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Résumé

Le pollen conservé dans les sédiments lacustres constitue un indicateur essentiel pour re-

construire l’évolution de la végétation et du climat passés sur les continents. Actuelle-

ment, les reconstructions climatiques se basent sur des modèles statistiques décrivant le lien

climat-pollen. Ces modèles posent des problèmes méthodologiques car ils sont tous basés

sur l’hypothèse que la relation pollen-climat est constante au cours du temps, impliquant

que les paramètres non climatiques déterminant cette relation aient une influence faible.

Cela est contredit par les développements récents en écologie et en écophysiologie. C’est

pourquoi, dans ce travail, nous développons une approche intégrant un modèle dynamique

de végétation et les processus majeurs liant la végétation au pollen capté par les lacs. Le

cadre bayésien fournit une base théorique ainsi que les outils pour inférer les paramètres des

modèles et le climat passé. Nous utilisons ces nouveaux modèles pour reconstruire le climat

de l’Holocène en différents sites européens. Cette approche qui permettra des reconstruc-

tions spatio-temporelles requiert encore des développements autour de l’inférence de modèles

semi-mécanistes.

Géosciences de l’environnement
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Bayesian approach of pollen-based

palaeoclimate reconstructions:

Toward the modelling of ecological processes

Abstract

Pollen preserved in lacustrine sediments form a crucial archive for reconstructing past climate

and terrestrial vegetation change. Currently, climate reconstructions are based on statistical

models describing the link between climate and pollen. These models raise methodological

problems because they are all based on the hypothesis that climate-pollen relationships are

constant over times; implying that non-climatic parameters driving the relation have weak

influence. This is not in agreement with recent developments in ecology and ecophysiology.

That is why, in this work, we develop an approach integrating a dynamical vegetation model

and major processes linking vegetation and pollen trapped in lakes. The Bayesian frame-

work provides us with a theoretical basis and tools for the inference of model parameters and

past climate. We use these new models for reconstructing Holocene climate in various Eu-

ropean sites. This approach, which may allow spatio-temporal reconstructions still requires

developments around statistical inference for semi-mechanistic models.

Environmental Geosciences

Key words Palaeoclimate, Palaeo-vegetation, Transfer Function, Hierarchical Bayesian
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Introduction

Climate is an Earth-scale system made of interrelated components - the atmosphere,

oceans, continents and cryosphere. These components interact, for example, by ex-

changing energy, water and carbon at different time scales. The global functioning

and exchange rates of this system are driven by external and internal influences. These

influences, called ‘forcings’, include the variations in insolation, solar and volcanic activ-

ities and greenhouse gases (e.g. Milankovitch, 1941; Berger, 1977; Solomon et al., 2007).

Each of these forcings varies at different time scales, sometimes largely exceeding the

length of instrumental climate records (a few hundreds of years or so). For example,

insolation varies according to the Milankovitch cycles, with characteristic phases of 100,

41 and 21 thousands of years (e.g. Berger and Loutre, 2004).

The understanding of climate dynamics is achieved in part through the study of the

various responses to these forcings. Such a task requires observations on time series

far longer than instrumental records. Time series of past climatic conditions are often

reconstructed from remains of ancient living organisms acting as climate surrogates

called ‘proxies’. For example, common proxies of the past climate on continents could

be pollens and diatoms preserved in lake sediments. These reconstructions provide

benchmarks for testing climate models on a large range of states and forcings having

no analogue in the instrumental period (e.g. the works related to projects COHMAP,

PMIP and PMIP2, COHMAP Members, 1988; PMIP Participants, 2000; Braconnot

et al., 2007).

However, obtaining such reconstructions remains a multidisciplinary challenge. The

proxies collected, measured and dated from sediment cores provide an incomplete infor-

mation about past biotas, which themselves have complex relations with climate. The

understanding of the relations linking the environment (including climate), the biota

and the proxy recorded in sediments is fundamental to a proper climate reconstruction.

Mathematical modelling of these links is necessary to provide quantitative estimates of

the past environmental conditions.
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Pollen as a climate record

In this thesis, we developed methods for reconstructing past climate recorded by pollen

assemblages. Such sporopollinic data is retrieved from cores extracted from lake sed-

iments. A sediment sample is sieved and chemically cleaned from its carbonate and

silicate components (Faegri and Iversen, 1964) and pollen grains are identified based on

modern reference collections. Identification based on the morphology of pollen grains

is possible at the species, family or genus level depending on the pollen type. Then,

pollen assemblages consist of counts of pollen grains per taxa, relatively to a total num-

ber of counts in the sample. Dating of a sample sequence along the core is performed

using radiocarbon measurement. Each pollen sample is associated to a date and an

uncertainty on this date. Uncertainties arise from radiocarbon measurement errors,

the transformation into calendar ages and the extrapolation of the dated levels to the

whole core. Pollen assemblages are noisy records of the vegetation surrounding the

lake filtered through a chain of processes including the pollen production by plants, its

dispersion by winds, its capture and concentration in the lake and its preservation in

sediments (Prentice, 1985).

In turn, vegetation species record their environment through their absence/presences

and productivity. The environmental conditions having a potential impact on plant

species can be divided in abiotic (or ‘physical’) factors and biotic (or ‘biological’) fac-

tors. Abiotic factors include mean and extremes of climatic variables (e.g. temperature,

precipitation, cloudiness), but also CO2 concentration, soil type and nutrient availabil-

ity. A biotic factor condition are for example, the presence of competitors for lights

and/or water and predators (e.g. Woodward, 1987; Bugmann, 2001).

The number and the complexity of the processes linking climate and pollen compo-

sition of sediments complicate the direct interpretation of pollen assemblages in terms

of climate variables. Qualitative investigations of such records, often in terms of pres-

ence/absence of taxa, give indications about vegetation type and possibly, climate type.

Quantitative vegetation and climate reconstructions are achieved trough the building

of mathematical models.
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Classical approaches for pollen-based reconstructions

In classic pollen-based palaeoclimate reconstructions, the climate-pollen relation is con-

sidered as a whole. In other words, there is no explicit modelling of climate-vegetation

processes nor how pollen is produced by vegetation. Such models are purely statistical

and called Transfer Functions (TF, e.g. Brewer et al., 2007). Until the early works

of Iversen (1944), TF were correlative, i.e. they describe the response of one variable

(climate or pollen) to the variations of the other one without accounting for functional

relations. These models are calibrated on modern pollen and climate distributions, and

have been used to reconstruct climate over the last tens or hundred of thousand years

(e.g. Guiot et al., 1989, for a 140,000 years reconstruction and a review of classical TF

in chapter 1).

In using such relations for palaeoclimate reconstructions, one assumes that (i) cli-

mate is the main driver of vegetation changes, (ii) pollen-climate relations are constant

over time and (iii) the vegetation is in steady equilibrium with climate. These models

are useful and were the only solution in times when we had poor knowledge about the

vegetation functioning, a reduced number of statistical models, and limited computing

capacities. Their application may appear today as a ‘brute force’ use of the uniformi-

tarianism principle: ‘The present is the key to the past’ (Hutton, 1795; Alley, 2001).

Indeed, the lack of causality and process modelling in the TF may lead to an overly

simplistic interpretation of present climate-pollen distributions for being used in an en-

vironment that is known to be significantly different from the present. An example is

atmospheric CO2 concentration, which cannot be included in the TF since its spatial

variation is negligible. The problem, raised by Cowling and Sykes (1999), is that CO2

is expected to have a significant effect on plants, changing their optimal climatic range

and their resistance to drought. Since, in the past, CO2 concentration varied in a range

of values (between 170 and 300 ppm over the last 450 thousands of years) lower than

present (exceeds 380 ppm), reconstructions obtained from classical TF are expected to

be biased.
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Mechanistic approaches in pollen modelling

A solution for reconstructing climate in a better agreement with our recent knowledge

of the relations linking climate and pollen is to explicitly model the linking processes.

The first step in this direction has been made by Guiot et al. (2000), proposing to

insert a mechanistic vegetation model in the TF. This vegetation model (BIOME3,

Haxeltine and Prentice, 1996) was a process-based model representing the photosyn-

thesis, nitrogen allocation and accounting for CO2 changes. Guiot and coauthors used

a statistical ‘matching’ between model outputs (the vegetation) and pollen to connect

them. They proposed a Bayesian statistical model (Robert, 2001; Gelman et al., 2004)

and its associated Markov Chain Monte Carlo algorithm (Robert and Casella, 1999)

for reconstruction, i.e. the inversion of the computer model based on pollen to obtain

climate.

In parallel to the development of TF, generations of models have been designed to

relate the vegetation to its remains recorded as pollen assemblages in sediments. Until

the ‘R-value’ model (Davis, 1963) they were based on the processes expected to link

the vegetation to its pollen record, including pollen production, dispersion and accu-

mulation. Early models and studies were based on a few mechanistic relations, mainly

the dispersion modelling using Sutton’s equation (Tauber, 1965; Webb, 1974; Parsons

and Prentice, 1981; Prentice, 1985). They have evolved into approaches merging mech-

anistic and statistical modelling and using simulations and real data for validations

(e.g. Sugita, 2007a,b, and references therein) or full Bayesian modelling and inference

(Paciorek and McLachlan, 2009).

These works provide further opportunities for TF modelling at two levels; (i) by

providing process-based structures for the pollen-vegetation links, and (ii) by demon-

strating the usefulness and accessibility of mechanistic/statistical coupling in a Bayesian

framework.
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Manuscript content

In this manuscript we develop a fully process-based TF. The final TF includes a Dy-

namic Vegetation Model (DVM, LPJ-GUESS, Smith et al., 2001) for describing the

dynamic links between climate and vegetation, which is coupled to a statistical model

of pollen-vegetation relationships that is based on pollen production, dispersion and

accumulation processes. This composite structure formed with a mechanistic climate-

vegetation model and a statistical vegetation-pollen model is framed in a statistically

sound framework - Bayesian hierarchical modelling - that allows a proper character-

isation of the calibration and reconstruction exercises and provides us with various

algorithmic tools for inference.

The manuscript chapters are under the form of articles (second chapter is published

in Climate Dynamics and third chapter is in review for Environmetrics). In the first

chapter, we review the existing TF, classify them and describe their main hypotheses.

We show the similarity between a class of TF and the Species Distribution Models

(SDM) used in Ecology. We propose a framework to exchange tools and ideas between

both disciplines. In the second chapter, we present a Sequential Monte Carlo algorithm

(SMC) allowing the inversion of the dynamic vegetation model LPJ-GUESS for climate

reconstruction. The methods is applied to a high-resolution sediment core covering the

Holocene in Southwest Germany. In the third chapter, we present the building and

calibration of a process-based model to link vegetation simulated from LPJ-GUESS

and pollen. This model includes pollen production, dispersal, and accumulation for

continental scale datasets as used in pollen-based palaeoclimatology. In the last chapter,

we merged both approaches (dynamic inversion and spatial calibration) and use them

for climate reconstruction at four Swedish sites. Emphasis is placed on the challenge of

the inference of statistical models including mechanistic components.
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Chapter 1

Correlative versus process-based

niche models in palaeoclimatology

and their relation with ecology

Abstract Palaeoclimate reconstructions are based on mathematical models of the re-

lation between the habitat (including climate) of the organism and its remains measured

in sediments. These models are called transfer functions (TF). The majority of existing

TF are correlative, i.e. they statistically describe the organism response to climate (or

the inverse) without accounting for processes expected to drive the response. The cor-

relative way of modelling implies to assume an irreducible set of hypotheses: a perfect

‘dynamical equilibrium’ of the vegetation with regard to climate and a negligible change

in the vegetation response under different CO2 concentrations. These hypotheses are

either in contradiction with actual knowledge in ecophysiology or not robustly testable.

This has a major impact on the reliability of the reconstructions, especially outside

the modern range of environmental conditions. A process-based approach developed

around the a dynamical vegetation model provides a necessary complement for more

accurate palaeoclimate reconstructions.

Based on a contemporary vision of the ecological niche theory, we review the hy-
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potheses of correlative models used in palaeoclimatology. We compare them to the

species distribution models (SDM) used in ecology for predicting future climate change

impact. In this field, the same debate and the same lack of process-based approaches

raises questions about the predictive power of SDM.

Thus, the reconstruction of past climate from pollen and the prediction of future

plant species distributions face the same challenge. We describe a Bayesian frame-

work in which the core tools - the (niche) model for the environment-plant relations

- are exchangeable between disciplines. We believe that this framework will encour-

age interdisciplinary cross-fertilisation and allow the rapid development of improved

process-based models.
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1.1 Introduction

In palaeoclimatology, the models representing pollen-climate relationships, referred to

as Transfer Functions (TF), are models of the species response to a finite number of

environmental variables. They are therefore based on the hypothesis that species have

intrinsic limits defining their ‘niche’ through complex processes (e.g. competition for

resources, physiological limits), and whose role is prevalent over other environmental

factors (see e.g. Huntley, 1996; Jackson and Overpeck, 2000, for a discussion of these

hypotheses in palaeoclimatology).

TF can be classified in two distinct types. Type I TF are formed by the correlative

models lying on the statistical mapping of the species response to its environmental or its

inverse. Type II TF are formed by process-based models, i.e. models whose structure is

based on the processes expected to create the species responses to their environment. As

reviewed in this article, type I methods are subject to two, hardly testable, hypotheses:

‘dynamic equilibrium’ of vegetation with respect to climate (Webb III, 1986; Prentice,

1986) and that the distribution of the plant is robustly controlled by a small set of

climate variables (discussed in early TF article cited hereafter). Moreover, calibrated

on a - finite - modern range of environmental conditions, it is well-known that non-

parametric TF (those defined locally by data) cannot be used outside this range (know

as the ‘no-analogue’ problem, see e.g. Williams and Jackson, 2007). When parametric

TF (defined everywhere by a parametric structure) are used outside the modern range,

this add another hypothesis, often supported by theoretical arguments but not testable

using modern datasets (e.g. Gaussian and symmetric structures in Vasko et al., 2000;

Gonzales et al., 2009).

The under-development of type II TF raises questions about the reliability of re-

constructions, which are all based on the same two hypotheses. For instance, despite

their diversity in shape (presented hereafter), correlative TF depend on a common set

of approximations making their reconstructions correlated (e.g. exclusion of the same

environmental variables from their niche: CO2, soil type and absence of modelling of

present or past vegetation dynamics). For a set of reconstructions produced from these

12



TF, (i) an agreement between methods is a weak indication of reconstructions accuracy,

at least outside the range of calibration, and (ii) a divergence between methods cannot

be corrected, for example, by selecting the intersection of the various reconstructions.

The solution is to be found in developing models based on different assumptions, as

credible as those included in the correlative TF. The process-based TF provides this

independent complement.

The correlative (type I) models describe the link between pollen and its environment

(usually climate) through purely descriptive relationships. They date from the begin-

ning of quantitative palaeoclimatology and are sufficiently numerous to be separated in

three groups based on their mathematical form (see Figure 1.1). In the following, we

briefly classify the various methods used.

The type I.1 TF includes models of the climate distribution as a function of pollen

assemblages. We call them ‘backward’ TF because their modelling is inverse to the

causative relation ‘climate drives species’. They include TF relating climate distribu-

tion to the taxa’s presence: Indicator Species (IS, Iversen, 1944), whose updated version

are the Mutual Climatic Ranges method (MCR, Atkinson et al., 1986) and the Prob-

ability Density Function method (PDF, Kühl et al., 2002). They also include models

relating climate to quantitative indicators of the species, e.g. linear model in Bartlein

et al. (1984), Artificial Neural Networks (ANN) in Peyron et al. (1998) and Generalised

Additive Model (GAM) in Gersonde et al. (2005).

The Modern Analogue Technique (MAT, Hutson, 1980; Overpeck et al., 1985; Guiot,

1990) is often separated from the other methods (Jackson and Williams, 2004) and said

structure-free because it does not explicitly require to make assumptions about the

shape of the pollen-climate relation. In this method, climate corresponding to a pollen

assemblage y is reconstructed as the climate corresponding to pollen assemblages from

the modern dataset that are analogous to y. We propose to interpret it as a quantitative

type I.1 TF, in which climate is locally smoothed in a pollen space.

The type I.2 is said ‘direct’ because it includes TF describing the pollen assemblage as

13



a function of climate. In palaeoclimatology, these models are called ‘response surfaces’

and interpreted as maps of the pollen response to climates. They are regression models

with different shapes (polynomial, Gaussian curves, non-parametric smooth response)

and include the Response Surface (RS, Bartlein et al., 1986), the Bayesian Multinomial

Gaussian Response (BUMMER, Vasko et al., 2000) and its updates (e.g. Bhattacharya,

2006), the Bayesian semi-parametric response surfaces (Haslett et al., 2006), and the

Expanded Response Surfaces (ERS, Gonzales et al., 2009).

The type I.3 TF is said to be ‘not directed’ and it consists of the Weighted Average-

Partial Least Square (WA-PLS) method (ter Braak et al., 1993) and its variants. These

methods are based on a PLS regression projecting both environmental variables and

pollen assemblages to a new space made of latent components. In this sense, it does

not consider any direction in the relation between pollen and environmental variables.

The type II, composed with process-based models, is not common in the literature

and contains only mechanistic relations (review in Guiot et al. (2009) and classifica-

tion figure 1.2). ‘Process-based’ means that core equations describe the pollen-plant-

environment system through its constituent physical, biogeochemical and competition

processes. By including such equations summarising the current knowledge on func-

tioning, a process-based approaches is more likely to represent a credible climate-plant

link - outside - the range of modern climate. This type of modelling was initiated by

Guiot et al. (2000) who proposed to include a vegetation model in the TF. The method

is often referred to as ‘model inversion’ because it requires to invert the computer model

to obtain reconstructed climate. Earliest versions of the method (Guiot et al., 2000;

Wu et al., 2007a,b) use a statistical matching of the model outputs to pollen data ;

allowing, in inverse mode, to select the most coherent climate with respect to pollen.

The method assumed a static equilibrium between plant and climate, due to the use of a

static vegetation model (from the BIOME model family, e.g. Cramer, 2002) and is only

partly process-based due to the statistical matching. A first branch of improvements

emerged with the linking of different proxies to the model outputs (Rousseau et al.,

14
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PDF, Khül et al 2002

RS, Bartlein et al 1986
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WA-PLS, ter Braak et al 1993

Figure 1.1: Classification of the existing correlative transfer function (type I TF). They

are separated in three groups. The group I.1 contains the ‘backward’ TF, i.e. those

modelling climate C as a function of pollen Y . They are separated in two group

depending on their treatment of the pollen data. The first subgroup consider the pollen

as a quantitative variable, models have the form p(C|Y ) (a distribution of climate

given pollen data), and in the second subgroup, model only considers pollen presence,

i.e. p(C|Y > 0). The group I.2 contains the ‘direct’ TF considering vegetation as a

function of climate, i.e. models of the form p(Y |C). This group can be separated in

‘classical’ and Bayesian transfer function. The third group is formed by the WA-PLS

method that does not consider a direction in its treatment of the pollen-climate link,

both variables being linked to a latent (fictive) variables X.

2006; Guiot et al., 2009; Hatté et al., 2009) allowing multi-proxies reconstructions in a

static and semi-process-based approach. A second branch of improvements is proposed

in Garreta et al. (2009) and consists in the development of an inversion scheme for a

dynamic vegetation model (LPJ-GUESS, Smith et al., 2001). It is complemented by a

process-based model for the link between vegetation outputs and pollen data to achieve

a full process-based approach (third and last chapter of this manuscript).
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Figure 1.2: Classification of the existing process-based transfer function (type II TF).

We map the various methods proposed in articles and chapters of this manuscript in a

three dimensional frame. The axes of this frame are (bottom-left) the complexity or the

number of processes accounted for in the vegetation-pollen relation. This complexity

ranges from a pure statistical matching vegetation-pollen to a modelling of the produc-

tion, dispersal and accumulation processes. (bottom-right) the complexity of the model

used to model the vegetation. It ranges from the BIOME models (Cramer, 2002) to

Dynamic Vegetation Models (e.g. DGVM, Cramer et al., 2001). (top) the number of

proxy or variety of information used to inverse the model. It ranges from one single

proxy - the pollen - to two proxies, e.g. pollen and δ13C.

Since TF are ‘niche’ models, tools and ideas from Ecological Niche Theory (ENT, e.g.

a review in Chase and Leibold, 2003) should be used to interpret, criticise and improve

TF models. In palaeoclimatology, the ENT has been used as a conceptual framework

helping to explain the cause of the observed species shifts, occurrences and extinctions

during the Quaternary (Huntley, 1996; Jackson and Overpeck, 2000; Williams and Jack-

son, 2007). This framework becomes of common use for interpreting results from the

16



TF (e.g. Williams and Shuman, 2008) and for discussing the possible drawbacks of

correlative TF (Jackson and Williams, 2004; Guiot et al., 2008). In the following sec-

tion we develop the niche interpretation of the TF and show that, compared to pure

niche models, all the TF used for pollen-based reconstruction have to cope with an

indirect surrogate of the vegetation: the pollen sampled in sediments. This complicates

the modelling by (i) creating a spatial correlation in the signal due to pollen dispersal

(Telford and Birks, 2005) and (ii) providing a relative, instead of absolute, information

about the vegetation composition. Both aspects are sometimes not accounted for in the

TF. We propose a conceptual framework to disentangle these two aspects of the pollen-

based TF by modelling on one side the climate-vegetation relation and, on the other, the

vegetation-pollen relation. The process-based relation between vegetation and pollen

has been subject of discussion since von Post (1916), Tauber (1965) and Webb (1974).

Today, several models exist (e.g. Sugita, 2007a; Paciorek and McLachlan, 2009) that

could be scaled to account for continental scale pollen dispersion (objective of the third

chapter in this manuscript).

In ecology, a pressing need for understanding and predicting future distribution of

species under climate change requires the calibration, validation and use of Species

Distribution Models (SDM). These models, very close in spirit to the TF raise the

same challenges as in palaeoclimatology. Since conceptual and modelling frameworks

are lacking a consensus, the dual vision proposed by correlative versus process-based

models increases attention on the underlying hypothesis behind the correlative models

and raises interest for the process-based approach (Kearney, 2006; Morin and Lechow-

icz, 2008; Wiens et al., 2009). We propose a framework that shows the direct analogy

between reconstructing past climate from pollen and predicting future plant species

distributions. These fields of research are derived from palaeoclimatology and ecol-

ogy, two disciplines that are sufficiently different to provide complementary visions and

questionings about the same objects: niche models, i.e. niche theory representations

and applications. We believe that it will increase the interest for novel modelling ap-

proaches by extending their potential range of application.
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The next section starts with a brief mathematical classification and review of the

correlative TF. In section 1.2.2, we present a framework to disentangle the two major as-

pects of the climate-pollen relation which are the niche model for the climate-vegetation

model and the processes linking vegetation and pollen. In section 1.2.3 we discuss the

hypotheses and constraints inherent to the correlative approach for niche modelling

compared to process-based modelling. In section 1.3 we present a Bayesian hierarchical

framework to unify the niche modelling approaches in pollen-based palaeoclimatology

and future plant distributions in ecology.

1.2 TF in palaeoclimatology

1.2.1 Review of the correlative TF

Correlative TF are models of a link between, Yi = (Y 1
i , .., Y

k
i ) a pollen assemblage

formed with k taxa at a site i, and a set of l climate variables Ci = (C1
i , .., C

l
i) at

the same site. The reconstruction process is twofold. The calibration step consists in

inferring the parameters of the TF based on a modern dataset of climate and pollen

(c, y)s=1..N . This dataset must be spatially distributed (at a continental scale) and mas-

sive (N > 1000, e.g. Whitmore et al., 2005; Williams et al., 2006). This is imposed by

the need to infer a robust link between climate and pollen over a large climate range.

The reconstruction step consists in obtaining information about the climate Ct based

on fossil pollen yt.

In the type I.1 TF based on the Presence/Absence (PA) of taxa (IS, MCR and PDF),

the distribution of a small set of climate variables is modelled given that the species is

present. They have statistical models of the form

pθ(Ci|Yi) =
k∏
j=1

pθj (Ci|Y j
i > 0) (1.1)
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with pθj (Ci|Y j
i > 0) a distribution of the climate variables given that the jth taxa

at site i is present. In the IS and MCR, these distributions are uniform distributions

and in the PDF they are bivariate Gaussian distributions. The calibration consists of

obtaining the contours or parameters for the climate distributions based on a modern

dataset that may include any data about species PA, generally, vegetation atlases. Due

to their backward form (climate is a function of the PA), the reconstruction is defined in

statistics as a simple prediction. The predicted climate distribution is the intersection

(normalised product) of the climate distributions associated with the taxa present in

the fossil pollen.

The attraction of the backward approach is that it directly provides reconstruc-

tions as simple predictions. Several statistical models have been used to exploit this

feature, modelling the climate response to pollen assemblage using more and more

complex regression models, e.g. linear model, GAM, ANN. These TF have the form

Ci = f(Yi, θ) + εi, where f(.) is a function depending on the pollen Y and parameters

in θ and an errors term εi. The calibration consists in fitting the parameters to a value

θ̂ with caution against over-fitting (e.g. techniques in Ripley, 1996). The climate recon-

struction Ct for a pollen assemblage yt is readily obtained by plugging yt into the fitted

function, i.e. as Ct = f(yt, θ̂). Two levels of uncertainties could be readily included in

the confidence interval of this prediction: (i) the errors ε and (ii) the uncertainty on θ̂

fitted in calibration. But it is unclear how the confidence interval for the reconstruction

are provided (e.g. early uses of these methods, Bartlein et al., 1984; Peyron et al., 1998;

Gersonde et al., 2005).

In the MAT, a kernel shape and a bandwidth (corresponding in the MAT to (a)

the distance metric and weighting of the point, and (b) the maximum distance for

selection) are selected using cross-validation. These kernels and bandwidth allow the

smoothing of climate in a pollen space. Then, reconstruction for a pollen assemblage

yt is provided as the local smoothing of climate around yt (Figure 1.3). The classi-

cal methods for providing confidence intervals in the context of local smoothing are

replaced in the MAT by the variance of the selected analogues (Guiot, 1990) or, the

errors measured in a leave-one-out cross validation performed on the modern dataset
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(Nakagawa et al., 2002). These methodologies are criticised (Telford and Birks, 2005;

Telford, 2006; Telford and Birks, 2009) because a strong autocorrelation in the mod-

ern pollen and climate variables hides the potential variability in the analogues. Tools

from local regression literature (e.g. Loader, 1999) may improve confidence intervals by

allowing inclusion of the autocorrelation present in the pollen and climate modern data.
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Figure 1.3: Interpretation of the Modern Analogue Technique (MAT) as a local smooth-

ing of climate in a space defined by the pollen composition. Here we use a single taxa

- Quercus evergreen - and climate variable - January temperature - to illustrate the

method. The points on the graph are the proportion of the pollen type versus the

January temperature at the 1301 sites of the European dataset used in this manuscript

(see next chapter for the dataset description). For a fossil pollen abundance of 0.5 (ver-

tical central line) all the points whose Euclidian distance is lower than 0.1 (black dots

between the dashed lines) are retained as Analogues. The reconstruction is provided as

the means of selected points (horizontal line). This corresponds to a smoothing with

the kernel shown on the bottom of the graph, whose smoothing over the whole range

of pollen proportion is the dark, smoothly evolving curve.

In type I.2 TF, pollen is expressed as a function of climate. These TF can be seen as
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independent mappings of the pollen proportions on a small set of climate variables, i.e.

projections of taxa proportions on the space defined by climate variables. Pollen data

is most often available under the format of relative frequencies, called ‘multinomial’

data in the case of raw counts (Mosimann, 1963) and ‘compositional’ data (Aitchison,

1982) in the case of proportions or percentages. Their proper modelling thus requires

to consider all the proportions of an assemblage at the same time through a sum-to-

one constraint (the sum of the taxa proportions is constrained to one). In the RS and

ERS methods, the response models (surfaces) are independently fitted for each pollen

proportion. The sum-to-one constraint is added a posteriori. This precludes the proper

quantification of the uncertainties and potentially induces a misinterpretation of the

models’ parameters (Aitchison, 1982). These TF are based on the model

pθ(Yi|Ci) =
k∏
j=1

pθj (Y j
i |Ci) (1.2)

with pθj (Y j
i |Ci) a model of the pollen taxa j at site i given climate Ci. These models

are parametrical or not and their calibration is performed by fitting independently a

pollen response surface per taxa. In a Maximum Likelihood framework (ML, one of the

classical inference frameworks, e.g. Young and Smith, 2005), the reconstruction from

‘direct’ TF is not defined since climate C is considered as a fixed and known regressor.

