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Introduction Temporal inversion Process-based p-based reconstruction

Climate research

Many questions, e.g human history and climate change issues require
(deep) understanding of the ‘climate system’

earth-scale system

interacting through complex exchange mechanisms

reacting to forcings (e.g insolation, CO2 concentration, solar activity)

Vincent Garreta Pollen-based palaeoclimatology

Solomon et al. (2007)
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Palaeoclimatology

This non-reducible system has to be measured for a large range of conditions

i.e forcings, having different characteristic time scales

cannot provide any insight into ¢ner-scale phase
relationships.

3.1. Orbital frequencies

3.1.1. Interglacials and interstadials
Inspection of the pollen and isotopic records in

Fig. 4 reveals that the many substages that the
marine isotopic sequence is divided into are also
appropriate for viewing the continental record, as

already pointed out by Tzedakis et al. [2],
although the marine and terrestrial boundaries
may not be precisely isochronous. The terrestrial
sequence shows tripartite divisions into temperate
substages during not only MIS 5 and MIS 7, but
also MIS 9, which are even more clearly de¢ned
than in the marine isotopic sequence. Within MIS
9 the amplitude of the AP3{Pinus+Juniperus}
curve in Fig. 4A suggests that maximum expan-
sion of temperate trees was in MIS 9e, followed

Fig. 4. Comparison of palaeoclimatic records. (A) Summary pollen percentage curves from Tenaghi Philippon sequence, dashed
line: total AP; solid line: AP3{Juniperus+Pinus}. (B) Benthic and planktonic foraminifera isotopic record of ODP 980 [15]. (C)
N18O of sea water from ODP 980, representing the ice volume/sea level component of benthic foraminifera N18O [15]. (D) Atmo-
spheric CO2 content from Vostok, Antarctica [30] plotted on the Shackleton [31] timescale. (E) Insolation curve for 65‡N and
40‡N [20]. Bands highlight periods of distinctive climate signature discussed in text.
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Climate reconstruction

and uncertainties

In this presentation

new method

Holocene in Europe

including pollen, chironomids, diatoms and NIR. In
another quantitative multi-proxy study in Western
Norway, Birks and Ammann (2000) found summer
temperatures at the start of the Holocene increased
quickly to values close to modern levels, and warming
continued into the early Holocene. Other studies
based on macrofossil reconstructions of past tree-lines
have also noted that the early Holocene tree-line
was close to the present day in the Scandes mountains
(Dahl and Nesjke, 1996). These and other studies also
indicate that the early Holocene warming was gradual
(Karl!en, 1998; Lauritzen and Lundberg, 1999; Sepp.a
and Birks, 2001).

Evidence for a mid-Holocene thermal maximum in
Scandinavia is considerable, and based on a wide range
of proxies. Tree-lines reached their maximum altitude
up to 300m higher than today (Eronen and Zetterberg,
1996; Barnekow and Sandgren, 2001) and glaciers were
much reduced or absent (Karl!en, 1988; Seierstad et al.,
2002). Quantitative reconstructions indicate that tem-
peratures were up to 2.0#C higher than today (Barne-
kow, 2000; Barnett et al., 2001; Sepp.a and Birks, 2001,
2002; Ros!en et al., 2001). These mostly refer to summer
temperatures, although Kullman (1995) notes that the
success of pine in the early Holocene in the Scandes
mountains would not have been compatible with colder
(and drier) than normal winters even if the summers
were warmer. Higher temperatures may also have
increased evaporation, contributing to the decline in

mid-Holocene lake levels observed between 8000 and
5800 BP by Hyv.arinen and Alhonen (1994).

Our results suggest the summer thermal maximum
occurred across a wide area of Northern Europe at
around 6000 BP. Evidence from other studies indicate a
range of dates for the timing of the mid-Holocene
thermal maximum, although many of these fall between
6000 and 7000 BP. These include dates of between 7900
and 6700 BP from pollen data (Sepp.a and Birks, 2001),
6200 BP from chironomids (Korhola et al., 2000) and
maximum tree-line altitudes at 6300 BP (Barnekow,
2000) and between 6300 and 4500 BP (Barnekow and
Sandgren 2001; Sepp.a et al., 2002). Land ice cover was
also at a minimum at 6200 BP (Nesje et al., 2001), whilst
glaciers were mainly absent from a catchment in
Western Norway between 9800 and 6700 BP (Seierstad
et al., 2002), and between 7300 and 6100 BP at least the
northern part of the Jostedalsbreen ice cap melted away
(Nesje et al., 2000).

