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Chapter 1

Introduction

Within the field of requirements engineering and system safety analysis, many useful
techniques have been developed. Examples of them are Fault Tree Analysis (FTA)
[Vesely 1981], Failure Mode and Effects Analysis (FMEA) [Reifer 1979], Hazard and
Operability analysis (HAZOP) [Fenelon 1985], and State Machine Hazard Analysis
(SMHA) [Leveson 1987]. These methods have different coverage and validity: for
instance, FTA is primarily a means for analyzing causes of hazards, whereas FMEA
was developed by reliability engineers to allow them to predict equipment reliability,
and it is a form of reliability analysis which focuses on successful functions rather
than hazards and risks. In this PhD dissertation, we focus on FTA.

FTA was originally developed in 1961 by H.A. Watson at Bell Telephone Lab-
oratories to evaluate the Minuteman Launch Control System for an unauthorized
missile launch [Watson 1961]. One of the important handbooks of FTA, the "Fault
Tree Handbook", was written by the U.S. Nuclear Regulatory Commission (NRC)
in 1981 to serve as a reference text for the system safety and reliability course
[Vesely 1981]. FTA is a top-down approach whose inputs consist of the knowledge
of the system’s functions as well as its failure modes and their effects. The result
of the analysis is a set of combinations of component failures which can lead to
a specific malfunction. The approach is graphical, constructing Fault Trees (FTs)
using standardized Boolean logic symbols.

After that a FT has been contructed, both a qualitative and quantitative analysis
can be performed on the FT. The purpose of qualitative analysis is to determine the
minimal cut sets of the FT, which represent the combinations of basic events which
will cause the system to fail and which cannot be reduced in number, whereas the
quantitative analysis of FTs uses the minimal cut sets to calculate the probability
of occurrence of the Top Event (TE), from the probability of occurrence of the
basic events [Henley 2000, Shooman 1990]. The quantitative level hence requires
the additional knowledge of the time-to-failure probability distributions of all the
basic events.

One of the main restrictive assumptions in FTA is that basic events must be
assumed to be statistically independent, and their interaction is described by means
of Boolean OR/AND gates, so that only the combination of events is relevant, and
not their sequence. Besides, events are considered as non-repairable [Vesely 1981].
We refer to this model as SFT. An algebraic relation between the TE and the basic
events can be determined for any SFT. This algebraic relation is called the structure
function of the SFT, and it allows to perform both analyses directly.

Several attempts have been reported in the literature to remove the constraints



2 Chapter 1. Introduction

of FTA, and they include various kinds of temporal and statistical dependencies in
the model. A Priority-AND (PAND) gate has been introduced in [Fussell 1976] to
model situations in which the failure of the gate occurs if the inputs fail in a pre-
assigned order. However, the model that has received the greatest attention is the
Dynamic Fault Tree (DFT), proposed by Dugan et al. [Dugan 1992, Dugan 2000].
The DFT is based on the definition of new gates that induce temporal, as well as
statistical dependencies (as the distribution of an event may depend on the failure
date of another event): Priority-AND (PAND), Functional Dependency (FDEP),
Warm Spare (WSP), and Sequence enforcing (SEQ). The structure function of such
FTs cannot be determined since the classical Boolean algebra of Boolean variables
is not sufficient and since no specific algebraic models of dynamic gates have been
defined so far. The quantitative analysis of DFTs hence consists in exploding min-
imal modules [Dutuit 1996] of dynamic gates into their state-space representation,
and computing numerically the related occurrence probability. In any case, the so-
lution of a DFT forces a quantitative analysis, for which the failure distribution of
components is most often limited by the models used. A common obstacle in any
quantitative technique is the lack of accurate, reliable data on such failure distribu-
tions. To overcome this well-known deficiency, the qualitative analysis is often the
only valuable information on the system dependability. Nevertheless, the qualitative
analysis of DFTs has never been fully considered in the literature, and the concept
of minimal cut set needs to be revisited to account for the possible order of the
failure events.

