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Thesis Summary in French

1 Introduction

L'équipe SCEE de Supélec travaille dans le domaine de la radio logicielle et intelligente,
encore appelée Radio Cognitive (CR - Cognitive Radio). Dans cette thèse, nous avons
présenté une solution pour l'analyse de visage temps réel dans un équipement de radio
cognitive. Un équipement CR intègre en plus des composants radio classiques, un
ensemble de capteurs intelligents. A partir des informations fournies par ces capteurs,
le CRM (Cognitive Radio Manager) va dé�nir la con�guration optimale a�n de fournir le
meilleur service. La fonction du capteur vidéo est, entre autre, d'authenti�er l'utilisateur
de l'équipement et de détecter ses caractéristiques faciales en plus de l'orientation de
son visage. Ces informations guident le choix du codec vidéo le mieux adapté, l'objectif
�nal étant de fournir la meilleur qualité de transmission compte tenu du contexte global
dans lequel évolue l'équipement de Radio Cognitive. Dans ce cadre particulier, nous
proposons des solutions d'analyse de visage, à savoir l'estimation de la pose et des

caractéristiques faciale d'un visage inconnu orienté.
L'analyse faciale est à considérer au sens large et inclus l'alignement de visage,

l'estimation de sa pose et en�n l'extraction de caractéristiques et expressions de visages
inconnus. Pour l'extraction de la pose du visage dans un espace à six degrés de liberté,
le paramètre le plus problématique est la rotation en dehors du plan (quand on fait
"non" de la tête, l'angle qui correspond au "yaw" ou au "lacet"), comparé aux autres
paramètres de rotation et translation. De plus, si le visage est inconnu du système, la
détection s'avère plus di�cile à réaliser. Notre travail de thèse a consisté à proposer une
solution pour la détection de cet angle de rotation en dehors du plan pour des visages
inconnus.

Les visages humains sont des objets par nature non-rigides. Le problème de cette
�exibilité est pris en compte dans les Modèles Actifs d'Apparence (AAM) [1] qui sont
remarquablement e�caces lorsqu'il s'agit d'extraire des caractéristiques faciales et plus
généralement lorsqu'il faut aligner un visage (opération qui consiste à localiser plusieurs
dizaines de points autour des yeux, du nez, de la bouche et des sourcils). Notre système
d'analyse de visage est basé sur de nouveau modèles actifs d'apparence en 2.5D qui
s'appuient sur une optimisation hybride mono et multi-objectifs.

La solution hybride est nécessaire étant donné la forme non-convexe de l'erreur
dans l'espace de recherche multidimensionnel générée par les AAM. Tant que le vis-
age analysé reste de face tout en étant correctement localisé, l'erreur entre le modèle

1



2 Contents

d'apparence et le visage réel reste convexe. Pour peu qu'il se déplace latéralement, des
minimum locaux apparaissent sur cette surface. Cette perte de convexité rend néces-
saire l'utilisation d'algorithmes d'optimisation ayant d'égales capacités d'exploration et
d'exploitation. Nous entendons par exploration la capacité à trouver une solution glob-
ale n'importe où dans l'espace de recherche, et par exploitation la capacité à utiliser
des informations issues de solutions préalables a�n d'améliorer les solutions futures
proposées par l'algorithme d'optimisation. Les algorithmes génétiques (GA) sont sou-
vent utilisés comme des algorithmes de recherche globale compte tenu de leur qualité
d'exploration, tandis que la descente de gradient (GD) qui trouve facilement des opti-
mums locaux peut aider les GA à améliorer leur capacité d'exploitation. En d'autres
termes, les capacités d'exploration des GA et d'exploitation des GD peuvent mener à
un algorithme d'optimisation hybride e�cace.

Ce problème de la non-convexité de la surface de l'erreur dans l'espace des paramètres
de l'AAM est non seulement abordé par la proposition d'un algorithme hybride, mais
aussi par la prise en compte de plusieurs webcams. Historiquement cette solution était
inenvisageable compte tenu du prix des caméras et de la faible puissance des processeurs
devant traiter le �ot des données issus de ces caméras. Actuellement, étant donné le prix
dérisoire des webcams et l'augmentation de la capacité des processeurs, un tel système
est tout à fait viable.

Dans un système mono-vue, l'alignement d'un visage ne peut être envisagé lorsqu'une
partie du visage masque littéralement une autre partie comme cela arrive lors d'une
rotation de type "yaw", par exemple dans le cas d'une vue de pro�l. Pour con-
tourner ce problème, nous utilisons et réalisons la fusion des informations venant de
plusieurs caméras. Des informations mêmes partielles issues de plusieurs caméras aident
l'alignement : dans un système multi-vues, plus on a de sources d'information, plus le
système est robuste : la probabilité de trouver des solutions divergentes c'est à dire
fortement mal alignées, est alors minime.

La capture de plusieurs images d'un même visage mène à la production de plusieurs
surfaces caractérisant l'erreur d'alignement. La recherche d'une solution optimale con-
cernant un processus unique lui-même caractérisé par plusieures fonctions d'erreur con-
duit naturellement à l'optimisation multi-objectifsMOO - Multi Objectives Otimiza-

tion). Beaucoup de techniques de type MOO existent mais nous avons choisi l'algorithme
bien connu NSGA-II basé sur l'approche de Pareto pour ses qualités reconnues en ex-
ploration et son e�cacité éprouvée dans le domaine de la modélisation des contours de
la bouche [2].

Nous proposons deux systèmes d'alignement de visages. 1) Le premier exploite un
AAM 2.5D et une seule caméra. La phase d'optimisation de cet AAM est hybride : elle
mixe un algorithme génétique et une descente de gradient. Notre contribution tient dans
l'opérateur de descente de gradient qui travaille de concert avec l'opérateur classique
de mutation : de cette manière sa présence ne pénalise pas la vitesse d'exécution du
système. 2) Le second met en ÷uvre un AAM 2.5D mais exploite plusieurs caméras.
La recherche de la meilleure solution découle également d'une approche hybride qui
mixe une optimisation multi-objectifs : le NSGA-II, avec une descente de gradient.
Notre contribution tient dans la proposition d'une méthode e�cace pour extraire des
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informations concernant la pertinence de chacune des vues, ces informations sont ensuite
exploitées par la descente de gradient.

2 Modèle Actif d'Apparence 2.5D

Cette section présente notre première contribution qui consiste en la génération d'un
modèle actif d'apparence 2.5D. Nous l'utiliserons pour estimer la pose et extraire les
caractéristiques faciales d'un visage produisant des mouvements de rotation latérale de
forte amplitude. L'AAM 2.5D est construit à partir i) de marqueurs 2D positionnés
sur une vue de face et de pro�l du visage et permettant de générer un modèle 3D et
ii) d'une texture 2D extraite à partir de la vue de face et projetée sur le modèle 3D du
visage. Dans cette phase de modélisation (voir �gure 1), 68 marqueurs sont spéci�és
manuellement sur l'ensemble des images de la base d'exemples de visages.

Figure 1: Modélisation AAM 2.5D d'un visage

Les marqueurs de tous les exemples de visages sont normalisés et alignés dans les
trois dimensions à partir d'une analyse de Procruste ([3], [4]). La moyenne de ces
marqueurs normalisés constitue la forme moyenne des visages existants dans la base.
On associe donc à chaque exemple de visage une forme spéci�que 3D produite à partir
de ces marqueurs. Une Analyse en Composantes Principale (PCA) est mise en ÷uvre
sur l'ensemble des formes pour produire un vecteur de paramètres de forme qui pourra
représenter 95% des variations de formes de la base d'exemples.

si = s̄+ φs ∗ bs (1)

avec si la forme synthétisée, s̄ la forme moyenne, φs les vecteurs propres produits
par la PCA et bs les paramètres de formes.

Les vues de faces de tous les visages contenus dans la base sont projetés ("warpés")
sur la forme moyenne 3D obtenue dans la phase précédente. Les textures warpées sont
projetées sur un plan 2D et génèrent ainsi des vues frontales 2D de toutes les textures des
visages de la base d'apprentissage dans une même forme moyenne de visage. C'est pour
cette raison que nous nommons notre modèle un AAM 2.5D : il résulte de marqueurs
dé�nis dans l'espace 3D qui génèrent une forme 3D sur laquelle vient se projeter une
texture 2D. La moyenne des textures est évaluée à partir de l'ensemble des textures
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warpées sur la forme moyenne. Sur cet ensemble est appliqué une seconde PCA qui va
produire un vecteur de paramètres caractérisant 95% des variations des textures de la
base.

gi = ḡ + φg ∗ bg (2)

où gi est la texture synthétisée, ḡ est la texture moyenne, φg sont les vecteurs propres
produits par la PCA et bg les paramètres de texture.

Finalement les vecteurs bs et bg de chaque exemple de visage sont concaténés pour
former un vecteur b. Sur l'ensemble de ces vecteurs est réalisée une dernière PCA :

b = [bsbg]T , b = φC ∗ C (3)

où φC représente les vecteurs propres caractérisant 95% de la variation totale des don-
nées et C est le vecteur des paramètres d'apparence qui va dé�nir à la fois la forme et
la texture de chaque visage de la base d'exemples.

Le modèle 2.5D peut être modi�é en translation, en rotation et en zoom par l'intermédiaire
du vecteur de pose P .

P = [θpitch, θyaw, θroll, tx, ty, Scale]T (4)

où θpitch correspond à la rotation du visage autour de l'axe x (lorsque l'on fait oui
de la tête), θyaw est associé à une rotation autour de l'axe y (pour faire un pro�l ou un
semi-pro�l) et θroll correspond à la rotation dans le plan. tx, ty représentent la position
du centre du visage et Scale et un facteur de zoom. La �gure 2 illustre le modèle
lorsqu'on le fait tourner d'un angle θyaw.

Figure 2: Le modèle AAM 2.5D pour di�érentes valeurs de θyaw

Dans la phase de segmentation, le modèle d'un visage déformé et modi�é en trans-
lation, zoom et en rotation par l'intermédiaire des vecteurs C et P est positionné sur
l'image analysée I. La texture segmentée de cette image (délimitée par les points du
modèle) est projetée (warpée) dans la forme moyenne des visages, puis normalisée en lu-
minance pour éviter les problèmes de variations lumineuse. L'objectif est de minimiser
l'erreur pixel e suivante.

e =

√√√√ 1
N

N∑
i=1

[Ii(C,P )−Mi(C)]2 (5)

où I(C,P ) est l'image segmentée et M(C) est la texture du modèle générée par le
vecteur C. N est le nombre de pixels de la texture. Pour choisir les bons paramètres C et
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P nous avons besoin d'un algorithme d'optimisation visant à minimiser l'erreur e. Dans
notre proposition associée à un système mono-vue, ces deux vecteurs sont optimisés
conjointement par un algorithme génétique hybride tandis que pour le système multi
caméras, c'est un NSGA-II hybride qui sera implémenté.

3 Système mono-vue

Cette section présente notre contribution consistant en un algorithme d'optimisation
hybride pour les AAM qui intègre une descente de gradient dans un algorithme génétique
dans le but de réaliser un alignement de visage robuste, e�cace et fonctionnant en temps
réel.

3.1 Optimisation

Un algorithme génétique peut être utilisé pour optimiser la valeur des vecteurs d'apparence
C et de pose P . L'objectif est de trouver les meilleures valeurs possibles de ces vecteurs
de paramètres pour minimiser l'erreur entre le modèle et l'image analysée. Dans ce
cadre, chaque paramètre est considéré comme un gène. Tous les gènes de C et P sont
concaténés et constituent un chromosome. Une population d'un certain nombre de
ces chromosomes est créée de façon aléatoire. La somme e (Eq.5) des erreurs pixel
(la �tness) entre la texture du modèle produit par le chromosome et la texture de
l'image analysée est évaluée. Les chromosomes pris en compte dans la reproduction
sont sélectionnés par une procédure de type Tournoi. Un crossover sur deux points
et une mutation gaussienne sont appliqués pour produire la nouvelle population de
chromosomes.

3.2 Algorithme hybride

La fusion d'un AG et d'une descente de gradient n'est pas évidente compte tenu de la
nature très di�érente de ces deux algorithmes. Une fusion rudimentaire augmenterait
le nombre de calculs d'erreurs. Nous proposons un opérateur gradient qui travaille de
concert avec l'opérateur de mutation. Ce nouvel opérateur utilise l'erreur évaluée durant
la mutation et ne nécessite donc pas d'évaluation supplémentaire de cette erreur. Le
paragraphe suivant détaille notre approche.

Operateur Gradient Durant la mutation d'un chromosome dans le GA nous avons
changé la valeur d'un seul gène pour produire un chromosome "enfant" disponible pour
la prochaine itération de l'algorithme. Cette propriété de l'opérateur de mutation nous
donne donc accès à l'erreur résiduelle (l'erreur pixel) relativement à chaque paramètre
constituant les vecteurs C et P . Ces erreurs permettent en fait de calculer les dérivées
partielles de l'erreur par rapport à chaque paramètre. Durant l'évaluation d'une généra-
tion (au cours d'une itération du GA), dès qu'un chromosome subit une mutation,
l'opérateur gradient mémorise ces dérivées partielles pour construire les matrices Jaco-
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bienne sans interrompre l'exécution de l'opérateur de mutation. ∆C et ∆P sont calculés
de la manière suivante

∆C = −η
JTC
JTCJC

ex (6)

∆P = −η
JTP
JTP JP

ex (7)

où η est une valeur permettant de contrôler la di�érence de valeur de paramètre
dans la direction du gradient.

Au début de l'évolution de l'algorithme génétique, ces matrices Jacobiennes ne sont
pas pertinentes puisque l'espace de recherche du GA est très perturbé. Mais au fur et
à mesure des itérations, la population produite par le GA se concentre dans une zone
autour du minimum global qui est de plus en plus convexe : c'est à ce moment que
l'évaluation des matrices Jacobiennes devient pertinente.

Des expérimentations ont été menées pour véri�er la stabilité des Jacobiens durant
l'évolution du GA. Durant ces simulations, le GA s'exécutait normalement tandis que
l'opérateur gradient évaluait la valeur du Jacobien à chaque mutation. Ces Jacobiens
sont utilisés pour prédire la valeur du gène (le paramètre) compte tenu du gradient
de l'erreur. Les �gures 3 montrent les trois premiers paramètres des vecteur C et P
évalués par le Jacobian à chaque itération. Nous pouvons constater sur ces �gures que
les paramètres estimés par les Jacobians deviennent stables, c'est à dire qu'ils pointent
dans la bonne direction, après 7 à 10 itérations du GA; avant cela les prédictions de ces
paramètres par les Jacobians sont erronées. Cela signi�e qu'après un certain nombre
d'itérations, la population a e�ectivement rejoint une zone plus stable de l'erreur autour
du minimum global.

3.3 Implémentation

Cette section propose de décrire étape par étape la procédure d'optimisation hybride
par algorithme génétique et descente de gradient.

1. Initialisation. L'image est acquise et le centre du visage évalué par un détecteur
de visage. On initialise la population de N chromosomes caractérisant les vecteurs
d'apparence C et de pose P .

2. Segmentation. Chaque chromosome spéci�e une forme 3D. Chaque forme est
modi�ée, translatée et orientée en tenant compte des valeurs des paramètres
d'apparence et de pose de chaque chromosome. La forme générée est positionnée
sur l'image analysée et la texture sous-jacente est projetée dans la forme moyenne
de face des visages de la base. Une normalisation photométrique est appliquée sur
cette texture.

3. Fitness. L'erreur entre la texture normalisée précédente et celle générée par le
modèle est évaluée, la somme (Eq.5) des erreurs sur tous les pixels conduit à la
�tness associée à chaque chromosome.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Evaluation de l'estimation des premiers paramètres des vecteurs C et P par
les matrices Jacobienne au cours des generations de l'algorithme génétique
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4. Reproduction. Une compétition par Tournoi permet de sélectionner une sous-
population de N/2 chromosomes à l'intérieur de la population courante, en fonc-
tion de la �tness de chaque chromosome. On applique les opérateurs de crossover
et de mutation sur les éléments de cette sous-population. Les parents sont rem-
placés par les enfants après l'opérateur de crossover. Cette nouvelle population
de N/2 chromosomes est associée aux N/2 chromosomes de la population initiale
n'ayant pas été sélectionnés durant le Tournoi a�n de constituer une population
de N chromosomes.

5. Opérateur Gradient. Durant la mutation de chaque gène, le vecteur d'erreur
pixel est mémorisé pour calculer les matrices Jacobiennes. Comme nous l'avons
expliqué précédemment, après 7 à 10 itérations, à chaque fois qu'une mutation est
réalisée, la dérivée partielle de l'erreur par rapport au gène muté est évaluée. Au
�nal, après plusieurs générations, lorsque tous les gènes ont subi une mutation,
une moyenne arithmétique sur les di�érentes évaluations d'une même dérivée par-
tielle dans les matrices Jacobienne est évaluée. La descente de gradient est alors
appliquée sur la population de N chromosomes générée à la �n de l'opération de
reproduction sur les N/2 premiers chromosomes, sachant que tous les chromo-
somes de cette population ont été ordonné en prenant en compte leur rang de
Pareto.

Les étapes 2 à 5 sont itérées jusqu'à ce qu'un nombre maximum de générations
soit atteint, le meilleur chromosome à chaque génération étant systématiquement con-
servé (stratégie élitiste). Ce nombre maximum d'itérations nous permet de comparer la
complexité en termes de nombre de calcul d'erreurs de notre proposition avec d'autres
techniques d'optimisations. Le chromosome ayant au �nal la meilleure �tness fournit
les vecteurs d'apparence et de pose de la solution trouvée par l'algorithme.

3.4 Expérimentations et Résultats

Trois algorithmes d'optimisations ont été simulés à titre comparatif i) le HGOAAM
(Hybrid Genetic Optimization for AAM) ii) la descente de gradient (GD) et iii) le HGA-
Sim (Hybrid GA-Simplex) (Durand and Alliot [5] qui combine un Simplex et un GA
et ont proposé des tests sur les fonctions classiques de Griewank et Corona). Dans les
expérimentations concernant le HGOAAM et le HGA-Sim la taille de la population est
de 140 chromosomes et le nombre maximum de générations pour chaque image analysée
est de 25. Concernant la descente de gradient, di�érentes initialisations sont testées dans
la mesure où le GD est très sensible aux minima locaux mais très peu consommateur de
temps de calculs. Ces initialisations pavent l'espace en x et y (matrice de 3x3) autour
du centre du visage détecté et sur trois valeurs de taille di�érentes ce qui revient à une
matrice de 3x3x3 éléments correspondant à 27 initialisations di�érentes.

A la �n de chaque optimisation, les meilleures solutions permettent de localiser des
caractéristiques telles que les yeux, le nez et la bouche. Les �gures 4, 5 et 6 illustrent
les performances des trois approches sur trois bases de tests di�érentes.
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(a) HGOAAM (b) GD (c) HGA-Sim

Figure 4: Alignement des visages de la base Pointing'04 par HGOAAM, GD et HGA-
Sim

(a) HGOAAM (b) GD (c) HGA-Sim

Figure 5: Alignement des visages de la base SUPELEC'08 par HGOAAM, GD et HGA-
Sim
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(a) HGOAAM (b) GD (c) HGA-Sim

Figure 6: Alignement des visages de la base synthétique par HGOAAM, GD et HGA-
Sim

Methode Base Images Alignées Estimation Pose Nb. de Temps

(GTE≤15%) (E(θyaw)≤5◦) Warps (msec)

HGOAAM 41% � 2500 83

GD POINTING'04 (390) 20% � 4995 166
HGA-Sim 30% � 2500 83

HGOAAM 58% � 2500 83

GD SUPELEC'08 (246) 47% � 4995 166
HGA-Sim 46% � 2500 83

HGOAAM 46% 26% 2500 83

GD Synthetic (600) 35% 21% 4995 166
HGA-Sim 36% 13% 2500 83

Table 1: Comparaison des performances

La vérité terrain (GTE - Ground Truth Error) sur chaque image des bases de tests
permet de mesurer une erreur entre les solutions trouvées par les di�érents algorithmes
et la localisation manuelle des caractéristiques faciale sur chaque image. Un visage
est considéré comme correctement aligné si la moyenne des localisations des centres de
gravité des yeux, du nez et de la bouche est inférieure à 15% de la distance interoculaire
du visage analysé. Etant donné la faible précision de la vérité terrain sur des images
réelles concernant la valeur de l'angle θyaw, l'erreur sur ce paramètre n'a été évaluée
que sur la base de visages synthétiques.

Le tableau 1 permet de comparer quantitativement les trois approches en terme
de précision, de robustesse et de vitesse d'exécution. On peut voir sur ce tableau que
notre proposition (HGOAAM) est bien plus e�cace que les HGA-Sim et GD. Con-
cernant la vitesse d'exécution, une descente de gradient nécessite approximativement
185 warping ou calcul d'erreurs par point d'initialisation, ce qui mène à un total de
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4995 calculs d'erreurs étant donnée les di�érentes initialisations e�ectuées en tx, ty et
Scale. HGOAAM et HGA-Sim nécessitent seulement 2500 warping pour localiser le
visage. Chaque warping représente 90% du temps total d'exécution pour une itération,
c'est à dire 0.03ms sur un Pentium-IV 3.2GHz. Le calcul supplémentaire induit par
l'évaluation des matrices Jacobienne est négligeable, de sorte que l'alignement d'un vis-
age par notre méthode est réalisé en 83msec sur un Pentium-IV 3.2GHz, ce qui signi�e
que nous pouvons exécuter notre algorithme à 12 images par seconde.

4 Système multi-vues

4.1 Multi-Objective AAM (MOAAM)

Dans un système mono-vue, une seule erreur entre le modèle et l'image analysée est
minimisée. A contrario, dans un système multi-vues plusieurs erreurs doivent être min-
imisées en fonction du nombre de vues considérées. L'objectif est donc d'optimiser
toutes les erreurs pixel e1, e2, ..., eM produite par les M caméras sachant que

ej =

√√√√ 1
N

N∑
i=1

[Ii,j(C,Pj)−Mi(C)]2 (8)

où j varie de 1 à M et M ≥ 2. Les vecteurs Pj caractérisent les paramètres de pose
et sont liés par des o�sets en rotation, scale et translation fournis lors de la phase de
calibration des caméras. N est le nombre de pixel contenus dans la texture du modèle.
L'optimisation de l'AAM dans un système multi vues est illustrée �gure 7. Dans un tel
système, le même modèle 2.5D est pris en compte simultanément au niveau de chaque
caméra avec le même vecteur d'apparence C. Les vecteurs de pose de chaque caméra
sont reliés par les o�sets Poffset,j . Pour optimiser simultanément les M erreurs pixel,
l'optimisation multi-objectifs d'un même modèle 2.5D est proposée.

Nous avons implémenté l'optimisation multi-objectifs NSGA-II (Non-dominated Sort-
ing Genetic Algorithm) proposé par [6] pour optimiser conjointement les vecteurs d'apparence
et de pose C et P . L'objectif est de trouver les valeurs de ces deux vecteurs de
paramètres permettant de minimiser les erreurs pixel entre la texture générée par le
modèle et celle de chacune des images acquises par les caméras. Dans ce cadre, chaque
paramètre est considéré comme un gène. Tous les gènes des vecteurs C et P sont con-
caténés pour former un chromosome. Comme dans la section 3.1 une population de
chromosomes est initialisée aléatoirement, à chaque chromosome est associé une �tness,
une sélection de type Tournoi est mise en ÷uvre ainsi que des opérateurs de crossover
deux points et de mutation gaussienne. La principale di�érence repose sur les opéra-
teurs de sélection et de crossover qui prennent en compte le fait qu'un chromosome soit
on non dominé : la �tness d'un chromosome est dépendante du rang de Pareto de ce
chromosome dans la population comme c'est l'usage dans NSGA-II.
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Figure 7: Un seul modèle AAM est pris en compte sur des vues di�érentes d'un même
visage
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4.2 Optimisation Multi-objectifs hybride

Dans cette section, nous présentons notre troisième contribution qui consiste en une
fusion des algorithmes NSGA-II et descente de gradient pour l'alignement de visage
dans un système multi-caméras.

4.2.1 Opérateur Gradient

L'évaluation des matrices Jacobienne exploitées par la descente de gradient dégrade le
temps d'exécution, raison pour laquelle nous allons utiliser à nouveau l'opérateur Gra-
dient de la section 3.2. Considérons les Jacobiens Jj,C et Jj,P matrices des dérivées
partielles de l'erreur par rapport aux paramètres constituant les vecteurs C et P , asso-
ciées à la caméra j. Au système de N caméras sont donc associés 2N Jacobiens. Chacun
de ces Jacobiens permet d'estimer une valeur spéci�que de chaque paramètre. La dif-
férence entre les systèmes mono et multi-vues réside dans la manière d'appliquer ∆C et
∆P produits par la descente de gradient. Dans le système multi-vues, ces valeurs sont
prises en compte dans la deuxième phase d'optimisation du NSGA-II et avec l'aide d'un
facteur spéci�que appelé CIRF, relatif à la qualité de l'information associée à chaque
caméra.

4.2.2 Facteur CIRF (Camera Information Relevance Factor)

Dans un système multi-caméra, l'utilisation de NSGA-II permet d'analyser l'ensemble
de la population des solutions trouvées pour chaque caméra au même instant.

Considérons par exemple deux caméras installées de part et d'autre d'un écran
auquel fait face un utilisateur. Selon son orientation, le visage peut faire face à trois
régions R1, R2 et R3 comme indiqué dans la �gure 8. Dans la région R1, les deux
caméras sont aussi pertinentes l'une que l'autre en terme de qualité d'information, de
sorte que les erreurs associées à l'une ou l'autre caméra ont une égale importance.
Inversement si le visage est orienté vers les régions R2 ou R3, il est plus di�cile pour
le modèle actif de minimiser l'erreur associée à la caméra qui ne verra qu'une partie
seulement du visage. Il est donc à prévoir que la population de chromosomes ait en
moyenne une erreur plus élevée pour l'une des caméras comparativement à l'autre. Une
vue synthétique des fronts représentés par la population des chromosomes est proposée
dans la �gure 8; les �gures 9(a), 9(b) et 9(c) sont quand à elles des représentations
réelles de ces fronts suivant la région vers laquelle pointe le visage.

Cette répartition des chromosomes suivant l'orientation des visages nous a conduit
à évaluer un facteur appelé CIRF (Camera Information Relevance Factor) qui traduit
la pertinence d'une caméra par rapport aux autres sachant qu'une caméra sera d'autant
plus utile pour l'optimisation que le visage lui fera face. Ce facteur sera ensuite exploité
dans la descente de gradient.

Considérons qu'à chaque instant, le visage est orienté de telle façon que l'information
issue de chaque caméra est pertinente mais que le taux de pertinence varie selon la
caméra. Pour évaluer ce taux, nous proposons une technique pour analyser de façon
automatique la population classée par l'approche de Pareto. Cette procédure démarre
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Figure 8: Système multi vues

lorsque le critère d'arrêt associé à la première phase d'optimisation du NSGA-II est at-
teint pour une image donnée. Il consiste à i) calculer la valeur médiane de chaque erreur
pixel e1,i et e2,i associée à chacune des caméras des N chromosomes de la population,
ii) tirer une ligne entre cette valeur médiane de l'erreur (vecteur à deux composantes
puisque nous avons deux caméras) et l'erreur minimale atteinte par les deux caméras
(vecteur d'erreur à deux composantes [emin emin]t voir ci-après la dé�nition de emin).
Ces lignes sont illustrées sur les �gures 9(a), 9(b) et 9(c). A partir de ces valeurs, les
CIRF associés à chaque caméra peuvent être évalués de la manière suivante.

