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This thesis focuses on newly arising challenges in the context of data sharing due to the recent
scale shift of distributed systems. Distributed systems keep enlarging very rapidly. Not only
more persons use their computer to communicate all over the world, but the amount of individual
objects that get connected is increasing. Such large scale systems experience an inherent dynamism
due to the unpredictability of the users behaviors. This drawback prevents traditional solutions
from being adapted to this challenging context. More basically, this affects the communication
among distinct computing entities. This thesis investigates the existing research work and proposes
research suggestions to solve a fundamental issue, the distributed shared memory problem, in such
a large scale and inherently dynamic environment.
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Introduction

The Scale-shift of Distributed Systems

Distributed systems is now a major research topic in the fieldof computer science. The interest
and research efforts devoted to this topic have continuously increased since the late seventies.
Nowadays, distributed systems have drastically changed and new fundamental issues have arisen.
We believe that the major cause for these topical issues is the recent scale-shift that distributed
systems experience.

The need of resources has been one of the main motivations behind distributed systems. Indeed,
take computational resources as an example. Multiprocessor systems allow to share the computa-
tional tasks on different processors while distributed machines can execute multiple computational
tasks at the same time, one on each machine. Nowadays, while powerful multiprocessor systems
remain expensive a novel form of computational collaboration arises due to the enhancement of
the Internet and various networks. The collaboration of distributed machines produces more re-
sources than any single machine can afford. First observations of this phenomenon appeared with
the SETI@home project that was launched on 1999 and that provides an average of 264 TeraFlops
thanks to the collaboration of millions of machines.1 Governed by the will of users to obtain more
resources, distributed systems keep enlarging.

A peer-to-peer (p2p) system is a distributed system that hasno centralized control. Actually,
the p2p paradigm relies on the fact that distributed entities not only benefit from resources but also
provide resources. In traditional distributed systems services are hosted by servers and accessed by
clients, thus, in p2p systems every entity acts as a client and as a server at the same time. Peer-to-
peer systems have gained in popularity with the massive utilization of file-sharing applications over
the Internet, since 2000. These systems propose a tremendous amount of file resources. Beyond
file sharing applications many research efforts have been devoted to assign content to nodes so
that the content can be retrieved easily. These efforts result mainly in the definition of distributed
hash tables [MKKB01, RFH+01, RD01] mapping each stored data to a key used to retrieve the
corresponding data in the system.

Nowadays, there is an increasing amount of various computing devices surrounding us. First,

1SETI@home provides more than 264.1012 floating point operations per second on average as reported by Boinc-
Stats on July, 17th 2007.
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the addressing space of the original Internet protocol, IPv4, becomes insufficient to face the de-
mand of new connected entities and leads to the standardization of a new protocol, IPv6, to tolerate
the growing amount of entities. Second, each person tends touse various computing devices that
all communicate together through different wireless networks. Third, the decrease of the cost of
sensors (like RFID) allows their production to enlarge and their deployment for monitoring appli-
cations. Finally, IDC predicts that there will be 17 billions of traditional network devices by 2012.
In such contexts, it is common knowledge that scalability has become one of the most important
challenges of today’s distributed systems.

The Future of Communication between Numerous Entities

The scale-shift of distributed systems modifies the way computational entities communicate. In
this context, connecting multiple and various entities together led to other interesting challenges
due to their independent behavior. Energy dependence, disconnection, malfunctioning, and other
environmental factors affect the availability of each computational entity independently. This trans-
lates into irregular periods of activity during which an entity can receive messages or compute
tasks. As a result of this independent and periodic behaviors guided by environmental variations,
these systems are inherently highly dynamic. Moreover, large-scale prevents a single entity from
maintaining any global information about the system. Consequently, dynamism is hardly measur-
able and completely unpredictable. As a major drawback of scalability, dynamism strengthens the
difficulty for entities to communicate.

Distributed systems can be differentiated along two major paradigms: shared-memory and
message-passing. In shared-memory, entities communicateby reading from and writing to a sin-
gle memory. In message-passing, entities communicate by sending and receiving messages whose
transmission time is, in general, arbitrarily long. Traditionally, tightly-coupled distributed archi-
tectures, as multi-processor machines use the shared-memory model for communication among
processors. The motivation for shared-memory stems from the simplicity with which algorithms
can be designed and with which programs can be written compared to the message-passing model.
Conversely, the prevalent model for loosely-coupled distributed architecture as network of work-
stations is message-passing. The motivation for message-passing stems from the ability to replicate
on several workstations so that each workstation can fail independently without affecting the per-
formance of the system. Despite the complex programming tasks message-passing requires, this
model is more appropriate when message delays are arbitrarily long. This motivates the need for
emulating shared-memory in message-passing model. This emulation, also known as distributed
shared memory, is the subject of this thesis.

The objective of Distributed Shared Memory (DSM) is to emulate the functioning of shared-
memory in message-passing model. From the standpoint of clients, the DSM must transparently
appear as if it was a single shared-memory. Consequently, theDSM must provide clients with read
and write primitives that, when executed, result in the reading and writing of data. The difficulty
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comes from the fact that operations requested by distinct clients must be ordered: a client reads the
value written by another client depending on the time the read and the write occurred. Ideally this
ordering should respect real-time, however, distant clients are not synchronized and operations
may execute concurrently. As a result, we need a set of properties on operations that must be
satisfied by any execution of our DSM, in order to express formally how to emulate a shared-
memory. This set of properties is called a consistency criterion. During the last decades, DSM
for failure-prone static systems have been studied. In suchcontext, a bounded number of entities
may crash. Recently, DSM have been studied in a dynamic model where an unbounded amount
of failures may occur. Now, we strongly believe that DSM for large-scale dynamic systems is of
crucial interest for communication in distributed systems.

Thesis Content

This thesis investigates emulations of shared-memory for loosely-coupled distributed systems. To
this end, several distributed shared memories (DSMs) are described. Each of these DSMs provides
transparently the clients with read and write operations translating into emulating a shared-memory
while operations are specified in the message-passing model. In shared-memory, a write operation
consists in modifying the value of an object by writing it into the memory while a read operation
consists in returning the value of an object stored in the memory. We focus on DSMs defined over
quorum systems.

The first major issue addressed in this thesis is dynamism. Dynamism induces a potentially un-
bounded amount of failures and makes unusable the solutionssuited for static systems, even with a
bounded amount of failures. Consequently, recoveries that occur frequently must be integrated into
the DSM to cope with continuous failures. Otherwise after some time, either the memory becomes
inconsistent, operations are no longer ensured to terminate, or objects may disappear from the
system. Among those repeated recoveries is the reconfiguration mechanism. Chapter2 presents
DSMs that tolerate dynamism. First, it presents a general DSM that can be used in static system.
Second, it presents several problems that are related to dynamism and the solutions provided by the
literature. Third, it presents a DSM whose reconfiguration relies on a consensus algorithm. This
consensus is made fast so that the DSM tolerates a larger rateof failures. Moreover it is indepen-
dent of operations so that operation termination does not depend on reconfiguration termination.

The second major issue addressed in this thesis is scalability. First, large-scale systems can not
afford a global reconfiguration. That is the reconfigurationcost must be minimized for the system
to scale well. Second, large-scale systems may experience ahigh variation in the number of read
and write requests: some object may interest a large part of the system at some time while its
interest may decrease suddenly, later on. This variation introduces a problem of load management
that may induce request loss and non-termination of some operations. Chapter3 compares different
structure of quorum systems that appeared so far. It also points out that communication among
quorum members impacts on the overall performance of the DSM. Furthermore, it presents several
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dynamic quorum systems especially suited for dynamism. Lastly, it presents a DSM that scales
well and self-adapts in face of dynamic events and load variation.

Chapters2 and3 remedy the problem of dynamism and scalability, respectively. Practically
speaking, these solutions may experience limitations to face both dynamism and scalability. Chap-
ter 4 relaxes the consistency requirement used in previous chapters to achieve better efficiency.
That is, it gives the definition of probabilistic quorums systems. Existing solutions are given and
a new definition of quorum system is proposed to tolerate dynamism: Timed Quorum Systems
(TQS). TQS relies on timely and highly probabilistic requirements that makes it very efficient de-
spite dynamism. For the sake of scalability, the TQS implementation proposed does not rely on
any structure, thus avoiding reconfiguration while replicating during a read or a write operation
execution. Finally, for practical needs we give valuable measures of the guarantee achieved by this
solution. These measures boil down to promising results forother quorum-based applications in
large-scale dynamic systems.

Roadmap of the thesis. Chapters2 and3 of this thesis guarantee deterministic consistency while
Chapter4 guarantees probabilistic consistency. Lastly, this thesis argues that probabilistic solutions
to the large-scale dynamic DSM promise competitive result at the cost of weak relaxations. The
results, obtained for loosely-coupled distributed systems, are confirmed by case studies on peer-
to-peer systems, yet we claim that most of the results apply to other large-scale dynamic systems.

This thesis investigates the distributed shared memory problem in dynamic and large-scale sys-
tem. Chapter2 explains how to implement distributed read and write operations using quorums
and introduces reconfiguration of quorum systems as a key requirement for coping with dynamism.
Chapter3 proposes an alternative reconfiguration method that minimizes the amount of informa-
tion each node has to maintain in order to achieve scalability. Chapter4 defines timed quorum
systems that intersect each other during their bounded lifetime with high probability and that do
not rely on any structural requirements, avoiding reconfiguration to achieve better performance.

Finally, the AppendixA proposes a solution to an interesting problem of large-scale and
dynamic systems that is discussed in the Section2.4. Moreover the detailed Input/Output Au-
tomata [Lyn96] specification of two algorithms proposed in Chapters2 and3 are given in Appen-
dicesB andC.
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Chapter 1

Preliminaries

This Chapter presents some definitions and the general model that is used in this thesis. Section1.1
introduces the vocabulary and definitions related to quorumsystems. Section1.2 introduces the
distinct models of shared memory while Section1.3gives the general model used in this thesis.

1.1 Quorums at the Heart of Consistency

Quorums are at the heart of the emulation of distributed shared memory proposed in this document.
Here, we define the vocabulary related to quorum systems thatis used along this thesis.

Weighted voting. Systems experiencing isolated failures require replication of the object at dis-
tant locations with independent failure probability. If distinct nodes are allowed to modify the
same object, then a synchronization process must be used to ensure consistency when concurrency
occurs. A mechanism that provides nodes with an indication on whether consistency might suffer
from their modification have been defined by Gifford [Gif79] and Thomas [Tho79] the same year
of 1979. In these mechanisms, before executing an operation, a node asks for some permission of
other nodes, typically the ones owning a copy of the object. Apermission is granted depending on
the set of nodes that have responded and on the answer of each responder: one granted permission
prevents another permission from being granted.

Gifford considers a system of voters where a global weightW is shared among all voters so
that their vote has a corresponding weight in granting the permission. The permission is granted
for a read (resp. write) operation if the sum of weights of thereceived votes isr (resp.w), such that
r +w>W. Thomas assumes a distributed database where the same copy of the data is replicated at
distant locations. Multiple nodes can run an operation on this database by sending a corresponding
message to one database copy. Then this copy tries to gather the permission of a majority of
databases to execute the operation.

5



CHAPTER 1. PRELIMINARIES

Generalization of quorum systems. Despite the appealing aspect of weighted voting and ma-
jorities as intuitive paradigms, they are not the ultimate solution to consistency in distributed sys-
tem. Indeed, a more general approach exists as shown by Garcia-Molina and Barbara [GMB85].

Definition 1.1.1 (Set System)A set systemS over a universe U is a set of subsets of U.

Originally, aquorum systemover a universeU is defined simply as a set of subsets ofU so that
any couple of sets have a nonempty intersection. AcoterieC is a quorum system whose quorums
satisfyminimality: for anyQ1,Q2∈ C , we haveQ1 6⊂Q2. In this sense, quorum systems generalize
coteries by relaxing minimality.

Definition 1.1.2 (Quorum System)A quorum systemQ over a universe U is a set system over U
such that for any Q1,Q2 ∈ Q , the intersection property Q1∩Q2 6= /0 holds.

A bicoterie[MMR92] underU has been defined as two set systemsB= 〈S1,S2〉, each satisfying
minimality and such that for anyS1 ∈ S1, and anyS2 ∈ S2, we haveS1∩S2 6= /0. Building upon the
bicoterie definition, we define naturally abiquorum systemas a bicoterie whose set systems do not
verify minimality. In other words, a biquorum system is a couple of set systems〈S1,S2〉, such that
for anyS1 ∈ S1 and anyS2 ∈ S2, we haveS1∩S2 6= /0.

Definition 1.1.3 (Biquorum System) A biquorum systemQ over a universe U is a couple of set
systems〈Q1,Q2〉 over U such that for any Q1 ∈ Q1, and for any Q2 ∈ Q2, the intersection property,
Q1∩Q2 6= /0, holds.

Biquorum systems have been already used in the literature. First, Gifford [Gif79] defines read
and write quorums of nodes, where each node is assigned a specific number of votes. The sum
of votes in any read quorum and in any write quorum must be larger than the total number of
votes, which translates into the intersection between any read and any write quorum. Second,
Herlihy [Her86] uses read and write quorums for objects whose specificationsatisfies FIFO—First
in, First Out—policy. This policy provides an object with enqueue and dequeue primitives such
that enqueue stores a value and dequeue returns the value that has not been dequeued yet and that
has been enqueued first. Finally, an informal definition of biquorum system appeared in [LWV03].

Here, we consider dynamic systems, that is, we say that an intersection is non-empty if and only
if it contains at least one active node that has not failed or left the system. By abuse of notation, we
say that two sets (or more particularly two quorums) intersect if and only if they have a non-empty
intersection.

1.2 Shared Memory Models

Shared-memory is used for communication among participants of a distributed system. As said
previously, it appears to be one of the two major communication paradigms for distributed systems,
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the other being the message-passing model. Shared memory simplifies algorithm formalization as
well as code programming. The shared memory is accessed by some nodes through read and write
operations. The read operation simply returns to the requester a piece of information contained
in the memory without modifying it. The write operation modifies the information stored in the
shared memory. Distinct shared memories exist, each sharedmemory depending on the number of
nodes allowed to read it and the number of nodes allowed to write it. First observe that a model
in which a single node is allowed to read the memory and write it, is equivalent to a single node
with exclusive access to its memory. In contrast, we are interested by the ability for nodes to share
a memory.

• MWSR: In the multi-writer/single-reader (MWSR) model, multiple nodes can execute write
operations whereas only one node can execute read operations.

• SWMR: In the single-writer/multi-reader (SWMR) model, multiple nodes can execute read
operations whereas only a single node can execute write operations.

• MWMR: In the multi-writer/multi-reader (MWMR) model, multiple nodes can execute the
write operations and the read operations.

It is noteworthy that the models presented above do not differentiate the number of operations
executed simultaneously. Actually, ensuring consistencywhile many operations are concurrent can
be reduced to solving concurrency when only two operations are concurrent: hardware synchro-
nization might be required at some nodes in both cases. However, complexity relies tightly on the
type of concurrent operations: if two write operations are concurrent, the result of one operation
overwrites the result of the other, thus, those operations must be ordered; if two read operations
occur concurrently, then both may return the same value, thus, there is no need to order them.

In the remaining of this document, we focus on the strongest of these models, the MWMR
model. We also consider a single object to which operations apply. The memory is constructed by
means of the composition of multiple objects in a straightforward manner.

1.3 General System Model

The system consists of a distributed set of interconnected nodes. We assume that a node simply
needs to know the identifier of another node to communicate with it and that each node knows the
identifier of a subset of nodes that are itsneighborsin the communication graph. Every node has a
unique identifier, and the set of identifiers is a totally ordered set, denotedI . 1 The communication
is asynchronous in the sense that messages can be arbitrarily delayed. Communication is unreliable
in that message can be reordered and even lost, however, if a message is delivered, then it has been
sent and not altered; and no messages are duplicated. The system is dynamic, meaning that nodes

1Thereafter, the set of identifiersI is assumed to be a subset ofN.
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that are already in the system may leave at any time while new node can join the system at any
time. A node failure is considered as a leave and a recovery isconsidered as a new join event. This
means that when a node rejoins the system, it obtains a new identifier and loses all its previous
knowledge of the system. We refer to a node that belongs to thesystem as anactivenode, while a
node that has left or failed is referred to as afailed node.

Any object in the system is accessed through read and write operations initiated by any node.
When a node initiates an operation we refer to it as aclient. A read operation aims at returning the
current value of the object while a write aims at modifying the current value of the object. Object
values are replicated at a set of nodes we refer to asservers. Observe that any node can be client
and server. Each valuev has an associated tagt. The tag has a counter that indicates the version of
the associated value and a node identifier that is used as a tie-breaker: tagt is lower than tagt ′ if
the counter oft is lower than the counter oft ′ or if the counters are the same whereas the identifier
of t is lower than the identifier oft ′. We consider local consistency conditions, and thus, only a
single object so that the memory is obtained by composition of multiple object.
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Chapter 2

Facing Dynamism: Reconfigurable Quorum
System

The availability of the Distributed Shared Memories presented here depends on the availability of
a quorum system. Since failure may accumulate in our dynamicmodel, the quorum system must
readapt to face long-term or permanent failures of its quorum members. In the following, we refer
to a quorum system as aconfiguration. The mechanism needed to replace the nodes of a quorum
system to cope with dynamism is thereconfiguration. The following chapter focuses essentially
on a single kind of reconfiguration that replaces the whole quorum system by another one.

Reconfiguring a distributed shared memory without altering ongoing operations is a difficult
task. Reconfiguration must not violate consistency and must allow operation termination. First, the
new configuration must be uniquely chosen by all participants. Second, the object states must be
conveyed from the previous configurations to the new one before any of those previous configura-
tions could be removed. Finally, to guarantee that the operations eventually terminate, operations
must execute independently from the reconfiguration. Otherwise, a delayed reconfiguration may
block some operations.

This chapter presents an emulation of shared memory in message-passing model when the
environment is dynamic. To allow dynamism the quorum systemat the heart of our emulation is
regularly reconfigured. The reconfiguration mechanism investigated in this chapter is the quorum
system replacement, i.e., here, reconfiguration aims at replacing the current quorum system by a
new one.

Guaranteeing consistency. Originally, consistency aims at providing guidelines for shared
memory to emulate as accurately as possible the behavior of asingle memory. A consistency
criterion can be seen as a contract between an application and a memory: provided that some prop-
erties are verified by the application, the memory ensures desirable guarantees. These guarantees
must always hold and defined the safety properties of our system. As opposed tolivenessthat
ensures that eventually something good happens,safetyguarantees that nothing bad can happens.
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Here, something bad is for the consistency contract not be respected.

Various consistency criteria have been defined in the literature. A strength scale is generally
used to compare those criteria with each other andatomicityappears to be the strongest. Atomic-
ity [Lam86, Lyn96] allows clients to access data (object) through read and write operations such
that operations are ordered in a sequential manner satisfying the specification of the object and
the real-time precedence.Linearizability is equivalent to atomicity and has been defined for var-
iously typed objects [HW90]. Another widely investigated consistency criterion,sequentiality,
impose that operations ordering respects only the local operation ordering of each node. Atomicity
is stronger than sequentiality because any atomic execution satisfies also sequentiality while the
reverse is not true.

Why choosing atomicity? Despite the appealing realistic emulation of shared memoryprovided
by atomic DSM, implementing atomicity in asynchronous settings remains a topical issue. As a
consequence, weaker consistency criteria have been proposed: weak-atomicity [Vid96], causal-
ity [Lam78,HA90], PRAM [LS88], processor consistency [Goo89], and others. The drawback of
such consistency criteria is to allow multiple different views of the system at any locations, violat-
ing one-copy serializability[BG83]. Some consistency criteria sharing performance of strongand
weak consistency appeared: mixed consistency [ACLS94] and hybrid consistency [AF92], using
weak ordering [DSB86].

Locality characteristic has been defined by Herlihy and Wing as the ability for a consistency
criterion to be preserved under object composition. That is, if the executions restricted to each
object verify independently thelocal criterion then the whole execution applied to the composition
of these objects verifies the same criterion. The authors showed in [HW90] that, knowing if a given
criterion is local is not a trivial problem. To illustrate this idea they showed that atomicity is local
while sequentiality is not. The compositionality caused bythe locality property has been efficiently
used in the design of numerous proofs of atomicity [LS02,DGL+05,CGG+05,CLMT05]. In the
following, we focus on the atomicity as the consistency criteria that must satisfy the distributed
shared memories we propose.

Efficiency. A major aim is to provide efficient operations in distributedshared memory. It is
well-known that most operations applied to a file system are read operations [BHK+91], hence
minimizing read latency improves on average operations efficiency. For this purpose, Dutta et
al. [DGLC04] proposed to upper bound the latency of read operations satisfying atomic consis-
tency, namelyfast reads. A recent achievement has also proposed asemi-fastatomic read opera-
tions [GNS06] requiring from one to two gossip rounds.
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2.1 All-to-all Operation and Reconfiguration

This Section outlines the problem of emulating a DSM using quorum-based operations. First, it
formally defines atomicity for a better understanding of theproblem of implementing atomic op-
erations. Second, it indicates simply what is a quorum-based atomic operations. All operations
presented in this document rely on similar quorum-based phases. Third, we emphasize the var-
ious problems related to reconfiguring an atomic memory thatconsists in successively replacing
the memory participants by new ones. Finally, it emphasizesthe importance of operation and
reconfiguration independence for reconfigurable atomic memory.

Atomicity. Atomicity is the property of an objectx if in any system execution, the operations
applied tox are partially ordered using relation≺ such that the conjunction of the following prop-
erties holds:

1. Serial Specification Requirement:if a read operation occurs on objectx then it returns the
last valuev, with respect to≺, written on objectx; or the default value if no values have been
written so far.

2. Real-Time Requirement: if an operationπ1 ends before an operationπ2 starts thenπ2 6≺ π1.

3. Serialization Requirement: for any operation it exists a unique serialization point andthe
serialization point ordering of the operations satisfies the ordering of those operations. (Se-
rialization point order is a total order while the operationorder is a partial order.)

As indicated by Property 1, the ordering of operations on object x determines the value that
is read or the value that is written at any point in time on object x. This states that an object
respects its specification returning its single current value. Property 2 ensures that this ordering
cannot contradict the real-time precedence. Hence, no stale values can be returned since staleness
is especially expressed by real-time precedence. Finally,Property 3 implies that write operation are
totally ordered while read operations are ordered with respect to the write operations. That is, even
though two write operations are concurrent, only the effectof one of the two will be noticeable
after both operations finish.

Concurrency problem. Properties 1 and 2 are of special interest. On the one hand, assume that
two write operations run concurrently. Since they all have adistinct serialization point (Property
3), they cannot be executed partially but only one can determine the up-to-date value. On the other
hand, assume that a write operationw is concurrent with two read operations,r1 andr2, while none
of these read operations is concurrent with the other read operation. That is, if the serialization
point of the write operation precedes the serialization point of the first read operationw≺ r1, then
w ≺ r2 by the transitivity of≺. Similarly, if r2 ≺ w, then r1 ≺ w too. However, atomicity is
violated if the operationr1 returns the value written byw while r2 returns a value that has been
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overwritten by operationw. This problem of reading a value while a more up-to-date has already
been read, called the new/old inversion problem, has been firstly outlined by Lamport [Lam86],
and is presented in Figure2.1.

time

1

2

r

r

w

Figure 2.1: The new/old inversion problem occurs if read operationr1 returns the value written by
write operationw while readr2 returns a value that has been written beforew occurs.

To solve this problem, read operations must ensure that further read operations never return
less up-to-date value. In some sense, it is similar to the fact stated in Property 1 where a write
must ensure that no less up-to-date value will ever be read. This is the reason why in emulation
of atomic registers in message passing system, ”read must write”. The read-must-write problem
of distributed atomic memory is well-known. In [AW98], a theorem states thatIn any wait-free
simulation of a single-writer single-reader register, at least one read must write, and in [Lam86]
it is said thatthere exists no algorithm to implement an atomic register using a finite number of
regular registers that can be written only by the writer (of theatomic register).

The three properties presented above lead to the atomic object defined in Theorem 13.16
of [Lyn96]. The first point of the original Theorem is deduced from the other, hence, it is omitted
here.

Definition 2.1.1 (Atomic Object) Let x be a read/write atomic object. Let H be a complete se-
quence of invocations responses of read and write operationsapplied to object x. The sequence
H satisfies atomicity if and only if there is a partial ordering ≺ on the operations such that the
following properties hold:

1. if the response event of operationπ1 precedes the invocation event of operationπ2, then it is
not possible to haveπ2≺ π1;

2. if π1 is a write operation andπ2 is any operation, then eitherπ2≺ π1 or π1≺ π2;

3. the value returned by a read operationπ2 is the value written by the last preceding write
operationπ1 regarding to≺ (in case no such write operation exists, this value returned is
the default value).
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Domain Description
I ⊂ N the set of node identifiers

V the set of all possible object values
T ∈ N× I the set of all possible tags

Table 2.1: Algorithm Domain

2.1.1 Quorum-based Read/Write Operations

In the following, read and write operations are presented ata high level. As a first attempt, we
propose a simple atomic memory that does not tolerate dynamism. The memory is specified at a
high level for the sake of simplicity. The major goal is, here, to explain how an operation can use
quorum round trips to ensure consistency. Then, we describeinformally faster operations for static
settings.

Generic atomic object implementation. For the sake of genericness, this algorithm lacks from
explicit specification of communication procedure (send andrecv) so as the termination identifica-
tion test (is-quorum-contacted). For the sake of generality, these procedures that rely on alower
level of specification (depending on the type of solution that aimed to be provided) are omitted
here. For example, a clienti might know a complete quorum and wait until all quorum members
respond before deciding to end the procedurePropagateandConsult. Conversely, nodei might
wait for the message of the last quorum member without knowing every element.

Algorithm 1 implements an atomic object which supports read/write operations performed by
multiple readers and multiple writers. the variable domainused in this algorithm is presented in
Table2.1. The pseudocode is high level and describes a generic solution using quorum access. This
algorithm has been inspired by the work of Attiya, Bar-Noy, and Dolev [ABND95], and Lynch and
Shvartsman [LS02].

A client executes an operation by running theReador Write procedure. An object valuev and
a value version (ortag) t are maintained at each server. This tag is incremented each time a new
value is written. The node id of the writer is added to the tag as a lower weight integer to ensure
uniqueness of tag.

ReadandWrite procedures are similarly divided in two phases: the first phaseConsults the
value and the associated tag of an object by querying a quorum. The second phasePropagatesthe
up-to-date valuevnewand tagtnewto a whole quorum. When the consultation ends, the client gets
the lastly written value back (with its tag). In case of a write operation, the client increments the
tag and propagates this new tag with the new value it wants to write. In case of read operation, the
client simply propagates the up-to-date value (with its tag) it has just consulted.

The sequence numbersserves as a phase counter to encompass asynchrony and thus preventing
that a quorum takes in account a stale message. More precisely, whenConsult or Propagatestarts,
the sequence number is incremented indicating a new phase. When a node receives a message with
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Algorithm 1 Generic Atomic Object Algorithm
1: State of i:
2: Q1, ...,Qk⊂ I the quorums
3: Q = {Q1, ...,Qk}, the quorum system
4: M , a message containing:
5: type∈ {GET,SET,ACK}, the message type,
6: 〈val, tag〉 ∈V×T ∪{⊥}, the value and tag,
7: seq∈ N, the sequence number of the message.
8: v∈V,v = v0, the object value
9: t ∈ T, t = 〈0, i〉, the tag used containing:

10: compteur∈ N, the write operations counter
11: id ∈ I , the identifier of the writer
12: s∈ N,s= 0, the current sequence number
13: tmax∈ T, the highest tag encountered
14: vlast∈V, the most up-to-date encountered value
15: tnew∈ T, the new tag to write
16: vnew∈V, the new value to write

17: Read()i :
18: 〈v, t〉 ← Consult()i

19: Propagate(〈v, t〉)i

20: Return 〈v, t〉

21: Write( vnew)i :
22: 〈v, t〉 ← Consult()i

23: tnew← 〈t.compteur+1, i〉
24: Propagate(〈vnew, tnew〉)i

sequence numbersquerying it to participate, itParticipatesby sending the same sequence number.
That is, the phase a message belongs to is clearly identified,and might be ignored.

Fast quorum-based atomic operations. In [DGLC04], Dutta et al. investigate how fast can a
distributed atomic read be where the number of failures is upper bounded. This result applies to
failure-prone static system but does not consider accumulating failures.

They define a fast implementation of a SWMR atomic memory as an implementation in which
any read operation of all possible executions ends after a single round trip. They prove that no
such implementations are possible if there are more thanS/t−2 readers executing operations in
a row, whereS is the total number of servers andt is an upper bound on the number of failures.
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25: Consult()i :
26: Let Q be a quorum ofQ
27: s← s+1
28: send(GET,⊥,s) to nodes ofQ
29: Repeat:
30: if recv(ACK,〈v, t〉,s) from j then
31: rcvd-from← rcvd-from∪{ j}
32: if t > tmaxthen
33: tmax← t
34: vlast← v
35: Until is-quorum-contacted(rcvd-from)

36: rcvd-from← /0
37: Return 〈vlast, tmax〉

38: Propagate(〈v, t〉)i:
39: Let Q be a quorum ofQ
40: s← s+1
41: send(SET,〈v, t〉,s) to nodes ofQ
42: Repeat:
43: if recv(ACK,⊥,s) from j then
44: rcvd-from← rcvd-from∪{ j}
45: Until is-quorum-contacted(rcvd-from)

46: rcvd-from← /0

47: Participate()i (activated upon reception ofM ):
48: if recv(M ) from nodej then
49: if M .type= GET then
50: send(ACK,〈v, t〉,M .seq) to j

51: if M .type= SET then
52: if M .tag> t then
53: 〈v, t〉= M .〈val, tag〉
54: send(ACK,⊥,M .seq) to j

More precisely, they show that it is possible only if there isless thanS/t−2 readers andt < S/2.
They also show that it exists a fast implementation when thisdoes not hold (i.e., there are less
subsequent and distant reads thanS/t−2).

Their implementation proposes one phase read operation. Write operations contact as many
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servers as possible such that it remains wait-free, i.e.S′ = S− t. To convey information from a
write operation to a read operation, thus ensuring orderingof read operations with respect to write
operations (cf. Property 3 of Definition2.1.1), read operations contact as many servers that can
testify of the previous write operation, as possible. By assumption, the number of faulty servers
is less than or equal tot, thus the number of non-faulty servers that have been contacted by the
previous write operation isS′′= S−2t. To prevent new/old inversion from happening, i.e., that two
read operations violate Definition2.1.1, each read operation contacts as many servers whose value
has been read by the previous operation, as possible. This number isS′′′ = S−3t. To generalize,
after a new value has been written onS−t servers, thei−1st following read operation must contact
S′′ = S− it servers. Since a client ignores the index of its read operation in the sequence of read
operations following the last write, each server counts thetimes its value has been read and send
this counter to the client when accessed.

Because the number of servers distinct readers must access decreases while no write occurs, at
some point the number becomes 0, preventing the read operations to return the last written value.
Thus, the number of distinct readers is bounded.

2.1.2 Quorum System Reconfiguration

The type of reconfiguration we consider aims at moving an object from one collection of sites to
another collection of sites. Such a mechanism is motivated in dynamic systems by the malfunc-
tioning of some sites or in large-scale environments by adaptation to load variations.

Reconfiguration evolves the quorum configurations. This mechanism serves two purposes.
First, it aims at installing a new quorum configuration, informing participants of the new con-
figuration that should be used. Second, this mechanism is in charge of removing an obsolete
configuration. The key challenges are thus to inform nodes ofthe new configuration before they
fail and to remove the previous configuration while it is safeto do so.

This reconfiguration process replicates the object value from an initial collection of sites to a
final collection of sites and multiple executions of such mechanism may follow. That is, a recon-
figurable object must be implemented using two data types:

1. Configuration sequence:the configuration sequence is a record containing some configu-
rations. This record is used to keep track of some configurations that have been used and
indicates which configuration is the current one.

2. Object state: the object replica records the value of the object and the associated tag, the
version of this value. During a reconfiguration execution, object state must be conveyed
from the initial configuration to the final one, thus mapping the current configuration with
the up-to-date value of the object.

The configuration sequence keeps track of the evolution of the system. At the beginning the
system uses a default configuration and this configuration isstored as the first index in the con-
figuration sequence. At the end of the first reconfiguration execution, a second configuration is
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introduced in the sequence and the system uses this configuration until another reconfiguration
instance installs a new configuration in the sequence, and soon.

The system must use the right configuration. At any time, the current configuration is the
configuration with the largest index in the configuration sequence. In the current configuration, the
up-to-date object state must be available. To ensure that the system uses the up-to-date object state
the reconfiguration mechanism has to ensure two properties:

1. Configuration consistency:the current configuration owns the up-to-date object replica.

2. Configuration currency: the system uses the current configuration.

For the sake of configuration consistency, the reconfiguration replicates the up-to-date object
replica from the initial configuration to the final one. Consequently, by iteration on the length of
the configuration sequence, if the first current configuration owned the up-to-date object replica,
then the configuration consistency holds.

For the configuration currency, the reconfiguration has to inform every participant that a new
configuration is installed and that this new configuration isthe current one. For instance, all par-
ticipants may maintain its own configuration sequence such that any new configuration is mapped
to the largest index. Observe that a responsible nodei might take the responsibility of archiving
the set of all configurations but this would require all participants to access nodei and the system
would suffer from single-point of failure and congestion.

Ensuring consistency and currency of configurations. An interesting measure is the time a
new configuration needs to become current. Indeed, this duration defines the minimal uptime
of node maintaining the object state. As soon as all nodes maintaining the object state fail, the
object state is lost. Since the last configuration cannot be added to all configuration sequences
simultaneously, when should a configuration be considered as current? This question arises the
problem that from two distinct standpoints there may coexist two distinct configurations.

In [Her86] Herlihy proposes a four step reconfiguration mechanism. These step are as follows:

• Gather the current object state: this step aims at contacting the initial configuration to
ensure that the most up-to-date object state is obtained.

• Storing the object state: this step aims at contacting a new quorum to store the up-to-date
object state safely.

• Initialize a new configuration: this step aims at initializing the new configuration members
by informing that they are part of the new configuration.

• Update the configuration: This step aims at notifying the participants that a new configu-
ration is installed, that is, the old configuration that are no longer current can be discarded.
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In these steps, an object state is conveyed to reliable storage and the current configuration
changes from the used one to a new one. In the following, we only consider a single instance of
reconfiguration, thus we refer to these configurations as, respectively, theinitial configurationand
thefinal configuration.

In this mechanism, operations cannot occur during the reconfiguration step without potentially
deprecating the object state present in the current configuration. Even though the up-to-date object
state is gathered at the first step, by the time the initial configuration is discarded, the object state
might be updated so that the final configuration maintains a non up-to-date object state.

A widely adopted solution aims at locking operations duringthe time the system reconfigures.
That is, the replica mapped to the final configuration cannot be staled by a concurrent operation.
Virtually synchronous services [BJ87,Fri95], and group communication services in general [1996]
can be used to implement a totally ordered broadcast. Totally ordered broadcast is a useful abstrac-
tion for consistency and currency maintenance. First, the up-to-date object state can be broadcast
to the new set of participants, called aview, for consistency, then a message can trig the use of
this new view for currency purpose. In general, group communication method requires that view-
formation is executed while operations stop, so that no object modification is received in between
affecting the object state at a stale configuration. That is,operations are delayed at least the time
the view-formation occurs.

In [MA04], the authors propose a storage supporting reconfigurationto tolerate a large spec-
trum of faults, including malicious ones. Their approach proposes a reconfiguration mechanism to
overcome the potentially accumulating failures that may occur, and when such a mechanism occurs
the pending operations are stopped. At the time the reconfiguration ends, the previously pending
operations resume from the execution point they were stopped. Similarly to group communication
services, [MA04] aims at replacing views. An initial view becomes inactive before a final view
becomes active. During the time none of these views are active, clients cannot gather responses
from a quorum, that is, operations cannot be performed. Thisperiod must be sufficiently long for
the value of the initial view to be conveyed to the final one. When this is done, the final view may
become active. This process makes the operation execution depend on the view replacement (i.e.
reconfiguration) process. Therefore, reconfiguration performance impacts directly on operation
performance. These kind of approaches trades the independence of operations against consistency.
In contrast, the following algorithms make independence and consistency cohabit.

2.1.3 Independence of Read/Write Operations

To ensure independence of operations the key idea is to notify the system about the time to up-
grade its configuration. As explained previously, installing a new configuration is not sufficient
to ensure that the system will access the up-to-date object state. In other words, the four steps
are not sufficient to discard previous reconfiguration if operations and reconfiguration can occur
concurrently.

Conversely, to allow operations independence so that they can progress even if reconfiguration
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is pending, the system needs to use distinct configurations at the same time during a transition
period. This period ensures that the result of all previous operations have been conveyed to the
new configuration object state and that all new operations will be applied to the newly installed
configuration.

In RAMBO [LS02], Lynch and Shvartsman present independent operations that may run con-
currently to reconfiguration. In this case, the reconfiguration may delay some operations but op-
eration progress does not depend on reconfiguration progress. As explained previously, the re-
configuration does not install the new configuration while discarding the old ones. Instead the
reconfiguration is divided into two major phases:

1. Configuration installation: the reconfiguration installs a new configuration. From this
point on, the system may use multiple configuration at the same time: the initial configu-
ration that belongs to the configuration sequence since the beginning of the reconfiguration
execution and the final configuration that is freshly installed.

2. Configuration upgrade: the reconfiguration ensures that enough nodes are aware of the
current configuration, so that any operation will use it before ending. This allows participants
to discard the other configuration(s) that have thus become obsolete.

Single reconfigurer. Build on the robust shared-memory emulation of [ABND95], Lynch and
Shvartsman proposed an extension using dynamic quorums [LS97] to provide multi-writer/multi-
reader MWMR shared memory emulation. This emulation is specified into independent Input/Out-
put Automata [Lyn96], the reader/writer and the reconfigurer. The reader/writer provides the
client with read and write primitives to access the emulatedshared memory. The reconfigurer,
as in [ES00], is executed at some node in the network to replace a quorum configuration by an-
other. Thus it may suffer from some single point of failure.

2.2 Decentralized Reconfiguration

Later on, Reconfigurable Atomic Memory for Basic Objects (RAMBO [LS02]) appeared. RAMBO

emulates a MWMR shared memory in dynamic distributed systems. It provides a quorum-based
reconfiguration mechanism that can be triggered by any participant. The participants keep send-
ing messages among each other, we call this action gossipingamong nodes. An improvement of
RAMBO appeared in [GMS05] where the number of messages is importantly reduced by determin-
ing a subset of nodes that are allowed to communicate. While the result of [GMS05] still satisfies
safety, it may delay, in some cases, the execution of RAMBO .

The RAMBO service is divided in several automata. The Reader/Writer automaton executes the
operations when requested by the clients. This operation are divided into two phases: the first phase
consults the up-to-date object state by gathering the tags and value of all the nodes of at least one
quorum. Then, the second phase propagates the tags and values of the object. In comparison with
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previous approaches, RAMBO uses biquorum system as defined in Definition1.1.3. for operation
and reconfiguration. We refer to the first type asconsultation quorumsand to the second type as
propagation quorums.