The inversion of the model for reconstruction is obtained using a heuristic algorithm

based on the MAT method described before. Reconstructed climate Ct for the pollen

sample yt is the one associated to the point of the response surface that best matches yt

(Bartlein et al., 1986). This technique approximates Ct but does not define a confidence

interval. The Bayesian framework (e.g. Robert, 2001; Gelman et al., 2004) provides the

theoretical and technical tools for defining and effectively obtaining in a consistent way

the reconstruction with its associated confidence interval.

The other type I.2 methods (BUMMER and the method in Haslett et al., 2006)

are based on proper models for the pollen data as relative frequencies and they adopt

a Bayesian framework for inference, solving the problems of the reconstruction defini-

tion, uncertainty propagation, and confidence interval definition. The core structures of

these model are analogous to those of the previous response surfaces. BUMMER uses
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Gaussian curves for the species responses in the spirit of symmetric unimodal distribu-

tion (ERS) and the Haslett et al. (2006) model uses semi-parametric surfaces (RS). We

group them under the general form

pθ(Y |C) = p(Yi|pi)
k−1∏
j=1

fθj (tj(pi)|Ci) (1.3)

with p(Yi|pi) a distribution for the data (Dirichlet-multinomial in both cases), t(.) a

transformation that maps pi in an unconstrained space of dimension k − 1 and fθj

is either (i) a Gaussian curve relating the jth transformed component (tj(pi)) with

climate Ci in BUMMER or (ii) a smooth random field of tj(pi) in a climate space

(Haslett et al., 2006). Bayesian inference for calibration and reconstruction of past

climate from these models is not straightforward and requires Markov Chain Monte

Carlo algorithms (MCMC, Robert and Casella, 1999). In the case of the Haslett’s

model, such an algorithm is so computationally demanding that it delays the wide use of

the method. Despite this problem requiring further development in statistics, we believe

that these Bayesian approaches form the next generation of correlative TF because

their modelling is proper and allows to define ‘confidence intervals’ under the form of

‘posterior distributions’, i.e. reconstructions are provided in the form of distribution

whose median, mean, standard deviation etc. can be computed.

1.2.2 TF are niche coupled with vegetation-pollen models

The ‘direct’ TF (type I.2 and II) describe the pollen response to a few climate variables.

Therefore, rather than just modelling niches - the climate-species relation - they also

have to cope with the pollen, a proxy for the species. This makes them models of plants

climatic niches embedded in models of the pollen accumulated in sediments as a function

of vegetation. We build a two-piece model based on previously published models for

the vegetation-pollen and environment-vegetation relationships. This illustrates the

need to explicitly consider the pollen-vegetation relation as part of the TF, mainly by

modelling a spatial correlation in the pollen data.

Let introduce a simplified relation between pollen and vegetation as those used,
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for example in Prentice and Parsons (1983); Sugita (2007a); Paciorek and McLachlan

(2009) and the third chapter of this manuscript,

Yi = f 1(Vi, Vī) + ε1i

with Yi the pollen data sampled at site i, f 1 a deterministic or stochastic function

with inputs Vi, the vegetation at site i and Vī the vegetation surrounding (several km

around) site i. ε1i is a site-specific error supposed additive representing the unpredictable

part of the pollen signal. The processes that should be modelled in f 1 (Davis, 1963;

Webb, 1974; Prentice and Parsons, 1983; Prentice, 1985; Sugita, 2007a) include pollen

production, dispersal, and accumulation in the lake sediments. The pollen dispersal,

sometimes said ‘long distance’ in palynology, allows - and imposes - to link pollen at

site i with the vegetation surrounding the site, i.e. including Vī in the relation.

On another side, a simple species-climate niche model would relate vegetation species

(or taxa) to their niche variables (e.g. climate) following the relation

Vi = f 2(Ci) + ε2i

with f 2 a deterministic or stochastic function with input Ci, the niche variables con-

sidered. ε2i is a site-specific error supposed additive which represents the unpredictable

part of the vegetation. This model may include spatial correlation to translate a vege-

tation patchiness but we keep the problem simple and conservative in the sense of not

overstating spatial correlation.

The coupling of both models, thus creates the following structure

Yi = f 1

(
f 2(Ci) + ε2i ,

∑
s∈ī

f 2(Cs) + ε2s

)
+ ε1i (1.4)

where
∑

s∈ī f
2(Cs)+ε2s is the sum of the species-climate relation applied to all the points

in the domain ī. For a given climate C over all the points in space (C = Ci=1..N e.g.

modern climate), the pollen collected at two different, but ‘close’ sites, Yi and Yj co-vary

due to the common error term
∑

s∈ī
T
j̄ ε

2
s. The magnitude of this spatial covariance is

given by the amplitude of noise (ε1 and ε2) and the closeness of modern sites relative

to pollen dispersal distance. The amplitude of noise depends on the model structure
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but pollen dispersal distance, which is different for each taxa and ranges between ten

to hundred kilometres (see e.g. the special issue Gaillard et al., 2008, and references

therein) is of the same order as distances between modern pollen sites (see Figure 1.4).
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Figure 1.4: Spatial repartition and distances distribution of the 1301 modern pollen sites

used in this manuscript (see next chapter for a description). (left) Spatial repartition

of the pollen surfaces samples over Europe. (right) histogram of the distances between

each point and its nearest neighbour. More than 75% of the points have their nearest

neighbour at less than 20km.

This spatial correlation is never modelled nor tested in classical TF despite it creates

an overconfidence in the results if not taken into account (Legendre, 1993; Telford and

Birks, 2005). Thompson et al. (2008); Telford and Birks (2009) propose to use h-block

sampling (Burman et al., 1994) to properly estimate the calibration uncertainties. This

does not allow to correct estimation bias which would be avoided only by modelling

the spatial correlation (allowing proper error quantification at the same time). Such

modelling could be achieved in a process-based fashion by re-using the relations in

Prentice and Parsons (1983); Sugita (2007a); Paciorek and McLachlan (2009) or in a

geostatistical fashion by specifying a spatial correlations structure for the residuals. The

numerical complexities arising from considering a spatial structure, i.e. a joint structure
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for all points at the same time, is very constraining for inference (e.g. third chapter in

this manuscript or Paciorek and McLachlan, 2009) since pollen data are numerous and

multivariate (several taxa sampled at thousands of points). And this is likely the same

for a geostatistical treatment (Higdon, 1998; Fuentes, 2007; Stein, 2008; Cressie et al.,

2007; Zhang and Wang, 2009). These problems make the modelling and inference of

an improved type I.2 TF as challenging as a full process-based approach involving a

computer model inversion.

The process-based approach is historically based on the use of a computer model

for the vegetation-climate link (Guiot et al., 2000). This makes natural the dichotomy

between climate-vegetation and vegetation-pollen relations in the TF. In the first ap-

proaches (Rousseau et al., 2006; Wu et al., 2007a,b; Garreta et al., 2009; Hatté et al.,

2009), authors used a statistical approach for the vegetation-pollen relation that is

based on the idea of ‘matching’ or correspondence between model outputs and pollen

samples. These approaches do not use spatial relations between the vegetation and the

pollen. In the third and last chapters of this manuscript we propose a model and try

the inference of pollen dispersal for the vegetation-pollen link; forming a full process-

based TF. As for the type I.2 TF, this complicates the inference and requires statistical

approaches still in their infancy.

1.2.3 Intrinsic aspects of the correlative and process-based ap-

proaches

In this section we review the intrinsic hypotheses behind the correlative TF seen as

niche models (Chase and Leibold, 2003) and exclude the problem of the vegetation-

pollen link modelling already discussed. In this perspective, the type I.2 (direct) TF

are directly interpretable. However, the remarks also apply to the type I.1 and I.3

(backward and not directed) TF that are less straightforwardly or not interpretable in

term of the processes generating their niche.
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The definition of a species niche is at the heart of niche theory and thus in constant

evolution. We use a modern definition (Chase and Leibold, 2003) of the niche as ‘the

environmental conditions that allow a species to satisfy its minimum requirements so

that the birth rate of a local population is equal to or greater than its death rate along

with the set of per capita impacts of that species on these environmental conditions’.

This definition recognises, at least, two main characteristic points to the niche. (i) It is

dual, i.e. is defined in terms of ‘requirements’ and ‘impacts’, (ii) it is dynamical (‘the

birth rate (...) is equal to or greater than’) allowing the populations to have their own

dynamics.

Low and arbitrary dimension of the niche

The correlative (at least type I.1) TF, that are descriptive models of the plant species

niches are defined on small and a priori (in the sense of derived from theory instead of

statistically selected) set of climatic-only variables raising questions about the reliability

of their description and therefore of their skills for palaeo-climate and environment

reconstruction.

As stated by the precedent definition, the niche dimension, i.e. the number and

type of ‘environmental conditions’ are a major, if not the single, parameter defining

the niche. The environmental variables having a potential role in the niche of a plant

species include,

• climate variables (e.g. temperature, precipitation, sunshine),

• other physical environmental variables (e.g. CO2, insolation),

• biotic factors (e.g. soil type, nutrients and water availability),

• predators, competitors and facilitators (e.g. fauna components, fungi, other plants

competing for light)

In the building of a descriptive TF, the niche variable selection (niche dimension defi-

nition) should be the main task of interest. To be as objective as possible, the variable
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selection should be statistical, for example using the variable selection techniques used

in multivariate regression analysis. Moreover, the selection can only be performed in

the set of conditions expressed in the modern pollen-climate datasets.

We focus on two examples to illustrate that, by considering a potentially too re-

stricted dimension of the niche, the TF may lead to biased or overstated palaeoclimate

reconstructions.

Atmospheric CO2 is known to have a major effect on the plant response to climate

(e.g. review in Prentice and Harrison, 2009), principally by controlling (1) the efficiency

of C3 plant photosynthesis and (2) their drought stress resistance. Being a well-mixed

gas in the atmosphere, the CO2 modern concentration does not vary significantly in

space to be accounted for in the correlative TF. Since this modern concentration (from

around 310ppmv in 1950 to more than 385ppmv today) does not overlap the range

of its values during the recent glacial-interglacial periods (170 to 300ppmv), plant-

climate relations fitted on modern dataset are potentially distorted for past climate

reconstructions. The problem has been discussed around the paper of Cowling and

Sykes (1999). Quantification of the errors made by neglecting CO2 in TF are based on

the use of vegetation models (Jolly and Haxeltine, 1997; Wu et al., 2007a,b). Wu and

coauthors found differences of around 10oC for certain regions when taking or not CO2

variations into account at the Last Glacial Maximum (LGM). The only solution to this

problem is the use of a process-based approach exploiting relations between plant and

CO2 that have been calibrated on laboratory experiments and that are available, for

example in vegetation models.

Competition between plants for limited resources is a major process expected to

generate forest structure and forms the basis for many vegetation models (e.g. GAP

models, Bugmann, 2001). In the direct TF it is clear that inter-species interactions

are not modelled in ‘response surfaces’ that are fitted independently per taxa nor in

their residuals. This creates an overconfidence in the results recently detected in cross-

validation for the Haslett et al. (2006) TF that provides too narrow confidence intervals

(Salter Townshend, 2009, and John Haslett, personal communication). A process-
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based approach based on the use of a GAP model includes, for example, competition

for light. In GAP or other models, such description of competition processes will always

be incomplete and that’s why the use of a mechanistic vegetation model inside a TF

must always come with a modelling of the mechanistic-model structural errors.

Steadiness of the correlative TF

The absence of dynamic vegetation modelling in classical TF challenges their reliability

in two ways. First, depending on the rapidity of the plant response to climate change,

climate can be tracked more, less, or not accurately using pollen records (Webb III,

1986; Prentice, 1986, 1988). Second, the slower the plant spatio-temporal response

is, compared to climate change, the more vegetation composition at a time t is de-

pendent on its history; precluding the direct interpretation of a single time point in

a chronology because it could result from different climates due to different historical

vegetation. Since the works of Prentice et al. (1991) it has been accepted - sometimes

as an unavoidable hypothesis - that, at the centennial to millennial scale of pollen-based

reconstructions, vegetation is in ‘dynamic equilibrium’ with climate.

The hypothesis of ‘dynamic equilibrium’ (‘vegetation response is fast enough to have

kept up with the changes’, Prentice et al., 1991) may be understood and agreed at

the centennial to millennial scales. But today, climate is rapidly evolving in its mean

and extreme events, and CO2 increase is unprecedented in the last glacial cycles, at

least since 1950 (Solomon et al., 2007). This makes probable that modern vegetation

composition used to calibrate the TF is not in the equilibrium required to properly fit

the pollen-climate relation.

In the reconstruction of climate from low-resolution sediment cores (when samples

are separated by large time steps) the equilibrium hypotheses is acceptable since the

timing of climate change events is, anyway, poorly constrained. When high-resolution

cores are used the temptation is high to interpret vegetation changes - reconstructed

independently between core points - as a synchronous climate change (but see studies

assessing vegetation-climate lag properly: Ammann et al., 2000; Williams et al., 2002).
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The proper timing of past climate change is clearly not possible from pollen records at

a single site when using correlative TF that are static. In the process-based approach,

we propose to take the response delay into account by modelling a dynamic response of

the vegetation to climate change using a Dynamical Vegetation Model (DVM, in this

manuscript LPJ-GUESS, Smith et al., 2001).

Descriptive and process-based approaches for extrapolation

The problem of unreliability of the correlative TF outside the range of the modern

conditions is known in palaeoclimatology under the name of ‘no-analogue’ problem. In

statistics, it is a classical extrapolation problem caused by the TF that are not process-

based and worsened in the case of the not parametrical TF. Any attempt to reduce this

problem with correlative TF require to assume new hypotheses that are not testable.

For example, Vasko et al. (2000); Gonzales et al. (2009) proposed to extend a response

surface model outside its range of modern calibration by assuming either a Gaussian

or symmetric unimodal response to climate by taxa. This choice of a model for the

whole ‘niche’ shape emerges from high-level considerations on plant ecology that are

not directly testable on real dataset despite they have a major impact on palaeoclimate

reconstruction. On the opposite, process-based TF lie on the representation of basic and

sometimes directly measurable processes. When such processes are based on physical

laws, their extrapolation outside the rage of calibration (if sufficiently large to allow a

‘good’ calibration) has a strong scientific justification.

1.3 A framework to share knowledge between ecol-

ogy and palaeoclimatology

In ecology, Species Distribution Models (SDM, e.g. Guisan and Zimmermann, 2000;

Guisan and Thuiller, 2005; Elith and Leathwick, 2009; Kearney and Porter, 2009) are

the equivalent of the ‘direct’ transfer functions used in palaeoclimatology. These models

are used to calibrate a species response to its environment from the modern, spatial dis-
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tribution of species and climates. Calibrated on large, spatial, datasets, they are used

to infer the future species distributions under changing climate. As in palaeoclimatol-

ogy, interest for process-based SDM is increasing and their comparison with correlative

approaches allow critical insight into the underlying hypotheses of each (Morin and Le-

chowicz, 2008; Kearney and Porter, 2009). SDM are strongly based on a niche theory

interpretation (Wiens et al., 2009) and they use the most up-to-date tools in terms

of geographic information systems (GIS), statistical inference methods and modelling

(Elith and Leathwick, 2009). The process-based approaches are under development and

are either based on the use of vegetation models (e.g. Morin and Thuillier, 2009) or on

statistical relations copying the processes expected to relate species to their environ-

ment (Kearney and Porter, 2009).

The general methodology for SDM is the same as for TF (see Figure 1.5 for a

schematic illustration). The model is calibrated using a modern, typically as mas-

sive as possible and spatial dataset. Many tests should be realised to select the vari-

ables defining the niche, assess the model accuracy etc. In a second step, the model

is used to predict the species distributions under different climate projections. The

analogy between models in palaeoclimatology and ecology becomes evident following

the remark we made section 1.2.2; TF should be SDM coupled with vegetation-pollen

models. Even if these models have the same structures, they must match in their scales

and applications to be readily transferable. Indeed, the dominant processes can be

different for different scales and/or their controlling parameters can vary. Time scales

of Quaternary climatology, linked to pollen data resolution, are roughly on the order

of tens of years for the highest quality records. The projections of the future species

distributions are made on shorter time scales, for the next decades but the magnitude

of changes expected for the future is potentially the same or higher than in the last

glacial cycles. Spatial scales span the range of local (one forest) to continental for both

palaeoclimatology and ecology.

Both approaches of the species distributions (SDM and TF) are lacking a consistent

framework for handling the calibration uncertainties, i.e. uncertainties are not propa-
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Figure 1.5: Representation of the spatio-temporal dimensions involved in the classical

SDM and TF modelling and use. (left) The ‘past’ period for pollen-based palaeoclimate

reconstruction is registered in pollen samples covering several tens of thousand years (k

yr.) and registered in lakes distributed at a continental scale. The palaeoclimatology

challenge is to obtains vegetation and climate reconstructions at these scales. (center)

The modern period is defined by the length of time for which we have instrumental

records of climate, vegetation and pollen. It is several decades to centuries long. In

this period we measure and continue to monitor pollen, vegetation and climate at the

scale of the earth. It allows to learn about the relations linking climate, vegetation

and pollen that are used to reconstruct or predict the variables one from the others.

(future) It is the period for which we need prediction. The political and economical

interest is focused on the next tens or fifty years. In this period we have more or less

credible scenarios for climate at a continental scale. The challenge is to predicted the

range of possible vegetation change from these scenarios.

gated from the calibration to the prediction/reconstruction. These uncertainties can

be on the model’s parameters or on the models themselves if different niche models

are competing. For palaeoclimatology we discussed this point previously. In ecology

the same questions are raised (Elith and Leathwick, 2009). We propose to dive the

TF (direct and process-based) and SDM (correlative and process-based) in a Bayesian

framework. This,

• reinforces the analogy between TF and SDM,
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• provides a consistent framework to characterise and propagate uncertainties be-

tween calibration and reconstruction/prediction in both disciplines,

• may allow to exchange tools between disciplines.

The Bayesian paradigm has several advantages for palaeoclimatology as discussed in

the case of the direct TF. In this framework, all the quantities of interest (e.g. climate,

vegetation, pollen) are seen as random, i.e. no fundamental distinction is made be-

tween parameters, dependent variables, independent ones, etc. The modelling consists

in specifying distributions linking the random quantities and the inference consists in

obtaining the distribution of the quantities of interest given the model structure and

the data available. Let describe a general calibration and reconstruction/prediction

framework.

Following the remark of section 1.2.2 (slicing between climate-vegetation and vegetation-

pollen models), a proper pollen climate link could be modelled as

p0(Y |V, θ0) p1(V |C, θ1)

with C the values of the niche variables selected. Potentially climate but other vari-

ables can be included. p0(Y |V, θ0) is a pollen-vegetation link with parameters θ0 and

p1(V |C, θ1) a vegetation-environment link with parameters θ1. p1 could be either a sta-

tistical model (e.g. type I.2 TF), a deterministic vegetation model (Guiot et al., 2000)

or a stochastic one (Garreta et al., 2009).

The calibration consists in inferring the parameters θ1 and θ2. Suppose we have

a classical pollen and environmental dataset at a continental scale, noted (y, c)s with

s demoting a large set of N sampled sites. Following the Bayes formula, calibration

consists in obtaining the posterior distribution

p(θ0, θ1|ys, cs) ∝
∫
p0(ys|V, θ0) p1(V |cs, θ1) p(θ0, θ1) dV

with p(θ0, θ1) a prior distribution translating the amount (or absence) of knowledge

we have on the parameters θ0 and θ1. Effectively obtaining this distribution is a hard
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problem due to its high dimension (equal to dim(θ0) + dim(θ1)) and the integral over

the vegetation field (V is vegetation at all sites). Haslett et al. (2006) and the third

chapter of this manuscript use MCMC algorithms allowing to obtain nearly every type

of distribution under the form of simulations of θ0 and θ1.

The climate reconstruction for a single pollen sample yt is obtained through the

Bayes formula as

p(Ct|yt) ∝
∫
p0(yt|Vt, θ0) p1(Vt|Ct, θ1) p(θ0, θ1|ys, cs) p(Ct) dVt dθ0 dθ1

with p(Ct) translating the prior information we have on the environment at time t

before reconstruction. This formula includes - explicitly - the uncertainties on the pa-

rameters obtained through calibration which is not presently done in most of the TF.

The distribution can be effectively obtained using, e.g. a MCMC algorithm.

The Bayesian calibration of SDM could involve exactly the same kind of model as

in the TF, i.e.

p2(Y |X, θ2) p3(X|C, θ3)

with p2(Y |X, θ2) a link between the data Y that can be noisy surrogates of the species

X, with parameters θ2 and p3(X|C, θ3) a species-environment link with parameters θ3.

p3 could be either a statistical model (e.g. correlative SDM, type I.2 TF), a deterministic

vegetation model (Morin and Thuillier, 2009) or a stochastic one (Garreta et al., 2009).

Calibration thus consists in obtaining p(θ2, θ3|ys, cs) as before, based on a set of modern

data composed of the species indicator and its environment recorded on a set of s = 1..N

sites.

The prediction of the species under possible climate for time t (in the future) is

obtained following the Bayes formula

p(Xt) =

∫
p3(Xt|Ct, θ3) p(θ2, θ3|ys, cs) p(Ct) dθ3

with p(Ct) the distribution of possible future climate that is often provided as a set

of simulations from different global circulation models (referred to as a climate ensem-

ble simulation). This formula includes explicitly the uncertainties on the parameters
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obtained through calibration which is not done in ecology (e.g. Elith and Leathwick,

2009). Note that Bayesian theory provides tools to readily expand such formula to also

include a probability of model if several models p3(Xt|Ct, θ3) are competing for the link

species-environment.

1.4 Conclusion

More than sixty years after the first backward approach of Iversen (1944) and thirty

years after the first direct approach of Imbrie and Kipp (1971), the statistical and

computational tools are so elaborated that they start to allow the realisation of fully

process-based palaeoclimate reconstruction, which includes decades of works in many

disciplines around biology and ecology. This unique opportunity to provide a new and

more accurate picture of past climate and environment has to be developed. The slow

startup of process-based palaeoclimate reconstruction after the work of Guiot et al.

(2000) may be explained by the high level of expertise in statistics, stochastic inference

and computation it requires. We believe that more interactions between statisticians

and palaeoclimatologists will help in its development.

In bringing closer palaeoclimatology and ecology we believe that both field will en-

rich and challenge the other one. From its side, ecology stands on a constantly evolving

theoretical representation of the species-environment interactions which helps in re-

considering the models used for their description. On its side, palaeoclimatology has

unique datasets to test models for large scale spatio-temporal dynamics. Even though

the palaeoclimatological datasets are incomplete (they lack most environmental condi-

tions) they contain the remains of many past dynamics of life and must be used when we

will need to calibrate realistic models of the future biota dynamics. Rephrasing Jackson

and Williams (2004), we believe that in developing fully process-based approaches in

close cooperation with ecologists, the past no-analogues will become keys for the future

ones.
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Chapter 2

A method for climate and

vegetation reconstruction through

the inversion of a dynamic

vegetation model

This chapter is published online in Climate Dynamics as the following research paper

Garreta, V., Miller, P. A., Guiot, J., Hély, C., Brewer, S., Sykes, M. T., and Litt, T. (2009). A method for

climate and vegetation reconstruction through the inversion of a dynamic vegetation model. Climate Dynamics, doi:

10.1007/s00382-009-0629-1

I realised the work presented in this chapter with the help of Paul Miller (Geobio-

sphere Science Center, Lund University, Sweden) for the development of LPJ-GUESS

code. I wrote the chapter except the LPJ-GUESS description section by Paul.
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Abstract Climate reconstructions from data sensitive to past climates provide es-

timates of what these climates were like. Comparing these reconstructions with sim-

ulations from climate models allows to validate the models used for future climate

prediction. It has been shown that for fossil pollen data, gaining estimates by in-

verting a vegetation model allows inclusion of past changes in carbon dioxide values.

As a new generation of dynamic vegetation model is available we have developed an

inversion method for one model, LPJ-GUESS. When this novel method is used with

high-resolution sediment it allows us to bypass the classic assumptions of (1) climate

and pollen independence between samples and (2) equilibrium between the vegetation,

represented as pollen, and climate.

Our dynamic inversion method is based on a statistical model to describe the links

among climate, simulated vegetation and pollen samples. The inversion is realised

thanks to a particle filter algorithm. We perform a validation on 30 modern Euro-

pean sites and then apply the method to the sediment core of Meerfelder Maar (Ger-

many), which covers the Holocene at a temporal resolution of approximately one sample

per 30 years. We demonstrate that reconstructed temperatures are constrained. The

reconstructed precipitation is less well constrained, due to the dimension considered

(one precipitation by season), and the low sensitivity of LPJ-GUESS to precipitation

changes.
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2.1 Introduction

Numerous studies have produced statistical palaeoclimate estimates by using the mod-

ern relationship between pollen and climatic data (e.g. the pioneering works of Webb

and Bryson (1972) and Prentice and Helmisaari (1991) or a recent review in Guiot and

De Vernal (2007)). These studies have substantially improved our knowledge of past

climates and have been used as benchmark to evaluate robustness of climate models

(e.g. from COHMAP Members (1988) to Jost et al. (2005)).

The existing reconstruction methods are based on the assumption that plant-climate

interactions remain the same through time, and implicitly assume that these interac-

tions are independent of forcings such as changes in atmospheric CO2. Guiot et al.

(2000) showed that this assumption could produce significant biases in the results and

that by using a vegetation model inversion, it was possible to evaluate these biases and

to correct them. Wu et al. (2007a) applied the method to European, African and Asian

data for two periods of the past when atmospheric CO2 concentration was significantly

different from the present one. They showed that biases could reach up to 10oC for

winter temperature in Europe during the Last Glacial Maximum. These papers used an

equilibrium vegetation model (BIOME4) which accounts for processes related to carbon

and water cycles, but not for those related to plant competition and mortality. A more

recent and sophisticated dynamic model, LPJ-GUESS (Smith et al., 2001), takes these

processes into account.

We propose a method for the inversion of a dynamic vegetation model and argue

that in palaeoclimatology this method is an improvement compared to the inversion

of static models. Indeed, changing the static vegetation models used previously for a

up-to-date dynamic model updates the transfer function defined by inversion. Second,

when the dynamic inversion (read inversion of a dynamic model) is applied to a high

time-resolution sediment core it provides a way to bypass the classic assumptions of:

• independence between samples. With the exception of the Haslett et al. (2006)

method, classic reconstruction methods ignore temporal correlations even if pollen
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data are sampled in sediment cores, which provide temporal records of the pollen.

The dynamic vegetation model simulates vegetation histories that can be used as

a natural link for temporal reconstruction.

• equilibrium between climate and vegetation. Classic transfer functions are cali-

brated with modern pollen and climate data which are necessarily spatial. The

absence of any temporal information means that we cannot calibrate a dynamic

link or disequilibrium. Under a changing climate (modern or past) this is a sim-

plification because the vegetation response may be delayed. Using LPJ-GUESS to

simulate vegetation dynamics allows us to include a delay between climate change

and vegetation change, by taking into account growth, mortality and competition

processes.

Both of these assumptions are admissible when working with a low time resolution

because the expected reconstruction is of low resolution and samples are nearly inde-

pendent when there is a long time interval between samples. When a high resolution

core is used, the expectation is a high quality reconstruction, i.e. including and properly

quantifying all possible sources of uncertainty. In this case, the noise associated with

the independent reconstruction of samples should be reduced or properly quantified by

modelling a link between samples. The equilibrium hypothesis must also be considered,

as this potentially induces error in the timing of climate changes.

The inversion of the dynamic model LPJ-GUESS, compared to static model inver-

sion, is complicated in two ways.

First, LPJ-GUESS is stochastic, which means that any two simulations realised with

the same forcings (climate, CO2, soil, etc) are not exactly identical. This is due to

fire, establishment and mortality processes which are represented in LPJ-GUESS as

stochastic. The vegetation must therefore be considered as a random “hidden” variable

instead of a deterministic function of climate as in Guiot et al. (2000).

Second, we want to use the temporal aspect provided by the vegetation model. In

the reconstruction algorithm, this would require a high-dimensional climate space to
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be tested and induces the classic problem of the “curse of dimensionality”. For a static

model, we can run the model for a single point in time. Here several possible climates

are proposed, the model is run with each scenario and the simulated vegetations are

compared to a single pollen sample to retain the more coherent simulations (Guiot

et al., 2000). With the same method for temporal inversion, we need to propose several

high-dimensional climate histories, simulate several vegetation histories and compare

them to the pollen history. This algorithm is inefficient and requires massive simulations

because almost no vegetation chronology will fit the entire pollen chronology. With this

kind of algorithm (a global stochastic search in the entire time-climate space) computing

time for simulation is prohibitive, at least due to the use of a vegetation model.

