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Résumé 

 

L'environnement spatial proche de la Terre est complexe et divers. La cinétique des 

ions joue un rôle clé pour comprendre la nature des phénomènes essentiels et des 

processus physiques prenant place dans le "Géospace". Au moyen de données à haute 

résolution enregistrées par les quatre satellites Cluster et les deux satellites Double 

Star, cette thèse étudie la cinétique des ions de faible énergie dans certaines couches 

frontières essentielles de la magnétosphère terrestre. 

Le chapitre 1 donne une brève description générale de l'environnement spatial proche 

de la Terre et de quelques processus physiques de base tels que la reconnexion du 

champ magnétique et l'accélération des particules. 

Le chapitre 2 introduit, d'abord, la mission Cluster et le projet Double Star et leurs 

instruments, puis présente en détail les instruments de mesures des ions qui 

fournissent les données essentielles pour le travail de cette thèse. 

Le chapitre 3 décrit une excursion de grande amplitude de la magnétogaine 

enregistrée simultanément par les satellites Cluster et TC1 de Double Star, évènement 

survenu pendant une période de champ magnétique interplanétaire dirigé vers le Nord, 

le 17 mars 2004. La cohérence entre les mouvements de l'onde de choc et de la 

magnétopause est mise en évidence. En outre, le phénomène de transport du plasma 

en découlant sous forme de fluctuations de flux en dessous de la gyrofréquence à la 

magnétopause est décrit et interprété comme la manifestation de l'instabilité de dérive. 

Les observations corrélées sur l'accumulation de charges et la perturbation du 

potentiel électrostatique sont fournies par des mesures d'électrons de grandes énergies 

et le mouvement du vortex éventuel à travers le champ dans l'état non linéaire et 

l'échange de masse en résultant sont mises en évidence. 

Le chapitre 4 présente un nouveau type de cavité de faible densité dans la région de 

l'écoulement vers l'extérieur de la reconnexion pendant une traversée de la queue 

magnétique par les satellites Cluster. Elle contient des flux intenses de particules 

réfléchies alignées au champ magnétique qui sont produites par un mécanisme de 



8 

 

création semblable à celui du préchoc terrestre, et donc présente une morphologie de 

type préchoc. Dans cette cavité, les flux de protons réfléchis alignés au champ 

magnétique et les protons avec une distribution de type cône de perte étaient observés 

simultanément. Des fluctuations du champ magnétique, spécialement les oscillations 

quasi-monochromatiques, ont été observées. La bordure avant et la frontière du 

préchoc ionique sont identifiées à partir des observations de la séquence temporelle 

des observations des protons et du champ magnétique. Juste au-delà de la bordure 

avant du préchoc ionique, des électrons réfléchis le long du champ magnétique ont été 

détectés ; leur distribution est du type faisceau suprathermique étroit. Cependant, près 

du front du choc, des électrons réfléchis du même type de distribution mais avec une 

forme large, ont été mesurés. Ces deux manifestations différentes des électrons 

réfléchis montrent les différences dans la physique microscopique du processus de 

réflexion. De plus, une partie des ions incidents est accélérée plus loin dans la cavité 

en raison du pompage magnétique qui fournit un autre mécanisme possible dans les 

processus d’accélération à multi pas dans la reconnexion. 

Le chapitre 5 est consacré à l’étude d’un évènement dans la couche de courant mince. 

Une géométrie simple et la bifurcation de la couche de courant mince ont été toutes 

les deux observées pendant un passage des satellites Cluster dans la queue magnétique. 

On a trouvé que l’anisotropie et la nongyrotropie sont responsables des 

caractéristiques de ce nouvel équilibre qui représente des modifications par rapport au 

modèle conventionnel d’Harris. Les observations montrent qu’une couche de courant 

mince à géométrie simple de protons présente une anisotropie de pression dont la 

composante parallèle au champ magnétique est plus grande que la composante 

perpendiculaire alors qu’une couche de courant mince d’ions oxygène, avec 

bifurcation, présente, au contraire, une anisotropie de pression, dont la composante 

parallèle au champ magnétique est plus petite que la composante perpendiculaire. Le 

mouvement de battement local de la couche de plasma mince a aussi été observé et 

quelques caractéristiques particulières telles que le comportement comme une onde 

solitaire et le mouvement d’oscillations (« kink ») dans le plan perpendiculaire à la 
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direction Soleil-Terre ont été mises en évidence. 

A la fin sont présentées quelques conclusions générales et des perspectives. Le rôle 

dominant joué par la cinétique des particules dans les formations de ces structures de 

plasma à petite échelle et les caractéristiques des processus de couplage à différentes 

échelles y sont résumés. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

Abstract 

 

The near-Earth space environment is complex and diverse. Ion kinetics plays a key 

role in understanding the nature of key phenomena and physical processes taking 

place in the Geospace. By means of the high-resolution data recorded by the 

multiple-point Cluster and Double star spacecraft, the present thesis investigated low 

energy ion kinetics in some crucial boundary layers of the terrestrial magnetosphere. 

Chapter 1 gives a brief overview of the near-Earth space environment and some basic 

physical processes such as magnetic field reconnection and particle acceleration. 

Chapter 2 first introduces the Cluster mission and the Double Star Project and their 

instrumentations, then presents in detail the hot ion instruments, which provide the 

crucial data for our work in the present thesis. 

Chapter 3 reports a large-amplitude excursion of the magnetosheath recorded 

simultaneously by the Cluster and TC-1 spacecraft, which occurred during a period of 

northward interplanetary magnetic field on March 17, 2004. The coherence between 

the motions of bow shock and magnetopause is revealed. In addition, the relevant 

plasma transport phenomenon in the form of flux fluctuations below the ion 

gyrofrequency at the magnetopause is described and interpreted as manifestation of 

the drift instability. Correlated observations on charge accumulation and electrostatic 

potential perturbation are provided by electron measurements in high energy regime, 

and also the eventual cross-field vortex motion in the nonlinear stage and the 

consequential mass exchange are exhibited. 

Chapter 4 presents a novel kind of density depleted cavity in the outflow region of 

reconnection during a Cluster spacecraft crossing of the magnetotail. It contains 

intense reflected field-aligned particles, which are produced by a generation 

mechanism similar to that of the terrestrial foreshock, and hence manifests a 

foreshock-like morphology. In this cavity, reflected field-aligned proton beams and 

the protons with a loss-cone distribution were observed simultaneously. Magnetic 

field fluctuations, especially quasi-monochromatic oscillations, were recorded. Both 
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the leading egde and the ULF wave boundary of the ion foreshock are identified from 

the time sequence of proton and magnetic field observations. Just upstream of the 

leading egde of the ion foreshock, reflected field-aligned electrons were detected, 

whose distribution has a narrow bump-on-tail pattern. However, close to the shock 

front, reflected electrons with a broad bump-on-tail pattern was measured. These two 

different manifestations of reflected electrons reveal the differences in their 

microscopic physics of the reflecting process. Moreover, a part of incident ions was 

further accelerated in the cavity due to a Fermi-type acceleration as well as a magnetic 

pumping which provide another possible mechanisms in the multi-step acceleration 

processes in reconnection. 

Chapter 5 is devoted to an event of thin current sheet. Both embedding and bifurcation 

of the thin current sheet were observed during a Cluster spacecraft crossing of the 

magnetotail. It is found that the ion anisotropy and nongyrotropy are responsible for 

those new equilibrium features that represent deviations from the conventional Harris 

model. The observations show that an embedded proton thin current sheet manifests a 

pressure anisotropy, whose component parallel to magnetic field is larger than the 

perpendicular component; while a bifurcated oxygen ion thin current sheet exhibits a 

pressure anisotropy, whose component parallel to magnetic field is smaller than the 

perpendicular component on the contrary. The local flapping motion of the thin 

current sheet was also observed, and some particular features such as the solitary 

wave-like behavior and the kink motion in the plane perpendicular to the Sun-Earth 

direction were revealed. 

Finally, some general conclusions and perspectives are given. The dominating roles 

played by the particle kinetics in the formations of those small-scale plasma structures 

and the feature of cross-scale coupling processes are summarized. 
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Introduction 

 

La magnétosphère terrestre est une région de l'espace dont la forme est déterminée par 

le champ magnétique interne de la Terre, le plasma du vent solaire et le champ 

magnétique interplanétaire. Elle consiste en plusieurs régions telles que la 

magnétogaine, les lobes de la queue, la couche de plasma, le courant annulaire et la 

plasmasphère. Ces régions sont réunies par des frontières telles que la magnétopause, 

le cornet polaire, la couche frontière de la couche de plasma et la couche de courant 

de la queue magnétique. 

La magnétopause est la frontière entre le champ magnétique terrestre et le vent solaire. 

La reconnexion magnétique peut y prendre place et conduire au transport de masse, de 

quantité de mouvement et d'énergie depuis le vent solaire jusqu'à l'intérieur de la 

magnétosphère. La reconnexion magnétique est le paradigme de base du couplage 

vent solaire-magnétosphère. Quand le champ magnétique interplanétaire est dirigé 

vers le sud et antiparallèle au champ magnétique terrestre, les deux champs 

magnétiques peuvent se connecter à la magnétopause du côté jour et le transport en 

résultant du flux magnétique aux lobes de la queue peut augmenter la tension 

magnétique dans cette région. 

Les orages et sous-orages sont les principales caractéristiques dynamiques de la 

magnétosphère, initiées par les interactions de la magnétosphère avec le vent solaire. 

Les orages dans l'environnement terrestre ont des échelles de temps en jours et sont 

associés avec les augmentations du courant annulaire dans la magnétosphère interne. 

Les sous-orages ont des durées de l'ordre de une à trois heures et sont liés aux 

processus plasma dans la queue magnétique. La caractéristique la plus significative de 

la magnétosphère est sa réponse globale aux activités géomagnétiques, qui impliquent 

un certain nombre de processus physiques couvrant une large gamme d'échelles 

spatiales et temporelles et ainsi révèle la nature fortement couplée des différents 

processus dans les différentes régions de la magnétosphère. Les phénomènes observés 

à grande échelle ont leur origine de processus physiques à microéchelle survenant 
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dans les couches frontières de la magnétosphère. Le couplage à différentes échelles 

dans la magnétosphère provient de la non linéarité du plasma et du champ 

électromagnétique et par conséquent la tenue multiéchelle en est une caractéristique 

inhérente. La magnétosphère présente donc des caractéristiques multiéchelles sur une 

large gamme d'échelles spatio-temporelle, allant des plus petites échelles des 

processus cinétiques à l'échelle globale des phénomènes magnétohydrodynamiques. 

L'énergie du champ magnétique stockée dans la queue magnétique est dissipée de 

manière explosive; accompagnée par des manifestations telles que l'augmentation des 

courants alignés au champ magnétique, l'accélération de particules et des flux de 

plasma rapides. La couche mince de courant dans la queue magnétique est une région 

clé où les processus responsables de la montée de l'émission explosive de l'énergie se 

produisent. Bien que les processus de plasma dans ces couches de courant sont 

cinétiques en nature, avec des échelles aussi courtes que le rayon de giration 

électronique, le fort couplage multiéchelle conduit aux caractéristiques globales de la 

magnétosphère, telles que la formation de plasmoïdes et leur émission. Dans la queue 

magnétique, les processus à microéchelles, survenant sur des échelles de l'ordre du 

rayon de giration des électrons ou des ions, ont des échelles de temps correspondant 

inférieures à quelques secondes. D'autre part, les processus à grandes échelles, qui 

peuvent être décrits typiquement par des modèles globaux MHD, ont des échelles de 

temps supérieures à des dizaines de minutes. Entre ces deux échelles il y a un cetain 

nombre de processus à meso-échelles, dont les dimensions spatiales sont de quelques 

rayons terrestres et les échelles de temps typiques sont de plusieurs minutes. 

Les phénomènes magnétosphériques multiéchelles sont dus à la nonlinéarité inhérente 

au plasma et au champ électromagnétique et sa nature est hors équilibre. Les champs 

complexes et les populations de plasma avec des longueurs d'échelle très petites 

rendent difficiles les mesures in-situ aussi bien que les analyses théoriques. Un seul 

satellite mesure les séries temporelles de paramètres physiques telles que vues à la 

position du satellite. Ainsi ces mesures ne peuvent pas séparer sans ambiguïté les 

variations spatiales et temporelles. L'étude de la structure et de l'évolution des 
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processus physiques clés demande donc une aprroche multipoints. 

La mission Cluster, lancée en juillet 2000; consiste en quatre satellites identiques 

volant en formation tétraédrique. Les orbites individuelles des satellites Cluster sont 

telles que dans les régions clés de l'environnement spatial de la Terre, telles que l'onde 

de choc, la magnétopause, la queue magnétique ou la zone aurorale, les quatre 

satellites conservent des séparations à peu près constantes, l'échelle pouvant être 

ajustée pendant les différentes phases de la mission de quelques dizaines de 

kilomètres à un rayon terrestre. 

Le programme Double Star (DSP) est une mission spatiale de l'Agence Spatiale 

Chinoise (China National Space Administration) et de l'Agence Spatiale Européenne. 

DSP comporte un satellite équatorial et un satellite polaire. Le but principal de DSP 

est d'étudier la réponse globale de la magnétosphère aux orages géomagnétiques et 

aux sous-orages. En liaison avec Cluster, les deux missions permettent d'observer 

simultanément la magnétosphère terrestre en six points de l'espace. 

Des mesures simultanées à quatre points ou à six points permettent pour la première 

fois de séparer les variations temporelles et spatiales et d'étudier les petites structures 

à trois dimensions dans l'environnement plasma de la terre. Elles fournissent une 

excellente occasion d'étudier de façon détaillée ces phénomènes à multiéchelles et les 

processus de couplage multiéchelles dans la magnétosphère. 
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Introduction 

 

The Earth’s magnetosphere is a region in space whose shape is determined by the 

Earth's internal magnetic field, the solar wind plasma, and the interplanetary magnetic 

field. It consists of several main regions such as magnetosheath, tail lobes, plasma 

sheet, ring current and plasmasphere. These regions are joined through boundaries 

such as the magnetopause, cusp, plasma sheet boundary layer and magnetotail current 

sheet. 

The magnetopause is the boundary between the Earth's magnetic field and the solar 

wind. Magnetic reconnection can take place there and lead to the transport of mass, 

momentum and energy from the solar wind into the magnetosphere. Magnetic 

reconnection is the basic paradigm of the solar wind-magnetosphere coupling. When 

the interplanetary magnetic field is southward and anti-parallel to the Earth’s 

magnetic field, the two magnetic fields may connect at the dayside magnetopause and 

the resulting transport of magnetic flux to the tail lobes causes increased magnetic 

stress in that region. 

Storms and substorms are the main dynamic features of the magnetosphere, initiated 

by interactions between the magnetosphere with the solar wind. The geospace storms 

have time scales of days and are associated with enhancements of the ring current in 

the inner magnetosphere. The substorms on the other hand have a characteristic period 

of the order of one to three hours and are linked to the plasma processes in the 

magnetotail. The most significant feature of the magnetosphere is its global response 

to geomagnetic activities, which involves a number of physical processes covering 

over a wide range of spatial and temporal scales and thus reveals the strongly coupled 

nature of different processes in the different regions of the magnetosphere.  The 

observed large scale phenomena are believed to originate from the microscale 

physical processes occurring at the boundary layers of the magnetosphere. The 

cross-scale coupling in the magnetosphere arises due to the nonlinearity of plasma and 

electromagnetic field and consequently the multiscale behavior is an inherent feature. 
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Therefore, the magnetosphere exhibits multiscale features over a wide range of 

spatio-temporal scales, ranging from the smallest scale of kinetic processes to the 

global scale of magnetohydrodynamic phenomena. 

The stored magnetic field energy in the magnetotail is released in an explosive 

manner, accompanied by manifestations such as enhanced field-aligned currents, 

particle acceleration, and fast plasma flows. Thin current sheet in the magnetotail is a 

key region where the processes responsible for the onset of explosive release of 

energy take place. Although the plasma processes in these current sheets are kinetic in 

nature, with scale sizes as short as the electron gyroradius, the strong cross-scale 

coupling drives more global magnetospheric features, such as plasmoid formation and 

release. In the magnetotail, microscale processes, occurring on the electron or ion 

gyroradius scales, have corresponding time scales of less than a few seconds. On the 

other hand, large-scale processes, which can be described typically by global MHD 

models, have time scales longer than tens of minutes. Between these two scales there 

is a number of processes in meso-scale, whose spatial sizes are at a few Earth radii 

and typical time scales are of several minutes. 

The magnetospheric multiscale phenomena are due to the inherent nonlinearity of the 

plasma and electromagnetic field, and its non-equilibrium nature. The complex fields 

and plasma populations with wide variety of scales make in-situ measurements as 

well as theoretical analysis difficult. Single spacecraft measure the time series of 

physical parameters as seen at the spacecraft position. As such, these measurements 

cannot unambiguously separate spatial and temporal variability. The study of the 

structure and evolution of key physical processes therefore requires a multi-point 

approach. 

The Cluster mission, launched in July 2000, consists of four identical satellites flying 

in a tetrahedral formation. The individual orbits of Cluster spacecraft are arranged so 

that in key geospace regions, such as the bow shock, the magnetopause, the 

magnetotail, or the auroral zone, the four spacecraft maintain an approximately 

constant separation, the scale of which can be adjusted during different mission 
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phases from tens of km to 1 RE . 

The Double Star Program is a joint space mission between the China National Space 

Administration and the European Space Agency. The DSP consists of one equatorial 

satellite and one polar satellite. The main goal of DSP is to investigate the 

magnetospheric global response to the geomagnetic storms and substorms. In 

conjunction with the Cluster mission, the two missions allow simultaneous 

observations of the Earth magnetosphere at six points in space. 

Simultaneous four-point or six-point measurements allow for the first time to separate 

spatial from temporal variations and to investigate the three-dimensional small scale 

structures in the Earth’s plasma environment. They provide an excellent opportunity 

for detailed investigation of those multiscale phenomena and cross-scale coupling 

processes in the magnetosphere. 
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Chapter 1 

 

The magnetosphere 

 

1. Introduction 

 

The Earth’s magnetosphere is a region in outer space, which is filled with free ions 

and electrons from both the solar wind and the Earth's ionosphere. It is a complex 

system whose structure and behavior is controlled by two factors. The first is the 

terrestrial magnetic field, supposed to be generated via dynamo effect by currents 

flowing in the Earth's core. Outside the Earth this field has the form of a dipole field 

in first approximation, aligned approximately with the Earth's spin axis. The second 

factor is the solar wind, a fully ionized plasma that streams continuously outward 

from the Sun into the solar system at speeds of about 300–800 kilometers per second 

and carries a large-scale interplanetary magnetic field (IMF). The boundary of the 

magnetosphere on the dayside is ellipsoidal, at a distance of about 10-15 RE to the 

Earth; while on the night side it approaches roughly a cylinder with a radius 20-25 RE 

due to the compression of solar wind plasma. The tail region stretches well past 200 

RE. A overall schematic view of the magnetosphere is shown in Fig 1.1 (Kivelson and 

Russell, 1995). 