ψ =
arctan

(
ẽ2−emin
ẽ1−emin

)
π/2

(9)

où
ψ = Camera Information Relevance Factor,

ẽ1 = Median de e1,i 0 ≤ i ≤ N,

ẽ2 = Median de e2,i 0 ≤ i ≤ N,

emin = Minimum (Minimum(e1,i) , Minimum(e2,i))

La caméra 1 des �gures 9(a), 9(b) et 9(c) a un CIRF de 0.79, 0.52 et 0.30 respec-
tivement, ce qui signi�e que les caméras les plus pertinentes sont la caméra 1, les deux
caméras et la caméra 2. La valeur du CIRF varie entre 0 et 1. Si un visage est orienté de
manière à ce qu'une caméra ne voie pas l'un des pro�ls, la valeur du CIRF associé à cette
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(a) θyaw ∈ R2

(b) θyaw ∈ R1

(c) θyaw ∈ R3

Figure 9: Erreurs associées à chaque chromosome selon l'orientation du visage
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caméra doit être de zéro. Cependant, étant donnée la diversité des solutions proposées
par NSGA-II, le CIRF n'atteint jamais les valeurs extrêmes de 0 ou 1 même s'il s'en
approche. Nous pouvons donc utiliser la valeur du CIRF pour négliger l'information de
l'une ou l'autre caméra lorsqu'elle n'est pas pertinente. La valeur du CIRF est utilisée
à titre de coe�cient de pondération pour générer une erreur global etotal minimisée par
la descente de gradient : on se ramène donc à un problème mono-objectif.

etotal = e1 ∗ ψ + e2 ∗ (1− ψ) (10)

La descente de gradient minimise donc une seule erreur, fruit de la pondération des
erreurs associées à chacune des caméras suivant leur pertinence.

Il nous faut à présent sélectionner un sous-ensemble de la population de chromosomes
sur lequel va être appliqué la descente de gradient. Le critère de sélection des solutions
proposé dans les algorithmes évolutionnaires privilégie la survie des chromosomes ayant
la meilleure �tness, qu'il s'agisse d'une optimisation mono ou multi-objectifs : c'est ce
que nous allons reproduire ici en prenant en compte le CIRF. Nous utilisons la droite
dé�nie précédemment (voir Fig.9) pour classer par ordre croissant les chromosomes
en fonction de leur proximité par rapport à cette droite. Un nombre spéci�que des
chromosomes les plus proches de la droite est sélectionné, une descente de gradient est
appliquée sur chacun d'entre eux. En règle générale, ils sont positionné dans le voisinage
de l'erreur médiane (régions encerclées dans les �gures 9(a), 9(b) et 9(c))

4.3 Implémentation

Cette section décrit étape par étape l'alignement de l'AAM 2.5D optimisé par l'algorithme
hybride multi-objectifs.

1. Initialisation.

Les images sont acquises à partir desM caméras avec le centre de gravité du visage
inconnu localisé dans chaque image par un détecteur de visage. On initialise
de façon aléatoire la population de N chromosomes caractérisant les vecteurs
d'apparence C et de pose P . La �tness des chromosomes est évaluée à partir de
l'équation 8 par rapport à chaque caméra. A un chromosome correspond donc un
ensemble de valeurs e1, e2, ..., eM . Chacun des chromosomes est alors classé selon
son rang de Pareto.

2. Reproduction. Une sélection par Tournoi permet de sélectionner une popula-
tion de N chromosomes "Parents". Dans cette nouvelle sélection il peut donc
arriver qu'un même chromosome soit représenté plusieurs fois. Les opérateurs de
crossover et de mutation sont appliqués et conduisent à une population Q[t] de N
chromosomes "Enfants". Les "Parents" et les "Enfants" constituent une nouvelle
population de 2N chromosomes, à nouveau classés selon leur rang de Pareto.

3. Segmentation. Chaque chromosome correspond à une forme 3D de visage. Cette
forme est positionnée dans chacune des M images et prend en compte les o�sets
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relatifs à la caméra associée. Par exemple pour l'image j, les o�sets θoffset(aw,j) ,

θoffset(pitch,j), θ
offset
(roll,j), tx

offset
(j) , tyoffset(j) et Scaleoffset(j) de la caméra j seront évalués

relativement à la caméra centrale. Les paramètres C quand à eux restent iden-
tiques pour chaque vue. La texture de l'image contenue dans la forme positionnée
est warpée dans la forme moyenne dé�nie dans la phase de modélisation. Cette
texture warpée est normalisée en photométrie. Les o�sets introduits précédem-
ment sont relatifs à la caméra centrale ce qui signi�e que la forme générée par
un chromosome sans o�set représente un visage vue par la caméra centrale. Pour
cette raison, nous évaluerons expérimentalement notre algorithme sur la base de
cette image frontale.

4. Fitness. Les erreurs pixels e1, e2, ..., eM sont alors évaluées (voir Eq.8) entre la
texture normalisée de chaque image et celle générée par le modèle et cela pour
chaque chromosome.

5. Opérateur Gradient. Durant la mutation de chaque gène dans la phase de
reproduction, l'image de l'erreur est mémorisée pour le calcul futur des matrices
Jacobiennes. Dès qu'une mutation est réalisée, une dérivée partielle de l'erreur en
fonction du gène muté est calculée. Au �nal, lorsque tous les gènes ont subit cet
opérateur de mutation, une moyenne arithmétique est e�ectuée sur chaque dérivée
partielle (compte tenu du fait qu'un même gène a subit plusieurs mutations) et
les matrices Jacobienne sont alors disponibles pour la descente de gradient.

6. Classement de Pareto Un classement des chromosomes selon Pareto est e�ectué
sur l'ensemble de la population pour produire des fronts de Pareto. Tous les
chromosomes sont ainsi classés selon leur rang correspondant au numéro du front
de Pareto auquel ils appartiennent. C'est grâce à ce classement par rang que nous
sommes capables de comparer les chromosomes les uns par rapport aux autres
dans un contexte multi-objectifs. Les chromosomes de même rang se distinguent
par leur distance de crowding qui prend en compte pour un chromosome le nombre
de chromosomes qu'il possède dans son voisinage.

7. Sélection. Dans la phase de reproduction, la taille de la population devient le
double de la population originale, c'est à dire 2N . Pour maintenir une population
de taille constante, seulement N chromosomes (ayant les rangs les plus faibles)
sont conservés. Cependant, si les chromosomes du dernier rang considéré mènent
à une population supérieure à N , alors on ne sélectionne que ceux ayant une
distance de crowding élevée pour maintenir la diversité sur chaque front.

Les étapes de 2 à 7 sont répétées jusqu'à ce qu'un nombre maximum de générations
soit atteint, le meilleur chromosome à chaque génération étant systématiquement con-
servé. Comme indiqué dans le système mono-vue, ce nombre maximum de générations
permettra de comparer la complexité algorithmique des di�érentes approches testées.
La répartition des chromosomes selon les di�érents fronts de Pareto est analysée a�n de
calculer le CIRF de chaque caméra et de sélectionner les chromosomes sur lesquels sera
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appliquée la descente de gradient comme présentée dans la section 4.2.2. Au �nal, les
matrices Jacobienne évaluées durant les générations sont utilisées dans les descentes de
gradient et conduisent à la production d'un meilleur chromosome.

Nous avons présenté un algorithme d'optimisation avec M caméras. Que M soit
supérieur ou égal à deux, le principe reste le même. Le nombre de matrices Jacobienne
augmentera linéairement avec le nombre de vues considérées et les fronts de Pareto
seront représentés dans des espaces à M dimensions. Dans la section suivante, nous
testerons l'algorithme proposé dans un système avec deux caméras seulement.

4.4 Experimentations et Résultats

4.4.1 Experimentations

Trois tests ont été menés.
AAMMono-objectif (SOAAM Single-Objective AAM). C'est la caméra cen-

trale qui est utilisée, un AAM 2.5D optimisé par un algorithme génétique classique
permet d'aligner le visage.

AAMMulti-objectif (MOAAM - Multi-Objective AAM). Les deux caméras
latérales permettent d'aligner le visage avec un AAM 2.5D optimisé par un NSGA-II.

AAMMulti-Objectif Hybride (HMOAAM - Hybrid Multi-Objective AAM).

C'est un NSGA-II optimisé avec l'algorithme hybride présenté dans la section 4.3 qui
est utilisé dans un système à deux caméras.

4.4.2 Résultats

Les meilleurs chromosomes (par rapport aux erreurs) obtenus par HMOAAM, MOAAM
et SOAAM donnent la texture et la forme du visage trouvé. On en extrait les caractéris-
tiques telles que les yeux, le nez et la bouche. Ces localisations en terme de contours
sont présentées dans la �gure 10 en ce qui concerne les images réelles acquises par les
caméras et dans la �gure 11 pour la base synthétique.

Le pourcentage de visages correctement alignés a été évalué en prenant en compte la
vérité terrain (GTE - Ground Truth Error) qui donne le centre de gravité des yeux, du
nez et de la bouche. Nous suivons le même protocole qu'en 3.4 : un visage est considéré
comme correctement aligné si la moyenne des localisations de centres de gravité est
inférieure à 15% de la distance interoculaire du visage analysé. De la même manière la
pose d'un visage synthétique sera considérée comme correcte si l'angle θyaw détecté est
correcte avec une précision inférieure à 5◦.

On peut constater dans le tableau 2 que les HMOAAM sont bien plus e�caces que les
MOAAM et SOAAM. Concernant le temps d'exécution, les HMOAAM nécessitent 3000
warping pour aligner un visage orienté. Sachant qu'un seul warping prend 0.03ms sur
un Pentium-IV 3.2GHz et qu'il représente à lui seul 90% du temps de traitement d'une
itération, les HMOAAM fonctionnent a 10Hz pour un temps d'exécution de 100ms. Pour
pouvoir comparer les performances des trois approches, les deux autres algorithmes ont
été paramétrés a�n que leur temps d'exécution soient du même ordre. Le SOAAM a
deux fois plus d'itérations que les deux autres algorithmes, dans la mesure où il n'exploite
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(a) HMOAAM (b) MOAAM (c) SOAAM

Figure 10: Alignement de visages réels par HMOAAM, MOAAM et SOAAM

(a) HMOAAM (b) MOAAM (c) SOAAM

Figure 11: Alignement de visages synthétiques par HMOAAM, MOAAM et SOAAM
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Table 2: Comparaison des performances des HMOAAM, MOAAM et SOAAM

Images Pose pop No. of Time
Method Database Aligned Estimated x warps (msec)

(Images) (GTE≤15%) (Eθyaw≤5◦) gen

HMOAAM Synthetic (4160) 48% 42% 100 x 14 3000 100
MOAAM Synthetic (4160) 39% 37% 100 x 15 3000 100
SOAAM Synthetic (4160) 22% 17% 100 x 30 3000 100

HMOAAM Webcam (246) 61% � 100 x 14 3000 100
MOAAM Webcam (246) 48% � 100 x 15 3000 100
SOAAM Webcam (246) 43% � 100 x 30 3000 100

qu'une seule vue. Le HMOAAM quand à lui n'aura que 14 itérations comparées au 15
itérations du MOAAM pour compenser le coût algorithmique de la descente de gradient
dans la seconde phase de l'optimisation.

5 Conclusions

Dans ce rapport de thèse, nous avons proposé des solutions pour aligner un visage (dé-
tecter ses traits caractéristiques) inconnu devant une ou plusieurs caméras, en particulier
lorsque ce visage produit de forts mouvements latéraux.

Notre première contribution concerne le modèle actif d'apparence 2.5D qui permet
de warper une simple vue de face d'une personne sur un modèle 3D de son visage.

Notre seconde contribution a consisté à proposer une optimisation hybride basée
sur un algorithme génétique et une descente de gradient pour un système d'acquisition
mono-vue. La descente de gradient est intégrée dans un opérateur spéci�que qui tra-
vaille de concert avec l'opérateur de mutation. L'intérêt est que de la sorte, le coût
algorithmique est dérisoire et conduit à un algorithme d'optimisation à la fois rapide,
robuste et e�cace. Les performances d'une telle approche ont été illustrées sur plusieurs
bases réelles et synthétiques, ces tests ont permis de quanti�er notre apport comparé à
des techniques plus classiques.

En�n notre dernière contribution tient dans la proposition d'un algorithme d'optimisation
hybride dans un système multi-caméra nécessitant une optimisation multi-objectifs.
Nous avons proposé une méthode automatique pour quali�er la pertinence des informa-
tions fournies par chacune des caméras a�n de les prendre en compte de façon appropriée
lors de la descente de gradient qui est intégrée à l'algorithme d'optimisation NSGA-II.
Des comparaisons quantitatives et qualitatives avec d'autres approches mono et multi-
objectifs montrent l'intérêt de notre méthode lorsqu'il s'agit d'évaluer la pose et les
traits caractéristiques d'un visage inconnu.

Notons que ce travail de thèse s'est focalisé sur l'estimation de la pose et l'alignement
d'un visage inconnu sans connaissances a priori; en mode de suivi, il est possible de



Conclusions 21

réduire de façon importante le temps de traitement en exploitant les informations re-
cueillies dans les images précédemment traitées du visage. Nos propositions prennent
alors tous leur sens dans une application temps réel où le problème de la robustesse
dans le suivi de visage est essentiel.

Notre système peut donc être utilisé comme tracker de visage mais pas seulement.
Dans le domaine de la biométrie par exemple, lorsqu'il s'agit de reconnaître un visage ou
de l'authenti�er par rapport à une photo d'identité, il est nécessaire d'aligner très cor-
rectement le visage (détecter très précisément le centre des yeux, du nez et de la bouche)
et d'être capable de détecter sa pose a�n de synthétiser une image frontal normalisée
et correctement cadrée sur laquelle s'appuieront les algorithmes de reconnaissance de
visage à proprement parler.
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1.1 Cognitive Radio

Our research team, SCEE works in the domain of Cognitive Radio Systems. A Cognitive
Radio approach proposed by Mitola [7] extends the concept of a hardware radio and
a software de�ned radio (SDR) in a radio that senses and reacts autonomously to its
operating environment changes. A Cognitive Radio (CR) equipment is a radio device
that supports the smart facilities o�ered by future cognitive networks. In future several
categories of equipments will exist, depending on their processing capabilities; it means
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that apart from the usual radio signal processing elements, these equipments also have
to integrate a set of new sensing capabilities for the CR support. The particularity of
a CR equipment is to integrate decision and sensing capabilities. All this makes a CR
equipment aware of its environment and permits to adapt its behavior to the context.
Context and its sensing should be considered here at a large scale. All information
that can help the radio to better adapt its functionality for a given service in a given
environment, in other words under given constraints, is worth being taking into account.
Then as we make no restriction on the sensor's nature, it is possible to draw the general
approach exposed in �gure 1.1. Sensors of a CR equipment are classi�ed in function of
the OSI layers they correspond to, with a rough division into three layers.

Figure 1.1: Cognitive Radio OSI Model

Lower layers of the OSI model corresponds to all of the sensing information related
to the physical layer: propagation, power consumption, coding scheme, etc. At the
intermediate level are all information that participate to vertical handovers, or can help
to make a standard choice, as a standard detection sensor for instance. It also includes
the policies concerning the vicinity, the town or the country. The CR sensors or the
highest layer are especially related to the applications and all that concerns the human
interaction with the communicating device. It includes the user's habits, preferences,
policies, pro�le etc. If a user has the habit to connect to a video on demand (VoD)
service every evening while coming back home from o�ce by metro, a CR terminal
should be aware of it to plan all the requirements in terms of battery life, su�cient
quantity of credit on his contract and vertical handover succession depending on each
area during the trip. The equipment can be aware of its environment with the help
of sensors like microphone, video-camera, bio-sensors, etc. As CR technology is at its
early stage, it is di�cult to foresee all the possibilities. One can think that user's bio
metric information and/or facial recognition will ensure user identity and equipment
security. Video-camera could also be used to indicate if the terminal is outside or inside
a building. Another example is given in the context of video conferencing, a separation
between the face of the speaker and the background could help decreasing the data rate
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Figure 1.2: Cognitive Radio Manager

while slowly refreshing the background of the image. Similarly this face separation also
helps to choose di�erent image/video compression techniques suitable to the application.
Finally, video and audio sensors can produce useful information about the content of a
streaming video. These informations will guide the choice of the most adapted codec
which must be used in order to optimize the quality of the display taking into account
the global context of the radio transmission. These codecs can perform lossy and/or
loss-less compression of the objects, displayed. In verbal human communication, the
most vital part of human is his face, whose analysis is essential in CR. In the next
section we present the importance of facial analysis in a CR equipment.

1.1.1 Facial Analysis in CR

As discussed in the previous section, video sensors play an important role in a human
machine (CR equipment) interaction. One of the application of these sensors is to
grab the facial information of the user. Human face and its facial features (e.g. eyes,
nose, mouth and eyebrows) are actually the re�ection of its inner emotional state and
personality. They are also believed to play an important role in social interactions, as
they give clues to the state of mind and therefore help the communication partner to
sense the tone of a speech, or the meaning of a particular behavior. For these reasons,
human face can be identi�ed as an essential non-verbal communication channel.

In a CR equipment, Cognitive Radio Manager (CRM) adapts the radio equipment
parameters taking into account sensor's information to provide the best functionality
with in the available resources. According to the sensor's information, the CRM will
de�ne the optimal con�guration to give the best service. As illustrated in �gure 1.2,
the audio and video sensors will be considered by the CRM to parameterize the codecs.

For example for an audio coding, if a speech signal is not detected a general audio
coding like a TwinVQ (transform-domain weighted interleaved vector quantization) is
applied. On the other hand, when a voice is detected, a codec dedicated to speech
compression like a Code Excited Linear Predictive (CELP) can be used to increase the
quality of the delivered signal. In this way, for the same bit rate the subjective quality
of a voice compressed by a speech coding is better than other audio signal compressed
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Figure 1.3: Video Sensor

by general coding.
Similarly in video coding, according to the presence or absence of a face, a generic

H264 codec or a face codec is used. Figure 1.3 represents the decision tree used by
the CRM to specify the image codec con�guration knowing the state of sensors. The
bubbles characterize the sensors information, the tree's leaves give the decision for a
video codec con�guration. This decision tree is explained by dividing it in terms of
sensors information as given below.

� Face: The �rst input sensor inform the CRM about the presence of a face. In the
case of absence of a face, a generic video codec (H264) is used on the whole image.
Whereas, presence of a face requires facial analysis by the subsequent sensors.

� Facial Pose: If a face is detected then the information about its approximate pose
is taken into account without its identity. If the person is not really facing the
camera (face pose angle larger than semi-pro�le one) then it means that the most
relevant information is not in the face itself: the H264 codec is used because the
background information is for sure important. If the person is facing the camera
then it is interesting to know if the face is already known in the system or not.

� Facial Identity : If the face is unknown, then a generic con�guration of the facial
analysis is required. It can learn and analyse the face by the varying a diverse
facial model, obtained from a combination of various facial classes. On the other
hand, if the face is well known by the system then its model is already available.
The purpose of learning and analysing the facial identity is to precisely estimate
facial pose and location of facial features.
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� Facial Features: At the end, if the voice signal is detected then the mouth region is
important to capture and must be enhanced comparatively to the eyes, skin and of
course to the background. In that case, the background must be highly compressed
since it does not a priori carry relevant information for the communication. If a
voice signal is not detected, then the most important information is in the eyes
which must be enhanced relatively to the others face characteristics (nose, mouth,
skin) knowing that the background can be highly compressed.

Video sensors are proved to be signi�cant part of a CR equipment whether they
are installed on a computer or on a mobile phone. In the presence of a face, the
choice of using a generic video codec (H264) or a specialized codec which provide high
compression is based on the application of face analysis embedded in the CRM. In the
next section bottlenecks in the domain of facial analysis are discussed.

1.1.2 Problem Statement

The inputs represented in �gure 1.3 which decide the image codec con�guration are: 1)
Voice detection, 2) Face detection, 3) Face orientations, 4) Face identity (Known / Un-
known) and 5) Facial features detection. Solutions to the �rst two sensors are currently
implemented in the market equipment. There is no obvious solutions to ful�ll the last
three sensors. Problem encountered in the solutions of these sensors are explained in
details in the subsequent sections.

Face Orientations: Facial pose estimation is one of the necessity of the facial analysis
in a CR equipment. As shown in the �gure 1.3 facial pose estimation is the second most
important step required after the detection of the face, due to the fact that the user is
not obliged to remain in frontal view in front of the camera. For a robust interactive
system it is necessary to implement an algorithm which can estimate facial pose of a
face with in-plane (�rst row of �gure 1.4) and out-of-plane (second and third rows of
�gure 1.4) rotation.

Unknown Faces: Classi�cation of a human race is based on race, age, skin color,
facial features etc. Various classes of human exist in the world. If the face belongs
to the database, it is possible to recognize the face, thus it becomes a face recognition
application. On the contrary if the face is unknown then the system should be able
to extract the facial information of that unknown face. It can be accomplished by
approximating the user's face by varying the appearance of a generic human face class.
Since face recognition is very sensitive to the alignment of the eyes, nose and mouth
therefore it becomes necessary for the system to accurately extract the required facial
information of an unknown face. The scenario of unknown face can be explained with an
example in which an unknown person enters a secured area by passing through security
o�ce where his photographic identity is used to update the database by the system. In
this thesis a solution is presented for the analysis of unknown faces.
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Figure 1.4: Roll (top), Yaw (center) and Pitch (bottom) of a face
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Facial features detection: Detection of face characteristics like eyes, nose and
mouth is again one of the necessity of the facial analysis in a CR equipment. As
discussed in section 1.1.1 in the presence of a voice, mouth region is important and
must be enhanced comparatively to the eyes, skin and background. Similarly blinking
of the eyes gives the partner a realistic look as well as a way of expressing a thought.
However locating these features in frontal view faces is not that di�cult, whereas in
faces making lateral movements it is one of the most challenging task, due to the occlu-
sion/deformation of these features in lateral movement. For example in a semi pro�le
view one of the eye of the face become smaller compared to the other. Similarly one
half of the mouth appears bigger than the other half as shown in the central row of
�gure 1.4.

Each problem encountered in the face analysis system, discussed in the previous
sections, is even di�cult to be dealt with alone and their combination makes the sys-
tem more di�cult. For example pose estimation of a face moved laterally in a semi
pro�le view is one of the di�culty and if the face is unknown as well, it adds to the
di�culty of the face analysis system. Additionally facial features localization in this
scenario requires a methodology, robust and e�cient enough to tackle all these prob-
lems. Therefore the problem statement could be given as "Pose estimation and facial

features localization of unknown and oriented faces". Next sections presents the thesis's
proposed solutions in this domain.

1.2 Face Analysis Solutions

Various method have been proposed in the domain of face alignment and its features
detections. These methods can be grouped in two main categories; Pixel-based and
Model-based methods. Pixel-based methods are brie�y explained with some references
in section 1.2.1 along with the explanation of their imperfection for solving the problems
stated in this thesis. A brief history of model-based methods is given in section 1.2.2
and their detailed description along with references is given in the next chapter.

1.2.1 Pixel-Based Methods

In pixel based methods (a.k.a image-based methods) facial features are detected from
the whole (holistic approaches) or various parts (non-holistic approaches) of the facial
images taking into account their pixel intensities. These methods extract features from
images without relying on extensive knowledge about the object of interest. They
have the advantage of being typically fast and simple. However, pixel-based becomes
unreliable and unwieldy, when there are many di�erent views of the same object that
must be considered. In these methods sometimes speci�c image �lters are applied on
the images to enhance the salient features of the facial image. In some of these methods
the color or gray level intensity of the pixel is used for the segmentation of the facial
features. Segmentation is also performed by initializing a small rectangular, circular or
elliptical shape around a particular feature taking into account again the pixel intensity
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of the selected region. Some of the well-known methods under this category are given
in table 1.1. These methods are divided in two categories.

Pixel-Based Methods

Template matching [8][9][10]
Ellipse/rectangle �tting [10][8]
Skin color segmentation [8][11][12]
Edge-like blob map [11, 12]
Luminance distribution [13]
Gabor Wavelet [14][15][16]
Neural Networks [16][17]
Separability �lter [18][9]

Table 1.1: Pixel-Based Methods

1.2.1.1 Methods with Preprocesses

Some methods use pre-process on the facial images to enhance its salient features. These
pre-processes include skin color/luminance segmentation, edge-like blob map, Gaussian
derivative and separability �lters etc. For decision algorithms they usually use template
matching either on whole face or on speci�c facial features.

Vezhnevets et al. [8] describes algorithms for face and facial features detection in
still frontal images. First, facial area is detected using skin color segmentation and
adaptive ellipse �tting. Next, eye positions are estimated by �nding eye-shaped and
eye-sized areas of red channel sharp changes. Finally, exact facial contours of eyes,
eyebrows, nose, mouth, chin, and cheek are estimated by employing deformable models,
template matching, and color segmentation. Kawaguchi and Rizon [9] presented an
algorithm which �rst detects the face region in the image and then extracts intensity
valleys from the face region. Next, the algorithm extracts iris candidates from the
valleys using Hough transform, separability �lter and template matching. Lee et al.
[11, 12] proposed a facial feature detection method based on local image area and direct
pixel-intensity distributions, in which they proposed two novel concepts; the directional
template for evaluating intensity distributions and the edge-like blob map with multiple
strength intensity. Final candidate face region is determined by both obtained locations
of facial features and weighted correlations with stored facial templates. In case of color
image, faster detection of both facial features and face is feasible by using the chromatic
property of facial color. Gourier et al. [18] proposed a method in which facial images are
represented by a vector of scale normalized Gaussian derivatives at each pixel. Gaussian
derivatives provide a feature vector for local appearance at each pixel. These vectors
forms clouds of points in the feature space. K-means clustering is used to determine a
cluster that provide a detection of salient facial features.
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1.2.1.2 Decision Algorithm

Depending upon the decision algorithm some methods analyse whole face while some
of them concentrate on the speci�c facial features like eye, nose and mouth etc.

Whole Face Du�ner and Garcia [17] presented a technique for the face alignment
using Convolution Neural Networks. Their CNN based method is trained to output
the transformation parameters corresponding to a given mis-aligned face image. They
aligned the face simultaneously with respect to x/y translation, scale and in-plane ro-
tation. Similarly Stathopoulou and Tsihrintzis [19] also used arti�cial Neural Networks
for the training of di�erent facial expressions and extracted facial features of a query
face in the testing phase. Praseeda and Sasikumar [16] present a method to analyze fa-
cial expression from images by applying Gabor wavelet transform (GWT) and Discrete
Cosine Transform (DCT) on face images. Radial Basis Function (RBF) based Neural
Network is used to classify the facial expressions. Kruger et al. [14], R. S. Feris and
Jr. [15] describes a method in which faces are detected and tracked in a video sequence
using Gabor wavelet networks. This process also allows locating and extracting facial
feature regions around the eyes, nose and mouth.

Speci�c Feature Lu and Yang [10] proposed a new method for eye detection based on
rectangle features and pixel-pattern-based texture feature (PPBTF). First, Adaboost
cascade classi�er by rectangle features is constructed to do rough eye detection in a
front facial image. Second, the result image patches are cropped and scaled to 24x12 to
compute the features of PPBTF, then, put these features into an Adaboost and SVM
classi�er for an accurate detection. Wu and Zhou [13] proposed a method in which after
face detection eye-analogue segments at a given scale are discovered by �nding regions
which are roughly as large as real eyes and are darker than their neighborhoods.

The appearance of the face depends on the angle at which a given face is being
observed. Pose variations occur due to the in-plane and out-of-plane rotations of faces.
Especially out-of-plane rotations are di�cult to handle in these methods. These meth-
ods are usually used for locating the approximate position of facial features. Therefore
they are not robust to out-of-plane rotations of a face and facial image background.
Most of the research work discussed above is for frontal view facial images.

1.2.2 Model Based Methods

The facial structure can also be described with the help of 2D or 3D deformable face
models. In the year 1993 and 1994 the deformable face model-based methods (a.k.a
Geometric based methods) were introduced as PDM by Sozou et al. [20] and as ASM
by Cootes and Taylor [21]. Wiskott et al. [22] proposed Elastic Bunch Graph Matching
where they mapped a deformable grid onto a face image which is comprised of nodes
of feature graphs. Each node consists of Gabor jets, which are �lter response Gabor
wavelet extracted at a given image point. These modeling methods only contain the
facial shape variability and do not contain the variability of complete facial textures.
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Textural information of the face plays an important role in the segmentation of the
facial features as one can see there exists a category of methods which employ pixel
intensities of various regions of a face (see section 1.2.1). Realizing the importance of
texture in a facial image the development of model-based methods was extended to
another family of deformable models called FAM by Lanitis et al. [23] and AAM by
Cootes et al. [1]. Among them AAM is the most well known method for the facial
analysis systems. Later, Blanz and Vetter [24] and Ahlberg [25] extended these texture
based deformable model to three dimensions.