The Reconfigurer automaton installs a final configuration using an external consensus algo-
rithm. As a result multiple configurations can cohabit at thesame time. For limiting the number
of active configurations, the reconfigurer upgrades periodically to remove obsolete configurations
from the configuration sequence of all participants. This upgrade is carried out locally by each
nodei in two cases. First, if nodei discovers that some of the configurations recorded in its config-
uration sequence have already been removed from the configuration sequence of other participants.
Second, nodei might garbage collect the obsolete configuration itself. Inthis case, nodei informs
a consultation quorum and a propagation quorum of the obsolete configurations and gathers the
up-to-date value and tag of the object. This ensures that anyconcurrent or later operation request-
ing an obsolete configuration will learn that a more up-to-date configuration should be used. Then,
nodei informs a propagation quorum of the new configuration about the up-to-date object value
and tag. This ensures that later operations accessing the new configuration will have the up-to-date
object value and tag. The upgrade mechanism must be executedonce for each of the configurations
to remove.

2.2.1 Coupling Installation and Upgrade of Configurations

A first improvement on the RAMBO algorithm aimed at speeding up the upgrade process and min-
imizing the configuration sequence [GLS03]. This upgrade improvement led to a new algorithm
called RAMBO II. The RAMBO II algorithm upgrades many configurations in the meantime. If
multiple configurations are present in the system, then the algorithm upgrades all configurations
in a row. That is, after a single configuration upgrade mechanism, RAMBO II ensures that all but
the current configuration can be removed. The two phases of the upgrade process are depicted on
Figure2.2. Each phase corresponds to the delay of a one message exchange. In phase 1, node
i contacts a consultation quorum and a propagation quorum of each obsolete configurations. By
doing so, nodei tells all obsolete configuration members about the new configuration and a consul-
tation quorum of each obsolete configurations tellsi about the up-to-date object state. In phase 2,
nodei propagates the up-to-date object state to a consultation quorum and a propagation quorum
of the new configuration.

Issue related to decentralization. Decentralized reconfiguration execution presents some draw-
backs. When reconfiguration is executed at a single node, thenthis node can decide the new
configuration to install. However, when the reconfigurationis decentralized then a consensus must
be reached to prevent distinct current configurations from cohabiting.
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Upgrade Phase 1

• Nodei consults the latestobject stateof any previous configuration.

• Nodei propagates the information that there is a new current configuration to any previous
configuration.

Upgrade Phase 2

• Nodei propagates the latestobject stateto the new configuration.

Figure 2.2: The two phases of the upgrade process of RAMBO II [ GLS03].

2.2.2 Deciding upon the Final Configuration using Paxos

In RAMBO , the reconfiguration assumed the presence of an external consensus algorithm to en-
sure that new configurations are installed one after the other such that there is a totally ordered
sequence of configurations in time in the system. The Recon automaton of RAMBO responsible of
the reconfiguration process is triggered from any nodes of the system. Then, Recon executes an
instance of Paxos [Lam98]. Here we propose a reconfigurable distributed storage, called RDS,
that integrates Paxos into RAMBO . RDS improves on RAMBO by coupling the configuration
installation—consensus instance—with the configuration removal. This coupling speeds up the
reconfiguration process for better fault-tolerance. To strengthen this result, RDS specifies a fast
version of Paxos. RDS is detailed in Section2.3.

The Paxos algorithm is a famous asynchronous consensus algorithm that achieves optimal de-
lay in practical circumstances.1 Paxos uses quorums to ensure agreement among participants.In
recent years, Paxos experienced an important research interest among the distributed system com-
munity. Particularly, Paxos has been the subject of at leasteleven papers that appeared over the
last seven years.2

The key idea of Paxos is as follows. The participants of Paxosshare three roles:proposers
that propose values,acceptorsthat choose a value, andlearnersthat learn the chosen value. A
single node can play multiple roles. One Paxos instance is divided into ballots each representing
a new attempt to reach consensus. (Ballots can occur concurrently, are not necessarily ordered,
and may interfere with each other, delaying Paxos termination but not violating safety.) Paxos is a

1Traditional consensus algorithms save one message delay incomparison with Paxos by assuming that the set of
participants that propose a value is the same as the set of participants that decide upon a value. In practice, it might
not be the case.

2Results obtained from the DBLP (Digital Bibliography & Library Project [dbl]): eleven papers whose title explic-
itly mention the term Paxos have been published in a journal or a conference between 2000 and 2006. Three of them
appeared in 2006.
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Phase 1a.A coordinator sends a new ballot to a quorum of proposers.

Phase 1b.Upon reception of the message, any proposer responds by sending the value of the
highest ballot (if any) they have already voted for. Each proposer that learns about a more
up-to-date ballot abstained from any earlier ballot.

Phase 2a.After having received the response of at least a quorum of acceptors, the coordi-
nator chooses a new value for its ballot and informs a quorum of acceptors of the value it has
chosen for its ballot.

Phase 2b.Any acceptor, that learns about this value and that did not abstain from that ballot,
may vote for it and tells the learners (and the coordinator) about this vote. When the learners
(and the coordinator) hear that a quorum of acceptors has voted for it, they decide this value.

Figure 2.3: Informal description of Paxos

leader-based algorithm in the sense that a singlecoordinatoris responsible of one ballot.

The Part-Time Parliament. Paxos has been firstly presented as a set of informal rules in a
technical report of Lamport [Lam89], published nine years later in [Lam98]. This presentation
describes the functioning of an ancient Part-Time Parliament of a Greek island named Paxos. More
precisely, this paper explains how decrees can be passed while legislators may not be present in the
Chamber at the same time and may experience difficulties to communicate. Interestingly, this part-
time parliament boils down to an algorithm providing consistency despite any number of failures
and resuming properly after more than a half of the nodes recover.

Figure2.3describes the normal sequence of message sent in a ballot of Paxos, where a message
exchange is called a phase. Acceptors abstain from a ballotb if they discover another ballotb′ with
a larger identifier (Phase 1b). Acceptors may vote for a ballot if they did not abstain fromit
earlier. A ballot succeed only if a quorum of acceptors vote for its value, however, acceptors of a
single quorum may vote for concurrent ballots. If this happens, a new ballot with a larger identifier
must be started to try reaching consensus again. The consensus is reached when learners receive a
message informing them of the chosen value; this reception (Phase 2b) terminates the ballot.

Fast Paxos. A fast consensus algorithm is an algorithm in which a node learns the chosen value
two message delays of when the value has been proposed. Fast Paxos [Lam06b] is a fast consensus
algorithm that is a variant of Paxos. That is, in Fast Paxos, anode may learn about the decided value
at the latest 2δ after the value has been proposed, whereδ is an upper bound on the transmission
delay of messages. This result is achieved when no collisions occurs between concurrent distinct
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ballots. A collision occurs when any quorum of acceptors vote for distinct values of concurrent
ballots. Another consensus algorithm [BGMR01] can be easily modified using the same basic idea
of Fast Paxos to achieve fast consensus.

The main improvement over classic Paxos is to avoid the two first message delays of Paxos
in case no collision occurs. The first phase of the original algorithm aims at renewing the ballot
number. This renewal might be avoided under specific circumstances:

• At the beginning of the first ballot execution: since no valuehas been proposed yet, the
coordinator might first send message2aproposing any value.

• If the same coordinator runs multiple consensus instances:the coordinator who successfully
led the ballot of the previous consensus instance, may reusethe same ballot number for the
following consensus instance proposing directly any valuein message2a.

• If the coordinator sends a message to acceptors for them to treat any proposer message
like if it were a 2a message. In this specific case an additional collision recovery must be
implemented to ensure progress.

Avoiding first phase speeds up Paxos. Without this phase, thealgorithm becomes a fast con-
sensus algorithm, i.e., a value is chosen 2 message delays after it has been proposed. Figure2.4
outlines message exchanges used in Classic Paxos and in Fast Paxos when no failures occur. In
some cases, where Fast Paxos can avoid the first phase, Fast Paxos lasts 2 message delays less than
Classic Paxos. The time taken to solve the consensus, i.e., the time taken for a proposed value to
be accepted is 3 message delays long in Fast Paxos while it is 4message delays long in Classic
Paxos.

Next, we use Fast Paxos to decide upon a new configuration. That is, we propose a dynamic
memory, RDS, that integrates Fast Paxos for the sake of reconfiguration installation.

Modification to fit reconfiguration needs. Our goal is to benefit from Fast Paxos to determine
rapidly the next configuration to install. To this end, we integrate Fast Paxos into our configuration
installation mechanism. Hence, each configuration installation has its own consensus instance that
aims at deciding upon a unique value: the new configuration toinstall. Following Fast Paxos
execution, configurations are proposed, voted, and one among those is decided. Then, we couple
this installation mechanism with the configuration upgrademechanism. The result is an all-in-one
algorithm that provides a rapid reconfiguration: it parallelizes the installation and the upgrade to
save time and strengthen fault-tolerance.

Coupling installation and upgrade relaxes a strong requirements for consistency: the activity of
obsolete configurations. Recall first that the upgrade process, as investigated above, consults the
object state, informs the previous configurations about thenew configuration, and propagates the
consulted object state to the new configuration before old configurations can be safely removed.
That is, between the time of an installation and the time of anupgrade, at least one consultation
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Figure 2.4: Classic Paxos and Fast Paxos. Classic Paxos takes 4messages delays to complete.
(Classic Paxos solves consensus in 3 message delays after values are proposed.) Fast Paxos takes
3 message delays to complete in some cases. (Fast Paxos can solve consensus in 2 message delays
after values are proposed.)

quorum and one propagation quorum of each old configuration must remain active. Conversely,
coupling installation and upgrade translates into removing the old configuration as soon as the new
configuration is installed. That is, only one configuration is active at a time and much less nodes
need to be active in such circumstances, strengthening fault-tolerance.

Although configuration upgrade and Fast Paxos are two quorumbased algorithms, Fast Paxos
must be modified for parallelizing the executions of the two algorithms. Fast Paxos uses standard
quorum system [Lam06b] whereas upgrade uses biquorum systems. More precisely, during an
upgrade there is no need for all quorums to intersect each other. Instead, upgrade uses two types
of quorum, and any quorum of the first type must intersect any quorum of the second type while
quorums of the same type do not need to intersect. In the following we refer to a quorum of
proposers, which a coordinator may contact during the first phase of Fast Paxos, as aproposer-
quorum. Similarly, we refer to a quorum of acceptors, which a coordinator might contact in the
second phase, as aacceptor-quorum.
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In fact, it is noteworthy that two proposer-quorums do not need to intersect in Fast Paxos. This
comes directly from the fact that nodes can learn of a new ballot at any time, abstaining from
earlier ballots, yet there is no need to abstain during the first phase. But for progress of the algo-
rithm, the coordinator needs to learn about the voted valuesof the largest ballot of the consensus
instance. This translates into the need for any proposer-quorum to intersect any acceptor-quorum.
Furthermore, any acceptor-quorums must intersect each other, otherwise two acceptor-quorums
would possibly vote for distinct values. To summarize, in a single consensus instance Fast Paxos
requires only the following intersections: For any proposer-quorumP, and any acceptor-quorum
A: P∩A 6= /0 andA∩A 6= /0.

Built upon these observations, Fast Paxos is modified to use the biquorum systems of the up-
grade. First, proposer-quorums need not intersect, thus itcan be simply set to either any con-
sultation quorum or any propagation quorum. Since the role of the proposer-quorum is to return
the value of the largest ballot, we set proposer-quorums to consultation quorum. Second, every
acceptor-quorum must intersect other acceptor-quorums but also all proposer-quorums, thus it is
set to the union of a consultation quorum and a propagation quorum.

For the sake of communication efficiency, we piggyback messages of Fast Paxos and mes-
sages of upgrade, all together leading to the sequence of phases depicted in Figure2.5. The first
phase of Fast Paxos is unnecessary in many circumstances as previously mentioned. The second
phase of Fast Paxos ensures that enough nodes have voted for the same configuration in the current
ballot (decision) so that no different configurations can bedecided later on. The first phase of
upgrade consults the current object state and propagates the newly decided configuration so that
any later operations will apply to it. Object state is easilypiggybacked in the Fast Paxos second
phase, however, this phase is insufficient to ensure that enough nodes are aware of the new con-
figuration. This phase makes a learner decide only if an acceptor-quorum has voted for the right
configuration whereas not enough learners may be aware of this configuration. To make sure that
all operations will apply to the new configuration, an additional propagation message must be re-
ceived from enough learners. Next Section describes in details a dynamic memory including this
reconfiguration mechanism.

2.3 Dynamic Distributed Shared Memory (benefiting from
Consensus)

This Section describes a distributed shared memory that tolerates dynamism, called RDS. We
present the algorithm for a single object; atomicity is preserved under composition and the com-
plete shared memory is obtained by composing multiple objects.

Reconfigurable Distributed Storage for dynamic networks. The Reconfigurable Distributed
Storage (RDS) integrates the Paxos algorithm for participants to decide upon a new configuration.
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Figure 2.5: The reconfiguration protocol of RDS takes at the maximum 5 message delays and may
take 3 message delays. After consensus is reached a single additional message delay is necessary
for informing enough nodes about the newly decided configuration.

During the reconfiguration mechanism, each node considering itself to be the leader can start exe-
cuting a consensus instance. If no too many instances are conflicting, then the participants install
the new configuration and remove the obsolete one immediately after in a safe manner. The major
advantage over the previous reconfigurable mechanisms is tospeed-up operations and to speed-up
reconfigurations. This directly translates into better fault-tolerance and higher quality of service.
The RDS algorithm is described in the next subsection as a sequence of phases. Each of these
phases can run concurrently with each other. The detailed algorithm is specified in Input/Output
Automata in AppendixB.
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2.3.1 Read and Write Operations using Global Knowledge

Algorithm 2 Read andWrite protocols, requiring up to two phases (four message delays).
1: State of nodei:
2: s, a sequence number;
3: configs, the set of all known active configurations;
4: op-configs, all known active configurations at the start of the current phase;
5: op-type∈ {read,write}, the operation type;
6: message-type∈ {RW1a,RW1b,RW2a,RW2b}, the type of the message.

7: RW-Phase-1a:
8: Choose a unique sequence number,s
9: for everyc∈ configsdo

10: Send〈RW1a,s〉 to R∈ c

11: op-configs← configs

12: RW-Phase-1b:
13: Upon reception of〈RW1a,s〉 from j:
14: Sends〈RW1b,s, tag,value〉 to j

Read and write operations proceed by accessing the currentlyactive configurations. Each
replica maintains atag and avaluefor the data being replicated. Tag is a counter-id couple used
as a write operation version number where its node id serves as a tiebreaker. Each read or write
operation potentially requires two phases: theconsultationphase (RW-Phase-1) to consult some
replicas, learning the most up-to-date tag and value, and the propagationphase (RW-Phase-2) to
propagate the tag and value to the replicas. In a consultation phase, the initiator contacts one con-
sultation quorum from each active configuration, and remembers the largest tag and its associated
value. In a propagation phase, read operations and write operations behave differently: a write
operation chooses a new tag that is strictly larger than the one discovered in the consultation phase,
and sends the new tag and new value to a write quorum; a read operation simply sends the tag and
value discovered in the consultation phase to a propagationquorum.

Single-phase read operations. Sometimes, a read operation can avoid performing the propaga-
tion phase, if some prior read or write operation has alreadypropagated that particular tag and
value. Once a tag and value has been propagated, be it by a reador a write operation, it is marked
confirmed(Line 39). If a read operation discovers that a tag has been confirmed,it can skip the
second phase (Lines24–25).

One complication arises when during a phase, a new configuration becomes active. In this case,
the read or write operation must access the new configurationas well as the old one. In order to
accomplish this, read or write operations save the set of currently active configurations,op.configs,
when a phase begins (Lines11, 28); a reconfiguration can only add configurations to this set—
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15: RW-Phase-2a:
16: Upon reception of〈RW1b,s, tag,value〉 from j:
17: if tag> tagi then
18: 〈tagi ,vali〉 ← 〈tag,value〉
19: rvcd-from-2a← rvcd-from-2a∪{ j}
20: if for anyc∈ configs, there existsR∈ c such thatR⊆ rcvd-from-2athen
21: if op-type= write then
22: 〈tag.counteri , tag.idi〉 ← 〈tag.counteri +1, i〉
23: vali ← v
24: else iftag is marked asconfirmed then
25: returnvali
26: for everyc∈ con f igsdo
27: Send〈RW2a,s, tagi ,vali〉 to W ∈ c

28: op-configs← configs

29: RW-Phase-2b:
30: Upon reception of〈RW2a,s, tag,value〉 from j:
31: if tag> tagi then
32: 〈tagi ,vali〉 ← 〈tag,value〉
33: Sends〈RW2b,s, tagi ,vali ,configs〉 to j

34: RW-Done:
35: Upon reception of〈RW2b,s, tag,value,configs〉 from j:
36: op-configs← op-configs∪configs
37: rvcd-from-done← rvcd-from-done∪{ j}
38: if for everyc∈ configs, there existsW ∈ c such thatW ⊂ rcvd-from-donethen
39: Marktagasconfirmed

40: if op-type= read then
41: returnvali

none are removed during the phase. Even if a reconfiguration finishes with a configuration, the
consultation or propagation phase must continue to use it.

2.3.2 Reconfiguration by Replacement

This section presents a periodic and global reconfigurationprotocol. Quorum members run a
Fast Paxos consensus instance to decide upon a new configuration to install, then they install this
configuration by notifying the nodes.

When a client wants to change the set of replicas, it initiatesa reconfiguration, specifying a
new configuration. The nodes then initiate a consensus protocol, ensuring that everyone agrees on
the active configuration, and that there is a total ordering on configurations. The resulting protocol
is somewhat more complicated than typical consensus, sinceat the same time, the reconfiguration
operation propagates information from the old configuration to the new configuration.
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Algorithm 3 Recon protocol requiring up to three phases (five message delays).
1: State of nodei: c, the current configuration to replace;c′, the configuration competing for installation in the

current reconfiguration;leader, a boolean indicating if the current node considers itself as a coordinator;proposal,
the configuration proposed by the leader,ℓ; tag,value, the tag and value of the object.

2: Recon-Phase-Initi: If c is the only configuration in the set of active configurations,then the reconfiguration can
begin. The request is forwarded to the putative leader. If the leader has already completed Phase 1 for some ballot
b, then it can skip Phase 1, and use this ballot in Phase 2. Otherwise, the leader performs Phase 1.

3: Recon-Phase-1a:
4: if leaderthen
5: Chooses a unique larger ballotb.num
6: Send〈Recon1a,b.num〉 to R∈ c
7: proposal← c′

8: Recon-Phase-1b:
9: Upon reception of〈Recon1a,b.num〉 from ℓ:

10: if there is nob′ ∈ known-ballot: b′.num> b.numthen
11: Letb′′ be such thatb′′.num= max{b.num} : b∈ voted-ballot[c]
12: Letc′′ beb′′.conf
13: Send〈Recon1b,b.num,configs,b′′.num,c′′〉 to ℓ

14: Recon-Phase-2a:
15: if leaderthen
16: Upon reception of〈Recon1b,b.num,configs,b′′.num,c′′〉 from j:
17: if (b′′.num6=⊥) then S← S∪{< b′′.num,c′′ >}
18: rvcd-from-2a← rvcd-from-2a∪{ j}
19: op-configs← op-configs∪{configs}
20: if there existsR∈ c such thatR⊂ rcvd-from-2athen
21: if S 6= /0 then
22: Letproposalbe such that〈b,proposal〉 ∈ Sandb = max〈bn,∗〉∈S{bn}
23: Send〈Recon2a,b.num,c,v〉 to R∈ c and toW ∈ c
24: S← /0
25: rvcd-from-2a← /0

26: Recon-Phase-2b:
27: Upon reception of〈Recon2b,b.num,c,c′〉 from ℓ:
28: if c is the only active configurationthen
29: if there is nob′ ∈ known-ballot: b′.num> b.numthen
30: Send〈Recon2b,b.num,c,c′, tag,value〉 to R∈ c and toW ∈ c

The reconfiguration protocol uses the Fast Paxos algorithm [KR02, Lam05, Lam06b]. Fast
Paxos is detailed above. The reconfiguration request is forwarded to a coordinator, which coordi-
nates the reconfiguration, consisting of three phases: apreparephase,Recon-Phase-1, in which a
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ballot is made ready, aproposephase,Recon-Phase-2, in which the new configuration is proposed,
and apropagatephase,Recon-Phase-3, in which the results are distributed.

31: Recon-Phase-3:
32: Upon reception of〈Recon2b,b.num,c,c′, tag,value〉 from j:
33: rvcd-from-3a← rvcd-from-3a∪{ j}
34: if c is the only active configurationthen
35: if there existsW ∈ c andR∈ c such thatR∪W⊂ rcvd-from-3athen
36: configs← configs∪{c′}
37: op-configs← op-configs∪{c′}
38: if tag> tagi then
39: 〈tagi ,vali〉 ← 〈tag,value〉
40: Send〈Recon3a,c,c′, tag,value〉 to R∈ c and toW ∈ c
41: rvcd-from-3a← /0

42: Recon-Phase-Done:
43: Upon reception of〈Recon3a,c,c′, tag,value〉 from j:
44: rvcd-from-done← rvcd-from-done∪{ j}
45: if there existsW ∈ c andR∈ c such thatR∪W⊂ rcvd-from-donethen
46: configs← configs\{c}
47: rvcd-from-done← /0
48: if tag> tagi then
49: 〈tagi ,vali〉 ← 〈tag,value〉

The prepare phase accesses a consultation quorum of the old configuration, and thus learns
about any earlier ballots (Line20). When the coordinator concludes the prepare phase, it chooses
a configuration to propose: if no new configurations have yet been proposed to replace the current
old configuration, the coordinator can propose its own preferred new configurations (Line17);
otherwise, the coordinator must choose the previously proposed configuration with the largest
ballot (Line 7). The propose phase then begins, accessing both a read and a write quorum of
the old configuration (Line35). This serves two purposes: it requires that the nodes in theold
configuration cast a vote for the new configuration, and it collects information on the tag and
value from the old configuration. Finally, the propagate phase accesses both a read and a write
quorum from the old configuration (Line45); this ensures that enough nodes are aware of the new
configuration to ensure that any concurrent reconfigurationrequest obtains the desired result.

There are two optimizations included in the protocol. First, if a node has already prepared a
ballot as part of a prior reconfiguration, it can continue to use the same ballot for the new reconfig-
uration, without redoing the prepare phase. This means thatif the same node initiates multiple
reconfigurations, only the first reconfiguration has to perform the prepare phase. Second, the
propose phase can terminate whenany node, even if it is not the coordinator, discovers that an
appropriate set of quorums has voted for the new configuration. If all the nodes in a quorum send
their responses to the propose phase to all the nodes in the old configuration, then all the replicas
can terminate the propose phase at the same time, immediately sending out propagate messages.

30



2.3. Dynamic Distributed Shared Memory (benefiting from Consensus)

Again, when any node receives a propagate response from enough nodes, it can terminate the
propagate phase. This saves the reconfiguration one messagedelay. Together, these optimizations
mean that when the same node is performing repeated reconfigurations, it only requires three mes-
sage delays: the coordinator sending the propose message tothe old configuration, the nodes in
the old configuration sending the responses to the nodes in the old configuration, and the nodes in
the old configuration sending a propagate message to the initiator, which can then terminate the
reconfiguration.

2.3.3 Safety Proof: Implementing Atomicity

In this section, we show that the read and write operations are atomic (linearizable). We depend
on two lemmas commonly used to show linearizability: Lemmas13.10 and 13.16 in [Lyn96].

We use the tag of the operations to induce a partial ordering on operations, which then allows
us to prove the key property necessary to guarantee atomicity: if π1 is an operation that completes
beforeπ2 begins, then the tag ofπ1 is no larger than the tag ofπ2; if π2 is a write operation, the
inequality is strict.

Ordering configurations. Before we can reason about the consistency of read and write opera-
tions, however, we must show that nodes agree on the active configurations. For a reconfiguration
replacing configurationc, we say that reconfiguration〈c,c′〉 is well-definedif no node replaces
configurationc with any configuration exceptc′. This is, essentially, showing that the consensus
protocol successfully achieves agreement.

The proof is an extension of the proof in [Lam98] which shows that Paxos guarantees agree-
ment, modified to incorporate optimizations in our algorithm and reconfiguration.

Theorem 2.3.1 For all executions, there exists a sequence of configurations, c1,c2, . . ., such that
reconfiguration〈ci,ci+1〉 is well-defined for all i.

Proof. We proceed by induction: assume that for allℓ′ < ℓ, 〈cℓ′ ,cℓ′+1〉 is well-defined. If configu-
rationcℓ is ever replaced in the set of active configurations with configurationcℓ+1, we show that
〈cℓ,cℓ+1〉 is also well-defined. Assume, by contradiction, that this isnot the case. Then there exist
two nodes, sayi and j, that complete the propose phase (Recon-Phase-2) and replacecℓ with two
different configurations,c andc′. These two nodes must have different ballots,b andb′, respec-
tively, at the end of the propose phase (Recon-Phase-2). Without loss of generality, assume that
b < b′.

At some point, ballotb′ must have completed a prepare phase (Recon-Phase-1). First, consider
the case whereb′ was prepared as part of arecon operation installing configurationcℓ+1. Since
by induction all smaller reconfigurations are well-defined,we can conclude that the read quorum
associated with preparingb′ must intersect the write quorum associated with proposingb; let i′ be
a node in the intersection. Ifi′ received the prepare message fromb′ prior to the propose message
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for b, then ballotb could not be smaller than ballotb′. Therefore, we can conclude that nodei′

received the propose message forb, along with the proposed configuration,c, prior to responding
to the prepare message forb′. Hence when some node proposed ballotb′, it must have been
aware of ballotb and configurationc, leading to the conclusion thatc= c′, contradicting our initial
assumption. (It is possible to show using the same argument that no configuration with a larger
ballot can be available to the proposer ofb′.)

Second, consider the case, then, whereb′ was prepared as part of arecon operation installing
a configurationcℓ′ < cℓ. In this case, we can show thatb≥ b′, contradicting our assumption. In
particular, somerecon for cℓ′ must terminate prior to the proposals ofb andb′. By examining the
quorum intersections, we can show that the ballotb′ must have been discovered by the proposal
for this earlierrecon installingcℓ′; from there it must have been discovered by the proposal for the
recon installingcℓ′+1, and so on, until it was discovered by the proposal forb, from which we can
conclude thatb≥ b′.

We can therefore conclude from these two cases that reconfiguration〈cℓ,cℓ+1〉 is well-defined.
2

Ordering operations. We now proceed to show that tags induce a valid ordering on theopera-
tions. If both operations “use” the same configuration, thenthis property is easy to see: operation
π1 propagates its tag to a propagation quorum, andπ2 discovers the tag when reading from a con-
sultation quorum. The difficult case occurs whenπ1 andπ2 use differing configurations. In this
case, the reconfigurations propagate the tag from one configuration to the next.

We refer to the smallest tag at a node that replaces configuration cℓ with configurationcℓ+1 as
the “tag for configurationcℓ+1.” We can then easily conclude from this definition, along with a
simple induction argument, that:

Invariant 2.3.2 If some node i has configuration cℓ+1 in its set of active configurations, then its
tag is at least as large as the tag for configuration cℓ+1.

This invariant allows us to conclude two facts about how information is propagated by re-
configuration operations: the tag of each configuration is nolarger than the tag of the following
configuration, and the tag of a read/write operation is no larger than the tag of a configuration in
its set of active configurations.

The next lemma requires showing how read and write operations propagate informationto a
reconfiguration operation:

Lemma 2.3.3 If cℓ is the largest configuration in i’s op-config set of operational configurations
whenRW-Phase-2 completes, then the tag of the operation is no larger than thetag of configura-
tion cℓ+1.

Proof. During theRW-Phase-2, the tag of the read or write operation is sent to a propagation
quorum of the configurationcℓ. This quorum must intersect the consultation quorum duringthe
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Recon-Phase-2propagate phase of the reconfiguration that installscℓ+1. Let i′ be a node in the
intersection of the two quorums. Ifi′ received the reconfiguration message prior to the read/write
message, then nodei would learn about configurationcℓ+1. However we assumed thatcℓ was the
largest configuration inop-configat i at the end of the phase. Therefore we can conclude that the
read/write message toi preceded the reconfiguration message, ensuring that the tagwas transfered
as required. 2

Theorem 2.3.4 For any execution,α, it is possible to determine a linearization of the operations.

Proof. As discussed previously, we need to show that if operationπ1 precedes operationπ2, then
the tag ofπ1 is no larger than the tag ofπ2, and if π1 is a write operation, then the inequality is
strict.

There are three cases to consider. First, assumeπ1 andπ2 use the same configuration. Then
the write quorum accessed during the propagate phase ofπ1 intersects the consultation quorum
accessed during the consultation phase ofπ2, ensuring that the tag is propagated.

Second, assume that thesmallestconfiguration accessed byπ1 in the propagate phase is larger
than thelargestconfiguration accessed byπ2 in the consultation phase. This case cannot occur.
Let cℓ be the largest configuration accessed byπ2. Prior to π1, some configuration installing
configurationcℓ+1 must occur. During the final phaseRecon-Phase-2of the reconfiguration, a
consultation quorum of configurationcℓ is notified of the new configuration. Therefore, during the
consultation phase ofπ2, the new configuration forcℓ+1 would be discovered, contradicting our
assumption.

Third, assume that thelargest configurationcℓ accessed byπ1 in the propagate phaseRW-
Phase-2is smaller than thesmallestconfigurationcℓ′ accessed byπ2 in the consultation phaseRW-
Phase-1. Then, Lemma2.3.3shows that the tag ofπ1 is no larger than the tag ofcℓ; Invariant2.3.2
shows that the tag ofcℓ is no larger than the tag ofcℓ′ and that the tag ofcℓ′ is no larger than the
tag ofπ2. Together, these show the required relationship of the tags.

If π1 skips the second phase,RW-Phase-2, then some earlier read or write operation must have
performed aRW-Phase-2for the same tag, and hence the proof follows as before. 2

2.3.4 Liveness Proof: Speeding up Reconfiguration to strengthen Fault Tol-
erance

In this section we examine the performance of RDS, focusing onthe efficiency of reconfiguration
and how the algorithm responds to instability in the network. In order for the algorithm to make
progress in an otherwise asynchronous system, we need to make a series of assumptions about the
network delays, the connectivity, and the failure patterns. In particular, we assume that, eventually,
the network stabilizes and delivers messages with a delay ofd. The main results in this section
are then as follows. First, we show that the algorithm “stabilizes” within e+2d time after the net-
work stabilizes, wheree is the time required for new nodes to fully join the system andnotify old
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nodes about their existence. Second, we show that after the algorithm stabilizes, reconfiguration
completes in 5d time; if a single node performs repeated reconfigurations, then after the first, each
subsequent reconfiguration completes in 3d time. Finally, we show that after the algorithm stabi-
lizes, reads and writes complete in 8d time, reads complete in 4d time if there is no interference
from ongoing writes, and in 2d if no reconfiguration is pending.

Eventual synchrony as a requirement. Asynchrony makes it impossible to guarantee that con-
sensus will terminate in a system where continual node failures occur as it has been proved by
Fisher, Lynch, and Paterson [FLP85]. In order to ensure that the algorithm progresses, we assume,
among others, eventual synchrony, meaning that the communication between nodes becomes even-
tually synchronous. More precisely, we assume that eventually (at some unknown point) the net-
work stabilizes, becoming synchronous and delivering messages in bounded (but unknown) time.

Our goal is to model a system that becomes stable at some (unknown) point during the execu-
tion. Formally, letα be a (timed) execution andα′ a finite prefix ofα during which the network
may be unreliable and unstable. Afterα′ the network is reliable and delivers messages in a timely
fashion. We refer toℓtime(α′) as the time of the last event ofα′. In particular, we assume that
following ℓtime(α′): (i) all local clocks progress at the same rate, (ii) messages are not lost and
are received in at mostd time, whered is a constant unknown to the algorithm, (iii) nodes respond
to protocol messages as soon as they receive them and they broadcast messages everyd time to
all service participants, (iv) all enabled actions are processed with zero time passing on the local
clock.

Other assumptions. Additionally, we restrict the rate of reconfiguration afterstabilization, and
limit node failures such that some quorum remains availablein an active configuration. (For exam-
ple, in majority quorums, this means that only a minority of nodes in a configuration fail between
reconfigurations.) We present a more detailed explanation in Section2.3.5.

Generally, in quorum-based algorithms, the operations areguaranteed to terminate provided
that at least one quorum does not fail. In contrast, for a reconfigurable quorum system we assume
that at least one quorum does not fail prior to a successful reconfiguration replacing it. For ex-
ample, in the case of majority quorums, this means that only aminority of nodes fail in between
reconfigurations. Formally, we refer to this asconfiguration-viability: at least one read quorum
and one write quorum from each installed configuration survive 4d after (i) the network stabilizes
and (ii) a following successful reconfiguration operation.

We place some easily satisfied restrictions on reconfiguration. First, we assume that each node
in a new configuration has completed the joining protocol at least timee prior to the configura-
tion being proposed, for a fixed constante. We call thisrecon-readiness. Second, we assume
that after stabilization, reconfigurations are not too frequent: 5d-recon-spacingimplies that two
reconfiguration termination are at least 5d apart.

Also, after stabilization, we assume that nodes, once they have joined, learn about each other
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quickly, within timee. We refer to this asjoin-connectivity.
Finally, we assume that a leader election service chooses a single coordinator, namely the

leader, at timeℓtime(α′) + e and that it remains alive until the next leader is chosen and for a
sufficiently long time for a reconfiguration to complete. Forexample, a leader may be chosen
among the members of a configuration based on the value of an identifier.

Bounding reconfiguration delays. We now show that reconfiguration attempts complete within
at most five message delays after the system stabilizes. Letℓ be the node identified as the leader
when the reconfiguration begins.

The following lemma describes a preliminary delay in reconfiguration when a non-leader node
forwards the reconfiguration request to the leader.

Lemma 2.3.5 Let the firstrecon(c,c′) event at some active node i, where i6= ℓ, occur at time t and
let t′ bemax(ℓtime(α′), t)+e. Then, the leaderℓ starts the reconfiguration process at time t′+2d.

Proof. When therecon(c,c′) occurs at timet, one of two things happen: either the reconfiguration
fails immediately, ifc is not the current, unique, active configuration, or therecon request to is
forwarded to the leader. Observe thatjoin-connectivityensures thati knows the identity of the
leader at timet ′, so no later than timet ′+d, i sends a message toℓ that includes reconfiguration re-
quest information. By timet ′+2d the leader receives message fromi and starts the reconfiguration
process. 2

The next lemma implies that after some time following reconfiguration request, there is a com-
munication round where all messages include the same ballot.

Lemma 2.3.6 After timeℓtime(α′)+e+2d, ℓ knows about the largest ballot in the system.

Proof. We know that afterℓtime(α′), only ℓ can create a new ballot. Therefore ballotb must have
been created beforeℓtime(α′). Sinceℓ is the leader at timeℓtime(α′)+e, we know thatℓ has joined
before timeℓtime(α′).

If ballot b still exists afterℓtime(α′) (the case we are interested in), then there are two possible
scenarios. Either ballotb is conveyed by an in transit message or it exists an active node i aware
of it at timeℓtime(α′)+e. In the former case, gossip policy implies that the in transit message is
received at timet, such thatℓtime(α′)+e< t < ℓtime(α′)+e+d. However, it might happen that
ℓ does not receive it, if the sender ignored its identity at thetime thesend event occurred. Thus,
at this time one of the receiver sends a message containingb to ℓ. Its receipt occurs before time
ℓtime(α′)+e+2d andℓ learns aboutb. In the latter case, by join-connectivity assumption at time
ℓtime(α′)+e, i knows aboutℓ. Gossip policy impliesi sends a message toℓ beforeℓtime(α′)+e+d
and this message is received byℓ beforeℓtime(α′)+e+2d, informing it of ballotb. 2

Next theorem shows that any reconfiguration completes in at most 5d time, following
ℓtime(α′). In Theorem2.3.8we show that when the leader node has successfully completedthe
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previous reconfiguration request then it is possible for thesubsequent reconfiguration to complete
in at most 3d.

Theorem 2.3.7 Assume thatℓ starts the reconfiguration process initiated byrecon(c,c′)∗ at time
t ≥ ℓtime(α′)+e+2d. Then the corresponding reconfiguration completes no later than t+5d.

Proof. By Lemma2.3.6, ℓ knows about the largest ballot in the system afterℓtime(α′) + e+
2d. By configuration-viability, we know that at least one consultation quorum and at least one
propagation quorum of configurationc are active during the reconfiguration, andrecon-readiness
implies that nodes have joined the service and are aware of each other. The phases of Paxos imply
that there are two message exchanges followed by a broadcastin phaseRecon-Phase-3a. Since
the message delay is bounded byd, each message exchange requires 2d time and an additional
d for the broadcast. From this we conclude that the reconfiguration process terminates in phase
Recon-Phase-3bat timet +5d. 2

Theorem 2.3.8 Let ℓ be the leader node that successfully conducted the reconfiguration process
from c to c′. Assume thatℓ starts a new reconfiguration process from c′ to c′′ at time t≥ ℓtime(α′)+
e+2d. Then the corresponding reconfiguration from c′ to c′′ completes at the latest at time t+3d.

Proof. The proof is analogous to the proof of Theorem2.3.7. Observe that at the beginning of
the new reconfiguration processℓ has the highest ballot. This means thatℓ may keeps its ballot
and starts fromRecon-Phase-2a(since it has previously executedRecon-Phase-1b). Hence only
a single message exchange inRecon-Phase-2a/Recon-Phase-2band a single broadcast following
Recon-Phase-3atakes place. Therefore, the last phase of Paxos occurs at time t +3d. 2

Bounding read-write delays. This Section presents bounds on the duration of read/write opera-
tions under assumptions stated in the previous section. Recall from Section2.3 that both the read
and the write operations are conducted in two phases, first the query phase and second the propa-
gate phase. We begin by first showing that each phase requiresat least 4d time. However, if the
operation is a read operation and no reconfiguration and no write propagation phase is concurrent,
then it is possible for this operation to terminate in only 2d – see proof of Lemma2.3.9. The final
result is a general bound of 8d on the duration of any read/write operation.

Lemma 2.3.9 Consider a single phase of a read or a write operation initiatedat node i at time
t, where i is a node that joined the system at timemax(t − e− 2d, ℓtime(α′)). Then this phase
completes at the latest at timemax(t, ℓtime(α′)+e+2d)+4d.

Proof. Let ck be the largest configuration in any active node’sop-configsset, at timet−2d. By the
configuration-viabilityassumption, at least one consultation quorum and at least one propagation
quorum ofck are active for the interval of 4d afterck+1 is installed. By thejoin-connectivityand
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the fact thati has joined at time max(t−e−2d, ℓtime(α′)), i is aware of all active members ofck

by the time max(t−2d, ℓtime(α′)+e).
Next, by the timing of messages we know that withind time a message is sent from each active

members ofck to i. Hence, at time max(t, ℓtime(α′) + e+ 2d) nodei becomes aware ofck, i.e.
ck ∈ op-configs.

At d time later, messages from phaseRW-Phase-1aor RW-Phase-2aare received andRW-
Phase-1bor RW-Phase-2bstarts. Consequently, no later than max(t, ℓtime(α′) + e+ 2d) + 2d,
the second message ofRW-Phase-1or RW-Phase-2is received.

Now observe that configuration might occur in parallel, therefore it is possible that a new
configuration is added to theop-configsset duringRW-Phase-1orRW-Phase-2. Discovery of new
configurations results in the phase being restarted, hence completing at time max(t, ℓtime(α′)+e+
2d)+ 4d. By recon-spacingassumption no more than one configuration is discovered before the
phase completes. 2

Theorem 2.3.10Consider a read operation that starts at node i at time t:

1. If no write propagation phase is pending at any node and no reconfiguration is ongoing, then
it completes at timemax(t, ℓtime(α′)+e+2d)+2d.

