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Preface

This habilitation thesis presents the main results of my research work conducted as part of OBASCO
(“Objects, Aspects, Components”) project, a joint project with INRIA thatis also part of the “Labora-
toire d’Informatique de Nantes Atlantique” (LINA), in the computer science department of́Ecole des
Mines de Nantes. This work has focused on modularization and software evolution problems inves-
tigated as part of the emerging research domain of Aspect-Oriented Programming, in particular, the
foundation and design of aspect languages, the relationship between component-based programming
and aspects, as well as aspect-oriented support for distributed programming.

Similar problems had already been the subject of my previous work. As partof my PhD the-
sis at TU Berlin I investigated the parallelization of functional programs by means of a skeleton-
based approach. This work can, in today’s terminology, easily be framedas the definition of several
domain-specific aspect languages for parallel execution at differentlevels of abstraction, ranging from
a high-level language to languages directly representing architectures of parallel machines. I have also
provided an implementation in terms of a calculus allowing the transformation between abstraction
levels, a method very similar to aspect weaving.

In my following year of post-doc studies at IRISA/INRIA-Rennes, I employed shape types — a
notion of graph-based types initially developed to provide better structuredsupport for data types in
the C language — to devise new abstraction and reasoning mechanisms for software architectures.
Such graph-based types allow, in particular, to formally define software architectures underlying typi-
cal component-based systems and, based on a notion of refinement, modeldynamic evolution of these
systems.

On my arrival at OBASCO group in 1997, I started working on reflectiveobject-oriented systems,
but became rapidly interested by the subject domain I report on in this habilitation: the lack of means
for the modularization of so-called crosscutting functionalities as a fundamental problem for the en-
gineering of large-scale applications. Originating at Xerox PARC within the group headed by Gregor
Kiczales (but more generally influenced by the reflection programming community), this problem has
sparked in 1996 the development of a new style of programming featured bythe emerging research
domain of Aspect-Oriented Programming [Kic96, KLo97, ACEF04].

My studies at OBASCO group, which are presented in this document, focused on three funda-
mental problems with then and current aspect languages. First, most aspect languages use what is
called the “atomic pointcut model” in this thesis, i.e., only allow pointcuts to denote setsof unrelated
execution events. This model, however, frequently leads to verbose anddifficult to understand aspect
definitions. The main thread running through my work has been the quest for aspect languages which
allow the direct formulation of relations between execution events and thus support the concise for-
mulation of complex aspects. Second, the first full-fledged aspect languages, AspectJ being the best
known among them, for a long time lacked formal semantics and did not (and formost still do not)
support reasoning about aspect-oriented programs.

I have been interested from the start in providing a foundation of aspectlanguages by means of
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precise semantic frameworks, in particular, striving for a notion of “property-based” AOP. Further-
more, while the main application domain of AOP is, in principle, that of distributed programming,
the large majority of AOP approaches study aspect languages in the context of sequential program-
ming. Most recently, in the context of the European Network of Excellence“AOSD-Europe”, I have
therefore aimed at explicit support for concurrent and distributed aspect-oriented programming. Fi-
nally, while most of my work on aspects focuses on aspect language design issues, almost all of this
research work has been employed in different application domains, ranging from standard sequential
crosscutting concerns, via concerns at the level of systems programmingand operating systems, to
concerns of large-scale distributed applications, such as cache replication for distributed component-
based systems. This document also presents some of the main characteristicsof these application-
related results.

Besides aspect-oriented programming, component-based systems constitutea second focus of my
work. More precisely, I have investigated notions of components with explicit protocols in their
interfaces. By means of protocols of different levels of expressiveness a wide range of component
properties can be captured: interactions among components, in particular,can be defined precisely
and analyzed. Moreover, as shown in this thesis these features also apply to component-based systems
that are subject to modification by aspects.
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Chapter 1

Introduction

A key insight of recent software engineering research is that crosscutting functionalities — i.e., func-
tionalities that cannot be modularized using traditional structuring means, such as objects and compo-
nents — constitute a major problem for the development of virtually all large software applications.
This problem has been identified, for instance, in such different domainsas component-based software
engineering, feature-based telephone switching networks, operating systems and software product
lines. Starting with Dijkstra’s [Dij74] and Parnas’s [Par72] seminal work that respectively introduced
the concepts of “separation of concerns” and “modularization”, much research has focused on meth-
ods to modularize such functionalities, in particular, based on techniques using metaprogramming and
computational reflection. Relatively few of these approaches, however, have provided dedicated lan-
guage support featuring declarative means for the definition of crosscutting functionalities. Recently,
Aspect-Oriented Software Development (AOSD) has emerged as the research field striving for new
declarative modularization mechanisms to tackle crosscutting functionalities on all abstraction levels
(from software architectures via programs to executing code) as well asduring all software develop-
ment phases (from requirements engineering, via analysis and design to implementation and software
maintenance, including adaptation).

AOSD techniques have stirred considerable interest, both in the researchcommunity and the soft-
ware industry. It has, for instance, been included in 2001 in the MIT’s list of technologies that “will
change the world” [Kic01]. AOSD has proved highly interesting from an academic point of view
especially because of the inherent complexity of the definition and implementationof languages for
the modularization of crosscutting functionalities, be they used for applicationdesign, programming
or implementation. Furthermore, AOSD is at the crossroads of a large number of related research do-
mains: notable research work has been done, among others, on its relationto programming language
design and implementation, component-based programming, middleware and operating systems. Fi-
nally, AOSD techniques are of eminent practical relevance due to the importance of crosscutting
functionalities, such as distribution and transactional behavior in, e.g., component-based 3-tier appli-
cations.

While research in AOSD has brought into focus crosscutting as a centralproblem for large-scale
software engineering and proposed first solutions to some of the corresponding modularization prob-
lems, the available body of work on AOSD and related fields has revealed several problems that have
not been addressed satisfactorily by mainstream approaches to AOSD. These problems comprise the
following three that are of fundamental nature to the field of AOSD as well asto the larger domain of
software engineering:

1. Thelevel of abstractionof mainstream aspect languages is too low to modularize many intricate

7



CHAPTER 1. INTRODUCTION 8

crosscutting concerns effectively.

2. The relation betweenAO abstractions and traditional modularizing mechanismshas not yet
been sufficiently clarified and their synergetic use for the construction oflarge-scale software
systems is an open issue.

3. Modularization problems ofdistributed and concurrent programshave only been tackled rudi-
mentarily.

Before dwelling on the research directions underlying the work presented in this thesis, let us have
a closer look at these challenges.

Level of abstraction. Most fundamentally, the current level of abstraction of mainstream languages
for AOP impedes the effective modularization of many non-trivial crosscutting concerns.

AO languages are typically defined in terms of pointcuts, which determine the execution points
of a base application where aspects modify a software system, and advice,which define how the base
application is to be modified. Currently, the predominant model for AOP is based on what we call in
this thesis theatomic pointcut model. This model is characterized by pointcuts that denote individual
execution points or sets thereof. Relationships between execution points that have to be defined over
the execution history of a software system cannot be explicitly represented in terms of such pointcuts
and have to be expressed using some external notion of auxiliary state.

However, crosscutting functionalities are frequently most naturally expressed in terms of such
relationships between different execution points. Consider, for instance, data replication as part of
some caching strategy in a distributed application. The point of time when data has to be replicated
as well as the data itself typically depend on different previous execution points: the point when data
enters the cache obviously, but also previous points pertaining to the control of concurrent executions
relevant to this replication action, such as transaction management.

The resulting lack of high-level abstractions has three major baneful consequences:

• The definition of concerns that exhibit non-trivial dependencies amongexecution events (like
the data replication concern mentioned above) cannot be expressed.

• Correctness properties of aspects for such concerns are not reasonably amenable to formaliza-
tion and automatic reasoning.

• Means for the composition of aspects are lacking and aspect composition is therefore typically
left implicit. This is particularly pernicious to the use of aspects as a general program structuring
method of large systems that typically rely on many aspects.

Interaction with existing modularization mechanisms. AOSD mechanisms are not intended to
supersede existing program structuring mechanisms but to complement them. Since crosscutting con-
cerns, which are scattered over many different parts of an application,pervade traditional module
structures, such as software components and Modula-2 like modules, the question arises how to rec-
oncile aspects and traditional approaches to modularization as they seem contradictory at first sight.
The integration of these two concepts entails a large set of intricate problems concerning all of the
software lifecyle and software development levels.
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Lack of support for non-sequential applications. Non-sequential, that is, distributed and concur-
rent applications, constitute one of the most important classes of applications that can be targeted by
AOSD techniques because of their many crosscutting concerns and typically large size. However,
there is almost no explicit support for aspects for non-sequential programming. Instead, almost all
current approaches to such applications, for example distributed systemsbuilt using software compo-
nents, rely on sequential aspect language that are used to manipulate non-sequential infrastructures.
Such approaches only support insufficient modularization of distribution-related concerns because,
for example, functionalities that require modifications on different machineshave to be implemented
using different programs on the different involved machines.

1.1 Research directions

Most of my work over the last seven years has focused on solutions forthese three fundamental
problems of AOSD and has been aimed at resolving the resulting software engineering challenges.
The leitmotiv of my research has been the development of expressive aspect languages and associ-
ated formal frameworks to support the concise and correct modularization of intricate crosscutting
functionalities in large-scale sequential and distributed software systems.

In general terms, I have initiated and participated in the definition of a large range of aspect sys-
tems and languages that provide ahigher level of abstraction, especially at the pointcut level, as
mainstream aspect languages. This work has given rise to several of the first results on thefounda-
tions of AOPin the form of formal semantics for expressive (non-atomic) aspect systems and auto-
matic reasoning methods about the properties of AO programs. We have focused on two of the most
fundamental properties: aspect interaction and aspect applicability properties.

Furthermore, we have explored means for theintegration of aspects and traditional modulariza-
tion techniquesin the context of component-based programming and systems programming. Wehave,
in particular, proposed more expressive notions of component interfaces that, in turn, have allowed to
tackle the integration of software components and aspects.

Finally, I have initiated the development of the currently most comprehensiveaspect system for ex-
plicitly distributed programmingas well as participated in the first approach allowing thecoordination
of concurrent aspects.

1.2 Presentation of this thesis

This habilitation thesis presents the main results of this body of work in terms of instantiations of a
general model,Event-based AOP(EAOP), the first non-atomic model for the definition of expressive
aspect languages we have developed in 2000.

This thesis aims at two different goals. First, auniform presentation of the major relevant research
resultson EAOP-based expressive aspects. We motivate that these instantiationsenable aspects to
be defined more concisely and provide better support for formal reasoning over AO programs than
standard atomic approaches and other proposed non-atomic approaches. Concretely, four groups of
results are presented in order to substantiate these claims:

1. TheEAOP model, which features pointcuts defined over the execution history of an underly-
ing base program. We present a taxonomy of the major language design issues pertaining to
non-atomic aspect languages, such as pointcut expressiveness (e.g., finite-state based, turing-
complete) and aspect composition mechanisms (e.g., precedence specifications vs. turing-
complete composition programs).
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2. Support for the formal definition of aspect-oriented programming based on different seman-
tic paradigms (among others, operational semantics and denotation semantics). Furthermore,
we have investigated thestatic analysis of interactionsamong aspects as well as applicability
conditions for aspects. The corresponding foundational work on AOPhas also permitted to
investigate different weaver definitions that generalize on those used in other approaches.

3. Several instantiations of the EAOP model for aspects concerning sequential program execu-
tions, in particular, forcomponent-based and system-level programming. The former has re-
sulted in formally-defined notions of aspects for the modification of component protocols, while
the latter has shown, in particular that expressive aspects can be implemented in a performance-
critical domain with negligible to reasonable overhead.

4. Two instantiations of the EAOP model todistributed and concurrent programmingthat signifi-
cantly increase the abstraction level of aspect definitions by means of domain-specific abstrac-
tions.

Moreover, we discuss a number ofperspectivesranging from technical advances which can be
attained directly from the presented results to solutions to fundamental problems of AOP (and the
field of software engineering as a whole). We consider, in particular, how the presented approach
provides a basis to address three fundamental problems of concern separation:

• The quest for a well-defined notion of “aspectual modules” that reconciles aspects, i.e., modules
for crosscutting functionalities, with standard notions of modules (or at least modular reason-
ing).

• A comprehensive framework ofaspects for distributed component-based programmingthat
fosters a pattern-based approach to the development of distributed applications. This way recent
results on the the synergy between AOP and pattern-based program design and implementation
for sequential programs can be leveraged to distributed programming.

• Generalizemodel-driven engineeringthrough the use of expressive aspect languages of differ-
ent level of abstractions.

While this document presents a large part of my work, several results arenot be detailed here,
mainly because they would distract the reader’s attention from the main threadof argument focused on
here: the motivation, definition and application of non-atomic aspect languages for the modularization
of crosscutting concerns. Most notably, I do not discuss work I havedone on computational reflec-
tion and advanced concepts on object-oriented languages [3-DS01, 6-DS00b, 7-DS00a, 4-CND+04].
While AOP can be seen as being historically based on reflection and while there are a number of
important conceptual, methodological and technical commonalities between bothdomains, the rela-
tionship between the two domains is not essential for the work presented here. Specific links be-
tween reflection and AOP are, however, mentioned in the text and the interested reader is referred
to [BL04, Lop04] for further information. A second subject of my work that is not discussed in
this document is work on aspects for operating systems [5-ÅLS+03, 7-ÅLSM03, 5-MLMS04]. This
work features a non-atomic pointcut language defined using the temporal logics CTL that is statically
woven using a transformational system. I do not either expose the very first work on a formal defi-
nition of AOP as general transformational systems [7-FS98, 7-FS99] that I have pursued with Pascal
Fradet in 1998/99. Finally, I won’t elaborate on early work on a formal approach to the definition
and analysis of software architectures I have participated during my stay at Lande group at INRIA-
Rennes [5-HPS97].
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Structure of this document

The remainder of this document is structured in five chapters. Chapter 2 makes a case for non-atomic
pointcut languages and introduces the EAOP model on which most of the work described here is
based. This chapter introduces, in particular, the language design and implementation issues for as-
pects we are concerned with by presenting a taxonomy of language features for non-atomic aspect
languages. In Chapter 3, our work on the foundations of AO languagesis presented, covering dif-
ferent formal semantics for AO programs we have devised, properties over AO programs we have
considered and corresponding support for property analysis and verification. Chapter 4 introduces a
second set of instantiations of the EAOP model geared towards software components and system-level
programming. Chapter 5 discusses the extension of the EAOP model to the distributed and concur-
rent cases: the recent work on explicitly-distributed AO programming as well as a first approach to
concurrent aspects that allows to directly coordinate the concurrent execution of aspects and (concur-
rent) base programs. A conclusion as well as more fundamental (and prospective) perspectives our
approach paves the way for are presented in Chapter 6.



Chapter 2

A case for expressive aspect languages

The lack of modularization techniques for crosscutting functionalities, i.e., functionalities that are
scattered all over an application and tangled with the code of other functionalities, constitute a fun-
damental engineering problem for large-scale software systems. AOSD investigates such crosscutting
concerns and promises a solution to this problem, essentially through new modularization mechanisms
as part of aspect languages.1 Aspect languages are typically structured in terms of two sublanguages:
a pointcut language that defines when or where a crosscutting functionality should modify an under-
lying base application, and an advice sublanguage that defines how to modify the base. A major goal
of AOSD research is the definition of simple but also expressive aspect languages allowing the con-
cise (and hence easy to understand) definition of aspects. However, the until now predominant aspect
model, which is embodied by the AspectJ [KHH+01, Asp], focuses on pointcuts that denote individual
(“atomic”) execution events or sets thereof but does not allow to declaratively relate execution events
in terms of the history of execution. This seriously impedes the concise definition of complex cross-
cutting concerns and the development of correct AO programs (both by means of informal judgement
or formal verification techniques).

This chapter presents three contributions which are central to our approach to overcome this fun-
damental expression and correctness problem of AOSD. First, one of the fundamental contributions
of AOSD has been the identification of crosscutting as a fundamental problem of all large-scale ap-
plications. However, until now many applications of aspects are of rather simple structure (e.g., the
infamous “logging aspect”). We present an analysis of a richly structured, real-world crosscutting
problem: distribution and transactional behavior in a large-scale replicatedcache infrastructure, JBoss
Cache [jbob]. We show that these two concerns are crosscutting in the presence of (traditional) means
for modularization and that the concerns are governed by non-trivial relationships. Second, we an-
alyze to what extent mainstream (i.e., atomic) models for AOP are suitable for themodularization
of complex crosscutting concerns. We show that these models are subjectto serious deficiencies for
such an endeavour. As a solution approach we present a taxonomy of advanced features for aspect
languages that address these deficiencies. Third, we propose the model of Event-Based AOP as an
alternative model for the modularization of complex crosscutting concerns.This is achieved through
three distinctive features of the EAOP model: (i) support for expressive aspect languages that allow,
in particular, relationships between execution points to be represented directly on the pointcut level,
(ii) an explicit notion of aspect composition, and (iii) the possibility to apply aspects to aspects.

1The importance of these two basic contributions of AOSD — identification/analysis of crosscutting concerns and defini-
tion of suitable aspect languages — has already been at the heart of the initial AOSD papers published by Gregor Kiczales’s
group at Xerox research, see [Kic96, KLo97].
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The results presented in this chapter, in particular, the analysis of atomic pointcut languages
and the EAOP model for expressive aspect languages have been developed as part of the FP5 Eu-
ropean IST project on software composition “EasyComp” [EAS] in cooperation with several other
researchers and students. Most notably, my colleague Rémi Douence and me have started the work on
non-atomic relationships for aspect languages in 2000 and developed theEAOP model. Luis Daniel
Benavides Navarro and me have performed the original study of crosscutting concerns in replicated
caches [5-BNSV+06a], an extended version of which is presented in this text.

The remainder of this chapter is structured as follows: Section 2.1 presentsthe analysis of cross-
cutting concerns in a large-scale infrastructure for replicated caching.Section 2.3 discusses the main-
stream (atomic) models for aspect languages in more detail, followed in Section2.4 by the presenta-
tion of the model of Event-based AOP that forms the basis of our work. Section 2.5 gives a conclusion
and presents some perspectives.

2.1 Motivation: modularization of complex crosscutting concerns

We first turn to the problem of crosscutting concerns that lies at the heartof AOSD. One of the main
motivation of our work has been that, despite its fundamental character, crosscutting has been ap-
proached in a shallow manner only. Most work on AOP considers only simplecrosscutting concerns
as exemplified by numerous articles considering aspects like logging or execution tracing. Rela-
tively few researchers have considered more intricate crosscutting relationships. A notable exception
are results relating to AspectJ-style control flow relationships between execution events relevant for
crosscutting. Following this idea, Coady et al. [CKFS01, CK03] investigateprefetching in file sys-
tems expressed in terms of chains of nested calls between different software levels of an operating
system. Finally, almost all work is focused on single aspects, even if aspects are frequently subject to
interactions among one another.

In this section, we consider crosscutting in such a general setting. Concretely, we extend one of our
previous studies on the modularization of distributed systems with the AWED system [5-BNSV+06a]
on distribution and transactions in a industrial-strength replicated cache, JBoss Cache [jbob]. Here we
present (partially new) results showing that general relationships between different execution events
are crucial for the concise definition of aspects modularizing complex crosscutting concerns and that
refactoring of the underlying object-oriented application is not able to resolve this kind of modular-
ization problem. More concretely, our analysis of JBoss Cache contributes to these two fundamental
characteristics of crosscutting as follows:

• Type of relationships governing crosscutting. Crosscutting generally does not consist of unre-
lated scattered and tangled actions but of actions that have to be executed by respecting (fre-
quently implicit) protocols. Hence, they cannot be reasonably described interms of individual
execution events but only by making explicit the relationships between different events. Repli-
cation and transactional behavior in replicated caches, as shown here for JBoss Cache, is nicely
illustrating this: both concerns are highly scattered, tangled with one another, and protocols,
e.g., involving the initialization and later use of caches and transactions, are crucial to their
correct use.

• Resistance to refactoring.While it is well-known that all functionalities of large software sys-
tems cannot be modularized at the same time using traditional program structures (see the notion
of the “tyranny of the dominant decomposition” introduced by Tarr et al. [TOHS99]), it is an
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open question whether the modular structure of existing crosscutting functionalities can be rea-
sonable improved by refactoring using traditional programming means. The JBoss Cache code
base has undergone substantial restructuring from March 2005 (version 1.2.1, which is the ver-
sion analyzed in our previous publication [5-BNSV+06a]) to August 2006 (the current version
1.4.0, which is considered here). This restructuring is partly targeted at abetter modularization
of the transaction concern. However, we show below that crosscutting of replication and trans-
actional behavior still is an issue in the latest version, thus providing evidence that crosscutting
is resistant to restructuring of the underlying code base in large applications.

