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Résumé

De nos jours, la géométrie non-commutative est un domaine grandissant des mathéma-
tiques, qui peut apparaitre comme un cadre prometteur pour la physique moderne.
Les théories quantiques des champs sur des “espaces non-commutatifs” ont en effet été
tres étudiées, et sont sujettes a un nouveau type de divergence, le mélange ultraviolet-
infrarouge. Cependant, une solution a récemment été apportée a ce probleme par H.
Grosse et R. Wulkenhaar en ajoutant a ’action d’'un modele scalaire sur 1’espace non-
commutatif de Moyal, un terme harmonique qui la rend renormalisable.

Un des buts de cette these est 'extension de cette procédure aux théories de jauge
sur l’espace de Moyal. En effet, nous avons introduit une nouvelle théorie de jauge non-
commutative, fortement reliée au modele de Grosse-Wulkenhaar, et candidate a la renor-
malisabilité. Nous avons ensuite étudié ses propriétés les plus importantes, notamment
ses configurations du vide. Finalement, nous donnons une interprétation mathématique
de cette nouvelle action en terme de calcul différentiel basé sur les dérivations, associé a
une superalgebre.

Ce travail contient, outre les résultats mentionnés ci-dessus, une introduction a la
géométrie non-commutative, une introduction aux algebres e-graduées, définies dans cette
these, et une introduction a la renormalisation des théories quantiques de champs scalaires
(point de vue wilsonien et BPHZ) et de jauge.

Zusammenfassung

Die nichtkommutative Geometrie bildet als wachsendes Gebiet der Mathematik einen
vielversprechenden Rahmen fiir die moderne Physik. Quantenfeldtheorien iiber nichtkom-
mutativen Raumen werden zur Zeit intensiv studiert. Sie fithren zu einer neuen Art von
Divergenzen, die ultraviolett-infrarot Mischung. Eine Losung dieses Problems wurde von
H. Grosse und R. Wulkenhaar durch Hinzufiigen eines harmonischen Terms zur Wirkung
des ¢*-Modells gefunden. Dadurch wird diese Quantenfeldtheorie iiber dem Moyal-Raum
renormierbar.

Ein Ziel dieser Doktorarbeit ist die Verallgemeinerung dieses harmonischen Terms
auf Eichtheorien tiber dem Moyal-Raum. Basierend auf dem Grosse-Wulkenhaar-Modell
wird eine neue nichtkommutative Eichtheorie eingefiithrt, die begriindete Chancen hat,
renormierbar zu sein. Die wichtigsten Eigenschaften dieser Eichtheorie, insbesondere die
Vakuumskonfigurationen, werden studiert. SchlieSlich wird mittels eines zu einer Super-
algebra assoziierten Derivationskalkiils eine mathematische Interpretation dieser neuen
Wirkung gegeben.

Die Arbeit enthalt neben diesen Ergebnissen eine Einfiihrung zur nichtkommutativen
Geometrie und zu e-graduierten Algebren sowie eine Einfiihrung in die Renormierung von
Quantenfeldtheorien fiir Skalarfelder (nach Wilson und BPHZ) und Eichfelder.



Abstract

Nowadays, noncommutative geometry is a growing domain of mathematics, which can ap-
pear as a promising framework for modern physics. Quantum field theories on “noncom-
mutative spaces” are indeed much investigated, and suffer from a new type of divergence
called the ultraviolet-infrared mixing. However, this problem has recently been solved by
H. Grosse and R. Wulkenhaar by adding to the action of a noncommutative scalar model
a harmonic term, which renders it renormalizable.

One aim of this thesis is the extension of this procedure to gauge theories on the
Moyal space. Indeed, we have introduced a new noncommutative gauge theory, strongly
related to the Grosse-Wulkenhaar model, and candidate to renormalizability. We have
then studied the most important properties of this action, and in particular its vacuum
configurations. Finally, we give a mathematical interpretation of this new action in terms
of a derivation-based differential calculus associated to a superalgebra.

This work contains among the results of this PhD, an introduction to noncommutative
geometry, an introduction to e-graded algebras, defined in this thesis, and an introduction
to renormalization of scalar (wilsonian and BPHZ point of view) and gauge quantum field
theories.
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Introduction

Noncommutative geometry is a new domain of mathematics, which joins several different
areas of mathematics and physics. Its origin lies in quantum mechanics, describing at a
microscopic level the laws of nature. Quantum mechanics motivated also in the first half
of the twentieth century an important development in the theory of operator algebras,
like the study of C*-algebras and von Neumann algebras.

The essential principle of noncommutative geometry lies in the duality between spaces
and (associative) algebras, so that properties of spaces can be algebraically characterized.
Indeed, at the level of topology, there is an anti-equivalence between the category of locally
compact Hausdorff spaces and the category of commutative C*-algebras. In the case of a
compact space X, the associated commutative C*-algebra is the algebra C'(X) of complex-
valued continuous functions on X. In the same way, to measurable spaces correspond
commutative von Neumann algebras. This duality also exists in the framework of algebraic
geometry, between affine algebraic varieties and finitely generated commutative unital
reduced algebras for example.

From classical mechanics to quantum mechanics, one changes the commutative alge-
bra of functions on the phase space to a noncommutative operator algebra on a Hilbert
space. One of the founder of noncommutative geometry [I], A. Connes, realized that this
change could also be done in the various mathematical domains mentionned above, as
soon as there is a duality between spaces and commutative algebras. Indeed, one can
speak about “noncommutative topology” by considering noncommutative C*-algebras as
functions algebras on “noncommutative spaces”, which do not have concrete existence. It
can be abstractly formalized by defining the category of (locally compact Hausdorff) non-
commutative topological spaces as the dual category of the one of the (noncommutative)
C*-algebras. The noncommutative measure theory is then defined by noncommutative
von Neumann algebras. This very rich way of thinking permits to generalize some impor-
tant constructions and properties from spaces to corresponding noncommutative algebras.

What do classical notions become, as smooth manifolds, fiber bundles, de Rham forms
complex and its cohomology, group actions on spaces? What are their noncommutative
algebraic analogs? Firstly, the algebraic version of vector bundles on a locally compact
Hausdorff space X is given by finitely generated projective modules on the commutative
algebra C(X), as described in the Serre-Swan Theorem. Since the K-theory groups of a
topological space X are defined from isomorphy classes of vector bundles on X, the K-
theory can be extended to “noncommutative topological spaces”, namely to C*-algebras.

According to the results of Atiyah, Brown-Douglas-Fillmore, and Kasparov, the dual
theory of K-theory, K-homology of the topological space X, is represented by the abstract
elliptic operators on X. The coupling between the two dual theories is then given by:
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([D], [E]) = the Fredholm index of the elliptic operator D with coefficients in the vector
bundle E. K-homology can also be extended to noncommutative C*-algebras, and K-
theory and K-homology of C*-algebras are unified in the KK-theory of Kasparov.

In ordinary differential geometry, the Chern Character is a particular characteristic
class, ch(E) € H3z(M) for all complex vector bundle £ — M, and it induces a isomor-
phism ch : K*(M) ® R — H3z (M) between K-theory and de Rham cohomology. There
exists a noncommutative generalization of the Chern character, from the K-theory of an
algebra to the periodic cyclic homology of this algebra. This cyclic homology introduced
by A. Connes, appears then as a noncommutative version of the de Rham cohomology,
which is an important tool of the differential geometry.

Another way to generalize the de Rham complex to the noncommutative case is to
consider the differential calculus based on the derivations of a noncommutative algebra,
introduced by M. Dubois-Violette [2], and studied by Connes, Kerner, Madore, Masson,...
Indeed, this differential calculus mimics what happens for a manifold M: the vector fields
(M) are the derivations of the algebra C'°(M), and the one-forms are the duals of
vector fields. However, this differential calculus exists for all associative algebras, involves
only algebraic informations, without constraints of functional analysis, so that the exact
noncommutative analog of algebras C*°(M) is not defined in this framework.

Recently, A. Connes has shown that a noncommutative analog of a smooth (compact
oriented) manifold is a spectral triple (A, H, D), composed of an algebra A, a Hilbert
space ‘H, on which A is represented, and an (unbounded) selfadjoint operator D, which
are respectively analogs of the algebra C°°(M), the bundle of spinors, and the Dirac
operator of a riemannian (compact orientable) manifold M. The spectral triples are re-
lated to K-homology and permit to introduce the local index formula (Connes, Moscovici)
generalizing the index theorem of Atiyah-Singer.

Finally, an action of a (compact) topological group on a topological space can be
generalized in the noncommutative framework by a quantum group, namely an action of
a (noncommutative) Hopf algebra. To each right action of a topological group G on a
topological space X is associated a coaction I' : C'(X) — C(X) ® C(G) C C(X x G),
defined by

VxeC(X), VzeX, Vgel, I'(X)(zg)=x(zyg)

satisfying some constraints, which can be generalized to noncommutative algebras replac-
ing C'(X) and C(G). The group G acts on itself by multiplication, so that the coaction
defined in this case satisfies the axioms of a coproduct, and endows C'(G) with a structure
of Hopf algebra (for an introduction to quantum groups, see [3]). Moreover, the Chern-
WEeil theory on the Lie group actions can be extended to the actions of Hopf algebras, by
using the local index formula and the cyclic cohomology of Hopf algebras. This is still a
lively domain. Note that noncommutative geometry is also related to other domains of
mathematics like number theory, but this will not be exposed here.

Let us also mention that a particular type of noncommutative algebras is given by
deformation quantization of commutative algebras. Indeed, one can deform the commu-
tative product of the algebra of smooth functions C*°(M) on a Poisson manifold M into
a noncommutative product by using the Poisson structure. The general theorem of exis-
tence of such deformations has been settled by M. Kontsevich in 1997. Note that some
systems described by quantum mechanics can be reformulated by a deformation quanti-
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zation, where the commutative algebra of functions of the phase space is deformed in the
direction of the canonical Poisson bracket into a noncommutative algebra of observables.
This is also a lively domain of research.