2. If no write propagation phase is pending, then it completesat time
max(t, ℓtime(α′)+e+2d)+8d.

Consider a write operation that starts at node i at time t. Then it completes at time
max(t, ℓtime(α′)+e+2d)+8d.

Proof. At the end of theRW-Phase-1, if the operation is a write, then a new non confirmed
tag is set. If the operation is a read, the tag is the highest received one. This tag was main-
tained by a member of the contacted consultation quorum, andit is confirmed only if the phase
that propagated it to this member has completed. From this point, if the tag is not confirmed,
then in any operation the fix-point of propagation phaseRW-Phase-2has to be reached. But, if
the tag is already confirmed then the read operation can terminate directly at the end of the first
phase. By Lemma2.3.9, this occurs at the latest at time max(t, ℓtime(α′)+e+2d)+4d; or at time
max(t, ℓtime(α′) + e+ 2d) + 2d if no reconfiguration is concurrent. Likewise by Lemma2.3.9,
the RW-Phase-2fix-point is reached in at most 4d time. That is, any operation terminates by
confirming its tag no later than max(t, ℓtime(α′)+e+2d)+8d. 2

2.3.5 Experimental Analysis of Reconfiguration

Musial and Shvartsman [MS04] developed a prototype distributed implementation that incorporate
both RAMBO and RAMBO II. The system was developed by manually translating the Input/Out-
put Automata specification to Java code. To mitigate the introduction of errors during translation,

37



CHAPTER 2. FACING DYNAMISM

the implementers followed a set of precise rules, similar to[CS98], that guided the derivation
of Java code from Input/Output Automata notation. The implementers developed RDS based on
the existing RAMBO codebase [GMS04] on a network of workstations. The primary goal of our
experiments was to gauge the cost introduced by reconfiguration. When reconfiguration is unnec-
essary, there are simpler and more efficient algorithms to implement a replicated DSM. Our goal
is to achieve performance similar to the simpler algorithmswhile using reconfiguration to tolerate
dynamic changes.

To this end, we designed three series of experiments where the performance of RDS is com-
pared against the performance of an atomic memory service which has no reconfiguration capabil-
ity — essentially the algorithm of Attiya, Bar Noy, and Dolev [ABND95] (the “ABD protocol”). In
this section we briefly describe these implementations and present our initial experimental results.
The results primarily illustrate the impact of reconfiguration on the performance of read and write
operations.

For the implementation we manually translated the IOA specification (from the appendix) into
Java code. The target platform is a cluster of eleven machines running Linux. The machines are
various Pentium processors up to 900 MHz interconnected viaa 100 Mbps Ethernet switch.

Each instance of the algorithm uses a single socket to receive messages over TCP/IP, and main-
tains a list of open, outgoing connections to the other participants of the service. The nondeter-
minism of the I/O Automata model is resolved by scheduling locally controlled actions in a round-
robin fashion. The ABD and RDS algorithm share parts of the codeunrelated to reconfiguration,
in particular that related to joining the system and accessing quorums. As a result, performance
differences directly indicate the costs of reconfiguration. While these experiments are effective at
demonstrating comparative costs, actual latencies most likely have little reflection on the operation
costs in a fully-optimized implementation.

Experiment (a). In the first experiment, we examine how the RDS algorithm responds to dif-
ferent size configurations (and hence different levels of fault-tolerance). We measure the average
operation latency while varying the size of the configurations. Results are depicted in Figure2.3.5.

In all experiments, we use configurations with majority quorums. We designate a single ma-
chine to continuously perform read and write operations andcompute average operation latency
for different size configurations, ranging from 1 to 5. In thetests involving the RDS algorithm,
we chose a separate machine to continuously perform reconfiguration of the system – when one
reconfiguration request successfully terminates another is immediately submitted.

Experiment (b). In the second set of experiments, we test how the RDS algorithmresponds
to varying load. Figure2.3.5presents results of the second experiment, where we computethe
average operation latency for a fixed-size configuration of five members, varying the number of
nodes performing read/write operations changes from 1 to 10. Again, in the experiments involving
RDS algorithm a single machine is designated to reconfigure the system. Since we only have
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Figure 2.6: Average operation latency: as size of configurations changes

eleven machines to our disposal, nodes that are members of configurations also perform read/write
operations.
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Figure 2.7: Average operation latency as number of nodes performing read/write operations
changes.
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Experiment (c). In the last experiment we test the effects of reconfigurationfrequency. Two
nodes continuously perform read and write operations, and the experiments were run varying the
number of instances of the algorithm. Results of this test aredepicted in Figure2.3.5. For each of
the sample points on the x-axis, the size of configuration used is half of the algorithm instances.
As in the previous experiments, a single node is dedicated toreconfigure the system. However,
here we insert a delay between the successful termination ofa reconfiguration request and the
submission of another. The delays used are 0, 500, 1000, and 2000 milliseconds. Since we only
have eleven machines to our disposal, in the experiment involving 16 algorithm instances, some of
the machines run two instances of the algorithm.
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Figure 2.8: Average operation latency as the reconfiguration and the number of participants
changes.

Interpretation. We begin with the obvious. In all three series of experiments, the latency of
read/write operations for RDS is competitive with that of thesimpler ABD algorithm. Also, the
frequency of reconfiguration has little effect on the operation latency. These observations lead us
to conclude that the increased cost of reconfiguration is only modest.

This is consistent with the theoretical operation of the algorithm. It is only when a reconfigu-
ration exactly intersects an operation in a particularly bad way that operations are delayed. This is
unlikely to occur, and hence most read/write operations suffer only a modest delay.

Also, note that the messages that are generated during reconfiguration, and read and write oper-
ations, include replica information as well as the reconfiguration information. Since the actions are
scheduled using a round-robin method, it is likely that in some instances a single communication
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phase might contribute to the termination of both the read/write and the reconfiguration operation.
Hence, we suspect that the dual functionality of messages helps to keep the system latency low.

A final observation is that the latency does grow with the sizeof the configuration and the
number of participating nodes. Both of these require increased communication, and result in larger
delays in the underlying network when many nodes try simultaneously to broadcast data to all
others. Some of this increase can be mitigated by using an improved multicast implementation;
some can be mitigated by choosing quorums optimized specifically for read or write operations.

2.4 Discussion and Conclusion

2.4.1 Communication Overhead

As pointed out by the experimentations, communication impacts much more on the operation delay
than reconfiguration. In networks where the bandwidth is limited, mechanisms that needs a lot of
bandwidth may provoke communication bottleneck at some point of the network. Recent scale-
shift of distributed systems strengthen this observation.If the communication complexity of the
algorithm depends on the amount of participants, bandwidthlimitation prevents the system from
scaling. Next, we propose two directions of remedying this problem.

This scalability issue has already been experienced in somepeer-to-peer file-sharing applica-
tions like Gnutella [gnua], where all peers participate equally while some of them have drastically
low bandwidth capabilities. As a result of utilizing peers on an equality-based policy while re-
sources are heterogeneously scattered among peers, the lowest capable peers limit the overall per-
formance of the system. To circumvent this well-known issue, peer-to-peer applications tend now
to use a peer depending on the amount of resource it offers. More particularly, Kazaa [kaz]-like
file-sharing applications elect supernodes which are peerswith extra-capabilities to handle most
of the requests. More generally, differing peer-to-peer applications, like Skype, demonstrate the
need of using specific nodes to handle firewall/NAT3 by-passing. To conclude, large-scale sys-
tems grow unboundedly while the amount of resources is bounded. This changes the peer-to-peer
paradigm of ”all peers must act equally” into ”all peers mustact proportionally to the resources it
has”. Consequently, the problem for a peer to determine how itmust participate depends on the
relative amount of resource it has compared to other peers. The problem of determining the relative
amount of resource a peer has has been identified as thedistributed slicing. Dedicated solutions
are described in AppendixA.

2.4.2 Conclusion

This chapter addresses the problem of emulating a distributed shared memory in a dynamic system.
Dynamism induces an unbounded amount of dynamic events including failures. These dynamic

3NAT: Network Address Translation.
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events are coped with using a periodic mechanism, called reconfiguration, that continually reinstall
an active quorum system. Assuming that no too many failures occur during a bounded period of
time, this reconfiguration mechanism ensures the availability of the memory at any time.

The reconfiguration relies on a variant of a consensus algorithm that executes very rapidly. The
speed of reconfiguration is of primary importance in dynamicsystems, since tolerance of failures
diminishes as time elapses. Time must be taken into account and will be at the heart of the quorum
systems proposed in Chapter4. Because of the speed of reconfiguration, our memory tolerates
high dynamism.

Moreover, reconfiguration is periodic and must happen with afrequency that depends on the
inherent fault-tolerance of the quorum system. However, studying the number of quorums and
their size is out of the scope of this chapter and those parameters are studied in Chapter3.

As discussed above an open issue is to minimize the communication complexity induced by
reconfiguration so that the system growth does not produce important overhead. The sake of scal-
ability implies each node communication complexity to be non-proportional to the number of
participants. The sequel of this document investigates scalability.
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Chapter 3

Facing Scalability: Quorum System with
Local Reconfiguration

This chapter focuses on the scalability issue in distributed shared memory. In large scale systems,
the number of participants is potentially unbounded. The paradox between the bounded resources
each node has and the unbounded participation experienced by the system arises several prob-
lems. This paradox prevents each node from maintaining global information. First, nodes cannot
record information about every other nodes because the number of nodes is too high regarding to
the amount of memory each node possesses. Second, nodes cannot even determine global char-
acteristics such as exact system size. Indeed, the inherentdynamism continuously changes these
characteristics that may not reflect the current system state at the time they are observed. Thus,
the node bandwidth cannot afford the amount of messages induced like previously observed in
Section2.3.5.

In the context of distributed shared memory, we focus on the scale-shift of the number of
clients. All clients have an independent behavior and may request the memory at any time. More-
over, because of the lack of global information their behavior is unpredictable. The growth of
requests directly produces a load increase that may affect the memory performance: if the memory
gets overloaded, then quality of service may be dramatically affected, treatments may be delayed
and requests may be lost. This chapter does not investigate the scale-shift in the number of re-
quested objects, but only the scale-shift in the number of participants.

Structural properties of the memory. For the purpose of scalability, we outline the predisposi-
tion of some memory to handle load. Recall that we consider only quorum-based memories where
not all replicas are accessed during a single operations. This makes distributed file systems like
Pastis [BPS05] out of the scope of this thesis. Depending on the role of its quorum members,
each quorum system reacts differently to load. Since read and write operations always consist in
accessing quorums one or two times, this may affect operations performance. More precisely, the
set of nodes that are in a quorum and the way those nodes are accessed have an important impact
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on the operation complexity. To better understand what is anefficient quorum system or a scal-
able quorum system, we investigate the way quorum members are scattered into quorums and the
way all nodes communicate with quorum members. This translates into investigating the structural
properties and communication structure of quorum systems.Furthermore, we discuss properties
like nondominance[GMB85] and stronger ones that cope with a bounded number of faults and
allow optimality in terms of load.

Scalable distributed shared memory. We propose an emulation of a distributed shared memory
especially suited for large-scale systems. Since reconfiguration cost depends on the amount of
information that has to be maintained, we restrict communication to logical vicinities. As a result,
we present a local reconfiguration mechanism that involves only a small set of logical neighbors.
Finally, we provide read and write primitives that satisfy atomic consistency. This memory adapts
dynamically in face of load variation and scales well due to the limited amount of information each
node maintains.

Roadmap. The following chapter is divided into four sections. Section 1 investigates the struc-
ture of quorum systems and describes properties for scalability. Section 2 focuses on communica-
tion between nodes and quorum members. Section 3 describes acomplete scalable DSM. Finally
Section 4 concludes the chapter by discussing some aspects of the chosen scalable DSM.

3.1 Structure of Quorum Systems

As observed in the previous chapter, progress requires thatat least two quorums of the current
quorum system remain active. Fault tolerance property of quorum systems resides in their struc-
tural properties: the number of quorums, the size of each quorum, the number of nodes at the
intersection of two quorums... Compare, for example, a quorum system that contains all majority
sets. As soon as a majority of nodes fail, the whole system fails. Intuitively, reducing the size
of quorum systems may thus strengthen fault tolerance. Thissection investigates the structure of
quorum systems and outlines structural requirements to tolerate failures and load.

3.1.1 Single-Point of Failure

Some quorum systems suffer from single point of failures, i.e., they may fail if a single member
fails. A crucial property of quorum system is their availability [ NW98]. The availability of a
quorum system is the probability that all its quorum fail given the probability that each element
fails. If the intersection no longer holds between two quorums, then these quorums are no longer
active. For example, if all the nodes at the intersection of two quorums Q1 and Q2 fail, then
quorumsQ1 andQ2 are considered asfailed. Now, if all quorums intersect at exactly the same
nodei, then failure of nodei makes all quorums inactive, leading to the failure of the whole quorum
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system. In this case we say that the quorum system suffers a single point of failure, meaning that
the failure of a single node makes the whole quorum system fail.

A more difficult problem of interest is the inconsistency of quorum system. Beyond providing
data availability in face of failures, quorum systems must provide consistency in distributed shared
memory. Although quorums are replicated sets of data used toensure fault-tolerance, quorum
system may experience inconsistency. Next, we illustrate this idea presenting two quorum systems
that experience single point of failure.

A star-like quorum system with single-point of failure. To better understand how a quorum
system may suffer from a single point of failure, we take the star quorum system as an example.
The star quorum system is defined in [HMP95] as a quorum system whose quorums have the same
node in common. All of its quorums intersect at a single node,one might think of as the center of a
star. Despite the replication of quorum members, the intersection among quorums is not replicated.
The star quorum system, thus, ensures data availability butnot data consistency despite the failure
of a single node. The definition of the star quorum system is stated as follows:

Definition 3.1.1 (Star Quorum System)Let U = {u1,u2, ...,un} and letQ consist of the n− 1
quorums{u1,u2},{u1,u3}, ...,{u1,un}. ThenQ is astar quorum system.

It is straightforward from the above definition that the starquorum suffers from a single point
of failure. Assume for example that the single failure occurs at nodeu1. In this case, there is no
active node between any couple of quorums. Since no quorum intersect, all quorums are failed,
hence the quorum system fails.

A tree-based quorum system with single-point of failure. Another quorum system that might
experience single point of failure is the tree-structured quorum system presented in [AE90]. Ac-
tually the tree-based quorum system is a biquorum system (asdefined in Definition1.1.3) since it
uses two types of quorums, the read and the write quorums (as in [Her86]). Such quorums intersect
if their type is different, thus there is no need for intersection between all quorums. A read quorum
is given by a recursive function returning the current node or the majority of its children, while a
write quorum function picks the union of the majority of nodes at any height of the tree.

Since all write quorums contain the root node of the tree, allwrite quorums fail after a single
node, the root, fails. If this happen, then no write quorums intersect all read quorums. Even though
some read quorums may still intersect a non complete write quorum it is difficult to identify which
one intersect the remaining active members of a write quorum. Because of that, the failure of the
root prevents any couple of read quorum and write quorum frombeing active, leading to the failure
of the whole quorum system.

To circumvent this issue, quorum systems must tolerate the failure of multiple nodes. To this
end, either a quorum must tolerate the failure of some of its members or a quorum system must
tolerate the failure of some of its quorums. In the former case, the intersection must be large enough
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to persist despite some node failures whereas in the latter case there must be enough intersections
to ensure that the quorum system persists despite some intersection failures. These two candidate
solutions are denotedlarge intersectionsandnumerous intersectionsand are described below.

3.1.2 Replicating the Intersection

Since intersection is the weak point of quorum system, the nodes at the intersection between quo-
rums must be replicated. As previously said, for a quorum system to remain active, either its
quorums must tolerate member failures or it must tolerate quorum failures. This is achieved using
replication of intersection in two ways.

1. Large intersections:First, the intersection among any couple of quorum containsmore than
a single node. Even though a member of the intersection fails, the intersection still holds.

2. Numerous intersections:Second, quorums are replicated such that many intersections ex-
ist. If the common members of two quorums fail an intersection remains between another
couple of quorums.

In the latter case (the numerous intersections) quorum system fault tolerance is ensured by quorum
replication while a single quorum may fail. In the former case, however, quorum system fault
tolerance is ensured by intersection replication, and the whole quorum system is as fault-tolerant
as any single quorum.

Depending on the type of failure we consider, one of these approaches is better suited than the
other.

Applications of large intersections. When considering byzantine failures, i.e., where nodes
might disrespect their specification during failure instead of simply stopping, large intersections
are required. In [MR04], Malkhi and Reiter define themasking quorum systemsclass including
quorum systems where each couple of quorums have 2f +1 elements in common. This quorums
are used to cope withf byzantine faults. In order to obtain the accurate information that has been
stored into quorumQ, one must request at least 2f + 1 elements of quorumQ to ensure that the
majority of answers (f +1 answers) contain the right value. That is, requesting the value rely on
contacting a quorum that have 2f +1 elements in common with other quorums.

Applications of numerous intersections. Unlike large intersections that require larger quorums
to handle faults, numerous intersections require multiplequorums. Since the complexity of access-
ing a quorum depends on its size, it is more complex to access quorums in a quorum system with
large intersections than quorums in a quorum system with numerous intersections. Differently, the
crash failure model we use, which allows a node to stop at any time but not to disrespect arbitrarily
its specification, does not require heavy large intersections but rather numerous intersection. Due
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to the complexity of accessing large intersections, numerous intersections will be preferred for the
quorum system we consider in the following.

4

6
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3

5 7

Figure 3.1: A finite-projective-plane-based quorum systemwith numerous intersections. The quo-
rum system contains 7 quorums of size 3, where each element belongs to exactly 3 quorums:
{{1,2,4},{1,3,7},{1,5,6},{2,3,5},{2,6,7},{3,4,6},{4,5,7}}.

In [Mae85], Maekawa suggests quorum system where quorums intersect at exactly one ele-
ment. This property naturally excludes large intersectionproperty while it allows numerous inter-
sections property. The quorum system consists ofm2 + m+ 1 nodes wherem= pk wherep is a
prime andk a constant. This quorum systems hasm+1 quorums, each of sizem+1 and each pair
of quorum having exactly one element in common. Figure3.1presents such a quorum system.

Disjoint intersections. A quorum system may satisfy numerous intersections if thereare mul-
tiple intersections. Since intersections are simply sets,numerous intersections implies that the
number of intersecting sets are different. Disjoint intersection is a stronger property in the sense
that a quorum system satisfying numerous intersections maynot satisfy disjoint intersections and
a quorum system satisfying disjoint intersections satisfies numerous intersections. A quorum sys-
tem that satisfies disjoint intersection contains quorums that intersect each other on distinct nodes.
More formally, we have the following definition:

Definition 3.1.2 (Disjointness Property) A quorum systemQ over U satisfiesdisjointnessif and
only if, for any three distinct quorums Q1,Q2,Q3 ∈ Q , Q1∩Q2∩Q3 = /0.

Figure3.2 depicts an example of a 3-gon quorum system that have disjoint intersection prop-
erty. Then-gon quorum systems have been proposed in [KH97] for the purpose of coteries con-
struction. Observe that somen-gon quorum systems do not satisfy disjoint intersection, the 3-gon
quorum system used here is a special case described for the sake of illustration of disjoint intersec-
tion property.

47



CHAPTER 3. FACING SCALABILITY

4

2

1

3

5 6

Figure 3.2: A 3-gon-based quorum system. The quorum system contains 4 quorums of size 3,
where each element belongs to at most two quorums:{{1,2,4},{1,3,6},{2,3,5},{4,5,6}}.

About the fault-tolerance of quorum system, the fact that these intersections are disjoint implies
that there must be at least|Q | nodes that fail for all quorums to fail. A biquorum system of the
grid structure has been presented in [LWV03] where lines and columns represent two types of
quorums. This biquorum system satisfies disjointness, all intersections being disjoints. In other
words, provided a grid quorum systemQ with Q1,Q2,Q3 ∈ Q we haveQ1∩Q2∩Q3 = /0 despite
every two quorums intersect. If all of the|Q | nodes located on the diagonal of this grid biquorum
system fail then no quorums are active anymore. More generally, the fact that these intersections
are disjoint implies that intersection failures are not correlated. Despite the failure of nodes at one
intersection, the quorums these nodes were part of are not active anymore, but still it may exist
(independently) some quorums that intersect.

3.2 Communication Structure of Quorum Systems

Beyond the structure of quorum system, an important aspect isthe way the nodes of the quorum
system communicate with each other. The stronger assumption, yet more powerful one, is that ev-
ery node can communicate directly with any other node. In this case, the communication structure,
also calledoverlay, represents a complete graph where each node has a degree ofn− 1, where
n is the system size. Specific settings make this assumption unreasonable. First, in large-scale
systems with few millions of participants, the memory of a single node may not afford recording
the address of then− 1 other nodes. Second, if the system is also dynamic then simultaneous
join/leave may produce a large amount of messages, notifying new node addresses, that limited
bandwidth capacity cannot handle. Finally, in wireless sensor networks, communication is physi-
cally restricted to geographical proximity, so that a node is able to communicate with other only if
all nodes are located in the same transmission range.

Along with this Section we consider logical communication overlay. More precisely, we as-
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sume that any node has the ability to communicate with another if it has enough information to
send message that will be routed to him through the use of an underlying network layer. In other
words, we assume that a given network layer is provided so that address can be resolved and infor-
mation can be routed as it is done through the OSI network layer, on the Internet. Consequently, a
nodei simply needs the address of nodej to communicate with him. Shortly, in this case we say
that nodei knows about nodej. Section3.4 discusses some alternative for specific settings like
wireless networks.

3.2.1 Non-Adaptive Quorum Probe vs. Adaptive Quorum Probe

A non-adaptive quorum probeis the action of probing a quorum while all the members of this
quorum are known at the beginning of the probe. The only way toprobe a quorum in a single
round-trip requires that the client knows all the quorum members at the time it starts to probe, as
presented in Chapter2. In contrast, anadaptive quorum probeis the action of probing a quorum
without knowing all of its members. For example, a client mayinitiate an adaptive quorum probe
by contacting a member of this quorum that, in turn, contactsanother member of this quorum,
and so on. From a different point of view, one might think at a non-adaptive probe as contacting
nodes using a reactive routing whose initiating nodei ignores some nodes that it has to contact: for
instance,i may contact indirectly a nodej it does not know about by contacting other nodes until
reaching someone that knowsj.

Adaptive quorum probe helps finding an active quorum in a lightweight manner. While con-
tacting all nodes of the quorum system to probe a single quorum results a fortiori in message
waste, adaptive quorum probe can progressively contact each member of an active quorum with
few wasted messages. Next paragraphs present solutions that use adaptive quorum probe over a
replicated set of quorums.

A tree-based quorum system with numerous intersections. Some quorum systems benefit
from the power of replication to tolerate failures. The binary-tree protocol of Agrawal and El
Abbadi [AE89] proposes the use of a recursive function returning either the current node plus
the result of the same function applied to one child, or the result of the function applied to both
children. Applying such function at the root of a k-equilibrated tree returns quorums. A quorum
is thus built following a single path from the root either to the leaves or interrupting this path at
some nodei and duplicating it in the two subtrees rooted at nodei. Any quorum intersect any other
quorum in this approach. The motivation behind this quorum system is to allow an adaptive quorum
probe in the presence of failure. During a quorum probe, if a node of the tree has failed, then the
probe replaces the failed node by its two children in the tree: intersection is still guaranteed.

Path quorum system. The Path quorum system appeared in [NW98]. This protocol uses a grid-
like structure where each cell of the grid corresponds to a node. The structure is static and a
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dynamic version of this quorum system is described later on,in Subsection3.2.2. A quorum is
defined as a path traversing the grid from left to right and from the bottom to the top. Quorum
probes are adaptive to remedy failures without sounding allquorums. When the client initiates
the probe, it only knows a single access point of the grid. This node access point, say nodei,
contacts in turn a member of one of the quorumsi also belongs to. If this node is failed, then
nodei tries contacting another member of one of the quorums it belongs to, and so on until nodei
finds an active nodej. From this point on, nodej acts similarly and so on until a whole quorum is
contacted.

3.2.2 Reparation of Accumulating Failures

As previously explained, structural properties may strengthen fault-tolerance of quorum systems.
However, when failures accumulate, a reconfiguration must occur to refresh the set of nodes com-
posing the quorum system, whatever the quorum system is. Thetype of reconfiguration we con-
sider in this section relies on the structure of the quorum system in use and aims at reparing the
system rather than replacing it. In the following, we present several reparation techniques used in
the literature.

Dynamic quorum adjustment. Herlihy presents, in [Her87], dynamic quorums to handle fail-
ures. The chief motivations for these quorums rely on transactions of distinct levels. Each level
corresponds to a dedicated quorum configuration where read and write quorums intersect. Differ-
ently from the quorum reconfiguration presented in Chapter2, configuration are dependent since
write quorums of a given level must intersect all read quorums of any higher level. An inflation
mechanism handles quorum failures or partitions of the quorum system in the following way: If
failures disable all write quorums of levelℓ, then the transaction contacts a write quorum of the
smallest level higher thanℓ that owns active quorums.

Dynamic path quorum system. The dynamic path quorum system [NW03] is a dynamic adap-
tation of the path quorum system in which the grid cells are replaced by Voronoi cells. The quorum
system is dynamic and uses adaptive quorum probe so that quorum member can be added or re-
moved dynamically while every point of the coordinate spacemust have an active responsible
node. The quorum consists in traversing vertically and horizontally the coordinate space.

Dynamic and/or quorum system. The dynamic and/or quorum system [NN05] uses a tree-
based structure. Similarly to the tree quorum protocol [AE90], a recursive function is applied on
the height of the tree. As entitled, this function, startingfrom the root of the tree, consists in
alternatively choosing the left childand the right child of the current node, or the left childor the
right child of the current node. Conversely to other tree-based quorum protocols, inner nodes are
virtual and are simply used for choosing members of a quorum,only leaves represent system nodes.
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For the same tree quorum system, two alternated sequences ofand andor, define the biquorum
system. More precisely, the sequences starting with anand at the root contain all quorums of the
first type whereas the sequences starting with anor at the root contain all quorums of the second
type. This quorum system, originated in [Val84] has been made dynamic in [NN05]. It is dynamic
in the sense that after a leaf fails, the tree is re-balanced so that old quorums and new ones still
intersect.

3.3 Scalable Distributed Shared Memory (benefiting from Lo-
cality)

This Section defines a scalable distributed shared memory, called Square1. We focus here on
the scale-shift of the number of clients in the system. Square does not contain all the system
nodes but rather uses a dynamic quorum system that represents a subset of the system nodes,
that is Square is able to grow depending on the request rate, by making active nodes enter the
quorum system. The core structure of the quorum system provides optimal load when not altered
by dynamic events. This structure adapts to failures using local reconfiguration that involves a
constant number of message exchanges. The structure also adapts to load variation by shrinking
and expanding. The low load, reconfigurable, dynamism, and self-adaptation makes Square a
distributed shared memory especially suited for large-scale systems.

3.3.1 Trading Availability with Dynamism

Since pioneered work of [AE89], many researches focused on the robustness and availability of
quorum system. Therobustnessof quorum system expresses the ability for the quorum systemnot
to be affected by isolated failure.

While these properties were of crucial importance in failure-prone static quorum systems, avail-
ability and robustness are mostly provided by the dynamism of quorum systems. As already men-
tioned in Subsection3.2.2, in dynamic quorum systems, the failures are coped with using repara-
tion mechanisms so that failed members are replaced by new active ones.

Dynamic grid quorum system. At the core of Square, a new quorum system called the dynamic
grid quorum system lies. This quorum system is similar to thegrid protocol [Mae85,AV86] and
the path quorum system [NW98] in that it uses a biquorum system where quorums represent lines
and columns of a grid. The grid corresponds to a two-dimensional coordinate space[0,1)× [0,1)
divided into cells/subregions, as rectangles in the plane.Each subregion of the grid is mapped to a
node that is responsible of. In the following, we refer to thequorum system as thememoryand to
the quorum members as thereplicas.

1SQUARE stands for Scalable QUorum-based Atomic memory with local REconfiguration.
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The communication structure forms a torus: (i) inside the grid, nodes responsible of two abut-
ting regions are neighbors; (ii) at the edges of the grid, nodes responsible of the two opposite
regions of the same abscissae/ordinate are neighbors too. Figure 3.3 draws the torus communi-
cation graph for a dynamic grid quorum system divided into 16subregions. The quorum system
contains only a subset of the system nodes. Each client knowsat least one access node inside the
quorum system to which it can request an operation, and everymember of the quorum system can
communicate trough neighborhood, i.e., two quorum memberscommunicate if and only if they are
neighbors.

Figure 3.3: The torus communication structure of the dynamic grid quorum system. Neighbors are
responsible of two abutting regions inside the grid or two opposite regions at the edge of the grid.
(This later neighboring relation is depicted with dashed arrows.)

The size of the structure, i.e., the number of subregions it contains, is dynamic. Initially, only
one replica is responsible for the whole space. The bootstrapping process pushes a finite, bounded
set of replicas in the quorum system. Since the system is dynamic, nodes may join and leave (or
fail) at arbitrary time. In order to maintain the communication overlay some adjustments follows a
dynamic event using a technique used in distributed hash table maintenance [RFH+01] as described
below.

• Join event: the joining nodei contacts a responsiblej of the grid. This responsiblej splits
its subregions in two halves. This split is made alternatively horizontally and vertically to
keep the subregions as square as possible. Hence, ifj has lastly split its zone vertically then
it splits its zone horizontally and vice-versa. The subregion halves form two new subregions.
The one with the lowest abscissae and ordinates is mapped toj while the other is mapped to
the joining nodei.

• Leave event: when a nodei leaves the overlay, its neighbors detect the failure and oneof
its neighborsi decides, based on its unique identifier, to repair the overlay. The reparation is
made so that each subregion keeps its rectangle shape and oneactive responsible node.
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We refer to a region (or simply to a replica)r as the product of two intervals:I r
x =

[r.xmin, r.xmax) andI r
y = [r.ymin, r.ymax), wherer.xmin(resp.r.xmax) is the left-most (resp. right-

most) abscissa of zoner, andr.ymin (resp. r.ymax) is the bottom-most (resp. top-most) abscissa
of zoner. Intuitively, we define dynamic quorum sets as dynamic tiling sets, that is sets of replicas
whose zones are pairwise independent and totally cover the abscissa and ordinate of the coordinate
space shared by the replicas.

Definition 3.3.1 (Dynamic Quorum) Let c be a real constant with0≤ c < 1. The consultation
quorum Qh,c is defined as the set of replicas satisfying{r.ymax> c≥ r.ymin}. The propagation
quorum Qv,c is defined as the set of replicas satisfying{r ∈ I | r.xmax> c≥ r.xmin}.

Theorem 3.3.1 For any consultation quorum Qh,c and any propagation quorum Qv,c′, the inter-
section holds: Qh,c∩Qv,c′ 6= /0.

The proof follows from the fact that it exists a node responsible for point(c,c′) in the space.

Data consistency characteristic. For quorum systems whose application is data storage, some
data maintenance procedures must be added to the join/leaveprocedure. Actually, it might happen
that a joining node is not aware of the data maintained by the quorum it joined. Therefore, quorum-
based read and write operations may no longer satisfy consistency. In addition to updating its set
of neighbors, a joining node has also to update its state according to the state of its neighbors.

Note that if the joining node acquires a data that is not yet replicated at all nodes of a single
quorum, validity is not violated. Moreover, the newly arrived node does not need to maintain
a replica of the data owned by each quorum, but simply the mostup-to-date data of the object
it encounters. More technically, the join event in the dynamic grid quorum system requires one
message round containing the current data between the joining node and its neighbors on the
overlay. Later on, we detail this procedure as part of the Square algorithm specification.

3.3.2 Congestion Avoidance

A crucial metrics of quorum system is load. (Load is formallydefined below.) This metrics is
responsible of two issues that may result in important delays and message loss: congestion and
overload. Congestion happens when load is applied at some specific locations of the memory
whereas overload happens when the system receives too many requests that cannot be handled.
More specifically, we consider that the memory is notoverloadedif at least one member is not
overloaded and that a quorum is overloaded when at least one of its replica is overloaded. (Note
that if at least one node is overloaded, then other members ofthe two quorums it belongs to are
often overloaded too.) Coping with congestion requires load-balancing while coping with overload
requires more capacity. Here, we especially focus on load-balancing to face congestion. Overload
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issue is studied in Subsection3.3.4. To better understand how congestion apply to a quorum
system, we first have to define the access strategy over a quorum system and its resulting load.

An access strategyover a quorum system is a probability distribution functionthat maps each
quorum with its probability of being accessed such that the sum of probabilities over all quorums
equals 1.

Definition 3.3.2 (Access Strategy)Anaccess strategyω for a set systemS is a probability distri-
bution on the elements ofS at time t. That is,ω : S ×T→ [0,1] satisfies:∑s∈S ω(s) = 1.

Next, we restate the definition of load that appeared in [NW98]. We first introduce the load
of an elementi as the sum of the access probabilities of the quorumsi belongs to. For instance,
if node i belongs to two quorumQ1 andQ2 and the access probability isω, then the load ofi is
Lω(i) = ω(Q1)+ω(Q2).

Definition 3.3.3 (Load of an element)Given an access strategyω for a quorum systemQ over a
universe U, theloadof an element i∈U is

Lω(i) = ∑
Q∈Q :i∈Q

ω(Q).

Second, we restate the definition of the load of a quorum system as the load of the maximally
loaded element minimized over all the possible access strategies.

Definition 3.3.4 (Load of a quorum system)Theloadof a quorum systemQ is

L(Q ) = min
∀ω

{

max
i∈Q
{Lω(i)}

}

.

In some sense the load of a quorum system indicates how this quorum system balances the
load over its distinct members. For example, a highly loadedquorum system does not balance the
load well, since it means that even for the best strategy there still exists a highly loaded element.
In contrast, a poorly loaded quorum system would accept a strategy where all elements can be not
much loaded. To illustrate the former example, one can referto the star quorum system presented in
Subsection3.1.1: Despite the access strategy, there exists a highly loaded element, which translates
into a highly loaded quorum system. For the latter example, we explain how the dynamic grid
quorum system achieves optimal load hereafter.

Avoiding congestion in the dynamic grid quorum system. The dynamic grid quorum system
presents desirable features to face congestion. First, if any operation accesses both a consultation
quorum and a propagation quorum, then the load is well-balanced over the quorum system. This
is due to the fact that the quorum system resulting from the union of any consultation quorum and
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any propagation quorum has optimal load.2 Second, each element of the dynamic quorum system
participates equally in handling the load when all quorums are uniformly accessed. As a result,
balancing the load among quorums of the system balances the load among all members. First, we
describe these two features in detail. Then, we present how to balance the load over the dynamic
grid quorum system to avoid congestions.

The dynamic grid quorum system is similar to the grid quorum system. In case enough nodes
join the structure by requesting uniformly the nodes present, it is easy to see that all subregions have
equal size. In this case, the unions of any consultation quorum and any propagation quorum of the
dynamic grid quorum system forms a grid quorum system. More formally, for anyDG = 〈S1,S2〉,
the quorum systemQ = {Q = Q1∪Q2 : ∀Q1 ∈ S1,∀Q2 ∈ S2} is a grid quorum system. The
following analysis shows that the grid quorum system has optimal load.

Lemma 3.3.2 If Q is a grid quorum system over the universe U, thenL(Q ) = 2
√

n−1
n and it is

optimal.

Proof. Let n be the number of nodes inU and lety be a mapping of any node ofU to 1
n. By

the quorum definition ofQ , |Q | = n and anyu∈U belongs to 2
√

n−1 quorums. Consequently,

L(Q ) = 2
√

n−1
n . Observe that∑u∈U y(u) = 1 and for anyQ ∈ Q we have∑u∈Qy(u) = L(Q ).

Following this observation, Proposition 4.7 of [NW98] states that this load is optimal. 2

Homogenizing quorum systems. The disjointness property previously defined (Defini-
tion 3.1.2) is not sufficient to ensure that the load can be well balancedamong participants. For
instance, when most of the nodes of the quorum system are not part of any intersection, these
nodes do not participate in handling the load of the system: removing or adding these nodes to the
quorum system does not change the load of the quorum system, like if those nodes were useless.

Garcia-Molina et al. [GMB85] defined a relation between coteries to identify which coterie
of the two is more general than the other coterie. If for any quorumH of coterieC2 there exists
a quorumG of another coterieC1 that is included inH, thenC1 dominates C2. Built upon this
relation, anondominated coterieis a coterie that is dominated by no coteries. This definition
allows to identify a coterie in which each quorum element is necessary for intersection with other
quorums and where each intersection contains a sufficient amount of nodes too. As an extension
of the domination relation, a bicoterie is dominated by another bicoterie or it is nondominated as
defined in [MMR92]. We directly apply the definition of [MMR92] to biquorum systems. (Observe
that a nondominated biquorum system is also a nondominated coterie.)

Definition 3.3.5 (Biquorum Dominance) A biquorum system B1 = 〈C1,C′1〉 under U dominates
another biquorum system B2 = 〈C2,C′2〉 under U if and only if:

2Here load stands for the Definition3.3.4.
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1. B1 6= B2.

2. For any H∈C2, there exists G∈C1 such that G⊆ H.

3. For any H∈C′2, there exists G∈C′1 such that G⊆ H.

Nondominance does not provide us with sufficient guarantee to minimize load. It is noteworthy
that all quorums of a nondominating biquorum system have a minimal number of elements: remov-
ing one element would violate intersection property with another quorum. However, this property
does not provide us with sufficient guarantee to balance the load. Take as an example the following
nondominated biquorum system〈{{1},{2,3}},{{1,2},{1,3}}〉 where quorums of the first type
{1} and{2,3} are used as consultation quorums and quorums of the second type{1,2} and{1,3}
are used as propagation quorums. Then an ideal access strategy that minimizes load maps quorum
{1} to 0, and quorums{2,3}, {1,2}, and{1,3} to 1

3, meaning that propagations would occur two
times more frequently than consultation. However, frequency of consultation and propagation are
ruled by the operation specification and the operation frequency imposed by the environment. To
encompass the fact that quorum members play different role,thus, having unequal responsibilities,
we propose a new constraint on the quorum system. This constraint, completeness, forces any
element to have the same responsibility in quorums.

Definition 3.3.6 (Completeness)A quorum systemQ over U satisfiescompletenessif and only if,
for any u∈U, |{Q∈ Q : u∈Q}|= 2.

An interesting fact is the following: despite how constraining they are, disjointness and com-
pleteness together provide more scalable coteries than nondominance. First-of-all, observe that a
quorum system that satisfies completeness is also a coterie,since completeness implies minimality.
(Recall that a quorum systemQ verifies minimality if and only if, for allQ1,Q2 ∈ Q , Q1 6⊂ Q2.)
An interesting characteristic of complete and disjoint biquorum systemsB = 〈Q1,Q2〉 is that each
quorum has size|Q1|+ |Q2|−1. This is straightforward from the fact that all intersections contain a
single element and are disjoint. The drawback is that they may accept a lower number of quorums
than quorum systems that do not satisfy these constraints. Comparing with the path quorum system
that does not verify completeness, an adaptive probing of the path quorum system can switch from
probing one quorum to probing another quorum (without backtracking). This is due to the fact that
there are many quorums. Alternatively, dynamic quorum systems simply replace failed nodes by
active ones without modifying the quorum probe.

The dynamic grid biquorum system guarantees completeness property under some circum-
stances. Since this system is dynamic, the structure may transiently not be equilibrated. However,
in case the grid structure is equilibrated the dynamic grid biquorum system verifies both complete-
ness and disjointness.

