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CHAPTER 1

INTRODUCTION

Please make your mind to imagine such a scenario: when you have completed
the day’s work, you are ready to go back home. How do you go home? Perhaps
you will answer: “Just walk back home.”. However, the problem is not as simple
as you think. Before and during you go home, you must solve three problems.
Firstly, you must know where you are; then, you must know where your home is;
finally, you should plan a route to go home. For human beings, the abilities to
solve these problems are part of our instinct. Sometimes, it is so simple that we
ignore the existence of this talent. However, if robots are to achieve human-like
autonomy, they must possess these capabilities. It is not an easy task to make
robots have such capabilities. Because of this, Leonard et al. summarize the
problem of autonomous navigation into answering three questions [Leonard91].

e Where am I? This question is related to how to find out the whereabouts of
a robot in a given environment, which is known as localization. Localization
is defined as the problem of determining the pose of a robot given a map of
the environment and sensors data [Burgard97c, Fox98a, Fox99b]. Usually, the
mobile robot pose comprises its x — y coordinates and its orientation.

¢ Where am I going? and How should I get there? These two ques-
tions point out how to specify a goal and how to plan a path to achieve
this goal. In mobile robotics, they are often involved in goal recognition,
obstacle avoidance [Cacitti0l, Zapata04, Zapata05|, path planning and follow-
ing [Lapierre07a, Lapierre07b] and motion planning [Fort-Piat97, Laumond98],
etc.

Thus, effective localization is a fundamental prerequisite for achieving au-
tonomous mobile robot navigation. This thesis focuses on finding out a robust
and reliable localization approach, which is also required to answer the remaining
two questions.

1.1 LOCALIZATION PROBLEMS

According to the type of knowledge that is available initially and at run-time
and the difficulty of finding a solution, localization problem can be divided into



2 1.1. LOCALIZATION PROBLEMS

three sub-problems: position tracking, global localization and the kidnapped robot
problem [Cox90, Roumeliotis00, Thrun00a, Thrun05].

e Position tracking assumes that the robot knows its initial pose [Schiele94,
Weiss94]. During its motions, the robot can keep track of its movement to
maintain a precise estimate of its pose by accommodating the relatively small
noise in a known environment.

e More challenging is the global localization problem [Thrun00a, Milstein02]. In
this case, the robot does not know its initial pose, thus it has to determine its
pose in the following process only with control data and sensors data. Once the
robot determines its global position, the process continues as a position tracking
problem. To solve the initial localization problem, Jaulin et al. propose a
guaranteed Outlier Minimal Number Estimator (OMNE), which is based on
set inversion via interval analysis [Jaulin02]. They apply this algorithm to the
initial localization of an actual robot in a partially known 2D environment.

e The kidnapped robot problem appears when a well-localized robot is teleported
to some other place without being told [Thrun00a, Thrun00b, Thrun05]. Robot
kidnapping can be caused by many factors. Generally, we summarize the kid-
napped robot problem into two categories: real kidnapping and localization
failures.

— The first one occurs when the robot is really kidnapped. For example,
someone takes the robot to other place; or an accident causes the robot to
drastically drift.

— Localization failures can make the robot think itself to be kidnapped. For
example, when the robot moves into a incomplete part of the map, unmod-
eled objects can cause the robot to think that it is kidnapped. It can also
bring about kidnapping when the crowd passes next to the robot. There are
many other reasons that can lead to localization failures, such as mechanical
failures, sensor faults and wheel slip [Stéphant04, Stéphant07].

In practice, real kidnapping is rare; however kidnapping is often used to test the
ability of a localization algorithm to recover from global localization failures.
This problem is the hardest of the three localization sub-problems. Difficulties
come from two sources: one is how to determine the occurrence of kidnapping;
the other is how to recover from kidnapping. To some extent, to recover from
kidnapping can be considered as estimating globally the robot’s pose once again
if the robot finds the occurrence of kidnapping.

Another classification is based on the number of robots involved in localization.
Localization problems can be classified into single-robot localization and multi-
robot localization.
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e Single-robot localization is the most fundamental localization problem, in which
just a single robot is involved. Sometimes, several robots independent localiza-
tion is also considered as single-robot localization, since there is no cooperation
among them. The main advantage of single-robot localization lies in its sim-
plicity as it need not consider the issues such as communication, data exchange
and data fusion.

e Multi-Robot Localization emphasizes cooperative localization and allows robots
to exchange and share information through communication. Exchanging posi-
tion information in teams of robots can increase the robustness and efficiency of
the localization algorithm. Sharing sensor information among multiple robots
can lower the costs of the entire system. Sharing information among different
sensor platforms among multiple robots can make robot teams be able to adapt
to a more complex environment.

Localization problems suppose that the robot is given a pre-known map. In
other words, localization problems always arise in known environments. However,
the work space of a robot is not only limited to the known environment. The
robot should be capable of working in an unacquainted environment, too. When
the robot navigates in the strange place, it should have the ability to acquire
a map of its environment while simultaneously localizing itself relative to this
map [Choset01, Dissanayake01, Thrun05, Howard06]. This problem is known as
the Simultaneous Localization And Mapping problem, abbreviated as SLAM. It is
also called Concurrent Mapping and Localization (CML). This dissertation does
not involve the SLAM problem, however to solve the SLAM problem efficiently
will be considered as future works of this thesis.

1.2 LOCALIZATION APPROACHES

Since effective localization is the basis of achieving other tasks, considerable re-
search effort has been directed to this problem and a variety of approaches have
been devised to solve this problem.

Existing localization techniques for mobile robots can be roughly classified
into two categories: relative localization, including dead-reckoning methods, and
absolute localization, including active beacons, landmarks and map-based posi-
tioning [Borenstein96, Zhou07]. Most implementations of these approaches are
based on deterministic forms; however a robot’s world is filled with uncertainties.
Uncertainties can be summarized as following aspects [Thrun05].

e The robot’s environments are unpredictable.
e The robot’s hardware is subject to noise.
e The robot’s software is approximate.

To deal with so many uncertainties, probabilistic approaches are undoubtedly
promising candidates to provide a comprehensive and real-time solution of the
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mobile robot localization problem. Instead of calculating a single pose of the robot,
probabilistic localization represents the robot’s pose by probability distributions
over a whole state space. Among probabilistic localization approaches, Markov
localization based on the Bayes filter is the most popular one [Thrun05]. In the
Markov localization framework, the localization problem is described as estimating
a posterior belief of the robot’s pose at present moment conditioned on the whole
history of available data and a given map. It can be stated in equation as follows:

bel(st) = p (st |04, wre, M) (1.1)

where s; is robot’s pose at time ¢, which is composed by its two-dimensional
planar coordinates and its orientation. The belief function bel(s;) represents the
density of probability of the pose s;. The term zy; represents all the exteroceptive
measurements from time 7 = 0 to 7 = ¢; uy,; represents control data from time
7 =1to 7 =t and m denotes the given map.

Markov localization addresses the position tracking problem, the global local-
ization problem and the kidnapped robot problem in static environments [Thrun05].
Extended Kalman Filter (EKF) localization, grid localization and Monte Carlo lo-
calization (MCL) are three most common Markov localization algorithms. EKF
localization focuses on solving the position tracking problem [Kalman60, Grewal93,
Gasparri06]. Grid localization and MCL can deal with both the position tracking
problem and the global localization problem [Burgard96, Burgard97b, Dellaert99,
Fox99a, Thrun00c, Thrun05]. In order to solve the kidnapped robot problem,
some improved MCL algorithms are proposed, such as the Augmented_MCL algo-
rithm [Thrun05] and the Mixture MCL algorithm [Thrun00d, Thrun00b, Thrun05].

Another interesting localization approach based on interval analysis is proposed
in [Kieffer00,Jaulin01,Seignez06, Jaulin09], which is also robust to accommodate all
sources of uncertainty listed above. Interval analysis has been applied to Bayesian
estimation [Jaulin06], which may provide an inspiration to integrate the two the-
ories for solving localization problems.

1.3 OBJECTIVE

The objective of this dissertation is to find out a general solution for the position
tracking problem, the global localization problem and the kidnapped robot prob-
lem by using simple range finders. Moreover, this algorithm should be capable
of being implemented to both single-robot and multi-robot systems. Thus, this
thesis presents four contributions, which are summarized as follows.

e We devise a simulator that has ability to drive both the simulated robot and the
real robot. EKF localization, grid localization and MCL are studied intuitively
through simulations and extensive simulation results are given in this thesis.
Through analyzing and comparing simulation results, we discuss advantages
and disadvantages of each algorithm.

e In order to solve all three localization problems, we propose an improved
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Monte Carlo localization algorithm with self-adaptive samples, named as Self-
Adaptive Monte Carlo Localization (SAMCL). This algorithm employs a pre-
caching technique to reduce the on-line computational burden. Thrun et al.
[Thrun05] use this technique to reduce costs of computing for beam-based
models in the ray casting operation. Our pre-caching technique decomposes
the state space into two types of grids. The first one is a three-dimensional
grid that includes the planar coordinates and the orientation of the robot, de-
noted as Gsp. It is used to reduce the on-line computational burden of MCL.
The second grid is a two dimensional “energy” grid, denoted as G'g. It is used
to calculate the Similar Energy Region (SER) which is a subset of Gg. Its
elements are these grid cells whose energy is similar to robot’s energy. SER
provides potential information of robot’s position; thus, sampling in SER is
more efficient than sampling randomly in the whole map. Finally, SAMCL can
solve position tracking, global localization and the kidnapped robot problem
together thanks to self-adaptive samples. Self-adaptive samples in this thesis
are different from the KLD-Sampling algorithm proposed in [Fox03a, Thrun05].
The KLD-Sampling algorithm employs the sample set that has an adaptive size
to increase the efficiency of particle filters. Our self-adaptive sample set has a
fixed size, thus it does not lead to the expansion of the particle set. This sample
set can automatically divide itself into a global sample set and a local sample
set according to different situations, such as when the robot is kidnapped or
fails to localize globally. Local samples are used to track the robot’s pose, while
global samples are distributed in SER and used to find the new position of the
robot.

e The SAMCL algorithm is extended to handle the multi-robot localization prob-
lem through a Position Mapping (PM) algorithm. This algorithm reduces fur-
thest the communication delay and the computational complexity, since it only
synchronizes one location and one belief instead of information of the whole
particle set from every other robot. That allows one robot to cooperate with
multiple robots at the same time rather than one robot.

e The SAMCL algorithm is tested on a Pioneer 3-DX mobile robot only equipped
with sixteen ultrasonic range finders in a real office environment. The validity
and the efficiency of the algorithm are demonstrated by experiments carried
out with different intentions. Extensive experiment results and comparisons
are also given in this thesis.

1.4 THESIS OUTLINE

Overall, the organization of this dissertation can be summarized into two parts.
Part 1, including Chapter 2 and 3, presents foundations of Markov localization.
Part 2, including Chapter 4 to 7, introduces the main contributions of this thesis.

Chapter 2 addresses motion models, perception models and maps, the three
important known components for solving localization problems. We establish both
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deterministic models and probabilistic models for robot motion and robot percep-
tion, respectively. Moreover, we introduce two representations of maps: geometric
maps and topological maps. These models will be implemented to concrete local-
ization algorithms.

Chapter 3 starts with a review of the basic theory of Bayes filters, and then we
introduce the Markov localization algorithm based on them. Finally, we present
respectively three concrete localization algorithms: EKF localization, grid local-
ization and MCL.

In Chapter 4, we start with the description of the simulator. Then EKF local-
ization, grid localization and MCL are tested by simulations. Tests are executed
along with two directions: position tracking and global localization. Simulation re-
sults are analyzed and compared, in order to study advantages and disadvantages
of each algorithm.

Chapter 5 presents the Self-Adaptive Monte Carlo Localization (SAMCL) al-
gorithm. We first describe the theory of the SAMCL algorithm, and then it is
evaluated by simulations. The SAMCL algorithm provides a general solution for
the position tracking problem, the global localization problem and the kidnapped
robot problem, thus simulations focus on testing its performance of solving the
three problems. Moreover, computational efficiency of SAMCL and regular MCL
are compared by simulations.

Chapter 6 discusses the multi-robot localization problem. This problem can
be solved by the Position Mapping (PM) algorithm, which can be integrated into
the SAMCL algorithm as an extension. The validity and the efficiency of the PM
algorithm are tested by simulations carried out on two individual computers, which
can communicate by wireless network (WiFi).

In Chapter 7, we address the implementation issues. In order to demonstrate
the validity and the efficiency of the SAMCL algorithm, we test it with a Pioneer
3-DX mobile robot at the first floor of our laboratory. Moreover, we compare
sampling in SER with sampling randomly in the capability of recovering from
kidnapping.

Finally, we conclude with a summary of our work and suggest future extensions
in Chapter 8.
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2.1 INTRODUCTION

This chapter describes the three known components for solving the localization
problem: motion models, perception models and maps. Motion models describe
the robot’s state transitions, which specify how a robot changes from one pose to
another pose under motion controls. Our exposition focuses on Wheeled Mobile
Robots (WMRs) kinematics for robots operating in a planar environment. Per-
ception models are as important as motion models in the mobile robot localization
problem. They describe the formation process by which sensor measurements are
generated in the physical world [Thrun05]. In order to express the process of
generating measurements, a specification of the environment is necessary. Maps
provide a concrete or abstract description of the physical world. Both deterministic
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models and probabilistic models are introduced for motion models and perception
models. Generally, probabilistic models are generated by adding noise variables to
deterministic forms. The probabilistic models are provided for implementing the
filter algorithm that will be described in the following chapters.

2.2 MOTION MODELS

Robot kinematics is the central topic of this section. Here, we will introduce the
deterministic form and the probabilistic form, respectively. The probabilistic form
is derived from the deterministic form. Our works exclusively address in Wheeled
Mobile Robots (WMRs). Other systems such as legged robots, are not covered in
this section.

2.2.1 Deterministic motion models

In this section we introduce the deterministic form of motion models. For the
deterministic form, we assume that all the motion controls are error-free.

2.2.1.1 Representing robot pose

A WMR is modeled as a planar rigid body that rides on an arbitrary number of
wheels [Cox90, Siegwart04, Solutions07]. The total dimensionality of the WMR on
the plane is summarized by three variables, referred to as a pose (or position).
These three variables are the two-dimensional planar coordinates and the angular
orientation relative to a global coordinate frame (see Figure 2.1). The former is
denoted as x and y and the latter as #. Thus, the pose of a robot is described by
the following vector. Note the use of the subscript G to clarify this pose in the
global reference frame.

x
sa=1 vy (2.1)
0

Specially, pose without orientation will be called location [Thrun05]. The lo-
cation of a robot is described by two-dimensional vectors. The concept of location
will be used in the following chapter to distinguish from the concept of pose.

o= (1) 22)

Robot motion can be described as the robot’s pose transition according to its
control data (see Figure 2.2). This process is modeled as:

s¢ = fug, $¢-1) (2.3)

where s;_1 and s; denote the robot’s pose at time ¢t — 1 and ¢, and u; denotes the
motion control executed on s;_;. Control data are often obtained from velocity
commands or extracted from odometry. Thus, we introduce robot motion in two
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(0.0)
Figure 2.1: A robot’s pose shown in the global reference frame.

motion models: velocity motion model and odometry motion model. In practice,
odometry models tend to be more accurate than velocity models [Thrun05]. How-
ever, odometry is only available in retrospect, after the robot moved. It cannot
be used for these planning algorithms that have to predict the effects of motion.
Therefore, odometry models are usually applied for estimation, whereas velocity
models are used for motion planning [Thrun05].

y

{0,0) X

Figure 2.2: The robot’s pose transition shown in the deterministic form.

2.2.1.2 Velocity motion model

The velocity motion model assumes that we can control a robot through two
velocities, a translational and a rotational velocity [Thrun05]. The translational
velocity at time ¢ is denoted as v;, and the rotational velocity is denoted as wy.
Hence, the control vector u; at time ¢ is given by:

w = < ZZ ) (2.4)
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Thrun et al. present a kinematic model of WMRs. The detail derivation of
this expression is shown in [Thrun05].

4 Ti_1 —Z—isin(@t_l) + z—ism(ﬁt_l + wi At)
Yo | = Y1 |+ 2ecos(0p-1) — 2tcos(0-1 + wiAl) (2.5)
0, 01 wi At

where At is a fixed small enough sampling interval.
In [Laumond98], an alternative continuous kinematic model is introduced,
which is small-time controllable from everywhere.

@ cos(6) 0
y | =1 sin@ |v,+]| 0 |w (2.6)
0 0 1

where (i,7,0)7 describes an instantaneous state of the robot. Thus a successor
pose s; = (x4, 9, 0;)7 according to the predecessor pose s; 1 = (T4_1,ys—1,0i1)"
in a small enough sampling time At € (¢t — 1,¢] can be calculated as:

Tt Ti—1 T
Yt = Yt—1 + y At (27)
0, 01 0

This equation is a first-order approximation of the continuous model (Equation

2.6).
In fact, not all WMR systems are able to impose control on the translational
velocity and the rotational velocity directly, hence some control transforms are

necessary. Let us consider two most common systems: the differentially driven
WMR and the car-type WMR.

e Differentially driven WMRs. A differentially driven WMR, consists of two
driving wheels and one or two castor wheels. In a differentially driven WMR,
the acceleration of each driving wheel is controlled by an independent motor.
The stability of the platform is insured by castors [Laumond98]. The reference
point of the robot is the midpoint of the axle of the two wheels. The motion of a
differentially driven WMR is achieved by controlling the spinning speed of each
wheel,@; and w,. If w; = w,, the robot moves in straight-line. The turning is
achieved when w; > w, or w; < w,. Figure 2.3 represents a general arrange-
ment of a differentially driven WMR. W designates the distance between the
driving wheels and r is the radius of the wheel. We calculate the translational
velocity v, and the rotational velocity w; as follows [Laumond98, Siegwart04]:

r

vy = §(wr,t + wit) (2.8)
r

Wy = _<wr,t - wl,t) (2-9)

w
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w
(b)

Figure 2.3: Differentially driven WMR.

e Car-like WMRs. A Car-like WMR has two controls: the accelerator and the
steering wheel [Laumond98, Stéphant04, Stéphant07, Solutions07]. The driving
wheels are either front wheels or rear wheels. The reference point of the robot
is the midpoint of the rear axle. The distance between both front and rear
axles is L. We denote ¢; as the speed of the front wheels of the car and ¢ as the
angle between the front wheels and the main direction of the car (see Figure
2.4). The transforms of control values are shown as follows:

vy = gco8(p) (2.10)

wg = %sm(gp) (2.11)

Figure 2.4: Car-like WMR.
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2.21.3 Odometry motion model

The odometry motion model uses the odometry measurements as the basis for cal-
culating the robot’s motion over time [Thrun05]. Odometry is commonly obtained
by integrating wheel encoder information. Suppose the robot moves from the pose
s¢—1 to the pose s; in the time interval (¢ — 1,¢]. The odometry reports back a
related motion from the pose s;_; to the pose s;. Here the bar indicates that the
motion information is obtained from odometry measurements. The motion control
can be extracted from the relative difference between 5,_; and 3.

up = ( 5;1 ) (2.12)

We assume that the difference is virtually generated by three motions: a
rotation, followed by a straight line motion (translation) and another rotation
[Thrun05]. This assumption is not unique. We can even think that the difference
of odometry is generated by: a translation along x—axis, another translation along
y—axis and a rotation. As shown in Figure 2.5, the first rotation is denoted by
1, a translation by A and the second rotation by (. Thus, the motion control is
given by:

y

<0,0) X

Figure 2.5: Odometry model: the robot motion is transformed into a rotation B,
a translation A and a second rotation [s.

According to simple trigonometry, the values of the two rotations and the
translation can be calculated from the odometry reading.

51 = atanQ(yt - gt—la Ty — i‘t—l) - G_t_l (213)
A=V (@ —21)2+ (% — Yi1)? (2.14)
Bo=0; — 0,1 — Py (2.15)

where atan2 is a variation of the arctangent function. Most programming lan-
guages provide an implementation of this function. In MATLAB, the range of the
function is extended to the closed interval [—m, .
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Under the assumption that the robot motion is noise-free, we consider B, A
and (5 as the true values of the two rotation and the translation of the real robot.
Thus the pose of the real robot is obtained by:

Ty Ti_q E\cos(Qt_l + 5:1)
Yt = Yt—1 + ASinggt_17+ 51) (2.16)
O 011 B+ B2

2.2.2 Probabilistic motion models

The motion models discussed so far are deterministic forms under the noise-free
assumption. However, the real robot motion is inherently unpredictable. Uncer-
tainty arises from effects like control noise, wear-and-tear, modeling errors, and
mechanical failure. Hence, it is necessary to study the probabilistic motion model.
This model is denoted as the conditional density [Thrun05]:

(s |ue, $¢-1) (2.17)

where s; and s;_; are both robot poses, and u; is a motion command. This model
describes the posterior distribution over kinematic states that a robot assumes
when executing the motion command u; at s;—; [Thrun05] (see Figure 2.6). Differ-
ent from deterministic models that determine the sole pose, probabilistic models
calculate the probabilities for all the possible poses in the robot’s space.

Y

(s fu,,s,,)

(0.0) X
Figure 2.6: The robot’s pose transition shown in the probabilistic form.

Corresponding to deterministic motion models mentioned above, we present
probabilistic algorithms for computing p(s; |uy, s;—1) based on the velocity motion
model and odometry motion model, respectively.

2.2.2.1 Probabilistic velocity motion model

In [Thrun05] Thrun et al. propose the probabilistic algorithm based on their
velocity motion model and give the complete mathematical derivation. But con-
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sidering the computational complexity, we select the second velocity motion model
to extend the probabilistic model.

The algorithm for computing the probability p(s;|us, s;—1) based on velocity
information is shown in Algorithm 2.1. The inputs of this algorithm are an initial
pose s;_1, a successor pose s; and a control u;. The output is the probability
p(St |ug, S¢—1). We assume that the control is carried out in a small enough dura-
tion At. The actual velocities ¥ and @ are calculated in lines 2 and 3, which can be
derived from Equation 2.7. The function prob(z,??) is introduced in [Thrun05],
which computes the probability density of its argument x under a zero-centered
distribution with variance b* (for example the Gaussian distribution or the tri-
angular distribution). oy and oy are two error parameters relative to the control
velocities v and w (standard deviation).

Algorithm 2.1: Probabilistic algorithm of velocity motion model

. — T _ T _ T
1: Input. St—1 = (l’t_l, Yt—1, et_l) , St = (.’L't,yt, 0,5) , U = (U,C(.))
Lo Tt —Tt—1 5 Yt—Yt—1
2 0= cos(0z—1)At orv sin(0:—1)At
o~ B—6
3w = At

4: p; = prob(v — 0, 0%)

5: pa = prob(w — @, 03)

6: Output: p = p; - po

The particle filter [Metropolis49] is a special case. Instead of computing the
posterior p(s; |ug, s;—1) directly, it generates random samples according to this
conditional probability. Algorithm 2.2 gives a method to generate random samples
from p(s; |ug, s;—1). It inputs an initial pose s;_; and a control u; and it outputs
a random pose s;. Lines 2 and 3 calculate the noisy control parameters. Errors
are generated by the function sample(0,5%) [Thrun05]. This function generates
a random sample from a zero-centered distribution with variance b?. o; and o9
are two error parameters relative to the control v and w. Lines 4 to 6 show the
procedure of generating a sample, which is identical to the robot motion model
with noisy controls. Thus, 100 samples can be obtained by executing iteratively
this algorithm 100 times.

Figure 2.7 shows two examples that illustrate sample sets generated by Al-
gorithm 2.2. Each diagram shows 500 samples, which are distributed according
to p(s; |ug, s;—1). The area owning the more samples, the more likely the robot
is. The non-sensing robot advances in two types of motion. Figure 2.7(a) shows
the robot moves in a linear motion and Figure 2.7(b) shows the robot moves in a
circular motion.

2.2.2.2 Probabilistic odometry motion model

Odometric information can be technically considered as sensor measurements, how-
ever we can extract the control information from odometry (see Section 2.2.1.3).
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Algorithm 2.2: Sampling algorithm of velocity motion model

1. Input: s;_; = (xt—hyt—l,@t—l)T,ut = (U>W)T

2: 0 = v+sample(0, o7)
3: @ = w+sample(0, o3)
4: xy = x4-1 + 0Atcos(0;1)
5: Yt = Y1 + @Atsin(@t_l)
62 9t — Ht—l + (:.)At
7 Output: St = (fEt,yt, gt)T
) & )

Figure 2.7: Sampling with the velocity motion model obtained by MATLAB. The
robot advances in two types of motion: (a) a linear motion and (b) a circular
motion.

The algorithm for computing p(s;|us, s;—1) based on odometry motion model
is depicted in Algorithm 2.3. It inputs the initial pose s;_; and the control
u; = (5,_1,5;)T obtained from odometry. It outputs the probability p(s; |us, si-1).
Lines 2 to 4 calculate virtual control parameters 8, A and /3, based on odometry
information. They are the inverse odometry motion model (Equation 2.16). Lines
5 to 7 calculate 51, A and (35 for a pair of known poses (s;_1,s;). Lines 8 to 10
calculate the errors between odometry and the known poses for each virtual con-
trol parameter. These errors are represented by the distribution with zero mean
and variance o2. As above, o1, 0y and o3 are three error parameters relative to
the virtual control 1, A and B,.

Algorithm 2.4 depicts the sampling algorithm of odometry motion model, which
is devised specially for particle filters. It generates random samples according to
p(S¢ |ug, $¢—1 ) instead of computing the posterior. The inputs of this algorithm are
an initial pose s; 1 and a control u; obtained from the odometry readings. The
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Algorithm 2.3: Probabilistic algorithm of odometry motion model, adapted
from [Thrun05]

—_

_ =
= O

Input: s, = (xt—layt—179t—1)T7 S = (xtyytaet)T7ut = (81, gt)T
B = atan2(§y — -1, T — Ty—1) — bi—1

A=(x — Z1)? + (G — Gi—1)?

Bo=0,— 06,1 — B

B = atan2(y, — Yi—1, T — T4—1) — G4

A= \/(wt —2-1)? + (Y — Ye1)?

Bo=0,— 01— 01

p1 = PI'Ob(Bl - 5170%)

p2 = prob(\ — ), 02)

Ps = PTOb(B2 — [, 0%)

: Qutput: p=p;-p2-ps

output is a random pose s; distributed according to p(s; |us, s¢—1). Lines 2 to 4
calculate virtual control parameters 31, A and /3, based on odometry information.
Lines 5 to 7 sample the three virtual control parameters 5;, A and (3, from the
virtual control parameters of odometry by the distribution with zero mean and
variance o%. 01, 09 and o3 are relative to the virtual control 1, A and ,. Lines 8
to 10 generate a random pose by employing the odometry motion model with the
noisy controls.

Algorithm 2.4: Sampling algorithm of odometry motion model, adapted
from [Thrun05]

1:

—_ =
= O

Input: 5,1 = (T—1, Y—1,0—1)" s = (51, 5)"
B = atan2(Yy — Go—1, Ty — Ty1) — b1

A= /(Tt — 71)> + (Ut — Gr1)?

By =0 — 01 — By

By = Pi+sample(0,07)

A = Msample(0, 02)

B = Py+sample(0,03)

2y =1 + Acos(0_1 + By)

Yr = Yi1 + Asin(0_1 + Bi)

0y =0;1+ 81+ B2

: Output: s; = (xt,yu@t)T
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Figure 2.8 illustrates 500 samples generated by Algorithm 2.4. The non-sensing
robot advances in two types of motion: a linear motion (see Figure 2.7(a)) and a
circular motion (see Figure 2.7(b)). As shown here, samples are more spread out
than Figure 2.7 due to more motion noise.

Y-axis (m)

Figure 2.8: Sampling with the odometry motion model obtained by MATLAB.
The robot advances in two types of motion: (a) a linear motion and (b) a circular
motion.

2.3 PERCEPTION MODELS

Next to motion, cognizing the surrounding environment is another foundational
task for the autonomous robot localization. To describe the measurement process,
we need to develop perception models (also called measurement models). Percep-
tion models describe the formation process that generates sensor measurements in
the physical world [Thrun05].