On another side, graded algebra has been studied for a long time [4], and its most
well-known applications are the theories of supermanifolds, of graded associative and Lie
algebras, and the supersymmetry in Physics. A natural generalization of Z-grading (or Z,-
grading) is the I'-grading, where I' is an abelian group. Nevertheless, in order to recover
similar properties as for Z-graded Lie algebras, one has to define an additional structure
called the commutation factor €. One can now ask for a noncommutative geometry
adapted to this setting of graded algebras. It would then correspond to some “graded
noncommutative spaces”. In this work, we will make a step in the direction of graded
noncommutative geometry by studying the notion of e-graded associative algebra and
defining an appropriate differential calculus.

Noncommutative geometry is then a growing domain of mathematics with numerous
applications, whose construction and development are bound with physics. Indeed, certain
effective models describing fractional quantum Hall effect have been interpreted by using
noncommutative geometry. Moreover, it has been used to reproduce the standard model of
particle physics, including a riemannian version of gravity. Let us analyze some heuristic
arguments for the use of noncommutative geometry in fundamental physics.

Actual physical theories describing the four fundamental known interactions, namely
gravitation, electromagnetism, strong and weak nuclear interactions, are well verified
experimentally in their own domain of validity: general relativity describes the gravitation
at large scales, even if the question of dark matter and energy is posed by cosmology and
astrophysics; quantum physics, renormalizable quantum field theory and the standard
model of particle physics at small scales. However, modern physics is investigating a
unification of both theories because there exist concrete situations for which both theories
are needed: neutrons stars, behavior of elementary particles in the neighborhood of a black
hole, primordial universe, etc... But this unification encounters a big problem: the non-
renormalizability of the Einstein-Hilbert action describing general relativity, so that this
theory is not consistant in the quantum field theory formalism used in the standard model.
To solve this problem, several ways have been proposed. String theory and quantum loop
gravity are two of the most well-known examples, even if they will not be considered here.
The use of noncommutative geometry in physics is a third possible way.

With the progress of science, one can observe a relative mathematization of physics,
since it needs more and more mathematics to define its notions, its measurable quantities.
Indeed, in the last century, a part of the physics, kinematics, enters into geometry in
the special relativity, by introducing the concept of a minkowskian space-time. Then,
with the general relativity, gravitation is viewed as a part of the geometry thanks to its
lorentzian metric. In the standard model at the classical level, interactions are expressed
in geometrical terms with principal fiber bundles on the space-time. We see therefore that
relativistic physics uses a lot of notions and tools of differential and spinorial geometry,
such as Lie groups, connections, gauge transformations, invariants,...

On another side, quantum physics is expressed in terms of operator algebras, as we
have seen it above. This permits to understand the quantification of observed mea-
surements for the photoelectric effect for instance, by interpreting possible measures as
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eigenvalues of some selfadjoint operator; but also Heisenberg uncertainty’s relations which
are a direct consequence of the non-commutativity of two operators, in this formalism.
Modern physics asks today for a unification of relativity and quantum physics, and we
may deduce from our above analysis that this unification will be done by a supplemen-
tary step in the mathematization. Thus, a conceptual framework is required such that it
can contain differential geometry and operator algebras. Such conditions are satisfied by
noncommutative geometry.

The standard model of particle physics has been reproduced at the classical level, with
a riemannian formulation of gravity, by a spectral triple whose algebra is given by the
tensor product of C*(M), the smooth functions on a manifold M, by a matrix algebra
of finite dimension [5]. It would be an additional step in the direction described above.
Indeed, it is a (noncommutative) generalization of Kaluza-Klein theory, which wanted to
include directly some (electromagnetic) interactions in the space-time geometry, without
fiber bundles but by additional dimensions, which had eventually to be compactified.
However, by denoting G = SU(3) x SU(2) x U(1) the structure group of the trivial fiber
bundle used in the standard model on the space-time manifold M, the symmetry group
of the standard model including gravity is then

G = C™(M,G) x Diff(M),

the semi-direct product group of diffeomorphisms on M with gauge transformations, which
admits C>°(M, G) as a normal subgroup. Then, a result due to W. Thurston, D. Epstein
and J. Mather proved that it does not exist any “commutative” manifold M’ such that
Diff(M’) ~ G. On the contrary, the automorphisms group Aut(A) of a noncommutative
algebra A admits the inner group Int(A) as a normal subgroup, and by choosing

A=C®M)® (CoH® M(C)),

A. Connes shew that Aut(A) =~ G. In this noncommutative model, interactions are then
encoded by the matrix algebra, which corresponds to additional “discrete dimensions”.
Note however that this model stays at the classical level of field theory, and that the
noncommutativity of matrices corresponds to the non-abelianity of the gauge theory, but
not to all the quantum properties. Then, noncommutative geometry appears as a possible
unifying framework for modern fundamental physics.

Another argument has been developed by Doplicher, Fredenhagen, Roberts [6], in
favor of the use of noncommutative geometry in fundamental physics. If one supposes
that a system is described both by quantum field theory and general relativity, and that
an observer can measure the position of any component of the system very precisely,
until a Planck scale precision, then the necessary energy will be very large by Heisenberg
uncertainties relations, so that a black hole can be generated. Therefore, the observation
of the geometry would lead to a change of the geometry. To avoid this problem, one can
release the axiom of commutativity of the position operators in the different directions
and keep an unavoidable uncertainty on the observed position.

Even if the paper [6] does not consider it as a possible solution, the Moyal space, a
deformation quantization of R” | is a prototype of noncommutative space whose coordinate
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functions satisfy the relation:
[T, 2] = 1O,

where © is some noncommutativity matrix. One can then define a field theory on this
noncommutative space, and the most natural way for a scalar theory is to replace the
usual commutative product by the Moyal x-product in the action. One thus obtains:

2
S = /de<%(8ugb)2+%¢2+>\¢*¢*¢*¢>.

Then, the Moyal product occurs only in the quartic interaction of the action, so that this
theory can also be viewed as a field theory on the commutative space R” but with a
non-local interaction.

One of the key ingredients of quantum field theory is renormalization. A theory is said
to be renormalizable if the vertex functional (corresponding to the quantum action) takes
the same form as the classical action at a certain scale, which means that the infinite values
appearing in the perturbative computations of Feynman diagrams can be reabsorbed in
a finite number of parameters of the action. Two conditions are usually required to show
the renormalizability of a theory: power-counting and locality.

For a scalar theory on the Moyal space, we have seen that the interaction is no longer
local, so that the question of renormalizability of such a theory can be asked. Minwalla,
Van Raamsdonk and Seiberg have discovered a new type of divergences in this theory [7],
called Ultraviolet-Infrared (UV /IR) mixing, which renders the theory non-renormalizable,
due to the non-locality of the Moyal product.

However, H. Grosse and R. Wulkenhaar have proposed a satisfying solution to this
problem by adding a harmonic term in the action:

2 2
S = /de<%(8Hq§)2+%§¢2+%¢2+A¢*¢*¢*¢>.

This theory is then renormalizable up to all orders in perturbation [§], and it is the
first scalar real theory on a noncommutative space (or with non-local interaction) to be
renormalizable. Since gauge theories are used in the standard model, one can ask wether
a renormalizable gauge theory exists on the Moyal space. The standard generalization of
usual gauge theory to the Moyal space:

1
S=73 / dD:v<F,wFW>, with F,,, = 0,4, — 0,4, — i[A,, A,).,

suffers also from the UV/IR mixing, and one wants to find the analog of the harmonic
term for adding it to the gauge action, so that it becomes renormalizable. This was one
of the aims of this thesis.

A new model of gauge theory [9] is indeed proposed in this PhD thesis:
p.(1 02 2
S=[d"z ZFW*FW—I— Z{Amv‘lu}*"‘“Au*Au :

where A, = Au—{—%fu, and its properties are studied. Moreover, we introduce a differential
calculus adapted to e-graded algebras [10] in order to interpret mathematically this new
gauge action.
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The plan of this PhD is as follows. In the chapter[I} we will briefly recall the important
results of noncommutative geometry: to the topological level correspond the C*-algebras,
to the level of measure theory correspond the von Neumann algebras, and at the level
of differential geometry, three noncommutative structures are interesting for instance,
derivation-based differential calculus which will be useful in the rest of this thesis, cyclic
cohomology and spectral triples.

Then, in chapter [2| one will introduce the structure of e-graded algebras, a gener-
alization of associative Z-graded algebras, and the derivation-based differential calculus
adapted to these algebras will be exposed. It will be illustrated in particular for the ma-
trix algebra. This study can be seen as a step in the direction of noncommutative graded
geometry.

Chapter |3]is a brief introduction to renormalization. We will study the links between
the wilsonian and the BPHZ approach to renormalization for scalar theories, which will
be useful in the chapter 4. One will also present the algebraic version of renormalization
of gauge theories, and this will permit us to see the major directions in the proof of the
renormalizability of the new gauge theory proposed in this thesis.

We will then present in chapter [4]a brief introduction to deformation quantization, the
construction of the Moyal space, and we will study the questions of renormalizability of
scalar theories on such a space. The Grosse-Wulkenhaar model will be exposed in details,
and its vacuum configurations computed.

Finally, in chapter [5) we shall present the new gauge theory on the Moyal space,
candidate to renormalizability, obtained by an effective action. We will also study its
properties, and in particular its vacuum configurations. A mathematical interpretation in
terms of a graded curvature will be given within the formalism introduced in chapter [2]
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Introduction to noncommutative
geometry

1.1 Topology and C*-algebras

In this section, we present the theorem of Gelfand-Naimark, which states that a locally
compact Hausdorff space X is entirely characterized by the commutative C*-algebra of
its continuous functions (vanishing at infinity) Cy(X), and that each commutative C*-
algebra is of this type. This major result permits to introduce the continuous functional
calculus. Moreover, complex vector bundles on such spaces X correspond then to finitely
generated projective modules on Cy(X). See [11], 12], 13} [14] for more about C*-algebras.

