N

N

A formal model to express dynamic policies for access
control and negotiation in a distributed environment
Marwa El Houri

» To cite this version:

Marwa El Houri. A formal model to express dynamic policies for access control and negotiation in
a distributed environment. Computer Science [cs]. Université Paul Sabatier - Toulouse III, 2010.
English. NNT: . tel-00492317

HAL Id: tel-00492317
https://theses.hal.science/tel-00492317

Submitted on 15 Jun 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00492317
https://hal.archives-ouvertes.fr

A FORMAL MODEL TO EXPRESS DYNAMIC POLICIES
FOR
AcciEss CONTROL AND TRUST NEGOTIATION
IN
A DISTRIBUTED ENVIRONMENT

Thesis presented and defended by
Marwa EL HOURI

On the 28th of May 2010

To obtain the degree of

DOCTORAT DE L’UNIVERSITE DE TOULOUSE

Delivered by : Université Toulouse 111 Paul Sabatier (UPS)
Speciality : Computer Science

Directeurs de these:

Philippe BALBIANI Yannick CHEVALIER
Directeur de Recherche CNRS Maitre de Conférences
Université Paul Sabatier Université Paul Sabatier
Rapporteurs:
Alban GABILLON Olga KOUCHNARENKO
Professeur Professeur
Université de la Polynésie Francaise Université Franche-Comté
Examinateurs:

Laurent VIGNERON
AbdelKader HAMERLAIN Maitre de Conférences - Université
Professeur - Université Paul Sabatier Nancy 2

Ecole doctorale:
Mathématiques Informatique Télécommunications de Toulouse (MITT)
Unité de recherche:
Institut de recherche en Informatique de Toulouse (IRIT)

To my grandfather
who couldn’t see the end of the journey,
I hope you are proud...

Acknowledgements

The actual achievement of this project would have never been possible without
the help, support and understanding of many people.

To my advisors Philippe Balbiani and Yannick Chevalier I am grateful for
their assistance, useful advices, interesting discussions but mostly for there con-
tinuous presence and support throughout this journey.

I would also like to thank the jury members Alban Gabillon, AbdelKader
Hamerlain, Olga Koushnarenko and Laurent Vigneron for their valuable advices
and remarks.

My deepest gratitude and thanks to a dear friend Fahima Cheikh-Alili for
the laughs, the cries and all the support she made available throughout this
thesis. Thank you Fahima for this valuable friendship, I am happy that our life
paths crossed during this journey.

It is a pleasure to thank Francois for the good mood he reflects on us all
through laughs, music, and chocolate, and Nadine for the support and the con-
stant positiveness. I will always cherish the good times we shared in office 302,
the discussions, the good laughs and the coffee breaks. I thank my officemates
Sihem, Elise, Srdjan and Emmanuel for making this a pleasant working place
and my friends Wassim, Dania, Mounira, Salam, Pablo, Marija, Eric and Made-
laine for their friendship and support. Without all of you this journey would
have never been the same.

I would also want to thank my family, especially my parents for their great
support, for their patience and understanding during the hard times, without
their presence this project would not have been possible.

Finally, to Bilal my friend, officemate, love and husband a deep thank you
for the constant support, patience and understanding. I am lucky to have you
in my life.

Abstract

The development of the Internet and the wide acceptance of the Service-Oriented
Architecture as a paradigm for integrating software applications within and
across organizational boundaries led to a new form of of distributed structures.
In this paradigm, independently developed and operated applications and re-
sources are exposed as services that can communicate with one another by
passing messages over HT'TP, SOAP, etc. Such a paradigm offers the possibility
to orchestrate services in order to create new composed services adapted to a
given task. For business, security and legal reasons, it is necessary to control the
access to these services as well as the collaboration and exchange of information
between them while performing a common task.

The main objective of this thesis is to define a high level logical language
that can express complex security policies within an access control framework.

The development of this language is done in three steps. First we define a
role based dynamic framework where the state evolution of a service depends on
the execution of its functionalities. Next we define an attribute based framework
that gives more expressivity in terms of specification of access control conditions
and add the notion of workflow that gives an order over the execution of the
service functionalities and thus allows the definition of the general behavior of
the service. Finally, in order to take into account the collaboration between
different services we add a trust negotiation layer that allows each service to
define its own exchange policy with respect to other services in the environment.

Having such a unified framework facilitates the safety analysis of the security
policy since one can take into account the different factors that influence the
access control decisions within the same framework. Thus the second objective
of this thesis is to study the main access control features such as delegation and
separation of duty properties on the one hand and the security features for the
communication between the services at the trust negotiation level on the other
hand. As such, in order to show the expressivity of the framework we present
a generic encoding for the different concepts of delegation and revocation, we
also give the specification for the different aspects of separation and binding
of duty constraints and an encoding for the role-based access control model
along with some of its extensions. Finally, in order to take into account a real
communication network, we give an extension of our framework in order to be
able to model for an active intruder that can intervene during a trust negotiation
session by intercepting messages or constructing new messages.

7

Contents

Acknowledgements
Abstract

1 Introduction

I Dynamic access control models

2 Related Works
2.1 An overview of early access control models
2.1.1 Discretionary access control
2.1.2 Mandatory access control
2.1.3 The Clark Wilson model
2.2 Role based access control 0oL
2.2.1 RBACfeatures
2.2.2 Role administration and management
2.2.3 Role based access control in a workflow system
2.3 A flexible authorization framework
2.4 Organization based access control
2.5 The extensible access control markup language (XACML)
2.6 Dynamic RBAC logical frameworks
2.6.1 A role-based trust management framework
2.6.2 The Cassandra access control framework
2.7 SecPAL: a decentralized authorization language
2.8 Other dynamic policies oL
2.8.1 Discussion Lo
2.9 Trust negotiation and managing certificates
2.10 Conclusion L

3 A logical approach to RBAC
3.1 Access control policies
3.1.1 Domainso Lo
3.1.2 Security states

13

17

19
20
21
24
26
26
27
29
29
30
31
32
33
33
34
35
36
37
37
40

10

CONTENTS

3.1.3 Atomic formulae and conditions 43
3.1.4 Static clauses and static policies 45
3.1.5 Dynamic clauses and dynamic policies 46
3.1.6 Rule-based policies 48

3.2 RBAC features 49
3.2.1 Terminology 49
3.2.2 Roleactivation 50
3.23 Rolehierarchy L. 51
3.2.4 Role Delegation 54
3.2.5 Separation of duties 57
3.2.6 Bindingofduty 57

3.3 Assigning permissions Lo 58
3.4 Conclusion 60
Policies with negotiation and workflows 63
4.1 Introduction 63
42 Themodel 65
4.3 Syntax 65
4.3.1 Objectsand values 66
4.3.2 Variables and terms 68
4.3.3 Entitiesand states 68

4.4 Access control and trust negotiation 69
441 Bodyofrules 69
4.4.2 Securityrules 70

4.5 Semantics 72
4.5.1 Trust negotiation semantics 73
4.5.2 Access control evaluation semantics 74

4.6 Workflow: Syntax. L oL I
4.6.1 Atomic actions 78
4.6.2 Processes and workflow 79

4.7 Workflow: operational semantics 80
4.7.1 Local transitions 80
4.7.2 Global state and global transition 84

4.8 Application to access control problems 86
4.9 Conclusion 87
A Case study: The Car Registration process 89
5.1 Car Registration process 89
5.2 Modeling the car registration process 92
5.2.1 The car registration form 92
5.2.2 Requests and other elements of the model 93
5.2.3 Modeling the workflow 93

5.3 The encoding of the car registration process 93
5.3.1 The central repository 93
5.3.2 The central authority 94

5.3.3 The car registration office 95

CONTENTS 11

5.3.4 Theemployee L L 96

54 Conclusion 98

II Expressing security properties 99
6 Delegation and revocation 103
6.1 Related Works oo 104
6.1.1 Roledelegation 104

6.1.2 Delegation Models 107

6.1.3 Delegation in access control frameworks 108

6.2 Defining the delegation context 111
6.2.1 The right to delegate 111

6.2.2 After the delegation 113

6.3 Expressing the rights to delegate and revoke 114
6.4 The effect of delegation and revocation 116
6.5 Using a delegation 118
6.5.1 Acquiring the right to use an object 118

6.5.2 Constructing a delegation chain 119

6.5.3 Delegation as a graph representation 119

6.6 An illustrative example 121
6.7 Conclusion 124

7 Separation of duty constraints 125
7.1 Related Works 125
7.1.1 On the history of separation of duty 125

7.1.2 Specifying separation of duty constraints. 128

7.2 On the expression of security properties 132
7.2.1 Onactivation oo 133

7.2.2 Static and dynamic separation of duty 134

7.2.3 More dynamic separation of duty constraints 134

7.2.4 Binding of duty constraint 135

7.2.5 History-Based separation of duty 136

7.3 Verifying the security properties 137
7.3.1 Specifying security constraints 137

7.3.2 Monitoring security properties 139

7.4 Conclusion 139

8 Encoding RBAC 141
8.1 Expressing an RBAC framework 141
8.1.1 Expressing role-based access control structure 141

8.1.2 Role hierarchy 142

8.1.3 Role inheritance oL 143

8.1.4 Activation of roles 144

8.2 Delegation in RBAC 148

8.3 Static and dynamic separation of duty 149

12

84 Conclusion

9 An intruder model for trust negotiation

9.1 Imtroduction.
9.2 Syntax
9.3 Trust negotiation policy
9.4 In the presence of secured communication
9.4.1 Security properties of channels
9.4.2 Extending the syntax
9.5 Formalizing the intruder
9.5.1 Entitiesandkeys
9.5.2 Trust negotiation policy of the intruder . . .
9.6 Trust negotiation semantics
9.6.1 How entities receive available objects
9.6.2 What entitiescansend
9.6.3 Computing the set of available objects
9.7 Security requirements
9.7.1 Confidentiality
9.7.2 Authenticity

9.8 Attack on Google’s implementation of SAML SSO

99 Conclusion o

10 Conclusion and perspectives

Résumé en francais

CONTENTS

Chapter 1

Introduction

Context

With the development of the Internet, and the spread of information on dis-
tributed structures, the collaboration between different services became a ne-
cessity. A service is an entity that is responsible for a given set of functionalities.
It can be accessed by a human user or by other services. For example, a service
connected to a virtual library allows users to search for available books. An-
other service with connection to a secured banking system offers the possibility
for secure payment and a third service provides shipment advantages. If a user
requests to buy a book online, a collaboration between these three services is
necessary to achieve the user’s task. A similar scenario can be found within an
organization with decentralized departments.

In order to be able to collaborate, services must be able to communicate,
exchange information and reach mutual agreements. There exists standard lan-
guages that ensures the security of messages such as SOAP [58] that defines
the form of the messages through an envelop and regulate message transmission
between services. Also, such services need to have a security policy that states
who is authorized to access the service functionalities. Standard languages such
as WS-SecurityPolicy [59] and WS-Policy [74] can define a security policy at
the level of the messages. That is they are capable of expressing the criteria for
a given service to accept or not a message from another service. Moreover, the
service functionalities need to be executed in a given order to achieve a global
task. This can be provided by BPEL [47], a standard language that specifies
the interaction between services and thus allows the expression of a business
process through the orchestration of services behavior. However such standard
languages are essentially designed for the implementation of security policy and
business process design and thus do not offer means to reason about policies.

13

14 CHAPTER 1. INTRODUCTION

Objectives and contributions of this thesis

The main objective of this thesis is to present a high level logical language that
can express complex security policies within an access control framework.

An access control framework should guarantee the safety of the system with
respect to predefined security requirements, but must also allow the feasibility
of performing a check for the security of the system. In other words, a model
should be able to provide a solution for the safety problem that, given an initial
state and a security policy, checks whether it is possible when applying the access
control policy to reach an unsafe state. The safety criteria are often defined with
respect to the confidentiality or the integrity of the information but can also
concern operational constraints, availability of the information, etc. In order to
handle such problems, it is essential to define a mathematical framework that is
able to express both access control rules and security objectives, and in which
it will be possible to validate the properties of the system.

Usually, security policies are defined by a security modeler, i.e. a human
being who expresses security requirements. The security language needs to be
expressive enough to model such human designed security policies in a formal
language, in the best possible manner, in order to avoid ambiguities.

Additionally, access control policies are applied in a specific environment and
access control decisions lead to permitting or denying some actions. This has an
effect on the policy environment. Thus it is also important to be able to specify
the effects of access control authorizations within the access control framework.
That is, in addition to providing yes or no answers for access requests, the
security language should express the actual ”change” that occurs when a request
is granted (or denied).

Further, in a time where information is being decentralized, new aspects
of access control are needed. An access control framework needs to take into
account the distributed nature of the environment and the possibility of collab-
oration and communication between different access control systems that do not
necessarily know each other. Thus it is important to have a security language
that can express trust negotiation between the different actors of a collaboration
in order to establish mutual trust.

Finally, current organizations often define an access control policy with re-
spect to business processes. That is the collaboration between different services
is ordered in a specified manner in order to achieve a final goal. Thus in order
to express business processes, the security language should be able to define, in
addition to the direct effects of authorized actions, the possibility to specify an
order over these actions.

The first objective of this thesis is to formalize a unified framework that
considers access control in an environment where entities communicate to ac-
complish a set of tasks with respect to their security policy. Such entities can
be viewed as services, but also as users or organizations.

It is important to point out that several models exist that answer to some of
the problems stated above ([45, 13, 52, 18, 12, 11]). However the contribution of
this thesis is to provide a unified framework that takes into account the totality

15

of these features. In fact having a unified framework would facilitate the safety
analysis of the security policy since one can take into account the different
factors that influence the access control decisions within the same framework.
Thus the second objective of this thesis is to study the main access control
features such as delegation and separation of duty properties on the one hand
and the security features for the communication between the entities at the
trust negotiation level on the other hand. The expression of such properties
would lead to the specification of safety criteria for the unified framework in
general. In particular we specify security constraints that can be checked at
the security level and enforced within the workflow at run time level. We also
specify authentication and confidentiality properties to be satisfied during a
negotiation session when assuming the presence of a malicious entity.

Outline of the thesis

The thesis is presented in two parts. The first part is devoted for the study of
existing access control models and the design of a logical language to express
complex access control policies that can model dynamic features in a distributed
environment. The second part presents some access control features that can be
expressed in this new framework and specifies security properties that contribute
to the reasoning about the safety of security problems.

In Chapter 2, we give an extended overview of existing access control models.
We are interested in satisfying three main criteria, namely:

- the flexibility of the language to express complex access control policies,
i.e. the possibility to express requirements that go beyond the simple
subject, object action paradigm,

- the capacity of expressing dynamic access control, i.e. possibility of defin-
ing effects to authorized accesses and the modeling of security state evo-
lution with respect to a well defined order of execution and

- the necessity of defining an interaction between different actors in the
environment by defining a trust management mechanism allowing the es-
tablishment of mutual trust between actors that may not necessarily know
each other.

We show the solutions provided by several access control models to some of
these criteria and explain their limitations to motivate the need for a unified
framework that takes into account the above three criteria. In Chapter 3 we
present a first approach to define a dynamic access control model based on
roles. The main importance of this model lies in the definition of dynamic
policies to express the effects of the authorizations depending on whether or
not an authorization was executed. It is extended in Chapter 4 to an attribute
based framework able to satisfy the above mentioned three criteria. Also, the
development of the unified framework was partially influenced by the analysis
of various case studies in order to express security for business processes. In

16 CHAPTER 1. INTRODUCTION

Chapter 5, we present one such case study that models a car registration process
in order to illustrate the expressivity of our framework.

In Chapter 6 we give an overview of the different concepts of delegation and
revocation. We then give an encoding to express flexible delegation and revoca-
tion in our unified framework. Chapter 7 presents an overview of the separation
of duty properties that demonstrates the expressivity of our framework both on
the level of specification of security constraints and on the level of enforcement
of such constraints at runtime. In Chapter 8 we give an encoding of the role-
based access control model with some of its extensions and illustrate the access
control features within this model. Chapter 9 gives a different perspective to
security by assuming the presence of a malicious entity at the trust negotiation
level. As such we give an extension of our logical language that takes into ac-
count the different types of communication channels and give the specifications
for the authentication and confidentiality properties within these assumptions.

It is worth to mention that this thesis was partially funded by the FP7-ICT-
2007-1 Project no. 216471, ”AVANTSSAR: Automated Validation of Trust and
Security of Service-oriented Architectures'”.

lwww.avantssar.eu

Part 1

Dynamic access control
models

17

Chapter 2

Related Works

Security has always been considered as a necessity for human beings and access
control decisions or authorizations always existed in real life situations whenever
humans found the need to protect their assets or belongings. With the rise
of technology, and the development of information technology, there was an
increase in the dependence on computers in decision making. Thus more effort
was invested in research concerning access control in order to regulate access to
sensitive information and protect system resources. In general, access control
decisions or authorizations refer to yes or no decisions concerning "who can do
what” questions.

An access control framework regulates the access to functionalities (be it
web services, processes or companies) by authorized users depending on an
access control policy. In its simplest form, this relation is represented by a list
associating authorized users to resources. When a user provides sufficient proof
for his identity, an authorization decision can be achieved with respect to user-
resource relationship. Access control is defined through the notions of users,
subjects, objects and actions (also called operations or tasks in the literature).
A wuser is a human-agent interacting with a machine, a subject is an active
entity possibly acting on behalf of a user, or on behalf of a machine (a service).
An object is a passive entity that can refer to a resource, a database or any
information and can be used or accessed by subjects and an action is an active
process performed by a subject on a given object.

In this chapter we give a historical overview of the first access control mod-
els in Section 2.1, then we present the role-based access control in Section 2.2.
In Sections 2.3 and 2.4 we present two extensions of RBAC, namely FAF and
OrBAC that offer more flexibility than the RBAC structure. In Section 2.5 we
present XACML, a standard language to express access control policies, and in
Section 2.6 we present more recent role-based access control frameworks that
handle security policy in distributed domains. Section 2.7 presents SecPAL a
dynamic logical language based on attributes and Section 2.8 defines additional
dynamic languages. In Section 2.9 we present a glimpse of some trust manage-
ment models and we conclude in Section 2.10.

19

20 CHAPTER 2. RELATED WORKS

2.1 An overview of early access control models

With the increased use of computers to access resources and the need to share
resources among users came the need to formalize an access control model that
regulates the access to shared resources and protect sensitive information from
potential leaks. This was the concern of the US department of defense (DoD)
that encouraged, since the 1960s, research on access control. The main concern
was to investigate the vulnerabilities that may exist in government systems due
to the increased dependence of the defense systems on computers. This problem
was also a primordial research subject in universities.

The first access control models can be divided into discretionary and manda-
tory access control. This distinction involves the capacity of a subject of modi-
fying access rights. The mandatory access control policies also known as MAC
originated in the military domain and prevents subjects from modifying access
rights. In 1983 the TCSEC in [72] formalized regulations to protect sensitive
information in multilevel security systems, it defines MAC as

(...) a means of restricting access to objects based on the sensitiv-
ity (as represented by a label) of the information contained in the
objects and the formal authorization (i.e., clearance) of subjects to
information of such sensitivity [72].

In fact, MAC supports the US department of Defense requirements concern-
ing unauthorized access to classified information, and in particular the protec-
tion of the confidentiality of sensitive information. The ability for a subject
to access or perform an operation on an object is constrained by the system.
That is the security policy is centrally controlled by an administrator and thus
subjects do not have the ability to override the policy. These policies were
formalized in the Bell LaPadula model [15] that preserves confidentiality of in-
formation and the Biba model [20] that preserves integrity. Note that such
models are static and rigid in the sense that they do not allow an update of the
access control policy unless it is manually performed by the policy designer or
the administrator.

The discretionary access control policies also known as DAC is more flexible
and supposes that the subject can manage the rights concerning objects that
he has created (more precisely, that he owns). DAC is defined by TCSEC as

(...) a means of restricting access to objects based on the identity
of subjects or groups, or both, to which they belong. The controls
are discretionary in the sense that a subject with a certain access
permission is capable of passing that permission (perhaps indirectly)
on to any other subject (unless restricted by MAC)[72]

In fact, DAC allows subjects to grant and revoke access rights to other
subjects. That is, the control over the access to an object is left to the discretion
of the authorized subject (owning that object) without the intervention of the
system administrator. This is the case for example in the UNIX operating

2.1. AN OVERVIEW OF EARLY ACCESS CONTROL MODELS 21

Objects
O1] ... | ... O,
£ U1 T ’I“j
) &
= o
Un | T, ri, ;|
rights

Figure 2.1: Access control matrix in the Lampson model.

system where each user has the possibility to define read and write rights over his
own documents. These policies were formalized first by Lampson [50] by using
an access control matrix, then in the HRU model [41] by allowing transitions
over access control matrices and the take-grant model [46] by defining state
transition graphs.

2.1.1 Discretionary access control

In this section we present three different models that can express discretionary
access control, namely the Lampson model, the HRU model and the take-grant
model. All three models have the specificity of allowing state transition for the
system.

The Lampson model

The earliest work in defining a formal description for access control was by
Lampson [50] who introduced the formal notions of subject and object and
defined an access control matrix (see Figure 2.1). In this model, a right is a
relation between subjects in .S and objects in O. The rights that a subject has
on an object are represented by an access control matrix M.

Each entry M (i,j) of the matrix represent the rights that the subject ¢
has over object j. The model defined by Lampson is not fixed. In fact it is
defined as a transition state machine where each state is of the form (S, O, M).
When a subject s loses a right over an object o, the entry M (s,o0) will be
modified accordingly. This model also allows the addition of new subjects and
new objects to the system. However, the update of the matrix becomes more
fastidious. When adding a new object o', all entries M (z,0’) concerning the
object o’ need to be modified accordingly. This task becomes more complicated
when removing a subject s from the system since this will lead to a complete
browsing of the matrix in order to change all the entries M (s, y) concerning this
subject.

In summary, the Lampson model defined the access control matrix that was
the base for the formalization of the HRU and the take-grant models and many
other till nowadays. However the system update in the case of the Lampson
model is rather complex.

22 CHAPTER 2. RELATED WORKS

rights enter 7 into M (s, 0)
delete r from M (s, 0)

subjects create subject s
delete subject s
objects create object o

delete object o

Table 2.1: Primitive operations in HRU model
Command: c(zl,...,zk)

if 7y in M(s1,01) and
ro in M (s2,02) and

T I M (S, Om)
then op;
op2

OPn

end

Table 2.2: A command in HRU model

The HRU Model

In 1976, Harrison, Ruzzo, and Ullman presented HRU model [41] in order to
study the complexity of the safety problem. The safety problem can be defined
as the problem to determine whether or not a given subject can eventually
obtain an access right on a given object. Like the Lampson model, the HRU
protection system is a state transition system, made of:

a set of subjects S,

- a set of objects O,

a set of access rights R, and

- an |S] x |O] access control matrix M such that the entry M (s,o) is the
subset of R specifying the rights subject s has on object o.

The importance of the HRU model is in the commands that formalize the mod-
ifications on the access control matrix M. The only operations permitted in the
HRU model are primitive operations for manipulating subjects, objects, and the
access matrix presented in Table 2.1.

The execution of these primitives within a command leads to changes in the
matrix by the insertion or deletion of lines and columns, or the modification of
entries in the matrix. An access control policy is an arbitrary finite set of rules
that are formed from a given set of primitive operations as can be seen in Table
2.2.

2.1. AN OVERVIEW OF EARLY ACCESS CONTROL MODELS 23

® —

Rule create

OO - B

Rule remove

O OO - QOO

Rule take

OO O - OOQ

Rule grant

Figure 2.2: Graph rewriting rules for the take-grant model

The HRU model can capture security policies regulating the allocation of
access rights. The access matrix describes the state of the systems whereas the
commands constitute the transitions. The effect of a command is recorded as a
change to the access matrix.

Given a system, an initial configuration Q¢ and a right r, Qg is safe for r
if there is no sequence of commands that when executed from Qg lead to the
addition of the right r into a position of the access matrix that previously did
not contain r. The verification of this property defines the safety problem. The
authors proved that this problem is undecidable in general. That is there is no
way to verify whether an unauthorized user will gain access to a right in an
improper manner. This is due to the flexibility of the HRU model that does not
control how users pass rights from one another.

The safety problem is decidable if each command consists of a single primitive
operation. That is a command can only test one cell of the access matrix.
However this reduces drastically the expressivity of the model. In fact such
constraint prevents for example the system from the ability to revoke an access
right.

The take-grant model

In an attempt to model an expressive access control model for which the safety
problem is decidable, Jones et al. [46] defined the take-grant protection model
as a directed graph, where vertices are either subjects or objects and the edges
are labeled with the rights that the source of the edge has over the destination.
The application of rights is modeled by applying graph rewriting rules as seen
in Figure 2.2. It can be viewed as a variant of the HRU model in the fact that
it restrains the commands by defining them in four categories:

- the create rule, that allows a subject P to create a new object @), and
assigns initial rights a of P on Q.

- the remove rule, that allows a subject P to remove a right ~ it has over
an object Q.

24 CHAPTER 2. RELATED WORKS

- the take rule, presented by an edge labeled with ¢ from a subject P to a
subject (or object) R, that allows P to take all rights « that R has over

Q

- the grant rule, presented by an edge labeled with g from a subject P to
a subject (or object) R, that allows P having rights « on an object (or
subject) @ to grant a to R

A state in the take-grant model is said to be safe between p and ¢ with re-
spect to right « if there is no sequence of graphs G, ... G,, such that p acquires
the right « over ¢ in G,,. Jones et al.[46] defined the necessary and sufficient
conditions leading to a safe state. However the problem turns out to be un-
decidable in case one considers that there is a collaboration between subjects
[46].

Discussion

The models presented in this section rely either on access control matrices or on
graph rewriting system for directed graphs. They are enriched with primitives
that allow changes in access right allocation either in non-deterministic manner
[50, 41] or with certain constraints with respect to subjects and objects [46].
This specificity adds a very desired dynamic aspect that allows the represen-
tation of the changes permitted by the policy on the environment. Also such
models can be used to express distributed access control, since the discretionary
policies allow each subject to have his own policy on objects. As such if subjects
represent entities in the environment, then the interaction between such entities
can be modeled by the policy they share on the objects in the system. How-
ever the undecidability of verification of the compliance of the policy with the
security requirements presents a very important disadvantage for such models.

2.1.2 Mandatory access control

A safer solution for designing access control policies is the mandatory access
control. Originating in the military environment, MAC offers a safe structure
for a highly centralized access control system that regulates access to multi-level
objects by authorized subjects depending on their clearance level. Ideally, the
objects are labeled with security labels ranging from Top secret for the most
sensitive to public or unclassified for the least sensitive, and the subjects are
divided into different clearance levels (depending on their military rank).

The Bell LaPadula model

The first military access control model was formalized in 1973 by Bell and
LaPadula [15]. The Bell LaPadula model is a mathematical model that allows
the analysis of confidentiality related security properties of the model in details.
The model is composed of

- a set of subjects .5,

2.1. AN OVERVIEW OF EARLY ACCESS CONTROL MODELS 25

- a set of objects O
- a set of access operations A denoting the access rights, and
- a set L of security levels, with a partial ordering.

Access permissions are defined by an access control matrix. In the Bell LaPadula
model, a state in the system is represented by a 4-tuple (b, M, F, H), where b
denotes the current access set, M the access control matrix, F' the level function
and H the hierarchy.

Example 2.1.1. One can define a state in the model such that
- Access set b: Bob has the read right on the document d for staff.

- Access matrix M contains an entry M (Bob,d) having read in the set of
access rights.

- Level function F : the highest level for Bob is (SECRET, STAFF,
FINANCE), and the object d is classified as (CONFIDENTIAL,
STAFF). Thus the current level for Bob would be (CONFIDENTIAL,
STAFF).

- Hierarchy : the object d is isolated.

The security policies prevent information flowing downwards from a high
security level to a low security level. This is guaranteed by the no read up and
no write down constraints that verify the confidentiality of system resources. In
order to communicate, subjects need to follow the two following properties:

- The Simple Security Property states that a subject s at a given security
level may not read an object o at a higher security level (no read-up).
This prevents access to classified information to low level subjects.

- The *-property states that a subject s at a given security level must not
write to any object o at a lower security level (no write-down). This
prevents high level subjects from sending information to low level subjects

A consequence of the *-property is that eventually there will be an upgrading
of all objects due to the no write down policy. To remedy to this problem, such
objects will have to be downgraded manually by an officer or a program that
does not comply with the policy.

Note that the Bell LaPadula model only considers the information flow that
occurs when a subject observes or alters an object. However, although the
confidentiality of resources is preserved, the integrity can be violated. In fact, a
subject from a lower clearance level can corrupt an object at this low level, that
can be read by higher level subjects. The Biba model [20] came to circumvent
the weaknesses of the Bell LaPadula model.

The Biba model addresses the integrity problem by defining an integrity
hierarchy for subjects over objects and defining reverse constraints namely a no

26 CHAPTER 2. RELATED WORKS

read down and no write up policy. Subjects can only create content at or below
their own integrity levels and can view content at or above their own integrity
level.

Note that both the Bell Lapadula and Biba models rely on the subject and
object classifications, the automatic upgrading of objects confidentiality levels
in the case of Bell LaPadula due to the no write down property or similarly
the problem of downgrading of object integrity level in the case of Biba due to
the no write up property needs the intervention of outsiders to remedy to the
situation, something that is not desirable when designing a security policy.

2.1.3 The Clark Wilson model

While military models took the lead and gained ground on the commercial mar-
ket as by providing a high level of confidentiality, the need was for models that
emphasize more on integrity as that was the main goal of commercial customers.
In 1987, Clark and Wilson [27] presented a different access control model. Al-
though this model is not fully formalized, it arised from the need to find a model
flexible enough to commercial security policies that are not necessarily based
on security stratification. Their model relies on two basic concepts, the well-
formed transactions that constrain the user to change data only in authorized
manner and the separation of duty constraints that prevent fraud and abuse of
power. The access and modification of data is defined through certification and
enforcement rules. On the one hand, data items are changed only by transfor-
mation procedures, which maintain integrity. On the other hand, users may only
invoke some transformation procedures, and a pre-specified set of data objects
or constrained data items, depending on their duties which allow the enforce-
ment of separation of duty. This model introduces two very important concepts
in security models, namely the tractability property, that is the possibility to
keep track of executed transactions and the separation of duty property that
prevents fraud and preserves integrity in commercial organizations.

2.2 Role based access control

The rise of multi-user and multi-application system made it more complex to
manage rights in access control matrices or directed graph as is the case with
the MAC and DAC models presented in Section 2.1. As mentioned in Section
2.1.3, unlike military users, commercial users and industries were looking for
more flexibility in access control systems while maintaining the integrity of the
model. The ideal recipe would be to opt for the flexibility and dynamicity of
the HRU model [41], as opposed to the highly stratified MAC model [15, 20],
while preserving the safety provided by the Bell LaPadula and Biba models.
The role based access control [36],[37] model has emerged as an alternative
solution to the already existing discretionary and mandatory access controls.
The RBAC framework borrows its structure from the organization structure.
Roles are created for the various job positions in the organization and users

2.2. ROLE BASED ACCESS CONTROL 27

are assigned to roles based on their qualifications and responsibilities. A user
acquires authorizations based on the roles assigned to him. RBAC is neither a
MAC nor a DAC model. However, it has the capacity to express both models.
The main idea behind its role structure is to allow an easier update of rights
independently of the actual identity of the users. That is while users may step
in and out of roles, the access control rights will not be affected. This gives a
flexible way to update the system in the case of a user being fired for example,
or in the case where more permissions are granted for a given position (role).
Thus instead of updating the access rights for each user involved as is the case in
[50], the update is only done once. For example, in the case a user loses his job,
the update of user-role relation by removing the user from the role is enough
for the user to lose all access rights associated with the role. Further in the case
where more permissions are added to a role, an update of the role-permission
relation, by adding the corresponding permission(s) to the role, is sufficient so
that all members authorized to that role acquire the additional permissions.
In what follows we give some of the basic features of RBAC.

2.2.1 RBAC features

The RBAC framework was first motivated [36] and formalized in [37, 69]. Its
main advantage is its ability to express organizational policies. The RBAC
model was defined via the following components:

e U, R, P, and S are finite sets of users, roles, permissions, and sessions,
respectively,

e PAC P X R is a many-to-many permission to role assignment relation,
e UA CU X R is a many-to-many user to role assignment relation,

The users can step in and out of roles without the need to modify the cor-
responding accesses. This innovation came to solve the heavy procedure of
updating access matrices.

As in the case of a MAC model, RBAC allowed the enforcement of the least
privilege principle which states that a user must only have access to the mini-
mum set of rights necessary to perform a given task. In fact, the least privilege
principle, a property highly recommended in an organization environment can
be guaranteed by the addition of sessions to the RBAC structure as follows:

e user : S — U represents a function mapping each session s; to the user
user(s;), and

e roles : S — 2% represents a function mapping each session s; to a set of
roles roles(s;) C {r|(user(s;),r) € UA} and session s; has the permissions

UrEToles(si) {p|(p7 ’I") € PA}

The notion of session distinguishes between being member of a given role
and activating the role. While the later gives the active subjects all permissions

28 CHAPTER 2. RELATED WORKS

associated with the role the former only provides the subject with the right to
activate the role in a session. The least privilege principle can then be enforced
by putting constraints on the set of roles that can be activated by a given user.

Additionally, the activation of roles can be constrained for example to pre-
vent a subject from acquiring the permissions associated with two exclusive
roles. For example in a banking organization it is necessary to prevent a user
from being a member for both purchase manager and payment manager as this
may lead to abuse of authority and cases of fraud. Other types of constraints
may be used for binding of duty or cardinality constraints (see Chapter 7 for
more details).

Note that sessions contribute to the expression of some kind of dynamic
access control, where the dynamic aspect lies in the choice of active roles in a
given session.

Another important feature added to the RBAC structure is the role hierar-
chy. For example, in a medical environment, both a cardiologist and a surgeon
have the permissions allocated to general doctors who in turn have the per-
missions allocated to interns. In order to prevent redundancy in permission
allocation for these roles, the definition of a hierarchy gives the minimal set of
permissions for each of these roles and allows the inheritance of permissions for
roles in the hierarchy.

e RH C R x R is a partial order on R called the role hierarchy relation and
written as >, and

e roles : S — 2F is modified to require roles(s;) C {r|(3r" > r)[(user(s;),)
€ UA]} and the session s; has the permissions U, ¢, qes(s,) {PI(Fr" <
r)l(p,)€ PAJ}

In fact, role hierarchies contribute in the definition of the organization struc-
ture in terms of the stratification of roles and responsibilities of the various or-
ganization positions. Given a role r, we say a role r’ is junior to r if 7/ < r in the
role hierarchy. A user can activate in a session any combination of roles junior
to the roles the user is a member of. In that case the user acquires the per-
missions associated with the activated roles, but also all permissions associated
with roles junior to the activated roles.

Finally, RBAC can also express delegation of roles[69], a feature by which a
user that is not initially member of a role, acquires the rights associated to that
role by delegation. This feature is very important in organizations, as it allows a
flexible allocation of rights in cases of emergency, without modifying the initial
structure of the organization. For example, this can occur in cases when the
main member assigned to the role is on a leave, or if additional subjects are
needed in a given role.

RBAC in its general form provides a solid ground to express a variety of
organizational access control policies. However as stated in [69], it is not capable
of expressing ”situations where sequences of operations need to be controlled.”
Also the notion of role administration and role hierarchy remains ambiguous.

2.2. ROLE BASED ACCESS CONTROL 29

2.2.2 Role administration and management

To formalize role administration, ARBAC [67] provided a structure to manage
role-based access control in a decentralized manner by adding to the RBAC
structure a supplementary layer for administrative permissions and roles. The
management of role hierarchies and permission-role allocation is done by a cen-
tralized authority, the management of users and the user-role allocation and
revocation can be done by subjects pertaining to administrative roles. User-
role and permission-role relations thus become ternary relation including the
administrator role, where the allocation condition depends not only on the or-
dinary role but also on the administrator role. For example, an administrator
can assign a role to a user, if the administrator has the adequate administrating
role and the user has the authorization for the membership of the assigned role.
Note however that ARBAC does not handle the problem of creating new roles
and does not offer a mechanism to express delegation.

2.2.3 Role based access control in a workflow system

Another very interesting extension of RBAC is the workflow based RBAC pre-
sented in [16]. Workflow management systems (WFMS) are used to coordinate
and regulate the business processes of an organization. In large organizations it
is often the case that process activities are allocated to roles rather than users in
an RBAC-like structure. In [16], the authors present a model supporting both
specification of RBAC in WFMS and the enforcement of role-based constraints
in the workflow.

A workflow consists of several tasks, each of which can be executed a number
of times. Each task is associated with one or more roles that are authorized to
execute the task. When a user tries to execute a task, the access control system
must check whether there exists a role authorized to execute the task and for
which the user is a member. In order to do that, the authors define workflow
role specification as a set of task role specification. Namely, each task role
specification is a 3-tuple (T;, (RS;, <:),act;) where T; is a task, RS; is a set
of roles authorized for T;, <; is a local role order relationship and act; is the
number of activations of task T;. In order to express workflow specification and
constraints, five types of predicates are put in place, namely

e specification predicates express the task-role, user-task, user-role and role
hierarchy relations;

e execution predicates keep a trace for the effect of the task execution;

e planning predicates express the restrictions imposed on the workflow, each
restriction being expressed by a distinct predicate;

e comparison predicates and aggregate predicates.

The constraint specification is a set of clauses in a general logic program.
This model, by introducing the possibility to keep a history of executions as

30 CHAPTER 2. RELATED WORKS

well as distinguishing between static constraints that can be evaluated in the
classic access control policy and dynamic constraints that can only appear at the
execution of the system, offers a ground for research that take into account the
need for a dynamic framework in addition to the modeling of an access control
policy within the organization. However, this implementation is performed by
adding ad-hoc predicates in order to evaluate the different constraints. This
makes it complicated to extend the model without modifying the semantics of
the framework.

2.3 A flexible authorization framework

In [45], the authors present the Flexible Authorization Framework (FAF), a uni-
fied logic-based framework that can express and enforce multiple access control
policies. FAF specifies rules in the form of Prolog-style rules. The authorization
framework consists of the following components:

e A history table whose rows describe the executed accesses. A predicate
done(object, subject, role, action, time) records in a row each time action
is executed by subject in role on object at a specific time;

e An authorization table whose rows are authorizations composed of the
triples (o, s,+a) or (o,s,—a) denoting that the right a is permitted, or
denied respectively for subject s on object o;

e A propagation policy that specifies how to obtain new permissions from
the authorization table with respect to subject and objects hierarchies;

e A conflict resolution policy that specifies how to eliminate contradictory
authorizations that may arise during the propagation stage;

e decision policies that allow grant or deny decision based on a history table;

e integrity constraints where all authorizations that violate such constraints
will be denied.

FAF provides a local stratification for its predicates which leads to a unique
stable model and well-formed semantics. Jajodia et al. maintain a material-
ization structure that associates each instance A of valid predicates with the
set S of rules that directly supports its truth. Changes to the materialization
structure are realized explicitly by means of special operators that enforce the
addition or removal of a pair (A4, S) from the materialization structure. Note
that any change to the authorization table will lead to changes in the material-
ization structure.

FAF can express dynamic access control policies through the addition of
a history table that contributes to the dynamic evaluation of access control
decisions. Also the hierarchical structure of subjects and objects along with
the possibility to define propagation rules liberate FAF from the constraints of
RBAC. In fact, RBAC structure can be easily implemented in FAF, but rules

2.4. ORGANIZATION BASED ACCESS CONTROL 31

that allow the propagation of a permission to a user without passing through
a given role are also possible in FAF. However the flexibility of FAF has its
repercussions on the syntax of the language. In fact the syntax offered by
FAF is rather complicated, the different policy stages and the large number of
predicates due to the need for stratification, makes the language difficult to use.
Finally, the dynamic aspect of FAF is constrained to the recording of executed
actions in the history table which is very useful to express separation of duty
constraints for example, but cannot encode the evolution of a business process
for example.

2.4 Organization based access control

Organization based access control [2] came from the need for a decentralized
model that allows the management of access control between different organiza-
tions or between different parts of the same organization on the one hand and
the necessity of a dynamic access control model. Unlike [45] which relies on
subjects and objects hierarchies, OrBAC defines access control policies around
a given organization. To circumvent the need for constraints on elements other
than subjects and roles, OrBAC defines in addition to the role structure, two
other components, namely, views and activities. Finally, the main interest in
OrBAC in terms of dynamicity is the ability to modify the access control policy
depending on the situation. As such, the change is influenced by a given context
rather than by a recording of executed actions.

The main unit in OrBAC is the organization, and the main components are
roles, views and activities. To each role is allocated a set of subjects sharing a
common interest, to each view is allocated a set of objects satisfying a common
property and to each activity is allocated a set of action of the same kind. Also
the organization is a parameter in the OrBAC access control rules, allowing
thus the expression of organization-specific rules and policies within a unique
framework.

In order to express dynamic access control, OrBAC adds the notion of context
that allows to dynamically change the access control policy with respect to a
given context. For example, in a normal context a patient’s records can only
be accessed by his own treating doctor, while in the case of an emergency, any
subject playing the role doctor can access the records. Such policies are difficult
to express in a standard RBAC structure but can be flexibly presented in OrBAC
given the addition of a context parameter in the access control predicates. The
access control policy of an organization is defined with respect to permissions
(but also obligations and recommendations) that have as parameters roles, views
and activities. The context is used to specify concrete circumstances where
organizations grant roles the permission to perform activities on views, the
context is defined with respect to concrete cases as a relation between subjects,
objects and actions. Finally subject-role, object-view and action-activity are
defined with organization-specific predicates.

A concrete permission for a subject s to execute action a on object o is

32 CHAPTER 2. RELATED WORKS

evaluated with respect to the general permission on the role, view and activity,
the context relation for the requesting subject with respect to the action over
the object and the allocation relations for the subject, object and action with
respect to the roles, views and activities.

OrBAC has been extended in various directions to handle role hierarchies,
delegation, workflow management, and negotiation among others.

Negotiation in OrBAC In [40] negotiation is presented as a way to exchange
sensitive information between different entities (organizations). In each entity
information is classified by sensitivity level. During a negotiation between dif-
ferent entities the level of sensitivity of a resource may change depending on
the availability and relevance of negotiated information. Accordingly, at the
end of a negotiation session, either a response is reached or an exception mod-
ule is called to treat unresolved negotiations. The distinction is made between
the negotiation module whose role is to establish trust and collect information
necessary for access evaluation, and an access control system based in the ex-
tended RBAC profile of XACML (see Section 2.5 below.). The choice to classify
resources rather than policies comes from the fact that the sensitivity level of
a resource may depend on the context. Thus one may choose, for the same
resource, different sensitivity levels in different context situations. Note that
imposing sensitivity levels on resources is the same as defining a negotiation
policy over these resources that complements the general negotiation guidelines
of the entity.

2.5 The extensible access control markup lan-
guage (XACML)

XACML [64] is an OASIS standard that describes both a policy language and
an access control decision request/response (context) language. The policy lan-
guage describes general access control requirements, while the context language
enables the expression of a query.

