N

N

Distributed Shared Memory for Large-Scale Dynamic
Systems

Vincent Gramoli

» To cite this version:

Vincent Gramoli. Distributed Shared Memory for Large-Scale Dynamic Systems. Networking and
Internet Architecture [cs.NI]. Université Rennes 1, 2007. English. NNT: . tel-00491439

HAL Id: tel-00491439
https://theses.hal.science/tel-00491439

Submitted on 11 Jun 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00491439
https://hal.archives-ouvertes.fr

INSTITUT NATIONAL (=
DE RECHERCHE %
e INRIA

ET EN AUTOMATIQUE

INRIA Research Centre Rennes

Université de Rennes 1
INRIA Futurs Saclay

Distributed Shared Memory for
Large-Scale Dynamic Systems

A dissertation presented to
Université de Rennes 1

in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

in the subject of
Computer Science

by
Vincent Gramoli

defended on Thursday, November 22nd 2007 in front of thegormposed of:

Antonio Ferrandez Professor Examiner

Roy Friedman Professor Referee

Anne-Marie Kermarrec Senior Researcher Examiner

Michel Raynal Professor Advisor

Pierre Sens Professor President

Alex Shvartsman Professor Referee
Year 2007

Ecole Doctorale Matisse
Numeéro d'Ordre : 3637

This thesis focuses on newly arising challenges in the gbofedata sharing due to the recent
scale shift of distributed systems. Distributed systemespkenlarging very rapidly. Not only
more persons use their computer to communicate all over ¢kelywbut the amount of individual
objects that get connected is increasing. Such large s¢gstknss experience an inherent dynamism
due to the unpredictability of the users behaviors. Thisvbeck prevents traditional solutions
from being adapted to this challenging context. More bdlgicthis affects the communication
among distinct computing entities. This thesis investgahe existing research work and proposes
research suggestions to solve a fundamental issue, thiddiett shared memory problem, in such
a large scale and inherently dynamic environment.

Keywords: Distributed shared memory, quorum, atomicity, consistameconfiguration, dynamic,
large-scale.

To my wife and my family

Vi

Acknowledgments

| wish to thank especially professor Michel Raynal who aceépb become my advisor while my
subject was partially defined. | wish to thank Anne-Mariedarrec that encouraged my research
at any time, | owe her a lot. Thanks to Alex Shvartsman for ignaccepted to review my thesis
and with whom | lived a great research experience at veryussitimg locations. Thanks to Roy
Friedman to review my thesis and to Antonio Femdez and Pierre Sens, who accepted to exam-
ined my PhD work. | am grateful to Carole Delporte, Hugues Bancer, Matthieu Latapy, and
Pierre Fraigniaud for having taught me very interestingledf computer science and helping me
to find my path into research. Also, | would like to thank Emmelie Anceaume, Maria Gradi-
nariu, and Michel Hurfin with whom | discovered Peer-to-Paatems, and those who enlightened
me about the French doctoral status. Thanks to my friendsMdri, Piotr, Monika, Alexis, and
Kishori from Storrs; Achour, Aline, Corentin, Erwan, EtienrFabrice, Francois, Gilles, Marin,
and Yann, the task force of the ASAP group; and Julien, Lutal@an-Marie, Audrey, and Jean-
Pierre from Brittany. Last but not least, thanks to all my ctkars who accepted working with
me including Seth, Grisha, Toni, Achour, Ernesto, Brunayki

Vil

viii

Citations to Previously Published Work

The essential of Chapt@rappeared in the following papers:
"Reconfigurable Distributed Storage for Dynamic Networks? Chockler, S. Gilbert,
V. Gramoli, P. M. Musial, and A. A. Shvartsman, Proceedingthe OPODIS, 2005.
"M émoire partages distrib@es pour sysimes dynamiquesgrandechelle”, V. Gramoli,
Proceedings of Jouées Doctorales en Informatique etdeaux, 2007.

The most important part of Chaptéappeared in the following papers:
"Peer-to-Peer Architecture for Self-* Atomic Memory”, Endeaume, M. Gradinariu,
V. Gramoli, and A. Virgillito, Proceedings of ISPAN, 2005.

"SQUARE: A Scalable Quorum-based Atomic Memory with Local Bs&foguration”,
V. Gramoli, E. Anceaume, A. Virgillito, Proceedings of the&CM SAC, 2007 and
IRISA technical report number 1805.

Portions of Chaptef appeared or will appear in the following papers:

"Core Persistence in Peer-to-Peer Systems: Relating Sizdetinie”, V. Gramoli,
A.-M. Kermarrec, A. Mogtfaoui, M. Raynal, and B. Sericola, Proceedings of the On
The Move Workshops, 2006 and IRISA technical report numb8&817

"Timed Quorum Systems for Large-Scale and Dynamic Enviremisi’, V. Gramoli
and M. Raynal, Proceedings of the OPODIS, 2007.

Portions of Chaptet and almost the whole Appendi appeared in the following paper:

"Distributed Slicing in Dynamic Systems”, A. Feéandez, V. Gramoli, E. Jignez,
A.-M. Kermarrec, M. Raynal, Proceedings of the ICDCS, 2007 &RIIA technical
report number 6051.

Electronic preprints are available on the Internet at ttleviong URL:

http://ww.irisa.fr/privel/vgramoli/php/pub.irisa.year.php

Contents

Introduction 1
1 Preliminaries 5
1.1 Quorums atthe Heartof Consistency 5
1.2 Shared Memory Models. 6
1.3 General SystemModel 7
2 Facing Dynamism 9
2.1 All-to-all Operation and Reconfiguration. 11
2.1.1 Quorum-based Read/Write Operations. 13
2.1.2 Quorum System Reconfiguration 16
2.1.3 Independence of Read/Write Operations. 18
2.2 Decentralized Reconfiguration., 19
2.2.1 Coupling Installation and Upgrade of Configurations 20
2.2.2 Deciding upon the Final Configuration using Paxas. 21
2.3 Dynamic Distributed Shared Memory (benefiting from Coisss). 25
2.3.1 Read and Write Operations using Global Knowledge. 27
2.3.2 Reconfiguration by Replacement 28
2.3.3 Safety Proof: Implementing Atomicity. 31
2.3.4 Liveness Proof: Speeding up Reconfiguration to stremgfault Tolerance 33
2.3.5 Experimental Analysis of Reconfiguration 37
2.4 Discussionand Conclusion. e 41
2.4.1 CommunicationOverhead. 41
2.4.2 Conclusion. e e 41
3 Facing Scalability 43
3.1 Structure of QUOrUM SYStems 44
3.1.1 Single-Pointof Failure 44
3.1.2 Replicating the Intersection 46
3.2 Communication Structure of Quorum Systems. 48
3.2.1 Non-Adaptive Quorum Probe vs. Adaptive Quorum Probe. 49
3.2.2 Reparation of Accumulating Failures 50
3.3 Scalable Distributed Shared Memory (benefiting fromdlibg) 51

Xi

3.3.1 Trading Availability with Dynamism 51

3.3.2 CongestionAvoidance 53
3.3.3 Read and Write Operation using Local Knowledge 59
3.3.4 Self-Adaptiveness to Unpredictability. 63
3.3.5 Correctness Proof ofa ScalableDSM 65
3.3.6 Peer-to-Peer Simulation Study. L. 66
3.4 Discussionand Conclusion. e 71
3.4.1 Quorum AccessinAdHocNetworks 71
3.4.2 LimitationsofSquare. 72
3.43 Conclusion. e 73
4 Facing Scalability and Dynamism 75
4.1 ProbabilisticGuarantees 76
4.1.1 Probabilistic Consistency. e 76
4.1.2 Probabilistic Quorum System o0 79
4.1.3 Probabilistic Weak Quorum System. 81
4.1.4 Probabilistic Quorum Systems for Dynamic Settings 82
4.2 Avoiding Quorum System Reconfiguration L. 85
4.2.1 Structureless Quorum System. 85
422 TimedQuorumSystem. 87
4.3 Scalable Dynamic Distributed Shared Memory (benefitiogn Prototypical GossipP0
4.3.1 Modeland Definitions. L 91
4.3.2 Disseminating Memory using UnderlyingGossip 92
4.3.3 Correctness and Analysis of a Scalable and Dynamic DSM 98
4.3.4 Exact Probability for Practical Measurements 103
4.4 Discussionand Conclusion. 108
4.4.1 Approximating the SystemSize. 108
4.4.2 Modeling the Churn in Dynamic Systems. 109
443 Conclusion. e 109
Conclusion and Open Issues 111
A Distributed Slicing 117
Al Introduction. e e e e 117
A.1.1 Contextand Motivations 117
A.1.2 Contributions. e 118
A.1l.3 RelatedWork. e 119
Al4d Outline 120
A.2 Model and Problem Statement.o L. 120
A.2.1 SystemModel. e 120
A.2.2 Distributed Slicing Problem., 121
A2.3 FacingChurn. e 122
A.3 DynamicOrdering e e 122

B

A.3.1 OnUsing Random Numbersto SortNodes. 122

A.3.2 Definitions 123
A.3.3 Improved Ordering Algorithm. 123
A.3.4 Analysis of Slice Misplacement 126
A.3.5 SimulationResults. 128
A3.6 CONCUITENCY i e e e e e e e e e s e e e e e e 130
A4 DynamicRanking e 131
A.4.1 Ranking Algorithm Specification. 131
A.4.2 Theoretical Analysis. 132
A.4.3 SimulationResults. L 134
A5 Conclusion e 138
AS5.1 Summary. e e e e 138
A5.2 Perspective. e 139
IOA Specification of a Dynamic DSM 141

C IOA Specification of a Scalable DSM 147

Introduction

The Scale-shift of Distributed Systems

Distributed systems is now a major research topic in the Béldomputer science. The interest

and research efforts devoted to this topic have continyouskeased since the late seventies.
Nowadays, distributed systems have drastically changddhew fundamental issues have arisen.
We believe that the major cause for these topical issuesisetent scale-shift that distributed

systems experience.

The need of resources has been one of the main motivatiomgldiktributed systems. Indeed,
take computational resources as an example. Multiprocegstems allow to share the computa-
tional tasks on different processors while distributed Inirags can execute multiple computational
tasks at the same time, one on each machine. Nowadays, velterioll multiprocessor systems
remain expensive a novel form of computational collaboratrises due to the enhancement of
the Internet and various networks. The collaboration adfrithsted machines produces more re-
sources than any single machine can afford. First obsenstf this phenomenon appeared with
the SETI@home project that was launched on 1999 and thaide®an average of 264 TeraFlops
thanks to the collaboration of millions of machine&overned by the will of users to obtain more
resources, distributed systems keep enlarging.

A peer-to-peer (p2p) system is a distributed system thahbaentralized control. Actually,
the p2p paradigm relies on the fact that distributed estiti@ only benefit from resources but also
provide resources. In traditional distributed systemsises are hosted by servers and accessed by
clients, thus, in p2p systems every entity acts as a clieshaara server at the same time. Peer-to-
peer systems have gained in popularity with the massivieatitbn of file-sharing applications over
the Internet, since 2000. These systems propose a tremeadoaunt of file resources. Beyond
file sharing applications many research efforts have beeatel@ to assign content to nodes so
that the content can be retrieved easily. These effortdtnesunly in the definition of distributed
hash tablesNIKKBO1, RFH"01, RD0O1] mapping each stored data to a key used to retrieve the
corresponding data in the system.

Nowadays, there is an increasing amount of various comgul@vices surrounding us. First,

ISETI@home provides more than 26@' floating point operations per second on average as repoytBoibc-
Stats on July, 17th 2007.

the addressing space of the original Internet protocol4 |Pecomes insufficient to face the de-
mand of new connected entities and leads to the standaaizidta new protocol, IPv6, to tolerate
the growing amount of entities. Second, each person tengiset@arious computing devices that
all communicate together through different wireless nekso Third, the decrease of the cost of
sensors (like RFID) allows their production to enlarge ararttieployment for monitoring appli-
cations. Finally, IDC predicts that there will be 17 bill®of traditional network devices by 2012.
In such contexts, it is common knowledge that scalability beacome one of the most important
challenges of today’s distributed systems.

The Future of Communication between Numerous Entities

The scale-shift of distributed systems modifies the way adatpnal entities communicate. In
this context, connecting multiple and various entitiesetbgr led to other interesting challenges
due to their independent behavior. Energy dependenceayrdisction, malfunctioning, and other
environmental factors affect the availability of each canapional entity independently. This trans-
lates into irregular periods of activity during which an igntan receive messages or compute
tasks. As a result of this independent and periodic behsigioided by environmental variations,
these systems are inherently highly dynamic. Moreovegekscale prevents a single entity from
maintaining any global information about the system. Couneatly, dynamism is hardly measur-
able and completely unpredictable. As a major drawbackabbdity, dynamism strengthens the
difficulty for entities to communicate.

Distributed systems can be differentiated along two mapmag@igms: shared-memory and
message-passing. In shared-memory, entities commurigatading from and writing to a sin-
gle memory. In message-passing, entities communicatertairggand receiving messages whose
transmission time is, in general, arbitrarily long. Tramhally, tightly-coupled distributed archi-
tectures, as multi-processor machines use the sharedsyenwalel for communication among
processors. The motivation for shared-memory stems fransithplicity with which algorithms
can be designed and with which programs can be written cadgarthe message-passing model.
Conversely, the prevalent model for loosely-coupled diated architecture as network of work-
stations is message-passing. The motivation for messaggng stems from the ability to replicate
on several workstations so that each workstation can faépendently without affecting the per-
formance of the system. Despite the complex programmirig taessage-passing requires, this
model is more appropriate when message delays are aryilcarg. This motivates the need for
emulating shared-memory in message-passing model. Thitagan, also known as distributed
shared memory, is the subject of this thesis.

The objective of Distributed Shared Memory (DSM) is to enteitdne functioning of shared-
memory in message-passing model. From the standpointeofts]ithe DSM must transparently
appear as if it was a single shared-memory. Consequentl$hémust provide clients with read
and write primitives that, when executed, result in the regdnd writing of data. The difficulty

2

comes from the fact that operations requested by distireritslmust be ordered: a client reads the
value written by another client depending on the time thd agal the write occurred. Ideally this
ordering should respect real-time, however, distant tdi@me not synchronized and operations
may execute concurrently. As a result, we need a set of piepesn operations that must be
satisfied by any execution of our DSM, in order to express &yrhow to emulate a shared-
memory. This set of properties is called a consistencyraite During the last decades, DSM
for failure-prone static systems have been studied. In sookext, a bounded number of entities
may crash. Recently, DSM have been studied in a dynamic mdaeleran unbounded amount
of failures may occur. Now, we strongly believe that DSM farge-scale dynamic systems is of
crucial interest for communication in distributed systems

Thesis Content

This thesis investigates emulations of shared-memoryofmsdly-coupled distributed systems. To
this end, several distributed shared memories (DSMs) aeritbed. Each of these DSMs provides
transparently the clients with read and write operaticasdiating into emulating a shared-memory
while operations are specified in the message-passing maod#ared-memory, a write operation

consists in modifying the value of an object by writing itarthe memory while a read operation

consists in returning the value of an object stored in the orgnWe focus on DSMs defined over

guorum systems.

The first major issue addressed in this thesis is dynamisma®yjsm induces a potentially un-
bounded amount of failures and makes unusable the solwgiotesl for static systems, even with a
bounded amount of failures. Consequently, recoveries ttratrdrequently must be integrated into
the DSM to cope with continuous failures. Otherwise aftensdime, either the memory becomes
inconsistent, operations are no longer ensured to termimatobjects may disappear from the
system. Among those repeated recoveries is the reconfigumraiechanism. Chapt& presents
DSMs that tolerate dynamism. First, it presents a generd Dt can be used in static system.
Second, it presents several problems that are related todgm and the solutions provided by the
literature. Third, it presents a DSM whose reconfiguratelies on a consensus algorithm. This
consensus is made fast so that the DSM tolerates a largesfriziéures. Moreover it is indepen-
dent of operations so that operation termination does rergk on reconfiguration termination.

The second major issue addressed in this thesis is scalabilist, large-scale systems can not
afford a global reconfiguration. That is the reconfigurattost must be minimized for the system
to scale well. Second, large-scale systems may experiehiggavariation in the number of read
and write requests: some object may interest a large patteofystem at some time while its
interest may decrease suddenly, later on. This variativadaces a problem of load management
that may induce request loss and non-termination of sommatpes. Chapte8 compares different
structure of quorum systems that appeared so far. It alsggout that communication among
guorum members impacts on the overall performance of the FiMhermore, it presents several

3

dynamic quorum systems especially suited for dynamismtly,aspresents a DSM that scales
well and self-adapts in face of dynamic events and load trana

Chapters2 and 3 remedy the problem of dynamism and scalability, respegtivieractically
speaking, these solutions may experience limitationsae feth dynamism and scalability. Chap-
ter 4 relaxes the consistency requirement used in previous efsaf achieve better efficiency.
That is, it gives the definition of probabilistic quorums tgyss. Existing solutions are given and
a new definition of quorum system is proposed to tolerate alysra: Timed Quorum Systems
(TQS). TQS relies on timely and highly probabilistic requirents that makes it very efficient de-
spite dynamism. For the sake of scalability, the TQS implatat@n proposed does not rely on
any structure, thus avoiding reconfiguration while repglicaduring a read or a write operation
execution. Finally, for practical needs we give valuablasuges of the guarantee achieved by this
solution. These measures boil down to promising result®floer quorum-based applications in
large-scale dynamic systems.

Roadmap of the thesis. Chapter® and3 of this thesis guarantee deterministic consistency while
Chapter guarantees probabilistic consistency. Lastly, this thagjues that probabilistic solutions
to the large-scale dynamic DSM promise competitive reduthe cost of weak relaxations. The
results, obtained for loosely-coupled distributed systeane confirmed by case studies on peer-
to-peer systems, yet we claim that most of the results appytter large-scale dynamic systems.

This thesis investigates the distributed shared memotyl@noin dynamic and large-scale sys-
tem. Chaptef explains how to implement distributed read and write op@natusing quorums
and introduces reconfiguration of quorum systems as a keyrezgent for coping with dynamism.
Chapter3 proposes an alternative reconfiguration method that megsthe amount of informa-
tion each node has to maintain in order to achieve scaklbithapter4 defines timed quorum
systems that intersect each other during their boundetiniéewith high probability and that do
not rely on any structural requirements, avoiding recoméiian to achieve better performance.

Finally, the AppendixA proposes a solution to an interesting problem of largeeseald
dynamic systems that is discussed in the Sectigh Moreover the detailed Input/Output Au-
tomata Lyn96] specification of two algorithms proposed in Chapt2end3 are given in Appen-
dicesB andC.

Chapter 1

Preliminaries

This Chapter presents some definitions and the general nifaté$tused in this thesis. Sectibri
introduces the vocabulary and definitions related to quasystems. Sectiof.2 introduces the
distinct models of shared memory while Sectioi gives the general model used in this thesis.

1.1 Quorums at the Heart of Consistency

Quorums are at the heart of the emulation of distributedesharemory proposed in this document.
Here, we define the vocabulary related to quorum systemssthiaed along this thesis.

Weighted voting. Systems experiencing isolated failures require repbeatif the object at dis-
tant locations with independent failure probability. Istinct nodes are allowed to modify the
same object, then a synchronization process must be usaducesconsistency when concurrency
occurs. A mechanism that provides nodes with an indicatirowleether consistency might suffer
from their modification have been defined by Giffof@if79] and ThomasTho79 the same year
of 1979. In these mechanisms, before executing an opeyationde asks for some permission of
other nodes, typically the ones owning a copy of the objeqieAnission is granted depending on
the set of nodes that have responded and on the answer ofespadnder: one granted permission
prevents another permission from being granted.

Gifford considers a system of voters where a global weWhs shared among all voters so
that their vote has a corresponding weight in granting thhengsion. The permission is granted
for aread (resp. write) operation if the sum of weights ofréeeived votes is (resp.w), such that
r+w >W. Thomas assumes a distributed database where the samef topylata is replicated at
distant locations. Multiple nodes can run an operation @database by sending a corresponding
message to one database copy. Then this copy tries to gathg@etmission of a majority of
databases to execute the operation.

CHAPTER1. PRELIMINARIES

Generalization of quorum systems. Despite the appealing aspect of weighted voting and ma-
jorities as intuitive paradigms, they are not the ultimatison to consistency in distributed sys-
tem. Indeed, a more general approach exists as shown bya@dadina and BarbaraGMB85.

Definition 1.1.1 (Set System)A set systeng over a universe U is a set of subsets of U.

Originally, aquorum systeraver a universé is defined simply as a set of subsetJoo that
any couple of sets have a nonempty intersectiogoterie C is a quorum system whose quorums
satisfyminimality. for anyQ1, Q> € C, we haveQ; ¢ Q-. In this sense, quorum systems generalize
coteries by relaxing minimality.

Definition 1.1.2 (Quorum System) A quorum systend) over a universe U is a set system over U
such that for any @ Q2 € Q, the intersection property {1 Q2 # 0 holds.

A bicoteriefMMR92] underU has been defined as two set syst@mns(51,.5»), each satisfying
minimality and such that for ang; € $1, and anyS, € S», we haveS; NS, # 0. Building upon the
bicoterie definition, we define naturallypiquorum systeras a bicoterie whose set systems do not
verify minimality. In other words, a biquorum system is a pl&auof set system§&Si, .5»), such that
forany§ € §1 and anyS, € S, we haveS NS, # 0.

Definition 1.1.3 (Biquorum System) A biqguorum systen@ over a universe U is a couple of set
systemsQy, Q2) over U such that for any Q< Qy, and for any Q € @, the intersection property,
Q1N Q2 # 0, holds.

Biquorum systems have been already used in the literaturst, Giifford [Gif79] defines read
and write quorums of nodes, where each node is assigned #ispeeber of votes. The sum
of votes in any read quorum and in any write quorum must beetatigan the total number of
votes, which translates into the intersection between aag and any write quorum. Second,
Herlihy [Her84 uses read and write quorums for objects whose specificatitsfies FIFO—First
in, First Out—policy. This policy provides an object withcgreue and dequeue primitives such
that enqueue stores a value and dequeue returns the valilrashaot been dequeued yet and that
has been enqueued first. Finally, an informal definition gtibrum system appeared id/J/VV03].

Here, we consider dynamic systems, that is, we say thatersadtion is non-empty if and only
if it contains at least one active node that has not faile@ithe system. By abuse of notation, we
say that two sets (or more particularly two quorums) interend only if they have a non-empty
intersection.

1.2 Shared Memory Models

Shared-memory is used for communication among particgpahéa distributed system. As said
previously, it appears to be one of the two major commuroogtaradigms for distributed systems,

6

1.3. General System Model

the other being the message-passing model. Shared memp¥figs algorithm formalization as
well as code programming. The shared memory is accessedi®/sades through read and write
operations. The read operation simply returns to the régquaspiece of information contained
in the memory without modifying it. The write operation mfies the information stored in the
shared memory. Distinct shared memories exist, each shaetry depending on the number of
nodes allowed to read it and the number of nodes allowed tie wri First observe that a model
in which a single node is allowed to read the memory and wtjtis iequivalent to a single node
with exclusive access to its memory. In contrast, we areested by the ability for nodes to share
a memory.

¢ MWSR: In the multi-writer/single-reader (MWSR) model, multipledes can execute write
operations whereas only one node can execute read opatation

e SWMR: In the single-writer/multi-reader (SWMR) model, multipled&s can execute read
operations whereas only a single node can execute writ@tpes.

¢ MWMR: In the multi-writer/multi-reader (MWMR) model, multiple ned can execute the
write operations and the read operations.

It is noteworthy that the models presented above do notrdifteate the number of operations
executed simultaneously. Actually, ensuring consistevitje many operations are concurrent can
be reduced to solving concurrency when only two operatisasancurrent. hardware synchro-
nization might be required at some nodes in both cases. Howeymplexity relies tightly on the
type of concurrent operations: if two write operations asaaurrent, the result of one operation
overwrites the result of the other, thus, those operationstiipe ordered; if two read operations
occur concurrently, then both may return the same valus, there is no need to order them.

In the remaining of this document, we focus on the strongé#tese models, the MWMR
model. We also consider a single object to which operatipptyaThe memory is constructed by
means of the composition of multiple objects in a straightérd manner.

1.3 General System Model

The system consists of a distributed set of interconneatel@s We assume that a node simply
needs to know the identifier of another node to communicaiie fvand that each node knows the
identifier of a subset of nodes that areritsghborsn the communication graph. Every node has a
unique identifier, and the set of identifiers is a totally oetdeset, denoted * The communication

is asynchronous in the sense that messages can be apdeayed. Communication is unreliable
in that message can be reordered and even lost, howevergiésage is delivered, then it has been
sent and not altered; and no messages are duplicated. Tleensgsdlynamic, meaning that nodes

IThereafter, the set of identifierss assumed to be a subsethaf

7

CHAPTER1. PRELIMINARIES

that are already in the system may leave at any time while rae ©an join the system at any
time. A node failure is considered as a leave and a recovennsidered as a new join event. This
means that when a node rejoins the system, it obtains a newifideand loses all its previous
knowledge of the system. We refer to a node that belongs teytstem as aactivenode, while a
node that has left or failed is referred to afmged node.

Any object in the system is accessed through read and wréeatpns initiated by any node.
When a node initiates an operation we refer to it aBemt A read operation aims at returning the
current value of the object while a write aims at modifying tturrent value of the object. Object
values are replicated at a set of nodes we refer seagers Observe that any node can be client
and server. Each valuehas an associated tagThe tag has a counter that indicates the version of
the associated value and a node identifier that is used aseeti&er: tad is lower than tag’ if
the counter of is lower than the counter f or if the counters are the same whereas the identifier
of t is lower than the identifier af. We consider local consistency conditions, and thus, only a
single object so that the memory is obtained by compositfanudtiple object.

Chapter 2

Facing Dynamism: Reconfigurable Quorum
System

The availability of the Distributed Shared Memories presdrnere depends on the availability of
a quorum system. Since failure may accumulate in our dynamoidel, the quorum system must
readapt to face long-term or permanent failures of its gmomembers. In the following, we refer
to a quorum system ascnfiguration The mechanism needed to replace the nodes of a quorum
system to cope with dynamism is theconfiguration The following chapter focuses essentially
on a single kind of reconfiguration that replaces the wholagpn system by another one.

Reconfiguring a distributed shared memory without alteringaing operations is a difficult
task. Reconfiguration must not violate consistency and ntlest aperation termination. First, the
new configuration must be uniquely chosen by all participa®econd, the object states must be
conveyed from the previous configurations to the new onerbefny of those previous configura-
tions could be removed. Finally, to guarantee that the dip@ieventually terminate, operations
must execute independently from the reconfiguration. @iiser, a delayed reconfiguration may
block some operations.

This chapter presents an emulation of shared memory in gegsssing model when the
environment is dynamic. To allow dynamism the quorum sysaeithe heart of our emulation is
regularly reconfigured. The reconfiguration mechanismgatigated in this chapter is the quorum
system replacement, i.e., here, reconfiguration aims #aieg the current quorum system by a
new one.

Guaranteeing consistency. Originally, consistency aims at providing guidelines fdrased
memory to emulate as accurately as possible the behaviorsofgée memory. A consistency
criterion can be seen as a contract between an applicattba ememory: provided that some prop-
erties are verified by the application, the memory ensursesatde guarantees. These guarantees
must always hold and defined the safety properties of ouesystAs opposed ttivenessthat
ensures that eventually something good happsafetyguarantees that nothing bad can happens.

9

CHAPTER 2. FACING DYNAMISM

Here, something bad is for the consistency contract notdpected.

Various consistency criteria have been defined in the titeea A strength scale is generally
used to compare those criteria with each otheraodicityappears to be the strongest. Atomic-
ity [Lam86 Lyn96] allows clients to access data (object) through read antéwperations such
that operations are ordered in a sequential manner satisfiie specification of the object and
the real-time precedenceéinearizability is equivalent to atomicity and has been defined for var-
iously typed objectsHHW9(]. Another widely investigated consistency criteri@gquentiality
impose that operations ordering respects only the locabdipa ordering of each node. Atomicity
is stronger than sequentiality because any atomic execatitisfies also sequentiality while the
reverse is not true.

Why choosing atomicity? Despite the appealing realistic emulation of shared mempamyided
by atomic DSM, implementing atomicity in asynchronousiegt remains a topical issue. As a
consequence, weaker consistency criteria have been maposak-atomicity Yid96], causal-
ity [Lam78 HA90], PRAM [LS8Y, processor consistencpo89, and others. The drawback of
such consistency criteria is to allow multiple differenewis of the system at any locations, violat-
ing one-copy serializabilityBG83. Some consistency criteria sharing performance of steory
weak consistency appeared: mixed consisteAGAS94 and hybrid consistencyyF92], using
weak ordering[DSB8S].

Locality characteristic has been defined by Herlihy and Wing as tHeyatar a consistency
criterion to be preserved under object composition. Thaif ihe executions restricted to each
object verify independently tHecal criterion then the whole execution applied to the compaositi
of these objects verifies the same criterion. The authomsethan [HW9(Q] that, knowing if a given
criterion is local is not a trivial problem. To illustrateishdea they showed that atomicity is local
while sequentiality is not. The compositionality causedti®ylocality property has been efficiently
used in the design of numerous proofs of atomicit(2 DGL*05, CGG" 05, CLMTO05]. In the
following, we focus on the atomicity as the consistencyecidt that must satisfy the distributed
shared memories we propose.

Efficiency. A major aim is to provide efficient operations in distributglthred memory. It is
well-known that most operations applied to a file system ag& roperationsHK 791], hence
minimizing read latency improves on average operationsieffcy. For this purpose, Dutta et
al. [DGLCO04 proposed to upper bound the latency of read operationsfyat) atomic consis-
tency, namelyfast reads A recent achievement has also proposegai-fasiatomic read opera-
tions [GNSOQ requiring from one to two gossip rounds.

10

2.1. All-to-all Operation and Reconfiguration

2.1 All-to-all Operation and Reconfiguration

This Section outlines the problem of emulating a DSM usingrgm-based operations. First, it
formally defines atomicity for a better understanding of plh@blem of implementing atomic op-

erations. Second, it indicates simply what is a quorum-dbasemic operations. All operations
presented in this document rely on similar quorum-basedghaThird, we emphasize the var-
ious problems related to reconfiguring an atomic memory ¢basists in successively replacing
the memory participants by new ones. Finally, it emphasihesimportance of operation and
reconfiguration independence for reconfigurable atomic omgm

Atomicity. Atomicity is the property of an object if in any system execution, the operations
applied tox are partially ordered using relatietisuch that the conjunction of the following prop-
erties holds:

1. Serial Specification Requirement:if a read operation occurs on objedthen it returns the
last valuev, with respect to<, written on objeck; or the default value if no values have been
written so far.

2. Real-Time Requirement:if an operationm ends before an operation starts thenn £ 1.

3. Serialization Requirement: for any operation it exists a unique serialization point el
serialization point ordering of the operations satisfiesdtdering of those operations. (Se-
rialization point order is a total order while the operatarder is a partial order.)

As indicated by Property 1, the ordering of operations orecibj determines the value that
is read or the value that is written at any point in time on obje This states that an object
respects its specification returning its single currenti®alProperty 2 ensures that this ordering
cannot contradict the real-time precedence. Hence, n®&fles can be returned since staleness
is especially expressed by real-time precedence. Fialhperty 3 implies that write operation are
totally ordered while read operations are ordered witheesg the write operations. That is, even
though two write operations are concurrent, only the eféeédane of the two will be noticeable
after both operations finish.

Concurrency problem. Properties 1 and 2 are of special interest. On the one hasuinasthat
two write operations run concurrently. Since they all hawkssinct serialization point (Property
3), they cannot be executed partially but only one can deterthe up-to-date value. On the other
hand, assume that a write operatiois concurrent with two read operatiomg,andro, while none
of these read operations is concurrent with the other readatipn. That is, if the serialization
point of the write operation precedes the serializatiompof the first read operation < rq, then

w < rp by the transitivity of<. Similarly, if ro < w, thenr; < w too. However, atomicity is
violated if the operatioms returns the value written by while r, returns a value that has been

11

CHAPTER 2. FACING DYNAMISM

overwritten by operatiomv. This problem of reading a value while a more up-to-date Irasady
been read, called the new/old inversion problem, has bestyfoutlined by Lamportlflam8q,
and is presented in Figugl

time

Figure 2.1: The new/old inversion problem occurs if readrapenr; returns the value written by
write operationw while readr, returns a value that has been written beforeccurs.

To solve this problem, read operations must ensure thdiduread operations never return
less up-to-date value. In some sense, it is similar to theskated in Property 1 where a write
must ensure that no less up-to-date value will ever be read i3 the reason why in emulation
of atomic registers in message passing system, "read mitst’ wi he read-must-write problem
of distributed atomic memory is well-known. IRW98], a theorem states th&t any wait-free
simulation of a single-writer single-reader register, ah$t one read must writend in Lam8q
it is said thatthere exists no algorithm to implement an atomic registengis finite number of
regular registers that can be written only by the writer (of #temic register)

The three properties presented above lead to the atomictotgdined in Theorem 13.16
of [Lyn96]. The first point of the original Theorem is deduced from tligeo, hence, it is omitted
here.

Definition 2.1.1 (Atomic Object) Let x be a read/write atomic object. Let H be a complete se-
guence of invocations responses of read and write operatipptied to object x. The sequence
H satisfies atomicity if and only if there is a partial ordegirk on the operations such that the
following properties hold:

1. if the response event of operationprecedes the invocation event of operationthen it is
not possible to havey < Ty;

2. if Ty is a write operation andtw, is any operation, then eithern, < 1y or Ty < TR;

3. the value returned by a read operation is the value written by the last preceding write
operationTy regarding to< (in case no such write operation exists, this value returrsed |
the default value).

12

2.1. All-to-all Operation and Reconfiguration

| Domain | Description |
| C N | the set of node identifiers
\% the set of all possible object values

T € Nx 1 | the set of all possible tags

Table 2.1: Algorithm Domain

2.1.1 Quorum-based Read/Write Operations

In the following, read and write operations are presented lgh level. As a first attempt, we

propose a simple atomic memory that does not tolerate dygmanmihe memory is specified at a
high level for the sake of simplicity. The major goal is, hemeexplain how an operation can use
qguorum round trips to ensure consistency. Then, we desicrfilsenally faster operations for static

settings.

Generic atomic object implementation. For the sake of genericness, this algorithm lacks from
explicit specification of communication procedusend andrecv) so as the termination identifica-
tion test {s-quorum-contacted). For the sake of generality, these procedures that rely lower
level of specification (depending on the type of solutiort @ianed to be provided) are omitted
here. For example, a clienmight know a complete quorum and wait until all quorum mersber
respond before deciding to end the procedeirepagateand Consult. Conversely, nodemight
wait for the message of the last quorum member without kngwirery element.

Algorithm 1 implements an atomic object which supports read/write atpmrs performed by
multiple readers and multiple writers. the variable doma#sed in this algorithm is presented in
Table2.1 The pseudocode is high level and describes a generic@oluging quorum access. This
algorithm has been inspired by the work of Attiya, Bar-Noyd &vlev [ABND95], and Lynch and
Shvartsmanl[S0Z].

A client executes an operation by running BReador Write procedure. An object valueand
a value version (otag) t are maintained at each server. This tag is incremented egaelatnew
value is written. The node id of the writer is added to the ta@ éower weight integer to ensure
uniqueness of tag.

ReadandWrite procedures are similarly divided in two phases: the firsspi@onsultsthe
value and the associated tag of an object by querying a qudrbmsecond phas&ropagatesthe
up-to-date valugnewand tagnewto a whole quorum. When the consultation ends, the client gets
the lastly written value back (with its tag). In case of a @/mperation, the client increments the
tag and propagates this new tag with the new value it wantsite.vin case of read operation, the
client simply propagates the up-to-date value (with it9 telgas just consulted.

The sequence numbgserves as a phase counter to encompass asynchrony andeverstiog
that a quorum takes in account a stale message. More preewbeinConsult or Propagatestarts,
the sequence number is incremented indicating a new phasen #Miode receives a message with

13

CHAPTER 2. FACING DYNAMISM

Algorithm 1 Generic Atomic Object Algorithm
1: State ofi:
2. Q,...,Qk C | the quorums
Q =1{Q1,...,Qk}, the quorum system
M, a message containing:
typec {GET,SET,ACK}, the message type,
(val,tag) € V x TU{_L}, the value and tag,
seqe N, the sequence number of the message.
v € V,V =V, the object value
t € T,t = (0,i), the tag used containing:
10: compteure N, the write operations counter
11: id € I, the identifier of the writer
12: se N,;s=0, the current sequence number
13: tmaxe T, the highest tag encountered
14: vlaste V, the most up-to-date encountered value
15: tnewe T, the new tag to write
16: vnewe V, the new value to write

© N R®

17: Read():

18: (v t) < Consult();
19: Propagateg(v,t));
20: Return (vt)

21: Write(vnew);:

22: (v t) < Consult();

23: tnew« (t.compteur-1,i)
24: Propagatg(vnewtnew);

sequence numbequerying it to participate, Participatesby sending the same sequence number.
That is, the phase a message belongs to is clearly idensiretmight be ignored.

Fast quorum-based atomic operations. In [DGLCO04], Dutta et al. investigate how fast can a
distributed atomic read be where the number of failures geujpounded. This result applies to
failure-prone static system but does not consider accuimgléailures.

They define a fast implementation of a SWMR atomic memory asn@teimentation in which
any read operation of all possible executions ends aftenglesround trip. They prove that no
such implementations are possible if there are more 81an 2 readers executing operations in
a row, whereSis the total number of servers ahds an upper bound on the number of failures.

14

2.1. All-to-all Operation and Reconfiguration

25: Consult();:

26: LetQbe aquorum of)

27 S« s+1

28: send(GET, L,s) to nodes ofQ

29: Repeat:

30: if recv(ACK, (v,t),s) from j then
31 rcvd-from«— rcvd-fromJ{ j }
32 if t > tmaxthen

33: tmax«—t

34: vlast— v

35: Until is-quorum-contacted(rcvd-from)

36: rcvd-from— 0
37: Return (vlasttmax

38: Propagate(Vv,t));:

39: LetQ be aquorum of)

40: S«+—s+1

41: send(SET,(vt),s) to nodes ofQ

(o]

42: Repeat:
43: if recv(ACK, L,s) from j then
44: rcvd-from« rcvd-fromu { j }

45: Until is-quorum-contacted(rcvd-from)
46: rcvd-from— 0

~

47: Participate(); (activated upon reception ofM):
48: if recv(M) from nodej then

49: if M .type= GET then

50: send(ACK, (v,t), M .seg to |
51: if M .type= SET then

52: if M .tag>t then

53: (v,t) = M .(val, tag)

54: send(ACK, L, M .seq to |

More precisely, they show that it is possible only if theréess thar5/t — 2 readers and< S/2.
They also show that it exists a fast implementation whendbiss not hold (i.e., there are less
subsequent and distant reads tigan— 2).

Their implementation proposes one phase read operatiorne \@fserations contact as many

15

CHAPTER 2. FACING DYNAMISM

servers as possible such that it remains wait-free,3.es S—t. To convey information from a
write operation to a read operation, thus ensuring ordesimgad operations with respect to write
operations (cf. Property 3 of Definitich1.]), read operations contact as many servers that can
testify of the previous write operation, as possible. By ag#ion, the number of faulty servers
is less than or equal tg thus the number of non-faulty servers that have been cautdxy the
previous write operation IS’ = S—2t. To prevent new/old inversion from happening, i.e., that tw
read operations violate Definitich1.1 each read operation contacts as many servers whose value
has been read by the previous operation, as possible. ThibemnisS” = S— 3t. To generalize,
after a new value has been written®n t servers, theé— 15t following read operation must contact
S’ = S—it servers. Since a client ignores the index of its read oparati the sequence of read
operations following the last write, each server countstithes its value has been read and send
this counter to the client when accessed.

Because the number of servers distinct readers must acagsases while no write occurs, at
some point the number becomes 0, preventing the read apesdt return the last written value.
Thus, the number of distinct readers is bounded.

2.1.2 Quorum System Reconfiguration

The type of reconfiguration we consider aims at moving analfjem one collection of sites to
another collection of sites. Such a mechanism is motivatetiyhnamic systems by the malfunc-
tioning of some sites or in large-scale environments by tdim to load variations.

Reconfiguration evolves the quorum configurations. This raeisim serves two purposes.
First, it aims at installing a new quorum configuration, mmfding participants of the new con-
figuration that should be used. Second, this mechanism ifiange of removing an obsolete
configuration. The key challenges are thus to inform node¢kehew configuration before they
fail and to remove the previous configuration while it is Safelo so.

This reconfiguration process replicates the object valom fan initial collection of sites to a
final collection of sites and multiple executions of such hstsm may follow. That is, a recon-
figurable object must be implemented using two data types:

1. Configuration sequence:the configuration sequence is a record containing some ennfig
rations. This record is used to keep track of some configamatthat have been used and
indicates which configuration is the current one.

2. Object state: the object replica records the value of the object and thecésted tag, the
version of this value. During a reconfiguration executiobjeot state must be conveyed
from the initial configuration to the final one, thus mappihg turrent configuration with
the up-to-date value of the object.

The configuration sequence keeps track of the evolutionegjtstem. At the beginning the
system uses a default configuration and this configuratiatoied as the first index in the con-
figuration sequence. At the end of the first reconfiguratiogcesion, a second configuration is

16

2.1. All-to-all Operation and Reconfiguration

introduced in the sequence and the system uses this conifigucantil another reconfiguration
instance installs a new configuration in the sequence, and.so

The system must use the right configuration. At any time, timeent configuration is the
configuration with the largest index in the configurationwgtre. In the current configuration, the
up-to-date object state must be available. To ensure thaytftem uses the up-to-date object state
the reconfiguration mechanism has to ensure two properties:

1. Configuration consistency:the current configuration owns the up-to-date object raplic
2. Configuration currency: the system uses the current configuration.

For the sake of configuration consistency, the reconfigumatplicates the up-to-date object
replica from the initial configuration to the final one. Congexgtly, by iteration on the length of
the configuration sequence, if the first current configuratiwned the up-to-date object replica,
then the configuration consistency holds.

For the configuration currency, the reconfiguration has fiarm every participant that a new
configuration is installed and that this new configuratiothis current one. For instance, all par-
ticipants may maintain its own configuration sequence shiahany new configuration is mapped
to the largest index. Observe that a responsible nadight take the responsibility of archiving
the set of all configurations but this would require all pap@ants to access nodand the system
would suffer from single-point of failure and congestion.

Ensuring consistency and currency of configurations. An interesting measure is the time a
new configuration needs to become current. Indeed, thisidordefines the minimal uptime
of node maintaining the object state. As soon as all nodestaiaing the object state falil, the
object state is lost. Since the last configuration cannotdake@ to all configuration sequences
simultaneously, when should a configuration be considesecuerent? This question arises the
problem that from two distinct standpoints there may cdews distinct configurations.

In [Her84 Herlihy proposes a four step reconfiguration mechanisnesélstep are as follows:

e Gather the current object state: this step aims at contacting the initial configuration to
ensure that the most up-to-date object state is obtained.

e Storing the object state: this step aims at contacting a new quorum to store the u@t®-d
object state safely.

¢ Initialize a new configuration: this step aims at initializing the new configuration members
by informing that they are part of the new configuration.

e Update the configuration: This step aims at notifying the participants that a new canfig
ration is installed, that is, the old configuration that andonger current can be discarded.

17

CHAPTER 2. FACING DYNAMISM

In these steps, an object state is conveyed to reliablegaaaad the current configuration
changes from the used one to a new one. In the following, we @otisider a single instance of
reconfiguration, thus we refer to these configurations apgaively, thenitial configurationand
thefinal configuration

In this mechanism, operations cannot occur during the fequmation step without potentially
deprecating the object state present in the current coatign: Even though the up-to-date object
state is gathered at the first step, by the time the initiafigaration is discarded, the object state
might be updated so that the final configuration maintainsraupeto-date object state.

A widely adopted solution aims at locking operations dutimgtime the system reconfigures.
That is, the replica mapped to the final configuration canedthaled by a concurrent operation.
Virtually synchronous service8[87 Fri95], and group communication services in genet&ldq
can be used to implement a totally ordered broadcast. Jatadkered broadcast is a useful abstrac-
tion for consistency and currency maintenance. First, fhtotdate object state can be broadcast
to the new set of participants, calledseew, for consistency, then a message can trig the use of
this new view for currency purpose. In general, group comoation method requires that view-
formation is executed while operations stop, so that noablyedification is received in between
affecting the object state at a stale configuration. Thaipgrations are delayed at least the time
the view-formation occurs.