1.1.1 Definitions

Definition 1.1.1
e A Fréchet algebra A is a complete topological algebra, for the topology defined by a
countable family of algebra seminorms (p;); such that Va € A, a = 0 < (Vi, p;(a) =
0).

e A Banach algebra A is a complete normed algebra, such that ||1|| = 1 if A is unital.

e A C*-algebra A is a complete complex involutive normed algebra satisfying Va € A,
|la*al| = HaH2 (and ||1]| = 1 if A is unital).

e A morphism between two C*-algebras A and B is a morphism A — B of involutive
associative algebras. It is then automatically continuous for the norm topology.
Proposition 1.1.2 (Properties)

e If A is a C*-algebra, then Va € A, ||a*|| = ||a]|.

e [fH is a complex Hilbert space, then B(H), the space of continuous endomorphisms
(or bounded operators) of H, endowed with the uniform norm, is a C*-algebra.

e A representation of the C*-algebra A is a morphism of C*-algebras m : A — B(H).



16 Chapter 1 — Noncommutative Geometry

e Any C*-algebra is then isomorphic to a C*-subalgebra of B(H), for a certain H (see

subsection [1.1.4).

e Conversely, any subalgebra of B(H), closed for the uniform topology and the invo-
lution, is a C*-subalgebra of B(H).

In the following of this section, A is a unital C*-algebra and H a complex separable
Hilbert space.

1.1.2 Spectral theory

Here, one introduces the basics of the spectral theory for C*-algebras.

Definition 1.1.3
For a € A, one defines the spectrum of a in A by

Spa(a) ={\ € C, (a — A1) not invertible in A}.

Then, Spy (a) is a compact subspace of the complex disk of radius ||a|.
Moreover, Spa (a*) = {\, A € Spa(a)} and Sp, (a?) = {\2, X € Spa(a)}. ¢

Definition 1.1.4
e a € A is normal if a*a = aa*.

a € A is selfadjoint if a* = a.

e a € A is positive if b € A such that a = b*b. The set of positive elements is a
convex cone denoted by A .

e a € A is unitary if a*a = aa* = 1.

2=a" =a.

a € A is a (orthogonal) projector si a

a € A is a partial isometry if a*a is a projector. ¢

Proposition 1.1.5 (Properties)
e Any selfadjoint a € A can be decomposed into a = a, —a_, with a, and a_ positive
elements.

e [f a is selfadjoint (resp. positive, unitary, orthogonal projector), Spa(a) C R (resp.
Ry, S', {0,1}). The converse is generally false.

Definition 1.1.6 X
The spectral radius of a € A is defined by: r(a) = sup{|A|, A € Spa(a)} = lim,_, ||a™]".
If @ is normal, r(a) = ||a]|.

For a € A and A ¢ Spy(a), one defines the resolvent of a in A by: R(a,\) = (a —
AL ¢
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1.1.3 Duality in the commutative case

Definition 1.1.7
e A character on the C*-algebra A is a morphism of C*-algebras y : A — C.

e The spectrum of A is then defined as the set of its characters and denoted by Sp(A).
The weak*-topology on Sp(A) is defined by the convergence y, — x if and only if
Va € A, xa(a) = x(a).

e The spectrum Sp(A) is a locally compact Hausdorff space for the weak*-topology.4

Let X be a locally compact Hausdorff space. If X is compact, then C'(X), the set of all
continuous maps X — C, endowed with the sup-norm |||, is a unital C*-algebra; else
Co(X), the subalgebra of C'(X) of the functions vanishing at infinity, with the sup-norm,
is also a C*-algebra, but not unital.

Definition 1.1.8
Let A be a C*-algebra. Then, the Gelfand transformation is the following map:

A — C(Sp(A)) av— a,
with Vx € Sp(A), a(x) = x(a). Then, Va € A,

Spa(a) = {x(a), x € Sp(A)} =a(Sp(A)). ¢
In the commutative case, the Gelfand transformation is bijective.

Theorem 1.1.9 (Gelfand-Naimark)
If A is a commutative C*-algebra, the Gelfand transformation is an isomorphism of C*-
algebras:

e if A is unital, there exists a unique (up to homeomorphism) compact Hausdorff
space X = Sp(A), such that A =~ C'(X).

e if A is not unital, there exists a unique (up to homeomorphism) locally compact
Hausdorff space, X = Sp(A), but non compact, such that A ~ Cy(X).

This theorem shows the equivalence between considering a locally compact Hausdorff
space and a commutative C*-algebra. Then, thanks to this correspondence, a noncommu-
tative C*-algebra can be interpreted as the algebra of continuous functions of a “noncom-
mutative space”, which however does not exist. This is the essence of noncommutative
geometry.

Furthermore, one can define the continuous functional calculus for a (noncommutative)
C*-algebra thanks to the Gelfand-Naimark theorem.

Theorem 1.1.10 (Continuous functional calculus)

Let a be a normal element of A, a unital C*-algebra, and C*(a) the minimal commutative
C*-subalgebra of A involving 1, a and a*. Then, the spectrum of a is independent from
the algebra A:

Spa(a) = Spe(q)(a) = Sp(C*(a)) and  C*(a) = C(Sp(a)).



18 Chapter 1 — Noncommutative Geometry

By considering the above identification, the Gelfand transformation @ : Sp(a) — C
corresponds to the identity, and for any f € C(Sp(a)), one associates a unique element
f(a) € C*(a) C A such that:

f@)=f@ If@l=Ifle  Sp(f(a)) = f(Sp(a)).

It is called the continuous functional calculus.

Definition 1.1.11
For any element a of A, one defines its absolute value by |a| = v/a*a, with the help of the
continuous functional calculus. ¢

1.1.4 GNS construction

In this subsection, we recall the construction by Gelfand-Naimark-Segal of a Hilbert space
and a representation from a C*-algebra, thanks to its states.

Definition 1.1.12
A state on a unital C*-algebra A is a linear map w : A — C, such that w(1l) =1 et and
Va € Ay, w(a) > 0. The set of all states is denoted by S(A). Then S(A) is a convex
space and Yw € S(A), w is continuous.

A pure state of A is an extremal point of the convex space S(A). ¢

If A is non-unital, we replace the condition w(l) = 1 by [jw|| = 1 for w to be a state of
A. Any character x € Sp(A) is a state of A.

Theorem 1.1.13 (GNS Representation)
To any state w € S(A), one associates uniquely (up to equivalence) a representation
ot A — B(H,) and an element Q,, € H,, such that:

To(A)Qy = Hy  (Qy is cyclic),
Va e A, w(a) = (Qu, mu(a)).

Moreover, m,, is irreducible < w is a pure state of A.

Indeed, (a,b) — w(b*a) is a positive hermitian sesquilinear form on A. Let N, =
{a € A, w(a*a) = 0}. This form can be projected into a scalar product (—, —) on A/N,,
and we denote H,, the Hilbert space obtained as the completion of A/N,, for this scalar
product.

A acts also by its product on H,,, and this defines the GNS representation 7, associated
to w. One defines also the cyclic vector €, as the projected of 1 € A on A/N,,.

Definition 1.1.14
The universal representation of A is defined by 7y = @weS(A) T, It is injective. ¢

Definition 1.1.15
If Ay and A, are C*-algebras, the tensor product A, ® A, is the completion of A; ® A,

for the norm of B(H; ® Hs,) thanks to the universal representations of A; and Ay. It is
also a C*-algebra. ¢
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Theorem 1.1.16
Let X a locally compact Hausdorff space.

e If X is compact, the state space S(A) of A = C(X) consists of all probability
measures on X.

e If X is compact, the pure state space of A = C(X) is homeomorphic to X.

e If X is non compact, the pure state space of A = Cy(X) is homeomorphic to X.

As a consequence, the pure state space of a commutative C*-algebra A is exactly its
spectrum Sp(A).

1.1.5 Vector bundles and projective modules

We have seen what can be the noncommutative analog of a (locally compact Hausdorff)
topological space, it is given by a noncommutative C*-algebra. However, one can con-
struct on topological spaces the notion of fiber bundles. Let us see how to interpret in a
noncommutative way vector bundles on topological spaces.

Definition 1.1.17 (bundles)
Let X and V' be topological spaces.

e A bundle on base X with typical fiber V is a topological space E, endowed with a
continuous surjection 7 : £ — X, such that Vx € X, there exists a neighborhood
U, of z in X, and a homeomorphism ¢, : 7= 1(U,) — U, x V for which 7 = px 0 @,
with px : X xV — X and py : X x V — V the projections resp. on X and V.

e Moreover, F is a vector bundle if V is a finite dimensional vector space, Vr € X,
7~1(x) is also a finite dimensional vector space whose relative topology (coming from
the one of F) coincides with its vector space topology, and if py o ¢, : 71 (2) = V
is linear. ¢

The maps ¢, are called local trivializations, and 7=!(x) the fibers of . A simple example
of bundle is the trivial bundle £ = X x V', with n(z,v) =z, for x € X and v € V. Let
n € N; a complex vector bundle on X is a vector bundle £ on X with typical fiber V = C".

Definition 1.1.18 (sections)
Let F be a vector bundle on X with typical fiber V. A section on E is a continuous map
s: X — FE such that m o s = idx. The set of all sections of E is a vector space denoted
by I'(E).

If X is a connected compact Hausdorff space, I'(E) is a right module on the commu-
tative C*-algebra C'(X) for the action: Vf € C(X), Vs € ['(E), Vz € X,

(s ) (@) = s(x) f(x). ¢

Theorem 1.1.19 (Serre-Swan)

Let X be a connected compact Hausdorft space. There is a bijective correspondence
between complex vector bundles on X and finitely generated projective modules on the
commutative C*-algebra C'(X). This correspondence is made by considering the module
of sections of the vector bundle.
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This theorem is used in K-theory in order to define groups associated to such spaces
X, which contain informations on X. Of course, this theorem permits also to define K-
theory for (noncommutative) C*-algebras, since it is formulated in algebraic terms. This
is the essence of noncommutative geometry to obtain classical theorems and definitions
in algebraic terms so that they can be generalized into a noncommutative version.

1.2 Measure theory and von Neumann algebras

More details on the theory of von Neumann algebras can be found in [15] 13| [16].

1.2.1 Definition of von Neumann algebras

Let H be a complex Hilbert space. One can construct two locally convex topologies on
B(H), different from the uniform topology (associated to its norm).

