By now a fair number of different kindewofantics have been
explored as part of this endeavor, for instance, process calculnblyefvs [And01], denotational se-
mantics for an AspectJ-like language by Wand et al. [WKDO04], semanticeeflar pointcuts by
Alan et al. [AAC'05], and operational semantics by Walker et al. [WZL03] as well as Cliftuh a
Leavens [CLO6].

Preceding almost all of this work, we have equipped regular aspects witinghformal semantics
in terms of a small-step operational semantics [5-DFS02b]. This semantiisgtyedefines three
issues:

1. The modification of base program executions through aspect weaving.

CHAPTER 3. FOUNDATIONS OF AOP 35

Woven execution

i seljA i / i N s (il 1"
[WOVEX] [J7T70-] . ‘:>A o (17.T70-') (J 7T;0)
(Aj,T,0) ==w (nextjA,j,T,0")
Aspect application
[ASPEND] [LT,O’]Q) =>a O
smpy _S=(PEljus’ bindPj=¢ (start.gl0) (end@l,o)

[, 7,0 = [j,T,0)

Figure 3.1: Weaving of regular aspects

2. Weaving of several aspects at a time.
3. Visibility of advice to other aspects, i.e., whether advice is subject to wgavin

In the following we will present the essentials of how these three diffassoies are handled in a
formal way (see [9-DFS02a] for a detailed presentation including exanple

Modification of base executions through aspect weaving. Aspect weaving is defined as shown
in Fig. 3.1. The execution of the base program as well as the wovengmoigr abstracted into
a relation defining execution steps that transform runtime configurationsonfiguration(j, T, o)
consists of the current joinpoirjt the static program text and the dynamic state

The weaver is essentially defined in terms of two transition relations. ThenexeEution—-y,
see inference rule WEYX, yields a follow aspect, next joinpoint and new state after weaving a set of
aspects at the current joint point, as expressed by the aspect appliedditton|—>-, and advancing
the base execution to the next join point (base transition relatipnSecond, weaving of one basic
aspecPr> |, see inference rule $PA PP, yields a new dynamic state by calculating a variable binding
@ resulting from matching the pointc&ton the current joinpoinf and executingpl, the advice after
substitution by the generated variable binding.

Multiple aspects. The aspect selection functi@elused in rule WOVEX is defined over a set
A of aspects and vyields all basic aspects that match the current joinpointaspleet application
rule ASPADD then iterates over all these aspects. Once all aspects have been apj@iédPENC,
returns the resulting new dynamic state.

Note that the rule APADD non-deterministically chooses one of the applicable basic rules. The
weaver definition could obviously be modified to support deterministic orggrias has been done
in a number of approaches, e.g., Andrew’s aspect calculus [And@i}ever, our approach is more
general and flexible: interactions between aspects, i.e., the applicabiligverfad aspects at a join-
point, can be analyzed statically (see Sec. 3.2) and the resulting conflictsdiged using aspect
composition operators, amongst others, by ordering them. We therefoegajize on most existing

CHAPTER 3. FOUNDATIONS OF AOP 36

approaches, e.g., AspectJ, that support only partial orderinggetwsthat are applied simultane-
ously. This is discussed in detail in Sec. 3.3.

Visibility of aspects to other aspects. Visibility of aspects refers to the property if the func-
tionality introduced by aspects, i.e., advice, is subject to weaving itself, inhndgise other aspects
can be applied to this functionality. The weaver definition of Fig. 3.1 accomtasdiferent models
of visibility simply by choosing appropriate transition relations for the executifoinserts, i.e., the
relation— in rule ASPADD: if this relation is chosen to be the base transition relationadvice
is not woven and thus not visible to other aspects; if the woven executiatiore—y is chosen,
advice is woven and thus visible to other aspects.

3.1.4 VPA-based aspects

Aspects relying on functional pointcuts (or more generally on turing-comapleintcuts) and regular
aspects delimit a potentially large set of aspect languages that differ wjilegeto expressiveness.
The turing-complete ones are more interesting because of the largercsesscutting relationships
they allow to express, regular aspects support fewer relationshipscaphbared but enable automatic
support for properties analysis over aspects.

Researchers in the field of formal languages have defined a variefysskes of languages whose
expressiveness lies between regular and turing-complete classesxafople, LL/LR-languages,
context-free and context-sensitive languages. All of these clasgeshwirraison detreand should,
in principle, be useful to describe crosscutting relationships. Howanét,now only very few work
has been done on aspect languages belonging to these classes. HExtaplkions are the notion
of context-free aspects proposed by Walker and Viggers [WV04Jeamduggestion of aspects over
context-sensitive protocols [S58805]. While worthwhile on the grounds of their expressiveness, these
approaches are subject to the problem that the underlying languagescke not readily amenable
to automatic analysis and reasoning techniques, difficult to implement or both.

There is substantial work currently on formal languages (not aspegtidmes) that are more
expressive than regular languages but that improve with respect tmatitoreasoning and im-
plementation support compared to context-free languages. Receisthly pushdown automata
(VPA) [AMO04] have been introduced as a means to define a language glaibly pushdown lan-
guages (VPLSs), that is (i) strictly more expressive than regular oesiri€tly less than context-free
languages and (iii) that obeys all common closure properties of reguzmdges. The third charac-
teristics distinguishes visibly pushdown languages from context-freg aiech are, for instance, not
closed under the union operation. VPLs thus support a much largeroflgagomatic) analyses than
context-free ones. Technically, this is achieved by trading off somessgpiity of VPAs compared to
plain pushdown automata: the set of transition labels in VPAs must be partitiotieolse that push
data on the stack, pop from the stack or do not modify the stack.

Based on this observation, we have introduced VPA-based aspeotse whsentials can be repre-
sented as an extension to regular aspects by the following grammar:

P = FT1...T,

F o= f]fs|fs

T = £T...Th | X | X (3.3)
A = paA | P>L;A|PA|P>l;a|Pa|l AAOA

; same as regular aspects (see Grammar 3.2)

CHAPTER 3. FOUNDATIONS OF AOP 37

Here, VPA-based aspects extend the term structure defined by GranmimahiB preserving the
structure of regular aspects Pointcut terms are modified in two ways. Most importantly, there are
now three sets of term constructors:

e Constructors that match functions (or methofigs in the case of regular aspects.
e Constructord that matchf and puts on the call stack.

o Constructorsfs that matchf only if a corresponding call has occurred, i.gcan be popped
from the call stack.

A second difference is that we allow stack manipulating calls only on the ous¢dmel of nested
pointcuts terms

Example: The following example shows how VPA-based aspects can be used to npoalify
tocols involving recursive file queries:

File = pa lookup (found a
O pb.(query,;b
U reply, > fixOrder,a
O aborta

In this example, a file is either found after a local lookup or searchedgigely. After a recur-

sive call has been terminated a new search order for later searcxeslisHinally, queries may
be aborted any time. Here, the VPA property ensures that orders aiftedadly in the correct
contexts and not, e.g., by a reply belonging to a different incarnation tieeaafiesponding

query.

Semantics. The difference between regular aspects and VPA-based aspecssack-manipulating
pointcuts, can be defined by two modifications to the semantics of regulataseoutlined above.
First, we have to add a call stack which is manipulated and tested as paintciponatching. Second,
the notion of follow aspects has to be modified accordingly. Both of thesesssn be conveniently
addressed by translating a VPA-based aspect in a correspondirtguyddifPA that explicitly repre-
sents all traces ia consisting only of pointcut terms. Using the pointcut VPA the relevant funstio
of the operational semantics of the weaver shown in Fig. 3.1 can be rediefimcisely: selection
of applicable basic aspects (functiea) tests the VPA stack in case of constructors of the fdgm
fs and determination of the follow aspect (functinaxt) reduces to traversing one or (in the case
of non-determinism) several transitions of the pointcut VPA. Finally, thécadw be applied once
a pointcut , say) has been matched can be found simply by storing references tadiceabpect
that contains the advice in the node of the pointcut VPA represenptirfgpart from these changes,
the weaving semantics for regular aspects does not have to be modifiéBAebased aspects. For
details of the semantics see [NS06].

To conclude the discussion of VPA-based aspects, let us recall the #iynd&properties of
regular languages and VPLs, which, in particular, allows several imgqutaperties of aspects to be
tackled equally well for regular and VPA-based aspects as shown inltbeing section (efficiency
concerns notwithstanding).

IMatching of nested terms involving stack manipulating functions is a subjéatuse work.

CHAPTER 3. FOUNDATIONS OF AOP 38

3.2 Properties of aspects

While the precise definition of aspect mechanisms using formal semantics ishamvite goal of its
own, methods to address the need for reasoning about propertiggect-asiented programs are at
least of equal importance. Aspects raise a number of specific problemeroing the enforcement,
analysis or verification of AO properties. Two particularly important asppecific problems are
the handling of interactions among aspects and the definition of conditionddtiatit the effects
of aspects on sets of base applications (as opposed to propertieseofsagpven into a specific
application). Aspect interactions constitutes one of the fundamental chedidar the compaosition
of aspects and the latter can be seen as a generalization of traditionakraftencapsulation that are
not appropriate anymore in the presence of aspects.

Relatively few approaches have been put forwarded for reas@fiagt aspectual properties in
general and the two classes of properties singled out above in partMiddrave been among the first
to propose solutions for each of these two problems in form of, respggtavnotion of aspect interac-
tions based on the simultaneous application of several aspects at ati@xegent and enabling the
limitation of effects of aspects by ensuring that interactions are absent.oBtitase proposals have
been developed in the context of regular aspects and have beetlyemereralized to VPA-based
aspects.

In the remainder of this section, we motivate our work on these two fundahpotdems and
explain its main technical characteristics. However, since aspect intersatil limits to how aspects
may affect applications are intimately related (because the latter can beddefteems of the former
as discussed below), we first give an overview of the most relevamt wo

Related work. Notable related work on aspect interactions include Dantas and WalkaN©¢]
“harmless” aspects that guarantee not to cause interactions by mearspe€ially-tailored type
system. Their approach provides only very limited support for direcamiag about interactions.
Another group of work has been presented on interactions due to madifiedhe static structure
of OO programs, in particular Havinga et al [HNBAOG6] as well agr&r and Krienke [SK03]. We
are interested here in the more general and difficult problem of interaatesulting from runtime
modifications by aspects. Furthermore, relevant work has also beerirdolosely related domains,
in particular, feature interaction [FNO3]. In typical settings of featurerémtion, the interaction prob-
lem is alleviated in comparison to the realm of AOP because of the more honoogesteucture of
telecommunication applications and the absence of certain aspect-speaitargtig mechanisms,
such as nested advice that may or may not call functionality of the baseatfpiiof other aspects.

Very few work has aimed at mechanisms for the delimitation of effects of tsp&icdrich [Ald05]
has proposed a notion of modules (defined on the based of modules irditieriad, non AO, sense).
The interfaces of these modules may export points which may be advisesbbygts but can not
be modified by external aspects otherwise. His approach does nairspppperties of aspects di-
rectly but rather allows to delimit their effects with respect to to individual nesluKiczales and
Mezini [KMO5] have investigated the extension of method declarations magiges similar to As-
pectJ pointcut declarations in order to make explicit the effect of aspedthas enable informal and
manual reasoning about modularity properties of aspects. In contralstn@nn and Katz [GKO6]
have presented work on the modular analysis of effects of aspectsrasitg checking techniques.
Finally, Skotiniotis et al. [SPL06] have recently proposed an extensiortédaces for adaptive pro-
gramming that allows static conditions to be formulated on sequences of mettsath@amay cross-
cut the base application.

Finally, there are a number of articles presenting various categorizatioasiects with respect

CHAPTER 3. FOUNDATIONS OF AOP 39

to their effects on the base program and other aspects, notably by KatgJKRinard et al. [RSB04]

as well as by Clifton and Leavens [CL02a], all of which provide meae$ulifor reasoning about the
interactions and effect delimitation for certain classes of aspects. Hovalvef these approaches
allow properties to be investigated only at a very coarse level, i.e., typicalsidering only properties

of entire aspects.

3.2.1 Static analysis of interactions among aspects

Intuitively, interactions among aspects occur when the execution of meetasodifies the behav-
ior of another one. In the general case, such interactions may bedchysebitrary modifications
of aspects to any state that is accessible by different aspects, includiagtthe base application,
modifications to files, and network communication. The definition and analysisobfgeneral inter-
action properties requires, however, severe abstraction of thetasmbbase programs, and is typi-
cally subject to limitations on the relationships between aspects that can lesselti(the approach
of Goldmann and Katz [GKO6], for instance, does not allow to apply dspeother aspects).

Aspects are commonly used not as a mechanism for general programrhiaghien for the struc-
tured modification of base applicatiofslt seems promising to consider restricted notions of in-
teractions that are specialized with respect to the aspect structure diaimsore specific uses. In
particular, aspects commonly modify base applications at specific execuatsavhere pointcuts
match; some interactions can therefore be characterized solely by the sioukaapplication of as-
pects at an execution event. It has turned out that this notion of interastadrparticular relevance
because applications using several aspects frequently apply them ialagupfashion at common
joinpoints, for instance, if three different aspects are used to compmesy/pt and log messages in
a communication system (a programming technique at the heart of the so-@aitgabsition filters
approach [BAO1] to AOP).

We have provided the first formal definition of (potential) interactions in teyhtise simultaneous
application of aspects. In the context of regular aspects (cf. Def. Fedn3.1.3) interactions occur
when several basic aspects are weaved at the same joinpoint, i.e., wiaaspéot selection function
selreturns more than one basic aspect | in rule WovEX of Def. 3.1 and hence rule #eAPPis
executed several times at one joinpoint.

Example: In order to illustrate this notion of interaction, let us come back the example of
queries in P2P applications introduced in Example 3.1.1 (see page 34).ditioado the
aspect updating file information shown there, consider two other asgjges:aspect that uses
recursive file queries to eliminate certain stored files (e.qg., illegal copiean(@jror aspect that
raises exceptions when a reply occurs without any query having bitiateid. In this case the
former causes an interaction of file info updates, while the latter does not.

We determine interactions between two aspects using a static analysis of theriddet (“par-
allel”) execution of the aspects [5-DFS02b]. The analysis calculatesna db product of the two
finite-state based expressions defining the two aspects. Concretelgsituas a sequential result
automata by merging paths of the input automata that consist of equal sequépointcuts. During
this process basic aspects are marked that result in advice from bettisagpbe weaved at the same
event of the result automaton.

2The reader should keep in mind, though, that many aspect languaajele @spects to implement arbitrary programs:
in AspectlJ, e.g., the functionality of any Java program can be put ispecathat advises the entry point of an otherwise
empty base program — admittedly a technique rather akin to abuse thahasgeots.

CHAPTER 3. FOUNDATIONS OF AOP 40

[UN/FOLD] paA=ApaA/a
[PRIORITY] (Pi>l1; A1) O (Par>lo; Ag) = (Pir> a5 Ar) O (Po AP |5 Ap)
[coMmuT] (Pi>l1; A1) O (Pa>lo; Ag) = (P> lo; Ap) O (Pr>1g; Ag)
. if P1 AP, has no solution
[ELIM] P> =falser | ;if P has no solution

[PrROPAG let A (P11, A1) O ... O (Pa>In; An)
and A (P13 A O L O (PR 1y An)
then A[|A = O TRAR D (lixlh); (A || A)
it R i (A [A)
Oj—1.mPi> 175 (A A))

Figure 3.2: Laws for aspects

Technically, this analysis is defined by an equational system consistinggpfa8ions that enables
two independent aspects, not&gd|| Ay, to be transformed into an equivalent sequential aspect with
marked interactions. Fig. 3.2 shows an excerpt of this system. Markingesaitions is achieved
by rule PROPAGthat is used to ‘push’ the parallel operator inwards into expressions, ntaking
them more deterministic. The topmost row of the result expres&irA’ corresponds to the case
of interest, that is, all the combinations of initial pointcétsrom A andP; from A’ both of which
have to match: in this case, a (potential) interaction is recorded in the resigithe expressiohx ij
over the corresponding advice. The two other rows in the result esipregroup all subexpressions
in which only a pointcut of one of the argument aspects matches and tteecefonot give rise to
interactions. The remaining rules allow to un/fold recursive definitions (paleeoLD). Two rules
govern choices: rulerIORITY expresses that the choice is deterministic because the first branch has
priority over the second (note that this rule has to be slightly changed im trdake variables into
account, see [5-DFS044a] for detail€pMMUTE states commutativity of choices if none of the two
pointcuts at the head of the branches of the choice match. lRulg, finally, shows an elimination
rule that is helpful to eliminate branches which cannot be taken.

