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Sujet:

VERS UNE APPROCHE MICROSCOPIQUE UNIFIÉE
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Résumé

Cette thèse comporte 3 parties.

1. Matière nucléaire:

Les propriétés de la matière nucléaire sont examinées à l’aide d’interactions effectives

de portée finie, soit dérivées de la théorie de Brueckner (interactions de type M3Y),

soit purement phénoménologiques (forces de Gogny). Le but de ce travail est d’établir

un lien entre l’interaction nucléon-nucléon nue et les propriétés de la matière nucléaire

à travers la matrice G de Brueckner paramétrisée sous la forme M3Y. La discussion est

concentrée sur les principaux aspects suivants: la pression dans la matière nucléaire

symmétrique et la matière de neutrons, la dépendance en densité de l’énergie de

symmétrie, le refroidissement des étoiles à neutrons, le module d’incompressibilité de

la matière nucléaire symmétrique et non symmétrique.

2. Structure des noyaux et de la croûte interne des étoiles à neutrons:

Nous présentons les approches Hartree-Fock (HF) et HF-BCS en espace de coor-

données dans le cas des interactions de portée finie avec dépendance en densité dans

les voies particule-trou et particule-particule. La méthode de résolution est exposée.

Nous nous limitons à la symétrie sphérique. Les équations intégro-différentielles self-

consistantes sont résolues par itération. Nous utilisons la méthode de Brueckner-

Gammel-Weizner qui permet d’éviter d’avoir des pôles dans les potentiels locaux

équivalents, contrairement à la méthode de Vautherin-Vénéroni. Nous développons

aussi une méthode alternative de résolution utilisant une base de fonctions de Bessel

sphériques. Cette dernière méthode est utilisée pour traiter des grands systèmes tels

que les cellules de Wigner-Seitz (WS) dans les étoiles à neutrons. Nous avons ainsi
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étudié, à l’aide des différentes interactions mentionnées plus haut, les noyaux double-

ment magiques, les isotopes de l’étain et l’éventualité de structures en bulle dans les

noyaux 22O, 34Si, 46Ar et 68Ar. Nous présentons aussi la première étude des cellules

de WS dans la croûte interne des étoiles à neutrons faite avec des forces de portée

finie. Nous avons ainsi examiné les structures correspondant aux diverses régions de la

croûte interne allant des densités les plus faibles jusqu’aux environs de la demi-densité

de saturation nucléaire.

3. Réactions nucléaires:

Utilisant de même les interactions effectives dérivées de M3Y nous avons procédé

à l’analyse en voies couplées des réactions d’échange de charge (p, n) sur des cibles

de 48Ca, 90Zr, 120Sn et 208Pb aboutissant aux états isobariques analogues, pour des

protons d’énergies incidentes de 35 MeV et 45 MeV. Les facteurs de forme sont cal-

culés soit microscopiquement par le modèle de convolution, soit à partir du potential

optique global nucléon-noyau de la littérature. Nous avons d’abord déterminé la par-

tie dépendante de la densité isovectorielle de l’interaction CDM3Y6 en nous basant

sur le potentiel optique microscopique de Jeukenne, Lejeune et Mahaux, puis l’avons

utilisée dans le modèle de convolution. Ceci nous a permis de tester la validité de la

partie dépendante de la densité isovectorielle de la force CDM3Y6.



Abstract

This thesis contains 3 main parts:

1. Nuclear matter:

The properties of nuclear matter are examined using finite range effective interactions,

either derived from the Brueckner theory (M3Y-type interactions) or determined in

a purely phenomenological way (Gogny-type interactions). Skyrme-type interactions

are also used for comparison. The motivation of the study is to establish a link be-

tween the bare NN interaction and nuclear matter properties via the effective Brueck-

ner G-matrix parameterized in the M3Y form. We have concentrated our discussion

on several main aspects: the pressure in symmetric nuclear matter and in neutron

matter, the density dependence of the symmetry energy S, the neutron star cooling,

and the nuclear matter incompressibility for the symmetric and asymmetric nuclear

matter.

2. Structure of finite nuclei and of the inner crust of neutron stars:

We present the non-relativistic HF and HF-BCS approaches in coordinate represen-

tation using finite-range density-dependent interactions in both the mean field and

pairing channels. The method for solving the HF equations in coordinate space is

presented. We limit the study to the spherical symmetry case. An iterative scheme

is used for solving the integro-differential HF equations. We adopt the method of

Brueckner-Gammel-Weizner which is free of poles in the local equivalent potentials,

in contrast to the usually used Vautherin-Vénéroni method. Alternatively, we have

developed a method using a basis of spherical Bessel functions. The latter method is

useful for treating systems containing many nucleons in large boxes like the Wigner-

Seitz (WS) cells of the neutron star inner crust. We have thus studied, using the
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effective interactions mentioned above, the doubly magic nuclei, the Sn isotopes, and

the possible occurrence of bubble structures in the nuclei 22O, 34Si, 46Ar and 68Ar.

We also present for the first time a study of Wigner-Seitz cells in the inner crust of

neutron stars using finite range interactions. We have thus examined the structures

of the different zones of the inner crust, from the lowest densities up to densities close

to the vicinity of half saturation density where the spherical assumption breaks down.

3. Nuclear reactions:

Using the same effective interactions derived from the M3Y-type interactions we have

performed a coupled channel analysis of (p,n) charge exchange reactions at 35 and 45

MeV incident energies on 48Ca, 90Zr, 120Sn and 208Pb targets leading to isobaric analog

states. The form factors are either calculated microscopically by the convolution

model, or evaluated from the global optical potential taken from the literature. We

have first determined the component of the CDM3Y6 interaction which depends on

the isovector density by using the microscopic optical potential of Jeukenne, Lejeune

and Mahaux, and then this was used for the folding model. Thus, we have been able

to assess the validity of the component of CDM3Y6 which depends on the isovector

density.
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IPN-Orsay, Bachir Moussallam, Peter Schuck, Nicole Vinh Mau, Jérôme Margueron,
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for their patience and love throughout my studies.

This work was partially supported by the Institute for Nuclear Science and Tech-

nology Hanoi (INST), the Groupe de Physique Théorique of Institut de Physique
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Chapter 1

INTRODUCTION

The existence of the atomic nucleus was discovered by Rutherford using the bombard-

ing of a gold-foil with α-particles in 1911 and the atomic nucleus is one of the most

complex quantum mechanical many-body systems. The weight of nuclei was explored

by Thomson, who found also the existence of isotopes. We know that the neutron

was found by Chadwick in 1932 and together with the discovery of proton, these

nucleons became the basic constituents of nuclei. It was natural to think that there

is a strong interaction between nucleons, that supports an existence of the nucleus.

This interaction is known to some degree within the meson exchange picture. How-

ever, this picture is only true for the medium- and long-range parts of the interaction

while its short-range part is not well known. Furthermore, even if we can understand

the free nucleon-nucleon (NN) interaction, there still remain many questions in the

determination of the effective NN interaction in medium. Therefore, the effective NN

interaction between nucleons has been one of the basic problems and tasks of nuclear

physics to understand its principle, and consequently, to describe the structure and

properties of atomic nuclei.

The main goal of modern nuclear physics science is associated with the rare iso-

tope beams, which address basic questions of nuclear structure, nuclear astrophysics

and fundamental interaction physics. Up to now experimental data are only avail-

able for the nuclei relatively close to the stability region. The problem lies in the
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2 CHAPTER 1. INTRODUCTION

experimental difficulties of obtaining and measuring the properties of short lived nu-

clear systems. However, thanks to the technological developments of accelerators,

intense beams of short-lived nuclei [Mue01, Tan95] provide a good chance to study

the properties of exotic nuclei [Mue93, Tan95, Han95, Cas00], and many interesting

phenomena are discovered like neutron/proton halo [Tan85, War95], neutron/proton

-skin [Tan88, Chu96, Bro00, Fur02], neutron subshell closures [Sta04, Sch07, Ele07,

Thi00, Bec06, Hof08], bubble structure of atomic nuclei [Wil46, Dec03, Ben03, Kha08],

the enhancement of fusion cross sections of heavy-ion reactions [Alm95, Yos95], etc...

Among many existing rare isotope research laboratories in the world are the CERN

ISOLDE facility [CER], TRIUMF [TRI], NSCL at Michigan State University [NSC],

ATLAS at the Argonne National Laboratory [ATL], HRIBF at Oak Ridge National

Laboratory [HRI], RIKEN [RIK], GSI [GSI] and GANIL [GAN]. Along with these

advances, increased computing power and progress in computational techniques have

greatly enhanced theoretical progress in addressing the nuclear many-body problem

and many new features of nuclei are found and analyzed.

The mean field theories provide us with a good first approximation for bound

states of nuclei. The Hartree-Fock (HF) theory, in which we can construct the nuclear

mean field in a self-consistent manner, is an effective tool to describe the single-particle

levels of nuclei from a microscopic standpoint. One knows that the nuclei close to the

limit of nuclear stability present interesting features. The most difficult implications

from the point of view of theoretical modeling arise from the strong pairing corre-

lations and the coupling to the continuum. As nuclei move away from the stability

line and approach the proton/neutron drip line, the corresponding Fermi surface gets

closer to zero energy. A significant number of the high-lying single-particle states are

then shifted to the continuum. Several approximations in the mean field theory have

been used to address the physics of the pairing correlations (e.g. HF-BCS [Bar57]

or HFB [Goo79, Rin80]). The strong pairing correlations near the driplines can no

longer be described by a small residual interaction. It becomes, therefore, necessary

to treat the mean field and pairing correlation in self-consistent theory. Furthermore,

an important physics problem lies in the effective NN interaction. A variety of ef-

fective NN interactions have been used in the HF or HF-BCS (HFB) calculations of
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nuclei. For the zero-range interactions, the Skyrme interaction [Sky56] has become

popular, since the zero-range form is easy to handle and the self-consistent HF equa-

tions can be conveniently solved in coordinate space. The self-consistent mean field

HF calculations with this kind of interaction was first performed in the work of Vau-

therin and Brink [Vau72]. Unlike the case of the familiar Skyrme-HF potentials which

are essentially local (the non-locality being simply described by a position-dependent

effective mass [Dov72]), the HF potential generated by a finite-range interaction is

fully non-local. The self-consistent HF mean field of finite nuclei using the finite-

range effective interaction of Brink and Boeker [Bri67], which is density-independent

and consists of a sum of two Gaussians, was calculated by Vautherin and Vénéroni

[Vau67] in coordinate representation. In that work, the non-local Fock potential was

treated by a method called “trivially equivalent local potential” [Vau67]. However, the

disadvantage of this method is that this equivalent local potential can have poles at

the nodes of the wave functions and this requires a linearization approximation. In

a recent study by Hofman and Lenske [Hof98], the non-locality of exchange term is

treated by using the density-matrix expansion introduced by Negele and Vautherin

[Neg72]. However, despite the success of this method for the stable and unstable

nuclei [Hof98], it has not been inspected sufficiently whether the first few terms of the

density-matrix expansion can give a good enough description of the nuclei far from

the β-stability. In contrast to the coordinate representation method, the basis ex-

pansion method can be used to avoid the difficult problems of the non-locality of the

exchange potential. The finite-range Gogny interaction [Gog75, Dec80] has been used

in such an approach where its parametrization is obtained by fitting the two-body

scattering data as well as the ground state properties of double-closed shell nuclei

and open shell nuclei using the harmonic-oscillator basis. However, a disadvantage of

this method is that the solutions depend on the choice of the basis. Another kind of

finite-range effective interaction is the family of M3Y interactions [Ana83]. Using the

basis expansion method, new parametrization of the M3Y force has been obtained by

Nakada [Nak02, Nak03, Nak08].

In general, the effective NN interactions mentioned above can be divided into two

distinct groups. The first group consists of those where the effective NN interaction is
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directly parametrized as a whole, leaving out any connection with a realistic free NN

interaction. In the non-relativistic approaches, the parameters of the effective NN

interaction belonging to this group are obtained by fitting the HF mean field results

to the experimental data. On the other hand, the effective NN interactions in the

relativistic mean field model are generated through the exchange of effective mesons.

The parameters of the Lagrangian which represent a system of interacting nucleons are

obtained by fitting the bulk properties of a set of spherical nuclei. Alternatively, one

first derives the effective NN interaction in the lowest-order of many-body calculation

from a realistic free NN interaction which reproduces the free NN scattering data

(e.g. a solution of the Bethe-Goldstone equation), and higher-order corrections are

then parametrized in terms of a density and momentum dependence [Kho93, Kho96].

While the approach consisting of a direct parametrization of the effective NN

interaction in the first group might be less fundamental than those of the second

group, they have a certain number of advantages. First, one can get a somewhat

better physical insight from the simplicity of the calculations because simple relations

connecting different nuclear properties can often be derived. Also it is a useful tool to

extrapolate in a rather simple and reliable way to nuclei far from the stability line and

to superheavy nuclei. One of these effective interactions belonging to the first group

is the Skyrme interaction [Sky56]. The reason why the effective Skyrme interaction

is popular is due to its simple expression in term of the δ(r1-r2) interaction, which

makes the calculations in the HF mean field much simpler. Since the pioneering work

of Vautherin and Brink [Vau72], many different parameterizations of the Skyrme

interaction have been realized to better reproduce data in nuclear masses, radii and

other physical quantities. Most of the parameter sets of the Skyrme interaction

are obtained by fitting the HF results to reproduce the nuclear matter properties,

properties of nuclei at the β-line and of nuclei near the proton/neutron drip line. In

1972, Vautherin and Brink produced two sets of parameters SI and SII [Vau72] by

fitting the ground state properties (biding energies and radii) to experimental data

for two spherical nuclei 16O and 208Pb. In 1975, Beiner et al. generated the SII to SVI

parameter sets [Bei75] using more experimental data, such as the binding energies and

charge radii of 40Ca, 48Ca, 56Ni, 90Zr, 140Ce and 208Pb. The SkM interaction [Kri80]
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was obtained by including the experimental data on the monopole energy to the fit

in 1980. In 1981, N. V. Giai and Sagawa produced two parameter sets SGI and SGII

[Gia81] by including additional constraints on the Landau parameters G0 and G′
0.

These interactions reproduced quite well the values of the incompressibility coefficient

K =215 MeV and of G′
0= 0.503 for SGII. More recently, many sets of the Skyrme

parameters have been generated, such as SkI1-5 [Rei95], SLy4-7,10 [Cha98], SKX

[Bro98] and SkO [Rei99], to reproduce the properties of nuclear matter and nuclei

(at the β-line and near the proton/neutron drip line). Although the Skyrme-type

effective NN interactions have been introduced by parameterizing the interaction as a

whole, it is not fully fundamental. However, the HF mean field calculations using the

Skyrme interaction have been very successful in studying the ground state properties

of nuclei as well as in the calculations of symmetric NM.

The Gogny force was first introduced in 1975 [Gog75]. It consists of a sum of two

Gaussians corresponding to a long range and a short range central forces, a zero-range

spin-orbit force and a zero-range density-dependent term. It can reproduce nucleon-

nucleon scattering phase shifts up to moderate energies. The first parametrization

D1 [Dec80] gave satisfying results for masses, radii and pairing properties of many

nuclei. However, the surface energy obtained by this version was too high and this

version was not able to reproduce fission barriers. To correct for this deficiency, a

new parametrization D1S of the Gogny force was proposed [Ber91]. In spite of the

numerous advantages of this new interaction compared to the D1 parametrization,

one can observe that the version D1S is still unable to reproduce the neutron matter

Equation Of State (EOS) in comparison with the Friedman-Pandharipande’s descrip-

tion of EOS of neutron matter [Cha08]. The new versions of the Gogny D1N [Cha08]

and D1M [Gor09] remedy to this defect and they can reproduce the neutron matter

EOS better than the D1S version while still giving simultaneously good description

of the nuclear structure properties and nuclear mass data.

Among different kinds of finite range effective NN interactions, the well-known

M3Y interaction was originally constructed by the Michigan State University group

[Ana83]. This interaction has been derived by fitting its matrix elements in an oscil-

lator basis (the oscillator parameters were chosen to reproduce the 16O ground state)
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to those matrix elements of the G-matrix obtained with the Reid [Ber77] and Paris

[Ana83] NN potentials. The ranges of the M3Y interactions were chosen to ensure a

long-range tail of the one-pion-exchange potential (OPEP) as well as a short-range

repulsive part simulating the exchange of heavier mesons [Ber77]. The shorter ranges

correspond to boson masses m = 490 MeV and 780 MeV and thus mimicking δ, ω

and ρ meson exchange interactions. Represented by a sum of the Yukawa functions,

the M3Y type interaction will be tractable in various models. We know that the

saturation of density and energy is a basic property of nuclei. In developing effec-

tive interactions, they are required to reproduce the saturation properties of nuclear

matter. However, the non-relativistic G-matrix fails to describe the saturation point

at the right density and energy. Therefore, it will not be appropriate to use the

G-matrix for HF calculations without any modification. The M3Y interaction was

obtained so that the G-matrix at a certain density could be reproduced by a sum of

Yukawa functions. The originally density-independent M3Y interaction gives no sat-

uration point within the HF calculation of nuclear matter [Kho93]. By introducing a

realistic density dependence the modified effective M3Y interaction can describe the

known nuclear matter properties. During the last decade, different density-dependent

versions of the M3Y interaction have been used in the HF calculations of symmetric

and asymmetric NM [Kho95, Nak02, Nak03, Kho96, Kho07b, Chi09, Bas08, Hof98],

in the mean-field studies of nuclear ground states [Nak02, Nak03, Nak08, Hof98], as

well as in numerous folding model studies of the nucleon-nucleus and nucleus-nucleus

scattering [Kho96, Kho97, Kho05, Chi09, Kho07b].

One of the main goals of using realistic models of NN interactions in microscopic

nuclear structure calculations is to obtain reliable prediction for the EOS of nuclear

matter. Knowledge about the nuclear symmetry energy extracted from the EOS

of nuclear matter is essential in understanding not only many aspects of nuclear

physics, such as heavy-ion collisions induced by radioactive nuclei and the structure of

exotic nuclei, but also a number of important issues in astrophysics, such as r-process

of stellar nucleosynthesis during pre-supernova evolution of massive stars and the

cooling of neutron stars [Bet90, Swe94, Sum94, Lat04]. In particular, the knowledge

of the EOS is necessary for the determination of the maximum mass Mmax of neutron
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stars. The EOS is predominantly determined by the effective NN interaction between

elementary constituents of dense matter. Even in the crust of neutron stars, where

the density is below the normal nuclear density ρ0 = 0.16 fm−3, the effective NN

interactions are responsible for the properties of neutron rich nuclei, crucial for the

crust EOS. The knowledge of these interactions is particularly important for the

structure of the inner crust of neutron stars, where nuclei are immersed in a neutron

gas. However, the calculation of the properties of the neutron star crust starting

from an experimentally determined bare NN in vacuum is not feasible. This is due

to the prohibitive complexity of the many-body problem to be solved in the case of

heavy nuclei immersed in a neutron gas. To make a calculation feasible, one uses a

mean-field approximation with an effective NN interaction, an approach used with

great success in terrestrial nuclear physics. The first successful attempt to determine

in this approach the structure of the neutron star crust is the classical work of Negele

and Vautherin [Neg73]. Following the standard models, the inner crust of neutron

star consists of a lattice of Wigner-Seitz cells, each cell containing a neutron-rich

nucleus immersed in a sea of dilute gas of neutrons and relativistic electrons uniformly

distributed inside the cell [Pet95].

One knows that the most efficient process of the neutron star cooling, the so-

called direct Urca process in which nucleons undergo direct beta (and inverse-beta)

decays [Lat91, Pag04], can take place only if the proton-to-neutron ratio exceeds 1/8

or the proton fraction xp ≥ 1/9 in beta equilibrium. The proton fraction xp can be

entirely determined from the NM symmetry energy S(ρ). It is a fundamental question

whether the direct Urca process is possible or not. If the xp value cannot reach the

threshold for the direct Urca process, then the neutron star cooling should proceed

via the indirect or modified Urca process which has a reaction rate of 104 ∼ 105

times smaller than that of the direct beta decay and implies, therefore, a much longer

duration of the cooling process. Although a recent test [Kla06] of the microscopic

EOS against the measured neutron star masses and flow data of HI collisions has

shown that the direct Urca process is possible when the neutron star mass is above a

lower limit of 1.35 ∼ 1.5 solar mass (M¯), the overall cooling time of a neutron star is

still unknown as yet [Lat04] due to the uncertainty about the high-density behavior
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of S(ρ).

As we know the basic inputs for any microscopic models to calculate the nucleon-

nucleus and nucleus-nucleus potentials are the nuclear densities of the target (and

projectile) and the effective NN interaction. Among various models of nuclear reac-

tions, the folding model is one of the successful models that has been used for years

to calculate the nucleon-nucleus and nucleus-nucleus optical potential [Sin75, Bri77,

Rik84, Dor98, Kho02, Kho03, Kho96, Kho95, Kho07b, Chi09] and inelastic form fac-

tors [Mac78, Che85, Kho07b, Chi09]. It can be seen from the basic folding formulas

that this model generates the first-order term of the microscopic optical potential

that is derived from Feshbach’s theory of nuclear reactions [Fes92]. The success of

this approach in describing the observed nucleon-nucleus elastic scattering data for

many targets suggests that the first-order term of the microscopic optical potential

is indeed the dominant part of the nucleon optical potential. In the same way, the

inelastic (folded) form factor is also the most important input for the analysis of

inelastic scattering data within the distorted wave Born approximation (DWBA) or

coupled-channel (CC) approaches.

One knows that if we have realistic nuclear densities, available from different nu-

clear models or directly from the electron-scattering data, it still remains necessary

to have a realistic effective NN interaction before the success of the folding model can

be reliably assessed. In the folding model, popular choices for the effective NN inter-

action have frequently been based upon the M3Y interactions. The latest versions of

these interactions have been denoted as CDM3Yn interactions [Kho97] which were

designed to reproduce the G-matrix elements of the Paris [Ana83] NN potential. The

isoscalar density dependence of the CDM3Yn interactions has been parametrized to

properly reproduce the saturation properties of symmetric NM [Kho97]. These inter-

actions, especially the latest CDM3Y6 version, have been widely tested in numerous

folding model analyses of the elastic, refractive α-nucleus and nucleus-nucleus scat-

tering. There are two main methods to determine the isospin dependence of the

nucleon-nucleus OP: (i) study the elastic (p, p) and (n, n) at the same energy and

from the same target, and (ii) study the charge exchange (p, n) reactions. Thus, the

isovector part of the latest CDM3Y6 interaction has been parametrized to reproduce
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the Brueckner-Hartree-Fock (BHF) results of the nucleon optical potential (OP) in

the nuclear matter limit [Jeu77b]. This version of the CDM3Y6 interaction has been

applied to the folding coupled-channel analysis of the charge exchange (p, n) reactions

[Kho05, Kho07b] and the inelastic 18,20,22O(p, p′) scattering [Chi09]. Furthermore, the

nucleon-nucleus OP has been studied over the years and there are several “global” sets

of the OP parameters deduced from the extensive optical model analyses of nucleon

elastic scattering, like that by Becchetti and Greenlees [Bec69], the CH89 global OP

[Var91], and a recent systematics by Koning and Delaroche [Kon03] which covers a

wide range of energies (from 1 keV to 200 MeV) and target masses (24 ≤ A ≤ 209).

Although parameterized in the empirical Woods-Saxon form, these global systematics

are very valuable in predicting the nucleon-nucleus OP when elastic scattering data

are not available or cannot be measured which is the case for the unstable nuclei.

Based on the above arguments, we concentrate on the non-relativistic models to

study the properties of nuclear matter within the HF approach using phenomenolog-

ical interactions, such as the Gogny D1S [Ber91] (D1N [Cha08]) and Skyrme SLy4

[Cha98] interactions, and the two different sets of the density-dependent M3Y in-

teraction named as CDM3Yn [Kho95, Kho07b] and M3Y-Pn [Nak08]. These latest

versions of the M3Y-Pn have not been used in the HF study of asymmetric NM and it

is, therefore, of interest to probe them in the present HF calculations. In this work we

will show which interactions will support for the direct Urca process of the neutron

star cooling. For the study of finite nuclei, we have developed the non-relativistic

HF and HF-BCS approaches in coordinate representation using finite-range density-

dependent interactions in both the mean field and pairing channels. One of the

aims of this thesis is to show how the coordinate space HF equations for a non-local

self-consistent potential can be actually solved with correct boundary conditions.

However, this method where the radial HF equations are solved in coordinate space

becomes more difficult in larger boxes or with larger l-values (for example, in calcula-

tions of the Wigner-Seitz (WS) cells [Neg73]). Therefore, in this thesis we have also

developed a basis expansion method, in which the radial HF equations are solved

using a spherical Bessel function basis whenever necessary. We restrict our study

to spherical symmetry. The first application is to study the possibility of bubble
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structures of 34Si, 22O, 46Ar and 68Ar using the finite-range density-dependent in-

teractions in both the mean field and pairing channels. Furthermore, for the first

time the properties of the WS cells in the inner crust of neutron stars are stud-

ied using finite-range density-dependent interactions in HF and HF-BCS approaches.

Among different kinds of finite-range density-dependent interactions, the CDM3Y6

interaction can be used in studying the properties of NM and in calculations of the

nucleon-nucleus potentials using the folding model. Therefore, we have studied the

charge exchange (p, n) reaction measured with 48Ca, 90Zr, 120Sn and 208Pb targets at

the proton energies of 35 and 45 MeV within a two-channel coupling formalism using

the folding model.

The structure of this thesis is the following: the introduction of this thesis is pre-

sented in Chapter I. A brief description of the finite-range density-dependent M3Y

interactions is presented in Chapter 2. The necessity of using the phenomenological

interactions (Gogny D1S (D1N) or Skyrme SLy4) instead of the effective ones ob-

tained by solving the Bethe-Goldstone equation is also explained. We have developed

a compact method to construct the complex CDM3Yn interaction, which will be used

in the next chapters. In Chapter 3, the properties of symmetric and asymmetric

nuclear matter are studied using the above interactions within the non-relativistic HF

approach. The nuclear pressure P for symmetric nuclear matter and pure neutron

matter is calculated and compared with the experimental data extracted from analyz-

ing the collective flow data in relativistic heavy-ion collisions. The density dependence

of the nuclear symmetry energy S(ρ), up to 0.8 fm−3, will be discussed. Correspond-

ing results given by the microscopic predictions of Akmal-Pandhanripande-Ravenhall

(APR) [Akm98], by the Dirac Brueckner Hartree Fock (DBHF) calculations with the

Bonn A interaction [Dal04] and by other versions of the mean-field approach, such as

Vlowk+CT [Dal09], MDI [Li08, Xia09] and Hybrid models [Pie09], are also presented

for comparison. The results obtained in the relativistic mean field studies using the

G2 [Aru04] and FSUgold [Tod05] parameter sets are shown and compared. In Chap-

ter 4, the general formalism of HF and HF-BCS approaches is developed with the

finite-range effective interactions. The HF equations are solved both in coordinate

space and using a basis expansion method. The description of the techniques used
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to perform the HF-BCS calculations is presented. The codes thus developed are used

to study the properties of doubly magic nuclei and the Sn isotopes using the finite-

range effective interactions. The results obtained for bubble nuclei and for the WS

cells in the inner crust of neutron stars are discussed. In Chapter 5, the folding

model is applied to the study of charge exchange (p, n) reactions using the CDM3Y6

interaction. In the end, conclusions and perspectives are drawn in Chapter 6.
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Chapter 2

EFFECTIVE NN

INTERACTIONS

In this chapter, we will introduce the phenomenological effective Gogny and Skyrme

interactions. The finite-range density-dependent M3Y interactions are also presented

in this chapter, such as CDM3Yn and M3Y-Pn interactions. In particular, we will

show how to construct a complex density-dependent CDM3Yn interaction. All con-

sidered interactions in this chapter will be used and discussed in next chapters.

2.1 The free VNN nucleon-nucleon interaction

The free NN potential can be derived in essentially three different ways: i) its mathe-

matical structure can be inferred from general symmetry principles; ii) the derivation

of VNN from free meson-exchange theory; iii) the effective filed approach where the NN

interaction is derived for chiral perturbation theory up to some given order [Vre04].

We will give a brief review of the two approaches following the textbook by Ring

and Schuck [Rin80]. The two-body VNN nuclear potential in coordinate representa-

tion depends on the position vectors (r1, r2), momenta (p1, p2), spin (σ1, σ2), and

isospin (τ1, τ2) of the two interacting nucleons

VNN ≡ VNN(r1, r2,p1,p2,σ1,σ2, τ1, τ2). (2.1)

13
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The potential VNN must obey several symmetries [Rin80]:

• Permutation invariance. Invariance under an exchange of the coordinates

VNN(r1, r2,p1,p2, σ1, σ2, τ1, τ2) = VNN(r2, r1,p2, p1,σ2,σ1, τ2, τ1). (2.2)

• Translational invariance. The potential depends only on the relative coordinate

r = r1 − r2.

VNN ≡ VNN(r,p1, p2,σ1,σ2, τ1, τ2). (2.3)

• Galilean invariance. The potential depends only on the relative momentum

p = 1
2
(p1 − p2)

VNN ≡ VNN(r,p,σ1, σ2, τ1, τ2). (2.4)

• Isospin invariance. Nuclear forces are independent of the charge of nucleons

(invariance under rotation in isospin space). Only isospin scalars are allowed.

VNN ≈ τ1.τ2. (2.5)

• Parity invariance. Invariance under space reflection.

VNN(r,p,σ1,σ2, τ1, τ2 = VNN(−r,−p,σ1,σ2, τ1, τ2). (2.6)

• Time reversal invariance. Physical observables do not depend on the direction

of time.

VNN(r, p,σ1,σ2, τ1, τ2) = VNN(r,−p,−σ1,−σ2, τ1, τ2). (2.7)

• Rotational invariance in coordinate space.

The total angular momentum of the NN system must be conserved (invariance under

rotation in a combined configuration and spin spaces implies only scalar products).
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The only allowed scalars invariant under parity and time reversal transformations are

[Rin80]

VNN ∝ r2 = |r|2, σ1.σ2,σi.r, σi.(r × p). (2.8)

It is valid to consider in first approximation velocity independent forces (static forces).

Such an approximation is valid at low energies. Additionally it can be assumed that

the force is central (depending only on the magnitude r ≡ |r| of the vector r). The

most general potential, which satisfies rotational, parity, isospin and time reversal

invariances can be symbolically written as

VNN ∝
[

1

σ1.σ2

]
×

[
1

τ1.τ2

]
× u(r) (2.9)

where u(r) denotes arbitrary radial functions. The symbol “×” means that we have

to form all possible combinations. More explicitly, we can write the potential VNN as

[Rin80]

VNN = V0(r) + Vτ (r)(τ1.τ2) + [Vσ(r) + Vστ (r)(τ1.τ2)](σ1.σ2) (2.10)

where V0(r), Vσ, Vτ and Vστ are arbitrary radial functions that cannot be determined

from the invariance principles. Additionally, the requirement that VNN obeys permu-

tation invariance implies that the spin dependence must enter symmetrically as

S =
1

2
(σ1 + σ2), (2.11)

where S is the total spin. Therefore, the velocity dependent term in the potential

VNN has the following form

L.S =
1

2
(r × p)(σ1 + σ2). (2.12)

Nucleon-nucleon scattering experiments also give a hint of the existence of non central

terms. Particularly, the measured quadrupole moment of the deuteron cannot be

explained by a central force [Eis75]. An example of non central force is the tensor

force (σ.r) in Eq. (2.8). The only possible combination that does not violate parity
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and time reversal invariance must be proportional to (r.σ1)(r.σ2). The tensor force

is usually introduced in terms of the following operator [Rin80]

S12 =
3(r.σ1)(r.σ2)

r2
− σ1.σ2. (2.13)

The above considerations leave us with the velocity-dependent non central NN inter-

action that can be symbolically written as

VNN ∝
[

1

σ1.σ2

]
×




1

τ1.τ2

S12

L.S



× u(r), (2.14)

or

VNN = V0(r) + Vτ (r)(τ1.τ2) + [Vσ(r) + Vστ (r)(τ1.τ2)](σ1.σ2)

+ [VT (r) + WT (r)(τ1.τ2)]S12 + [VLS(r) + WLS(r)(τ1.τ2)](L.S). (2.15)

The radial functions in Eq. (2.15) cannot be determined from the invariance princi-

ples. They can be obtained from a fit to experimental data.

As mentioned above, the NN interaction can be derived from the free meson-

exchange theory. In 1935, Yukawa postulated that the NN interaction can be un-

derstood by the virtual exchange of pions just as the Coulomb interaction is caused

by the exchange of (virtual) photons; the original theory involved a scalar (spin 0)

meson and was later generalized to vector mesons (spin 1). At large distances the

problem can be described by the relativistic Klein-Gordon equation for pions (spin-

less particles) and relativistic Dirac equations for nucleons [Bjo65]. One calculates

the T-matrix for one-pion exchange; in the static limit, this quantity is identical to

the NN interaction. Taking the correct invariance properties of the pion field with

respect to spin, isospin and parity into account and regarding the nucleon as a static

source of the pion field, one obtains [Wal95] the so-called one-pion exchange potential
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(OPEP)

VOPEP (r,σ1,σ2, τ1, τ2) =
−g2

3~c
mπc2(τ1.τ2)

×
(

σ1.σ2 + S12

(
1 +

3

µr
+

3

(µr)2

))
e−µr

r
. (2.16)

where 1/µ = ~/mπc is the Compton wavelength of the pion and g stands for the

pion-nucleon coupling (g2/~c ≈ 0.081).