Analysis of replication and transaction concerns. JBoss Cache is a replicated cache which allows
to install caches onto a set of machines, a “cluster”, in a distributed Java-based system among which
data is to be replicated. In its current version it supports three differentcaching strategies: (i) no
replication, (ii) replication among all machines in the cluster, and (iii) replication among a subset of
the cluster (“buddy replication”; this last strategy was not part of the JBoss Cache version studied
in our previous work). JBoss Cache is a large application: it is implemented asan object-oriented
framework of a little over 50,000 lines of code (LOC) and consists of 16 main packages including
about 250 classes.

Figure 2.12 shows elements of a crosscutting analysis for two of the main parts of the framework:
the classTreeCache (see Fig. 2.1a) that implements the tree data structure stored in the replicated
cache nodes and theinterceptors package (see Fig. 2.1b) that is used as an OO abstraction to
separate functionalities in the code. Both parts are quite large: theTreeCache class, version 1.4,
counts over 6,300 LOC, theinterceptors package contains 33 classes with a total of more than
7,000 LOC.

We have considered five different functionalities that crosscut the JBoss Cache code base (These
are colored in the figure according to the color coding defined in Fig. 2.1c.). Three of these crosscut-
ting concerns are part of the replication and transactional behavior. The remaining two relate to the
use of interceptors within JBoss Cache. We consider the latter to evaluate theeffectiveness of standard
OO modularization mechanisms in the presence of crosscutting concerns. Concretely, Fig. 2.1 shows
the code distribution of the following functionalities3:

1. Distribution, more precisely use of the JGroups library for multicast communication between
caches [JGr].

2. Buddy replication, i.e., replication to subsets of clusters (even if buddy replication is part of the
replication code we present it separatedly because this functionality is newto the latest JBoss
Cache version).

3. Transactional behavior, i.e., calls to the J2EE transaction service.

4. Calls between different classes within theinterceptors package.

5. Calls from theinterceptors package to theTreeCache class.

2The illustrations have been generated using the AspectJ plugin 1.4 for the Eclipse platform, version 3.2.
3Note that Fig. 2.1 represents a lower bound of the corresponding codescattering: all colored code parts are part of the

corresponding functionalities but there are instructions part of the functionalities that have not been colored. In fact, the
corresponding approximation has been easier to generate, is sufficient to support our claims and is tight enough to provide
an accurate picture of the concerns.
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(a) classTreeCache, versions 1.2 (left) and 1.4 (right)

(b) packageinterceptors, versions 1.2 (left) and 1.4 (right)

Distribution
Buddy replication (1.4 only)
Transactions
Interceptor calls (interceptor package only)
Calls intoTreeCache (interceptor package only)

(c) Aspects and color coding

Figure 2.1: Crosscutting in JBoss Cache versions 1.2 (left) and 1.4 (right)
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protected void _createService() throws Exception
2 {

if (this.tm_lookup == null && this.tm_lookup_class != null)
4 {

Class clazz =
6 Thread.currentThread().getContextClassLoader().loadClass(this.tm_lookup_class);

this.tm_lookup = (TransactionManagerLookup) clazz.newInstance();
8 }

10
...

12 // build interceptor chain
interceptor_chain = new InterceptorChainFactory().buildInterceptorChain(this);

14 ...
switch (cache_mode)

16 {
...

18 case REPL_SYNC:
...

20 JmxConfigurator.registerChannel(
channel, server, "JGroups:channel=" + channel.getChannelName() , true);

22 ...
}

Figure 2.2: Excerpt of methodTreeCache. createService

public Object put(Fqn fqn, Object key, Object value) throws CacheException
2 {

GlobalTransaction tx = getCurrentTransaction();
4 MethodCall m = MethodCallFactory.create(MethodDeclarations.putKeyValMethodLocal,

new Object[]{tx, fqn, key, value, Boolean.TRUE});
6 return invokeMethod(m);

}

Figure 2.3: MethodTreeCache.put

The left-hand sides of Figs. 2.1a and 2.1b reprint the illustrations of our analysis of JBoss Cache
version 1.2 [5-BNSV+06a], while the right-hand sides show the corresponding illustrations for version
1.4. These clearly suggest extensive crosscutting with respect to the five considered functionalities for
both versions.

This conjecture is confirmed by a detailed analysis of the code. Figures 2.2 and 2.3 show two key
methods that are part of the replication code in classTreeCache: the former shows part of the creation
protocol of the replication service, the second one of the central methodsgoverning replication when
a data element is put in the cache. Both methods also include transaction-related code. This is the case
although JBoss Code has been restructured between the old and new version, in particular, to achieve
better modularization of these crosscutting concerns: the latest version includes a new interceptor
specifically introduced for transaction-related behavior. This interceptor is highlighted by the boxed
column in the illustration concerning theinterceptors package in the right-hand side of Fig. 2.1b.
Note that crosscutting of distribution-related code and transaction-relatedcode is present as well in
this new interceptor as in the remaining classes (albeit, for the transaction concern, to a lesser degree
than for JBoss Cache version 1.2).
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all aspect CollaborativeCachePolicy {
2 ...

pointcut getCache(Cache c, String key):
4 call(* Cache.get(String)) && host(cacheGroup)

&& target(c) && args(key);
6 ...

pointcut replPolicy(Cache c):
8 replP: seq(s0: initCache(c) -> s1

s1: getCache(c, k1) -> s2,
10 s2: putCache(c, k2, val) && eq(k1, k2) -> s1);

...
12 around(Cache c, String key): step(replP, s1) && args(c, key) {

Object obj = c.get(key);
14 if (obj == null) {

obj = proceed();
16 if(obj != null) { c.put(key, obj); cacheMisses++; }

}
18 updateSummaries();

return obj;
20 }

...
22 }

Figure 2.4: Aspect-based cooperative cache (excerpt from [5-BNSV+06a])

Since the replication code is tangled with transaction code at the different steps of the replication
protocol — such as cache initialization, getting and storing information — the modularization of the
two concerns has to take into account their respective protocols and cannot be reasonably done by
manipulation of single steps. Figure 2.4 presents, for example, an excerptof an extension to the
JBoss Cache replication strategy by a collaborative cache strategy that isbest defined in terms of the
(repeated) sequence of the three events mentioned above (see the pointcut on Lines 7– 10).

There is a large number of other crosscutting concerns which require trace-based relationships.
Two other noteworthy domains where such relationships have been investigated — albeit only in se-
quential contexts and without considering the pertinence of aspects overtime — are system-level
communication protocols and business rules. Communication protocols, such as TCP, frequently
crosscut the code of networking applications, such as web caches used on the Internet [5-DFL+05].
If such protocols are to be modified, a coordinated modification to the behavior of some or all of
constituting steps must be implemented. Business rules crosscut application-level enterprise informa-
tion systems [CD06, 6-DS03]. The corresponding crosscutting concerns typically require to set some
initial state, to record information at different execution events, and to apply a modification at a later
event. In the case of billing functionality, for example, these execution pointscomprise product se-
lections by clients, points at which discounts become applicable and the point when the client checks
out its purchases [6-DS03].

To conclude this investigation, note that these examples provide concrete evidence for the two gen-
eral issues of crosscutting relevant for our work. First, complex crosscutting concerns in large-scale
applications need protocols to be captured in order to enable their concise modularization. Second, as
we have shown for replicated caching, appropriate means for modularization are all the more impor-
tant because extant crosscutting cannot be fully remedied using traditional mechanisms even through
extensive refactoring of the crosscutting code.
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2.2 A taxonomy of advanced aspect language features

We now turn to the second fundamental contribution of AOSD: new language-level constructs for
the modularization of crosscutting concerns. These constructs are typically structured in terms of
aspect languages that consist of a number of sublanguages. These sublanguages include pointcut and
advice languages, the best-known abstraction mechanisms of aspect languages, but also sublanguages
governing other aspect relationships, such as aspect composition and instantiation of aspects. Most
aspect languages only provide support for few such relationships and existing support frequently is
limited. The EAOP model, however, has been developed as a comprehensive framework to explore
diverse relationships among aspects and between aspects and base applications.

In this section, we first present a taxonomy of advanced language features for aspect languages
as a basis for comparison of aspect languages. We illustrate the taxonomy by using it to classify
selected existing aspect languages and systems. This taxonomy also allows us to summarize the main
characteristics of the AspectJ model of AOP, which is the de-facto standard model of AOP, and to
motivate why our EAOP model addresses some drawbacks of the atomic aspect model.

A comparison of aspect languages and models should be based on an existing, comprehensive
and largely accepted taxonomy, metamodel or other classification support. However, in the case of
aspects there is no such support. Currently all published work that touches on this issue address it only
in a very partial manner. Masuhara and Kiczales [MK03b], e.g., providean abstract framework for
the definition of pointcuts and advice in terms of general domains and functions relating them; their
approach, however, provides only very coarse-grained means to compare AOP models. Hanenberg et
al. [SHU06] provide means for the abstract definition and comparison of different pointcut languages
but do not consider other features of aspects.

In contrast, we have chosen to built on an on-going effort to constructa comprehensive meta-
model for AOP that is pursued as part of AOSD-Europe, the EuropeanNetwork of Excellence in
AOSD [AOS]. An initial version of this model has been released in February 2006 [BMN+06]. More
precisely, we augment and refine a taxonomy of aspect language features that is part of that meta-
model in order to provide better support for a fine-grained classificationof advanced aspect models.
We focus on the precise characterization of languages for the definition of pointcuts, advice and as-
pect compositions, in particular concerning the level of expressiveness they provide. To this end, we
provide finer categorizations for the pointcut and advice sublanguage,and introduce four advanced
features, in particular aspect composition mechanisms, in the taxonomy.

Our taxonomy is shown in Table 2.1: it consists of six main features each comprising of up to three
levels of subcategories (here categories are set in sans serif font (e.g.,Pointcut)). In the following we
illustrate and discuss the main categories of the taxonomy in some more detail.

Pointcuts

There exists a large variety of pointcut languages that differ from one another mainly with respect to
three different characteristics:

• The level of expressiveness of the pointcut language (representedby categoryExpressiveness
in Table 2.1), in particular whether it provides mechanisms to explicitly denote relationships
between join points.

• The underlying programming paradigm: object-oriented languages, for instance, partially re-
quire other abstractions than logic languages (categoryParadigm).
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Pointcut : – Expressiveness:
– Atomic
– History: Finite-state, Vpa, Context-free, Turing-complete

– Paradigm: Object-oriented, Functional, Logic
– Generality: General-purpose, Domain-specific

Advice : Same as for featurePointcut
Composition : – Type:

– Implicit: Non-deterministic, Deterministic, Undefined
– Explicit

– Mechanism:
– Precedence: Partial, Total
– Operator
– Program

– Object: Aspect, Advice
– Scope: All, Stateful – Expressiveness: Finite-state, Turing-complete

State : General, Restricted
Instantiation : Machine, Class, Object, Cflow, Binding
Activation : Init, Arbitrary

Table 2.1: Summary of taxonomy of aspect language features

• Pointcut languages may be designed as general-purpose languages, i.e., supporting the expres-
sion of arbitrary aspects, or domain-specific ones (categoryGenerality).

In this text we mostly abstract from the first issue by considering pointcuts expressed over calls,
which may equally well denote object-oriented method calls, functional or imperative function calls,
and component-based service calls. However, we touch on this issue in thecontext of the design of
pointcut languages for the C language. We also consider several general-purpose as well as domain-
specific pointcut languages, in particular for distributed programming.

We focus on an investigation of pointcut languages of different expressiveness (Expressiveness).
With respect to this criterion, pointcut languages, or better constructs of pointcut languages, can be
classified asAtomic or History-based. An atomic pointcut construct can be defined solely in terms of
an individual execution event, while history-based ones must be definedby relating different execution
events occurring over time. Note that languages that essentially rely on atomicconstructs must have
recourse to means external to the pointcut language in order to express such temporal relationships.
This is further discussed in Sec. 2.3.

Many different approaches have been put forward to define history-based execution events, to
cite just some examples, logic languages [DD99, BMD02], automata-based approaches [5-DFS02b,
SVJ03], and grammar-based approaches [WV04]. Adaptive programming [LL04] provides history-
based pointcuts that are defined using predicates of different expressiveness on the class graph of an
object-oriented base application.

These approaches can be classified with respect to the level of expressiveness they provide, e.g.,
with respect to the Chomsky hierarchy or other complexity classes (see Lieberherr et al. [LPS05] for
an example of the latter). Such a classification is useful because it identifieskey structures that are
expressible and that are not: pointcut languages of at least context-free expressiveness, for instance,
can employ well-balanced structures of execution events, while finite-state based pointcut languages
can not. The classification also provides an indication which kind of formal reasoning the pointcut
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language can be subjected to. Approaches based on regular languages, for instance, may allow model
checking techniques to be applied to analyze properties, such as aspectinteraction properties, which
is not possible for turing complete pointcut languages. One of the main goals of this thesis is to make
a case for the usefulness of history-based pointcut languages covering the full-range of expressive-
ness levels, in particular, in order to improve understandability of complex programs by augmenting
conciseness and declarativeness of aspects.

Advice

From a language-design viewpoint advice shares the essential characteristics of pointcuts. The advice
language may be restricted to constructs of a certain level of expressivity. A finite-state based advice
language is useful, for instance, in the context of the manipulation of regular protocols in order to
preserve opportunities for reasoning about the resulting AO programs using model checking. The
advice language may also contain constructs specific to the underlying programming paradigm, as
e.g., advice for an object-oriented language that allows the manipulation of a part of the inheritance
hierarchy that is relevant to a class. Finally, advice may be constructed using general-purpose or
domain-specific instructions. Instructions specific to the domain of security,for example, might only
allow to abort program execution in the presence of a security violation.

Aspect composition

Composition of aspects is one of the most fundamental relationship between aspects, especially be-
cause different aspects may interact. Interacting aspects should be explicitly composed in order to
resolve interactions unambiguously. Depending on how fine-grained control on composition is pro-
vided, we distinguish three different cases.

Most fundamentally, aspect composition may be implicit, or explicitly defined on thelanguage
level (categoryType). In most aspect systems composition is (at least partially) implicit. Composition
properties may, for instance, not be expressible at the language level at all but determined by the
order in which aspects are applied to the weaver. In this case, the semanticsof aspect compositions
may be undefined (i.e., solely determined by an essentially unknown weaver implementation), non-
deterministic or equivalent to some deterministic composition scheme. In AspectJ,for instance, the
composition of aspects is undefined if no precedences are declared (even if concrete weavers often
implement a deterministic composition by, e.g., ordering aspect compositions according to the order
of occurrence in the source code). Aspect composition may, however,be explicitly specified on the
language level, in particular, using explicit precedence specifications ormore general specification
mechanisms.

Second, aspect compositions can be classified according to the mechanismsthat are available for
their definition. The most wide-spread means for explicit control of aspect composition, in particular
for the resolution of interactions, is the definition of precedence or priorityschemes (categoryPrece-
dence). These schemes allow the definition of partial or total orderings on aspects that have to be
respected by the weaver when applying aspects to a base application. Operator-based approaches
(categoryOperator) allow aspects to be composed explicitly using aspect composition operators.
Such approaches are more general than precedence-based schemes. We have defined, for instance,
several instances of our EAOP model that provide such operators permitting reordering of aspects
or deactivation of aspects in case of interactions (e.g., composition operators for regular aspects,
see [5-DFS02b]). Finally, aspects may be composed using general composition programs (category
Program). The JAsCo aspect system, for example, provides the notion of hook composition to this
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end [SVJ03].
Furthermore, all aspect composition mechanisms may compose entire aspects or be restricted

to advice composition (categoryObject). Composition mechanisms also differ with respect to how
the scope can be defined during which aspect composition takes effect (categoryScope). Aspect
compositions may be defined invariably for all of the execution of an AO program or defined in a
stateful manner that allows aspects to be combined differently over an execution depending on the
current runtime state. Finally, approaches to stateful composition may be of different expressiveness
(categoryExpressiveness): there are, for example, turing-complete ones, e.g., JAsCo’s composition
mechanisms, and approaches of more limited expressiveness, as, e.g.,, theoperator-based approach to
aspect composition we have proposed.

Aspect-specific state

Aspects may incorporate local state which can be manipulated and used as part of the other aspect
abstractions, mainly pointcut and advice. This state may be general (General), that is, defined using
the same mechanisms as state of the underlying base applications. In AspectJ,for instance, local
aspect state comes in form of fields that can be manipulated using all availableJava mechanisms.
Local state may also come in more limited forms (Restricted), e.g., finite-state automata used to
impose restrictions on the matching of pointcuts and application of advice.

Aspect instantiation

Aspect instantiation denotes mechanisms for the creation of new aspect instances — including alloca-
tion and initialization of fresh copies of the aspect state — depending on the occurrences of execution
events of the base application or aspects themselves. Aspect instances maybe tied to a large set of dif-
ferent execution events: creation of virtual machines in which aspects are executed (Machine), events
belonging to classes (Class), creation of individual object instances (Object), matching of AspectJ-like
cflow constructors (Cflow), or bindings of variables in a sequence pointcut (Binding). While most as-
pect languages do not provide more general instantiation mechanisms than those provided by AspectJ
(which essentially consists of mechanisms of typesMachine, Class, andCflow), aspects may support
very general instantiation models, such as our initial Java-based EAOP instantiation [6-DS03, 9-DS02]
that supports arbitrary reflection-style aspect instantiation of typeObject.

Aspect activation

Aspects may be activated only during some periods of the program execution. It is, for instance, often
reasonable, to apply an aspect only after some initialization has been taken place (Init). Alternatively,
activation conditions for aspects may be specified using arbitrary predicates. Note that this is related
to but not the same as aspect composition and aspect instantiation. Furthermore, aspect activation can
frequently be expressed simply by specific predicates to be used in pointcuts, that is, without having
recourse to a full-fledged language for activation.

2.3 The atomic aspect model

We now turn to the currently predominant model of AOP, whose main representative is AspectJ. We
call this model atomic because of its main characteristics, atomic pointcut languages in the sense of
the taxonomy above.
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The atomic aspect model is important for our investigation because it provides a de facto, very
well known standard set of abstractions that has to be adopted with at mostminor variations by a large
number of aspect-oriented systems besides AspectJ. Such systems includeaspect languages, such as
AspectC++ [SGSP02], for other base languages, but also frameworks for AOP, i.e., without dedicated
language support for aspects, such as frameworks for distributed components like JBoss AOP [JBoa]
and Spring AOP [Spr]. Moreover, a large number of scientific investigations of crosscutting concerns,
for instance Coady’s work on concerns in operating systems using AspectC [CKFS01], has been
conducted on the basis of an atomic aspect model. A direct consequence of this predominance of
the atomic aspect model is that many users of AO technology (including some scientists) do not
know about or seriously consider more expressive aspect models. Studying its characteristics and
deficiencies is therefore an important element of motivation for our approach.

2.3.1 Characteristics

Atomicity of pointcuts has implications on the remaining features of the aspect model. Most im-
portantly, the limited facilities for the directly expression of relationships between execution points
on the pointcut level have to be offset by other means to record occurrences of events that influence
matching of later events. This is typically achieved by manipulating aspect-internal state using ad-
vice. Moreover, atomic pointcuts impede the precise but flexible definition of how to compose aspects:
mainstream aspect languages therefore only provide very limited supportfor aspect composition. We
now consider these characteristics in detail.

Atomic pointcuts

Aspect languages for object-oriented base languages typically contain arich set of basic pointcut
constructors and a small set of operators over pointcuts, in particular, logical operators. Basic pointcut
constructors typically belong to the following four categories:

• Calls and fields:Such constructors match calls, related execution events (such as object initial-
izations and exception handlers), as well as field set and get operations.

• Class: constructors matching on the static structure of classes or manipulating them (e.g., by
modifying the class hierarchy or by introducing new interfaces and class fields).

• Control flow:constructors allowing execution events to be matched that occur from a given call
to the corresponding return or a subregion thereof.

• General predicate:constructors that allow to make depend pointcuts on general conditions.

AspectJ includes such a set of basic pointcut constructors: matching of calls can distinguish between
caller and callee sides by respectively using thecall andexecution constructors, calls may be re-
stricted to occur within methods statically defined within a class, “intertype declarations” allow to
introduce new fields in class definitions or to modify the class hierarchy, control-flow based matching
may exclude the originating call (cflowbelow), and theif-constructor allows arbitrary Java predi-
cates to be used in pointcuts.