Taking measurements is done by a variety of sensors in the physical world.
Sensors can be classified roughly into two categories: proprioceptive sensors and
exteroceptive sensors. Proprioceptive sensors measure values internal to the robot,
such as motor speed, wheel load and battery voltage. Exteroceptive sensors ac-
quire information from robot’s environment, such as distance measurements, light
intensity and sound amplitude [Siegwart04, Solutions07]. In this section, we first
present briefly two kinds of exteroceptive sensors: range finders and vision-based
sensors. Then we discuss probabilistic perception models for mobile robot localiza-
tion. Probabilistic perception models are developed by Thrun et al. in [Thrun05].
We just employ it in our localization algorithm.
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2.3.1 Range finders

Range finders are these devices that can measure distance from the observer to a
target, which are the most popular sensors in robotics. To measure distance, there
are basically three approaches [Borenstein96:

e Time-of-flight measurement technique.
e Phase-shift measurement (or phase-detection) ranging technique.

e Frequency-modulated (FM) radar technique.

Here, we only discuss Time-of-flight range sensors and present two most com-
mon time-of-flight sensors: the ultrasonic sensor and the laser range finder.

Time-of-flight range sensors make use of the propagation speed of a sound or an
electromagnetic wave to measure distance [Borenstein96, Siegwart04]. The travel
distance of a sound or an electromagnetic wave is given by:

d=v-t (2.18)

where d = round-trip distance, v = speed of propagation and ¢ = elapsed time.
Note that the distance d is the round-trip distance and must be reduced by half
to result in actual range to the target.

The advantages of time-of-flight systems arise from the direct nature of their
straight-line active sensing. The absolute range to an observed point is directly
available as output with no complicated analysis required, and the technique is
not based on any assumptions concerning the planar properties or orientation of
the target surface [Borenstein96.

To characterize errors is necessary for whichever kind of sensors. Potential
errors of time-of-flight systems are mainly from the following aspects [Borenstein96,
Siegwart04]:

e Uncertainties in determining the exact time of arrival of the reflected signal.

e Inaccuracies in the measurement of the round-trip time of flight, particularly
for laser range sensors.

e The dispersal of the transmitted beam cone with the measurement distance
increase, mainly for ultrasonic range sensors.

e Interaction of the incident wave with the target surface, for example, surface
absorption, specular reflections.

e Variations in the speed of propagation, particularly for ultrasonic range sensors.

e The speed of the mobile robot and the speed of target particularly in the case
of a dynamic target.
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2.3.1.1 Ultrasonic sensors

The ultrasonic sensor is today one of the most common device employed on indoor
mobile robotics systems. It offers a low-cost solution to the localization problem
for mobile robots. Due to the availability of its easy application, much research
has been conducted investigating applicability in the area of robot navigation
[Borenstein91a, Borenstein95, Kieffer00, Wu01, Moreno02, Burguera07, Hsu09).

Figure 2.9(a) shows two fundamental components of a Polaroid ranging module:
the ultrasonic transducer and the ranging module electronics. Figure 2.9(b) shows
a typical ultrasound scan superimposed on a hand-measured map of the room.
From this figure, we can see that the ultrasonic sensor has large errors and even
it is inability in some situations.

h I‘.‘I"‘-‘

N

Figure 2.9: (a) An OEM kit of the Polaroid ultrasonic sensor included the trans-
ducer and an electronics interface board. Image courtesy of Johann Borenstein,
University of Michigan [Borenstein96]. (b) Typical scan of an ultrasonic system.
Images courtesy of John J. Leonard, MIT [Leonard92].

For ultrasonic sensors, there are two typical errors: a misreading for smooth
surfaces and crosstalk.

e The misreading. When an ultrasonic sensor measures smooth surfaces at an
angle, the echo is reflected specularly and travels into a direction that is outside
of the sensing envelope of the receiver, as illustrated in Figure 2.10(a). In this
case, the sensor often reports overly large measurements when compared with
the true distance.

e Crosstalk. This phenomenon can occur in both single-robot systems and
multi-robot systems, as shown in Figure 2.10(b) and (c). For single-robot sys-
tems, it often occurs in cluttered environments, sound waves can reflect (mul-
tiple) from objects and can then be received by other sensors. For multi-robot
systems, sound waves can be emitted by one robot and be received by another
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robot. A method to detect and reject crosstalk is proposed by Borenstein et
al. [Borenstein95).

Robot 1

Robot 2

(b) ()

Figure 2.10: (a) A misreading of the ultrasonic sensor. (b) The crosstalk phe-
nomenon in single-robot systems. (c¢) The crosstalk phenomenon in multi-robot
systems.

2.3.1.2 Laser range finders

The Laser Range Finder, also referred as laser radar or lidar, is a laser-based
time-of-flight ranging system, which has the similar principle to the ultrasonic
sensor. To measure the distance, it also emits a signal and records its echo. But
different to the ultrasonic sensor, it uses laser light instead of sound. Since the laser
provides much more focused beams, it achieves significant improvements over the
ultrasonic range sensor. Considerable research has been dedicated to mobile robot
navigation by using laser range finders [Arsenio98,Zhang00,Schulz03, Madhavan04,
Silva07, Harrison08]

Figure 2.11(a) shows a terrestrial 3D laser scanner ZLS07 developed by Zogg
et al. [Zogg07] and (b) shows a typical scan result by ZLS07 in an underground
utility cavern.

The laser range finder is more accurate than the ultrasonic sensor, but much
more expensive. Like the ultrasonic sensor, the measured medium is an important
aspect of impacting on measurement accuracy. For example, a highly polished
surface will reflect the incident laser. Different to ultrasonic sensors, the laser
range finder cannot detect the presence of optically transparent materials such as
glass or light-absorbing objects.

2.3.2 Vision-based sensors

Compared with range finders, visual sensing can provide a tremendous amount of
information about a robot’s environment, and it is potentially the most powerful
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Figure 2.11: (a) A terrestrial 3D laser scanner ZLS07 based on Sick LMS 200.
(b) Point cloud of an underground utility cavern, acquired with ZLS07. Images

courtesy of Hans-Martin Zogg, Swiss Federal Institute of Technology, ETH Zurich
[Zogg07]

source of information among all the sensors used on robots to date [Siegwart04,
Solutions07].

CCD (charge-coupled device) and CMOS (complementary metal oxide semi-
conductor) are the two current technologies for creating vision sensors. Both of two
are semiconductor devices that can convert optical images into the digital signal.
Digital signal can be stored and processed easily by computers, thus information
hidden in pictures can be extracted according to the needs. In a CCD sensor (see
Figure 2.12(a)), every pixel’s charge is transferred through a very limited number
of output nodes (often just one) to be converted to voltage, buffered, and sent
off-chip as an analog signal. All of the pixel can be devoted to light capture, and
the output’s uniformity (a key factor in image quality) is high. In a CMOS sen-
sor (see Figure 2.12(b)), each pixel has its own charge-to-voltage conversion, and
the sensor often also includes amplifiers, noise-correction, and digitization circuits,
so that the chip outputs digital bits. These other functions increase the design
complexity and reduce the area available for light capture. With each pixel doing
its own conversion, uniformity is lower. But the chip can be built to require less
off-chip circuitry for basic operation [DAL].

The most promising sensor for the future of mobile robotics is likely vision [Sieg-
wart04], therefore a great deal of effort has been directed at applying vision sensors
to the field of mobile robots. To mimic the capabilities of the human vision sys-
tem, many biologically-inspired robotic vision systems are proposed, too. Siagian
et al. present a robot localization system using biologically-inspired vision [Sia-
gian07]. Their system models two extensively studied human visual capabilities:
one extracting the “gist” of a scene to produce a coarse localization hypothesis,
and the other refining it by locating salient landmark regions in the scene. The
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Figure 2.12: (a) A commercially available CCD chip: DALSA 36 x 48mm? 48M-
pixel CCD. (b) Commercially available SONY Exmor CMOS camera sensors.

(a)

gist and salient landmark features are then further processed using a Monte Carlo
localization algorithm to allow the robot to generate its position. Similarly using
Monte Carlo localization, Wolf et al. use a vision-based approach that combines
image retrieval techniques with Monte Carlo localization to solve the mobile robot
localization problem [Wolf02]. Their image retrieval system uses invariant features
in order to find the most similar matches. Courbon et al. solve global robot lo-
calization by finding out the image which best fits the current image in a set of
prerecorded images (visual memory) [Courbon08]. They propose a hierarchical
process combining global descriptors computed onto cubic interpolation of trian-
gular mesh and patches correlation around Harris corners.

2.3.3 Feature extraction

There are two strategies for using uncertainty sensors data to determine the robot’s
position. One is to use raw sensor measurements and the other is to extract features
from sensor measurements. A feature extraction process can be defined as to
extract information from one or more sensor readings first, generating a higher-
level percept that can then be used to inform the robot’s model and perhaps the
robot’s action directly [Siegwart04]. Mathematically, the feature extractor can be
denoted as a function f and the features extracted from sensors data are given by
f(zt)-

Features are recognizable structures of elements in the environment [Sieg-
wart04]. For range sensors, features may be lines, corners or local minima in
range scans, which correspond to walls, corners or objects such as tree trunks.
When using cameras to localization, popular features include edges, corners, dis-
tinct patterns and objects of distinct appearance [Thrun05].

In the physical world, these physical objects, which can be recognized by their
distinct features, are often called landmarks. Typically, landmarks have a fixed
and known position, relative to which a robot can localize itself [Borenstein96].
Moreover, landmarks should be easy to identify. Landmarks are commonly dis-
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tinguished by two types: artificial landmarks and natural landmarks. Natural
landmarks are those objects or features that are already in the environment and
have a function other than robot navigation; artificial landmarks are specially de-
signed objects or markers that need to be placed in the environment with the sole
purpose of enabling robot navigation [Borenstein96].

2.3.3.1 Feature extraction from range finders

Most of features extracted from range finders are geometric primitives such as
line segments or circles. Borges et al. present the Split-and-Merge Fuzzy (SMF)
line extractor for line extraction in 2D range images provided by laser range find-
ers, which uses a prototype-based fuzzy clustering algorithm in a split-and-merge
framework [Borges00, Borges02]. They compare SMF with other two classic algo-
rithm: Line Tracking (LT) and Iterative End-Point Fit (IEPF) using simulated
and real data in [Borges02, Borges04]. Their experimental results show that SMF
outperforms LT and IEPF but each algorithm has limitations. Sack et al. com-
pare three different approaches for learning line maps from range data in [Sack04].
Their experimental results demonstrate that the incremental approach and the
offline approach perform better than the Expectation-Maximization (EM) tech-
nique, furthermore the incremental approach generates more accurate results than
the offline and the EM techniques. Another comparison of line extraction methods
from range data are presented in [Nguyen07]. Nguyen et al. present an experimen-
tal evaluation of six popular line extraction algorithms applied to 2D laser scans
for indoor environments. They compare and discuss the advantages and drawbacks
of each algorithm in several aspects: speed, complexity, correctness and precision.
Additionally, they test and compare the line extraction algorithms in the Orthog-
onal SLAM (OrthoSLAM) application. Their experimental results show that the
two algorithms Split-and-Merge and Incremental have best performances because
of their superior speed and correctness.

Several curvature-based feature extraction algorithms are developed in the lit-
erature. Madhavan et al. propose a natural landmark navigation algorithm for
autonomous vehicles [Madhavan04]. They develop a multi-scale Curvature Scale
Space (CSS) algorithm to identify, extract and localize landmarks characterized by
points of maximum curvature in laser scans. Nunez et al. propose a geometrical
feature detection system for laser data segmentation based on adaptive curvature
estimation [Nunez08|. This algorithm can divide the laser scan into line segments
and curve segments.

2.3.3.2 Feature extraction based on vision

To extract features using vision-based sensors covers the field of computer vision
and image processing, which is far beyond the scope of this thesis. In the recent
two decades, considerable research effort has been dedicated to these fields. The
foundation of computer vision is introduced in [Haralick92, Ritter96]. Borges et
al. [Borges02] present the methods of extraction linear features from 2D images.
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More practical applications of computer vision to the mobile robot navigation are
concerned in [Devy93, Devy95, Murrieta-Cid02, Sola08].

2.3.4 Probabilistic perception models

In reality, all types of sensors are imperfect devices. They perceive the world with
both systematic and random errors. To model these uncertain measurements,
we employ the probabilistic perception model. It is described as a conditional
probability distribution:

(2t |se,m) (2.19)

where s; and z; are the robot pose and measurements at time ¢, respectively. m
is the map of the environment. Generally speaking, a map is a set of data that is
necessary to describe the environment and localize the robot. More details about
maps will be discussed in Section 2.4.

In some cases, many sensors generate more than one numerical measurement
value, such as cameras generate entire arrays of values or range finders usually
generate entire scans of ranges. Additionally, one robot may be equipped with
several sensors, for example the Pioneer 3-DX mobile robot equipped with sixteen
ultrasonic range finders. These sensors will generate a list raw scans. The number
of such measurement value within a measurement z; is denoted by I [Thrun05].

w={z, .2} (2.20)

We assume that these measurements have independent noise over time. The
probability p(z; |s;, m) can be obtained as the product of the individual measure-
ment likelihoods [Thrun05].

1

p(z|s,m) = Hp(zi Ery (2.21)

i=1

In this section we only intuitively review two probabilistic perception models,
one is based on range finders and the other is based on features. These models are
introduced in detail in [Thrun05].

2.3.4.1 Perception model based on range finders

Range finders only measure the range to the closest object that can be “seen”.
In [Thrun05], Thrun et al. introduce three range finder models: the beam-based
model, the likelihood field model and the correlation-based measurement model
(map matching). Each model has its own advantages and disadvantages. The
beam-based model links closely to the geometry and physics of range finders, which
is the preferable model of ultrasonic sensors and a good model of the laser range
finders. However, the beam-based model is lack of smoothness and computational
involved [Thrun05]. On the contrary, the likelihood field model overcomes these
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disadvantages of the beam-based model, but it lacks a plausible physical explana-
tion. It does not consider information involved in free-space and occlusions in the
interpretation of range measurements. Similarly to the likelihood field model, map
matching is also missing of the physical explanation. However, this model takes
into account the free-space and it can be implemented efficiently. In this section,
we only focus on the beam-based model because our experiments are based on
ultrasonic sensors.

The beam-based model merges four types of measurement errors: measurement
noise of measuring the known objects, errors due to unexpected objects, errors due
to failures to detect objects and random unexplained noise. Therefore, the desired
probability p(z; |s¢, m) is modeled as a mixture of four densities [Thrun05].

1. Measuring the known objects with measurement noise. If the sensor
detects an object that has been modeled in the map, the result distribution
is modeled by a Gaussian distribution with the mean at the distance to this
object. This Gaussian is denoted by py, its mean (the true distance to the
object) is denoted by d,,; and its standard deviation by oy. Usually, dg; is
obtained using ray casting [Thrun05]. In practice, the measurement values
of the range sensor are limited to the interval [0, 2,4, Where 2., denotes
the maximum sensor range. Thus, the probability of such measurements is
described as:

_ (zi_dobj)2

) . ;
77;26 2%, it 0 < 2 < Znaw

pk(zz |s¢, m) = 2mo? (2.22)

0 otherwise

where 7 is the normalizer, which is calculated as

( Zmax 1 _ (zg_dobj)2 > -1
n= / e i di (2.23)
0 \/ 27m,%

Figure 2.13 depicts graphically this Gaussian distribution p; with mean d,; and
standard deviation o,. The standard deviation oy is an intrinsic noise param-
eter of the measurement model, which determines the width of the Gaussian
distribution. A low standard deviation indicates that the data points tend to
be very close to the mean, while high standard deviation indicates that the
data are spread out over a large range of values.

2. Unexpected objects. In Markov localization, the world model is generally
assumed to be static and complete [Fox99b]. However, the real environments of
mobile robots are often dynamic and incomplete, for example, some unmodeled
obstacles and moving people. These objects that are not represented in the
map can cause shorter ranges than distances presented in the map, because
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Figure 2.13: Measurements of the known objects are modeled as the Gaussian
distribution py.

range finders only measure the range to the closest object. In this situation,
the likelihood of measuring unexpected objects decreases with the difference of
range. Figure 2.14 illustrates this situation. Ob; is a known obstacle and Ob,
is an unknown obstacle. Ob, brings on the distance dy < d; and the probability
P2 < p1-

dl
d2

Ob,

Figure 2.14: Measurement caused by the unexpected object. Ob; is a known
obstacle and Ob, is an unknown obstacle.

In order to compensate the differences, the probability of these measurements
caused by unexpected objects is modeled by an exponential distribution, de-
noted as pyk.
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. ke 2 i 0 < 28 < dgy,
puk(2t |85, m) = (2.24)
0 otherwise

The interval of this distribution is [0, do;] because range measurements to un-
expected objects are always shorter than true distances. A, is an intrinsic
parameter of this measurement model, which determines the slope of the ex-
ponential curve. The normalizer n evaluates to

dobj Y i i -1 1

Figure 2.15 illustrates this exponential distribution p,;. As shown in the figure,
the probability compensation for unexpected objects decreases exponentially
with the range z!. In other words, the unexpected object is closer to the known
object, its effect is smaller.

p(z|s,,m)

\

| |
d

obj max

Figure 2.15: Measurements of the unknown objects are modeled as the exponential
distribution p,j, adapted from [Thrun05].

3. Detect failures. This situation occurs when sensors fail to detect obstacles.
For instance, ultrasonic sensors are misreading when measuring smooth sur-
faces at an angle (see Section 2.3.1.1) and laser range finders detect optically
transparent materials or light-absorbing objects (see Section 2.3.1.2). This kind
of sensor failures often returns a maximum measurement. Mathematically, the
probability of this case is modeled as a point-mass distribution py centered at

Zmax-
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. 1 if 2! = Znae
py(zilse,m) = (2.26)
0 otherwise

As shown in Figure 2.16, to illustrate this point-mass distribution, p; is de-
scribed as a very narrow uniform distribution centered at z,,4..

p(zls,,m)

Figure 2.16: Measurement fails are modeled as the point-mass distribution py,
adapted from [Thrun05].

4. Random measurements. Sometimes, range finders produce completely un-
explainable measurements, such as the crosstalk phenomenon of ultrasonic sen-
sors (see Section 2.3.1.1). The probability of such unexplainable measurements
is modeled as a uniform distribution p, spread over the entire measurement
range [0, Zmaz )-

1

—— if0< 2t < Zimaz
pr(z [si,m) = (2.27)
0 otherwise

Such a uniform distribution p, is depicted graphically in Figure 2.17.

To obtain the final probability distribution p(z!|s;,m), these four different
distributions are mixed by the weighted average.
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p(z/|s,,m)
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Figure 2.17: Unexplainable measurements are modeled as the uniform distribution
pr, adapted from [Thrun05].
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where the parameters oy, ay,, af and o, determine the existence proportion of
these four distributions, thus

g+ aup +ap + o =1 (2.29)

Now, how to choose the various parameters of the beam-based perception model
is a problem. These parameters include the mixing parameters oy, oy, of and oy,
and also include o, and A,;. The simplest method is to estimate the values of
these parameters according to experience. Most of the time, we can obtain the
perfectly acceptable results. A more formal approach is presented in [Thrun05].
This approach uses actual data to learn these parameters.

Algorithm 2.5 presents an algorithm to implement the beam-based range finder
model. It accepts the robot pose s;, the complete range scan z; and the map m as
input. It outputs the mixture distribution p(z! |s;,m ). Line 2 initializes the desired
probability P,,;,. In line 6, individual measurement probabilities are multiplied
according to Equation 2.21. Line 4 computes the true range to the object dy; by
using ray casting. Line 5 computes the mixed probability for each individual range
measurement z; based on Equation 2.28.

Figure 2.18 illustrates a typical density function of the mixture distribution
p(2! |s;,m) generated by Matlab. As shown in the figure, characteristics of all
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Algorithm 2.5: Beam-based range finder model, adapted from [Thrun05]

. — (1 T
L Input: s, 20 = (2, ,2;),m

2: Initialization: P,,, =1
3: fori=1t%o I do
4 compute dg; for each measurement z§ using ray casting
p= o (2 s, m) + aur - pur(2 |s1,m)
ay - py(ah s m) + an - py (2 s, m)
Prizc = Priz "D
end for
: Output: P,

® @

four basic models are still remained in the mixture distribution. In the program
of generating this figure, these intrinsic parameters of the beam-based model are
chosen as o = 0.4, a, = 0.3,y = 0.2,, = 0.1, 04, = 0.2 and A\, = 0.5.

Figure 2.18: Density of the mixture distribution p(z! |s;, m), generated by Matlab.

2.3.4.2 Perception model based on features

A feature extracted from the sensor measurement can be represented by the range
r, the bearing ¢ and the signature 7 [Thrun05]. Thrun et al. assume that a
signature is a numerical value, which may equally be an integer that characterizes

the type of the observed landmark, or a multi-dimensional vector characterizing a
landmark [Thrun05].

T
=1 o (2.30)
1
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Thus, all features extracted from the sensor measurement are given by

fz) = {f 0}

1 2
rtl 7“752
= V , ; S (2.31)
1 2
Ty T

here, the number of features identified by the robot at each time step is variable.
Under the conditional independence between features assumption, we have

p(f(z0) [seym) = [ [ p(ri, 61, 7 |se,m) (2.32)

The feature-based sensor model can be described as follows, assuming that the
i'" feature observed at time t corresponds to the j¥ landmark in the map.

ri V(mje — ) + (myy —y)? €02
¢ | = atan2(m;, — y,m;, — x) + | €2 (2.33)
th m; - €52

T

where, the robot pose is given by s, = (z,y,0)". m;, and m;, denote the co-
ordinates of a feature in the global coordinate frame. m;, denotes a signature
in the map. €52, €02 and €,2 are three independent Gaussian error variables with
zero-mean and standard deviations o,, 0, and o, respectively.

The algorithm for calculating the probability of an observed feature with known
correspondence is depicted in Algorithm 2.6. It accepts as input an observed
feature f7, the robot pose s;, the feature identity ¢! and the map m. It outputs
the probability p(f} |ci, s;,m). The feature f; is obtained from sensor data. The
feature identity ci is a correspondence variable between the feature f; that is
observed by the robot and the landmark m; in the map [Thrun05]. Here, ¢} is
known and ¢! < N, N is the number of landmarks in the map. Line 2 represents
the " feature observed at time ¢ corresponds to the j** landmark in the map.
Lines 3 to 5 calculate the range and the bearing to the landmark. Lines 6 to 8
calculate the errors of the range and the bearing between the sensor measurement
and landmark, respectively. They are represented by the normal distribution with
zero mean and variance o2. Since the correspondence ¢! is assumed to be known,
we can obtain the signature 7 = m; , directly. The probability prob(7/ —7, 02) will
not be involved in the algorithm. However, in the case of unknown correspondence,
this probability should be considered.

24 MAPS

A pre-existing map is the third known component to solve the mobile robot local-
ization problem. In [Thrun05], Thrun et al. give the definition of map. A map m
is a list of objects in the environment along with their properties:
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Algorithm 2.6: Feature-based sensor model with known correspondence,
adapted from [Thrun05]

—_

: Input: fi = (r}, ¢l 7)7, 80 = (@4, ys, 0)7, ch,m
i
P =\ (mje —20)? + (mjy — y1)?

<;~5 = atan2(mj,y = Yt;, Mz — )

. pl = prob(ri — 7, 0?)

: p2 = prob(¢; — ¢,07)
: Output: p=pl-p2

o B - S T U\

m = {my,mg, -+ ,my} (2.34)

where I is the total number of objects in the environment, and each m; with
1 <4 < I specifies a property.

2.4.1 Map representation

In the mobile robotics literature, various map representations are proposed. To
choose an appropriate map representation, Siegwart et al. think that three aspects
should be considered [Siegwart04]:

1. The precision of the map must appropriately match the precision with which
the robot needs to achieve its goals.

2. The precision of the map and the type of features represented must match
the precision and data types returned by the robot’s sensors.

3. The complexity of the map representation has direct impact on the computa-
tional complexity of reasoning about mapping, localization and navigation.

In general, there are two ways to represent maps: geometric maps and topo-
logical maps [Borenstein96.

24.1.1 Geometric maps

A geometric map represents objects according to their absolute geometric relation-
ships [Borenstein96]. We introduce two most popular geometric representations:
the occupancy grid map and the line map.

e The occupancy grid map: The occupancy grid technique is a popular and
simple way to represent the geometric map. The occupancy grid representa-
tion is a fixed decomposition technique, which represent the environment using
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regular-spaced grids. Each grid cell may be either filled or empty. In prob-
abilistic robotics, the occupied cell is noted “1” and the free one are noted
“0”. The notation p(m;) refers to the probability that a grid cell is occupied.
The occupancy grid technique is particularly suitable for robots equipped with
range finders because the range values of each sensor, combined with the ab-
solute position of the robot, can be used directly to update the filled or empty
value of each grid cell [Siegwart04].

Moravec et al. are the first to introduce the occupancy grid map in conjunction
with mobile robot [Moravec85]. Borenstein et al. firstly adopt the occupancy
grid map for collision avoidance and they refined this method with histogram
grid [Borenstein90, Borenstein91b, Borenstein9la).

Figure 2.19 shows an occupancy grid map. The dimension of the map is about
25m x 10m and the resolution of the grid is 0.8m x 0.8m. This is a low
resolution occupancy grid map. As shown, some line features have been lost in
this resolution.
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Figure 2.19: A occupancy grid map.

The advantages of the occupancy grid map are that it is easy to build and can
easily be updated upon sensory input [Zhang00, Sack04]. Especially, the occu-
pancy grid map is suitable for imprecise range sensors [Zhang00]. However, the
disadvantages lie in the huge memory requirements and the limited accuracy
due to the discretization [Sack04]. Its accuracy entirely depends on the resolu-
tion of the grid. The finer grained can get a more accurate representation, but
at the expense of increased memory requirements.

e The line map: To overcome these limitations, many works have been focused
on the line map [Zhang00, Sack04, Nguyen07]. A line map is composed of a fi-
nite number of line segments: L = I, [5, -+ ,ly. Line maps are widely used in
the indoor environment and the structured outdoor environment. These envi-
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ronments usually consist of planar structures such as walls, doors or cupboards,
all of which can be described by linear characteristics.

To represent a structured environment, the line map only uses a small number
of line segments whereas the occupancy grid map may require thousands of
grid cells. Thus, the line map requires significantly less memory than the
occupancy grid map [Sack04]. Figure 2.20 displays a line map, which represents
the same environment to Figure 2.19. As shown in the figure, the line map is
more accurate than the occupancy grid map since it provides the floating point
resolution and does not exist the discretization problems [Sack04].

Figure 2.20: A line map.

24.1.2 Topological maps

An alternative map representation is the topological map. The topological map is
a coarse graph-like representation based on recording the geometric relationships
between the observed features [Borenstein96, Friedman07]. The nodes represent
the observed features in the environment and the arcs represent paths between the
features [Kortenkamp94, Borenstein96]. Figure 2.21 shows a topological map of an
indoor office environment [Siegwart04].

A detailed comparison of the topological representation and the grid-based rep-
resentation is introduced in [Thrun98a, Thrun98b]. Furthermore, authors present
an integrated approach to mapping indoor robot environments, which combines
topological maps and grid-based maps. Grid-based maps are learned using arti-
ficial neural networks and Bayes rule. Topological maps are generated on top of
the grid-based maps by partitioning the latter into coherent region. This combi-
nation gains advantages from both two approaches. A further work is presented
in [Friedman07], Friedman et al. propose a novel approach to build the topological
map in the indoor environment, which is named Voronoi random fields (VRFSs).
VRFs apply discriminatively trained conditional random fields to label the points
of Voronoi graphs extracted from occupancy grid maps.
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Figure 2.21: A topological map. Image courtesy of Roland Siegwart [Siegwart04]

2.5 SUMMARY

This chapter introduced motion models, perception models and maps. They are
important known conditions for solving the robot localization problem.

e For motion models, we presented their deterministic forms and probabilistic
forms, respectively. Probabilistic forms can be obtained by adding noise vari-
ables that characterize the types of uncertainty exiting in robotic actuation to
deterministic models. Two deterministic models are introduced: the velocity
motion model and the odometry motion model. The former represents controls
by a translational and a rotational velocity. The latter uses odometric mea-
surements to calculate the robot’s motion. Odometric measurements can be
decomposed into an initial rotation, followed by a translation, and a final rota-
tion. Based on both motion models, we derived two probabilistic algorithms.
One calculates the probability p(s; |us, s;—1) in a closed form. The other gen-
erates samples from the probability p(s; |us, s;—1), which is designed specially
for particle filters.

e In the section of perception models, we introduced range finders and visual
sensors. Based on these two types of sensors, we discussed feature extraction.
We presented two probabilistic perception models. The first one is based on
range finders, which characterizes the probability p(z; |s;, m) with a mixture
model that addressed four types of noise. An alternative one is based on
features. The feature extracted from sensor measurements can be represented
by the range, bearing and signature.
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e We introduced two ways to represent maps: geometric maps and topological
maps. The former is a concrete representation and the latter is an abstract
graph-like representation. Two geometric maps are specified: the occupancy
grid map and the line map. Since the line map requires less memory than the
occupancy grid map in the implementation, we select it to use in simulations
and experiments.
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3.1 INTRODUCTION

Probabilistic localization algorithms are variants of the Bayes filter. Markov lo-
calization is the straightforward application of Bayes filters to the localization
problem [Thrun05]. Markov localization addresses the problem of state estima-
tion by computing a probability distribution over all possible locations in the
environment [Burgard97a, Fox98a, Fox98b, Gutmann98, Fox99b, Baltzakis02, Gut-
mann02, Baltzakis03, Thrun05]. In this chapter, we will present some classic
Markov localization algorithms. The models discussed in previous chapter will
be applied to concrete algorithms. Before introducing Markov localization, we
briefly review the basic theory of the Bayes filter that is useful throughout the
Markov localization. Some useful concepts of probability theory are presented in
Appendix A.