2.2 Effective NN interaction inside the nuclear

medium

The in-medium NN interaction is significantly modified compared to the free NN

interaction. The presence of other particles in the nuclear medium allows for non-

conservation of the energy and momentum of the NN pairs (energy and momentum

can be transferred to other particles). Another new feature compared to the two-

body system is that not all of the scattering states are available. Particularly, only

scattering states above the Fermi level (En > Ef ) are allowed, as all of the states

below the Fermi sea are occupied. To illustrate the features of the NN system inside

the medium we analyze first the scattering matrix T for two free nucleons, which is

governed by the Lippman-Schwinger equation [Rin80]

TE

k1k2,k′
1k

′
2

= vk1k2,k′
1k

′
2
+

1

2

∑
p1, p2

vk1k2,p1p2

1

E − (
p1

2

2m
)− (

p2
2

2m
) + iν

TE

p1p2,k′
1k

′
2
,

(2.17)

where k1, k2 and k′
1, k′

2 are the momenta of the incoming and outgoing particles

respectively, and E is the total energy of the NN system. In the summation there are

no restrictions for the momenta p1, p2 and we have conserved energy and momenta,

k1 + k2 = k′
1 + k′

2. (2.18)
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In the operator form Eq. (2.17) is often written as [Rin80]

T = v + v
1

E −H0

T ⇒ T =
v

1− v(E −H0)−1
, (2.19)

where v represents the free NN interaction, and

H0 =
p1

2

2m
+

p2
2

2m
. (2.20)

In a similar way the NN scattering inside the nuclear medium is governed by

the analogous equations (Bethe-Goldstone) for an analog of the T -matrix so-called

Brueckner “G-matrix” [Rin80]. We can write the equation for the G-matrix by sub-

stituting in the Lippman-Schwinger equation (2.17) plane waves with shell model

states (k1,k2 → m,n) including in the summation only states above the Fermi en-

ergy (En > Ef ), and removing the restrictions for the conservation of energy and

momentum k1 + k2 6= k′
1 + k′

2. The Bethe-Goldstone equation for the Brueckner’s

G-matrix has the following form [Bet57, Rin80]

GE
ab,cd = vab,cd +

1

2

∑
m,n>Ef

vab,mn
1

E − Em − En + iν
GE

mn,cd, (2.21)

where ab, cd,mn and En, Em are shell-model indices and energies, respectively. The

potential v is a free NN potential. We can see that the effective NN interaction can

be obtained from the bare NN interaction if only the shell-model energies En, Em are

known. Symbolically the G-matrix can be written as

G = v + v
QF

E −H0

G ⇒ G =
v

1− vQF (E −H0)−1
, (2.22)

where

QF =
∑

(m<n)>Ef

|mn >< mn|. (2.23)

is a projection operator excluding occupied states (Pauli blocking). Eqs. (2.17)

and (2.21) look very similar and one can be mislead that they possess the same

properties. The fact that energy and momentum are conserved in a scattering of
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free nucleons (“on-shell” scattering) while they are not conserved inside the medium

(“off-shell” scattering) leads to the completely different behaviors at small distances

(|r1−r2| ≈ 0, v →∞). The “on-shell” scattering case introduces a singularity in Eq.

(2.19), and therefore at small distances the interaction is infinite. By contrast the G-

matrix remains finite, because in the denominator of Eq. (2.22) the projector operator

QF guarantees that there is no zero. At large distances (|r1 − r2| ≈ ∞, v → 0) both

interactions have the same asymptotic behavior and go to zero as the potential v also

goes to zero.

2.3 Phenomenological effective NN interactions

In practice solving the Bethe-Goldstone equation is rather difficult and requires sev-

eral approximations. Another drawback is the not too good agreement with the

experimental data of nuclear structure even if the calculations are feasible [Rin80].

As a remedy we can use the phenomenological forces, with several free parame-

ters that need to be adjusted to reproduce the nuclear experimental data. The

most widely used effective interactions are the Skyrme [Sky56, Vau72] and Gogny

[Gog75, Bri67, Dec80, Cha08, Gor09] interactions.

2.3.1 Skyrme interactions

The standard form of the Skyrme-type effective NN interactions has the following

form [Sky56, Vau72, Cha98]:

VNN(|r1 − r2|) = t0(1 + x0P
σ)δ(r1 − r2)

+
1

2
t1(1 + x1P

σ)×
[←−

k 2δ(r1 − r2) + δ(r1 − r2)
−→
k 2

]

+ t2(1 + x2P
σ)
←−
k .δ(r1 − r2)

−→
k

+
1

6
t3(1 + x3P

σ)ρα(
r1 + r2

2
)δ(r1 − r2)

+ iW0(σ1 + σ2).(
←−
k × δ(r1 − r2)

−→
k ) (2.24)
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Table 2.1: Skyrme parameters for SLy4 interaction [Cha98].

t0 t1 t2 t3 x0 x1 x2 x3

(MeV.fm3) (MeV.fm5) (MeV.fm5) (MeV.fm3(1+α))
-2488.91 486.82 -546.39 13777.0 0.834 -0.344 -1.0 1.354

α W0

(MeV.fm5)
1/6 123.0

where ti, xi, α and W0 are the parameters of the Skyrme interactions; P σ = 1+ ~σ1 ~σ2

2

is the spin exchange operator; σi is the Pauli spin operator;
←−
k = i(

←−∇1 −←−∇2)/2 and
−→
k = −i(

−→∇1−←−∇2)/2 are the momentum operators acting on the right and on the left,

respectively. The first term of Eq. (2.24) describes a pure δ force. The next two terms

approximate a finite-range force. The fourth term introduces the density dependence,

which describes the many-body effects. The last term represents a two body spin-

orbit interaction. The properties of nucleons in the nucleus are influenced by the

state of other nucleons in the system. The parameters of the Skyrme interaction are

obtained by fitting the HF results to the experimental data. In our calculations, we

have used the so-called SLy4 interaction [Cha98], which has been adjusted to describe

properly the mean field properties of neutron-rich nuclei and infinite neutron matter.

The parameters of SLy4 interaction are listed in Table 2.1.

The total binding energy in the Skyrme HF approach is given by the sum of the

kinetic energy, the potential Skyrme energy, the Coulomb energy, and the corrections

for spurious center-of-mass motion. Due to the local nature of the Skyrme energy

functional, it has several technical advantages. The number of integrations required

for solving of the Skyrme HF equations is significantly reduced because of the similar

structure of direct and exchange terms.

2.3.2 Gogny interactions

Despite the great success of the Skyrme interaction, is has been argued that zero-

range forces might not be able to simulate the long range or even the intermediate
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range parts of the realistic effective interaction. All the Skyrme forces are well known

to have unrealistic pairing properties in intruncated pairing space. In particular, this

forbids to solve HFB equations in unlimited r-space. In practice, a cut-off in single-

spectra is applied and the pairing strength is adjusted accordingly. The Gogny force

[Gog75] is a sum of a medium-range and a short-range term with Gaussians form

factor and different with spin-isospin exchange admixtures. The divergence of the

zero-range pairing force in untruncated space is avoided and this enables one to use

Gogny interaction simultaneously in both the mean field and pairing channels. The

interaction has been adjusted with the direct and exchange Coulomb terms calculated

exactly.

The Gogny interaction is written in the following form [Dec80, Ber91, Gog75],

V (ρ, |r1 − r2|) = V (C)(|r1 − r2|) + V (DD)(ρ, |r1 − r2|) + V (LS)(|r1 − r2|), (2.25)

where

V (C)(|r1 − r2|) =
2∑

ν=1

(Wν + BνP
σ −HνP

τ −MνP
σP τ )fν(|r1 − r2|)

V (DD)(ρ, |r1 − r2|) = t0(1 + x0P
σ)ρα(

r1 + r2

2
)δ(r1 − r2)

V (LS)(|r1 − r2|) = iW0{←−∇12δ(r1 − r2)×−→∇12} · (σ1 + σ2)

V (Coul)(|r1 − r2|) = (
1 + τ1z

2
)(

1 + τ2z

2
)

e2

|r1 − r2| . (2.26)

In this expression, the first line represents the central finite-range part of the force.

The second line represents the density-dependent term and the third line is the spin-

orbit term having a zero range. Finally, the last line describes the Coulomb interaction

between protons (τiz = +1 for protons and τiz = −1 for neutrons). In the finite range

component V (C)(|r1 − r2|) of the Gogny interaction, the form factor fν(|r1 − r2|) is

of a Gaussian type

fν(|r1 − r2|) = exp(−|r1 − r2|2
µ2

ν

), (2.27)
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Table 2.2: The values of the parameters of D1S [Ber91] and D1N [Cha08] interactions.

ν Wν Bν Hν Mν µν t0 x0 α W0

(MeV) (MeV) (MeV) (MeV) (fm) (MeVfm4) (MeVfm5)
D1S

1 -1720.3 1300 -1813.53 1397.6 0.7 1390 1 1/3 130
2 103.639 -163.483 162.812 -223.934 1.2 - - - -

D1N
1 -2047.61 1700 -2414.93 1519.35 0.8 1609.46 1 1/3 115
2 293.02 -300.78 414.59 -316.84 1.2 - - - -

and Wν , Bν , Hν , Mν , µν , t0, x0, α, and W0 are the parameters of the Gogny inter-

action; P σ = 1+ ~σ1 ~σ2

2
and P τ = 1+~τ1 ~τ2

2
are the spin and isospin exchange operators;

σi is the Pauli spin operator;
←−∇12 =

←−−−−−∇1 −∇2 and
−→∇12 =

−−−−−→∇1 −∇2 are the gradient

operators acting on the left and on the right, respectively. In this work, we use the

two versions of Gogny D1S [Ber91] and D1N [Cha08] interactions (Table 2.2). The

parameters of these two versions were adjusted to the properties of finite nuclei in the

HFB approach, and to nuclear matter. One notes that the latest version of the Gogny

D1N interaction has been shown [Cha08] to reproduce the neutron matter equation

of state better than the older D1S version while still giving simultaneously a good

description of the nuclear structure properties and nuclear mass data.

2.4 Density-dependent M3Y interactions

As mentioned above, the effective NN interaction can be either obtained from a

sophisticated Brueckner’s G-matrix calculation (Eq. (2.21)) or directly parametrized

the phenomenological way, like the Skyrme [Sky56, Vau72] or Gogny [Gog75, Bri67,

Dec80, Cha08, Gor09] interactions. Among the different kinds of effective interactions,

relating to the first case, very popular choice is the M3Y interactions [Ana83]. Our

aim is to build and use G-matrix inspired effective interactions for self-consistent

mean field calculations, in the spirit of the pioneering work of Negele [Neg70].

In this section, we will introduce two different sets of the density-dependent M3Y

interactions, called M3Y-Pn (n =3, 4, 5) and CDM3Yn (n = 3, 4, 6) interactions.



2.4. DENSITY-DEPENDENT M3Y INTERACTIONS 23

Concerning the first set, the M3Y-Pn interactions have been carefully parametrized

by Nakada [Nak02, Nak03, Nak08] in terms of a sum of Yukawa functions added by

a zero-range density-dependent term, to consistently reproduce the NM saturation

properties an ground state shell structure for double-closed shell nuclei as well as

unstable nuclei close to the neutron dripline. In contrast to the first set, the density

dependence of the CDM3Yn interactions is included directly into the finite-range

Yukawa terms, and the parameters are adjusted [Kho95] to reproduce the saturation

properties of symmetric NM. The CDM3Yn interactions have been used in numerous

folding model studies of the nucleon-nucleus and nucleus-nucleus scattering [Kho96,

Kho97, Kho05, Chi09, Kho07b].

2.4.1 M3Y-Pn type interactions

The starting point of the M3Y-Pn [Nak08] interaction is the M3Y Paris interaction

[Ana83]. The Coulomb interaction between protons ais treated as in Eq. (2.26).

One knows that the saturation properties are important to describe many nuclei in

a wide mass range. Since it is still hard to describe accurately the saturation prop-

erties by the bare NN interaction, it will be appropriate to modify realistic effective

interaction so as to reproduce the saturation properties. It has been known that

density-dependent in the effective interaction is essential in obtaining the saturation.

A density-dependent contact force V (DD)(ρ, r12) is therefore added to the original

M3Y interaction, as in the Skyrme and Gogny interactions. The original density-

independent M3Y interaction is denoted as “M3Y-P0” and the modified M3Y inter-

action is denoted “M3Y-Pn” like in Ref. [Nak02, Nak08]. The range parameters for

the Yukawa functions f
(C)
i (r12) (in Eq. (2.29)) are µ−1

1 =0.25, µ−1
2 =0.4 and µ−1

3 =1.414

fm, which correspond to the Compton wavelengths of mesons with masses of about

790, 490 and 140 MeV, respectively. The latest versions of M3Y-Pn interactions

have been parametrized [Nak08] not only to reproduce the saturation properties of

symmetric NM, but also to give a good description of ground state shell structure

in double-closed shell nuclei. The strength parameters ti in V (C) and t(SE), t(TE) in

V (DD) are fitted to the measured binding energies of double magic nuclei from 16O
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to 208Pb in HF approximation. All parameters of the versions of M3Y-Pn (n=3,4,5)

interactions are listed in Tables 2.3, 2.4 and 2.5. The new parameter sets of the M3Y-

P3 and M3Y-P5 [Nak08] interactions are obtained by keeping the similar finite-range

tensor term V (TN) like the original M3Y interaction of Ref. [Ana83]. The set M3Y-P4

is obtained by assuming V (TN) = 0.

Table 2.3: Parameters of the central term V (C)(r12) in the original M3Y Paris [Ana83]
and M3Y-Pn (n=3,4,5) [Nak08] interactions.

Inter. i 1/µ
(C)
i t

(SE)
i t

(TE)
i t

(SO)
i t

(TO)
i

(fm) (MeV) (MeV) (MeV) (MeV)
M3Y-P0 1 0.25 11466.0 13967.0 -1418.0 11345.0

2 0.40 -3556.0 -4594.0 950.0 -1900.0
3 1.414 -10.463 -10.463 31.389 3.488

M3Y-P3 1 0.25 8027.0 7130.0 -1418.0 11345.0
2 0.40 -2637.0 -4594.0 950.0 -1900.0
3 1.414 -10.463 -10.463 31.389 3.488

M3Y-P4 1 0.25 8027.0 5503.0 12000.0 3700.0
2 0.40 -2637.0 -4183.0 4500.0 -1000.0
3 1.414 -10.463 -10.463 31.389 3.488

M3Y-P5 1 0.25 8027.0 5576.0 -1418.0 11345.0
2 0.40 -2650.0 -4170.0 2880.0 -1780.0
3 1.414 -10.463 -10.463 31.389 3.488

The density-dependent M3Y-Pn interaction can be written in the following form

[Nak02, Nak08]:

V (ρ, r12) = V (C)(r12) + V (DD)(ρ, r12) + V (TN)(r12) + V (LS)(r12), (2.28)
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where

V (C)(r12) =
3∑

i=1

(
t
(SE)
i PSE + t

(TE)
i PTE + t

(SO)
i PSO + t

(TO)
i PTO

)
f

(C)
i (r12),

V (DD)(ρ, r12) =
(
t(SE)PSE[ρ(r1)]

α(SE)

+ t(TE)PTE[ρ(r1)]
α(TE)

)
δ(r12),

V (TN)(r12) =
2∑

i=1

(
t
(TNE)
i PTE + t

(TNO)
i PTO

)
f

(TN)
i (r12)r

2
12S12,

V (LS)(r12) =
2∑

i=1

(
t
(LSE)
i PTE + t

(LSO)
i PTO

)
f

(LS)
i (r12)L12.(s1 + s2), (2.29)

and the relative coordinate is denoted by r12 = r1− r2 and r12 = |r12|. The relative

momentum is defined by p12 = (p1 − p2)/2. L12 is the relative orbital angular

momentum L12 = r12 × p12, s1, s2 are the nucleon spin operators, and S12 is the

tensor operator,

S12 = 4[3(s1.r̂12)(sj .r̂ij)− s1.s2], (2.30)

with r̂12 = r12/r12 and ρ(r) denotes the nucleon density.

The Yukawa form factor is

fi(r12) =
exp(−µir12)

µir12

, (2.31)

which is assumed for all terms except V (DD)(ρ, r12) in the M3Y-Pn interactions. The

projection operators on the singlet-even (SE), triplet-even (TE), singlet-odd (SO) and

triplet-odd (TO) two-particle states are defined as

PSE =
1− P σ

2

1 + P τ

2
, PTE =

1 + P σ

2

1− P τ

2
,

PSO =
1− P σ

2

1− P τ

2
, PTO =

1 + P σ

2

1 + P τ

2
, (2.32)

where P σ(P τ ) is the spin (isospin) exchange operator.

In handling the spin-isospin degrees of freedom, we can rewrite the central term
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Table 2.4: Same notation as in Table 2.3, but for the density-dependent term
V (DD)(ρ, r12).

Inter. α(SE) t(SE) α(TE) t(TE)

(MeV.fm3) (MeV.fm)
M3Y-P0 - 0 - 0
M3Y-P3 1 220.0 1/3 1198.0
M3Y-P4 1 248.0 1/3 1142.0
M3Y-P5 1 126.0 1/3 1147.0

V (C)(r12) in Eq. (2.29) like that in Eq. (2.26) of Gogny interaction as

V (C)(r12) =
∑

i

(
t
(W )
i + t

(B)
i P σ − t

(H)
i P τ − t

(M)
i P σP τ

)
f

(C)
i (r12). (2.33)

where the relations between the coupling constants are

t
(SE)
i = t

(W )
i − t

(B)
i − t

(H)
i + t

(M)
i ,

t
(TE)
i = t

(W )
i + t

(B)
i + t

(H)
i + t

(M)
i ,

t
(SO)
i = t

(W )
i − t

(B)
i + t

(H)
i − t

(M)
i ,

t
(TO)
i = t

(W )
i + t

(B)
i − t

(H)
i − t

(M)
i . (2.34)

2.4.2 CDM3Yn type interactions

In this subsection we introduce the density-dependent CDM3Yn interaction, which

is also based on the original M3Y interaction deduced from the G-matrix elements of

the Paris NN potential [Ana83].

The starting point in developing the effective CDM3Yn interactions is to repro-

duce the saturation properties of nuclear matter. Therefore, we just consider the

central part of the M3Y interaction [Ana83]. The direct and exchange parts of the
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Table 2.5: Same notation as in Table 2.3, but for the spin-orbit V (LS)(r12) and tensor
V (TN)(r12) terms.

Inter. i 1/µ
(LS)
i t

(LSE)
i t

(LSO)
i 1/µ

(TN)
i t

(TNE)
i t

(TNO)
i

(fm) (MeV) (MeV) (fm) (MeV.fm−2) (MeV.fm−2)
M3Y-P0 1 0.25 -5101.0 -1897.0 0.40 -1096.0 244.0

2 0.40 -337.0 -632.0 0.70 -30.9 15.6
M3Y-P3 1 0.25 -10712.1 -3983.7 0.40 -1096.0 244.0

2 0.40 -707.7 -1327.2 0.70 -30.9 15.6
M3Y-P4 1 0.25 -8671.7 -3224.9 0.40 0.0 0.0

2 0.40 -572.9 -1074.4 0.70 0.0 0.0
M3Y-P5 1 0.25 -11222.2 -4173.4 0.40 -1096.0 244.0

2 0.40 -741.4 -1390.4 0.70 -30.9 15.6

central (energy- and density dependent) NN forces can be written in terms of spin-

isospin dependent components as

vD(EX)(E, ρ, s) = v
D(EX)
00 (E, ρ, s) + v

D(EX)
10 (E, ρ, s)(σσ′)

+v
D(EX)
01 (E, ρ, s)(ττ ′) + v

D(EX)
11 (E, ρ, s)(σσ′)(ττ ′), (2.35)

where s is the internucleon distance and ρ is the nuclear density around the inter-

acting nucleon pair. The contribution from the spin dependent terms (v10 and v11)

to the nucleon-nucleus potential is exactly zero for a spin-saturated target like those

considered in the present work.

The original density-independent M3Y interactions [Ber77, Ana83, Kho93] do not

give a correct description of the saturation properties of symmetric nuclear matter

within the HF scheme. The introduction of a density dependence can improve this

situation. Thus, several forms of density dependence were introduced [Kho96, Kho97],

with parameter values adjusted to produce the observed nuclear matter saturation

density and binding energy. While the isoscalar density dependence of the CDM3Yn

interaction has been well tested in the folding model analysis [Kho97, Kho95] of

the elastic, refractive α-nucleus and nucleus-nucleus scattering, its isovector density
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dependence can be probed in the study of the charge exchange (p, n) reaction only.

Our aim is to develop a compact method to construct the isovector density dependence

of the CDM3Yn interaction based on the Brueckner-Hartree-Fock (BHF) description

of the nucleon optical potential (OP) in nuclear matter by Jeukenne-Lejeune-Mahaux

(JLM) group [Jeu77b]. The isoscalar density dependence of the CDM3Yn interaction

has been introduced [Kho97] into the interaction (2.35) as

v
D(EX)
00 (E, ρ, s) = g(E)FIS(ρ)v

D(EX)
00 (s), (2.36)

FIS(ρ) = CV
0 [1 + αV

0 exp(−βV
0 ρ)− γV

0 ρ]. (2.37)

The parameters of the isoscalar density dependence FIS(ρ) were chosen [Kho97] to

reproduce the NM saturation properties in the HF calculation of symmetric NM,

which yielded the incompressibility K = 217, 228 and 252 MeV for the versions

CDM3Y3, CDM3Y4 and CDM3Y6 respectively [Kho97]. One notes that the original

M3Y interaction [Ana83] is energy independent and one needs to introduce an appro-

priate energy dependence in order to reproduce the empirical energy dependence of

the nucleon optical potential, likes the Fig. 2 of Ref. [Kho93]. The intrinsic energy

dependence of the optical potential can account roughly for the data at low incident

energies only. With the increasing energy, the nucleon OP is somewhat more attrac-

tive than the empirical one. This effect had shown in the light of the microscopic

JLM results for the nucleon OP [Jeu77a, Jeu77b], where the energy dependence was

shown to come from the direct and exchange parts of the Brueckner G-matrix. We

have assumed for simplicity that the energy dependent interaction is the original M3Y

one multiplied with an energy dependent factor g(E), where E is the incident nu-

cleon energy [Kho97]. The intrinsic energy dependence of the CDM3Yn interaction

is g(E) ≈ 1− 0.0026E.

We have assumed a similar form for the isovector density dependence of the

CDM3Yn interaction

v
D(EX)
01 (E, ρ, s) = FIV(E, ρ)v

D(EX)
01 (s). (2.38)
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Table 2.6: Yukawa strengths of the central components of the original M3Y-Paris
interaction (2.39).

ν 1/µν Y D
00(ν) Y D

01(ν) Y EX
00 (ν) Y EX

01 (ν)
(fm) (MeV) (MeV) (MeV) (MeV)

1 0.25 11061.625 313.625 -1524.25 -4118.0
2 0.4 -2537.5 223.5 -518.75 1054.75
3 1.414 0.0 0.0 -7.8474 2.6157

The radial shapes of the isoscalar and isovector interactions were kept unchanged, as

derived [Kho96] from the M3Y-Paris interaction [Ana83], in terms of three Yukawas

v
D(EX)
00(01) (s) =

3∑
ν=1

Y
D(EX)
00(01) (ν)

exp(−µνs)

µνs
. (2.39)

The functions (Y
D(EX)
00 , Y

D(EX)
01 ) can be expressed in the (SE,TE,SO,TO) repre-

sentation (see Table 2.3) as

Y D
00 =

1

16
[3t(SE) + 3t(TE) + 1t(SO) + 9t(TO)],

Y D
01 =

1

16
[1t(SE) − 3t(TE) − 1t(SO) + 3t(TO)],

Y EX
00 =

1

16
[3t(SE) + 3t(TE) − 1t(SO) − 9t(TO)],

Y EX
01 =

1

16
[1t(SE) − 3t(TE) + 1t(SO) − 3t(TO)] . (2.40)

Since the nucleon OP in nuclear matter can be defined [Bri77, Huf72] in term

of the antisymmetrized matrix elements of the effective NN interaction between the

incident nucleon and those bound in the Fermi sea, it is given by the same Hartree-

Fock potential, but using plane waves for the single-nucleon states [Kho93, Fet03].

In the nuclear matter limit the nucleon optical potential can be obtained as [Kho93]

U(E, ρ) =
∑

j≤kF

[< kj|vD(E, ρ, s)|kj > + < kj|vEX(E, ρ, s)|jk >], (2.41)
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where kF = [1.5π2ρ]1/3 and k is the momentum of the incident nucleon. The nucleon

OP (2.41) can be expressed in terms of the isoscalar (UIS) and isovector (UIS) parts

as [Kho07b]

U(E, ρ) = UIS(E, ρ)± UIV (E, ρ). (2.42)

where the + sign pertains to incident neutrons and − sign to incident protons.

To construct a complex microscopic OP by a folding procedure, it is also desirable

to have a realistic imaginary part added to the real part (2.36) of the CDM3Yn

interaction. We have adjusted the nucleon OP obtained with the CDM3Yn interaction

to reproduce the JLM density- and isospin dependent nucleon OP [Jeu77b]. The

original JLM interaction was simply deduced from the JLM nucleon OP in nuclear

matter using a local density approximation. In this model, the potential is folded

with a Gaussian form factor [Jeu77b, Bau98] using a range of 1 fm for the effective

interaction, in which the range has been chosen to give a good global fit to the

elastic data. However, the form of JLM model already contains strengths of both

direct and exchange parts of the G-matrix, the nucleon-nucleus OP for finite nuclei

is given by the direct folding integration only. Despite the simplicity, the original

JLM interaction has been used quite successfully to study the elastic nucleon-nucleus

scattering [Bau98, Kha01] as well as the (p, n) reaction to IAS [Pak01, Bau01]. Since

the JLM potential is complex, we define the imaginary isoscalar interaction based on

the same density dependent functional (2.36) as

w
D(EX)
00 (E, ρ, s) = FW

IS (E, ρ)v
D(EX)
00 (s), (2.43)

FW
IS (E, ρ) = CW

0 [1 + αW
0 exp(−βW

0 ρ)− γW
0 ρ]. (2.44)

Then the real VIS(E, ρ) ≡ Re[UIS(E, ρ)] and imaginary WIS(E, ρ) ≡ Im[UIS(E, ρ)]

isoscalar nucleon OP (2.42) in the nuclear matter limit are given by [Kho93, Kho07b]

VIS(E, ρ) = g(E)FIS(ρ){ρJD
00 +

∫
[ρnĵ1(k

n
F r) + ρpĵ1(k

p
F r)]vEX

00 (r)j0(kr)d3r},

WIS(E, ρ) = FW
IS (E, ρ){ρJD

00 +

∫
[ρnĵ1(k

n
F r) + ρpĵ1(k

p
F r)]vEX

00 (r)j0(kr)d3r}. (2.45)
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where JD
00 =

∫
vD

00(r)d
3r, ĵ1(x) = 3j1(x)/x and j1(x) is the first-order spherical Bessel

function; ρn and ρp are the neutron and proton densities of asymmetric NM with a

total density ρ = ρn +ρp and the corresponding Fermi momenta k
p(n)
F = (3π2ρp(n))

1/3.

The momentum k of the incident nucleon of mass m is determined self-consistently

[Kho93] from the nucleon incident energy E and real OP as

k =

√
2m

~2
{E − [VIS(E, ρ)± VIV(E, ρ)]}. (2.46)

Here VIS(E, ρ) and VIV(E, ρ) are the isoscalar and isovector parts of the real nucleon

OP in Eq. (2.42). Due to the self-consistent definition (2.46) of the momentum k,

the imaginary isoscalar nucleon OP (2.45) is obtained by an iterative procedure.

In order to determine the isovector density dependence, we have used two different

CDM3Yn functionals to match separately the real and imaginary parts of the isovector

CDM3Yn potential to those of the JLM potential

F u
IV(E, ρ) = Cu

1 (E)[1 + αu
1(E) exp(−βu

1 (E)ρ)− γu
1 (E)ρ], (2.47)

so that the real (u = V ) and imaginary (u = W ) parts of the isovector CDM3Yn

interaction are determined as

v
D(EX)
01 (E, ρ, s) = FV

IV(E, ρ)v
D(EX)
01 (s), (2.48)

w
D(EX)
01 (E, ρ, s) = FW

IV (E, ρ)v
D(EX)
01 (s). (2.49)

Using Eqs. (2.48) and (2.49) , the real (VIV(E, ρ) ≡ Re[UIV(E, ρ)]) and imaginary

(WIV(E, ρ) ≡ Im[UIV(E, ρ)]) parts of the isovector nucleon OP (2.42) in the NM limit

is given explicitly as [Kho07b]

VIV(E, ρ) = FV
IV(E, ρ){(ρn − ρp)J

D
01 +

∫
[ρnĵ1(k

n
F r)− ρpĵ1(k

p
F r)]vEX

01 (r)j0(kr)d3r},

WIV(E, ρ) = FW
IV (E, ρ){(ρn − ρp)J

D
01 +

∫
[ρnĵ1(k

n
F r)− ρpĵ1(k

p
F r)]vEX

01 (r)j0(kr)d3r}.
(2.50)
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Table 2.7: Parameters of the isoscalar (2.37) and isovector (2.47) density dependence
of the real parts of the CDM3Yn (n=3,4,6) interaction at energy E = 0 MeV.

Interaction ν CV
ν αV

ν βV
ν γV

ν

(fm3) (fm3)
CDM3Y3 0 0.2985 3.4528 2.6388 1.5

1 0.1574 9.7016 16.2704 -11.9946
CDM3Y4 0 0.3052 3.2998 2.3180 2.0

1 0.1318 11.7739 16.0279 -15.1987
CDM3Y6 0 0.2658 3.8033 1.4099 4.0

1 0.1824 8.8819 16.4346 -10.8703

where JD
01 =

∫
vD

01(r)d
3r. After VIV(E, ρ) is determined, the isovector part WIV(E, ρ)

of the imaginary nucleon OP is obtained with FV
IV(E, ρ) replaced by FW

IV (E, ρ).

Our approach is to find realistic parameters of the isoscalar (2.44) (isovector (2.47))

density dependence of the CDM3Yn interaction by a χ2-fitting procedure which gives

the isoscalar (isovector) part of the nucleon OP as close as possible to that of the

JLM nucleon optical potential V JLM
IS(IV)(E, ρ) tabulated in Ref. [Jeu77b]. To keep a

good accuracy of this fitting procedure, instead of introducing an energy dependent

scaling factor like g(E) in Eq. (2.36), the density dependent parameters in Eqs. (2.44)

and (2.47) have been adjusted separately at each energy.

For the HF calculation of nuclear matter, the isovector density dependence (2.47)

of the CDM3Yn (n=3,4,6) interaction at energy E approaching zero has also been

constructed based on the JLM results [Lej80] for low energies (0 < E < 10 MeV).

This set of density dependent parameters is used in the present work to calculate the

density dependent NM symmetry energy S(ρ) by the HF method developed in Chap-

ter 3. The parameters of the isoscalar (2.37) and isovector (2.47) density dependence

of the real parts of the CDM3Yn (n=3,4,6) interaction are shown in Table 2.7, which

will be used in HF calculations of symmetric and asymmetric nuclear matter in the

next chapter.

In order to study the charge exchange (p, n) reactions measured on 48Ca, 90Zr,
120Sn and 208Pb targets at proton energies of 35 and 45 MeV, we have constructed
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Figure 2.1: Real part VIV(E, ρ) (left side) and imaginary part WIV(E, ρ) (right side)
of the isovector nucleon OP given by the isovector density dependence (2.47) of the
CDM3Y6 interaction in comparison with the JLM results [Jeu77b] at E = 35 and 45
MeV.

the isovector density-dependence of the CDM3Y6 interaction in this work. The real

VIV(E, ρ) and imaginary WIV(E, ρ) parts of the isovector nucleon OP at 35 and 45

MeV given by the best-fit density dependent parameters (2.47) are compared with

the JLM results [Jeu77b] in Fig. 2.1. In all cases, the isovector nucleon OP given by

the best-fit parameters agree closely with the JLM results as shown in Fig. 2.1 for

E = 35 and 45 MeV. The parameters of the isovector density dependence (2.47) of

the CDM3Y6 interaction are shown in Table 2.8.

The isoscalar potential WIS(E, ρ) given by the best-fit parameters and the cor-

responding JLM potential at E = 35 and 45 MeV are shown in Fig. 2.2. We must

note that the imaginary OP based on the JLM results for nuclear matter describes
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Table 2.8: Parameters of the isovector density dependence (2.47) of the CDM3Y6
interaction.

E u Cu
1 αu

1 βu
1 γu

1

(MeV) (fm3) (fm3)
35 V 0.1501 6.8259 8.8798 1.2897

W 0.2607 5.3066 12.4624 2.2291
45 V 0.1141 7.9430 6.4105 -2.7835

W 0.2689 5.0889 12.9811 3.1865

the absorption due to the Pauli blocking effect which leads to a finite mean-free path

of nucleons in nuclear medium. As a result, WIS(E, ρ) tends to have a volume shape

(deep in the center and shallow at the surface). In general, the imaginary part of the

nucleon OP at low and medium energies has been found [Var91, Kon03] to be best

represented by a combination of volume and surface terms. The surface absorption is

caused mainly by the collective excitations and transfer reactions which occur at the

nuclear surface and are not related to the “volume” absorption given by WIS(E, ρ).

In the HF calculation of nuclear matter, the matrix elements of the spin-orbit

potential between the HF states vanish. However, in nucleon-nucleus scattering it

is an important part of the interaction. The spin-orbit potential arises naturally in

the folding model if the effective NN interaction itself has a two-body spin-orbit term

[Kho02]

vLS(s)L.S ≡ vLS(s)
1

4
[(ri − rj)× (pi − pj)].(σi + σj) (2.51)

For simplicity, we assume that the spin-orbit part of the CDM3Y6 interaction has

the same density- and energy dependences as the central part (2.36)

vLS(E, ρ, s) = g(E)F V (ρ)vLS(s). (2.52)

The radial strength of the spin-orbit components (with the total isospin T=0 and
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Figure 2.2: Imaginary part WIS(E, ρ) of the isoscalar nucleon OP given by the
isoscalar density dependent interaction (2.43) in comparison with the JLM results
[Jeu77b] at E = 35 and 45 MeV.

T=1) of the M3Y-Paris interaction [Ana83] can also be obtained in terms of Yukawas

v
(T )
LS (s) =

3∑
ν=1

Y
(T )
LS (ν)

exp(−µνs)

µνs
, (2.53)

with the explicit Yukawa strengths tabulated in Table 2.5.