Model-Based Methods

Active Shape Model [21]
Point Distribution Model [20]
Flexible Appearance Model [23]
Elastic Bunch Graph Matching [22]
Active Appearance Model [1]
3D Morphable Model [24]
Candide 3D Face Model [26][25]

Table 1.2: Model-Based Methods

Di�erent modes of creating deformable facial models exists, depending upon the
shape model, shape/texture model and variations incorporated in them. Shape models
can be build either by placing few key landmarks points around signi�cant facial features
or placing a grid of equidistant points on the whole face. Similarly shape and texture
models variations could be combined to obtain appearance parameters or they can be
handled separately in the segmentation phase. Various shape and/or texture based
deformable facial models being used by the community are shown in table 1.2. All of
these deformable face models methods are explained in detail in the section 2.1 of the
next chapter.

We need a method which would be more robust to the deformations of a face, so
that facial features and pose of an unknown face could be extracted more e�ciently. For
this kind of application model-based methods are the most suitable approaches. They
are more robust compared to pixel-based methods in facial pose estimation, features
detection, expression detection, analysis of unknown faces, image background, illumi-
nation variations and occlusions (beard/mustache). Out-of-plane facial rotations can
be addressed by warping techniques, in which the face model can warp the oriented
face into frontal view. The only drawback of these methods is their requirement of
high computational time, which is dealt with e�cient optimizations technique to make
them time e�cient. This thesis focuses on such methods and a detailed state of the art
dedicated to these methods is presented in the next chapter.
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1.3 Hardware Solutions

Facial information, required for facial analysis by a CR equipment, is captured by video
sensors. There are many types of video sensors, but the most common and easily
available one is a digital camera in the form of a video camera, still camera, webcams or
mobile phone cameras. Cameras are input devices of a machine compatible to human
eyes. Most of the time researchers do not concentrate on this topic and take the available
facial image databases made from single camera. In this thesis the use of a single and/or
multiple cameras is addressed in detail.

1.3.1 Single Camera

Single camera approach is the most simplest approach to acquire images. Although
cameras calibration is required, however, only intrinsic parameters are calibrated. Most
of the work in face analysis domain has been done by using a single camera con�guration.

1.3.2 Double Camera

The use of double camera is to replicate human eyes. Single camera can only give the
XY coordinate of the object in the image and if the coordinates of the camera are known
it can precisely localize the object with respect to the global coordinates. On the other
hand stereo camera can also give the depth of the object, provided that the images from
each camera are temporally synchronized. Various methods of stereo vision (epipolar
geometry and triangulation) are used to register 3D mesh with the corresponding 3D
coordinates given by the stereo rig, which eventually gives the approximate depth of
the object. Other very important aspect of these stereo cameras is the increase of
the information of the object from di�erent angle, also known as Field Of View (FOV).
Irrespective of the fact that stereo cameras can be used to build approximate 3D model,
they can also provide the solution to face alignment by providing multiple views of the
object from di�erent angles.

Depth of the object provided by the stereoscopy of the images from a stereo camera
is not that accurate. Thus one can exploit the advantage of increased FOV, in the case
of multiple or double cameras installed far apart from each other. Figure 1.5 shows the
installation of these cameras on the extreme edges of a display screen. This proposition
of installation will ultimately help to solve the problem of large lateral movements of a
face.

Multiple cameras also su�ers from the problem of calibration. Not only intrinsic but
extrinsic calibration parameters are calculated after the installation of these cameras.
Since this calibration is one time issue therefore the work in this thesis considered that
the cameras are well calibrated.

This thesis presents solutions for both single camera and double camera system.
Most of the research teams has worked on facial analysis by single camera, therefore
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Figure 1.5: Example of double camera installation

results of the proposed algorithms are also compared in a single camera system. Whereas
one of the novelty of this thesis is the work done in the multiple camera con�guration
and how the multiple facial views are handled simultaneously.

1.4 Thesis Organization

A short organization of the thesis is shown in �gure 1.6. The blocks highlighted refer
to our contributions in the thesis. Description of each chapter is given below.

Chapter 2 starts with the explanation of di�erent deformable model based methods.
It then describes the variations implemented by the researchers in these methods. It
also discuses the proposed variations in AAM and concentrate on the propositions made
to ameliorate its performance in terms of time, memory, e�ciency and robustness. Most
of these proposed improvements are useful for the problem stated in this thesis i.e. pose
estimation and feature extraction of unknown oriented faces.

Chapter 3 explains the basics and preliminary concepts of this thesis. It starts with
the construction of a new 2.5D AAM (our �rst contribution), based on 3D model, which
makes it possible to perform pose estimation and features localization of an oriented
face. Secondly it gives detailed description of facial image databases both for singe view
and multi view camera. Multi view camera setup, calibration and image acquisition are
explained in this section. It also explains how the synthetic facial database is acquired
both for single and multiple camera systems. Lastly it describes the method for the
error evaluations for the experiments.

Chapter 4 presents the solution to the problem stated in this thesis in a single camera
con�guration using the 2.5D AAM of chapter 3. It presents our second contribution of
an e�cient optimization technique for AAM by the hybridization of genetic algorithm
(GA) with gradient descent (GD) to make a robust, e�cient and real time face analysis
system.
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Figure 1.6: Thesis Organization
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Chapter 5 presents third contribution of the thesis. It presents the solution to
the problem stated in this thesis in multiple camera con�guration using the same 2.5D
AAM of chapter 3. It describes the analysis of the multi-view facial images by previously
proposed 2.5D AAM. It discusses two new concepts of multi-objective and hybrid multi-
objective optimization and how it can be implemented in a multi-view face analysis
system by 2.5D AAM.

Chapter 6 concludes the work done in the thesis along with the international publi-
cations extracted from this work. It also discusses implementation of the algorithms in
real life problems. Finally some research perspectives appear at the end of this thesis.
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The deformable model gained a lot of interest in the last decade and researchers
have proposed its various versions. This chapter provides a brief introduction to the
deformable model based methods, followed by detailed description of classical AAM.
This thesis focuses on the AAM based methods, since most of the research teams have
used AAM and have improved this method. Section 2.2 describes improvements and
expansions made in this domain. Its subsection 2.2.1 discuses the proposed variations
in AAM and subsections 2.2.2, 2.2.3 and 2.2.4 concentrate on the propositions made to
ameliorate the performance of AAM in terms of time, memory, e�ciency and robustness.
Most of these proposed improvements are useful for the problem stated in this thesis i.e.
pose estimation and feature extraction of unknown oriented faces. Section 2.3 concludes
the discussion.

2.1 Deformable Models

Generally deformable model based methods work in two phases. The �rst phase is the
creation of model, which can be used to generate a set of plausible representations in
terms of shape and/or texture of the learned objects. The second phase (segmentation
phase) is to �nd the optimal parameters of variation of the model, in order to match
the shape and/or the texture of the object in an unknown image. The search and
matching of the visual objects in an image requires an optimization of the parameters
of the variation of the model. This optimization process is an iterative process, in which
model parameters are adapted to minimize the error between image under analysis and
the model itself.

2.1.1 Elastic Bunch Graph Matching

Wiskott et al. [22] used a technique called Elastic Bunch Graph Matching where they
mapped a deformable grid onto a face image which is comprised of sparsely distributed
feature points to make Face Bunch Graphs (FBG) as shown in the 2.1. The nodes of
these feature graphs consists of Gabor jets, where each component of a jet is a �lter
response of a speci�c Gabor wavelet extracted at a given image point.

In segmentation a function is used to evaluate the graph similarity between an image
graph and the FBG. It depends on the jet similarities and the distortion of the image
grid relative to the FBG grid. The goal of this function is to �nd the �ducial points and
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Figure 2.1: Face Bunch Graph

thus to extract from the image a graph which maximizes the similarity with the FBG.
In practice, one has to apply a heuristic algorithm to come close to the optimum within
a reasonable time. In [22], they used a coarse to �ne approach in which the degrees
of freedom of the FBG is introduced progressively: translation, scale, aspect ratio, and
�nally local distortions.

Wiskott et al. [22] used the Gabor Jets of frontal, half-pro�le and full pro�le views
for face recognition and pose estimation. Maurer and von der Malsburg [27] also demon-
strated tracking heads through wide angles by tracking graphs whose nodes are facial
features, located with Gabor jets.

The system is e�ective for tracking, but is not able to synthesize the appearance
of the face being tracked. Although, even using reduced images of 128x128 pixels the
calculation time for one frame is 4 sec. Moreover system is not able to recover from
tracking errors caused by temporary occlusion of features.

2.1.2 Active Shape Models

Active Shape Models (ASM) proposed by Cootes and Taylor [21] constructed by the
shapes of all the facial images of a learning database. If a shape is described by n points,
it can be represented by n landmark points for a single example as the 2n element vector
x as

x = (x1, ..., xn, y1, ..., yn)T

All the shapes of the learning database faces are aligned and a mean shape is obtained.
A well known data compression technique of PCA is applied on these shapes to obtain
shape parameters b as
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x = x̄+ φ ∗ b

where φ are the eigenvectors and the vector b de�nes a set of parameters of a deformable
model. By varying the elements of b we can vary the shape x. An active shape model
is described by the shape parameters b combined with similarity transformation (pose
parameters) de�ning the rotation θ, translation Xt, Yt and scale s of the model.

x = TXt,Yt,s,θ(x̄+ φ ∗ b)

During training phase sampling of the k pixels on either side of the model point is
done for every training image. Instead of gray level absolute values, the derivatives of
these values are sampled and normalized. During segmentation phase sampling of the
m (m>k) pixels on either side of the predicted model point is performed. Then the
quality of the �t is tested by comparing them with the gray level model obtained in the
training phase. Ultimately the one which gives the best match is chosen.

Recently Milborrow and Nicolls [28] proposed extensions to ASM and used it to
locate features in frontal views of upright faces. They extended ASM by increasing
the number of landmarks, using patches around landmarks instead of line of pixels and
stacking two Active Shape Models in series using the results of the �rst search as the
start shape for the second search.

ASM are robust to illumination variations since they do not involve facial textures
at all. On the contrary this becomes one of their drawbacks because textures plays an
important role in facial analysis. We feel that signi�cant information is embedded in
the texture of face e.g. skin wrinkles, identity etc. Therefore it is necessary to take
into account all the texture instead of speci�c patch or pixels around a facial feature.
Moreover in our team, we address the problem of face recognition, face synthesis and
face compression for cognitive radio, which requires to include texture information.

2.1.3 3D Morphable Models

Blanz and Vetter [24] introduced a deformable model called 3D Morphable Model
(3DMM). Learning database of 3DMM was created by the laser scans of 200 heads
of young adults (100 male and 100 female). The laser scans provide head structure
data in a cylindrical representation, with radii r(h;φ) of surface points sampled at 512
equally-spaced angles φ, and at 512 equally spaced vertical steps h. Additionally, the
RGB-color values R(h;φ), G(h;φ),and B(h;φ), were recorded in the same spatial resolu-
tion and were stored in a texture map with 8 bit per channel. The resultant faces were
represented by approximately 70,000 vertices and the same number of color values. The
morphable model is based on a data set of these 3D faces. The geometry of a face is
represented with a shape-vector S = (X1, Y1, Z1, ....Xn, Yn, Zn)T , that contains the X,
Y and Z coordinates of its n vertices. The number of valid texture values in the texture
map is equal to the number of vertices, therefore the texture of a face is represented by
a texture-vector T = (R1, G1, B1, ....., Rn, Gn, Bn)T , that contains the R, G and B color
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values of the n corresponding vertices. A morphable face model was then constructed
using a data set of m exemplar faces, applying data compression technique of PCA on
shape-vector S1..m and texture-vector T1..m. Shapes Si and textures Ti can be expressed
as a linear combination of the shapes and textures of the m exemplar faces:

Si = S +
m−1∑

1

αisi

Ti = T +
m−1∑

1

βiti

where si and ti are the eigenvectors. αi and βi are the coe�cients. Apart from these
two parameters, there are also rendering parameters ρ which contains camera position
(azimuth and elevation), object scale, image plane rotation and translation.

In segmentation phase they use gradient descent algorithm for the estimation of the
parameters α, β and ρ for a given input image. The reconstructed 2D image of the
model Imodel is supposed to be closest to the input image Iinput in terms of Euclidean
distance given by

E =
∑
x,y

‖Iinput(x, y)− Imodel(x, y)‖

where x and y represent the coordinates of the image.

Robustness of these 3DMM is very high compared to other deformable model based
method, but its unavoidable drawback is its computational time. According to Blanz
and Vetter [29] each face requires more than 4 minutes in a 2GHz Pentium 4 processor.
No matter how fast the system is, it requires enormous amount of time to process 70,000
vertices. Therefore they can not be implemented in a real time scenario. Moreover the
method of obtaining 3D shapes and textures by laser scanners is cumbersome and
expensive due to the requirement of additional hardware.

2.1.4 Candide Model

Candide is a three-dimensional parameterized wireframe model of the human face. It
was �rst created by Rydfalk [26] in 1987, since then it has been updated several times.
The last update, by Ahlberg [25], has led to Candide-3 which is shown in �gure 2.2.
Candide-3 is composed by 113 vertices and 184 triangles.

The con�guration of the vertices in Candide-3 is controlled by three di�erent sets
of parameters: global, shape and animation. The three dimensional vector containing
the coordinates of the model's vertices is denoted by g. The shape and the expression
of a face can be expressed by a simple linear equation

g = g + Sσ +Aα
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Figure 2.2: Candide-3 Model

where g is the vector containing the vertex coordinates of the standard model, while S
and A represent the shape and animation units. These are sparse matrices that denote
which vertices should be moved (and in which direction) to perform a well-de�ned
deformation of the face's structure. The term Sσ accounts for the shape variability
and σ is the shape parameters vector. Aα stands for facial animation and α is the
animation parameters vector. Thus by just changing the values in σ the static shape
can be controlled (i.e. the distance between the eyes, the mouth vertical position etc.),
while α drives the facial expressions (raising the eyebrows, opening the mouth, etc.). To
describe the head pose, a global transform is applied to the above formula and therefore
the following equation is used instead

g(R, s, σ, α, t) = Rs(g + Sσ +Aα) + t

where the global motion is taken into account by R = (rx, ry, rz) (the rotation matrix),
s (the scale) and t = (tx, ty, tz) (the translation vector).

To obtain the textures of a facial image, each vertex of Candide-3 model can be
manually marked on the face. Since Candide-3 contains 113 vertices and placing them
manually on the whole set of training images would be time consuming. A possible
approach could be the tunning of the parameters manually to �t the face, it would
be much faster than selecting all the vertices manually by hand. For the segmentation
phase all the parameters de�ned above can be evaluated to minimize the pixel di�erence
between this model and the query image. Dornaika and Ahlberg [30] used this face model
along with simple gradient descent method as a search algorithm for face tracking.
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Candide-3 is, no doubt, a well known deformable face model, but use of large number
of vertices (113) makes it ine�cient. Moreover the choice and location of the vertices
are done by keeping in mind the expression variations. For example, normally the
region of the forehead is not visible due to the occlusion by hairs, whereas in Candide-3
this region is given an equal importance compared to other features like eyes, nose and
mouth. Therefore this model becomes unsuitable for the solution of the problem stated
in this thesis.

2.1.5 Classical AAM

The Active Appearance Models introduced by [31] and [1] in 1998, are the deformable
models composed of both shape and texture unlike ASM (Active Shape Model) which
are shape deformable model containing only shape. This section will brie�y describes
the classical AAM for face analysis. The classical Active Appearance Models works in
three phases. In the �rst phase, the model is generated from examples of faces on which
points are marked manually and their textures are extracted. All these points and
textures are combined and their variations are learned automatically from a principal
component analysis. In the second phase (also called as training or pre-computation
phase) the model is trained to pre-compute a matrix which helps to �nd the optimum
values of variations with respect to the query images in the segmentation phase. In the
third phase it uses its training data for the segmentation of the objects in the query
images. Following sections will present the three phases of the AAM algorithm applied
on facial image.

2.1.5.1 Modeling

In the �rst phase, AAM model is generated along with the deformation parameters. A
database, called learning database, of facial images is acquired to build AAM. On each
facial image of this database, set of points are marked manually. Di�erent researchers
have used di�erent number of points on the face. Some of them has included ear while
others have surrounded features like nose, eyebrows and ears by bunch of points. The
work presented in this thesis have used only 68 points in order to make AAM model
time and memory e�cient. These 68 point are shown in the �gure 2.3. Combination of
these 68 points on each face is regarded as a shape. If there are N number of images in
the database then the vector representation of these shapes is

si = [xi,1, xi,2, ...xi,68, yi,1, yi,2, ...yi,68] (1 ≤ i ≤ N) (2.1)

All the shapes obtained are rotated, resized and translated using Procrustes analysis
(Stegmann [3], Goodall [4]). The mean of each point is calculated to create mean shape
of 68 points. The mean shape obtained is used to extract and warp the frontal view
textures of all the facial images using the Delaunay triangulation as shown in the �gure
2.4. These textures undergo the procedure of photometric normalization to normalize
their gray levels. Let us suppose the texture gimage is the texture of the learning
database, then the equation for its normalization would be:
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Figure 2.3: 68 landmarks

Figure 2.4: Shape, Texture and Delaunay Triangulation
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gimage_normalisee =
gimage − β

α
(2.2)

α =

√√√√ m∑
i=1

(gimage(i)− gimage)2 (2.3)

β = gimage (2.4)

where α is the standard deviation and β is the mean of the pixels of the texture. This
photometric normalization works e�ciently on the databases for illumination variations.
However, Le Gallou et al. [32] proposed an adaptive histogram equalization technique
of CLAHE (Contrast Limited Adaptive Histogram Equalization).

Principal Component Analysis (PCA) compression is applied on the shapes and
textures, to obtain shape and texture parameters with 95% of the variation retained.
Each shape si and the texture gi of the learning database can be synthesized by these
shape and texture parameters with the help of the following equations.

si = s̄+ φs ∗ bs (2.5)

gi = ḡ + φg ∗ bg (2.6)

where s̄ and ḡ are the mean shape and mean texture; φs and φg are the shape and texture
eigenvectors obtained during PCA; bs and bg are the shape and texture parameters
respectively.

Both of the above parameters are combined by concatenation of bs and bg. And a
�nal PCA is performed to obtain the appearance parameters C.

b = [bsbg]T , b = φC ∗ C (2.7)

where φC are the eigenvectors obtained by retaining 95% of the variation and C is the
matrix of the appearance parameters, which are used to obtain shape and texture of
each face of the database.

AAM model can be translated as well as rotated with the help of pose vector P .

P = [θ, tx, ty, Scale]T (2.8)

where θ corresponds to the face rotation and tx, ty are the o�set values from the supposed
origin and Scale is the magni�cation of the model. Figure 2.5 shows the AAM model
deforming and rotating by changing C and P parameters respectively.
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Figure 2.5: AAM by varying parameters

2.1.5.2 AAM Training

The AAM model obtained in the previous section can be used directly for the face
search or the search can be directed with the help of the matrix precomputed by training
images. Although direct application has some advantages over the trained AAM but
for that an e�cient optimization technique (e.g. gradient descent, genetic algorithm,
Nelder Mead simplex etc.) is required. In the classical method of AAM, model is trained
by applying it on the training images while introducing variations in all the parameters
one by one. Residual images, which correspond to the di�erence between the model
and the training image, are obtained for each parameter variation.

As explained in the previous section 2.1.5.1, each image of the learning base can
be synthesized by a particular value of parameters C and P . Let Ci be the value of
appearance parameters of the image i of the learning database and Pi be the value of
pose parameters. By changing the parameters Ci and Pi, respectively by δC and δP
(C = Ci + δC and P = Pi + δP ), a new shape sm and a new texture gm (equation 2.7)
are synthesized (Figure 2.6).

Figure 2.6: Training

Lets consider the texture gi as the texture of the original image i then pixel di�erence
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or the residual image is given as δg = gi − gm. By varying each parameter at a time
and generating its residual images one can create a linear relation between them. This
relation is created through principal component regression technique by [33], in order
to keep its dimensionality to a feasible size. The relation RC between δc and δg and
relation RP between δP and δg are given as

δC = RC ∗ δg (2.9)

δP = RP ∗ δg (2.10)

where regression matrices RC and RP are of the size NumberofC × NbPixels and
NumberofP ×NbPixels respectively.

In later publication by Cootes et al. [34] and Cootes and Taylor [35] this principal
component regression is superseded by a simpler approach. They calculated the partial
di�erential of residual images with respect to each parameter and taking arithmetic
mean of these partial di�erentials for all the training images and k variations in each
parameters. This learning approach is denoted as Jacobian and is given as

∂δg

∂Pj
=

1
M

M∑
r

∑
k

δgr(Pj + δPjk)− δgr(Pj − δPjk)
2δPjk

(2.11)

whereM is the number of training images, k is the variation on the jth pose parameters
P . Similarly Jacobian are calculated for each C parameters. Now RP and RC are
calculated as

RP =
(
∂δg

∂P

)−1

(2.12)

RC =
(
∂δg

∂C

)−1

(2.13)

To obtain numerical stability, a singular value decomposition (SVD) of the Jacobian
matrices (∂δg∂P and ∂δg

∂C ) are preferred in order to obtain their respective pseudo-inverse
RP and RC . However due to the size this is not feasible, therefore a normal matrix
inversion is carried out.

This approach is no doubt e�cient as far as training is concerned especially when
the number of training images and/or number of pixels of residual images becomes
large enough such that it become impossible to store them in order to apply principal
component regression method. Thus this method of training is easier to implement,
faster to calculate and requires far less memory to execute. Stegmann [36] observed that
this training scheme do not di�er signi�cantly, from linear regression, in performance
during segmentation. In fact Jacobian are slightly better due to smaller computational
and memory demands.
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Figure 2.7: Segmentation

2.1.5.3 Segmentation

In segmentation phase the deformed, rotated and translated shape model obtained by
varying C and P parameters, is placed on the query image I to warp the face to mean
frontal shape. After this shape normalization photometric texture normalization is
applied to overcome illumination variations. The objective is to minimize pixel error

e =

√√√√ 1
N

N∑
i=1

[Ii(C,P )−Mi(C)]2 (2.14)

where I(C,P ) is the segmented image andM(C) is the model obtained by C parameters
and N is the number of pixels of the model. C and P parameters are calculated by
using the relations of equations 2.9 and 2.10.

The search algorithm, illustrated in �gure 2.7, is described below.

1. Generate gm and s from the values of parameters C and P (initially set to 0).

2. Compute gi, which is obtained by placing the shape s and warping the query
image segment to mean frontal shape followed by texture normalization.

3. Calculate the residual image δg0 = gi − gm, and the residual error E0 = |δg0|.

4. Predict δC0 = RC ∗ δg0 and δP0 = RP ∗ δg0.

5. Find new value of residual error Ej < Ej−1 with the variations predicted in
appearance Cj = C − k ∗ δC0 and pose Pj = P − k ∗ δP0 parameters. Where k
represents the discrete step sizes of 0.25, 0.5, 0.75 and 1.0.

6. Repeat steps from 1 to 5 while Ej−1 > Ej , where Ej−1 is the residual error of the
previous iteration.
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When the convergence of the error Ej is reached, i.e. when Ej+1 ≥ Ej , parameters
Cj and Pj corresponds to the best parameters for the representations of the texture and
shape of the face in a query image.

A brief research work on the methods presented in this section was required to search
for a method which would be more robust to the deformations of a face, so that facial
features and pose of an unknown face could be extracted more e�ciently. For this kind
of application AAM methods are the most suitable approaches. Although [33] reported
that the results of ASM is better than AAM for marker detection, but we feel that
signi�cant information is embedded in the texture of face e.g. skin wrinkles, identity
etc. Therefore it is is necessary to take into account all the texture instead of speci�c
patch around a facial feature in the case of ASM and EBGM. Moreover in our team,
we address the problem of face recognition, face synthesis and face compression for
cognitive radio, which requires to include texture information. As far as other methods
are concerned, AAM is more rapid than 3DMM and can make the use of 2D images
obtained from a camera instead of using laser scanner. Inspite of using prede�ned
Candide model we have created our own AAM model in order to enhance the facial
features required for facial analysis. This method has been widely used in various
applications of lip-reading, cloning and expression detection etc. This thesis focuses on
the method of Active Appearance Models (AAM) and next section presents the state
of the art for AAM.

2.2 AAM Advancements

AAM algorithm has proved to be a successful method for matching the model to the
query images. Since the classical AAM was described there have been a number of
modi�cations and improvements proposed by several researchers, claiming to be superior
than classical AAM. This section and its subsections give a detailed description of these
improvements.

Subsection 2.2.1 presents a number of proposed improvements and alternatives to
the original classical AAM, including di�erent training methods, non-linear models and
di�erent methods of updating the model during the search. The performances of Shape-
AAM, Nonlinear AAM, DAM, TC-ASM, TB-AAM and compositional AAM are com-
pared with that of the classical AAM.

Subsequent sections will focus on the methods adapted in AAM, which may be used
for the solutions of the problems stated in this thesis i.e. pose estimation, features
extraction of an unknown oriented face. These approaches can be divided into the
three following subsections. Subsection 2.2.2 presents the work done, for the facial
analysis of the oriented face, by the extension of the AAM model and its appearance
parameters. Subsequent subsection 2.2.3 describes the facial analysis by �tting AAM on
temporally synchronized multiple images acquired from two, three or multiple cameras.
Subsection 2.2.4 discusses di�erent optimizer used by the research teams for the face
search optimization in the segmentation phase of AAM.
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2.2.1 AAM Variants

The classical optimization of AAM by linear regression presents some drawbacks. It
needs to store the matrices RC and RP in memory for the segmentation phase. Moreover
the precomputations from the training set is only an approximation for any given target
image, and may be a poor one if the target image is signi�cantly di�erent (unknown or
unseen faces) from the training images, as discussed and tackled by Cootes and Taylor
[37]. A number of improvements and alternatives to the original classical AAM proposed
by the research teams are discussed in this section.

2.2.1.1 Shape-AAM

The Shape-AAM has been proposed by Cootes et al. [38]. It's an alternative approach
to use residual image to compute the shape and pose parameters, while the texture
parameters are computed directly from the image with the help of the shape model.
The statistical model is created on the shape and texture, without the concatenation
of two parameters (3rd PCA). Instead of appearance regression matrix of RC , shape
regression matrix Rs is calculated along with pose regression matrix RP .

This method is more time-consuming (Cootes and Kittipanya-ngam [39]) than the
classical method of AAM, and may be useful when there are few shape modes and many
texture modes.

2.2.1.2 DAM

The direct appearance model, introduced by Hou et al. [40], also removes the 3rd PCA
in classical AAM modelization i.e. they do not combine shape and texture parameters
of AAM. Unlike the Shape-AAM of Cootes et al. [38], they use information of the
texture instead of the shape. They considered that the texture and shape are su�ciently
correlated and the shape can be obtained from the texture of the model through a
relationship built during the learning phase of DAM:

bx = Sbg (2.15)

Therefore texture regression matrix Rg and pose regression matrix RP are calculated
in the training phase. The segmentation procedure is similar to classical AAM except
they evaluate shape from the texture by the equation 2.15.

Although it gives better results than the classical AAM method of [39], but it re-
quires prior information of the correlation of texture and shape. Therefore this texture
and shape linearity makes it di�cult to analyze unknown oriented faces. For example if
there are large number of di�erent faces in the learning database, we are not con�dent
in the equation 2.15, since it is possible that two totally di�erent textures (with or
without beard) might produce the same shape.
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2.2.1.3 Nonlinear AAM

Romdhani et al. [41] have extended AAM to nonlinear cases across very large pose
views based on Kernel Principal Component Analysis (KPCA). These nonlinear models
represent the corresponding dynamic appearances of both shape and texture across pose.
In other words, a non-linear 2D shape model is combined with a non-linear texture model
on a 3D texture template. The approach is promising, but the computation involved is
rather intensive.

