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Introduction

In this introduction, we present some motivations, our two main results, and the
overall organization of the thesis.

Motivations

The reconstruction of the history of a given set of species is an important biolog-
ical problem, since at least Darwin’s inception of the theory of evolution. With
the discovery of DNA as the genetic material, it became possible to base studies of
evolution on molecular data. During the last decades, the development of statistical
methods, the improvement of computer tools, and the huge accumulation of ge-
netic data made these studies possible, and phylogenetics has known an important
growth. Today, the applications of phylogenetics are numerous in several fields of
molecular evolution including comparative genomics. For instance, phylogenetic
trees can be used to predict the function of an unknown gene from its function in
closely related species, see Eisen and Wu [EW02]. These applications require more
and more accurate phylogenetic estimates and provide challenges at the junction
of several areas: life sciences, stochastics, graph theory, combinatorics, computer
science, and many others.

In this thesis we focus on one aspect of phylogeny, namely the methods of tree
reconstruction in relation to the modeling of the evolution of DNA sequences.

Inferring distances for neighbour dependent substitution
models

In most probabilistic models of the evolution of DNA sequences by nucleotidic
substitutions, the evolution of each site is independent of the others and ruled by a
Markovian kernel. With no interaction between different sites, the nucleotide at a
given site converges in distribution to the stationary measure of the Markov chain
whose dynamics is ruled by the 4× 4 matrix of the substitution rates. Even more
importantly perhaps, at equilibrium the sites become independent. As a conse-
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quence, at equilibrium the frequency of every polynucleotide ought to be (at least
roughly) equal to the product of the frequencies of its nucleotides.

In fact, biologists are well aware that the identity of the nucleotides in the im-
mediate neighbourhood of a given site does affect, sometimes dramatically, the
substitution rates at this site. For instance, in vertebrate genomes, the increased
substitution rates of cytosine by thymine (CpG→TpG) and of guanine by adenine
(CpG→CpA) in CpG dinucleotides are often quite noticeable and the chemical
reasons of this CpG-methylation-deamination process are well known. A widely
used quantification of the effect of this process is the so-called observed/expected
ratio of CpG frequencies, denoted by CpGo/e, and defined as the ratio of the ob-
served CpG frequency by the value of what the CpG frequency would be in the
independent model, namely the product of the observed frequencies of C and G.
As expected from the biochemical mechanisms involved, typical values of CpGo/e
are < 1, the similarly defined ratios TpGo/e and CpAo/e are both > 1 and these de-
pletion/excess effects are noticeable when the additional rates of CpG substitutions
are high.

We now introduce the Jukes-Cantor model with CpG influence, hereafter denoted
JC+CpG. This is the simplest non independent model of a class of models intro-
duced and studied recently, denoted RN+YpR (we explain the notation later on),
and designed specifically to take these effects into account.

JC+CpG is a continuous time model, such that the DNA sequences evolve under
the combined effect of two mechanisms. The first mechanism is an independent
evolution of the sites, like in the usual Jukes-Cantor model, where each substitution
happens at the same rate, say at rate 1. A second mechanism is superimposed,
which describes the substitutions due to the influence of the neighborhood. In
JC+CpG, one assumes that the substitution rates of CpG→TpG and of CpG→CpA
are both increased by a given additional rate, denoted by r, and that these are the
only rates which are modified.

Hence, for instance, C→G at rate 1, C→A at rate 1 and C→T at rate 1 except when
C belongs to the dinucleotide CpG, in which case C→T at rate 1+ r.

JC+CpG is the simplest model that we consider. We now introduce some notations
needed to state our results.

The nucleotidic alphabet is A = {A,C,G,T} and the (bi-infinite) integer line is Z.
We consider two settings: either one observes two aligned sequences and one of
these sequences is produced by the evolution mechanism described above, applied
to the other sequence and running during a time t (we call this the ancestral case);
or, one observes two contemporary aligned sequences, produced by two copies of
the same ancestral unknown sequence evolving independently during a time t (we
call this the homologous case).

In the ancestral case, one wants to estimate the elapsed time t. In the homologous
case, one wants to estimate the divergence time t.
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Let x and y be in A . In the ancestral case, (x,y)(t) denotes the frequency of sites
occupied by x at time 0 (in the ancestral sequence) and by y at time t (in the present
sequence). In the homologous case, [x,y](t) denotes the frequency of sites occupied
by x in one sequence and by y in the other one. Note that [x,y](t) = [y,x](t) but that,
a priori, there is no reason that (x,y)(t) and (y,x)(t) should coincide (indeed they
do not, in general). Both (x,y)(t) and [x,y](t) are deterministic quantities which
describe some theoretical frequencies and correspond to the comparison of infinite
sequences.

For every x in A and N > 1, (x,x)N
obs and [x,x]Nobs denote the observed values

of (x,x)(t) and [x,x](t) on aligned sequences of length N. In the ancestral case,
X(0) = (Xi(0))i∈Z denotes the ancestral sequence and X(t) = (Xi(t))i∈Z denotes
the present one. In the homologous case, the two sequences are X(t) = (Xi(t))i∈Z

and X ′(t) = (X ′
i (t))i∈Z. Then,

(x,x)N
obs =

1
N

N

∑
i=1

1{Xi(0) = Xi(t) = x},

and

[x,x]Nobs =
1
N

N

∑
i=1

1{Xi(t) = X ′
i (t) = x}.

The estimators (T N
x )obs of the elapsed time t and [T N

x ]obs of the divergence time
t, based on the observation of aligned sequences of length N, are defined as the
solutions in t of the equations

(x,x)(t) = (x,x)N
obs and [x,x](t) = [x,x]Nobs, respectively.

We prove the following result.

Theorem. In JC+CpG, assume that the ancestral sequence is at stationarity. Then,
for every x in A , there exist explicit observed quantities (αN

x )obs and [αN
x ]obs, such

that
(αN

x )obs

√
N((T N

x )obs − t) and [αN
x ]obs

√
N([T N

x ]obs − t)

both converge in distribution to the standard normal law when N → +∞.

Formulas for (αN
x )obs and [αN

x ]obs are in section 3.2.

This theorem yields asymptotic confidence intervals for the elapsed time between
an ancestral sequence and a present one, and for the time of divergence between
two present sequences issued from a common ancestral one, based on the observa-
tions (x,x)N

obs and [x,x]Nobs, respectively.

The strategy to prove this theorem is the following. Both estimators (T N
x )obs and

[T N
x ]obs are based on the theoretical proportion of identical nucleotides of type x

in the two sequences, denoted by (x,x)(t) and [x,x](t) respectively. We show that
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these are decreasing functions of time t. The proof for x = C (the case x = G being
similar) relies on two ideas. First, we note that the choice of a special (reduced)
alphabet to encode dinucleotides provides an autonomous Markovian evolution of
these encoded dinucleotides, with a 4× 4 rate matrix. As a consequence, we are
able to compute an explicit expression for (C,C)(t) and to prove that t 7→ (C,C)(t)
is a decreasing diffeomorphism. Second, a reversibility argument provides the
equation [C,C](t) = (C,C)(2t), which implies trivially that t 7→ [C,C](t) is a de-
creasing diffeomorphism. Note that for x = A (the case x = T being similar), the
relation [A,A](t) = (A,A)(2t) is false. For x = A, we prove that t 7→ (A,A)(t) is
a decreasing diffeomorphism but we have to leave open the case of t 7→ [A,A](t).
However, subsection 5.1.1 contains a possible route to prove that t 7→ [A,A](t) is
indeed a decreasing diffeomorphism, as our simulations suggest.

One sees that the study of the random variables (C,C)N
obs and [C,C]Nobs provides

results for (T N
C )obs and [T N

C ]obs through an inversion of functions, the delta method,
and Slutky’s lemma. Relying on the special dependency structure of the JC+CpG
model, we compute explicitly the mean and the variance of (x,x)N

obs and [x,x]Nobs for
every x, and we provide central limit theorems (with explicit variances) for these
quantities.

In the general case of an RN model with YpR influence, we extend the result above
under a proviso, namely that the equation defining the estimator has a unique solu-
tion. This proviso requires to prove that t 7→ (x,x)(t) and t 7→ [x,x](t) are decreas-
ing diffeomorphisms, and this is still open, even if some simulations support this
conjecture.

An unfortunate aspect of Bayesian methods in phylogeny:
the star paradox

Bayesian inference in phylogeny is a powerful tool to infer trees. However, one
must be careful about some unfortunate mathematical aspects of the method. We
study one of these, called the Bayesian star paradox.

This paradox refers to the fact that a given resolved tree can be highly supported
even when the data is generated by an unresolved star tree. Recent studies highlight
the fact that the paradox can occur in the simplest setting, namely, for an unresolved
rooted tree on three taxa and two states, see Yang and Rannala [YR05] and Lewis
and al. [HLH05]. Kolaczkowski and Thornton [KT06] presented some simulations
and suggested that artifactual high posteriors for a particular resolved tree might
disappear for very long sequences. Previous simulations in [YR05] were plagued
by numerical problems, which left unknown the nature of the limiting distribution
on posterior probabilities.

The statistical question underlying the star paradox is to determine whether or not
the Bayesian posterior distribution of the resolutions of a star tree converges to
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the uniform distribution, almost surely, when the length of the sequence tends to
infinity. In a recent paper, Steel and Matsen [SM07] disprove this almost sure
convergence in the simplest non trivial case, namely for three taxa and a binary
alphabet, thus ruining Kolaczkowski and Thornton’s hope. Steel and Matsen’s
result holds for a specific class of branch length priors, which they call tame. We
now describe their setting.

One considers binary sequences of length n generated by a star tree R0 on three taxa
with strictly positive edge length t. Let N0:3 denote the resulting data, summarized
by four site pattern countings summing to n. Consider the three resolved trees R1,
R2 and R3 drawn below.

213 321 321132

R2 R3 R0R1

Figure 1: For every i in {1,2,3}, i is the outlier in tree Ri. The star tree is R0.

Every tree Ri with i in {1,2,3} is entirely described by a topology and by two
branch lengths Ti and Te. The internal length Ti describes the time elapsed between
the two speciations and the external length Te describes the time elapsed since the
last speciation, hence the common ancestor is at distance Te +Ti in the past.

Say that a distribution of (Te,Ti) is tame if it has a smooth joint probability density
function that is bounded and everywhere non zero. For instance, if Te and Ti are
independent and exponentially distributed, their distribution is tame. Steel and
Matsen proved the following result.

Theorem (Steel and Matsen [SM07]). Consider any prior on the three resolved
trees R1, R2 and R3 and any tame prior distribution on their branch lengths. Then,
for every positive ε , there exists a positive δ such that, when n is large enough, for
every i ∈ {1,2,3},

P(P(Ri|N0:3) > 1− ε) > δ .

Later on, Steel and Matsen’s theorem was taken into account by Yang [Yan07] and
reinforced by theoretical results on the posterior probabilities by Susko [Sus08].

Our main result is that Steel and Matsen’s conclusion holds for a wider class of
priors for branch lengths, which we call tempered. The definition of the class of
tempered distributions is in section 4.2. Since it is rather involved, we provide
some concrete examples after the statement of the result.

Theorem. The conclusion of Steel and Matsen’s theorem above holds for every
tempered prior distributions on branch lengths.
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Every tame prior is tempered but the converse is false. First, the condition to be
tempered involves the cumulative distribution function of (Te,Ti) and not the den-
sity of their distribution, which may not exist. For instance, tempered prior distri-
butions may incorporate accumulations of Dirac masses. Furthermore, continuous
prior distributions exist, which are tempered but not tame.

For instance, assume that Te and Ti are independent, that Te is exponentially dis-
tributed and that the distribution of Ti is either uniform on an interval [0,ϑ ], with
ϑ > 0, or a power distribution κtκ−1

i dti of the interval [0,1], with κ in ]0,1]. Then
the distribution of (Te,Ti) is tempered but not tame.

Plan of the thesis

We wrote chapter 1 as an introduction to molecular genetics and phylogenetics,
aimed at readers not so familiar with some basics of biology. We do not pretend to
give an exhaustive review of genetics, only a personal view of the notions which
are necessary to understand the rest of the thesis. We also introduce some vocab-
ulary related to phylogenetic trees, and detail some distance-based reconstruction
methods.

In chapter 2, we describe some nucleotidic substitution processes. We detail two
independent models: the Jukes-Cantor model and the Kimura model, and we re-
call how to provide consistent estimators of genetic distances for DNA sequences
evolving under these models. We also provide a description of a class of neighbour
dependent substitution processes introduced in [BGP08] and called RN+YpR.

In chapter 3, we prove that one can compute consistent estimators for DNA se-
quences evolving under the Jukes-Cantor model with CpG influence, the simplest
non trivial model in RN+YpR. We also show how to extend these results to the
whole class, assuming that some technical properties hold. Recall that this is the
first step needed to build phylogenetic trees based on any RN+YpR model.

We mention that the content of this chapter is the subject of Phylogenetic distances
for neighbour dependent substitution processes [Fal10], a paper now published in
Mathematical Biosciences.

In chapter 4, we introduce briefly the use of Bayesian inference in phylogeny, we
describe one of its unfortunate aspects named the star paradox, and we prove that
the result due to Steel and Matsen and recalled above occurs for a wide class of
prior distributions.

We mention that the content of this chapter is the subject of Priors for the Bayesian
paradox [Fal09], a paper now in revision for Mathematical Biosciences.

Finally, we briefly present in chapter 5 some further lines of research, including
natural follow ups of the results of the thesis, as well as a somewhat more ambitious
project aiming at developing some new models of evolution.
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Chapter 1

A short introduction to molecular
genetics and phylogenetics

To understand the origin of the mathematical questions treated in this thesis, some
background in genetics is needed. We present this in the first section, aiming at
readers who are not so familiar with biology. Second, we introduce the reader to
phylogenetics and to phylogeny reconstruction with distance-based methods.

Some explanations are in order here. We chose to present some classical distance-
based methods for phylogeny reconstruction for the following reasons. First, since
one theme of this thesis is the inference of distances for homologous DNA se-
quences, our context is the construction of phylogenetic trees from distances be-
tween DNA sequences. Second, even if these methods are well documented, and
if the mathematical ideas behind them are not so complicated, we personally ex-
perienced some difficulties when faced with one of these algorithms. For instance,
it was not clear to us how and when the algorithm should end. With the idea that
some readers might encounter similar difficulties, we chose to provide complete
examples of two classical distance-based methods. In other words, an in-depth un-
derstanding of distance-based methods is not required to understand the results of
this thesis, and we do not pretend to provide a complete nor thorough review of the
subject, but, since inferring distances is only one step in the process of phylogeny
reconstruction, we felt important to provide a grasp of the rest of the process as
well.

For this introduction to biological concepts and results, we used, among other
sources, [GL00], [SPAP95a], [SPAP95b], [Yan06], [Gas05] and [GS07].
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1.1 About molecular evolution

In this section, we recall some aspects of the historical discovery of the genetic
material, mainly the deoxyribonucleic acid (DNA), of the birth of molecular evo-
lution related to the chemical structure of DNA, and of the possible modifications
of DNA sequences.

1.1.1 Some historical moments of molecular evolution

The concept of evolution for living organisms is now widely accepted among sci-
entists and laypersons, even if some skeptical communities remain. The situation
was almost exactly the opposite before the advent of Darwin’s theory and I like to
compare the fight for evolution to Copernic’s fight against geocentrism. I think that
some dates and some names deserve to be mentioned in any thesis about phyloge-
netics.

A brief history of the concept of evolution before Darwin

The modern concept of evolution was introduced by Darwin1 (photograph below)
in the middle of the nineteenth century in his famous book The Origin of Species.
His theory was that populations evolve over the course of generations through a
process of natural selection, and that all species of life descended over time from
common ancestors. We now briefly discuss the positions of some of his predeces-
sors.

Figure 1.1: Charles Darwin

The origin of animals and men has always been a nagging question for mankind.
The Creation-Evolution controversy began to be particularly acute during the eigh-

1Charles Robert Darwin (February 12, 1809 – April 19, 1882).

8



teenth century. Indeed, the existence of fossils showing past extinctions was an
uncomfortable discovery for some widely held beliefs, for instance in the context
of Judeo-Christian religions. The influence of the ideas of Enlightenment could
also explain the birth of different thinkings. One must be careful when one talks
about this period, because it appears difficult to understand the influence and think-
ing of people. For instance, Cuvier2, one of the fathers of comparative anatomy,
supported the theory of catastrophism3 to explain these extinctions, a theory con-
fortable for the Church, but he never talked about religion. A few decades before
him, Buffon4 thought differently than him, but he stayed careful to not seem too
much embarrassing.

However, at the beginning of the nineteenth century, a theory of gradual changes
in living organisms was advocated by Lamarck5, who introduced the first coherent
theory of evolution and refused the theory of catastrophism. One can wonder why
Lamarck is less famous than Darwin. First, Lamarck’s theory was only based on
observations and thinking, and not on experimentation. As a consequence it was
much harder to defend. Second, his theory was (quite) wrong. Lamarck thought
that living organisms were able to adapt to the pressures of their environment dur-
ing their lifetime, and then to transmit these acquired abilities to their offsprings.
Until recent discoveries in the field of molecular evolution, biologists thought that
this theory, named Lamarckism after him, was entirely wrong. Now, we know that
there exists some cases where organisms adopt such a process, see [NLS+09], but
that these are rare.

Lamarck’s work was praised by Darwin, because it aroused interest about possible
scientific explanations for changes in organism. But the real father of evolutionism
remains Darwin, even if some scientists now think that the influence of natural
selection is less important than Darwin thought.

DNA is the genetic material

One sees that evolutionism began with Darwin. He convinced people that living
organisms evolve over the course of generations, but he did not know precisely
how the transfer of biological information occurs.

A few years after the publication of The Origin of Species, Mendel6 established

2Georges Léopold Chrétien Frédéric Dagobert Cuvier (August 23, 1769 – May 13, 1832), French
naturalist and zoologist.

3Catastrophism is the idea that Earth has been affected in the past by sudden, short-lived, violent
events, possibly worldwide in scope.

4Georges-Louis Leclerc, Comte de Buffon (September 7, 1707 – April 16, 1788), French natu-
ralist and mathematician. Buffon’s needle problem is the earliest geometric probability problem to
be solved.

5Jean-Baptiste Pierre Antoine de Monet, Chevalier de la Marck (August 1, 1744 – December 18,
1829), French soldier, naturalist, academic.

6Gregor Johann Mendel (July 20, 1822 – January 6, 1884), Augustinian priest and scientist.
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Figure 1.2: Jean-Baptiste Lamarck

in Experiments in Plant Hybridization the existence of elementary “characters” of
heredity, and the statistical laws governing their transmission from one generation
to the next. However, he knew nothing about the nature of these “characters”, and
was not sure of the existence of a physical material which would contain this in-
formation. In 1869, Miescher7 discovered a phosphorus-containing substance into
the nuclei of white blood cells, which he called “nuclein” and which was, later
on, renamed as “nucleic acid”. Miescher thought for a while that this substance
might be related to heredity, but finally changed his mind. After Miescher, sev-
eral biologists increased the knowledge on deoxyribonucleic acid, its structure and
its possible role in heredity. Until 1944 and the Avery-MacLeod-McCarty experi-
ment8, most scientists thought that the genetic information was carried by proteins.
This hypothesis was abandoned in 1952 with the Hershey-Chase experiments9.

The birth of molecular evolution

The field of molecular evolution was at this moment wide opened, and three fun-
damental directions appeared.

- First, the classification of the living world and the reconstruction of the evo-
lutionary history could be based on molecular data, and not anymore on
traditional fields only. Molecular phylogenetics was born.

Mendel gained posthumous fame as the figurehead of the new science of genetics for his study of the
inheritance of certain traits in pea plants.

7Johannes Friedrich Miescher (August 13, 1844 - August 26, 1895), Swiss biologist.
8The Avery–MacLeod–McCarty experiment was an experimental demonstration, reported in

1944 by Oswald Avery, Colin MacLeod, and Maclyn McCarty, that DNA is the substance that causes
bacterial transformation.

9The Hershey–Chase experiments were a series of experiments conducted in 1952 by Alfred
Hershey and Martha Chase, confirming that DNA was the genetic material.
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- Second, since one knew where the genetic information was located, it be-
came possible to study the mechanisms of the changes in the genetic mate-
rial.

- Last but not least, the question of the origin of life could be studied with a
new point of view.

Of course, these questions are related, and a step in the comprehension of changes
is a step for phylogenetics. We expose now some information related to the genome
and its role in the transmission of heredity.

1.1.2 Some basic knowledge about the genome

The hereditary information of almost all living organisms, some viruses excepted,
is carried by deoxyribonucleic acid (DNA) molecules. We discuss briefly the chem-
ical structure of DNA, and the process of DNA replication.

Chemical structure

Chemically, DNA consists of two complementary strands twisted around each
other to form a right handed double helix, illustrated in figure 1.4. This struc-
ture was suggested by Watson10 and Crick11, in 1953, who based their molecular
model on a single X-ray diffraction12 image taken by Franklin13 and Gosling14 in
1952.

Each strand of DNA is a long linear succession of repeating units, called nu-
cleotides, which are of four possible kinds. Two of these kinds are purines, adenine
(A) and guanine (G), and two are pyrimidines, thymine (T) and cytosine (C).

10James Dewey Watson (born April 6, 1928), American molecular biologist. He, Francis Crick,
and Maurice Wilkins were awarded the 1962 Nobel Prize in Physiology or Medicine "for their dis-
coveries concerning the molecular structure of nucleic acids and its significance for information
transfer in living material".

11Francis Harry Compton Crick (June 8, 1916 – July 28, 2004), British molecular biologist, physi-
cist, and neuroscientist. He, James D. Watson and Maurice Wilkins were jointly awarded the 1962
Nobel Prize for Physiology or Medicine "for their discoveries concerning the molecular structure of
nucleic acids and its significance for information transfer in living material".

12X-ray scattering techniques are a family of non-destructive analytical techniques which reveal
information about the crystallographic structure, chemical composition, and physical properties of
materials and thin films. These techniques are based on observing the scattered intensity of an X-ray
beam hitting a sample as a function of incident and scattered angle, polarization, and wavelength or
energy.

13Rosalind Elsie Franklin (July 25, 1920 – April 16, 1958), British biophysicist, physicist, chemist,
biologist and X-ray crystallographer. She is still best known for her work on the X-ray diffraction
images of DNA. Her data, according to Francis Crick, was "the data we actually used" to formulate
Crick and Watson’s 1953 hypothesis regarding the structure of DNA.

14Raymond Gosling (born 1926), British biophysicist. He was a research student of Rosalind
Franklin.
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Figure 1.3: James Watson, Rosalind Franklin, and Francis Crick

Figure 1.4: A section of DNA

To give an idea of the length of a DNA molecule in different organisms, and the
information that it represents, we indicate some genome sizes (see [Ped71], [Fa76],
[Ba97], [Ga96] [Ta06], [Aa00], [La01]) in table 1.5, and corresponding sizes in
terms of books. Note that techniques for measuring the genome size existed at the
beginning of the 1950s whereas the first DNA sequencing15 occurred in 1976 only,
and concerned the bacteriophage MS2 RNA whose genome length is 3659 bp, see
[Fa76]. The first sequencing of the human genome was achieved in 2001, and cost
three billion dollars (one dollar per nucleotide). In 2007, Watson’s genome was
sequenced with a new machine and some new techniques, at a total cost of less
than one million dollars.

The backbone of one DNA strand is made of alternating phosphate and sugar (de-
oxyribose) residues. The sugars are joined together by phosphate groups that form
phosphodiester bonds between the third and fifth carbon atoms of adjacent sugar

15DNA sequencing is the process of determining the nucleotide order of a given DNA fragment.

12



Organism type Organism Genome size Correspondence
Virus Bacteriophage MS2 3.5 103 bp 0.15 page

Bacterium Escherichia coli 4.6 106 bp 168 pages
Yeast Saccharomyces cerevisiae 12.1 106 bp 484 pages
Plant Populus trichocarpa 480 106 bp 12 volumes
Insect Drosophila melanogaster 130 106 bp 4 volumes

Mammal Homo sapiens 3 109 bp 80 volumes
Fish Protopterus aethiopicus 130 109 bp 3440 volumes

Figure 1.5: Writing the nucleotide sequence of genetic material with 25 kb per
page and 1500 pages per volume.

rings. These asymmetric bonds mean a strand of DNA has a direction. By conven-
tion, a DNA sequence is written in the order of transcription, from the 5′ to the 3′

end as indicated in figure 1.6. As a consequence the complementary strand of the
leading strand, called the lagging strand, is oriented in the opposite direction.

Figure 1.6: Chemical structure of DNA

DNA replication and heredity

The process of DNA replication is paramount to all life as we know it. This pro-
cess occurs before each and every cell division and consists in the copy of one
double-stranded DNA molecule into two identical DNA molecules. Its principle is
illustrated in figure 1.7.
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Figure 1.7: DNA replication is the process of copying a double-stranded DNA
molecule

Thus, the offspring cells keep the same characteristics than their parent cell, and,
through generations, the instructions contained in the DNA such as protein-coding
genes16 are passed from parent cells to offspring cells.

1.1.3 Mutations enter the stage

DNA replication is not perfect, in the sense that some replication errors occur dur-
ing the process, and as a consequence new DNA sequences appear. If the error
occurs in a somatic cell17, the mutation will not be inherited. However, if the error
happens in a germline cell18, the mutation is transmitted to the offspring, and this
is more interesting from the evolutionary point of view.

Errors during the DNA replication are not the only cause of mutations. Changes
can also be caused by radiations, viruses, recombinations, and many other causes.

DNA sequences can be altered in a number of ways during their replications. Here
are some of them.

Substitutions exchange a single nucleotide for another. These are classified as
transitions on the one hand, which exchange a purine for a purine (A ↔ G) or a
pyrimidine for a pyrimidine (C ↔ T ), and transversions on the other hand, which

16A gene used to be defined as a segment of DNA that codes for a polypeptide chain or specifies a
functional RNA molecule, but recent studies make the definition more complex.

17Somatic cells (diploid) are the cells which form the body of an organism, as opposed to germline
cells.

18The germline of a mature or developing individual is the line (sequence) of germ cells that
contain genetic material that may be passed to a child. For example, sex cells such as the sperm or
the egg, are part of the germline.
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exchange a purine for a pyrimidine or a pyrimidine for a purine (C/T ↔ A/G).

Insertions add one or more extra nucleotides into the DNA. On the contrary, dele-
tions remove one or more nucleotides from the DNA. Note that insertions can be
reverted by excision of the transposable element, whereas deletions are generally
irreversible.

Recombination is a process by which a molecule of DNA is broken and then
joined to a different DNA molecule. It can occur in meiosis19 as a way of facilitat-
ing chromosomal crossover20.

Islands of mutations and the dinucleotide CpG

Modeling or even describing mutations is a difficult task. Indeed, these depend
on too many parameters: the nature of the living organism, the nature of the DNA
(mitochondrial21 or not), the location in the DNA sequence (coding or non-coding
regions), etc. As a consequence, we cannot even pretend to explain all these aspects
here. Rather, we insist on a particular point which motivates this thesis.

One knows that regions of the DNA are more prone to mutations than others and
that some of them are related to the dinucleotide CpG. Here and later on in this
thesis, we use the notation “CpG” as a shorthand for “5′ − CG − 3′”. In CpG
dinucleotides of mammalian genomes, the cytosine is frequently methylated22 (see
[Bir80]). Methylated CpG dinucleotides may change into TpG with higher fre-
quency, and consequently into CpA on the complementary strand. There exist
other hotspots in DNA, but this one is of particular interest to the biologist because
of the existence of CpG islands in mammalian genomes (see [Bir86], [AB91b],
[AB91a]). A CpG island is a region of DNA that have a higher concentration of
CpG sites, and frequently these regions are functional ones (see [AB99]). This
suggests that the process of methylation is repressed in such regions, and the com-
prehension of this phenomenon is important in biology. In section 2.3, we will see
how the phenomenon can be taken into account in mathematical models.

We do not go deeper about this brief presentation of DNA. To understand properly
the importance of DNA in evolution studies, the reader should keep in mind that
DNA has the role of a very important mechanism of storage of information and
that it is used constantly by living organisms, and systematically copied to transmit
information to the next generation. As a consequence, the DNA of every living

19Meiosis is a process of reductional division in which the number of chromosomes per cell is
divided by two. Meiosis is essential for sexual reproduction and therefore occurs in all eukaryotes
that reproduce sexually.

20Crossing over is an exchange of genetic material between homologous chromosomes.
21Mitochondrial DNA (mtDNA) is the DNA located in some organelles called mitochondria.