The notion of interactions through multiple aspects applicable at common exeeutats can
naturally be extended to VPA-based aspects and applied to the balamtegtsohat VPAs support.
Since the intersection operation on VPAs is closed and the test for emptimiessdable, the interac-
tion analysis between VPA-based asp@gt#, can be reformulated for VPAs in terms of the standard
operations for VPAY asA; N A, # 0 (and a corresponding marking of interaction points) [NS06].

We have developed a prototype implementation of this analysis. While this implemardtsm
allows to analyze interactions between regular aspects, we are curremkijngron a more efficient
implementation for the regular case using model checking.

To conclude the discussion of aspect interactions, let us note that ticbsiees yield interac-
tions between two aspects, that is, independent from their application toaseyprogram (this has
been termed strong independence in [5-DFS02b]). It is, however,b@gossible to abstract the
base program into a regular or VPA-based abstraction and then congitteeractions only that may
occur during executions of the abstracted base program (weak imdkspee in [5-DFS02b]).

CHAPTER 3. FOUNDATIONS OF AOP 41

3.2.2 Applicability conditions for aspects

We now turn to the problem of techniques for determining and limiting the efféetspects. Recon-
sidering the discussion of related work above, the following characteristiem desirable:

e Support for the expression of crosscutting effects to arbitrary entifiémse programs, in-
cluding to an existing module structure (but not restricted to existing moduletstes as the
approaches by Aldrich [AldO5] or Skotiniotis et al. [SPLO6]).

e Formal and if possible automatic support for the enforcement of limiting ptieggthus im-
proving on Kiczales and Mezini’s informal and manual approach [KNI05]

A general notion of effects of aspects meeting these characteristicsecdefined in terms of
applicability condition3 for aspects and base programs. Concretely, applicability conditionsecan b
defined as regular aspects that raise exception events in situationgttatared to be erroneous. An
interaction between an applicability-defining aspect and a second #speahdicates that the second
aspect is not compatible when it would trigger advice in erroneous situatamthermore, based on
a regular abstraction of the base program, interactions between a clzssegirogramd$3(say) and
an applicability conditiond, say) can be determined: if there are no interactions, any aspect that is
compatible witha can be woven with any base progranBadind is guaranteed not to engage in any of
the erroneous situation representedabyinally, in the case that an aspect is not compatible with an
applicability condition it is possible to weave it nevertheless but also weaapiieability-defining
aspect at the same time, such that exceptions are raised during execetiongous situations.

Example: In the P2P setting, we could use applicability conditions, for example, to etisatr
any query can only occur after the network has been reasonablyp setgy, by appropriate
initialization of the corresponding infrastructure.

We have shown that interaction analyses as discussed in the previtios san be applied in
this context. Taking into account applicability conditions for interaction amaljiglds the notion
of “contextual” independence [5-DFS04a], which is finer than strodgpendence (because it takes
into account some traces of the base execution) but coarser than wlegkimence (because it does
not take into account all base program traces).

To conclude the discussion of applicability conditions for aspects, let iesthat they meet the
two characteristics introduced in the beginning: they can define propeffiee-grained entities and
come equipped with automatic support for analysis and enforcement.

3.3 Aspect composition

The construction of any program (using aspect-oriented technigusstjocan be seen as the appli-
cation of some composition operation to some basic entities. Functional progrgniarimstance,
is based on the combination of functions using functional composition. Coempdrased software
construction relies on the provision of glue code between software canfomspect-oriented soft-
ware development fits this picture well: aspects can be considered astbeniities that have to be
composed with the base program and one another.

This perspective on AOSD reveals three requirements of aspect citimpdseyond the basic
observation that aspects have to be weaved, typically invasively, intsesepgplication:

SCalled “aspect requirements” in [5-DFS04a].

CHAPTER 3. FOUNDATIONS OF AOP 42

1. Aspect composition should enable interactions, the main problem factagpaposition, to be
resolved.

2. Aspects should be composable in a flexible manner, in particular, compashituld not be
restricted to aspects as a whole.

3. Composition should be supported through the use of explicit well-deioegbosition opera-
tors that allow to express much more general relations than common preeesgetifications.
Furthermore, they should support reasoning over compositions.

Currently, most aspect systems support aspect composition only in limitesl amalyfrequently
in a very coarse-grained fashion (typically by composing aspects withodification as a whole) or
through very fine-grained mechanisms. In AspectJ, for example, gameedence specifications can
be used to compose aspects as a whole anddiieceexecut i on pointcut predicate may be used to
define if and how an aspect should be applied in the presence of offemt as individual joinpoints.
There are only few structured mechanisms that allow parts of aspects toriposed or that allow
composition of aspects to be limited to parts of the execution of the woven prog¥ark in this di-
rection has been pursued mostly based on specific aspect models, Bergimans et al. [BA01] who
define aspect compositions in terms compositions of stateless filters thatpéiesl aphen messages
are sent. Lieberherr et al. [LOMLO1, LLOO3] have introduced agpdaollaborations that allowed
aspect composition to be defined in terms of specialized merging operaticiessrhierarchies. The
Hyper/J approach [TOHS99], similarly, allowed general, unstructuosdposition programs to be
defined for the composition of aspects (called hyperslices). Theseagbms fall short with respect
to the requirements above because they do not make the resolution dfiatgactions explicit, are
not operator-based, and, for some of them, are not flexible enough.

Regular aspects admit a flexible notionaafmposition adaptorfs-DFS04a, 5-DFS02b]. These
operators are defined as a restricted form of regular aspects, s@Jaigthat specify unary or binary
advice transformers that are applied according to a finite-state automdtese dperators meet the
three requirements introduced above. Compositions are performed flexilylywhen a program
execution matches the finite-state based composition definition. Conflicttieaatan be performed
using binary transformers by, e.g., reordering advice, exempting afifeiveapplication or replacing
advice altogether. Finally, the interaction analyses admitted by regulartas@ecbe used also in
the presence of composition operators, essentially by replacing thegatagarule of Fig. 3.2 by the
rule shown in Fig. 3.3b that applies the appropriate (unary or binary) ositign transformer where
necessary.

A feature of composition adaptors that is particular attractive from a sodtemgineering view-
point is that composition operators may therefore be used as parttefative incremental develop-
ment methodbase programs, application conditions and regular aspects may beeahfalyinterac-
tions using the different static analyses presented in the previous sdotlowed by the resolution
of some of the interactions using composition adaptors. The resulting syatelrecanalyzed once
again, etc.

Finally, let us briefly mention a second notion of flexible, operator-baspda compositions we
have investigated. In the context of an instantiation of the EAOP model thatréal turing-complete
pointcuts and advice implemented as sequence of Java statements [6-E[3832]9 aspect com-
position can been defined explicitly based on a (directed acyclic) graptigte whose nodes are
composition operators and leaves are aspects. Aspects are compasmtstiycting or modifying
composition graphs. The composition structure allows for arbitrary flexdpee composition be-
cause the composition can be modified dynamically. We have proposedfoposition operators to

CHAPTER 3. FOUNDATIONS OF AOP

43

O = paO|C>F;0|C>F;a|0:00;
F = (UaB) ; pair of transformers
U == id|skip ; unary transformers
B 1= |seq|fst|snd|skip ; binary transformers
(a) Syntax
let A (Ci>lg; A) O .. O (Co> Imy Am)
and A (Ci>15; A O D(1A
and O (CO> (ul®b1) 1) O ... O(CY> (U@ byo); O
then AHOA/ D| 1.mj=1.nk=1. oC'/\C//\CIi)Dbk(IH]) (Al HOkA/j)
O O GAC s il (A [lo AY)
O OIS G A > ue(li); (A flo, A)
O iy nGilis (A flo A)
O Oi=1mCi ACY > w(1); (A flo, A)
O 0j—1 mCj =155 (Allo A))
(b) Interaction propagation

Figure 3.3: Composition adaptors for regular aspects

CHAPTER 3. FOUNDATIONS OF AOP 44

address aspect interactions in this aspect model, either by orderirgisadys apply at a same join-
point or by conditionally execute one aspect if another one has (ordippneviously been applied.

3.4 Conclusion and perspectives

In this chapter we have presented different approaches to provetaswith formal semantics
in order to define them rigorously and support formal and, for someeashtrautomatic reasoning
about properties of AO programs. We have introduced semantics aswhieg methods for aspect
languages of different expressiveness, ranging from regutercésto turing-complete pointcut lan-
guages. Based on this foundational work on AOP, two of the most impgntabtems of AOP, aspect
interaction and applicability conditions on aspects, have been addré&ssally, we have shown that
these approaches support flexible and declarative notions of agpepbsition that allow to resolve
aspect interactions.

Perspectives. The different approaches presented in this chapter pave the wayrfloef studies on
various questions concerning the foundations of AOP.

Most importantly, the notions of applicability conditions and aspect composipenators that
we have introduced should be useful as a basis for a comprehensilye af modular properties
of aspectsin particular, the relationship of traditional modules (that feature stromgpsulation
properties, support separate compilation, etc.) and crosscutting fuadi#s Since this is probably
the single most important issue pertaining to the foundations of AOP, we dig@sspart of the major
perspectives of our work in detail in Sec. 6.

As we have discussed our notion of aspect interactions is limited in the seatsié dioes not
capture interactions arising from the manipulation and use of some shaeedtsiiferent execution
points. While our analysis is hot amenable as is to handle correspondirgy general notions of
aspect interactiongegular aspects as well as VPA-based aspects should be well-suitstutdyaf
more general interactions. Regular aspects, in particular, should beha®émsupport corresponding
analyses based on model checking.

There is a large range of other classes of different expressiwéimas those we have considered.
There is for instance a large class of counter automata that allow to repras@y context-free
programs and some context-sensitive ones, while supporting automatisiartdlgroperties that are
relevant for aspects, their compositions and interactions. Furthermiefes &fe currently investigated
by many research groups, in particular, develop more efficient asabysbeir properties. Results on
these issues could be usefully integrated into aspect languages byiegttradframework for formal
definition and properties presented here.

Chapter 4

EXxpressive aspects for component-based
and systems programming

While rigorous semantics of aspect languages and systems definitely idaarfantal and intellectu-
ally challenging problem of AOP, the development of aspect languageshlvays been driven by the
guest for concrete means for the modularization of crosscutting caicRight from the inception
of AOP as a research domain of its own, in particular through the work initiaye@. Kiczales at
Xerox PARC [KL097], this approach has allowed to generate wideaspirterest by scientists and
practitioners alike because of its focus on deficiencies of widely usegtgoroning methodologies
and resulting problems in the structuring of, mostly sequential, large-sgalieatjpns.

Two domains in the field of software engineering that are particularly cliatign— and poten-
tially rewarding — for the application of AO methods are component-basedystdms program-
ming. Apart from the fact that both are subject to a large number of cuttssy concerns, they raise
intricate issues related to the integration of AO technology with well-establiseeelapment and
programming methodologies. Component-based software development igrbthik premise of the
strong encapsulation properties of software components [SGMO02]hwkiems to contradict the use
of aspects to modularize concerns impacting large sets of possibly othemvidated components.
Expressive aspect languages are potentially useful in this conteatidethey can potentially denote
scattered execution events while at the same time explicitly represent caisstrathese events stem-
ming from the encapsulation properties of components. Systems programmthg other hand is
characterized by execution efficiency being a vital condition. This impedadrhportant repercus-
sions on the use of AO methods in this domain: for one, many techniques torsappect languages,
such as delegation-based techniques, cannot be reasonablyarsadipther, systems programming
often disregard regular solutions in favor of more efficient but ad masoWhile the latter in princi-
ple argues for the use of expressive aspect languages (becaushdiuld be better suited to refer to
such ad hoc structures), the former casts serious doubts on the ajliptichbxpressive, and possibly
costly, aspect mechanisms in the domain of systems programming.

In this chapter we present results pertaining to these modularization probighese two do-
mains. Regarding software components we have investigated componeiaicedehat include ex-
plicit protocols to address modularization problems in the presence of sinmagsulation in a precise
manner. Our work is distinguished from previous approaches by theratitag of more expressive
protocols than commonly used with components. As to aspects for systenptegeamming, we
have focused on an instantiation of the EAOP model to an aspect langudupese programs imple-
mented using the C programming language. The resulting aspect languatenas been integrated

45

CHAPTER 4. COMPONENT-BASED AND SYSTEMS PROGRAMMING 46

in the Arachne system is still unique in providing non-atomic aspects for G@pybrting a dynamic
weaving strategy, that is, weaving of aspects into native code duringuiése. Finally, the com-
position and aspect languages developed for both domains have beedlfalefined, yielding, in
particular, the first formal semantics for an aspect systems for C apptisatio

The results presented in this chapter have mostly been achieved asdiigrefit collaborations.
Part of the work on protocols, aspects and software components élagpbdormed in collaboration
with my former PhD student Anés Faras [Far03] and the PhD thesis by Ha Nguyen that | am
currently supervising. The instantiation of the EAOP model to the Arachpecatanguage has been
done in cooperation with Marc&gura-Devillechaise during his, now finished, PhD thesis and my
colleagues Jean-Marc Menaud anehi® Douence from EMN.

Albeit we do not elaborate on this work in this thesis, let us briefly hint at aoitapt relationship
between component-based and system-level programming that is essenppliyted by expressive
aspect languages. Expressive aspects are, in fact, a usefultefaldtor systems applications to make
explicit the interfaces governing key functionalities of these applicatioresh&Ve substantiated this
claim by developing an aspect language for the construction of compbaead interfaces of system-
level code [5-MLMSO04]. In this work, an aspect language allows thatifieation of functions that
have to be part of interfaces using temporal logic based pointcuts thatifyuaver execution paths
and the interfaces are defined using advice.

The remainder of this chapter presents the results in these two domainsnS3ettitiscusses the
use of expressive protocols in software components and their manipulatitmnaspects. Section 4.2
discusses the main characteristics of the design and implementation of the@sgtect language
for C.

4.1 Components with explicit protocols

Component-based software development (CBSE) today constitutes the ppaoaeh to the con-

struction of large-scale applications. Software components supportdiesriantal development of
large applications through strong encapsulation of software artifactetiziles the assembly of
applications from third-party components and their execution in differeptogment contexts. By

leveraging this development method to build large software systems fronf ggtsfabricated com-

ponents, CBSE promises to lift the currently still predominant artisan saftdewelopment methods
to an engineering field enabling the construction of provably corretwvaoé systems from modular
units [Mcl63].

Technically, the main feature underlying the notion of software componentatishigy rely on
“contractually specified interfaces and explicit context dependenaigs [Bzy98]. The absence of
implicit context-dependencies — which arise, for instance, if a comporireutly accesses some state
variable of another one without using a method of the second compondet®&ae for that purpose
— enables components to be considered self-contained entities whosesitiwngaroperties can be
completely defined in terms of its interface.