To overcome both challenges and perform the temporal inversion, we have devel-

oped, and present here, a hierarchical Bayesian model and a particle filter algorithm

(Doucet et al., 2001) for inference. The hierarchical Bayesian approach facilitates the

probabilistic formalisation of the inversion process. It has general attractive features

in paleoclimatology (see the discussion in Haslett et al., 2006) and we mainly use its

concept of organisation of the variables into a hierarchy, prior and posterior described

in the modelling section. The particle filter algorithm is mainly a Bayesian tool used

for inference in real-time (or on-line) problems. In our context it allows to bypass the

curse of dimensionality because it considers the reconstruction date after date.

The paper is structured as follows: (i) The vegetation model, climate data and pollen

data are presented. (ii) We then describe the statistical model and inference algorithm.

(iii) The method is validated using 30 modern pollen samples distributed across Europe.

(iv) The temporal feature of the approach is fully exploited by reconstructing Holocene

climate from the high resolution Meerfelder Maar sediment core (data from Litt et al.,

2009).
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2.2 Materials and methods

2.2.1 The LPJ-GUESS Dynamic Global Vegetation Model

LPJ-GUESS simulates the dynamics of vegetation stands, accounting for competition

between tree individuals and populations as a forest gap model (Shugart, 1984; Bug-

mann, 2001). A full description of the model can be found in Smith et al. (2001).

Biophysical and physiological processes are represented mechanistically, and are based

on the same formulations as the well-evaluated Lund-Potsdam-Jena dynamic global veg-

etation model (LPJ-DGVM; Sitch et al., 2003). Updates to the model’s hydrological

processes were described by Gerten et al. (2004).

In LPJ-GUESS, cohorts of trees of different species, age and structure compete for

light and soil resources on a number of replicate patches (15 patches of 1000 m2 in

the present study). Either plant functional types (PFTs) (Sitch et al., 2003) or species

(Hickler et al., 2004; Koca et al., 2006) may be simulated.

Typical model output consists of leaf area index (LAI), net primary production

(NPP), biomass, tree density, carbon fluxes and runoff. Values are averaged over the

replicate patches to give stand averages of the relevant variables.

Using a very similar model set-up to that used here, Miller et al. (2008) showed that

LPJ-GUESS could successfully model the Holocene dynamics of the main tree species at

four sites in Fennoscandia where vegetation reconstructions using pollen accumulation

rate data were possible.

Species description

In Table 2.1, we list the seventeen tree and shrub species, and the single grass taxon,

used in the model, as well as their plant characteristics and bioclimatic limits. Further

changes to the model parameters described by Smith et al. (2001), Hickler et al. (2004)

and Miller et al. (2008), are listed Tables A.1 and A.2.
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Species Description GDD5min Tcmin Tcmax DT

(oC d) (oC) (oC)

Abies alba T,Te,NE,St 1800 -4.5 -1 0

Alnus incana T,Bo,BS,Ist 500 -30 -2.5 0

Betula pendula T,Te,BS,Si 700 -30 7 0

Betula pubescens T,Bo,BS,Si 300 - 6 0

Carpinus betula T,Te,BS,Ist 1100 -8 5 1

Corylus avellana T,Te,BS,Ist 700 -13 10 1

Fagus sylvatica T,Te,BS,St 1300 -3.5 6 0

Fraxinus excelsior T,Te,BS,Ist 1100 -10 6 0

Picea abies T,Bo,NE,St 650 -30 -1.5 0

Pinus sylvestris T,Bo,NE,Ist 450 -30 -1.0 1

Pinus halepensis T,Te,NE,Ist 3000 3 9 1

Populus tremula T,Te,BS,Si 500 -30 6 0

Quercus coccifera S,Te,BE,Ist 3100 3.5 11 1

Quercus ilex T,Te,BE,Ist 2000 0 10 1

Quercus robur T,Te,BS,Ist 1100 -9 7 1

Tilia cordata T,Te,BS,Ist 1100 -11 5 0

Ulmus glabra T,Te,BS,Ist 850 -9.5 6 0

C3 grass -,-,-,- 0 - - 1

Table 2.1: Selected species with their characteristics and bioclimatic limits as specified

in the model. The plant characteristics are: either trees (T) or shrubs (S), either boreal

(Bo) or temperate (Te), either broadleaf summergreen (BS), broadleaf evergreen (BE) or

needleleaf evergreen (NE), and either shade tolerant (St), intermediately shade tolerant

(ISt) or shade intolerant (Si). The bioclimatic limits are: GDD5min (minimum growing

degree-day sum (5oC base)), Tcmin
(minimum temperature of the coldest month), Tcmax

(maximum temperature of the coldest month) and DT (drought tolerance).
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The species are trees (T) or shrubs (S), boreal (Bo) or temperate (Te), broadleaf sum-

mergreen (BS), broadleaf evergreen (BE) or needleleaf evergreen (NE), and shade toler-

ant (St), intermediately shade tolerant (ISt) or shade intolerant (Si) (Smith et al., 2001).

Trees and shrubs have different allometric relationships, and summergreen species re-

quire varying periods of chilling to induce budburst (Murray et al., 1989). The generic

C3 grass PFT is intended to represent the numerous understorey species that are not

considered in this paper, but nevertheless compete with trees for water and nutrients.

The maximum range limits of the tree species are defined in LPJ-GUESS by four

key, species-specific bioclimatic constraints (Prentice et al., 1992; Sykes et al., 1996):

GDD5min (minimum growing degree-day sum (5oC base)), Tcmin
(minimum temperature

of the coldest month), Tcmax (maximum temperature of the coldest month) and DT

(drought tolerance). Drought intolerant species (DT = 0) require an average growing

season available water content of 30mm for establishment. The values in Table 2.1 were

taken from the literature (Prentice and Helmisaari, 1991; Sykes et al., 1996), with minor

adjustments prompted by comparison with European species distributions. The use of

this minimal set of bioclimatic constraints, each of which represents a known or likely

physiological limiting mechanism (Woodward, 1987; Miller et al., 2008), is more robust

through time than simple correlations between climatic variables and species ranges.

For a species within its bioclimatic limits, cohort establishment and mortality are

modelled yearly in LPJ-GUESS as stochastic processes within each replicate patch of

the stand (Smith et al., 2001). Two additional stochastic processes are also considered

in LPJ-GUESS. First, patch-destroying disturbances, representing destructive processes

such as herbivory and storm damage, result in all vegetation in a patch being trans-

ferred to the patch’s litter pool with a certain annual probability that is the inverse of

the average disturbance interval of 100 years. Second, the yearly probability of a fire

disturbance is modelled as in Thonicke et al. (2001).

The species listed in Table 2.1 are clearly a small subset of the full range of species

seen in Holocene pollen diagrams. However, use of a restricted set was a necessary com-

promise. A larger species set would have increased the computational time required

for model inversion. By choosing a restricted set containing a representative sample of
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the diversity of vegetation and functional types seen in sub-Arctic Europe today, we

expect to capture the main variability seen in the Holocene pollen records. Our choice

was also restricted by the relatively small set of species with bioclimatic limits used by

LPJ-GUESS that are known with any great degree of certainty.

Vegetation

From the different vegetation outputs of LPJ-GUESS: NPP, LAI, biomass, we sum-

marise vegetation by using an average of simulated NPP over 30 years. This choice

is driven by the need for maximum coherence between pollen samples and the sum-

marises of the vegetation simulated at the same sites. Preliminary attempts to link

pollen and these outputs convinced us that LAI and NPP are nearly equivalent and

perform better than biomass which represents an accumulation of carbon mass in time.

Thirty-year means for NPP correspond approximately to the accumulation period for

pollen in modern samples.

We denote the simulated vegetation at the N modern sites as Vs=1:N , represented by

the NPP averaged by species over 30 years. Vt is the mean of simulated vegetation, for

the past, during the years t− 30 to t. Note that all these elements are positive or null

and that they represent absolute or “raw” production values.

2.2.2 Climate data

LPJ-GUESS is forced with chronologies of monthly precipitation, temperature and

cloudiness. For each pollen site, we interpolated precipitation and temperature time

series from the CRU TS 1.2 dataset (New et al., 2002). We used an ordinary kriging

method with altitudinal gradient as an external drift (e.g. Cressie, 1991). For cloudi-

ness we fitted a logit-linear regression between monthly cloudiness and both monthly

precipitation and temperature per site.

The interpolated climate series are considered as a skeleton to which anomalies are
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applied to determine the optimal fit between model outputs and pollen data. These

anomalies will be referred to as parameters or climate parameters in the following sec-

tions because they are the climate quantities which are reconstructed. We denote by Cs

for modern sites and Ct for core at time t, the 6-dimensional climate parameter vector:

C = (Tjan, Tjul, Pwin, Pspr, Psum, Paut). First parameters are absolute temperature anoma-

lies (in oC) from January and July 20th century series. The precipitation parameters

are relative anomalies (in %). Let T(i,j) be the original temperature of year i and month

j, T(.,j) the 100-year mean temperature of month j, where j = 1 denotes January. Then

the transformed temperature T̃(i,j)(C) is defined as a function of parameters Tjan and

Tjul:

T̃(i,j)(C) = T(i,j) − T(.,j) + (T(.,j) − T(.,1)) ∗
(
Tjul + T(.,7) − (Tjan + T(.,1))

T(.,7) − T(.,1)

)
+ Tjan + T(.,1)

This transformation modifies the monthly mean temperature signal (T(.,j)) by scaling

it to match new January and July specified temperatures Tjan+T(.,1) and Tjul+T(.,7). The

interannual variability of the transformed series is exactly the same as in the original

skeleton.

Precipitation parameters are seasonal percentages which are added to the original

skeleton. Let P(i,j) be the original precipitation of year i and month j. Then the Pwin

anomaly is applied by multiplying each winter month (January, February and March)

by (1 + Pwin/100) to obtain P̃ (C) modified precipitation

P̃(i,j=1:3)(C) = P(i,j=1:3) ∗ (1 + Pwin/100)

Here the positivity constraint of precipitation is respected, but the interannual vari-

ability of the original chronologies is modified.

Once the modified T̃ (C) and P̃ (C) have been created, a modified sunshine S̃ is

computed by regression using T̃ (C) and P̃ (C) as regressor variables.
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2.2.3 Pollen data

Pollen surface samples

The pollen surface sample database has been compiled by Bordon (2008) from data

taken from Bottema (1974), Brugiapaglia (1996), Peyron et al. (1998) and Sanchez

Goni and Hannon (1999).

The database was initially composed of 1512 different modern sites covering Europe

and Morocco with more than 150 different pollen taxa. A subselection of taxa was made

to correspond to the output of the model. We computed 14 groups by summing taxa

corresponding to each of the following 14 arboreal taxa: Abies, Alnus, Betula, Carpinus,

Corylus, Fagus, Fraxinus, Picea, Pinus, Quercus Evergreen, Quercus Deciduous, Tilia,

Ulmus and Populus. A “grasses and shrubs” (GrSh) group was made by summing all

non-arboreal and non-aquatic taxa. This selection preserves a maximum of coherence

with the 18 species (or groups of species) defined in the version of LPJ-GUESS that we

use. See Table 3.1 for the correspondence between pollen groups and vegetation model

species.

We first filtered the sites by removing all non-terrestrial sample sites due to spurious

coordinates or offshore core tops (eg. in Danube estuaries). Offshore pollen samples

are representative of pollen production of a whole watershed and are not coherent

with other more local records. As a second selection criterion we removed all samples

where the taxa subselection resulted in a loss of more than 25% of the original pollen

count. These cases occurred when more than 25% of the sample consisted of arboreal

taxa other than those simulated by LPJ-GUESS. We consider that the removal of such

a large part of the original pollen spectra would result in a distorted image of the

surrounding vegetation.

Since most of the pollen samples where available as percentages (more than 70%)

we converted counted samples to percentages.

The final dataset is a matrix containing N = 1209 modern sites (rows) and 15 taxa
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i pollen type: yi vegetation species: vj(i)

1 Abies Abi_alb

2 Alnus Aln_inc

3 Betula Bet_pen + Bet_pub

4 Carpinus Car_bet

5 Corylus Cor_ave

6 Fagus Fag_syl

7 Fraxinus Fra_exc

8 Picea Pic_abi

9 Pinus Pin_syl + Pin_hal

10 QuercusE Que_coc + Que_ile

11 QuercusD Que_rob

12 Tilia Til_cor

13 Ulmus Ulm_gla

14 Populus Pop_tre

15 GrSh C3_gr

Table 2.2: Correspondence table between pollen types and species defined in LPJ-

GUESS.
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per site (columns). The spatial distribution of this dataset is shown in Figure 2.1. A

modern pollen sample Ys = (Ys,1, Ys,2, . . . , Ys,15) is a 15-dimentional vector representing

the pollen proportion per group, where Σ15
j=1 Ys,j = 1.
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Figure 2.1: Distribution of the 1209 modern pollen samples (black dots) and location

of the Meerfelder Maar site (square).

Meerfelder Maar sediment core

The sediment core (Litt et al., 2009) was taken from the lake Meerfelder Maar (50.1oN,6.75oE,

see Figure 2.1) located within the Westeifel Volcanic Field less than 10 km apart. The

uppermost 180 cm of the core, corresponding to approximately the last 1.6 cal ky BP

(calendar kilo-years Before Present; refers to the number of years before 1950), are

not continuously varved and were dated using two AMS 14C dates and extrapolated

sedimentation rates based on varve data. The other part of the core is varved and the

endpoint of the core has been linked to a calendar-year chronology by using a tephra

dated at 11 cal ky BP. In total 406 samples have been collected and analysed from this

core. The number of pollen grains counted in each sample is between 500 and 1000 and

we transform it to percentages to agree with modern data.
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The pollen diagram is presented Figure 2.2. For the interpretation of climate recon-

struction results we divide the 11 to 0 cal ky BP chronology in four periods. A more

comprehensive discussion can be found in Litt et al. (2009). The earliest period (11

to 10 cal ky BP) corresponds to the end of the glacial period and is characterised by

a rapid decrease of Grass-Shrub group, Pinus and Betula. This decline is matched by

marked increases in Corylus. The 10 to 6.3 cal ky BP phase shows a Corylus decrease

and the arrival of Ulmus, followed by Tilia, Fraxinus and Alnus and, finally, Fagus.

The 6.3 to 3.7 phase is a very stable one with high levels of Alnus, but less Ulmus and

Tilia than during the previous period. The last period 3.7 to 0 cal ky BP is charac-

terized by a number of changes, due to increasing anthropogenic pressure and climate

changes. There is a global but non-monotonic increase of the Grass-Shrub group and a

non-monotonic decrease of Alnus, Ulmus and Tilia.

Sediment core samples are denoted Yt=t1:tn . The core contains n = 406 samples from

t1 = 10988 cal yr BP to t406 = 0 cal yr BP. As for the modern samples, each sample Yt

is a 15-dimentional vector representing the pollen proportion per pollen group.
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Figure 2.2: Pollen diagram from the Meerfelder Maar sediment core. (x -axis) The fifteen pollen

groups defined in Table 3.1 are given as percentages (over the fifteen groups) and (y-axis) the age

is in calendar years Before Present (BP, refers to before 1950) from 0 (top) to 10988 (bottom). The

total number of pollen grain counted per sample range between 500 and 1000. The uppermost 180

cm of the core, corresponding to approximately the last 1.6 cal ky BP, are not continuously varved

and were dated using two AMS 14C dates and extrapolated sedimentation rates based on varve data.

The other part of the core is varved and the endpoint of the core has been linked to a calendar-year

chronology by using a tephra dated at 11 cal ky BP (Litt et al., 2009). Therefore the uncertainties

associated to the chronology are not constant along the core and very hard to quantify. For the period

of time between 11 cal ky BP and around 1.6 cal ky BP, varved sediments imply that there is no

uncertainty between sample dates; but this is a floating chronology implying a constant uncertainty

for the overall time-period. Uncertainties after 1.6 cal ky BP and for the whole floating chronology

had a magnitude of around 100 yr but were corrected by stratigraphic alignment with the well dated

core of the Holzmaar Maar, which reduce them.
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2.2.4 A statistical model to link climate, vegetation and pollen

We build a statistical model which embeds the vegetation model and describes the

relations between the variables climate C, vegetation V and pollen Y . This is designed

for pollen samples taken from a single sediment core. Each date t = t1 : tn is considered

known without uncertainty. This statistical model is hierarchical Bayesian.

Hierarchical means that it is based on a conditional “split” of the model. For com-

parison, a Transfer Function (TF) models a direct link between climate and pollen

using the conditional distribution of pollen given climate p(Y |C). In this work, we

model p(Y |C) hierarchically by specifying a distribution of the vegetation conditional

on climate p(V |C) and a distribution of the pollen conditional on vegetation p(Y |V ).

Bayesian theory is a framework for inference (Young and Smith, 2005). In the con-

text of this applied work we use the main concepts of “prior” and “posterior”. The prior

is the information, summarised under the form of a distribution, which is available prior

to the data analysis. For example we will use a prior on climate at time t, p(Ct). This

is the information on ancient (time t) climate we have before running the inversion,

and may be estimated by climate reconstructions already available before inversion.

After the choice of a prior on climate p(C) and a hierarchical model p(V |C).p(Y |V ),

the Bayesian inference consists in obtaining the posterior distribution of climate and

vegetation given pollen p(C, V |Y ). The Bayes theorem gives the link between the prior,

the structure and the posterior: p(C, V |Y ) = p(C).p(V |C).p(Y |V )/p(Y ).

The structure of the hierarchical model is illustrated on the graphic Figure 2.3.

It is based on the basic elements p(C), p(V |C) and p(Y |V ) described above, and each

individual part is described in more details below. The choice of prior distribution p(C)

is discussed below in each reconstruction exercise. In the next section we define and

calibrate the distribution of pollen given vegetation p(Y |V ). Section 2.2.4 completes

the definition by describing p(V |C) as the vegetation model.
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time t1 t2 tn

...

CtnCt2Ct1

Vt0 VtnVt2Vt1

Yt1 Yt3Yt2

Figure 2.3: Graphical representation of the hierarchical model for reconstruction. Con-

sidered variables are: C the climate, V the vegetation simulated by LPJ-GUESS and

Y the pollen data. Subscripts indicate a sample date (t) for the analysed core. Known

variables are in a square and variable to be reconstructed in a circle. Arrows represent

the conditioning between variables. The times t1 to tn are the core point dates. t1 is

the oldest age sampled in the core, tn the most recent. Pollen data are known for each

sample of the core points. Following the arrows we see that vegetation at time t2 (Vt2)

depends on climate at time t2 (Ct2) and vegetation at time t1 (Vt1). This is modelled

using LPJ-GUESS forced with climate Ct2 , starting from Vt1 and run during t2 − t1

years. Pollen at time t2 (Yt2) depends only on Vt2 through a p(Y |V ) distribution.

Calibration of the pollen/vegetation distribution

A key element of the inversion is the relationship between simulated vegetation and

pollen data p(Y |V ). In statistics this is called the pollen likelihood and can be compared

to a transfer function between vegetation and pollen. We model it using non-parametric

kernel smoothed surfaces. These surfaces are calibrated using the modern pollen dataset

and modern simulations of the vegetation.

The distribution p(Y |V ) models the relationships between 15 pollen proportions Y

and the simulated NPP of 18 species, V . Thus its dimension is 15 + 18 = 33 and it

contains information about 15 ∗ 18 = 270 variable crossings. We reduce this dimension

as follows:
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p(Y |V ) ≈
15∏
i=1

pi(Yi|V ) (2.1)

≈
15∏
i=1

pi(Yi|Vj(i)) (2.2)

=
14∏
i=1

qi(Zi|Vj(i)) (2.3)

≈
14∏
i=1

q̃i(Zi|Vj(i)) (2.4)

subject to the following assumptions:

• (2.1) conditional on vegetation, all pollen abundances Yi, Yj for i 6= j are in-

dependent. This is acceptable since, with a pollen time resolution of 20 to 30

years, given the vegetation, pollen production of one group can be considered

independent of the production of all other pollen group.

• (2.2) all information about Yi is carried by only one Vj(i) species of vegetation. The

subscript j(i) refers to the jth vegetation species corresponding (i.e. as a function

of) to the ith pollen group. This is acceptable if there is a good agreement between

pollen groups and the species simulated by LPJ-GUESS. These correspondences

are specified in Table 3.1.

• (2.3) using the variable transformation Z = alr(Y ) (Aitchison, 1982) there always

exists a relationship, called qi, between vegetation V and the transformed pollen

variable Z. Pollen variables are probabilities implying that their sum is
∑15

i=1 Yi =

1. This constraint reduces the dimension to 14 since the fifteenth proportion is

defined by 1− Σ15
i=1 Yi. First we set Yi,j = 10−4 for all (i, j) where Yi,j = 0. Then

we apply the Aitchison (1982) transformation Z = alr(Y ) defined as:

Zi=1:14 = log(Yi/Y15)

This reduces the dimension to 14 and lets us model the unconstrained variables

Zi.
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• (2.4) each qi is correctly approximated by a q̃i obtained by kernel smoothing (e.g.

Loader, 1999).

In practice, the fourteen surfaces qi are fitted on the modern dataset (C, V )s=1:N . For

this purpose we use a gaussian kernel whose parameters are fitted by cross validation

(Loader, 1999). Figure 2.4 shows the obtained surfaces.

LPJ-GUESS is a vegetation/climate distribution

Let p(Vtj , Ctj |Vti) be the distribution for the temporal transition of climate and vege-

tation from time ti to time tj where ti and tj are dates for consecutive samples of the

core

p(Vtj , Ctj |Vti) = pLPJ(Vtj |Vti , Ctj ).p(Ctj ) (2.5)

with p(Ctj ) the prior climate distribution at tj. pLPJ(Vtj |Vti , Ctj ) is (defined by) the

randomness of Vtj when we run LPJ-GUESS for tj − ti years starting from vegetation

Vti , with climate Ctj .

Vegetation simulated by LPJ-GUESS is stochastic in the sense that several runs of

the vegetation model with the same forcings give slightly different vegetation values.

We therefore consider vegetation as a random variable and LPJ-GUESS as a distribu-

tion: pLPJ(Vtj |Vti , Ctj ). This distribution simulate the variable Vtj and has parameters

(Vti , Ctj ) but also the climate chronologies and numerous forcings like soil, CO2 etc.

We can sample from this distribution by running the model, but since it is a complex

computer code we cannot compute its probability value for any given set of variables

and parameters. This represents a major change from deterministic vegetation models

such as BIOME3 (Haxeltine and Prentice, 1996) or the LPJ-DGVM (Sitch et al., 2003).

The temporal link of the hierarchical model is given by LPJ-GUESS and arises from

the later definition. To simulate vegetation at time tj younger than (after) ti, where ti

and tj are the dates of consecutive core samples, the vegetation model starts with Vti
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Figure 2.4: Kernel smoothed surfaces for the 14 groups. The joint smoothings

qi(Zi, Vj(i)) are derived from the conditional smoothings used for inference: qi(Zi|Vj(i)).
Graphics are in the same order as in Table 3.1. Each plot presents (x -axis) a pollen

group transformed following Aitchison (1982) (Zi without unit) versus (y-axis) its cor-

responding simulated annual net primary production (NPP, in kg carbon m−2 year−1).

The dots are the modern data and the shading shows the density obtained by kernel

smoothing (darker means higher density).
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and runs for tj − ti years. If tj − ti is short, the vegetation simulated at tj is strongly

forced by vegetation Vti and then, implicitly, by climate Cti . This constraint gives a

time-coherence to the reconstructed vegetation.

2.2.5 Inference using a particle filter algorithm

In the Bayesian context, reconstruction of climate and vegetation involves the com-

putation of the joint posterior distribution p(Ct1:tn , Vt1:tn|Yt1:tn). This represents the

distribution of climate and vegetation “histories” from time t1 to tn knowing all Yt1:tn

pollen data.

Particle filters provide a reconstruction based on Importance Sampling (IS) which

is sequential, i.e. done sample after sample. The sequential aspect solves the curse of

dimensionality because it slices the climate space. A simple explanation follows: at

time tj the algorithm has a reconstruction obtained for the preceding point ti. A set of

1000 possible climates C
(l)
tj is proposed from the prior p(Ctj ). LPJ-GUESS is then run

for each climates starting from the reconstructed vegetation at ti and for the years ti

to tj. It produces couples of climate and associated vegetation (Ctj , Vtj )
(l) that we call

“particles”. In this set of particles, a selection is done by comparison of each vegetation

simulated and the pollen Ytj . This selection consists in computing ω(l) equal to the

likelihood p(Y |V ) of the pollen Ytj for each simulated vegetation V
(l)
tj . High ω(l) score

means that the couple (Ctj , Vtj )
(l) is highly probable and null scores means that the

couple is not coherent.

A full comprehensive description of the algorithm is given appendix A.2. We just

give here a summary of the algorithm.

1. INITIALISATION :

• Generate Np couples (Vt1 , Ct1)
(l=1:Np), by sampling C

(l)
t1 from p(Ct1) and run-

ning LPJ-GUESS until equilibrium is reached with climate C
(l)
t1 to obtain

V
(l)
t1 ,
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• Compute for each particle (Vt1 , Ct1)
(l) the weight ω

(l)
t1 = p(Yt1|V

(l)
t1 ) using the

kernel smoothed surfaces,

• Compute each normalised weights ω̃
(l)
t1 = ω

(l)
t1 /Σ

Np

k=1 ω
(k)
t1

2. RESAMPLING

• Compute the criterion ESSt =

(
Σ
Np

l=1

(
ω̃

(l)
t

)2
)−1

• If ESSt < Np/2 randomly sample the particles by residual resampling and

set all weights ω̃
(l=1:Np)
t = 1/Np.

3. SAMPLING

• For current time tj immediately consecutive to ti,

• Sample Np particles (Vtj , Ctj )
(l=1:Np) by sampling C

(l)
tj from p(Ctj ) and run-

ning LPJ-GUESS starting from Vti , for tj to ti years with climate Ctj to

obtain V
(l)
tj ,

• Compute for each particle (Vtj , Ctj )
(l) the weights ω

(l)
tj = ω̃

(l)
ti .p(Ytj |V

(l)
tj ) using

the kernel smoothed surfaces,

• Compute each normalised weights ω̃
(l)
tj = ω

(l)
tj /Σ

Np

k=1 ω
(k)
tj

• If tj < tn, then set tj = tk (k=j+1) and go to the RESAMPLING step

else stop

2.3 Results

2.3.1 Validation using modern pollen samples

In this section our goal is to validate the statistical framework, and not the vegetation

model. Since the climate-pollen relationship may be locally biased at any given site,

due to local errors induced by pollen production changes, non-homogeneous transport,

different accumulation processes, etc, the method must be tested at a series of sites.
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We have therefore reconstructed modern climate at 30 sites randomly chosen from the

modern pollen dataset.

The validation at each site s = 1 : 30 was performed as follows:

• repeat for each particle l=1:1000

– sample C
(l)
s , one 6-dimensional climate parameter following the prior defined

in the next section,

– Spin-up LPJ-GUESS for 500 years with repeated 1901-1930 monthly climate

to which is added C
(l)
s using the 1901 value of CO2 atmospheric concentration

of 296.3 ppmv,

– simulate the 1901-2000 vegetation using 1901-2000 monthly climate to which

is added C
(l)
s under evolving CO2 atmospheric concentration as obtained from

the Carbon Cycle Model Linkage Project (McGuire et al., 2001).

– retain V
(l)
s , the mean of NPP over the years 1961-1990,

– weight the couple (C
(l)
s , V

(l)
s ) by ω

(l)
s = p(Ys|V (l)

s ).

Definition of climate prior

As each modern site represents a single point in time, priors were chosen based on

the CRU 1.2 (New et al., 2002) gridded set of climatological data for the European

continent. For each validation site s = 1 : 30, the climate prior

p(Cs) = p(Tjan, Tjul).p(Pwin).p(Pspr).p(Pwin).p(Paut)

= N

 0

0

 ,

 Vjan Cjan,jul

Cjan,jul Vjul

 .
(
Nt=0(0, σ2

Prec)
)4

is composed of a bivariate Gaussian distribution for Tjan and Tjul and 4 times the same

0-truncated independent Gaussian distribution for each precipitation parameter. Each

distribution is centred on 0, the null anomaly equal to expected climate. Variance and

covariance parameters of the bivariate Gaussian law are derived from the CRU TS 1.2
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(New et al., 2002) means for months January (Vjan = 6.62) and July (Vjul = 4.12). The

covariance (Cjan,jul = 18.67) or correlation (ρ = 0.69) represent the modern European

seasonal link between these two months. In doing so we allow temperature parameters

for each site to be distributed over the whole modern European temperature set. The

standard deviation for the precipitation parameter σ2
Prec was arbitrarily chosen as 35

(in %) giving a probability of 0.005 to exceed an 100% precipitation increase.