To acquire the permission to perform an action on a given resource, a user
must make a request to the entity that protects that resource which is called a
Policy Enforcement Point (PEP). The PEP will form an XACML context based
on the requester’s attributes, the resource in question, the action, etc.

It will then send this request to a Policy Decision Point (PDP), which will
respond with Permit or Deny according to the result of the rules pertaining
to the request context and to its decision combining algorithm, or with Not
Applicable if no rule applies, or with Indeterminate if an error occurred.
The PEP then allows or denies access to the requester (or issue a request to
another PDP.)

In addition to providing request/response and policy languages, XACML
also provides a mechanism for looking for a policy that applies to a given request
and evaluating the request against that policy to come up with an answer to

2.6. DYNAMIC RBAC LOGICAL FRAMEWORKS 33

be sent to the PEP to interpret it and send it to the user. Another important
feature of XACML is the use of Obligations which are a set of commands or
requests that the PDP can send to the PEP along with the response and that
will be interpreted by the PEP.

XACML is widely used due to its flexibility in defining access control policies.
The Security Assertion Markup Language (SAML) profile for XACML [63],
provides means to write assertions on identities, roles or attributes, and defines
a protocol for exchanging these assertions between entities. XACML was also
extended towards expressing core and hierarchical RBAC [62].

2.6 Dynamic RBAC logical frameworks

The need to express access control in a distributed environment became more
important with the development of web services. In fact, it is often the case
that services need to collaborate one with another without having a prior knowl-
edge of each others identity. This situation leads to the need to establish trust
between the different actors of such a collaboration.

2.6.1 A role-based trust management framework

Li et al. address in [52] access control and authorization problems in large-scale,
decentralized systems. They combine RBAC with trust management in order
to define an access control policy that is capable of managing and regulating
the collaboration between organizations.

The role-based trust management framework RT is based on roles as means
to assign permissions to users. This adds to the RT frameworks all the ad-
vantages associated with RBAC features such as the notion of session, role
activation, role hierarchy or, delegation, as described in Section 2.2.1.

The trust management aspect comes from the use of credentials to manage
distributed authority. The use of attributes in credentials allows for example
assertions of one entity about attributes of another entity. In RT a role R is
defined with respect to an entity A and denoted by A.R. The entity A is thus
the owner of the role, it can define its members, its sub-roles or its delegatees
and this by issuing role-definition credentials. For example

e A.R + A.Ry is a credential denoting that entity A defines role R; to
higher in the hierarchy to role R

e A.R < B.R; is a credential denoting that A delegates a part Ry of role R
to B. This can be used to decentralize user-role assignment or to define
role-mapping across multiple organizations when they collaborate.

Several extensions to RT are presented, namely RT} expresses parameterized
roles, RT adds logical objects to RT;, RT” provides manifold roles and thus
the possibility to express thresholds and separation of duty policies and RTP
provides the possibility of having delegation of role activation. This allows
possibility to use selective rights as follows;

34 CHAPTER 2. RELATED WORKS

® DBj p.as ar By denotes that entity By can delegate to Bs the ability to act
on behalf of D as a member of role A.R

RT is based on Constraint Datalog. The credential definitions allow the
expression of trust management by the exchange of role ownership or user-role
assignments between collaborating entities. The roles are viewed as permissions
and thus the credential definitions allow trust negotiation over these permissions.
The possibility to delegate role activation adds some dynamic aspect to the
framework, but the basic strength of the RT framework lies more in its ability
to define manifold roles and flexible forms of separation of duty constraints than
in providing a dynamic framework.

Finally, the RT framework cannot be considered as a generic framework as
every access control aspect is handled with a specific construct that changes
the syntax and evaluation semantics of the roles. In particular, some of the
extensions are not conservatives as is the case in the extension to take into
account delegation. In fact a security policy that does not use delegation will
have a different meaning according to whether it is interpreted in the setting
with or without delegation.

2.6.2 The Cassandra access control framework

Cassandra [13, 14] is a logical framework to express role based access control
in a distributed environment. It relies on credentials to authenticate users.
Furthermore, the Cassandra trust management system allows entities to share
resources according to their own access control policy even if they do not know
each other in advance. The access control policy is specified in constraint Dat-
alog and is made of access control rules. The access control rules are defined by
five predicates:

e canActivate(e,r) and hasActivated(e,r) express respectively, the fact
that an entity e can activate the role r or has already activated the role r.
The former corresponds to a role membership in RBAC, while the latter
designates that e is active in the role.

e canDeactivate(ey,es,) expresses the fact that entity e; can deactivate
entity ep from role r. If this deactivation is triggered, then the fact
isDeactivated(es,) becomes true indicating that the entity es is not
active in role r anymore.

e permit(e,a) expresses that entity e is permitted to perform action a,

e canReqCred(e;,e,.p(€)) expresses the fact that entity e; can request a
credential issued by entity e; asserting information in p(@). This last
predicate is used to communicate between entities in case of trust negoti-
ation.

The Cassandra framework is based on a Cassandra interface. In order to
communicate, each entity runs a copy of the Cassandra service that ensures the

2.7. SECPAL: A DECENTRALIZED AUTHORIZATION LANGUAGE 35

relation between the Cassandra policy and the remote access to other entities.
Unlike the RT framework, the Cassandra framework is flexible enough to ex-
press access control features without the need for ad hoc constructs. Also, the
operational semantics of Cassandra operations consolidate the dynamic expres-
sivity of the language especially in treating the activation and deactivation of
roles which was not very clearly defined in the initial RBAC structure. However
although the Cassandra framework can keep track of executed actions, as in the
case of [45], there is no structure for the expression of effects for these actions.

2.7 SecPAL: a decentralized authorization lan-
guage

In previous sections we presented different access control policies based on roles.
However such a structure constrains the expressivity of the language. In [45], the
authors circumvented this limitation via the definitions of independent hierar-
chies (see Section 2.3.) and in [2] more expressivity was added by the definition
of the notions of activity and view (see Section 2.4.) However this did not
liberate these models entirely from the rigidity of RBAC. The need for more
expressivity led more research to attribute-based access control as means to
express more human-expressive policies.

In [11] the authors argued that applications depend on complex and changing
authorization criteria and the current nature of organizational structure makes
it more needed to define trust relations between different applications, each with
its own authorization policy. To make it easier to use, policies should be human
readable and should be updatable without need to change application code.

SecPAL is a declarative authorization language. It distinguishes between
access control requests that are mapped to access control queries and assertions
that help in evaluating these queries.

The main features of SecPAL is its clarity. Being based on assertions, Sec-
PAL is human readable and can be translated to Datalog with constraints. Poli-
cies are phrased in terms of principal attributes asserted by adequate delegation
chains. An assertion in SecAPL is of the form:

A says fact if facty,..., fact,,c

where A is a constant denoting an entity (or principal), fact, facty,... fact,
are facts and ¢ is a condition (matching a variable against a regular expression,
equality between two expressions, etc.). The if part is optional and allow to
put constraints on the assertion.

The facts are the main elements of the language, we distinguish different
forms of facts as follows:

e Arbitrary user-defined sentences of the form
A action X

where action is a user-defined action and X is a variable.

36 CHAPTER 2. RELATED WORKS

e Special constructs of the form
A cansayq fact

or
A cansay,, fact

that express delegation, meaning that a principal A accepts assertions
made by another principle, the indices indicate the delegation depth.

e Special constructs of the form
A can act as fact

express that a principal can act as another principal, meaning that the
former has all the rights that the latter has.

As in [52, 13], assertions take into consideration the source of authority or
authentication (the entity that "says” what is true) and emphasizes the need
for delegation (the ability to perform an action on behalf of another entity)
which is essential in the case of entity collaboration. Further as in the case of
[13], SecPAL is a tunable language in the sense that the user can add verbs
and entities without modifying the system. In SecPAL there is a distinction
between assertions, that form the static system of rules and may not contain
negations, and the queries that make use of the assertions to make a decision
and may contain negation if the negated literal is fully instantiated before the
negation can take place. The queries are evaluated against the current database
of clauses and, when evaluated, update the database with new assertions. This
last feature is very important as it presents an implicit way to define a dynamic
framework.

2.8 Other dynamic policies

In [34] is defined a framework to represent the behavior of access control policies
in a dynamic environment. The authors argue that the evaluation of a security
policy affects the environment where the evaluation occurs. In order to express
this, they define a mathematical model that takes into account both the policies
and their environment. This model allows the evaluation of a policy in a given
environment and the update of that environment with respect to the policy
evaluation. Policies are expressed by Datalog rules. The environment is viewed
as a transition system where the labels correspond to permitted actions. Each
state consists of an instance of the extensional predicates (i.e the predicates only
occurring in the body of a rule) referred to by the policy. Evaluating the policy
leads to the modification of the access matrix. When a request is granted, a
"fact” stating that the subject that executed an action on a resource is added to
the access table. When a request is not permitted or denied, the corresponding
transitions are eliminated, and eventually all unreachable states are eliminated.

2.9. TRUST NEGOTIATION AND MANAGING CERTIFICATES 37

Another logical framework to express dynamic access control policies is the
state modifying model (SML) of Becker and Nanz presented in [12]. The state
modifying model rules are defined with Datalog extended with effects and a
simple form of negation. As in [34] the authors argue that access requests can
have effects on the authorization state. The updates are factored out of the
resource guard by adding or removing facts from the authorization state, which
facilitates the expression of policies that take the history of access requests into
account. The state modifying model also introduces the possibility to query
the authorization state. Queries are declarative rules with pre-conditions and
effects.

2.8.1 Discussion

Access control has evolved rapidly with the development of services and autom-
atization of the organization policies. The need for an efficient access control
model that is capable of matching the rapid growth of organizations and their
constant modifications (in the case of a merge or a split of a part of the organi-
zation for example), led to the emergence of a variety of dynamic models. The
RBAC model saw in roles an interesting way to improve the policy design of
organizations providing a very important flexibility in terms of user-permission
assignments. OrBAC, by introducing the notion of context developed a unique
dynamic model that changes with respect to different scenarios defined by the
language’s contexts. The addition of the organization identity as a parameter
in the access control policy allowed the expression of distributed access control
by considering that different organizations can collaborate. The dynamic access
control took a new definition with the Cassandra framework that explicitly de-
fined the activation and deactivation of roles as transition relations. SecPAL
saw the need to free the access control from the notion of roles to gain more
flexibility in the expression of security policies and introduces a notion of dy-
namicity by updating the security state according to query evaluation. Finally,
SML acknowledged the need to express the changes occurring to the system
state by adding and removing facts in the access control database and this by
extending the Datalog access control rules with the addition of effects.

2.9 Trust negotiation and managing certificates

Nowadays, the distributed nature of organizations has become commonplace.
Applications routinely span several administrative domains. This is the case in
electronic commerce, electronic banking, or electronic government applications
where collaboration between applications, also called services, that do not nec-
essarily know each other, is needed. While the access control policy regulates
the access to each entity resources and acts independently of other resources,
trust management offers a solution that allows the specification and implemen-
tation of a security policy to determine whether the access to a given resource
should be granted or not based on a number of conditions. We can find a trust

38 CHAPTER 2. RELATED WORKS

management aspect in [13] via the distinction in a credential rule between the
entity holding the credential and the entity issuing the credential and the defini-
tion of rules evaluation semantics for credential retrieval within the Cassandra
engine. RT [52] also was presented as an access control framework that can
regulate trust management by delegation of attributed roles from one entity to
another with respect to some conditions. The assertion based language SecPAL
[11] also handles trust management through conditions on the issuer entity and
the assertion delegation.

The main purpose of the aforementioned models is to express access control
policy embedded in a given organization or entity. Their trust management
mechanism is thus within the access control policy.

In this section we present a glimpse of existing trust management systems
whose main objective is to specify and establish trust between entities. This
overview will help us in the sequel to formalize an access control framework that
is capable of specifying and enforcing an independently defined trust negotiation
policy (see Chapter 4).

Trust management as defined by Blaze et al. in [22] is a unified approach
to specify and interpret security policies, credentials and relationships that al-
low direct authorization of security critical actions. Credentials are signed by
public keys, and delegation of trust can be described among public keys. Trust
management binds keys directly to authorizations to perform specific tasks.

In earlier approaches, the response to a request from the client amounts to
first determine who signed the request, and then query the local policy to decide
whether the signer is allowed or not to access the requested resource. This is
not feasible in a distributed environment with a large number of requests most
often from unknown users.

Delegation is a key feature for trust management in a distributed environ-
ment since decision is not centralized in one entity but distributed on several
specialized entities. As such it is important to be able to express that an entity
A trusts the verdict of entity B on the information about entity C. In [1] a log-
ical framework for authentication is defined allowing the specification of trust
via predicates. Namely, the predicate B|A is obtained when B speaks on behalf
of A not necessarily with a proof, and B for A is obtained when B speaks on
behalf of A with appropriate delegation certificate.

The language presents axioms necessary to model delegation in the presence
of cryptographic keys. The access decisions are triggered by a request and
evaluated against an access control list with the possibility to define roles and
groups. The trust establishment is granted if the request can be evaluated
positively against the access control list’s entries.

The current trust management approach is based on credentials request and
credential disclosure. Credentials can be seen as a digital substitute for paper
credentials that we use in real life. They allow user authentication but can
also provide additional information (medical record, credit card number, ...).
Credential disclosure for a given entity is subject to a local policy. Trust man-
agement consists in verifying if in a given entity a set C of credentials prove
that the request r complies with the local policy P of the entity.

2.9. TRUST NEGOTIATION AND MANAGING CERTIFICATES 39

A trust management engine takes as input a request r, a set of credentials C'
and the local policy P and outputs a decision with possibly some information
on how to proceed if the decision was negative. This is the case of KeyNote [21]
and PolicyMaker [23] for example.

In [78] is defined an automated trust negotiation model that takes into ac-
count the fact that credentials may be sensitive. The trust negotiation archi-
tecture involves a client application and a server application. Each application
defines a credential access policy for each of its credentials. The credential ac-
cess policy of a credential usually needs the disclosure of credentials obtained
from the opposed application. When the credential access policy of a credential
is satisfied, the credential is disclosed.

A trust negotiation session is defined by this flow between the client and the
server through an alternating sequence of credential requests and disclosures.
Negotiation can be run according to an eager strategy or a parsimonious strat-
egy. The eager strategy consists in sending all the credentials that are satisfied
by the credential access policy until the two parties reach an agreement. This
strategy may lead to the disclosure of unneeded credentials, however it does not
reveal sensitive information. The parsimonious strategy computes a sequence of
mutual requests, and once an agreement is reached, sends the adequate creden-
tials. This exchange of requests may however reveal sensitive information that
are not permitted by the credential access policy in form of a request.

In [54] Li et al. extend the trust management system of the role-based trust
management framework defined in [52]. They consider the case where credentials
are not stored in one place. Unlike [78], a trust negotiation session can involve
more than two players. The process of making access control decision involves
finding a delegation chain from the source of authority to the requester. As such
they study the credential problem that consists of determining whether such a
chain exists and if it does find it. Credentials have the form R;.A < R>.B where
A and B are attributes, R; is the issuer and Ry is the subject. Credentials can
thus be stored either with the issuer of the credential or with the subject of
the credential. Credential chain discovery consists in finding new credentials
according to the location of previously discovered credentials.

For example, suppose the existence in addition to the above presented cre-
dential, of credentials Ry.B <+ R3.C' and R3.C' < R4. If one knows that the
credential R1.A <+ Rs.B is stored in R; and credential R3.C < Ry is stored in
Ry, one can directly look for additional credentials in R3 and Ry to complete
the credential chain discovery. Furthermore, distributed chain discovery can
be constructed in a non-linear manner. In fact, a procedure can begin evalua-
tion with an incomplete set of credentials, then suspend the evaluation, issue a
credential request, then resume the evaluation if the additional credentials are
obtained.

40 CHAPTER 2. RELATED WORKS

2.10 Conclusion

Access control policies have evolved from simple access control rights of subjects
on objects within an access control list (ACL) to complicated policies that take
into account the existence and interaction of different access control systems or
organizations each with its own set of access rights.

In this chapter we presented different access control models taking into ac-
count their evolution in terms of decision making, their capacity to express
security state evolution and their ability to define a trust policy to collaborate
in a distributed environment.

The variation between access control policies based on access matrices, roles
and attributes also led to the clarification of the expressivity of these different
access control frameworks. The evolution of access control models from the
rigid Lampson access control matrix [50], to the functional RBAC structure [69]
, and then more complex roles based models such as the FAF model [45] and
the OrBAC model [2] came as a natural answer to a rising need to add more
expressivity, but also to add flexibility in case of policy modification.

However, the actual structure of organizations became more complex. In
fact access control policies became more specific and are often defined in terms
of common characteristics that are more restrictive than roles. As such role-
based structure often becomes cumbersome with the addition of a large number
of roles in order to take into account such policies. This, and other reasons
encouraged researchers to turn into attribute based access control, defined in
its basic version by the HRU model [41]. This was the case in SecPAL [11] and
SML [12].

The need to take into account the modification of the environment in the
decision making was studies only partially. In HRU the dynamic aspect relied
in the capacity to modify entries in the access control matrix but unfortunately
evaluation turned out to be undecidable in this general form. The notion of
session and role activation contributed in adding a dynamic aspect to RBAC.
In [45, 13] the capacity to record executed actions allowed a better specifica-
tion of the access control framework especially in terms of separation of duty
constraints or the definition of access control policies with respect to executed
action. OrBAC, in addition to the dynamic features inherited from the RBAC
structure offered a mean to expressing policy changes according to a change
of contexts. SecPAL and SML acknowledged the need for a more expressive
language and specified explicitly changes that affect the security state when
authorizations are executed, and this by modifying the security state database.

The need to collaborate in a distributive environment makes trust relation
between different entities, each with its own authorization policy, necessary.
This notion was expressed in access control models such as OrBAC [2] through
the definition of policies parameterized by organizations, but more specifically
in [52, 13] through the establishment of a trust management mechanism, and
in SecPAL through assertions and the definition of queries. This was also the
concern of more specialized trust management systems that we presented in
Section 2.9.

Chapter 3

A logical approach to
dynamic role-based access
control

In contrast with the traditional organization of the economy in which a central
organization or the State was responsible for the production of one good, today’s
economy relies increasingly on the integration of processes from different sources,
and on an optimal aggregation of these sources. In an electronic banking system,
the bank would for example rely on the Credit Bureau, an external partner, to
assess the credit profile of a customer in case of a loan request. Furthermore,
the loan origination process will be processed by different services within the
banking organization in order to evaluate it, make a decision and eventually
make an offer to the customer. In these examples, the partners need to share
information to ensure the success of a cooperation, but at the same time they
want to restrain the diffusion of the released information for privacy or financial
reasons.

In Chapter 2, we presented some access control models that take into ac-
count, in addition to the access control management, some dynamic aspect.
However this dynamic aspect was restricted to recording role activation [13] or
action execution [45, 34, 12]. In this chapter we present a language with its
semantics in which the access control policies governing the diffusion of infor-
mation can be expressed. The proposed language is rule-based and introduces a
dynamic aspect to the expression of access control rules by explicitly specifying
effects to authorized actions. Our approach is similar to that presented in [11].
However while SecPAL uses queries that modify the security state of the system
when the request is permitted, our approach models effects of an authorized
action depending on whether the action is executed or not. As in the case of
[13, 11] we encode RBAC extensions such as delegation, separation of duty but
also role hierarchy and role activation within our framework.

Finally, as our main objective is to define a language capable of modeling

41

42 CHAPTER 3. A LOGICAL APPROACH TO RBAC

effects of actions, we chose to model in addition to authorizations the concept
of Obligation. Obligations refers to those parts of security policies in which the
future behavior of a subject is constrained either positively (a subject has to
perform an action) or negatively (the subject will not perform an action.) The
need for obligations is well recognized for expressing privacy policies [3], but
their utilization is tricky. First, one has to rely on an external monitor [19, 43|
to ensure that obligations contracted by a subject will be abode by. Part of the
work presented in this chapter can be found in [6]. Second, it may happen that
one action implies a disjunction of obligations. In [19], this case is handled by
assuming a non-deterministic choice of the set of obligations that applies. We
believe that this solution is non satisfactory from a language design point of
view since non-determinism is a potential source of flaws in a security policy.

The concept underlying our proposal is that an access control system is
characterized by decision contexts and an invariant Datalog program. A decision
context is defined by a set of permissions and obligations. Within each decision
context, an access control decision is based on the computation of whether the
requested permission (obligation) is obtainable using the Datalog program from
the set of permissions (obligations) defining the current decision context. The
access control system evolves from one decision context to another according to
actions performed by a user. A drawback of this simplicity is the declaration
of every action that can alter the decision context, including e.g. the action
stating that a client is active in a given role.

In spite of its simplicity, this model permits us to express seamlessly core
RBAC policies as well as their different extensions such as role hierarchies,
delegation and separation of duty. It is similar in spirit to Cassandra, though
we have no built-in role management: being active in a role is an action similar
to the invocation of a service. Finally, in contrast with Transaction Logic [25]
the side effects are not attached to a rule but to an effective action of the client.
The consequence of this choice is the determinism of the system w.r.t. client’s
actions (instead of client’s choice of rules to apply).

In Section 3.1 we present a novel language for expressing access control
policies. Then, in Section 3.2 we present how RBAC can be encoded into this
language. Section 3.3 is devoted to the definition and complexity analysis of
decision problems related to access control in our language.

3.1 Access control policies

In this section, we present our framework for expressing role-based access control
policies and their extensions.

3.1.1 Domains

Active processes acting on behalf of users are referred to as subjects whereas
passive resources accessible on a computer system are referred to as objects. A
key feature of our access control policies is that all actions are done through roles,

3.1. ACCESS CONTROL POLICIES 43

i.e. subjects receive permissions to execute actions on objects only through the
roles to which they are assigned. In our policies, following the notions considered
in RBAC, subjects are organized in groups called roles, and these groups are
hierarchically structured.

Let S denote the set of subjects, A the set of actions, O the set of objects
and R the set of roles. We assume that:

e S C O with S and R pairwise disjoint,
e O contains the null character €.
e A and O are pairwise disjoint.

We define a domain in our settings to be a tuple

D =(S,A,0,R)

3.1.2 Security states

Consider a domain D = (S, A, O, R), a security state based on D is a tuple
S =(Q, 1)

whose components are subsets of S x A x O x R.

In fact a security state can be seen as an access control list whose members
are either permissions or obligations for a subject in S to perform an action in
A on an object in O through a role in R.

Elements of a security state

For all s in S, for all a in A, for all 0 in O and for all r in R, we will write
Q(s,a,0,r) instead of (s,a,0,r) € Q and II(s, a, 0, r) instead of (s,a,o,r) € II.

- Q(s,a,o0,r) says that “subject s has in S the obligation to execute access
a on object o through role r”

- II(s,a,0,7) says that “subject s has in S the permission to execute access
a on object o through role r”.

We consider that @ C II that is all obligations are permitted. A primary
relation of interest between security states is that of inclusion, under which the
set of security states based on D forms a complete lattice:

QI C(Q, I if Q C Q' and IT C I

3.1.3 Atomic formulae and conditions

Consider a domain D = (S, A, O, R) and a security state S = (Q,II) based on
D.

44 CHAPTER 3. A LOGICAL APPROACH TO RBAC

Variables

We assume an alphabet of variable symbols: X, Y, etc, possibly with subscripts.

Terms

We define a term based on D to be either an element of SUAUOUR or a
variable symbol.

Interpretation function

An interpretation function for D is a function I mapping the variable symbols
to elements of SU AU O U R. The value I(t) of a term ¢ is defined as follows:

e if t is an element of SUAUO U R then I(t) =t,

e if ¢ is a variable symbol then I(t) = I(t).

A 4-tuple (t1,ta,t3,t4) of terms based on D is said to be correct iff the following
conditions are satisfied:

e t; is either a variable symbol or an element of S,
e t5 is either a variable symbol or an element of A,
e {3 is either a variable symbol or an element of O,

e t, is either a variable symbol or an element of R.

Atomic formula

We define an atomic formula based on D as an expression of the form 7 (t1, t2, t3, t4)
or w(ty,to,ts, ts) where (t1,to,ts,t4) is a correct 4-tuple of terms based on D.

The atomic formula 7(X,a,Y,r) denotes that “subject X has the permission
to execute action a on object Y through role r”.

The atomic formula w(X, a, 0,r) denotes that “subject X has the obligation to
execute action a on object o through role r.”
Well-formed conditions

We define the well-formed conditions (¢, 1, etc, possibly with subscripts) based
on D by the grammar

¢u=C| LT[(f1V2) (1 A2)

where C is an atomic formula.
The satisfiability relation S, T = ¢ between a security state S = (Q,II), an
interpretation function I and a condition ¢ is defined as follows:

3.1. ACCESS CONTROL POLICIES 45

o 8,1 w(ty,ta,ts, ts) iff (I(t1), I(t2), I(ts), I(ts)) € Q,
ST = m(ty, ta, ts, ta) iff (I(t1), I(t2), I(t3), I(ts)) € 10,
ST} 1,

S ITET,

S T¢IV iff S,T=¢y orS, T s,

S, 1E 1Ay iff S,1 [¢y and 8,1 s

3.1.4 Static clauses and static policies

Security states are dynamic in nature, i.e. they are likely to change over time
in reflection of ever evolving environmental conditions. Our interest is thus
to formalize this change. In order to do that we use rule-based access control
policies. Rule-based access control policies will be built up using static clauses
and dynamic clauses. Static clauses will specify the access control conditions
in order to authorize access to a resource by a subject in a role, while dynamic
clauses specify the effects associated with the permitted accesses depending on
whether the actions was or not executed.

In this section, we define the concept of static clauses. The concept of
dynamic clauses will be defined in the next section.

Static clause

Consider a domain D = (S, A, O, R) and a security state
S = (Q,1I) based on D. A static clause based on D is an expression of the form

A<+ ¢,
where A is an atomic formula and ¢ is a well-formed condition.

Example 3.1.1. In a banking system, the fact that a customer has the right
to regulate access on his own information file is expressed by the static clause:

m(X,grant — access, Y, client) + w(X, own, Y, client)
This clause says that “if X has the permission to execute own on Y through

role client then X has the permission to execute grant — access on Y through
role client”.

Example 3.1.2. In the same banking system, a clerk has the obligation to ask
the customer permission when accessing the customer’s information file, this is
expressed by the static clause:

w(X, request — access, Y, clerk) < w(Z, oun,Y, client)

This clause says that “if Z has the permission to execute own on Y through
role client then X has the permission to execute request — access on Y
through role clerk”.

46 CHAPTER 3. A LOGICAL APPROACH TO RBAC

Static policy

A static policy based on D is a finite set SP of static clauses based on D. We
shall say that S is a model of SP, in symbols

S = SP,
iff
e for all interpretation functions I for D and for all static clauses A < ¢ in
SP,
o if S,T = ¢ then S, | A.

The reader may easily verify that the set {S : S |= SP} has a least element
under C. Let [(SP) be this least element.

3.1.5 Dynamic clauses and dynamic policies

We have designed static policies to specify access control constraints with first
order Horn clauses as in [14, 52]. The innovation in our approach is the addition
of dynamic policies. As such, we give to the subject the choice to execute or
not a permitted action. The subject will then be responsible for the effects of
his choice, thus we assume that the security state is modified with respect to
this choice. The dynamic policy manages the consequence of executing (or not)
an authorized action.

Dynamic clause

Consider a domain D = (S, A,O, R) and security states § = (Q,II), &' =
(Q,II') based on D. A dynamic clause based on D is an expression of the form

¢ — (Y1,2)

where neither ¥; nor ¥y contain occurrences of the Boolean connective V.
It is said to be consistent iff neither 1 nor 15 contain occurrences of the
Boolean connective L.

Example 3.1.3. A basic requirement to preserve the privacy of a client in
a banking system is that a clerk cannot access the information file of a given
customer without having the permission of the customer. This can be expressed
by the dynamic clause

m(X, grant — access, Y, client) — (7(Z,access, Y, clerk), T).

This clause is consistent. It says that “if X has the permission to execute
grant — access on Y through client then

e either X executes grant — access on Y through client and Z next obtains
the permission to execute access on Y through clerk, or

3.1. ACCESS CONTROL POLICIES 47

e X does not execute grant — access on Y through client.

Example 3.1.4. Another requirement to preserve privacy of the client is that
the clerk has the obligation to ask for the client’s consent before accessing the
client’s files. In case of violation, the system enters in an inconsistent state.
This can be expressed by the dynamic clause

w(X, request — access, Y, clerk) — (T,1)

This clause is not consistent. It says that “if X has the obligation to execute
request — access on Y through clerk then

e cither X executes request — access on Y through clerk, or

e X does not execute request — access on Y through clerk and the system
enters in an inconsistent state.

Informally, each dynamic clause ¢ — (11,12) defines a transition relation
from a security state S to a state S’ as follows:

if all permissions/obligations in ¢ are true in S

then if all the ”actions in ¢” are executed

then 11 will be true in the next state S’
else 1 will be true in the next state S’

else the rule is not applied.

Dynamic policy

A (consistent) dynamic policy based on D is a finite set DP of (consistent)
dynamic clauses based on D.

The effects of the dynamic policy are specified with respect to the set of per-
mitted and/or obligatory actions and differ in the case such actions are executed
or not.

The set of executed actions

Given a security state S = (,1II), let A C S be the tuple of sets of permitted
and obligatory actions that are actually executed in a state S. A = (A?, A™)
where A C II and A® C A™. In the rest of this chapter, the tuple A C S
denotes the set of permitted and obligatory actions that are executed at state

S.

48 CHAPTER 3. A LOGICAL APPROACH TO RBAC

Transition relation

Given a security state S = (Q,1I), a subset A C S of actions that are actually
executed and a dynamic policy DP, the security state S’ = (', II') can be
evaluated with respect to S, A and DP through a transition relation.
Formally, we say that the pair (S,8’) is a transition of DP through A, in
symbols
S=7hpS

iff
e for all interpretation functions I for D and for all dynamic clauses
¢ = (Y1, ¢2)
in DP,
e if S, I = ¢ then

— either A, I = ¢ and §', T =1, or
~ ATH¢and 8,1 F v,

The reader may easily verify that the set {S' : S =7, S’} has a least
element under C. We denote L(S, DP, A) this least element.

3.1.6 Rule-based policies
Consider a domain D = (S, A, O, R) and security states S = (Q,II), and
S = (O, 1I') based on D.
Access control policy
A (consistent) rule-based access control policy based on D is a tuple
P =(SP,DP)

whose first component is a static policy based on D and second component is a
(consistent) dynamic policy based on D.

Example 3.1.5. Combining Example 3.1.1 and Example 3.1.3 gives us a rule-
based policy that specifies when a client has the right to secure an information
file and grant access to a clerk to this file depending on the action chosen by the
customer. Let P be the access control policy defined by (SP, DP) such that:

e The static policy SP is:

m(X, grant — access, Y, client) < w(X, own, Y, client) (3.1

e the dynamic policy DP is:

m(X,grant — access, Y, client) — (w(Z,access, Y, clerk), T). (3.2)

3.2. RBAC FEATURES 49

Let S be the initial security state of P, and let I be an interpretation function
such that I(X) = bob, I(Y) = file — bob.doc and I(Z) = mary.

e Let m(bob, own, file — bob.doc, client) € S, then from rule 3.1,

m(bob, grant — access, file — bob.doc, client) € S.

e Let A™ C II and suppose 7(bob, grant — access, file — bob.doc, client) €
A" then applying the transition relation with respect to rule 3.2 leads to
a new security state S’ such that

w(mary, access, file — bob.doc, clerk) € S'.

Transition relation with respect to the access control policy

Formally, for all A C S, we shall say that the pair (S,8’) is a transition of P
through A, in symbols

S =38,
iff
e for all interpretation functions I for D and for all dynamic clauses
¢ — (Y1, 12)
in DP, if
ILIE¢
then

— either A,] = ¢ and &', T |= 4, or,
— A THE¢and 8 T = o,
o S'E=SP.

The reader may easily verify that the set {S’: S == S’} has a least element
under C. We denote L(S, P, .A) this least element.

3.2 RBAC features

In Section 3.2 we presented the logical framework for our rule-based access
control language. In this section we present an encoding of RBAC and some of
its extensions into our language.

3.2.1 Terminology

In the rest of this section, for the purpose of characterizing RBAC features, we
consider special actions. Namely, the special actions can-play and is-active
express role membership and role activation respectively. The special actions
acquire-perm and acquire-obl denote the acquiring of permissions and obli-
gations relative to a role. The special actions delegate and d-play express
delegation of a role and playing the role by delegation respectively. We use the
symbol € in the object argument when the presence of an object is not relevant.

50 CHAPTER 3. A LOGICAL APPROACH TO RBAC

3.2.2 Role activation

The essential notion in RBAC is that permissions are associated with roles and
users are assigned to appropriate roles. To this end we define role membership
by the predicate 7(X, can-play, X, r) saying that subject X has the permission
to play role r. On the other hand 7(X,is-active,e,r) expresses that X is
currently active in role . The assignment of permissions to roles is expressed
with the special action acquire-perm in the body of rules as follows:

m(X,a,0,1) < w(X,acquire-perm, ¢, r) (3.3)

That is, if user X has acquired the permissions associated with role r then
X will have the permission to do action a on the object o.

Similarly, the action acquire-obl expresses the assignment of obligations
to roles as follows:

w(X,a,0,r) < w(X,acquire-obl, e, r) (3.4)

That is, if user X has acquired the obligations associated with role r then
X will have the obligation to do action a on the object o.

We assume that there is one rule for each triple (a, 0, r) in the permission-role
and/or obligation-role assignment relation.

One way for user X to acquire the permissions (obligations) associated with
role r is to activate the role r. This is done by executing the action can-play,
and induces the addition of w(X,is-active, X,r) at the next state. This is
expressed by the dynamic rule:

m(X, can-play,e,r) — (7(X, is-active,e,r), T) (3.5)

and the two static rules

m(X,acquire-perm, e,r) < w(X,is-active,e,r) (3.6)
m(X,acquire-obl,e,r) + 7(X, is-active, ¢, r) (3.7)

When X chooses to activate her role membership by executing the action
can-play on r, then by rule 3.5 X is active in r at the next security state and
the two static rules 3.6 are satisfied. This induces the acquisition by X of all
permissions and obligations associated with role r by rules 3.3 and 3.4.

In our modeling of RBAC, we express the permission-role assignment rela-
tion initially defined in [37] in terms of role activation instead of role member-
ship. Our aim being to associate actual permissions to active users and not
to all members of a given role, we associate the permissions (and obligations)
to the active occurrence of a role represented by the truth of an instance of
7m(X,acquire-perm, £,r) and 7 (X, acquire-obl, e, 7). Accordingly, the user X
can step out of a role r by simply choosing not to activate m(X, can-play,e,r).
In this case she automatically loses all privileges associated with role r in the
next state.

3.2. RBAC FEATURES 51

Finally we impose that when user X becomes active in the role r, she must
acquire the associated permissions and obligations, and this acquisition is mod-
eled by explicit actions. This is guaranteed by the following three dynamic
rules:

m(X,is-active,e,r) — (T, L)
m(X,acquire-perm,e,r) — (T, 1)
(X, acquire-obl, e,) — (T, 1)

If the actions is-active, acquire-perm and acquire-obl are not executed
the system enters in an inconsistent state. We note that in a real system, these
mandatory actions can be performed on a server as a consequence of the explicit
actions of a client.

3.2.3 Role hierarchy

Role hierarchy is very useful in structuring roles within a certain organization.
In an RBAC model, we say r; is junior to role ro if the permissions associated
with 7 are inherited by members of 5. This is not the case in this model where
to a role is associated both a set of permissions and a set of obligations. As
such we define two distinct hierarchies relative to permissions and obligations.

The rationale for this distinction is that in an RBAC policy, it is likely that
a manager will inherit the permissions associated with role clerk, but rather
unlikely that he will also inherit the associated obligations. On the other hand,
a clerk in the bank organization would inherit the obligations of the general
manager without acquiring more permissions.

Role hierarchy with respect to permissions

In its simplest form, role hierarchy with respect to permissions can be expressed
by the rule

7m(X,acquire-perm, e,ry) < m(X, acquire-perm, &, ry) (3.8)

Example 3.2.1. In a banking system, a manager can inherit the permissions
associated with role clerk. This can be expressed by

(X, acquire-perm, ¢, clerk) + m(X, acquire-perm, ¢, manager)

However, such a representation would necessitate to define a rule for each
couple of roles that pertain to the same hierarchy. To simplify the implementa-
tion of role hierarchy, we define an order relative to permissions and denoted by
(<perm). We say 71 is junior to ro, and denote it 11 <perm T2, if 72 can inherit
the permissions associated to the role r;. In Example 3.2.1 the hierarchy can be
defined by (clerk <pern manager).

Accordingly, role hierarchy with respect to permissions expressed as in rule
3.8 can be generalized to be expressed by the single rule:

(X, acquire-perm, e,) < 7(X, acquire-perm,e,73) A (r1 <perm 72) (3.9)

52 CHAPTER 3. A LOGICAL APPROACH TO RBAC

where the truth of the hierarchy is tested by the order relation and the
associated permissions are then granted accordingly.

Example 3.2.2. In the banking system a clerk is junior to an assistant-manager
who in turn is junior to a manager. This can be specified by the relations
clerk <perm assistant-manager and assistant-manager <perm, Mmanager in the
initial security state S.

Also, Mary is a manager at the bank, (i.e. w(Mary, can-play, e, manager)
is true in S.). If Mary decides to activate her manager role then:

e by rule 3.5 and 3.6, 7(Mary, acquire-perm, €, manager) is true at the next
state S’

e by the permission order relations in the banking system and rule 3.9, both
7T(M8L1ry7 acquire-perm,z¢, assistant-manager) and 7T(Mary7 acquire-perm,
g, clerk) will be true in &'

e thus, by rules 3.6 Mary automatically acquires the permissions for roles
assistant-manager and clerk at the security state S’

Role hierarchy with respect to obligations

In the same manner, we define another inheritance relation for obligations de-
noted by <.p. Given roles 1,72 € R, the expression r; <,y 72 means that
ro inherits obligations from role r;. As such the role hierarchy with respect to
obligations is defined by a rule of the form:

(X, acquire-obl, e,) < 7(X,acquire-obl, e, 73) A (r1 <op 72) (3.10)

The role hierarchy rule for obligations is expressed as a permission rule rather
than an obligation rule. We made this choice in order to keep the same encoding
for all types of hierarchies.

Example 3.2.3. In the banking system, a clerk can inherit the obligations
of the assistant manager. Such obligations can include the obligation to verify
customer permission to access his personal data, or the obligation to write report
in case a loan request was refused. The obligation role hierarchy is defined by
the order relation assistant-manager <, clerk. Thus, if Bob is a clerk, then
by activating his role clerk Bob inherits all obligations associated with role
assistant-manager by applying rules 3.5, 3.6 and 3.10 .

Note that the obligation role hierarchy does not depend on the permission-
role hierarchy. That is for the same role, one can define two distinct hierarchies
one that manages the inheritance of permissions and the other that manages
the inheritance of obligations as can be seen in Figure 3.1

3.2. RBAC FEATURES 53

Manager
Clerk

Assistant Commercial
Manager Manager !

Treasurer Assistant Commercial
Manager Manager

Treasurer
Clerk Manager
(a) Permissions hierarchy (b) Obligations hierarchy

Figure 3.1: Inheriting permissions and obligations

Role inheritance has side effects

Note that the consequences (or side-effect) of executing a permitted (or obliga-
tory) action may vary depending on the role of the subject.

Example 3.2.4. Suppose a manager inherits the permission 7(X, access, file, clerk)
from the role clerk. Then both the manager and the clerk will have the permis-
sion to access the file. Additionally the clerk will also have the obligation to
write a report.

We define a new order associated with the responsibilities of executing an
action. Explicitly, 1 <iesp 72 means that 7o has at least as much responsibil-
ities as 1. Acquiring responsibilities, similarly to acquiring permissions and
obligations will be denoted by 7(X,acquire-resp,e,r) and will be true when
r is activated (see rule 3.6). This is expressed by the rule

m(X,acquire-resp,¢,r) < w(X, is-active,e,r) (3.11)

Responsibility inheritance is expressed by:

(X, acquire-resp,e,r1) < (X, acquire-resp,e,r2) A (11 <resp T2) (3.12)

As such Example 3.2.4 would be expressed by the order (manager <yesp
clerk), since the clerk has at least as much respounsibilities as a manager, and
the rule

m(X,access, file, clerk) A m(X,acquire-resp, &, manager) —
(m(X,modify, file, manager), T) (3.13)

m(X, access, file, clerk) A m(X,acquire-resp, ¢, clerk) —
(w(X,write,report,clerk), T) (3.14)

54 CHAPTER 3. A LOGICAL APPROACH TO RBAC

In fact with the specification of the responsibility order relation we can
distinguish between the two following cases:

If a subject in role manager chooses to execute the permission to access
the file in the role clerk (by role inheritance), then only rule 3.13 will be
satisfied and the permission to modify the file becomes true.

If a subject in the role clerk chooses to execute the same permission, then
rule 3.14 will be satisfied and the obligation to write a report becomes
true, also by the responsibility order relation and rule 3.12, rule 3.13 is
satisfied and the permission to modify the file also becomes true.

Encoding order relations

The order relations presented above can also be coded in our language by pred-
icates of the form m(ry, inherit,x,ry) to denote the relation (ro <, r;) where
x € {perm,obl,resp}. The transitivity property is guaranteed by the general
rule:

7(r1,inherit, x,r3) < 7(r1, inherit, x, ro) A w(re, inherit, z,r;3)

Note that as in the case of role activation, role hierarchy is expressed in terms
of the special action acquire-perm as opposed to can-play or is-active. In
fact, we chose to represent role hierarchy in this manner in order to model the
automatic inheritance of permissions, obligations or responsibilities. That is a
subject does not need to choose to start role inheritance. The permissions (obli-
gations or respounsibilities) associated to junior roles are automatically acquired
when a senior role is activated without the need to activate the junior roles.
However, with the addition of the obligation and responsibilities hierarchies we
lose the least privilege principle.

3.2.4 Role Delegation

Delegation is the act of authorizing or requesting someone to act on one’s behalf.
In order to be able to delegate a role r, an entity should be active in some role
r1 or allowed to the set of permissions and/or obligations associated with that
role.

m(X,delegate,Y,r) < (w(X,acquire-perm, e, r1)Va (X, acquire-obl, e, 1))
A 7(Y, can-play, e, ra)

Activating a delegation

We suppose that a delegation is performed in two steps. First, the delega-
tor decides to execute the delegation, then the delegatee decides to accept the
delegation. This can be expressed with the following dynamic rules

3.2. RBAC FEATURES 55

(X, delegate,Y,r) = (n(Y,d-play,e,r), T) (3.15)

w(X,d-play,&, 1) —
(m(X,acquire-perm,e,r) A m(X,acquire-obl,e, 7)), T) (3.16)
The above rules specify that

e if X chooses delegate role r to Y, then Y gains the right to play r by
delegation in the next state

e then, if Y chooses to activate this delegation, Y will acquire the permis-
sions and delegations associated with the role r at the next state.