Two of the four constructor categories — calls/fields constructors and control flow constructors —
designate execution events. The other two categories can be interpreted as predicates defining static or,
in the case of theif-constructor, dynamic scopes. (We do not consider intertype declarations, because
their modifications of the static structure of a program are not relevant to arbitrary base paradigms.)
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All call and field constructors denote individual events, i.e., they are atomicpointcut constructors.
Control flow constructors are non-atomic— in fact, the only non-atomic constructors in AspectJ — in
that they relate all execution events between a call event and the corresponding return event. However,
all of these pointcut constructors provide only very limited means to construct pointcuts that match
subsequences of the execution history.

Furthermore, the few operators that can be commonly applied to pointcut expressions do not im-
prove on this state-of-affairs. For instance, logical operations on pointcuts built using atomic pointcut
do not allow to express non-atomic relationships.

Aspect-specific state

In order to offset this lack of expressiveness, a general notion of state and corresponding manipulation
mechanisms are typically used. Three kinds of mechanism are common. First, aspects may define
internal state that can be used to record information about previous execution events and used to
restrict the matching of or provide additional information for later events. A well-known example of
the latter are memoization aspects. Second, aspects may access state of the base application and, in
most systems, also modify it. This can often be done implicitly through some representation of the
state at the execution point a pointcut matches; in AspectJ, for instance, bya reflective access using the
thisJoinPoint variable. Third, the state of the base program can often be manipulated using static
mechanisms, most notably, by using aspects to add state variables to classes of the base application.

Turing-complete advice

In order to manipulate advice-internal state and the state of the base application, a powerful advice
language is necessary. Commonly, advice is implemented using a turing-completelanguage that
frequently results from enriching the base language by a small set of aspect-specific mechanisms.
In AspectJ, for instance, the advice-specific pseudo-methodproceed is used to call matched base
functionality and thethisJoinPoint mechanism for reflective access to contextual information.

Limited composition mechanisms

The atomic aspect model provides only very limited means to handle the compositionof aspects. In
terms of the taxonomy summarized in Fig. 2.1, aspect composition is typically left implicit, that is,
not explicitly controlled on the language level or governed using explicit precedence specifications.
AspectJ provides another mechanism that belongs to the category of programmatic composition fea-
tures: pointcuts may test whether an execution event occurs in the scope of an advice that is defined
in other aspects by means of theadviceexecution constructor.

None of these three mechanisms comes close to a general notion of operator-based or program-
matic aspect composition. Defining composition implicitly yields at best difficult-to-understand com-
position semantics, prioritization often is too inflexible, and the available programmatic means in
AspectJ are too fine-grained. Note that all of these problems are (at least partially) grounded in
the lack of expressive means to define pointcuts relating execution points: implicit composition and
precedence specifications do not take into account individual execution states but compose aspects
uniformly over the entire execution of an application; to the contrary, fine-grained advice execution
control does not provide declarative control over sequences of execution events.
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2.3.2 Drawbacks

Because of these characteristics the atomic aspect model is subject to two important problems. First,
crosscutting concerns that can only be modularized in terms of traces of theexecution history can
be described only cumbersomely. Second, the correctness of AO programs developed in this style is
often very difficult to judge and almost always impossible to ascertain formally. In this section, we
briefly review these two problems.

Lack of conciseness of aspect definitions

As motivated in Sec. 2.1 many crosscutting concerns require different events occurring during an
execution trace to be accounted for in order to modularize them. Such concerns cannot be concisely
modularized using atomic aspect languages because of a lack of sufficiently expressive mechanisms
in the pointcut language. Hence, these concerns can be implemented only bybreaking down the
dependencies into atomic pointcuts. In particular, it is very frequently not possible to use control-flow
pointcut constructors, because the calls corresponding to later relevant execution events are not nested
in the control flow of the previous ones. Concretely, the correspondingimplementations of trace-based
crosscutting relationships are therefore structured in three parts using atomic aspect languages:

• An atomic pointcut definition is defined for each relevant execution point.

• A suitable state is set up that allows to record all information of previous execution points that
are required at later points. This concern-specific state commonly involvesdedicated aspect-
internal state but frequently reuses state already part of the base application.

• Each pointcut definition triggers advice that updates the concern-specific state and applies the
necessary modifications to the base application.

The resulting implementations are characterized by a large number of separate but implicitly re-
lated pointcut and advice definitions. Frequently, the pointcuts and advice simulate higher-level ab-
stractions, such as finite-state automata, that could be used to express themexplicitly using more
expressive aspect systems. Both issues obviously lead to AO programs that lack concision and there-
fore are difficult to understand.

Program correctness

AOP generally poses a hard correctness problem because traditional reasoning mechanisms that have
been developed for non-crosscutting programming structures are not applicable to AO programs. Tra-
ditional reasoning mechanisms rely, in fact, on composition and encapsulationproperties that do not
hold for modifications on an application induced by aspects. Consequently,informal justification of
the correctness of AO programs as well as their formal, possibly automatic, validation and verification
remains a mostly open issue. While we consider the general problem later in Chapter 3, it is impor-
tant for the present discussion to note that the atomic aspect model exacerbates the aspect correctness
problem to a large extent.

The most obvious handle to express and ensure properties about crosscutting concerns are prop-
erties of pointcuts. However, the limited expressiveness of pointcuts in the atomic aspect model only
allows very simple and coarse-grained properties to be captured this way.A notable example address-
ing properties on the execution of AO programs is the work by Kiczales and Mezini [KM05], which
permits to determine coarse-grained upper bounds on which parts of a base application are affected
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by aspects and to ensure certain control flow properties. Such properties would, however, be of lim-
ited use in case of the trace-based relationships discussed above. A second notable group of work
investigates the effects of intertype declarations in AspectJ-like languages. Wilke et al. [HNBA06],
for instance, present an algorithm that can be used to detect ambiguous declarations, i.e., that result in
non-deterministic aspect weaving.

Another problem for the evaluation of the correctness of atomic AO programs is the use of aspect-
specific state and turing-complete advice languages to handle that state: basically aspect-internal state
constitutes a global state with respect to advice and application-level state is even global with respect
to different aspects. This means that the formulation of correctness properties, their analysis and
verification is subject to all problems arising from globally shared state that are already present in the
base paradigm in addition to the correctness issues originating from the aspect-specific abstractions.

Finally, the atomic aspect model also impedes expression and verification of properties because of
its limited means for aspect composition. This is particularly problematic because italmost entirely
inhibits reasoning about interactions of aspects. Consequently, there are only very few approaches to
tackle this very important problem and the corresponding results are typically very imprecise. Fur-
thermore, most aspect programmers currently only use very coarse-grained techniques to identify
interactions that are often provided on the level of development environments: the AspectJ Eclipse
plugin, for example, marks different advice that may match the same method call.

2.4 Event-based AOP: beyond atomic pointcuts

We are now ready to introduce a general aspect model, the model of Event-based Aspect-Oriented
Programming (EAOP)4 that Ŕemi Douence and me have started developing in 2000 in order to address
the issues of the atomic model introduced above.

2.4.1 Characteristics

The EAOP model has been developed as an aspect model having the following main characteristics:

• Language support for expressive aspects

• Language support for explicit aspect composition

• Support for reasoning about properties of AO programs

• Integration with mainstream base languages

• Reasonably efficient implementation

The first three directly address the drawbacks of the atomic aspect modeldiscussed in the previ-
ous section. The fourth is motivated by the observation that many approaches for expressive aspect
languages are based on other programming paradigms, such as logic languages. Such approaches,
while providing rich facilities to express relationships, cannot simply be usedwith object-oriented
and imperative languages. The last is useful because some interesting expressive aspect languages are
inherently difficult to implement efficiently, e.g., Masuhara et al’s data-flow pointcuts [MK03a].

4Note that, strictly speaking, EAOP is a metamodel in the sense that it defines aset of general characteristics that we have
then instantiated by different concrete aspect languages. Since the references to the EAOP metamodel and the instantiations
cannot give rise to confusion in the present text, we refer to EAOP simplyas an “aspect model”.
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Non-atomic pointcuts

The main motivation for our work has been the need for aspect languagesallowing to represent rela-
tionships between execution events of an application. Many different formalisms and programming
paradigms may serve as a basis for such an endeavor, for instance logics such as Prolog and temporal
logics, functional calculi, grammars and automata. Today, most of these approaches have been and are
under active investigation but, when we started our work in 1999 on what we later called the EAOP
model, only the AspectJ model was known.

After a first approach defining pointcuts in a functional setting [5-DMS01a], we have decided to
focus on pointcut languages that are based on different forms ofautomata, in particular, finite-state
automata, counter automata, and visibly pushdown automata (VPA) [AM04].

This choice is justified by four different advisements. First, the most basic (and practically rel-
evant) relationship between execution events that extends the atomic pointcutmodel (including con-
trol flow-relationships) are pointcuts over sequences of events: theseform a natural special case of
automata-based pointcut languages. Second, automata-based pointcuts mostly have quiteintuitive
interpretations(e.g., finite-state automata as regular expressions and regular grammars, VPA-based
structures in terms of well-balanced contexts) and the resulting pointcut expressions therefore are
easily understandable. Third, many automata-based pointcut languages do not provide for turing-
complete relationships: they thus enable specialized, effective and, partially, efficient formal methods
to be used to reason over pointcut expressions. Fourth, the runtime matching of automata-based ex-
pressions is supported by a large body of work treating their optimized implementation.

Explicit support for aspect composition

Our work has been guided by the desire to provide powerful and flexiblemeans for aspect composition
on the language level, in particular improving on the drawbacks of the atomic aspect model in this
respect. Concretely, we have strived to meet the three following characteristics. First, aspect compo-
sition should beexplicit: the model should support composition specifications over aspects as entities
of their own. Second, aspect composition should bestateful, that is, flexibly composable in terms of
the runtime state of an AO application, in particular, the states of pointcut expressions. Stateful as-
pect composition subsumes support for the composition mechanisms of atomic aspects (in particular,
precedence schemes, AspectJ’sadviceexecution) but also includes operators that compose aspects
differently over different parts of the execution of an AO program. Third, we are interested in inves-
tigating composition of aspects, aka. aspects of aspects: the need to handlethe effects of aspects on
other aspects rapidly arises if aspects are used as a general means forconstructing applications.

Support for reasoning about aspects

The key characteristic that differentiates EAOP from atomic aspect models,non-atomic pointcuts,
is instrumental to informally establish properties of aspects and next to indispensable in order to
establish them formally. Important properties of aspects that should be addressed by a model for
AOSD include interaction properties of non-independent aspects, correctness properties of specific
aspects and optimization properties enabling the efficient implementation of AO programs.

Limiting the expressiveness of pointcut expressions allows programmers tograsp the meaning
of aspect definitions much easier. Furthermore, defining applications using specialized well-known
classes of languages is a well-known means to support better understanding of programs by develop-
ers and users: finite-state machines, for instance, have been used in many application domains to this
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end. Limited expressiveness also much augments the opportunities for formal and, in particular auto-
mated reasoning about properties, compared to the atomic pointcut model. First, structures based on
finite-state automata or visibly pushdown automata allow standard operations, such as product opera-
tions, to be used for the analysis of aspect programs. Furthermore, suitable abstractions can be used
to automatize formal verification tasks efficiently, for instance, through the use of model checking
techniques.

Integration with mainstream languages

Relationships between execution events relevant for aspects can be madeexplicit using fundamen-
tally different formalisms and supporting techniques. As indicated before different logics, calculi,
grammar-based approaches, etc., have been proposed to this end by now. Whether an aspect system
can be integrated smoothly with an underlying base programming paradigm depends, however, on
the combination of aspect language and base paradigm at hand: the integration of general logic pro-
gramming languages and object-oriented runtime systems, for instance, is still an active open research
issue.

To the contrary, the automata-based aspect structures we have been mainly worked on are par-
ticularly well-suited for several reasons for the integration of aspect languages with object-oriented
and imperative base applications. First, implementations of automata in form of libraries and OO
frameworks can be used to implement automata-based aspect systems, that is, special syntax exten-
sions are not necessarily needed. Second, modifications to the base application may in general have
repercussions on the state that governs the matching of pointcuts. In automata-based approaches
such modifications can be readily expressed in terms of modifications to automatastates. Finally,
automata-based approaches are also appealing from a pragmatic point ofview because of the many
existing software implementation of the base operations, model checkers, etc., that can be reused in
an AO context.

Reasonably efficient implementation

AOSD is a relatively recent research domain and, as such, efficiency of implementations has mostly
been an issue of minor importance. While this general consideration is still correct to some extent,
efficiency is important and sometimes crucial to various of its applications. Middleware and systems
software, in particular, constitute two large application domains of this kind (see [2-CJS06] for a more
detailed discussion).

In a model with non-atomic pointcuts, the complexity of the pointcut language andits implementa-
tion is of foremost importance as far as efficiency of implementation is concerned. Pointcut languages
may easily include features which by principle can not be implemented with reasonable efficiency, for
instance, if the pointcut language relies on full-fledged logical inferenceor general dataflow relation-
ships (as, e.g., in Masuhara et al’s approach [MK03a]). Automata-based aspect structures are very
attractive in this respect because their overhead (i) is determined by well-known language properties,
(ii) can be kept small to very small with reasonable effort, and (iii) can typically be evaluated well by
programmers.

Besides the pointcut language, advice may also cause AO-specific overhead. One issue is whether
advice may generate new execution events that are subject to weaving: in this case, repeated execution
of event generation by advice followed by pointcut matching and reapplication of advice may result
in resource-intensive weaving. Most aspect models do not support such general weaving strategies,
which are akin to powerful intercession mechanisms in systems using computational reflection. As-
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pectJ, for instance, is designed to allow weaving through compile-time code transformation, which
simplifies the task of keeping weaving efficient. The EAOP model has been kept generic enough
to allow the investigation of such alternative weaving strategies (We will come back to the issue of
visibility of advice to weaving and corresponding weaving strategies in Chapter 3.).

Finally, the remaining features of aspect models introduced in Sec. 2.3.1 alsoinfluence efficiency.
Aspect instantiation, in particular, may be problematic if aspect instances canbe generated at runtime.
Per object instances of aspects that are instantiated at runtime, for instance, incur a non-negligible
overhead. Furthermore, manipulation of aspect-specific state may be costly, for instance, if such state
may be shared in a distributed environment. The composition of aspects can also cause execution
overhead, especially if it is performed at runtime. Once again, in contrastto more restricted models,
the genericity of the EAOP model allows exploration of these issues as presented in the following
chapters.

2.5 Conclusion and perspectives

The main motivation of our work on expressive aspect models has been theobservation that many
interesting crosscutting concerns can be defined only in terms of complex relationship between exe-
cution events and cannot be modularized well using atomic aspect systems. Such systems fall short
to provide concise aspect definitions and the correctness of aspects cannot be formally established.
The EAOP model allows to tackle these shortcomings by making explicit such dependencies, yield-
ing better structured and formally defined aspect languages that are amenable to manual or automatic
property verification.

Perspectives. The results reported on in this section pave the way to address a number of other
important open problems.

Stateful pointcut and aspect languages are a tool of much wider applicability than explored by
us. Our notion of regular stateful aspects has been integrated by the SSEL group at Vrije Universiteit
Brussel into the aspect system JAsCo [VSCDF05] and applied, among others to business rules and web
services. In a subsequent cooperation, we have applied stateful aspects for web services to distributed
web service compositions [5-BNSVV06].

We have underlined the facilities for aspect composition provided by the EAOP model. How-
ever, composition properties of aspects are not limited to the compositional construction of aspects
or composition of aspects with one another but also raise the question of howto integrate aspects
with existing composition mechanisms, such as software components and modules. Much research is
currently under way on this issue. We come back to the perspectives opened up by our work in Sec. 6.



Chapter 3

Foundations of AOP

We now turn to the fundamental problem of how AOP can be given a rigorous foundation. While
semantics of programming languages as well as analysis, verification and enforcement of their prop-
erties is a well-established field in the domain of traditional programming paradigms, AOP requires
new formalisms and techniques to be developed for the rigorous treatment ofcrosscutting relation-
ships. Work on the formal treatment of AO programs has only started at the end of the nineties and
therefore still is rather immature, essentially applying existing formalisms to properties of AO lan-
guages. Concretely, this work focuses on formalisms and techniques (i) todefine the semantics of
AO programs and (ii) to determine properties of aspects and support enforcement of properties over
aspects.

To cite a few examples, this exploration of existing formal frameworks for thedefinition of the
semantics of aspect languages has led to the development of different operational semantics [L̈am02,
5-DFS02b], denotational semantics [WKD04] and process calculi [And01, BJJR04] for aspects. Fur-
thermore, a variety of properties of AO programs have been investigated,e.g., safety properties of
aspects [DW06], yielding in particular different classifications of aspects with respect to their se-
mantic effects on the base program [Kat06]. Finally, the automatic analysis ofproperties using, for
instance, static analysis techniques [DW06] and model checking [KS03] has been considered.

In this chapter we present our work on the formal semantics and supportfor properties of so-called
stateful aspects, a term we have introduced in [5-DFS02b] to designate languages with explicit support
for aspects defined in terms of the execution history of an AO program. (This term has been taken
over by other researchers since then, see, e.g., [VSCDF05, VJ05].)Concretely, the results presented
here address three different categories of problems:

• Semantics of aspect languages. We briefly motivate and describe two different semantic frame-
works — a functional and an operational one — we have developed as one of the first semantics
for AOP.

• Properties of aspects. We present static analysis techniques we have developed for two of
the most fundamental properties of AO programs: interaction among aspectsand the correct
application of aspects to base programs.

• Aspect composition.We also detail means for the rigorous treatment of aspect composition
issues, in particular based on stateful aspect composition operators.

We concentrate here on mechanisms for the semantics of aspects that abstract from specific aspect
languages and specific uses of aspects. As an example of semantics for specific aspect languages,

29
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two formal transformational semantics of aspects for C programs are discussed in Sec. 4.2.2. We do,
however, not present our work on the formalization of aspects and aspect weaving through program
transformation [7-FS98, 7-FS99] that Pascal Fradet and me have started with and also do not present
the work using the temporal logic CTL for the formalization of pointcuts in terms ofsets of paths over
the control flow graph of C-programs [5-ÅLS+03].

The work presented in this chapter has been done in the context of different collaborations. Most
of the work on the semantics for and properties of stateful aspects has been done with my colleague
Rémi Douence and Pascal Fradet from INRIA. The recent work on VPA-based aspects has been
started as part of Ha Nguyen’s PhD thesis that I am currently supervising.

The remainder of this chapter is structured as follows. Section 3.1 presentsthree different seman-
tics for stateful aspects of different expressiveness by extending the uniform description framework
we have introduced in [1-DFS04b]. In Section 3.2, we consider how interaction properties and ap-
plicability conditions of AO programs can be defined and analyzed using stateful aspects. A formal
approach to aspect composition is set forth in Section 3.3.

3.1 Formal semantics for stateful aspects

The core of our work on formal semantics for aspect languages has been motivated by two key obser-
vations. First, the absence of any formal foundation for aspect languages when we started our studies
in this domain in 1997. Second, most aspect languages — and hence corresponding formal frame-
works — have been instances of the atomic aspect model as introduced in theprevious chapter. The
resulting poor representation of the semantic relationships that govern aspects has set off our quest for
more expressive semantic frameworks that make explicit such relationships or at least support their
analysis.

Our response to this challenge consisted in a series of different but related semantic frameworks for
the formalization of aspects defined over the history (that is, traces) of theexecution of AO programs.
Furthermore, the expressiveness of the aspect languages of these frameworks has been chosen so that
properties over aspects can be formally established.

3.1.1 Presentation framework

We first turn to the problem to giving precise semantics to aspect languages. In the following, we give
a unifying presentation of three semantic frameworks for stateful aspectswe have developed:

• Aspects whose pointcuts are defined using a functional calculus [5-DMS01a, 7-DMS01b].

• Finite-state based, i.e. regular, aspects [5-DFS02b, 9-DFS02a, 5-DFS04a].

• Visibly pushdown automata (VPA) based aspects [NS06].

These three approaches cover a large part of the aspect language design space. First, the three as-
pect languages are of different expressiveness ranging from therelatively limited regular aspects, via
VPA-based aspects that allow a form of well-balanced contexts to be expressed and manipulated, to
the turing-complete pointcuts defined using a functional calculus. Second,they have been defined
using different semantic frameworks: an equational theory in the case ofaspects with functional
pointcuts, regular aspects and VPA-based aspects by means of a small-step operational semantics, the
latter of which defined after a translation into plain VPAs. Third, the three languages admit different
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techniques to be used for property verification: equational reasoning about functional pointcuts, static
analysis in the case of regular and VPA-based aspects.