 

2. The bow shock and the magnetosheath 

 

When an object or disturbance moves faster than the information about it can be 

propagated into the surrounding medium, medium near the disturbance cannot react or 

get out of the way before the disturbance arrives. Hence a compressed front forms and 

is called a shock. Shock waves are characterized by an abrupt, nearly discontinuous 

change in the characteristics of the medium. Across a shock there is always an 
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extremely rapid rise in parameters of medium such as pressure, temperature and 

density. 

The solar wind plasma (Parker, 1958) travels usually at speeds up to 200-800km/s, 

which are faster than any fluid plasma wave relative to the magnetosphere. Therefore 

a standing shock wave forms around the magnetosphere. The standoff distance of the 

bow shock is about 15 RE on the dayside of the Earth. 

 

 

 

 

Fig.1.1  Three-dimensional schematic of the magnetosphere (Kivelson and Russell, 
1995). 

 

In a viewpoint of magnetohydrodynamics, a shock is treated as a discontinuity, i.e., 

the thickness of its transition layer is regarded as zero. In this approximation, 

conservation of mass, momentum, and energy, together with the Maxwell equations 

lead to a set of relations between the upstream and the downstream quantities, known 

as the Rankine - Hugoniot jump relations. The magnetohydrodynamic problem is 
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more complicated than the corresponding gas dynamic problem because the 

magnetized plasma supports three independent magnetoacoustic wave modes: fast 

wave, slow wave and the intermediate wave. The bow shock is a fast shock. 

The properties of collisionless plasma shock waves depend primarily on two 

parameters. One is the Mach number of the shock wave, the ratio of upstream velocity 

to Alfvén speed, which is /0BVA  , where 0B  is the magnetic field strength, 

  is the fluid density, and   is the magnetic permeability (in 

meter-kilogram-second units); for the terrestrial bow shock this is usually in the range 

from ~3 up to 10. The second is the propagation angle, or the angle between the 

upstream magnetic field and the normal to the shock surface. Across the surface of the 

bow shock, this angle ranges from 900 to 00, i.e. from quasi-perpendicular to 

quasi-parallel. For a quasi-parallel shock, the particles escape upstream from the 

shock relatively easy, gyrating along the filed lines. The region of space upstream of 

the bow shock, magnetically connected to the shock and filled with particles 

backstreaming from the shock is known as the foreshock (Eastwood et al., 2005). 

It is not directly the solar wind plasma which constitutes the boundary of the 

magnetosphere but the strongly heated and compressed plasma behind the bow shock, 

which is called the magneosheath. The magnetosheath is formed mainly from 

decelerated and deflected solar wind, with a small contribution of plasma from the 

magnetosphere. Because the nature of the bow shock depends on the orientation of the 

interplanetary magnetic field with respect to the local bow shock normal, the 

properties of the magnetosheath plasma just behind the bow shock depend also on 

whether the shock is quasi-perpendicular or quasi-parallel. In general, the 

magnetosheath tends to be in a more turbulent state behind the spatially extended 

quasi-parallel bow shock than it is behind the quasiperpendicular shock.  

Inside the magnetosheath, the direction of the magnetic field changes from parallel 

with the IMF in the outer region to drape around the blunt inner boundary, which is 

called the.magnetopause. Meanwhile, the average flow direction deviates from the 
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direction along the Sun-Earth line such that the plasma flows around the 

magnetopause. The velocity downstream of the bow shock is subsonic; but it 

increases again to supersonic speeds around the magnetopause flanks. In addition, the 

magnetosheath plasma develops a pronounced temperature anisotropy behind the bow 

shock that increases toward the magnetopause and is more pronounced in the ions 

than in the electrons. 

 

3. The magnetopause 

 

The existence of magnetopause (Chapman and Ferraro, 1931), the inner boundary of 

the magnetosheath, is a direct consequence of solar wind interaction with a 

magnetized planet. It is formed at a distance where the solar wind dynamic pressure 

equals the magnetic pressure of Earth's field. At this location, typically around 8 - 11 

RE away on the Earth - Sun line on the dayside, the Earth’s intrinsic dipolar magnetic 

field is separated from the ambient magnetosheath field. Ampere's law then tells us 

that a sheet of electrical current, which is called the Chapman-Ferraro current, must 

develop to cancel the Earth's field outside.  

The magnetopause is constantly in motion. Observations from ISEE spacecraft 

indicate that the velocity of magnetopause motion is quite variable ranging from about 

3 to over 40 km/s and typically being about 20 km/s. The motion of the magnetopause 

seems to be driven by pressure fluctuations in the solar wind or the Kelvin- Helmholtz 

instability. 

Classical theory of interaction between the solar wind and the magnetosphere predicts 

the magnetopause to be an impenetrable boundary separating cold plasmas on 

magnetosheath magnetic field lines from hot tenuous plasmas on magnetospheric 

magnetic field lines. But in fact, observations indicate that a boundary layer of 

magnetosheath-like plasmas can be found just inside all regions of the magnetopause. 

These observations are evidence for the entry of magnetosheath plasma into the 

magnetosphere. A wide variety of processes, including magnetic reconnection, finite 
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Larmor radius effects, diffusion due to resonant interaction of ions with plasma waves, 

the Kelvin-Helmholtz instability and impulsive penetration, have been proposed to 

account for the transfer of solar wind mass into the magnetosphere, and the escape of 

magnetospheric particles into the magnetosheath.  

 

4. The magnetotail 

 

In contrast to the dayside magnetosphere, which is compressed and confined by the 

solar wind and is shaped like a paraboloid of revolution with the apex towards the Sun, 

the nightside is stretched out into a long tail. In the nightside region, magnetic field 

lines emanating from polar latitudes are stretched away anti-sunwards to form a long 

(>1000 RE) cylindrical volume of field lines. This region constitutes the magnetotail. 

The tail radius increases with downstream distance, e.g. about 25 RE at a downstream 

distance of 30 – 50 RE. 

Early observations revealed the internal structure of the magnetotail. Most of the 

volume of the magnetotail is taken up by two large bundles of nearly parallel 

magnetic field lines, known as the "tail lobes". The bundle north of the equator points 

earthwards and connects to the north polar region. The southern lobe contains 

antisunward field lines, connecting to the southern polar cap linking to the southern 

polar region. The magnetotail lobes are separated by a region of weaker, and more 

variable magnetic field and hotter plasma, which is centered on the equator and 

typically 2-6 Earth radii thick and called the plasma sheet. Across this high plasma 

regime, the magnetic field undergoes a transition from earthward to tailward. This 

directional change takes place within a section of the plasma sheet limited in 

north-south extent where a sheet current, known as the cross-tail current, flows in the 

dawn to dusk direction. The region in the centre of the plasma sheet, where Bx 

changes sign, is frequently called the ‘neutral sheet’. The plasma sheet and the 

embedded current-sheet extend at least to 60 RE.  

In addition to the lobe and the plasma sheet, several boundary regimes have been 
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identified in the magnetotail. At the boundary between the magnetosheath and the tail 

lobe there is the plasma mantle in high latitudes and the low latitude boundary layer. 

The plasma mantle is the part of the lobe into which cold plasma of the solar wind has 

been introduced. The low latitude boundary layer is the low latitude region where the 

solar wind and the hot tail plasma are seen as a mixture. The plasma sheet boundary 

layer is a boundary region between the plasma sheet and the lobe. 

The solar wind and the Earth’s ionosphere are potential sources of magnetotail 

plasmas. Both of them have their own assets; the solar wind plasma is closer to the tail 

plasma in energy, while the ionospheric plasma is abundant. The solar wind has 

generally been taken as the major source, but it has been argued that the ionosphere 

could provide enough plasma to the tail. Entry of the solar wind plasma into the 

mantle has been confirmed by continuity of the plasma characteristics across the 

magnetosheath-tail boundary; in the energy-time spectrograms of the ions it is often 

observed that a band representing a plasma population continues smoothly from the 

magnetosheath to the mantle. Both density and flow speed in the mantle are seen to 

decrease with increasing separation from the boundary region. The oxygen ion beam 

tends to be observed in the mantle during geomagnetically active times. At such times 

field lines and plasma move equatorward in the tail lobe. The ionospheric ions could 

be carried quite significantly equatorward by this convection while they flow tailward 

along field lines to the distant tail. 

The magnetotail is quite dynamic, a wide variety of energy conversion processes 

between magnetic field and plasma can take place there. Of its many dynamic features, 

perhaps the most important and basic is the so-called magnetospheric substorm 

(Akasofu, 1981), a period of the order of one to three hours, during which energy is 

rapidly released in the magnetotail. 

The entire substorm process involves a growth phase, expansion phase, and recovery 

phase. The first stage of substorm dynamics is called the growth phase, which is 

characterised with equatorward shifting of the boundaries of the auroral oval after 

southward IMF turning. During the growth phase the polar cap region expands 
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equatorward, the auroral oval shrinks in width, and the nightside magnetic field lines 

are stretched. The onset of the expansion phase is an extremely fast, whose typical 

temporal scale is tens of seconds or even less. The manifestation of expansion phase is 

characterized by a localized brightening of auroral arc and a localized turbulent 

disturbance in the near-Earth plasma sheet equatorial region, e.g., the dipolarization of 

the magnetic field topology in the inner central plasma sheet, the energization of sheet 

particles, and the magnetic signatures of the enhanced ionospheric currents. The 

expansion phase of substorm occurs for any IMF orientation but it is most intense 

during southward IMF created main phase of magnetic storm. The expansion phase 

persists minutes to tens of minutes, after which the system returns to a less disturbed 

state during the recovery phase which persists tens of minutes. The global 

geomagnetic field depression weakens and the auroral oval contracts after the IMF 

turns northward during the recovery phase.  

The complete substorm process reflects a dynamical sequence of energy storage and 

release in the magnetotail. The growth phase is a period of enhanced energy storage in 

the magnetotail. Due to the equatorward compression and tailward stretching of the 

magnetic field lines, a large amount of magnetic energy is stored in the plasma sheet. 

During the expansion phase, the reserved magnetic energy releases dramatically and 

converts into plasma kinetic energy to excite a wide variety of plasma turbulences. 

These turbulences spread in the plasma sheet, redistribute and energize the plasma, 

causing the crosstail current density to be reduced as well as the magnetic field to 

dipolarize in the central plasma sheet. Eventually, after the turbulence level decreases, 

the plasma sheet and the ionosphere recover to a less disturbed state during the 

recovery phase. 

 

5. Magnetic reconnection 

 

Magnetic reconnection, an ubiquitous phenomenon in plasma physics, is essentially a 

topological restructuring of a magnetic field caused by a change in the connectivity of 
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its field lines. Breaking and reconnecting the field lines in a plasma allows the release 

of stored magnetic energy, that is, conversion of magnetic energy to plasma kinetic 

and thermal energy. Magnetic reconnection plays a key role in wide range of 

phenomena in the universe, relaxation events of fusion plasmas, the dynamics of the 

Earth’s magnetosphere, the evolution of solar and stellar flares, and the formation 

process of stars. On a solar scale, reconnection is thought to be responsible for solar 

flares and coronal mass ejections. The auroras are also generally considered to be 

related to reconnection events in the Earth's magnetosphere. Tokamaks and other 

laboratory setups with plasmas display irrefutable evidence of reconnection. 

 

 

 

Fig.1.2  Schematic illustration of magnetic reconnection. 

 

In a plasma, magnetic field lines are frozen to field lines that are topologically distinct 

from other field lines nearby. This topology is approximately preserved even when the 

magnetic field itself is strongly distorted by the presence of variable currents or 

motion of magnetic sources. The structure of reconnection layer is shown in Fig 1.2. 

Four separate magnetic domains in a magnetic plasma are separated by two separatrix 
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surfaces: curved surfaces in space that divide different bundles of flux. Field lines on 

one side of the separatrix all terminate at a particular magnetic pole, while field lines 

on the other side all terminate at a different pole of similar sign. The intersection of 

the separatrices forms a separator at the center. Field lines in association with plasma 

flow inward from above and below the separator, reconnect, and spring outward 

horizontally. 

The separator is called diffusion region where the frozen-in condition breaks down. 

According to resistive MHD theory, reconnection happens because the resistivity of 

the current layer allows magnetic flux from either side to diffuse through the current 

layer, cancelling out flux from the other side of the boundary. When this happens, the 

plasma is pulled out by magnetic tension along the direction of the magnetic field 

lines. 

Classical reconnection theory relies on magnetohydrodynamics to model plasma 

dynamics. Magnetohydrodynamics is a single fluid theory, meaning that it describes a 

plasma which is electrically neutral (i.e. containing a macroscopically equal density of 

positive and negative charge carriers). It is applicable only in this macroscopic limit. 

Reconnection has been described by MHD theory for most of its history. The classical 

models, however, struggle to provide energy release of the correct magnitude on the 

right time scales. The first serious mechanism was developed by Sweet and Parker 

(Sweet, 1958; Parker, 1957). In the Sweet-Parker model of reconnection, magnetic 

field reconnects in a diffusion region with a length corresponding to the total system 

size. The reconnection rate is defined as the Alfvén Mach-number in the inflow region. 

This rate is far too small to explain observed phenomena such as those on solar scales. 

Therefore, Petschek (1964) proposed a model which requires an external field and 

shock formation. In the Petschek model, the diffusion region is much shorter than the 

overall size and that the outer region contains two pairs of standing slow mode shocks. 

These shocks deflect and accelerate the incoming plasma into two exit jets wedged 

between the shocks: acceleration is due to the Maxwell stress at the slow mode shocks. 

The maximum reconnection rate much larger than the Sweet-Parker rate and typically 
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of the order 0.1. 

The Petschek rate is very controversial, and experiments suggest that it is applicable 

only when resistivity is non-constant. Reasons for this are not known. Many scientists 

consider the Sweet-Parker rate to be the maximum allowed by MHD. Use of 

anomalous resistivity models also allows reasonable reconnection rates to be achieved. 

The reason is that in the reconnection region particles are undergoing more turbulence, 

collisions, etc. and resistivity may increase there. A good theoretical understanding of 

this is not available, although there is some experimental evidence that it may be a 

real effect. 

While MHD provides the framework for the classical models described above, it may 

break down on the small scales at which reconnection occurs. Ion and electron 

motions decouple in this regime, with the electron flow rate becoming much greater 

than the ion rate and driving so-called whistler waves, which are dispersive. This 

electron driven mechanism gives a much faster reconnection rate. Whistler driven 

reconnection creates a strong out-of-plane magnetic field, which has been observed in 

Earth's magnetosphere. 

In the recent years, computational advances have allowed simulation of three 

dimensional reconnection events. This was a great advance over two dimensional 

theories, which fail to capture many of the subtleties present in real reconnection 

processes. Plasma physics is an often controversial field, possibly due to its 

complexity, and debates over mechanisms for reconnection are far from settled.  

A crucial problem is that observed reconnection happens much faster than predicted 

by MHD theory. Classical reconnection theories require the poorly understood 

assumption of anomalous resistivity in order to achieve physically reasonable time 

scales. Although some models such as turbulent reconnection and Hall MHD have 

claimed to solve this puzzle, the triggering mechanism of fast reconnection and size of 

the diffusion region are still controversial. Generally speaking, magnetic reconnection 

is still poorly understood, making it one of the most important problems in plasma 

physics today. 
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Chapter 2 

 

Instrumentation 

 

1. The Cluster mission 

 

The Cluster mission (Escoubet et al., 1997) is a European Space Agency space 

mission (cooperation with NASA) to study the Earth magnetosphere and the 

near-Earth solar wind. Simultaneous multi-point measurements allow for the first time 

to separate spatial from temporal variations and to investigate the three-dimensional 

small scale structures in the Earth’s plasma environment. 

The Cluster mission was first proposed in 1982. Though the original Cluster 

spacecraft were completed in 1995, the explosion of the rocket carrying the satellites 

in 1996 delayed the mission. In April 1997, the ESA Science Programme Committee 

approved the recovery mission. 

On 16 July 2000, a Soyuz-Fregat rocket launched two of the Clusters into an orbit 

between 25000 and 125000 km with a period of 57 hours. Three weeks later on 9 

August 2000 another Soyuz-Fregat rocket lifted the remaining two Cluster spacecraft 

into similar orbits. Due to the slightly different orbital parameters, the spacecraft form 

a tetrahedron with a characteristic size which can be varied from 200km to 20000 km, 

according to the key scientific regions. 

Each satellite carries a scientific payload of 11 instruments designed to study the 

small-scale plasma structures in space and time in the key plasma regions: the solar 

wind and bow shock, magnetopause, polar cusps, magnetotail and the auroral zone. 

The FluxGate Magnetometer (FGM) (Balogh et al., 2001) and the Electron Drift 

Instrument (EDI) (Paschmann et al., 1997) are dedicated to measures the magnetic 

and electric field. The Wave Experiment Consortium (WEC) (Pedersen et al., 1997) 

employs five experiments which investigate plasma waves: the Spatio-Temporal 
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Analysis of Field Fluctuation experiment (STAFF) (Cornilleau-Wehrlin et al., 1997), 

the Electric Field and Wave experiment (EFW), the Waves of HIgh frequency and 

Sounder for Probing of Electron density by Relaxation (WHISPER) (Décréau et al., 

1997) experiment, the Wide Band Data (WBD) (Gurnett et al., 1997) receiver and the 

Digital Wave Processing (DWP) (Woolliscroft et al., 1997). The measurement for 

particles is executed by the Cluster Ion Spectroscopy (CIS) (Rème et al., 1997, 2001) 

experiment, the Plasma Electron and Current Experiment (PEACE) (Johnstone et al., 

1997) and the Particle Imaging Detectors (RAPID) (Wilken et al., 1997) instrument. 

The Active Spacecraft Potential Control (ASPOC) (Riedler et al., 1997) experiment is 

responsible for the control and stabilization of the spacecraft electrostatic potential. 

 

2. The CIS experiment 

 

The prime scientific objective of the CIS experiment is the study of the dynamics of 

magnetized plasma structures in and in the vicinity of the Earth's magnetosphere, with 

the determination, as accurately as possible of the local orientation and the state of 

motion of the plasma structures required for macrophysics and microphysics studies. 