The proton-nucleus optical potential calculated by the folding model has to be

supplemented by a corresponding Coulomb potential. It can be obtained from the

same folding method to evaluate microscopically the proton-nucleus Coulomb poten-

tial, using the (target) charge density matrix

VC(E, R) =

∫
e2

|r −R| [ρcharge(r)− ρcharge(R, r)j0(k(E, R)|r −R|)] d3r. (2.54)
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The proton finite size is taken into account [Sat79] in the charge distribution ρcharge(r)

when calculating the Coulomb potential (2.54). VC(E, R) can then be expanded into

a multipole series as for the nuclear potential [Kho02]. In the OM analysis of the

elastic proton-nucleus scattering, the Coulomb potential VC(λ = 0, E, R) is usually

represented by the Coulomb potential between a point charge and a uniform charge

distribution of radius RC = rCA1/3. This option for the elastic Coulomb potential can

be shown to have about the same strength and shape at the surface as the microscopic

potential.

In conclusion of this Chapter, we have presented the phenomenological effective

(Gogny, Skyrme) interactions and the density-dependent M3Y interactions which are

named as CDM3Yn and M3Y-Pn interactions. In particular, the complex isovector

density-dependent CDM3Y6 interaction has constructed based on the density depen-

dent JLM nucleon OP [Jeu77b]. All the considered effective interactions will be used

in this thesis to study in the three different parts of nuclear physics. All the effective

interactions mentioned above will be used in the HF calculations of nuclear matter

in Chapter 3. The Gogny [Ber91, Cha08] and M3Y-Pn [Nak08] interactions will be

used to study the structure of finite nuclei and neutron stars in Chapter 4. For nu-

clear reactions part, we will use the complex density-dependent CDM3Y6 interaction

which will be presented in Chapter 5.



Chapter 3

NUCLEAR MATTER

In this chapter, we will study the basic properties of asymmetric nuclear matter within

the non-relativistic HF scheme using different versions of the density-dependent M3Y

interactions. We note that HF calculations of asymmetric nuclear matter have been

performed by Basu et al. in Ref. [Bas08] using the effective M3Y interaction sup-

plemented with a zero-range density-dependent term. In contrast, our aim is to use

exactly the HF approximation to describe homogeneous nuclear matter with the same

finite-range density-dependent M3Y interactions which are used in microscopic cal-

culations of the nucleon and heavy-ion optical potentials. Furthermore, we calculate

the nuclear pressure P using these M3Y-type interactions and we compare the re-

sults with the experimental data in symmetric nuclear matter and neutron matter

extracted by Danielewicz, Lacey and Lynch from analyzing the collective flow data

in relativistic heavy-ion collisions [Dan02]. For completeness, results calculated with

other phenomenological interactions like the Gogny (D1S, D1N) [Ber91, Cha08] and

Skyrme (SLy4) [Cha98] forces are also presented.

3.1 Hartree-Fock calculations of Nuclear Matter

Theoretical studies of the equation of state (EOS) of asymmetric nuclear matter

were started by Brueckner et al. [Bru67] and Siemens [Sie70] in the late 60’s. Since

then, the subject has much expanded with the introduction of different many-body

37
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theories using various two-body and three-body forces or interaction Lagrangians.

These theories provide very useful tools for understanding the properties of hot and

dense nuclear matter. In this work, we will only consider homogeneous nuclear matter

at zero temperature and where neutrons as well as protons are spin-saturated. Thus,

the system is characterized by the values of neutron and proton densities, ρn and ρp,

or equivalently by its total density ρ = ρn +ρp and its neutron-proton asymmetry δ =

(ρn−ρp)/(ρn+ρp). One of the important quantities of interest is the symmetry energy

S(ρ) of nuclear matter, defined as the energy required per nucleon to change the

neutron-proton symmetric nuclear matter into pure neutron matter [Kho96, Zuo99,

Kla06, Li08]:

S(ρ) ≡ E

A
(ρ, δ = 1)− E

A
(ρ, δ = 0) , (3.1)

where E
A
(ρ, δ) is the energy per nucleon at density ρ and asymmetry δ. The value of

S at saturation density ρ0 is usually known as the symmetry energy coefficient:

Esym = S(ρ0) . (3.2)

Various nuclear many-body calculations have predicted Esym to be around 30 MeV

[Kho96, Zuo99, Bra85, Pea00]. In our recent study of the isobaric analog state (IAS)

excitation in the (p, n) reaction on 6Li [Kho05], 48Ca, 90Zr, 120Sn and 208Pb [Kho07b]

targets using the folded Lane potential U1 for the charge-exchange form factor (see

Chapter 5), we have found a value of 31 ± 2 MeV for Esym. On the other hand, the

density dependence of the symmetry energy S(ρ) is the most important issue about

the EOS of neutron-rich matter. In fact, to determine S(ρ) has been a longstanding

goal of extensive research using various microscopic and phenomenological models.

However, the predicted S(ρ) are still rather divergent, especially at higher densities.

Actually, the symmetry energy depends somewhat on the effective nucleon-nucleon

(NN) interaction one considers. There are a large variety of effective in-medium

NN interactions used in nuclear structure models and in microscopic calculations of

nucleon-nucleus, nucleus-nucleus potentials relevant to the analysis of nucleon-nucleus

and heavy-ion scattering problems. These effective interactions are either obtained

from a sophisticated G-matrix calculation or phenomenologically parametrized in
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a form convenient for numerical calculations, such as the Skyrme forces [Vau72].

Among the different kinds of finite-range interactions the so-called Michigan three-

range Yukawa (M3Y) interactions [Ana83], which have been obtained by fitting the

calculated G-matrix by Yukawa functions are often used in Hartree-Fock (HF) calcu-

lations of asymmetric nuclear matter [Kho96, Kho97, Bas08, Nak02, Nak03], mean-

field calculations of nuclear structure model [Nak02, Nak03], and in many folding

calculations of the optical potential [Kho96, Kho97, Kho05, Chi09, Kho07b].

3.1.1 HF calculations with finite-range interactions

First, we recall the main features of a HF calculation of the nuclear matter binding

energy using a finite-range density-dependent interaction. The basic formulae are

extracted mainly from Ref. [Kho96]. With the direct (vD) and exchange (vEX) parts

of the interaction determined from the singlet- and triplet-even (VSE, VTE) and odd

(VSO, VTO) components of the two-nucleon force [Ber77, Ana83], we can obtain the

ground state energy of nuclear matter as

E = Ekin +
1

2

∑

kστ

∑

k′σ′τ ′
[< kστ,k′σ′τ ′|vD|kστ,k′σ′τ ′ >

+ < kστ,k′σ′τ ′|vEX |k′στ,kσ′τ ′ >], (3.3)

where the single-particle (s.p.) wave functions |kστ > are ordinary plane waves:

|kστ >=
eik.r

√
V

χσχτ (3.4)

Here, V is the box volume of the uniform nuclear matter; χσ and χτ are the spin and

isospin wave functions.

1. Symmetric nuclear matter:

Symmetric nuclear matter is represented by a uniform (translationally invariant)

Fermi gas containing an equal number of neutrons and protons per unit volume.

Using the effective interactions of the CDM3Yn family in Eq. (2.35), in which the
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direct and exchange parts of the (central) NN force can be written in terms of spin-

isospin dependent components, the energy per nucleon of symmetric nuclear matter

can be obtained as:

E

A
(ρ) =

3~2k2
F

10m
+

FIS(ρ)ρ

2

{
JD

0 +

∫
[ĵ1(kF r)]2vEX

00 (r)d3r

}
, (3.5)

where the Fermi momentum kF is related to the symmetric nuclear matter density

ρ by kF = (3
2
π2ρ)1/3, m is the bare nucleon mass. FIS(ρ) is the density-dependent

strength of the isoscalar part of the CDM3Yn-type interaction (2.37) [Kho97]. JD
0 is

the volume integral of the direct part of the interaction as in Eq. (2.45)

The equilibrium density ρ0 is determined by the saturation condition

∂

∂ρ
(
E

A
(ρ))

∣∣∣
ρ = ρ0

= 0

The nuclear pressure P0 of symmetric matter is:

P0(ρ) = ρ2 ∂

∂ρ
(
E

A
(ρ)), (3.6)

This pressure must be equal to zero at the saturation point.

The incompressibility K, or compression modulus of symmetric nuclear matter,

which is a measure of the curvature of the EOS at saturation density, is defined as

K = 9ρ2 ∂2

∂ρ2
(
E

A
(ρ))

∣∣∣∣
ρ=ρ0

. (3.7)

The M3Y-Pn interactions of Nakada [Nak08] have a different form of density

dependence. The density dependence is considered as in Eq. (2.29). All parameters of

these M3Y-Pn interactions (including the values of t(SE), α(SE), t(TE), and α(TE)) were

adjusted to the saturation properties of symmetric nuclear matter and the empirical

binding energies of doubly magic nuclei from 16O to 208Pb.

The contributions of the density-dependent term V (DD)(ρ, r12) of Eq. (2.29) to
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the energy per particle E
A
(ρ), nuclear pressure P0 and incompressibility K are:

E

A

(DD)

(ρ) =
3

8

(
t(SE)ρα(SE)+1 + t(TE)ρα(TE)+1

)
,

P (DD)(ρ) = ρ2 ∂

∂ρ
(
E

A

(DD)

(ρ))

=
3ρ2

8

[
t(SE)(α(SE) + 1)ρα(SE)

+ t(TE)(α(TE) + 1)ρα(TE)
]

,

K(DD)(ρ) = 9ρ2 ∂2

∂ρ2
(
E

A

(DD)

(ρ))

=
27ρ2

8

[
t(SE)α(SE)(α(SE) + 1)ρα(SE)−1 + t(TE)α(TE)(α(TE) + 1)ρα(TE)−1

]
.

(3.8)

For comparison, we also calculate symmetric matter and pure neutron matter prop-

erties with the Gogny (D1S, D1N) [Ber91, Cha08] interactions. The only technical

difference is to replace the Yukawa functions of the M3Y interactions by the Gaussian

functions of the Gogny interactions, and the zero-range density-dependence is treated

as for the M3Y-Pn interactions of Nakada.

2. Asymmetric nuclear matter:

The EOS for asymmetric nuclear matter is calculated by adding to the isoscalar part

the isovector component of the interaction that does not contribute to the EOS of

symmetric nuclear matter. In terms of the interaction (2.35) the energy per particle

of asymmetric nuclear matter is:

E

A
(ρ, δ) =

3~2[k2
F (n)ρn + k2

F (p)ρp]

10m
+

FIS(ρ)

2

{
ρJD

0 +
1

ρ

∫
A2

0(r)v
EX
00 (r)d3r

}

+
F V

IV(E, ρ)ρ

2

{
(ρn − ρp)

2

ρ
JD

1 +
1

ρ

∫
A2

1(r)v
EX
01 (r)d3r

}
, (3.9)

where

A0(r) = ρnĵ1(kF (n)r) + ρpĵ1(kF (p)r),

A1(r) = ρnĵ1(kF (n)r)− ρpĵ1(kF (p)r).
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The symmetry energy coefficient can be derived from Eq. (3.5):

aS =
1

2

∂2

∂δ2
(
E

A
(ρ, δ))

∣∣∣∣
δ=0

(3.10)

The energy per nucleon of pure neutron matter can be obtained from Eq. (3.9)

with δ =1 (ρp = 0) and the nuclear pressure P1 of pure neutron matter is calculated

as

P1(ρ, δ = 1) = ρ2 ∂

∂ρ
(
E

A
(ρ, δ = 1)). (3.11)

With the M3Y-Pn interactions of Nakada, the contributions of the density-dependent

term (Eq. (2.29)) to the energy per particle E
A
(ρ, δ) and nuclear pressure P (ρ, δ) of

asymmetric nuclear matter are:

E

A

(DD)

(ρ, δ) =
1

8

[
3(t(SE)ρα(SE)+1 + t(TE)ρα(TE)+1)

+ δ2(t(SE)ρα(SE)+1 − 3t(TE)ρα(TE)+1)
]

,

P (DD)(ρ, δ) =
ρ2

8

{
3[t(SE)(α(SE) + 1)ρα(SE)

+ t(TE)(α(TE) + 1)ρα(TE)

]

+ δ2[t(SE)(α(SE) + 1)ρα(SE) − 3t(TE)(α(TE) + 1)ρα(TE)

]
}

.(3.12)

The symmetry energy S(ρ) in Eq. (3.1) can be expanded in terms of some bulk

parameters around the saturation density ρ0 as

S(ρ) = Esym + Lx +
1

2
Ksymx2 + ... (3.13)

where x = (ρ−ρ0)
3ρ0

is a parameter that characterizes the deviations of the density from

its saturation value and Esym (see Eq. (3.2)), L and Ksym are the symmetry energy,

the coefficients of slope and curvature at saturation density, respectively. L and Ksym



3.1. HARTREE-FOCK CALCULATIONS OF NUCLEAR MATTER 43

Table 3.1: Energy per particle E0 = E
A
(ρ, 0), incompressibility K of symmetric nuclear

matter, the values of volume symmetry energy aS, symmetry energy Esym, coefficients
L and Ksym at saturation point calculated with CDM3Yn [Kho97, Kho07b], M3Y-
Pn [Nak08], the Skyrme (SLy4) [Cha98] and the Gogny (D1S, D1N) [Ber91, Cha08]
interactions. Kτ = Ksym − 6L.

Interaction ρ0 E0 K aS Esym L Ksym Kτ

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
CDM3Y6 0.17 -15.9 252 28.1 29.8 62.5 39.0 -336
CDM3Y4 0.17 -15.9 228 28.1 29.0 62.9 49.8 -328
CDM3Y3 0.17 -15.9 217 28.1 29.0 62.5 46.2 -329
M3Y-P3 0.16 -16.5 245 29.8 31.0 28.3 -213 -383
M3Y-P4 0.16 -16.1 234 28.8 30.0 21.1 -234 -361
M3Y-P5 0.16 -16.1 235 29.7 30.9 27.9 -217 -384

SLy4 0.16 -16.0 230 32.0 32.15 46.0 -120 -396
D1S 0.16 -16.0 203 31.10 31.90 23.7 -248 -390
D1N 0.16 -16.0 221 29.61 30.15 32.4 -182 -376

can be calculated as:

L = 3ρ0
∂S(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

,

Ksym = 9ρ2
0

∂2S(ρ)

∂ρ2

∣∣∣∣
ρ=ρ0

. (3.14)

The coefficients L and Ksym can be used conveniently to characterize the density

dependence of the symmetry energy around the saturation density ρ0.

3.1.2 HF calculations with zero-range interactions

In this subsection, we summarize the expressions for the equation of state, pressure

and symmetry energy obtained with the Skyrme-type interactions (Eq. (2.24)). Nu-

merical results corresponding to the SLy4 interaction will be presented for comparison

with the predictions of finite-range interactions. The SLy4 interaction will be used

in the next chapter for finite nuclei and the inner crust of neutron stars. The basic

formalism of the Skyrme-HF method are found in Ref. [Cha98], thus we only recall

the main results of nuclear matter calculated with Skyrme forces.
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Within the Skyrme-HF approach the energy per nucleon in symmetric nuclear

matter can be expressed as [Cha98]

E

A
(ρ) =

3~2

10m

(
3π2

2

)2/3

+
3

8
t0ρ +

3

80
Θs

(
3π2

2

)2/3

ρ5/3 +
1

16
t3ρ

σ+1, (3.15)

where Θs = 3t1 + (5 + 4x2)t2. The nuclear pressure P and incompressibility K of

symmetric nuclear matter, defined in Eq. (3.7), can be obtained as

P (ρ) = ρ

{
~2

5m

(
3π2

2

)2/3

ρ2/3 +
3

8
t0ρ +

1

16
Θs

(
3π2

2

)2/3

ρ5/3 +
1

16
t3(σ + 1)ρσ+1

}
,

K(ρ) = −3~2

5m

(
3π2

2

)2/3

ρ2/3 +
3

8
Θs

(
3π2

2

)2/3

ρ5/3 +
9

16
σ(σ + 1)t3ρ

σ+1. (3.16)

For asymmetric nuclear matter, the energy per nucleon is [Cha98]

E

A
(ρ, δ or xp) =

3

5

~2

2m

(
3π2

2

)2/3

ρ2/3F5/3 +
1

8
t0ρ[2(x0 + 2)− (2x0 + 1)F2]

+
1

48
t3ρ

σ+1[2(x3 + 2)− (2x3 + 1)F2]

+
3

40

(
3π2

2

)2/3

ρ5/3
{
[t1(x1 + 2) + t2(x2 + 2)]F5/3

+
1

2
[t2(2x2 + 1)− t1(2x1 + 1)]F8/3}, (3.17)

With δ = N−Z
A

, xp = Z
A

and the following definition of the factors F :

Fα(δ) =
1

2
[(1 + δ)α + (1− δ)α],

Fα(xp) = 2α−1[xα
p + (1− xp)

α].

From Eq. (3.17) for δ = 1 (xp = 0), we can obtain the the energy per particle
E
A
(ρ, δ = 1 or xp = 0) and nuclear pressure P1(ρ, δ = 1 or xp = 0) for pure neutron

matter.
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3.2 Results and discussion

The bulk properties of symmetric nuclear matter calculated with all interactions

considered in this work are summarized in Table 3.1. We will now discuss in more

details the EOS of symmetric and non-symmetric nuclear matter, the behavior of

pressure in symmetric matter and neutron matter, and the density dependence of the

symmetry energy.
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Figure 3.1: EOS of symmetric nuclear matter calculated in HF approximation with the
interactions of Table 3.1.
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3.2.1 Equation of state

In symmetric nuclear matter the isovector component of the interaction does not

contribute to the energy per particle and therefore, the various interactions consid-

ered here are expected to give similar EOS up to moderate values of the density.

Fig. 3.1 shows the energy per nucleon E
A
(ρ, δ = 0) as a function of ρ (up to 0.8 fm−3)

calculated with the interactions of Table 3.1. For comparison the results obtained

by Akmal-Pandhanripande-Ravenhall (APR) [Akm98] are also shown. These results

correspond to calculations with the Argonne v18 interaction plus the relativistic boost

interaction δv of the Urbana model IX (UIX). At densities below ρ0 the differences

among the various results are small. At densities above 2ρ0 the energies per particle

calculated with the M3Y-Pn interactions are the highest whereas those corresponding

to CDM3Y3 and CDM3Y4 interactions are the lowest. The results of other interac-

tions and from APR are in between. One can observe that the behavior of the results

obtained with CDM3Y6 is similar to that of D1N interaction even though the pre-

dicted incompressibilities are different (K=252 MeV and 221 MeV for CDM3Y6 and

D1N, respectively).

As mentioned in Chapter 2 , the isoscalar part of the CDM3Yn-type interactions

has been well tested in the folding model analyses of refractive α-nucleus and nucleus-

nucleus scattering [Kho96, Kho97, Kho07a]. On the other hand, the guidelines leading

to the M3Y-Pn interactions are somewhat different. The M3Y-Pn interactions have

been carefully parametrized not only to reproduce the saturation properties of sym-

metric NM like the parameter choice for the CDM3Yn interactions, but also to give

good description of ground state properties of the double-closed shell nuclei. Thus,

the differences in the isoscalar properties of the various M3Y-type interactions are

reflected in the symmetric matter, EOS at high densities.

We turn now to the case of asymmetric matter. The nucleon optical potential cal-

culated with CDM3Yn interactions in nuclear matter was adjusted to reproduce the

JLM density- and isospin dependence of the optical potential [Jeu77b] at each energy.

Then, the isovector part of the CDM3Y6 interaction was used in the coupled-channel

(CC) analysis of the charge-exchange (p, n) reactions exciting the 0+ isobaric analog

states of targets ranging from 6He [Kho05] to 208Pb [Kho07b] and in the 18,20,22O(p, p′)
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Figure 3.2: EOS of nuclear matter at different values of neutron-proton asymmetry δ,
calculated with CDM3Y6 interaction. The black dots indicate the corresponding saturation
points.

[Chi09] scattering. It was thus found [Kho07b, Chi09] that a renormalization of the

(real) isovector density dependence of the CDM3Y6 interaction by a factor of 1.3 is

needed for a good CC description of the (p, n) and (p, p) reactions. Therefore, we

have made this readjustment, i.e., the parameter C1 has been multiplied by 1.3 when

calculating asymmetric nuclear matter with the CDM3Yn interaction. The results

thus obtained with the CDM3Y6 interaction are shown in Fig. 3.2 for different values

of the asymmetry parameter δ. One can observe the familiar trend that the saturation

energy becomes less and less negative while the saturation density becomes smaller

for increasing values of δ. For δ ≥ 0.81 the saturation point disappears.
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Figure 3.3: The same notation as Fig. 3.1, but for pure neutron matter.

Fig. 3.3 displays the energy per nucleon in the spin-saturated pure neutron mat-

ter. The result from the APR calculation in Ref. [Akm98] is also shown as a reference.

One observes that the results obtained with CDM3Yn-type interactions are smaller

than those obtained with other interactions at densities below 0.2 fm−3, whereas these

results are larger at high densities. The behavior of the density-dependent energies

per nucleon obtained with CDM3Yn-type and SLy4-Skyrme interactions are similar

to those of APR predictions at the high densities. The lowest results at high ρ are

obtained with the D1S interaction. It is obvious that such a large difference seen in

the HF results for the neutron matter energy is due to the difference in the isovector

components of the considered interactions. Since the isovector density dependence
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of the CDM3Yn interactions has been parametrized [Kho07b] to reproduce simul-

taneously the isospin- and density dependent nucleon optical potential given by the

BHF calculation of the JLM group [Jeu77b] and charge exchange (p, n) data for the

IAS excitations, the high density behavior of the neutron matter energy given by the

CDM3Yn interactions should approximate that given by the BHF calculation of the

neutron matter. In this sense, the proximity between the HF results given by the

CDM3Yn interactions and APR results of the microscopic many-body calculation

[Akm98] is not unexpected. In contrast to the CDM3Yn interactions, the isovector

density dependence of the M3Y-Pn, D1S and D1N interactions were carefully fine

tuned against the structure data observed for the neutron (and proton-) dripline nu-

clei and it is also natural to expect that EOS of the neutron matter predicted by

these interactions should be quite realistic.

3.2.2 Pressure in symmetric matter and neutron matter

We now discuss the predictions of pressure coming from the various models. The

results are summarized in Fig. 3.4 where the calculated values are compared to the

data [Dan02] in the case of neutron matter and of symmetric nuclear matter in a

range of density values up to ρ = 0.8 fm−3 (∼ 5ρ0).

In the case of symmetric matter, experimental constraints on the pressure can

be extracted from the analysis of the collective flow data in relativistic heavy-ion

collisions [Dan02] in the density range of (0.32 - 0.74) fm−3. In the lower panel of

Fig. 3.4 the values of pressure P0 calculated with the different interactions of Table

3.1 are shown. The shaded area represents the region of experimental constraints.

All models are consistent with the data at higher densities, but some predictions are

at the borderline below ρ = 0.4 fm−3.

In the upper panel of Fig. 3.4, the calculated values of pressure in neutron mat-

ter are presented together with phenomenological data. Here, the data for neutron

matter are the resulting best estimate of the pressure at high densities based on the

predictions of the phenomenological momentum-dependent interaction (MDI) model
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Figure 3.4: Pressure as a function of density for pure neutron matter (upper panel) and
symmetric matter (lower panel). The shaded areas show the experimental constraints (from
Ref. [Dan02]) in the two cases of neutron matter and symmetric matter.

[Li08, Das03] at the lower and upper bounds of the symmetry energy and the flow-

constrained EOS of symmetric nuclear matter. The pressure P1 of neutron matter is

related to the pressure P0 of symmetric matter and to the symmetry energy by (see

Eqs.(3.1,3.7)):

P1(ρ) = P0(ρ) + ρ2dS(ρ)

dρ
. (3.18)

Thus, once the density dependence of P0 is established, the difference between P1 and

P0 gives a direct measure of the density dependence of the symmetry energy S(ρ).

The results of SLy4 and CDM3Yn interactions shown in Fig. 3.4 are in good

agreement with the experimental flow data at densities up to ρ = 0.74 fm−3 (∼ 4.5ρ0).
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The other M3Y-Pn interactions predict values of pressure close to the lower limit of

the region of the experimental flow data. The two Gogny forces lead to a too low

pressure in neutron matter, especially the D1S which fails badly. This confirms again

that the D1S interaction is not suited for describing the properties of neutron matter,

a result already known from the comparison with calculations using the Argonne

bare NN interaction and correlated wave function approach [Fri81, Wir88, Akm98].

Looking at Fig. 1 of Ref. [Cha08] one would conclude that a Gogny-type interaction

giving a neutron matter EOS steeper than D1N beyond 0.24 fm−3 and closer to the

Friedman-Pandharipande’s curve [Fri81] would improve the description of the neutron

matter pressure.

3.2.3 Nuclear symmetry energy and proton fraction xp

The nuclear symmetry energy S(ρ) can be defined as the energy required per nucleon

to change symmetric nuclear matter into pure neutron matter. The determination

of the exact form of the density dependence of the nuclear symmetry energy is very

important for studying the structure of the neutron rich nuclei, and for astrophysical

problems such as the dynamics of supernova explosions [Li01], neutron star formation

[Bet90, Swe94], and the cooling of proton-neutron stars [Pet92, Lat91]. There are

two possibilities for the cooling of neutron stars: the standard and enhanced cooling

scenarios. The dominant neutrino cooling reactions are the general type, known as

Urca processes [Pet92, Lat91]. Each reaction produces a neutrino or antineutrino.

Therefore, the thermal energy is continuously lost. The most efficient Urca process

is the direct Urca process involving nucleons [Lat91]:

n → p + e− + ν̄e, p + e− → n + νe. (3.19)

This process is only permitted if energy and momentum can be simultaneously con-

served. This requires that the ratio of proton to neutron exceeds 1/8, or the proton

fraction xp ≥ 1/9. If muons and other charged species are ignored, the equilibrium
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proton fraction xp (=ρp/ρ) is determined by [Lat91]

~c(3π2ρxp)
1/3 = 4Ssym(ρ)(1− 2xp). (3.20)

where the electrons are assumed ultrarelativistic and degenerate. In some case, the

proton fraction xp increases with density, thus the direct Ucra process might still

occur above some density threshold. However, if the direct process is not possible,

the neutron cooling must occur by other model of neutron star cooling based upon

neutrino emission from the interior that is dominated by the modified Urca process

[Lat91]

n + (n, p) → p + (n, p) + e− + ν̄e, p + e− + (n, p) → n + (n, p) + νe. (3.21)

in which an additional nucleon (n, p) participates in order to conserve momentum.

Fig. 3.5 shows the symmetry energy curves calculated with the interactions listed

in Table3.1 together with existing data extracted from charge-exchange reactions

[Kho05, Kho07b], neutron-skin [Fur02] and heavy ion fragmentation studies [She07]

(upper panel). At ρ = ρ0 the models predict values of Esym = S(ρ0) around 29 MeV

with a dispersion of about±3 MeV. The empirical value deduced from the CC analysis

of the p(6He,6Li∗)n reaction is 31 ± 2 MeV [Kho05]. Another method of determining

Esym consists in relating this quantity to the neutron skin thickness of 208Pb [Bro00].

Adopting a neutron-skin value of (0.1−0.2) fm then a systematics based on mean-field

calculations [Fur02] leads to Esym ≈ 27-31 MeV. All interactions of Fig. 3.5 including

CDM3Y6 (Esym = 29.77 MeV) are within the present experimental uncertainties of

Esym.

In the low-density region ρ ∼ (0.054 - 0.089) fm−3 there exist some empirical values

extracted from heavy ion fragmentation data analysis [She07]. They are represented

in Fig. 3.5 (inverted triangles from 58Fe + 58Fe and 58Ni + 58Ni pair of reactions,

solid circles from 58Fe + 58Ni and 58Ni + 58Ni pair of reactions). The values of S(ρ)

calculated with CDM3Yn-type interaction is in good agreement with the data. Those

corresponding to M3Y-Pn (n=3,4,5), SLy4, D1S and D1N interactions are larger,

whereas these results are similar to those of APR prediction [Akm98]. We should note
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Figure 3.5: Density dependence of the nuclear symmetry energy S(ρ) (upper panel) and the
proton fraction xp (lower panel). The empirical values of nuclear symmetry energies taken
from the CC analysis of the charge exchange (p, n) reactions [Kho05, Kho07a], the neutron-
skin [Fur02] and heavy ion fragmentation [She07] studies are also shown for comparison.
The curve xDU is the threshold for the direct Urca cooling process taken from Ref. [Kla06].
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Table 3.2: Same notations as in Table 3.1 but for other mean-field studies:
(Vlowk+CT) [Dal09], DBHF (Bonn A) [Dal04], MDI [Li08, Xia09], Hybrid [Pie09],
G2 [Aru04], and FSUGold [Tod05].

Interaction ρ0 E0 K Esym L Ksym Kτ

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
Vlowk+CT 0.16 -16.0 258 33.4 86.8 -44.6 -565

DBHF (Bonn A) 0.18 -16.1 230 34.3 70.1 6.88 -414
MDI (x=-1) 0.16 -16.0 211 31.6 107 94.1 -550
MDI (x=1) 0.16 -16.0 211 30.55 16.4 -270 -369

Hybrid 0.15 -16.2 230 37.3 119 111 -603
G2 0.15 -16.1 215 36.4 100.7 -7.5 -612

FSUGold 0.15 -16.3 230 32.6 60.5 -51.3 -414

that the analysis of heavy ion fragmentation data was based on the Antisymmetrized

Molecular Dynamic (AMD) simulation [Ono03] at finite temperatures from 5.8 to 7.0

MeV for the 58Fe + 58Fe and 58Ni + 58Ni pairs, and from 5.7 to 6.8 MeV for the 58Fe

+ 58Ni and 58Ni + 58Ni pairs [She07]. Thus, the comparison with predictions made

for cold matter is meaningful only if temperature effects on S(ρ) at low densities can

be neglected.

At densities above ρ0 one sometimes discusses the density dependence of S(ρ)

in terms of Asy-stiff and Asy-soft behaviors [She07, Bra05]. The symmetry energy

predicted by CDM3Yn-type interaction obviously belongs to the Asy-stiff category

and it is even stiffer than the APR prediction.The predictions of SLy4 and M3Y-

Pn (n=3,4,5) are moderately Asy-soft. Note that other versions of the Skyrme

parametrization can be of the Asy-stiff type [Che05, Li08]. The two Gogny D1S

and D1N interactions are definitely Asy-soft.These behaviors are closely related to

the pressure curves P0(ρ) and P1(ρ) discussed in the previous subsection. Indeed, the

relation (3.18) and Fig. 3.4 show for example that, in the region ρ ∼ 0.32 fm−3 the

derivative dS
dρ

is strongly positive for CDM3Yn-type interaction, slightly negative for

D1N and strongly negative for D1S.

As mentioned above, the equilibrium proton fraction xp is entirely determined by

the nuclear symmetry energy. In the lower panel of Fig. 3.5, the proton fractions xp

calculated with all interactions are plotted with the curve xDU that is the threshold for
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the direct Urca (DU) cooling process taken from Ref. [Kla06]. The DU-threshold xDU

can be estimated from the momentum conservation and charge neutrality condition

for p, n and e− only. We have plotted in the lower panel of Fig. 3.5 the averaged DU

threshold as a function of the NM density taken from Ref. [Kla06]. At low densities

xDU ≈ 1/9 as found by Lattimer et al. [Lat91] in the muon-free approximation. At

densities above ρ0, the charge neutrality is corrected by the muon presence which

slightly enhances xDU [Kla06]. As shown in the lower panel of Fig. 3.5, only the

proton fractions of the CDM3Yn interactions can reach the DU threshold at moderate

densities ρ ≈ 0.6 fm−3. According to the microscopic APR study [Akm98], such a

central density is reachable in a neutron star having mass M ≈ 1.6M¯ which is well

above a lower limit of 1.35 ∼ 1.5M¯ for the DU process established in Ref. [Kla06].

The NM density ρ ≈ 0.6 fm−3 happens also to be within the range of average central

densities of the neutron star estimated from a nuclear EOS with K ≈ 240 MeV

[Lat91] which is quite close to K values given by the CDM3Yn interactions (see

Table 3.1). As a result, the direct Urca process (3.19) is possible if one chooses the

CDM3Yn interactions for in-medium NN interaction in the baryon matter of neutron

star. Such a scenario for the DU process is also favored by the HF results for the NM

pressure shown in Fig. 3.4 where the CDM3Yn interactions consistently give the best

description of empirical data for both the symmetric NM and pure neutron matter. In

contrast to the CDM3Yn interactions, the choice of the (Asy-soft) Gogny or M3Y-Pn

interactions would definitely exclude the possibility of the DU process because the

corresponding proton fractions can never reach the DU threshold as shown in Fig. 3.5.

The microscopic APR results obtained with the A18+δv+UIX* version of the Argone

NN interaction approach the muon-free threshold xDU ≈ 1/9 only at ρ ≈ 0.8 fm−3.

Such a central density can exist only if the neutron star mass M ≥ 2M¯ (see Fig. 11

of Ref. [Akm98]) and the DU process is, therefore, very unlikely in this case as well

as in the case of the SLy4 interaction.

In Fig. 3.6, the density-dependence of nuclear symmetry and its proton frac-

tion xp obtained the low-momentum interaction (Vlowk + CT) from Ref. [Dal09],

Dirac Brueckner Hartree Fock (DBHF) calculation from Ref. [Dal04], momentum-

dependent interaction (MDI) model from Ref. [Li08, Xia09], and Hybrid model [Pie09]
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are plotted. The bulk properties of symmetric and asymmetric nuclear matter calcu-

lated with these models are listed in Table 3.2.
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Figure 3.6: Same notation as in Fig. 3.5, but for other interactions [Aru04, Li08, Xia09,
Dal04, Pie09, Tod05]. See text for more details.