The main characteristics of these language can concisely be presented based on the following
general definition for stateful languages (which is a slight extension of that defined in [1-DFS04b]):

A ::= P⊲ I | P ; basic aspect
| A1; A2 ; sequence
| A1 ¤ A2 ; choice
| µa.A ; recursive definition
| a ; recursive call

(3.1)

This grammar allows the definition of aspectsA that are constructed from basic aspects using three
aspect composition operators: sequencing ‘; ’, choice ‘¤’, and repetition ‘µa. . .a’. Basic aspects
define pointcutsP that may trigger inserts, that is advice,I ; empty inserts may be omitted.

The generality of the terms admitted by this grammar, in particular compared to the finite-state
aspects considered later, results from recursive calls can occur at arbitrary places in terms. The cor-
responding class of languages accommodates a high degree of variability by (i) different concrete
definitions for pointcuts and advice (e.g., to introduce composition operatorsin the advice sublan-
guageI ), (ii) different semantics for the basic operations (e.g., deterministic vs. non-deterministic
choice) and (iii) structural restrictions (e.g., restricting recursive definitions to tail recursions).

In the following, this formal framework is extended compared to the presentation in [1-DFS04b]
in two respects. First, we show how to include means for aspects based on visibly pushdown automata
besides turing-complete and regular aspects. Second, we accommodate different mechanisms for the
composition of aspects on the pointcut and advice level.

3.1.2 Aspects with functional pointcuts

One of the reasons of the popularity of atomic aspect models, such as AspectJ, stems from the fact that
they typically allow to easily define arbitrary pointcuts. As discussed in the previous chapter, complex
pointcuts have then to be implemented using atomic pointcuts and pointcut-externalstate, thus impair-
ing understandability of aspect definitions and essentially foreclosing reasoning about pointcuts. A
solution to this trade-off between generality and tractability can be developedfrom an analogous
situation in traditional programming: imperative programming also suffers fromsimilar tractability
problems. Alternative programming paradigms, such as functional programming and logic program-
ming, have been developed as a remedy. The trade-off induced by atomic pointcuts languages can be
similarly addressed. To this end, we have explored the definition of pointcutsas functional expressions
that are defined in terms of monadic parser expressions [HM98].

Language. We have considered pointcuts defined as values over a recursive datatype that include,
inter alia, constructors for the matching (and extraction of information) of individual joinpoints, a
sequence constructor and a parallel constructor that realizes a form of disjunction. Specific binding
constructors may be used to pass values extracted from one joinpoint to other parts of a pointcut
definition.

The essentials of such a language can be easily represented in terms of theGrammar 3.1: recur-
sive definitions, sequencing, and the parallelization operator are represented by the operatorsµ, ; , ¤,
respectively. Individual joinpoints may be represented by recursiveconstructor terms involving vari-
ables in argument positions, the latter to extract data from joinpoints for later use. Note that we abstract
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here from the specifics of joinpoint matching, e.g., return types and wildcard matching. Furthermore,
pointcuts may test for arbitrary conditions using anif -constructor. We represent value binding by
distinguishing between assignment of variables, notedv for variablev from variable uses.

Example: An aspect for updating information on files and trust of their respective providers as
part of an P2P application can be defined as follows:

µa.f = localCache; (if (f 6= null);a
¤ if (f = null);(µb.files query;b;files reply⊲updateFileInfo;a

¤ µc.trust query;c; trust reply⊲updateTrustInfo;a))

This aspect first looks up a file in a local cache and, if it has not been found there, updates the
local cache after a recursive file query or a recursive trust query.

Semantics. An aspect language providing expressive pointcuts can be defined in terms of a monitor
that observes the base program execution, matches pointcuts and triggers advice execution when ap-
propriate. Functional pointcuts, which form a sublanguage of pure (a.k.a. side-effect free) functional
programming languages [Hud89], are particular attractive in this context for three reasons. First, pure
functional languages come equipped with formally-defined and relatively simple semantics. Hence,
functional pointcuts can be formally defined by translating them into plain functional programs. Sec-
ond, the corresponding interpreters can be implemented directly in terms of functional programming
languages. Third, functional pointcuts are referentially transparent [Hud89], which enables equational
reasoning to be used to establish formal properties over pointcuts. Furthermore, this property carries
over to aspects built using functional pointcuts as long as the aspect doesnot rely on and modify
(aspect internal or base program) state through advice.

We have harnessed this method by defining a translation of functional pointcuts into the pure func-
tional language Haskell [Has]: recursive composition is translated into recursive functions, sequences
into nested function applications and the two branches of a choice operationare explored (on the se-
mantic level) in parallel until the first match is encountered, the decision being non-deterministic in
case both match at the same point. (The reader might have reckoned that a choice has to be resolved
based on the first event encountered after the choice point: this is a reasonable alternative semantics
that we have explored as part of the regular aspects discussed in Sec.3.1.3.) Concretely, this trans-
lation has been realized in form of an equational system relating differentconstructor terms, which
includes the following three laws

filter(p)(return(e) ¤ p2) = return(e) ¤ filter(p)(p2)

p1;(p2 ¤ p3) = (p1; p2) ¤ (p1; p3)

(p1; p3) ¤ (p2; p3) = (p1; p2) ¤ p3

stating, respectively, that filtering on branches continues as long as a branch has not yet been fully
explored (i.e., until a match is returned) and that sequencing distributes over choices from the left and
from the right.

This equation system induces a rewriting system that has been used to formally define and imple-
ment a monitor-based weaver for functional pointcuts.
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Aspect properties and equational reasoning. As mentioned above, functional pointcuts are ame-
nable to equational reasoning because they are referentially transparent. This allows common equiv-
alences over functional programs, including, for example, inductive reasoning over recursive equa-
tions, to be used to prove properties over aspects. Furthermore, equational reasoning over func-
tional pointcuts is supported by the equational definition of the basic pointcutconstructors. We have
shown [5-DMS01a], for instance, how inductive reasoning and the application of the laws linking se-
quences and choices can be used to prove the equivalence of an AspectJ-likecflowpointcut constructor
using a runtime stack to a constructor not needing a stack, an optimization that has been the subject
(in more general settings) of a number of later publications by other researchers [MKD02, ACH+05].
Since functional programming languages are turing complete, these proofscan in general not be au-
tomatized, but they are facilitated by the large number of existing properties over functional programs,
especially the so-called theory of lists [Bir89].

3.1.3 Regular aspects

While functional pointcuts support the formal definition and reasoning about AO programs, equational
reasoning over turing-complete expressions cannot be automatized. However, it is well known that the
automatic or semi-automatic analysis of program properties is useful to handlecorrectness issues es-
pecially of large scale programs (to which application of manual techniques simply is too unwieldy).
Restricting the expressiveness of the aspect language therefore seems highly worthwhile if it bolsters
automation. The class of languages with the most substantial automatic supportfor analysis of cor-
rectness properties are regular languages, i.e., languages that can bedefined in terms of finite-state
automata. This language class especially supports correctness properties tackled using static analysis
techniques, such as abstract interpretation [JN94] and model checking[CGP99].

A notion of regular aspects, which constrains the semantics of aspects using finite-state automata,
therefore seems to be a natural means to leverage existing analysis techniques. Furthermore, regular
aspects are still expressive enough to capture a large number of interesting non-atomic relationships
between joinpoints, see, e.g., Allan et al. [AAC+05] for a series of examples from the domain of
program development.

However, there are several non-trivial issues in the definition of regular aspects. A first question
is if regularity is only required of pointcuts or should express constraints over pointcuts and advice.
Regular pointcuts could be defined e.g., by restrictingP to regular expressions in the language of
Grammar 3.1. Allan et al. [AAC+05] have introduced “tracematches” that also define pointcuts as
regular expressions. Regular pointcuts raise the problem that they do not allow to define and analyze
properties of complete aspects: the main question in this context being how to take into account the
effects of advice. If advice can generate joinpoints of its own, i.e., adviceis visible to aspect weaving,
the behavior of the aspect cannot be simply defined in terms of the compositionof regular pointcuts.
We have therefore opted to define a notion of regular aspects where regularity constrains the execution
of complete aspects and to address the problem of the visibility of advice explicitly.

A second issue is how to integrate dependencies introduced by variables that are assigned and used
as part of matching in regular pointcuts. Depending on the scope of variable definitions, regularity can
be violated: a dynamic notion of scope which allows to shadow variables of thesame name assigned in
a later iterations of a repetitive definition, for instance, cannot be represented by regular expressions.
Allan et al. [AAC+05] impose suitable restrictions by requiring variables to be bound consistently to
the same value over all occurrences. Our solution presented below defines a notion of dynamic scope
where a variable binding extends from one binding to the next binding occurring in an execution trace
(or the end of the term representing the current aspect).
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We are now ready to present our specialization of Grammar 3.1 for regularaspects:

P ::= f T1 . . .Tn ; (atomic) pointcuts
T ::= f T1 . . .Tn | x | x

A ::= µa.A ; recursive definition
| P⊲ I ; A | P; A ; prefixing
| P⊲ I ; a | P; a ; end of sequence
| A1 ¤ A2 ; choice

(3.2)

where the set of term variablesx and the set of recursion variablesa is to be disjoint. PointcutsP are
nested constructor terms, that may assign variables, notedx, through matching and use them, notedx,
to restrict matching. AspectsA are restricted compared to Grammar 3.1 in that recursive definitions
may not end in the middle of sequences: this ensures tail-recursiveness of regular aspects and thus
equivalence to regular expressions.

Note that this language is a simplified version compared to our previous work:it does not include
pointcuts constructed from logical operators (as [5-DFS04a]) does)and in contrast to [Far03, NS06]
only a restricted set of regular pointcuts is included (in form of variants ofprefixing and sequences
with omitted advice, i.e.,skipadvice). Both of these features are not essential to the discussion here,
since they do not interfere with the formal definition of a semantics for such alanguage and analysis
of aspect-specific properties.

Example 3.1.1: Reconsider the example of file queries in the P2P domain, we now cannot
express aspects about recursive queries anymore, because regular structures do not allow to
correctly match nested structures. Regular aspects can, however, still express many useful
relationships between joinpoints, e.g., abortable file queries over one channel that update file
information on the current node only in case the query is completed:

µa.f = localCache; (!isNull(f );a
¤ isNull(f );µb.files query;(files reply⊲updateFileInfo;b

¤ abort;a))

Semantics. The semantics of functional pointcuts has been defined in terms of a translation into the
functional programming language Haskell in order to harness the large body of results of the equa-
tional theory over pure functional languages. However, in order to investigate fundamental properties
of aspect languages, such as interaction among aspects and differentweaving models, a lower-level
semantics, which allows to define and reason about arbitrarily fine-grained evaluation steps of an
AO program seems better suited. By now a fair number of different kinds ofsemantics have been
explored as part of this endeavor, for instance, process calculi by Andrews [And01], denotational se-
mantics for an AspectJ-like language by Wand et al. [WKD04], semantics for regular pointcuts by
Alan et al. [AAC+05], and operational semantics by Walker et al. [WZL03] as well as Clifton and
Leavens [CL06].

Preceding almost all of this work, we have equipped regular aspects with the first formal semantics
in terms of a small-step operational semantics [5-DFS02b]. This semantics precisely defines three
issues:

1. The modification of base program executions through aspect weaving.
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Woven execution

[WOVEX ]
[ j,T,σ]sel j A

∗

|=⇒A σ′ ( j,T,σ′) → ( j ′,T,σ′′)

(A, j,T,σ) |=⇒W (next j A, j ′,T,σ′′)

Aspect application

[A SPEND] [ j,T,σ] /0 |=⇒A σ

[A SPAPP]
S = {P⊲ I}⊎S ′ bind P j = φ (start,φI ,σ)

∗
7→I (end,φI ,σ′)

[ j,T,σ]S |=⇒A [ j,T,σ′]S
′

Figure 3.1: Weaving of regular aspects

2. Weaving of several aspects at a time.

3. Visibility of advice to other aspects, i.e., whether advice is subject to weaving.

In the following we will present the essentials of how these three differentissues are handled in a
formal way (see [9-DFS02a] for a detailed presentation including examples).

Modification of base executions through aspect weaving.Aspect weaving is defined as shown
in Fig. 3.1. The execution of the base program as well as the woven program is abstracted into
a relation defining execution steps that transform runtime configurations. Aconfiguration( j,T,σ)
consists of the current joinpointj, the static program textT and the dynamic stateσ.

The weaver is essentially defined in terms of two transition relations. The woven execution|=⇒W,
see inference rule WOVEX, yields a follow aspect, next joinpoint and new state after weaving a set of
aspects at the current joint point, as expressed by the aspect application relation|=⇒A, and advancing
the base execution to the next join point (base transition relation→). Second, weaving of one basic
aspectP⊲ I , see inference rule ASPAPP, yields a new dynamic state by calculating a variable binding
φ resulting from matching the pointcutP on the current joinpointj and executingφI , the advice after
substitution by the generated variable binding.

Multiple aspects. The aspect selection functionselused in rule WOVEX is defined over a set
A of aspects and yields all basic aspects that match the current joinpoint. Theaspect application
rule ASPADD then iterates over all these aspects. Once all aspects have been applied,rule ASPENC,
returns the resulting new dynamic state.

Note that the rule ASPADD non-deterministically chooses one of the applicable basic rules. The
weaver definition could obviously be modified to support deterministic orderings, as has been done
in a number of approaches, e.g., Andrew’s aspect calculus [And01].However, our approach is more
general and flexible: interactions between aspects, i.e., the applicability of several aspects at a join-
point, can be analyzed statically (see Sec. 3.2) and the resulting conflicts beresolved using aspect
composition operators, amongst others, by ordering them. We therefore generalize on most existing
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approaches, e.g., AspectJ, that support only partial orderings of aspects that are applied simultane-
ously. This is discussed in detail in Sec. 3.3.

Visibility of aspects to other aspects. Visibility of aspects refers to the property if the func-
tionality introduced by aspects, i.e., advice, is subject to weaving itself, in which case other aspects
can be applied to this functionality. The weaver definition of Fig. 3.1 accommodates different models
of visibility simply by choosing appropriate transition relations for the executionof inserts, i.e., the
relation 7→I in rule ASPADD: if this relation is chosen to be the base transition relation→, advice
is not woven and thus not visible to other aspects; if the woven execution relation |=⇒W is chosen,
advice is woven and thus visible to other aspects.

3.1.4 VPA-based aspects

Aspects relying on functional pointcuts (or more generally on turing-complete pointcuts) and regular
aspects delimit a potentially large set of aspect languages that differ with respect to expressiveness.
The turing-complete ones are more interesting because of the larger set ofcrosscutting relationships
they allow to express, regular aspects support fewer relationships to becaptured but enable automatic
support for properties analysis over aspects.

Researchers in the field of formal languages have defined a variety of classes of languages whose
expressiveness lies between regular and turing-complete classes, forexample, LL/LR-languages,
context-free and context-sensitive languages. All of these classes have theirraison d’̂etreand should,
in principle, be useful to describe crosscutting relationships. However,until now only very few work
has been done on aspect languages belonging to these classes. Notableexceptions are the notion
of context-free aspects proposed by Walker and Viggers [WV04] andour suggestion of aspects over
context-sensitive protocols [5-Süd05]. While worthwhile on the grounds of their expressiveness, these
approaches are subject to the problem that the underlying language classes are not readily amenable
to automatic analysis and reasoning techniques, difficult to implement or both.

There is substantial work currently on formal languages (not aspect languages) that are more
expressive than regular languages but that improve with respect to automatic reasoning and im-
plementation support compared to context-free languages. Recently,visibly pushdown automata
(VPA) [AM04] have been introduced as a means to define a language class, visibly pushdown lan-
guages (VPLs), that is (i) strictly more expressive than regular ones, (i) strictly less than context-free
languages and (iii) that obeys all common closure properties of regular languages. The third charac-
teristics distinguishes visibly pushdown languages from context-free ones, which are, for instance, not
closed under the union operation. VPLs thus support a much larger classof (automatic) analyses than
context-free ones. Technically, this is achieved by trading off some expressivity of VPAs compared to
plain pushdown automata: the set of transition labels in VPAs must be partitionedin those that push
data on the stack, pop from the stack or do not modify the stack.

Based on this observation, we have introduced VPA-based aspects, whose essentials can be repre-
sented as an extension to regular aspects by the following grammar:

P ::= F T1 . . . Tn

F ::= f | fs | fs
T ::= f T1 . . .Tn | x | x

A ::= µa.A | P⊲ I ; A | P; A | P⊲ I ; a | P; a | A1 ¤ A2

; same as regular aspects (see Grammar 3.2)

(3.3)
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Here, VPA-based aspects extend the term structure defined by Grammar 3.1 while preserving the
structure of regular aspectsA. Pointcut terms are modified in two ways. Most importantly, there are
now three sets of term constructors:

• Constructors that match functions (or methods)f as in the case of regular aspects.

• Constructorsfs that matchf and puts on the call stack.

• Constructorsfs that matchf only if a corresponding call has occurred, i.e.,s can be popped
from the call stack.

A second difference is that we allow stack manipulating calls only on the outermost level of nested
pointcuts terms1.

Example: The following example shows how VPA-based aspects can be used to modifypro-
tocols involving recursive file queries:

File = µa. lookup;(found;a
¤ µb.(queryq;b

¤ replyq ⊲ f ixOrder;a

¤ abort;a

In this example, a file is either found after a local lookup or searched recursively. After a recur-
sive call has been terminated a new search order for later searches is fixed. Finally, queries may
be aborted any time. Here, the VPA property ensures that orders are modified only in the correct
contexts and not, e.g., by a reply belonging to a different incarnation then the corresponding
query.

Semantics. The difference between regular aspects and VPA-based aspects, i.e.,stack-manipulating
pointcuts, can be defined by two modifications to the semantics of regular aspects as outlined above.
First, we have to add a call stack which is manipulated and tested as part of pointcut matching. Second,
the notion of follow aspects has to be modified accordingly. Both of these issues can be conveniently
addressed by translating a VPA-based aspect in a corresponding pointcut VPA that explicitly repre-
sents all traces ina consisting only of pointcut terms. Using the pointcut VPA the relevant functions
of the operational semantics of the weaver shown in Fig. 3.1 can be redefined concisely: selection
of applicable basic aspects (functionsel) tests the VPA stack in case of constructors of the formfs,
fs and determination of the follow aspect (functionnext) reduces to traversing one or (in the case
of non-determinism) several transitions of the pointcut VPA. Finally, the advice to be applied once
a pointcut (p, say) has been matched can be found simply by storing references to the basic aspect
that contains the advice in the node of the pointcut VPA representingp. Apart from these changes,
the weaving semantics for regular aspects does not have to be modified forVPA-based aspects. For
details of the semantics see [NS06].

To conclude the discussion of VPA-based aspects, let us recall the similarity of properties of
regular languages and VPLs, which, in particular, allows several important properties of aspects to be
tackled equally well for regular and VPA-based aspects as shown in the following section (efficiency
concerns notwithstanding).

1Matching of nested terms involving stack manipulating functions is a subject of future work.
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3.2 Properties of aspects

While the precise definition of aspect mechanisms using formal semantics is a worthwhile goal of its
own, methods to address the need for reasoning about properties of aspect-oriented programs are at
least of equal importance. Aspects raise a number of specific problems concerning the enforcement,
analysis or verification of AO properties. Two particularly important aspect-specific problems are
the handling of interactions among aspects and the definition of conditions thatdelimit the effects
of aspects on sets of base applications (as opposed to properties of aspects woven into a specific
application). Aspect interactions constitutes one of the fundamental challenges for the composition
of aspects and the latter can be seen as a generalization of traditional notions of encapsulation that are
not appropriate anymore in the presence of aspects.

Relatively few approaches have been put forwarded for reasoningabout aspectual properties in
general and the two classes of properties singled out above in particular. We have been among the first
to propose solutions for each of these two problems in form of, respectively, a notion of aspect interac-
tions based on the simultaneous application of several aspects at an execution event and enabling the
limitation of effects of aspects by ensuring that interactions are absent. Bothof these proposals have
been developed in the context of regular aspects and have been recently generalized to VPA-based
aspects.

In the remainder of this section, we motivate our work on these two fundamental problems and
explain its main technical characteristics. However, since aspect interactions and limits to how aspects
may affect applications are intimately related (because the latter can be defined in terms of the former
as discussed below), we first give an overview of the most relevant work.

Related work. Notable related work on aspect interactions include Dantas and Walker’s [DW06]
“harmless” aspects that guarantee not to cause interactions by means of aspecially-tailored type
system. Their approach provides only very limited support for direct reasoning about interactions.
Another group of work has been presented on interactions due to modifications the static structure
of OO programs, in particular Havinga et al [HNBA06] as well as Störzer and Krienke [SK03]. We
are interested here in the more general and difficult problem of interactions resulting from runtime
modifications by aspects. Furthermore, relevant work has also been done in closely related domains,
in particular, feature interaction [FN03]. In typical settings of feature interaction, the interaction prob-
lem is alleviated in comparison to the realm of AOP because of the more homogeneous structure of
telecommunication applications and the absence of certain aspect-specific structuring mechanisms,
such as nested advice that may or may not call functionality of the base application of other aspects.