In [MAO4], the authors propose a storage supporting reconfigurtditolerate a large spec-
trum of faults, including malicious ones. Their approacbgmses a reconfiguration mechanism to
overcome the potentially accumulating failures that maguocand when such a mechanism occurs
the pending operations are stopped. At the time the recaatign ends, the previously pending
operations resume from the execution point they were sthfpienilarly to group communication
services, MAO4] aims at replacing views. An initial view becomes inactivefdre a final view
becomes active. During the time none of these views areeaatlients cannot gather responses
from a quorum, that is, operations cannot be performed. gdri®d must be sufficiently long for
the value of the initial view to be conveyed to the final one. Wttes is done, the final view may
become active. This process makes the operation execudjmend on the view replacement (i.e.
reconfiguration) process. Therefore, reconfigurationgearince impacts directly on operation
performance. These kind of approaches trades the indepemdéoperations against consistency.
In contrast, the following algorithms make independenat@msistency cohabit.

2.1.3 Independence of Read/Write Operations

To ensure independence of operations the key idea is toyrtbgf system about the time to up-
grade its configuration. As explained previously, instajla new configuration is not sufficient
to ensure that the system will access the up-to-date objait. sin other words, the four steps
are not sufficient to discard previous reconfiguration ifratiens and reconfiguration can occur
concurrently.

Conversely, to allow operations independence so that theprgress even if reconfiguration

18

2.2. Decentralized Reconfiguration

is pending, the system needs to use distinct configuratibtiseasame time during a transition
period. This period ensures that the result of all previgosrations have been conveyed to the
new configuration object state and that all new operatiotisbeiapplied to the newly installed
configuration.

In RAMBO [LS0Z, Lynch and Shvartsman present independent operatiohsndmarun con-
currently to reconfiguration. In this case, the reconfigaratnay delay some operations but op-
eration progress does not depend on reconfiguration pgres explained previously, the re-
configuration does not install the new configuration whilscdrding the old ones. Instead the
reconfiguration is divided into two major phases:

1. Configuration installation: the reconfiguration installs a new configuration. From this
point on, the system may use multiple configuration at theestime: the initial configu-
ration that belongs to the configuration sequence sincedbmbing of the reconfiguration
execution and the final configuration that is freshly insgll

2. Configuration upgrade: the reconfiguration ensures that enough nodes are aware of th
current configuration, so that any operation will use it befending. This allows participants
to discard the other configuration(s) that have thus becdiselete.

Single reconfigurer. Build on the robust shared-memory emulation ABND95], Lynch and
Shvartsman proposed an extension using dynamic quonu&®7] to provide multi-writer/multi-
reader MWMR shared memory emulation. This emulation is $ieeldnto independent Input/Out-
put Automata [yn96], the reader/writer and the reconfigurer. The reader/wptevides the
client with read and write primitives to access the emulatedred memory. The reconfigurer,
as in [ESO0Q, is executed at some node in the network to replace a quoaunfigtiration by an-
other. Thus it may suffer from some single point of failure.

2.2 Decentralized Reconfiguration

Later on, Reconfigurable Atomic Memory for Basic Objectaf®0o [LS0Z) appeared. RMBO
emulates a MWMR shared memory in dynamic distributed systénpovides a quorum-based
reconfiguration mechanism that can be triggered by anygpaaitit. The participants keep send-
ing messages among each other, we call this action gossapnogg nodes. An improvement of
RamBO appeared inGMS03 where the number of messages is importantly reduced byrdete
ing a subset of nodes that are allowed to communicate. Wheleetbult of GMS09 still satisfies
safety, it may delay, in some cases, the executionfiBo .

The RaMBO service is divided in several automata. The Reader/Writemaaton executes the
operations when requested by the clients. This operatedigided into two phases: the first phase
consults the up-to-date object state by gathering the tagis@ue of all the nodes of at least one
qguorum. Then, the second phase propagates the tags and gathe object. In comparison with

19

CHAPTER 2. FACING DYNAMISM

previous approaches,ARIBO uses biquorum system as defined in Definitioh.3 for operation
and reconfiguration. We refer to the first typecassultation quorumand to the second type as
propagation quorums

The Reconfigurer automaton installs a final configurationgisin external consensus algo-
rithm. As a result multiple configurations can cohabit atshene time. For limiting the number
of active configurations, the reconfigurer upgrades pesailyi to remove obsolete configurations
from the configuration sequence of all participants. Thigrade is carried out locally by each
nodei in two cases. First, if nodediscovers that some of the configurations recorded in itigon
uration sequence have already been removed from the caatiigusequence of other participants.
Second, nodemight garbage collect the obsolete configuration itselthla case, nodeinforms
a consultation quorum and a propagation quorum of the otesotfigurations and gathers the
up-to-date value and tag of the object. This ensures that@amgurrent or later operation request-
ing an obsolete configuration will learn that a more up-teed@nfiguration should be used. Then,
nodei informs a propagation quorum of the new configuration abloetup-to-date object value
and tag. This ensures that later operations accessing\uheamgiguration will have the up-to-date
object value and tag. The upgrade mechanism must be examutedor each of the configurations
to remove.

2.2.1 Coupling Installation and Upgrade of Configurations

A first improvement on the RMBO algorithm aimed at speeding up the upgrade process and min-
imizing the configuration sequenc&l[S03. This upgrade improvement led to a new algorithm
called RamBO Il. The RamBO Il algorithm upgrades many configurations in the meantinfie. |
multiple configurations are present in the system, then ldp@rithm upgrades all configurations
in arow. That is, after a single configuration upgrade meigmanRaAMBO |l ensures that all but
the current configuration can be removed. The two phasesafgdgrade process are depicted on
Figure2.2 Each phase corresponds to the delay of a one message escHarnghase 1, node

i contacts a consultation quorum and a propagation quorurmaddf ebsolete configurations. By
doing so, nodetells all obsolete configuration members about the new cordtgn and a consul-
tation quorum of each obsolete configurations tedbout the up-to-date object state. In phase 2,
nodei propagates the up-to-date object state to a consultatioruquand a propagation quorum
of the new configuration.

Issue related to decentralization. Decentralized reconfiguration execution presents sonve-dra
backs. When reconfiguration is executed at a single node, tthemode can decide the new
configuration to install. However, when the reconfigurat®decentralized then a consensus must
be reached to prevent distinct current configurations frohrabiting.

20

2.2. Decentralized Reconfiguration

Upgrade Phase 1
e Nodei consults the latesibject stateof any previous configuration.

e Nodei propagates the information that there is a new current coraigpn to any previous
configuration.

Upgrade Phase 2

e Nodei propagates the latesbject statd¢o the new configuration.

Figure 2.2: The two phases of the upgrade processofgo Il [GLS03.

2.2.2 Deciding upon the Final Configuration using Paxos

In RAMBO, the reconfiguration assumed the presence of an externa¢éesus algorithm to en-
sure that new configurations are installed one after ther gilneh that there is a totally ordered
sequence of configurations in time in the system. The Recamaibon of RRMBO responsible of
the reconfiguration process is triggered from any nodesestistem. Then, Recon executes an
instance of Paxod.pm9g. Here we propose a reconfigurable distributed storagéecc&®DS,
that integrates Paxos intoARIBO. RDS improves on RMBO by coupling the configuration
installation—consensus instance—uwith the configuratemaval. This coupling speeds up the
reconfiguration process for better fault-tolerance. Tergjthen this result, RDS specifies a fast
version of Paxos. RDS is detailed in Sectib.

The Paxos algorithm is a famous asynchronous consensuttlaigthat achieves optimal de-
lay in practical circumstancésPaxos uses quorums to ensure agreement among participants.
recent years, Paxos experienced an important researceshénong the distributed system com-
munity. Particularly, Paxos has been the subject of at kelasen papers that appeared over the
last seven years.

The key idea of Paxos is as follows. The participants of Pa&kase three rolesproposers
that propose valuegcceptorsthat choose a value, anéarnersthat learn the chosen value. A
single node can play multiple roles. One Paxos instancevidedi into ballots each representing
a new attempt to reach consensus. (Ballots can occur contlyyrare not necessarily ordered,
and may interfere with each other, delaying Paxos ternundiut not violating safety.) Paxos is a

Traditional consensus algorithms save one message detayriparison with Paxos by assuming that the set of
participants that propose a value is the same as the settafipants that decide upon a value. In practice, it might
not be the case.

2Results obtained from the DBLP (Digital Bibliography & Lémy Project {ibl]): eleven papers whose title explic-
itly mention the term Paxos have been published in a joumalamnference between 2000 and 2006. Three of them
appeared in 2006.

21

CHAPTER 2. FACING DYNAMISM

Phase 1aA coordinator sends a new ballot to a quorum of proposers.

137

Phase 1b.Upon reception of the message, any proposer responds bingehd value of the
highest ballot (if any) they have already voted for. Eachppser that learns about a more
up-to-date ballot abstained from any earlier ballot.

Phase 2aAfter having received the response of at least a quorum adfocs, the coord
nator chooses a new value for its ballot and informs a quoriecaeptors of the value it has
chosen for its ballot.

Phase 2b.Any acceptor, that learns about this value and that did netbaifrom that ballot,
may vote for it and tells the learners (and the coordinatoouathis vote. When the learners
(and the coordinator) hear that a quorum of acceptors hasl Vot it, they decide this valuge.

Figure 2.3: Informal description of Paxos

leader-based algorithm in the sense that a siogtedinatoris responsible of one ballot.

The Part-Time Parliament. Paxos has been firstly presented as a set of informal rules in a
technical report of LamportLpm89, published nine years later idm9g. This presentation
describes the functioning of an ancient Part-Time Parligroka Greek island named Paxos. More
precisely, this paper explains how decrees can be passédlagdislators may not be presentin the
Chamber at the same time and may experience difficulties torzonitate. Interestingly, this part-
time parliament boils down to an algorithm providing coteigy despite any number of failures
and resuming properly after more than a half of the nodes/ezco

Figure2.3describes the normal sequence of message sentin a ballmtad Rvhere a message
exchange is called a phase. Acceptors abstain from a lafldtey discover another balldX with
a larger identifier Phase 10). Acceptors may vote for a ballot if they did not abstain fram
earlier. A ballot succeed only if a quorum of acceptors votatk value, however, acceptors of a
single quorum may vote for concurrent ballots. If this happe new ballot with a larger identifier
must be started to try reaching consensus again. The carssisngached when learners receive a
message informing them of the chosen value; this recepibage 2[) terminates the ballot.

Fast Paxos. A fast consensus algorithm is an algorithm in which a nodmkethe chosen value
two message delays of when the value has been proposed.akkast]pamO064 is a fast consensus
algorithm that is a variant of Paxos. Thatis, in Fast Paxasde may learn about the decided value
at the latest @ after the value has been proposed, wheig an upper bound on the transmission
delay of messages. This result is achieved when no colsiacurs between concurrent distinct

22

2.2. Decentralized Reconfiguration

ballots. A collision occurs when any quorum of acceptorgvot distinct values of concurrent
ballots. Another consensus algorithBGMRO0]] can be easily modified using the same basic idea
of Fast Paxos to achieve fast consensus.

The main improvement over classic Paxos is to avoid the tvgb fitressage delays of Paxos
in case no collision occurs. The first phase of the origingbathm aims at renewing the ballot
number. This renewal might be avoided under specific cirtantes:

e At the beginning of the first ballot execution: since no vahss been proposed yet, the
coordinator might first send messazgeproposing any value.

¢ If the same coordinator runs multiple consensus instarthesoordinator who successfully
led the ballot of the previous consensus instance, may thessame ballot number for the
following consensus instance proposing directly any valuaessagea.

¢ If the coordinator sends a message to acceptors for thenead any proposer message
like if it were a2a message. In this specific case an additional collision mgomust be
implemented to ensure progress.

Avoiding first phase speeds up Paxos. Without this phaseltweithm becomes a fast con-
sensus algorithm, i.e., a value is chosen 2 message detaystdfas been proposed. Figuzet
outlines message exchanges used in Classic Paxos and inakastWwhen no failures occur. In
some cases, where Fast Paxos can avoid the first phase, kastd&s 2 message delays less than
Classic Paxos. The time taken to solve the consensus, edintk taken for a proposed value to
be accepted is 3 message delays long in Fast Paxos while miessdage delays long in Classic
Paxos.

Next, we use Fast Paxos to decide upon a new configuratiort.ig;h@e propose a dynamic
memory, RDS, that integrates Fast Paxos for the sake of rgcwafion installation.

Modification to fit reconfiguration needs. Our goal is to benefit from Fast Paxos to determine
rapidly the next configuration to install. To this end, weenate Fast Paxos into our configuration
installation mechanism. Hence, each configuration irstah has its own consensus instance that
aims at deciding upon a unique value: the new configuratiomdtall. Following Fast Paxos
execution, configurations are proposed, voted, and one gthase is decided. Then, we couple
this installation mechanism with the configuration upgradhanism. The result is an all-in-one
algorithm that provides a rapid reconfiguration: it pal&gs the installation and the upgrade to
save time and strengthen fault-tolerance.

Coupling installation and upgrade relaxes a strong requrgsfor consistency: the activity of
obsolete configurations. Recall first that the upgrade psy@esinvestigated above, consults the
object state, informs the previous configurations abounh#we configuration, and propagates the
consulted object state to the new configuration before ofdigorations can be safely removed.
That is, between the time of an installation and the time ofipgrade, at least one consultation

23

CHAPTER 2. FACING DYNAMISM

CLASSIC PAXOS FAST PAXOS

I
I

coordinator or ! coordinator
]

O N

I
I

proposers 1r ! proposers
]

: coordinator/

learners 4+ learners

Time
(message delays)

|
|
|
1
7

A\

\
|

Figure 2.4: Classic Paxos and Fast Paxos. Classic Paxos takess&ges delays to complete.
(Classic Paxos solves consensus in 3 message delays aftes @aé proposed.) Fast Paxos takes
3 message delays to complete in some cases. (Fast Paxodweomsensus in 2 message delays
after values are proposed.)

guorum and one propagation quorum of each old configuratiost memain active. Conversely,
coupling installation and upgrade translates into rempte old configuration as soon as the new
configuration is installed. That is, only one configuratisractive at a time and much less nodes
need to be active in such circumstances, strengtheningttdatance.

Although configuration upgrade and Fast Paxos are two qubased algorithms, Fast Paxos
must be modified for parallelizing the executions of the thgmdathms. Fast Paxos uses standard
guorum systemlamO06l whereas upgrade uses biquorum systems. More precisaipgdan
upgrade there is no need for all quorums to intersect eadr.olifistead, upgrade uses two types
of quorum, and any quorum of the first type must intersect arorum of the second type while
guorums of the same type do not need to intersect. In thewimitp we refer to a quorum of
proposers, which a coordinator may contact during the finsisp of Fast Paxos, agpeoposer-
qgquorum Similarly, we refer to a quorum of acceptors, which a caoathhr might contact in the
second phase, asaaceptor-quorum

24

2.3. Dynamic Distributed Shared Memory (benefiting from (&orssis)

In fact, it is noteworthy that two proposer-quorums do nad intersect in Fast Paxos. This
comes directly from the fact that nodes can learn of a newoball any time, abstaining from
earlier ballots, yet there is no need to abstain during tise ffinase. But for progress of the algo-
rithm, the coordinator needs to learn about the voted vadfieise largest ballot of the consensus
instance. This translates into the need for any proposerqu to intersect any acceptor-quorum.
Furthermore, any acceptor-quorums must intersect eadr, aitherwise two acceptor-quorums
would possibly vote for distinct values. To summarize, inrgke consensus instance Fast Paxos
requires only the following intersections: For any propegpg@orumP, and any acceptor-quorum
A: PNA£0andANA#D0.

Built upon these observations, Fast Paxos is modified to @sbkitfuorum systems of the up-
grade. First, proposer-quorums need not intersect, thcanitbe simply set to either any con-
sultation quorum or any propagation quorum. Since the rbte@proposer-quorum is to return
the value of the largest ballot, we set proposer-quorum®stsutation quorum. Second, every
acceptor-quorum must intersect other acceptor-quorurnalba all proposer-quorums, thus it is
set to the union of a consultation quorum and a propagationugal.

For the sake of communication efficiency, we piggyback ngssaf Fast Paxos and mes-
sages of upgrade, all together leading to the sequence eégplikepicted in Figur2.5. The first
phase of Fast Paxos is unnecessary in many circumstancesvasugly mentioned. The second
phase of Fast Paxos ensures that enough nodes have votieel $ame configuration in the current
ballot (decision) so that no different configurations candeeided later on. The first phase of
upgrade consults the current object state and propagaewethly decided configuration so that
any later operations will apply to it. Object state is eapilggybacked in the Fast Paxos second
phase, however, this phase is insufficient to ensure thatggnonodes are aware of the new con-
figuration. This phase makes a learner decide only if an aoceporum has voted for the right
configuration whereas not enough learners may be awaresofahifiguration. To make sure that
all operations will apply to the new configuration, an aduiil propagation message must be re-
ceived from enough learners. Next Section describes inlsletaynamic memory including this
reconfiguration mechanism.

2.3 Dynamic Distributed Shared Memory (benefiting from
Consensus)
This Section describes a distributed shared memory thetai@ls dynamism, called RDS. We

present the algorithm for a single object; atomicity is preed under composition and the com-
plete shared memory is obtained by composing multiple ¢djec

Reconfigurable Distributed Storage for dynamic networks. The Reconfigurable Distributed
Storage (RDS) integrates the Paxos algorithm for parti¢gondecide upon a new configuration.

25

CHAPTER 2. FACING DYNAMISM

RECONFIGURATION

Z
o coordinator/
proposer
3r acceptors
4 learners
5+
learners

Time
(message delays)

Figure 2.5: The reconfiguration protocol of RDS takes at theimam 5 message delays and may
take 3 message delays. After consensus is reached a sintfiersal message delay is necessary
for informing enough nodes about the newly decided configura

During the reconfiguration mechanism, each node consglé@salf to be the leader can start exe-
cuting a consensus instance. If no too many instances afictiog, then the participants install
the new configuration and remove the obsolete one immeyiatir in a safe manner. The major
advantage over the previous reconfigurable mechanismspgetxd-up operations and to speed-up
reconfigurations. This directly translates into bettettftalerance and higher quality of service.
The RDS algorithm is described in the next subsection as aesequof phases. Each of these
phases can run concurrently with each other. The detaitpatitim is specified in Input/Output
Automata in AppendiB.

26

2.3. Dynamic Distributed Shared Memory (benefiting from (&orssis)

2.3.1 Read and Write Operations using Global Knowledge

Algorithm 2 Read andWrite protocols, requiring up to two phases (four message delays)

1: State of nodei:

s, a sequence number;

configs the set of all known active configurations;

op-configsall known active configurations at the start of the currdrdge;
op-typec {read,write}, the operation type;

message-type {RW1la,RW1b,RW2a, RW2b}, the type of the message.

7: RW-Phase-1a:

8 Choose a unique sequence number,
9: for everyc € configsdo

0 SendRW1a,s)toRec

11: op-configs— configs

12: RW-Phase-1b:
13: Upon reception ofRW1a,s) from j:
14: SendgRW1b, s tag,value to j

Read and write operations proceed by accessing the curractilye configurations. Each
replica maintains #éag and avaluefor the data being replicated. Tag is a counter-id couple use
as a write operation version number where its node id seiwestigbreaker. Each read or write
operation potentially requires two phases: toasultationphase RW-Phase-) to consult some
replicas, learning the most up-to-date tag and value, amgrtipagationphase RW-Phase-3 to
propagate the tag and value to the replicas. In a consultphase, the initiator contacts one con-
sultation quorum from each active configuration, and ren@mthe largest tag and its associated
value. In a propagation phase, read operations and writeatipes behave differently: a write
operation chooses a new tag that is strictly larger thanrleedescovered in the consultation phase,
and sends the new tag and new value to a write quorum; a reaatigmesimply sends the tag and
value discovered in the consultation phase to a propaggtiorum.

Single-phase read operations. Sometimes, a read operation can avoid performing the pespag
tion phase, if some prior read or write operation has alrgadpagated that particular tag and
value. Once a tag and value has been propagated, be it by arraadrite operation, it is marked
confirmed(Line 39). If a read operation discovers that a tag has been confirinean skip the
second phase (Line=+-25).

One complication arises when during a phase, a new configata¢comes active. In this case,
the read or write operation must access the new configurasomell as the old one. In order to
accomplish this, read or write operations save the set oéntly active configurationgp.configs
when a phase begins (Lind4, 28); a reconfiguration can only add configurations to this set—

27

CHAPTER 2. FACING DYNAMISM

15: RW-Phase-2a:

16: Upon reception ofRW1b, s, tag, value from j:

17: if tag > tag then

18: (tag,val) « (tag,value

19: rved-from-2a— rved-from-2aU {j}

20: if for anyc € configs there existR € ¢ such thaR C rcvd-from-2athen

21: if op-type= write then

22: (tag.counter, tag.id;) < (tag.countef+ 1,i)
23: val v

24: else iftagis marked agonfirmed then

25: returnval

26: for everyc € configsdo

27: SendRW2a, s, tag, vali) toW € ¢

28: op-configs— configs

29: RW-Phase-2b:

30: Upon reception ofRW2a, s, tag, value from j:
31: if tag> tag then

32: (tag,val) — (tag,value

33: SendgRW2b, s tag,val;, configs to j

34: RW-Done:

35: Upon reception ofRW2b, s, tag, value configs from j:

36: op-configs— op-configs) configs

37: rvcd-from-done— rvcd-from-doneJ {j}

38: if for everyc € configs there exist®V € ¢ such thatV C rcvd-from-donehen

39: Marktag asconfirmed
40: if op-type= read then
41: returnval;

none are removed during the phase. Even if a reconfiguratiehés with a configuration, the
consultation or propagation phase must continue to use it.

2.3.2 Reconfiguration by Replacement

This section presents a periodic and global reconfigurgtratocol. Quorum members run a
Fast Paxos consensus instance to decide upon a new configuainstall, then they install this
configuration by notifying the nodes.

When a client wants to change the set of replicas, it initiatesconfiguration, specifying a
new configuration. The nodes then initiate a consensusqobtensuring that everyone agrees on
the active configuration, and that there is a total orderimganfigurations. The resulting protocol
is somewhat more complicated than typical consensus, airtbe same time, the reconfiguration
operation propagates information from the old configuratmthe new configuration.

28

2.3. Dynamic Distributed Shared Memory (benefiting from (&orssis)

Algorithm 3 Recon protocol requiring up to three phases (five message delays).

1: State of nodei: c, the current configuration to replacg; the configuration competing for installation in the
current reconfiguratiorieader, a boolean indicating if the current node considers itse#f eoordinatorproposal
the configuration proposed by the leadetag, valug the tag and value of the object.

2: Recon-Phase-Initi: If cis the only configuration in the set of active configuratiadhsn the reconfiguration can
begin. The request is forwarded to the putative leaderelféhder has already completed Phase 1 for some ballot
b, then it can skip Phase 1, and use this ballot in Phase 2. lifegithe leader performs Phase 1.

Recon-Phase-la:
if leaderthen
Chooses a unique larger ballbhum
Send(Reconla,b.num toRe ¢
proposal— ¢

N TR

8: Recon-Phase-1b:
9: Upon reception ofReconla,b.num from ¢:
10: if there is nd’ € known-ballot b’.num> b.numthen

11: Letb” be such thab” .num= max{b.num} : b € voted-ballofc]
12: Letc” beb”.conf
13: Send/Reconlb,b.num configsb”.numc”) to £

14: Recon-Phase-2a:
15: if leaderthen

16: Upon reception ofReconlb,b.num configsb”.numc”) from j:

17: if (b”.num= 1) then S« SU{< b”.numc” >}

18: rvcd-from-2a— rved-from-2aU {j }

19: op-configs— op-configss {configs

20: if there existRR € ¢ such thaR c rcvd-from-2athen

21: if S# 0then

22: Letproposalbe such thatb, proposa} € Sandb = maxp ,)es{bn}
23: SendRecor2a,b.numc,v) toRe cand tow € ¢

24: S0

25: rvcd-from-2a— 0

26: Recon-Phase-2b:

27: Upon reception ofRecon2b,b.numc,c’) from ¢:

28: if cis the only active configuratiotihen

29: if there is ndy’ € known-ballot b/ .num> b.numthen

30: Send(Recon2b,b.numc,c/,tag,value toRe cand toW € ¢

The reconfiguration protocol uses the Fast Paxos algoritiROP, LamO05 Lam06l. Fast
Paxos is detailed above. The reconfiguration request isafol@d to a coordinator, which coordi-
nates the reconfiguration, consisting of three phaspge@arephaseRecon-Phase-1in which a

29

CHAPTER 2. FACING DYNAMISM

ballot is made ready, proposephaseRecon-Phase-2in which the new configuration is proposed,
and apropagatephaseRecon-Phase-3in which the results are distributed.

31: Recon-Phase-3:

32: Upon reception ofRecon2b,b.numc,c’,tag, value from j:
33: rved-from-3a— rved-from-3aU {j}

34: if cis the only active configuratiothen

35: if there exist®V € c andR € ¢ such thaRUW cC rcvd-from-3athen
36: configs— configa{c'}

37: op-configs— op-configsJ {c'}

38: if tag > tag then

39: (tag,val)) < (tag,value

40: Send(Recon3a, ¢, ¢/, tag,value to Re cand towW € ¢

41: rvcd-from-3a«— 0

42: Recon-Phase-Done:

43: Upon reception ofRecon3a,c, ¢, tag, value from j:

44: rvcd-from-done— rved-from-doneJ {j}

45: if there exist®W € c andR € ¢ such thaRUW C rcvd-from-donehen
46: configs— configs\ {c}

47: rvcd-from-done— 0
48: if tag > tag then
49: (tag,val) < (tag,value

The prepare phase accesses a consultation quorum of theriduration, and thus learns
about any earlier ballots (Lin20). When the coordinator concludes the prepare phase, it esoos
a configuration to propose: if no new configurations have gentproposed to replace the current
old configuration, the coordinator can propose its own prefenew configurations (Lin&7);
otherwise, the coordinator must choose the previously gseg configuration with the largest
ballot (Line 7). The propose phase then begins, accessing both a read anté ayuorum of
the old configuration (Lin&5). This serves two purposes: it requires that the nodes imlthe
configuration cast a vote for the new configuration, and itect$é information on the tag and
value from the old configuration. Finally, the propagategghaccesses both a read and a write
guorum from the old configuration (Lin&5); this ensures that enough nodes are aware of the new
configuration to ensure that any concurrent reconfiguratguest obtains the desired result.

There are two optimizations included in the protocol. Fiifsh node has already prepared a
ballot as part of a prior reconfiguration, it can continuede the same ballot for the new reconfig-
uration, without redoing the prepare phase. This meansifttfa¢ same node initiates multiple
reconfigurations, only the first reconfiguration has to penféehe prepare phase. Second, the
propose phase can terminate wtaty node, even if it is not the coordinator, discovers that an
appropriate set of quorums has voted for the new configuratiall the nodes in a quorum send
their responses to the propose phase to all the nodes indlemofiguration, then all the replicas
can terminate the propose phase at the same time, immgdsateding out propagate messages.

30

2.3. Dynamic Distributed Shared Memory (benefiting from (&orssis)

Again, when any node receives a propagate response fronglenmdes, it can terminate the
propagate phase. This saves the reconfiguration one ma$siage Together, these optimizations
mean that when the same node is performing repeated recatians, it only requires three mes-
sage delays: the coordinator sending the propose messd#ge ¢td configuration, the nodes in
the old configuration sending the responses to the nodeg ioldhconfiguration, and the nodes in
the old configuration sending a propagate message to thaanjtwhich can then terminate the
reconfiguration.

2.3.3 Safety Proof: Implementing Atomicity

In this section, we show that the read and write operatioesatomic (linearizable). We depend
on two lemmas commonly used to show linearizability: Lemi&a4.0 and 13.16 inLyn96).

We use the tag of the operations to induce a partial orderngperations, which then allows
us to prove the key property necessary to guarantee atgmiicit; is an operation that completes
beforemy, begins, then the tag af; is no larger than the tag ab; if To is a write operation, the
inequality is strict.

Ordering configurations. Before we can reason about the consistency of read and wet@-op
tions, however, we must show that nodes agree on the actifegacations. For a reconfiguration
replacing configuratiore, we say that reconfiguratiofc, c’) is well-definedif no node replaces
configurationc with any configuration excem. This is, essentially, showing that the consensus
protocol successfully achieves agreement.

The proof is an extension of the proof ibhgm98 which shows that Paxos guarantees agree-
ment, modified to incorporate optimizations in our algaritand reconfiguration.

Theorem 2.3.1 For all executions, there exists a sequence of configuratiancy, ..., such that
reconfiguration(c;, ¢i+1) is well-defined for all i.

Proof. We proceed by induction: assume that forfak ¢, (cy,cp 1) is well-defined. If configu-
rationcy is ever replaced in the set of active configurations with gumétionc, 1, we show that
(ce,Co11) is also well-defined. Assume, by contradiction, that thisdsthe case. Then there exist
two nodes, sayand |, that complete the propose phaBe¢on-Phase-Pand replace, with two
different configurationsg andc’. These two nodes must have different ballttsndb’, respec-
tively, at the end of the propose phag&efon-Phase-R Without loss of generality, assume that
b<b.

At some point, ballob’ must have completed a prepare ph&edon-Phase-1 First, consider
the case wher®' was prepared as part ofracon operation installing configuratiooy, 1. Since
by induction all smaller reconfigurations are well-definee, can conclude that the read quorum
associated with preparirg) must intersect the write quorum associated with propoiiret i’ be
a node in the intersection. iffreceived the prepare message fridmprior to the propose message

31

CHAPTER 2. FACING DYNAMISM

for b, then ballotb could not be smaller than ballbt. Therefore, we can conclude that ndde
received the propose messagelipalong with the proposed configuratias),prior to responding
to the prepare message fot. Hence when some node proposed baliotit must have been
aware of ballob and configuratior, leading to the conclusion that= ¢, contradicting our initial
assumption. (It is possible to show using the same argurhahinb configuration with a larger
ballot can be available to the proposetb]

Second, consider the case, then, wHerneas prepared as part ofrecon operation installing
a configuratiorcy < ¢;. In this case, we can show that> b/, contradicting our assumption. In
particular, someecon for ¢, must terminate prior to the proposalskandb’. By examining the
guorum intersections, we can show that the bdllanust have been discovered by the proposal
for this earlierrecon installingc,; from there it must have been discovered by the proposahéor t
recon installingcy ., 1, and so on, until it was discovered by the proposabidrom which we can
conclude thab > b'.

We can therefore conclude from these two cases that recoatiigoi(c,, ¢, 1) is well-defined.
O

Ordering operations. We now proceed to show that tags induce a valid ordering oopeea-
tions. If both operations “use” the same configuration, tthes property is easy to see: operation
T propagates its tag to a propagation quorum, mndiscovers the tag when reading from a con-
sultation quorum. The difficult case occurs whenand o use differing configurations. In this
case, the reconfigurations propagate the tag from one coatigu to the next.

We refer to the smallest tag at a node that replaces configni@twith configurationcy, 1 as
the “tag for configuratiorcy, 1.” We can then easily conclude from this definition, alonghnat
simple induction argument, that:

Invariant 2.3.2 If some node i has configuration.g in its set of active configurations, then its
tag is at least as large as the tag for configuration ¢

This invariant allows us to conclude two facts about how rimfation is propagated by re-
configuration operations: the tag of each configuration isanger than the tag of the following
configuration, and the tag of a read/write operation is ngdiathan the tag of a configuration in
its set of active configurations.

The next lemma requires showing how read and write opepoopagate informatioto a
reconfiguration operation:

Lemma 2.3.3 If ¢, is the largest configuration in i’'s op-config set of operatibnonfigurations
whenRW-Phase-2 completes, then the tag of the operation is no larger thartageof configura-

tion ¢/ 1.

Proof. During theRW-Phase-2 the tag of the read or write operation is sent to a propagatio
qguorum of the configuration,. This quorum must intersect the consultation quorum duitiegy

32

2.3. Dynamic Distributed Shared Memory (benefiting from (&orssis)

Recon-Phase-propagate phase of the reconfiguration that installs. Leti’ be a node in the
intersection of the two quorums. iffreceived the reconfiguration message prior to the rea@/writ
message, then nodevould learn about configuratiory ;. However we assumed that was the
largest configuration imp-configati at the end of the phase. Therefore we can conclude that the
read/write message tgpreceded the reconfiguration message, ensuring that theasagansfered

as required. O

Theorem 2.3.4 For any executiong, it is possible to determine a linearization of the operasio

Proof. As discussed previously, we need to show that if operatioprecedes operatiom, then
the tag ofry is no larger than the tag af;, and if Ty is a write operation, then the inequality is
strict.

There are three cases to consider. First, assmnad Ty, use the same configuration. Then
the write quorum accessed during the propagate phasg iotersects the consultation quorum
accessed during the consultation phassoensuring that the tag is propagated.

Second, assume that thmallestconfiguration accessed oy in the propagate phase is larger
than thelargestconfiguration accessed big in the consultation phase. This case cannot occur.
Let ¢, be the largest configuration accessedtby Prior to Ty, some configuration installing
configurationc, 1 must occur. During the final phas®&econ-Phase-2f the reconfiguration, a
consultation quorum of configuratian is notified of the new configuration. Therefore, during the
consultation phase afy, the new configuration foc,, 1 would be discovered, contradicting our
assumption.

Third, assume that thiargest configurationc, accessed byry in the propagate phad@\w-
Phase-2s smaller than themallestconfigurationc, accessed by, in the consultation phag®W-
Phase-1 Then, Lemm&.3.3shows that the tag of; is no larger than the tag of; Invariant2.3.2
shows that the tag af; is no larger than the tag @ and that the tag of, is no larger than the
tag ofp. Together, these show the required relationship of the tags

If Ty skips the second phade\W-Phase-2 then some earlier read or write operation must have
performed ERW-Phase-2for the same tag, and hence the proof follows as before. O

2.3.4 Liveness Proof: Speeding up Reconfiguration to strengthen Fault TFol
erance

In this section we examine the performance of RDS, focusinthperfficiency of reconfiguration
and how the algorithm responds to instability in the netwdrkorder for the algorithm to make
progress in an otherwise asynchronous system, we need ®arsskies of assumptions about the
network delays, the connectivity, and the failure pattehngarticular, we assume that, eventually,
the network stabilizes and delivers messages with a delaly dhe main results in this section
are then as follows. First, we show that the algorithm “dizds” within e+ 2d time after the net-
work stabilizes, where is the time required for new nodes to fully join the system aatify old

33

CHAPTER 2. FACING DYNAMISM

nodes about their existence. Second, we show that aftelghathm stabilizes, reconfiguration
completes in 8 time; if a single node performs repeated reconfiguratidres) after the first, each
subsequent reconfiguration completesdtigne. Finally, we show that after the algorithm stabi-
lizes, reads and writes complete id 8me, reads complete inddtime if there is no interference
from ongoing writes, and in@if no reconfiguration is pending.

Eventual synchrony as a requirement. Asynchrony makes it impossible to guarantee that con-
sensus will terminate in a system where continual nodertslwccur as it has been proved by
Fisher, Lynch, and PatersoRL[P83. In order to ensure that the algorithm progresses, we assum
among others, eventual synchrony, meaning that the conuaution between nodes becomes even-
tually synchronous. More precisely, we assume that evént{a some unknown point) the net-
work stabilizes, becoming synchronous and delivering agss in bounded (but unknown) time.
Our goal is to model a system that becomes stable at somedwnlipoint during the execu-
tion. Formally, leta be a (timed) execution anal a finite prefix ofa during which the network
may be unreliable and unstable. Afterthe network is reliable and delivers messages in a timely
fashion. We refer tdtime(a’) as the time of the last event af. In particular, we assume that
following /time(a’): (i) all local clocks progress at the same rate, (ii) message not lost and
are received in at mosittime, whered is a constant unknown to the algorithm, (iii) nodes respond
to protocol messages as soon as they receive them and theeychsd messages evattime to
all service patrticipants, (iv) all enabled actions are pssed with zero time passing on the local
clock.

Other assumptions. Additionally, we restrict the rate of reconfiguration afstabilization, and
limit node failures such that some quorum remains availedd@ active configuration. (For exam-
ple, in majority quorums, this means that only a minority oflas in a configuration fail between
reconfigurations.) We present a more detailed explanati@ection2.3.5

Generally, in quorum-based algorithms, the operationgaeganteed to terminate provided
that at least one quorum does not fail. In contrast, for anfigorable quorum system we assume
that at least one quorum does not fail prior to a successtanfeguration replacing it. For ex-
ample, in the case of majority quorums, this means that omiyrerity of nodes fail in between
reconfigurations. Formally, we refer to this @snfiguration-viability at least one read quorum
and one write quorum from each installed configuration serdd after (i) the network stabilizes
and (ii) a following successful reconfiguration operation.

We place some easily satisfied restrictions on reconfigumakirst, we assume that each node
in a new configuration has completed the joining protocokast timee prior to the configura-
tion being proposed, for a fixed constant We call thisrecon-readiness Second, we assume
that after stabilization, reconfigurations are not too tiextf: 5l-recon-spacingmplies that two
reconfiguration termination are at least &part.

Also, after stabilization, we assume that nodes, once theg fjoined, learn about each other

34

2.3. Dynamic Distributed Shared Memory (benefiting from (&orssis)

quickly, within timee. We refer to this agin-connectivity

Finally, we assume that a leader election service choos@&sgke soordinator, namely the
leader, at time /time(a’) + e and that it remains alive until the next leader is chosen andaf
sufficiently long time for a reconfiguration to complete. xample, a leader may be chosen
among the members of a configuration based on the value okatifidr.

Bounding reconfiguration delays. We now show that reconfiguration attempts complete within
at most five message delays after the system stabilize<. heethe node identified as the leader
when the reconfiguration begins.

The following lemma describes a preliminary delay in reagunfation when a non-leader node
forwards the reconfiguration request to the leader.

Lemma 2.3.5 Let the firstrecon(c, ') event at some active node i, wheeé ¥, occur at time t and
lett’ bemax(/time(a’),t) +e. Then, the leadérstarts the reconfiguration process at time-2d.

Proof. When therecon(c, ') occurs at time, one of two things happen: either the reconfiguration
fails immediately, ifc is not the current, unique, active configuration, or ten request to is
forwarded to the leader. Observe thain-connectivityensures that knows the identity of the
leader at timé’, so no later than timg +d, i sends a message#that includes reconfiguration re-
quest information. By tim€ + 2d the leader receives message frioamd starts the reconfiguration
process. O

The next lemma implies that after some time following reqgunfation request, there is a com-
munication round where all messages include the same ballot

Lemma 2.3.6 After time/time(a’) + e+ 2d, £ knows about the largest ballot in the system.

Proof. We know that afteftime(a’), only ¢ can create a new ballot. Therefore ballahust have
been created befodéme(a’). Sincel is the leader at timéime(a’) + e, we know that has joined
before timeftime(a’).

If ballot b still exists after/time(a’) (the case we are interested in), then there are two possible
scenarios. Either balldi is conveyed by an in transit message or it exists an active nadare
of it at time /time(a’) +e. In the former case, gossip policy implies that the in tramsssage is
received at time, such thattime(a’) +e <t < (time(a’) + e+ d. However, it might happen that
¢ does not receive it, if the sender ignored its identity attilne thesend event occurred. Thus,
at this time one of the receiver sends a message contatimg. Its receipt occurs before time
‘time(a’) + e+ 2d and/ learns aboub. In the latter case, by join-connectivity assumption aktim
¢time(a’) +-e, i knows about. Gossip policy impliessends a messagetbefore/time(a’) +e+d
and this message is received blgefore/time(a’) + e+ 2d, informing it of ballotb. O

Next theorem shows that any reconfiguration completes in @strdd time, following
‘time(a’). In Theorem2.3.8we show that when the leader node has successfully compteted

35

CHAPTER 2. FACING DYNAMISM

previous reconfiguration request then it is possible forstitesequent reconfiguration to complete
in at most &.

Theorem 2.3.7 Assume thaf starts the reconfiguration process initiated fegon(c,c’), at time
t > (time(a’) + e+ 2d. Then the corresponding reconfiguration completes ne taten t+ 5d.

Proof. By LemmaZ2.3.6 ¢ knows about the largest ballot in the system aftéme(a’) + e+

2d. By configuration-viability we know that at least one consultation quorum and at least on
propagation quorum of configuratiamare active during the reconfiguration, aregon-readiness
implies that nodes have joined the service and are awarechfaher. The phases of Paxos imply
that there are two message exchanges followed by a broadgatshseRecon-Phase-3aSince
the message delay is boundeddyyeach message exchange requirggithe and an additional

d for the broadcast. From this we conclude that the reconfiigurgrocess terminates in phase
Recon-Phase-3fat timet + 5d. O

Theorem 2.3.8 Let ¢ be the leader node that successfully conducted the recoafign process
from c to ¢. Assume that starts a new reconfiguration process frohiac” at time t> /time(a’) +
e+ 2d. Then the corresponding reconfiguration frohtaccd’” completes at the latest at time-t3d.

Proof. The proof is analogous to the proof of Theor@m.7. Observe that at the beginning of
the new reconfiguration procegésas the highest ballot. This means thahay keeps its ballot
and starts fronRecon-Phase-2dsince it has previously execut®econ-Phase-1p Hence only
a single message exchangdriacon-Phase-2d&econ-Phase-2land a single broadcast following
Recon-Phase-3#akes place. Therefore, the last phase of Paxos occurseit-#8d. O

Bounding read-write delays. This Section presents bounds on the duration of read/wpitean
tions under assumptions stated in the previous section.|lIRexa Section2.3that both the read
and the write operations are conducted in two phases, fesjulry phase and second the propa-
gate phase. We begin by first showing that each phase requileast 4 time. However, if the
operation is a read operation and no reconfiguration and ite pnopagation phase is concurrent,
then it is possible for this operation to terminate in ontl-2see proof of Lemma.3.9 The final
result is a general bound ofi®n the duration of any read/write operation.

Lemma 2.3.9 Consider a single phase of a read or a write operation initiastdhode i at time
t, where i is a node that joined the system at timaxt — e — 2d, /timg(a’)). Then this phase
completes at the latest at tinmeax(t, /time(a’) + e+ 2d) + 4d.

Proof. Let ck be the largest configuration in any active nodgisconfigsset, at time — 2d. By the
configuration-viabilityassumption, at least one consultation quorum and at leaspr@mpagation
qguorum ofcy are active for the interval ofdiaftercy.; is installed. By thgoin-connectivityand

36

2.3. Dynamic Distributed Shared Memory (benefiting from (&orssis)

the fact thai has joined at time mak— e— 2d, /time(a’)), i is aware of all active members of
by the time mag — 2d, /time(a’) + e).

Next, by the timing of messages we know that witiime a message is sent from each active
members oy to i. Hence, at time méax, /time(a’) + e+ 2d) nodei becomes aware af, i.e.
Cx € op-configs

At d time later, messages from phd?®®/-Phase-1laor RW-Phase-2aare received an®W-
Phase-1bor RW-Phase-2bstarts. Consequently, no later than ritagime(a’) + e+ 2d) + 2d,
the second message R¥W-Phase-1lor RW-Phase-2is received.

Now observe that configuration might occur in parallel, éfiere it is possible that a new
configuration is added to thogp-configset duringRW-Phase-1or RW-Phase-2 Discovery of new
configurations results in the phase being restarted, hempleting at time mai, /time(a’) + e+
2d) + 4d. By recon-spacingassumption no more than one configuration is discoveredédie
phase completes. O

Theorem 2.3.10Consider a read operation that starts at node i at time t:

1. If no write propagation phase is pending at any node and noméguration is ongoing, then
it completes at timenax(t, /time(a’) + e+ 2d) + 2d.

2. If no write propagation phase is pending, then it completas time
max(t, /time(a’) + e+ 2d) +8d.

Consider a write operation that starts at node i at time t. Théncompletes at time
maxt, /time(a’) + e+ 2d) +8d.