Example 3.2.5. In the banking system, the manager can delegate his duties
to the assistant manager.

m(X,delegate,Y, manager) < (7w(X, acquire-perm, ¢, manager)

A 7(Y, can-play, €, assistant — manager) (3.17)

Mary is a manager, she is on vacation, thus she decides to delegate her
duties to her assistant manager John.
Let § = (Q,II) be the security state. Suppose that

{m(Mary,acquire-perm, &, manager),
m(John, can-play, €, assistant — manager)} C II,
then by rule 3.17,
m(Mary, delegate, John, manager) € II.
If DP contains rules 3.15 and 3.16, then:

e If Mary chooses to activate the delegation, (i.e. A C S is such that
n(Mary,delegate, John, manager) € AY) then

e by rule 3.15, the next state S; = (€;,11;) is such that

w(John,d-play, €, manager) € I1;.

e If John chooses to activate the delegation, (i.e. A4; C S; is such that
7(John,d-play, e, manager) € A) then

e by rule 3.16, the next state Sy = (€29, II5) is such that
{m(John,acquire-perm, ¢, manager),
m(John,acquire-obl, e, manager)} C Ils.

That is John can fulfill the duties associated with role manager.

56 CHAPTER 3. A LOGICAL APPROACH TO RBAC

Note that when the delegatee accepts the delegated role, the delegatee does
not become a member of the role, nor an active member, instead, the delegatee
only acquires the permissions and/or obligations associated with the role and
eventually additional responsibilities that the delegatee can inherit from other
roles in the permissions or obligation hierarchy.

Revoking a delegation

Since delegation is initiated by the choice to execute the delegation action,
the revocation of the delegation occurs when the choice is not to execute the
delegation. Namely, if X chooses not to activate the action delegate in rule 3.15,
then Y loses his privileges at the next state.

Example 3.2.6. In Example 3.2.5, suppose that Mary is back from vacation.
Thus Mary wants to revoke her delegation to John. Suppose the system is in
state Sc. Recall that

w(Mary, delegate, John, manager) € Ils.

Suppose Mary decides not to execute the delegation, then, by rule 3.15 no new
permission is added to the security state Sy and rule 3.16 is no more applicable,
thus John loses his privileges at state Ss.

An obligatory delegation

One can express the case when a delegator delegates the obligation to play the
role. In this case, unlike the standard delegation, the delegatee will find himself
obliged to accept the delegation. In order to express this kind of delegation
we use the action o-delegate. As in the previous case, in order to enforce an
obligatory delegation for a role r, an entity should be active in some role r; or
allowed to the set of permissions and/or obligations associated with that role.

w(X,0-delegate, Y, r) < (7(X,acquire-perm, e,)
V (X, acquire-obl, e, r)) A (Y, can-play, e, ro)

The obligatory delegation is also expressed in two steps by the following
dynamic rules:

m(X,o0-delegate,Y,r) — (w(Y,d-play,e,r), T) (3.18)

w(X,d-play,e,r) —
(7(X,acquire-perm,e,r) A m(X,acquire-obl,e,7) A C,C’) (3.19)
where C' and C” are expressions denoting additional permissions or obligations

that are to be added in case the delegation is accepted or refused by the delegatee
respectively.

3.2. RBAC FEATURES o7

3.2.5 Separation of duties

The separation of duty principle can be seen in both its static and dynamic
aspects.

Dynamic separation of duty

In the dynamic separation of duty, a subject may have the permission to play
two mutually exclusive roles, but can become active in only one of them.

For example, a subject X can be both a manager and a customer at a bank,
however X will not have the right to activate the role manager if X is currently
playing the role customer (e.g. applying for a loan as a customer) in the same
bank. We express this constraint as follows:

m(X,acquire-perm, ¢, manager) A (X, acquire-perm, ¢, customer) — (L, T)

Note that 7(X, acquire-perm, e,) is true only if a role r is activated, inherited
or delegated, that is if X is active in the role. Thus the above rule states that if
both permissions are executed, then no matter what X does, the system enters
into an inconsistent state.

Static separation of duty

In the static separation of duty, a subject having the right to play the role teller
in a bank will not be allowed to be a member of the role auditor of the same
bank. A subject is considered a member of a role if she has the permission to
play the role, or was delegated the role or inherited the permissions associated
with the role. Accordingly, we define a special action ﬁ;y such that

m(X, p/la\y,s,r) +— (X, a,e,r) for a € {play,d-play, acquire-perm}
Then the static separation of duty can be expressed by the rule:

W(X,aa\y,e,teller) A 7T(X,p/187y,6, auditor) — (L, 1)

If the subject X acquires both permissions at the same state of the dynamic
model, then the system will enter into an inconsistent state, no matter what X
decides to do.

3.2.6 Binding of duty

By binding of duty, we mean the necessity to execute two actions at the same
time. For example, to open the safe in a bank both a clerk and a manager
should enter a password otherwise the system would block:

(X, enter, pswrd, clerk) A w(Y, enter, pswrd, manager) — (T, 1)

58 CHAPTER 3. A LOGICAL APPROACH TO RBAC

In this case we do not take into consideration the difference between not ex-
ecuting any action or executing only one action. However, in real life, executing
only one may be considered as an intrusion in the system and should not be
accepted. To express this case, the above rule must be replaced by the following
set of rules:

m(X, enter, pswrd, clerk) A 7 (Y, enter, pswrd, manager) — (T, p),
7(X, enter, pswrd, clerk) — (Pelerk, 1),

7 (Y, enter, pswrd, manager) — (Pmanager; |)s

P A (Pelerk V Pmanager) — (L, L).

where p, Pagent a0d Pmanager are ground predicates that will only be used in the
last rule above. This will guarantee that if the agent or the manager execute
the action alone, then the system will enter into an inconsistent state.

3.3 Assigning permissions

It is worth to note that a study on the computational complexity of assigning
permissions and obligations was done in collaboration with Philippe Balbiani.
In this section we present these decision problems, the complexity results are
given in Table 3.1. The proofs can be found in [6].

Static assignments

The STATIC(3) problem is the following decision problem:
o STATIC(I):

Input given a domain D, a static policy SP based on D and a condition
¢ based on D,
Output Sat if there exists an interpretation function I for D such that

I(SP),T = ¢

This problem consists in checking whether the expression ¢ is satisfied with
respect to the static policy SP.

Dynamic assignments

The DY NAMIC(3,3) problem and the DY NAMIC¢,,(3,3) problem are the
following decision problems:

e DYNAMIC(3,3) (DYNAMIC,,,(3,3)):

Input given a domain D, a security state S based on D, a (consistent)
dynamic policy DP based on D and a condition ¢ based on D,

3.3. ASSIGNING PERMISSIONS 59

’ Decision problem \ Complexity ‘

| STATIC(3) | NP-complete ‘
DYNAMIC,,,(3,3) N P-complete
DYNAMIC(3,3) in Yo P

DY NAMICP%h (3 3) PSPACE-complete

con

DY NAMICPath (3, 3) PSPACE-complete

RULEBASED.,,(3,3) | NP-complete

RULEBASED(3,3) in ¥y P

RULEBASEDP%"(3 3) | PSPACE-complete
3,3

con

RULEBASEDP*"(3 3) | PSPAC E-complete

Table 3.1: Complexity results

Output Sat if there exists A C S, there exists an interpretation function
I for D such that L(S,DP, A),I = ¢.

These problems consist in checking for a given expression ¢ there exists a set of
executed actions that satisfies ¢ with respect to the dynamic policy DP.

The DY NAMICP?*" (3, 3) problem and the DY N AM ICP%" (3 3) problem
are the following decision problems:

o DYNAMICPeth(3,3) (DY NAMICPath(3, 3)):

con
Input given a domain D, a security state S based on D, a (consistent)
dynamic policy DP based on D and a condition ¢ based on D,

Output Sat if there exists an integer n > 0 and security states Sg, ...,
S,, based on D such that

- S =8,

— for all integers ¢ > 0, if 1 < i < n then there exists A C S;_1
such that S; = L(S;—1, DP, A),

— there exists an interpretation function I for D such that

This problem consists in checking whether for a given expression ¢ there exists
an initial security state S and an integer n, such that there exists a path from
S such that after n transitions with respect to the dynamic policy DP and the
choice of a set of executed actions, ¢ is true.

Rule-based assignments

The RULEBASED(3,3) problem and the RULEBASED,,,(3,3) problem
are the following decision problems:

e RULEBASED(3,3) (RULEBASED,»,(3,3)):

Input given a domain D, a security state S based on D, a (consistent)
rule-based policy P based on D and a condition ¢ based on D,

60 CHAPTER 3. A LOGICAL APPROACH TO RBAC

Output Sat if there exists A C S, there exists an interpretation function
I for D such that L(S,P, A),I = ¢.

This problem consists in checking whether a given expression ¢ is satisfied with
respect to a rule-based access control policy P.

The RULEBASEDP"(3,3) problem and the RULEBASEDP" (3, 3) prob-
lem are the following decision problems:

e RULEBASEDrath(3,3) (RULEBASEDrh(3,3)):

con

Input given a domain D, a security state S based on D, a (consistent)
rule-based policy P based on D and a condition ¢ based on D,

Output Sat if there exists an integer n > 0 and there exists security
states Sgp, ..., S, based on D such that

-8 =S,

— for all integers ¢ > 0, if 1 < ¢ < n then there exists A C S;_1
such that S; = L(S;_1, P, A),

— there exists an interpretation function I for D such that

Sn, I E ¢.

This problem consists in checking whether for a given expression ¢ there exists
an initial security state S and an integer n, such that there exists a path from
S such that after n transitions with respect to the policy P, ¢ is true.

3.4 Conclusion

In this chapter, we defined an access control logical framework based on rules.
In this framework a policy consists in a set of static clauses and a set of dynamic
clauses defined in terms of permissions and obligations. Static clauses charac-
terize what remains true during the life of a system whereas dynamic clauses
characterize the different ways according to which the system can change. We
have provided examples on how to express RBAC features using static clauses
and dynamic clauses and we have addressed the complexity issue of some de-
cision problems related to the assignment of permissions and obligations with
respect to this kind of policies.

Discussion. The main feature of the language proposed in this chapter is its
capacity to express dynamic access control policies. It allows the specification
of actual effects of an action execution. This feature encouraged us to direct
our interest into the specification of business processes. A business process is
a collection of structured activities or tasks that produce a specific service or
product (serve a particular goal) for a particular customer.

To this end we validated our language in the expression and specification of
business processes. In a car registration process presented in the context of the
European project AVANTSSAR and described in [73] and presented in Chapter

3.4. CONCLUSION 61

5, the case study describes an e-government application consisting in registering
a car purchase electronically via the interaction of different services.

The first obstacle encountered in our language is that it was too restrictive
with respect to some specific requirements. In fact the role based structure
of the permission and obligation predicates makes it complicated to specify
some requirements. For example, the requirement that a given document is
not used by more than one clerk at a time cannot be specified in the following
framework. The difficulty here lies in the fact that the restriction is on one
instance of an object. The syntax of our language is not capable of handling
such constraints. Another difficulty came from the need to specify the order
of the tasks in the business process. In fact, in the language presented in this
chapter, it is relatively simple to express the effects for a given action, but we
cannot provide a general specification for the business process execution.

These two main obstacles lead us to turn towards attribute based access
control as a mean to express a large variety of constraints. Also the need to
specify a business process took us in the direction of defining a more elaborate
transition system to express in addition to action effects, an order over these
actions that we call a workflow. In the next chapter we define an extension of
our framework that takes into account these characteristics.

62

CHAPTER 3. A LOGICAL APPROACH TO RBAC

Chapter 4

Reasoning about policies
with trust negotiation and
workflows in a distributed
environment

4.1 Introduction

There is an increasingly widespread acceptance of Service-Oriented Architecture
as a paradigm for integrating software applications within and across organi-
zational boundaries. In this paradigm, independently developed and operated
applications and resources are exposed as (Web) services. These services com-
municate one with another by passing messages over HT'TP, SOAP, etc. A
fundamental advantage of this paradigm is the possibility to orchestrate exist-
ing services in order to create new business services adapted to a given task.
Several languages (WS-CDL [48], WSBPEL [47], BPMN [77], ...) have been
proposed to describe the workflow of an orchestrating service. These languages
can be given an operational semantics in terms of (extension of) m-calculus [56]
or Petri nets [44].

For business, security and legal reasons, it is necessary to control within a
workflow and on the workflow interface in which contexts an action can be exe-
cuted. This implies that, together with the workflow defining the orchestrating
service one has to provide an application-level security policy describing the
roles, separation of duty and other constraints to be enforced in the workflow.
In order to foster agility (i.e. to specify the process so that it can be employed
in a variety of environment) one usually adds a trust negotiation layer so that
principals can get the chance to prove that they are legitimate users of the
service.

Given the skills required to implement these aspects, they are usually sep-

63

64 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS

arated into a security token server, an XACML firewall, a Business Process
management system, plus additional ones for aspects abstracted in this chap-
ter. We have chosen to describe services with logical entities that gather all the
aspects pertaining to one application or resource.

Related works There already exists some works aiming at adding an access
control aspect to workflows. In [17, 61] the access control is specified with roles
that can execute activities, users that have attributes allowing them to enter
roles, and ordering on activities. We believe that the RBAC-WS-BPEL lan-
guage is significantly less expressive than our proposal. In particular it does
not provide for dynamic separation of duty constraints, or other complex con-
straints based on the documents exchanged and the environment of execution.
In [49] is proposed a framework in which even messages are interpreted as mobile
processes, and in which processes communicate one with another to exchange
credentials. The trust negotiation rules and their evaluation is similar to what
we propose, but the workflow description is absent and thus we believe it to be
much harder to express fine access control policies that depend on the current
state of a process. Moreover the overall architecture is completely different.
In [24] is presented a uniform framework for regulating the access to services
and information disclosure in a distributed environment. The idea is based on
using accessibility rules that set constraints on the access to the service and
disclosure rules that specify constraints on the disclosure of a service informa-
tion. In [80] the authors present a framework to reason about authorizations in
a distributed system through knowledge bases for each service and the capacity
to push information through sending messages and to pull information through
queries. The trust negotiation mechanisms in [24, 80] are mainly based on Horn
clauses as is the case in our trust negotiation rules, also the knowledge base
used in [80] can be expressed via certificates and the access control policy in our
framework. However in both cases, the notion of state is not explicit and their
respective frameworks do not offer the ability to express the task execution or
the dynamic evolution of the service. In [39, 11, 34] the workflow is embedded
within the access control system, i.e. the possible evolutions of a process are
embedded in the access control rules. Another point is that there is no notion
of local state, which is replaced by the proof of reachability of a state. This
approach implies that one cannot follow exactly how many times a given task
is executed.

Contribution The main originality of this work is in two parts. On the one
hand, the interplay between workflow execution and access control which is
permitted by this unified framework. It permits us to express naturally the
constraints that are encountered when dealing with real-life business processes.
On the other hand, the addition of a trust negotiation layer allows us to express
the interaction between different services in the environment. The strength of
our frameworks lies thus in the collaboration of these three structures, namely,
the access control policy, trust negotiation policy and the workflow in order

4.2. THE MODEL 65

to express the evolution of a security state subject to interaction with other
services in a distributed environment. These results were published in [7]. In
Section 4.2 we present a sketch of our model, before presenting the syntax of our
language in Section 4.3 that shall be used to define the security rules in Section
4.4. In Section 4.5 we give the evaluation semantics for the security rules. In
Section 4.6 we present the different elements of the workflow and present the
transition relations for the evolution of the workflow in Section 4.7. We conclude
this chapter with an application in Section 4.8.

4.2 The model

We aim to present a logical framework that takes into account access control
properties for entities in a distributed environment, but also the evolution of
such entities depending on the execution of their functionalities. In fact we
consider that an entity is responsible for the execution of certain functionalities.
A functionality is a task provided by the entity such as store, write, pay etc.
The access to these functionalities is protected by an access control policy in
each entity. If allowed, the access to a functionality leads to a change in the
state of the entity.

As we can see in Figure 4.1 an entity is viewed as a logical unit made up of a
set of access control rules and a set of trust negotiation rules. Access control and
trust negotiation rules are Horn clauses in a first-order language (see details in
Section 4.4). Access control rules set the conditions to be satisfied in order for a
task to be permitted within an entity whereas trust negotiation rules determine
the conditions needed in order to send information (modeled as objects) to
other entities. We assume that access control decisions may be constrained by
the acquisition of such information.

To an entity is associated a local state that models the dynamic aspect in
our framework. It consists of a repository and a substitution. The repository
constitutes the database of the entity, i.e. it stores the objects holding infor-
mation about users and objects used in the entity, and the substitution is a
function that maps the local identifiers to their values. The local state of the
entity changes in accordance with the tasks executed.

Finally, a workflow is also associated to the entity. It manages the evolution
of the local state of each entity, and consists of a process that defines an ordering
between the tasks executed in the entity.

4.3 Syntax

In this section we define the syntax that shall be used in the representation of
the framework.

66 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS

Entity

Access control Policy
permit (T, t) € body [PP

1

Process execution . _ i

'~ depends on access > Rule evaluation ;
1

i

depends on access T N depends on local state 1
control rule Trust negotiation Policy

put(]/' t) ébody Eocimim oo _i

Workflow Local state
Task definitions Repository

permit (T, t) >Pt 0, 0,0”

Process execution
modifies local state

Workflow process Substitution
vX;rcv(X,v,T);permit (X, t) XSv

| |add(X) x>0

Figure 4.1: Entity model

4.3.1 Objects and values

We use the notions of objects and values to represent the elements of our frame-
work.

Values

Let Val be a countable set of values (with typical members denoted v, v/, ...).
Values can be numbers, strings, Booleans, Let Act C Val denote the set of
actions (with typical members denoted act,act’, ...).

Attributes and task names

Let Att be a finite set of attributes (with typical members denoted att, att’, ...)
and T a countable set of task names (with typical members 7, 7/, ...). We
assume that AttN7T = ().

Object

We define an object as a partial function:
O : Att — Val

and we denote by O the set of all objects. For each object O, let dom(O) be the
domain of O. We write L to denote the unique object O such that dom(O) = 0.

4.3. SYNTAX 67

Moreover, we write O.att to denote O(att) and we use the notation O.att = L
for att & dom(O), i.e. to express that the object O is undefined for the attribute
att.

Example 4.3.1. The information stating that a subject u; can play the role
clerk, certified by a central authority (CA) is expressed by the object O

subject — U1
action +— can — play
O:
role — clerk
certifier +— ca

Object notation. In order to ease the readability of our security rules and
thus for a better understanding of the expression of security properties in our
framework, we use a shorthand notation by presenting objects in a human read-
able notation. We write a non-empty object

O: att; — wv;, forie{l,... k}, att; € Att, v; € Val.
in the form
{as Ui}ie{l,...7k}

where {a; vi}z‘e (1, k) denotes a sequence of attributes att; followed by their
corresponding value v;.

In particular, if the object has at least an attribute subject and an attribute
action:

subject — u, wue&Val
O: action +— act, act € Act
att; — v, forie{l,...,k}, att; € Att, v; € Val.

then we write it in the form
subject u act {a; vi}ie{l R

where {a; v;},. (1, K} denotes a sequence of attributes att; followed by their
corresponding value v;.

Example 4.3.2. The object in Example 4.3.1 can thus be written as

subject u can — play role clerk certifier ca

Repositories

We define a repository to be a finite set of objects. Repositories are typically
denoted by Rep and decorations thereof.

68 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS

4.3.2 Variables and terms
Variables

Let VarObj be a countably infinite set of variables for objects (with typical

members denoted X, Y, ...) and VarVal be a countable infinite set of variables
for values (with typical members denoted z, y, ...).
Terms

We define a term for objects (with typical members denoted T,U,...) to be
either a variable for objects or an object whereas a term for values (with typical
members denoted ¢, u, .. .) is either a variable for values, a value or an expression
X.a.

Substitutions

A substitution o is an idempotent partial mapping that associates to a variable
a term of the same kind. For all terms T for objects and for all terms ¢ for
values, we define the terms [T and [t], as follows:

(7], = T, if T is an object;
o | o(T), ifTisin VarObj.

t, if t is a value;
[tl, = ¢ oft), if t is in VarVal,
o(X).a, iftis X.a.

4.3.3 Entities and states
An entity

We define an entity e; by means of a set of security rules, constituted of a set of
access control rules controlling its functionalities and a set of trust negotiation
rules that specify conditions on the disclosure of certificates to other entities in
the environment (defined in Section 4.4).

Identifier

To each entity e; we associate a value t € Val which is its unique identifier.

Local state

To each entity e; we associate a local state s; which is made of a repository and
a substitution and is expressed by a pair s; = (Rep:,0t) .

4.4. ACCESS CONTROL AND TRUST NEGOTIATION 69

Local substitution

Let oy be the substitution local to entity e; at state s; and let dom(o;) denote the
domain of ¢;. Given a global substitution o, for all X € VarObj, x € VarVal,
we define [X]7* and [2]7" as follows:

[X]% = [X]1,,, X €dom(oi),X # L;
o | [X],, otherwise.

and
[]7 = [2],,, =€ dom(o;),x # L;
o | [z],, otherwise.

The rationale behind this is that each entity has its own local substitution
that can be modified at a given security state (see Section 4.7). Also we suppose
in the system the existence of a global substitution. Thus, the definition [—]7*
ensures that the local variables of the entity are not overwritten by the global
substitution o.

4.4 Access control and trust negotiation

The security rules are Horn clauses written in a first order language. We present
the body of security rules, then we give the syntax for the access control rules
and trust negotiation rules.

4.4.1 Body of rules

The rules in our framework can specify conditions on the availability of an
object, but can also define conditions on the content of an object. Accordingly,
the body of the security rules is defined by:

body := T | Test | body A body | body V body

Test := has(T) | not(has(T)) | get(T,t) | t1 = ta | t1 # t2 where T is a
term for objects and ¢,tq,t2 are term for values.

The intended meaning for these expressions is as follows:
- has(T) is true if the object denoted by T is in the repository of the entity;

- not(has(T)) is true if the object denoted by T is not in the repository of
the entity;

- get(T,t) is true if the object denoted by T can be received through a trust
negotiation with the entity denoted by e;.

- t1 = to is true if the values denoted by t; and ty are equal;

70 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS

4.4.2 Security rules
Trust negotiation rules

The trust negotiation rules give the conditions to be satisfied for an object to
be sent during a trust negotiation session. We express trust negotiation rules
by:

put(T, t) < body

where T is a term for objects and ¢ a term for values. The predicate put(T,t)
allows the disclosure of an object T to an entity e; whenever the conditions in
the body of the rule are satisfied.

Example 4.4.1. The certifying authority only sends objects to entities that
she trusts. To this end, the certifying authority represented by the entity e,
has the following trust negotiation rule:

put(X,y) < has(X) A has(Y') A Y.certifier = ca
AY.subject = y A Y.action = is — trusted (4.1)

This rule says that an object X can be sent to an entity e, if
- the object X is in the repository of the entity

- there exist an object Y in the repository of the entity such that the values
for the attributes certifier, subject and action are ca, the value of y
and is — trusted respectively.

Trust negotiation policy. We define a trust negotiation policy TN} for an
entity e; to be the set of trust negotiation rules contained in e;.

Access control rules

The access control rules give the conditions to be satisfied for the task 7 to be
permitted. Access control rules are of the form:

permit(T, 1) < body

where T is a term for objects and 7 € T is a task name. If body holds in the
rule above, then the predicate permit(T,T) says that the task 7 is permitted
with respect to the object denoted by T

Example 4.4.2. In a car registration process, a subject has the permission to
store an object in the central repository if he can provide a proof from a certifying
authority certifying that he is a clerk. This requirement can be expressed as an
access control rule in the entity central repository as follows:

4.4. ACCESS CONTROL AND TRUST NEGOTIATION 71

permit(X, store) < get(Y, ca) A Y.certifier = ca A Y.action = can — play
AY.subject = X.user AY.role = clerk (4.2)

This rule says that the task store can be executed on an object denoted by
X if a trust negotiation with the entity e., provides an object y such that:

- the values for the attributes certifier, action and role of object Y are
ca, can — play and clerk respectively,

- the value for the attribute subject of object Y is equal to the value of

the attribute user of object X.

Access control policy. We define an access control policy AC; for an entity
e: by the set of access control rules of e;.

Using the object notation

In Example 4.4.2 and Example 4.4.1 we used conjunctions over predicates of
the form X.a = v in the body of the rule to describe the relevant attributes
in the variable for objects X. However, this notation can become cumbersome
and complicates the readability of the rule when the number of objects in a rule
exceeds two for example. In order to improve the readability of the security
rules, we use the notation for objects presented in Section 4.3.1.

e A trust negotiation rule of the form

put(X,t) < Cond A (/\ X.att; = v;)
i€1,.k

is equivalent to

X = {att; vitcpi 1y
put(X,t) + Cond

e A trust negotiation rule of the form

put(X,t) + CondA(/\ X.att; = v;)A[/\ (/\ Yj.atty; = v;,)]
i€l,....k je{1,..,l} i€l,....k

where Y; are arguments of predicates in Cond is equivalent to

X = {att; Ui}z‘e{z‘.,...,k}
}/} = {att.]l vji}ie{i7___,k} 9] S {17 e ,l}
put(X,t) + Cond

72 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS
e An access control rule of the form
permit(X,) « Cond A (/\ X.att; = v;)

is equivalent to

X := {att; Ui}ie{i k}
permit(X,) + Cond

e An access control rule of the form

permit(X,) < CondA(/\ X.att; = v;)A] /\ (/\ Yj.atty; = v;,)]
i€1,0k JE{L e} €1,k

where Y; are arguments of predicates in Cond is equivalent to

X =A{att; vi},cp; 1y
}/} = {att.]i U‘jl}le{b,,k}’ j S {1,...7l}
permit(X,) + Cond

Example 4.4.3. Using the above notation, rule 4.2 of Example 4.4.2 can be
written as:

X :=user u
Y :=subject u can — play role clerk certifier ca
permit(X, store) < get(Y, ca)

and rule 4.1 of Example 4.4.1 can be written as:

Y :=subject y is — trusted certifier ca
put(X,y) < has(X) A has(Y)

4.5 Semantics

In this section we provide the evaluation semantics for the security rules. Let
& = (e1,...,e,) be an n-tuple of entities, where e¢; = (AC;, TN;), and let
S = (s1,...,8n) be an n-tuple of associated local states, as described in Section
4.3.3.

The use of the predicate get() in the body of access control rules induces the
fact that the rule evaluation of the access control policy for a given entity e;
depends on the result of a trust negotiation policy of other entities. Also, the
rule evaluation semantics of trust negotiation rules is computed with respect to
the trust negotiation policies of all the entities in £. In Section 4.5.1 we define
the computation of the result of a trust negotiation session that will be used in
order to evaluate access control rules in Section 4.5.2.

4.5. SEMANTICS 73

4.5.1 Trust negotiation semantics

The trust negotiation mechanism involves communication of objects between
different entities according to their respective trust negotiation policies.
Available objects

We define an available object to be a pair (O,1) where O € O is an object and
i € Val is a value denoting the identifier of an entity.

Informally, we say an object O is available to an entity e; if there exists
an entity e; that can, according to its trust negotiation policy, send (put) the
object O the entity e;.

Trust negotiation round

We define a trust negotiation round as n tuple of sets of available objects.
k k
Ay = (28,5,61 PRI ES,S,en)
where Eg s,e; denotes the set of available objects for entity e; at the beginning
of round k.
Trust negotiation session

Let us consider a sequence

(Ag,Aq,...)
of n-tuples of sets of available objects inductively defined as follows:

. 0 _ 0 —
base case: 25’3161 =0,..., EE,S,en =0,

induction: - Let e; with ¢ € {1,...,n} be an entity. Suppose ng’ei has
already been defined for some non-negative integer k > 0,

- Define 7, inductively with respect to S ¢, as follows:

k+1 k k
25?:9,@1. =3¢ s U s,

where Q’g’&ei ={(0,7) : £,S, e =i put(0O, i)} is the set of available

objects acquired by e; during the k' trust negotiation round.
In the rest of this subsection we present how Q§ S.e; 18 computed with respect
to Ak.
Truth conditions:
Given Eg S,e; the set of available objects for entity e; at the beginning of round
k, and a substitution o, we say

E,8,¢ej,0 = body
iff

74 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS

- body is T

- body is has(T) and [T]}’ € Rep;

- body is not(has(T')) and [T])’ & Rep;

- body is get(T,t) and ([T]7,[t]77) € Eg,s,ej

- body is t1 =ty and [t1]77 = [t2]’

- body is t1 # to and [t1]77 # [t2]7

- body is body, A bodys and &£,S,e;,0 =1 body, and &, S, e;,0 =, bodys
- body is body, V body, and £, S, e;,0 =y body, or £,8,ej,0 =i, bodys

We say
£, S, e; =k put(0, 1)

if there exists in TN a rule
put(T, t) < body
and there exists a substitution o such that

[T =017 =i

o

- £,8,¢ej,0 = body

The result of a trust negotiation session

For all i =1,...,n, the result of a trust negotiation session for e; is denoted by
Y¢ 5., and is defined as follows:

w _ k
Zse = U ZEse
k>0

4.5.2 Access control evaluation semantics

Consider an entity e; € £. The truth of bodies with respect to £,S5, e; and a
substitution o is defined with respect to the trust negotiation result by induction
as follows:

&S0 =T

- £,8,ei,0 = has(T) iff [T]' € Rep;

- &,8,¢e;,0 = not(has(T)) iff [T]7' € Rep;

- £,8,ei,0 | get(T,t) iff ([T [H7) € 225,

- €86 =t =ty iff [t1]00 = [t

4.5. SEMANTICS 75

- £,8,e5,0 |t # o iff [1]00 # [ta])
- &,8,e;,0 =body Abody' iff £,8,e;,0 = body and £, S, e;,0 = body’
- E,8,e;,0 Ebody Vbody iff £,8,e;,0 = body or £,S,e;,0 = body’

A task is permitted

We will say that a task 7 € T ”is permitted” with respect to an object
O : Att — Val for £, 8, e; and denote it by

E,S,e; E permit(O, 1)
iff AC; contains an access control rule of the form
permit(T, T) + body
and there exists a substitution ¢ such that the following conditions are satisfied:
[Ty =0
- &£,8,e;,0 = body

Example 4.5.1. We revisit Example 4.4.2 and Example 4.4.1 and suppose that
rule 4.2 is in the access control policy of entity e, denoting a central repository
and the rule 4.1 is in the trust negotiation policy of entity e., denoting a central
authority.

We consider the set of attributes

Att = {certifier, subject, role, user, action, status}
and the set of values
Val = {cr, ca, john, clerk,is — trusted, can — play, inuse}.
We consider the set of objects
{Role, Trust, Docy} ,

where

Role := subject john action can — play certifier ca role clerk
Trust := subject cr action is — trusted certifier ca
Docy := user john status = inuse

And we consider the entities e, and e., defined as follows:

Entity e,
X :=subject u act {att; vi},cq; 1y
permit(X,) < Cond

76 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS

Entity e,

X :=user u
Y :=subject u can — play role clerk certifier ca
permit(X, store) < get(Y, ca)

Their associated local states are defined as follows:

Local state s.,: The local state s., associated with the entity e., is given by
the pair (Repea, 0cq) such that

The repository Rep,, associated with the entity e, is { Role, Trust}
and,
the substitution o, associated with e., is the empty substitution.

Local state s..: The local state s, associated with entity e, is given by the
pair (Reper, 0¢r) such that:

The repository Rep., associated with the entity e.. is the empty
repository and,

the substitution o, associated with e, is the empty substitution.
Let £ = (€cqs er) and S = (Sca, Ser)-

In e., Computing the result of the trust negotiation session with respect to the
substitution ¢ = {X — Role,Y — Trust,y — cr}

- has(Role) and has(Trust) are true with respect to &, S, e, since
Role and Trust are in the repository of ca in the local state s.q

- The equalities Trust.certifier = ca, Trust.subject = cr and
Trust.action = is — trusted all hold.

Thus, the body of the trust negotiation rule in e, is satisfied with respect
to £,S, ecq, 0 and
E, S, ecq Fo put(Role, cr).

In this case we say that the entity ca can send the object Role to the entity
cr (or Role is an available object for ¢r) via a trust negotiation session and
(Role, ca) is added to the set of available objects ¥¢ s . . Note however
that in this example, the result of the trust negotiation session with respect
to &,S, es and o is given by

£.Seer = Eé,g,e” = {(Role, ca)}

In e.. Evaluating the access control rule with respect to the substitution
o ={X +— Docy,Y +— Role} :

- get(Role, ca) is true with respect to &, S, e since (Role, ca)
€ E?,S’,eu.

4.6. WORKFLOW: SYNTAX 7

- The equalities Role.certifier = ca, Role.action = can — play,
Role.subject = Docy.user, Role.role = clerk all hold.

Thus the body of the access control rule in e, is satisfied with respect to
E,S,e. and o.

Hence we can say that the task store is permitted with respect to the
object Docy, that is

E,S, eqr |E permit(Docy, store).

In Section 4.4 and this section we presented the security aspect of our model
by defining the rules managing the access to a given entity on the one hand,
and rules regulating the exchange of objects between entities on the other hand.
The interaction between these two sets of rules allows us to define the access
control policy of one entity with respect to the negotiation policies of the other
entities as is the case with the task store in Example 4.5.1. However, in order
to model a business process, one needs to add a dynamic aspect. The dynamic
policy should on one hand define the effects of a permitted task, and on the
other hand be able to express an order over such tasks. In the next section we
define a workflow structure whose elements will englobe the above mentioned
properties.

4.6 Workflow: Syntax

When writing a Business Process, one usually differentiates between atomic
actions, tasks which according to [38] are partial orderings on atomic actions,
and business roles which are entities to which a set of tasks is assigned. We
have chosen instead to consider only the notion of task as a named process that
encompasses the notions of activity, task and role. As mentioned in Section 4.2,
an entity is responsible for the execution of a number of such tasks. Moreover,
we assume that entities can communicate by means of sending and receiving
messages. A message is usually sent by one entity to a given task in another
entity in the environment. Consequently, to each entity we associate a workflow.
The workflow is responsible for the update of the local state of the entity by
means of execution of atomic actions. The possibility to execute these actions
is subject to the security rules of the entity, the local state associated with the
entity and the messages received from other entities.

We define processes in a language whose syntax is borrowed from existing
process algebra languages and define actions as the atomic components in the
process constructs. An action is possible in a process if there exists a reduction
rule that consumes this action. We first present these atomic actions, then we
define processes and the workflow.

78 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS

4.6.1 Atomic actions

The atomic actions are responsible for the update of the local state associated
with an entity e;. Each action affects a component of its local state (the repos-
itory or the substitution) but also models the exchange of messages with other
entities. We distinguish between different types of actions that we define as
follows:
action .= snd(T,t,7) | rev(T,t,T)

| add(T) | rmo(T)

|vX |ve | X =T | Xatt:=t|z:=t

| permit(T, T)

where T is a term for objects, t a term for values, X and x variables for objects
and values respectively, T a task name, and att an attribute. Let us now describe
these different actions.

- snd(T,t,7) and rev(T, t, 7) model the communication between the entities
in the environment. snd(T,t,) sends an object T to an entity e; request-
ing the permission to execute the task 7 in e; whereas rcv(T, t, T) receives
an object T from the entity e; as a request for the permission to execute
the task 7 in e;.

- add(T) and rmv(T) update the repository of the entity e; by adding the
object T to the repository of e;, and removing T from the repository of e;
respectively.

- vX and vz extend the substitution of the entity e; with new variable X
for object and new variable x for values respectively and maps them to
the object L.

- X :=T,z:=t and X.att := ¢t modify the substitution of the entity e;.

X =T and x :=t express the assignment of a new term for objects
T to the variable X and a new term for values t for the variable x
respectively.

X.att := t modifies the object denoted by X by assigning a term for
values to the attribute att in X; if ¢ is L it undefines the attribute
att in X and if the attribute att is not defined in X, it extends X
by adding att to the domain of X and assigns the term for values ¢
to the freshly added attribute.

- permat(T, T) consists in

(i) checking if the task 7 is permitted with respect to the object T for
€i

(ii) in which case permit(T, T) is replaced by a named process associated
to it as described in Section 4.6.2.

4.6. WORKFLOW: SYNTAX 79

4.6.2 Processes and workflow
Processes

The set of all processes (with typical members P, P’, ...) is defined by the
following grammar:

P := skip | action | action; P | P! | P||P | P+ P

where skip denotes the empty process and ;, !, || and + stand respectively for
the sequence, iteration, parallel composition and non-deterministic choice of
processes.

Tasks

A task definition is an expression of the form:
Task := permit(T,7) — P

where T is a term for objects, 7 a task name and P is a process.

‘Workflows

A workflow associated to an entity is specified by a set T of task definitions of the
form permit(X,7) — P, and by a workflow process P. Thus, it is represented
as a pair (T, P).

Example 4.6.1. In this example we define a workflow W, associated with the
entity eq. (see Example 4.4.2). We suppose that X and Yp,. are variables for
objects and u is a variable for values. We write We,. = (T¢, P.-) where:

Ter = {permit(X, store) — X.status := L;add(X)}
and
P.. = vu; vYpoc; recv(Ypoe, u, store); permit(Ypoe, store)
The above expression consists of
- atask definition for permit(X, store) by the process X.status := 1;add(X)

that undefines the attribute status for the object denoted by X and then
adds the object X to the repository of e; and,

- a process that generates new variables u and Yp,, receives the object Ypo.
from the entity u in the task store and then executes permit(Ypec, store).
Note that executing permit(Yp,., store) consists of

1- checking if store is permitted with respect to Yp,. for e; and in which
case,

2- replacing permit(Ypoe, store) by the associated process

X.status := 1;add(X).

80 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS

4.7 Workflow: operational semantics

The operational semantics for the workflow is given by the definition of reduction
rules for processes.

The set of messages

Let M be the multi-set of messages that are sent but not yet received. Members
of the set M are quadruplets of the form (O, s, r, 7) where O is an object, s and
r are values denoting the sending and receiving entities in the environment
respectively and 7 is the intended task in entity e,.. We assume that a reception
is executable in entity e, only if there exists a matching message sent by some
entity e that is waiting to be received.

The model

Let £ = (e1,...,e,) be an n—tuple of entities, S = (s1,...,5,) an n—tuple of
associated local states where s; = (Rep;, 0;) and W = (Wy,..., W,,) an n—tuple
of associated workflows where W; = (7;, P;).

In Section 4.7.1, we give the operational semantics for a given workflow pro-
cess P; in the workflow W; associated with the entity e; by defining the reduction
rules for the atomic action defined in Section 4.6.1 with respect to M, S, W re-
stricted to the given entity e;. That is, we consider the model restricted to M,
s; the " component of S and P; the i*" component of the workflow process in
W. We give the semantics for the global transition with respect to M,S and W
in Section 4.7.2.

4.7.1 Local transitions

Consider an entity e; € £, and let W; = (T;, ;) be the workflow associated to
e;. We assume that P; can be one of the following:

- skip or an atomic action as described in Section 4.6.1;

- a composed process: action; P} | P}||P? | P + P? | P!

Skip and atomic actions semantics

We present in this subsection the operational semantics for atomic actions by
means of transition relations denoted by describing the local state transition
from M, s;, P;, (where s; = (Rep;,0;) and P; is the workflow process in W;)
to a new state M’ s}, P/ where the update of M’, s}, and P/ is defined with
respect to the atomic actions as follows:

Send action: If P; is send(T,t, 7), then we write

A i /
M,s;, P, — M, s, P

4.7.

WORKFLOW: OPERATIONAL SEMANTICS 81

if
M = MU([T1,,,i,[1]

7), st = s;, P! = skip

o;?

Receive action: If P; is rcv(T,t,7) and there exists an object O, a value
s and a substitution o such that (O,s,i,7) € M and [T], = O, [t], = s,
then we write

M, Si, PZ — M/, S;, PZI
if
M' = M\ (0,1,s,7),s; = (Rep;, o), P| = skip
where o is defined with respect to o; as follows:

For all variables for values y:

'(y) = s, if ¢ is the variable y
i) = oi(y) otherwise.

For all variables for objects Y:

0, if Y is the variable T ;
al(Y)y=1¢ O, if Y.att is t and Y is not 7T,
0;(Y) otherwise,

where O’ is an object whose domain consists of the attribute att and such
that O".att = s.

Add action: If P; is add(T) and either T is an object or T is a variable
for objects s.t. T' € dom(o;), then we write

M7Si7Pi — M/7S;7Pil
if
M’ = M, s; = (Rep; U{[T],,},0), P = skip

Remove action: If P; is rmv(T) and either T is an object or T is a
variable for objects in dom(o;), then we write

M,Si,Pj — MI7S;7PZ’/
if
M' = M, s; = (Rep; \ {[T1,,} ,0:), P = skip
Variable creation(objects): If P; is vX and X ¢ dom(o;), then we

write

M,s;, P, — M s, P!

77

82 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS

if

M' = M, s, = (Rep;, o)), P| = skip
where o/ is defined with respect to o; as follows: For all variables y for
values o.(y) = o4(y), and for all variables Y for objects such that ¥ €
dom(o;) U X,
, et if Y is X;
() { o;(Y), otherwise.

Variable creation(values): If P; is vz and x € dom(o;) then we write
M,s;, Pi = M, s, P/
if
M' = M, s; = (Rep;,0}), P, = skip
where o is defined with respect to o; as follows:

For all variables Y for objects 0(Y) = 0;(Y), and for all variables y for
values such that y € dom(o;) Uz,

P A if y is x;
oily) = { oi(y), otherwise.

Variable assignment(objects): If P, is X := T and either T is an
object or T is a variable for objects and T' € dom(o;) then we write

M,s;, Pi = M' s, P!
if
M' = M, s; = (Rep;,0;), P = skip
where o is defined with respect to o; as follows:

For all variables y for values o.(y) = 0;(y), and for all variables Y for
objects

i [T, Y is X;
oY) = { 0;(Y) otherwise.

Variable assignment(values): If P, is x :=t and ¢ is a value, or ¢ is a
variable for values s.t t € dom(o;) or t is X.att s.t X € dom(o;), then we
write

M, Si, Pl — MI, Sli? Pi/
if
M’ = M, s; = (Rep;,o}), P, = skip

where o) is defined with respect to o; as follows:

4.7. WORKFLOW: OPERATIONAL SEMANTICS 83

For all variables Y for objects 0(Y) = 0;(Y), and for all variables y for

values » ;
, _ t o if y is x;
oily) = { oi(y) otherwise.

Attribute creation: If P, is X.att := ¢, X € dom(o;) then we write

M,s;, P, — M s, P/
if
M’ = M,s; = (Rep;,o}), P, = skip
where o) is defined with respect to o; as follows: For all variables y for
values o}(y) = 0;(y), and for all variables Y for objects such that Y # X
ol(Y) =0;(Y) and o}(X) is defined as follows:

K3

~o~

N

/ _ [[t]]o'ﬁ a= att’
oi(X).a= { oi(X).a, Vae& dom(o;(X)), a+# att.