3.1.1 Bayes filters

The Bayes filter technique provides a powerful statistical tool to understand and
solve robot localization problems [Dellaert99, Roumeliotis00, Thrun00d, Fox03b,
Fox03c, Bekkali08, Blanco08, Ko08]. It calculates recursively the belief distribution
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bel(x) from measurement and control data [Thrun05]. The Bayes filter makes a
Markov assumption, that is, the past and future data are independent if one knows
the current state.

Let bel(s;) denote the robot’s subjective belief of being at position s; at time
t. Here, s, is a three-dimensional variable s, = (¢, s, 0;)%, comprising its x — y
coordinates in the Cartesian coordinate system and its orientation #. The belief
distribution is the posterior probability over the state s, at time ¢, conditioned on
all past measurements Z; and all past controls U,.

bel(sy) = p(s¢ |2y, Up) (3.1)

We define measurements Z; and controls U; as follows.

Zt = {Zt7 Zt—1," " 72:0} )

Ut = {ut,ut,1,~~ ,'Lbl}. (32)
where controls U; are often obtained from measurements of the proprioceptive
sensor such as odometry.

We consider that the exteroceptive measurements and the odometry measure-
ments are independent and we treat them separately.

bel(sy) =p(si|Z) - p (s |Uy) (3.3)

The term p (s; | Z;) is denoted as belge, (s;), which represents the posterior belief
after integrating the perception data.

belsen(st) = p(se|Zi)
Bayeé rule Y% (Zt |St; Zt—l ) p (St |Zt—1)
p (Zt |Zt—1)
= np (Zt ‘Sm Zi1 ) P (s ‘thl)
Markov assum.
= np (Zt ‘St)p <5t71 ‘thl)
= np (Zt |St) belsen(st—l) (34)
where 7 is a normalization constant that ensures belge,(s;) to sum up to one.

The term p (s; |Uy ) is denoted as belygo(s:), which represents the posterior belief
after integrating the odometry data.

belogo(St) p (¢ |Ut)
St |St 1,Ut) (St—l |Ut)d8t—1

Total prob

p $t|$t 1, Ut p(St—l\Ut—l)dSt—l

Markov assum/

= p(StISt laut)belodo<5t 1)d8t 1 (3-5)
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We multiply belse,(s:) by beloao(s:) to get the final localization formula:

bel(sy) = belsen(st) - belogo(st)

— (24 |50 beluon(501) - / D (521501, 1) belogo (501 )ds s
— (s / D (521501, 1) [eloon(5e_1) - beloas(501)]dse1
= np (ztlst)/p(st|stl,ut)bel(stl)dstl (3.6)

where the probability p(s;|s;—1,u;) is called the prediction model or the motion
model, which denotes the transition of robot state. The probability p(z |s;) is
the correction model or the sensor model, which incorporates sensor information
to update robot state. Specific motion models and sensor models are introduced
in Chapter 2.

In practice, the implementation of Equation 3.6 is divided into two stages:
prediction and correction.

e Prediction. In this stage, a posterior, before incorporating the latest measure-
ment z; and just after executing the control u;, is calculated. Such a posterior
is denoted as follows:

bel(sy) = p(s¢|Zi1,U)
= /p(st|St_1,ut)bel(st_1)dst_1 (3.7)

e Correction. In this stage, the latest measurement z; is incorporated to calcu-
late bel(s;) from bel(s;).

bel(si) = np(2t]st)bel(st)
= np(zt|st)/p(st|st_1,ut)bel(st_1)dst_1 (3.8)

3.1.2 Markov localization algorithm

The straightforward application of Bayes filters to the localization problem is called
Markov localization. It requires a map m as input and assumes this map is static
and Markov (or complete) [Thrun05].

Algorithm 3.1 depicts the basic Markov localization algorithm. This algorithm
is recursive, that is , the belief bel(s;) at time ¢ is calculated from the belief bel(s;—1)
at time ¢ — 1. It inputs the belief bel(s;_;) at time ¢ — 1, along with the most recent
control u;, the most recent measurement z; and the map m. It outputs the belief
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bel(s;) at time t. Line 3 implements the prediction stage. It calculates a belief
over the pose s; based on the prior belief over the pose s;_1, the control u; and
the map m. Line 4 implements the correction stage. It updates the posterior by
multiplying the belief bel(s;) by the correction model p (2 |s;,m) that the latest
measurement 2; has been observed. The result is normalized by the normalization
constant 7.

Algorithm 3.1: Markov localization algorithm, adapted from [Thrun05]

—_

: Input: bel(s;—1),us, ze,m
. for all s; do
bel(s,) = I p(se|si—1,us, m)bel(si—1)ds—1 % prediction

. end for

2
3
4: bel(s,) = np (2 |s,, m) bel(sy) % correction
5
6: Output: bel(s;)

The localization problem can be divided into three sub-problems: position
tracking, global localization and the kidnapped robot problem [Roumeliotis00,
Thrun00a, Thrun05]. Markov localization is designed to solve the position track-
ing problem, the global localization problem and the kidnapped robot problem.
Position tracking assumes that the robot knows its initial pose [Schiele94, Weiss94].
During its motions, the robot can keep track of movement to maintain a precise es-
timate of its pose by accommodating the relatively small noise in a known environ-
ment. More challenging is the global localization problem [Thrun0Oa, Milstein02].
In this case, the robot does not know its initial pose, thus it has to determine
its pose in the following process only with control data and sensors data. Once
the robot determines its global position, the process continues as a position track-
ing problem. The kidnapped robot problem considers that a well-localized robot is
teleported to some other place without being told [Thrun00Oa, Thrun00b, Thrun05].
In practice, the robot is rarely kidnapped. However, kidnapping tests the ability of
a localization algorithm to recover from global localization failures. This problem
is more difficult than global localization. Difficulties come from two sources: one
is how a robot knows it is kidnapped, the other is how to recover from kidnapping.
The latter can be processed as a global localization problem.

Since the basic Markov localization algorithm is recursive, computing the pos-
terior belief bel(s;) requires an initial belief bel(sy) at time ¢ = 0 as boundary
condition. Thus, the initial belief bel(sg) is set differently according to the initial
knowledge of the robot’s pose [Thrun05].

e Known initial pose. The position tracking problem assumes that the robot
knows its initial pose, thus bel(sg) is initialized by a point-mass distribution.
The known initial pose of the robot is denoted by $,.
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1 if So = 50
bel(sg) = (3.9)

0 otherwise

In practice, the initial pose of the robot is often known approximately, thus
bel(sp) is usually initialized by a narrow Gaussian distribution centered around
the known initial pose §, with the covariance ¥ (Equation A.5).

bel(sg) = det(?wZ)_;exp{—%(so —50) T2 (50 — 50)} (3.10)

e Unknown initial pose. In the global localization problem, the robot is not
told its initial pose, thus bel(sq) is initialized by a uniform distribution over
the state space to reflect the global uncertainty of the robot.

1
|51
where |S| represents the volume (Lebesgue measure) of the state space of all
poses in the map.

bel(sg) = (3.11)

e Partially known initial pose. If the robot has the partial knowledge about
its initial pose, such as a certain area, bel(sg) may be initialized by a uniform
distribution over this area and zero anywhere else.

Extended Kalman Filter (EKF), Grid localization and Monte Carlo Localiza-
tion (MCL) are three classic Markov localization algorithms. Among the exist-
ing position tracking algorithms, the Extended Kalman Filter (EKF) is one of
the most popular approaches [Kalman60, Leonard91, Grewal93, Thrun05]. EKF
assumes that the state transition and the measurements are Markov processes
represented by nonlinear functions. The first step consists in linearizing these
functions by Taylor expansion and the second step consists in a fusion of sensors
and odometry data with Kalman Filter. However, plain EKF is inapplicable to
the global localization problem, because of the restrictive nature of the unimodal
belief representation. To overcome this limitation, the multi-hypothesis Kalman
filter is proposed [Cox94, Reuter00, Roumeliotis00, JensfeltO1]. It represents beliefs
using the mixture of Gaussian distributions, thus it can proceed with multiple and
distinct hypotheses. However, this approach inherits the Gaussian noise assump-
tion from Kalman filters. This assumption makes all practical implementations
extract low-dimensional features from the sensor data, thereby ignoring much of
the information acquired by the robot’s sensors [Thrun00b].

Grid localization and MCL are two most common approaches to deal with the
global localization problem. Grid localization approximates the posterior using a
histogram filter over a grid decomposition of the pose space [Borenstein91b, Boren-
stein91a, Burgard96, Burgard97b, Thrun05]. MCL is based on a particle filter that
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represents the posterior belief by a set of weighted samples (also called particles)
distributed according to this posterior [Metropolis49, Dellaert99, Fox99a, Thrun99b,
Fox00a, Thrun00c, Kwok04, Thrun05, Siagian07, Hester(08, Prestes08]. The crucial
disadvantage of these two approaches is that they bear heavy on-line computa-
tional burden. For grid localization, the resolution of the grid is a key variable.
The precision and efficiency of implementation depend on it. The finer grained can
get a more accurate result, but at the expense of increased computational costs.
The implementation of MCL is more efficient than Grid localization, because it
only calculates the posteriors of particles. However, to obtain a reliable localization
result, a certain number of particles will be needed. The larger the environment
is, the more particles are needed. Actually each particle can be seen as a pseudo-
robot, which perceives the environment using a probabilistic measurement model.
At each iteration, the virtual measurement takes large computational costs if there
are hundreds of particles. Furthermore, the fact that MCL cannot recover from
robot kidnapping is its another disadvantage. When the position of the robot is
well determined, samples only survive near a single pose. If this pose happens to
be incorrect, MCL is unable to recover from this global localization failure.

Thrun et al. [Thrun05] propose the Augmented MCL algorithm to solve the
kidnapped robot problem by adding random samples. However, adding random
samples can cause the extension of the particle set if the algorithm cannot recover
quickly from kidnapping. This algorithm draws particles either according to a uni-
form distribution over the pose space or according to the measurement distribution.
The former is inefficient and the latter can only fit the landmark detection model
(feature-based localization). Moreover, by augmenting the sample set through
uniformly distributed samples is mathematically questionable. Thus, Thrun et
al. [Thrun00d, Thrun00b, Thrun05] propose the Mixture MCL algorithm. This
algorithm employs a mixture proposal distribution that combines regular MCL
sampling with an inversed MCL’s sampling process. They think that the key dis-
advantage of Mixture MCL is a requirement for a sensor model that permits fast
sampling of poses. To overcome this difficulty, they use sufficient statistics and
density trees to learn a sampling model from data.

Different localization approaches represent this posterior bel(s;) in different
ways. The Kalman filter is a Gaussian filter, and represents the posterior belief
bel(sy) by its mean p; and its covariance ¥,

bel(s;) = det(27r2t)_5exp{—%(st — )T (s — o) } (3.12)

Grid localization uses a collection of discrete probability values {py.} to rep-
resent the posterior bel(s;) over a grid decomposition of the pose space:

bel(st> ~ {pk,t}kzl,n,K (313)

where each probability py; is defined over a grid cell.
MCL represents the posterior belief bel(s;) by a set of N weighted particles
distributed according to this posterior:
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bel(sy) ~ {<8£n]’w£n]>}n,1 N (3.14)

RN

n| . .
where wt[ Vs an importance factor.

3.2 EXTENDED KALMAN FILTER LOCALIZATION

The Kalman filter was invented in 1960 by Rudolph E. Kalman as a recursive
solution to linear filtering and prediction problems [Kalman60]. But now, the
Kalman filter has been extensively used to solve the mobile robot localization
problems, particularly the position tracking problem [Leonard91, Arsenio98, Gut-
mann98, Roumeliotis00, Jensfelt01].

The Kalman filter represents the posterior belief bel(s;) by a Gaussian with
mean y; and covariance Y, if the following three conditions are fulfilled [Thrun05].

1. The next state must be a linear function of the previous state and the control
with added Gaussian noise.

St = AtStfl + Btut -+ Wy (315)

where s; and s;_; are state vectors, u; is the control vector at time ¢t. A; is a
square matrix of size n x n and B, is a matrix of size n X r. n is the dimension
of the state vector s;. If s; represents a robot’s pose, then n = 3. r is the
dimension of the control vector u;. The vector w; describes the motion noise,
which is a Gaussian random vector and has the same dimension as the state
vector.

p(ws) ~N(wy; 0, Ry) (3.16)

where N (wy; 0, R;) denotes the Gaussian distribution with mean zero and co-
variance R; (an m X n matrix).

By combining Equation 3.15 with the definition of the multivariate normal dis-
tribution (Equation A.5), the motion model of the Bayes filter can be described
as follows

p(se|sio1,u) = det(2rR,) "2
1 S (3.17)
eXp{_ﬁ(St - Atst—l - Btut) Rt (st - AtSt_l - Btut)}

2. Observations must be linear functions of the state with added Gaussian noise.

Zt = CtSt -+ vy (318)
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where C} is a matrix of size k x n. k is the dimension of the measurement vector
z;. The vector v; describes the measurement noise, which has the same dimen-
sion as the measurement vector. Its distribution is a multivariate Gaussian
with zero mean and covariance @; (a k X k matrix).

p(ve) ~N (0450, Q) (3.19)
The perception model can be represented by the following multivariate Gaus-
sian.
1
p(z|sy) = det(QWQt)_%eXp{—E(zt — Cys) T Q7 (2 — Cysy)} (3.20)

3. The initial belief bel(sp) must be Gaussian. Its mean can be denoted by po and
covariance by .

bel(s0) — det(2w20)_éexp{—%(so ) S (s — o)) (3.21)

If all above three assumptions are met, the posterior of the Bayes filter is a
Gaussian for any point in time ¢.

bel(s;) = det(27r2t)_5exp{—%(st — 1) S (s — o) } (3.22)

However, motion models and perception models are nonlinear in practice. The
plain Kalman filter is inapplicable in such situations. A Kalman filter that lin-
earizes about the current mean and covariance is referred to as an extended Kalman
filter or EKF [Maybeck79]. Now, the state transition and the measurement are
governed by nonlinear functions g and h, respectively.

s¢ = g(ug, S4—1) + wy (3.23)

ze = h(st) + vy (3.24)

where the random variables w; and v; again represent the state transition noise
and the measurement noise as in Equation 3.15 and Equation 3.18. The nonlinear
function g relates the state transition from time ¢ — 1 to time ¢ under the control
u;. The nonlinear function A relates the measurement z; and the state s;.

The EKF uses Taylor expansion to linearize nonlinear functions. The Taylor
expansion is a representation of a function as an infinite sum of terms calculated
from the values of its derivatives at a single point. For the nonlinear function g,
the derivative is given by its partial derivative and the point is chose at the mean
of the posterior p;_1.

g/(utu ,utfl)

1 (8e-1— pe—1) (3.25)

g(ug, si-1) = glug, pu—1) +
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where

8g(ut St—l)
/ o )
g (Uta ,Ut—1) : —aSt—1

St—1=Ht—1
where G; is called Jacobian of the function g, which is a matrix of size n X n. n is

the dimension of the state s;. In practical applications, we ignore high order terms
in Equation 3.25.

g(ug, se-1) = g(ug, pre—1) + Ge(Se—1 — pe—1) (3.27)

The motion model is thus written by the following multivariate normal distri-
bution.

. 1
P (selsir,ue) = det2mRe) 2 exp{—(se — glus, pe1) = Gelse-1 = pi-1))”
(3.28)

Rt_l(st - g(utaﬂt—l) - Gt(st_l - Mt—l))}

For the measurement function h, the same linearization is implemented. The
Taylor expansion is developed around ji;, which is considered as the most likely
state at time of linearization.

h(se) = h(fe) + B (fe) (e — fue) (3:29)
where
W) =
_ (3.30)

where H; is the Jacobian matrix of the measurement function with the dimension
of k x n.
Thus, the perception model can be written by a Gaussian as follows

(e s0) = det(2nQu)Hexp{—35 (20 — h(f) = Hulse — )"
(3.31)

Q; (2 — h(jwe) — Hy(se — i)}

The EKF algorithm is described in Algorithm 3.2. It accepts as input the belief
represented by ;1 and ;1 at time ¢ — 1, the control u; and the measurement



48 3.2. EXTENDED KALMAN FILTER LOCALIZATION

2. It outputs the belief represented by u; and ¥; at time ¢. This algorithm is
implemented in two steps: prediction (or the control update) and correction (or
the measurement update), which correspond to the Bayes filter (see Figure 3.1).

1. The prediction step, including lines 2 and line 3, calculates the predicted belief
bel(s;) represented by fi;_1 and ;1. This belief is obtained by incorporating
the control u;, before incorporating the measurement z;.

2. The correction step, including lines 4 to 8, calculates the predicted belief @(st)
represented by ji;_; and 3,_;. This belief is obtained by incorporating the con-
trol u;, before incorporating the measurement z;. The variable th, computed in
line 4 is called the measurement innovation (or residual). It reflects the discrep-
ancy between the predicted measurement h(ji;) and the actual measurement z;.
Line 5 calculates the innovation (or residual) covariance D,. Line 6 computes
a variable K, that is called Kalman gain. It specifies to what extent the inno-
vation should be taken into account in the posterior state estimate. The new
mean of the posterior belief is calculated in line 7, by adjusting it in proportion
to the Kalman gain K; and the innovation dy. Finally, the new covariance of
the posterior belief is determined in line 8.

Algorithm 3.2: Extended Kalman filter algorithm
1: Input: Ht—1, Et—h Ut , 2t
2 iy = g(uta :ut—l)
3%, = GtZt_thT + R; % prediction

dy = 2 — h(fiz)

D, = HtithT +Qy

K, =Y%HI'D;!

Mo = g + K,d,

S = (I — KiHy)%, % correction
Output: pu, 2

If the EKF algorithm is implemented accurately and the initial values po and
Yo can reflect accurately the distribution of the initial state, there will be some
properties [Wik].

E(s; — ) =E(se — i) =0 (3.32)

E(d) =0 (3.33)

Equation 3.32 and Equation 3.32 reflect that expected values (mean errors) of
all estimates are zero.
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Correction (Measurement Update)
Prediction (Control Update ) (1) Compute the Kalman gain
(1) Project the state ahead K, = fthT(HtthT + Qt)fl
=8, 1, 1) (2) Update estimate with measurement z,
(2) Project the error covariance ahead M =p+K (z,—h(y))
%, =G3, G/ +R (3) Update the error covariance
2y, :(I_Kth)Zt

|

Initial estimates z, ,2%, ,

Figure 3.1: A complete diagram of the operation of the extended Kalman filter,
adapted from [Welch95].

¥ = Cov(sy — ) (3.34)
¥, = Cov(s, — i) (3.35)
D, = Cov(d,) (3.36)

Equation 3.34, 3.35 and Equation 3.36 show that covariance matrices accurately
reflect the covariance of estimates.

The EKF discussed so far is a general situation. In order to extract a EKF
localization algorithm, we need to select the proper motion model and perception
model. We now discuss a concrete implementation of the EKF for the velocity
motion model and the feature-based perception model (see Chapter 2). Here, we
only briefly restate the definition. The velocity motion model is defined as

Xy Ty Oycos(0) At
Yo | =\ v | + | Usin(0)At (3.37)
Qt 61}—1 (I)tAt

where v, and w; denote the true translational velocity and rotational velocity,
respectively. They are generated by motion control, u; = (vi,w;)?, with added
Gaussian noise.

(3):<3>+<2)=(3)+Nmm> (3.38)

where €,2 and €,2 are two independent Gaussian error variables with zero-mean and
standard deviations o; and o5, respectively. o, and o, are two variables relative
to the control velocities v and w.
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Thus, the motion model can be decomposed into a noise-free model with a
random Gaussian noise.

Ty Ti_q vicos(6) At
yo | =\ wr | + | wsin(@)At | +N(0, Ry) (3.39)
Qt 9t_1 tht

st g(ut,st—1)

The same decomposition is applied to the feature-based perception model. The
correspondence is assumed to be known via the correspondence variable ¢;. Let
j = ¢! be the identity of the i'* feature observed at time t corresponds to the ;™
landmark in the map.

7‘2 \/(sz —x)? + (Myy — yr)?

v | = | atan2(mjy —yi,mye — x) — 0 | FN(0,Qy) (3.40)
TtZ mg.r
2 h(s:,;,m)

where m;, and m;, denote the coordinates of the i’* landmark detected by the
robot (that is identical to j* landmark in the map); m;, is its signature.

The EKF localization algorithm is depicted in Algorithm 3.3, which assumes
knowledge of the landmark correspondences. This algorithm is derived from the
EKF algorithm (Algorithm 3.2). The input is the posterior belief of the robot pose
at time t — 1, represented by the mean y;_; and the covariance ¥;_;. To update
these parameters, it requires the control u;, a set of feature measurements z; along
with the correspondence variables ¢; at time ¢, and the map m. The output is a
new estimate of the robot pose at time ¢, represented by u; and ;. Like the basic
EKF algorithm, it also implements in two steps: prediction and correction.

1. Prediction includes lines 2 to 6. Lines 2 and 3 compute the necessary Jacobians
for linearizing the motion model. Line 4 determines the motion noise covariance
matrix in control space, where o7 and o5 are two variables relative to the control
velocities. Lines 5 and 6 implement the motion update and the result is the
predicted belief bel(s;) represented by ji; and ¥;. The multiplication V;M,V;"
in line 6 translates the motion noise from control space to state space.

2. Correction includes lines 7 to 19. Line 7 computes the measurement noise co-
variance matrix. Lines 8 to 17 implement the measurement update in a loop
through all features observed at time t. Line 9 represents the it feature ob-
served by the robot is the j* landmark in the map. Lines 10 to 12 calculate a
predicted measurement Zz; and the Jacobian of the measurement model. Line
13 calculates the innovation covariance D!, which depicts the uncertainty corre-
sponding to the predicted measurement z;. The Kalman gain K} is calculated
in line 14. Lines 15 and 17 update the mean fi; and the covariance 3. Finally,
the new pose estimate is obtained in lines 18 and 19.
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Algorithm 3.3: EKF localization algorithm with known correspondences

1:

2:

3:

10:

11:

12:
13:
14:
15:
16:
17:
18:
19:

Input: g1, 21, U, 2, ¢, m

. 8 _
calculate Jacobian G; = %
st—1 St_1=f1t—1
. 9 St
calculate Jacobian V;, = g(uaf—stl)
“t St—1=Ht—1

2
(o1 O
Mt_(O 0%)

vy cos(pe—1,9) At
P = pu—1+ | vesin(pe—1,9)At
BIVAN
Y = GS G + ViMV,E
o2 0 0
Q: = 0 035 0
0 0 o?

T

for all observed features 2i = (ri, ¢!, 7/)" do

. g
J=¢

y Ve = fue)? + (Mg — fuy)?
Z = atan?(mj,y = Mty Mo — [ite) — Hip
m]”q—

Oh(st,j,m)

calculate Jacobian Hti = 5

st=it
Dj = Hi%y[HiJ" + Q
K = S (H]T[Dj]
fiy = iy + Ki(zi — Z0)
5, = (I - KIH))S,
end for
He = [
Y =3
Output: puy, 2,

The EKF offers an elegant and efficient tool for state estimation in robotics.
Its strength lies in its simplicity and its computational efficiency [Thrun05]. The
computational efficiency arises from the fact that it represents the belief by a
multivariate Gaussian distribution. However, a unimodal Gaussian is usually a
good representation of uncertainty in the position tracking problem whereas it is
not in the global localization problem. Furthermore, linearized Gaussian tech-
niques tend to work well only if the position uncertainty is small. Some multi-
hypothesis extensions make EKF accommodate in the global localization prob-
lem [Cox94, Reuter00, Roumeliotis00, JensfeltO1, Thrun05].
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3.3 GRID LOCALIZATION

Grid localization uses a histogram filter to approximate the posterior over a grid
decomposition of the state space [Thrun05]. The histogram filter decomposes a
continuous state space into finitely many bins or regions.

dom(S;) = Y1 Uthp U Uk,
— U Vit (3.41)
k

where S; is the random variable describing the state of the robot at time ¢. The
function dom(S;) denotes the state space. Each v represents a convex region.
All these regions together form a partition of the state space. For each i # k we
have

Yig NPy =10 (3.42)

For grid localization, each v represents a grid cell.

Figure 3.2 illustrates the histogram representation of the normal distribution.
This is an example how a histogram filter represents a random variable. Within
each region v, we assign a uniform probability to each state s. Here, we distinguish
probability P from the probability density p.

P(r) = p(se) x [¥ (3.43)

where || is the volume of the region .

The value of the uniform probability is usually approximated by the density
of the mean state in region 1, that is denoted as §;. Thus, geometrically the
probability within region v, is equal approximately to the acreage of the small
rectangle region.

() = (i) % ] = / p(s)ds (3.44)

(s
where § is the mean state in region ¢, which may be represented by

& = wkrl/ sds (3.45)

In the Markov localization, two key probabilities should be calculated, which
are the motion model and the perception model. Grid localization just computes
the two probabilities as follows

p(¢k,t |uta l/)i,t—l) ~1 Wkt’ P(§k,t ‘Uty §i,t—1) (3-46)

where 7 is the normalizer to ensure that this approximation is a valid probability
distribution.
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The normal distribution The histogram filter
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Figure 3.2: Histogram representation of the normal distribution.

p(2 Wkt) ~ p(2 ‘gkt> (3-47)

The grid localization algorithm is depicted in Algorithm 3.4. It is derived from
the Markov localization algorithm (see Algorithm 3.1). The input of the algorithm
is the discrete probability distribution {py -1}, along with the most recent control
u, measurement z; and the map m. It outputs the discrete probability values py ;
at time t. The variables v, and v; denote two individual grid cells, thus there
are two inner loop iterating through all grid cells. Line 3 calculates the prediction
based on a motion model (motion update). This prediction is then updated in
line 4 based on a perception model (perception update). Specific motion models
and perception models can be found in Chapter 2. The final probabilities py; are
normalized in line 6.

Algorithm 3.4: Grid localization algorithm, adapted from [Thrun05]

1: Input: {pkﬁt_l}kzl’__’K,ut,zt,m

2: for k=1 to K do

3 Prs =2 P(Se = i |Sie1 = Vi, u, m)piga % prediction
4 pre = p (2| = e, m) Py % correction

5: end for

6: normalize py

7: Output: {pkvt}kzl,---,K
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Grid localization is a nonparametric filter, so it has the ability to represent
multi-modal distributions. Furthermore, it always maintains a global multi-modal
distributions over the whole environment. Thus, it can solve the position track-
ing problem, the global localization problem and the kidnapped robot problem.
However, the key disadvantage of grid localization is the computational complex-
ity. The localization accuracy and the computational efficiency are two contrary
variables. To obtain a more accurate result, we need a finer decomposition. But
such a decomposition can cause computational costs to be increased exponentially.
Moreover, to represent the robot’s pose, a three-dimensional grid is needed. In the
algorithm 3.4, the motion update requires a convolution, which is a six-dimensional
operation for the three-dimensional grid. Therefore, the basic grid localization al-
gorithm cannot be executed in real-time. To reduce the computational complexity
of grid localization, a number of techniques are introduced in [Thrun05], such as
pre-caching technique, sensor subsampling, delayed motion updates and selective
updating.

Our studies focus on the pre-caching technique. It decomposes the state space
of the robot into grid and pre-computes measurements for each grid cell. Measure-
ment results are cached in memory. When the algorithm is implemented, instead
of the measurement operation, a much faster table lookup is used. We develop this
technique into Monte Carlo localization that will be introduced in next section.

3.4 MONTE CARLO LOCALIZATION

Monte Carlo Localization (MCL) is based on a particle filter, which represents the
posterior belief bel(s;) by a set of N weighted samples S; distributed according to
this posterior. As a consequence, the more intensive the region is populated by
samples, the more likely the robot locates there.