These are structures within cells that convert the energy from food into a form that cells can use.
Most other DNA present in eukaryotic organisms is found in the cell nucleus.

22Cytosines in CpG dinucleotides are methylated by DNA methyltransferases in many eukaryotic
organisms to form 5-methylcytosine. In mammals, 70% to 80% of CpG cytosines are methylated.
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organism can be seen as a historical record of distinctive marks of evolutionary
processes, and one can (in theory) deduce the chronology of evolution from this
molecular data.

1.2 Molecular phylogenetics

Phylogenetics may be defined as the study of evolutionary relationships among
living organisms. Traditional approaches to the study of the historical records of
evolution include morphology23, anatomy24, physiology25, and paleontology26.

Even if none of these approaches is abandoned, molecular data now available is a
most suitable basis for this study, and this area of phylogeny is called molecular
phylogenetics. Both traditional and molecular phylogenetics are supported by the
same idea: closely related organisms in evolution have a high degree of agreement
in physical characters or in their molecular structure.

In this section, we discuss some goals of phylogeny, and we detail two distance
based algorithms used to reconstruct phylogenetic trees.

1.2.1 Descriptive tools

One purpose of phylogenetics is to trace the common ancestry of organisms liv-
ing today, typically by reconstructing phylogenetic trees. We discuss some basic
concepts used to describe these objects.

Bifurcating trees

Imagine that one wishes to trace the history of three species. Going back in time,
one can hope to link two of these species sharing a common ancestor; going fur-
ther back in time, one can hope to find a common ancestor of the three species.
The construction of these successions of branching for species is the purpose of
phylogeny, and motivates the representations below.

Definition 1.2.1. A graph is an ordered pair (V,E) where V is a set of objects
called vertices or nodes, and E is a set of objects called edges or branches, each
connecting two vertices. A path (v0,v1, . . . ,vk) is a sequence of elements of V such
that for every integer 0 6 i < k, (vi,vi+1) is an edge. A cycle, also called a loop, is

23Morphology is the study of the form, structure and configuration of organisms.
24Anatomy is a branch of biology and medicine that is the consideration of the structure of living

things.
25Physiology is the science of the functioning of living systems.
26Paleontology is the study of prehistoric life, including organisms evolution and interactions with

each other and their environments.
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a path (v0,v1, . . . ,vk) such that k > 2, v0 = vk and vi 6= v j for every 0 6 i, j < k. A
tree is a connected graph without loop.

(c)(b)(a)

Figure 1.8: (a) Unconnected graph. (b) Connected graph with loop. (c) Tree.

Phylogenetic trees should show the historical evolution of species. Hence their rep-
resentation is codified to make easier the reading of time and diversity, as follows.

Definition 1.2.2. The leaves (external nodes) represent present-day species, of-
ten named taxa27. The internal nodes represent extinct ancestors for which no
sequence data are available. The ancestor of all taxa is the root of the tree.

This is illustrated in figure 1.9. A rooted tree has an orientation from the past (the
root) to the present (the leaves), and the unique path between the root and a leaf
represents the different speciations of one present species.

Time

Figure 1.9: A phylogenetic tree. Filled, dashed and solid circles denote respec-
tively external nodes, internal nodes and the root.

Note that one can also use unrooted trees. This erases the direction of the arrow of
time but the tree still represents the diversity and closeness between species.

27A taxon (plural: taxa) is a group of (one or more) organisms, which a taxonomist adjudges to be
a unit.
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In figure 1.9 every internal node is incident to exactly three branches, two derived
and one ancestral. Indeed, in evolutionary studies, one commonly assumes that the
process of speciation is binary. Thus, the common representation of phylogenetic
trees uses bifurcating trees, in which each ancestral taxon splits into two offspring
taxa. However, when the speciation events are uncertain, because of a lack of data
or of inacurracies of the method, one may have to use trees with three or more
offspring taxa for a given ancestral taxon.

We now discuss the main characteristics of phylogenetic trees.

Branching patterns and branch lengths

The branching pattern of a tree is called the topology of the tree. For example, for
three species, there are three possible bifurcating trees, and four if one adds the
star tree, as illustrated in figure 1.10. In terms of evolution, the branching pattern
in figure 1.10 (a) means that a speciation occurred between the species C and the
common ancestor of species A and B, and that another speciation occurred later,
which yielded species A and B.

A B C A B C A C B CBA

(a) (b) (c) (d)

Figure 1.10: Possible rooted trees for three species A, B and C.

The number of possible trees increases (more than) exponentially with the num-
ber of species. To understand why, see figure 1.11 which illustrates the stepwise
addition algorithm for unrooted trees introduced in [CSE67]. The algorithm is the
following.

One starts with the single unrooted tree for 3 species. The fourth species can be
added to each of the 3 branches of the tree. Thus, there are 3 unrooted trees for
4 species. Each tree on 4 species has 5 branches to which the fifth species can be
added. Thus, there are 5× 3 trees on 5 species. Likewise, a tree on n− 1 species
has 2n−5 branches (since adding a species to a tree means adding 2 branches), to
which the nth species can be added. Hence there are un = (2n− 5)× (2n− 7)×
·· ·×5×3 unrooted trees for n species.

To work out the number of rooted trees for n species, note that each unrooted tree
has 2n− 3 branches, and that the root can be placed on any of these branches.
This generates 2n − 3 rooted trees for every unrooted tree, thus the number of
rooted trees for n species is the number un+1 of unrooted trees for n + 1 species.
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Numerical values are u11 ≈ 35 millions rooted trees on 10 species and u14 ≈ 14
billions rooted trees on 13 species.
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Figure 1.11: Illustration of the stepwise addition algorithm.

Definition 1.2.3. A cladogram is a tree topology. A phylogram is a tree topology
with branch lengths. A dendrogram is a rooted phylogram where the length of the
path from the root to every leaf is the same.

One uses dendrograms when all the species evolve at the same speed, then branch
lengths represent time durations. Otherwise one uses phylograms, and then branch
lengths represent diversities between species. In chapter 2, we define distances
between species through their DNA sequences, and use these distances to quantify
differences between species.

To underscore the importance of branch lengths, we refer to figure 1.12, showing
two possible dendrograms for species A, B and C related by the same cladogram.
In case (a), the phylogeny is highly resolved hence one is pretty sure that A and B
share a common ancestor which is not an ancestor of C. In case (b), the tree is close
to the star tree drawn in figure 1.10 (d), hence the order of the speciation events
between species A, B and C is uncertain.

A B CA B C

(a) (b)

Figure 1.12: One branching pattern: two possible phylograms for Human, Chim-
panzee and Macaque.

Assume that a given collection of present day species share a common ancestor and
that the evolution since this common ancestor is ruled by a true tree. One objective
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of phylogenetics is to reconstruct this tree, its branching patterns and the branch
lengths. We now present some methods to infer this tree from molecular data.

1.2.2 Distance-based methods

In distance-based reconstruction methods, one computes distances from pairwise
comparisons between sequences, based on nucleotidic substitution models. Hence,
one considers that the only mutations that can occur are substitutions. A presenta-
tion of these models and of the computation of distances are in chapters 2 and 3.
To summarize this step, starting from n species one computes 1

2 n(n− 1) values
representing the distances between each pair of species.

Before presenting some distance based methods, we explain some difficulties as-
sociated to the relation between trees and distances.

Trees versus distances

Consider as an example the dendogram Tex on five species A, B, C, D and E repre-
sented in figure 1.13 below.

A

B

C

E

D

3.5
2.5

4

2

2.5

1.5

Figure 1.13: Dendrogram Tex

The distance between two species is the sum of the lengths of the edges on the path
between them, for instance the distance between C and D is 4+2.5+1.5 = 8. We
summarize these distances in the matrix ∆ex below.

∆ex =

A B C D
B 5
C 12 12
D 12 12 8
E 12 12 8 3

Distances between species are easy to compute from the dendrogram. We are in-
terested in the reverse process, which is to construct a phylogram, and possibly a
dendrogram, corresponding to a given set of distances between species.
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First, to be able to draw a dendrogram assumes a condition on the set of distances,
called the three-points condition.

Proposition 1.2.4 (Three-points condition). Consider a dendrogram T and the
corresponding distance d. Then, for every leaves x, y, and z,

d(x,y) 6 max(d(x,z),d(y,z)).

Conversely, if the condition above holds for a given distance d, there exists a den-
drogram T such that the corresponding distance is d.

We give the proof of the first part of proposition 1.2.4 as a mean for the reader
to become acquainted with some concepts on trees, and we refer to [BG88] for a
proof of the second part.

Proof of proposition 1.2.4. Consider a distance d derived from a dendrogram T .
For every leaves x and y, let (xy) denote the least common ancestor of x and y. As
an example, we represent on the tree Tex the least common ancestor of species A,
B, and C in figure 1.14.

A

B

C

E

D

3.5
2.5

4

2

2.5

1.5

(AC) = (BC)

(AB)

Figure 1.14: Least common ancestors of species A, B and C on tree Tex.

We note that d(x,y) = 2d(x,(xy)) for every x and y. Consider three distinct species
x, y and z. Two cases arise.

In the first case, there exists t, u and v such that {t,u,v} = {x,y,z} and (uv) is not
ancestral to t. (For instance, in figure 1.14, (AB) is not ancestral to C.) Without loss
of generality, one can assume that t = z, hence (xy) is not ancestral to z. Since (yz)
and (xy) are ancestral to y, one of them is ancestral to the other. Since (xy) is not
ancestral to z whereas (yz) is, we deduce that (yz) is ancestral to (xy). Thus, (yz) is
ancestral to x, and (yz) is a common ancestor of x and z. Hence, (yz) is ancestral to
(xz). Exchanging the roles of x and y, one sees that (xz) is ancestral to (yz), hence
(yz) = (xz). This shows that d(x,z) = 2d(x,(xz)) = 2d(y,(yz)) = d(y,z). In other
words, the two largest numbers amongst d(x,y), d(x,z) and d(y,z) coincide, and
the three-point condition holds.
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In the second case, for every t, u and v such that {t,u,v}= {x,y,z}, (uv) is ancestral
to t. Then, (xy) is ancestral to z. Since (xy) is also ancestral to x, (xy) is a common
ancestor of x and z. Since (xz) is the least common ancestor of x and z, (xy) is
ancestral to (xz). Similarly, (xy) is ancestral to (xz). We also know that (yz) is
ancestral to x, and that (xz) is ancestral to y. The same arguments show that (yz) is
ancestral to (xy) and to (xz), and that (xz) is ancestral to (xy) and to (yz). Finally,
(xy) = (xz) = (yz), hence the three-point condition holds.

Distances on trees in general are characterized by the four-point condition.

Proposition 1.2.5 (Four-points condition). Let T be a (rooted or unrooted) tree
with distance d. Then, for every leaves w, x, y and z,

d(w,x)+d(y,z) 6 max{d(w,y)+d(x,z), d(w,z)+d(x,y)}.

Conversely, if the condition above holds for a distance d, there exists a tree T such
that the distance d is derived from T .

We do not provide the proof. However, note that without loss of generality the
situation is as in figure 1.15, where the paths from w to x and from y to z do not
intersect. This implies that

d(w,x)+d(y,z) 6 d(w,y)+d(x,z) = d(w,z)+d(x,y).

In other words, the two largest sums are equal.

w

x

z

y

Figure 1.15: Four-point condition.

The three-points and four-points conditions show that it is not always possible to
build a tree corresponding to a set of distances. We now describe some distance-
based methods to reconstruct phylogenetic trees when this is possible.

Agglomerative algorithms for dendrograms

The basic algorithms in agglomerative approaches are UPGMA or WPGMA (un-
weighted or weighted pair group method using arithmetic averages) introduced by
Sneath and Sokal [SS73]. These algorithms iteratively find pairs of neighbours in
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the tree, separate them from the rest of the tree, and reduce the size of the problem
by treating the new pair as one unit. Then one recomputes a distance matrix with
fewer entries, and one continues with the same approach on the smaller data set.
These algorithms assume that the distance matrix satisfies approximately the three-
points condition, that is, that the tree one wants to reconstruct is approximately a
dendrogram.

Initialization Given n nodes (Si)16i6n, given an input distance matrix ∆ with
entries δi j, given n heights (hi)16i6n initialized to zero,

Step 1 Find clusters i and j such that i 6= j and δi j is minimal.

Step 2 Define a new height h(i j) = δi j/2, and create a new node S(i j) with heigh
h(i j). Join Si to S j at the node S(i j), with the length of branch SkS(i j) equal to
h(i j)−hk for k = i, j.

Step 3 If i and j are the only two entries of ∆, stop and return the tree.

Step 4 Else, build a new distance matrix by removing i and j, and adding (i j),
with δ(i j)k defined as the average of δik and δ jk with k 6= i, j.

Step 5 Return to step 1 with a distance matrix of a smaller dimension.

Step 4 computes the new distances as the average of two distances that have been
previously computed. In WPGMA, the calculation of new distances does not de-
pend on the size of clusters involved, that is,

δk(i j) = (δki +δk j)/2.

In UPGMA, the average of two distances between clusters i and j depends on their
size, that is,

δk(i j) = (|i|δki + | j|δk j)/(|i|+ | j|).
The two algorithms are often confused and some implementations of “UPGMA”
correspond in fact to WPGMA.

We now illustrate WPGMA on ∆ex.
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Initialization: hA = hB = hC = hD = hE = 0, ∆ = ∆ex.

Cycle 1: δDE = 3 is minimal, h(DE) = 1.5,

∆ =

A B C
B 5
C 12

(DE) 12 12 8

A B C D E

(DE)

1.5

Cycle 2: δAB = 5 is minimal, h(AB) = 2.5,

∆ =

(AB) C
C 12

(DE) 12 8

A B C D E

(AB)

(DE)

1.5
2.5

Cycle 3: δC(DE) = 8 is minimal, h(C(DE)) = 4,

∆ =
(AB)

(C(DE)) 12

A B C D E

(AB)

(C(DE))

(DE)

1.5

4

2.5

2.5

Cycle 4: δ(AB)(C(DE)) = 12 is minimal, h((AB)(C(DE)) = 6, return tree.

A B C D E

(AB)

((AB)(C(DE)))

(C(DE))

(DE)

1.5

4

2.5

3.5

2

2.5

The reconstructed tree is similar to the true tree Tex.

If the three-point condition does not hold, the WPGMA method can return erro-
neous phylogenetic trees. If the four-point condition holds, even approximately,
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one uses instead the neighbour joining algorithm (NJ), first introduced by Saitou
and Nei [SN87], and modified by Studier and Keppler [SK88].

Neighbor-joining algorithm

The neighbor-joining algorithm is also a neighborliness method, designed to find
the shortest tree. This is accomplished by sequentially finding neighbors that mini-
mize the total length among trees in which two of the taxa are clustered together, as
in the configuration drawn in figure 1.16 (b). The method starts with a starlike tree
T n

0 with n taxa such as the one given in figure 1.16 (a). Before giving the algorithm,
we detail some quantities involved.

j

k

eab

1

n 2

i

j 3

n

1

e1b

ℓ

i

eia
a b

(a) (b)

0

eja

ekb

eℓbe30

enb

e10

e20

ei0

ej0

en0

Figure 1.16: Star tree T n
0 with n taxa and tree T n

i j where leaves i and j are clustered.

Let euv denote the length of the edge uv in the trees T n
0 or T n

i j represented in fig-
ure 1.16.

The length dkℓ of the path from the leaf k to the leaf ℓ 6= k in the tree T n
0 is dkℓ =

ek0 + eℓ0. Let D(n)
0 denote the total length of the tree T n

0 , that is,

D(n)
0 =

n

∑
k=1

ek0. (1.2.1)

Hence, (n−1)D(n)
0 = R(n), with

R(n) = ∑
16k<ℓ6n

dkℓ.

Indeed, adding all the distances between the leaves amounts to counting n−1 times
each branch in the star tree.

In the tree T n
i j , the length dkℓ of the path from leaf k to leaf ℓ 6= k is

dkℓ =





eka + eab + ebℓ if k ∈ {i, j} and ℓ /∈ {i, j}
eia + e ja if {k, ℓ} = {i, j}
ekb + eℓb if k /∈ {i, j} and ℓ /∈ {i, j}

.
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Proposition 1.2.6. Let D(n)
i j denote the total length of the tree T n

i j . Then,

2(n−2)D(n)
i j = 2R(n)− (R(n)

i +R(n)
j )+(n−2)di j,

where, for every ℓ,

R(n)
ℓ =

n

∑
k=1

dℓk.

Proof. One can see on figure 1.16 (b) that

D(n)
i j = eab + eia + e ja + ∑

k/∈{i, j}
ekb. (1.2.2)

For every u ∈ {i, j} and every k /∈ {i, j}, one has duk = eua + eab + ekb. Summing
over k yields

∑
k/∈{i, j}

duk = (n−2)eua +(n−2)eab + ∑
k/∈{i, j}

ekb.

Adding di j to both sides of the equation above yields, for every u ∈ {i, j},

R(n)
u = (n−2)eua +(n−2)eab + ∑

k/∈{i, j}
ekb +di j,

and as a consequence

R(n)
i +R(n)

j = ndi j +2(n−2)eab +2 ∑
k/∈{i, j}

ekb. (1.2.3)

From equations (1.2.2) and (1.2.3), we deduce that

2(n−2)D(n)
i j = R(n)

i +R(n)
j +(n−4)di j +2(n−3) ∑

k/∈{i, j}
ekb. (1.2.4)

The subtree formed by the n−2 leaves related to the internal node b is a star tree
with n−2 taxa. From equation (1.2.1), we deduce that

(n−3) ∑
k/∈{i, j}

ekb = ∑
k/∈{i, j}

∑
ℓ/∈{i, j,k}

dkℓ = R(n)− (R(n)
i +R(n)

j )+di j. (1.2.5)

Using equation (1.2.5) into equation (1.2.4) yields the result.

The lengths of the branches from i to a and from j to a in tree T n
i j are such that

2(n−2)eia = (n−2)di j +R(n)
i −R(n)

j , 2(n−2)e ja = (n−2)di j +R(n)
j −R(n)

i .

For every leaf k /∈ {i, j},
2dka = dki +dk j −di j.

We can now provide the algorithm.
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Initialization Given n > 2 taxa denoted 1, 2, . . . , n, given an input distance ma-
trix ∆ with entries δi j, given star tree T n

0 .

Step 1 If n = 2, delete 0, join the two leaves with a branch length equal to δ12,
and return tree.
Else, compute the 1

2 n(n−1) values qkℓ as follows

qkℓ = (n−2)δkℓ−
n

∑
m=1

δkm −
n

∑
m=1

δℓm.

Step 2 Find a pair of taxa i and j such that qi j 6 qkℓ for every k and ℓ in {1, . . . ,n}.

Step 3 Create a node (i j) on the tree that joins the two taxa i and j, and the
central node 0 with the lengths ℓi and ℓ j of branches i(i j) and j(i j) equal to

ℓi =
1
2

δi j +
1

2(n−2)

(
n

∑
m=1

δim −
n

∑
m=1

δ jm

)
,

and

ℓ j =
1
2

δi j +
1

2(n−2)

(
n

∑
m=1

δ jm −
n

∑
m=1

δim

)
.

Step 4 Build a new distance matrix by removing i and j, and adding (i j), with
δ(i j)k defined as

δk(i j) =
1
2
(δki +δk j −δi j).

Step 5 Return to step 1 with a distance matrix of a smaller size and considering
the pair of joined neighbors as a single taxon (i j).

We now illustrate NJ on ∆ex.

Initialization: ∆ = ∆ex.

E

A

B

C

0

D

Cycle 1: Q is computed, qAB = −67 is minimal, ℓA = 2.5, ℓB = 2.5.
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Q =

A B C D
B -67
C -45 -45
D -40 -40 -51
E -40 -40 -51 -61

∆ =

(AB) C D
C 9.5
D 9.5 8
E 9.5 8 3

E

C

0

D

B

A
(AB) 2.5

2.5

Cycle 2: Q is computed, qDE = −35 is minimal, ℓD = 1.5, ℓE = 1.5.

Q =

(AB) C D
C -35
D -30 -30
E -30 -30 -35

∆ =

(AB) C
C 9.5

(DE) 8 6.5
C

0

B

A
(AB) 2.5

2.5

D

E

(DE)
1.5

1.5

Cycle 3: Q is computed, qC(DE) = −24 is minimal, ℓC = 4, ℓ(DE) = 2.5.

Q =

(AB) C
C -24

(DE) -24 -24

∆ =
(AB)

(C(DE)) 5.5

B

A
(AB) 2.5

2.5

C

D

E

(DE)
1.5

1.5

0(C(DE))

4

2.5

Cycle 4: n = 2, return tree in figure 1.17.

The reconstructed tree is similar to the true tree Tex, ignoring the root.

1.2.3 Discussion

In this chapter, we described two distance algorithms to understand how to recon-
struct phylogenetic trees from a distance matrix. We chose to present them because
distance algorithms are fast and build trees with thousand of taxas in a few min-
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Figure 1.17: Returned tree when one applies NJ to ∆ex

utes whereas other methods (based on maximum likelihood principles for instance)
quickly become computationally infeasible.

One should be aware that these two algorithms are now obsolete and have been
over-performed ands replaced in practice by some new distance algorithms. How-
ever, these are related to NJ, see the discussion at the end of chapter 1 in [Gas05],
hence understanding NJ itself is still useful. We did not mention some other ques-
tions around these algorithms and, for a deeper review on distance algorithms, we
refer to [Gas05] (chapter 1). Finally, we mention that we deal with some Bayesian
methods to reconstruct phylogenetic trees in chapter 4.
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Chapter 2

Nucleotidic substitution processes

We wrote in chapter 1 that phylogenetics entered the genomic age, and that studies
of evolution can now be done at the molecular level. For example, in subsec-
tion 1.2.2, we presented some distance-matrix methods of phylogeny reconstruc-
tion, but we did not explain how to compute pairwise distances between DNA
sequences. Of course, this computation is based on a specific model of nucleotidic
substitutions and, more generally, every method of phylogeny reconstruction at the
molecular level is based on a substitution model.

In the two first sections of this chapter, we introduce Jukes-Cantor model and
Kimura model. We provide estimators of the time of divergence for two contem-
porary aligned sequences, produced by two copies of the same ancestral unknown
sequence evolving independently (this is the homologous case) and for a contem-
porary sequence and one of its ancestors (this is the ancestral case). In the third
section, we present the neighbour dependent substitution models which are the
subject of chapter 3.

Some explanations are in order there. We chose to present the classical distance
estimation under the Jukes-Cantor model because the strategy used in this very sim-
ple case is similar to the one developed in chapter 3 in a more complicated setting.
Hence, one can refer to this section while reading chapter 3. About the presen-
tation of Kimura model, an understanding of the maximum likelihood method is
not required to understand our results, but, since inferring distances is an important
part of this thesis, we felt important to provide a sketch of the use of maximum
likelihood principle which is an important tool in phylogeny reconstruction.

The description of the independent models presented below is inspired from [Yan06].
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2.1 The Jukes-Cantor model

The Jukes-Cantor model [JC69] is the simplest model of nucleotidic substitution
processes in DNA sequences. Relying on the theory of Markov processes, this
probabilistic model describes changes between nucleotides. In this section, we
present a mathematical description of the model and the main tools to estimate
distances between DNA sequences.

2.1.1 Mathematical description of the model

The Jukes-Cantor model (JC) is a continuous-time Markov chain, and our discus-
sion of this model is also meant to introduce some notations and some heuristics
useful to understand more complicated models.

Definition 2.1.1. The alphabet of nucleotides is A = {A,T,C,G}, where the letters
stand for Adenine, Thymine, Cytosine and Guanine respectively. The set of purines
is R = {A,G}. The set of pyrimidines is Y = {T,C}.

In substitution models, a DNA sequence is an element of A N , where N is a pos-
itive integer and stands for the number of nucleotides in one strand of the DNA
molecule.

In JC, one assumes that the nucleotidic sites evolve independently from the others,
in a similar way. Hence, the evolution of the DNA sequence is ruled by the inde-
pendent parallel evolutions of N nucleotidic sites. Another assumption of JC is that
every substitution occurs at the same rate.

Dynamics of one site

We present now the dynamics of one nucleotidic site in JC.

Definition 2.1.2. Let Xi(t) denote the random value of the nucleotide at site i and
time t. In JC, the process (Xi(t))t>0 is a Markov process on A and there exists a
parameter λ > 0 such that the infinitesimal generator Q = (qxy)xy is given by the
4×4 matrix of substitution rates

Q =




A T C G

A −3λ λ λ λ

T λ −3λ λ λ

C λ λ −3λ λ

G λ λ λ −3λ


.

Each off-diagonal entry qxy is the rate of substitution of the nucleotide x by the
nucleotide y, that is, during a small interval of time dt, x is replaced by y with

32



probability qxydt. Each number −qxx can be interpreted as the rate of substitution
of the nucleotide x. This means that site i occupied by nucleotide x is modified
after an exponentially distributed random time with mean −1/qxx, and that, when
it is modified, it becomes occupied by nucleotide y with probability −qxy/qxx, for
each y 6= x.

In JC, this means for example that nucleotide C becomes an A, a T or a G with
probability 1

3 each and that the rate of substitution of C is 3λ . The parameter λ

rules the overall rate of evolution.

The infinitesimal generator Q fully determines the dynamics of the Markov chain.
For instance, let pxy(t) denote the probability that site i is occupied by y at time t
given that it is occupied by x at time 0, that is,

pxy(t) = P(Xi(t) = y|Xi(0) = x).

Then, the transition-probability matrix over any time t, denoted P(t) = (pxy(t)), is
determined Q as the unique solution of the initial value problem

dP(t)

dt
= QP(t), P(0) = Identity,

The solution is
P(t) = eQt .

The reader will find a complete presentation of continuous-time Markov chains on
discrete spaces in [Nor97]. We now provide the transition-probability matrix for
JC.

Proposition 2.1.3. In JC, for every x and every y 6= x in A , pxy(t) = 1
3 p(t) and

pxx(t) = 1− p(t), with

p(t) =
3
4

(
1− e−4λ t

)
.

Proof. Let I denote the 4× 4 identity matrix and J the 4× 4 matrix whose every
coefficient is 1

4 . Then, IJ = JI = J2 = J and Q = 4λ (J− I). Hence,

eQt = e−4λ tIe4λ tJ = e−4λ te4λ tJ.

For every integer n > 1, Jn = J, hence

e4λ tJ = ∑
n>0

(4λ t)n

n!
Jn = I +(e4λ t −1)J.

This means that eQt = e−4λ tI +(1− e−4λ t)J, which implies the result.

The transition-probability matrix coupled with an initial distribution for Xi(0) fully
determines the law of Xi(t). Indeed, assume that Xi(0) has the initial distribution
π = (πx)x∈A , that is

P(Xi(0) = x) = πx,
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then the law of Xi(t), denoted π(t), is given by π(t) = πP(t), that is, for every
nucleotide x

πx(t) = P(Xi(t) = x) = ∑
y∈A

πy pyx(t).

Dynamics of the DNA sequence

Until now, we have presented the evolution of one site. Let X1:N(t) be a shorthand
for (X1(t),X2(t), . . . ,XN(t)) and denote the random value of the N nucleotides from
site 1 to site N at time t in the DNA sequence.

Definition 2.1.4. In JC, the process X1:N(t) is Markov, with initial distribution π ,
where π is a distribution on A N and transition kernel Q⊗N . In other words, one
has for every x1:N = (x1,x2, . . .xN) ∈ A N

P(X1:N(t) = x1:N) =
N

∏
i=1

P(Xi(t) = xi) =
N

∏
i=1

(πeQt)xi .

Definition 2.1.4 is just a translation of the independence of the N sites and their
identically distributions.

When the length N of the sequence is large, the number πx can be interpreted as
the initial proportion of nucleotides x in the sequence, as a consequence of the law
of large numbers. Indeed, one has

1
N

N

∑
i=1

1{Xi(0) = x} a.s.−−−−→
N→+∞

E(1{X1(0) = x}) = πx.

Similarly, πx(t) can be interpreted as the proportion of nucleotides x at time t in the
sequence.

The distribution π∗ on A , defined as π∗
x = 1/4 for every nucleotide x, is stationary

for the Jukes-Cantor process on one site. This means that if the initial distribution
of Xi is π∗, then for every time t the distribution of Xi(t) is π∗. Furthermore, the
Jukes-Cantor process is ergodic, which means for example that the law of Xi(t)
converges to π∗ when t tends to infinity, for any initial distribution of Xi.

As a consequence, the proportion of nucleotides x in the DNA sequence when t
is large is almost 1/4, and one can imagine that the sequence is really blended in
comparison of the initial sequence, and that pick some information in the sequence
may be difficult.