In this dissertation, we propose an algebraic framework which allows to deter-
mine the structure function of any DFT and hence extend the analytical methods
commonly used to analyze SFTs to DFTs. One of the advantages of such analytical
approaches is that the quantitative analysis of the FT does not depend on the failure
distribution considered for basic events. The temporal dependencies between events
that dynamic gates induce impose that events are not repairable, in accordance with
[Vesely 1981]. To build an algebraic framework for DFTs, we define events as tem-
poral binary variables; and we introduce, beside Boolean operators OR and AND,
temporal operators BEFORE (BF), and SIMULTANEOUS (SM) [Merle 2007a]. We
include the possibility that basic events are repeated without restriction. In this
dissertation, we show that it is possible to determine an algebraic expression of the
structure function of any DFT, and that this structure function can be reduced to
a sum-of-product canonical form by means of a minimization algorithm which is
provided. Each product term of the canonical form contains basic events connected
by Boolean and temporal operators, and defines a Cut Sequence Set (CSS), i.e. a
set of sequences of (possibly ordered) basic events whose occurrence entails the TE.
Finally, we show how to compute the probability of occurrence of the TE from the
canonical form, by assigning to basic events any failure time distribution, thanks to
a probabilistic model of dynamic gates.

Hence to sum up, the main hypotheses and the new achievements of this disser-
tation can be condensed into the following points.
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i - We introduce a new algebraic framework with temporal operators defined on
a set of temporal variables.

ii - Basic events can be repeated without restriction and are considered as non-
repairable.

iii - Combining Boolean operators (OR, AND) with temporal operators BEFORE
(BF) and SIMULTANEOUS (SM), the algebraic expression of the TE can
always be minimized to a sum-of-product canonical form.

iv - The canonical form provides a systematic way to generate a list of non-
redundant Cut Sequence Sets (CSSs) whose occurrence leads to the TE.

v - The probability of occurrence of the TE can be expressed in closed form with
any failure distribution.

This dissertation is organised as follows. Chapter 2 recalls the definition of Static
and Dynamic Fault Trees and recalls the existing methods which allow to analyze
them. The algebraic framework which has been introduced to model dynamic gates
is presented in Chapter 3, and the behavioural model of dynamic gates which can
be deduced from it is presented in Chapter 4. These behavioural models allow to
determine the structure function of DFTs, but a probabilistic model of dynamic
gates is necessary to be able to perform the quantitative analysis of DFTs from this
structure function. Such behavioural models are introduced in Chapter 5. Chapter
6 shows how the behavioural model of dynamic gates allows to determine the struc-
ture function of any DFT under a canonical form, and how both analyses can be
performed directly from this structure function thanks to the probabilistic model of
dynamic gates presented in Chapter 5. These aspects are illustrated on two DFT
examples from the literature.





Chapter 2

State of the art

Contents
2.1 Static Fault Trees . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Analysis methods . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Dynamic Fault Trees . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Contribution of this work . . . . . . . . . . . . . . . . . . . . 24

In this chapter, we review the different approaches used to perform Fault Tree
Analysis. The case of Static Fault Trees and Dynamic Fault Trees is respectively
addressed in Sections 2.1 and 2.2.
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2.1 Static Fault Trees

In this section, we review most of the existing approaches which allow to perform the
analysis of SFT. The definition of SFTs and static gates is recalled in Section 2.1.1,
whereas some well-known approaches which allow to analyze SFTs are reviewed in
Section 2.1.2.

2.1.1 Definitions

In this section, we recall the different elements which compose a SFT. First, we
define what a SFT is in Section 2.1.1.1. Then, we recall the definition of static gates
OR, AND, and K-out-of-N in Sections 2.1.1.2, 2.1.1.3, and 2.1.1.4, respectively.
Finally, we define the structure function of a SFT in Section 2.1.1.5.

2.1.1.1 Static Fault Tree

According to [Dugan 2000], Static Fault Trees are composed of gates OR, AND, and
K-out-of-N, which are combinatorial – or static – gates. The definition of these 3

gates is recalled in the following sections.

2.1.1.2 OR gate

An OR gate with 2 input events A and B is shown in Fig. 2.1. According to
[Vesely 1981], the output fault or the OR gate occurs if at least one of the input
faults occurs.

Figure 2.1: An OR gate with 2 input events

2.1.1.3 AND gate

An AND gate with 2 input events A and B is shown in Fig. 2.2. According to
[Vesely 1981], the output fault or the AND gate occurs if all of the input faults
occur.

2.1.1.4 K-out-of-N gate, or voting gate

A K-out-of-N gate – or voting gate – is shown in Fig. 2.3. The output fault of the
voting gate occurs if at least K out of the N input faults occur.
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Figure 2.2: An AND gate with 2 input events

Figure 2.3: A K-out-of-N gate

2.1.1.5 Structure function

The 3 static gates defined in Sections 2.1.1.2 to 2.1.1.4 can easily be algebraically
modeled by means of Boolean operators OR and AND. As a consequence, a Boolean
model of events is sufficient to capture the failure modes of a SFT. An event A is
worth 0 as long as it is functional and 1 as soon as it fails.