To achieve the scientific objectives, the CIS instrumentation has been designed to 

satisfy the following criteria, simultaneously on the 4 spacecraft: 

a. Provide a uniform coverage of ions over the entire 4  steradian solid angle with 

good angular resolution. 

b. Separate the major ion species from the solar wind and ionosphere. 

c. Have high sensitivity and large dynamic range to support high-time-resolution 

measurements over the wide range of plasma conditions. 

d. Have the ability to routinely generate on-board the fundamental plasma parameters 

for major ion species and with one spacecraft spin time resolution (4 seconds). 

e. Cover a wide range of energies, from spacecraft potential to about 40 keV/e. 

f. Have versatile and easily programmable operating modes and data-processing 

routines to optimize the data collection for specific scientific studies and widely 
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varying plasma regimes. 

To satisfy all these criteria, the CIS package consists of two different instruments (Fig. 

2.1): a Hot Ion Analyser (HIA) sensor and a time-of-flight ion COmposition and 

DIstribution Function (CODIF) sensor. The CIS plasma package is capable of 

measuring both the cold and hot ions of Maxwellian and non-Maxwellian populations 

from the solar wind, the magnetosheath, and the magnetosphere with sufficient 

angular, energy and mass resolutions.  

 

 

 

 

Fig. 2.1 The photo of the CODIF (left) and HIA (right) sensors. 

 

The Hot Ion Analyser (HIA) instrument combines a symmetrical quadrispherical 

electrostatic analyzer with a fast imaging particle detection system based on 

microchannel plate (MCP) electron multipliers and position encoding discrete anodes. 

Fig.2.2 provides a cross-sectional view of the HIA electrostatic analyser. 
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The HIA instrument has two180° field of view sections parallel to the spin axis with 

two different sensitivities, corresponding respectively to the 'high G' (high 

geometrical factor) and 'low g' (low geometrical factor) sections. The 'low g' section 

allows detection of the solar wind and the required high angular resolution is achieved 

through the use of 8 x 5.625° central anodes, the remaining 8 sectors having in 

principle 11.25° resolution; the 180° 'high G' section is divided into 16 anodes, 11.25° 

each. Fig. 2.3 illustrates the principle of the HIA anode sectoring. 

 

 

 

 

Fig.2.2 Cross-sectional view of the HIA analyser. 

 

The CODIF instrument is a high-sensitivity mass-resolving spectrometer with an 

instantaneous 360° x 8° field of view to measure complete 3D distribution functions 

of the major ion species, within one spin period of the spacecraft.. The sensor 

primarily covers the energy range between 0.02 and 38 keV/charge. 
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The electrostatic analyser (ESA) has a toroidal geometry, consisting of inner and outer 

analyser deflectors, a top-hat cover and a collimator. The full angular range of the 

analyser is divided into 16 channels of 22.5° each. In order to extend the energy range 

of the CODIF sensor to energies below 15 eV/e, a retarding potential analyser 

assembly is incorporated in the two CODIF apertures (see Fig.2.4). The retarding 

potential analyser provides a way of selecting low-energy ions at the entrance of the 

CODIF analyser without requiring the electrostatic analyzer inner deflector to be set 

accurately near zero Volt. 

 

 

 

 

Fig. 2.3. Principle of the HIA anode sectoring. 

 

CODIF uses a time-of-flight spectrometer to resolve the different plasma species. This 

section lies between the exit from the deflection plates and the solid state detector. In 

the time-of-flight spectrometer, the velocity of the incoming ions is measured. The 
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flight path of the ions is defined by the 3 cm distance between the carbon foil at the 

entrance and the surface of the 'stop' microchannel plate (MCP). The start signal is 

provided by the secondary electrons emitted from the carbon foil during the passage 

of the ions. The detection of the ions at the MCP marks the stop time. Knowing the 

velocity and the energy per charge of the detected ions, their mass per charge can be 

deduced. Fig.2.4 provides a cross-sectional view of the CODIF sensor. 

 

 

 

Fig.2.4. Cross-sectional view of the CODIF sensor. 

 

3. The fluxgate magnetometer 

 

Many types of magnetometers measure the magnetic field by using the potential 

difference produced by a change in the magnetic flux. Fluxgate magnetometers are 

using the variation of the relative permeability with the intensity of the magnetic field 

to measure static or low frequency magnetic fields. A pick-up coil is wounded around 

two parallel ferromagnetic cores made from high permeability material. The 

ferromagnetic cores are periodically driven deep in and out saturation by the drive 
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windings. The strong nonlinear coupling due to core saturation results in harmonics of 

the driven frequency in the pick-up coil. The amplitude of the even harmonics is 

proportional to the component of the magnetic field parallel with the cores. 

The FGM instrument on each spacecraft of the Cluster mission consists of two triaxial 

fluxgate magnetic field sensors, one at the end of a 5m long radial boom, and the 

second 1.5m inboard from the tip of the boom. The sampling of vectors from the 

magnetometer sensor designated as the primary sensor is carried out at the rate of 

201.793 vectors/s. It can also provide measurements with high resolution up to 8 pT. 

 

4. The Double Star Program 

 

Double Star Program (DSP) is the first joint space mission between the China 

National Space Administration and the European Space Agency. The DSP consists of 

two satellites: the equatorial satellite of DSP (TC-1) and the polar satellite of DSP 

(TC-2). The first spacecraft, TC-1 was launched on December 29, 2003, and the 

second one, TC-2, was launched on July 25, 2004. The TC-1 is at an eccentric  

equatorial orbit with a 280 inclination and an apogee of about 13.4RE and the TC-2 is 

at a polar orbit with an apogee of about 6.0RE. The equatorial satellite of DSP with 

on-board particle and field instruments detect the physical processes of magnetic 

storms and magnetospheric substorms in the near-Earth magnetotail, as well as the 

energy transfer from the solar wind to the magnetosphere via the dayside 

magnetopause. The polar satellite of DSP, capable of making remote sensing 

observations as well, detect energy transfer from the solar wind and the near-Earth 

magnetotail to the polar ionosphere and upper atmosphere, as well as ionized particle 

transfer from the ionosphere to the magnetosphere. 

Each Double Star spacecraft carries eight scientific instruments. Among several 

European instruments on board this spacecraft, which are identical to those developed 

for the Cluster spacecraft, the HIA (Hot Ion Analyzer) instrument (Rème et al., 2005) 

on board the TC-1 spacecraft is an ion spectrometer nearly identical to the HIA sensor 
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of the CIS instrument on board the 4 Cluster spacecraft. This instrument has been 

specially adapted for TC-1: 

a. The interface board has been changed. 

b. In order to include radiation shielding, taking into account the orbit of TC-1, the 

size of the box has been increased by 4mm on each side, on the top and on the rear, 

and the total mass of the sensor is 3.5 kg. 

c. There is a new interface for telemetry. 

d. The telemetry products have some changes. 

e. There is a new interface for commanding. 

f. The telemetry data rate is 4.44 kbits/s (The rate for Cluster is 5.5 kbits/s). 

The HIA instrument onboard the Cluster mission has two sections with two different 

sensitivities (different geometrical factors), corresponding respectively to the 'high G' 

and 'low g' sections, where the 'low g' section is designed mainly for solar wind 

studies. For Double Star the instrument operation is on the “high G” section, since the 

spacecraft was planned to rarely cross the average (model-predicted) position of the 

bow shock. However, due to the higher apogee than scheduled of the TC-1 spacecraft, 

and to the bow shock in/out motion around its average position, the spacecraft 

frequently gets into the solar wind but stays near the bow shock thanks to its 

skimming orbit. 

There are three Chinese high-energy particle instruments (Cao et al., 2005) on board 

both TC-1 and TC-2: 

a. The High Energy Electron Detectors (HEED) measure high energy electrons in the 

range of 200 keV to 10MeV. 

b. The High Energy Proton Detectors (HEPD) measure high energy protons in the 

energy range 3MeV to 400 MeV. 

c. The Hot Ion Detectors (HID) measure high energy heavy ions in the energy range 

10MeV (He) to 8 GeV (Fe) with atomic numbers from 2 (He) to 26 (Fe). 

The Low Energy Ion Detector (LEID) is mounted only on the polar orbit satellite and 

is used to measure energy spectrum, the 3-D velocity distribution function and the 
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differential flux of low energy ions. The working principle and hardware design of 

LEID are almost identical to that of HIA on board the Cluster. However, the software 

of LEID is different from that of HIA. On board TC-2, LEID does not perform any 

processing of the raw data, and the complete ion distribution functions are sent into 

the telemetry. Thus, the time resolution of LEID is only 12 s (3 times the satellite spin 

period) due to the telemetry limitation. LEID only produces the 3-D velocity 

distribution function for the first spin period of each 12-s interval. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

Chapter 3 

 

Magnetosheath excursion and transport process at the 

magnetopause 

 

1. Introduction 

 

The shape and location of the bow shock and magnetopause are very sensitive to the 

solar wind conditions, especially the solar wind kinetic pressure and the orientation of 

the interplanetary magnetic field (IMF). Observations have indicated that the 

magnetopause and bow shock are almost always in motion, sometimes at large 

velocities, even during periods of low solar and geomagnetic activity (Holzer et al., 

1966; Anderson et al., 1968). The magnetopause and the bow shock motions are 

usually found to be coherent over a large distance. Previous statistical studies on the 

speed of the magnetopause motion showed that typical values were in the range 10-60 

km/s (Anderson et al., 1968). Further investigations based on energetic ion remote 

sensing technique found that the velocities are usually less than 20 km/s but for one 

case, the value was 156 km/s (Kaufmann and Konradi, 1969). Time lag measurements 

from ISEE 1 and 2 found the speeds were in the range 5-380 km/s, with 80% falling 

in the range 10-80 km/s. (Berchem and Russell, 1982). Recent statistical study of the 

bow shock motion based on Cluster data shows that typical shock velocities are 35 

km/s, and the fastest one was nearly 150 km/s (Horbury et al., 2002). 

Although the magnetopause is commonly supposed to be an impenetrable boundary, 

the well-established existence of plasma of solar wind origin inside the 

magnetosphere implies that solar wind plasma is able to cross the magnetopause 

(Phan et al., 2005). A variety of processes has been proposed to account for this 

transport phenomenon. In the case of southward IMF, it is widely believed that 

magnetic reconnection is responsible for the transfer of solar wind mass into the 
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magnetosphere. In contrast, during northward IMF which mechanism facilitates the 

magnetosheath plasma to enter into the magnetosphere, especially through the 

subsolar point region, is still unclear. A possible candidate is the diffusive 

wave-particle transport by the lower hybrid drift instability (Gary and Eastman, 1979; 

LaBelle and Treumann, 1988; Treumann et al., 1991). An alternative mechanism is 

direct large-scale intrusion of plasma into the magnetosphere by the formation of the 

mixed transition layer at the magnetopause (Lemaire, 1977; Lemaire and Roth, 1978). 

In this chapter, we report a bulk excursion of the magnetosheath that was recorded 

simultaneously by the Cluster and TC-1 spacecraft in quiet solar wind conditions 

during a period of northward IMF on March 17, 2004. The relevant plasma transport 

phenomenon in the form of flux fluctuations below the ion gyrofrequency at the 

magnetopause is shown and interpreted as manifestation of the drift instability. 

 

2. Observations 

 

Fig.3.1 shows the solar wind parameters from the Advanced Composition Explorer 

(ACE). ACE is an Explorer mission that was managed by the Office of Space Science 

Mission and Payload Development Division of the National Aeronautics and Space 

Administration. ACE orbits the L1 libration point which is a point of Earth-Sun 

gravitational equilibrium about 1.5 million km from Earth and 148.5 million km from 

the Sun. The top and bottom panels in Fig. 3.1 show the magnetic fields and ion bulk 

velocity in the GSE-x direction respectively. During the period 00:00-02:00 UT, the 

IMF Bz was entirely northward, and the total field amplitude was almost constant. 

The solar wind velocity had only some small fluctuations and the kinetic pressure 

manifested some modest perturbations. The solar wind conditions in this time interval 

can be considered as moderately quiet. The propagation time for plasma from L1 

point to Earth is well approximated by the advection shift. The advection shift is 

calculated by assuming that solar wind encountered by the monitor spacecraft travels 

ballistically from the L1 point to Earth, uniformly at the measured solar wind bulk 
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velocity. In the present event, the travel time from L1 to Earth for plasma with a bulk 

velocity of 450 km/s is about 55 minutes. Since the concerned time interval is 

02:30-02:50 UT, hence ACE observations before 02:00 UT are relevant.  

 

 

 

Fig.3.1 Solar wind parameters from ACE. 

 

On early March 17, 2004, all the Cluster and TC-1 spacecraft were inbound. The 

geographical locations are schematically shown in Fig.3.2. The Cluster spacecraft 

were approximately at R = (14.00, -6.87, -9.13)GSE RE. The individual orbits of 

Cluster are arranged so that the four spacecraft maintain an approximately constant 

separation, the scale of which can be altered during different mission phases from tens 

of km to 1 RE depending on the different science objectives. At that time, the 

characteristic scale of the tetrahedron was only about 200km. The TC-1 spacecraft 

was at R = (12.03, -4.69, -1.80)GSE RE.  
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Fig.3.2 A schematic of the geographical locations of the Cluster and TC-1 spacecraft 
projected to the ecliptic plane. The bow shock and the magnetopause are shown by the 
red and blue bows respectively. The green and red stars and the dashed arrows denote 
the Cluster and TC-1 spacecraft and their orbits respectively. The ripples at the 
magnetopause describe the scenario of the drift instability. Meanwhile, its 
fundamental physical picture is illustrated at the right side. A sinusoidal electrostatic 
potential perturbation tight ties to a sinusoidal plasma density perturbation, and both 
them propagate with the plasma diamagnetic drift velocity. For more details see the 
text. 

 

Fig.3.3, 3.4 and 3.5 show magnetic field measurements and hot ion measurements 

recorded by the Cluster spacecraft. The magnetic field measurements come from the 

FGM experiment (Balogh et al., 2001) and the hot ions from the CIS instrument 

(Rème et al., 2001). The hot ion measurements shown in Fig.3.3 and Fig.3.4 are from 

the HIA sensors onboard C3 and C1 respectively, while the proton measurements 

displayed in Fig.3.5 are from the CODIF sensor onboard C4. Fig.3.6 shows magnetic 
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field measurements and hot ion measurements recorded by the TC-1 spacecraft. The 

hot ion measurements come from the almost identical HIA instrument onboard TC-1 

(Rème et al., 2005).  

The first panel in Fig.3.3 displays the time-energy spectrogram of the low geometrical 

factor HIA sensor designed to detect the solar wind particles. The density and 

velocities are shown in the second and third panels. The fourth panel shows the 

time-energy spectrogram of the high geometrical factor C3 HIA sensor, which is 

designed to detect the magnetosheath and magnetospheric particles. The density and 

velocities from this detector are shown in the fifth and sixth panels. Until 02:30 and 

after 02:47 UT, the energy spectrum shows almost monoenergetic ions, with 

velocities nearly in the x-direction (GSE). All these features indicate that the 

observations were recorded inside the solar wind, while during the interval 

02:30-02:47 UT, the observational characteristics indicate that the spacecraft entered 

into and stayed in the magnetosheath. Due to the deceleration and thermalization of 

the solar wind plasma behind the bow shock, the ion energy spectrum in the 

magnetosheath is spread, and the corresponding density rises to a much higher level. 

During this period, the bulk velocities also decreased and was deflected in comparison 

to the solar wind velocities. Because of the very small size of the tetrahedron all 

Cluster showed very similar features. As shown in Fig.3.4 and Fig.3.5 respectively, 

until 02:30 and after 02:47 UT, C1 and C4 also observed the monoenergetic solar 

wind plasma; and during the interval 02:30-02:47 UT, them observed the thermalized 

magnetosheath plasma. Likewise, TC-1 was inside the magnetosheath till 02:30 and 

after 02:47 UT as it can be easily identified from Fig.3.6 and also the bottom panel in 

Fig. 3.3. During the interval 02:30-02:47 UT, it is clear that the observations were 

recorded in the magnetosphere, where the ion energy spectrum is in a higher energy 

regime compared to that of the magnetosheath. Here, the reason that the density 

recorded by the low geometrical factor HIA sensor decreases inside the 

magnetosheath is due to the fact that it is in the solar wind mode and therefore it is an 

instrument effect. The HIA instrument has two180° field of view sections parallel to 
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Fig.3.3 Magnetic field and hot ion parameters from Cluster C3. From top, a) -c) are 
time-energy spectrogram and density and velocities of solar wind particles 
respectively, d)-f) are time-energy spectrogram and density and velocities of 
magnetosheath particles respectively. g) components of magnetic field. The last panel 
is hot ion time-energy spectrogram from TC-1. 
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Fig.3.4 Magnetic field and hot ion parameters from Cluster C1. From top, a) -c) are 
time-energy spectrogram and density and velocities of solar wind particles 
respectively, d)-f) are time-energy spectrogram and density and velocities of 
magnetosheath particles respectively. g) components of magnetic field. 
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Fig.3.5 Magnetic field and hot ion parameters from Cluster C4. From top, a) 
time-energy spectrogram. b) density and c) components of bulk velocity in GSE 
coordinates. d) components of magnetic field.
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the spin axis with two different sensitivities, corresponding respectively to the 'high G' 

and 'low g' sections. The 'low g' section of HIA sensor allows detection of the solar 

wind and the required high angular resolution is achieved through the use of 8 x 

5.625° central anodes, the remaining 8 sectors having in principle 11.25° resolution. 

In contrast, the 180° 'high G' section is divided into 16 anodes, 11.25° each. 

Combining the observations of the Cluster and TC-1 spacecraft, the present event 

reveals a large-amplitude bulk excursion of the magnetosheath. Initially, the Cluster 

spacecraft was in the solar wind and TC-1 in the magnetosheath. At 02:30 UT, a rapid 

bulk sunward motion of the magnetosheath took place Cluster entered the 

magnetosheath, and TC-1 encountered the magnetopause. After about 17 minutes at 

02:47 UT, a rapid earthward motion of the magnetosheath occurred. Thus Cluster 

reentered the solar wind, and TC-1 returned to the magnetosheath. An impressive 

feature of the present event is the good coherence between the bow shock and the 

magnetosheath motion. To expose this point, we added the time-energy spectrogram 

recorded at the same time by TC-1 satellite on the bottom panel of Fig.3.3. It can be 

seen that the period of Cluster in the magnetosheath exactly coincides with the period 

of TC-1 at the magnetopause. 

In the present event, the magnetosheath magnetic field has components with a positive 

Bz, a negative By and a nearly zero Bx, while the magnetopause magnetic field is 

mainly in the z direction with small Bx and By components. So, the magnetosheath 

magnetic field is sheared to the terrestrial magnetic field with an angle of about 450. 