Proof. At the end of theRW-Phase-1 if the operation is a write, then a new non confirmed
tag is set. If the operation is a read, the tag is the highestived one. This tag was main-
tained by a member of the contacted consultation quorumjtaadonfirmed only if the phase
that propagated it to this member has completed. From thigt,pb the tag is not confirmed,
then in any operation the fix-point of propagation phB%¥-Phase-2has to be reached. But, if
the tag is already confirmed then the read operation cannatendirectly at the end of the first
phase. By Lemma.3.9 this occurs at the latest at time nfaxtime(a’) + e+ 2d) + 4d; or at time
max(t,/time(a’) + e+ 2d) + 2d if no reconfiguration is concurrent. Likewise by Lemr2a.9
the RW-Phase-2fix-point is reached in at mostddtime. That is, any operation terminates by
confirming its tag no later than méx/time(a’) + e+ 2d) + 8d. O

2.3.5 Experimental Analysis of Reconfiguration

Musial and Shvartsmam[S04] developed a prototype distributed implementation thedrporate
both RamBO and RamBO |l. The system was developed by manually translating thet/@ut-
put Automata specification to Java code. To mitigate th@thiction of errors during translation,

37

CHAPTER 2. FACING DYNAMISM

the implementers followed a set of precise rules, similafG@899, that guided the derivation
of Java code from Input/Output Automata notation. The imaters developed RDS based on
the existing RmMBO codebaseGMS04 on a network of workstations. The primary goal of our
experiments was to gauge the cost introduced by reconfigaratlvhen reconfiguration is unnec-
essary, there are simpler and more efficient algorithms fdement a replicated DSM. Our goal
is to achieve performance similar to the simpler algorithwhde using reconfiguration to tolerate
dynamic changes.

To this end, we designed three series of experiments wherpdtormance of RDS is com-
pared against the performance of an atomic memory serviahwilas no reconfiguration capabil-
ity — essentially the algorithm of Attiya, Bar Noy, and DoleéVND95] (the “ABD protocol”). In
this section we briefly describe these implementations a@skmt our initial experimental results.
The results primarily illustrate the impact of reconfigisaton the performance of read and write
operations.

For the implementation we manually translated the I0A dpation (from the appendix) into
Java code. The target platform is a cluster of eleven mashunaning Linux. The machines are
various Pentium processors up to 900 MHz interconnected %20 Mbps Ethernet switch.

Each instance of the algorithm uses a single socket to reasdssages over TCP/IP, and main-
tains a list of open, outgoing connections to the other gigents of the service. The nondeter-
minism of the 1/0 Automata model is resolved by schedulirgalty controlled actions in a round-
robin fashion. The ABD and RDS algorithm share parts of the eodelated to reconfiguration,
in particular that related to joining the system and acogsguorums. As a result, performance
differences directly indicate the costs of reconfiguratidfile these experiments are effective at
demonstrating comparative costs, actual latencies nkady Inave little reflection on the operation
costs in a fully-optimized implementation.

Experiment (a). In the first experiment, we examine how the RDS algorithm redpdo dif-
ferent size configurations (and hence different levels oltftolerance). We measure the average
operation latency while varying the size of the configuragioResults are depicted in Figt&.5

In all experiments, we use configurations with majority quos. We designate a single ma-
chine to continuously perform read and write operations @rdpute average operation latency
for different size configurations, ranging from 1 to 5. In tiests involving the RDS algorithm,
we chose a separate machine to continuously perform recoafign of the system — when one
reconfiguration request successfully terminates anoshermediately submitted.

Experiment (b). In the second set of experiments, we test how the RDS algoniésponds

to varying load. Figure2.3.5presents results of the second experiment, where we cortipaite
average operation latency for a fixed-size configurationvef fhembers, varying the number of
nodes performing read/write operations changes from 1 té\d@in, in the experiments involving
RDS algorithm a single machine is designated to reconfigwesyistem. Since we only have

38

2.3. Dynamic Distributed Shared Memory (benefiting from (&orssis)

250.00

200.00+

150.00

100.00

Average operation latency in m

50.00

—— ABD
——-RDS

0.00
1 2 3 4 5

Configuration size

Figure 2.6: Average operation latency: as size of configamatchanges

eleven machines to our disposal, nodes that are membersftgwations also perform read/write
operations.

250.00

ronco. I———I\././“.—’_.

*
L 4

150.00

100.00

Average operation latency in m

50.00

——ABD
—-RDS

0.00

1 2 4 6 8 10
Number of readers & writers

Figure 2.7: Average operation latency as number of node®pang read/write operations
changes.

39

CHAPTER 2. FACING DYNAMISM

Experiment (c). In the last experiment we test the effects of reconfiguratiequency. Two
nodes continuously perform read and write operations, Baeéxperiments were run varying the
number of instances of the algorithm. Results of this testapécted in Figur@.3.5 For each of
the sample points on the x-axis, the size of configurationl is@alf of the algorithm instances.
As in the previous experiments, a single node is dedicateddonfigure the system. However,
here we insert a delay between the successful terminati@aretonfiguration request and the
submission of another. The delays used are 0, 500, 1000,G0@iilliseconds. Since we only
have eleven machines to our disposal, in the experimenlvimgpl16 algorithm instances, some of
the machines run two instances of the algorithm.

400

350 4

w

o

o
L

N

al

o
L

N

o

o
L

-

al

o
L

—O—ABD
—{+RDS:2000
—/—RDS:1000
—>—RDS:500
—%—RDS:0

Average operation latency in m:
-
o
o
.

a1
o
L

o

2 4 8 16
Number of algorithm instances

Figure 2.8: Average operation latency as the reconfiguragiod the number of participants
changes.

Interpretation. We begin with the obvious. In all three series of experimetits latency of
read/write operations for RDS is competitive with that of gi@pler ABD algorithm. Also, the
frequency of reconfiguration has little effect on the operatatency. These observations lead us
to conclude that the increased cost of reconfiguration ig madest.

This is consistent with the theoretical operation of theoatgm. It is only when a reconfigu-
ration exactly intersects an operation in a particularlg bay that operations are delayed. This is
unlikely to occur, and hence most read/write operationsohly a modest delay.

Also, note that the messages that are generated durindfigao@tion, and read and write oper-
ations, include replica information as well as the recomigan information. Since the actions are
scheduled using a round-robin method, it is likely that imsdnstances a single communication

40

2.4. Discussion and Conclusion

phase might contribute to the termination of both the reatévand the reconfiguration operation.
Hence, we suspect that the dual functionality of messadps hekeep the system latency low.

A final observation is that the latency does grow with the siz¢he configuration and the
number of participating nodes. Both of these require in@éasmmunication, and result in larger
delays in the underlying network when many nodes try simelbaisly to broadcast data to all
others. Some of this increase can be mitigated by using arowagd multicast implementation;
some can be mitigated by choosing quorums optimized spaityfior read or write operations.

2.4 Discussion and Conclusion

2.4.1 Communication Overhead

As pointed out by the experimentations, communication ictgpanuch more on the operation delay
than reconfiguration. In networks where the bandwidth istéth mechanisms that needs a lot of
bandwidth may provoke communication bottleneck at somatpafithe network. Recent scale-
shift of distributed systems strengthen this observatibthe communication complexity of the
algorithm depends on the amount of participants, bandwidtiation prevents the system from
scaling. Next, we propose two directions of remedying thabgem.

This scalability issue has already been experienced in g@eeto-peer file-sharing applica-
tions like Gnutella §nug, where all peers participate equally while some of theneldrastically
low bandwidth capabilities. As a result of utilizing peers an equality-based policy while re-
sources are heterogeneously scattered among peers, tet apable peers limit the overall per-
formance of the system. To circumvent this well-known isgeer-to-peer applications tend now
to use a peer depending on the amount of resource it offerse plarticularly, Kazaakjaz-like
file-sharing applications elect supernodes which are peghsextra-capabilities to handle most
of the requests. More generally, differing peer-to-pegaliaptions, like Skype, demonstrate the
need of using specific nodes to handle firewall/RAly-passing. To conclude, large-scale sys-
tems grow unboundedly while the amount of resources is badin@his changes the peer-to-peer
paradigm of "all peers must act equally” into "all peers maist proportionally to the resources it
has”. Consequently, the problem for a peer to determine homugt participate depends on the
relative amount of resource it has compared to other pedespiioblem of determining the relative
amount of resource a peer has has been identified atidgtiduted slicing Dedicated solutions
are described in Appendi.

2.4.2 Conclusion

This chapter addresses the problem of emulating a distglaltared memory in a dynamic system.
Dynamism induces an unbounded amount of dynamic eventsdimg failures. These dynamic

SNAT: Network Address Translation.

41

CHAPTER 2. FACING DYNAMISM

events are coped with using a periodic mechanism, callehfigiration, that continually reinstall
an active quorum system. Assuming that no too many failucesroduring a bounded period of
time, this reconfiguration mechanism ensures the avatabil the memory at any time.

The reconfiguration relies on a variant of a consensus aélhgoithat executes very rapidly. The
speed of reconfiguration is of primary importance in dynasystems, since tolerance of failures
diminishes as time elapses. Time must be taken into accodnwal be at the heart of the quorum
systems proposed in Chap#er Because of the speed of reconfiguration, our memory tokerate
high dynamism.

Moreover, reconfiguration is periodic and must happen wiftequency that depends on the
inherent fault-tolerance of the quorum system. Howevelrdyshg the number of quorums and
their size is out of the scope of this chapter and those paeasare studied in Chaptar

As discussed above an open issue is to minimize the commntiamaaomplexity induced by
reconfiguration so that the system growth does not produperitant overhead. The sake of scal-
ability implies each node communication complexity to ben+pooportional to the number of
participants. The sequel of this document investigatelgisitisy.

42

Chapter 3

Facing Scalability: Quorum System with
Local Reconfiguration

This chapter focuses on the scalability issue in distridbsteared memory. In large scale systems,
the number of participants is potentially unbounded. Thagax between the bounded resources
each node has and the unbounded participation experiencételsystem arises several prob-
lems. This paradox prevents each node from maintainingagjiaformation. First, nodes cannot
record information about every other nodes because the @uailmodes is too high regarding to
the amount of memory each node possesses. Second, nodes @aem determine global char-
acteristics such as exact system size. Indeed, the inhdyaatmism continuously changes these
characteristics that may not reflect the current systene stiathe time they are observed. Thus,
the node bandwidth cannot afford the amount of messageseddiike previously observed in
Section2.3.5

In the context of distributed shared memory, we focus on taesshift of the number of
clients. All clients have an independent behavior and mgyest the memory at any time. More-
over, because of the lack of global information their bebaws unpredictable. The growth of
requests directly produces a load increase that may affechemory performance: if the memory
gets overloaded, then quality of service may be dramajyiediected, treatments may be delayed
and requests may be lost. This chapter does not investigatecale-shift in the number of re-
guested objects, but only the scale-shift in the number diggaants.

Structural properties of the memory. For the purpose of scalability, we outline the predisposi-
tion of some memory to handle load. Recall that we consider gmbrum-based memories where
not all replicas are accessed during a single operations riikes distributed file systems like
Pastis BPS03 out of the scope of this thesis. Depending on the role of itsrgm members,
each quorum system reacts differently to load. Since reddaaite operations always consist in
accessing quorums one or two times, this may affect op@sperformance. More precisely, the
set of nodes that are in a quorum and the way those nodes @&gsadchave an important impact

43

CHAPTER 3. FACING SCALABILITY

on the operation complexity. To better understand what isfAcient quorum system or a scal-

able quorum system, we investigate the way quorum memberscattered into quorums and the
way all nodes communicate with quorum members. This tréeslato investigating the structural

properties and communication structure of quorum systdmsthermore, we discuss properties
like nondominancg GMB85] and stronger ones that cope with a bounded number of fantts a
allow optimality in terms of load.

Scalable distributed shared memory. We propose an emulation of a distributed shared memory
especially suited for large-scale systems. Since recamatigm cost depends on the amount of
information that has to be maintained, we restrict commatioa to logical vicinities. As a result,
we present a local reconfiguration mechanism that involwdgs @ small set of logical neighbors.
Finally, we provide read and write primitives that satisfgraic consistency. This memory adapts
dynamically in face of load variation and scales well duégnlimited amount of information each
node maintains.

Roadmap. The following chapter is divided into four sections. Sewtibinvestigates the struc-
ture of quorum systems and describes properties for stifaBiection 2 focuses on communica-
tion between nodes and quorum members. Section 3 descrdms@ete scalable DSM. Finally
Section 4 concludes the chapter by discussing some aspgebtsahosen scalable DSM.

3.1 Structure of Quorum Systems

As observed in the previous chapter, progress requiresatiatist two quorums of the current
guorum system remain active. Fault tolerance property ofumu systems resides in their struc-
tural properties: the number of quorums, the size of eachumoothe number of nodes at the
intersection of two quorums... Compare, for example, a quaystem that contains all majority
sets. As soon as a majority of nodes fail, the whole systels. famtuitively, reducing the size
of quorum systems may thus strengthen fault tolerance. Sguson investigates the structure of
guorum systems and outlines structural requirements ¢oata failures and load.

3.1.1 Single-Point of Failure

Some quorum systems suffer from single point of failures, they may fail if a single member
fails. A crucial property of quorum system is their availapi NW98]. The availability of a
guorum system is the probability that all its quorum failegivthe probability that each element
fails. If the intersection no longer holds between two quasuthen these quorums are no longer
active For example, if all the nodes at the intersection of two qum Q1 and Q- fail, then
gquorumsQq and Q- are considered awmiled. Now, if all quorums intersect at exactly the same
nodei, then failure of nodeémakes all quorums inactive, leading to the failure of the Mlguorum

44

3.1. Structure of Quorum Systems

system. In this case we say that the quorum system suffenge gioint of failure, meaning that
the failure of a single node makes the whole quorum systdm fai

A more difficult problem of interest is the inconsistency abgum system. Beyond providing
data availability in face of failures, quorum systems musvje consistency in distributed shared
memory. Although quorums are replicated sets of data useshsare fault-tolerance, quorum
system may experience inconsistency. Next, we illusttasadea presenting two quorum systems
that experience single point of failure.

A star-like quorum system with single-point of failure. To better understand how a quorum
system may suffer from a single point of failure, we take tta& quorum system as an example.
The star quorum system is defined H\IP95 as a quorum system whose quorums have the same
node in common. All of its quorums intersect at a single node, might think of as the center of a
star. Despite the replication of quorum members, the iat#ien among quorums is not replicated.
The star quorum system, thus, ensures data availabilitgdiudata consistency despite the failure
of a single node. The definition of the star quorum systemaiedtas follows:

Definition 3.1.1 (Star Quorum System)Let U = {us,uy,...,un} and letQ consist of the r- 1
quorums{ug, uz},{us,us},...,{us,un}. ThenQ is astar quorum system

It is straightforward from the above definition that the sfaorum suffers from a single point
of failure. Assume for example that the single failure oscatrnodeu;. In this case, there is no
active node between any couple of quorums. Since no quortersett, all quorums are failed,
hence the quorum system fails.

A tree-based quorum system with single-point of failure. Another quorum system that might
experience single point of failure is the tree-structuradrgm system presented IAE90]. Ac-
tually the tree-based quorum system is a biquorum systewmhefased in Definitionl.1.3 since it
uses two types of quorums, the read and the write quorums [Egr8q). Such quorums intersect
if their type is different, thus there is no need for intets@ctbetween all quorums. A read quorum
is given by a recursive function returning the current nodehe majority of its children, while a
write quorum function picks the union of the majority of ned any height of the tree.

Since all write quorums contain the root node of the treewatie quorums fail after a single
node, the root, fails. If this happen, then no write quorumtarsect all read quorums. Even though
some read quorums may still intersect a non complete wribewop it is difficult to identify which
one intersect the remaining active members of a write quoBecause of that, the failure of the
root prevents any couple of read quorum and write quorum fyeing active, leading to the failure
of the whole quorum system.

To circumvent this issue, quorum systems must toleratedih@é of multiple nodes. To this
end, either a quorum must tolerate the failure of some of gsiyers or a quorum system must
tolerate the failure of some of its quorums. In the formeec#se intersection must be large enough

45

CHAPTER 3. FACING SCALABILITY

to persist despite some node failures whereas in the later there must be enough intersections
to ensure that the quorum system persists despite somsdatien failures. These two candidate
solutions are denotddrge intersectiongndnumerous intersectiorend are described below.

3.1.2 Replicating the Intersection

Since intersection is the weak point of quorum system, tlieea@t the intersection between quo-
rums must be replicated. As previously said, for a quoruntesygo remain active, either its
guorums must tolerate member failures or it must toleratewqu failures. This is achieved using
replication of intersection in two ways.

1. Large intersections: First, the intersection among any couple of quorum contaioie than
a single node. Even though a member of the intersection thgsntersection still holds.

2. Numerous intersections:Second, quorums are replicated such that many interseaon
ist. If the common members of two quorums fail an intersect@emains between another
couple of quorums.

In the latter case (the numerous intersections) quorunesykult tolerance is ensured by quorum
replication while a single quorum may fail. In the former €akowever, quorum system fault
tolerance is ensured by intersection replication, and thelevquorum system is as fault-tolerant
as any single quorum.

Depending on the type of failure we consider, one of theseogmbes is better suited than the
other.

Applications of large intersections. When considering byzantine failures, i.e., where nodes
might disrespect their specification during failure inst@h simply stopping, large intersections
are required. In§IR04], Malkhi and Reiter define thenasking quorum systenstass including
guorum systems where each couple of quorums héve 2 elements in common. This quorums
are used to cope with byzantine faults. In order to obtain the accurate infororathat has been
stored into quorun®, one must request at least 2 1 elements of quorur® to ensure that the
majority of answers+ 1 answers) contain the right value. That is, requesting #haewrely on
contacting a quorum that havé 2 1 elements in common with other quorums.

Applications of numerous intersections. Unlike large intersections that require larger quorums
to handle faults, numerous intersections require mulgplerums. Since the complexity of access-
ing a quorum depends on its size, it is more complex to acag®®Ims in a quorum system with
large intersections than quorums in a quorum system withemous intersections. Differently, the
crash failure model we use, which allows a node to stop atiareyliut not to disrespect arbitrarily
its specification, does not require heavy large intersastimut rather numerous intersection. Due

46

3.1. Structure of Quorum Systems

to the complexity of accessing large intersections, nuoenatersections will be preferred for the
guorum system we consider in the following.

Figure 3.1: A finite-projective-plane-based quorum sysitgth numerous intersections. The quo-
rum system contains 7 quorums of size 3, where each eleménigseto exactly 3 quorums:
{{1,2,4},{1,3,7},{1,5,6},{2,3,5},{2,6,7},{3,4,6},{4,5,7} }.

In [Mae83, Maekawa suggests quorum system where quorums intersegtetly one ele-
ment. This property naturally excludes large intersegtimperty while it allows numerous inter-
sections property. The quorum system consistsrof- m+ 1 nodes wheren = pX wherep is a
prime andk a constant. This quorum systems & 1 quorums, each of size+ 1 and each pair
of quorum having exactly one element in common. Figlifepresents such a quorum system.

Disjoint intersections. A quorum system may satisfy numerous intersections if taesemul-
tiple intersections. Since intersections are simply satsnerous intersections implies that the
number of intersecting sets are different. Disjoint inéetgn is a stronger property in the sense
that a quorum system satisfying numerous intersectionsrmoagatisfy disjoint intersections and
a quorum system satisfying disjoint intersections sasisfiemerous intersections. A quorum sys-
tem that satisfies disjoint intersection contains quorurasihtersect each other on distinct nodes.
More formally, we have the following definition:

Definition 3.1.2 (Disjointness Property) A quorum system over U satisfieslisjointnessf and
only if, for any three distinct quorums; (2, Q3 € Q, Q1N Q2N Q3 =0.

Figure3.2 depicts an example of a 3-gon quorum system that have disjwérsection prop-
erty. Then-gon quorum systems have been proposedidd7] for the purpose of coteries con-
struction. Observe that somegon quorum systems do not satisfy disjoint intersectiba,3-gon
guorum system used here is a special case described fokinefsflustration of disjoint intersec-
tion property.

47

CHAPTER 3. FACING SCALABILITY

@ © :

Figure 3.2: A 3-gon-based quorum system. The quorum systeraios 4 quorums of size 3,
where each element belongs to at most two quoryrik2,4},{1,3,6},{2,3,5},{4,5,6}}.

About the fault-tolerance of quorum system, the fact theséhintersections are disjoint implies
that there must be at leas® | nodes that fail for all quorums to fail. A biqguorum system loé t
grid structure has been presented lilVjV03] where lines and columns represent two types of
guorums. This biquorum system satisfies disjointnessntrsections being disjoints. In other
words, provided a grid quorum systefhwith Q1,Q2,Q3 € Q we haveQ1 N Q2N Q3 = 0 despite
every two quorums intersect. If all of th€ | nodes located on the diagonal of this grid biquorum
system fail then no quorums are active anymore. More gdpetta¢ fact that these intersections
are disjoint implies that intersection failures are notetated. Despite the failure of nodes at one
intersection, the quorums these nodes were part of are tee anymore, but still it may exist
(independently) some quorums that intersect.

3.2 Communication Structure of Quorum Systems

Beyond the structure of quorum system, an important aspeieeig/ay the nodes of the quorum
system communicate with each other. The stronger assumygbmore powerful one, is that ev-
ery node can communicate directly with any other node. ld¢hse, the communication structure,
also calledoverlay, represents a complete graph where each node has a degreelofwhere
n is the system size. Specific settings make this assumpticzasonable. First, in large-scale
systems with few millions of participants, the memory of mgé¢ node may not afford recording
the address of the — 1 other nodes. Second, if the system is also dynamic thenltsinewus
join/leave may produce a large amount of messages, najifygw node addresses, that limited
bandwidth capacity cannot handle. Finally, in wirelessssemetworks, communication is physi-
cally restricted to geographical proximity, so that a naglable to communicate with other only if
all nodes are located in the same transmission range.

Along with this Section we consider logical communicatioreday. More precisely, we as-

48

3.2. Communication Structure of Quorum Systems

sume that any node has the ability to communicate with andgtliehas enough information to
send message that will be routed to him through the use of derlymg network layer. In other
words, we assume that a given network layer is provided datldress can be resolved and infor-
mation can be routed as it is done through the OSI network,layethe Internet. Consequently, a
nodei simply needs the address of nopg® communicate with him. Shortly, in this case we say
that nodel knows about nodg. Section3.4 discusses some alternative for specific settings like
wireless networks.

3.2.1 Non-Adaptive Quorum Probe vs. Adaptive Quorum Probe

A non-adaptive quorum probis the action of probing a quorum while all the members of this
guorum are known at the beginning of the probe. The only wagrtdbe a quorum in a single
round-trip requires that the client knows all the quorum rbers at the time it starts to probe, as
presented in Chapt&: In contrast, aradaptive quorum probgs the action of probing a quorum
without knowing all of its members. For example, a client nragiate an adaptive quorum probe
by contacting a member of this quorum that, in turn, contactsther member of this quorum,
and so on. From a different point of view, one might think aba+adaptive probe as contacting
nodes using a reactive routing whose initiating noiggmores some nodes that it has to contact: for
instancej may contact indirectly a nodgit does not know about by contacting other nodes until
reaching someone that knows

Adaptive quorum probe helps finding an active quorum in atligiight manner. While con-
tacting all nodes of the quorum system to probe a single egqunarsults a fortiori in message
waste, adaptive quorum probe can progressively contatt mamber of an active quorum with
few wasted messages. Next paragraphs present solutidngsthadaptive quorum probe over a
replicated set of quorums.

A tree-based quorum system with numerous intersections. Some quorum systems benefit
from the power of replication to tolerate failures. The byrree protocol of Agrawal and El
Abbadi [AE89] proposes the use of a recursive function returning eitherdurrent node plus
the result of the same function applied to one child, or tiseilteof the function applied to both
children. Applying such function at the root of a k-equifibed tree returns quorums. A quorum
is thus built following a single path from the root either teetleaves or interrupting this path at
some node and duplicating it in the two subtrees rooted at nodeny quorum intersect any other
guorum in this approach. The motivation behind this quorystesn is to allow an adaptive quorum
probe in the presence of failure. During a quorum probe, ib@enof the tree has failed, then the
probe replaces the failed node by its two children in the tirgersection is still guaranteed.

Path quorum system. The Path quorum system appearedNi\[98]. This protocol uses a grid-
like structure where each cell of the grid corresponds to @noThe structure is static and a

49

CHAPTER 3. FACING SCALABILITY

dynamic version of this quorum system is described lateriroSubsectior3.2.2 A quorum is
defined as a path traversing the grid from left to right andnfithe bottom to the top. Quorum
probes are adaptive to remedy failures without soundingwdrums. When the client initiates
the probe, it only knows a single access point of the grid.sTlude access point, say node
contacts in turn a member of one of the quorunadso belongs to. If this node is failed, then
nodei tries contacting another member of one of the quorums itgsdo, and so on until node
finds an active nodg. From this point on, nod¢ acts similarly and so on until a whole quorum is
contacted.

3.2.2 Reparation of Accumulating Failures

As previously explained, structural properties may sttieeg fault-tolerance of quorum systems.
However, when failures accumulate, a reconfiguration mestioto refresh the set of nodes com-
posing the quorum system, whatever the quorum system istypeeof reconfiguration we con-
sider in this section relies on the structure of the quorustesy in use and aims at reparing the
system rather than replacing it. In the following, we prés&veral reparation techniques used in
the literature.

Dynamic quorum adjustment. Herlihy presents, inHer87, dynamic quorums to handle fail-
ures. The chief motivations for these quorums rely on tretnsas of distinct levels. Each level
corresponds to a dedicated quorum configuration where mehavate quorums intersect. Differ-
ently from the quorum reconfiguration presented in Chapteonfiguration are dependent since
write quorums of a given level must intersect all read quawiany higher level. An inflation
mechanism handles quorum failures or partitions of the umosystem in the following way: If
failures disable all write quorums of levél then the transaction contacts a write quorum of the
smallest level higher thafithat owns active quorums.

Dynamic path quorum system. The dynamic path quorum systei\[V03] is a dynamic adap-
tation of the path quorum system in which the grid cells aptaged by Voronoi cells. The quorum
system is dynamic and uses adaptive quorum probe so thatrguoember can be added or re-
moved dynamically while every point of the coordinate spauest have an active responsible
node. The quorum consists in traversing vertically andzomtially the coordinate space.

Dynamic and/or quorum system. The dynamic and/or quorum systefINO5] uses a tree-
based structure. Similarly to the tree quorum proto@@9Q], a recursive function is applied on
the height of the tree. As entitled, this function, startfingm the root of the tree, consists in
alternatively choosing the left chilahd the right child of the current node, or the left chdd the
right child of the current node. Conversely to other treeedaguorum protocols, inner nodes are
virtual and are simply used for choosing members of a quoauty,leaves represent system nodes.

50

3.3. Scalable Distributed Shared Memory (benefiting frorodlity)

For the same tree quorum system, two alternated sequeneasl @ind or, define the biquorum
system. More precisely, the sequences starting withrmhat the root contain all quorums of the
first type whereas the sequences starting witlraat the root contain all quorums of the second
type. This quorum system, originated Wa]84] has been made dynamic iNINO5]. It is dynamic

in the sense that after a leaf fails, the tree is re-balanodtat old quorums and new ones still
intersect.

3.3 Scalable Distributed Shared Memory (benefiting from Lo-
cality)

This Section defines a scalable distributed shared memahgdcSquaré. We focus here on
the scale-shift of the number of clients in the system. Sgjgres not contain all the system
nodes but rather uses a dynamic quorum system that repesentbset of the system nodes,
that is Square is able to grow depending on the request ratmalking active nodes enter the
guorum system. The core structure of the quorum systemgeevaptimal load when not altered
by dynamic events. This structure adapts to failures usiegllreconfiguration that involves a
constant number of message exchanges. The structure a@ptsad load variation by shrinking
and expanding. The low load, reconfigurable, dynamism, atfdadaptation makes Square a
distributed shared memory especially suited for largéesegstems.

3.3.1 Trading Availability with Dynamism

Since pioneered work ofAE89], many researches focused on the robustness and avaylaifili
guorum system. Thebustnes®f quorum system expresses the ability for the quorum system
to be affected by isolated failure.

While these properties were of crucial importance in falprene static quorum systems, avail-
ability and robustness are mostly provided by the dynamisquorum systems. As already men-
tioned in SubsectioB.2.2 in dynamic quorum systems, the failures are coped withguspara-
tion mechanisms so that failed members are replaced by riawe aces.

Dynamic grid quorum system. At the core of Square, a new quorum system called the dynamic
grid quorum system lies. This quorum system is similar toghe protocol Mae85 AvV86] and

the path quorum systerNV9§] in that it uses a biquorum system where quorums represet li
and columns of a grid. The grid corresponds to a two-dimeraicoordinate spadé, 1) x [0,1)
divided into cells/subregions, as rectangles in the pl&aeh subregion of the grid is mapped to a
node that is responsible of. In the following, we refer to gu@rum system as thmemoryand to

the quorum members as theplicas

1SQUARE stands for Scalable QUorum-based Atomic memory with lo&tdfiguration.

51

CHAPTER 3. FACING SCALABILITY

The communication structure forms a torus: (i) inside thd,grodes responsible of two abut-
ting regions are neighbors; (ii) at the edges of the grid,esoesponsible of the two opposite
regions of the same abscissae/ordinate are neighbors tgoreB.3 draws the torus communi-
cation graph for a dynamic grid quorum system divided ints@Bregions. The quorum system
contains only a subset of the system nodes. Each client kablgast one access node inside the
guorum system to which it can request an operation, and enemgber of the quorum system can
communicate trough neighborhood, i.e., two quorum memdmrsnunicate if and only if they are
neighbors.

\’T‘; *\7/’ __ {/»»’ Yl

Figure 3.3: The torus communication structure of the dywcaynd quorum system. Neighbors are
responsible of two abutting regions inside the grid or twpagte regions at the edge of the grid.
(This later neighboring relation is depicted with dashedwas.)

The size of the structure, i.e., the number of subregionsntains, is dynamic. Initially, only
one replica is responsible for the whole space. The bogptsittg process pushes a finite, bounded
set of replicas in the quorum system. Since the system isndignaodes may join and leave (or
fail) at arbitrary time. In order to maintain the communioatoverlay some adjustments follows a
dynamic event using a technique used in distributed hastnadintenancefFH"01] as described
below.

e Join event: the joining noda contacts a responsibjeof the grid. This responsiblesplits
its subregions in two halves. This split is made alternftiv@rizontally and vertically to
keep the subregions as square as possible. Hencbkas lastly split its zone vertically then
it splits its zone horizontally and vice-versa. The sulwadialves form two new subregions.
The one with the lowest abscissae and ordinates is mappgeahde the other is mapped to
the joining node.

e Leave event:when a node leaves the overlay, its neighbors detect the failure andobne
its neighbors decides, based on its unique identifier, to repair the oyeflae reparation is
made so that each subregion keeps its rectangle shape aadtveeresponsible node.

52

3.3. Scalable Distributed Shared Memory (benefiting frorodlity)

We refer to a region (or simply to a replica) as the product of two intervalsi) =
[r.xminr.xmax andly = [r.yminr.ymax, wherer.xmin(resp.r.xmax) is the left-most (resp. right-
most) abscissa of zorre andr.ymin (resp.r.ymax) is the bottom-most (resp. top-most) abscissa
of zoner. Intuitively, we define dynamic quorum sets as dynamicdilets, that is sets of replicas
whose zones are pairwise independent and totally covebd®ssa and ordinate of the coordinate
space shared by the replicas.

Definition 3.3.1 (Dynamic Quorum) Let ¢ be a real constant with < ¢ < 1. The consultation
quorum Q¢ is defined as the set of replicas satisfyifrgymax> ¢ > r.ymin}. The propagation
quorum Q. is defined as the set of replicas satisfyimg= | | r.xmax> ¢ > r.xmin}.

Theorem 3.3.1 For any consultation quorum €2 and any propagation quorum,Q, the inter-
section holds: Q:N Q¢ # 0.

The proof follows from the fact that it exists a node respblesior point(c,c’) in the space.

Data consistency characteristic. For quorum systems whose application is data storage, some
data maintenance procedures must be added to the joinfleasedure. Actually, it might happen
that a joining node is not aware of the data maintained by doewgn it joined. Therefore, quorum-
based read and write operations may no longer satisfy densis In addition to updating its set
of neighbors, a joining node has also to update its statediogpto the state of its neighbors.

Note that if the joining node acquires a data that is not yplicated at all nodes of a single
quorum, validity is not violated. Moreover, the newly aetvnode does not need to maintain
a replica of the data owned by each quorum, but simply the mpgb-date data of the object
it encounters. More technically, the join event in the dyiagrid quorum system requires one
message round containing the current data between theagoimade and its neighbors on the
overlay. Later on, we detail this procedure as part of theaBgalgorithm specification.

3.3.2 Congestion Avoidance

A crucial metrics of quorum system is load. (Load is formalifined below.) This metrics is
responsible of two issues that may result in important debyd message loss: congestion and
overload. Congestion happens when load is applied at sonwfisdecations of the memory
whereas overload happens when the system receives too mequysts that cannot be handled.
More specifically, we consider that the memory is neerloadedif at least one member is not
overloaded and that a quorum is overloaded when at leastfdatgereplica is overloaded. (Note
that if at least one node is overloaded, then other membedtsedivo quorums it belongs to are
often overloaded too.) Coping with congestion requires-oaldncing while coping with overload
requires more capacity. Here, we especially focus on I@daAging to face congestion. Overload

53

CHAPTER 3. FACING SCALABILITY

issue is studied in Subsectid3.4 To better understand how congestion apply to a quorum
system, we first have to define the access strategy over amgusystem and its resulting load.

An access strateggver a quorum system is a probability distribution functibat maps each
qguorum with its probability of being accessed such that thm ef probabilities over all quorums
equals 1.

Definition 3.3.2 (Access Strategy)An access strategy for a set systens is a probability distri-
bution on the elements gfat time t. Thatisw: S x T — [0, 1] satisfies:y o s w(s) = 1.

Next, we restate the definition of load that appeared\NWp8]. We first introduce the load
of an element as the sum of the access probabilities of the quorubedongs to. For instance,
if nodei belongs to two quorun®; andQ, and the access probability ég then the load of is

Lo(1) = 0(Q1) +w(Qy2).

Definition 3.3.3 (Load of an element)Given an access strategyfor a quorum systen over a
universe U, théoadof an element& U is

Lo(i) = W(Q).
QG(%GQ

Second, we restate the definition of the load of a quorum syatethe load of the maximally
loaded element minimized over all the possible accessegies.

Definition 3.3.4 (Load of a quorum system)Theloadof a quorum systerQ is

£(Q) = min{ max{u(i)} |
Yw eqQ,

In some sense the load of a quorum system indicates how tbisigusystem balances the
load over its distinct members. For example, a highly loagleaitum system does not balance the
load well, since it means that even for the best strategyeth@lt exists a highly loaded element.
In contrast, a poorly loaded quorum system would accepigesty where all elements can be not
much loaded. To illustrate the former example, one can tefine star quorum system presented in
Subsectior3.1.1 Despite the access strategy, there exists a highly loddetkat, which translates
into a highly loaded quorum system. For the latter exampke ewplain how the dynamic grid
guorum system achieves optimal load hereatfter.

Avoiding congestion in the dynamic grid quorum system. The dynamic grid quorum system
presents desirable features to face congestion. Firstyibperation accesses both a consultation
guorum and a propagation quorum, then the load is well-baldver the quorum system. This
is due to the fact that the quorum system resulting from theruof any consultation quorum and

54

3.3. Scalable Distributed Shared Memory (benefiting frorodlity)

any propagation quorum has optimal Ida8econd, each element of the dynamic quorum system
participates equally in handling the load when all quorumesumiformly accessed. As a result,
balancing the load among quorums of the system balancesdabeaimong all members. First, we
describe these two features in detail. Then, we present ddalaince the load over the dynamic
grid quorum system to avoid congestions.

The dynamic grid quorum system is similar to the grid quorystem. In case enough nodes
join the structure by requesting uniformly the nodes preses easy to see that all subregions have
eqgual size. In this case, the unions of any consultationuqun@nd any propagation quorum of the
dynamic grid quorum system forms a grid quorum system. Momaé&lly, for anyDG = (51,.52),
the quorum systen® = {Q = Q1 U Q2 : VQ1 € $1,VQ2 € S2} is a grid quorum system. The
following analysis shows that the grid quorum system hasgitoad.

Lemma 3.3.2If Q is a grid quorum system over the universe U, the@) = %”_1 and it is
optimal.

Proof. Let n be the number of nodes ld and lety be a mapping of any node &f to % By
the quorum definition of, |Q| = n and anyu € U belongs to 2/n— 1 quorums. Consequently,

L£L(Q) = 2/0-1 Opserve thal ey y(u) = 1 and for anyQ € Q we havey qy(u) = L(Q).

n
Following this observation, Proposition 4.7 &f\V9g] states that this load is optimal. O

Homogenizing quorum systems. The disjointness property previously defined (Defini-
tion 3.1.2 is not sufficient to ensure that the load can be well balaredng participants. For
instance, when most of the nodes of the quorum system areambbpany intersection, these
nodes do not participate in handling the load of the systemowing or adding these nodes to the
guorum system does not change the load of the quorum syskenif,those nodes were useless.
Garcia-Molina et al. GMB85] defined a relation between coteries to identify which deter
of the two is more general than the other coterie. If for angrgm H of coterieC, there exists
a quorumG of another coteri€; that is included irH, thenC; dominates @. Built upon this
relation, anondominated coteriés a coterie that is dominated by no coteries. This definition
allows to identify a coterie in which each quorum elementdsassary for intersection with other
guorums and where each intersection contains a sufficieatianof nodes too. As an extension
of the domination relation, a bicoterie is dominated by heobicoterie or it is nondominated as
defined in MMR92]. We directly apply the definition oNIMR92] to biquorum systems. (Observe
that a nondominated biquorum system is also a nondominatede.)

Definition 3.3.5 (Biquorum Dominance) A biquorum systemB= (C1,C;) under U dominates
another biquorum systempB= (C,,C5) under U if and only if:

2Here load stands for the Definitidh3.4

55

CHAPTER 3. FACING SCALABILITY

1. By #By.
2. For any He Cy, there exists G C; such that GC H.

3. For any He C,, there exists G: C; such that GC H.

Nondominance does not provide us with sufficient guaramte@nimize load. It is noteworthy
that all quorums of a nondominating biquorum system haveamnail number of elements: remov-
ing one element would violate intersection property witbtaer quorum. However, this property
does not provide us with sufficient guarantee to balanceothe ITake as an example the following
nondominated biquorum systetf{1},{2,3}},{{1,2},{1,3}}) where quorums of the first type
{1} and{2,3} are used as consultation quorums and quorums of the seqoafiity?} and{1, 3}
are used as propagation quorums. Then an ideal accesggtifzie minimizes load maps quorum
{1} to 0, and quorums¢2, 3}, {1,2}, and{1,3} to % meaning that propagations would occur two
times more frequently than consultation. However, freqyesf consultation and propagation are
ruled by the operation specification and the operation ffaqy imposed by the environment. To
encompass the fact that quorum members play differenttiale, having unequal responsibilities,
we propose a new constraint on the quorum system. This eamsttompletenesdorces any
element to have the same responsibility in quorums.

Definition 3.3.6 (Completeness)A quorum syster@ over U satisfiesompleteness and only if,
foranyuc U, [{Qe Q:ueQ}| =2

An interesting fact is the following: despite how constragthey are, disjointness and com-
pleteness together provide more scalable coteries thastonunance. First-of-all, observe that a
quorum system that satisfies completeness is also a caieice,completeness implies minimality.
(Recall that a quorum syste@ verifies minimality if and only if, for allQ1,Q2 € Q, Q1 ¢ Q>.)
An interesting characteristic of complete and disjointunium system8 = (Qy, Q) is that each
quorum has sizg1|+| Q| — 1. This is straightforward from the fact that all interseas contain a
single element and are disjoint. The drawback is that theyacaept a lower number of quorums
than quorum systems that do not satisfy these constraintap&@ang with the path quorum system
that does not verify completeness, an adaptive probingeop#th quorum system can switch from
probing one quorum to probing another quorum (without backing). This is due to the fact that
there are many quorums. Alternatively, dynamic quorumesystsimply replace failed nodes by
active ones without modifying the quorum probe.

The dynamic grid biquorum system guarantees completerregeny under some circum-
stances. Since this system is dynamic, the structure masiératly not be equilibrated. However,
in case the grid structure is equilibrated the dynamic gigddrum system verifies both complete-
ness and disjointness.

A remaining issue is to force the load to apply equally to albigms. As previously investi-
gated in Definition3.3.4 the load of a quorum system is computed independently ofaangss

56

3.3. Scalable Distributed Shared Memory (benefiting frorodlity)

strategy. In fact, the result is the load of the busiest etegnmeluced by the best possible strategy
that minimizes it among all possible access strategies. adewy from a practical standpoint, a
guorum system is always accessed following a strategy diégpgion clients behaviors but rarely
the best one. Moreover, in general, determining the bedilplesstrategy to access the quorum
system is a difficult task.

In order to consider the variation of load due to specificrifigtion of requests applied to
guorums and to replicas, we propose a more practical definiti load, called thevorkloadof a
guorum member.

Definition 3.3.7 (Workload of a quorum element) Let Q be a quorum system over universe U
receiving operation requests at any time from the envirarntmeheworkloadw; of a given member
i of any quorum ofQ is the number of requests i has received but has not treated ye

For the purpose of remedying workload increase due to skelistdbutions applied to the
dynamic grid quorum system, we propose a mechanism to atheovorkload over all replicas.
Assume a large-scale system where numerous clients trycesa@ large dynamic grid quorum
system by executing operations on some nodes without kigogach other, and without knowing
replicas. Assume also that every quorum member treats theses at the same rate. It is highly
probable that requests of clients are heterogeneousliess@tover the replicas. To circumvent
the resulting unbalanced workload, we propose that in amyum, overloaded replicas share
their workload with replicas of distinct quorums, to impeoworkload-balancing. Next paragraph
details this mechanism.

Thwarting the overlay to balance the workload. The chief aim ofSquares to provide a shared
memory for dynamic environments. As said before, clientsaizess an atomic object 8fuare
by invoking a read or a write operation on any replica thisrdliknows inSquare This invocation
is done through th®peration procedure. Pseudocode of this procedure is shown in Algordt
All the information related to this request are describegarameter® . For instance, if the client
requests a read operation th&ntypeis set toread, and valueR .valueis the default valueg. For
a write operationtypeis set towrite andvalueis the value to be written. The other subfieldsRof
are discussed below.

When such a request_is received by a replica, sdyi first checks whether it is currently
overloadedor not. Recall that a replica is overloaded if and only if itgwes more requests than
it can currently treat. If is overloaded then it conveys the read/write operationestjto a less
loaded replica. This is accomplished by thHewart process (cf. Lin€0). Conversely, ifi is not
overloaded then the execution of the requested operatiostad and becomes th& .initiator of
this operation. Thus,starts the traversal process: Fiigf,onsultsa consultation quorum to learn
about the most up-to-date value of the object and an aseddiad) (Line24). As explained later,
this results in updating the local value-tag pair. From gast on, if the operation is a write then
the counter of the request ta), tag, is set to the incremented local one (Li2@ and the request

57

CHAPTER 3. FACING SCALABILITY

tag identifier is set to to break possible tie. SeconidPropagatesin the propagation quorum
starting ati the new value and its associated tag to ensure this valudevtthken into account in
later operation executions. In case of write, fievaluepropagated is the value to write, initialized
by the client; while in case of a read, it is tkialue previously consulted (Lin&2). Finally, this
consulted value is returned to conclude the read operagshown at Lin&5.

Observe that, if the operation is a read and the consultageas already been propagated
twice at this replica, then the operation completes justrdfteConsult without requiring aProp-
agatephase (see the paragraph on the improvement on the probdesatynpf a read operation
hereafter).

The Thwart aims at balancing the workload among particganhis mechanism, as depicted
in Algorithm 5, relies essentially on two procedures, callddvart andForward. The Thwart
is executed ii receives an operation request while it is overloaded (afie R0 of Algorithm 4).
This mechanism checks the workload of each quorum until dsfia non-overloaded one. For
this purpose a sequence of quorum representatives, angdoon the same diagonal axis, are
contacted in turn, as shown in Figusel. Each of these representatives is a replica subsequently
denoted the target of the requéttarget

It is noteworthy that contacting subsequent replicas kgtan a diagonal axis leads to con-
tacting all quorums. Furthermore, contacting only oneesentative per quorum is sufficient to
declare that this quorum is overloaded or not. By definititiese replicas are not necessarily
neighbors, and thus, an intermediary repljda simply asked td-orward the thwart toR .target
without checking its workload. Because of asynchrony, aigioa replica sends a message to its
neighborj, at the timej receives the messageanight have modified its state and might no longer
be the neighbor of. (Because a new zone may have been created betweenirattes) To en-
compass this, & .pointindicates the final destination in the overlay coordinatesmand a replica
Forwarding or Thwarting first checks whether it is still responsible of this point,expressed
Lines13and3.

-

Figure 3.4: The thwart mechanism.