2.1.2 Distance estimation

Since we have presented the Jukes-Cantor model, we now discuss the possibility
to calculate pairwise distances between DNA sequences.
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One Estimator of the time elapsed between ancestral and present sequences

Consider two DNA sequences of length N. Assume that one sequence is ances-
tral to the other and that the present sequence has evolved under the Jukes-Cantor
model since an unknown time t. This means that every nucleotide site i in the
past sequence is ancestral to nucleotide site i in the present sequence. We want to
provide an estimator of the elapsed time between these two sequences.

First of all, note that the law of Xi(t) under the Jukes-Cantor model with parameter
λ is similar to the law of Xi(t/2) under the Jukes-Cantor model with parameter 2λ .
Indeed, in the transition-probability matrix P(t), these quantities appear only in the
form of a product λ t. Thus, without external information on λ , there is no hope to
estimate t in function of λ . Yet, 3λ is the global rate of substitutions per site per
unit of time. Given the organism, the nature of DNA, or the area of DNA we look
at, maybe some information can be provided on λ , but that is not our purpose here.

In Jukes-Cantor model, the estimator used for the elapsed time is simply based on
the proportion of different sites in the two sequences. This is a direct application
of the maximum likelihood method detailed for Kimura model in section 2.2.

Precisely, let Pobs denote the observed quantity defined as

Pobs =
1
N

N

∑
i=1

Ki(t), with Ki(t) = 1{Xi(t) 6= Xi(0)}.

The random variables (Ki(t))N
i=1 are Bernoulli random variables identically dis-

tributed, and their common mean is p(t). Indeed, for every initial distribution π on
A , one has

P(Xi(t) = Xi(0)) = ∑
x∈A

πx pxx(t) = ∑
x∈A

πx(1− p(t)) = 1− p(t).

The random variables (Ki(t))N
i=1 are also independent, then the law of large num-

bers and central limit theorem provide

Pobs
a.s.−−−−→

N→+∞
p(t),

√
N(Pobs − p(t))

d.−−−−→
N→+∞

N (0, p(t)(1− p(t))), (2.1.1)

where N (α,σ2) stands for a normal law with mean α and variance σ2.

Now we explain how it is possible to compute an estimator for λ t from Pobs. The
function d 7→ 3

4(1− e−4d) is increasing on [0,+∞[ from the value 0 at d = 0 to the
value 3/4 at d = +∞, and every value p in the interval [0,3/4[ corresponds to a
unique value d in the interval [0,+∞[ via this function.

This one to one correspondence allows to define the estimator D of the time elapsed.

Definition 2.1.5. Let D denote the estimator of the time elapsed defined as the
solution in d of the equation

3
4
(1− e−4d) = Pobs.
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In the context of neighbour dependent models which is the content of chapter 3,
the estimator of the time elapsed is also defined as the solution of an equation.

Consistency of the estimator and asymptotic confidence interval

Consistency of estimator D is a consequence of the almost convergence of Pobs and
the continuity of the reciprocal function of d 7→ 3

4(1− e−4d).

Proposition 2.1.6. The random variable D converges almost surely to λ t when N
tends to infinity. Hence, D is a consistent estimator of λ t.

Consistency is a nice property for an estimator, but we are also interested in an
asymptotic confidence interval for estimator D. Thanks to central limit theorem,
we already have an asymptotic confidence interval for p(t), and we now use the
delta method [vdV98] to provide an asymptotic confidence interval for t.

Citing [vdV98], the delta method consists of using a Taylor expansion to approx-
imate a random vector of the form ϕ(TN) by the polynomial ϕ(θ)+ ϕ ′(θ)(TN −
θ) + . . . in TN − θ . It is a simple but useful method to deduce the limit law of
ϕ(TN)−ϕ(θ) from that of TN −θ .

Proposition 2.1.7 (delta method). Let ϕ : I ⊂ R → R be a map defined on an
interval I of R and differentiable at θ . Let (TN) be random variables taking their
values in the domain of ϕ . Assume that rN(TN −θ) converges in distribution to a
random variable T , with rN → +∞.
Then rN(ϕ(TN)−ϕ(θ)) converges in distribution to ϕ ′(θ)T .

The situation we have with D and Pobs is exactly these of proposition 2.1.7. Indeed,
let µ denote the reciprocal function of d 7→ 3

4(1− e−4d). Function µ is differen-
tiable on [0,3/4[, and

D = µ(Pobs), λ t = µ(p(t)).

From convergence in distribution (2.1.1), we deduce

Corollary 2.1.8. The random variables
√

N(D−λ t) converges in distribution to
the centered normal law with variance σ2(t), where

σ2(t) =
p(t)(1− p(t))

(3−4p(t))2 .

To build a confidence interval for λ t from corollary 2.1.8 requires to know the
value of p(t) which depends on the quantity λ t to be estimated. Slutsky’lemma (see
[vdV98]) allows to bypass this difficulty. Indeed, Slutsky’s lemma states that if two
sequence of random variable (XN)N and (YN)N are such that (XN)N converges in
distribution to a random variable X and (YN)N converges in probability to a constant
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c then the sequence (XNYN)N converges in distribution to the random variable cX .
In our situation, we apply this lemma by using the fact that

3−4Pobs√
Pobs(1−Pobs)

a.s.−−−−→
N→+∞

3−4p(t)√
p(t)(1− p(t))

.

Hence from central limit theorem for Pobs, delta method and Slutsky’s lemma, one
has the final result.

Theorem 2.1.9. In the Jukes-Cantor model,

(3−4Pobs)

√
N

Pobs(1−Pobs)
(D−λ t)

d.−−−−→
N→+∞

N (0,1).

In the context of neighbour dependent models, we use the same strategy than in this
section to provide asymptotically Gaussian confidence intervals for the precision
of estimation.

At the moment, we have only provided an estimator of the time elapsed between
an ancestral sequence and a present one. Remember that in most cases, data are
not available for extinct ancestors. We now explain how it is possible to derive
an estimator of the time of divergence between two present sequences, that is, a
phylogenetic distance between these two DNA sequences

Estimation of the time of divergence between two present sequences

In the case of the Jukes-Cantor model, we provide an estimator for the time of
divergence between two present sequences directly from the estimator of the time
elapsed between an ancestral sequence and a present one. However, it is necessary
to assume that the ancestral sequence is at stationarity.

The Jukes-Cantor model is a time-reversible Markov chain. Reversibility means
that the dynamics will look the same whether time runs forward or backward. To
check if a Markov process is time-reversible, one can use the generalized Kol-
mogorov criterion (Kendall [Ken59]), that is, one needs to check that for each loop
in the state space, the product of the rates is the same whatever direction in the loop
is chosen.

Proposition 2.1.10 (Generalized Kolomogorov criterion). A stationary Markov
process with infinitesimal generator Q and state space S is reversible if and only
if the entries of Q satisfy

qx1x2qx2x3 . . .qxn−1xnqxnx1 = qx1xnqxnxn−1 . . .qx3x2qx2x1 ,

for any elements x1, x2, . . . , xn ∈ S .
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As a result, given two sequences at stationarity, the probability of data in a state
is the same whether one sequence is ancestral to the other or both are descendants
of an ancestral sequence at stationarity. Roughly speaking, for every x and y that
belong to A , going from a x at time t to 0 then back to a y at time t on another
branch, is equivalent to going from a x at time 0 to a y at time 2t, as illustrated in
figure 2.1.

(a) (b)

x y

t t

x y

2t

Figure 2.1: A tree for two sequences showing the observed nucleotides x and y at
one site. (a) Two sequences diverged from a common ancestor. (b) Sequence 1 is
ancestral to sequence 2.

To understand why stationarity is necessary, imagine the following case. Let the
time run forward largely from the ancestral sequence to sequence1. Then, sequence
1 is almost at stationarity. As a consequence, the proportion of each nucleotide in
sequence 1 is almost 1/4. Now, let the time run backward from sequence 1 to the
ancestral sequence, as the time is large, the ancestral sequence is also at stationarity.
Stationarity is necessary for time-reversible process.

Let Xk
1:N(t) denote for every k ∈ {1,2}, the random value of the N nucleotides from

site 1 to site N at time t in the DNA sequence k.

Let P̃obs denote the observed quantity defined as

P̃obs =
1
N

N

∑
i=1

K̃i(t), with K̃i(t) = 1{X1
i (t) 6= X2

i (t)}.

Definition 2.1.11. Let D̃ denote the estimator of the time elapsed defined as the
solution in d of the equation

3
4
(1− e−8d) = P̃obs.

The main result of this section is the following.

Theorem 2.1.12. Assume that two present DNA sequences have diverged under the
Jukes-Cantor model with parameter λ from a common ancestral DNA sequence at
equilibrium since a time t.
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Then, D̃ is a consistent estimator of λ t, and

(6−8P̃obs)

√
N

P̃obs(1− P̃obs)
(D̃−λ t)

d.−−−−→
N→+∞

N (0,1).

2.2 Other independent models of evolution

In section 2.1, we have presented the simplest nucleotide substitution model. We
now discuss probabilistic models where the independence between nucleotide sites
is still assumed, but where some constrains are placed on substitution rates.

2.2.1 Model of Kimura

In subsection 1.1.3, we classified substitutions in two types: transitions, which
exchange a purine for a purine (A ↔ G) or a pyrimidine for a pyrimidine (C ↔ G),
and transversions which exchange a purine for a pyrimidine or a pyrimidine for a
purine (C/T ↔ A/G). This classification comes from one observation on real data:
transitions often occur at higher rate than transversions. Thus, Kimura [Kim80]
proposed a probabilistic model derived from the Jukes-Cantor one which takes
into account the difference between transition and transversion rates.

Mathematical description of Kimura’s model

Kimura’s model is as the Jukes-Cantor model a continuous-time Markov process.

Definition 2.2.1. In Kimura’s model, the process (Xi(t))t>0 is a Markov process
on A whose infinitesimal generator Q is given by the 4×4 matrix of substitution
rates

Q =




A T C G

A −(α +2β ) β β α

T β −(α +2β ) α β

C λ α −(α +2β ) β

G α β β −(α +2β )


.

where α and β are positive parameters.

Parameter α represents the rate of transitions, whereas parameter β represents the
rate of transversions.

The dynamics of one site is given by the transition-probability matrix whose entries
are defined as below.
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Proposition 2.2.2. In Kimura’s model, for every couple of nucleotides (x,y), one
has

pxy(t) =





p0(t) if x = y
p1(t) if {x,y} = R or {x,y} = Y
p2(t) else if

,

with

4p0(t) = 1+ e−4β t +2e−2(α+2β )t ,

4p1(t) = 1+ e−4β t −2e−2(α+2β )t ,

4p2(t) = 1− e−4β t .

Proof. Note that Q = −2(α + β )I + αJ1 + βJ2 where I stands for the identity
matrix and J1 and J2 are defined as

J1 =




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


 and J2 =




0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


 .

Matrices J1, J2 and J, where J stands for the matrix whose every entry is equal to
1, satisfies the following equations

J = J1 + J2, and J1J2 = J2J1 = 2J2

Hence, one has

eQt = e−2(α+β )tIeαtJ1eβ tJ2 = e−2(α+β )te(α−β )tJ1eβ tJ.

As for every positive integer n, Jn = 4n−1J and Jn
1 = 2n−1J1, one has

e(α−β )tJ1 = I +
e2(α−β )t −1

2
J1 and eβ tJ = I +

e4β t −1
4

J.

Noting that JJ1 = 2J, and multiplying the last two equalities yields

e(α−β )tJ1eβ tJ = I +
e2(α+β )t + e2(α−β )t −2

4
J1 +

e2(α+β )t − e2(α−β )t

4
J2.

Finally,

eQt = e−2(α+β )tI +
1+ e−4β t −2e−2(α+β )t

4
J1 +

1− e−4β t

4
J2,

and this achieves the proof

As for the Jukes-Cantor model, the uniform distribution π∗ on A is stationary for
the Kimura’s model. The global rate of substitution per time and per site is α +2β .

The dynamics of the whole sequence is, as the Jukes-Cantor model, the indepen-
dent dynamics of the N sites. We now explain the method to provide phylogenetic
distances in Kimura’s model.
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2.2.2 Distance estimation

As in the Jukes-Cantor model, it is impossible to estimate t without informa-
tion on α and β . For Kimura’s model, it is convenient to use parameter d =
(α + 2β )t, which will be the distance between the two sequences, and the tran-
sition/transversion rate ratio κ = α/β . Using these notations yields

4p0(t) = 1+ e−4d/(κ+2) +2e−2d(κ+1)/(κ+2),

4p1(t) = 1+ e−4d/(κ+2)−2e−2d(κ+1)/(κ+2),

4p2(t) = 1− e−4d/(κ+2).

We now discuss the maximum likelihood method for estimating sequence distances
in Kimura’s model. Maximum likelihood is a general methodology for estimating
parameters in a model.

For a fixed set of data and underlying probability model, maximum likelihood picks
the values of the model parameters that make the data "more likely" than any other
values of the parameters would make them.

Suppose there is a sample x1, x2, . . . , xn of n independent observations, drawn
from an unknown probability density (or probability mass) f0. We assume that the
function f0 belongs to a certain family of distributions { f (·|θ);θ ∈ Θ}, called the
parametric model, so that f0 corresponds to θ = θ0, which is called the true value
of the parameter. The idea behind the method of maximum likelihood is to look at
the joint density function f (x1,x2, . . . ,xn|θ) at a different angle. Let the observed
values x1, x2, . . . , xn be fixed “parameters” of this function, wheras the value of θ is
allowed to vary freely. From this point of view this function is called the likelihood
and denoted

L(θ |x1, . . . ,xn) = f (x1,x2, . . . ,xn|θ).

In practice it is always more convenient to work with the logarithm of the likelihood
function, called the log-likelihood:

ℓ(θ |x1, . . . ,xn) = log[L(θ |x1, . . . ,xn)].

The method of maximum likelihood estimates θ0 by finding the value of θ that
maximizes ℓ(θ |x). For detailed properties of maximum likelihood estimator, the
reader will consult [vdV98].

In Kimura’s model, the data are the number of sites with transitional NSobs and
transversional NVobs differences, where

Sobs =
1
N

N

∑
i=1

(1{{Xi(0),Xi(t)} = R}+1{{Xi(0),Xi(t)} = Y}) ,

Vobs =
1
N

N

∑
i=1

1{Xi(t) 6= Xi(0)}−Sobs.
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The number of constant sites is N −NSobs −NVobs.

The probability to observe a transition is given by p1(t), the probability to observe
a transversion is p2(t), and the probability is p0(t) for any constant site. Hence,
the likelihood function is

L(d,κ;nS,nV ) =
(

N
nS nV

)
p1(t)

nS p2(t)
nV p0(t)

N−nS−nV .

The log-likelihood is defined, up to an additive term not depending on t, as

ℓ(d,κ;nS,nV ) = nS log(p1(t))+nV log(p2(t))+(N −nS −nV ) log(p0(t)).

Maximum likelihood estimator can be derived from the equations ∂ℓ/∂d = 0 and
∂ℓ/∂κ = 0. The solution can be shown to be

Proposition 2.2.3. Let D and K denote estimators defined as

D = −1
4

log(1−2Vobs)−
1
2

log(1−2Sobs −Vobs),

K = 2
log(1−2Sobs −Vobs)

log(1−2Vobs)
−1.

Then D and K are consistent estimators of (α +2β )t and α/β .

It is also possible to apply delta method and Slutsky’s lemma to D. Hence, one has
the following result.

Theorem 2.2.4. In Kimura’s model

√
N

σ2
obs

(D− (α +2β )t)
d.−−−−→

N→+∞
N (0,1),

where

σ2
obs = A2

obsSobs +B2
obsVobs − (AobsSobs +BobsVobs)

2,

with

Aobs = (1−2Sobs −Vobs)
−1,

Bobs = [(1−2Sobs −Vobs)
−1 +(1−2Vobs)

−1]/2.

Kimura’s model is also time-reversible, and it is possible to derive a distance be-
tween two DNA sequences having diverged from a common ancestral DNA se-
quence at equilibrium as in the Jukes-Cantor model.
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2.2.3 Other models

We have presented models of Jukes-Cantor and Kimura. These two models assume
that the sites evolve independently from the others, and have the uniform distribu-
tion on A as stationary distribution. In other models of DNA evolution, such as
[Fel81], [HKY85] and [TN93], one still assumes the independence between sites
but one places different constrains on the rates of substitution. As a consequence,
the stationary distribution may be different from the uniform distribution, but with
no interaction between the sites, the nucleotide attached to any given site converges
in distribution to the stationary measure of the Markov chain described by the ma-
trix of the rates and, at equilibrium, the sites are independent.

There also exists the possibility to modify the rate of substitution for any site,
assuming for example that this rate is a random variable drawn from a statistical
distribution. But there again, it is possible to derive distances without too much
difficulty. The real difficulty is the introduction of substitution rates which depend
on the nature of closed neighbours of sites.

2.3 About neighbour dependent substitution processes

As we have seen in subsection 1.1.3, it is well known that the nucleotides in the
immediate neighbourhood of a site can affect drastically the substitution rates at
this site. For instance, in the genomes of vertebrates, the increased substitutions
of cytosine by thymine and of guanine by adenine in CpG dinucleotides are of-
ten quite noticeable. The chemical reasons of this CpG-methylation-deamination
process are also well known and one can guess that, at equilibrium, the number of
CpG is decreased while the number of TpG and CpA is increased when one adds
high rates of CpG substitutions.

The need to incorporate an influence of the neighbourhood into more realistic mod-
els of nucleotide substitutions seems widely acknowledged. That is the reason
why Duret and Galtier introduced and analysed a model in [DG00], which we call
Tamura + CpG, that adds to Tamura’s rates of substitution the availability of sub-
stitutions CG →CA and CG → T G, both at the additional rate ρ > 0.

However, the exact consequences of the introduction of such neighbour-dependent
substitution processes remained virtually unknown, at least up to their knowledge,
on a theoretical ground. To understand why, note that the distribution of the nu-
cleotide at site i at a given time depends a priori on the values at previous times of
the dinucleotides at sites (i, i− 1) and (i, i + 1), whose joint distributions, in turn,
may depend on the values of some trinucleotides, and so on. Hence, one is faced
with infinite-dimensional linear systems, which are difficult to solve.

To evade the curse of recursive calls to the frequencies of longer and longer words,
Duret and Galtier used as approximate frequencies (xyz) of the trinucleotides the
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values
(xyz) ≈ (xy)(yz)/(y).

Their approximations enabled them to capture some features of the behavior of the
true model, but it was not mathematically founded.

Entering in the field of interacting particle systems [Lig85], Bérard, Gouéré and
Piau [BGP08] introduced a wide extension of the Tamura + CpG model of neighbour-
dependent substitution processes. Even if this field contains more difficulties than
the field of finite Markov chains, they showed that these models are solvable. For
example, they proved that the frequencies of polynucleotides at equilibrium solve
explicit finite-size linear systems.

We now describe these models and their properties.

2.3.1 Jukes-Cantor model with CpG influence

Recall that DNA sequences are encoded by the alphabet A = {A,T,C,G}, where
the letters stand for Adenine, Thymine, Cytosine and Guanine respectively.

In independent evolution models, DNA sequences are encoded as elements of A N ,
where N is a positive integer. In the Jukes-Cantor model with CpG influence
(JC+CpG), DNA sequences are encoded as elements of A Z where Z is the set
of integers, and as a consequence bi-infinite.

Heuristics of the mechanisms

The probabilistic JC+CpG model is a continuous-time Markov chain on A Z, where
the sequence evolves under the combined effect of two superimposed mechanisms.

The first mechanism is an independent evolution of the sites as in the usual Jukes-
Cantor model with parameter 1. Hence it is characterized by a 4× 4 matrix of
substitution rates, each rate being the mean number of substitutions per unit of
time. Hence, the rate of the substitutions of x by y is set to 1, for every nucleotides
x and y in A .

A second mechanism is superimposed, which describes the substitutions due to the
influence of the neighborhood: the most noticeable case is based on experimentally
observed CpG-methylation-deamination processes, whose biochemical causes are
well known. Hence we assume that the substitution rates of cytosine by thymine
and of guanine by adenine in CpG dinucleotides are both increased by an additional
nonnegative rate r.

This means for example that any C site whose right neighbour is not occupied by
a G, changes at global rate 3, hence after an exponentially distributed random time
with mean 1/3, as drawn for the C site in (N−1)th position on figure 2.2, and when
it does, it becomes an A, a G or a T with probability 1/3 each. On the contrary, any
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A T C

i = 1

G CC

i = N

E(3 + r)E(3) E(3) ?E(3 + r) E(3)

Figure 2.2: A piece of DNA sequence under JC+CpG model with the exponentially
distributed random time drawn over each site

C site whose right neighbour is occupied by a G, changes at global rate s = 3 + r,
hence after an exponentially distributed random time with mean 1/s, as drawn for
the C site in (N −3)th position on figure 2.2, and when it does, it becomes an A, a
G or a T with unequal probabilities 1/s, 1/s, and (1+ r)/s respectively. Note that
for the C site in Nth position on figure 2.2, one has to look at its right neighbour to
know in which case one is.

The case r = 0 corresponds to the usual Jukes-Cantor model. As soon as r 6= 0,
the evolution of a site is not independent of the rest of the sequence. Hence the
evolution of the complete sequence is Markovian (on a huge state space), but not
the evolution of a given site, nor of any given finite set of sites.

Main properties

We work on the space A Z with the topology product and the cylindric σ -algebra
defined as the smallest σ -algebra such that every projection on A Z is measurable.

We now recall some results of [BGP08].

Theorem 2.3.1 (Bérard, Gouéré and Piau [BGP08]). For every probability mea-
sure ν on A Z, there exists a unique Markov process (X(t))t>0 on A Z, with initial
distribution ν , associated to the transition rates above.

Thus, for every time t, X(t) describes the whole sequence and, for every i in Z,
the ith coordinate Xi(t) of X(t) is the random value of the nucleotide at site i and
time t.

Theorem 2.3.2 (Bérard, Gouéré and Piau [BGP08]). The process (X(t))t>0 is er-
godic, its unique stationary distribution π on A Z is invariant and ergodic with
respect to the translations of Z, and π puts a positive mass on every finite word
w = (wi)06i6ℓ written in the alphabet A .

The notation π(w) is abusive because π is a measure on A Z but it is a shorthand
for π(Π−1

0,ℓ({w})), where Π0,ℓ is such that for every x ∈ A Z, Π0,ℓ(x) = (xi)06i6ℓ.

Furthermore, for every position i in Z, Pν(Xi:i+ℓ(t) = w) converges to π(w) when
t → +∞, where Pν stands for the probability under the initial measure ν . Here
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and later on, for every indices i and j in Z with i 6 j and every symbol S, the
shorthand Si: j denotes (Sk)i6k6 j. Finally, if ξ in A Z is distributed according to
π , the empirical frequencies of any word w in ξ , observed along any increasing
sequence of intervals of Z, almost surely converge to π(w).

All of the above properties stem from the following representation of the distribu-
tion π .

Theorem 2.3.3 (Bérard, Gouéré and Piau [BGP08]). There exists an i.i.d. sequence
(ξi)i∈Z of Poisson processes, and a measurable map Ψ with values in A , such that
if one sets

Ξi = Ψ(ξi−1,ξi,ξi+1)

for every site i in Z, then the distribution of (Ξi)i∈Z is π .

In particular, any collections (Ξi)i∈I and (Ξi)i∈J are independent as soon as the
subsets I and J of Z are such that |i− j|> 3 for every sites i in I and j in J. We call
this property 2-dependence.

2.3.2 Class of neighbour dependent substitution models

We have presented the JC+CpG model, but this model is just the simplest neighbour-
dependent substitution process of the class of models, called RN+YpR introduced
in [BGP08]. We briefly introduce this class now.

Firstly, RN stands for Rzhetsky-Nei and means that the 4× 4 matrix of substitu-
tion rates which characterize the independent evolution of the sites must satisfy 4
equalities, summarized as follows: for every pair of nucleotides x and y 6= x, the
substitution rate from x to y may depend on x but only through the fact that x is
a purine (A or G, symbol R) or a pyrimidine (C or T , symbol Y ). For instance,
the substitution rates from C to A and from T to A must coincide, likewise for the
substitution rates from A to C and from G to C, from C to G and from T to G,
and finally from A to T and from G to T . The 4 remaining rates, corresponding to
purine-purine substitutions and to pyrimidine-pyrimidine substitutions, are free.

Secondly, the influence mechanism is called YpR, which stands for the fact that
one allows any specific substitution rates between any two YpR dinucleotides (CG,
CA, T G and TA) which differ by one position only, for a total of 8 independent
parameters. The Jukes-Cantor model with CpG effect is the simplest non trivial
one: the only YpR substitutions with positive rate are CG → CA and CG → T G,
and both happen at the same rate.

Recall that Y denote the set of pyrimidines defined as Y = {T,C}, and R the set of
purines defined as = {A,G}.

The 4×4 matrix of substitution rates which characterize the independent evolution
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of the sites in RN model is given by




A T C G

A · vT vC wG

T vA · wC vG

C vA wT · vG

G wA vT vC ·


.

The influence mechanism called YpR adds specific rates of substitutions from each
YpR dinucleotide as follows.

• Every dinucleotide CG moves to CA at rate rC
A and to T G at rate rG

T .

• Every dinucleotide TA moves to CA at rate rA
C and to T G at rate rT

G.

• Every dinucleotide CA moves to CG at rate rC
G and to TA at rate rA

T .

• Every dinucleotide T G moves to CG at rate rG
C and to TA at rate rT

A .

Under a non-degeneracy condition (always satisfied if the rates are non negative),
theorems 2.3.1, 2.3.2 and2.3.3 occur.

In chapter 3, we show how to compute consistent estimators and asymptotic confi-
dence intervals for the evolutionary time between DNA sequences in these evolu-
tion models.
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Chapter 3

Toward phylogenetic distances
for RN + YpR models

In this chapter we consider models of nucleotidic substitution processes where the
rate of substitution at a given site depends on the state of the neighbours of the site.
We first estimate the time elapsed between an ancestral sequence at stationarity
and a present sequence. Second, assuming that two sequences are issued from a
common ancestral sequence at stationarity, we estimate the time since divergence.
In the simplest nontrivial case, the Jukes-Cantor model with CpG influence, we
provide and justify mathematically consistent estimators in these two settings. We
also provide asymptotic confidence intervals, valid for nucleotidic sequences of
finite length, and we compute explicit formulas for the estimators and for their
confidence intervals. In the general case of an RN model with YpR influence,
we extend these results under a proviso, namely that the equation defining the
estimator has a unique solution.

Introduction

A crucial step in the computation of phylogenetic trees based on aligned DNA
sequences is the estimation of the evolutionary times between these sequences.
In most phylogenetic algorithms based on stochastic substitution models, one as-
sumes that each site evolves independently from the others and, in general, accord-
ing to a given Markovian kernel. This assumption is mainly due to the difficulty
to work without the assumption of independence. To understand why, note that, as
soon as the rates of substitutions of th the distribution of the nucleotide at site i at
a given time depends a priori on the values at previous times of the dinucleotides
at sites i−1 and i+1, whose joint distributions, in turn, may depend on the values
of some trinucleotides, and so on. Hence, one is faced with infinite-dimensional
linear systems, which are generically hard to solve. Besides, the magnitude of the
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effect of the neighbours on the substitution rates can be large. Since some neigh-
bour influences are well documented in the literature, and caused by well known
biological mechanisms, it seems necessary to take into account the neighbour in-
fluences in substitution models. To wit, a class of mathematical models with neigh-
bour influences was recently introduced by biologists, see [GGG96], and studied
mathematically, see [BGP08].

The goal of the present chapter is to show that one can compute consistent estima-
tors of the distances between DNA sequences whose evolution is ruled by models
with influence in a specific class of models.

We completely describe the construction in the simplest non trivial case, the Jukes-
Cantor model with (symmetric) CpG influence and we explain in sections 3.8 how
to extend our construction to every model in the class.

In section 3.1, we describe the Jukes-Cantor model with CpG influence, the sim-
plest one of the class of manageable models introduced in [BGP08], and its main
properties. In section 3.2, we summarize our main results on the estimation of the
elapsed time between an old DNA sequence and a present one, and on the time
since two present DNA sequences issued from the same ancestral sequence di-
verged. Section 3.8 contains the extension of the results of section 3.2. In the other
sections we prove our results. At the end of section 3.2, we detail the plan of the
rest of the chapter.

3.1 Models with influence

We first describe the Jukes-Cantor model with CpG influence to which the results
of this chapter apply. Then, we mention its main mathematical properties, already
established in [BGP08], and we introduce some notations.