Definition 1.2.1
e The weak topology on B(H) is induced by seminorms 7" — (z,T(y)), x,y € H.
Then, T,, = T weakly < Vz,y € H, (z,T,(y)) = (x,T(y)).

e The strong topology on B(H) is induced by seminorms 7" — ||T'(x)||, € H. Then,

T, — T strongly < Vo € H, T,,(x) = T(z).
The weak topology is weaker than the strong topology, which is weaker than the
uniform topology. ¢

Definition 1.2.2
Let A be a subset of B(H). On defines its commutant by:

A'={T eB(H), VSe A, [S,T] =0}.

A’ is a unital subalgebra of B(H), even if A is not an algebra.
Moreover, A C A" =A®W = .. and A/ =A®) = .. ¢

The following theorem shows the importance of the notion of a von Neumann algebra,
which can be viewed on several ways.

Theorem 1.2.3 (Bicommutant)
Let A be a unital C*-subalgebra of B(H). Then, there is an equivalence between:

1. A=A".

2. A is weakly closed in B(H).

3. A is strongly closed in B(H).

4. A is the dual space of a Banach space (called its predual, unique up to isomorphism).

If A satisfies the previous conditions, (H, A) is called a von Neumann algebra, or a W*-
algebra if there is no reference to H.

Every W*-algebra is a C*-algebra.
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Proposition 1.2.4 (Properties)
e The minimal von Neumann algebra involving a C*-algebra A is its bicommutant
A", also equal to its bidual A**.

e Any subalgebra of B(H), closed for the weak topology and the involution, is a
W*-subalgebra of B(H).

In the following, # is a complex separable Hilbert space, and (H, A) a von Neumann
algebra.

Definition 1.2.5
A von Neumann algebra A is said to be mazimal abelian if A" = A.

If an abelian von Neumann algebra admits a cyclic vector (see Theorem [1.1.13)), then
it is maximal abelian. ¢

1.2.2 Duality in the commutative case

Like in the case of commutative C*-algebras and locally compact Hausdorff spaces, there
is a duality between commutative von Neumann algebras and (localizable) measurable
spaces.

Example 1.2.6

Let (X, ) be a measurable space, with p a finite measure on X. Then, the set L>(X, u)
of all (u-essentially) bounded functions on X is a commutative von Neumann algebra,
and its predual is given by the set L'(X, ) of all u-integrable functions on X. ¢

Theorem 1.2.7
Let A be a commutative von Neumann algebra. Then, there exists a localizabld'| measur-
able space (X, u) such that A ~ L>*(X, u).

In the commutative case, the links between von Neumann algebras and the previous

constructions for C*-algebras are summarized in the following theorem.

Theorem 1.2.8
Let X be a locally compact Hausdorff space, and 1 a finite measure on X. Then, u defines
a positive linear form on the commutative C*-algebra Cy(X):

fos /X F(@)du(x).

e Moreover, the cyclic GNS representation 7, associated to this linear form is realized
on the Hilbert space H, = L*(X, u) by multiplication by functions.

e The von Neumann algebra generated by 7,(Cy(X)) is exactly L>(X, pu), and it is
maximal abelian.

Ldirect sum of finite measurable spaces
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1.3 Noncommutative differential geometry

1.3.1 Algebraic geometry

The duality between spaces and commutative algebras is not a new story in algebraic
geometry. For example, Hilbert established a duality between affine algebraic varieties
and finitely generated commutative reduced algebras, in its Nullstellensatz (see [17]). We
recall here the definitions and the construction of this duality.

Definition 1.3.1
e An affine algebraic variety over a field K is a subset of K", of zeros of a set of
polynomials in K[X7,..., X,].

e A morphism of affine algebraic varieties between V' C K" and W C K™ is the
restriction of a polynomial map K" — K™.

e A reduced algebra is an algebra without nilpotent element.

e A morphism of finitely generated commutative reduced algebras is a morphism of
algebras between finitely generated commutative reduced algebras. ¢

Proposition 1.3.2
e Let V C K" be an affine algebraic variety. Then, its coordinate ring K[V], defined
by
KV] =K[Xy,..., X,|/{P € K[Xy,..., X,], Pv =0}

is a finitely generated commutative unital reduced algebra.

e Reciprocally, if A is a finitely generated commutative unital reduced algebra with
n generators, then one can write

A ~K[Xy,...,X,]/1,
where I is a radical ideal. We associate to A the affine algebraic variety
V={reK", VPel, P(x)=0}.
Then, K[V] ~ A, and this procedure defines an anti-equivalence of categories.

In the same way, there is a duality between compact Riemann surfaces and algebraic
function fields [I8]. Noncommutative algebraic geometry, generalizing these notions to
noncommutative algebras, is a lively domain [19]. These constructions and the dualities
in the case of commutative C*-algebras (see section and commutative von Neumann
algebras (see section motivated the study of what could be such a duality in the
framework of differential geometry [1].

Throughout this section, we restrain our study to compact spaces, or equivalently to
unital commutative algebras.
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1.3.2 Differential calculi

The algebraic properties of the de Rham complex of a differentiable manifold can be
extracted from their geometrical framework. Indeed, the concepts of forms and differential
have been generalized for an arbitrary associative algebra.

Definition 1.3.3 (Differential calculus)
Let A be an associative unital algebra. A differential calculus on A is a N-graded differ-
entiable algebra (2°,d) such that Q° = A and d(1) = 0. ¢

Note that €® is then a graded unital algebra, but A and * are not supposed to be
respectively commutative and graded commutative.

For a smooth compact manifold M, the algebra A = C*°(M) is unital and commuta-
tive, and the de Rham complex (Qz (M), d) is a graded commutative differential calculus
in the sense of Definition [1.3.3l

Let us now define a particular differential calculus for any unital algebra.

Definition 1.3.4 (Universal differential calculus)

The universal differential calculus of an associative algebra A is the free unital N-graded
differentiable algebra (€2f,(A),dy) generated by A in degree 0. It is a differential calculus
in the sense of Definition [1.3.3 ¢

It is generated by elements of the form

Qo dUa1 dUGQ Ce dUCLn,

where a; € A. A concrete realization of this differential calculus is given by the identifi-
cation Q% (A) C A®"*+D in which the differential takes the form Va; € A,

dU(aO®"'®a'n):]1®a0®"'®an
+Y (- a® @41 010a0,0 - @a,
p=1

+(-1)""a® - ®a, @ 1,
and the product:

(ag @+ ®ay) (b @ @bp) =g Q@+ @ ap_1 ® (ayby) by @+ R by,

The cohomology of this differential calculus is trivial.

We can define another differential calculus, based on the derivations of the algebra,
which is the noncommutative analog of the de Rham complex. It has been introduced in
[2, 20, 21, 22] (see [23, 24, 25] for reviews).

Definition 1.3.5 (Derivation-based differential calculus)
Let A be an associative unital algebra.
The derivation-based differential calculus (2p,,(A),d) of A is defined by:

Qe(A) ={w: (Der(A))" — A, Z(A)-multilinear antisymmetric},
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and Q) _(A) = A. The space

Qe (A) = D Op.(A)

is a N-graded differential algebra with the product: Yw € QF (A), Vn € Q% (A), VX, €
Der(A),

1 ag
(w'n)<%17 S >%p+Q) = ) Z (_1>| |w(%0(1)7 < 7%0(17))'77(%0(P+1)7 < 7%U(P+Q))7
Pa 0€6p+q
and the differential:
p+1 .
dw(.’fl, e ,pr+1) == Z(—l)m+11£mw(ff1, oY 7:£p+1>
m=1
Y Y[R Xl Y ).
1<m<n<p+1
It is a differential calculus in the sense of Definition [1.3.3 ¢

Let us denote by Q. (A) the graded differential subalgebra of ). (A) generated in
degree 0 by A. It is a differential calculus, and a quotient of the universal differential
calculus.

Example 1.3.6
In the case of a smooth compact manifold M, consider the associative unital algebra

A = C=(M).

e Since A is commutative, Z(A) = A = C*°(M). But the right generalization of usual
forms to the noncommutative framework involves a condition of Z (A )-multilinearity
of the forms, and not A-multilinearity, because Der(A) is a Z(A)-bimodule and not
a A-bimodule in general.

e Moreover, a fondamental theorem of differential geometry permits to show that the
derivations of A are the vector fields of M: Der(A) = I'(M).

e The derivation-based differential calculus of A is then the de Rham complex Q8 (M)
of M. ¢

It is then possible to construct a theory of connections and gauge transformations as-
sociated to any differential calculus. In the particular case of derivation-based differential
calculus, it leads to the following definition [26].

Definition 1.3.7 (Connections, curvature)

Let A be an associative unital algebra and M be a right A-module. A linear map
Vi : M — M, defined for any X € Der(A), is said to be a connection on M if Va € A,
Vze Z(A), VX, € Der(A), Vm e M,

Vz(ma) = (Vym)a + mX(a)
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The curvature of a connection V is the linear map R(X,9)) : M — M, defined for any
X, € Der(A), by: Vm € M,

These definitions generalize the ones of the ordinary differential geometry, where for A =
C>(M), the module M represents a vector bundle on M, the center Z(A) the functions
C*(M), and the derivations Der(A) the vector fields I'(M). In the general case, it can be
shown that the space of connections is an affine space, and that the curvature is a right
A-module homomorphism.

Definition 1.3.8 (Gauge group)
The gauge group of M is the group of automorphisms of M as a right A-module. Its
elements are called gauge transformations. ¢

Proposition 1.3.9
The gauge group of M acts on the space of connections by: for ® a gauge transformation
and V a connection, VX € Der(A),

Vi=®oViod™

is still a connection. The action on the corresponding curvature is given by R®(X,9) =
Do R(X,9)o0d L.

These notions coincide with the usual ones in the case of ordinary differential geometry
A =C>(M).