58

3.3. Scalable Distributed Shared Memory (benefiting frorodlity)

Algorithm 4 Read/Write Operation

1: State of nodei:
2: statuse {node,replica}, the status of the node initialkgplica
3: availablee {true, false}, a boolean initiallytrue
4: tag, the tag with fields
5 counter the number of write operations that precedes this writing
6 id, the identifier of the writer that wrote this tag
7 R, the request with fields
8: starter, the node that started to forward the request by thwarting
9: value the value to write orl
10
11
12
13

tag, the tag encountered so far

initiator, the node that started treating the request by traversing
target, the node targeted by the request

point, the next point (in the overlay) where the request is fonedrd

14: Prerequisite Functions:
first-time-traversa]) indicates whetheiris the starting point of the traversal.

15: Operation(R):
16: if availablethen

17: if overloadedhen

18: if first-time-thwart®) then
19: R .starter— i

20: Thwart(R,i)

21: else

22: if first-time-traversal®) then
23: R_.initiator « i

24: Consult(R,,i)

25: if R.type= write then

26: R tag«—

27: (tag.counter+ 1,i)

28: Propagate(® , i)

29: AcknowledgeR)

30: else

31: R .tag+ tag

32: R .value« value

33: if R.valuehas not been propagated twiten
34: Propagate® ,i)

35: Returnyalug

3.3.3 Read and Write Operation using Local Knowledge

Probe complexity. Probe complexity is defined alternatively with distincidia@ models. Peleg
and Wool define the probe complexity of quorum system®$WQ2 as the complexity to contact
either an active quorum or to obtain sufficient hints provihg lack of such an active quorum.

59

CHAPTER 3. FACING SCALABILITY

Algorithm 5 The Thwart Protocol invoked by the Read/Write Operation
1: Prerequisite Functions:
next-point-on-diagong) returns the replica identifier responsible of the extremhreast point of the zone
of i.
closest-neighbor-dfR .point) returns the neighbor that is responsible of the coordineitet given as an argu-
ment.

2: Thwart(R.,i):

3 if R .target=iA R.point< zonethen

4: if R .starter=ithen

5: Expand()

6 else ifoverloadedhen

7 R .point + next-point-on-diagon&)
8 j < closest-neighbor-dfR .point)

9 Forward(R,, j)

10: else

11: Operation(R)

12: Forward(R,,i):

13: if R.pointe zonethen

14: for j € neighborsdo

15: if ®.pointe j.zonethen
16: R target« |

17: Thwart(R, R .targe?

Their definition relies on the quorum system structure astig an adversarial failure model.
Later on, Nadav and NaoNNO5] define the probe complexity as the communication and time
complexity of accessing a quorum. This definition reliesld¢ommunication overlay in use and
assumes a randomized failure model.

Failure detection was the responsibility of the quorum protechanism in static quorum sys-
tem while it becomes the responsibility of quorum systenstdpent in dynamic quorum systems.
Consequently, while probe complexity as defined by Peleg §2®#/07 relies on the cost of find-
ing a quorum of failed nodes in static systems, probe contylealies only on the cost to find an
active quorum in dynamic systems. Indeed, dynamic quorwstesys NWO05, AM05, NNO5] aim
at reparing the quorum system locally after failure detectin dynamic quorum systems, a leave
is handled similarly as a failure and such an event is deddotally by the neighbors of the node
involved. Consequently, failure detection is no longer pathe quorum probe mechanism.

As presented in Chapte the elementary phase of a read or write operation consistsni-
tacting a quorum. Hence, quorum probe is of crucial impaan the design of distributed shared
memory.

However, there is a tradeoff between time complexity androamication complexity. The
optimal time complexity to probe a quorum is two messageydesance the client needs at least

60

3.3. Scalable Distributed Shared Memory (benefiting frorodlity)

one round-trip to contact a quorum. The solution proposedhapter2 presents already optimal

time complexity. The tricky point relies on the message cdewxity associated with such result.

Indeed to provide a fast probe, the client needs to know aveagiorum. This induces that either
every client is notified as soon as any single failure occun$ contacts all quorums to ensure
that at least one is active. In both cases, the message catppéeunaffordable in a large-scale

system where bandwidth resource is limited. Next, we ingast the best compromise between
communication and time complexity in a large-scale envirent.

Algorithm 6 The Traversal Protocol invoked by the Read/Write Operation
1: Prerequisite Functions:
next-vert-nbf) returns the next vertical neighbor in the sense dependitigedast message receipt, to continue
the propagation. If it received south-directed (resp. mditected) message, it sends it in the south (resp. north)
sense.
other-vert-nbf) returns the next vertical neighbor in the opposite senskedftst message sending.
next-hor-nbf) returns the next horizontal neighbor in the sense deperglinthe last message receipt, to
continue the consultation.

Consult(R.,i):
if availablethen

R .tag — max(tag,
R.tag)

R .value— max(value R .value)

if =(R .initiator = i) then
Consult(R , next-hor-nbr))

else ifi has already consultaten
End()

SN WN

=

11: Propagate® ,i):
12: if availablethen

13: tag < max(tag,

14: R .tag)

15: value< max(value K .value

16: if ~(R.initiator =1) then

17: Propagate(® , next-vert-nbf))
18: else ifi has already propagatéen
19: End()

20: else

21: Propagate(® , other-vert-nbr))

Reading and writing by traversing the overlay. The Traversal, presented in AlgorithBncon-
sists in two procedures as shown in Fig@r&a), called respectivelgonsult andPropagate the
former consults the value and tag of a whole consultatiomuaavhereas the latter one propagates
a value and a tag to a whole propagation quorum. Each of thesedures is executed (onlyiif

61

CHAPTER 3. FACING SCALABILITY

is availablg i.e.,i is not involved in a dynamic event) from neighbor to neighbgiforwarding
the information about the requeg, until both quorums (i.e., the consultation quorum and prop
gation quorum) have been traversed. The traversal endstlba@eitiator of the traversal receives
from its neighbor the forwarding request it initially senée(, the "loop” is complete). Whe@on-
sult or Propagatecompletes, the initiatargets back the message (Linedand19), knowing that

a whole quorum has patrticipated. From this pointiagn continue the operation execution. That
is, by directly sending the response to the requestingtdli@peration®_is complete otherwise
by starting aPropagatephase.

There are two differences betwe€onsult andPropagate First, theConsult gathers the most
up-to-date value-tag pair of all the consultation quoruplicas (Line6) whereas théropagate
updates the value-tag pair at all replicas of the propagapimrum (Linel5). Second, th€onsult
contacts each member of the quorum once following a singéetion (Line8), while theProp-
agatecontacts each member of the quorum twice with messagesrskath directions (Lineg7
and21). Consequently, if the value has been propagated twice &tintieeni knows that the value
has been propagated at least once to every other replica pfapagation quorum. This permits
later read operation to complete without propagating talse’once again.

Improvement on the probe complexity of a read operation. Not only, the traversal is lock-free
compared toAGGV05], but it does not require the confirmation phase BEGL 05 CGG05],
while proposing fast read operations. This results digeitdm the adaptiveness of our traver-
sal mechanism. Minimizing atomic read operation latendfessi some limitations. Indeed, to
guarantee atomicity two subsequent read operations mwshrealues in a specific order. This
problem has been firstly explained ingdm84 as the new/old inversion problem. That is, when a
read operation returns valwe any later (non-concurrent) read operation must retusna more
up-to-date valueSquareproposes read operations that may terminate after a sihgkeepsolving
the aforementioned problem without requiring locks or &#ddal external phase. For this pur-
pose, theConsult phase of the read operation identifies if the consulted Vadhisebeen propagated
at enough locations. If the valuehas not been propagated at all members of a propagation quo-
rum, aPropagate phase is required after the end of @ensult phase and before the read can
returnv, otherwise a later read might n@onsult the value. Conversely, if a valuehas been
propagated at a whole propagation quorum, then anyGdasult phase will discovey or a more
up-to-date value, thus the read can retumith no risk of atomicity violation.

The solution is presented in FiguBes(b) and relies on interleaving messages duringRtitop-
agatephase. This phase is executed from neighbor-to-neighbgurd-3.5b) presents a propa-
gation quorum of the torus grid as a ring where each circleeatsod replica and a link models a
relation between two neighbors. The black circle represtd initiator of thePropagatephase.
Unlike the Consult phase, thé’ropagatephase starts by two message sendings: one message in
each of the two senses (north and south senses in the torbsse Thessages are conveyed in
parallel from neighbors to neighbors until the initiatoceares them back.

62

3.3. Scalable Distributed Shared Memory (benefiting frorodlity)

Figure 3.5: (a) The traversal mechanism traverses theayeither horizontally following a con-
sultation quorum in one sense or vertically following a @gation quorum in both senses. (b) The
PropagatePhase consists in following the propagation quorum, teargrthe overlay, in the two
senses. Traversing the torus is represented here by a ring.

The ideais simple: when a replica of the ring receives a fiegsage it simply updates its local
value-tag pair with the one of the message; when the re@ioaives a second message it deduces
that all the members of a propagation quorum have updat@ddabal pair to the propagated one.
During aConsult phase of a read operation, if the (most up-to-date) corgsyléer (V,t') has
been found at a replicathat has received only one message contaifvng'), then aPropagate
phase must occur before the end of the read operation. lteephas received two messages
propagatingV',t’), then the read can terminate immediately afterGbesult phase. For instance,
in Figure 3.5b) propagation is ongoing: if is one of the two bottom replicas, then the read
operation can return immediately, otherwise the read mugpagate

3.3.4 Self-Adaptiveness to Unpredictability

Generally, large scale system includes individual paoéints that act on their own. This behavior
is unpredictable from the system standpoint. Sometimdac®unpredictability, the system must
adapt. For instance, consider that many participants stguoehe meantime the same object,
to handle this workload burst the system should increasaiti@unt of capacity. Conversely, if

the workload drops down because of participant inactiatigrge capacity is useless resulting in
resource waste.

Adaptiveness is thus a desirable feature especially fgetacale system where individual be-
haviors are unpredictable. Another approach would have teease self-stabilizing quorum sys-
tem [Bel99, however, if dynamic events of load bursts occur contiralgguhen the quorum system
may never self-stabilize. An interesting research workhia tontext though, would be to inves-
tigate local self-stabilization of quorum systems. In thiofving, we propose a quorum system
that adapts its amount of resources depending on its watkloa

63

CHAPTER 3. FACING SCALABILITY

Adapting the quorum system structure. Here, we present self-adaptive mechanisnfSgfare
If a burst of requests occurs on the whole overlay the syseedsitd=xpand by finding additional
resources to satisfy the requests. Conversely, if someceeptif the overlay are rarely requested,
then the overlayshrink s to speed up rare operation executions. Finally, when sepiieas leave
the system or crash, thenFailureDetection requires some of the replicas around the failure to
reconfigure. Those three procedures appear in Algorithm

For some reasons (e.g., failure) a replica might leave th@aeng without notification. De-
spite the fact that safety (atomicity) is still guarantedtkew failures occur, it is important that the
system reconfigures. To this end, we assume a periodic gbssi®en replicas that are direct
neighbors. This gossip serves a heartbeat protocol to oramiplica vivacity. Based on this pro-
tocol, the failure detector identifies failures after a pérof inactivity. When a failure occurs the
system self-heals by executing tRailureDetection procedure: a takeover node is deterministi-
cally identified among active replicas according to theiin jordering, as explained ifrRFH"01].
This replica takes over the responsibility region that heerbleft, it reassigns a constant number
of responsibility zones to make sure that each region haesfmonsible replica, and it notifies its
neighborhood before becoming nevayailable

Algorithm 7 The Adjusting Primitives invoked locally or by the ThwartoRscol
1: Expand:

available« false

j < FindExternalNode()

ActiveReplication])

ShareLoad)

NotifyNeighbor{)

NotifyNeighbor()

availabale« true

9: Shrink:
10: NotifyNeighbor{)
11: status— node

12: FailureDetection(j):
13: available< false
14: TakeOver|)

15: NotifyNeighbor()
16: availabale— true

Two other procedures, namdixpand andShrink are used to keep a desired tradeoff between
workload and operation complexity. When the number of r@glio the memory diminishes, fault
tolerance is weakened and the overlay is more likely ovdddaConversely, if the overlay quorum
size increases, then the operation latency raises acgbydifherefore, it is necessary to provide
adaptation primitives to maintain a desired overlay sizée $hrink procedure occurs when a
nodei is underloaded (i.ei,does not receive enough requests since a sufficiently longdef

64

3.3. Scalable Distributed Shared Memory (benefiting frorodlity)

time). If this occurs, locally decides to give up its responsibility, to leave theertay, and to
become a common node (i.e., a node that does not belong toetimery). Conversely, aBxpand
procedure occurs at replicahat experienced an unsuccessful thwart. In other wordsnwhe
thwart mechanism startedidtils in finding a non-overloaded replica (i.e., the thwarhs around
the memory without finding a non-overloaded replica), theacides to expand the overlay. From
this point on, initiatonn becomesaunavailable(preventing itself from participating in traversals),
chooses a common noddi.e., a node which does not belongSquareg, and actively replicates
its tag and value at. From this point onj becomes a replicashares a part of its own workload
and responsibility zone, andandi notify their neighbors before they become newalsailable

3.3.5 Correctness Proof of a Scalable DSM

To show that Square emulates a distributed shared memofy;sivehow, that Square implements
an atomic object. Then, we show that the algorithm termgateler reasonable assumptions.

Safety proof. The following theorem shows the safety property (i.e., abity) of our system.
The proof relies essentially on the fact that tags mono#dlyilncrease and on quorum intersection

property.
Theorem 3.3.3 Square implements an atomic object.

Proof. First, we show that the tag used in a successful operatioroisotonically increased at
some location. In absence of failures, it is straightfodvakssume now that replicaleaves the
memory and that a replicatakes ovei’s zone after &ailureDetection event orj receives an
Expand order: j stop beingavailable until it exchanges messages with its new neighbors (by
NotifyNeighbors event), catching up with the most up-tdéedaalue.

Second, we show that operation ordering implied by tagsewspreal-time precedence. A
write operatiorPropagatesits tag in any case while a re&topagatesit if it has not been propa-
gated yet. That is, a whole quorum-column is aware of theddgaded operation. All operations
contain aConsult phase, and by quorum intersection (cf. Theof®f1), discover the latest tag.
Because each written tag is uniqgue and monotonically ineckasrites are totally ordered and
since the value is always associated with its tag objectifspestoon is not violated. a

Liveness. Here we show that our algorithm terminates under sufficienddions. In order to
allow the algorithm to progress, we first make a series ofraptions.

1. First, we assume that a local perfect failure detec@di96 is available at each replica.
Such a low level mechanism, available in CAN, enables a r@pticletermine whether one
of its neighbors has failed (i.e., crashed) by periodicainding heartbeat messages to all
its neighbors. Here, we assume a perfect failure detectovdwlaim that a weaker failure
detector can achieve the same result (e.g., trusting éaglatector DGFGKO03).

65

CHAPTER 3. FACING SCALABILITY

2. Furthermore, as far as liveness is concerned, we are nginrderested in the behavior of
Squarewhen communication is reliable and failures are not comeggd on a same neigh-
borhood. This leads to the following environmental projgsri) neighbor-failure between
the time a replica fails and the time it is replaced, nonesohéighbors fail; and) failure-
spacing there is a minimal delay between two failures occurringhat$ame point in the
memory.

3. Finally, we assume that clients can act infinitely ofterd aoncurrently. However during a
finite period of time, the level of concurrency is finite. Thi®del is often referenced in the
literature as thénfinite arrival process with finite concurrenegodel MTO0O0]. This model
limits the number of expand that may occur in a bounded peiddne. With no such an
assumption, continuous expansions of the overlay wouldenoaderlay thwart or traversal
impossible.

Theorem 3.3.4 Eventually, every operation completes.

Proof. First, we show that a sent message is eventually received.aloel j be two neighbors and

j fails whilei sends a message. Using its failure detectaill discover j’s failure and a replica

j’ will take over j's zone. Byneighbor-failureandfailure-spacingassumptions, the next message
fromi to j’ will be successfully received.

Now, we show that the traversal and the thwart mechanismsriate. We consider the worst
case scenario of the thwart: the thwart wraps around theedntus. First, observe that the overlay
is a torus and the sense of subsequent messages does nad:cbasiy north, south or diagonal.
Second, by thenfinite arrival with finite concurrencynodel we know that the number Bkpand
events during a finite period of time is finite. This impliestithe number of replicas to contact
during a traversal or a thwart is finite and both mechanismsexge successfully. a

Theorem 3.3.5 Infinitely often the memory is not overloaded.

Proof. By theinfinite arrival with finite concurrencynodel, the level of concurrency is bounded
during a period of time sufficiently long. From the above tte@o, operations terminate. Thus
eventually, the workload on each replicdoes not increase, i.e.is not overloaded, which makes
the atomic memory not overloaded. From thénite arrival with finite concurrencynodel, these
periods of time occur infinitely often. Thus infinitely oftéime memory is not overloaded. This
completes the proof. O

3.3.6 Peer-to-Peer Simulation Study

This section presents the results of a simulation studyp®ed through a prototype implementa-
tion of Square The aim of simulations is to shoquareproperties: self-adaptiveness, scalability,

66

3.3. Scalable Distributed Shared Memory (benefiting frorodlity)

workload-balancing, and fault-tolerance. The prototypariplemented on top of a peer-to-peer
(p2p) simulator, namely Peersid\IB0O4]. Peersim is a simulator especially suited for large-scale
systems. We used its event-based simulation mode in or@g@ntdate asynchronous communica-
tion and independent node activities.

Environment. We simulate a p2p system containing 30,000 nodes. We rdwllthis is the
maximum number of nodes that can be potentially added towbday/memory. As we show, the
actual number of nodes in the memory during simulation ishmower. Here we describe the
parameters of the simulator:

¢ We lower bound the message delay between nodes to 100 tinsg(iumi, simulation cycles)
and we upper bound it to 200 time units.

e Any replica has to wait 1500 time units without receiving aeguest before deciding to
leave the memoryShrink).

e Once in every period of 2000 time units, replicas look atrtheifer and treat the buffered
requests, deciding to forward thefhiwart) or to execute theniltaversal).

e We send from 500 to 1000 operation requests onto the memery &0 time units. The
exact number of operation requests chosen depends on etiehfoflowing experiments.

e Each of the requested operations is a read operation witlapriity 0.9 and a write operation
with probability Q1.

e The request distribution can be uniform or skewed (i.e.;ady. Since the results obtained
with the two distributions do not present significant difieces we present only those ob-
tained with uniform distribution.

e We observe the memory evolution every period of 50 time wstdsting from time 0 up to
70,000. Each curve presented below results, when unspecifid, dn average measure-
ment of 10 identically-tuned simulations.

In all experiments, except otherwise mentioned, requastssaued at some rate during a fixed
period, after which the requests stop. To absorb the wodkioduced by the requests, the overlay
replicates the object at nodes of the system that are nat yle¢imemory, as specified in the proto-
col. This self-adaptiveness occurs until the memory remaeheacceptable configuration satisfying
the tradeoff between capacity and latency. dateptable configuratiors a configuration where
the memory is neither overloaded, nor underloaded. Thipér@pwhen some replicas of the over-
lay shrink while other expand. More specifically, this occbetween the first time the memory
size decreases and the last time the memory size increasegifen fixed rate.

Self-adaptiveness. Figure3.6reports the number of nodes in the memory versus time. licpart

ular, the solid line indicates the evolution of the memoresilong time, showing the adaptiveness
of Square to a constant requests rate. In this figure, the myereaches the acceptable configu-
ration at time 9350, while the memory leaves the acceptabiéguration at time 4200. Let us

67

CHAPTER 3. FACING SCALABILITY

50 T T T T

T —T
overlay size
o guorum size ------- i
number of neighbors --------

40
35
30
25
20

Number of replicas

15

T
0 10000 20000 30000 40000 50000 60000 70000
Time (Simulation cycles)

Figure 3.6: Memory size, quorum size, and number of neighbor

focus on the three resulting time intervals. Before time 9366 memory grows quickly and its
growth slows down while converging to the acceptable configon. Then, the small oscillation
in the acceptable configuration is due to few nodes eith&irigahe memory $hrink) or joining
it as replicas Expand). This shows howSquareis able to tune the capacity with respect to the
request workload. After time 4200, the memory stops growing and when the last operati@ns ar
executed, workload decreases drastically causing a s&fri@@mory shrinks until one node re-
mains. Recall that, during all three phases, although aperegquests can be forwarded to other
replicas, every operation is successfully executed by thaony, thus preserving atomicity.
Figure3.7 shows the adaptiveness of the memory to abrupt changes kioadr The vertical
intervals indicate the error margin at some points of theeuye simulate a burst of workload at
time 23 000 where the request rate is multiplied by 2. Then requeststapped at time 4600.
We clearly see that the memory is reactive and quickly sadifpés to face workload variation: the
memory size grows right after the burst (i.e. it is multigliey 1.4) and shrinks right after requests
stop (i.e. divided by 1.2), while recovering a steady pregre

Scalability. The dotted line in Figur8.6 plots the evolution of the average number of neighbors
of each node along time and depicts an interesting resulte\®l that two replicas are neighbors
if they are responsible of two abutting zones and notice whegn the memory contains a single
node then the number of neighbors is 0. Even though the nuoflenes keeps evolving, the
average number of neighbors per replica remains constamttome. Comparing to an optimal
grid containing equally sized zones, the result obtainesihmslar: we can see that the number of

68

3.3. Scalable Distributed Shared Memory (benefiting frorodlity)

50

T T T
Size mean

Overlay size
Load

O | | | | "‘ | |
0 10000 20000 30000 40000 50000 60000
Time (Simulation cycles)

70000

Figure 3.7: Self-adaptiveness in face of bursts of workload

50 T T T T T T
w/ thwart
45 - L wo/ thwart ------- -
| i
g 40T L i !
) i ! |
35 | | | ‘ i 4
) P | I F)
e 30 - i h’ o 1 7
- Ao i
N |
L | b h v | }:l"": i i
g > AR R .
8 15 1 | i &' ELEa ‘ R 4
g by gl 1 REHELERIN N B
Z 10 F W‘ } i i 1
sl b ¥ |
0 10000 20000 30000 40000 50000 60000 70000

Time (Simulation cycles)

Figure 3.8: Thwart impact.

neighbors is less than 5 while in the optimal case it wouldxae#y 4. We point out again that
this behavior is not exclusively due to the uniform disttibn of requests but it is also obtained
with a skewed distribution because the thwart balancesot ISince only a local neighborhood

69

CHAPTER 3. FACING SCALABILITY

of limited-size has to be maintained, the reconfiguraticedieel to face dynamism is scalable.

Load-balancing. The main objective of the thwart mechanism is to balance theklvad among
nodes. In order to highlight the effects of the thwart, we Bagfferent executions of the simu-
lations, and computed the variance of the memory size. Reardtreported in Figurd.8. The
dashed curve refers to executions where we disabled thetthrezess (i.e., when a node is over-
loaded while it receives requests it directly expands theorg without trying to find a less-loaded
replica of the memory), while the solid curve refers to exers with the thwart enabled. This
simulation shows that the variance of the memory size isigtyoreduced by the thwart mecha-
nism. Without the thwart, expansion might occur while a pathe memory is not overloaded, that
is, the replicas become rapidly heterogeneously loadeid.phlenomenon produces a strong varia-
tion in the memory size: many underloaded replicas of the amgishrink while many overloaded
replicas expand. Conversely, with the thwart mechanism epljca tries to balance the workload
over the whole memory, verifying that the memory is globaliyerloaded before triggering an
expansion. This makes the memory more stable.

Fault-tolerance. In order to show that our system adapts well in face of crasirés, we in-
jected two bursts of failures, while maintaining a constaouest rate, and observed the reaction
of the memory. Figur8.9 shows the evolution of memory size as time elapses and asdaiare
injected. The first burst of failures occurs at the@0" simulation cycle and involves 20% of the
memory replicas drawn uniformly at random.

50 T T T T T T T

sl,ize
45 -

40 .
35 | .
30 .
25 | .

Overlay size

20 —
15 T
10 —
5 .

0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Time (Simulation cycles)

Figure 3.9: Self-adaptiveness in face of important fagure

70

3.4. Discussion and Conclusion
request read latency write latency| max. memory| max. consultatio) max. propagatio
rate (in avg) (in avg) size guorum size quorum size
100 478.6 733.3 10 5 6
125 621.8 812.5 14 4 8
250 1131.8 1395.8 24 3 14
500 1500.7 21735 46 8 23
1000 2407.9 3500.9 98 11 51

Figure 3.10: Trade-off between response time and memoey siz

The second one occurs 20 cycles later (at simulation cycle 4AW0O) and involves 50% of
the memory replicas. At simulation cycle 200, we clearly observe that the overall number
of replicas drastically diminishes. Then, few cycles latiee number of replicas starts increasing
again, trying to newly face the constant request rate. Tiesnpmenon is even more pronounced at
time 4Q 000 when 50% of the replicas fail. In both cases the systemiésta completely return to
an acceptable configuration without blocking, even aftergd amount of failures have occurred.

Operation latency. Experiment of Figure3.10is composed of 5 simulations with different re-
guest rates and indicates h@&guareminimizes read operation latency. First, recall that thst fa
adaptive read operation contains onl€ansult phase, thus the consultation quorum size impacts
more on read operation latency than propagation quorundsies. We tune@quaresuch that a
replica that receives more read requests than write regjtessdis to split horizontally its respon-
sibility zone, when an expansion occurs. Since an operaiohtype read with probability 0.9,
replicas choose more frequently (in average) to split loortially than vertically, consequently con-
sultation quorums are smaller than propagation quorundepisted in the 8 and 6" columns of
Figure3.1Q An increase in the requests rate—indicated in column lergthens this difference:
it enlarges the amount of operations, thus the phenomenmnies more evident. Furthermore,
the 24 and 39 columns confirm our thought: read operation latency is farlothan write op-
eration latency. To conclude, even though self-adapts®maplies that latency increases when
workload increase§quareminimizes efficiently read operation latency.

3.4 Discussion and Conclusion

3.4.1 Quorum Access in Ad Hoc Networks

Square builds and maintains a logical communication oyetlagical communication overlay is
a very powerful tool that allows all nodes to communicatehvaach other, provided they know
each other. In Internet-like applications, including p@plécations, participants can use a logical
overlay to communicate with each other, since nodan communicate with nodeif i possesses
the IP address of.

Differently, communication in ad hoc networks is often doaimed by geographical locations.

71

CHAPTER 3. FACING SCALABILITY

That is, a node communicates directly with nodgonly if i and j are geographical neighbors.
For example, in wireless sensor networks, npaeeds to be in the transmission range of node
In this case, it is impossible to obtain a torus communicativerlay as proposed in the dynamic
grid quorum system: the furthest node frormannot be the neighbor afdue to geographical
constraints. That is, each quorum node contacted d&ryd that is not a neighbor efhave to
communicate with intermediary nodes for information to beted back to.

In order to reduce quorum access cost, recent researchvestaats in the context of ad hoc
networks tend to define quorums as clusters of nodes thatesrgraphically closeJGL*05,
CDHP"05]. For example, GeoQuorumB{L " 05] is made of mobile entities, calledobile hosts
and fixed entities, callefibcal points A focal point is a fixed region in the plane with some mobile
hosts that can communicate through atomic broadcast. A pagat is considered afiled if no
mobile hosts is in it. Focal points are grouped into clustsiag an independent algorithm. The
introduced biquorum system contains two types of quorurok that any quorum of the first type
intersects any quorum of the second type. The first typedumuercontain all focal points of a
cluster while the second typed quorums contain one focadtpadieach cluster. Intersection of
guorums is guaranteed because any quorum of the first typed hessst one focal point in common
with any quorum of the second type.

Another approachLlWV03] uses a dynamic quorum strategy that consists in contaéting
nodes: for instance, ik > |5 + 1], then intersection is ensured deterministically. Chagter
presents much lower threshdkdto obtain intersection with the desired probability. Thensa
paper [WVO03] presents a grid quorum system similar to Square, howeweir, approach require
that each client knows exactly all quorum members. Thaniseitings where storage space is
limited such solutions do not scale with the size of the mgm8guare is a scalable solution that
do not require large storage space and is thus promisingifbioa networks settings. A routing
protocol such as the one presentedMKBO05] could complete the Square protocol to provide a
scalable DSM for ad-hoc network.

3.4.2 Limitations of Square

First, the local reconfiguration executes frequently. Tevpnt all-to-all exchange of global recon-
figuration, Square proposes a local reconfiguration meshanEven if the number of message
that is required during a local reconfiguration is very lowngared to a global reconfiguration,
the local reconfiguration is far more frequently executeshtlobal reconfiguration. While global
reconfiguration is executed unfrequently, a local recoméijon must occur after each dynamic
event. In fact, quorum replication presented in Chagteninimizes the impact of dynamism,
whereas quorum replication of Square only balances the lsd result, while DSM with global
reconfiguration produces more congestion when scalinghyweeall communication cost of DSM
with local reconfiguration may not be lower.

There exists an important tradeoff between communicatwnpiexity and operation latency
that delays operation of Square. This tradeoff is due to dballreconfiguration mechanism at

72

3.4. Discussion and Conclusion

the heart of Square. As seen in the Secdh§ the memory grows when the system scales and
the request rate increases. A serious drawback is the aedrethe operation latencies. Since
guorum probes are non-adaptive from neighbor to neighberpperation latency is linear in the
quorum size. Since, in the best case, the quorum sigjshe operation latency may be dramat-
ically high when the request rate is very importa@t{/n)). Hence, even if Square tolerates high
load, its time complexity is affected by load. Some of therguo systems proposed in the litera-
ture, whose memory size never changes, have adopted adifteympromise between operation
latency and reconfiguration complexity. These quorum systeave smaller operation latency but
larger reconfiguration complexity. Finding the right commise, although very interesting, is not
the subject of this thesis: the goal of Square was to presagtlow reconfiguration complexity
for efficient adaptation in face of load bursts, leave evarid join events.

3.4.3 Conclusion

This chapter addresses the problem of distributed sharetbnyehat achieves scalability in a dy-
namic context. Dynamism requires reconfiguration whildamhty requires the communication
overhead to be handled by the underlying network, even whersystem enlarges. A solution
for minimizing communication cost while coping with acculating failures seems to be local
reconfiguration; locality relies on proximity in the comnication graph. This reconfiguration is
executed by a node and its neighbors if a failure is detectedlly. By restricting the number
of neighbors in the communication graph, the communicatamplexity of local reconfiguration
can be very low.

Other issues related to scale-shift have been identifigtielfystem grows, then the potential
number of clients requesting the memory may increase aicyd This scale-shift produces high
bursts of load. To cope with congestion that may appear aesoodes of the memory or the
overload that may happen if the memory has not enough ressuitte proposed memory adapts
dynamically its resources in face of load variation. Figty solution balances the load over the
distributed participants to prevent congestion. Then,solution expands if the whole memory is
overloaded and shrinks as soon as bursts of load stop.

Furthermore, all these scalability-related issues ledbusvestigate the structure of quorum
system so as the way quorum members communicate with eaeh &pecific properties on the
structure of quorum systems have been compared along wstbtthpter. Our solution takes bene-
fit of our observations on quorum system structure for intidicad-balancing and communication
structure to minimize reconfiguration cost.

Finally, we identified an important tradeoff between messagnplexity and operation latency.
In fact, minimizing message complexity of local reconfigima increases the operation latency.
Tuning the degree of the logical communication graph to dishies operation latency while in-
creasing the reconfiguration complexity is of significat¢rest. While our solution scales well by
moderating the use of limited bandwidth resource, induceslsage latency may become too large.
Next chapter overcomes this issue by tolerating dynamisimeging scalability, and minimizing

73

CHAPTER 3. FACING SCALABILITY

latency at the cost of relaxed consistency guarantees.

74

Chapter 4

Facing Scalability and Dynamism
Probabilistically: Timed Quorum System

This chapter focuses on the problem of emulating a diseibshared memory in a large-scale and
dynamic context. Previous chapters have enlightened tmplexity of implementing atomicity
in message-passing model. More specifically, Chapmoposed a memory for dynamic systems
using a periodic reconfiguration that is not suited for lasgale systems. In contrast, Chapier
proposes a memory that scales well but whose local recoafigaris built upon failure detectors.
Here, we try to avoid the use of reconfiguration to obtain atiigeight distributed shared memory
emulation, at the price of relaxing deterministic guaraste

This chapter relaxes the strong atomic consistency witethosen so far for emulating dis-
tributed shared memory. Instead, the aim of this chapterpgdapose a memory with high quality
of service in large-scale dynamic systems. This translateensuring that clients, which execute
operations, are satisfied with high probability.

Timely guarantees to cope with dynamism. For this purpose we defifBmed Quorum System
(TQS), a new quorum system that introduces the notion of &ingkprobabilistic guarantees into
qgquorums. More precisely, TQS relies on quorums with a bodtifietime and aims at providing
consistency guarantees in an unbounded lifetime. Thesigtéon property between two quorums
depends not only on probability but also on time. (Recall thatintersection property of two
qguorums holds if and only if their intersection contains eddt one active node.) The notion
of time is of great interest in dynamic systems because ofliffieulty of ensuring invariants.
Because of its timely characteristics, TQS is easily implaiage in dynamic systems.

Probabilistic guarantees to cope with scaling. For the sake of addressing both dynamism and
scalability issues while emulating distributed shared memthis chapter presents an implemen-
tation of TQS that avoids any complex structural requiretn{éor intersection among quorums

75

CHAPTER4. FACING SCALABILITY AND DYNAMISM

or communication among quorum members). Instead, the mepresented here trades simply
structural requirements with connectivity requiremend atomic object emulation with proba-
bilistic atomic object emulation. The resulting algoritiprovides probabilistic guarantees while
not requiring costly reconfiguration or failure detection.

Specifically, the quorum intersection is provided with hiobability. That is, it may hap-
pen, though very unlikely, that two quorums do not intersdatie to this lack of intersection,
operation may be affected and cannot ensure atomic comsystdo cope with this consistency
violation we propose a new consistency criterion that isab@bilistic variant of atomicity. This
new consistency criterion allows some operations to faldme exceptional cases. Interestingly,
this consistency criterion requires that each operatianth@ same probability of failing, i.e., no
failed operation affect the success of any other operations

To summary, the problem addressed in this chapter is theagiowlof DSM in large-scale and
dynamic context. First, a new consistency criterion is carag to existing consistency criteria.
Then, various probabilistic quorum systems are presemddaew one based on a timely inter-
section property is defined. Finally, we give an implemeatadf this timed quorum system and
we prove that this emulates a DSM that respects probabiasbmicity.

Roadmap. Section4.1focused on probabilistic guarantees, by presenting pilbétabconsis-
tency criteria and the probabilistic quorum systems. 8aeti2 gives hints on how to avoid costly
tasks that prevent the system from scaling or toleratingadysm. Sectiod.3 presents our solu-
tion and show that it implements probabilistic atomicitindtly, Section4.4discusses the resulting
solution and concludes the chapter.

4.1 Probabilistic Guarantees

Probabilistic guarantees are weaker than determinisgés.omdeed, a property that holds deter-
ministically holds also with probability 1 and a propertyatholds with some probabilitp < 1
does not hold deterministically. As a result, it is easieetsure probabilistic guarantees than
deterministic ones. Here, the aim is to circumvent the @oisl encountered when guarantee-
ing atomicity by guaranteeing probabilistic atomicity Vehimproving scalability and dynamism
tolerance of DSM. First, we investigate existing consisjerelaxation and define probabilistic
atomicity. Then, we present interesting probabilistic guo system implementations.

4.1.1 Probabilistic Consistency

In the following we present some consistency criteria thativated us to define probabilistic
atomicity.

76

4.1. Probabilistic Guarantees

Weakening atomic consistency. Many efforts have been devoted to express formally consis-
tency criteria. Thus, there are various consistency @iganong which atomicityllam86 Lyn96]
(a.k.a. linearizability HW9Q]) is the strongest one. This means that any implementatiainsat-
isfies atomicity implements, for sure, any other consisteniterion. Atomicity presents desirable
features like strength and localitidJvV9(Q] that motivates its use in the previous chapters of this
thesis. Nonetheless, atomicity is difficult to ensure duéstetrength. As a result of this difficulty,
numerous consistency criteria weaker than atomicity ajgoa the literature. Safety and regular-
ity [Lam8q both require that a read operation that is not concurrettt any write returns the last
written value. Weak atomicity states that if two reads netine same value then any read ordered
after must return either the same value or a more up-to-cdie v

An interesting consistency class, called hybrid consstdAF98], benefits from both weak
and strong consistency criteria. This class defines stradgageak operations orderings: strong
operations ordering implies that there exists a consigiese¢ring on operations from any node
standpoint while weak one allows different nodes to consdiferent operation orderings. A
consistency criterion providing weak or strong orderingpehnding on the object that is accessed,
appeared in[pS90 DSB8Y. In some sense, hybrid consistency allows some weak opesato
cohabit with strong operations. All these consistencyeaatrely on deterministic requirements
that are heavy to implement in large-scale dynamic syst&msinstance, as part of the specifica-
tion of the implementation of hybrid consistency, each apen must be defined as either strong
or weak but not both. That is, all operations must be predefaswestrong or weak and during
any execution, the requirement of strong operations ismeaxed while weak operations never
provide strong guarantee.

In contrast, randomness has been introduced in other ¢ensys criteria. For instance
in [AGMT95] the shared memory model states that in some cases staksvalay be returned
depending on the type of shared objects that is read. Morgaotveer work uses probabilistic guar-
antee on latency, preventing any wrong value from beingmetliafter a read operatio8799.
Finally, randomized register&\V0O5] allow read to return old values as long as any value written
is eventually read or overwritten. As far as we know, nonehef¢onsistency criteria that relies
on probability allow operations to occur successfully whilgh probability. In this chapter, we
propose a new consistency criterion based on atomic censisguaranteeing that any operation
is atomic (or succeeds) with high probability. An algorithusing TQS is proposed as an im-
plementation of a probabilistic atomic object and we shoat this implementation also satisfies
randomized registers.

Randomized object. Randomized registers appearedliyWM05] as a register abstraction that can
be used for implementation of iterative algorithms thatvewges after a finite number of steps.
Before defining random register, we have to define what meatsttead operation reads from a
write operation. A read operatioris said toread fromsome writew if w begins before ends; the

value returned by is the same value as that writtenyw is the latest write operation satisfying

77

CHAPTER4. FACING SCALABILITY AND DYNAMISM

the two previous conditions. Next, we define a randomizedailgquivalently to the definition of
randomized register oL JV05] by assuming the seminal first rule and restating the tworsthe

Definition 4.1.1 (Randomized Object)Let x be a randomized object. Let H be a complete se-
guence of invocations responses of read and write operatippbed to object x. The sequence H
satisfies the randomized object abstraction if and onlyafftillowing properties hold:

1. Every read in every complete execution reads from some.writ

2. Let e be any finite execution and let(mybe an invocation event of a write operatiorihat
belongs to e. The probability that this write is read from iitély often is O, if an infinite
number of writes are performed after {my.

A randomized object is an abstraction that defines two rudésfed by read and write oper-
ations. The first rule states that a read operation mustrretwmalue written by a previous write
operation. Note that this rule includes the serial spediinaof object as mentioned in Chaptr
Moreover, this rule alone relaxes the property of safe teggiven in Lam8§. Nevertheless, the
third rule requires that, provided an infinite number of operations, at some point in time, read
operations will stop reading from the same write. This easudinat the information that is read is
either getting more up-to-date as long as read operatiomrsce it is already up-to-date.

Probabilistic atomic object. Probabilistic atomic object is a new abstraction providdig-
tributed shared memory emulation with high quality of seevilespite large scale and dynamism.
For the sake of tolerating scale-shift and dynamism, we dinelaxing some properties. How-
ever, our goal is to provide each client with a distributedrsd memory emulation that provides
satisfying quality of service. Quality of service must benfially stated by defining a consistency
criterion that defines the guarantees the application cpaatXrom the memory emulation. We
aim at providing quality of service in terms of accuracy ochdeand write operations. In other
words, our goal is to provide the clients with a memory thargntees that each read or write op-
eration will be successfully executed (thus, verifyingnaittty) with high probability. This notion
of quality relaxes previous deterministic constraints tasnéc consistency and allows the emula-
tion of distributed shared memory through less complex raeigms. It is noteworthy that the
expressiomwith high probabilitymeans a probability + e”z, wheren represents a constant, larger
than 1, that is tuned by the application designer.

In order to formalize the notion of quality of service whikeusing formalism chosen so far,
we define the probabilistic atomic object as an atomic oljdetre operation accuracy is provided
with high probability. Let us first recall properties 1 andf3atomicity (Definition2.1.1):

e (M, T0)—o0rdering if the response event of operation precedes the invocation event of
operationmy, then it is not possible to have < T;

78

4.1. Probabilistic Guarantees

e (T, TR)—return: the value returned by a read operatinis the value written by the last
preceding write operatiory regarding to<.

The definition of probabilistic atomicity is as follows.

Definition 4.1.2 (Probabilistic Atomic Object) Let x be a read/write probabilistic atomic object.
Let H be a complete sequence of invocations responses ofarehevrite operations applied to
object x. The sequence H satisfies probabilistic atomitiyd only if there is a partial ordering

< on the successful operations such that the following progehold:

1. Let be a successful operation. Any operatmnsatisfies(y, o) —ordering with high
probability. (If T does not satisfy it, therp is considered as unsuccessful.)

2. if Ty is a write operation andt, is any operation, then eithen, < 1y or Ty < TR;

3. Letmy be a successful operation. Any operationsatisfieq Ty, o) —return with high prob-
ability. (If To does not satisfy it, therp, is considered as unsuccessful.)

Observe that the partial ordering is defined on successérbbipns. Thatis, either an operation
i fails and this operation is considered as unordered or teeatipn succeeds and is ordered with
respect to other successful operations.

Even though an operation succeeds with high probabilitygririnfinite execution it is very
likely that at least one operation fails. However, our gsata provide the operation requester
(client) with high guarantee of success at each of its oeratquest.

4.1.2 Probabilistic Quorum System

Seminal probabilistic quorum systems have been firstly ddfioy Malkhi et al. MRW97], as
guorum systems whose quorums intersect with high prolyabiAn implementation has been
given in [MRW97] for static settings. The relaxation of the deterministitersection guarantee
permits to achieve low load and high fault-tolerance at #raestime.

Application of probabilistic quorum systems. A first application of probabilistic quorum sys-
tems is distributed electronic voting systetdqWWO01, MR98]. Voters of a country are uniquely
identified and can vote only once. That is, as soon as any vagsts a vote on a voting-machine,
its identifier must be locked country-wide for preventing &mther vote from votew. If a quorum
knows that voter has already voted, a second vote contacting a second quoitlpmevent with
high probability votew from voting twice. Even though a particular voter might netibcked with
some small probability, it remains unlikely that this pautar voter tries to vote several times.
File-sharing applications in peer-to-peer systems isharaapplication of probabilistic quo-
rums systems\ITKO6]. The goal is to inform a sufficient amount of nodes that a datested at

79

CHAPTER4. FACING SCALABILITY AND DYNAMISM

some specific nodes of the system. If this information is cieffitly replicated among the system
nodes, then the information is easily found by any reque$te solution of MTKOG6] is for each
replica to informk quorums of nodes that it hosts the data. Later on, any nodeass the data
by contacting at least one quorum that intersects at lea&sbbtinek other with high probability.

Definition of probabilistic quorum systems. Probabilistic quorum systems are defined by a set
system and an access strategy that maps each quorum of fysteeh with a probability of being
accessed. This probability of being accessed and the quadefimtion determine the intersection
probability. Recall first, as mentioned in Definitidnl.1 that a set system over a univetsas a

set of subsets df. Next, let anaccess strateglye a probability distribution function defined over
a set system.

Definition 4.1.3 (Access Strategy)An access strategy for a set systens is a probability distri-
bution on the elements ¢f Thatis,w: S — [0, 1] satisfiesy o s w(s) = 1.

A probabilistic guorum system is a quorum system whoseseteion property holds with high
probability.

Definition 4.1.4 (Probabilistic Quorum System) Let Q be a set system, leibe an access strat-
egy forQ, and letO < € < 1 be given. The tupléQ, w) is aprobabilistic quorum systeihfor any

quorums Q € (Q,wy) and Q € (Q, uy), we have:

PriQiNQ2#0] > 1—¢.

Similarly to the biquorum system (Definitidn1.3, the probabilistic biquorum system relaxes
the intersection property to quorums of distinct types.