Currently, most approaches to software components, in particular allkm industrial com-
ponent platforms, such as EJB, .NET et Corba Components, employ a obiiwterface that only
defines the signatures of services, i.e., their names, types of argumdmessalis. Such interfaces
do not make explicit the semantics of the services exposed by the interthi®ss an important
impediment to the goal of independent provably-correct assembly tfa@f components, because
applicability conditions for software services are easily violated, e.g., thdithon that an initial-
ization has to be performed before a specific service can be called. footlee basic component

CHAPTER 4. COMPONENT-BASED AND SYSTEMS PROGRAMMING 47

correctness properties, such as compatibility (which states that two cothpasgonents correctly
use their respective services) and substitutability (which states that a nentpoay be used in all
contexts where another one can be used), cannot be verified, letratme complex properties, such
as absence of deadlock. These limitations also hold for many academic cembpoodels, for in-
stance the Fractal component model [B@6, Fral to name just one.

A well-known remedy to this lack of explicit semantic information about comptsare proto-
cols that make explicit constraints on admissible sequences of serviegsieRtly, protocols are de-
fined in form of additional specifications at the design level, for instamsieg statecharts, sequence
diagrams or OCL specifications that are part of UML. There are, hexyelso several approaches
that integrate protocols into component interfaces on the language lesgk.ge [PV02]. Almost
all of these approaches use finite-state based protocols, which ecabipsnent-relevant proper-
ties, such as compatibility, substitutability and deadlock, to be defined preaiseélto be supported
by automatic tools, in particular through model checking. The relatively fegraaches featuring
non-regular protocol languages, for instance, protocols baseghamodic transition systems [HL95],
suffer from severely restricted support for reasoning about pobjoroperties that is essential in a
component-based setting.

Our work in this domain has focused on more expressive notions of canpprotocols featur-
ing either finite-state based, i.e., regular, protocols with richer structoreregular protocols and
the construction and manipulation of component protocols using aspect®anubsition operators.
Concretely, we have defined a component model, Components with Explitiidets (CwEP) that
make explicit sets of component ids and provide concise support fi@@iteommunication patterns.
Furthermore, modularization of crosscutting concerns is supportedgnampect languages that ma-
nipulate such protocols by means of protocol composition operators. Aglighing feature of this
approach to component construction is that component properties dgafetved from interface pro-
tocols and the operators used to manipulate them; in some cases, propestisgpoohents can even
be inferred solely from the properties of the operators, i.e., indepéfgemthe argument protocols.
Furthermore, we have defined an aspect language for the manipulasocloprotocols and devel-
oped a framework-based implementation of this component model that ineegratethly with the
Enterprise JavaBeans platform.

41.1 The CwEP model

The CwEP model has been defined in order to investigate precise meansrponent composition
by providing components with a rich notion of interfaces consisting of thesés gjFar03]: (i) a
set of services signatures, (ii) a protocol governing interactions ofcraponent and (iii) a set of
component identities that can be used to restrict the availability of services.

The protocols of CWEP components are defined as finite-state automata txdwosition labels
denote directed service names, that is, distinguish service requestaffidiservice calls to other
components, similar to Yellin and Strom’s seminal work [YS97]. Acceptanaaddfidual transitions
may further be restricted by constraints on component identities of colk@p@mponents. Such
constraints are expressed in terms of sets of identities that may requaseser to which service
calls are issued. Furthermore, multicast communication to or from all comtsohelonging to an
identity set can be denoted using a particular kind of transition. As we Hawers the resulting
protocols are equivalent to finite-state protocols but allow significantly moneise definitions of
certain classes of component protocols, specifically in the case of polistribe style [5-FS02].

1The Fractal model includes, however, powerful mechanisms toctefte component behaviors that allow to enrich
component interfaces by, e.g., adding protocol-enforcing behavio

CHAPTER 4. COMPONENT-BASED AND SYSTEMS PROGRAMMING 48

Composition properties. Fundamental properties of component composition can be defined in
terms of interfaces. Two properties that are of particular importance in dnitext: compatibility
and substitutability. Compatibility is the relation between components that ensatas/thcompo-
nents can be used together in isolation without inducing errors, e.g., ibabdetween the two
collaborators are deadlock free. Substitutability is the basic relation egghanha protocol may be
replaced in all contexts by another one without giving rise to errormditated differently, replacing
the protocol still allows all services requested by collaborators to bedeaccessfully.

Components with explicit protocols allow these properties to be defined in-grf&iieed manner.
A large number of different relations between execution traces havegyeposed that can serve as
a suitable basis, depending on whether only traces are only taken intanacedf failures are also
considered, the expressiveness of the language used for prd&dirotions, etc.

We have explored a definition of these two properties based on work ligtidisz [Nie93] who
defines notions of compatibility and substitutability in terms of traces and failoresbjects hav-
ing interfaces consisting of (unrelated) sets of method signatures. Veeeligended his definitions
to CwEP components, in particular, accommodating directed service requasigonent identities
and broadcast operations to sets of collaborating components. Meangtlyeave have considered
compatibility and substitutability of components with non-regular protocol laggya-31d05]. In
this context, protocols can use counters whose manipulation is restrictedams@ffect type system
that enables many context-free and even some context-sensitive fsdmde expressed [Pun99].
We have shown that our protocol language for components admits compatibiditgubstitutability
properties analogous to the regular case.

Protocol construction operators. Most approaches to the definition of software components fo-
cus on programmatic means for the construction of components and compdsdirentities, such
as individual methods, that do not possess composition properties by Wgf such approaches,
properties of compositional systems are then ensured using analyisatien or validation of com-
posites, that is, after system construction time. In contrast, we have airaasbastructive approach
to composition that allows to ensure composition properties by constructiangianents with ex-
plicit protocols.

We have formally defined a set of component constructor and composjt@ations and investi-
gated to what extent these operators preserve compatibility and substituatuipgrties of compo-
nents. In the CwEP model such operators may modify the three parts ohgsninentioned above:
() they may modify the set of services offered by components (e.g., to mdidable services), (ii)
may modify the protocols governing components (e.g., by adding branch@s) modify the set of
component identities governing the execution of transitions.

We have defined a set of 12 operators that are useful to manipulateptudse They include,
among others, a union operation on protocols that can be used to addarahds to protocols, an
insertion operation allowing to insert a protocol at a given state into anotierand operators that
propagate given component identities over parts of protocols. We hawvensthat straightforward
definitions of such operators frequently yield results which presermgooent properties as far as
the set of accepted traces is concerned but yield sets of failures ¢latger than necessary because
of alternative paths with common prefixes that yield to transitions with diffdiahire sets whose
union is the failure set required for compatibility and substitutability propertigsotd. We have
defined a technique to reduce the set of failures to the minimum necess@ejifing an equivalence
relation identifying such prefixes of equal traces [5-FS02, Far03].

Example: The resulting composition operators may observe composition propertiesagjgn

CHAPTER 4. COMPONENT-BASED AND SYSTEMS PROGRAMMING 49

or in some contexts only. The union operation on protocols, for instamesegves all traces
and all failures (except for the start state) of the argument protocadstlrerefore also pre-
serves component compatibility. As a second example, concatenation ofatecqs always
preserves compatibility with a protocol compatible with the first argument ofdhgposition
but never preserves substitutability because the failures in final states fafst argument pro-
tocol and the corresponding states of the concatenation differ.

4.1.2 Manipulation of protocols using aspects

Besides their expressiveness, component protocols are usefbbae atructure to which aspects can
be applied. Through the manipulation of protocols, aspects can modulaogscuatting concerns
of components through modifications to the relationships governing semftipests into and out
of a component, that is, without violating the black-box encapsulation prepeof components.
This approach improves on the currently predominant approach tocottieg in component-based
systems that apply atomic aspects to individual services, see, e.g., [DE@0203, CC04].

The expressiveness of a pointcut language over protocols is, ingleénmdependent from the
expressiveness of the protocol language. However, it is ofteruluefise an aspect language to
be of equal expressiveness to the protocol language, becauseut®itan then exactly denote arbi-
trary traces generated by the execution of the protocol. Advice may letaisgply operators that
introspect and modify protocols. In particular, dynamic modifications to thetstre of a protocol
(i.e., the base structure of aspects over protocols) are frequentiyl ukefinstance, to model the
creation or closing of services of components. This last property iswggmmon in mainstream
aspect-oriented programming: in AspectJ, e.g., modifications to the progmactuse via so-called
intertype-declarations cannot be performed at runtime and many asgs¢éeins do not know base
structure modifying mechanisms at all.

We have explored aspect languages for the modification of componeotepio for the cases
of finite-state and VPA-based protocols. For finite-state protocols, we tiefined an aspect lan-
guage [Far03] whose pointcut language extends the regular aspdoef. 3.1 (see page 31) by
several constructors for regular pointcuts. This aspect langualyel@scdifferent protocol modifying
operators from those introduced at the end of Sec. 4.1.1. The semdiilitslanguage can therefore
be defined akin to that of regular aspects as described in Sec. 3.1.3.

However, runtime manipulations of the structure of protocols requiresadpatention. Unre-
stricted use of this feature easily causes semantic problems. For exammeptivation of advice
that adds a new path to a protocol can lead to non-terminating weaving ifrtteesgdvice is applicable
on the newly introduced path. Apart from analyzing complete aspectas®dgrograms for such situ-
ations, we have devised two different general solutions to this probleem)oy protocol operators
for which the absence of termination problems can be proved once aafl findependent from the
argument protocols, (ii) restrict the weaver semantics such that behatrimtuced by advice is not
subject to weaving. We have proven the correctness of the latter solytiaptoof [9-FS04] based
on an extension of the weaver definition shown in Fig. 3.1 (see page 35).

Recently, we have started to explore aspects over VPA-based profb&90§], see Sec. 3.1.4.
We have shown that dynamic modifications to the structure of protocols po#argproblems as in
the regular case and can be solved using the same techniques.

CHAPTER 4. COMPONENT-BASED AND SYSTEMS PROGRAMMING 50

4.1.3 Industrial component models and AOP

The so-called industrial component models, such as Enterprise Jana@¥Bs) [Inc03] and CORBA
Components [Gro02], for distributed applications, or more precisely Z&fiplications deserve par-
ticular attention in a discussion on aspects and components. First, crogscatiogerns are of highest
importance in these models: the EJB specification [Inc03], for instantiegden detail how to han-
dle three crosscutting concerns — persistence, transactions anifysecwn around 75% of its 646
pages. Second, 3-tier applications constitute the most important applicatisairdéor AOP cur-
rently: Spring AOP [Spr], the AspectJ-like framework for atomic aspediserSpring framework for
the development of EJB-based applications, has a higher usage cwatdays than AspectJ.

However, the frameworks for the implementation of crosscutting concertiese component
models fall far short from providing satisfactory modularization mechanfemthe concerns. As
discussed in our detailed analysis [1-NDS05], the industrial componet¢lsare subject to three
major deficiencies with respect to this modularization issue.

e Incomplete modularization
e Limited concern models
e Lack of extensibility of concern models

Enterprise JavaBeans, for instance, support the implementation oftgemircerns through a role-
based access control model which supports modular definition usinglled-deployment descrip-
tors. However, modularization is only partial because EJBs also depeadaw-level interface for
access control whose use results in the scattering of access contnattions. Furthermore, EJBs
security model is subject to severe restrictions even in comparison to dstabitde-based security
models [RSC 96], let alone more recent state-of-the-art approaches, suchoasatfon flow based
approaches to security [ML97]. Finally, bean developers do not hayepossibility to extend the
underlying security model.

A fair number of aspect-oriented approaches as well as approasingshased on metaprotocols
have been put forward to remove in particular the first restriction. AsvsHwy our comprehen-
sive comparison [1-NDSO05], such approaches allow to significantly imeptiee modularization of
crosscutting concerns while preserving compatibility with the main characterddtitie underlying
component model, in particular, their client-server architecture, blagkaboess to components and
container-based execution models.

The CwEP model allows to further improve the modularization of crosscuttingecas in in-
dustrial component models. Since CWEP protocols allow to express rekiperizetween different
components in protocols, concerns can be described more conciselyithgmevious atomic aspect
systems but also the few with non-atomic features, such as Aspectdaitecal | pointcut [CGO4].

We have proved the compatibility of the CWEP model with industrial componenemmdarough
the development of an implementation of the CwEP model that integrates smoothtiievighterprise
JavaBeans platform [Far03]. Concretely, this implementation augmentsBheoBthiner abstraction
by a manager component that allows runtime events to be forwarded to ensiggsion beans with
explicit protocols. The latter can be implemented using a framework providipgast for compo-
nent identities, implementations of the constructor and composition operatavedlaess specialized
implementations of the substitutability and composability algorithms. We have showattioular,
how CWEP beans facilitate the implementation of security policies in EJBs [5]FS02

CHAPTER 4. COMPONENT-BASED AND SYSTEMS PROGRAMMING 51

4.2 Expressive aspects for system-level applications

A second major focus of my work on expressive aspect languagesdmential programs, has been
aspect languages for applications written in C and C++. This work has fnhetivated by the ob-
servation that many crosscutting concerns of system-level applicatariastance manipulations of
communication protocols in networking applications or low-level access tostiatetures, benefit
from a non-atomic aspect model [5-DFQ5, 3-SDML"06].

While the importance of non-atomic relationships on the aspect languagddewsyistem-level
programming has been discussed in 2001 [CKFS01], no aspect sysagenprbvided language sup-
port for such relationships and corresponding weaver technoldgy torour work. The other ap-
proaches for aspects in C-like languages, most prominently Aspect&3$RP02], feature an atomic
pointcut language essentially transposing the AspectJ aspect modelarehterefore subject to the
problems introduced in Chap. 2.1 regarding the concise formulation ohtamic crosscutting rela-
tionships. Furthermore, none of these system has been given a femmahscs in order to precisely
investigate aspect properties.

We have realized a non-atomic aspect model by extending the Aracheensiys AOP in C into
an instantiation of the EAOP model. The original Arachne system (initially dpeelander the name
puDyner [SDMMLO3]) offered an atomic aspect model (as usual, cfldatimships notwithstand-
ing). It marks an interesting design point within the space of aspect lgeguand implementation
mechanisms that sets it apart, for instance, from typical Java-basect agptems because it features
dynamic weaving of aspects into executing, i.e., native, C code. Dynamidéngdaato C applications
is often useful for system-level applications because it allows applicatdms manipulated without
access to their source code and without stopping them, i.e., without incalwingtime, which is
particular important in widely-used server applications. However, weavito native code imposes
strong restrictions on the language and the implementation level. On the lariguelgeertain base
program entities that are easily accessibly as part of aspect systemsethet into source code, for
instance Aspect-C++, cannot be accessed during execution of catiee this is the case, for in-
stance, for variables that are local to nested blocks in the source ésdiar as execution support
is concerned, only very small runtime overhead, in particular due to wgaigrnypically tolerated
for system-level applications. The original Arachne implementation weasectalls to C-functions
with an overhead of a factor of around 2 compared to plain C function caligjve overhead which
was 10-25 times smaller than that of typical dynamic aspect systems for Java.

We have therefore designed and implemented an instantiation of the EAOP timatcsdds finite-
state based pointcuts for C programs to Arachne’s initial aspect model priederving its perfor-
mance characteristics. In the remainder of this section, the major languhgeElementation issues
are presented as well as our approach to giving formal semantics fextireded Arachne system is
presented.

While we do not detail this work here, let us note that the resulting systerhdesapplied to
the problem of modularization and dynamic evolution of medical image genesatitware for, e.g.,
tomographs, in the context of a cooperation with Siemens AG, Munich, GerfageS S 05].

4.2.1 Expressive aspects for C: language and implementation

Originally, the Arachne approach featured an aspect language prg\dadset of primitive pointcut
constructors to match function calls, accesses to global variables, arstl fiorteontrol-flow relation-
ships. Advice allowed to call arbitrary C functions defined as part adetspor in the underlying base
applications.