Note that this formalism will be extended to the framework of e-graded algebras in
chapter 2|

Example 1.3.10
The matrix algebra [27] (see also [28]): A = M,,(C) = M,,.

e The center is trivial: Z(M,,) = CI.

e The derivations are inner: Der(M,) = Int(M,) ~ sl, (traceless elements). This
isomorphism is made explicit by v € sl,, — ad, € Int(M,,).

e The differential calculus: Q. (M,) = Q.. (M,) ~ M, ® \°sl’, where the differ-

n’

ential is the one of the complex of the Lie algebra sl, represented on M, by the
adjoint representation.

e The canonical 1-form i € Qp,,(M,), defined by i6(ad,) = v— 1 Tr(y)1, for y € M,,

is the inverse isomorphism of ad : sl,, — Int(M,,).
e It satisfies a Maurer-Cartan type relation: d(if) — (i6)? = 0.
e The cohomology of the differential algebra (Qp..(M,),d) is
H* (Qper(My),d) = H*(sl,) = Z(A"sL,),

the algebra of invariant elements for the natural Lie derivative.
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For any connection V on M, considered as a right module on itself, one defines
w(X) = Vx1, VX € Der(M,). Then, V is completely determined by the 1-form w,
and is denoted by V¥: VX € Der(M,,), Ya € M,,

%a = da(X) + w(X)-a.
The curvature of V¥ writes: R(X,9)(a) = Q(X,9)-a, with

1
Q=dw+ §[w,w}.

The gauge transformations ® are determined by ®(1) = g € GL,(C), and act as:

a v g-a, W gwg 4 gdg, Q= g-Qg .

For all a € M, da = [i0, a], the connection V=% is gauge invariant and its curvature
is zero. ¢

Example 1.3.11
The matrix valued functions algebra [29]: A = C*(M) ® M, where M is a smooth
paracompact manifold.

The center: Z(A) = C*(M).
The derivations:
Der(A) = (Der(C*(M))® C) & (C*(M) @ Der(M,,)) =T'(M) & (C*(M) ®@sl,),

so that each derivation X € Der(A) can be written: X = X + ad,, with X € I'(M)
and v € Ay = C*(M) ® sl,, (traceless elements in A).
Int(A) = Ay and Out(A) =T'(M).

The differential calculus: Q.. (A) = Q. (A) = Qi (M) @ Q. (M,,).

Like in Example [1.3.10, a canonical noncommutative 1-form 6 can be defined by
i0(X + ad,) = . It splits the short exact sequence of Lie algebras and C*°(M)-

modules:
i0
0——=Ay=—Der(A)——=I'(M)—>0 ¢

In the above Example, if M is compact, the noncommutative connections are also
described by noncommutative 1-forms w(X) = Vx(1), where

w € Qlli)er(A) - (leR(M) ® Mn) & (COO(M) ® Qlli)er(Mn))

The first part of w (in Q4x (M) ® M,,) is an ordinary Yang-Mills potential, while the second
part (in C°°(M) @ Q. (M,)) is interpreted as a Higgs field in [29]. Indeed, the curvature
can be decomposed in three components: the Q2; (M) ® M, part is the curvature of
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the ordinary Yang-Mills connection, the Qg (M) ® Q.. (M,,) part involves the covariant
derivative of the Higgs field, and the C*°(M) ® Q3. .(M,,) part a second order polynomial
in the Higgs field. By considering the action constructed as a trace of the square of
the curvature, one obtains an ordinary action, function of a Yang-Mills potential gauge-
invariantly coupled to a Higgs field. Therefore, in this picture, the Higgs field can be seen
as the noncommutative part of the noncommutative connection V.

Note that Example has been generalized by considering the algebra of sections
of the endomorphism bundle associated to a SU(n)-vector bundle [30]. It has permitted
to interpret the ordinary connections on a SU(n)-vector bundle as a part of the noncom-
mutative connections of its endomorphism algebra.

1.3.3 Hochschild and cyclic homologies

The Hochschild homology of an associative algebra permits also to generalize the de
Rham complex in the noncommutative framework. Moreover, the cyclic homology can
be interpreted as the generalization of the de Rham cohomology, and is deeply related
to Hochschild homology, universal differential calculi (see Definition , K-theory and
characteristic classes. Note that we restrict to the special case of unital algebras. More
details about Hochschild and cyclic homologies can be found in [28, [31], [32].

Definition 1.3.12 (Hochschild complex)
Let A be an associative algebra with unit, and M a bimodule on A. Then, the Hochschild
differential complex is defined as the sum on the vector spaces:

Co(A, M) =M @ A®",
with n € N, and with the boundary operator b : C,,(A, M) — C,,_1(A, M), given by:

bm®Ra; ® -+ ®a,) =(Mma) Ras® -+ ® ay,
n—1

+ Z(—l)im Ra; @ @ (a;ai41) @ R a, + (=1)"(a,m) @ a1 @ -+ Q@ ap_1, (1.3.1)
i=1

for m € M and a; € A. Then, b> = 0 and the Hochschild complex is denoted by
(Co(A, M), D). ¢

In the case M = A, the complex is simply denoted by Cs(A), and its homology, called
the Hochschild homology of A, HH(A).

Proposition 1.3.13
This homology respects direct sums of algebras: if A and B are two associative algebras,
then

HH,(A®B)=HH,(A)® HH,(B).

Moreover, if ¢ : A — B is a morphism of associative (unital) algebras, then it can be
extended into a morphism of differentiable complexes ¢ : Co(A) — Co(B), and induces a
morphism in homologies ¢y : HH,(A) — HH,(B).

The Hochschild homology satisfies several properties which will not be exposed here.
For example, it is Morita invariant. For further considerations on this subject, see [28] for
instance. However, one also introduces a “shuffle product” on the Hochschild complex.
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Definition 1.3.14 (shuffle product)

Let A and B be two unital algebras. One defines a shuffle of type (p, ¢) by a permutation
o0 € 6,4y, such that 0(1) < 0(2) < --- <o(p) and o(p+1) <o(p+2) <--- <a(p+q).
The set of all shuffles of type (p, ¢) is denoted by B(p, q). It acts (like S,4,) on Cpiy(A)
by:

(g @ a1 @+ @ Gpyq) = A0 @ Up-1(1) @ =+ @ Up1(ptq)-

Then, the shuffle product
Shyq 1 Cp(A) @ Cy(B) — Cpiy(A ® B)
is defined by

Shyq((ag @ ®ap) @ (by® -+ @b,)) =
Y (D o((ae®b) @ (@ @D @ @ (4, 1)@ (ARb) @@ (1D b,)). ¢

c€B(p,q)

We will denote = x y = Sh,, ,(z ® y), for x € C,(A) and y € Cy(B).

Proposition 1.3.15
e The boundary application b is a graded derivation of Co(A ® B) of degree —1,
namely: Vo € C,(A) and Vy € C,(B),

b(xz x y) = (bx) x y+ (—1)Pz x (by).

e The shuffle product induces an isomorphism in homologies (theorem of Eilenberg-
Zilber):
Shy : HH,(A) ® HH,(B) - HH.,(A ® B).

e If A is commutative, the shuffle product (with B = A) can be composed with the
product of A, and it provides an inner product C,(A) ® Cy(A) — Cpi4(A), so that
the Hochschild complex C4(A) is a graded differential algebra and the Hochschild
homology HH,(A) is a graded commutative algebra.

Example 1.3.16
e [f A = C, the Hochschild homology is trivial:

HHy(C) =C, HH,(C) =0,
forn > 1.
e The definition of the Hochschild homology can be generalized for topological alge-
bras A, by replacing in the Hochschild complex the tensor products by topological

tensor products adapted to the topology of the algebra. The resulting homology is
called the continuous Hochschild homology and denoted by HHE"(A).
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o If M is a smooth (finite dimensional) locally compact manifold, consider A =
C>°(M) the algebra of its smooth functions. Then A. Connes computed the contin-

uous Hochschild homology and found:
HHJ™(C®(M)) = Qg c(M),

the complexified de Rham forms. This result generalizes the Hochschild-Kostant-
Rosenberg theorem. ¢

Definition 1.3.17 (Cyclic homology)
e Let us define on Co(A) the cyclic operator ¢ and the norm operator N by:

satisfying
"t = id, (1—t)N=N(1—-1t)=0.

e On C,(A), another differential than ((1.3.1) can be defined:

—_

b/(a0®...®an): (—1)ia0®...®(aiai+1)®...®an.

%

I
o

Then, one has:

V2 =0, (1—t)b =b(1 —1t), VN = Nb.

e The differential cyclic bicomplex C'C, o(A) is then described by:

b — b Y

ontl <178 Aontl <N pentl 27 A ont1 <Y
b — b Y
A®n 1 A®n N A®n 1-1 A®n N
b — b Y

b — b Y
At A N At AN

where CC, ,(A) = C,(A) = A®@D_ for p the index of the column and ¢ the index
of the line.
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e The cyclic homology of the algebra A is the homology of the total complex TC'Cy(A)
defined by
TCC,(A) = P CC,q(A),

and denoted by HC,(A). ¢

Proposition 1.3.18 (Properties)
This homology respects direct sums of algebras: if A and B are two algebras, then

HCJ(A & B) = HC,(A) & HC.(B).

Moreover, if ¢ : A — B is a morphism of (unital) algebras, then it can be extended
into a morphism of differentiable bicomplexes ¢ : CC, o(A) = CC, o(B), and induces a
morphism in homologies ¢y : HCo(A) — HC,(B).

Proposition 1.3.19
The Hochschild and cyclic homologies enter into the following long exact sequence:

1

Definition 1.3.20 (Cyclic homology)
e The periodic cyclic bicomplex CCPY(A) is an extension on the left of CC, o(A) and

is given by:
b v b —
<N Aot At Aontl <N A@nt At Aontl N
b v b —
N_ pen 1—t Abn <N pon 1—t Al <N
b —v b —y
b v b —
N 1—t¢ N 1—¢ N
A A A A
p= —2 —1 0 1

e Then, the periodic cyclic homology is the homology of the total complex of CCPY(A):

TCCH(A) = @ CcCra(A

p+q=n

and is denoted by HP,(A). ¢
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Proposition 1.3.21
The periodic cyclic homology is naturally two-periodic:

HP,(A) ~ HP,_5(A).