Validation Results

For each site s we obtain a set of 1000 tested climates (the particles) C
(l)
s associated

to weights ω
(l)
s . At each site, we summarise, the set of weighted climates by comput-

ing quantiles q0.025, q0.5 (median) and q0.975. For visual representation we smooth the

particles and obtain graphics showing the distribution of tested climates, for example

Figure 2.5 obtained for a Spanish site (41.39oN, 0.11oW). For the validation, however,

we are interested in the global result obtained for the whole set of 30 climate recon-

structions. Figure 2.6 presents the observed January and July temperatures versus

their reconstructions. Table 2.3 summarises the reconstruction results.

Expected q.5 Prior q.975 − q.025 Posterior q.5 Posterior q.975 − q.025

Tjan (oC) 0 25.9 0.85 16.8

Tjul (oC) 0 16.1 0.82 12.3

Pwin (%) 0 137 −1.6 148

Pspr (%) 0 137 −0.2 142

Psum (%) 0 137 0.7 143

Paut (%) 0 137 −2.6 138

Table 2.3: Means of the results obtained for 30 European points for the validation using

present-day pollen samples. Rows are the 6 reconstructed climate parameters. Columns

are: (1) the expected median (0.5 quantile), (2) the prior 0.95 bilateral interval width

(equal to 0.975 quantile minus 0.025 quantile), (3) the posterior median and (4) the

posterior 0.95 bilateral interval width.
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Figure 2.5: Prior (grey dashed lines) and posterior (black lines) smoothed distributions

of the 6 climate anomalies: (Tjan, Tjul, Pwin, Pspr, Psum, Paut). The “particles” of climate

proposed by the particle filter are the black dots. Black thin vertical lines show the

2.5%, median and 97.5% quantiles of each posterior distribution. This is an example

for a dry Mediterranean site from Spain (41.39oN, 0.11oW).

The mean discrepancies between posterior medians and expected values of the 6

reconstructed parameters are negligible by comparison with interval widths (see Table

2.3). All the confidence intervals of the reconstructed temperatures contain the ob-

served values (see Figure 2.6). Thus, the method seems to be unbiased, at least at the

continental level. Further, the temperature posteriors distributions are narrower than

priors (see Table 2.3 and Figure 2.6). In other words, the inversion process is able to

constrain both temperature variables from the specified prior.

Precipitation posteriors are not narrower than their priors. This shows that the in-

version process is unable to constrain four precipitation variables (at a time) further

than what has been specified as prior. That the vegetation model does not show a

precipitation constraint is surprising. It may be assumed that in a non water-stressed

region such as a European temperate forest an increase or a moderate decrease in pre-
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Figure 2.6: Observed values versus reconstructed (posterior) means and 95% confidence

intervals for January and July temperatures in Celsius degrees for the 30 validation sites.

The grey dashed lines represent the prior mean and quantiles. Note that prior mean

is the expected (equal to observed) value. The black lines give the posterior interval

range and the point is the reconstructed mean. (left) January temperature and (right)

July temperature.

cipitation would not change vegetation composition dramatically. However, in a highly

water-stressed region, such as the Mediterranean dry region, water availability is one of

the main vegetation drivers. We have therefore further investigated the reasons for this

lack of constraint and found that it is due to a combination of the vegetation model

and the prior chosen for precipitation.

Vegetation model : We performed a sensitivity analysis using the inversion algorithm.

A second validation was performed at 20 modern Mediterranean dry points. These

points were randomly selected from the set of points below latitude 42oN with less than

600mm of rain per year, and with less than 70% of tree taxa pollen in their samples.

For each climate proposed by the algorithm, C
(l)
s , we computed at a Drought Stress In-

dicator (DSI), R
(l)
s based on quantities calculated by the vegetation model. This DSI is

defined as the ratio between annual mean actual evapotranspiration (AET) and annual

mean potential evapotranspiration (PET, e.g. Sykes et al., 1996). We found that, for
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a varying climate C
(l)
s , the DSI varies in [0.10; 0.50] which corresponds to a xerophytic

vegetation (Prentice et al., 1992). Thus, the vegetation simulated for these dry sites

agrees with pollen data. This indicates two things. First, the link vegetation/pollen

p(Y |V ) performs well since we obtain a coherent match between simulated vegetation

and sampled pollen. Second, the vegetation model seems to underestimate DSI varia-

tion as a function of precipitation change since the most humid C
(l)
s (proposed climates)

should result in higher DSI than 0.5 and non-xerophytic vegetation.

The priors for precipitation: When specifying independent priors for the precipita-

tion per season we implicitly specify a small relative range for the annual precipitation.

This is due to compensation between seasons. In other words, to sample extreme annual

precipitation it is necessary to sample extreme precipitation for the majority of seasons,

which has a very small probability of occurring. A simple way to scan a large range for

annual precipitation is to define a single annual precipitation parameter, but this would

fix seasonality. For the Meerfelder Maar reconstruction we chose to let seasonality vary

by using four precipitation parameters.

2.3.2 Temporal model inversion on the Meerfelder Maar pollen

sediment core

Prior definition

In an application to samples from a sediment core, the climate priors have to be elicited

(obtained from expert’s knowledge) or obtained using other data than those used for re-

construction. For example one can use the Modern Analogue Method (MAT, Guiot and

De Vernal, 2007) and data for other sites obtained from the European Pollen Database

(EPD, http://www.europeanpollendatabase.net) to build a prior distribution of cli-

mate for the studied European site during the Holocene. For Meerfelder Maar, since our

goal is to present the method, we used an empirical prior based on MAT reconstruction

of the climate using the same core. This allows us to assess how much the inversion
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approach modifies the standard MAT estimates.

We applied the MAT with the Meerfelder Maar sediment core to reconstruct the six

climate anomalies (Tjan, Tjul, Pwin, Pspr, Psum, Paut). For the analogue dataset, we used

the modern pollen data and climate described above. We used the classic chord distance

between pollen samples. Following Guiot and De Vernal (2007) we computed by cross

validation a discriminant distance for the analogue selection and we selected a maximum

number of 7 analogues if this distance is not reached. We used the means reconstructed

by MAT as prior means. We used the same temperature standard deviations as in

the modern validation exercise (sd(Tjan) = 6.6 and sd(Tjul) = 4.1). The correlation

between them was reduced (to 0.5), however, to relax the constraint on temperature

seasonality during the Holocene. Standard deviation of the precipitation is 35 (in %).

Reconstruction results

For atmospheric CO2 input, we used a composite record composed of the ice core record

from Indermuhle et al. (1999) for the period 11 cal ky BP to cal 990 cal yr BP and the

one from Siegenthaler et al. (2005) for the period 990 to 0 cal yr BP.

Posterior reconstructions of January and July temperatures and annual precipitation

are presented Figure 2.7. The main events appearing in the pollen diagram (Figure 2.2),

compared to the climate reconstruction in Figure 2.7 are:

• from about 10.6 cal ky BP, Betula and Pinus are replaced first by Corylus: this

is the major event of the sequence indicating a warming of more than 10oC in

winter and 5oC in summer and a precipitation increase of more than 500 mm/yr.

• After 10 cal ky BP, first Ulmus and Quercus deciduous, second Tilia and finally

Fraxinus appear according to the classical succession in Europe; this does not

translate any significant change in our climate reconstruction.

• Just before 6 cal ky BP, Alnus becomes dominant over Fraxinus, Ulmus and Tilia:

this seems to indicate a slight increase of temperature (a few deegres Celsius) and

of precipitation (100-200 mm/yr).
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Figure 2.7: Climate reconstruction for Meerfelder Maar sequence during the Holocene

using prior based on MAT estimations. Prior (blue lines): mean and 95% confidence

interval. Posterior (red lines) mean (highlighted with black) and 95% confidence inter-

val. The background colour (yellow to red) shows the posterior smoothed (low to high)

density. For the three plots, x -axis shows the age in cal yr BP, y-axis shows: (top)

January reconstructed temperature in oC, (center) July reconstructed temperature in

oC and (bottom) annual reconstructed precipitation in mm/yr. Values recorded for the

period 1961-1990 at the nearest meteorological station show a January mean temper-

ature of −0.3oC and 16.3oC for July. Mean annual precipitation is 908 mm/yr (Litt

et al., 2009).
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• The second major event is at about 3.5 cal ky BP, Corylus is replaced by Fagus and

secondly by Betula; this seems to indicate a slight decrease of January temperature

(a few deegres Celsius) and an important precipitation decrease of about 300

mm/yr.

• At about 2.5 cal ky BP, grass and shrub group (GrSh) becomes important and is

dominant after 1 cal ky BP. The anthropogenic deforestation should be translated

by a reconstructed increase of drought, but there is nothing of such here. This

seems to indicate that the method is robust against human disturbance.

This comparison of both figures show that the climate variations, as reconstructed

by model inversion, are coherent with the pollen curves and seems to be robust against

anthropogenic disturbance. This is a major argument in favor of these results.

The confidence intervals of January and July reconstructed temperatures have widths

ranging from 10 to 20oC. This is coherent with, in the Gaussian case, a standard

deviation of 2.5 to 5oC. These large posterior intervals are partly due to the large prior

intervals. We have chosen to show means and quantiles here, but since the posterior

is highly non-Gaussian the median or mode(s) of the posterior distribution may be

preferred. A discussion of the results obtained follows:

In the earliest part of the sequence, 11 to 10.5 cal ky BP, corresponding to the tran-

sition to the Holocene period, there is a good agreement between our reconstructions

and the MAT estimations.

During the period 10.5 to 7.5 the Tjan reconstruction shows two sets of possible val-

ues (high probability in dark red). In the first set, temperatures of around 10oC are

reconstructed, which is higher than the MAT means. In the second set, the tempera-

tures are lower at around −2oC. We note that these sets are non-continuous; the most

probable climate jumps between paths. This results from the lack of an explicit climate

link between samples in our statistical model.

At 7.5 cal ky BP the Tjan confidence interval becomes tighter. This is likely to be an
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artifact resulting from the spike in Corylus pollen at this date. This causes a distortion

in the diagram and therefore in the model as it tries to reproduce this abrupt peak.

The period 6.3 to 3.7 cal ky BP is a stable period in the pollen diagram, however,

both January and July reconstructed temperatures show high frequency variability.

This is again due to the absence of climate correlation in our model and may be further

associated to an overfitting of the p(Y |V ) distribution. This would cause the vegetation

model to reproduce non-significant changes in pollen samples, and give these a climatic

interpretation. As there is no constraint in climate change through time, we cannot

limit the reconstructed climate by reference to the value obtained for the previous

sample. This results in non-significant fluctuations in the reconstruction.

The last 3.7 to 0 cal ky BP period is characterised by more marked changes in

pollen composition. Here, however, the high variability in the reconstruction disappears,

mean variability is more coherent in time and varies around the MAT estimates. This

suggests that the changes in pollen composition during this period are sufficiently large

to adequately constrain the reconstructed climate in adjacent samples, and result in a

smoother curve.

The prior and posterior distributions of annual precipitations are similar except for

a short period around 8 cal ky BP. This is unsurprising, as the validation exercise

indicated that there is little or no constraint on precipitation. However, as Litt et al.

(2009) found a quite different pattern for precipitation with a value close to 600 mm/yr

at the top of the core instead of our value of around 1000 mm/yr, we devised a second

test to check the precipitation constraint. Note that precipitation values recorded for

the period 1961-1990 at the nearest meteorological station (approximately 30km from

Meerfelder Maar) show a mean annual precipitation of 908 mm/yr (Litt et al., 2009). We

specified annual precipitation priors following a linear relationship between 500mm/yr

at 11cal ky BP and 600mm/yr at 0 cal ky BP, with precipitation split amongst seasons

following the modern seasonal distribution. The posterior January temperature and

annual precipitation reconstruction obtained with this second test are shown in Figure

2.8.
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For the period 0 to 3 cal ky BP, reconstructed temperature (Figure 2.8 top) is in good

agreement with the first test (Figure 2.7 top) and prior and posterior precipitation are

nearly the same. This implies that precipitation is not a constraining parameter for this

period. For earlier periods January reconstructions for different experiments differ and

prior and posterior precipitation for this second experiment differ too. This indicates

that precipitation may have been somewhat higher than the values reconstructed by

Litt et al. using the Bayesian Indicator Taxa method (Neumann et al., 2007) which

is a Bayesian tuning of the Probability Density Function (pdf) method of Kühl et al.

(2002).
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Figure 2.8: Climate reconstruction for Meerfelder Maar sequence during the Holocene

using forced precipitation. Prior (blue lines): mean and 95% bilateral interval. Posterior

(red lines) mean (highlighted with black) and 95% bilateral interval. The background

colour (yellow to red) shows the posterior smoothed (low to high) density. For both

plots, x -axis shows the age in cal yr BP, y-axis shows: (top) January reconstructed

temperature in oC and (bottom) annual reconstructed precipitation in mm/yr.
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2.4 Conclusion and discussion

Climate reconstruction by static inversion initiated by Guiot et al. (2000) is now used

to take CO2 variations into account (e.g. Wu et al., 2007a) and provides a method

to reconstruct climate using different proxies (e.g. Hatté et al., 2009). The climate

reconstruction by dynamic inversion retains these advantages and integrates a new

generation of vegetation models. It is achieved using a Bayesian hierarchical model

which sets the basis for causative modelling. We hope that this will encourage other

work to use and extend this framework, and that the technical tools (statistical model

and algorithm) presented in this article will help.

The use of a dynamic vegetation model has allowed an improvement of the “veg-

etation model inversion method” by including a temporal link. This allows a better

exploitation of the information available from the fossil record. Further, the dynamic

aspect of the model allows us to relax the assumption of equilibrium between vegetation

and climate. In this paper, we focused on climate, but other variables are available as

output of the vegetation model, e.g. primary production and carbon storage. These

are useful for carbon cycle studies (see Wu et al., 2009) or could be used for paleo-fire

modelling and more generally, studies of the past needing vegetation as input. The

current study has, however, identified a number of problems listed below, and future

work will concentrate on resolving these.

The validation tests showed that precipitation cannot be reconstructed as a four

dimensional space. This seems to be partly due to the low sensitivity of the vegetation

model to precipitation changes, and a sensitivity study is required. Until this problem

has been addressed, we suggest that future use of this algorithm should use a single

annual precipitation anomaly.

The results obtained using this method with the Meerfelder Maar sequence showed

that the stability of the reconstructed values are linked to the pollen signal. When

the pollen signal is nearly constant our reconstruction method over-amplifies small
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variations in the pollen signal. When the pollen indicates two possible climates, the

reconstruction may jump between two states, forming a non-continuous path of re-

constructed values. However, when the changes occur in the pollen assemblages, the

reconstructed variability is more coherent (low-frequency), for example during the pe-

riod 3.7 to 0 cal ky BP. These differences are probably due to, (a) an over-fitting of the

p(Y |V ) surfaces which force the vegetation model to follow the non-significant noise

in pollen as if it were caused by climate change; (b) the absence of any direct time

correlation in climate, which would result in a smoother reconstructed climate; (c) the

use of a particle filter algorithm.

The p(Y |V ) model : We modelled the link between simulated vegetation and pollen

using non-parametric surfaces. These surfaces are fitted using modern pollen and sim-

ulated vegetation. They poorly include the uncertainty we have on the link between

vegetation and pollen. The inclusion of this uncertainty would summarise and transfer

the incomplete knowledge of the link between vegetation and pollen, from the calibra-

tion to the reconstruction. This is a major departure from Bayesian modelling, and

the next goal to improve the inversion method lies in using a parametric p(Y |V ) which

allows the full propagation of uncertainty between calibration and reconstruction. The

Bayesian framework for calibration and reconstruction in two separated steps has been

presented in Haslett et al. (2006).

Temporal correlation in the climate: In opposition to the MAT reconstructions,

which need to assume independence between samples, we model a vegetation link and

obtain reconstructions that seem to be “noiser”. As there is a dependency between

samples, the vegetation model may require a larger climate change to fit both points

than in the independent scheme. For the inversion of a dynamic model, it therefore

seems essential to define a temporal climate correlation to counterbalance the effect

of vegetation correlation, at least, when the resolution of the core is high. When the

resolution of the core is low, correlation of the vegetation between samples is low and

the reconstruction is nearly independent. However, the particle filter proposed here

remains computationally more efficient and theoretically safer when using a dynamic

vegetation model. Indeed, for a the static (or “at equilibrium”) inversion of a dynamic
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model, the experimenter has to run the model from nothing to the equilibrium (be-

tween vegetation and climate). This is called the burn-in phase and the diagnosis of

convergence to equilibrium is always critical. With our method he can start from the

vegetation reconstructed for the previous core point and has a fixed length of time to

run the algorithm for: the time separating the two core points.

Filtering algorithm: The simple particle filter algorithm infers climate sequentially

along the sedimentary sequence. However, it only optimises for coherence between the

previous sample and the current one, and does not take into account the following

sample. This feature can result in a chaotic path around the real climate. While some

more complex algorithms attempt to minimise this problem, this remains an intrin-

sic problem of particle filtering, despite recent advances in the field (see for exemple

http://www-sigproc.eng.cam.ac.uk/smc/).

The use of the filtering algorithm arises from the need to reduce the dimension of the

climate space (equal to the number of samples times the number of climate variables).

Since we cannot use another algorithm for the dynamic inversion, this is potentially

an obstacle for: a. taking into account radiocarbon and other age errors and, b. the

inference of any parameter that is dependent on the whole core. As the particle filter

needs fixed stopping times (here the dates of the samples in the core) to simulate and

weight particles, major changes and theoretical work would be required to integrate a

possible error on this stopping time. Second, since the filter handles data sequentially,

any parameter dependent on the whole core can only be estimated at the end of filtering.

For example, this is a problem when considering a parameter θ of temporal correlation

for the climate. At time t2, the second point of the core, the algorithm has only the

prior information to link t1 and t2 samples. The information about θ is updated along

the core. This means that the reconstruction quality varies between points of the same

core.

Despite the limits mentioned, the particle filter algorithm remains a promising tool

for inversion of dynamic models or interpolation using such dynamic models. While

work is required to further adapt this method, we believe that it will be a useful tool
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in the field of climatology, in which a number of dynamic models are currently used or

have been proposed.
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Chapter 3

A Multinomial Poisson model for

spatial data with structural zeros:

European-scale linkage of

simulated vegetation and pollen

data for palaeoclimatology

This chapter is submitted to Environmetrics as the following research paper

Garreta, V., Guiot, J., Mortier, F., Chadœuf, J., and Hély, C., (submitted) A Multinomial Poisson model for spatial

data with structural zeros: European scale linkage of simulated vegetation and pollen data for the palaeoclimatology
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velopment of the Multinomial-Poisson model. I wrote the chapter.
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Abstract Palaeoclimate reconstructions are usually based on statistical relationships

linking sediment pollen assemblages and climate. These statistical models are calibrated

using a modern, typically massive and spatial, dataset. Replacing these statistical

models by mechanistic vegetation models improves past climate prediction but needs

the coupling of the vegetation model outputs and pollen data. We propose here a

(statistical) process-based model for such a coupling, which takes into account the

pollen spatial dependencies.

We consider two major difficulties. First, the multinomial pollen data present an

overdispersion and structural zeros, which require modelling. Second, the model has to

allow its inference on a massive dataset since it must fit for a large climate range.

In the hierarchical model framework, we develop a Bayesian model based on the

four main processes: pollen production, spatial dispersion, accumulation and sampling.

Accumulation and sampling processes are modelled using a Multinomial-Poisson model

that allows for overdispersion and structural zeros (null multinomial probabilities).

The dispersion is modelled using a Gaussian kernel, and the vegetation model errors

are described using a mixture model.

We demonstrate that MP parameters are identifiable and apply this result for the

inference of several simulated datasets. We finally perform inference on the European

pollen dataset, which is made possible by the parallelisation of the Monte Carlo Markov

Chain algorithm.

We build three diagnostics to investigate the adequacy of the hierarchical model

at its various levels. These diagnostics detect that the MP model is not sufficient

to represent all the multinomial overdispersion present in the European dataset. We

therefore discuss in the conclusion several ways to model such overdispersion and our

preferred one is to over-disperse the Poisson distribution using a Negative Binomial

distribution.
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3.1 Introduction

Pollen-based palaeoclimate reconstructions are obtained using a statistical model of the

relationship between pollen assemblages sampled in sediment cores and climate (e.g.

the pioneering work of Webb and Bryson (1972) and Brewer et al. (2007); Guiot and

De Vernal (2007) for a recent review of the methods). These statistical models are

called Transfer Function (TF). The reconstruction process is twofold. The calibration

step consists in fitting the TF to a modern dataset that is typically massive (over 1000

samples) and spatially distributed (over Europe in our case). This is imposed by the

need to infer a robust link between climate and pollen over a large climate range, at

least as large as expected for past variations. The reconstruction step consists in the

inversion or prediction of the climate based on ancient pollen, depending on whether

the TF is direct - pollen = f(climate, ε) - or backward - climate = f(pollen, ε) - with ε

an error term.

Guiot et al. (2000) introduced the idea of embedding a mechanistic vegetation model

into the direct form of the TF. They called their prediction method ‘inversion of the

vegetation model’ because it imposes the inversion of the model’s computer code for

climate reconstruction. This class of TF provides a new picture of past climate and

vegetation compared to the purely statistical TF by integrating the higher level of

complexity of vegetation modelling. It also includes additional environmental variables

such as CO2 atmospheric concentration, which may result in large deviations compared

to classical TF reconstructions (Wu et al., 2007a). But until now, its - potentially

- major advantage remains not exploited. Indeed, this new class of TF offers the

opportunity to develop a full process-based modelling of the link between climate and

pollen. Such modelling, in addition to being causative, better understandable and

controllable, could resolve the ‘no-analogue’ problem that is the lack of reconstruction

power of the classic TF outside the modern climate range. It is an extrapolation problem

inherent to TF that are not process-based and thus, not reliable outside the (modern)

climate range used for calibration.

Our objective is to develop a new TF linking the vegetation model LPJ-GUESS
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(Smith et al., 2001) and the modern pollen dataset over Europe. Its building raises two

major challenges. First, we have to consider the modelling of multinomial overdisper-

sion in the context of many zeros. Indeed, the pollen counts that are naturally modelled

using the multinomial distribution (Haslett et al., 2006) are over-dispersed (i.e. with a

variance larger than the one of the multinomial distribution) and contain ‘structural’

zeros in the sense that the probabilities controlling the multinomial, for a certain com-

ponent, can be exactly zero. These zeros are due to the true absence of the taxa in

the sampled region or result from a process (e.g. accumulation) generating them. The

second challenge consists in building a model with a sufficient complexity to represent

the processes linking vegetation and pollen but whose inference remains feasible.

We propose a Multinomial-Poisson (MP) model to represent the multinomial overdis-

persion. In this model, we define the probabilities of the multinomial distribution as

normalised sampling from k Poisson variables, one per multinomial component. This

original model is a discrete version (for the variable generating the multinomial proba-

bilities) of the well-known Multinomial-Dirichlet model (MD, e.g. Leonard, 1977). The

use of the discrete Poisson distribution allows structural zeros in the sense that multi-

nomial probabilities can be null. It has the same number of parameters as the MD

model (one per component of the composition). We demonstrate that k−1 parameters

are related to the expectation of the multinomial probabilities and the kth controls the

variance of the proportions, i.e. the overdispersion of the multinomial.

To answer the first challenge, we propose a hierarchical model whose levels are the

main (natural) processes linking the vegetation model outputs and pollen data. These

processes include the anthropogenic disturbance of the vegetation simulated by LPJ-

GUESS, pollen production, dispersion, accumulation and sampling. The MP model

presented above emerges from the modelling of the two later processes (sampling given

accumulated pollen). The spatial feature is induced by the modelling of pollen dispersal.

The dimension of the proposed hierarchical model is high. If we note k the number

of taxa (the components of the multinomial, k = 15 for our European dataset) and n,

the number of sites (n = 1301 for Europe), our model contains 5 ∗ k parameters and
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2 ∗ k latent fields sampled at n sites. We work under the Bayesian paradigm and use

a Monte Carlo Markov Chain (MCMC, e.g. Robert and Casella, 1999) algorithm for

inference. The inference is made possible thanks to our model’s structure that allows

to parallelise at each step the Metropolis-within-Gibbs algorithm we implemented.

A necessary step of this applied work is to check the model adequacy, i.e. to in-

vestigate the a posteriori consistency between the model structure and (hidden) data

structure. The hierarchical Bayesian model is defined by three levels and its inference

is so computationally demanding that it is performed once and for all. Therefore, we

have to use methods based on the posterior simulations such as the posterior predictive

p-value (Gelman et al., 1996). Since these methods are known to be imperfect (i.e.

conservative) we combine three of them to investigate the adequacy of each level.

In section 3.2 we present the different levels of the hierarchical model and we consider

the identifiability of the Multinomial-Poisson model parameters (demonstration in the

appendix B). In section 3.3 we explain the parallelisation of the MCMC algorithm and

develop three diagnostics for the model adequacy testing. Inference tests with simulated

datasets are presented in section 3.4.1 and model adequacy is tested. The complete

European dataset is inferred in section 3.4.2 and model’s adequacy is discussed. We end

the paper by a discussion around the Multinomial-Poisson modelling and perspectives

for this model in palaeoclimatology.

3.2 Process-based model

We build a hierarchical Bayesian model representing the main processes linking LPJ-

GUESS simulated vegetation and pollen data sampled over Europe. Each of these

processes is modelled as a hidden level and their succession is causative: starting from

the simulated vegetation → actual vegetation → produced and dispersed pollen →
accumulated pollen → sampled pollen. In the description of the levels’ distribution we

will explicitly note the underlying hypothesis. The later two processes (accumulation

and dispersal) are naturally modelled following a Multinomial-Poisson model whose
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moments of the proportions p are calculated in the appendix B.

We note Yi = (Y 1
i , .., Y

k
i ) a multinomial vector of the pollen assemblage sampled at

site i = 1..n. Y j
i is the number of pollen grain of the taxa j at site i. The vegetation data,

simulated at the same sites that pollen samples, are noted as NPPi=(NPP1
i ,..,NPPk

i ).

NPPj
i is the (absolute) net primary production simulated by LPJ-GUESS at site i for

the taxa j.

3.2.1 From potential to actual vegetation: mixture model

The vegetation simulated using LPJ-GUESS is potential vegetation. This means that

it is controlled by climate, soil properties, CO2 and not disturbed by human activities.

Thus, the modern vegetation composition is expected to be a noisy image of the sim-

ulated NPP. We model this modern vegetation that products pollen, Vi = (V 1
i , .., V

k
i ),

termed ‘actual’ vegetation, as a hidden variable with conditional distribution:

[
V j
i |NPPj

i , σ
j,mj, qj

]
=


[
V j
i |NPPj

i > 0
]

= G
(

(NPPj
i )2

σj ,
NPPj

i

σj

)
[
V j
i |NPPj

i = 0
]

= qjδ0 + (1− qj)G
(

(mj)2

σj , m
j

σj

)
where δ0 is the Dirac mass at 0 and G(s, r) the gamma distribution with shape and rate

parameters s and r. This modelling of the anthropogenic disturbance is interpreted as

follows: when the taxa j is simulated at site i (NPPj
i > 0), the vegetation is distributed

following a gamma distribution (showing no probability mass at 0) centred on the

simulated value NPPj
i with variance σj. In doing so, we assume that, if potentially

present, a species cannot be eradicated totally by mankind. It is, at least, present in

a very small proportion around the considered site i. When not potentially present

at site i (NPPj
i = 0), the actual vegetation taxa V j

i has a probability qj (∈ [0, 1]) of

being absent. If present regardless of NPPj
i = 0 (e.g. because mankind planted it) it is

distributed following a gamma distribution centred on mj and with variance σj. The

overall mean and variance of
[
V j
i |NPPj

i = 0
]

are (1− qj)mj and (1− qj)(σj + qjmj).

This representation of the anthropogenic pressure on the vegetation over Europe is

based on the hypothesis of stationarity over the spatial domain. In studies involving
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spatial descriptors of the anthropogenic disturbance such descriptors could be used as

regressors for the q, m and σ parameters.

3.2.2 Linear production and Gaussian dispersion of the pollen

Each species j produces an absolute quantity of pollen linearly related to its abundance,

here expressed as NPP. This assumption is commonly accepted in palaeo-ecology (e.g.