Recall that DNA sequences are encoded by the alphabet A = {A,T,C,G}, where
the letters stand for Adenine, Thymine, Cytosine and Guanine respectively. Thus,
bi-infinite DNA sequences are encoded as elements of A Z where Z is the set of
integers.

3.1.1 Jukes-Cantor model with CpG influence (JC+CpG)

In most models of DNA evolution, one assumes that each site evolves indepen-
dently from the others and follows a given Markovian kernel, see [JC69], [Kim80],
[Fel81] and [HKY85] for instance. Even in codon evolution models, see [JTT92],
one often assumes that different codons evolve independently, with however some
exceptions such as [JP00]. On the other hand, it is a well known experimental
fact, see [DG00] by example, that the nature of the close neighbours of a site can
modify, notably in some cases, the substitution rates observed at this site. To take
account of these observations, we consider models, in continuous time, where the
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sequence evolves under the combined effect of two superimposed mechanisms.

The first mechanism is an independent evolution of the sites as in the usual models.
Hence it is characterized by a 4×4 matrix of substitution rates, each rate being the
mean number of substitutions per unit of time. The simplest case is the Jukes-
Cantor model, where each substitution happens at the same rate. Hence, the rate of
the substitutions of x by y is set to 1, for every nucleotides x and y in A .

A second mechanism is superimposed, which describes the substitutions due to the
influence of the neighborhood: the most noticeable case is based on experimentally
observed CpG-methylation-deamination processes, whose biochemical causes are
well known. Hence we assume that the substitution rates of cytosine by thymine
and of guanine by adenine in CpG dinucleotides are both increased by an additional
nonnegative rate r.

This means for example that any C site whose right neighbour is not occupied by
a G, changes at global rate 3, hence after an exponentially distributed random time
with mean 1/3, and when it does, it becomes an A, a G or a T with probability
1/3 each. On the contrary, any C site whose right neighbour is occupied by a G,
changes at global rate s = 3 + r, hence after an exponentially distributed random
time with mean 1/s, and when it does, it becomes an A, a G or a T with unequal
probabilities 1/s, 1/s, and (1+ r)/s respectively.

The case r = 0 corresponds to the usual Jukes-Cantor model. As soon as r 6= 0,
the evolution of a site is not independent of the rest of the sequence. Hence the
evolution of the complete sequence is Markovian (on a huge state space), but not
the evolution of a given site, nor of any given finite set of sites.

Recall from [BGP08] that the relevant class of models, called RN+YpR, is in fact
larger than just described.

As already mentioned, the results of this chapter about Jukes-Cantor models with
CpG influence (hereafter denoted JC+CpG) are adapted to every RN model with
YpR influence (hereafter denoted RN+YpR) in section 3.8.

3.1.2 Main properties

We work on the space A Z with the topology product and the cylindric σ -algebra
defined as the smallest σ -algebra such that every projection on A Z is measurable.

We now recall some results of [BGP08], valid for every RN+YpR model. First,
for every probability measure ν on A Z, there exists a unique Markov process
(X(t))t>0 on A Z, with initial distribution ν , associated to the transition rates above.
Thus, for every time t, X(t) describes the whole sequence and, for every i in Z, the
ith coordinate Xi(t) of X(t) is the random value of the nucleotide at site i and time t.
Under a non-degenaracy condition on the rates of the model, the process (X(t))t>0

is ergodic, its unique stationary distribution π on A Z is invariant and ergodic with
respect to the translations of Z, and π puts a positive mass on every finite word
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w = (wi)06i6ℓ written in the alphabet A . The notation π(w) is abusive because π

is a measure on A Z but it is a shorthand for π(Π−1
0,ℓ({w})), where Π0,ℓ is such that

for every x ∈ A Z, Π0,ℓ(x) = (xi)06i6ℓ.

Furthermore, for every position i in Z, Pν(Xi:i+ℓ(t) = w) converges to π(w) when
t → +∞, where Pν stands for the probability under the initial measure ν . Here
and later on, for every indices i and j in Z with i 6 j and every symbol S, the
shorthand Si: j denotes (Sk)i6k6 j. Finally, if ξ in A Z is distributed according to
π , the empirical frequencies of any word w in ξ , observed along any increasing
sequence of intervals of Z, almost surely converge to π(w).

All of the above properties stem from the following representation of the distribu-
tion π . There exists an i.i.d. sequence (ξi)i∈Z of Poisson processes, and a measur-
able map Ψ with values in A , such that if one sets

Ξi = Ψ(ξi−1,ξi,ξi+1)

for every site i in Z, then the distribution of (Ξi)i∈Z is π . In particular, any collec-
tions (Ξi)i∈I and (Ξi)i∈J are independent as soon as the subsets I and J of Z are such
that |i− j| > 3 for every sites i in I and j in J. We call this property 2-dependence.

3.1.3 Notations

Our estimators are based on various quantities provided by the alignment of the
two sequences.

A T C C C G A

A C C GA G A

i = 7= 1

t = 0

N

Figure 3.1: Alignment of an ancestral sequence and a present one

For every ℓ > 0 and every word w of length ℓ+1 written in the alphabet A , say that
site i is occupied at time t by w if Xi:i+ℓ(t) = w. For every triple of subsets W , W ′

and W ′′ of words and every couple of times t and s, (W )(t) denotes the frequency
of sites occupied by any of the words in W at time t, that is

(W )(t) = lim
N→∞

1
N

N

∑
i=0

∑
w∈W

Hi(t,w), where Hi(t,w) = 1{Xi:i+ℓ(t) = w},

and (W,W ′)(t) the frequency of sites occupied by any of the words in W at time 0
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and any of the words in W ′ at time t, that is

(W,W ′)(t) = lim
N→∞

1
N

N

∑
i=0

∑
w∈W

∑
w′∈W ′

Hi(0,w)Hi(t,w
′).

The limits above exist thanks to the ergodicity of π with respect to translations.

When comparing two present sequences, we use the following notations. For every
sets W and W ′ of words and every time t, [W,W ′](t) denotes the frequency of sites
occupied by a word of W in the left sequence (denoted by X1) and by a word of W ′

in the right sequence (denoted by X2).

We identify a word w and the set of words {w}. For every letter x in the alphabet
A , we use the shorthands ∗x = A ×{x}, x∗ = {x}×A , x ∗ x = {x}×A ×{x}
and x̄ = A \{x}.

3.2 Summary of main results

Our main result is theorem 3.2.4 below, which provides asymptotic confidence in-
tervals for an estimation procedure of the time elapsed between a present sequence
and an ancestral one and for the time since two present sequences issued from the
same ancestral sequence diverged, for the Jukes-Cantor model with CpG influence
(JC+CpG) of intensity r. These intervals are based on two consistent estimators of
the elapsed time and two consistent estimators of the time of divergence.

3.2.1 Estimators and asymptotic confidence intervals

Our first estimator is based on the evolution of the frequency (C,C)(t) when the
time t varies and the second one on the evolution of (A,A)(t). These estimators
match the classic ones used for the original Jukes-Cantor model when r = 0. The
symmetry of the roles played by A and T , or by C and G in the JC+CpG model
immediately gives the relations (A,A)(t) = (T,T )(t) and (G,G)(t) = (C,C)(t).

Our estimators for the divergence time are based on the evolution of the frequency
[C,C](t) when the time t varies and on the evolution of [A,A](t). Even if the results
are given in the same theorem, there is a substantial difference between [C,C] and
[A,A]. Indeed, as we explain in sections 3.5 and 3.6:

Theorem 3.2.1. In the JC+CpG model, for every positive t,

[C,C](t) = (C,C)(2t), [A,A](t) 6= (A,A)(2t).

In section 3.8, theorem 3.8.1 provides an asymptotic confidence interval for our es-
timation procedure of the time elapsed between a present sequence and an ancestral
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one, for RN+YpR models, under the condition that the estimator is well-defined in
the general case.

The keystep for the creation of phylogenetic trees built by a distance-based method
is theorem 3.2.4 below. At the moment, a prior knowledge of the parameter r is
needed to apply the method. In theory, one could estimate r as well, using suffi-
ciently many quantities (w,w′)(t) or [w,w′](t) for (small) words w and w′ (in prac-
tice, it should be enough to consider nucleotides and dinucleotides w and w′). For
instance, in JC+CpG, modulo some monotonicity properties, two “independent”
functions (w,w′)(t) or [w,w′](t) should be enough to estimate t and r at the same
time. A different approach to estimate all the parameters at the same time, based on
maximum likelihood principle and on the independence properties of the RN+YpR
models at stationarity, is currently developed by Bérard and Guéguen [BG10] in
the context of the alignment of genomic sequences of Human, Chimpanzee, and
Macaque.

We now introduce some notations needed to state theorem 3.2.4 and used in the
rest of the chapter.

Definition 3.2.2. Let (x,x)N
obs and [x,x]Nobs denote for every x ∈ {A,C} the observed

value of (x,x) and [x,x] on two aligned sequences of length N, that is,

(x,x)N
obs =

1
N

N

∑
i=1

(Kx
i )(t), with (Kx

i )(t) = 1{Xi(0) = Xi(t) = x},

and

[x,x]Nobs =
1
N

N

∑
i=1

[Kx
i ](t), with [Kx

i ](t) = 1{X1
i (t) = X2

i (t) = x}.

In figure 3.1 for instance, N = 7 and (C,C)N
obs = 2

7 . The quantity (x,x)N
obs plays the

same role in the JC+CpG model than Pobs, introduced in chapter 2, in the classical
Jukes-Cantor model.

The quantity (x,x)N
obs is theoretical, because generally, we do not have the ancestral

DNA sequence. However, like we do in the Jukes-Cantor model, it is an intermedi-
ate tool to study [x,x]Nobs and provide an estimator of the divergence time between
two homologous DNA sequences.

Definition 3.2.3. Let (T N
x ) and [T N

x ] denote the estimators of the elapsed time and
the divergence time respectively, defined for every x ∈ {A,C}, as the solution in t
of the equations

(x,x)(t) = (x,x)N
obs and [x,x](t) = [x,x]Nobs.

For x∈{A,C}, let (κN
x )obs, [κN

x ]obs, (νN
x )obs and [νN

x ]obs denote observed quantities,
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defined as

(κN
C )obs = 4(C,C)N

obs + r(C∗,CG)N
obs − (C)∗,

(κN
A )obs = 4(A,A)N

obs − r(∗A,CG)N
obs − (A)∗,

(νN
x )obs = (x,x)N

obs −5(x,x)N
obs

2
+2(xx,xx)N

obs +2(x∗ x,x∗ x)N
obs,

and

[κN
C ]obs = 8[C,C]Nobs +2r[C∗,CG]Nobs −2(C)∗,

[κN
A ]obs = 8[A,A]Nobs −2r[∗A,CG]Nobs −2(A)∗,

[νN
x ]obs = [x,x]Nobs −5[x,x]Nobs

2
+2[xx,xx]Nobs +2[x∗ x,x∗ x]Nobs,

where (x)∗ denotes the frequency of x at stationarity in the JC+CpG model.

The quantities (κN
x )obs play the role of 3 − 4Pobs in the classical Jukes-Cantor

model. Indeed, we prove in lemma 3.4.1, that (κN
x )obs converges almost surely

to −(x,x)′(t). Similarly, the quantities (νN
x )obs play the role of

√
Pobs(1−Pobs) in

the classical Jukes-Cantor model. Finally, (T N
x ) plays the role of the quantity we

denoted by D in the classical Jukes-Cantor model.

We note that (κN
x )obs, [κN

x ]obs, (νN
x )obs and [νN

x ]obs may be negative for some se-
quences of observations and some lengths N. However, from lemma 3.4.1, (κN

x )obs,
[κN

x ]obs, (νN
x )obs and [νN

x ]obs are almost surely positive when N is large.

As explained in sections 3.5 and 3.6, in JC+CpG, for every x, the functions

t 7→ (x,x)(t), and t 7→ [x,x](t),

are decreasing functions of t > 0, from (x)∗ at t = 0 to (x)2
∗ at t = +∞. Thus, (T N

x )
and [T N

x ] are unique and well defined for any pair of aligned sequences such that

(x)2
∗ < (x,x)N

obs, [x,x]
N
obs < (x)∗.

Thanks to the ergodicity of the model, this condition is almost surely satisfied when
N is large enough because (x,x)N

obs → (x,x)(t) and [x,x]Nobs → [x,x](t) almost surely
when N → ∞.

However, even if (T N
x ) and [T N

x ] are unique and well defined, the formulas to com-
pute them are not straightforward since these involve the inverse of a function.
Thus, to solve equation (x,x)(t) = (x,x)N

obs, for example, one has to rely on numer-
ical methods. Fortunately, explicit formulas for (x,x)(t) and [x,x](t) in JC+CpG
do exist.

We now state our main result.

Theorem 3.2.4. Assume that the ancestral sequence is at stationarity. Then, in
JC+CpG, for x = A and x = C,

(κN
x )obs

√
N/(νN

x )obs
(
(T N

x )− t
)

and [κN
C ]obs

√
N/[νN

C ]obs
(
[T N

C ]− t
)
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both converge in distribution to the standard normal law when N → +∞.

In the ancestral case, an asymptotic confidence interval at level ε for the elapsed
time is [

(T N
x )− z(ε)

(κN
x )obs

√
(νN

x )obs

N
,(T N

x )+
z(ε)

(κN
x )obs

√
(νN

x )obs

N

]
.

In the homologous case, an asymptotic confidence interval at level ε for the time
of divergence is


[T N

C ]− z(ε)

[κN
C ]obs

√
[νN

C ]obs

N
, [T N

C ]+
z(ε)

[κN
C ]obs

√
[νN

C ]obs

N


 .

In both formulas, z(ε) denotes the unique real number such that P(|Z| > z(ε)) = ε

with Z a standard normal random variable.

Remark 3.2.5. Note that if conjecture 3.6.6 holds, that is, the function t 7→ [A,A](t)

is a decreasing diffeomorphism, then [κN
A ]obs

√
N/[νN

A ]obs
(
[T N

A ]− t
)

converges in

distribution to the standard normal law.

Remark 3.2.6. Theorem 3.2.4 implies that, for large N, the width of the confidence
interval scales as N−1/2 times a function of t, and that, for large t, this function of
t scales as e4t in the ancestral case and as e8t in the homologous case (according
to formulas given in corollaries 3.5.1 and 3.6.2). Heuristically, this means that, to
estimate the time t up to a given factor, one must observe a part of the sequence of
length N of order at least e8t in the ancestral case and at least e16t in the homolo-
gous case.

The rest of the chapter is organized as follows. In section 3.3, we state central
limit theorems for the time estimators for JC+CpG and for the general model under
conjecture 3.3.4. In section 3.4, we show that the central limit theorems established
in section 3.3 imply theorem 3.2.4 of section 3.2. In section 3.5, and 3.6, we
characterize the evolutions of (x,x)(t) and [x,x](t) for x = C and x = A, and we
state some monotonicity properties.

In section 3.7, we give a short description of the general RN model with YpR in-
fluence (RN+YpR). In section 3.8, we give an extension of theorem 3.2.4 to the
general model under conjecture 3.3.4, and in section 3.9 the justification of this ex-
tension. In section 3.10, we describe some simulations supporting conjecture 3.3.4.

3.3 Central limit theorems for time estimators

We give here central limit theorems for the time estimators in the general model.
The strategy is the following. We first deal with (x,x)N

obs and [x,x]Nobs. We compute
exactly the variance of these quantities thanks to the 2-dependence. Then, we use
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a central limit theorem for mixing sequences. To state central limit therorem for
the time estimators, we use the delta method, and to do that, we need to know that
t 7→ (x,x)(t) and t 7→ [x,x](t) are diffeomorphisms. This is still a conjecture for the
general model whereas we prove it for JC+CpG.

3.3.1 Variance computations

We detail the properties of (C,C)N
obs, (A,A)N

obs, [C,C]Nobs and [A,A]Nobs. We assume
that N > 2.

Lemma 3.3.1. Assume that the ancestral sequence is at stationarity. In RN+YpR,
for x ∈ {C,A}, the mean of (x,x)N

obs, respectively [x,x]Nobs, with respect to π is
(x,x)(t), respectively [x,x](t).

The variances of (x,x)N
obs and [x,x]Nobs with respect to π are equal to (σ2

x )(N, t) and
[σ2

x ](N, t), where

N(σ2
x )(N, t) =(x,x)(t)− (x,x)(t)2 +2(1−1/N)

(
(xx,xx)(t)− (x,x)(t)2)+

+2(1−2/N)
(
(x∗ x,x∗ x)(t)− (x,x)(t)2),

and,

N[σ2
x ](N, t) =[x,x](t)− [x,x](t)2 +2(1−1/N)

(
[xx,xx](t)− [x,x](t)2)+

+2(1−2/N)
(
[x∗ x,x∗ x](t)− [x,x](t)2),

Proof. Since the initial sequence X(0) = (Xi(0))i∈Z is at stationarity, that is, dis-
tributed along π defined in section 3.1, then, for every positive t, X(t) = (Xi(t))i∈Z

is distributed along π .

As a consequence, the random variables ((Kx
i )(t))i∈Z, respectively ([Kx

i ](t))i∈Z, are
Bernoulli random variables identically distributed with respect to π . Their common
mean is (x,x)(t), respectively [x,x](t).

On the other hand, (x,x)N
obs, respectively [x,x]Nobs, is the empirical mean of the N

values (Kx
i )(t), respectively [Kx

i ](t), for i from 1 to N. Thus, we obtain the value of
E((x,x)N

obs), respectively E([x,x]Nobs), as (x,x)(t), respectively [x,x](t).

Furthermore,

N2(σ2
x )(N, t) =

N

∑
i=1

var((Kx
i )(t))+2 ∑

16i< j6N

cov((Kx
i )(t),(K

x
j )(t)).

The variance of each (Kx
i )(t) is var((Kx

1)(t)) = (x,x)(t)− (x,x)(t)2.

The 2-dependence, valid for RN+YpR, implies that each covariance for |i− j| > 3
is zero. The invariance by translation of π , valid for RN+YpR, shows that each of
the (N −1) covariances such that i = j−1 is

cov((Kx
1)(t),(K

x
2)(t)) = (xx,xx)(t)− (x,x)(t)2.
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Finally, each of the (N −2) covariances such that i = j−2 is

cov((Kx
1)(t),(K

x
3)(t)) = (x∗ x,x∗ x)(t)− (x,x)(t)2.

The same arguments hold for the variance of [x,x]Nobs. This concludes the proof.

3.3.2 Central limit theorems for (x,x)N
obs and [x,x]Nobs

We prove the convergence in distribution to the normal law, using a classical strat-
egy based on the following result.

Theorem 3.3.2 (Hall and Heyde [HH80]). Let (Vi)i∈Z denote a stationary, ergodic,
centered, square integrable sequence. Let F0 = σ(Vi ; i 6 0) denote the σ -algebra
generated by the random variables Vi for i 6 0. For every positive integer n, intro-
duce

Un =
1√
n

n

∑
i=1

Vi.

Assume that

(i) for every positive n, the series ∑
k>1

E(VkE(Vn|F0)) converges,

(ii) the series ∑
k>K

|E(VkE(Vn|F0))| converges to zero when n → +∞, uniformly

with respect to K.

Then E(U2
n ) converges to a real number σ2 > 0 when n → +∞. Furthermore, if

σ2 > 0, then Un/
√

σ2 converges in distribution to the standard normal distribution.

Proposition 3.3.3. In RN+YpR, for x ∈ {C,A}, when N → +∞,

√
N((x,x)N

obs − (x,x)(t)) and
√

N([x,x]Nobs − [x,x](t))

both converge in distribution to the centered normal distribution with variance
(σ2

x )(t), respectively [σ2
x ](t), where

(σ2
x )(t) = (x,x)(t)+2(xx,xx)(t)+2(x∗ x,x∗ x)(t)−5(x,x)(t)2,

[σ2
x ](t) = [x,x](t)+2[xx,xx](t)+2[x∗ x,x∗ x](t)−5[x,x](t)2.

Proof. For any RN+YpR model, for x ∈ {C,A}, the sequence ((Kx
i )(t))i∈Z, respec-

tively ([Kx
i ](t))i∈Z, is stationary and ergodic. Introduce

(V x
i ) = (Kx

i )(t)− (x,x)(t), [V x
i ] = [Kx

i ](t)− [x,x](t).

This defines a sequence ((V x
i ))i∈Z, respectively ([V x

i ])i∈Z, such that the first hy-
pothesis of theorem 3.3.2 holds. We now check conditions (i) et (ii).
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The 2-dependence, valid for any RN+YpR model, implies that, for every n > 3,
E((V x

n )|F x
0 ) = E((V x

n )) = 0, respectively E([V x
n ]|F x

0 ) = E([V x
n ]) = 0. Hence we

only have to check the cases n = 1 and n = 2.

For every k > 3, (V x
k ), respectively [V x

k ], is independent of F x
0 , and E((V x

n )|F x
0 ),

respectively E([V x
n ]|F x

0 ), is F x
0 -measurable, hence

E((V x
k )E((V x

n )|F x
0 )) = E((V x

k ))E(E(V x
n |F x

0 )) = 0,

and
E([V x

k ]E([V x
n ]|F x

0 )) = E([V x
k ])E(E([V x

n ]|F x
0 )) = 0.

This implies (i) and (ii), hence theorem 3.3.2 applies.

To compute the asymptotic variance in the theorem, we note that the variances of
√

N((x,x)N
obs − (x,x)(t)) and

√
N([x,x]Nobs − [x,x](t))

are N(σ2
x )(N, t) and N[σ2

x ](N, t) respectively, which, when N → +∞, converge to
(σ2

x )(t) and [σ2
x ](t) respectively.

3.3.3 Central limit theorems for (T N
x ) and [T N

x ]

We describe explicitly the behaviour of (T N
x )− t and [T N

x ]− t. To state our result,
we use the central limit theorems given in proposition 3.3.3, but we now need to
treat separately JC+CpG and RN+YpR.

For x ∈ {C,A}, let (µx), respectively [µx], denote the inverse function of t 7→
(x,x)(t), respectively t 7→ [x,x](t). That is,

t = (µx)((x,x)(t)) = [µx]([x,x](t)),

and (µx) and [µx] are both defined on the interval ((x)2
∗,(x)∗].

From propositions 3.5.4, 3.6.3 and 3.6.6, the functions t 7→ (x,x)(t) and t 7→ [x,x](t)
are diffeomorphisms in JC+CpG. In RN+YpR, this is only a conjecture, supported
by simulations described in section 3.10, which seem to show that the function
t 7→ (C,C)(t) is indeed decreasing.

Conjecture 3.3.4. In RN+YpR, for x ∈ {C,A}, the functions t 7→ (x,x)(t) and t 7→
[x,x](t) are diffeomorphisms from [0,+∞) to ((x)2

∗,(x)∗].

Then,
(T N

x ) = (µx)((x,x)
N
obs) and t = (µx)((x,x)(t)),

and
[T N

x ] = [µx]([x,x]
N
obs) and t = [µx]([x,x](t)).

Besides, the derivatives of (µx) and [µx], with respect to t are

(µx)
′((x,x)(t)) =

1
(x,x)′(t)

and [µx]
′([x,x](t)) =

1
[x,x]′(t)

.

Using the delta method, see [vdV98], one gets the following result.
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Proposition 3.3.5. In JC+CpG, for x ∈ {C,A}, when N → +∞,
√

N((T N
x )− t),

respectively
√

N([T N
x ]− t), converges in distribution to the centered normal distri-

bution with variance (σ2
x )(t)/(x,x)′(t)2, respectively [σ2

x ](t)/[x,x]′(t)2.

Under conjecture 3.3.4, the same results hold for the full class RN+YpR.

3.4 Proofs for JC + CpG

Proposition 3.3.5 yields the variation of (T N
x ) and [T N

x ] around t for x ∈ {C,A}. A
priori, to build a confidence interval for t from this proposition requires to know
the value of (x,x)′(t), respectively [x,x]′(t), and of (σ2

x )(t), respectively [σ2
x ](t),

which all depend on the quantity t to be estimated.

As is customary, Slutsky’s lemma (see [vdV98]) allows to bypass this difficulty
through the observed quantities, defined in section 3.2, (κN

x )obs and (νN
x )obs, re-

spectively [κN
x ]obs and [νN

x ]obs. Indeed, Slutsky’s lemma states that if two sequences
of random variables (XN)N and (YN)N are such that (XN)N converges in distribution
to a random variable X and (YN)N converges in probability to a constant c, then the
sequence (XNYN)N converges in distribution to the random variable cX .

Lemma 3.4.1. In JC+CpG, for x ∈ {C,A},

(κN
x )obs →−(x,x)′(t), [κN

x ]obs →−[x,x]′(t),

and
(νN

x )obs → (σ2
x )(t), [νN

x ]obs → [σ2
x ](t)

almost surely when N → +∞.

Proof. The equalities

(C,C)′(t) = −4(C,C)(t)− r(C∗,CG)(t)+(C)∗,

(A,A)′(t) = −4(A,A)(t)+ r(∗A,CG)(t)+(A)∗,

given in sections 3.5 and 3.6, and the almost sure convergence of the observed
quantities

(C,C)N
obs, (C∗,CG)N

obs, (CC,CC)N
obs, (C ∗C,C ∗C)N

obs,

and,
(A,A)N

obs, (∗A,CG)N
obs, (AA,AA)N

obs,(A∗A,A∗A)N
obs,

to the corresponding limiting values, when N → +∞, imply the desired conver-
gences. Likewise, the equalities

[C,C]′(t) = −8[C,C](t)−2r[C∗,CG](t)+2(C)∗,

[A,A]′(t) = −8[A,A](t)+2r[∗A,CG](t)+2(A)∗,

imply the convergence of [κN
x ]obs.

60



We apply Slutsky’s lemma to (XN) = (
√

N((T N
x )− t)) and (XN) = (

√
N([T N

x ]− t)),
which, from proposition 3.3.5, converge in distribution to the centered normal law
with variance (σ2

x )(t)/(x,x)′(t)2 and [σ2
x ](t)/[x,x]′(t)2 respectively, and to (YN) =

((κN
x )obs/

√
(νN

x )obs) and (YN) = ([κN
x ]obs/

√
[νx]obs), which converge in probabil-

ity to −(x,x)′(t)/(σx)(t) and −[x,x]′(t)/[σx](t) respectively, from lemma 3.4.1.
This implies theorem 3.2.4.

3.5 Evolutions of (C,C)(t) and [C,C](t) in JC+CpG

3.5.1 Dynamics of (C,C)(t)

In JC+CpG, the dinucleotides encoded as {C,C̄}×{G, Ḡ} have autonomous evo-
lution with the following 4×4 rate matrix Q:




CG C̄G C̄Ḡ CḠ

CG −(6+2r) 3+ r 0 3+ r
C̄G 1 −4 3 0
C̄Ḡ 0 1 −2 1
CḠ 1 0 3 −4


.

The dynamics of the dinucleotides can be represented with the graph given in fig-
ure 3.2.

CG C̄G

C̄ḠCḠ

3 + r

1

1

3

3113 + r

Figure 3.2: Dynamics of dinucleotides encoded as {C,C̄}×{G, Ḡ}

The exponential of the corresponding matrix can be explicitly computed. Indeed,
the eigenvalues of Q are respectively 0, −4, −u− and −u+, with

u =
√

4+2r + r2, u+ = 6+ r +u, u− = 6+ r−u,
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and the corresponding eigenvectors are



1
1
1
1


 ,




0
−1
0
1


 ,




3r +3u− ru−
2+ r

(2−u+)/3
2+ r


 ,




3r−3u− ru+

2+ r
(2−u−)/3

2+ r


 .

Then, an explicit expression can be obtained for every (XY,ZT )(t) where (X ,Y )
and (Z,T ) belong to {C,C̄}×{G, Ḡ}. For instance,

(CG,CG)(t) = (CG)(0)
(
α0 +α+e−u+t +α−e−u−t

)
,

(CG,CḠ)(t) = (CG)(0)
(
β0 +β+e−u+t +β−e−u−t

)
,

(CḠ,CG)(t) = (CḠ)(0)
(
γ0 + γ+e−u+t + γ−e−u−t

)
,

(CḠ,CḠ)(t) = (CḠ)(0)
(
δ0 +δ1e−4t +δ+e−u+t +δ−e−u−t

)
,

with

α0 = γ0 =
1

16+5r
, β0 = δ0 =

3+ r

16+5r
, δ1 =

1
2
,

α± =
1

2u(16+5r)

(
5u(3+ r)± (6+17r +5r2)

)
,

β± =
1

2u(16+5r)

(
−u(3+ r)∓ (30+22r +4r2)

)
,

γ± =
1

2u(16+5r)
(−u∓ (10+4r)) ,

δ± =
1

4u(16+5r)

(
u(10+3r)∓ (4+8r +3r2)

)
.