CHAPTER 4. COMPONENT-BASED AND SYSTEMS PROGRAMMING 52

seq call(voidx malloqsizet)) && args(allocatedSize && return (buffer) ;
write (buffer) && sizgwrittenSize && if (writtenSize> allocatedSizg
then reportOverflow); =
call(void fregvoidk)))

Figure 4.1: Buffer overflow detection aspect in Arachne

We have extended this aspect language by two features: finite-statbdsgmxts and aliases to
global variables. The former allows to match sequences of primitive pointedtsrable information
to be passed from the different constituents of a sequence to an adWedatter provides access
to a class of local entities in C programs that are frequently used in sysfginadions and that, in
contrast to local variables, can be accessed and manipulated durimgiereof native code using
standard runtime systems.

A direct approach to implementing non-atomic aspects by interpreting finitebstagel pointcut
definitions as introduced earlier in this thesis by regular aspects and impleinfemtastance, in the
CwEP approach, is not appropriate in the context of dynamic weavingapipGcations for different
reasons. First, in order to be able to manage variable referencepepf#ly, sequences must have
unambiguous start steps. Nested regular pointcuts and aspects mayealgeggto ambiguities that
impeded the correct management of variable references.

For these reasons, we have defined a limited notion of regular aspegseitimits to accommodate
the variable references manageable on the level of native code. Tim&sel regular aspects are
called “sequence” aspects in Arachne, noted the constraetpibecause of how they are typically
used. Sequences start with a disjunction of primitive aspects, i.e., funaiborovariable access
pointcuts, may be followed by a number of disjunctions of primitive pointcuts thgthmarbitrarily
often repeated and terminate with a single disjunction of primitive aspects. Acpbat any step in
the sequence may trigger advice consisting of a single function call.

Example: Figure 4.1 shows an example aspect for buffer overflow detectionedeiimthe

resulting aspect language. It defines a sequence of three steps tblataalés for allocation,
repeated write operations on buffers, and a call to deallocate buffspectively. At allocation
time, the size of the allocated memory is recorded and compared with the size afritéen

at the second step. If more data is written than has been allocated anw\snfeported by
applying the advice that follows the keywotigen. Here, the pointcutvrite (buffer) matches
accesses to global variables as well as aliases to those variables.

The sequence aspect construct has been implemented using a list thatsinkstions on the
native code level that correspond to successive steps in the sequ@me a step is matched and the
corresponding advice executed (if there is one), a residue computatiatas the list to reflect even-
tual changes in the instructions belonging to the sequence, e.g., introdhacikg@dges if a sequence
step can be repeated. Using this implementation approach, the cost fensemspects is propor-
tional to the number of steps in the sequence and is circa three times more castipthesponding
sequences of plain C calls [3-DFD6]. Accesses to data are comparatively very costly during exe-
cution of native code because they require complete memory pages to bd a#t corresponding
handler code to be executed. Our implementation performs these diffegpatvgith an overhead of
approximately 9700 processor cycles (compared to 1 processor oy@efain C access), almost all
of which is, however, due to page locking, a requirement any dynamicexéar C is subjected to.

CHAPTER 4. COMPONENT-BASED AND SYSTEMS PROGRAMMING 53

seq py then fy; Hag. Cp, > fy;
p2 then fy; [] (ag || pap. (Cp > f3; STOP)
ps then f3;) 0O Cp, > f2;a2)

Figure 4.2: Definition of sequence pointcuts

4.2.2 Formal semantics

A second open question we have addressed as part of our work @mablene system is the ques-
tion how to give formal semantics to such systems in order to foster betterstiznoi@ing of aspect
systems in this domain and support reasoning about them. In addition to flengkeof defining a
semantics at a high level of abstraction, a specific challenge of C-basgams consists in certain
idiosyncrasies pertaining to the C-based compilation schemes. The userobraadntegral part of
C programs, into which Arachne aspects are compiled, in particular, hasaocounted for.

We have addressed these challenges by defining to different formalnses for the Arachne
system:

e A high-level semantics [5-DFLO05, 3-DFL"06] defining the main features by a translation
of Arachne’s aspect language into an extension of the languagedolareaspects shown in
Fig. 3.2 (see page 34).

e An implementation-level semantics [3-DFQ6, Fri05] defining the weaving of Arachne as-
pects by a source-to-source transformation of base applications intenvpsegrams that are
expressed as C programs.

High-level semantics. The high-level semantics abstracts from all implementation issues relating
to the Arachne’s weaving strategy of aspects into executing native bodgturn, it defines the main
properties of Arachne’s aspect language in very concise and wedrstandable form. Concretely, it
extends the language of regular aspects by allowing the use of parailiblreations of aspects in the
scope of the sequential operators (repetition, choice and sequence).

Figure 4.2 shows the definition of sequence aspects [5+DB]that makes explicit three impor-
tant properties. First, it defines that a new instance of the sequen@atsaias soon as a match for
the first primitive pointcufp; is found by looping ora; in parallel to the on-going match gm that
is performed by the original instance of the sequence aspect. Secoashect instance is terminated
(by the primitive aspect STOP) after the last sequence step has beemeskeThird, repetitive steps
(i.e., steps in the scope of th€ bperator) yield control to the following step, if both the pointcuts of
the repetitive step and the following step match (this follows from the fact tledfirgt argument of
the choice operatdrl of regular aspects has priority over the second one).

This semantics allows equational reasoning to be applied in order to manu@lygguivalences
between aspect expressions [3-DfI6]. The third property of the sequence aspect mentioned above
can, in fact, be proven using induction of the steps of a sequence.

Implementation-level semantics. The high-level semantics above abstracts from all implementa-
tion details, in particular, the C code generated by the Arachne compilerigtttegn compiled by
the gcc compiler), Arachne’s runtime libraries and its weaving strategy iglessentially based on
rewriting of native code). A precise definition of these phases is nagessestablish the correctness

CHAPTER 4. COMPONENT-BASED AND SYSTEMS PROGRAMMING 54

SA: SequenceAspect-INT —CGx

SA[seq(AspPrim AspSeqElts AspSeqEl(n) =
let x = NUM [AspSeqElt§2)
v = concat (VARS[AspPrind,
concat (VARs[AspSeqElt§, VARs[AspSeqElf))

in def i neAl i asAccess(n, LACCs[AspSeqElts AspSeqHl(in,1), v, x-1)
PAs[AspPrin](n,0,v)
STEP9AspSeqElts AspSeqgHlin,1,v)
creat eSequenceAspect (n, X, v);

Figure 4.3: Implementation-level semantics: definition of sequence aspects

of the Arachne system, for example, in the presence of optimizations peddiyriie gcc compiler
that may in-line function definitions but that conflict with the same function bessgl as jump targets
for the rewriting strategies of the Arachne weaver.

In order to prove, at least in principle, the feasibility of the formal definitiad correctness proof
of the entire Arachne system (modulo the correctness of third-party taoks as the gcc compiler
and the object file linker that are used as part of the Arachne tool chvaitave developed a com-
plete formal semantics for Arachne’s aspect language that allowsniegsover the Arachne com-
pilation phase. This implementation-level semantics [3-D&&, Fri05] is defined as a denotational
semantics [Sto77, Sch86] whose valuation functions map Arachne a&sgeestsions to a domain of
sequences of code generation functions. These code generatibiofigryield the exact C code that
is generated, compiled and executed as part of the Arachne tool chasy. dEfine symbolic refer-
ences into the base code that are resolved at weave time to interface witinAsaruntime rewriting
libraries.

The well-definedness of the denotational semantics is straightforwartetaies because of the
rather simple domain structure of sequences of code generation funcfiptise code generation
functions that are produced may not be removed from such sequafieesards, thus lower and
upper bounds of different elements in the result domains are straighifdre define in terms of
lattices over sequences; (i) all definitions in the semantics that repeatetignénies to sequences of
code generation functions only use bounded, i.e., terminating, algorithms.

Figure 4.3 shows a typical excerpt of the implementation-level semanticsefiaésl the seman-
tics of sequence aspects as the valuation func88nyields the corresponding sequence of code
generating functions based on the number of elements in the sequenchk (svkiatically known).
The result sequence consists of two groups of functions: a functaguping initialization code and
functions generating output for all steps in the sequence. Concretelpitialization part (here per-
formed by the functionlef i neAl i asAccess) sets up the reference to the base code mentioned above
that, in particular, initializes the access to local aliases, and the three remaipirggsions return the
code for the sequence steps.

By successively replacing all non-terminals in the denotation of an aspaassion using the cor-
responding valuation functions, the implementation-level semantics allows ¢évajerthe exact code
produced by the Arachne compiler (for an example of the rather lengsiitireg C code, see [Fri05],
Sec. 4.2).

While this semantics provides a complete definition of Arachne’s compilatiomszhand there-
fore contains definitions that are as detailed as its implementation itself - it dd®sreeeting two
important characteristics. First, through a hierarchical design, it peeviigh-level abstract as well

CHAPTER 4. COMPONENT-BASED AND SYSTEMS PROGRAMMING 55

as low-level detailed definitions. Second, it supports equational regsbacause of its pure func-
tional nature. We have applied this last property, for instance, to pratghb Arachne implemen-
tation effectively observes the property of sequence aspects mentiwogd in the context of the
high-level semantics: that occurrences of join points matching the initial $tegequence triggers
creation of a new sequence instance without influencing the matchingsgrgogerned by existing
instances. Finally, we have derived performance characteristics gir#thine implementation from
the implementation-level semantics.

4.3 Conclusion and perspectives

In this section we have shown that expressive aspect languagets drasiee EAOP model provide
appropriate means for the modularization of complex crosscutting corioesaguential applications,
both in the domain of component-based software engineering, which basdrgeted by quite a large
number of AOSD approaches, but also the domain of system-level apptisafar which support
using AOP has not yet been deeply explored.

Software components, which currently are the main structuring mechanidarde-scale appli-
cations, should benefit much from AOP, because of its prevalencesgartting functionalities. As
we have discussed most approaches only address the manipulation faicedesf existing compo-
nent models, in particular of industrial component platforms, without exgligiport for composition
properties. In contrast, we have advocated an approach to AOPrfgracents that enables compo-
sition properties to be investigated formally and partially be ensured by cotistr even in presence
of component-modifying aspects. Technically, this has been realizedyliyg®n protocols to make
explicit in interfaces properties of the semantics of components. Aspecthem used to modify
these protocols. This permits to investigate the influence of aspects on cempoaperties as well
as component-specific properties of aspect weaving. Finally, as veeshawn that such an aspect
system can be smoothly integrated in industrial-strength component platforms.

The second class of modularization problems we have discussed, sys&tragplications im-
plemented using the C language, poses different challenges thanm®fmesoftware components.
First, dynamic weaving of aspects into executing native code imposes st@stiigtions as to the
base language entities that can be referred to in aspects. Secondjaxspeed is crucial, which
precludes the usage of interpretative execution technigues andatigmequires aspect weaving and
execution to be implemented with very small overhead. We have developepeact éanguage for C
featuring finite-state based pointcuts and aspects, devised a comtggponplementation with small
overhead, and defined how to treat the resulting aspect system in d feama

Perspectives. This work offers a number of perspectives. It provides means, iticpéar, to ad-
dress a general problem of software components that is particular Icfdaicthe modularization
of crosscutting functionalities: striking a compromise between black-boxwdnitg-box access of
software components. While software components are most frequentlgfinedi as black-box en-
capsulation entities, the need for white-box or gray-box software catigrosnechanisms is well
established [ARMO3]. However, the unstructured access of compiongleimentation, in particular
using aspects, defeats tfason detre of components by breaking fundamental encapsulation prop-
erties. Aspects over component protocols essentially provide a blackabdel but can naturally
achieve gray-box like behavior by representing and manipulating addiiivleamation about the
implementation of a component on the protocol level. More prospectivelyagpsoach promises
to contribute to a general integration of encapsulation mechanisms, includings®components

CHAPTER 4. COMPONENT-BASED AND SYSTEMS PROGRAMMING 56

but also modules, by generalizing the currently emerging proposals, édgich®s notion of open
modules [AId05]. This lead of further work is discussed in more detail in 6ec

As to the handling of system-level applications, our results prove thaessipe aspect mecha-
nisms can be used even in restrictive execution contexts. The Aragheet éanguage currently still
is, however, subject to several restrictions, e.g., concerning atwessictured and local data that
should be lifted. Our work has already fueled corresponding resegmcinstance on the inclusion
of pointcuts enabling access to C-style records by Yanagisawa et &IDG{. A second important
lead of future work consists on the application of the techniques we haetoged for C, an imper-
ative language, for object-oriented languages used for system-l@grianming, in particular C++.
While we have shown how the Arachne aspect model (regular aspektdiig) can be transposed
into C++ [5-FSS 05], much work remains to be done to fully explore which language mechanisms
involving OO abstractions, such as late binding in the presence of C++’s mutigetance, can be
reasonably applied as part of a strategy of dynamic weaving into natile deinally, the potential
synergies between AO languages defined based on source-te-smacing of system-level applica-
tions [CKFSO01, SGSP02, éLS*Os] are another prime target for future efforts. Hybrid approaches
that combine aspect weaving at compile and runtime promise, in particular, usethe to lift the
restrictions of runtime weaving mentioned above.

Chapter 5

Aspects for explicit distributed and
concurrent programming

Distributed (and to a minor degree concurrent) applications should constiputeme target for AOP
methods: they are typically large, abound of crosscutting concernsegmesent a large share of
all practically relevant applications. In fact, two of the very first asjpeaguages, COOL and RIDL,
developed by Christa Videira Lopes [Lop97, KL097], respectivebywmied means for the modulariza-
tion of mutual exclusion of concurrent activities and data transfer in dig&tbapplications. Her work
on explicitly distributed and concurrent aspects has been followed upbgnhery few approaches,
most notably by the remote pointcuts for distributed AO programming introdugedighizawa et
al. [NCTOA4].

In contrast, there is a large number of approaches that apply AOP teelsrig distributed pro-
gramming by using sequential aspect languages to manipulate platformstfayudésl application
development. Our approach of AOP over components with explicit protolessribed in Sec. 4.1
belongs to this category, because distribution issues are left implicit (ahlemrgponent identities in
protocols can be used to model, e.g., distribution domains). This is also thiecsnumerous aca-
demic approaches (e.g., [CC04, DEMO02]) as well as AOP framewankh, & Spring AOP [Spr] and
JBoss AOP [JBoa], for the modularization of functionalities in EJB-bassdiglited applications. Fi-
nally, the situation is very similar as far as concurrency is concernedesnégl aspect languages are
overwhelmingly used to manipulate frameworks for concurrency, astigaxemplified by Cunha et
al.'s [CSMO06] who use Aspect] to improve the modularity of concurrentritfgns implemented
using the concurrency library of Javab.

These approaches fall short with respect to the two main characterisgicguiue the present
study: declarativeness of aspect definitions and support for nzgsabout properties of aspects.
They are not declarative mainly because they do not allow to directly expssential relationship be-
tween distributed and concurrent entities. Spring AOP and JBoss AGRstance, follow AspectJ’s
atomic aspect model and thus do not allow, for instance, to directly expegsonship between
functionalities involving clients and servers but require them to be bro&em ¢h distinct aspect def-
initions manipulating both separately. It is well-known that such aspectrsgdteat do not allow to
quantify over different distributed entities in a distributed systems do not atiaencisely express
distributed systems [SLB02]. Furthermore, as in the sequential cadeatsumic aspect definitions re-
quire the use of non-local state, thus severely hindering reasoning afmects. The need for explicit
and more declarative pointcut and aspect definitions for distributedamoging is therefore widely
acknowledged. However, this problem has only very partially beereaddd: in the context of 3-tier

57

CHAPTER 5. DISTRIBUTED AND CONCURRENT PROGRAMMING 58

architectures, for example, almost no support on the aspect langupgershas been proposed, a
notable exception being Cohen et al.’s “tier-cutting pointcuts” [CG04] thabduce a limited from
of quantification involving events at the client and server side.