Sugita, 2007a) and basically lies on the following approximation: twice more trees

produce twice more pollen. We model the absolute quantity of pollen produced at site

i by species j

bj.V j
i

The pollen produced by each species is dispersed following a Gaussian kernel whose

dispersal length parameter depends on the species. For each spatial location i, the

pollen brought by dispersal is

bjSji = bj
n∑
l=1

αj (d(i, l))V j
l

equal to the convolution of the Gaussian kernel αj(.) centred on i. The kernel is αj(x) ∝
1
γj exp

(
− x2

2(γj)2

)
. The distance d(x, y) =

√
(x− y)2 is Euclidian and γj (j = 1..k) are

the dispersal distance parameters.

This representation of the production and dispersion processes is based on the hy-

pothesis of stationarity of these processes over the spatial domain. In other studies, the

production parameters b and kernels α(.) could vary spatially, i.e. become some b(s)

random fields and k(., s) kernels as, for example, in Higdon (1998).

3.2.3 Accumulation and sampling of the pollen: Poisson-Multinomial

model

The pollen accumulation in natural traps (mosses, lakes, peat bogs) results from many

different processes (anisotropy of the local dispersal function, heterogeneity of the trap
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capture, differential concentration of the incoming fluxes, etc). Information about the

trap is often lacking or loose (e.g. the size of the lake in the past, the strength of past

wind fields). We chose to model accumulation process globally, as a random Poisson

distribution, instead of modelling its too numerous and complex underlying processes.

The pollen Xj
i of the species j accumulated at the site i is

[Xj
i |bj, S

j
i ] = P(bjSji )

where P is the Poisson distribution. Note that when the pollen is theoretically absent

(Sji = 0) the Poisson distribution degenerates into a Dirac mass at 0. Thus, no pollen

can appear during the accumulation process if it was not brought by dispersion.

The sediment accumulated in the trap is sampled; pollen taxa are recognised and

counted. Typically, palynologists count a number Ni of pollen grains depending on

various criteria such as sample quality and diversity. We model the sampling process

(including also recognising and counting) following the multinomial distribution

[Yi|Xi, Ni] =M(pi, Ni)

where pi = (p1
i , .., p

k
i ) with pji = Xj

i /Σm=1..kX
m
i is the in situ proportion of pollen j

accumulated in the trap located at i. The use of the multinomial distribution is classical

in palynology and neglects the error coming from recognising and counting (used e.g.

in Prentice and Parsons (1983) it has been recently discussed in Haslett et al. (2006)).

This way of modelling palynological overdispersion with respect to the multinomial

distribution and in the presence of structural zeros (null pji ) is original and parsimonious.

This model is based on the structure of the Multinomial-Dirichlet (MD) model and

uses a discrete Poisson distribution to account for zeros in the proportions pj (due to

Xj = 0). The MD model is usually generated as follows:

• simulate k independent Xj ∼ G(shape = βj, rate = 1)

• compute the proportions p with pj = Xj/Σm=1..kX
m
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• given p and N , generate Y following [Y |p,N ] =M(p,N)

In the MD model, the probability for pj = 0 is null since the gamma distribution is

continuous. Bayesians use the conjugacy between the Dirichlet distribution (defined by

the ratio of the gamma random variables) and the multinomial distribution to sample

from the posterior of the βj parameters. Results about the moments of the Dirichlet

distribution prove that the βj parameters are identifiable and can be interpreted in

terms of mean and variance of the Dirichlet distribution. For our model, involving ratio

of Poisson distributions, we calculate the mean and variance of the ratios. These results

show that the model is identifiable and allow the interpretation of the parameters bj.

Main results are presented in the following section and the complete demonstration is

given in the appendix B.

Identifiability of the Multinomial-Poisson model

The identifiability of the k bj parameters is not trivial due to the normalisation. For

any site i the pollen accumulated, Xi, is distributed following Poisson distributions

centred on the k-dimensional mean vector (b1S1
i , .., b

kSki ). Sji are the spatial regressors

and bj some species specific parameters. The normalisation of the Xj
i forms the k

proportions pji . The k proportions define a k − 1 dimensional space due to their sum

to one constraint and they are matched to the pollen data throughout the multinomial

likelihood. Therefore, a priori, the k − 1 dimensional space for the proportions cannot

constrain the k bj parameters. This is demonstrated by calculating the pj expectation

(see appendix B)

E[pji |Σj=1..kX
j
i > 0] =

Sji .b
j

Σj=1..k bjS
j
i

which is centred on the same value for any vector ξ ∗ (b1, .., bk) with a real ξ > 0.

We show that the kth parameter is related to the variance of the proportions. Let us

leave the site subscript i and note aj = Sj.bj/Σj=1..k b
jSj and K = Σj=1..k b

jSj. Thus

the aj’s are k−1 parameters (due to the sum to one constraint) that are indentifiable by
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the mean of the proportion data and K is the overall sum parameter. We demonstrate

in the appendix B that for a not too little K, say K ≥ 10 then

Var
[
pj|Σj=1..kX

j > 0
]
≈ aj(1− aj)

K

This result implies that the parameter K is identifiable by the variance of the pro-

portion data. It is the parameter, in the Multinomial-Poisson model, which accounts

for overdispersion. When this parameter is very large the overdispersion disappears. In

the Bayesian framework for inference, one can restrict the prior for K to a maximum

value corresponding to a numerically insignificant overdispersion to allow convergence

of the MCMC chain in the absence of overdispersion.

3.2.4 Priors

We list here the priors selected to complete the Bayesian model.

• The parameters of pollen production per species (bj) are independent gamma

distributions.

[bj] = G(10−3, 10−3)

Because no prior arises intuitively from the problem at hand, we chose the gamma

distribution, which is conjugated to the Poisson distribution and allows use a step of

Gibbs sampling for the MCMC algorithm. The gamma parameters are selected to form

a weakly informative prior.

• The parameters γj of dispersal distance are difficult to estimate. Indeed, no con-

jugacy property exist and for every new proposed value γj∗ it is necessary to compute

the (pollen dispersal) kernel for every site, which is prohibitive with respect to comput-

ing time and memory size. Based on Diggle et al. (2003) in geostatistics, we propose

to pre-compute L different kernels associated to L values g1, .., gL of the dispersal dis-

tance. The inference algorithm consists in scanning this discretised space. The prior
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underlying this method is a discrete uniform prior over the g1, .., gL pre-specified values.

[γj] = ΣL
l=1 δγj=gl

/L

These values are chosen so that the grid fully covers the prior range of γ. Moreover the

distance between consecutive gl values must not be too large since it results in poor

approximation of the posterior density due to its coarse discretisation and poor mixing

of the MCMC chain. Indeed, large distances between consecutive gl make very differ-

ent the consecutive kernels, which lead to high rejection during the Metropolis step. In

practice we use a grid covering the range of possibilities for γ with a uniform grid lag

determined by the number of kernel matrices that can be computed using a reasonable

amount of memory size.

• The mixture parameters qj for the actual vegetation are assumed to be independent

and uniformly distributed over [0.5, 1].

[qj] = U(0.5, 1)

The lower bound for this distribution is based on the assumption that, over the large

area considered (Europe), using a vegetation model allows to better predict the absence

of the vegetation than a pure random experiment which has a probability of 0.5 to be

right.

• Finally, scale and shape parameters mj and σj for each species are independent

and follow Gaussian distributions trucated to be strictly positive.

[mj] = N (hj1, h
j
1/2) truncated to (0; +∞)

The parameter mj is the mean of the actual vegetation taxa j when it is present but has

not been simulated by the model. The vegetation absolute quantity in this situation

(presence regardless of the potential absence) is hard to assess because this means that

mankind facilitates or directly helps the establishment and growth of the taxa. hj1 is

set equal to the mean of the simulated NPPj over Europe when present (NPPj > 0).

[σj] = N (hj2, h
j
2/2) truncated to (0; +∞)
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hj2 is set equal to the variance of the simulated NPPj over Europe when present (NPPj >

0).

3.3 Inference and model checking

3.3.1 Inference method using computer parallelism

The hierarchical Bayesian model described in the preceding section contains two sets

of k = 15 latent fields (V j and Xj with j = 1..k) and five sets of k latent variables

(qj, mj, σj, bj and γj with j = 1..k) to be inferred. We use a Metropolis-within-

Gibbs algorithm (e.g. Robert and Casella, 1999) to sample from the posterior of each

single parameter and each point of the latent fields (1301 points by field). This means

that we sample, in turn, new values of the parameters and points following their full

conditional distributions. Computing time is critical because the number of variables

inferred is large and the spatial feature of the model requires computation of many

matrix-vector products. More than 99% of computing time is devoted to sampling from

the full-conditional distribution of points from the V j fields. Indeed the full conditional

distribution of a V j
i point is

[V j
i |...] ∝

(
N∏
k=1

[Xj
k|b

jSjk]

)
[V j
i |NPPj

i , q
j,mj, σj]

which is time demanding to compute since Sjk is a convolution of the whole field V j. By

remarking that the full-conditional distributions of the field j’s points only depend on

the field j (and related variables), we can parallelise the algorithm over the fields, i.e.

simulate independently each field. In addition to the parallelism, the variables V j
i can

be sampled in blocks V j
k1
, ..., V j

kn
to reduce the number of convolutions needed to sample

all the field j. But, contrary to parallelism, this speed increase is counterbalanced by

a potentially slower convergence of the algorithm: the rejection in the Metropolis step

increases with the blocks’ size.
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The inference algorithm is coded using C language. Parallelisation of the C code

on one single (multi-core) shared-memory computer is obtained adding a few lines of

OpenMP language (http://openmp.org). The only difficulty when parallelising the

code is the need for a parallel and efficient random number generator. We use the

combined multiple recursive random number generators from L’Ecuyer (1999) whose

‘RNGstreams’ C code is freely available (http://www.iro.umontreal.ca/∼lecuyer/).

The reported computation times are obtained using 7 processors of a 64bit computer

composed of two quad-cores at 2GHz.

3.3.2 Bayesian checking of a huge hierarchical model

We want to check the consistency between model structure and (hidden) data structure,

often referred to as ‘goodness of fit’ or ‘model adequacy’ testing. More specifically,

such tests are expected to detect cases where there is more dispersion in the data

than specified by the model and incoherence between model and data’s distributions.

Since the model is hierarchical (with two hidden levels) and contains a non-Gaussian

structure, there is no well-defined way to test or at least measure its adequacy. We

define a Bayesian model ‘checking’ (in the spirit of Gelman et al., 1996; Stern and

Cressie, 2000; Marshall and Spiegelhalter, 2003) by a series of diagnostics to check

whether or not the model’s parametrical structure fit the data in its various levels.

For that purpose, three diagnostics are presented to check the different levels of the

hierarchical model. These diagnostics are based on two main ideas: first, the com-

parison between discrepancies (test statistics depending on the model’s parameters,

Gelman et al., 1996) obtained from the posterior simulations versus those obtained

from reference simulations defined by the model structure. Second, since the whole

hierarchical model inference cannot be re-run for a cross-validation exercise we use the

concept of mixed replications (Marshall and Spiegelhalter, 2003, 2007), which theoret-

ically improves the power of the diagnostics in detecting inadequacies. The approach

and the three different measures of discrepancies are presented in the following sections.
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Likelihood level check: Posterior predictive p-value

The idea behind this method comes from Guttman (1967). It has been formalised by

Rubin (1984) and is deeply discussed in Gelman et al. (1996).

At the end of the inference we have a set of M posterior simulations (Xpost,m, V post,m,

bpost,m, γpost,m, σpost,m, mpost,m, qpost,m) with m = 1..M following

[X, V, b, γ, σ,m, q|Y ] ∝ [Y |X] [X|b, γ, V ] [V |σ,m, q]

From the posterior simulations Xpost,m (m = 1..M) a set of corresponding ‘replicate’

data Y rep can be simulated following the multinomial model

Y rep,m ∼ [Y |Xpost,m]

The posterior predictive p-value diagnostic consists in selecting one discrepancy mea-

sure T (Y,X) and comparing the distributions of T (Y,Xpost,m) and T (Y rep,m, Xpost,m)

through the p-value

p(T (Y,Xpost,m) < T (Y rep,m, Xpost,m)) (3.1)

which is approximated as the proportion of times that T (Y,Xpost,m) is lower than

T (Y rep,m, Xpost,m) for a set of M posterior simulations Xpost,m (m = 1..M). If the

p-value is lower or higher than pre-specified bounds, e.g. 0.025 and 0.975, the poste-

rior discrepancy is said to be outside of its reference distribution defined by the model

through the replicates. This indicates that some traits of the posited model computed

over unconstrained simulations (the replicates) are significantly different from the same

traits computed over the posterior simulations.

We use T1, the deviance of the multinomial distribution, as the discrepancy measure

T1(Y,X) = −2
N∑
i=1

log(M(Yi, pi, Ni)) (3.2)

The posterior predictive p-value is conservative, i.e. it fails in detecting small to

medium inconsistencies between model and data (e.g. Stern and Cressie, 2000). This
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comes from the fact that Xpost
i is influenced by Yi (through the likelihood) and thus Yi

does not appear inconsistent regarding [Yi|Xpost
i ] distribution. Moreover this diagnostic

only checks for inconsistencies measurable at the likelihood level.

Likelihood and first level check: Mixed posterior predictive p-value

The idea of mixed predictive distribution from Marshall and Spiegelhalter (2003) is

the following: instead of using the reference distribution Y rep ∼ [Y |Xpost], one can

simulate and use the reference distribution for a higher level, here, (Y rep,m, Xrep,m) ∼
[Y |Xrep,m] [Xrep,m|bpost, Spost,m], which is less constrained by Y (only through Spost).

One can then compute the quantiles of each Yi for the reference distribution defined

by Y rep
i , the marginal distribution of (Y rep

i , Xrep
i ). Since there is no consensus on the

definition of multivariate quantiles, we propose to extend the idea of posterior predictive

distribution and compute the p-value

p(T (Y,Xpost, bpost, Spost) < T (Y rep, Xrep, bpost, Spost)) (3.3)

approximated as the proportion of times that discrepancy T (Y,Xpost,m, bpost, Spost,m) is

lower than T (Y rep,m, Xrep, bpost, Spost,m) for m = 1..M simulations.

We use the discrepancy T2, sum of the deviances of multinomial and Poisson distri-

butions

T2(Y,X, b, S) = −2
N∑
i=1

(
log(M(Yi, pi, Ni)) +

k∑
j=1

log(P(Xj
i , b

jSji ))

)

Using this discrepancy we compare traits of the reference and posterior distributions

for both likelihood and first hidden level.

Full model check: Full mixed posterior predictive p-value

We extend the preceding idea to the whole hierarchical model by generating replicate

distributions for both hidden levels and data. From the posterior simulation of the
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parameters θpost,m = (bpost,m, γpost,m, σpost,m, mpost,m, qpost,m) we simulate a replicate

(Y rep,m, Xrep,m, V rep,m) following

(Y rep,m, Xrep,m, V rep,m) ∼ [Y |Xrep,m] [Xrep,m|bpost,m, Srep,m]

[V rep,m|NPP, σpost,m,mpost,m, qpost,m]

Using the replicates and posterior simulations we compute the p-value

p(T (Y,Xpost, V post, θpost) < T (Y rep, Xrep, V rep, θpost)) (3.4)

with the discrepancy T3, which is the deviance of the entire model

T3(Y,X, V, b, γ,σ,m, q) = −2
N∑
i=1

log(M(Yi, pi, Ni))+

− 2
N∑
i=1

k∑
j=1

(
log(P(Xj

i , b
jSji )) + log([V j

i |NPPj
i , σ

j,mj, qj])
) (3.5)

3.4 Application to simulated and European dataset

3.4.1 Simulated datasets

We made several inference tests using simulated datasets to check the correctness of the

computer code, the robustness of the MCMC algorithm and the influence of vegetation

priors. The datasets are simulated following the model for three (j = 1..3) different

species sampled at 150 points (i = 1..150) distributed following a uniform distribution

on a one-dimensional space (between 0 and 40), see Figure 3.1.

For a selected set of parameter values (r̂, b̂, γ̂, q̂, m̂, σ̂) a ‘toy’ dataset is simulated as

follows:

• NPPj
i are simulated following a spatially structured Gaussian field truncated at

0 (simulations below 0 are set to 0). The spatial structure is given by a Gaussian

covariance with a scale parameter r̂j by species and a variance equal to 1.
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• Actual vegetation V j
i is simulated following the mixture model with selected

(q̂, m̂, σ̂) parameter values.

• The pollen dispersed at each point for each species, Sji , is computed with selected

γ̂ parameter values.

• Accumulated pollen Xj
i is simulated following the Poisson distribution with se-

lected b̂ parameter values.

• After normalisation, pollen accumulated proportions pji are computed and ‘sam-

pled’ pollen is generated following a multinomial distribution whose total counts

(Ni) is equal to 200.

As in the real world, inference is performed using only sampled pollen and simulated

NPP.

We made two kinds of inference tests.

First, for different sets of parameters (r̂j ∈ {1; 2; 3}, b̂j ∈ {10; 50; 100}, γ̂j ∈
{1; 2; 3}, q̂j ∈ {0.6; 0.7; 0.8; 0.9}, m̂j ∈ {0.5, 1, 2} ∗ mean(NPPj[NPPj > 0]) and σ̂j =

var(NPPj[NPPj > 0])) we ran the inference algorithm (for 1.5 million MCMC itera-

tions in 5h) and checked that the 95% Highest Posterior Regions (HPR) contained the

parameters and V , X latent fields used for the simulation in approximately 95% of the

cases. These tests indicate that the algorithm is robust even with large overdispersion

from the Poisson latent field. We present here the most overdispersed case (b = 10)

Figure 3.1).

The second kind of test (not presented here) consisted in using wrong informative

priors for the vegetation parameters m and σ to check their effect on the inferred values.

This test can be interpreted as a rough prior sensitivity analysis to asses if the informa-

tive prior, used for the real dataset, will have a strong influence on the inferred values

of all the parameters. The ‘wrong’ priors used for these tests are the ones described

section 3.2.4 with both of their parameters multiplied by {0.3; 0.5; 2; 3}. Results indi-

cate that these priors only influence the inferred m, σ and q values. Moreover, when
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Figure 3.1: Inference for a dataset simulated over an arbitrary spatial index (x-axis).

Each column is a different species and each row a different latent quantity. The black

line is the expected, simulated value. Posterior mean is the thick line in light grey and

95% Highest Posterior Region (HPR) are given by the dashed lines. First line shows

the absolute vegetation abundance per species V j (j = 1..3). Second line shows Sj, the

dispersed vegetation or dispersed pollen without reference to the relative production

carried by b. Third line shows the accumulated pollen Xj and last line the multinomial

probabilities pj for each sampled site.
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the prior range does not include the expected value the posterior mean is as close as

possible of it, but stays in 95% high probability region of the prior.

3.4.2 European dataset

Data

The modern pollen database compiled by Bordon (2008) consists of pollen grain abun-

dances recognised per taxa. Their total (Ni) usually ranges between 100 and 500.

A vegetation model output is the Net Primary Production (NPP in kg.m−1.yr−1) per

species considered in the model. We use 17 major tree species in Europe plus one group

representing all grasses and shrubs. To be in agreement, model species and pollen taxa

are reduced to 14 tree taxa and a grass/shurb group (see Table 3.1). For a full descrip-

tion in term of vegetation model parameters, see Miller et al. (2008) and Garreta et al.

(2009). To simulate the vegetation corresponding to modern pollen samples we run the

vegetation model for each pollen sample site using the 20th century climate dataset

CRU TS1.2 (New et al., 2002), available at the monthly time-step and spatial grid of

10’ resolution. These series have been interpolated at the pollen sites using ordinary

kriging with the altitude as external drift (e.g. Cressie, 1991).

Then, for each site i,

1. we spin-up the model during 500 years using a climate chronology which is de-

trended and the CO2 concentration of 1901,

2. we run the model for the years 1901-1990 using the interpolated climate times

series and CO2 measured for this period,

3. we retain the average NPP for the years 1961-1990 to form NPPi.
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Vegetation group

j Pollen group based on

model outputs

1 Abies Abi_alb

2 Alnus Aln_inc

3 Betula Bet_pen + Bet_pub

4 Carpinus Car_bet

5 Corylus Cor_ave

6 Fagus Fag_syl

7 Fraxinus Fra_exc

8 Picea Pic_abi

9 Pinus Pin_syl + Pin_hal

10 QuercusE Que_coc + Que_ile

11 QuercusD Que_rob

12 Tilia Til_cor

13 Ulmus Ulm_gla

14 Populus Pop_tre

15 GrSh C3_gr

Table 3.1: The fifteen groups (j = 1..15) of pollen and vegetation model outputs.

Results

The inference algorithm is run by successive sequences of 50k (50,000) iterations (20

h long). This allows to start the treatment of the MCMC chain values before the

end of many days of computing, to check for coding and other errors and to moni-

tor convergence. For convergence monitoring, classical tests such as the comparison

between/within variance of multiple MCMC chains (Gelman and Rubin, 1992) is not

available since we work with only one MCMC chain. We check visually the stationarity

of each parameter’s chain (see Figure 3.4 for a subset of such outputs). We use the

deviance of the multinomial as an indicator of lack of convergence. Indeed, for the first

400k iterations, each 50k-long sequence showed a significant decrease in the deviance
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criteria computed over the posterior simulations (Eq. 3.2). We use one iteration over

100 between iterations 500k and 600k to compute the following model checks, output

summaries and plots.

Model Checking

The posterior predictive p-value for the deviance, presented in Equation 3.1, is equal

to 1. This indicates that the distribution of the posterior simulations’ deviance is

significantly higher than its reference distribution, e.g. its mean is 22% higher than

the one of its reference. This indicates that the model is not adequate, at least, at its

likelihood level.

The mixed posterior predictive p-value (Eq. 3.3), which measures likelihood and

first (X) level coherence with data, is equal to 1. Thus, the likelihood and first level

are incoherent with data, e.g. the mean of the posterior deviance is 24% higher than

the one of its reference.

Finally, the full mixed posterior predictive p-value (Eq. 3.4) is equal to 0.96 and

thus, close to being considered incoherent (for our 5% two-sided test). We decompose

this distribution following the three terms of Equation 3.5 and plot them on Figure 3.2.

The graph clearly indicates that likelihood level is not coherent nor is the first hidden

level and this is compensated by the vegetation level that has a low deviance score.

We found two different explanations for the lack of fit of the model. One problem is

the lack of overdispersion modelled by the likelihood and first hierarchical level. This

is indicated by the discrepancy values that pointed a strong model-data incoherence

at these levels, combined with a high inferred overdispersion for the MP model. To

illustrate this point we selected a point i1 whose mean discrepancy is one of the highest

compared to the reference. The values of data and posterior hierarchical levels for a

selected subset of taxa of this point are shown in Table 3.2.

Table 3.2 does not show indisputably that posterior proportions means are more
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Figure 3.2: Decomposition of the the full mixed posterior deviance. Each graph presents

the deviance obtained from the posterior (x-axis) versus the reference deviance distribu-

tion (y-axis). From the left to the right: (first graph) the full mixed posterior deviance,

(second graph) the deviance for the vegetation level (V , 3rd term in Eq. 3.5), (third

graph) the deviance for the accumulation level (X, 2nd term in Eq. 3.5) and (fourth

graph) the deviance for the data level (Y , 1st term in Eq. 3.5).

j Carpinus Corylus Fagus Quercus Ever Quercus Dec Grass & Shrubs

bjSji1 0.19 5.07 20.21 58.3 66.24 9.11

Xj
i1

0 1 1 25 2.03 3

pji1 0 0.03 0.03 0.69 0.06 0.08

Y j
i1
/(Σj Y

j
i1

) 0 0.001 0.006 0.85 0.06 0.05

Table 3.2: Value of the data and means of posterior quantities for the major taxa (in

columns) of a point i1. (first line) modelled pollen brought by dispersal to site i1 for

the taxa j. (second line) modelled pollen accumulated at site i1. (third line) modelled

proportions (i.e. in situ normalisation of the preceding line) of pollen accumulated.

(fourth line) proportions estimated from the count data by normalisation.
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Figure 3.3: Spatial repartition of the difference between the mean of the deviance for

the posterior and reference distributions. (left panel) Each square’s colour represents

the difference for the data points covered by the square. The black dots show the

points whose difference is higher than 50. Squares covering less than 10 points have

been removed for their unreliability. (right panel) Number of data points by square.

dispersed than specified by the multinomial distribution; what is indicated by the pos-

terior predictive discrepancies. But in the case of the pollen brought by dispersion

and accumulated (bjSji1 versus Xj
i1

) it is evident that the Poisson distribution is not

adequate. Indeed, for the deciduous Quercus (oak), cumulated probability above 3 for

a Poisson distribution centred on 66.24 is around 2.2 10−21. This high bjSji1 value of

pollen theoretically brought by dispersal is due to the nearby points which show high

pollen percentages for this taxa. This is an argument in favour of more overdispersion

than specified by the Poisson distribution at this level.

The second potential source of data-model conflict is the hypothesis of spatial station-

arity of all the parameters. Indeed, we have the experience that LPJ-GUESS vegetation

model used to simulate the NPP makes generally stronger errors in southern Europe

than in northern Europe (see discussion about precipitation in Garreta et al., 2009).

To check this aspect of the problem we plot the spatial repartition of the difference

between posterior and reference deviance for each point over Europe (Fig. 3.3). As
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Taxa (j) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

qj (in %) 58 53 87 70 90 67 74 84 54 54 53 86 82 65 60

mj/Ej 0.32 0.52 0.82 0.17 0.85 0.58 0.9 0.56 0.42 0.25 0.56 0.76 0.79 1.34 1.51
√
σj/Ej 2.0 1.8 2.4 1.6 1.4 2.1 1.2 1.8 1.9 1.6 1.8 1.1 1.2 0.5 3.9

γj (in km) 53 90 84 154 78 30 193 58 80 20 30 57 224 448 50

bj/b15 2.03 0.64 0.84 0.22 0.24 0.06 0.05 0.08 0.44 0.05 0.08 0.03 0.04 0.01 1

Table 3.3: Table of the posterior mean of the parameters (for taxa names see Table

3.1). Ej is the mean of NPPj when NPPj > 0. q, m and σ are interpreted in term of

anthropisation and/or vegetation model’s error. γ is a dispersal length parameter and

b is related to the relative pollen production between species and the overdispersion of

the multinomial distribution.

expected, the deviance is higher in the South (mainly is Spain and Greece) and Centre

(France, Switzerland, Belgium and Austria) than in the North. For the southern points

we interpret these high discrepancies by a lack of realism of the model. For the central

points this may be due to an anthropogenic disturbance significantly higher than for

the other points, which cannot be accounted for since the parameters (m, σ and q) con-

trolling such disturbance are constant over Europe. We come back on this stationarity

problem in the discussion.

Output summaries

MCMC chain outputs give information about mixing and convergence. The number

of parameter chains is k ∗ 5 = 60. We show those related to hazel trees (Corylus)

in Figure 3.4. Recall that plotted iterations are one iteration over 100 and after the

iteration 400k; iterations for which the algorithm seems to have reached convergence.

We give the posterior mean of all the parameters Table 3.3. The q, m and σ param-

eters are related to the anthropogenic disturbances and/or the errors in the vegetation

model simulations. One trait of these posteriors is that for most of the taxa (13 over 15),

mj, the mean of V j
i > 0 despite that NPPj

i = 0 is lower than the mean of NPPj > 0.
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Figure 3.4: Sequence of posterior simulations of the parameters of the Corylus taxa

(hazel tree) and variation of the posterior predictive deviance over the iterations (graph

at the bottom right). Iterations plotted are one iteration over 100 between iteration

400k and 500k. The light grey lines show the mean (solid line) and borders of the 95%

HPR (dashed lines).
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This is expected: when the vegetation NPP has not been simulated, V should not be

more productive than in places where NPP has been simulated.

The posterior values of the spatial dispersal parameters (γj, Table 3.3) range from

20 up to 220 km except Populus taxa (14, Poplar) which has a range of 450 km. This

high range may result from a poor prediction of the species presence by the vegetation

model. Indeed, the species is present almost everywhere along rivers and the model

does not take rivers into account. In case of poor spatial matching between model

simulations and data, the statistical model may need the maximum of dispersal to link

them. The range of the other dispersal parameters is one order of magnitude higher

than the length of a pollen flight between the canopy and the ground. This highlights

that we do not look at the same processes that in individual tree based studies. Our

modelling of vegetation is in term of populations instead of individuals and the scale

of sampling is Europe. Then, γ dispersal parameters integrate a homogeneity in the

vegetation (when a taxa is present at a point it is often present several km around)

plus a classical dispersal term. The dispersal component produces very smooth fields

of dispersed pollen bjSj. The one of the Corylus is presented in Figure 3.5.