Discrepancies in the timing of the thermal maximum
between studies may be related to local climatic effects,
or edaphic factors in the case of vegetation proxies. The
Scandes mountains form one of the steepest climatic
barriers in Europe, and sites either side of them may be
expected to show contrasting responses. Sepp.a and
Birks (2002) showed that the mid-Holocene maximum
may vary even within a relatively short distance using
the same reconstruction methods and calibration
dataset. For other proxies sensitive to different climatic
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Pollen as a climate proxy

Pollen assemblages found in lake sediments provide an image of past vegetation
partially controlled by climate.

t0: Mediterranean climate

Pollen production

Pollen dispersal

Pollen accumulation

tn+1: Coring

Sediment
Coring

t1: Oceanic climate

⇒ Vegetation (and climate) history
recorded in sediment core

Vincent Garreta Pollen-based palaeoclimatology
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Pollen-based palaeoclimate reconstructions

1 Calibration: Learning the links between modern climate and pollen

Modern climate Pollen samples

Mediterranean climate (pinus, evergreen oak)

Oceanic climate (oak, beech)

2 Reconstruction: inferring past climate based on pollen assemblages.

14C dating + pollen

← t1:

← t0:

t1: Oceanic

t0: Mediterranean (≈)

Vincent Garreta Pollen-based palaeoclimatology
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Transfer Functions & notations

Pollen Y = (Y 1, ..,Y k), counts per taxa relatively to their sum Σk
j=1 Y j

Climate C = (C 1, ..,C l), vector of climate variables, e.g (Tjan, Tjul, Pann)

Example of TF noted f (): Y = f (C , θ) + ε

1 Calibration

obtain θ̂ such that for all s = 1..N, Ys ≈ f (Cs , θ̂)

based on modern data and

2 Reconstruction

obtain Ct such that, Yt ≈ f (Ct , θ̂)

Vincent Garreta Pollen-based palaeoclimatology
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Two types of TF

CorrelativeTF are statistical relations climate-pollen

Backward C = f (Y , θ, ε)

Reconstruction = prediction Ct

Direct Y = f (C , θ, ε)

Reconstruction = inversion Ct

Mechanistic TF include a vegetation model in climate-vegetation-pollen

Y = g (vegetation [C ,CO2, ...] , θ, ε)

Reconstruction = inversion mechanistic model

Vincent Garreta Pollen-based palaeoclimatology
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Correlative paradigm

Correlative paradigm: interest lies in the realised correlation climate-pollen

+

⇒ learning Y = f (C , θ)

Problem if species depend on, e.g CO2

Problem with extrapolation

Vincent Garreta Pollen-based palaeoclimatology
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Mechanistic approach

Guiot et al. (2000) propose

use a vegetation model for (climate, CO2, soil)-vegetation

use a statistical model for vegetation-pollen

CO2
Soil

C

Veg Model
NPP

Inversion

- Clim envelopes
- Biogeochemical proc
- Competit ion proc

...

Y
g()

Y = g (vegetation [C ,CO2, ...] , θ, ε)

CO2 and main factors included

Extrapolation ≈ (depending on g)

Vincent Garreta Pollen-based palaeoclimatology



Introduction Temporal inversion Process-based p-based reconstruction

Bayesian inference for palaeoclimatology

Bayesian framework:

Prior + model(data) → Posterior

Y = g (vegetation [C ,CO2, ...] , θ, ε)

⇔ p(Y |C , θ)

CO2
Soil

C

Veg Model
NPP

Inversion

- Clim envelopes
- Biogeochemical proc
- Competit ion proc

...

Y
g()

1 Calibration: p(θ|Ys ,Cs) ∝ p(Ys |Cs , θ) p(θ)

2 Reconstruction: p(Ct |Yt) ∝
R

p(Yt |Ct , θ) p(θ|Ys ,Cs) p(Ct) dθ

Modern inference algorithms (e.g MCMC) allow to obtain such posteriors

Vincent Garreta Pollen-based palaeoclimatology
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Outline

1 Develop the inversion of a dynamic vegetation model
→ temporal reconstructions
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2 Propose a process-based modelling of vegetation-pollen
→ spatial calibration

Pollen production

Pollen dispersal

Pollen accumulation

⇒ consider spatialised

3 Combine both methods
→ toward full process-based and spatio-temporal reconstructions

4 Conclusion and perspectives

Vincent Garreta Pollen-based palaeoclimatology
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Part 1: Inversion of a Dynamic Vegetation Model (Garreta, Miller et al. 2009)