Donner et al. [42] replaced PCA of multivariate regression in training phase of classi-
cal AAM by Canonical Correlation Analysis (CCA). The method learns a linear regres-
sion between the canonical projections of the residual images and parameter variation.
The method utilizes canonical correlation analysis to �nd the subspaces which best ad-
heres to a linear regression. They have shown that their approach eliminates the need
for using di�erent step sizes (see step 5 of section 2.1.5.3), as in the case of classical
AAM, and claimed that their approach is four times faster than classical AAM as the
parameter predictions are more accurate. The results of this technique is similar to the
classical AAM.

2.2.1.4 TC-ASM

Yan et al. [43] proposed a novel morphable model technique called Texture Constrained
Active Shape Model (TC-ASM). It inherit the merits and reject the demerits of ASM
and AAM. They borrow local appearance models from ASM for the landmark localiza-
tion and incorporate the global texture constraint over the shape from AAM for more
accurate shape parameters estimation. In each iteration of face search, a better shape
is found under Bayesian framework.

This method is an extension of DAM (see section 2.2.1.2). Although it is claimed in
[39], to provide more accurate results than ASM and classical AAM. However it works
in those cases in which shapes are correlated with the textures, particularly in medical
images analysis problems. Whereas in face analysis, since di�erent textures can produce
same shapes, therefore recognition and synthesis of a face could not be accomplished
with this method.

2.2.1.5 TB-AAM

Recently Lee and Kim [44] gave a new concept of Tensor-Based AAM. This concept is
based on the tensor which is also known as n-way array or multidimensional matrix or
n-mode matrix. It is a higher order generalization of a vector (�rst order tensor) and a
matrix (second order tensor). They incorporated a series of learning databases images
with di�erent identities, expression, pose and illumination variations etc. To include
these variation by speci�c basis vectors they make the use of multi-linear algebra of
Alex et al. [45] for the multi-linear analysis of the images with variations de�ned above.
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Alex et al. [45] introduced a counterpart of "`eigenfaces"' as tensorfaces which com-
bines several modes of variations in facial images. Alex et al. [46] performed facial
recognition with these tensorfaces and compared it with eigenfaces based approach.
Lee and Kim [44] used these tensorfaces concept in AAM modeling. Thus they are able
to generate variation speci�c AAM model. In which pose and expression variation is in-
corporated in shape model and illumination variation in appearance/texture model. For
the �tting phase they estimate the pose, expression and illumination condition before
hand and construct the respective AAM model for fast �tting. Although their �tting
process is similar to conventional AAM but their model enables them to converge more
rapidly and e�ciently.

The main drawback of this technique is the computations to select the model for
the current query image, therefore takes more time despite of the fact that it converges
more rapidly and e�ciently.

2.2.1.6 Compositional Approach for AAM Fitting

Matthews and Baker [47] and then Mercier et al. [48] used compositional approach for
active appearance model. Their �tting algorithm is based on gradient descent algorithm
called Inverse Compositional Lucas-Kanade algorithm (IC-LK) proposed by Baker and
Matthews [49]. Their model generation procedure is similar to AAM but with out
performing the concatenation of the two parameter i.e. 3rd PCA. Equation for the
AAM after performing the PCA is obtained as

si = smean +
NbS∑
k=1

Φsk ∗ bsk (2.16)

gi = gmean +
NbG∑
k=1

Φgk ∗ bgk (2.17)

In the segmentation phase, the texture of the query image I inside the shape of
the current model s is extracted and warped. The residual image is calculated as
δg = gi−gm, where gm is the texture of the current Model. Followed by the calculation
of the steepest descent images SD = ∇gm δW

δbs
with respect to the variation of each shape

parameter bs. Then the Hessian Matrix H is calculated as: H =
∑
pixels

SDTSD.

In segmentation phase the parameters bs and bg are updated by the equations
[∆bs,∆bg]T = −H−1

∑
SDT δg iteratively until the convergence is achieved.

The results obtained by this approach are equivalent to the classical method of AAM
by linear regression, however, it introduces the complex calculations of the gradient
descent and the Hessian. Cootes and Kittipanya-ngam [39] has shown that this approach
is more time consuming than the classical method.
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2.2.1.7 Active Wavelet Networks

Hu et al. [50] proposed a method for face alignment called active wavelet networks
(AWN), which replaces the AAM texture model by a wavelet network representation.
They proposed that since PCA-based texture model of AAM causes the reconstruction
error to be globally spread over the image and their model consider spatially localized
wavelets for modeling texture, therefore the alignment of the face by AWN is more
robust to occlusions and variations in illumination. This methods is not suitable for
classical AAM but can be adapted for the method of Shape-AAM.

In each iteration they need to calculate texture parameters by orthogonally project-
ing the normalized face image into the learned wavelet subspace of the training phase.
Texture reconstructed from these textures parameters is used to calculate residual im-
age. Thus the use of Gabor wavelet �lters make this algorithm very complex.

2.2.2 Model Extension

This section presents the �rst approach to estimate the facial pose and features by the
extensions of the AAMmodel and its appearance parameters. One way is to use multiple
2D AAM model each corresponding to di�erent face orientation (section 2.2.2.1). Other
way is to use a single 3D AAM model which can be rotated with the help of the pose
parameters to compensate each facial orientation (section 2.2.2.2). Some researchers
have also extended appearance parameters for the pose variability (section 2.2.2.3).

2.2.2.1 Multiple 2DAAM Model

One way of estimating facial pose and features is by generating multiple AAM models in
such a way that each corresponds to the speci�c orientation of the head. In segmentation
the matter is to select the required AAM model which could be matched with the facial
pose of the query image.

Cootes et al. [51] showed that by using �ve models it is su�cient to deal with faces
that range varies 180 degrees (from left pro�le to right pro�le). To adapt to the pose
of a face, �ve models are built from di�erent learning databases: a learning database of
left pro�le faces (−90◦), a learning database of left semi pro�le faces (−45◦), a learning
database of frontal view faces (0◦), a learning database of right semi pro�le faces (45◦)
and a learning database of right pro�le faces (90◦). Thus in segmentation, for each
query image, �ve models are then used and only the model providing the lowest error
convergence is considered.

Similarly Cootes and Taylor [33] and Shan et al. [52] performed pose prediction by
using three AAM models, one dedicated to the frontal view and two for the pro�le
views. Sung and Kim [53] detected pose-robust facial expression by using three 2D+3D
AAM models, one dedicated to the frontal view and two for the side views. Li et al.
[54] also used three DAMs (Direct Appearance Models) for face alignment.
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Obviously the accuracy of the pose estimation keeps on increasing as the number of
AAM model increases. Xin and Ai [55], Liu et al. [56] implemented Active Shape Model
(ASM) for the face alignment, by using �ve poses of each face to create a model. Feng
et al. [57] have speci�ed seven models corresponding to seven di�erent facial expressions.
Romero and Bobick [58] used another appearance based architecture employing �ve
view-speci�c template detectors to track large range head yaw by a monocular camera.
The Radial Basis Function Network interpolates the response vectors obtained from
normalized correlation from the input image and �ve template detectors.

Peyras et al. [59] also used pools of AAMs, each AAM is being specialized on a
particular pose and expression. They separated the sources of variability within the
learning database, by dividing it into smaller databases, such that a single database
contains images from all the identities with same pose and expression. In this manner
all the smaller databases have their respective constant poses and expressions. Therefore
each AAM of the pool generated from each learning database is specialized to particular
pose and expression. For the segmentation phase they used optimization framework of
inverse composition algorithm of Matthews and Baker [47].

Yang and Byun [60] proposed a method of multiple AAM each corresponds to a
part of the training database. A �xed mean precomputed Jacobian matrix is not a good
choice when the distribution of a training database is nonlinear because the mean can not
represent the variation of a training database. They proposed multi-subspaces AAM
in which they divide a training database into multi-subspaces along the illumination
direction, and build the independent AAM for each subspace. At a �tting phase, they
adaptively choose a subspace well �t to a target image.

Finally, Hu et al. [61] have also applied this method for active wavelet networks
(AWN), a deformable model similar to the AAM in which changes in texture of the
learning database are modeled with wavelet networks.

Use of more than one model of AAM has some disadvantages: i) Storage of shapes
and textures of the images of all the models requires an enormous amount of storage
memory. ii) Extensive processing of computing several AAM in parallel to determine
the model required for query images, eventually makes the system sluggish. Moreover
classical AAM search methodology requires precomputed regression matrices, which
become a burden on time and memory as the amount of training images increases.

2.2.2.2 Multi-Dimension AAM Model

To introduce the pose variability in AAM, 3D AAM methods are proposed to model
the face in three dimensions. This allows to learn and build a model with parameters
controlling the variations in facial pose. In these methods a set of images are annotated
in three dimensions to modelize a face. Various types of three dimensional model exists
such as 3D AAM (obtained from 3D scanner), 2D+3D AAM (a combination of 2D and
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3D AAM) and 3DAMB AAM (a combination of muscle-based and anthropometry-based
face model). The following subsections explain these multidimensional AAM in detail.

3D AAM Dornaika and Ahlberg [30] used 3D face model Candide along with simple
gradient descent method as a search algorithm for face tracking. They used a Candide
shape model (as explained in section 2.1.4) to extract the textures of the learning
database images in order to build 3D AAMmodel. Although the Candide shape model is
able to introduce both shape and expression variations but these variations are synthetic
and not related to real facial images. 3D facial tracking performed in [30], requires a
preprocessing step of extracting the texture by mapping Candide shape model on the
frontal view of the user. Since this texture is used through out the tracking, therefore
the system is unable to track any unknown face.

Sung and Kim [62] applied 3D AAM for face tracking in a video sequence using
IC-LK algorithm of Matthews and Baker [47]. They created the 3D AAM model by
annotating the face in a movie created from a stereo vision camera and implemented a
stereo vision technique to relate the landmarks on di�erent images. Originally IC-LK
algorithm was developed for the face search by 2D+3D AAM. Therefore, for their 3D
AAM, they modi�ed the IC-LK algorithm by rede�ning warping function, inverse of
warping and composition of warping function. Facial tracking by this method is again
person dependent and unable to work for unknown faces.

Von Duhn et al. [63] used three cameras to acquire three (frontal, pro�le and angle)
views of a face. Landmarks localized by 2D AAM on each image are correlated to build
a 3D model. They used this model for the recognition of an oriented face.

Paterson and Fitzgibbon [64], Blanz and Vetter [29], Ishiyama et al. [65], Malassiotis
and Strintzis [66] also developed 3D models of faces, made from faces acquired by laser
scanners providing cylindrical data of the face. In order to create the 3D deformable
model, a morphing is performed between all these examples of 3D faces. The deforma-
tions of the model are controlled by parameters such as of AAM. This method requires
a learning 3D faces of good resolution.

2D+3D AAM Xiao et al. [67], Hu et al. [68], Koterba et al. [69], Ramnath et al. [70]
used 2D+3D AAM along with a �tting algorithm, called inverse compositional image
alignment algorithm, which is an extension of a gradient descent method. Their AAM
model is obtained by the non-rigid structure-from-motion algorithm of Xiao et al. [71].
This algorithm requires 2D shapes by tracking the face in a video sequence by 2D AAM,
followed by the computation of 3D shape modes from this 2D AAM shape. Ultimately
they combined these 3D shape modes with 2D AAM to build 2D+3D AAM model.
Their �tting algorithm is similar to Matthews and Baker [47] with additional 3D shape
mode to optimize. Sung and Kim [53] also used 2D+3D AAM of Xiao et al. [67] to
detect pose-robust facial expression by using three 2D+3D AAM models, one dedicated
to the frontal view and two for the side views.
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Those techniques of building the 3D model requires structure-from-motion algo-
rithms, by applying an e�cient 2D AAM on the sequence of oriented facial images.
This procedure do not provide enough accurate 3D model compared to manually la-
beling the landmarks on the frontal and pro�le views of a facial image. Additionally,
number of shape parameters for a face search optimization are increased, compared to
a simple 3D AAM with increased pose parameters.

3DAMB AAM Cordea and Petriu [72] combine muscle-based face model and anthro-
pometry based face model to create 3D Anthropometric-Muscle Based AAM (3DAMB
AAM). The 3D model uses muscle actuators to model facial expressions and anthropo-
metrical controls to model facial types. The shape model variations, caused by these
controls, are used to extract the textures of the individuals in the database. Followed
by creating shape, texture and appearance parameters, similar to the classical AAM.
The segmentation phase is also similar to the classical AAM.

In Martins and Batista [73] they used AAM combined with Pose Orthography and
Scaling with ITeration (POSIT) for the pose estimation. They localize facial features
by classical AAM and used statistical anthropometric 3D model for the evaluation of
the pose by POSIT. As classical AAM is unable to estimate large lateral movements of
a face, therefore this method is also limited to estimate with in -15 to +15 degrees of
pro�le angle variation. For the estimation of small pose variations, 3D AAM is better
than using POSIT, as both (POSIT and additional pose parameters of 3D AAM) of
them required additional processing time.

In these methods, the use of anthropometric 3D model makes the system complex.
In addition, a 3D AAM made from real faces is more robust in terms of feature and
expression detection (due to their natural feature and expression variations) compared
to this anthropometric 3D model.

2.2.2.3 Appearance Parameter Extension

One way of estimating the pose is by considering the facial pose as appearance variations.
Coupled View AAM is used in Cootes et al. [74] to estimate the pose pro�le angle. In
the training phase they include 2D shapes and 2D textures of both frontal and pro�le
views of each subject. Appearance parameters of their CV-AAM have the capability
to estimate the pro�le angle. Appearance parameters of their model can tune both
the shape and the pro�le angle of a face. In other words facial pose angle variation is
considered to be facial appearance variation, eventually evaluating the pose by tuning
the appearance parameters.

For the pro�le angle estimation they have combined both frontal and pro�le view.
The texture and shape vectors are twice larger than in classical AAM. Instead of com-
bining appearance parameters of two views and optimizing several parameters, it is far
better to use 3D AAM with one pose parameter for pro�le angle estimation.
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2.2.3 Multi-View Images

This section presents the second approach to estimate facial pose angles and features
by �tting the above 2D, 2D+3D or 3D deformable models on multiple images acquired
by two, three or multiple cameras. In single-view system face alignment cannot be
accomplished when a face occlude itself during its lateral motion. Such as in a pro�le
view only half of the face is visible. To overcome this dilemma a multi-camera approach
can be adapted.

Facial images from multiple cameras can be used in two ways. One possibility is to
�t AAM on these images simultaneously and acquire the facial orientation by using the
weak-perspective camera model (section 2.2.3.1). Secondly, AAM �tting is accomplished
on the disparity data obtained from stereos cameras to estimate the facial orientation
(section 2.2.3.2).

2.2.3.1 Simultaneous AAM Fitting

In single-view AAM, single error between model and query image is optimized. However
in multi-view AAM, optimization of more than one error is to be performed between a
model and query images from each camera.

Hu et al. [68] proposed MVAAM (Multi-View AAM) a robust algorithm of �tting
a 2D+3D AAM to multiple images acquired at the same instance. Koterba et al.
[69], Ramnath et al. [70] extended the work of Hu et al. [68] by incorporating camera
calibration in MVAAM. In the �rst part cameras are calibrated using MVAAM �tting
on human faces instead of calibration grids. In the second part, improved performances
of MVAAM are calculated and compared with the uncalibrated multi-view �tting. Kim
and Sung [75], Sung et al. [76], Sung and Kim [77, 78] proposed another algorithm of face
tracking by Stereo Active Appearance Model (STAAM) �tting, which is an extension
of the �tting of 2D+3D AAM to multiple images.

Their �tting methodology, instead of decomposing into multiple independent op-
timizations from multiple cameras, adds all the errors. Thus this addition of errors
loses the importance of usage of multiple cameras. Moreover they used compositional
approach for AAM �tting, which eventually requires complex pre-computations of Ja-
cobian and Hessian matrix.

Romeiro and Zickler [79] used 3D morphable model (as explained in 2.1.3) for the
recovery of face from stereo pairs of images in the presence of foreign body occlusion.
Model-�tting is performed by �nding pose, shape, texture and illumination parameters
simultaneously on the two images from each camera. For the optimization they have
used quasi-Newton gradient descent method.

These techniques added the errors resulted from analysis of facial images from mul-
tiple cameras. This addition is might be due to the incapability of their face search
optimization methods to handle multiple errors from multiple cameras. Addition of
these errors could cause the system to fail, if with respect to one of the camera, face is
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oriented such a way that it does not deliver valid information. High error values from
this camera could cause deterioration of the results even if other cameras provide valid
information. Therefore, for better results, it is necessary to discard information from
such cameras.

2.2.3.2 AAM Fitting by Binocular Disparity

In Dornaika and Sappa [80] the advantages of adaptive appearance model based method
is combined with a 3D data-based tracker using sparse stereo data. They used their 3D
AAM for the rough estimation of the 3D pose of the head in a video stream. Followed
by the improvement of head pose by the sparse stereo 3D data from a stereo rig. The
mesh obtained by the appearance based tracker undergoes 3D registration with the
corresponding 3D coordinates given by the stereo rig. For 3D registration they used
RANSAC-like technique.

Liebelt et al. [81] performed the similar approach by combining the AAM �tting on
2D images and 3D shape alignment on disparity data obtained from stereo cameras.
They used 2D+3D AAM model of Xiao et al. [67].

Mittrapiyanuruk et al. [82] also applied AAM for the pose estimation of rigid objects
by stereo cameras. They applied 2D AAM on both the images from each camera
and used a simple linear 3D reconstruction method of Faugeras [83]. Followed by 3D
registration of 3D scene points in the camera coordinate frame with the 3D model
obtained in the training phase of AAM to evaluate pose.

Yang and Zhang [84] proposed a model-based stereo head tracking algorithm and
is able to track six degrees of freedom of head motions. They track features from
each camera and use epipolar geometry to create a 3D model for the evaluation of the
pose. Their face model contains 300 triangles compare to 113 triangles usually used in
classical AAM and ICLK based AAM etc. Moreover their initialization process requires
user intervention.

Tu et al. [85] performed 2D head tracking for each subject from multiple cameras
and obtained 3D head coordinates by triangulation. Sung and Kim [62] and Von Duhn
et al. [63] also used images from multiple cameras to build 3D AAM model by corre-
lating the landmarks of each image. Slight calibration error massively deteriorates the
triangulation. Furthermore, lack of ground truth error calculations creates uncertainty
in the accuracy of their system.

In these techniques, stereo vision based methods (epipolar geometry and triangula-
tion) are used to register 3D mesh with the corresponding 3D coordinates given by the
stereo rig, which eventually gives the approximate depth of the object. Moreover these
techniques are highly sensitive to the calibration of the cameras. Slight calibration error
could result in highly deformed implausible faces.



AAM Advancements 59

2.2.4 Optimization

This section presents the third approach to estimate facial pose angles and features by
using di�erent optimizers for the optimization of face search in the segmentation phase
of AAM. Facial search space formed by the AAM pose and appearance parameters is
highly complex and scattered. Especially in 3D AAM these pose parameters represent
six degrees of freedom (6DOF) of a face instead of 4DOF in 2D AAM. As long as these
pose parameters are restricted within the speci�ed values the error curve between the
model and the query image remains convex. System will consider the query image as
a face image due to a convex error curve. But when the pose parameters increases
its span, e.g. pro�le view of face, error curve will have several local minima. Various
local minima in error function makes gradient based methods ine�cient and eventually
loses its robustness. Initializations around every local minimum can lead to better
convergence by these methods. But the amount of required initializations are so huge
that it is impractical to use these methods. However instead of these initializations, it
is far better to use direct search methods which exploits and explores the error curve
without falling into these local minima.

2.2.4.1 AAM Fitting by Direct Search Methods

The main di�erence between gradient based search and direct search is their capability
of error function exploration. Gradient based methods always tends towards the bet-
ter solutions while exploiting the current solution and converging towards the gradient
of the function. Whereas direct search methods, unlike gradient based methods, also
explore other solutions of the function. Their ability to anticipate, that inaccurate or
unwanted solutions can lead to the global minimum, di�erentiate them from gradient
based methods. In a multidimensional and a multi-parameterized functions, they ini-
tially launch multiple solutions in all dimensions to analyze the error function. In the
subsequent iterations they not only search for best solution but also keep records of
inaccurate solutions for next iterations. Genetic algorithm and simplex are some of the
known direct search methods.

Simplex Nelder Mead Simplex algorithm by Nelder and Mead [86], is an iterative
direct search method and it is used to optimize both the appearance and pose parameters
at the same time. In these methods AAM model is constructed in the same manner
as explained in section 2.1.5.1. For the segmentation phase, numberofparameters+ 1
solutions are initialized by choosing parameters in each solution randomly and their
respective pixel errors are calculated. In each iteration, parameters in each solution are
modi�ed i.e. re�ected, expanded, contracted or shrunk based on the previous value of
the pixel error. It converges when no further good solutions are possible. Fixed number
of iterations can be chosen as the stopping criteria. This number is either �xed by
number of convergences or processing time.

Our research team in [87, 88] have used Nelder Mead Simplex for the optimization in
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2D AAM. Similarly Paterson and Fitzgibbon [64] also used Simplex as an optimization
for model-based head tracking technique. Cristinacce and Cootes [89] also used simplex
for the optimization of their Template Selection Tracker (TST) to localize the facial
features.

Genetic Algorithm Genetic Algorithm is a well known direct search method given by
Goldberg [90]. In segmentation phase of AAM appearance C and pose parameters P are
considered as genes. All the genes of C and P are concatenated to form a chromosome.
Population of these chromosomes is randomly created. Tournament selection is applied
to select parents chromosomes from the population to undergo reproduction. Two points
crossover and Gaussian mutation is implemented to reproduce next generation of the
chromosomes. Thus new generation of the same size of population is created using
genes of the �ttest of the old chromosome. Elitism can also be implemented to preserve
the best possible solution at all time. After calculating a number of generations the
algorithm can be stopped according to the speci�ed stopping criteria.

McIntosh and Hamarneh [91] and Ghosh and Mitchell [92] performed segmentation
of medical images using genetic algorithm. Stegmann [3] also used an optimization
technique inspired from genetic algorithm, but claimed not using mutation and crossover
operators. Therefore it can be viewed as a random search technique. Hill et al. [93]
used GA as a global search methodology to extract the biological structures in medical
images. They combined GA global search with local search of ASM to improve the
convergence speed of the search methodology. Local search of ASM refers to the same
procedure of linear regression method of classical AAM, however they used only shape
model of ASM.

These optimization methods are slower than the classical AAM, but they reduce
the required memory space because they do not need to save the regression matrix RC
and RP in memory. They also improve the e�ciency of AAM since exploration of the
search space is not restricted as in the case of gradient descent and linear regression
methods. Since they do not need training or pre-computation phase, therefore one of
the major advantages achieved is the generality. Generality is the capability of the
model to analyse other than those faces from which it has been created.

2.3 Conclusions

In this thesis the work has been proposed to solve the problem of face pose estimation
and facial features localization of unknown and oriented faces in a Cognitive Radio
equipment, as the user is not obliged to remain in frontal view in front of the camera.
Similarly facial features localization is also required by CR equipment in order to point
out the important regions for the compression of facial information.

Taking into account these constraints, 3D AAM (section 2.2.2.2) is far better than
using any other extension of 2D AAM model (section 2.2.2) for the pose estimation of
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a face's out-of-plane rotation. The inclusion of extra pose parameters in the case of 3D
AAM to compensate the orientation of the face, makes 3D AAM reliable compared to
2D AAM, which try to estimate the pose either by using extra appearance parameters
or using various oriented 2D AAM models. As far as AAM �tting on multiple views are
concerned, some research teams have used multi-view AAM (section 2.2.3), but their �t-
ting methodology, instead of decomposing into multiple independent optimizations from
multiple cameras, adds all the errors. This addition of errors loses the importance of
usage of multiple cameras. However capturing facial images from multiple cameras leads
to multiple error functions, therefore searching for an optimum solution of a single task
employing two or more distinct error functions requires multi-objective optimization
(MOO). When faces make large lateral movements the error curve between the model
and the query image does not remain convex. This non-convex error curve makes deter-
ministic methods used by various researchers unreliable. Thus face search optimization
of classical AAM (section 2.1.5) and gradient based methods (2.2.1.6) does not remain
a better choice for the face analysis problem. On the other hand direct search methods
discussed in section 2.2.4.1 can e�ciently cater the non-convexity of the error curve.

To estimate the facial pose and extract the facial features, our �rst contribution is a
new method of building a 3D AAM model, called as 2.5D AAM (chapter 3) is proposed
in this thesis in order to make modelization time and memory e�cient. While choosing
among single camera or multiple camera, no doubt multiple camera system can acquire
facial images with large lateral facial movements due to its increased �eld of view. But
the use of multiple cameras is not common in real life. Therefore this thesis tackle the
said problem for both the cases of single and double camera con�guration. For the face
search optimization problem in single camera con�guration, a hybrid optimization of
direct search and gradient based methods is proposed as our second contribution (chap-
ter 4). Whereas in multiple camera con�guration hybrid multi-objective optimization is
proposed (as our third contribution) for the search method by 2.5D AAM to deal with
multiple facial informations separately (chapter 5). A comparison between the existing
methods and our propositions is tabulated in table 2.1.

Methods Face Unknown Facial Time

Orientation Faces Features

Classical AAM + + + +++
AAM Variants + + + +++
3D AAM ++ + + ++
Multiple 2D AAM +++ + ++ ++
HGOAAM1 (Chapter 4) +++ +++ ++ ++
HMOAAM2 (Chapter 5) ++++ +++ ++ +

Table 2.1: Comparison of methods with respect to the problem stated in this thesis.
1 Hybrid Genetic Optimization for 2.5D AAM. 2 Hybrid Multi-objective Optimization
for 2.5D AAM.
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Next chapter will present the detailed description of the modelization of 2.5D AAM
and will discuss di�erent facial image databases. It will also present and explain the
setup of multiple camera system to build indigenous multi-view database.
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This chapter provides a detailed explanation of the �rst contribution of this thesis
i.e. the generation of 2.5D AAM, which have been used through out the experiments for
the pose estimation and feature extraction of the faces making large lateral movements.
This chapter also focuses on the databases used for the facial analysis by 2.5D AAM.
Two types of test databases are discussed; mono-view facial images database and multi-
view facial images database. Discussion on mono-view images databases is brief due to
their vast availability. On the contrary for multi-view images databases, it gives detailed
description along with the multiple cameras setup to acquire temporally synchronized
real and synthesized facial images from two cameras.

3.1 2.5D AAM

This model belongs to the family of multi-dimensional AAM models discussed in section
2.2.2.2 of chapter 2, which includes 3D AAM, 2D+3D AAM, 3D anthropometry-based
face model and 3D Candide face model. We call our model as 2.5D AAM because a real
3D model is the one used in medical image analysis, which also contains cross sectional
details along with the surface. It can be obtained by a typical 3D data set, grouped by
2D slice images acquired by a CT (Computed tomography) or MRI (Magnetic Resonance
Imaging) scanner. Instead of pixels, voxels are used in its real 3D mesh.

There are other multi-dimensional AAM models proposed by the researchers. Dor-
naika and Ahlberg [30] used shape of the 3D face model Candide, to extract textures
from the images in order to make 3D AAM model. Sung and Kim [62] also created the
3D AAM model by annotating the face in a movie created from a stereo vision camera
and implemented a stereo vision technique to relate the landmarks on di�erent images.
Von Duhn et al. [63] used three cameras to acquire three (frontal, pro�le and angle)
views of a face. Landmarks localized by 2D AAM on each image are correlated to build
a 3D model. However, the procedure involved in building 2.5D AAM is simple and
fast. It requires only frontal and pro�le views of an individual compared to sequence of
images either by single camera or stereo camera. Manual markings of the landmarks,
usually used by research teams, makes it more precise rather than using a semiauto-
matic procedure by �tting 2D AAM whose robustness may come in question. Section
2.1.5.1 of previous chapter elaborated the steps to generate a 2D AAM model used by
classical AAM. While this section concentrates on the �rst contribution of constructing
2.5D AAM and discusses its construction step by step.