Task invocation If P; is permit(T,7) and &, S, e;,0 = permit([T]., 7)
and there exists a task definition permit(T”,7) — P, in T; (the set of task
definition in W;) and a substitution § of domain the variable 7" such that
d(T") =T, then we write

M,s;, P, — M s, P!
if
M’ = M,s; = (Rep;,o}), Pl = 6(Py)
where o] defined with respect to o; as follows:

For all variables y for values o/(y) = o;(y), and for all variables Y for
objects

/

[T, i XisT
oi(X) = { oi(X) otherwise
Composed processes
We define transition relations for composed processes as follows:

Sequence:P; is action; P} where action is an atomic action distinct from
permit(T, T):
. P
M, s;, action = M, s}, skip
i Pl ! 1
M, s;, action; P} — M, st P

P; is permit(T,); P} :
M, s;, permit(T, 1) — M’ s, P,
M, s;, permit(T,7); Pt — M, s, P.; P}

» 94

84 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS
Parallel Composition P; is P}!||P? :

1 ’oo 1/
M, s, P — M, s, P,
1 2 1/ 2
M, s;, PH|P? — M, s, P} || P;

» ¢

and,

!
./\/l,si,Pi2 —>M’,S§,Pi2
1 2 1 o pl 2/
M, s;, P}||P? — M, s, P}||P;

We identify P||skip and skip||P with the process P.

Non-deterministic choice P; is P} + P2 :

1 ’oo 1/
M, s;, Pt — M' s}, P,
1 2 I 1/
M, s, P; + P> — M s, P,

and

2 2/
M, s;, P? = M, s, P;
!
M, s;, Pt + P? - M’ s, P?

)¢

Iteration P; is P!!:

1 I 1/
M, s, P — M, s, P,
1 ’oo 1/ 1
M,s;, Pl — M s, P, ||Pi!

4.7.2 Global state and global transition

In Section 4.7.1 we presented the semantics for the transitions associated to a
specific entity. We now give a formal description of a transition occurring in the
general model. Let £ = (eq,...,e,) be an n—tuple of entities, we define a global
state for £ by M, S, W where M is the set of messages sent but not yet received,
S =(s1,...,8,) is an n—tuple of associated local states and W = (W1,...,W,,)
is an n—tuple of associated workflows.

We say a transition from state M, S, W to a state M’, S’ W' is possible and
denote it

M, SW = M S W
iff the following conditions are satisfied:
- there exists i € {1,...,n} and
- there exists local states s; and s} associated to e; such that:

M, s;, P = M, s, P! (as defined in Section 4.7.1)

394

4.7. WORKFLOW: OPERATIONAL SEMANTICS 85

and, for all j € {1,...,n},if j # i then s; = s; and P] = P;.

Example 4.7.1. We refer to the workflow given in Example 8.1.3, and the
access control policy of the entity e.,. given in Example 4.4.2, and suppose that
the workflow is associated with entity e... We define a local state s, associated
with e.. by (Reper,0cr), where Rep., is the empty repository and o, is the
empty substitution. Also let M = {(Docy, ca,i, store)}. Recall that X and
Ypoe are variables for objects, Docy is an object such that Docy.user = John
and Docg.status = inuse, Docj is an object, u is a variable for values, and
ca, i are values. We shall present the evolution of the workflow process P., with
respect to the local state of the entity e.,.

The first executable action in the workflow process P, is vu that creates
a new variable for values u, and results in the local state where Rep., is the
empty repository and o, is such that o..(u) = L. The workflow process state
is

VY Doc; rect(Ypoe, u, store); permit(Ypoe, store)

The action ¥Yp,. is now executable and creates a new variable for objects Yp,,
and results in the local state where Rep., is the empty repository and o, is
such that o..(u) = L and 0..(Ypo.) = L and the workflow process state is

recv(Ypoce, u, store); permit(Ypee, store)

The action recv(Ypee, u, store) is now executable. This action can be executed
since the message (Docy, ca, i, store) € M is waiting to be received, and it will
result in the local state where Rep,, is the empty repository and o, is such
that o..(u) = ca, ¢ (Ypoe) = Docy and the workflow process state is

permit(Ypee, store)

This action is then replaced by the definition of permit(X, store) by substi-
tuting X with 0. (Ypoc). This replacement is permitted since &£,S,e.. E
permit(Docy, store) is true (as shown in Section 4.5.1), and will result in the
local state where Rep,, is the empty repository and o, is such that o..(u) = ca
and 0. (Ypoe) = Docy and the workflow process state is

Ypoc.status := L;add(Ypoc)

The action Yp,..status := L is executable for Docy and result in the local
state where Rep,, is the empty repository and o, is such that o..(u) = ca
and o¢-(Ypoe) = Docf, where Docj.user = John, Docj.status = L and the
workflow process state is

add(Ypoc)

Finally the action add(Yp..) is executable for the object Docj and results in the
final state where Rep., is {Doc{} and o, is such that o.-(u) = ca, 0er(Ypoe) =
Docjy and the workflow process state is

skip.

86 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS

4.8 Application to access control problems

The framework presented in this chapter allows the expression of complex ac-
cess control policies that may be difficult to express with role based access
control(RBAC) [69] or RBAC-based extensions. More specifically, we men-
tioned, at the end of Chapter 3, that access control decisions may be related to
information on the object and not only specifications related to the user. An
example for such a requirement is the constraint that an object can be used by
only one user at a given time. It is clear that such a requirement cannot be
easily expressed within a standard RBAC' framework since the restriction is on
one instance of the object rather than on the user.

To illustrate the expressivity of our framework in this respect we extend
the access control policy for the entity e.,. in our running example by adding
the new access control rule A, and we extend the associated workflow with the
corresponding task definition. The access control policy for e, is presented by:

(rulel) Y := certifier ca subject u role clerk
permit(X, store) < get(Y, ca) A Y.subject = X.user

(rule2) permit(X, use) + X.status = L
and the workflow associated with it is given by
Wcr = (7—CT,PCT)
where
T ({permit(X, store) — X.status := L;add(X),
o permit(X,use) — X.status := inuse; add(X)}
and
((vu; vYpoc; recv(Ypoe, u, use); permit(Ypoe, use))
P, = ||(vu';vY),,;reco(Y),., W, store);
permit(Y},., store)))!
We argue that the constraint preventing multiple uses of the same object can
be simply modeled by adding an attribute status to the object representation.
As such, in rule 2, the task use is permitted with respect to an object denoted
by X if X.status = 1 which essentially means that the object is not in use.
The effect of this task presented by the task definition

permit(X, use) — X.status := inuse; add(X)

modifies the object, (which is now in use), by extending it with the value inuse
associated to the attribute status.

Note that the resulting object does not satisfy the body of rule 2 anymore.
Note also that after the execution of task store with respect to an object X, if
rule 1 is satisfied for X, the object X is no more seen as being in use. This is
expressed by the effect of store in the task definition

permit(X, store) — X .status := L;add(X)

where the attribute status is again undefined.

4.9. CONCLUSION 87

4.9 Conclusion

We presented a logical framework to express the dynamic evolution of entities in
a distributed environment with respect to their security policies. We assumed
that an entity can execute some functionalities. These functionalities, that we
expressed as tasks, are protected by a set of access control rules. However
the constraints in access control rules can depend on information (modeled as
objects) provided through a negotiation with other entities. Consequently, we
described an entity in our framework as a set of access control rules protecting its
functionalities but also a set of trust negotiation rules that manage the exchange
of information with the other entities in the environment. We presented these
rules by means of Horn clauses in a first order language and we provided their
evaluation semantics in order to check whether a task is permitted with respect
to an object in a given entity, and if an object is available for a given entity.
Also, we associated to each entity a local state constituted of a repository and a
substitution, and we argued that the state evolution is performed with respect
to a workflow process associated with it. The workflow gives an order on the
actions and tasks to be performed within the given entity and updates the local
state accordingly. The actions in the workflow are invoked on demand and are
verified with respect to the security rules of the entity before their execution.
In this chapter we presented the operational semantics for the execution of the
workflow subprocess.

Discussion The attribute based feature of this framework guarantees more
flexibility in order to take into account non-standard requirements. In fact
we do not make an explicit distinction between users and objects, but rather
extract from them the relevant information that shall be used as a base for a
decision (ex. wuser, role, object name, object type, object content, user age etc.)
and express conditions in terms of restrictions (equality, inequality checking) on
the attribute values for these object structures. Moreover, the dynamic feature
provided by the workflow models in a natural way the modifications that occur
after the execution of an action and thus allows a new evaluation of permissions
based on actions already performed.

88 CHAPTER 4. POLICIES WITH NEGOTIATION AND WORKFLOWS

Chapter 5

A Case study: The Car
Registration process

In this chapter we present the modeling of a complete case study provided by
the Avantssar Project deliverable D5.1 [73]. We illustrate the construction step
by step by defining the entities, and adding the security policy and the workflow
structure to each of them.

5.1 Car Registration process

Mike is looking for a new car. After consultation of several car dealers, he
chooses a two-year old mid-size car and pays using his credit card. Of course,
before he is allowed to drive the car, he has to register his new car at the car
registration office, which of course is closed during weekend. Thus, Mike takes
advantage of the citizens portal where he can lodge a car registration anytime.

The different entities

We first present the main actors of the scene.

Mike is the customer of the car dealer and the one who wants to register his
new car.

CentrRep is a central repository where car registration documents are stored
among other things. Additionally, empty forms for several purposes are
stored and available to everyone. The central repository is not purely
passive: it checks digital signatures of documents and authorization of
users retrieving and storing documents. The documents themselves are
not inspected by the central repository.

CarRegOffice is an office where requests for car-registration have to be sub-
mitted. There might be several CarRegOffices, e.g., one per district. All

89

90 CHAPTER 5. A CASE STUDY: THE CAR REGISTRATION PROCESS

CarRegOffices use the same CentrRep to access and store documents. In
this example, CarRegOffice stands for the office which is in charge for
Mike.

RegOffEmpl is an employee of the car registration office. He is processing car
registration requests. Employees of the car registration office are allowed
to read documents from the local repository, add any number of com-
ments to them and store documents in the local repository. Additionally,
a RegOffEmpl is allowed to store fully processed car registration requests
to CentrRep if his or her head of the car registration office legitimates
him/her to do so. In our example the RegOffEmpl Peter is processing
Mike’s request. The head is responsible for leading a car registration office
and is the only person which is primarily permitted to write documents
to the central repository. Of course, s/he can delegate this privilege to
trustworthy employees to support him/her in his/her hard work. Please
note, that the head is always also a RegOffEmpl. Melinda is the head of
the CarRegOffice in charge for Mike.

RegOffCA is the certificate authority of the car registration office. Its task is
to generate trustworthy certificates on employees. A ”certificate” in this
context is an authentic assertion, such that the consumer of the assertion
is sure that the author of the assertion is the ”signer”, in this case the
RegOffCA.

The car registration process is shown in Figure 5.1.

For Mike, the process is completely transparent, he does not know about this
process running in the background. He logs into the citizens portal, navigates to
the car registration office and initiates the car registration process by fetching
an empty form (1). He fills in data about his new car (2). After that, he adds
any required and optional certificates to the form, e.g. a proof that he possesses
a valid car insurance, a certificate that the car is roadworthy, etc (3). After
that, he signs the document and sends it to the CarRegOffice (4).

Thus, the document is stored in the local repository of the car registra-
tion office. The role of Mike is over, he only waits for the response of the car
registration office.

The car registration process:

On Monday, Peter, a user of the RegOffEmpl, fetches Mike’s document, reads it
(5) and adds some comments to the document (6). These steps may be repeated
by any number of RegOffEmpl. After that, Peter performs the following actions
in an atomic way:

7. checks Mike’s signature,

8. checks the authorization of Mike, based on the certificates provided by
Mike (e.g. car insurance, etc),

5.1.

CAR REGISTRATION PROCESS

Citizen CentrRep CarRegOffice RegOffEmpl
Mike Peter
(1) fetch-empty-form()
orepare document (2) I
add data,
his certificates, (4) send(document) (5) read()
signs document (3)
(6) write-

(12) writel

comments()

any RegOffEmpl may write
comments into document

(7) check signature

(8) check authorization

(9) take decision

(10) write decision to document
(11) sign final version of document
authorized RegOffEmpl may write

to CentrRep signed document
with a status information

Figure 5.1: The Car Registration Process

9. takes a decision,

10. writes the decision in the same document,

11. signs the final version of the document, and

91

12. writes it into CentrRep. Note that RegOffEmpl needs special permissions
for this step.

13. Finally, Peter informs the CarRegOffice that he has completed his task.

Thereupon the CarRegOffice stored the document in the CentralRep and in-
forms Mike about the decision taken upon his request. With this last action,
the car registration process terminates.

The system constraints

The system constraints of this scene are given below:

e Peter holds three certificates:

- The RegOffCA confirms, that Peter is a RegOffEmpl and
- that Melinda is RegOffHead.

- Melinda permits Peter to write documents to CentrRep.

92 CHAPTER 5. A CASE STUDY: THE CAR REGISTRATION PROCESS

e The access control list (ACL) of CentrRep states, that

- Anybody can get empty forms

- RegOffEmpl can read documents from the repository, but can only
write documents if his/her RegOffHead permits it.

- RegOffHead can write documents.
e The local (trust) policy states that RegOffCA can say

- who is RegOffHead and
- who is RegOffEmpl.

With these system constraints in mind, it is easy to see that Peter actually is
authorized to process Mike’s request and is also authorized to write the final
document back to the CentrRep.

5.2 Modeling the car registration process

As presented in Section 5.1, we distinguish five distinct entities, namely the
central repository that we denote by e,ep, the car registration office denoted by
€car, the registration office employee denoted by ecpmpi, the central authority de-
noted by e, and the customer denoted by e.. Let € = {€rep, €cars Cempls €cas €c}
denote the set of entities in the model. Our aim is to express in the best possible
manner the different requirements given in Section 5.1 in a set of logical rules
as defined in Chapter 4. In this section we present some general guidelines to
the encoding of the model.

5.2.1 The car registration form

The car registration process models the different steps that are to be performed
on a given car registration form before a decision can be made. To do this, it is
necessary to have a communication between the different elements of the model
(i.e. the different entities). Throughout the modeling of the car registration
process, we do not consider the car registration form as it is, but we suppose
that relevant information were extracted form the initial document and are
expressed in the form of attributes with corresponding values. In the next
section we present the modifications and the evolution of the car registration
form between the different entities. This evolution will be represented in the
form of the addition or modification of attributes associated with the defined
object. Throughout this example we use the attribute objectld to denote the
reference id of the document, requester denotes the name of the customer
requesting the registration, signature and list are attributes concerning the
acceptability of the document, comment contains the comments added by the
employee, decider contains the name of the employee that made the decision
and decision contains the decision made on the document.

5.3. THE ENCODING OF THE CAR REGISTRATION PROCESS 93

5.2.2 Requests and other elements of the model

Apart from the object representing a car registration form, we use objects to
denote certificates for role membership or delegation as will be seen in Section
5.3.2. For example, an object of the form

subject v is — member role head

denotes that a subject u is a member of role head. In order to acquire permis-
sions, we also define request objects. In this case study most requests concern
actions to be performed on the registration form (store, access, get, decide, etc.).
Thus we shall prefix the object representing the car registration form with the
attribute subject to denote the user requesting the permission and the attribute
action that will have a s value request to denote that the object is a request.

5.2.3 Modeling the workflow

In addition to the security rules, one needs to express the state evolution of the
entities. In fact, to model the car registration process, one needs to define a
sequence of message exchange that provide the link between the different entities
in the model. The expression of the dynamic aspect of the entities is done in
two times. First we provide the process definition of the entity’s functionalities
then we present the workflow associated to each entity.

5.3 The encoding of the car registration process

In this section we give the encoding of the car registration process by defining
the different entities presented in Section 5.2 and their associated workflow.

5.3.1 The central repository

The entity e, consists of two access control rules that regulate the access to the
entity’s functionalities, namely store and access. The task store is authorized
on a given object if the object contain a decision and the user requesting the
store functionality can store the document. The task access is authorized for
any member of the role employee. The entity e,., is thus defined as follows:

Access control rules

Y :=subject u can — store — doc certifier v
Z = subject v is — member role head
permit(X, store) < get(Y, ca) A get(Z, ca) A X.subject = u A X.decision # L

X :=subject u request objectld y
Y :=subject u is — member role employee
permit(X, access) < get(Y, ca)

94 CHAPTER 5. A CASE STUDY: THE CAR REGISTRATION PROCESS

To the entity erep is associated a workflow. The workflow consists of the
set of process definitions on one hand and the actual process that defines the
behavior of the entity on the other hand.

Process definitions

permit(X, store) — X.subject := L; X.action := L;add(X)

permit(X, access) — vY;Y.subject := X.subject; Y.objectld := X.objectId;
send(Y, empl, T)

Workflow process

(vX; recv(X, car, store); permit(X, store)
|lvy; recv(Y, empl, access); permit(Y, access))!

5.3.2 The central authority

The entity e, is responsible for the delivery of objects certifying who is employee
and who is head. It also manages the delegation certificate in the case where
the head of the car registration office decides to delegate the right to store to
one of the employees of the car registration office. The entity e, consists of one
access control rule that regulates the access to the entity’s functionality, namely
delegate — store. In addition, e., also contains two trust negotiation rules to
regulate role inheritance, but also to regulate the diffusion of objects to other
entities. In general, the entity e., can send an object to another entity in & if
it has it or can get it by trust negotiation. The entity e., is thus defined as
follows:

Access control rules

X :=subject v request delegatee u

Y :=subject v is — member role head

Z := subject u is — member role employee

W :=subject v is — head delegatee u

permit(X, delegate — store) < has(Y) A has(Z) A has(W)

Trust negotiation rules

X :=subject v is — member role employee
Y :=subject v is — member role head
put(X, self) « has(Y)

put(X,x) < has(X) V get(X, self)

To the entity e., is associated a workflow. The workflow consists of the
set of process definitions on one hand and the actual process that defines the
behavior of the entity on the other hand.

5.3. THE ENCODING OF THE CAR REGISTRATION PROCESS 95

Process definition

permit(X, delegate — store) — vY; Y.subject := X.delegatee;
Y.action := can — store — doc; Y.certifier := X.subject; add(Y")

The workflow process

(vX;recv(X, empl, delegate — store); permit(X, delegate — store))!

5.3.3 The car registration office

The entity e.q. is responsible for the delivery of documents to the customer but is
also the connection point between the request by the customer and the process-
ing done by the employee. It is responsible for the functionality get Available Doc
that fetches car registration documents to be evaluated by the Car registra-
tion employees, the functionalities storeInLocRep and getInLocRep that allow
the storage and access to the documents in the local repository of the entity,
storeInCr that sends the document to be stored in the central repository once
a decision is made and notifyCustomer that sends a notification message to
the customer about the decision. The entity e.q, is thus defined as follows:

X :=subject u request objectld y

Y :=subject u is — member role employee

permit(X, get Available Doc) < get(Y,ca) A has(Z) A Z.status = L
AZ.objectld = X.objectld

Y := subject u is — member role employee
permit(X, storeInLocRep) + get(Y, ca) A X.subject = u A X.status = inUse

X :=subject u request objectId y

Z = subject u is — member role employee

permit(X, getInLocRep) < has(Y) A X.objectld = Y.objectId
A(X.subject = Y.requester V (get(Z,ca) A Y.status = 1))

X :=subject u request objectld y decision z
permit(X, storeInCr) < has(Y) A Y.decision # L A Y.objectld = u A Y.sent = L

X :=subject car request objectld y requester 2z decision w
permit(X, noti fyCustomer) < has(Y) A Y.notify = L A Y.objectld = X.objectld
AY.decision # L

To the entity e.q is associated a workflow. The workflow consists of the
set of process definitions on one hand and the actual process that defines the
behavior of the entity on the other hand.

96 CHAPTER 5. A CASE STUDY: THE CAR REGISTRATION PROCESS

Process definitions

permit(X, getInLocRep) — X .status := inUse; send(X, empl, check)

permit(X, storeInLocRep) — vY;Y := X;Y.subject := L;Y.action := 1;
Y.status := L;add(Y")

permit(X, storeInCr) — X.sent := ok; send(X, cr, store)

permit(X, noti fyCustomer) — vY; Y.objectld := X.objectlId;
Y.decision := X.decision; send(Y, X.requester, 1)

The workflow process

(v(X;recv(X, empl, getInLocRep); permit(X, getInLocRep))
[|(vY; recu(Y, empl, storeInLocRep); permit(Y, storeInLocRep))
[|(vZ; recv(Z, empl, storeinCr); permit(Z, storeInCr); permit(Z, noti fyCustomer)))!

5.3.4 The employee

The entity eepmyp; is responsible for the processing of the car registration forms
and for the decision making. An employee looks for available documents in the
car registration office, gets the corresponding document, checks for the signa-
ture validity and if the document list is complete, then write comments on the
document. The document can be viewed by several employees, one at a time,
as long as a decision has not been taken. Once a decision is written in the
document, the document is sent back to the car registration office in order to
notify the customer. It is responsible for the functionalities check that performs
an automatic check to verify the list of documents and the validity of the sig-
nature, refuse and accept that decide if the car registration document can be
processed, comment that allows employees to write comments on the car regis-
tration document and decide that adds a decision to the document and closes
the process in the entity. The entity ecy,p; is thus defined as follows:

5.3. THE ENCODING OF THE CAR REGISTRATION PROCESS 97

X :=subject u request objectld z
permit(X, check) + T

X :=subject u request objectld =
permit(X,refuse) < has(Y) A Y.objectld = x A Y.decision = L
A(Y.signature = notvalid V Y.list = incomplete)

X :=subject u request objectld x

Y := objectld x signature z list w

permit(X, accept) < has(Y) A (Y.signature = valid V Y.list = complete)
AY.decision = L

X := subject u request objectld x comment z
Y := objectld =
permit(X, comment) < has(Y) A Y.decision = L

X :=subject u request objectld = decision z
Y :=objectld x
permit(X, decide) < has(Y') A Y.decision = L A (z = accept V z = reject)

To the entity eempi is associated a workflow. The workflow consists of the
set of process definitions on one hand and the actual process that defines the
behavior of the entity on the other hand.

Process definitions

permit(X, check) — X .signature := vy; X list := vq; add(X);
(permit(X, refuse) + permit(X, accept))
permit(X,refuse) — X.decision := reject; X.decider := X.subject; add(X)

permit(X, accept) — skip

permit(X, comment) — X.comment := z; add(X);
send(X; car, storeInLocRep)

permit(X, decide) — X.decision := z; X.decider := X.subject;
add(X); send(X; car, storeInCr)

The workflow

(vU; send(U, ca, delegate — store)
||lvX; send(X, cr, access)
[|vY; send(Y, car, getInLocRep); vZ; recv(Z, empl, check); permit(Z, check)
[|vV (permit(V, comment) + permit(V, decide)))!

98 CHAPTER 5. A CASE STUDY: THE CAR REGISTRATION PROCESS

5.4 Conclusion

we have presented in this chapter a modeling for the car registration process.
This process involves different actors that we presented as entities. Each entity
consists of a set of access control rules and possibly trust negotiation rules that
regulate the access to the entity’s functionalities by authorized users. In order
to model the internal behavior of the entities we defined for each entity the di-
rect effects of the entity’s functionalities. Then we defined a workflow that put
an order on the execution of the functionalities and ensures the communication
between the different entities. In fact as we can see in this model, the communi-
cations between the different entities are done by sending and receiving requests
to access the corresponding functionalities.

Part 11

Expressing delegation and
separation constraints using
access control and workflow

99

101

Introduction

In the first part of this thesis we presented an attribute based logical framework
to express access control policies with trust negotiation and workflow execution.
Our main concern was to allow the expression of policies beyond the scope of the
role based access control and to provide a formal model for sharing information
between entities in a distributed environment. In this part we present security
features and specifications to reason about the safety in the framework.

In the access control framework defined in Chapter 4 we distinguish between
a static policy and a dynamic policy. The static policy evaluates the current
state of the different entities with respect to the trust negotiation rules, whereas
the dynamic policy is expressed by the interaction between the access control
rules and the workflow and modifies the security state accordingly. The explicit
definition of workflow processes and transition rules allows the update of an
entity’s security state in order to reevaluate new decisions with respect to the
evolution of the state. The access control rules act as guards on the execution of
these processes in the workflow. Moreover, the trust negotiation rules provide a
formal model for the communication between the entities in the environment in
order to reach mutual trust. Finally, the advantage of working with attributes
allows the expression of security properties via the definition of new objects
without modifying the syntax of our framework.

In this second part we shall be concerned with the expression and specifica-
tion of security properties both on the level of access control security and trust
negotiation communication.

On the one hand, an access control framework must be able to express var-
ious access control properties implemented in the structure of an organization.
For example, it should offer the possibility for the delegation of tasks, while
preserving separation or binding of duty constraints and possibly guaranteeing
the least privilege property. As discussed in [14], it is often the case that differ-
ent variants of the same security property, such as delegation for example, are
needed in one organization. We present an encoding of delegation and separa-
tion of duty properties in a distributed environment. To do that we make use
of the interplay between the access control policy of a given entity and the trust
negotiation policies of the other entities in the model. This offers an interesting
way to express centralized access control properties in a decentralized manner
due to the possibility of negotiating certificates among the different entities.
However in the presence of access control features such as delegation or role
inheritance for example, additional authorizations that were not initially taken
into account in the policy design may take place. Due to the dynamicity of the
framework, it is not always easy to predict such additional authorizations, since
access rights are modified in each security state. To this end we present in this
part some decision problems to check for violation of security constraints.

On the other hand, the distributed nature of the environment necessitates
communication between entities in order to exchange objects during a trust ne-
gotiation session. In Chapter 4 we assumed that these communications take
place in a secured environment, i.e. all entities abide by their trust negotiation

102

rules. However, this is not usually the case in real world applications. Thus
it is necessary to consider the security offered by the communication channels
between the different entities in order to assess the security of the trust nego-
tiation infrastructure. To this end we present in this part an extension of our
framework that is concerned in securing the trust negotiation sessions and give
security specifications as decision problems to check for the authenticity and
confidentiality properties during a trust negotiation session.

This part is structured as follows. In Chapter 6, we give a specification of
our understanding of delegation and revocation in a distributed environment.
Then in Chapter 7 we give an overview of security constraints, namely separa-
tion and binding of duty constraint and express the modeling and verification
of such constraints within our attribute based framework. In Chapter 8 we
give a representation of the RBAC model in our framework along with the role
membership, role activation and role inheritance properties. In Chapter 9 we
explore a different security problem. We assume the presence of a malicious
entity in the environment and specify an intruder model in a trust negotiation
session in order to test some authentication and confidentiality properties with
the presence of this malicious entity. To do so we extend the syntax and evalu-
ation semantics of our security rules to take into account the notion of channels
and encryption keys.

Chapter 6

On specifying delegation
and revocation in a
dynamic framework

Most organization have business rules and regulations that govern their security
policy. Among these are separation of duty, least privilege and delegation.
Delegation is the act of assigning rights and responsibilities to another person
(e.g. from a manager to a subordinate) to carry out specific activities. We can
distinguish between delegating a right, delegating a set of rights or delegating
a role. Nowadays, since more and more organizations work in a decentralized
environment, it is not always evident to assign the best task to the best person.
That is, the tasks may be allocated to a given service that in turn should delegate
subtasks to qualified personnel. For example the general manager of a company
may delegate a task to the regional manager who in turn delegates it in form of
subtasks to various employees.

In our representation of access control properties in a distributed environ-
ment we define access control objects to be tasks, roles or activation certifi-
cates within a given entity. We suppose that each entity is responsible for
a collection of access control objects. For example, the entity representing
the accounting department will be responsible for the roles accountant and
account — supervisor and tasks compute and check. Thus this entity will
be responsible for all operations (delegation, role inheritance, role activation,
etc..) concerning these objects. The decentralization of the information is then
performed via trust negotiation. That is, in order to receive information about
a given access control object, a trust negotiation session is to be launched with
the entity holding this object.

Consequently, it is not necessary to have a centralized authority to handle
delegation of tasks or assigning of roles. Rather, a decentralized expression of
the requirements to use an access control object can be identified in the entity
responsible for it, and the trust negotiation policy then regulates the diffusion

103

104 CHAPTER 6. DELEGATION AND REVOCATION

of such authorizations to other entities in the environment.

This chapter is divided into two independent parts. The first part provides an
overview of delegation. In Section 6.1 we present different aspects of delegation
and revocation in the literature and we give a short survey on the expression
of delegation and revocation in access control frameworks. The second part
of this chapter is devoted to our modeling of the concept of delegation and
revocation. In Section 6.2 we present the delegation context by providing the
elements needed to define delegation and revocation rules. In Section 6.3 we
give a generic form of delegation and revocation rules as access control rules
in our attribute based framework, then we define in Section 6.4 the process
definition for the different delegation and revocation tasks. In Section 6.5 we
complement our model with the needed rules in order to express the acquisition
of the delegated right and the propagation of delegation. Finally, Section 6.6
provides an illustrative example for the use of delegation in a distributed system.

6.1 Related Works

The delegation is one of the most important business aspects in an organization
as it allows more flexibility and efficiency in the division of tasks between au-
thorized users. One of the first manifestations of delegation is the grant action
in the take-grant model [46], where a user u having the right for object o can
grant the right to read the object o to a user v. As a result, v acquires the
right to use o by delegation from w. The development of the RBAC framework
enhanced the expression of access control policies as discussed in Chapter 2 and
thus the expression of delegation was then directed towards delegating a role,
part of a role or even a role hierarchy. This was subject to many interesting
research (]9, 8, 81, 82, 68, 29, 31, 75, 76]).

The default user-permission assignment may not always be feasible for the
given user. For example, a manager that is assigned to more than one project
may choose to delegate them to an assistant manager in order not to be late
for the delivery date. Delegation can also be useful in case of sickness, leave or
lack of sufficient qualifications to perform the permitted task. Delegation thus
provides a possibility to define new user-permission assignment that are decided
by the users and not imposed by the access control administrator. In order to
enhance the efficiency of user-permission assignments, different flavors of dele-
gation are studied in the literature. For example, an administrative delegation
where the delegator does not necessarily have the right or the qualification to
perform the delegated task, or a user-delegation where the delegator has the
qualifications and thus the right to execute the task but may have other con-
straints making him delegate it to someone else etc.

6.1.1 Role delegation

One of the first works that dealt systematically with delegation between users
are by Barka and Sandhu [9, 8]. They define delegation in the RBAC framework

6.1. RELATED WORKS 105

as a role delegation, i.e. a user belonging to some role can delegate his role
to another user acting in another role. The authors identified an exhaustive
list of the characteristics that are related to delegation. They also tried to
characterize the use of revocation and state some of the difficulties that appear
when explicitly modeling revocation. In this subsection we present the different
aspects of delegation defined in [9], and then state the problems and some
solutions for the implementation of revocation in a delegation model. The short
presentation of delegation and revocation features helps us in characterizing the
development of research with respect to these notions and to eventually propose
a flexible model that can solve some of these difficulties.

Delegation

When talking about delegation, different characteristics are to be taken into
consideration, Barka and Sandhu [9] list these different aspects as follows:

Permanence: A permanent delegation allows the delegatee to replace the del-
egating user in the delegating role (the delegator will not be able to regain
his role unless an administrator assigns him again to that role.) while
a temporary delegation keeps the right for the delegator to revoke the
delegating role at any time.

Monotonicity: A delegation can be monotonic (often referred to as a grant
delegation.) in which case the delegator maintains power on his role even
after the delegation or non-monotonic (often referred to as a transfer del-
egation.) when the delegator loses control over the delegated role for the
duration of the delegation. The delegator can however revoke the delega-
tion at anytime.

Totality: This is a notion proper to role delegation. A total delegation dele-
gates all the permissions assigned to a role whereas in partial delegation
only a subset of the role is delegated (this amounts to delegating a part
of a role hierarchy.).

Levels of delegation: A single-step delegation cannot be further delegated
whereas a multi-step delegation can be delegated as many times as indi-
cated.

Multiple delegation: refers to the number of users to whom a delegator can
delegate the same role.

Agreements: We talk about bilateral agreement when both the delegator and
the delegatee need to accept the delegation for it to take place, and unilat-
eral agreement where the delegator alone can decide on delegating a role
and the delegatee has no choice but to accept it.

A permanent delegation is often viewed as a form of permission assignment
performed by a user rather that an administrator. We are more interested in
the expression of temporary delegation as this type of delegation can be revoked

106 CHAPTER 6. DELEGATION AND REVOCATION

and thus offers a more general notion of delegation. We express both monotonic
and non-monotonic delegation and distinguish between single and multi-step
delegation. We will not encode all the possible types of delegation, but instead
we hope to convince the reader that any of the above considerations can be
taken into account. For the sake of simplicity, we assume that a delegator can
only delegate a given right on the same object once. Multiple delegation can be
treated similarly. Finally we do not present the totality feature explicitly as we
work on an attribute based framework as opposed to a role-based framework.
Thus this property can be encoded by the modeler in the specification of the
model if needed.

Revocation

In the case of a temporary delegation, the delegation usually expires after a pe-
riod of time, specified by the delegator. However this assumption is not always
sufficient. In many cases, the delegator may wish to terminate the delegation
prior to the end of validity. Barka and Sandhu enumerate two main character-
istics concerning revocation, namely:

Grant-dependency: A revocation can be grant-dependant if only the direct
delegator can revoke membership or grant-independent in which case any
original member of the delegated role can revoke membership of the dele-
gated role.

Cascading revocation: A delegatee is revoked from a delegated role if the del-
egatee is revoked from his supporting role i.e the role to which he belonged
prior to the delegation. If a delegator is revoked from the sponsoring role
(i.e the role responsible for bringing in delegated members) then all mem-
berships delegated by that delegator are also revoked.

Depending on the context, several assumptions can be made regarding the
enforcement of revocation.

One of the problems of revocation is the case where the delegator loses his
sponsoring role, that is the role in which the delegation was possible. In that
case two choices are possible: either the delegatee(s) delegated by that user
through the sponsoring role keep the delegated role or the delegatee loses the
delegation through a cascading revocation.

Another problem concerns the person performing the revocation. In fact if
we assume that revocation is grant-dependent then it may sometimes be com-
plicate to revoke a delegatee from its delegated role especially if the concerned
delegatee is at the end of a delegation chain. Also if one allows multiple delega-
tions for the same delegatee, then if one of the delegators revokes the delegation,
one has to define what should happen to the delegated rights of the delegatee.

In our representation of delegation, the permission to revoke a delegation is
stated as an access control rule that acts as a guard for the revocation process.
As such, it is possible to define both grant-dependent and grant-independent

6.1. RELATED WORKS 107

revocation without modifying the actual definition of the delegation and revoca-
tion processes. As for the cascading revocation, it is sufficient for one delegation
to be revoked to automatically revoke the latter delegations in a delegation chain
in the case of a multi-step delegation. These features are presented in Sections
6.4 and 6.5.

6.1.2 Delegation Models

In RBDM [8], a user can delegate his/her role to another user. The delegation
is a total one step delegation and concerns flat roles in RBAC. Zhang et al [81]
defined RDM2000 a rule based framework to model delegation and revocation
in RBAC. Unlike RBDM, RDM2000 considers delegation in the presence of a
role hierarchy and deal with multi-step delegation as well as different types of
revocation. They use a rule-based declarative language to define and enforce
constraints on the delegation and revocation taking into account role hierarchy
and delegation paths. However the delegation unit in RBDM and RDM2000 is
the role, making delegation a user to user role assignment. In the case of partial
delegation, the partiality is dealt w.r.t. role hierarchy, i.e. partial delegation
refers to delegating a lower role in the role hierarchy for the delegator. In the
same logic, total delegation means delegating the strongest role in the hierarchy.

PBDM [82] is a flexible delegation model that supports multi-step delegation
and revocation in role and permission level. In order to distinguish between
role delegation and permission delegation, PBDM defines auxiliary roles called
delegatable and delegation roles, that allow flexibility in assigning delegated
member to copies of the original roles. In PBDMO, a user can delegate all or
part of his/her permissions to delegatees. PBDMO allows the delegation of a
role without delegating the associated hierarchy through the creation of copies
of the original roles, called delegation roles and associating delegatees to the
latter rather than to the original roles. In PBDM1 and PBDM2, the permission
flow is managed by a security administrator with delegatable role. In PBDM2,
role-to-role delegation (i.e the delegation of a part or a whole of a role to other
roles without passing through a specific user) is done by adding more artificial
roles, namely fized delegatable roles (that represent the delegator) and temporal
delegator roles (that consist of a set of permissions that can be delegated).
Thus when a role is delegated the associated permissions are assigned to the
corresponding delegation role. The difficulty of the model lies in the fact that
it relies on the role-based structure, that is the main unit for access control is
the role, and thus to add and remove permissions one needs to define auxiliary
roles given that in RBAC one cannot distinguish between the delegation of a
permission (or a set of permissions) and the delegation of a role.

In these models keeping the user-role and permission role relations as defined
in RBAC complicates the expression of policies rather than simplifying it. This
structure makes expressing partial delegation, especially permission delegation
rather cumbersome as is the case in [82].

108 CHAPTER 6. DELEGATION AND REVOCATION

6.1.3 Delegation in access control frameworks

Delegation and revocation were also expressed in more general access control
models with dynamic properties. In this section we present different aspects of
delegation presented in some access control logical frameworks.

In Cassandra [13] delegation is expressed as a form of chained appointment
on role activations.

For example a subject mgr can delegate the role employee to a subject emp
if mgr can activate a special role appoint Employee. The delegation is expressed
via the predicate canActivate() that gives to the delegatee the permission to
activate the role but does not force him to actually use the delegated role in a
bilateral agreement.

canActivate(mgr, Appoint Employee(emp)) +
hasActivated(mgr, Manager()) (6.1)

canActivate(emp, Employee(appointer)) «
hasActivated(appointer, Appoint Employee(emp)) (6.2)

The role appointEmployee represents the activation of the right to dele-
gate. In this example a delegation of the role is done in two steps, Employee
can be activated if the delegator is active in the role manager (rule 6.1), and
willingly activated the right to delegate (rule 6.2). Revocation is expressed
by a deactivation of roles (that is the removal of credentials associated with
role membership). As such constraints can be imposed on who can deacti-
vate the role appoint Employee i.e the revocation can be either grant-dependent
or grant-independent. A cascading chain of revocation is also expressed in
the same manner. The employee role is automatically revoked for emp when
appoint Employee(emp) is deactivated.

Although the Cassandra framework is expressive enough to model many
the delegation characteristics, the fact that it is based on roles necessitates the
creation of new roles in order to define partial delegation. Also Cassandra does
not support non-monotonic (transfer) delegation.

In SecPAL [11] there is a possibility to define attribute based delegation.
The assertions about some given attributes (needed to access an entity) are
delegated to another entity provided this latter is trusted (assertions can be
provided concerning its identity for example).

For example:

Shop says x is entitled to discount if x is student
Shop says univ can say x is student if univ is university

Shop says BoardO f Education can say univ is university

6.1. RELATED WORKS 109

SecPal also allows width bounded delegation, that is a subject may delegate
a task (or a fact) to someone satisfying certain criteria. An example in SecPAL
is as follows

Alice says x can say y is friend if x is delegator

Alice says Bob is delegator
Alice says x can say y is a delegator i f x is a delegator, y possesses Email email

In fact in this example, is presented an example of a multi-step delegation,
however, a constraint is imposed in the delegation propagation (only subjects
with an email address can become delegators). SecPAL is an assertion based
language, and thus is more expressive in terms of delegation specification. How-
ever, the encoding of revocation is delicate. In fact in SecPAL only the issuer of
the delegation assertion can revoke it, and the revocation is done by the deletion
of the assertion that can be retrieved through a unique identifier added to the
assertion. Also SecPAL cannot express non-monotonic delegation.

The study of non-monotonic (transfer) delegation is not very present in re-
search on delegation. One of the first works that explored transfer delegation in
addition to the grant delegation was [29]. This work distinguishes between role-
based and permission-based delegations. In the former, role delegation takes
into account hierarchy associated with the delegated role. In the latter, only
specified permissions are delegated. An access control policy specifies whether
a delegator can delegate a role but also whether a delegatee can be authorized
to the delegated role.

This authorization mechanism is defined through two relations can — delegate
and can — receive that specify the set of roles that can be delegated by the
delegator and the set of roles that can be received by a delegatee. The distinc-
tion between constraints on the delegator and the delegatee allows a flexible
representation of conditions for the different actors of a delegation. For exam-
ple, when a role is revoked, it is deleted form the can — delegate relation but
the can — receive relation remains intact.

The enforcement or update of delegation is done through a delegation his-
tory relation DH. This latter records successful delegations and temporary del-
egation relations. Temporary delegation relations record temporary user-role
assignments tempUA and temporary user-permission assignments tempPA that
arise from delegation operations. For example, after a successful role transfer
delegation of role r from user w to user v the relation (u,r) is deleted from
tempUA and (v, r) is added to tempUA. In the case of revocation, (v,r) is deleted
formtempUA and (u,r) is added to tempUA. The role-based reference monitor
uses these relations to make access control decisions based on the different del-
egation and revocation actions.

This delegation model is extended in [31] to task delegation in workflow
systems. A workflow defines a partial order on a collection of activities called
tasks. The execution of a task by a user is authorized with respect to some user-
task relations that can either be defined directly or acquired through role-based

110 CHAPTER 6. DELEGATION AND REVOCATION

structure. A task is executable in a workflow structure if the user assigned to
this task is authorized to perform the task. The workflow management system
maintains a list of the concrete tasks and generates a task list that assigns tasks
to users during a workflow execution. As in [29], delegation is controlled by DH
and a temporary task-user authorization (T'empT A).

We chose a delegation model close to this model first because of the clear
distinction between the specification of the delegator right to delegate and the
delegatee right to receive the delegation, and second because of the delegation
history that facilitates the expression of the delegation and revocation effects
both in the case of a monotonic and non-monotonic delegation.

In [75] the authors propose an expression of user to user delegation. In their
model a grantor wishes to delegate the object of delegation to a delegatee. In
order to do that, the grantor must have the right to delegate the object. This can
be a direct right inherited by the RBAC structure (through role activation or
role inheritance for example.), or a right granted by delegation. They also offer
the possibility to delegate delegation rights in a flexible manner. The possibility
of defining generic constraints ensures the security of the organization against
violation of separation of duty constraints for example. They allow multiple
delegation, i.e. the same delegatee may receive the same delegated right from
more than one delegator restrictions on the delegation depth, this creates cycles
(e.g. one subject delegates a right to another subject who in turn delegate the
same right to the former).

To model revocation, they define, a chain delegation recognizable via a path
between the delegator and the delegatee. A delegator can revoke a right from
a delegatee along a given path if there is no other path that leads to the same
right (through another delegation). Generic constraints are defined to preserve
the security properties of the system, and thus the only restriction on the act
of delegating is to not violate these generic constraints.