Our approach to address these deficiencies harnesses two clistiesteFirst, explicit repre-
sentations of relationships among distributed and concurrent entities orititeyp level through
finite-state based pointcuts. Second, the use of domain-specific absisamtidhe pointcut and ad-
vice levels to reference and manipulate distributed and concurrent sysiRegarding distributed
programming, the language and system of Aspects With Explicit DistributionEB)Venables ref-
erences to remote events in pointcuts and the synchronous or asymehremote execution of code
as part of advice. As to concurrency, our recent results on CosrduEvent-based AOP (CEAOP)
allow pointcuts to be defined in terms of multi-party rendez-vous synchrioriza la CSP [Hoa85]
and enable synchronization of aspects and base programs using explictitronization operators
over (parts of) advice. Both approaches therefore allow non-séigu@rograms to be defined in
a much more concise and declarative manner than with sequential AOPaappso The AWED
system furthermore has been implemented using a state-of-the-art 3adavibaving and execution
infrastructure yielding execution overhead close to a comparable hetidayoptimized RMI-based
implementation. The CEAOP language, on the other hand, supports theatanifiof properties of
coordinated concurrent aspects, for instance absence of deaalirogy model checking techniques.

The approach to distributed programming presented in this chapter hasiéegloped in the
context of the PhD of Luis Daniel Benavides Navarro | am supervisimp\Vaim Vanderperren from
SSEL group at Vrije Universiteit Brussel. The notion of concurrepeats is the fruit of a cooperation
with my colleagues Jacques Nognd RRmi Douence from EMN.

In the following we give a detailed account of the AWED aspect languadegstem in Sec. 5.1.
We describe the CEAOP approach more succinctly in Sec. 5.2 by brieflgmiiag its main charac-
teristics and discussing synergies between aspects for explicitly centamnd distributed programs.

5.1 Aspects with explicit distribution

Distributed programming poses several new challenges for AOP compmasstjuential program-
ming. Crosscutting concerns depend on execution events occurrirgytasf phe execution of dif-
ferent distributed distributed entities (tasks, machines, cluster in LANsystdms of grids, etc.).
Their modularization typically involves the execution of actions on severahmes at once. Aspects
have to manage distributed state, in particular, when state has to be passaeddchines on which
execution events have been matched to machines where actions have ¢éoute@x

These challenges translate into different distribution-specific requisrf@mabstractions on the
aspect language level:

e Pointcuts must be able to denote remote execution events.
e Advice should support triggering of remote actions.

e Aspects ought to provide mechanisms to manage internal state that maydubahdistributed.
Furthermore, they should support different parameter passing modstafe of the base pro-
gram and aspect-internal state that is referred to in pointcuts and useide.a

The resulting aspect language should, in particular, be expressivgleno allow abstraction from
auxiliary entities of distributed systems, such as proxies, in favor of dinaciipulation of the corre-
sponding remote entities.

CHAPTER 5. DISTRIBUTED AND CONCURRENT PROGRAMMING 59

Aspect languages for distribution also require specific execution supptost fundamentally,
runtime support for aspects in distributed systems need mechanisms toqiepagote execution
events between sets of sites, thus typically favoring multicast-based comtiumioatead of point-
to-point communication. Second, aspect mechanisms often require appedie information to be
passed between distributed entities that cannot be transmitted transpasémglyinaplementation-
level abstractions in existing platforms for distributed programming. This isdke,dor instance,
in the case of call stack information that has to be passed between machimderiho implement a
distributed cflow pointcut. Third, some aspect mechanisms, such as agg@mgien on remote hosts,
calls for advanced execution mechanisms, such as code mobility rathetahdarsl remote method
invocation. Code mobility is, however, not (or only rudimentarily) suppoaied¢ommon implemen-
tation platforms. Finally, it is unclear how distributed aspect runtime systembeaptimized, in
particular whether optimization techniques for aspects developed in thergedsetting carry over
to, or are even meaningful in, the distributed case.

The approach of aspects with explicit distribution (AWED) that we havesld@ed provides a
first set of solutions to these language-level and implementation-levebkissukprocures evidence
that the resulting approach to the modularization of distributed systems egfganables the concise
definition of distributed crosscutting concerns. In the following we givewerview of the AWED
aspect language and discuss how we tackled the implementation challendiematkabove.

5.1.1 Language

The AWED language [5-BNSV06a, 5-BNSVV06] directly addresses the three requirements for
aspect languages for distributed programs introduced above.

Pointcuts may refer to remote execution events in a variety of ways, mostlbabiceestricting
matches of joinpoints to individual or groups of hosts. Host groups eandmipulated as first-class
entities on the language level. Moreover, control-flow dependent aibet$itate based pointcuts may
match joinpoints occurring on different hosts.

Advice can be executed on (groups of) remote hosts. If an advice iségdmited on multiple
hosts, the order of execution on these hosts can be specified explicithceAchn be defined to ex-
ecute in a synchronous as well as asynchronous manner to the basgagxeThe synchronization
mode also governs the execution of different advice that apply at the ssmeetion event. Data
dependencies between advice and the base program (or among advieeetlsimultaneously ap-
plied) are managed following a by-need synchronization policy realiziad @istures [HJ85, PSHO04].
Advice is also used to dynamically register hosts with or remove hosts frohgrmsps.

Figure 5.1 illustrates the main features of the AWED pointcut and advice lgaguRemote
pointcuts may relate execution events on different distributed entities as iltdstog the solid di-
rected path. Advice execution may be flexibly defined from the persjgeatithe (grayed) local host,
i.e., the host on which the aspect is located (and where matching of the pdiakbeen started):
as illustrated by the dashed arrows advice may be executed on the logahkd®st where pointcut
matching has started, specific hosts (identified, e.g., by their IP addragsups of hosts.

Aspects, finally, can be distributed through specific deployment spdizifisahat allow to define,
in particular, their state sharing properties. Aspects may be deployed —isthhkir local state
allocated — on single machines or globally within a network. Aspect state isfaullencapsulated,
it can, however, be explicitly shared among explicitly defined sets of instaoican aspect that are
located on specific or groups of hosts.

Example: As a simple example illustrating the use of AWED, let us consider how to resolve

Remote pointcut

CHAPTER 5. DISTRIBUTED AND CONCURRENT PROGRAMMING

:" OQ 0"'
e -
.. © >
/ \\f? (Grou "'
g)
/6 N H
S, N
\?. et
3¢ .,
. > L \i
9) “‘
.
.,

~ -
P

Y

60

Figure 5.1: Remote pointcuts and advice

all aspect {
2 poi nt cut distribution(Facade f):

target(f) & call (* *(..)) && !'host (ServerAddr)
&& on(ServerAddr);

syncex Ohject around(Facade f): distribution(f) {
return proceed(f.getlnstance());
}

Figure 5.2: Distribution as an aspect

CHAPTER 5. DISTRIBUTED AND CONCURRENT PROGRAMMING 61

the basic problem that has been identifeed. by Soares et al. [SLB02] as a main issue for
distributed programming with sequential aspect systems: serving a réaunest client, which

is performed through a call to a facade object of the server on the cbshbly a server on an-
other site in a distributed system. In AWED, this execution pattern can simply benmapted

by the aspect shown in Fig. 5.2, which is deployed on all sites in the systespégified by

the keywordal |). The pointcutdi stri buti on matches all calls to facade objects on hosts
different from the server host (terhost) and executes the corresponding advice on the server
(termon)!. The advice is synchronously executed once the pointcut matches enaexthe
corresponding server method, which is passed the concrete factaessfrver through which
the call has been made (e.g., in order to distinguish different serveraogs)t

In order to close this short overview of the distribution features of the AMNl&guage, let

us recall the example of replicated caching shown in Fig. 2.4 (see pag8dS3ifes a simple
use of finite-state based sequences, it also illustrates the use of hgss gusuccinctly denote
sets of hosts of interest: in the example all hosts belonging to the cache qaaridied upon

using the groupacheG oup.

5.1.2 Implementation

The AWED system also provides first answers to the implementation issued gisispects in dis-
tributed systems that have been introduced above: support for matéhergate events, management
of distributed state relevant to aspects, transparent passing of infonnfiatipointcut mechanisms,
multicast communication, code mobility and optimization of aspect execution in digtilsystems.

Instead of implementing AWED ex nihilo, its implementation has been based sGQJISVJ03,
JAs], a dynamic weaver for sequential AOP of Java-based applicat\past from the obvious obser-
vation that distributed aspects subsume support for sequential aspsothioice has been motivated
by several features of the 3€0 system that were directly suitable for extension to the distributed
case. Most importantly, execution events are reified in theClAruntime system and passed via
connectors (that may provide aspect composition functionality) to asp@otmectors are stored in
connector registries in order to enable dynamic addition/removal of ctomseand aspects. Repli-
cating this infrastructure on the nodes of a distributed system has proyexidan efficient runtime
infrastructure for distributed aspects. The AWED implementation, see [S\B06a, 5-BNSVV06,
AWE], which is publicly available as a module of the standar¢QaA distribution, installs a connec-
tor registry on each host where an aspect is deployed and propamjapesnts among them as needed.
Second, JACo integrates support for sequential finite-state based pointcuts andsaBeCDF05]:
the AWED implementation generalizes these to distributed finite-state based psintcu

Besides extending features of the originals@® system to the distributed case, the different is-
sues specific to AOP for distribution have been realized within the AWED impl&atien by harness-
ing extension mechanisms of the Java platforms, by resorting to Javadmasetlnication libraries
or by means of AWED aspects themselves. Concretely, transparemhatfon passing required for
control-flow and sequence pointcuts has been implemented based ardaehanism of customized
sockets by extending techniques proposed generally for distributgdgpnaning in Java [PSHO4] and
for AOP in particular [NCTO04]. Multicast communication that is necessanyféo instance, the prop-
agation of joinpoint representations to the hosts mentioned in differentharof a finite-state based
pointcut and to advice that is executed on multiple hosts, is realized using thepEommunica-

INote thaton(h) terms appear in pointcut declarations because it is semantically be dafiregredicate that restrict
pointcut matches to contexts in which advice can be executéd on

CHAPTER 5. DISTRIBUTED AND CONCURRENT PROGRAMMING 62

tion library [JGr]. Remote advice execution is realized by activation of gegpl@spects that refer to
remote state if necessary, essentially a form of weak code mobility [FPVaBirtimimizes transfer
of runtime state. Finally, two features are implemented using AWED aspects themsgharing of
state among aspects and parameter passing between constituents of (e-gtafmibbased) pointcuts
as well as between pointcuts and advice.

Performance considerations. The AWED system is implemented by specialized code for AO and
distributed functionalities that makes extensive use of theCYAimplementation, the standard Java
platform and third-party extensions of the Java platform, such as theug&iibrary. This raises
the question how it compares to alternative implementation strategies with réspeetcution ef-
ficiency. Generally, the efficiency of software systems typically is evatulyebenchmarking them
against comparable systems, by macro-benchmarks (determining thead¢hkey induce in reason-
ably sized applications) and micro-benchmarks (determining the overlfisathth execution patterns
implemented with and without the technology of interest).

Since there is no system for aspects with features for explicit distributiorseviset of fea-
tures comes close to AWED, we have run microbenchmarks and compard&eDAWIplementa-
tions to functionally and distribution-wise equivalent hand-optimized implemengatismg RMI
only [9-BNSV"06b]. These evaluations have revealed a small but non-negligiblerpenfice over-
head of a factor of 1.5-4 for AWED compared to a plain Java implementatiomev#s, a closer
analysis of the performance bottleneck has shown that almost all of thiseadk stems from use of
the JGroups library for multicast communication: JGroups provides a comatigmanodel that by
default is generic and can accommodate different transport protaculslbas different communica-
tion policies (such as resending lost messages until transfer succédtity we plan to exploit this
feature (see the discussion of perspectives at the end of this chaptér)plementation of multicast
communication that is specialized to our current needs would almost entirely aléromerhead of
AWED compared to a hand-optimized RMI implementation.

Finally, it is interesting to note that AWED is fully compatible with the sophisticated op#itita
mechanisms that are part of thesl2o system. JACO uses two specialized optimizing modules for
pointcut matching and the integration/removal of aspects during runtime [V¥hd implementation
of the AWED system has been carefully designed not to impair these optimigagian, by ensuring
that communication does not interfere with these optimizations.

5.2 Coordination-centric concurrency control using aspects

Much like distribution, concurrent execution of activities frequently scogs base functionality. Fur-
thermore, concurrency control is often performed by following a nurobesell-defined concurrency
patterns using well-known concurrency primitives [Lea96]. As in theifistied case, this argues for
the use of a domain-specific aspect language for coordination of mentwactivities. Unlike dis-
tributed programming, concurrent programming is frequently modeled adination between a set
of different activities of equal status. Such a coordination-centrisgestive does not fit well with ap-
proaches to concurrent programming that employ aspects to introduceoaaiscurrency primitives
into a base application that is not concurrent.

Example: Consider, for example, an e-commerce scenario in which updates to dksvy v
on the product database are introduced using aspects. Such updgtes/ohge operations
which influence or not an on-going transaction of a client. If they do theulsl probably

CHAPTER 5. DISTRIBUTED AND CONCURRENT PROGRAMMING 63

be performed in a synchronous manner to transactions so that clientsaantged to get
updates as soon as possible, otherwise they may be performed cotlguodéransactions. A
coordination-centric approach permits to directly express that the dapetibnality, i.e., view
updates, should be performed concurrently or not with the transactaihey than express that
low-level synchronization operations should be executed at spec#ouggn events.

However, almost all existing approaches to AOP for concurrency @o(itrcluding those by
Lopes and Cunha cited in the introduction to this chapter) belong to this clagantrast, a coor-
dination-centric approach to concurrency control with aspects allowsréotly express arbitrary
functionality modularized using aspects with a base application as well as wéhapects. In the
following we first detail the main features of such an approach to comeuaspects and then sketch
our first results on a corresponding aspect system, ConcurrenPEAO

5.2.1 Abstractions for AO concurrency control

Concurrency control through coordination of aspects and basegmnegmost prominently relies on
an appropriate notion of the entities of aspects thatiares of concurrencyand with respect to what
events of the base execution these units can be synchronized with. \&ex@alered coordination
expressed directly terms of the abstractions provided by aspect lagyuRgintcuts may be matched
concurrently, e.g., independently during execution of concurrentguging threads of the base pro-
gram. AspectJ-style advice provides useful abstractions for synizaten of base programs and
aspects: after advice, for instance, may be executed in sequenagcarremtly with the base execu-
tion following the joinpoint whose match triggers the execution of the adviceudd advice allows
for more flexible synchronization patterns because parts of arounceathay be synchronized inde-
pendently. Before advice, in contrast, can only be executed in a sjueanner before the matching
joinpoint.

Once a well-defined notion of entities of aspects that can be synchrdmasdueen defined, exist-
ing formalisms for concurrency, for example one of the numerous psaadsuli for concurrency, can
be employed as a basis for language support to coordinate the coni@xegution of these entities
and the base program. The coordination language for concurrenteniitiet be complemented by a
corresponding weaver definition. This proceeding promises to enabf@foeasoning about concur-
rent aspects by harnessing properties of the underlying concyri@mealism, provided that there is
a suitable formal weaver definition.

Since such language support expresses coordination between emfitieglg it is possible to
define composition operators that provide abstractions of concurgattgrns on top of basic AO
concurrency control mechanisms. Such composition operators caedbgmuparticular, to define the
synchronization of the concurrent entities of several advice that a@pfihe same joinpoint. This way,
composition operators address, in particular, the problem of interacti@asourrent aspects.

Furthermore, such a notion of concurrent system can be implementedcosiogrrency abstrac-
tions of mainstream programming languages, because it relies only on simpleayization opera-
tions to be weaved around the entities of concurrent execution.