Sy = {<S£n]’wt[n}>}n17... N (3.48)

where S; is a particle set. Each particle SE”] with 1 < n < N denotes a concrete

instantiation of the robot’s pose at time t. N is the number of particles in the
particle set S;. It may be a fixed value or Changlngiv with some quantities related to

the belief bel(s;) [Fox01,Fox03a,Blanco08]. The w; " is the non-negative numerical

factor called importance factor. We interpret wt[ } as the weight of a particle.

As MCL is a Bayes-based Markov localization algorithm, it calculates the par-
ticle set S; recursively from the set S;_;. The basic MCL algorithm is depicted
in Algorithm 3.5. It represents the posterior belief bel(s;) by a set of particles S,
therefore it accepts as input a particle set S;_; along with the latest control wu,
measurement z and the map m. It outputs the particle set S; at time ¢. S; is a
temporary particle set, which represents the belief bel(s;). Before each iteration,
we empty the temporary particle set S, and the particle set S,. This recursive
algorithm is realized in three steps.

1. Line 4 generates a sample st ) based on the sample s,[f ]1, the control u; and



CHAPTER 3. MARKOV LOCALIZATION 55

the map m. It is implemented according to sampling algorithms of motion
models presented in Section 2.2.2. Obviously, the pair <s,[f"], syi]1> is distributed
according to the product distribution.

p (81[:”]

In accordance with the literature on the Sampling Importance Resampling
(SIR) algorithm [Smith92, Doucet00], this distribution is called the proposal
distribution. It corresponds to the Equation 3.7 of Bayes filters except for the
absence of the integral sign.

S@l,ut,m) X bel(s@l) (3.49)

2. Line 5 calculates the importance factor MP‘] for each particle SL”}. The important

factor is used to correct the mismatch between the proposal distribution and
the desired target distribution specified in Equation 3.8. It is restated here for
the MCL algorithm.

) p (o

Thus, the importance factor wt[n] is the probability of the measurement z; under

the a hypothetical state SL”}, which incorporates the measurement z; into the

particle set.

np (zt sﬁl,ut,m> bel(sﬁl) (3.50)

target distribution

[n]
w
¢ proposal distribution

) p (51 [ e ) et
P (Sl[tn] 3@1, ut,m> bel(sﬁl)

SL”]) (3.51)

np (Zt

= np (Zt

where the normalization 7 is a constant, which plays no role in the compu-
tation since the resampling takes place with probabilities proportional to the
importance weights [Thrun05].

The process of calculating the importance factor is the measurement update,
which can be implemented based on probabilistic algorithms of perception mod-
els introduced in Section 2.3.4. The importance factor win] can be seen as the
weight of a particle SL”]. Thus, the weighted particle set S; can represent ap-
proximately the posterior belief bel(s;), but it does not distribute with this

posterior yet.

3. To make the weighted particle set S, distribute according to the posterior
belief bel(s;), this algorithm involves resampling (or called importance sam-
pling) [Thrun05]. It is implemented in lines 9 to 12. Resampling re-draws N
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particles according to the posterior belief bel(s;) to replace the temporary par-
ticle set S; (see Appendix B). It transforms the temporary particle set S; into
a new particle set of the same size. Before resampling, the particle set is dis-
tributed according to bel(s;). After resampling, the particle set is distributed
according to bel(s;).

Algorithm 3.5: Basic MCL algorithm, adapted from [Thrun05]
1: Input: S;_1,us, 2z, m
2: St = St =0
3: forn=1to N do
4

generate a particle SE"] ~p <St 5@1, Uy, m) % prediction
5. calculate an importance factor w,?” =p <zt sL"km) % correction
6: add <sl[5n],w£n]> to S,
7: end for
8: normalize wy
9: forn=1to N do
10:  draw sﬁ” with importance factors wln] % resampling
11:  add s to S,
12: end for

13: Output: S;

MCL is a nonparametric filter, too. It inherits the nonparametric nature that
can represent complex multi-modal probability distributions. Thus it is applicable
to both the position tracking problem and the global localization problem. MCL
is implemented more efficiently than grid localization, because it is a random sam-
pling algorithm that only calculates the posterior beliefs of samples. In practice,
to obtain the same accurate result, MCL needs less samples than grid cells of
grid localization in the same environment. However, the accuracy is increased
with the size of the sample set. It also trades off the accuracy of localization and
the computational efficiency. To employ the pre-caching technique can allay this
conflict.

MCL performs poorly when the noise level is too small. Since errors of sen-
sor models are described by Gaussian distributions, accurate sensors bring on a
strict “resampling rule”. In other words, accurate sensors generate sharp Gaus-
sian distributions, thus only little particles that are very close to the robot’s pose
can survive after resampling. To deal with this problem, a simple method is to
add artificial noise to the sensor readings. The more sensible solution is that for
a small fraction of all particles, the role of the motion model and the measure-
ment model are reversed. Such an approach is named the mixture MCL algo-
rithm [Thrun00d, Thrun00b, Thrun05].
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The basic MCL algorithm cannot solve the kidnapped robot problem, because
its particles only survive near the most likely pose when the robot’s pose is de-
termined. If the robot is kidnapped to other place, there will not be particles
near the new pose, so it is unable to recover from this kidnapping. A simple
solution to this problem is to add random particles to the particle set such as
Augmented MCL in [Thrun05], but this method suffers from significant com-
putational overhead. A better way to approach the degeneracy phenomenon
is to modify the proposal distribution of MCL, such as the mixture MCL al-
gorithm [Thrun00d, Thrun0Ob, Thrun05]. An alternative approach named Bac-
terial Colony Growth Framework (BCGF) is proposed by Gasparri et al. [Gas-
parri08a, GasparriO8b]. It is a new biology-inspired approach, which is composed
of two different levels of execution: a background level and a foreground level. The
first is based on models of species reproduction to maintain the multi-hypothesis,
while the second selects the best hypotheses according to an exchangeable special-
ized strategy.

3.5 HYBRID APPROACHES

In many practical situations, the single approach will not work sufficiently well,
since any approach has complementary strengths and weaknesses. Thus, some
hybrid strategies are proposed.

Baltzakis et al. [Baltzakis02, Baltzakis03] propose a probabilistic framework for
modeling the robot’s state and sensory information, based on Switching State-
Space Models. The proposed approach combines the advantages of both the
Kalman filter Linear models and the Hidden Markov Models (HMM), relaxing
at the same time inherent assumptions made individually in each of these existing
models. This framework uses HMM models to handle the qualitative aspects of the
problem, i.e., perform coarse localization, and Kalman filters to handle the metric
aspects, that is, elaborate on the previous result and provide accurate localization.

Another similar idea is proposed by Gasparri et al. [Gasparri07]. The imple-
mentation of their algorithm relies on two steps. First a particle filter is used to
find out the most likely hypotheses with the assumption of stillness of the robot.
Thereafter safe trajectories are planned and executed to reduce the remaining am-
biguities using an extended Kalman filter for each hypothesis when the robot is
moving.

Prestes et al. [Prestes08] present a strategy that combines path planning based
on boundary value problems (BVP) and MCL to solve the global localization prob-
lem in sparse environments. This approach distributes particles only in relevant
parts of the environment using the information about the environment structure.
Afterwards, it leads the robot along these regions using the numeric solution of a
BVP involving Laplace Equation.
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3.6 SUMMARY

In this chapter, we introduced Markov localization and three concrete localization
algorithms.

o We started with a review of the basic theory and derivation of the Bayes filter
and we obtained the final localization formula.

e Table 3.1 summarizes and compares three Markov localization approaches:
EKF, grid localization and MCL.

Table 3.1: Comparison of three Markov localization approaches.

EKF Grid MCL
localization
Posterior representation || Gaussian (f, ;) histogram particles
Position Tracking yes yes yes
Global Localization no yes yes
Kidnapping no yes no
Efficiency fast slow medium

e The localization problem can be divided into three sub-problems: position
tracking, global localization and the kidnapped robot problem. EKF local-
ization is the most common technique for dealing with the position tracking
problem. It applies the extended Kalman filter to the localization problem,
which represents the posterior belief bel(s;) by a Gaussian with mean p; and
covariance ;. Its advantages are simplicity and computational efficiency. But,
inapplicability to global localization is its main disadvantage.

e Grid localization represents the posterior belief bel(s;) by using a histogram
filter. It is capable of dealing with the position tracking problem and the
global localization problem. The main shortcoming of grid localization lies in
its computational complexity. The resolution of the grid trades off accuracy
and efficiency. That makes grid localization be difficult to implement in real
time.

e MCL represents the posterior belief bel(s;) by a set of weighted particles. It also
can solve the position tracking problem and the global localization problem.
It is more efficient than grid localization, since it only calculates the posterior
beliefs of samples. Usually, MCL requires less particles than grid cells of grid
localization in the map of the same size. Nevertheless, it also has to face the
computational efficiency problem. The basic MCL do not have the ability
to solve the kidnapped robot problem. Both grid localization and MCL are
non-parametric.
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4.1 INTRODUCTION

In the previous chapters, we have established motion models, perception models
and map models for solving the localization problem. Moreover, we have intro-
duced several classic localization approaches. In this chapter, we present some
concrete implementations that link individual models and algorithms by means of
simulation. The simulation is employed since it allows us to systematically vary
key parameters such as the noise level, thereby enabling us to test the algorithms
in extreme situations. We not only show localization results of these algorithms,
but also make the comparison between these algorithms. Exhaustive simulation
results make us understand intuitively advantages and disadvantages of these al-
gorithms. This chapter starts with the description of our simulator, and then
simulation results and comparison results are shown.

4.2 DESCRIPTION OF SIMULATOR

The simulator is programmed in MATLAB. MATLAB is a high-level technical
computing language and interactive environment for algorithm development, data
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visualization, data analysis, and numeric computation. It can solve technical com-
puting problems faster than with traditional programming languages, such as C,
C++, and Fortran [Mat]. Our simulator is just named as “a simulator”, but ac-
tually it controls both the simulated robot and the real robot. It drives the real
robot through the C language interface. The GUI (Graphical User Interface) of
the simulator is shown in Figure 4.1. It is composed of some function panels,
which control four main functions: localization, obstacles avoidance, path plan-
ning and path following. We will introduce briefly the common panels and the
panels relative to the localization problem.

e The Control Button panel comprises four buttons: INIT, RUN, STOP
and PAUSE. INIT is used to reset the simulator, such as the initialization
of states, parameters and drawing. RUN and STOP are used to start and
terminate the simulator, respectively. PAUSE can suspend the execution of
simulator.

e The VISU panel is designed to adjust the axis of the figure object in order
that the simulation process can display completely in the window. Buttons N,
E, S and O control the axis to move in the direction of the north, the east,
the south and the west, respectively. Button H makes the axis return to the
initial position. In order to display the robot’s position at any time, button G
can take the axis directly to the robot’s position.

e In the panel Map, we can either use the button OBSTACLES to construct
a map or choose a pre-built map in the listbox. We can also add obstacles to
a pre-built map by using the button OBSTACLES.

e From the listbox of the panel Method, we can choose which method we want
to use. The simulator integrates many approaches, such as EKF' localization,
grid localization, MCL localization and SAMCL (self-adaptive Monte Carlo
localization introduced in Chapter 5).

e In the panel Motion Control, we can choose which motion control model
will be used. For example, the differentially driven WMR is controlled by
the spinning speed of two wheels and the car-like WMR needs a translational
velocity and a rotational velocity as input. The JoyStick model can control the
robot by using the slider at the bottom of the panel. The But model controls
the robot by a target following algorithm. The Path Following model uses a
path following algorithm [Lapierre07a, Lapierre07b] to control the robot.

e In the panel Other, the button Pre-caching is used to pre-cache a map by
employing the pre-caching technique (see Section 5.2.1). The button Record
is used to record the process of the simulation into a small video and the button
Save Trajectory is used to save the trajectory passed by the robot.

e The State panel shows the state in four dimensions: the angular velocity of
wheels, the rotational velocity and the translational velocity for the car-like
WMR model and the simulation time.
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e The DVZ & Path panel includes control components of obstacles avoidance

and path planning.
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Figure 4.1: The GUI of the simulator programmed in MATLAB.

Figure 4.2 shows the operation window of the simulator. The simulator sim-

ulates a Pioneer 3-DX mobile robot equipped with 16 ultrasonic sensors.

The

blue (or deep gray in the grayscale image) triangle denotes the real robot and the
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green (or light gray) triangle denotes the odometry robot. The red (or deep gray)
segment denotes an obstacle (see Figure 4.2(b)). Segments distributed around
the odometry robot denote range sensors, which surround the odometry robot
but reflect measurements of the real robot (as shown in Figure 4.2(b)). In real-
ity, we cannot know the pose of the real robot thus only odometry surrounded
with sensors is displayed in the operation window. The ellipse consisted of blue
points is Deformable Virtual Zone (DVZ) used to control the collision avoidance
process [Cacitti0l, Zapata04, Zapata05]. For the same reason, DVZ is distributed
around odometry but reflects the detection of the real robot.

Y-axis
=

/4

Figure 4.2: The operation window of the simulator.

The simulated error is drawn from a normal distribution with mean zero and
standard deviation o (N(0,02)). In order to reflect the noise level (or error level),
we define a scalar value A, which represent the noise by a percentage form.

tandard deviati
noise level (A) = Srancare coviation (o) x 100% (4.1)
maximum range

4.3 SIMULATION SETUP

The implementation of simulations employs the following models and algorithms.

e Motion model uses the velocity motion model introduced in Section 2.2.2.1.

e Perception model employs the mixture perception model of range finders
presented in Section 2.3.4.1. If the parameters o,; = oy = o, = 0 in Equation
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2.28, this model is called the plain measurement model since only the Gaussian
noise is considered.

e Map uses the line map introduced in Section 2.4.1.1, in which only walls are
modeled.

e EKF localization employs Algorithm 3.2. This algorithm is originally de-
signed for feature-based sensor model; however we simulate the imprecise ul-
trasonic range finder. Hence, we have to adapt this algorithm for range finders.
Instead of the measurement of features z! = (ri, ¢i, /)7, the measurement of
range finders only consist of the range r!.

e Grid localization uses Algorithm 3.4.

e MCL localization employs Algorithm 3.5.

4.4 SIMULATION RESULTS

In this section, simulation results of EKF localization, grid localization and MCL
localization are shown. Then, these approaches are compared in the aspects of
efficiency and robustness. Simulation results are obtained by a low-end notebook

PC.

4.4.1 Position tracking: EKF versus MCL

As discussed in the previous chapters, both the EKF algorithm and the MCL
algorithm can solve the position tracking problem. This simulation focuses on
testing and comparing the performances of the two algorithms when they deal
with the position tracking problem. In this simulation, the robot will go around
in an absolutely symmetrical closed corridor. The perception noise level and the
motion noise level are about 4% and 3.53% for each wheel, respectively.

Figure 4.3 illustrates the position tracking results of a mobile robot using the
EKF algorithm in an absolutely symmetrical closed corridor. As we already dis-
cussed, the EKF represents the posterior belief by a multivariate Gaussian distri-
bution. This Gaussian is indicated by an uncertainty ellipse drawn in the reference
frame of the robot. The center and semi-axes of the ellipse correspond to the mean
and the covariance of the EKF, respectively. In the figure, the red ellipse is drawn
in each interval of 20 program iterations. The size of the ellipse augments with the
increased uncertainty. Three trajectories are shown: the robot’s trajectory, the
odometry’s trajectory and the EKF’s trajectory. They are denoted by the black
solid line (line A), the green dash-dot line (line C) and the red dotted line (line
B), respectively. Due to the motion errors, the odometry’s trajectory (line C) is
very different from the robot’s trajectory (line A). But the EKF’s trajectory (line
B) almost overlaps the robot’s trajectory (line A), that means a very satisfactory
localization.

In the simulation, we can calculate easily the errors relative to the position
of the robot. The localization error curves of the EKF and odometry are shown



66 4.4. SIMULATION RESULTS
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Figure 4.3: Position tracking using EKF in an absolutely symmetrical closed cor-
ridor. The trajectories of robot, odometry and EKF are displayed by the black
solid line (line A), the green dash-dot line (line C) and the red dotted line (line
B), respectively.

in Figure 4.4. Because the robot moves around in a closed corridor, odometry
accumulates huge errors over time. However, the EKF algorithm estimates the
robot’s pose with constant and small errors compared with odometry.

1'477””7””””T”””””””T 7777777777777777 S e oo H
e odometry B e I :

Errar (m)

0 10 20 30 40 50 60 70 80
Time (s)

Figure 4.4: Localization errors of position tracking using EKF in an absolutely
symmetrical closed corridor. EKF errors and odometry errors are plotted by the
red solid line and the green dash-dot line, respectively.

The same simulation with the same parameters is executed by the MCL algo-
rithm. We use 300 particles in the simulation. Figure 4.5 shows the trajectories
of robot, odometry and particles. Since there are 300 particles’ trajectories over-
lapping, so they look like a red belt.
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Figure 4.5: Position tracking using MCL in an absolutely symmetrical closed cor-
ridor. The trajectories of robot, odometry and particles are displayed by the black
solid line (line A), the green dash-dot line (line C) and the red dotted line (line
B), respectively.

In practice, we usually need to determine only one pose as the estimated pose
of the robot at each iteration and we can control the robot based on this estimated
pose. The pose of the particle owning the maximum probability or the arithmetic
mean of poses of all particles may be simply chosen as this unique estimated pose.
However, these choices partly or wholly ignore importance weights of particles.
Here, we select a weighted mean of poses of all particles with respect to their
importance weights. In particle filters, the importance weight of the particle is
a probability. Therefore, we can understand this weighted mean as the expected
value of particles. In equations, we have

N
G o= 3 s
n=1
= E(s) (4.2)

Figure 4.6 shows the three trajectories. The MCL’s trajectory is represented
by the expected value of particles. The red dotted line (line B), the black solid line
(line A) and the green dash-dot line (line C) depict the trajectories of MCL, the
robot and odometry, respectively. As shown in the localization results, MCL has
bigger errors than EKF in such an absolutely symmetrical closed corridor. The
same result can be found in Figure 4.6. Compared with Figure 4.4, localization
errors of MCL are lager than EKF. The MCL algorithm performs worse than the
EKF algorithm for two main reasons.
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1. EKF represents the posterior belief using a unimodal Gaussian, which has a
better performance than MCL that represents the posterior belief by multi-
hypothesis in the position tracking problem.

2. In an absolutely symmetrical corridor environment, there are not enough differ-
ences to update beliefs of particles. Most of the time, probabilities of particles
tend to be equal, so particles converge slowly. That leads to bigger errors.

Y-axis (m)

X-axis (m)

Figure 4.6: Position tracking using MCL in an absolutely symmetrical closed cor-
ridor. The localization result is represented by the expected value of particles.

Figure 4.7: Localization errors of position tracking using MCL in an absolutely
symmetrical closed corridor. MCL errors and odometry errors are plotted by the
red solid line and the green dash-dot line, respectively.

Figure 4.8 shows average error curves of EKF (red dotted line) and MCL (black
solid line) at different odometric noise level. This simulation tests and compares
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the robustness of EKF and MCL in solving the position tracking problem. It
is executed in the absolutely symmetrical corridor map. In this simulation, we
use a fixed perception error. Considering the simulation simulating an ultrasonic
perception system, the perception error level is fixed at 4%. We increase the motion
error gradually, EKF is more accurate when the error is small, but it failed when
the error mounted up to a certain level. The MCL algorithm always maintained
at an acceptable error level. This result shows that the MCL algorithm has much
greater fault tolerance than the EKF algorithm.
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Figure 4.8: Average localization errors of EKF (red dotted line) and MCL (black
solid line) as a function of motion noise.

Another simulation is executed in a quasi-symmetrical corridor map. Both the
EKF algorithm and the MCL algorithm are tested for solving the position tracking
problem in this map. Figure 4.9 depicts the localization trajectories obtained by
using the EKF algorithm. The EKF’s trajectory (line B) almost covers the robot’s
trajectory (line A). Figure 4.10 depicts the localization error curves, almost all of
the localization errors are less than 0.5m. Thus, the EKF algorithm is fully capable
of estimating the robot’s position in this map.

The MCL algorithm is tested with the same parameter settings in the quasi-
symmetrical corridor. As shown in Figure 4.11 and Figure 4.12, the MCL algorithm
performs as well as the EKF algorithm in this map. The non-symmetric parts of
the map provide differences to update beliefs of particles for the MCL algorithm.

According to previous simulation results, we will make a brief summary of the
performances of EKF and MCL in the position tracking problem.

e In the absolutely symmetrical corridor environment, EKF performs better than
MCL.

e In the quasi-symmetrical corridor environment, MCL performs as well as EKF.
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Figure 4.9: Position tracking using EKF in a quasi-symmetrical corridor. The
trajectories of robot, odometry and EKF are displayed by the black solid line (line
A), the green dash-dot line (line C) and the red dotted line (line B), respectively.
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Figure 4.10: Localization errors of position tracking using EKF in the quasi-
symmetrical corridor. EKF errors and odometry errors are plotted by the red
solid line and the green dash-dot line, respectively.

e Generally, MCL has much greater fault tolerance than EKF.

4.4.2 Global localization using MCL

This simulation aims at testing the ability of global localization and the robustness
of the MCL algorithm. The quasi-symmetrical corridor map (the same as using
in position tracking) is used. In order to test the robustness of MCL, we add 6%
perception noise and 8.82% motion noise to each wheel (larger than the test of
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Figure 4.11: Position tracking using MCL in a quasi-symmetrical corridor. The
trajectories of robot, odometry and MCL are displayed by the black solid line (line
A), the green dash-dot line (line C) and the red dotted line (line B), respectively.

] R AR LT e 1

odometry
| | —MCL

Errar {m

Figure 4.12: Localization errors of position tracking using MCL in the quasi-
symmetrical corridor. MCL errors and odometry errors are plotted by the red
solid line and the green dash-dot line, respectively.

position tracking). In the global localization problem, the robot does not know its
initial pose. Thus, there are 300 particles distributed randomly in the whole map
with uniform probabilities (as shown in Figure 4.13).

Figure 4.14 shows the localization trajectories. The red dotted line (line B)
depicts the trajectory of MCL. This trajectory has bigger errors at the beginning,
since particles are distributed randomly in the initialization phase. After particles
converging, this trajectory covers well the robot’s track (line A). However, the
odometry’s track (line C) is far away from the robot due to the motion error.

The same result can be learned in Figure 4.15. Since particles are initialized by
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Figure 4.14: Global localization using MCL in a quasi-symmetrical corridor. The
trajectories of robot, odometry and MCL are displayed by the black solid line (line
A), the green dash-dot line (line C) and the red dotted line (line B), respectively.

a random distribution, the localization errors of MCL are large at the beginning.
But the errors decrease quickly with particles converging. In contrast, odometry
has small errors at the beginning, but its errors accumulate with time.
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Figure 4.15: Localization errors of global localization using MCL in a quasi-
symmetrical corridor. MCL errors and odometry errors are plotted by the red
solid line and the green dash-dot line, respectively.

4.4.3 Grid localization

As discussed in Section 3.3, the primary disadvantage of grid localization lies in
its computational complexity. For example, the quasi-symmetrical corridor map
used in MCL has a dimension of 25m x 10m. Using the MCL algorithm, the
localization can be achieved by using only 300 particles. However, even if grid
localization employs a coarse resolution of 0.5m x 0.5m (the localization errors of
MCL are less than 0.5m) to decompose this map, it will produce 1000 grid cells
that are much more than the number of particles. Moreover, if a three-dimensional
grid (included z, y and 0) is used, the motion update requires a convolution, which
is a 6-D operation [Thrun05]. The measurement update of a full scan is a costly
operation, too. The computational burden is so huge that this algorithm almost
cannot be executed in real-time.

For the above reason, we design a simpler simulator. The simulated robot’s
pose only comprises x — y coordinates without considering its orientation €, thus
a two dimensional grid is used corresponding to the robot’s pose. The robot is
equipped with two mutually perpendicular range finders, which are assumed to
be capable of measuring anywhere in the map. The simulated environment is a
square room of 20m x 20m.

Figure 4.16 shows the localization results of 2-D grid localization by using
different resolution grids. The blue circle denotes the simulated robot and its
trajectory is drawn by blue line (line A). The black cross denotes odometry robot
and the black line (line C) is its trajectory. The red line (line B) links these grid
cells owning the largest probability.

The grid cell with the biggest probability is annotated by the red square. The
grid cell with bigger probability (higher than 0.1) is only annotated by the blue
dot. As shown, some grid cells with bigger probability are passed by the robot’s
trajectory. This proves it is more reasonable that the probabilistic approach rep-
resents uncertainties using a probability distribution instead of relying on a single



74 4.4. SIMULATION RESULTS

“best position”.

When a finer resolution is used, the red line (line B) is closer to the blue line
(line A), namely, the localization is more accurate. In the simulation, resolutions
shown in Figure 4.16(a), (b), (c) can be used to estimate the robot’s pose. But
when the grid cell size augments to 5m x 5m, the estimation of the robot’s pose
cannot be achieved yet (as shown in Figure 4.16(d)).
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Figure 4.16: Localization results of 2-D grid localization with different resolutions.

Figure 4.17 plots the average localization error curve as a function of grid cell
size. As to be expected, the localization error increases as the resolution decreases.
When the grid resolution is equal to 5m, the localization cannot be achieved.

Figure 4.18 plots the average localization time curve as a function of grid
resolution. The total time necessary to localize a robot decreases as the grid
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becomes coarser.
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Figure 4.17: Average localization error as a function of grid cell size.
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Figure 4.18: Average localization time needed for global localization as a function
of grid resolution.

These simulation results demonstrate the fact discussed in Section 3.3, using
the finer grid can get a more accurate result, but at the expense of increased

computational costs.
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4.4.4 Mixture perception model in the dynamic environment

In section 2.3.4.1, we have discussed a mixture perception model merging four types
of measurement errors. This mixture perception model is tested and compared
with the plain measurement model (only the Gaussian noise is considered) in
a dynamic environment. The simulated robot (the blue or deep gray triangle) is
equipped with five ultrasonic sensors around its head. The sensor range is assumed
to be large enough to detect anywhere of the map. The simulated environment is
a square room of 20m x 20m.

The mixture model is implemented with the MCL algorithm. At the initial
step, 150 particles are distributed randomly in the whole map (global localiza-
tion). Figure 4.19(a) depicts MCL with the plain measurement model and Figure
4.19(b) depicts MCL with the mixture perception model. Both two can achieve
the localization at the 50" step, since there are no unknown obstacles. The first
two unknown obstacles (upper and left) are added in the robot environment at the
100" step and the other two unknown obstacles (lower and right) are added at
the 200" step. MCL with the plain measurement model fails to localize the robot
when unknown obstacles are added (see Figure 4.19(a)). However, MCL with the
mixture perception model performs well during the whole positioning process (see
Figure 4.19(b)).

4.5 SUMMARY

In this chapter, we tested EKF localization, grid localization and MCL by simu-
lations. We also analyzed and compared these simulation results.

e We started with the description of the simulator. The GUI and the operation
window are depicted.

e Table 4.1 summarizes and compares simulation results of EKF and MCL in
position tracking.

Table 4.1: Intuitive comparison of EKF and MCL by simulation.

| EKF \ MCL |
Position tracking in the absolutely good medium
symmetrical environment
Position tracking in the good good
quasi-symmetrical environment
Robustness with respect to errors low high

e The first simulation tested EKF and MCL for position tracking in an abso-
lutely symmetrical closed corridor. Localization results show that EKF has
a better performance than MCL. EKF represents the posterior using the uni-
modal Gaussian, which is more suitable to track the robot in such an environ-
ment. However, MCL maintains the multi-modal distribution and beliefs of
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particles tend to be equal most of the time, thus particles converge slowly in
the symmetrical environment.

e Another trial of position tracking was implemented in a quasi-symmetrical
corridor. This time, both EKF and MCL can work well in this environment.
MCL can update beliefs of particles when it feels differences of the environment.

e We compared EKF with MCL in the robustness. MCL can tolerate more errors
than EKF.

e Global localization was tested with MCL in the quasi-symmetrical corridor.
MCL performed well in global localization.

e Grid localization was tested by a simpler simulator due to considering its com-
putational costs. It is evaluated by using different resolution grids. Simulation
results demonstrate that the finer grid can get a more accurate result, but at the
expense of increased computational costs. If we want to use the grid approach,
we must find out the balance between the accuracy and the efficiency.

e We employed MCL to compare the plain measurement model with the mixture
perception model in the dynamic environment.
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MCL with the mixture perception model in the dynamic environment.
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51 INTRODUCTION

In this chapter, we introduce the Self-Adaptive Monte Carlo Localization algo-
rithm, abbreviate as SAMCL. As discussed thus far, the localization problem can
be divided into three sub-problems: position tracking, global localization and the
kidnapped robot problem. In the position tracking problem, the initial robot pose
is known. But for global localization, the robot has no initial knowledge of its
pose. The most difficult kidnapping problem can be described as a well-localized
robot is teleported to some other place without being told. Due to the specific
nature of these problems, it is difficult to find a general solution for all three.
The SAMCL algorithm, an improved Monte Carlo localization algorithm using
self-adaptive samples, is devised to solve all the three sub-problems. As discussed
in Section 3.4, MCL is applicable to position tracking and global localization,
however it has to face the issue of computational efficiency if a large number of
particles are used. Moreover, MCL is unable to recover from kidnapping (global



80 5.2. ALGORITHM DESCRIPTION

localization failures), since particles only survive near a single pose once the posi-
tion of the robot is determined. To overcome the problems of the MCL algorithm,
the SAMCL algorithm makes three contributions.