Based on the temperature of magnetosheath ions and the total magnetic field, we can 

estimate the proton gyroradius citi vr /  to be approximately 80km and the 

gyroperiod ciT  /2 about 2s, where iit mkTv /2  is the proton thermal 

velocity, cmeB ici /  is the proton gyrofrequency, iT  is proton temperature, im  

is the mass of proton, B  is the total magnetic field, and c  is the light speed in 

vacuum. 
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Fig.3.6 Magnetic field and hot ion parameters from TC-1. From top to bottom, are: a) 
hot ion time-energy spectrogram, b) hot ion density, c) components of the magnetic 
field, d) ion bulk velocities. e) and f) components of hot ion pressure, and temperature 
respectively. 
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Fig.3.7 Time-energy spectrogram of low energy electrons from TC-1. From top to 
bottom, are electron energy fluxes in the pitch angle range of 0-150, 75-900 and 
165-1890 respectively. 
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Another remarkable feature recorded by TC-1 at the magnetopause is the mixture of 

the magnetosheath and magnetospheric ion composition: the high energy ions 

characteristics of magnetosphere ions, are mixed with variable magnetosheath ions. In 

the time interval 02:30 and 02:47 UT, the encountered mixtures is the well known low 

latitude boundary layer (LLBL) composition, which has a completed energy spectrum 

of both magnetosheath and magnetospheric ions. Besides the LLBL, there are some 

irregular mixtures, where some sporadic magnetosheath composition is observed in a 

stable background of the magnetospheric ion composition. TC-1 was skimming over 

the ellipsoidal magnetopause at that time, hence these flux fluctuations should be 

regarded as local spatial structures at the magnetopause instead of temporal variations 

due to the radial vibration of the magnetopause. Otherwise, the background of the 

magnetosheath and magnetospheric ion composition should be alternately observed, 

instead of a stable background of the magnetospheric ion composition that was 

observed. Therefore, the fluctuated mixtures actually represent a transport of the 

magnetosheath ions across the magnetopause. A possible ripple structures at the 

magnetopause is shown in the schematic of Fig.3.2. Note that the duration of each 

fluctuation structure is much longer than the ion gyroperiod (~2s). For example, 

during 02:35-02:36 UT, some wavy flux tubes were recorded, and each tube persisted 

for 20s, and those fluctuations encountered later have even longer durations. 

Fig.3.7 shows time-energy spectrogram of low energy electrons detected onboard the 

TC-1 spacecraft. From top to bottom, are electron energy fluxes in the pitch angle 

range of 0-150, 75-900 and 165-1890 respectively. The electron observations also show 

a mixture of magnetosheath and magnetospheric compositions. The higher energy 

population (lower flux) is the magnetospheric population, while the lower energy 

population (higher flux) is from the magnetosheath. 

 

3. Discussion 

 

3.1 Excursion velocity of the bow shock:  
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The small size of the Cluster tetrahedron allows the normal direction of the bow shock 

to be determined by a magnetic field gradient method (Shen et al., 2007). Then the 

velocity in the normal direction of the shock front can be estimated by the shock mass 

flux conservation equation, that is, nnVnnV  )()( nddnuu VV  , where u  

( d ) and uV  ( dV ) are the plasma density and velocity upstream (downstream) of 

the shock respectively, n  is the shock normal vector, and nV  is the excursion 

velocity in the normal direction (Schwartz, 1998). From the above equation, nV  can 

be solved to be   /)( nVnV . For the first bow shock encounter at 02:30 UT, 

the normal direction is determined to be n =(0.740, -0.580, -0.340)GSE. The density 

and velocity upstream and downstream of the shock are u =1.60cm-3, uV =(-453, 18, 

-4)GSE km/s and d =5.76cm-3, dV =(-92, -74, -112k)GSE km/s respectively.  Hence 

nV  is evaluated to be roughly 156km/s. Similarly, for the second bow shock 

encounter at 02:47 UT, the normal direction is n =(0.744, 0.141, -0.653)GSE. The 

density and velocity upstream and downstream of the shock are u =1.63cm-3, 

uV =(-437, 13, 20)GSE km/s and d =7.16cm-3, dV =(-102,-31, -83)GSE km/s, hence 

nV  is approximately 65km/s. 

Which mechanism is responsible for the motion of the bow shock and magnetopause 

is a long- standing issue. It has been proposed that certain plasma instabilities, for 

instance the convective Helmholtz-Kelvin instability, which can occur when velocity 

shear is present within a continuous fluid, might be responsible for the motion of the 

magnetospheric boundary and that disturbances thus created propagate along the 

flanks of the magnetopause as a kind of magnetohydrodynamic surface waves 

(Anderson et al., 1968). An alternative approach is that periodic perturbations in the 

solar wind are responsible for driving the motion of the bow shock and magnetopause 

(Smit, 1968). Although here a large-amplitude excursion of magnetosheath was 
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clearly observed, the driving source is not clear since neither an apparent correlation 

between the magnetosheath motion and the variance of solar wind parameters can be 

found nor large scale MHD waves were observed. The identification of the driving 

mechanism of the motion of bow shock and magnetopause is left for future 

investigation. 

 

3.2 Drift instability:  

During the period when TC-1 stayed at the magnetopause, there were no apparent 

magnetic perturbation, hence an electrostatic type instability is responsible for the 

generation of the ripple structures (Fig.3.2). Moreover, since there were prominent 

density gradient and the corresponding plasma pressure gradient at the magnetopause, 

thus they can act as free energy to excite drift instability, which is a collective mode 

due to plasma imhomogeneity and whose fundamental physical picture is illustrated 

on the right side of Fig.3.2. Here, a sinusoidal density perturbation is assumed. In the 

scenario of drift wave, the dynamics of electrons parallel to the magnetic field is 

adiabatic. Therefore, a plasma density perturbation directly connects to a plasma 

potential perturbation via the electron Boltzmann distribution in the parallel direction 

and an electric field in the plane perpendicular to the magnetic field builds up. 

Consequently, the ExB drift leads to propagation of the perturbation in the plasma 

diamagnetic drift direction, where the ion diamagnetic drift direction is eastward and 

opposite to that of electrons. In the magnetopause environment, the electron 

perpendicular temperature is much lower than the ion perpendicular temperature 

(Phan et al., 2005). Thus, the electron diamagnetic drift velocity can be neglected and 

the drift wave propagates in the positive y direction with the ion diamagnetic drift 

velocity. 

Drift waves are intrinsically three-dimensional and the plasma dynamics parallel to 

the magnetic field is a crucial parameter for stability. Due to an adiabatic and 

instantaneous electron response parallel to the magnetic field, the initial perturbation 

is linearly stable. However, when certain effects that lead to non-adiabaticity of 



53 

 

electrons react, or in other words, the parallel dynamics of electrons is somewhat 

inhibited, the potential perturbation will increase slowly and the drift wave becomes 

unstable. Therefore, in the low frequency regime drift instability is essentially an 

electrostatic instability due to charge accumulation and accordingly electrostatic 

potential perturbation. This kind of manifestation in the present event is revealed in 

Fig.3.8. The first panel shows the time-energy spectrogram of electrons in the energy 

range of 0.2-0.4MeV provided by the TC-1 HEED experiment between 02:34-02:44 

UT (Cao et al., 2005). The second panel is HIA time-energy spectrogram and the third 

panel shows the ion bulk velocities deduced from HIA measurements: the black curve 

represents the total velocity, and the blue and red represent parallel and perpendicular 

velocities respectively. In the interval 02:35:58-02:36:12 UT, a filament of electron 

flux up to 400cm-2sr-1s-1 was observed, which implies that a region of negative charge 

accumulation and accordingly a potential minimum is encountered. While during the 

period of 02:41:26-02:42:25 UT, a flux tube with ion flux below ten cm-2sr-1s-1 was 

recorded, which implies that a region of positive charge accumulation and accordingly 

a potential maximum. Also, as shown by two short dashed lines, during the period of 

02:39:22-02:40:51 UT, a minor potential minimum is exhibited, which is bounded by 

two minor regions of negative charge accumulation. Why the whole region of this 

potential perturbation did not display apparent variations of electron flux but only at 

the edges? Since electrons satisfy approximately the Boltzmann distribution and also 

the potential perturbation at that time is small, hence the electron perturbation is 

proportional to the ambient plasma density and inversely proportional to the plasma 

temperature. Thus, the electron perturbation and corresponding charge accumulation 

in the magnetospheric ambience are much smaller than that in the magnetosheath 

ambience and accordingly no apparent variations of electron flux are observed. 

In comparison with the second panel in Fig.3.8, it can be found that all the potential 

perturbations basically have a good correlation to the ion density perturbations. As 

shown in the schematic Fig.3.2, a potential minimum corresponds to a low density 

region, where only the magnetospheric composition was encountered; while a 
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potential maximum corresponds to a high density region, where the magnetosheath 

composition was met and mixed with the magnetospheric composition. This fact is 

coincident to the intrinsic feature of drift instability, and the electrostatic potential 

perturbation tightly ties to the plasma density perturbation. At the beginning there is 

no phase shift between them; however the phase shift increases rather slowly due to 

charge accumulation and eventually reaches to a small but finite value. Here, the 

minor potential minimum observed in the interval 02:39:22-02:40:51 UT is exactly a 

growing potential perturbation during the evolution of drift instability. In fact, this 

growing potential minimum and the fully enhanced potential maximum encountered 

later during 02:41:26-02:42:25 UT make up spatially a complete sinusoid-like 

perturbation propagating in the positive y direction on one hand, while they also 

record temporally the history of potential growth on the other hand, namely, the time 

sequence of the potential growth from the initial minor potential minimum to the final 

fully enhanced potential maximum. 

As shown by two long dashed lines at 02:36:10 and 02:42:20 UT respectively in 

Fig.3.8, at the end of the record of both major potential perturbations, a pulse of the 

perpendicular velocity is observed. These pulses are due to the E cross B motion in 

the nonlinear regime. In the linear stage of drift instability, although the potential 

perturbation grows up slowly, however both the potential and density perturbation 

harmonically oscillate and no net mass transport across the boundary takes place. 

When the potential perturbation is high enough, the ExB motion will give rise to 

convective instability, causing mass interchange between the high density region and 

the low density region. Consequently, the exchanged magnetosheath ion fluxes are 

observed in the interval 02:36:20-02:37:40 UT and after 02:42:20 UT respectively. It 

is worthy to point out that associated with the first perpendicular velocity pulse, there 

is also a parallel velocity pulse, which implies that at this stage, the ion parallel 

motion is relevant, or in other words, the ion acoustic wave plays a role in the system 

evolution. For the second perpendicular velocity pulse, no parallel velocity pulse 

occurs. However, an apparent corresponding magnetic perturbation can be found from 
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the third panel in Fig.3.6. It indicates that at that stage, the instability is not merely 

electrostastic but electromagnetic, namely, a shear Alfvén wave is involved in the 

whole dynamics. 

 

 

 

Fig.3.8  a) Time-energy spectrogram of electrons in the energy range of 0.2-0.4MeV 
recorded by the HEED experiment onboard the TC-1 spacecraft. The vertical axis is 
the azimuthal angle, which is defined in the plane perpendicular to the satellite spin 
axis. b) HIA time-energy spectrogram. c) Ion bulk velocities: the black curve 
represents the total velocity, and the blue and red represent parallel and perpendicular 
velocities respectively. 
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In contrast to the measurements of high energy electrons that reveal some evidence on 

charge accumulation and potential perturbation, the observations of low energy 

electrons as shown in Fig.3.7 display no similar indication. The reason is thought that 

high energy electrons show non-adiabaticity in the parallel motion due to their larger 

effective viscosity and are responsible for the charge accumulation. Another issue is 

the stabilization of magnetic shear effect on the drift instability, since in the present 

event the magnetosheath magnetic field is sheared to the terrestrial magnetic field 

with an angle of about 450. The answer is that due to the bulk excursion of 

magnetosheath, a localized region with a small magnetic shear or without shear 

developed. This is made more apparent in the third panel in Fig.3.6. After 02:47 till 

02:51 UT, the plasma measurements clearly indicate that the satellite was already 

drifting away from the magnetopause and entered into the magnetosheath, while the 

magnetic field records were still similar to that of the terrestrial magnetic field. 

Finally, the perpendicular wavelength can be estimated by the product of each 

duration time of the filament structure and the ion diamagnetic drift velocity. The ion 

diamagnetic drift velocity is 
n

i
ith Lv  , where ithv  is the ion thermal velocity, i  

is the ion gyroradius and ndx
dnLn 1  is the scale length of the density gradient. 

Usually, at the magnetopause the scale length of density gradient is typically a few ion 

gyroradii (Winske, 1996). Here, we assume that the ratio of the characteristic length 

to the ion gyroradius is about five, so the ion diamagnetic drift velocity is one-fifth of 

the ion thermal velocity and is about 30km/s. Then, the perpendicular wavelength of 

drift waves can be estimated to be roughly from 1200km to 5400km. Since a drift 

wave has a much larger parallel wavelength than its perpendicular wavelength, the 

volume of each flux tube is large and hence eventual particle transport by exchange of 

flux tubes is actually considerable. Based on this interpretation, it is interesting to 

point out that in contrast to the most investigated drift instability at the magnetopause 

in the low hybrid regime and the assumed stationary turbulent diffusion, the 

observations presented here reveal the drift instability frequency is much smaller than 
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the ion gyrofrequency and consequently large-scale convective interchange seems to 

be a more efficient transport mechanism at the magnetopause during periods of 

northward IMF. 

 

4. Conclusion 

 

In summary, a large-amplitude excursion of the magnetosheath in quiet solar wind 

conditions during period of northward IMF is reported, which was observed 

simultaneously by the Cluster and TC-1 spacecraft. The good coherence between the 

bow shock motion and the magnetopause motion is revealed and the excursion 

velocity of the bow shock motion is analyzed by a multi-satellite data analysis 

technique. Furthermore, the relevant plasma transport phenomenon in the form of flux 

fluctuations below the ion gyrofrequency at the magnetopause is shown and 

interpreted as a manifestation of the drift instability. It is indicated that even in the 

case of IMF having a large shear to the terrestrial magnetic fields, a localized region 

at the magnetopause without shear can develop due to the bulk motion of the 

magnetosheath and hence this stabilization factor in the drift instability is absent. In 

addition, evidence of charge accumulation and electrostatic potential perturbation 

related the evolution of drift instability are exhibited from the measurements of high 

energy electrons. All these potential perturbations show a good correlation to the ion 

density perturbations. Moreover, the relevant rapid ExB motion in the nonlinear stage 

and the corresponding mass exchange are recorded. Finally, based on rough 

estimation of the scale of drift wave lengths, it is pointed out that in contrast to the 

most investigated drift instability at the magnetopause in the low hybrid regime and 

the assumed stationary turbulent diffusion, the observations presented here reveal the 

drift instability to be much less than the ion gyrofrequency and consequently 

large-scale convective interchange seems to be a more efficient transport mechanism 

at the magnetopause during a period of northward IMF. The results of this chapter 

have been published in Cai et al., 2009a. 
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Chapter 4 

 

Foreshock-like Density Cavity in the Magnetotail 

Reconnection 

 

1. Introduction 

 

Magnetic reconnection plays a crucial role in the dynamics of the magnetotail. During 

magnetic reconnection, the lobe plasma is convected toward the central plasma sheet, 

and is driven out from the X-type diffusion region in the form of ion jets in two 

opposite directions (Hones, 1979). The magnetic topological structures of these ion 

jets and their effects on the surrounding plasmas have been intensively investigated. 

For instance, reconnection generated flux ropes, usually described as a 

three-dimensional “rope” which has a helical magnetic field structure together with a 

strong core field, were observed (Hones, 1977; Slavin et al., 1989). Also, the 

interaction between the fast-moving flux rope and the lobe manifests as a bulge that 

compresses the lobe plasma, which is called traveling compressed plasma region 

(Slavin et al., 1984, 2005). Moreover, the ion outflows observed in the Earth’s 

magnetotail reconnection show a wide variety of singular boundary layers, in addition 

to the well-known slow-mode shock boundary (Eriksson et al., 2004). On the basis of 

Geotail spacecraft data, it had been found that during magnetic reconnection a contact 

discontinuity exists binding two different plasma regions in the sheet, separating the 

shock-heated plasma from plasma that is Joule heated by magnetic diffusion (Hoshino 

et al., 2000). Computer simulations also show that a tangential discontinuity inside the 

plasmoid can form to separate the accelerated plasmas from the original plasma (Abe 

and Hoshino, 2001). Moreover, simulation results indicate the interaction between the 

fast reconnection jets and the original sheet plasmas associated with a magnetic loop 

can form a fast shock at the edge of the reconnection jet (Ugai, 1996, 1999). 
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Fig.4.1 A schematic of the terrestrial shock-foreshock system. The foreshock, which 
is confined to the region of space behind the tangent field line (blue line), exhibits 
complex spatial structure. Just behind the tangent field line is the electron foreshock; 
here, only backstreaming electrons are observed. Behind the ion foreshock boundary, 
field-aligned backstreaming ion distributions are typically observed. Deeper in the 
foreshock, close to the quasi-parallel shock, diffuse backstreaming ion distributions 
are observed. (Treumann and Scholer, 2001). 

 

In the Geospace, the most significant singular boundary created by high-speed 

plasmas confronting an obstacle is the terrestrial magnetospheric bow shock. When 

the supersonic solar wind plasma carrying the interplanetary magnetic field 

encounters Earth’s dipole magnetic field, the bow shock is formed, which slows down 

the solar wind plasma from supersonic to subsonic speeds and thermalises it. 

Simultaneously, a foreshock forms if a part of incident particles is reflected. The 
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foreshock is a region upstream of the bow shock, which is magnetically connected to 

the bow shock and comprises both incident solar wind plasma and reflected particles. 