The Boolean model of static gates allows to determine an algebraic expression
between the TE of the SFT and its basic events. This algebraic expression is called
the structure function of the SFT, and it can be manipulated – developed and/or
simplified – by means of the theorems of Boolean algebra.

Let us consider the FT in Fig. 2.4. This FT is composed of 3 OR gates and
2 AND gate and is consequently static. It can be noted that basic event A is a
repeated event since it is the input event of 3 gates of the SFT.

The Boolean model of the top OR gate allows to write that TE = M +N , and
the Boolean model of both middle gates allows to write that{

M = A+ P

N = Q ·D
so

TE = A+ P +Q ·D
Finally, the Boolean model of both bottom gates allows to write that{

P = A ·B
Q = A+ C

The structure function of the whole SFT can hence be determined as

TE = A+A ·B + (A+ C) ·D,
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Figure 2.4: A simple SFT example

and this structure function can then be simplified, thanks to the absorption law of
Boolean algebra a+ a · b = a, to

TE = A+ C ·D. (2.1)

This structure function can be exploited to perform the qualitative and quanti-
tative analysis of SFTs, as explained in Section 2.1.2.1.

2.1.2 Analysis methods

In this section, we review most of the approaches that are currently used to de-
termine the reliability of static systems. Three approaches dedicated to SFTs
are reviewed in Sections 2.1.2.1 to 2.1.2.3, whereas a new form of formal safety
analysis, called Deductive Cause-Consequence Analysis (DCCA) and presented in
[Ortmeier 2005], is reviewed in Section 2.1.2.4. This latter approach is not based on
SFTs.

2.1.2.1 Structure-function-based approach

The structure function of SFTs can be exploited to perform both the qualitative
and quantitative analysis of SFTs.

On the one hand, the structure function can be converted into a sum-of-product
canonical form, each product term representing a cut set for the SFT. On the other
hand, the inclusion–exclusion formula [Trivedi 2001] allows to determine the failure
probability of the TE whatever the failure distribution considered for basic events,
as long as basic events are statistically independent.
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Let us consider the SFT in Fig. 2.4, whose structure function has been deter-
mined in (2.1) and is

TE = A+ C ·D
On the one hand, each product term of this structure function represents a cut

set for the SFT [Rauzy 2001]. As a consequence, A and C ·D are cut sets for the
SFT in Fig. 2.4. C and D are not cut sets for the SFT, so C ·D is minimal, and A

is necessarily minimal. The structure function (2.1) thus allows to determine that
A and C ·D are minimal cut sets for the SFT in Fig. 2.4.

On the other hand, the inclusion–exclusion formula [Trivedi 2001] can allow to
determine Pr {TE} (t) as follows when basic events are statistically independent:

Pr {TE} (t) = Pr {A+ C ·D} (t)
= Pr {A} (t) + Pr {C ·D} (t)− Pr {A · C ·D} (t)
= Pr {A} (t) + Pr {C} (t)× Pr {D} (t)

−Pr {A} (t)× Pr {C} (t)× Pr {D} (t)
= Pr {A} (t) + (1− Pr {A} (t))× Pr {C} (t)× Pr {D} (t)

It can be noted that this expression does not depend on the failure distribution
considered for basic events A, C, and D. However, the complexity of the calculation
of the failure probability of the TE increases with the size of the FT. Monte-Carlo
simulation can hence be quite useful to reduce this complexity. This approach is
presented in Section 2.1.2.2.

The Sum of Disjoint Products (SDP) approach also allows to determine the
failure probability of the TE of SFTs from their structure function. This approach
consists in rewriting the structure function as a sum of disjoint terms by using the
theorem of Boolean algebras A+B = A+ Ā ·B. The failure probability of the TE
can then be computed by summing the probability of occurrence of all the terms of
the structure function. For instance, in our case,

TE = A+ C ·D = A+ Ā · C ·D,

and Pr {TE} (t) can hence be determined as

Pr {TE} (t) = Pr
{
A+ Ā · C ·D}

(t)

= Pr {A} (t) + (1− Pr {A} (t))× Pr {C} (t)× Pr {D} (t)

2.1.2.2 Monte-Carlo simulation

Monte-Carlo simulation is another approach which allows to determine the failure
probability of the TE of a SFT [Banks 1984]. Monte-Carlo simulation approaches
can be considered as approximation methods from a statistical point of view. Such
approaches rely on repeated random sampling to solve problems which are based
on calculation. A Monte-Carlo approach thus provides a statistical result under the
form of a confidence interval, whose size characterizes the accuracy of the approach.
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The advantage of Monte-Carlo simulation approaches is that they converge much
faster than numerical approaches when the size of the problem increases. The main
disadvantage of Monte-Carlo approaches is that for each extra decimal place re-
quired, it is necessary to multiply the sample size by 100. Thus, to calculate π to
five decimal places by throwing a needle would require about 1010 throws, or 1 throw
per second for about 300 years.