Firstly, it employs a pre-caching technique to reduce the on-line computational
burden of MCL. Thrun, Burgard, and Fox [Thrun05] use this technique to reduce
costs of computing for beam-based models in the ray casting operation. Our pre-
caching technique decomposes the state space into two types of grids. The first one
is a three-dimensional grid denoted as Gsp that includes the planar coordinates
and the orientation of the robot. It is used to reduce the on-line computational
burden of MCL.

The other grid is a two dimensional energy grid denoted as Gr. We define
energy as the special information extracted from measurements. The energy grid
is used to calculate the Similar Energy Region (SER) which is a subset of Gg
[Zhang(09a]. Its elements are these grid cells whose energy is similar to robot’s
energy. SER provides potential information of robot’s position, thus, sampling
in SER is more efficient than sampling randomly in the whole map. That is the
second contribution.

Finally, SAMCL can solve position tracking, global localization and the kid-
napped robot problem together thanks to self-adaptive samples. Self-adaptive sam-
ples are different from the KLD-Sampling algorithm proposed in [Fox03a, Thrun05].
Their sample set has an adaptive size, which can increase the efficiency of particle
filters. Our self-adaptive sample set has a fixed size, thus it does not lead to the
expansion of the particle set. In order to solve the kidnapping problem, a number
of global samples are necessary. “When to generate global samples” and “where
to distribute global samples” are two main problems. The self-adaptive sample
set can automatically divide itself into a global sample set and a local sample set
according to different situations. Local samples are used to track the robot’s pose,
while global samples are distributed in SER and used to find the new position of
the robot.

52 ALGORITHM DESCRIPTION

The SAMCL algorithm is implemented in three steps [Zhang09b, Zhang09e], as
illustrated in Figure 5.1.

e Pre-caching the map. The first step accepts the map m as input. It outputs
a three-dimensional grid Gsp and a two-dimensional energy grid Gg. The grid
G3p stores measurement data of the whole map and the grid Gy stores energy
information. This step is executed off line to reduce the on-line computational
burden.

e Calculating SER. The inputs of the second step are the energy grid Gg
obtained off-line in the pre-caching phase and the measurement data z; of the
robot at time ¢. The output is SER. This step is run on line.

e Localization. The last step accepts as input the particle set S;_1, control data
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uy, measurement data z;, the three-dimensional grid G3p and SER. It outputs
the particle set S;. This step is also run on line.

£On-line
Zt
oiflme --------------------------- : Calculating SER
' b SER
m Gy g St
« — | Pre-caching o Localization
G, !
3D
S
____________________________________ u,
Z

Figure 5.1: The process of the SAMCL algorithm.

5.2.1 Pre-caching the map

In the localization problem, the map is supposed to be pre-known by the robot
and be static. Hence, a natural idea is to decompose the given map into grid
and to pre-compute measurements for each grid cell. Our pre-caching technique
decomposes the state space into two types of grids.

e Three-dimensional grid (Gsp). The map is decomposed into a three-
dimensional grid that includes planar coordinates and the orientation. Fach
grid cell is seen as a pseudo-robot that perceives the environment at different
poses and stores these measurements. When SAMCL is implemented, instead
of computing measurements of the map for each particle on line, the particle
is matched with the nearest grid cell and then simulated perceptions stored
in this cell are assigned to the particle. Measurements are pre-cached off line,
hence the pre-caching technique can reduce the on-line computational burden.
Obviously, the precision of the map describing depends on the resolution of the
grid.

e Two-dimensional energy grid (Gg). Each grid cell of the energy grid pre-
computes and stores its energy. Energy is the special information extracted
from measurements. For range sensors, the measurement data are distances,
denoted as d for an individual measurement. We define i*" sensor’s energy
as 1 — d;/dmax, d; is the measurement of i sensor and dy.y is the maximum
distance that sensors are able to “see”. Then we calculate the sum of energy of
all the sensors. The advantage of using total energy of all the sensors is no need
to consider the orientation of the robot, thus we can reduce one-dimensional



82 5.2. ALGORITHM DESCRIPTION

calculation. These grid cells nearby obstacles will have larger energy than those
in the free space.

Please note that we can calculate the sum of energy to reduce one-dimensional
calculation based on an assumption that the robot’s sensors are distributed uni-
formly or quasi-uniformly around its circumference. The reason is simple. If a
robot has non-uniformly distributed sensors, it will obtain different energy at the
same location but different orientations. Figure 5.2 shows an example. A robot
with non-uniformly distributed sensors measures in a long and narrow room at
different orientations. Energy of case (a) can be computed as follows:

dy do ds
E, = (1— 1— 1— 1
( dmax ) + ( dmax ) + ( dmax ) (5 )
Energy of case (a) can be computed as follows:
€1 €9 €3
E,=(1- 1-— 1-— 2
Obviously, we have
E, > By (5.3)

Hence, we must take the orientation into account when these robots are used.

d,d.
dl\az' 3/

O

Figure 5.2: A robot with non-uniformly distributed sensors measuring in a long
and narrow room at different orientations. Energy of case (a) and case (b) is
different, even if the robot is at the same location.

The process of calculating energy for grid cells is shown in Algorithm 5.1. It
inputs the map m and outputs the two-dimensional energy grid Gg. In line 4,
each sensor of one grid cell measures the map using ray casting and gives the
distance dgk]. Line 5 computes energy ELEM of the " sensor of the k' grid cell.
Line 6 computes total energy E (k) of the I sensors of the k'™ grid cell. In line
7, we normalize total energy E(k). Hence, energy d&k] and total energy E(k) has
the same value interval [0, 1] as probability density. This energy grid is used to

calculate SER and will be presented in Section 5.2.2.
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Algorithm 5.1: Calculating energy for each grid cell
1: Input: m
2: for all the grid cell k € {1,--- , K} do
3:  for all the range sensors i € {1,--- I} do

4: measure and get distance JE’“] < dmax
5 A" =1 = d™ /s

- 1

6  EBk)=>Ya"
=1

7

7:  end for

8 normalize E(k) = 1E(k)
9: end for

10: Output: Gg

5.2.2 Calculating SER

Similar energy region (SER) is defined as a subset of Gg. Grid cells in SER
have similar energy with the robot. SER may be seen as the candidate region for
sampling, in which particles have higher probability. Information provided by SER
is used to match the position of the robot, such as the robot is in the corridor or
in the corner, is nearby obstacles or in the free space. Figure 5.3 shows SER when
the real robot is located in a corridor (a) and in a corner (b). To distribute global
samples, SER provides an a priori choice. Sampling in SER solves the problem of
where to distribute global samples. Obviously, sampling in SER is more efficient
than sampling stochastically in the entire map. Especially, if the robot is in a
distinct region such as Figure 5.3(b), the advantage of sampling in SER is more
significant.

An algorithm to calculate SER is shown in Algorithm 5.2. It accepts as in-
put the energy grid Gg obtained off-line in the pre-caching phase and the range
measurements d; of the robot at time ¢. It outputs SER. Lines 2 to 6 compute
total energy of the I sensors for the real robot. Lines 7 to 9 compares total sensor
energy of the real robot with total sensor energy of each grid cell. If the difference
is smaller than a given threshold §, we define this grid cell as a SER cell.

5.2.3 Localization

The SAMCL algorithm uses self-adaptive samples to solve the position track-
ing, global localization and the kidnapped robot problems together. Self-adaptive
samples can automatically divide themselves into a local sample set and a global
sample set and transform between them according to different situations. SAMCL
maintains local samples by regular MCL and distributes global samples in SER.
When the robot is well localized, SAMCL only maintains local samples around
the robot. Once the robot is kidnapped, part of samples migrate from local samples
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Figure 5.3: SER when the robot is (a) in the corridor and (b) in the corner.

to global samples. After the robot re-localizes itself, global samples are converted
as one part of local samples. Global samples are able to help the robot recover
from kidnapping. But they may also induce a wrong reaction, for instance, in
symmetrical environments, all the particles in symmetrical regions may have high
probability and the pose of robot could be ambiguous. Hence, the idea is that
global samples only appear when the robot is “really” kidnapped. The main ques-
tion is to know when the robot is kidnapped. We value whether the robot is
kidnapped by measuring the probabilities of particles. If the maximum of proba-
bilities of particles is less than a given threshold, the robot will deduce that it has
been kidnapped.

The SAMCL algorithm is summarized in Algorithm 5.3. It inputs the particle
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Algorithm 5.2: Calculating SER algorithm
1: Input: Gg,d;
2: for all the range sensors of the real robot i € {1,--- , I} do
32 a;=1—d;/dmnax

I
E = Zai
i=1

end for

>

normalize F = %E

for all the grid cell k € {1,--- , K} do
defining the grid cell k as a SER cell, if ‘E - E(k:)‘ <4

end for
10: Output: SER

set S;_1 at time ¢ — 1, motion control u;, measurements d; of the range sensors,
the three-dimensional grid Gs3p and SER. It outputs the particle set S;. Here, Np
denotes the total number of particles used in this algorithm, Ng is the number of
global samples distributed in SER, and Ny denotes the number of local samples
used for tracking the robot. We explain this algorithm in five parts.

Part1: sampling total particles. Line 2 generates a particle s,[fn] for time ¢ based
on the particle sﬁ]l and the control u;. Line 3 determines the importance weight
of that particle. Particularly, measurements of the particle are searched in Gsp.

Part2: determining the size of global sample set and local sample set. This
part distributes the number of global samples and local samples according to the
maximum of importance factors w;. If w;"** is less than the threshold £, we assume
the robot is kidnapped, part of particles Ng are divided as global samples. If not,
all the particles are local samples. The parameter o determines the ratio of global
samples and local samples. Here, the problem of when to generate global samples
is solved. The reason why we do not use all the particles as global samples is that
the robot may mistakenly believe that it is kidnapped. This more often occurs
in incomplete maps. Keeping part of local samples can reduce this mistake. ¢ is
a sensitive coefficient, which determines the sensitivity of SAMCL. The greater £
may make robot more sensitive to kidnapping, but on the other hand the robot
mistakes more frequently.

Part3: resampling local samples. The operation to resample local samples is
identical to regular MCL. At the beginning, importance factors w; are normalized.
Local samples are drawn by incorporating the importance weights.

Part4: drawing global samples. A real trick of the SAMCL algorithm is in
part 4, global samples are distributed in SER with a uniform distribution. The
advantage of sampling in SER is more efficient. This part is only executed when
the robot considers itself to be kidnapped.

Part5: combining two particle sets. At last, local sample set S and global
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sample set S are combined. The new sample set S; will be used in the next
iteration.

Algorithm 5.3: SAMCL algorithm
1: Input: S;_1, u, di, Gsp, SER
Sampling total particles
1: for n =1 to Nr do

2:  generate a particle sl[tn] ~ D <3t

3:  calculate importance factor wln] =p (zt

[n]

50, ut> % motion model

sl G3D> % perception model

4: end for
Determining the size of global sample set and local sample set

L if w** < ¢ then
2 Ny =a- Nr

3: else

4:  Np = Nr

5: end if

6: No = Nr — Ny,

Resampling local samples
1: normalize wy
2: for n=1to Ny, do
3. draw s/F with distribution w™
4:  add sEn]’L to SF
5: end for
Drawing global samples
1: for n =1 to Ng do
2:  draw s&n}’G with the uniform distribution in SER
3. add s/ to S¢
4: end for
Combining two particle sets
1. Sy =8FuS¢
2: Output: S,

5.3 SIMULATION RESULTS

The SAMCL algorithm inherits all the advantages of MCL, hence it has the abil-
ity to solve the position tracking problem and the global localization problem.
Moreover, it improves in several aspects compared with the regular MCL.
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e [t is more efficient than the plain MCL algorithm, since it employs an off-line
pre-caching technique.

e Similar Energy Region (SER) provides potential information of the robot’s
pose. Hence, sampling in SER is more efficient than sampling randomly in the
entire environment.

e [t can settle the kidnapped robot problem by using self-adaptive samples.

Thus, simulations focus on comparing SAMCL with MCL in computational ef-
ficiency and evaluating the performance of the SAMCL algorithm to solve position
tracking, global localization and the kidnapped robot problem.

5.3.1 Position tracking

The purpose of this simulation is to evaluate the ability of the SAMCL algorithm
to track the robot’s position. We use the same quasi-symmetrical corridor map
and the same number of particles (300 particles) as testing in MCL (see Figure
4.11). 6% perception noise and 8.82% motion noise are added in the sensor model
and the motion model, respectively. Figure 5.4 and Figure 5.5 depict localization
results in different ways. The former shows the trajectories of robot, odometry
and SAMCL and the latter presents the localization error curves of SAMCL and
odometry. From the two figures, it is easy to find that SAMCL performs as well
as MCL (see Figure 4.11 and Figure 4.12) in position tracking.

5.3.2 Global localization

This simulation aims at testing the global localization ability of the SAMCL algo-
rithm. The quasi-symmetrical corridor map and 300 particles are used (see Figure
4.13). In order to test the robustness of SAMCL, we add 6% perception noise and
8.82% motion noise to each wheel. The parameter settings and the experimental
environment are the same as testing MCL (see Section 4.4.2). Figure 5.6 shows the
trajectories of robot, odometry and SAMCL and Figure 5.7 shows the localization
error curves of SAMCL and odometry. Since particles are initialized by a random
distribution in the global localization problem, the localization errors are bigger at
the beginning. But errors decrease with particles converging. Simulation results
show that the performance of SAMCL is as well as MCL (see Figure 4.14 and
Figure 4.15) in global localization.

5.3.3 Comparison of computational efficiency

As discussed thus far, SAMCL is more efficient than regular MCL due to employing
the off-line pre-caching technique. Figure 5.8 plots execution time curves of MCL
without the pre-caching technique and SAMCL as a function of the number of
particles. The execution time is the robot online implementation time of the
first 20 steps. As to be expected, the execution time increases with the number of
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Figure 5.4: Position tracking using SAMCL in a quasi-symmetrical corridor. The
trajectories of robot, odometry and SAMCL are displayed by the black solid line
(line A), the green dash-dot line (line C) and the red dotted line (line B), respec-
tively.

5{.| ——SAMCL |------ e R R N

Figure 5.5: Localization errors of position tracking using SAMCL in a quasi-
symmetrical corridor. SAMCL errors and odometry errors are plotted by the
red solid line and the green dash-dot line, respectively.

particles, both for regular MCL (red dotted line) and for SAMCL (black solid line).
However, the augmentation of the execution time of regular MCL is enormous.
Particles from 1 to 1000, the execution time of regular MCL increases about 395
seconds, but for SAMCL, the execution time only increases about 4 seconds.
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Figure 5.6: Global localization using SAMCL in a quasi-symmetrical corridor.
The trajectories of robot, odometry and SAMCL are displayed by the black solid
line (line A), the green dash-dot line (line C) and the red dotted line (line B),
respectively.
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Figure 5.7: Localization errors of global localization using SAMCL in a quasi-
symmetrical corridor. SAMCL errors and odometry errors are plotted by the red
solid line and the green dash-dot line, respectively.

5.3.4 Kidnapping

Kidnapping is the most difficult problem in three sub-problems of localization.
Thus, we design three trials to evaluate the ability of SAMCL to recover from
kidnapping. These trials are based on global localization. particles are initialized
to distribute randomly in the map with uniform probabilities.
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Figure 5.8: Execution time of regular MCL and the SAMCL algorithm as a func-
tion of the number of particles.

5.3.4.1 Kidnapping in different environments with known heading direc-
tion

In the first simulation, the robot is kidnapped from the corridor to the room located
in the middle of the map. To reduce the difficulty, the heading direction of the
robot is supposed to be known after kidnapping. We add 6% noise to sensors and
8.82% noise to each wheel. 300 particles are used to estimate the robot’s pose.

As discussed in section 3.4, the basic MCL algorithm can solve the global
localization problem but cannot recover from robot kidnapping. Since all particles
only survive near the most likely pose once the robot’s pose is determined, there
will be no particle near the new pose. In other words, the plain MCL algorithm
does not have ability to re-distribute global samples. That is quite obvious from
the results in Figure 5.9. The robot is kidnapped from the corridor (position 1) to
the room (position 2) after particles converging. Both particles and odometry fail
to track the robot.

The same simulation is executed by the SAMCL algorithm. As shown in Figure
5.10, the robot’s trajectory (line A) shows that the robot is kidnapped from the
corridor (position 1) to the room (position 2). The odometry’s trajectory (line C)
shows that odometry has totally lost. However, the trajectory of SAMCL (line B)
re-tracks the robot’s trajectory (line A) with only little delay.

In order to depict kidnapping more clearly, trajectories are decomposed into
X-axis and Y-axis as shown in Figure 5.11. It can be found easily that kidnapping
happens both in the X-axis direction and the Y-axis direction at ¢t = 8.5s. Ac-
tually, the robot is kidnapped from the coordinate (3.94,0.28) to the coordinate
(—5.80,5.52). In this trial, SAMCL finds and recovers from kidnapping very soon,
since the robot is kidnapped between two different environments (from the corridor
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Figure 5.9: MCL for robot kidnapping. The robot is kidnapped from the corridor
to the room with known heading direction. The trajectories of robot, odometry
and MCL are displayed by the black solid line (line A), the green dash-dot line
(line C) and the red dotted line (line B), respectively.
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Figure 5.10: SAMCL for robot kidnapping. The robot is kidnapped from the
corridor to the room with known heading direction. The trajectories of robot,
odometry and SAMCL are displayed by the black solid line (line A), the green
dash-dot line (line C) and the red dotted line (line B), respectively.

to the room).

Figure 5.12 plots the localization error curves of SAMCL and odometry. Both
SAMCL errors and odometry errors increase suddenly when the robot is kid-
napped, however SAMCL recovers in a flash.
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Figure 5.11: Trajectories are decomposed to (a) X-axis and (b) Y-axis. Line A, line
B and line C depict the trajectories of robot, SAMCL and odometry, respectively.
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Figure 5.12: Localization errors of SAMCL and odometry. The robot is kidnapped
from the corridor to the room with known heading direction. SAMCL errors and
odometry errors are plotted by the red solid line and the green dash-dot line,
respectively.

5.3.4.2 Kidnapping in the same environment with known heading direction

The second trial is more challenging, since the robot is kidnapped in the same
corridor. The SAMCL algorithm cannot find kidnapping until the robot moves
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to the lower right corner. The parameter settings and the map used here are the
same as the first one. The heading direction of the robot is also supposed to be
known after kidnapping.

Figure 5.13 depicts the trajectories of robot, odometry and SAMCL. The robot
is kidnapped from position 1 to position 2 in the same corridor. After kidnapping
happens, odometry still naively believes that the robot is on the track. However,
SAMCL can find and recover from kidnapping. In practice, SAMCL does not
perceive kidnapping immediately since kidnapping occur in the same corridor (no
environment changes). This is clearly depicted in Figure 5.14.

Y-axis (m)
N
T

X-axis (m)

Figure 5.13: SAMCL for robot kidnapping. The robot is kidnapped in the same
corridor with known heading direction. The trajectories of robot, odometry and
SAMCL are displayed by the black solid line (line A), the green dash-dot line (line
C) and the red dotted line (line B), respectively.

In the Figure 5.14, trajectories of robot, SAMCL and odometry are decomposed
into X-axis and Y-axis, respectively. From Figure 5.14(a), we can find that the
robot is kidnapped about at ¢t = 3.7s and it is abducted about 3.8m far away in the
X-axis direction. The SAMCL’s trajectory shows that SAMCL does not realize
kidnapping immediately until the environment changes. Thus, to recover from this
global localization failure, SAMCL uses about 4.5s. In the Y-axis direction, there
is no visibly kidnapping occurred (see Figure 5.14(b)).

The localization error curves of SAMCL and odometry are shown in Figure
5.15. Sudden changes of error curves denote that kidnapping has happened. The
SAMCL algorithm recovers from kidnapping with some delay but odometry loses
itself totally.
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Figure 5.14: Trajectories are decomposed to (a) X-axis and (b) Y-axis. Line A, line
B and line C depict the trajectories of robot, SAMCL and odometry, respectively.
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Figure 5.15: Localization errors of SAMCL and odometry. Kidnapping occurs in
the same corridor with known heading direction. SAMCL errors and odometry
errors are plotted by the red solid line and the green dash-dot line, respectively.

5.3.4.3 Kidnapping in different environments with unknown heading di-
rection

The most difficult one for the robot is the third trial. In the previous two simula-
tions, the heading direction of the robot is supposed to be known after kidnapping.
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However, there is no knowledge about the heading direction of the robot in this
simulation. That means neither the x — y coordinates nor the orientation are
known after the robot is kidnapped. The robot is completely lost. To recover from
kidnapping, we have to use more particles. Three times more than the previous
two simulations (900 particles) are employed in this simulation.

Figure 5.16 illustrates the trajectories of robot, odometry and SAMCL. Line
A shows that the robot is kidnapped from the corridor (position 1) to the room
(position 2). Line B depicts that SAMCL can find kidnapping quickly but it does
not recover immediately. Since the lack of the heading direction, SAMCL needs
some time to converge its particles. Line C shows that odometry is not aware of
kidnapping.
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Figure 5.16: SAMCL for robot kidnapping. The robot is kidnapped from the
corridor to the room with unknown heading direction. The trajectories of robot,
odometry and SAMCL are displayed by the black solid line (line A), the green
dash-dot line (line C) and the red dotted line (line B), respectively.

After trajectories are decomposed into X-axis and Y-axis (as shown in Figure
5.17), we can find that the robot is kidnapped from the coordinate (6.24, —0.02)
to the coordinate (—4.85,4.84) at ¢t = 14s. SAMCL finds and recovers from kid-
napping within 1s.

Figure 5.18 plots the localization error curves of SAMCL and odometry. The
same as previous two trials, SAMCL can recover from kidnapping quickly and then
localize the robot accurately.

5.3.4.4 Kidnapping in the same environment with unknown heading direc-
tion

The case of kidnapping occurred in the same environment with unknown heading
direction is similar to the previous simulations. However, there are more SERs
when the robot lies in the corridor than it lies in a distinct region (as shown in
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Figure 5.17: Trajectories are decomposed to (a) X-axis and (b) Y-axis. Line A, line
B and line C depict the trajectories of robot, SAMCL and odometry, respectively.
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Figure 5.18: Localization errors of SAMCL and odometry. The robot is kidnapped
from the corridor to the room with unknown heading direction. SAMCL errors
and odometry errors are plotted by the red solid line and the green dash-dot line,
respectively.

Figure 5.3). Hence, to recover from kidnapping, the algorithm needs more samples
(even more than Kidnapping in Section 5.3.4.3). This leads to an augmentation
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of computation and it is difficult to implement the algorithm in real-time.

54 SUMMARY

In this chapter, we presented an improved Monte Carlo localization with self-
adaptive samples (SAMCL) to solve the localization problem. Comparisons of
SAMCL and other three plain Markov localization algorithms (EKF, grid local-
ization and MCL) are summarized in Table 5.1, which is the complement of Table
3.1.

Table 5.1: Comparison of SAMCL, EKF, grid localization and MCL.

EKF Grid MCL SAMCL
localization
Posterior Gaussian histogram particles particles
representation (e, 2¢)
Position yes yes yes yes
Tracking
Global no yes yes yes
Localization
Kidnapping no yes no yes
Efficiency fast slow medium fast

e The SAMCL algorithm inherits all the advantages of MCL, moreover it im-
proves in several aspects. SAMCL employs an off-line pre-caching technique
to reduce the expensive on-line computational costs of regular MCL. We de-
fined Similar Energy Region (SER), which provides potential information of
the robot’s pose. Hence sampling in SER is more efficient than sampling ran-
domly in the entire environment. By using self-adaptive samples, SAMCL can
deal with the kidnapped robot problem as well as position tracking and global
localization.

e We tested respectively the abilities of SAMCL to solve position tracking, global
localization and the kidnapped robot problem by simulations. Position tracking
and global localization were tested by using the same simulation settings as
MCL. Results show that SAMCL performs as well as MCL both in position

tracking and global localization.

e We compared SAMCL with regular MCL in computational efficiency. Due
to employing the pre-caching technique, SAMCL is much more efficient than
regular MCL without the pre-caching technique.

e Kidnapping was tested by three simulations with different difficulties. In the
first one, the robot is kidnapped from the corridor to the room and its heading
direction after kidnapping is supposed to be known. In the second one, the
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robot is kidnapped in the same corridor. It is more difficult because SAMCL
cannot feel kidnapping in the same environment. Kidnapping is recovered until
the robot moves into a different terrain. In this simulation, the robot also knows
its heading direction after kidnapping. The third one is the most challenging,
since there are no knowledge about the heading direction of the robot after it
is kidnapped from the corridor to the room. SAMCL performed well in all the
three simulations.
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6.1 INTRODUCTION

Cooperative multi-robot localization is different from single-robot localization or
multiple robots independent localization. It emphasizes cooperative localization
and allows robots to exchange and share information through communication.
Thus cooperative multi-robot localization has following advantages [Cao95,Fox00a,
Fox00b, Roumeliotis02, Burgard05, Liu05].

e Firstly, multiple robots can exchange their position information, which might
increase the robustness and efficiency of the localization algorithm. If one robot
of a robot team has been well localized, the confidence of its own position
would affect any other robot who can communicate with it. All these robots
can upgrade their positions based on their internal relationships with the well
localized robot.

e Secondly, multiple robots can share their sensor information, which might lower
the costs of the entire system. For example, several robots of a robot team
are equipped with expensive and accurate sensors such as laser range finders,
whereas others are only equipped with low cost sensors such as ultrasonic range
finders. By sharing sensor information, this robot team can almost get the
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same performance as the team where each robot is equipped with expensive
and accurate sensors.

e Thirdly, multiple robots can share information among different sensor plat-
forms, such as some robots are equipped with vision sensors and others are
equipped with range sensors, which make this robot team be able to adapt to
a more complex environment.

In order to solve the cooperative multi-robot localization problem, many vari-
ations of MCL have been proposed. Fox et al. propose a sample-based version
of Markov localization [Fox00a, Fox00b]. They use probabilistic detection models
to model the robots’ abilities to recognize each other. When one robot detects
another, these detection models are used to synchronize the individual robots’ be-
liefs. They employed density trees [Omohundro90] to integrate information from
other robot’s belief.

Liu et al. propose a MCL approach based on grid cells and characteristic
particles [Liu05]. They use grid cells to partition the whole particle set into several
areas and a changeable grid cells method to get the characteristic particles. The
characteristic particles are used to represent the whole particle set. Thus, the robot
just synchronizes beliefs of the characteristic particle set got from another. This
approach can reduce the communication delay and the computational complexity
to a certain extent.

Gasparri et al. propose an alternative approach that does not rely on Bayesian
frameworks. It is named the Bacterial Colony Growth Framework (BCGF) [Gas-
parri08a, GasparriO8b|. This approach is based on the models of species repro-
duction and it provides a framework for carrying on the multi-hypothesis. The
authors devised an algorithm extension (CBCG) to exploit information derived by
collaboration among robots.

We devise the Position Mapping (PM) algorithm to integrate information de-
rived from cooperation among robots [Zhang09c, Zhang09d]. The PM algorithm
is integrated into the SAMCL algorithm as an extension. Compared with other
multi-robot localization algorithms, the PM algorithm has two advantages. Firstly,
it allows one robot to cooperate with K robots rather than one robot at the same
time. Secondly, it synchronizes only one position and one belief instead of infor-
mation of the whole particle set. This reduces furthest the communication delay
and the computational complexity.