The parameters bj have two major interpretations. First, they are related to the

relative pollen production between species. The values bj/b15 (Table 3.3) is the relative

pollen production between the taxa j and the 15th (Grass/Shrubs group). Second, the

absolute values bj contribute to the overdispersion of the multinomial which is easily

measured through the term K = Σj=1..k b
jSj. The posterior mean of this term is 38

with a 95% HPR equal to [7; 70]. Since this value is finite and well constrained, a

non-negligible overdispersion of the multinomial distribution is inferred. We saw in the

preceding validation step that this overdispersion is underestimated, at least, at the

Poisson level. Thus, the question is, why is this K parameter so high? This certainly

results from the set of intrinsic constraints imposed to the bj parameters. Recall that

they drive relative production between species and overdispersion through the Poisson

distribution centred on bjSj. This means that when a low productive taxa j is present

at a site i, its associated term bj, relatively lower than the others, has to be sufficiently

high to allow the generation of, at least, a Xj
i = 1 from a Poisson distribution centred
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Figure 3.5: Posterior mean of the dispersed pollen of Corylus (Hazel tree, S5) over

Spain. Black dots show sites where Corylus pollen is present (i.e. in the data > 0%)

and squares show sites where Corylus presence has been simulated by the vegetation

model. The scale is logarithmic.
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on bjSji . This constraint reduces the range of possible b (and therefore K) values. We

discuss alternative modelling of the overdispersion in the following section.
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3.5 Discussion

In this paper, we proposed a statistical model for the so-called calibration of a trans-

fer function (TF) linking simulated vegetation using a vegetation model and pollen

records. Our TF is entirely process-based and parametrical. Such process-based model

is preferable to classic TF because (a) it can be better evaluated, e.g. the parameter

values are comparable to known quantities and the modelled processes are partially

known, (b) it theoretically leads to more realistic parameters and uncertainty estimates

(one of the critical issues when reconstructing past climate, IPCC Core Writing Team,

2007), and (c) because the modelling hypotheses are based on processes, their rejection

or acceptance provides an information which is useful and communicable outside the

community of statisticians for the palaeoclimatology. In this sense, this work brings

together close disciplines: palynology, ecology, vegetation modelling, climatology and

creates interactions between them. Nevertheless this approach has the flaw of needing

a lot of information and heavy computing time. This makes its inversion for palaeo-

climatological reconstructions an open and challenging problem in statistics.

There are two major underpinnings in our approach, first, the spatial stationarity

principle which is fundamental to most data-based palaeoclimatology approaches and,

second, the need to model the very evident spatial correlation in the pollen samples

due to pollen dispersion (neglected or too simply approximated in classic TF).

The spatial stationarity principle is explicit in our approach instead of being hidden

or implicit in classic TF. It is a corollary of the palaeoclimatology principle: ‘use modern

spatial variations to quantify past temporal variations’. Indeed, if the model calibrated

on the modern - spatial - dataset is not stationary in space, i.e. if it includes variations

in its parameters depending directly on longitude and latitude, it becomes impossible to

invert it in time. In other words, by fitting the model to space, one admits that spatial

variations in data are not generated by a general process that can be used to calibrate

a general statistical model. When apparent, the non-stationarities in space must be

modelled as coming from spatialised variables (if we suspect that these variables have
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an impact) or properly quantified as a, potentially spatial, error.

Pollen dispersal along with spatial correlation in the distribution of plants are the

major processes generating the spatial correlation in pollen surface samples. To model

it, we used a Gaussian dispersal kernel (copying the Sutton’s equation used in palaeoe-

cology) which is convoluted over the mixture model for the vegetation random field

(V ). This approach is the Bayesian hierarchical ‘process convolution’ or ‘moving aver-

age’ approach of Higdon (1998) applied, in our case, to a non-Gaussian random field. It

is interesting to remark that this approach, which was initially created to build spatially

structured random fields (Barry and Ver Hoef, 1996) without explicit connection to a

natural process is here based on an intuitive dispersion process. Several ways of reduc-

ing its computational burden have been proposed. The main one, proposed by Higdon

(1998), consists in reducing the dimension of the problem by simulating the vegetation

over a coarse grid instead of at each pollen points. This implies to select a grid size and

requires proper mathematical studying since it changes the initial homotopic inference

problem (pollen and vegetation at the same location) to an heterotopic one.

3.5.1 Over-dispersion and zero-inflation of the multinomial

Since we decided to avoid the physically based modelling of the accumulation process,

we had to select one model for the overdispersion of the multinomial. We proposed the

MP model, which was rejected by all the model checking criteria. We come back on

the need for an overdispersed and zero-inflated multinomial model and propose ways

to extend the MP model for our problem.

The classic model for multinomial overdispersion is the Multinomial Dirichlet model

(MD, Leonard, 1977). We did not select it since it does not allow for zeros in the vector

p; the ‘structural zeros’ coming from the absence of certain taxa over certain regions.

We proposed the MP model because, with the same number of parameters than in

the MD it provides two sources of zeros: the multinomial and the Poisson distribution.

From another point of view, this model introduces a continuum in the zeros at the Pois-
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son level, from those due to absence of the taxa Sji = 0 to those, less frequent, generated

by little Sji (low vegetation values around the site i or vegetation far from the site).

This is a vision opposed to the one represented by the mixture model for zero-inflation

in which the extra-zeros are generated by a distinct process modelled through a Dirac

mass at zero.

However, the MP model is not adequate to model pollen accumulation and sampling.

This has been identified by the model checking criteria. We showed that this is likely

due to a lack of overdispersion and/or zero-inflation. A simple way to overdisperse the

MP model is to replace the Poisson distribution by a Negative Binomial. This can be

done by setting:

[Xj
i |bj, τ j, S

j
i ] = NB(bjSji , τ

j)

with NB(x,m, s) = Γ(x+τ)
x!Γ(τ)

(
τ

m+τ

)τ ( m
m+τ

)x
the Negative Binomial distribution with

mean m and variance m + m2/τ . This distribution has a set of k τ j parameters more

than the Poisson distribution. We cannot make a demonstration as we did for the

Poisson but intuitively k − 1 bj parameters should control (and therefore be controlled

by) the pj. The k variance parameters τ j may be identified on the variance of each

pj. It seems that the kth parameter bj will have to be fixed if it does not account for

discretisation.

People preferring continuous distributions and mixing would have the choice between

distributions more dispersed than the G(bjSji , 1), such as G(bjSji , τ
j), the continuous

counterpart of the Negative Binomial, or mixing between gamma and Dirac mass at

zero. The choice is the same as between Poisson (MP) and Gamma (MD) distributions:

do we need one more source of zeros than the multinomial? In the case of mixing of

distributions compared to the Negative Binomial, do we need a continuum between the

process generating zeros and the one generating positive values?
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3.5.2 Palaeoclimatology, other palaeo-sciences and vegetation

model inversion

The core of our model - the representation of the pollen production and dispersion and

the multinomial distribution for sampled pollen - builds a conceptual bridge between

paleoclimatology and ecology. Indeed, an analogous core structure is studied in a long

series of papers starting with Parsons and Prentice (1981) and reaching its latest ex-

pression with the models of Sugita (2007a) and Paciorek and McLachlan (2009) (e.g.

the review of Broström et al., 2008). These papers study the modelling of dispersion

and accumulation at a local level using pollen samples in lakes and vegetation records

several km2 around. One of their major research questions is palaeo-landscape recon-

struction as an indicator of human constraint. Human constraint or disturbance is

clearly the process which needs our attention. Indeed, the interpretation of our param-

eters (m, q and σ), the stationarity problem related to them and in a more general

vision of the vegetation model, its calibration and validation cannot go ahead for a

long time without considering an effect of human on the vegetation. In a climate recon-

struction perspective, the modelling of the human disturbance and its quantification

are also problematic. When inverting the climate-vegetation-pollen relation based on

past pollen records, humankind has an influence on this relation which varies in time

(e.g. St. Jacques et al., 2008). In our framework, if we interpret the m, q and σ param-

eter as pure nuisance parameters due to anthropisation, they should be set to 0 when

reconstructing climate of periods at which humankind was not present.

Climate reconstruction by the model inversion is very promising but it is a great chal-

lenge. Indeed, combining our spatial representation of the pollen/vegetation link and

the dynamical (over time) inversion of the vegetation model presented in Garreta et al.

(2009) would be a great step toward a unified and fully process-based spatio-temporal

method for climate reconstruction. This would require a great amount of work, at least,

to build efficient spatio-temporal inversion algorithms combining particle filtering and

MCMC and to consider validation in such a computationally over-intensive task (for
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model validation in computationally intensive inverse problems, see e.g. Bhattacharya

and Haslett, 2004). This would also need to consider the modelling of several sources

of uncertainties and correlations attached to the temporal context, mainly the dating

uncertainties and the temporal correlation in climate (for a discussion of these points,

see Haslett et al., 2006).
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Chapter 4

Bayesian semi-mechanistic

modelling for a process-based

palaeoclimatology

This chapter is an article prepared for a submission to an applied statistical journal.

Part of the reflection comes from discussions around a postdoc project we wrote and

submitted with Professor John Haslett (Trinity College, Dublin, Ireland).
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Abstract Pollen-based palaeoclimate reconstructions are based on models of the re-

lation between the environment controlling plant species and pollen collected in sedi-

ments. Most of these models are descriptive and based on the same irreducible set of

hypotheses. Their dependence on the same - not testable - set of hypotheses cuts into

one’s confidence in reconstructions of past climate that are all based on these meth-

ods. A process-based approach forms a necessary complement to correlative models

by being based on different hypotheses supported by modern research in ecology. The

combination of a mechanistic (vegetation) model and stochastic modelling is crucial to

achieve the process-based modelling of the complex environment-plant-pollen system

by (i) capturing the up-to-date knowledge in ecology included in the computer model

and, (ii) properly quantifying and accounting for the various sources of uncertainties in

the system through statistical modelling.

We propose the coupling of a Dynamic Vegetation Model (LPJ-GUESS) for the

environment-plant relation and a statistical hierarchical model for the plant-pollen re-

lation. The Bayesian paradigm allows us to consistently embed the computer simulator

into the statistical model. The main challenge is the inference of such a composite

model due to the computing cost of simulating from LPJ-GUESS and the large number

of data linked by spatio-temporal relations. We propose a first approach for inference

using Monte Carlo methods.

We present and apply our approach into the two-step process of palaeoclimatology.

First, the calibration of the statistical model is realised using a spatial dataset of climate

and pollen samples from Europe. Second, the reconstruction of past climate dynamics

are performed for four cores covering the Holocene, located in southern Sweden.

Reconstruction results are coherent with their pollen records. They show constrained

changes for temperature but lack a strong constraint for precipitation. The large dif-

ferences between sites show the need to account for the processes of spatial vegetation

dynamics (e.g. migrations). This promising method still requires theoretical and tech-

nical works in statistics to bypass the approximations we necessarily used and readily

allow (a) the calibration of parameters inside the DVM and (b) the spatio-temporal

reconstruction of paleo climate and vegetation from several cores at the same time.
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4.1 Introduction

Pollen-based palaeoclimate reconstructions are based on models of the relation between

the environment controlling plant species and pollen collected in sediments. Except in

the ‘model inversion’ method (Guiot et al., 2000), all these models, called Transfer

Functions (TF), are purely statistical descriptions of the link between a few climate

variables and the pollen assemblages collected in sediments. These classical TF include,

for example, the Indicator Species (IS, Iversen, 1944), the Modern Analogue Technique

(MAT, Hutson, 1980), the Response Surface (RS, Bartlein et al., 1986), the Weighted

Average-Partial Least Square (WA-PLS, ter Braak et al., 1993), the Probability Density

Function (PDF, Kühl et al., 2002) and a semi-parametric Bayesian approach of the RS

(Haslett et al., 2006). Their lack of process modelling makes them correlative TF, based

on the same two hypotheses. First, they assume that a few (from 2 to less than 10)

climatic variables drive the plant species presence/absence or abundance. Second, they

assume an ‘instantaneous’ species response to climate, i.e. a nearly constant equilibrium

between species and climate allowing independent (in space and time) calibration and

use of the TF. These hypotheses simplify the modelling and inference, which, however,

remains a statistical challenge (Haslett et al., 2006) but they seem rather restrictive

while models of the vegetation dynamics exist (e.g. reviews of vegetation models in

Prentice et al., 2007). Up-to-date vegetation models include a more elaborated de-

scription of the species requirements than just climate variables (e.g. atmospheric CO2

concentration, soil description) and simulate vegetation dynamics. Ecology thus pro-

vides the theoretical background, the tools and the arguments to start the building of

process-based TF not requiring both hypotheses mentioned before. These TF would

provide past climate reconstructions independent from those of the correlative TF, in-

creasing our confidence in past climate reconstructions that are only available through

these methods.

As proposed by Guiot et al. (2000), including a vegetation model in the TF allows

one to readily account for part of the processes forming the environment-plant-pollen
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relation. Here, we propose the first full process-based approach by coupling a Dynamic

Vegetation Model (DVM, e.g. Prentice et al., 2007) for the environment-plant rela-

tion and a statistical, process-based, model for the plant-pollen relation. LPJ-GUESS

(Smith et al., 2001) is a DVM simulating stochastic vegetation dynamics from monthly

climate, CO2 and soil descriptions. For instance, from a Net Primary Production (NPP)

of several plant species at time t−1, say NPPt−1, and CO2, soil and climate chronologies

linking times t− 1 and t (Ct), it simulates a NPP at time t: NPPt. Following Garreta

et al. (2009) we then consider LPJ-GUESS as the conditional distribution

pLPJ(NPPt|NPPt−1, Ct) (4.1)

This distribution defined by LPJ-GUESS can be simulated from (by running the model)

but cannot be evaluated for any given values of (NPPt,NPPt−1, Ct) because it is defined

through a complex chain of simulating mechanisms. It also defines a Markov transition

distribution for the vegetation in time since it has the Markov property of depending

only on the vegetation at the previous time step.

The vegetation model is coupled to a statistical model p(Y |NPP, θ) controlled by

parameters θ, and representing the chained processes expected to link the NPP to the

pollen sampled in sediments Y : local vegetation disturbance (error from the DVM) →
pollen production → pollen dispersal → pollen accumulation → pollen sampling. The

core structure of our model is then

p(Yt,NPPt|NPPt−1, Ct, θ) = pLPJ(NPPt|NPPt−1, Ct) p(Yt|NPPt, θ) (4.2)

We call such coupling between a mechanistic (computer) model and a stochas-

tic model, ‘semi-mechanistic’ modelling. It forms a powerful approach for obtaining

process-based models of complex systems because (i) it incorporates the mechanistic

processes contained in the vegetation model, (ii) it allows the proper quantification

of noises in the relationship and, (iii) it provides us with a statistical framework for

inference. Equations describing the processes forming a DVM are subject to intensive

researches in plant ecophysiology. They are designed, calibrated and tested on various

conditions and datasets (see the description of vegetation models, e.g. Prentice et al.,
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1992; Smith et al., 2001). These datasets - partly expressed in the vegetation model

- complement and enrich the information contained in the modern pollen and climate

datasets used in palaeoclimatology. A second argument for the use of mechanistic mod-

els inside a TF is that their constant evolution and improvement (e.g. Prentice et al.,

2007) can be incorporated into TF for a negligible cost. Moreover, the statistical com-

ponent of a semi-mechanistic approach allows one to properly account for the errors,

seen as the discrepancy between the mathematical (composite) model versus the ‘real’,

not measurable, relationship expressed in the modern dataset. This approach also fi-

nally provides a framework and basic tools for inference, either of the parameters of the

statistical model or the past climate state by inversion of the composite model based

on pollen data.

The Bayesian paradigm is unequalled for the inference of semi-mechanistic models.

For our application this is supported by theoretical and technical arguments. On the

theoretical side, the causative nature of the process-based model imposes use of a re-

lationship (Equation 4.2) in which pollen is a function of climate. Climate is then a

fixed ‘regressor’ when calibrating the TF on modern dataset. The palaeoclimate recon-

struction involves the inversion of the relation for reconstruction. This inversion, along

with proper propagation of the errors from calibration to reconstruction is well defined

in the Bayesian framework through a prior/posterior rationale as we will demonstrate

in the next sections. In other frameworks for inference, e.g. Maximum Likelihood, this

inversion is provided through heuristic algorithms without theoretical support. See for

example, non-Bayesian reconstructions from response surfaces models (Bartlein et al.,

1986; Gonzales et al., 2009) compared to Bayesian approach of these models (Haslett

et al., 2006; Vasko et al., 2000). On the technical side, Bayesian inference tools can

cope with the stochastic DVM defining a distribution only available through simulation.

Indeed, inference algorithms based on Importance Sampling (IS, Robert and Casella,

1999) only requires simulations following the DVM distribution.

In the first section, we define the calibration of this process-based TF in a Bayesian
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framework and overview the statistical model linking vegetation and pollen. In the

second section, we define the process-based palaeoclimate reconstruction and discuss

the strategy for the posterior distribution computation using available Monte Carlo

tools. In the third section, we present palaeoclimate reconstructions for the Holocene

at four sites in South Sweden.

4.2 A spatial TF for calibration

The first step of palaeoclimate reconstruction consists in inferring the parameters θ

of the statistical model p(Y |NPP, θ) based on a set of N modern climate and pollen

measurements. Given pollen surface sample collected at site s = 1..N , Ys are multino-

mial vectors of counts per taxa j = 1..k, i.e. Ys = (Y 1
s , .., Y

k
s ). In this study k = 15

pollen groups, see previous chapters for the grouping we made based on the hundreds of

initial taxa. Modern climate conditions for the pollen sites, Cs, are monthly chronolo-

gies of precipitation, temperature and cloudiness. The sites are spread at a continental

scale (Europe in our application) and the pollen surface samples are expected to show

a spatial autocorrelation, at least due to the process of pollen dispersal and the spa-

tial vegetation autocorrelation. We account for such autocorrelation in the statistical

model linking vegetation simulated by the DVM and pollen. In the Direct Acyclic

Graph (DAG) presented on Figure 4.1, we report the dependencies between measured

climate, simulated vegetation and observed pollen surface samples.

Calibration is defined in a Bayesian framework as the posterior distribution of the

parameters θ defining the climate-pollen link given the set of modern pollen and climate

data. For convenience, in the following, the complete collection of pollen samples ys=1..N

is noted y, climates c and the modern vegetation simulations from LPJ-GUESS at all

sites are noted NPP. Following the model structure given by the DAG (Figure 4.1)
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Figure 4.1: Directed Acyclic Graph (DAG) of the model used for calibration. Vari-

ables in squares, climate (Cs) and pollen (Ys) are measured over Europe (at the point

s = 1..3). The vegetation NPPs, featured in a circle is not measured, i.e. hidden.

It is simulated running the DVM LPJ-GUESS (Smith et al., 2001) for a given cli-

mate. The link between all the vegetation and pollen sites is a statistical model, noted

p(Y|NPP, θ), with parameters θ = (θ1, θ2). The inter-relation between all the pollen

samples and the vegetation simulated for all sites arises from pollen dispersal modelling

in the statistical model.

and Bayes rule, the posterior distribution for the parameter calibration is

p(θ|y, c) =

∫
p(θ,NPP|y, c) dNPP

=

∫
p(θ,NPP,y|c)

p(y|c)
dNPP

∝
∫ ( n∏

s=1

pLPJ(NPPs|cs)

)
p(y|NPP, θ) p(θ) dNPP

(4.3)

with pLPJ(NPPs|cs) the distribution of the modern vegetation given 20th century cli-

mate. Ideally, to mimic the distribution in Equation 4.1, this distribution would be

dependent on the vegetation at the beginning of the 20th century, which is poorly

known. To use an equilibrium hypothesis between climate and vegetation that is as
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weak as possible, we define pLPJ(NPPs|cs) by (i) spinning up the DVM with CO2 con-

centration, abiotic, and climatic conditions of the beginning of the century (1901-1930)

until equilibrium is reached, then (ii) simulating the whole century under the CO2 and

climatic conditions available for the century. NPPs is defined as the mean of the DVM

outputs between the years 1961 and 1990, which is expected to correspond with the

time slice recorded by most of the modern pollen samples.

Obtaining the posterior distribution defined in Equation 4.3 is not realistic since this

- necessarily - numerical integration, due to the implicit definition of pLPJ(NPPs|cs)
through the computer simulator, is of dimension dim(NPP) = N ∗ k (> 15, 000 in

our case) and because it requires simulations from the DVM. For instance, a single

simulation of NPP for the N = 1301 European points (one NPP) represents hours of

computing.

We propose to calibrate directly the relation using pollen and a set of NPPs=1..n

simulated under modern climate (called npp), and thus, to obtain

p(θ|y,npp, c) = p(θ|y,npp)

=
p(θ,y|npp)

p(y|npp)
∝ p(y|npp, θ) p(θ)

(4.4)

By bypassing the DVM proper integration, we ignore the calibration of parameters

‘inside’ the DVM, i.e. the DVM calibration. This aspect is postponed to the discussion

section. In the next sections we present an overview of the process-based statistical

model linking the NPPs and pollen samples Ys in space. A complete description is given

in the previous chapter of this thesis. We finally discuss inferences which, without DVM

integration, remain difficult to obtain, due to the number of dimensions considered.

4.2.1 Process-based modelling of the vegetation-pollen link

Hierarchical (or conditional) modelling provides us with a simple framework for mod-

elling a causative chain of processes. We then model the major processes linking veg-

etation and pollen through two hidden levels defining p(Y|NPP, θ), with θ = (θ1, θ2),
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through the integral

p(Y|NPP, θ) =

∫
p(Y|X) p(X|V, θ2) p(V|NPP, θ1) dX dV (4.5)

with V = V j=1..k
s=1..N a set of k latent, ‘actual vegetation’, fields sampled at the N sites

and X = Xj=1..k
s=1..N a set of k latent, ‘accumulated pollen’, fields sampled at the N sites.

Here, attention must be paid to choosing X and V distributions that make the

integral analytically tractable or, at least that define analytically full-conditional distri-

butions for several variables. Obtaining an analytically tractable integral reduces too

much the range of available models and was not considered. When possible without

loss of physical realism, we chose distributions that are conjugated, i.e. allowing steps of

Gibbs algorithm in the inference using Markov Chain Monte Carlo algorithms (Robert

and Casella, 1999).

Hidden levels and processes

• Vegetation simulated by LPJ-GUESS is potential, i.e. controlled by climate, soil prop-

erties, CO2 and not disturbed by human activities. Then, ‘actual’ vegetation com-

position for the site s, noted Vs = (V 1
s , .., V

k
s ), is expected to be a noisy image of

the simulated NPPs and modelled using a mixture of Dirac and Gamma distributions

(more details in the previous chapter). The vegetation disturbances are modelled using

independent distributions per site and taxa

p(V|NPP, θ1) =
n∏
s=1

k∏
j=1

p(V j
s |NPPj

s, θ1)

• Pollen production of the taxa j is linearly related to the actual vegetation field Vj

through a parameter bj and airborne pollen dispersal is modelled using a Gaussian

dispersal kernel of parameter γj by species. Then, for any site s and species j, pollen

transported by dispersal, bjSjs , is the - deterministic - convolution of a Gaussian kernel

over the vegetation spatial field V j.
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• Pollen accumulation in natural traps such as lake and mires has a major influence

on the signal registered. This process is highly complex and depends on site specific

variables (lake and basin sizes and shapes, wind direction, etc) that are poorly known.

Therefore, we model accumulation as a random process centred on the pollen - theoret-

ically - brought by dispersal (bjSjs). From another point of view, since it is the hidden

level conditioning multinomial sampling, it controls the multinomial overdispersion. Its

choice is discussed in the next section. A general assumption is that, conditional on

the vegetation fields (V j), the distributions are independent among sites and taxa

p(X|V, θ2) =
n∏
s=1

k∏
j=1

p(Xj
s |Vj, θj2)

• A fraction of pollen accumulated is sampled, recognised and counted until a pre-

specified number Ns of pollen grains is reached. We model this as a independent

multinomial distribution per site s with total outcome Ns and probabilities equal to

the proportions of pollen j accumulated: ∀ j pjs = Xj
s/Σ

k
j=1 X

j
s .

p(Y|X) =
n∏
s=1

M(Ys|ps, Ns)

4.2.2 Multinomial overdispersion and zero-inflation

In the context of hierarchical modelling for multinomial data, the modelling of interre-

lated overdispersion and zero-inflation is achieved by defining the multinomial distribu-

tion conditional on probabilities pj, j = 1..k that are themselves randomly distributed.

From the NPPs to the dispersed pollen, our model is a spatial regression posed in terms

of absolute quantities. Overdispersion and zero-inflation of the multinomial (pollen)

data are modelled as coming from the process of pollen accumulation in the natural

traps (peat bogs, lakes of different sizes, etc). For a lake, this process is roughly seen

as the capture of airborne pollen over the area of the lake (Prentice, 1985). The lake

is seen as a big urn in which captured pollen grains are shuffled before (multinomial)

sampling is performed.

113



The three original models discussed in this section are based on the accumulation

processes, suspected to create overdispersion and zero-inflation with respect to the

Multinomial distribution. These process-based constructions are in the spirit of An-

celet et al. (2009), and differ from ‘two-part’ or ‘hurdle’ models (reviewed in Ridout

et al., 1998; Martin et al., 2005) which assume different sources for the zeros on one

side and the positive values on another. This makes our models parsimonious and close

to threshold models (preceding references and Salter-Townshend and Haslett, 2006, for

multinomial overdispersion), with a threshold fixed at zero.

In the previous chapter, we proposed to model the accumulation or capture fol-

lowing an independent (per taxa) Poisson distribution centred on the pollen quantity

theoretically dispersed

p(Xj
s |Vj, θj2) = P(bjSjs) (4.6)

The quantities Xj
s are then normalised to form probabilities for the multinomial. This

model is interpreted as follows: if pollen grains are dispersed on the ground following

a Poisson process of intensity bjSjs (in grains m−2) and every lake (and trap) has the

same size α (in m2). Then, each lake receives Xj
s pollen grains following a Poisson

process of intensity αbjSjs . The lake size α is not identifiable since absolute pollen

productions bj are not identifiable because most pollen data are proportions. In the

previous chapter, we did not use the term α and demonstrated that k − 1 parameters

bj are interpretable in terms of relative pollen productions between species and the

kth parameter K = Σk
j=1 b

j plays the role of α, controlling the overdispersion that is

related to the lakes’ size. When lake size decreases, K decreases and overdispersion

increases, i.e. the lake represents less and less well the pollen composition brought by

dispersal. This discrete model allows for zeros coming from the accumulation process.

The probabilities of zeros are given by the Poisson distribution and then, are directly

dependent on the overdispersion.

Using predictive posterior measures (Gelman et al., 1996), in the previous chapter,

we detected that this Poisson model is too limited in overdispersion. This can be
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interpreted as due to the restriction to a unique lake size, unable to represent the range

of possibilities (from peat bogs and mosses to large lakes). The lake size could be

randomly modelled as Ts following

p(Xs, Ts|Vj, θ2) = p(Ts)
k∏
j=1

p(Xj
s |Vj, Ts, θ2)

This modelling introduces one more latent field of lake sizes T , which gives to the whole

model a too complicated structure for inference due to the prior dependence between

fields j = 1..k through the lake size. Using independent gamma-distributed T js per site

and taxa provides conjugacy with the Poisson distribution. This makes p(Xj
s |Vj, θ2)

independent negative binomial distributions

p(Xj
s |Vj, θ2) = NB

(
τ j, τ j/(τ j + bjSjs)

)
(4.7)

centred on bjSjs , with variance bjSjs + (bjSjs)
2/τ j and probability of Xj

s = 0 equal to(
τ j

τ j+bjSj
s

)τ j

. This model accounts for site-specific random variations (e.g. lake size,

winds, etc) and other taxa-specific random variations (e.g. non-homogenous distribu-

tions of the taxa around the site, etc). But there is no proof for the identifiability of

bj and τ j, j = 1..k. We made simulation tests (results not presented here) showing

that the model becomes identifiable when overdispersion is strong (τ j < 10). For τ j

around or higher than 10, the inference algorithm diverges quickly to high values (sev-

eral τ j > 1000). Without formal demonstration, this indicates that the model can be

inferred for very overdispersed models and when the model is not identifiable, this is

detectable on the posterior distributions.

4.2.3 Inference using Markov Chain Monte Carlo

The weak point of process-based modelling is that it requires one to infer models with

complex and original structures for which inference guidelines are not readily available.