Guiot et al. with BIOME3

Static & Deterministic model

⇒ 1 by 1 inversion

t ime t0 t1 t2

Ct2Ct1Ct0

Yt0 Yt2Yt1

MCMC algorithm

CO2
Soil Veg Model NPP*

C*

Y

1. Proposition
2. Coherence ?
3. Accept/reject C*

Using LPJ-GUESS (Smith et al. 2001)

Dynamic & Stochastic model

N
PP

Time Taxa

NP
P

⇒ Joint inversion !

t ime t0 t1 t2

Ct2Ct1Ct0

NPPt2NPPt1NPPt0

Yt0 Yt2Yt1

High-dimensional problem...

Vincent Garreta Pollen-based palaeoclimatology



Introduction Temporal inversion Process-based p-based reconstruction Likelihood Inference Application

Statistical model embedding LPJ-GUESS

t ime t0 t1 tn

...

Reconstruction

CtnCt1Ct0

NPPtnNPPt1NPPt0

Yt0 Ytn
Yt1

Calibration

Cs=1:N

NPPs=1:N

Ys=1:N

LPJ-GUESS LPJ-GUESS LPJ-GUESS LPJ-GUESS

p(Y|NPP)
p(Y|NPP) p(Y|NPP) p(Y|NPP)

p(Yt |NPPt) pollen/vegetation distribution → to be constructed

Vincent Garreta Pollen-based palaeoclimatology
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p(Yt |NPPt) modelling

It translates the relations between k = 15 NPP and pollen Y

Simplifications based on independence hypotheses

Finally, statistical smoothing of
→ 1 by 1 pollen response to vegetation abundance
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Introduction Temporal inversion Process-based p-based reconstruction Likelihood Inference Application

The inference problem

Reconstruction equivalent to obtaining p(Ct0:tn ,NPPt0:tn |Yt0:tn ) from

a hidden Markov model

defined through an implicit (transition) distribution, LPJ-GUESS

t ime
t0 t1 tn

...

CtnCt1Ct0

NPPtnNPPt1NPPt0

Yt0 YtnYt1

LPJ-GUESS LPJ-GUESS LPJ-GUESS

p(Y|NPP) p(Y|NPP) p(Y|NPP)

Use of a Sequential Monte Carlo
(SMC or Particle Filter)
(Doucet et al. 2001)

Scan climate time after time

Vincent Garreta Pollen-based palaeoclimatology



Introduction Temporal inversion Process-based p-based reconstruction Likelihood Inference Application

Meerfelder Maar Holocene reconstruction

Data from Litt et al. (2009)

Maar in the Eifel
(SW Germany)

406 samples between 11kaBP
and 0BP
≈ 30 yr between samples

Dates are varved & 14C
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Introduction Temporal inversion Process-based p-based reconstruction Likelihood Inference Application

Reconstruction
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Reconstruction
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Noisy reconstruction
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t ime
t0 t1 tn

...

CtnCt1Ct0

NPPtnNPPt1NPPt0

Yt0 YtnYt1

LPJ-GUESS LPJ-GUESS LPJ-GUESS

p(Y|NPP) p(Y|NPP) p(Y|NPP)
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Introduction Temporal inversion Process-based p-based reconstruction Modelling Application

Part 2: Process-based modelling of p(Y |NPP) with F. Mortier and J. Chadœuf

Mechanistic TF → full process-based TF

causality, coherent quantification of uncertainties

extrapolation (no-analogue problem)

Vegetation-pollen study has a long history in palaeo-ecology (*)

Pollen production

Pollen dispersal

Pollen accumulation

Main processes include

Pollen production

dispersal

capture and accumulation

Vincent Garreta Pollen-based palaeoclimatology

(*) including Von Post 1916; Davis 1963; Tauber, 1965; Kabailiene 1969; Webb 1974; Prentice
1985; Sugita 1994 ; Pacioreck and McLachlan 2009
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Modelling Approach

We use a hierarchical approach to
expand p(Y |NPP) and represent main
processes

NPP3

V3

NPP2

V2

NPP1

V1

2D space

Y3

Y2

Y1

X3

X2

X1

Y3

NPP3

Y2

NPP2

Y1

NPP1

Shares structure with classical model (ERV) but

Global scale (Europe)

Parameter inference (no need exp. values)

Hierarchical + bayesian (coherent uncert. quantification)

Challenge in statistics

Model zero-inflation and over-dispersion for Multinomial data

Infer a spatial structure on large dataset

Vincent Garreta Pollen-based palaeoclimatology



Introduction Temporal inversion Process-based p-based reconstruction Modelling Application