6.2 THE POSITION MAPPING APPROACH

For cooperative multi-robot localization, when robots are within their range of
visibility, three tasks should be completed by each robot: detection, data exchange
and location ! update.

!Concepts of a position (or pose) and a location have been distinguished in Section 2.2.1.1.
A position comprises the x — y coordinates and the heading direction 6, but a location only
comprises the x —y coordinates. We emphasize the location update, since no additional direction
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e Detection. In cooperative multi-robot localization, perception data are dis-
tinguished into two types: environment measurements and robot detections.

Zy={2;, 7]} (6.1)

where environment measurements are denoted as Z;, which are identical with
Equation 3.2 in Section 3.1.1.

Zte = {Zfazte—la"' >ZS} (62)

Robot detections are denoted as Z¢, which provide the information of presence
or absence of other robots and their relative relationships. If one robot R;
detects K other robots, we have

d Ri1 _Rig2 R; Kk
Zt = {Zt VRE T 5 R (63)

where the term ztR "7 represents measurements (such as geometric relationships,
colors, and shapes) obtained by the robot R; when the robot R; detects the
robot R;.

Now suppose environment measurements Z¢ and robot detections Z¢ are inde-
pendent. The probability p (s;|Z;) can be calculated as follows:

p(St |Zt) =Pp (St |Ztea th)
=p(se|Z7) - p (se]2) (6.4)
where the calculation of the term p (s; |Zf) is identical with Equation 3.4. The

probability p (s, | Z{) is not calculated directly. It will be merged into p (s;]Z;)
by the PM algorithm.

e Data exchange. If one robot detects K other robots, it sends data to K other
robots, including its own estimated location, the confidence of this location and
detections. At the same time, it receives the same data from K other robots.

— The estimated location is denoted as l;, which can be the mean pu,; of EKF,
grid cells of grid localization or particles of MCL.

— The confidence represents how much the robot trusts in the estimation of
its location, which is denoted as w;.

— Detection is denoted as Z& as above. It represents relative relationships
between the robot and other robots.

An example of data exchange among three robots is shown in Figure 6.1.

constraints are used, otherwise it is called position update. However, this approach is named
position mapping since it can also handle the case when considering direction information.
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Figure 6.1: Data exchange among three robots.

e Location update. Based on the estimated locations received from K other
robots and relationships extracted from detections, the robot calculates K
possible locations. In other words, if one robot detects K other robots, K
possible locations will be mapped. Thus, the position (location) mapping is a
bijective mapping (bijection), which can be stated in equation as follows:

i = f() (6.5)

where, ¥ represents a possible location and [§ represents an estimated location
received from another robot. The function f(x) is a one-to-one correspondence.

These possible locations replace the locations of particles owning the minimum
importance weight. The importance weights of these particles are replaced by
the confidence received from K other robots. Then the estimated location of
the robot is updated actually after resampling.

6.3 ALGORITHM DESCRIPTION

This section introduces the concrete implementation of the PM algorithm. As
mentioned above, a robot using the PM algorithm has the ability to cooperate
with K other robots at the same time, which is realized by projecting K possible
locations. However, to present conveniently, multi-robot cooperation is simplified
to bi-robot cooperation. For example, the cooperation of three robots shown in
Figure 6.1 can be decomposed to three couples of bi-robot cooperation. We define
generally two robot R; and R;, wherei € {1,--- K +1}, € {1l,--- K+ 1} and
1 # j. The PM algorithm will be discussed in two cases: one is that the robot R;
detects the robot R; but the robot R; does not detect the robot R;; the other is
that the robot R; and the robot R; detect each other.
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6.3.1 Only one robot detects the other

In this case, only the robot R; detects the robot R;. This may occur when the
sensors of the robot I; are incapable of detecting other robots; or when the robot
R; is out of the measurement range of the robot R;. We will discuss how both two
robot update their location using only one detection.

e Detection. We assume that the sensors of the robot R; have the ability to
measure geometric relationships to the robot R;, including the distance d; ; and
the angle «; ; between locations of two robots. Figure 6.2 shows the geometric
relationships when the robot R; detects the robot R;. In practice, the PM
algorithm use the angle ¥, ; to calculate the possible location. Based on the
obvious geometric laws, we have

191"]' = 02 — ai,j (66)

where the subscript ;; denotes the measurements provided by the robot R;
when it detects the robot R; and the subscript ; denotes the parameters be-
longing to the robot R;. 6; is the heading direction of the robot R;, which can
be obtained by odometry, localization algorithms or direction sensors. «;; is
the relative angle between two robot, which is extracted from sensors of the
robot R; directly.

Thus, the detection ztR “I provided by the robot R; can be represented as:

L ( & ) (6.7)
,]

(0,0) x

Figure 6.2: Geometric relationships when the robot R; detects the robot R;.
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e Data exchange. When the robot R; detects the robot R;, they will exchange
estimated locations and the confidence between each other. Moreover, they
will share the detection z; . Here, the estimated location is defined as the
expected value (or called weighted mean) of particles (see Equation 4.2). The
confidence is defined as the maximum of importance weights. In equations, we
have

I = B(LY) (6.8)
Gff = max(w/™) (6.9)

R: .R; R;;
lt Z7wt ’L’Zt 2]

R; R, (6.10)

where 1% is the expected value of L and L denotes the location set of
particles of the robot R;. &/ represents the confidence of the location 7.

29 denotes the detection generated by the robot R;. The arrow represents
the flow direction of data.

For the robot R;, we have the same calculations. Since the robot R; does not
detect the robot R;, it only sends its estimated location lf 7 and the confidence
~R;

w,” to the robot R;

19 = B(LY) (6.11)
ol = max(wfj) (6.12)
19 o

e Location update. The real “trick” lies in this step. Based on the estimated
location of the robot I; and the detection, the robot R; caculates one possible
location. The particles of the robot R; owning the minimum importance weight
are replaced by the possible location. Its importance weight are replaced by
the confidence received from the robot R;. This process can be described in
equation as follows.
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xi{zmzn xf‘j cos(V; )
( y ) y T\ sin(Uiy) (6:14)
" ~——
lfl,mzn l?]
wiomin — ol (6.15)

Rimi
l;

where " represents the location of the particle with the minimum impor-

tance weight of the robot R; and lf 7 is the estimated location of the robot
R;.

The location of the robot R; will be updated after resampling. We discuss

three possibilities for the location update.

— wlttmer %% Tn this case, the robot R; is more confident of its position
than the robot R;. It often occurs when the robot R; is localized better
than the robot R;. Thus, the robot R; updates its location.

— wlitma® ~ 5 % On the contrary, the robot R; is more confident of its

position in this case. Thus the confidence received from R; is helpless to
update the location of the robot R;.

— wltma® ~ of% . In this case, the robot R; and the robot R; have the same

confidence in their position. Whether both two robots trust their locations
or not, the update is valueless.

By sharing the detection obtained from the robot R;, the robot R; can update
its location through the same process.

6.3.2 Two robots detect each other

In this case, both two robots have the ability to detect each other, and that they
generate detections to each other.

e Detection. For the robot R;, it generates the detection z "7 to the robot R;.

2 = ( gj ) (6.16)

At the same time, the robot R; detects the robot R;.

70 = ( gj ) (6.17)
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e Data exchange. In this step, two robots exchange the estimated location,
the confidence of this location and the detection between each other.

R; (6.18)

e Location update. Difficulties arise in this step, since both two robots have
two detections. For example, the robot R; has its own detection zf “ and the
detection z ' received from the robot R;. The question is which one will be
used to calculate the possible location. To solve this problem, we establish two
rules:

1. If the detections are obtained from different types of sensors, robots trust
always the most precise one.

2. If the detections are obtained from the same type of sensors, each robot
trusts its own one.

The first rule ensures that robots in the team can share the precise sensors.
The second rule avoids introducing measurement errors to the robot team.

The PM algorithm as the extension is inserted into the SAMCL algorithm. The
extended SAMCL algorithm for multi-robot localization is stated in Algorithm
6.1. We only introduce the part of the PM algorithm, the other parts have been
presented in Section 5.2.3.

The PM algorithm. If the robot detects other robots, the PM algorithm will be
activated. Line 3 computes the minimum importance factor. In line 4, a possible
location is mapped from the location of Rj and the geometric relationship between
them. This possible location replaces the location of the minimum weight particle.
Generalized notations d and ¢} are the distance and the orientation in the global
reference frame between two robots, which can be extracted and computed from
sensor measurements. The minimum importance weight (w!™") is replaced by the
confidence received from Ry, (&f*).

6.4 SIMULATION RESULTS

This simulation tests the ability of cooperative multi-robot localization. The cen-
tral question driving our simulation is: to what extent cooperative multi-robot
localization improves the localization quality compared with single-robot localiza-
tion?

In this scenario, we implemented the extended SAMCL algorithm on two in-
dividual computers, which simulated two robots (the robot R; and the robot Ry).
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Algorithm 6.1: Extended SAMCL algorithm for multi-robot localization
1: Input: S;_1, u, dy, Gsp, SER
Sampling total particles
1: for n =1 to Ny do

2:  generate a particle s,En] ~ D (st 5@1, ut> % motion model

3. calculate importance factor w!” = p (zt

sl G3D> % perception model
4: end for
The PM algorithm

1: if the robot detects K other robots {Ry,- -, Rk} then
2: for k=1to K do

3: Wi = min(wy)
min Ry,
C () ()
Yi Ui sin (V)
5: replace w™™ by &
6: end for
7. end if

Determining the size of global sample set and local sample set

1 if W < ¢ then
2: N =a- Ny

3: else

4: Ny = Np

5: end if

6: Nog = Nr — N,

Resampling local samples

: normalize w;
: for n=1to Ny do

1
2
3. draw si”F with distribution w!™
4 add s to SE
5: end for
Drawing global samples
1: forn =1 to Ng do
2. draw s!""“ with the uniform distribution in SER
3. add s/ to S¢
4: end for
Combining two particle sets
1: S, = StL U StG
2: Output: S,
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Both can communicate by wireless network (WiFi). The effective communication
distance is set to 5m. The maximum communication delay was limited to 0.5s. If
the communication time exceeds this limitation, the robot will discard these data.
As mentioned previously, our algorithm only needs to exchange very little data, so
the 0.5s of delay is sufficient in our trial.

In order to evaluate the benefits of multi-robot localization, we gave the sensi-
tive coefficient £ of the robot R; a very small value, so the robot Ry is insensitive to
kidnapping. The robot R; was kidnaped at the beginning of the trial. The initial
location of R; was at the coordinate (0,8) in the map, but we told it that its ini-
tial location was at (0,0). Because of the quasi-symmetrical environment and low
sensitivity to kidnapping, the robot R; did not find that it localized mistakenly
until it met the robot R, which was always localized well. When the robot Rs
encountered the robot Ry, it sent its location and the confidence of this location to
the robot Ry. Then the robot R; amended its location through the PM algorithm.

The simulation result is shown in Figure 6.3. Two robots encountered at 58.5s,
and their location were at (8.5,8.1) and (7.2,3.1) at that time. As shown in Figure
6.3(a), the localization trajectory (line B) shifts from position 1 to position 2, since
at that position the robot R; corrects its trajectory.

Figure 6.4 depicts the sample distribution of the robot Ry (a) and the robot
Ry (b) during the process of cooperative localization. The blue (or deep gray in
the grayscale image) triangle denotes the real robot and the green (or light gray)
triangle denotes the odometry robot. At 30s, the robot R; and its samples lay
in different sides of the corridor due to kidnapping, respectively. But the robot
Ry was localized correctly at that time. At 58.5s, the robot R; was detected by
the robot Rs, and then it started to update its location by sharing the detection
of the robot Ry. At 59.4s, the robot R; accomplished the location update and it
recovered from kidnapping. During the whole process, the robot R, was always
localized well. After updating their location, both two robots continued to explore
in the map with the correct position estimation.

Because the “real” robot is simulated, we can track the position of the “real”
robot at all times. Thus, we can calculate the errors relative to the position
of the “real” robot. These error curves of the robot R; and the robot Rs are
plotted in Figure 6.5(a) and (b). Localization errors and odometry errors are
delineated by the red solid line and the green dash-dot line, respectively. As shown
in Figure 6.5(a), R; was kidnapped at the beginning. Owing to the symmetrical
environment, it did not find that it was kidnapped until it met the robot R, and
then it corrected its position. In this simulation, if the robot R; executes alone, it
would spend more time on finding and recovering from kidnapping. This reflects
the advantage of multi-robot localization compared with single-robot localization.

6.5 SUMMARY

In this chapter, SAMCL was extended to handle multi-robot localization through
a position mapping (PM) algorithm.



CHAPTER 6. MULTI-ROBOT LOCALIZATION 109

Y-axis (m)
o
T
)
)
1
I
2
1
i
I
1
1 3
1
i
it
P&
-
1
d
i
PR
A
1

X-axis (m)

Y-axis (m)
SN

-15 -10 -5 0 5 10

Figure 6.3: Multi-robot localization using the PM algorithm. Trajectories of the
robot Ry and the robot Ry are shown in (a) and (b). The trajectories of robot,
odometry and SAMCL are displayed by the black solid line (line A), the green
dash-dot line (line C) and the red dotted line (line B), respectively.
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Figure 6.4: Sample distribution of (a) the robot R; and (b) the robot Ry during
the process of cooperative localization.

e The PM algorithm integrates information derived from cooperation among
robots. In the robot team, one robot can calculate its possible locations from
other robots’ locations and relationships among them. The relation between
the set of possible locations and the set of other robots is a bijection. In other
words, one robot is detected, one possible location is mapped. These possible
locations replace the locations of the particles owning the minimum importance

weight .

e The extended SAMCL algorithm was tested by the simulation. In the simu-
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Figure 6.5: Localization errors of the PM algorithm and odometry for (a) the
robot Ry and (b) the robot Rs.

lation, two robots are executed in a quasi-symmetrical environment. At the
beginning, one robot was kidnapped to the other part of the symmetrical en-
vironment and the other robot was localized well. Due to the symmetrical
environment, the kidnapped robot cannot be recovered until meeting the other
one. The simulation result demonstrates cooperative multi-robot localization
is more efficient than single-robot localization.
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7.1 INTRODUCTION

Over the past decade, thousands of researchers have successfully implemented
their algorithms and theories on a variety of platforms. The experiments that are
carried out by real robots in real environments can help to narrow the gap between
research and application.

Borges et al. achieve localization and mapping of the mobile robot in an office
environment [Borges02]. Their experimental robot Omni (see Figure 7.1(a)) is
equipped with a black and white video camera, a laser range finder and a laser
goniometer. The experimental environment is the first floor of the LIRMM labo-
ratory (see Figure 7.1(b)), which is the same as ours.

The works of Seignez et al. [Seignez06] concern studies and comparisons of four
localization methods (including EKF, grid localization, MCL and the localization
method based on interval analysis) in an office environment. To test these localiza-
tion algorithms, they develop the Minitruck platform equipped with 10 ultrasonic
range finders (see Figure 7.2).

Burgard et al. [Burgard98, Burgard99] develop an autonomous tour-guide robot
named “Rhino” (see Figure 7.3(a)). It was deployed for a total of six days in
May 1997 in the Deutsches Museum Bonn (see Figure 7.3(b)). A similar robot
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Figure 7.1: (a) Omni robot. (b) Occupancy grid map of the experimental envi-
ronment. Images courtesy of Geovany A. Borges [Borges02].
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Figure 7.2: (a) The Minitruck platform. (b) Sonar locations. Images courtesy of
Emmanuel Seignez [Seignez06].

is developed by Thrun et al. [Thrun00a, which is named “Minerva” (see Figure
7.3(c)). It operated for a period of 14 days in the Smithsonian’s National Museum
of American History (NMAH), during August and September of 1998 (see Figure
7.3(d)). Tasks of the two robots involved approaching people, interacting with
them by replaying pre-recorded messages and displaying texts and images on on-
board displays as well as safe and reliable navigation in unmodified and populated
environments [Thrun99a].

Kimmerle et al. propose a novel combination of techniques for robust Monte-
Carlo localization of a mobile robot in outdoor-terrains represented by multilevel
surface (MLS) maps [Kiimmerle08]. The approach is implemented and tested on
a Pioneer II AT robot equipped with a SICK LMS laser range scanner and an
AMTEC wrist unit (see Figure 7.4(a)) in a urban environment with a non-flat
structure and multiple levels (see Figure 7.4(b)).
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Figure 7.3: (a) Rhino robot and its sensors. (b) Rhino gives a tour. (c¢) Minerva
robot. (d) Minerva gives a tour. Images (a) and (b) courtesy of [Burgard98] and
images (c) and (d) courtesy of [Thrun00al.
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Figure 7.4: (a) Herbert robot. (b) MLS map. Images courtesy of [Kiimmerle0§].

More recently, Sakai et al. propose an Augmented Unscented Kalman Filter
(AUKF) to solve 6 degrees of freedom (6DOF) localization for planetary rovers
[Sakai09]. The algorithm is implemented on the Micro6 robot equipped with a
stereo camera, an Inertial Measurement Unit (IMU), and wheel encoders on the 6
wheels (see Figure 7.5(a)) on the outdoor rough terrain (see Figure 7.5(b)).

Figure 7.5: (a) Micro6: the planetary rover testbed. (b) Experimental fields.
Images courtesy of [Sakai09)].

The works of Franchi et al. [Franchi09] address the mutual localization prob-
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lem for a multi-robot system by using an innovative algorithm (the MultiReg
algorithm) that computes on-line all the possible relative pose hypotheses, whose
output is processed by a data associator and a multiple EKF to isolate and refine
the best estimates. The algorithm is tested by a team of 5 Khepera III robots
equipped with the Hokuyo URG-04LX laser range finder (see Figure 7.6).

Figure 7.6: (a) 5 Khepera III robots. (b) Stroboscopic motion in the early steps
of the experiment. Images courtesy of [Franchi09].

7.2 EXPERIMENT SETUP

The SAMCL algorithm described in this thesis has been tested with a Pioneer
3-DX mobile robot in a real office environment (see Figure 7.7).

Figure 7.7: Pioneer robot moving in the corridor.

The Pioneer robot is a wheeled mobile robot with two driving wheels and
a caster wheel. It is equipped with sixteen ultrasonic range finders distributed
around its circumference: two on each side, six forward at 15° intervals and six rear
at 15° intervals (see Figure 7.8). As we have already discussed in Section 2.3.1.1,
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ultrasonic sensors provide an imprecise and coarse perception of the environment.
In the experiments, only ultrasonic range finders (no additional sensors) are used.
The maximum ranges of sensors are limited to 5m. The maximum speed of the
Pioneer robot is limited to 0.367m/s. The Pioneer robot is equipped with an
onboard laptop with 1.06GHz Intel Core 2 Solo U2100 CPU and 1024M of RAM,
and the SAMCL algorithm is implemented in MATLAB.

Y
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ds2
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Figure 7.8: Sonar locations on the Pioneer 3-DX robot, adapted from [Cyb].

The experimental environment is the first floor of our laboratory. Its size is
about 25m x 10m. Figure 7.9 shows the ground plan and the expected trajectory.
The robot should follow this trajectory and go around in the corridor. The real
environment of this corridor is shown in pictures of Figure 7.9. There are several
unmodeled obstacles in the corridor, such as cabinets and tables (see pictures A
and B). We use this incomplete map to test the robustness of our algorithm. The
SAMCL algorithm inherits the advantages of the MCL algorithm and it employs
the mixture perception model (see Section 2.3.4.1), so it can treat these unmodeled
obstacles as sensors noise. Because our map is quasi-symmetrical, to recover from
kidnapping in such maps is more difficult. The resolution of the three-dimensional
grid Gsp is 0.2m x 0.2m x pi/32 and the resolution of the energy grid G is
0.2m x 0.2m in the experiments.

7.3 EXPERIMENTS

Three experiments were performed, each of them examining the SAMCL algorithm
in different situations. The first one aims at testing the ability of global localization
by using wheel encoder reading of the Pioneer robot as odometry. The second one
focuses on testing the robustness of our method by adding artificial errors to wheel
encoder reading. The last one tests the ability of recovering from kidnapping. In
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Figure 7.9: The ground plan including the expected trajectory. Pictures show the
real environment (with unmodeled obstacles).

order to get reliable statistical results, each experiment is repeated 20 times. Since
we did not employ any additional means to track the real robot, the final pose of
the real robot is measured by hands at each experiment.

7.3.1 Global localization

The first experiment is designed to test the global localization ability of the
SAMCL algorithm. Odometry was obtained from wheel encoder reading of the
Pioneer robot. The initial pose of the robot was set differently to the initializa-
tion of odometry (a pose (0,0,0)7). The initial orientation of the robot was given
about 6 & pi/4 and its initial position was about 1m far from the origin of co-
ordinates. The Pioneer robot moved around in the corridor and localized itself.
Because of testing the ability of localization, the sensitive coefficient £ was given
a low sensitive value.
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Figure 7.10 shows localization results. As usual, the localization result is rep-
resented by the expected value (or called the weighed mean) of particles at each
iteration, which can be calculated by Equation 4.2 (see Section 4.4.1). Line A
denotes the SAMCL’s trajectory and line B denotes the trajectory given by odom-
etry. The SAMCL’s trajectory is drawn after particles converging. Obviously, it
is more similar to the expected trajectory (see Figure 7.9) than the odometry’s
trajectory. The trajectory given by odometry has a about pi/4 slope because of
the initial orientation error.

Y-axis (m)
=
T

Heaxis (m)

Figure 7.10: Global localization using SAMCL. Line A and line B denote the
trajectories of SAMCL and odometry, respectively.

Table 7.1 shows average errors of the final poses given by the SAMCL algorithm
and odometry. As shown in Table 7.1, Pioneer has a relatively precise odometry
but the SAMCL algorithm provides more accurate localization results.

Table 7.1: Average errors of the final poses in global localization

x Y 0
Localization 0.157m 0.092m  6.5°
Odometry  0.739m 0.215m 33.7°

7.3.2 Global localization with artificial errors

The second experiment further tests the robustness of the SAMCL algorithm. In
this experiment the Pioneer robot would localize itself with unfaithful odometry.
In practice, these enormous errors of odometry are often caused by wheels sliding
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on the smooth ground or by the robot passing the concave-convex road. In order
to simulate coarse odometry, we added about 27% artificial errors to each wheel.
In this experiment, £ was given a low sensitive value as the first experiment.

The localization results are illustrated in Figure 7.11, line A and line B repre-
sent the trajectories of SAMCL and odometry, respectively. As we can see, odom-
etry has totally lost because of gradually accumulated errors. On the contrary,
SAMCL still gives good localization results.

Y-axis ()
us]
T
=]

Feaxis (m)

Figure 7.11: Global localization using SAMCL with artificial errors. Line A and
line B present the trajectories of SAMCL and odometry, respectively.

Average errors of the final poses of the SAMCL algorithm and odometry are
shown in Table 7.2. Odomery’s errors are huge as a result of adding artificial
errors, however the SAMCL algorithm still presents elegant localization results.

Table 7.2: Average errors of the final poses in global localization with artificial
errors

x Yy 0
Localization 0.469m 0.031m 17.1°
Odometry  6.353m 7.30lm  72.5°

7.3.3 Kidnapping

The third experiment demonstrates the ability of the SAMCL algorithm to recover
from kidnapping, which is the most difficult issue. We kidnapped the Pioneer robot
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at the beginning of the trajectory after particles converging. Put differently, after
the robot was well localized, we took it about 7m far away in its moving direction.
Moreover, we added about 27% artificial errors to each wheel. In order to make the
robot find kidnapping more quickly, the sensitive coefficient ¢ was given a medium
sensitive value.

Figure 7.12 illustrates the distribution of the self-adaptive sample set during
the process of recovering from kidnapping. In the beginning, the robot is well
localized as shown in Figure 7.12(a). Then the robot is kidnapped from position
A to position B (position B is about 7m far away from position A in the robot’s
moving direction). Next, kidnapping brings on probabilities of particles reducing.
When the maximum of probabilities is less than &, global samples are divided from
the sample set and distributed in SER, as shown in Figure 7.12(b). The robot
moves forward and perceives the environment. Because of the quasi-symmetry of
environment, SAMCL generates three probable poses of the robot after resampling,
depicted in Figure 7.12(c). The robot continues to move and perceive, SAMCL
finally discards two probable poses and confirms the correct pose of robot, shown

in Figure 7.12(d).
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Figure 7.12: Distribution of the self-adaptive sample set during the process of
recovering from kidnapping.

In this experiment, the final pose of the Pioneer robot is measured, that is
x = 0.79,y = 0.02 in the Cartesian coordinate. For the convenience of analysis,
trajectories given by the SAMCL algorithm (line A) and odometry (line B) are
decomposed to X-axis and Y-axis. As shown in Figure 7.13, the final pose of
localization is x = 0.43,y = 0.09, but the final pose of odometry is x = —2.96,y =
—4.35. Obviously, the localization results are much better than odometry. From
the figure, we can also find that the robot perceives kidnapping at 3"%s and recovers
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at 6s. In the later process, it mistakes once, but it re-localizes in less than 2s
interval. Average errors of the final poses of the SAMCL algorithm and odometry

are shown in Table 7.3.

¥ of trajectory {m)

Y of trajectory (m)

Figure 7.13: SAMCL for robot kidnapping. Trajectories are decomposed to (a)
X-axis and (b) Y-axis. Line A and line B depict the trajectories of SAMCL and

odometry, respectively.

Table 7.3: Average errors of the final poses in kidnapping
x Y 0
Localization  0.605m  0.076m 13.2°
Odometry  5.6728m 5.017m 45.3°

7.3.4 The success rate of recovering from kidnapping

In Chapter 5, we presented that sampling in SER is more efficient and more effec-
tive than sampling randomly from the theoretical view. Here, this conclusion was
demonstrated by the simulation based on the experiment. Figure 7.14 shows the
success rate of recovering from kidnapping as a function of the number of particles.

The success rate is defined as:
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the number of successful recoveries
success rate =

(7.1)

the total number of tests

The success rate increases with the number of particles, both for sampling
in SER and for sampling randomly. However, with the same size particle set,
the success rate of sampling in SER is much higher than sampling randomly.
For example, when using 300 particles, the success rate of sampling in SER may
achieve to 33%, while this rate of sampling randomly is only 11%. To reach the
same success rate, sampling randomly has to use 900 particles, while using 900
particles, the success rate of sampling in SER has achieved to 91%.
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Figure 7.14: The success rate of recovering from kidnapping as a function of the
number of particles.

74 SUMMARY

In this chapter, we designed three experiments to verify the validity of the SAMCL
algorithm. The experimental robot is only equipped with imprecise ultrasonic
Sensors.

e The first one proved the ability of the SAMCL algorithm in global localiza-
tion. The second one achieved global localization by adding artificial errors to
wheel encoder reading. The third one confirmed the ability of recovering from
kidnapping.

e By comparing sampling in SER with sampling randomly, we find that the
success rate of recovering from kidnapping by sampling in SER is much higher
than by sampling randomly when using the same size of particle set.






CHAPTER 8

CONCLUSION

8.1 SUMMARY OF THESIS

Localization has been considered as the fundamental problem to achieve other
tasks. This thesis presented the self-adaptive Markov localization approach to
solve single-robot and multi-robot localization problems. In order to find out an
effective and efficient solution, we started with studies and comparisons of three
regular Markov localization methods, including EKF localization, grid localization

and MCL.

As discussed thus far, the localization problem can be classified into position
tracking, global localization and the kidnapped robot problem according to lo-
calization difficulties. Most localization approaches focus on solving one of three
sub-problems. In order to find out a general solution for all three, we proposed
an improved Monte Carlo localization algorithm with self-adaptive samples (the
SAMCL algorithm). This algorithm inherits all the advantages of MCL, moreover
it improves in several aspects. SAMCL employs an off-line pre-caching technique
to solve the expensive on-line computational cost problem of regular MCL. Fur-
ther, we define Similar Energy Region (SER), which provides a priori information
of the robot’s pose. Hence sampling in SER is more efficient than sampling ran-
domly in the entire environment. Because of using self-adaptive samples, SAMCL
can deal with the kidnapped robot problem as well as position tracking and global
localization.

Multi-robot localization is more robust and efficient than single-robot local-
ization. In this thesis, we devised the Position Mapping (PM) algorithm to solve
the multi-robot localization problem. The PM algorithm can be integrated into
the SAMCL algorithm as its extension. This algorithm achieves multi-robot lo-
calization through completing three tasks: detection, data exchange and location
update. Since it only synchronizes one location and one belief when the robot
detected others, it reduces furthest the communication delay and the computa-
tional complexity. Moreover, the PM algorithm allows one robot to cooperate
with multiple robots rather than one robot at the same time.