Very few work has aimed at mechanisms for the delimitation of effects of aspects. Aldrich [Ald05]
has proposed a notion of modules (defined on the based of modules in the traditional, non AO, sense).
The interfaces of these modules may export points which may be advised by aspects but can not
be modified by external aspects otherwise. His approach does not support properties of aspects di-
rectly but rather allows to delimit their effects with respect to to individual modules. Kiczales and
Mezini [KM05] have investigated the extension of method declarations by signatures similar to As-
pectJ pointcut declarations in order to make explicit the effect of aspects and thus enable informal and
manual reasoning about modularity properties of aspects. In contrast, Goldmann and Katz [GK06]
have presented work on the modular analysis of effects of aspects usingmodel checking techniques.
Finally, Skotiniotis et al. [SPL06] have recently proposed an extension to interfaces for adaptive pro-
gramming that allows static conditions to be formulated on sequences of method calls that may cross-
cut the base application.

Finally, there are a number of articles presenting various categorizations for aspects with respect
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to their effects on the base program and other aspects, notably by Katz [Kat06], Rinard et al. [RSB04]
as well as by Clifton and Leavens [CL02a], all of which provide means useful for reasoning about the
interactions and effect delimitation for certain classes of aspects. However, all of these approaches
allow properties to be investigated only at a very coarse level, i.e., typically considering only properties
of entire aspects.

3.2.1 Static analysis of interactions among aspects

Intuitively, interactions among aspects occur when the execution of one aspect modifies the behav-
ior of another one. In the general case, such interactions may be caused by arbitrary modifications
of aspects to any state that is accessible by different aspects, including state of the base application,
modifications to files, and network communication. The definition and analysis ofsuch general inter-
action properties requires, however, severe abstraction of the aspect and base programs, and is typi-
cally subject to limitations on the relationships between aspects that can be addressed (the approach
of Goldmann and Katz [GK06], for instance, does not allow to apply aspects to other aspects).

Aspects are commonly used not as a mechanism for general programming but rather for the struc-
tured modification of base applications.2 It seems promising to consider restricted notions of in-
teractions that are specialized with respect to the aspect structure from such more specific uses. In
particular, aspects commonly modify base applications at specific execution events where pointcuts
match; some interactions can therefore be characterized solely by the simultaneous application of as-
pects at an execution event. It has turned out that this notion of interactionis of particular relevance
because applications using several aspects frequently apply them in a pipelined fashion at common
joinpoints, for instance, if three different aspects are used to compress, encrypt and log messages in
a communication system (a programming technique at the heart of the so-calledcomposition filters
approach [BA01] to AOP).

We have provided the first formal definition of (potential) interactions in termsof the simultaneous
application of aspects. In the context of regular aspects (cf. Def. 3.2 inSec. 3.1.3) interactions occur
when several basic aspects are weaved at the same joinpoint, i.e., when theaspect selection function
sel returns more than one basic aspectP⊲ I in rule WOVEX of Def. 3.1 and hence rule ASPAPP is
executed several times at one joinpoint.

Example: In order to illustrate this notion of interaction, let us come back the example of
queries in P2P applications introduced in Example 3.1.1 (see page 34). In addition to the
aspect updating file information shown there, consider two other aspects:(i) an aspect that uses
recursive file queries to eliminate certain stored files (e.g., illegal copies, (ii)an error aspect that
raises exceptions when a reply occurs without any query having been initiated. In this case the
former causes an interaction of file info updates, while the latter does not.

We determine interactions between two aspects using a static analysis of the independent (“par-
allel”) execution of the aspects [5-DFS02b]. The analysis calculates a form of product of the two
finite-state based expressions defining the two aspects. Concretely, it constructs a sequential result
automata by merging paths of the input automata that consist of equal sequences of pointcuts. During
this process basic aspects are marked that result in advice from both aspects to be weaved at the same
event of the result automaton.

2The reader should keep in mind, though, that many aspect languages enable aspects to implement arbitrary programs:
in AspectJ, e.g., the functionality of any Java program can be put in an aspect that advises the entry point of an otherwise
empty base program — admittedly a technique rather akin to abuse than use of aspects.
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[UN/FOLD] µa.A = A[µa.A/a]

[PRIORITY] (P1 ⊲ I1; A1) ¤ (P2 ⊲ I2; A2) = (P1 ⊲ I1; A1) ¤ (P2∧¬P1 ⊲ I2; A2)

[COMMUT] (P1 ⊲ I1; A1) ¤ (P2 ⊲ I2; A2) = (P2 ⊲ I2; A2) ¤ (P1 ⊲ I1; A1)

; if P1∧P2 has no solution

[ELIM ] P⊲ I = false⊲ I ;if P has no solution

[PROPAG] let A = (P1 ⊲ I1; A1) ¤ . . . ¤ (Pn ⊲ In; An)
and A′ = (P′

1 ⊲ I ′1; A′
1) ¤ . . . ¤ (P′

m⊲ I ′m; A′
m)

then A ‖ A′ = ¤
j=1..m
i=1..n Pi ∧P′

i ⊲ (Ii⋊⋉I ′j); (Ai ‖ A′
j)

¤i=1..nPi ⊲ Ii ; (Ai ‖ A′)
¤ j=1..mP′

j ⊲ I ′j ; (A ‖ A′
j)

Figure 3.2: Laws for aspects

Technically, this analysis is defined by an equational system consisting of 8equations that enables
two independent aspects, notedA1 ‖ A2, to be transformed into an equivalent sequential aspect with
marked interactions. Fig. 3.2 shows an excerpt of this system. Marking of interactions is achieved
by rule PROPAG that is used to ‘push’ the parallel operator inwards into expressions, thus making
them more deterministic. The topmost row of the result expressionA ‖ A′ corresponds to the case
of interest, that is, all the combinations of initial pointcutsPi from A andP′

j from A′ both of which
have to match: in this case, a (potential) interaction is recorded in the result using the expressionIi⋊⋉I ′j
over the corresponding advice. The two other rows in the result expression group all subexpressions
in which only a pointcut of one of the argument aspects matches and therefore cannot give rise to
interactions. The remaining rules allow to un/fold recursive definitions (ruleUN/FOLD). Two rules
govern choices: rulePRIORITY expresses that the choice is deterministic because the first branch has
priority over the second (note that this rule has to be slightly changed in order to take variables into
account, see [5-DFS04a] for details),COMMUTE states commutativity of choices if none of the two
pointcuts at the head of the branches of the choice match. RuleELIM , finally, shows an elimination
rule that is helpful to eliminate branches which cannot be taken.

The notion of interactions through multiple aspects applicable at common execution events can
naturally be extended to VPA-based aspects and applied to the balanced contexts that VPAs support.
Since the intersection operation on VPAs is closed and the test for emptiness isdecidable, the interac-
tion analysis between VPA-based aspectsA1,A2 can be reformulated for VPAs in terms of the standard
operations for VPAsV asA1∩A2 6= /0 (and a corresponding marking of interaction points) [NS06].

We have developed a prototype implementation of this analysis. While this implementation also
allows to analyze interactions between regular aspects, we are currently working on a more efficient
implementation for the regular case using model checking.

To conclude the discussion of aspect interactions, let us note that these techniques yield interac-
tions between two aspects, that is, independent from their application to anybase program (this has
been termed strong independence in [5-DFS02b]). It is, however, also be possible to abstract the
base program into a regular or VPA-based abstraction and then considering interactions only that may
occur during executions of the abstracted base program (weak independence in [5-DFS02b]).
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3.2.2 Applicability conditions for aspects

We now turn to the problem of techniques for determining and limiting the effects of aspects. Recon-
sidering the discussion of related work above, the following characteristics seem desirable:

• Support for the expression of crosscutting effects to arbitrary entities of base programs, in-
cluding to an existing module structure (but not restricted to existing module structures as the
approaches by Aldrich [Ald05] or Skotiniotis et al. [SPL06]).

• Formal and if possible automatic support for the enforcement of limiting properties (thus im-
proving on Kiczales and Mezini’s informal and manual approach [KM05]).

A general notion of effects of aspects meeting these characteristics can be defined in terms of
applicability conditions3 for aspects and base programs. Concretely, applicability conditions can be
defined as regular aspects that raise exception events in situations that are deemed to be erroneous. An
interaction between an applicability-defining aspect and a second aspectthen indicates that the second
aspect is not compatible when it would trigger advice in erroneous situations. Furthermore, based on
a regular abstraction of the base program, interactions between a class ofbase programs (B, say) and
an applicability condition (a, say) can be determined: if there are no interactions, any aspect that is
compatible witha can be woven with any base program ofB and is guaranteed not to engage in any of
the erroneous situation represented bya. Finally, in the case that an aspect is not compatible with an
applicability condition it is possible to weave it nevertheless but also weave theapplicability-defining
aspect at the same time, such that exceptions are raised during execution inerroneous situations.

Example: In the P2P setting, we could use applicability conditions, for example, to ensure that
any query can only occur after the network has been reasonably set up, e.g., by appropriate
initialization of the corresponding infrastructure.

We have shown that interaction analyses as discussed in the previous section can be applied in
this context. Taking into account applicability conditions for interaction analysis yields the notion
of “contextual” independence [5-DFS04a], which is finer than strong independence (because it takes
into account some traces of the base execution) but coarser than weak independence (because it does
not take into account all base program traces).

To conclude the discussion of applicability conditions for aspects, let us note that they meet the
two characteristics introduced in the beginning: they can define propertiesof fine-grained entities and
come equipped with automatic support for analysis and enforcement.

3.3 Aspect composition

The construction of any program (using aspect-oriented techniques ornot) can be seen as the appli-
cation of some composition operation to some basic entities. Functional programming, for instance,
is based on the combination of functions using functional composition. Component-based software
construction relies on the provision of glue code between software components. Aspect-oriented soft-
ware development fits this picture well: aspects can be considered as the basic entities that have to be
composed with the base program and one another.

This perspective on AOSD reveals three requirements of aspect composition beyond the basic
observation that aspects have to be weaved, typically invasively, into a base application:

3Called “aspect requirements” in [5-DFS04a].
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1. Aspect composition should enable interactions, the main problem for aspect composition, to be
resolved.

2. Aspects should be composable in a flexible manner, in particular, composition should not be
restricted to aspects as a whole.

3. Composition should be supported through the use of explicit well-definedcomposition opera-
tors that allow to express much more general relations than common precedence specifications.
Furthermore, they should support reasoning over compositions.

Currently, most aspect systems support aspect composition only in limited ways and frequently
in a very coarse-grained fashion (typically by composing aspects withoutmodification as a whole) or
through very fine-grained mechanisms. In AspectJ, for example, aspect precedence specifications can
be used to compose aspects as a whole and theadviceexecution pointcut predicate may be used to
define if and how an aspect should be applied in the presence of other aspect at individual joinpoints.
There are only few structured mechanisms that allow parts of aspects to be composed or that allow
composition of aspects to be limited to parts of the execution of the woven program. Work in this di-
rection has been pursued mostly based on specific aspect models, e.g., byBergmans et al. [BA01] who
define aspect compositions in terms compositions of stateless filters that are applied when messages
are sent. Lieberherr et al. [LOML01, LLO03] have introduced aspectual collaborations that allowed
aspect composition to be defined in terms of specialized merging operations onclass hierarchies. The
Hyper/J approach [TOHS99], similarly, allowed general, unstructured composition programs to be
defined for the composition of aspects (called hyperslices). These approaches fall short with respect
to the requirements above because they do not make the resolution of aspect interactions explicit, are
not operator-based, and, for some of them, are not flexible enough.

Regular aspects admit a flexible notion ofcomposition adaptors[5-DFS04a, 5-DFS02b]. These
operators are defined as a restricted form of regular aspects, see Fig. 3.3a, that specify unary or binary
advice transformers that are applied according to a finite-state automaton. These operators meet the
three requirements introduced above. Compositions are performed flexiblyonly when a program
execution matches the finite-state based composition definition. Conflict resolution can be performed
using binary transformers by, e.g., reordering advice, exempting advicefrom application or replacing
advice altogether. Finally, the interaction analyses admitted by regular aspects can be used also in
the presence of composition operators, essentially by replacing the propagation rule of Fig. 3.2 by the
rule shown in Fig. 3.3b that applies the appropriate (unary or binary) composition transformer where
necessary.

A feature of composition adaptors that is particular attractive from a software engineering view-
point is that composition operators may therefore be used as part of aniterative incremental develop-
ment method: base programs, application conditions and regular aspects may be analyzed for interac-
tions using the different static analyses presented in the previous section,followed by the resolution
of some of the interactions using composition adaptors. The resulting system can be analyzed once
again, etc.

Finally, let us briefly mention a second notion of flexible, operator-based aspect compositions we
have investigated. In the context of an instantiation of the EAOP model that featured turing-complete
pointcuts and advice implemented as sequence of Java statements [6-DS03, 9-DS02], aspect com-
position can been defined explicitly based on a (directed acyclic) graph structure whose nodes are
composition operators and leaves are aspects. Aspects are composed byconstructing or modifying
composition graphs. The composition structure allows for arbitrary flexible aspect composition be-
cause the composition can be modified dynamically. We have proposed four composition operators to
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O ::= µa.O | C⊲F; O | C⊲F; a | O1 ¤ O2

F ::= (U ⊕B) ; pair of transformers
U ::= id | skip ; unary transformers
B ::= ⋊⋉ | seq| fst | snd| skip ; binary transformers

(a) Syntax

let A = (C1 ⊲ I1; A1) ¤ . . . ¤ (Cm⊲ Im; Am)

and A′ = (C′
1 ⊲ I ′1; A′

1) ¤ . . . ¤ (C′
n ⊲ I ′n; A′

n)

and O = (CO
1 ⊲ (u1⊕b1); O1) ¤ . . . ¤ (CO

o ⊲ (uo⊕bo); Oo)

then A ‖O A′ =
e

i=1..m, j=1..n,k=1..oCi ∧C′
j ∧CO

k ⊲bk(Ii , I ′j); (Ai ‖Ok A′
j)

¤
e j=1..m

i=1..n Ci ∧C′
j ⊲ Ii⋊⋉I ′j ; (Ai ‖O A′

j)

¤
ek=1..o

i=1..n Ci ∧CO
k ⊲uk(Ii); (Ai ‖Ok A′)

¤
e

i=1..nCi ⊲ Ii ; (Ai ‖O A′)

¤
ek=1..o

j=1..mC′
j ∧CO

k ⊲uk(I ′j); (A ‖Ok A′
j)

¤
e

j=1..mC′
j ⊲ I ′j ; (A ‖O A′

j)

(b) Interaction propagation

Figure 3.3: Composition adaptors for regular aspects
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address aspect interactions in this aspect model, either by ordering aspects that apply at a same join-
point or by conditionally execute one aspect if another one has (or has not) previously been applied.

3.4 Conclusion and perspectives

In this chapter we have presented different approaches to provide aspects with formal semantics
in order to define them rigorously and support formal and, for some of them, automatic reasoning
about properties of AO programs. We have introduced semantics and reasoning methods for aspect
languages of different expressiveness, ranging from regular aspects to turing-complete pointcut lan-
guages. Based on this foundational work on AOP, two of the most importantproblems of AOP, aspect
interaction and applicability conditions on aspects, have been addressed.Finally, we have shown that
these approaches support flexible and declarative notions of aspectcomposition that allow to resolve
aspect interactions.

Perspectives. The different approaches presented in this chapter pave the way for further studies on
various questions concerning the foundations of AOP.

Most importantly, the notions of applicability conditions and aspect composition operators that
we have introduced should be useful as a basis for a comprehensive study of modular properties
of aspects, in particular, the relationship of traditional modules (that feature strong encapsulation
properties, support separate compilation, etc.) and crosscutting functionalities. Since this is probably
the single most important issue pertaining to the foundations of AOP, we discuss it as part of the major
perspectives of our work in detail in Sec. 6.

As we have discussed our notion of aspect interactions is limited in the sense that it does not
capture interactions arising from the manipulation and use of some shared state at different execution
points. While our analysis is not amenable as is to handle correspondingmore general notions of
aspect interactions, regular aspects as well as VPA-based aspects should be well-suited to astudy of
more general interactions. Regular aspects, in particular, should be amenable to support corresponding
analyses based on model checking.

There is a large range of other classes of different expressiveness than those we have considered.
There is for instance a large class of counter automata that allow to represent many context-free
programs and some context-sensitive ones, while supporting automatic analysis of properties that are
relevant for aspects, their compositions and interactions. Furthermore, VPAs are currently investigated
by many research groups, in particular, develop more efficient analyses of their properties. Results on
these issues could be usefully integrated into aspect languages by extending the framework for formal
definition and properties presented here.



Chapter 4

Expressive aspects for component-based
and systems programming

While rigorous semantics of aspect languages and systems definitely is a fundamental and intellectu-
ally challenging problem of AOP, the development of aspect languages has always been driven by the
quest for concrete means for the modularization of crosscutting concerns. Right from the inception
of AOP as a research domain of its own, in particular through the work initiatedby G. Kiczales at
Xerox PARC [KLo97], this approach has allowed to generate wide-spread interest by scientists and
practitioners alike because of its focus on deficiencies of widely used programming methodologies
and resulting problems in the structuring of, mostly sequential, large-scale applications.

Two domains in the field of software engineering that are particularly challenging — and poten-
tially rewarding — for the application of AO methods are component-based andsystems program-
ming. Apart from the fact that both are subject to a large number of crosscutting concerns, they raise
intricate issues related to the integration of AO technology with well-established development and
programming methodologies. Component-based software development is builton the premise of the
strong encapsulation properties of software components [SGM02], which seems to contradict the use
of aspects to modularize concerns impacting large sets of possibly otherwiseunrelated components.
Expressive aspect languages are potentially useful in this context because they can potentially denote
scattered execution events while at the same time explicitly represent constraints on these events stem-
ming from the encapsulation properties of components. Systems programming on the other hand is
characterized by execution efficiency being a vital condition. This impetus has important repercus-
sions on the use of AO methods in this domain: for one, many techniques to support aspect languages,
such as delegation-based techniques, cannot be reasonably used; for another, systems programming
often disregard regular solutions in favor of more efficient but ad hoc ones. While the latter in princi-
ple argues for the use of expressive aspect languages (because they should be better suited to refer to
such ad hoc structures), the former casts serious doubts on the applicability of expressive, and possibly
costly, aspect mechanisms in the domain of systems programming.

In this chapter we present results pertaining to these modularization problemsin these two do-
mains. Regarding software components we have investigated component interfaces that include ex-
plicit protocols to address modularization problems in the presence of strongencapsulation in a precise
manner. Our work is distinguished from previous approaches by the integration of more expressive
protocols than commonly used with components. As to aspects for system-levelprogramming, we
have focused on an instantiation of the EAOP model to an aspect language for base programs imple-
mented using the C programming language. The resulting aspect language which has been integrated
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in the Arachne system is still unique in providing non-atomic aspects for C andsupporting a dynamic
weaving strategy, that is, weaving of aspects into native code during execution. Finally, the com-
position and aspect languages developed for both domains have been formally defined, yielding, in
particular, the first formal semantics for an aspect systems for C applications.

The results presented in this chapter have mostly been achieved as part ofdifferent collaborations.
Part of the work on protocols, aspects and software components has been performed in collaboration
with my former PhD student Andrés Faŕıas [Far03] and the PhD thesis by Ha Nguyen that I am
currently supervising. The instantiation of the EAOP model to the Arachne aspect language has been
done in cooperation with Marc Ségura-Devillechaise during his, now finished, PhD thesis and my
colleagues Jean-Marc Menaud and Rémi Douence from EMN.

Albeit we do not elaborate on this work in this thesis, let us briefly hint at an important relationship
between component-based and system-level programming that is essentially supported by expressive
aspect languages. Expressive aspects are, in fact, a useful tool torefactor systems applications to make
explicit the interfaces governing key functionalities of these applications. We have substantiated this
claim by developing an aspect language for the construction of component-based interfaces of system-
level code [5-MLMS04]. In this work, an aspect language allows the identification of functions that
have to be part of interfaces using temporal logic based pointcuts that quantify over execution paths
and the interfaces are defined using advice.

The remainder of this chapter presents the results in these two domains. Section 4.1 discusses the
use of expressive protocols in software components and their manipulationusing aspects. Section 4.2
discusses the main characteristics of the design and implementation of the Arachne aspect language
for C.