Finally, let us note that such a model instantiates the EAOP model as introdused. 2.4 in that
it supports expressive aspects at the language level, reasoningpabperties of AO programs and
mechanisms for explicit aspect composition.

CHAPTER 5. DISTRIBUTED AND CONCURRENT PROGRAMMING 64

5.2.2 Concurrent Event-based AOP

The model of Concurrent Event-based AOP (CEAOP) [5-DLBNS@AL; which we have recently
proposed, realizes a coordination-centric AO approach for cograeyrin the sense above.

Units of concurrency. Units of concurrency are defined as outlined above: pointcuts can bbeedatc
on different threads simultaneously and parts of advice can be synzbdowith the base execution
and one another.

Before and after advice can be synchronized as discussed ali@/maoEt interesting case, around
advice, deserves further explanation. Around advice can call theefbastionality whose matching
has triggered the advice using the special metirateed. Advice that callgr oceed is structured
in three execution segments: the segment before the galbikeed, the execution of the base func-
tionality represented by the call itself and the segment after the call. These thgments give
rise to different quite natural coordination strategies: the before sagmsrto be executed before
the matched base functionality is executed, but the after segment may gegkegnchronously or
asynchronously with the base execution following the matched joinpoint.

In the case of different advice that apply at the same joinpoint, richedowdion strategies can
be defined. In sequential languages following the Aspect] model, sedsiae are totally ordered
and the before and after segments of around advice are executedsited fashion. In the concurrent
case before (after) segments of different advice may be executedircarcent or sequential manner.

Around advice in AspectJ can call base methods multiple times using calls to ttial spethod
proceed. The corresponding segments before, between and after callsot@ed are potential
concurrent entities. However, there are two technical difficulties. FSeggments between calls to
proceed cannot be unambiguously mapped to base functionality with which it shoulddoeied in
a sequential or concurrent manner. Second, how should arouizkduly coordinated with the base
execution in the case of replacement advice, i.e., the advice-triggeriegniethod is never called.
These two issues have been addressed as follows: (i) CEAOP admitsnenbalb topr oceed; (ii)
if the base functionality is not called, the keywaki p has to be used to mark the occurrence of the
triggering base method relative to the around aspect.

Language: concurrent aspects and their composition Concurrent aspects in CEAOP are defined
based on the formalism Finite State Processes (FSP) [MK99]. FSPs altmureent processes to be
defined in terms of finite-state transition systems. CEAOP pointcuts corregpsach FSP automata,
while advice is associated to individual transitions in this automata. The restttia@spect language
therefore is similar to the language of regular aspects, see Fig. 3.2, with imexuaption that advice
is structured in before and after segments that are separated by a dtiketgpeoceed or ski p as
described above.

Similar to regular aspects (cf. Sec. 3.3), CEAOP provides languag@ddppaspect composi-
tion. In the case of CEAOP, these operators allow to coordinate diffeegments of advice that apply
at the same execution event among another or with the execution of theubasierfality. Such an
operator can, for instance, execute all before segments of all agppbgrag at one execution event in
a nested sequential fashion and execute all corresponding afterrgsgrarcurrently. Formally, the
composition operators are defined as FSP processes. They realizeaweady of basic concurrency
patterns that can be combined freely to implement sophisticated coordinatitegsts of concurrent
activities.

CHAPTER 5. DISTRIBUTED AND CONCURRENT PROGRAMMING 65

Weaving of concurrent aspects and property support. Weaving of CEAOP aspects is formally
defined by a transformation that maps aspects built from FSP expressgarsed advice definitions
and composition operators into FSP process definitions.

The weaver instruments the base program, aspect expressions angdsit@onpperators with
synchronization events that correctly “implement” the coordination stratefiyedi by the concurrent
aspect program. Basically, synchronization events are introduceditatdbe units of concurrency,
i.e., segments of advice and base instructions corresponding to matcheairjtinpComposition
operators are defined such that their synchronization events camitiiediewith those of aspects and
the base program and thus apply the coordination strategy embodied ymipesition operators to
its argument aspects. Technically, the main issue for this approach is te definstrumentation that
introduces synchronization events that do not cause erroneoustitesabetween different aspects
and composition operators, all of which are defined independently femtm @her. Such interactions
are all too common in approaches like FSP where processes are gyimelrthat wait for events of
the same name.

Since base programs, composition operators and the weaved progesfinitesstate processes
existing analysis techniques and tools for this concurrency calculusecaseul to formally establish
properties over concurrent AO programs. The model checker Lab€&tnsition System Analyzer
(LTSA), in particular, allows to verify FSPs safety as well as some lifea@skdeadlock freeness
properties.

5.3 Conclusion and perspectives

In this chapter we have motivated and introduced language supporeforatiularization of crosscut-
ting concerns for distributed and concurrent programming. In botrsdseresulting aspect models
enabled much more declarative aspect definitions than with existing agfséems because of the
integration of non-atomic aspects and the definition of aspects in terms of dgpegific abstrac-
tions. Furthermore, both models provide explicit support for the composifiaspects. Finally, we
have shown that aspects with mechanisms for explicit distribution can benedalg implemented us-
ing standard infrastructure for distributed systems. Our approach tmoemt aspects allows formal
reasoning about correctness properties, which are especially imipfataoncurrent applications.

Perspectives. The work described in this chapter opens up a large number of newepéigs. A
comprehensive “theory” of aspects for distribution and concurr@nalably is one of the key issues
not only in AOP but for software engineering in general: we will discugsiisue in some detail in
Section 6.

Since concurrency issues obviously are an integral part of distritagplications, integration a
model of concurrent aspects into one for distributed programming is arestigy perspective. As
discussed the AWED model already includes a rather rudimentary modgle@oncurrent execu-
tion of remote advice. This model could certainly be enriched by integratimgesits of the CEAOP
model. However, such an integration raises two important question. Framcaptual viewpoint, is
is to be evaluated to what degree an integration is useful: the CEAOP modatdasieveloped for
complex concurrent applications, such as graphical user interthatsequire sophisticated concur-
rent coordination Marrying aspects for distribution and concurre@oypcurrency in many distributed
applications is, however, much simpler. Second, on the model level, thdication of concurrent

2Recall that aspects are not FSPs because of interleaved actions.

CHAPTER 5. DISTRIBUTED AND CONCURRENT PROGRAMMING 66

activities belonging to different distributed entities has probably be asedeadifferently than concur-
rency within a distributed entity.

A currently still open question for distributed aspects is how their propecdesbe formally
defined and reasoned about. A first reasonable approach is targtaram existing calculus for dis-
tributed programming and extend it with aspect-oriented abstractions intortlen investigate prop-
erties of DO distributed programs. In the case of AWED, Caromel andible®SP calculus [CHO5]
seems particular promising, because it provides support for many eimtea(e.g., multicast com-
munication, groups of hosts) in distributed programs that are part of thE B\dnguages.

A major open question concerning concurrent aspects is their efficieterimeptation in main-
stream programming languages. the CEAOP approach relies stronglymotitve of synchronization
by multi-party rendez-vous. These are, however, notoriously diffiotuthplement using simpler con-
currency abstractions. Furthermore, they do not scale with system ghrsutvspecific provisions.
While this is a principle problem if multi-party synchronization is used all oveystesn, a promis-
ing approach is to partition an application into parts that can use only simplenrgymzation means
among one another.

Chapter 6

Conclusion and perspectives

In this habilitation thesis we have explored expressive aspect languadpaniems for the modular-
ization of large-scale applications. Based on a taxonomy of advancenldgdor aspect languages,
we have shown that, we have provided a large body of evidence thatiesgdationships between ex-
ecution events on the level of aspect languages foster the precise fi@fingion of aspect languages
and enable automatic reasoning about fundamental and essentiatippEAO programs.

As we have shown, this approach that has initially been substantiated inrttexicof different
formal frameworks can be harnessed to address real-world modtitamipaoblems through instan-
tiations of a general model for expressive aspect languages thabkan seamlessly integrated into
mainstream programming environments. We have demonstrated the beneiyisavflbvel abstrac-
tions for aspects in the context of black-box component models and systehprogramming, which
permits only limited access to runtime information and in which execution speed igvté pnpor-
tance.

Finally, we have shown that expressive aspect languages that imaivain-specific abstractions
provide substantial benefits in the domains of distributed and concunregitaonming, two of the
most important application domains for AOP that until now have been neglecteldrge extent.

Overall, expressive aspect languages therefore support thiegment of large-scale applications
that is based on the concise formulation, analysis and enforcementtdclmoperties even in the
presence of intricate crosscutting concerns. They therefore prom@a@Mge into a central tool for
the development of large-scale software systems from a large rangelafaions domains.

To conclude this thesis, let us briefly consider three more prospectispguives of further work
that promise to leverage the demonstrated benefits of expressive Esppaiges in the context of
three fundamental problems of today’s software engineering: (i) howdoncile modular develop-
ment, in particular information hiding and encapsulation principles, with asgé@rtsomprehensive
pattern-based support for the modularization of distributed program@idrespects as a central tool
for general model-driven application development.

Reconciling modular development and aspects

Modular structuring principles, such as information hiding and strongp=utation of software arti-
facts, underlie most modern software development methods. The camoBsg restrictive notions of
access to software entities have proved useful to facilitate understasfdarge software systems as
well as their development, in particular, by allowing separate compilation guldyaeent of parts of
large software systems.

67

CHAPTER 6. CONCLUSION AND PERSPECTIVES 68

Aspects are all about modularization, however most frequently only in d&mmuare restricted
sense than required by the two modularization principles above: aspectdanioel crosscutting
concerns only to that extent that they are represented by one welkdefoiftware artifact (e.g., an
AWED or AspectJ aspect). Aspects seem to contradict the modularizatiarigbei in that many
approaches to AOSD have been designed with invasive access torgddititacts in mind. Further-
more, the so-called obliviousness property of aspects [FF04], whmhisaunanticipated weaving of
aspects with base programs that have not been prepared for agséhgvin any way, is in clear
contradiction with the notion of access to modules that is performed solelygihhrwall-defined and
explicit module interfaces. A nearly universal consensus has by nmewged within the AOSD com-
munity that obliviousness has to be discarded in this cohtext

A model reconciling aspects and traditional modules should allow to adduestians such as to
what extent information hiding and encapsulation properties are pezsand modified. Conversely,
it should give information on how modules can be used to limit the effects sspexy have on a
base program. While aspects over black-box component models assdiddnsSec. 4.1 give first
answers to such questions, they are of limited value because aspeditackelnox components fully
respect, by construction, the encapsulation properties of the undeclyimgonent-based application
and, moreover, reveal few insights on information hiding properties.

Until now only very few approaches have been proposed to recorgykects with modules in
a richer sense. Aldrich [AldO5] has proposed an extension of ML-stydelules that enables the
formulation of restrictions on which interface functions may be advised pgas. The resulting
hybrid model unfortunately very strongly restricts the modularization dppifes by aspects. Some
approaches, such as the aspectual collaborations by LieberhefL&MLO01], provide means to bet-
ter align aspects with the structure (in particular, the inheritance relatiomsyioen object-oriented
program. The resulting method does, however, respect only weaksnaton properties. Kiczales
and Mezini [KMO05] have shown how to annotate OO interfaces with additof@mation on where
pointcuts may apply. Their proposal has not (yet) developed into a sytitemethod and does not
enjoy formal support for modular properties, though.

One of the most promising proposals to reconcile modules and aspects dersgigaific inter-
faces that mediate between aspects and base programsaspacdtual interfacesmay express restric-
tions on aspects that are imposed by the modular structure of the basarprogt also restrictions
or modifications to the modular structure of the base program that areeddairaspect application.
Property-based AOP as advocated in this thesis promises to be usefdéirtadefine a flexible no-
tion of interfaces in this sense. Especially, the aspect applicability condititosluced in Sec. 3.2.2
seem to nicely match the requirements for aspectual interfaces. Furtieesitare these conditions
can be used to enforce dynamic properties it is probable that they nicalgilement a recent proposal
for aspectual interfaces by Skotiniotis et al. [SPL06] that defines meglistiarfaces in terms of the
static structure of OO programs.

Pattern-based distributed programming

Patterns, more specifically design patterns [GHJV94] and corresgpidplementation-level pat-
terns, have proved to be a highly useful semi-formal resource in sgguprogramming for the
development, understanding and documentation of software systemsrebiftudies have shown
by now that aspects are beneficial to pattern-based methods in that ¢higgtéathe implementation
of patterns, see, e.g., [HK02].

1Obliviousness seems to be indispensable only in the context of aspecttegacy software but not if aspects are
considered as an program construction method.

CHAPTER 6. CONCLUSION AND PERSPECTIVES 69

While distributed programming should potentially benefit much from a pattesaebapproach
for reasons similar to those in the sequential case, relatively few apm®axist in this domain,
be they proposed by academia or by industry (see [KS02, AGBT for notable exceptions). Two
characteristics of distributed programming contribute to this problem: (i) distdbcommunication
and computation schemes are frequently of unregular nature so that sagplarrpatterns cannot be
employed and (ii) current infrastructure does not allow to directly implememtyrpatterns simply
because the patterns involve distributed entities that have to be treatediierdifiarts of a distributed
application.

Expressive aspects with explicit mechanisms for distribution and comayrras presented in
Chap. 5 directly address these concerns: using the AWED appraadnsfance, complex combi-
nation of pipelined computations that are interleaved with master-slave liketexegatterns can
easily be defined, even if they involve matching of execution event antligga of computations
on different machines. Expressive aspects as advocated in this thesid therefore be useful for a
comprehensive approach to pattern-based distributed programming.

Generalizing support for model-driven engineering

Model-driven engineering (MDE) in the sense of application developmeaugh transformation
between models of different abstraction levels (see Schmidt [SchO@]fecent overview) — from
abstract design models via language-level implementation models to executietsmeds highly
interesting as a potentially universal program development methodoldggreTare, however, two
fundamental open issues for MDE as a universal development grq@gsis unclear whether suitable
hierarchized sets of abstractions can be found and (ii) the transformdtéiween different levels
have to be precisely defined and, to a reasonable degree, suppooteghthutomatic transformation
methods.

Crosscutting functionalities constitute one of the main conceptual and tethrotdems in ad-
dressing these issues. Since crosscutting functionalities are relevaurghbut all of such a develop-
ment process, AOSD techniques should be valuable to improve MDE-bastiwbds. Furthermore,
besides the well-known benefits of aspects on the implementation level {edlypdiscussed in this
thesis) are complemented by first clear results concerning benefits db A&a8niques on the design
and architecture level, see, e.g., Sullivan et al. [SGCHO01]. Howesercbncrete representations
suitable for MDE methods have been proposed and, as discussed in $igstnere are only very few
automatic techniques for the manipulation of AO programs.

Expressive aspects promise to provide a (partial) solution to this probldegasiton the archi-
tecture, language and implementation levels. Their higher level abstractibtieem up as a useful
intermediate representation of crosscutting functionalities between desigmplementation. Fur-
thermore, their better support for the analysis and enforcement oéprep allows transformation
between different models to be rigorously defined and supported bynatitotools. Finally, since
they can be integrated in high-level specifications as well as low-levelé&re platforms, they should
be an appropriate tool to ensure properties that relate different etistréevels, such as tracing of
design properties in implementations. This way, the application modifications terHigrel abstrac-
tions on lower levels should be facilitated.

Bibliography

Note to the reader. This bibliography is dividedo parts

e References involving the author of the present thesis. The correggomderences are cate-
gorized according to publication type: their cite keys start with a digit thattésrthe corre-
sponding publication category. Within a category, references aresntds is customary using
alphabetical order as principal criterion.

e Articles by other authors. These references are not categorizedsandtandard cite keys.
References are ordered as is customary using alphabetical ord@ragagh criterion.