Example 1.3.22
e For A = C, the cyclic and periodic homologies are given by:

HC5,(C) =C,  HC341(C) =0,

e Like in the Hochschild homology case, the cyclic and periodic homology definitions
can be generalized for topological algebras A, by replacing the tensor products by
topological tensor products adapted to the topology of the algebra. The resulting
homologies are called continuous cyclic and periodic homologies and denoted by
HCE™(A) and HPL™(A).

e Let M be a smooth (finite dimensional) locally compact manifold, and A = C*°(M)
the algebra of its smooth functions. Then the continuous periodic cohomology
computed by A. Connes is deeply related to the de Rham cohomology of M:

HPE(C(M)) = Hge (M),
HPLM(C(M)) = Hetd (M), ¢

1.3.4 Spectral triples

We present here the notion of spectral triple, introduced by A. Connes [I], which plays
the role of a noncommutative analog of smooth manifolds (and riemannian manifolds).
See also [33] 34] [35].

Definition 1.3.23
A spectral triple (A, H, D) of (metric) dimension p is composed of a Hilbert space H, an
involutive algebra represented on H, and a selfadjoint operator D on H, satisfying:

1. the n'® characteristic Valu of the resolvent of D is O(n~1/P).
2. Ya,b € A, [[D,al],b] = 0.

3. We set o(T) = [|D|, T] for bounded operators T" € L(H) such that T'(Dom(|D|)) C
Dom(|D|) and 6(7") bounded. Then, Va € A, Ym € N*, a € Dom(d™) and [D,a] €
Dom(0™).

4. Let mp(ap®@a1®- - -®ay) = ag[D, a1] ... [D, ap), for a; € A. There exists a Hochschild
cycle ¢ such that mp(c) = 1 if p is odd, and 7p(c) = 7 if p is even, with

=7 =1 yD=-Dny.

2The characteristic values of an operator are the eigenvalues of its absolute value
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5. Heo = [\en- Dom(D™) is a finitely generated projective A-module. It can be
endowed with a hermitean structure (-|-) defined by: Vz,y € Hoo, Va € A,

(7, ay) = ][a<x|y>|D|—P7

where 7( is the Dixmier trace. ¢

Example 1.3.24

Let M be a compact oriented manifold, and S be a spinor bundle on M. A = C*°(M),
the space of smooth functions on M is an involutive algebra, and H = L*(M,S), the
space of square-integrable sections of .S, is a Hilbert space. By taking D a Dirac operator
of M acting on H, it can be shown that (A, ?H, D) is a spectral triple. ¢

Then, A. Connes shew the following converse theorem [36].

Theorem 1.3.25
Let (A, H, D) be a spectral triple (in the sense of Definition|1.3.23), with A commutative,
and

e for all A-endomorphisms T of Ho,, Ym € N*, T' € Dom(6™) and [D,T] € Dom(6™),
e the Hochschild cycle c is antisymmetric.

Then, there exists a compact oriented smooth manifold M such that A = C*(M).

Proposition 1.3.26
The map 7p : Qf;,(A) — L(H) defined by: Va,; € A,

mplapdyas ... dyay) = ap[D, aq]...[D, ay)
is a representation of the algebra Qf;(A) (see Definition [1.3.4).

The differential calculus of a spectral triple can therefore be seen as a quotient of the
universal differential calculus of A. In the case of a smooth compact manifold, it coincides
with the de Rham complex. Note that the previous representation is not a representation
of differential algebras.

A notion of distance can then be defined on states w,n € S(A) thanks to the operator

D:
d(w,n) = sup{|w(a) —n(a)|, [[[D,d][| <1}.
acA

It is a called the spectral distance on A. In the commutative case, it coincides with the
usual geodesic distance on the points of the manifold, for the metric associated to the
Dirac operator D, so that the spectral triple approach can be seen as a noncommutative
generalization of riemannian geometry.
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Epsilon-graded algebras and
noncommutative geometry

The noncommutative geometry based on the derivations of associative algebras, namely
the differential calculus and the theory of connections (see subsection [I.3.2)), can be ex-
tended to the framework of e-graded algebras. Lie superalgebras have been generalized
by Rittenberg and Wyler [37], and by Scheunert [38], by using the notion of commutation
factor.

During this PhD, we have adapted this generalization to the case of associative algebras
by defining e-graded algebras [10]. In this setting, derivations of the associative algebra
are replaced by e-derivations, and one can extend the framework of differential calculus
based on derivations to the e-graded algebras. This will be presented in this chapter, and
illustrated on examples of e-graded commutative algebras, and matrix algebras.

2.1 General theory of the z-graded algebras

2.1.1 Commutation factors and multipliers

We recall here the principal features of the commutation factors and the multipliers, that
have been respectively introduced by Scheunert [38] and Schur (see also [10]). Let K be
a field, K* its multiplicative group, and I" an abelian group.

Commutation factors

Definition 2.1.1
A commutation factoris a map ¢ : ' x I' — K* satisfying: Vi, j, k € T,

E(Z,j)E(j,Z) = 1]K (211&)
e(i,j+ k) =e(i,je(i, k) (2.1.1b)
e(i+j, k) =¢e(i,k)e(y, k) (2.1.1¢)

One can define an equivalence relation on the commutation factors of an abelian group
in the following way:



34 Chapter 2 — Epsilon-graded algebras

Definition 2.1.2
Two commutation factors € and &’ are called equivalent if there exists f € Aut(I'), the
group of automorphisms of I', such that: Vi, € T,

e'(i,g) = freli, j) = e(f (@), f(5))- ¢

Thanks to the axioms (2.1.1), one defines the signature function v, : I' — {—1k, 1k}
of e by Vi € T, 9. (i) = (4, 4), which satisfies: Vf € Aut(I"), ¢+ = f*9..

Proposition 2.1.3
Let € be a commutation factor. Let us define

P={iel, e@ii)=1k}, M={iel, e&(ii)=—1k},

then ¢ is called proper if T° = T'. This property is compatible with the equivalence relation
on the commutation factors. If € is not proper, T'? is a subgroup of T of index 2, and T"?
and T'! are its residues.

In these notations, we define the signature factor of the commutation factor e by:
Vi,j el

e s(e)(i,j)=—1gifi €Tl and j € L.
e s(¢)(i,7) = 1k if not.
s(e) is also a commutation factor, such that Vf € Aut(T"), s(f*e) = f*s(e).

Lemma 2.1.4
Let €, and €5 be two commutation factors respectively on the abelian groups I'y and T's,
over the same field K. Then, the map ¢ defined by: Vi, j; € 'y, Vig, jo € I's,

e((i1,i2), (J1, j2)) = e1(in, jr)e2(iz, J2), (2.1.2)
is a commutation factor on the abelian group I' = Ty x 'y, over K.

Proposition 2.1.5

Let T' be a finitely generated abelian group and K a field. Then, I' is the direct product of a
finite number of cyclic groups, whose generators are denoted by {e, },c;. Any commutation
factor on I' over K takes the form: Vi =73 ., Aep,j =3 o pses €L (A, pis € Z),

e(i,j) = H (e, es)He,

r,sel

with the condition: if m,s is the greatest common divisor of the orders m, > 0 of e, and
mg > 0 of eg in I,

Vr € I, such that m, is odd, (e, e,) = 1k,
Vr € I, such that m, is even, €(e,, e,) = +1k,
Vr,s €1, eleyes)™ =1k
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The proof is straightforward and has been given in [38] or [10]. This Proposition gives
the explicit form of a commutation factor on a finitely generated abelian group, but this
is not a classification of such factors. In general, it is not easy to obtain this classification
and it is related to the theory of multipliers as we will see below, but in the following
example, coming from [38], things are simplifying.

Example 2.1.6

Let I' = Zj, with p a prime number, K a field of characteristic different from p, and
a # 1k a pth root of unity in K. Then, any commutation factor on I' over K takes the
unique following form: Vi,j € I,

e(i, j) = a?9),
where ¢ is a bilinear form on the vector space Z, over the field Z,, which is:
e symmetric if p = 2,
e skew-symmetric if p > 3. In this case, € is proper.

To equivalent commutation factors correspond equivalent (in the sense of linear algebra)
bilinear forms. ¢

PROOF We recall here the proof of [38]. Let ¢ be a commutation factor on I' over K.
Since p is prime and different from the characteristic of K, there exists a pth root of unity
in K, a # 1k, and all the pth roots of unity are powers of a. Using Proposition [2.1.5] if
{e; }rer are the canonical generators of I' = (Z,)", Vr,s € I, (e,, e5)? = 1k, so that there
exists m,s € Z, such that e(e,, e5) = o™ and mg = —m,..

Then, Vi = >, A€, = Y oucr Hses €L (A pis € Z), (4, j) = a9 where (i, j) =
Zmel Arlbsmys is a bilinear form. If p > 3, Vr € I, m,,, = 0 and ¢ is skew-symmetric. If
p=2Vr,s€l, mg = —m,s =m,s and ¢ is symmetric. |

Schur multipliers

We will now study the theory of multipliers of an abelian group, due to Schur (also for non-
abelian groups), which is related to the classification of commutation factors. Let us now
recall the standard definition of a factor set, closely related to a projective representation.

Definition 2.1.7
Let ' be an abelian group, and K a field. A factor set is an application ¢ : I' x I' — K*
such that: Vi, j,k € T,

(i, j + K)o (j, k) = (i, j)o(i + 5, k). (2.1.3)

Two factor sets o and ¢’ are said to be equivalent if there exists an application p : [ — K*
such that: Vi,j € T,

a'(i,3) = o(i, ))p(i + 7)p(1) " p(s) "
The quotient of the set of factor sets by this equivalence relation is an abelian group, for
the product of K, and is called the multiplier group Mr of I'. Each class [0] € My is
called a multiplier.
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If o is a factor set and f € Aut(T"), the pullback f*o defined by: Vi,j € T,
fro(i,g) = o(f(@), f(5)),

is also a factor set. Moreover, this operation is compatible with the above equivalence
relation, so that the pullback can now be defined on the multipliers: f*[o] = [f*0].
This defines an equivalence relation on the multipliers, which is not compatible with the
product.