3.1.1 3D Landmarks

In a 2.5D AAM both pro�le and frontal views of the person is used to make a 3D shape
as shown in �gure 3.1. 68 points are marked manually on the frontal view of a facial
image. In a pro�le view of the same facial image, only 39 points are visible among the
68 frontal view points. These 39 points are also marked manually on the pro�le view of
a facial image. The formation of these 68 points is well known as most of the researchers
[1, 30, 47] have used almost the same kind of arrangement. The optimal distribution of
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the frontal view 68 points are con�gured taking into account the extent of deformation
level of each feature as shown in the �gure 2.3.

� 17 points surrounds the face to incorporate movements of jaws.

� Two sets of 5 points for each eyebrow to manage their movements in di�erent
expressions.

� Two sets of 6 points for each eye to cope with their blinking.

� Only 4 points for nose as it is the least deformed feature in a face.

� 5 points represents the area under the nose because it usually deforms in certain
expressions.

� Two sets of 12 and 8 points corresponding to outer and inner boundaries of lips
respectively. Since lips are the most highly deformable feature in a face, therefore
they are dealt with 20 points.

As shown in the �gure 3.1, XY coordinates of all the points of the frontal view are
acquired and point corresponding to the nose-tip is taken as the center of these points.
Whereas in pro�le view, X coordinates of all the visible points are aligned with respect
to this nose-tip coordinate to obtain the depth of the model. Later on this depth is
referred to as the Z coordinates of all the points to build a 3D shape model. Center
of gravity (COG) of all these points is calculated, which functions as a pivot for this
model. Let us suppose there are N number of images in the database then the vector
representation of these shapes is

si = [xi,1, xi,2, ...xi,68, yi,1, yi,2, ...yi,68, zi,1, zi,2, ...zi,68] (1 ≤ i ≤ N) (3.1)

3.1.2 Shape Model and Parameters

All the landmarks obtained in the previous step are resized and aligned in three dimen-
sion using Procrustes analysis proposed by Goodall [4]. Rest of the model creation is
similar to the one proposed by [1]. Mean of these 3D landmarks is calculated which is
called mean shape. Principal Component Analysis (PCA) is performed on these shapes
to acquire shape parameters with 95% of the variation stored in them.

si = s̄+ φs ∗ bs (3.2)

where si is the synthesized shape, s̄ is mean shape, φs is a matrix whose column rep-
resents the eigen vectors obtained during PCA and bs is a vector of shape parameters.
Shapes synthesized by incorporating �rst three shape parameters are shown in �gure
3.2. Each column shows shapes synthesized by varying respective shape parameter from
−3
√
λi (left), mean shape (center) and +3

√
λi (right), where λ are the eigen values cor-

responding to each shape parameter (obtained during PCA) and i is the index of the
shape parameter.
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Figure 3.1: Landmark Placement

3.1.3 Texture Model and Parameters

After constructing 3D mean shape (as explained in the previous step), frontal texture of
each facial image is warped into this mean shape based on the Delaunay triangulation
as shown in the �gure 3.3. This is the reason of calling it a 2.5D AAM, since it is
composed of landmarks represented in 3D domain but only 2D texture is warped on
this shape. Mean of these textures is calculated. Followed by another PCA to acquire
texture parameters with 95% of the variation stored in these parameters.

gi = ḡ + φg ∗ bg (3.3)

where gi is the synthesized texture, ḡ is mean texture, φg is a matrix whose columns rep-
resents the eigen vectors obtained during PCA and bg is a vector of texture parameters.
Textures synthesized by incorporating �rst three texture parameters are shown in �gure
3.4. All the textures corresponds to mean shape, therefore sometimes they are referred
to as shape-free textures. Each column shows textures synthesized by varying respective
texture parameter from −3

√
λi (left), mean shape (center) and +3

√
λi (right), where

λ are the eigen values corresponding to each texture parameter (obtained during PCA)
and i is the index of the texture parameter.

3.1.4 Appearance Model and Parameters

Both of the above parameters are combined by concatenation of bs and bg. And a �nal
PCA is performed to have the appearance parameters.

b = [bsbg]T , b = φC ∗ C (3.4)
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(a) −3
√
λi (b) Mean Shape (c) +3

√
λi

Figure 3.2: Shapes synthesized by varying �rst three shape parameters from top to
bottom

Figure 3.3: Texture Warping
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(a) −3
√
λi (b) Mean Texture (c) +3

√
λi

Figure 3.4: Textures synthesized by varying �rst three texture parameters from top to
bottom. All of them are warped in the same mean shape.
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where φc are the eigen vectors obtained by retaining 95% of the variation. And C is the
matrix, whose column represents the appearance parameters of the faces of the database,
which are used to obtain their shapes and textures. Model synthesized by incorporating
�rst three appearance parameters are shown in �gure 3.5. Since appearance model is a
combination of a shape model and a texture model, therefore 3.5 appears to be a mixture
of �gures 3.4 and 3.2. Each column shows model synthesized by varying respective
appearance parameter from −3

√
λi (left), mean shape (center) and +3

√
λi (right),

where λ are the eigen values corresponding to each appearance parameter (obtained
during PCA) and i is the index of the appearance parameter.

(a) −3
√
λi (b) Mean Model (c) +3

√
λi

Figure 3.5: AAM Model synthesized by varying �rst three appearance parameters from
top to bottom
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3.1.5 Pose Parameters

2.5D Model can be translated as well as rotated with the help of translational and
rotational parameters. Therefore we have three angles of rotation and three translational
parameters named as pose parameters P .

P = [θpitch, θyaw, θroll, tx, ty, scale]T (3.5)

where θpitch correspond to the face rotating around x axis (shaking head up and down),
θyaw to the face rotating around y axis (pro�le views) and θroll to the face rotating
around z axis. tx, ty are the o�set values from the face center detected by a face detector
and scale is the magni�cation of the model. Figure 3.6 shows the face rotating around
y axis making left and right semi pro�le views.

Figure 3.6: Snapshots of rotating 2.5D AAM

In segmentation phase shape of this 2.5D AAM can be deformed, rotated and trans-
lated by varying C and P parameters. With the help of this shape, face in the query
image I is warped to the frontal view. The objective is to minimize pixel error between
this warped query image I and AAM model obtained by C parameters.

e =

√√√√ 1
N

N∑
i=1

[Ii(C,P )−Mi(C)]2 (3.6)

where I(C,P ) is the segmented image andM(C) is the model obtained by C parameters
and N is the number of pixels of the model.

3.2 Facial Image Databases

2.5D AAM model discussed in previous section requires an adequate amount of facial
images to learn the variations in di�erent classes of faces. Similarly to validate the
facial analysis system a su�cient number of test facial images are required. These facial
images databases are generally referred to as learning databases and testing databases.
This section will discuss and present both databases in detail.

3.2.1 Learning Database

As explained in section 3.1, to build the proposed 2.5D AAM model frontal and pro�le
views of a face are required. M2VTS database of [94] is chosen as a learning database in
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this thesis work. Its high resolution, constant illumination, occlusion free facial images
makes M2VTS most suitable database to be used for 2.5D AAM modeling.

M2VTS M2VTS (Multi Modal Veri�cation for Teleservices and Security applications)
database is made up from 37 di�erent faces rotating the head from 0 to -90 degrees,
again to 0, then to +90 and back to 0 degrees. The sequences are meant for facial
analysis and provide information about the 3-D face features. Along with face type
variation, it also includes variations with respect to head position, eyes opened/closed,
di�erent hairstyle and faces with beard. A Hi8 video camera was chosen for the shooting.
By keeping active pixels only, the �nal resolution for the database images is 286x350
pixels. The database can be considered as having been produced under "ideal" shooting
conditions (good picture quality, indoor shooting, nearly constant lighting, uniform gray
background) and within a highly co-operative scenario (as much as they could, people
followed the instructions they were given).

2.5D AAM model is build by taking the shape model of both frontal and pro�le of all
the 37 faces as shown in 3.1, whereas only frontal view textures for texture parameters.
Some of the images of this database is shown in 3.7.

Figure 3.7: M2VTS: Some examples of learning database

3.2.2 Test Databases

To validate the performance of facial analysis system, proposed algorithms are tested
and compared with respect to various test facial image databases. Since algorithms
under observation are tested both in single camera and multiple cameras system there-
fore both types of databases are acquired to perform simulations. Among them single
camera databases are easy to obtain due to the enormous amount of databases avail-
able in the research community, whereas for scarcely available multiple camera images,
a multi-view scenario is implemented.
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3.2.2.1 Single Camera Databases

Proposed algorithms of facial analysis system are tested and compared with the help of
the following facial images databases.

Pointing'04 The head pose database of Pointing'04 [18] used in this thesis consists of
facial images of 15 individuals. Two sets of 13 facial images of each individual moving
their faces laterally from -90 degrees to +90 degrees are taken. To obtain di�erent poses,
markers have been placed in the whole room. Each marker corresponds to di�erent yaw
angle of head i.e. ±15◦, ±30◦, ±45◦, ±60◦, ±75◦ and ±90◦. In order to obtain the face
in the center of the image, the person is asked to adjust the chair to see the device in
front of him. After this initialization phase, each person is asked to stare successively
at points without moving his eyes. Sequence of facial images one of the individual of
Pointing'04 is shown in 3.8.

Figure 3.8: Some examples of POINTING'04 database

SUPELEC SUPELEC facial database consists of 7 individuals (of SCEE team) mak-
ing lateral facial movements from -90 degrees to + 90 degrees in front of a webcam. The
camera is placed at 70 cm distance from the individual and a constant ambient light
is used to acquire 218 images of the database. Figure 3.9 shows some examples of this
database.

Synthetic In previous two databases of SUPELEC and POINTING'04, facial orienta-
tion of individuals are not precise and it is di�cult to ask somebody to maintain speci�c
roll, pitch and yaw angles (e.g. in the �rst and last images of the third row in �gure 3.9,
individual was unable to maintain constant pitch angel). In order to compare the re-
sults of the algorithms, precise values of ground truths of facial orientation are required.
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Figure 3.9: Some examples of SUPELEC database

Therefore, scenario of SUPELEC database is emulated in a commercially available soft-
ware called MAYA to acquire the synthetic facial images with high precision of facial
orientation. Figure 3.10 shows some examples of this database.

These facial images are from two sources. Some of them are indigenous, while some
of them are build in a software called Facial Studio. In Facial Studio one can generate
various synthetic faces by varying its appearance with respect to ethnicity, gender and
by changing location, width, height and textures of its facial features. Sixty faces were
generated from facial studio (last row of �gure 3.10)and two others are indigenous (�rst
two rows of �gure 3.10). Each of the face is imported in MAYA and is rendered in the
form of 120 images while moving laterally from −90◦ to +90◦ and back to −90◦, such
that each image has a change of 3◦ of yaw angle while other translational, rotational
and appearance parameters remains constant.

3.2.2.2 Multiple Camera Databases

Multi Camera System Setup Database of face image capable of self assessing is
desired to validate multi-view facial analysis system. The community lacks database
which involve lateral motion of a face captured by more than one camera. In order
to implement the system a multi-view scenario has been developed shown in �gure
3.11. The purpose of constructing this multi-view system is to emulate the scenario
of integrating two o� the shelf webcams placed on the extreme edges of display screen
facing towards the user as shown in �gure 3.11.

These cameras are placed 50 degrees apart on a boundary of a circle with a radius
of 70 cm. Center of this circle represents the "look at" point for each camera. Third
camera is also placed between these two cameras, which is not the part of the multi-view
system but placed for the evaluations and comparisons of single-view and multiple-view
algorithms.
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Figure 3.10: Some examples of Synthetic database

Calibration of cameras is performed by a publicly available toolbox [95]. Both
intrinsic and extrinsic parameters are calculated and all the images of these cameras
are calibrated.

SUPELEC Seven individuals of a research team are invited for screen shots with the
intention of obtaining 1218 images with lateral motion. Each individual rotates his face
gradually from frontal view to left and right pro�le views. At each instance three im-
ages from each webcam are acquired simultaneously to obtain temporally synchronized
images. For the steady state illumination a white ambient light is placed behind the
central camera. Illumination remains steady through out the sequence. Figure 3.12
shows some images of testing database acquired from three webcams.

Synthetic Similar scenario is emulated on software MAYA for a video of synthetic
face. Synthetic face database does not contain camera calibration error hence it is help-
ful to analyze results free of calibration errors. 4160 facial images (from each camera) of
52 synthetic characters are acquired by the software MAYA as explained in the previous
section 3.2.2.1. Figure 3.13 shows some examples of testing database of synthetic face.

3.3 Ground Truth Error (GTE)

As explained in section 1.1.2, pose estimation of an unknown face is one of the problem
stated in this thesis. As the user is not obliged to remain in front of the camera
therefore facial pose estimation becomes necessary for a Cognitive Radio equipment.
The precise value of the facial orientation is unachievable in real faces, therefore its
accurate comparison is carried out only in synthetic face databases. While for real faces
a snapshot of the results are shown to have an idea of the accuracy of the results.
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Figure 3.11: Multi-View System

Similarly in section 1.1.2, problem of localization of the facial features of an unknown
face is stated. CR equipment required the exact location of these features in order to
perform their lossless compression, unlike remaining of the facial region. Therefore a
method, called GTE, is required for the comparison of the accuracy of the localization
of these features for di�erent algorithms. This section provides the detailed procedure
for calculating GTE.

Shape model and localization of features obtained by the proposed algorithms are
compared with respect to the key features of the face i.e. center of eyes, tip of nose and
center of gravity of the mouth. For this comparison, four points of ground truth (center
of eyes, tip of nose and center of mouth) are marked manually on each facial image of
all the test databases discussed above.

Mean of error distance (Euclidean distance) between ground truth points marked
manually and the points given by the shape model obtained by the experiments is
calculated. This error is normalized by Dface (distance between center of the mouth
and the line joining the center of the eyes) to acquire Ground Truth Error (GTE). In
the community Deye (distance between center of eyes) is taken for the normalization
of GTE, however in our case face rotation causes variations in Deye. To compensate it
we take Dface and �nd its equivalent Deye i.e. Deye = 0.8 ∗Dface to normalize Ground
Truth Error (GTE). Therefore GTE is expressed as a percentage of the distance between
the eyes, i.e. an error of 1 corresponds to a mean error equal to the distance between
the eyes. It is given as
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Figure 3.12: Examples of real webcam facial images of multi-view system (Same pose
from 3 webcams)
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Figure 3.13: Examples of synthetic facial images of multi-view system (Same pose from
3 cameras)

Error =
1

4Deye

4∑
i=1

di (3.7)

where di corresponds to error distance for each feature. Due to the fact that ground
truth points are marked manually one needs to de�ne a minimum threshold which
eliminates this vagueness. Any two algorithms having a percentage of GTE less than
10% of Deye is considered to be equally accurate. While for the maximum threshold
results less than 25% of Deye is considered to be well converged results. Therefore the
results are compared for GTE greater than 10% and less than 25% of Deye. Figure 3.14
shows the range of minimum and maximum thresholds of GTE.

Figure 3.14: Circular regions around facial features of each image, from left to right,
represents 25%, 20%, 15% and 10% of GTE
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3.3.1 GTE for Multiple Camera Images

GTE calculation for single view images are simple whereas in a multi-view system, since
facial images from all the cameras are directly involved in the segmentation phase of
the 2.5D AAM and GTE obtained from each image are equally important, therefore it
is not appropriate to calculate GTE only for the images obtained from any one of the
camera. Taking mean of these GTEs is not a suitable solution. In this thesis a unique
solution of calculating GTE is proposed by using an extra (third) camera.

In a multi-view system, third camera is placed in between the two cameras as shown
in �gure 3.11. Images from this camera is not used in the segmentation phase and only
used to calculate GTE. The coordinates of this camera are calculated while performing
the calibration of multi-view system. AAM model obtained at the end of the facial
analysis of an image from other two cameras is rotated and translated with respect
to the coordinates of this third camera. Finally GTE of AAM model with respect to
the facial image seen by this camera is calculated for the comparison of the methods.
With the help of this camera, single camera test database is also obtained as explained
in section 3.2.2.1, therefore facial analysis results by single-view system can also be
compared with those by multi-view system on same facial images. Moreover tedious job
of annotating four ground truth points on hundreds of facial images of multiple cameras
is also reduced e�ectively. Similarly for any other con�guration of multiple cameras
system, an extra camera can be placed elsewhere whose images are used only for GTE
calculation and not in AAM segmentation phase.

3.4 Conclusions

This chapter has presented in detail the construction of newly proposed 2.5D AAM
model. Main advantages of this model compared to other 3D AAM models are i) more
practical compared to 3D scanner models ii) key facial features captures by few points
iii) storage of only frontal view texture in memory and iv) requires only two facial images
(frontal and pro�le) of the individual instead of applying triangulation on various 2D
images. The only disadvantage of this model is the lack of the depth data around regions
without markers e.g. cheeks.

This chapter has also presented facial image databases both for single and multiple
camera system used throughout in this thesis. Moreover it also discusses the way of
calculating the ground truth error of facial features localization for the comparison of
di�erent algorithms which will be discussed in detail in subsequent chapters.

Next two chapters will present our remaining two contributions of the application
of this 2.5D AAM by

� for single camera system: Hybrid GA+GD optimization for AAM.

� for multi-view system: Hybrid multi-objective GA+GD optimization for AAM.
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The problem stated in this thesis for the facial analysis i.e. "pose estimation and
facial features localization of unknown and oriented faces", is dealt with in this chapter
for single camera con�guration. It presents our second contribution of an e�cient
optimization technique for AAM by the hybridization of genetic algorithm (GA) with
gradient descent (GD) to make a robust, e�cient and real time face alignment system.
Facial large lateral movements requires to optimize 6DOF (Degrees of Freedom) pose
parameters which make the facial search space of AAM non-convex. This non-convex
multidimensional search space requires an e�cient optimization methodology. Section
4.1 discusses in detail the optimization methods used for face search by AAM. Section
4.2 discusses in detail the hybridization of these methods proposed by the community in
di�erent domains. We select two hybrid algorithms of GA-Simplex and GAGD for the
implementation in AAM. In a non-convex search space GA is able search face globally
whereas GD, also known as deterministic optimization method, can search face locally.
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As far as simplex is concerned it is an intermediary approach for face search. Therefore
exploitation properties of GD and simplex are combined with the exploration property
of GA in GA-Simplex and GAGD respectively.

Simple GA-Simplex hybridization is carried out by separately applying GA and
simplex in series. Whereas for GAGD we propose a gradient operator in GA in section
4.3, which functions in conjunction with the existing genetic operator of mutation. Thus
it does not increase the computational cost of the system. Stepwise application of our
proposed algorithm is also explained in this section. We compare it with classical search
algorithm by gradient descent and the hybrid optimization of GA with Simplex in section
4.4. Facial databases of SUPELEC'08, Pointing'04 and synthetic characters comprising
of di�erent facial poses are analyzed. Simulation results validate the e�ciency, accuracy
and robustness achieved.

4.1 Optimization Methods for AAM

Optimization methods plays an important role in the facial analysis by AAM. System's
e�ciency and robustness is directly related to the optimization method for the facial
search in segmentation phase.

As discussed earlier in previous chapters, classical optimization of AAM by linear
regression presents some drawbacks. It needs to store the matrices RC and RP in mem-
ory for the segmentation phase. Additionally the precomputations from the training set
is only an approximation for any given target image, and may be a poor one if the tar-
get image is signi�cantly di�erent (unknown or unseen faces) from the training images.
This capability of analyzing the unseen faces is called generality and is investigated in
the table 4.1 for di�erent optimization techniques of AAM discussed in this section.
This thesis work is going to resolve the problem of generalization by working on the
optimization technique. AAM modelization used M2VTS database, which is su�ciently
general to align the unknown faces, but the face search optimization technique needs
to explore the search space for these unknown faces. Therefore in this thesis we are
going to address the problem of generality by concentrating on the e�cient and robust
optimization technique for AAM.

In segmentation phase the deformed, rotated and translated shape model obtained
by varying C and P parameters of 2.5D AAM (obtained in the previous chapter), is
placed on the query image I to warp the face to mean frontal shape. The objective is
to minimize pixel error

e =

√√√√ 1
N

N∑
i=1

[Ii(C,P )−Mi(C)]2 (4.1)

where I(C,P ) is the segmented image, M(C) is the model obtained by C parameters
and N is the number of pixels. The objective of pixel error minimization is obtained
by optimizing C and P parameters, which requires an e�cient and robust optimiza-
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tion technique. In general, optimization methods can be divided into two categories;
deterministic methods and direct search methods.

Deterministic methods can be de�ned as mathematical techniques based on the
concept that future behavior can be predicted precisely from the past behavior of a set
of data. These methods ignore the existence of disturbances that may alter the data's
future pattern. e.g. Gradient descent.

Direct search methods are nonlinear optimization methods that neither require nor
explicitly approximate derivatives for the problem to be solved. Instead, at each itera-
tion a set of trial points is generated and their function values are compared with the
best solution previously obtained. This information is then used to determine the next
set of trial points. e.g. Genetic Algorithm, Tabu search.

Separation between these two methods is not strict and various methods can be
placed in between e.g. Nelder Mead Simplex. Main reason of separating them is their
properties of exploitation and exploration. One of the main advantages of direct search
methods over deterministic methods is the parallel processing. Since direct search meth-
ods do not predict from past behaviors, therefore they can perform processing in parallel
in hardwares like Graphical Processing Unit (GPU). Detailed discussion of some of the
well known methods and their implementation in AAM are presented in the next sub-
sections.

4.1.1 Gradient Descent

Gradient descent method is a well known method which �nds the optimum value of an
error by calculating the gradient of respective function with respect to each parameter.
It is calculated as a di�erence between segmented image and the model instance by
changing each of the parameter C and P independently. It is given as

∂ex
∂Ci

=
(I(Ci,2, P )−M(Ci,2))− (I(Ci,1, P )−M(Ci,1))

Ci,2 − Ci,1
(4.2)

∂ex
∂Pi

=
(I(C,Pi,2)−M(C))− (I(C,Pi,1)−M(C))

Pi,2 − Pi,1
(4.3)

where i indicates index of C and P parameters. ex represents error image or residual
error (of the same dimensions as ofM) and x corresponds to the number of pixels. Each
pixel of the error image ex corresponds to the pixel error of a particular pixels of I and
M , unlike equation 4.1 which represents the root mean square of these pixels' errors.
Gradients with respect to each parameter can be considered as partial derivatives of
a function. Matrix obtained by calculating these partial derivatives of error images is
called Jacobian matrix. Jacobian matrices of C and P parameters are given as
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JC =
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where N is the number of pixels andM is the number of appearance parameters. These
Jacobian matrices of parameters direct their respective parameter to optimum solution
by pointing to the variation of each parameter. Hence ∆C and ∆P are calculated by
multiplying the transpose of respective Jacobian matrix with an error image obtained
at any instance.

∆C = −η
JTC
JTCJC

ex (4.6)

∆P = −η
JTP
JTP JP

ex (4.7)

where η is the step size to control the jump of parameters in the direction of the gradient.
Gradient based methods are known to lack exploration property hence usually fall

into local minimum. As shown in �gure 4.1, the pixel error curve by changing θyaw
and tx of the model, introduces several local minima. Initializations around every local
minimum can lead to better convergence by these methods. Similar initializations are
also required for other pose parameters. Thus the numbers of initializations are so huge
that it is impractical to use these methods. However instead of these initializations, it
is far better to use genetic algorithm which explores the error curve with out falling into
the local minimum.

4.1.2 Genetic Algorithm

Genetic algorithms (GA) categorized as an evolutionary algorithm. Idea of evolutionary
computing was introduced in the 1970s by I. Rechenberg in his work "Evolution strate-
gies" [96]. His idea was then developed by other researchers. Genetic Algorithms (GAs)
were introduced by John Holland's book "Adaption in Natural and Arti�cial Systems"
[97]. GAs are often used for global optimization problems, therefore they can search
face globally even in scattered face search space. We have used it to optimize C and P
parameters of AAM. All the parameters (genes) of C and P are concatenated to form
a chromosome as shown in the �gure 4.2.

Speci�c numbers of chromosomes are initialized to make a population, where each
chromosome corresponds to a model instance. Pixel errors (�tness) is calculated between
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Figure 4.1: Pixel Error by changing tx and θyaw
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the warped query image and AAM model (MC,P ) represented by a single chromosome
by equation 4.1. Tournament selection is applied to select parents (best �t from a pool
of randomly selected parents) from the population to undergo reproduction. Two points
crossover and Gaussian mutation are implemented to reproduce next generation of the
chromosomes (shown in �gure 4.3) and ultimately replacing old ones. In this way new
generation of the same size of population is created using genes of the �ttest of the
old chromosome. Elitism is also implemented to preserve the best possible solution at
all time. After several generations most of the chromosomes surrounds the optimum
solution, but most of the time none of them bear the global optimum.

Figure 4.2: Chromosome

GA is renowned to have a good quality of exploration; as a result it can �nd the
global optimum values. It is an iterative and population based method. In an iteration
of a classical GA, a new generation of population of chromosomes is evolved based on
genetic operators of crossover and mutation. Crossover operator exchanges the genes
(parameters) of the selected parents to form child chromosomes, thus it makes an e�ort
to exploit (to some extent) the existing solutions to produce a new better solution.
Whereas a mutation operator mutates genes of a chromosome and ultimately explores
the search space without any preferred direction. The rate of the probability of exe-
cutions of these operators in an iteration makes GA either highly exploratory (due to
high mutation) or slightly exploitive (due to high crossover). Thus GA propose a good
compromise between exploitation and exploration.

4.1.3 Simplex

Nelder Mead Simplex algorithm proposed by Nelder and Mead [86] can also be used
to optimize the pose and appearance parameters of AAM. The target is to �nd out
the best possible value of these parameters giving minimum pixel error (equation 4.1)
between model and the query facial image. Simplex is an iterative and population based
algorithm. It starts with a population of N+1 (where N is the number of parameters)
solutions initialized randomly. In each iteration a new solution is calculated and inserted
in the population by applying simplex operators (re�ection, expansion, contraction or
shrunk [86]) on the existing population. Followed by the sorting of the population
with respect to pixel errors and dropping o� the worst solution in order to keep the
population size constant. It converges when no further good solutions are possible. For
stopping criterion �xed number of these iterations is applied, which is either �xed by
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Figure 4.3: Crossover and mutation operator
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number of convergences or processing time. In the end it provides a set of solutions, in
which best solution is the one with least pixel error.

Simplex is considered to be an intermediary approach for both exploration and
exploitation. Although as GD it does not have a direction in the form of a gradient
to �nd good solutions but its previous solutions in the population assist it to �nd this
direction to some extent. Therefore its convergence to local optimum is slower than
GD. On the other hand, operators like expansion and re�ection tends it to explore the
solutions beyond its direction of convergence and eventually make it a better exploratory
method. However another drawback of this algorithm which makes it less exploratory
than GA is the inability of insertion of solutions worst than the current population.
Although modi�cations can be done to improve its exploitation and exploration, but
generally simplex is considered to be an intermediate approach between GA (highly
exploratory) and GD (highly exploitive).

4.1.4 Other Methods

Various other optimization methods exist which are suitable for the non-convex opti-
mization problems. Following methods are discussed brie�y in this section: Random
Search/Random Walk, Simulated Annealing, Monte Carlo and Tabu search. Since these
methods are never used in AAM, therefore their functionalities are discussed with re-
spect to general optimization problem.

A random search (RS) is a simplest search strategy, as it simply evaluates a given
number of randomly selected solutions. A random walk (RW) is very similar, except
that the next solution evaluated is randomly selected using the last evaluated solution
as a starting point [98]. These strategies are not e�cient for the optimization problems
of AAM.