Publications by Mario Siidholt (categorized)

[1-DFS04b]

[1-NDS05]

[2-CJS06]

[3-DFL+06]

[3-DS01]

— Book chapters —

Femi Douence, Pascal Fradet, and MariadBolt. Trace-based aspects. In Aksit
et al. [ACEF04], chapter 18.

Jacques N@& Remi Douence, and Marioislholt. Composants et aspects. In
Mourrad Oussalah, editoGomposants : concepts, techniques et outitepter 6.
Vuibert, February 2005.

— Editorial activities —

Yvonne Coady, Hans A. Jacobsen, and Maitidh8lt, editors. Aspect-Oriented
Programming for Systems Software and Middlew&pringer Verlag, October 2006.
Special issue of Transactions on AOSD.

— International journals —

Remi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud, Megciia-
Devillechaise, and Mario iglholt. An expressive aspect language for system ap-
plications with Arachne.Transactions on Aspect-Oriented Software Development
1(1), March 2006.

Remi Douence and Marioi8lholt. A generic reification technique for object-
oriented reflective languages.The Journal of Higher-Order and Symbolic Com-
putation 14(1), 2001.

70

Bibliography

[3-SDML*06]

[4-CND*04]

[5-ALST03]

[5-BNSV+06a]

[5-BNSVV06]

[5-DFL*05]

[5-DFS02b]

[5-DFS04a]

[5-DLBNS06]

[5-DMS01a]

71

Marc Sgura-Devillechaise, Jean-Marc Menaud, Nicolas Loriant, Thomas Rétz
mi Douence, and Marioi&lholt. Dynamic adaptation of the Squid web cache with
Arachne.lEEE Software23(1), 2006.

— National journals —

Pierre Cointe, Jacques NmyRemi Douence, Thomas Ledoux, Jean-Marc Menaud,
Gilles Muller, and Mario 8dholt. Programmation post-objets : des langages d’as-
pects aux langages de composamSTI L’'Objet 10(4), 2004.

— International peer-reviewed events with proceedings —

Rickard A.Aberg, Julia L. Lawall, Mario 8dholt, Gilles Muller, and Anne-Fran coi-
se Le Meur. On the automatic evolution of an OS kernel using temporal lodic an
AOP. InProceedings of Automated Software Engineering (ASE[28)es 196-204.
IEEE, 2003.

Luis Daniel Benavides Navarro, Mari@idholt, Wim Vanderperren, B. De Fraine,
and Davy Suge. Explicitly distributed AOP using AWED. IRroceedings of the
5th ACM Int. Conf. on Aspect-Oriented Software Development (AOSDAEM
Press, March 2006.

Luis Daniel Benavides Navarro, Mariai&holt, Wim Vanderperren, and Bart Ver-
heecke. Modularization of distributed web services using awedPrda. of the
th Int. Conf. on Distributed Objects and Applications (DOA'OBNCS. Springer
Verlag, October 2006.

Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud, Megara-
Devillechaise, and Marioi#lholt. An expressive aspect language for system appli-
cations with Arachne. IProceedings of the 4th ACM Int. Conf. on Aspect-Oriented
Software Development (AOSD’0#CM Press, March 2005.

Femi Douence, Pascal Fradet, and MarimlBolt. A framework for the detection and
resolution of aspect interactions. Rroceedings of the ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component EnginedsRGE’'02)
volume 2487 oLNCS pages 173-188. Springer-Verlag, October 2002.

Feémi Douence, Pascal Fradet, and MariwBolt. Composition, reuse and inter-
action analysis of stateful aspects. Rroceedings of the 3rd ACM Int. Conf. on
Aspect-Oriented Software Development (AOSD'@OM Press, March 2004.

Remi Douence, Didier Le Botlan, Jacques Mownd Mario 8dholt. Concurrent
aspects. IrProc. of the 5th Int. Conf. on Generative Programming and Component
Engineering (GPCE’06)ACM Press, October 2006.

Femi Douence, Olivier Motelet, and Mariai8holt. A formal definition of crosscuts.
In Proc. of the 3rd International Conference on Metalevel Architecturas Sepa-
ration of Crosscutting Concernsolume 2192 ol.NCS pages 170-186. Springer
Verlag, September 2001.

Bibliography

[5-FS02]

[5-FSSH05]

[5-HPS97]

[5-MLMS04]

[5-Si1d05]

[6-DS00b]

[6-DS03]

[7-ALSMO3]

[7-DMS01b]

[7-DS004a]

[7-FS98]

[7-FS99]

72

Andeés Faras and Mario 8dholt. On components with explicit protocols satisfying
a notion of correctness by construction. In Springer Verlag, edinbernational
Symposium on Distributed Objects and Applications (DOA'0@ume 2519 of_L-
NCS pages 995-1006, 2002.

Thomas Fritz, Marc &ura, Mario 8dholt, Egon Wuchner, and Jean-Marc Menaud.
Automating adaptive image generation for medical devices using aspectearie
programming. IProceedings of the 10th IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA'0Sgptember 2005.

Anne A. Holzbacher, Martinéfin, and Mario 8dholt. Modeling railway control
systems using graph grammars, a case studyPrdceeding of the Second Confer-
ence on Coordination Models, Landuages and ApplicatibN&CS. Springer Verlag,
1997.

Gilles Muller, Julia L. Lawall, Jean-Marc Menaud, and Ma8iadholt. Constructing
component-based extension interfaces in legacy systems codrodnof the 11th
ACM SIGOPS European WorkshdpsCM Press, September 2004.

Mario Sidholt. A model of components with non-regular protocols. Plnceed-
ings of the 4th International Workshop on Software Composition (SCIQSTS.
Springer-Verlag, April 2005.

— National peer-reviewed events with proceedings —

Remi Douence and Marioifsiholt. Une techniqueéyérique de gification dans les
langages objets. In6th Int. Maghrebian Conference on Computer Scie26€0.

Remi Douence and Marioilholt. Un moele et un outil pour la programmation
par aspectévenementiels. Ihangages et Maglesa Objets (LMO) pages 105-117.
Hermes, 2003.

— International peer-reviewed workshops —

Rickard A. ,&berg, Julia L. Lawall, Mario 8dholt, and Gilles Muller. Evolving
an OS kernel using temporal logic and aspect-oriented programmingrotn 2nd

Int. WS on Aspects, Components, and Patterns for Infrastructure SeftA@P4I1S)

pages 7-12, March 2003.

Remi Douence, Olivier Motelet, and MaridiB8holt. Sophisticated crosscuts for e-
commerce. Irint. Workshop on Advanced Separation of Concerns at ECQO#e
2001.

Femi Douence and Marioi®lholt. On the lightweight and selective introduction of
reflective capabilities in applications. Int. Workshop on “Reflection and Meta-
Level Architectures” at ECOOR2000.

Pascal Fradet and Marigidholt. AOP: towards a generic framework using pro-
gram transformation and analysis. limternational Workshop on Aspect-Oriented
Programming at ECOOP1998.

Pascal Fradet and Marigidholt. An aspect language for robust programming. In
International Workshop on Aspect-Oriented Programming at ECOI9R9.

Bibliography 73

— Technical reports —

[9-BNSV'06b] Luis Daniel Benavides Navarro, Mari@i&olt, Wim Vanderperren, B. De Fraine,
and Davy Suge. Explicitly distributed AOP using AWED. Research Report 5882,
INRIA, March 2006.

[9-DFS02a] Femi Douence, Pascal Fradet, and MarimiBolt. Detection and resolution of aspect
interactions. Technical Report RR-4435, INRIA, April 2002.

[9-DS02] Remi Douence and Marioilholt. A model and a tool for, event-based aspect-
oriented programming (EAOP). Technical Report 02/11/INECgle des mines de
Nantes, December 2002. 2nd edition.

[9-FS04] Andeés Faras and Mario 8dholt. Integrating protocol aspects with sqftware com-
ponents to address dependability concerns. Technical Report 04(®/Ed6le des
Mines de Nantes, November 2004.

Publications by other authors (not categorized)

[AAC T05] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie lFemdSascha
Kuzins, Ondrej Lhaik, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and
Julian Tibble. Adding trace matching with free variables to Aspect]. In RicBRar
Gabriel, editor,ACM Conference on Object-Oriented Programming, Systems and
Languages (OOPSLAMNCM Press, 2005.

[ACEF04] Mehmet Aksit, Sioban Clarke, Tzilla Elrad, and Robert E. Filman, editoAspect-
Oriented Software Developmeriddison-Wesley Professional, October 2004.

[ACHT05] Pavel Avgustinov, Aske Simon Christensen, Laurie J. Hendrea]. et Optimis-
ing aspectJ. In Vivek Sarkar and Mary W. Hall, editoPspceedings of the ACM
SIGPLAN 2005 Conference on Programming Language Design arnidrmeptation
(PLDI'05), Chicago, IL, USA, June 12-15, 20Q%ages 117-128. ACM, 2005.

[AldO5] Jonathan Aldrich. Open modules: Modular reasoning abouicadvin Proceed-
ings of 19th European Conference on Object-Oriented Programmin@&eC05),
LNCS. Springer Verlag, 2005.

[AMO4] R. Alur and P. Madhusudan. Visibly pushdown languages. Ptaceedings of
the thirty-sixth annual ACM Symposium on Theory of Computing (STQ(>@des
202-211. ACM Press, June 2004.

[AMC *03] Deepak Alur, Dan Malks, John Crupi, Grady Booch, and Matrtin [Eaw Core
J2EE Patterns (Core Design Series): Best Practices and Design Sgategun
Microsystems, Inc., Mountain View, CA, USA, 2003.

[And01] James H. Andrews. Process-algebraic foundations otaspiented programming.
In Proceedings of the 3rd International Conference on Metalevel Ardhites and
Separation of Crosscutting Concernwelume 2192 oL NCS pages 187-209, 2001.

Bibliography

[AOS]
[AOSO03]

[AOS04]

[Asp]
[ABMO3]
[AWE]
[BAO1]

[BCL*06]

[Bir89)

[BJIRO4]

[BLO4]

[BMDO2]

[BMN *06]

[CCO4]

[CDO6]

[CEA]

74

AOSD-Europe home pagét t p: / / aosd- eur ope. net .

Proceedings of the 2nd ACM Int. Conf. on Aspect-Oriented Softwarel@@went
(AOSD’03) ACM Press, March 2003.

Proceedings of the 3rd ACM Int. Conf. on Aspect-Oriented SoftwarelBement
(AOSD’04) ACM Press, March 2004.

AspectJ home pagéat t p: / / aspectj.org.
Uwe ABmannlinvasive Software Compositio®springer Verlag, 2003.
AWED home pagehttp:// ww. emn. fr/ x-i nf o/ aned.

Lodewijk Bergmans and Mehmet Aksit. Composing crosscutting eors using
composition filters.Communications of the ACM4(10):51-57, October 2001.

E. Bruneton, T. Coupaye, M. Leclercq, V. &ua, and J.-B. Stefani. The Frac-
tal Component Model and its Support in Jav8oftware Practice and Experience,
special issue on Experiences with Auto-adaptive and Reconfiguradilen®B86(11-
12):1257-1284, 2006.

Richard S. Bird. Lectures on constructive functional progmang. In Manfred
Broy, editor,Constructive Methods in Computing Scieneglume 55 ofNATO ASI,
F, pages 151-216. Springer-Verlag, Berlin, Heidelberg, New Yo9B91 Interna-
tional Summer School, Marktoberdorf, FRG.

Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, ancs Riely. pabc: A mini-
mal aspect calculus. IBONCUR 2004 - Concurrency Theory: 15th International
Conference2004.

Noury Bouragadi and Thomas Ledoux. Supporting AOP usgilgction. In Aksit
et al. [ACEF04], chapter 12.

Johan Brichau, Kim Mens, and Kris De Volder. Building compasaspect-specific
languages with logic metaprogramming. 1st Conf. Generative Programming
and Component Engineeringolume 2487 ofincs pages 110-127, Berlin, 2002.
Springer-Verlag.

Johan Brichau, Mira Mezini, Jacques Nt al. An initial metamodel for aspect-
oriented programming languages. Technical Report D39, AOSD-EuZ§D6.

Adrian Colyer and Andrew Clement. Large-scale AOSD for middlew In
AOSDO04 [AOS04], pages 56—-65.

Maria Cibran and Maja D’Hondt. A slice of MDE with AOP: Trangfiing high-
level business rules to aspects. Rroceedings of the 9th International Conference
on MoDELS/UML.LNCS. Springer Verlag, October 2006.

CEAOP home pageht t p: // www. emm. fr/ x-i nf o/ eaop/ ceaop. htm .

Bibliography

[CGO4]

[CGP99]

[CHO5]

[CKO3]

[CKFSO01]

[CLO2a]

[CLO2b]

[CLOG]

[CSMO6]

[DD99]

[DEMO02]

[Dij74]

[DWO6]

[EAS]

75

Tal Cohen and Joseph (Yossi) Gil. AspectJ2EE = AOP + J2BW&aiils an aspect
based, programmable and extensible middleware framework. In Martirsiyger
editor, Proceedings of the 18th European Conference on Object-OrienteddPneg
ming (ECOOP’04)volume 3086 of.NCS Springer-Verlag, 2004.

Edmund M. Clarke, Orna Grumberg, and Doron A. Pelbthdel Checking The
MIT Press, Cambridge, Massachusetts, 1999.

D. Caromel and L. HenrioA Theory of Distributed Objects - Asynchrony, Mobility,
Groups, ComponentsSpringer Verlag, 2005.

Yvonne Coady and Gregor Kiczales. Back to the future: A egttive study of
aspect evolution in operating system code. In AOSD’03 [AOS03], pageb9.

Yvonne Coady, Gregor Kiczales, Mike Feeley, and GreglgmaJsing AspectC to
improve the modularity of path-specific customization in operating system dode.
Proceedings of Joint ESEC and FSEpBiges 88—-98, September 2001.

Curtis Clifton and Gary T. Leavens. Observers and assistamsoposal for modu-
lar aspect-oriented reasoning. In Cytron and Leavens [CLO2b&3038-44.

Ron Cytron and Gary T. Leavens, editors=OAL 2002: Foundations of Aspect-
Oriented Languages (AOSD-200®)arch 2002.

Curtis Clifton and Gary T. Leavens. MiniMAO1: An imperative cdemguage
for studying aspect-oriented reasoningcience of Computer Programmiri2006.
Special issue on Foundations of AOP.

Carlos A. Cunha, & L. Sobral, and Miguel P. Monteiro. Reusable aspect-oriented
implementations of concurrency patterns and mechanisni®rolreedings of the 5th
ACM Int. Conf. on Aspect-Oriented Software Development (AOSDAGBV Press,
March 2006.

Kris De Volder and Theo D’Hondt. Aspect-orientated logic metagpanming. In
Pierre Cointe, editoMeta-Level Architectures and Reflection, Second International
Conferencevolume 1616 oL NCS pages 250-272. Springer Verlag, 1999.

F. Duclos, J. Estublier, and P. Morat. Describing and usingfoactional aspects
in component based applications. Pnoc. of the 1st international conference on
Aspect-oriented software developmerages 65 — 75. ACM Press, 2002.

Edsger W. Dijkstra. On the role of scientific thought. Selected Writings on
Computing: A Personal Perspectiyeages 60—66. Springer Verlag, 1974. Published
in 1982.

Daniel S. Dantas and David Walker. Harmless advice. Pioceedings of the
33th ACM SIGPLAN-SIGACT symposium on Principles of programmirguiges

(POPL-06) volume 41, 1 ofACM SIGPLAN Noticespages 383-396, New York,
NY, USA, January 2006. ACM, ACM Press.

IST project 1999-14191 EASYCOMP (easy composition in futigaegation com-
ponent systemshtt p: / / www. easyconp. or g.