4.1 Components with explicit protocols

Component-based software development (CBSE) today constitutes the main approach to the con-
struction of large-scale applications. Software components support the incremental development of
large applications through strong encapsulation of software artifacts thatenables the assembly of
applications from third-party components and their execution in different deployment contexts. By
leveraging this development method to build large software systems from sets of pre-fabricated com-
ponents, CBSE promises to lift the currently still predominant artisan software development methods
to an engineering field enabling the construction of provably correct software systems from modular
units [McI68].

Technically, the main feature underlying the notion of software components is that they rely on
“contractually specified interfaces and explicit context dependencies only” [Szy98]. The absence of
implicit context-dependencies — which arise, for instance, if a component directly accesses some state
variable of another one without using a method of the second component’s interface for that purpose
— enables components to be considered self-contained entities whose composition properties can be
completely defined in terms of its interface.

Currently, most approaches to software components, in particular all so-called industrial com-
ponent platforms, such as EJB, .NET et Corba Components, employ a notionof interface that only
defines the signatures of services, i.e., their names, types of arguments and results. Such interfaces
do not make explicit the semantics of the services exposed by the interfaces: this is an important
impediment to the goal of independent provably-correct assembly of software components, because
applicability conditions for software services are easily violated, e.g., the condition that an initial-
ization has to be performed before a specific service can be called. Furthermore, basic component
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correctness properties, such as compatibility (which states that two composed components correctly
use their respective services) and substitutability (which states that a component may be used in all
contexts where another one can be used), cannot be verified, let alone more complex properties, such
as absence of deadlock. These limitations also hold for many academic component models, for in-
stance the Fractal component model [BCL+06, Fra]1 to name just one.

A well-known remedy to this lack of explicit semantic information about components are proto-
cols that make explicit constraints on admissible sequences of services. Frequently, protocols are de-
fined in form of additional specifications at the design level, for instance,using statecharts, sequence
diagrams or OCL specifications that are part of UML. There are, however, also several approaches
that integrate protocols into component interfaces on the language level, see, e.g., [PV02]. Almost
all of these approaches use finite-state based protocols, which enablescomponent-relevant proper-
ties, such as compatibility, substitutability and deadlock, to be defined preciselyand to be supported
by automatic tools, in particular through model checking. The relatively few approaches featuring
non-regular protocol languages, for instance, protocols based on symbolic transition systems [HL95],
suffer from severely restricted support for reasoning about protocol properties that is essential in a
component-based setting.

Our work in this domain has focused on more expressive notions of component protocols featur-
ing either finite-state based, i.e., regular, protocols with richer structure, non-regular protocols and
the construction and manipulation of component protocols using aspects andcomposition operators.
Concretely, we have defined a component model, Components with Explicit Protocols (CwEP) that
make explicit sets of component ids and provide concise support for certain communication patterns.
Furthermore, modularization of crosscutting concerns is supported through aspect languages that ma-
nipulate such protocols by means of protocol composition operators. A distinguishing feature of this
approach to component construction is that component properties can beinferred from interface pro-
tocols and the operators used to manipulate them; in some cases, properties ofcomponents can even
be inferred solely from the properties of the operators, i.e., independent from the argument protocols.
Furthermore, we have defined an aspect language for the manipulation ofsuch protocols and devel-
oped a framework-based implementation of this component model that integrates smoothly with the
Enterprise JavaBeans platform.

4.1.1 The CwEP model

The CwEP model has been defined in order to investigate precise means forcomponent composition
by providing components with a rich notion of interfaces consisting of three parts [Far03]: (i) a
set of services signatures, (ii) a protocol governing interactions of that component and (iii) a set of
component identities that can be used to restrict the availability of services.

The protocols of CwEP components are defined as finite-state automata whose transition labels
denote directed service names, that is, distinguish service requests fromand service calls to other
components, similar to Yellin and Strom’s seminal work [YS97]. Acceptance ofindividual transitions
may further be restricted by constraints on component identities of collaborating components. Such
constraints are expressed in terms of sets of identities that may request services or to which service
calls are issued. Furthermore, multicast communication to or from all components belonging to an
identity set can be denoted using a particular kind of transition. As we have shown, the resulting
protocols are equivalent to finite-state protocols but allow significantly more concise definitions of
certain classes of component protocols, specifically in the case of publish-subscribe style [5-FS02].

1The Fractal model includes, however, powerful mechanisms to reflect on component behaviors that allow to enrich
component interfaces by, e.g., adding protocol-enforcing behavior.
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Composition properties. Fundamental properties of component composition can be defined in
terms of interfaces. Two properties that are of particular importance in this context: compatibility
and substitutability. Compatibility is the relation between components that ensures that two compo-
nents can be used together in isolation without inducing errors, e.g., interactions between the two
collaborators are deadlock free. Substitutability is the basic relation ensuring that a protocol may be
replaced in all contexts by another one without giving rise to errors; formulated differently, replacing
the protocol still allows all services requested by collaborators to be served successfully.

Components with explicit protocols allow these properties to be defined in a fine-grained manner.
A large number of different relations between execution traces have been proposed that can serve as
a suitable basis, depending on whether only traces are only taken into account or if failures are also
considered, the expressiveness of the language used for protocoldefinitions, etc.

We have explored a definition of these two properties based on work by Nierstrasz [Nie93] who
defines notions of compatibility and substitutability in terms of traces and failures for objects hav-
ing interfaces consisting of (unrelated) sets of method signatures. We have extended his definitions
to CwEP components, in particular, accommodating directed service requests, component identities
and broadcast operations to sets of collaborating components. More recently, we have considered
compatibility and substitutability of components with non-regular protocol language [5-S̈ud05]. In
this context, protocols can use counters whose manipulation is restricted using an effect type system
that enables many context-free and even some context-sensitive protocols to be expressed [Pun99].
We have shown that our protocol language for components admits compatibilityand substitutability
properties analogous to the regular case.

Protocol construction operators. Most approaches to the definition of software components fo-
cus on programmatic means for the construction of components and compositionsfrom entities, such
as individual methods, that do not possess composition properties by itself. With such approaches,
properties of compositional systems are then ensured using analysis, verification or validation of com-
posites, that is, after system construction time. In contrast, we have aimed ata constructive approach
to composition that allows to ensure composition properties by construction of components with ex-
plicit protocols.

We have formally defined a set of component constructor and composition operations and investi-
gated to what extent these operators preserve compatibility and substitutabilityproperties of compo-
nents. In the CwEP model such operators may modify the three parts of interfaces mentioned above:
(i) they may modify the set of services offered by components (e.g., to add or disable services), (ii)
may modify the protocols governing components (e.g., by adding branches)or (iii) modify the set of
component identities governing the execution of transitions.

We have defined a set of 12 operators that are useful to manipulate theseparts. They include,
among others, a union operation on protocols that can be used to add new branches to protocols, an
insertion operation allowing to insert a protocol at a given state into anotherone, and operators that
propagate given component identities over parts of protocols. We have shown that straightforward
definitions of such operators frequently yield results which preserve component properties as far as
the set of accepted traces is concerned but yield sets of failures that are larger than necessary because
of alternative paths with common prefixes that yield to transitions with differentfailure sets whose
union is the failure set required for compatibility and substitutability properties tohold. We have
defined a technique to reduce the set of failures to the minimum necessary bydefining an equivalence
relation identifying such prefixes of equal traces [5-FS02, Far03].

Example: The resulting composition operators may observe composition properties generally
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or in some contexts only. The union operation on protocols, for instance, preserves all traces
and all failures (except for the start state) of the argument protocols, and therefore also pre-
serves component compatibility. As a second example, concatenation of two protocols always
preserves compatibility with a protocol compatible with the first argument of the composition
but never preserves substitutability because the failures in final states ofthe first argument pro-
tocol and the corresponding states of the concatenation differ.

4.1.2 Manipulation of protocols using aspects

Besides their expressiveness, component protocols are useful as abase structure to which aspects can
be applied. Through the manipulation of protocols, aspects can modularize crosscutting concerns
of components through modifications to the relationships governing service requests into and out
of a component, that is, without violating the black-box encapsulation properties of components.
This approach improves on the currently predominant approach to crosscutting in component-based
systems that apply atomic aspects to individual services, see, e.g., [DEM02, POM03, CC04].

The expressiveness of a pointcut language over protocols is, in principle, independent from the
expressiveness of the protocol language. However, it is often useful to use an aspect language to
be of equal expressiveness to the protocol language, because pointcuts can then exactly denote arbi-
trary traces generated by the execution of the protocol. Advice may be used to apply operators that
introspect and modify protocols. In particular, dynamic modifications to the structure of a protocol
(i.e., the base structure of aspects over protocols) are frequently useful, for instance, to model the
creation or closing of services of components. This last property is veryuncommon in mainstream
aspect-oriented programming: in AspectJ, e.g., modifications to the program structure via so-called
intertype-declarations cannot be performed at runtime and many aspect systems do not know base
structure modifying mechanisms at all.

We have explored aspect languages for the modification of component protocols for the cases
of finite-state and VPA-based protocols. For finite-state protocols, we have defined an aspect lan-
guage [Far03] whose pointcut language extends the regular aspects of Def. 3.1 (see page 31) by
several constructors for regular pointcuts. This aspect language includes different protocol modifying
operators from those introduced at the end of Sec. 4.1.1. The semantics of this language can therefore
be defined akin to that of regular aspects as described in Sec. 3.1.3.

However, runtime manipulations of the structure of protocols requires special attention. Unre-
stricted use of this feature easily causes semantic problems. For example, theapplication of advice
that adds a new path to a protocol can lead to non-terminating weaving if the same advice is applicable
on the newly introduced path. Apart from analyzing complete aspect and base programs for such situ-
ations, we have devised two different general solutions to this problem: (i)employ protocol operators
for which the absence of termination problems can be proved once and forall independent from the
argument protocols, (ii) restrict the weaver semantics such that behaviorintroduced by advice is not
subject to weaving. We have proven the correctness of the latter solution by a proof [9-FS04] based
on an extension of the weaver definition shown in Fig. 3.1 (see page 35).

Recently, we have started to explore aspects over VPA-based protocols[NS06], see Sec. 3.1.4.
We have shown that dynamic modifications to the structure of protocols pose similar problems as in
the regular case and can be solved using the same techniques.
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4.1.3 Industrial component models and AOP

The so-called industrial component models, such as Enterprise JavaBeans (EJBs) [Inc03] and CORBA
Components [Gro02], for distributed applications, or more precisely 3-tierapplications deserve par-
ticular attention in a discussion on aspects and components. First, crosscutting concerns are of highest
importance in these models: the EJB specification [Inc03], for instance, defines in detail how to han-
dle three crosscutting concerns — persistence, transactions and security — on around 75% of its 646
pages. Second, 3-tier applications constitute the most important application domain for AOP cur-
rently: Spring AOP [Spr], the AspectJ-like framework for atomic aspects inthe Spring framework for
the development of EJB-based applications, has a higher usage count nowadays than AspectJ.

However, the frameworks for the implementation of crosscutting concerns inthese component
models fall far short from providing satisfactory modularization mechanismsfor the concerns. As
discussed in our detailed analysis [1-NDS05], the industrial component models are subject to three
major deficiencies with respect to this modularization issue.

• Incomplete modularization

• Limited concern models

• Lack of extensibility of concern models

Enterprise JavaBeans, for instance, support the implementation of security concerns through a role-
based access control model which supports modular definition using so-called deployment descrip-
tors. However, modularization is only partial because EJBs also depend on a low-level interface for
access control whose use results in the scattering of access control instructions. Furthermore, EJBs
security model is subject to severe restrictions even in comparison to established role-based security
models [RSC+96], let alone more recent state-of-the-art approaches, such as information flow based
approaches to security [ML97]. Finally, bean developers do not haveany possibility to extend the
underlying security model.

A fair number of aspect-oriented approaches as well as approaches using based on metaprotocols
have been put forward to remove in particular the first restriction. As shown by our comprehen-
sive comparison [1-NDS05], such approaches allow to significantly improve the modularization of
crosscutting concerns while preserving compatibility with the main characteristics of the underlying
component model, in particular, their client-server architecture, black-box access to components and
container-based execution models.

The CwEP model allows to further improve the modularization of crosscutting concerns in in-
dustrial component models. Since CwEP protocols allow to express relationships between different
components in protocols, concerns can be described more concisely thanwith previous atomic aspect
systems but also the few with non-atomic features, such as AspectJ2EEremotecall pointcut [CG04].

We have proved the compatibility of the CwEP model with industrial component models through
the development of an implementation of the CwEP model that integrates smoothly withthe Enterprise
JavaBeans platform [Far03]. Concretely, this implementation augments the EJB container abstraction
by a manager component that allows runtime events to be forwarded to entity orsession beans with
explicit protocols. The latter can be implemented using a framework providing support for compo-
nent identities, implementations of the constructor and composition operators aswell as specialized
implementations of the substitutability and composability algorithms. We have shown, inparticular,
how CwEP beans facilitate the implementation of security policies in EJBs [5-FS02].
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4.2 Expressive aspects for system-level applications

A second major focus of my work on expressive aspect languages forsequential programs, has been
aspect languages for applications written in C and C++. This work has been motivated by the ob-
servation that many crosscutting concerns of system-level applications, for instance manipulations of
communication protocols in networking applications or low-level access to datastructures, benefit
from a non-atomic aspect model [5-DFL+05, 3-SDML+06].

While the importance of non-atomic relationships on the aspect language levelfor system-level
programming has been discussed in 2001 [CKFS01], no aspect systems have provided language sup-
port for such relationships and corresponding weaver technology prior to our work. The other ap-
proaches for aspects in C-like languages, most prominently Aspect-C++ [SGSP02], feature an atomic
pointcut language essentially transposing the AspectJ aspect model. Theyare therefore subject to the
problems introduced in Chap. 2.1 regarding the concise formulation of non-atomic crosscutting rela-
tionships. Furthermore, none of these system has been given a formal semantics in order to precisely
investigate aspect properties.

We have realized a non-atomic aspect model by extending the Arachne system for AOP in C into
an instantiation of the EAOP model. The original Arachne system (initially developed under the name
µDyner [SDMML03]) offered an atomic aspect model (as usual, cflow relationships notwithstand-
ing). It marks an interesting design point within the space of aspect languages and implementation
mechanisms that sets it apart, for instance, from typical Java-based aspect systems because it features
dynamic weaving of aspects into executing, i.e., native, C code. Dynamic weaving into C applications
is often useful for system-level applications because it allows applicationsto be manipulated without
access to their source code and without stopping them, i.e., without incurringdowntime, which is
particular important in widely-used server applications. However, weaving into native code imposes
strong restrictions on the language and the implementation level. On the languagelevel, certain base
program entities that are easily accessibly as part of aspect systems thatweave into source code, for
instance Aspect-C++, cannot be accessed during execution of nativecode: this is the case, for in-
stance, for variables that are local to nested blocks in the source code.As far as execution support
is concerned, only very small runtime overhead, in particular due to weaving, is typically tolerated
for system-level applications. The original Arachne implementation weaved new calls to C-functions
with an overhead of a factor of around 2 compared to plain C function calls,relative overhead which
was 10–25 times smaller than that of typical dynamic aspect systems for Java.

We have therefore designed and implemented an instantiation of the EAOP modelthat adds finite-
state based pointcuts for C programs to Arachne’s initial aspect model whilepreserving its perfor-
mance characteristics. In the remainder of this section, the major language and implementation issues
are presented as well as our approach to giving formal semantics for theextended Arachne system is
presented.

While we do not detail this work here, let us note that the resulting system hasbeen applied to
the problem of modularization and dynamic evolution of medical image generationsoftware for, e.g.,
tomographs, in the context of a cooperation with Siemens AG, Munich, Germany [5-FSS+05].

4.2.1 Expressive aspects for C: language and implementation

Originally, the Arachne approach featured an aspect language providing a set of primitive pointcut
constructors to match function calls, accesses to global variables, and to test for control-flow relation-
ships. Advice allowed to call arbitrary C functions defined as part of aspects or in the underlying base
applications.
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seq( call(void∗ malloc(sizet)) && args(allocatedSize) && return (buffer) ;
write(buffer) && size(writtenSize) && if(writtenSize> allocatedSize)

then reportOverflow(); ∗
call(void free(void∗)) )

Figure 4.1: Buffer overflow detection aspect in Arachne

We have extended this aspect language by two features: finite-state based aspects and aliases to
global variables. The former allows to match sequences of primitive pointcuts and enable information
to be passed from the different constituents of a sequence to an advice.The latter provides access
to a class of local entities in C programs that are frequently used in system applications and that, in
contrast to local variables, can be accessed and manipulated during execution of native code using
standard runtime systems.

A direct approach to implementing non-atomic aspects by interpreting finite-statebased pointcut
definitions as introduced earlier in this thesis by regular aspects and implemented, for instance, in the
CwEP approach, is not appropriate in the context of dynamic weaving of Capplications for different
reasons. First, in order to be able to manage variable references appropriately, sequences must have
unambiguous start steps. Nested regular pointcuts and aspects may also give rise to ambiguities that
impeded the correct management of variable references.

For these reasons, we have defined a limited notion of regular aspects thatpermits to accommodate
the variable references manageable on the level of native code. Theselimited regular aspects are
called “sequence” aspects in Arachne, noted the constructorseq, because of how they are typically
used. Sequences start with a disjunction of primitive aspects, i.e., function call or variable access
pointcuts, may be followed by a number of disjunctions of primitive pointcuts that may be arbitrarily
often repeated and terminate with a single disjunction of primitive aspects. A pointcut at any step in
the sequence may trigger advice consisting of a single function call.

Example: Figure 4.1 shows an example aspect for buffer overflow detection defined in the
resulting aspect language. It defines a sequence of three steps that match calls for allocation,
repeated write operations on buffers, and a call to deallocate buffers,respectively. At allocation
time, the size of the allocated memory is recorded and compared with the size of data written
at the second step. If more data is written than has been allocated an overflow is reported by
applying the advice that follows the keywordthen. Here, the pointcutwrite(buffer) matches
accesses to global variables as well as aliases to those variables.

The sequence aspect construct has been implemented using a list that linksinstructions on the
native code level that correspond to successive steps in the sequence. Once a step is matched and the
corresponding advice executed (if there is one), a residue computation updates the list to reflect even-
tual changes in the instructions belonging to the sequence, e.g., introducingback edges if a sequence
step can be repeated. Using this implementation approach, the cost for sequence aspects is propor-
tional to the number of steps in the sequence and is circa three times more costly than corresponding
sequences of plain C calls [3-DFL+06]. Accesses to data are comparatively very costly during exe-
cution of native code because they require complete memory pages to be locked and corresponding
handler code to be executed. Our implementation performs these different steps with an overhead of
approximately 9700 processor cycles (compared to 1 processor cycle for a plain C access), almost all
of which is, however, due to page locking, a requirement any dynamic weaver for C is subjected to.
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seq( p1 then f1;
p2 then f2; [ ∗ ]
p3 then f3; )

≡

µa1. Cp1 ⊲ f1;
(a1 || µa2. ( Cp3 ⊲ f3; STOP )

¤ Cp2 ⊲ f2;a2)

Figure 4.2: Definition of sequence pointcuts

4.2.2 Formal semantics

A second open question we have addressed as part of our work on theArachne system is the ques-
tion how to give formal semantics to such systems in order to foster better understanding of aspect
systems in this domain and support reasoning about them. In addition to the challenge of defining a
semantics at a high level of abstraction, a specific challenge of C-based programs consists in certain
idiosyncrasies pertaining to the C-based compilation schemes. The use of macros as integral part of
C programs, into which Arachne aspects are compiled, in particular, has to be accounted for.

We have addressed these challenges by defining to different formal semantics for the Arachne
system:

• A high-level semantics [5-DFL+05, 3-DFL+06] defining the main features by a translation
of Arachne’s aspect language into an extension of the language for regular aspects shown in
Fig. 3.2 (see page 34).

• An implementation-level semantics [3-DFL+06, Fri05] defining the weaving of Arachne as-
pects by a source-to-source transformation of base applications into woven programs that are
expressed as C programs.

High-level semantics. The high-level semantics abstracts from all implementation issues relating
to the Arachne’s weaving strategy of aspects into executing native code.In return, it defines the main
properties of Arachne’s aspect language in very concise and well-understandable form. Concretely, it
extends the language of regular aspects by allowing the use of parallel combinations of aspects in the
scope of the sequential operators (repetition, choice and sequence).