These expressions are also valid out of equilibrium, that is, when the distribution
of X(0) may be different of π .

One can also compute explicitly the stationary frequencies of the dinucleotides
encoded in {C,C̄}×{G, Ḡ} using the same matrix. That is

(CG)∗ =
1

16+5r
, (CḠ)∗ =

3+ r

16+5r
,

(C̄Ḡ)∗ =
9+3r

16+5r
, (C̄G)∗ =

3+ r

16+5r
.

These stationary frequencies are in [BGP08].

We observe that (C,C)(t) can be expressed as a linear combination of terms of the
form (XY,ZT )(t) where (X ,Y ) and (Z,T ) belong to {C,C̄}×{G, Ḡ}. Indeed,

(C,C)(t) = (CG,CG)(t)+(CG,CḠ)(t)+(CḠ,CG)(t)+(CḠ,CḠ)(t).

Thus, an explicit expression for (C,C)(t) can be obtained, for instance in the
stationary regime where the initial values are (CḠ)(0) = (CḠ)∗ and (CG)(0) =
(CG)∗.
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Proposition 3.5.1. In the stationary regime,

(C,C)(t) = c1e−4t + c+e−u+t + c−e−u−t +(C)2
∗,

with

c1 =
3+ r

2(16+5r)
and c± =

3+ r

4u(16+5r)2

(
u(16+3r)∓ (32+14r +3r2)

)
.

As expected,
c+ + c− + c1 = (C)∗− (C)2

∗.

Furthermore, for every positive r,

4 < u− < 5 < 2r +7 < u+ < 2r +8.

The expression of (C,C)(t) as a linear combination of terms of the form (XY,ZT )(t)
where (X ,Y ) and (Z,T ) belong to {C,C̄}×{G, Ḡ}, yields an expression of (C,C)′(t)
in terms of dinucleotide frequencies by using the transposed matrix of Q.

Proposition 3.5.2. The evolution of (C,C)(t) satisfies the linear differential equa-
tion

(C,C)′(t) = −4(C,C)(t)− r(C∗,CG)(t)+(C)(0).

Proposition 3.5.2 is valid out of equilibrium. This proposition is necessary to prove
the almost sure convergence of (κN

C )obs to −(C,C)′(t) in lemma 3.4.1.

We now compare the dynamics of (C,C)(t) in the standard Jukes-Cantor model to
the dynamics in JC+CpG with the same overall rate of substitutions.

Proposition 3.5.3. The convergence of (C,C)(t) to equilibrium when t → +∞ in
JC+CpG is slower than in the independent Jukes-Cantor model with the same
global rate of substitution.

We prove proposition 3.5.3 at the end of section 3.6. Now we study the dynamics
of [C,C](t).

3.5.2 Dynamics of [C,C](t)

Although JC+CpG is not reversible, the dynamics of dinucleotides encoded as
{C,C̄}×{G, Ḡ} is reversible. Indeed, on figure 3.2, one can see that there is only
one cycle in the graph, and that the product of the rates is the same whatever direc-
tion in the loop is chosen. Hence, Kolmogorov criterium holds and the dynamics
is reversible.

Reversibility means that the dynamics will look the same whether time runs for-
ward or backward. As a result, given two sequences at stationarity (without sta-
tionarity, this is wrong), the probability of data in a state is the same whether
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one sequence is ancestral to the other or both are descendants of an ancestral se-
quence at stationarity. Roughly speaking, for every (X ,Y ) and (Z,T ) that belong
to {C,C̄}×{G, Ḡ}, going from a XY at time t to 0 then back to a ZT at time t on
another branch, is equivalent to going from a XY to at time 0 to a ZT at time 2t.

As a consequence, for every positive t, we have

[C,C](t) = (C,C)(2t).

The equality above is not satisfied for every word of the sequence. For instance, in
section 3.6, we prove that, as soon as r > 0 and t > 0,

[A,A](t) 6= (A,A)(2t).

If JC+CpG was reversible, the equality above would be true, but we insist on the
fact that JC+CpG is not reversible, and that the “miracle” equality [C,C](t) =
(C,C)(2t) is a consequence of the reversibility of the dynamics of dinucleotides
encoded as {C,C̄}×{G, Ḡ}.

For every positive r, the parameters c± and c1, are positive. This proves the fol-
lowing proposition.

Proposition 3.5.4. In JC+CpG, the functions t 7→ (C,C)(t) and t 7→ [C,C](t) are
decreasing diffeomorphisms from [0,+∞) to ((C)2

∗,(C)∗].

3.6 Evolutions of (A,A)(t) and [A,A](t) in JC+CpG

Like we did to study (C,C), it is possible to encode dinucleotides such that in
JC+CpG, (A,A) is a linear combination of terms involved in an autonomous evolu-
tion. It suffices to encode the dinucleotides as {C,C̄}×{A,G,Y}, and the dynamics
can be represented with the graph given in figure 3.3.

CG

CA C̄A

CY C̄Y

C̄G

11

2

1

2

2

1 + r 1

2

3 + r

1

3

1

1

3

1 1

1

Figure 3.3: Dynamics of dinucleotides encoded as {C,C̄}×{A,G,Y}

However, we will not use this encoding to compute (A,A)(t). Indeed, the evolution
matrix associated to this encoding is a 6× 6 matrix whereas it is possible to deal
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with the 4× 4 matrix Q, defined in section 3.5, to characterize the evolution of
(A,A). We now explain this.

We chose to present this encoding because it is a way to understand the difference
between the role of C and A in the Jukes Cantor model with CpG effect. Indeed,
the dynamics of dinucleotides encoded as {C,C̄}×{A,G,Y} is not reversible. This
can be checked by looking at the cycle CA →CY →CG →CA in figure 3.3. As a
consequence, even if the non-reversibility of the dynamics does not strictly prove
that the identity [A,A](t) = (A,A)(2t) never holds when r > 0, the non reversibility
of the dynamics can explain why such an identity is unlikely to be true, and in fact,
unlike in the case of [C,C], as soon as r > 0 and t > 0,

[A,A](t) 6= (A,A)(2t).

We explain this at the end of the current section. Now, we describe a way to state
the expression of (A,A)(t).

3.6.1 Dynamics of (A,A)(t)

Proposition 3.6.1. The evolution of (A,A)(t) satisfies the linear differential equa-
tion

(A,A)′(t) = −4(A,A)(t)+ r(∗A,CG)(t)+(A)(0).

Proposition 3.6.1 is necessary to prove the almost sure convergence of (κN
A )obs to

−(A,A)′(t).

Proof of proposition 3.6.1. To compute (A,A)′(t), one must compare (A,A)(t + s)
to (A,A)(t) up to the order s, for every positive t and vanishingly small positive s.
The probability that at least two substitutions occur at the same site between times
t and t + s is o(s), hence these events do not appear in the limit we consider.

Since in a dinucleotide CpG, only nucleotide G can lead to nucleotide A with addi-
tional rate, we only consider the set of two-letter configurations leading to different
transition rates to ∗A. For every positive t and s,

(A,A)(t + s) = (∗A,CA)(t + s)+(∗A,C̄A)(t + s).

On the other hand, let (W ′|W )(s) denote the probability that sites occupied by a
word of W at time 0 are occupied by a word of W ′ at time s. Then,

(CA|CY )(s) = s+o(s), (CA|CA)(s) = 1−6s+o(s),

(CA|C̄A)(s) = s+o(s), (CA|CG)(s) = (1+ r)s+o(s),

(C̄A|C̄Ā)(s) = s+o(s), (C̄A|CA)(s) = 3s+o(s),

(C̄A|C̄A)(s) = 1−4s+o(s).
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We are now ready to evaluate (A,A)(t + s). Decomposing along the values at time
t, and using the Markov property, one gets

(∗A,CA)(t + s) = (∗A,CY )(t)s+(∗A,CG)(t)(1+ r)s+(∗A,CA)(t)(1−6s)+

+(∗A,C̄A)(t)s+o(s),

and,

(∗A,C̄A)(t + s) = (∗A,C̄Ā)(t)s+(∗A,C̄A)(t)(1−4s)+(∗A,CA)(t)3s+o(s).

Using the relations

(∗A,CY )(t)+(∗A,CG)(t) = (∗A,CĀ)(t),

(∗A,C̄Ā)(t)+(∗A,CĀ)(t) = (A, Ā)(t),

(∗A,CA)(t)+(∗A,C̄A)(t) = (A,A)(t),

one gets finally,

(A,A)(t + s) = (A, Ā)(t)s+ r(∗A,CG)(t)+(1−3s)(A,A)(t)+o(s).

The sum of the contributions of order 1 is (A,A)(t). The sum of the contributions
of order s yields the derivative, hence

(A,A)′(t) = −3(A,A)(t)+(A, Ā)(t)+ r(∗A,CG)(t).

Using the relation
(A,A)(t) = (A)(0)− (A, Ā)(t),

one gets the result.

Let U(t) denote the time dependent vector defined as




(∗A,CG)(t)
(∗A,C̄G)(t)
(∗A,C̄Ḡ)(t)
(∗A,CḠ)(t)


 ,

then we have, as a straightforward consequence of the encoding {C,C̄}×{G, Ḡ},

U ′(t) = (tQ) ·U(t).

We can now compute (∗A,CG)(t), infer the value (A)∗ of (A)(0) at stationarity and
finally state the expression of (A,A)(t).

Corollary 3.6.2. In the stationary regime,

(A,A)(t) = a1e−4t +a+e−u+t +a−e−u−t +(A)2
∗,
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with

a1 =
80+31r

32(16+5r)
,

and

a± =
512+384r +106r2 +13r3 ∓u(256+18r +13r2)

64u(16+5r)2 .

For every positive r, the parameters a± and a1, are positive. This proves the fol-
lowing proposition.

Proposition 3.6.3. In JC+CpG at stationarity, the function t 7→ (A,A)(t) is a de-
creasing diffeomorphism from [0,+∞) to ((A)2

∗,(A)∗].

We now compare the dynamics of (A,A)(t) in the standard Jukes and Cantor model
with the Jukes-Cantor model with CpG influence with the same overall rate of
substitutions.

Proposition 3.6.4. The convergence of (A,A)(t) to equilibrium when t →+∞ in the
Jukes-Cantor model with CpG influence is slower than in the independent Jukes-
Cantor model with the same global rate of substitution.

We prove proposition 3.6.4 at the end of the current section. We deal now with the
evolution of [A,A](t).

3.6.2 Dynamics of [A,A](t)

Extending the strategy used to prove corollary 3.6.2, one can also derive an explicit
expression for [A,A](t).

Introduce the constant matrices

M =




−8 2r 0 0
0 −(12+2r) 1 1
0 −r −8 0
0 −r 0 −8


 , N =




0 0 0 0
0 0 r 0
0 r 0 0
0 r 0 0


 ,

O =




−8 −2r 0 0
1 −(12+2r) −r 1
0 4 −(16+4r) 0
0 −2r 0 −8


 , B =




2(A)(0)
(CG)(0)

(C)(0)+(A)(0)
(A)(0)+(G)(0)


 ,

D =




2(C)(0)
(CG)(0)

0
2(C)(0)


 ,
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and the time-dependent vectors

V (t) =




[A,A](t)
[∗A,CG](t)
[∗A,C∗](t)
[A,G](t)


 , W (t) =




[C,C](t)
[C∗,CG](t)
[CG,CG](t)
[C∗,∗G](t)


 .

Proposition 3.6.5. The evolution of V (t) and W (t) is ruled by the linear differential
systems

V ′(t) = MV (t)+NW (t)+B, W ′(t) = OW (t)+D.

The exponential of the block matrix

(
M N
0 O

)
can be explicitly computed. The

explicit spectrum of this matrix is

{−8,−8,−8,−v+,−v−,−2u+,−2u−,−(12+2r)}, v± = 10+ r±u.

Thus, it is possible to compute an explicit expression for [A,A](t). The computation
under ▼❛♣❧❡ yields

[A,A](t) = b0 +b±e−u±t +d±e−v±t ,

with

b0 =
16

(16+5r)2 ,

b± =
1

32(16+5r)2

(
u(384+200r +24r2)∓ (768+592r +184r2 +24r3)

)
,

d± =
1

32(16+5r)2

(
−u(512+272r +35r2)± (1024+800r +262r2 +35r3) .

This computation shows that the coefficients of e−v+t and e−v−t in the expression
of [A,A](t) are nonzero. This fact alone proves that [A,A](t) cannot be equal to
(A,A)(2t) for every t. However, we observe on simulations that the two quantities
are very close. On figure 3.4, one can see the simulation performed for r = 10, and
the largest difference between [A,A](t) and (A,A)(t) is about 7.10−4.

For every positive r, the parameter d− is negative. Hence, we cannot prove as
easily as for t 7→ (A,A)(t) that t 7→ [A,A](t) is a decreasing diffeomorphism. The
derivative of [A,A](t) is also useless to prove this. However, we perform some sim-
ulations, illustrated on figure 3.5, to support the following conjecture. We explain
in chapter 5, how it may be possible to prove it.

Conjecture 3.6.6. In JC+CpG, the function t 7→ [A,A](t) is a decreasing diffeo-
morphism from [0,+∞) to ((A)2

∗,(A)∗].
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Figure 3.4: Representation of t 7→ [A,A](t)− (A,A)(2t), when r = 10
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Figure 3.5: Representation of t 7→ [A,A](t), when r = 10 (thick line), r = 3 (normal
line) and r = 0.3 (dashed line).

3.6.3 Proof of propositions 3.5.3 and 3.6.4

From corollaries 3.5.1 and 3.6.2, for every value of r, the convergence of (C,C)(t)
and (A,A)(t) to equilibrium when t → +∞ in JC+CpG are like e−4t .
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In JC+CpG, every nucleotide changes at rate 3 due to unconditional substitution
rates, plus every dinucleotide CpG changes at rate 2r. Hence the global rate of
substitution is

3+2r(CG)∗ = 3+
2r

16+5r
.

On the other hand, in the independent Jukes-Cantor model of parameter λ , the
global rate of substitution is 3λ . Hence one should set

λ = 1+
2r/3

16+5r
.

For independent Jukes-Cantor models, [Yan06] computes

(C,C)(t) = (A,A)(t) =
1

16
+

3
16

e−4λ t .

Since λ > 1 for every r > 0, the comparison with the independent Jukes-Cantor
model is done.

3.7 Short description of RN+YpR and notations

First, RN stands for Rzhetsky-Nei and means that the 4× 4 matrix of substitu-
tion rates which characterize the independent evolution of the sites must satisfy 4
equalities, summarized as follows: for every pair of nucleotides x and y 6= x, the
substitution rate from x to y may depend on x but only through the fact that x is
a purine (A or G, symbol R) or a pyrimidine (C or T , symbol Y ). For instance,
the substitution rates from C to A and from T to A must coincide, likewise for the
substitution rates from A to C and from G to C, from C to G and from T to G,
and finally from A to T and from G to T . The 4 remaining rates, corresponding to
purine-purine substitutions and to pyrimidine-pyrimidine substitutions, are free.

Second, the influence mechanism is called YpR, which stands for the fact that one
allows any specific substitution rates between any two YpR dinucleotides (CG,
CA, T G and TA) which differ by one position only, for a total of 8 independent
parameters. JC+CpG is the simplest non trivial case: the only YpR substitutions
with positive rate are CG →CA and CG → T G, and both happen at the same rate.

Recall that Y denote the set of pyrimidines defined as Y = {T,C}, and R the set of
purines defined as = {A,G}.

The 4×4 matrix of substitution rates which characterize the independent evolution
of the sites in RN model is given by




A T C G

A · vT vC wG

T vA · wC vG

C vA wT · vG

G wA vT vC ·


.
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The influence mechanism called YpR adds specific rates of substitutions from each
YpR dinucleotide as follows.

• Every dinucleotide CG moves to CA at rate rC
A and to T G at rate rG

T .

• Every dinucleotide TA moves to CA at rate rA
C and to T G at rate rT

G.

• Every dinucleotide CA moves to CG at rate rC
G and to TA at rate rA

T .

• Every dinucleotide T G moves to CG at rate rG
C and to TA at rate rT

A .

3.8 Extension of theorem 3.2.4 to RN+YpR

Under conjecture 3.3.4, it is possible to generalize theorem 3.2.4 by suitably gen-
eralizing the definitions of κ and ν given in section 3.2. Introduce the parameters

(κN
RN)obs = − vC(C,A)N

obs −wC(C,T )N
obs +(vA +wT + vG)(C,C)N

obs − vC(C,G)N
obs

− rA
C(C∗,TA)N

obs − rG
C (C∗,T G)N

obs + rA
T (C∗,CA)N

obs + rG
T (C∗,CG)N

obs.

(νN
RN)obs = (νN

C )obs.

When vC = wC = vA = wT = vG = 1, rA
C = rG

C = rA
T = 0 and rG

T = r (as in JC+CpG),
(κN

RN)obs = (κN
C )obs.

The expression for the observed quantity (νN
C )obs is unchanged between JC+CpG

and RN+YpR because lemma 3.3.1 holds in the general case.

Once again, Slutsky’s lemma for the observed quantities (κN
RN)obs and (νN

RN)obs is
the key to state theorem 3.8.1 below, which is a consequence of proposition 3.3.5.

Theorem 3.8.1. Assume that the ancestral sequence is at stationarity and that
conjecture 3.3.4 holds. Then, when N → +∞,

κRN
obs

√
N/νRN

obs(TC − t)

converges in distribution to the standard normal law. An asymptotic confidence
interval at level ε for t is


(T N

C )− z(ε)

(κN
RN)obs

√
(νN

RN)obs

N
,(T N

C )+
z(ε)

(κN
RN)obs

√
(νN

RN)obs

N


 ,

where z(ε) denotes the unique real number such that P(|Z| > z(ε)) = ε with Z a
variable with standard normal law.
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As in JC+CpG, the estimator (T N
C ) is defined implicitly for RN+YpR. However, in

JC+CpG, we provided an explicit expression for (C,C)(t), but, even for Kimura +
CpG, that is with parameters

vA = vT = vC = vG = 1, wA = wT = wC = wG = κ,

rA
C = rT

G = rC
G = rA

T = rG
C = rT

A = 0, and rG
T = rC

A = r,

where κ denotes the transition/transversion rate, we find difficult to provide an
explicit expression for (C,C)(t). Fortunately, numerical methods allow to com-
pute a closed form of the theoretical solution of the differential linear system, and
consequently it is possible to solve equation (C,C)(t) = (C,C)obs with numerical
methods.

3.9 Evolution of (C,C)(t) in RN+YpR

We base our description of the method in the general RN+YpR model on the en-
coding of dinucleotides as

B = {R,T,C}×{Y,G,A},

and we show that its evolution is autonomous.

We now define a 9×9 matrix m, indexed by B×B, hence uv and xy are generic
elements of B.

Let vR and vY denote
vR = vA + vG, vY = vT + vC.

Then,

m(uv,xy) = 0, if u 6= x and v 6= y;

m(Rx,ux) = vu, if x ∈ {Y,G,A} and u ∈ {C,T};

m(ux,Rx) = vR, if x ∈ {Y,G,A} and u ∈ {C,T};

m(Ru,Rv) = wv, if {u,v} = {A,G};

m(xY,xu) = vu, if x ∈ {R,C,T} and u ∈ {A,G};

m(xu,xY ) = vR, if x ∈ {R,C,T} and u ∈ {A,G};

m(uY,vY ) = wv, if {u,v} = {T,C};

m(xu,xv) = wv + rx
v, if {u,v} = {A,G} and x ∈ {T,C};

m(ux,vx) = wv + rx
v, if {u,v} = {C,T} and x ∈ {A,G}.

Then, for every uv and xy in B, the function (uv,xy) satisfies the linear differential
equation

(uv,xy)′(t) = ∑
(w,z)∈B

m(wz,xy)(uv,wz)(t).
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Hence quantities such as (C,C)(t) can be computed provided one computes the ex-
ponential of the rate-matrix, and that quantities such as (C,C)′(t) have computable
explicit expressions in terms of frequencies expressed in the reduced dinucleotide-
alphabet B.

3.10 Simulations

As a support to the conjecture that t 7→ (C,C)(t) always defines a diffeomorphism
for models in the class RN+YpR, we performed some simulations whose aim is to
draw an approximation of the graph of t 7→ (C,C)(t). Every set of parameters we
tested supports the conjecture. We present the way we proceeded.

We use the encoding of dinucleotides by the reduced alphabet B. For every xy in
B, the function t 7→ (C∗,xy)(t) satisfies the linear differential equation

(C∗,xy)′(t) = ∑
(u,v)∈B

m(uv,xy)(C∗,uv)(t), (3.10.1)

where m(uv,xy) corresponds to the 9× 9 matrix introduced in section 3.9. This
matrix depends on 16 parameters: 8 parameters for the substitution rates which
characterize the independent evolution, and 8 parameters for the specific rates due
to the influence mechanism.

To solve the linear differential system defined by the generic equation (3.10.1), we
need to know the initial value of every function (C∗,xy) when the initial sequence
is at stationarity. Of course, (C∗,xy)(0) = 0 if x 6= C and (C∗,Cy)(0) = (Cy)∗. To
compute the stationary frequencies, we solve the linear system

(xy)∗ = ∑
(u,v)∈B

m(uv,xy)(uv)∗. (3.10.2)

Since (C,C)(t) is a linear combination of terms of the form (C∗,xy)(t), that is,

(C,C)(t) = (C∗,CA)(t)+(C∗,CY )(t)+(C∗,CG)(t),

we obtain an expression of (C,C)(t) if we solve the linear differential system given
by the generic equation (3.10.1). We use numerical methods with ▼❛♣❧❡ to solve
systems (3.10.2) and (3.10.1). Finally, we draw the approximation of the graph of
t 7→ (C,C)(t).

We present below a table containing the range of parameter values that we ex-
plored, and the corresponding evolution models. Then, we present the figures per-
formed for each set of parameters, which represent approximations of the theoret-
ical function t 7→ (C,C)(t).

K80 is a shorthand for Kimura 80 [Kim80], HKY85 for Hasegawa et al. 1984,
1985 [HKY85], and TN93 for Tamura and Nei 1993 [TN93].
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3.10.1 Range of parameter values explored

Model vA vT vC vG wA wT wC wG

Simulation rC
A rA

C rC
G rG

C rG
T rT

G rA
T rT

A

JC+CpG 1 1 1 1 1 1 1 1
Simulation 1 10 0 0 0 10 0 0 0

K80+CpG 1 1 1 1 3 3 3 3
Simulation 2 10 0 0 0 10 0 0 0

K80+CpG 1 1 1 1 0.3 0.3 0.3 0.3
Simulation 3 10 0 0 0 10 0 0 0

K80+YpR 1 1 1 1 0.3 0.3 0.3 0.3
Simulation 4 10 10 10 10 10 10 10 10

K80+YpR 1 1 1 1 3 3 3 3
Simulation 5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

HKY85+CpG 0.7 0.7 0.3 0.3 2.1 2.1 0.9 0.9
Simulation 6 10 0 0 0 10 0 0 0

HKY85+CpG 0.3 0.3 0.7 0.7 0.9 0.9 2.1 2.1
Simulation 7 10 0 0 0 10 0 0 0
HKY85+YpR 0.7 0.7 0.3 0.3 2.1 2.1 0.9 0.9
Simulation 8 10 10 10 10 10 10 10 10

HKY85+YpR 0.7 0.7 0.3 0.3 2.1 2.1 0.9 0.9
Simulation 9 10 1 3 7 10 1 3 7

HKY85+YpR 0.7 0.7 0.3 0.3 2.1 2.1 0.9 0.9
Simulation 10 1 0.1 0.3 0.7 1 0.1 0.3 0.7

TN93+CpG 0.3 0.4 0.1 0.2 1.5 1.2 0.3 1.0
Simulation 11 10 0 0 0 10 0 0 0

TN93+YpR 0.3 0.4 0.1 0.2 1.5 1.2 0.3 1.0
Simulation 12 10 1 3 7 10 1 3 7

TN93+YpR 0.3 0.4 0.1 0.2 1.5 1.2 0.3 1.0
Simulation 13 1 0.1 0.3 0.7 1 0.1 0.3 0.7

RN+CpG 1 2 0.5 4 2 3 4 8
Simulation 14 10 0 0 0 10 0 0 0

RN+YpR 1 2 0.5 4 2 3 4 8
Simulation 15 10 1 3 7 10 1 3 7

RN+YpR 1 2 0.5 4 2 3 4 8
Simulation 16 1 0.1 0.3 0.7 1 0.1 0.3 0.7

RN+YpR 1 2 0.5 4 2 3 4 8
Simulation 17 1 0.1 0.3 0.7 1.5 0.2 0.6 1.4
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3.10.2 Figures performed on ▼❛♣❧❡
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Figure 3.6: Simulations 1 and 2
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Figure 3.7: Simulations 3 and 4
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Figure 3.8: Simulations 5 and 6
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Figure 3.9: Simulations 7 and 8
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Figure 3.10: Simulations 9 and 10
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Figure 3.11: Simulations 11 and 12
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Figure 3.12: Simulations 13 and 14
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Figure 3.13: Simulations 15 and 16
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Figure 3.14: Simulation 17
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Chapter 4

Priors for the Bayesian star
paradox

In phylogenetics, a particular resolved tree can be highly supported even when
the data is generated by an unresolved star tree. This unfortunate aspect of the
Bayesian approach to phylogeny reconstruction is called the star paradox. Recent
studies highlight that the paradox can occur in the simplest setting, namely, for an
unresolved rooted tree on three taxa and two states, see Yang and Rannala [YR05]
and Lewis et al. [HLH05] for example. Kolaczkowski and Thornton presented
in [KT06] some simulations and suggested that artifactual high posteriors for a
particular resolved tree might disappear for very long sequences. Previous simula-
tions in Yang and Rannala’s paper were plagued by numerical problems, which left
unknown the nature of the limiting distribution on posterior probabilities. For an
introduction to the Bayesian approach to phylogeny reconstruction see chapter 5
of Yang [Yan06].

The statistical question which supports the star paradox is whether the Bayesian
posterior distribution of the resolutions of a star tree becomes uniform when the
length of the sequence tends to infinity, that is, in the case of three taxa, whether
the posterior distribution of each resolution converges to 1/3. In a recent paper,
Steel and Matsen [SM07] disprove this, thus ruining Kolaczkowski and Thornton’s
hope, for a specific class of branch length priors which they call tame (a prior
is tame if its distribution has a smooth joint probability density function that is
bounded and everywhere non zero). More precisely, Steel and Matsen show that,
for every tame prior and every fixed ε > 0, the posterior probability of any of the
three possible trees stays above 1 − ε with non vanishing probability when the
length of the sequence goes to infinity. This result had been taken account by Yang
in [Yan07] and reinforced by theoretical results on the posterior probabilities by
Susko in [Sus08].

Our main result is that Steel and Matsen’s conclusion holds for a wider class of
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priors, possibly not continuous, which we call tempered and define in section 4.2.
Recall that Steel and Matsen consider smooth priors, whose densities satisfy some
regularity conditions.

The chapter is organized as follows. In section 4.1, we describe the Bayesian
framework of the star paradox. In section 4.2, we define the class of tempered
priors for branch lengths and we state our main result. In section 4.3, we state an
extension of a technical lemma due to Steel and Matsen, which allows us to extend
their result. In section 4.4, we prove our main result. Section 4.5 is devoted to the
proofs of intermediate results. In section 4.6, we prove that every tame prior, in
Steel and Matsen’s sense, is tempered, in the sense of this chapter, and we provide
examples of tempered, but not tame, prior distributions. Finally, in section 4.7, we
prove the extension of Steel and Matsen’s technical lemma.

4.1 Bayesian framework for rooted trees on three taxa

Consider three taxa, encoded by the set τ = {1,2,3}, with two possible states.
Phylogenies on τ are supported by one of the four following trees: the star tree R0

on three taxa and, for every taxon i ∈ τ , the tree Ri such that i is the outlier, hence

R1 = (1,(2,3)), R2 = (2,(1,3)), R3 = (3,(1,2)).

The phylogeny based on R0 is specified by the common length of its three branches,
denoted by t. For each i ∈ τ , the phylogeny based on Ri is specified by a couple of
branch lengths (te, ti), where te denotes the external branch length and ti the internal
branch length, see figure 4.1.

For instance, in the phylogeny based on R1, the divergence of taxa 2 and 3 occurred
te units of time ago and the divergence of taxon 1 from taxa 2 and 3 occurred ti + te
units of time ago.