2.1.2.3 BDD-based approach

An approach similar to the structure-function-based approach and which allows to
perform the qualitative and quantitative analysis of SFTs consists in converting the
SFT into a Binary Decision Diagram (BDD), the analysis being performed by means
of some algorithms [Rauzy 1997].

Let us consider the SFT in Fig. 2.4. The BDD associated with the structure
function in (2.1) can be computed by means of the function build that can be
described through recursive equations to be applied on the structure function and
its subparts. It can be noted that the size of the BDD encoding the structure
function strongly depends on the chosen variable ordering. For instance, the BDD
of the SFT in Fig. 2.4 with the variable ordering A,B,C,D is shown in Fig. 2.5.

Figure 2.5: A BDD of the SFT in Fig. 2.4

On the one hand, the exact probability of the TE of the SFT in Fig. 2.4 can
be computed given the probabilities of its basic events. This quantitative analysis
is performed by means of a BDD traversal, the Shannon decomposition being ap-
plied on each node of the BDD. On the other hand, some algorithms provided in
[Rauzy 1997] allow to determine the minimal cut sets of the SFT in Fig. 2.4 from
the BDD in Fig. 2.5.

Another class of BDD, proposed in [Minato 1993, Minato 2001] and exploited
in [Tang 2004], can also be used. Such a BDD, denoted as Zero-suppressed BDD
(ZBDD), is obtained by deleting all the nodes whose 1-edge points to the 0-terminal
node and by connecting the edge to the other subgraph directly, as shown in Fig.
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2.6, and by sharing all isomorphic subgraphs. This data structure represents sets of
combinations more efficiently than using originals ordered BDDs.

Figure 2.6: A reduction rule of ZBDDs, from [Tang 2004]

BDDs and ZBDDs hence represent efficient tools to perform the analysis of large
SFTs.

2.1.2.4 Deductive Cause-Consequence Analysis (DCCA)

Deductive Cause-Consequence Analysis (DCCA) [Ortmeier 2005] is a recent formal
safety analysis approach which is not only based on FTs. It is presented as a
generalization of Failure Modes and Effects Analysis (FMEA) [McDermott 1996],
Failure Modes, Effects, and Criticality Analysis (FMECA) [ECSS 2001], and Fault
Tree Analysis [Stamatelatos 2002].

The formalization is done with Computational Tree Logic (CTL) [Emerson 1990],
and the system models used are finite automata, thus allowing the use of model
checkers like SMV [McMillan 1990]. A list of hazards on system level as well as a
list of possible basic component failure modes is supposed to be given, and both are
assumed to be described by predicate logic formula. The authors define a temporal
logic property, called criticality of a set of failure modes, which indicates whether a
given combination of failures may lead to the hazard or not. This combination of
failures is called a minimal critical set if it is critical with regards to the criticality
property, and if no proper subset of this combination is critical. The goal of DCCA
is not to test all sets of failure modes to determine all the minimal critical sets,
since it would require an effort which would be exponential in the number of failure
modes, but to formally verify the results of informal safety analysis techniques. It
can be noted that the results of DCCA have the same semantics as those of formal
FTA [Schellhorn 2002].

The proof obligations of DCCA may be constructed automatically and the proofs
can be done – for finite state systems – by model checking. Besides, the authors of
[Ortmeier 2005] claim that DCCA formalization is strictly more precise than other
formal safety analysis techniques like formal FTA. However, even though DCCA
could be used to determine all the minimal critical sets of a system and hence
perform its qualitative analysis, it does not address the problem of the determination
of the failure probability of the system.
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2.2 Dynamic Fault Trees

In this section, we review most of the existing approaches which allow to perform
the analysis of Dynamic Fault Trees (DFT). The definition of DFTs and dynamic
gates is recalled in Section 2.2.1. Contrary to SFTs, the structure function of DFTs
cannot be determined, as explained in Section 2.2.2, so other approaches must be
used to analyze DFTs. We review these approaches in Section 2.2.3. In Section
2.2.4, we present the contribution of this Ph.D. thesis. It consists in defining an
algebraic framework to model dynamic gates and determine the structure function
of DFTs to extend the analytical approaches commonly used to analyze SFTs to
DFTs.