For instance, our model is composed of two sets of k = 15 latent fields (V j and Xj

with j = 1..k) sampled at N = 1301 points, and five or six sets of k latent variables

because dim(θ1) = 3 ∗ k and dim(θ2) = 2 ∗ k or 3 ∗ k depend on the model selected
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for overdispersion Eq. 4.6 or Eq. 4.7. In the Bayesian framework, we use Markov

Chain Monte Carlo algorithms (MCMC, Robert and Casella, 1999) that are adapt-

able to nearly any model. We used an adaptive Metropolis-within-Gibbs algorithm,

i.e. Metropolis steps are performed inside the main Gibbs loop trough full-conditional

distributions and proposal variances are tuned during a burn-in period. The sequen-

tial nature of MCMC algorithms makes them very slow to obtain the desired posterior

simulations. We used the structure of the model to parallelise computation for each

iteration. The model for accumulation per taxa and site are chosen independently, im-

plying that full conditional distributions of Xs are independent between sites, and Vj,

θj1 and θj2 are independent between fields. The only difficulty when parallelising is the

need for a good parallel random number generator. We used the one of L’Ecuyer (1999).

Convergence assessment and model testing are challenging since the inference is so

long that it is performed once and for all. Convergence has been checked using a

subset of the simulation outputs and deviance monitoring. Model testing (or adequacy

checking) cannot use the methods based on cross-validation since this require one to

re-perform the inference several times. Combination of posterior predictive diagnostics

(e.g. Gelman et al., 1996) and mixed replications (Marshall and Spiegelhalter, 2007)

are used to create several diagnostics for testing the hierarchical model at its various

levels (see previous chapter).

4.3 Reconstruction of the past vegetation and cli-

mate dynamics

We consider the inference of past vegetation and climate dynamics from a sequence of

n+1 pollen samples along a sediment core. Each sample is assumed to be dated without

uncertainty (discussed in the conclusion). We note Yt the pollen sample associated with

the date t varying from t0 (oldest) to tn (youngest). Hence, we note yt0:tn the sequence

of pollen data, NPPt0:tn the corresponding, unknown, sequence of vegetation and Ct0:tn
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the climate.

t ime
t1 t2 tn

...

CtnCt2Ct1

NPPt0 NPPtnNPPt2NPPt1

Yt1 Yt3Yt2

LPJ LPJ LPJ

Ct0

Yt0

...

t0

LPJ

theta

p(Y |NPP ,theta)tn tn

theta3

p(C  |C   ,theta3)tn tn-1

Figure 4.2: Directed Acyclic Graph of the model used for reconstruction. Variables in

squares are known. Those featured in circles are to be reconstructed. The ages are given

by the core points and range from t0, for the oldest sample, to tn, for the youngest one.

Climate Ct0:tn is a Markovian process indexed over time and driven by the unknown

parameter θ3. NPPt0:tn is the vegetation defined by the DVM and Yt0:tn are the pollen

samples. Parameter θ = (θ1, θ2) is known from calibration, i.e. distributed following

p(θ|y,npp).

Based on the structure of the previous section and the DAG presented in Figure 4.2,

a Bayesian palaeoclimate reconstruction consists in finding the posterior distribution

p(NPPt0:tn ,Ct0:tn , θ3|yt0:tn)

∝ p(Ct0:tn|θ3) p(θ3) pLPJ(NPPt0:tn|Ct0:tn)
tn∏
t=t0

p(yt|NPPt)
(4.8)

In the second line, the first term is a temporal model for climate, with parameters θ3,

followed by the prior for θ3. We select and describe them later. The third term is the

vegetation dynamics defined by the DVM through the conditioning chain (Eq. 4.1)

p(NPPt0:tn|Ct0:tn) = pLPJ(NPPt0|Ct0)
tn∏
t=t1

p(NPPt|NPPt−1, Ct−1)
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The fourth term is the product of p(Y |NPP) applied to the core points yt0:tn . This

distribution is defined as the model p(Y |NPP, θ) calibration previously whose parameter

θ = (θ1, θ2) has been integrated out to account for the calibration uncertainties, i.e.

p(yt|NPPt) =

∫
p(yt|NPPt, θ) p(θ|y,npp) dθ

=

∫
p(yt|Xt) p(Xt|Vt, θ2) p(Vt|NPPt, θ1) p(θ|y,npp) dVt dXt dθ

(4.9)

In the first line, p(yt|NPPt, θ) is the model used in calibration (Equation 4.5) and

p(θ|y,npp) the posterior obtained in calibration, which carries uncertainties on θ and

is available under the form of simulations. This is the Bayesian way for transferring

uncertainties from the calibration to the reconstruction (Haslett et al., 2006). In the

second line, we expand the model following the two hidden levels defining the pollen-

vegetation link.

If the temporal structure of climate is chosen to be Markovian, the reconstruction

model is a hierarchical and continuous hidden Markov model referred to as a state-space

model (Cappé et al., 2005). This qualifies palaeoclimate reconstruction as the joint in-

ference of hidden states (vegetation and climate at each time point) and parameter

θ3. Inference for such models is in itself an active field of research (e.g. Cappé et al.,

2005; Andrieu et al., 2010, and references therein). Here, the model has the major

originality of embedding a mechanistic (computer) model which implicitly defines its

core structure. This precludes any approach requiring to compute the transition ker-

nel p(NPPt|NPPt−1, Ct) and changes the constraints on inference regarding computing

time and memory size. Indeed, the computer simulator defines a forward transition

kernel that can only be simulated from. The simulations from the DVM are the most

time-demanding task for inference. Their length is proportional to the time range con-

sidered: tn − t0. For instance, simulating the vegetation over 12 kyr (thousands of

years) represents 25 min of computing time. In the following, computing time will be

expressed relative to the time range considered (tn − t0).

The main types of algorithms used for the inference of state-space models are MCMC
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(Robert and Casella, 1999) and Sequential Monte Carlo (SMC or Particle Filter, Doucet

et al., 2001). A MCMC type algorithm starts from a set of initial parameters and

series of vegetation and climate for times t0 to tn and sequentially scans the posterior

distribution by global or local moves. The huge number of dimensions and the absence

of global conjugacy properties preclude the use of a Metropolis algorithm with a global

proposition because these propositions will always be rejected. Although it cannot

work, this type of algorithm would have an ideal computing cost of tn − t0 for a single

proposition. Due to the computer model, a local move for climate and vegetation at

time t requires to re-simulate the vegetation for the time points t to tn. Indeed, if a

new climate and vegetation transition from t− 1 to t is accepted, it has to be linked to

t + 1 which is typically not possible since we can only simulate a new t + 1 : tn series.

Then, if time points are equally spaced on the core, the computation time associated

to this strategy is approximately (tn − t0) ∗ n/2 for a single global move (sum of local

moves for all points). This is not realistic because n is often greater than one hundred.

A trade-off can be found using ‘regional’ moves, i.e. moves of several points at the same

time, but this is restricted by the need for reasonable acceptance rate and the cost

is bounded between (tn − t0) ∗ n/2 and tn − t0 for a single proposition. In any case,

MCMC approaches will always face the problem that increasing the number of core

points (n, i.e. the quality of data) increases computing time. This problem is serious

because a future spatio-temporal approach, by merging cores over space, would increase

the number of time points not aligned between cores.

A SMC-type algorithm is far more natural in the context of forward temporal sim-

ulations. Indeed, such algorithms are based on Importance Sampling (IS), i.e. DVM

simulations and weighting, and treat the problem time after time. We will present a

first approach of inference with a simple SMC algorithm that allows (a) ‘smoothed’

inference of the static parameters θ3 and, (b) ‘filtered’ inference of the climate and

vegetation states. Its computing time for a single ‘particle’ (corresponding to an inde-

pendent move) is tn−t0. In the Bayesian framework, ‘smoothed’ and ‘filtered’ inferences

respectively describe the inference of a quantity given all the data and the inference

of a time-t quantity given data before and at time t (e.g. Cappé et al., 2005). The
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ultimate goal is to obtain smoothed inference for climate and vegetation. We hope that

this work will be the basis for developing a computationally tractable smoother.

4.3.1 Inference using a sequential Monte Carlo algorithm

In this section we present the general SMC algorithm. θ3, the parameter of the climate

structure is assumed to be known and not included as a parameter but it appears as a

subscript when it is involved in a distribution. We come back on its inference in Section

4.3.1.

Following Doucet et al. (2001) and Andrieu et al. (2010), the inference of our state-

space model (Equation 4.8) is achieved by sequentially approximating the sequence of

distributions pθ3(NPPt0:t, Ct0:t|Yt0:t), for t = t0..tn. This is obtained by exploiting the

temporal structure of the model, rewritten in the recursive form

pθ3(NPPt0:t, Ct0:t|Yt0:t) ∝ pθ3(NPPt0:t−1, Ct0:t−1|Yt0:t−1) pθ3(Ct|Ct0:t−1)

pLPJ(NPPt|NPPt−1, Ct) p(Yt|NPPt)
(4.10)

The algorithm works as follow: suppose at time t− 1 we have a discrete approximation

of pθ3(NPPt0:t−1, Ct0:t−1|Yt0:t−1),

p̂θ3(NPPt0:t−1, Ct0:t−1|Yt0:t−1) =

Np∑
m=1

ω̂mt−1δ{nppm
t0:t−1,c

m
t0:t−1}

where {nppmt0:t−1, c
m
t0:t−1}, m = 1..Np are realisations of the corresponding random vari-

ables, called ‘particles’. δ is the Dirac mass function and ω̂mt−1 are weights summing to

1. The time-t distribution (Equation 4.10) is obtained using the following pseudo code:

1. sample Np random variables (nppmt , c
m
t ), m = 1..Np following a proposal distri-

bution ft,θ3(NPPt, Ct) and concatenate them to the preceding particle set

{nppmt0:t−1, c
m
t0:t−1}, forming the new particles set {nppmt0:t, c

m
t0:t},

2. compute the (non-normalised) importance weight of each particle

ωmt = ω̂mt−1

pθ3(c
m
t |cmt0:t−1) pLPJ(nppmt,s|nppmt−1,s, c

m
t,s) p(yt,s(t)|nppmt,s1:sl

)

ft,θ3(nppmt , c
m
t )

(4.11)
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3. normalise the weights so that their sum is 1

ω̂rt = ωrt /

Np∑
m=1

ωmt (4.12)

These steps provide a discrete approximation of the time-t distribution

p̂θ3(NPPt0:t, Ct0:t|Yt0:t) under the form of weighted particles.

Classically, a regeneration step is included after step 3 if the series of weights ω̂mt ,

m = 1..Np degenerates too much, i.e. if non-null weights are carried by too few particles.

Indeed, the recursive weighting (Equation 4.11) induces a degeneracy in the particle

set which is prevented by sampling with replacement (i.e. duplicating or killing) the

particles following their weights and setting all weights to 1/Np. We use the residual

resampling procedure of Liu and Chen (1998). Resampling includes a Monte Carlo

error in the posterior approximation and is performed only when degeneracy is too

high; measured following that the Effective Sample Size criterion (ESS) is lower than

Np/2:

ESSt =

(
Np∑
m=1

(ω̂2
t )

)−1

The ratio Equation 4.11 is intractable due to p(NPPt|NPPt−1, Ct) implicitly defined

through the vegetation model. This problem may be bypassed by using the implicit

distribution as part of the proposal distribution, i.e.

ft,θ3(NPPt, Ct) = pLPJ(NPPt|NPPt−1, Ct) gt,θ3(Ct) (4.13)

where gt,θ3() is a proposal distribution for Ct. This proposal distribution is clearly not

optimal. Therefore, the use of a computer simulator defining an intractable distribution

strongly constrains the search for an optimal proposal distribution (for this discussion,

Doucet et al., 2001; Andrieu et al., 2010, and references therein). In our problem,

this is reduced to the search for a ‘good’ gt,θ3(Ct). This search can be done using a

mathematical rationale, e.g. seeking for a g proportional to the numerator Equation

121



4.11, then integrating out numerically the NPP etc. This is not realistic (integration

requires re-running the DVM) and we use the following heuristic.

Using a fast non-parametrical TF (the Modern Analogue Technique, see application)

we reconstruct the climate variables Ct0:tn from several cores located around the site

considered, concatenate the reconstructions and use their mean as the proposal (gt)

mean. The proposal gt for the climate variables considered (see application) is then

Gaussian with mean equal to the mean at time t and its variances and correlation

are selected to be very large with no correlation to allow a wide range of variations

around the mean values. The context of IS attached to the SMC algorithm provides a

theoretical justification for using such approach, i.e. the reconstruction estimator will

be unbiased and with finite variance until the proposal distribution has heavier tails

than the (unknown) target (Robert and Casella, 1999). In this respect, the Gaussian

distributions could be replaced by more heavily tailed distributions. The use of large

variances for the proposal is more problematic since the IS scanning is limited to a small

number of particles (here 1000). This produces poor representations of the posterior

distributions that may occupy a small portions of the proposal support. To improve this

representation we then used a two-pass reconstruction process ‘in the spirit’ of Cappé

et al. (2004); Beaumont et al. (2010), but with less gain than in these approaches. This

consists, in the first pass, in using the proposal discussed before and in the second

pass we use the enlarged filtering posterior smoothed for each point of the first pass.

Enlargement consists in doubling the posterior variance obtained at the first pass. The

theoretical justification for using such two passes (and more if computing time allows

it) arises as before from the IS nature of the SMC algorithm. Practical justification is

that it allows memory size reduction, e.g. comparing a single pass with 2000 particles or

two passes with 1000 particle and the reconstructions seem more accurate because they

depend less on the prior used at the first pass. Evidently, precautions have to be taken.

When the posterior variances seem unrealistically small (e.g. less than 1oC) they are

enlarged. In the same idea, if the posterior distribution is located on an extreme part

of proposal distribution this indicate a too restrictive proposal that may be improved

sequentially by re-running the algorithm.

122



Then, using Equation 4.13, the ratio Equation 4.11 becomes

ωmt = ω̂mt−1

pθ3(c
m
t |cmt0:t−1) p(yt|nppmt )

gt,θ3(c
m
t )

(4.14)

Computation of this ratio remains difficult due to the high dimensional integration

needed for p(Yt|NPPm
t ) (see Equation 4.9). In the next section we present an approach

for solving this problem and the following section is dedicated to the modelling and

inference of a temporal climate structure with parameter θ3. In the final section, we

discuss the inference of climate from several close cores at the same time.

Particle weighting by high dimensional integration

For each time point t (from t0 to tn) of a single core, the SMC algorithm provides Np

(=1000) vegetation particles nppmt whose weighting of each one requires computing the

integral shown in Equation 4.9

p(yt|nppmt ) =

∫
p(yt|Xt) p(Xt|Vt, θ2) p(Vt|nppmt , θ1) p(θ1, θ2|y,npp) dVt dXt dθ1 dθ2

(4.15)

Even in this only temporal case, the integral dimension is large (90 or 105 depending

on the model for overdispersion Eq. 4.6 or Eq. 4.7) precluding the use of a ‘brute force’

IS integration per particle, which would require too many simulations. The number

of integrals to perform is even more large (Np = 1000) which makes too slow the use

of a MCMC integration per particle nppm. Since all these integrals have a common

part due to the weighting based on the same yt pollen data, we propose to produce a

single ‘omnibus’ MCMC sample (Xr
t , V

r
t ), r = 1..M and use it for the weighting of all

the particles through an IS scheme. We first present the integration for a single core

before discussing the increasing dimension problem of integrating for several spatially

distributed cores.

An IS estimate, Îmt , of the integral Eq. 4.15 is obtained by sampling (Xr
t , V

r
t , θ

r
1, θ

r
2),
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r = 1..M following pIS,t(Xt, Vt, θ1, θ2) and computing

Îmt =
1

M

M∑
r=1

p(yt|Xr
t ) p(Xr

t |V r
t , θ2) p(V r

t |nppmt , θ
r
1) p(θr1, θ

r
2|y,npp)

pIS,t(Xr
t , V

r
t , θ

r
1, θ

r
2)

(4.16)

By theorem, this estimate converges to the integral since the support of the target

density (numerator) is included in the support of the importance function pIS,t (Robert

and Casella, 1999). Moreover, the choice of pIS,t that minimises the estimates’ variance

is the target density itself, and importance functions having thinner tails than the target

produce estimates with infinite variance. The need is thus to find a pIS,t as close as

possible to each target (per particle m) but whose tail is heavier than every one. We

propose to use

pIS,t(Xt, Vt, θ1, θ2) = p(yt|X) p(X|V, θ2) p(θr1, θ
r
2|y,npp) fIS,t(Vt) (4.17)

with all the structure, except for V , given by the model (Equation 4.5). The problem

of choice is thus reported to the lower-dimensional distribution fIS,t(Vt). After several

tests, we use independent distributions among sites and taxa, whose shape is driven by

pollen data,

fIS,t(V
j|yjt0..tn) =


N0(0, σjIS) if yjt > 0

0.5δ0 + 0.5N0(0, σjIS) if yjt = 0 and ∃ tk yjtk > 0

δ0 if ∀ tk yjtk = 0

where N0(0, σjIS) is a Gaussian distribution truncated at 0, centred at 0 and with vari-

ance equal to σjIS. This variance is selected as the variance of the modern NPP (npp)

that are positive.

Random samples following the importance density Equation 4.17 are generated easily

by using pieces of the MCMC sampler used for the calibration. Compared to the

calibration, here, for each time t, a single Xt and Vt have to be integrated out and the

values of the calibrated parameters θr1 and θr2 are selected in turn from the posterior

simulations obtained in calibration.
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Inference of climate over time and its parameters

We model climate as field with Markovian property in time, i.e. climate at time t de-

pends only on previous time, noted t−1. The transition kernel, p(Ct|Ct−1, θ3), depends

on a parameter, noted θ3, that is - now - unknown, i.e. seen as random in a Bayesian

framework. Since this parameter does not depend on time, it is said to be ‘static’ in the

context of SMC inference. We use the method described in Storvik (2002) and Fearn-

head (2002) to infer θ3. This simplifies computing by only requiring knowledge of the

previous state of the algorithm but limits modelling choices to conjugate distributions.

Other methods are available to deal with non-conjugated distributions (e.g. Liu and

West, 2001) but they are heuristic.

We model the climate inertia by assuming that its change between two time points

depends on the length of time between them. We choose, in this first approach, a

Gaussian random walk model

p(Ct|Ct−1, θ3) = N (Ct−1, d(t− 1, t)θ3ΣC) (4.18)

where d(t− 1, t) is the length of time between t and t− 1 and ΣC a matrix representing

the correlations between the climate variables included in C.

Following the model structure (DAG, Figure 4.2) we rewrite Equation 4.10 consid-

ering θ3 as random,

p(θ3,NPPt0:t, Ct0:t|Yt0:t) ∝ p(θ3,NPPt0:t, Ct0:t, Yt|Yt0:t−1)

= p(θ3,NPPt0:t−1, Ct0:t−1|Yt0:t−1)

p(Ct|Ct−1, θ3) pLPJ(NPPt|NPPt−1, Ct) p(Yt|NPPt)

= p(θ3|NPPt0:t−1, Ct0:t−1, Yt0:t−1) p(NPPt0:t−1, Ct0:t−1|Yt0:t−1)

p(Ct|Ct−1, θ3) pLPJ(NPPt|NPPt−1, Ct) p(Yt|NPPt)

When the prior for θ3 (p(θ3), Equation 4.8) is chosen conjugated to p(Ct|Ct−1, θ3),

the first term of the third line is available analytically. This allows to directly obtain
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the smoothed posterior distribution of θ3 as the last filtering distribution

p(θ3|NPPt0:tn , Ct0:tn , Yt0:tn). Moreover it only requires to save the variables from the

last SMC step instead of the full particle set {nppmt0:tn , c
m
t0:tn}. We chose an inverse

gamma prior for θ3 which is conjugated to the normal distribution. The distribution

p(θ3|NPPt0:tn , Ct0:tn , Yt0:tn) = p(θ3|rt, st) is then inverse gamma with parameters rt and

st updated sequentially.

The smoothed posterior distribution for θ3 is obtained at the last iteration (time

tn). This implies that filtering distributions for climate and vegetation depend on an

evolving (filtering) distribution for θ3. A cheap improvement of the reconstruction that

fits in the two step process presented previously consists in re-running the particle filter

for the whole core and fixing the distribution of θ3 to p(θ3|rtn , stn).

Reconstruction from several cores at the same time

In this model and inference method, the reconstruction of past climate from several

cores at the same time is theoretically straightforward. Suppose we have l spatially

close cores sampled at sites s1, .., sl. Each one is dated and the concatenation of all

the dates (potentially not aligned) forms the chronology t0 : tn. Following the DAG in

Figure 4.3 and the same reasoning as for a single core, the multiple core reconstruction

is obtained as

p(NPPt0:tn,s1:sl
, Ct0:tn,s1:sl

, θ3|yt0:tn,s1:sl
)

∝ p(Ct0:tn,s1:sl
|θ3) p(θ3)

(
l∏

s=1

pLPJ(NPPt0:tn,s|Ct0:tn,s)

)
tn∏
t=t0

p(yt,s(t)|NPPt,s1:sl
)

(4.19)

The differences between this equation and Equation 4.8 are, (first term) the spatio-

temporal model needed for climate, (third term) the product over the vegetation dy-

namics for each site and (last term) the potentially multiple climate data which, now
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Figure 4.3: Directed Acyclic Graph of the model used for multiple core reconstruction.

Climate Ct is a spatio-temporal process indexed over time. Increasing time t0 to tn are

the ages of the core points. Two sites are represented above and below climate. For

certain time points, pollen (Y ) is sampled in only one site (t0 and tn) for others it is

sampled in both. Parameters θ = (θ1, θ2) is known from the calibration, i.e. distributed

following p(θ|y,npp). Parameter θ3 drives the climate spatio-temporal process and is

to be reconstructed.

depend on the vegetation dynamics at all the sites. This term can be expanded following

p(Yt,s(t)|NPPt,s1:sl
) =

∫
p(Yt,s(t)|NPPt,s1:sl

, θ) p(θ|y,npp) dθ

=

∫  ∏
s∈s(t)

p(Yt,s|Xt,s) p(Xt,s|Vt,s1:sl
, θ2)

( sl∏
s=s1

p(Vt,s|NPPt,s, θ1)

)
(

sl∏
s=s1

dNPPt,s

)  ∏
s∈s(t)

dXt,s

 p(θ1, θ2|y,npp) dθ1 dθ2

(4.20)

Thus, the integration is now performed over l variables V , and a number equal to

dim(s(t)) (the number of pollen points at t) of variables X. This increase in dimension

makes the MCMC algorithm for the ‘omnibus’ weighting slower to converge (not critical
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because it is very fast) and the IS approximation poorer. This later problem is critical

and will be discussed in the application. For constructing the importance density, the

same heuristic as in the single core case is used and the whole set of cores is considered,

i.e. the function is of the form fIS,t,s(V
j
s |y

j
t0:tn,s1:sl

).

4.4 Application: Holocene climate in South Sweden

We reconstruct three climate variables, namely January and July temperatures (Tjan,

Tjul in oC) and annual precipitation (Pann in mm) in southern Sweden and over the

Holocene, from pollen assemblages sampled in four close cores.

The maximum distance between cores is 400km and their time coverage is approx-

imately the Holocene (Figure 4.4). They have been selected in the European pollen

database (www.europeanpollendatabase.net) for their high sampling resolution, long

time coverage and proximity that should allow a spatio-temporal reconstruction, i.e. a

climate reconstruction from all the cores at the same time. These cores have been col-

lected in Lake Bjärsjöholmssjön (called Mabo Moss herefater, Göransson, 1991), Lake

Trummen (Trummen, Digerfeldt, 1972), Lake Flarken (Flarken, Digerfeldt, 1977) and

Lake Ljustjärnen (called Gloppsjon herefater, Almquist-Jacobson, 1994). The pollen

diagrams are presented in Appendix C.

The calibration of (θ1, θ2) is realised using an European modern pollen dataset. For

specific information about the datasets, LPJ-GUESS parameters and climate interpola-

tion, see Miller et al. (2008) and the previous chapters of this manuscript. Two models,

having Poisson and negative binomial accumulation (Equations 4.6 or 4.7) are fitted.

The posterior simulations required several days of computing and are stored for prop-

agating the calibration uncertainties to reconstruction.

The SMC algorithm used for reconstruction is composed of two passes using 1000

particles. Each pass required only between 15 and 32 hours of computing (depending
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Figure 4.4: Spatial repartition and temporal coverage of the four lacustrine cores in

southern Sweden. (right) The dates of each core points are plotted against the sites

name.

on the machine), thanks to the parallelising of LPJ-GUESS code. We use the same

proposal for all cores, obtained using the Modern Analogue Technique (MAT, Hutson,

1980; Overpeck et al., 1985; Guiot et al., 1993; Jackson and Williams, 2004). Its mean

is the local smoothing of the three climatic variables (Tjan, Tjul and Pann) reconstructed

for each core point using the MAT. The proposal standard deviations for each variable

are (5oC, 5oC, 60%), i.e. very large to allow an extensive climate scanning. The number

of modern analogues is at maxima 7 and the distance for selection is computed using

cross-validation (Guiot, 1990; Williams and Shuman, 2008). For the second pass, we fix

the p(θ3) distribution to p(θ3|Yt0:tn). The prior mean and variance for climate are the

mean and 2 times the variance of the posterior distributions obtained at the first pass.

The numerical integrations required for the particle weighting (section 4.3.1) are com-

puted offline, i.e. before the SMC algorithm run, and the M = 1000 ‘omnibus’ MCMC

samples (V r
t ), r = 1..M are stored for each core point. Instead of checking convergence

of the numerous MCMC algorithms (one per core point), we prevent divergence by

using a very large burn-in period of 1M (million) iterations and store one sample every

1 thousandth iteration to avoid correlation in the chain.
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In the following sections we present several reconstructions obtained with different

models for the pollen accumulation at a single site (Mabo Moss, section 4.4.1) and

different sites with the same accumulation model (Negative binomial model, section

4.4.2).

4.4.1 Reconstructions for Mabo Moss with different accumu-

lation models

We reconstruct climate at Mabo Moss with three different models for the vegetation-

pollen link to understand the reconstruction sensitivity to (i) the calibration uncertain-

ties p(θ|y,npp) and (ii) the accumulation model selected: Poisson or negative binomial.

The first model, called ‘Poisson fixed’, has the Poisson model for accumulation and

θ = (θ1, θ2) fixed at a value θ̂ selected in the posterior simulations from calibration. In

other words, the integral Equation 4.9 is not performed over θ for the particle weighting.

The second model, called ‘Poisson posterior’, has the Poisson model for accumulation

and considers the calibration posterior, i.e. θ ∼ p(θ|y,npp). The last model, called

‘NB posterior’, has the negative binomial distribution for accumulation and considers

the calibration posterior.

In Figure 4.5 we present the reconstruction of the three climate variables obtained

after the first pass of the SMC algorithm at Mabo Moss and with the ‘Poisson fixed’

model. During this first pass reconstruction, the constraint on parameter θ3 driving the

climate inertia increases with the core time, i.e. it is better constrained at 0 than at 12

cal. kyr. BP (thousands of calendar years before 1950). This may partly explain the

larger posterior intervals for older ages. Precipitation reconstructions are poor. This

is likely to be due to the vegetation model which is known to be poorly constrained

by precipitation (see discussion in the first chapter) and amplified by the fact that

Swedish vegetation is controlled less by precipitation than temperature. The main
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Figure 4.5: The first pass of the algorithm for climate reconstruction at Mabo Moss

with the Poisson accumulation model and a fixed θ3. (x-axis) shows the age, between

0 and 12000 cal. yr. BP (calendar years before 1950). The blue lines show the prior

(obtained by MAT, see text). The colours show the posterior density (from light yellow

– low densities to dark red – high densities). The red lines show the posterior 0.025,

median and 0.975 quantiles. The three black marks on the left of the figures show

the means and two times the standard deviation of the monthly values of the variable

between the years 1901-1950

features of these reconstructions are (i) the late increase in temperature just before 8

cal. kyr. BP, which corresponds to the arrival of Fraxinus and the increase in deciduous
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Quercus and Tilia (see pollen diagrams in the appendix C) and (ii) the final, strong,

decrease in January temperature corresponding to the decrease or disappearing of most

of deciduous tree taxa (Ulmus, Tilia, Quercus deciduous, Corylus, Betula) replaced by

conifers such as Pinus and Picea and, by Grasses and Shrubs taxa (GrSh in the pollen

diagram).
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Figure 4.6: July temperature reconstructions at Mabo Moss (second pass of the algo-

rithm) with three different models for the accumulation. The legend is the same as in

Figure 4.5.