2 3 1 3 1 2 1 2 3 1 2 3

ti

te

R1 R2 R3 R0

t

Figure 4.1: The four rooted trees for three species.

Four site patterns can occur on τ: s0 denotes the pattern such that a given site
coincides in the three taxa and, for every i ∈ τ , si denotes the pattern such that a
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given site coincide in the two other taxa and is different in taxon i. In other words,
if one writes the site patterns in taxa 1, 2 and 3 in this order and x and y for any two
different characters,

s0 = xxx, s1 = yxx, s2 = xyx, and s3 = xxy.

Let π denote the set of site patterns. As explained above, in the specific case
of three taxa and two states evolving in a Jukes-Cantor model, one can choose
π = τ ∪{0}, in effect using i ∈ π as a shorthand for the collection of site patterns
encoded by si. Assume that the counting of site pattern i is ni. Then n = n0 +
n1 + n2 + n3 is the total length of the sequences and, in the independent Jukes-
Cantor model considered in this chapter, the quadruple (n0,n1,n2,n3) is a sufficient
statistics of the sequence data. We use n0:3 to denote any quadruple (n0,n1,n2,n3)
of nonnegative integers such that |n0:3| = n0 +n1 +n2 +n3 = n > 1.

We assume that the sequences evolve according to a continuous-time Markov pro-
cess with equal substitution rates 1 between the two characters.

For every i ∈ π and every couple of branch lengths (te, ti), let pi(te, ti) denote the
probability that site pattern si occurs on tree R1 with branch lengths (te, ti). Standard
computations provided by Yang and Rannala show that

4p0(te, ti) = 1+ e−4te +2e−4(ti+te),

4p1(te, ti) = 1+ e−4te −2e−4(ti+te),

4p2(te, ti) = 4p3(te, ti) = 1− e−4te .

Let T = (Te,Ti) denote a couple of positive random variables representing the
branch lengths (te, ti). Let N0:3 = (N0,N1,N2,N3) denote a random variable rep-
resenting the counts of sites patterns n0:3 = (n0,n1,n2,n3). We often write N for
N0:3.

4.2 The star tree paradox

Assuming that every taxon in τ evolved from a common ancestor, the aim of
phylogeny reconstruction is to compute the most likely tree Ri. To do so, in the
Bayesian approach, one places prior distributions on the trees Ri and on their
branch lengths T = (Te,Ti).

4.2.1 Main result

Let P(N = n0:3|Ri,T) denote the probability that N = n0:3 assuming that the data is
generated along the tree Ri conditionally on the branch lengths T = (Te,Ti). One
may consider R1 only since, for every n0:3, the symmetries of the setting yield the
relations

P(N = n0:3|R2,T) = P(N = (n0,n2,n3,n1)|R1,T),
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and
P(N = n0:3|R3,T) = P(N = (n0,n3,n1,n2)|R1,T).

Notation 4.2.1. For every i ∈ τ , let τi = τ \{i}. For every i ∈ π , let Pi denote the
random variable

Pi = pi(T) = pi(Te,Ti).

For every i ∈ τ and every n0:3, let Πi(n0:3) denote the random variable

Πi(n0:3) = Pn0
0 Pni

1 P
n j+nk

2 , with {i, j,k} = τ.

We recall that P2 = P3 and we note that, if |n0:3|= n0 +n1 +n2 +n3 = n with n > 1,
for every i ∈ τ ,

Πi(n0:3) = Pn0
0 Pni

1 Pn−n0−ni
2 .

Fix n0:3 and assume that |n0:3| = n0 +n1 +n2 +n3 = n with n > 1. For every i ∈ τ ,
the posterior probability of Ri conditionally on N = n0:3 is

P(Ri|N = n0:3) =
n!

n0!n1!n2!n3!
1

P(N = n0:3)
E(Πi(n0:3)).

Thus, for every i and j ∈ τ ,

P(Ri|N = n0:3)

P(R j|N = n0:3)
=

E(Πi(n0:3))

E(Π j(n0:3))
.

Definition 4.2.2. For every ε > 0 and every i ∈ τ , let Nε
i denote the set of n0:3 such

that, for both indices j ∈ τ such that j 6= i,

E(Πi(n0:3)) > (2/ε)E(Π j(n0:3)).

For every i ∈ τ and n0:3 ∈ Nε
i ,

P(Ri|N = n0:3) > 1− ε,

which means that the posterior probability of tree Ri among the three possible trees
is highly supported.

Recall that, under hypothesis R0 and for a tame prior distribution on T = (Te,Ti),
that is, with a smooth joint probability density function that is bounded and ev-
erywhere non zero, Steel and Matsen prove that, for every i ∈ τ , P(N ∈ Nε

i ) does
not go to 0 when the sequence length n goes to infinity, and consequently that the
posterior probability P(Ri|N) can be close to 1 even when the sequence length n is
large.

We prove the same result for tempered prior distributions of T = (Te,Ti), which we
now define.
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Notation 4.2.3. (1) For every s ∈ [0,1] and z ∈ [0,3], let

Gs(z) = P
(
e−4Te(1− e−4Ti) 6 s |e−4Te(1+2e−4Ti) = z

)
.

(2) For every positive t and every i∈ π , let qi denote the probability that site pattern
si occurs on tree R0, hence

4q0 = 4p0(0, t) = 1+3e−4t , 4q1 = 4q2 = 4q3 = 1− e−4t .

(3) Let ℓt denote a positive real number such that 1 < 4q0−ℓt and 4q0 +ℓt < 4, for
instance ℓt = 3e−4t (1− e−4t). Let I and It denote the intervals

I = [0,3], It = [4q0 −1− ℓt ,4q0 −1+ ℓt ] ⊂]0,3[.

(4) For every positive t and integer n, let

Qn(t) = P(Ti 6 1/n, t 6 Te 6 t +1/n) .

Definition 4.2.4 (Tempered priors). The distribution of T = (Te,Ti) is tempered if
the following two conditions hold.

1. For every t, there exists s0 ∈]0,1], an interval It around 4q0 − 1, bounded
functions (Fi)

k−1
i=0 , positive numbers α and κ , and real numbers (εi)

k
i=0 such

that
0 = ε0 < ε1 < · · · < εk−1 6 2 < εk,

and such that for every s ∈ [0,s0] and every z ∈ It ,
∣∣∣∣∣Gs(z)−

k−1

∑
i=0

Fi(z)s
α+εi

∣∣∣∣∣6 κsα+εk .

2. For every positive t, n−1 logQn(t) → 0 when n → ∞.

We detail the properties involved in definition 4.2.4 and provide examples of tem-
pered priors in subsection 4.2.2 below.

We now state our main result, which is the extension of Steel and Matsen’s result
to our more general setting.

Theorem 4.2.5. Consider sequences of length n generated by a star tree R0 on 3
taxa with strictly positive edge length t. Let N be the resulting data, summarized
by site pattern counts. Consider any prior on the three resolved trees (R1,R2,R3)
and a tempered prior distribution on their branch lengths T = (Te,Ti).
Then, for every i ∈ τ , for every positive ε , there exists a positive δ such that, when
n is large enough,

P((P(Ri|N) > 1− ε) > δ .

We prove theorem 4.2.5 in section 4.4.
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4.2.2 Motivation and intuitive understanding of definition 4.2.4

In definition 4.2.4, condition (2) is easy to describe, to illustrate and to check, but
condition (1) might be more difficult to grasp. Condition (1) involves a Taylor
expansion around s = 0 of the function s 7→ Gs(z), where the Taylor coefficients
depend on z. The Taylor expansion comes from a technical result given in proposi-
tion 4.3.2, which concerns the asymptotics of 1−Mt+1/Mt , where Mt = E(V t) with
V a [0,1] random variable, and depends on the behaviour of the distribution func-
tion of V around 1. Theorem 4.2.5 relies on this technical result and this explains
the Taylor expansion.

Now, the main difficulty lies in the following problem: given a prior, how to check
if the prior is tempered or not? To wit, to check that a Taylor expansion holds for
the function s 7→Gs(z), one needs to state its expression, and compute a conditional
expectation involving two random variables, which can be fastidious. That is why
we now present some explicit examples of tempered priors. We begin with the
following result.

Proposition 4.2.6. Assume that T = (Te,Ti) has a smooth joint probability density
ω which is bounded and everywhere non zero. Then the distribution of T = (Te,Ti)
is tempered.

As a consequence, every tame prior fulfills the hypothesis of proposition 4.2.6,
hence every tame prior is tempered, as claimed in the introduction. This case
includes the exponential priors discussed in [YR05]. We prove proposition 4.2.6
in section 4.6.

However some tempered priors are not tame, as illustrated in the following example
where Steel and Matsen’s condition fails.

Definition 4.2.7. Fix a > 0 and b > 0. Let (tn), (yn) and (rn) denote sequences
of positive numbers, indexed by n > 1, and r a positive number, defined by the
formulas

tn = n−a, yn = 1+2e−4tn rn = yn [n−b − (n+1)−b], r = ∑
n>1

rn.

Proposition 4.2.8. Choose positive parameters a and b such that 3a < b and 3a <
1. Assume that Ti is a discrete random variable such that, for every n > 1,

P(Ti = tn) = rn/r.

Assume that Te is a continuous random variable, independent of Ti, with exponen-
tial law of parameter 4, that is, with density 4e−4t on t > 0 with respect to the
Lebesgue measure.

Then, the distribution of T = (Te,Ti) is not tame but it is tempered, for the param-
eters

k = 3, α = b/a, ε1 = 1, ε2 = 2, ε3 = 3,
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and some explicit functions F0, F1 and F2.

Since the distribution of Ti is an accumulation of Dirac distributions, the prior
distribution of T = (Te,Ti) cannot be tame.

Yet, the fact that the prior distribution is tempered does not come from the fact that
the distribution of Ti is discrete. For a degenerate example, if Ti = 0 almost surely,
then Gs(z) = 1 for every s > 0, and this function does not have a Taylor expansion
around zero whose first term is a positive power of s. Note that in this particular
case, the Bayesian star paradox does not occur.

However, under the conditions of proposition 4.2.8, one can compute a Taylor
expansion of Gs(z) around zero which fulfills condition (1) of definition 4.2.4. We
prove this in section 4.6.

We provide below some examples of less ill-behaved distributions which are tem-
pered but not tame, and one example of distribution which does not fulfill condi-
tion (1), hence is not tempered.

Proposition 4.2.9. Assume that Te is a continuous random variable, with expo-
nential law of parameter 4, that is, with density 4e−4t on t > 0 with respect to the
Lebesgue measure. Assume that Ti is a random variable independent of Te.

(i) If the distribution of Ti is uniform on [0,τ], with τ > 0, the distribution of T =
(Te,Ti) is tempered but not tame.

(ii) If the distribution of Ti has density κtκ−1
i on the interval [0,1], for a given κ in

(0,1), the distribution of T = (Te,Ti) is tempered but not tame.

(iii) If the distribution of Ti has density − log(ti) on the interval [0,1], the distribu-
tion of T = (Te,Ti) does not fulfill condition (1) of definition 4.2.4.

We prove proposition 4.2.9 in section 4.6.

4.3 Extension of Steel and Matsen’s lemma

The Bayesian star paradox due to Steel and Matsen relies on a technical result
which we slightly rephrase as follows. For every nonnegative real t and every [0,1]
valued random variable V , introduce

Mt = E(V t), Rt = 1− Mt+1

Mt
=

E(V t(1−V ))

E(V t)
.

Proposition 4.3.1 (Steel and Matsen’s lemma). Let 0 6 η < 1 and B > 0. There
exists a finite K, which depends on η and B only, such that the following holds. For
every [0,1] valued random variable V with a smooth probability density function f
such that f (1) > 0 and | f ′(v)| 6 B f (1) for every η 6 v 6 1, and for every integer
k > K,

2kRk > 1.
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Indeed the asymtotics of Rk when k is large depends on the distribution of V around
1. We prove in the following proposition that the conclusion of Steel and Matsen’s
lemma above holds for a wider class of random variables.

Proposition 4.3.2. Let V a random variable on [0,1]. Suppose that there exists
real numbers 0 6 v0 < 1, α > 0, (εi)

n
i=0 and (γi)

n
i=0, such that

0 = ε0 < ε1 < · · · < εn−1 6 1 < εn,

and, for every v0 6 v 6 1,
∣∣∣∣∣P(V > v)−

n−1

∑
i=0

γi(1− v)α+εi

∣∣∣∣∣6 γn(1− v)α+εn .

Then there exists a finite τ(γ0:n), which depends continuously on γ0:n, such that for
every t > τ(γ0:n),

2tRt > α.

Remark 4.3.3. We insist on the fact that τ(γ0:n) depends continuously on γ0:n. To
wit, in the proof of proposition 4.5.6, we apply proposition 4.3.2 with bounded
functions of z. This means that for every z ∈ It , one gets a number τ which depends
on z through the bounded functions such the control on the distribution of V holds.
The continuity of τ ensures that there exists a number independent of z such that
proposition 4.5.6 holds.

Remark 4.3.4. If one computes a Taylor expansion of the function v 7→ P(V > v)
at v = 1− under the conditions of Steel and Matsen’s lemma, one can see that con-
ditions of proposition 4.3.2 hold. It follows that proposition 4.3.2 is an extension
of Steel and Matsen’s lemma.

We prove proposition 4.3.2 in section 4.7. The proof of theorem 4.2.5 relies on this
technical proposition.

4.4 Sketch of proof of theorem 4.2.5

This section is devoted to the sketch of the proof of theorem 4.2.5. We use the
definitions below. Note that the set F(n)

c is not the set introduced by Steel and
Matsen. For a technical reason in the proof of proposition 4.4.2 stated below, we
had to modify their definition. Note however that propositions 4.4.2 and 4.4.3
below are adaptations of ideas in Steel and Matsen’s paper.

Notation 4.4.1. For every i in π , let ∆i denote the function defined as follows. For
every nonnegative integers n0:3 = (n0,n1,n2,n3) such that |n0:3| = n0 + n1 + n2 +
n3 = n with n > 1,

∆0(n0:3) =
n0 −q0n√

n
,
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and, for every i ∈ τ ,

∆i(n0:3) =
ni −1/3(n−n0)√

n
.

For every c > 1, introduce

F(n)
c = {n0:3 ; |n0:3|= n, −2c 6 ∆2(n0:3)6−c, −2c 6 ∆3(n0:3)6−c, −c 6 ∆0(n0:3)6 0}.

For every i ∈ τ and every positive η , let Ai
η denote the event

Ai
η =

{
∀ j ∈ τi, E(Πi(N) |N) > ηE(Π j(N) |N)

}
.

Since ∆1 +∆2 +∆3 = 0, every n0:3 in F(n)
c is such that 2c 6 ∆1(n0:3) 6 4c. We note

that F(n)
c is not symmetric about τ and gives a preference to 1. That is why we

only deal with A1
η in the following proof. To deal with Ai

η , it suffices to modify the

definition of F(n)
c .

From the reasoning in section 4.2, it suffices to prove that for every positive η ,
there exists a positive δ such that, when n is large enough,

P
(
A1

η

)
> δ .

Suppose that one generates n > 1 sites on the star tree R0 with given branch length
t and let N be the counts of site patterns defined in section 4.1, hence N0 + N1 +
N2 +N3 = n.

When n is large enough, central limit estimates show that the probability of the

event
{

N ∈ F(n)
c

}
is uniformly bounded from below, say by δ > 0. Hence,

P
(
A1

η

)
> δP

(
A1

η

∣∣N ∈ F(n)
c

)

We wish to prove that there exists a positive α independent of c such that for n

large enough and for every n0:3 ∈ F(n)
c , and for every j ∈ τ1,

E(Π1(n0:3)) > c2α E(Π j(n0:3)).

This follows from the two propositions below, adapted from Steel and Matsen’s
paper.

Proposition 4.4.2. Fix t and assume that n0:3 ∈F(n)
c . Then, when n is large enough,

for every j ∈ τ1,

E(Π j(n0:3) |4P0 −1 ∈ It) > E(Π j(n0:3) |4P0 −1 /∈ It).

Proposition 4.4.3. Fix t and assume that n0:3 ∈ F(n)
c . Then, there exists a positive

α , independent of c, such that for every z ∈ It , and for every j ∈ τ1,

E(Π1(n0:3) |4P0 −1 = z) > c2αE(Π j(n0:3) |4P0 −1 = z).
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We prove propositions 4.4.2 and 4.4.3 in section 4.5.

From these two propositions, for every j ∈ τ1,

E(Π1(n0:3)) > c2αP(4P0 −1 ∈ It)E(Π j(n0:3)).

Assume that c is so large that c2αP(4P0 −1 ∈ It) > η . Then, for every n0:3 ∈ F(n)
c ,

for every j ∈ τ1,
E(Π1(n0:3)) > η E(Π j(n0:3)).

This implies that

P

(
A1

η

∣∣N ∈ F(n)
c

)
= 1,

which yields the theorem.

4.5 Proof of propositions 4.4.2 and 4.4.3

4.5.1 Proof of proposition 4.4.2

The proof is decomposed into two intermediate results, stated as lemmata below
and using estimates on auxiliary random variables introduced below.

Notation 4.5.1. For every n > 1 and t > 0, let Γt(n) = [0,1/n]× [t, t +1/n].
For every t > 0, let µt = qq0

0 qq1
1 qq2

2 qq3
3 = qq0

0 q3q1
1 and Ut denote the random variable

Ut = ∏
i∈π

(Pi/qi)
qi .

For every n0:3, for every j ∈ τ1, let Wj(n0:3) denote the random variable

Wj(n0:3) = P∆0(n0:3)
0 P

(∆ j−∆0/3)(n0:3)
1 P(∆1+∆k−2∆0/3)(n0:3)

2 , with { j,k} = τ1.

One sees that

Ut = Pq0
0 Pq1

1 P2q1
2 /µt , Qn(t) = P(T ∈ Γt(n)) ,

and
Wj = (P0/P2)

∆0(P1/P2)
∆ j−∆0/3.

Lemma 4.5.2. (1) For every n0:3 ∈ F(n)
c , for every j ∈ τ1, Wj(n0:3) 6 1.

(2) For every n0:3 ∈ F(n)
c , for every j ∈ τ1, Wj(n0:3) > (q1)

c on the event {T ∈
Γt(n)}.
(3) There exists a finite constant κ such that Un

t > e−κ uniformly on n > 1 and
{T ∈ Γt(n)}.
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Proof of lemma 4.5.2. (1) For every T, P0 > P1 > P2. On F(n)
c , ∆0 6 0 and for every

j ∈ τ1, ∆ j −∆0/3 6 0 hence

(P0/P1)
∆0 6 1, (P0/P2)

∆ j−∆0/3
6 1.

This proves the claim.

(2) One has P0 6 1 everywhere and P1 > q1 and P2 > q1 on the event {T ∈ Γt(n)}.

On F(n)
c , ∆0 6 0 and for every j ∈ τ1, ∆ j−∆0/3 6 0 hence Wj > q

−∆ j−2∆0/3
2 . Finally,

on F(n)
c , ∆ j +2∆0/3 6 −c. This proves the claim.

(3) For every T ∈ Γt(n), Ti > 0 and Te > t, hence P1 > q1 and P2 > q2 = q1. Like-
wise, Ti 6 1/n and Te 6 t + 1/n hence P0 > p0(1/n, t + 1/n) > q0 − 5e−4t(1−
e−4/n)/4. This yields that, for every n > 1 and T ∈ Γt(n),

Un
t > (1−5e−4t/(q0n))n → exp(−5e−4t/q0) > 0,

which implies the desired lower bound.

Lemma 4.5.3. For every n0:3 ∈ F(n)
c , for every j ∈ τ1,

E(Π j(n0:3) |4P0 −1 ∈ It) > µn
t Qn(t)e

−O(
√

n),

and
E(Π j(n0:3) |4P0 −1 /∈ It) 6 µn

t e−(ℓ2
t /32)n.

Proof of lemma 4.5.3. Since P0 = p0(T), for every T ∈ Γt(n), when n is large,
4P0 −1 ∈ It . Consequently,

E(Π j(n0:3) |4P1 −1 ∈ It) > Qn(t)E(Π j(n0:3) |T ∈ Γt(n)) .

On the event {T ∈ Γt(n)},

Π j(n0:3) = µn
t Un

t Wj(n0:3)
√

n
> µn

t e−κ(q1)
c
√

n,

from parts (2) and (3) of lemma 4.5.2, which proves the first part of the lemma.

Turning to the second part, let dKL denote the Kullback-Leibler distance between
probability measures. When 4P0 −1 /∈ It ,

dKL(q0:3,P0:3) > (1/2)‖q0:3 −P0:3‖2
1 > (1/2)(q0 −P0)

2
> ℓ2

t /(32).

Note that
Π j(n0:3) = µn

t Wj(n0:3)
√

ne−ndKL(q0:3,P0:3),

hence the estimate on dKL(q0:3,P0:3), and part (1) of lemma 4.5.2, imply the second
part of the lemma.

Turning finally to the proof of proposition 4.4.2, we note that Qn(t) = eo(n) because
the distribution of T is tempered. Furthermore, lemma 4.5.3 shows that, when n is
large enough,

E(Π j(n0:3) |4P0 −1 ∈ It) > E(Π j(n0:3) |4P0 −1 /∈ It).

This concludes the proof of proposition 4.4.2.
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4.5.2 Proof of proposition 4.4.3

Our proof of proposition 4.4.3 is based on lemma 4.5.5 and proposition 4.5.6 below.

Notation 4.5.4. For every u in [0,1], let ζ (u) = (1 + 2u)(1− u)2. Let U and V
denote the random variables defined as

U = (P1 −P2)/(1−P0), V = ζ (U).

Lemma 4.5.5. For every n0:3 ∈ F(n)
c , for every j ∈ τ1,

E(Π1(n0:3) |P0)

E(Π j(n0:3) |P0)
> 4c2n

E(V s(1−V ) |P0)

E(V s |P0)
, s = (n−n0)/3.

Proof of lemma 4.5.5. Recall that, for every c > 1, F(n)
c is

F(n)
c = {n0:3 : |n0:3|= n, −2c 6 ∆2(n0:3)6 c,−2c 6 ∆3(n0:3)6 c,−c 6 ∆0(n0:3)6 0}.

Using the ∆ variables, one can rewrite Π1, Π2 and Π3 as

Πi(n0:3) = Pn0
0 (P1P2

2 )s (P1/P2)
∆i(n0:3)

√
n , i = 1,2,3, s = (n−n0)/3.

Assume that n0:3 ∈ F(n)
c . Then, ∆1(n0:3) > 2c, for every j ∈ τ1, ∆ j(n0:3) 6 0 and

P1 > P2, hence

Π1(n0:3) > Pn0
0 (P1P2

2 )s (P1/P2)
2c
√

n , Π j(n0:3) 6 Pn0
0 (P1P2

2 )s.

Furthermore,

P1P2
2 = (1/27)V (1−P0)

3, P1/P2 = (1+2U)/(1−U),

hence for every j ∈ τ1,

E(Π1(n0:3) |P0)

E(Π j(n0:3) |P0)
>

E

(
V s ((1+2U)/(1−U))2c

√
n |P0

)

E(V s |P0)
.

Direct computations (or lemma 3.2 in Steel and Matsen [SM07]) show that, for
every u in [0,1) and every m > 3,

((1+2u)/(1−u))m
> m2(1−ζ (u)),

hence
((1+2U)/(1−U))2c

√
n
> 4c2n(1−V ).

The conclusion of lemma 4.5.5 follows.
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Proposition 4.5.6. Assume that the distribution of T is tempered. There exists θ

and α , both positive and independent of c, such that for every s > θ , on the event
{4P0 −1 ∈ It},

4sE(V s(1−V ) |P0) > α E(V s |P0).

Proof of proposition 4.5.6. We recall that U and V denote the random variables
defined as

U = (P1 −P2)/(1−P0), V = ζ (U), ζ (u) = (1+2u)(1−u)2.

To use proposition 4.3.2, one must compute a Taylor expansion at v = 1− or, equiv-
alently, at u = 0+, of the conditional probability

P(V > v |P0) = P(U 6 u |P0),

where u = ζ−1(v). Besides, for v close to 1,

u = ζ−1(v) = w/
√

3+w2/9+5w3/54
√

3+O(w4), with w =
√

1− v.

Since U = (P1 −P2)/(1−P0),

P(U 6 u |4P0 −1 = z) = P(Se(3−Si) 6 2s |SeSi = z) ,

where we recall that

Se = e−4Te , Si = 1+2e−4Ti , 2s = u(3− z).

Keeping the notation given in definition 4.2.4, one has

Gs(z) = P(Se(3−Si) 6 2s |SeSi = z) .

Since the distribution of T is tempered, there exists n bounded functions (Fi)
n−1
i=0 on

It , a positive number α , n+1 real numbers

0 = ε0 < ε1 < · · · < εn−1 6 2 < εn,

and two positive numbers κ and s0 such that for every 0 6 s 6 s0 and every z ∈ It ,
∣∣∣∣∣Gs(z)−

n−1

∑
i=0

Fi(z)s
α+εi

∣∣∣∣∣6 κsα+εn .

Combining this with the relation 2s = u(3− z) and the expansion of u = ζ−1(v)
along the powers of w, one sees that there exists bounded functions ( fi)

n−1
i=0 on It , a

positive number κ ′ and 0 6 v0 < 1 such that for every v0 6 v 6 1 and every z ∈ It ,
∣∣∣∣∣P(V > v |4P0 −1 = z)−

n−1

∑
i=0

fi(z)(1− v)α/2+εi/2

∣∣∣∣∣6 κ ′(1− v)α/2+εn/2.

Since the functions fi are bounded and positive on It , proposition 4.3.2 in sec-
tion 4.3 implies that there exists a positive number θ such that for every z ∈ It and
every s > θ , the conclusion of proposition 4.5.6 holds.
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Assuming this, the proof of proposition 4.4.3 is as follows. Let s, θ and α as in
lemma 4.5.5 and proposition 4.5.6. Since n−n0 = (1−q0)n−∆0

√
n > (1−q0)n

for every n0:3 ∈ F(n)
c , s = (n− n0)/3 > θ when n is large enough. Furthermore,

s 6 n/3. Finally, for every n0:3 ∈ F(n)
c with n large enough, on {4P0 −1 ∈ It}, for

every j ∈ τ1,
E(Π1(n0:3) |P0) > 3c2α E(Π j(n0:3) |P0).

This concludes the proof of proposition 4.4.3.

4.6 Proof of propositions 4.2.6, 4.2.8, and 4.2.9

Notation 4.6.1. Introduce the random variables

(Se,Si) = ς(Te,Ti), ς(te, ti) = (e−4te ,1+2e−4ti),

that is,

Se = e−4Te , Si = 1+2e−4Ti .

Hence, Gs(z) is also

Gs(z) = P(3Se 6 2s+ z |SeSi = z) .

4.6.1 Proof of proposition 4.2.6

The distribution of (Se,Si) has a smooth joint probability density ϖ , defined on
0 < x 6 1 < y 6 3 by

ϖ(x,y) =
ω ◦ ς−1(x,y)

16x(y−1)
.

For tame priors, the probability Qn(t) introduced in condition (2) of definition 4.2.4
is of order 1/n2. Thus condition (2) of definition 4.2.4 holds.

The definition of Gs(z) as a conditional expectation can be rewritten as

Gs(z) = P(3Se 6 2s+SeSi |SeSi = z) .

Hence, for every measurable bounded function H,

E(H(SeSi) ; 3Se 6 2s+SeSi) = E(H(SeSi)Gs(SeSi)) ,

that is,
∫∫

H(xy)1{3x 6 2s+ xy}ϖ(x,y)dxdy =
∫∫

H(xy)Gs(xy)ϖ(x,y)dxdy.
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The change of variable z = xy yields
∫∫

H(z)1{3x 6 2s+ z}ϖ (x,z/x)dzdx/x =
∫∫

H(z)Gs(z)ϖ (x,z/x)dzdx/x.

This should hold for every measurable bounded function H, hence one can choose

Gs(z) = Hz(s)/Hz(∞),

with
Hz(s) =

∫
1{3x 6 2s+ z}ϖ (x,z/x)dx/x.

Since 0 6 Se 6 1 6 Si 6 3 almost surely, the integral defining Hz(s) may be further
restricted to the range 0 6 x 6 1 and z/3 6 x 6 z. Finally, for every s > 0 and
z ∈ [0,3],

Gs(z) = Hz(s)/Hz(1),

where

Hz(s) =
∫ m(s,z)

m(0,z)
ϖ (x,z/x)dx/x, with m(s,z) = min{1,z,(2s+ z)/3}.