Experimental results, carried out in real and simulated environments, demon-
strated that the SAMCL algorithm as well as its extended algorithm (the PM
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algorithm) is capable for both single-robot localization and multi-robot localiza-
tion. Simulations tested the performance of the SAMCL algorithm in position
tracking, global localization and the kidnapped robot problem, respectively. The
extended SAMCL algorithm was implemented on two individual computers that
can communicate with wireless network (WiFi) to evaluate its ability in coopera-
tive localization. Experiments were carried out on the Pioneer 3-DX mobile robot
in a real office environment. Three experiments were designed to verify the validity
of the SAMCL algorithm. The first one proved the ability of global localization.
The second one achieved global localization by adding artificial errors to wheel
encoder reading. The third one confirmed the ability of recovering from kidnap-
ping. Moreover, extensive comparisons between the SAMCL algorithm and other
algorithms were also given in this thesis.

8.2 FUTURE WORK

This dissertation raises several interesting topics, which can be summarized into
two main extensions: one focus on improving the performances of the SAMCL
algorithm both in theoretical and practical ways; the other aims at solving the
Simultaneous Localization And Mapping (SLAM) problem (including multi-robot
SLAM) on the basis of existing theories.

8.2.1 The SAMCL algorithm

Although the SAMCL algorithm has the ability to solve single-robot and multi-
robot localization efficiently, it would be improved in two aspects.

Firstly, the SAMCL algorithm can only address localization problems in static
environments due to the off-line pre-caching technique. Although the SAMCL al-
gorithm can treat unmodeled obstacles as sensors noise, since it employs the mix-
ture perception model (see Section 2.3.4.1), it is incapable when the environment
has structural changes or robots work in the environment populated by people.
We should develop an on-line map update technique that enables the robot to
update and modify the pre-caching map on line when the robot feels changes of
the environment.

Secondly, the SAMCL algorithm uses the fixed size grid to decompose the
map. That is inefficient in the sparse environment. Decomposition techniques with
adaptive size grid have been addressed in the recent literature. Thus, we should
develop and apply a suitable decomposition technique to the SAMCL algorithm.

8.2.2 SLAM

Another research direction of future works is to solve the SLAM problem. The
solutions may be based on the SAMCL algorithm.

We have studied EKF SLAM and FastSLAM [Thrun05]. The EKF SLAM
algorithm applies the EKF to the online SLAM problem. It represents both the
robot pose and the feature location by the EKF. The FastSLAM algorithm employs
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particle filters for estimating the robot path and EKF's for estimating map feature
locations. Differently to EKF SLAM, it uses a separate low-dimensional EKF for
each individual feature [Thrun05].

In practice, both two SLAM algorithms have been applied with some success.
However, they do not take global localization failures into account. As in local-
ization problems, SLAM algorithms may also fail to localize the robot. How to
recover from localization failures is an important issue for the SLAM problem, too.
As discussed thus far, the SAMCL algorithm has the ability to recover from local-
ization failures. Thus, an immediate idea is to apply the SAMCL algorithm to the
SLAM problem. Unfortunately, a straightforward implementation of the SAMCL
algorithm for the SLAM problem is inapplicable. The first difficulty arises from
the off-line pre-caching technique that needs a pre-known map; however there is
no pre-known map in the SLAM problem. Since the pre-caching technique de-
composes the robot space into grid, we intend to develop an on-line occupancy
grid mapping technique to generate the map and the energy map. More concrete
implementations will be discussed in the future.






APPENDIX A

BASIC CONCEPTS IN PROBABILITY
THEORY

A probability of an event A is represented by a real number in the range from 0
to 1 and denoted as P(A).

For a discrete random variable X, the function p(X = x) mapping a point in
the sample space to the probability value is called a Probability Mass Function
abbreviated as PMF. The sum of p(z) over all values x in the entire sample space
is equal to 1.

d X =1z)=1 (A1)

For a continuous random variable X, the function F'(z) = P(X < ) is called
Cumulative Distribution Function abbreviated as CDF. Its derivative is called
Probability Density Function abbreviated as PDF.

d
() = F(a) (A2)

Just like discrete probability distribution, the PDF always integrates to 1 in

the entire sample space.

/p(:c)d:c =1 (A.3)

A frequently used PDF is that of the normal distribution (or Gaussian distri-
bution). Its one-dimensional form is defined as

1 (z — p)?
_ _ A4
ple) = —sonn (-5 (A4
where p is the mean, o2 is the variance. The square root of the variance is called
standard deviation.

The PDF of the multivariate normal distribution is described as

p(r) = det(2n) dexp{—5(r — )5z — p)} (A.5)
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where p is the mean vector. ¥ is a positive semi-definite and symmetric matrix
called the covariance matrix.

The expected value (or mathematical expectation) of a random variable is the
integral of the random variable with respect to its probability measure. If X is a
discrete random variable with probability mass function p(z), then the expected
value is

B(X) = 3 ap(a) (A.6)

If the probability distribution of a continuous random variable X admits a
probability density function p(x), then the expected value can be computed as

B(X) = / op(a)da (A7)
If a random variable X has expected value E(X) = pu, then the variance Var(X)

of X is given by
Var(X) = E [(X — p)?] (A.8)

This definition encompasses random variables that are discrete and continuous.
The standard deviation of X is the square root of the variance.

o=/ Var(X)=/E [(X — ,u)Q} (A9)

The variance is a special case of the covariance when the two variables are
identical. The covariance between two real-valued random variables X and Y,
with expected values E(X) = p and E(Y) = v, is defined as

Cov(X,Y)=E(X —pu)(Y —v)) (A.10)

The joint probability is the probability of both events together. For a pair of
continuous random variables, their joint cumulative distribution function is defined
as

F(z,y)=P(X <zand Y <y) (A.11)

For discrete random variables X and Y, the joint probability mass function is
written as

plz,y) =p(X =z and Y =y) (A.12)

If X and Y are independent, we have

p(x,y) = p(x)p(y) (A.13)

The conditional probability is the probability of some events X, given the oc-
currence of some other events Y. Such a probability is written as
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plrly) =p(X =z|Y =y) (A.14)

If p(y) > 0, the conditional probability is defined as

plzly) = o) (A.15)
If X and Y are independent, we have
plaly) =" — ) (A16)

The law of total probability is defined as “the prior probability of X is equal
to the prior expected value of the posterior probability of X”. That is, for any
random variable Y,

p(r) = E[p(X[Y)] (A.17)

In the discrete case, that is

plx) =Y pla|y)p(y) (A.18)

In the continuous case, that is

p(x) = / p(z |y)p(y)dy (A.19)

Another important theorem is Bayes rule, which shows how one conditional
probability p(z|y) depends on its inverse p(y|z). Bayes rule relates the condi-
tional and marginal probabilities of events X and Y, where Y has a non-vanishing
probability p(y) > 0.

_ plylz)p(x)

p(zly) = ) (A.20)

where

e p(x) is the prior probability or marginal probability of X. It is “prior” in the
sense that it does not take into account any information about Y.

e p(z|y) is the conditional probability of X given Y. It is also called the posterior
probability because it is derived from or depends upon the specified value of
Y.

e p(y|x) is the conditional probability of Y given X.

e p(y) is the prior or marginal probability of Y.
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Intuitively, Bayes’ theorem in this form describes the way in which one’s beliefs
about observing X are updated by having observed Y.

Since the denominator of Bayes rule p(y) does not depend on X, the factor
p(y)~! in the Equation A.20 will be the same for any value X in the posterior
p(z|y). Thus, the factor p(y)~! is often written as a normalizer in Bayes rule
variable, and generically denoted 7.

p(xly) = np(y|z)p(z) (A.21)



APPENDIX B

RESAMPLING APPROACH

B.1 APPROACH DESCRIPTION

Given a probability density p(x), the resampling process is to generate N samples
that are distributed with the desired probability density p(z). The transformation
method consists of three steps [Hom].

1. Compute y = P(z) = [ p(a')dx’.

a

2. Sample y from an equi-distribution in the interval (0, 1).

3. Compute z = P~!(y).

Then the variable z has the desired probability density p(z).

B.2 SIMULATION RESULT

This simulation shows how to generate 10000 samples according to the Gaussian
distribution with mean 0 and standard deviation 1 as follows:

1 x? B.1
pla) = e (—3) (B.1)

Figure B.1 illustrates the process of resampling. Figure B.1(a) shows the initial
discrete Gaussian distribution p(z) with 10000 samples. Figure B.1(b) plots the
curve of the cumulative sum y = P(z). Figure B.1(c) shows the inverse function
of the cumulative sum x = P~1(y). Here, we sample the variable y in the interval
(0,1) and compute the variable 2. Two different lines denote the error between the
sampling value and the actual value of the first sampling. Figure B.1(d) illustrates
the new probability density curve of samples after resampling, which is still a
Gaussian with mean 0 and standard deviation 1. Samples are distributed with the
Gaussian, which is shown in Figure B.1(E).
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APPENDIX C

RESUME

INTRODUCTION

La navigation autonome d’un robot mobile se résume a la résolution de 3 problemes
fondamentaux, réponses aux 3 questions suivantes que “se pose le robot”:

e Ou suis-je? Répondre a cette question, c’est résoudre le probleme de la
localisation, c’est-a-dire déterminer la position et 'orientation du robot tant
donnés une carte et un ensemble de mesures fournies par les capteurs.

e Ou vais-je?
e Comment y aller?

La localisation est donc un prérequis fondamental pour qu'un robot mobile
puisse de déplacer de maniere autonome. Cette these se focalise sur la recherche
de méthodes robustes de localisation.

Selon le type de connaissances dont dispose le robot, le probleme de la locali-
sation peut se diviser en 3 sous-problemes:

e Le suivi de trajectoire, qui suppose que le robot connait sa pose initiale et
qu’il cherche a garder trace de son mouvement afin d’estimer sa pose malgré
les erreurs de mesures.

e La localisation globale, qui suppose que le robot ne connait pas sa pose initiale.

e Le robot kidnappé, le plus difficile des trois, qui suppose que le robot est bien
localisé mais soudainement transporté. Ce probleme a 2 intéréts: il permet la
prise en compte d’erreurs importantes lors du processus de localisation globale
et ensuite il sert de benchmark comparatif entre les approches de localisation
globale trouves dans la littérature.

Une autre classification possible est basée sur le nombre de robots utilisés: on
parlera alors de localisation mono-robot ou de localisation multi-robots.

Les différentes approches de localisation peuvent étre regroupées en 2 grandes
familles: la localisation déterministe et la localisation probabiliste. Cette derniere
famille est tres intéressante pour 3 raisons:
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e [’environnement du robot est toujours imprédictible.
e Le hardware du robot est soumis au bruit.

e Le software du robot est approximatif.

Parmi les approches probabilistes, I’approche Markovienne, basée sur le filtre
de Bayes est la plus populaire. Dans ce contexte, la pose du robot est remplacée
par la probabilité conditionnelle:

bel(st) = p (st |20t tre, M) (C.1)

ou s; est la pose du robot a l'instant ¢. Cette fonction de “croyance” bel(s;)
représente la densité de probabilité de la pose s;, conditionnée par ’ensemble des
mesures proprioceptives zp; du temps 7 = 0 au temps 7 = t, par I’ensemble des
données de controle uy.; et par la carte m.

La localisation Markovienne adresse le probleme de suivi de trajectoires, celui
de la localisation globale et celui du robot kidnappé. Trois grandes sous-familles
se distinguent: le filtre de Kalman étendu (EKF), les méthodes de grille et la
localisation de Monte Carlo par filtre particullaire (MCL).

Notre objectif est de trouver une solution générale pour les problemes de suivi
de trajectoires, de la localisation globale et du robot kidnappé.

e Nous avons développé un algorithme afin de résoudre a la fois le probleme de
suivi de trajectoires, celui de la localisation globale et celui du robot kidnappé
un simulateur capable de tester ces méthodes.

e Nous avons étendu cet algorithme pour la localisation multi-robots.

e Nous avons testé notre approche sur un robot réel Pioneer 3-DX équipé de
seulement 16 capteurs ultrasonores.

LES MODELES

Pour cela, il nous faut décrire les modeles d’action et de perception pour un robot
de type unicycle évoluant dans un environnement plan.
La pose d’'un robot mobile (Figure C.1) peut étre représentée par:

X

Sg = Yy (02)
0

Le mouvement du robot est représenté par:

s¢ = flug, $¢-1) (C.3)

ou s;_1 et sy sont les poses a t — 1 et t, et u; est le vecteur de controle.
Par exemple, u; peut étre représenté par les vitesses de translation et de rota-
tion:
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(09)

Figure C.1: La pose d’un robot.

WZ(Z) (C.4)

Le modele probabiliste correspondant s’écrit comme la probabilité condition-
nelle:

p(se [ug, si-1) (C.5)

Le modele de perception quant a lui s’écrit:

p(2t |se,m) (C.6)

ou

est ’ensemble des mesures. Avec une distribution gaussienne on aurait:

_ (Z%_dobj)2

2 . ;
— ¢ 2}, it 0 <2 < Znaa

. Ui >
pr(z;|se,m) = V27, (C.8)

0 sinon

Enfin, la carte m (connue au départ de I'expérience) peut étre vue comme une
liste d’amers dans 'environnement:
m = {my,ma, - ,mr} (C.9)

ou encore comme une grille d’occupation (Figure C.2); ou encore comme une liste
d’objets géométriques (murs par exemple).
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Figure C.2: Une carte grille d’occupation.

L’APPROCHE MARKOVIENNE

L’approche Markovienne est basée sur le filtre de Bayes dont 1’algorithme récursif
est donné par I’Algorithme C.1:

Algorithm C.1: Algorithme Markovien basée sur le filtre de Bayes

—_

: Input: bel(s;_1),us, ze,m
. for all s; do

bel(sy) = [ p(se|si—1,us, m)bel(s;—1)ds;— % prediction

. end for

2
3
4: bel(s;) = np (2 |s,, m) bel(sy) % correction
5
6: Output: bel(s;)

Cette croyance peut revétir 3 formes principales:
o Le filtre de Kalman récursif:
1 1
bel(s;) = det(QWZt)’feXp{—g(st — 1) TS (5 — )} (C.10)

e [’approche par grille de probabilités:

bel(5t> ~ {pk,t}kzl,...7[( (Cll)

e Le filtre particulaire:

bel(st) ~ {<s£n},w£n]>}n:1 o (C.12)
[n]

ol w; ' est un facteur d’importance.
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Notre méthode est basée sur le filtre particulaire donné par I’algorithme suivant
(Algorithm C.2):

Algorithm C.2: Filtre MCL

1

o

10:
11:
12:
13:

Input: S; 1, us, 25, m

2: gt:St:Q)
3:
4

forn=1to N do

générer une particule sw ~p (st 81@1, Uy, m) % prediction
calculer un facteur d’importance win} =p (zt sEn], m) % correction
ajouter <s£n],wt[n]> a S,

end for

normaliser w;

for n=1to N do
choisir au hasard sl[tn] selon win} % ré-échantillonnage

ajouter s to S,
end for
Output: S,

Plusieurs simulations ont permis de comparer les différentes approches prob-
abilistes. Par exemple, on peut constater que le filtre particulaire permet de lo-
caliser le robot (trajectoire rouge qui se superpose a la trajectoire noire) alors que
I'odométrie (trajectoire verte) ne localise pas le robot (Figure C.3).

U

Y-axis (m)

X-axis (m)

Figure C.3: La localisation globale utilisant MCL dans un couloir quasi-
symétrique.
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La figure suivante (Figure C.4) compare les erreurs odométriques (en vert) avec
les erreurs du filtre de Monte Carlo dans le cas de la localisation globale.

e T —— S N—

Error (m)

—

B0
Time (s)

Figure C.4: Les erreurs de la localisation globale utilisant MCL dans un couloir
quasi-symétrique.

L’ALGORITHME SAMCL

L’algorithme SAMCL (Algorithm C.3) que nous avons développé est implémenté
en 3 étapes (Figure C.5):

e Pre-Mise en cache de la carte. La carte m est I'entrée de cet algorithme qui
s’effectue hors-ligne. Ses sorties sont une grille tridimensionnelle G3p qui stocke
les données issus des capteurs ultrasonores, et une grille bidimensionnelle G g
qui stocke 'énergie-capteurs. Chaque cellule de G5p peut-étre vue comme un
robot virtuel placé dans un lieu particulier de ’environnement et qui effectue
une série de mesures sur cet environnement. Chaque cellule k de G g représente
une position (sans orientation) du méme robot virtuel. Son contenu est défini

par:
~ I
E(k)=>"a! (C.13)
=1
avec
i =1 - d™ /dpx (C.14)

qui est ’énergie du capteur ¢ qui mesure une distance dgk}.

e Calcul des zones d’ énergie similaire (SER). L’entrée est la grille Gg
obtenue hors-ligne. Sa sortie est I’ensemble des positions potentielles du robot
définie par:

‘E - E(k)’ <6 (C.15)

Cette étape est calculée en-ligne.
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e Localisation. L’entrée de la derniere partie est I’ensemble S;_; des particules
a l'instant £ — 1, le vecteur de controlel u;, les mesures z;, la grille Gsp et SER.
Sa sortie est S;, ensemble des particules a 'instant ¢. Cette étape est calculée

en-ligne.
‘online
Zt
O[flme ___________________________ : Calculating SER
: e SER
m G . S,
—| Pre-caching b Localization
G, |
3D
S
____________________________________ u,
Z

Figure C.5: Schema SAMCL.

La Figure C.6 et la Figure C.7 sont une illustration des erreurs mesurées et
comparées dans le cas de la localisation odométrique et de la localisation par
SAMCL en suivi de trajectoire.

12

Y-axis (m)

X-axis (m)

Figure C.6: Le suivi de trajectoire utilisant SAMCL dans un couloir quasi-
symétrique.

La Figure C.8 et la Figure C.9 sont une illustration des erreurs mesurées et
comparées dans le cas de la localisation odométrique et de la localisation par
SAMCL en localisation globale.
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Algorithm C.3: Algorithme SAMCL
1: Input: S;_1, u, di, Gsp, SER
Sampling total particles
1: forn =1 to Ny do

sl ut> % motion model

2:  generate a particle SE"] ~p <st

3. calculate importance factor w!™ = p (zt

sl G3D) % perception model

end for

o>

Determining the size of global sample set and local sample set

1 if W™ < ¢ then
2 N;, =a- Np

3: else

4: N, = Np

5. end if

6: No¢ = Nr — Ny,

Resampling local samples
1: normalize ws
2: forn =1 to Ny do
3. draw s;"* with distribution w”
4: add s/ to SE
5: end for
Drawing global samples
: forn=1to Ng do

draw SE”’G with the uniform distribution in SER

1
2
3. add /"¢ to SO
4: end for
Combining two particle sets
1. Sy =S8FusS¢
2: Output: S,

La Figure C.10 est une illustration des erreurs mesurées et comparées dans le
cas de la localisation odométrique et de la localisation par SAMCL dans le cas du
kidnapping.

Le tableau suivant (Table C.1) résume les différentes propriétés des approches
classiques de localisation Markovienne et I’approche SAMCL.
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Figure C.7: Les erreurs du suivi de trajectoire utilisant SAMCL dans un couloir
quasi-symétrique.

Ur
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Figure C.8: La localisation globale utilisant SAMCL dans un couloir quasi-
symétrique.

LOCALISATION MULTI-ROBOT

L’algorithme SAMCL peut étre étendu au cas des systemes multi-robots. La lo-
calisation multi-robots procede en 3 étapes:

e La détection. Les données sont cette fois divisées en 2 sous-ensembles: celles
qui concernent la perception de l'environnement et celles qui concernent la
détection des autres robots.

Zy={7;, 7]} (C.16)

avec
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------ odometry -
.| — SAMCL

Time (s)

Figure C.9: Les erreurs de la localisation globale utilisant SAMCL dans un couloir
quasi-symétrique.

m)
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Trajectory of y (m)

1 | 1 1 |
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Figure C.10: Les trajectoires sont décomposés selon (a) 'axe X et (b) 'axe Y.

et

f: {Zf7z756—17"' 728} (C17)

A {zfi’l,zfi’{",--- ,zfi’K} (C.18)
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Table C.1: Comparaison de SAMCL, EKF, approche par grille et MCL.
EKF Grid MCL SAMCL
localization
Posterior Gaussian histogram particles particles
representation (e, 2¢)
Position yes yes yes yes
Tracking
Global no yes yes yes
Localization
Kidnapping no yes no yes
Efficiency fast slow medium fast

ou zf “I représente les relations géométriques obtenues par le robot R; quand
il détecte le robot R;.

e Echange de données. Si un robot détecte K autres robots, il envoie des
données a ces K autres robots, dont sa propre position estimée et la confiance
qu’il met dans cette estimation (Figure C.11).

Figure C.11: L’échange de données entre les trois robots.

e Mise a jour des positions. Chaque robot calcule alors K positions.

I = f(I)

Ces positions possibles remplace les positions des particules ayant le poids le
plus faible. Les poids de ces particules sont remplacées par la confiance qu’a le
robot dans sa propre position.

(C.19)

L’algorithme global est donné par I’Algorithme C.4:
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Algorithm C.4: L’algorithm SAMCL étendu pour la localization multi-
robot

1: Input: St—17 Ut dt? G3D, SER
Sampling total particles

1: for n =1 to Ny do

[n]

2:  generate a particle s;° ~ p <5t [n]

s, ut> % motion model

calculate importance factor win] =p (zt

@

st G3D> % perception model
4: end for
The PM algorithm

1: if the robot detects K other robots {Ry,--- , Rk} then
2: fork=1to K do

3: W = min(w;)
min Ry,
x x cos(1)
(i ) = G )+ (5000
5: replace w™" by o
6: end for
7: end if

Determining the size of global sample set and local sample set

1 if W™ < ¢ then
2 N, =a- Nr

3: else

4: N;, = Np

5. end if

6: No = Nr — Np,

Resampling local samples

1: normalize wy
2: forn =1 to Ny do
3:  draw s,[t”}’L with distribution win]
- add s/ to SE
5: end for
Drawing global samples
1: for n =1 to Ng do
2. draw s/ with the uniform distribution in SER
3 add s,[tn]’G to S¢
4: end for
Combining two particle sets
1. S, = StL U StG
2: Output: 5,
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Dans cet exemple, le deuxieme robot est bien localisé, alors que le premier a
été kidnappé au début de l'expérience (Figure C.12).
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S

X-axis (m)
(b)
Figure C.12: La localisation multi-robot utilisant I’algorithme de PM.

Les erreurs (odométriques et SAMCL) sont représentatives dans la Figure C.13.

IMPLEMENTATION

Les algorithmes précédents ont été implémentés sur un robot réel de laboratoire
(Figure C.14 (a)) au premier étage de notre laboratoire (Figure C.14 (b)).
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Figure C.13: Les erreurs de la localisation multi-robot.

ENENNOA

(a)

Figure C.14: (a) Le robot Pioneer. (b) L’environnement expérimental.

La Figure C.15 montre la trajectoire odométrique (B) ainsi que la trajectoire
obtenue par SAMCL (A) lorsque le robot effectue un tour de couloir avec une
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erreur odométrique initiale.

Y-axis (m)
=
T

Feaxis (m)

Figure C.15: La localisation globale avec une erreur odométrique initiale.

Table C.2: Erreurs moyennes pour la localisation globale.

x Y 0
Localisation 0.157m 0.092m  6.5°
Odométrie  0.739m 0.215m 33.7°

La figure suivante (Figure C.16) montre la trajectoire odométrique (B) ainsi
que la trajectoire obtenue par SAMCL (A) lorsque le robot effectue un tour de
couloir apres ajout d’une erreur odométrique importante.

Table C.3: Erreurs moyennes pour la localisation globale avec ajout d’erreurs.

x Y 0
Localisation 0.605m  0.076m 13.2°
Odom 5.6728m 5.017m 45.3°

La figure suivante (Figure C.17) compare les taux de succes entre la méthode
classique de Monte Carlo et la méthode SAMCL avec échantillonnage dans la zone
d’énergie similaire, en fonction du nombre de particules.
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Figure C.16: La localisation globale avec ajout d’erreurs artificielles.
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Figure C.17: Le taux de succes en fonction du nombre de particules.



BIBLIOGRAPHY

[Arsenio98]

[Baltzakis02]

[Baltzakis03]

[Bekkali0g]

[Blanco08]

[Borenstein90]

A. Arsenio & M. 1. Ribeiro. Absolute localization of mobile robots
using natural landmarks. In Proceedings of IEEE International
Conference on Electronics, Circuits and Systems, volume 2, pages
483-486 vol.2, 1998.

H. Baltzakis & P. Trahanias. Hybrid mobile robot localization us-
ing switching state-space models. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation ICRA ’02, vol-
ume 1, pages 366-373 vol.1, 2002.

H. Baltzakis & P. E. Trahanias. A Hybrid Framework for Mobile
Robot Localization: Formulation Using Switching State-Space Mod-
els. Autonomous Robots, vol. 15, no. 2, pages 169-191, 2003.

A. Bekkali & M. Matsumoto. Bayesian sensor model for indoor
localization in Ubiquitous Sensor Network. In Proceedings of First
ITU-T Kaleidoscope Academic Conference Innovations in NGN:
Future Network and Services K-INGN 2008, pages 285-292, 2008.

J. L. Blanco, J. Gonzalez & J. A. Fernandez-Madrigal. An optimal
filtering algorithm for non-parametric observation models in robot

localization. In Proceedings of IEEE International Conference on
Robotics and Automation ICRA 2008, pages 461-466, 2008.

J. Borenstein & Y. Koren. Real-time obstacle avoidance for fast
mobile robots in cluttered environments. In Proceedings of IEEE
International Conference on Robotics and Automation, pages 572—
577 vol.1, 1990.

[Borenstein91a] J. Borenstein & Y. Koren. Histogramic in-motion mapping for

mobile robot obstacle avoidance. ITEEE Transactions on Robotics
and Automation, vol. 7, no. 4, pages 535539, 1991.

[Borenstein91b] J. Borenstein & Y. Koren. The vector field histogram-fast obstacle

avoidance for mobile robots. IEEE Transactions on Robotics and
Automation, vol. 7, no. 3, pages 278288, 1991.



152

BIBLIOGRAPHY

[Borenstein95]

[Borenstein96]

[Borges00]

[Borges02]

[Borges04]

[Burgard96]

[Burgard97a]

[Burgard97b]

[Burgard97c]

[Burgard98|

[Burgard99|

J. Borenstein & Y. Koren. FError Eliminating Rapid Ultrasonic
Firing for Mobile Robot Obstacle Avoidance. TEEE Transactions
on Robotics and Automation, vol. 11, no. 1, pages 132-138, 1995.

J. Borenstein, H. R. Everett & L. Feng. Navigating mobile robots:
Systems and techniques. A. K. Peters, Ltd., Wellesley, MA, 1996.

G. A. Borges & M.-J. Aldon. A split-and-merge segmentation al-
gorithm for line extraction in 2D range images. In Proceedings of
15th International Conference on Pattern Recognition, volume 1,
pages 441-444, 2000.

G. A. Borges. Cartographie de l’environnement et localisation ro-
buste pour la navigation de robots mobiles. PhD thesis, Montpellier
University 11, 2002.

G. A. Borges & M.-J. Aldon. Line Extraction in 2D Range Images
for Mobile Robotics. Journal of Intelligent and Robotic Systems,
vol. 40, no. 3, pages 267-297, 2004.

W. Burgard, D. Fox, D. Hennig & T. Schmidt. Fstimating the
absolute position of a mobile robot using position probability grids.
In Proceedings of the Thirteenth National Conference on Artificial
Intelligence, Menlo Park, pages 896-901. AAAI Press/MIT Press,
1996.

W. Burgard, D. Fox & S. Thrun. Active mobile robot localization
by entropy minimization. In Proceedings of Second EUROMICRO
workshop on Advanced Mobile Robots, pages 155-162, 1997.

W. Burgard, D. Fox & D. Hennig. Fast Grid-based Position Track-
ing for Mobile Robots. In Proceedings of the 21th German Con-

ference on Artificial Intelligence, pages 289-300. Springer Verlag,
1997.

W. Burgard, D. Fox & S. Thrun. Active mobile robot localization.
In Proceedings of IJCAI-97. Morgan Kaufmann, 1997.

W. Burgard, A. B. Cremers, D. Fox, D. Hahnel, G. Lakemeyer,
D. Schulz, W. Steiner & S. Thrun. The interactive museum tour-
guide robot. In AAAT "98/IAAI '98: Proceedings of the fifteenth
national/tenth conference on Artificial intelligence/Innovative ap-
plications of artificial intelligence, pages 11-18, 1998.