Since the DU process has also been considered [Pag04, Bal07] in the framework of

the EOS given by the fully microscopic many-body calculations of NM using realistic

free NN interaction, it is quite complementary to compare the present HF results

with those of a recent Dirac-Brueckner Hartree-Fock (DBHF) study [Dal04] using an

improved treatment of the Bonn-A interaction. It can be seen from the upper panel of

Fig. 3.6 that the NM symmetry energy curve given by this DBHF study is somewhat
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stiffer than that given by the CDM3Yn interactions. As a result, the proton frac-

tion estimated from the DBHF results is reaching the DU threshold already at NM

densities ρ ≈ 0.45 fm−3. Such a central density is higher than that (ρ ≈ 0.37 fm−3)

given by earlier DBHF results (see Fig. 2 and Table IV of Ref. [Kla06]) and it should

lift the corresponding star mass to above the lower limit of 1.35 ∼ 1.5M¯ for the

DU process. It is interesting to note that the inclusion of three-body forces into the

many-body BHF calculations [Li06] not only essentially improves the description of

saturation properties of the symmetric NM but also makes the NM symmetry energy

much stiffer at high NM densities (see Fig. 4 of Ref. [Li06]), in the opposite direc-

tion from the Asy-soft type interactions. Given highly accurate parametrizations of

the bare NN interaction, these microscopic many-body calculations are practically

parameter-free and it is natural to assume an Asy-stiff behavior of S(ρ) which allows

both the direct and indirect Urca processes to take place during the neutron star

cooling. It is highly desirable that results of such a microscopic many-body study can

be accurately reproduced at the mean-field level using some effective (in-medium)

NN interaction which is also amenable to the nuclear structure and/or reaction cal-

culations. However, such “microscopic” mean-field interactions remain technically

complicated to construct and most of the structure and reaction studies still use

different kinds of effective NN interactions with parameters adjusted to the optimal

(mean-field) description of structure and/or reaction data.

An effective NN interaction can be either fully phenomenological like the Skyrme

forces or partially based on a microscopic many-body approach like the CDM3Yn

interactions considered above. An alternative approach has been suggested recently

by the Tuebingen group [Dal09] which considers only the low-momentum (below a

cut-off Λ = 2 fm−1) part of the bare NN interaction. While this “low k” interaction

Vlowk still describes well the NN scattering data up to the pion threshold, the short-

range correlations originated from high-momentum components of the NN force must

be treated phenomenologically at the mean-field level [Boz06]. Namely, the Vlowk

has been supplemented by an empirical density-dependent contact (CT) interaction

adjusted to reproduce the saturation properties of symmetric NM and the empiri-

cal symmetry energy Esym within the HF approximation [Dal09]. This Vlowk+CT
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interaction was shown to give also a reasonable description of the g.s. properties of

some finite nuclei including 208Pb. The NM symmetry energy and proton fraction

predicted by the Vlowk+CT interaction are shown in Fig. 3.6 and they are quite close

to those predicted by the CDM3Yn interactions shown in Fig. 3.5. Like the CDM3Yn

interactions, the Vlowk+CT interaction should also belong to the Asy-stiff type and

allow both the direct and indirect Urca processes during the neutron star cooling.

Another famous choice of the effective interaction is the Skyrme-type momen-

tum dependent interaction (MDI) which has been first parametrized [Che05] for the

transport model simulation of HI collisions. By varying the x parameter of the MDI

interaction, the experimental data from NSCL-MSU on the isospin diffusion have

been shown to favor the MDI (x=-1) version which gives the NM symmetry energy

nearly linear in the NM density (see Fig. 3.6 or Fig. 1 of Ref. [Che05]). One can see

in Fig. 3.6 that the NM symmetry energy S(ρ) given by the MDI (x=-1) interaction

is somewhat stiffer than that predicted by the DBHF calculation using the Bonn A

interaction [Dal04]. The proton fraction given by this (Asy-stiff) MDI (x=-1) inter-

action is reaching the DU threshold at NM densities ρ ≈ 0.3 fm−3. Since the star

mass corresponding to such a central NM density is probably smaller than the lower

limit of 1.35 ∼ 1.5M¯ for the DU process [Kla06], it remains questionable if the DU

process is possible in this case. The MDI interaction has also been used to describe

neutron skin in finite nuclei in the Gogny Hartree Fock model [Xia09], and the MDI

interaction with x between 0 and -1 was shown to reproduce reasonably well the

empirical neutron skin data for 124,132Sn and 208Pb. However, the situation with the

MDI interaction becomes somewhat confused after the new FOPI data on the π−/π+

ratio in the central HI collisions at SIS/GSI energies have been shown to clearly favor

the MDI (x=1) interaction [Xia09]. In terms of symmetry energy, the MDI (x=1)

interaction belongs to the Asy-soft type (see Fig. 3.6) like the Gogny or M3Y-Pn

interactions considered above and therefore it excludes the DU process during the

neutron star cooling. Given experimental evidences favoring both the Asy-stiff and

Asy-soft versions of the MDI interaction, the behavior of the NM symmetry energy

at high densities as well as the possibility of the DU process still remain an open

question.
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The NM symmetry energy has also been the subject of various relativistic mean

field (RMF) studies. In the present work, we compare our non-relativistic HF results

with those of some recent RMF studies using carefully chosen parameters for the

energy-density functional [Aru04, Tod05, Pie09]. The G2 parameter set [Aru04] has

been shown to consistently reproduce the g.s. structure of finite nuclei and bulk NM

properties. In particular, the RMF calculation using the G2 set reproduces very well

the empirical pressure for both the symmetric NM and pure neutron matter [Aru04].

Quite popular is the FSUgold parameter set developed by Piekarewicz et al. [Tod05]

which has been used to study not only the bulk NM properties and g.s. structure of

finite nuclei but also the excitation of the nuclear giant monopole resonance (GMR).

While the FSUgold parameters give a good description of the GMR in 208Pb, the

observed GMR excitation energies in Sn isotopes could not be reproduced with this

parameter set. In order to improve the RMF description of the NM saturation prop-

erties as well as monopole strength distribution in Sn isotopes, a hybrid model of

the RMF parameters has been developed [Pie09] based on a realistic RMF parameter

set (the NL3 model). However, the Hybrid parameters turned out to give a worse

description of the GMR in 208Pb compared with that given by the FSUgold model

and it remains, therefore, difficult to choose between these two parameter sets. The

RMF results using these parameters are shown in Fig. 3.6 and one can see that the

stiffness of the NM symmetry energy is gradually increased as one goes from FSUgold

and G2 to the Hybrid results. It has been found by Steiner [Ste06] that the RMF

models typically have a large symmetry energy and a large proton fraction, and the

DU process becomes possible at rather low NM densities. This effect can be clearly

seen in the Hybrid and G2 results shown in Fig. 3.6 where the corresponding pro-

ton fractions reach DU threshold at the NM densities of ρ ≈ 0.24 and 0.32 fm−3,

respectively. We note further that S(ρ) predicted in the Hybrid model is very close

to the RMF result by Klähn et al. [Kla06] using the NLρσ parametrization where

the proton fraction is reaching the DU threshold at ρ ≈ 0.28 fm−3. The behavior

of the proton fraction predicted by the FSUgold model is somewhat different from

those predicted by the Hybrid and G2 models. Namely, it approaches the muon-free

threshold xDU ≈ 0.11 only at ρ ≈ 0.8 fm−3, like the microscopic APR result. With
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the predicted maximum neutron star mass of M ≈ 1.72M¯, the FSUgold model has

been shown in Ref. [Tod05] to allow partially the DU process in the neutron star

cooling. However, if we assume the averaged DU threshold taken from Ref. [Kla06]

which takes into account the muon presence at high densities, then the DU process

is unlikely in this case because the proton fraction predicted by the FSUgold model

seems to saturate at x ∼ 0.11 at ρ ≥ 0.8 fm−3 (see lower panel of Fig. 3.6), like the

APR results [Akm98] discussed above. Given a dilemma in the choice between the

FSUgold and Hybrid models [Pie09], possibility of the DU process is again an open

question.

3.2.4 Nuclear matter incompressibility
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Figure 3.7: Isovector part of the NM incompressibility given by the present HF cal-
culation using the interactions of Table 3.1. Encircled part shows K1 values near the
saturation density ρ0 of symmetric NM, i.e., the Ksym values given in Table 3.1. See
text for more details.

Although the experimental evidences are still divergent with respect to the Asy-

stiff and Asy-soft type mean-field interactions, it is of interest to further explore the



3.2. RESULTS AND DISCUSSION 61

difference between these two groups in terms of the NM incompressibility. The NM

incompressibility K(ρ) can be written explicitly in terms of the isoscalar (K0) and

isovector (K1) parts as

K(ρ, δ) = K0(ρ) + K1(ρ)δ2 + O(δ4) + ... (3.22)

where K0(ρ) = 9ρ2 ∂2

∂ρ2

[
E

A
(ρ, δ = 0)

]
; K1(ρ) = 9ρ2∂2S(ρ)

∂ρ2
. (3.23)

It is clear from Eq. (3.23) that the behavior of the isovector incompressibility K1

should correlate closely with that of the NM symmetry energy S(ρ). We have plotted

in Fig. 3.7 the density dependence of K1 given by the numerical differentiation of

the HF results for S(ρ) and one can see that the K1 value given by the (Asy-stiff)

CDM3Yn interactions is positive over the density range ρ ≥ ρ0 and gradually increases

to 200 ∼ 400 MeV at ρ approaching 0.6 fm −3 (the DU-onset density found with these

interactions). On the contrary, the K1 value given by the (Asy-soft) M3Y-Pn and

Gogny interactions is negative over the same density range and decreases linearly

to about -1000 MeV at ρ approaching 0.6 fm −3. Since K(ρ) is actually related to

the first derivative of NM pressure with respect to the density, a strongly negative

isovector incompressibility K1(ρ) corresponds to a decrease of the NM pressure P (ρ)

as one goes from the symmetric NM to the pure neutron matter and this effect can be

seen clearly in Fig. 3.5. Such a decrease of P (ρ) in the pure neutron matter case found

with the (Asy-soft) M3Y-Pn and Gogny interactions pulls the calculated P (ρ) out

of the empirical area deduced from the collective flow data measured in relativistic

HI collisions [Dan02]. Based on this discussion, we conclude that the behavior of

the isovector incompressibility K1(ρ) given by the (Asy-stiff) CDM3Yn interactions

is more consistent with the HI flow data compared with the (Asy-soft) M3Y-Pn and

Gogny interactions.

In the literature, the discussion on the isovector part of the NM incompressibility

is very often made based on the K values estimated at the saturation density ρ0 of

symmetric NM. It should be noted, however, that the saturation density of asym-

metric NM decreases rather quickly with the increasing neutron-proton asymmetry

δ and pure neutron matter (δ = 1) becomes unbound (see Fig. 3.3 and also Fig. 2



62 CHAPTER 3. NUCLEAR MATTER

of Ref. [Kho96]). As a result, ρ0 is no more a stable extremum in the NM energy

curve and various expansions around it like (3.13) might not be accurate for large

neutron-proton asymmetries δ. For example, the second derivative of the approxi-

mated expression (3.13) for S(ρ) gives a purely parabolic density dependence of the

isovector incompressibility as K1(ρ) ≈ Ksym(ρ/ρ0)
2 which can deviate from the ex-

act HF result at high densities (see Fig. 3.7). In any case, the calculated K1 values

near ρ0 (encircled in Fig. 3.7) converge quite well to the corresponding Ksym coeffi-

cients of the expansion (3.13), so that K1(ρ → ρ0) ≈ Ksym. In the studies of the HI

isospin diffusion [Che05] or isospin dependence of giant monopole resonance [Li07],

the asymmetry of the NM incompressibility near ρ0 was associated with the quantity

Kτ = Ksym − 6L which has been confined by these data to Kτ ≈ −550 ± 100 MeV.

The empirical Kτ value has been shown by a recent study of the neutron-skin thick-

ness by Centelles et al. [Cen09] to be around Kτ ≈ −500± 100 MeV. From Table 3.2

one can see that Kτ values obtained from the (Asy-stiff) DBHF, Vlowk+CT, Hybrid

and MDI (x=-1) results are in good agreement with empirical value. However, the

Asy-stiff CDM3Yn interactions give Kτ values of about -330 MeV which are some-

what above the upper limit of empirical data. The Asy-soft MDI (x=1), M3Y-Pn and

Gogny interactions give Kτ values of about -400 MeV, right at the empirical upper

limit. While no definitive conclusion can be made on the stiffness of NM symmetry

energy S(ρ) based on the Kτ values, some preference for the Asy-stiff interactions

can be made based on the empirical constraints on the Esym and L parameters es-

tablished recently in the analysis of the isospin diffusion data and ratios of neutron

and proton spectra measured in HI collisions [Tsa09]. One can see in Table 3.1 that

only the (Asy-stiff) CDM3Yn and SLy4 interactions are lying within the borders of

the (double) constraints deduced from the isospin diffusion data: L ≈ 40 ∼ 70 MeV

and J ≈ 30 ∼ 34 MeV (see Fig. 1 of Ref. [Tsa09]). It is complementary to note a

similar range for the slope parameter L ≈ 45 ∼ 75 MeV established recently from a

systematic study of the correlation between the neutron skin thickness and symmetry

energy [War09].

Finally we note that the mean-field calculations discussed in the present work

did not take into account the hyperon presence in the neutron star. The hyperon
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population has been estimated to make up about 18% of the neutron star matter and

shown to significantly soften the EOS as well as reduce the limiting neutron star mass

[Gle91, Gle00]. Another important effect is that the proton fraction is significantly

enhanced by the hyperon presence. Namely, the proton fraction of a hyperon star

having mass M ≈ 1.5M¯ is about 50% larger than that of a neutron-proton-lepton

star of the same mass (see Fig. 5.28 of Ref. [Gle00]). Consequently, if we assume a

50% rise in the proton fractions predicted, e.g., by the microscopic APR calculation

or FSUgold model at ρ ≈ 0.6 ∼ 0.8 fm−3 (see lower panel of Fig. 3.6), then the DU

process is well allowed within these models. Concerning a typical Asy-soft interaction

like the Gogny, M3Y-Pn or MDI (x=1), such a 50% increase of the proton fraction

will definitely not make the DU process possible.

In conclusion of this Chapter, we have studied the bulk nuclear matter properties

predicted by two different sets (CDM3Yn and M3Y-Pn) of the density-dependent

M3Y interaction, SLy4 version of the Skyrme as well as D1S and D1N versions of

the Gogny interaction in the framework of the self-consistent HF mean field. The

HF results for the density dependence of the NM symmetry energy and proton frac-

tion are also compared with those given by the microscopic many-body studies (the

DBHF and APR calculations) using the bare NN interaction, and by the RMF stud-

ies using different parameter sets. We have concentrated our discussion on several

main aspects: the NM binding energy and pressure in the symmetric NM and pure

neutron matter, and the density dependence of the NM symmetry energy S(ρ) and

the associated proton fraction. For the symmetric NM, the main conclusion is that

all the effective NN interactions used here are more or less consistent with the mi-

croscopic APR prediction and empirical pressure deduced from the collective flow

measurements in relativistic HI collisions. For the pure neutron matter, the HF pre-

diction for the NM binding energy and pressure shows clearly that the considered

mean-field interactions are divided into two families which are associated with two

different behaviors (Asy-soft and Asy-stiff) of the NM symmetry energy at high den-

sities, where only the Asy-stiff type interactions comply with the empirical data for

the NM pressure. These two families were shown to predict two different scenarios for

the proton-to-neutron ratio in the beta equilibrium which, in turn, imply two distinct



64 CHAPTER 3. NUCLEAR MATTER

mechanisms for the neutron star cooling (with or without the direct Urca process).

Although an ambiguity in the high-density behavior of the NM symmetry energy

still remains due to the experimental evidences from HI studies favoring both the

Asy-soft and Asy-stiff versions of the MDI mean-field interaction, recent analysis of

the isospin diffusion data and ratios of neutron and proton spectra measured in HI

collisions [Tsa09] or systematic study of the correlation between the neutron skin

thickness and NM symmetry energy [Cen09, War09] seem to provide evidence favor-

ing the Asy-stiff type interactions. The Asy-stiff behavior is also predicted by many

microscopic BHF or DBHF calculations using realistic choices for the bare NN inter-

action [Li06] and by the latest RMF studies [Aru04, Tod05, Pie09]. It is, therefore,

highly probable that the neutron star cooling proceeds indeed via both the direct and

modified Urca processes.



Chapter 4

FINITE NUCLEI

In this chapter, we present the general formalism of the non-relativistic HF and HF-

BCS approaches in coordinate representation using finite-range density-dependent

interactions (e.g. Gogny D1S [Ber91], D1N [Cha08], and M3Y-Pn [Nak08]) in both

the mean field and pairing channels. We will show how the coordinate space HF

equations for a non-local self-consistent potential can be actually solved with correct

boundary conditions. In this thesis, we have also presented a basis expansion method,

in which the radial HF equations are solved using a spherical Bessel function basis.

The description of the techniques used to perform the HF-BCS calculations will be

shown. The first application is to study the possibility of bubble structures of 34Si,
22O, 46Ar and 68Ar using the finite-range density-dependent interactions in both the

mean field and pairing channels. Furthermore, for the first time the properties of the

Wigner-Seitz (WS) cells [Neg73] in the inner crust of neutron stars will be studied

using finite-range density-dependent interactions, such as Gogny (D1S & D1N) and

M3Y-Pn, in HF and HF-BCS approaches.

65
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4.1 Hartree-Fock Calculations

4.1.1 The Variational Principle and the Hartree-Fock method

The microscopic models are models that describe the structure of the nucleus in terms

of degrees of freedom of its microscopic constituents - the nucleons. The basic idea of

the Hartree-Fock method is that the mutual interactions among nucleons lead to an

average potential felt by each one of the nucleons. The nucleus is a many-body system

of fermions so the wave function of the nucleus of any state must be antisymmetric

under the interchange of the coordinates of any two nucleons. The mean field theory

provides an approximate solution to the nuclear many-body problem, based on a

Hamiltonian containing a suitable two-body interaction. In second quantization, this

Hamiltonian is given by [Rin80]

Ĥ =
∑
ij

tij ĉ
†
i ĉj +

1

4

∑

ijkl

v̄ijklĉ
†
i ĉ
†
j ĉlĉk, (4.1)

where t is the kinetic energy operator,

v̄ijkl =< i, j|v|k, l > − < i, j|v|l, k > (4.2)

represents the antisymmetrized two-body interaction matrix elements, and ĉ†i , ĉi single-

particle creation and annhilation operators in a single-particle state i. All indices in

Eq. (4.1) run over a complete set of states. An eigenstate of this Hamiltonian can

be expanded as a sum over states which all have the same total number of nucleons,

but with the nucleons occupying the available single-particle states in all possible

combinations.

The Schrödinger equation can be written as

Ĥ|Φk >= Ek|Φk > (4.3)

where (|Φk >,Ek) are the exact eigenstates and eigenenergies of Ĥ. If E0 denotes

the ground state energy, it is a well-known result of quantum mechanics that the
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expectation value

E[Φ] =
< Φ|Ĥ|Φ >

< Φ|Φ >
(4.4)

satisfies the inequality

E[Φ] ≥ E0 (4.5)

for any arbitrary state vector |Φ >. The essence of all variational methods is to find

a model state vector |Φ > which gives the lowest possible value of E[Φ]. This is

obtained by the variational condition

δE[Φ] =< δΦ|Ĥ − E|Φ > + < Φ|Ĥ − E|δΦ >= 0 (4.6)

where E is a Lagrange multiplier which will be interpreted as the energy correspond-

ing to |Φ >. The Hartree-Fock method, or self-consistent mean field method, is a

particular case of the general variational method where the trial state vectors belong

to the space of the Slater determinants built on a set of single-particle states.

In general, the wave function Φ is a complex function, so the variation can be

carried out either with the real part or imaginary part, which is equivalent to carrying

out the variation over |δΦ > and < δΦ|. Thus, with Eq. (4.6) can be reduced to

< δΦ|Ĥ − E|Φ >= 0 (4.7)

and its complex conjugate equation.

Finally, it must be noted that Eqs. (4.6,4.7) implicitly assume that Ĥ does not

depend on |Φ >. Actually, many effective Hamiltonains do depend on densities and/or

currents, i.e., they implicitly depend on |Φ > itself and therefore, variations of E[Φ]

invole also rearrangement contributions which are not explicited in Eqs. (4.6,4.7),

but they are of course treated in our numerical applications.
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4.1.2 HF Equations in Coordinate Space

a- Energy functional

Standard HF theory yields the following expression for the total binding energy of

the nucleus in its ground state as

EHF =< Φ|Ĥ|Φ > (4.8)

where the many-body Hamiltonian Ĥ is written in second quantization by the creation

and annhilation operators ĉ†i , ĉi in Eq. (4.1). Using the Wick’s theorem, we can

calculate the energy EHF as a functional of the single-particle density ρij

EHF [ρ] =
∑
ij

tij < Φ|ĉ†i ĉj|Φ > +
1

4

∑

ijkl

v̄i,j,k,l < Φ|ĉ†i ĉ†j ĉlĉk|Φ >

=
∑
ij

tijρij +
1

2

∑

ijkl

ρkiv̄i,j,k,lρlj, (4.9)

In the Hartree-Fock theory, a single Slater determinant is selected to be the many-

body wave function:

|Φ >=
A∏

i=1

ĉ†i |0 >, (4.10)

where the index i runs over a set of single-particle states with orthonormal wave

functions ϕi, i = 1, ..., A which are themselves eigenfunctions of a single-particle

Hamiltonian h,

h(x)ϕi(x) = εiϕi(x), x = {ri, σi, qi} (4.11)

This Hamiltonian will be determined by the variational condition (4.7). Here the

single-particle wave functions ϕi(ri, σi, qi) are a coordinate space representation of

the eigenstates |i > of the single-particle Hamiltonian h, and εi are the corresponding

single-particle energies. The many-body Hartree-Fock Hamiltonian is

ĤHF =
A∑

i=1

ĥ(i) (4.12)
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The variational condition (4.7) together with the ansatz (4.10) with respect to the

single-particle wave function ϕi leads to a set of coupled, non-linear equations

hkl = tkl +
A∑

i=1

v̄kili = εkδkl (4.13)

The total Hartree-Fock energy EHF (4.9) calculated with the trial wave function

(4.10) is given explicitly as

EHF = −
A∑

i=1

~2

2mqi

∫
ϕ∗i (r1)∆ϕi(r1)dr1

+
1

2

A∑
ij

∫
ϕ∗i (r1)ϕ

∗
j(r2)V (r1, r2)ϕi(r1)ϕj(r2)dr1dr2

−1

2

A∑
ij

∫
ϕ∗i (r1)ϕ

∗
j(r2)V (r1, r2)ϕi(r1)ϕj(r2)dr1dr2, (4.14)

where V (r1, r2) is the two-body interaction between nucleons 1 and 2 (see Eq. (4.2)).

Here and in the following , qi = +1 (−1) if nucleon is a neutron (a proton) and mqi

is the corresponding nucleon mass.

We can obtain the Hartree-Fock equations (4.13) for the single-particle wave func-

tions ϕi(r) in coordinate space as,

− ~2

2mqi

∆ϕi(r1) + UH(r1)ϕi(r1)−
∫

UF (r1, r2)ϕi(r1)dr2 = εiϕi(r1) (4.15)

where UH(r1) is the local direct potential (Hartree potential)

UH(r1) =
∑

j

∫
ϕj(r2)V (r1, r2)ϕj(r2)dr2 (4.16)
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and UF (r1, r2) is the non-local exchange potential (Fock potential),

UF (r1, r2) =
∑

j

ϕj(r2)V (r1, r2)ϕj(r1) (4.17)

The Hartree-Fock equations (4.15) are quite similar in form to Schrödinger equa-

tions for each of the single-particle states and present a self-consistent problem, since

the Hartree and Fock potentials depend on the single-particle wave functions of the

solution of the single-particle eigenvalue problem. It is usually solved by iteration

methods in which one starts from an initial guess for the potentials. Solving the HF

equations then yields a new set of wave functions, which is used to build the mean

fields for next step. This process is repeated until the convergence is achieved.

b- Hartree-Fock calculations with finite-range interactions

In this section we explain in details the analytical expressions needed for Hartree-

Fock calculations with a finite-range interaction, taking the Gogny interaction [Dec80,

Ber91] as an illustrative example. Expression for other types of finite-range interac-

tions can be easily deduced from this case. Throughout this work we limit ourselves

to spherically symmetric systems because this greatly simplifies the numerical ef-

forts and reduces the numerical integrations only to the radial coordinate while all

reductions of spin-angular variables can be carried out analytically.

In order to obtain the Hartree potential UH(r1) of Eq. (4.16) and the Fock potential

UF (r1, r2) of Eq. (4.17), it is convenient to use the multipolar decomposition of the

Gaussian functions fν(|~r1 − ~r2|) of Eq. (2.27) as [Bri93]

fν(|r1 − r2|) = 4π
∑
LM

(−)M i−LjL

(
2i

r1r2

µ2
ν

)
exp

− r2
1+r2

2
µ2

ν Y −M
L (r̂1)Y

M
L (r̂2)

= 4π
∑
LM

(−)Mvν
L(r1, r2)Y

−M
L (r̂1)Y

M
L (r̂2), (4.18)

where jL(ix) is the spherical Bessel function of pure imaginary argument [Abr72].

For the M3Y-Pn interaction [Nak08], we use the multipole expansion of Yukawa form
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factor of Eq. (2.31) as [Bri93]

fν(|r1 − r2|) = 4π
∑
LM

(−)MjL(iµνr<)h
(1)
L (iµνr>)Y −M

L (r̂1)Y
M
L (r̂2)

= 4π
∑
LM

(−)Mvν
L(r1, r2)Y

−M
L (r̂1)Y

M
L (r̂2). (4.19)

where h
(1)
L (iµνr>) is the Hankel function of pure imaginary argument [Abr72] and r<

(r>) is the smaller (the larger) of (r1,r2). Using Pσ we rewrite Pσ = 1+ ~σ1 ~σ2

2
, therefore

Wν+BνP
σ−HνP

τ−MνP
σP τ =

(
Wν −HνP

τ +
Bν −MνP

τ

2

)
+

1

2
(Bν −MνP

τ ) ~σ1 ~σ2

(4.20)

and we express the central potential V (C)(|r1 − r2|) in the form

V (|r1 − r2|) = 4π
∑
SLJ

2∑
ν=1

Aν(S)(−1)L+S+J+Mvν
L(r1, r2)

(
T

(SL)J
(1) .T

(SL)J
(2)

)
, (4.21)

where

Aν(S = 0) = Wν −HνP
τ +

Bν −MνP
τ

2
; Aν(S = 1) =

Bν −MνP
τ

2
. (4.22)

Here, we have introduced the tensors T
(SL)J
(µ) , which are tensorial products of a spher-

ical harmonic Y M
L with a Pauli spin matrix

T (SL)J =
[
σS

η ⊗ Y M
L

]
(4.23)

with

T
(0L)L
M ≡ Y M

L (4.24)

T (1L)J
µ ≡

∑
M,ν

(−1)L−1+µĴ

(
L

M

1

ν

J

−µ

)
σνY

M
L . (4.25)

Here, we use the notation Ĵ = (2J + 1)1/2.

In the Hartree-Fock approximation the nucleon densities ρq(r), kinetic energy
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densities τq(r), and spin densities J q(r) are expressed in term of the single-particle

wave functions ϕi(r, σ, q),

ρq(r) =
∑
i,σ

|ϕi(r, σ, q)|2,

τq(r) =
∑
i,σ

|−→∇ϕi(r, σ, q)|2,

J q(r) = −i
∑

i,σ,σ′
ϕ∗i (r, σ, q)[

−→∇ϕi(r, σ′, q)× < σ|~σ|σ′ >]. (4.26)

The sums in Eq. (4.26) run over all occupied single-particle states.

Because of the spherical symmetry assumption, the single- particle wave functions

ϕi(r, σ, q) can be factorized into a radial function ui(r), a spin-angular part Yljm(r̂, σ),

and isospin function χq(τ):

ϕi(r, σ, q) =
uα(r)

r
Yljm(r̂, σ)χq(τ) (4.27)

where

Yljm(r̂, σ) =
∑
mlms

< l
1

2
mlms|jm > Ylml

(r̂)χms(σ)

We have introduced the notation α ≡ {q, n, l, j} where q = +1(−1) for neutrons

(protons), n is the principal quantum number, l is the orbital angular momentum, j

is the total angular momentum, and m is the magnetic quantum number.

From the definitions (4.26) for the density ρ(r) and the kinetic energy density

τ(r) one can see that these functions depend only on the radial coordinate and they

can be written as,

ρ(r) =
1

4πr2

∑
α

(2jα + 1)u2
α(r)

τ(r) =
1

4π

∑
α

(2jα + 1)[(
dRα(r)

r
)2 +

lα(lα + 1)

r2
R2

α(r)] (4.28)

where Rα(r) = uα(r)/r. The sums in Eq. (4.28) are restricted to neutron and proton

orbitals to obtain the neutron and proton densities. The spin density J(r) can be
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written in the following way

J(r) =
1

4πr3

∑
α

(2jα + 1)[jα(jα + 1)− lα(lα + 1)− 3

4
]u2

α(r) (4.29)

where the vector spin density is J(r) = r
r
J(r).

b.1- The direct and exchange potentials

Using the tensor T
(SL)J
(µ) in Eq. (4.23) and the single particle wave functions ϕi(r, σ, q)

defined in Eq. (4.27), we can calculate the direct and exchange angular-momentum

couple which are needed to build the Hartree-Fock potential in each (l, j) partial

wave.

The calculations of the contributions of the central V (C)(|r1−r2|) term in Eq. (2.26)

to the mean field are presented in Appendix A.1. These contributions are separated

into a Hartree (direct) and a Fock (exchange) contribution as

UH
i (r1) =

∑
j

2∑
ν=1

ĵj
2
(Wν +

Bν

2
−Hνδqiqj

− Mν

2
δqiqj

)

∫
u2

j(r2)v
ν
0 (r1, r2)r

2
2dr2, (4.30)

UF
i (r1, r2) =

∑
jL

2∑
ν=1

ĵj
2
uj(r1)uj(r2)v

ν
L(r1, r2)

(
li
0

lj
0

L

0

)2

×
[
l̂i

2
l̂j

2
{

li
jj

ji

lj

1/2

L

}2

(Wνδqiqj
−Hν) + Bνδqiqj

−Mν

]
,(4.31)

with |li − lj| ≤ L ≤ (li + lj).

For the density-dependent term V (DD)(ρ, |r1−r2|) of Eq. (2.26), it is very similar

to the zero-range density-dependent term of Skyrme interactions [Vau72, Cha97], and

therefore, its contribution to the mean field is well-known [Vau72, Cha97, Dec80]:

UDD
q (r) =

t0
4

{
(2 + x0)(2 + α)ρα+1(r)

− (2x0 + 1)[2ρα(r)ρq(r) + αρα−1(r)(ρ2
p(r) + ρ2

n(r)]
}

(4.32)
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where ρ is the total nucleon density and q stands for protons or neutrons.

b.2- The spin-orbit potential

Concerning the contribution of the two-body spin orbit interaction, it is easily derived

since this interaction is of zero range. The result is [Vau72, Cha97, Dec80]:

V LS
q (r) = W0

{
1

r

d

dr
(ρ(r) + ρq(r))l.s−

[
1

r
J(r) + J ′(r) +

1

r
Jq(r) + J ′q(r)

]}

= WLS0
q (r)l.s + WLS1

q (r) (4.33)

where J(r) is the spin density of Eq. (4.29), and J ′ = dJ
dr

.

b.3- The Coulomb potential

The Coulomb interaction between protons, e2/r12, has multi-poles vC
L (r1, r2) = rL

</rL+1
>

where r< (r>) is the smaller (the larger) of (r1,r2). The direct term of the Coulomb

potential is

V DC(r1) = e2
∑

j∈protons

ĵj
2
∫

u2
j(r2)v

C
0 (r1, r2)r

2
2dr2

= e2

∫
ρp(r2)v

C
0 (r1, r2)r

2
2dr2, (4.34)

while the exchange term of the Coulomb potential is

V EC
i (r1, r2) = e2

∑
jL

δqi,−1/2δqi,qj
l̂i

2
l̂j

2
ĵj

2
uj(r1)uj(r2)v

C
L (r1, r2)

×
(

li
0

lj
0

L

0

)2 {
li
jj

ji

lj

1/2

L

}2

(4.35)

b.4- The HF equations

With the help of the results (4.27, 4.30, 4.31, 4.32, 4.33, 4.34, 4.35 ) it is straight-

forward to obtain the radial integro-differential HF equations for the radial wave
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functions ui(r1) as

~2

2m
[−u

′′
i (r1) +

li(li + 1)

r2
1

ui(r1)] + [UH
i (r1) + UDD

q (r1) + V DC(r1) + WLS1
q (r1)]ui(r1)

−
∫

(UF
i (r1, r2) + V EC

i (r1, r2))ui(r2)r
2
2dr2

+ [ji(ji + 1)− li(li + 1)− 3

4
]WLS0

q (r1)ui(r1) = εiui(r1) (4.36)

The iterative Hartree-Fock method consists in the following: for a given effective

potential V (ρ, |r1−r2|), we start from an initial guess ( a Woods-Saxon potential) and

solve the HF equations to get the single-particle wave functions and the single-particle

energies of the occupied states, then we calculate the potentials UH
i (r1), UDD

q (r1),

V DC(r1), WLS1
q (r1), UF

i (r1, r2), V EC
i (r1, r2), WLS0

q (r1) for the next iteration and solve

the HF equations again. One can proceed in this way until reaching convergence with

a required accuracy. In our calculations, the convergence criteria is that all single-

particle energies change by less than a fixed amount δε between two iterations.

c- Numerical solutions

c.1-The boundary conditions

The system of differential equations is solved in the redial coordinate space in a

spherical box for a given choice of boundary conditions. At origin (r=0) all solutions
ui(r)

r
must be regular and therefore, ui(r)

r→0→ αrli+1. At the wall of the box, we can use

two possible boundary conditions: vanishing wave functions (Dirichlet condition) or

vanishing derivatives of the wave functions (Neumann condition). The first condition

is the natural choice when calculating an isolated nucleus. A combination of the first

and the second condition is more appropriate if we calculate nuclear systems inside a

Wigner-Seitz cell as we shall explain in subsection 4.4.

c.2-The Numerov algorithm for HF equations

In the context of HF equations with finite-range interactions, Vautherin and Vénéroni

[Vau67] have introduced a method called ”trivially equivalent local potential” where
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one can transform the HF integro-differential equations (4.36) into a purely differential

equation. In fact, a drawback of the method is that this equivalent local potential

can have poles at the nodes of the wave functions ui(r) [Vau67, Gra02] . In Ref.