A remaining issue is to force the load to apply equally to all quorums. As previously investi-
gated in Definition3.3.4, the load of a quorum system is computed independently of anyaccess
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strategy. In fact, the result is the load of the busiest element induced by the best possible strategy
that minimizes it among all possible access strategies. However, from a practical standpoint, a
quorum system is always accessed following a strategy depending on clients behaviors but rarely
the best one. Moreover, in general, determining the best possible strategy to access the quorum
system is a difficult task.

In order to consider the variation of load due to specific distribution of requests applied to
quorums and to replicas, we propose a more practical definition of load, called theworkloadof a
quorum member.

Definition 3.3.7 (Workload of a quorum element) Let Q be a quorum system over universe U
receiving operation requests at any time from the environment. Theworkloadwi of a given member
i of any quorum ofQ is the number of requests i has received but has not treated yet.

For the purpose of remedying workload increase due to skeweddistributions applied to the
dynamic grid quorum system, we propose a mechanism to balance the workload over all replicas.
Assume a large-scale system where numerous clients try to access a large dynamic grid quorum
system by executing operations on some nodes without knowing each other, and without knowing
replicas. Assume also that every quorum member treats the requests at the same rate. It is highly
probable that requests of clients are heterogeneously scattered over the replicas. To circumvent
the resulting unbalanced workload, we propose that in any quorum, overloaded replicas share
their workload with replicas of distinct quorums, to improve workload-balancing. Next paragraph
details this mechanism.

Thwarting the overlay to balance the workload. The chief aim ofSquareis to provide a shared
memory for dynamic environments. As said before, clients can access an atomic object ofSquare
by invoking a read or a write operation on any replica this client knows inSquare. This invocation
is done through theOperation procedure. Pseudocode of this procedure is shown in Algorithm 4.
All the information related to this request are described inparameterR . For instance, if the client
requests a read operation thenR .typeis set toread, and valueR .valueis the default valuev0. For
a write operation,typeis set towrite andvalueis the value to be written. The other subfields ofR
are discussed below.

When such a requestR is received by a replica, sayi, i first checks whether it is currently
overloadedor not. Recall that a replica is overloaded if and only if it receives more requests than
it can currently treat. Ifi is overloaded then it conveys the read/write operation request to a less
loaded replica. This is accomplished by theThwart process (cf. Line20). Conversely, ifi is not
overloaded then the execution of the requested operation can start andi becomes theR .initiator of
this operation. Thus,i starts the traversal process: First,i Consultsa consultation quorum to learn
about the most up-to-date value of the object and an associated tag (Line24). As explained later,
this results in updating the local value-tag pair. From thispoint on, if the operation is a write then
the counter of the request tag,R .tag, is set to the incremented local one (Line27) and the request
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tag identifier is set toi to break possible tie. Second,i Propagatesin the propagation quorum
starting ati the new value and its associated tag to ensure this value willbe taken into account in
later operation executions. In case of write, theR .valuepropagated is the value to write, initialized
by the client; while in case of a read, it is thevaluepreviously consulted (Line32). Finally, this
consulted value is returned to conclude the read operation,as shown at Line35.

Observe that, if the operation is a read and the consulted value has already been propagated
twice at this replica, then the operation completes just after theConsult without requiring aProp-
agatephase (see the paragraph on the improvement on the probe complexity of a read operation
hereafter).

The Thwart aims at balancing the workload among participants. This mechanism, as depicted
in Algorithm 5, relies essentially on two procedures, calledThwart andForward . TheThwart
is executed ifi receives an operation request while it is overloaded (cf. Line20 of Algorithm 4).
This mechanism checks the workload of each quorum until it finds a non-overloaded one. For
this purpose a sequence of quorum representatives, and located on the same diagonal axis, are
contacted in turn, as shown in Figure3.4. Each of these representatives is a replica subsequently
denoted the target of the requestR .target.

It is noteworthy that contacting subsequent replicas located on a diagonal axis leads to con-
tacting all quorums. Furthermore, contacting only one representative per quorum is sufficient to
declare that this quorum is overloaded or not. By definition, these replicas are not necessarily
neighbors, and thus, an intermediary replicaj is simply asked toForward the thwart toR .target
without checking its workload. Because of asynchrony, although a replicai sends a message to its
neighbor j, at the timej receives the messagej might have modified its state and might no longer
be the neighbor ofi. (Because a new zone may have been created between nodesi and j.) To en-
compass this, aR .point indicates the final destination in the overlay coordinate space and a replica
Forwarding or Thwarting first checks whether it is still responsible of this point, asexpressed
Lines13and3.

Figure 3.4: The thwart mechanism.
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Algorithm 4 Read/Write Operation
1: State of nodei:
2: status∈ {node, replica}, the status of the node initiallyreplica

3: available∈ {true, false}, a boolean initiallytrue

4: tag, the tag with fields
5: counter, the number of write operations that precedes this writing
6: id, the identifier of the writer that wrote this tag
7: R , the request with fields
8: starter, the node that started to forward the request by thwarting
9: value, the value to write or⊥

10: tag, the tag encountered so far
11: initiator, the node that started treating the request by traversing
12: target, the node targeted by the request
13: point, the next point (in the overlay) where the request is forwarded

14: Prerequisite Functions:
first-time-traversal() indicates whetheri is the starting point of the traversal.

15: Operation(R ):
16: if availablethen
17: if overloadedthen
18: if first-time-thwart(R ) then
19: R .starter← i

20: Thwart( R , i)
21: else
22: if first-time-traversal(R ) then
23: R .initiator← i

24: Consult(R , i)
25: if R .type= write then
26: R .tag←
27: 〈tag.counter+1, i〉
28: Propagate(R , i)
29: Acknowledge(R )
30: else
31: R .tag← tag
32: R .value← value
33: if R .valuehas not been propagated twicethen
34: Propagate(R , i)
35: Return(value)

3.3.3 Read and Write Operation using Local Knowledge

Probe complexity. Probe complexity is defined alternatively with distinct failure models. Peleg
and Wool define the probe complexity of quorum systems in [PW02] as the complexity to contact
either an active quorum or to obtain sufficient hints provingthe lack of such an active quorum.
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Algorithm 5 The Thwart Protocol invoked by the Read/Write Operation
1: Prerequisite Functions:

next-point-on-diagonal() returns the replica identifier responsible of the extreme north-east point of the zone
of i.

closest-neighbor-of(R .point) returns the neighbor that is responsible of the coordinate point given as an argu-
ment.

2: Thwart( R , i):
3: if R .target= i∧R .point∈ zonethen
4: if R .starter= i then
5: Expand()
6: else ifoverloadedthen
7: R .point← next-point-on-diagonal()
8: j ← closest-neighbor-of(R .point)
9: Forward(R , j)

10: else
11: Operation(R )

12: Forward(R , i):
13: if R .point∈ zonethen
14: for j ∈ neighborsdo
15: if R .point∈ j.zonethen
16: R .target← j

17: Thwart( R ,R .target)

Their definition relies on the quorum system structure and assume an adversarial failure model.
Later on, Nadav and Naor [NN05] define the probe complexity as the communication and time
complexity of accessing a quorum. This definition relies on the communication overlay in use and
assumes a randomized failure model.

Failure detection was the responsibility of the quorum probe mechanism in static quorum sys-
tem while it becomes the responsibility of quorum system adjustment in dynamic quorum systems.
Consequently, while probe complexity as defined by Peleg et al. [PW02] relies on the cost of find-
ing a quorum of failed nodes in static systems, probe complexity relies only on the cost to find an
active quorum in dynamic systems. Indeed, dynamic quorum systems [NW05,AM05,NN05] aim
at reparing the quorum system locally after failure detection. In dynamic quorum systems, a leave
is handled similarly as a failure and such an event is detected locally by the neighbors of the node
involved. Consequently, failure detection is no longer partof the quorum probe mechanism.

As presented in Chapter2, the elementary phase of a read or write operation consists in con-
tacting a quorum. Hence, quorum probe is of crucial importance in the design of distributed shared
memory.

However, there is a tradeoff between time complexity and communication complexity. The
optimal time complexity to probe a quorum is two message delays since the client needs at least
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one round-trip to contact a quorum. The solution proposed inChapter2 presents already optimal
time complexity. The tricky point relies on the message complexity associated with such result.
Indeed to provide a fast probe, the client needs to know an active quorum. This induces that either
every client is notified as soon as any single failure occurs or it contacts all quorums to ensure
that at least one is active. In both cases, the message complexity is unaffordable in a large-scale
system where bandwidth resource is limited. Next, we investigate the best compromise between
communication and time complexity in a large-scale environment.

Algorithm 6 The Traversal Protocol invoked by the Read/Write Operation
1: Prerequisite Functions:

next-vert-nbr() returns the next vertical neighbor in the sense depending onthe last message receipt, to continue
the propagation. If it received south-directed (resp. north-directed) message, it sends it in the south (resp. north)
sense.

other-vert-nbr() returns the next vertical neighbor in the opposite sense of the last message sending.
next-hor-nbr() returns the next horizontal neighbor in the sense dependingon the last message receipt, to

continue the consultation.

2: Consult(R , i):
3: if availablethen
4: R .tag←max(tag,
5: R .tag)
6: R .value←max(value,R .value)
7: if ¬(R .initiator = i) then
8: Consult(R ,next-hor-nbr())
9: else if i has already consultedthen

10: End()

11: Propagate(R , i):
12: if availablethen
13: tag←max(tag,
14: R .tag)
15: value←max(value,R .value)
16: if ¬(R .initiator = i) then
17: Propagate(R ,next-vert-nbr())
18: else if i has already propagatedthen
19: End()
20: else
21: Propagate(R ,other-vert-nbr())

Reading and writing by traversing the overlay. The Traversal, presented in Algorithm6, con-
sists in two procedures as shown in Figure3.5(a), called respectivelyConsult andPropagate; the
former consults the value and tag of a whole consultation quorum whereas the latter one propagates
a value and a tag to a whole propagation quorum. Each of these procedures is executed (only ifi
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is available, i.e., i is not involved in a dynamic event) from neighbor to neighborby forwarding
the information about the requestR , until both quorums (i.e., the consultation quorum and propa-
gation quorum) have been traversed. The traversal ends oncethe initiator of the traversal receives
from its neighbor the forwarding request it initially sent (i.e., the ”loop” is complete). WhenCon-
sult or Propagatecompletes, the initiatori gets back the message (Lines10and19), knowing that
a whole quorum has participated. From this point on,i can continue the operation execution. That
is, by directly sending the response to the requesting client if operationR is complete otherwise
by starting aPropagatephase.

There are two differences betweenConsult andPropagate. First, theConsult gathers the most
up-to-date value-tag pair of all the consultation quorum replicas (Line6) whereas thePropagate
updates the value-tag pair at all replicas of the propagation quorum (Line15). Second, theConsult
contacts each member of the quorum once following a single direction (Line8), while theProp-
agatecontacts each member of the quorum twice with messages sent in both directions (Lines17
and21). Consequently, if the value has been propagated twice at node i, theni knows that the value
has been propagated at least once to every other replica of its propagation quorum. This permits
later read operation to complete without propagating this value once again.

Improvement on the probe complexity of a read operation. Not only, the traversal is lock-free
compared to [AGGV05], but it does not require the confirmation phase of [DGL+05, CGG+05],
while proposing fast read operations. This results directly from the adaptiveness of our traver-
sal mechanism. Minimizing atomic read operation latency suffers some limitations. Indeed, to
guarantee atomicity two subsequent read operations must return values in a specific order. This
problem has been firstly explained in [Lam86] as the new/old inversion problem. That is, when a
read operation returns valuev, any later (non-concurrent) read operation must returnv or a more
up-to-date value.Squareproposes read operations that may terminate after a single phase, solving
the aforementioned problem without requiring locks or additional external phase. For this pur-
pose, theConsult phase of the read operation identifies if the consulted valuehas been propagated
at enough locations. If the valuev has not been propagated at all members of a propagation quo-
rum, aPropagatephase is required after the end of theConsult phase and before the read can
returnv, otherwise a later read might notConsult the value. Conversely, if a valuev has been
propagated at a whole propagation quorum, then any laterConsult phase will discoverv or a more
up-to-date value, thus the read can returnv with no risk of atomicity violation.

The solution is presented in Figure3.5(b) and relies on interleaving messages during theProp-
agatephase. This phase is executed from neighbor-to-neighbor. Figure 3.5(b) presents a propa-
gation quorum of the torus grid as a ring where each circle models a replica and a link models a
relation between two neighbors. The black circle represents the initiator of thePropagatephase.
Unlike theConsult phase, thePropagatephase starts by two message sendings: one message in
each of the two senses (north and south senses in the torus). Those messages are conveyed in
parallel from neighbors to neighbors until the initiator receives them back.
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Figure 3.5: (a) The traversal mechanism traverses the overlay either horizontally following a con-
sultation quorum in one sense or vertically following a propagation quorum in both senses. (b) The
PropagatePhase consists in following the propagation quorum, traversing the overlay, in the two
senses. Traversing the torus is represented here by a ring.

The idea is simple: when a replica of the ring receives a first message it simply updates its local
value-tag pair with the one of the message; when the replica receives a second message it deduces
that all the members of a propagation quorum have updated their local pair to the propagated one.
During a Consult phase of a read operation, if the (most up-to-date) consulted pair 〈v′, t ′〉 has
been found at a replicar that has received only one message containing〈v′, t ′〉, then aPropagate
phase must occur before the end of the read operation. If replica r has received two messages
propagating〈v′, t ′〉, then the read can terminate immediately after theConsult phase. For instance,
in Figure 3.5(b) propagation is ongoing: ifr is one of the two bottom replicas, then the read
operation can return immediately, otherwise the read mustPropagate.

3.3.4 Self-Adaptiveness to Unpredictability

Generally, large scale system includes individual participants that act on their own. This behavior
is unpredictable from the system standpoint. Sometimes, toface unpredictability, the system must
adapt. For instance, consider that many participants request in the meantime the same object,
to handle this workload burst the system should increase theamount of capacity. Conversely, if
the workload drops down because of participant inactivity,a large capacity is useless resulting in
resource waste.

Adaptiveness is thus a desirable feature especially for large-scale system where individual be-
haviors are unpredictable. Another approach would have been to use self-stabilizing quorum sys-
tem [Bel99], however, if dynamic events of load bursts occur continuously, then the quorum system
may never self-stabilize. An interesting research work in this context though, would be to inves-
tigate local self-stabilization of quorum systems. In the following, we propose a quorum system
that adapts its amount of resources depending on its workload.

63



CHAPTER 3. FACING SCALABILITY

Adapting the quorum system structure. Here, we present self-adaptive mechanisms ofSquare.
If a burst of requests occurs on the whole overlay the system needs toExpand by finding additional
resources to satisfy the requests. Conversely, if some replicas of the overlay are rarely requested,
then the overlayShrinks to speed up rare operation executions. Finally, when some replicas leave
the system or crash, then aFailureDetection requires some of the replicas around the failure to
reconfigure. Those three procedures appear in Algorithm7.

For some reasons (e.g., failure) a replica might leave the memory without notification. De-
spite the fact that safety (atomicity) is still guaranteed when failures occur, it is important that the
system reconfigures. To this end, we assume a periodic gossipbetween replicas that are direct
neighbors. This gossip serves a heartbeat protocol to monitor replica vivacity. Based on this pro-
tocol, the failure detector identifies failures after a period of inactivity. When a failure occurs the
system self-heals by executing theFailureDetection procedure: a takeover node is deterministi-
cally identified among active replicas according to their join ordering, as explained in [RFH+01].
This replica takes over the responsibility region that has been left, it reassigns a constant number
of responsibility zones to make sure that each region has itsresponsible replica, and it notifies its
neighborhood before becoming newlyavailable.

Algorithm 7 The Adjusting Primitives invoked locally or by the Thwart Protocol
1: Expand:
2: available← false

3: j ← FindExternalNode()
4: ActiveReplication(j)
5: ShareLoad(j)
6: NotifyNeighbor(i)
7: NotifyNeighbor(j)
8: availabale← true

9: Shrink:
10: NotifyNeighbor(i)
11: status← node

12: FailureDetection(j):
13: available← false

14: TakeOver(j)
15: NotifyNeighbor(j)
16: availabale← true

Two other procedures, namelyExpand andShrink are used to keep a desired tradeoff between
workload and operation complexity. When the number of replicas in the memory diminishes, fault
tolerance is weakened and the overlay is more likely overloaded. Conversely, if the overlay quorum
size increases, then the operation latency raises accordingly. Therefore, it is necessary to provide
adaptation primitives to maintain a desired overlay size. The Shrink procedure occurs when a
nodei is underloaded (i.e.,i does not receive enough requests since a sufficiently long period of
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time). If this occurs,i locally decides to give up its responsibility, to leave the overlay, and to
become a common node (i.e., a node that does not belong to the memory). Conversely, anExpand
procedure occurs at replicai that experienced an unsuccessful thwart. In other words, when the
thwart mechanism started ati fails in finding a non-overloaded replica (i.e., the thwart turns around
the memory without finding a non-overloaded replica), theni decides to expand the overlay. From
this point on, initiatori becomesunavailable(preventing itself from participating in traversals),
chooses a common nodej (i.e., a node which does not belong toSquare), and actively replicates
its tag and value atj. From this point on,j becomes a replica,i shares a part of its own workload
and responsibility zone, andj andi notify their neighbors before they become newlyavailable.

3.3.5 Correctness Proof of a Scalable DSM

To show that Square emulates a distributed shared memory, wefirst show, that Square implements
an atomic object. Then, we show that the algorithm terminates under reasonable assumptions.

Safety proof. The following theorem shows the safety property (i.e., atomicity) of our system.
The proof relies essentially on the fact that tags monotonically increase and on quorum intersection
property.

Theorem 3.3.3 Square implements an atomic object.

Proof. First, we show that the tag used in a successful operation is monotonically increased at
some location. In absence of failures, it is straightforward. Assume now that replicai leaves the
memory and that a replicaj takes overi’s zone after aFailureDetection event or j receives an
Expand order: j stop beingavailable until it exchanges messages with its new neighbors (by
NotifyNeighbors event), catching up with the most up-to-date value.

Second, we show that operation ordering implied by tags respects real-time precedence. A
write operationPropagatesits tag in any case while a readPropagatesit if it has not been propa-
gated yet. That is, a whole quorum-column is aware of the tagsof ended operation. All operations
contain aConsult phase, and by quorum intersection (cf. Theorem3.3.1), discover the latest tag.
Because each written tag is unique and monotonically increased, writes are totally ordered and
since the value is always associated with its tag object specification is not violated. 2

Liveness. Here we show that our algorithm terminates under sufficient conditions. In order to
allow the algorithm to progress, we first make a series of assumptions.

1. First, we assume that a local perfect failure detector [CHT96] is available at each replica.
Such a low level mechanism, available in CAN, enables a replica to determine whether one
of its neighbors has failed (i.e., crashed) by periodicallysending heartbeat messages to all
its neighbors. Here, we assume a perfect failure detector but we claim that a weaker failure
detector can achieve the same result (e.g., trusting failure detector [DGFGK05]).
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2. Furthermore, as far as liveness is concerned, we are primarily interested in the behavior of
Squarewhen communication is reliable and failures are not concentrated on a same neigh-
borhood. This leads to the following environmental properties: i) neighbor-failure: between
the time a replica fails and the time it is replaced, none of its neighbors fail; andii) failure-
spacing: there is a minimal delay between two failures occurring at the same point in the
memory.

3. Finally, we assume that clients can act infinitely often, and concurrently. However during a
finite period of time, the level of concurrency is finite. Thismodel is often referenced in the
literature as theinfinite arrival process with finite concurrencymodel [MT00]. This model
limits the number of expand that may occur in a bounded periodof time. With no such an
assumption, continuous expansions of the overlay would make overlay thwart or traversal
impossible.

Theorem 3.3.4 Eventually, every operation completes.

Proof. First, we show that a sent message is eventually received. Let i and j be two neighbors and
j fails while i sends a message. Using its failure detectori will discover j ’s failure and a replica
j ′ will take over j ’s zone. Byneighbor-failureandfailure-spacingassumptions, the next message
from i to j ′ will be successfully received.

Now, we show that the traversal and the thwart mechanisms terminate. We consider the worst
case scenario of the thwart: the thwart wraps around the entire torus. First, observe that the overlay
is a torus and the sense of subsequent messages does not change: east, north, south or diagonal.
Second, by theinfinite arrival with finite concurrencymodel we know that the number ofExpand
events during a finite period of time is finite. This implies that the number of replicas to contact
during a traversal or a thwart is finite and both mechanisms converge successfully. 2

Theorem 3.3.5 Infinitely often the memory is not overloaded.

Proof. By the infinite arrival with finite concurrencymodel, the level of concurrency is bounded
during a period of time sufficiently long. From the above theorem, operations terminate. Thus
eventually, the workload on each replicai does not increase, i.e.,i is not overloaded, which makes
the atomic memory not overloaded. From theinfinite arrival with finite concurrencymodel, these
periods of time occur infinitely often. Thus infinitely oftenthe memory is not overloaded. This
completes the proof. 2

3.3.6 Peer-to-Peer Simulation Study

This section presents the results of a simulation study performed through a prototype implementa-
tion of Square. The aim of simulations is to showSquareproperties: self-adaptiveness, scalability,
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workload-balancing, and fault-tolerance. The prototype is implemented on top of a peer-to-peer
(p2p) simulator, namely Peersim [JMB04]. Peersim is a simulator especially suited for large-scale
systems. We used its event-based simulation mode in order tosimulate asynchronous communica-
tion and independent node activities.

Environment. We simulate a p2p system containing 30,000 nodes. We recall that this is the
maximum number of nodes that can be potentially added to the overlay/memory. As we show, the
actual number of nodes in the memory during simulation is much lower. Here we describe the
parameters of the simulator:

• We lower bound the message delay between nodes to 100 time units (i.e., simulation cycles)
and we upper bound it to 200 time units.
• Any replica has to wait 1500 time units without receiving anyrequest before deciding to

leave the memory (Shrink ).
• Once in every period of 2000 time units, replicas look at their buffer and treat the buffered

requests, deciding to forward them (Thwart ) or to execute them (Traversal).
• We send from 500 to 1000 operation requests onto the memory every 50 time units. The

exact number of operation requests chosen depends on each ofthe following experiments.
• Each of the requested operations is a read operation with probability 0.9 and a write operation

with probability 0.1.
• The request distribution can be uniform or skewed (i.e., normal). Since the results obtained

with the two distributions do not present significant differences we present only those ob-
tained with uniform distribution.
• We observe the memory evolution every period of 50 time unitsstarting from time 0 up to

70,000. Each curve presented below results, when unspecified, from an average measure-
ment of 10 identically-tuned simulations.

In all experiments, except otherwise mentioned, requests are issued at some rate during a fixed
period, after which the requests stop. To absorb the workload induced by the requests, the overlay
replicates the object at nodes of the system that are not yet in the memory, as specified in the proto-
col. This self-adaptiveness occurs until the memory reaches an acceptable configuration satisfying
the tradeoff between capacity and latency. Anacceptable configurationis a configuration where
the memory is neither overloaded, nor underloaded. This happens when some replicas of the over-
lay shrink while other expand. More specifically, this occurs between the first time the memory
size decreases and the last time the memory size increases for a given fixed rate.

Self-adaptiveness. Figure3.6reports the number of nodes in the memory versus time. In partic-
ular, the solid line indicates the evolution of the memory size along time, showing the adaptiveness
of Square to a constant requests rate. In this figure, the memory reaches the acceptable configu-
ration at time 9350, while the memory leaves the acceptable configuration at time 49,200. Let us
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Figure 3.6: Memory size, quorum size, and number of neighbors.

focus on the three resulting time intervals. Before time 9350, the memory grows quickly and its
growth slows down while converging to the acceptable configuration. Then, the small oscillation
in the acceptable configuration is due to few nodes either leaving the memory (Shrink ) or joining
it as replicas (Expand). This shows howSquareis able to tune the capacity with respect to the
request workload. After time 49,200, the memory stops growing and when the last operations are
executed, workload decreases drastically causing a seriesof memory shrinks until one node re-
mains. Recall that, during all three phases, although operation requests can be forwarded to other
replicas, every operation is successfully executed by the memory, thus preserving atomicity.

Figure3.7shows the adaptiveness of the memory to abrupt changes in workload. The vertical
intervals indicate the error margin at some points of the curve. We simulate a burst of workload at
time 23,000 where the request rate is multiplied by 2. Then requests are stopped at time 46,000.
We clearly see that the memory is reactive and quickly self-adapts to face workload variation: the
memory size grows right after the burst (i.e. it is multiplied by 1.4) and shrinks right after requests
stop (i.e. divided by 1.2), while recovering a steady progress.

Scalability. The dotted line in Figure3.6plots the evolution of the average number of neighbors
of each node along time and depicts an interesting result. Werecall that two replicas are neighbors
if they are responsible of two abutting zones and notice thatwhen the memory contains a single
node then the number of neighbors is 0. Even though the numberof zones keeps evolving, the
average number of neighbors per replica remains constant over time. Comparing to an optimal
grid containing equally sized zones, the result obtained issimilar: we can see that the number of
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Figure 3.7: Self-adaptiveness in face of bursts of workload.
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Figure 3.8: Thwart impact.

neighbors is less than 5 while in the optimal case it would be exactly 4. We point out again that
this behavior is not exclusively due to the uniform distribution of requests but it is also obtained
with a skewed distribution because the thwart balances the load. Since only a local neighborhood
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of limited-size has to be maintained, the reconfiguration needed to face dynamism is scalable.

Load-balancing. The main objective of the thwart mechanism is to balance the workload among
nodes. In order to highlight the effects of the thwart, we ran5 different executions of the simu-
lations, and computed the variance of the memory size. Results are reported in Figure3.8. The
dashed curve refers to executions where we disabled the thwart process (i.e., when a node is over-
loaded while it receives requests it directly expands the memory without trying to find a less-loaded
replica of the memory), while the solid curve refers to executions with the thwart enabled. This
simulation shows that the variance of the memory size is strongly reduced by the thwart mecha-
nism. Without the thwart, expansion might occur while a partof the memory is not overloaded, that
is, the replicas become rapidly heterogeneously loaded. This phenomenon produces a strong varia-
tion in the memory size: many underloaded replicas of the memory shrink while many overloaded
replicas expand. Conversely, with the thwart mechanism any replica tries to balance the workload
over the whole memory, verifying that the memory is globallyoverloaded before triggering an
expansion. This makes the memory more stable.

Fault-tolerance. In order to show that our system adapts well in face of crash failures, we in-
jected two bursts of failures, while maintaining a constantrequest rate, and observed the reaction
of the memory. Figure3.9shows the evolution of memory size as time elapses and as failures are
injected. The first burst of failures occurs at the 20,000th simulation cycle and involves 20% of the
memory replicas drawn uniformly at random.
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Figure 3.9: Self-adaptiveness in face of important failures.
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request read latency write latency max. memory max. consultation max. propagation
rate (in avg) (in avg) size quorum size quorum size

100 478.6 733.3 10 5 6
125 621.8 812.5 14 4 8
250 1131.8 1395.8 24 3 14
500 1500.7 2173.5 46 8 23
1000 2407.9 3500.9 98 11 51

Figure 3.10: Trade-off between response time and memory size.

The second one occurs 20,000 cycles later (at simulation cycle 40,000) and involves 50% of
the memory replicas. At simulation cycle 20,000, we clearly observe that the overall number
of replicas drastically diminishes. Then, few cycles later, the number of replicas starts increasing
again, trying to newly face the constant request rate. This phenomenon is even more pronounced at
time 40,000 when 50% of the replicas fail. In both cases the system is able to completely return to
an acceptable configuration without blocking, even after a large amount of failures have occurred.

Operation latency. Experiment of Figure3.10 is composed of 5 simulations with different re-
quest rates and indicates howSquareminimizes read operation latency. First, recall that the fast
adaptive read operation contains only aConsult phase, thus the consultation quorum size impacts
more on read operation latency than propagation quorum sizedoes. We tunedSquaresuch that a
replica that receives more read requests than write requests tends to split horizontally its respon-
sibility zone, when an expansion occurs. Since an operationis of type read with probability 0.9,
replicas choose more frequently (in average) to split horizontally than vertically, consequently con-
sultation quorums are smaller than propagation quorums, asdepicted in the 5th and 6th columns of
Figure3.10. An increase in the requests rate—indicated in column 1—strengthens this difference:
it enlarges the amount of operations, thus the phenomenon becomes more evident. Furthermore,
the 2nd and 3rd columns confirm our thought: read operation latency is far lower than write op-
eration latency. To conclude, even though self-adaptiveness implies that latency increases when
workload increases,Squareminimizes efficiently read operation latency.

3.4 Discussion and Conclusion

3.4.1 Quorum Access in Ad Hoc Networks

Square builds and maintains a logical communication overlay. Logical communication overlay is
a very powerful tool that allows all nodes to communicate with each other, provided they know
each other. In Internet-like applications, including p2p applications, participants can use a logical
overlay to communicate with each other, since nodei can communicate with nodej if i possesses
the IP address ofj.

Differently, communication in ad hoc networks is often constrained by geographical locations.
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That is, a nodei communicates directly with nodej only if i and j are geographical neighbors.
For example, in wireless sensor networks, nodej needs to be in the transmission range of nodei.
In this case, it is impossible to obtain a torus communication overlay as proposed in the dynamic
grid quorum system: the furthest node fromi cannot be the neighbor ofi due to geographical
constraints. That is, each quorum node contacted byi and that is not a neighbor ofi have to
communicate with intermediary nodes for information to be routed back toi.

In order to reduce quorum access cost, recent research achievements in the context of ad hoc
networks tend to define quorums as clusters of nodes that are geographically close [DGL+05,
CDHP+05]. For example, GeoQuorums [DGL+05] is made of mobile entities, calledmobile hosts,
and fixed entities, calledfocal points. A focal point is a fixed region in the plane with some mobile
hosts that can communicate through atomic broadcast. A focal point is considered asfailed if no
mobile hosts is in it. Focal points are grouped into clustersusing an independent algorithm. The
introduced biquorum system contains two types of quorums such that any quorum of the first type
intersects any quorum of the second type. The first typed quorums contain all focal points of a
cluster while the second typed quorums contain one focal point of each cluster. Intersection of
quorums is guaranteed because any quorum of the first type hasat least one focal point in common
with any quorum of the second type.

Another approach [LWV03] uses a dynamic quorum strategy that consists in contactingk
nodes: for instance, ifk ≥ ⌊n

2 + 1⌋, then intersection is ensured deterministically. Chapter4
presents much lower thresholdk to obtain intersection with the desired probability. The same
paper [LWV03] presents a grid quorum system similar to Square, however, their approach require
that each client knows exactly all quorum members. That is, in settings where storage space is
limited such solutions do not scale with the size of the memory. Square is a scalable solution that
do not require large storage space and is thus promising for ad-hoc networks settings. A routing
protocol such as the one presented in [MKB05] could complete the Square protocol to provide a
scalable DSM for ad-hoc network.

3.4.2 Limitations of Square

First, the local reconfiguration executes frequently. To prevent all-to-all exchange of global recon-
figuration, Square proposes a local reconfiguration mechanism. Even if the number of message
that is required during a local reconfiguration is very low compared to a global reconfiguration,
the local reconfiguration is far more frequently executed than global reconfiguration. While global
reconfiguration is executed unfrequently, a local reconfiguration must occur after each dynamic
event. In fact, quorum replication presented in Chapter2 minimizes the impact of dynamism,
whereas quorum replication of Square only balances the load. As a result, while DSM with global
reconfiguration produces more congestion when scaling, theoverall communication cost of DSM
with local reconfiguration may not be lower.

There exists an important tradeoff between communication complexity and operation latency
that delays operation of Square. This tradeoff is due to the local reconfiguration mechanism at
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the heart of Square. As seen in the Section3.3.6, the memory grows when the system scales and
the request rate increases. A serious drawback is the overhead on the operation latencies. Since
quorum probes are non-adaptive from neighbor to neighbor, the operation latency is linear in the
quorum size. Since, in the best case, the quorum size is

√
n, the operation latency may be dramat-

ically high when the request rate is very important (O(
√

n)). Hence, even if Square tolerates high
load, its time complexity is affected by load. Some of the quorum systems proposed in the litera-
ture, whose memory size never changes, have adopted a different compromise between operation
latency and reconfiguration complexity. These quorum systems have smaller operation latency but
larger reconfiguration complexity. Finding the right compromise, although very interesting, is not
the subject of this thesis: the goal of Square was to present very low reconfiguration complexity
for efficient adaptation in face of load bursts, leave events, and join events.

3.4.3 Conclusion

This chapter addresses the problem of distributed shared memory that achieves scalability in a dy-
namic context. Dynamism requires reconfiguration while scalability requires the communication
overhead to be handled by the underlying network, even when the system enlarges. A solution
for minimizing communication cost while coping with accumulating failures seems to be local
reconfiguration; locality relies on proximity in the communication graph. This reconfiguration is
executed by a node and its neighbors if a failure is detected locally. By restricting the number
of neighbors in the communication graph, the communicationcomplexity of local reconfiguration
can be very low.

Other issues related to scale-shift have been identified. Ifthe system grows, then the potential
number of clients requesting the memory may increase accordingly. This scale-shift produces high
bursts of load. To cope with congestion that may appear at some nodes of the memory or the
overload that may happen if the memory has not enough resources, the proposed memory adapts
dynamically its resources in face of load variation. First,our solution balances the load over the
distributed participants to prevent congestion. Then, oursolution expands if the whole memory is
overloaded and shrinks as soon as bursts of load stop.

Furthermore, all these scalability-related issues led us to investigate the structure of quorum
system so as the way quorum members communicate with each other. Specific properties on the
structure of quorum systems have been compared along with this chapter. Our solution takes bene-
fit of our observations on quorum system structure for inherent load-balancing and communication
structure to minimize reconfiguration cost.

Finally, we identified an important tradeoff between message complexity and operation latency.
In fact, minimizing message complexity of local reconfiguration increases the operation latency.
Tuning the degree of the logical communication graph to diminishes operation latency while in-
creasing the reconfiguration complexity is of significant interest. While our solution scales well by
moderating the use of limited bandwidth resource, induced message latency may become too large.
Next chapter overcomes this issue by tolerating dynamism, achieving scalability, and minimizing
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latency at the cost of relaxed consistency guarantees.
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Chapter 4

Facing Scalability and Dynamism
Probabilistically: Timed Quorum System

This chapter focuses on the problem of emulating a distributed shared memory in a large-scale and
dynamic context. Previous chapters have enlightened the complexity of implementing atomicity
in message-passing model. More specifically, Chapter2 proposed a memory for dynamic systems
using a periodic reconfiguration that is not suited for large-scale systems. In contrast, Chapter3
proposes a memory that scales well but whose local reconfiguration is built upon failure detectors.
Here, we try to avoid the use of reconfiguration to obtain a lightweight distributed shared memory
emulation, at the price of relaxing deterministic guarantees.

This chapter relaxes the strong atomic consistency criterion chosen so far for emulating dis-
tributed shared memory. Instead, the aim of this chapter is to propose a memory with high quality
of service in large-scale dynamic systems. This translatesinto ensuring that clients, which execute
operations, are satisfied with high probability.

Timely guarantees to cope with dynamism. For this purpose we defineTimed Quorum System
(TQS), a new quorum system that introduces the notion of timeand probabilistic guarantees into
quorums. More precisely, TQS relies on quorums with a bounded lifetime and aims at providing
consistency guarantees in an unbounded lifetime. The intersection property between two quorums
depends not only on probability but also on time. (Recall thatthe intersection property of two
quorums holds if and only if their intersection contains at least one active node.) The notion
of time is of great interest in dynamic systems because of thedifficulty of ensuring invariants.
Because of its timely characteristics, TQS is easily implementable in dynamic systems.

Probabilistic guarantees to cope with scaling. For the sake of addressing both dynamism and
scalability issues while emulating distributed shared memory, this chapter presents an implemen-
tation of TQS that avoids any complex structural requirement (for intersection among quorums

75



CHAPTER 4. FACING SCALABILITY AND DYNAMISM

or communication among quorum members). Instead, the memory presented here trades simply
structural requirements with connectivity requirement and atomic object emulation with proba-
bilistic atomic object emulation. The resulting algorithmprovides probabilistic guarantees while
not requiring costly reconfiguration or failure detection.

Specifically, the quorum intersection is provided with highprobability. That is, it may hap-
pen, though very unlikely, that two quorums do not intersect. Due to this lack of intersection,
operation may be affected and cannot ensure atomic consistency. To cope with this consistency
violation we propose a new consistency criterion that is a probabilistic variant of atomicity. This
new consistency criterion allows some operations to fail insome exceptional cases. Interestingly,
this consistency criterion requires that each operation has the same probability of failing, i.e., no
failed operation affect the success of any other operations.

To summary, the problem addressed in this chapter is the emulation of DSM in large-scale and
dynamic context. First, a new consistency criterion is compared to existing consistency criteria.
Then, various probabilistic quorum systems are presented and a new one based on a timely inter-
section property is defined. Finally, we give an implementation of this timed quorum system and
we prove that this emulates a DSM that respects probabilistic atomicity.

Roadmap. Section4.1 focused on probabilistic guarantees, by presenting probabilistic consis-
tency criteria and the probabilistic quorum systems. Section4.2gives hints on how to avoid costly
tasks that prevent the system from scaling or tolerating dynamism. Section4.3presents our solu-
tion and show that it implements probabilistic atomicity. Finally, Section4.4discusses the resulting
solution and concludes the chapter.

4.1 Probabilistic Guarantees

Probabilistic guarantees are weaker than deterministic ones. Indeed, a property that holds deter-
ministically holds also with probability 1 and a property that holds with some probabilityp < 1
does not hold deterministically. As a result, it is easier toensure probabilistic guarantees than
deterministic ones. Here, the aim is to circumvent the problems encountered when guarantee-
ing atomicity by guaranteeing probabilistic atomicity while improving scalability and dynamism
tolerance of DSM. First, we investigate existing consistency relaxation and define probabilistic
atomicity. Then, we present interesting probabilistic quorum system implementations.

4.1.1 Probabilistic Consistency

In the following we present some consistency criteria that motivated us to define probabilistic
atomicity.
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Weakening atomic consistency. Many efforts have been devoted to express formally consis-
tency criteria. Thus, there are various consistency criteria among which atomicity [Lam86,Lyn96]
(a.k.a. linearizability [HW90]) is the strongest one. This means that any implementation that sat-
isfies atomicity implements, for sure, any other consistency criterion. Atomicity presents desirable
features like strength and locality [HW90] that motivates its use in the previous chapters of this
thesis. Nonetheless, atomicity is difficult to ensure due toits strength. As a result of this difficulty,
numerous consistency criteria weaker than atomicity appeared in the literature. Safety and regular-
ity [Lam86] both require that a read operation that is not concurrent with any write returns the last
written value. Weak atomicity states that if two reads return the same value then any read ordered
after must return either the same value or a more up-to-date value.

An interesting consistency class, called hybrid consistency [AF98], benefits from both weak
and strong consistency criteria. This class defines strong and weak operations orderings: strong
operations ordering implies that there exists a consistentordering on operations from any node
standpoint while weak one allows different nodes to consider different operation orderings. A
consistency criterion providing weak or strong ordering, depending on the object that is accessed,
appeared in [DS90,DSB88]. In some sense, hybrid consistency allows some weak operations to
cohabit with strong operations. All these consistency criteria rely on deterministic requirements
that are heavy to implement in large-scale dynamic systems.For instance, as part of the specifica-
tion of the implementation of hybrid consistency, each operation must be defined as either strong
or weak but not both. That is, all operations must be predefined as strong or weak and during
any execution, the requirement of strong operations is never relaxed while weak operations never
provide strong guarantee.