Simulated Annealing (SA) is an algorithm explicitly modeled on an annealing anal-
ogy [99]. SA borrows ideas from a physical procedure called annealing where a substance
is melted and then slowly cooled down in search of a low energy con�guration. In a
similar manner, probabilistic optimization is performed with a decreasing temperature
that determines how greedy the procedure is in the search for a global minimum. It
is an iterative process and at each step, the SA considers some neighboring solution
of the current solution, and probabilistically decides whether to stay or move to that
solution. The probabilities are chosen so that the system ultimately tends to move to
states of lower energy. Typically this step is repeated until the system reaches a solu-
tion that is good enough for the application, or until a given computation budget has
been exhausted. The probability of making the transition is speci�ed by an acceptance
probability function that depends on the two solutions and on a global time-varying
parameter T called the temperature.

In general, Monte Carlo (MC) methods employ a pure random search where any
selected trial solution is fully independent of any previous choice and its outcome [100].
The current "best" solution and associated decision variables are stored as a comparator.
Tabu search (TS) is a meta-strategy developed to avoid getting "stuck" on local optima.
It keeps a record of both visited solutions and the "path" in the form of a tabu list.
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This information restrict the choice of solutions to evaluate next.
All these methods are although suitable for non-convex problems and are good in

exploration as well, but nobody has used them with AAM because of their slow rate of
convergence to optimum value.

All the method discussed above have their utility in their respective domains, where
the system may require either highly exploitive or highly exploratory optimization.
From the detailed discussion in the above sections we can conclude the characteristics
of the algorithms as tabulated in table 4.1. It illustrates that SA, TS and GA are
highly exploratory method with little exploitation. Whereas GD is a highly exploitive
method with little exploration. In this table the previously discussed generality is also
compared to AAM optimization methods using precomputation. In the next section we
will present their hybridization in detail.

Method Exploration Exploitation Generality

With Precomputation + +++ +
RS/RW, MC +++ - +++
SA, TS, GA +++ + +++
Simplex ++ ++ ++
GD + +++ ++

Table 4.1: Characteristics of Optimization Algorithms

4.2 Hybridization

From the above discussion we have presented the exploitation and exploration properties
of various methods. Since in face analysis the multidimensional search space formed
by AAM is non-convex, therefore an optimization methods comprising of both the
properties is required. Utilizing any one of the algorithm of table 4.1 alone, will not
solve the problem. One other way is to hybridize these algorithms. In this section �rst
of all we will discuss some of the hybrid algorithms presented by various authors in their
respective domains in section 4.2.1. Followed by the discussion on two hybrid algorithms
of genetic algorithm with Simplex and genetic algorithm with gradient descent.

4.2.1 Previous Work

Smart and Zhang [101] used gradient descent search to genetic programming for object
recognition. During the evolutionary process, the search is based on a global search
mechanism, but the gradient descent search is locally applied to individual programs in
the population inside a particular generation. They applied GD inside a particular gen-
eration, hence making system slower. Fernandez et al. [102] proposed a single solution
instantaneous memetic algorithm for the correction of illumination in homogeneities
in images. They replaced conventional mutation operator, by mutating the solution
using the gradient information of the solution. Therefore they calculated gradient of
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the solution in each iteration for their new mutation operator, thus causes the system
to become slower. Alker et al. [103] extracted 3D landmark of MR and CT images of
human head by hybridizing GA with conjugate gradient optimization. Unfortunately,
conjugate gradient is computationally very expensive, due to the recalculation of the
search direction at each iteration. Similar to Quasi-Newton method which requires
extensive computation of the Hessian matrix (second-order derivatives).

Bosman and Thierens [104] exploited gradient information in IDEA (Iterated Den-
sity Estimation Evolutionary Algorithms) to optimize some well known di�cult con-
tinuous di�erentiable functions. They applied gradient descent in each iteration on
randomly selected solutions from the population. They applied their proposition on
Griewank's, Michalewicz's and Rosenbrock's functions. Main drawback of their method
is the lack of intelligence of applying GD i.e. when and on which solutions of the pop-
ulation, GD should be applied. Applying GD on randomly chosen solutions at the end
of each iteration makes the system slow.

Durand and Alliot [5] combined Simplex with GA and tested on classical test func-
tion of Griewank and Corona. Skinner et al. [105] used iterative two stage hybrid op-
timization of parallel GA followed by Sequential Quadratic Programming (SQP). They
tested the algorithm on classical mathematical functions. Applying SQP after the GA
optimization is time consuming. Moreover their testing methods are not related to the
problem stated in this thesis.

Zhang and Ma [106] developed an e�cient hybrid GA for continuous optimization
problem. They inserted a local search method (LSM) in the crossover operator to
�nd better o�springs. Their proposed LSM tried di�erent combination of genes in
a parent chromosome during crossover and �nds the best combination. Introducing
these best chromosomes into the population makes the overall GA more exploitive,
but this procedure of local search is very time consuming. Zdansky and Pozivil [107]
combined GA with Tabu search to optimize scheduling of �owshops of plants in a
chemical industry. They used tabu search as a local improvement technique, which is
also able to leave local optimum and continue the search. In their method they initially
apply tabu search on the whole population and then apply GA on a smaller set of these
solutions to make a new generation. Their methodology also seems slower because of
the combination of two highly exploratory algorithms.

Although all the experiments by these hybrid evolutionary algorithms showed an
improvement over the conventional optimization, but their utility in a real time system
is not practical. Their way of combining two algorithms are no doubt robust but are
not time e�cient compared to our proposition. The hybrid algorithms selected for this
thesis are

Hybrid GA-Simplex Both GA and simplex are population based algorithm, there-
fore their hybridization is carried out by transferring the set of solutions given by GA
after the stopping criterion is met. Simplex takes this population as its initialization
and starts the search for the best solution. This hybridization has been tested on vari-
ous mathematical functions in [5], almost similar approach will be carried out by us in
this thesis. Main objective of implementing this combination is to verify the robustness
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of our proposed following algorithm.

Hybrid GA-GD Hybridization of GA and GD is not that simple compared to GA-
Simplex, due to the di�erent nature of the two algorithms. Various authors have com-
bined these algorithms in di�erent manner as presented in the previous section, but
their propositions are not time e�cient. Although they have embedded GD in GA,
but their propositions are meant to replace GA exploration by GD exploitation or vice
versa. Whereas the better way is to hybridize them without altering their indigenous
qualities. Next section discusses our unique way of this hybridization for AAM called
HGOAAM.

4.3 Hybrid Genetic Optimization for AAM (HGOAAM)

A simple hybridization of gradient descent in GA would have increased the number
of error evaluations, but we propose gradient operator which functions in conjunction
with mutation operator. This gradient operator uses the error evaluation of mutation
operator and do not put an extra burden on the system. This section presents our
contribution of hybridizing GD with GA by gradient operator followed by the stepwise
explanation of our proposed hybrid AAM.

4.3.1 Gradient Operator

During mutation of a parent chromosome we have changed only one gene or parameter
to make a child for the next generation. This property of the mutation operator enables
us to retrieve the residual image (pixel error) as presented by ex in equations 4.2 and 4.3,
with respect to each C and P parameter. These errors are actually partial di�erential
of the error with respect to each parameter. During generation evaluation whenever a
chromosome undergoes mutation, the gradient operator stores these partial di�erential
of respective parameter to build Jacobian matrices of equations 4.4 and 4.5 without
interrupting the mutation operator's functionality.

In the beginning of GA evolution, these Jacobian matrices are not accurate as the
search space is scattered. But as the GA evolves for few generations it surrounds
the region around the global optimum. At this time Jacobian matrices calculation is
worthwhile. Figure 4.1 is view from di�erent angles in �gure 4.4 to point out these
global and local minima.

Separate experiments were conducted to verify the stability of the Jacobian during
the GA evolutions. In these experiments GA was executed normally and meanwhile
gradient operator calculates Jacobian for mutated genes in each generation. These
Jacobian are used to calculate the expected value of the gene (parameter) pointed by
the gradient of the Jacobian. Figures 4.5 show the �rst three C parameters, θyaw, tx
and ty evaluated by the Jacobian in each generation. From these �gures we can see
that parameters optimized by Jacobian become stable i.e. point in the right direction
after 7 to 10 generations of GA evolution, before that the evaluation of parameters by



90 AAM �tting for Single View Images

Figure 4.4: Representation of global minimum region surrounded by local minima.

Jacobian were erroneous. Which means that the parameters' solutions have reached the
region of global optimum value.

Therefore after b = 10 generations of our experiments, Jacobian matrices with re-
spect to each parameter are calculated in all the subsequent generations. Until unless
all the parameters of the chromosomes are not mutated and operated by the gradient
operator, complete mean Jacobian matrices can not be evaluated. After completion,
these Jacobian matrices are applied with the help of equations 4.6 and 4.7 on half of the
population, which was used to get copied unaltered from previous generation, to obtain
best children of these parents. Applying this operator only on half of the population
allows us to explore and exploit the error function at the same time i.e. this operator
keep the individual qualities of GA and GD intact. Even if this half of the population
has fallen in the local minima, still parameter responsible for this fall can help to �nd
global minimum in the subsequent generations of genetic algorithm, where genes get
exchanged in a chromosome through crossover operator.

Let us consider there are N number of chromosomes in a population, Pm is the
gene wise mutation probability and Pk chromosomes undergoes mutation in a single
evolution. Then the probability of calculating gradient of each parameter in a single
generation is

PJparam = Pm ∗ Pk ∗N (4.8)

Frequency of application of this operator on the population depends on the prob-
ability of occurrence of mutation, gene wise mutation and number of chromosomes.
Experiments showed that by keeping the mutation and its gene wise probability to 20%
and 2% respectively, gradient operator requires at least �ve generations to completely
calculate the Jacobian Matrices (i.e. PJparam ≥ 1) for a population of 50 chromo-
somes. Hence this operator will not introduce signi�cant time delay since it retrieves
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Evaluation of some of the C and P parameters by Jacobian with respect to
each generation
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information from another operator and it is applied for fewtimes after evolution of 10
generations of GA alone. Additionally, Jacobian matrices are not that huge to store
while evaluating solutions.

4.3.2 HGOAAM Fitting

This section presents the pseudo code and the stepwise explanation of the procedure of
the HGOAAM �tting.

Algorithm 4.3.1: Main Loop()

[t]P [t] population of size N is created randomly at t=0
while stopping criterion is not met

do



P [t]← Sort(P [t])
Q[t, 0 : N/2]← Selection(P [t])
Q[t]← Reproduction(Q[t])
if t > b
then

{
Jacobian← Jacobian ∪GradientOperator(Q[t])

if (PJparam ≥ 1)

then

{
Q[t,N/2 : N ]← GradientDescent(P [t, 0 : N/2])
clearJacobian

else
{
Q[t,N/2 : N ]← P [t, 0 : N/2]

P [t+ 1]← Q[t]
t← t+ 1

Solution←Min(P [t])

1. Initialization: Test image is loaded, along with the location of center of gravity
(COG) of the unknown face which can be estimated by a face detector. Ini-
tialization of a population P[t] of N chromosomes is carried out comprising of
appearance parameters C and pose parameters P .

2. Segmentation: Each chromosome corresponds to a 3D shape. Each shape is
deformed, rotated and translated according to appearance, rotational and trans-
lational parameters in the chromosome. This deformed shape is placed on the
test image to warp the face to mean frontal shape as shown in the �gure 3.3.
Photometric texture normalization is applied on the warped image to overcome
illumination variations.

3. Fitness: Pixel error (�tness) is then calculated by equation 4.1 between this
warped image and frontal view image of the database obtained by the appearance
parameters of each chromosome.



Experiments and Results 93

4. Reproduction: After calculating the �tness of each chromosome, tournament
selection is performed for the reproduction of next generation. Half of this popu-
lation is selected through tournament selection and their chromosomes are crossed
over and mutated with the probability rate of Px and Pm respectively. The par-
ents are replaced with the newly born children to make half of a new population
for segmentation phase. The second half of the population is copied directly after
sorting with respect to pixel error.

5. Gradient Operator: During mutation of each gene in a chromosome, error image
is stored for calculating Jacobian matrices. As explained in previous section, after
b number of generations, whenever mutation occurs partial di�erence of the error
function is calculated with respect to each gene (parameter). Finally after further
evolutions of generations, when all the genes undergoes mutation, arithmetic mean
of Jacobian matrices is calculated to apply on the half of the population of the
current generation. This half of the population was being copied directly in the
step of reproduction of previous generations (as explained in previous step) and
now it is updated by the gradient operator.

Steps 2 to 5 are repeated until stopping criterion of particular number of genera-
tions is ful�lled while saving the best �t chromosome. Chromosome of the best result
min(P[t]) contains the best appearance and pose parameters for a given face.

4.4 Experiments and Results

We performed simulations using 2.5D AAM model made on publicly available database
of M2VTS. 2.5D AAM model, of the size of 64 by 64 pixels, is created by annotating
pro�le view and frontal view images of all 37 subjects of M2VTS database. 2.5D AAM
model is acquired along with its C and P parameters. Parameter C is constrained by
±2
√
λ, where λ are the eigenvalues obtained by applying PCA and retaining 95% of

the variation in equation 3.4. Whereas pose parameters P varies as shown in table 4.2.

Pose Params Min. Value Max. Value

θyaw −60◦ 60◦

θpitch −5◦ 5◦

θroll −5◦ 5◦

tx -10% of MS 10% of MS
ty -5% of MS 5% of MS
Scale -5% of MS 5% of MS

Table 4.2: Pose Parameters (MS = Model Size)

In testing phase we apply this model on totally di�erent face databases of SUP-
ELEC'08 (contains 246 images of 7 individuals), Pointing'04 (contains 390 images of 15
individuals) and synthetic (contains 600 images of 5 individuals) facial images.
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Three sets of experiments of optimizations are performed. i) HGOAAM (Hybrid
Genetic Optimization for AAM) ii) Gradient Descent (GD) and iii) HGA-Sim (Hybrid
GA-Simplex). In the experiment of HGOAAM and HGA-Sim size of the population is
140 chromosomes and their 25 generations are evolved in each facial image analysis as
tabulated in table 4.3. The size of the population and the number of generations are
chosen by performing various simulations, while taking into account available time and
memory resources. The type of encoding used in these experiments is Value Encod-
ing. Di�erent experiments are performed by applying uniform, single point, two point
and arithmetic crossover on the chromosomes. From these experiments the two point
crossover is chosen as others do not make signi�cant di�erence in the results. Similarly
among random and Gaussian mutation, Gaussian mutation is chosen which works with
respect to the distribution formed by the associated limits of the C and P parameters.

In the experiments by GD, di�erent con�gurations are tested and only the best is
taken, in which Jacobian matrices with respect to each parameters is calculated and
model is applied on a grid of 27 points of initializations. These 27 initializations are in
the forms of an 3x3x3 array, where each dimension corresponds to tx, ty and Scale of
the model.

Population 140
Generations 25
b 10
Cross-Over Two-point
Px 80% (of population)
Mutation Gaussian
Pm 2% (genewise probability)
Pk 20% (of population)
Selection Tournament

Table 4.3: Speci�cations of Genetic Algorithm's parameters

Best chromosomes obtained at the end of the experiments, contain the localization
of features like eyes, nose and mouth. Figures 4.6, 4.7 and 4.8 show the comparison
of applying above mentioned three algorithms on face images of three facial image
databases. It can be seen from the facial images that facial features are better localized
and pose is well estimated in HGOAAM (�gures 4.6(a), 4.7(a) and 4.8(a)) than the
other two algorithms.

After obtaining the best solution, ground truth error is calculated between the facial
features localized by the solution and the ground truth points marked manually as
explained in the section 3.3 of chapter 3. For the quantitative analysis �gures 4.9, 4.10
and 4.11 show comparison of above mentioned three methods by plotting percentage of
aligned images of each database versus ground truth error. In these �gures we compare
the algorithms within ground truth error of 15% of Deye. It can be seen from the images
that HGOAAM outperforms the other two methods, for instance in �gure 4.9 within
an error of 15% of Deye (distance between eyes), GD was able to align 20%, HGA-Sim
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(a) HGOAAM (b) GD (c) HGA-Sim

Figure 4.6: Localization of facial features of Pointing'04 facial images by HGOAAM,
GD and HGA-Sim
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(a) HGOAAM (b) GD (c) HGA-Sim

Figure 4.7: Localization of facial features of SUPELEC'08 facial images by HGOAAM,
GD and HGA-Sim
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(a) HGOAAM (b) GD (c) HGA-Sim

Figure 4.8: Localization of facial features of synthetic facial images by HGOAAM, GD
and HGA-Sim
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was able to align 30%, whereas HGOAAM aligned 41% of the POINTING'04 facial
images. Similarly �gure 4.10 illustrates that GD aligned 47%, HGA-Sim aligned 46%
and HGOAAM aligned 58% of the facial images of SUPELEC'08 database. For synthetic
facial images the �gure 4.11 illustrates that GD aligned 35%, HGA-Sim aligned 36%
and HGOAAM aligned 46% of the images within ground truth error of 15%. While
comparing the results of SUPELEC'08 facial images with synthetic facial images, we
found that facial features of SUPELEC'08 faces are localized more accurately than that
of synthetic faces. It is due to the di�erence in the texture of the skin, which is uniform
in the case of synthetic faces while SUPELEC'08 faces have more natural skin similar
to the learning database's faces of M2VTS. As far as the results of POINTING'04 facial
images are concerned, their illumination conditions are not similar to the other two
databases, which makes their results less accurate.

For the accuracy of pose estimation we have compared the results of only synthetic
facial due to availability of accurate value of θyaw. Figure 4.12 shows that within the
error of ±5◦ of θyaw, HGOAAM was able to estimate pose of 26% of total images com-
pared to GD-21% and HGA-Sim-13%. Table 4.4 gives detailed analysis and comparison
of these algorithms in terms of accuracy, e�ciency and robustness.

Figure 4.9: Ground truth error comparison of HGOAAM, GD and HGA-Sim for Point-
ing'04 Database.

As far as time consumption is concerned, GD required approximately 185 warps for
each initialization, that makes 4995 warps with three initializations of each tx, ty and
Scale. HGOAAM and HGA-Sim required 2500 warps (140 warps of initial population,
70 warps for 25 generations evolution and 610 warps in GD or Simplex) to localize even
a pro�le view face from scratch. Each warp equals 90% of the total time consumed by
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Figure 4.10: Ground truth error comparison of HGOAAM, GD and HGA-Sim for SU-
PELEC'08 Database.

Figure 4.11: Ground truth error comparison of HGOAAM, GD and HGA-Sim for Syn-
thetic Database.
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Figure 4.12: Comparison of θyaw error between HGOAAM, GD and HGA-Sim for Syn-
thetic Database

Method Face Images Aligned Pose Estimated No. of Time

(GTE≤15%) (E(θyaw)≤5◦) Warps (msec)

HGOAAM 41% � 2500 83

GD POINTING'04 (390) 20% � 4995 166
HGA-Sim 30% � 2500 83

HGOAAM 58% � 2500 83

GD SUPELEC'08 (246) 47% � 4995 166
HGA-Sim 46% � 2500 83

HGOAAM 46% 26% 2500 83

GD Synthetic (600) 35% 21% 4995 166
HGA-Sim 36% 13% 2500 83

Table 4.4: Analysis of the Results
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an iteration i.e. 0.03 msec in Pentium-IV 3.2GHz. An overhead of calculating Jacobian
matrices in the case of HGOAAM do not require that much amount of time than the
accuracy achieved by it. Thus for a complete facial analysis of a face HGOAAM requires
83 msec in Pentium-IV 3.2GHz, which means it can successfully analyze 12 frames in
one second.

4.5 Conclusions

The solution proposed in this chapter is to extract the facial features of an unknown face
making large lateral movements in front of a single camera with out any prior knowledge
of the face's pose and appearance. We have proposed an e�cient optimization tech-
nique by the hybridization of genetic algorithm (GA) with gradient descent (GD) to
make a robust, e�cient and real time facial search optimization for 2.5D AAM. Simple
hybridization of gradient descent in GA makes the system computationally expensive.
Therefore for this hybrid optimization we propose a gradient operator in GA, which
functions (calculates gradients of the solutions) in conjunction with the existing genetic
operator of mutation. Thus it does not increase the computational cost of the system
and achieve the said e�ciency and robustness without introducing complex computa-
tions. Our algorithm has been tested on facial images from Pointing'04, SUPELEC'08
and synthetic databases to extract the facial features of the faces making large lateral
movements. Results of the comparison of our proposed algorithm of HGOAAM with
optimization techniques of classical gradient descent (GD) and a hybrid GA-Simplex
have shown that our proposition outperformed both the algorithm in terms of accuracy,
robustness and e�ciency.

In the next chapter we will make use of the contribution of this chapter and modify it
to be used in multiple camera con�guration. Although multiple camera help in analysing
oriented faces more e�ectively than single camera due to multiple informations, but for
that it requires multi-objective optimization for the face search. All of these issues will
be discussed in the next chapter.
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This chapter presents the third contribution of the thesis. It describes the facial
analysis of the multi-view or multi-camera images by 2.5D AAM. Searching for an
optimum solution of two or more distinct information from multiple cameras requires
multi-objective optimization (MOO). First section 5.1 introduces the MOO and presents
the related work around some of the well known Pareto-based MOO techniques. Section
5.2 introduces the concept of MOO for the face search by AAM in a multi-view scenario.
Section 5.3 discusses a new concept of hybrid multi-objective optimization and how
it can be implemented in a multi-view face analysis system by 2.5D AAM. In this
section hybridization of multi-objective optimization algorithms in di�erent domains are
elaborated by referring to the articles of various authors, followed by the explanation
of a unique way of hybridization of genetic algorithm and gradient descent methods
to make HMOAAM (Hybrid Multi-objective Optimization for AAM) more robust and
e�cient. Section 5.3.3 explains the stepwise application of our algorithms of HMOAAM
on the facial images. While section 5.4 presents the experiments and results of applying
HMOAAM, MOAAM (Multi-objective Optimization for AAM) and SOAAM (Single-
objective Optimization for AAM) on facial images databases.

In single-view or single camera system, single error between model and query image
is optimized. However in multiple camera system, optimization of more than one error
is to be performed between a model and test images from each camera. The objective
is to minimize all the pixel errors e1, e2, ..., eM of equation 3.6 obtained by M cameras

ej =

√√√√ 1
N

N∑
i=1

[Ii,j(C,Pj)−Mi(C)]2 (5.1)

where j varies from 1 to M and M ≥ 2. Pj are the pose parameters and are linked
by o�sets of rotational and translational parameters obtained in calibration (section
3.2.2.2 of chapter 3). N is the number of pixels of the model. In multi-view AAM,
model is overlaid on the images from each camera simultaneously. In order to optimize
all the pixel errors simultaneously, multi-objective optimization for the search by 2.5D
AAM is proposed.

5.1 Multi-Objective Optimization

Multi-objective optimization (also called multi-criteria optimization, multi-performance,
or vector optimization) can be de�ned as the problem of �nding

"a vector of decision variables which satis�es constraints and optimizes a vector
function whose elements represent the objective functions. These functions form a
mathematical description of performance criteria which are usually in con�ict with each
other. Hence, the term "optimize" means �nding such a solution which would give the
values of all the objective functions acceptable to the designer." [108].

Formally, we can state this as, "�nd the vector x = [x1, x2, ...xn]T that will opti-
mizes the vector function f(x) = [f1(x), f2(x), ..., fk(x)]T ". In other words, we wish to
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determine the particular set x = [x1, x2, ...xn]T that yields the optimum values of all the
objective functions. The problem is that the meaning of optimum is not well de�ned in
this context. In this case x would be a desirable solution, but normally we never have
a situation in which all the fi(x) have a minimum at a common point. An example of
the ideal situation is shown in 5.1(a). However, since this situation is rare in real-world
problems as illustrated in �gure 5.1(b), we have to establish a criterion to determine
what is an optimal solution with respect to all the objective functions.

(a) Ideal solution in which all the functions have
their minimum at a common point.

(b) Real world problem representation.

Figure 5.1: Bi-objective problem representation

5.1.1 Pareto Optimum and Pareto Front

The concept of a Pareto optimum was formulated by Vilfredo Pareto in the nineteenth
century [109], and by itself constitutes the origin of research in multi-objective optimiza-
tion. The de�nition says that in a minimization context x is Pareto optimal if there
exists no feasible vector that decreases some criterion without causing a simultaneous
increase in at least one other criterion. Unfortunately, the Pareto optimum never gives
a single solution, but rather a set of solutions called non-inferior or non-dominated

solutions.
The minima in the Pareto sense are going to be in the boundary of the design region

of the objective functions. In �gure 5.2, line drawn on dots shows this boundary for a
bi-objective problem. In general, it is not easy to �nd an analytical expression of the
line or surface that contains these points, and the normal procedure is to compute the
points and their corresponding solutions. When we have a su�cient number of these,
we may proceed to �nd the Pareto non-dominated solutions by the rest of the solutions.
These solutions are assigned the highest rank and are removed from further assignment
of the ranks. Remaining population undergoes the same process of ranking until the
solutions are suitably ranked in the form of Pareto fronts.



106 AAM �tting for Multiple View Images

(a) (b)

Figure 5.2: Pareto Fronts

5.1.2 Pareto-Based MOO Approaches

The idea of using Pareto-based �tness assignment was �rst proposed by Goldberg [90]
for Genetic Algorithms (GA). He suggested the use of non-domination ranking and
selection to move a population of chromosomes toward the Pareto front in a multi-
objective optimization problem. The basic idea is to �nd the set of chromosomes in
the population that are Pareto non-dominated by the rest of the population. These
chromosomes are then assigned the highest rank of rank 1 (�rst Pareto front is illustrated
in �gure 5.2(b) by small empty circles) and eliminated from further contention. Another
set of Pareto non-dominated strings are determined from the remaining population and
are assigned the next highest rank of rank 2, rank 3 and so on (second and third Pareto
fronts are illustrated in �gure 5.2(b) by small �lled circles). This process continues
until the population is suitably ranked. Goldberg [90] also suggested the use of some
kind of diversity to keep the population from converging to a single point on the front.
Some of the multi-objective optimization techniques based on the genetic algorithms
are explained below.

5.1.2.1 MOGA

Fonseca and Fleming [110] proposed a scheme in which the rank of an individual cor-
responds to the number of chromosomes in the current population by which it is domi-
nated. Consider, for example, an individual xi of generation t dominated by p(t)

i indi-
viduals in the current generation. Its current position in the population can be given
by [110]:

rank(xi, t) = 1 + p
(t)
i

All non-dominated individuals are assigned rank 1, while dominated individuals
are penalized according to the population density of the corresponding region of the
trade-o� surface. Fitness assignment is performed in the following way:

(1) Sort population according to rank.
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(2) Assign �tness to individuals by interpolating from the best (rank 1) to the worst
(rank n ≤ N) as proposed by Goldberg [90], according to linear function.

(3) Average the �tnesses of individuals with the same rank, so that all of them are
selected with the same probability. This procedure keeps the global population �tness
constant while maintaining appropriate selective pressure.

This type of blocked �tness assignment is likely to produce a large selection pressure
that might produce premature convergence. To avoid this, they use a niche-formation
method to distribute the population over the Pareto-optimal region, but instead of per-
forming sharing on the parameter values, they use sharing on the objective function
values. In MOGA, sharing is done on the objective value space, which means that two
di�erent vectors with the same objective function values can not exist simultaneously in
the population. Moreover its performance is highly dependent on an appropriate selec-
tion of sharing factor, thus needs to develop a good methodology for its computation.

5.1.2.2 NPGA

Horn et al. [111] proposed a tournament selection scheme based on Pareto dominance.
Instead of limiting the comparison to two individuals, a number of individuals is used
to help determine dominance (tdom). When both competitors are either dominated or
non-dominated (i.e., there is a tie), the result of the tournament is decided through
�tness sharing. Population sizes considerably larger than usual with other approaches
are used, so that the noise of the selection method is tolerated by the emerging niches
in the population.

Since this approach does not apply Pareto selection to the entire population, but
only to a segment, the technique is very fast and produces good non-dominated solutions
that can be kept for a large number of generations. However, to perform well, besides
requiring a sharing factor, this approach also requires a good choice of the value tdom,
complicating its appropriate use in practice. Moreover population sizes larger than
usual also increases its complexity.