For the quasi-perpendicular shock, the foreshock is confined to the shock foot, while 

upstream of the quasi-parallel shock, it occupies a much larger area (Balogh et al., 

2005). The foreshock possesses complex kinetic processes, which give rise to 

accordingly unusual spatial structure ((Bale et al., 2005, Eastwood et al., 2005). It is 

generally thought that a certain portion of the incident particles can be specularly 

reflected at the shock magnetic ramp (Paschmann et al., 1980; Gosling et al., 1982, 

Schwartz et al., 1983). In a shock rest frame, an incident particle with a velocity 

consisting of components parallel and perpendicular to the normal of the shock 

reflects specularly at the shock surface by the shock electric filed such that the 

component perpendicular to the normal remains unchanged while the component 

parallel to the normal is reversed. Those reflected particles that have high enough 

velocity parallel to the magnetic field (hence their guiding center velocity along the 

shock normal is larger than the convection speed) will escape upstream along the field 

line to create a backstreaming field-aligned beam, which move both along the 

magnetic field line and simultaneously drift in the convective electric fields of the 

incident particles. Eventually, these backstreaming field-aligned beams can be found 

behind the tangential magnetic field line. Therefore, the upstream boundary of the 

foreshock is the locus of the tangential field lines, and the downstream boundary of 

the foreshock is the quasi-parallel part of the shock. The higher energy particles can 

be observed close to the upstream foreshock boundary, while the lower energy 

particles can be recorded further downstream. Just behind the tangent field line is the 

electron foreshock. The ion foreshock will be encountered downstream the electron 

foreshock. The reflected field-aligned ion beams with the smallest drift distance make 

up the upstream boundary of the ion foreshock, which is also called the leading ion 

foreshock boundary. Behind the leading ion foreshock boundary, field-aligned 

backstreaming ion distributions are observed. Deeper in the foreshock, diffuse 

backstreaming ion distributions are usually recorded (Meziane et al., 2001, 2004). 
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Moreover, there exists a second boundary within the ion foreshock, closer to the 

quasi-parallel shock, usually referred to as the ULF foreshock boundary or the ion 

foreshock wave boundary (Le and Russell, 1992, Meziane et al., 1998). This boundary 

borders the domain of ULF wave activity. The terrestrial shock-foreshock system is 

schematically shown in Fig.4.1. 

In this chapter, the following particular scenario is considered, where the reconnection 

ion jets, especially those traveling earthward, collide with the original plasmas at rest 

before reconnection. The reconnected magnetic field lines carried outward by the 

high-speed ion jet emanating from the X-type diffusion region can be blocked by the 

original magnetic field lines bordering the outflow region. Therefore, in the edge of 

outflow region, there exists a region where field lines are piled up. When the magnetic 

compression, or in other words the impact of ion jet, is intense enough to cause some 

kinds of singular boundary layer such as a discontinuity or a shock to form, it isn’t 

hard to find that there is a remarkable similarity in the underlying physical process 

between the present situation and that of the bow shock. However, since there are 

many differences in the respective environments of two cases, whether the ion jets can 

interact with the original plasmas in a bow shock-like manner is still unclear. Also, 

since the existence of reflected particles is an intrinsic feature of collisionless shock, 

can some particular characteristics relevant to foreshock-like structure be exhibited in 

the vicinity of a steepened boundary of the field lines piled up region in the edge of 

outflow region? 

Here, we present some reliable observations of a singular boundary of an ion jet that 

is formed due to its interaction with the original plasmas, and report observations of a 

density depletion cavity with a foreshock-like structure in the outflow region of 

magnetotail reconnection. First, an overview of the reconnection layer encountered by 

the spacecraft is given. Then, particle kinetics and magnetic field measurements are 

analyzed in an attempt to reveal the remarkable characteristic structures in the density 

cavity that manifests a highly similar morphology to the foreshock region. 
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2. Observations 

 

2.1 Overview 

During the time interval 00:30-00:50 UT on August 6, 2003, the 4 Cluster spacecraft 

crossed the near-Earth magnetotail at XGSM= –17 RE. Fig.4.2, 4.3 and 4.4 show 

magnetic field measurements and hot ion measurements from spacecraft 4, 1 and 3 

respectively. The magnetic field measurements come from the FGM experiment 

(Balogh et al., 2001) and the hot ions from the CIS instrument (Rème et al., 2001). 

The proton measurements shown in Fig.4.2 are from the CODIF sensor onboard C4 

(HIA is not onboard this spacecraft), while the hot ion measurements displayed in 

Fig.4.3 and Fig.4.4 are from the HIA sensors onboard C1 and C3 respectively. 

While the spacecraft was in the plasma sheet of the southern hemisphere, due to a 

negative XB , it suddenly observed an earthward fast proton flow with a total velocity 

up to ~610 km/s in the interval 00:33:20-00:35:10 UT. Accompanied with this plasma 

ejection is a strong magnetic field variation. The magnetic field magnitude of the 

leading boundary increases from –20 nT to –34 nT in XB  and from 3 to 10 nT in 

ZB . In this jet, the proton density decreases from 0.72 cm-3 to 0.32 cm-3, about half of 

the original level. The oxygen ion abundance is very low and not shown here.  

After passing the density cavity, the spacecraft subsequently observed two density 

dips at 00:37:30 UT and 00:43:40 UT respectively. Finally, the spacecraft met a 

tailward fast flow with a total velocity up to ~600km/s in the interval 00:45-00:49 UT. 

In this event, 0B =25nT, HT =5keV, and Hn =0.7cm-3, where 0B  is the magnetic 

field in unperturbed plasma sheet, HT  and Hn  are the proton temperature and 

density respectively. The Alfvén speed VA, the proton Larmor radius H, and the 

proton inertial length c/H are respectively AV =650km/s, H =410km and 

pHc / =270km. 

Because of the very small size of the 4 spacecraft tetrahedron (~200 km) all spacecraft 
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Fig.4.2 Magnetic field and proton measurements from C4. From top: a) time-energy 
spectrogram, b) components of magnetic field, c) and d) proton density and bulk 
velocities in GSM coordinates respectively, e) proton pressure components parallel 
and perpendicular to the magnetic field, and f) magnetic pressure, proton pressure and 
total pressure respectively. The shadows denote the density cavity and two density 
dips respectively. 
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Fig.4.3 Magnetic field and hot ion measurements from C1. a) time-energy 
spectrogram, b) components of magnetic field, c) and d) hot ion density and bulk 
velocities in GSM coordinates respectively, e) hot ion pressure components parallel 
and perpendicular to the magnetic field, and f) magnetic pressure, plasma pressure 
and total pressure respectively. The shadows denote the density cavity and two 
density dips respectively. 
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Fig.4.4 Magnetic field and hot ion measurements from C3. a) time-energy 
spectrogram, b) components of magnetic field, c) and d) hot ion density and bulk 
velocities in GSM coordinates respectively, e) hot ion pressure components parallel 
and perpendicular to the magnetic field, and f) magnetic pressure, plasma pressure 
and total pressure respectively. The shadows denote the density cavity and two 

density dips respectively. 
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measured very similar observational features. As shown in Fig.4.3 and Fig. 4.4 

respectively, in the interval 00:33:20-00:35:10 UT, an earthward fast flow with a 

velocity up to ~590 km/s in the GSM x direction was observed. Accompanied with 

this plasma ejection is a strong magnetic field variation. In this jet, both the density 

records from C1 and C3 decrease to nearly half of the original value, from 0.5 cm-3 to 

0.25 cm-3 in Fig. 4.3 and from 0.62 cm-3 to 0.32 cm-3 in Fig. 4.4 respectively. Also, 

two density dips at 00:37:30 UT and 00:43:40 UT respectively were recorded by both 

C1 and C4. 

 

 

 

Fig.4.5 A schematic of the reconnection layer encountered by the spacecraft and 
boundaries in the cavity. The two black curves represent a pair of slow-mode 
separatrices. The dashed green line depicts the local magnetic configuration of field 
line piled up region. The red curve in the left-side describes the shock front, i.e., the 
sharp leading edge of ions jet. The blue line signifies the magnetic field line tangent to 
the quasi-perpendicular shock front. The star and the dashed brown line denote the 
spacecraft and its orbit. More details can be founded in the text. 
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2.2 The reconnection layer structure and the steepened leading boundary of the 

earthward jet 

The present observation of fast ion jets is identified as a reconnection event, and the 

encountered reconnection layer is schematically shown in Fig.4.5. The nascent 

magnetic flux ropes can be carried out by the ion jet emanating from the diffusion 

region (Slavin et al., 2005). They are blocked by the original magnetic field lines 

bordering the outflow region and hence are piled up at the edge of outflow region. 

When the magnetic compression is intense enough, it is believed that plasma 

depletion phenomena usually take place due to pressure balance, and in most cases in 

association with some kind of singular boundaries. Here the earthward jet in the form 

of a density cavity with a sharp leading boundary is interpreted as exactly that case. In 

addition, this sharp leading boundary can be considered in principle as an MHD 

discontinuity or shock and hereinafter we refer to it as a shock. Here, the term “shock” 

is used in a rather general meaning, that is, if the front becomes steep enough that the 

entropy increases across it and the changes become irreversible, we refer to the front 

as a "shock" (Southwood and Kivelson, 1992). 

By the magnetic field timing analysis, the normal direction and speed of the shock are 

estimated to be nGSM=(0.45, -0.01, 0.89) and 78 km/s respectively. The duration of its 

crossing is 14s. Hence its thickness is estimated to be 1100km, four times the proton 

inertial length. In the GSM frame, the magnetic fields upstream and downstream of 

the shock are Bu=(-29, -23, 7) nT and Bd=(-21, -16, 3) nT respectively. Therefore the 

angle between the magnetic field and the normal to the shock is about 800, which 

means that the front encountered is a nearly proper perpendicular part of the shock. 

Moreover, we have approximately 0 nB and (BuBd).n=0, whereB is Bu - Bd, 

and hence verify the magnetic coplanarity. In addition, in the shock rest frame, the 

bulk velocities upstream and downstream of the shock are Vu=(550, 242, -74) km/s 

and Vd=(270, -130, -54) km/s respectively. Thus the calculated upstream and 

downstream normal velocities are 179 km/s and 75 km/s respectively. The ratio of the 

upstream normal velocities to the downstream normal velocity is about 2.4, while the 
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upstream and downstream densities are 0.72 cm-3 and 0.33 cm-3 respectively. The 

ratio of the downstream density to the upstream density is about 2.2. Hence the mass 

conservation is approximately satisfied. A lesser agreement is obtained for the full set 

of jump conditions. The reason is due to the non-stationarity behavior of this cavity 

because of the explosive reconnection jets. Taking into account this fact, the upstream 

parameters may be highly time-dependent. In addition, the calculated velocity of the 

ion jet includes the contribution from reflected backstreaming particles and should be 

less than the actual incident velocity. Therefore, although the calculated upstream 

normal velocity (~179km/s) is even smaller than the slow-mode speed, which is 

estimated to be ~250km/s, it seems reasonable that this leading boundary is identified 

as a time-dependent slow-mode transition layer. 

It is worth noting that this leading boundary inside the outflow region that separates 

the accelerated plasmas from the original plasma should not be confused with the 

well-known Petschek-type slow-mode shock around the reconnection region since it 

moved earthward. Otherwise, it would not be the leading boundary of the jet and the 

bulk flow would be encountered first. Petschek (1964) proposed that the changes 

required as plasma flows into the field reversal region can be accomplished by two 

slow compressional waves placed back to back bounding the field reversal region. 

The waves propagate (with respect to the plasma) away from the field reversal region, 

but they are also convected toward it by the plasma flow. These two effects must 

balance in a steady state in which the waves must be stationary; thus the plasma flow 

speed toward the field reversal region must equal the wave propagation speed. 

Therefore, the field reversal region is bounded by a pair of slow waves that extend out 

from the diffusion region. Since these are compressional waves of finite amplitude, it 

is further proposed that they steepen and become slow shocks, as would be expected 

from the theory of finite amplitude MHD waves. Slow-mode shocks were first 

observed in the distant magnetotail based on ISEE-3 measurements (Feldman et al., 

1984; Smith et al., 1984) and subsequently also reported in the near-Earth tail in 

conjunction with substorm events (Hones et al., 1986; Eriksson et al., 2004). 
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Density dips encountered in reconnection layers are usually identified as 

Petschek-type slow-mode separatrices (Cattell et al., 2005; Borg, et al., 2005). Here 

the two density dips encountered at 00:37:30 UT and 00:43:40 UT are regarded as the 

slow-mode separatrices bounding the earthward side and tailward side outflow 

regions respectively. Between the slow-mode separatrices, there is the southern inflow 

region. Thus nearly in the middle of this region at 00:40:30 UT, a peak of Vz was 

recorded as shown in the fourth panel in Fig.4.2, which is identified as the inflow 

velocity with speed up to ~ 200km/s. 

It is worthy to note that in the intervals 00:36:40-00:37 UT and 00:47:50-00:48:30 UT, 

the spacecraft encountered the neutral line and the outer current sheet respectively due 

to the very rapid large-scale shift of the current sheet, which are phenomena 

frequently occurring in the thin current sheet and usually referred to as the flapping 

motion (Sergeev et al., 2003; Cai et al., 2008). The fifth panel in Fig.4.2 shows the 

components of the proton temperature. It can be seen that in both the earthward and 

tailward ion jets, the proton temperature rose, apparently due to the heating by both 

the magnetic diffusion and by the slow-mode separatrices. 

 

2.3 Incident and backstreaming protons inside the cavity 

The global morphology of the density cavity can be established from the 

observational characteristics of particle kinetics. Fig.4.6 gives the spectrogram of the 

pitch angle and azimuthal angle of protons recorded by C4 in 2 energy ranges. Similar 

measurements of hot ions recorded by C1 and C3 are shown in Fig 4.7 and Fig 4.8 

respectively. As mentioned above, the proton measurements are from the CODIF 

sensor onboard C4, while the hot ion measurements are from the HIA sensors onboard 

C1 and C3 respectively because the CODIF sensors onboard C1 and C3 were 

switched off at that time. 

In the cavity, from 00:34:05 to 00:34:44 UT as shown in the sixth panel in Fig.4.6, 

intense incident protons within energy range 1.5-40 keV in the anti-parallel magnetic  
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Fig.4.6 A snapshot of proton measurements in the cavity from the CODIF sensor 
onboard C4. The third panel is time-energy spectrogram. The fourth and fifth panels 
show spectrograms of pitch angle and azimuthal angle respectively for protons within 
the energy range 50-1500eV, and the sixth and seventh panels show those for protons 
within the higher energy range 1.5-40keV. A collimated backstreaming beam 
distribution in the parallel magnetic field direction can be found in panel f) of the 
pitch angle spectrogram within the higher energy range 1.5-40keV in the time interval 
00:34:05 to 00:34:44 UT. 
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Fig.4.7 Hot ion measurements in the cavity from the HIA sensor onboard C1. The 
fourth and fifth panels show spectrograms of pitch angle and azimuthal angle 
respectively for hot ions within the energy range 50-1500eV, and the sixth and 
seventh panels show those for protons within the higher energy range 1.5-40keV. 
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Fig.4.8 Hot ion measurements in the cavity from the HIA sensor onboard C3. The 
third panel is time-energy spectrogram. The fourth and fifth panels show 
spectrograms of pitch angle and azimuthal angle respectively for hot ions within the 
energy range 50-1500eV, and the sixth and seventh panels show those for protons 
within the higher energy range 1.5-40keV. 
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field direction were observed. Simultaneously, a very collimated backstreaming beam 

distribution in the parallel magnetic field direction was recorded. The fourth and fifth 

panels show the proton behaviors in the energy range 50-1500eV. It can be seen that 

in the cavity the pitch angles of these protons with lower energies display a narrow 

profile between 500 and 700. Also, along the negative Y direction they are within an 

azimuthal angle profile centered between –800 and –1000. The backstreaming beam 

distribution in the parallel magnetic field direction from 00:34:05 to 00:34:44 UT in 

the cavity can be also seen in the panel of pitch angle spectrogram within the higher 

energy range 1.5-40keV in Fig.4.7 and Fig.4.8 respectively. In addition, the 

characteristics of hot ions with lower energies recorded by C1 and C3 is likewise 

similar to that of C4. 

Fig.4.9 shows the proton distribution functions from C4 for all the twelve data 

acquisition periods in the cavity (Each ion data acquisition period is here two 

spacecraft spins, i.e. 8s). It isn’t difficult to find that from the third period to the last 

one, all these distribution functions show an apparent loss-cone distribution in the 

direction parallel to the magnetic field. Fig.4.10 shows a sample of these distribution 

functions in the seventh period at 00:34:13 UT.  

As mentioned above, the depleted density cavity, in association with a steepened 

leading boundary, is generated by the piled up magnetic field lines, which are carried 

out by the ions jet emanating from the diffusion region. The present scenario 

resembles highly the case that when the solar wind impacts the magnetosphere, a 

curved bow shock front forms. In contrast to the hydrodynamics shock, in which no 

information can be transmitted to upstream region, the existence of reflected particles 

back to the upstream region is an intrinsic feature of collisionless MHD shock. Here 

the observed collimated backstreaming beam is interpreted to be those reflected 

particles by the steepened leading boundary, that is, whose generation mechanism is 

exactly similar to that of the foreshock (Paschmann et al., 1980; Gosling et al., 1982, 

Schwartz et al., 1983).  
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Fig.4.9 Proton distribution functions for all the twelve data acquisition periods in the 
cavity. The black masses are incident particles. From the third one, all these 
distribution functions show an apparent loss-cone distribution in the direction parallel 
to the magnetic field. 

 

In Fig.4.5, a schematic is shown in which the blue line indicates the magnetic field 

line tangent to the perpendicular part of the curved shock front. The specularly 

reflected particles with high field-aligned velocity move both along the magnetic field 

line and simultaneously drift in the convective electric fields of the incident protons. 

Eventually, these backstreaming field-aligned beams can be found behind the 

tangential magnetic field line, along which they escape upstream from the shock front. 

In the present case, the leading ion foreshock boundary is encountered at 00:34:44 UT 

while the spacecraft crossed the foreshock region from downstream to upstream, thus 

no field-aligned ion beam was observed after this time.  
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Fig.4.10 Proton distribution function in the sixth data acquisition period in the cavity 
at 00:34:05 UT. Several populations with different kinetic characteristics are 
identified. The feature of loss-cone distribution is lined out. The population which 
fills the edge of the loss-cone with a large parallel velocity is the specularly reflected 
field-aligned beam. On the most left, it is the accelerated incident population. 
 
 

Table 4.1 Characteristic parameters and differences between the reconnection 
shock and the bow shock 

 Reconnection shock Bow shock 

Type Time-dependent slow-mode Fast-mode 

Vupsream ~600km/s ~500 km/s 

  Bupsream ~40nT ~5nT 

nupstream ~0.4 cm-3 ~4 cm-3 

VAlfven ~650 km/s ~50 km/s 

Larmor radius ~400 km/s ~90 km/s 

Thickness(perp) ~3 Larmor radius ~3 Larmor radius 
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One issue of the interpretation of the reconnection outflow region as analogous to the 

bow shock-foreshock region must be clarified here. For the bow shock, it is a 

fast-mode type, while in the present case the sharp boundary is a slow-mode shock 

based on the above investigation. Characteristic parameters and differences between 

the reconnection shock and the bow shock are shown in Table 4.1. However, 

whatever the shock is, the crucial point is that in both cases a steepened current sheet 

is generated and can act as a reflecting layer. The interpretation of the generation 

mechanism of those field-aligned backstreaming particles in the cavity is a natural 

explanation. 