A more refined equivalence relation involves also subgroups of I': if [o] and [0'] are
multipliers and T'y and T'; are subgroups of T, ([0],Tg) and ([0'],T';) are called equivalent
if there exists f € Aut(I") such that f(I'y) = Iy and [0'] = f*[o]. ¢

Note that the equation (2.1.3)) is related to the definition of cocycles of the group I,
while the equivalence of factor sets can be reexpressed in terms of coboundaries, so that
multipliers are in fact exponentials of the cohomology classes H?*(T',K) of the group T.

Relation between commutation factors and multipliers

If € is a commutation factor on I' over K, notice that, due to Definition [2.1.1] it is a factor
set of I'. But there is a deeper relation between commutation factors and factor sets,
given by the following theorem [38, [10]:

Theorem 2.1.8
Let I' be an abelian group, and K a field.

e Any multiplier o] defines a unique proper commutation factor e, onI" by: Vi, j € T,

e.(i,5) = o(i, j)o(4,4) " (2.1.4)

e IfT is finitely generated, any proper commutation factor € on I' can be constructed

from a multiplier [o] by (2.1.4)).

e If, in addition, K is algebraically closed, then ¢ is constructed from a unique multi-
plier [o].

e For I' finitely generated and K algebraically closed, if two proper commutation
factors ¢, and ¢, are equivalent, then [0'] is a pullback of [o].
PROOF This theorem has been proved in [38, [10].
e Let o be a factor set, and &,(i,j) = o(i,5)o(j,i) 7", fori,j € T\
Then, ¢,(i,j)es(j,1) = 1k, and Vi, j, k € T,
eo(iyj+ k)eqa(i,5) ea(i k)~ =
oli,j+k)o(i,j)" o6, k)" (o + ko (G, i) ok, )~
By using three times the property (2.1.3)), one obtains
o(j + ki) = (i, j + K)o (G, Dok, Do (i, 5) Lo (i k),

which proves that e,(i,7 + k) = €,(i,7)e,(i,k). The third axiom of Definition
can be treated in a similar way. If ¢/(,j) = o(i, 7)p(i + 7)p(i) " p(5)~!, then

o'(i, 7)o’ (3, i)~ = o (i, j)o(4,1) 7"
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e Let us suppose that I' is finitely generated, and {e,},c; a system of generators,
where [ is an ordered (finite) set. Let € be a proper commutation factor on I
Define o0 : I'x I' = K* by Vi = > ., Aver,j =D o tses €T ( Ay s € Z2),

a(i,j) = [ [ eler €)™
r<s
Since Vr,s € I, e(e,, e,) = 1g and £(e,, e,) = £(es, €,) ", one has
e(i,j) =0(i,j)o(j, i)' And Vk =" v, €T (v, € Z),

oi,j + K)o, k) = [ eler a0 = (i, j)o(i + . k).

r<s

e Let I' be a finitely generated abelian group, K an algebraically closed field, and e
a commutation factor on I' over K. Suppose that ¢ is constructed through
from two factor sets o and o’. Then Vi,j € T, o(i,5)o’(i,7)"" = a(j,9)o’(j,1)7",
which means that oo’~! is a symmetric factor set. Since K is algebraically closed,

oo’'~! is equivalent to one, and ¢ and ¢’ are in the same multiplier.

e If ' is finitely generated and K algebraically closed, consider two equivalent com-
mutation factors ¢ and £’ ¢’ = f*e, with f € Aut(I'). Then, there exists a unique
multiplier o] such that ¢ = ¢,. Vi,j € I,

e'(i, 5) = a(f(@), F())o(f(5), F(@) " = epaliy ).

By unicity of the associated multiplier of &', we obtain the result. [

Corollary 2.1.9
Let I be a finitely generated abelian group, and K an algebraically closed field. Then,

e the proper commutation factors on I' are classified by the equivalence classes (by
pullback) of the multipliers of T.

e the non-proper commutation factors on I' are classified by the equivalence classes
of multipliers and subgroups of index 2 of I.

PROOF The first point is a direct consequence of Theorem [2.1.§]

For the second point, if £ and €5 are non-proper equivalent commutation factors on
I, then there exists f € Aut(I') such that e5 = f*e;, and f(I'})) = T2 . Va = 1,2, we
decompose €, = $(£4)Eq, With &, proper commutation factors. Using now Theorem [2.1.8]
there exist unique multipliers [0,] such that &, = &,,_, and they satisfy [os] = f*[o1].
Then, ([01],T2)) and ([o3],I',) are equivalent.

Conversely, if Yo = 1,2, e, = 5(ea)€q,, with [0,] multipliers such that ([o],T'?))
and ([o2),I'2)) are equivalent, then there exists f € Aut(I') such that f(I'?)) = 'Y and
[0a] = f*[o1]. It means that s(eq) = f*s(e1) and &,, = f*e,,, so that 9 = f*e. [ |
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2.1.2 Definition of e-graded algebras and properties

The notion of commutation factors has been introduced in the context of graded Lie
algebras [38] and gives rise to the following definition:

Definition 2.1.10 (e-Lie algebra)
Let g* be a I'-graded vector space, € a commutation factor on I', and [—, —]. : g* x g* — ¢°
a bilinear product homogeneous of degree 0 satisfying

[a,b]e = —&(lal, |b])[b, al.

[a, b, cJe]e = [la, ble, dJe + &(lal, oI)[b, [a, cl]e, (2.1.5)

Va,b,c € g* homogeneous, where |a| € I is the degree of a € g*. The couple (g°,[—, —]:)
is called an e-Lie algebra.

An e-Lie algebra for which the product [—, —|. is always 0 is called an abelian e-Lie

algebra. ¢

e-graded algebras

We can now introduce the notion of e-graded algebra [39] [10]:

Definition 2.1.11 (e-graded associative algebra)
Let A® be an associative unital I'-graded K-algebra, endowed with a commutation factor
e on I, then (A*, ¢) will be called an e-graded (associative) algebra. ¢

Notice that the e-structure is only related to the algebra A® through the grading
abelian group I'. In particular, the product in the algebra is not connected to this struc-
ture. In the following, such an e-graded (associative) algebra will be denoted simply by
A? or even A* if no confusion arises.

Any Z-graded associative algebra is an e-graded associative algebra for the natural
commutation factor on Z, so that the theory described below can be applied to any
Z-graded (associative) algebra. In the same way, Lie superalgebras (see [40, 41]) are
particular e-Lie algebras.

Remark 2.1.12
Using Lemma [2.1.4] if A®* is an associative unital I'; x [';-bigraded K-algebra equipped
with two commutation factors £; and e, for the two gradings separately, then it is also a
e-graded algebra for the product grading I'y x I's with € defined by . ¢

If A® is an e-graded algebra, one can construct its underlying e-Lie algebra using the
bracket defined by
la,b]. = a-b—e(]al, |b]) b-a.

Va,b € A® homogeneous. We will denote by A?. . this structure.

Lie,e

Definition 2.1.13 (e-graded commutative algebra)
A? is called an e-graded commutative algebra if A7, _ is an abelian e-Lie algebra. ¢

For the case of Z-graded algebras, depending on the commutation factor, one gets
as e-graded commutative algebras either commutative and graded algebras (for the triv-
ial commutation factor) or graded commutative algebras (for the natural commutation
factor).
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Definition 2.1.14 (e-center)
Let A? be an e-graded algebra. The e-center of A? is the e-graded commutative algebra

Z2(A)={a € A*, Vbe A® [a,b]. = 0}. ¢

Depending on the choice of the e-structure on a I'-graded algebra, this e-center can
be very different.

Let us now mention some elementary constructions using e-graded algebras. Let A*®
and B* be two e-graded algebras with the same commutation factor ¢.

A morphism of e-graded algebras is defined to be a morphism of associative unital
['-graded algebras y : A®* — B®. As a consequence, Y is also a morphism of e-Lie algebras
between Af. . and B}

Lie,e Lie,e*

The tensor product of the two e-graded algebras A® and B*® is the e-graded algebra
defined as the I'-graded vector space (A ® B)*® for the total grading, equipped with the
product given by

(a®b)-(c®d) =e(|bl, |c])(ac) ® (b-d).

Va,c € A® and Vb, d € B®* homogeneous.
An e-trace on A® is a linear map T : A — K, which satisfies

T(a-b) = &(|al, |b))T(b-a). (2.1.6)
VYa,b € A®* homogeneous.

The structure of module compatible with an e-graded algebra A*® is simply the struc-
ture of I'-graded module. M* is a I'-graded module on A* if it is a I'-graded vector space
and a module on A® such that M'AJ ¢ M (for right modules) Vi,j € I'. The space
of homomorphisms of M* is an e-graded algebra and will be denoted by Hom$, (M, M).

e-derivations

Let us now introduce the key object which permits to introduce a differential calculus
adapted to this situation.

Definition 2.1.15 (e-derivations)
An e-derivation on the e-graded algebra A® is a linear combination of homogeneous linear
maps X : A®* — A*® of degree |X| € T, such that

X(a-b) = X(a)b+ (x|, |a]) a-X(b), (2.1.7)

Va,b € A with a homogeneous.
We denote by Der?(A) the I'-graded space of e-derivation on the e-graded algebra
Ac. ¢
Notice that this definition makes explicit reference to the e-structure, so that Der?(A)
really depends on it.
Proposition 2.1.16 (Structure of Der?(A))
The space Der?(A) is an e-Lie algebra for the bracket

[%72)]6 = %QJ - €<|%’7 ‘2)’)9:3:{
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It is also a Z2(A)-bimodule for the product structure
(z-X)(a) = e(|2], [X])(X-2)(a) = 2-(X(a)), (2.1.8)

VX € Der?(A), Vz € Z2(A) and Ya € A* homogeneous.

Notice that the left and right module structures are equivalent modulo the factor
£(|z|, |%]). So that we mention it as a module structure, not as a bimodule one. In order
to take into account this extra factor, it would be convenient to introduce the notion
of e-central bimodule, as a straightforward adaptation of the notion of central bimodule
defined in 20} 22]. We will not go further in this direction.

As usual, an inner e-derivation on A® is an e-derivation which can be written as

b ad,(b) = [a,b].,
for an a € A®. We denote by
Int?(A) = {ad,, a € A*}

the space of inner e-derivations on A®.