Definition 4.1.5 (Probabilistic Biguorum System) Let Q; and Q; be two set systems over a uni-
verse U, lety; (resp.wyp) be an access strategy fQy (resp. Q2), and letO < € < 1 be given. The tu-

ple (Qy, @, wn, wp) is aprobabilistic biquorum systeififor any Q € (Qy,w1) and Q@ € (Q, wy):

PI’[QlﬂQz#m >1-—¢.

Probabilistic quorum systems are originally presentedsfatic systems where the number
of failures considered is upper bounded. MRW97], the authors give an implementation of a
probabilistic quorum system for a static system. The quosiza is¢+/n, with ¢ a constant and
n is the number of active members in the quorum system, andcitesa strategy is the uniform
access strategy among all these quorums.

80

4.1. Probabilistic Guarantees

4.1.3 Probabilistic Weak Quorum System

Miura et al. MTKO06] benefit from the relaxed intersection requirements of pbilistic quorum
systems to contact nodes uniformly at random. The quorutersybas no predefined structure,
since quorums are constructed uniformly at random. Monedtey defineprobabilistic weak
guorum systemas a set of quorums, each being accessed through a distoessastrategy and
such that each quorum intersects at least onk ofher quorums with high probability. This
definition weaken the intersection requirement given insttiainal Definition4.1.4

Looking for an object in a peer-to-peer networks. This probabilistic weak quorum system is
used for the purpose of object searching application in-pe@eer systems. Some nodes post an
information about an object location in the network. Later @ nodd searches for the object by
trying to contact a node that owns the information about thjea location. Each of those nodes
contact a distinct quorum. If the quorum contacted by thecbé#ag node intersects one of the
guorum contacted by the posting nodes, thehtain the location information and can access the
file. A probabilistic weak quorum system is depicted on Fegud.

More technically, for one quorum to intersect at least oneragk quorums with high prob-
ability, the quorum size must t@(, /%) wheren is the total number of nodes aldE 1550, 150]
is the number of nodes posting the information about theoblgeation. (Actually, thesk nodes
own the data initially.) During the protocol, each of théseodes posts tO)(\/E) nodes chosen
uniformly at random, i.e., a quorum of nodes, the infornmatilbat it owns the data. After this,
a node can retrieve with high probability the data IocatigncbntactingO(\/E) nodes chosen
uniformly at random, i.e., another quorum of nodes.

Figure 4.1: A probabilistic weak quorum system. QuorQgintersects at least one of the
quorumsQ1, Qo, ..., Qx with high probability.

In some sense probabilistic weak quorum system is similattaditional probabilistic quorum
system. First, multiple nodes contact a large quorum in &lsotative way for posting some
information. Second, a single node contacts a small quonsrsdarching the information. The

81

CHAPTER4. FACING SCALABILITY AND DYNAMISM

collaboration is motivated by the fact that many more message used for posting the information
than for searching it. From a single node standpoint the @pbsting or searching is equal in
terms of number of messages involved.

Discussion on adapting the protocol for read/write in dynanic systems. One could think of

a generalization of this algorithm for read/write operasion a dynamic systems, where a write
operation is made more costly than a read operation sinde operations are less frequent than
read operations. However, for consistency purpose suthbdited shared memory requires all
posting nodes to share a consistent view of the object befmgagating the same value. That is
one solution would be to artificially update the view of allsting nodes before they post. This is
easily achieved using a consultation before propagatidgagyging like explained in the two-phase
write operations presented in previous chapters.

The proposed protocol, the name-thread protocol, aimsoaiging each node with a global
knowledge of the system in order to search for an object taterThis protocol is proved to be
self-stabilizing. That is, when the environment stabgized no failure occurs during a sufficient
amount of time, then the algorithm succeeds. However, gelscale systems where dynamism
is frequent, it is unreasonable to assume stabilizatiohefithole system during a long period of
time. Interestingly, despite high dynamism, an object @akplicated at numerouslocations is
expected to persist a large period of tin@&KM*06]. While it is impossible to assume system
stabilization, an interesting aspect is thus to consideadysm as part of the model: quorums
intersect even if some nodes keep failing. The solutiongmtesl in Sectiord.2 stems from this
idea.

4.1.4 Probabilistic Quorum Systems for Dynamic Settings

In [AMO5], Abraham and Malkhi proposed an implementation of a stmgct probabilistic quorum
system. As far as we know it is the first time, dynamism is iditrwed into probabilistic quorum
system definition. The resulting structured quorums syst@ncalled dynamice-intersecting
consider quorums whose structure evolves without viadgtie probabilistic intersection. To han-
dle dynamism, a logical structure is re-adapted each tinaa joins, fails, or leaves.

A structured quorum system. The structure of the quorum system is a dynamic approximatio
of a De Bruijn graph that serves two major purposes. First tadijn graph limits the cost of
reparation of the structure needed when a failure is dete@econd, this graph maps each node
to a specific level depending on its location on the structweh that it can roughly determine
the size of the whole structure. Based on these facts, thefsteuneeds a logarithmic number of
steps to readapt each time a join or a leave occurs in the systemcamdetermine the number
and the size of random walks to run in order to achieve goobaltity of intersecting.

1This number is logarithmic in the system size

82

4.1. Probabilistic Guarantees

(D

01 11

Figure 4.2: An example of dynamic approximation of the De prgraph with five nodes.

Formally, each node is identified by an ordered sequencea0lwr 1. A node identified by
(a1,...,a) has an edge to nodef and only if:

e (ap,...,a) is a prefix of identifier, or
e j identifier is a prefix ofay, ..., a), or
e j identifieris(ay, ..., ax).

An example of a De Bruijn graph with 5 nodes identified by 00Q,,@L, 10, and 11, is depicted
on Figure4.2

Since the structure is continuously re-ordered to face uysa, each node can approximate
the number of nodes present in the structure by looking &vtd, i.e., the number of digits that
identifies its location on the structure. The approximatbiained is 2. Because of dynamism,
the structure might not be equilibrated at the time a noddseeapproximate its size, that is, a gap
factorG is taken into account as a margin error on the size approomaBased on the structure
size approximation and an upper bound@®mnodes can determine the number of random walks
needed to contact a quorum with high probability. The awttstiow thaO(,/n) random walks,
each being of lengtl®(logn) are sufficient to achieve intersection with high probapilig(More
precisely, the number of random walks required{g24 + 2log, G, with p a constant.)

Quorum probe in structured quorum system. A quorum is obtained, usin@(,/n) random
walks of lengthO(logn). More precisely, a quorum contains the last nodes contdmtexhch of
the random walks, thus leading to quorums of €¥g/n).

83

CHAPTER4. FACING SCALABILITY AND DYNAMISM

A random walk is run by a source node of the approximation @k Bruijn graph. The mes-
sage corresponding to this random walk is forwarded fromght®r to neighboO(logn) times,
using a decreasing time-to-live value piggybacked in thegage. During the random walk, each
neighbor is chosen depending on the identifier it owns.

Depending on the identifier of the current node and the ctthere-to-live value, an indek
is chosen. A coin is flipped so that value 0 or 1 is uniformlyeraat random. Given the value
obtained, the next neighbors is chosen such that its iderstifias/ at indexi. If more than a single
neighbor identifier has the corresponding vaha indexi, the next neighbor is chosen uniformly
at random among those ones.

Observe that, even though each identifier is chosen unijobetween 0 and 1, the neighbors
are not necessarily chosen uniformly among all possiblghtirs. This results from the fact that
among three neighbors, it might happen that two neighbors txaluev = 0 while one neighbor
has valuer = 1, so that the first two are drawn with probabilﬁwvhile the last one is drawn with
probability%. Anyway, at the end of all random walks, each contacted nadeah identifier that
contains a sequence of bits, each uniformly drawn at randoong 0 and 1.

Reconfiguration by replication and maintaining the structure. Key requirements of this quo-
rum systems rely on the invariant that should not be affebiedlynamism. The Invariant is
necessary to ensure that each node has a right identifiethahthe structure is balanced. For
example, random walks assume that each node has at leastigtdbars so that the message can
be forwarded with the same probability to a node having a 1Gagindexi of its identifier.

Invariant 4.1.1 The De Bruijn approximation graph is balanced and the id&tiof any node
indicates its position in the graph.

To guarantee this Invariant, each dynamic event involvesngonication cost to update the
identifiers and re-balance the structure. Observe thatithetsre is dynamic in the sense that the
number of identifiers is potentially infinite: we can add aittég the end of the current identifiers
to obtain new identifiers. Despite this flexibility, the nodentifiers are used to equilibrate the
structure. A node identified with less digits has a more irtgodrrole and is more likely loaded,
while a node identified with more digits participates lekslly in the protocol. Moreover, a node
determine the level of the structure based on its number gifsdand the largest difference in
the number of digits between any two identifiers define thaaké margin that impacts on the
probability of intersection of two random walks. Conseqlenihe identifier needs to be updated
as fast as possible, regarding to the number of nodes in gteray Due to this update, the worst
case time complexity required to handle a dynamic eventignstinucture i€O(logn) time.

Overcoming invariant related issues. In Section4.2, we overcome these problems. We benefit
from the Timed Quorum System (TQS) definition to implementractureless quorum system.
First, this quorum system do not need any structural prgpias, no failure detection is required

84

4.2. Avoiding Quorum System Reconfiguration

and the system self-adapts naturally in face of dynamisntoi® because of the absence of
structure, the quorum system does not need to update anyidentdier when dynamic events

occur. This is fundamental in large-scale dynamic systenmsesdynamic events may be very
frequent.

4.2 Avoiding Quorum System Reconfiguration

Reconfiguration is necessary to provide consistency mantandeterministically in a dynamic
systems. Reconfiguration repairs a quorum system whendailaccumulate. More precisely,
reconfiguration replaces a node, a quorum, or the whole gusgstem by a new one. To ensure
consistency, reconfiguration is not finished before the stbithe new entity is updated with respect
to the state of the other participants. In the quorum systeenstate of each node must reflect its
guorum belongingness and reconfiguration must guaranteddhpite dynamism.

Strict quorum systems require to be structured while priblsib quorum systems do not.
While a strict quorum must provide a client with the statustdéast one element of all quorums
of the system, the probabilistic quorum must not. Becauski®féquirement, the communication
among elements of a strict quorum has some structural @omistr During the probe of a strict
qguorum, a client must know all quorum members (hon-adaptigee) or a quorum member such
that this member will contact another member in turn, andrs¢adaptive probe) as explained in
Section3.3.4 This communication implies a dedicated communicatiomncstire among nodes. In
contrast, given an approximation of the system size (apprating the system size is explained
in Section4.4) and the number of replicas in the system, a node might simghyact randomly
a certain amount of nodes in the system to ensure that atdaagteplica is contacted with high
probability, whatever nodes are connected too.

Next, we explain how to obtain randomness without struck@@mmunication overlays. This
translates into the fact that probabilistic quorum systemsiot need each node be mapped to a
specific role in the communication structure. Neither doensthtes need to reflect any structural
positioning. Without these structural requirements inbatailistic quorum system, we propose a
structureless quorum system that do not need reconfigaratio

4.2.1 Structureless Quorum System

Structured quorum system requires a costly reconfiguratieohanism to cope with dynamism.
As said before, it is natural to think of a quorum system agucsire. For instance, Chapt@r
presents a grid-like topology to provide optimal load. Néweless, each dynamic event needs a
reconfiguration mechanism to maintain the structure of th@um system. This reconfiguration
induces a costly communication overhead and is difficulirplement.

85

CHAPTER4. FACING SCALABILITY AND DYNAMISM

Structured communication overlays. The communication structure of quorum system is used
to associate some participants together so that they camaoaimate. Communication is a well-
studied subject in large-scale dynamic networks. Two msguations for mapping a node to
neighbors appeared in such context. First, structuredisokiprovide each node with a logical
location in a graph, that represents for example a rivigikB01], a grid [RFH"01], a butterfly
network MNROZ2]. These solutions aim at maintaining the structure deslyiteamism, triggering

a dedicated handling mechanism each time a dynamic eveatsocthe use of such structures
gained popularity with the achievements of distributechitable (DHT) where a set of object keys
is mapped to nodes for the purpose of routing.

Unstructured communication overlay. Another type of systems called unstructured systems,
have gained consideration for large-scale dynamic netsvitrise recent years. This communica-
tion model used in such systems has at heart a gossip mechinzisfirst appeared irDiGH" 87]

and benefits from randomness, periodicity, and localitysfite the fact that gossip-based systems
share many similarities with systems described in varicelddi[CGJ"07], a unified abstraction
for this communication model has been proposed as the pegutsg service JGKvS04, which
allows nodes to exchange periodically a random subset ofribegghbor identifiers resulting in a
dynamic and unstructured overlay.

Unstructured communication overlay copes inherently \dithamism. First, reconfiguration
process is useless, since no structures need to be mathtédeeond, as assumed in structured
overlay, a joining node sends a join message to a contactaloeiedy in the system. This contact
node adds the joining node identifier to its own list of neigish The periodic exchange of a
random set of neighbors disseminates this identifier in #tevork. Conversely, the identifier of
a failed node progressively disappear from the system. i§hdsie to a priority mechanism that
privileges the exchange of identifiers of the most recentlysgping nodes.

Building quorums on-the-fly. Benefiting from unstructured communication overlay, urgstru
tured quorum systems are very efficient. First, they toéenabherently dynamism by removing
(adding) identifiers of failed (joining) nodes from (to) tbeerlay. Second, they do not need recon-
figuration. Instead of relying on a specific structure, eaabrgm is built on-the-fly so that a client
that executes a request at a given time creates a specifierqudhis can be done by contacting a
sufficiently large set of nodes, each node being accesdewioy a dedicated strategy.

In the context of DSM, a read operation must access the laseéwwalue, that is, values must
be replicated regularly in the system to cope with dynamiBis replication mechanism does not
need a costly reconfiguration but can be done though writeatipa executions without additional
overhead. (Later on, we present a replication as part of payation.) Observe that nodes where
a value is written/replicated at a certain time, might letdwe system after some time elapses.
This observation leads us to define Timed Quorum System tioatdes timely quorums whose
intersection depends on the time quorums are built.

86

4.2. Avoiding Quorum System Reconfiguration

4.2.2 Timed Quorum System

This section defines Timed Quorum Systems (TQS) as quorutasgsvhose intersection among
guorums is probabilistic and depends on the time a quorumoisgal. Each quorum is mapped
to a specific instant and has a bounded lifetime due to thendigma intensity (i.e.churn) of the
system. Before being created of after its lifetime elapsegicum is not guaranteed to intersect
with any other quorums, however, during its lifetime a quoris considered asachable two
guorums that are reachable at the same time intersect vgthgrobability. In dynamic systems
nodes may leave at any time, but this probability is bountlags it is possible to determine the
intersection probability of two quorums.

Most of the dynamic models assume that dynamic events aendept from each other: only
a limited number of nodes leave and join the system duringuadhed period of time. For instance
in Chapter2, it is assumed that nodes departures are dependent: queplication ensures that
all nodes of at least any two quorums remain active betweemewaonfigurations occur. However,
in a real dynamic system, nodes act independently. Duegarttiependence, even with a precise
knowledge of the past dynamic events, one cannot predidutbhee behavior of a node. Putting
this observation into quorum system context, it translatesthe impossibility of predicting de-
terministically whether quorums intersect.

In contrast, here, we measure how likely two quorums intgrsklore precisely, our goal is
to measure the probability that two quorums intersect deipgnon time. In the following, we
present a dynamic system in which nodes join and leave theraya any time and independently
so that it is impossible to predict when. However, the prdigtihat k nodes leave the system
increases as time elapses. As a result, the probabilityathabrumQ(t) probed at time and that
a quorumQ(t’) probed at time’ intersect decreases as the petidé-t| increases.

Building onto this observation, we propose a TQS where eaochugu is defined for a given
timet. Each quorunQ(t) has a lifetimeA that represents a period during which the quorum is
reachable. Differently to availability defined in the pr@ws chapter, reachability does not depend
on the number of nodes that are failed in a quorum system bedhis number is unpredictable
in dynamic systems. Instead,(Ht) quorum is reachable if at least one node of quo(t) is
reached with high probability: if two quorums are reachatiléhe same time, they intersect with
high probability. More generally, let two quorur@t) andQ(t’) of a TQS be reachable duridyg
time (their lifetime isQ); if |t —t'| < AthenQ(t) andQ(t’) intersect with high probability.

Dynamic memory and quorum abstraction. In [LS02 CGG"05] as in Chapte®, a memory

is emulated using biquorum systems that are subsequepthcesl over time. This replacement
introduces new quorums that are decided upon with a recaafign mechanism. Subsequent
guorums do not need to intersect provided that informasaronveyed from ones to others using
a reconfiguration mechanism. Similarly iRRT0Y, a quorum abstraction is defined as subsequent
biquorum systems. This abstraction requires two proger{i¢ intersection and (ii) progress, in
which the notion of time is introduced. First, a propagatiuorum intersects the consultation

87

CHAPTER4. FACING SCALABILITY AND DYNAMISM

guorum contacted subsequently. Second, each node of amquernains active between the time
the quorum starts being probed and the time the quorum stopemg probed. Observe that

the intersection property allows some consultation quaramd some propagation quorums to
be disjoint. However, the fact that clients convey inforimiatfrom a consultation quorum to a

propagation quorum can be viewed as an intersection reqaire

TQS differs from above solutions in two points. First, theemsection between quorums de-
pends only on the time a quorum is probed rather dependinigeotype or the rank of the phase it
corresponds to. Second, TQS especially relaxes the ictersgroperty by requiring probabilis-
tic guarantees instead of deterministic ones. That is, theagbility of intersection evolves with
time, thus, even though some nodes of quof(t) leave the system, the intersection probability
may be sufficient (i.e.Q(t) is reachable). These two points make TQS especially suitedy-
namic systems where deterministic properties and prasettiiat hold at any time are difficult to
implement.

In [AMO5], a probabilistic quorum system implementation is desigf@ quorum systems
that adapt in face of changes. In this approach, the quorsiemsyis a structure such that quorum
probes are given by the structure. That is, a single quorwstesycan evolve (grows and shrinks)
over time but remains the same quorum, because of the laaatits nodes on the structure. Even
though this quorum changes, the way it is probed never clsanfgereover, the implementation
given tolerate dynamism, by re-adapting the topology (amatgms) when a failure occurs. Con-
versely, a TQS experiences quorum death and quorum birghg@erum can disappear after some
time and a new one can appear after some time. The key pohdtishte way a quorum is probed
changes over time and is only dictated by node failure ane aativity.

Since TQS relies on time, quorums are accessed differeapgmtling on the time: if a node
i fails at timet, then before time, nodei may be accessed while after tihenodei will never
be accessed. Hence, its access probability varies over firhe key advantage of TQS is that
they can be implemented with no failure detection and nornéggoration mechanism. (Such an
implementation is given below.) For some applications,dievback of such an implementation
is the operation regularity requirement. We discuss thasvbiack in Sectiod.4.

Definition of Timed Quorum System (TQS). Next, we formally define TQS whose quorums
intersection is probabilistic and depends on the time qusrare created. TQS are especially
suited for dynamic systems where the behavior of nodes igedigiable, since they simply re-
quire probabilistic intersection and no deterministiensection. Moreover, quorums experience a
bounded lifetime so that their intersection guaranteesimely. Recall that the universe contains
the set of all possible nodes, including the one that havgoimthe system yet.

We first define the timed access strategy as an access stoaagg set system that may vary
over time. This definition is motivated by the fact that anesmscstrategy defined over a set
can evolve. To compare with the existing probabilistic dpraquorums, in AMO5] the authors
defined a dynamic quorum system using an evolving strategyrifght replace some nodes among

88

4.2. Avoiding Quorum System Reconfiguration

a quorum while its access strategy remains identical dedpis evolution. Unlike the dynamic
guorum approach, we need a more general framework to corgideums that are different not
only because of their structure but also because of howylitkedy can be accessed. The timely
access strategy adds a time parameter to the access sttafggpd in Subsectiof.1.2allowing a
timed access strategy to vary over time.

Definition 4.2.1 (Timed Access Strategy)Atimed access strategy(t) for a set systens at time
t € T is a probability distribution on the elements®at time t. Thatisw: S x T — [0, 1] satisfies
atanytimete T: Yo sw(st) =1

Informally, at two distinct instantg € T andty € T, an access strategy might be different for
any reason. For instance, consider that some naslactive at time; while the same nodeis
failed at timety, hence it is likely that ifi € s, thenw(s,t1) # 0 while w(s,t2) = 0. This is due to
the fact that a node is accessible only when it is active.

Definition 4.2.2 (A-Timed Quorum System) Let Q be a set system, lei(t) be a timed access
strategy forQ at time t, and leD < € < 1 be given.

The tuple{Q, w(t)) is aA-timed quorum systerif for any quorums @;) € Q accessed with
strategyw(t;) and Qt2) € Q accessed with strategy(tz), we have:

A>|t1—t] = PrQ(t1)NQ(t) #0] > 1—¢.

Implementing a randomized object. Next, we give a simple Timed Quorum System algorithm
that implements a randomized object. Since randomizedcbhje used to implement iterative
algorithm and to solve a large class of probletd®pQ], this implementation gives an overview of
the strength of Timed Quorum system. Moreover, it enlightéie fact that Timed Quorum System
may be used for various kind of applications. We assume ligagystem set contains only all sets
containingq # O active nodes in the system and that the access straigis the uniform access
strategy over all possible active quorums at time

Theorem 4.2.1 The Timed Quorum System Algorithm implements a randomizedto

Proof. Property 1 holds because when a node is locally read it rethnlast value it has written
locally.

For the second property, we need to show that no value wattamode is infinitely read. For
this purpose, we show that any written node either fails eventually over-written. Assume that
there is a serie of subsequent write operations and @t be the quorum contacted by th&
of these write operations. Without loss of generality, wierréo Qy, as the quorum with the most
up-to-date value and we bound the probability; thatv is infinitely read.

Observe first that any given nodef Q, might fail before all write execution. By assumption
wheni recovers it no longer hosts valueln this case, value cannot be infinitely read at node

89

CHAPTER4. FACING SCALABILITY AND DYNAMISM

Next, we upper bound the probabilit}y by considering a worst case scenario in which no
nodes ofQy fail. At any timet, the timed access strategyt) draws uniformly at random any
guorum containing] active nodes at timeé The upper bound of; is the probability?, that at
least one nodeof Qy survives the series of write operations, while no nod®gpfails:

P =) Pli¢gQU..UQ/],

e
4

= _%FI Prii ¢ Q.
ieQyj=1

- a9
1=
Since|Qj| =g > 0, and?;, < P, we have lim_., P1 = 0 and the result follows. O

4.3 Scalable Dynamic Distributed Shared Memory (benefiting
from Prototypical Gossip)

The goal is to define a structureless memory that providelaibstic atomic operations in a
large-scale dynamic system. To this end, we need an implti@mof a Timed Quorum System
(TQS). In other words, we are interested in answering thieviahg question: Using quorums
whose lifetimeA depends on their sizg due to dynamism, how can we implement a memory
that ensures operation success with high probability imgelaystem? Or, more technically, if an
object valuev is written at a quorun®@(t) at timet and if a value/ is consulted at a quoru(t’)
attimet’ =t + A, how can we ensure to have= v with high probability? In the remaining of this
paper, we assume that all quorums contaimodes, since an interesting goal is to minimize both
the size of quorums where the value is propagated and thefsigzerums a client has to probe to
find the right value.

The solution we present here works roughly as follows. A phase operation is executed
frequently by any client in the system. The first phase cdsghke newest value of the object
at g nodes in the system while the second phase propagates tlestneaiue tog nodes of the
system. A tag associates each value so that the newest salithithe largest tag and is easily
identifiable. During a phasej nodes are contacted uniformly at random by disseminatide—t
underlying communication graph ensures uniformity of @msated node drawings—such that
q= O(v/nD) different nodes are contacted, wheris the system size aridlis a values depending
on the dynamism intensity (churn). (Remark that it has beewgatin MRWWO01] thatg = O(/n)
is sufficient if the system is static.) The phase dissenovnatiat contactsf nodes takesog(q')
message delays. The setsghodes contacted during each phase form a TQS: any two sets
intersect with high probability depending on the time they arobed.

90

4.3. Scalable Dynamic Distributed Shared Memory (benegfiiam Prototypical Gossip)

4.3.1 Model and Definitions

Model of the dynamic system. The computation model is very simple. The system consists of
n nodes. It is dynamic in the following sense. Every time uaithodes leave the system and
cnnodes enter the system, wheres an upper bound on the percentage of nodes that enter/leave
the system per time unit; this can be seen as new nodes “negldeaving nodes. A node leaves
the system either voluntarily or because it crashes. A nbdel¢aves the system does not enter

it later. (Practically, this means that, to re-enter thaesys a node that has left is considered as a
new node; all its previous knowledge of the system statesis)lo

t t+1 t'=t+A

| L _
Time line

Figure 4.3: System evolution

Figure4.3describes a possible system evolution. Initially (tir)yehere aren nodes (identified
from 1 ton; let us taken = 5 to simplify). Letc = 0.2, which means that, every time unii; = 1
node changes (a node disappears and a new node replacekat), & timet + 1 the node 2 is
replaced by the nod€.2.etA = 4. Attimet +4, we see that the nodes 3 amHave been replaced
by the nodes’3andn’, respectively, while the new nodé as in turn been replaced by the node
2" and the nodes 1 and 4 still belong to the system. The impaoptzint here is that a new node
can in turn be replaced at a later time. More particularlyassgume that the churn ratepplies
equally to any subset of the system: any sulSseft the system experiencéSc joins and leaves
by time unit. This model is extended to a more realistic mad&ubsectiort.3.4

Preliminary notations and definitions. This paragraph defines several terms that are used in the
algorithm description. First, recall that a shared obje@dcessed through read operations, which
return the current value of the object, and write operatiarisch modify the current value of the
object. To clarify the notion of currency when concurrenappens, it is important to explain what
are the up-to-date values that could be considered as tuvkerrefer to thdast valueas the value
associated with the largetstg among all values whose propagation is complete. We refdreo t
up-to-date valueat timet as all valuew that satisfies one of the following properties:

e Valuev is the last value.

91

CHAPTER4. FACING SCALABILITY AND DYNAMISM

e Valuev is a value whose propagation is ongoing and whose assod&agesd at least equal
or larger to the tag associated with the last value.

In the remaining of this chapter, we referval(g) andtag(¢) as, respectively, the value and tag
consulted/propagated by phage

Second, it is important to understand what is a successhgghThe goal of a consultation
phase is to return an up-to-date value, whereas the goat grtipagation phase is to propagate an
up-to-date value so thatv can be identified as an up-to-date value. Thus, we refestaeessful
phaseas a phase that achieves its goal. Observe that, if the ¢ahsuolof an operation is unsuc-
cessful, then the subsequent propagation phase of the gmragion might propagate a new value
with a small tag so that this value will not be identifiable asup-to-date value. In this case, we
say that both the consultation and propagation are unssictghases. A more formal definition
of the successful/unsuccessful phase follows.

Definition 4.3.1 (Successful Phasel consultation phase is successfuif and only if it returns
an up-to-date value vab). A propagation phase is successfuif and only if it propagates a tag
tag(p) largest than any of the tags that were in the system vhetarted. A phase isnsuccessful
if it is not successful.

We refer to successful operations as operations whose Iltatso phase and propagation
phase are successful. Observe that this corresponds tmtioa 0f successful operation previ-
ously given in Definition4.1.2

TQS ensures that two active quorums will intersect with tpgbbability, however, if no quo-
rum is active, then the value of an object does no longer §ter$o ensure that new operations
replicate the object value sufficiently, we assume thatshtdae operation is executed every period
A. As previously explained this mechanism serves as a canigveplication and replaces the
traditional reconfiguration mechanism to cope with accatad failures.

4.3.2 Disseminating Memory using Underlying Gossip

In the following, we present a completely structureless Tl he quorum systems this memory
uses does not rely on any structure which makes it flexibleofirast to using a logical structured
overlay for communication among members, we use an ungtecctommunication overlay. The
lack of structure presents several benefits. First, theme iseed to readapt the structure at each
dynamic event. Second, there is no need for detecting &il8ince failure detectors are impos-
sible to achieve in asynchronous settingsP89, the absence of failure detector strengthens the
feasibility of our solution. Moreover, traditional solati based on failure-detector needs heart-beat
message to try detecting failures. Here, no such costly aresims are needed.

Our solution proposes a periodic replication. Even thowglonfiguration is useless in an un-
structured system, some dynamism-related issues havedddressed. For instance, to ensure

92

4.3. Scalable Dynamic Distributed Shared Memory (benegfiiam Prototypical Gossip)

the persistence of an object value despite unbounded ledneesalue must be replicated an un-
bounded number of times. The solution we propose relies nagie operations. This periodicity
avoids failure detector but requires to be carefully tuneaeplication is not frequent enough, then
the value might be lost. Conversely, if replication is toajfrent then too many messages would
result in a bandwidth resource waste.

Replicating during client operations. Benefiting from the natural primitive of the distributed
shared memory, the object value is replicated using opersti The distributed shared object is
accessed by client through read and write operation. Likdagxed along with this document,
any operation has at its heart a quorum-probe that repdicatieie. It has been largely observed
that replication is needed to tolerate bounded amount frés. In large-scale systems, it is also
reasonable to assume that shared objects are frequendlgsactbecause of the large number of
participants. The replication mechanism for structuefasmory has been motivated by these ob-
servations. Since operations provide replication andeshabjects experience frequent operation
requests in large-scale systems, frequent replicatiansamly ensured by client operations.

Consequently, replication does not produce a significantncoenication overhead regarding
to the communication complexity of operations. More prelgisas long as operations are fre-
guent enough, replication is not required. When the comnadioic complexity is high due to the
numerous participants, then there is no additional refiticanechanism and additional complex-
ity is null. However, at some time when operations frequethegreases, the object value must
be replicated to prevent unavailability. Observe that camication complexity induced by this
replication compensates the absence of operation comationic

Quorum probe. The algorithm is divided in three distinct parts that représhe state of the
algorithm (Linesl—12), the actions initiated by a client (Lind$8-40), and the actions taken upon
reception of messages by a node (Lidéds66), respectively. Each nodehas its own copy of the
object called its valugal, and an associated téag . Fieldtagis a couple of a counter and a node
identifier and represents, at any time, the version numbtreofalueval. We assume that initially,
there areg nodes that own the default value of the object, the otheresibdve their valuesal set

to L and all theirtags are set td0, 0).

Each read and write operation is executed by clienttwo subsequent phases, each dissemi-
nating a message tp= O(v/nD) nodes, wher® = 1/(1—c)? is required to handle chuaduring
periodA.? The two subsequent phases are callectresultation phasend thepropagation phase
The consultation phase aims at consulting the up-to-ddte & the object that is present in the
system. (This value is identifiable since it associatesalgekt tag present in the system.) More
precisely, client disseminates a consultation messageg modes so that each receiveresponds
with a message containing valuelj and tagtag; so that clieni can updateval andtag. In fact,

I updatesval; andtag; if and only if thetag has either a smaller counter thtay; or it has an

2In [MRWWO1], it has been showed thgt= O(+/n) is sufficient in static systems.

93

CHAPTER4. FACING SCALABILITY AND DYNAMISM

Algorithm 8 Disseminating Memory at node

1: State of nodei:

13

16

22

q= WﬁA , the quorum size
(1-¢)2

£,k € N the disseminating parameters taken suchﬂ%é\{fl >q
val € V, the value of the object, initially_
tag, a couple of fields:

countere N, initially 0

id € 1, an identifier initiallyi
marked an array of boolean initiallfalse at all indices
sent-to-nbrs1sent-to-nbrs2wo sets of node identifiers, initially
rcvd-from-gnodesan infinite array of identifier sets, initial§ at all indices
sne N, the sequence number of the current phase, initially O
fathere I, the id of the node that disseminated a messagandially i

. Read:
14:
15:

(val,tag) < Consult()
Propagatd((val,tag))

: Write(v);:
17:
18:
19:
20:
21:

(x,tag) «—Consult()
tag.counter— tag.countert 1
tagid « i

val — v

Propagate((val,tag))

. Consult:
23:
24
25:
26:
27:
28:
29:
30:

31:

ttl — ¢

sn—sn+1

while (|sent-to-nbrsfL< k) do
send(CONS, val, tag, ttl,i,sn) to a set of (k— |sent-from-nbrsf) neighbors# father
sent-to-nbrsk— sent-to-nbrsJ

end while

sent-to-nbrsk— 0

wait until |rcvd-from-gnodésn| > g

return (({val,tag))

equal counter but a smaller identifiers. j (node identifiers are always distinct); in this case we
saytag < tag; for short (cf. Lines51and55). Ideally, at the end of the consultation phase client
i has set its value@al; to the up-to-date value. Read and write operations diffemftbe value
and tag that are propagated by the clienSpecifically, in case of a read, clienpropagates the
value and tag pair freshly consulted, while in the case ofeydlienti propagates the new value
to write associated with a strictly larger tag than the latgag that has been consulted so far. The
propagation phase propagates the corresponding valuagiy dissemination among nodes.

94

4.3. Scalable Dynamic Distributed Shared Memory (benegfiiam Prototypical Gossip)

32: Propagate(valt));:

33 ttl—¢

34: sn—sn+1

35: while (J]sent-to-nbrsll< k) do

36: send(PROP, val, tag, ttl,i,sn to a set of (k— |sent-to-nbrsf) neighbors# father
37: sent-to-nbrsk— sent-to-nbrsuJ

38: endwhile

39: sent-to-nbrsk— 0

40: wait until |rcvd-from-gnodesn| > q

41: Participatej: // activated upon reception of a message.
42: recv(typev,t,ttl, client-id,sn) from j
43: if (markedsn) then

44 send(type v, t,ttl, client-id, sn) to a neighbot# j
45: else /hhis sequence is not marked yet

46: markedsn «— true

47: if (type= CONS) then

48: v« val

49: t — tag

50: else if (type= PROP) then

51: if tag <t then

52: val — v

53: tag—t

54: else if (type= RESP) then

55: if tag <t then

56: val v

57: tag—t

58: rcvd-from-gnodesn « rcvd-from-gnodelsnu{j}
59: ttl—ttl—1

60: if (ttl > 0) then

61: while (]sent-to-nbrsP< k) do

62: send(type v, t,ttl client-id,sn) to a set) of (k— |sent-to-nbrsp neighbors# father
63: sent-to-nbrs2— sent-to-nbrs2JJ

64: end while

65: sent-to-nbrs2— 0

66: sendRESP, val, tag, ttl, L, sn) to client-id

Next, we focus on the dissemination procedure that is atéhet lof the consultation and prop-
agation phases. There are two parameteks that define the way all consultation or propagation
messages are disseminated. Paranfateticates the depth of the dissemination, it is used to set a
time-to-live fieldttl that is decremented at each intermediary node that patespn the dissemi-
nation; ifttl = 0, then dissemination is complete. Param&texpresents the number of neighbors
that are contacted by each intermediary participating nddgether, parametefsandk define the

number of nodes that are contacted during a disseminatibis Aumber |s"%11 (Line 3) and

95

CHAPTER4. FACING SCALABILITY AND DYNAMISM

represents the number of nodes in a balanced tree of deptth widthk. (This value is provable
by recurrence on the depthof the tree.) Observe that the number of nodes that are dedtac
during a dissemination must be larger tltpas written LineS.

There are three kind of messages denoted by mesgpgeCONS, PROP, RESP indicating
if the message is a consultation message, a propagatiorageess a response to any of the two
other messages. When a new phase starts at gli@htme-to-live fieldtl is set to/ and a sequence
numbersnis incremented. This number is used in message exchangeditate whether a mes-
sage corresponds to the right phase. Then the phase pranessigling continuously messages
to k neighbors waiting for their answer (Lin€%-28 and Lines35-38). When thek neighbors
answer, client knows that the dissemination is ongoing. Then cliemceives all messages until
a large enough numbeyof nodes have responded in this phase with the right sequanuober
(Lines30, 40). If so, then the phase is complete.

Observe that during the dissemination, messages are simgked (if not so), responded (to
clienti), and refowrarded to other neighbors (untilis null). Messages are marked by the node
i that participates into a dissemination for preventing niofitem participating multiple times in
the same dissemination (Linéd3). As a result, if node is asked several times to participate, it
first participates (Lineg6-66) and then it asks another node to participate (Lih&st5). More
precisely, ifmarkedsn is true, then nodeére-forwards messages of sequence nurshavithout
decrementing thil. Observe that phase termination and dissemination tetimmdepends on the
number of participants rather than the number of respoiitsssmportant that enough participants
participate in each dissemination for the phase to evegtead.

Preventing stale value propagation. Itis interesting to understand how a value can be read and
written using timed quorum system. First, observe that squueum might not intersect, though
this is very unlikely. There is an intersection between any quorums with high probability, thus,
there might exist a quorum that does intersect any othergdheof the read operation is to return
the most up-to-date value of the object, while the goal ofthie is to propagate a new value that
must appear as more up-to-date than any other.

Due to probabilistic guarantees, each operation mightatafy its goal. Indeed, a consultation
might fail in contacting any node that has the largest tag @mtb-date value. The subsequent
propagation phase tries, in case of a read operation, t@gede a stale value, or, in case of a write
operation, to propagate a value with a potentially non-adegitag. Remark that a write operation
whose consultation failed might still associate its valoe largest tag. Propagating low tag or
stale value may have dramatical consequence on furtheatiges. Since intersection probability
depends on the number of nodes that own up-to-date valueaagekst tag, it is crucial that no
stale value overwrite an up-to-date value so as no low tagaite the largest tag. To remedy this
problem, each node contacted during a propagation updatearrent tag-value pair only if the
propagation informs it about a more up-to-date value aasettia larger tag (cf. Linésl and55).

96

4.3. Scalable Dynamic Distributed Shared Memory (benegfiiam Prototypical Gossip)

Contacting participants randomly. In order to contact the participants randomly, we imple-
mented a membership protoc®KMO3]. In this protocol, each node has a set of neighbors called
its view A, it periodically updates its view and recomputes its set@afinbors. Algorithm9
provides each node with a setmf> k+ 1 neighbors, so that phases of Algoritt&disseminate
through a tree of width.

Algorithm 9, presented here, is a variant of the Cyclon algorittM@yS03. This algorithm
shuffles the view at each cycle of its execution so that it jies randomness in the choice of
neighbors. Moreover, it has been shown by simulation tleattimmunication graph obtained with
Cyclon is similar to a random graph where neighbors are picikefrmly among noded\ya05.
Finally, for a different purpose we simulated exactly thensavariant of Cyclon described on
Algorithm 9. This simulation confirmed our thoughts since the resultaiobd was really similar
to the one obtained with artificial uniformity. This simutat is described in Figuré.5(a) of the
Appendix and in FGJ"07).

Algorithm 9 Gossip-based Neighborhood Management using a variant dbyc
1: Initial State of nodei:
2: A, the view initially filled of some neighbor entries.
3: m>k+1, the view size.

4: Active Thread at nodei:
5. for jy e Ajdo
6: tj/ — tj/ +1
7 IR Htr = maxj/eM(tj/)
8: send(REQ,A¢\ {g}U{(i,0)}) toj
9: recv(ACK',4) from j
10: duplicated-entries= {e: eid € Aj N A}
11: Mlnlt - M
12: Af — A\ duplicated-entrie§ {e }
13: for e € A{" do
14: if |Af| < cthen
15: A — AU {ad

16: Passive thread at node activated upon message reception:
17: recv(REQ', 4) from j

18: send(ACK',Af) to j

19: duplicated-entries= {e€ A : eid € Aj N A}

20: Minit — M

21: Af < A \duplicated-entries

22: for g € A{™ do

23: if |Af] < mthen

24: Af — AU {ed)

For the sake of uniformity, the membership procedure setifi Algorithm9 is similar to the
Cyclon algorithm: each nodemaintains a view\j containing one entry per neighbor. The entry of

97

CHAPTER4. FACING SCALABILITY AND DYNAMISM

a neighborj corresponds to a tuple containing the neighbor identifidrissrage. Node copies its
view, selects the oldest neighbpof its view, removes the entm; of j from the copy of its view,
and finally sends the resulting copy jtoWhen | receives the viewj sends its own view back to
discarding possible pointers tpandi and j update their view with the one they receive by firstly
keeping the entries they received. This variant of Cyclorharges all entries of the view at each
step and uses two additional parameters.

4.3.3 Correctness and Analysis of a Scalable and Dynamic DSM

This Subsection shows that AlgorithBimplements a timed quorum system and that it emulates
the probabilistic atomic object abstraction defined in Daéin 4.1.2 The key points of this proof

is to show that quorums are sufficiently re-activated by nperations to face dynamism and that
subsequent quorums intersect with very high probabilitydisieve probabilistic atomicity.

Assumptions. First, we only consider executions starting with at legstodes that own the
default value of the object. In these executions, at leastpyopagation phase from a successful
operation starts ever time units and let the time of any phase be bounded tigne units. We
assume that during a propagation that propagates a vatug nodes and that executes between
timet andt + §, there is at least one instantvhere theq nodes own valug simultaneously. This
instant,t’, can occur arbitrarily between tinteandt + &. Even if this assumption may not seem
realistic since propagation occurs in parallel of chura. (iat the time the propagation contacts the
" node the first contacted node may have left the system), otivations for this assumption
comes from the sake of clarity of the proof and we claim thatahsence of this assumption leads
to the same results.

Second, we assume that Algoritfhused as our underlying communication protocol provides
each node with a view that represents a set of neighborsrarifadrawn at random among the
set of all active nodes. This assumption is reasonable sascalready mentioned, the underlying
algorithm is based on Cyclon that shuffles node views and gesvcommunication graph similar
to a random graph\va04.

Next, we show that Algorithn® implements a probabilistic object. Observe that the ligsne
part of this proof relies simply on the activity of neighbasad the fact that messages are eventually
received. More precisely, by examination of the code of At 8 and Algorithm9, messages
are gossiped among neighbors while neighbors are unifocmbgen. It is clear that operation
termination depends on eventual message delivery. As #,resaly the safety part of the proof
follows.

Consistency proof. First Lemma computes the ratio of nodes that leave the syateitime
elapses, given a churn of The result is a bound on the number of nodes that leave and joi
and helps computing the probability that up-to-date vateesain reachable despite dynamism.

98

4.3. Scalable Dynamic Distributed Shared Memory (benegfiiam Prototypical Gossip)

Lemma 4.3.1 The number of initial nodes that have been replaced aftéme units is at most
C=1-(1-c¢)".

Proof. We claim that the number of initial nodes that are still in Hystem after time units is
at leasin(1—c)". The proof is by induction on the time instants. Let us renthatc is an upper
bound on the percentage of nodes that are replaced in onetiine

e Base case. Attime 1, at least nc= n(1— c) nodes have not been replaced.

e Induction case. Let us assume that at tmel, the number of initial nodes that have not
been replaced is at leastl — c)* . Let us consider the time instant The number of
initial nodes that are not replaced afteime units is at leagt(1—c)** —n(1—c)" ¢, i.e.,
n(1—c)', which proves the claim.

It follows from the previous claim that the number of initraddes that are replaced duringgme
units is at mosh —n(1—c)*'. ThereforeC=(n—n(1—c)')/n=1—(1—c)". O

The following Lemma gives a lower bound on the number of nddas own the up-to-date
value at any time in the system. (Recall that an up-to-datgevaleither the value with the largest
tag and whose propagation is complete, or any value withgetaag, but whose propagation is
ongoing.)

Lemma 4.3.2 At any time t in the system, the number of nodes that own an-dpt&ovalue is at
least 1 — c)®, whereA is the maximum time between two subsequent propagation, siasthe
quorum size, and c is the churn of the system.

Proof. With no loss of generality, lgp1, ..., pk be all the ongoing propagations at titand letp
be the latest successful propagation that is already fidiashémet. By definition, allv(p;) for
anyi > 0 are the up-to-date values in the system. Propagapians, px must all have started after
timet — d. By the periodicity assumption of propagate phase, propagpp cannot start earlier
than timet — A+ &. Due to propagatiopg, there must be nodes with value/(p) between times
t—A+dandt — A+ 2.

Since the number of replaced nodes increases as time gla@sseisne a worst case scenario
in which g nodes own value/(p) at timet; =t — A+ 8, we show that at leasf(1 — c¢)® nodes
with valuev(p) remains in the system at timg=1t 4 6. By Lemma4.3.1, we know that during
periodt, —t; = A exactly|g(1— (1—c)?)| nodes with value/(p) are replaced. Since propagations
p1,..., Pk are ongoing, there may be some successful propagationgahmse ones that overwrite
some node values. Observe that if this overwriting happehsto nodes that already own value
v(pi), then the number of nodes with valugp;) remains at leasy(1 — c)* at timet + &; if this
overwriting happens to nodes that do not own val(®) then this number increases. That is,
d(1—c)? is a lower bound on the number of nodes with valj@) at timet + 8. O

The following Fact gives a well-known bound on the exporartinction, provable using the
Euler's method.