2.2.1 Definitions

In this section, we recall the different elements which compose a DFT. First, we
define what a DFT is in Section 2.2.1.1. Then, we recall the definition of dynamic
gates PAND, FDEP, and Spare respectively in Sections 2.2.1.2, 2.2.1.3, and 2.2.1.4.

2.2.1.1 Dynamic Fault Tree

According to [Dugan 2000], DFTs comprise basic events, static gates (OR, AND,
and K-out-of-N), and dynamic gates (PAND, FDEP, WSP, and SEQ). However, it
was shown in [Boudali 2007a] that the Sequence Enforcing (SEQ) gate is expressible
in terms of the cold spare gate. As a consequence, dynamic gates can be limited to
gates PAND, FDEP, and Spare, only.

The definition of these 3 gates is recalled in the following sections.

2.2.1.2 PAND gate

The Priority-AND (PAND) gate was defined in [Fussell 1976] as logically equivalent
to an AND gate where the input events must occur in a specific order. Convention-
ally, the events attached to a PAND gate must occur in the order that they appear
from left to right in the graphical representation. As a consequence, in the case of
a PAND gate with 2 input events as shown in Fig. 2.7, A and B must occur and A

must occur before B for Q to occur.
This case, which is the most common one in the literature, can thus be described

by the equivalence shown in Fig. 2.7, from [Vesely 1981].

2.2.1.3 FDEP gate

The Functional Dependency (FDEP) gate was defined in [Dugan 1990]. This gate
has:

• 1 trigger event (either a basic event or the output of another gate in the tree);

• a non-dependent output (reflecting the status of the trigger event);
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Figure 2.7: A PAND gate and its equivalence with an AND gate, from [Vesely 1981]

• one or more dependent basic events.

The dependent basic events are functionally dependent on the trigger event.
When the trigger event occurs, the dependent basic events are forced to occur. The
separate occurrence of any of the dependent basic events has no effect on the trigger
event.

An FDEP gate with 2 dependent basic events A and B is shown in Fig. 2.8.
Event T represents the trigger event, and the output of the gate is not represented.

Figure 2.8: An FDEP gate with 2 dependent basic events

2.2.1.4 Spare gate

The Spare gate was defined in [Dugan 1990]. This gate has one primary input and
one or more alternate inputs. All inputs are basic events. The primary input is the
one that is initially powered on (or active), and the alternate input(s) specify the
– initially unpowered or dormant – components that are used as replacements for
the primary unit. It has one output which becomes true after all the input events
occur.

A Spare gate with a primary event A and 2 spare events B, and C, is shown in
Fig. 2.9.

According to [Stamatelatos 2002], which presents a Markovian definition of the
Spare gates, associated with each input to the Spare gate is a dormancy factor –
usually between zero and one – that multiplies the failure rate while the unit is
spare. When the dormancy factor is equal to zero, the spare event is called a Cold
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Figure 2.9: A Spare gate with a primary event A and 2 spare events B, and C

Spare (CSP), and it cannot fail while in its dormant mode. When the dormancy
factor is equal to one, the spare event is called a Hot Spare (HSP), and its failure
rate is the same in its dormant and active modes. When the dormancy factor is
between zero and one, the spare event is called a Warm Spare (WSP). Cold spares
and hot spares can hence be considered as particular cases of warm spare events.

Spare gates can also be used if spare units are shared. Then the basic event
representing the spare unit has inputs to more than one Spare gate. The spare is
available only to one of the Spare gates, depending on which of the primary units
fails first. An example of 2 Spare gates sharing a spare event C is shown in Fig.
2.10.

Figure 2.10: 2 Spare gates sharing a spare event C

If A fails first, the spare event C is made unavailable: Q1 occurs as soon as C

occurs, and Q2 occurs as soon as B occurs. On the contrary, if B fails first, Q1

occurs as soon as A occurs, and Q2 occurs as soon as C occurs.
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2.2.2 Problem

When systems exhibit a static behaviour (their failure is engendered by mere com-
binations of component failures), the SFT model allows to model the failure of the
system and the algebraic model of static gates, based on Boolean operators OR and
AND, allows to determine the structure function of the SFT. This structure function
can then be exploited to perform both the qualitative and quantitative analysis of
the SFT, as explained in Section 2.1.2.1.