5.1.2.3 NSGA

The non-dominated sorting genetic algorithm (NSGA) was proposed by Srinivas and
Deb [112]. Before selection, the population is ranked on the basis of non-domination:
All non-dominated individuals are classi�ed into one category (with a dummy �tness
value, which is proportional to population size to provide equal reproductive potential
for these individuals). To maintain diversity in the population, classi�ed individuals
are shared with their dummy �tness values. Then this group of classi�ed individuals
is ignored and another layer of non-dominated individuals is processed. The process
continues until all individuals in the population are classi�ed. Since individuals in the
�rst front have the maximum �tness value, they always get more copies than the rest
of the population. This allows the search for non-dominated regions and results in
quick convergence of the population toward such regions. Sharing, for its part, helps
to distribute the population over this region. NSGA e�ciency lies in the way in which
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multiple objectives are reduced to a dummy �tness function using a non-dominated
sorting procedure. With this approach, any number of objectives can be solved, and
both maximization and minimization problems can be handled.

In this case, sharing is done in the parameter values instead of the objective values,
to ensure a better distribution of individuals, and to let multiple equivalent solutions
exist. However, this technique is more ine�cient (both computationally and in the
quality of Pareto fronts produced) than MOGA, and more sensitive to the value of the
sharing factor.

5.1.2.4 NSGA-II

Multi-objective evolutionary algorithms which use non-dominated sorting and sharing
have been mainly criticized for their computational complexity, non-elitism approach
and the need for specifying a sharing parameter. NSGA-II proposed by Deb et al. [6]
alleviates all these di�culties.

Initially, a random parent population P[t] is created at t=0. Fitness of each solution
is calculated and they are sorted based on the non-domination sort (A). Each solution
is assigned a rank equal to its non-domination level (1 is the best level). Tournament
selection, crossover, and mutation operators are used to create a child population Q[t]
of size N. Secondly, a combined population R[t] = P [t]∪Q[t] is formed. The population
R[t] will be of size 2N. Then, the population R[t] is sorted according to non-domination.
The new parent population P[t+1] is formed by adding solutions from the �rst front
till the size exceeds N. Thereafter, the solutions of the last accepted front are sorted
according to the crowding distances and the �rst N points are picked. This population
of size N is now used for selection, crossover and mutation to create a new population
Q[t+1] of size N. This process is repeated for a particular number of generations until
the stopping criteria of the algorithm is met. Detailed description of NSGA-II algorithm
along with its pseudocode is given in appendix A.

From the above discussion NSGA-II proves to be one of the best Pareto based multi-
objective optimization technique compared to other known techniques. In this thesis
NSGA-II is implemented for the face search by hybrid multi-objective AAM.

5.2 Multi-Objective AAM (MOAAM)

This section explains the multi-objective optimization for face search by AAM. As
discussed earlier, in multi-camera system, optimization of more than one error is to be
performed. Therefore the objective is to minimize all the pixel errors e1, e2, ..., eM of
equation 5.1 obtained from M cameras.

AAM �tting on multi-views from M cameras is shown in �gure 5.3. In this multi-
view AAM, model is overlaid on all the images from each camera with the same C
parameters. P parameters of all the AAMmodels are linked with the o�sets Poffset,j . In
order to optimizeM pixel errors simultaneously, Pareto based optimization by NSGA-II
is proposed.
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Figure 5.3: Fitting of AAM on multiple views
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MOAAM uses NSGA-II proposed by Deb et al. [6] to optimize the appearance C
and pose parameters P . The target is to �nd out the best possible values of these
parameters giving minimum pixel errors between the model and the query images of
all the cameras. In this optimization technique each parameter is considered as a gene.
All the genes of C and P are concatenated to form a chromosome as shown in the
�gure 5.4. Population of particular number of chromosomes is randomly created. Pixel
errors (�tness) between query images and model represented by each chromosome are
calculated. Tournament selection is applied to select parents from the population to
undergo reproduction. Two point crossover and Gaussian mutation is implemented to
reproduce next generation of the chromosomes as shown in the �gure 5.5. Selection and
reproduction is based upon non-dominating sort. The objective is to minimize M pixel
errors, hence non-dominating scenario is used as explained in section 5.1.2.4.

Figure 5.4: Chromosome

Using direct search methods like NSGA-II has some drawbacks. Their speed of
convergence do not let the system to remain real time. Although stopping criteria can
be varied to make them real time, but in that case their robustness is reduced. Therefore
this thesis concentrate on hybridizing the MOAAM with gradient descent method to
achieve high robustness in real time.

5.3 Hybrid Multi-Objective Optimization

Over the last decade hybrid evolutionary algorithms, also known as memetic algorithms,
has gained a lot of interest of researchers [113]. This area of research has been tremen-
dously increasing to solve the real world optimization problems. Researchers have hy-
bridized di�erent kinds of optimization techniques. The most common combination
is of evolutionary algorithms with deterministic methods. Their successful hybridiza-
tion in single-objective optimization problems has shown promising results. However
in multi-objective optimization, studies are limited, especially in the domain of facial
analysis.

In face analysis hybridization is required due to the non-convexity of the multidi-
mensional facial search space formed in face alignment by AAM. As long as face stays
in front of the camera, the error between AAM model and facial image remains convex.
The moment it moves laterally various local optima appears in its error curve as shown
in the �gure 4.1 of chapter 4. This non-convexity requires search methodologies which
could exploit and explore the search space at the same time. As discussed in chapter
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Figure 5.5: Reproduction Operators
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4, exploitation property of gradient descent and exploration property of GA could be
hybridized to make an e�cient optimization system.

5.3.1 Previous Work

The following section presents the work of some authors who have improved the e�-
ciency of their system by using hybrid multi-objective algorithms in their respective
domains.

Lahanas et al. [114] hybridized MOEA (NSGA-II) with deterministic gradient-based
methods for the dose optimization problem in high-dose rate brachytherapy or intensity
modulated radiotherapy. Li et al. [115] hybridized GA and simulated annealing (SA)
along with adaptive crossover and mutation operator for dosimetric optimization of
external beam radiation. Wanner et al. [116] described hybrid MOGA employing local
search procedure of quadratic approximation-based for optimization in electromagnetics.
They use past samples of the previous generations to generate quadratic approximations
to improve an individual locally.

Bosman and Jong [117] applied GD after each generation of MOEA and take only
those solution which either improve in one objective or remain same. They tested the
algorithm on a few well-known benchmark problems. Hiwa et al. [118] described a hybrid
optimization using DIRECT (Dividing Rectangles), GA and SQP (Sequential Quadratic
programming) for global exploration of bench mark problems e.g. Rosenbrock, Rastrigin
and Schwefel functions. They also used simplex crossover operator in GA. Martinez and
Coello [119] combined NSGA-II with Nelder and Mead's simplex method to compare the
robustness with and with out hybridization by scalable test problems for evolutionary
algorithm. Yildiz et al. [120] presented a two stage optimization technique. In the
�rst stage, they implement Taguchi's robust parameter design to de�ne robust initial
population levels of design parameters to achieve better initialization in the second stage
of genetic algorithm search.

No doubt all the experiments by these hybrid evolutionary algorithms showed an im-
provement over the conventional optimization, but the proposed hybridizations are time
consuming and can not be implemented in real time. Moreover most of the researchers
have proven the robustness of hybrid algorithms on well known synthetic mathemati-
cal problems rather than highly complex real world problems. On the other hand the
hybridization technique discussed in chapter 4 for single objective optimization is less
time consuming and can be modi�ed for multi-objective optimization problems. In the
next section we provide detailed description of the hybridization of GD with NSGA-II
for the real time face search optimization in AAM.

5.3.2 HMOO in AAM

In this section we present a facial analysis system based on facial images captured by
multiple cameras and analyzed by 2.5D AAM optimized by hybridization of NSGA-II
and gradient descent. Calculations of gradient in GD makes the system time ine�cient,
therefore section 5.3.2.1 proposes an e�cient procedure to calculate the gradients of a
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function during the evolution of generations in NSGA-II. It explains how GD uses the
mutation operator of NSGA-II for its pre-computations. Section 5.3.2.2 describes the
hybridization by an e�cient procedure of extracting meaningful solutions from the pop-
ulation formed by NSGA-II and transfer to the subsequent phase of GD optimization.

5.3.2.1 Gradient Operator

Here we make use of our previous proposition of gradient operator discussed in section
4.3.1. This operator is modi�ed for the multi-objective optimization by NSGA-II. Simple
integration of gradient descent with NSGA-II would have increased the number of error
evaluations, but this operator functions in conjunction with mutation operator. Thus
gradient operator uses the error evaluation of mutation operator and do not put an
extra burden on the system.

As discussed in section 4.3.1, during mutation of a chromosome only one gene or
parameter is changed for next generation. Error evaluation of this variation is retrieved
by gradient operator as the partial di�erential of all the functions. Thus Jj,C and Jj,P
represents the mean partial di�erential of M error functions from each camera with
respect to each parameter. The remaining procedure of calculating ∆C and ∆P is
applied in the second phase of the optimization with the help of the factor called CIRF.

5.3.2.2 Camera Information Relevance Factor (CIRF)

As mentioned earlier NSGA-II is a population based algorithm therefore it has some
advantages and drawbacks. In multiple camera system when we use population based
multi-objective optimization algorithm like NSGA-II we have an advantage of analyzing
the population formed by the facial information from all the cameras at the same time.

Let us consider two webcams M = 2 installed at the extreme edges of the display,
the face can be made visible in the three possible regions of R1, R2 and R3 as shown
in the �gure 5.6, which is a modi�ed version of �gure 3.11. If the face is visible in
region R1 both the cameras have relevant facial information therefore the formation of
chromosomes is uniform with respect to each pixel error. On the contrary if the face is
visible in region R2 and R3 then the chromosome formation is inclined towards one of
the pixel error. Synthetic representation of the fronts formed by chromosomes are shown
in �gure 5.6, whereas �gures 5.7(a), 5.7(b) and 5.7(c) are the actual representation of
chromosomes formation. This arrangement of the chromosomes for each orientation
of face compelled us to calculate a factor called Camera Information Relevance Factor

(CIRF), which expresses the relation of facial image information from each camera and
ultimately will be used for the subsequent Gradient Descent optimization phase.

Let us consider that at any instance face is oriented in such a way that facial infor-
mation from both the cameras is valid but the rate of their relevant information varies.
To determine this ratio we develop a technique to analyze the NSGA-II population opti-
mally ranked by Pareto. The procedure is started after meeting the stopping criteria of
the optimization phase of NSGA-II for a given facial image. It consists of i) calculating
the medians of both cameras pixel errors e1,i and e2,i of N chromosomes of the popula-
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Figure 5.6: Multi-View System

tion, ii) extend a line between this median value and the minimum among the minima
of both the errors of the current population (e1,i and e2,i) as shown in the �gures 5.7(a),
5.7(b) and 5.7(c). Using these values CIRF can be calculated mathematically for each
facial orientation as

ψ =
arctan

(
ẽ2−emin
ẽ1−emin

)
π/2

(5.2)

where
ψ = Camera Information Relevance Factor,

ẽ1 = Median of e1,i 0 ≤ i ≤ N,

ẽ2 = Median of e2,i 0 ≤ i ≤ N,

emin = Minimum (Minimum(e1,i) , Minimum(e2,i))

Figure 5.7(a), 5.7(b) and 5.7(c) represent CIRF equal to 0.79, 0.52 and 0.30 respec-
tively. This means that dominant cameras of these �gures respectively are camera1,
both cameras and camera2. Value of CIRF varies from zero to one. With respect to
one of the camera, if a face is oriented such a way that it occludes itself then the value
of CIRF should become one or zero. However due to the diversity of NSGA-II, it never
become one or zero although it approaches to two extremes. This extremely small or
large value would automatically eliminate the information of the camera unable to pro-
vide information of the face due to its orientation. Figure 5.8 illustrates the values
of CIRF when a face is rotated laterally from −60◦ to +60◦ in front of our system of
double camera. One can see how the CIRF gradually increases and decreases from 0.5
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(a) Population formation when the face is in front of Cam-
era1

(b) Population formation when the face is equally visible
from Camera1 and Camera2

(c) Population formation when the face is in front of Cam-
era2

Figure 5.7: Population formation when face moves laterally from −60◦ to +60◦
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when the face rotates towards each camera. This value of CIRF is used as a weighting
coe�cient in subsequent gradient descent optimization phase as follows

Figure 5.8: Variations of CIRF for a face moving laterally from −60◦ to +60◦

etotal = e1 ∗ ψ + e2 ∗ (1− ψ) (5.3)

With this equation we are able to automatically choose the most relevant information
from multiple cameras and further proceed for the analysis.

Now the matter is to select the set of chromosomes, from the NSGA-II population,
for the initialization of GD. The basic theme behind the evolutionary algorithms, that
the �ttest will prevail, remains the same whether it is multi-objective or single objective
optimization. Therefore chromosomes behavior is understood that they will try to
reproduce the most �ttest chromosomes of all and consequently can arrange themselves
in di�erent ways with respect to pixel errors between the model and the images from
both of the cameras as shown in the �gure 5.7. Apart from calculating CIRF, set of best
�t chromosomes are also chosen with the help of the line drawn for calculating CIRF.
All the chromosomes' pixel errors are sorted with respect to their shortest perpendicular
distance from the line in order to maintain their own values of CIRF as close as possible
to the one calculated by ẽ1 and ẽ2. Particular number of such chromosomes are selected
from them (encircled in the �gures 5.7(a), 5.7(b) and 5.7(c)), which are then used for
the initialization of the upcoming calculations by GD.
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5.3.3 HMOAAM �tting

This section describes pseudo code and the stepwise procedure of 2.5D AAM �tting by
hybrid multi-objective optimization.

Algorithm 5.3.1: Main Loop()

P [t] population of size N is created randomly at t=0
NondominatingSort(P [t])
Ranking(P [t])
while stopping criterion is not met

do



Q[t]← Reproduction(P [t])
Jacobian← Jacobian ∪GradientOperator(Q[t])
R[t]← P [t] ∪Q[t]
NondominatingSort(R[t])
Ranking(R[t])
CrowdingDistance(R[t])
P [t+ 1]← R[t, 0 : N ]
t← t+ 1

(G[t], ψ)← CalculateCIRF (P [t])
Solution← GradientDescent(G[t], Jacobian, ψ)

1. Initialization: Test images are loaded from M cameras, along with the location
of center of gravity (COG) of the unknown face which can be estimated by a
face detector. Uniformly distributed random initialization of a population P [t] of
N chromosomes is carried out comprising of appearance parameters C and pose
parameters P . Fitness is calculated using equations 5.1 and the non-dominating
sort of the entire population is carried out.

2. Reproduction: After initializing and calculating the �tness (pixel errors e1, e2, ..., eM )
of each chromosome, tournament selection is performed for the reproduction of
next generation. Parents are selected, crossed over and mutated with the prob-
ability rate of Px and Pm respectively to reproduce child population Q[t] of N
chromosomes. The parents are joined with the newly born children to make a
bigger population of 2N chromosomes for non-dominated sorting.

3. Segmentation: Each chromosome corresponds to a 3D AAM shape. Each shape
is deformed, rotated and translated according to appearance, rotational and trans-
lational parameters in a chromosome respectively. This deformed shape is placed
on the test images of M cameras with an o�set of θ(offset,yaw,j), θ(offset,pitch,j),
θ(offset,roll,j), tx(offset,j), ty(offset,j) and Scale(offset,j) of the j

th camera with re-
spect to the central camera. Rest of the parameters i.e. C parameters remain
same. The region covered by the deformed shapes is warped to mean frontal
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shape as shown in the �gure 3.3. Photometric texture normalization is applied
on the warped image to overcome illumination variations. O�sets of rotational
parameters are introduced into deformed shape models with respect to the central
camera, which implies that model with out an o�set represents a face viewed from
central camera. We calculate the experimental results (as explained in section
3.3.1 of chapter 3) with respect to the facial image of this central camera.

4. Fitness: pixel errors e1, e2, ..., eM are then calculated (equations 5.1) between
these warped frontal images and frontal view image obtained by the appearance
parameters of each chromosome.

5. Gradient Operator: During mutation of each gene in the reproduction of chro-
mosomes, error image is stored for calculating Jacobian matrices (section 5.3.2.1).
Whenever mutation occurs partial di�erence of the error function is calculated
with respect to each gene (parameter). Finally when every gene undergoes mu-
tation, arithmetic mean of Jacobian matrices is calculated to apply in the second
phase of optimization by GD.

6. Non-Dominated Sorting: Non-dominated sorting is performed on the entire
population to form Pareto fronts and rank them as explained in section 5.1.1. As
shown in �gure 5.2 the two errors e1 and e2 of each chromosome are plotted and
a rank is assigned to each chromosome. Similarly ranking can be performed for
all the M errors. It is due to this ranking that we are able to sort chromosomes
with respect to the ranks (in a multi-objective optimization) instead of pixel er-
rors (in a single-objective optimization). Chromosome with equal ranks can be
distinguished by the crowding distance of each chromosome.

7. Replacement: In reproduction step, size of the population becomes twice of the
original size i.e. 2N . To maintain constant size of the population only N chro-
mosomes with lower Pareto fronts are selected for further generations. However if
the chromosomes of the last rank are greater than N , then they are selected with
respect to their crowding distances. Higher the crowding distance higher is the
probability of selection for further generations.

Steps 2 to 7 are repeated until stopping criterion of particular number of generations
is ful�lled while saving the best �t chromosome. The stopping criterion of �xed number
of generations is just to make equal number of computations while comparing HMOAAM
with other optimization techniques. Pareto fronts of this population are analyzed in
order to calculate CIRF and to choose set of chromosomes for the initialization of GD as
explained in section 5.3.2.2. Finally Jacobian matrices calculated during the generation
evolutions, are applied on the chosen chromosomes to calculate the best solution by
GD, which contains the best appearance and pose parameters for a given face.

We have presented the algorithm with M cameras. M can be equal to two or more
than two, the principle remains the same if we use more than two camera. Number
of Jacobian matrices will increase linearly with the increase in the number of cameras.
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However Pareto fronts will be have M -dimensional representation, an example of triple
objective Pareto fronts are shown in the �gure 5.9. In the next section we apply the
above algorithm for the optimization of face search in bi-objective or double camera
system.

Figure 5.9: Pareto front in 3D

5.4 Experiments and Results

5.4.1 Experiments

In learning phase our proposed 2.5D AAM model (64 by 64 pixels) is constructed by
annotating 37 subjects of publicly available databases of M2VTS [94]. 2.5D AAM model
is acquired along with its C and P parameters (section 3.1 of chapter 3). Parameter C
is constrained by ±2

√
λ, where λ are the eigenvalues obtained by applying PCA and

retaining 95% of the variation in equation 3.4 on page 66. Whereas pose parameters
variations is tabulated in table 5.1.

Whereas for test database we employed double camera SUPELEC database (246
images of 7 individuals) and double camera Synthetic database (4160 images of 52
individuals). In testing phase face alignment is performed on all the views from −60◦

to +60◦. Three sets of experiments are performed:
Single-Objective AAM: In SOAAM, 2.5D AAM is used for face alignment of fa-

cial images view from central camera. Classical GA is implemented for the optimization
of face search.

Multi-Objective AAM: In MOAAM, NSGA-II alone is used for the facial analysis
of the images from double camera system. The experimental details of the algorithm is
given in the table 5.2.
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Table 5.1: Limits of pose parameters (MS = Model Size)

Pose Parameters Min. Value Max. Value

θyaw −60◦ 60◦

θpitch −5◦ 5◦

θroll −5◦ 5◦

tx -10% of MS 10% of MS
ty -5% of MS 5% of MS
Scale -5% of MS 5% of MS

Hybrid Multi-Objective AAM: In HMOAAM, NSGA-II hybridized with GD is
used for the facial analysis of the images from double camera system (section 5.3.3).
The experimental details of the algorithm is similar to MOAAM and given in the table
5.2 except the number of generations are reduced to 14 in HMOAAM.

Cameras (M) 2
Population 100
Generations 15
Cross-Over Two-point
Px 80% (of population)
Mutation Gaussian
Pm 2% (genewise probability)
Pk 20% (of population)
Selection Tournament Pool=4
Replacement No
Diversity Crowding Distance
θ(offset,yaw,1) 25◦

θ(offset,yaw,2) −25◦

Table 5.2: Speci�cations of NSGA-II's parameters

As discussed in the previous chapter of single objective GA, the size of the population
and the number of generations in HMOAAM and MOAAM are also carefully chosen by
performing various simulations, while taking into account available time and memory
resources. Encoding used in these experiments is also Value Encoding. Among uniform,
single point, two point and arithmetic crossover, two point crossover is chosen as others
do not make signi�cant di�erence in the results. And the Gaussian mutation, which
works with respect to the distribution formed by the associated limits of the C and P
parameters, is chosen after comparing it with random mutation.

Stopping Criterion The stopping criterion of each algorithm is the �xed number
of generations. Population size of chromosomes of each algorithm is 100 whereas their
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number of generations or stopping criterion is di�erent in order to allocate them equal
computational time for the true comparison of their robustness. SOAAM, MOAAM and
HMOAAM evolve respectively for 30, 15 and 14 generations. Selection, reproduction
and replacement criteria are kept similar in all the above experiments.

Ground Truth Error As discussed in section 3.3.1, in double camera system, third
central camera is placed in between the two cameras as shown in �gure 5.6. Images
from this camera is not used in the segmentation phase and only used to calculate
GTE. AAM model obtained at the end of the facial analysis of an image from other two
cameras is rotated and translated with respect to the coordinates of this third camera.
Finally GTE of AAM model with respect to the facial image seen by this camera is
calculated for the comparison of the methods.

5.4.2 Results

Best chromosomes, with respect to pixel errors, obtained at the end of HMOAAM,
MOAAM and SOAAM contain best appearance and pose parameters for a given face.
Features like eyes, nose and mouth can be extracted from the images with the help of
the shapes given by chromosomes. This feature localization is shown in �gure 5.10 for
webcam facial images and �gure 5.11 for synthetic facial images. It can be seen from
these images that the feature localization gets far better in HMOAAM (�gures 5.10(a)
and 5.11(a)) than in MOAAM (�gures 5.10(b) and 5.11(b)) and SOAAM (�gures 5.10(c)
and 5.11(c)).

Figure 5.12 shows percentage of aligned webcam images versus GTE of eyes, nose
and mouth. Figure 5.12 depicts that our system of HMOAAM �tting is a lot better
than MOAAM and SOAAM �tting. In HMOAAM 61% of the images are aligned with
GTE less than 15% of the distance between the eyes, whereas MOAAM aligned 48%
and SOAAM aligned 43% of the total images.

Similarly �gure 5.13 shows percentage of aligned synthetic facial images versus GTE.
It illustrates that HMOAAM aligned 48%, MOAAM aligned 39% and SOAAM aligned
22% of the synthetic facial images with GTE less than 15% of the distance between
eyes. While comparing the results of real webcam images with synthetic facial images,
we found that facial features of real faces are localized more accurately than of synthetic
faces. It is due to the di�erence in the texture of the skin, which is uniform in the case of
synthetic faces while real faces have more natural skin similar to the learning database's
faces of M2VTS.

Figure 5.14 illustrates the percentage of synthetic facial images with respect to the
exact estimation of the pose. This θyaw error estimation was possible only in synthetic
facial image database due to the available ground truth value of θyaw (actual yaw angle)
given by software MAYA. The �gure 5.14 depicts that HMOAAM estimated the pose
of 42% of synthetic facial images within the error of ±5◦ of θyaw, while MOAAM and
SOAAM estimated 37% and 17% of synthetic facial images respectively.

Figure 5.15 illustrates the comparison of actual and estimated (median) value of
θyaw of synthetic face moving from 0◦ to +60◦, +60◦ to −60◦ and back to 0◦ of θyaw. It
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(a) HMOAAM (b) MOAAM (c) SOAAM

Figure 5.10: Localization of facial features of webcam facial images by HMOAAM,
MOAAM and SOAAM
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(a) HMOAAM (b) MOAAM (c) SOAAM

Figure 5.11: Localization of facial features of synthetic facial images by HMOAAM,
MOAAM and SOAAM
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Figure 5.12: Ground truth error comparison of HMOAAM, MOAAM and SOAAM for
webcam facial images

Figure 5.13: Ground truth error comparison of HMOAAM, MOAAM and SOAAM for
synthetic facial images
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Figure 5.14: Comparison of error in θyaw by HMOAAM, MOAAM and SOAAM for
synthetic facial images

can be analysed from the �gure that the noise in the curve of the estimated yaw angle
value around ±60◦ is due to the occlusion caused by the out-of-plane rotation of the
face.

Table 5.3 illustrates the comparison of the all the methods for both the facial image
databases. As far as time consumption is concerned, it is shown in the table 5.3 that
HMOAAM requires 3000 warps to extract features of an oriented face. Single warp in
an iteration is equal to 90% of the time consumed by an iteration i.e. 0.03 msec in
Pentium-IV 3.2GHz. Thus for a complete facial analysis of a face HMOAAM requires
100 msec, which means it can successfully analyze 10 frames in one second. Other
methods of MOAAM and SOAAM are also restricted to complete their facial search with
in this time period in order to compare their robustness and e�ciency with HMOAAM.
SOAAM evolves for twice the number of generations than MOAAM and HMOAAM,
since it analyzes single camera image whereas MOAAM and HMOAAM analyze double
camera images. HMOAAM evolves for 14 generations compared to 15 in the case of
MOAAM, to compensate time consumption of second phase of optimization by Gradient
Descent.

It is important to point out that the above mentioned computational time is required
to align the face without any prior knowledge of the facial pose, however in a face
tracking mode the required time is reduced enormously by employing pose parameters
of the previous frames, thus making it a true real time application.
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Figure 5.15: Comparison of actual and estimated θyaw of synthetic face moving laterally
from 0◦ to +60◦ to −60◦ to 0◦

Table 5.3: Analysis of the Results

Images Pose pop No. of Time
Method Database Aligned Estimated x warps (msec)

(Images) (GTE≤15%) (Eθyaw≤5◦) gen

HMOAAM Synthetic (4160) 48% 42% 100 x 14 3000 100
MOAAM Synthetic (4160) 39% 37% 100 x 15 3000 100
SOAAM Synthetic (4160) 22% 17% 100 x 30 3000 100

HMOAAM Webcam (246) 61% � 100 x 14 3000 100
MOAAM Webcam (246) 48% � 100 x 15 3000 100
SOAAM Webcam (246) 43% � 100 x 30 3000 100
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5.5 Conclusions

This chapter presented a method to overcome the problem of pose estimation and
facial features extraction by multiple cameras. In the algorithm of HMOAAM, we have
presented a novel methodology of hybridization of NSGA-II with gradient descent for
the real world optimization problem of facial analysis of multiple camera images by 2.5D
Active Appearance Model (AAM). This hybridization provides a solution to e�ciently
tackle the problem of non-convexity of the multidimensional search space formed by
face search in AAM.

For this hybridization we have proposed a new gradient operator in NSGA-II, which
computes gradients of the error function in conjunction with the existing operator of
mutation. Thus it does not increase the computational cost of the system. We have
proposed a unique method of calculating the relevant facial information of each cam-
era in multi-objective optimization which makes facial search optimization procedure
e�cient and robust. Our proposed algorithm HMOAAM is applied on number of real
webcam images and synthetic facial images obtained from two cameras, and its results
are compared with single view system (SOAAM) and a non-hybrid double camera sys-
tem (MOAAM). Results illustrates that HMOAAM outperforms MOAAM and SOAAM
in terms of e�ciency, robustness and accuracy.
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6.1 Conclusions

In this thesis work we have presented a real time solution for the face analysis in a
cognitive radio equipment. A Cognitive Radio (CR) equipment is a radio device that,
apart from the usual radio signal processing elements, also integrates a set of sensing
capabilities for the CR support. According to the sensor's information, the CR will
de�ne the optimal con�guration to give the best service. The constraints of the video
sensor of a CR equipment are to extract facial identity, face orientation and facial
features in order to guide the choice of the most adapted video and/or audio codec
which must be used in order to optimize the quality of the communication taking into
account the global context of the radio transmission. We have presented solutions to
these problems faced by the video sensor of the CR equipment i.e. "Pose estimation and

facial features localization of unknown and oriented faces captured by the video sensor".
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We have presented various model-based approaches and to tackle the face analysis
problem, we chose to focus our work on the model-based method called Active Appear-
ance Models (AAM). Therefore, our work has been made to make the active appearance
model (AAM) more robust.