[Vau67] an iterative method was introduced to overcome this problem, based on the

linearization of the local equivalent potential around the poles. However, in this

work we would like to use another method for solving the HF equations, the so-called

Brueckner-Gammel-Weizner (BGW) method [Bru58]. Three functions Di(r), Gi(r)

and Hi(r) are introduced as

Di(r1) = u2
i (r1) + a2[u

′
i(r1)]

2

Gi(r1) =
1

Di(r1)

∫
(UF

i (r1, r2) + V EC
i (r1, r2))[ui(r1)ui(r2) + a2u

′
i(r1)u

′
i(r2)]dr2

Hi(r1) =
a2

Di(r1)

∫
(UF

i (r1, r2) + V EC
i (r1, r2))[ui(r2)u

′
i(r1)− ui(r1)u

′
i(r2)]dr2 ,

(4.37)

where a can take an arbitrary value. The case a = 0 corresponds to the trivially

equivalent local potential method of Vautherin and Vénéroni [Vau67] . With the help

of the definitions (4.37) it is straightforward to transform the integro-differential HF

equations (4.36)for the radial wave functions ui(r) into

−u
′′
i (r1) +

li(li + 1)

r2
1

ui(r1) +
2m

~2
[UHF

i (r1)− εi]ui(r1) +
2m

~2
Hi(r1)u

′
i(r1) = 0 .

(4.38)

where

UHF
i (r1) = UH

i (r1) + UDD
q (r1) + V DC(r1) + WLS1

q (r1) + Gi(r1)

+ [ji(ji + 1)− li(li + 1)]− 3

4
]WLS0

q (r1) (4.39)

One can see that Eq. (4.38) becomes formally a differential equation where the poten-

tials depend on the solutions and therefore they must be solved iteratively. At each

iteration of the HF scheme we evaluate the potentials of all states by using the wave
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functions of the previous iteration and we repeat this procedure until convergence. An

additional difficulty comes from the fact that the first derivative of the wave function

ui(r1) appears in Eq. (4.38). This is not a major problem since the wave function

ui(r) and its derivative can be determined together by a Numerov method. More

details about the Numerov method are given in Appendix A.2.

4.1.3 HF Equations in Basis Representation

Solving the Hartree-Fock equations in coordinate space has several advantages: the

results do not depend on the choice of a basis and its truncation, and the individual

wave functions have a correct asymptotic behavior. On the other hand, if we try

to solve the HF equations in rather large boxes (for example in the calculations of

Wigner-Seitz cells [Neg73] neutron stars, one needs box radii typically beyond 40 or

50 fm in the outer most layers of the inner crust) and with large values of orbital

momentum l (l can be larger than 15 or 16 in the calculations of Wigner-Seitz cells),

we encounter strong numerical instabilities. The cause of the problem is that the

HF wave functions are proportional to rl+1 in the region which is near the origin.

Calculations requiring a certain number of nodes can fail in this region if the HF

potential is not good enough at a given iteration. To avoid this problem, we have also

developed a basis expansion method. Using this method, solving the HF equations can

be reduced to an eigenvalue problem. The advantage of the basis expansion method

is that it produces a high accuracy (measured by the orthogonality of the solutions)

with a smaller number of points, while this may be not obtained if we solve the

HF equations in coordinate space. Another advantage is that the integro-differential

nature of the HF equations no longer represents a problem.

Normally, the harmonic-oscillator basis-set is widely applied in describing the

single-particle orbits of nuclei. In this work, we choose instead to use a the spherical

Bessel functions basis. In this section, we describe how the HF equations are solved

in a spherical Bessel functions basis. This method will be later used for calculating

the Wigner-Seitz cells in the inner crust of neutron stars, as we will discuss in the

next sections.
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a- Hamiltonian matrix

The spherical Bessel function j(kr) satisfies equation,

j′′l (kr) +
2

kr
j′l(kr) +

(
1− l(l + 1)

(kr)2

)
jl(kr) = 0, (4.40)

where k = (2mE
~2 )2.

The radial part
unlj(r)

r
of the single-particle wave function in Eq. (4.27) can be

expanded on the normalized spherical Bessel functions as

unlj(r)

r
=

N∑
i=1

Cnlj,ij̃l(k
(l)
i r) (4.41)

where N is the dimension of the basis, the normalized spherical Bessel functions

j̃l(k
(l)
i r) are determined by

j̃l(kr) =
jl(kr)√∫
(jl(kr))2dr

(4.42)

and they satisfy the orthogonality conditions < j̃l(k
(l)
i r)|j̃l(k

(l)
i′ r) >= δii′ .

The single-particle wave function ϕ(r, σ, q) in Eq. (4.27) can be expanded as

ϕnljm(r, σ, q) =
N∑

i=1

Cnlj,ij̃l(k
(l)
i r)Yljm(r̂, σ)χq(τ)

=
N∑

i=1

Cnlj,iψnljm,i(r, σ, q) (4.43)

Under the l and j conservation, the single-particle Hamiltonian matrix is given by

H
(lj)
ii′ =< ψljm,i|H|ψljm,i′ > (4.44)
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where the single particle Hamiltonian can be written as

H = − ~
2

2m
∇2 + V (r1, r2)

= − ~
2

2m

[
1

r

(
d2

dr2
r

)
− L̂2

r2

]
+

∑
LJM

YLJM(r̂1)V (r1, r2)Y
†
LJM(r̂2) (4.45)

b- Hartree-Fock equations in a basis

The HF equations (4.15) in spherical symmetry, i.e., when {nljm} are good quantum

numbers, become:

H|ϕnljm >= εnljm|ϕnljm > (4.46)

With the help of expansion (4.43), the HF equations (4.45) take the form of a matrix

eigenvalue problem:
N∑

i′=1

H
(lj)
ii′ Cnlj,i′ = εnljmCnlj,i (4.47)

where H
(lj)
ii′ is a symmetric N ×N matrix,

H
(lj)
ii′ =

~2

2m
(k

(l)
i )2δii′ +

∫ ∫
V HF

lj (r1, r2)j̃l(k
(l)
i r1)j̃l(k

(l)
i′ r2)dr1dr2. (4.48)

Here, the potentials V HF
lj (r1, r2) for each state can be obtained from the formulas

(4.30), (4.31), (4.32), (4.33), (4.34) and (4.35). The HF equations are now solved by

an iterative procedure. We start from an initial Woods-Saxon potential, and then

the diagonalization of the symmetric matrix H
(lj)
ii′ will provides a set of single-particle

states (εnljm and Cnlj,i′) which permit us to calculate a new density ρ(r) according

to the expressions given in Eqs. (4.28) and (4.41). With the new density ρ(r) we

calculate the potential V HF
lj (r1, r2) and obtain the matrix H

(lj)
ii′ , then diagonalize it,

etc. The convergence is reached when the differences of the single- particle energies

εnljm between two iterations is less than a given accuracy value ε.
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4.1.4 Center of mass corrections

The expectation value of the Hamiltonian with respect to the total wave function Φ

gives us not only the ground state energy but also the translational energy of the

nucleus with respect to the fixed referential system. All the nuclei in this work are

spherical nuclei, so the rotation energy is zero. Because the contribution from the

motion of the nucleons around the center of mass and the motion of the center of

mass in the total wave function Φ are not clearly separated, the exact value of the

ground state energy in the center of mass (c.m.) system differs from < Φ|H|Φ >.

Thus, one has to extract the contributions of the c.m. motion to the total binding

energy. In this part, we explain the different possible schemes for the c.m. corrections

to the binding energy. Although, one can make the c.m. corrections to the binding

energy and the rms radii in various ways, the c.m. corrections are more easily treated

using a harmonic oscillator approximation. In this section concentrate on the c.m.

corrections to the binding energy.

To obtain the total binding energy in the c.m. frame, one must subtract from

< Φ|H|Φ > the c.m. energy,

Ec.m. =
1

2mA
< P 2

c.m. > . (4.49)

Thus, the correct quantity to be minimized is:

E =< Φ|T +
1

2

∑
ij

V (ri, rj)|Φ > − < Φ|P
2
c.m.

2mA
|Φ >, (4.50)

where the total linear momentum operator P is given as

P = −i~
A∑
i

−→∇ i. (4.51)
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We can calculate

K − P 2

2mA
=

A∑
i

p2
i

2m
− (

∑A
i pi)

2

2mA

=
A∑
i

p2
i

2m
− 1

2mA

[
A∑
i

p2
i +

A∑

i6=j

pi.pj

]

=
1

2m

(
1− 1

A

) A∑
i

p2
i −

1

2mA

A∑

i6=j

pi.pj (4.52)

The first term in Eq. (4.52) is a one-body term, that is easily handled if one replaces
1
m

by 1
m

(1− 1
A
). The second term is a two-body term, which is more difficult to treat

if one works in coordinate space because the structure of the integro-differential HF

equations is modified. It is usually dropped in most calculations. Here, we simply

carry out the self-consistent procedure without this term and we subtract out its

contribution after convergence is reached.

This contribution of the two-body term is:

Ec.m.
2 =

~2

2mA

∑
ij

δqiqj
l̂il̂j ĵ

2
i ĵ

2
j [1− δlilj ]

{
li
jj

ji

lj

1
2

1

}2

×[δlilj−1
AijBji + liδlj li−1

AjiBij], (4.53)

where

Aij =

∫
dr1r

2
1

ui(r1)

r1

(
∂

∂r1

+
lj + 1

r1

)
uj(r1)

r1

Bij =

∫
dr2r

2
2

ui(r2)

r2

(
∂

∂r2

− li
r2

)
uj(r2)

r2

. (4.54)
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4.2 Pairing Correlations

4.2.1 BCS equations

The treatment of pairing correlations is very important for the description of the prop-

erties of weakly bound nuclei situated close to the drip lines. The HF-BCS (Bardeen-

Coopeer-Schrieffer) [Bar57] method and HFB (HF-Bogoliubov) [Rin80, Dec80] method

are the commonly adopted approach for treating the pairing correlations. Various ef-

fective interactions can be used in the mean field and the pairing channels. In this

work the pairing correlations are treated in the BCS approximation with both the

zero-range density-dependent and finite range density-dependent forces in the pairing

channel.

The formalism of the BCS approximation is based on coupling two nucleons to

zero angular momentum through a sum over pairs of states (k, k̄), where k̄ is the

time reversed state of k, and k stands for all quantum numbers which are required to

characterize a single particle state:

|k̄ >= T̂ |k >, (4.55)

where T̂ is the time-reversal operator (see Appendix A.3). This means that the z-

components m of the angular momentum j for these states are equal in magnitude

and have opposite signs. In the spherical case, the two states are respectively,

|k >= |nljm >, |k̄ >= |nlj −m >, (m > 0) (4.56)

The BCS state is given by the product

|BCS >=
∞∏

k>0

(uk + vka
+
k a+

k̄
)|− >, (4.57)

where uk and vk are variational parameters, |− > is the vacuum. In the BCS model,

the particles appear in pairs a+
k a+

k̄
. Thus, a single-particle level k is either completely

empty, and this occurs with the probability u2
k, or filled with a pair, in which case
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the probability is v2
k. The BCS amplitudes are normalized, one must have

|uk|2 + |vk|2 = 1 (4.58)

We can assume that the pairing Hamiltonian ĤP with pairing interaction of the

many-body system can be considered as in Eq. (4.1).The state (4.57) is not an eigen-

state of the particle number operator N̂ . However, one can determine the variational

parameters uk and vk in such a way that the expectation value of N̂ equals the desired

number of particles N . This means that, although the BCS ground state does not

correspond to a state having a fixed number of particles, it contains on average N

particles. This can be achieved by adding a term −λN̂ to the pairing Hamiltonian

ĤP ,

Ĥ ′ = ĤP − λN̂, (4.59)

where λ is a Lagrange multiplier (sometimes also called the chemical potential) which

is determined from the requirement

< BCS|N̂ |BCS >= 2
∑

k>0

v2
k = N. (4.60)

Using Eqs. (4.60), one now obtains for the expectation value of Ĥ ′ in the BCS

ground state

< BCS|H ′|BCS >=
∑

k>(<)0

{(tkk−λ)v2
k +

1

2

∑

k′>(<)0

v̄kk′kk′v
2
kv

2
k′}+

∑

k′k>0

v̄kk̄k′k̄′ukvkuk′vk′ .

(4.61)

The variational problem requires

δ < BCS|Ĥ ′|BCS >= 0, (4.62)

which yields the system of equations:

(
∂

∂vk

+
∂uk

∂vk

∂

∂uk

) < BCS|Ĥ ′|BCS >= 0. (4.63)
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We can write the BCS equations in the form:

2ε̃kukvk + ∆k(v
2
k − u2

k) = 0, k > 0. (4.64)

Here,

ε̃k =
1

2
(tkk + tk̄k̄ +

∑

k′>(<)0

(v̄kk′kk′ + v̄k̄k′k̄k′)v
2
k′)− λ (4.65)

and the gap ∆k is defined as

∆k = −
∑

k′>0

v̄kk̄k′k̄′uk′vk′ . (4.66)

The only possible solutions v2
k and u2

k are

v2
k =

1

2

(
1− ε̃k√

ε̃2
k + ∆2

k

)

u2
k =

1

2

(
1 +

ε̃k√
ε̃2
k + ∆2

k

)
. (4.67)

Inserting Eqs. (4.67) into Eq. (4.64), one obtains the so-called gap equation

∆k = −1

2

∑

k′>0

v̄kk̄k′k̄′
∆k′√

ε̃2
k′ + ∆2

k′
. (4.68)

4.2.2 Pairing interactions

The microscopic theory of the pairing interaction has seldom been applied in real-

istic calculations for finite nuclei [Del95].The pairing interaction obtained from the

bare NN force with the renormalization procedure (G-matrix) still encounters many

problems such as the treatment of the core polarization [Kuc91, Kad87]. Therefore,

phenomenological pairing interactions are usually used. There are two open questions

in this context: the role of the finite range and the importance of the density depen-

dence. Realistic effective pairing interactions are believed to have a finite range. In
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fact, the remarkable success of zero range forces (like Skyrme forces) suggests that the

effect of finite-range can be mocked up by an explicit velocity dependence. The im-

portance of the density dependence of the pairing interaction can be considered in the

theories of superfluidity in neutron stars. As shown in Ref. [Pet95], it is impossible

to deduce the magnitude of the pairing gaps in neutron stars with sufficient accuracy.

The calculation of the 1S0 pairing gaps in pure neutron matter, or symmetric nuclear

matter based on bare NN interaction depends strongly on the forces that are used.

In general, the singlet-S pairing is very small at the saturation point.

In this work, we use both the zero-range density dependent and finite-range in-

teractions as pairing interaction. For the finite-range interaction, the effective Gogny

D1S interaction [Ber91] or M3Y-P4 interaction [Nak08] (in Eq. 2.26) are used to cal-

culate the pairing field. However, by a specific choice of the exchange contribution,

the pairing component of these interactions are density independent. We note that

the pairing component of the D1S interaction is repulsive at short distances and at-

tractive at long ranges. In Appendix A.5.1, we show the details of the calculations of

pairing matrix element using the finite range interactions.

For the zero-range force in the pairing channel, we utilize the form

V (r1 − r2) = V0F (r)δ(r1 − r2) (4.69)

where V0 is the pairing strength. The pairing parametrization of Eq. 4.69 encompass

two types of pairing forces: a pure delta interaction (F = 1) that gives rise to volume

pairing and a density-dependent delta force that can give rise to surface pairing. In

this study, we use the following phenomenological ansatz [Rei99] for the factor F

F (r) = 1− η

(
ρ(r)

ρ0

)α

(4.70)

where ρ(r) is the nuclear density, η and α are parameters that can be adjusted, and

ρ0 is the saturation density (we use ρ0 = 0.16 fm−3 in this work).
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We can rewrite Eq. (4.70) in the case of the zero-range density-dependent force as

V (r1 − r2) = Veff (ρ(r))δ(r1 − r2). (4.71)

Then the pairing field ∆(r) can be expressed in term of the pairing density κ(r) as

∆(r) = Veff (ρ(r))κ(r) (4.72)

where the pairing density κ(r) in the BCS model is

κ(r) =
1

4π

∑
i

uivi|ϕ(r)|2. (4.73)

Here the factors ui and vi correspond to Eq. (4.67).

The pairing matrix elements for both the zero-range density- dependent and finite

range density-dependent forces are presented in Appendix A.5. The pairing contri-

bution to the nuclear binding energy in HF-BCS approach is then

Ep = −
∑

i

1

2
ĵ2
kuivi∆i (4.74)

and an important related quantity is the average pairing gap for protons and neutrons

which is defined as

∆ =

∑
i ĵ

2
i v

2
i ∆i

Np(n)

(4.75)

where Np(n) is the number of protons or neutrons which is considered.

4.3 Applications to finite nuclear systems

4.3.1 Numerical methods

We start with a description of the techniques used to perform the HF-BCS calculations

that we have developed in section 4.2.

As mentioned above, the mesh method where the radial HF equations are solved
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in coordinate space becomes more difficult in larger boxes or with larger l-values (for

example, in calculations of the Wigner-Seitz cells[Neg73]). Therefore, in this work the

radial HF equations will be solved either in coordinate space or using a spherical Bessel

function basis whenever necessary. The corresponding HF-BCS Fortran codes for two

methods are constructed. The flow chart of the code solving radial HF equations in

coordinate space is presented in Fig. 4.1. There are two main blocks in the Fortran

code: the first one corresponds to the HF calculations and the second is the HF-BCS

calculation process itself after reading the initial parameters from the first block such

as the HF single-particle energies.

In Fig. 4.1, the starting point in the first block is an initial Woods-Saxon po-

tential. The iterative calculation explained next is done for all proton and neutron

occupied orbital. The first wave functions are calculated by solving the HF equations

with this potential. Using these wave functions the densities are calculated via Eqs.

(4.28, 4.29), from which all potentials are constructed using Eqs. (4.30,4.31,4.32,4.33,

4.34,4.35). The HF equations are solved using the BGW method explained in sub-

section c.2 of section 4.1.2 and a fourth order Runge-Kutta method given in Appendix

A.2 with the chosen boundary conditions (Dirichlet or von Neumann conditions). The

obtained wave functions are used to construct the new densities. This procedure is

repeated until convergence is reached. The wave functions and the single-particle

energies of the first block will be inputs for the second block. The Fermi levels are

determined for protons and neutrons. The pairing active space, or BCS pairing win-

dow, is chosen for all nuclei to be ± 6 MeV around the Fermi level. After the pairing

interaction is chosen, its matrix elements are calculated (Appendix A.5). Then, the

gap equations are solved using the routine “C05PBF” of the NAG library [NAG70].

This routine finds a solution of a system of nonlinear equations by a modification of

the Powell hybrid method. The occupation probabilities and the gap energies 4k are

obtained for each state. Taking these occupation factors v2 into account, the new den-

sities and potentials are calculated. Afterwards, the HF equations are solved again.

One can proceed in this cycle of the second block until reaching the convergence with

a chosen accuracy on single-particle energies.
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Figure 4.1: Flow chart of the code performing the HF-BCS calculations in coordinate
space. There are two main blocks: the first one for the HF calculations and the second one
for HF-BCS calculations. The process is iterative until convergence is reached.

The flow chart of the method performing the HF-BCS calculations using a spher-

ical Bessel function basis is presented in Fig. 4.2. There are also two main blocks

as in the case of coordinate space. In this method, the basis is built based on the

normalized spherical Bessel functions j̃l(k
(l)
i r) of Eq. 4.42 with two possible boundary

conditions. The symmetric matrix H
(lj)
ii′ (4.48) is constructed using the basis j̃l(k

(l)
i r)

and an initial Woods-Saxon potential. This symmetric matrix is then diagonalized

using the routine “F02FAF” of the NAG library [NAG70]. The eigenvalues (cor-

responding to the single-particle energies) and eigenvectors are obtained from this
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Figure 4.2: The same diagram as in Fig. 4.1, but using a spherical Bessel function basis.

process. The wave functions are constructed from these eigenvectors and the spheri-

cal Bessel function basis. A similar process is carried out as in coordinate space case.

The difference is only in constructing the symmetric matrix H
(lj)
ii′ and then performing

the diagonalization. For the two methods, after a suitable convergence is achieved,

the single-particle energies, occupation probabilities, Fermi levels and gap energies

are stored in the output files.

In discussing the results, we will call Method 1 and Method 2 the procedure of

the solving the HF equations in coordinate space or in the spherical Bessel function

basis, respectively.
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Table 4.1: Total binding energy and rms matter radius of 208Pb calculated with the
different values of the basis dimension N using the D1S interaction.

N 8 10 12 15 18 20
Etot (MeV) -1629.39 -1640.29 -1641.48 -1642.04 -1642.38 -1642.50

rm (fm) 5.547 5.516 5.514 5.512 5.511 5.510

4.3.2 Doubly magic nuclei

We now present the results obtained with the finite spherical nuclei by solving the HF

equations in coordinate space (Method 1) or using the spherical bessel basis (Method

2), with the finite range density dependent interactions, such as D1S [Ber91] or M3Y-

P4 [Nak08]. We should note that the center of mass corrections (Eq. 4.49) have been

taken into account in our calculations. The effect of the one-body term is included in

the kinetic term before iteration. The contribution of the two-body term is subtracted

from the convergent wave functions. The exchange term (Eq. 4.35) from the Coulomb

force is treated into account also.

In the HF-BCS approach, the total binding energy is calculated in the following

form

Etot = EHF + ER + Ec.m.
2 + Ep (4.76)

where EHF = 1
2

∑
i(ti + εi); ti and εi denote the single-particle kinetic energies and

single-particle energies, respectively. ER is the rearrangement energy coming from the

density dependence of the interaction. Ec.m.
2 is the two-body center of mass correction

of Eq. (4.53), and Ep is the pairing energy given in Eq. (4.74). Of course, the pairing

contribution vanishes in the case of doubly magic nuclei.

The charge density can be obtained from the calculated proton distribution, after

correction into account the finite size of the proton. Following Ref. [Vau72], the

charge distribution ρc(r) can be calculated as

ρc(r) =

∫
fp(r − s)ρp(s)ds (4.77)
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Table 4.2: Total energies Etot, rearrangement energies ER and the contribution of
the two-body term coming from C.M. corrections Ec.m.

2 of some doubly magic nuclei.
M1 and M2 correspond to Method 1 and Method 2, respectively (see text for more
details). Experimental data are taken from Ref. [Aud95]. All energies are in MeV.

D1S D1S D1N M3Y-P4 Exp.
(M1) (M2) (M1) (M1)

16O Etot -129.78 -129.77 -128.19 -125.28 -127.62
ER -59.81 -59.90 -70.91 -57.73

Ec.m.
2 -4.80 -4.81 -4.81 -4.80

40Ca Etot -346.23 -346.20 -344.03 -344.23 -342.05
ER -178.53 -178.60 -216.62 -170.38

Ec.m.
2 -6.59 -6.60 -6.65 -6.52

48Ca Etot -416.82 -416.80 -413.51 -411.51 -415.99
ER -226.37 -226.57 -263.24 -222.42

Ec.m.
2 -9.56 -9.57 -9.56 -9.55

90Zr Etot -787.31 -787.28 -782.40 -773.51 -783.90
ER -458.28 -458.46 -533.28 -445.12

Ec.m.
2 -9.83 -9.84 -9.83 -9.76

132Sn Etot -1105.30 -1105.26 -1106.45 -1095.40 -1102.90
ER -676.10 -676.36 -787.85 -663.669

Ec.m.
2 -11.61 -11.61 -11.67 -11.51

208Pb Etot -1642.55 -1642.50 -1642.27 -1632.10 -1636.44
ER -1091.17 -1091.37 -1267.26 -1066.54

Ec.m.
2 -11.03 -11.03 -11.05 -10.93
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where the proton distribution is folded with the Gaussian form factor

fp(r) =
1

(r0

√
π)3

exp(−r2/r2
0), r2

0 = 0.65fm2 (4.78)

We first discuss briefly the accuracy of the HF calculations using the spherical

Bessel basis method. In the definition (4.41) we have to choose the number N of

basis states. The calculations of 208Pb have been performed with the different N

values (from 8 to 20). The total energies and root mean square (rms) are shown in

Table 4.1. One observes that the increase of binding energy is about 1.19 MeV when

N increases from 10 to 12 and about 0.12 MeV for N from 18 to 20. Furthermore, it

was checked on other nuclei that energies and radii do not change significantly when

increasing the dimension of the basis N from 18 to 20. Therefore, the value N = 20

will be used in our further calculations.

In Table 4.2, we show the total energies Etot , the rearrangement energy ER

and the contribution of the two-body term coming from C.M. corrections Ec.m.
2 of

doubly magic nuclei using different finite-range interactions. The new set D1N Gogny

interaction [Cha08] is also used in our calculations. The calculations are performed

with the two methods as mentioned above. One can observe that, the difference of

the results obtained with the two methods is very small as illustrated by the second

and the third columns of Table 4.2. The differences are only 0.01 MeV in 16O and

0.05 MeV in 208Pb for the total energy. The results obtained with D1N interaction are

similar with those of D1S. The difference is less than 0.07%. The M3Y-P4 interaction

reproduces the total energies moderately well. The maximum difference is ∼ 10.4

MeV (∼ 1.3%) for 90Zr in comparison with the experimental data. From Eq. (4.76)

we see that the EHF term is the most important contribution to the total energy,

since it already includes the large cancellation between kinetic and potential energies.

The rearrangement energy ER is the next most important. It continues to increase up

through the heavy nucleus 208Pb. In particular, its contribution to the total energy

is from ∼46% in 16O to ∼66% in 208Pb with D1S and M3Y-P4 interactions , and

from ∼55% to ∼77% with the D1N interaction. Therefore, the contribution of the

rearrangement term is crucial for a good fit to the binding energy. The contributions
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Table 4.3: Same as Table 4.2, but for neutron, proton, charge and mass root mean
square radii r =< r2 >1/2. Experimental charge radii are taken from Ref. [Ott89].
All radii are in fm.

D1S D1S D1N M3Y-P4 Exp.
(M1) (M2) (M1) (M1)

16O rn 2.638 2.636 2.622 2.632
rp 2.660 2.659 2.644 2.654
rch 2.777 2.777 2.761 2.771 2.73
rm 2.649 2.647 2.633 2.643

40Ca rn 3.357 3.357 3.341 3.362
rp 3.402 3.402 3.385 3.407
rch 3.494 3.493 3.477 3.499 3.49
rm 3.380 3.379 3.362 3.385

48Ca rn 3.577 3.576 3.576 3.557
rp 3.433 3.432 3.424 3.429
rch 3.524 3.523 3.516 3.520 3.48
rm 3.518 3.517 3.513 3.504

90Zr rn 4.262 4.261 4.257 4.255
rp 4.203 4.202 4.196 4.205
rch 4.278 4.277 4.271 4.279 4.27
rm 4.236 4.235 4.230 4.233

132Sn rn 4.835 4.835 4.825 4.824
rp 4.643 4.643 4.622 4.653
rch 4.771 4.771 4.690 4.720
rm 4.764 4.764 4.749 4.760

208Pb rn 5.564 5.563 5.561 5.554
rp 5.428 5.428 5.418 5.437
rch 5.486 5.486 5.476 5.495 5.50
rm 5.511 5.511 5.505 5.508
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of the two-body C.M. correction are presented in Table 4.2. In the lighter nuclei, such

as 16O, the correction contributes about 3.7% to the total energy, and in the heavy

nuclei it contributes about 0.6% to the total energy. The root mean square radii

of the proton, neutron, charge and matter distributions are displayed in Table 4.3.

The charge distribution is obtained from the proton density following the Eq. (4.77).

Experimental values of charge radii are shown for comparison. All results obtained

with these considered interactions are in good agreement with the experimental data.
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Figure 4.3: The neutron, proton (left panel) and charge (right panel) densities of 208Pb ob-
tained with D1S [Ber91], M3Y-P4 [Nak08], and SLy4 [Cha98, Ben05] interactions. The ex-
perimental data of charge density are extracted from electron scattering experiment [Vri87].

We now comment, in particular, on the results concerning 208Pb. On the left panel

of Fig. 4.3, the neutron, proton densities distributions are shown. On the right panel,

the calculated charge density is plotted together with the experimental charge density

extracted from electron scattering experiment [Vri87] for comparison. In this case,

the SLy4-Skyrme interaction is also used for comparison. The numerical calculation

with SLy4 interaction is taken from Ref. [Ben05]. The SLy4 interaction will be also
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used in subsection 4.3.5 for Wigner-Seitz cells calculations. On the left panel of Fig.

4.3, the oscillations of the predicted neutron and proton densities obtained with D1S

interaction are larger than those from M3Y-P4 and SLy4 interactions, and there is

a bump in the center of the nucleus for the calculated ρp. This bump is due to the

3s1/2 proton state which contributes at least 50% of the central density. The charge

distributions are also displayed on the right panel of Fig. 4.3. In Ref. [Bla77] it was

shown by Gogny et al. that the effects of RPA-type correlations can reduce somewhat

this 3s1/2 bump.
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Figure 4.4: Proton and neutron single-particle energies in 208Pb near the Fermi level cal-
culated with D1S [Ber91], M3Y-P4 [Nak08], and SLy4 [Cha98] interactions. Experimental
data are taken from Ref. [NNDC].

The single-particle energies of protons and neutrons in 208Pb around the Fermi
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are shown in Fig. 4.4. The experimental single-particle energies of these states are

obtained from the states of the neighboring nuclei: 207,209Pb, 207Tl and 209Bi [NNDC].

Except for a (2d3/2,1h11/2) inversion with the D1S interaction, the order of the other

proton levels is found to be correct. In HF calculations the values of the shell gap

between (1h9/2,3s1/2) in protons and (2g9/2,3p1/2) in neutrons are larger than the

experimental ones. In particular, the proton shell gap is 5.90, 5.80 and 5.01 MeV

with D1S, M3Y-P4 and SLy4 interactions, respectively, whereas the experimental

value is 4.26 MeV. For neutrons, the experimental shell gap is 3.44 MeV, while the

corresponding values with D1S, M3Y-P4 and SLy4 interactions are 4.88, 4.29 and

4.93 MeV. One can conclude that the results obtained with all considered effective

interactions are in good agreement with the experimental values, both for protons

and neutrons, as viewed in Fig. 4.4.

4.3.3 Sn isotopes

Using the HF-BCS approach we ave performed a comparison study of Sn isotopes

using the two finite-range interactions D1S and M3Y-P4. The Sn isotopes are of

particular interest for nuclear structure and astrophysical issues, because of the closure

of the Z = 50 proton shell. Here again, we have checked that our Methods 1 and 2

give very similar results.

Fig. 4.5 displays, on the left panel, the energy per nucleon of 110−140Sn nuclei using

D1S and M3Y-P4 interactions in both mean field and pairing channels. The results

obtained with HFB calculations with D1S interaction in Ref. [Hil06] are plotted for

comparison. The experimental data taken from Ref. [Aud95] are also displayed. One

observes that the difference between the results of D1S + HF-BCS (this work) and

D1S + HFB [Hil06] calculations are very small, about 0.3%. we should note that D1S

+ HFB calculations are performed in Refs. [Ber91, Hil06] using harmonic oscillator

basis. In fact the results obtained with D1S + HF-BCS calculations are in good

agreement with the experimental values in N < 78 and N = 84. The results obtained

with M3Y-P4 interaction are lying above the curve of the experimental values. The

difference is about 1.7% in the region of N < 80 and 0.9% for N ≥ 80. We recall that
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Figure 4.5: On the left panel, energy per nucleon of tin isotopes obtained with D1S and
M3Y-P4 interactions in HF-BCS approach, in comparison with the results of D1S-HFB
calculation of Ref. [Hil06] and the experimental data [Aud95]. On the right panel, the
pairing energy calculated with D1S and M3Y-P4 interactions in HF-BCS approach. Dotted
lines are drawn to guide the eye.

the M3Y-P4 interaction does not contain the tensor term [Nak08]. The other versions

of M3Y-type interaction (such as M3Y-P3 and -P5) have the realistic tensor part. The

contribution of the tensor part can give a good agreement with the experimental data

of the different energy between two proton states, such as εp(1g7/2) − εp(2d5/2) or

εp(1h11/2)− εp(2d5/2) (see Fig. 14 in Ref. [Nak08]).

On the right panel of Fig. 4.5, the contribution of the pairing effects to the total

energy are presented. The maximum difference of pairing energies obtained with

D1S and M3Y-P4 interactions is at N = 70, corresponding to 120Sn. The reason

of this difference is an inversion between 2d3/2 and 1h11/2 neutron orbitals. In HF

calculations, the 1h11/2 neutron orbital is predicted to move significantly above the

2d3/2 state, and then the 2d3/2 neutron orbital is fully filled with the D1S interaction.

The shell gap of (2d3/2, 1h11/2) states is 0.79 MeV in this case. In contrast, the 2d3/2
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neutron orbital is located above the 1h11/2 state with M3Y-P4 interaction, leading

to 4 neutrons occupying the 1h11/2 orbital in 120Sn. The corresponding shell gap is

0.704 MeV. The difference of the two pairing energies will decrease when N increases.

Since the last 1h11/2 (2d3/2) neutron orbital is fully filled at N = 82 with D1S (M3Y-

P4) interaction, the two sets of pairing energies reach to the value zero, related to

the doubly magic nucleus 132Sn. One can conclude that the M3Y-P4 interaction

gives stronger pairing than D1S in the region 60 ≤ N ≤ 80. In the highly neutron-

rich region (N ≥ 82 ), the difference in pairing channel between M3Y-P4 and D1S

interactions is not quite significant. The neutron shell closure is predicted at N = 90

with these interactions.
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Figure 4.6: Root mean square radii of tin isotopes (on the left panel) and the difference of
the root mean square radii of neutrons and protons (on the right panel) obtained with D1S
and M3Y-P4 interactions in HF-BCS approach. Dotted lines are drawn to guide the eye.