However, when systems exhibit a dynamic behaviour (their failure is not en-
gendered by combinations, but specific sequences of component failures), the SFT
model is not sufficient to model the failure of the system and DFTs must be used.
The structure function of such DFTs cannot be determined since no algebraic model
has been defined for dynamic gates so far. As a consequence, other approaches must
be used to perform the analysis of the DFT without using its structure function.
The most significant approaches are reviewed in Section 2.2.3.

2.2.3 Solutions

In this section, we review most of the approaches that are currently used to de-
termine the reliability of dynamic systems. We focus more particularly on DFTs.
These approaches are reviewed in Section 2.2.3.1, and we focus on the most common
ones in Sections 2.2.3.2 to 2.2.3.5.

2.2.3.1 Global view

Many approaches are dedicated to the determination of the failure causes of dy-
namic systems. Many of them define alternative Fault Trees, such as the approach
presented in [Bouissou 2003], in which a new semantics is assigned to the traditional
graphical representation of fault trees by means of a new kind of links called trig-
gers which allow to combine conventional fault trees and Markov models. This new
formalism is called "Boolean Logic Driven Markov Process" (BDMP) and allows to
determine the reliability of dynamic systems. Another model, called time-to-failure
tree, is presented in [Ejlali 2003]. SFTs and DFTs can be converted into time-to-
failure trees and synthetized to a Field Programmable Gate Array (FPGA) to signif-
icantly accelerate Monte-Carlo simulation. Finally, the authors of [Clarhaut 2009]
propose a multi-fault tree model which is based on the definition of 2 temporal op-
erators, PAND and SEQ, which allow to model sequences of multiple failures. Each
failure is assigned a relative reliability coefficient, and the knowledge of the number
of scenarios leading to the considered failure allows to evaluate the dependability
level of all possible equipment architectures of the system.

Most approaches are based on DFTs. Some of them are based on the conversion
of the DFT into a state model. This conversion can be global, as for the Temporal
Bayesian Network model presented in Section 2.2.3.4, or it can use the divide-and-
conquer approach by converting the dynamic parts of the DFT into Continuous Time
Markov Chains or Stochastic Petri Nets, as respectively presented in Sections 2.2.3.2
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and 2.2.3.3, whereas the static parts of the DFT are solved by using BDD-based or
other combinatorial methods. A novel analytic approach which proposes extensions
to the logical foundations of FTs that enable use of temporal gates is presented
in Section 2.2.3.5. Finally, some approaches allow the direct determination of the
reliability of a DFT by means of analytic methods [Amari 2003] or Monte-Carlo
simulation [Rao 2009].

2.2.3.2 Continuous Time Markov Chains (CTMC)

DFTs can be solved by automatic conversion to Continuous Time Markov Chains
[Dugan 1992, Dugan 1993]. As illustrated in [Coppit 2000] on the DFT example
shown in Fig. 2.11, the DFT studied is first converted into an intermediate repre-
sentation which is called failure automaton. A failure automaton is a state machine
which models the changing state of the system as failures occur [Coppit 2003]. A
portion of the failure automaton of the DFT in Fig. 2.11 is shown in Fig. 2.12.

Figure 2.11: A DFT example from [Coppit 2000]

Each state of the failure automaton represents a Fault Tree state, an arc between
two states indicating the basic event whose occurrence caused the state transition.
The failure automaton obtained can then be converted into a Continuous Time
Markov Chain (CTMC). Each state of the CTMC corresponds to a state of the
failure automaton, and transitions also correspond one to one. The transition rates
between states of the CTMC correspond to the rate of occurrence of the triggering
basic events. The Markov chain obtained from the conversion of the portion of
failure automaton in Fig. 2.12 is shown in Fig. 2.13.

The approach used in the Galileo tool [Dugan 2000] is modular [Gulati 1997]
and based on CTMCs. During the traversal of the DFT, a subtree is marked as
dynamic if a dynamic gate is present. If a subtree contains no dynamic gates, it is
classified as static. After the traversal is completed, static subtrees are solved using
BDD-based methods. The Markov method is used for dynamic subtrees. Each
submodel is solved for the probabilities of failure, and is replaced by a basic event in
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Figure 2.12: A portion of the failure automaton of the DFT in Fig. 2.11

the higher-level mode which is characterized by a failure probability. The reduced,
top-level fault tree is then solved as a static tree with as many basic events as there
are subtrees in the DFT.

Regarding the qualitative analysis of DFTs, the CTMC which corresponds to a
DFT provides the cut sequences of the DFT by providing the sequences of basic event
failures which lead to the state of the CTMC in which the TE of the DFT occurs, but
the determination of the minimal cut sequences requires further investigation and is
not direct. In the Galileo tool, the qualitative analysis is not based on the CTMC,
but it is performed by means of Zero-suppressed BDDs (ZBDD) [Tang 2004].