Figure 4.2 shows the definition of sequence aspects [5-DFL+05] that makes explicit three impor-
tant properties. First, it defines that a new instance of the sequence is created as soon as a match for
the first primitive pointcutp1 is found by looping ona1 in parallel to the on-going match onp2 that
is performed by the original instance of the sequence aspect. Second, an aspect instance is terminated
(by the primitive aspect STOP) after the last sequence step has been executed. Third, repetitive steps
(i.e., steps in the scope of the ‘∗’ operator) yield control to the following step, if both the pointcuts of
the repetitive step and the following step match (this follows from the fact that the first argument of
the choice operator¤ of regular aspects has priority over the second one).

This semantics allows equational reasoning to be applied in order to manually proof equivalences
between aspect expressions [3-DFL+06]. The third property of the sequence aspect mentioned above
can, in fact, be proven using induction of the steps of a sequence.

Implementation-level semantics. The high-level semantics above abstracts from all implementa-
tion details, in particular, the C code generated by the Arachne compiler (thatis then compiled by
the gcc compiler), Arachne’s runtime libraries and its weaving strategy (thatis essentially based on
rewriting of native code). A precise definition of these phases is necessary to establish the correctness



CHAPTER 4. COMPONENT-BASED AND SYSTEMS PROGRAMMING 54

SA: SequenceAspect7−→INT 7−→CG∗

SAJseq(AspPrim AspSeqElts AspSeqElt)K(n) =
let x = NUMJAspSeqEltsK(2)

v = concat(VARsJAspPrimK,
concat(VARsJAspSeqEltsK,VARsJAspSeqEltK))

in defineAliasAccess(n,LACCsJAspSeqElts AspSeqEltK(n,1),v,x-1)
PAsJAspPrimK(n,0,v)
STEPsJAspSeqElts AspSeqEltK(n,1,v)
createSequenceAspect(n,x,v);

Figure 4.3: Implementation-level semantics: definition of sequence aspects

of the Arachne system, for example, in the presence of optimizations performed by the gcc compiler
that may in-line function definitions but that conflict with the same function beingused as jump targets
for the rewriting strategies of the Arachne weaver.

In order to prove, at least in principle, the feasibility of the formal definitionand correctness proof
of the entire Arachne system (modulo the correctness of third-party tools such as the gcc compiler
and the object file linker that are used as part of the Arachne tool chain)we have developed a com-
plete formal semantics for Arachne’s aspect language that allows reasoning over the Arachne com-
pilation phase. This implementation-level semantics [3-DFL+06, Fri05] is defined as a denotational
semantics [Sto77, Sch86] whose valuation functions map Arachne aspectexpressions to a domain of
sequences of code generation functions. These code generation functions yield the exact C code that
is generated, compiled and executed as part of the Arachne tool chain. They define symbolic refer-
ences into the base code that are resolved at weave time to interface with Arachne’s runtime rewriting
libraries.

The well-definedness of the denotational semantics is straightforward to establish because of the
rather simple domain structure of sequences of code generation functions: (i) the code generation
functions that are produced may not be removed from such sequencesafterwards, thus lower and
upper bounds of different elements in the result domains are straightforward to define in terms of
lattices over sequences; (ii) all definitions in the semantics that repeatedly add entries to sequences of
code generation functions only use bounded, i.e., terminating, algorithms.

Figure 4.3 shows a typical excerpt of the implementation-level semantics that defines the seman-
tics of sequence aspects as the valuation functionSA yields the corresponding sequence of code
generating functions based on the number of elements in the sequence (which is statically known).
The result sequence consists of two groups of functions: a function producing initialization code and
functions generating output for all steps in the sequence. Concretely, the initialization part (here per-
formed by the functiondefineAliasAccess) sets up the reference to the base code mentioned above
that, in particular, initializes the access to local aliases, and the three remainingexpressions return the
code for the sequence steps.

By successively replacing all non-terminals in the denotation of an aspectexpression using the cor-
responding valuation functions, the implementation-level semantics allows to generate the exact code
produced by the Arachne compiler (for an example of the rather lengthy resulting C code, see [Fri05],
Sec. 4.2).

While this semantics provides a complete definition of Arachne’s compilation scheme - and there-
fore contains definitions that are as detailed as its implementation itself - it does soby meeting two
important characteristics. First, through a hierarchical design, it provides high-level abstract as well
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as low-level detailed definitions. Second, it supports equational reasoning because of its pure func-
tional nature. We have applied this last property, for instance, to prove that the Arachne implemen-
tation effectively observes the property of sequence aspects mentionedabove in the context of the
high-level semantics: that occurrences of join points matching the initial step of a sequence triggers
creation of a new sequence instance without influencing the matching process governed by existing
instances. Finally, we have derived performance characteristics of theArachne implementation from
the implementation-level semantics.

4.3 Conclusion and perspectives

In this section we have shown that expressive aspect languages based on the EAOP model provide
appropriate means for the modularization of complex crosscutting concernsin sequential applications,
both in the domain of component-based software engineering, which has been targeted by quite a large
number of AOSD approaches, but also the domain of system-level applications, for which support
using AOP has not yet been deeply explored.

Software components, which currently are the main structuring mechanism for large-scale appli-
cations, should benefit much from AOP, because of its prevalence of crosscutting functionalities. As
we have discussed most approaches only address the manipulation of interfaces of existing compo-
nent models, in particular of industrial component platforms, without explicitsupport for composition
properties. In contrast, we have advocated an approach to AOP for components that enables compo-
sition properties to be investigated formally and partially be ensured by construction even in presence
of component-modifying aspects. Technically, this has been realized by relying on protocols to make
explicit in interfaces properties of the semantics of components. Aspects are then used to modify
these protocols. This permits to investigate the influence of aspects on component properties as well
as component-specific properties of aspect weaving. Finally, as we have shown that such an aspect
system can be smoothly integrated in industrial-strength component platforms.

The second class of modularization problems we have discussed, system-level applications im-
plemented using the C language, poses different challenges than concerns for software components.
First, dynamic weaving of aspects into executing native code imposes strongrestrictions as to the
base language entities that can be referred to in aspects. Second, execution speed is crucial, which
precludes the usage of interpretative execution techniques and, generally, requires aspect weaving and
execution to be implemented with very small overhead. We have developed an aspect language for C
featuring finite-state based pointcuts and aspects, devised a corresponding implementation with small
overhead, and defined how to treat the resulting aspect system in a formal way.

Perspectives. This work offers a number of perspectives. It provides means, in particular, to ad-
dress a general problem of software components that is particular critical for the modularization
of crosscutting functionalities: striking a compromise between black-box andwhite-box access of
software components. While software components are most frequently be defined as black-box en-
capsulation entities, the need for white-box or gray-box software composition mechanisms is well
established [Aßm03]. However, the unstructured access of componentimplementation, in particular
using aspects, defeats theraison d’̂etreof components by breaking fundamental encapsulation prop-
erties. Aspects over component protocols essentially provide a black-box model but can naturally
achieve gray-box like behavior by representing and manipulating additional information about the
implementation of a component on the protocol level. More prospectively, thisapproach promises
to contribute to a general integration of encapsulation mechanisms, including software components
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but also modules, by generalizing the currently emerging proposals, e.g., Aldrich’s notion of open
modules [Ald05]. This lead of further work is discussed in more detail in Sec. 6.

As to the handling of system-level applications, our results prove that expressive aspect mecha-
nisms can be used even in restrictive execution contexts. The Arachne aspect language currently still
is, however, subject to several restrictions, e.g., concerning accessto structured and local data that
should be lifted. Our work has already fueled corresponding research, for instance on the inclusion
of pointcuts enabling access to C-style records by Yanagisawa et al [YKCI06]. A second important
lead of future work consists on the application of the techniques we have developed for C, an imper-
ative language, for object-oriented languages used for system-level programming, in particular C++.
While we have shown how the Arachne aspect model (regular aspects including) can be transposed
into C++ [5-FSS+05], much work remains to be done to fully explore which language mechanisms
involving OO abstractions, such as late binding in the presence of C++’s multipleinheritance, can be
reasonably applied as part of a strategy of dynamic weaving into native code. Finally, the potential
synergies between AO languages defined based on source-to-source weaving of system-level applica-
tions [CKFS01, SGSP02, 5-ÅLS+03] are another prime target for future efforts. Hybrid approaches
that combine aspect weaving at compile and runtime promise, in particular, to beuseful to lift the
restrictions of runtime weaving mentioned above.



Chapter 5

Aspects for explicit distributed and
concurrent programming

Distributed (and to a minor degree concurrent) applications should constitutea prime target for AOP
methods: they are typically large, abound of crosscutting concerns and represent a large share of
all practically relevant applications. In fact, two of the very first aspectlanguages, COOL and RIDL,
developed by Christa Videira Lopes [Lop97, KLo97], respectively provided means for the modulariza-
tion of mutual exclusion of concurrent activities and data transfer in distributed applications. Her work
on explicitly distributed and concurrent aspects has been followed up onlyby very few approaches,
most notably by the remote pointcuts for distributed AO programming introduced by Nishizawa et
al. [NCT04].

In contrast, there is a large number of approaches that apply AOP techniques to distributed pro-
gramming by using sequential aspect languages to manipulate platforms for distributed application
development. Our approach of AOP over components with explicit protocolsdescribed in Sec. 4.1
belongs to this category, because distribution issues are left implicit (although component identities in
protocols can be used to model, e.g., distribution domains). This is also the casefor the numerous aca-
demic approaches (e.g., [CC04, DEM02]) as well as AOP frameworks, such as Spring AOP [Spr] and
JBoss AOP [JBoa], for the modularization of functionalities in EJB-based distributed applications. Fi-
nally, the situation is very similar as far as concurrency is concerned: sequential aspect languages are
overwhelmingly used to manipulate frameworks for concurrency, as recently exemplified by Cunha et
al.’s [CSM06] who use AspectJ to improve the modularity of concurrent algorithms implemented
using the concurrency library of Java5.

These approaches fall short with respect to the two main characteristics that guide the present
study: declarativeness of aspect definitions and support for reasoning about properties of aspects.
They are not declarative mainly because they do not allow to directly express essential relationship be-
tween distributed and concurrent entities. Spring AOP and JBoss AOP, for instance, follow AspectJ’s
atomic aspect model and thus do not allow, for instance, to directly expressrelationship between
functionalities involving clients and servers but require them to be broken down in distinct aspect def-
initions manipulating both separately. It is well-known that such aspect systems that do not allow to
quantify over different distributed entities in a distributed systems do not allowto concisely express
distributed systems [SLB02]. Furthermore, as in the sequential case, such atomic aspect definitions re-
quire the use of non-local state, thus severely hindering reasoning about aspects. The need for explicit
and more declarative pointcut and aspect definitions for distributed programming is therefore widely
acknowledged. However, this problem has only very partially been addressed: in the context of 3-tier
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architectures, for example, almost no support on the aspect language support has been proposed, a
notable exception being Cohen et al.’s “tier-cutting pointcuts” [CG04] that introduce a limited from
of quantification involving events at the client and server side.

Our approach to address these deficiencies harnesses two characteristics. First, explicit repre-
sentations of relationships among distributed and concurrent entities on the pointcut level through
finite-state based pointcuts. Second, the use of domain-specific abstractions on the pointcut and ad-
vice levels to reference and manipulate distributed and concurrent systems. Regarding distributed
programming, the language and system of Aspects With Explicit Distribution (AWED) enables ref-
erences to remote events in pointcuts and the synchronous or asynchronous remote execution of code
as part of advice. As to concurrency, our recent results on Concurrent Event-based AOP (CEAOP)
allow pointcuts to be defined in terms of multi-party rendez-vous synchronization à la CSP [Hoa85]
and enable synchronization of aspects and base programs using explicitsynchronization operators
over (parts of) advice. Both approaches therefore allow non-sequential programs to be defined in
a much more concise and declarative manner than with sequential AOP approaches. The AWED
system furthermore has been implemented using a state-of-the-art Java based weaving and execution
infrastructure yielding execution overhead close to a comparable hand-written, optimized RMI-based
implementation. The CEAOP language, on the other hand, supports the verification of properties of
coordinated concurrent aspects, for instance absence of deadlock, using model checking techniques.

The approach to distributed programming presented in this chapter has beendeveloped in the
context of the PhD of Luis Daniel Benavides Navarro I am supervising and Wim Vanderperren from
SSEL group at Vrije Universiteit Brussel. The notion of concurrent aspects is the fruit of a cooperation
with my colleagues Jacques Noyé and Ŕemi Douence from EMN.

In the following we give a detailed account of the AWED aspect language and system in Sec. 5.1.
We describe the CEAOP approach more succinctly in Sec. 5.2 by briefly presenting its main charac-
teristics and discussing synergies between aspects for explicitly concurrent and distributed programs.

5.1 Aspects with explicit distribution

Distributed programming poses several new challenges for AOP comparedto sequential program-
ming. Crosscutting concerns depend on execution events occurring as part of the execution of dif-
ferent distributed distributed entities (tasks, machines, cluster in LANs, subsystems of grids, etc.).
Their modularization typically involves the execution of actions on several machines at once. Aspects
have to manage distributed state, in particular, when state has to be passed from machines on which
execution events have been matched to machines where actions have to be executed.

These challenges translate into different distribution-specific requirements for abstractions on the
aspect language level:

• Pointcuts must be able to denote remote execution events.

• Advice should support triggering of remote actions.

• Aspects ought to provide mechanisms to manage internal state that may be shared or distributed.
Furthermore, they should support different parameter passing modes for state of the base pro-
gram and aspect-internal state that is referred to in pointcuts and used in advice.

The resulting aspect language should, in particular, be expressive enough to allow abstraction from
auxiliary entities of distributed systems, such as proxies, in favor of directmanipulation of the corre-
sponding remote entities.
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Aspect languages for distribution also require specific execution support. Most fundamentally,
runtime support for aspects in distributed systems need mechanisms to propagate remote execution
events between sets of sites, thus typically favoring multicast-based communication instead of point-
to-point communication. Second, aspect mechanisms often require aspect-specific information to be
passed between distributed entities that cannot be transmitted transparently using implementation-
level abstractions in existing platforms for distributed programming. This is the case, for instance,
in the case of call stack information that has to be passed between machines inorder to implement a
distributed cflow pointcut. Third, some aspect mechanisms, such as advice execution on remote hosts,
calls for advanced execution mechanisms, such as code mobility rather than standard remote method
invocation. Code mobility is, however, not (or only rudimentarily) supportedon common implemen-
tation platforms. Finally, it is unclear how distributed aspect runtime systems canbe optimized, in
particular whether optimization techniques for aspects developed in the sequential setting carry over
to, or are even meaningful in, the distributed case.

The approach of aspects with explicit distribution (AWED) that we have developed provides a
first set of solutions to these language-level and implementation-level issues and procures evidence
that the resulting approach to the modularization of distributed systems effectively enables the concise
definition of distributed crosscutting concerns. In the following we give anoverview of the AWED
aspect language and discuss how we tackled the implementation challenges mentioned above.

5.1.1 Language

The AWED language [5-BNSV+06a, 5-BNSVV06] directly addresses the three requirements for
aspect languages for distributed programs introduced above.

Pointcuts may refer to remote execution events in a variety of ways, most basically by restricting
matches of joinpoints to individual or groups of hosts. Host groups can be manipulated as first-class
entities on the language level. Moreover, control-flow dependent and finite-state based pointcuts may
match joinpoints occurring on different hosts.

Advice can be executed on (groups of) remote hosts. If an advice is to beexecuted on multiple
hosts, the order of execution on these hosts can be specified explicitly. Advice can be defined to ex-
ecute in a synchronous as well as asynchronous manner to the base execution. The synchronization
mode also governs the execution of different advice that apply at the sameexecution event. Data
dependencies between advice and the base program (or among advice that are simultaneously ap-
plied) are managed following a by-need synchronization policy realized using futures [HJ85, PSH04].
Advice is also used to dynamically register hosts with or remove hosts from host groups.

Figure 5.1 illustrates the main features of the AWED pointcut and advice language. Remote
pointcuts may relate execution events on different distributed entities as illustrated by the solid di-
rected path. Advice execution may be flexibly defined from the perspective of the (grayed) local host,
i.e., the host on which the aspect is located (and where matching of the pointcut has been started):
as illustrated by the dashed arrows advice may be executed on the local host, the host where pointcut
matching has started, specific hosts (identified, e.g., by their IP address) or groups of hosts.

Aspects, finally, can be distributed through specific deployment specifications that allow to define,
in particular, their state sharing properties. Aspects may be deployed — thatis, their local state
allocated — on single machines or globally within a network. Aspect state is by default encapsulated,
it can, however, be explicitly shared among explicitly defined sets of instances of an aspect that are
located on specific or groups of hosts.

Example: As a simple example illustrating the use of AWED, let us consider how to resolve
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Remote pointcut

on(localhost)
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on(123.34.7.9)

on(Group)

  

Figure 5.1: Remote pointcuts and advice

all aspect {
2 pointcut distribution(Facade f):

target(f) && call(* *(..)) && !host(ServerAddr)
4 && on(ServerAddr);

6 syncex Object around(Facade f): distribution(f) {
return proceed(f.getInstance());

8 }
}

Figure 5.2: Distribution as an aspect
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the basic problem that has been identifiede.g. by Soares et al. [SLB02] as a main issue for
distributed programming with sequential aspect systems: serving a requestfrom a client, which
is performed through a call to a facade object of the server on the client host by a server on an-
other site in a distributed system. In AWED, this execution pattern can simply be implemented
by the aspect shown in Fig. 5.2, which is deployed on all sites in the system (as specified by
the keywordall). The pointcutdistribution matches all calls to facade objects on hosts
different from the server host (termhost) and executes the corresponding advice on the server
(termon)1. The advice is synchronously executed once the pointcut matches and executes the
corresponding server method, which is passed the concrete facade ofthe server through which
the call has been made (e.g., in order to distinguish different server interfaces).

In order to close this short overview of the distribution features of the AWED language, let
us recall the example of replicated caching shown in Fig. 2.4 (see page 17). Besides a simple
use of finite-state based sequences, it also illustrates the use of host groups to succinctly denote
sets of hosts of interest: in the example all hosts belonging to the cache can bequantified upon
using the groupcacheGroup.

5.1.2 Implementation

The AWED system also provides first answers to the implementation issues raised by aspects in dis-
tributed systems that have been introduced above: support for matching of remote events, management
of distributed state relevant to aspects, transparent passing of information for pointcut mechanisms,
multicast communication, code mobility and optimization of aspect execution in distributed systems.

Instead of implementing AWED ex nihilo, its implementation has been based on JASCO [SVJ03,
JAs], a dynamic weaver for sequential AOP of Java-based applications. Apart from the obvious obser-
vation that distributed aspects subsume support for sequential aspects,this choice has been motivated
by several features of the JASCO system that were directly suitable for extension to the distributed
case. Most importantly, execution events are reified in the JASCO runtime system and passed via
connectors (that may provide aspect composition functionality) to aspects.Connectors are stored in
connector registries in order to enable dynamic addition/removal of connectors and aspects. Repli-
cating this infrastructure on the nodes of a distributed system has proven toyield an efficient runtime
infrastructure for distributed aspects. The AWED implementation, see [5-BNSV+06a, 5-BNSVV06,
AWE], which is publicly available as a module of the standard JASCO distribution, installs a connec-
tor registry on each host where an aspect is deployed and propagatesjoinpoints among them as needed.
Second, JASCO integrates support for sequential finite-state based pointcuts and aspects [VSCDF05]:
the AWED implementation generalizes these to distributed finite-state based pointcuts.

Besides extending features of the original JASCO system to the distributed case, the different is-
sues specific to AOP for distribution have been realized within the AWED implementation by harness-
ing extension mechanisms of the Java platforms, by resorting to Java-basedcommunication libraries
or by means of AWED aspects themselves. Concretely, transparent information passing required for
control-flow and sequence pointcuts has been implemented based on Java’s mechanism of customized
sockets by extending techniques proposed generally for distributed programming in Java [PSH04] and
for AOP in particular [NCT04]. Multicast communication that is necessary for, for instance, the prop-
agation of joinpoint representations to the hosts mentioned in different branches of a finite-state based
pointcut and to advice that is executed on multiple hosts, is realized using the JGroups communica-

1Note thaton(h) terms appear in pointcut declarations because it is semantically be definedas a predicate that restrict
pointcut matches to contexts in which advice can be executed onh.
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tion library [JGr]. Remote advice execution is realized by activation of deployed aspects that refer to
remote state if necessary, essentially a form of weak code mobility [FPV98] that minimizes transfer
of runtime state. Finally, two features are implemented using AWED aspects themselves: sharing of
state among aspects and parameter passing between constituents of (e.g., finite-state based) pointcuts
as well as between pointcuts and advice.