Apart from the specularly reflected particles, there are also other populations flowing 

back upstream of the shock by magnetic mirroring or in any other way. For example, 

several populations can be identified in Fig.4.10. The loss-cone is the most prominent 

characteristic in this distribution due to magnetic mirroring. The population which 

fills the edge of the loss-cone with a large parallel velocity is the specularly reflected 

field-aligned beam. Moreover, there are two populations of incident protons: the 

major population has lower velocity, the minor population has higher velocity. 

Compared with the distributions in the other periods, we can infer that the population 

with lower velocity is the normal incident particles, while the population with higher 

velocity is apparently accelerated. It demonstrates the possibility that the incident 

particles can be further energized in the field line piled up region in the outflow region 

of reconnection, especially in the case that the singular boundary condition occurs. 

The energisation mechanism here is supposed to be a Fermi-type, which is the 

acceleration that charged particles undergo when reflected by a magnetic mirror, as 

well as a transit time magnetic pumping, which is an acceleration or heating process 

operating in temporally changing magnetic fields in the presence of particle scattering. 

Therefore, it provides another possible acceleration mechanism for the particles in 

their multi-step acceleration processes in the reconnection (Imada et al., 2007). 

 

2.4 ULF waves in the cavity 
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The presence of intense low frequency electromagnetic fluctuations is an inherent 

feature of the ion foreshock region (Eastwood et al., 2002, 2004). ULF waves in 

association with backstreaming diffuse ion distributions are usually observed deep 

into the ion foreshock region, approaching to the quasi-parallel shock front (Bame et 

al., 1980, Meziane et al., 2001, 2004, Cao et al., 2009, Fu et al., 2009). Those ULF 

waves are believed to be generated by the backstreaming field-aligned beams, and the 

beams then become diffused. The upstream boundary of the ULF wave activity region 

is commonly called the ULF foreshock boundary or the ion foreshock wave boundary. 

Thus this boundary is between the backstreaming field-aligned beam distributions and 

diffuse distributions in the ion foreshock. 

Fig.4.11 shows a snapshot of the magnetic field measurements with 1s time resolution 

and the proton density in the cavity. The red, gray and blue shadows denote 

respectively the time intervals of the shock ramp, ULF waves and the backstreaming 

field-aligned beam. Both the leading egde and the ULF wave boundary of the ion 

foreshock can be identified from the time sequence of proton and magnetic field 

observations. It is important to note that in the interval of the shock ramp, a bipolar 

structure of YB  was recorded. This particular feature gives a trusty evidence of the 

existence of a strong surface current in the shock front, which is regarded to result 

from the decoupling of the ion motion with the electron motion due to the finite 

Larmor radius effect (Bale et al., 2005). Meanwhile, the decoupling of the ion motion 

with the electron motion can cause intense electrostatic fields in the shock surface. It 

is just those strong electrostatic fields that are believed to be responsible for the 

generation of the reflected field-aligned proton beams described in the previous 

section. Therefore, the observational particulars of particles and electromagnetic fields 

in the present event are mutually justified. 

Shortly after the shock ramp, ULF wave activity was observed in the interval 

00:33:40-00:34 UT. Especially, in the second panel, a quasi-monochromatic XB  

oscillation was found. Its period is about 9s, while the period of the fast magnetosonic 
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Fig.4.11 A snapshot of magnetic field measurements with 1s time resolution and 
proton density in the cavity from C4, where the ion measurements are from CODIF 
sensor. The red, gray and blue shadows denote respectively the time intervals of the 
shock ramp, ULF waves, and the backstreaming field-aligned beam.
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waves upstream the bow shock is typically about 30s (Eastwood et al., 2002, 2004). 

Also, just after the ULF wave region, the ion foreshock was encountered. It can be 

seen that the wave observations are well coincident with the particle kinetic 

measurements. The field-aligned beam distributions were not observed in conjunction 

with ULF waves, and the time gap between the ULF boundary and the backstreaming 

field-aligned beam distribution is less than one ion data acquisition period. Of course, 

in addition to the quasi-monochromatic ULF waves, intense higher frequency 

magnetic field turbulences can be found in the entire foreshock region including 

downstream of the shock front. 

 

2.5 Backstreaming electrons in the cavity 

Fig.4.12 shows three selected electron distributions parallel, anti-parallel and 

perpendicular to the magnetic field from the PEACE experiment (Johnstone et al., 

1997) onboard C4. The first and second distributions parallel to the magnetic field 

show a global enhancement, which represents a broad type of bump-on-tail pattern, 

that is, the flux parallel to the magnetic field (green curve) shows an increase in a 

rather broad energy regime. While the third electron distribution parallel to the 

magnetic field has a narrower bump compared with that of the first and second 

distributions, which we refer to as a narrow type of bump-on-tail pattern. The 

distributions recorded in other periods in the cavity have not obvious variation and are 

thus not shown here. 

The two type bump-on-tail distributions are interpreted as the reflected electrons by 

the specular reflecting mechanism. However, the difference in their manifestations 

reveals the difference in their microscopic physics of reflecting process. The narrow 

bump is caused by the electrons suffering a reflecting process that has a very short 

interaction time with the front, that is, interact only with the shock precursor and 

cannot reach the ramp itself. Furthermore, there is a second class of backstreaming 

electrons, which succeed to penetrate deeper the front and interact with the ramp 

(Lembège and Savoini, 2002). In this case, the trapped electrons can gain sufficient 
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energy, including the parallel energy, from the shock electrostatic field while they 

excurse along the shock front. Corresponding to the two types of electron reflecting 

mechanisms, as revealed in simulations, there are two types of electron distributions 

parallel to the magnetic field, the narrow type of the bump-on-tail pattern and the 

broad type (Savoini and Lembège, 2001). The narrow type corresponds to the 

reflecting population that has lower parallel velocity, while the broad one corresponds 

to electrons that spend some time interacting with the macroscopic fields at the shock 

front and thus have higher parallel velocity. What kind of distribution can be found in 

the foreshock depends on the relative location of the shock geometry, and sometimes 

both types can coexist at the same location. 

The narrow type of bump-on-tail pattern represents the population in the electron 

foreshock in a conventional meaning, that is, similar to the backstreaming 

field-aligned ions, backstreaming field-aligned electrons will also move along the 

magnetic field line and simultaneously drift in the convective electric fields, but 

within a smaller distance. It is coincident with the fact that these reflected electrons 

were observed at 00:34:54 UT, shortly after the passing of the leading ion foreshock 

boundary when the spacecraft crossed the foreshock region from downstream to 

upstream. However, the broad type of bump-on-tail pattern was observed within the 

two consecutive spin periods at 00:33:31 UT and 00:33:35 UT respectively, very 

close to the shock front. They are the second class of backstreaming electrons 

mentioned above, that is, electrons that interact with the ramp for a much longer time 

and gain more energy. This measurement gives evidence on the difference in their 

microscopic physics of reflecting process. It also indicates the remarkable impact of 

the local shock geometry on the electron kinetics. For the proper perpendicular part of 

the shock with a larger angle between the shock normal and the magnetic field 

direction, the electrons suffering a reflecting process that has a very short interaction 

time with the front. In contrast, for the quasi-perpendicular part with a smaller angle, 

the shock electrostatic field will make its contribution to the electron dynamics via 

local trapping and acceleration (Lembège et al., 2004). 
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Fig.4.12 Selected electron distributions parallel, anti-parallel, and perpendicular to the 
magnetic field in the cavity from C4. The first and second distributions parallel to the 
magnetic field manifest the broad type of bump-on-tail pattern, while the third 
distribution shows the narrow type of bump-on-tail pattern. 

 

3. Discussion and conclusion 

 

We first give a summary on the morphology of the density cavity, which is analogous 

to the foreshock region. During the interval 00:33:16-00:33:30 UT, the spacecraft 

crossed the shock front from the downstream to the upstream. Just close to the front, 

in two consecutive spin periods at 00:33:31 UT and 00:33:35 UT respectively, 

reflected electron distribution with a broad type of bump-on-tail pattern was observed. 

Then in the interval 00:33:40-00:34:00 UT, ULF waves, especially a 

quasi-monochromatic XB  oscillation, were recorded. Just passing the ULF boundary, 

in the interval 00:34:05-00:34:44 UT, specularly reflected field-aligned proton beams 

were measured. Shortly after the passing of the leading ion foreshock boundary, 

corresponding to the spin period at 00:34:54 UT, specularly reflected field-aligned 
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electrons, whose distribution has a narrow type of bump-on-tail pattern, were detected. 

Moreover, magnetic-mirror loss-cone proton distributions in the cavity were observed.  

Since the spacecraft had crossed both the left-side and the right-side outflow regions, 

a question arises: why it didn’t observe the same thing on the right-side? There are 

two possible reasons. The first is that in comparison to the situation of flowing 

earthward, it is easier for the ion jet to push away its barrier while flowing tailward. 

The second is possibly due to the particular interaction manner of the reconnection 

jets with the rest plasma, that is, the jets are explosive and are bounded by a narrow 

slow-mode shock pair as mentioned above. Hence the shock and its accessories, if 

they can be generated at the edge of jets, will be localized both in space and time. 

In addition, it is interesting to interpret the foreshock-like cavity in the viewpoint of a 

coherent structure. In the previous investigations, some transient structures such as hot 

diamagnetic cavities, foreshock cavities and short large-amplitude magnetic structures, 

have been reported in the upstream regions of the Earth’s bow shock. Recently, the 

Cluster and Double Star satellites observed intense plasma density holes, with a 

characteristic dimension of ion gyroradius, upstream of the bow shock (Parks et al., 

2006). Likewise, much attention has been paid on the coherent structures in the 

reconnection region, especially those electrostatic coherent structures in the diffusion 

region.  

Large-amplitude solitary waves, identified as electron holes, have been observed 

during the passage of a magnetotail reconnection neutral line. These electron holes 

were generated near the outer edge of the plasma sheet, within and at the edge of a 

density cavity, at distances on the order of a few ion inertial lengths from the center of 

the current sheet (Cattell et al., 2005). These density cavities accompanied with 

electron holes can also be found in computer simulations (Drake et al., 2003). 

Therefore, large-scale coherent structures such as density cavity, which usually have a 

characteristic scale on the ion inertial length, seem to be an organic part of the 

reconnection and closely relevant to the small-scale electrostatic coherent structures. 

Coherent structures are usually responsible for those nonlinear microphysics in space 
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plasma environment. For example, the electron holes are believed to participate in the 

electron energisation process (Drake et al., 2005). The present analysis shows that the 

density cavity can also act as the accelerator for ions to provide further acceleration. 

Our investigation here gives an insight into the significant role played by the 

self-organized larger-scale coherent structures in the collisionless magnetic 

reconnection region. The results of this chapter have been published in Cai et al., 

2009b. 
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Chapter 5 

 

Observations of Thin Current Sheet (TCS) in the 

Magnetotail 

 

1 Introduction 

 

The understanding of dynamics of the magnetotail current sheet is important to many 

space phenomena. The conventional current sheet model is based on the Harris 

equilibrium, which has the well-known tanh-type magnetic field profile and the 

bell-shaped density and current profile, that is, current and plasma densities have a 

simple profile with a single peak in the center of the sheet where the magnetic field 

has a minimum (Harris, 1962). The Harris equilibrium is in a good agreement with the 

observations of the thick quiet time current sheet (Fairfield, 1979, Thompson et al., 

2005). However, Thin Current Sheets (TCS), whose thicknesses are on the order of 

ion gyroradius or inertial length, were reported recently by numerous studies (Sergeev 

et al., 1993, Hoshino et al., 1996, Runov et al., 2003a, 2005, Sergeev et al., 2003). 

Behaviors of TCS were significant deviated from the Harris’s equilibrium. 

Observations revealed that in some instances, TCSs have a manifestation of 

embedding, which means that TCSs with rather large current densities are embedded 

into a much thicker current sheet, and the thicker current sheet is usually in accord 

with a Harris equilibrium. In some other cases, TCSs have a bifurcated structure, that 

is, TCSs commonly have a double-peak, sometime multi-peak, current profile, and the 

current density has a minimum at the center of the sheet. TCSs are frequent 

phenomena in the magnetotail and hence raise a question on the interpretation of their 

formation and evolution (Asano et al., 2005). 

Many theoretical models were attempted to describe the TCS structures and dynamics. 

In one category, an isotropic pressure is assumed. These models either choose the 
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particle distributions to be a function of two invariants of motion, namely the total 

particle energy and the component of the canonical momentum along the current 

direction, as in the Harris model but in their generalized non-Maxwellian forms, or 

adopt equivalently the Grad-Shafranov equation, in which the current density is a 

function of the electromagnetic field vector potential (Schindler et al., 2002, Mottez, 

2003, Birn et al., 2004a, Genot et al., 2005, Camporeale et al., 2005). Therefore, it 

implies that in all of them, the pressure is isotropic, and the equilibrium is maintained 

by a balance between the field line tension and the plasma pressure gradient. In the 

other category, an anisotropic pressure is supposed, hence the equilibrium is achieved 

for one-dimension current sheet only if the magnetic tension is balanced by the 

tension due to the anisotropic pressure, namely the finite ion inertia (Eastwood, 1972). 

It was pointed out that in this case the current is confined to a thin layer, in which the 

particle motion may strongly differ from Larmor rotation, i.e., the particle dynamics 

does not obey the conventional guiding center theory, when its gyroradius becomes 

comparable to either the current sheet thickness or the curvature radius of the 

magnetic field. Behavior of these nonadiabatic ions is known as the Speiser motion 

(Speiser, 1965). Nonadiabatic ions including Speiser ions, quasi-trapped and trapped 

ions play an important role in the current sheet dynamics, and their kinetics in the 

TCS has been investigated intensively (Chen, 1992, Delcourt et al., 2004, 2006, Birn 

et al., 2004b). Moreover, when the current sheet is thin enough to obey some 

appropriate conditions, an integral of motion, the so-called quasi-adiabatic sheet 

invariant can be introduced (Sonnerup, 1971). Recently, a stationary state Vlasov 

theory involved the quasi-adiabatic sheet invariant was proposed to describe the TCS 

(Sitnov et al., 2000, 2003, 2006). Choosing the distribution of counterstreaming 

beams in the outer of the sheet, the numerical results show that a bifurcated current 

sheet appears in the case of ion anisotropy with ||TT  ; while in the opposite case a 

single-peak current sheet embedded in a thicker Harris current sheet appears. 

In addition, TCS is frequently found in association with rapid large-amplitude 

magnetic variations, namely flapping motion indicating rapid crossings through 
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up-down oscillating current sheet (Sergeev et al., 2003, Runov et al., 2003a, 2005). 

The flapping motion was identified to be a kink-like wave propagating in the current 

sheet direction. Statistical investigations revealed its particular propagating features. 

The propagating speeds are in the range of several tens km/s up to 200km/s. The 

propagating direction is flankward, that is, dawnward in the dawn sector and 

duskward in the dusk sector (Sergeev et al., 2004, Zhang et al., 2005). As pointed out, 

the wave properties do not match any local excitation mechanism previously 

discussed in the literature (Zhu et al., 1996, Daughton, 1999, 2002,2003, Lapenta et 

al., 2002). It raises another question to understand the dynamics of TCSs. 

Here, TCS dynamics is reported from observations during the Cluster spacecraft 

crossing of the magnetotail on September 15, 2001. First, an overview of the entire 

event, including the spacecraft configuration and characteristic parameters, is 

presented. Then various manifestations of TCSs in association with their ion 

anisotropy and nongyrotropy as well as their flapping motion are analyzed. Finally, 

discussion and summary are given. 

 

2. Observations 

 

2.1 Overview 

Fig.5.1 shows the solar wind parameters from ACE in the time interval UT 

00:00-06:00 on September 15, 2001. During this period, the IMF Bz was mainly 

northward, turned southward shortly at about UT 03:20 and during UT 04:30-05:00, 

and again shortly southward at about UT 05:30. After UT 03:00, the solar wind 

density apparently decreased from 20 cm-3 to 7 cm-3, in association with an increase of 

the velocity from 460 km/s to 520km/s. Correspondingly, the plasma pressure 

decreased from 7 nPa to 3 nPa. A substorm was observed during UT 00:00 –00:50, 

which the AL index was up to -700 nT and then decreased to zero. The geomagnetic 

activity started again at UT 03:40. During the interval of UT 03:30-06:30, several 

auroral activations were registered by two geostationary satellites, GOES 8 and GOES 
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10 (Voronkov et al., 2006). 

 

 

 

Fig. 5.1 Solar wind parameters from ACE. 

 

The configuration of Cluster tetrahedron in the period UT 04:40-05:10 is shown in 

Fig.5.2. The characteristic scale of the tetrahedron is 1700km. It is worthy to notice 

that in the x-z plane, C3 is southmost and the other three satellites have small 

distances among them in the z-direction; all four satellites are in the dusk sector and in 

the y-z plane C2 is outermost. Characteristic parameters of the background plasma 

and fields in this event are HT =2keV, OT =20keV, 0B =30nT and in =0.5cm-3, 

where HT  and OT  are the temperatures of proton and oxygen ions respectively, 0B  

is the magnetic field in the periphery of the plasma sheet and in  is the total ion 

density. Thus, we have approximately H =220km, O =2500km and pic / =320km, 
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where H  and O  are the gyroradius of proton and oxygen ions respectively and 

pic /  is the ion inertial length. The characteristic scale of the Cluster tetrahedron is 

comparable to the oxygen ion gyroradius and is almost five times the ion inertial 

length.  

 
Fig.5.2  The configuration of Cluster tetrahedron in the time interval UT 04:40-05:10 
on September 15, 2001. 

 

Fig.5.3 shows the components of magnetic field from FGM experiment (Balogh et al. 

2001) and the proton and oxygen ion densities from CIS-CODIF instrument (Rème et 

al., 2001). As represented by the whole shaded region in the interval UT 04:36-05:01 

in Fig.5.3, all four satellites recorded a bell-shaped plasma density and current profiles, 

whose peaks are corresponding to the minimum of magnetic field. Hence it is 

indicated that a Harris-like current sheet was encountered. C1, C2 and C4 crossed 

almost simultaneously the central line at UT 04:48, as labeled by a vertical line, due to 

a global flapping motion of the bulk current sheet. A little later C3 crossed the central 

line at UT 04:50. However, compared to the Harris-like equilibrium with a larger 

thickness, in the interior of the thick sheet as shown by the narrow red shading, 

distinct manifestations of localized thin current equilibrium are encountered. 