To conclude, the Continuous Time Markov Chain approach is a modular ap-
proach which is dedicated to the dynamic subtrees of DFTs only, the static subtrees
being solved by means of faster BDD-based methods, and which allows to perform
the quantitative analysis of DFTs. However, the CTMC does not provide the min-
imal cut sequences of the DFT which are required for the qualitative analysis, and
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Figure 2.13: The CTMC corresponding to the portion of failure automaton in Fig.
2.12

the use of CTMCs forces the failure distribution function of basic events to be ex-
ponential [Dugan 2000]. Besides, the size of the CTMC increases with the number
of basic events of the DFT and can lead to state space explosion.

2.2.3.3 Stochastic Petri Nets (SPN)

Another approach is presented in [Bobbio 2004] which proposes to include statisti-
cal dependencies in Fault Trees. The authors adopt a parameterization technique,
referred to as Parametric FT (PFT), to fold equal subtrees or events to resort to a
more compact FT representation. For instance, a Dynamic PFT example is shown
in Fig. 2.14. The basic events A(i), B(j), D(k), and SP (h) in Fig. 2.14 represent
replicated basic events whereas the intermediate event SUB(i) represents a repli-
cated module. In order to model cyclic behaviours, a new primitive called repair
box is also introduced. A repair box, attached to an event, causes the starting of a
repair activity of all the components that failed as the event occurs.

Parametric FTs can then be modularized starting from an algorithm presented
in [Dutuit 1996]. A module may be classified as static or dynamic. Static modules
contain common basic events and can be analyzed by means of suitable combinato-
rial techniques. Dynamic modules contain dynamic gates or repair boxes and require
a state-space analysis which is obtained by translating the dynamic module into a
high level colored Petri net in the form of a Stochastic Well-formed Net (SWN)
[Chiola 1993]. This translation is obtained by translating each dynamic gate into a
SWN, the translation rules being defined in [Bobbio 2004]. For instance, the SWN
of the parameterized Warm Spare gate shown in Fig. 2.15 is shown in Fig. 2.16.

In Fig. 2.16, place SP_na contains the colored tokens of the spares which are
not available because failed or already working; SP_curr contains the token relative
to the spare which is currently replacing the main component. Transition SP_fail
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Figure 2.14: A Dynamic PFT example from [Bobbio 2004]

Figure 2.15: A parameterized Warm Spare gate
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Figure 2.16: The SWN of the Warm Spare gate in Fig. 2.15, from [Bobbio 2004]

models the fault of a spare when in dormant condition, putting the relative token
in SP_na. When the main component P fails (token in place P_dn), transition
P_spare fires, putting the token relative to the spare to be used in SP_curr and
SP_na. If later the spare fails (firing of transition SP_fail), if place SP_na contains
a number of tokens equal to the number of spares, transition P_fail fires, modeling
the general failure of the gate, else another spare starts working by means of the
P_spare transition.

Once each module has been converted into a Petri net in the form of a SWN, it is
analyzed in isolation by resorting to the underlying lumped CTMC [Delamare 2003].
The module failure probability, computed from the CTMC, is cast back into the
original PFT by replacing the whole module with a single basic event. This approach
is the one implemented in the Linux version of the Drawnet tool [Vittorini 2002].

A similar approach is presented in [Raiteri 2005], which consists in converting
the whole DFT into a Generalized Stochastic Petri Net (GSPN). A CTMC can
be generated from this GSPN [Chiola 1995], and the unreliability of the system is
computed on the CTMC.

To conclude, the Stochastic Petri Net approach can be used both as a modular
and a global approach which allows to perform the quantitative analysis of DFTs.
However, the two approaches which exploit SPNs [Bobbio 2004, Raiteri 2005] do
not exploit it to perform the qualitative analysis of DFTs, and the quantitative
analysis is based on the conversion of SWNs or GSPNs into a CTMC, so the failure
distribution function of basic events is necessarily exponential.

2.2.3.4 Temporal Bayesian Networks (TBN)

Temporal Bayesian Networks can also allow to perform the quantitative analy-
sis of DFTs. A complete definition of Bayesian Networks (BN) can be found in
[Jensen 1996].