In Figure 4.6 we present the July temperature at Mabo Moss (second pass) recon-

structed using the three mentioned accumulation models (Poisson with θ3 fixed, Poisson
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and negative binomial). By comparing the ‘Poisson fixed’ reconstruction with the one

obtained previously (Figure 4.5), we see that the constraint on the θ3 at the second pass

allows to significantly reduce the uncertainties for the oldest period. The ‘Poisson pos-

terior’ should theoretically include the ‘Poisson fixed’ and have larger variances. This is

not the case, they show slightly different patterns with overlapping parts. This means

that integrating in the calibration uncertainties has little influence on the posteriors

compared to the errors arising from Monte Carlo integration. The ‘NB’ model provides

a different reconstruction with a later (7.5 kyr. instead of 9 kyr. BP) temperature

increase than in the Poisson models. This increase corresponds to weak changes in the

pollen composition, i.e. the Quercus deciduous and Fraxinus late increase. The model

seems very sensitive to very small changes in the pollen composition.
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4.4.2 Reconstructions at different sites

In Figure 4.7 we present the July temperature reconstructions at the four sites using

the negative binomial model. We selected this model because, even though in the Mabo

Moss reconstructions it provided a reconstruction apparently less supported by data,

the model validation on modern dataset (explained in the previous chapter) showed

that it is better supported by modern data than the Poisson model.

Reconstructions show similar features for Mabo Moss and Flarken from one side and

Trummen and Gloppsjon on the other. Mabo Moss and Flarken are located around

the same latitude (see Figure 4.4). Their pollen diagrams present similar shapes that

could explain the July temperature increase: starting only around 7.5 and 7 kyr. BP

and related to the arrival of Fraxinus, Quercus deciduous and Tilia taxa. Gloppsjon

and Trummen are located respectively north and south of these sites despite having

very similar shapes in their pollen diagrams and climate reconstructions. This confirms

the high sensitivity of this model to weak changes in the pollen composition. Part of

this over-sensitivity may be explained by a poorer integration by the ‘omnibus’ sample

compared to the Poisson model. But since reconstructions are coherent between cores

showing the same vegetation dynamics, this feature is not only due to ‘noise’ from

Monte Carlo integration.

Spatio-temporal reconstruction

We tried to reconstruct a global climate for these four sites in a single reconstruc-

tion exercise, i.e. a spatio-temporal reconstruction as presented section 4.3.1. We then

selected the same climate model as for a single site (proximity of the sites supports

this idea). The reconstruction (not shown here) crashed because the vegetations in the

various pollen diagrams are significantly different. For example, the arrival and increase

of deciduous taxa is significantly different between sites around 8 kyr BP. Therefore, for

certain points (particularly around 8 kyr. BP), the algorithm did not manage to find

a trade-off in climate for explaining the various vegetation. The integrations by IS for

particle weighting produced a number of equally weighted particles having very differ-
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Figure 4.7: July temperature reconstructions at the four sites (second pass of the

algorithm) with the negative binomial model for the accumulation. The legend is

detailed in Figure 4.5.

ent and often implausible climates that indicate the failure of the algorithm. We tried

to artificially reduce the prior range for climate but the posterior particle distribution

always indicated a lack of convergence.

This is coherent with the pollen sequences and the reconstruction previously pro-

duced. From our model point of view, the pollen sequences of Mabo Moss and Flarken

on one side and Trummen and Gloppsjon on the other cannot be the result of the same

past climate dynamics – yet they must be in reality, due to their closeness in space.
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This imply one must consider other processes, not included in our statistical model,

nor in DVM such as LPJ-GUESS, particularly those attached to the vegetation spatial

dynamics (e.g. migration).
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4.5 Discussion

We proposed a semi-mechanistic model based on the representation of the processes

linking climate and pollen sampled in sediments. In its higher level, it integrates a DVM

for linking climate and vegetation. The following levels are modelled stochastically and

represent the anthropogenic disturbance or the DVM error, the processes of pollen

production and dispersion and finally the accumulation and sampling in the natural

trap. We used the most up-to-date Bayesian tools for the inference of this model’s

parameters and past climate for four sediment cores. This TF, intrinsically based

on the validity of the vegetation model and the ‘completeness’ of the statistical model

representing the vegetation-pollen relation appeared to suffer from structural errors and

problems with its inference. We define structural errors as gaps in the model structure

that cause it to produce climate reconstructions that are too sensitive to changes in

pollen composition, e.g. too different between sites that have certainly experienced

the very similar past climate conditions. The inference limitations in calibration and

reconstruction are numerous and mainly (i) preclude the proper calibration and testing

of the TF and (ii) they induce a high level of noise in the reconstructions.

The structural errors may arise from inadequacy of the statistical model with respect

to representing the uncertainties in the relationship between vegetation and pollen. The

validation of the Poisson and Negative binomial models are one aspect of the problem

but uncertainties remain on the hypotheses we made about constancy in space of the

pollen production, dispersal and vegetation error. On its side, LPJ-GUESS contains

a huge number of parameters that are fixed and can also contain errors. Especially,

the parameters controlling the vegetation dynamics are very poorly constrained due

to the lack of large temporal records of climate and vegetation that would allow their

calibration. Both types of structural errors require further - deep - consideration and

testing that are currently very restricted due to problems in inference.

The inference of such a semi-mechanistic TF is very limited and requires extra work

in statistics. The structural problems require further investigations of the model ade-

quation in its various levels. The vegetation model calibration may be redone or im-
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proved using the modern pollen and climate dataset and the different hierarchical levels

should be tested using robust procedures such as cross-validation. This is currently not

permitted by the computational cost of such methods straightforwardly applied to semi-

mechanistic and hierarchical and spatio-temporal structures. These problems require

major changes in the inference and/or modelling strategy. Possible solutions include

the use of ‘emulators’, i.e. statistical models copying the vegetation model structure.

The mix of a mechanistic model and stochastic relations allowed us to provide a

model including a number of processes expected to link climate and pollen through

space and time. For palaeoclimatology, this process-based structure is deeply original

in that it fully integrates the up-to-date knowledge about climate-plant-pollen rela-

tions. It is not explored in this manuscript but the framework and the model have po-

tentially wider applications than palaeoclimate reconstruction; for example, vegetation

model calibration on the modern dataset and past vegetation dynamics reconstruction

from pollen sequences could be envisioned after improvement of the statistical inference

framework.
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Conclusion and perspectives

We built and used a full process-based TF for the reconstruction of palaeoclimate from

pollen data. The approach is based on three major points, (i) the use of a DVM to link

the plant species environment to their productivity, which requires the DVM inversion

for palaeoclimate reconstruction, (ii) the building of a statistical hierarchical model for

describing the processes linking vegetation and pollen and, (iii) the development and

use of a Bayesian statistical framework to properly define the inference and include

uncertainties attached to the calibration/reconstruction process in palaeoclimatology.

• The modelling of the plant-environment interactions has been achieved by plug-

ging an up-to-date DVM, LPJ-GUESS, inside the TF, which is an improvement of what

Guiot et al. (2000) have done with a static vegetation model. With such mechanistic

model in the TF, palaeoclimate reconstructions require the ‘dynamic’ inversion of the

DVM, i.e. a joint (opposed to independent) climate reconstruction based on all pollen

samples from a given sediment core. In statistics, the problem translates into the infer-

ence of hidden states from a state-space model, whose core structure is implicit (only

available through simulations). No classical solution exists, and we proposed to adapt a

sequential Monte Carlo algorithm to obtain the reconstruction as the filtering posterior

distribution. This result is a first step toward obtaining the smoothed posterior, i.e.

reconstructions including the whole temporal information.

• The plant-pollen link is a statistical model representing major processes through

a chain of levels. The higher level, immediately linked to the DVM outputs, represents

the DVM ‘errors’ compared to actual vegetation, e.g. those created by local and an-

thropogenic disturbances. The second level models the processes of pollen production,
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dispersal and accumulation in the lake. The last level represents the processes of sam-

pling, recognising and counting a fraction of the pollen grains present in the sediment.

The whole model is comparable to those used in palaeoecology for reconstructing past

vegetation composition from pollen samples. However, here, it is framed in the Bayesian

paradigm, allowing its inference in a single step, and it is adapted to the continental

scale. From a statistical point of view, the novelty consists in the modelling of multi-

nomial overdispersion in the context of many zeros. This huge spatial model, applied

to the European dataset, raised inference and testing problems that we addressed by

parallelising a MCMC algorithm and combining several model checking criteria. De-

spite its stochastic and process-based structure, it is not fully adequate to represent

the variability present in the modern dataset. Fast and robust validation methods still

need further developments to locate failures in modelling. The re-calibration of the

vegetation model may form part of the solution.

• The whole process-based modelling has been framed in the Bayesian paradigm.

This inference framework provides a theoretical sound basis for reconstructing past

climate from TF that describe - causatively - pollen as a function of past environment.

The Bayesian link between ‘calibration’ and ‘reconstruction’ processes through the so-

called prior/posterior rationale allows to propagate the uncertainties between these two

steps. It also opens the door to one of the most active fields of research in modern

inference techniques around Monte Carlo methods.

The process-based approach is aimed at complementing the correlative TF by being

based on independent hypotheses and integrating up-to-date knowledge in vegetation

modelling. Its purpose is to provide independent reconstructions, increasing the con-

fidence in palaeoclimate reconstructions that are only available through the TF. We

believe that, by enhancing the similarities between Species Distribution Models (SDM)

used in Ecology and TF, the huge modelling and inference effort required to obtain

improved process-based approaches could be shared between disciplines.
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Perspectives

The uses of our TF in calibration and reconstruction were strongly restricted by the

lack of rapid inference and validation methods. This arose from the semi-mechanistic

and spatio-temporal nature of the TF. The development of inference and validation

procedures for such approach forms a huge field of research having a wide range of

applications outside palaeoclimatology and ecology.

As discussed in the calibration results, the DVM lacks quantitative calibration and

testing based on the modern species distributions. The statistical model we used for the

calibration of the vegetation-pollen relation could be a support for such comparisons.

When the inference of semi-mechanistic models will be partly solved, the approach we

presented would allow (a) the calibration of parameters inside the DVM, based on mod-

ern species distributions, (b) the modelling of anthropogenic disturbances and spatial

vegetation dynamics, and in ‘reconstruction’, (c) the joint calibration and reconstruc-

tion of spatio-temporal vegetation dynamics on large spatio-temporal scales.

Inference of semi-mechanistic models

Throughout the whole work we faced problems with the inference and the validation.

They are due to the mechanistic DVM defining an implicit distribution and, the use of

spatio-temporal structures for large datasets. For example, on the DVM side, past cli-

mate reconstructions have been only obtained as filtering distributions, cross-validation

of the reconstruction method was only possible on a very small set of sites and the DVM

parameters calibration was ignored due to the too highly dimensional integration re-

quired. On the statistical side, the validation of the spatial vegetation-pollen relation

has been considerably constrained by the computing time required for the inference.

The inference of spatio-temporal structures on very large datasets is already the

subject of many statistical researches in modelling and inference (e.g. in spatial statis-

tics, Calder and Cressie, 2007; Fuentes, 2007; Banerjee et al., 2008; Zhang and Wang,

2009). We believe that these approaches may be integrated in the future to allow faster
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inference in our approach.

The inference and validation for semi-mechanistic models are in their infancy and re-

quire deep consideration in statistics, because they have a tremendous range of applica-

tions. Indeed, from genetics and molecular biology to vegetation and climate modelling,

there is a need for calibrating parameters inside mechanistic models or reconstructing

states of hidden variables linked through mechanistic models from diverse sources of

information.

Recent propositions for tackling the problem have been made. For example, in

genetics, ABC methods (Beaumont et al., 2002; Sisson et al., 2006; Beaumont et al.,

2010, and references therein) allow to calibrate a few parameters inside simulatory

models based on highly dimensional genetic data. These methods have recently been

applied to the inference of parameters in a biological dynamic system driven by a few

differential equations (Toni et al., 2009). Although this is similar to our problem, this

remains far from reconstructing past states of the system when the mechanistic model

is as computationally demanding as ours. In Global Circulation Models (GCM), earth

system models and ecosystems models, the techniques related to ‘data-assimilation’ or

‘data-model fusion’ deal with the integration of models and data for the calibration of

models or the correction of their predictions (e.g. Daley, 1991; Hargreaves and Annan,

2002; Raupach et al., 2005). In these cases, the models are often over computationally

demanding (e.g. GCM) and statistical modelling is reduced to very simple Gaussian

models, either because this is the only way for obtaining a tractable inference or because

the data are supposed to be ‘close’ to quantities simulated from these models (compared

to the pollen as an indicator of the vegetation). Recent propositions such as model

emulation and ‘reified’ modelling (Currin et al., 1991; Kennedy and O’Hagan, 2001;

Goldstein and Rougier, 2009) provide new perspectives for the modelling and inference

of such highly complicated physical systems by emulating them using computationally

inferable statistical models. The weakness of this approach is its use of a statistical

model, the emulator, which evolves in its own statistical world, restricting feedbacks

and improvements to the mechanistic models in use (DVM in our case).

We believe that by combining several of these approaches, in a near future, solutions
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will be available for continuing the development and improvement of our process-based

TF.

Validation and improvement of vegetation models

Validation is the Achille’s heel of our semi-mechanistic approach. In this work oriented

on palaeoclimatology, we considered the vegetation model as valid (i.e. properly cali-

brated and tested) for the modelling of modern vegetation distributions although (i) it

has not been validated on dataset that are as extensive and quantitatively precise as

our European modern pollen dataset and (ii) it does not account for spatial vegetation

dynamics, such as migration and plant dispersion processes.

When the inference of semi-mechanistic models will be partly solved, the framework

we presented in the last chapter would readily allow the calibration of parameters inside

the DVM and its proper testing as a component of the hierarchical statistical model.

Such inference has to be discussed and several parameters must remain fixed since they

are derived from theory and would lose their meaning in a ‘blind’ statistical fitting.

Moreover, the DVM does not model any spatial component (e.g. species migrations)

nor anthropogenic disturbances, which make it inappropriate for the direct modelling

of the modern species distributions that are expected to feature footprints from these

processes. In the statistical model linking the DVM outputs to pollen data, we crudely

took part of these processes into account by assuming independent errors (in space and

between species) between the simulated and the actual vegetation featured by pollen

data. The imperfect fit of the statistical model to pollen data is due to this crude

representation of the vegetation spatial processes and, relatedly to the DVM.

The improved inference framework for the semi-mechanistic model we proposed

would then help locating gaps in the DVM to represent the modern species (quan-

titative) distribution. It would also allow the calibration of future spatial components,

forming the base for the next generation of vegetation models. This migration compo-

nent cannot be fully fitted on modern data since they cover a very restricted temporal

range. The pollen sequences collected in hundreds of cores around the world provide
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a unique information about these dynamics. They could be used to calibrate the veg-

etation dynamics at the same time as climate reconstruction are performed based on

many cores.

To conclude, palaeoclimatology and palaeoecology bear the keys for the next genera-

tion of spatio-temporal dynamical vegetation models, which are the most credible tools

for the prediction of future vegetation under climate having modern no analogues.
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Bottema, S. (1974). Late Quaternary Vegetation History of Northwestern Greece. PhD thesis, Rijksuniv. Groningen.

Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driess-

chaert, E., Fichefet, T., Hewitt, C. D., Kageyama, M., Kitoh, A., Lâıné, A., Loutre, M.-F., Marti, O., Merkel, U.,
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Appendix A

Supplementary material chapter 2

A.1 Additional vegetation parameters

Tables of additional model parameters.
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Species kla:sa Leaf long. Rfire Chilling (b, k) Longevity

(m2 m−2) (y) (y)

Abies alba 6000 6 0.2 (100,0.05) 350

Alnus incana 6000 0.5 0.2 (100,0.05) 200

Betula pendula 6000 0.5 0.2 (500,0.02) 300

Betula pubescens 6000 0.5 0.1 (100,0.05) 300

Carpinus betula 6000 0.5 0.1 (1000,0.025) 150

Corylus avellana 5000 0.5 0.2 (200,0.05) 100

Fagus sylvatica 6000 0.5 0.1 (220,0.03) 400

Fraxinus excelsior 6000 0.5 0.1 (100,0.05) 400

Picea abies 6000 6 0.1 (100,0.05) 400

Pinus sylvestris 3500 2 0.4 (100,0.05) 500

Pinus halepensis 4000 2 0.4 (100,0.05) 350

Populus tremula 6000 0.5 0.2 (100,0.05) 160

Quercus coccifera 3200 3 0.5 (100,0.05) 350

Quercus ilex 4000 3 0.3 (100,0.05) 350

Quercus robur 6000 0.5 0.2 (100,0.05) 500

Tilia cordata 6000 0.5 0.1 (1000,0.025) 500

Ulmus glabra 6000 0.5 0.1 (100,0.05) 400

C3 grass - 1 1.0 - 1

Table A.1: Additional species parameters and bioclimatic limits used in the LPJ-

GUESS model. kla:sa: ratio leaf area to sapwood cross-sectional area. Leaf long.:

leaf longevity. Rfire: Fraction of a species’ patch population and litter that survives a

fire. Chilling (b, k): chilling parameters, as described by Sykes et al. (1996). Longevity:

tree species longevity.
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Shade parffmin greffmin estmax α convsap

Class (105 J m−2 d−1) (kg Cleaf m−2 y−1) (m−2 y−1) (y−1)

St 3.50 0.05 0.05 3 0.10

Ist 5.75 0.06 0.10 6 0.15

Si 8.00 0.07 0.30 9 0.20

Table A.2: Shade tolerance parameters used in the LPJ-GUESS model. See Smith

et al. (2001) for full details. parffmin: Minimum photosynthetically active radiation at

the forest floor for establishment. greffmin: Growth efficiency threshold. estmax: Maxi-

mum sapling establishment rate. α:recruitment shape parameter. convsap: Sapwood to

hardwood conversion rate. Relative to Si species, St tree species require less photosyn-

thetically active radiation at the forest floor to establish, produce fewer saplings under

full light conditions, have a lower threshold growth efficiency for stress mortality, have

less suppression of establishment at low forest-floor NPP, and convert proportionally

less sapwood to hardwood annually. ISt species have intermediate characteristics.
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A.2 Comprehensive description of the particle filter

The aim of this appendix is to fully describe the particle filter algorithm used for

inference. We start from the model’s equations and show how to obtain the posterior

distribution.

A.2.1 Initialisation of the algorithm

For time t1 of the first pollen core sample, according to the Bayes theorem and a

development from Equation 2.5

p(Vt1 , Ct1|Yt1) ∝ p(Yt1|Vt1).pLPJ(Vt1|Vt0 , Ct1).p(Ct1)

Time t0 (see Figure 2.3) is a notation to show that the time relationship between

vegetation always exists. As we do not have data to reconstruct t0 vegetation we

assume an equilibrium hypothesis between climate and vegetation at time t1 and then

use:

p(Vt1 , Ct1|Yt1) ∝ p(Yt1|Vt1).pLPJ(Vt1|Ct1).p(Ct1)

From these equations the algorithm will be: SampleNp “particles” C
(l=1:Np)
t1 from p(Ct1).

“Particles” describe the simulated climates and later the simulated couples of climate-

vegetation. For each particle we run LPJ-GUESS for 500 years to reach equilibrium and

obtain Np “particles” (Ct1 , Vt1)
(l=1:Np) following pLPJ(Vt1 |Ct1).p(Ct1). For each particle

we then compute the non-normalized importance weights:

ω
(l)
t1 =

p(Yt1|V
(l)
t1 ).pLPJ(V

(l)
t1 |C

(l)
t1 ).p(C

(l)
t1 )

pLPJ(V
(l)
t1 |C

(l)
t1 ).p(C

(l)
t1 )

= p(Yt1|V
(l)
t1 )

normalizing the weights (so their sum is 1) we obtain

ω̃
(l)
t1 =

ω
(l)
t1∑Np

k=1 ω
(k)
t1

A discrete approximation of p(Vt1 , Ct1|Yt1) is therefore

p̃(Vt1 , Ct1|Yt1) =
∑Np

l=1
ω̃

(l)
t1 .δ(Vt1 ,Ct1 )(l)

where δ(Vt1 ,Ct1 ) is the Dirac mass applied at (Vt1 , Ct1).
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A.2.2 Step tj of the algorithm

Let ti and tj be two consecutive core times. Starting at tj step of the algorithm we

have (Vt1:ti , Ct1:ti)
(l=1:Np), Np “histories” of vegetation and climate weighted by ω̃

(l=1:Np)
ti .

These series and weights define the discrete approximation of p(Vt1:ti , Ct1:ti |Yt1:ti). We

want to add a coherent “particle” (Vtj , Ctj )
(l) to each history. Each new history obtained

by concatenation of (Vt1:ti , Ct1:ti)
(l) and (Vtj , Ctj )

(l) with their associated weights ω̃
(l)
tj

must define the discrete approximation of p(Vt1:tj , Ct1:tj |Yt1:tj ).

By Bayes theorem and the model definition p(Vt1:tj , Ct1:tj |Yt1:tj ) can be developed

p(Vt1:tj , Ct1:tj |Yt1:tj ) ∝ p(Ytj |Vtj ).p(Vtj , Ctj |Vti).p(Vt1:ti , Ct1:ti |Yt1:ti)

∝ p(Ytj |Vtj ).pLPJ(Vtj |Vti , Ctj ).p(Ctj ).p(Vt1:ti , Ct1:ti |Yt1:ti)

We simply have to sample Np “particles” C
(l=1:Np)
tj of climate parameters from p(Ctj ).

For each particle we run LPJ-GUESS for tj − ti years and obtain Np “particles”

(Ctj , Vtj )
(l=1:Np) following pLPJ(Vtj |Vti , Ctj ).p(Ctj ). For each particle we then recompute

non-normalized importance weights:

ω
(l)
tj =

p(Ytj |V
(l)
tj ).pLPJ(V

(l)
tj |V

(l)
ti , C

(l)
tj ).p(C

(l)
tj ).p(V

(l)
t1:ti , C

(l)
t1:ti |Yt1:ti)

pLPJ(V
(l)
tj |V

(l)
ti , C

(l)
tj ).p(C

(l)
tj )

= p(Ytj |V
(l)
tj ).

∑Np

k=1
ω̃

(k)
ti .δ(Vt1:ti ,Ct1:ti )(k)

= p(Ytj |V
(l)
tj ).ω̃

(l)
ti

and then renormalize the weights according to

ω̃
(l)
tj =

ω
(l)
tj∑Np

k=1 ω
(k)
tj

A.2.3 Regeneration

The sequential importance sampling algorithm presented above is theoretically valid,

but its efficiency decreases with time, i.e. after a number of time steps the discrete

approximation of the posterior distribution will be reduced to one single particle with
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weight equal to 1. The solution is to add a regeneration step making the algorithm a

particle filter algorithm (Doucet et al., 2001).

The regeneration step consists of sampling with replacement particles according to

their weights. It implies that a particle with a weight of 0 will not be sampled further

and is removed but that those with high weights will be sampled many times and are

therefore multiplied. Since the regeneration step introduces a Monte Carlo error in the

estimation, we do not have to do it if the particles are well distributed (Doucet et al.,

2001). The criterion used to determine the need to resample the Effective Sample Size

(ESS) criterion.

ESSt =

(∑Np

l=1

(
ω̃

(l)
t

)2
)−1

The ESS criterion takes its values in the range 0 to Np. If the degeneracy of particles

is too high (and thus the ESS lies under an arbitrary threshold of Np/2) we apply the

regeneration step (resample) and we reset all weights to 1/Np, otherwise we keep all

particles and weights.

Different methods are available for the resampling step. We use the efficient resid-

ual sampling technique from Liu and Chen (1998): At step t we have Np parti-

cles (Vt, Ct)
(l=1:Np) weighted by ω̃

(l=1:Np)
t . In a first step, for each particle (l), we

keep n1,(l) = bNpω̃
(l)
t c copies of the particle. In a second step we randomly sample

m = N−
∑Np

l=1 n
1,(l) particles in the set of all particles weighted by ω

1,(l)
t ∝ Np.ω̃

(l)
t −n1,(l).
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Appendix B

Supplementary material chapter 3

B.1 Mean and variance of a Poisson ratio

LetN ∼ P(λ) be a discrete random value with Poisson distribution and λ ≥ 0. LetM ∼
P(µ) be another discrete random value, independent of N , with Poisson distribution

and µ ≥ 0. Our interest lies in R = N
N+M

, when K = N + M > 0 and in particular in

E [R|K > 0] and Var [R|K > 0].

We note that, conditional on K = k, N ∼ B(k, p) a binomial distribution with k

outcomes and p = λ
λ+µ

.

Thus E [R|K = k] = p and Var [R|K = k] = 1
k
p(1−p). From the former E [R|K > 0] =

EK>0 [E [R|K]] = p.

Since E [R2|K] = p2 + 1
K
p(1 − p) we have E [R2|K > 0] = p2 + p(1 − p)EK>0

[
1
K

]
,

where K ∼ P (ν) and ν = λ+ µ. But

EK>0

[
1

K

]
=

e−ν

1− e−ν

(∑
k>0

νk

k!k

)

=
e−ν

1− e−ν

∫ ν

0

eu − 1

u
du

which is not analytically tractable.
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We can obtain bounds for
∑

k>0
νk

k!k
,

1

ν

(
∞∑
k=1

νk+1

(k + 1)!

)
<
∑

k>0
νk

k!k
=

1

ν

(
∞∑
k=1

νk+1

(k + 1)!
.
k + 1

k

)
1

ν
(eν − 1− ν) <

∑
k>0

νk

k!k
=

1

ν

(
eν − 1− ν +

∞∑
k=1

νk+1

(k + 1)!k

)
1

ν
(eν − 1− ν) <

∑
k>0

νk

k!k
<

1

ν

(
eν − 1− ν +

3

ν

(
∞∑
k=1

νk+2

(k + 2)!

))
1

ν
(eν − 1− ν) <

∑
k>0

νk

k!k
<

1

ν
(eν − 1− ν) +

3

ν2

(
eν − 1− ν − ν2

2

)
(B.1)

They bound EK>0

[
1
K

]
to

1− e−ν − νe−ν

ν(1− e−ν)
< EK>0

[
1

K

]
<

1− e−ν − νe−ν

ν(1− e−ν)
+

3(1− e−ν − νe−ν − ν2e−ν/2)

ν2(1− e−ν)

Hence EK>0

[
1
K

]
≈ 1

ν
and Var [R|K > 0] ≈ 1

ν
p(1 − p) for ν ‘sufficiently large’. This

demonstrates that the model works like a Multinomial-Dirichlet model with one ν

overdispersion parameter for the probabilities.
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Appendix C

Supplementary material chapter 4

C.1 Pollen diagrams of the four studied sites

The pollen data used for the four sites are part of the European Pollen Database

(www.europeanpollendatabase.net). They were published in Göransson (1991); Di-

gerfeldt (1972, 1977); Almquist-Jacobson (1994). For linkage with the vegetation model

outputs, we grouped the original taxa into 15 groups including the 14 major European

trees and a group called ‘GrSh’ comprising the grasses and shrubs. For more informa-

tion see Garreta et al. (2009). On the pollen diagrams we removed the Abies and the

Quercus evergreen groups that are completely absent from the four studied cores.

164



0

2000

4000

6000

8000

10000

12000

M
abo M

oss
0

0.2

Alnus

0.1

0.7

Betula

0

0.025

Carpinus

0

0.15

Corylus

0

0.006

Fagus

0

0.006

Fraxinus

0

0.2

Picea

0.2

0.8

Pinus

0

0.08

QuercusD

0

0.06

Tilia

0

0.02

Ulmus

0

0.0015

Populus

0.1

0.4

GrSh

Figure C.1: Pollen diagram of the Mabo Moss sediment core (Göransson, 1991). (x-axis)

Age in years before 1950. (y-axis) The pollen proportion per pollen taxa. Caution

The scales are adjusted and hide very large differences in the composition.
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Figure C.2: Pollen diagram of the Trummen sediment core (Digerfeldt, 1972). (x-axis)

Age in years before 1950. (y-axis) The pollen proportion per pollen taxa. Caution

The scales are adjusted and hide very large differences in the composition.
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Figure C.3: Pollen diagram of the Flarken sediment core (Digerfeldt, 1977). (x-axis)

Age in years before 1950. (y-axis) The pollen proportion per pollen taxa. Caution

The scales are adjusted and hide very large differences in the composition.
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Figure C.4: Pollen diagram of the Gloppsjon sediment core (Almquist-Jacobson, 1994).

(x-axis) Age in years before 1950. (y-axis) The pollen proportion per pollen taxa.

Caution The scales are adjusted and hide very large differences in the composition.
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