99

CHAPTER4. FACING SCALABILITY AND DYNAMISM

Fact4.3.3 (1+3)" <&, forn> |x|.

Next Lemma lower bounds the probability that any conswtationsults an up-to-date value
v. Recall that sometime it might happen that a values unsuccessfully propagated. This may
happen when a write operation fails in consulting the lartgs just before propagating value
Observe that in any case, a successful consultation redaipsuccessfully propagated values.

Lemma 4.3.4 If the number of nodes that own an up-to-date value is at lefdst-q)* during the
whole period of execution of consultatignthen consultatiorp succeeds with high probability.

(P>1-eF)

Proof. The consultation of Algorithn8 draws uniformly at randong nodes, without replace-
ment. To lower bound the probabilit§ that any consultation consults an up-to-date value
we compute the probability that this value is obtained aftelrawings with replacement. It is
clear that the probability of obtaining a specific node affeirawings is larger without replace-
ment than with replacement. The probability for a nodeniformly chosen at random not to

own the valuev is Pix ¢ Q] =1— M that is, the probability not to consult valueaf-
q
ter g drawings, with replacement, is [Rf ¢ Q,....Xq ¢ Q] = (1—@) . By Fact4.3.3

2
Pix; ¢ Q,....% ¢ Q] < e (19" By replacing theq by the quorum size given at Lir2 of
2
Algorithm 8 in the contrapositive? > 1 — e~ 7 (1-9* we obtain the resulp >1-— e B O

This corollary simply concludes the two previous Lemmaistatihat any consultation executed
in the system succeeds by returning an up-to-date value.

Corollary 4.3.5 Any consultatiorp succeeds with high probabilityP(> 1 — e—BZ.)

Proof. The result is straightforward from Lemma3.2and Lemma}.3.4 a

Last but not least, the two theorems conclude the proof bwstgpthat Algorithm8 imple-
ments aA-TQS and verifies probabilistic atomicity.

Theorem 4.3.6 Algorithm8 implements @&-Timed Quorum System, whekes the maximum time
between two subsequent propagation starts.

Proof. First observe that the set of quorums is the set of subsetaaifve nodes over the system at
timet. The timed access strategy at titr@ver the set of all quorums is the uniform access strategy
over all quorums since each node is chosen with a unifornsacteategy among the active nodes
at timet. By Corollary4.3.5 it is clear that the intersection between two quorums isiestswith
high probability as long as one quorum starts being condaktiime before the other ends being
contacted. O

100

4.3. Scalable Dynamic Distributed Shared Memory (benegfiiam Prototypical Gossip)

Theorem 4.3.7 Algorithm 8 implements a probabilistic atomic object.

Proof. The proof shows that it exists an orderirgdefined by the tags such that < m; is
equivalent to eithetag(tg) = tag(1tj) andTs is a write and; is a read, otag(Tg) < tag(r;). We
prove separately for each property of Definitibri.2that the ordering< satisfies it.

1. The proof is done in two parts. First, we show that Propgrlds if consultation phase
of operationtn obtains an up-to-date value. Second, we show that this ttatisn phase
obtains an up-to-date value with high probability.

On the one hand, we denote @gyand byp; the respective consultation phase and propagation
phase of any operatiom. We show by contradiction that Property 1 holdgjifconsults an
up-to-date value. By absurd, assume that it is false. Thasgjme thap, consults an up-to-
date value, the responsemf precedes the invocation op, andmn < 1. Sinceg, consults

an up-to-date value, we hatey(¢,) > tag(ty). Now there are two cases to consider: either
T is a read or a write. First, if is a write thertag(tp) > tag(¢,) > tag(mn) by examination

of the code of Algorithn8 (cf. Lines21). By definition of<, if tag(Tp) > tag(1y) andmy is

a write, then it cannot happen that < 1y. Second, iffp is a read theag(T,) = tag(@,) >
tag(ty) by examination of the code of Algorithi® (cf. Lines15). By definition of <, if
tag(tp) > tag(Ty) and Ty is a read, then it cannot happen thmat< 1. As a result, this
contradicts the assumption, showing that Property 1 hblgsabtains an up-to-date value.

On the other hand, Corolla#.3.5shows that any consultation obtains the most up-to-date
value with high probability. Since Property 1 holds if a coltation of T, consults an up-to-
date value, and since any consultation consults an upttovdéue with high probability, the
result follows.

2. Property 2 follows simply from the way tags are chosenmhetndre, be any two operations.
On the one hand, ify and T are initiated at nodg then they have distinct tag counters.
On the other hand, ify andtp are initiated at two distinct nodes, then they have distagt
identifiersi andj. As a result, two operations have different tags and etdup;) > tag(p2)
ortag(p1) < tag(pz2) holds.

3. Property 3 fails only if the read operation is unsuccds3toe probabilityP; for an operation
Tt to be unsuccessful is lower than the probabiRgythat its consultationp is unsuccessful.

Since we know by Corollarg.3.5that this later probability? is very low Py = e‘BZ), the
probability P that an operation is unsuccessful is very low tBg € e*BZ). It follows that
Property 3 holds with high probability>(1 — e*Bz).

101

CHAPTER4. FACING SCALABILITY AND DYNAMISM

Performance analysis. The following Theorems show the performance of our solubipmea-
suring the time complexity and the communication compyegitany operation. More precisely,
the first Theorem gives the minimal number of messages redjtir make an operation while the
second Theorem gives the expected time complexity of outisol.

Observe that operations complete provided that sent messag reliably delivered. Assuming
this, an operation completes after contactd@/nD) nodes. The following Theorem shows this
result.

Theorem 4.3.8 An operation completes after having contacted/@D) nodes.

Proof. This is straightforward from the fact that termination oé ttissemination process is con-
ditioned to the number of distinct nodes contacige: O(v/nD), with D = (1—c¢)~2 (cf. Line 2).
Since there are two disseminating phases in each operahaperation is executed after contact-
ing O(v/nD) nodes. m

The following Lemma indicates that contacting a quorungef O(,/n) nodes consists in
contacting approximatelg nodes uniformly at random.

Lemma 4.3.9 Let n be the total number of nodes and assume that in a trial dernie drawn
uniformly at random with replacement. The expectation ofrtinaber of trials §to obtain q=

O(v/nD) distinct nodes is‘g~ g = O(v/nD).

Proof. Let H(n) denote theit" Harmonic number in this proof. The goal is to compute the nemb
of trials to getq distinct nodes, that is, there is an analogy between ourgmolnd the coupon
collector problem where coupons are successively boughararly at random and the goal is
to complete the collection. From the coupon collector pgohlwe know that the waiting time
between coupons— 1 andi is a random variable with expectatiori(n—i+1). Letd be the
number of trials to obtain distinct nodes. Its expectation is thus:

4 n
no_
Ela] = Hn—i+1
AN Y |
= N — — — ,
= I j:lJ
= n(H(n)—H(n—Q)). (4.1)
The upper and lower bounds of th® Harmonic number is given by Theorem 2 Gi¢CG0j as:
1 <H(n)—Inn—-y<
nt -2 Y=ot

wherey = 0.57721566.. is the Euler-Mascheroni constant.

102

4.3. Scalable Dynamic Distributed Shared Memory (benegfiiam Prototypical Gossip)

Consequently, we haw¢(n) —H(n—q) ~Inn—In(n—q) = —In(1—1). Since In(1+x) ~ x
where|x| < 1, we haveH (n) —H(n—q) ~ 3. Using this approximation in Equatighl leads to:
n
T~n(—In—) ~q.
Elq] = n(-In =) =g
O

Next Theorem indicates that an operation terminaté€3(lng\/nD) message delays, in expec-
tation.

Theorem 4.3.101f messages are not lost, the expected time of an operati®fldgy/nD) mes-
sage delays.

Proof. The proof relies on the fact thgt nodes are contacted uniformly at random with replace-
ment. By Lemma4.3.9 in expectation the numbef that must be contacted to obtajrdistinct
nodes isg’ = O(v/nD). Since allg’ nodes are contacted in parallel along a tree of dépénd
width k, the time required to contact all the nodes on the trée=sO(log, v/nD) message delays.

O

4.3.4 Exact Probability for Practical Measurements

From a practical standpoint, high probability must be tlaesl into exact values representing
the quality of service. It is crucial for the system desigokes company to know what is the exact
expectation provided by a service. For instance, if a seswguaranteed to be up during 99,99% of
the time, then the company can estimate the waste becauseref srash. Previously, we showed
that Algorithm8 implements probabilistic atomicity, that is, we bound thiersection probability
of the quorum system. Differently, we now compute the exatdrsection probability between
any two quorums that are probed in the same pefliodhe exact probability measurement is of
practical interest to predict the success of an operati@andistributed shared memory service.

Refining the model of dynamics. Since the purpose is no longer to achieve high probability
but rather an exact probability value, we refine our modelywiagnics, using a more complex but
more realistic model. We present several measurementgsoptbbability depending on some
parameters: chur@, periodA, and quorum size. In the previous sections, the number of nodes
replaced during period is fixed and represents a portion of the system and any oflisystems.
That is, given any subs&of system node<;|S| nodes are replaced during peridih S.

This model can be refined to be more realistic. Even thatighodes have been replaced in
the system, realistically it is unsured tiZi§ nodes have been replaced3nindeed, if|S < nC, it
is possible that all the nodes of subggthave been replaced. For the purpose of obtaining a more
realistic measure of intersection guarantee we now recteripa number of nodes that have been

103

CHAPTER4. FACING SCALABILITY AND DYNAMISM

replaced as a random variable. We then redraw our resulti lmesthe new churn model obtained.
More technically, the number of nodes that are replacechdyperiodt in the system remains
C=1-—(1-c)" (cf. Lemma4.3.1), however, the number of nodes that are replaced in any subse
Sof the system is a random variable that depends on theéSinéthe subset.

Evaluating the exact probability of intersection. Let two quorumsQ(t) andQ(t’) be two sets

of g nodes that are probed at timandt + A, respectively. Next, we focus on the exact probability
thatQ(t) andQ(t’) intersect. Let aimitial node be a node that belongsQ@¢t). Moreover, without
loss of generality, let = 0 (hencet’ = A). Before evaluating the probability th@tt) andQ(t’)
intersect, we determine the exact numbesf nodes that leave the system during pedod-irst,
recall thatC is an upper bound on the percentage of nodes that leave anithgpsystem during
time units.

Unlike the previous proof, this theorem assumes the refinediefrof dynamics and measures
precisely the probability that, at timté=t + A, an arbitrary node cannot obtain the object value
when it querieg) nodes arbitrarily chosen. For this purpose, using resuleaima4.3.1we take
the number of elements that have left the system during thegA asa = [Cn| = |(1— (1—
¢)®)n|. This number allows us to evaluate the aforementioned jhititya

Theorem 4.3.11Let X, ...,Xq be any node in the system at time=tt + A. The probability that
none of these nodes belong to the initial quorum is

otal ("))y
(&)

wherea = [(1— (1—c¢)?)n|, a= max0,a —n+q), and b= min(a,q).

Proof. The problem we have to solve can be represented in the folipway:

The system is an urn containingballs (nodes), such that, initiallg balls are green (they
represent the initial quoru@(t) and are represented by the gein Figure4.4), while then—q
remaining balls are black.

We randomly dravet = |Cn| balls from the urn (according to a uniform distribution)dgraint
them red. Thesa balls represent the initial nodes that are replaced by nelehafterd units of
time (each of these balls was initially green or black). Afténas been colored red, each of these
balls is put back in the urn (so, the urn contains ageballs).

We then obtain the system as described in the right part afr€if.4 (which represents the
system state at time =t + A). The set4 is the set of balls that have been painted r@dis the
guorum setQ after some of its balls have been painted red (these ballesept the nodes of the
quorum that have left the system). This means th&s$&t4, that we denote b§, contains all the
green balls and only them.

104

4.3. Scalable Dynamic Distributed Shared Memory (benegfiiam Prototypical Gossip)

The system at time The system at tim&

Figure 4.4: System at timésandt’ =t + A

We denote by the number of balls in the s&’ N 4. It is well-known thatf3 has a hyper-
geometric distribution, i.e., foa < k < b wherea = max0,a —n+q) andb = min(a,q), we
have

PiB=K = —@) (%D . 4.2)
a

We finally draw randomly and successivejyballs x, ..., Xq from the urn (system at time)
without replacing them. The problem consists in computheggrobability of the evenfnone of
the selected ballgy, ..., xq are greef, which can be written as i ¢ Z,...,Xq ¢ ‘E].

As{xe £} & {xe Q'}n{x¢ Q' N4}, we have (taking the contrapositivg} ¢ £} < {x ¢
Q'}u{xe Q’'n A}, from which we can conclude

Pix¢ E] = Pri{x ¢ Q'} U {xe Q' N A4}]. As the event{x ¢ Q'} and{x € Q' N4} are
disjoints, we obtain

Prix ¢ Z] = Prix ¢ Q'] + Prix € Q/ N 4]. The system containsballs. The number of balls in
Q/, 4 andQ’nN 4 is equal tog,a andp, respectively.

Since there is no replacement, we get,

<n—q+k>
Pr[xl¢£"”7XQ¢£/B:k] ZZE:aﬂiqzl (1_%) ZZE:a#'

(0

(4.3)

105

CHAPTER4. FACING SCALABILITY AND DYNAMISM

To uncondition the aforementioned result3), we simply multiply it by @.2), leading to

2t (") () Gl
(6)(c)

Analyzing quality measures. Now, given a valueC set by an application developer, two pa-
rameters may influence the overhead of maintaining a quonuimei system and the probabilistic
guarantee of having such a quorum. The overhead may be medasua straightforward manner
in this context as the number of nodes that need to be probeaklgg. Intuitively, for a givenC,
asq increases, the probability of probing a node of the initiadgum increases.

g: the quorum size

o 200 400 600 800 1000
T d

1274 P69

Pix1 ¢ E,...xq¢ E|] =

C =90%
0.0001 C — 700/0
C =50%
C=30%
C=10%—>

1e-06 -

le-08 -

€: the probability - p

le-10 &

Figure 4.5: Quorum size for the intersection probabifity: 1 — €

Let us consider the valuedetermined by Theorem.3.11 That value can be interpreted the
following way: p = 1— ¢ is the probability that, at tim& =t + A, one of theq queries issued
(randomly) by a node hits a node of the quorum. An importamstjan is then the following:
How aree andq related? Or equivalently, how increasing the sizg aflows decreasing? This
relation is depicted in Figuré.5where several curves are representedfer10,000 nodes.

Each curve corresponds to a percentage of the initial ndddgshtive been replaced. (As an
example, the curve 30% corresponds to the case wher&0% of the initial nodes have left the

106

4.3. Scalable Dynamic Distributed Shared Memory (benegfiiam Prototypical Gossip)

system.) Let us consider= 103, The curves show that= 274 is a sufficient quorum size for
not bypassing that value @fwhen up to 10% of the nodes are replaced (point A, Figug
Differently, g = 274 is not sufficient when up to 50% of the nodes are replacetiat case, the
sizeq = 369 is required (point B, Figuré.5).

The curve of Figurel.5 provides the system designer with realistic hints to sevéiee ofA
(deadline before which a data transfer protocol estalpigshinew quorum has to be executed). It
shows that, when 1@ < € < 102, the probabilityp = 1 — ¢ increases very rapidly towards 1,
though the size of the quorum increases only in a very slight wAs an example, a quorum of
g = 224 nodes ensures an intersection probab#ity— ¢ = 0.99, and a quorum af = 274 nodes
ensures an intersection probabilityl — € = 0.999.

Interestingly, this phenomenon is similar to thiethday paradoX [Isa9 that can be roughly
summarized as follows. How many persons must be presentaora for two of them to have
the same birthday with probabilify= 1— &? Actually, for that probability to be greater thaji2l
it is sufficient that the number of persons in the room be efpraly) to 23! When, there are 50
persons in the room, the probability becomes 97%, and isesetdo 99996% for 100 persons.
In our case, we observe a similar phenomenon: the probabpilit 1 — € increases very rapidly
despite the fact that the frequency of the quorum gizereases slightly.

In our case, this means that the system designer can choatightly increase the size of
the probing seg) (and therefore only slightly increase the associated @agthwhile significantly
increasing the probability to access a node of the quorum.

Comparative quorum sizes of static and dynamic systems. In the following we investigate the
way the size and lifetime of the quorum are related when thaired intersection probability is
99% or 999%. We chose these values to better illustrate our purpasegaelieve they reflect
what could be expected by an application designer. For batbghbilities we present two different
figures summarizing the required valuegjof

Figure4.6focuses on the quorum size that is required in a static syatehm a dynamic system
(according to various values of the ra@. The static system implies that no nodes leave or join
the system while the dynamic system contains nodes thagjadreave the system depending on
several churn values. For the sake of clarity we omit valifeA and simply present taking
several values from 10% to 80%. The analysis of the resufigctdzl in the figure leads to two
interesting observations.

First, whenA is big enough for 10% of the system nodes to be replaced, beeguorum size
required is amazingly close to the static case (873 vers8swd2nn = 10° and the probability is
0.999). Moreoverg has to be equal to 990 only whénincreases up to 30%. Second, even when
A is sufficiently large to let 80% of the system nodes be replatee minimal number of nodes
to probe remains low with respect to the system size. Foams, ifA is sufficiently large to let
6,000 nodes be replaced in a system with(® nodes, then only 413 nodes must be randomly

3The paradox is with respect to intuition, not with respedbtgics.

107

CHAPTER4. FACING SCALABILITY AND DYNAMISM

Intersection Churn Quorum size

probability | C=1—(1-¢)® | n=10° n=10" n=10
static 66 213 677 *

10% 70 224 714

99% 30% 79 255 809
60% 105 337 1071

80% 143 478 1516

static 80 * 260 828 *
10% 85 274 873 *
99.9% 30% 96 311 990 *
60% 128 413 * 1311

80% 182 584 1855

Figure 4.6: The quorum size depending on the system sizetharuhurn rate.

probed to obtain an intersection with probabilpy= 0.999.

4.4 Discussion and Conclusion

4.4.1 Approximating the System Size

An approximationr’ is needed in Algorithn8 to determine the best size for quorum system.
Although the exact system sizeis impossible to obtain in a large-scale and dynamic systems
many solutions have been proposed in the literature to appate this value. Since the result
obtained are very close, those algorithm can be used toobsufficient approximation.

Several approaches to dynamically, and in a fully decan&dlway, estimate the system size
exist in the literature. Three main approaches to distethtounting approaches can be distin-
guished. The first one rely on probabilistic polling appiuesz The basic idea of such approaches
is to probe the network in a probabilistic way and to infer siee of the systems based on the
replies FT99 KPG"05]. The second approach relies on epidemic algorithiv0}] and provides
very accurate information. The last class of approachgsarlrandom walks such as ti&am-
ple and collidealgorithm MLKGO6]. A comparison of the efficiency and accuracy of candidates
approaches from these three classes can be foudKiM()6].

Most of these solution provides a very good approximaiioof the system size, in a number
of steps logarithmic in the system size. Some of these soisittan be coupled to Algorith®
very naturally, since they execute using prototypical gogsGJ"07).

108

4.4. Discussion and Conclusion

4.4.2 Modeling the Churn in Dynamic Systems

From a practical point of view, monitoring the dynamism mg#y, or churn, is a difficult task
for many reasons. First, the dynamic system has to be meditttrough a central point that
experience no failure. Second, participants may leave e and modify their state before
rejoining. This prevents further identification. 18GG02BSV03 SR04, the authors strive to
give overviews of the churn in peer-to-peer systems. Tlesult differ slightly, for instance the
last one BR0OQ shows, for the first time, that the distribution of peer opgifollows a Weibull law.

From a theoretical point of view, modeling the churn is alsdificult task. As mentioned
above, although we have a better understanding of the chiwuifers from inherent difficulties.
In this chapter, we modeled the churn in two manners. Firstnedeled the churn as a local rate,
such that each subset of the system experiences the sanom mdrarrivals and the same portion
of departures. Second, we modeled the churn as a globattete that each subset of the system
may experience a quantity of churn that is related to somegtitity: even if the global churn is
low, a large portion of a small subset of the system might fextdd by churn but this is unlikely.

In statistics, a mathematical model helps estimating i evolution over time. This model
called birth and death process uses continuous-time Maskain to model the population size:
a birth increments the population size while a death decnésné This model is well-known
in queuing theory where an arrival in the queue can be seerbathaand a leaving as a death.
Recently, Markov processes appeared as promising toolsddelimg churn in peer-to-peer sys-
tems. In CKKMO6], the birth and death process has been suggested for thdingpdereplica
birth and replica death in a peer-to-peer system. Difféyeimt [DAO6] the authors use discrete-
time Markov processes to model two concurrent mechanisepdication and arrival/departure of
nodes. This model uses two distinct Markov processes sdhbaiutput state of one is the input
state of the other; by averaging one state of each procegapipeoximate a potentially reachable
state of the system. An interesting research directionnsddel two concurrent mechanisms using
continuous-time markov process. As an example, it woulchberésting to model arrival/depar-
ture mechanism and an individual replication mechanisogether to understand the impact of
the former mechanism on the global performance of the laterhanism.

4.4.3 Conclusion

This chapter addressed the problem of emulating a diséribsthared memory that tolerates scala
bility and dynamism while being efficient, in terms of opé&vatlatency. Motivated by the need of
a more realistic model of dynamic system in which deternimguarantees are almost impossi-
ble, this chapter investigated Timed Quorum Systems (TQf®y&intersection is timed and holds
with high probability.

TQS ensures probabilistic intersection of quorums in aliirfashion. Because the intersection
is temporal, such quorum systems are well-suited for dyoamntext. Because of probabilistic
intersection, such quorums systems match more realistdelr®f dynamism, where nodes act

109

independently. Interestingly, we showed that some TQSeamphtation verifies a consistency cri-
terion weaker but similar to atomicity: probabilistic atimity. This roughly states that any opera-
tion provided by some TQS satisfies the ordering requiredtmmicity with high probability. The
given implementation of TQS verifies probabilistic atortyicprovides lightweight and fast oper-
ations, and does not require reconfiguration mechanisne giagodic replication is piggybacked
into operations. More precisely, the communication coxipteof any operation isO(y/nD),
wheren is the system size aridlis the dynamic parameter; and its time complexit@{og+/nD)
message delays. Consequently, if operations are frequeungbkrior the dynamic paramet@, to
be constant, then this complexity reaches@{g/n) complexity shown in[MRWWO1] for static
systems. Thus, our TQS implementation is optimal in thiseen

The TQS implementation presented in this chapter differsipné&rom previous works by the
fact that it is structureless. We believe that structuselpsorum systems present an interesting
direction for further research. Indeed, a structurelessamg does not require a client to access a
specific predefined set of nodes, but simply require a prestfinmber of nodes to see or write the
value before the client returns. This non-determinism adhoice of the quorum members may
translate into powerful operations. For example, an iistarg work would be to propose TQS that
would use a multiple-source dissemination mechanismansté the single-source dissemination
proposed in this chapter. Such multi-source disseminatmuid allow a read operation to execute
very rapidly by simply(i) collecting the number of nodes that have participated ircarredissem-
ination, and(ii) returning the most up-to-date value as soon as the this nuofilb®@des becomes
larger tharO(+/nD).

This chapter has enlightened a very fundamental problenatefimg dynamism. As far as we
know, it does not exist a realistic model of dynamism intgn@ie., churn). The misunderstanding
of churn is an important issue that limits the applicatiortteforetical solutions to practical dy-
namic environments like ad-hoc networks or peer-to-pegvar&s. An important characteristic is
the independent behavior of participants that preventslatgrministic solution from being realis-
tically achievable: all solutions that verifies atomicitydawhose operations complete, are subject
to failures with high probability in any infinite executiomhis is due to the fact that at some point
too many nodes will leave the memory in a small period of time.

To conclude this chapter, we claim that probabilistic cetesicy is a prevalent goal for dis-
tributed shared memory in dynamic and large-scale systedrdike deterministic guarantees,
probabilistic ones can provide high quality of service dgran arbitrarily long period of time.
Modeling dynamism is another promising research direcioth would lead to important aids for
various kind of problems related to dynamism.

110

Conclusion and Open Issues

This thesis pointed out that large-scale dynamic systemsealy complex environments: First, in
such context it is impossible to emulate an efficient andrdetestic distributed shared memory
(DSM) that satisfies both scalability and dynamism sincengirassumptions on the dynamism
intensity have to be made. Second, probabilistic DSMs allesuéed for this kind of environment.

Bad News?

This thesis has identified an important tradeoff that presvérom emulating an efficient deter-

ministic DSM that tolerates dynamism and that is scalabligheE tolerating dynamism is very

communication costly, or achieving scalability leads tghhoperation latency. As an example of
the two extremes, two distinct solutions have been predente

1. In Chapter, RDS tolerates dynamism by allowing fast decision upon tipdacement of
failed quorum systems. RDS achieves very efficient operatioat may last only two mes-
sage delays. However, this solution relies on an importagtek in the communication
graph in order to achieve fast operation and fast reconfiguan a large-scale system, the
configuration must scale in order to support the load induogegdarticipation. That is, each
dynamic event implies to update the state of a tremendoudeuai nodes, by exchanging
a number of messages that scales with the system size whitievith do not.

2. In Chapter3, Square provides scalable memory that tolerates unpaddictequests of a
large number of clients. The memory self-adapts its amotinésources in face of load
variation being able to treat any request even if the loadiiedhigh. The reconfiguration
is made cost-efficient by restraining the degree of the comation graph. As a result,
probing a quorum requires many message delays and exeeutingeration may be very
long. This phenomenon is strengthened when load increases the memory expands,
leading to larger quorums and longer operation latency.

111

On Classifying Quorum Systems

In an effort to find the best quorum system for DSM in largelesead dynamic systems, this thesis
investigated in details existing quorum systems. As atesthis investigation a new classification
of quorum systems showed up, as depicted in Figure

Quorum System

Dynamic

Static Probabilistic
‘ Failure—prone} [Redundan% Reparable Reparable Structure|

Figure 4.7: Quorum System Classification

Replaceable

Interestingly, this classification gives a natural rankafigjuorum systems representing their
usability in large-scale dynamic systems. First, at thg eft-hand side are the failure-prone quo-
rum systems, which can not tolerate any failure (e.g. thegstarum system). At the right-hand
side of the failure-prone ones, the redundant quorum systamtolerate a bounded number of fail-
ures but can not tolerate dynamism (e.g. grid quorum syskiéae$3). Then, the reconfigurable
ones may tolerate an arbitrary number of failures while mand scalable (e.g. RDEGG05]).
The reparable quorum systems that cope with failures in lalsleaway does not provide optimal
performance (e.g. squar&fV07]) while probabilistic and reparable ones provide bettefqre
mance (e.g. dynamic probabilistic quorum systeAld(5]). Finally, structureless quorum system
(e.g. timed quorum systenGKM T06]) appears to be the most promising solution for DSM that
tolerates dynamism and scalability.

Actually, the classification is the following. First, farkerprone and redundant quorum systems
are static. Second, reconfigurable and replaceable quorstenss are both dynamic. Third, some
replaceable quorum systems and the structureless oneotrgiobabilistic quorum systems.
The main difference is between the deterministic (statit dynamic quorum systems) and the
probabilistic quorum systems, since they offer very ddfgrguarantees. An interesting research
direction would be to define structureless quorum systelspttovide deterministic guarantees.
That is, it would tolerate high dynamism while guaranteaietgrministic properties.

To conclude, we are convinced that structureless quorutersgscan be adapted for different
needs. Guided by mutual exclusioRdy84, consensusljam064d, data retrieval [MTKO6], or

112

other quorum-based applications, researchers could &hkefib of the scalability and dynamism
of these quorum systems.

Good News?

This thesis claims that probabilistic consistency presavdys to define acceptable consistency
conditions and time complexity while achieving ideal penfi@ance in terms of communication
complexity. This results essentially from the previousiémaif that translates into the lack of per-
formance when willing to emulate a deterministic DSM: efitbengestion provokes request losses,
or enlarging memory delays operations. There are two majotpin favor of probabilistic con-
sistency:

1. First point in favor is that large-scale dynamic systearsmmot be modeled with participants
whose actions are always dependent. Indeed, it is unrelaledioathink at a dynamic system
in which many participants act altogether so that a smallbemof nodes leave the system
during a small period of time. If the system is large, paptcits are more likely to act in-
dependently and to either join or leave the memory at aryitirsstants. Because of this
unpredictability due to the independence of behaviors,ynmmdes may leave at the same
time, even though it is very unlikely. It is far more realisto admit that nodes act indepen-
dently and that there exist a small probability that someesddave at the same time. In this
case, it is only possible to ensure properties with specrbbabilities. Chapted has pre-
sented probabilistic atomicity as a promising consistesrdgria that allows all operations
to satisfy atomicity partial ordering with high probabylit

2. Second point in favor is that there exist implementatimin&imed Quorum System (TQS),
with probabilistic requirements, that supersede perfoicaaf deterministic solutions. The
implementation of TQS presented in Chaptaachieves faster operations than Square can
do. More generally, any solution that improves on Squaredayptng it with a larger degree
than its communication graph requires a more costly recordtgon mechanism, that is
completely absent from the TQS implementation. Furtheemtiris TQS implementation
supersedes RDS by using a constant degree in the underlyimgeoication graph, and by
masking reconfiguration power behind existing operatidimgt is, each node communicates
only with a constant number of neighbors and no additiondl @stly reconfiguration is
required.

Finally, as a step towards an effective application of DSMldrge-scale dynamic systems,

Chapter4 also outlined that high probability can be translated imiane practical quality of
service exploitable by system designers.

113

Future Work and Open Questions

This thesis provides consistency guarantee in large-ssaems. Nowadays, an increasing
amount of applications, including web-services, must feagations of participation over time,
leading either to a resource overload or to a waste of resolrmviding consistency guarantees
despite the lack of control and the dynamism of the envirartralows to make many existing
applications benefit from the resource multiplication lambration, fault-tolerance and low cost
of large-scale distributed systems. Nevertheless, sengpartant questions remain open and may
complicates such an adaptation.

First, one of the major open issue remains the evaluatioargélscale systems. The observa-
tions we presented in this thesis rely either on a dozen ohmas experiment, as in Secti@r8.5
or a PeerSimJMBO04] simulation on tens of thousands of nodes, as in Se@i@6 and Ap-
pendixA. While the former settings do not scale with the number oiht$iethe latter settings do
not simulate the bandwidth constraints. In an attempt toenaklistic but smaller scale experi-
ment we also tried a worldwide testbed of hundreds of computalled PlanetLabBBC*04].
Additionally, we are currently experimenting slicing atgbms (cf. AppendixA) on an emulation
testbed, called EmuLa LS 02)], that includes about one hundred machines from the Univer-
sity of Utah. Finally, and to evaluate the real cost requingdgossip-based protocols, we are
developingGossiPeel{ GKLO07], an undergoing project that provides gossip-based pottoas
implementation building blocks. Hence, an interestingifetwork is to develop an implementa-
tion of Timed Quorum System on top of GossiPeer, on an asstiedlestbed as possible to see if
theoretical expectation are practically confirmed.

Second, an important issue of numerous large-scale dyrgamsiems is security. Indeed, the
lack of control and the openness of such systems may sudfier tine misbehavior of participants.
The model of failure we assumed in this thesis was the pgssitilounded crash-recovery model.
An additional type of failures, calleByzantinglLF82] or malicious, models the misbehavior of
nodes: in such a model some nodes may not respect their spéoifiand thus may act arbitrarily.
This Byzantine faults may impact dramatically on the systeniggmance or even lead to impossi-
bility results [FLP85. Some solutionsNIR04], rapidly evoked in this thesis, aims at enlarging the
intersection of traditional quorums such that at least antgjof nodes contacted during a quorum
access are not Byzantine and can testify of the value propa¢@athe other quorum. However, as
far as we know, all existing solutions require the numberadtife to be bounded. A recent im-
provement appeared witbrobabilistic opaque quorum systefddR07] and an interesting work
would be to extend this work into Timed Opaque Quorum Systgsirgy a model where each node
has a fixed probability of being Byzantine during some timewlaére the number of Byzantine
faults is potentially unbounded.

Third, although this thesis is motivated by the fact thabueses scale with the size of the
system, several social issues may interfere with this ideapen systems like in peer-to-peer
networks or more generally in Internet-based applicatidmsleed, a non-negligible amount of
participants aim at satisfying their own interest desgiee¢dommon interest. In response to these

114

issues, many efforts have been devoted to develop incem@ahanisms and tit-for-tat policy-
based mechanisms have already been proved efficient torprieee-riding in peer-to-peer file
sharing applicationsoh03. However, these behaviors are more generally inherenbtwab
networking and problems likkurking also diminishes the expected power of collaborations in
large-scale system®NP0(J. Those questions appear to be very interesting reseamlenges
from an economic or a sociological point of view.

115

116

Appendix A

Distributed Slicing in Dynamic Networks

A.1 Introduction

A.1.1 Context and Motivations

The peer to peer (P2P) communication paradigm has now beti@merevalent model to build
large-scale distributed applications, able to cope witthlsgalability and system dynamics. This
is now a mature technology: P2P systems are slowly moving fepplication-specific architec-
tures to a generic-service oriented design philosophy.eNspecifically, P2P protocols integrate
into platforms on top of which several applications, withigas requirements, may cohabit. This
leads to the interesting issue of resource assignment oittnvallocate a set of nodes for a given
application. Examples of targeted platforms for such aiserare telecommunication platforms,
where some set of peers may be automatically assigned te#dispesk depending on their capa-
bilities, testbed platform such as PlanetI8B[C"04], or desktop-grid-like applications\hd04].

Even in a single application, a P2P system should be ablelémdmthe load taking into ac-
count that capabilities are heterogeneous at the peers.abhity would be of great interest since
many recent works have unveiled the heavy-tailed distiobudf storage space, bandwidth, and up-
time of peers $GG02BSV03 SR0O4. Currently, this heterogeneity has two drawbacks. Fihs, t
service guarantees offered by the P2P system are unpigdietad can consequently provide the
clients with a poor quality of service. Second, when low td@aeers are overloaded, the general
performance of the system can be affected. For instancesaimpletely decentralized P2P ap-
plication, Gnutella §nugd, suffered from congestion when applied to large-scaléesys because
nodes with a low bandwidth capability were queried. Sin@ntlthe Gnutella protocoghul has
evolved and tends to requestrapeers(which are peers with larger lifetime and larger bandwidth
capabilities), more often than regular peers. Moreoveraadike applicationsdaZ try to benefit
similarly from the power of supernodes/superpeers.

Large scale dynamic distributed systems consist of marticpaants that can join and leave at
will. Identifying peers in such systems that have a sim@sel of power or capability (for instance,

117

in terms of bandwidth, processing power, storage spaceytone) in a completely decentralized
manner is a difficult task. It is even harder to maintain thieimation in the presence of churn.
Due to the intrinsic dynamics of contemporary P2P systenssiinpossible to obtain accurate
information about the capabilities (or even the identitidh® system participants. Consequently,
no node is able to maintain accurate information about aellhtbdes. This disqualifies centralized
approaches.

The slicing serviceJKO€ enables peers in a large-scale unstructured network toggnize
into a partitioning, where partitions (slices) are conedatverlay networks that represent a given
percentage of some resource. Such slices can be eitheatalioto specific applications later
on, or associated with specific roles (e.g., normal peerssapdrpeers). The slicing is ordered
in the sense that peers get ranked according to their cépebéxpressed by an attribute value.
Building upon the work on ordered slicing proposed K06, here we focus on the issue of
accurateslicing. That is, we focus on improving quality by slicingetihetwork accurately, and
improving stability of slices by minimizing the impact ofelthurn. Taking this into account, we
can summarize the distributed slicing problem we tackle hee need to rank nodes depending on
their relative capability, slice the network depending bese capabilities and, most importantly,
readapt the slices continuously to cope with system dyrmamis

A.1.2 Contributions

We present two gossip-based solutions to slice the nodesding to their capability (reflected by
an attribute value) in a distributed manner with high prolitgtbThe first algorithm of the appendix
builds upon the ordered slicing algorithm proposedliikqg that we call the JK algorithm in the
sequel of this appendix. The second algorithm is a diffeapptoach based on rank approximation
through statistical sampling.

In JK, each nodé maintains a random numbaer, picked up uniformly at random (between 0
and 1), and an attribute valag, expressing its capability according to a given metric. tEpeer
periodically gossips with another pegrrandomly chosen among the peers it knows about. If the
order betweem; andr; is different from the order betweex) anda;, random values are swapped
between nodes. The algorithm ensures that eventually ther @n the random values matches
the order of the attribute ones. The quality of the ranking tten be measured by using a global
disorder measure expressing the difference between tloéraxdk and the actual rank of each peer
along the attribute value.

The first contribution is to locally compute a disorder measio that a peer chooses the neigh-
bor to communicate with in order to maximize the chance ofesing the global disorder mea-
sure. The purpose of this approach is to speed up the comgerg&\Ve provide the analysis and
experimental results of this improvement.

Then, we identify two issues that prevent accurate slicimjraotivate us to find an alternative
approach to this algorithm and JK.

On the one hand, once peers are ordered along the attriduesythe slicing in JK takes place

118

as follows. Random values are used to calculate which slioela belongs to. For example, a slice
containing 20% of the best nodes according to a given at&jlill be composed of the nodes that
end up holding random values greater than 0.8. The accufdhg slicing (independent from the
accuracy of the ranking) fully depends on the uniformity leé random value spread between 0
and 1 and the fact that the proportion of random values betWe&and 1 is approximately (but
usually not exactly) 20% of the nodes. This observation rad¢laat the problem of ordering nodes
based on uniform random values is not fully sufficient foredetining slices.

On the other hand, another motivation for an alternative@gugh is related to churn and dy-
namism. It may well happen that the churn is actually coteel@o the attribute value. For exam-
ple, if the peers are sorted according to their connectpatgntial, a portion of the attribute space
(and therefore the random value space) might be suddemgtaéf. New nodes will then pick up
new random values and eventually the distribution of rangalnes will be skewed towards high
values. If this happens we say that the churatigbute-correlated

The second contribution is an alternative algorithm satimese issues by approximating the
rank of the nodes in the ordering locally, without the apgdilen of random values. The basic idea
is that each node periodically estimates its rank alongttinéate axis depending of the attributes
it has seen so far. This algorithm is robust and lightweighe tb its gossip-based communica-
tion pattern: each node communicates periodically withstricded dynamic neighborhood that
guarantees connectivity and provides a continuous stréaevwosamples. Based on continuously
aggregated information, the node can determine the slmHongs to with a decreasing error mar-
gin. We show that this algorithm provides accurate estiomatind recovery ability in presence of
attributes-correlated churn at the price of a slower cayemce.

A.1.3 Related Work

Most of the solutions proposed so far for ordering nodes doome the context of databases, where
parallelizing query executions is used to improve efficjen& large majority of the solutions in
this area rely on centralized gathering or all-to-all exag which makes them unsuitable for
large-scale networks. For instance, thdernal sorting probleniDNS91] consists in providing

a distributed sorting algorithm where the memory space oh gaocessor does not necessarily
depend on the input. This algorithm must output a sortedesszpiof values distributed among
processors. The solution proposediiNS97]] needs a global merge of the whole information, and
thus it implies a centralization of information. Similarijre percentile findingoroblem JRV89],
which aims at dividing a set of values into equally sized,setquires a logarithmic number of
all-to-all message exchanges.

Other related problems are the selection problem andptgeantile search. The selection
problem FR75BFPt72] aims at determining thi&" smallest element with as few comparisons as
possible. Thep-quantilesearch (withp e (0, 1]) is the problem to find amongelements thégn)t"
element. Even though these problems look similar to ourlpropthey aim at finding a specific
node among all, while the distributed slicing problem aimnscdving a global problem where each

119

node maintains a piece of information. Additionally, sauas to the quantile search problem like
the one presented ilKPGO03] use an approximation of the system size. The same hold$iéor t
algorithm in EDCMO04, which uses similar ideas to determine the distribution afility in order

to isolate peers with high capability—i.e., super-peers.

As far as we know, the distributed slicing problem was stddiea P2P system for the first
time in [JKO6]. In this paper, a node with tHé" smallest attribute value, among those in a system
of sizen, tries to estimate its normalized indkxn. The JK algorithmproposed in JKOg works
as follows. Initially, each node draws independently andoumly a random value in the interval
(0,1] which serves as its first estimate of its normalized indexenThhe nodes use a variant of
NewscastJMBO05 to gossip among each other to exchange random values wegfirtld that the
relative order of their random values and that of their ladiie values do not match. This algorithm
is robust in face of frequent dynamics and guarantees adastogence to the same sequence of
peers with respect to the random and the attribute valuesveky point in time the current random
value of a node serves to estimate the slice to which it balgitg slice).

A.1.4 Outline

The rest of AppendiA is organized as follows: The system model is presented iid®ek.2. The
first contribution of an improved ordered slicing algorithrased on random values is presented
in SectionA.3 and the second algorithm based on dynamic ranking in SeétibnSectionA.5
concludes AppendiA.

A.2 Model and Problem Statement

A.2.1 System Model

We consider a syster® containing a set of uniquely identified nodes. The set of identifiers
is denoted by € N. Each node can leave and new nodes can join the system amnagythius
the number of nodes is a function of time. Nodes may also crastAppendixA, we do not
differentiate between a crash and a voluntary node dejgartur

Each node maintains a fixed attribute valug € N, reflecting the node capability according
to a specific metric. These attribute values over the netwogkt have an arbitrary skewed distri-
bution. Initially, a node has no global information neitladout the structure or size of the system
nor about the attribute values of the other nodes.

We can define a total ordering over the nodes based on thebustt value, with the node
identifier used to break ties. Formally, we il@recedsj if and only ifa; < aj, ora; = aj andi < j.
We refer to this totally ordered sequence asdtigbute-based sequencgenoted byA.sequence
The attribute-based rank of a nodedenoted bya; € {1,...,n}, is defined as the index @ in

1The valuen is observed instantaneously but may vary over time.

120

Om 2m
| VR] |

123456789 10

b
2 3 4 5 6 7 8 9 I

0 1
| y y « y y y B
C DN

1

Figure A.1: Slicing of a population based on a height attebu

A.sequence For instance, let us consider three nodes: 1, 2, and 3, ide tdifferent attribute
valuesa; = 50, a; = 120, andag = 25. In this case, the attribute-based rank of node 1 would be
o1 = 2. In the rest of AppendiA, we assume that nodes are sorted according to a singleugtrib
and that each node belongs to a unique slice. The sorting &everal attributes is out of our
scope.

A.2.2 Distributed Slicing Problem

Let S y denote theslice containing every nodewhose normalized rank, name%i/, satisfied <

% <uwherel € [0,1) is the slice lower boundary ante (0, 1] is the slice upper boundary so that
all slices represent adjacent intervélg uz], (I2,uz]... Let us assume that we partition the interval
(0,1] using a set of slices, and this partitioning is known by alllem The distributed slicing
problem requires each node to determine the slice it cuyreetongs to. Note that the problem
stated this way is similar to the ordering problem, wheréngaide has to determine its own index
in A.sequenceHowever, the reference to slices introduces special reougints related to stability
and fault tolerance, besides, it allows for future geneadilons when one considers different types
of categorizations.

Figure A.1 illustrates an example of a population of 10 persons, to beedagainst their
height. A partition of this population could be defined by tsliwes of the same size: the group
of short persons, and the group of tall persons. This is lgiear example where the distribution
of attribute values is skewed towards 2 meters. The rankaf parson in the population and the
two slices are represented on the bottom axis. Each perseprissented as a small cross on these
axes® Each slice is represented as an oval. The Sice So, 1 contains the five shortest persons
and the slice&s, = 5%’1 contains the five tallest persons.

Observe that another way of partitioning the populationidde to define the group of short
persons as that containing all the persons shorter thardefpred measure (e.g.,6bm) and the
group of tall persons as that containing the persons tdibar this measure. However, this way of
partitioning would most certainly lead to have empty grotlya contains no nodes (while a slice is
almost surely non-empty). Since the distribution of attt#values is unknown and hard to predict,
defining relevant groups is a difficult task. For exampleh# distribution of the human heights

°Note that the shortest (resp. largest) rank is represemntedcboss at the extreme left (resp. right) of the bottom
axis.

121

were unknown, then the persons taller thamcbuld be considered as tall and the persons shorter
than dIncould be considered as short. In this case, the first of thgtaaps would be empty, while
the second of the two groups would be as big as the whole sy§tenversely, slices partition the
population into subsets representing a predefined porfitmopopulation. Therefore, in the rest
of AppendixA, we consider slices as defined as a proportion of the network.