The root mean square radii of the 110−140Sn nuclei obtained with HF-BCS cal-

culations with D1S and M3Y-P4 interactions are shown in Fig. 4.6. The difference

of the rms radii of neutron and proton are displayed for comparison. The neutron



4.3. APPLICATIONS TO FINITE NUCLEAR SYSTEMS 99

skin thickness is observed on the right panel of Fig. 4.6. An appreciable layer of

neutron matter is found about 0.29 fm beyond the proton distribution in N = 90,

which is a factor of 1.2 larger than the neutron skin in 208Pb. The same phenomenon

is predicted also by the M3Y-P4 interaction except for a somewhat smaller neutron

excess radius. The increase of the rms neutron radius is directly related to the shell

structure in the heavy tin isotopes. The 1h11/2 and 2d3/2 neutron orbital are fully

filled with D1S and M3Y-P4 interactions at N = 82, respectively. The pairing effects

do not contribute in this nucleus.

4.3.4 Bubble nuclei

The study of the possible bubble structure of atomic nuclei was started by Wilson

in 1946 [Wil46], when he studied the low-lying excitations of a thin spherical shell.

The bubble nuclei are characterized by a depletion of their central density. The

possibility of bubble nuclei was investigated by Bethe and Siemens in the 60s [Sie67],

and by Campi and Sprung using a microscopic framework in the 70s [Cam73]. The

bubble nuclei were also studied with the liquid drop model [Swi83] and Thomas-Fermi

approaches [Boh76]. More recently, bubbles nuclei were discussed in super-heavy and

hyper-heavy nuclei [Dec03, Ben03].

We know that only the s state can contribute to the density at r = 0, so that the

depopulation of this state leads to a depletion of the central density. The other single-

particle states, which have non-zero angular momenta, are suppressed in the center of

the nucleus and do not give appreciable contributions to the central density. In some

nuclei, the s state can be inverted with the neighbouring states. These nuclei can be

considered as bubble candidates if their highest s state is depopulated. Indeed, the

nuclei can be bubble candidates for protons or neutrons if there is an inversion between

(2s1/2,1d3/2) states or (3s1/2, 1h11/2) states. In the case of proton bubbles, the Ar and

Hg isotopes can be considered, and 34Si can be a possible proton bubble candidate

with Z = 14. In the case of neutron bubbles, the above inversions correspond to the

N = 18 and N = 80 isotones. In Ref. [Cav82], the contribution of the 3s state has

been measured using electron scattering from 206Pb and 205Tl. However, because of
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the 1s1/2 and 2s1/2 orbitals that are already occupied and contribute to the central

density, the depletion in the interior of these nuclei is small. In general, the depletion

fraction in the bubble nuclei can be defined as [Gra09]

F ≡ ρmax − ρc

ρmax

(4.79)

where ρmax and ρc are the maximum value and the central value of the density. Thus,

in the case of 205Tl, the value of the depletion fraction is only F ∼ 11% [Cav82].

Recently, possible proton bubbles due to the depletion of the 2s1/2 state have been

discussed in 34Si [Gra09], 46Ar [Kha08, Tod04] and in neutron-rich 68Ar [Kha08],

and a neutron bubble in 22O [Gra09]. In the case of 46Ar, an inversion between s

and d states was predicted using the relativistic mean field approach [Tod04] and

non-relativistic Skyrme model [Kha08] with the SkI5 interaction. However, pairing

effects could preclude the bubble effect due to the partial occupancy of the 2s1/2

state. For the case of neutron-rich 68Ar, the 2s1/2 state of proton is also predicted

to move above the 1d3/2 state [Kha08] if one uses the SkI5 interaction. The pairing

effects cannot prevent the bubble structure in this case. But we should note that

no-bubble structure of 46Ar and 68Ar can be obtained if the SLy4 interaction used. In

Ref. [Gra09], the bubble structures of 34Si and 22O are discussed in the shell-model

calculations, in non-relativistic HF and HFB approaches, in relativistic mean field

(RMF) and relativistic Hartree-Bogoliubov (RHB) calculations.

It should be noted that the deformation can play against a bubble occurrence.

However, the HFB models using Skyrme and Gogny interactions predict a spherical

shape for 34Si [Gra09, Hil06] and a soft nucleus for 46Ar (see in Ref. [Kha08] and ref-

erences therein). Indeed 46Ar is predicted either spherical or with a small deformation

parameter in the ground state. More neutron-rich Argon are also predicted spherical

in Refs. [Kha08, Hil06]. In the following we will consider the spherical case for 34Si,
22O, 46Ar and 68Ar nuclei in order to study the bubble structures using the finite-range

density-dependent interactions (Gogny [Ber91, Cha08] or M3Y-P4 [Nak08] interac-

tions) in non-relativistic HF and HF-BCS approaches. In our HF-BCS approach, the

same finite-range density dependent interaction (either D1S (D1N) or M3Y-P4) is
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used in both mean field and pairing channels.

a-Neutron bubble in 22O

The nucleus 22O can be a good candidate for a neutron bubble nucleus because of the

2s1/2 neutron state. As shown in Refs. [Sta04, Sch07, Ele07, Thi00, Bec06, Hof08], the

neutron subshell closure happens at N =14 and 16 in Oxygen isotopes, corresponding

to 22O and 24O nuclei. Since the 2s1/2 state is located between 1d5/2 and 1d3/2 states,

then the 22O and 24O nuclei are considered as doubly magic nuclei.
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Figure 4.7: Neutron densities of 22O (solid curve) and 24O (dashed curve) obtained with
Gogny D1S [Ber91], D1N [Cha08] and M3Y-P4 [Nak08] interactions in HF approach.

In Fig. 4.7, the neutron densities of 22O (solid curve) and 24O (dashed curve),

obtained with Gogny D1S [Ber91], D1N [Cha08] and M3Y-P4 [Nak08] interactions in

HF approach, are plotted. One can see that with the D1S and D1N interactions, the

2s1/2 neutron orbital is occupied in 24O, and it makes the central neutron density in
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24O to be strongly enhanced, even stronger than the results obtained with SLy4-HF

approach (see Fig. 3 in Ref. [Gra09]). The calculated value of the depletion fraction
22O is F = 27% and 22% with D1S and D1N interactions , in very good agreement

with the value obtained from shell-model calculations, and RMF and RHB approaches

(see Table IV of Ref. [Gra09]). With the M3Y-P4 interaction, the central depletion

fraction F 22O is 40%, much stronger than with the D1S and D1N interactions. We

know that the pairing correlations can have some effect on the density profiles. We

therefore repeat the calculations in HF-BCS approach. We found that the values of

the shell gap between 1d5/2 and 2s1/2 is 3.6 (3.0) MeV in 22O, and between 2s1/2

and 1d3/2 it becomes 4.5 (4.6) MeV in 24O with the D1S (D1N) interaction. On the

other hand we obtained a shell gap between 1d5/2 and 2s1/2 of 4.9 MeV in 22O, and

4.5 MeV between 2s1/2 and 1d3/2 in 24O with the M3Y-P4 interaction. Therefore,

the pairing effects are found to collapse in 22O and 24O when the D1S (D1N) and

M3Y-P4 interactions are used. These results confirm again the neutron shell closure

at N =14 and 16 in Oxygen isotopes and one can conclude that the 22O nucleus is

a good candidate for a neutron bubble nucleus. One notes that the neutron bubble

structure in 22O can disappear in SLy4-HFB calculations [Gra09]. In this case, the

pairing effects modify the occupancy of the 2s1/2 state, thus reducing the predicted

neutron bubble structure in 22O. The shell-model calculations [Gra09] predict a 17%

occupancy factor of the 2s1/2 neutron state, thus showing that pairing correlations can

give some effect on this nucleus. However, the experimental values for the occupancy

factor of this state are not yet available.

b-Proton bubbles in 34Si, 46Ar and 68Ar

Proton bubble in 34Si:

As shown in Ref. [Sor08], the proton sub-shells are closed at Z = 14 and Z = 16,

and the 2s1/2 proton orbital state is located between 1d5/2 and 1d3/2 states. Therefore,

the 2s1/2 proton orbital may be unoccupied in 34Si nucleus (Z = 14, N = 20), whereas

it is fully filled in 36S nucleus (Z = 16, N = 20). Thus, the 34Si nucleus might be a

good candidate for a proton bubble nucleus. Here, we analyze the structure of the

proton density in 34Si and 36S.
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The proton densities of 34Si and 36S obtained with the Gogny D1S, D1N and

M3Y-P4 interactions in HF approach are plotted in Fig. 4.8. The central depletion

fractions F of the proton density in 34Si are 55%, 60% and 37% with D1S, D1N and

M3Y-P4 interactions, respectively. The values of the depletion factor F with D1S and

D1N interaction are larger than that obtained with SLy4 interaction [Gra09]. The

result obtained with M3Y-P4 interaction is in good agreement in comparison with all

the predicted values in Table IV of Ref. [Gra09]. One observes from Fig. 4.8 that the

proton density of 34Si is significantly depleted in the interior of the nucleus, and when

the 2s1/2 proton orbital is filled in 36S the proton bubble disappears immediately.
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Figure 4.8: Proton densities of 34Si (solid curve) and 36S (dashed curve) obtained with
Gogny D1S [Ber91], D1N [Cha08] and M3Y-P4 [Nak08] interactions in HF approach.

As mentioned above, the pairing effects may hinder the bubble structure of the

nucleus. The occupancy of the 2s1/2 state may be modified due to the pairing effects

and the depletion in the center of the nucleus may decrease. Therefore, we need to

consider the 34Si nucleus in HF-BCS approach. Because of the large gaps between



104 CHAPTER 4. FINITE NUCLEI

the 1d5/2 and 2s1/2 states (5.5 & 5.1 MeV with D1S & D1N interactions and 6.0

MeV with M3Y-P4 interaction), we find a pairing collapse in 34Si if the D1S (D1N)

or M3Y-P4 interactions are used in the pairing channel. One notes that, because of

the magiciy of N = 20 in 34Si the pairing correlations do not make any effect on

the neutron density. Together with the results obtained in Ref. [Gra09], where the

proton bubble structure of 34Si is studied in a shell model approach as well as in non-

relativistic approaches (HF and HFB) and relativistic approaches (RMF and RHB),

our predictions with finite-range interactions, lead to the conclusion that 34Si nucleus

is an excellent candidate for a proton bubble structure. It would be interesting to

have experimental confirmation from future elastic scattering experiments medium

energy electron beam or by direct reactions as suggested in Ref. [Kha08].

Proton bubbles in 46Ar and 68Ar:

For the case of 46Ar, the calculations using RMF predict a strong depletion in

the central proton density, the depletion factor F being around 63% (see Fig. 1 in

Ref. [Tod04]). Recently, a proton bubble is also found with the SkI5 interaction

in non-relativistic HFB calculations, with a depletion fraction F around 48% in the

HF approach (see Fig. 1 in [Kha08]). However, the bubble effect decreases with the

pairing effects. In this subsection, we will analyze the proton bubble in 46Ar (and in
68Ar also) using the finite range interactions in the HF-BCS approach.

The proton densities calculated in 46Ar and 68Ar using Gogny D1S(D1N) and

M3Y-P4 interactions in HF calculations are shown in Fig. 4.9. One observes that

there is no bubble effect in the proton density in 46Ar with the D1S (D1N) interaction

(left side of Fig. 4.9). In this case, the 2s1/2 proton state is fully filled. However,

a depletion in the central proton density is obtained in 68Ar with the D1S and D1N

interactions. The effect of the inversion between s and d states in neutron-rich nuclei

has been analyzed in Ref. [Gra07], in which the increase of the gap between the

inverted s1/2 and d3/2 states is found in neutron-rich nuclei. Therefore, this effect

supports the possibility of a proton bubble in the neutron-rich 68Ar nucleus. As a

result, the central depletion fraction F is 50% and 60% in 68Ar with the D1S and

D1N interactions, respectively. In contrast, the bubble effects on the proton density

are obtained both in 46Ar and 68Ar with the M3Y-P4 interaction (right side of Fig.



4.3. APPLICATIONS TO FINITE NUCLEAR SYSTEMS 105

0 1 2 3 4 5 6 7 8
0.00

0.02

0.04

0.06

0.08

0.10

0 1 2 3 4 5 6 7 8
0.00

0.02

0.04

0.06

0.08

0.10

 46Ar
 68Ar

M3Y-P4

P
ro

to
n 

de
ns

ity
 [f

m
-3
]

r (fm)

P
ro

to
n 

de
ns

ity
 [f

m
-3
]

r (fm)

 46Ar (D1S)
 68Ar (D1S)
 46Ar (D1N)
 68Ar (D1N)

Gogny 

Figure 4.9: Proton densities of 46Ar (dashed curve) and 68Ar (solid curve) obtained with
Gogny D1S [Ber91], D1N [Cha08] and M3Y-P4 [Nak08] interactions in HF approach.

4.9). A strong depletion in the central proton densities is predicted and the depletion

factors F are 50% and 53% in 46Ar and 68Ar, respectively. These numbers are in good

agreement with the non-relativistic predictions of F ∼ 48% in 46Ar and ∼ 60% in
68Ar with SkI5 interaction [Kha08].

As discussed in Ref. [Kha08], the pairing correlations can reduce the bubble effect

on proton densities in 46Ar and 68Ar. In particular, a Skyrme-HFB calculation was

performed on 46,68Ar using a zero-range density-dependent pairing interaction, leading

to a small depletion in the center of the proton densities. In contrast, we use in this

work a finite range interaction in the pairing channel. The HF-BCS proton densities

of 46Ar and 68Ar are plotted in Fig. 4.10. With the D1S interaction, because of the

pairing effect the 2s1/2 proton state is depopulated in 46Ar and the occupancy of this

state is only 74%. We thus see that the central value of the HF proton density (Fig.

4.9) is much higher than that of HF-BCS proton density in 46Ar (Fig. 4.10). In the
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Figure 4.10: Proton densities of 46Ar (dashed curve) and 68Ar (solid curve) obtained with
Gogny D1S [Ber91], D1N [Cha08] and M3Y-P4 [Nak08] interactions in HF-BCS approach.

case of D1N interaction, because of the depopulation of the 2s1/2 proton state, there

is a hole in the center proton density of 46Ar. In 68Ar, the pairing effects modify the

occupancy of the 2s1/2 proton state which is found to be 52% (60%) with D1S (D1N)

interaction. The central hole in proton density in 68Ar is completely washed out

with D1S (D1N) interaction. With the M3Y-P4 interaction, the 2s1/2 proton state

occupations are predicted to be 51% in 46Ar and 37% in 68Ar. The corresponding

proton densities are displayed on the right side of the Fig. 4.10. One observes that a

depletion is still predicted in the central proton density in 68Ar.

These above results indicate that a proton bubble in 46Ar is not certain. The

no-bubble structure of the proton density can be obtained with the D1S and M3Y-P4

interaction in HF-BCS approach (see Fig. 4.10). In Ref. [Kha08] it is also shown

that the bubble effect disappears with SLy4 interaction or SkI5 interaction in HFB

approach. The pairing interaction can modify the occupancy of the 2s1/2 and 1d3/2
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states. Thus, experiments to measure these occupation probabilities are needed. In

the case of 68Ar, the depletion in the center of the nucleus vanishes due to the pairing

effect in HF-BCS calculations with the D1S and D1N interactions. However, the

pairing effect cannot prevent a proton bubble with M3Y-P4 interaction. As discussed

in Ref. [Gra07], the possibility of an inversion between the 2s1/2 and 1d3/2 proton

states will increase when going to the neutron-rich nuclei in Calcium isotopes. This

effect leaves a possibility for a proton bubble in very neutron-rich Argon isotopes such

as 68Ar.

4.4 Inner crust of neutron stars

As mentioned in section 4.1.3, the method 1 where the HF equations are solved in

coordinate space is difficult to apply to the Wigner-Seitz (WS) cells of the inner crust

of neutron stars because large cell radii and high values of orbital momenta l are

required. Therefore, the method 2 was developed with a basis expansion method to

circumvent these difficulties. In this work, a spherical Bessel function basis is chosen.

In recent years, the properties of the inner crust of neutrons stars have been in-

vestigated using various frameworks, especially focusing on the microscopic structure

and the superfluid properties. The microscopic calculations of the inner crust matter

are usually studied in the WS approximation [Neg73, Pet95]. Following the standard

approaches, the inner crust consists of a lattice of WS cells, each cell containing a

neutron-rich nucleus immersed in a sea of dilute gas of neutrons and relativistic elec-

trons uniformly distributed inside the cell [Pet95].The first microscopic calculations

of the properties of the inner crust matter were done by Negele and Vautherin in the

70s [Neg73]. The calculations were performed assuming a set of non-interacting cells

described in the HF approach with 11 representative cells. These cells are distributed

in different zones of the inner crust with densities covering a range from 1.743−3 ρ0

to 0.5ρ0, ρ0 = 0.16 fm−3 being the nuclear matter saturation density. The optimal

number (N,Z) of neutrons and protons in cell is obtained by searching for the lowest

binding energy and β-stability of the cell. One notes that the pairing correlations

and spin-orbit interaction were neglected in those early calculations. Recently, the
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Table 4.4: The Wigner-Seitz cells considered in this work. ρ, N , Z and RWS are the
baryonic densities, the number of neutrons, the number of protons and the WS cell
radii, respectively. All values of WS cells are taken in Ref. [Neg73].

Nzone ρ[fm−3] N Z RWS[fm]
10 2.79 × 10−4 140 40 53.6
9 4.00 × 10−4 160 40 49.2
8 6.00 × 10−4 210 40 46.3
7 8.79 × 10−4 280 40 44.3
6 1.59 × 10−3 460 40 42.2
5 3.73 × 10−3 900 50 39.3
4 5.77 × 10−3 1050 50 35.7
3 8.91 × 10−3 1300 50 33.1
2 2.04 × 10−2 1750 50 27.6
1 4.75 × 10−2 1460 40 19.6
0 7.89 × 10−2 950 32 14.4

superfluid properties and their influence on the specific heat were investigated in the

self-consistent HFB approach [San04a, San04b]. The collective excitations and the

cooling time of the inner crust of neutron stars were also studied in the framework of

a spherical HFB + quasiparticle random phase approximation [Kha05, Gra08] and of

HFB approach at finite temperature [Mon07]. All the above calculations were done

with the SLy4 Skyrme interaction in the mean field channel and a density-dependent

delta force for the pairing interaction. Later, the properties of the WS cells have been

studied in the work of Baldo et al. [Bal05a, Bal05b, Bal06] using an energy functional

method with the pairing correlation of protons and neutrons.

In this present section, the structure of the WS cells in the inner crust of neutron

stars will be analyzed in the framework of fully self-consistent HF-BCS calculations

where the same finite-range density-dependent interactions are used to construct the

mean field and the pairing field. The HF-BCS calculations are done with the D1S-

Gogny and M3Y-P4 interactions, imposing Dirichlet-Neumann boundary conditions

at the edge of the cell [Neg73]. This boundary conditions for the single-particle

wave functions are taken as follows: i - the even parity wave functions vanish at
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the edge r = RWS and ii - the first derivatives of the odd-parity wave functions

vanish at r = RWS. The purpose of these chosen boundary conditions is to make a

constant density at large distance inside the cell, thus simulating a uniform neutron

gas [Neg73]. Of course, these chosen boundary conditions are arbitrary, because the

two conditions i and ii can be used for any values of l, in principle. Thus, another

kind of boundary conditions can be chosen in the following way: the condition i is

valid for odd l whereas the condition ii for even l. As shown in Ref. [Bal06], the

two kinds of boundary conditions can be used in the calculations of the neutron

star inner crust. The difference of the binding energies per a nucleon for each cell

will increase with the increasing density (see Table 1 of Ref. [Bal06]). However,

the values of these uncertainties are smaller than the variations of the equilibrium

configuration connected with the pairing effects [Bal05a, Bal06]. Therefore, in our

study the boundary conditions are kept the same as in Ref. [Neg73].

It should be noted that the Bloch boundary conditions can be used for the bound-

ary condition at the edge of the WS cell as presented in Refs. [Cha07, Cha09, Has08].

However, in this present study we will not consider these boundary conditions. The

aim of this work is to show the behaviour of density distribution of protons and neu-

trons in each WS cells obtained with a finite range interaction within a self-consistent

HF-BCS calculation, where the HF equations are solved with the Dirichlet-Neumann

mixed boundary conditions.

As mentioned above, we have performed the HF-BCS calculations for a set of 11

representative WS cells determined in Ref. [Neg73]. The considered density range is

from neutron drip density ρmin = 1.743 × 10−3 ρ0 to about ρmax = 0.5ρ0. In this

density range, the nuclear clusters are considered spherical [Dou00, Kha05]. Above

the density ρmax the energy per baryon approaches the value of the uniform neutron

system and the cells in the inner crust might deviate from the spherical shape [Mag04].

Following Ref. [Neg73] we denote the WS cells like a nucleus with Z protons and N

neutrons. The eleven zones of the representative cells of the inner crust with mean

densities and corresponding proton number Z and neutron number N in each cell are

listed in Table 4.4. The decreasing zone number Nzone are from 10 to 0, corresponding

to the increasing density from the minimum density ρmin = 2.79× 10−4 fm−3 to the
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maximum density ρmax = 7.89× 10−2 fm−3. The WS cells are denoted like a nucleus

as 180Zr, 200Zr, 250Zr, 320Zr, 500Zr, 950Sn, 1100Sn, 1800Sn, 1350Sn, 1500Zr, and 982Ge, as

determined in Ref. [Neg73]. The WS cell radii RWS are calculated by the following

relation

< ρ >=
A

4π
3

R3
WS

(4.80)

where ρ and A are the density and mass number of the considered cell, respectively.

The values of the radii RWS are also shown in the last column in Table 4.4.

In finite nuclei, for a given number of protons there is always a maximum number

of bound neutrons. This neutron stability limit defines the neutron drip line. Since

the neutron-rich nuclei are quickly beta decaying, then the neutron drip line is usually

drastically limited in the laboratory. This is not the case for the neutron-rich systems

immersed in the inner crust of neutron stars. In the case of WS cells, the beta decay

is blocked by the presence of the degenerate electron gas uniformly distributed inside

the cell. Therefore, in this case the nuclei inside the inner crust of neutron stars can

bind more neutrons than the nuclei in the vacuum.

First, we will discuss the case of the WS cells calculated in the HF approach. Fig.

4.11 displays the HF proton and neutron density profiles of 180Zr, 200Zr, 250Zr, 320Zr

and 500Zr systems obtained with D1S, M3Y-P4 and SLy4 interactions. One notes

that the numerical HF calculations with SLy4 are the same as in Ref. [Kha05]. We

observe that the HF calculations with the finite-range D1S and M3Y-P4 interactions

give very similar results. However, the results obtained with SLy4 interaction are

different. We will analyze the case of cell 180Zr. As discussed in the section of bubble

nuclei, the depopulation of the s state can leads to a depletion of the central density.

In the case of this cell, the 5s1/2 neutron state is fully filled with SLy4 interaction and

empty with D1S and M3Y-P4 interactions. Thus, the neutron densities in the center

of the cell obtained with D1S and M3Y-P4 interactions are smaller by a factor of 2.3

than that obtained with SLy4 interaction. However, the neutron gas density obtained

with D1S and M3Y-P4 interactions is more than 1.8 times greater than that of SLy4

interaction. It has been checked, if one integrates the neutron density up to r = 10

fm, where approximatively the neutron density profile is becoming constant, one finds
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Figure 4.11: The HF proton and neutron densities obtained with the Dirichlet-Neuman
boundary condition using D1S [Ber91], M3Y-P4 [Nak08] and SLy4 [Cha98] interactions,
corresponding to zone 10 to zone 6.

about 80 neutrons and 90 neutrons with D1S (or M3Y-P4) and SLy4 interactions,

respectively. Thus, it appears that large surface regions are observed in the case of

D1S and M3Y-P4 interactions, and the neutron gas density of the cell 180Zr is much

higher. Similar situations happen in two other cells 200Zr and 250Zr. In the case of

cells 320Zr and 500Zr, where the 5s1/2 neutron state is fully filled, one observes that the

nuclear cluster region becomes larger with the SLy4 interaction, while its neutron gas

density is smaller by a factor of 2 than those obtained with D1S and M3Y interactions.

For these cells above, one concludes that the neutron density in the center of the

cell becomes smaller with D1S and M3Y-P4 interactions. However, the situation is
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Figure 4.12: Same as Fig. 4.11, but for other zones (from zone 5 to zone 0).

opposite at higher densities, such as in the cells 950Sn, 1100Sn, 1800Sn, 1350Sn and 1500Zr.

These changes can be seen in Fig. 4.12, where the neutron densities of the nuclear

clusters obtained with SLy4 interaction are always smaller than those obtained with

D1S or M3Y-P4 interactions. One can also see that the surface thickness of the nuclear

cluster with SLy4 interaction becomes larger by about 10% in the cells 950Sn, 1100Sn,
1800Sn and 1350Sn. In the cell 1500Zr, the nuclear cluster surface is similar with the

three interactions. Since the neutron density in the center of this cell obtained with

SLy4 interaction is smaller than that obtained with D1S or M3Y-P4 interactions, then

its outer neutron gas density is a little higher. For the highest density corresponding

to the cell 982Ge, there is still some trace of a central cluster and of an outer neutron
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gas in the case of SLy4 whereas this separation fades away with D1S and M3Y-P4

interactions.
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Figure 4.13: The proton and neutron densities obtained with the D1S [Ber91] interaction
in HF and HF-BCS approaches. The calculations are done from zone 10 to zone 6.

As mentioned above, the first microscopic calculations of the WS cells in the

inner crust matter were done in Ref. [Neg73]. The pairing effects were not taken

into account in these calculations because it was assumed that the contribution of

the pairing correlations is small in comparison with the total binding energy of the

considered system. However, calculations using an energy functional involving the

neutron and proton correlations introduced by Baldo et al. [Bal05b] show that the

interval of the density ρ of the equilibrium configuration (Z,RWS) can be changed

significantly due to the pairing effects. We therefore repeat the calculations of all WS
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Figure 4.14: Same as Fig. 4.13, but for other zones (from zone 5 to zone 0).

cells in HF-BCS approach. The D1S and M3Y-P4 interactions are used to construct

the mean field and the pairing field. For comparison we have also considered a hybrid

case where a density-dependent delta force is chosen for the pairing interaction and

the D1S interaction is used in the mean field channel. Up to now, the magnitude

of pairing correlations in neutron matter is still a subject of debate. We know that

the D1S Gogny interaction commonly used in the calculations of finite nuclei gives

for pairing gap of infinite neutron matter a maximum value of about 2.4 MeV at a

Fermi momentum kF ≈ 0.8 fm−1 [Gar99]. The maximum value of pairing gap in

infinite matter using the M3Y-P4 interaction is about 3.2 MeV at the similar Fermi

momentum [Nak08]. On the other hand, the microscopic calculations shown in Ref.
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[Wam93, Sch03] predict for the maximum a gap value of about 1 MeV. One observes

that there are three different scenarios for pairing correlations in neutron matter. In

our study, we use the density dependent delta force for the pairing interaction to

simulate the third scenario, in which the parameters of the pairing interaction are

chosen so as to obtain in neutron matter approximatively the same pairing gap of

about 1 MeV as given in Refs. [San04a, San04b, Wam93]. We use the parameters of

Eqs. (4.69, 4.70): V0=-330 MeV fm−3, η=0.7, and α=0.45 as given in Ref. [San04a].

Thus, for each WS cell we perform three HF-BCS calculations with three pairing

forces. The BCS pairing window is chosen to be ± 6 MeV around the Fermi level.
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Figure 4.15: The HF-BCS proton and neutron densities obtained in three cases. The
notation “Gogny-Gogny” means the D1S Gogny interaction is used in the mean field and
pairing channels, and similar notations for other cases. The calculations are done from zone
10 to zone 6.
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In Figs. 4.13, 4.14 are shown the proton and neutron densities obtained in HF

and HF-BCS approaches for 11 WS cells, in which the D1S Gogny [Ber91] interaction

is used in both the mean field and pairing channels. One can see that the behaviour

of the proton and neutron densities obtained in the two approaches are similar for
180Zr, 200Zr, 250Zr, 320Zr, 500Zr, 950Sn, and 1100Sn cells corresponding to the range of

density ρ ∼ 2.79 × 10−4 fm−3 → 5.77 × 10−3 fm−3. One concludes that the pairing

effects are very small on these cells. For the high density region ρ ∼ 8.91 × 10−3 fm−3

→ 4.75 × 10−2 fm−3, corresponding to cells 1350Sn, 1800Sn and 1500Zr, we can see the

difference between the density profiles obtained in the two above approaches due to

the pairing effects. This is because the occupancy of the 8s1/2 state is modified in

HF-BCS calculations. Thus, the difference between HF neutron densities and BCS

neutron densities is around 10.5% for the three cells above. Indeed, the occupancies

of the 8s1/2 neutron orbital are 0.91, 0.98 and 0.95 for cells 1350Sn, 1800Sn and 1500Zr

in HF-BCS, respectively, while this state is fully filled in HF calculation of these

cells. In spite of the cell 1500Zr, the BCS neutron density of the cells 1350Sn, 1800Sn

have an extended ”surface” before they reach the constant values corresponding to

the neutron gas. The neutron gas densities of these cells are similar in both HF and

HF-BCS approaches. For the highest-density cell 982Ge, ρ =7.89 × 10−2 fm−3, the

behaviour of neutron density is a little changed due to the pairing effects. However,

although the D1S interaction is used in the pairing channel, it cannot produce a

constant density around the outer edge of this cell. It seems that the cell 982Ge most

probably belongs to the deformed pasta phase.

As discussed above, the density of neutron matter is changing significantly from

the center of the cell, where the nuclear cluster is located, to its edge filled by the

uniform neutron gas. One knows that the pairing gap of the neutron matter depends

strongly on the density. However, the maximum value of the gap and its detailed

density dependence are still subjects of debate. Since it is not yet established what are

the pairing properties of neutron matter, we perform again the HF-BCS calculations

for all WS cells of the inner crust matter using the D1S, M3Y and delta interactions in

the pairing channel. The results of proton and neutron density distributions obtained

with three interactions in the pairing channel are shown in Figs. 4.15, 4.16. For
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Figure 4.16: Same as Fig. 4.15, but for other zones (from zone 5 to zone 0).

the HF-BCS calculations using the delta interaction in the pairing channel, the D1S

interaction will be used in the mean field channel. One observes from the Figs. 4.15,

4.16 that the main features of the WS cells can be obtained with three kinds of pairing

interactions. At the low density region (from zone 10 to zone 5), the behaviour of the

proton and neutron density distributions are very similar. In these cases the pairing

effect is very small and cannot modify the shape of the proton and neutron densities.

At the high density region, except for the cell 1350Sn where the pairing effect is strong

on the neutron density, the results of proton and neutron densities are similar for

other cells such as cells 1100Sn, 1500Zr, 1800Sn and 982Ge. In the case of cell 1350Sn, the

neutron density distribution of nuclear cluster inside the cell using delta interaction
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Figure 4.17: The proton and neutron densities for zone 2 and 3 obtained with the D1S
[Ber91] and D1N [Cha08] interactions in HF-BCS approach.

in the pairing channel is higher than that obtained with D1S or M3Y-P4 interactions

used in the pairing channel, because of the occupancy of the 8s1/2 neutron orbital

obtained with the delta-pairing interaction is larger than those obtained with D1S and

M3Y-P4 pairing interactions. In all the cells we observe that the density distribution

of the nuclear cluster obtained with the case of M3Y-P4 interaction is a little smaller

than those obtained with the case of D1S interaction. This effect may come from the

difference of the range and the value of pairing gap in infinite matter with two kinds

of effective interactions. Fig. 4.17 displays the proton and neutron densities for zone

2 and 3 obtained with the D1S [Ber91] and D1N [Cha08] interactions in HF-BCS

approach. One can see that the results are very similar.
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Figure 4.18: The neutron pairing fields given by the delta -pairing interaction using the
Eq. (4.72) for the WS cells (from zone 10 to zone 1).

Next, we discuss the neutron pairing fields given by a delta -pairing interaction

using the Eq. (4.72). The results calculated for the WS cells (from zone 10 to zone 1)

are shown in Fig. 4.18, except for zone 0 (corresponds to the cell 982Ge) which belongs

to the deformed pasta phase. In the upper panel of Fig. 4.18, we can see that the

pairing field is becoming very small almost everywhere in the cell. However, one can

observe that in passing from the low density region of the neutron gas towards the high

density region of the cluster, the pairing field is increasing in the intermediate density

region of the cluster surface in the cells 320Zr and 500Zr. This is a manifestation of the

bell shape dependence of the pairing gap on density. For the cells corresponding to

high baryonic densities shown in lower panel of Fig. 4.18 the slope of the pairing field
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is changing very slowly when it is crossing the region between the nuclear cluster and

the uniform neutron gas. Using the same density-dependent delta force in the pairing

channel, the pairing fields of the cells 950Sn, 1500Zr and 1800Sn given by the HF-BCS

calculation using the Gogny D1S interaction in the mean field are about three times

smaller (in absolute value) than that obtained by the HFB calculation using the SLy4

interaction in the mean field (see Figs. 5 and 6 in Ref. [San04a]). We see that the

pairing correlations are reduced strongly for all the cells in the present work.

One can conclude that the behaviour of the pairing field in the inner crust matter

is rather complex. On the other hand the magnitude of the pairing field inside the

inner crust depends strongly on the scenario used for the pairing properties of infinite

neutron matter as shown in Refs. [San04a, San04b].