In [76] the authors argue that delegation is a dynamic aspect that alters the
local security state. The security state is made up mainly of the user-permission
relations that users can acquire either by delegation or by role activation and
inheritance. The act of delegating a right changes the permission relation of the
delegatee (adds extra rights to the delegatee permission relation.). Conditions
on the delegator and the delegatee are specified by predicates. u; can grant role
r to us if u; is a member of r, uy satisfies the conditions to grant the role r and
ugy satisfies the conditions to receive role 7.

grant(uy, ug,r) <> (u1,r) € URAcan — grant(ci,r) € RL A (u1 satisfies c1)

A can — receive(ca,r) € RL A (ug satisfies cz)

A workflow is represented as a tuple < S, <,C > where S is a set of tasks,
< defines a partial order among tasks and C' is a set of constraints. In an access
control state, the permissions to perform tasks in the workflows are assigned to
roles. The state evolution in the workflow is based on the set of permissions
allocated to each user either by role membership, inheritance, or by delegation.

6.2. DEFINING THE DELEGATION CONTEXT 111

They present the distinction between the grant and transfer delegations
through the definition of the transition operations that modify the local state
of the workflow. However they assume that users can only delegate roles to
which they belong. Further, delegation is a single-step delegation and does not
support multi-step delegation. Finally the delegated right can only be revoked
by the user who performed the delegation.

Discussion The models in [29, 31, 76] offer similar solutions as our represen-
tation of delegation, as far as it is possible to express both grant and transfer
delegation by changing the state of the system. However in our proposed model
the state changes are expressed via workflow processes that add and remove
data from the state of the system. Unlike [76], our model allows multi-step
delegation. Also, we have the possibility to model both grant-dependent and
grant-independent revocation. The extension to workflow systems in [31] is also
very interesting in the fact that delegation history is a guard against violation
of security constraints. In our framework, as in the case of [13, 11], the delega-
tion model is an extension of an access control framework, and thus can express
delegation in the access control context, and attributes allow the expression of
delegation beyond the scope of RBAC as is the case in [11].

6.2 Defining the delegation context

As we mentioned in Section 6.1, research was mainly concentrated on delegation
within the RBAC framework. This gave more flexibility and enhanced the
usability of the RBAC model but constrained the expressivity of delegation. In
fact in RBAC constraints are only about roles or role specifications, and thus
cannot take into account a user specification. For example a requirement stating
that a user in the role manager can delegate this role to an assistant with five
years experience maybe difficult to express in the RBAC framework. As such
our attribute based framework can express the RBAC structure and adds more
flexibility in expressing additional constraints that may not be related to the
specification of roles. In the rest of this chapter we give our representation of
delegation and revocation.

In general, delegation may be either a transfer where the delegator loses
the right over the delegated objects after the delegation, or a grant where the
delegator keeps the delegated right. Moreover the delegator may choose to only
delegate the authorization over the object or to allow the propagation of the
delegation by also giving the right to delegate such an object.

We start by defining the objects that we shall use to express the delegation
properties and effects.

6.2.1 The right to delegate

We will not worry about how a subject acquires the right to delegate or to
receive the delegation as we assume that such rights are guaranteed by the

112 CHAPTER 6. DELEGATION AND REVOCATION

access control policy of the responsible entity. We shall however focus on the
various steps involved in the delegation and revocation of such an object. Thus,
we suppose that, in order to be authorized to perform the act of delegation on
an object, the delegator must provide a proof certifying that he has the right to
delegate the object. Further, in order to be authorized to receive the delegation
for an object, the delegatee must provide a proof certifying that he can receive
the delegation for the object. To this end we present special objects intended
to certify these properties. Note that these objects will be used later to define
the general rules for delegation and revocation.

Certifying the right to delegate

The certification that a user u has the right to delegate a task depends on two
criteria, the type of the delegation (i.e. grant or transfer) and the depth of the
delegation (i.e. single-step or multi-step), and is given by a special object that
we call the delegator object. The type of the delegation is expressed by values
grant and transfer associated with the attribute type in the delegator object
to denote that the delegation is a grant or transfer delegation. The depth
of delegation is expressed by the action can — 1 — delegate for a single-step
delegation and can — delegate for a multi step delegation.
A delegator object has the form:

subject u action object 7 type type

where v is the identity of the delegator, 7 is the object to be delegated,

action € {can — 1 — delegate, can — delegate}, and type € {grant,transfer}.
Note that one can add additional attributes in order to further constrain

delegation.

Example 6.2.1. The object

subject mary can — delegate object report right read type grant

denotes that mary has the right to delegate the right read over the object
report in a grant multi-step delegation.

Delegator objects can be either assigned to the user at the initial state or
acquired by the security policy of the entity.

Certifying the right to receive the delegation

The certification that a user w has the right to receive the delegation for an
object is given by a special object that we call the delegatee object. The right
to receive the delegation is independent of the type of depth of the delegation
and is expressed by the action can — rcv — delegation The delegatee object is
of the form:

subject u can — rcv — delegation object 7

6.2. DEFINING THE DELEGATION CONTEXT 113

Note that one can add additional attributes in order to specify the criteria
over the delegated object

Example 6.2.2. The object
subject bob can — rcv — delegation object report right read

denotes that bob has the right to receive the delegation for the right read over
the object report.

Delegatee objects can be either assigned to the user at the initial state or
acquired by the security policy of the entity.

6.2.2 After the delegation

When talking about delegation, one also needs to take into consideration the act
of revoking the delegation. In most cases in the literature, it is assumed that the
revocation is made solely by the delegator. This is not always true. In fact, one
can consider a situation where a higher authority monitors the delegations and
has the power to revoke a delegation in the place of the delegator if a conflict or
abuse of power is reached. On the other hand, before performing a revocation,
one needs to have a proof that the delegation actually took place. In order to
remedy to these situations, we define two special objects.

Certifying the right to revoke a delegation

We assume that a revocation can be performed by a subject that has the right
to revoke the delegation and express this by the action can — revoke. The
certification for the right to revoke is given by a revocation object of the form:

subject u can — revoke object 7

Note that this right can be granted by an administrator or can be acquired
through the access control policy.

The result of performing a delegation

When the act of delegation is executed, it has to be recorded in order to keep
track of the delegation and eventually revocations. To this end we define the
delegation history object records the executed actions as an object of the form:

subject u delegated delegatee v object 7 type type

where u denotes the identity of the delegator, delegated is the action re-
ferring to the recorded delegation v denotes the identity of the delegatee, 7 is
the delegated object and type € {grant,transfer} refers to the type of the
delegation.

Note that in the history record we do not need to specify the delegation
depth as this will be taken into account in the definition of delegation rules in
Section 6.3.

114 CHAPTER 6. DELEGATION AND REVOCATION

Remark: In the above presented objects, and in the rest of this chapter we
treat delegation in general. In fact we talk of a delegation object as a value for
the attribute object. However, this value can express a permission, a task, a
role or any other attribute of our choice. In order to add to the clarity of the
delegated object, we may add an optional attribute nature that would have for
value the nature of the delegation (i.e role, task, etc...) when this is needed.
For example

subject u delegated delegatee v object 7 nature role type type

records a delegation for a role 7.

6.3 Expressing the rights to delegate and revoke

In Section 6.2 we presented the objects that will be used in order to specify
delegation. Recall from Chapter 4 that access control rules are defined by the
predicate permit that takes as argument an object representing the request, and
a task. In this section we use the access control rules to specify the constraints
concerning delegation and revocation. The tasks denote the different types
of delegations and their corresponding revocations. We define four different
types of delegation, namely single-step grant delegation, single-step transfer
delegation, multi-step grant delegation and multi-step transfer delegation. Their
corresponding tasks will be denoted grant, transfer, pgrant and ptransfer
respectively. Further, we define four corresponding types of revocation which
tasks will be denoted rvk — grant, rvk — trans,rvk — pgrant, rvk — ptrans
respectively.

Delegation task

We assume that a delegation of an object from a delegator to a delegatee is
authorized if the delegator holds the right to delegate and the delegatee the
right to receive the delegation. Further we assume that a delegation can always
be revoked if the revocation is executable. We assume that the delegator can
only delegate the same object once. As such we suppose that once the delegation
is performed, the delegator loses the right to delegate. One can choose to make
the assumption of multiple delegation by keeping the object certifying the right
to delegate with the delegator. The single step grant delegation is expressed by
the following access control rule:

X :=subject u delegates delegatee v object 7

Y :=subject u can — 1 — delegate object 7 type grant

Z :=subject v can — rcv — delegation object T

W := subject u delegated object 7 type grant

permit(X, grant) < get(Y, self) A get(Z, sel f) A not(has(W))

6.3. EXPRESSING THE RIGHTS TO DELEGATE AND REVOKE 115

Discussion: Recall from Section 6.2 that W is an object that records the exe-
cution of a delegation of a specific type on a specific object. Thus, the presence
of such an object in the repository of the entity denotes that a delegation is
performed and thus the delegator loses the right to perform a new delegation.
We shall see in Section 6.4 that this object is removed when a revocation is
performed, in which case the delegator gains back the right to delegate.

We define the access control rules for authorizing a delegation corresponding
to the three remaining types of delegation in a similar manner as follows:

Single-step transfer delegation

X :=subject u delegates delegatee v object 7

Y :=subject u can — 1 — delegate object T type transfer

Z = subject v can — rcv — delegation object T

W :=subject u delegated object 7 type transfer

permit(X, transfer) < get(Y, self) A get(Z, sel) A not(has(W))

Multi-step grant delegation

X :=subject u delegates delegatee v object T

Y :=subject u can — delegate object 7 type grant

Z :=subject v can — rcv — delegation object 7

W := subject u delegated object 7 type grant

permit(X, pgrant) < get(Y, self) A get(Z, sel f) A not(has(W))

Multi-step transfer delegation

X :=subject u delegates delegatee v object 7

Y :=subject u can — delegate object T type transfer

Z = subject v can — rcv — delegation object 7

W :=subject u delegated object T type transfer

permit(X, ptransfer) < get(Y, sel f) A get(Z, sel f) A not(has(W))

Revocation task

We assume that a delegation by a delegator u to a delegatee v of an object
7 can be revoked by a subject w, if the w has the right to revoke 7 and the
delegation was recorded. The revocation is regulated by the following access
control rules. As in the case of delegation, we define four access control rules for
revocation, and for the sake of simplicity assume that they have the same body.
Note however that the policy modeler can add more restriction in the body of
the rule if needed. The access control rules for revocation are defined as follows:

X :=subject w rvk — del delegator u delegatee v object 7
Y :=subject u delegated delegatee v object T

Z :=subject w can — revoke object 7

permit(X, task) < get(Y, sel f) A (get(z,self) Vw =u)

116 CHAPTER 6. DELEGATION AND REVOCATION

where
task € {rvk — grant,rvk — trans, rvk — pgrant, rvk — ptrans}

As we shall see in Section 6.4 a revocation is always performed on a request,
that is we do not automatically allow cascading revocation.

6.4 The effect of delegation and revocation

In Section 6.3 we defined the access control rules for both delegation and revoca-
tion. In this section we present the effects for the execution of a delegation. The
effect of the delegation and revocation is implemented by defining corresponding
processes. Note that the process definition for delegation is different depending
on whether the delegator chooses single-step or multi-step delegation. In this
section we present these different aspects of delegation as well as revocation. In
all cases when a delegation is executed a delegation history object that records
this delegation is added to the repository of the entity (see Section 6.2). In the
case of a multi-step delegation, the delegatee also receives the right to delegate
expressed by the addition of an object to the repository.

In this section we are only interested in the propagation feature of delegation.
This is why we consider the same effects for the tasks grant and transfer on
one hand, and pgrant and ptransfer on the other hand.

Process delegation for single-step grant delegation

The process definition of delegation includes both the effect of delegation and
revocation. We express the process definition for the single-step grant delegation
as follows:

X :=subject u delegates delegatee v object 7
W .= subject w rvk — del delegator u delegatee v object 7
permit(X, grant) —
(vY;Y.subject := u; Y.action := delegated;Y.delegatee := v;
Y.object := 7;Y.type := grant; add(Y);
vWircev(W, z, rvk — grant); permit(W, rvk — grant); rmu(Y))
|lvX'; permit(X’, grant)

Discussion: This process creates a new variable Y, records in Y the execution
of the delegation, adds Y to the repository then waits for a request message in
W to revoke the delegation. The subprocess permit(W, rvk — grant); rmuv(Y)
is added at the end of the delegation process definition to make sure that the
revocation action is performed on the corresponding delegation. As such, the
revocation process denoted by permit(W, rvk — grant) acts as a simple guard on
the execution of the revocation. The process delegation for revocation is thus
defined by:

permit(W, rvk — grant) — skip

6.4. THE EFFECT OF DELEGATION AND REVOCATION 117

In fact we made the choice of adding the effects of revocation explicitly in
the process definition of the delegation in order to ensure that the changes (here
removing the object Y) are made for the corresponding delegation instance. The
revocation process thus becomes a mere guard that in case the access control
requirements are satisfies, unblocks the execution of the actions in question.

Finally, the presence of a delegation process in parallel at the end of the
process definition ensures the possibility of executing additional delegations (by
other users, on other objects) without blocking the process execution.

Process definition of the other delegation processes

The process definitions for transfer, pgrant and ptransfer are defined in the
same manner as follows:

The process definition for transfer (single-step delegation)

X :=subject u delegates delegatee v object T
W := subject w rvk — del delegator u delegatee v object T
permit(X, transfer) —
(vY;Y.subject := u; Y.action := delegated;Y.delegatee := v;
Y.object := 7;Y.type := transfer; add(Y);
vWireo(W, z, rvk — trans fer); permit(W, rvk — trans fer); rmv(Y))
[|lvX'; permit(X', transfer)

The process definition for pgrant (multi-step delegation)

X :=subject u delegates delegatee v object 7
W .= subject w rvk — del delegator u delegatee v object 7
permit(X, pgrant) —
(vY;Y.subject := u; Y.action := delegated;Y.delegatee := v;
Y.object := 7;Y.type := grant; add(Y);
vV; V.subject := v; V.action := can — delegate; V.object := 7;
Vtype := grant; add(V); vW; rev(W, z, rok — pgrant);
permit(W, rvk — pgrant); rmo(Y); rmu(V))
[|lvX'; permit(X', pgrant)

The process definition for ptransfer (multi-step delegation)

X :=subject u delegates delegatee v object 7
W .= subject w rvk — del delegator u delegatee v object 7
permit(X, ptransfer) —
(vY;Y.subject := u; Y.action := delegated;Y.delegatee := v;
Y.object := 7;Y.type := transfer;add(Y);
vV;V.subject := v; V.action := can — delegate; V.object := 7;
Vitype := transfer; add(V); vW;rco(W, x, rvk — ptrans fer);
permit(W, rvk — ptransfer); rmu(Y); rmu(V))
[lvX'; permit(X', ptransfer)

118 CHAPTER 6. DELEGATION AND REVOCATION

where
permit(X, 1) — skip

for 7 € {rvk — transfer,rvk — pgrant, rvk — ptransfer} .

Note that in the case of multi-step delegation, the revocation leads to the
removal of both the record object and the object giving the right to delegate to
the delegatee.

In the above process definitions we did not take into account the type (grant
or transfer) of the delegation, nor did we specify how the delegatee acquires the
right to use the delegation. These two notions will be presented in Section 6.5.

6.5 Using a delegation

The main purpose of performing a delegation is to give a user that does not
normally have the right to execute a task, this right. In Section 6.4 we defined
the effects of a delegation process. In this section we present how one can express
the delegation right acquired by a delegatee on the one hand and how to express
delegation chains in the case of multi-step delegation on the other hand.

6.5.1 Acquiring the right to use an object

In our model we assume that delegation can refer to any attribute. In this
section, we suppose that the object of delegation is a task. This assumption
does not undermine the generality of the model as the same logic applies to any
other object of delegation. We make this choice to show the flexibility of the
model.

We say a user u has the right to use task 7 if one of the following three
conditions holds:

e 1 has initially the right to use 7
e 1 acquired the right to use 7 by a grant delegation

e y acquired the right to use 7 by a transfer delegation and u did not delegate
this right.

In order to take into account these different cases, we define a trust nego-
tiation rule that delivers an object certifying that a user can use the task if at
least one of the above conditions is satisfied. Note that, in order to be faithful
to the syntax given in Chapter 4 we suppose that objects certifying that a user
can use a task are expressed by an object of the form

subject u can — use task 7

and not
subject u can — use object 7.

6.5. USING A DELEGATION 119

Thus one may impose in these cases the addition of the attribute nature and
associate it with the corresponding value task

X :=subject u can — use task 7

Y :=subject z delegates delegatee u object T nature task

Z :=subject z can — use task 7

W :=subject u delegates delegatee y object 7 nature task type transfer
put(X, z) < get(X,self) V (get(Y, self) A get(Z, sel f) A not(has(W)))

6.5.2 Constructing a delegation chain

In the above trust negotiation rule we used the object
subject z delegates delegatee u object 7

to express the fact that a delegation from z to u took place. However, such an
object can either be the product of the actual execution of the delegation by z
to the delegatee u, or can be acquired through a multi-step delegation.

In the case of multi-step delegation, one needs to construct the delegation
chain (from the initial delegator to the last delegatee.). To do this, one need
to define a transitive relation between delegations. We express this by a trust
negotiation rule of the form:

X :=subject u delegated delegatee w object 7 nature task type t
Y := subject u delegated delegatee v object T nature task type t
Z = subject v delegated delegatee w object T nature task type t
put(X, self) < get(Y, sel f) A get(Z, sel f)

where t € {grant,transfer}.

This rule allows to keep track of a delegation chain by providing certifi-
cates that link two users only if no revocation occurred between them. The
assumption that the object

subject u delegated delegatee w object T nature task type t

is removed when a revocation occurs guarantees that one can only deliver cer-
tificates in the presence of non-broken delegation chain.

6.5.3 Delegation as a graph representation

One can represent a delegation chain for a given delegation object 7 as a graph
G, = (V;,E;), where V, is the set of vertices containing the users and the set
E, C V. xV, represents the delegation relation, we say (u,v) € E, if there exist
an object

X :=subject u delegated delegatee v object T

such that
E,S,e; = put(X,1)

120 CHAPTER 6. DELEGATION AND REVOCATION

where ¢; is the entity responsible for the delegation object 7, £ and S represent
the set of entities and their corresponding local states as described in Chapter
4. When a delegation is revoked, i.e. when the object is removed from the
repository of the entity, the corresponding edge is removed from E..

Let EF denote the transitive closure for the delegation relation in G, and
denote by u; the initial delegator!. We say a user w has the authorization for
the delegated object T if (u;, w) € EF that is there exists a path from the initial
delegator to the user w with respect to the delegation of 7. Moreover, if an edge
in this path is removed, (u;, w) may no longer belongs to the transitive closure
of the graph, in which case user w would lose authorization over the delegation
object. In this model we suppose a cascading revocation. Also the assumption
that a delegator can only delegate once allow the construction of simple graphs
avoiding loops and branching.

However, allowing multiple delegation would authorize one user to gain au-
thorization for a given object through different delegations. In this case, when
a delegation is revoked, the delegatee may still have the authorization to use
the object gained through another delegation (if there exists another path for
the same delegation.). In [75] this case is considered and revocation takes place
only if there is no other path in the delegation graph that leads to the same
authorization. Note that in our framework we can consider the same assump-
tion. In fact, multiple delegation amounts to the addition of multiple objects
referring to these delegations, as such when revoking a given delegation, other
objects remain in the repository and thus the authorization for the delegated
object remains possible.

Example Suppose a,b,c,d and e are users, a is the initial delegator. Suppose
that a delegates the right 7 to b who in turn delegates it to ¢ who delegates it
to d who delegates it to e as follows:

b d

a T T.C T T e
In order to compute the transitive closure for the delegation chain, suppose
that:

S

T,

a
b

B

3
ISV

—

€T,
d

B

*_>e

IThe initial delegator has an object certifying that he can use the delegation object

6.6. AN ILLUSTRATIVE EXAMPLE 121

Then,

6.
6.
6.

© oo

.10
A1
A2

a_t, (
b 1.e (

a T.e (

)
)
)
)
)
)

S S O~~~

Thus there exist in the transitive closure of the above chain an edge from the
initial delegator a to e labeled with the delegation 7. This provides a certificate
that a delegates to e.

Suppose now that b revokes the delegation object from ¢, then the delegation
chain becomes:

a 7. b c 7.d T _ e

That is, we have the following transition relations

a_t.b (6.13)
dre (6.15)

Thus we can compute,
(6.14)(6.15) = ¢ _7 ¢ (6.16)

That is there does not exist in the broken chain an edge from the initial
delegator a to e labeled with the delegation 7, that is no object stating that a
can delegate to e can be provided and e’s delegation is automatically revoked.
The same applies to ¢ and d.

Note that the condition that the initial delegator has an object certifying
that he can use the delegation object makes it possible to discard the chain that
occurs after the chain break (i.e. the revocation).

6.6 An illustrative example

In this section we present a simple access control system consider two different
scenarios to illustrate the expression of delegation. We suppose the existence of
two entities:

The central authority denoted by e., that is responsible for issuing certifi-
cates related to user roles and permissions associated to roles. The central
authority can send a certificate to an entity if it has it in its repository.

A central repository denoted by e.. that is responsible for storing docu-
ments.

122 CHAPTER 6. DELEGATION AND REVOCATION

Scenario 1: Only a user in role manager can store and read documents in the
central repository.

- The central authority e.q

Security policy The security policy of e, consists of the following trust
negotiation rules:

put(X, z) « has(X)

X :=subject u is — member role r
Y :=subject u can — use role r
put(Y,z) + has(Y)

- The central authority e,

Security policy The security policy of e., consists of the following access
control rules:

X :=subject u request object o owner z
Y :=subject u can — use role manager
permit(X, store) + get(Y, ca)

Workflow

permit(X, store) — vY;Y.object := X.object; Y.owner := X.owner;
add(Y)

W= (vX;rcw(X, z, store); permit(X, store))!

Scenario 2: A user delegated by the manager can also store and read docu-
ments in the central repository.

In this scenario, we suppose that the system supports single-step delegation.
Also we suppose that to delegate the right to store a document, a user should
be in the role manager. Mary is a manager, she delegates the permission to
store an object in the central repository to Claire.

These assumptions modify the security policy of e., by adding an access
control rule for delegation and its corresponding process definition in the work-
flow. Further, we need to add a trust negotiation rule to take into account the
constraint on who can delegate. The new rules for the system are defined below.

- The central authority e,

Security policy The security policy of e, consists of the following access
control rule:

X :=subject u delegates delegatee v object store nature task
Y :=subject u can — 1 — delegate object store type grant

Z :=subject v can — rcv — delegation object store

W := subject u delegated object store type grant

permit(X, grant) < get(Y, self) A get(Z, sel f) A not(has(W))

6.6. AN ILLUSTRATIVE EXAMPLE 123

and the following trust negotiation rules:
put(X,z) + has(X)

X :=subject u is — member role r
Y :=subject u can — use role r

put(Y,z) < has(Y)

X :=subject u can — 1 — delegate object store type grant
Y :=subject u can — use role manager
put(X, self) < get(Y, self)

X :=subject u can — use task store
Y :=subject z delegated delegatee u object store nature task
Z = subject z can — use task store

put(X, z) < get(X, self) V (get(Y, sel f) A get(Z, sel f) A not(has(Z)))
Workflow

permit(X, grant) —
(vY;Y.subject := u;Y.action := delegated; Y.delegatee := v;
Y.object := store; Y.type := grant; add(Y);
vWirev(W, z, rvk — grant); permit(W, rvk — grant); rmv(Y))
[l X'; permit(X', grant)

permit(X, rvk — grant) — skip
W :=vX;rcv(X, z, grant); permit(X, grant)!
- The central authority e,

Security policy The security policy of e, consists of the following access
control rules:

X :=subject u request object o owner z
Y :=subject u can — use role manager

7 := subject u can — use task store
permit(X, store) < get(Y, ca) V get(Z, ca)

Workflow

permit(X, store) — vY;Y.object := X.object; Y.owner := X.owner;
add(Y)

W= (vX;rev(X, z, store); permit(X, store))!

In addition to e., and e, we add two entities for Mary and Claire, namely
e and e..

124 CHAPTER 6. DELEGATION AND REVOCATION

€m

Workflow:
vX;send(X, ca, grant)!||vY’; send(Y, cr, store)!

- €c

Workflow:
vX;send(X, cr, store)!

6.7 Conclusion

In this chapter we presented an overview of delegation models presented in the
literature and we proposed a model to express flexible delegation and revoca-
tion in our attribute-based access control framework. Our objective was to be
faithful to the syntax presented in Chapter 4 while presenting a structure that
is flexible enough to represent different kinds of delegation. We make use of
the interdependency between the access control rules and the trust negotiation
rules to base delegation authorization and delegation rights of certificates.

The delegation act is evaluated with respect to the disclosure of objects
certifying that the delegator has the right to delegate and the delegatee has the
right to receive the delegation. This generality allows more flexibility. Instead
of taking into account different delegation constraints in the delegation rule, one
can specify constraints on the delivery of these certificates.

Further, expressing the right to use the delegation or the propagation of
the delegation is also treated without any extra mechanism by trust negotiation
rules. This distinction leads to more flexibility in the management of constraints
on the different steps of the delegation process.

Finally, the workflow structure in our framework provides an efficient tool
to update the state of the system with respect to the execution of delegations
or their corresponding revocations.

Chapter 7

Separation of duty
constraints

In Chapter 6, we presented different aspects of delegation in a dynamic context.
However, the existence of delegation, along with the possibility to activate and
deactivate users in roles, increases the chances of having security breaches or
collaboration between users working on sensitive tasks, leading to fraud situa-
tions. When expressing an access control policy in an organization, one has to
take into account sensitive tasks. By sensitive tasks we mean tasks that need
security constraints in order to be executed such as those involved in a banking
process or a military procedure. Security constraints involve mainly separation
of duty constraints, where two different tasks cannot be completed by the same
user; or binding of duty constraint in which case two different tasks need to be
performed by the same user; or least privilege property by which a user only
activates the minimum set of permissions that he needs in order to perform a
task.

In Section 7.1 we present an overview of the different aspects of separation
of duty constraints and their enforcement in different logical frameworks. In
Section 7.2 we give our modeling of the different aspects of separation of duty
constraints, and we define general separation of duty constraints properties.
We show the difference between modeling high-level security constraints and
expressing low-level policy enforcement in the workflow within a given entity.
In Section 7.3, we also give some security properties that are to be enforced on
the global level.

7.1 Related Works

7.1.1 On the history of separation of duty

Separation of duty is a very important concept in computer security. It was first
introduced in 1975 by Saltzer and Schroeder [66] by the name of ”separation

125

126 CHAPTER 7. SEPARATION OF DUTY CONSTRAINTS

of privilege” as one of the design principles for the protection of information in
computer systems.

Where feasible, a protection mechanism that requires two keys to
unlock it is more robust and flexible than one that allows access to
the presenter of only a single key. The relevance of this observation
to computer systems was pointed out by R. Needham in 1973. The
reason is that, once the mechanism is locked, the two keys can be
physically separated and distinct programs, organizations, or indi-
viduals made responsible for them. From then on, no single acci-
dent, deception, or breach of trust is sufficient to compromise the
protected information.

Static separation of duty

In its simplest incarnation, separation of duty ensures that one user cannot
perform two mutually exclusive operations. For example, when processing an
invoice, the operations record and authorize payment for the invoice cannot
be authorized to the same user since this may lead to a fraud situation. To
enforce this condition, one can allocate each authorization to a different user.
In this case the separation of duty is static, since users cannot change roles for
the treatment of two different invoices. However such constraint is not always
feasible in real world applications. In fact in an organization it is often the
case that the same person can perform these two operations. A more relaxed
version of separation of duty states that one user cannot perform two mutually
exclusive operations at the same time. For example, if two users have both the
right to record invoice and authorize payment, then dynamic separation of duty
mandates that if one user actually performs the operation record invoice then
he will not be authorized to perform the operation authorize payment.

Dynamic separation of duty

Several other dynamic separation of duty properties came to light when dealing
with real life examples. In [28] Clark and Wilson argue that separation of duty
can be ensured by separating an operation into several subparts and requiring
that each subpart be executed by a different person. They give the example of
purchasing an item involving the following operations:

- authorizing the purchase order,

- recording the arrival of the invoice,

- recording the arrival of the item, and
- authorizing the payment

and state that by allowing the same person to perform all operations, fraud may
occur, whereas if each operation is performed by a different user, the likelihood
of fraud is diminished.

7.1. RELATED WORKS 127

Object-based separation of duty

In 1990, Nash and Poland [60] gave a more flexible constraint called object based
separation of duty. They argue that to preserve the integrity of the purchase
transaction for a given data item (object) a user is permitted to perform one of
the above stated operations if:

- The user is authorized to perform the given operation on the data item,

- The user did not execute any other operation on that data item

In their example, the authors put the constraint on the object rather that
on the user. That is they add to the specification of the objects (i) which
operations are permitted, and (ii) the identity of the user that performed the
operation when executed. Moreover, to each user they add the list of operations
permitted to that user. Thus, checking the constraint amounts to checking (i)
if the user has the authorization to perform the operation and (ii) if he did not
execute another operation on the object.

Operational separation of duty

In 1995 Ferraiolo, Cugini and Kuhn [36] claimed that static and dynamic separa-
tion of duty are sometimes very strong constraints. They stated that to preserve
the purchase transaction from fraud, it is enough to assume that no user can
perform all the operations associated with the transaction. This is the oper-
ational separation of duty property and is expressed in RBAC as a constraint
that has to be checked before assigning operations to a role.

History-based separation of duty

In 1997 Simon and Zurko [71] stated that object-based separation of duty does
not allow the same user to perform more that one operation on the same object,
whereas operational separation of duty does not allow one user to perform all
the operations for a given task on different objects even if this is authorized by
the policy. They proposed the addition of history-based separation of duty thus
defining separation of duty constraint based on the actual execution trace of the
users.

In fact, taking the same example by Clark and Wilson, the authors claimed
that usually the same persons that are responsible for authorizing a purchase
can also authorize the payment, and thus the only restriction to be enforced is
that a user may not authorize payment for the same invoice he authorized. Also
one can add that two users must authorize the invoice before it can be treated.
This restriction cannot be taken into account by simple dynamic separation of
duty which only states restrictions on operations done at the same time. It
cannot be taken into account in operational separation of duty since it puts
constraints on the set of operations but does not take into account the different
objects. In order to take into account such constraints, the authors proposed
to keep a log for executed and non-executed actions for each user and checking

128 CHAPTER 7. SEPARATION OF DUTY CONSTRAINTS

separation of duty constraints with respect to prior executions of these users.
As such they proposed a rule based language for the specification of separation
of duty constraints, and a history based implementation that guarantees the
enforcement of such constraints.

We note that separation of duty constraints can be imposed on the policy
level as is the case of static and dynamic separation of duty constraints, but also
on the run-time level as in the case of object or operation-based separation of
duty. As such, when talking about separation of duty constraints, we distinguish
between three different aspects, namely the expression of security constraints
on the policy specification level, the enforcement of constraints on the run-time
level and the model checking for a security breach in the presence of the security
constraints.

7.1.2 Specifying separation of duty constraints

With the rising need to protect the resources of organizations from internal
threats in addition to the protection from external threats, many researches
have focused on the study of separation of duty constraints in the three different
areas, namely the specification of the constraints on the policy level and the
enforcement of such constraints on the implementation level such as in [36, 71,
53, 14, 11], and on the checking of the security policy against possible breaches
of these constraints [70]. In this subsection we present some of the work that
has been done in these areas.

While the early research work in the separation of duty area defined con-
straints with respect to users and operations as seen in Section 7.1.1, later work
and most recent studies are done with respect to the Role based access control
framework (RBAC).

In [36], Ferraiolo, Cugini and Kuhn present the main features of RBAC
and adapt the separation of duty constraints to the role structure. They argue
that administrators can place constraints on role authorization, role activation
and operation execution. Moreover, constraints may affect the authorization
of an operation to a role and the authorization of performing an operation on
objects. Separation of duty constraints are imposed on roles rather than on
operations. Namely, mutually exclusive operations are associated to mutually
exclusive roles, and the separation of duty constraints are set on the user-role
relation. Static separation of duty is a constraint added in the preconditions
of authorizing a role to a user. For example, if the roles auditor and teller
are mutually exclusive, then a user authorized for the role teller will not be
authorized for the role auditor. The dynamic separation of duty is a constraint
added in the preconditions of activating a role. For example, the same user may
be authorized for both auditor and teller but will not be authorized to activate
the role teller if he is already active in the role auditor.

Note that static separation of duty is set on the authorization level while
dynamic separation of duty is checked on the execution level.

In [14] the specification of separation of duty constraints is also expressed
with respect to roles. Cassandra uses Datalog with constraints to express access

7.1. RELATED WORKS 129

control rules. The user-defined functions and the parameters in the predicates
allow the definition of dynamic separation of duty and object based separation
of duty.

For example, the constraint that a user u can activate the role r on object
o if he has not activated the role r’ on the same object is done by the definition
of an aggregate rule that counts the number of activations of role r’, and a rule
stating that the activation of role r is permitted if the activation count for role
r' is zero.

canActivate(u,r(0)) + countinitiators(n,u,0),n =0
countinitiators(count < z >,u,0) < hasActivated(z,7'(0)),z = u

An object based separation of duty can also be defined allowing a user to
activate the role r for object o if he did not already activate it for another object
o'. To do so a function conflict is defined, that returns the set of conflicting
roles. This function is used to express constraints on the activation of the role

with respect to conflicting objects as follows:

canActivate(u,r(0)) < —hasActivated(u,r(0")), {0,0'} C conflict()

The separation of duty constraints in the Cassandra framework relies on
the non-occurrence of an activation. In order to express this negative condition
the authors define a counting function for the activation of a role with respect
to a given user on a given object. This allows the expression of history based
separation of duty with respect to roles, but it is rather difficult to express
operation based separation of duty as the activation only takes into account
roles. Also the definition of a counting function for each constraint expression
can be sometimes complex.

In SecPAL [11], separation of duty constraints are expressed by means of
query methods. A method can check for the validity of some given conditions
and adds an assertion to the assertion context in case the conditions are satisfied
with respect to the assertion context.

For example, to express that a payment transaction must be initiated and
authorized by two distinct managers:

- a method can-initiate(r, p) checks if the requester is a manager and
that no other user has initiated the payment, and if true adds the assertion
"Bank says r has initiated p” to the local state

- a method can-authorize(r,p) checks if the requester is a manager and
that there exits an assertion "Bank says x has initiated p” where x #
r

SecPAL does not keep an explicit log for activation or execution of facts.
However, it is possible to keep a trace of the state change of the system through
the definition of queries and methods. Further, the use of assertions makes it

130 CHAPTER 7. SEPARATION OF DUTY CONSTRAINTS

more flexible and intuitive to define action based or object based separation of
duty in SecPAL.

Crampton [30] argues that the specification of separation of duty constraints
is rather complicated and it is enough to enforce such constraints without a
high level specification in order to secure the safety of an organization. In
his enforcement model, Crampton relies on the specification of a family of bad
sets. For instance, to express that a user cannot perform both permissions p;
and po, a constraint ¢ = (U, {p1,p2},2) defines a family of constrained sets
Qc = Uyey({u}, {p1,p2}). An authorization constraint c is enforced if for all
Q@ € Q. it is not possible for all requests g € @ to be granted.

Crampton assumes that the configuration or state of a system is modified
through the interaction of the user with the system and this through requests to
invoke a permission, activate a role, etc. In order to implement the enforcement
model to history based constraints, he constructs a dynamic blacklist that needs
to be checked before a decision on the request is made.

Instead of checking at each time if the constraint is preserved, by looking at
the trace of already executed actions, Crampton explicitly enumerates the list
of all bad states and compares each request to this list (i.e. an action is autho-
rized if it does not lead to a bad state.).Crampton’s model relies on a constraint
monitor for the enforcement of these constraints. However this model can only
express constraints where the constraint set has at most two elements, that is
a constraint stating that one user cannot perform all of p;,ps and ps cannot
be enforced as some ambiguity will arise in the construction of the correspond-
ing black list. Such a model may be practical for small organizations where
constraints and bad states can be enumerated but it will be rather difficult to
implement it in a distributed environment or large organizations as enumerating
all bad states may be complicated.

In [76] the authors offer methods to guarantee security by making verification
checks for every workflow step depending on generic constraints in order to
prevent security breaches in the presence of delegation. The authors discuss
two kinds of attacks that may occur when allowing delegations.

Example A: Suppose a task t is to be completed by one user by activating
roles 71 and ro successively, and that Alice is a member of role r; and
Bob is member of role r5. By allowing delegation, Alice can delegate her
role r; to Bob who can then execute both subtasks that constitute ¢, a
privilege that he wouldn’t have acquired without the delegation.

Example B: Suppose now that two subtasks s; and s; need to be performed
by two distinct users in the same role r, that Alice is a member of a role
r, and can delegate r to Bob who is member of the role r;. Then Alice
transfers her role r to Bob who can now perform task sy, then Alice revokes
the role r and performs sy herself.

In both cases the attack occurs when a user who cannot perform the task
without the delegation gains more power after the delegation.

7.1. RELATED WORKS 131

The authors propose an algorithm to check the security of the system in the
presence of delegation. Their algorithm consists of checking, after the execution
of the subtasks, whether the sources of the privileges satisfy the constraints of
the workflow.

One of the few works to define a specification to express and verify security
constraints is by Li and Wang [53]. They distinguish between a high level policy
design and a low level enforcement design to secure sensitive tasks. Sensitive
tasks can be made of several steps, in the high level security policy only general
specifications on the task as a whole are defined, while specific enforcement de-
tails on each single step of the task are guaranteed in the enforcement level. They
define an algebra to express and specify security constraints. Their algebra is
based on terms and can express both quantitative and qualitative constraints.
An atomic term can be a user, a role or the keyword All. Terms are constructed
by means of operators, for example

((Manager ® Accountant) ® Treasurer)

is a term that requires a manager, an accountant and a treasurer such that the
first two can be satisfied by a single user.

{Alice, Bob, Carl} ® {Alice, Bob, Carl}

is a term that requires any two distinct users of a list of three. Their algebra is
based on RBAC but can be used in an attribute based framework. They define
a configuration (state of the system) by a pair < U,UR > where U is a set of
users and UR denotes user role membership.

A security policy is defined by a couple < task,¢ > where ¢ is a term in
the algebra and denotes that only users that satisfy ¢ can perform the task
task. Enforcing the policy amounts to defining a term for each sensitive task,
such that every set of users that together can perform the task must satisfy the
term. In the case of the enforcement of static separation of duty, this can be
done by specifying all the permissions needed to perform the task (the task is
usually divided into several steps) and check that any user set in which all users
together have all the permissions for the given task must satisfy ¢. In the case of
a dynamic separation of duty, one needs to maintain a history about these steps
and who has executed them. For any task instance, one can compute the set of
users who have performed at least one step in the instance Up,s:. Before a user
performs a step, the system checks to ensure whether there exists a superset of
Upast U {u} that can satisfy ¢ upon finishing all steps of the task.

With this algebra one can verify whether the term definition is coherent with
a given configuration and user set.

This specification has been extended by Basin et al. [10] to take into ac-
count dynamic policies. To do this the authors generalize this algebra to take
into account multisets of users and interpret the algebra’s terms over workflow
traces allowing changes in role assignments. A workflow is defined in a process
algebra. They present a map of the term algebra into processes that can act

132 CHAPTER 7. SEPARATION OF DUTY CONSTRAINTS

with access control policies and workflow and are able to make use of the pro-
cess operational semantics in order to enforce security checks. This approach
however only supports user-role based constraints and does not support action
specific constraints.

In [18], Bertino, Ferrari and Alturi use first order logic to check the con-
sistency of constraints defined over workflows. They use predicate symbols to
express workflow specifications, effects of workflow execution and restrictions on
the set of roles/users that can execute a task. The separation of duty constraints
are then defined in first order logic with respect to these predicate symbols. A
workflow consists of several tasks to be executed sequentially. A planner gen-
erates a set of possible assignments, so that all constraints stated as part of
the authorization specification are satisfied. The planner is activated before
the workflow execution starts to perform an initial plan. This plan can, how-
ever, be dynamically modified during workflow execution to account for specific
situations, such as aborting a task.

This framework permits one to reason on the execution trace of the workflow
and to differentiate between checking static constraints on access control level
and dynamic constraints on the workflow execution level. The model is however
rigid in the sense that each predicate specifies a specific condition or constraint.
As such, adding new constraints, or modifying the constraints to deal with user-
action specification rather than user-role assignments amounts to a change in
the syntax of the language.

Schaad, Lotz and Sohr [70] extend separation of duty constraints to work-
flow. They describe the workflow and the access control policy (including the
delegation and revocation steps) as steps in a finite state machine. They define
separation of duty constraints in Linear Temporal Logic and use a model checker
to check for policy violation. They only focus on the model checking aspect and
do not offer an enforcement specification for the security constraints.

7.2 On the expression of security properties

Security constraints need to be defined at the policy level, in order to formally
specify the model, but also on the policy enforcement level (i.e. in the execution
of the workflow) in order to enforce such constraints.

We distinguish between the security properties, that specify the objectives
to be satisfied in the security policy, and the security constraints that are to
be enforced by the workflow. We define a task to be an ordering over a set of
steps or subtasks. In our framework a task can be seen as a subworkflow. In the
high level policy language only security constraints on the tasks are specified,
whereas in the workflow execution constraints may be enforced on the individual
steps constituting the task.

In [53], the authors present a scenario consisting of a sensitive task denoted
by share — classified — doc that involves the subtasks request, retrieve,
prepare, send. On the one hand, a high level policy may enforce that at least
two managers must be involved in the task. On the workflow level, on the other

7.2. ON THE EXPRESSION OF SECURITY PROPERTIES 133

hand, this is translated into the allocation of users to the different steps in the
task. Namely, one supposes that request and send need to be performed by
the same user in the role coordinator whereas two instances of the approve
need to be performed by two different managers before a docAdmin performs
the step retrieve document.

We make use of the interplay between the security policy and the workflow
evolution of our unified framework defined in Chapter 4 to express different
aspects of security constraint.

7.2.1 On activation

When talking about separation of duty, one needs to define the notion of activity.
In fact, except for static separation of duty, all types of separation of duty
constraints depend on an activity, be it activation of a role, execution of an
action or use of an object, etc. In this section we present the notion of activation
with respect to roles since this is the most common notion of activation due to
the development of the separation of duty constraints in the presence of the
RBAC framework.

In our model a session is an asynchronous execution of workflows of a collec-
tion of entities in an environment. In Chapter 8, we present a modeling for role
activation. In this section we situate ourselves in a more flexible framework that
does not necessarily depend on roles. We say that a user is active for a given
task when a record of the task execution can be acquired from the repository of
the entity responsible of the task.