A.2.3 Facing Churn

Node churn, that is, the continuous arrival and departurgodes is an intrinsic characteristic of
P2P systems and may significantly impact the outcome, and spacifically the accuracy of the
slicing algorithm. The easier case is when the distributibthe attribute values of the departing
and arriving nodes are identical. In this case, in pringigile arriving nodes must find their slices,
but the nodes that stay in the system are mostly able to kedpsiice assignment. Even in this
case however, nodes that are close to the border of a slicexpaygt frequent changes in their slice
due to the variance of the attribute values, which is now-f&r any non-constant distribution. If
the arriving and departing nodes have different attribigeiutions, so that the distribution in the
actual network of live nodes keeps changing, then this eeomplified. However, we believe that
this is a realistic assumption to consider that the churn beagorrelated to some specific values
(for example if the considered attribute is uptime mean oineativity).

A.3 Dynamic Ordering by Exchange of Random Values

This section proposes an algorithm for the distributedrgliproblem improving upon the original
JK algorithm PKO0€, by considering a local measure of the global disordertionc In this section
we present the algorithm along with the corresponding amabnd simulation results.

A.3.1 On Using Random Numbers to Sort Nodes

This Section presents the algorithm built upon JK. We refehis algorithm asnod-JK(standing
for modified JK). In JK, each nodgenerates a real numhegge (0, 1] independently and uniformly
at random. The key idea is to sort these random numbers vdfiece to the attribute values by
swapping (i.e., exchanging) these random numbers betwassnso that i& < a; thenr; <rj.
Eventually, the attribute values (that are fixed) and theloamvalues (that are exchanged) should
be sorted in the same order. That is, each node would liketirothext" largest random number
if it owns the x!" largest attribute value. Ld®sequencalenote theandom sequencebtained
by ordering all nodes according to their random number. di@) denote the index of nodein
R.sequencat timet. When not required, the time parameter is omitted.

To illustrate the above ideas, consider that nodes 1, 2, drah8the previous example have
three distinct random values; = 0.85,r, = 0.1, andrz = 0.35. In this case, the indgx of node

122

1 would be 3. Since the attribute values agfe= 50, a, = 120, andaz = 25, the algorithm must
achieve the following final assignment of random numbeys: 0.35,r, = 0.85, andrz = 0.1.

Once sorted, the random values are used to determine thempofthe network a peer belongs
to.

A.3.2 Definitions

View. Every nodei keeps track of some neighbors and their age. dgpeof neighborj is a
timestampt;, set to 0 wherj becomes a neighbor af Thus, node maintains an array containing
the id, the age, the attribute value, and the random values olighbors. This array, denotég,

is called theviewof nodei. The views of all nodes have the same size, denoted by

Misplacement. A node participates in the algorithm by exchanging its rarith\& misplaced
neighbor in its view. Neighboy is misplaced if and only if

e g > ajandr <rj, or
e g <ajandr>r;3

We can characterize these two cases by the prediaatea;)(rj —r;) <O.

Global Disorder Measure. In[JKOg, a measure of the relative disorder of sequaRsequence
with respect to sequendesequenceavas introduced, called thglobal disorder measure (GDM)
and defined, for any timg as

GDM(t) =

Sl

> (ai —p(t)i)?.

The minimal value of GDM is 0, which is obtained whe(t); = a; for all nodesi. In this
case the attribute-based index of a node is equal to its rmwddue index, indicating that random
values are ordered.

A.3.3 Improved Ordering Algorithm

In this algorithm, each nodesearches its own viefj for misplaced neighbors. Then, one of them
is chosen to swap random value with. This process is repegttddhere is no global disorder.
In this version of the algorithm, we provide each node with ¢lpability of measuring disorder
locally. This leads to a new heuristic for each node to deitsrthe neighbor to exchange with
which decreases most the disorder.

3Note thatj is not misplaced in casg = aj, regardless of valugs andrj.

123

The proposed technique attempts to decrease the globafleiso each exchange as much as
possible via selecting the neighbor from the view that minés the local disorder (or, equiva-
lently, maximizes the ordegain) as defined below. Referring to this disorder measure as a cri-
terion, the decrease of the global criterion is related todhcrease of local criteria, similarly
to [ADGRO35.

For a node to evaluate the gain of exchanging with a ngdsf its current viewj, we define
its local disorder measuréabbreviated_DM;). Let LA.sequenceandLR.sequencebe the local
attribute sequence and the local random sequence of in@dspectively. These sequences are
computed locally byi using the informatiom{ U {i}. Similarly to A.sequencend R.sequence
these are the sequences of neighbors where each node isbedeording to its attribute value
and random number, respectively. Let, for gny A{U {i}, £pj(t) and/aj(t) be the indices of
anda; in sequencetR sequenceand LA sequengg respectively, at tim¢t). At any timet, the
local disorder measure of nodes defined as:

LOMi(t) = —— 5 (fa;(t) — £pj(1))>.

¢+ 1ienfun

We denote byG; j(t + 1) the reduction on this measure thatbtains after exchanging its random
value with nodej between timé andt + 1. We define it as:

Gij(t+1) = LDM;(t)—LDM;(t+1),
Gij(t+1) = [(foi(t) —Lpi(t)* + (faj(t) — £pj(t))* -
(¢oii(t) — £pj (1)) — (farj(t) —

(pi(t))3

m. (A.l)

The heuristic used chooses for nadkee misplaced neighbgrthat maximizess; j(t 4 1).

Sampling uniformly at random. The algorithm relies on the fact that potential misplacedaso
are found so that they can swap their random numbers themebgasing order. If the global dis-
order is high, it is very likely that any given node has mispldneighbors in its view to exchange
with. Nevertheless, as the system gets ordered, it becoraesumlikely for a node to have mis-
placed neighbors. In this stage the way the view is compolsgd ja crucial role: if fresh samples
from the network are not available, convergence can be slthaa optimal.

Several protocols may be used to provide a random and dyreampling in a P2P system
such as Newscasi1B05, Cyclon [VGvS09 or Lpbcast JGKvS04. They differ mainly by their
closenesso the uniform random sampling of the neighbors and the way ttandle churn. We
chose to use a variant of the Cyclon protocol, to constructugaidte the views, as it is reportedly
the best approach to achieve a uniform random neighbor setl fmodes [wa05.

124

Initial state of node i

(1) period, initially set to a constant;

ri, a random value chosen {0, 1]; &, the attribute value

slicg +— L, the slicei belongs to§, the view;

gain;, areal value indicating the gain achieved by
exchanging withj’;

gain-max= 0, areal.

Active thread at nodei

(2) wait(period)

(3) recompute-view();

(4) for j e

(5) if gain;; > gain-maxthen
(6) gain-max— gain

(7) j< 7

(8) end for

(9) send(REQ,ri,&)to]

(10) recv(ACK,rj) from j

(1) rj

(12) if (aj—a)(rj—ri) < Othen
(13) 1y

(14) slicg < S ysuchthat <ri <u

Passive thread at node activated upon reception
(15) recv(REQ,rj,a;) from j

(16) send(ACK,rj) to j

(17) if (aj—a;)(rj —ri) < Othen

(18) li < Ij

(19) slicg < S ysuchthat <rj <u

Figure A.2: Dynamic ordering by exchange of random values.

Description of the algorithm. The algorithm is presented in Figufe2. The active thread
at nodei runs the membership (gossiping) proceduredmpute-view();) and the exchange of
random values periodically as mentioned in Chagtasing the algorithm presented in Figue
As mentioned in this chapter, each nadeaintains a view\; containing one entry per neighbor.
Nodei copies its view, selects the oldest neighpof its view, removes the entsy; of j from the
copy of its view, and finally sends the resulting copyjtoWhen | receives the viewj sends its
own view back ta discarding possible pointersitoandi andj update their view with the one they
receive by firstly keeping the entries they received.

The algorithm for exchanging random values from nostarts by measuring the ordering that
can be gained by swapping with each neighbor (L#e®). Then,i chooses the neighbgre A}
that maximizes gai; i for any of its neighbok. Formally,i finds j € A such that for ank € A,

125

we have
Gij(t+1) > Gik(t+1). (A.2)
Using the definition of5; j in Equation A.1), Equation A.2) is equivalent to

Lai(t)pj(t) + aj(t)epi(t) — Laj(t)epj(t) > (A.3)
201 (1) €pk (t) + Lo (1) £pi(t) — Eak() pk(t).

In FigureA.2 of nodei, we refer togain; as the value ofa; (t)¢p; (t) +£oj (t)£pi(t) — o (t)£pj(t).
From this point on,i exchanges its random value with the random value; of node j

(Line 11). The passive threads are executed upon reception of a geeskaFigureA.2, when

j receives the random valugof nodei, it sends back its own random valugfor the exchange

to occur (Linesl5-16). Observe that the attribute valueiaf also sent tg, so thatj can check

if it is correct to exchange before updating its own randommber (Lines17-18). Nodei does

not need to receive attribute valagof j, sincei already has this information in its view and the

attribute value of a node never changes over time.

A.3.4 Analysis of Slice Misplacement

In mod-JK, as in JK, the current random numbeof a node determines the slicg of the node.
The objective of both algorithms is to reduce the globaldisoas quickly as possible. Algorithm
mod-JK consists in choosing one neighbor among the possétgbors that would have been
chosen in JK, plus the GDM of JK has been shown to fit an exp@ietdcrease. Consequently
mod-JK experiences also an exponential decrease of thalglorder. Eventually, JK and mod-
JK ensure that the disorder has fully disappeared. Fordurttiormation, please refer tdK04g.
However, the accuracy of the slices heavily depends on tifermity of the random value
spread between 0 and 1. It may happen, that the distribufidineorandom values is such that
some peers decide upon a wrong slice. Even more problensatieifact that this situation is
unrecoverable unless a new random value is drawn for allsxo@ikis may be considered as an
inherent limitation of the approach. For example, consedeystem of size 2, where nodes 1 and 2
have the random values = 0.1, ro> = 0.4. If we are interested in creating two slicésandS, of
equal size % = 50’% andS = 5%71), both nodes will wrongly believe to belong to the same slice

S1, sincer; andrz belong to(0, %]. This wrong estimate holds even after perfect ordering ef th
random values.

Therefore, an important step is to characterize the inacguof slice assignment and how
likely it may happen. To this end, we lower bound the devratid random values distribution
from the mean, and the probability that this happen with dwly slices. First of all, consider a
slice S, of lengthp. In a network ofn nodes, the number of nodes that will fall into this slice is a
random variableX with a binomial distribution with parametersand p. The standard deviation

126

of X is therefore,/np(1— p). This means that the relative proportional expected diffee from
the mean (i.e.np) can be approximated ag(1— p)/(np), which is very large ifp is small, in
fact, goes to infinity ap tends to zero, although a very largeompensates for this effect. For a
“normal” value ofp, and a reasonably large network, the variance is very lonelrew

To stay with this random variable, the following result bdanwith high probability, its devi-
ation from its mean.

Lemma A.3.1 For anyp € (0,1], a slice $ of length pe (0,1] has a number of peers X [(1—
B)np, (1+ PB)np| with probability at leastL — € as long as p> 5271 In(2/¢).

Proof. The way nodes choose their random number is like drawitiges, with replacement and
independently uniformly at random, a value in the interi@ltl]. Let X, ..., X, be then corre-
sponding independent identically distributed randomalaes such that:

X; = 1if the value drawn by nodebelongs tdS, and
X; = 0 otherwise.

We denoteX = 3 ; X the number of elements of interva) drawn among the drawings.
The expectation oK is np. From now on we compute the probability that a bounded poio
the expected elements are misplaced. Two Chernoff boBSY) give:

v

PriX > (1+B)np| ge‘isnp
PIX<(1-B)np| <e z

2n
= Pr[|[X —np| > Bnp| < 2e*BTp,

with 0 < 3 < 1. That is, the probability that more tha tfme the number expected) elements are

misplaced regarding to interva), is bounded by@s%). We want this to be at most This yields
the result. O

To measure the effect discussed above during the simulafipariments, we introduce the
slice disorder measure (SDM) as the sum over all nodafsthe distance between the slice
actually belongs to and the slicdelieves it belongs to. For example (in the case where absli
have the same size), if nodbelongs to the % slice (according to its attribute value) while it thinks
it belongs to the 8 slice (according to its rank estimate) then the distancadolei is |1— 3| = 2.
Formally, for any node, letS; j; be the actual correct slice of nodand letS; (t) be the slice
estimates as its slice at timeThe slice disorder measure is defined as:

1
ui —

SDM(t) = ¥

2 2

u + 1 Oi+ﬂ‘

127

SDM(t) is minimal (equals 0) if for all nodeis we haves; (t) = Sy ;-

In fact, it is simple to show that, in general, the probaypiiif dividing n peers into two slices of
the same size is less tha/i2/nmt This value is very small even for moderate values.ofience,
it is highly possible that the random number distributioreslmot lead to a perfect division into
slices.

A.3.5 Simulation Results

We present simulation results using PeerSiMB04], using a simplified cycle-based simulation
model, where all messages exchanges are atomic, so messagesverlap. First, we compare the
performance of the two algorithms: JK and mod-JK. Secondstwey the impact of concurrency
that is ignored by the cycle-based simulations.

Performance comparison. We compare the time taken by these algorithms to sort theorand
values according to the attribute values (i.e., the noda thie ji" largest attribute value of the
system value obtains thg" random value). In order to evaluate the convergence speedabf
algorithm, we use the slice disorder measure as defined tl8ec3.4.

We simulated 1®participants in 100 equally sized slices (when unspecifieah with a view
sizec = 20. FigureA.3(a)illustrates the difference between the global disordersuemand the
slice disorder measure while Figuke3(b) presents the evolution of the slice disorder measure
over time for JK, and mod-JK.

Figure A.3(a) shows the different speed at which the global disorder nreasnd the slice
disorder measure converge. When values are sufficientlg,|éihng GDM and SDM seem tightly
related: if GDM increases then SDM increases too. Convertigdye is a significant difference
between the GDM and SDM when the values are relatively low: DM reaches 0 while the
SDM is lower bounded by a positive value. This is because ldperithm does lead to a totally
ordered set of nodes, while it still does not associate eadbk with its correct slice. Consequently
the GDM is not sufficient to rightly estimate the performanteur algorithms.

FigureA.3(b) shows the slice disorder measure to compare the convergpeed of our algo-
rithm to that of JK with 10 equally sized slices. Our algamiticonverges significantly faster than
JK. Note that none of the algorithm reaches zero SDM, sineg dine both based on the same idea
of sorting randomly generated values. Besides, since thiéyus®d an identical set of randomly
generated values, both converge to the same SDM.

Remark. For the sake of fairness JK and mod-JK are compared usingithe anderlying view
management protocol in our simulation: the variant of Cyclavertheless, we simulated JK on
top of Newscast as it appeared #KPg (running a single cycle of Newscast in each cycle of JK, as
for Cyclon and its variant in mod-JK). As expected, the cogeace speed of JK was even slower
due to the difference between the clustering coefficienhefdommunication graph obtained by

128

1e+06 T v T

T
K ———
modified JK -------

. . ; 100000 : T T T
SDMvs.GDM = + :

100000 | + E 10000 F

Slice disorder measure
+
Slice disorder measure

1000 |

10000 | ‘/ﬁ E

1000 I R I R I R I 100 I I I I I
1 100 10000 1le+06 0 10 20 30 40 50 60

Global disorder measure Time (Cycles)
(a)

35

LI T T
modified JK - no concurrency

1e+06 T
F modified JK - full concurrency -------

T
JK - half concurrency KXxX=
RS JK - full concurrency e
30 o modified JK - half concurrency m—m -
modified JK - full concurrency 75757

100000

Slice disorder measure

10000 |

Percentage of unsuccessful swaps

1000 1 1 1 1
50 0 20 40 60 80 100

Time (cycles) Time (Cycles)

() (d)

Figure A.3: (a) Contrast between slice disorder measure labdlglisorder measure, observed on
the same experiment. (b) Slice disorder measure over tiopd&grcentage of unsuccessful swaps
in the ordering algorithms. (d) Convergence speed underdoghburrency.

129

Newscast and Cyclon, respectivelwh05. The comparison of the underlying view management
protocols both in terms of randomness and fault-tolerasoaii of the scope of Appendix.

A.3.6 Concurrency

The simulations are cycle-based and at each cycle an dgostep is done atomically so that
no other execution is concurrent. More precisely, the @lgms are simulated such that in each
cycle, each node updates its view before sending its randdue or its attribute value. Given this
implementation, the cycle-based simulator does not allewouealistically simulate concurrency,
and a drawback is that view is up-to-date when a messagetisiaghe following we artificially
introduce concurrency (so that view might be out-of-daté) the simulator and show that it has
only a slight impact on the convergence speed.

Adding concurrency raises some realistic problems due ¢éoube of non-atomic push-
pull [JGKvS04 in each message exchange. That is, concurrency might ¢eathér problems
because of the potential staleness of views: unsuccesgfipissdue to useless messages. Techni-
cally, the view of node might indicate tha has a random valuewhile this value is no longer
up-to-date. This happensiihas lastly updated its view befojeswapped its random value with
anotherj’. Moreover, due to asynchrony, it could happen that by the thmessage is received
this message has become useless. Assume thati rsethels its random valug to j in order to
obtainr; at timet and j receives it by time + 6. With no loss of generality assumg> rj. Then
if j swaps its random value with such thar’j > ri between time andt + &, then the message of
i becomesgiselesand the expected swap does not occur (we call thisresnccessful swap

FigureA.3(d) indicates the impact of concurrent message exchange omtivergence speed
while FigureA.3(c) shows the amount of useless messages that are sent. Nowplamdrow the
concurrency is simulated. Let tlozerlapping messagd® a set of messages that mutually over-
lap: it exists, for any couple of overlapping messages,adtlene instant at which they are both
in-transit. For each algorithm we simulat@pfull concurrency: in a given cycle, all messages are
overlapping messages; a(i) half concurrency: in a given cycle, each message is an qng
message with probabilit%. Generally, we see that increasing the concurrency inesg® num-
ber of useless messages. Moreover, in the modified versidi,shore messages are ignored than
in the original JK algorithm. This is due to the fact that sonoeles (the most misplaced ones)
are more likely targeted which increases the number of asectimessages arriving at the same
nodes. Since a nodegnored more likely a message when it receives more messhges the
same cycle, it comes out that concentrating message seaidsagne targets increases the number
of useless messages.

Figure A.3(d) compares the convergence speed under full concurrency @aegncurrency.
We omit the curve of half-concurrency since it would haverbsimilar to the two other curves.
Full-concurrency impacts on the convergence speed veyiythli

130

A.4 Dynamic Ranking by Sampling of Attribute Values

In this section we propose an alternative algorithm for tistriduted slicing problem. This al-
gorithm circumvents some of the problems identified in thevimus approach by continuously
ranking nodes based on observing attribute value infoonatRandom values no longer play a
role, so non-perfect uniformity in the random value disitibn is no longer a problem. Besides,
this algorithm is not sensitive to churn even if it is cortethwith attribute values.

In the remaining part of Appendi& we refer to this new algorithm as the ranking algorithm
while referring to JK and mod-JK as the ordering algorithinere, we elaborate on the drawbacks
arising from the ordering algorithms relying on the use ofd@m values that are solved by the
ranking approach.

Impact of attribute correlated with dynamics. As already mentioned, the ordering algorithms
rely on the fact that random values are uniformly distridutelowever, if the attribute values are
not constant but correlated with the dynamic behavior ofsysem, the distribution of random
values may change from uniform to skewed quickly. For instaassume that each node maintains
an attribute value that represents its own lifetime. Allothe algorithm is able to quickly sort
random values, so nodes with small lifetime will obtain theall random values, it is more likely
that these nodes leave the system sooner than other nodsgesiits in a higher concentration
of high random values and a large population of the nodes glyastimate themselves as being
part of the higher slices.

Inaccurate slice assignments. As discussed in previous sections in detail, slice assigisne
will typically be imperfect even when the random values ageqrtly ordered. Since the rank-
ing approach does not rely on ordering random nodes, thislgmmois not raised: the algorithm
guarantees eventually perfect assignment in a staticamwient.

Concurrency side-effect. In the previous ordering algorithms, a non negligible amt@mimes-
sages are sent unnecessarily. The concurrency of messag@sdrastic effect on the number
of useless messages as shown previously, slowing down igemee. In the ranking algorithm
concurrency has no impact on convergence speed becauseailled messages are taken in ac-
count. This is because the information encapsulated in aagegthe attribute value of a node) is
guaranteed to be up to date, as long as the attribute valee®astant, or at least change slowly.

A.4.1 Ranking Algorithm Specification

The pseudocode of the ranking algorithm is presented inr€igut. As opposed to the ordering
algorithm of the previous section, the ranking algorithnresloot assign random initial unalterable

131

values as candidate ranks. Instead, the ranking algoritmpnaves its rank estimate each time a
new message is received.

The ranking algorithm works as follows. Periodically eacklei updates its view; following
an underlying protocol that provides a uniform random sangpine 3); later, we simulate the
algorithm using the variant of Cyclon protocol presented écti®nA.3.3. Nodei computes its
rank estimate (and hence its slice) by comparing the at&ilalue of its neighbors to its own
attribute value. This estimate is set to the ratio of the nemath nodes with a lower attribute value
thati has seen over the total number of nodbas seen (Lind5). Nodei looks at the normalized
rank estimate of all its neighbors. Theselects the nodg closest to a slice boundary (according
to the rank estimates of its neighbors). Nodelects also a random neighbjgramong its view
(Line 12). When those two nodes are seleciezknds an update message, denoted by aJitdy
to j1 andj> containing its attribute value (LinE3-14).

The reason why a node close to the slice boundary is selest@ukeof the contacts is that such
nodes need more samples to accurately determine whichtekgebelong to (subsectiof.4.2
shows this point). This technique introduces a bias towtrels, so they receive more messages.

Upon reception of a message from nogdte passive threads ¢f and j» are activated so that
j1 and j> compute their new rank estimatg andrj,. The estimate of the slice a node belongs
to, follows the computation of the rank estimate. Messagesat replied, communication is
one-way, resulting in identical message complexity to J{ mod-JK.

A.4.2 Theoretical Analysis

The following Theorem shows a lower bound on the probabliititya node to accurately estimate
the slice it belongs to. This probability depends not onlytfeanumber of attribute exchanges but
also on the rank estimate of

Theorem A.4.1 Let p be the normalized rank of i and Igtbe its estimate. For node i to exactly
estimate its slice with confidence coefficiert@® 1 — o)%, the number of messages i must receive
is:

where d is the distance between the rank estimate of i and tlsestlclice boundary, and%Z
represents the endpoints of the confidence interval.

Proof. Each time a node receives a message, it checks whether tierattibute value is larger or
lower than its own. LeK, ..., X bek (k> 0) independent identically distributed random variables
described as followsX; = 1 with probability - = p (indicating that the attribute value is lower)
andj € {1,...,k}, otherwiseX; = 0 (indicating the attribute value is larger). By the centnalit

132

Initial state of node i

(1) period, initially set to a constant;, a value in(0, 1];
a;, the attribute valueh, the closest slice boundary to noide
i, the counter of encountered attribute valdgghe counter
of lower attribute valuesslicq < L; Aj, the view.

Active thread at nodei

(2) wait(period)

(3) recompute-view();

(4) dist-min— o

(5) for j e Af

6) g<gag+1

@) if ajy <@ thentj — ¢ +1
(8) if dist(ay/,b) < dist-minthen
9 dist-min— dist(aj/, b)
(10) ji—1J

(11) end for

(12) Letj, be arandom node ofj
(13) send(UPD, &) to j1

(14) send(UPD, &) to j»

(15) ri —4i/g

(16) slice«— S ysuchthat <rj <u

Passive thread at node activated upon reception
(17) recv(UPD,a;) from j

(18) if aj <ajthentj — ¢ +1

(19) g g +1

(20) ri — 4i/g;

(21) slice«— § ysuchthat <rj <u

Figure A.4: Dynamic ranking by exchange of attribute values

133

theorem, we assunie> 30 and we approximate the distribution Xf= z‘j;lxj as the normal

distribution. We estimatX by X = y¥_; Xj andp by p= %.
We want a confidence coefficient with value-Iri. Let ® be the standard normal distribution
function, and leZy be ®~1(1—%). Now, by the Wald large-sample normal test in the binomial

case, where the standard deviatiorpa$ 6(p) = p\(/lk_ﬁ), we have:
p_Ap < Za
op)| — 2

p-Zs0(p) < p < P+Zso(p).
Next, assume thai falls into the slice§ , with | andu its lower and upper boundaries, respec-

tively. Then, as long ap = Z%\/ M > | andp+ Z%\/M < u, the slice estimate is exact

with a confidence coefficient of 10D— a)%. Letd = min(p—1,u— p), then we need

d > Za

2

- —\ 2

k2<zuM>'
2 d

To conclude, under reasonable assumptions all node estitaatlice with confidence coeffi-
cient 1041 — a)%, after a finite number of message receipts. Moreover a rloderdo the slice
boundary needs more messages than a node far from the bgundar

O

A.4.3 Simulation Results

This section evaluates the ranking algorithm by focusingloee different aspects. First, the
performance of the ranking algorithm is compared to thequeréince of the ordering algoritfim
in a large-scale system where the distribution of attrilvalees does not vary over time. Second,
we investigate if sufficient uniformity is achievable in ligausing a dedicated protocol. Third, the
ranking algorithm and ordering algorithm are compared igreathic system where the distribution
of attribute values may change. Finally, a sliding windoshtaique is given to prevent the SDM
from increasing.

For this purpose, we ran two simulations, one for each alyos. The system contains (ini-
tially) 10* nodes and each view contains 10 uniformly drawn random naaléss updated in each
cycle. The number of slices is 100, and we present the ewolofithe slice disorder measure over
time.

4We omit comparison with JK since the performance obtainetl miod-JK are either similar or better.

134

le+06 T T T T T T T T T 100 T T T T T T 1le+06
ranking SDM ——] deviation (%)
ordering SDM -------] SDM (uniform) -------
1 SDM (views) --------
) 5 Or)
=1 = =3
@ 100000 | E [- 100000 @
[1 S [
Q >)
£ o S
% GO) 0 WNWWWVW%WWW g
3 g \ 8
kS| S \ k]
& 10000 § E o \ 4 10000 3
2 1] & ®
-50 S
\-;““\\.»
1000 1 1 1 1 1 1 1 1 1 -100 1 1 1 1 1 1 1 1 1 1000
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Time (Cycles) Time (Cycles)
le+07 T T le+06 T T T T T T T
ranking F ordering
IK ——----- F ranking ----
[sliding-window --------
g g
=] =
] 1le+06 | E @ 100000 [E
Q Q
£ £
5] 9]
B B
[=} o
0 |]
o | e °
& 100000 p Pan 8 10000 ¢
7] N 7] F
10000 1 1 1 | | | | | | 1000 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Time (cycles) Time (Cycles)

(©)

Figure A.5: (a) Comparing performance of the ordering athami and the ranking algorithm
(static case). (b) Comparing the ranking algorithm on top ohdorm drawing or a Cyclon-
like protocol. (c) Effect of burst of attribute-correlatedurn on the convergence of the ordering
algorithm and the ranking algorithm. (d) Effect of a low argular attribute-correlated churn on
the convergence of the ordering algorithm and the rankiggrahm.

135

Performance comparison in the static case. FigureA.5(a) compares the ranking algorithm to
the ordering algorithm while the distribution of attribwtalues do not change over time (varying
distribution is simulated below).

The difference between the ordering algorithm and the rapkilgorithm indicates that the
ranking algorithm gives a more precise result (in terms afento slice assignments) than the or-
dering algorithm. More importantly, the slice disorder @& obtained by the ordering algorithm
is lower bounded while the one of the ranking algorithm is. nGonsequently, this simulation
shows that the ordering algorithm might fail in slicing thestem while the ranking algorithm
keeps improving its accuracy over time.

Feasibility of the ranking algorithm. FigureA.5(b) shows that the ranking algorithm does not
need artificial uniform drawing of neighbors. Indeed, anarhdng view management protocol
might lead to similar performance results. In the presestedilation we used an artificial pro-
tocol, drawing neighbors randomly at uniform in each cydi¢he algorithm execution, and the
variant of the Cyclon view management protocol presentedeabdhose underlying protocols
are distinguished on the figure using terms "uniform” (foe flormer one) and "views” (for the
latter one). As said previously, the Cyclon protocé(JvS03 consists of exchanging views be-
tween neighbors such that the communication graph prodsicaes similarities with a random
graph. This figure shows that both cases give very similarltes The SDM legend is on the
right-handed vertical axis while the left-handed vertiaais indicates what percentage the SDM
difference represents over the total SDM value. At any timengd) the simulation (and for both
type of algorithms) its value remains within plus or minus.7Bae two SDM curves of the ranking
algorithm almost overlap. Consequently, the ranking atgoriand the variant of Cyclon presented
in subectiorA.3.3 achieve very similar result.

To conclude, the variant of Cyclon algorithm presented indrevious section can be easily
used with the ranking algorithm to provide the shuffling adws. More generally, an underlying
distributed protocol that shuffles the view among nodes mayige nearly-optimal results.

Performance comparison in the dynamic case. In FigureA.5(c) each of the two curves repre-
sents the slice disorder measure obtained over time usengrttering algorithm and the ranking
algorithm respectively. We simulate the churn such th&dbinodes leave and 0.1% of the nodes
join in each cycle during the 200 first cycles. We observe Hwv3DM converges. The churn is
reasonably and pessimistically tuned compared to recqrdremental evaluationsSR0qg of the
session duration in three well-known P2P systéms.

The distribution of the churn is correlated to the attribuédue of the nodes. The leaving
nodes are the nodes with the lowest attribute values whaletitering nodes have higher attribute
values than all nodes already in the system. The parametéceshare motivated by the need

5In [SR04, roughly all nodes have left the system after 1 day whilegrae still 50% of nodes after 25 minutes.
In our case, assuming that in average a cycle lasts one seaarid lead to more than 54% of leave in 9 minutes.

136

of simulating a system in which the attribute value corresjsoto the (fixed) session duration of
nodes, for example.

The churn introduces a significant disorder in the systenthvibunters the fast decrease.
When, the churn stops, the ranking algorithm readapts welslice assignments: the SDM starts
decreasing again. However, in the ordering algorithm, threvergence of SDM gets stuck. This
leads to a poor slice assignment accuracy.

In FigureA.5(d), each of the two curves represent the slice disorder meabtamed over time
using the ordering algorithm, the ranking algorithm, andadified version of the ranking algo-
rithm using attribute values recorded in a sliding-windesgpectively. (The simulation obtained
using sliding windows is described in the next subsectiorhe churn is diminished and made
more regular than in the previous simulation such that 0.1k@des leave and 0.1% of nodes join
every 10 cycles.

The curves fits a fast decrease (superlinear in the numbeyctés) at the beginning of the
simulation. At first cycles, the ordering gain is significamtking the impact of churn negligible.
This phenomenon is due to the fact that SDM decreases rapiaiiy the system is fully disordered.
Later on, however, the decrease slope diminishes and thie effact reduces the amount of nodes
with a low attribute value while increasing the amount of @®avith a large attribute value. This
unbalance leads to a messy slice assignment, that is, edelnmast quickly find its new slice to
prevent the SDM from increasing. In the ordering algorititwe EDM starts increasing from cycle
120. Conversely, with the ranking algorithm the SDM startg@asing not earlier than at cycle
730. Moreover the increase slope is much larger in the foaigarithm than in the latter one.

Even though the performance of the ranking algorithm is nhetter, its adaptiveness to churn
is not surprising. Unlike the ordering algorithm, the rarnkione keeps re-estimating the rank of
each node depending on the attribute values present in ghensy Since the churn increases the
attribute values present in the system, nodes tend to eec@ive messages with higher attribute
values and less messages with lower attribute values, vilnink out to keep the SDM low, despite
churn. Further on, we propose a solution based on slidimglow technique to limit the increase
of the SDM in the ranking algorithm.

To conclude, the results show that when the churn is relatetig attribute (e.g., attribute
represents the session duration, uptime of a node), theaikeg algorithm is better suited than
the ordering algorithm.

Sliding-window for limiting the SDM increase. In FigureA.5(d), the "sliding-window” curve
presents a slightly modified version of the ranking algonitthat encompasses SDM increase due
to churn correlated to attribute values. Here, we presemnetirichment.

In SectionA.4, the ranking algorithm specifies that each node takes irtouat all received
messages. More precisely, upon reception of a new messelg@eda re-computes immediately
its rank estimate and the slice it thinks it belongs to witiremembering the attribute values it has
seen. Consequently the messages received long-time aga&amach importance as the fresh

137

messages in the estimateiof The drawback, as it appeared in Figut&(d) of SectionA.3.5,
is that if the attribute values are correlated to churn, ttienprecision of the algorithm might
diminish.

To cope with this issue, the previous algorithm can be easilyched in the following way.
Upon reception of a message, each niadeords an information about the attribute value received
in a fixed-size ordered set of values. Say this set is a firtsrout buffer such that only the most
recent values remain. Right after having recorded this mé&ion, node can re-compute its rank
estimate and its slice estimate based on the most releen® pf information (having discarded the
irrelevant piece). Consequently, the estimate would rely on fresh attribute values encountered
so that the algorithm would be more tolerant to changes, @ygamics or non-uniform evolution
of attribute values). Of course, since the analysis (cfti8e@.4.2) shows that nodes close to the
slice boundary require a large number of attribute values$timating precisely their estimates, it
would be unaffordable to record all these last attributee@slencountered due to space limitation.

Actually, the only necessary relevant information of a ragssis simply whether it contains a
lower attribute value than the attribute valuei 0br not. Consequently, a single bit per message
would be sufficient to record the necessary information. (@dding a 1 meaning that the attribute
value is lower, and O otherwise). Thus, even though a riogeuld require 16 messages to
rightly estimate its slice (with high probability), nodeimply needs to allocate an array of size
10%/(8% 1000 = 1,25 kB.

As expected, Figuré.5(d) shows that the sliding-window method applied to the ranlalgg-
rithm prevents its SDM from increasing. Consequently, ates@aint in time, the resulting slice
assignment may become even more accurate.

A.5 Conclusion

A5.1 Summary

Peer to peer systems may now be turned into general framsvaorkop of which several ap-
plications might cohabit. To this end, allocating resoart® applications, while resources are
heterogeneously spread over the system, require spedfcitaims to partition the network in
a relevant way. The sorting algorithm proposedJK (€ provided a first attempt to “slice” the
network, taking into account the potential heterogeneitgarles. This algorithm relies on each
node drawing a random value uniformly and swapping contislyothose random values, with
candidate nodes, so that the order between attributessvéieiecting the capabilities of nodes)
and random ones match.

Here, we first proposed an improvement over the initial sgrélgorithm resulting in the or-
dering algorithm. This improvement comes from a judiciobsice of candidate nodes to swap
values. Each node makes this choice depending on the tdatrease of the disorder measure
it can compute locally.

138

Our second contribution is the definition of the slice digwrcheasure. The slice disorder
measure evaluates how nodes wrongly estimate the slicebidleyg to. We showed that the
existing global disorder measure can not indicate whetbdes found their slice. That is, the slice
disorder measure is necessary to show that an algorithrastite distributed slicing problem.

Using the slice disorder measure, we identified two issuaseato the use of static random
values. The first one refers to the fact that slice assignrheatily depends on the degree of
uniformity of the initial random value. The second is rethte the fact that once sorted along
one attribute axis, the churn (or failures) might be cotezlao the attribute, therefore leading to
a unrecoverable skewed distribution of the random valudss phenomenon results in a wrong
slice assignment despite the system seems to be rightlyeatde

Last but not least, we provided a ranking algorithm that esttely maintains slices of the
system even in the presence of churn. This algorithm mir@mihe effect of correlated churn
on slice disorder and recovers efficiently after a period afelated churn. For this purpose,
nodes continuously re-estimate their rank relatively teeonodes based on their sampling of the
network. The convergence speed up of the first algorithmamdd¢curacy of the second algorithm
are proved through theoretical analysis and simulations.

A.5.2 Perspective

Our solution uses a variant of the Cyclon protocol to obtaiasiruiniform distribution of neigh-
bors. There are various protocols that might be used foerdifft purpose. For instance, Newscast
can be used for its resilience to very high dynamics agk®f. Some other protocols exist in the
literature. Deciding exactly how to parameterize the ulyiteg peer sampling service might be an
interesting future direction.

139

140

Appendix B

|OA Specification of a Dynamic DSM

Algorithm 10 Signature of the Reconfigurable Distributed Storage

1. Signature:
2: Input:
3: join(W)i, i €1, W aset of nodes
4: readj, i €l
5: write(V)i, i €1,vavalue
6: recon(c,c);, i €1, candc’ two configurations
7: recv(m)i, i € |, ma message
8: faili, i€l
9: leader(b);, i €1, ba ballot
10: output:
11: join-ack;, i €1
12: read-ack(V)i, i €1,vavalue
13: write-ackj, i €
14: recon-ack(r);, i €1
15: send(m)i, i € I, ma message
16: Internal:
17: query-fix;, i €1
18: prop-fix;, i €|
19: prepare(b)i, i €1, ba ballot
20: prepare-done(b);, i €1, ba ballot
21: init-propose(K);, i € I, k an integer
22: propose(K)i, i €1, kan integer
23: propose-done(K)i, i € I, kan integer

24 State:

25: statuse {idle,joining, active, failed},
26: world, a finite subset of

27. valueeV,

28. tageT,

29: cmapeCMap

30: pnumileN,

31: pnum2a mapping from to N

32: isLeaderc B

33:. confirmed a set of tags

34: failedeB,

35: op, arecord with fields:

36: typee {read, write}

37: phasec {idle,query, prop,done}
38: pnume N

39: cmape CMap

40: acg a finite subset of

41: tage T

42: valuec V

43: pxs arecord with fields:

44: pnume N

45: phasec {idle, prepare, propose, propagate}
46: conf-indexe N

47. confeC

48: acg a finite subset of

49: ballot, a ballot with fields:

50: idc NxI

51. conf-indexe N

52: confeC

53: voted-ballotsa set of ballots.

141

Algorithm 11 Reconfigurable Distributed Storage — Operation transitions

1. Input read; 39: op.acce 0
2. Effect:
3: if —failed A status= active then 40: Internal prop-fix();
4. pnum«— pnum+ 1 41: Precondition:
5: op.pnum«— pnum 42: —failed A status= active
6: op.type— read 43: op.type€ {read,write}
7: op.phase— query 44 op.phase= query
8: op.cmap«— cmap 45; for ke N,ce Cdo
9: op.acc— 0 46: op.cmagk) = ¢ = 3P ¢ propagation-quorumg) : P C
op.acc
10: Input write(V); 47: Effect:
11: Effect: 48: op.phase— done
12: if —failed A status= active then 49: confirmed— confirmedJ {op.tag}
13: pnuml— pnumi4 1
%g op.pnum«— pnum1 50: Output read-ack(V);
16: op.tyrE)eH write 51: Precondition:
: Op.phase— query 52: —failed A status= active
17; op-.cmap— cmap 53: op.type= read
18; opacc—0 54: op.phase= done
19: opvalue«—v 55: V = op.value
. 56: Effect:
20: Internal query-fix(); 7 ;
: .ph |
21: Precondition: S opphase= idle
22: —failed A status= active
:) 58: Output read-ack(Vv);
%2 op.typec {read,write} 59 Prgcondition' (V)i
: op.phase= query . ; S
55 for ke N.c< C do gg ﬁfalled/istatj& active
26: op.cmagk) = ¢ = 3Cons € consultation-quorun(s) : 62- optype=rea
ConsC op.acc . op.phase= prop
27- Eff7 " 63: op.tag = confirmed
: rect. 64 vV =op.value
28: if op.type= read then 65 Effect:
29: op.value«— value 66 Oec hase— idle
30: op.tag < tag) PP
31: else .
32: value— op.value 67: Output write-ack;
33: tag — [[tag.seq 1.i]] 68: Precondition: _
34: optag — tag gg ~failed \ status= active
35: pnuml— pnumi+ 1 71 gB‘gﬁ::e:W;zie
36: op.pnum«— pnum1 72 Ve op value
37: op.phase— prop : " p-
38: op.cmap— cmap /3. Effect
74 op.phase= idle

142

75: Output send(W,v,t,cnf,cm pns pnr,b, p,vb);
76: Precondition:

77 —failed A status# idle
78: j € world

79: W = world

80: v=value

81: t =tag

82: cnf = confirmed

83: cm= cmap

84. pnr = pnumi

85: pns= pnumZj)
86: b = ballot

87: p = pxs

88: vb = voted-ballots
89:

90: Effect:

91: None

92: Input leader(b);
93:. Effect:

94: isLeader— b

95: Input join(w);

96: Effect:

97: status— joining
98: world — worldUw

99: Output join(w);
10

0: Precondition:

101: status= active
102: joined= false
103: Effect:

104: joined « true
105: Input fail();
106: Effect:

107: failed < true

108: Input recv(W,v,t,cnf,cm pns pnr,b, p,vb);

109:
110:
111:
112:
113:
114:
115:

116:
117:
118:
119:
120:
121:
122:
123:
124
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144
145:

Effect:

if —failed A status# idle then
status— active
world «— worldUW
confirmed— confirmedJ cnf
if t > tagthen
[[value tag]] — [[v.t]]
if b.id > ballot.id then
ballot — b
pxsphase— idle
pxsacc— 0
if p.conf-index> pxsconf-indexhen
if recon-in-progress- false then
pxsconf-index— p.conf-index
pxsconf « p.conf
pxsold-conf« p.old-conf
pxsphase— idle
pxsacc— 0
voted-ballots— voted-ballots) vb
cmap«— update(cmapcm)
pnum2 j) « max(pnumz), png
if op.phasec {query, prop} Apnr > op.pnumthen
op.cmap«— extend(op.cmap cm)
if op.cmape Truncated then
op.acc« op.accJ{j}
else
op.acc— 0
op.cmap— cmap
if pxsphase= prepare then
if pnr > pxspnumthen
pxsacc« pxsaccu{j}
else ifpxsphase= propose then
if ballot € vbA ballot = b then
pxsacc« pxsaccu{j}
else ifpxsphase= propagate then
if cm(ballot.conf-inde) = ballot.conf then
pxsacc«— pxsaccU{j}

143

Algorithm 12 Reconfigurable Distributed Storage — Reconfiguration triamsit

1: Input recon(c,c); 26: Output recon-ack(r);
2. Effect: 27:. Precondition:
3 if —failed A status= active then 28: —failed A status= active
4: letk = max(¢: cmag¢) € C) 29: recon-in-progress-= true
5: pxsconf-index— k+ 1 30: cmagk) € CVemapk—2) # + Vv emagk— 1) # pxsold-conf
6: pxsold-conf«— ¢ 31: let k = pxsconf-index
7. pxsceonf«— ¢ 32: if cmagk) = pxsconf then
8: pxsphase— idle 33: r = ok
9: pxsacc«— 0 34 else
10: recon-in-progress— true 35: r = failed
36: Effect:
11: Internal init(c); 37: pxsconf — |
12: Precondition: 38: pxsconf-index— L
13: —failed A status= active 39: recon-in-progress— false
14: c=pxsconf# |
15: k = pxsconf-index£ L
16: cmapk) = L
17: cmapk — 1) = pxsold-conf# L
18: if k> 1then
19: cmagk—2) =+
20: isLeader
21: Effect:
22: pxsphase— idle
23: pxsacc— 0
24: ballot.conf « ¢
25: ballot.conf-index— k
40: Internal prepare(b); 51: Internal prepare-done(b);
41: Precondition: 52: Precondition:
42: —failed A status= active 53: —failed A status= active
43: isLeader 54: isLeader
44: b = ballot 55: b = ballot
45: Effect: 56: pxsphase= prepare
46: pnumle— pnumit 1 57: let k = ballot.conf-index
47: pxspnum«— pnumi 58: letc = cmapgk—1)
48: pxsacc— 0 59: ceC
49: ballot.id — [[ballot.id.seqnot 1,i]] 60: JConse consultation- quorumsc) : ConsC pxsacc
50: pxsphase— prepare 61: Effect:
62: pxsprepared-id— ballot.id
63: pxsacc«— 0
64: pxsphase— idle

144

65: Internal init-propose(K);
66: Precondition:

67: —failed A status= active

68: isLeader

69: ballot.conf-index=k # L

70: ballot.id = pxsprepared-id

71: pxsconf-index= ballot.conf-index
72: pxsconf = ballot.conf

73. Effect:

74 pxsphase— idle

75: let S= {b € vote-ballots b.conf-index= k}
76: if S# 0then

77 leth = b’ : b".id = maxpes(b.id)
78: ballot.conf — b'.conf

79: voted-ballots— voted-ballotsJ { ballot}

80: Internal propose(K)
81: Precondition:

82: —failed A status= active
83: ballot.conf-index=k # L
84: ballot € voted-ballot
85: Effect:

86: pxsphase— propose
87: pnumi— pnumi+ 1

88: pxspnum«— pnum1

89: pxsacc— 0

90: Internal propose-done(K);
91: Precondition:

92: —failed A status= active

93: pxs-phase= propose

94 let k = ballot.conf-index

95: letc = cmapk— 1)

96: ceC

97: 3Cong € consultation- quorumgc) : Cong C pxsacc
98: 3Prop, € propagation— quorumsc) : Prop, C pxsacc
99: Effect:

100: pxsphase— idle

101: cmagk) < ballot.conf

102: pxsacc— 0

103: Internal propagate(K);
104: Precondition:

105: —failed A status= active
106: let k = ballot.conf-index
107: cmagk) € C

108. Effect:

109: pxsphase— propagate
110: pnuml— pnumi+ 1
111: pxXspnum«— pnumi

112: pxsacc— 0

113: Internal propagate-done(k);
114: Precondition:

115: —failed A status= active
116: pxs-phase- propagate
117: let k = ballot.conf-index

118: letc = cmapk— 1)
119: letc’ = cmagk)

120: ceC

121: decC

122: JCons € propagation- quorumgc) : Consg C pxsacc
123: 3Prop, € consultation- quorumsc) : Prop, C pxsacc
124 Effect:

125: cmagk—1) «— =+

126: pxsphase— idle

127: pxsacc— 0

145

146

Appendix C

|OA Specification of a Scalable DSM

Algorithm 13 LoadBalancer— Signature and state

1. Signature:
2: Input:
3 read-write-ack(v,id);, i,id € |, typec {read,
4: write}, veV
5: rev(rgst)j;, i,j €1, rgsta request
6: faili, i €1
7 share-load-rcv(b);j, i €1, ban array of requests
8. Internal:
9: load-balance(rgst);, i € I,rgsta request
10: output:
11: read-write(type v,id);, i,id € 1, typec {read,
12: write},veV
13: snd(rgst); j, i, j €1, rgsta request
14: shrink;, i€l
15: expand(j)i, i,j €l
16: share-load-snd(b);j, i €I, ban array of requests
17: state:
18: rgstarecord with fields
19: sendere |, the id of the requester
20: typec {read,write}
21: targete R?, the next requested coordinate
22: nexte R2, the point of the next replica (on the path to the
23: target).
24: str-pte R?, the first requested coordinate
25: val € V, the value returned by the request
26: failed a boolean
27:. expandinga boolean

34
35:
36:

48:
49:
50:
51:
52:

replicaa boolean indicating whether it is a replica or not
batchthe set of requests received

to-treatthe set of requests that must be treated
treatingthe set of requests being treated

to-fwdthe set of requests that must be forwarded
to-rspdthe set of requests to which respond

Derived Variables:
overloaded= (c < |{r € to-treatUtreatingJ
batch}|), wherec € N>C is the capacity.