W. Burgard, A. B. Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D.
Schulz, W. Steiner & S. Thrun. Fzperiences with an interactive
museum tour-guide robot. Artificial Intelligence, vol. 114, no. 1-2,
pages 3-55, 1999.



BIBLIOGRAPHY 153

[Burgard05]

[Burguera07]

[Cacitti01]

[Cao95]

[Choset01]

[Courbon08]

[Cox90]

[Cox94]

[Cyb]

[DAL]

[Dellaert99]

W. Burgard, M. Moors, C. Stachniss & F. E. Schneider. Coor-
dinated multi-robot exploration. IEEE Transactions on Robotics,
vol. 21, no. 3, pages 376-386, 2005.

A. Burguera, Y. Gonzalez & G. Oliver. Probabilistic Sonar Scan
Matching for Robust Localization. In Proceedings of IEEE Interna-

tional Conference on Robotics and Automation, pages 3154-3160,
2007.

A. Cacitti & R. Zapata. Reactive Behaviours of Mobile Manipulator
Based on the DVZ Method. In Proceedings of the 2001 IEEE In-
ternational Conference on Robotics and Automation (ICRA 2001),
pages 680-685, 2001.

Y. U. Cao, A. S. Fukunaga, A. B. Kahng & F. Meng. Cooper-
ative mobile robotics: antecedents and directions. In Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and

Systems 95. "Human Robot Interaction and Cooperative Robots’,
volume 1, pages 226-234, 1995.

H. Choset & K. Nagatani. Topological simultaneous localization and
mapping (SLAM): Toward exact localization without explicit local-
ization. IEEE Transactions on Robotics and Automation, vol. 17,
pages 125-137, 2001.

J. Courbon, Y. Mezouar, L. Eck & P. Martinet. Efficient hierar-
chical localization method in an omnidirectional images memory.
In Proceedings of IEEE International Conference on Robotics and
Automation ICRA 2008, pages 13-18, 2008.

I. J. Cox & G. T. Wilfong, editors. Autonomous robot vehicles.
Springer-Verlag New York, Inc., 1990.

[. J. Cox & J. J. Leonard. Modeling a dynamic environment using
a Bayesian multiple hypothesis approach. Artificial Intelligence,
vol. 66, no. 2, pages 311-344, 1994.

Cyberbotics Ltd.
hitp:/ /www.cyberbotics.com/cdrom/common/doc/webots/quide/
section7.4.html.

DALSA Corporation.
http://www.dalsa.com/corp/markets/CCD_vs-CMOS. aspz.

F. Dellaert, D. Fox, W. Burgard & S. Thrun. Monte Carlo lo-
calization for mobile robots. In Proceedings of IEEE International
Conference on Robotics and Automation, volume 2, pages 1322-
1328, 1999.



154

BIBLIOGRAPHY

[Devy93]

[Devy95]

M. Devy, J.-J. Orteu, J. L. Fuentes-Cantillana, J. C. Catalina, A.
Rodriguez, D. Dumahu & P. V. d. Janti. Mining robotics: Applica-
tion of computer vision to the automation of a roadheader. Robotics
and Autonomous Systems, vol. 11, no. 2, pages 65-74, 1993.

M. Devy, R. Chatila, P. Fillatreau, S. Lacroix & F. Nashashibi. On
autonomous navigation in a natural environment. Robotics and
Autonomous Systems, vol. 16, no. 1, pages 5-16, 1995.

[Dissanayake01] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-

[Doucet00]

[Fort-Piat97]

[Fox98al

[Fox98b]

[Fox99a]

[Fox99b]

[Fox00a]

[Fox00b]

Whyte & M. Csorba. A solution to the simultaneous localization
and map building (SLAM) problem. IEEE Transactions on Robotics
and Automation, vol. 17, no. 3, pages 229-241, 2001.

A. Doucet, S. Godsill & C. Andrieu. On sequential Monte Carlo
sampling methods for Bayesian filtering. STATISTICS AND COM-
PUTING, vol. 10, no. 3, pages 197-208, 2000.

N. L. Fort-Piat, I. Collin & D. Meizel. Planning robust displacement
missions by means of robot-tasks and local maps. Robotics and
Autonomous Systems, vol. 20, no. 1, pages 99-114, 1997.

D. Fox, W. Burgard & S. Thrun. Active Markov Localization for
Mobile Robots. Robotics and Autonomous Systems, vol. 25, pages
195-207, 1998.

D. Fox, W. Burgard, S. Thrun & A. B. Cremers. Position estima-
tion for mobile robots in dynamic environments. In AAAT '98 /TAAI
'98: Proceedings of the fifteenth national/tenth conference on Ar-
tificial intelligence/Innovative applications of artificial intelligence,
pages 983-988, 1998.

D. Fox, W. Burgard, F. Dellaert & S. Thrun. Monte Carlo Localiza-
tion: Efficient Position Estimation for Mobile Robots. In Proceed-
ings of the Sixteenth National Conference on Artificial Intelligence
(AAAT'99), pages 343-349, July 1999.

D. Fox, W. Burgard & S. Thrun. Markov localization for mobile
robots in dynamic environments. Journal of Artificial Intelligence
Research, vol. 11, pages 391-427, 1999.

D. Fox, W. Burgard, H. Kruppa & S. Thrun. Efficient multi-robot
localization based on Monte Carlo approrimation. In J. Hollerbach
& D. Koditschek, editors, Robotics Research: the Ninth Interna-
tional Symposium. Springer-Verlag, London, 2000.

D. Fox, W. Burgard, H. Kruppa & S. Thrun. A Probabilistic
Approach to Collaborative Multi-Robot Localization. Autonomous
Robots, vol. 8, no. 3, pages 325-344, Juin 2000.



BIBLIOGRAPHY 155

[Fox01]

[Fox03al

[Fox03b]

[Fox03¢]

[Franchi09]

[Friedman07]

[Gasparri06]

[Gasparri07]

[Gasparri08a]

[GasparriO8b]

[Grewal93]

D. Fox. KLD-Sampling: Adaptive Particle Filters. In Advances
in Neural Information Processing Systems 14, pages 713-720. MIT
Press, 2001.

D. Fox. Adapting the Sample Size in Particle Filters Through KLD-
Sampling. International Journal of Robotics Research, vol. 22,
no. 12, pages 985-1003, 2003.

D. Fox, J. Hightower, H. Kauz, L. Liao & D. Patterson. Bayesian
techniques for location estimation. In Proceedings of The 2003
Workshop on Location-Aware Computing, pages 16-18, 2003.

V. Fox, J. Hightower, L. Liao, D. Schulz & G. Borriello. Bayesian
filtering for location estimation. IEEE Pervasive Computing, vol. 2,
no. 3, pages 24-33, 2003.

A. Franchi, G. Oriolo & P. Stegagno. Mutual Localization in a
Multi-Robot System with Anonymous Relative Position Measures.
In TROS 2009: The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3974-3980, St. Louis, USA,
20009.

S. Friedman, H. Pasula & D. Fox. Voronoi Random Fields: Extract-
ing Topological Structure of Indoor Environments via Place Label-
ing. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI), pages 2109-2114, 2007.

A. Gasparri, S. Panzieri, F. Pascucci & G. Ulivi. Genetic approach
for a localisation problem based upon particle filters. In Proceedings
of 8th Int. Symp. on Robot Control (SYROCO 2006), Bologna,
Italy, September 2006.

A. Gasparri, S. Panzieri, F. Pascucci & G. Ulivi. A Hybrid Active
Global Localisation Algorithm for Mobile Robots. In Proceedings of
IEEE International Conference on Robotics and Automation, pages
3148-3153, 2007.

A. Gasparri & M. Prosperi. A bacterial colony growth framework
for collaborative multi-robot localization. In Proceedings of IEEE
International Conference on Robotics and Automation ICRA 2008,
pages 2806-2811, 2008.

A. Gasparri & M. C. F. Prosperi. A bacterial colony growth algo-
rithm for mobile robot localisation. Autonomous Robots, vol. 24,
no. 4, pages 349-364, 2008.

M. S. Grewal & A. P. Andrews. Kalman filtering: theory and
practice. Prentice-Hall, Inc., 1993.



156

BIBLIOGRAPHY

[Gutmann98]

[Gutmann02]

[Haralick92]

[Harrison08|

[Hester08]

[Hom]

[Howard06]

[Hsu09)

[Jaulin01]

[Jaulin02]

[Jaulin06]

J. S. Gutmann, W. Burgard, D. Fox & K. Konolige. An ex-
perimental comparison of localization methods. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, volume 2, pages 736-743 vol.2, 1998.

J. S. Gutmann & D. Fox. An experimental comparison of localiza-
tion methods continued. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and System, volume 1, pages 454~
459 vol.1, 2002.

R. M. Haralick & L. G. Shapiro. Computer and robot vision.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1992.

A. Harrison & P. Newman. High quality 3D laser ranging under
general vehicle motion. In Proceedings of IEEE International Con-
ference on Robotics and Automation ICRA 2008, pages 7-12, 2008.

T. Hester & P. Stone. Negative information and line observations
for Monte Carlo localization. In Proceedings of IEEE International
Conference on Robotics and Automation ICRA 2008, pages 2764—
2769, 2008.

Homepage of Franz J. Vesely.
http://homepage.univie.ac.at/~veselyf2/cp_tut/nol2h/new/
c3st_s2od.html.

A. Howard. Multi-robot Sitmultaneous Localization and Mapping
using Particle Filters. International Journal of Robotics Research,
vol. 25, no. 12, pages 1243-1256, 2006.

C.-C. Hsu, H.-C. Chen & C.-Y. Lai. An Improved Ultrasonic-Based
Localization Using Reflection Method. In Proc. International Asia

Conference on Informatics in Control, Automation and Robotics
CAR 09, pages 437-440, 1-2 Feb. 2009.

L. Jaulin, M. Kieffer, O. Didrit & E. Walter. Applied Interval
Analysis. Springer, 2001.

L. Jaulin, M. Kieffer, E. Walter & D. Meizel. Guaranteed robust
nonlinear estimation with application to robot localization. TEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applica-
tions and Reviews, vol. 32, no. 4, pages 374-381, 2002.

L. Jaulin. Computing minimal-volume credible sets using interval
analysis; Application to Bayesian estimation. IEEE Trans. on Sig-
nal Processing, vol. 54, no. 9, pages 3632-3636, 2006.



BIBLIOGRAPHY 157

[Jaulin09]

[JensfeltO1]

[Kalman60]

[Kieffer00]

[Ko08]

L. Jaulin. A Nonlinear Set-membership Approach for the Local-
ization and Map Building of an Underwater Robot using Interval
Constraint Propagation. TEEE Transaction on Robotics, vol. 25,
no. 1, pages 88-98, Feb 2009.

P. Jensfelt & S. Kristensen. Active global localization for a mobile
robot using multiple hypothesis tracking. TEEE Transactions on
Robotics and Automation, vol. 17, no. 5, pages 748-760, 2001.

R. Kalman. A New Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME-Journal of Basic Engineering,
vol. 82, no. Series D, pages 35-45, 1960.

M. Kieffer, L. Jaulin, E. Walter & D. Meizel. Robust Autonomous
Robot Localization Using Interval Analysis. Reliable Computing,
vol. 6, no. 3, pages 337-362, 2000.

J. Ko & D. Fox. GP-BayesFilters: Bayesian filtering using Gaus-
sian process prediction and observation models. In Proceedings of
[EEE/RSJ International Conference on Intelligent Robots and Sys-
tems IROS 2008, pages 3471-3476, 2008.

[Kortenkamp94] D. Kortenkamp & T. Weymouth. Topological mapping for mo-

[Kiimmerle08]

[Kwok04]

[Lapierre07al

[Lapierre07b)]

[Laumond98]

[Leonard91]

bile robots using a combination of sonar and vision sensing. In
AAAT94: Proceedings of the twelfth national conference on Artifi-
cial intelligence, volume 2, pages 979-984. AAAI, AAAI Press/MIT
Press, 1994.

R. Kiimmerle, R. Triebel, P. Pfaff & W. Burgard. Monte Carlo lo-
calization in outdoor terrains using multilevel surface maps. Journal
of Field Robotics, vol. 25, no. 6-7, pages 346-359, 2008.

C. Kwok, D. Fox & M. Meila. Real-time particle filters. Proceedings
of the IEEE, vol. 92, no. 3, pages 469-484, 2004.

L. Lapierre, R. Zapata & P. Lépinay. Combined Path-following
and Obstacle Avoidance Control of a Wheeled Robot. International
Journal of Robotics Research, vol. 26, no. 4, pages 361-375, 2007.

L. Lapierre, R. Zapata & P. Lépinay. Simulatneous Path Following
and Obstacle Avoidance Control of a Unicycle-type Robot. In ICRA,
pages 2617-2622. IEEE, 2007.

J.-P. Laumond, editor. Robot motion planning and control.
Springer-Verlag New York, Inc., 1998.

J. J. Leonard & H. F. Durrant-Whyte. Mobile robot localization
by tracking geometric beacons. IEEE Transactions on Robotics and
Automation, vol. 7, no. 3, pages 376-382, 1991.



158

BIBLIOGRAPHY

[Leonard92]

[Liu05]

[Madhavan04]

[Mat]

[Maybeck79]

[Metropolis49]

[Milstein02]

[Moravec85]

[Moreno02]

J. J. Leonard & H. F. Durrant-Whyte. Directed sonar sensing for
mobile robot navigation. Kluwer Academic Publishers, 1992.

J. Liu, K. Yuan, W. Zou & Q. Yang. Monte Carlo multi-robot
localization based on grid cells and characteristic particles. In Pro-
ceedings of IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, pages 510-515, 2005.

R. Madhavan & H. F. Durrant-Whyte. Natural landmark-based au-
tonomous vehicle navigation. Robotics and Autonomous Systems,
vol. 46, no. 2, pages 79-95, 2004.

The MathWorks, Inc.
http: //www.mathworks.com /products/matlab /.

P. S. Maybeck. Stochastic models, estimation and control. Aca-
demic Press, Inc., 1979.

N. Metropolis & S. Ulam. The Monte Carlo Method. Journal of the
American Statistical Association, vol. 44, no. 247, pages 335-341,
1949.

A. Milstein, J. N. Sanchez & E. T. Williamson. Robust global lo-
calization using clustered particle filtering. In AAAI-02, pages 581—
586, 2002.

H. Moravec & A. Elfes. High resolution maps from wide angle sonar.
In Proceedings of IEEE International Conference on Robotics and
Automation, volume 2, pages 116-121, 1985.

L. Moreno, J. M. Armingol, S. Garrido, A. De La Escalera & M. A.
Salichs. A Genetic Algorithm for Mobile Robot Localization Using
Ultrasonic Sensors. Journal of Intelligent and Robotic Systems,
vol. 34, no. 2, pages 135-154, 2002.

[Murrieta-Cid02] R. Murrieta-Cid, C. Parra & M. Devy. Visual Navigation in Nat-

[Nguyen07]

[Nunez08|

ural Environments: From Range and Color Data to a Landmark-
Based Model. Autonomous Robots, vol. 13, no. 2, pages 143-168,
2002.

V. Nguyen, S. Gachter, A. Martinelli, N. Tomatis & R. Siegwart.
A comparison of line extraction algorithms using 2D range data for

indoor mobile robotics. Autonomous Robots, vol. 23, no. 2, pages
97-111, 2007.

P. Nunez, R. V. Martin, J. C. d. Toro Lasanta, A. Bandera & F. S.
Hernédndez. Natural landmark extraction for mobile robot naviga-
tion based on an adaptive curvature estimation. Robotics and Au-
tonomous Systems, vol. 56, no. 3, pages 247-264, 2008.



BIBLIOGRAPHY 159

[Omohundro90] S. M. Omohundro. Bumptrees for efficient function, constraint,

[Prestes08]

[Reuter00]

[Ritter96]

and classification learning. In NIPS-3: Proceedings of the 1990
conference on Advances in neural information processing systems
3, pages 693-699. Morgan Kaufmann Publishers Inc., 1990.

E. Prestes, M. Ritt & G. Fuhr. Improving Monte Carlo Localization
i sparse environments using structural environment information.
In Proceedings of IEEE/RSJ International Conference on Intelli-
gent Robots and Systems IROS 2008, pages 3465-3470, 2008.

J. Reuter. Mobile robot self-localization using PDAB. In Proceed-
ings of IEEE International Conference on Robotics and Automation
ICRA 00, volume 4, pages 3512-3518 vol.4, 2000.

G. X. Ritter & J. N. Wilson. Handbook of computer vision algo-
rithms in image algebra. CRC Press, Inc., Boca Raton, FL, USA,
1996.

[Roumeliotis00] S.I. Roumeliotis & G. A. Bekey. Bayesian estimation and Kalman

filtering: a unified framework for mobile robot localization. In Pro-
ceedings of IEEE International Conference on Robotics and Au-
tomation (ICRA ’00), volume 3, pages 2985-2992, 2000.

[Roumeliotis02] S. I. Roumeliotis & G. A. Bekey. Distributed multi-robot local-

[Sack04]

[Sakai09]

[Schiele94]

[Schulz03]

ization. IEEE Transactions on Robotics and Automation, vol. 18,
no. 5, pages 781-795, 2002.

D. Sack & W. Burgard. A comparison of methods for line extraction
from range data. In Proceedings of the 5th IFAC Symposium on
Intelligent Autonomous Vehicles (IAV), 2004.

A. Sakai, Y. Tamura & Y. Kuroda. An Efficient Solution to 6DOF
Localization Using Unscented Kalman Filter for Planetary Rovers.
In IROS 2009: The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 41544159, St. Louis, USA,
2009.

B. Schiele & J. L. Crowley. A comparison of position estimation
techniques using occupancy. In Proceedings of IEEE International
Conference on Robotics and Automation, volume 2, pages 1628—
1634, 1994.

D. Schulz, W. Burgard, D. Fox & A. B. Cremers. People Track-
ing with Mobile Robots Using Sample-based Joint Probabilistic Data
Association Filters. International Journal of Robotics Research,
vol. 22, no. 2, pages 99-116, 2003.



160

BIBLIOGRAPHY

[Seignez06]

[Siagian07]

[Siegwart04]

[Silva07]

[Smith92]

[Sola08]

[Solutions07]

[Stéphant04]

[Stéphant07]

[Thrun98a)

[Thrun98b]

[Thrun99a)

E. Seignez. Etude et comparaison expérimentale de méthodes de
localisation multicapteurs. PhD thesis, Université Paris-Sud 11,
2006.

C. Siagian & L. Itti. Biologically-inspired robotics vision Monte-
Carlo localization in the outdoor environment. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems IROS 2007, pages 1723-1730, 2007.

R. Siegwart & I. R. Nourbakhsh. Introduction to autonomous mo-
bile robots. A Bradford Book, The MIT Press, 2004.

P. R. A. Silva & M. G. S. Bruno. A Density-Assisted Particle
Filter for Mobile Robot Localization with Uncertain Environment
MAP. In Proceedings of IEEE International Conference on Acous-

tics, Speech and Signal Processing ICASSP 2007, volume 3, pages
[T1-1205-111-1208, 2007.

A.F. M. Smith & A. E. Gelfand. Bayesian Statistics without Tears:
A Sampling-Resampling Perspective. The American Statistician,
vol. 46, no. 2, pages 84-88, 1992.

J. Sola, A. Monin, M. Devy & T. Vidal-Calleja. Fusing Monoc-
ular Information in Multicamera SLAM. TEEE Transactions on
Robotics, vol. 24, no. 5, pages 958968, 2008.

A. K. Solutions. Robotics. Infinity Science Press LLC, 2007.

J. Stéphant, A. Charara & D. Meizel. Virtual sensor, application
to vehicle sideslip angle and transversal forces. IEEE Transactions
on Industrial Electronics, vol. 51, no. 2, pages 278-289, 2004.

J. Stéphant, A. Charara & D. Meizel. Evaluation of a sliding mode
observer for vehicle sideslip angle. Control Engineering Practice,
vol. 15, pages 803-812, 2007.

S. Thrun. Learning Metric-Topological Maps for Indoor Mobile
Robot Navigation. Artificial Intelligence, vol. 99, no. 1, pages 21—
71, 1998.

S. Thrun, J. s. Gutmann, D. Fox, W. Burgard & B. J. Kuipers.
Integrating topological and metric maps for mobile robot navigation:
A statistical approach. In Proceedings of AAAI-98, pages 989-995.
AAAT Press/MIT Press, 1998.

S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert,
D. Fox, D. Hahnel, G. Lakemeyer, C. Rosenberg, N. Roy, J. Schulte,
D. Schulz & W. Steiner. Ezperiences with two deployed interactive



BIBLIOGRAPHY 161

[Thrun99b]

[Thrun00a]

[Thrun00b]

[Thrun00c]

[Thrun00d]

[Thrun05]

[Weiss94]

[Welch95]

[Wik]

[Wolf02]

[Wu01]

tour-guide robots. In Proceedings of the International Conference
on Field and Service Robotics, 1999.

S. Thrun, J. C. Langford & D. Fox. Monte Carlo Hidden Markov
Models: Learning Non-Parametric Models of Partially Observable
Stochastic Processes. In ICML "99: Proceedings of the Sixteenth In-
ternational Conference on Machine Learning, pages 415-424. Mor-
gan Kaufmann Publishers Inc., 1999.

S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. Cremers, F.
Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte & D.
Schulz. Probabilistic Algorithms and the Interactive Museum Tour-
Guide Robot Minerva. International Journal of Robotics Research,
vol. 19, pages 972-999, 2000.

S. Thrun, D. Fox, W. Burgard & F. Dellaert. Robust Monte Carlo
Localization for Mobile Robots. Artificial Intelligence, vol. 128,
no. 1-2, pages 99-141, 2000.

S. Thrun. Monte Carlo POMDUPs. In Advances in Neural Informa-
tion Processing 12, pages 1064-1070, 2000.

S. Thrun, D. Fox & W. Burgard. Monte Carlo localization with
mixture proposal distribution. In Proceedings of the AAATI National
Conference on Artificial Intelligence, pages 859-865, 2000.

S. Thrun, W. Burgard & D. Fox. Probabilistic robotics. The MIT
Press, September 2005.

G. Weiss, C. Wetzler & E. v. Puttkamer. Keeping track of position
and orientation of moving indoor systems by correlation of range-
finder scans. In Proceedings of the International Conference on
Intelligent Robots and Systems, volume 1, pages 595-601, 1994.

G. Welch & G. Bishop. An Introduction to the Kalman Filter.
Technique report, University of North Carolina at Chapel Hill, De-
partment of Computer Science, 1995.

Wikimedia Foundation, Inc.
http://en.wikipedia.org/wiki/Kalman_filter.

J. Wolf, W. Burgard & H. Burkhardt. Robust vision-based local-
1zation for mobile robots using an image retrieval system based on
invariant features. In Proceedings of IEEE International Confer-
ence on Robotics and Automation (ICRA), 2002.

C.-J. Wu & C.-C. Tsai. Localization of an Autonomous Mobile
Robot Based on Ultrasonic Sensory Information. Journal of Intel-
ligent and Robotic Systems, vol. 30, no. 3, pages 267-277, 2001.



162

BIBLIOGRAPHY

[Zapata04]

[Zapata05]

[Zhang00]

[Zhang09a]

[Zhang09b]

[Zhang09c]

[Zhang09d]

[Zhang09¢]

[Zhou07]

[Zogg07]

R. Zapata, A. Cacitti & P. Lépinay. DV Z-based collision avoidance
control of mon-holonomic mobile manipulators. Journal européen
des systmes automatisés, vol. 38, no. 5, pages 559-588, 2004.

R. Zapata, P. Lépinay, B. Jacquot & D. R. Ocampo. Co-design
of fast biologically-plausible vision-based systems for controlling the
reactive behaviors of mobile robots. Journal of Robotic Systems,
vol. 22, no. 7, pages 341-357, 2005.

L. Zhang & B. K. Ghosh. Line segment based map building and
localization using 2D laser rangefinder. In Proceedings of IEEE
International Conference on Robotics and Automation ICRA ’00,
volume 3, pages 2538-2543 vol.3, 2000.

L. Zhang & R. Zapata. Probabilistic Localization Methods of a
Mobile Robot Using Ultrasonic Perception System. In Proceedings
of IEEE International Conference on Information and Automation

(ICIA 2009), pages 1062-1067, 2009.

L. Zhang & R. Zapata. A Three-step Localization Method for Mobile
Robots. In Proceedings of International Conference on Automation,
Robotics and Control Systems (ARCS 2009), pages 50-56, 2009.

L. Zhang, R. Zapata & P. Lépinay. Self-Adaptive Monte Carlo
for Single-Robot and Multi-Robot Localization. In Proceedings
of IEEE International Conference on Automation and Logistics
(ICAL 2009), pages 1927-1933, 2009.

L. Zhang, R. Zapata & P. Lépinay. Self-Adaptive Monte Carlo
Localization for Cooperative Multi-Robot Systems. In 10th To-
wards Autonomous Robotic Systems (TAROS 2009), pages 259—
266, 2009.

L. Zhang, R. Zapata & P. Lépinay. Self-adaptive Monte Carlo
localization for mobile robots using range sensors. In Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2009), pages 1541-1546, 20009.

Y. Zhou, W. Liu & P. Huang. Laser-activated RFID-based Indoor
Localization System for Mobile Robots. In Proceedings of IEEE

International Conference on Robotics and Automation, pages 4600—
4605, 2007.

H.-M. Zogg & H. Ingensand. Terrestrial 3D-laser scanner ZLS07
developed at ETH Zurich: an overview of its configuration, perfor-
mance and application. In Optical 3-D Measurement Techniques

VIII, 2007.



TITRE en francais

Localisation Markovienne de Systémes Mono-robot et Multi-robots Utilisant des Echantillons Auto-
adaptatifs

RESUME en francais

Afin de parvenir a 'autonomie des robots mobiles, la localisation efficace est une condition préalable
nécessaire. Le suivi de position, la localisation globale et le probléme du robot kidnappé sont les trois
sous-problémes que nous étudions. Dans cette thése, nous comparons en simulation trois algorithmes
de localisation Markovienne. Nous proposons ensuite une amélioration de I'algorithme de localisation
de Monte Carlo par filtre particulaire. Cet algorithme (nommé SAMCL) utilise des particules auto-
adaptatives. En employant une technique de pré-mise en cache pour réduire le temps de calcul en
ligne, l'algorithme SAMCL est plus efficace que la méthode de Monte Carlo usuelle. En outre, nous
définissons la notion de région d’énergie similaire (SER), qui est un ensemble de poses (cellules de la
grille) dont I'énergie-capteur est similaire avec celle du robot dans l'espace réel. En distribuant les
échantillons globaux dans SER lieu de les distribuer au hasard dans la carte, SAMCL obtient une
meilleure performance dans la localisation et résout ces trois sous-problémes.

La localisation coopérative de plusieurs robots est également étudiée. Nous avons développé un
algorithme (nommé PM) pour intégrer l'information de localisation échangée par les robots lors d'une
rencontre au cours d'une mission commune. Cet algorithme apparait comme une extension a
l'algorithme de SAMCL et a été validé en simulation.

La validité et l'efficacité de notre approche sont démontrées par des expériences sur un robot réel
évoluant dans un environnement connu et préalablement cartographié.

TITRE en anglais

Self-adaptive Markov Localization for Single-Robot and Multi-Robot Systems

RESUME en anglais

In order to achieve the autonomy of mobile robots, effective localization is a necessary prerequisite.
In this thesis, we first study and compare three regular Markov localization algorithms by simulations.
Then we propose an improved Monte Carlo localization algorithm using self-adaptive samples,
abbreviated as SAMCL. By employing a pre-caching technique to reduce the on-line computational
burden, SAMCL is more efficient than regular MCL. Further, we define the concept of similar energy
region (SER), which is a set of poses (grid cells) having similar energy with the robot in the robot
space. By distributing global samples in SER instead of distributing randomly in the map, SAMCL
obtains a better performance in localization. Position tracking, global localization and the kidnapped
robot problem are the three sub-problems of the localization problem. Most localization approaches
focus on solving one of these sub-problems. However, SAMCL solves all the three sub-problems
together thanks to self-adaptive samples that can automatically separate themselves into a global
sample set and a local sample set according to needs.

Cooperative localization among multiple robots is carried out by exchanging localization information
derived from cooperation. We devise the Position Mapping (PM) algorithm to integrate this information,
which can merge into the SAMCL algorithm as an extension.

The validity and the efficiency of our algorithm are demonstrated by experiments carried out with a
real robot in a structured and known environment. Extensive experiment results and comparisons are
also given in this thesis.
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