In conclusion of this section, we have studied the properties of the WS cells in

the inner crust matter of neutron star using the finite-range density dependent in-

teractions in HF and HF-BCS approaches, for the first time. The calculations are

performed with 11 representative WS cells with imposing Dirichlet-Neumann bound-

ary conditions at the edge of the cell. The main features of the WS cell can be

observed in our calculations. In the HF-BCS calculations, one finds that the pairing

effect is very small in the low density region ρ ∼ 2.79 × 10−4 fm−3 → 5.77 × 10−3

fm−3. In the high density, the pairing effect can make an extended “surface” for

neutron density distribution in the cell before they reach the constant density around

the outer edge of the cell. However, one cannot obtain the constant neutron gas

densities in the cell 982Ge with a finite-range density-dependent interaction. This cell

corresponds to the highest-density ρ = 7.89 × 10−2 fm−3, and it seems not to belong

to the spherical case as assumed in our study.



Chapter 5

NUCLEAR REACTIONS

In this chapter we study the charge exchange (p, n) reactions measured with 48Ca,
90Zr, 120Sn and 208Pb targets at the proton energies of 35 and 45 MeV within a

two-channel coupling formalism using the folding model. In this work, the density-

dependent CDM3Y6 interaction was used in the folding calculation of the nucleon

optical potential and (p, n) form factor. Our results are published in the paper D.T.

Khoa et al. Physical Review C 76, 014603 (2007) [Kho07b]. The basic formalism of

the folding model and charge exchange (p, n) reactions can be found in Refs. [Kho02,

Kho05, Kho07b, Tha05, Sat83], thus we only recall the main features of a consistent

folding model analysis of the charge exchange (p, n) reactions. The other interactions,

such as the M3Y-Pn [Nak08], Gogny [Ber91, Cha08] and Skyrme (SLy4) [Cha98], can

be applied to analyze the charge exchange (p, n) reactions. Work in this direction is

in progress.

5.1 The charge exchange (p, n) reactions

The charge exchange (p, n) reaction is well known as an effective tool to excite the

isobaric analog of the target ground state. Such an isobaric analog state (IAS) has

essentially the same structure as that of the target ground state (except for the

replacement of a neutron by a proton) and which differs in energy by the Coulomb

energy of the added proton. The two states are just two members of the isospin

121
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multiplet which have the same isobaric spin T and differ only in the orientation of

the isospin T in isobaric-spin space. The similarity of the initial and final states

makes the (p, n) reaction very much like an elastic scattering (quasielastic) in which

the isospin of the projectile is “flipped”. Indeed, the isospin dependent part of the

proton-nucleus optical model potential (OMP) was studied by Satchler et al. [Sat64]

in their study of the (p, n) reaction within the distorted wave Born approximation

(DWBA). In general, assuming isospin symmetry in nuclei [H,T2] = [H, Tz] = 0, the

nucleon-nucleus OMP can be written in terms of the isospin operators [Lan62] as

U(R) = U0(R) + 4U1(R)
ta.T A

A
, (5.1)

where ta is the isospin of the incident nucleon and T A is that of the target nucleus,

and A is the mass of the nucleus. The second term of Eq. (5.1), known as the Lane

potential, contributes to both the elastic (p, p) , (n, n) scattering and (p, n) charge

exchange reaction [Sat83]. While the contribution of the Lane potential U1 to the

elastic (p, p) and (n, n) cross section is small and amounts only to a few percent

for a neutron-rich target [Kho02, Kho03], it determines entirely the (Fermi-type)

∆Jπ = 0+ transition strength of the (p, n) reaction exciting the IAS. Therefore, the

(p, n) reaction can be used as a reliable probe of the isospin dependence of the proton-

nucleus OMP. In addition, the probes of the Lane potential complementary to the

charge exchange (p, n) reactions can be given by high energy ion collisions, sensi-

tive observables being given for instance by differential high transverse momentum

proton/neutron spectrum, π+/π− ratio and proton neutron flow [Li08].

Another very interesting microscopic aspect of the Lane potential is that it pro-

vides a direct link between the isospin dependence of the in-medium NN interaction

and the charge exchange (p, n) reaction, so that accurately measured (p, n) cross

section can serve as a good probe of the isospin dependence of the NN interaction

[Doe75] if the wave functions of the involved nuclear states are known. In our re-

cent study of the IAS excitation in the p(6He,6Li∗)n reaction using the folded Lane

potential U1 for the charge exchange form factor [Kho05], we have shown how the

NM symmetry energy can be linked to the charge exchange (p, n) transition strength
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and, hence, be probed in the folding model analysis of the (p, n) reaction. To ex-

tend the folding model study of the (p, n) reaction to heavier targets to validate the

conclusion made in Ref. [Kho05] for the NM symmetry energy, we have studied in

the present work the quasi-elastic (p, n) scattering measured by the MSU group for
48Ca, 90Zr, 120Sn, and 208Pb targets at the incident proton energies of 35 and 45 MeV

[Doe75]. By using the Lane potential U1 to construct the charge exchange (p, n) form

factor based on the isospin coupling, one can probe the isospin dependence of existing

global nucleon-nucleus OMP, such as that by Becchetti and Greenlees [Bec69], the

CH89 global OMP [Var91], and by Koning and Delaroche [Kon03]. In the present

work, the description of the considered (p, n) reactions by the three global nucleon

optical potentials [Bec69, Var91, Kon03] has been given, with a detailed comparison

between the results given by the CH89 potential [Var91] and those of the folding

model analysis. While these three global nucleon optical potentials have been widely

used in predicting the nucleon-nucleus OMP in numerous direct reaction analyses

within the DWBA or coupled-channel (CC) formalism, their isospin dependence has

been rarely used to study the charge exchange (p, n) transition between the IAS’s.

The (phenomenological) Lane potential U1 has been studied in detail so far at some

particular energies only, like the systematics for U1 deduced from IAS data of the

(p, n) reaction measured at 22.8 [Car75] and 35 MeV [Jon00]. Therefore, it is neces-

sary to have a reliable microscopic prediction for U1 by the folding model, to reduce

the uncertainty associated with the isospin dependence of the nucleon-nucleus OMP.

5.2 Lane potential and isospin coupling

5.2.1 Basic formulae

We give here a brief introduction to the coupled-channel formalism for the charge

exchange (p, n) reaction to isobaric analog states, and more details can be found in

Ref. [Sat83]. Let us restrict our considerations to a given isospin multiplet with fixed

values of isospin ta for the projectile and TA for the target. The isospin projections

are Nz = (N − Z)/2 and Ñz = Nz − 1 for the target nucleus A and isobaric analog
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nucleus Ã, respectively. We further denote, in the isospin representation, a state

formed by adding a proton to A as |pA > and adding a neutron to Ã as |nÃ >. In

what follows we will use Ni to denote the value of Niz for nucleus i.

The wave function for the pair |pA > can be expressed as a superposition of states

with definite total isospin T in the following form [Sat83]

|pA > = Ψ 1
2
,− 1

2
(xa)ΨTANA

(xA) =
∑

T

<
1

2
− 1

2
TANA|TN > ΨT (TA

1
2
)N(xα)

=
1√

2TA + 1
|TA +

1

2
, NA − 1

2
〉+

√
2TA

2TA + 1
|TA − 1

2
, NA − 1

2
〉

=
1√

2TA + 1
[|T>, N<〉+

√
2TA|T<, N<〉], (5.2)

where we have suppressed the other quantum numbers of the incident proton and

target nucleus for simplicity. ΨT (TA
1
2
)N(xα) is a superposition of the states of different

NA and Na(= −1
2
) (but with fixed N = NA + Na) which are members of the isospin

multiplets with given TA and ta(=
1
2
), respectively. T is the total isospin, T = T A+ta,

and we use the notation

X> = XA +
1

2
, X< = XA − 1

2
.

In a similar way, we can obtain the wave function for the pair |nÃ > as

|nÃ〉 = Ψ 1
2
, 1
2
(xa)ΨTÃNÃ

(xÃ)

=
∑

T

<
1

2

1

2
TÃNÃ|TN > ΨT (TÃ

1
2
)N(xα)

=

√
2TA

2TA + 1
|TA +

1

2
, NA − 1

2
〉 −

√
1

2TA + 1
|TA − 1

2
, NA − 1

2
〉

=
1√

2TA + 1
[
√

2TA|T>, N<〉 − |T<, N<〉] (5.3)

In a coupled representation [Sat83] the isoscalar operator ta.T A is diagonal in the
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total isospin T and its projection N :

< T ′N ′|ta.T A|TN >=
1

2
δTT ′δNN ′ [T (T + 1)− ta(ta + 1)− TA(TA + 1)]. (5.4)

Using Eq. 5.4 we have (with ta = 1
2
)

< pA|ta.T A|pA > =
1

2(2TA + 1)
[〈N<, T>|ta.T A|T>, N<〉+

+2TA〈N<, T<|ta.T A|T<, N<〉]
= −TA

2
, (5.5)

< nÃ|taT A|nÃ > =
1

2(2TA + 1)
[2TA〈N<, T>|ta.T A|T>, N<〉 −
−〈N<, T<|ta.T A|T<, N<〉]

=
1

2
(TA − 1), (5.6)

< nÃ|taT A|pA > =

√
2TA

2TA + 1
[〈T>, N<|taT A|T>, N<〉 −
−〈T<, N<|taT A|T<, N<〉]

=

√
TA

2
. (5.7)

The transition matrix elements of the isovector part of the nucleon-nucleus optical

model potential (5.1) can then be obtained for the elastic nucleon-nucleus scattering

as

< pA|4U1(R)
ta.T A

A
|pA >= − 2

A
TAU1(R),

< nÃ|4U1(R)
ta.T A

A
|nÃ >=

2

A
(TA − 1)U1(R), (5.8)

In the similar way, the transition matrix element or (p, n) form factor (FF) for the
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(∆T = 1) charge exchange Ag.s.(p, n)ÃIAS reaction is obtained as

< nÃ|4U1(R)
ta.T A

A
|pA >≡ Fpn(R) =

2

A

√
2TAU1(R). (5.9)

The OMP in the entrance (p + A) and outgoing (n + Ã) channels are determined

explicitly through the isoscalar (U0) and isovector (U1) parts of the nucleon optical

potential (5.1) as

Up(R) = < pA|U0(R) + 4U1(R)
ta.T A

A
|pA >

= U0(R)− 2

A
TAU1(R), (5.10)

Un(R) = < nÃ|U0(R) + 4U1(R)
ta.T A

A
|nÃ >

= U0(R) +
2

A
(TA − 1)U1(R). (5.11)

In the two-channel approximation, the total wave function may be written as

[Sat83]

Ψ = |pA > χpA(R) + |nÃ > χnÃ(R), (5.12)

where the wave functions χ(R) describe the relative motion of the scattering system.

Then, the elastic (p, p) scattering and charge exchange Ag.s.(p, n)ÃIAS cross sections

can be obtained from the solutions of the following coupled-channel equations [Sat83]

[Kp + Up(R)− Ep] χpA(R) = −Fpn(R)χnÃ(R), (5.13)

[Kn + Un(R)− En] χnÃ(R) = −Fpn(R)χpA(R). (5.14)

Here Kp(n) and Ep(n) are the kinetic-energy operators and center-of-mass energies of

the (p + A) and (n + Ã) partitions. One notes that En = Ep −∆C , where ∆C is the

additional internal Coulomb energy of the analogue nucleus and it is also minus the

Q value of the (p, n) reaction. The OMP Up and Un can be obtained from Eqs. (5.10)

and (5.11). In the CC calculation, one must add to Up and Un the corresponding

spin-orbital potential while the Coulomb potential of the (p + A) system is added

to Up. Since the energies of isobar analog states are separated approximately by
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the Coulomb displacement energy, the (p, n) transition between them has a nonzero

Q value. To account for this effect, the isoscalar U0 and isovector U1 potentials

used to construct Fpn(R) and Un(R) are evaluated at effective incident energies of

E + Q/2, as suggested by Satchler in Ref. [Sat64]. In this work, the Q values of the

(p, n) reactions taken from Ref. [Doe75] are -7.175, -12.03, -13.41 and -18.82 MeV

for 48Ca, 90Zr, 120Sn and 208Pb targets, respectively. Since the existing global OMP

parameters [Bec69, Var91, Kon03] can be used to construct the isoscalar (U0) and

isovector (U1) components of the proton-nucleus OMP, we also use those parameters

in the description of the Ag.s.(p, n)ÃIAS reaction between the isobaric analog states

for comparison.

5.2.2 Folding model

One knows that among various models of nuclear reactions, the folding model is

one of the successful models that has been used for years to calculate the nucleon-

nucleus and nucleus-nucleus optical potentials [Rik84, Dor98, Kho02, Kho03, Kho96,

Kho07b, Chi09] and inelastic form factors [Mac78, Che85, Kho02, Kho07b, Chi09].

Therefore, in this present work we use the folding model to construct the isoscalar

(U0) and isovector (U1) parts of the nucleon OP. Following the single-folding model

in Refs. [Kho02, Kho03], the central nucleon-nucleus potential V is evaluated as a

Hartree-Fock-type potential

V =
∑
j∈A

[< ij|vD|ij > + < ij|vEX|ji >], (5.15)

where vD and vEX are the direct and exchange parts of the effective NN interaction

between the incident nucleon i and nucleon j bound in the target A (see Eq. (2.35)).

The antisymmetrization of the nucleon-nucleus system is done by taking into account

the knock-on exchange effects.

Using the explicit proton (ρp) and neutron (ρn) densities in the folding input,

we can write the real nucleon-nucleus potential (5.15) in terms of the real isoscalar
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(VIS=ReUIS) and real isovector (VIV = ReUIV) parts like Eq. (2.42)

V (E, R) = VIS(E, R)± VIV(E, R), (5.16)

Here the (+) sign pertains to incident neutron and (-) sign to incident proton.

Each term in Eq. (5.16) consists of the corresponding direct and exchange poten-

tials [Kho02]

VIS(E, R) =

∫
{[ρn(r) + ρp(r)]vD

00(E, ρ, s)

+[ρn(R, r) + ρp(R, r)]vEX
00 (E, ρ, s)j0(k(E, R)s)}d3r, (5.17)

VIV(E, R) =

∫
{[ρn(r)− ρp(r)]vD

01(E, ρ, s)

+[ρn(R, r)− ρp(R, r)]vEX
01 (E, ρ, s)j0(k(E, R)s)}d3r, (5.18)

where ρ(r, r′) is the one-body density matrix of the target nucleus with ρ(r) ≡ ρ(r, r),

and the local momentum of relative motion k(E, R) is determined from

k2(E, R) =
2µ

~2
[Ec.m. − V (R)− VC(R)]. (5.19)

Here, µ is the nucleon reduced mass, V (R) and VC(R) are, respectively, the real

central nuclear and Coulomb potentials in the entrance channel (VC ≡ 0 for the

neutron-nucleus system). More details of the folding calculation of VIS and VIV can

be found in Ref. [Kho02].

In this work, the isovector density dependence of the complex CDM3Y6 interaction

will be used as the input of the folding calculation. This version of the effective inter-

action has been constructed in Chapter 2. The imaginary part WIS(IV) = Im(UIS(IV))

of the OMP which accounts for the absorption into other channels is given by the

same folding procedure (5.17)-(5.18) but using the imaginary parts of the CDM3Y6

interaction constructed separately at each energy.
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Given the isovector folded potential (5.18) determined entirely by the neutron-

proton difference in the nuclear densities, it is necessary to have the nuclear densities

determined as accurately as possible for a good prediction of the Lane potential. In

the present work we have used for the considered targets the microscopic ground-

state densities given by the HFB approach using the SLy4 interaction [Gra01]. We

have calculated the neutron and proton densities of all considered targets using the

D1S Gogny interaction which is presented in Chapter 4. Because the considered

targets are doubly shell-closure nuclei, we find that the calculated neutron and proton

densities are very close with those obtained using SLy4 interaction in Ref. [Gra01].

Therefore the results of the CC analysis of the charge exchange (p, n) reactions to

the isobaric analog states of the ground states of 48Ca, 90Zr, 120Sn and 208Pb targets

do not change, and we keep our discussions in this Chapter as presented in our

paper [Kho07b]. The nucleon-nucleus OMP has been calculated using the CDM3Y6

interaction with the Fortran code DFPD4 written by Khoa [Kho]. All the results of the

optical model (OM) analysis of elastic nucleon-nucleus scattering and CC calculation

of the Ag.s.(p, n)ÃIAS reactions have been obtained with the CC code ECIS97 written

by Raynal [Ray72], such as the elastic differential cross sections (dσ/dΩ), analyzing

powers (Ay), spin rotation (Py), reaction cross sections (σR), and total cross sections

(σT for incident neutron only).

5.3 Results and discussions

5.3.1 Predictions by the phenomenological models

The existing nucleon-nucleus global OMP’s [Var91, Kon03, Bec69] have been carefully

determined based on large experimental databases of both the elastic nucleon-nucleus

scattering and analyzing power angular distributions, and it is natural to use them

to construct Up and Un for our study. Since the elastic neutron scattering on a target

being in its excited IAS cannot be measured (most of IAS’s are either a short-lived

bound state or an unbound resonance), we have determined Un from the isoscalar U0

and isovector U1 parts of the proton-nucleus OMP evaluated at the effective incident
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energy E = Elab + Q/2, as suggested in Ref. [Sat64], using these global proton-

nucleus OMP’s. Fig. 5.1 displays the OM description of the elastic proton scattering

from 48Ca, 90Zr, 120Sn, and 208Pb targets at incident proton energy of 40 MeV given

by the three global proton-nucleus OMP’s together with the measured data taken

from Refs. [Gru72, Fri67]. Except for some underestimation of the calculated elastic

0 20 40 60 80 100 120 140 160 180
10-11

10-9

10-7

10-5

10-3

10-1

101

103

105

 

 

 CH89
 KD
 BG

Θ
c.m.

(deg)

dσ
/d

Ω
 (

m
b/

sr
)

x 10-9

x 10-6

x 10-3

208Pb

120Sn

90Zr

48Ca

Elastic proton scattering
     E = 40 MeV

Figure 5.1: OM description of the elastic proton scattering from 48Ca, 90Zr, 120Sn, and
208Pb targets at 40 MeV obtained with the global OMP by Bechetti and Greenlees
(BG) [Bec69], by Varner et al. (CH89) [Var91], and by Koning and Delaroche (KD)
[Kon03]. The data were taken from Refs. [Gru72, Fri67].

cross section in p+48Ca case, all results given by the OM description of elastic proton

scattering are in good agreement with the experimental data. It should be noted

that the isovector strength of the nucleon-nucleus OMP is only about 2-3% of the

total OMP and its contribution to the elastic scattering cross section is small. It is,
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thus, not easy for us to probe the isospin dependence of the OMP directly in the OM

analysis of elastic scattering. Therefore, we can only probe the isospin dependence of
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Figure 5.2: CC description of the charge exchange Ag.s.(p, n)ÃIAS reaction measured
with 48Ca, 90Zr, 120Sn, and 208Pb targets at 35 and 45 MeV obtained with U1 deduced
from the global OMP by Bechetti and Greenlees (BG) [Bec69], by Varner et al.
(CH89) [Var91], and by Koning and Delaroche (KD) [Kon03]. The data were taken
from Ref. [Doe75].

the nucleon-nucleus OMP via the charge exchange Ag.s.(p, n)ÃIAS reaction in a “Lane

consistent” approach. In such a quasi-elastic scattering, the charge exchange form

factor (5.9) used in the CC equations (5.13)-(5.14) is determined entirely by the Lane

potential U1. As a result, any variation of the U1 strength and shape can sizably

affect the calculated (p, n) cross section.

In Fig. 5.2, the CC description of the charge exchange Ag.s.(p, n)ÃIAS reaction

measured on 48Ca, 90Zr, 120Sn, and 208Pb targets at 35 and 45 MeV obtained with U1
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deduced from the three global OMP’s [Bec69, Var91, Kon03] are shown in comparison

with the experimental data taken from Ref. [Doe75]. It should be noted that the

isospin dependence of the nucleon global OMP has been determined from systematic

OM studies of the elastic scattering of proton and neutron from the same target (at

about the same energy), without any link to the Ag.s.(p, n)ÃIAS reaction. From the

three global OMP’s, U1 determined from the systematics by Bechetti and Greenlees

(BG) [Bec69] is energy independent, and we found it too strong for the strength of the

charge exchange form factor (5.9), especially, at energy of 45 MeV. Such a deficiency

of the BG parameters for U1 was also found in the extensive OM analysis of elastic

nucleon-nucleus scattering [Var91, Kon03]. The isovector parts of both the global

optical potentials by Varner et al. (CH89) [Var91], and by Koning and Delaroche

(KD) [Kon03] were found to be energy dependent and weaker than that given by the

BG systematics. Although the KD global OMP is more recent and covers a much

wider range of energies and target masses, from the CC results shown in Fig. 5.2

one can see that the description of Ag.s.(p, n)ÃIAS reaction by the KD global OMP

is slightly worse than those of the CH89 global OMP. A plausible reason is that the

CH89 systematics was developed [Var91] with less constraints, based only on the

elastic scattering data for A ≈ 40 − 209 and energies of 16 to 65 MeV (for proton)

and 10 to 26 MeV (for neutron). Although this range of energies and target masses

is narrower than that covered by the KD global systematics [Kon03], it includes the

proton-nucleus systems considered in the present work. In general, the Lane form

factor (5.9) determined from the CH89 global OMP gives a reasonable description of

the Ag.s.(p, n)ÃIAS cross sections measured for 120Sn and 208Pb targets, and slightly

underestimates the data for 48Ca and 90Zr targets. As will be shown below, such a

suppression of the calculated Ag.s.(p, n)ÃIAS cross sections for the two lighter targets

is due mainly to an enhanced absorption given by the CH89 global OMP.
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5.3.2 Folding model analysis

First, we will check the OM description of elastic nucleon-nucleus scattering at the

nearby energies using the complex microscopic OMP as

U(R) = NV[VIS(R)± VIV(R)] + iNW[WIS(R)±WIV(R)], (5.20)

where the (+) sign pertains to incident neutron and (-) sign to incident proton.

The isoscalar (VIS(R) and WIS(R)) and isovector (VIV(R) and WIV(R)) parts of

the nucleon-nucleus OMP can be calculated explicitly using the complex density-

dependent CDM3Y6 interaction by the single-folding approach (5.17)-(5.18). The

complex OMP U is further complemented by the spin-orbital potential (and proton-

nucleus OMP added also by the Coulomb potential) taken from the CH89 model

[Var91]. The strengths NV(W) of the complex folded OMP are adjusted to the best

OM fit to the elastic scattering data. In the present folding approach, the factor NV

for the real folded OMP is an approximate way to make small adjustments that may

be needed to take into account the higher order contributions to the real microscopic

OMP, it is the “dynamic polarization potential” in the Feshbach’s formalism [Fes92].

It is obvious that the value of NV should be close to unity for this procedure to be

reasonable.

The OM results obtained for the elastic proton scattering at 40 MeV on 48Ca, 90Zr,
120Sn and 208Pb targets are shown in Fig. 5.3 (on the left panel). A good description

of the measured elastic proton scattering data [Gru72, Fri67] can be reached after the

complex folded potential is renormalized by NV ≈ 0.90−0.94 and NW ≈ 0.6−0.8. On

the right panel of Fig. 5.3 the OM results obtained for the elastic neutron scattering

are shown, where the best-fit NV ≈ 0.9 and NW ≈ 0.6−0.7. For comparison, we have

also tried a hybrid choice for the complex OMP, in which the real part obtained by

the folding model and imaginary part given by a Woods-Saxon (WS) potential based
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Figure 5.3: OM description of the elastic proton scattering from 48Ca, 90Zr, 120Sn,
and 208Pb targets at 40 MeV (on the left panel) and from 90Zr, 120Sn, and 208Pb
targets at energies of 17 to 24 MeV (on the right panel) obtained with the complex
folded OMP (5.20) and hybrid OMP (5.21). The data were taken from Refs. [Gru72,
Fri67, Wan90, Gus89, Rap78].

on the CH89 global systematics [Var91]

U(R) = NV [VIS(R)± VIV(R)]− i[Wvf(R)− 4awWs
df(R)

dR
],

where f(R) =
1

1 + exp[(R−Rw)/aw

. (5.21)

The normalization factor NV, the strengths of the volume (Wv) and surface (Ws) terms

of the absorptive WS potential are adjusted in each case to fit the elastic scattering

data and reproduce the total reaction cross section σR measured for the considered

proton-nucleus systems at 35 and 45 MeV [Car96]. The results of the elastic proton
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Table 5.1: Renormalization coefficients NV(W) of the complex folded proton-nucleus
OMP (5.20) used in the entrance channel. The calculated proton total reaction cross
section σR is compared with the data σexp

R taken from Ref. [Car96]. NR(I) are the
renormalization coefficients of the folded FF (5.22) deduced from the CC fit to the
(p, n) data using the OMP (5.20).

Target E NV NW σR σexp
R NR NI

A (MeV) (mb) (mb)
48Ca 35 0.933 0.600 969 971± 32 1.356 0.970

45 0.902 0.630 893 908± 34 1.738 1.054
90Zr 35 0.893 0.731 1341 1316± 65 a 2.133 0.978

45 0.893 0.731 1296 1214± 59 b 2.193 1.043
120Sn 35 0.937 0.828 1605 1668± 59 2.372 0.981

45 0.937 0.731 1588 1545± 38 2.529 0.985
208Pb 35 0.916 0.747 1877 1974± 38 2.896 1.018

45 0.916 0.747 1963 1979± 41 2.606 0.985

a Total p+90Zr reaction cross section measured at E = 40 MeV; b at E = 49.5 MeV.

and neutron scattering given by this hybrid choice are shown in Fig. 5.3 (named

hybrid OMP). One observes that the OM fit given by the hybrid OMP is slightly

improved, especially, at forward scattering angles. Although the difference in the OM

description of elastic nucleon scattering by the two choices of OMP is marginal as

seen in Fig. 5.3, their effect on the calculated (p, n) cross section is surprisingly much

more significant.

The complex charge exchange form factor (FF) for the (p, n) transition channel is

determined from the real and imaginary parts of the folded isovector potential (5.18)

as

Fpn(R) =
2

A

√
2TAU1(R) =

√
2

TA

[NRVIV(R) + iNIWIV(R)]. (5.22)

we calculate the charge exchange FF Fpn(R) after the OMP for the entrance proton-

nucleus channel is determined based on the OM analysis of the proton elastic scatter-

ing at the nearby energies. The OMP parameters are kept unchanged as fixed from
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the OM calculation described above. The normalization factors NR(I) are adjusted for

the best fit of the calculated (p, n) cross section to the experimental data. Using this

method, the folding model analysis of the (p, n) reaction can serve as a good probe

of the isospin dependence of the effective NN interaction. In this work, the complex

OMP for the outgoing (n+ Ã) channel has been determined from the complex proton

OMP evaluated at the effective incident energy E = Elab + Q/2. For consistency, the

complex folded OMP in the outgoing (n + Ã) channel is renormalized by the same

factors NV(W) as those used in entrance proton-nucleus channel. The WS imaginary

part of the hybrid OMP (5.21) in the outgoing (n + Ã) channel is determined from

the CH89 global OMP using the same isospin coupling (5.11). The results of the

CC calculation of the (p, n) reaction are given in Tables 5.1 and 5.2 for the complex

folded and hybrid OMP, respectively.

We discuss now the CC results for the (p, n) reaction measured with 48Ca target.

The OM descriptions of the elastic p+48Ca scattering data at 35 MeV [Gru72] given by

the complex folded OMP (5.20), hybrid OMP (5.21) and CH89 global OMP [Var91]

are shown in lower part of Fig. 5.4. Similarly to the results at 40 MeV shown in

Fig. 5.3, both complex folded and hybrid OMP give a reasonable description of the

measurement after their strengths were adjusted by the OM fit to the elastic data,

with the complex folded OMP slightly underestimating data at the forward angles.

The CC descriptions of the 48Cag.s.(p, n)48ScIAS data at 35 MeV obtained by the

unrenormalized folded form factor (5.22) and that deduced from the isovector term of

the CH89 potential using Eq. (5.9) are shown in upper part of Fig. 5.4. One can see

that the unrenormalized folded FF gives a good agreement with the measured (p, n)

cross section at large angles while it underestimates the data points at the forward

angles. From the two choices of the OMP, the complex folded OMP (5.20) gives

a worse fit to the (p, n) data at forward angles. Since the angular distribution at

forward angles is more affected by the surface part of the OMP and given the same

real folded OMP used in both calculations, the difference caused by the two OMP’s

should be due to different surface absorptions described by the two OMP’s. The CC

description by the CH89 form factor improves significantly when the best-fit hybrid

OMP (5.21) is used (see Fig. 5.5). Therefore, the unsatisfactory description of the
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Ã
)

0.
90

1
1
.8

7
1

4
.0

0
0

7
.4

6
0

0
.6

9
-

-
-

-
a

T
ot

al
p+

9
0
Z
r

re
ac

ti
on

cr
os

s
se

ct
io

n
m

ea
su

re
d

at
E

=
40

M
eV

;
b

at
E

=
49

.5
M

eV
.



138 CHAPTER 5. NUCLEAR REACTIONS

0 20 40 60 80 100 120 140 160 180
10-1

100

101

102

103

10-2

10-1

100

101

σ
R

exp = 971 mb

 Complex fold. OP, σ
R
=967 mb

 Hybrid OP, σ
R
=981 mb

 CH89 global OP, σ
R
=1124 mb

Θ
c.m.

(deg)

dσ
/d

Ω
 (

m
b/

sr
)

p +48Ca,  E = 35 MeV
Elastic scattering  

E = 35 MeV

N
R
=N

I
=1

 CDM3Y6, Complex fold. OP
   CDM3Y6, Hybrid OP
   CH89, CH89 global OP

48Ca
g.s.

(p,n)48Sc
IAS

Figure 5.4: Upper part: CC description of the 48Cag.s.(p, n)48ScIAS reaction at 35
MeV [Doe75] given by the (unrenormalized) folded (p, n) form factor (5.22) and that
deduced from Eq. (5.9) using the CH89 parameters [Var91]. Lower part: OM descrip-
tion of the elastic p+48Ca scattering at 35 MeV [Gru72] given by the complex folded
OMP (5.20), hybrid OMP (5.21) and CH89 global OMP [Var91].

(p, n) data by the CH89 form factor shown in upper part of Fig. 5.4 is caused by a too

absorptive imaginary CH89 potential (which gives σR ≈ 1124 mb compared to the

measurement σexp
R ≈ 971 ± 32 mb [Car96]). We have adjusted the complex strength

of the folded FF to the best χ2-fit of the experimental (p, n) data. We found that

NR are around 1.3, while NI remains close to unity (see lower part of Fig. 5.5 and

Tables 5.1 and 5.2). The effect by the imaginary OMP becomes more substantial in

the CC analysis of the (p, n) data at 45 MeV (upper part of Fig. 5.5). While the

results obtained with the hybrid OMP (5.21) are on about the same best-fit NR(I)

coefficients of the folded FF as those found at 35 MeV, the complex folded OMP



5.3. RESULTS AND DISCUSSIONS 139

0 20 40 60 80 100 120 140 160 180
10-2

10-1

100

10-2

10-1

100

101

 CDM3Y6, Complex fold. OP
   CDM3Y6, Hybrid OP
     CH89, Hybrid OP

Θ
c.m.

(deg)

dσ
/d

Ω
 (

m
b/

sr
)

 E = 35 MeV

E = 45 MeV

Best fit N
R
, N

I
 

48Ca
g.s.

(p,n)48Sc
IAS

Figure 5.5: CC description of the 48Cag.s.(p, n)48ScIAS reaction [Doe75] at 35 MeV
(lower part) and 45 MeV (upper part) given by the renormalized folded (p, n) form
factor (5.22) and that deduced from Eq. (5.9) with the CH89 global OMP [Var91],
using two choices (5.20)-(5.21) of the OMP.

(5.20) gives a much larger NR of around 1.7 and a worse description of the (p, n)

data at large angles. The CC calculations using the hybrid OMP (5.21) give a good

overall description of the 48Cag.s.(p, n)48ScIAS data at 35 and 45 MeV with the folded

FF renormalized by NR ≈ 1.3 and NI ≈ 1. These calculations also give the total

(p, n) cross section σpn ≈ 10.7 and 9.0 mb for the 48Cag.s.(p, n)48ScIAS reaction at

35 and 45 MeV, respectively, which agree well with the measured values [Doe75],

σexp
pn ≈ 10.2± 1.1 and 8.4± 1.0 mb at 35 and 45 MeV, respectively.

The results of the 90Zrg.s.(p, n)90NbIAS reaction are plotted with the experimental

data in Fig. 5.6. One observes that the peak of the (p, n) cross section is weaker and

only around half of that measured for 48Cag.s.(p, n)48ScIAS reaction. A weaker charge
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Figure 5.6: The same as Fig. 5.5 but for the 90Zrg.s.(p, n)90NbIAS reaction [Doe75].

exchange strength also leads to a total (p, n) cross section of about 50% smaller than

that obtained for 48Ca target (see Table I in Ref. [Doe75]). In terms of the isospin-

flip transition (5.9), the charge exchange (p, n) strength is directly proportional to

the neutron-proton asymmetry parameter δ = (N − Z)/A and strength of the Lane

potential U1. Indeed, the isovector folded potential VIV(R) for the p+48Ca system is

about 30-40% larger than that obtained for the p+90Zr system in the surface region

and the asymmetry parameter δ ≈ 0.17 and 0.11 for 48Ca and 90Zr, respectively.

A weaker charge exchange strength observed in the 90Zrg.s.(p, n)90NbIAS reaction is,

therefore, well anticipated. Like the p+48Ca system, the use of the complex folded

OMP (5.20) in the CC calculation with the folded FF gives a poor description of

the (p, n) data, especially at forward angles (see Fig. 5.6), even after its real strength

is renormalized by NR > 2 as determined from the χ2 fit to the data. The same

folded FF gives a much better fit to the (p, n) data when the hybrid OMP (5.21) is
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used and its complex strengths need to be renormalized by just NR ≈ 1.2 − 1.3 and

NI ≈ 1 which are close to those obtained for the p+48Ca system (see Table 5.2). The

CH89 form factor for the p+90Zr system slightly underestimates the data. However,

the CC description of the (p, n) data by the CH89 form factor is much better when

the hybrid OMP (5.21) is used. The CC calculation using the hybrid OMP and

renormalized folded FF gives the total (p, n) cross section σpn = 4.8 and 4.1 mb for

the 90Zrg.s.(p, n)90NbIAS reaction at 35 and 45 MeV, respectively, which agree nicely

with the data (σexp
pn ≈ 4.8±0.5 and 4.4±0.5 mb at 35 MeV and 45 MeV, respectively)

[Doe75].
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Figure 5.7: The same as Fig. 5.5 but for the 120Sng.s.(p, n)120SbIAS and
208Pbg.s.(p, n)208BiIAS reactions [Doe75].