Performance considerations. The AWED system is implemented by specialized code for AO and
distributed functionalities that makes extensive use of the JASCO implementation, the standard Java
platform and third-party extensions of the Java platform, such as the JGroups library. This raises
the question how it compares to alternative implementation strategies with respectto execution ef-
ficiency. Generally, the efficiency of software systems typically is evaluated by benchmarking them
against comparable systems, by macro-benchmarks (determining the overhead they induce in reason-
ably sized applications) and micro-benchmarks (determining the overhead of small execution patterns
implemented with and without the technology of interest).

Since there is no system for aspects with features for explicit distribution whose set of fea-
tures comes close to AWED, we have run microbenchmarks and compared AWED implementa-
tions to functionally and distribution-wise equivalent hand-optimized implementations using RMI
only [9-BNSV+06b]. These evaluations have revealed a small but non-negligible performance over-
head of a factor of 1.5–4 for AWED compared to a plain Java implementation. However, a closer
analysis of the performance bottleneck has shown that almost all of this overhead stems from use of
the JGroups library for multicast communication: JGroups provides a communication model that by
default is generic and can accommodate different transport protocols as well as different communica-
tion policies (such as resending lost messages until transfer succeeds). While we plan to exploit this
feature (see the discussion of perspectives at the end of this chapter), an implementation of multicast
communication that is specialized to our current needs would almost entirely eliminate overhead of
AWED compared to a hand-optimized RMI implementation.

Finally, it is interesting to note that AWED is fully compatible with the sophisticated optimization
mechanisms that are part of the JASCO system. JASCO uses two specialized optimizing modules for
pointcut matching and the integration/removal of aspects during runtime [VS04]. The implementation
of the AWED system has been carefully designed not to impair these optimizations, e.g., by ensuring
that communication does not interfere with these optimizations.

5.2 Coordination-centric concurrency control using aspects

Much like distribution, concurrent execution of activities frequently crosscuts base functionality. Fur-
thermore, concurrency control is often performed by following a numberof well-defined concurrency
patterns using well-known concurrency primitives [Lea96]. As in the distributed case, this argues for
the use of a domain-specific aspect language for coordination of concurrent activities. Unlike dis-
tributed programming, concurrent programming is frequently modeled as coordination between a set
of different activities of equal status. Such a coordination-centric perspective does not fit well with ap-
proaches to concurrent programming that employ aspects to introduce callsto concurrency primitives
into a base application that is not concurrent.

Example: Consider, for example, an e-commerce scenario in which updates to client views
on the product database are introduced using aspects. Such updates may involve operations
which influence or not an on-going transaction of a client. If they do they should probably



CHAPTER 5. DISTRIBUTED AND CONCURRENT PROGRAMMING 63

be performed in a synchronous manner to transactions so that clients are guaranteed to get
updates as soon as possible, otherwise they may be performed concurrently to transactions. A
coordination-centric approach permits to directly express that the aspectfunctionality, i.e., view
updates, should be performed concurrently or not with the transactions,rather than express that
low-level synchronization operations should be executed at specific execution events.

However, almost all existing approaches to AOP for concurrency control (including those by
Lopes and Cunha cited in the introduction to this chapter) belong to this class. In contrast, a coor-
dination-centric approach to concurrency control with aspects allows to directly express arbitrary
functionality modularized using aspects with a base application as well as with other aspects. In the
following we first detail the main features of such an approach to concurrent aspects and then sketch
our first results on a corresponding aspect system, Concurrent EAOP.

5.2.1 Abstractions for AO concurrency control

Concurrency control through coordination of aspects and base programs most prominently relies on
an appropriate notion of the entities of aspects that areunits of concurrencyand with respect to what
events of the base execution these units can be synchronized with. We have explored coordination
expressed directly terms of the abstractions provided by aspect languages. Pointcuts may be matched
concurrently, e.g., independently during execution of concurrently-executing threads of the base pro-
gram. AspectJ-style advice provides useful abstractions for synchronization of base programs and
aspects: after advice, for instance, may be executed in sequence or concurrently with the base execu-
tion following the joinpoint whose match triggers the execution of the advice. Around advice allows
for more flexible synchronization patterns because parts of around advice may be synchronized inde-
pendently. Before advice, in contrast, can only be executed in a sequential manner before the matching
joinpoint.

Once a well-defined notion of entities of aspects that can be synchronizedhas been defined, exist-
ing formalisms for concurrency, for example one of the numerous process calculi for concurrency, can
be employed as a basis for language support to coordinate the concurrent execution of these entities
and the base program. The coordination language for concurrent entities must be complemented by a
corresponding weaver definition. This proceeding promises to enable formal reasoning about concur-
rent aspects by harnessing properties of the underlying concurrency formalism, provided that there is
a suitable formal weaver definition.

Since such language support expresses coordination between entities explicitly, it is possible to
define composition operators that provide abstractions of concurrencypatterns on top of basic AO
concurrency control mechanisms. Such composition operators can be used, in particular, to define the
synchronization of the concurrent entities of several advice that applyat the same joinpoint. This way,
composition operators address, in particular, the problem of interactions of concurrent aspects.

Furthermore, such a notion of concurrent system can be implemented usingconcurrency abstrac-
tions of mainstream programming languages, because it relies only on simple synchronization opera-
tions to be weaved around the entities of concurrent execution.

Finally, let us note that such a model instantiates the EAOP model as introducedin Sec. 2.4 in that
it supports expressive aspects at the language level, reasoning about properties of AO programs and
mechanisms for explicit aspect composition.
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5.2.2 Concurrent Event-based AOP

The model of Concurrent Event-based AOP (CEAOP) [5-DLBNS06, CEA], which we have recently
proposed, realizes a coordination-centric AO approach for concurrency in the sense above.

Units of concurrency. Units of concurrency are defined as outlined above: pointcuts can be matched
on different threads simultaneously and parts of advice can be synchronized with the base execution
and one another.

Before and after advice can be synchronized as discussed above. The most interesting case, around
advice, deserves further explanation. Around advice can call the base functionality whose matching
has triggered the advice using the special methodproceed. Advice that callsproceed is structured
in three execution segments: the segment before the call toproceed, the execution of the base func-
tionality represented by the call itself and the segment after the call. These three segments give
rise to different quite natural coordination strategies: the before segment has to be executed before
the matched base functionality is executed, but the after segment may be executed synchronously or
asynchronously with the base execution following the matched joinpoint.

In the case of different advice that apply at the same joinpoint, richer coordination strategies can
be defined. In sequential languages following the AspectJ model, several advice are totally ordered
and the before and after segments of around advice are executed in a nested fashion. In the concurrent
case before (after) segments of different advice may be executed in a concurrent or sequential manner.

Around advice in AspectJ can call base methods multiple times using calls to the special method
proceed. The corresponding segments before, between and after calls toproceed are potential
concurrent entities. However, there are two technical difficulties. First,segments between calls to
proceed cannot be unambiguously mapped to base functionality with which it should be executed in
a sequential or concurrent manner. Second, how should around advice be coordinated with the base
execution in the case of replacement advice, i.e., the advice-triggering base method is never called.
These two issues have been addressed as follows: (i) CEAOP admits only one call toproceed; (ii)
if the base functionality is not called, the keywordskip has to be used to mark the occurrence of the
triggering base method relative to the around aspect.

Language: concurrent aspects and their composition Concurrent aspects in CEAOP are defined
based on the formalism Finite State Processes (FSP) [MK99]. FSPs allow concurrent processes to be
defined in terms of finite-state transition systems. CEAOP pointcuts correspondto such FSP automata,
while advice is associated to individual transitions in this automata. The resultingcore aspect language
therefore is similar to the language of regular aspects, see Fig. 3.2, with the main exception that advice
is structured in before and after segments that are separated by a call to either proceed or skip as
described above.

Similar to regular aspects (cf. Sec. 3.3), CEAOP provides language support for aspect composi-
tion. In the case of CEAOP, these operators allow to coordinate differentsegments of advice that apply
at the same execution event among another or with the execution of the base functionality. Such an
operator can, for instance, execute all before segments of all advice applying at one execution event in
a nested sequential fashion and execute all corresponding after segments concurrently. Formally, the
composition operators are defined as FSP processes. They realize a wide variety of basic concurrency
patterns that can be combined freely to implement sophisticated coordination strategies of concurrent
activities.
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Weaving of concurrent aspects and property support. Weaving of CEAOP aspects is formally
defined by a transformation that maps aspects built from FSP expressions, inserted advice definitions
and composition operators into FSP process definitions.

The weaver instruments the base program, aspect expressions and composition operators with
synchronization events that correctly “implement” the coordination strategy defined by the concurrent
aspect program. Basically, synchronization events are introduced to delimit the units of concurrency,
i.e., segments of advice and base instructions corresponding to matched joinpoints. Composition
operators are defined such that their synchronization events can be identified with those of aspects and
the base program and thus apply the coordination strategy embodied by the composition operators to
its argument aspects. Technically, the main issue for this approach is to define an instrumentation that
introduces synchronization events that do not cause erroneous interactions between different aspects
and composition operators, all of which are defined independently from each other. Such interactions
are all too common in approaches like FSP where processes are synchronized that wait for events of
the same name.

Since base programs, composition operators and the weaved programs are finite-state processes2,
existing analysis techniques and tools for this concurrency calculus can be used to formally establish
properties over concurrent AO programs. The model checker Labelled Transition System Analyzer
(LTSA), in particular, allows to verify FSPs safety as well as some lifenessand deadlock freeness
properties.

5.3 Conclusion and perspectives

In this chapter we have motivated and introduced language support for the modularization of crosscut-
ting concerns for distributed and concurrent programming. In both cases the resulting aspect models
enabled much more declarative aspect definitions than with existing aspect systems because of the
integration of non-atomic aspects and the definition of aspects in terms of domain-specific abstrac-
tions. Furthermore, both models provide explicit support for the compositionof aspects. Finally, we
have shown that aspects with mechanisms for explicit distribution can be reasonably implemented us-
ing standard infrastructure for distributed systems. Our approach to concurrent aspects allows formal
reasoning about correctness properties, which are especially important for concurrent applications.

Perspectives. The work described in this chapter opens up a large number of new perspectives. A
comprehensive “theory” of aspects for distribution and concurrencyprobably is one of the key issues
not only in AOP but for software engineering in general: we will discuss this issue in some detail in
Section 6.

Since concurrency issues obviously are an integral part of distributedapplications, integration a
model of concurrent aspects into one for distributed programming is an interesting perspective. As
discussed the AWED model already includes a rather rudimentary model forthe concurrent execu-
tion of remote advice. This model could certainly be enriched by integrating elements of the CEAOP
model. However, such an integration raises two important question. From a conceptual viewpoint, is
is to be evaluated to what degree an integration is useful: the CEAOP model hasbeen developed for
complex concurrent applications, such as graphical user interfaces,that require sophisticated concur-
rent coordination Marrying aspects for distribution and concurrency.Concurrency in many distributed
applications is, however, much simpler. Second, on the model level, the coordination of concurrent

2Recall that aspects are not FSPs because of interleaved actions.
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activities belonging to different distributed entities has probably be addressed differently than concur-
rency within a distributed entity.

A currently still open question for distributed aspects is how their propertiescan be formally
defined and reasoned about. A first reasonable approach is to start from an existing calculus for dis-
tributed programming and extend it with aspect-oriented abstractions in orderto then investigate prop-
erties of DO distributed programs. In the case of AWED, Caromel and Henrio’s ASP calculus [CH05]
seems particular promising, because it provides support for many abstractions (e.g., multicast com-
munication, groups of hosts) in distributed programs that are part of the AWED languages.

A major open question concerning concurrent aspects is their efficient implementation in main-
stream programming languages. the CEAOP approach relies strongly on thenotion of synchronization
by multi-party rendez-vous. These are, however, notoriously difficultto implement using simpler con-
currency abstractions. Furthermore, they do not scale with system size without specific provisions.
While this is a principle problem if multi-party synchronization is used all over a system, a promis-
ing approach is to partition an application into parts that can use only simpler synchronization means
among one another.



Chapter 6

Conclusion and perspectives

In this habilitation thesis we have explored expressive aspect language mechanisms for the modular-
ization of large-scale applications. Based on a taxonomy of advanced features for aspect languages,
we have shown that, we have provided a large body of evidence that explicit relationships between ex-
ecution events on the level of aspect languages foster the precise formal definition of aspect languages
and enable automatic reasoning about fundamental and essential properties of AO programs.

As we have shown, this approach that has initially been substantiated in the context of different
formal frameworks can be harnessed to address real-world modularization problems through instan-
tiations of a general model for expressive aspect languages that have been seamlessly integrated into
mainstream programming environments. We have demonstrated the benefits of higher-level abstrac-
tions for aspects in the context of black-box component models and system-level programming, which
permits only limited access to runtime information and in which execution speed is of prime impor-
tance.

Finally, we have shown that expressive aspect languages that involvedomain-specific abstractions
provide substantial benefits in the domains of distributed and concurrent programming, two of the
most important application domains for AOP that until now have been neglectedto a large extent.

Overall, expressive aspect languages therefore support the development of large-scale applications
that is based on the concise formulation, analysis and enforcement of abstract properties even in the
presence of intricate crosscutting concerns. They therefore promise toevolve into a central tool for
the development of large-scale software systems from a large range of applications domains.

To conclude this thesis, let us briefly consider three more prospective perspectives of further work
that promise to leverage the demonstrated benefits of expressive aspectlanguages in the context of
three fundamental problems of today’s software engineering: (i) how to reconcile modular develop-
ment, in particular information hiding and encapsulation principles, with aspects, (ii) comprehensive
pattern-based support for the modularization of distributed programs and(iii) aspects as a central tool
for general model-driven application development.

Reconciling modular development and aspects

Modular structuring principles, such as information hiding and strong encapsulation of software arti-
facts, underlie most modern software development methods. The corresponding restrictive notions of
access to software entities have proved useful to facilitate understandingof large software systems as
well as their development, in particular, by allowing separate compilation and deployment of parts of
large software systems.

67
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Aspects are all about modularization, however most frequently only in a much more restricted
sense than required by the two modularization principles above: aspects modularize crosscutting
concerns only to that extent that they are represented by one well-defined software artifact (e.g., an
AWED or AspectJ aspect). Aspects seem to contradict the modularization principles in that many
approaches to AOSD have been designed with invasive access to software artifacts in mind. Further-
more, the so-called obliviousness property of aspects [FF04], which allows unanticipated weaving of
aspects with base programs that have not been prepared for aspect weaving in any way, is in clear
contradiction with the notion of access to modules that is performed solely through well-defined and
explicit module interfaces. A nearly universal consensus has by now emerged within the AOSD com-
munity that obliviousness has to be discarded in this context1.

A model reconciling aspects and traditional modules should allow to address questions such as to
what extent information hiding and encapsulation properties are preserved and modified. Conversely,
it should give information on how modules can be used to limit the effects aspects may have on a
base program. While aspects over black-box component models as discussed in Sec. 4.1 give first
answers to such questions, they are of limited value because aspects overblack-box components fully
respect, by construction, the encapsulation properties of the underlyingcomponent-based application
and, moreover, reveal few insights on information hiding properties.

Until now only very few approaches have been proposed to reconcile aspects with modules in
a richer sense. Aldrich [Ald05] has proposed an extension of ML-stylemodules that enables the
formulation of restrictions on which interface functions may be advised by aspects. The resulting
hybrid model unfortunately very strongly restricts the modularization opportunities by aspects. Some
approaches, such as the aspectual collaborations by Lieberherr et al. [LOML01], provide means to bet-
ter align aspects with the structure (in particular, the inheritance relations) ofa given object-oriented
program. The resulting method does, however, respect only weak encapsulation properties. Kiczales
and Mezini [KM05] have shown how to annotate OO interfaces with additonalinformation on where
pointcuts may apply. Their proposal has not (yet) developed into a systematic method and does not
enjoy formal support for modular properties, though.

One of the most promising proposals to reconcile modules and aspects constitute specific inter-
faces that mediate between aspects and base programs. Suchaspectual interfacesmay express restric-
tions on aspects that are imposed by the modular structure of the base program but also restrictions
or modifications to the modular structure of the base program that are required for aspect application.
Property-based AOP as advocated in this thesis promises to be useful in order to define a flexible no-
tion of interfaces in this sense. Especially, the aspect applicability conditionsintroduced in Sec. 3.2.2
seem to nicely match the requirements for aspectual interfaces. Furthermore, since these conditions
can be used to enforce dynamic properties it is probable that they nicely complement a recent proposal
for aspectual interfaces by Skotiniotis et al. [SPL06] that defines mediating interfaces in terms of the
static structure of OO programs.

Pattern-based distributed programming

Patterns, more specifically design patterns [GHJV94] and corresponding implementation-level pat-
terns, have proved to be a highly useful semi-formal resource in sequential programming for the
development, understanding and documentation of software systems. Different studies have shown
by now that aspects are beneficial to pattern-based methods in that they facilitate the implementation
of patterns, see, e.g., [HK02].

1Obliviousness seems to be indispensable only in the context of aspects over legacy software but not if aspects are
considered as an program construction method.
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While distributed programming should potentially benefit much from a pattern-based approach
for reasons similar to those in the sequential case, relatively few approaches exist in this domain,
be they proposed by academia or by industry (see [KS02, AMC+03] for notable exceptions). Two
characteristics of distributed programming contribute to this problem: (i) distributed communication
and computation schemes are frequently of unregular nature so that simple regular patterns cannot be
employed and (ii) current infrastructure does not allow to directly implement many patterns simply
because the patterns involve distributed entities that have to be treated in different parts of a distributed
application.

Expressive aspects with explicit mechanisms for distribution and concurrency as presented in
Chap. 5 directly address these concerns: using the AWED approach, for instance, complex combi-
nation of pipelined computations that are interleaved with master-slave like execution patterns can
easily be defined, even if they involve matching of execution event and execution of computations
on different machines. Expressive aspects as advocated in this thesis should therefore be useful for a
comprehensive approach to pattern-based distributed programming.

Generalizing support for model-driven engineering

Model-driven engineering (MDE) in the sense of application development through transformation
between models of different abstraction levels (see Schmidt [Sch06] fora recent overview) — from
abstract design models via language-level implementation models to execution models — is highly
interesting as a potentially universal program development methodology. There are, however, two
fundamental open issues for MDE as a universal development process: (i) it is unclear whether suitable
hierarchized sets of abstractions can be found and (ii) the transformations between different levels
have to be precisely defined and, to a reasonable degree, supported through automatic transformation
methods.

Crosscutting functionalities constitute one of the main conceptual and technical problems in ad-
dressing these issues. Since crosscutting functionalities are relevant throughout all of such a develop-
ment process, AOSD techniques should be valuable to improve MDE-basedmethods. Furthermore,
besides the well-known benefits of aspects on the implementation level (as partially discussed in this
thesis) are complemented by first clear results concerning benefits of AOSD techniques on the design
and architecture level, see, e.g., Sullivan et al. [SGCH01]. However, few concrete representations
suitable for MDE methods have been proposed and, as discussed in this thesis, there are only very few
automatic techniques for the manipulation of AO programs.

Expressive aspects promise to provide a (partial) solution to this problem, atleast on the archi-
tecture, language and implementation levels. Their higher level abstractions set them up as a useful
intermediate representation of crosscutting functionalities between design and implementation. Fur-
thermore, their better support for the analysis and enforcement of properties allows transformation
between different models to be rigorously defined and supported by automatic tools. Finally, since
they can be integrated in high-level specifications as well as low-level execution platforms, they should
be an appropriate tool to ensure properties that relate different abstraction levels, such as tracing of
design properties in implementations. This way, the application modifications to higher-level abstrac-
tions on lower levels should be facilitated.
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[4-CND+04] Pierre Cointe, Jacques Noyé, Ŕemi Douence, Thomas Ledoux, Jean-Marc Menaud,
Gilles Muller, and Mario S̈udholt. Programmation post-objets : des langages d’as-
pects aux langages de composants.RSTI L’Objet, 10(4), 2004.

— International peer-reviewed events with proceedings —
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gramming. In Akşit et al. [ACEF04], chapter 7.

[LLO03] David H. Lorenz, Karl Lieberherr, and Johan Ovlinger. Aspectual collaborations:
Combining modules and aspects.The Computer Journal, 46(5):542–565, September
2003.

[LOML01] Karl Lieberherr, Johan Ovlinger, Mira Mezini, and David Lorenz. Modular program-
ming with aspectual collaborations. Technical Report NU-CCS-2001-04, College of
Computer Science, Northeastern University, Boston, MA, 2001.

[Lop97] Cristina Videira Lopes.D: A Language Framework for Distributed Programming.
PhD thesis, College of Computer Science, Northeastern University, 1997.

[Lop04] Christina Videira Lopes. AOP: A historical perspective (what’s in a name?). In
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