In contrast, randomness has been introduced in other consistency criteria. For instance
in [AGMT95] the shared memory model states that in some cases stale values may be returned
depending on the type of shared objects that is read. Moreover, other work uses probabilistic guar-
antee on latency, preventing any wrong value from being returned after a read operation [SZ98].
Finally, randomized registers [LW05] allow read to return old values as long as any value written
is eventually read or overwritten. As far as we know, none of the consistency criteria that relies
on probability allow operations to occur successfully withhigh probability. In this chapter, we
propose a new consistency criterion based on atomic consistency guaranteeing that any operation
is atomic (or succeeds) with high probability. An algorithmusing TQS is proposed as an im-
plementation of a probabilistic atomic object and we show that this implementation also satisfies
randomized registers.

Randomized object. Randomized registers appeared in [LW05] as a register abstraction that can
be used for implementation of iterative algorithms that converges after a finite number of steps.
Before defining random register, we have to define what means that a read operation reads from a
write operation. A read operationr is said toread fromsome writew if w begins beforer ends; the
value returned byr is the same value as that written byw; w is the latest write operation satisfying
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the two previous conditions. Next, we define a randomized object equivalently to the definition of
randomized register of [LW05] by assuming the seminal first rule and restating the two others.

Definition 4.1.1 (Randomized Object)Let x be a randomized object. Let H be a complete se-
quence of invocations responses of read and write operationsapplied to object x. The sequence H
satisfies the randomized object abstraction if and only if the following properties hold:

1. Every read in every complete execution reads from some write.

2. Let e be any finite execution and let inv(π) be an invocation event of a write operationπ that
belongs to e. The probability that this write is read from infinitely often is 0, if an infinite
number of writes are performed after inv(π).

A randomized object is an abstraction that defines two rules satisfied by read and write oper-
ations. The first rule states that a read operation must return a value written by a previous write
operation. Note that this rule includes the serial specification of object as mentioned in Chapter2.
Moreover, this rule alone relaxes the property of safe register given in [Lam86]. Nevertheless, the
third rule requires that, provided an infinite number of write operations, at some point in time, read
operations will stop reading from the same write. This ensures that the information that is read is
either getting more up-to-date as long as read operation occurs or it is already up-to-date.

Probabilistic atomic object. Probabilistic atomic object is a new abstraction providingdis-
tributed shared memory emulation with high quality of service despite large scale and dynamism.
For the sake of tolerating scale-shift and dynamism, we aim at relaxing some properties. How-
ever, our goal is to provide each client with a distributed shared memory emulation that provides
satisfying quality of service. Quality of service must be formally stated by defining a consistency
criterion that defines the guarantees the application can expect from the memory emulation. We
aim at providing quality of service in terms of accuracy of read and write operations. In other
words, our goal is to provide the clients with a memory that guarantees that each read or write op-
eration will be successfully executed (thus, verifying atomicity) with high probability. This notion
of quality relaxes previous deterministic constraints as atomic consistency and allows the emula-
tion of distributed shared memory through less complex mechanisms. It is noteworthy that the
expressionwith high probabilitymeans a probability 1−eη2

, whereη represents a constant, larger
than 1, that is tuned by the application designer.

In order to formalize the notion of quality of service while reusing formalism chosen so far,
we define the probabilistic atomic object as an atomic objectwhere operation accuracy is provided
with high probability. Let us first recall properties 1 and 3 of atomicity (Definition2.1.1):

• (π1,π2)−ordering: if the response event of operationπ1 precedes the invocation event of
operationπ2, then it is not possible to haveπ2≺ π1;
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• (π1,π2)−return: the value returned by a read operationπ2 is the value written by the last
preceding write operationπ1 regarding to≺.

The definition of probabilistic atomicity is as follows.

Definition 4.1.2 (Probabilistic Atomic Object) Let x be a read/write probabilistic atomic object.
Let H be a complete sequence of invocations responses of readand write operations applied to
object x. The sequence H satisfies probabilistic atomicity if and only if there is a partial ordering
≺ on the successful operations such that the following properties hold:

1. Let π1 be a successful operation. Any operationπ2 satisfies(π1,π2)−ordering with high
probability. (If π2 does not satisfy it, thenπ2 is considered as unsuccessful.)

2. if π1 is a write operation andπ2 is any operation, then eitherπ2≺ π1 or π1≺ π2;

3. Letπ1 be a successful operation. Any operationπ2 satisfies(π1,π2)−return with high prob-
ability. (If π2 does not satisfy it, thenπ2 is considered as unsuccessful.)

Observe that the partial ordering is defined on successful operations. That is, either an operation
π fails and this operation is considered as unordered or the operation succeeds and is ordered with
respect to other successful operations.

Even though an operation succeeds with high probability, inan infinite execution it is very
likely that at least one operation fails. However, our goal is to provide the operation requester
(client) with high guarantee of success at each of its operation request.

4.1.2 Probabilistic Quorum System

Seminal probabilistic quorum systems have been firstly defined by Malkhi et al. [MRW97], as
quorum systems whose quorums intersect with high probability. An implementation has been
given in [MRW97] for static settings. The relaxation of the deterministic intersection guarantee
permits to achieve low load and high fault-tolerance at the same time.

Application of probabilistic quorum systems. A first application of probabilistic quorum sys-
tems is distributed electronic voting systems [MRWW01,MR98]. Voters of a country are uniquely
identified and can vote only once. That is, as soon as any voterv casts a vote on a voting-machine,
its identifier must be locked country-wide for preventing any further vote from voterv. If a quorum
knows that voterv has already voted, a second vote contacting a second quorum will prevent with
high probability voterv from voting twice. Even though a particular voter might not be locked with
some small probability, it remains unlikely that this particular voter tries to vote several times.

File-sharing applications in peer-to-peer systems is another application of probabilistic quo-
rums systems [MTK06]. The goal is to inform a sufficient amount of nodes that a datais hosted at
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some specific nodes of the system. If this information is sufficiently replicated among the system
nodes, then the information is easily found by any requester. The solution of [MTK06] is for each
replica to informk quorums of nodes that it hosts the data. Later on, any node canaccess the data
by contacting at least one quorum that intersects at least one of thek other with high probability.

Definition of probabilistic quorum systems. Probabilistic quorum systems are defined by a set
system and an access strategy that maps each quorum of the setsystem with a probability of being
accessed. This probability of being accessed and the quorumdefinition determine the intersection
probability. Recall first, as mentioned in Definition1.1.1, that a set system over a universeU is a
set of subsets ofU . Next, let anaccess strategybe a probability distribution function defined over
a set system.

Definition 4.1.3 (Access Strategy)Anaccess strategyω for a set systemS is a probability distri-
bution on the elements ofS . That is,ω : S → [0,1] satisfies∑s∈S ω(s) = 1.

A probabilistic quorum system is a quorum system whose intersection property holds with high
probability.

Definition 4.1.4 (Probabilistic Quorum System) LetQ be a set system, letω be an access strat-
egy forQ , and let0 < ε < 1 be given. The tuple〈Q ,ω〉 is aprobabilistic quorum systemif for any
quorums Q1 ∈ 〈Q ,ω1〉 and Q2 ∈ 〈Q ,ω2〉, we have:

Pr[Q1∩Q2 6= /0]≥ 1− ε.

Similarly to the biquorum system (Definition1.1.3), the probabilistic biquorum system relaxes
the intersection property to quorums of distinct types.

Definition 4.1.5 (Probabilistic Biquorum System) Let Q1 andQ2 be two set systems over a uni-
verse U, letω1 (resp.ω2) be an access strategy forQ1 (resp.Q2), and let0< ε < 1be given. The tu-
ple〈Q1,Q2,ω1,ω2〉 is aprobabilistic biquorum systemif for any Q1∈ 〈Q1,ω1〉 and Q2∈ 〈Q2,ω2〉:

Pr[Q1∩Q2 6= /0]≥ 1− ε.

Probabilistic quorum systems are originally presented forstatic systems where the number
of failures considered is upper bounded. In [MRW97], the authors give an implementation of a
probabilistic quorum system for a static system. The quorumsize isℓ

√
n, with ℓ a constant and

n is the number of active members in the quorum system, and the access strategy is the uniform
access strategy among all these quorums.
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4.1.3 Probabilistic Weak Quorum System

Miura et al. [MTK06] benefit from the relaxed intersection requirements of probabilistic quorum
systems to contact nodes uniformly at random. The quorum system has no predefined structure,
since quorums are constructed uniformly at random. Moreover, they defineprobabilistic weak
quorum systemsas a set of quorums, each being accessed through a distinct access strategy and
such that each quorum intersects at least one ofk other quorums with high probability. This
definition weaken the intersection requirement given in theseminal Definition4.1.4.

Looking for an object in a peer-to-peer networks. This probabilistic weak quorum system is
used for the purpose of object searching application in peer-to-peer systems. Some nodes post an
information about an object location in the network. Later on, a nodei searches for the object by
trying to contact a node that owns the information about the object location. Each of those nodes
contact a distinct quorum. If the quorum contacted by the searching nodei intersects one of the
quorum contacted by the posting nodes, theni obtain the location information and can access the
file. A probabilistic weak quorum system is depicted on Figure4.1.

More technically, for one quorum to intersect at least one among k quorums with high prob-
ability, the quorum size must beΩ(

√n
k) wheren is the total number of nodes andk ∈ [ n

1000,
n

100]
is the number of nodes posting the information about the object location. (Actually, thesek nodes
own the data initially.) During the protocol, each of thesek nodes posts toO(

√n
k) nodes chosen

uniformly at random, i.e., a quorum of nodes, the information that it owns the data. After this,
a node can retrieve with high probability the data location by contactingO(

√n
k) nodes chosen

uniformly at random, i.e., another quorum of nodes.

... k

0

Q

Q

1
Q Q

2

Figure 4.1: A probabilistic weak quorum system. QuorumQ0 intersects at least one of thek
quorumsQ1, Q2, ...,Qk with high probability.

In some sense probabilistic weak quorum system is similar toa traditional probabilistic quorum
system. First, multiple nodes contact a large quorum in a collaborative way for posting some
information. Second, a single node contacts a small quorum for searching the information. The
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collaboration is motivated by the fact that many more messages are used for posting the information
than for searching it. From a single node standpoint the costof posting or searching is equal in
terms of number of messages involved.

Discussion on adapting the protocol for read/write in dynamic systems. One could think of
a generalization of this algorithm for read/write operations in a dynamic systems, where a write
operation is made more costly than a read operation since write operations are less frequent than
read operations. However, for consistency purpose such distributed shared memory requires all
posting nodes to share a consistent view of the object beforepropagating the same value. That is
one solution would be to artificially update the view of all posting nodes before they post. This is
easily achieved using a consultation before propagating and tagging like explained in the two-phase
write operations presented in previous chapters.

The proposed protocol, the name-thread protocol, aims at providing each node with a global
knowledge of the system in order to search for an object lateron. This protocol is proved to be
self-stabilizing. That is, when the environment stabilizes and no failure occurs during a sufficient
amount of time, then the algorithm succeeds. However, in large-scale systems where dynamism
is frequent, it is unreasonable to assume stabilization of the whole system during a long period of
time. Interestingly, despite high dynamism, an object value replicated at numerousk locations is
expected to persist a large period of time [GKM+06]. While it is impossible to assume system
stabilization, an interesting aspect is thus to consider dynamism as part of the model: quorums
intersect even if some nodes keep failing. The solution presented in Section4.2 stems from this
idea.

4.1.4 Probabilistic Quorum Systems for Dynamic Settings

In [AM05], Abraham and Malkhi proposed an implementation of a structured probabilistic quorum
system. As far as we know it is the first time, dynamism is introduced into probabilistic quorum
system definition. The resulting structured quorums systems Q , calleddynamicε-intersecting,
consider quorums whose structure evolves without violating the probabilistic intersection. To han-
dle dynamism, a logical structure is re-adapted each time a node joins, fails, or leaves.

A structured quorum system. The structure of the quorum system is a dynamic approximation
of a De Bruijn graph that serves two major purposes. First the De Bruijn graph limits the cost of
reparation of the structure needed when a failure is detected. Second, this graph maps each node
to a specific level depending on its location on the structuresuch that it can roughly determine
the size of the whole structure. Based on these facts, the structure needs a logarithmic number of
steps1 to readapt each time a join or a leave occurs in the system, andcan determine the number
and the size of random walks to run in order to achieve good probability of intersecting.

1This number is logarithmic in the system size
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01 11

001 000

10

Figure 4.2: An example of dynamic approximation of the De Bruijn graph with five nodes.

Formally, each node is identified by an ordered sequence of bits 0 or 1. A nodei identified by
〈a1, ...,ak〉 has an edge to nodej if and only if:

• 〈a2, ...,ak〉 is a prefix of j identifier, or

• j identifier is a prefix of〈a2, ...,ak〉, or

• j identifier is〈a2, ...,ak〉.

An example of a De Bruijn graph with 5 nodes identified by 000, 001, 01, 10, and 11, is depicted
on Figure4.2.

Since the structure is continuously re-ordered to face dynamism, each node can approximate
the number of nodes present in the structure by looking at itslevel, i.e., the number of digitsd that
identifies its location on the structure. The approximationobtained is 2d. Because of dynamism,
the structure might not be equilibrated at the time a node needs to approximate its size, that is, a gap
factorG is taken into account as a margin error on the size approximation. Based on the structure
size approximation and an upper bound onG, nodes can determine the number of random walks
needed to contact a quorum with high probability. The authors show thatO(

√
n) random walks,

each being of lengthO(logn) are sufficient to achieve intersection with high probability. (More
precisely, the number of random walks required isρ

√

2d +2log2G, with ρ a constant.)

Quorum probe in structured quorum system. A quorum is obtained, usingO(
√

n) random
walks of lengthO(logn). More precisely, a quorum contains the last nodes contactedby each of
the random walks, thus leading to quorums of sizeO(

√
n).
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A random walk is run by a source node of the approximation of the De Bruijn graph. The mes-
sage corresponding to this random walk is forwarded from neighbor to neighborO(logn) times,
using a decreasing time-to-live value piggybacked in the message. During the random walk, each
neighbor is chosen depending on the identifier it owns.

Depending on the identifier of the current node and the current time-to-live value, an indexi
is chosen. A coin is flipped so that value 0 or 1 is uniformly drawn at random. Given the valuev
obtained, the next neighbors is chosen such that its identifiers hasv at indexi. If more than a single
neighbor identifier has the corresponding valuev at indexi, the next neighbor is chosen uniformly
at random among those ones.

Observe that, even though each identifier is chosen uniformly between 0 and 1, the neighbors
are not necessarily chosen uniformly among all possible neighbors. This results from the fact that
among three neighbors, it might happen that two neighbors have valuev = 0 while one neighbor
has valuev = 1, so that the first two are drawn with probability1

4 while the last one is drawn with
probability 1

2. Anyway, at the end of all random walks, each contacted node has an identifier that
contains a sequence of bits, each uniformly drawn at random among 0 and 1.

Reconfiguration by replication and maintaining the structure. Key requirements of this quo-
rum systems rely on the invariant that should not be affectedby dynamism. The Invariant is
necessary to ensure that each node has a right identifier and that the structure is balanced. For
example, random walks assume that each node has at least two neighbors so that the message can
be forwarded with the same probability to a node having a 1 or a0 at indexi of its identifier.

Invariant 4.1.1 The De Bruijn approximation graph is balanced and the identifier of any node
indicates its position in the graph.

To guarantee this Invariant, each dynamic event involves communication cost to update the
identifiers and re-balance the structure. Observe that the structure is dynamic in the sense that the
number of identifiers is potentially infinite: we can add a digit at the end of the current identifiers
to obtain new identifiers. Despite this flexibility, the nodeidentifiers are used to equilibrate the
structure. A node identified with less digits has a more important role and is more likely loaded,
while a node identified with more digits participates less likely in the protocol. Moreover, a node
determine the level of the structure based on its number of digits and the largest difference in
the number of digits between any two identifiers define the mistake margin that impacts on the
probability of intersection of two random walks. Consequently, the identifier needs to be updated
as fast as possible, regarding to the number of nodes in the system. Due to this update, the worst
case time complexity required to handle a dynamic event in this structure isO(logn) time.

Overcoming invariant related issues. In Section4.2, we overcome these problems. We benefit
from the Timed Quorum System (TQS) definition to implement a structureless quorum system.
First, this quorum system do not need any structural property, thus, no failure detection is required
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and the system self-adapts naturally in face of dynamism. Second, because of the absence of
structure, the quorum system does not need to update any nodeidentifier when dynamic events
occur. This is fundamental in large-scale dynamic systems since dynamic events may be very
frequent.

4.2 Avoiding Quorum System Reconfiguration

Reconfiguration is necessary to provide consistency maintenance deterministically in a dynamic
systems. Reconfiguration repairs a quorum system when failures accumulate. More precisely,
reconfiguration replaces a node, a quorum, or the whole quorum system by a new one. To ensure
consistency, reconfiguration is not finished before the state of the new entity is updated with respect
to the state of the other participants. In the quorum system,the state of each node must reflect its
quorum belongingness and reconfiguration must guarantee this despite dynamism.

Strict quorum systems require to be structured while probabilistic quorum systems do not.
While a strict quorum must provide a client with the status of at least one element of all quorums
of the system, the probabilistic quorum must not. Because of this requirement, the communication
among elements of a strict quorum has some structural constraints. During the probe of a strict
quorum, a client must know all quorum members (non-adaptiveprobe) or a quorum member such
that this member will contact another member in turn, and so on (adaptive probe) as explained in
Section3.3.4. This communication implies a dedicated communication structure among nodes. In
contrast, given an approximation of the system size (approximating the system size is explained
in Section4.4) and the number of replicas in the system, a node might simplycontact randomly
a certain amount of nodes in the system to ensure that at leastone replica is contacted with high
probability, whatever nodes are connected too.

Next, we explain how to obtain randomness without structured communication overlays. This
translates into the fact that probabilistic quorum systemsdo not need each node be mapped to a
specific role in the communication structure. Neither do node states need to reflect any structural
positioning. Without these structural requirements in probabilistic quorum system, we propose a
structureless quorum system that do not need reconfiguration.

4.2.1 Structureless Quorum System

Structured quorum system requires a costly reconfigurationmechanism to cope with dynamism.
As said before, it is natural to think of a quorum system as a structure. For instance, Chapter3
presents a grid-like topology to provide optimal load. Nevertheless, each dynamic event needs a
reconfiguration mechanism to maintain the structure of the quorum system. This reconfiguration
induces a costly communication overhead and is difficult to implement.
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Structured communication overlays. The communication structure of quorum system is used
to associate some participants together so that they can communicate. Communication is a well-
studied subject in large-scale dynamic networks. Two majorsolutions for mapping a node to
neighbors appeared in such context. First, structured solutions provide each node with a logical
location in a graph, that represents for example a ring [MKKB01], a grid [RFH+01], a butterfly
network [MNR02]. These solutions aim at maintaining the structure despitedynamism, triggering
a dedicated handling mechanism each time a dynamic event occurs. The use of such structures
gained popularity with the achievements of distributed hash table (DHT) where a set of object keys
is mapped to nodes for the purpose of routing.

Unstructured communication overlay. Another type of systems called unstructured systems,
have gained consideration for large-scale dynamic networks these recent years. This communica-
tion model used in such systems has at heart a gossip mechanism that first appeared in [DGH+87]
and benefits from randomness, periodicity, and locality. Despite the fact that gossip-based systems
share many similarities with systems described in various fields [CGJ+07], a unified abstraction
for this communication model has been proposed as the peer-sampling service [JGKvS04], which
allows nodes to exchange periodically a random subset of their neighbor identifiers resulting in a
dynamic and unstructured overlay.

Unstructured communication overlay copes inherently withdynamism. First, reconfiguration
process is useless, since no structures need to be maintained. Second, as assumed in structured
overlay, a joining node sends a join message to a contact nodealready in the system. This contact
node adds the joining node identifier to its own list of neighbors. The periodic exchange of a
random set of neighbors disseminates this identifier in the network. Conversely, the identifier of
a failed node progressively disappear from the system. Thisis due to a priority mechanism that
privileges the exchange of identifiers of the most recently gossiping nodes.

Building quorums on-the-fly. Benefiting from unstructured communication overlay, unstruc-
tured quorum systems are very efficient. First, they tolerate inherently dynamism by removing
(adding) identifiers of failed (joining) nodes from (to) theoverlay. Second, they do not need recon-
figuration. Instead of relying on a specific structure, each quorum is built on-the-fly so that a client
that executes a request at a given time creates a specific quorum. This can be done by contacting a
sufficiently large set of nodes, each node being accessed following a dedicated strategy.

In the context of DSM, a read operation must access the last written value, that is, values must
be replicated regularly in the system to cope with dynamism.This replication mechanism does not
need a costly reconfiguration but can be done though write operation executions without additional
overhead. (Later on, we present a replication as part of any operation.) Observe that nodes where
a value is written/replicated at a certain time, might leavethe system after some time elapses.
This observation leads us to define Timed Quorum System that provides timely quorums whose
intersection depends on the time quorums are built.

86



4.2. Avoiding Quorum System Reconfiguration

4.2.2 Timed Quorum System

This section defines Timed Quorum Systems (TQS) as quorum systems whose intersection among
quorums is probabilistic and depends on the time a quorum is probed. Each quorum is mapped
to a specific instant and has a bounded lifetime due to the dynamism intensity (i.e.,churn) of the
system. Before being created of after its lifetime elapses, aquorum is not guaranteed to intersect
with any other quorums, however, during its lifetime a quorum is considered asreachable: two
quorums that are reachable at the same time intersect with high probability. In dynamic systems
nodes may leave at any time, but this probability is bounded,thus it is possible to determine the
intersection probability of two quorums.

Most of the dynamic models assume that dynamic events are dependent from each other: only
a limited number of nodes leave and join the system during a bounded period of time. For instance
in Chapter2, it is assumed that nodes departures are dependent: quorum replication ensures that
all nodes of at least any two quorums remain active between two reconfigurations occur. However,
in a real dynamic system, nodes act independently. Due to this independence, even with a precise
knowledge of the past dynamic events, one cannot predict thefuture behavior of a node. Putting
this observation into quorum system context, it translatesinto the impossibility of predicting de-
terministically whether quorums intersect.

In contrast, here, we measure how likely two quorums intersect. More precisely, our goal is
to measure the probability that two quorums intersect depending on time. In the following, we
present a dynamic system in which nodes join and leave the system at any time and independently
so that it is impossible to predict when. However, the probability that k nodes leave the system
increases as time elapses. As a result, the probability thata quorumQ(t) probed at timet and that
a quorumQ(t ′) probed at timet ′ intersect decreases as the period|t ′− t| increases.

Building onto this observation, we propose a TQS where each quorum is defined for a given
time t. Each quorumQ(t) has a lifetime∆ that represents a period during which the quorum is
reachable. Differently to availability defined in the previous chapter, reachability does not depend
on the number of nodes that are failed in a quorum system because this number is unpredictable
in dynamic systems. Instead, aQ(t) quorum is reachable if at least one node of quorumQ(t) is
reached with high probability: if two quorums are reachableat the same time, they intersect with
high probability. More generally, let two quorumsQ(t) andQ(t ′) of a TQS be reachable during∆
time (their lifetime is∆); if |t− t ′| ≤ ∆ thenQ(t) andQ(t ′) intersect with high probability.

Dynamic memory and quorum abstraction. In [LS02, CGG+05] as in Chapter2, a memory
is emulated using biquorum systems that are subsequently replaced over time. This replacement
introduces new quorums that are decided upon with a reconfiguration mechanism. Subsequent
quorums do not need to intersect provided that information is conveyed from ones to others using
a reconfiguration mechanism. Similarly in [FRT05], a quorum abstraction is defined as subsequent
biquorum systems. This abstraction requires two properties: (i) intersection and (ii) progress, in
which the notion of time is introduced. First, a propagationquorum intersects the consultation
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quorum contacted subsequently. Second, each node of a quorum remains active between the time
the quorum starts being probed and the time the quorum stopped being probed. Observe that
the intersection property allows some consultation quorums and some propagation quorums to
be disjoint. However, the fact that clients convey information from a consultation quorum to a
propagation quorum can be viewed as an intersection requirement.

TQS differs from above solutions in two points. First, the intersection between quorums de-
pends only on the time a quorum is probed rather depending on the type or the rank of the phase it
corresponds to. Second, TQS especially relaxes the intersection property by requiring probabilis-
tic guarantees instead of deterministic ones. That is, the probability of intersection evolves with
time, thus, even though some nodes of quorumQ(t) leave the system, the intersection probability
may be sufficient (i.e.,Q(t) is reachable). These two points make TQS especially suited for dy-
namic systems where deterministic properties and properties that hold at any time are difficult to
implement.

In [AM05], a probabilistic quorum system implementation is designed for quorum systems
that adapt in face of changes. In this approach, the quorum system is a structure such that quorum
probes are given by the structure. That is, a single quorum system can evolve (grows and shrinks)
over time but remains the same quorum, because of the location of its nodes on the structure. Even
though this quorum changes, the way it is probed never changes. Moreover, the implementation
given tolerate dynamism, by re-adapting the topology (and quorums) when a failure occurs. Con-
versely, a TQS experiences quorum death and quorum birth: any quorum can disappear after some
time and a new one can appear after some time. The key point is that the way a quorum is probed
changes over time and is only dictated by node failure and node activity.

Since TQS relies on time, quorums are accessed differently depending on the time: if a node
i fails at timet, then before timet, nodei may be accessed while after timet, nodei will never
be accessed. Hence, its access probability varies over time. The key advantage of TQS is that
they can be implemented with no failure detection and no reconfiguration mechanism. (Such an
implementation is given below.) For some applications, thedrawback of such an implementation
is the operation regularity requirement. We discuss this drawback in Section4.4.

Definition of Timed Quorum System (TQS). Next, we formally define TQS whose quorums
intersection is probabilistic and depends on the time quorums are created. TQS are especially
suited for dynamic systems where the behavior of nodes is unpredictable, since they simply re-
quire probabilistic intersection and no deterministic intersection. Moreover, quorums experience a
bounded lifetime so that their intersection guarantees aretimely. Recall that the universe contains
the set of all possible nodes, including the one that have notjoin the system yet.

We first define the timed access strategy as an access strategyover a set system that may vary
over time. This definition is motivated by the fact that an access strategy defined over a setS
can evolve. To compare with the existing probabilistic dynamic quorums, in [AM05] the authors
defined a dynamic quorum system using an evolving strategy that might replace some nodes among
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a quorum while its access strategy remains identical despite this evolution. Unlike the dynamic
quorum approach, we need a more general framework to consider quorums that are different not
only because of their structure but also because of how likely they can be accessed. The timely
access strategy adds a time parameter to the access strategydefined in Subsection4.1.2allowing a
timed access strategy to vary over time.

Definition 4.2.1 (Timed Access Strategy)A timed access strategyω(t) for a set systemS at time
t ∈ T is a probability distribution on the elements ofS at time t. That is,ω : S×T→ [0,1] satisfies
at any time t∈ T: ∑s∈S ω(s, t) = 1.

Informally, at two distinct instantst1 ∈ T andt2 ∈ T, an access strategy might be different for
any reason. For instance, consider that some nodei is active at timet1 while the same nodei is
failed at timet2, hence it is likely that ifi ∈ s, thenω(s, t1) 6= 0 while ω(s, t2) = 0. This is due to
the fact that a node is accessible only when it is active.

Definition 4.2.2 (∆-Timed Quorum System) Let Q be a set system, letω(t) be a timed access
strategy forQ at time t, and let0 < ε < 1 be given.

The tuple〈Q ,ω(t)〉 is a ∆-timed quorum systemif for any quorums Q(t1) ∈ Q accessed with
strategyω(t1) and Q(t2) ∈ Q accessed with strategyω(t2), we have:

∆≥ |t1− t2| ⇒ Pr[Q(t1)∩Q(t2) 6= /0]≥ 1− ε.

Implementing a randomized object. Next, we give a simple Timed Quorum System algorithm
that implements a randomized object. Since randomized object are used to implement iterative
algorithm and to solve a large class of problems [UD90], this implementation gives an overview of
the strength of Timed Quorum system. Moreover, it enlightens the fact that Timed Quorum System
may be used for various kind of applications. We assume that the system set contains only all sets
containingq 6= 0 active nodes in the system and that the access strategyω(t) is the uniform access
strategy over all possible active quorums at timet.

Theorem 4.2.1 The Timed Quorum System Algorithm implements a randomized object.

Proof. Property 1 holds because when a node is locally read it returns the last value it has written
locally.

For the second property, we need to show that no value writtenat a node is infinitely read. For
this purpose, we show that any written node either fails or iseventually over-written. Assume that
there is a seriesℓ of subsequent write operations and letQk be the quorum contacted by thekth

of these write operations. Without loss of generality, we refer to Qv as the quorum with the most
up-to-date valuev and we bound the probabilityP1 thatv is infinitely read.

Observe first that any given nodei of Qv might fail before all write execution. By assumption
wheni recovers it no longer hosts valuev. In this case, valuev cannot be infinitely read at nodei.
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Next, we upper bound the probabilityP1 by considering a worst case scenario in which no
nodes ofQv fail. At any time t, the timed access strategyw(t) draws uniformly at random any
quorum containingq active nodes at timet. The upper bound ofP1 is the probabilityP2 that at
least one nodei of Qv survives the series of write operations, while no node ofQv fails:

P2 = ∑
i∈Qv

Pr[i /∈Q1∪ ...∪Qℓ],

= ∑
i∈Qv

ℓ

∏
j=1

Pr[i /∈Q j ],

= |Qv|
ℓ

∏
j=1

(1− |Q j |
n

).

Since|Q j |= q > 0, andP1≤ P2, we have limℓ→∞ P1 = 0 and the result follows. 2

4.3 Scalable Dynamic Distributed Shared Memory (benefiting
from Prototypical Gossip)

The goal is to define a structureless memory that provides probabilistic atomic operations in a
large-scale dynamic system. To this end, we need an implementation of a Timed Quorum System
(TQS). In other words, we are interested in answering the following question: Using quorums
whose lifetime∆ depends on their sizeq due to dynamism, how can we implement a memory
that ensures operation success with high probability in a large system? Or, more technically, if an
object valuev is written at a quorumQ(t) at timet and if a valuev′ is consulted at a quorumQ(t ′)
at timet ′ = t +∆, how can we ensure to havev= v′ with high probability? In the remaining of this
paper, we assume that all quorums containq nodes, since an interesting goal is to minimize both
the size of quorums where the value is propagated and the sizeof quorums a client has to probe to
find the right value.

The solution we present here works roughly as follows. A two-phase operation is executed
frequently by any client in the system. The first phase consults the newest value of the object
at q nodes in the system while the second phase propagates the newest value toq nodes of the
system. A tag associates each value so that the newest value is with the largest tag and is easily
identifiable. During a phase,q′ nodes are contacted uniformly at random by dissemination—the
underlying communication graph ensures uniformity of disseminated node drawings—such that
q= O(

√
nD) different nodes are contacted, wheren is the system size andD is a values depending

on the dynamism intensity (churn). (Remark that it has been proved in [MRWW01] thatq= O(
√

n)
is sufficient if the system is static.) The phase dissemination that contactsq′ nodes takeslog(q′)
message delays. The sets ofq nodes contacted during each phase form a TQS: any two sets
intersect with high probability depending on the time they are probed.
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4.3.1 Model and Definitions

Model of the dynamic system. The computation model is very simple. The system consists of
n nodes. It is dynamic in the following sense. Every time unit,cn nodes leave the system and
cn nodes enter the system, wherec is an upper bound on the percentage of nodes that enter/leave
the system per time unit; this can be seen as new nodes “replacing” leaving nodes. A node leaves
the system either voluntarily or because it crashes. A node that leaves the system does not enter
it later. (Practically, this means that, to re-enter the system, a node that has left is considered as a
new node; all its previous knowledge of the system state is lost.)

Time line
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Figure 4.3: System evolution

Figure4.3describes a possible system evolution. Initially (timet), there aren nodes (identified
from 1 ton; let us taken = 5 to simplify). Letc = 0.2, which means that, every time unit,nc= 1
node changes (a node disappears and a new node replaces it). Then, at timet + 1 the node 2 is
replaced by the node 2′. Let ∆ = 4. At timet +4, we see that the nodes 3 andn have been replaced
by the nodes 3′ andn′, respectively, while the new node 2′ has in turn been replaced by the node
2′′ and the nodes 1 and 4 still belong to the system. The importantpoint here is that a new node
can in turn be replaced at a later time. More particularly, weassume that the churn ratec applies
equally to any subset of the system: any subsetSof the system experiences|S|c joins and leaves
by time unit. This model is extended to a more realistic modelin Subsection4.3.4.

Preliminary notations and definitions. This paragraph defines several terms that are used in the
algorithm description. First, recall that a shared object is accessed through read operations, which
return the current value of the object, and write operations, which modify the current value of the
object. To clarify the notion of currency when concurrency happens, it is important to explain what
are the up-to-date values that could be considered as current. We refer to thelast valueas the value
associated with the largesttag among all values whose propagation is complete. We refer to the
up-to-date valuesat timet as all valuesv that satisfies one of the following properties:

• Valuev is the last value.
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• Valuev is a value whose propagation is ongoing and whose associatedtag is at least equal
or larger to the tag associated with the last value.

In the remaining of this chapter, we refer toval(φ) andtag(φ) as, respectively, the value and tag
consulted/propagated by phaseφ.

Second, it is important to understand what is a successful phase. The goal of a consultation
phase is to return an up-to-date value, whereas the goal of the propagation phase is to propagate an
up-to-date valuev so thatv can be identified as an up-to-date value. Thus, we refer to asuccessful
phaseas a phase that achieves its goal. Observe that, if the consultation of an operation is unsuc-
cessful, then the subsequent propagation phase of the same operation might propagate a new value
with a small tag so that this value will not be identifiable as an up-to-date value. In this case, we
say that both the consultation and propagation are unsuccessful phases. A more formal definition
of the successful/unsuccessful phase follows.

Definition 4.3.1 (Successful Phase)A consultation phaseφ is successfulif and only if it returns
an up-to-date value val(φ). A propagation phaseρ is successfulif and only if it propagates a tag
tag(ρ) largest than any of the tags that were in the system whenρ started. A phase isunsuccessful
if it is not successful.

We refer to successful operations as operations whose consultation phase and propagation
phase are successful. Observe that this corresponds to the notion of successful operation previ-
ously given in Definition4.1.2.

TQS ensures that two active quorums will intersect with highprobability, however, if no quo-
rum is active, then the value of an object does no longer persist. To ensure that new operations
replicate the object value sufficiently, we assume that at last one operation is executed every period
∆. As previously explained this mechanism serves as a continuous replication and replaces the
traditional reconfiguration mechanism to cope with accumulated failures.

4.3.2 Disseminating Memory using Underlying Gossip

In the following, we present a completely structureless memory. The quorum systems this memory
uses does not rely on any structure which makes it flexible. Incontrast to using a logical structured
overlay for communication among members, we use an unstructured communication overlay. The
lack of structure presents several benefits. First, there isno need to readapt the structure at each
dynamic event. Second, there is no need for detecting failure. Since failure detectors are impos-
sible to achieve in asynchronous settings [FLP85], the absence of failure detector strengthens the
feasibility of our solution. Moreover, traditional solution based on failure-detector needs heart-beat
message to try detecting failures. Here, no such costly mechanisms are needed.

Our solution proposes a periodic replication. Even though reconfiguration is useless in an un-
structured system, some dynamism-related issues have to beaddressed. For instance, to ensure
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the persistence of an object value despite unbounded leaves, the value must be replicated an un-
bounded number of times. The solution we propose relies on periodic operations. This periodicity
avoids failure detector but requires to be carefully tuned.If replication is not frequent enough, then
the value might be lost. Conversely, if replication is too frequent then too many messages would
result in a bandwidth resource waste.

Replicating during client operations. Benefiting from the natural primitive of the distributed
shared memory, the object value is replicated using operations. The distributed shared object is
accessed by client through read and write operation. Like explained along with this document,
any operation has at its heart a quorum-probe that replicates value. It has been largely observed
that replication is needed to tolerate bounded amount of failures. In large-scale systems, it is also
reasonable to assume that shared objects are frequently accessed because of the large number of
participants. The replication mechanism for structureless memory has been motivated by these ob-
servations. Since operations provide replication and shared objects experience frequent operation
requests in large-scale systems, frequent replications are mainly ensured by client operations.

Consequently, replication does not produce a significant communication overhead regarding
to the communication complexity of operations. More precisely, as long as operations are fre-
quent enough, replication is not required. When the communication complexity is high due to the
numerous participants, then there is no additional replication mechanism and additional complex-
ity is null. However, at some time when operations frequencydecreases, the object value must
be replicated to prevent unavailability. Observe that communication complexity induced by this
replication compensates the absence of operation communication.

Quorum probe. The algorithm is divided in three distinct parts that represent the state of the
algorithm (Lines1–12), the actions initiated by a client (Lines13–40), and the actions taken upon
reception of messages by a node (Lines41–66), respectively. Each nodei has its own copy of the
object called its valuevali and an associated tagtagi . Field tag is a couple of a counter and a node
identifier and represents, at any time, the version number ofthe valueval. We assume that initially,
there areq nodes that own the default value of the object, the others nodes have their valuesval set
to⊥ and all theirtags are set to〈0,0〉.