Hence, m(0,z) = z/3 and, for small positive values of s, m(s,z) = m(0,z)+ 2s/3.
When 0 6 z 6 1, m(s,z) → m(∞,z) = z when s → ∞ and this limit is reached for
s = z. When 1 6 z 6 3, m(s,z)→ m(∞,z) = 1 when s → ∞ and this limit is reached
for s = (3− z)/2. In both cases, m(∞,z) = m(1,z) hence Hz(∞) = Hz(1).

Because ω and ς−1 are smooth, Taylor-Lagrange formula shows that, for every
s > 0 and every fixed z,

Hz(s) = Hz(0)+H ′
z(0)s+

1
2

H ′′
z (0)s2 +

1
6

H(3)
z (0)s3 +

1
24

∫ s

0
(x− s)3H(4)

z (s)dx.

Simple computations yield Hz(0) = 0 and the values of H ′
z(0), H ′′

z (0) and H(3)
z (0)

as combinations of ω and of partial derivatives of ω , evaluated at the point (ϑ ,0),
where 3e−4ϑ = z.

Furthermore, the hypothesis on ω ensures that H(4)
z is bounded, in the following

sense: there exists positive numbers s0 and κ0 such that for every s ∈ [0,s0] and
every z ∈ It , ∣∣∣H(4)

z (s)
∣∣∣6 24κ0.

Hence, T = (Te,Ti) fulfills the first condition to be tempered, with

k = 3, α = 1, ε1 = 1, ε2 = 2, ε3 = 3, κ = κ0,

and, for every 0 6 i 6 2,

Fi(z) = H(i+1)
z (0)/Hz(1).

Finally, since ω is smooth, the functions Fi are bounded on It .
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4.6.2 Proof of proposition 4.2.8

Recall that, using the random variables Se = e−4Te and Si = 1+2e−4Ti , the function
Gs is characterized by the fact that, for every measurable bounded function H,

E(H(SeSi) : Se(3−Si) 6 2s) = E(H(SeSi)Gs(SeSi)) .

Here, Se and Si are independent, the distribution of Se is uniform on [0,1] and the
distribution of Si is discrete with

P(Si = yn) = rn/r.

Thus,

∑
n

rn

∫ 1

0
H(xyn)1{x(3− yn) 6 2s}dx = ∑

n
rn

∫ 1

0
H(xyn)Gs(xyn)dx.

The changes of variable z = ynx in each integral yield

∑
n

(rn/yn)
∫

H(z)1{z 6 yn}1{3z 6 (2s+z)yn}dz =∑
n

(rn/yn)
∫

H(z)1{z 6 yn}Gs(z)dz.

This should hold for every measurable bounded function H, hence

Gs(z) = Hz(s)/Hz(∞), Hz(s) = ∑
n

(rn/yn)1{z 6 yn}1{3z 6 (2s+ z)yn}.

Since rn/yn = n−b − (n+1)−b for n > 1, Hz(s) = n(z,s)−b where

n(z,s) = inf{n > 1 |z 6 yn, 3z 6 (2s+ z)yn}.

Since yn → 3 when n → ∞, n(z,s) is finite for every z < 3 and s > 0.

For every z > 0, when s is large enough, namely s > (3− z)/2, the condition 3z 6

(2s+ z)yn becomes useless and

n(z,s) = inf{n > 1 |z 6 yn},

hence n(z,s) and Hz(s) are independent of s. If z > 1, this implies that n(z,s) and
Hz(s) are independent of s > 1. If z < 1 and s > 1, the conditions z 6 yn and
3z 6 (2s+ z)yn both hold for every n > 1 hence n(z,s) = 1 and Hz(s) = 1. In both
cases, Hz(∞) = Hz(1).

We are interested in small positive values of s. For every z < 3, when s is small
enough, namely s 6 (3− z)/2, the condition z 6 yn becomes useless and

n(z,s) = inf{n > 1 |3z 6 (2s+ z)yn},

When furthermore s < z, n > n(z,s) is equivalent to the condition

n−a
6 h(s/z), with h(u) = −1

4
ln

(
1− 3u

1+2u

)
, 0 6 u < 1.
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Finally, for every s < min{z,(3− z)/2}, n(z,s) is the unique integer such that

n(z,s)−1 < h(s/z)−1/a
6 n(z,s).

This reads as

h(u)b/a[1+h(u)1/a]−b < Hz(1)Gs(z) 6 h(u)b/a, u = s/z.

One sees that the function h is analytic and that h(u) = (3u/4)+o(u) when u → 0,
hence,

h(u)b/a = (3u/4)b/a(1+a1u+a2u2 +a3u3 +o(u3)),

when u→ 0, for given coefficients a1, a2 and a3. Likewise, since 1/a > 3, h(u)1/a =
o(u3) when u → 0. This implies that

[1+h(u)1/a]−b = 1+o(u3),

hence
Hz(1)Gs(z) = (3u/4)b/a(1+a1u+a2u2 +a3u3 +o(u3)).

This yields the first part of definition 4.2.4, with

k = 3, α = b/a, (ε1,ε2,ε3) = (1,2,3),

and

F0(z) = (3/4z)b/a/Hz(1), F1(z) = a1F0(z)/z, F1(z) = a2F0(z)/z2.

The remaining step is to get rid of the dependencies over z of our upper bounds.
For instance, the reasoning above provides as an error term a multiple of

uα+3/Hz(1) = sα+3/(zα+3Hz(1)),

instead of a constant multiple of sα+3. But inf It > 0, hence the 1/zα+3 contribution
is uniformly bounded.

As regards Hz(1), we first note that Hz(1) = 1 if z 6 1. If z > 1, elementary
computations show that Hz(1) > c if and only if n(z,1) 6 c−1/b if and only if
exp(−ca/b) > (z− 1)/2, which is implied by the fact that 1− ca/b > (z− 1)/2,
which is equivalent to the upper bound ca/b 6 (3− z)/2. Since sup It < 3, this can
be achieved uniformly over z ∈ It and 1/Hz(1) is uniformly bounded as well.

Finally, we asked for an expansion valid on s 6 s0, for a fixed s0, and we proved
an expansion valid over s/z 6 u0, for a fixed u0. But one can choose s0 = u0 inf It .
This concludes the proof that the conditions in the first part of definition 4.2.4 hold.

We now prove that the second part of definition 4.2.4 holds. Since Ti and Te are
independent, for every positive integer n,

Qn(t) = P(Ti 6 1/n)P(t 6 Te 6 t +1/n) .

97



One has
nP(t 6 Te 6 t +1/n) → 4e−4t when n → +∞,

and
1

r(n1/a +1)b
6 P(Ti 6 1/n) 6

3

rnb/a
.

Since Qn(t) is bounded from below by a multiple of 1/n1+b/a, the second point of
definition 4.2.4 holds.

4.6.3 Proof of Proposition 4.2.9

Recall that, using the random variables Se = e−4Te and Si = 1+2e−4Ti , the function
Gs is characterized by the fact that, for every measurable bounded function H,

E(H(SeSi) : Se(3−Si) 6 2s) = E(H(SeSi)Gs(SeSi)) .

Case (i). Here, Se and Si are independent, the distribution of Se is uniform on [0,1]
and Si is a continuous random variable with density

1
4τ(si −1)

1{1+2e−4τ
6 si 6 3}

with respect to the Lebesgue measure. Let ϖ denote the joint probability density
defined as

ϖ(x,y) = 1{0 6 x 6 1}1{1+2e−4τ
6 y 6 3} 1

4τ(y−1)
.

Thus,
∫∫

H(xy)1{3x 6 2s+ xy}ϖ(x,y)dxdy =
∫∫

H(xy)Gs(xy)ϖ(x,y)dxdy.

The change of variable z = xy yields
∫∫

H(z)1{3x 6 2s+ z}ϖ (x,z/x)dzdx/x =
∫∫

H(z)Gs(z)ϖ (x,z/x)dzdx/x.

This should hold for every measurable bounded function H, one can choose

Gs(z) = Hz(s)/Hz(∞),

with

Hz(s) =
∫

1{3x 6 2s+ z}1{0 6 x 6 1}1{1+2e−4τ
6 z/x 6 3}dx/(z− x).

Finally, for every s > 0 and z ∈ [0,3],

Gs(z) = Hz(s)/Hz(1+ e−4τ),
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where

Hz(s) =
∫ m(s,z)

m(0,z)

dx

z− x
, with m(s,z) = min{1,z/(1+2e−4τ),(2s+ z)/3}.

Hence, m(0,z) = z/3 and, for small positive values of s, m(s,z) = m(0,z)+ 2s/3.
When 0 6 z 6 1+2e−4τ , m(s,z) → m(∞,z) = z/(1+2e−4τ) when s → ∞ and this
limit is reached for s = 1+e−4τ

1+2e−4τ z. When 1 + 2e−4τ 6 z 6 3, m(s,z) → m(∞,z) = 1
when s → ∞ and this limit is reached for s = (3− z)/2. In both cases, m(∞,z) =
m(1+ e−4τ ,z) hence Hz(∞) = Hz(1+ e−4τ).

For every fixed 0 6 z 6 1+2e−4τ and every 0 6 s 6
1+ e−4τ

1+2e−4τ
z,

Hz(s) = log

(
z

z− s

)
.

For every fixed 1+2e−4τ 6 z 6 3 and every 0 6 s 6
3− z

2
,

Hz(s) = log

(
z

z− s

)
.

Hence, there exists a positive s0 such that for every z ∈ It and every s ∈ [0,s0],

Hz(s) = log

(
z

z− s

)
= log

(
1− s

z

)
.

Such a function has a Taylor expansion around s = 0 with uniformly bounded co-
efficient over z ∈ It . Hence, T = (Te,Ti) fulfills the first condition to be tempered.

We now prove that the second part of definition 4.2.4 holds. Since Ti and Te are
independent, for every positive integer n,

Qn(t) = P(Ti 6 1/n)P(t 6 Te 6 t +1/n) .

One has
nP(t 6 Te 6 t +1/n) → 4e−4t when n → +∞,

and

P(Ti 6 1/n) =
1

τn
, when n is large enough.

Since Qn(t) is bounded from below by a multiple of 1/n2, the second point of
definition 4.2.4 holds.

Case (ii). Here, Se and Si are independent, the distribution of Se is uniform on [0,1]
and Si is a continuous random variable with density

τ

8(si −1)

[
−1

4
log

(
si −1

2

)]−1/2

1{1+2e−4
6 si < 3}
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with respect to the Lebesgue measure.

One can choose
Gs(z) = Hz(s)/Hz(∞),

where

Hz(s) =
∫ m(s,z)

m(0,z)

[−1
8

log

(
z− x

2x

)]−1/2 dx

z− x
,

with
m(s,z) = min{1,z/(1+2e−4),(2s+ z)/3}.

Hence, m(0,z) = z/3 and, for small positive values of s, m(s,z) = m(0,z)+ 2s/3.
When 0 6 z 6 1 + 2e−4, m(s,z) → m(∞,z) = z/(1 + 2e−4) when s → ∞ and this
limit is reached for s = 1+e−4

1+2e−4 z. When 1 + 2e−4 6 z 6 3, m(s,z) → m(∞,z) = 1
when s → ∞ and this limit is reached for s = (3− z)/2. In both cases, m(∞,z) =
m(1+ e−4,z) hence Hz(∞) = Hz(1+ e−4).

Hence, there exists a positive s0 such that for every z ∈ It and every s ∈ [0,s0],

Hz(s) =
∫ s

0

1
(z− x)

[−1
4

log

(
1− 3x

2x+ z

)]−1/2

dx.

Hence,

Hz(s) =
4√
3z

√
z+

5

(3z)3/2
s3/2 +

9
√

3

40z5/2
s5/2 +O(s7/2),

where O(s7/2) is uniformly bounded over z ∈ It . Hence, T = (Te,Ti) fulfills the first
condition to be tempered.

We now prove that the second part of definition 4.2.4 holds. Since Ti and Te are
independent, for every positive integer n,

Qn(t) = P(Ti 6 1/n)P(t 6 Te 6 t +1/n) .

One has
nP(t 6 Te 6 t +1/n) → 4e−4t when n → +∞,

and

P(Ti 6 1/n) =
1
nτ

, when n is large enough.

Since Qn(t) is bounded from below by a multiple of 1/n2+τ , the second point of
definition 4.2.4 holds.

Case (iii). Here, Se and Si are independent, the distribution of Se is uniform on
[0,1] and Si is a continuous random variable with density

− 1
4(si −1)

log

[
−1

4
log

(
si −1

2

)]
1{1+2e−4

6 si < 3}

with respect to the Lebesgue measure.
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One can choose
Gs(z) = Hz(s)/Hz(∞),

where

Hz(s) =
∫ m(s,z)

m(0,z)
log

[−1
4

log

(
z− x

2x

)]
dx

z− x
,

with
m(s,z) = min{1,z/(1+2e−4),(2s+ z)/3}.

Hence, there exists a positive s0 such that for every z ∈ It and every s ∈ [0,s0],

Hz(s) = −
∫ s

0

1
(z− x)

log

[−1
4

log

(
1− 3x

2x+ z

)]
dx.

The Taylor expansion around zero of Hz(s) begins with

1
z
(1− log(3/(4z))− log(s))s.

Hence, T = (Te,Ti) does not fulfill the first condition to be tempered.

4.7 Proof of proposition 4.3.2

For fixed values of α , (γi)
n
i=0 and (εi)

n
i=0, introduce, for every t > 0,

M±
t =

∫ 1

0
tvt−1F±(v)dv, where F±(v) =

n−1

∑
i=0

γi(1− v)α+εi ± γn(1− v)α+εn .

Hence,

Mt =
∫ 1

0
tvt−1

P(V > v)dv = M±
t +

∫ 1

0
tvt−1[P(V > v)−F±(v)]dv,

and

M±
t = tB(t,α +1)

(
n−1

∑
i=1

γiΛ(εi, t)P(εi, t)± γnΛ(εn, t)P(εn, t)

)
,

where

Λ(ε, t) =
Γ({t}+α +1)

Γ({t}+α + ε +1)
, P(ε, t) =

[t]+1

∏
ℓ=1

(
1− ε

α + ε +{t}+ ℓ

)
,

and B denotes the beta function

B(x,y) =
Γ(x)Γ(y)

Γ(x+ y)
.
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From the control of the distribution of V ,

M−
t − γvt

0 6 Mt 6 M+
t + vt

0 where γ =
n

∑
i=0

|γi|.

Combining this with the general expression of M±
t given above, one gets

Mt+1

Mt
6

(t +1)B(t +1,α +1)χ+(t +1)+ vt+1
0

tB(t,α +1)χ−(t)− γvt
0

,

where

χ±(t) =
n−1

∑
i=0

γiΛ(εi, t)P(εi, t)± γnΛ(εn, t)P(εn, t).

Using the fact that
(t +1)B(t +1,α +1)

tB(t,α +1)
=

t +1
t +α +1

,

and that

tB(t,α +1)Qα(t) > 1, where Qα(t) =
(t +α)(t +α −1) . . .(t +{α})

Γ(α +1)
,

one sees that

Mt+1

Mt
6

t +1
t +α +1

γ0 + χ+(t +1)+Qα(t +1)vt+1
0

γ0 + χ−(t)− γQα(t)vt
0

.

Furthermore,

γ0 + χ+(t +1)+Qα(t +1)vt+1
0

γ0 + χ−(t)−Qα(t)vt
0

= 1+
χ+(t +1)−χ−(t)+κ(t)vt

0

γ0 + χ−(t)− γQα(t)vt
0

.

where κ(t) = v0Qα(t +1)+ γQα(t) is a polynomial function in t.

From lemma 4.7.1 below, there exists a positive number C which depend on α and
ε0:n only such that

χ+(t +1)−χ−(t) 6 [2γn + εnγ]Ct−β , χ−(t) > −Cγt−ε1 .

where
β = min{εn,1+ ε1}, 1 < β 6 2.

Combining these estimates on χ+(t +1) and χ−(t), one sees that there exists finite
continuous functions τ1 and A of (γ0:n,α,ε0:n), such that, for every t > τ1,

Rt > α/t −A/tβ .

Choosing τ = max(τ1,τ2) yields proposition 4.3.2 as soon as, for every t > τ2

(recall that β > 1),
2At 6 α tβ .
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Lemma 4.7.1. Let β = min{εn,1 + ε1}. There exists a positive number C, which
depends on α and ε0:n only, such that

χ+(t +1)−χ−(t) 6 [2γn + εnγ]Ct−β , χ−(t) > −Cγt−ε1 .

Proof of lemma 4.7.1. For every real number t > 1 and every 1 6 i 6 n,

e−S(εi,t)−T (εi,t) 6 P(εi, t) 6 e−S(εi,t),

where

S(ε, t) =
[t]+1

∑
ℓ=1

ε

α + ε +{t}+ ℓ
and T (ε, t) =

[t]+1

∑
ℓ=1

ε2

(α + ε +{t}+ ℓ)2 .

Thus, there exists two positive real numbers C−
i and C+

i such that for every real
number t > 1, C−

i 6 tεiP(εi, t) 6 C+
i , and one can choose C+

i = (α + εi +3)εi .

Let C = max{C+
i ; 1 6 i 6 n}. Using the two relations

P(εi, t)−P(εi, t +1) = P(εi, t)
εi

α + εi + t +2
,

and

P(εn, t)+P(εn, t +1) = P(εn, t)

(
2− εn

α + εn + t +2

)
,

one sees that

χ+(t +1)−χ−(t) = 2γnΛ(εn, t)P(εn, t)−
n

∑
i=1

γiΛ(εi, t)P(εi, t)
εi

α + εi + t +2
.

For every 1 6 i 6 n, the function Λ(εi, ·) is positive and bounded by 1. Hence,

χ+(t +1)−χ−(t) 6 2γnP(εn, t)+
n

∑
i=1

|γi|P(εi, t)
εi

α + εi + t +2

6 C
(

2γnt−εn + γεnt−(1+ε1)
)

,

and the first inequality in the statement of the lemma holds. The same kind of
estimates yields

χ−(t) > −
n−1

∑
i=0

|γi|Λ(εi, t)P(εi, t)− γnΛ(εn, t)P(εn, t),

hence the second inequality holds. This concludes the proof of lemma 4.7.1.
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Chapter 5

Further developments

This chapter presents some natural follow ups of the work of this thesis, and a more
ambitious project aiming at developing some new models of evolution.

5.1 Follow ups

5.1.1 Monotonicities

In chapter 3, we worked on a class of dependent models [BGP08]. We provided
consistent estimators and asymptotic confidence intervals for the evolutive time be-
tween two DNA sequences under a specific model of the class, namely the Jukes
Cantor model with CpG influence (JC+CpG). The proof of the results is com-
plete for this specific model, excepted for the estimator based on [A,A]obs. How-
ever when the 4×4 matrix of substitution rate is more general and belongs to the
RN+YpR class, we need to assume some technical properties ensuring that some
key functions are monotone. A natural continuation of my work is to prove these
monotonicities, in other words, to solve conjecture 3.3.4.

We now present a different proof of the fact that t 7→ [C,C](t) is indeed a decreasing
diffeomorphism for JC+CpG, and we explain a way to extend the method to deal
with t 7→ [A,A](t).

Introduce the constant matrices Q and D defined by

Q =




−8 −2r 0 0
1 −(12+2r) −r 1
0 4 −(16+4r) 0
0 −2r 0 −8


 , D =




2(C)
(CG)

0
2(C)


 ,
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and the time dependent vector W (t) defined by

W (t) =




[C,C](t)
[C∗,CG](t)
[CG,CG](t)
[C∗,∗G](t)


 .

Proposition 5.1.1. The evolution of W (t) is ruled by the linear differential system

W ′(t) = QW (t)+D.

We prove that every component of W is a diffeomorphism. However, some com-
ponents are increasing functions whereas the others are decreasing functions.

Introduce the time-dependent vector X(t)

X(t) =




−[C,C]′(t)
−[C∗,CG]′(t)
−[CG,CG]′(t)
[C∗,∗G]′(t)


 .

Proposition 5.1.2. For every positive t, all the components of X(t) are positive.

Note that proposition 5.1.2 yields that t 7→ [C,C](t) is a decreasing diffeomorphism.

Proof of proposition 5.1.2. Introduce the constant matrix P,

P =




−8 −2r 0 0
1 −(12+2r) −r −1
0 4 −(16+4r) 0
0 2r 0 −8


 .

From proposition 5.1.1, one sees that the evolution of X(t) is ruled by the linear
differential system

X ′(t) = PX(t), X(0) = x0,

where

x0 =




6(C)∗ +2r(CG)∗
(10+3r)(CG)∗− (C)∗

(12+4r)(CG)∗
2(C)∗− (8+2r)(CG)∗


=

2(3+ r)

16+5r




4
1
2
0


 .

Introduce the constant vectors c1, c2, and c3

c1 =




1
0
0
1


 , c2 =




4+2r
1
0
0


 , c3 =




4
1
2
0


 .
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Let C denote the closed cone of R
4 defined as C = c1R+ + c2R+ + c3R+, where

R+ = [0,+∞).

Since every component of the vectors c1, c2, and c3 is non negative, the cone C is
a subset of (R+)4. As a consequence, if for every positive t, X(t) belongs to the
relative interior of C, proposition 5.1.2 follows.

First, note that x0 belongs to C. Indeed, x0 = 2((3+ r)/(16+5r))c3.

Second, note that C is included in the hyperplane H orthogonal to n, where n is the
constant vector

n =




−1
4+2r
−r
1


 .

Since n is an eigenvector of the transposed of P, we deduce that H is invariant by
P. Hence, starting from x0 in H, X(t) belongs to H for every positive t. It remains
to prove that X(t) belongs to the relative interior of C for every positive t.

To this end, note that

Pc1 = −8c1,

Pc2 = 2rc1 −10c2 +2c3,

Pc3 = 2rc1 +6c2 − (14+4r)c3.

The coefficients of c1 and c2 in the decomposition along the base (c1,c2,c3) of x0

are nonnegative, hence there exists a positive T such that for every t in ]0,T [, X(t)
belongs to the relative interior of C.

Now, assume by contradiction that X(t) may escape the cone C. As a consequence,
there exists a positive t1 such that for every 0 < t < t1, X(t) is in the relative interior
of C, and X(t1) = x1 belongs to one of the relative faces of C, that is, one of the
coefficients of the decomposition of X(t) along the base (c1,c2,c3) is positive for
every 0 < t < t1, and zero at t = t1.

Without loss of generality, assume that this coefficient is the coefficient of c1.
Hence, x1 is a linear combination of c2 and c3 with nonnegative coefficients, and the
coefficient of c1 in the decomposition of Px1 along the base (c1,c2,c3) is non neg-
ative, since Px1 is a non negative combination of Pc2 and Pc3. As a consequence,
the coefficient of c1 in the decomposition of X(t) along the base (c1,c2,c3) is non
decreasing in a neighbourhood of t1. This is a contradiction with the definition of
t1.

This achieves the proof.
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Turning to the case of t 7→ [A,A](t), we introduce the constant matrices

M =




−8 −2r 0
0 −(12+2r) 1
0 −2r −8


 , N =




0 0 0 0
0 0 −r 0
0 −2r 0 0


 ,

and the time-dependent vector

V (t) =




−[A,A](t)
[∗A,CG](t)

[∗A,C∗](t)+ [A,G](t)


 .

Proposition 5.1.3. The evolution of Y (t) = V ′(t) is ruled by the linear differential
system

Y ′(t) = MY (t)+NX(t).

Like in the case of t 7→ X(t), for every positive t, Y (t) belongs to an hyperplane.
However, at the moment we are not able to provide a positive cone containing Y (t)
for every positive t.

5.1.2 Numerical simulations

A widely used algorithm to construct phylogenetic trees is P❤②▼▲ [GG03]. In this
algorithm, it is necessary to compute an initial phylogenetic tree and this step is
based on distance-matrix methods, where the distances are computed from inde-
pendent substitution models. I plan to simulate the evolution of DNA sequences
under a non trivial specific model of the neighbour dependent class and to check
the influence of the depencencies on the error made by the classical estimators.
If this influence is too important and yields consequences on the topology of the
tree, then one could consider to build an extension of P❤②▼▲ including neighbour
dependent models.

5.1.3 About estimators

In [Fal10], I provided consistent estimators TC and TA for the evolutionary time
between an ancestral DNA sequence and a present one evolving under JC+CpG.
Each of these estimators is associated to an asymptotic confidence interval. Every
estimator Tλ defined as a convex combination of TC and TA, that is, Tλ = λTC +
(1−λ )TA, for λ ∈ [0,1], is also a consistent estimator of the evolutive time between
DNA sequences. A natural question is the following: with respect to the parameters
of JC+CpG, for which λ do we obtain the smallest asymptotic confidence interval?
More generally, one can hope to combine these various estimators Tx, and others,
in an optimal and statistically well founded construction.
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5.1.4 Bayesian approach

The second approach of phylogeny reconstruction I developed during my PhD is
Bayesian. More precisely, I studied one of its unfortunate aspect, called the star
paradox.

An open question, suggested to me by Mike Steel, is to provide necessary condi-
tions for the star paradox to occur. In other words, what priors would prevent the
star paradox to occur?

Another line of research is to extend Susko’s results on posterior probabilities to
non continuous priors, that is, to compute the limit of posterior probabilities when
the priors are more general.

5.2 Models of neighbour-dependent substitution processes
with insertion/deletion mechanisms

Substitutions are not the only way to alter DNA sequences. For example, insertions
add one or several extra nucleotides to the DNA sequence, and deletions remove
one or several nucleotides from the DNA sequences. One could study stochastic
models taking into account these four mechanisms: independent evolutions of the
sites, influence of the neighbourhood, insertions and deletions.

Since substitutions are not the only way to alter DNA sequences, we want to add
mechanisms of deletions and insertions for instance into the simplest RN+YpR
model, the Jukes-Cantor model with CpG influence.

We know that there exists a unique Markov process on the integer line with the sub-
stitution rates given above, and that this model satisfies equilibrium and structure
properties.

Now, we wonder what happens if we add other mechanisms to the process. For
instance we would like to authorize a nucleotide to be deleted with a deletion rate
α . On the opposite, we also would like to authorize the insertion of a nucleotide in
the DNA sequence at rate β .

The first problem is to define mathematically this stochastic process. For instance,
models in the RN+YpR class can be constructed on the integer line or on a fi-
nite circle. Here, working on a finite circle with a constant length could require
deletions and insertions to happen at the same times, to keep the same number of
nucleotides. Otherwise, the length of the circle would be variable, and possibly
become zero.

Assuming that the model is mathematically well grounded, the next step is to study
the existence and uniqueness of an equilibrium for the process. For instance, how
does it depend on the deletion and insertion rates, and does the model exhibit a
phase transition as α and β vary, similar to the well known phase transition of the
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Ising’s model?

Assuming that the questions above are solved for such models with influence and
insertion/deletion mechanisms, we would like to compute the stationary frequen-
cies of some polynucleotides when the whole system is ergodic and, finally, to
compute some consistent estimators of the times of divergence in the ancestor case
or, even better, in the homologous case.
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Résumé en français

Dans cette partie, je présente mon travail de thèse en français.

Après avoir fourni quelques rappels de génétique, nous présentons dans un premier
temps les principes, le lexique et les objectifs de la reconstruction phylogénétique.
Dans un deuxième temps, nous détaillons des modèles probabilistes d’évolution
de séquences, avec et sans interaction entre les sites, et nous expliquons comment
estimer des distances génétiques pour des séquences d’ADN ayant évolué sous un
modèle indépendant. Dans un troisième temps, nous prouvons qu’il est possible
de fournir des estimateurs consistants pour des temps d’évolution entre séquences
d’ADN régies par des modèles avec dépendance entre les sites. Dans un quatrième
temps, nous introduisons rapidement les méthodes bayésiennes en reconstruction
phylogénétique, nous présentons un de leurs travers, le « Bayesian star paradox » et
nous montrons qu’il est possible d’étendre un résultat de Steel et Matsen sur le sujet
à des classes moins contraignantes de lois a priori. Nous terminons en présentant
quelques prolongements naturels de ce travail de thèse.

Introduction à la génétique et à la phylogénie moléculaire

Afin de mieux comprendre d’où viennent les questions mathématiques de cette
thèse, nous introduisons ici quelques notions de génétique et de phylogénie. Le
lecteur trouvera dans les ouvrages suivants un moyen d’approfondir les notions
effleurées ici [GL00], [SPAP95a], [SPAP95b], [Yan06], [Gas05] and [GS07].