Hidden levels

1 Potential → actual vegetation p(V |NPP, θ1)

Additive noise
Stationary parameters

2 Pollen production and dispersal θ2

Linear production per taxa (bj V j )
Gaussian dispersion with dispersal range per taxa

3 Pollen accumulation p(X |V , θ2)

Modelled following a Poisson distribution

4 Sampling p(Y |X )

Modelled following a Multinomial distribution centred

on pj
i = X j

i /Σj X j
i

NPP3

V3

NPP2

V2

NPP1

V1

2D space

Y3

Y2

Y1

X3

X2

X1

C
3

C
2

C 1
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Introduction Temporal inversion Process-based p-based reconstruction Modelling Application

European dataset results

1300 sites and 15 taxa (≈ 75 parameters and 39 000 latent variables)

Dispersal parameters per taxa

Taxa (j) Pinus Quercus Ever. Populus Grass & Shrubs

2γ j (in km) 160 40 900 100

bj/b15 0.44 0.05 0.01 1

Adequation testing indicates problems

Overdispersion not sufficient
⇒ NB model proposed

Discrepancy not homogeneous in
space
⇒ LPJ-GUESS quantitative
validation?

Mean deviance
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Introduction Temporal inversion Process-based p-based reconstruction Climate correlation Application

Part 3: Merging process-based and temporal approaches

Insert process-based model p(Y |NPP) inside SMC

Model and infer temporal correlation in climate

t ime
t1 t2 tn

...

CtnCt2Ct1

NPPt0 NPPtnNPPt2NPPt1

Yt1 YtnYt2

LPJ-GUESS LPJ-GUESS LPJ-GUESS

Ct0

Yt0

...

t0

LPJ-GUESS

p(Y |NPP ,theta)tn tn

p(C  |C   ,theta3)tn tn-1

⇒ Full-process based: straightforward in theory! But

p(Y |NPP) is now defined asZ
p(Y |X ) p(X |V , θ2) p(V |NPP, θ1) p(θ1, θ2|Ys ,Cs) d(X ,V , θ1, θ2)

Vincent Garreta Pollen-based palaeoclimatology



Introduction Temporal inversion Process-based p-based reconstruction Climate correlation Application

Modelling and inferring climate correlation

Simple model for climate temporal correlation, i.e climate inertia

p(Ctn |Ctn−1 , θ3) = N
`
Ctn−1 , (tn − tn−1)θ3Σ

´
⇒ Var(Ctn − Ctn−1 ) ∝ (tn − tn−1)θ3

May be hard to infer sequentially a parameter
‘static’ in time

We use conjugated distributions (Storvik 2002 ;

Fearnhead 2002) to update

p(θ3|Ct0:t ,NPPt0:t ,Yt0:t)
t ime

t1 t2 tn

...

CtnCt2Ct1

NPPt0 NPPtnNPPt2NPPt1

Yt1 YtnYt2

LPJ-GUESS LPJ-GUESS LPJ-GUESS

Ct0

Yt0

...

t0

LPJ-GUESS

p(Y |NPP ,theta)tn tn

p(C  |C   ,theta3)tn tn-1

⇒ Imposes a 2-passes algorithm !

Vincent Garreta Pollen-based palaeoclimatology
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Palaeoclimate from 4 Swedish cores
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Mabo Moss reconstruction
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Four sites comparison
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Conclusion

Palaeoclimatology

We proposed a method for the inversion of the last vegetation model
generation

We proposed a process-based model to represent pollen-vegetation link at
continental scale

Statistics

We developed an inference algorithm for a dynamical system made of
an implicit model (LPJ-GUESS) and
a highly layered structure

We proposed a model for spatial multinomial data showing zero-inflation
and over-dispersion

Applications indicate

A fast and robust smoothing algorithm for LPJ-GUESS is required

Vegetation models such as LPJ-GUESS need
to be more strongly data-based (calibration and validation)
include vegetation spatial dynamics (migration)
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Perpectives

Inference for dynamical systems defined through implicit models
(parameters and states, smoothing, fast and robust)

Ideas include

Local smoothing, model emulation, reified inference

Applied to

Reconstruction of past climate
including 14C dating uncertainties
spatio-temporal

Calibration of parameters ‘inside’ a vegetation model
re-calibration using large, modern, dataset
using past vegetation dynamics to calibrate migration processes

Inference problems requiring to merge mechanistic models and real data
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Merci à tous !
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