Executing a task Activation for tasks is given in the notion of execution. We
assume that to execute a task a user u needs to get an object specifying that u
can use the given task as described in Chapter 6. We express the recording of
an ezecution object for a given task 7 in the process definition of the tasks. An
execution object is of the form:

subject u executed task 7 object o
The process definition for a task 7 is given by:
permit(X,7) — vY;Y.subject := X.subject; Y.action := executed; Y.task := 7;
Y.object := X.object; add(Y); P

where P is a process.

Using the execution objects In order to specify security constraints in the
following subsection, we suppose that each entity has in its trust negotiation
policy rules to regulate the access to these certificates. To this end, we assume
that each entity has in its trust negotiation policy a rule of the form:

put(X, self) + has(X).

134 CHAPTER 7. SEPARATION OF DUTY CONSTRAINTS

Such a rule permits the retrieval of the objects stored in the repository of
the entity when computing the least fixed point. This makes it possible to
know the state of the entity with respect to the execution of the workflow and
thus allows a form of centralization of information. This information can then be
used by the trust negotiation policy to verify security properties in a distributed
environment.

7.2.2 Static and dynamic separation of duty

As we presented in Section 7.1.1, different aspects of separation of duty exist
in the literature. Although static and dynamic separation of duty are generally
defined with respect to roles, in this section we express separation of duty con-
straints in general. The specific case of role-based separation of duty will be
presented in Chapter 8.

Given a set T of mutually exclusive tasks, we defined the following separation
of duty constraints on 7.

Static separation of duty (SSOD)

SSOD requires that one user does not have the authorization to use more than
one task in 7.
This is expressed by the trust negotiation rule:

X :=subject u can — use task 7
Y., := subject u can — use task 7’
put(X, z) < get(X, self) \,scg 14, not(has(Yy))

The above defined rule assumes that SSOD is preserved in the initial states
and checks for violations throughout the execution of the system.

Dynamic Separation of duty (DSOD)

In its original definition, DSOD requires that a user cannot be active in more
than one role from a set of mutually exclusive roles. This notion will be expressed
in Chapter 8. Note however that if one translates this definition to take into
account mutually exclusive tasks, then DSOD requires that a user active in a
given task, is not authorized to activate (i.e. execute) another task from a set of
mutually exclusive tasks. This is the operational separation of duty constraint
that we present in the next subsection.

7.2.3 More dynamic separation of duty constraints

As presented in Section 7.1.1, operational separation of duty and object-based
separation of duty are to be enforced at runtime. We present the specification
of these constraints in this section.

7.2. ON THE EXPRESSION OF SECURITY PROPERTIES 135

Operational separation of duty (OpSOD)

OpSOD states that one user cannot execute more than one task from a set of
mutually exclusive tasks 7 in a given entity. This amounts to adding a trust
negotiation rule of the form:

X :=subject u can — use task 7

Y :=subject u executed task T

Z. := subject u executed task 7’

put(X, x) < get(X, sel f) Anot(has(Y)) AN N\, cr 12, not(has(Z:))

In the general definition of operational separation of duty, we suppose that a
user can only execute a given task once in the execution of a workflow instance.
That is the task execution, unlike in the case of roles, cannot be deactivated
in the execution of the workflow instance. One can express this constraint by
taking into account the object on which the task is executed. This is the object-
based separation of duty.

Object-based separation of duty (ObjSOD)

ObjSOD requires that for a given object o, a user can execute a task from a
mutually exclusive set of tasks 7 on the object o if he did not already execute
another task from 7 on the object o. This is expressed by the following trust
negotiation rule:

X :=subject u can — use task 7 object o

Y :=subject u executed task 7 object o

7. = subject u executed task 7’ object o

put(X, x) < get(X, sel f) Anot(has(Y)) N\,rcr 4 not(has(Z:))

7.2.4 Binding of duty constraint

In addition to the separation of duty constraints we presented in this section, we
define the binding of duty constraint. A binding of duty constraint requires that
a given user must execute all tasks in a set of critical tasks 7. This differs from
the previously defined constraints. In fact to be able to express binding of duty
constraint one needs to check before the execution of each tasks in 7 whether
the same user is executing the task. To this end we make use of the interplay
between the workflow and the access control policy of the entity. Suppose T
is the first task to be executed from the set of tasks 7 then, in the process
definition of 7 we add an object certifying that the first task in 7 was executed.
This can be expressed by the process definition of 7 as follows:

X :=subject u request object o

permit(X,) —
vY;Y.task := 7;Y.action := is — executed; Y.order := start; add(Y);
vZ; Z.subject := u; Z.action := executes; Z.task := T;add(Z); P

136 CHAPTER 7. SEPARATION OF DUTY CONSTRAINTS

where P is a process defining the effect of the task 7. Note that here T denotes
the identifier of the set of the sensitive tasks.

Then, the right to execute the sensitive tasks in 7 will be regulated by the
following access control rule

X :=subject u request object o

Y :=task 7 is — executed order start

7 = subject u executes task T

permit(X,) « get(X, self) A (not(has(Y)) V has(Z))

This rule states that a given user u can execute a task in 7 either

- if no one has already executed the first task for 7, in which case, after
the execution of the task he will be constrained to execute the rest of the
tasks in 7.

- Or, if the user u is the one who executed the first task and thus has the
object certifying that he can execute the rest of the tasks.

7.2.5 History-Based separation of duty

Throughout this section we expressed the specification of security constraints
that must be enforced in a given entity. However, this specification is not
sufficient to secure an entity. We also need to specify the enforcement of such
properties within the execution of entity’s workflow. As presented by Schaad
et al. in [70] there is a difference between defining security properties in the
definition of a task for a business process at the modeling time and securing
such properties in the task instance at run-time.

Suppose for example that a security rule specifies that tasks 71, 7o and 73
need to be executed by at least two users. Such a rule cannot be the object of a
general specification alone since it depends on a specific run of the workflow (i.e.
on a specific instance). In fact, in order to model such constraints, it is sufficient
to add a security task that has as parameters all the information extracted from
the workflow relevant to the execution of the tasks in question. This security
task will act as a guard whose aim is to verify security properties on the fly.

For example, to take into account the constraint that one user cannot execute
all the tasks 7, 70 and 73, we define a security task check — sod. Since the
enforcement of security properties can only be done within a given entity, we
add the security task check — sod before the execution of the last task (here
73) in the workflow. The object of check — sod is to check whether the user
supposed to execute 73 did not already executed the two previous tasks.

We define the task check — sod which takes as parameters the values of the
subject attribute for the three tasks. Suppose that the workflow definition is

7.3. VERIFYING THE SECURITY PROPERTIES 137

given by the following expression:

X, :=subject u; request object o0

X, :=subject us request object o,

X3 :=subject us request object o3

W =vXy;vXo; v Xs;rev(Xy, x1,11); permit(Xy, m1)||rev(Xa, o, 72);
permit(Xa, 72); rev(Xs, 23, 73); vY; Youser := X3.subject;
Y.actionl := 71; Y.action2 := 75; Y.action3 := 73; permit(Y, check — sod);
permit(Xs, 13).

Then the task definition of the task check — sod will be given by an access
control rule that checks if the same user executed the first two tasks as follows:

X := actionl 7 action2 7> action3 73 user us

Y: :=subject u3 executed task 7|

Y5 :=subject u3 executed task

permit(X, check — sod) < not(has(Y1)) V not(has(Yz))

Remark: Note that the notation for the objects X7, Xo, X3 and Y is not part
of the syntax of the workflow. We added it here for illustration purposes as we
did not express the access control rules related to the tasks in question.

Local enforcement versus distributed verification of constraints

Throughout this section we assumed that the specification of security properties
is done in the entity responsible for the sensitive properties, then shared with
other entities.

In fact the specification of security constraints requires the verification of not
having an object. While this verification is straightforward in a given entity,
since one can check for the non-existence of the object in a finite set of objects
in the repository of the entity, it is not feasible in case the tasks are not in the
same entity. To this end we define the general security properties in Section 7.3
that are to be checked on the level of the system.

7.3 Verifying the security properties

In this section we define the security properties that need to be satisfied on the
system level. In fact, separation of duty and binding of duty constraints are
security constraints that mainly affect the execution of the system. To this end
we need to be able to verify if in a given model (a set of entities with security
policy and local state) such security properties can be satisfied or violated.

7.3.1 Specifying security constraints

Let M be the set of messages sent but not yet received, £ the set of entities and
S the set of associated local states (see Chapter 4). Let us describe how one

138 CHAPTER 7. SEPARATION OF DUTY CONSTRAINTS

can verify security constraints for the entire process by verifying the security
properties after each workflow execution. To this end we define different decision
problems to check for the enforcement of the security constraints presented in
Section 7.2. A decision problem permits to check whether

MESE

where ¢ corresponds to the specification of the security property in question.

Static separation of duty problem

Given a set of entities £, an associated set of local states S (containing the
status of the repository and the position of the workflow for each entity) and
a set of messages sent but not yet received M, and a set of mutually exclusive
tasks T .

We say that the static separation of duty constraint is preserved with respect
to M, &, S if there exist a value u and entities e; in £ such that:

X, :=subject u can — use task 7

M,E, S l# /\TGT(veieg pute, (Xv'v Self))

Operational separation of duty

Given a set of entities £, an associated set of local states S (containing the
status of the repository and the position of the workflow for each entity) and
a set of messages sent but not yet received M, and a set of mutually exclusive
tasks T .

We say that the operational separation of duty constraint is preserved with
respect to M, &, S if there exist a value u and entities e; in £ such that:

X, :=subject u executed task 7

M E,S E Nrer(Ve, ce hase, (Xr, self))

Object-based separation of duty

Given a set of entities £, an associated set of local states S (containing the
status of the repository and the position of the workflow for each entity) and
a set of messages sent but not yet received M, and a set of mutually exclusive
tasks 7.

We say that the object-based separation of duty constraint is preserved with
respect to M, &, S if there exist a value u and entities e; in £ such that:

X, :=subject u executed task 7 object o

Mvgvs b& /\TeT(Veieg ha’sei (X‘F» self))

7.4. CONCLUSION 139

Binding of duty

Given a set of entities £, an associated set of local states S (containing the
status of the repository and the position of the workflow for each entity) and
a set of messages sent but not yet received M, and a set of mutually exclusive
tasks T.

We say that the binding of duty constraint is preserved with respect to
M, E,S if there exists a value u and entities e; in £ such that:

X, :=subject u executed task 7

M, E,S): /\TET(\/eieg h'asei (X‘Fv self))

7.3.2 Monitoring security properties

The separation of duty constraints are defined in terms of the executed tasks
and can concern more than one entity in the model. As we argued in Section 7.2,
in our framework we cannot enforce constraints that depend on the execution
of workflows in more than one entity without centralizing the model. In Section
7.3.1, we gave the specification of various decision problems in order to check
for the enforcement of security constraints. In order to guarantee the good
functioning of the system, we consider that the verification of these security
constraints is done by a monitor who, after each execution of the workflow,
checks the overall model for security breaches.

In order to reason on the level of the system rather than on the level of
each entity, the monitor performs a step-by-step model checking. In the case
of constraint violation, the monitor should be able to intervene to stop the
execution of the system. This necessitates the collaboration of all the entities in
the model that should allow the disclosure of their information to the monitor
on the one hand, and authorize the monitor to have access to the respective
workflows on the other hand.

7.4 Conclusion

In this chapter, we defined the different aspects of separation of duty constraints.
We showed that to specify such constraints, it is necessary to have a record for
the execution of tasks. To this end we defined the general framework to record
execution logs for the tasks, and gave the specification of static and dynamic
separation of duty in the form of trust negotiation rules within a given entity.
In order to enforce security constraints, we defined security properties on the
level of the system (i.e. taking into account the collection of entities defining
the model) and argued for the existence of a monitor that would play the role of
a model checker to verify the good functioning of the overall system. However,
this modeling is not entirely satisfactory. In fact, so far, the monitor is a mere
observant of the system and cannot intervene in case of violation (unless to halt
the execution of the workflow). It would be interesting to allow the monitor, in
case of a violation, to trace back the source of the violation and thus allow the

140 CHAPTER 7. SEPARATION OF DUTY CONSTRAINTS

policy modeler to modify the security policy of the entity in question in order
to remedy to the problem.

Chapter 8

Encoding RBAC

In our framework we choose not to have an explicit RBAC structure. This allows
us to have more flexibility in the expression of access control authorizations
with respect to a collection of attributes rather than a predefined role structure.
We believe that in doing so we are able to express a diversity of models and
constraints without the need to extend the language or modify the model. It
is however possible to integrate RBAC and role structures in our framework.
In this chapter we provide a formalization of the RBAC structure and some
of its properties. We give a modeling for the role structure in a distributed
environment. We take into consideration the presence of role hierarchy and
express role activation as well as delegation and separation of duty constraints.

8.1 Expressing a role-based access control frame-
work

In role-based access control, access control authorizations are associated to roles
and users are made members of roles. Let R be the set of roles in the model
and U the set of users.

8.1.1 Expressing role-based access control structure

To express role-based access control in our framework we need to define permission-
role and user-role as special objects as follows:

- permission-role relations are objects of the form:

role r is — assigned task 7

where r € R. Note that permissions in our framework correspond to tasks
that can be executed in a given entity. These objects can be present in
the repository at the initial state or can be modified dynamically by an
administrator during the execution of the workflow.

141

142 CHAPTER 8. ENCODING RBAC

- user-role relation are objects of the form:
subject u is — member role r

where u € U and r € R. This kind of object defines user role membership.
As in the case of permission—role relation objects, such objects can exists
at the initial state or can be acquired by the security policy of the entity.

Acquiring permissions:

If we take into account the initial RBAC model without the presence of sessions,
we can suppose that a user acquires permissions associated with a given role if
the user is member of the role. In general this is expressed by a trust negotiation
rule of the form:

X :=subject u can — use task 7
Y :=subject u is — member role r
Z :=role r is — assigned task 7
put(X,z) < has(Y) A has(Z)

Example 8.1.1. The role clerk has permissions read and store associated to
it. Bob is a member of the role clerk. Suppose e,pqc is the entity responsible for
the delivery of permission certificate for the role clerk. Then in the repository
of e,pqc we have the following three objects:

role clerk is — assigned task read
role clerk is — assigned task store
subject bob is — member role clerk

Then according to the trust negotiation rule

X :=subject u can — use task 7
Y :=subject u is — member role r
Z :=role r is — assigned task 7
put(X, z) < has(Y) A has(Z)

the entity e,pqe can deliver (put) objects of the form

subject bob can — use task read
subject bob can — use task store

The case presented in this example supposes the simplest case of RBAC,
taking into account flat roles and the absence of activation sessions. In the next
subsection we present the RBAC structure in the presence of role hierarchy.

8.1.2 Role hierarchy

When we talk about role hierarchy, we suppose the presence of a partial order
among roles. We say a role r; is senior to role ro when the permissions associated

8.1. EXPRESSING AN RBAC FRAMEWORK 143

to ro are inherited by the role r1. For example in a medical context the role
cardiologist is senior to the role doctor. To express partial order on roles we take
the same model defined for delegation chains (see Section 6.5). Thus we define
a seniority object of the form:

subject r is — senior role 7’

Remark In the case of a branching roles we may have two objects

subject r is — senior role r’
subject r is — senior role r”

As in the case of delegation chains we define the role hierarchy chain as a
trust negotiation rule of the form:

X :=subject r; is — senior role rj3
Y .= subject r; is — senior role 7y
Z := subject ro is — senior role r3

put(X, z) < get(Y, self) A get(Z, self)

The trust negotiation rules allow the expression of a transitivity relation in
the case of role hierarchy. In fact the least fixed point evaluation semantics
of trust negotiation rules helps to regulate the relations between the different
roles. If a role is revoked, the hierarchy is automatically modified. As such, asin
the case of delegation, the role hierarchy relation can be viewed as a transition
graph labeled with the inherited role (see Section 6.5.3).

Remark It is also possible to define role hierarchy with respect to junior roles
rather than senior roles. to this end one defines the object

subject 7’ is — junior role r
and a trust negotiation rule of the form:

X :=subject v’ is — junior role r
Y := subject r is — senior role 7’
put(X, self) « get(Y, self)

8.1.3 Role inheritance

The importance of the role hierarchy lies in the role inheritance property. When
member of a role r, a user inherits membership for all roles junior to r. This is
expressed by a trust negotiation rule of the form:

X :=subject u is — member role r’
Y :=subject u is — member role r
7 := subject r is — senior role r’
put(X, self) < get(Y, self) A get(Z, self)

144 CHAPTER 8. ENCODING RBAC

Example 8.1.2. Let us go back to Example 8.1.1 and assume that Mary is a
manager, and that a manager is senior in the role hierarchy to the role clerk.
This amounts to the addition in the repository of the entity e,;q. of the object

subject manager is — senior role clerk
that expresses the seniority property and the object
subject mary is — member role manager

that expresses Mary’s role membership. In addition, we add to the security
policy of e,pq the inheritance rule:

X :=subject u is — member role r’
Y :=subject u is — member role r
Z := subject r is — senior role r’
put(X, self) « get(Y, self) A get(Z, self)

With this new setting, the entity e,pq. can deliver (put) additional objects
concerning Mary. Namely, the object

subject mary is — member role clerk

certifies that Mary is a member of the role clerk by the inheritance rule, and
thus can acquire the objects

subject mary can — use task read
subject mary can — use task store

by the permission acquisition rule presented in Example 8.1.1.

8.1.4 Activation of roles

In another extension of RBAC, [69], a subject can use a permission associated
with a role if the subject is active in the role. This extension adds to RBAC
the dynamic aspect.

An RBAC active role is a role which is authorized for a given subject and
which was set to be used at the beginning of a session. As such a session specifies
on the one hand the actual agent(s) (human users) that shall act as subject(s)
and on the other hand the set of active roles (i.e. authorized roles that are used
in the given session). Note that in this setting the activation is centralized, that
is active users are defined with respect to a given service, and predetermined in
the initial state.

In our framework, we assume that users can act on a collection of services
and that they can choose to intervene (become active) at anytime in the course
of one session. We argue in favor of such modeling for several reasons.

- First we assume that services are in a distributed environment, i.e. they
do not have access to the entire security policy of the model and thus
cannot decide alone on the activation of users.

8.1. EXPRESSING AN RBAC FRAMEWORK 145

- Second, we suppose that users can ”step into” the session at any time,
and thus activation permission should be available independently of the
local state of a given entity but rather depend on the state of the system
as a whole.

The user’s certificates may be used in several services within the same session
according to the access control policy of the entities.

We say that a user is active in a role, within an RBAC structure if an
activation request (sent by the user to the entity holding the given role) is
accepted and an activation certificate can thus be delivered. To this end we
present in this section special objects to express role activation.

The activation and deactivation objects

We suppose that role activation can be done in a decentralized manner by
sending a request to the entity responsible for the role to be activated. The
right to activate is given by an object of the form:

subject u can — activate role r
Similarly, the right to deactivate a role is given by an object of the form:
subject u can — deactivate role r

As in the case of delegation and task execution, when a role is activated, an
activation object records the activation. It has the form

subject v activated role r

Giving the right to activate a role

We assume that a user can activate a role if he is a member of that role and has
not activated it yet. This is expressed by the following trust negotiation rule:

X :=subject u can — activate role r
Y :=subject u is — member role r

Z :=subject u activated role r
put(X, self) < get(Y, sel f) A not(has(Z))

Activating and deactivating a role

A request for a user u to activate a role r is authorized if the following access
control policy is satisfied:

X :=subject u request role r
Y :=subject u can — activate role r
permit(X, activate) < get(Y, sel f)

We assume that a user can be deactivated from a role by another user as in
[14]. A user v can deactivate a user u from role r if v has an object certifying

146 CHAPTER 8. ENCODING RBAC

he can deactivate u from r. This is expressed by an access control rule of the
form:

X :=revoker v request subject u role r

Y :=subject v can — deactivate role r

7 := subject u activated role r

permit(X, deactivate) < get(Y, self) A get(Z, self)

Effects of activation and deactivation

The process definition for the task activate is given as follows:

permit(X, activate) — (vY;Y.subject := u; Y.action := activated;
Y.role :=r;add(Y);rcv(Z, x, deactivate); permit(Z, deactivate); rmv(Y))
[lvX'; permit(X’, activate)

As in the case of delegation (see Chapter 6), we add the deactivation process
in the definition of the activation process in order to make sure that the same
activation instance will be deactivated. A user can always deactivate a role
by sending a deactivation request and if authorized, the activation certificate
will be removed. The deactivation process is a simple guard and is defined as
follows:

permit(X, deactivate) — skip

User-permission relation

If we take into account role activation, we assume that the acquisition of new
permissions is related to role activation rather than role membership. To this
end, we modify the rule presented in Section 8.1.1 to take into account role
activation rather than role membership.

We say a user u is active in a role r and denote it by the action can — use
if u activated r. This is expressed by the trust negotiation rule:

Y :=subject u can — use role r
Z :=role u activated role r
put(X, z) < get(Y, sel f) N has(Z)

Namely, a user has the permission for a given task 7 if he is an active member
of a role assigned to 7. This can be expressed by the following trust negotiation
rule

X :=subject u can — use permission 7

Y :=subject u can — use role r

Z :=roler is — assigned task 7

put(X,x) < get(Y, self) A has(Z)

8.1. EXPRESSING AN RBAC FRAMEWORK 147

Example 8.1.3. Reconsider Example 8.1.2 and suppose that Bob is not active
in role clerk, and that Mary decides to activate her role clerk.

role clerk is — assigned task read
role clerk is — assigned task store
subject bob is — member role clerk
subject manager is — senior role clerk
subject mary is — member role manager

The trust negotiation policy of e,pq. contains the following rules:

(Active) X := subject u can — use role r
Y :=subject u activated role r
put(X, self) < get(Y, self)

(CanUse) X :=subject u can — use task 7
Y :=subject u can — use role r
Z :=roler is — assigned task 7
put(X,x) < has(Y) A has(Z)

(Inherit) X := subject u is — member role 7’
Y :=subject u is — member role r
Z := subject r is — senior role r’
put(X, self) « get(Y, self) A get(Z, self)

(CanAct) X :=subject u can — activate role r
Y :=subject u is — member role r
7 := subject u activated role r
put(X, self) + get(Y, self) A not(has(Z))

The access control policy of e,pq. contains the following rules:

(pActivate) X := subject u request role r
Y :=subject u can — activate role r
permit(X, activate) < get(Y, self)

(pRevoke) X :=revoker v request subject u role r
Y :=subject v can — deactivate role r
7 :=subject u activated role r
permit(X, deactivate) < get(Y, self) A get(Z, sel f)

and the workflow of e,.;q. contains the process definitions:
permit(X, activate) — (vY; Y.subject := u; Y.action := activated;
Y.role :=r;add(Y);rcv(Z, x, deactivate); permit(Z, deactivate); rmu(Y)
[lvX'; permit(X’, activate)

permit(X, deactivate) — skip

148 CHAPTER 8. ENCODING RBAC

and the workflow
(vX; permit(X, activate))!
With these new settings we can have the following observations:
- By rule (Inherit) the entity e,pq. can put the object

subject mary is — member role clerk

- By rule (CanAct) the entity €,pq. can put the object

subject mary can — activate role clerk

- thus rule (pActivate) is satisfied and activate is executable

- By process definition of task activate the object
subject mary activated role clerk

is added to the repository of e,pq. (and the process waits for the reception
of a request message to deactivate the role).

- By rule (Active) the entity e,pqc can put the object

subject mary can — use role clerk

- By rule (canUse) the entity e,pqc can put the objects

subject mary can — use task read
subject mary can — use task store

8.2 Delegation in RBAC

In the previous section we provided a representation of role features in our
attribute based access control framework. In this section we express delegation
in the presence of a role hierarchy. Note that if we suppose that roles are flat!
then the same rules defined in Section 6.5 apply in the case of a role delegation.
However in the presence of role hierarchy, the delegation is propagated to the
junior roles in the hierarchy. That is if a delegatee acquires a delegation on a
role r, then he also inherits the roles junior to r in the hierarchy. We say a
subject u can use a role 7 if one of the following three conditions holds:

- he is a member of r (directly or through role inheritance.);
- he received the delegation for role r;

- he received the delegation for a role 7’ senior to the role 7.

LFlat roles are roles that are not associated to a role hierarchy

8.3. STATIC AND DYNAMIC SEPARATION OF DUTY 149

We suppose that one can get an object certifying a role by the same trust
negotiation rule defined in Section 6.5. In addition, we take into account the
role hierarchy and role memberships by adding the following trust negotiation
rule:

X :=subject u can — use role r

Y :=subject u is — member role r

7 := subject u can — use role r’

W := subject 1’ is — senior role 7’

put(X,x) < get(X,self)V get(Y,z) V (get(Z,z") A get(W, z')

In this case if a user loses the right to use a role, then he loses the rights for
all associated sub-roles.

Partial delegation for roles In Section 6.1 we presented some delegation
models that take into account partial delegation. In this section we give our
proposition to express partial delegation for roles by delegating permissions
associated to a given role individually, without delegating the role membership.
This is expressed by a trust negotiation rule as follows:

X :=subject u can — use task 7

Y :=subject v delegated delegatee u object r nature partial — role
Z = subject r is — assigned task 7

put(X, z) « get(Y,z) A get(Z, x)

8.3 Static and dynamic separation of duty

As presented in Section 7.1.1, different aspects of separation of duty exist in
the literature. Static separation of duty guarantees that no user can be au-
thorized for more than one role from a set of mutually exclusive roles whereas
dynamic separation of duty constraints ensures that even though one user may
be authorized for more than one mutually exclusive roles, he cannot be active
in more than one role in the same session. In our framework, given that users
are acting in different entities, it is important to guarantee and verify that the
access control policies are safe with respect to the separation of duty constraints
specified by the organization.

Static separation of duty (SSOD) requires the setting of mutually exclu-
sive roles. This is not possible in a distributed environment since we do not
have control on the users credentials prior to an execution of the model. We
can however model such a property by centralizing the use-role membership.
Namely, let R be a set of mutually exclusive roles, then we set a rule of the

form:
X :=subject u is — member role r

Y :=subject u is — member role 1’
put(X, x) < get(X, self) \,1er 1z not(has(Y))

150 CHAPTER 8. ENCODING RBAC

Dynamic separation of duty (DSOD) is more interesting in our setting.
In fact DSOD says that given a set of mutually exclusive roles R, a user can
have membership for more than one of these roles but cannot be active in more
than one role at a time. Again this property can be expressed in a decentralized
manner through the use of execution records. Suppose, role r and role 7’ are
mutually exclusive, and suppose that entity e; is responsible for role r whereas
entity e; is responsible for role 7. In order to ensure that the dynamic separation
of duty constraint is preserved in both entity, we suppose the existence of a
central authority to which we give the power to activate users in roles and add
a restriction on role activation as follows:

X :=subject u can — use role r

Y :=subject u activated role r

Z = subject u activated role 7’

put(X,z) < get(X, j) Anot(has(Y)) AN N\, cr iz, not(has(2))

Note that this presupposes the collaboration of all entities with this central
authority by sending the activation objects and requesting activation authoriza-
tion.

8.4 Conclusion

In this chapter we presented our modeling of the RBAC structure with its differ-
ent extensions. We also presented the expression of delegation and separation of
duty in the presence of role hierarchy. We are aware that the RBAC structure
can and was modeled more efficiently with optimized tools. However, our aim in
this chapter was to show that with our attribute based framework it is possible
to give a distributed representation of the RBAC structure without modifying
the syntax of the language. This chapter can be viewed as an example of the
expressivity of the language. Though we have provided one possible modeling
of the different RBAC properties, we believe that other understandings of role
activation, role inheritance or even role delegation, can be encoded as well. The
exact adaptation is left to the discretion of the policy modeler.

Chapter 9

An intruder model for trust
negotiation

9.1 Introduction

Security has been thoroughly studied in the literature, be it on the level of defin-
ing security problems, providing solutions and protocol implementation or model
checking techniques for testing the accuracy of such protocols. The atomic el-
ements in communication are communication channels. A channel is the mean
of transportation of a message from the sender (the source of the channel) to
the receiver (the destination of the channel). In order to preserve the security
of communications secure communication channels are used along with cryp-
tographic techniques, such as public/secret key system, digital signature,...In
general, we say a channel satisfies confidentiality if its output is exclusively ac-
cessible to the specified receiver and a channel satisfies authenticity if its input
is exclusively accessible to a specified sender. Usually principals communicating
on a given channel are aware of the type of security it offers. Securing com-
munication channels can be done via cryptographic primitives as in the case of
the Transport Layer Security protocol (TLS) [32], or via the communication of
assertions according to a security policy as in the case of the Security Assertion
Markup Language (SAML) [65].

A security protocol is an algorithm or a series of operations that has as
objective to secure the communication between the agents in the presence of
an intruder. The aim of such protocols is to achieve certain security properties,
such as authenticity or secrecy. That is at the end of the protocol execution,
the initiator of the protocol should becomes aware of the true identity of the
responder or that at the end of the protocol, no secret has been learned by an
unauthorized principal.

The TLS protocol is a communication-oriented protocol that provides a se-
cure channel between a client and a server. TLS supports confidentiality, data
integrity and client/server authentication. The authentication is provided by a

151

152 CHAPTER 9. AN INTRUDER MODEL FOR TRUST NEGOTIATION

handshake protocol which is a sequence of alternating request-response messages
between the client and the server. During a handshake protocol, the server pro-
vides a certificate in order to be authenticated with respect to the client in a
typical end-user communication. However, it is also possible to ensure mutual
authentication, in which case the server also requests a digital certificate from
the client. The confidentiality is ensured through a record protocol that specifies
how data should be transmitted.

SAML on the other hand is an XML standard for exchanging authentication
and authorization data between security domains. SAML provides a frame-
work to define how a security identity can be obtained and transferred from
one entity to another. SAML is made up of three constituent components; the
assertions that provide information on the identity of the user, but also on dif-
ferent attributes concerning the user; the protocol consisting of a sequence of
send/receive of assertions; and the binding that defines a mapping from the
SAML message exchange to the Simple Object access protocol (SOAP) [58].
Note however that SAML does not directly provide message integrity or con-
fidentiality; it relies on XML Signature to protect integrity and on SSL/TLS
for confidentiality. The SAML Single Sign On (SSO) can assert authorization
across multiple services allowing thus a user to log on once for these affiliated
but separate services. Several forms of security properties exist in literature.
In [55] Lowe provides a hierarchy for the specification of authentication prop-
erties and give examples of protocols satisfying (or not) such properties. For
example, one of the weakest form of authentication is aliveness where whenever
a principal A acting as an initiator completes a run of a protocol, apparently
with responder B, then B has previously been running the protocol. Note that
this property is weak since it only guarantees that both A and B are active
as initiator and responder but does not guarantee the interference of the in-
truder between different runs of the protocol. In one of the strongest forms of
authentication, agreement, the initiator A agrees with the responder B on a set
of data items ds if whenever A acting as an initiator completes a run of the
protocol apparently with responder B, then B was acting as a responder in his
run and the two principals agreed on the set of data items ds, and each run of A
corresponds to a unique run of B. In this stronger version the principals A and
B are aware of the presence of one another and agree on the essential features
of a protocol run.

In [57] the authors describe the process of establishing security in a dis-
tributed system as a two-phase process. First, agreement on the shared secret
keys and public keys through a secure communication is done during the ini-
tialization phase. Then during the communication phase communication can be
done over insecure channels (that shall be made secure via the use of crypto-
graphic techniques). They give a classification of security properties for channels
and interpret cryptographic primitives as transformations for channel security
properties. In their view a protocol will then be used to transform a set of
secure channels established during the initialization phase together with the set
of insecure channels available during the operation of the system into the set of
secure channels specified by the security requirements.

9.1. INTRODUCTION 153

In fact, the discovery of serious attacks on well known security protocols
made it necessary to provide formal ways of reasoning in order to check wether
a given protocol meets its security goals. Burrows, Abadi and Needham [26]
provide a logic for authentication to express the beliefs of principals during an
authentication protocol and how to derive them. Their logic allows to reason on
an abstract level to check whether the protocol does exactly what it has to do.
They focus on the beliefs of the trustworthy parties involved in the protocols
and on the evolution of these beliefs as a consequence of the communication.

In [4] the authors present a general model for security protocols based on a
set rewriting formalism and the Linear Temporal Logic (LTL). They consider
a model M as a labeled transition system modeling the behavior of honest
agents and the intruder, and place constraints in LTL specifying C; the allowed
behavior of the intruder on the one hand and Cg the allowed behavior of honest
entities on the other hand. Also they specify security properties, that is the goals
to be satisfied by the protocols as LTL formulas G. The model checking problem
amounts to testing

M):(C[/\CH)iG

This framework allowed the discovery of an attack on Google Single Sign On
(SSO) application [5] by modeling the SAML specification of the single sign on
application using the set of rewriting rules and the LTL constraints in order to
specify the behavior of the honest principals and the intruder and tested their
model against the security goals stated by the application protocol.

Contribution

We have presented so far a logical framework for reasoning about policies in a
distributed environment by means of negotiation of certificates. We assume in
the environment the existence of entities, each of which has a set of objects. A
trust negotiation policy regulates the access of other entities to these objects.
Given the set of trust negotiation policies of the entities in the environment, the
set of objects that can be sent to some entity e is found through the computation
of a least fixed point. While one usually considers only entities abiding by their
trust negotiation policies, we take into account in this chapter the presence of
a malicious entity.

In [33] Dolev and Yao have introduced a notion of symbolic intruder to
represent the capacities of a malicious agent trying to attack a cryptographically
secured communication protocol. We present in this chapter an adaptation of
that intruder that retains the same deductive capabilities but is specialized for
the analysis of the exchanges during a trust negotiation session. In particular
this permits us to analyze the security of a distributed access control policy
w.r.t. a malicious insider.

We extend the usual setting with channels between entities. Certificates are
sent over these channels, which are specified by their properties with respect
to the intruder. The malicious entity acts like a Dolev-Yao intruder [33]: it
can intercept any object sent on a public channel, and can also replace it with

154 CHAPTER 9. AN INTRUDER MODEL FOR TRUST NEGOTIATION

an object constructed from its initial knowledge and parts of objects sent by
other entities in the same or in other sessions. A malicious entity can also
block access to some objects for other entities depending on the nature of the
communication. Also the malicious entity can read information in objects and
create new objects. We assume that to construct a new object, the intruder can
compose, decompose, encrypt and decrypt messages in case he knows the keys.

As presented in Chapter 4, the framework we consider is based on Auto-
mated Trust Negotiation [78], from which we have borrowed the eager strat-
egy. Considering secured transport protocols or cryptographic primitives is not
new [42, 79, 51] but these works do not consider an active malicious insider. Our
notion of authenticity originates from [55], while the notion of confidentiality is
the classic weak secrecy one.

In our model, a protocol is defined by the set of trust negotiation rules defined
in the security policy of the entities. We model the intruder by defining a set of
trust negotiation rules giving him a maximal control over the communications
during a trust negotiation session. We define the actions of the intruder both on
the level of his ability to send and receive negotiated objects on behalf of others,
and his ability to read, sign and create objects based on intercepted ones.

Our goal is to take into account the properties (such as confidentiality, au-
thenticity, etc...) of these channels as well as the cryptographic primitives
employed to secure the message, and to assess a trust negotiation infrastruc-
ture.

We present the basics of the language in Section 9.2, and our modeling of
secure channels in Section 9.4. We introduce our intruder model in Section 9.5,
and the adaptation of the trust negotiation algorithm to take it into account
in Section 9.6. We present in Section 9.7 the security properties we analyze
and in Section 9.8 we give our modeling of Google’s SAML Single-Sign On
implementation.

9.2 Syntax

In this section we define the syntax that shall be used to represent a trust nego-
tiation infrastructure. This is an extension of the syntax presented in Chapter
4 to take into account cryptographic primitives. For the sake of clarity of this
chapter, we recall some definitions presented in Section 4.3.

Attributes, values and objects

As presented in Section 4.3, Val is a countable set of values (with typical mem-

bers denoted v, v’, ...), and Att is a finite set of attributes (with typical
members denoted att, att’, ...). An object is defined as a partial function:
O: Att — Val

and the set of all objects is denoted by O. For each object O, let dom(O) be
the domain of O. We define the empty object € such that dom(e) = 0.

9.2. SYNTAX 155

Keys and signed objects

Let K be a finite set of public and private keys (with typical members denoted
k, K k=1 k'™, ...). We assume that Att N K = 0.

In order to simplify notations we also consider in this chapter only the case of
cryptographic operations with public and private keys. We model the encryption
and signature operations with a single binary symbol f.

We let VarObj be a countably infinite set of variables called wvariables for
objects (with typical members denoted X, Y, ...). The set of signed objects is
denoted ¢(O) and is the smallest algebra that contains O U VarObj and such
that, if O € ¢(O) and k, k™! € K then:

e f(O,k) is in ¢(O) and denotes either the encryption of O with the en-
cryption key k or the verification of the signature O with the validation
key k;

e f(O,k71) is in ¢(O) and denotes either the signature of O with the sig-
nature key k=1 or the decryption of O with decryption key k1.

For soundness of analysis we assume that in the model we consider there are
disjoint sets of key pairs for encryption and signature, and that the nature of an
operation (e.g. encryption or validation) is clear given the key employed. The
distinction between these two kinds of key pairs is however irrelevant in terms of
possible symbolic operations, hence our unique set K of keys and unique symbol
f.

In order to model the relative properties of decryption w.r.t. encryption and
validation w.r.t. signature we consider the algebra ¢(O) modulo the following

two equations:
{ (())7k 1):
(O k71), k) =

It is straightforward to see that these equations define a convergent rewriting
systems on the algebra ¢(O), and thus that signed objects can be put in a
normal form in which none of the above equations can be applied from left to
right. In the rest of this chapter we consider that all signed objects without
variables are in normal form. A signed object without variables is clear iff it is
not of the form f(T, k) or f(T, k1) for some signed object without variables 7.
The notation O.a is defined only on clear objects.

Operations on objects

Object update Given two objects O; and Oy we call the update of O1 by
02, and denote O7 <+ Oy the object O of domain dom(O1) U dom(O3) such
that for € dom(O) we have O(z) = Oz(z) if € dom(O3) and O(x) = O;(x)
otherwise.

156 CHAPTER 9. AN INTRUDER MODEL FOR TRUST NEGOTIATION

Object domain restriction We define the domain restriction operation \
that, given an object O and a set of attributes A, computes O\ A, the restriction
of O to dom(O) \ A.

These operations are mainly specific to the intruder, and express the different
operations that an entity can perform on a given object.

Interpretations

An interpretation function for variables is a function I that associates to every
variable X for objects an element I(X) in ¢(O) and that associates to every
variable = for values an element I(x) in VAL.

Also, we define the interpretation on signed objects by: 1(0) = O, I(f(T, k)) =
FU(T), k), I(f(T, k=) = f(I(T),k~1'), and the interpretation on terms for val-
ues by: I(v) =v and I(X.a) = I(X).a'.

Entities and states

As presented in Section 4.3, an entily e; is a set of trust negotiation rules
(defined below). To each entity e; we associate a value t € VAL which is its
unique identifier. To each entity e; we associate a security state s; consisting of
a repository, i.e. a set of objects, and an interpretation function for variables.
We denote by £ a finite set of entities. The set of security states for entities in
£ is denoted by S.

9.3 Trust negotiation policy

A trust negotiation policy consists of a set of trust negotiation rules. A trust ne-
gotiation rule gives the conditions to be satisfied in order to send (put) an object
during a trust negotiation session. We extend the definition of trust negotiation
predicate put in Section 4.4 to take into account an additional argument. A
trust negotiation rule is thus defined as follows:

put(T,t1,ta) < body

where T is a signed object, ¢; is a term for values representing the apparent
sender and ty is a term for values representing the intended receiver. In the
case where the sender is a honest entity, the apparent sender is the entity’s own
identifer. However, this is not always the case when one considers a malicious
entity.

The atom put(T, t1,t2) models the disclosure of the signed object T to an
entity ¢2 (as being sent by ¢1) whenever the conditions in the body of the rule
are satisfied.

IThis expression is defined only if I(X) is a clear object

9.3. TRUST NEGOTIATION POLICY 157

Body of rules

The body of the security rules is defined by the grammar:
body := T | Test | ObjOp | body A body | body \V body

Test := has(T) | get(T,t) | t1 =ta | t1 # to

where T is a signed objects and ¢, ¢1,ts are terms for values.

The intended meaning of these expressions is presented in Section 4.4.

Trust policy of honest entities vs trust policy of malicious entities

In a perfect world, entities only send messages using their own identity, that is
the apparent sender is the same as the real sender. However the presence of a
malicious entity, the intruder, induces forged trust negotiation objects sent by
the intruder impersonating a honest entity. Let e;, i € {1,ldots,n} be honest
entities and let e;,; be the intruder.

Trust negotiation rules for honest entities e;, i € {1, ldots, n} are of the form:

put(T,i,5) < body

for j € {1,...,n,int}.
Trust negotiation rules for the intruder e;,; are of the form

put(T, i, j) < body

fori e {1,...,n,int} and j € {1,...,n,int}.

That is, the intruder sends messages using his own identity (when i = int),
or using the fake identity of a honest entity (when i # int). This latter case is
only possible if we assume that the communication with entity e; is not done
on an authentic channel. The restriction according to the different types of
communication will be discussed in Section 9.4.

A running example

In [5] the authors describe an attack on Google’s implementation of SAML
Single Sign-On protocol that allows a dishonest service provider to impersonate
a user at another service provider in the case of Google Applications. In this
scenario we assume the presence of a client BOB, an identity provider IDP
and an intruder acting as a service provider SP.

Throughout this chapter we extract examples from this scenario in order to
describe the communication of "messages” between these different entities. We
start with a usual trust negotiation modeling and then add new elements to our
framework in order to be able to express the communication using different types
of channels along with giving an intruder model to test the safety conditions of
the access control policy. We present the complete modeling in Section 9.8.

158 CHAPTER 9. AN INTRUDER MODEL FOR TRUST NEGOTIATION

Example 9.3.1. In our running example there are three honest entities e, ser,
esp and e;q, denoting respectively a client, a service provider and an identity
provider. A fourth entity e;,; is malicious.

The service provider (es,) sends a request to identify the client (eyser) to
the identity provider (e;qp) via the client. The entity e;qp, upon reception of
the request from e, s, will send a response containing the authentication of the
client to eyser who in turn forwards it to e, in order to be granted access. This
is expressed by the following rules:

In eyser we have the following rules:

put(X, user, sp) < get(X,idp) A X.respondent = idp
put(X, user, idp) < get(X, sp) A X.respondent = sp

In ey, we have the following rules:

X :=resource y access granted
RES := certifier idp says auth — status is — authentic resource y
put(X, sp,user) < get(RES, user)

In e;qp we have the following rules:

REQ := subject sp requestld id,, respondent idp resource y

RES := subject user auth — status is — authentic certifier idp
resource y respondent sp

put(RES, idp, user) < get(REQ, user)

Note that in the case of a non-confidential communication for e,ge,, an
intruder can get the object X intended to eyser sent by the e;q, and in the case
of a non-authentic communication from the intruder to the service provider e,
the intruder can fake being e, .. by sending a request to access egp. In the next
section we present a modeling of the properties provided by such channels in
order to be able to model the behavior of the intruder in such different cases.