. Initial States:

rgstsenderinitialized by the requester as its own identifier

rgsttypeinitialized by the requester t@ad or write

rgsttarget= L

rgstnext= L

rgststr-pt= 1

val = vp initialized as the value to write or to O (if the
request refers to a read operation)

failed = false

expanding= false

replica, true if the node maintains a value of the objefelise
otherwise

batch=0

to-treat= 0

treating= 0

to-fwd=0

147

Algorithm 14 LoadBalancer— Transitions

53: Transitions:

54.
55:
56:
57:

Input rev(rgst);,;
Effect:
if —failed A rgstnexte zonethen

if rgststr-pte zonethen
expanding— true
batch— batchu {rgst}
last-request-time— o

else ifrgsttarget= 1 then
rgststr-pt — pt|pt € zone
batch— batchu {rgst}
last-request-time— o«

else ifrgsttargete zonethen
batch— batchu {rgst}
last-request-time— «

else
rqstnext= closest-pt(rgsttarget)
to-fwd — to-fwdu {rgst}

Output read-write(type v, id);
Precondition:
—failed
—expanding
rgst € to-treat
type= rgsttype
v =rgstval
id < rgstsender
Effect:
treating« treatingu {rgst}
to-treat« to-treat\ {rgst}

Output snd(rgst); j
Precondition:
—failed
—expanding
(rgste fwd
Argstnext= closest-pt(rgsttarget))
Aj = nbr(rgstnexy Vv (rgst € to-rspd
Aj = rgstsendej
Effect: none

Input fail;
Effect:
failed < true

time-passage(t)
Precondition:
if —failed then
now+t < last-request-time
Effect:
NOW «+— NOw+t

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:

115:
116:
117:
118:
119:
120:
121:

122:
123:
124:
125:
126:
127:

128:
129:
130:
131:
132:
133:
134:
135:
136:

137:
138:
139:
140:
141:

142:
143:
144:
145:

146:

Internal load-balance(rgst);
Precondition:
—failed
—expanding
rgst € batch
Effect:
if overloadedhen
rgsttarget« next-pt-on-diag(rqststr-pt)
to-fwd — to-fwdu {rgst}
else
to-treat« to-treatU {rgst}
batch— batch\ {rgst}
if batch= 0 then
last-request-time— now
++unloaded-period

Input read-write-ack(v,id);
Effect:
if —failed then
if rgst € treatingA rgstid = id then
rgstval « v
treating — treating\ {rgst}
to-rspd« to-rspdu {rgst}

Output expand(j);
Precondition:
—failed A expanding
j < any-active-node
Effect:
replicating — replicatingu { j }

Output share-load-snd(b);

Precondition:

—failed A expanding

j € replicating

b « second-half(batch
Effect:

expanding— false

batch« first-half (batch)

replicating — replicating\ { }

Input share-load-rcv(b)j i
Effect:
if —failed A status= idle then
batch<— b
last-request-time— o

Output shrink;
Precondition:
last-request-time< now
—failed

Effect: none

148

Algorithm 15 Traversa] — Signature and state

Signature:
Input:

read-write(type v,id);, i,id € 1, typec {read,
write},veV

rcv(msgj;, i,j €1, msge M

fail;, i el

expand(j)i, 1,j €l

shrinkj, i €1

failure-detect(j);, i €l

notify-rev(t,v,z,n,gn)j;, i,jel, teT,veV,
nel*, gneN

takeover-rsp(j,K)i, i,j,kel

replicate-rcv;j, i,j €1

. State:

opan record with fields
id € N x |, the operation id
intr € 1, the initiator replica obp
typec {read, write}
phasec {idle, cons, update, prop,end}
tag, a record with fields
cte N, a counter
idelu{Ll}
valeV
msg a record with fields
op € M, the operatiomsgis part of

senses {north,south, east}, the message sense
intvl € {east,south,north} — R x R, given a sense,
the interval of abscissas or ordinates the message coveb®:
60:
61:
62:

tag, a record with fields
cteN
idel

. Initial state:

op.(id,intr,type phase = (L, L, L, 1)
op.tag.ct = 0 andop.tag.id = L

op.val = vy, the default value of the object.
failed = false

58:

Output:
snd(msgi,j, i,j €1, msge M
read-write-ack(v,id);, i,id €l,veV
is-failed(j)i, i,j €l
notify-snd(t,v,z,n,gn)i j, i,j€l,teT,veV,

nel*,gneN
takeover-gry(j)i, i,j €1
replicate-snd; j, i,j €1
Internal:

cons-upd-init(op)i, i €1,0pe N
prop-init(op)i, i €1, 0pe
cons-upd-end(op)i, i € l,open
prop-end(op)i, i €l,0pell

val e V, initially v
failed, a boolean
propagateda boolean
/I The state for the adjustment follows
leavingC |
changedc |
rcvd-fromc |
nbrsc |
detect-times R>0
detect-periods R>?, a constant
notif-timee R>°
notif-periode R>?, a constant
zonec R*, a zone
nbrs a set of replica ids
gnume N
replicaa record with fields

id, the replica id

zone the replica zone

propagated= true

leaving changedrcvd-from nbrs zones= 0
clock the clock value at the beginning
notif-time notif-period= 0

gnum=20

149

Algorithm 16 Traversaj — Operation transitions

73: Operation Transitions:
74: Input read-write(type Vv, id);
75: Effect:

76: if —failed A status# idle then
77: op.type«— type

78: if type= read then

79: op.phase— cons

80: op.(tag,val) < (tag,val)
81: else iftype= write then

82: op.phase— upd

83: op.{tag,val) « {1,v)

84 op.intr «— i

85: ops« opsu {op}

86: Internal cons-upd-init(op);
87: Precondition:

88: —failed A status# idle

89: op € ops

90: op.phasec {cons,upd}

91: Effect:

92: msgop — op

93: msgsense— east

94 msgtrajectory«+ (ymax-—ymin)/2
95: to-send— to-sendJ {msg

96: Internal prop-init(op);

97: Precondition:

98: —failed A status# idle

99: op < ops

100: op.phase= prop

101: Effect:

102: msglop «— msg20p — op
103: msglsense— south

104 msg2sense— north

105: msgtrajectory« (Xmax— xmin) /2
106: mrcv{op.id] « 0

107: to-send— to-sendJ {msdL, ms@}
108: Output read-write-ack(v,id);
109: Precondition:

110: —failed A status# idle

111: op€ ops

112: op.phase= end

113: v=op.val

114 Effect:

115: op.phase— idle

116:
117:
118:
119:
120:
121:

122:
123:
124
125:
126:
127:
128:
129:
130:
131:
132:

133:
134:
135:
136:

137:

138:
139:
140:
141:
142:
143:
144
145:
146:
147:
148:
149:
150:
151:
152:
153:
154
155:
156:
157:
158:

159:

Internal cons-upd-end(op);
Precondition:
—failed A status# idle
msge rcvd
op = msgop
op.phasec {cons,upd}
Effect:
op.(tag,val) « update(op.(tag,val), (tag, val))
revd < rcvd\ {msg
if zoneC msgintvl[east] then
/I'i has already participated
if propagated\ op.type= read then
op.phase= end
else
op.phase= prop
if op.type= write then
increments(op.tag)
else
msgop < op
msgsense— east
to-send— to-sendU {msg

msgintvleast] < msgintvl[east] Uzone

Internal prop-end(0op);
Precondition:
—failed A status# idle
msge rcvd
op= msgop
op.phase= prop
Effect:
(tag, val) — op.(tag, val)
if (zoneC msgintvl[north]
AzoneC msgintvl[south]) then
/I'1 has already participated twice
op.phase— end
else
msgintvliimsgsensé«— msgintvi[msgsensg
Uzone
if (zoneC msgintvl[north]
AzoneC msgintvl[south]) then
/'1 participates for the second time
propagated— true
msgop < op
to-send— to-sendJ {msg
rcvd < rcvd\ {msg

150

Algorithm 17 Traversal — Communication transitions

160: Output snd(msg) | 168: Input rcv(msgj,i
161: Precondition: 169: Effect:
162: —failed A status= participating 170: if —failed A status# idle A msgnexte zonethen
163: msge to-send 171: revd «— revduU {msg
164 msgnext« next-pt-on-line(i, msgsense 172: ops«+ opsuU {msgop}
165: msgtrajectory)
166: j = nbr(msgnex{ 173: Input fail;
167: Effect: none 174 Effect:
175: failed < true

151

Algorithm 18 Traversaj — Adjustment transitions

176: Adjustment Transitions: 221: time-passage(t)
177: Input expand(j); 222: Precondition:
178: Effect: 223: if —failedthen
179: if —failedA status# idle then 224 now-t < notif-time
180: z=zone // we choose a zone to split 225: now-+t < detect-time
181: j.zone— second-half(2) 226: Effect:
182: update(j.nbrs (j, j.zonenbrs 0)) 227: NOW«— now-t
183: zone« first-half(z)
184: update(nbrs, (i,zonenbrs 0)) 228: Output takeover-qry(j);
185: changed— changedJ {j} 229: Precondition:
186: revd-from«— 0 230: —failed A status# idle
187: gnume— gnum+-1 231: Il either i is in charge of looking for
188: status— expanding 232: I the takeover or it is shrinking
233: j € leavingAi = min{k € nbrs(j)})Vi=j
189: Input shrink; 234: Effect: none
190: Effect:
191: if —failed A status# idle then 235: Input takeover-rsp(j,K);
192: leaving— leavingu {i} 236: Effect: ’
237: if —failed A status# idle then
193: Input failure-detect(j); 238: k.zone— j.zone
194: Effect: 239: k.nbrs«— j.nbrs
195: if —failedA status# idle then 240: if j =ithen
196: leaving— leavingu {j} 241: /I the leaving replica is the current one
242: status— idle
197: Input notify-rev(t,v,z,n,gn);; 243: changed— changedJ {k}
198: Effect: ’ 244 leaving— leaving\ {j}
199: if —failed then
200: update((tag, val), (t,v)) 245: Output replicate-snd(t, v,z n); j
201: update(nrbs (j,zn,gn)) 246: Precondition:
202: if abut(Uykereva-fromK-ZONeszones then 247. —failed A status# idle
203: //'i heard from all its north and 248: j € changed
204: /I south neighbors 249: z=j.zone
205: status— participating 250: n= j.nbrs
206: if gn> gnumthen 251: {t,v) = (tag val)
207: gnum«— gn 252: Effect: none
208: revd-frome— revd-fromu { j }
209: notif-time«— now+- notif-period 253: Input replicate-rev(t,v,z,n)j;
254: Effect:
210: Output notify-snd(t,v,z n,gn); ; 255: if —failed then
211: Precondition: 256: zone—z
212: —failed A status# idle 257: tag«—t
213: notif-time< now 258: val —v
214: t = tag 259: update(nrbs (j,z,n,0))
215: v=val 260: rcvd-frome— @
216: gn=gnum 261: gnum«— gnum+1
217: j € nbrs
218: z=j.zone 262: Output is-failed(j);
219: z=j.nbrs 263: Precondition:
220: Effect: none 264: —failed A status# idle
265: detect-time< now
266: j € nbrs
267. Effect:
268: detect-time— now-- detect-period

152

Bibliography

[1996]

[ABNDO5]

[ACLS94]

[ADGRO5]

[AE89]

[AE9O]

[AF92]

[AF98]

Special issue on group communication servi€Ggsnmunications of the ACN39(4),
1996.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Shagirmemory robustly in
message-passing systerdsACM 42(1):124-142, 1995.

Divyakant Agrawal, Manhoi Choy, Hong Va Leong, and BumSingh. Mixed con-
sistency: a model for parallel programming. Rroceedings 13th ACM Symposium
on Principles of Dist. Computingpages 101-110, 1994.

Emmanuelle Anceaume, Xavier Defago, Maria Gradinaand Matthieu Roy. To-
wards a theory of self-organization. Rroceedings of 9th Int'| Conference on Prin-
ciples of Distributed System2005.

Divyakant Agrawal and Amr El Abbadi. Efficient solati to the distributed mutual
exclusion problem. 1iPODC '89: Proceedings of the eighth annual ACM Sympo-
sium on Principles of distributed computingages 193—-200, New York, NY, USA,
1989. ACM Press.

Divyakant Agrawal and Amr El Abbadi. The tree quorumofocol: an efficient
approach for managing replicated data. Aroceedings of the 16th international
conference on Very large databaspages 243—-254, San Francisco, CA, USA, 1990.
Morgan Kaufmann Publishers Inc.

Hagit Attiya and Roy Friedman. A correctness conditior high-performance mul-
tiprocessors (extended abstract). SMOC '92: Proceedings of the twenty-fourth
annual ACM symposium on Theory of computipgges 679-690, New York, NY,
USA, 1992. ACM Press.

Hagit Attiya and Roy Friedman. A correctness condiitior high-performance mul-
tiprocessorsSIAM Journal on Computin@7(6):1637-1670, 1998.

153

[AGGV05]

[AGMT95]

[AMO5]

[And04]

[AV86]

[AWO8]

[BBC*04]

[Bel99]

[BFP*72]

[BG83]

[BGMRO1]

Emmanuelle Anceaume, Maria Gradinariu, Vincema@oli, and Antonino Vir-
gillito. P2P architecture for self* atomic memory. Rroceedings of the 8th In-
ternational Symposium on Parallel Architectures, Algomits and Networkgages
214-219. ISCA, Dec. 2005.

Yehuda Afek, David S. Greenberg, Michael Merrétyd Gadi Taubenfeld. Comput-
ing with faulty shared objectsl. ACM 42(6):1231-1274, 1995.

Ittai Abraham and Dahlia Malkhi. Probabilistic quons for dynamic system®is-
tributed Computing18(2):113—-124, 2005.

David P. Anderson. Boinc: a system for public-reegucomputing and storage.
In Proceedings of the 5th IEEE/ACM International Workshop ord@omputing
pages 4-10, 2004.

Baruch Awerbuch and Paul Vitanyi. Atomic shared reégisaccess by asynchronous
hardware. InProceedings of 27th IEEE Symposium on Foundations of Compute
Sciencepages 233-243, 1986.

Hagit Attiya and Jennifer WelchDistributed Computing. Fundamentals, Simula-
tions, and Advanced TopicMcGraw-Hill, 1998.

Andy Bavier, Mic Bowman, Brent Chun, David Culler, Scott KaylSteve Muir,
Larry Peterson, Timothy Roscoe, Tammo Spalink, and Mike \Vianiak. Operating
system support for planetary-scale network servicesSyimposium on Networked
Systems Design and Implementatipages 253—-266, 2004.

Fatima Belkouch. Quorums auto-stabilisants: Applications dans les &ysis
répartis PhD thesis, Univergit Technologique de Conggine, Sept. 1999.

Manuel Blum, Robert Floyd, Vaughan Pratt, Ronald Rivest,Rwilgert Tarjan. Time
bounds for selection]. Computer and System Sciencéd448-461, 1972.

Philip A. Bernstein and Nathan Goodman. The failure eswbvery problem for
replicated databases. Broceedings of the second annual ACM symposium on Prin-
ciples of distributed computing (PODC’83)ages 114-122, New York, NY, USA,
1983. ACM Press.

Fransisco Brasilero, Faidla Greve, Achour Mostefaoui, and Michel Raynal. Con-

sensus in one communication step.Pimceedings of the 6th International Confer-
ence on Parallel and Computing Technologipages 42-50, 2001.

154

[BHK T91]

[BJ87]

[BPS05]

[BSVO3]

[CDHP'05]

[CGG*05]

[CGJI07]

[CHT96]

[CKKMOG]

[CLMTO5]

[Coh03]

Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken WirBth, and John K.
Ousterhout. Measurements of a distributed file systenBE@$P '91: Proceedings
of the 13th ACM symposium on Operating systems prinGiplges 198-212, New
York, NY, USA, 1991. ACM Press.

Ken Birman and Thomas Joseph. Exploiting virtual syaof in distributed sys-
tems. InProceedings of the 11th ACM Symposium on Operating systantsgbes
pages 123-138. ACM Press, 1987.

Jean-Michel Busca, Fabio Picconi, and Pierre SerstisPa highly-scalable multi-
user peer-to-peer file system. luroPar, LNCS, September 2005.

Ranjita Bhagwan, Stefan Savage, and Geoffrey Voelkaderstanding availability.
In Proceedings of the 2nd International Workshop on PeerderFSystemages
256-267, February 2003.

Paz Carmi, Shlomi Dolev, Sariel Har-Peled, Matthew Katd Michael Segal. Ge-
ographic quorum system approximatioddgorithmica 41(4):233—-244, 2005.

Gregory Chockler, Seth Gilbert, Vincent Gramoli, Peter Musial, and Alex A.
Shvartsman. Reconfigurable distributed storage for dynaetiworks. InProceed-
ings of 9th International Conference on Principles of Distiied Systemgages
214-219, December 2005.

Paulo Costa, Vincent Gramoli, &k Jelasity, Gian Paulo Jesi, Erwan Le Merrer,
Alberto Montresor, and Leonardo Querzoni. Exploring thierdisciplinary con-
nections of gossip-based systerdsCM SIGOPS Operating System Revidi(4),
2007. to appear.

Tushar Deepak Chandra, Vassos Hadzilacos, and Saeyg.Tdithe weakest failure
detector for solving consensus.ACM 43(4):685-722, 1996.

Byung-Gon Chun, M. Frans Kaashoek, John Kubiatowar] Robert Morris. Effi-
cient replica maintenance for distributed storage systémBroceedings of the 3rd
Symposium on Networked Systems Des10A6.

Gregory Chockler, Nancy A. Lynch, Sayan Mitra, andldoa Tauber. Proving atom-
icity: An assertional approach. FProceedings of the 19th International Symposium
on DIStributed Computing (DISCyolume 3724, pages 152-168. Springer-Verlag
GmbH in Lecture Notes in Computer Science, Sept. 2005.

Bram Cohen. Incentives build robustness in bittorremProceedings of Workshop
on Economics of Peer-to-Peer Systethse 2003.

155

[CS98]

[DAO6]

[dbl]

[DGFGKO5]

[DGH+87]

[DGL+05]

[DGLCO4]

[DNS91]

[DS90]

[DSB86]

Oleg M. Cheiner and Alex A. Shvartsman. Implementing @&valuating an
eventually-serializable data service. RODC '98: Proceedings of the 17th annual
ACM symposium on Principles of distributed computipage 317, New York, NY,
USA, 1998. ACM Press.

Anwitaman Datta and Karl Aberer. Internet-scaleratge systems under churn — a
study of the steady-state using markov modelsP2#’06: Proceedings of the 6th
IEEE International Conference on Peer-to-Peer Computpages 133-144, 2006.

Digital bibliography & library project.

Carole Delporte-Gallet, Hugues Fauconnier, Récl@Guerraoui, and Petr
Kouznetsov. Mutual exclusion in asynchronous systems faitbre detectors.J.
Parallel Distrib. Comput.65(4):492-505, 2005.

Alan Demers, Dan Greene, Carl Hauser, Wes lIrish, JohnobarScott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemiotigms for repli-
cated database maintenancePmceedings of the sixth annual ACM Symposium on
Principles of distributed computingages 1-12, New York, NY, USA, 1987. ACM
Press.

Shlomi Dolev, Seth Gilbert, Nancy A. Lynch, Alex A. Shtaman, and Jennifer
Welch. Geoquorums: Implementing atomic memory in ad howoss. Distributed
Computing 18(2):125-155, 2005.

Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Anndzhakraborty. How fast
can a distributed atomic read be? RODC '04: Proceedings of the twenty-third
annual ACM symposium on Principles of distributed compuytpeges 236-245,
New York, NY, USA, 2004. ACM Press.

David J. DeWitt, Jeffrey F. Naughton, and Donovarsahneider. Parallel sorting on
a shared-nothing architecture using probabilistic spttin Proceedings of the First
International Conference on Parallel and Distributed Infwaition Systemsages
280-291, 1991.

Michel Dubois and Christoph Scheurich. Memory acaegsendencies in shared-
memory multiprocessorsEEE Trans. Softw. Engl16(6):660-673, 1990.

Michel Dubois, Christoph Scheurich, and Ed8riggs. Memory access buffering in
multiprocessors. INSCA '86: Proceedings of the 13th annual international sym-
posium on Computer architectyrpages 434—-442, Los Alamitos, CA, USA, 1986.
IEEE Computer Society Press.

156

[DSB8S]

[ES00]

[FGJ'07]

[FLP85]

[FR75]

[Frios]

[FRTO5]

[FT99]

[GAVO7]

[Gif79]

[GKLO7]

Michel Dubois, Christoph Scheurich, and Eay. Briggs. Synchronization, coher-
ence, and event ordering in multiprocess@smputey 21(2):9-21, 1988.

Burkhard Englert and Alex A. Shvartsman. Gracefulrquoreconfiguration in a
robust emulation of shared memory. Pnoceedings of International Conference on
Distributed Computer Systenmages 454-463, 2000.

Antonio Fer@ndez, Vincent Gramoli, Ernesto Bmez, Anne-Marie Kermarrec,
and Michel Raynal. Distributed slicing in dynamic systems Proceedings of
the 27th International Conference on Distributed Computiggt&nms (ICDCS’07)

IEEE Computer Society Press, Jun 2007.

Michael J. Fischer, Nancy A. Lynch, and Michael StelPson. Impossibility of
distributed consensus with one faulty processACM 32(2):374-382, 1985.

Robert W. Floyd and Ronald L. Rivest. Expected time bodadselection.Com-
mun. ACM 18(3):165-172, 1975.

Roy Friedman. Using virtual synchrony to develop@ént fault tolerant distributed
shared memories. Technical Report TR95-1506, Cornell Uniyei®995.

Roy Friedman, Michel Raynal, and Corentin Travers. Blstractions for imple-
menting atomic objects in dynamic systems. Aroceedings of 9th International
Conference on Principles of Distributed Systepegges 73—-87, 2005.

Ted Friedman and Don Towsley. Multicast session menstip size estimation. In
Proceedings of the 12th Annual Joint Conference of the IEEEpDiten and Com-
munications Societies (INFOCOM’93)999.

Vincent Gramoli, Emmanuelle Anceaume, and AntanWwirgillito. Square: Scal-
able quorum-based atomic memory with local reconfiguratibnProceedings of
the 22nd ACM Symposium on Applied Computing (SAC8&ges 574-579. ACM
Press, mar 2007.

David K. Gifford. Weighted voting for replicated tia In Proceedings of the sev-
enth ACM symposium on Operating systems princjplages 150-162. ACM Press,
1979.

Vincent Gramoli, Anne-Marie Kermarrec, and Erwane LMerrer. Gos-

siPeer: A development framework for gossip-based prospcoR007.
http://gossipeer.gforge.inria.fr/.

157

[GKMO3]

[GKM*06]

[GLS03]

[GMB85]

[GMS04]

[GMSO05]

[GNS06]

[gnua]
[gnub]
[Go089]

[HA90]

[Hers6]

Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and lemirMassouk. Peer-to-
peer membership management for gossip-based prototelsE Trans. Comput.
52(2):139-149, 2003.

Vincent Gramoli, Anne-Marie Kermarrec, Achour Mostafig Michel Raynal, and
Bruno Sericola. Core persistence in peer-to-peer systematiigkize to lifetime.
In Proceedings of the On-The-Move International Workshop elaRility in De-
centralized Distributed System&lume 4278 oL NCS pages 1470-1479. Springer,
Oct. 2006.

Seth Gilbert, Nancy A. Lynch, and Alex A. Shvartsma®AMBO II: Rapidly re-
configurable atomic memory for dynamic networksPimceedings of International
Conference on Dependable Systems and Netwpdges 259-268, 2003.

Hector Garcia-Molina and Daniel Barbara. How to assigtes in a distributed
system.J. ACM 32(4):841-860, 1985.

Chryssis Georgiou, Peter M. Musial, and Alex A. Sis@ayan. Long-lived RAMBO:
Trading knowledge for communication. Rroceedings of 11th Colloquium on
Structural Information and Communication Complexipages 185-196. Springer,
2004.

Vincent Gramoli, Peter M. Musial, and Alex A. Shvartan. Operation liveness and
gossip management in a dynamic distributed atomic datacgeryn Proceedings
of the ISCA 18th International Conference on Parallel and fhstted Computing
Systems (PDCS’05pages 206—-211, September 2005.

Chryssis Georgiou, Nicolas C. Nicolaou, and Alex Av&tsman. Fault-tolerant
semifast implementations of atomic read/write registéns18th ACM Symposium
on Parallelism in Algorithms and Architectures (SPA2()06.

Gnutella homepage. http://www.gnutella.com.
The gnutella protocol development homepage. hipniv.the-gdf.org.

James R. Goodman. Cache consistency and sequemsitemcy. Technical Re-
port 61, SCI Committee, March 1989.

Phillip W. Hutto and Mustaque Ahamad. Slow memory: akening consistency
to enhance concurrency in distributed shared memorieBrdoeedings of the 10th
Int’l Conf. on Distributed Computing Systems (ICDCggges 302—-311, May 1990.

Maurice Herlihy. A quorum-consensus replicatioathod for abstract data types.
ACM Trans. Comput. Sys#(1):32-53, 1986.

158

[Her87]

[HMP95]

[HWOO]

[IRV89]

[Isa95]

[Iwa05]

[JGKvS04]

[JKO6]

[IMO4]

[JMBO4]

[JIMBO5]

[kaz]

Maurice Herlihy. Dynamic quorum adjustment for fteoned data. ACM Trans.
Database Syst12(2):170-194, 1987.

Ron Holzman, Yosi Marcus, and David Peleg. Load balamnin quorum systems
(extended abstract). WADS '95: Proceedings of the 4th International Workshop on
Algorithms and Data Structurepages 38—-49, London, UK, 1995. Springer-Verlag.

Maurice Herlihy and Jeannette M. Wing. Linearizalyili a correctness condi-
tion for concurrent objectsACM Trans. on Programming Languages and Systems
(TOPLAS) 12(3):463-492, 1990.

Balakrishna lyer, Gary Ricard, and Peter Varman. Bwetie finding algorithm for
multiple sorted runs. IfProceedings of the 15th International Conference on Very
Large Data Basegages 135-144, August 1989.

Richard IsaacThe pleasure of probabilitiesSpringer Verlag, Reading in Mathe-
matics, 1995.

Konrad Iwanicki. Gossip-based dissemination afdi Master’s thesis, Warsaw
University - Vrije Universiteit Amsterdam, 2005.

Mark Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, arghitén van Steen.
The peer sampling service: experimental evaluation ofruostred gossip-based
implementations. IfProceedings of the 5th ACM/IFIP/USENIX Int'| Conference on
Middleware pages 79-98, 2004.

Mark Jelasity and Anne-Marie Kermarrec. Ordered slicingesf/Marge-scale over-
lay networks. InProceedings of the 6th IEEE International Conference on feeer
Peer Computingpages 117-124, 2006.

Mark Jelasity and Alberto Montresor. Epidemic-style priv@caggregation in large
overlay networks. InProceedings of the 24th International Conference on Dis-
tributed Computing Systems (ICDCS’0gages 102—-109, 2004.

Mark Jelasity, Alberto Montresor, ar@zalp Babaoglu. A modular paradigm for
building self-organizing peer-to-peer applications.Hmgineering Self-Organising
Systems: Nature-Inspired Approaches to Software Engingenamber 2977 in
Lecture Notes in Artificial Intelligence, pages 265—-282i&ger-Verlag, April 2004.

Mark Jelasity, Alberto Montresor, af@zalp Babaoglu. Gossip-based aggregation in
large dynamic networksACM Transactions on Computer Syste3(3):219-252,
2005.

Kazaa homepage. http://www.kazaa.com.

159

[KDGO3]

[KH97]

[KPGT05]

[KRO2]

[Lam78]

[Lam86]

[Lam89]

[Lam98]

[LamO5]

[LamO6a]
[LamO6Db]

[LF82]

[LKMO6]

David Kempe, Alin Dobra, and Johannes Gehrke. Gmbsised computation of
aggregrate information. IRroceedings of 44th Annual IEEE Symposium of Foun-
dations of Computer Sciengeages 482-491, 2003.

Yu-Chen Kuo and Shing-Tsaan Huang. A geometric apgtdar constructing coter-
ies andk-coteries.IEEE Transactions on Parallel and Distributed Syste81g402—
411, 1997.

Dionysios Kostoulas, Dimitrios Psaltoulis, Indraniu@a, Ken Birman, and Alan
Demers. Decentralized schemes for size estimation in langledynamic groups.
In Proceedings of 4th IEEE International Symposium on Network fitimgy and
Applications (NCA'05)pages 41-48, July 2005.

Idit Keidar and Sergio Rajsbaum. On the cost of fauletant con-
sensus when there are no faults, 2002. PODC 2002 Tutoriadesli
http://lwww.ee.technion.ac.il/"idish/ftp/podc02-tuitd-v2.ppt.

Leslie Lamport. Time, clocks, and the ordering oémts in a distributed system.
Communication of the ACM1(7):558-565, July 1978.

Leslie Lamport. On interprocess communicati®mstributed Computingl(2):77—
101, 1986.

Leslie Lamport. The part-time parliament. Teclahi®eport 49, Digital SRC,
September 1989.

Leslie Lamport. The part-time parliameACM Transactions on Computer Systems
16(2):133-169, 1998.

Leslie Lamport. Fast paxos. Technical Report MSR-TR52112, Microsoft Re-
search, July 2005.

Leslie Lamport. Fast paxoBistributed Computingl19(2):79-103, Oct. 2006.

Leslie Lamport. Lower bounds for asynchronoussemsusDistributed Computing
19(2), Oct. 2006.

Leslie Lamport and Michael Fischer. Byzantine getgesmnd transaction commit
protocols. unpublished, 1982.

Erwan Le Merrer, Anne-Marie Kermarrec, and Lauréassoule. Peer to peer
size estimation in large and dynamic networks: A compagagtudy. In15th Inter-
national Symposium on High performance Distributed Conmgu(HPDC) Paris,
France, 2006.

160

[LMR92]

[LS88]

[LS97]

[LS02]

[LWO5]

[LWV03]

[Lyn96]
[MAO4]

[Mae85]

[MKBOS5]

[MKKBO1]

[MLKGO8]

Neilsen Mitchell L., Masaaki Mizuno, and Michel RaynaA general method to
define quorums. IiProceedings of the 12th International Conference on Disteb
Computing Systempages 657-664, June 1992.

Richard J. Lipton and Jonathan S. Sandberg. PRAM: Aabbalshared memory.
Technical Report CS-TR-180-88, Dept. of Computer Sciencec@tam University,
September 1988.

Nancy A. Lynch and Alex A. Shvartsman. Robust emutabbshared memory using
dynamic quorum-acknowledged broadcastsPiaceedings of 27th Int-l Symp. on
Fault-Tolerant Comp.pages 272-281, 1997.

Nancy A. Lynch and Alex A. Shvartsman. RAMBO: A reconfighle atomic mem-
ory service for dynamic networks. FProceedings of 16th International Symposium
on Distributed Computingpages 173-190, 2002.

Hyunyoung Lee and Jennifer L. Welch. Randomized regstand iterative algo-
rithms. Distributed Computingl7(3):209-221, 2005.

Hyunyoung Lee, Jennifer L. Welch, and Nitin H. Vaidy&ocation tracking using
guorum in mobile ad hoc network&d Hoc Networks1(4):371-381, 2003.

Nancy A. Lynch.Distributed Algorithms Morgan Kaufmann Publishers, 1996.

Jean-Philippe Martin and Lorenzo Alvisi. A framewdior dynamic byzantine stor-
age. InProceedings of the 2004 International Conference on Depleledaystems
and Networks (DSNpage 325. IEEE Computer Society, 2004.

Mamoru Maekawa. A/N algorithm for mutual exclusion in decentralized systems.
ACM Trans. Comput. Sys8(2):145-159, 1985.

Roie Melamed, Idit Keidar, and Yoav Barel. Octopus: Alltatolerant and efficient
ad-hoc routing protocol. IProceedings of the 24th IEEE Symposium on Reliable
Distributed System£005.

Robert Morris, David Karger, Frans Kaashoek, and iHzalakrishnan. Chord: A
scalable peer-to-peer lookup service for internet apfdina. INnACM SIGCOMM
2001, San Diego, CA, September 2001.

Laurent Massouk, Erwan Le Merrer, Anne-Marie Kermarrec, and Ayalvadi Gdme
Peer counting and sampling in overlay networks: random wedihods. Infwenty-
Fifth Annual ACM SIGACT-SIGOPS Symposium on Principles dfibiged Com-
puting (PODC 2006)Denver (CO), 2006. to appear.

161

[MNRO2]

[MRO5]

[MR9S]

[MRO4]

[MRO7]

[MRW97]

[MRWWO1]

[MS04]

[MTOO]

[MTKO8]

[NNO5]

Dahlia Malkhi, Moni Naor, and David Ratajczak. Vicgraa scalable and dynamic
emulation of the butterfly. I*PODC, pages 183-192, 2002.

Rajeev Motwani and Prabhakar RaghavaRandomized AlgorithmsCambridge
University Press, Cambridge, England, June 1995.

Dahlia Malkhi and Michael Reiter. Secure and scalabldication in phalanx. In
Proceedings of the 17th IEEE Symposium on Reliable Diggtb8ystemspage 51,
Washington, DC, USA, 1998. IEEE Computer Society.

Dahlia Malkhi and Michael Reiter. Byzantine quorum €yss. Distributed Com-
puting, 11(4):203-213, 2004.

Michael G. Merideth and Michael Reiter. Probabilistipaque quorum systems.
In Proceedings of the 21st International Symposium on Digtetd Computing

(DISC’07), volume 4731 ofLecture Notes in Computer Sciengeges 403-419,
September 2007.

Dahlia Malkhi, Michael Reiter, and Rebecca Wright. Rabiistic quorum systems.
In PODC '97: Proceedings of the 16th annual ACM symposium ondiies of
distributed computingpages 267-273. ACM Press, 1997.

Dahlia Malkhi, Michael Reiter, Avishai Wool, and RelsacWright. Probabilis-
tic quorum systems.The Information and Computation Journdl70(2):184—-206,
November 2001.

Peter M. Musial and Alex A. Shvartsman. Implementangeconfigurable atomic
memory service for dynamic networks.Pnoceedings of 18th International Parallel
and Distributed Symposium — FTPDS W&ge 208b, 2004.

Michael Merritt and Gadi Taubenfeld. Computing wittfinitely many processes. In
Proceedings of the 14th International Conference on Disteldd Computing (DISC)
pages 164-178, London, UK, 2000. Springer-Verlag.

Ken Miura, Taro Tagawa, and Hirotsugu Kakugawa. Aogum-based protocol for
searching objects in peer-to-peer networEsEE Transactions on Parallel and dis-
tributed Systemd4.7(1), January 2006.

Uri Nadav and Moni Naor. The dynamic and-or quorumteys In Pierre Fraig-

niaud, editor,Distributed algorithmsvolume 3724 ofLecture Notes In Computer
Sciencepages 472-486, September 2005.

162

[NPOO]

[NWO8g]

[NWO3]

[NWOS]

[PW02]

[QCCGO5]

[Ray86]

[RDO1]

[RFH01]

[SDCMO6]

[SGGO02]

[SRO6]

Blair Nonnecke and Jenny Preece. Lurker demograplemsnting the silent. In
CHI '00: Proceedings of the SIGCHI conference on Human factersomputing
systemgpages 73-80, New York, NY, USA, 2000. ACM Press.

Moni Naor and Avishai Wool. The load, capacity, andiklality of quorum sys-
tems.SIAM Journal on Computin@®7(2):423-447, 1998.

Moni Naor and Udi Wieder. Scalable and dynamic quorystems. InProceedings
of the 22th annual symposium on Principles of distributeshjgoting (PODC’03)
pages 114-122. ACM Press, 2003.

Moni Naor and Udi Wieder. Scalable and dynamic quorwystems. Distributed
Computing 17(4):311-322, 2005.

David Peleg and Avishai Wool. How to be an efficient gmaw the probe complexity
of quorum systemsSIAM Journaj 15(3):416-433, 2002.

Feng Qi, Run-Qing Cui, Chao-Ping Chen, and Bai-Ni Guo. Smmgpletely mono-
tonic functions involving polygamma functions and an agggiion.Journal of Math-
ematical Analysis and Application310(1):303-308, 2005.

Michel RaynalAlgorithms for mutual exclusioMIT Press, Cambridge, MA, USA,
1986.

Antony Rowstron and Peter Druschel. Pastry: Scalab$tributed object location
and routing for large-scale peer-to-peer systems. In R&éhetraoui, editoriMid-
dleware 2001volume 2218 o NCS pages 329-350. Springer-Verlag, 2001.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard BtpiKand Scott Shenker.
A scalable content-addressable network.Phoceedings of the ACM SIGCOMM
pages 161-172, 2001.

Jan Sacha, Jim Dowling, Raymond Cunningham, and RenerMe&sing aggre-
gation for adaptive super-peer discovery on the gradigmalémy. InlEEE Inter-
national Workshop on Self-Managed Networks, Systems anit&gpages 77-90,
2006.

Stefan Saroiu, P. Krishna Gummadi, and Steven (&xilbh measurement study of
peer-to-peer file sharing systems. SRIE Multimedia Computing and Networking
(MMCN2002) 2002.

Daniel Stutzbach and Reza Rejaie. Understanding chyneer-to-peer networks. In
IMC ’06: Proceedings of the 6th ACM SIGCOMM on Internet measel pages
189-202, New York, NY, USA, 2006. ACM Press.

163

[SZ98]

[Tho79]

[UD9O0]

[Valg4]

[VGVSO05]

[Vid96]

[WLS*02]

Nir Shavit and Asaph Zemach. Combining funnels: a neigtton an old tale...
In PODC '98: Proceedings of the 17th annual ACM symposium ondiies of
distributed computingpages 61-70, New York, NY, USA, 1998. ACM Press.

Robert H. Thomas. A majority consensus approach mcwwency control for mul-
tiple copy database®A\CM Trans. Database Sys#(2):180-209, 1979.

Aydin Uresin and Michel Dubois. Parallel asynchronous algoritfondiscrete data.
J. ACM 37(3):588-606, 1990.

Leslie G. Valiant. Short monotone formulae for thajority function.J. Algorithms
5(3):363-366, 1984.

Spyros Voulgaris, Daniela Gavidia, and Maarten $deen. Cyclon: Inexpensive
membership management for unstructured p2p overldgsirnal of Network and
Systems ManagemeiB(2):197-217, 2005.

Krishnamurthy Vidyasankar. Weak atomicity: A halpnotion in the construction of
atomic shared variableSADHANA: Journal of Engineering Sciences of the Indian
Academy of Sciences Jdages 245-259, 1996.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Sh&slwruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. Aregrated experimen-
tal environment for distributed systems and networksOBDI02 pages 255-270,
Boston, MA, December 2002. USENIXASSOC.

164

	Introduction
	Preliminaries
	Quorums at the Heart of Consistency
	Shared Memory Models
	General System Model

	Facing Dynamism
	All-to-all Operation and Reconfiguration
	Quorum-based Read/Write Operations
	Quorum System Reconfiguration
	Independence of Read/Write Operations

	Decentralized Reconfiguration
	Coupling Installation and Upgrade of Configurations
	Deciding upon the Final Configuration using Paxos

	Dynamic Distributed Shared Memory (benefiting from Consensus)
	Read and Write Operations using Global Knowledge
	Reconfiguration by Replacement
	Safety Proof: Implementing Atomicity
	Liveness Proof: Speeding up Reconfiguration to strengthen Fault Tolerance
	Experimental Analysis of Reconfiguration

	Discussion and Conclusion
	Communication Overhead
	Conclusion

	Facing Scalability
	Structure of Quorum Systems
	Single-Point of Failure
	Replicating the Intersection

	Communication Structure of Quorum Systems
	Non-Adaptive Quorum Probe vs. Adaptive Quorum Probe
	Reparation of Accumulating Failures

	Scalable Distributed Shared Memory (benefiting from Locality)
	Trading Availability with Dynamism
	Congestion Avoidance
	Read and Write Operation using Local Knowledge
	Self-Adaptiveness to Unpredictability
	Correctness Proof of a Scalable DSM
	Peer-to-Peer Simulation Study

	Discussion and Conclusion
	Quorum Access in Ad Hoc Networks
	Limitations of Square
	Conclusion

	Facing Scalability and Dynamism
	Probabilistic Guarantees
	Probabilistic Consistency
	Probabilistic Quorum System
	Probabilistic Weak Quorum System
	Probabilistic Quorum Systems for Dynamic Settings

	Avoiding Quorum System Reconfiguration
	Structureless Quorum System
	Timed Quorum System

	Scalable Dynamic Distributed Shared Memory (benefiting from Prototypical Gossip)
	Model and Definitions
	Disseminating Memory using Underlying Gossip
	Correctness and Analysis of a Scalable and Dynamic DSM
	Exact Probability for Practical Measurements

	Discussion and Conclusion
	Approximating the System Size
	Modeling the Churn in Dynamic Systems
	Conclusion

	Conclusion and Open Issues
	Distributed Slicing
	Introduction
	Context and Motivations
	Contributions
	Related Work
	Outline

	Model and Problem Statement
	System Model
	Distributed Slicing Problem
	Facing Churn

	Dynamic Ordering
	On Using Random Numbers to Sort Nodes
	Definitions
	Improved Ordering Algorithm
	Analysis of Slice Misplacement
	Simulation Results
	Concurrency

	Dynamic Ranking
	Ranking Algorithm Specification
	Theoretical Analysis
	Simulation Results

	Conclusion
	Summary
	Perspective

	IOA Specification of a Dynamic DSM
	IOA Specification of a Scalable DSM