Each read and write operation is executed by clienti in two subsequent phases, each dissemi-
nating a message toq= O(

√
nD) nodes, whereD = 1/(1−c)∆ is required to handle churnc during

period∆.2 The two subsequent phases are called theconsultation phaseand thepropagation phase.
The consultation phase aims at consulting the up-to-date value of the object that is present in the
system. (This value is identifiable since it associates the largest tag present in the system.) More
precisely, clienti disseminates a consultation message toq nodes so that each receiverj responds
with a message containing valueval j and tagtagj so that clienti can updatevali andtagi. In fact,
i updatesvali and tagi if and only if the tagi has either a smaller counter thantagj or it has an

2In [MRWW01], it has been showed thatq = O(
√

n) is sufficient in static systems.
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Algorithm 8 Disseminating Memory at nodei
1: State of nodei:
2: q = β

√
n

(1−c)
∆
2

, the quorum size

3: ℓ,k∈ N the disseminating parameters taken such thatkl+1−1
k−1 ≥ q

4: val∈V, the value of the object, initially⊥
5: tag, a couple of fields:
6: counter∈ N, initially 0
7: id ∈ I , an identifier initiallyi
8: marked, an array of boolean initiallyfalse at all indices
9: sent-to-nbrs1, sent-to-nbrs2two sets of node identifiers, initially/0

10: rcvd-from-qnodes, an infinite array of identifier sets, initially/0 at all indices
11: sn∈ N, the sequence number of the current phase, initially 0
12: father∈ I , the id of the node that disseminated a message toi; initially i

13: Readi :
14: 〈val, tag〉 ← Consult()
15: Propagate(〈val, tag〉)

16: Write( v)i :
17: 〈∗, tag〉 ←Consult()
18: tag.counter← tag.counter+1
19: tag.id← i
20: val← v
21: Propagate(〈val, tag〉)

22: Consulti :
23: ttl← ℓ
24: sn← sn+1
25: while (|sent-to-nbrs1|< k) do
26: send〈CONS,val, tag, ttl, i,sn〉 to a setJ of (k−|sent-from-nbrs1|) neighbors6= father
27: sent-to-nbrs1← sent-to-nbrs1∪J
28: end while
29: sent-to-nbrs1← /0
30: wait until |rcvd-from-qnodes[sn]| ≥ q

31: return (〈val, tag〉)

equal counter but a smaller identifiersi < j (node identifiers are always distinct); in this case we
saytagi < tagj for short (cf. Lines51 and55). Ideally, at the end of the consultation phase client
i has set its valuevali to the up-to-date value. Read and write operations differ from the value
and tag that are propagated by the clienti. Specifically, in case of a read, clienti propagates the
value and tag pair freshly consulted, while in the case of write, clienti propagates the new value
to write associated with a strictly larger tag than the largest tag that has been consulted so far. The
propagation phase propagates the corresponding value and tag by dissemination among nodes.
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32: Propagate(〈 val,t 〉)i :
33: ttl← ℓ
34: sn← sn+1
35: while (|sent-to-nbrs1|< k) do
36: send〈PROP,val, tag, ttl, i,sn〉 to a setJ of (k−|sent-to-nbrs1|) neighbors6= father
37: sent-to-nbrs1← sent-to-nbrs1∪J
38: end while
39: sent-to-nbrs1← /0
40: wait until |rcvd-from-qnodes[sn]| ≥ q

41: Participatei : // activated upon reception of a message.
42: recv〈type,v, t, ttl,client-id,sn〉 from j
43: if (marked[sn]) then
44: send〈type,v, t, ttl,client-id,sn〉 to a neighbor6= j
45: else //this sequence is not marked yet
46: marked[sn]← true

47: if (type= CONS) then
48: v← val
49: t← tag
50: else if(type= PROP) then
51: if tag< t then
52: val← v
53: tag← t

54: else if(type= RESP) then
55: if tag< t then
56: val← v
57: tag← t

58: rcvd-from-qnodes[sn]← rcvd-from-qnodes[sn]∪{ j}
59: ttl← ttl−1
60: if (ttl > 0) then
61: while (|sent-to-nbrs2|< k) do
62: send〈type,v, t, ttl,client-id,sn〉 to a setJ of (k−|sent-to-nbrs2|) neighbors6= father
63: sent-to-nbrs2← sent-to-nbrs2∪J
64: end while
65: sent-to-nbrs2← /0
66: send〈RESP,val, tag, ttl,⊥,sn〉 to client-id

Next, we focus on the dissemination procedure that is at the heart of the consultation and prop-
agation phases. There are two parameters,ℓ,k, that define the way all consultation or propagation
messages are disseminated. Parameterℓ indicates the depth of the dissemination, it is used to set a
time-to-live fieldttl that is decremented at each intermediary node that participates in the dissemi-
nation; if ttl = 0, then dissemination is complete. Parameterk represents the number of neighbors
that are contacted by each intermediary participating node. Together, parametersℓ andk define the
number of nodes that are contacted during a dissemination. This number iskℓ+1−1

k−1 (Line 3) and
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represents the number of nodes in a balanced tree of depthℓ and widthk. (This value is provable
by recurrence on the depthℓ of the tree.) Observe that the number of nodes that are contacted
during a dissemination must be larger thanq as written Line3.

There are three kind of messages denoted by messagetype: CONS, PROP, RESP indicating
if the message is a consultation message, a propagation message, or a response to any of the two
other messages. When a new phase starts at clienti, a time-to-live fieldttl is set toℓ and a sequence
numbersn is incremented. This number is used in message exchanges to indicate whether a mes-
sage corresponds to the right phase. Then the phase proceedsin sending continuously messages
to k neighbors waiting for their answer (Lines25–28 and Lines35–38). When thek neighbors
answer, clienti knows that the dissemination is ongoing. Then clienti receives all messages until
a large enough numberq of nodes have responded in this phase with the right sequencenumber
(Lines30, 40). If so, then the phase is complete.

Observe that during the dissemination, messages are simplymarked (if not so), responded (to
client i), and refowrarded to other neighbors (untilttl is null). Messages are marked by the node
i that participates into a dissemination for preventing nodei from participating multiple times in
the same dissemination (Line:43). As a result, if nodei is asked several times to participate, it
first participates (Lines46–66) and then it asks another node to participate (Lines43–45). More
precisely, ifmarked[sn] is true, then nodei re-forwards messages of sequence numbersnwithout
decrementing thettl. Observe that phase termination and dissemination termination depends on the
number of participants rather than the number of responses:it is important that enough participants
participate in each dissemination for the phase to eventually end.

Preventing stale value propagation. It is interesting to understand how a value can be read and
written using timed quorum system. First, observe that somequorum might not intersect, though
this is very unlikely. There is an intersection between any two quorums with high probability, thus,
there might exist a quorum that does intersect any other. Thegoal of the read operation is to return
the most up-to-date value of the object, while the goal of thewrite is to propagate a new value that
must appear as more up-to-date than any other.

Due to probabilistic guarantees, each operation might not satisfy its goal. Indeed, a consultation
might fail in contacting any node that has the largest tag andup-to-date value. The subsequent
propagation phase tries, in case of a read operation, to propagate a stale value, or, in case of a write
operation, to propagate a value with a potentially non-adequate tag. Remark that a write operation
whose consultation failed might still associate its value the largest tag. Propagating low tag or
stale value may have dramatical consequence on further operations. Since intersection probability
depends on the number of nodes that own up-to-date value and largest tag, it is crucial that no
stale value overwrite an up-to-date value so as no low tag overwrite the largest tag. To remedy this
problem, each node contacted during a propagation updates its current tag-value pair only if the
propagation informs it about a more up-to-date value associated a larger tag (cf. Lines51and55).
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Contacting participants randomly. In order to contact the participants randomly, we imple-
mented a membership protocol [GKM03]. In this protocol, each node has a set of neighbors called
its view Ni, it periodically updates its view and recomputes its set of neighbors. Algorithm9
provides each node with a set ofm≥ k+1 neighbors, so that phases of Algorithm8 disseminate
through a tree of widthk.

Algorithm 9, presented here, is a variant of the Cyclon algorithm [VGvS05]. This algorithm
shuffles the view at each cycle of its execution so that it provides randomness in the choice of
neighbors. Moreover, it has been shown by simulation that the communication graph obtained with
Cyclon is similar to a random graph where neighbors are pickeduniformly among nodes [Iwa05].
Finally, for a different purpose we simulated exactly the same variant of Cyclon described on
Algorithm 9. This simulation confirmed our thoughts since the results obtained was really similar
to the one obtained with artificial uniformity. This simulation is described in FigureA.5(a)of the
Appendix and in [FGJ+07].

Algorithm 9 Gossip-based Neighborhood Management using a variant of Cyclon.
1: Initial State of node i:
2: Ni , the view initially filled of some neighbor entries.
3: m≥ k+1, the view size.

4: Active Thread at node i:
5: for j ′ ∈Ni do
6: t j ′ ← t j ′ +1

7: j ← j ′′ : t j ′′ = max j ′∈Ni
(t j ′)

8: send(REQ′,Ni \{ej}∪{〈i,0〉}) to j
9: recv(ACK′,N j) from j

10: duplicated-entries= {e : e.id ∈N j ∩Ni}
11: N init

i ←Ni

12: Ni ←N j \duplicated-entries\{ei}
13: for ek ∈N init

i do
14: if |Ni |< c then
15: Ni ←Ni ∪{ek}

16: Passive thread at nodei activated upon message reception:
17: recv(REQ′,N j) from j
18: send(ACK′,Ni) to j
19: duplicated-entries= {e∈N j : e.id ∈N j ∩Ni}
20: N init

i ←Ni

21: Ni ←N j \duplicated-entries
22: for ek ∈N init

i do
23: if |Ni |< m then
24: Ni ←Ni ∪{ek}

For the sake of uniformity, the membership procedure specified in Algorithm9 is similar to the
Cyclon algorithm: each nodei maintains a viewNi containing one entry per neighbor. The entry of
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a neighborj corresponds to a tuple containing the neighbor identifier and its age. Nodei copies its
view, selects the oldest neighborj of its view, removes the entryej of j from the copy of its view,
and finally sends the resulting copy toj. When j receives the view,j sends its own view back toi
discarding possible pointers toi, andi and j update their view with the one they receive by firstly
keeping the entries they received. This variant of Cyclon exchanges all entries of the view at each
step and uses two additional parameters.

4.3.3 Correctness and Analysis of a Scalable and Dynamic DSM

This Subsection shows that Algorithm8 implements a timed quorum system and that it emulates
the probabilistic atomic object abstraction defined in Definition 4.1.2. The key points of this proof
is to show that quorums are sufficiently re-activated by new operations to face dynamism and that
subsequent quorums intersect with very high probability toachieve probabilistic atomicity.

Assumptions. First, we only consider executions starting with at leastq nodes that own the
default value of the object. In these executions, at least one propagation phase from a successful
operation starts every∆ time units and let the time of any phase be bounded byδ time units. We
assume that during a propagation that propagates a valuev to q nodes and that executes between
time t andt +δ, there is at least one instantt ′ where theq nodes own valuev simultaneously. This
instant,t ′, can occur arbitrarily between timet andt + δ. Even if this assumption may not seem
realistic since propagation occurs in parallel of churn (i.e., at the time the propagation contacts the
qth node the first contacted node may have left the system), our motivations for this assumption
comes from the sake of clarity of the proof and we claim that the absence of this assumption leads
to the same results.

Second, we assume that Algorithm9 used as our underlying communication protocol provides
each node with a view that represents a set of neighbors uniformly drawn at random among the
set of all active nodes. This assumption is reasonable since, as already mentioned, the underlying
algorithm is based on Cyclon that shuffles node views and provides communication graph similar
to a random graph [Iwa05].

Next, we show that Algorithm8 implements a probabilistic object. Observe that the liveness
part of this proof relies simply on the activity of neighbors, and the fact that messages are eventually
received. More precisely, by examination of the code of Algorithm 8 and Algorithm9, messages
are gossiped among neighbors while neighbors are uniformlychosen. It is clear that operation
termination depends on eventual message delivery. As a result, only the safety part of the proof
follows.

Consistency proof. First Lemma computes the ratio of nodes that leave the systemas time
elapses, given a churn ofc. The result is a bound on the number of nodes that leave and join,
and helps computing the probability that up-to-date valuesremain reachable despite dynamism.
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Lemma 4.3.1 The number of initial nodes that have been replaced afterτ time units is at most
C = 1− (1−c)τ.

Proof. We claim that the number of initial nodes that are still in thesystem afterτ time units is
at leastn(1−c)τ. The proof is by induction on the time instants. Let us remindthatc is an upper
bound on the percentage of nodes that are replaced in one timeunit.

• Base case. At time 1, at leastn−nc= n(1−c) nodes have not been replaced.

• Induction case. Let us assume that at timeτ−1, the number of initial nodes that have not
been replaced is at leastn(1− c)τ−1. Let us consider the time instantτ. The number of
initial nodes that are not replaced afterτ time units is at leastn(1−c)τ−1−n(1−c)τ−1c, i.e.,
n(1−c)τ, which proves the claim.

It follows from the previous claim that the number of initialnodes that are replaced duringτ time
units is at mostn−n(1−c)τ. Therefore,C = (n−n(1−c)τ)/n = 1− (1−c)τ. 2

The following Lemma gives a lower bound on the number of nodesthat own the up-to-date
value at any time in the system. (Recall that an up-to-date value is either the value with the largest
tag and whose propagation is complete, or any value with a larger tag, but whose propagation is
ongoing.)

Lemma 4.3.2 At any time t in the system, the number of nodes that own an up-to-date value is at
least q(1−c)∆, where∆ is the maximum time between two subsequent propagation starts, q is the
quorum size, and c is the churn of the system.

Proof. With no loss of generality, letρ1, ...,ρk be all the ongoing propagations at timet and letρ
be the latest successful propagation that is already finished at timet. By definition, allv(ρi) for
any i ≥ 0 are the up-to-date values in the system. Propagationsρ1, ...,ρk must all have started after
time t− δ. By the periodicity assumption of propagate phase, propagation ρ0 cannot start earlier
than timet−∆ + δ. Due to propagationρ0, there must beq nodes with valuev(ρ) between times
t−∆+δ andt−∆+2δ.

Since the number of replaced nodes increases as time elapses, assume a worst case scenario
in which q nodes own valuev(ρ) at time t1 = t −∆ + δ, we show that at leastq(1− c)∆ nodes
with valuev(ρ) remains in the system at timet2 = t + δ. By Lemma4.3.1, we know that during
periodt2− t1 = ∆ exactly⌊q(1−(1−c)∆)⌋ nodes with valuev(ρ) are replaced. Since propagations
ρ1, ...,ρk are ongoing, there may be some successful propagations among those ones that overwrite
some node values. Observe that if this overwriting happens only to nodes that already own value
v(ρi), then the number of nodes with valuev(ρi) remains at leastq(1− c)∆ at timet + δ; if this
overwriting happens to nodes that do not own valuev(ρi) then this number increases. That is,
q(1−c)∆ is a lower bound on the number of nodes with valuev(ρi) at timet +δ. 2

The following Fact gives a well-known bound on the exponential function, provable using the
Euler’s method.
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Fact 4.3.3 (1+ x
n)n≤ ex, for n> |x|.

Next Lemma lower bounds the probability that any consultation consults an up-to-date value
v. Recall that sometime it might happen that a valuev′ is unsuccessfully propagated. This may
happen when a write operation fails in consulting the largest tag just before propagating valuev′.
Observe that in any case, a successful consultation returnsonly successfully propagated values.

Lemma 4.3.4 If the number of nodes that own an up-to-date value is at least q(1−c)∆ during the
whole period of execution of consultationφ, then consultationφ succeeds with high probability.
(P ≥ 1−e−β2

.)

Proof. The consultation of Algorithm8 draws uniformly at randomq nodes, without replace-
ment. To lower bound the probabilityP that any consultation consults an up-to-date valuev,
we compute the probability that this value is obtained afterq drawings with replacement. It is
clear that the probability of obtaining a specific node afterq drawings is larger without replace-
ment than with replacement. The probability for a nodex uniformly chosen at random not to

own the valuev is Pr[x /∈ Q ] = 1− q(1−c)∆

n that is, the probability not to consult valuev af-

ter q drawings, with replacement, is Pr[x1 /∈ Q , ...,xq /∈ Q ] =
(

1− q(1−c)∆

n

)q
. By Fact 4.3.3,

Pr[x1 /∈ Q , ...,xq /∈ Q ] ≤ e−
q2

n (1−c)∆
. By replacing theq by the quorum size given at Line2 of

Algorithm 8 in the contrapositiveP ≥ 1−e−
q2

n (1−c)∆
we obtain the resultP ≥ 1−e−β2

. 2

This corollary simply concludes the two previous Lemma stating that any consultation executed
in the system succeeds by returning an up-to-date value.

Corollary 4.3.5 Any consultationφ succeeds with high probability. (P ≥ 1−e−β2
.)

Proof. The result is straightforward from Lemma4.3.2and Lemma4.3.4. 2

Last but not least, the two theorems conclude the proof by showing that Algorithm8 imple-
ments a∆-TQS and verifies probabilistic atomicity.

Theorem 4.3.6 Algorithm8 implements a∆-Timed Quorum System, where∆ is the maximum time
between two subsequent propagation starts.

Proof. First observe that the set of quorums is the set of subsets ofq active nodes over the system at
timet. The timed access strategy at timet over the set of all quorums is the uniform access strategy
over all quorums since each node is chosen with a uniform access strategy among the active nodes
at timet. By Corollary4.3.5, it is clear that the intersection between two quorums is ensured with
high probability as long as one quorum starts being contacted ∆ time before the other ends being
contacted. 2
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Theorem 4.3.7 Algorithm8 implements a probabilistic atomic object.

Proof. The proof shows that it exists an ordering≺ defined by the tags such thatπi ≺ π j is
equivalent to eithertag(πi) = tag(π j) andπi is a write andπ j is a read, ortag(πi) < tag(π j). We
prove separately for each property of Definition4.1.2that the ordering≺ satisfies it.

1. The proof is done in two parts. First, we show that Property1 holds if consultation phase
of operationπ2 obtains an up-to-date value. Second, we show that this consultation phase
obtains an up-to-date value with high probability.

On the one hand, we denote byφi and byρi the respective consultation phase and propagation
phase of any operationπi. We show by contradiction that Property 1 holds ifφ2 consults an
up-to-date value. By absurd, assume that it is false. That is,assume thatφ2 consults an up-to-
date value, the response ofπ1 precedes the invocation ofπ2, andπ2≺ π1. Sinceφ2 consults
an up-to-date value, we havetag(φ2)≥ tag(π1). Now there are two cases to consider: either
π2 is a read or a write. First, ifπ2 is a write thentag(π2) > tag(φ2)≥ tag(π1) by examination
of the code of Algorithm8 (cf. Lines21). By definition of≺, if tag(π2) > tag(π1) andπ2 is
a write, then it cannot happen thatπ2≺ π1. Second, ifπ2 is a read thentag(π2) = tag(φ2)≥
tag(π1) by examination of the code of Algorithm8 (cf. Lines15). By definition of≺, if
tag(π2) ≥ tag(π1) andπ2 is a read, then it cannot happen thatπ2 ≺ π1. As a result, this
contradicts the assumption, showing that Property 1 holds if φ2 obtains an up-to-date value.

On the other hand, Corollary4.3.5shows that any consultation obtains the most up-to-date
value with high probability. Since Property 1 holds if a consultation ofπ2 consults an up-to-
date value, and since any consultation consults an up-to-date value with high probability, the
result follows.

2. Property 2 follows simply from the way tags are chosen. Letπ1 andπ2 be any two operations.
On the one hand, ifπ1 andπ2 are initiated at nodei, then they have distinct tag counters.
On the other hand, ifπ1 andπ2 are initiated at two distinct nodes, then they have distincttag
identifiersi and j. As a result, two operations have different tags and eithertag(ρ1) > tag(ρ2)
or tag(ρ1) < tag(ρ2) holds.

3. Property 3 fails only if the read operation is unsuccessful. The probabilityPπ for an operation
π to be unsuccessful is lower than the probabilityPφ that its consultationφ is unsuccessful.

Since we know by Corollary4.3.5that this later probabilityPφ is very low (Pφ = e−β2
), the

probabilityPπ that an operation is unsuccessful is very low too (Pπ ≤ e−β2
). It follows that

Property 3 holds with high probability (≥ 1−e−β2
).

2
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Performance analysis. The following Theorems show the performance of our solutionby mea-
suring the time complexity and the communication complexity of any operation. More precisely,
the first Theorem gives the minimal number of messages required to make an operation while the
second Theorem gives the expected time complexity of our solution.

Observe that operations complete provided that sent messages are reliably delivered. Assuming
this, an operation completes after contactingO(

√
nD) nodes. The following Theorem shows this

result.

Theorem 4.3.8 An operation completes after having contacted O(
√

nD) nodes.

Proof. This is straightforward from the fact that termination of the dissemination process is con-
ditioned to the number of distinct nodes contacted:q = O(

√
nD), with D = (1−c)−∆ (cf. Line 2).

Since there are two disseminating phases in each operation,an operation is executed after contact-
ing O(

√
nD) nodes. 2

The following Lemma indicates that contacting a quorum ofq = O(
√

n) nodes consists in
contacting approximatelyq nodes uniformly at random.

Lemma 4.3.9 Let n be the total number of nodes and assume that in a trial a node is drawn
uniformly at random with replacement. The expectation of thenumber of trials q′ to obtain q=
O(
√

nD) distinct nodes is q′ ≈ q = O(
√

nD).

Proof. Let H(n) denote thenth Harmonic number in this proof. The goal is to compute the number
of trials to getq distinct nodes, that is, there is an analogy between our problem and the coupon
collector problem where coupons are successively bought uniformly at random and the goal is
to complete the collection. From the coupon collector problem, we know that the waiting time
between couponsi− 1 andi is a random variable with expectationn/(n− i + 1). Let q′ be the
number of trials to obtainq distinct nodes. Its expectation is thus:

E[q′] =
q

∑
i=1

n
n− i +1

,

= n

(

n

∑
i=1

1
i
−

n−q

∑
j=1

1
j

)

,

= n(H(n)−H(n−q)) . (4.1)

The upper and lower bounds of thenth Harmonic number is given by Theorem 2 of [QCCG05] as:

1

2n+ 1
1−γ −2

≤ H(n)− lnn− γ≤ 1

2n+ 1
3

,

whereγ = 0.57721566. . . is the Euler-Mascheroni constant.
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Consequently, we haveH(n)−H(n−q)≈ lnn− ln(n−q) =− ln
(

1− q
n

)

. Since ln(1+x)≈ x
where|x|< 1, we haveH(n)−H(n−q)≈ q

n. Using this approximation in Equation4.1 leads to:

E[q′]≈ n(− ln
n

n−q
)≈ q.

2

Next Theorem indicates that an operation terminates inO(log
√

nD) message delays, in expec-
tation.

Theorem 4.3.10 If messages are not lost, the expected time of an operation isO(log
√

nD) mes-
sage delays.

Proof. The proof relies on the fact thatq′ nodes are contacted uniformly at random with replace-
ment. By Lemma4.3.9, in expectation the numberq′ that must be contacted to obtainq distinct
nodes isq′ = O(

√
nD). Since allq′ nodes are contacted in parallel along a tree of depthℓ′ and

width k, the time required to contact all the nodes on the tree isℓ′ = O(logk

√
nD) message delays.

2

4.3.4 Exact Probability for Practical Measurements

From a practical standpoint, high probability must be translated into exact values representing
the quality of service. It is crucial for the system designerof a company to know what is the exact
expectation provided by a service. For instance, if a serveris guaranteed to be up during 99,99% of
the time, then the company can estimate the waste because of server crash. Previously, we showed
that Algorithm8 implements probabilistic atomicity, that is, we bound the intersection probability
of the quorum system. Differently, we now compute the exact intersection probability between
any two quorums that are probed in the same period∆. The exact probability measurement is of
practical interest to predict the success of an operation ina distributed shared memory service.

Refining the model of dynamics. Since the purpose is no longer to achieve high probability
but rather an exact probability value, we refine our model of dynamics, using a more complex but
more realistic model. We present several measurements of this probability depending on some
parameters: churnC, period∆, and quorum sizeq. In the previous sections, the number of nodes
replaced during periodδ is fixed and represents a portion of the system and any of its subsystems.
That is, given any subsetSof system nodes,C|S| nodes are replaced during periodδ in S.

This model can be refined to be more realistic. Even thoughCn nodes have been replaced in
the system, realistically it is unsured thatC|S| nodes have been replaced inS. Indeed, if|S| ≤ nC, it
is possible that all the nodes of subset|S| have been replaced. For the purpose of obtaining a more
realistic measure of intersection guarantee we now recompute the number of nodes that have been
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replaced as a random variable. We then redraw our result based on the new churn model obtained.
More technically, the number of nodes that are replaced during periodτ in the system remains
C = 1− (1−c)τ (cf. Lemma4.3.1), however, the number of nodes that are replaced in any subset
Sof the system is a random variable that depends on the size|S| of the subset.

Evaluating the exact probability of intersection. Let two quorumsQ(t) andQ(t ′) be two sets
of q nodes that are probed at timet andt +∆, respectively. Next, we focus on the exact probability
thatQ(t) andQ(t ′) intersect. Let aninitial node be a node that belongs toQ(t). Moreover, without
loss of generality, lett = 0 (hence,t ′ = ∆). Before evaluating the probability thatQ(t) andQ(t ′)
intersect, we determine the exact numberα of nodes that leave the system during period∆. First,
recall thatC is an upper bound on the percentage of nodes that leave and join the system during∆
time units.

Unlike the previous proof, this theorem assumes the refined model of dynamics and measures
precisely the probability that, at timet ′ = t + ∆, an arbitrary node cannot obtain the object value
when it queriesq nodes arbitrarily chosen. For this purpose, using result ofLemma4.3.1we take
the number of elements that have left the system during the period ∆ asα = ⌊Cn⌋ = ⌊(1− (1−
c)∆)n⌋. This number allows us to evaluate the aforementioned probability.

Theorem 4.3.11Let x1, ...,xq be any node in the system at time t′ = t + ∆. The probability that
none of these nodes belong to the initial quorum is

∑b
k=a

[(

n+k−q
q

)(

q
k

)(

n−q
α−k

)]

(

n
q

)(

n
α

) ,

whereα = ⌊(1− (1−c)∆)n⌋, a= max(0,α−n+q), and b= min(α,q).

Proof. The problem we have to solve can be represented in the following way:
The system is an urn containingn balls (nodes), such that, initially,q balls are green (they

represent the initial quorumQ(t) and are represented by the setQ in Figure4.4), while then−q
remaining balls are black.

We randomly drawα = ⌊Cn⌋ balls from the urn (according to a uniform distribution), and paint
them red. Theseα balls represent the initial nodes that are replaced by new nodes after∆ units of
time (each of these balls was initially green or black). After it has been colored red, each of these
balls is put back in the urn (so, the urn contains againn balls).

We then obtain the system as described in the right part of Figure 4.4 (which represents the
system state at timet ′ = t + ∆). The setA is the set of balls that have been painted red.Q ′ is the
quorum setQ after some of its balls have been painted red (these balls represent the nodes of the
quorum that have left the system). This means the setQ ′ \A , that we denote byE , contains all the
green balls and only them.
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Figure 4.4: System at timest andt ′ = t +∆

We denote byβ the number of balls in the setQ ′ ∩A . It is well-known thatβ has a hyper-
geometric distribution, i.e., fora≤ k ≤ b wherea = max(0,α− n+ q) and b = min(α,q), we
have

Pr[β = k] =

(

q
k

)(

n−q
α−k

)

(

n
α

) . (4.2)

We finally draw randomly and successivelyq balls x1, ...,xq from the urn (system at timet ′)
without replacing them. The problem consists in computing the probability of the event{none of
the selected ballsx1, ...,xq are green}, which can be written as Pr[x1 /∈ E , ...,xq /∈ E ].

As {x∈ E}⇔ {x∈ Q ′}∩{x /∈ Q ′∩A}, we have (taking the contrapositive){x /∈ E}⇔ {x /∈
Q ′}∪{x∈ Q ′∩A}, from which we can conclude

Pr[x /∈ E ] = Pr[{x /∈ Q ′} ∪ {x ∈ Q ′ ∩A}]. As the events{x /∈ Q ′} and{x ∈ Q ′ ∩A} are
disjoints, we obtain

Pr[x /∈ E ] = Pr[x /∈ Q ′]+Pr[x∈ Q ′∩A ]. The system containsn balls. The number of balls in
Q ′, A andQ ′∩A is equal toq,α andβ, respectively.

Since there is no replacement, we get,

Pr[x1 /∈ E , ...,xq /∈ E
/

β = k] = ∑b
k=a ∏q

i=1

(

1− q−k
n−i+1

)

= ∑b
k=a

(

n−q+k
q

)

(

n
q

) . (4.3)
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To uncondition the aforementioned result (4.3), we simply multiply it by (4.2), leading to

Pr[x1 /∈ E , ...,xq /∈ E ] =

∑b
k=a

[(

n+k−q
q

)(

q
k

)(

n−q
α−k

)]

(

n
q

)(

n
α

) .

2

Analyzing quality measures. Now, given a valueC set by an application developer, two pa-
rameters may influence the overhead of maintaining a quorum in the system and the probabilistic
guarantee of having such a quorum. The overhead may be measured in a straightforward manner
in this context as the number of nodes that need to be probed, namelyq. Intuitively, for a givenC,
asq increases, the probability of probing a node of the initial quorum increases.
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Figure 4.5: Quorum size for the intersection probabilityp = 1− ε

Let us consider the valueε determined by Theorem4.3.11. That value can be interpreted the
following way: p = 1− ε is the probability that, at timet ′ = t + ∆, one of theq queries issued
(randomly) by a node hits a node of the quorum. An important question is then the following:
How areε andq related? Or equivalently, how increasing the size ofq allows decreasingε? This
relation is depicted in Figure4.5where several curves are represented forn = 10,000 nodes.

Each curve corresponds to a percentage of the initial nodes that have been replaced. (As an
example, the curve 30% corresponds to the case whereC = 30% of the initial nodes have left the
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system.) Let us considerε = 10−3. The curves show thatq = 274 is a sufficient quorum size for
not bypassing that value ofε when up to 10% of the nodes are replaced (point A, Figure4.5).
Differently, q = 274 is not sufficient when up to 50% of the nodes are replaced; in that case, the
sizeq = 369 is required (point B, Figure4.5).

The curve of Figure4.5 provides the system designer with realistic hints to set thevalue of∆
(deadline before which a data transfer protocol establishing a new quorum has to be executed). It
shows that, when 10−3 ≤ ε ≤ 10−2, the probabilityp = 1− ε increases very rapidly towards 1,
though the size of the quorum increases only in a very slight way. As an example, a quorum of
q = 224 nodes ensures an intersection probability= 1− ε = 0.99, and a quorum ofq = 274 nodes
ensures an intersection probability= 1− ε = 0.999.

Interestingly, this phenomenon is similar to thebirthday paradox3 [Isa95] that can be roughly
summarized as follows. How many persons must be present in a room for two of them to have
the same birthday with probabilityp = 1− ε? Actually, for that probability to be greater than 1/2,
it is sufficient that the number of persons in the room be equal(only) to 23! When, there are 50
persons in the room, the probability becomes 97%, and increases to 99.9996% for 100 persons.
In our case, we observe a similar phenomenon: the probability p = 1− ε increases very rapidly
despite the fact that the frequency of the quorum sizeq increases slightly.

In our case, this means that the system designer can choose toslightly increase the size of
the probing setq (and therefore only slightly increase the associated overhead) while significantly
increasing the probability to access a node of the quorum.

Comparative quorum sizes of static and dynamic systems.In the following we investigate the
way the size and lifetime of the quorum are related when the required intersection probability is
99% or 99.9%. We chose these values to better illustrate our purpose, as we believe they reflect
what could be expected by an application designer. For both probabilities we present two different
figures summarizing the required values ofq.

Figure4.6focuses on the quorum size that is required in a static systemand in a dynamic system
(according to various values of the ratioC). The static system implies that no nodes leave or join
the system while the dynamic system contains nodes that joinand leave the system depending on
several churn values. For the sake of clarity we omit values of ∆ and simply presentC taking
several values from 10% to 80%. The analysis of the results depicted in the figure leads to two
interesting observations.

First, when∆ is big enough for 10% of the system nodes to be replaced, then the quorum size
required is amazingly close to the static case (873 versus 828 whenn = 105 and the probability is
0.999). Moreover,q has to be equal to 990 only whenC increases up to 30%. Second, even when
∆ is sufficiently large to let 80% of the system nodes be replaced, the minimal number of nodes
to probe remains low with respect to the system size. For instance, if∆ is sufficiently large to let
6,000 nodes be replaced in a system with 10,000 nodes, then only 413 nodes must be randomly

3The paradox is with respect to intuition, not with respect tologics.
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Intersection Churn Quorum size
probability C = 1− (1−c)∆ n = 103 n = 104 n = 105

static 66 213 677 *
10% 70 224 714

99% 30% 79 255 809
60% 105 337 1071
80% 143 478 1516

static 80 * 260 828 *
10% 85 274 873 *

99.9% 30% 96 311 990 *
60% 128 413 * 1311
80% 182 584 1855

Figure 4.6: The quorum size depending on the system sizes andthe churn rate.

probed to obtain an intersection with probabilityp = 0.999.

4.4 Discussion and Conclusion

4.4.1 Approximating the System Size

An approximationn′ is needed in Algorithm8 to determine the best size for quorum system.
Although the exact system sizen is impossible to obtain in a large-scale and dynamic systems,
many solutions have been proposed in the literature to approximate this value. Since the result
obtained are very close, those algorithm can be used to obtain a sufficient approximation.

Several approaches to dynamically, and in a fully decentralized way, estimate the system size
exist in the literature. Three main approaches to distributed counting approaches can be distin-
guished. The first one rely on probabilistic polling approaches. The basic idea of such approaches
is to probe the network in a probabilistic way and to infer thesize of the systems based on the
replies [FT99,KPG+05]. The second approach relies on epidemic algorithms [JM04] and provides
very accurate information. The last class of approaches rely on random walks such as theSam-
ple and collidealgorithm [MLKG06]. A comparison of the efficiency and accuracy of candidates
approaches from these three classes can be found in [LKM06].

Most of these solution provides a very good approximationn′ of the system size, in a number
of steps logarithmic in the system size. Some of these solutions can be coupled to Algorithm9
very naturally, since they execute using prototypical gossip [CGJ+07].
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4.4.2 Modeling the Churn in Dynamic Systems

From a practical point of view, monitoring the dynamism intensity, or churn, is a difficult task
for many reasons. First, the dynamic system has to be monitored through a central point that
experience no failure. Second, participants may leave the system and modify their state before
rejoining. This prevents further identification. In [SGG02, BSV03, SR06], the authors strive to
give overviews of the churn in peer-to-peer systems. Their result differ slightly, for instance the
last one [SR06] shows, for the first time, that the distribution of peer uptime follows a Weibull law.

From a theoretical point of view, modeling the churn is also adifficult task. As mentioned
above, although we have a better understanding of the churn,it suffers from inherent difficulties.
In this chapter, we modeled the churn in two manners. First, we modeled the churn as a local rate,
such that each subset of the system experiences the same portion of arrivals and the same portion
of departures. Second, we modeled the churn as a global rate,such that each subset of the system
may experience a quantity of churn that is related to some probability: even if the global churn is
low, a large portion of a small subset of the system might be affected by churn but this is unlikely.

In statistics, a mathematical model helps estimating population evolution over time. This model
called birth and death process uses continuous-time Markovchain to model the population size:
a birth increments the population size while a death decrements it. This model is well-known
in queuing theory where an arrival in the queue can be seen as abirth and a leaving as a death.
Recently, Markov processes appeared as promising tools for modeling churn in peer-to-peer sys-
tems. In [CKKM06], the birth and death process has been suggested for the modeling of replica
birth and replica death in a peer-to-peer system. Differently, in [DA06] the authors use discrete-
time Markov processes to model two concurrent mechanisms: replication and arrival/departure of
nodes. This model uses two distinct Markov processes so thatthe output state of one is the input
state of the other; by averaging one state of each process they approximate a potentially reachable
state of the system. An interesting research direction is tomodel two concurrent mechanisms using
continuous-time markov process. As an example, it would be interesting to model arrival/depar-
ture mechanism and an individual replication mechanism altogether to understand the impact of
the former mechanism on the global performance of the lattermechanism.

4.4.3 Conclusion

This chapter addressed the problem of emulating a distributed shared memory that tolerates scala-
bility and dynamism while being efficient, in terms of operation latency. Motivated by the need of
a more realistic model of dynamic system in which deterministic guarantees are almost impossi-
ble, this chapter investigated Timed Quorum Systems (TQS) where intersection is timed and holds
with high probability.

TQS ensures probabilistic intersection of quorums in a timely fashion. Because the intersection
is temporal, such quorum systems are well-suited for dynamic context. Because of probabilistic
intersection, such quorums systems match more realistic models of dynamism, where nodes act
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independently. Interestingly, we showed that some TQS implementation verifies a consistency cri-
terion weaker but similar to atomicity: probabilistic atomicity. This roughly states that any opera-
tion provided by some TQS satisfies the ordering required foratomicity with high probability. The
given implementation of TQS verifies probabilistic atomicity, provides lightweight and fast oper-
ations, and does not require reconfiguration mechanism since periodic replication is piggybacked
into operations. More precisely, the communication complexity of any operation isO(

√
nD),

wheren is the system size andD is the dynamic parameter; and its time complexity isO(log
√

nD)
message delays. Consequently, if operations are frequent enough for the dynamic parameter,D, to
be constant, then this complexity reaches theO(

√
n) complexity shown in [MRWW01] for static

systems. Thus, our TQS implementation is optimal in this sense.
The TQS implementation presented in this chapter differs mainly from previous works by the

fact that it is structureless. We believe that structureless quorum systems present an interesting
direction for further research. Indeed, a structureless memory does not require a client to access a
specific predefined set of nodes, but simply require a predefined number of nodes to see or write the
value before the client returns. This non-determinism in the choice of the quorum members may
translate into powerful operations. For example, an interesting work would be to propose TQS that
would use a multiple-source dissemination mechanism instead of the single-source dissemination
proposed in this chapter. Such multi-source disseminationwould allow a read operation to execute
very rapidly by simply(i) collecting the number of nodes that have participated in a recent dissem-
ination, and(ii) returning the most up-to-date value as soon as the this number of nodes becomes
larger thanO(

√
nD).

This chapter has enlightened a very fundamental problem: modeling dynamism. As far as we
know, it does not exist a realistic model of dynamism intensity (i.e., churn). The misunderstanding
of churn is an important issue that limits the application oftheoretical solutions to practical dy-
namic environments like ad-hoc networks or peer-to-peer networks. An important characteristic is
the independent behavior of participants that prevents anydeterministic solution from being realis-
tically achievable: all solutions that verifies atomicity and whose operations complete, are subject
to failures with high probability in any infinite execution.This is due to the fact that at some point
too many nodes will leave the memory in a small period of time.

To conclude this chapter, we claim that probabilistic consistency is a prevalent goal for dis-
tributed shared memory in dynamic and large-scale systems.Unlike deterministic guarantees,
probabilistic ones can provide high quality of service during an arbitrarily long period of time.
Modeling dynamism is another promising research directionand would lead to important aids for
various kind of problems related to dynamism.
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Conclusion and Open Issues

This thesis pointed out that large-scale dynamic systems are very complex environments: First, in
such context it is impossible to emulate an efficient and deterministic distributed shared memory
(DSM) that satisfies both scalability and dynamism since strong assumptions on the dynamism
intensity have to be made. Second, probabilistic DSMs are well-suited for this kind of environment.

Bad News?

This thesis has identified an important tradeoff that prevents from emulating an efficient deter-
ministic DSM that tolerates dynamism and that is scalable. Either tolerating dynamism is very
communication costly, or achieving scalability leads to high operation latency. As an example of
the two extremes, two distinct solutions have been presented:

1. In Chapter2, RDS tolerates dynamism by allowing fast decision upon the replacement of
failed quorum systems. RDS achieves very efficient operations that may last only two mes-
sage delays. However, this solution relies on an important degree in the communication
graph in order to achieve fast operation and fast reconfiguration. In a large-scale system, the
configuration must scale in order to support the load inducedby participation. That is, each
dynamic event implies to update the state of a tremendous number of nodes, by exchanging
a number of messages that scales with the system size while bandwidth do not.

2. In Chapter3, Square provides scalable memory that tolerates unpredictable requests of a
large number of clients. The memory self-adapts its amount of resources in face of load
variation being able to treat any request even if the load is quite high. The reconfiguration
is made cost-efficient by restraining the degree of the communication graph. As a result,
probing a quorum requires many message delays and executingan operation may be very
long. This phenomenon is strengthened when load increases since the memory expands,
leading to larger quorums and longer operation latency.

111



On Classifying Quorum Systems

In an effort to find the best quorum system for DSM in large-scale and dynamic systems, this thesis
investigated in details existing quorum systems. As a result of this investigation a new classification
of quorum systems showed up, as depicted in Figure4.7.

Quorum System

Static Dynamic Probabilistic

Redundant Replaceable Reparable StructurelessFailure−prone Reparable

Figure 4.7: Quorum System Classification

Interestingly, this classification gives a natural rankingof quorum systems representing their
usability in large-scale dynamic systems. First, at the very left-hand side are the failure-prone quo-
rum systems, which can not tolerate any failure (e.g. the star quorum system). At the right-hand
side of the failure-prone ones, the redundant quorum systems can tolerate a bounded number of fail-
ures but can not tolerate dynamism (e.g. grid quorum system [Mae85]). Then, the reconfigurable
ones may tolerate an arbitrary number of failures while not being scalable (e.g. RDS [CGG+05]).
The reparable quorum systems that cope with failures in a scalable way does not provide optimal
performance (e.g. square [GAV07]) while probabilistic and reparable ones provide better perfor-
mance (e.g. dynamic probabilistic quorum systems [AM05]). Finally, structureless quorum system
(e.g. timed quorum system [GKM+06]) appears to be the most promising solution for DSM that
tolerates dynamism and scalability.