9.4 The intruder in the presence of secured com-
munication

We assume that the exchange of objects within a trust negotiation session is
done via communication channels between the communicating entities. These
channels satisfy a certain level of security provided by the transport protocol
such as authenticity or confidentiality. In this chapter we abstract away the ac-
tual protocols and consider only the security properties they guarantee, among
authenticity, confidentiality, and unblockability. In this section we model these
aspects with respect to the objects exchange during the trust negotiation mech-
anism and to the intruder.

9.4. IN THE PRESENCE OF SECURED COMMUNICATION 159

9.4.1 Security properties of channels

Suppose two entities es and e, want to exchange objects in a trust negotia-
tion session. We wish to specify security properties for such a communication
depending on the communication channels used by these entities in order to
send/receive an object O. A channel is confidential if its output is exclusively
accessible to a specific receiver, it is authentic if its input is exclusively acces-
sible to a specific sender, and it is unblockable if the intruder cannot prevent a
message sent on this channel to reach its destination. Otherwise the channel is
said to be blockable.

For example, if an entity e, receives the object O on an authentic channel
then e, will know who is the real sender of the object O. On the other hand if
es sends O on a confidential channel then e will know that only the intended
receiver will receive the object. Also two entities living on the same computer
system will employ unblockable channels if the intruder does not have access to
that computer system.

9.4.2 Extending the syntax

We extend the definition of the put and get predicates to take into account
the different kinds of communication by indexing it with a set of tags A C
{auth, conf,block}.

o If auth € A, then put (T, t1,t2) denotes that the object T is sent on behalf
of the apparent sender e;, to the entity e;, through a communication
channel satisfying the authenticity property for the sending entity. Note
that in such a case e, is also the real sender of 7'

o If conf € A then put (T, t1,ts) denotes that the object T is sent on behalf
of the apparent sender e;, to the entity e;, through a communication
channel satisfying the confidentiality property for e;,. In such a case e,
is the unique receiver of that object.

o If unblock € A then put(T,t1,t2) denotes that the object T is sent on
behalf of the apparent sender e;, to the entity e;, through a communication
channel on which objects cannot be blocked by the intruder.

get A(T,t) is defined in the same manner. Note that the indezing of the put
and get predicates by the set A of tags allows the specification of the commu-
nication types in our framework, as will be explained in Section 9.6.

Available objects

We define an available object to be a quadruplet (O, rs, s,)4 where O € p(O)
is an object and rs,s and r € VAL are values denoting the real sender, the
apparent sender, and the intended receiver respectively and A is a set of tags
from {auth, conf,unblock} . For example, if auth € A then (M, s, s,r) 4 denotes

160 CHAPTER 9. AN INTRUDER MODEL FOR TRUST NEGOTIATION

user idp sp

< sp2user @

— T .

sp2user T

Confidential

Authentic
Confidential
and
Authentic

Figure 9.1: Communication of messages on secured channels for SAML SSO

an available object sent on an authentic communication channel between eg and
er.

Example 9.4.1. In Google’s implementation of SAML SSO, the certificates are
sent by the client over a confidential channel to the service provider, and they
are accepted by the client only on a confidential and authentic channel from
the identity provider. The certificates are sent by the identity provider only
on confidential and authentic channels, and they are accepted by the identity
provider on confidential channels. Finally, certificates are sent by the service
provider on authentic channels and accepted on confidential channels (see Figure
9.1). Also we suppose that messages partially encrypted are split into two object
messages, one signed and the other clear.

To reflect this policy the rule of Example 9.3.1 is now written:

9.4. IN THE PRESENCE OF SECURED COMMUNICATION 161

In eyser we have the following rules:

X :=subject user respondent sp resource y
Put {eonsy (X, user, sp) < has(X)

Putfeonpy (X, user, sp) < get{qutn,consy (X, idp) A X.respondent = idp

Put{con py (X, user, idp) < get{auiny (X, sp) A X.respondent = sp

In e, we have the following rules:

REQ := subject sp requestld id,, respondent idp resource y
X := subject user respondent sp resource y
put(REQ, sp,user) < get(X, user)

X :=resource y access granted
RES := certifier idp says auth — status is — authentic
RES, := resource y

Put {auen} (X, sp,user) < geticonsy (f(RES, ki_d;))’ user) A geticonsi (RES1, user)

In e;qp we have the following rules:

RES := certifier idp says auth — status is — authentic subject user
respondent sp

REQ := subject sp requestld id,, respondent idp resource y

pUt{auth,conf} (RESa idp, de) A get{conf} (REQa user)

pUt{auth,conf} (f(RESa k;j;;); de7 USET) — get{auth,conf} (RESa de)

ARES.subject = user

RES1 :=respondent sp resource yRE(Q) := subject sp requestld id,,
respondent idp resource y
Pul{quth,conf} (RESL, idp, user) < get{cons (REQ, user)

In Eint

pUt{conf}(Xa i,]) A getA(X7 k)

where i, j, k € {user, sp,idp} and auth ¢ A.

It is easy to see that the intruder can intercept the messages sent by ey ser
and use them to construct new messages and communicate with the service
provider in the name of the honest client e,s.-. In the following section we
present the actions that can be done by the intruder on objects that he knows
or gained access of on non-confidential channels.

162 CHAPTER 9. AN INTRUDER MODEL FOR TRUST NEGOTIATION

9.5 Formalizing the intruder

In this section we describe the behavior of the intruder with respect to secure
objects. That is, we assume that the intruder can encrypt, decrypt, sign or
create objects depending on his knowledge. Note that the knowledge of the
intruder consists of objects that the intruder either has in his repository at the
beginning of the trust negotiation session, or has acquired (legitimately or by
listening to the network) during the previous rounds of negotiation.

9.5.1 Entities and keys

As noted in Section 9.2, we suppose that each entity e; € £ possesses key
pair for encryption and a key pair for signature that we denote by k; and k; 1
respectively.

Also, we assume the existence in the repository of the intruder of objects
that we call knowledge objects. A knowledge object is an object K whose domain
contains a characteristic attribute kn such that K.kn = v for some v € VAL.
The rationale behind defining such an object is to keep a trace of the attributes
or values that the intruder gained knowledge of (through the reading of available
objects he knows) and that he can use in order to create new objects.

In the rest of this section we model the behavior of the intruder with respect
to the security properties of objects.

9.5.2 Trust negotiation policy of the intruder

In this section we present the actions that can be made by the intruder on an
object available to him depending on whether the object is signed, encrypted
or non-secured through the definition of trust negotiation rules.

Sending objects

The intruder e;,; can send an object to an entity e; in £ pretending to be an
entity e; if he has the object in his repository or if he ”gained” access to the
object during the trust negotiation session. This is expressed by the following
rule:

puta(X,i,2;) < geta (X, 2;) V has(X)
for z;,2; € {1,...,n,int} and with the assumption that either auth ¢ A or
1 =1int.
In particular, we assume that the intruder sends to himself all the objects

that he can acquire from other entities. The rules modeling the objects ” gained”
by the intruder can thus be expressed by:

put o (X, int,int) < geta (X, x;)

for x; € {1,...,n,int}

9.5. FORMALIZING THE INTRUDER 163

The intruder can always use the empty object € to construct new objects:
puta(e,int,int) < T

Use of cryptographic operations

The intruder e;,,; can use cryptographic operation on an object he already gained
access of. Let Kine = {k; 11 € {1,...n,int}}U{k;,}} be the set of keys available

int
to the intruder. The intruder can use the public keys of all entities as well as

his own private key. We express the behavior of the intruder as follows:

putA(f(X, k), int,int) < geta (X, int) V has(X)

for k € ICipns.
The intruder can create a new object from objects that he can read, or from
information that he gained.

Extracting information

The fact that the intruder can extract information from objects he knows is
expressed by the rule:

putyg(X, int,int) < gety(Y,int) ANY.a =2 A X = e<+ (kn,)

Object creation

The intruder can create new objects by adding or removing attributes from
objects.

Adding attributes: The intruder can create a new object by adding an at-
tribute that he already ”"knows” to an object he already gained access of, as
follows:

puty(X, int,int) < gety(Y,int) A gety(Z,int) N Zkn=az N X =Y «+(a,x)

for a € ATT

Removing attributes The intruder can create a new object by removing
an attribute from objects he already gained access of, as follows:

puta(X,i,7) < geta (Y, OANX =Y\ {a}

for a € Att, i,4,l € {1,...,n,int} and with the assumption that either auth ¢ A
or ¢ = int.

164 CHAPTER 9. AN INTRUDER MODEL FOR TRUST NEGOTIATION

9.6 Trust negotiation semantics

In this section we give the trust negotiation semantics for both honest entities
and the intruder. Note that while honest entities are assumed to abide by their
trust negotiation policy, the intruder can receive objects destined to others in
a non-confidential communication and can send objects to others pretending to
be someone else in a non-authentic communication.

9.6.1 How entities receive available objects

With the presence of an intruder, the real sender and real receiver of a negotiated
object may differ from the intended one. We illustrate this by the evaluation
semantics for the put(T,t1,t2) and get(T,t) predicates in the trust negotiation
policy of the honest entities on the one hand and the intruder on the other hand.

Trust negotiation session

We define a trust negotiation session to be a sequence of trust negotiation
rounds. A trust negotiation session terminates when there are no more ob-
jects that can be negotiated, in which case the least fixed point is reached. We
model the eager trust negotiation. That is we assume honest entities send all
the objects that satisfy their trust negotiation policy during a trust negotiation
session. However we assume that the intruder can perform a non-deterministic
choice on the objects that he actually sends from the set of objects that satisfy
his trust negotiation policy.

Adequate available objects

We have assumed that honest entities did not impersonate other entities nor
listened to communications directed to others. Informally we say that an avail-
able object abiding by these rules is adequate. Formally let A = (O, z,y, 2z, A)
be an available object and assume i € {1,...,n,int}. We say that A is adequate
for ¢ and denote ad(A, 1) iff:

z €{y,int} & (authe A= x=y) (send restrictions)
ie{zint} & (confe A= z=1) (receive restrictions)

Let us explain the role of the conditions:

-z € {y,int} and i € {z,int} enforce respectively the facts that only the
intruder sends objects as someone else or listens to objects sent to others;

- auth € A = x = y enforces the fact that the real and apparent senders
must be equal for an available object transported on an authentic channel;

- conf € A = y =i enforces the fact that an available object transported
on a confidential channel can only be listened by the intended receiver.

9.6. TRUST NEGOTIATION SEMANTICS 165

Trust negotiation round

A trust negotiation round among n honest entities and the intruder is an (n+1)-
tuple of sets of awailable objects

_ k k
Y = (25,87617 25 S,en? Eg,s,emt)

where Zfs,s,ej denotes the set of available objects for the entity e; at the begin-
ning of round ¢. The tuples (X)r>0 are defined inductively as follows:

. 0 50 _ 50 _ @
base case: Yg 5. = =Yps. =Yese,, =

induction: Let ¢ € {1,...,n,int} be an entity, k¥ > 0. Suppose by induc-
tion that Eg Se; 18 deﬁned Furthermore assume that the set 95 S.es Of
available obJects acquired by ¢ during the k-th trust negotiation step is
defined.

e k
We define ¥¢'s =Yg 5. UQe s ...

In the remaining of this section we present how Qg S,e; 18 computed given Y.

9.6.2 What entities can send

Let 25 s.e; denote the set of objects available for an entity e; at the beginning
of round k. We say that a signed object O € ¢(O) can be sent by entity e; to
entity e; at step k, and write S, e; = puta(O,1i,j), iff puta(O,1,j) + body is
a ground instance of a rule in the trust negotiation policy of an entity e; such
that:

S, e; =1 body

To evaluate this formula we say S, e; = body iff in the rule instance:

- body is has(O’) and O € Rep;

body ist =t

body is t # t' and t and t’ are different

- body is get 4/ (O', j) and there exists y, z € {1,...,n,int} and A” such that
(0,y,j,2,A") € £k 5 . and A’ C A” and ad((O',y, j, z, A"),1).

body is body; A bodys and S, e; =i body; and S, e; =k bodys

- body is body; V body, and S, e; =k body; or S, e; =i bodys.

The adequacy criterion (see Section 9.6.1) in the fourth point implies in particu-
lar that honest entities only receive objects sent to them (i = z) and send objects
as being themselves (y = j). Also, if ¢ is the intruder and i # z then the com-
munication channel must be non-confidential and if y # j the communication
channel must be non-authentic.

166 CHAPTER 9. AN INTRUDER MODEL FOR TRUST NEGOTIATION

9.6.3 Computing the set of available objects

The set of available objects for entities computed at round k depends on the
set of objects sent by honest entities, the set of objects sent by the intruder as
himself or as another entity and the set of objects blocked by the intruder.

Let Hg S.e; be the maximal set of objects that are available to e; taking the
assumption that the intruder sends everything he can and blocks nothing. By
definition we have:

Mese, = {(0,2,5,y,4):S, e, i puta(O,,y) with z,j,y € {1,...,n,int}
and ad((O,x,j,y,A),i)}

Let Ag S.e; be the minimal set of objects that are available to e; taking the
assumption that the intruder does not send anything and blocks all objects that
can be blocked. By definition we have:

AZ‘CI,S,ei = {(Oajvjaia A) : Sa €x):k pUtA(Ovja y)v] 7& int and unblock € A}

We define the set of available objects for an entity e; at step k to be a set
Qf 5., chosen non-deterministically by the intruder and such that:

k k k
AE,S,&; g QE,S,ei g]'_‘[578761‘

We note that a complete strategy (w.r.t. the search of an attack) for the intruder
is to always choose at least all the messages intended to himself.

9.7 Security requirements

In this section we define some security requirements that should be satisfied
by the model during a trust negotiation session. Recall that a trust negoti-
ation session is the process of computing a least fixed point with respect to
(i) the set of trust negotiation rules for each entity in the model and (ii) the
non-deterministic choice of actions performed by the intruder, as presented in
Section 9.6. In this section we present different aspects of confidentiality and
authenticity properties.

9.7.1 Confidentiality

We distinguish two different kinds of confidentiality, the usual one for which a
fixed group of entities shall not be able to obtain a clear object, and a contain-
ment one that expresses that an entity may possess an object O only if it has
been sent to this entity by another honest entity.

9.8. ATTACK ON GOOGLE’S IMPLEMENTATION OF SAML SSO 167

Confidentiality. A first notion of confidentiality consists in imposing that an
object O must be unknown to a coalition G of entities. This means that, when
considering the union g of the sets of keys known by entities in G, none of
the entities in G can gain access to a signed object T' that can, by performing
certain encryption or decryption operations with keys in K, retrieve the object
O. In order to formalize this notion, let /C; be the set of available keys for entity
e;. We say that an object O is confidential for the group G if and only if

VT,Vky,. .. kn € Ka,
UG f(Tk), .. .) kn) =0 = VA Vi€ GVm >0, (E,S, € m geta(T, 1))

Containment. An object O is contained if no entity can gain access to this
object unless it is the exclusive respondent. Note that while this is always
the case for a honest entity, such a property is necessary to check whether an
intruder can intercept such a message or construct it using his own knowledge.
We say an object O preserves containment if and only if

VA,Vi,Vm > 0,
(£,8, €int FEm geta(0,i) = Im’ < m,3j # int,(£,S, e; F=m puta(O, j,int)))

9.7.2 Authenticity

Among the notions proposed in [55] we consider two types of authenticity.

Strong authenticity for an object O is expressed by the fact that at no time
can the intruder send the object O as being someone else. This property is
formally expressed as follows:

VAV, g, 1 € {1,...,nint}, 1 #i,Vm > 0,(E,S, e Fm puta(0,4,7))

Weak authenticity for an object O is expressed by the fact that if an entity
e; receives the object O apparently from entity e; then the entity e; previously
sent the object O to the entity e;.

We say an object O preserves weak authenticity if and only if

VA, Vi, j € {l,...,n,int} k>0,
(87S7ei ':k getA(O7])) = dm < k7 (8787€j):m pUtA(O7j7Z))

9.8 Attack on Google’s implementation of SAML
SSO

In this section we give an instance of the model defined throughout this chap-
ter that presents a confidentiality attack on the Single Sign-on protocol for
Google applications found by Armando et al. [5]. The communication of
messages in the presence of the intruder are presented in Figure 9.2. Let
E = {€bob; Egoogle; €idp, €1} Where epop is the client entity, and egoogie is a ser-
vice provider, then:

168 CHAPTER 9. AN INTRUDER MODEL FOR TRUST NEGOTIATION

bob idp i | i(bob) google
(i2bob google2i L
1 bob2idp e
idp2bob <
(Confidential
‘ (i2g00gle }——>
bob2i i2google @
— S Authentic
- Confidential
google2i o and
Authentic

Figure 9.2: The communication of messages in the attack on SAML SSO for
Google application

In €hob-

X :=subject bob respondent i resource uri
put{congy (X, bob, i) < has(X)

PUtconpy (X, bOb, 1) <= getiauth,consy (X, idp) A X.respondent = idp
Put{congy (X, bob, idp) < getiquny (X, i) A X.respondent = i

In egoogle:

X :=subject bob resource calendar respondent google
REQ := subject google requestld idgoog. respondent idp
put(REQ, google, bob) + get(X, bob)

RES := certifier idp auth — status is-authentic

put qutn} (X, google, bob) < geticon sy (f(RES, ki;}l)), bob)
Aget{consy (RES1, bob) AN RES1.resource = calendar
AX.data = secret

9.9. CONCLUSION 169

In €idp:

REQ := subject i requestld id; respondent idp

RES :=subject bob auth — status is-authentic certifier idp
respondent = i

pUt{auth,conf}(RESa idp, Idp) — get{conf} (REQv bOb)

pUt{auth,conf}(f(RES k_l)a idp, bOb) — get{auth,conf}(RESa ldp)

» Vidp

ARES.subject = bob

REQ := subject i requestld id; respondent = idp resource calendar

RES1 := resource calendar respondent i
Pul{quth,conf} (RESL, idp, bob) < get{consi (REQ, bob)

The rules of the intruder e; are as described in Section 9.5. We assume
that the intruder has in his repository the certificates:

{kn — i} ,{kn — c},{kn +— sp},{kn — idp},{kn — bob},
{kn — google} , {kn — calendar} , {kn — uri}

Confidentiality attack The property saying that the object
O := {kn — secret}

is confidential for the intruder 7 is violated. In fact ep,, communicates with the
intruder as being a service provider, however, the intruder acts as ep to access
the service provider egpogic- 1t is easy to see that with the rule instances presented
in the above scenario, the rule put .1} (O, google, bob) is satisfied due to the
fact that the intruder sends authentication response RES and RES1 as being
epob- As such, the intruder computed getyq,13 (O, google) by intercepting a
message sent on a non-confidential channel intended to ep,,. This message is
clear and contains the value secret. The intruder can then extract this value
and compute the secret object.

9.9 Conclusion

In this chapter we defined an intruder as an entity in our attribute based logical
framework whose behavior mimics that of a Dolev-Yao intruder. The model
is constructed by extending the syntax and evaluation semantics of the logical
framework, defined in Chapter 4, to take into account the presence of various
types of communication channels and basic cryptographic primitives to express
encryption and decryption of messages. We note that in this setting there is
a priori an unbounded number of possible different available objects because
of the cryptographic operations. However we conjecture that we can apply
the result of [35] to obtain a decision procedure for the security properties we
consider.

170 CHAPTER 9. AN INTRUDER MODEL FOR TRUST NEGOTIATION

The representation of the intruder in such a manner allows the study of secu-
rity properties, namely confidentiality and authentication properties. The utility
of this work lies in the fact that during the trust negotiation session, certificates
are exchanged among entities depending on a security policy (a set of trust
negotiation rules) which is defined locally by each corresponding entity. Thus
it is interesting to test, in the presence of different entities with different sets
of trust negotiation rules, whether the interaction among them satisfies global
security properties expressed by authentication or confidentiality constraints on
the whole process.

Chapter 10

Conclusion and perspectives

Conclusion

Standard access control features only regulate access to a service functionalities,
and thus cannot express access control decisions that depend on an execution
context. The first objective of this thesis was to develop a logical language to
express complex access control policies in a distributed environment that can
model dynamic access control and ensures communications between different
entities both on the level of message exchange but also on the level of trust
establishment. The second objective was to express access control features and
specify security properties that contribute to the reasoning about the safety of
security problems be it on the level of access control (such as separation of duty
constraints) or on the level of communication (authentication and confidentiality
for a trust negotiation session).

We presented in Chapter 3 a logical framework that uses the RBAC struc-
ture to define access control rules, and a transition system that defines the
effects of access control decisions as a collection of permissions or obligations
depending on the choice of the user to activate or not the authorized action.
Thus in this first approach we assumed that the security state evolves with re-
spect to the access control decisions and the choice made on the activation of
these authorizations. However, when trying to express case studies concerning
the modeling of business processes, we found some difficulties in adapting the
RBAC structure to requirements that concern other elements of security such as
characteristics related to the object rather than the subject of an access control
decision. Also, this first approach does not ensure in an explicit manner the
communication between different entities in a distributed environment.

In Chapter 4 we turned towards an attribute based logical framework re-
grouping an access control policy, a trust negotiation policy and a workflow.
The interplay between the static policy, expressed by the trust negotiation pol-
icy, and the dynamic policy, expressed by the access control policy and the
workflow, offers an efficient tool to express the state evolution of one entity

171

172 CHAPTER 10. CONCLUSION AND PERSPECTIVES

with respect to its interaction with the rest of the environment. The least fixed
point evaluation semantics of trust negotiation rules keeps track of the current
security state of each entity, whereas the access control rules evaluation depends
on the result of the trust negotiation session and thus offers access control de-
cisions depending on the security state. Moreover, the access control rules can
be viewed as guards on the execution of the workflow, that is an action can
be executed if it is both authorized by the access control policy and executable
in the workflow. In order to show the expressivity of this framework and to
illustrate the use of the language and the interaction between different entities
to simulate a business process, we presented in Chapter 5 a modeling of a car
registration process.

The second part of this thesis presented access control features and prop-
erties both on the level of securing the access control framework of each entity
and on the level of securing the communication between the different entities in
the environment on the trust negotiation level. As such, Chapters 6 and 7 were
devoted to the study of delegation and separation of duty properties. We pre-
sented different perspectives of expressing these properties and the limitations
found in the previous works. We showed that, unlike most existing works in the
literature, we are able to encode most of the aspects of delegation that exist in
the literature as well as to specify separation of duty constraints both on the
level of policy design and policy enforcement without modifying the syntax of
our language. The information about the use of delegation or the use of a task in
general in the presence of security constraints, is evaluated locally in the entity
responsible for the delegation or the task execution. To this end, the history
of delegation or task execution was recorded by means of adding an object to
the repository of the entity. The access control decisions in terms of authorizing
delegated rights or enforcing separation of duty constraints depend on the result
of queries for the existence (or the non-existence) in the repository of the entity
of delegation records of task execution records. The case of delegation is simple.
In fact, we assume that each entity decides on the delegations concerning its
own functionalities or elements. The trust negotiation policy of the entity can
then manage the diffusion of the delegation information in form of objects to
other concerned entities. The case of security constraints is more complicated.
The difficulty lies in the fact that queries are for the non-existence of objects
that can only be performed locally in a given entity. Nonetheless, even though
the definition of security constraints on the level of the entire framework is not
yet feasible, we defined security properties in the form of decision problems in
order to check for the safety of the model. An encoding for RBAC and several
of its extensions to role hierarchy, role activation and delegation was presented
in Chapter 8.

The final chapter of this thesis tackled a different aspect of security. In fact,
as the main aim of this thesis was to define a framework to model access control
policies in a distributed environment, it was important to study the problem
of securing the communication between the different entities. To this end, we
provided an extension of the language to take into account the security proper-
ties of communication channels and assumed the existence in the environment

173

of a malicious entity that do not necessarily abide to its trust negotiation pol-
icy. To this end we defined an intruder model as a logical entity with a specific
set of rules, and gave the specifications for authentication and confidentiality
properties for the system in the presence of this intruder.

Perspectives

Future works can be directed in three main research directions. First towards
the orchestration of services, second towards model checking within a distributed
environment and third towards the implementation of this framework in a tool
to model and validate access control policies.

On orchestration

In Chapter 4 we defined a unified framework to express access control in a dis-
tributed environment, in Chapter 5 we gave an illustration of a car registration
business process as a collection of entities each of which with its own set of
access control rules, trust negotiation rules and workflow. The different entities
communicated by means of negotiating objects, but also by means of sending
and receiving requests in order to coordinate the execution of the local work-
flows and thus complete the business process. However, in order to do that we
explicitly model the send/receive process in the communicating entities. It is
interesting to abstract away this encoding by assuming the presence of an or-
chestrator whose role is to regulate the interaction between the different entities
by managing the exchange of request messages. The orchestrator can also take
into account the security constraints specified for the entire system (through
the definition of a business process). This can be done by delegating the con-
trol over the sensitive tasks (that may not be controlled by the same entity)
to the orchestrator. The orchestrator can thus be seen as a logical entity with
a specific set of rules and a workflow that on one hand is responsible for the
definition of the general access control policy of the business process through
its security policy, and on the other hand regulates the exchange of message
requests between the different entities through it workflow definition.

On model checking

In Chapter 7 we gave the specification for the enforcement of security constraints
in the environment through the establishment of a monitor that after each
execution of the workflow, checks for security violations. However, in the actual
framework, such a monitor can only act as guard on the safety of the model. It
would be interesting to allow the monitor, in case of a violation, to trace back
the source of the violation and thus allow the policy modeler to modify the
security policy of the entity in question in order to remediate to the problem.
This however is not very simple to achieve. In fact, we need to redefine the
framework in order to be able to trace back the source of the violation. To do

174 CHAPTER 10. CONCLUSION AND PERSPECTIVES

that one need to keep track of the history of workflow executions on the one
hand, and monitor the access control authorizations that can be acquired in a
decentralized manner through the negotiation of objects with other entities.

On implementation

The definition of a formal framework for security policies is necessary to reason
about the security properties of policies. However it is important to imple-
ment this framework in a tool to express and validate access control policies.
A formal language to specify security policies ASLan, is defined through the
AVANTSSAR Project. It is based on rewrite rules to express workflows, Horn
clauses to express the security policy requirements, and Linear Temporal Logic
to express security properties. Tools were developed in order to implement it.
In our framework security rules are expressed in first order logic and the work-
flow is defined as a transition system through the process definitions. It would
be interesting to reduce the security rules in our model to Horn clauses in order
to make use of these existing tools.

Bibliography

[1]

2]

Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A
calculus for access control in distributed systems. ACM Trans. Program.
Lang. Syst., 15(4):706-734, 1993.

A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miege, C. Saurel, and G. Trouessin. Organization Based
Access Control. In 4th IEEFE International Workshop on Policies for Dis-
tributed Systems and Networks (Policy’08), June 2003.

A. Anderson. Sun position paper. Technical report.

Alessandro Armando, Roberto Carbone, and Luca Compagna. Ltl model
checking for security protocols. In CSF ’07: Proceedings of the 20th IEEE
Computer Security Foundations Symposium, pages 385-396, Washington,
DC, USA, 2007. IEEE Computer Society.

Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuellar,
and Llanos Tobarra. Formal analysis of saml 2.0 web browser single sign-
on: breaking the saml-based single sign-on for google apps. In FMSE
’08: Proceedings of the 6th ACM workshop on Formal methods in security
engineering, pages 1-10, New York, NY, USA, 2008. ACM.

Philippe Balbiani, Yannick Chevalier, and Marwa El Houri. A logical ap-
proach to dynamic role-based access control in a distributed environment.
In International Conference on Artificial Intelligence: Methodology, Sys-
tems, Applications (AIMSA),, pages 194-208. Springer-Verlag, 2008.

Philippe Balbiani, Yannick Chevalier, and Marwa El-Houri. A Logical
Framework for Reasoning about Policies with Trust Negotiations and Work-
flows in a Distributed Environment. In Proceedings of the 4th International
Conference on Risks and Security of Internet and Systems, pages 3-11,
Toulouse, France, 2009. IEEE.

E. Barka and R. Sandhu. A role-based delegation model and some exten-
sions.

175

176

[9]

[11]

[12]

[13]

[14]

BIBLIOGRAPHY

E. Barka and R. Sandhu. Framework for role-based delegation models. In
ACSAC ’00: Proceedings of the 16th Annual Computer Security Applica-
tions Conference, page 168, Washington, DC, USA, 2000. IEEE Computer
Society.

David A. Basin, Samuel J. Burri, and Giinter Karjoth. Dynamic enforce-
ment of abstract separation of duty constraints. In Michael Backes and
Peng Ning, editors, ESORICS, volume 5789 of Lecture Notes in Computer
Science, pages 250-267. Springer, 2009.

Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. SecPAL: Design
and semantics of a decentralized authorization language. Technical Report
MSR-TR-2006-120, Microsoft Research, September 2006.

Moritz Y. Becker and Sebastian Nanz. S.: A logic for state-modifying
authorization policies. Technical report, In: European Symposium on Re-
search in Computer Security, 2007.

Moritz Y. Becker and Peter Sewell. Cassandra: Distributed access control
policies with tunable expressiveness. In POLICY °04: Proceedings of the
Fifth IEEE International Workshop on Policies for Distributed Systems
and Networks, page 159, Washington, DC, USA, 2004. IEEE Computer
Society.

Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust management,
applied to electronic health records. In In Proceedings of the 17th IEEE
Computer Security Foundations Workshop, pages 139-154. IEEE Computer
Society Press, 2004.

D.E. Bell and L.J. LaPadula. Secure computer systems: Mathemati-
cal foundations and model. Technical Report Technical Report M74-244,
MITRE Corporation, Bedford, MA,.

E. Bertino, E. Ferrari, and V. Atluri. A flexible model supporting the spec-
ification and enforcement of role-based authorizations in workflow man-
agement systems. In 2nd ACM Workshop on Role-Based Access Control
(RBAC). Fairfax, VA, 1997.

Elisa Bertino, Jason Crampton, and Federica Paci. Access control and au-
thorization constraints for ws-bpel. In ICWS, pages 275-284. IEEE Com-
puter Society, 2006.

Elisa Bertino, Elena Ferrari, and Vijay Atluri. The specification and en-
forcement of authorization constraints in workflow management systems.

ACM Trans. Inf. Syst. Secur., 2(1):65-104, 1999.

Jajodia S. Wang X. Wijesekera D. Bettini, C. Provisions and obligations
in policy management and security applications. In Proceedings of 28th In-
ternational Conference on Very Large Data Bases., pages 502—513. Morgan
Kaufmann, 2002.

BIBLIOGRAPHY 177

[20]

[21]

[22]

[23]

[28]

[29]

[31]

[32]

K. Biba. Integrity considerations for computer systems. In Technical Report
ESD-TR-76-872, MITRE, Bedford, Mass, 1976.

M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The keynote
trust-management system version 2, 1999.

Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis.
The role of trust management in distributed systems security. pages 185—
210, 1999.

Matt Blaze, Joan Feigenbaum, and Martin Strauss. Compliance checking
in the policymaker trust management system. In FC ’98: Proceedings
of the Second International Conference on Financial Cryptography, pages
254-274, London, UK, 1998. Springer-Verlag.

Piero Bonatti and Pierangela Samarati. Regulating service access and in-
formation release on the web. In CCS ’00: Proceedings of the 7Tth ACM
conference on Computer and communications security, pages 134-143, New
York, NY, USA, 2000. ACM.

Anthony J. Bonner and Michael Kifer. An overview of transaction logic.
Theoretical Computer Science, 133(2):205-265, 1994.

Michael Burrows, Martin Abadi, and Roger Needham. A logic of authen-
tication. ACM Trans. Comput. Syst., 8(1):18-36, 1990.

D. Clark and W. Wilson. Evolution of a model for computer integrity. In
Report of the Invitational Workshop on Data Integrity, Gaithersburg, 1989.
In Z.Ruthberg and W.Polk, editors.

David D. Clark and David R. Wilson. A comparison of commercial and mil-
itary computer security policies. Security and Privacy, IEEE Symposium
on, 0:184, 1987.

Crampton, Jason, Khambhammettu, and Hemanth. Delegation in role-
based access control. International Journal of Information Security (IJIS),
7(2):123-136, April 2008.

Jason Crampton. Specifying and enforcing constraints in role-based access
control. In SACMAT ’03: Proceedings of the eighth ACM symposium on
Access control models and technologies, pages 43-50, New York, NY, USA,
2003. ACM.

Jason Crampton and Hemanth Khambhammettu. On delegation and work-
flow execution models. In SAC ’08: Proceedings of the 2008 ACM sympo-
sium on Applied computing, pages 2137-2144, New York, NY, USA, 2008.
ACM.

T. Dierks and C. Allen. The tls protocol version 1.0, 1999.

178
[33]

[34]

[35]

[36]

[39]

BIBLIOGRAPHY

D. Dolev and A. Yao. On the security of public key protocols. Information
Theory, IEEE Transactions on, 29(2):198-208, 1983.

Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Specifying
and reasoning about dynamic access-control policies. In of Lecture Notes
in Computer Science, pages 632-646. Springer, 2006.

Shimon Even and Oded Goldreich. On the security of multi-party ping-
pong protocols. In FOCS, pages 34-39. IEEE, 1983.

D. F. Ferraiolo, J. A. Cugini, and D. R. Kuhn. Role-based access con-
trol(rbac): Features and motivations. In Proceedings 11th Annual Com-
puter Security Applications Conference, pages 241-248, 1995.

D.F. Ferraiolo, R Sandhu, S. Gavrila, D.R. Kuhn, and R. . Chandramouli.
Proposed nist standard for role-based access control. In ACM Transactions
on Information and System Security, pages 4(3):222-274, August 2001.

Dimitrios Georgakopoulos, Mark F. Hornick, and Amit P. Sheth. An
overview of workflow management: From process modeling to workflow
automation infrastructure. Distributed and Parallel Databases, 3(2):119—
153, 1995.

Yuri Gurevich and Itay Neeman. Dkal: Distributed-knowledge authoriza-
tion language. In CSF ’08: Proceedings of the 2008 21st IEEE Computer
Security Foundations Symposium, pages 149-162, Washington, DC, USA,
2008. IEEE Computer Society.

Diala Abi Haidar, Nora Cuppens-Boulahia, Frédéric Cuppens, and Hervé
Debar. XeNA: an access negotiation framework using XACML. Annales
des télécommunications- Annals of telecommunications, 64(1-2):155 — 169,
january 2009.

Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection
in operating systems. Commun. ACM, 19(8):461-471, 1976.

Adam Hess, Jared Jacobson, Hyrum Mills, Ryan Wamsley, Kent E. Sea-
mons, and Bryan Smith. Advanced client/server authentication in tls. In
NDSS. The Internet Society, 2002.

Manuel Hilty, David A. Basin, and Alexander Pretschner. On obligations.
In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter Goll-
mann, editors, ESORICS, volume 3679 of Lecture Notes in Computer Sci-
ence, pages 98-117. Springer, 2005.

Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming bpel
to petri nets. In Business Process Management, pages 220-235, 2005.

Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Sub-
rahmanian. Flexible support for multiple access control policies. ACM
Trans. Database Syst., 26(2):214-260, 2001.

BIBLIOGRAPHY 179

[46]

[47]

[48]

[49]

[52]

[54]

[55]

A. Jones, R. Lipton, and L. Snyder. A linear time algorithm for deciding
subject security. In Proceedings of the 17th Annual Symposium on the
foundations of Computer Science, pages 33—41, 1976.

Diane Jordan and John Evdemon. Web services business process execution
language version 2.0. OASIS Standard, April 2007.

Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher,
Yves Lafon, and Charlton Barreto. Web services choreography descrip-
tion language version 1.0. http://www.w3.org/TR/ws-cd1-10/, 2005.

Hristo Koshutanski and Fabio Massacci. An access control framework for
business processes for web services. In Sushil Jajodia and Michiharu Kudo,
editors, XML Security, pages 15—24. ACM, 2003.

B. W. Lampson. Dynamic protection structures. In AFIPS 69 (Fall):
Proceedings of the November 18-20, 1969, fall joint computer conference,
pages 27-38, New York, NY, USA, 1969. ACM.

Jiangtao Li, Ninghui Li, and William H. Winsborough. Automated trust
negotiation using cryptographic credentials. In Vijay Atluri, Catherine
Meadows, and Ari Juels, editors, ACM Conference on Computer and Com-
munications Security, pages 46-57. ACM, 2005.

Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of
a role-based trust-management framework. In SP ’02: Proceedings of the
2002 IEEE Symposium on Security and Privacy, page 114, Washington,
DC, USA, 2002. IEEE Computer Society.

Ninghui Li and Qihua Wang. Beyond separation of duty: an algebra for
specifying high-level security policies. In CCS ’06: Proceedings of the 13th
ACM conference on Computer and communications security, pages 356—
369, New York, NY, USA, 2006. ACM.

Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed
credential chain discovery in trust management. J. Comput. Secur.,
11(1):35-86, 2003.

Gavin Lowe. A hierarchy of authentication specifications. In CSFW ’97:
Proceedings of the 10th IEEE workshop on Computer Security Foundations,
page 31, Washington, DC, USA, 1997. IEEE Computer Society.

Roberto Lucchi and Manuel Mazzara. A pi-calculus based semantics for
ws-bpel. J. Log. Algebr. Program., 70(1):96-118, 2007.

Ueli M. Maurer and Pierre E. Schmid. A calculus for secure channel es-
tablishment in open networks. In ESORICS ’94: Proceedings of the Third
European Symposium on Research in Computer Security, pages 175-192,
London, UK, 1994. Springer-Verlag.

180
[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

BIBLIOGRAPHY

Nilo Mitra and Yves Lafon. Soap version 1.2 part 0: Primer (second edi-
tion). W3C Recommendation, April 2007.

Anthony Nadalin, Chris Kaler, Ronald Monzillo, and Phillip Hallam-Baker.
Web services security: Soap message security 1.1. OASIS Standard Speci-
fication, February 2006.

Dr. Michael J. Nash and Dr. Keith R. Poland. Some conundrums concerning
separation of duty. Security and Privacy, IEEE Symposium on, 0:201, 1990.

Federica Paci, Elisa Bertino, and Jason Crampton. An access-control frame-
work for ws-bpel. Int. J. Web Service Res., 5(3):20-43, 2008.

Lockhart H. Anderson A. Mishra P. Parducci, B. Core and hierarchical
role based access control (RBAC) profile of XACML v2.0. Oasis open TC
on XACML, 2005.

Lockhart H. Anderson A. Mishra P. Parducci, B. SAML 2.0 profile of
XACML v2.0. Oasis open TC on XACML, 2005.

Lockhart H. Anderson A. Mishra P. Parducci, B. XACML 2.0 core. Oasis
open TC on XACML, 2005.

Nick Ragouzis, John Hughes, Rob Philpott, Eve Maler, Paul Madsen, and
Tom Scavo. Security assertion markup language (saml) v2.0 technical
overview. Technical report, OASIS Security Services, March 2008.

Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. In Proceedings of IEEE, 63(9), pages 1278-1308,
1975.

Ravi Sandhu, Bhamidipati, and Qamar Munawer. The arbac97 model for
role-based administration of roles. In ACM Transactions on Information
and System Security, February 1999.

Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The arbac97
model for role-based administration of roles. ACM Trans. Inf. Syst. Secur.,
2(1):105-135, 1999.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-based access control models. IEEE Computer, 29(2):38—
47, 1996.

Andreas Schaad, Volkmar Lotz, and Karsten Sohr. A model-checking ap-
proach to analysing organisational controls in a loan origination process. In
David F. Ferraiolo and Indrakshi Ray, editors, SACMAT, pages 139-149.
ACM, 2006.

Richard Simon and Mary Ellen Zurko. Separation of duty in role-based
environments. Computer Security Foundations Workshop, IEEFE, 0:183,
1997.

BIBLIOGRAPHY 181

[72]

(73]

[74]

[75]

[79]

[80]

TCSEC. Trusted computer system evaluation criteria. Technical Report
DoD Standard, DoD 5200.28-STD, Department of Defense (DoD), 1985.

The Avantssar Project. Problem cases and their trust and security require-
ments. Deliverable D5.1, Automated VAlidatioN of Trust and Security of
Service-oriented ARchitectures (AVANTSSAR), http://www.avantssar.
eu/, 2008.

Asir S Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo,
Prasad Yendluri, Toufic Boubez, and Umit Yalginalp. Web services policy
(wspolicy) 1.5 - framework. W3C Recommendation, September 2007.

Jacques Wainer and Akhil Kumar. A fine-grained, controllable, user-to-
user delegation method in rbac. In SACMAT ’05: Proceedings of the tenth
ACM symposium on Access control models and technologies, pages 59-66,
New York, NY, USA, 2005. ACM.

Qihua Wang, Ninghui Li, and Hong Chen. On the security of delegation
in access control systems. In ESORICS ’08: Proceedings of the 13th Euro-
pean Symposium on Research in Computer Security, pages 317-332, Berlin,
Heidelberg, 2008. Springer-Verlag.

Stephen A. White and Derek Miers. BPMN Modeling and Reference Guide.
Future Strategies Inc, 2008.

W. H. Winsborough, K. E. Seamons, and V. E. Jones. Automated trust ne-
gotiation. In DARPA Information Survivability Conference and Exposition,
volume I, pages 88-102. IEEE Press, Jan 2000.

Marianne Winslett, Ting Yu, Kent E. Seamons, Adam Hess, Jared Jacob-
son, Ryan Jarvis, Bryan Smith, and Lina Yu. Negotiating trust on the web.
IEEF Internet Computing, 6(6):30-37, 2002.

Marianne Winslett, Charles C. Zhang, and Piero A. Bonatti. Peeraccess:
a logic for distributed authorization. In CCS ’05: Proceedings of the 12th
ACM conference on Computer and communications security, pages 168—
179, New York, NY, USA, 2005. ACM.

Longhua Zhang, Gail-Joon Ahn, and Bei-Tseng Chu. A rule-based frame-
work for role-based delegation and revocation. ACM Trans. Inf. Syst. Se-
cur., 6(3):404-441, 2003.

Xinwen Zhang, Sejong Oh, and Ravi Sandhu. Pbdm: a flexible delegation
model in rbac. In SACMAT ’03: Proceedings of the eighth ACM symposium
on Access control models and technologies, pages 149-157, New York, NY,
USA, 2003. ACM.

182 BIBLIOGRAPHY

Un modele formel pour
exprimer des politiques
dynamiques pour controle
d’acces et négociation dans
un environnement distribué

Résumé en francais

183

Résumé

Le développement de 'internet et 'acceptation de ’architecture orientée service
comme moyen d’intégration des applications inter et intra organisationelles ont
permis 'apparition de nouvelles formes de strucutres distribuées. Dans ce con-
texte des applications et des ressources développées independemment les unes
des autres sont mis & disposition sous forme de services. Ces services commu-
niquent les uns avec les autres en s’échageant des messages sur HT'TP, SOAP,
etc. Ce contexte offre ainsi la possibilité d’orchestrer des services existants afin
de créer de nouveaux services adaptés a une tache donnée. Pour des raisons de
sécurité ou des raisons légales il est nécessaire de controler I'acces a ces services
ainsi que la collaboration et I’échange d’information entre eux lors de ’exécution
d’une tache commune.