Approximately in the interval UT 04:55-04:59, a thin proton dominated current sheet  



90 

 

 

 

Fig.5.3  Overview of the Harris-like current sheet. a) Bx for the four Cluster 
satellites. b) and c) are the proton and oxygen ion densities respectively for C1, C3 
and C4. d)-f) are the current density components. The shading region in the interval 
UT 04:36-05:01 denotes a Harris-like current sheet, whose central line is labeled by a 
vertical line at UT 04:48.
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embedded into the southern part of the thick sheet was observed by C3. In addition, 

nearly in the time interval UT 04:58-05:00, a bifurcated thin oxygen ion current 

located in the northern part of the thick sheet was observed by C1 and C4. Here, it is 

worthy to notice that a plasma depletion layer was subsequently generated inside the 

plasma sheet. It can be seen that in the second panel in Fig.5.3, C3 at 04:59:00 and C1 

and C4 at about 05:00:20, all of them observed a density decrease nearly to zero till 

05:05:20. 

 

 

 

 

Fig.5.4  The scattering plot of the current density together with the proton density 
versus Bx. The red stars represent the proton density, and the black squares denote the 
current density in the y-direction (it is the average current density inside the satellite 
tetrahedron and is multiplied by a factor 108, the units of current and ion density are 
A/m2 and cm-3 respectively). The green curve describes a fitting of the thick 
Harris-like current sheet, and the blue one depicts a fitting of the thin current sheet. 
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2.2 TCS embedding 

The embedding feature of the proton dominated TCS was revealed in the scattering 

plot of the y-component of the current density (the total current density profile is 

similar to its y-component) together with the proton density versus Bx. As shown in 

Fig.5.4, the red stars represent the proton density, and the black squares denote the 

current density in the y-direction (it is the average current density inside the satellite 

tetrahedron and is multiplied by a factor 108, the units of current and ion density are 

A/m2 and cm-3 respectively). The green curve describes a fitting of the thick 

Harris-like current sheet, and the blue one depicts a fitting of the thin current sheet. It 

can be seen that the two current profiles are distinct, the peak of green curve 

contained by the peak of blue curve. The ion density profile has a width that is 

roughly equal to that of the wider current profile. Hence the situation here is just the 

manifestation of the TCS embedding, which means that a thin current sheet with large 

current density is embedded into the southern part of a wider current sheet. 

In the time interval UT 04:55:40-04:58:30, as shown by the shading in Fig.5.5, C3 

measured continuously an anisotropic but gyrotropic pressure with  pp||  for 

protons, while at the rest time it observed an apparent isotropic pressure. 

Simultaneously, the oxygen ion pressure was also nearly isotropic with negligible 

fluctuations. Fig.5.6 shows selected proton distribution functions at the beginning, the 

middle and the end of this period. All of them exhibited an apparent field-aligned 

beam distribution. It is worthy to notice that although a strong pressure anisotropy 

existed here, it still didn’t achieve   /21/|| pp , which is the critical condition 

for exciting the firehose instability (Hasegawa, 1975). As pointed out by comparing 

the current distribution in the outer and in the center of the sheet, the current carried 

by a field-aligned beam satisfying the marginal firehose stability condition has a 

strong tendency to become thin, till a non-adiabatic current layer is formed (Eastwood, 

1972, Cowley, 1978). Namely, when there is pressure anisotropy caused by 

field-aligned beams with  pp|| , the current sheet should become an embedded 
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Fig.5.5  3-D momenta of proton and oxygen ions from C3. a) the components of 
magnetic field.. b) and c) are the pressure components of proton and oxygen ions 
respectively. d) beta value, a ratio of the plasma thermal pressure to the magnetic 
pressure. e) and f) are densities of proton and oxygen ions respectively. g) and h) are 
components of bulk velocity of proton and oxygen ions respectively. The shielding is 
an embedded proton TCS with an anisotropic but gyrotropic pressure  pp|| . 
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Fig.5.6  Distribution functions of protons in the VV||  coordinates from C3 in the 
embedded TCS. An apparent field-aligned beam can be found in these distributions. 
Where, the para-direction is defined in the direction along magnetic field, perp1 is in 
the direction of bulk velocity component perpendicular to the magnetic field, and 
perp2 is in the direction orthogonal both to para and perp1. 

 

nonadiabatic thin layer, in which an equilibrium is achieved when the magnetic 

tension is balanced by the finite inertia of ions with meandering Speiser motion. Here 

it is also worthy to notice that the proton pressure is just only anisotropic and that no 

apparent nongyrotropy was detected. This seems to be contradictory since the ion 

motion should be nongyrotropic inside the TCS (Sitnov et al., 2006). We infer that 

ions are strongly nongyrotropic only in the center of the TCS but slightly 

nongyrotropic in the more outer part of the TCS. In the present situation, the satellite 

didn’t stay close to the center of the TCS except for several rapid crossings of the 

central line, due to the flapping motion that will be shown in the following. It can be 
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also seen from the fact that in the panel d) in Fig.5.5, in this period H  was 

moderate and no more than 1, while it was over 10 when the satellite was closer to the 

central line. This can explain why no apparent pressure nongyrotropy was observed. 

Apart from the current embedding, a plasma density embedding was also recorded. A 

proton density embedding is exhibited in the panel e) in Fig.5.5, while the oxygen ion 

density hasn’t this manifestation. Although the concrete mechanism of density 

embedding isn’t clear, there is an apparent correlation between the density embedding 

and the pressure anisotropy with  pp|| . 

 

2.3 TCS bifurcation 

Nearly in the time interval UT 04:57:45-05:00:25, both the energy spectrogram and 

the pitch angle profile (they aren’t shown here) reveal that a localized self-consistent 

current sheet equilibrium of oxygen ions was observed by C1 and C4, although in this 

very thin sheet the current contribution from oxygen ions is minor. We notice that due 

to the bulk excursion of the thicker Harris-like sheet (it is the up-down motion of the 

entire plasma sheet and is not the local flapping motion of the TCS observed by C3), 

the time difference of encounter of the above mentioned plasma depletion layer by C3 

and C1 (at UT 04:59:05 and 05:00:25 respectively), which have a distance 1400km in 

the z direction between them, is about 80s, hence the shift velocity of the plasma sheet 

is about 17km/s. The duration of the crossing of the oxygen TCS is about 150s, thus 

the estimation of the thickness of the oxygen TCS is about 2500km. This is 

approximately one oxygen ion gyroradius and eleven times the proton gyroradius. 

Hence the localized oxygen ion current equilibrium is an extra-thin current sheet 

(Sitnov et al., 2006).  

In the time interval UT 04:57:45-05:00:25, as shown by the shading in Fig.5.7, C1 

measured an oxygen ion pressure anisotropy with  pp|| and nongyrotropy 

21   pp  in the center of TCS, however in two edges the pressure is  pp||  and 

nearly gyrotropic. The proton pressure in this time interval is isotropic in a surprising 
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level. As mentioned above, the ion motion is the non-adiabatic meandering Speiser 

motion in the TCS. Moreover, when the current sheet is thin enough to obey 

2
00 )/( nBBL   (where 0  is the particle gyroradius and 0B  and nB  are the 

magnetic field at the outer of current sheet and its normal component in the center of 

sheet, to be satisfied definitely for the oxygen ion current sheet in the present 

situation), the motion of transient particles will be multi-crossings of the sheet, that is, 

a fast bounce motion across the thin sheet. In this case, the particle dynamics becomes 

approximately adiabatic or ‘‘quasi-adiabatic’’ along the normal direction of the sheet, 

and the so-called quasi-adiabatic sheet invariant can be introduced (Sonnerup, 1971). 

As a consequence, the major motion of particles in the center of the TCS will be in the 

perpendicular direction. Fig.5.8 shows the oxygen ion distributions selected in the 

center of the thin sheet. It states the fact that the oxygen ion motion in the 

perpendicular direction is dominant. Combined with the necessary marginal firehose 

stability condition at the edge, it is exactly the particular observational feature in the 

present situation, that is, an oxygen ion pressure anisotropy with  pp||  and 

nongyrotropy in the center of the TCS, but a gyrotropic pressure anisotropy with 

 pp||  at edges. Moreover, non-adiabatic particles belonging to different classes 

with distinct dynamics in the phase space have different current carrying capabilities 

(Chen et al., 1986, Chen, 1992, Buchner et al., 1989, Burkhart et al., 1991, Zelenyi et 

al., 2002). The scattering of particle adiabatic invariant will result in the variation of 

the population of non-adiabatic particle and accordingly the current bifurcation. A 

detailed analysis on the particle kinetics will be presented elsewhere. 

In the time interval UT 04:58:00-05:00:05, C4 recorded very similar features 

concerning the oxygen ion TCS as C1, as shown in Fig.5.9. The characteristics of 

oxygen ion distribution functions in the center of TCS are also like that observed by 

C1, as shown in Fig.5.10. We notice here that the distance between C1 and C4 in the 

Sun-Earth direction is the largest distance of the Cluster tetrahedron along the field 

line and that the distance in the normal direction between them is very small. The 
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Fig.5.7  3-D momenta of proton and oxygen ions from C1. a) the components of 
magnetic field.. b) and c) are the pressure components of proton and oxygen ions 
respectively. d) beta value. e) and f) are densities of proton and oxygen ions 
respectively. g) and h) are components of bulk velocity of proton and oxygen ions 
respectively. The shielding is a bifurcated oxygen TCS with an anisotropic 
pressure  pp|| . 
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Fig.5.8  Distribution functions of oxygen ions in the VV||  coordinates from C1 
in the bifurcated TCS.  

 

similarity of measurements between C1 and C4 imply that the variance in the 

Sun-Earth direction is negligible, that is, the TCS can be described qualitatively by a 

one-dimension model. Also, absolute values of the plasma pressures recorded by C1 

and C4 are nearly equal. This means that there is no pressure gradient in the field line 

direction. However, the pressure gradient is the necessary condition for TCS models 

with the isotropic pressure, in the case that the normal component of magnetic field is 

nonzero. 

 

2.4 Flapping motion 

TCS is frequently found in association with rapid large-amplitude magnetic variations, 

namely flapping motion indicating rapid crossings through up-down oscillating 
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Fig.5.9  3-D momenta of proton and oxygen ions from C4. a) the components of 
magnetic field.. b) and c) are the pressure components of proton and oxygen ions 
respectively. d) beta value. e) and f) are densities of proton and oxygen ions 
respectively. g) and h) are components of bulk velocity of proton and oxygen ions 
respectively. The shielding is a bifurcated oxygen TCS with an anisotropic 
pressure  pp|| . 
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Fig.5.10  Distribution functions of oxygen ions in the VV||  coordinates from C4 
in the bifurcated TCS. 

 

current sheet. During the period of UT 04:55-05:02, four rapid large-amplitude xB  

variations were observed by C3, as labeled by the shadings in Fig.5.11. Their peaks 

were at UT 04:55:10, 04:56:30, 04:59:35 and 05:01:30 respectively. The xB  

variations were also apparently recorded, but weaker, in phase by C2; while C1 

measured in phase the perceptible xB  variations only at the third and fourth 

oscillations, and C4 nearly recorded nothing except a variation with a negligible 

amplitude at the third oscillation. These magnetic variations are the manifestation of 

kink-like wave propagating in the dawn-dusk direction (Sergeev et al., 2003, Runov et 

al., 2003a, 2005). Utilizing the time difference of the peak of magnetic variations 

between C3 and C2, we can estimate its phase speed to be 120 km/s, 50 km/s, 30 km/s 
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Fig.5.11  Components of magnetic field and the current density for the four Cluster 
satellites. Four large-amplitude magnetic variations due to flapping motion are labeled 
by the shadows. As labeled by solid vertical lines, peaks of zj  are not corresponding 
to peaks of yj  and xj , but corresponding to edges of them. It is manifestation of 
localized large-amplitude kink motions of the current sheet. 
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and 40 km/s corresponding to four oscillations respectively. The periods of the four 

oscillations are 70 s, 190 s, 125 s and 110 s respectively. The wavelength is 

approximately 0.8~1.5 ER . The propagating speed estimated here is in agreement with 

the previous statistical investigations, that is, in the range of several tens km/s up to 

200 km/s (Sergeev et al., 2004, Zhang et al., 2005). Moreover, the present event 

reveals explicitly the solitary wave feature of the flapping motion. For the first and 

fourth oscillations, the flapping amplitude is smaller than that of the second and third 

oscillations. Recalling that the period and phase speed have also a similar feature, it is 

apparent that the behavior of flapping motion resembles to a solitary wave modulated 

both on its amplitude and frequency. 

Due to the localized large-amplitude kink motion, the current would have a circular 

flow in the y-z plane. This point can also be seen in the simulation work (Sitnov et al., 

2006). Via the current density and its components shown from the panel d) to g) in 

Fig.5.11, circular flows corresponding to the second and third oscillations can be 

discovered. As labeled by a solid vertical line, at each circular flow, the peak of zj  is 

not corresponding to the peak of yj  and xj , but corresponding to the edge of them. 

It is just about the manifestation of the current circular flow. At that time, the current 

sheet is tilted. As shown on the panel b) and c), for the second and third oscillations, 

C3 and C2 recorded large-amplitude yB  or zB  variations, reflecting the localized 

current sheet inclination. 

 

3. Discussion 

 

It is worthy to point out that although recently many observational investigations on 

TCS in the magnetotail were reported, but few of them involved the particle kinetics. 

The observations presented here reveal the crucial role played by the ion kinetics in 

the dynamics of TCS. Particles in the region with a strong magnetic field gradient 

have totally different properties of motion in contrast to magnetic momentum 
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adiabatic kinetics. The interaction of these nonadiabatic particles with the current 

sheet achieves eventually a self-consistent TCS equilibrium. These equilibria manifest 

distinct behaviors from Harris equilibrium, and in association with their intrinsic 

particle anisotropy and nongyrotropy. They are qualitatively in a good agreement with 

the conclusions given by these theoretical models considered into the so-called 

quasi-adiabatic sheet invariant (Sitnov et al., 2000, 2003, 2006). 

The origin of TCS is unclear by now, although often referred it to the fast flow caused 

by the magnetic reconnection or substorm (Runov et al., 2003b, Asano et al., 2005). 

Here, the proton TCS was most likely due to field-aligned proton beams. But the 

source of these beams is also unclear. During the present event, a substorm onset 

around UT 04:55 had been claimed (Voronkov et al., 2006). However, any obvious 

explosive plasma flow was absent in the beginning of the occurrence of the proton 

TCS. In the panels g) and h) in Fig.5.5, we notice that till UT 04:57:00, no perceptible 

bulk proton flow was observed. A modest parallel flow was recorded once during the 

central line crossing at UT 04:57. From UT 04:57:30 a modest perpendicular flow 

was observed. Likewise, in this period a modest oxygen ion flow was observed to be 

no more than 200km/s. Similar measurements can also found in Fig.5.7 and Fig.5.9. 

TCS observations without any fast plasma flow have also been reported in previous 

investigations (Sergeev et al., 2003, Asano et al., 2005). 

The excitation mechanism of TCS flapping motion is an argumentative issue, and 

seems not to match anyone that had been discussed so far in previous investigations. 

A heuristic approach on its ignition mechanism may be gained in the present event. In 

the panel b) in Fig.5.5, from UT 04:54 to 05:02, several small singular peaks of proton 

pressure was recorded, each corresponds to either the crossing of the central line or 

the stay at the outermost of TCS. Those peaks encountered across the central line are 

coming from density increases, and the corresponding small proton density peaks can 

be seen in the panel e). It indicates that density gradients exist in the center of TCS, in 

contrast to the case in thick sheets, in which the density gradient occurs only at the 

edge. Therefore, in the present event, the low hybrid drift instability is possible to 
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develop from the observed density gradients. In the current sheet, the low hybrid drift 

instability was intensely investigated and also had been considered as the source of 

the current sheet flapping motion (Daughton, 1999, 2002,2003, Lapenta et al., 2002). 

Meanwhile, at UT 04:54:24, before the ignition of TCS flapping, the first singular 

peak of proton pressure without any perceptible magnetic perturbation was recorded. 

It implies that the disturbance is a kinetic pressure pulse nearby the TCS at that time 

and will spread with the sound speed. When the fluctuation couples to the potentially 

excited low hybrid drift instability mentioned above, it might eventually evolve into a 

solitary wave modulated both on its amplitude and frequency via nonlinear 

interactions. Flapping motion is frequently not only associated with the TCS but also 

accompanied with the magnetic reconnection, both of them occurring in small scale. It 

also reflects, on the other hand, the concernful role played by the low hybrid drift 

instability, which is easier to grow up in TCSs than in thick sheets. Hence 

observations presented here also give an insight into the generation mechanism of the 

TCS flapping motion. 

 

4. Conclusion 

 

During the Cluster spacecraft crossing of the magnetotail on September 15, 2001, 

both TCS embedding and bifurcation were recorded in one single event, due to the 

Cluster unique capabilities of spatial resolution on small scale. The intrinsic properties 

of nonadiabatic particle dynamics in the TCS are emphasized. It is indicated that the 

ion anisotropy and nongyrotropy are responsible for those new equilibrium features 

deviated from the conventional Harris model. An embedded proton TCS manifests a 

pressure anisotropy with  pp|| , simultaneously associated with a density 

embedding, while a bifurcated oxygen ion TCS exhibits a pressure anisotropy mainly 

with  pp||  and nongrotropy. Except at edges  pp||  is the necessary marginal 

firehose stability condition. The local flapping motion of the TCS was observed, and 
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some particular feature such as the solitary wave-like behavior and the kink motion in 

the y-z plane was revealed. A heuristic approach on its ignition mechanism is 

presented to support that the TCS flapping motion is coming from a localized kinetic 

pressure pulse. The present investigation intimates the complexity of manifestations 

of magnetotail current sheet and displays the important role played by the ion kinetics 

in the self-consistent TCS equilibrium. The results of this chapter have been published 

in Cai et al., 2008. 
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Conclusions et perspectives 

 

En raison de l'avantage des mesures multipoints avec une grande résolution, les études 

observationnelles de quelques processus importants de plasma et de structures à 

petites échelles dans l'environnement spatial de la Terre sont faisables. Dans cette 

thèse, ces structures importantes, en association avec la cinétique des particules dans 

la magnétosphère terrestre, spécialement la cinétique des ions en régime basse énergie, 

dans quelques couches frontières cruciales avec diverses conditions de plasma ont été 

étudiées au moyen des données des missions Cluster et Double Star. 

1. Les effets des particules individuelles jouent un rôle essentiel dans la 

formation de ces structures de plasma à petites échelles. 

Les structures très petites des fluctuations de flux associées avec le phénomène 

de transport du plasma de la magnétogaine à travers la magnétopause sont la 

manifestation de l'instabilité de dérive en-dessous de la gyrofréquence ionique, 

dont la physique de base est l'accumulation de charges et la perturbation en 

résultant du potentiel électrostatique. Le mouvement éventuel du "cross-field 

vortex" dans l'état non linéaire de ce processus et l'échange de masse associé 

sont aussi attribués à l'effet des particules individuelles. 