We �rst introduced the active appearance models and the number of its variations
proposed by di�erent researchers in the state of the art. We then prepared a map of
the approaches proposed by di�erent research teams to make the AAM more robust to
variations of poses, expressions and identity. We have discussed three main directions of
the research work to solve the problem stated in this thesis. It includes the approaches
by extending the number of models, the approaches by �tting AAM on multi-view
images and the approaches by improving the optimization methods for AAM.

We have seen that the previous methods did not presented the solutions to our
problem since no approach considers the overall analysis of the poses and features of
the unknown faces. Moreover, these methods generally lead to increased processing
time.

In the �rst step, we have presented our contribution of 2.5D AAM, which is used
throughout the experiments. Secondly we used this model to analyse the facial images
of single camera system. Pose variability in an unknown face makes the feature extrac-
tion di�cult for a classical AAM technique, which uses only deterministic method for
the face search optimization. Therefore we proposed hybridization of direct search and
deterministic methods for the optimization of face search as our second contribution. In
single camera system we hybridized genetic algorithm (GA) and gradient descent (GD)
method in a unique way to make the face analysis system more robust and e�cient
i.e. we have embedded GD inside GA to gain time e�ciency. We compared this tech-
nique with GD working alone and another hybridization of GA with Simplex. Results
validated our proposition.

Finally we used 2.5D AAM in multi-view system to overcome the problem of large
lateral movements of a face. Our third contribution is the introduction of multi-objective
optimization in AAM. For the images from multi-view system, a simultaneous face
search optimization method of NSGA-II (a multi-objective version of GA) is introduced
for 2.5D AAM. We hybridized it with GD to make the system robust and e�cient
to be implemented in real time. We tested the proposed algorithm in two databases
and logged the results. By comparing the results of the single-objective AAM, simple
multi-objective AAM and hybrid multi-objective AAM, we deduced that it is the best
system for the pose estimation and feature localization of an unknown and oriented
face. As it can be seen from the �gure 6.1, which compares the results of the yaw
angle absolute error of single and double camera system optimized by hybrid genetic
algorithm, that the double cameras con�guration is more robust to the large lateral
movements of a face. Similarly for the GTE, �gures 6.2 and 6.3 show the comparison
between HMOAAM (chapter 5) and HGOAAM (chapter 4) algorithms with respect to
synthetic and real webcam face databases respectively. Table 6.1 illustrates the values
with which multiple camera's results are better than single especially in estimating the
yaw angle of the test images.

It is important to point out that the above mentioned thesis work was done to
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Figure 6.1: Robustness of yaw angle estimation with single and double camera

Figure 6.2: Ground truth error comparison of HMOAAM and HGOAAM for 600 Syn-
thetic facial images.
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Figure 6.3: Ground truth error comparison of HMOAAM and HGOAAM for Real
Webcam Database.

Table 6.1: Analysis of the Single and Multiple Camera Results

Images Pose pop No. of Time
Method Database Aligned Estimated x warps (msec)

(Images) (GTE≤15%) (Eθyaw≤5◦) gen

HMOAAM Synthetic (600) 56% 50% 100 x 14 3000 100
HGOAAM Synthetic (600) 46% 26% 140 x 25 2500 83

HMOAAM Webcam (246) 61% � 100 x 14 3000 100
HGOAAM Webcam (246) 58% � 140 x 25 2500 83
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align the face without any prior knowledge of the facial pose, however in face tracking
mode the required time is reduced enormously by employing pose parameters of the
previous frames, thus making it a true real time application. We have proposed a
system di�erent from the face trackers proposed by [27] by EBGM, [30] by simple
GD and [53, 62, 68, 75, 76, 77, 84] by IC-LK algorithms. Our system can be applied
not only as a face trackers but also other facial analysis tools like biometrics, face
recognition related applications, acquiring and verifying passport databases and other
various security related tools, which are concerned with highly accurate estimation of the
facial pose and features without any of its prior knowledge in contrast to face tracking.

While performing the research work for this thesis we have published various research
articles. Next section presents the details of these articles.

6.2 Publications

6.2.1 Journals

1. A. Sattar, R. Séguier, HMOAM: Hybrid Multi-Objective Genetic Optimization for

Facial Analysis by Appearance Model, Journal of Memetic Computing (Springer
Berlin / Heidelberg), Volume 2, Issue 1, pp. 25-46, march 2010, Springer Editions,
DOI 10.1007/s12293-010-0038-3 ISSN 1865-9284 (Print) 1865-9292 (Online)

2. A. Sattar, N. Stoiber, R. Séguier, G. Breton, Gamer's Facial Cloning for Online

Interactive Games, International Journal of Computer Games Technology (Hin-
dawi), 2009

3. A. Sattar, R. Séguier, HGOAAM: Facial Analysis by Active Appearance Model Op-

timized by Hybrid Genetic Algorithm, Journal of Digital Information Management
(JDIM), 2009

6.2.2 Conferences

1. A. Sattar, R. Séguier, Hybrid Multi-Objective Active Appearance Model for Gamer's

Facial Features Detection, 22ème Colloque GRETSI , Dijon (France), September
8-10, 2009

2. A. Sattar, Y. Aïdarous, R. Séguier, GAGM-AAM: A Genetic Optimization with

Gaussian Mixtures for Active Appearance Models, 15th International Conference
on Image Processing (ICIP 2008), San Diego, California, USA, 12-15 October
2008

3. A. Sattar, R. Séguier, MVAAM (Multi-View Active Appearance Model) Optimized

by Multi-Objective Genetic Algorithm, 8th International Conference on Automatic
Face and Gesture Recognition (FG 2008), Amsterdam, The Netherlands, 17-19
September 2008
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4. A. Sattar, R. Séguier, GGA-AAM: Novel Heuristic Method of Gradient Driven

Genetic Algorithm for Active Appearance Models, Third International Conference
on Digital Information Management (ICDIM 2008), London, United Kingdom,
13-16 November 2008

5. A. Sattar, Y. Aïdarous, S. Le Gallou, R. Séguier, Face Alignment by 2.5D Active

Appearance Model Optimized by Simplex, 5th International Conference on Com-
puter Vision Systems (ICVS2007), Bielefeld (Germany), March 21-24, 2007

6. Y. Aïdarous, S. Le Gallou, A. Sattar, R. Séguier, Face Alignment using active

appearance model optimized by simplex, International Conference on Computer
Vision Theory and Applications (VISAPP) Barcelona, Spain, March 2007

6.3 Applications

We have applied our proposition on two applications. First application is the part of
the system in which the facial features are analysed by our proposition followed by its
synthesis as an avatar on the display screen. A great e�ort was made by another PhD
student of our team for the completion of this application. Second application uses 2.5D
AAM for the orientation of a face in a computer game. Detailed description of these
applications are given in the next sections.

6.3.1 Gamer's Facial Cloning

We have implemented MOAAM for a robust and e�cient gamer's online cloning inter-
active system in [121] and shown in �gure 6.4. Our system is composed of two cameras
installed on the extreme edges of the screen to acquire real time images of the gamer.
Gamer's face is analyzed and his pose and expressions are synthesized by the system to
clone or retarget his features in the form of an avatar so that the gamers can interact
with each other virtually. In the following sections we brie�y explain our proposed
interactive system stepwise.

6.3.1.1 Avatar's Face Modeling

In our proposed system, the visual aspect of the synthetic character is chosen by the user.
Di�erent classes of synthetic faces are available representing di�erent ages, races, gender,
physique and features etc. Once the class of the avatar is chosen, the required facial
expressions, previously created in the system, are generated for this face. Note that the
system's user has the possibility to edit the suggested facial expression to personalize
the look of its avatar by manually clicking and moving the vertices. Ultimately the A-
database (Avatar database) is created which contains the expressions, on the user-chosen
character, which are necessary to form the A-Database.

We can build its appearance model according to the method presented in section 3.1
of chapter 3. This procedure delivers a reduced set of parameters which represent the
principal variation patterns observed on the synthetic face (CA). Manual marking of the
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landmark on the synthetic face is not needed as the synthetic face is already generated
by the system and it contains the location of each vertex.

6.3.1.2 Gamer's Face Modeling

Next step of our system is the creation of the gamer's face database similar to the one
created for avatar. This is dome through a training procedure which is very simple
and unproblematic. The essence of this phase is to make the system learn the facial
deformations of the gamer's face so it can replicate the localization of features, emotions
and gestures on the synthetic face. The gamer has to mimic the expressions that have
an important impact on the formation of the appearance space.

In practice, the required facial expressions from previous section are displayed seri-
ally for the user to imitate. Facial images are captured by generic MOAAM, to automat-
ically localize the facial features. Since user is unknown to the system therefore generic
MOAAM containing an AAM model based on M2VTS facial images database is used.
Feature localized by MOAAM is displayed on the screen for the user to �ne tune the
location of each feature. Finally all the facial images of the gamer are generated, each
corresponding to synthetic facial expression of the A-Database. By reproducing these
selected facial expressions of the gamer, we can build its very own appearance model
along with its reduced appearance parameters CG according to the method presented
in section 3.1 of chapter 3. With CG and CA (obtained in previous section) we can
calculate A0 ATM (Appearance Transformation Matrix) mathematically. This ATM is
capable of transforming the appearance parameters from the gamer's appearance space
to the avatar's appearance space. It is gamer dependent and can be used for cloning
only for particular gamer who was involved in generating it in the �rst place.

6.3.1.3 Online Cloning

From the previous two sections we obtained an ATM capable of transforming the ap-
pearance parameters from the gamer's appearance space to the avatar's appearance
space. In online cloning, this transformation involves only a matrix multiplication of
real time gamer's appearance parameters CG with A0 to obtain avatar's appearance
parameters CA. This analytically simple framework enables real-time performances.
The virtual illustration of a gamer is cloned in the form of an avatar synthesized by CA
and ultimately display on the screen as shown on �gure 6.4.

The appearance parameters of a gamer are acquired in real time by our facial analy-
sis system of multiple cameras. Tactical moves of the game causes the gamer to move a
lot in di�erent direction. Employing multiple cameras resolved this problem. Two cam-
eras placed at the extreme edges of the screen acquire real time image of the gamer and
at the same time his facial features and pose are analyzed by person speci�c MOAAM.
Person speci�c MOAAM model which is generated from the gamer database of the pre-
vious section, contains all the pose-free facial variations of the gamer. User's oriented
face is analysed by this MOAAM, to give its appearance and pose parameters. Appear-
ance parameters are transformed by ATM in the synthetic face's parameter space and
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synthetic face is synthesized by them. After that pose parameters are used to adjust the
orientation of the avatar being displayed on the screen. As shown in the cloning section
of the �gure 6.4, appearance parameters undergoes transformation while pose parame-
ter are directly reproduced on the avatar face to clone both the gamer's expressions and
gestures. The linearity of the AAM scheme allows the reproduction of both extreme
and intermediate facial expressions and movements, with low computing requirements.

A reduced version of this application was presented in a demo held at SUPELEC
in may 2009. The demo was named as "Journée des Images et Système Embarquée"
(JISE). Figure 6.5 shows the snapshot of that system.

Figure 6.5: Facial Cloning system (Courtesy TF3)

6.3.2 Demo (Rennes Atlante)

Second application of our proposition was made for the demonstration shown to the
public in the exhibition held in "Rennes Atalante, Destination High Tech". This appli-
cation uses 2.5D AAM in single-view system. A demonstration was prepared in the form
of a game called "Mosquito Eater". In the beginning of the game, gamer is requested
to stay in a frontal view for couple of seconds. In this �rst step appearance parame-
ters of the unseen gamer is logged with the help of a generic 2.5D AAM. This generic
AAM model analyses the gamers face and �nds the closest match of the gamer's facial
appearance. When the system is converged, appearance parameters are locked and are
not varied until new gamer is introduced. In the gaming phase only pose parameters
are varied, hence the application becomes person speci�c. By evaluating the pose pa-
rameters or the orientation of the gamer's face in real time, i.e. the face's rotational
and translational parameters, a cursor is accordingly moved on the display screen in



138 Conclusions And Perspective

order to shoot mosquitoes with a button. Each successful mosquito catch increases the
score of the gamer. A snapshot of the system is shown in the �gure 6.6.

Figure 6.6: Snapshot of Mosquito Eater computer game

6.4 Perspectives

Some research perspectives appear at the end of this thesis. First of all we discuss
the problems faced in single view AAM. No matter how fast the direct search methods
become they remain slower than any deterministic method used alone, but at the same
time they can be more robust. Therefore we have combined both of them to reach a
robust real time system. We have a trade o� between e�ciency and robustness while
using combination of two methods, by increasing the deterministic approach of our
algorithm system becomes more time e�cient and less robust and vice versa.

Additionally we have not implemented various techniques to compensate the illumi-
nation variations in the face analysis. We have simply applied photometric normaliza-
tion of the texture. Since 2.5D AAM was build from M2VTS database which does not
include illumination variations, therefore we did not face huge problems in the testing
phase. Illuminations problem can be solved globally or locally. Globally, we can apply
di�erent illumination correction methods of histogram equalization like CLAHE (Con-
trast Limited Adaptive Histogram Equalization) [32, 122]. Locally, as in 3DMM the
model contains the 3D coordinates of each pixel, with which they can create the virtual
lighting in the model. Similar virtual lighting can be created in our 2.5D AAM.

Number of points and triangles in the shape model can be increased to increase the
robustness of the system. Region around cheeks and the chin do not deform a lot in the
expression variations hence they can be neglected and the size of the AAM model can
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be reduced. Moreover the background neighboring the cheeks and the chin makes the
error function's curve more complex, making the facial search to fall in local minima.
By considering the facial region only around eyebrows, eyes and mouth we can neglect
the e�ects of the background. Additionally, this reduction in the size of the model
would also increase the rapidity of the system. On the other hand information of the
ear can be incorporated inside the texture to include additional facial information in the
pro�le and semi pro�le views. This expansion of the model and the texture increases
the robustness of the system while decreasing its speed.

On the deepening of our work on the AAM, experiments on the variability in ex-
pression are to be implemented. Indeed, we showed the relevance of our system to the
variability in identity, pose and features localization. Furthermore, in order to moni-
tor the faces expressions, work continues in the laboratory SCEE-SUPELEC/IETR on
Active Appearance Models.

In multi camera system, calibration of the cameras is one of the main problem. A
stereo rig can be installed on the display screen to minimize the calibration problem,
otherwise user has to calibrate the cameras manually. The problem of multiple process-
ing instead of only single image processing drastically reduces the time e�ciency of the
system. Although by calculating the CIRF one can control and switch o� the undesir-
able camera but still it require twice the processing times. This cannot be seen as a
drawback of the system, because by using multiple cameras robustness of the system
against out-of-plane rotation of the face increases. Work is being done in the domain
of GPGPU (General Purpose Graphical Processing Unit) to increase the speed of the
multi camera system by increasing the processing power. It is due to the parallel nature
of the direct search algorithm, used in this thesis, that makes them to be implemented
in GPGPU.

For the moment, this multi camera approach is tested in a double camera system,
but it would be interesting to extend it for larger events, like conferences and meetings,
with multiple cameras installed on di�erent corners of the room and displayed on video
projectors.
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Appendix A

NSGA-II

This section presents the detailed description of the algorithm of NSGA-II by [6].

A.1 A fast non-dominated sorting approach

In order to sort a population according to the level of non-domination, each solution
must be compared with every other solution in the population to �nd if it is dominated.
This requires comparisons for each solution with respect to the number of objectives.
This process is continued to �nd the members of the �rst nondominated class for all
population members. In order to �nd the individuals in the next front, the solutions of
the �rst front are temporarily discounted and the above procedure is repeated.

In the following we describe a fast non-dominated sorting approach proposed by [6]
which will require less computations. First, for each solution we calculate three entities:
(1) S[ii], the indexes of the solutions which dominate the solution ii, (2) Q[ii], a count
of solutions dominated by ii and (3) Z[ii] a count of the solutions which have dominated
ii. The ranking algorithm is presented in the following pseudo code.

Algorithm A.1.1: Non dominating sort(PopSize,Error)

for ii← 1 to PopSize

do



for jj ← ii+ 1 to PopSize

do



if Error[ii] < Error[jj]

then


S[ii, Q[ii]]← jj
Q[ii]← Q[ii] + 1
Z[jj]← Z[jj] + 1

else if Error[ii] > Error[jj]

then


S[jj,Q[jj]]← ii
Q[jj]← Q[jj] + 1
Z[ii]← Z[ii] + 1

return (S,Q,Z)
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S[ii] contains the indexes of all the solutions which are dominated by solution ii.
For example if a solution is to be ranked as the �rst rank it would contain indexes of all
the solutions. But since it cannot contain other solutions of the �rst rank therefore we
cannot verify the rank considering only this parameter. Q[ii] show the count of these
solutions that ii have dominated. Z[ii] show that how many solutions have dominated
ii. For example if it contains zero it means that it is of �rst rank. Therefore solution of
the �rst rank are extracted by this variable according to

Algorithm A.1.2: Extracting First Rank(PopSize, Z)

nif ← 1
for kk ← 1 to PopSize

do


if Z[kk] = 0

then

{
ParetoFront[1, nif ]← kk
nif ← nif + 1

NumIndsFront[1]← nif − 1;
return (ParetoFront[1], NumIndsFront[1])

where ParetoFront(1,nif) contains solutions of the �rst rank and NumIndsFront(1)

represent the count of these solutions. Until now the �rst rank has been assigned to
the solutions. Starting from the �rst rank we will take each solution of the �rst rank
and �nd out the solutions from which it was dominated. Afterwards we decrease the
Z[ii] of each solution by one as the solutions of the �rst rank are now removed from
the population. And also check the Z[ii] of these solution whether it is reached zero or
not, if yes then we have the solutions of the second rank. This procedure is repeated
until there are no further solutions to be ranked. The procedure is presented below.

Algorithm A.1.3: Ranking(S,Q,Z, ParetoFront[1], NumIndsFront[1])

fid← 1
while NumIndsFront[fid] 6= 0

do



nif ← 1
for ii← ParetoFront[fid, 1] to ParetoFront[fid, end]

do



for jj ← 1 to Q[ii]

do


V erifInd← S[ii, jj]
Z[V erifInd]← Z[V erifInd]− 1
if Z[V erifInd] = 0

then

{
ParetoFront[fid+ 1, nif ]← V erifInd
nif ← nif + 1

fid← fid+ 1
NumIndsFront[fid]← nif − 1

return (ParetoFront,NumIndsFront)
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A.2 Crowding Distance

To get an estimate of the density of solutions surrounding a particular point in the
population we take the average distance of the two points on either side of this point
along each of the objectives. This quantity idistance serves as an estimate of the size
of the largest cuboid enclosing the point i without including any other point in the
population (we call this the crowding distance). In �gure A.1, the crowding distance of
the ith solution in its front (marked with solid circles) is the average side-length of the
cuboid (shown with a dashed box).

Figure A.1: Crowding distance calculation

Let us assume that every individual i in the population has now two attributes
(i) Non-domination rank (iirank) and (ii) Local crowding distance (iidistance). We can
de�ne a sort by

fi(ii) ≥ fi(jj), if(iirank < jjrank)or((iirank = jjrank)and(iidistance > jjdistance))
(A.1)

That is, between two solutions with di�ering non-domination ranks we prefer the
point with the lower rank. Otherwise, if both the points belong to the same front then
we prefer the point which is located in a region with lesser number of points (the size
of the cuboid enclosing it is larger).

A.3 The Main Loop

Initially, a random parent population P[t] is created at t=0. Fitness of each solution
is calculated and they are sorted based on the non-domination sort (algorithms A.1.1,
A.1.2 and A.1.3). Each solution is assigned a rank equal to its non-domination level (1
is the best level). Tournament selection, crossover, and mutation operators are used to
create a child population Q[t] of size N.
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Secondly, a combined population R[t] = P [t] ∪Q[t] is formed. The population R[t]
will be of size 2N. Then, the population R[t] is sorted according to non-domination.
The new parent population P[t+1] is formed by adding solutions from the �rst front
till the size exceeds N. Thereafter, the solutions of the last accepted front are sorted
according to the crowding distances (statement A.1) and the �rst N points are picked.
This population of size N is now used for selection, crossover and mutation to create
a new population Q[t+1] of size N. This process is repeated for particular number
of generation until the stopping criteria of the algorithm is met. Pseudo code of the
algorithm is present below.

Algorithm A.3.1: Main Loop()

P [t] is created randomly
Nondominatingsort(P [t])
while stopping criteria is not met

do



Q[t]← Reproduction(P [t])
R[t]← P [t] ∪Q[t]
NondominatingSort(R[t])
CrowdingDistance(R[t])
P [t+ 1]← R[t, 0 : N ]
t← t+ 1
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List of Acronyms and Abbreviations

2.5D AAM 2.5 Dimension Active Apperance Model
3D AMB AAM 3 Dimension Anthropometry Muscle Based

Active Apperance Model
3DMM 3 Dimension Morphable Model
AAM Active Apperance Model
ASM Active Shape Model
ATM Appearance Transformation Matrix
AWN Active Wavelet Network
CCA Canonical Correlation Analysis
CELP Code Excited Linear Predictive
CIRF Camera Information Relevance Factor
CLAHE Contrast Limited Adaptive Histogram Equalization
CNN Convolution Neural Networks
COG Center Of Gravity
CR Cognitive Radio
CRM Cognitive Radio Management
CT Computed Tomography
CV-AAM Coupled View Active Apperance Model
DAM Direct Apperance Model
DCT Discrete Cosine Transform
DIRECT DIviding RECTangles
DOF Degree Of Freedom
EBGM Elastic Bunch Graph Matching
FAM Flexible Apperance Model
FBG Face Bunch Graphs
FOV Field Of View
GA Genetic Algorithm
GA-Simplex Genetic Algorithm Simplex

GAGD Genetic Algorithm Gradient Descent
GAGM-AAM Genetic Algorithm with Gaussian Mixture for
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Active Apperance Model
GGA-AAM Gradient driven Genetic Algorithm for

Active Apperance Model
GHz Giga Hertz
GPU Graphical Processing Unit
GPGPU General Purpose Graphical Processing Unit
GRETSI Groupe de Recherche et d'Etudes du Traitement de

Signal et des Images
GTE Ground Truth Error
GWT Gabor Wavelet Transform
HGA-Simplex Hybrid Genetic Algorithm Simplex

HGOAAM Hybrid Genetic Optimization for
Active Apperance Model

HMOAAM Hybrid Multiobjective Optimization for
Active Apperance Model

HMOO Hybrid Multiobjective Optimization
IDEA Iterated Density Estimation Evolutionary Algorithms
IC-LK Inverse Compositional Lucas Kanade
JISE Journée Image et Systèmes Embarqués
KPCA Kernel Principal Component Analysis
LSM Local Search Method
M2VTS Multi Modal Veri�cation for Teleservices and

Security applications
MAYA is a high-end 3D computer graphics and 3D

modeling software package
MC Monte Carlo
MOAAM Multiobjective Optimization for Active Apperance Model
MOEA Multi Objectvie Evolutionary Algorithm
MOGA Multi Objectvie Genetic Algorithm
MRI Magnetic Resonance Imaging
MVAAM Multi View Active Apperance Model
NPGA Niched Pareto Genetic Algorithm
NSGA Non-dominated Sorting Genetic Algorithm
NSGA-II Non-dominated Sorting Genetic Algorithm II

OSI Open System Interconnection
PCA Principal Component Analysis
PDM Point D istribution M odel
POSIT Pose Orthography and Scaling with ITeration
PPBTF Pixel Pattern Based Texture Feature
RANSAC RANdom SAmple Consensus
RBF Radial Basis Function
RS Random Search
RW Random Walk
SA Simulated Annealing
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SCEE Signal, Communication et Electronique Embarquée
SD Steepest Descent
SDR Software De�ned Radio
SOAAM Singleobjective Optimization for

Active Apperance Model
SQP Sequential Quadratic Programming
STAAM STereo Active Appearance Model
SUPELEC L'Ecole SUPérieure d'ELECtricité
SVM Support Vector Machine
TB-AAM Tensor Based Active Apperance Model
TC-ASM Texture Constrained Active Shape Model
TS Tabu Search
TST Template Selection Tracker
TSWOR Tournament Selection WithOut Replacement
Twin-VQ Transform-domain Weighted INterleaved

Vector Quantization
VOD Video On Demand
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Résumé 
L'équipe SCEE de Supélec travaille dans le domaine de la radio logicielle et intelligente, encore 
appelée Radio Cognitive (CR - Cognitive Radio). Dans cette thèse, nous avons présenté une solution 
pour l'analyse de visage temps réel dans un équipement de radio cognitive. Dans ce cadre particulier, 
nous proposons des solutions d'analyse de visage, à savoir «l'estimation de la pose et des 
caractéristiques faciale d'un visage inconnu orienté ». 
Nous proposons deux systèmes d'alignement de visages. 
1) Le premier exploite un AAM 2.5D et une seule caméra. La phase d'optimisation de cet AAM est 
hybride: elle mixe un algorithme génétique et une descente de gradient. Notre contribution tient dans 
l'opérateur de descente de gradient qui travaille de concert avec l'opérateur classique de mutation : de 
cette manière sa présence ne pénalise pas la vitesse d'exécution du système. 
2) Le second met en œuvre un AAM 2.5D mais exploite plusieurs caméras. La recherche de la 
meilleure solution découle également d'une approche hybride qui mixe une optimisation multi-
objectifs : le NSGA-II, avec une descente de gradient. Notre contribution tient dans la proposition 
d'une méthode efficace pour extraire des informations concernant la pertinence de chacune des vues, 
ces informations sont ensuite exploitées par la descente de gradient. 
Des comparaisons quantitatives et qualitatives avec d'autres approches mono et multi-objectifs 
montrent l'intérêt de notre méthode lorsqu'il s'agit d'évaluer la pose et les traits caractéristiques d'un 
visage inconnu. 
 
 Mots clés: Analyse de visage, Model Actif d’Apparence 3D, système multi caméras, l'optimisation 
multi-objectifs. 
 
 

Abstract 
In this study we are interested in the pose estimation and precise localization of face features such as 
the eyes, the nose and the mouth of an out-of-plane rotated unknown face. Main application of this 
thesis work is in the Cognitive Radio equipments. We place ourselves within the framework of a low 
quality acquisition with camera(s) installed on Cognitive Radio equipments e.g. mobile phone, laptop, 
desktop computers etc. The face pose and localization of facial features in an unconstrained 
environment are the major problems for CR equipment. All of its subsequent face related applications 
(e.g. face recognition, face synthesis, face data compression etc.) highly depend upon the methods 
used for the facial analysis system. 
In order to extract face features, we use the Active Appearance Models (AAM), deformable models 
allowing shape and texture to be jointly synthesized. We initially propose a new 2.5D AAM, based on 
3D model, which makes it possible to perform pose estimation and features localization of an oriented 
face. 
Secondly, we propose a new optimization methodology for the face search by AAM, in a single 
camera system, by the hybridization of deterministic and direct search method which has never been 
used and tested before. 
Our method hybridizes Gradient Descent (GD) inside the Genetic Algorithm (GA) in a unique way. 
Along with other operators of GA we propose gradient operator which works in conjunction with the 
mutation operator of GA thus it does not make the system computationally expensive. 
Finally for a complete facial analysis system by multiple cameras, we proposed a new concept of 
multi-objective AAM. In this method, facial images from multiple cameras are analyzed 
simultaneously by 2.5D AAM. For the face search optimization we propose a unique way of 
hybridizing GD with NSGA-II (Non-dominating Search Genetic Algorithm-II).  
Both of our propositions are robust, real time, efficient and extract facial features even in unknown 
and out-of-plane rotated faces. 
 
 Keywords: Face Analysis, 3D Active Appearance Model, Multi-Camera System, Multi-Objective 
Optimization. 