Évolution moléculaire

Dans cette partie, nous évoquons quelques étapes qui ont mené à la découverte du
matériel génétique, principalement l’acide désoxyribonucléique (ADN), la nais-
sance de la phylogénie moléculaire due à la compréhension de la structure chi-
mique de l’ADN, ainsi que les différentes mutations qu’une séquence d’ADN peut
subir.
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Bref historique de l’évolution au niveau moléculaire

Le concept moderne de théorie de l’évolution a été introduit par Darwin1 au mi-
lieu du XIXe siècle dans le célèbre De l’origine des espèces. Il a en effet soutenu
l’hypothèse que toutes les espèces vivantes ont évolué au cours du temps à partir
d’un seul ou quelques ancêtres communs grâce au processus connu sous le nom de
sélection naturelle.

Avant lui, quelques scientifiques avaient formulé d’autres hypothèses sur l’évo-
lution des espèces, notamment Lamarck2 qui pensait que les individus avaient la
faculté de s’adapter pendant leur vie et pouvaient transmettre ces caractères acquis
à leur descendance. Cette hypothèse allait à l’encontre de celle de Cuvier3 qui sou-
tenait la théorie du catastrophisme selon laquelle les espèces s’éteignaient à cause
de catastrophes, suivies par la formation de nouvelles espèces considérées comme
immuables. Cette période riche pour l’histoire des sciences est délicate à retrans-
crire, et nous préférons ne pas nous étendre dessus par manque de compétence
dans le domaine. Nous voulons simplement rendre compte du fait que la théorie de
l’évolution n’est pas apparu uniquement avec Darwin, mais que la qualité de son
travail fait qu’il a convaincu ses contemporains du bien-fondé de sa théorie, et qu’il
est passé à la postérité.

En revanche, bien que Darwin ait réussi à convaincre que les organismes vivants
évoluaient, il était incapable d’expliquer comment les variations chez les espèces se
transmettaient de génération en génération et quels mécanismes supportaient cette
transmission. Mendel4, qui est à l’origine de ce qui est aujourd’hui appelé les lois
de Mendel définissant la manière dont les gènes se transmettent de génération en
génération, ignorait également comment les caractères étaient transmis et s’interro-
geait sur l’existence d’un matériel qui aurait pu porter cette information. En 1869,
Miesher5 a découvert dans le noyau des cellules une substance riche en phosphate :
la nucléine, renommée après acide désoxyribonucléique. Il a émis l’hypothèse que
cette substance ait un rôle dans l’hérédité, mais il n’a pas poussé ses recherches
dans cette voie. Après lui, les connaissances sur l’ADN n’ont cessé d’augmenter,
et en 1952, l’hypothèse que l’ADN était le vecteur de l’information génétique fût
validée.

Le fait de pouvoir cibler où était située l’information génétique a permis d’ouvrir
le champ de l’évolution moléculaire, et il s’est dégagé trois axes de recherche dans
ce domaine. Tout d’abord, la classification du monde vivant et la reconstruction de

1Charles Robert Darwin (12 février 1809 – 19 avril 1882).
2Jean-Baptiste Pierre Antoine de Monet, Chevalier de la Marck (1eraoût 1744 – 18 décembre

1829), naturaliste français.
3Georges Léopold Chrétien Frédéric Dagobert Cuvier (23 août 1769 – 13 mai 1832), naturaliste

et zoologiste français.
4Gregor Johann Mendel (20 juillet 1822 – 6 janvier 1884), moine et botaniste autrichien, est

communément reconnu comme le père fondateur de la génétique.
5Johann Friedrich Miescher (13 août 1844 - 26 août 1895), biologiste suisse.
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l’histoire des espèces ont pu se faire au niveau moléculaire, et ces méthodes ont
progressivement pris le pas sur les méthodes traditionnelles. Ensuite, il était main-
tenant possible d’étudier les mécanismes du changement à l’intérieur du matériel
génétique. Enfin, la question de l’origine de la vie a pu être abordée avec un regard
neuf.

Quelques notions de génomique

Le génome est l’ensemble du matériel génétique d’un individu ou d’une espèce
codé dans son ADN (à l’exception de certains virus dont le génome est porté par
des molécules d’ARN).

L’ADN est composé de deux brins complémentaires se faisant face, et formant une
double hélice. Chaque brin est une longue séquence de quatre éléments possible,
nommés nucléotides, parmi lesquels on distingue deux purines, l’adénine (A) et
la guanine (G), et deux pyrimidines, la thymine (T) et la cytosine (C). Les nu-
cléotides sont enchaînés entre eux grâce à des liaisons impliquant un groupe phos-
phate, qu’on appelle des liaisons 3’-5’ phosphodiester. Cet enchaînement donne
une orientation au brin d’ADN dans le sens 5’ vers 3’. La complémentarité des
brins fait que les brins sont orientés dans des sens opposés. Tout ceci est illustré
sur la figure 5.1.

FIG. 5.1 – Structure chimique de l’ADN

Avant chaque division cellulaire, la molécule d’ADN double-brin doit être dupli-
quée en deux molécules d’ADN filles identiques. Cela assure la transmission de
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l’information génétique lors de la reproduction, c’est l’hérédité. Le principe de ré-
plication de l’ADN est illustré sur la figure 5.2.

FIG. 5.2 – Schéma de la réplication de la molécule d’ADN

La réplication de l’ADN n’est pas parfaite dans le sens où des erreurs peuvent sur-
venir au cours du processus. Si une erreur se produit dans une cellule germinale,
elle est transmise à la descendance, contrairement à une erreur apparue dans une
cellule somatique. D’un point de vue évolutif, c’est beaucoup plus intéressant. Les
erreurs au cours du processus de réplication ne sont pas les seules causes de muta-
tion de la séquence d’ADN, elles peuvent aussi être provoquées, entre autres, par
une exposition à des radiations, par des virus, ou au cours de recombinaisons gé-
nétiques. Le type de mutation le plus couramment pris en compte dans les modèles
d’évolution est la substitution, c’est à dire le remplacement d’un nucléotide par un
autre dans la séquence d’ADN, mais il en existe d’autres, comme les insertions et
les délétions par exemple.

La fréquence des mutations est une question épineuse en biologie moléculaire car
elle dépend de beaucoup de facteurs. Nous insistons sur un point particulier qui
motive cette thèse : les dinucléotides CpG. La notation « CpG » représente ici et
dans toute la suite « 5′ − CG − 3′ ». Les cytosines impliquées dans un dinucléo-
tide CpG sont fréquemment méthylées dans le génome des mammifères [Bir80],
et cette méthylation entraîne une hausse des fréquences de mutation de CpG vers
TpG, et en conséquence, vers CpA sur le brin complémentaire. Ces dinucléotides
intéressent particulièrement les biologistes, car il existe des portions dans le gé-
nome, appelés îlots CpG, qui possèdent une concentration en CpG plus élevée que
dans le reste de la séquence (voir [Bir86], [AB91b], [AB91a]). Il s’avère que ces
régions sont souvent des zones fonctionnelles de l’ADN [AB99], et l’existence de
telles zones suggère que le phénomène de méthylation est réprimé dans les îlots
CpG. La compréhension de ce mécanisme apparaît comme un challenge important
en évolution moléculaire.
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Phylogénie moléculaire

La phylogénie est l’étude de la formation et de l’évolution des organismes vivants
en vue d’établir leur parenté. Auparavant, cette étude était basée sur des critères
morphologiques, mais à présent, on utilise les séquences de macromolécules bio-
logiques comme l’ADN ou les protéines. L’idée sous-jacente dans les méthodes
traditionnelles, ou bien moléculaires, est la suivante : le degré de ressemblance est
corrélé au degré de parenté, c’est à dire que plus deux espèces ou deux séquences
d’ADN se ressemblent, plus elles sont proches d’un point de vue évolutif.

On représente couramment une phylogénie, c’est à dire des relations de parenté
entre des entités, par un arbre phylogénétique qui est un type particulier de graphe.

Définition. Un graphe est un couple (V,E) où V est un ensemble d’objets appelés
sommets ou noeuds, E est un ensemble d’objets appelés arêtes ou branches, c’est
à dire une liaison entre deux sommets. Un chemin (v0,v1, . . . ,vk) est une suite
d’éléments de V telle que pour chaque entier i compris entre 0 et k, l’arête (vi,vi+1)
appartient à E. Un cycle est un chemin dont les extrémités coïncident. Un arbre est
un graphe connexe sans cycle.

(c)(b)(a)

FIG. 5.3 – (a) Graphe non connexe. (b) Graphe connexe avec un cycle. (c) Arbre.

Voici un peu de vocabulaire lié aux arbres et en particulier aux arbres phylogéné-
tiques.

Définition. Les feuilles (noeuds externes) représentent les espèces actuelles, sou-
vent nommés taxa (taxon au singulier), tandis que les noeuds internes représentent
les ancêtres éteints pour lesquels les séquences d’ADN ne sont, en général, pas
disponibles. L’ancêtre de tous les taxa est appelé la racine de l’arbre.

Nous illustrons ces notions sur la figure suivante.

En phylogénie, on suppose que l’évolution des espèces peut être représentée par
un arbre binaire, c’est à dire un arbre où chaque noeud est au plus incident à trois
branches. Dans le cas, où un noeud possède plus de trois arêtes incidentes, c’est que
nous ne sommes pas capable de lever l’incertitude sur la spéciation. Il faut savoir
que l’évolution ne suit pas toujours un arbre, mais nous n’entrerons pas dans ce
genre de considération.
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Temps

FIG. 5.4 – Un arbre enraciné. Les sommets noirs représentent les feuilles, ceux en
pointillés les noeuds internes, et celui en blanc la racine.

Définition. Un cladogramme est un arbre qui représente une topologie, tandis
qu’un phylogramme est un arbre qui représente une topologie et des longueurs de
branches. Un dendrogramme est un arbre enraciné où les longueurs des chemins
reliant la racine aux espèces sont identiques.

Les dendrogrammes n’ont un sens en phylogénie que si les espèces évoluent à
la même vitesse, et dans ce cas, les longueurs de branches représentent un temps
évolutif.

Un des objectifs de la phylogénie est le suivant. En supposant que des espèces
actuelles partagent un ancêtre commun et que leur évolution est supportée par un
vrai arbre, on cherche à reconstruire un arbre qui approche le mieux possible l’arbre
réel, au niveau de la topologie et de la longueur des branches.

Modèles d’évolution de séquences d’ADN

Dans les modèles d’évolution de séquences de nucléotides usuels, on suppose que
chaque site de la séquence d’ADN évolue indépendamment des autres sites et sui-
vant un noyau markovien avec des taux de substitution spécifiques. Nous décrivons
ici le modèle de Jukes et Cantor et expliquons brièvement comment on estime des
distances génétiques pour ce modèle. Nous présentons ensuite une classe de mo-
dèles introduite par Bérard, Gouéré et Piau [BGP08] où les sites interagissent entre
eux afin de prendre en compte le phénomène de méthylation des dinucléotides CpG
dans le génome des mammifères.
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Modèle de Jukes et Cantor

Nous présentons ici le modèle de Jukes et Cantor [JC69], introduisons quelques
notations et expliquons comment on estime des temps évolutifs pour ce modèle.

Description mathématique

Le modèle de Jukes et Cantor est une chaîne de Markov à temps continu censé
modéliser une séquence d’ADN de longueur finie N.

Définition. L’alphabet des nucléotides est

A = {A,T,C,G}.
Ce sont les premières lettres respectives pour Adénine, Thymine, Cytosine et Gua-
nine. Les nucléotides A et G sont des purines représentées par R, les nucléotides T
et C des pyrimidines, représentées par Y .

Notons X1:N(t) le vecteur aléatoire (X1(t),X2(t), . . . ,XN(t)) à valeurs dans A N re-
présentant la valeur des N nucléotides du site 1 au site N et au temps t.

Définition. Dans le modèle de Jukes et Cantor, le processus (X1:N(t))t>0 est un
processus de Markov dont le générateur infinitésimal Q en chaque site i est donné
par la matrice des taux de substitutions

Q =




A T C G

A −3λ λ λ λ

T λ −3λ λ λ

C λ λ −3λ λ

G λ λ λ −3λ


,

avec λ un paramètre positif. Chaque site évolue indépendamment des autres.

Proposition. Pour tout t > 0, la matrice de transition au temps t issue du généra-
teur infinitésimal Q est

P(t) =




A T C G

A 1− p(t) p(t)/3 p(t)/3 p(t)/3
T p(t)/3 1− p(t) p(t)/3 p(t)/3
C p(t)/3 p(t)/3 1− p(t) p(t)/3
G p(t)/3 p(t)/3 p(t)/3 1− p(t)


, p(t) =

3
4

(
1− e−4λ t

)
.

Calcul de distance

Notons Pobs la quantité observée définie par

Pobs =
1
N

N

∑
i=1

1{Xi(t) 6= Xi(0)}.
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Définition. On note D l’estimateur du temps écoulé défini comme l’unique solution
en d de l’équation

Pobs =
3
4

(
1− e−4d

)
.

A l’aide de la loi des grands nombres, du théorème limite centrale, de la méthode
delta et du lemme de Slustky, on obtient le résultat suivant.

Théorème. Dans le modèle de Jukes et Cantor, D est un estimateur consistent de
λ t et

(3−4Pobs)

√
N

Pobs(1−Pobs)
(D−λ t)

d.−−−−→
N→+∞

N (0,1).

Modèles avec interaction entre les sites

Dans les modèles usuels, il n’y a pas d’interaction entre les sites, chaque nucléotide
évolue suivant le même processus de Markov et converge en loi vers la distribution
stationnaire associée à la matrice des taux. Proche de l’état d’équilibre, on a alors
pour tous nucléotides x et y, (xy) = (x)(y), où (w) désigne la fréquence du mot w
dans l’alphabet A . Ceci n’est pas conforme à la réalité. Par exemple, la fréquence
du dinucléotide CpG dans le génôme humain est cinq fois plus petite que le produit
des fréquences des nucléotides C et G (voir [DG00]).

Les modèles que nous présentons, prennent en compte la nature des sites voisins
dans l’évolution d’un site, en particulier nous allons introduire ce que nous appel-
lerons des mutations doubles pour illustrer la méthylation des dinucléotides CpG.

Modèle de Jukes et Cantor avec influence CpG

Le modèle de Jukes et Cantor avec influence CpG est le modèle non trivial le
plus simple d’une classe de modèles introduite dans [BGP08], et qui prend en
compte cette particularité de l’influence des voisins. Il est construit à l’aide de la
superposition de deux mécanismes.

Le premier mécanisme est une évolution indépendante des sites comme dans le
modèle de Jukes et Cantor. Le taux de substitution de x par y est de 1 pour tous
nucléotides x 6= y dans A .

Un second mécanisme est ajouté, qui décrit les substitutions dues à l’influence du
voisinage : on suppose que les taux de substitutions de la cytosine par la thymine
et de la guanine par l’adenine sont augmentés de r dans les dinucléotides CpG.

Ceci signifie, par exemple, que tout site occupé par un C dont le voisin de droite
n’est pas occupé par un G, change à un taux global de 3, c’est à dire après un
temps distribué suivant une loi exponentielle de moyenne 1/3, comme on peut le
voir pour le site situé en position N − 1 sur la figure 5.5. De plus, le nucléotide C
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est remplacé par A, T, ou G avec équiprobabilité. Par contre, un site occupé par
un C dont le voisin de droite est occupé par un G, change avec un taux global
de s = 3 + r, c’est à dire après un temps distribué suivant une loi exponentielle
de moyenne 1/s, comme on peut le voir sur le site situé en position N-3 sur la
figure 5.5. Dans cette configuration, le nucleotide C est remplacé par A, T, ou G
avec probabilités respectives 1/s, (1+ r)/s, et 1/s.

A T C

i = 1

G CC

i = N

E(3 + r)E(3) E(3) ?E(3 + r) E(3)

FIG. 5.5 – Un morceau de séquence d’ADN sous le modèle JC+CpG, où l’on
représente les horloges exponentielles au-dessus de chaque site.

Modèles RN+YpR

Comme nous le disions précédemment, le modèle de Jukes et Cantor avec influence
CpG est en fait issu d’une classe de modèles plus générale introduite dans [BGP08],
nommée RN+YpR. Les lettres RN représentent les premières lettres des noms Rz-
hetsky et Nei, et signifient que la matrice des taux qui régit l’évolution indépen-
dante des sites est de la forme




A T C G

A · vT vC wG

T vA · wC vG

C vA wT · vG

G wA vT vC ·


.

Les lettres YpR représentent l’influence du voisinage caractérisée par des taux
de substitution supplémentaires pour chaque dinucléotide formé d’une pyrimidine
suivi d’une purine, nommément CG, CA, TG, TA, définis ainsi

– Chaque dinucléotide CG est remplacé par CA à taux rC
A et par TG à taux rG

T .
– Chaque dinucléotide TA est remplacé par CA à taux rA

C et par TG à taux rT
G.

– Chaque dinucléotide CA est remplacé par CG à taux rC
G et par TA à taux rA

T .
– Chaque dinucléotide TG est remplacé par CG à taux rG

C et par TA à taux rT
A .

Principales propriétés des modèles RN+YpR

Théorème (Bérard, Gouéré and Piau [BGP08]). Pour toute mesure de probabilité
ν sur A Z, il existe un unique processus de Markov (X(t))t>0 sur A Z, de loi initiale
ν , avec les taux de transition associés ci-dessus.
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Ainsi, pour tout temps t, X(t) décrit toute la séquence et, pour chaque position i, la
coordonnée Xi(t) de X(t) est la valeur aléatoire du nucléotide situé en position i et
au temps t.

Théorème (Bérard, Gouéré and Piau [BGP08]). Le processus (X(t))t>0 est ergo-
dique, son unique mesure stationnaire π sur A Z est invariante et ergodique par
rapport aux translations de Z, et π alloue une masse strictement positive à chaque
mot fini w = (wi)06i6ℓ écrit dans l’alphabet A .

Les propriétés précédentes viennent d’une représentation de la mesure π .

Théorème (Bérard, Gouéré and Piau [BGP08]). Il existe une suite i.i.d. (ξi)i∈Z de
processus de Poisson marqués, et une application mesurable Ψ à valeurs dans A ,
tels que si l’on écrit

Ξi = Ψ(ξi−1,ξi,ξi+1)

pour chaque site i dans Z, alors la loi de (Ξi)i∈Z est π .

En particulier, toutes collections (Ξi)i∈I et (Ξi)i∈J sont independantes dès que les
ensembles I et J de Z sont tels que |i− j| > 3 pour tous sites i dans I et j dans J.

Vers des distances génétiques pour les modèles RN+YpR

Nous considérons le modèle de Jukes et Cantor avec influence CpG (JC+CpG), un
modèle de la classe étudiée par Bérard, Gouéré et Piau [BGP08].

Ce modèle est un modèle à temps continu où les séquences d’ADN évoluent sous
l’effet combiné de deux mécanismes. Le premier mécanisme est une évolution in-
dépendante des sites comme dans les modèles usuels, c’est à dire ici une matrice
4×4 de taux de substitutions, où chaque substitution se produit au même taux de
1. Un second mécanisme est superposé, qui décrit les taux de substitutions dus à
l’influence du voisinage. Nous supposons que les taux de substitutions de CpG vers
TpG et vers CpA sont tous les deux augmentés d’un taux supplémentaire noté r.

On note (x,x)(t), pour tout x∈{A,C}, la fréquence des sites occupés par x au temps
0 dans la séquence ancestrale, et au temps t dans la séquence actuelle, en supposant
que les séquences sont alignées. On note [x,x](t),pour tout x ∈ {A,C}, la fréquence
des sites occupés par x au temps t dans deux séquences actuelles alignées et issues
de la même séquence ancestrale.

On note (x,x)obs et [x,x]obs les valeurs observées de (x,x) et [x,x] dans deux sé-
quences alignées de longueur N, c’est à dire

(x,x)obs =
1
N

N

∑
i=1

Kx
i (t), avec Kx

i (t) = 1{Xi(0) = Xi(t) = x},
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et

[x,x]obs =
1
N

N

∑
i=1

K̃x
i (t), avec K̃x

i (t) = 1{X1
i (t) = X2

i (t) = x}.

On note Tx et T̃x les estimateurs du temps écoulé t et du temps de divergence t,
définis pour chaque x ∈ {A,C} comme les solutions en t des équations

(x,x)(t) = (x,x)obs et [x,x](t) = [x,x]obs.

Dans cet article, nous prouvons le résultat suivant.

Théorème (Falconnet [Fal10]). Supposons que la séquence ancestrale est en ré-
gime stationnaire. Alors, dans le modèle de Jukes et Cantor avec influence CpG,
pour tout x ∈ {A,C}, quand N →+∞, il existe une quantité observée explicite αx

obs,
respectivement α̃x

obs, telle que αx
obs

√
N(Tx − t), respectivement α̃x

obs

√
N(T̃x − t),

converge en loi vers la loi normale centrée réduite.

En conséquence de ce théorème, on peut fournir des intervalles de confiance asymp-
totiques pour le temps écoulé entre une séquence ancestrale et une séquence ac-
tuelle, et pour le temps de divergence entre deux séquences actuelles issues d’une
même séquence ancestrale.

Un des travers des méthodes bayésiennes : le paradoxe de
l’arbre en étoile

En phylogénétique bayésienne, un arbre particulier peut être hautement favorisé
alors que les données sont générées à l’aide d’un arbre en étoile, c’est à dire avec
une phylogénie non résolue. De récentes études ont mis en lumière le paradoxe
dans un contexte très simple, le cas d’un arbre enraciné irrésolu pour trois taxons
et deux états, (Yang and Rannala [YR05], Lewis et al. [HLH05]). Kolaczkowski et
Thornton [KT06] ont présenté des simulations et suggéré que le support artificiel
d’un arbre en particulier pourrait disparaître quand la longueur des séquences de-
vient grande. De précédentes simulations dans[YR05] ont été perturbées par des
problèmes numériques, et laissaient inconnue la nature des distributions limites
pour les lois a posteriori.

La question statistique derrière le « star paradox » est la suivante : la loi a posteriori
de la résolution d’un arbre en étoile devient-elle uniforme quand la longueur des
séquences tend vers l’infini, c’est à dire, dans le cas de trois taxons, la loi a poste-
riori de chaque arbre résolu converge-t-elle vers 1/3. Dans un récent article, Steel
et Matsen ont montré que non, ruinant ainsi l’espoir de Kolaczkowski et Thornton,
pour une classe particulière de lois a priori sur la longueur des branches appelée
tame. Leur résultat est le suivant.
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Théorème (Steel & Matsen [SM07]). Considérons des séquences de longueur n
générées par un arbre en étoile R0 sur trois taxons avec une longueur de branche
t strictement positive. Soit N le comptage des différents motifs sur les trois taxons.
Considérons une loi quelconque sur les trois arbres résolus (R1,R2,R3) dessinés
ci dessous et une distribution tame sur les longueurs de leurs branches.

213 321 321132

R2 R3 R0R1

Alors, pour chaque i ∈ {1,2,3}, pour tout ε strictement positif, il existe un δ stric-
tement positif tel que, quand n est assez grand,

P((P(Ri|N) > 1− ε) > δ .

Ce résultat a été pris en compte par Yang dans [Yan07] et renforcé par les résultats
de Susko dans [Sus08]. Notre principal résultat est que la conclusion de Steel et
Matsen se produit pour une classe de lois a priori sur les longueurs de branches
plus large, appelée tempered, qui peut contenir des accumulations de masses de
Dirac.

Théorème (Falconnet [Fal09]). Le résultat de Steel et Matsen a lieu pour toute
loi tempere sur les longueurs des branches. Toute loi tame est aussi tempered et la
réciproque est fausse.

Prolongements des résultats de la thèse

Résultat théoriques

Pendant ma thèse, j’ai travaillé sur une classe de modèles avec dépendance [BGP08].
J’ai fourni dans [Fal10] des estimateurs consistants et des intervalles de confiance
asymptotiques pour des temps d’évolution entre deux séquences d’ADN pour un
modèle spécifique de cette classe : le modèle de Jukes et Cantor avec influence CpG
(JC+CpG). La preuve de mes résultats est complète pour ce modèle spécifique. En
revanche, dans le cas d’une matrice 4× 4 de taux de substitutions plus générale,
j’ai eu besoin de supposer que certaines hypothèses techniques étaient vérifiées,
notamment la monotonie de certaines fonctions clés. Une poursuite naturelle de
mes travaux est de prouver ces hypothèses de monotonie.

Simulations numériques

Actuellement, un algorithme largement utilisé de reconstruction phylogénétique
est P❤②▼▲ [GG03]. Dans cet algorithme, il est nécessaire de construire un arbre
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phylogénétique initial, et cette étape est réalisée à l’aide de méthodes basées sur
des distances entre les séquences, distances calculées à partir de modèles d’évolu-
tion indépendants. Mon projet numérique est de simuler l’évolution de séquences
d’ADN sous un modèle avec dépendance et de rendre compte de l’influence du
voisinage sur les erreurs commises par les estimateurs classiques. Dans la cas où
cette influence est importante et a des conséquences sur la topologie de l’arbre, il
serait envisageable d’étendre P❤②▼▲ à des modèles avec influence du voisinage.

À propos des estimateurs

Dans [Fal10], j’ai fourni des estimateurs consistants TC et TA pour le temps d’évolu-
tion entre une séquence d’ADN ancestrale et une séquence actuelle ayant évoluée
sous le modèle JC+CpG. Chacun de ces estimateurs est associé à un intervalle
de confiance asymptotique. Tout estimateur Tλ défini comme une combinaison
convexe de TC et TA, c’est à dire Tλ = λTC +(1−λ )TA, pour λ ∈ [0,1], est aussi un
estimateur consistent du temps d’évolution entre les séquences d’ADN. Une ques-
tion naturelle est la suivante : en fonction des paramètres du modèle JC+CpG, pour
quel λ obtient-on le plus petit intervalle de confiance asymptotique ? Plus généra-
lement, est-il possible de combiner ces différents estimateurs, et d’autres, dans une
construction optimale et statistiquement fondée ?

Sur l’approche bayésienne

La seconde approche de la reconstruction phylogénétique que j’ai développée du-
rant ma thèse est une approche bayésienne. Plus précisément, j’ai étudié un de ses
aspects négatifs, appelé le “Bayesian star paradox”.

Une question ouverte, qui m’a été suggérée par Mike Steel, est de fournir des condi-
tions nécessaires pour que le paradoxe ait lieu. Dit autrement, quelles lois a priori
évitent au paradoxe de se produire. Une autre possibilité de recherche est d’étendre
les résultats de Susko sur les lois a posteriori au cas de lois a priori possiblement
non continues, c’est à dire, de calculer la limite des lois a posteriori quand les lois
a priori sont plus générales.
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Abstract. In this thesis, we deal with two problems of phylogeny reconstruction.
First, we consider models of nucleotidic substitution processes where the rate of
substitution at a given site depends on the state of the neighbours of the site. We es-
timate the time elapsed between an ancestral sequence at stationarity and a present
sequence. Then, assuming that two sequences are issued from a common ances-
tral sequence at stationarity, we estimate the time since divergence. In the simplest
nontrivial case of a Jukes-Cantor model with CpG influence, we provide and justify
mathematically consistent estimators in these two settings. We also provide asymp-
totic confidence intervals, valid for nucleotidic sequences of finite length, and we
compute explicit formulas for the estimators and for their confidence intervals. In
the general case of an RN model with YpR influence, we extend these results under
a proviso, namely that the equation defining the estimator has a unique solution.
Second, we show that the Bayesian star paradox, first proved mathematically by
Steel and Matsen for a specific class of prior distribution, occurs in a wider con-
text.

Keywords. Markov processes, confidence intervals, DNA sequences, phylogenetic
distances, CpG deficiency, phylogenetic trees, Bayesian statistics, star trees.

Résumé. Ce travail de thèse traite de deux problèmes liés aux méthodes de recons-
truction d’arbres phylogénétiques. Dans une première partie, nous fournissons des
estimateurs consistants ainsi que des intervalles de confiance asymptotiques mathé-
matiquement rigoureux pour le temps d’évolution de séquences d’ADN dans des
modèles de substitutions plus réalistes que les modèles usuels, prenant en compte
les effets de la méthylation des dinucléotides CpG dans le génome des mammi-
fères. Dans une seconde partie, nous étendons un résultat récent de Steel et Matsen
en prouvant qu’un des travers bien connu des méthodes Bayésiennes en phylogé-
nie, appelé « star tree paradox », a en fait lieu dans un cadre plus large que celui de
Steel et Matsen.

Mots-clés. Processus de Markov, intervalles de confiance, séquences d’ADN, dis-
tances phylogénétiques, déficit en CpG, arbres phylogénétiques, statistiques bayé-
siennes, arbres en étoile.
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