L’objectif principal de cette thése est de définir un langage logique de haut
niveau qui permet I'expression de politiques de sécurité complexes au sein d’un
modele de controle d’acces.

Le développement de ce langage se fait en trois temps. Dans un premier
temps nous présentons un modele dynamique basé sur les roles. Ainsi, nous con-
sidérons que I’évolution de 1’état de sécurité d’un service dépend de ’exécution
de ses fonctionnalités. Dans un deuxieme temps nous définissons un formalisme
basé sur les attributs qui offre plus de flexibilité en termes de spécifications des
conditions de controle d’acces, et ajoutons la notion de workflow qui permet de
définir un ordre sur ’exécution des fonctionnalités et donc permet de modéliser
le comportement d’un service. Dans un dernier temps, afin de prendre en
compte la collaboration entre différents services, nous ajoutons un mécanisme de
négociation qui permet a chaque service de définir sa propre politique d’échange
avec les autres services dans ’environnement.

La conception d’un tel cadre logique unifié facilite les analyses de stureté
des politiques de sécurité puisque tous les facteurs qui influencent les décisions
de contrdle d’acces sont pris en compte dans le méme cadre. Ainsi le second
objectif de cette theése est d’étudier d’une part les principales propriétés de
controle d’acces telles la délégation et la séparation des taches et d’autre part
les propriétés de sécurité pour la communication entre les différents services au
niveau de la négociation. En effet, afin de montrer I'expressivité du modele
nous présentons un codage génériques pour les différentes notions de délégation
et de révocation, nous présentons également une spécifications pour les différents
aspects de séparation de taches ainsi qu’'une modélisation du controle d’acces

185

186 RESUME

basé sur les roles et de certaines de ses extensions. Enfin, et pour prendre
en compte un réseau de communication réel, nous présentons une extension
du langage qui permet de définir un modele d’intrus actif qui agit au niveau
d’une session de négociation en interceptant des messages et en construisanr de
nouveaux messages.

Chapitre 1 : Introduction

Contexte

Le développement du réseau Internet et la diffusion de I'information dans des
structures distribuées rend la collaboration entre différentes entités nécessaire.
Un service est une entité responsable d’un ensemble de fonctionnalités. Il peut
étre utilisé par un utilisateur humain ou par un autre service. Par exemple,
un service connecté a une librairie virtuelle permet aux utilisateurs de faire
une recherche sur les livres disponibles. Un second service relié a un systeme
bancaire sécurisé offre des possibilités de paiement protégé. Un troisieme service
fournit des avantages de livraison. Ainsi, si un utilisateur décide d’acheter un
livre en ligne, une collaboration entre ces trois services est nécessaire afin de
pouvoir réaliser la tache de I'utilisateur. Un scénario similaire peut exister au
sein d’une organisation contenant différents départements décentralisés.

Afin de pouvoir collaborer, les services doivent étre capable de communiquer,
échanger des informations et atteindre des accords mutuels. Il existe des lan-
gages standards qui garantissent la sécurité des messages comme SOAP [58] qui
définit la forme des messages a travers une enveloppe et controle la transmission
de messages entre les services. De plus, ces services ont besoin d’une politique
de sécurité qui spécifie qui a droit d’accéder aux fonctionnalités du service. Des
langages standards comme WS-SecurityPolicy [59] et WS-Policy [74] peuvent
définir une politique de sécurité au niveau des messages, plus explicitement, ces
langages sont capables d’exprimer, pour un service donné, les critéres & satisfaire
pour accepter un message d’un autre service. Les fonctionnalités d’un service
doivent aussi étre exécutées suivant un certain ordre afin de pouvoir contribuer
& atteindre une tache globale. Cette propriété peut étre garantie par BPEL [47],
un langage standard qui spécifie I'interaction entre les services et donc permet
I’expression d’un business process a partir de I’orchestration du comportement
des différents services.

Cependant, de tels langages standards sont congus essentiellement pour
I'implémentation de politiques de sécurité et la conception de business process
et donc n’offre pas les moyens nécessaires pour raisonner sur les politiques.

187

188 INTRODUCTION

Objectifs et contributions de cette these

L’objectif principal de cette these est de présenter un langage logique de haut
niveau capable d’exprimer des politiques de sécurité complexes dans le cadre
d’un modele de contréle d’acces. Un modele de controle d’acces doit garantir
la streté du systeme par rapport aux criteres de sécurité prédéfinis, mais aussi
permettre la possibilité de procéder a la vérification de la sécurité du systeme.
En particulier, un modele doit étre capable de fournir une solution au probleme
de streté qui, étant donné un éetqt initial et une politique de sécurité, vérifie
s’il est possible d’arriver dans un état non stir lorsqu’on applique la politique
de controle d’acces. Les criteres de streté sont souvent définis en terme de
confidentialité ou integrité de l'information, mais peuvent aussi dépendre de
contraintes opérationelles, disponibilité de I'information, etc. Afin de prendre en
compte ces problemes, il est essentiel de définir un cadre mathématique capable
d’exprimer les reégles de controles d’acces mais aussi les objectifs de sécurités, et
dans lequel il serait possible de valider les propriétés du systeme.

En général, les politiques de controle d’acces sont appliquées dans un envi-
ronnement spécifique et les décisions de controle d’acces menent & la permission
ou l'interdiction de certaines actions. Cela a un effet sur I’environnement de
la politique. Par conséquent, il est aussi important de pouvoir spécifier les ef-
fets des autorisations de controle d’acces dans le cadre du modele de controle
d’acces. Plus précisement, en plus de la possibilité de fournir des réponses de
type ”oui ou non” pour les requétes d’acces, le langage de sécurité doit aussi
exprimer le ”changement” effectif qui a lieu lorsqu’une requéte est autorisée (ou
interdite).

De plus, comme désormais 'information devient de plus en plus décentralisée,
de nouveaux aspects des controle d’acces sont nécessaires. Un modele de controle
d’acces doit prendre en compte la nature distribuée de I'environnement et la
possibilité de collaboration et de communication entre les différents systémes
de controle d’accés qui ne se connaissent pas nécessairement. Ainsi, il est im-
portant d’avoir un langage de sécurité qui est capable d’exprimer la négociation
de confiance entre les différents acteurs d’une collaboration afin d’établir une
confiance mutuelle.

Enfin, les organisations actuelles définissent souvent une politique de contole
d’acces par rapport a des business processes. En d’autes termes, la collabora-
tion entres les différents services est ordonnancée d’une maniere spécifique afin
d’accomplir un but final. Ainsi, pour pouvoir exprimer les business processes,
le langage de sécurité doit étre capable de définir en plus des effets directs des
actions autorisées, la possibilité de spécifier un ordre sur ces actions.

Le premier objectif de cette these est de formaliser un cadre unifié qui prend
en compte le controle d’acces dans un environnement ou les entités commu-
niquent pour accomplir un ensemble de taches par rapport a leur politiques de
sécurité respectives. De telles entités peuvent étre vues comme des services mais
aussi comme des utilisateurs ou des organisations.

Il est important de mentionner qu’il existe plusieurs modeles qui répondent a
certains des problémes présentés si dessus ([45, 13, 52, 18, 12, 11]). Cependant,

INTRODUCTION 189

la contribution de cette thése est de présenter un cadre unifié qui prend en
compte la totalité de ces caractéristiques. En effet, avoir un cadre unifé a pour
but de faciliter les analyses de streté pour les politiques de sécurité puisque tous
les différents facteurs qui influencent les décisions de contréle d’acces sont pris
en compte au sein du méme cadre.

Le second objectif de cette thése est d’étudier les principales propriétés de
controle d’acces comme la délégation et le séparation des taches d’une part et
les propriétées de sécurités concernant la communication entre les entités au
niveau de la négociation d’autre part. L’expression de ces propriétées permet-
trait la spécification des criteres de stireté pour le cadre unifié en général. En
particullier, nous spécifions des contraintes de sécurité qui peuvent étre vérifiées
au niveau des regles de sécurité, exécutées au niveau du workflow au niveau de
I’exécution. Nous spécifions aussi les propriéetes d’authneticité et de confiden-
tialité qui doivent étre satisfaites lors d’une session de négociation en présence
d’une entité malhonnéte.

Plan de la these

Cette these est constituée de deux parties. La premiere partie présente une étude
des modeles de controle d’accees déja existants ainsi que la conception et la for-
malisation d’un langage logique pour exprimer des politiques de controle d’acces
complexes qui modélisent les propriétés dynamiques dans un environnement dis-
tribué. La seconde partie présente certaines propriétés de controle d’acces qui
peuvent étre exprimées dans ce nouveau modele et spécifie des propriétés de
sécurité qui contribuent au raisonnement en terme de stureté des problemes de
sécurité.

Dans le chapitre 2, nous présentons une vue d’ensemble des modeles de
controle d’acces existants en s’intéressant a trois principaux criteres :

e la flexibilité du langage pour exprimer des politiques de controle d’acces
complexes, c’est a dire la possibilité d’exprimer les conditions requises qui
sortent du paradigme standard sujet, objet et action,

e la capacité d’exprimer le controle d’acces dynamique, c’est a dire la pos-
sibilité de définir des effets aux acces autorisés et de modéliser 1’évolution
de I’état de sécurité en termes d’un ordre d’exécution bien défini,

e la nécessité de définir une interaction entre les différents acteurs dans
I'environnement en définissant un mécanisme de négociation qui permet
I’établissement de la confiance entre ces acteurs qui ne se connaissent pas
nécessairement.

Nous montrons les solutions offertes par plusieurs modeles de controle d’acces
a certains de ces criteres et expliquons leurs limitations dans le but de motiver
le besoin pour un cadre unifié qui prend en compte les trois critéres ci dessus.
Dans le chaptire 3 nous présentons la premiere approche qui définit un modele
de contrdle d’acces dynamique basé sur les roles. L’importance principale de

190 INTRODUCTION

ce modele réside dans la définition des politiques dynamiques pour exprimer
les effets des autorisations selon que les actions autorisées sont exécutées ou
non. Dans le chapitre 4 nous étendons cette modélisation a un cadre logique
basé sur les attributs et capable de satisfaire les trois criteres présentés ci
dessus. Le développement de ce nouveau modele était partiellement influencé
par I'analyse de plusieurs études de cas que nous avons étudiées dans le cadre
de D'expression des politiques de sécurité pour les business processes. Dans le
chapitre 5, nous présentons une de ces études de cas pour modéliser un processus
d’enregistrement de voiture afin d’illustrer I’expressivité de notre cadre formel.

Dans le chapitre 6 nous présentons une vue d’ensemble des différents con-
cepts de délégation et de revocation. Nous présentons ensuite un codage pour ex-
primer les différents types de délégation et de révocation dans notre modele. Le
chapitre 7 présente les propriétés de séparation des taches qui montre I'expressivité
du modele au niveau de la spécification des contraintes de sécurités mais aussi
ou niveau de la vérification de ces contraintes au niveau de I'exécution. Dans
le chapitre 8 nous présentons une modélisation du controle d’acces basé sur les
roles et quelques unes de ses extensions et illustrons les propriétées de controle
d’acces dans ce modele. Le chapitre 9 présente un différent aspect de la sécurité
en considérant la présence d’une entité malhonnéte au niveau de la négociation.
Ainsi, nous présentons une extension du modele qui prend en considération les
différents types de canaux de communication et donnons une formallisation des
spécifications pour les propriétées d’authenticité et de confidentialité dans ce
cadre.

Enfin, il est nécessaire de mentionner que cette theése a été partiellement
financée par FP7-ICT-2007-1 Project no. 216471, " AVANTSSAR: Automated

Validation of Trust and Security of Service-oriented Architectures!”.

lwww.avantssar.eu

Partie I : Modeles de
controle d’acces dynamiques

Chapitre 2 : Travaux voisins

La sécurité a toujours été considérée comme une nécéssité pour les étres humains,
et les décisions de controle d’acces ou autorisations ont toujours existé dans la
vie réelle a chaque fois que ’homme a eu besoin de protéger ses propriétés. Avec
le développement de la technologie de I'information, la prise de décisions s’est
fortement liés aux ordinateurs. Ainsi, de plus en plus d’efforts ont été investit
dans des recherches concernant le controle d’acces afin de controler 'acces aux
informations sensibles et de protéger les ressources du systéme. En général, les
décisions de controle d’acces referent a des décisions de type ”oui ou non” sur
les questions concernant qui peut faire quoi.

Un modele de controle d’acces gere ’acces aux fonctionnalités (tel les web ser-
vices, les processus ou les organisations) par des utilisateurs autorisés & travers
une politique de controle d’acces. Dans sa forme la plus simple cette rela-
tion est représenté par une liste qui associe a des utilisateurs autorisés des
ressources. Lorsqu’un utilisateur présente une preuve sur son identité, une
décision d’autorisation concernant la relation utilisateur ressource peut étre
prise. Le controle d’acces est défini a travers les notions d’utilisateur, sujet,
objet, et action. Un utilisateur est un agent humain qui interagit avec une
machine, un sujet est une entité active, qui agit possiblement au nom d’un
utilisateur ou d’une autre machine. Un objet est une entité passive qui fait
référence a une ressource, une base de données ou tout autre information et
peut étre utilisé par des sujets, et une action est un processus actif qui peut étre
exécuter par un sujet sur un objet.

Dans ce chapitre nous donnons une vue d’ensemble des premiers modeles
de controle d’acces dans la section 2.1, ensuite, nous présentons le controle
d’acces basé sur les roles (RBAC) dans la section 2.2. Dans les sections 2.3
et 2.4 nous présentons deux extensions de RBAC ; FAF et OrBAC qui offrent
plus de flexibilité que la structure RBAC. Dans la section 2.5 nous présentons
XACML, un langage standard pour exprimer des politiques de sécurité, et dans
la section 2.6 nous présentons des modeles basés sur les roles plus récents qui sont
capables d’exprimer des politiques de sécurité dans un environnement distribué.

191

192 MODELES DE CONTROLE D’ACCES DYNAMIQUES

La section 2.7 présente SecPAL un langage logique basé sur les attributs, et
dans la section 2.8 nous présentons des langages pour exprimer les politiques
de sécurité dynamiques. Dans la section 2.9 nous présentons quelques notions
sur des modeles qui gerent la négociation de confiance et nous concluons dans
la section 2.10.

Chapitre 3 : Une approche logique pour le controle
d’acces dynamique basé sur les roles

A la différence de I’organisation traditionnelle de I’économie dans laquelle une
organisation centrale ou I'Etat est responsable pour la production d’un bien,
aujourd’hui I’économie est basée de plus en plus sur 'intégration de processus
qui proviennent de différentes sources et sur une aggrégation optimale de ces
ressources. Dans un systeme de banque électronique par exemple, la banque va
demander au Bureau de Credit, un partenaire externe, d’analyser le profil de
crédit d’un client dans le cas d’'une demande de prét. De plus, le processus de
demande de prét va étre traité par différents services appartenant a I’organisme
de la banque afin d’évaluer le prét, faire une décision, et éventuellement faire une
offre au client. Dans ces exemples, les différents partenaires doivent s’échanger
des informations pour s’assurer du succés de la coopération, mais ils doivent
aussi restreindre la diffusion de 'information.

Dans ce chapitre nous présentons un langage capable d’exprimer des poli-
tiques de controles d’accés dynamiques. Ce langage basé sur des regles logiques,
ajoute un aspect dynamique a ’expression des regles de controle d’acces par la
spécification explicite des effets des actions autorisées. Notre approche ressem-
ble & celle présentée dans [11]. SecPAL utilise des requétes pour modifier I’état
de sécurité du systeme lorsque la requéte est permise, cependant dans notre
approche nous modélisons les effets d’une action autorisée suivant si elle a été
exécutée ou non. Comme dans le cas de [13, 11] nous présentons un codage
pour les extensions de RBAC comme la délégation, la séparation des taches ou
la hierarchie de role dans notre modele. Enfin, comme notre objectif principal
est de définir un langage capable de modéliser les effets des actions, nous avons
choisi de modéliser en plus des permissions, la notion d’obligation.

L’idée de ce modele réside dans le fait que nous considérons qu’un systeme de
controle d’acces est caractérisé par des contextes de décisions et un programme
Datalog. Un contexte de décision est défini par un ensemble de permissions
et d’obligations. Dans chaque contexte de décision, les décisions de contrdle
d’acces sont basés sur le calcul de nouvelles autorisations pour les requétes de
premissions ou d’obligations a partir du programme Datalog et de I’ensemble
des permissions et obligations qui définissent le contexte de décision courant.
Le systeme de controle d’acces évolue d’'un contexte de décision a un autre
en fonction des actions exécutées par l'utilisateur. Un désavantage de cette
simplicité est qu’il est nécessaire de déclarer toutes les actions qui modifient le
contexte de décision a chaque transition.

MODELES DE CONTROLE D’ACCES DYNAMIQUES 193

Cependant, ce modele nous permet d’exprimer les politiques RBAC ainsi
que leurs diverses extensions. Dans la section 3.1 nous présentons le langage,
dans la section 3.2 nous présentons comment encoder RBAC dans ce langage,
et dans la section 3.3 nous présentons des résultats de complexité concernant
des problemes de décisions sur le controle d’acces dans notre langage.

Chapitre 4 : Politiques de sécurité avec négociation
et workflows dans un environnement distribué

L’architecture orientée service est de plus en plus acceptée comme un moyen
d’intégration d’applications inter et intra organisationelles. Dans ce contexte des
applications et des ressources développées independemment les unes des autres
sont mis a disposition sous forme de services. Ces services communiquent les uns
avec les autres en s’échageant des messages sur HT'TP, SOAP, etc. Un avantage
fondamental dans ce contexte est la possibilité d’orchestrer des services existants
afin de créer de nouveaux services adaptés a une tache donnée. De nombreux
langages (WS-CDL [48], WSBPEL [47], BPMN [77], ...) ont été proposés pour
décrire le workflow d’un service orchestrateur. Ces langages peuvent définir une
sémantique opérationnelle en term de 7-calculus [56] ou réseaux de Petri [44].

Pour des raisons de sécurité, il est nécessaire de controler au sein du work-
flow et sur linterface du workflow, dans quels contextes une action peut étre
exécutée. Cela implique qu’en plus de la définition d’'un workflow pour un ser-
vice orchestrateur, il faut aussi définir une politique de sécurité au niveau de
I’application qui peut décrire les roles, et les contraintes de séparation de taches
ou autres qui doivent étre respecter dans le workflow. Pour que le processus
ainsi défini puisse étre employé dans différents environnements, on ajoute une
couche de négociation pour les services; afin qu’ils puissent interagir et prouver
si nécessaire leur 1égitimité envers les autres services.

Dans ce chaptire et dans le reste de cette these, nous avons choisi de décrire
ces services par des entités logiques qui regroupent tous les aspects propres
a une application ou une ressource donnée. L’originalité de cette approche
consiste en deux parties. D’une part I'interaction entre I'exécution du work-
flow et la politique de controle d’acces possible dans le cadre du modele unifié
permet ’expression des contraintes réelles qui existent lorsqu’on considere des
instances réelles de business processes d’une fagon naturelle. D’autre part,
I’ajout d’une couche de négociation permet I'expression de I’échange entre les
différents services dans l’environnement. Ansi, la force de ce modele réside dans
la collaboration entre ces trois strucutres, la politique de controle d’acces, la
politique de négociation et le workkflow, afin de pouvoir exprimer 1’évolution
d’un état de sécurité en fonction de son interaction avec d’autres services dans
I’environnement distribué.

Dans la section 4.2 nous présentons une vue d’ensemble de notre modele.
Dans la section 4.3 nous présentons la syntaxe utilisée pour définir les regles
de sécurité qui seront présentées dans la section 4.4. Dans la section 4.5 nous

194 MODELES DE CONTROLE D’ACCES DYNAMIQUES

donnons la sémantique d’évaluation des regles de sécurité. Dans la section
4.6 nous présentons les différents éléments du workflow et dans la section 4.7
nous présentons les relations de transition pour I’évolution du workflow. Nous
présentons enfin dans la section 4.8 une application dans ce langage.

Chapitre 5 : Une étude de cas : Le processus
d’enregistrement de voitures

Dans ce chapitre nous présentons une modélisation complete d'une étude de
cas fournie par le projet AVANTSSAR dans le deliverable D 5.1 [73]. Nous
présentons cette étude de cas pas & pas en définissant les différentes entités puis
en ajoutant successivement leurs politiques de sécurité et leurs workflows.

Partie II : Expression des
propriétés de sécurité

Dans la premiere partie de cette theése nous avons présenté un cadre logigue pour
exprimer les politiques de contrdle d’acces avec la possibilité de négociation et
d’exécution du workflow. Notre objectif principal était de permettre I’expression
de politiques de sécurité au dela du cadre du contréle d’acces basé sur les roles,
et de fournir un modele formel pour ’échange d’informations entre entités dans
un environnement distribué. Dans cette partie nous présentons des propriétés
et spécifications de sécurité pour raisonner sur la streté du modele.

Dans le modele de controle d’acces défini dans le chapitre 4 nous distinguons
entre une politique statique et une politique dynamique. La politique statique
permet d’évaluer ’état courant des différentes entités par rapport aux regles de
négociation, tandis que la politique dynamique est exprimée par l'interaction
entre les regles de controle d’acces et le workflow et permet de modifier I’état
de sécurité en conséquence.

La définition explicite des processus du workflow et des regles de transition
permettent la mise & jour de I’état de sécurité d’une entité afin de réévaluer de
nouvelles décisions par rapport a I’évolution de cet état. Les regles de contréle
d’acces jouent le role de gardes sur l'exécution de ces processus au sein du
workflow.

De plus, les régles de négociation offrent un modele formel pour la commu-
nication entre les entités dans I’environnement qui permet d’établir une confi-
ance mutuelle. Enfin, "avantage d’utiliser les attributs réside dans la possibilité
d’exprimer des propriétés de sécurité a travers la définition de nouveaux objets
sans modifier la syntax du modele.

Dans cette seconde partie, nous nous intéressons & ’expression et a la
spécification des propriétés de sécurité au niveau du controle d’acces et au niveau
de la communication par négociation.

Un modele de controle d’acces doit étre capable d’exprimer différentes pro-
priétés de controle d’acces implémentées dans la structure d’une organisation.
Par exemple, il doit avoir la capacité de modéliser la délégation tout en préservant
les contraintes de séparation de taches. En effet, il est souvent le cas que
différentes variantes de la méme propriété de sécurité soient utilisées dans une
méme organisation. C’est le cas de la délégation dans [14] par exemple. Ainsi,

195

196 EXPRESSION DES PROPRIETES DE SECURITE

nous présentons une modélisation de la délégation et de la séparation des taches
dans un environnement distribué. Pour cela nous utilisons l'interaction en-
tre la politique de controle d’acces d’une entité donnée et des politiques de
négociation des autres entités dans le modele. Cette interaction présente une
fagon intéressante pour exprimer des propriétés de controle d’acces centralisées
d’une maniere décentralisée & cause du fait que les entités ont la possibilité de
négocier des certificats entre eux. Cependant, en la présence de propriétés de
controle d’acces, tel la délégation ou ’héritage de role par exemple, des autori-
sations supplémentaires qui n’étaient pas nécessairement prises en considération
lors de la conception de la politique de sécurité peuvent avoir lieu. En raison de
la dynamicité du modele, il n’est pas toujours évident de prédire ces nouvelles
autorisations comme les droits d’acces sont modifiés & chaque état de sécurité.
Pour remédier a ce probleme, nous présentons dans cette partie des problemes
de décisions pour vérifier les éventuelles violation des contraintes de sécurité qui
peuvent avoir lieu a cause de ces nouvelles autorisations.

De plus, la nature distribuée de I’environnement nécessite la communication
entre les différentes entités afin d’échanger des objets durant une session de
négociation. Dans le chapitre 4 nous avons considérer que cette communication
se fait dans un environnement sécurisé, c’est a dire, nous considérons que toutes
les entités respectent leur politique de négociation. Cependant, cela n’est pas
toujours le cas dans le monde réel. Ainsi, il est nécessaire de considérer les
propriétés de sécurité que garantissent les canaux de communication entre les
différentes entités afin d’évaluer la sécurité de 'infrastructure de négociation.
Pour cela nous présentons dans cette partie une extension de notre modele
qui prend en considération la sécurité de sessions de négociation et permet de
spécifier des problemes de décision pour vérifier les propriétés d’authenticité et
de confidentialité durant une session de négociation.

Cette partie est répartie comme suit ; dans le chapitre 6, nous présentons
une spécification de notre approche pour modéliser la délégation et la révocation
dans un environnement distribué. Dans le chapitre 7 nous présentons une
vue d’ensemble des contraintes de sécurité et donnons une modélisation pour
I’expression et la vérification de ces contraintes dans notre modele. Dans le
chapitre 8 nous présentons une modélisation du modele RBAC dans notre for-
malisme en prenant en considération les notions d’héritage de role, activation de
role et délégation de role. Dans le chapitre 9 nous nous intéressons & un probleme
de sécurité différent ; nous considérons la présence d’une entité malhonnéte dans
I’environnement et donnons une spécification pour un modele d’intrus qui agit
durant une session de négociation afin de définir et de vérifier des propriétés
d’authenticité et de confidentialité pour le modele en la présence de cette entité
malhonnéte.

EXPRESSION DES PROPRIETES DE SECURITE 197

Chapitre 6 : Sur la spécification de la délégation
et de la révocation dans un modele de controle
d’acces dynamique

La majorité des organisations possedent des regles et des régularisations qui gou-
vernent leur politique de sécurité telles la séparation des taches ou la délégation.
La délégation est I'act de donner des droits et des responsabilités a un autre
afin de faire des activités spécifiques. Une délégation peut concerner un droit,
un ensemble de droits ou un role.

Dans notre représentation des propriétés de controle d’acces dans un en-
vironnement distribué, nous définissons des objets de controle d’acces comme
étant des certificats pour représenter des taches, des roles ou des historiques
d’activation au sein d’une entité donnée. Nous considérons que chaque entité
est responsable d’'une collection de tels objets de controle d’acceés. Par exem-
ple, une entité qui représente le département de comptabilité est responsable
des roles comptable et chef comptable, et des taches calculer et vérifier. Ainsi,
cette entité sera responsable de toutes les opérations (délégation, héritage de
roles, activation de roles, etc.) concernant ces objets. La décentralisation de
I'information sera ensuite gérée par la politque de négociation. En d’autres ter-
mes, pourqu’une entité puissse recevoir des informations sur un objet de controle
d’acces donné, cette entité doit initier une session de négociation avec ’entité
responsable de cet objet. En conséquence, il n’est pas nécessaire de définir une
entité centrale pour gérer la délégation ou ’assignation de roles, en effet il suffit
de définir les conditions d’utilisation d’un objet dans l’entité responsable de cet
objet et donc de gérer la diffusion de cette information a travers la politique de
négociation.

Ce chapitre est divisé en deux parties indépendantes. La premiére par-
tie présente une vue d’ensemble de la délégation. Dans la section 6.1 nous
présentons les différents aspects de la délégation et de la révocation dans la
litérature et nous offrons une petite étude sur 'expression de la délégation et de
la révocation dans différents modeles de controle d’acces.

Le deuxieme partie est consacrée a la présentation de notre approche pour
modéliser les conceptes de délégation et da révocation. Dans la section 6.2 nous
présentons le contexte de la délégation en donnant les éléments nécessaires pour
la définition des régles pour la délégation et la révocation. Dans la section
6.3 nous donnons la forme générale des regles de délégation et de révocation
sous forme de regles de controle d’acces exprimées dans notre modele. Dans
la section 6.4 nous présentons la définition des processus pour les différentes
taches de délégation et de révocation. Dans la section 6.5 nous ajoutons au
modele les regles nécessaires pour exprimer ’acquisition des droits délégués et
la propagation de la délégation. Enfin, la section 6.6 offre un exemple qui illustre
I'utilisation de la délégation dans un systeme distribué.

198 EXPRESSION DES PROPRIETES DE SECURITE

Chapitre 7 : Contraintes de séparation de taches

Dans le chapitre 6 nous avons présenté différents aspects de délégation dans un
contexte dynamique. Cependant, la délégation, ainsi que la possibilité d’activer
et de déactiver des sujets dans des roles, augmentent les chances d’avoir des
failles de sécurité ou de collaboration entre des utilisateurs travaillant sur des
taches sensibles, et qui peuvent entrainer & des situations de fraude. L’expression
d’une politique de contréle d’acces d’une organisation donnée doit donc prendre
en compte les contraintes sur de telles taches sensibles. De telles contraintes de
sécurité concernent principalement les propriétés de séparation de taches ou des
taches distinctes ne peuvent pas étre exécutées par le méme utilisateur.

Dans la section 7.1 nous présentons une vue d’ensemble des différents aspects
de contraintes de séparation de taches et leur exécution des différents modeles
de controle d’acces. Dans la section 7.2 nous présentons notre approche pour
la modélisation des différentes contraintes de séparation de taches, et dans la
section 7.3, nous présentons des propriétés de sécurité qui doivent étre respecté
au niveau global du systeme.

Chapitre 8 : Coder RBAC

Dans notre modele nous avons pris le choix de ne pas avoir une structure RBAC
explicite. Cela nous a permis de gagner plus de flexibilité dans I’expression de
décisions de controle d’acces en se basant sur la notion d’attribut au lieu d’une
structure prédéfinie basée sur les roles. Ce choix nous permet d’exprimer une
diversité de modeles et de contraintes sans étendre ou modifier notre langage.
Cependant, il est possible d’intégrer le modele RBAC et les structures de roles
dans notre cadre formel. Dans ce chapitre nous présentons une formalisation
de la structure RBAC et de ses propriétés. Nous donnons une modélisation de
RBAC dans un environnment distribué en prenant en considération la présence
de I'hiérarchie de roles et en exprimant les notions d’activation de roles, ainsi
que la délégation et les contraintes de séparation de taches concernant les roles.

Chapitre 9 : Un modele d’intrus pour la négociation

Nous avons présenté un modele logique pour définir et étudier des politiques de
sécurité dans un environnement distribué en utilisant le principe de négociation
de certificats. Nous considérons l'existence dans ’environnement d’un nombre
d’entites chacune ayant un ensemble d’objets. Une politique de négociation
régularise 'acces & ces objets par d’autres entités. Ainsi, étant donné un ensem-
ble de politiques de négociation des entités, I’ensemble d’objets disponibles a
une entité donnée est généré a partir du calcul du plus petit point fixe. Tout au
long de cette these nous avonc considéré le cas ot toutes les entités sont honnétes
et suivent leur politique de négociation, dans ce chapitre nous étudions le cas
ou une entité malhonnéte peut intervenir dans une session de négociation.

EXPRESSION DES PROPRIETES DE SECURITE 199

Dans [33] Dolev et Yao définissent la notion d’intrus symbolique pour représenter
les capacités d’un agent malhonnéte essayant d’attaquer un protocol de com-
munication sécurisé cryptographiquement. Dans ce chapitre nous présentons
une adaptation de cet intrus qui garde les mémes capacités de déduction mais
qui est spécialisé dans ’analyse des échanges durant une session de négociation.
Cela nous permet en particulier d’analyser la sécurité d une politique de sécurité
distribuée en fonction de cet agent malhonnéte.

Nous étendons la syntaxe de notre langage pour prendre en considération
la présence de canaux de communication entre les entités. Les certificats sont
envoyés sur ces canaux spécifiés par leur propriétés par rapport a I'intrus. De
plus, l'intrus agit comme un intrus Dolev-Yao [33] : il peut intercepter les objets
sur un canal public, le remplacer par un objet qu’il construit a partir de ses
connaissances et des objets qui lui sont envoyés par d’autres entités durant la
méme session ou une session différente. Un intrus peut aussi bloquer I'acces a des
objets pour des entités en fonction de la nature de la communication. Un intrus
peut aussi lire des informations dans des objets et créer de nouveaux objets.
Enfin, nous considérons qu’un intrus peut composer, décomposer, crypter et
décrypter des messages pour construire de nouveaux objets.

Dans notre modele un protocol est défini par un ensemble de regles de
négociation. Nous modélisons l'intrus par la définition d’un ensemble de regles
de négociation qui lui permettent d’avoir le maximum de controle sur la comuni-
cation durant une session de négociation. Nous définissons les actions de I'intrus
au niveau de sa capacité d’envoyer et de recevoir des objets au nom des autres
et sa capacité de lire, signer et créer des objets a partir des objets interceptés.
Notre objectif est de prendre en compte les propriétés des cannaux de commu-
nications ainsi que les primitives cryptographiques utilisées pour la sécurisation
des messages afin d’analyser la structure du mécanisme de négociation.

Nous présentons les bases du langage dans la section 9.2, et notre modélisation
des canaux sécurisés dans la section 9.4. Le modele d’intrus est présenté dans
la section 9.5, et 'adaptation de ’algorithme de négociation pour le prendre en
compte est présenté dans la section 9.6. Dans la section 9.7 nous présentons les
propriétés de sécurités et dans la section 9.8 nous donnons notre modélisation
de I'implémentation de SAML Single-Sign On de Google.

200 EXPRESSION DES PROPRIETES DE SECURITE

Chapitre 10 : Conclusion et
perspectives

Conclusion

Les propriétés de controle d’acces standards régularisent uniquement l’acces
aux fonctionnalités d’un service et donc ne sont pas capable d’exprimer des
décisions de controle d’acces qui dépendent du contexte d’exécution. Le premier
objectif de cette these était de développer un langage logique pour exprimer des
politiques de controle d’acces complexes dans un environnement distribué et
qui est capable de modéliser le controle d’acces dynamique et de garantir la
communication entre les différentes entités au niveau d’échange de messages
et au niveau de ’établissement de confiance. Le second objectif de cette these
était d’exprimer les propriétés de controle d’acces et de spécifier les propriétés de
sécurité qui contribuent au raisonnement sur la stireté des problemes de sécurité
au niveau du controle d’acces ou au niveau de la communication.

Nous avons présenter dans le chapitre 3 un cadre logique qui utilise la struc-
ture RBAC pour définir des regles de controle d’acces, et un systeéme de transi-
tion qui définit les effets des décisions de controle d’acces comme une collection
des permissions et d’obligations qui depend du choix de l'utilisateur concer-
nant l'activation des actions autorisées. Ainsi dans cette premiere approche
nous avons considéré que 1’état de sécurité évolue par rapport aux décisions
de controle d’acces et du choix effectué sur l'activation de ces autorisations.
Cependant, lorsque nous avons essayé d’exprimer des études de cas qui concer-
nent notamment la modélisation de business processes, nous avons trouvé des
difficultés pour adapter la structure RBAC aux critéres qui prennent en compte
d’autres éléments de sécurité comme les caractéristiques propres a ’objet et non
pas au sujet de la décision de controle d’acces. De plus, cette premiere approche
ne garantie pas explicitement la communication entre différentes entités dans
un environnement distribué.

Dans le chapitre 4, nous nous sommes intéressés a un modele logique basé
sur les attributs regroupant une politique de controle d’acces, une politique de
négociation et un workflow. L’interaction entre la politique statique, exprimée
par la politique de négociation, et la politique dynamique, exprimée par la
politque de controle d’acces et le workflow, offre un outil efficace pour modéliser

201

202 CONCLUSION ET PERSPECTIVES

I’évolution de 1’état d’une entité en fonction de son interaction avec le reste
de 'environnement. La sémantique d’évaluation des regles de négociation basé
sur ’évaluation d’'un plus petit point fixe permet d’évaluer ’état de sécurité
courrant de chaque entité. L’évaluation des regles de contréle d’acces dépend
du résultat de la session de négociation et donc fournit des décisions de controle
d’acces en fonction de I'état de sécurité. Enfin, les regles de controle d’acces
peuvent étre vues comme des gardes sur I'exécution du workflow, en effet une
action peut étre exécutée si elle est autorisée par les regles de controle d’acces
et exécutable dans le workflow. Pour démontrer I'expressivité de ce formalisme
et pour montrer l'utilisation du langage et l'interaction entre les différentes
entités qui simule un business process, nous avons présenté dans le chapitre 5
une modélisation du processus d’enregistrement de voiture.

La seconde partie de cette theése présente les propriétés de controle d’acces
au niveau de la sécurité des acces pour chaque entité et au niveau de la sécurité
des communications entre les différentes entités dans I’environnementau niveau
de la négociation. Ainsi, les chapitres 6 et 7 étaient consacrés a ’étude de
la délégation et des contraintes de séparation de taches. Nous avons présenté
différentes perspectives pour I’expression de ces propriétés ainsi que les limita-
tions trouvées dans les travaux existants. Nous avons montré qu’a la différence
de la majorité des travaux existants, nous somme capable de coder la plus grande
partie des aspects de la délégation qui existent dans la litérature, nous avons
aussi montré que notre langage peut exprimer les spécifications pour les con-
traintes de séparation de taches au niveau de la concepetion de la politique de
sécurité mais aussi au niveau de I'execution sans modifier la syntaxe du langage.

En effet, I'information sur I'utilisation d’une délégation ou 'utilisation d’une
tache en général est évaluée locallement dans l’entité responsable pour cette
délégation ou lexécution de la tache. Cette information est nécéssaire dans le
contexte de 1’évaluation et de la vérification des contraintes de sécurité. Pour
cela, I'historique de la délégation ou de 'exécurtion des taches est suvegardée
par I'ajout d’un objet dans le repository de 'entité. Les décisions de controle
d’acces concernant l'autorisation des droits délégués ou l'exécution des con-
traintes de séparation de taches dépendent du résultat de requétes dans le repos-
itory de l'entité sur I’existence (ou non) de records de délégation ou d’exécution
de taches.

Le cas de la délégation est simple. En effet, nous considérons que chaque
entité prend les décisions pour les délégations concernant ses propres fonction-
alités. La politique de négociation de cette entité peut ainsi gérer la diffusion
des informations concernant ces délégations sous forme d’objets aux autres en-
tités. Le cas des contraintes de séparation des taches est plus compliqué. La
difficulté dans ce cas réside dans le fait que les requétes concernent plutét la
non-existence d’objets qui ne peut étre faite que localement dans une entité
donnée. Cependant, bien que la définition des contraintes de sécurité au niveau
du modele global n’est pas encore faisable, nous avons défini les propriétés de
sécurité sous forme de problemes de décision afin de pouvoir vérifier la stireté du
modele. Un codage de RBAC et différentes extensions concernant la hierarchie
de roles, 'activation de role et la délégation ont été présentés dans le chapitre

CONCLUSION ET PERSPECTIVES 203

Dans le dernier chapitre de cette thése nous nous sommes intéressés a un
différent aspect de sécurité. En effet, comme l'objectif principal de cette these
était de définir un modele pour ’expression de politiques de contdle d’acces
dans un environnement distribué, il était important d’étudier le probléeme de
la sécurité des communications entre les différentes entités. Pour cela nous
avons présenté une extension du langage qui prend en compte les propriétés de
sécurité des canaux de communication et nous avons considéré ’existence d’une
entité malhonnéte dans I’environnement qui agit au niveau de la négociation.
Ainsi nous avons défini un modele d’intrus comme étant une entité logique avec
des regles spécifiques, et nous avons donné les spécifications pour les propriétés
d’authenticité et de confidentialité du systeme en la présence de cet intrus.

Perspectives

Les travaux futures peuvent étre explorés dans trois principales directions ;
lorchestration des services, le model checking dans un environnement distribué,
et 'implémentation de ce modele dans un outil pour la modélisation et la vali-
dation des politiques de contréle d’acces.

Sur ’orchestration

Dans le chapitre 4 nous avons défini un modele pour exprimer le controle d’acces
dans un environnement distribué et dans le chapitre 5 nous avons présenté un
business process pour illustrer le processus d’enregistrement de voitrue. Ce
business process est représenté comme une collection d’entités, chacune avec ses
propres regles de controles d’acces, ses regles de négociation et son workflow. Les
entités communiquent les unes avec les autres a travers la négociation d’objets
mais aussi a travers ’échange de requétes nécessaires pour la coordination de
Iexécution des workflows locaux et donc du business process complet. Cepen-
dant, dans cet exemple, pour pouvoir simuler un business process complet, nous
avons présenté une modélisation explicite du processus d’envoi et de réception
de requétes entre les différentes entités.

Il serait intéressant de faire une abstraction de cet encodage explicite en
considérant la présence d’un orchestrateur dont le role est de gérer l'interaction
entre les différentes entités en controlant 1’échange de requétes. L’orchestrateur
pourrait aussi prendre en considération les contraintes de sécurité spécifiées par
le systéme (& travers la définition d’un business process). Cela peut étre possible
en délégant le controle sur les taches sensibles (qui ne peuvent pas étre controler
par la méme entité) a Porchestrateur. Ainsi 'orchestrateur peut étre vu comme
une entité logique avec un ensemble de regles de sécurite et un workflow, et qui
est responsable de la définition de la politique de contrdle d’acces globale du
business process d’une part, et gere ’échange de requétes entre les différentes
entités a travers la définiiton de son workflow d’autre part.

204 CONCLUSION ET PERSPECTIVES

Sur le model checking

Dans le chapitre 7 nous avons donné les spécifications pour la vérification des
contraintes de sécurité dans l’environnement en définissant un moniteur qui
apres chaque exécution du workflow, vérifie s’il y a eu des violations de sécurité.
Cependant dans le modele existant, un tel moniteur peut étre vue en temps que
garde sur le bon fonctionnement du systéme uniquement. Il serait intéressant
de permettre a ce moniteur dans le cas ou il y aurait une violation, de pou-
voir retrouver la trace de cette violation et donc de permettre a 'auteur de
la politique de modifier la politique de sécurité de ’entité en question afin de
remédier au probleme. Cela n’est désormais pas simple a accomplir, en effet,
nous devons redéfinir le modele afin de pouvoir prendre en compte ’historique
pour retracer la source de la violation. Pour cela, il est nécéssaire de garder une
historique des exécutions du workflow d’une part, et de controler les autorisa-
tions de controle d’acces qui peuvent étre aquises d’'une maniere décentralisée a
travers la négociation d’objets avec d’autres entités d’autre part.

Sur I'implémentation

La définition d’un cadre formel pour exprimer des politiques de sécurité est
nécessaire pour analyser les propriétés de sécurité de ces politiques. Cependant,
il est important d’implémenter ce modele dans un outil pour exprimer et valider
les politiques de controle d’acces. 1l existe déja dans le cadre du projet européen
AVANTSSAR, un langage formel ASLan qui permet de spécifier des politiques
de controle d’acces. Il est basé sur des regles de réécriture pour exprimer les
workflows, des clauses de Horn pour I'expression des politiques de sécurité et la
logique linéaire temporelle pour spécifier les propriétés de sécurité. De plus, des
outils existent déja qui permettent d’implémenter et de valider les modeles de
sécurité exprimés en ASLan.

Dans notre modele, les regles de sécurité sont exprimées dans une logique de
premier ordre et le workflow est défini comme un systéme de transition a l’aide
de la définition de processus. Ainsi, il serait intéressant de réduire les regles de
sécurité de notre modele en clauses de Horn afin de pouvoir utiliser ces outils
existants.