Actually, the classification is the following. First, failure-prone and redundant quorum systems
are static. Second, reconfigurable and replaceable quorum systems are both dynamic. Third, some
replaceable quorum systems and the structureless ones are both probabilistic quorum systems.
The main difference is between the deterministic (static and dynamic quorum systems) and the
probabilistic quorum systems, since they offer very different guarantees. An interesting research
direction would be to define structureless quorum systems that provide deterministic guarantees.
That is, it would tolerate high dynamism while guaranteeingdeterministic properties.

To conclude, we are convinced that structureless quorum systems can be adapted for different
needs. Guided by mutual exclusion [Ray86], consensus [Lam06a], data retrieval [MTK06], or
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other quorum-based applications, researchers could take benefit of the scalability and dynamism
of these quorum systems.

Good News?

This thesis claims that probabilistic consistency presents ways to define acceptable consistency
conditions and time complexity while achieving ideal performance in terms of communication
complexity. This results essentially from the previous tradeoff that translates into the lack of per-
formance when willing to emulate a deterministic DSM: either congestion provokes request losses,
or enlarging memory delays operations. There are two major points in favor of probabilistic con-
sistency:

1. First point in favor is that large-scale dynamic systems can not be modeled with participants
whose actions are always dependent. Indeed, it is unreasonable to think at a dynamic system
in which many participants act altogether so that a small number of nodes leave the system
during a small period of time. If the system is large, participants are more likely to act in-
dependently and to either join or leave the memory at arbitrary instants. Because of this
unpredictability due to the independence of behaviors, many nodes may leave at the same
time, even though it is very unlikely. It is far more realistic to admit that nodes act indepen-
dently and that there exist a small probability that some nodes leave at the same time. In this
case, it is only possible to ensure properties with specific probabilities. Chapter4 has pre-
sented probabilistic atomicity as a promising consistencycriteria that allows all operations
to satisfy atomicity partial ordering with high probability.

2. Second point in favor is that there exist implementationsof Timed Quorum System (TQS),
with probabilistic requirements, that supersede performance of deterministic solutions. The
implementation of TQS presented in Chapter4 achieves faster operations than Square can
do. More generally, any solution that improves on Square by adapting it with a larger degree
than its communication graph requires a more costly reconfiguration mechanism, that is
completely absent from the TQS implementation. Furthermore, this TQS implementation
supersedes RDS by using a constant degree in the underlying communication graph, and by
masking reconfiguration power behind existing operations.That is, each node communicates
only with a constant number of neighbors and no additional and costly reconfiguration is
required.

Finally, as a step towards an effective application of DSM inlarge-scale dynamic systems,
Chapter4 also outlined that high probability can be translated into some practical quality of
service exploitable by system designers.
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Future Work and Open Questions

This thesis provides consistency guarantee in large-scalesystems. Nowadays, an increasing
amount of applications, including web-services, must facevariations of participation over time,
leading either to a resource overload or to a waste of resource. Providing consistency guarantees
despite the lack of control and the dynamism of the environment allows to make many existing
applications benefit from the resource multiplication, collaboration, fault-tolerance and low cost
of large-scale distributed systems. Nevertheless, several important questions remain open and may
complicates such an adaptation.

First, one of the major open issue remains the evaluation of large-scale systems. The observa-
tions we presented in this thesis rely either on a dozen of machines experiment, as in Section2.3.5,
or a PeerSim [JMB04] simulation on tens of thousands of nodes, as in Section3.3.6 and Ap-
pendixA. While the former settings do not scale with the number of clients, the latter settings do
not simulate the bandwidth constraints. In an attempt to make realistic but smaller scale experi-
ment we also tried a worldwide testbed of hundreds of computers, called PlanetLab [BBC+04].
Additionally, we are currently experimenting slicing algorithms (cf. AppendixA) on an emulation
testbed, called EmuLab [WLS+02], that includes about one hundred machines from the Univer-
sity of Utah. Finally, and to evaluate the real cost requiredby gossip-based protocols, we are
developingGossiPeer[GKL07], an undergoing project that provides gossip-based protocols as
implementation building blocks. Hence, an interesting future work is to develop an implementa-
tion of Timed Quorum System on top of GossiPeer, on an as realistic testbed as possible to see if
theoretical expectation are practically confirmed.

Second, an important issue of numerous large-scale dynamicsystems is security. Indeed, the
lack of control and the openness of such systems may suffer from the misbehavior of participants.
The model of failure we assumed in this thesis was the possibly unbounded crash-recovery model.
An additional type of failures, calledByzantine[LF82] or malicious, models the misbehavior of
nodes: in such a model some nodes may not respect their specification and thus may act arbitrarily.
This Byzantine faults may impact dramatically on the system performance or even lead to impossi-
bility results [FLP85]. Some solutions [MR04], rapidly evoked in this thesis, aims at enlarging the
intersection of traditional quorums such that at least a majority of nodes contacted during a quorum
access are not Byzantine and can testify of the value propagated to the other quorum. However, as
far as we know, all existing solutions require the number of failure to be bounded. A recent im-
provement appeared withprobabilistic opaque quorum systems[MR07] and an interesting work
would be to extend this work into Timed Opaque Quorum Systemsusing a model where each node
has a fixed probability of being Byzantine during some time butwhere the number of Byzantine
faults is potentially unbounded.

Third, although this thesis is motivated by the fact that resources scale with the size of the
system, several social issues may interfere with this idea in open systems like in peer-to-peer
networks or more generally in Internet-based applications. Indeed, a non-negligible amount of
participants aim at satisfying their own interest despite the common interest. In response to these
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issues, many efforts have been devoted to develop incentivemechanisms and tit-for-tat policy-
based mechanisms have already been proved efficient to prevent free-riding in peer-to-peer file
sharing applications [Coh03]. However, these behaviors are more generally inherent to social
networking and problems likelurking also diminishes the expected power of collaborations in
large-scale systems [NP00]. Those questions appear to be very interesting research challenges
from an economic or a sociological point of view.
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Appendix A

Distributed Slicing in Dynamic Networks

A.1 Introduction

A.1.1 Context and Motivations

The peer to peer (P2P) communication paradigm has now becomethe prevalent model to build
large-scale distributed applications, able to cope with both scalability and system dynamics. This
is now a mature technology: P2P systems are slowly moving from application-specific architec-
tures to a generic-service oriented design philosophy. More specifically, P2P protocols integrate
into platforms on top of which several applications, with various requirements, may cohabit. This
leads to the interesting issue of resource assignment or howto allocate a set of nodes for a given
application. Examples of targeted platforms for such a service are telecommunication platforms,
where some set of peers may be automatically assigned to a specific task depending on their capa-
bilities, testbed platform such as Planetlab [BBC+04], or desktop-grid-like applications [And04].

Even in a single application, a P2P system should be able to balance the load taking into ac-
count that capabilities are heterogeneous at the peers. This ability would be of great interest since
many recent works have unveiled the heavy-tailed distribution of storage space, bandwidth, and up-
time of peers [SGG02,BSV03,SR06]. Currently, this heterogeneity has two drawbacks. First, the
service guarantees offered by the P2P system are unpredictable and can consequently provide the
clients with a poor quality of service. Second, when low capable peers are overloaded, the general
performance of the system can be affected. For instance, thecompletely decentralized P2P ap-
plication, Gnutella [gnua], suffered from congestion when applied to large-scale systems because
nodes with a low bandwidth capability were queried. Since then, the Gnutella protocol [gnub] has
evolved and tends to requestultrapeers(which are peers with larger lifetime and larger bandwidth
capabilities), more often than regular peers. Moreover, Kazaa-like applications [kaz] try to benefit
similarly from the power of supernodes/superpeers.

Large scale dynamic distributed systems consist of many participants that can join and leave at
will. Identifying peers in such systems that have a similar level of power or capability (for instance,
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in terms of bandwidth, processing power, storage space, or uptime) in a completely decentralized
manner is a difficult task. It is even harder to maintain this information in the presence of churn.
Due to the intrinsic dynamics of contemporary P2P systems itis impossible to obtain accurate
information about the capabilities (or even the identity) of the system participants. Consequently,
no node is able to maintain accurate information about all the nodes. This disqualifies centralized
approaches.

The slicing service [JK06] enables peers in a large-scale unstructured network to self-organize
into a partitioning, where partitions (slices) are connected overlay networks that represent a given
percentage of some resource. Such slices can be either allocated to specific applications later
on, or associated with specific roles (e.g., normal peers andsuperpeers). The slicing is ordered
in the sense that peers get ranked according to their capabilities expressed by an attribute value.
Building upon the work on ordered slicing proposed in [JK06], here we focus on the issue of
accurateslicing. That is, we focus on improving quality by slicing the network accurately, and
improving stability of slices by minimizing the impact of the churn. Taking this into account, we
can summarize the distributed slicing problem we tackle here: we need to rank nodes depending on
their relative capability, slice the network depending on these capabilities and, most importantly,
readapt the slices continuously to cope with system dynamism.

A.1.2 Contributions

We present two gossip-based solutions to slice the nodes according to their capability (reflected by
an attribute value) in a distributed manner with high probability. The first algorithm of the appendix
builds upon the ordered slicing algorithm proposed in [JK06] that we call the JK algorithm in the
sequel of this appendix. The second algorithm is a differentapproach based on rank approximation
through statistical sampling.

In JK, each nodei maintains a random numberr i, picked up uniformly at random (between 0
and 1), and an attribute valueai, expressing its capability according to a given metric. Each peer
periodically gossips with another peerj, randomly chosen among the peers it knows about. If the
order betweenr j andr i is different from the order betweena j andai, random values are swapped
between nodes. The algorithm ensures that eventually the order on the random values matches
the order of the attribute ones. The quality of the ranking can then be measured by using a global
disorder measure expressing the difference between the exact rank and the actual rank of each peer
along the attribute value.

The first contribution is to locally compute a disorder measure so that a peer chooses the neigh-
bor to communicate with in order to maximize the chance of decreasing the global disorder mea-
sure. The purpose of this approach is to speed up the convergence. We provide the analysis and
experimental results of this improvement.

Then, we identify two issues that prevent accurate slicing and motivate us to find an alternative
approach to this algorithm and JK.

On the one hand, once peers are ordered along the attribute values, the slicing in JK takes place
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as follows. Random values are used to calculate which slice a node belongs to. For example, a slice
containing 20% of the best nodes according to a given attribute, will be composed of the nodes that
end up holding random values greater than 0.8. The accuracy of the slicing (independent from the
accuracy of the ranking) fully depends on the uniformity of the random value spread between 0
and 1 and the fact that the proportion of random values between 0.8 and 1 is approximately (but
usually not exactly) 20% of the nodes. This observation means that the problem of ordering nodes
based on uniform random values is not fully sufficient for determining slices.

On the other hand, another motivation for an alternative approach is related to churn and dy-
namism. It may well happen that the churn is actually correlated to the attribute value. For exam-
ple, if the peers are sorted according to their connectivitypotential, a portion of the attribute space
(and therefore the random value space) might be suddenly affected. New nodes will then pick up
new random values and eventually the distribution of randomvalues will be skewed towards high
values. If this happens we say that the churn isattribute-correlated.

The second contribution is an alternative algorithm solving these issues by approximating the
rank of the nodes in the ordering locally, without the application of random values. The basic idea
is that each node periodically estimates its rank along the attribute axis depending of the attributes
it has seen so far. This algorithm is robust and lightweight due to its gossip-based communica-
tion pattern: each node communicates periodically with a restricted dynamic neighborhood that
guarantees connectivity and provides a continuous stream of new samples. Based on continuously
aggregated information, the node can determine the slice itbelongs to with a decreasing error mar-
gin. We show that this algorithm provides accurate estimation and recovery ability in presence of
attributes-correlated churn at the price of a slower convergence.

A.1.3 Related Work

Most of the solutions proposed so far for ordering nodes comefrom the context of databases, where
parallelizing query executions is used to improve efficiency. A large majority of the solutions in
this area rely on centralized gathering or all-to-all exchange, which makes them unsuitable for
large-scale networks. For instance, theexternal sorting problem[DNS91] consists in providing
a distributed sorting algorithm where the memory space of each processor does not necessarily
depend on the input. This algorithm must output a sorted sequence of values distributed among
processors. The solution proposed in [DNS91] needs a global merge of the whole information, and
thus it implies a centralization of information. Similarly, thepercentile findingproblem [IRV89],
which aims at dividing a set of values into equally sized sets, requires a logarithmic number of
all-to-all message exchanges.

Other related problems are the selection problem and theφ-quantile search. The selection
problem [FR75,BFP+72] aims at determining theith smallest element with as few comparisons as
possible. Theφ-quantilesearch (withφ∈ (0,1]) is the problem to find amongn elements the(φn)th

element. Even though these problems look similar to our problem, they aim at finding a specific
node among all, while the distributed slicing problem aims at solving a global problem where each
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node maintains a piece of information. Additionally, solutions to the quantile search problem like
the one presented in [KDG03] use an approximation of the system size. The same holds for the
algorithm in [SDCM06], which uses similar ideas to determine the distribution ofa utility in order
to isolate peers with high capability—i.e., super-peers.

As far as we know, the distributed slicing problem was studied in a P2P system for the first
time in [JK06]. In this paper, a node with thekth smallest attribute value, among those in a system
of sizen, tries to estimate its normalized indexk/n. TheJK algorithmproposed in [JK06] works
as follows. Initially, each node draws independently and uniformly a random value in the interval
(0,1] which serves as its first estimate of its normalized index. Then, the nodes use a variant of
Newscast [JMB05] to gossip among each other to exchange random values when they find that the
relative order of their random values and that of their attribute values do not match. This algorithm
is robust in face of frequent dynamics and guarantees a fast convergence to the same sequence of
peers with respect to the random and the attribute values. Atevery point in time the current random
value of a node serves to estimate the slice to which it belongs (its slice).

A.1.4 Outline

The rest of AppendixA is organized as follows: The system model is presented in Section A.2. The
first contribution of an improved ordered slicing algorithmbased on random values is presented
in SectionA.3 and the second algorithm based on dynamic ranking in SectionA.4. SectionA.5
concludes AppendixA.

A.2 Model and Problem Statement

A.2.1 System Model

We consider a systemΣ containing a set ofn uniquely identified nodes.1 The set of identifiers
is denoted byI ⊂ N. Each node can leave and new nodes can join the system at any time, thus
the number of nodes is a function of time. Nodes may also crash. In AppendixA, we do not
differentiate between a crash and a voluntary node departure.

Each nodei maintains a fixed attribute valueai ∈ N, reflecting the node capability according
to a specific metric. These attribute values over the networkmight have an arbitrary skewed distri-
bution. Initially, a node has no global information neitherabout the structure or size of the system
nor about the attribute values of the other nodes.

We can define a total ordering over the nodes based on their attribute value, with the node
identifier used to break ties. Formally, we leti precedej if and only if ai < a j , or ai = a j andi < j.
We refer to this totally ordered sequence as theattribute-based sequence, denoted byA.sequence.
The attribute-based rank of a nodei, denoted byαi ∈ {1, ...,n}, is defined as the index ofai in

1The valuen is observed instantaneously but may vary over time.
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Figure A.1: Slicing of a population based on a height attribute.

A.sequence. For instance, let us consider three nodes: 1, 2, and 3, with three different attribute
valuesa1 = 50, a2 = 120, anda3 = 25. In this case, the attribute-based rank of node 1 would be
α1 = 2. In the rest of AppendixA, we assume that nodes are sorted according to a single attribute
and that each node belongs to a unique slice. The sorting along several attributes is out of our
scope.

A.2.2 Distributed Slicing Problem

Let Sl ,u denote theslicecontaining every nodei whose normalized rank, namelyαi
n , satisfiesl <

αi
n ≤ u wherel ∈ [0,1) is the slice lower boundary andu∈ (0,1] is the slice upper boundary so that
all slices represent adjacent intervals(l1,u1],(l2,u2]... Let us assume that we partition the interval
(0,1] using a set of slices, and this partitioning is known by all nodes. The distributed slicing
problem requires each node to determine the slice it currently belongs to. Note that the problem
stated this way is similar to the ordering problem, where each node has to determine its own index
in A.sequence. However, the reference to slices introduces special requirements related to stability
and fault tolerance, besides, it allows for future generalizations when one considers different types
of categorizations.

Figure A.1 illustrates an example of a population of 10 persons, to be sorted against their
height. A partition of this population could be defined by twoslices of the same size: the group
of short persons, and the group of tall persons. This is clearly an example where the distribution
of attribute values is skewed towards 2 meters. The rank of each person in the population and the
two slices are represented on the bottom axis. Each person isrepresented as a small cross on these
axes.2 Each slice is represented as an oval. The sliceS1 = S0, 1

2
contains the five shortest persons

and the sliceS2 = S 1
2 ,1 contains the five tallest persons.

Observe that another way of partitioning the population could be to define the group of short
persons as that containing all the persons shorter than a predefined measure (e.g., 1.65m) and the
group of tall persons as that containing the persons taller than this measure. However, this way of
partitioning would most certainly lead to have empty groupsthat contains no nodes (while a slice is
almost surely non-empty). Since the distribution of attribute values is unknown and hard to predict,
defining relevant groups is a difficult task. For example, if the distribution of the human heights

2Note that the shortest (resp. largest) rank is represented by a cross at the extreme left (resp. right) of the bottom
axis.

121



were unknown, then the persons taller than 1m could be considered as tall and the persons shorter
than 1mcould be considered as short. In this case, the first of the twogroups would be empty, while
the second of the two groups would be as big as the whole system. Conversely, slices partition the
population into subsets representing a predefined portion of this population. Therefore, in the rest
of AppendixA, we consider slices as defined as a proportion of the network.

A.2.3 Facing Churn

Node churn, that is, the continuous arrival and departure ofnodes is an intrinsic characteristic of
P2P systems and may significantly impact the outcome, and more specifically the accuracy of the
slicing algorithm. The easier case is when the distributionof the attribute values of the departing
and arriving nodes are identical. In this case, in principle, the arriving nodes must find their slices,
but the nodes that stay in the system are mostly able to keep their slice assignment. Even in this
case however, nodes that are close to the border of a slice mayexpect frequent changes in their slice
due to the variance of the attribute values, which is non-zero for any non-constant distribution. If
the arriving and departing nodes have different attribute distributions, so that the distribution in the
actual network of live nodes keeps changing, then this effect is amplified. However, we believe that
this is a realistic assumption to consider that the churn maybe correlated to some specific values
(for example if the considered attribute is uptime mean or connectivity).

A.3 Dynamic Ordering by Exchange of Random Values

This section proposes an algorithm for the distributed slicing problem improving upon the original
JK algorithm [JK06], by considering a local measure of the global disorder function. In this section
we present the algorithm along with the corresponding analysis and simulation results.

A.3.1 On Using Random Numbers to Sort Nodes

This Section presents the algorithm built upon JK. We refer to this algorithm asmod-JK(standing
for modified JK). In JK, each nodei generates a real numberr i ∈ (0,1] independently and uniformly
at random. The key idea is to sort these random numbers with respect to the attribute values by
swapping (i.e., exchanging) these random numbers between nodes, so that ifai < a j thenr i < r j .
Eventually, the attribute values (that are fixed) and the random values (that are exchanged) should
be sorted in the same order. That is, each node would like to obtain thexth largest random number
if it owns thexth largest attribute value. LetR.sequencedenote therandom sequenceobtained
by ordering all nodes according to their random number. Letρi(t) denote the index of nodei in
R.sequenceat timet. When not required, the time parameter is omitted.

To illustrate the above ideas, consider that nodes 1, 2, and 3from the previous example have
three distinct random values:r1 = 0.85, r2 = 0.1, andr3 = 0.35. In this case, the indexρ1 of node
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1 would be 3. Since the attribute values area1 = 50, a2 = 120, anda3 = 25, the algorithm must
achieve the following final assignment of random numbers:r1 = 0.35, r2 = 0.85, andr3 = 0.1.

Once sorted, the random values are used to determine the portion of the network a peer belongs
to.

A.3.2 Definitions

View. Every nodei keeps track of some neighbors and their age. Theageof neighbor j is a
timestamp,t j , set to 0 whenj becomes a neighbor ofi. Thus, nodei maintains an array containing
the id, the age, the attribute value, and the random value of its neighbors. This array, denotedNi,
is called theviewof nodei. The views of all nodes have the same size, denoted byc.

Misplacement. A node participates in the algorithm by exchanging its rank with a misplaced
neighbor in its view. Neighborj is misplaced if and only if

• ai > a j andr i < r j , or

• ai < a j andr i > r j .3

We can characterize these two cases by the predicate(a j −ai)(r j − r i) < 0.

Global Disorder Measure. In [JK06], a measure of the relative disorder of sequenceR.sequence
with respect to sequenceA.sequencewas introduced, called theglobal disorder measure (GDM)
and defined, for any timet, as

GDM(t) =
1
n∑

i
(αi−ρ(t)i)

2.

The minimal value of GDM is 0, which is obtained whenρ(t)i = αi for all nodesi. In this
case the attribute-based index of a node is equal to its random value index, indicating that random
values are ordered.

A.3.3 Improved Ordering Algorithm

In this algorithm, each nodei searches its own viewNi for misplaced neighbors. Then, one of them
is chosen to swap random value with. This process is repeateduntil there is no global disorder.
In this version of the algorithm, we provide each node with the capability of measuring disorder
locally. This leads to a new heuristic for each node to determine the neighbor to exchange with
which decreases most the disorder.

3Note thatj is not misplaced in caseai = a j , regardless of valuesr i andr j .
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The proposed technique attempts to decrease the global disorder in each exchange as much as
possible via selecting the neighbor from the view that minimizes the local disorder (or, equiva-
lently, maximizes the ordergain) as defined below. Referring to this disorder measure as a cri-
terion, the decrease of the global criterion is related to the decrease of local criteria, similarly
to [ADGR05].

For a nodei to evaluate the gain of exchanging with a nodej of its current viewNi, we define
its local disorder measure(abbreviatedLDMi). Let LA.sequencei andLR.sequencei be the local
attribute sequence and the local random sequence of nodei, respectively. These sequences are
computed locally byi using the informationNi ∪{i}. Similarly to A.sequenceandR.sequence,
these are the sequences of neighbors where each node is ordered according to its attribute value
and random number, respectively. Let, for anyj ∈Ni ∪{i}, ℓρ j(t) andℓα j(t) be the indices ofr j

anda j in sequencesLR.sequencei andLA.sequencei, respectively, at time(t). At any timet, the
local disorder measure of nodei is defined as:

LDMi(t) =
1

c+1 ∑
j∈Ni(t)∪{i}

(ℓα j(t)− ℓρ j(t))
2.

We denote byGi, j(t +1) the reduction on this measure thati obtains after exchanging its random
value with nodej between timet andt +1. We define it as:

Gi, j(t +1) = LDMi(t)−LDMi(t +1),

Gi, j(t +1) = [(ℓαi(t)− ℓρi(t))
2 +(ℓα j(t)− ℓρ j(t))

2−
(ℓαi(t)− ℓρ j(t))

2− (ℓα j(t)−

ℓρi(t))
2]

1
c+1

. (A.1)

The heuristic used chooses for nodei the misplaced neighborj that maximizesGi, j(t +1).

Sampling uniformly at random. The algorithm relies on the fact that potential misplaced nodes
are found so that they can swap their random numbers thereby increasing order. If the global dis-
order is high, it is very likely that any given node has misplaced neighbors in its view to exchange
with. Nevertheless, as the system gets ordered, it becomes more unlikely for a nodei to have mis-
placed neighbors. In this stage the way the view is composed plays a crucial role: if fresh samples
from the network are not available, convergence can be slower than optimal.

Several protocols may be used to provide a random and dynamicsampling in a P2P system
such as Newscast [JMB05], Cyclon [VGvS05] or Lpbcast [JGKvS04]. They differ mainly by their
closenessto the uniform random sampling of the neighbors and the way they handle churn. We
chose to use a variant of the Cyclon protocol, to construct andupdate the views, as it is reportedly
the best approach to achieve a uniform random neighbor set for all nodes [Iwa05].
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Initial state of node i
(1) periodi , initially set to a constant;
r i , a random value chosen in(0,1]; ai , the attribute value;
slicei ←⊥, the slicei belongs to;Ni , the view;
gainj ′ , a real value indicating the gain achieved by

exchanging withj ′;
gain-max= 0, a real.

Active thread at node i
(2) wait(periodi)
(3) recompute-view()i

(4) for j ′ ∈Ni

(5) if gainj ′ ≥ gain-maxthen
(6) gain-max← gainj ′

(7) j ← j ′

(8) end for
(9) send(REQ, r i ,ai) to j
(10) recv(ACK, r ′j) from j
(11) r j ← r ′j
(12) if (a j −ai)(r j − r i) < 0 then
(13) r i ← r j

(14) slicei ← Sl ,u such thatl < r i ≤ u

Passive thread at nodei activated upon reception
(15) recv(REQ, r j ,a j) from j
(16) send(ACK, r i) to j
(17) if (a j −ai)(r j − r i) < 0 then
(18) r i ← r j

(19) slicei ← Sl ,u such thatl < r i ≤ u

Figure A.2: Dynamic ordering by exchange of random values.

Description of the algorithm. The algorithm is presented in FigureA.2. The active thread
at nodei runs the membership (gossiping) procedure (recompute-view()i) and the exchange of
random values periodically as mentioned in Chapter4 using the algorithm presented in Figure9.
As mentioned in this chapter, each nodei maintains a viewNi containing one entry per neighbor.
Nodei copies its view, selects the oldest neighborj of its view, removes the entryej of j from the
copy of its view, and finally sends the resulting copy toj. When j receives the view,j sends its
own view back toi discarding possible pointers toi, andi and j update their view with the one they
receive by firstly keeping the entries they received.

The algorithm for exchanging random values from nodei starts by measuring the ordering that
can be gained by swapping with each neighbor (Lines4–8). Then,i chooses the neighborj ∈ Ni

that maximizes gainGi,k for any of its neighbork. Formally,i finds j ∈Ni such that for anyk∈Ni,
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we have

Gi, j(t +1) ≥ Gi,k(t +1). (A.2)

Using the definition ofGi, j in Equation (A.1), Equation (A.2) is equivalent to

ℓαi(t)ℓρ j(t)+ ℓα j(t)ℓρi(t)− ℓα j(t)ℓρ j(t) ≥ (A.3)

ℓαi(t)ℓρk(t)+ ℓαk(t)ℓρi(t)− ℓαk(t)ℓρk(t).

In FigureA.2 of nodei, we refer togainj as the value ofℓαi(t)ℓρ j(t)+ℓα j(t)ℓρi(t)−ℓα j(t)ℓρ j(t).
From this point on,i exchanges its random valuer i with the random valuer j of node j

(Line 11). The passive threads are executed upon reception of a message. In FigureA.2, when
j receives the random valuer i of nodei, it sends back its own random valuer j for the exchange
to occur (Lines15–16). Observe that the attribute value ofi is also sent toj, so that j can check
if it is correct to exchange before updating its own random number (Lines17–18). Nodei does
not need to receive attribute valuea j of j, sincei already has this information in its view and the
attribute value of a node never changes over time.

A.3.4 Analysis of Slice Misplacement

In mod-JK, as in JK, the current random numberr i of a nodei determines the slicesi of the node.
The objective of both algorithms is to reduce the global disorder as quickly as possible. Algorithm
mod-JK consists in choosing one neighbor among the possibleneighbors that would have been
chosen in JK, plus the GDM of JK has been shown to fit an exponential decrease. Consequently
mod-JK experiences also an exponential decrease of the global disorder. Eventually, JK and mod-
JK ensure that the disorder has fully disappeared. For further information, please refer to [JK06].

However, the accuracy of the slices heavily depends on the uniformity of the random value
spread between 0 and 1. It may happen, that the distribution of the random values is such that
some peers decide upon a wrong slice. Even more problematic is the fact that this situation is
unrecoverable unless a new random value is drawn for all nodes. This may be considered as an
inherent limitation of the approach. For example, considera system of size 2, where nodes 1 and 2
have the random valuesr1 = 0.1, r2 = 0.4. If we are interested in creating two slicesS1 andS2 of
equal size (S1 = S0, 1

2
andS2 = S 1

2 ,1), both nodes will wrongly believe to belong to the same slice

S1, sincer1 andr2 belong to(0, 1
2]. This wrong estimate holds even after perfect ordering of the

random values.
Therefore, an important step is to characterize the inaccuracy of slice assignment and how

likely it may happen. To this end, we lower bound the deviation of random values distribution
from the mean, and the probability that this happen with onlytwo slices. First of all, consider a
sliceSp of lengthp. In a network ofn nodes, the number of nodes that will fall into this slice is a
random variableX with a binomial distribution with parametersn and p. The standard deviation
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of X is therefore
√

np(1− p). This means that the relative proportional expected difference from
the mean (i.e.,np) can be approximated as

√

(1− p)/(np), which is very large ifp is small, in
fact, goes to infinity asp tends to zero, although a very largen compensates for this effect. For a
“normal” value ofp, and a reasonably large network, the variance is very low however.

To stay with this random variable, the following result bounds, with high probability, its devi-
ation from its mean.

Lemma A.3.1 For anyβ ∈ (0,1], a slice Sp of length p∈ (0,1] has a number of peers X∈ [(1−
β)np,(1+β)np] with probability at least1− ε as long as p≥ 3

β2n
ln(2/ε).

Proof. The way nodes choose their random number is like drawingn times, with replacement and
independently uniformly at random, a value in the interval(0,1]. Let X1, ...,Xn be then corre-
sponding independent identically distributed random variables such that:

{

Xi = 1 if the value drawn by nodei belongs toSp and
Xi = 0 otherwise.

We denoteX = ∑n
i=1Xi the number of elements of intervalSp drawn among then drawings.

The expectation ofX is np. From now on we compute the probability that a bounded portion of
the expected elements are misplaced. Two Chernoff bounds [MR95] give:

Pr[X ≥ (1+β)np] ≤ e−
β2np

3

Pr[X ≤ (1−β)np] ≤ e−
β2np

2







⇒ Pr[|X−np| ≥ βnp]≤ 2e−
β2np

3 ,
with 0 < β≤ 1. That is, the probability that more than (β time the number expected) elements are

misplaced regarding to intervalSp is bounded by 2e−
β2np

3 . We want this to be at mostε. This yields
the result. 2

To measure the effect discussed above during the simulationexperiments, we introduce the
slice disorder measure (SDM) as the sum over all nodesi of the distance between the slicei
actually belongs to and the slicei believes it belongs to. For example (in the case where all slices
have the same size), if nodei belongs to the 1st slice (according to its attribute value) while it thinks
it belongs to the 3rd slice (according to its rank estimate) then the distance fornodei is |1−3|= 2.
Formally, for any nodei, let Sui ,l i be the actual correct slice of nodei and letSûi ,l̂ i

(t) be the slicei
estimates as its slice at timet. The slice disorder measure is defined as:

SDM(t) = ∑
i

1
ui− l i

∣

∣

∣

∣

∣

ui + l i
2
− ûi + l̂ i

2

∣

∣

∣

∣

∣

.
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SDM(t) is minimal (equals 0) if for all nodesi, we haveSûi ,l̂ i
(t) = Sui ,l i .

In fact, it is simple to show that, in general, the probability of dividing n peers into two slices of
the same size is less than

√

2/nπ. This value is very small even for moderate values ofn. Hence,
it is highly possible that the random number distribution does not lead to a perfect division into
slices.

A.3.5 Simulation Results

We present simulation results using PeerSim [JMB04], using a simplified cycle-based simulation
model, where all messages exchanges are atomic, so messagesnever overlap. First, we compare the
performance of the two algorithms: JK and mod-JK. Second, westudy the impact of concurrency
that is ignored by the cycle-based simulations.

Performance comparison. We compare the time taken by these algorithms to sort the random
values according to the attribute values (i.e., the node with the jth largest attribute value of the
system value obtains thejth random value). In order to evaluate the convergence speed ofeach
algorithm, we use the slice disorder measure as defined in Section A.3.4.

We simulated 104 participants in 100 equally sized slices (when unspecified), each with a view
sizec = 20. FigureA.3(a) illustrates the difference between the global disorder measure and the
slice disorder measure while FigureA.3(b) presents the evolution of the slice disorder measure
over time for JK, and mod-JK.

Figure A.3(a) shows the different speed at which the global disorder measure and the slice
disorder measure converge. When values are sufficiently large, the GDM and SDM seem tightly
related: if GDM increases then SDM increases too. Conversely, there is a significant difference
between the GDM and SDM when the values are relatively low: the GDM reaches 0 while the
SDM is lower bounded by a positive value. This is because the algorithm does lead to a totally
ordered set of nodes, while it still does not associate each node with its correct slice. Consequently
the GDM is not sufficient to rightly estimate the performanceof our algorithms.

FigureA.3(b) shows the slice disorder measure to compare the convergencespeed of our algo-
rithm to that of JK with 10 equally sized slices. Our algorithm converges significantly faster than
JK. Note that none of the algorithm reaches zero SDM, since they are both based on the same idea
of sorting randomly generated values. Besides, since they both used an identical set of randomly
generated values, both converge to the same SDM.

Remark. For the sake of fairness JK and mod-JK are compared using the same underlying view
management protocol in our simulation: the variant of Cyclon. Nevertheless, we simulated JK on
top of Newscast as it appeared in [JK06] (running a single cycle of Newscast in each cycle of JK, as
for Cyclon and its variant in mod-JK). As expected, the convergence speed of JK was even slower
due to the difference between the clustering coefficient of the communication graph obtained by
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Figure A.3: (a) Contrast between slice disorder measure and global disorder measure, observed on
the same experiment. (b) Slice disorder measure over time. (c) Percentage of unsuccessful swaps
in the ordering algorithms. (d) Convergence speed under highconcurrency.
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Newscast and Cyclon, respectively [Iwa05]. The comparison of the underlying view management
protocols both in terms of randomness and fault-tolerance is out of the scope of AppendixA.

A.3.6 Concurrency

The simulations are cycle-based and at each cycle an algorithm step is done atomically so that
no other execution is concurrent. More precisely, the algorithms are simulated such that in each
cycle, each node updates its view before sending its random value or its attribute value. Given this
implementation, the cycle-based simulator does not allow us to realistically simulate concurrency,
and a drawback is that view is up-to-date when a message is sent. In the following we artificially
introduce concurrency (so that view might be out-of-date) into the simulator and show that it has
only a slight impact on the convergence speed.

Adding concurrency raises some realistic problems due to the use of non-atomic push-
pull [JGKvS04] in each message exchange. That is, concurrency might lead to other problems
because of the potential staleness of views: unsuccessful swaps due to useless messages. Techni-
cally, the view of nodei might indicate thatj has a random valuer while this value is no longer
up-to-date. This happens ifi has lastly updated its view beforej swapped its random value with
anotherj ′. Moreover, due to asynchrony, it could happen that by the time a message is received
this message has become useless. Assume that nodei sends its random valuer i to j in order to
obtainr j at timet and j receives it by timet +δ. With no loss of generality assumer i > r j . Then
if j swaps its random value withj ′ such thatr ′j > r i between timet andt +δ, then the message of
i becomesuselessand the expected swap does not occur (we call this anunsuccessful swap).

FigureA.3(d) indicates the impact of concurrent message exchange on the convergence speed
while FigureA.3(c) shows the amount of useless messages that are sent. Now, we explain how the
concurrency is simulated. Let theoverlapping messagesbe a set of messages that mutually over-
lap: it exists, for any couple of overlapping messages, at least one instant at which they are both
in-transit. For each algorithm we simulated(i) full concurrency: in a given cycle, all messages are
overlapping messages; and(ii) half concurrency: in a given cycle, each message is an overlapping
message with probability12. Generally, we see that increasing the concurrency increases the num-
ber of useless messages. Moreover, in the modified version ofJK, more messages are ignored than
in the original JK algorithm. This is due to the fact that somenodes (the most misplaced ones)
are more likely targeted which increases the number of concurrent messages arriving at the same
nodes. Since a nodei ignored more likely a message when it receives more messagesduring the
same cycle, it comes out that concentrating message sendingat some targets increases the number
of useless messages.

FigureA.3(d) compares the convergence speed under full concurrency and no concurrency.
We omit the curve of half-concurrency since it would have been similar to the two other curves.
Full-concurrency impacts on the convergence speed very slightly.
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A.4 Dynamic Ranking by Sampling of Attribute Values

In this section we propose an alternative algorithm for the distributed slicing problem. This al-
gorithm circumvents some of the problems identified in the previous approach by continuously
ranking nodes based on observing attribute value information. Random values no longer play a
role, so non-perfect uniformity in the random value distribution is no longer a problem. Besides,
this algorithm is not sensitive to churn even if it is correlated with attribute values.

In the remaining part of AppendixA we refer to this new algorithm as the ranking algorithm
while referring to JK and mod-JK as the ordering algorithms.Here, we elaborate on the drawbacks
arising from the ordering algorithms relying on the use of random values that are solved by the
ranking approach.

Impact of attribute correlated with dynamics. As already mentioned, the ordering algorithms
rely on the fact that random values are uniformly distributed. However, if the attribute values are
not constant but correlated with the dynamic behavior of thesystem, the distribution of random
values may change from uniform to skewed quickly. For instance, assume that each node maintains
an attribute value that represents its own lifetime. Although the algorithm is able to quickly sort
random values, so nodes with small lifetime will obtain the small random values, it is more likely
that these nodes leave the system sooner than other nodes. This results in a higher concentration
of high random values and a large population of the nodes wrongly estimate themselves as being
part of the higher slices.

Inaccurate slice assignments. As discussed in previous sections in detail, slice assignments
will typically be imperfect even when the random values are perfectly ordered. Since the rank-
ing approach does not rely on ordering random nodes, this problem is not raised: the algorithm
guarantees eventually perfect assignment in a static environment.

Concurrency side-effect. In the previous ordering algorithms, a non negligible amount of mes-
sages are sent unnecessarily. The concurrency of messages has a drastic effect on the number
of useless messages as shown previously, slowing down convergence. In the ranking algorithm
concurrency has no impact on convergence speed because all received messages are taken in ac-
count. This is because the information encapsulated in a message (the attribute value of a node) is
guaranteed to be up to date, as long as the attribute values are constant, or at least change slowly.

A.4.1 Ranking Algorithm Specification

The pseudocode of the ranking algorithm is presented in Figure A.4. As opposed to the ordering
algorithm of the previous section, the ranking algorithm does not assign random initial unalterable
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values as candidate ranks. Instead, the ranking algorithm improves its rank estimate each time a
new message is received.

The ranking algorithm works as follows. Periodically each nodei updates its viewNi following
an underlying protocol that provides a uniform random sample (Line 3); later, we simulate the
algorithm using the variant of Cyclon protocol presented in SectionA.3.3. Node i computes its
rank estimate (and hence its slice) by comparing the attribute value of its neighbors to its own
attribute value. This estimate is set to the ratio of the number of nodes with a lower attribute value
that i has seen over the total number of nodesi has seen (Line15). Nodei looks at the normalized
rank estimate of all its neighbors. Then,i selects the nodej1 closest to a slice boundary (according
to the rank estimates of its neighbors). Nodei selects also a random neighborj2 among its view
(Line 12). When those two nodes are selected,i sends an update message, denoted by a flagUPD,
to j1 and j2 containing its attribute value (Line13–14).