Proposition 2.1.17
Int?(A) is an e-Lie ideal and a Z2(A)-module.
This permits one to define the quotient

Out?(A) = Der?(A)/Int2(A)
as an e-Lie algebra and a Z2(A)-module. This is the space of outer e-derivations on A®.

From these considerations, one then gets the two short exact sequences of e-Lie alge-
bras and Z2(A)-modules:

0—=Z2(A)—=A* L Int? (A)——0
0——Int*(A)—>Der®(A)—=Out?(A)—=0

Notice that the notion of e-Lie algebra has been generalized in [42] where quasi-
hom-Lie algebras are introduced, and the notion of e-derivations is a particular case of
(o, 7)-derivations (see [43]). However, in the framework of e-graded algebras, these two
structures are compatible together, since the same commutation factor is used in their
definitions.

e-Hochschild cohomology
Definition 2.1.18
(A*,d) is called an e-graded differential algebra if A® is an e-graded algebra and d is a

homogeneous e-derivation of A® such that d> = 0. Note that we do not assume any degree
for d. ¢
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For the case of Z-graded algebras, this definition is compatible with the usual one only if
we assume that the differential d is of degree 1. But it is not possible for any arbitrary
grading group I

Let us now define the graded e-Hochschild cohomology of an e-graded algebra A® and
a A°*-bimodule M*®, where ¢ is a commutation factor on the abelian group I' over the
field K.

Definition 2.1.19

The (n, k)-cochains (n € N, k € I') for the e-Hochschild complex of A®* and M*® are
given by the multilinear maps w from A®" to M, such that Vay,...,a, € A®* homoge-
neous, w(a; ® - ® a,) € MFlalt-Flenl “The space of the (n, k)-cochains is denoted by
C™k(A, M). Setting C%*(A, M) = M* the complex of cochains writes

C**(A,M)=  c""A M),
neNkel’

and is a bimodule on A®. The differential associated to this complex is §. : C"F(A, M) —
CnHLkE(A, M), defined by Vw € C™II(A, M), Vay, ..., a, € A* homogeneous,

(6ew)(ag ® ... a,) = e(|wl, |ao])aow(a1 @ - @ a,) + (—=1)"Mw(ag @ - @ ap_1)an

+ Z<—1)iW(CLO X...aq;1 X (ai,l-ai) &® a1 XX CLn>. (219)
=1

Then, (C**(A, M), d.) is called the e-Hochschild complex of A® and M*. Its cohomology
is denoted by H?*(A, M). ¢

Note that we omit from now on the subscript K for the unit of the field: —1 = —1k.

Proposition 2.1.20
For M* = A®, we obtain that H>*(A,A) = Z°(A) and H*(A,A) = Out?(A).

PrROOF From (2.1.9)), we deduce that a (0, k)-cocycle a € A* satisfies: Vb € A* homoge-
neous, (6.a)(b) = &(|al, |b|)b-a — a-b = 0. This means that a € Z¥(A).

A (1, k)-cocycle w verifies: Va,b € A® homogeneous, (6.w)(a ® b) = e(k, |a|)a-w(b) +
w(a)-b — w(ab) = 0, or w(ab) = w(a)b+ e(k,|a|)a-w(b). Therefore, w € Der*(A). A
(1, k)-coboundary 7 is of the form n(b) = &(|al, |b])b-a — a-b, for a certain a € A*. As a
consequence, i € Int*(A), and H*(A, A) = Out®(A). |

In the following, we use the following notations for the abelian group =7 xT and
the commutation factor £((p, i), (¢,7)) = (—1)*(i, j).

Proposition 2.1.21 (Cup-product)

One can introduce a product on C**(A, A), called the cup-product, which associate tow €
Cm™Il(A, A) andn € C™I(A, A), wun € CmFmll+l(A | A) defined by: Vay, ..., Gmin €
A* homogeneous,

(wUn)(ar ® -+ ® amin) = e(|nl, |ar] + - + lam)w(ar @ - @ am) N(Ams1 @ -+ @ Ann).-

(2.1.10)
With the cup-product, (C**(A,A),d.) is an e-graded differential algebra (|| = (1,0)),
and H>*(A, A) is a e-graded commutative algebra.
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Proposition 2.1.22
Forw € C™“/(AA) and n € C™(A, A), one can define the composition of w and 7. If
ie{l,...,m}, and ay,...,Qpin_1 € A® are homogeneous, we set

(woin)(a1 ® @ amyn-1) = (|, [ar] + - + [a;_1])-
war ® - ®a;i-1 @00 @+ @ Aign-1) ® Gitn @+ @ Amtn_1),

and
m

won= Z(_l)(n—l)(i—l)w oim € CmnTLIkthl(A A,
i=1
Endowed with the bracket [w,n] = won—(—1)m=D"=Vg(|w], |n|)now, and the cup-product
(2.1.10), the Hochschild cohomology H2*(A, A) is a bigraded commutative Poisson alge-
bra.

2.1.3 Relationship with superalgebras

In [38], it has been noticed that there exists functorial relations between e-Lie algebras
and Lie superalgebras. We extend this correspondence to the case of e-graded algebra.

Proposition 2.1.23
Let € be a commutation factor on the abelian group I" over the field K, A® an e-graded
algebra, and o a factor set of I'. One can endow the I'-graded vector space A® with the
product:

Va,b € A®* homogeneous, a-,b = o(|al,|b|)a-b,

and denote it by Aj. Then, A? is an ee,-graded algebra, where €, is given by Equation
(2.1.4).
Moreover, the bracket of A} 1, can be expressed in terms of the one of Aj,.: Va,b € A®
homogeneous,
[a, ]2, = a(lal, [b])]a; bl

E€x

PrROOF We check the associativity of the product of A%. For a,b,c € A} homogeneous,

o (b-g¢) = a(lal, [b] + [e)o (|b], [e])a-b-c,
(a-6b)-oc = a([al, [b])a(la] + [b], [c[)a-b-c.

The associativity of this product is therefore a direct consequence of the associativity of
the product of A® and of the defining relation (2.1.3]) of a factor set. [

Theorem 2.1.24
Let € be a commutation factor on the abelian group I' over the field K and o a factor set
of I'. The correspondence

D, A* — A2,

between the category of e-graded algebras and the category of ec,-graded algebras, has
the following functorial properties:

1. ®, is bijective and its inverse is given by ®,-1.
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2. &, induces a correspondence between the associated € and ec,-Lie algebras, which
can be extended to arbitrary € and ee,-Lie algebras.

3. Let A® be an e-graded algebra and V'* be a I'-graded subspace of A®. Then, V* is
an e-graded subalgebra of A® if and only if V'*® is an ee,-graded subalgebra of A?.

4. Let A* and B*® be e-graded algebras. Then, ¢ : A* — B°® is a homomorphism of
e-graded algebras if and only if ¢ : A2 — B is a homomorphism of ee,-graded
algebras.

PROOF This is a consequence of Proposition [2.1.23] [

Proposition 2.1.25
The above correspondence is compatible with Hochschild cohomology.
For example,

5505(,“}0(@ ® b ® C) :€€U(|w|a |a|>a"o(w0(b g C)) - wa((a'ab) Qg C)
+ we(a ®y (b50)) — wy(a ®qy b)-ge
(o], lal + 6] + lel)o(lal, ] + el ([bl, le)-o(a @ b @ ),

where 07 means that the products and the tensor products in (2.1.9) have to be twisted
by o.

One can give another construction for this correspondence.

Definition 2.1.26

Let I' be an abelian group, K a field, and o a factor set of I'. We define here S = K x, I,
the crossed-product of K by I' relatively to o. S is the algebra of functions I' — K which
vanish outside of a finite number of elements of I', with product: Vf,g € S, Vk € T,

(f-9) (k) = > o(i,)f(i)g(i).
i+j=k
Let (ex)rer be its canonical basis, given by Vi, k € T') ex(i) = 0. It satisfies Vi,j € T,
eiej = o(i, j)eir;. With the [-grading given by S* = Key, S* is an &,-graded commuta-
tive algebra. ¢

Example 2.1.27
Let I' = (Zy)", for n € N*, and K be a field whose characteristic is different from 2. Let
o be the factor set of I' defined by: Vi,j € I,

o(i,j) = (—1g)>1<r<azn ol (2.1.11)

Then, K x, I' is isomorphic to a Clifford algebra associated to the vector space K".

For K = C and the factor set o given by (2.1.11), C x, (Z,)" is isomorphic to the
Clifford algebra Cl(n,C). This is still true for any factor set equivalent to o.

For K =R, let r, s € N such that r +s =n, and n € {£1}" given by: n, =1if p <,
and 7, = —1 otherwise. Let also o be the factor set of (Z)™ defined by: Vi,j € (Zs)",

a(i,j):< 11 (—1)ipfq>Hn;pjp. (2.1.12)

1<p<g<n
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Then, R X, (Z2)" is isomorphic to the real Clifford algebra CI(r,s). To any factor set
equivalent to (2.1.12)) corresponds a real Clifford algebra but with a potentially different
signature (r, s). ¢

Proposition 2.1.28
Let € be a commutation factor on the abelian group I' over the field K, A® an e-graded

algebra, o a factor set of I' and S®* = K x, I". Then, A*, defined by:
VkeTl, AF=SFg AF

is an ee,-graded algebra for the product (f ® a)-(g ® b) = (f-g) ® (a-b). Moreover, A* is
isomorphic to A by: a € A} — ¢y @ a.

Theorem 2.1.29
Let I be a finitely generated abelian group, K an algebraically closed field, ¢ a commu-
tation factor on I' over K, and A® an e-graded algebra.

Let [0] be the multiplier of I' given by Theorem such that ¢ = s(e)e,. Then,
A® ~ A°® is a s(e)-graded algebra (therefore a superalgebra), and ®, is a functorial
correspondence between the category of e-graded algebras and the category of I'-graded
superalgebras.

2.2 Noncommutative geometry based on e-derivations

2.2.1 Differential calculus

In this subsection, we generalize the derivation-based differential calculus introduced in
[2, 20] (see subsection to the setting of e-graded algebras [I0]. Note that some
propositions to extend this construction to certain class of graded algebras have been
presented for instance in [44], 45].

In the notation