The CC results for the 120Sng.s.(p, n)120SbIAS and 208Pbg.s.(p, n)208BiIAS reactions

are presented in Fig. 5.7. Like the results obtained above for 48Ca and 90Zr targets,
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the use of the complex folded OMP (5.20) with a volume-shape imaginary part leads

to a wrong shape of the calculated (p, n) cross section at forward angles. The CC

description of the (p, n) data by both the folded FF and CH89 form factors is very

satisfactory when the hybrid OMP’s (which describe well the proton elastic scattering

at 40 MeV and measured total reaction cross section) are used for the entrance and

exit channels. A stronger proton-nucleus Coulomb potential seems to push the main

peak of the (p, n) cross section to the forward angles, but the measured data points

in the observable angular range still allow us to make an accurate conclusion on the

complex strength of the folded (p, n) form factor (5.22). For the two heavy targets,

the best CC fit by the folded FF is reached when its real and imaginary strengths are

scaled by NR ≈ 1.2 and NI ≈ 1 which are reasonably close to those obtained for 48Ca

and 90Zr targets.

We have used the CC description of the charge exchange Ag.s.(p, n)ÃIAS reaction

measured on 48Ca, 90Zr, 120Sn, and 208Pb targets at 35 and 45 MeV obtained with the

folded (p, n) form factor (5.22) using an averaged “global” set of NR = 1.26 ± 0.10

and NI = 0.97 ± 0.06 extracted from the Table 5.2. The results are plotted in Fig.

5.8. In this case, the hybrid OMP’s, which gives a good description of the proton

elastic scattering and measured total reaction cross section, are used for the entrance

and exit channels. One can see that the renormalized folded FF obtained with this

single set of parameters NR and NI gives a good agreement with the experimental

(p, n) data. We note that our results of the charge exchange (p, n) reaction have

been obtained using the “static” g.s. densities of the targets taken from the HFB

approach using the SLy4 interaction [Gra01]. In reality, the g.s. densities should also

include higher-order terms given, e.g., by the dynamical random phase approximation

(RPA) correlations. Such an approach for the HF g.s. densities have been used in

the folding model analysis of the same (p, n) data using the JLM interaction [Bau01],

and the RPA correlations were shown to have non-negligible effects on the calculated

(p, n) cross sections. It may also be necessary to take into account the effect of the

variation of the density from the initial nucleus to the final one, on the transition

potential [Che85]. One also notes that the same (p, n) reactions have been studied

using the original version of the effective JLM interaction by Pakou et al. [Pak01]
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Figure 5.8: CC description of the charge exchange Ag.s.(p, n)ÃIAS reaction measured
on 48Ca, 90Zr, 120Sn, and 208Pb targets at 35 and 45 MeV given by the folded (p, n)
form factor (5.22) using an averaged “global” set of NR = 1.26 ± 0.10 and NI = 0.97
± 0.06 deduced from the Table 5.2.

and Bauge et al. [Bau01]. The JLM model analysis of the proton, neutron elastic

scattering and (p, n) charge exchange reaction in Ref. [Pak01] has also shown that the

isovector part of the JLM interaction is too weak and a very strong renormalization

NR = NI ≈ 2 − 2.5 is needed. From our results obtained with the complex folded

OMP (5.20), it is very likely that such large renormalization of the folded FF has been

driven by the “volume” absorption of the JLM complex OMP used in Ref. [Pak01]. In

a more elaborate treatment of the charge exchange transition within the JLM model,

Bauge et al. [Bau01] have made the isospin coupling factor in Eq. (5.9) density

dependent, i.e.,
√

2Tz/A =
√

[ρn(r)− ρp(r)]/ρ(r), and included it into the (direct)

folding integral. The JLM nucleon OMP obtained in such a density-dependent isospin

coupling assumption has been thoroughly tested in the OM analysis of the proton,
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neutron elastic scattering and (p, n) reaction over a wide range of energies and target

masses, and one can deduce from the results shown in Fig. 1 of Ref. [Bau01] the

best-fit renormalization coefficients of the (p, n) folded form factor NR ≈ 1.5 − 1.6

and NI ≈ 1.3 − 1.4, in the energy range of 30 − 40 MeV, which are closer to our

results. Despite differences in the best-fit renormalization coefficients of the folded FF

obtained in the present work and in the JLM folding-model analyses [Pak01, Bau01],

all the results show consistently that the isovector strength of the JLM interaction

is much too weak. Since the isovector term of the JLM nucleon OMP has been

obtained as the first-order expansion of the mass operator of symmetric nuclear matter

perturbed by a neutron excess [Jeu77a], a weakness of the resulting JLM nucleon OMP

in asymmetric NM could be expected.

In conclusion of this Chapter, we have studied the charge exchange (p, n) re-

actions measured with 48Ca, 90Zr, 120Sn and 208Pb targets at the proton incident

energies of 35 and 45 MeV [Doe75] within a two-channel coupling formalism us-

ing the (p, n) form factors either calculated microscopically in the folding model

[Kho02] or determined from the empirical WS parameters of the nucleon global OMP’s

[Bec69, Var91, Kon03]. The complex isovector density-dependent of the CDM3Y6 in-

teraction, which has been constructed based on the density dependent JLM nucleon

OMP [Jeu77b] in chapter 2, was used in the present work. The results obtained with

realistic (semi-microscopic) nucleon OMP’s for the entrance and exit channels show

that the real isovector density dependence of the CDM3Y6 interaction needs to be en-

hanced by about 20−30% to give a good description of the (p, n) reaction. Therefore,

one finds that a renormalization of the isovector density dependence of the CDM3Y6

interaction by a factor of 1.3 is needed and used further in HF calculation of asym-

metric nuclear matter in Chapter 3. This version of the isovector density-dependent

CDM3Y6 interaction has been used in the coupled-channel folding analysis of the
18,20,22O(p, p′) scattering in recent work [Chi09] to extract the neutron transition ma-

trix elements Mn as well as the isoscalar and isovector deformation lengths of 2+
1

states in the Oxygen isotopes. The enhancement of the isovector deformation has

been confirmed again in Ref. [Chi09] for open-shell 18,20O nuclei which show a strong

core polarization by the valence neutrons.



Chapter 6

CONCLUSION

In this thesis, three different parts of nuclear physics have been studied using the

effective interactions:

• Nuclear matter: the properties of nuclear matter are examined using phe-

nomenological interactions, such as the Gogny ([Ber91], [Cha08]) and Skyrme

[Cha98] interactions, and the density-dependent M3Y interactions CDM3Yn

[Kho95, Kho07b] and M3Y-Pn [Nak08] within the HF approach.

• Structure of finite nuclei and neutron stars: we have calculated the prop-

erties of finite nuclei and the Wigner-Seitz cells [Neg73] in the inner crust matter

of neutron stars using the finite-range density-dependent interactions, such as

the Gogny [Ber91, Cha08] and M3Y-Pn [Nak08] forces, in HF and HF-BCS

approaches. The corresponding HF and HF-BCS codes are developed and used

in the present calculations.

• Nuclear reactions: we have studied the charge-exchange (p, n) reactions using

the folding model. In this part, the finite-range density-dependent CDM3Y6

interaction [Kho95, Kho07b] has been used in HF calculations of the nucleon-

nucleus optical potentials.

In the first part of this thesis, we have studied the nuclear matter properties using

finite-range density-dependent interactions in the framework of the self-consistent

145
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HF mean field. The motivation of the study is to establish a link between the bare

NN interaction and nuclear matter properties via the effective Brueckner G-matrix

parameterized in the M3Y form [Ana83]. Various readjustments have then to be

made to correct for the defects of the G-matrix concerning the saturation properties.

It has been known that density dependence in the effective interaction is essential in

obtaining the saturation. We have considered two different types of M3Y interactions,

the M3Y-Pn (n = 3, 4, 5) interactions where the density dependence is assumed to be

of zero range, and the CDM3Yn (n = 3, 4, 6) interactions with a finite-range density

dependence. For the sake of comparison, we have also used the SLy4 interaction as a

representative of the Skyrme family, and the D1S and D1N Gogny interactions.

We have concentrated our discussion on several main aspects, the pressure in sym-

metric nuclear matter and in neutron matter, the density dependence of the symmetry

energy S(ρ), the neutron star cooling, and the nuclear matter incompressibility. For

the symmetric NM, the main conclusion on NM pressure is that all interactions used

here are consistent with the empirical bounds on pressure set by collective flow mea-

surements in relativistic heavy ion collisions, up to ρ ∼ 0.74 fm−3 (∼ 4.5ρ0). On the

other hand, the predicted pressure curves show a wide dispersion among the differ-

ent interactions considered. For the neutron matter, the results obtained with the

CDM3Yn and SLy4 interactions agree nicely with the experimental flow data, while

those obtained with M3Y-Pn and Gogny (D1S, D1N) interactions are significantly

below the data, especially the Gogny D1S which fails badly. This result confirms

again that the D1S interaction is not suitable for the study of asymmetric NM. The

NM pressure in neutron matter has also been calculated using the latest version of

the Gogny force D1M [Gor09], and one observes that this result is better than those

of Gogny D1N force and closes to the lower limit of the region of the experimental

flow data.

For the NM symmetry energy S(ρ), while the behaviors of the results obtained

with the CDM3Yn and SLy4 interactions could be assigned to be of the Asy-stiff type

(with symmetry energy steadily increasing with density), the results obtained with the

Gogny (D1S, D1N, D1M) and M3Y-Pn interactions belong to the Asy-soft type(with

the symmetry energy reaching a maximum and then decreasing to negative values).
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One knows that the direct Urca process [Pet92, Lat91] of the neutron star cooling

can take place only if the equilibrium proton fraction xp ≥ 1/9 (this factor is entirely

determined by the nuclear symmetry energy). The values of proton fraction xp given

by the CDM3Yn interactions in the present work show that the direct Urca threshold

[Kla06] can be reached at densities around ρ ≈ 0.6 fm−3. Thus, the direct Urca process

is possible if the baryonic matter of neutron stars is described by the CDM3Yn

interactions. In contrast, the Gogny (D1S, D1N, D1M) and M3Y-Pn interactions

would lead to the indirect or modified Urca process, which has a reaction rate of 104

∼ 105 times smaller than that of the direct beta decay and the duration of the cooling

process should be much longer, because the corresponding proton fractions can never

reach the direct Urca threshold. The values of proton fractions obtained with SLy4

interaction can only approach the muon-free threshold xDU ≈ 1/9 at ρ > 0.8 fm−3.

However, a central density can exist only if the neutron star mass M ≥ 2M¯ and the

direct Urca process is, therefore, impossible in this case.

In the second part of this thesis, related to the finite systems and neutron stars,

we have presented the non-relativistic HF and HF-BCS approaches in coordinate

representation using finite-range density-dependent interactions in both the mean

field and pairing channels. A new method for solving the HF equations in coordinate

space with finite range interactions is presented. An iterative scheme is used for

solving the integro-differential HF equations via this method. This may be useful

because we can avoid the problem of the poles of the trivially equivalent local potential

of the Vautherin’s method [Vau67]. The basis expansion method is also developed,

in which the radial HF equations are solved using a spherical Bessel function basis.

We have restricted our study to spherical symmetry. The corresponding HF-BCS

Fortran codes with the two methods are made and used to study the properties of

doubly magic nuclei, the Sn isotopes and the possibility of bubble structures in 22O,
34Si, 46Ar and 68Ar nuclei using the finite-range density-dependent interactions. The

results obtained with the 22O nucleus using the D1S, D1N and M3Y-P4 interactions

within the non-relativistic HF and HF-BCS approaches show that the 22O nucleus is

a good candidate for a neutron bubble nucleus and confirm again the neutron shell

closure at N = 14 and 16 in Oxygen isotopes. The central depletion fractions F are
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27%, 22% and 40% with D1S, D1N and M3Y-P4 interactions, respectively. However,

the neutron bubble structure in 22O disappears in SLy4-HFB calculations [Gra09].

Therefore, a significant model dependence has been found in this case. In contrast, for
34Si the central depletion fractions F of the proton density are 55%, 60% and 37% with

D1S, D1N and M3Y-P4 interactions, respectively. Together with the results obtained

in Ref. [Gra09], our predictions with finite-range interactions indicate that the 34Si

nucleus is an excellent candidate for a proton bubble structure. It would be interesting

to have experimental confirmations from future elastic scattering experiments using

medium energy electron beam or by direct reactions as suggested in Ref. [Kha08]. For
46Ar nucleus, the results show that a proton bubble is not certain for this nucleus,

because the pairing correlations (using D1S and M3Y-P4 interactions) reduce the

bubble effect on the proton density. However, a hole occurs with D1N interaction

in the center of the HF-BCS proton density. In the case of 68Ar, the depletion in

the center of the nucleus vanishes due to the pairing effect with the D1S and D1N

interactions. However, the pairing effect cannot prevent a proton bubble with M3Y-

P4 interaction. One knows that the possibility of an inversion between the 2s1/2

and 1d3/2 proton states can increase when going to the neutron-rich nuclei in Argon

isotopes. Therefore, some isotopes more neutron-rich than 46Ar should exhibit a

bubble, such as 68Ar.

For the first time we have studied the properties of the WS cells in the inner crust

matter of neutron star using the finite-range density dependent interactions in HF

and HF-BCS approaches. The calculations are performed with 11 representative WS

cells by imposing Dirichlet-Neumann boundary conditions [Neg73] at the edge of the

cell and using the finite-range density-dependent D1S and M3Y-P4 interactions in

both mean field and pairing channels. Since it is not yet completely established what

are the pairing properties of neutron matter, we have also used the density-dependent

delta force for the pairing interaction. The parameters of this force have been fixed

to reproduce the pairing properties of infinite neutron matter given by microscopic

calculations which take into account polarization effects [San04a, Wam93]. For the

HF-BCS calculations using the delta force in the pairing channel, the D1S interaction

has been used in the mean field channel. With four different pairing interactions (D1S,
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D1N, M3Y-Pn and delta forces) the main features of the WS cell can be observed in

our calculations. It is found that the behaviour of the proton and neutron density

distributions are very similar with the three kinds of pairing interactions in the low

density region ρ ∼ 2.79 × 10−4 fm−3 → 5.77 × 10−3 fm−3. One can conclude that

the pairing effect is very small in this region. In the high density region, the pairing

effect can make an extended “surface” for the neutron density distribution in the cell

before they reach a constant density around the outer edge of the cell. However, one

cannot obtain the constant neutron gas densities in the cell 982Ge with a finite-range

density-dependent interaction. This cell corresponds to the highest-density ρ = 7.89

× 10−2 fm−3, and it seems not to belong to the spherical case as assumed in our

study. In all the cells we observe that the density distribution of the nuclear cluster

obtained with the case of M3Y-P4 interaction is a little smaller than those obtained

with the case of D1S and D1N interactions. This effect may come from the difference

of the ranges and the values of pairing gaps in infinite matter given by the two kinds

of effective interactions.

The last part of this thesis deals with the nuclear reactions. A consistent coupled-

channel analysis of the charge exchange (p, n) reactions to the isobaric analog states

of the ground states of 48Ca, 90Zr, 120Sn and 208Pb targets at the proton incident

energies of 35 and 45 MeV has been done using the (p, n) form factors either calculated

microscopically in the folding model [Kho02, Kho07b] or determined from the existing

nucleon global OMP’s [Bec69, Var91, Kon03]. Although the isospin dependence of

the CH89 global OMP [Var91] has been established based only on the OM studies

of the elastic proton and neutron scatterings, it can be used to determine the charge

exchange form factor for the (p, n) transition to IAS. This CH89 form factor was shown

to account quite well for the (p, n) data if the parameters of the proton OMP are fine

tuned to reproduce the measured elastic proton scattering and total reaction cross

sections σR. The complex isovector density dependence of the CDM3Y6 interaction

which is carefully parameterized based on the density dependent JLM nucleon OMP

[Jeu77b] has been used in the folding model analysis of the (p, n) reaction. Our results

show that the isovector strength of the JLM interaction is quite weak to account for

the observed (p, n) transitions. The coupled-channel results obtained with realistic
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(semi-microscopic) nucleon OMP’s for the entrance and exit channels have shown

that the real isovector density dependence needs to be enhanced by about 20− 30%

to give a good description of the (p, n) reaction. Therefore, the real isovector density

dependence of the CDM3Y6 interaction has also been constructed based on the JLM

nucleon OMP at energy approaching zero and scaled by a factor 1.3 for further use

in the HF calculations of asymmetric nuclear matter which are already discussed in

the previous part.

From the ensemble of results obtained in this thesis one can see that the M3Y-

Pn (or Gogny) interactions have been carefully parametrized [Nak08] not only to

reproduce the saturation properties of symmetric NM like the parameter choice for

the CDM3Yn interactions [Kho95], but also to give a good description of the ground

state (g.s.) shell structure of magic nuclei. However, we have found by performing

spherical HF calculations that the CDM3Yn interactions give a worse description of

the g.s. properties of light- and medium mass nuclei with neutron excess compared

with the Gogny or M3Y-Pn interactions. Furthermore, the M3Y-Pn interactions have

not been much used in folding model analyses of nucleon-nucleus and nucleus-nucleus

scattering. Therefore, we plan to improve the G-matrix based interactions in two

directions. First, we will readjust the parameters of the CDM3Yn to consistently

reproduce the NM saturation properties and g.s. bulk properties of double-closed

shell nuclei as well as unstable nuclei. Second, we will apply the M3Y-Pn interactions

into the folding model to calculate the nucleon-nucleus and nucleus-nucleus optical

model potentials. This would allow one to study both nuclear structure and reaction

problems self-consistently with the same starting effective interaction which is itself

based on a G-matrix approach. Work in these directions is in progress.



Appendix A

A.1 The contributions of the finite range central

interaction

The single-particle wave functions ϕi(~r, σ, q) of Eq. (4.27) are

ϕi(~r, σ, q) =
uα(r)

r
Yljm(r̂, σ)χq(τ), (A.1)

where

Yljm(r̂, σ) =
∑
mlms

< l
1

2
mlms|jm > Ylml

(r̂)χms(σ).

We use the notation:

|i >≡ Yljm(r̂, σ)χq(τ).

Using Wigner-Eckart’s theorem, we calculate the matrix element of the direct
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term

〈
ij|V (C)(|r1 − r2|)|ij

〉
= 4π

∑
µSLMJ

2∑
ν=1

Aν(S)(−1)L+S+J+Mvν
L(r1, r2)×

× 〈
liji|T (SL)J |liji

〉 〈
ljjj|T (SL)J |ljjj

〉

= 4π
∑

µSLMJ

2∑
ν=1

Aν(S)(−1)L+S+Jvν
L(r1, r2)×

× (−)ji+jj−mi−mj+M

(
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jj
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× 〈
liji‖T (SL)J‖liji

〉 〈
ljjj‖T (SL)J‖ljjj

〉

=
∑

SLMJ

2∑
ν=1

Aν(S)(−1)L+S+J+Mvν
L(r1, r2)ĵi

2
ĵj

2
δLJδM0δS0δL0δµ0

=
2∑

ν=1

(
Wν +

Bν

2
−Hνδqiqj

− Mν

2
δqiqj

)
vν

0 (r1, r2)ĵi
2
ĵj

2
, (A.2)

where ĵ = (2j + 1)1/2 and the reduced matrix element is

〈
liji‖T (SL)J‖ljjj

〉
= (−)li

√
2√
4π

ŜL̂Ĵ l̂il̂j ĵiĵj

(
li
0

lj
0

L

0

)




ji jj J

li lj L
1
2

1
2

S





(A.3)

we can obtain the direct potential (Hartree potential) UH
i (r1) which is presented in

Eq. (4.30).
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The matrix element of the exchange term is

〈
ij|V (C)(|r1 − r2|)|ji

〉
= 4π

∑
SLJµ

2∑
ν=1

Aν(S)(−1)L+S+Jvν
L(r1, r2)

×(−1)ji+jj−mi−mj+M

(
ji

−mi

J

µ

jj

mj

) (
jj

−mj

J

−µ

ji

mi

)

× 〈
liji‖T (SL)J‖ljjj

〉 〈
ljjj‖T (SL)J‖liji

〉

= 4π
∑
SLJµ

2∑
ν=1

Aν(S)(−1)L+S+Jvν
L(r1, r2)

×(−1)ji+jj−mi−mj+M

(
ji

mi

jj

−mj

J

−µ

)(
ji

mi

jj

−mj

J

−µ

)
×

×(−1)ji−jj+L+S+J | 〈liji‖T (SL)J‖ljjj

〉 |2

= 4π
∑

ijSLJ

2∑
ν=1

Aν(S)Ĵ−2vν
L(r1, r2)|

〈
liji‖T (SL)J‖ljjj

〉 |2, (A.4)

where we use the relation

〈
ljjj‖T (SL)J‖liji

〉
= (−1)ji−jj+L+S+J

〈
liji‖T (SL)J‖ljjj

〉

and

Aν(S = 0) = Wνδqiqj
−Hν +

Bνδqiqj
−Mν

2
; Aν(S = 1) =

Bνδqiqj
−Mν

2
. (A.5)

From the Eq. (A.3) we have

| < liji||T (0L)L||ljjj > |2 =
1

4π
l̂i

2
l̂j

2
ĵi

2
ĵj

2
L̂2

(
li
0

lj
0

L

0

)2 {
li
jj

ji

lj

1/2

L

}2

∑
S,J

| < liji||T (SL)J ||ljjj > |2 =
2

4π
ĵi

2
ĵj

2
Ĵ2

(
li
0

lj
0

L

0

)2

(A.6)

Then we can obtain the exchange potential (Fock potential) UF
i (r1, r2) which is pre-

sented in Eq. (4.31).
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A.2 Numerov method for solving the HF equa-

tions

The Numerov method can be used for a precise integration of second-order differential

equations. Here, we give some details pertaining to its application to the HF equations

(4.38). The radial coordinate r is represented by a mesh of points with a constant

spacing h: rn = nh, with n ∈ {0, 1, 2, ..., N}. For any quantity F (r) approximated on

the mesh we use the notation Fn ≡ F (rn). Let y(r) be the solution of the differential

equation,

ay′′ + by′ + cy = 0 (A.7)

If we set y′ = s, the above second order differential equation becomes two coupled

differential equations of the first order:

{
y′ = s

s′ = F (y, s, r)
(A.8)

The Numerov algorithm is based on the fourth-order Runge-Kutta formula with a

step h,

k1 = h× F (yn, sn, rn)

l1 = h× sn

k2 = h× F (yn +
1

2
l1, sn +

1

2
k1, rn +

h

2
)

l2 = h× (sn +
1

2
k1)

k3 = h× F (yn +
1

2
l2, sn +

1

2
k2, rn +

h

2
)

l3 = h× (sn +
1

2
k2)

k4 = h× F (yn +
1

2
l3, sn +

1

2
k3, rn +

h

2
)

l4 = h× (sn +
1

2
k3)
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sn+1 = sn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(h5)

yn+1 = yn +
l1

6
+

l2

3
+

l3

3
+

l4

6
+ O(h5) (A.9)

where O(h5) means that the error in this relation is of the order h5.

The eigen-energies are found by integrating two linearly dependent solutions,

y(1+)(r) and s(1+)(r) (first derivative of the wave function y(1+)(r)), from the ori-

gin to a given point rm, called the matching point. These two solutions are selected

by imposing that the wave function vanishes near the origin as

y(1+) ∼ rl+1, s(1+) ∼ (l + 1)rl, for r → 0, (A.10)

whereby we have

y
(1+)
0 = 0 (A.11)

and

y
(1+)
1 = Ahl+1, s

(1+)
1 = A(l + 1)hl. (A.12)

Next, another two linearly dependent solutions, y(1−)(r) and s(1−)(r), are found by

backward integration from the wall of the box Rbox ≡ rN to rm; again imposing that

the wave function vanishes near rN for the Dirichlet boundary conditions

y
(1−)
N = 0, s

(1−)
N = B, (A.13)

or the first derivatives of the wave function vanishes near rN for the Neumann bound-

ary conditions.

y
(1−)
N = B, s

(1−)
N = 0. (A.14)

The eigenenergies are found by requiring that the solutions y
(1+)
m and y

(1−)
m have the

same values, and the first derivatives are continuous at r = rm. This matching

condition reads as, ∣∣∣∣∣
y

(1+)
m

s
(1+)
m

y
(1−)
m

s
(1−)
m

∣∣∣∣∣ = 0. (A.15)

The eigen-energies and the HF wave function are found when the matching condition
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reach to the zero of the determinant of the 2× 2 matrix and the number of nodes in

that state is correct. This means that one starts from 2 trial values of eigen-energy,

ε> and ε<, which give opposite signs for the determinant (A.15), then one knows that

the exact value ε is between ε> and ε<, and by bi-partition one makes the intervel

[ε>, ε<] smaller and smaller.

A.3 Time-reversed states

Let us represent by A a state given by the following quantum numbers

A = (a,ma) = (nalaja,ma) (A.16)

We consider here only ground state phenomena, and therefore, we use only time-even

variational independent-quasiparticle wave functions. The time-reversal operator can

be represented as a product of the Pauli matrix σ̂y and the complex conjugation

operator:

T̂ = −iσ̂yK̂ (A.17)

Where σ̂y =
(

0
i

−i
0

)

We rewrite the single-particle wave function ϕ(r, σ, q) of Eq. (A.1) in the following

form:

ϕA = Rlaja(r)Ylajama

= Rlaja(r)(−1)la− 1
2
+ma ĵa

(
la
µa

1
2

sa

ja

−ma

)
Ylaµaχ 1

2
(sa) (A.18)

We have

T̂ϕA = ϕĀ

= Rlaja(r)(−i)(−1)la− 1
2
+ma ĵa

(
la
µa

1
2

sa

ja

−ma

)
Ylaµa(−1)µAYla−µa [σ̂yχ 1

2
(sa)].

(A.19)
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Using (
0

i

−i

0

)(
1

0

)
=

(
0

i

)
= (−1)

1
2
−sai

(
0

1

)
for sa = +

1

2

and (
0

i

−i

0

)(
0

1

)
=

(−i

0

)
= (−1)

1
2
−sai

(
1

0

)
for sa = −1

2

One obtains, [σ̂yχ 1
2
(sa)] = (−1)

1
2
−saiχ 1

2
(−sa)

The time-reversed state is:

ϕĀ = (−1)la+ja−maϕa,−ma (A.20)

A.4 Gap equation with angular momentum cou-

pling

We can rewrite Eq. (4.66) in the following form (see Eq. (6.50) of Ref. [Rin80]):

∆A = −1

2

∑

bmb

< AĀ|Vp|BB̄ − B̄B > uBvB (A.21)

where Vp is the pairing interaction.

Using the definition (A.20) of the time-reversed states and the fact that ∆A = ∆a

is independent of ma, have

∆a = −1

2
ĵa
−2 ∑

bmamb

< AĀ|Vp|BB̄ − B̄B > ubvb

= −1

2
ĵa
−2 ∑

bmamb

ubvb(−1)la+ja−ma(−1)lb+jb−mb

[∑
JM

Ĵ2

(
ja

ma

ja

−ma

J

−M

)

×
(

jb

mb

jb

−mb

J

−M

)
GJ(aabb)

−
∑
JM

Ĵ2

(
ja

ma

ja

−ma

J

−M

)(
jb

−mb

jb

mb

J

−M

)
GJ(aabb)

]
(A.22)

where GJ(aabb) is the pairing matrix element.
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Using the relation

(−1)ja−ma = ĵa

(
ja

ma

ja

−ma

0

0

)

we obtain

∑
ma

(−1)ja−ma

(
ja

ma

ja

−ma

J

−M

)
= ĵa

(
ja

ma

ja

−ma

0

0

)(
ja

ma

ja

−ma

J

−M

)

= ĵaδJ0δM0. (A.23)

The other terms are similarly calculated. The gap equation with angular momentum

coupling becomes:

∆a = −
∑

b

(−1)la+lb ĵa
−1

ĵbG0(aabb)ubvb. (A.24)

Then, the gap equation (4.68) can be rewritten in the following form:

∆a = −1

2

∑

b

(−1)la+lb ĵa
−1

ĵbG0(aabb).
∆b√

(εb − λ)2 + ∆2
b

(A.25)

Here

G0(aabb) =< aa|Vp|bb >00 (A.26)

is the J = 0 coupled matrix element. We will show how to calculate this coupled

matrix element using delta interactions or the finite range interactions in the next

sections.

A.5 Pairing matrix element

The coupled matrix element of the pairing interaction Vp(1, 2) is:

< ac|Vp(1, 2)|bd >JM=
∑

allm

< jajcmamc|JM >< jbjdmbmd|JM >< AC|Vp(1, 2)|BD >

(A.27)
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Here, < AC|Vp(1, 2)|BD > is the uncoupled matrix element.

A.5.1 Particle-particle matrix elements with a finite-range

interaction

We first take for Vp(1, 2) a Gogny interaction which contains a sum of two gaus-

sians, a zero-range density-dependent part and a zero-range spin-orbit part. Within

the parametrisation D1S (D1N) that we adopt in this work the zero-range density-

dependent part does not contribute. Since the contribution of the spin-orbit part is

quite small, we neglect it in this work.

We use the central part V (C)(1, 2) of Eq. (2.26) to calculate matrix elements

between neutrons or between protons. Thus, the operator P τ can be replace by 1.

For the operator P σ, we write Pσ = 1+σ1.σ2
2

, and obtain:

Vp(1, 2) =
2∑

ν=1

(Aν(0) + Aν(1)σ1σ2)Vν(1, 2), (A.28)

where

Aν(0) = Wν −Hν +
Bν −Mν

2
, Aν(1) =

Bν −Mν

2
.

We use the multipole decomposition (4.18) for Gaussian functions and the tensor

T
(SL)K
(µ) of Eq. (4.23) to calculate the uncoupled matrix element as

< AC|Vp(1, 2)|BD > =
∑

νLSKM

(−1)L+S+K+MAν(S)

×
∫

dr1dr2v
ν
L(r1, r2)Ra(r1)Rb(r1)Rc(r2)Rd(r2)

× < YA|T (SL)K
(1) |YB >< YC |T (SL)K

(2) |YD > (A.29)
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Using the Wigner-Eckart theorem, we have

< YA|T (SL)K
(1) |YB >< YC |T (SL)K

(2) |YD >= (−1)ja+jc−ma−mb+q

(
ja

−ma

K

q

jb

mb

)

×
(

jc

−mb

K

−q

jd

md

)
< Ya‖T (SL)K

(1) ‖Yb >< Yc‖T (SL)K
(2) ‖Yd >

(A.30)

where the reduced matrix element < Ya‖T (SL)K‖Yb > is given by Eq. (A.3).

We now can rewrite the coupled matrix element in Eq. A.27 as,

< ac|Vp(1, 2)|bd >JM =
∑

νLSK

(−1)PAν(S)

∫
dr1dr2v

ν
L(r1, r2)

× Ra(r1)Rb(r1)Rc(r2)Rd(r2)

×
(

ja

ma

jc

mc

J

−M

)(
jb

mb

jd

md

J

−M

)

×
(

ja

−ma

K

q

jb

mb

)(
jc

−mc

K

−q

jd

md

)

× Ĵ2 < Ya‖T (SL)K
(1) ‖Yb >< Yc‖T (SL)K

(2) ‖Yd >

(A.31)

with the total phase P = (−1)(L+S+K+q)+(ja−jc+M)+(jb−jd+M)+(ja−ma+jc−mc). Then, we

can re-express all the above 3j symbols and the phase (−1)P in the following form

[Bri93]:

(−1)P

(
ja

ma

jc

mc

J

−M

) (
jb

mb

jd

md

J

−M

)(
ja

−ma

K

q

jb

mb

)

×
(

jc

−mc

K

−q

jd

md

)
= (−1)L+S+K+J+jc+jb Ĵ−2

{
jd

ja

jb

jc

J

K

}
(A.32)
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Thus, the coupled matrix element in Eq. (A.31) can be obtained as

< ac|Vp(1, 2)|bd >JM=

∫
r2
1dr1r

2
2dr2

∑
νLSK

(−1)PAν(S)vν
L(r1, r2)

×Ra(r1)Rb(r1)Rc(r2)Rd(r2)

×
{

jd

ja

jb

jc

J

K

}
< Ya‖T (SL)K

(1) ‖Yb >< Yc‖T (SL)K
(2) ‖Yd >

(A.33)

Here the total phase is P = L + S + K + J + jb + jc. This coupled matrix element

can be further simplified for the pairing matrix elements < aa|Vp(1, 2)|bb >00 as,

< aa|Vp(1, 2)|bb >00 = ĵa
−1

ĵb
−1

∫
r2
1dr1r

2
2dr2

∑
νLSK

Aν(S)vν
L(r1, r2)

× Ra(r1)Rb(r1)Rc(r2)Rd(r2)

× (−1)L+S| < Ya‖T (SL)K‖Yb > |2 (A.34)

A.5.2 Particle-particle matrix elements with a delta interac-

tion

The density-dependent delta interaction will be taken in the following form:

Vp(1, 2) = V0

(
1− η

(
ρ(r12)

ρ0

)α)
δ(r1 − r2) (A.35)

The delta function is expanded on the basis of spherical harmonics:

δ(r1 − r2) =
δ(r1 − r2)

r1r2

∑
Lµ

(−1)µY µ
L (1)Y −µ

L (2) (A.36)

The calculation of the coupled matrix element follows a similar to that of subsection

B.3.1. The result is much simpler. The pairing matrix element is:

< aa|Vp(1, 2)|bb >00=
1

2
(−1)la+lb

ĵaĵb

4π
Iaabb (A.37)
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where

Iaabb = V0

∫ (
1− η

(
ρ(r)

ρ0

)α)
R2

a(r)R
2
b(r)dr. (A.38)
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