Dans la région d'écoulement vers l'extérieur de la reconnexion dans la queue 

magnétique, une cavité de densité se forme et manifeste une morphologie 

particulière comme un pré-choc due aux processus cinétiques complexes, de 

façon similaire au pré-choc terrestre. Dans la cavité, il existe des faisceaux de 

protons réfléchis alignés au champ magnétique et, simultanément, des 

distributions des distributions de protons de type cône de perte. En outre, deux 

manifestations d'électrons réfléchis avec un mode de "bump-on-tail" large et 

étroit sont observées juste en amont du bord d'attaque du pré-choc ionique et 

près du front de choc respectivement. Ces deux manifestations différentes des 

électrons réfléchis montrent les différences dans la physique microscopique du 

processus de réflexion. 
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La cinétique des particules domine la dynamique de ces minces couches de 

courant dans la queue magnétosphérique, dont l'épaisseur est de l'ordre du 

rayon de giration ou de la longueur inertielle. Ceci indique que l'anisotropie et 

la nongirotropie des ions sont responsables des caractéristiques de ce nouvel 

équilibre qui dévie du modèle conventionnel d'Harris. Les particules dans une 

région avec un fort gradient de champ magnétique ont des propriétés de 

mouvement totalement différentes de la cinétique adiabatique du moment 

magnétique. L'interaction de ces particules non-adiabatiques avec la couche de 

courant atteint éventuellement un équilibre self-consistant de la couche mince 

de courant. 

2. La cinétique des particules dans les structures à petites échelles montre 

quelques caractéristiques des processus de microphysique non linéaire dans un 

plasma sans collision. 

Dans la dynamique des ondes de dérive de basses fréquences, l'instabilité 

provient de la non adiabaticité de la dynamique parallèle des électrons due à 

leur plus grande viscosité effective, qui est responsable pour l'accumulation de 

charges. Ceci montre un processus de dissipation hyper visqueux. 

Dans la cavité de type prè-choc dans la reconnexion de la queue magnétique, 

l'existence de particules réfléchies indique que, en plus de la résistivité am 

normale, qui est fournie par différentes instabilités déclenchées par le courant 

électrique généré à la mince rampe du choc, il y a une source additionnelle de 

dissipation par viscosité non locale pour maintenir la frontière d'attaque 

accentuée du jet des ions. C'est aussi un mécanisme de dissipation hyper 

visqueux. 

Pour une couche de courant mince dans laqueue magnétique, l’équilibre est 

atteint par balance entre la tension magnétique et la tension due à la pression 

anisotrope, au contraire de l’équilibre Harris, dans lequel l'équilibre est 

maintenu par la balance entre la tension de la ligne de champ et le gradient de 

pression du plasma. Ceci montre le rôle crucial joué par l'inertie finie des ions 
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dans la configuration magnétique de la couche mince avec un fort gradient de 

champ magnétique. 

3. La cinétique des particules dans les structures à petites échelles est hautement 

dynamique et présente la caractéristique de processus de couplage 

multi-échelles. 

A la magnétopause, un mouvement d'ensemble de la magnétogaine à grande 

échelle peut développer une région localisée sans cisaillement magnétique 

pour faciliter une instabilité de dérive et donc est relié aux structures fines 

ultérieures du processus de transport. 

Dans la région d'empilement des lignes de champ dans la région d'écoulement 

de la reconnexion de la queue magnétique, la présence d'une frontière 

accentuée du jet d'ions rapides et ses accessoires avec une structure de type 

pré-choc sont très non-stationnaire et localisés dans l'espace et dans le temps. 

En outre, cette structure cohérente auto-organisée à moyennes échelles, plus 

petite que les dimensions de la couche entière de reconnexion mais plus 

grande que les échelles cinétiques des particules, peut agir comme un 

accélérateur des ions pour fournir plus d'accélération dans leurs processus 

d'accélération multi-pas dans la reconnexion. 

La dynamique des couches de courant minces dans la queue magnétique 

présente non seulement des processus d'échelle cinétiques, par lesquels un 

équilibre auto-consistent peut éventuellement être atteint, mais aussi est en 

association avec une instabilité de d'ensemble à grande échelle du mouvement 

de battement de grande amplitude. 

Des investigations précédentes nombreuses et nos études présentées dans cette thèse 

améliore notre compréhension de ces phénomènes à multiéchelles dans 

l’environnement spatial de la terre. Cependant en raison de leur complexité, les 

physiciens spatiaux ont encore besoin d’investigation plus profondes de physique 

fondamentale. La reconnexion magnétique et les couches de courant minces sont deux 

de ces questions difficiles. 
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Le commencement de la reconnexion est supposée survenir sur des échelles spatiales 

et temporelles des mouvements de giration des électrons et des ions, où les processus 

à microéchelles contrôle le changement de topologie du champ magnétique. D’un 

autre côté, les processus à grandes échelles contrôlent l’emplacement et la formation 

des couches minces de courant, et affectent aussi directement le déclenchement et 

l’évolution de la reconnexion. Il est donc essentiel d’étudier à la fois les processus à 

grandes échelles et les processus cinétiques du plasma pour comprendre la montée, 

l’évolution et les conséquences de la reconnexion magnétique. 

Un des principaux buts de la recherche sur la reconnexion magnétique est de 

comprendre le mécanisme de dissipation dans la région de diffusion. Au voisinage 

d’un site de reconnexion, les ions et les électrons ne sont plus magnétisés et ne sont 

plus gelé au flux magnétique dans leurs régions de diffusion respectives, qui sont de 

l’ordre, respectivement, des rayons de giration des ions et des électrons. Dans la 

région de diffusion des ions mais en dehors de la région de diffusion des électrons, les 

électrons magnétisés continuent à s’écouler vers l’intérieur vers la région de diffusion 

des électrons mais les ions non magnétisés sont découplés du mouvement des lignes 

de champ magnétique. Le mouvement relatif des ions et des électrons génère un 

courant de hall en association avec un champ électrique de Hall. Comme conséquence 

de ce système de courant une signature caractéristique de champ magnétique 

quadripolaire de Hall est générée. Cependant, la nature de la région de diffusion des 

électrons et les processus dans cette région qui démagnétisent les électrons, 

permettant le déclenchement de la reconnexion, ne sont pas bien compris. Afin de 

trouver quels mécanismes sont responsables de la diffusion des électrons, il est 

nécessaire de considérer les phénomènes à plus petites échelles, incluant l’anisotropie 

de pression des électrons associés avec des distributions de vitesses non-gyrotropes. 

En outre, nous avons aussi besoin de prendre en compte les interactions 

ondes-particules, qui peuvent diffuser et démagnétiser les électrons dans et autour de 

leur région de diffusion. 

La plupart de l’énergie dégagée pendant le processus de reconnexion est transmise 
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aux ions et aux électrons. Le champ électrique de reconnexion est supposé avoir une 

composante le long de la direction du champ magnétique local dans la région de 

diffusion, qui accélèrera rapidement les particules chargées. D’autres processus 

d’accélération sont aussi supposés sur les lignes de champ magnétique en contraction, 

dans les jets vers l’extérieur de la reconnexion, comme ceci a été montré dans cette 

thèse. Cependant, la compréhension de ces processus cinétiques est loi d’être 

complète. Des mesures sur des échelles ioniques et fluides sont nécessaires pour 

déterminer l’évolution de l’énergie des particules avec l’augmentation de la distance 

depuis l’endroit de la reconnexion et pour mesurer le champ magnétique et d'autres 

paramètres pour tester si le degré d'augmentation de l'énergie est consistent avec ce 

qui est supposé des modèles théoriques. 

Les jets d'ions rapides dans la région d'écoulement, conséquence de la reconnexion 

magnétique, montrent des structures internes complexes dues à leurs interactions avec 

les plasmas ambiants. Une partie de celles-ci ont été étudiées dans cette thèse. Il est 

nécessaire d'apprendre plus sur les différentes couches frontières singulières dans ces 

jets d'ions rapides et leur évolution. 

La dynamique de la couche mince de courant est un autre sujet intéressant, impliquant 

un nombre de processus physiques sur une large gamme d'échelles spatiales et 

temporelles. L’origine des couches minces de courant n’est pas claire actuellement, 

bien que dans le cas de la queue magnétique il est souvent attribué à l’écoulement 

rapide causé par la reconnexion magnétique ou le sous-orage. Cependant, les 

évènements de couche mince de courant en association avec des écoulements rapides 

et sans écoulement rapide de plasma ont été présentés dans des recherches 

précédentes. Ainsi, l’initiation de couches minces de courant est cruciale pour 

comprendre les processus de conversion d’énergie dans la queue magnétique. 

Le mécanisme d’excitation du mouvement d’oscillation des couches minces de 

courant est une question à débattre. Les caractéristiques observationnelles de la 

propagation vers les flancs et la faible vitesse de propagation sont inattendues et 

semblent ne satisfaire aucun modèle théorique discuté jusqu’ici. D’autres études, 



112 

 

expérimentales et théoriques, sont nécessaires pour clarifier ce problème. 

La structure interne des couches de courant et les détails des populations de particules 

sont importantes pour comprendre leur dynamique. Les variations de la composition 

des ions dans la couche mince de courant pendant leur évolution ne sont pas encore 

bien comprises. Dans une couche mince de courant, les particules non adiabatiques 

appartenant à différentes classes avec une dynamique distincte dans l’espace des 

phases ont différentes possibilités pour transporter le courant. La diffusion des 

invariants adiabatiques des particules viendra de la variation de la population des 

particules non adiabatiques et ainsi influencera l’équilibre d’une couche mince de 

courant. Cependant, la compréhension complète de ces processus cinétiques est loin 

d’être atteinte. De plus, parfois des couches de courant très minces peuvent se 

développer, dont l’épaisseur peut être aussi fine que le rayon de giration des ions, et 

peut-être même de l’échelle cinétique des électrons. Dans ces couches très minces, la 

question reste ouverte pour savoir si les ions ou les électrons sont les porteurs 

principaux du courant à travers le champ. Tous ces processus complexes de 

microphysique nécessitent une totale compréhension. 

En résumé, les expériences sur ces structures de plasma dans des couches frontières 

importantes de la magnétosphère sont de la plus haute importance afin d’améliorer 

notre connaissance de ces phénomènes spatiaux essentiels sur une large gamme 

d’échelles multiples espace-temps et leurs couplages à multi-échelles. 
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Conclusions and perspective 

 

Due to the advantage of multiple-point measurements with high resolution, 

observational studies of some important plasma processes and structures in small 

scales in the geospace are feasible. In the present thesis, those prominent structures in 

association with their particle kinetics in the terrestrial magnetosphere, especially ion 

kinetics in low energy regime in some crucial boundary layers with highly diverse 

plasma conditions, are investigated by means of the data from the missions of Cluster 

and Double Star. 

1. Individual particle effects play a dominating role in formation of those small-scale 

plasma structures. 

The fine structures of flux fluctuations associated with the transport phenomenon 

of magnetosheath plasma across the magnetopause, are found to be the 

manifestation of the drift instability below the ion gyrofrequency, whose 

underlying physics is charge accumulation and the resulting electrostatic potential 

perturbation. The eventual cross-field vortex motion in the nonlinear stage of this 

process and the associated mass exchange are also attributed to individual particle 

effect. 

In the outflow region of reconnection in the magnetotail, a density cavity forms 

and manifests a particular foreshock-like morphology due to the complex kinetic 

processes, which is similar to that of the terrestrial foreshock. In the cavity, there 

exists reflected field-aligned proton beams and simultaneously magnetic-mirror 

loss-cone proton distributions. In addition, two manifestations of reflected 

electrons with a broad and narrow bump-on-tail pattern are observed just 

upstream of the leading egde of the ion foreshock and close to the shock front 

respectively. These two different manifestations of reflected electrons reveal the 

differences in their microscopic physics of the reflecting process. 

Particle kinetics rules the dynamics of those thin currents sheets in the 

magnetotail, whose thickness is on the order of the ion gyroradius or inertial 
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length. It is indicated that the ion anisotropy and nongyrotropy are responsible for 

those new equilibrium features that deviate from the conventional Harris model. 

Particles in a region with a strong magnetic field gradient have totally different 

properties of motion that are in contrast with the magnetic momentum adiabatic 

kinetics. The interaction of these nonadiabatic particles with the current sheet 

achieves eventually a self-consistent equilibrium of thin current sheet. 

2. Particle kinetics in small-scale structures reveals some universal characteristics of 

nonlinear microphysical processes in collisionless plasma. 

In the dynamics of the low-frequency drift wave, the instability results from the 

non-adiabaticity of the parallel dynamics of electrons due to their larger effective 

viscosity, which is responsible for the charge accumulation. It reveals a 

hyper-viscous dissipation process. 

In the foreshock-like cavity in the magnetotail reconnection, the existence of 

reflected particles indicates that besides the anomalous resistivity, which is 

provided by various instabilities driven by the electric current generated at the thin 

shock ramp, there is an additional source of dissipation by non-local viscosity to 

maintain the steepened leading boundary of ions jet. It is also the hyper-viscous 

dissipation mechanism. 

For a thin current sheet in the magnetotail, the equilibrium is achieved by the 

balance between the magnetic tension and the tension due to the anisotropic 

pressure, in contrast to Harris equilibrium, in which the equilibrium is maintained 

by a balance between the field line tension and the plasma pressure gradient. It 

reveals the crucial role played by the finite ion inertia in the magnetic 

configuration of thin sheet with a strong magnetic field gradient. 

3. Particle kinetics in small-scale structures has diverse behaviors in various scales 

and exhibits the feature of cross-scale coupling processes. 

At the magnetopause, a large-scale bulk motion of the magnetosheath can develop 

a localized region without magnetic shear to facilitate a low-frequency drift 

instability and therefore is linked to the subsequent fine structures of transport 
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process. 

In the field line piled up region in the outflow region of magnetotail reconnection, 

the occurrence of a steepened boundary of the fast ion jet and its accessories with 

a foreshock-like structure are highly non-stationary and localized both in space 

and time. Further, this self-organized coherent structure in meso-scale, smaller 

than the size of the entire reconnection layer but larger than the particle kinetic 

scales, can act as an accelerator of ions to provide further acceleration in their 

multi-step acceleration processes in the reconnection. 

The dynamics of thin current sheets in the magnetotail possesses not only kinetic 

scale processes, by which a self-consistent equilibrium is eventually achieved, but 

also is in association with the large-scale bulk instability of large-amplitude 

flapping motion. 

Abundant previous investigations and our studies presented in this thesis improve our 

understanding of those multiscale phenomena in Geospace. However on account of 

their complexity, space physicists still need to have a deeper investigation on their 

fundamental physics. Magnetic reconnection and thin current sheets are two of these 

most challenging issues. 

The onset of reconnection is expected to occur on the spatial and temporal scales of 

the relevant electron and ion gyromotions, where microscale processes control the 

change of topology of the magnetic field. On the other hand, large-scale processes 

control the location and formation of thin current sheets, and thus directly affect the 

triggering and evolution of reconnection. It is therefore essential to study both the 

large-scale and kinetic scale processes of the plasma to understand the onset, the 

evolution, and the consequences of magnetic reconnection. 

One of the main goals of magnetic reconnection research is to understand the 

dissipation mechanism in the diffusion region. In the vicinity of a reconnection site, 

the ions and electrons are no longer magnetized and are not “frozen-in” to the 

magnetic flux in their respective diffusion regions, which are on the order of the ion 

and electron gyroradii respectively. In the ion diffusion region but out of the electron 
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diffusion region, magnetized electrons continue to flow inwards towards the electron 

diffusion region but unmagnetized ions are decoupled from the motion of magnetic 

field lines. The relative motion of ions and electrons generates a Hall current in 

association with a Hall electric field. As a consequence of this current system a 

characteristic quadrupolar Hall magnetic field signature is generated. However, the 

nature of the electron diffusion region and the processes within it that demagnetize the 

electrons, allowing reconnection to occur, are not well understood. In order to find 

which mechanisms are responsible for diffusing electrons, it is necessary to consider 

phenomena in further smaller scales, including electron pressure anisotropy associated 

with non-gyrotropic velocity distributions. In addition, we also need to take into 

account wave-particle interactions, which may scatter and demagnetize electrons in 

and around their diffusion region. 

Most of the energy released during the reconnection process goes into the 

energization of ions and electrons. The reconnection electric field is expected to have 

a component along the local magnetic field direction in the diffusion region, which 

will readily accelerate charged particles. Some further acceleration processes are also 

expected on the contracting magnetic field lines in the reconnection outflow jets, as 

have been revealed in the present thesis. However, understanding of these kinetic 

processes is far from completion. Measurements on ion and fluid scales are needed to 

capture the evolution of particle energy with increasing distance away from the 

reconnection site, and to measure the magnetic field and other parameters to test 

whether the degree of energization is consistent with that expected from theoretical 

models. 

The fast ion jets in the outflow region, as the consequence of magnetic reconnection, 

exhibit complex internal structures due to their interactions with the ambient plasmas. 

Parts of them have been investigated in the present thesis. It is necessary to learn 

further about various singular boundary layers in these fast ion jets and their 

evolution. 

Dynamics of thin current sheet is another appealing subject, involving a number of 
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physical processes over a wide range of spatial and temporal scales. The origin of thin 

current sheets is unclear by now, although in the case of magnetotail it is often 

referred to the fast flow caused by the magnetic reconnection or substorm. However, 

events of thin current sheet both in association with fast flows and without any fast 

plasma flow have been reported in previous investigations. Thus, the initiation of thin 

current sheets is crucial to understand the processes of energy conversion in the 

magnetotail. 

The excitation mechanism of flapping motion of thin current sheets is an issue of 

debate. The observational feature of flankward propagation and low propagating 

speed are unexpected and seem not to match any theoretical model that had been 

discussed so far. Further studies, both observational and theoretical, are needed to 

clarify this problem. 

The internal structure of current sheets and the details of particle populations are 

important to the understanding of their dynamics. The variations of ion composition in 

thin current sheets during their evolution are not well understood yet. In a thin current 

sheet, non-adiabatic particles belonging to different classes with distinct dynamics in 

the phase space have different current carrying capabilities. The scattering of particle 

adiabatic invariants will result in the variation of the population of non-adiabatic 

particles and will thus influence the equilibrium of a thin current sheet. However, a 

complete understanding of these kinetic processes is far from being achieved. 

Moreover, sometime extra thin current sheets may develop, whose thickness can be as 

thin as the ion gyro radius, and possibly even of the electron kinetic scale. In these 

extra thin sheets, whether ions or electrons are the main carriers of the cross-field 

current remains an open question. All these complex microphysical processes need a 

full comprehension. 

In summary, investigations on those plasma structures in important boundary layers of 

the magnetosphere are of paramount importance in order to improve our knowledge 

of those prominent space phenomena over a wide range of multiple spatio-temporal 

scales and their cross-scale couplings. 
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