The reason why a node close to the slice boundary is selected as one of the contacts is that such
nodes need more samples to accurately determine which slicethey belong to (subsectionA.4.2
shows this point). This technique introduces a bias towardsthem, so they receive more messages.

Upon reception of a message from nodei, the passive threads ofj1 and j2 are activated so that
j1 and j2 compute their new rank estimater j1 andr j2. The estimate of the slice a node belongs
to, follows the computation of the rank estimate. Messages are not replied, communication is
one-way, resulting in identical message complexity to JK and mod-JK.

A.4.2 Theoretical Analysis

The following Theorem shows a lower bound on the probabilityfor a nodei to accurately estimate
the slice it belongs to. This probability depends not only onthe number of attribute exchanges but
also on the rank estimate ofi.

Theorem A.4.1 Let p be the normalized rank of i and letp̂ be its estimate. For node i to exactly
estimate its slice with confidence coefficient of100(1−α)%, the number of messages i must receive
is:

(

Zα
2

√

p̂(1− p̂)

d

)2

,

where d is the distance between the rank estimate of i and the closest slice boundary, and Zα
2

represents the endpoints of the confidence interval.

Proof. Each time a node receives a message, it checks whether or not the attribute value is larger or
lower than its own. LetX1, ...,Xk bek (k > 0) independent identically distributed random variables
described as follows.Xj = 1 with probability i

n = p (indicating that the attribute value is lower)
and j ∈ {1, ...,k}, otherwiseXj = 0 (indicating the attribute value is larger). By the central limit
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Initial state of node i
(1) periodi , initially set to a constant;r i , a value in(0,1];
ai , the attribute value;b, the closest slice boundary to nodei;
gi , the counter of encountered attribute values;l i , the counter
of lower attribute values;slicei ←⊥; Ni , the view.

Active thread at node i
(2) wait(periodi)
(3) recompute-view()i

(4) dist-min← ∞
(5) for j ′ ∈Ni

(6) gi ← gi +1
(7) if a j ′ ≤ ai then ℓi ← ℓi +1
(8) if dist(a j ′ ,b) < dist-minthen
(9) dist-min← dist(a j ′ ,b)
(10) j1← j ′

(11) end for
(12) Let j2 be a random node ofNi

(13) send(UPD,ai) to j1
(14) send(UPD,ai) to j2
(15) r i ← ℓi/gi

(16) slice← Sl ,u such thatl < r i ≤ u

Passive thread at nodei activated upon reception
(17) recv(UPD,a j) from j
(18) if a j ≤ ai then ℓi ← ℓi +1
(19) gi ← gi +1
(20) r i ← ℓi/gi

(21) slice← Sl ,u such thatl < r i ≤ u

Figure A.4: Dynamic ranking by exchange of attribute values.
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theorem, we assumek > 30 and we approximate the distribution ofX = ∑k
j=1Xj as the normal

distribution. We estimateX by X̂ = ∑k
j=1 X̂j andp by p̂ = X̂

k .
We want a confidence coefficient with value 1−α. Let Φ be the standard normal distribution

function, and letZα
2

beΦ−1(1− α
2). Now, by the Wald large-sample normal test in the binomial

case, where the standard deviation of ˆp is σ(p̂) =

√
p̂(1−p̂)√

k
, we have:

∣

∣

∣

∣

p̂− p
σ(p̂)

∣

∣

∣

∣

≤ Zα
2

p̂−Zα
2
σ(p̂) ≤ p ≤ p̂+Zα

2
σ(p̂).

Next, assume that ˆp falls into the sliceSl ,u, with l andu its lower and upper boundaries, respec-

tively. Then, as long as ˆp−Zα
2

√

p̂(1−p̂)
k > l and p̂+ Zα

2

√

p̂(1−p̂)
k ≤ u, the slice estimate is exact

with a confidence coefficient of 100(1−α)%. Letd = min(p̂− l ,u− p̂), then we need

d ≥ Zα
2

√

p̂(1− p̂)

k
,

k ≥
(

Zα
2

√

p̂(1− p̂)

d

)2

.

2

To conclude, under reasonable assumptions all node estimate its slice with confidence coeffi-
cient 100(1−α)%, after a finite number of message receipts. Moreover a node closer to the slice
boundary needs more messages than a node far from the boundary.

A.4.3 Simulation Results

This section evaluates the ranking algorithm by focusing onthree different aspects. First, the
performance of the ranking algorithm is compared to the performance of the ordering algorithm4

in a large-scale system where the distribution of attributevalues does not vary over time. Second,
we investigate if sufficient uniformity is achievable in reality using a dedicated protocol. Third, the
ranking algorithm and ordering algorithm are compared in a dynamic system where the distribution
of attribute values may change. Finally, a sliding window technique is given to prevent the SDM
from increasing.

For this purpose, we ran two simulations, one for each algorithms. The system contains (ini-
tially) 104 nodes and each view contains 10 uniformly drawn random nodesand is updated in each
cycle. The number of slices is 100, and we present the evolution of the slice disorder measure over
time.

4We omit comparison with JK since the performance obtained with mod-JK are either similar or better.
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Figure A.5: (a) Comparing performance of the ordering algorithm and the ranking algorithm
(static case). (b) Comparing the ranking algorithm on top of auniform drawing or a Cyclon-
like protocol. (c) Effect of burst of attribute-correlatedchurn on the convergence of the ordering
algorithm and the ranking algorithm. (d) Effect of a low and regular attribute-correlated churn on
the convergence of the ordering algorithm and the ranking algorithm.
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Performance comparison in the static case. FigureA.5(a) compares the ranking algorithm to
the ordering algorithm while the distribution of attributevalues do not change over time (varying
distribution is simulated below).

The difference between the ordering algorithm and the ranking algorithm indicates that the
ranking algorithm gives a more precise result (in terms of node to slice assignments) than the or-
dering algorithm. More importantly, the slice disorder measure obtained by the ordering algorithm
is lower bounded while the one of the ranking algorithm is not. Consequently, this simulation
shows that the ordering algorithm might fail in slicing the system while the ranking algorithm
keeps improving its accuracy over time.

Feasibility of the ranking algorithm. FigureA.5(b) shows that the ranking algorithm does not
need artificial uniform drawing of neighbors. Indeed, an underlying view management protocol
might lead to similar performance results. In the presentedsimulation we used an artificial pro-
tocol, drawing neighbors randomly at uniform in each cycle of the algorithm execution, and the
variant of the Cyclon view management protocol presented above. Those underlying protocols
are distinguished on the figure using terms ”uniform” (for the former one) and ”views” (for the
latter one). As said previously, the Cyclon protocol [VGvS05] consists of exchanging views be-
tween neighbors such that the communication graph producedshares similarities with a random
graph. This figure shows that both cases give very similar results. The SDM legend is on the
right-handed vertical axis while the left-handed verticalaxis indicates what percentage the SDM
difference represents over the total SDM value. At any time during the simulation (and for both
type of algorithms) its value remains within plus or minus 7%. The two SDM curves of the ranking
algorithm almost overlap. Consequently, the ranking algorithm and the variant of Cyclon presented
in subectionA.3.3achieve very similar result.

To conclude, the variant of Cyclon algorithm presented in theprevious section can be easily
used with the ranking algorithm to provide the shuffling of views. More generally, an underlying
distributed protocol that shuffles the view among nodes may provide nearly-optimal results.

Performance comparison in the dynamic case. In FigureA.5(c) each of the two curves repre-
sents the slice disorder measure obtained over time using the ordering algorithm and the ranking
algorithm respectively. We simulate the churn such that 0.1% of nodes leave and 0.1% of the nodes
join in each cycle during the 200 first cycles. We observe how the SDM converges. The churn is
reasonably and pessimistically tuned compared to recent experimental evaluations [SR06] of the
session duration in three well-known P2P systems.5

The distribution of the churn is correlated to the attributevalue of the nodes. The leaving
nodes are the nodes with the lowest attribute values while the entering nodes have higher attribute
values than all nodes already in the system. The parameter choices are motivated by the need

5In [SR06], roughly all nodes have left the system after 1 day while there are still 50% of nodes after 25 minutes.
In our case, assuming that in average a cycle lasts one secondwould lead to more than 54% of leave in 9 minutes.
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of simulating a system in which the attribute value corresponds to the (fixed) session duration of
nodes, for example.

The churn introduces a significant disorder in the system which counters the fast decrease.
When, the churn stops, the ranking algorithm readapts well the slice assignments: the SDM starts
decreasing again. However, in the ordering algorithm, the convergence of SDM gets stuck. This
leads to a poor slice assignment accuracy.

In FigureA.5(d), each of the two curves represent the slice disorder measureobtained over time
using the ordering algorithm, the ranking algorithm, and a modified version of the ranking algo-
rithm using attribute values recorded in a sliding-window,respectively. (The simulation obtained
using sliding windows is described in the next subsection.)The churn is diminished and made
more regular than in the previous simulation such that 0.1% of nodes leave and 0.1% of nodes join
every 10 cycles.

The curves fits a fast decrease (superlinear in the number of cycles) at the beginning of the
simulation. At first cycles, the ordering gain is significantmaking the impact of churn negligible.
This phenomenon is due to the fact that SDM decreases rapidlywhen the system is fully disordered.
Later on, however, the decrease slope diminishes and the churn effect reduces the amount of nodes
with a low attribute value while increasing the amount of nodes with a large attribute value. This
unbalance leads to a messy slice assignment, that is, each node must quickly find its new slice to
prevent the SDM from increasing. In the ordering algorithm the SDM starts increasing from cycle
120. Conversely, with the ranking algorithm the SDM starts increasing not earlier than at cycle
730. Moreover the increase slope is much larger in the formeralgorithm than in the latter one.

Even though the performance of the ranking algorithm is muchbetter, its adaptiveness to churn
is not surprising. Unlike the ordering algorithm, the ranking one keeps re-estimating the rank of
each node depending on the attribute values present in the system. Since the churn increases the
attribute values present in the system, nodes tend to receive more messages with higher attribute
values and less messages with lower attribute values, whichturns out to keep the SDM low, despite
churn. Further on, we propose a solution based on sliding-window technique to limit the increase
of the SDM in the ranking algorithm.

To conclude, the results show that when the churn is related to the attribute (e.g., attribute
represents the session duration, uptime of a node), then theranking algorithm is better suited than
the ordering algorithm.

Sliding-window for limiting the SDM increase. In FigureA.5(d), the ”sliding-window” curve
presents a slightly modified version of the ranking algorithm that encompasses SDM increase due
to churn correlated to attribute values. Here, we present this enrichment.

In SectionA.4, the ranking algorithm specifies that each node takes into account all received
messages. More precisely, upon reception of a new message each nodei re-computes immediately
its rank estimate and the slice it thinks it belongs to without remembering the attribute values it has
seen. Consequently the messages received long-time ago haveas much importance as the fresh
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messages in the estimate ofi. The drawback, as it appeared in FigureA.5(d) of SectionA.3.5,
is that if the attribute values are correlated to churn, thenthe precision of the algorithm might
diminish.

To cope with this issue, the previous algorithm can be easilyenriched in the following way.
Upon reception of a message, each nodei records an information about the attribute value received
in a fixed-size ordered set of values. Say this set is a first-infirst-out buffer such that only the most
recent values remain. Right after having recorded this information, nodei can re-compute its rank
estimate and its slice estimate based on the most relevant piece of information (having discarded the
irrelevant piece). Consequently, the estimate would rely only on fresh attribute values encountered
so that the algorithm would be more tolerant to changes (e.g., dynamics or non-uniform evolution
of attribute values). Of course, since the analysis (cf. Section A.4.2) shows that nodes close to the
slice boundary require a large number of attribute values for estimating precisely their estimates, it
would be unaffordable to record all these last attribute values encountered due to space limitation.

Actually, the only necessary relevant information of a message is simply whether it contains a
lower attribute value than the attribute value ofi, or not. Consequently, a single bit per message
would be sufficient to record the necessary information (e.g., adding a 1 meaning that the attribute
value is lower, and 0 otherwise). Thus, even though a nodei would require 104 messages to
rightly estimate its slice (with high probability), nodei simply needs to allocate an array of size
104/(8∗1000) = 1,25 kB.

As expected, FigureA.5(d) shows that the sliding-window method applied to the rankingalgo-
rithm prevents its SDM from increasing. Consequently, at some point in time, the resulting slice
assignment may become even more accurate.

A.5 Conclusion

A.5.1 Summary

Peer to peer systems may now be turned into general frameworks on top of which several ap-
plications might cohabit. To this end, allocating resources to applications, while resources are
heterogeneously spread over the system, require specific algorithms to partition the network in
a relevant way. The sorting algorithm proposed in [JK06] provided a first attempt to “slice” the
network, taking into account the potential heterogeneity of nodes. This algorithm relies on each
node drawing a random value uniformly and swapping continuously those random values, with
candidate nodes, so that the order between attributes values (reflecting the capabilities of nodes)
and random ones match.

Here, we first proposed an improvement over the initial sorting algorithm resulting in the or-
dering algorithm. This improvement comes from a judicious choice of candidate nodes to swap
values. Each node makes this choice depending on the potential decrease of the disorder measure
it can compute locally.
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Our second contribution is the definition of the slice disorder measure. The slice disorder
measure evaluates how nodes wrongly estimate the slice theybelong to. We showed that the
existing global disorder measure can not indicate whether nodes found their slice. That is, the slice
disorder measure is necessary to show that an algorithm solves the distributed slicing problem.

Using the slice disorder measure, we identified two issues related to the use of static random
values. The first one refers to the fact that slice assignmentheavily depends on the degree of
uniformity of the initial random value. The second is related to the fact that once sorted along
one attribute axis, the churn (or failures) might be correlated to the attribute, therefore leading to
a unrecoverable skewed distribution of the random values. This phenomenon results in a wrong
slice assignment despite the system seems to be rightly ordered.

Last but not least, we provided a ranking algorithm that accurately maintains slices of the
system even in the presence of churn. This algorithm minimizes the effect of correlated churn
on slice disorder and recovers efficiently after a period of correlated churn. For this purpose,
nodes continuously re-estimate their rank relatively to other nodes based on their sampling of the
network. The convergence speed up of the first algorithm and the accuracy of the second algorithm
are proved through theoretical analysis and simulations.

A.5.2 Perspective

Our solution uses a variant of the Cyclon protocol to obtain quasi-uniform distribution of neigh-
bors. There are various protocols that might be used for different purpose. For instance, Newscast
can be used for its resilience to very high dynamics as in [JK06]. Some other protocols exist in the
literature. Deciding exactly how to parameterize the underlying peer sampling service might be an
interesting future direction.
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Appendix B

IOA Specification of a Dynamic DSM

Algorithm 10 Signature of the Reconfigurable Distributed Storage

1: Signature:
2: Input:
3: join(W)i , i ∈ I , W a set of nodes
4: readi , i ∈ I
5: write(v)i , i ∈ I , v a value
6: recon(c,c′)i , i ∈ I , c andc′ two configurations
7: recv(m)i , i ∈ I , m a message
8: faili , i ∈ I
9: leader(b)i , i ∈ I , b a ballot

10: Output:
11: join-acki , i ∈ I
12: read-ack(v)i , i ∈ I , v a value
13: write-acki , i ∈ I
14: recon-ack(r)i , i ∈ I
15: send(m)i , i ∈ I , m a message

16: Internal:
17: query-fixi , i ∈ I
18: prop-fixi , i ∈ I
19: prepare(b)i , i ∈ I , b a ballot
20: prepare-done(b)i , i ∈ I , b a ballot
21: init-propose(k)i , i ∈ I , k an integer
22: propose(k)i , i ∈ I , k an integer
23: propose-done(k)i , i ∈ I , k an integer

24: State:
25: status∈ {idle, joining,active, failed},
26: world, a finite subset ofI
27: value∈V,
28: tag∈ T,
29: cmap∈CMap,
30: pnum1∈ N,
31: pnum2, a mapping fromI to N

32: isLeader∈ B
33: confirmed, a set of tags
34: failed∈ B,
35: op, a record with fields:
36: type∈ {read,write}
37: phase∈ {idle,query,prop,done}
38: pnum∈ N

39: cmap∈CMap
40: acc, a finite subset ofI
41: tag∈ T
42: value∈V
43: pxs, a record with fields:
44: pnum∈ N

45: phase∈ {idle,prepare,propose,propagate}
46: conf-index∈ N

47: conf∈C
48: acc, a finite subset ofI
49: ballot, a ballot with fields:
50: id ∈ N× I
51: conf-index∈ N

52: conf∈C
53: voted-ballots, a set of ballots.

141



Algorithm 11 Reconfigurable Distributed Storage – Operation transitions

1: Input readi
2: Effect:
3: if ¬failed∧status= active then
4: pnum← pnum+1
5: op.pnum← pnum
6: op.type← read

7: op.phase← query

8: op.cmap← cmap
9: op.acc← /0

10: Input write(v)i
11: Effect:
12: if ¬failed∧status= active then
13: pnum1← pnum1+1
14: op.pnum← pnum1
15: op.type← write

16: op.phase← query

17: op.cmap← cmap
18: op.acc← /0
19: op.value← v

20: Internal query-fix()i
21: Precondition:
22: ¬failed∧status= active

23: op.type∈ {read,write}
24: op.phase= query

25: for k∈ N,c∈C do
26: op.cmap(k) = c ⇒ ∃Cons∈ consultation-quorums(c) :

Cons⊆ op.acc

27: Effect:
28: if op.type= read then
29: op.value← value
30: op.tag← tag
31: else
32: value← op.value
33: tag← [[tag.seq+1, i]]
34: op.tag← tag

35: pnum1← pnum1+1
36: op.pnum← pnum1
37: op.phase← prop

38: op.cmap← cmap

39: op.acc← /0

40: Internal prop-fix()i
41: Precondition:
42: ¬failed∧status= active

43: op.type∈ {read,write}
44: op.phase= query

45: for k∈ N,c∈C do
46: op.cmap(k) = c ⇒ ∃P ∈ propagation-quorums(c) : P ⊆

op.acc

47: Effect:
48: op.phase← done

49: confirmed← confirmed∪{op.tag}

50: Output read-ack(v)i
51: Precondition:
52: ¬failed∧status= active

53: op.type= read

54: op.phase= done

55: v = op.value

56: Effect:
57: op.phase= idle

58: Output read-ack(v)i
59: Precondition:
60: ¬failed∧status= active

61: op.type= read

62: op.phase= prop

63: op.tag= confirmed

64: v = op.value

65: Effect:
66: op.phase= idle

67: Output write-acki
68: Precondition:
69: ¬failed∧status= active

70: op.type= write

71: op.phase= done

72: v = op.value

73: Effect:
74: op.phase= idle
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75: Output send(W,v, t,cn f,cm, pns, pnr,b, p,vb)i, j
76: Precondition:
77: ¬failed∧status6= idle

78: j ∈ world
79: W = world
80: v = value
81: t = tag
82: cnf = confirmed
83: cm= cmap
84: pnr = pnum1
85: pns= pnum2(j)
86: b = ballot
87: p = pxs
88: vb= voted-ballots
89:
90: Effect:
91: None

92: Input leader(b)i
93: Effect:
94: isLeader← b

95: Input join(w)i
96: Effect:
97: status← joining

98: world← world∪w

99: Output join(w)i
100: Precondition:
101: status= active

102: joined= false

103: Effect:
104: joined← true

105: Input fail()i
106: Effect:
107: failed← true

108: Input recv(W,v, t,cn f,cm, pns, pnr,b, p,vb) j,i
109: Effect:
110: if ¬failed∧status6= idle then
111: status← active

112: world← world∪W
113: confirmed← confirmed∪cnf
114: if t > tag then
115: [[value, tag]]← [[v, t]]

116: if b.id > ballot.id then
117: ballot← b
118: pxs.phase← idle

119: pxs.acc← /0
120: if p.conf-index> pxs.conf-indexthen
121: if recon-in-progress= false then
122: pxs.conf-index← p.conf-index
123: pxs.conf← p.conf
124: pxs.old-conf← p.old-conf
125: pxs.phase← idle

126: pxs.acc← /0
127: voted-ballots← voted-ballots∪vb
128: cmap← update(cmap,cm)
129: pnum2( j)←max(pnum2( j),pns)
130: if op.phase∈ {query,prop}∧pnr≥ op.pnumthen
131: op.cmap← extend(op.cmap,cm)
132: if op.cmap∈ Truncated then
133: op.acc← op.acc∪{ j}
134: else
135: op.acc← /0
136: op.cmap← cmap

137: if pxs.phase= prepare then
138: if pnr≥ pxs.pnumthen
139: pxs.acc← pxs.acc∪{ j}
140: else ifpxs.phase= propose then
141: if ballot∈ vb∧ballot = b then
142: pxs.acc← pxs.acc∪{ j}
143: else ifpxs.phase= propagate then
144: if cm(ballot.conf-index) = ballot.conf then
145: pxs.acc← pxs.acc∪{ j}
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Algorithm 12 Reconfigurable Distributed Storage – Reconfiguration transitions

1: Input recon(c,c′)i
2: Effect:
3: if ¬failed∧status= active then
4: let k = max(ℓ : cmap(ℓ) ∈C)
5: pxs.conf-index← k+1
6: pxs.old-conf← c
7: pxs.cconf← c′

8: pxs.phase← idle

9: pxs.acc← /0
10: recon-in-progress← true

11: Internal init(c)i
12: Precondition:
13: ¬failed∧status= active

14: c = pxs.conf 6=⊥
15: k = pxs.conf-index6=⊥
16: cmap(k) =⊥
17: cmap(k−1) = pxs.old-conf 6=⊥
18: if k > 1 then
19: cmap(k−2) =±
20: isLeader
21: Effect:
22: pxs.phase← idle

23: pxs.acc← /0
24: ballot.conf← c
25: ballot.conf-index← k

26: Output recon-ack(r)i
27: Precondition:
28: ¬failed∧status= active

29: recon-in-progress= true

30: cmap(k)∈C∨cmap(k−2) 6=±∨cmap(k−1) 6= pxs.old-conf
31: let k = pxs.conf-index
32: if cmap(k) = pxs.conf then
33: r = ok

34: else
35: r = failed

36: Effect:
37: pxs.conf←⊥
38: pxs.conf-index←⊥
39: recon-in-progress← false

40: Internal prepare(b)i
41: Precondition:
42: ¬failed∧status= active

43: isLeader
44: b = ballot
45: Effect:
46: pnum1← pnum1+1
47: pxs.pnum← pnum1
48: pxs.acc← /0
49: ballot.id← [[ballot.id.seqno+1, i]]
50: pxs.phase← prepare

51: Internal prepare-done(b)i
52: Precondition:
53: ¬failed∧status= active

54: isLeader
55: b = ballot
56: pxs.phase= prepare

57: let k = ballot.conf-index
58: let c = cmap(k−1)
59: c∈C
60: ∃Cons∈ consultation−quorums(c) : Cons⊆ pxs.acc

61: Effect:
62: pxs.prepared-id← ballot.id
63: pxs.acc← /0
64: pxs.phase← idle
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65: Internal init-propose(k)i
66: Precondition:
67: ¬failed∧status= active

68: isLeader
69: ballot.conf-index= k 6=⊥
70: ballot.id = pxs.prepared-id
71: pxs.conf-index= ballot.conf-index
72: pxs.conf = ballot.conf

73: Effect:
74: pxs.phase← idle

75: let S= {b∈ vote-ballots: b.conf-index= k}
76: if S 6= /0 then
77: let b′ = b′′ : b′′.id = maxb∈S(b.id)
78: ballot.conf← b′.conf

79: voted-ballots← voted-ballots∪{ballot}

80: Internal propose(k)i
81: Precondition:
82: ¬failed∧status= active

83: ballot.conf-index= k 6=⊥
84: ballot∈ voted-ballot
85: Effect:
86: pxs.phase← propose

87: pnum1← pnum1+1
88: pxs.pnum← pnum1
89: pxs.acc← /0

90: Internal propose-done(k)i
91: Precondition:
92: ¬failed∧status= active

93: pxs-phase= propose

94: let k = ballot.conf-index
95: let c = cmap(k−1)
96: c∈C
97: ∃Cons1 ∈ consultation−quorums(c) : Cons1 ⊆ pxs.acc
98: ∃Prop1 ∈ propagation−quorums(c) : Prop1 ⊆ pxs.acc

99: Effect:
100: pxs.phase← idle

101: cmap(k)← ballot.conf
102: pxs.acc← /0

103: Internal propagate(k)i
104: Precondition:
105: ¬failed∧status= active

106: let k = ballot.conf-index
107: cmap(k) ∈C

108: Effect:
109: pxs.phase← propagate

110: pnum1← pnum1+1
111: pxs.pnum← pnum1
112: pxs.acc← /0

113: Internal propagate-done(k)i
114: Precondition:
115: ¬failed∧status= active

116: pxs-phase= propagate

117: let k = ballot.conf-index
118: let c = cmap(k−1)
119: let c′ = cmap(k)
120: c∈C
121: c′ ∈C
122: ∃Cons2 ∈ propagation−quorums(c) : Cons2 ⊆ pxs.acc
123: ∃Prop2 ∈ consultation−quorums(c) : Prop2 ⊆ pxs.acc

124: Effect:
125: cmap(k−1)←±
126: pxs.phase← idle

127: pxs.acc← /0
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Appendix C

IOA Specification of a Scalable DSM

Algorithm 13 LoadBalanceri – Signature and state

1: Signature:
2: Input:
3: read-write-ack(v, id)i , i, id ∈ I , type∈ {read,
4: write}, v∈V
5: rcv(rqst) j,i , i, j ∈ I , rqst a request
6: faili , i ∈ I
7: share-load-rcv(b) j,i , i ∈ I , b an array of requests
8: Internal:
9: load-balance(rqst)i , i ∈ I , rqst a request

10: Output:
11: read-write(type,v, id)i , i, id ∈ I , type∈ {read,
12: write},v∈V
13: snd(rqst)i, j , i, j ∈ I , rqst a request
14: shrinki , i ∈ I
15: expand( j)i , i, j ∈ I
16: share-load-snd(b)i, j , i ∈ I , b an array of requests

17: State:
18: rqst a record with fields
19: sender∈ I , the id of the requester
20: type∈ {read,write}
21: target∈ R

2, the next requested coordinate
22: next∈ R

2, the point of the next replica (on the path to the
23: target).
24: str-pt∈ R

2, the first requested coordinate
25: val∈V, the value returned by the request
26: failed a boolean
27: expandinga boolean

28: replica a boolean indicating whether it is a replica or not
29: batchthe set of requests received
30: to-treat the set of requests that must be treated
31: treating the set of requests being treated
32: to-fwd the set of requests that must be forwarded
33: to-rspdthe set of requests to which respond

34: Derived Variables:
35: overloaded= (c≤ |{r ∈ to-treat∪ treating∪
36: batch}|), wherec∈ N

>0 is the capacity.

37: Initial States:
38: rqst.senderinitialized by the requester as its own identifier
39: rqst.typeinitialized by the requester toread or write

40: rqst.target=⊥
41: rqst.next=⊥
42: rqst.str-pt=⊥
43: val = v0 initialized as the value to write or to 0 (if the
44: request refers to a read operation)
45: failed= false

46: expanding= false

47: replica, true if the node maintains a value of the object,false

48: otherwise
49: batch= /0
50: to-treat= /0
51: treating= /0
52: to-fwd= /0
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Algorithm 14 LoadBalanceri – Transitions

53: Transitions:
54: Input rcv(rqst) j,i
55: Effect:
56: if ¬failed∧ rqst.next∈ zonethen
57: if rqst.str-pt∈ zonethen
58: expanding← true

59: batch← batch∪{rqst}
60: last-request-time← ∞
61: else ifrqst.target=⊥ then
62: rqst.str-pt← pt|pt∈ zone
63: batch← batch∪{rqst}
64: last-request-time← ∞
65: else ifrqst.target∈ zonethen
66: batch← batch∪{rqst}
67: last-request-time← ∞
68: else
69: rqst.next= closest-pt(rqst.target)
70: to-fwd← to-fwd∪{rqst}

71: Output read-write(type,v, id)i
72: Precondition:
73: ¬failed
74: ¬expanding
75: rqst∈ to-treat
76: type= rqst.type
77: v = rqst.val
78: id← rqst.sender

79: Effect:
80: treating← treating∪{rqst}
81: to-treat← to-treat\{rqst}

82: Output snd(rqst)i, j
83: Precondition:
84: ¬failed
85: ¬expanding
86: (rqst∈ fwd
87: ∧rqst.next= closest-pt(rqst.target))
88: ∧ j = nbr(rqst.next)∨ (rqst∈ to-rspd
89: ∧ j = rqst.sender)

90: Effect: none

91: Input faili
92: Effect:
93: failed← true

94: time-passage(t)
95: Precondition:
96: if ¬failed then
97: now+ t ≤ last-request-time

98: Effect:
99: now← now+ t

100: Internal load-balance(rqst)i
101: Precondition:
102: ¬failed
103: ¬expanding
104: rqst∈ batch

105: Effect:
106: if overloadedthen
107: rqst.target← next-pt-on-diag(rqst.str-pt)
108: to-fwd← to-fwd∪{rqst}
109: else
110: to-treat← to-treat∪{rqst}
111: batch← batch\{rqst}
112: if batch= /0 then
113: last-request-time← now
114: +unloaded-period

115: Input read-write-ack(v, id)i
116: Effect:
117: if ¬failed then
118: if rqst∈ treating∧ rqst.id = id then
119: rqst.val← v
120: treating← treating\{rqst}
121: to-rspd← to-rspd∪{rqst}

122: Output expand( j)i
123: Precondition:
124: ¬failed∧expanding
125: j ← any-active-node

126: Effect:
127: replicating← replicating∪{ j}

128: Output share-load-snd(b)i, j
129: Precondition:
130: ¬failed∧expanding
131: j ∈ replicating
132: b← second-half(batch)

133: Effect:
134: expanding← false

135: batch← first-half(batch)
136: replicating← replicating\{ j}

137: Input share-load-rcv(b) j,i
138: Effect:
139: if ¬failed∧status= idle then
140: batch← b
141: last-request-time← ∞

142: Output shrinki
143: Precondition:
144: last-request-time≤ now
145: ¬failed

146: Effect: none
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Algorithm 15 Traversali – Signature and state

1: Signature:
2: Input:
3: read-write(type,v, id)i , i, id ∈ I , type∈ {read,
4: write},v∈V
5: rcv(msg) j,i , i, j ∈ I , msg∈M
6: faili , i ∈ I
7: expand( j)i , i, j ∈ I
8: shrinki , i ∈ I
9: failure-detect( j)i , i ∈ I

10: notify-rcv(t,v,z,n,gn) j,i , i, j ∈ I , t ∈ T, v∈V,
11: n∈ I∗, gn∈ N

12: takeover-rsp( j,k)i , i, j,k∈ I
13: replicate-rcvi,i , i, j ∈ I

14: Output:
15: snd(msg)i, j , i, j ∈ I , msg∈M
16: read-write-ack(v, id)i , i, id ∈ I , v∈V
17: is-failed( j)i , i, j ∈ I
18: notify-snd(t,v,z,n,gn)i, j , i, j ∈ I , t ∈ T, v∈V,
19: n∈ I∗, gn∈ N

20: takeover-qry( j)i , i, j ∈ I
21: replicate-sndi, j , i, j ∈ I
22: Internal:
23: cons-upd-init(op)i , i ∈ I , op∈Π
24: prop-init(op)i , i ∈ I , op∈Π
25: cons-upd-end(op)i , i ∈ I , op∈Π
26: prop-end(op)i , i ∈ I , op∈Π

27: State:
28: opan record with fields
29: id ∈ N× I , the operation id
30: intr ∈ I , the initiator replica ofop
31: type∈ {read,write}
32: phase∈ {idle,cons,update,prop,end}
33: tag, a record with fields
34: ct∈ N, a counter
35: id ∈ I ∪{⊥}
36: val∈V
37: msg, a record with fields
38: op∈Π, the operationmsgis part of
39: sense∈ {north,south,east}, the message sense
40: intvl ∈ {east,south,north} 7→ R×R, given a sense,
41: the interval of abscissas or ordinates the message covers
42: tag, a record with fields
43: ct∈ N

44: id ∈ I

45: val∈V, initially v0
46: failed, a boolean
47: propagated, a boolean
48: // The state for the adjustment follows
49: leaving⊂ I
50: changed⊂ I
51: rcvd-from⊂ I
52: nbrs⊂ I
53: detect-time∈ R

>0

54: detect-period∈ R
>0, a constant

55: notif-time∈ R
>0

56: notif-period∈ R
>0, a constant

57: zone∈ R
4, a zone

58: nbrs, a set of replica ids
59: gnum∈ N

60: replica a record with fields
61: id, the replica id
62: zone, the replica zone

63: Initial state:
64: op.〈id, intr, type,phase〉= 〈⊥,⊥,⊥,⊥〉
65: op.tag.ct = 0 andop.tag.id =⊥
66: op.val = v0, the default value of the object.
67: failed= false

68: propagated= true

69: leaving,changed, rcvd-from,nbrs,zones= /0
70: clock, the clock value at the beginning
71: notif-time,notif-period= 0
72: gnum= 0
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Algorithm 16 Traversali – Operation transitions

73: Operation Transitions:
74: Input read-write(type,v, id)i
75: Effect:
76: if ¬failed∧status6= idle then
77: op.type← type
78: if type= read then
79: op.phase← cons

80: op.〈tag,val〉 ← 〈tag,val〉
81: else iftype= write then
82: op.phase← upd

83: op.〈tag,val〉 ← 〈⊥,v〉
84: op.intr ← i
85: ops← ops∪{op}

86: Internal cons-upd-init(op)i
87: Precondition:
88: ¬failed∧status6= idle

89: op∈ ops
90: op.phase∈ {cons,upd}
91: Effect:
92: msg.op← op
93: msg.sense← east

94: msg.trajectory← (ymax−ymin)/2
95: to-send← to-send∪{msg}

96: Internal prop-init(op)i
97: Precondition:
98: ¬failed∧status6= idle

99: op∈ ops
100: op.phase= prop

101: Effect:
102: msg1.op←msg2.op← op
103: msg1.sense← south

104: msg2.sense← north

105: msg.trajectory← (xmax−xmin)/2
106: mrcv[op.id]← 0
107: to-send← to-send∪{msg1,msg2}

108: Output read-write-ack(v, id)i
109: Precondition:
110: ¬failed∧status6= idle

111: op∈ ops
112: op.phase= end

113: v = op.val

114: Effect:
115: op.phase← idle

116: Internal cons-upd-end(op)i
117: Precondition:
118: ¬failed∧status6= idle

119: msg∈ rcvd
120: op= msg.op
121: op.phase∈ {cons,upd}
122: Effect:
123: op.〈tag,val〉 ← update(op.〈tag,val〉,〈tag,val〉)
124: rcvd← rcvd\{msg}
125: if zone⊂msg.intvl[east] then
126: // i has already participated
127: if propagated∧op.type= read then
128: op.phase= end

129: else
130: op.phase= prop

131: if op.type= write then
132: increments(op.tag)

133: else
134: msg.op← op
135: msg.sense← east

136: to-send← to-send∪{msg}
137: msg.intvl[east]←msg.intvl[east]∪zone

138: Internal prop-end(op)i
139: Precondition:
140: ¬failed∧status6= idle

141: msg∈ rcvd
142: op= msg.op
143: op.phase= prop

144: Effect:
145: 〈tag,val〉 ← op.〈tag,val〉
146: if (zone⊂msg.intvl[north]
147: ∧zone⊂msg.intvl[south]) then
148: // i has already participated twice
149: op.phase← end

150: else
151: msg.intvl[msg.sense]←msg.intvl[msg.sense]
152: ∪zone
153: if (zone⊂msg.intvl[north]
154: ∧zone⊂msg.intvl[south]) then
155: // i participates for the second time
156: propagated← true

157: msg.op← op
158: to-send← to-send∪{msg}
159: rcvd← rcvd\{msg}
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Algorithm 17 Traversali – Communication transitions

160: Output snd(msg)i, j
161: Precondition:
162: ¬failed∧status= participating

163: msg∈ to-send
164: msg.next← next-pt-on-line(i,msg.sense,
165: msg.trajectory)
166: j = nbr(msg.next)

167: Effect: none

168: Input rcv(msg) j,i
169: Effect:
170: if ¬failed∧status6= idle∧msg.next∈ zonethen
171: rcvd← rcvd∪{msg}
172: ops← ops∪{msg.op}

173: Input faili
174: Effect:
175: failed← true
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Algorithm 18 Traversali – Adjustment transitions

176: Adjustment Transitions:
177: Input expand( j)i
178: Effect:
179: if ¬failed∧status6= idle then
180: z= zone // we choose a zone to split
181: j.zone← second-half(z)
182: update( j.nbrs,〈 j, j.zone,nbrs,0〉)
183: zone← first-half(z)
184: update(nbrs,〈i,zone,nbrs,0〉)
185: changed← changed∪{ j}
186: rcvd-from← /0
187: gnum← gnum+1
188: status← expanding

189: Input shrinki
190: Effect:
191: if ¬failed∧status6= idle then
192: leaving← leaving∪{i}

193: Input failure-detect( j)i
194: Effect:
195: if ¬failed∧status6= idle then
196: leaving← leaving∪{ j}

197: Input notify-rcv(t,v,z,n,gn) j,i
198: Effect:
199: if ¬failed then
200: update(〈tag,val〉,〈t,v〉)
201: update(nrbs,〈 j,z,n,gn〉)
202: if abut(

S
∀k∈rcvd-fromk.zones,zones) then

203: // i heard from all its north and
204: // south neighbors
205: status← participating

206: if gn≥ gnumthen
207: gnum← gn
208: rcvd-from← rcvd-from∪{ j}
209: notif-time← now+notif-period

210: Output notify-snd(t,v,z,n,gn)i, j
211: Precondition:
212: ¬failed∧status6= idle

213: notif-time≤ now
214: t = tag
215: v = val
216: gn= gnum
217: j ∈ nbrs
218: z= j.zone
219: z= j.nbrs

220: Effect: none

221: time-passage(t)
222: Precondition:
223: if ¬failed then
224: now+ t ≤ notif-time
225: now+ t ≤ detect-time
226: Effect:
227: now← now+ t

228: Output takeover-qry( j)i
229: Precondition:
230: ¬failed∧status6= idle

231: // either i is in charge of looking for
232: // the takeover or it is shrinking
233: j ∈ leaving∧ i = min{k∈ nbrs( j)})∨ i = j

234: Effect: none

235: Input takeover-rsp( j,k)i
236: Effect:
237: if ¬failed∧status6= idle then
238: k.zone← j.zone
239: k.nbrs← j.nbrs
240: if j = i then
241: // the leaving replica is the current one
242: status← idle

243: changed← changed∪{k}
244: leaving← leaving\{ j}

245: Output replicate-snd(t,v,z,n)i, j
246: Precondition:
247: ¬failed∧status6= idle

248: j ∈ changed
249: z= j.zone
250: n = j.nbrs
251: 〈t,v〉= 〈tag,val〉
252: Effect: none

253: Input replicate-rcv(t,v,z,n) j,i
254: Effect:
255: if ¬failed then
256: zone← z
257: tag← t
258: val← v
259: update(nrbs,〈 j,z,n,0〉)
260: rcvd-from← /0
261: gnum← gnum+1

262: Output is-failed( j)i
263: Precondition:
264: ¬failed∧status6= idle

265: detect-time≤ now
266: j ∈ nbrs

267: Effect:
268: detect-time← now+detect-period
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