Bibliography

[Far03]

[FFO4]

[FNO3]

[FPVO8]

[Fra]
[FriO5]

[GHIV94]

[GKO8]

[Gro02]
[Has]
[HJ85]

[HKO02]

[HLO5]

[HMO8]

[HNBAO6]

[Hoa85]

76

Andegs Faras. Un mockle de composants avec des protocoles explicReé® thesis,
Universi€ de Nantes, December 2003.

Robert E. Filman and Daniel P. Friedman. Aspect-oriented anogning is quantifi-
cation and obliviousness. In Aksit et al. [ACEF04], chapter 2.

Amy P. Felty and Kedar S. Namjoshi. Feature specification and atednoanflict
detection.ACM Transactions on Software Engineering and Methodology (TOSEM)
12(1):3-27, 2003.

Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. UWstdeding Code
Mobility. IEEE Transactions on Software Engineerii2g(5):342-361, May 1998.

Fractal home pagéhtt p: //fractal . obj ect web. org.

Thomas Fritz. An expressive aspect language with Arachneastéf’'s thesis,
Ludwig-Maximilians-Universiat Miinchen, April 2005.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissidesign Patterns:
Elements of Reusable Object-Oriented Softwakaldison Wesley, Massachusetts,
1994.

Max Goldman and Shmuel Katz. Modular generic verification of Ibgmrties
for aspects. Proc. of 5th Int. WS on Foundations of Aspect-Orientedwages
(FOAL06), March 2006.

Object Management Grou@ORBA Componentdune 2002. Version 3.0.
Haskell home pagét t p: // haskel | . org.

Robert H. Halstaed Jr. MultiLisp: A language for concurrgmilsolic computation.
ACM Transactions on Programming Languages and Systé@#s501-538, October
1985.

Jan Hannemann and Gregor Kiczales. Design pattern implementatjamairand
aspectj. INOOPSLA '02: Proceedings of the 17th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applicatpages 161—
173, New York, NY, USA, 2002. ACM Press.

M. Hennessy and H. Lin. Symbolic bisimulation3.heoretical Computer Science
138(2):353-389, February 1995.

Graham Hutton and Erik Meijer. Functional pearl: Monadic pagsimhaskell.J. of
Functional Prog, 8(4):437-444, July 1998.

Wilke Havinga, Istan Nagy, Lodewijk Bergmans, and Mehmet Aksit. Detecting and
resolving ambiguities caused by inter-dependent introductions. In R&bEilman,
editor,Proceedings of the 5th International Conference on Aspect-Orientibd&e
Development, AOSD 2006, Bonn, Germany, March 20-24, ,2p8ges 214-225.
ACM Press, 2006.

C.A.R. Hoare. Communicating Sequential ProcessePrentice Hall, Eaglewood
Cliffs, N.J., 1985.

Bibliography

[Hud89]

[Inc03]

[JAS]
[JBoa]
[jbob]
[JGr]
[IN94]

[Kat06]

[KHH*01]

[Kic96]

[KicO1]

[KL097]

[KMO5]

[KS02]

[KS03]

77

Paul Hudak. Conception, evolution, and application of funefigmogramming
languagesACM Comput. Sury21(3):359-411, 1989.

Sun Microsystems Inc. Enterprise JavaBeans specificatawaion 2.1, November
2003.

JAsCo home pagéittp://ssel . vub. ac. be/jasco.

JBoss AOP home pagett p: / / www. j boss. or g/ pr oduct s/ j bossaop.
JBoss Cache home pagds.t p: / / www. j boss. or g/ product s/ j bosscache.
JGroups home pagét t p: / / www. j gr oups. or g.

Neil D. Jones and Flemming Nielson. Abstract interpretation: a stearased tool
for program analysis. likandbook of Logic in Computer Sciengmges 527-629.
Oxford University Press, 1994.

Shmuel Katz. Aspect categories and classes of temporalntieppdn Awais Rashid
and Mehmet Aksit, editorgransactions on Aspect-Oriented Software Development
I, volume 3880 ofLecture Notes in Computer Scienqeges 106-134. Springer
Verlag, 2006.

Gregor Kiczales, Eric Hilsdale, Jim Hugunin, et al. An overview opé&J. In

J. Lindskov Knudsen, editoRroc. of the 15th European Conference on Object-
Oriented Programming (ECOOPolume 2072 of LNCS pages 327-353. Springer
Verlag, June 2001.

Gregor Kiczales. Aspect oriented programming. Hroc. of the Int. Workshop
on Composability Issues in Object-Orientation (CIO0’96) at ECOOQHyY 1996.
Selected paper published by dpunkt press, Heidelberg, Germany.

Gregor Kiczales. Untangling cod®IT Technology Review: Emerging Technologies
That Will Change the Worldan/Feb., 2001.

Gregor Kiczales, John Lamping, and Anurag MendhekarrstheAspect-oriented
programming. In M. Aksit and S. Matsuoka, editoid,th Europeen Conference
on Object-Oriented Programmingolume 1241 oLNCS pages 220-242. Springer
Verlag, 1997.

Gregor Kiczales and Mira Mezini. Aspect-oriented programming arodular rea-
soning. InProceedings of the 27th IEEE and ACM SIGSOFT International Confer-
ence on Software Engineering (ICSE’'02D05.

Ajay D. Kshemkalyani and Mukesh Singhal. Communication patterdsstributed
computations.. Parallel Distrib. Comput62(6):1104-1119, 2002.

Shmuel Katz and Marcelo Sihman. Aspect validation using modalkahg In
Nachum Dershowitz, editoxerification: Theory and Practice, Essays Dedicated to
Zohar Manna on the Occasion of His 64th Birthdaplume 2772 ol ecture Notes

in Computer Scienggages 373—394. Springer Verlag, 2003.

Bibliography

[LamO02]

[Lea96]

[LLO4]

[LLOO3]

[LOMLO1]

[Lop97]

[Lop04]

[LPSO5]

[Mcl68]

[MK99]

[MKO3a]

[MKO3b]

[MKDO2]

[ML97]

78

Ralf Lammel. A semantical approach to method-call interceptionPrateedings
of the 1st ACM Int. Conf. on Aspect-Oriented Software DevelopmersDAIR),
pages 41-55. ACM Press, March 2002.

Doug Lea.Concurrent Programming in Java: design principles and patterfibe
Java Series. Addison Wesley, 1996.

Karl Lieberherr and David H. Lorenz. Coupling aspect-otezhand adaptive pro-
gramming. In Aksit et al. [ACEFO04], chapter 7.

David H. Lorenz, Karl Lieberherr, and Johan Ovlinger. pa&stual collaborations:
Combining modules and aspecihe Computer Journaft6(5):542-565, September
2003.

Karl Lieberherr, Johan Ovlinger, Mira Mezini, and Davidiemz. Modular program-
ming with aspectual collaborations. Technical Report NU-CCS-200T0H4ege of
Computer Science, Northeastern University, Boston, MA, 2001.

Cristina Videira Lopes.D: A Language Framework for Distributed Programming
PhD thesis, College of Computer Science, Northeastern University, 1997

Christina Videira Lopes. AOP: A historical perspective (what' a name?). In
Aksit et al. [ACEF04], chapter 5.

Karl J. Lieberherr, Jeffrey Palm, and Ravi Sundaram ré&sgiveness and complexity
of crosscut languages. In Gary T. Leavens, Curtis Clifton, and Radfrhel, editors,
Proc. of Foundations of Aspect-Oriented Languages (FOAL '®&rch 2005.

M.D. Mcllroy. Mass produced software components. In PuNand B. Randell,
editors,Proceedings of the NATO Conference on Software Enginegrages 138—
155, Garmish, Germany, October 1968. NATO Science Committee.

Jeff Magee and Jeffrey Kramer.Concurrency: State Models & Java Programs
Wiley, 1999.

Hidehiko Masuhara and Kazunori Kawauchi. Dataflow poihtowaspect-oriented
programming. InFirst Asian Symposium on Programming Languages and Systems
(APLAS’03) 2003.

Hidehiko Masuhara and Gregor Kiczales. Modeling crossagiftiraspect-oriented
mechanisms. IRroc. of the 17th European Conf. on Object-Oriented Programming
(ECOOP’03) pages 2-28. Springer-Verlag, July 2003.

Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. mpiation semantics
of aspect-oriented programs. In Cytron and Leavens [CLO2b],9pa6e26.

Andrew C. Myers and Barbara Liskov. A decentralized moaelififormation flow
control. InProceedings of the sixteenth ACM Symposium on Operating System
Principles pages 129-142, October 1997. Appeared in ACM Operating Systems
Review volume 31, number 5.

Bibliography

[NCT04]

[Nie93]

[NS06]

[Par72]

[POMO3]

[PSHO4]

[Pun99]

[PVO02]

[RSB04]

[RSCH96]

[Sch86]

[Sch06]

[SDMMLO3]

[SGCHO1]

79

M. Nishizawa, S. Chiba, and M. Tatsubori. Remote pointcut - guage construct
for distributed aop. In AOSDO04 [AOSO04].

Oscar Nierstrasz. Regular types for active objects. Prioceedings of the Con-
ference on Object-Oriented Programming Systems, Languages, gulitaiions
(OOPSLA)volume 28(10) oACM SigPlan Noticegpages 1-15. ACM Press, Octo-
ber 1993.

Dong H. Nguyen and Marioislholt. VPA-based aspects: better support for AOP
over protocols. Irth IEEE International Conference on Software Engineering and
Formal Methods (SEFM’06)IEEE Press, September 2006.

David L. Parnas. On the criteria to be used in decomposing systmmodules.
Communications of the Association of Computing Machin&g(12):1053—-1058,
December 1972.

Roman Pichler, Klaus Ostermann, and Mira Mezini. On aspectuglimponent
models. Software — Practice and Experien@8(10):957-974, August 2003.

Polyvios Pratikakis, Jaime Spacco, and Michael Hicks. Teaesp proxies for
java futures. InOOPSLA '04: Proceedings of the 19th annual ACM SIGPLAN
Conference on Object-oriented programming, systems, languagdspgtications
pages 206—223, New York, NY, USA, 2004. ACM Press.

F. Puntigam. Non-regular process types. In P. Amestoy etldbrg Proceedings
of the 5th European Conference on Parallel Processing (Euro-Rgri@umber 1685
in LNCS. Springer Verlag, September 1999.

Frantisek Plasil and Stanislav Visnovsky. Behavior protocalsétware compo-
nents. Transactions on Software Engineerjr&8(9), January 2002.

Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara.lagsiication system
and analysis for aspect-oriented programsSIBSOFT '04/FSE-12: Proceedings of
the 12th ACM SIGSOFT twelfth international symposium on Foundations obseftw
engineeringpages 147-158, New York, NY, USA, 2004. ACM Press.

S. Ravi, S. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Rwaledbaccess
control models.Computey 29(2):38—-47, February 1996.

David A. Schmidt.Denotational Semantics - A Methodology for Language Devel-
opment Allyn and Bacon, 1986.

Douglas C. Schmidt. Model-driven engineerinEEE Computer 39(2):25-31,
February 2006.

Marc Segura-Devillechaise, Jean-Marc Menaud, Gilles Muller, and Julia L allaw
Web cache prefetching as an aspect.Ptoc. 2nd Int. Conf. on Aspect-Oriented
Software Development (AOSD’0BCM Press, 2003.

Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Beallen. The struc-
ture and value of modularity in software design. HSEC/FSE-9: Proceedings of

Bibliography 80

the 8th European software engineering conference held jointly with 9th AGM S
SOFT international symposium on Foundations of software engineqrages 99—

108, 2001.

[SGMO02] Clemens Szyperski, Domiinik Gruntz, and Murer Mut@omponent Software - Be-
yond Object-Oriented Programming\CM Press and Addison-Wesley, 2nd edition,
2002.

[SGSPO02] Olaf Spinczyk, Andreas Gal, and Wolfgang Schrodekstfeat. AspectC++:. An

aspect-oriented extension to the C++ programming language. In Jamesavoble

John Potter, editordrortieth International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS Pacific 2@&@)ferences in Research

and Practice in Information Technology, Sydney, Australia, 2002. ACS.

[SHUO06] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Exipigedifferent concep-
tual models of join point selections in aspect-oriented design. In Robé&itrian,
editor,Proceedings of the 5th International Conference on Aspect-Orientidd&8e
Development (AOSD’06,pages 15-26. ACM Press, 2006.

[SKO3] M. Sihman and S. Katz. Superimpositions and aspect-orientedgonaging. The
Computer Journal46(5):529-541, sep 2003.

[SLBOZ2] Sergio Soares, Eduardo Laureano, and Paulo Borba. nmepliéng distribution and
persistence aspects with AspectJ. In Cindy Norris and Jr. James Bidkenditors,
Proceedings of the 17th ACM conference on Object-oriented progragnsystems,
languages, and applications (OOPSLA-02plume 37, 11 oACM SIGPLAN No-
tices New York, November 4-8 2002. ACM Press.

[SPLO6] Therapon Skotiniotis, Jeffrey Palm, and Karl LieberherrmBier interfaces: Adap-
tive programming without surprises. Rroceedings of 20th European Conference
on Object-Oriented Programming (ECOOP 2008antes, France, 2006.

[Spr] Spring AOP home pagéat t p: / / www. spri ngf r amewor k. or g.

[Sto77] Joseph E. StoypDenotational Semantics: The Scott-Strachey Approach to Program-
ming Language TheornyMIT Press, 1977.

[SVJI03] D. Suee, W. Vanderperren, and V. Jonckers. JAsCo: An aspect-adiapigroach
tailored for component-based software development. In AOSD’03 [BD$&ges
21-29.

[Szy98] C. SzyperskiComponent Software - Beyond Object-Oriented Programmi@M

Press and Addison-Wesley, 1st edition, 1998.

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley Mtdh, Jr. N Degrees of
Separation: Multi-dimensional Separation of ConcernsPrisceedings of ICSE’'99
pages 107-119, Los Angeles CA, USA, 1999.

[VJO5] Bart Verheecke and Viviane Jonckers. Stateful aspectofoversational messaging
with stateful web services. IBroc. of the Int. Conference on Next Generation Web
Services Practices (NWeSP’0BEEE, 2005.

Bibliography

[VS04]

[VSCDFO5]

[WKDO04]

[WV04]

[WZL03]

[YKCI06]

[YS97]

81

Wim Vanderperren and Davy Sew. Optimizing JAsCo dynamic AOP through
HotSwap and Jutta. In Robert Filman, Michael Haupt, Katharina Mehndrvara
Mezini, editors DAW: Dynamic Aspects Workshggages 120-134, March 2004.

Wim Vanderperren, Davy Suvee, Maria Augustina Ciberg Bruno De Fraine.
Stateful aspects in JAsCo. Rroc. of the 4th Int. Workshop on Software Composi-
tion (SC’05) volume 3628 o NCS Springer-Verlag, April 2005.

Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn. elinsntics for advice
and dynamic join points in aspect-oriented programmingCM Transactions on
Programming Languages and Systems (TOPL2&)%):890-910, 2004.

Robert J. Walker and Kevin Viggers. Implementing protocols vielatative event
patterns. InProceedings of the ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE-1@ages 159 — 169. ACM Press, 2004. also
TR no. 2004-745-10, Uni. of Calgary, http://pages.cpsc.ucalgarywedker/old/pa-
pers/walker.2004a.pdf.

David Walker, Steve Zdancewic, and Jay Ligatti. A theory ofedp. InProceedings
of the ACM SIGPLAN International Conference on Functional Progrargnpages
127-139. ACM, 2003.

Yoshisato Yanagisawa, Kenichi Kourai, Shigeru Chiba, & Ishikawa. A dy-
namic aspect-oriented system for os kernelProc. of the 5th Int. Conf. on Gener-
ative Programming and Component Engineering (GPCE'G8FM Press, October
2006.

D. M. Yellin and R. E. Strom. Protocol specifications and compbadaptors ACM
Transactions of Programming Languages and Systé8(2):292—-333, March 1997.