A BN is a directed acyclic graph comprised of nodes and arcs. Nodes represent
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Figure 2.17: The correspondence between the variable states, and the failure time
intervals

Random Variables (RV) and directed arcs between pairs of nodes represent depen-
dencies between the RVs. A BN uniquely defines a joint probability distribution
over all the RVs which are present in the graph. A marginal prior probability table
is associated with each root node of the BN, and a Conditional Probability Table
(CPT) is associated with all other nodes, the CPT of a RV specifying the probability
of each of the variable’s states conditioned on the value of each of its parent nodes.
The joint probability distribution can then be determined by using the Chain Rule
and assuming the conditional independence between the variables [Boudali 2005a].

A Discrete-Time BN (DTBN) framework is introduced in [Boudali 2005a]. A
DFT can be translated into an equivalent DTBN: each basic event of the DFT is
represented as a root node in the DTBN, and all gates in the DFT are intermediate
nodes in the DTBN and possess a CPT associated with each one of them. The time
line is divided into n+1 intervals, and each node variable has a finite number n+1

of states, as shown in Fig. 2.17. The n first states divide the time interval (0, T ],
where T is the mission time, into n intervals whose length is Δ = T

n , whereas the
last state n + 1 represents the time interval (T,+∞). If a RV is in state n + 1, it
hence means that the corresponding basic component or gate did not fail during the
mission time.

The marginal prior probability tables and the CPTs can then be populated
according to the failure distributions of basic events and to the gates of the DFT,
and the probability of the leaf node of being in the interval (T,+∞) can then be
obtained to determine the reliability of the system. The DTBN of a CSP gate is
shown in Fig. 2.18 for n = 2.

If we look at the marginal prior probability table of A in Fig. 2.18, P1, P2, and
P3 are the probabilities of A failing in the intervals (0,Δ], (Δ, T ], and (T,+∞),
respectively. The method to determine P1 and P2 from the failure distribution of
A is detailed in [Boudali 2005a] and P3 satisfies P1 + P2 + P3 = 1. Regarding the
CPT of B, it indicates that B can fail with a probability of P12 if A has failed in
the time interval (0,Δ], and that B will not fail during the mission time if A fails
during the time interval (Δ, T ] or does not fail during the mission time. Finally, the
CPT of the CSP gate simply indicates that the CSP gate fails as soon as B fails –
in the same time interval.

This framework was extended to the case of Continuous-Time BN (CTBN) in
[Boudali 2006]. Instead of being discrete, the RVs of the BN are continuous, and
the probabilities are conditional and are expressed in terms of probability density
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Figure 2.18: The DTBN of a CSP gate for n = 2, from [Boudali 2005a]

functions (PDF). Two specific functions are defined to capture the behaviour and
dependencies found in complex systems, which are the unit-step function and the
impulse function. The closed-form analytical solution for the failure distribution of
the system can then be computed from the marginal PDF of basic events.

The Windows version of the Drawnet tool [Montani 2005] is based on Dynamic
BNs which are quite similar to CTBNs [Bobbio 2001].

Both the DTBN and the CTBN framework are dedicated only to the quantitative
analysis of DFTs. On the one hand, DTBNs can be solved by using a standard
BN inference engine, but the solution provided is approximate, dependent on the
time granularity [Boudali 2005b], and highly memory consuming [Boudali 2006].
On the other hand, the CTBN framework provides the closed-form solution for the
reliability of the system and allows memory savings since there are no more CPTs
to store; however, there is not a theory for exact BN inference in CTBNs with
general distributions and a theory exists only in the case of Gaussian distributions
[Lauritzen 2001] and mixtures of truncated exponentials [Moral 2001].

2.2.3.5 Qualitative temporal analysis (QTA)

In recent years, a new extension to FTA was proposed to enable FTs to model
event sequences and relative temporal ordering. This extension is called Pandora
[Walker 2006] and is built around a redefinition of the PAND gate. The definitions
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Figure 2.19: The symbology of the 3 temporal gates of Pandora, from [Walker 2009]

used in Pandora are intended to remove the ambiguities relative to the definition of
the PAND gate in [Stamatelatos 2002] and provide a framework for the qualitative
analysis of PAND gates and of the other temporal gates defined. This framework is
presented in [Walker 2009].

Events are considered as non-repairable, and 3 temporal relations, named Be-
fore, Simultaneous, and After, are defined to traduce the possible temporal rela-
tions between two events X and Y . Pandora defines the PAND gate to represent
temporal relations Before and After, and introduces a new gate, the Simultaneous-
AND (SAND) gate, to represent the temporal relation Simultaneous, so that gates
PAND and SAND allow to represent all the temporal relations possible between
two events in Pandora. Besides, given gates PAND and SAND represent conjunc-
tions of events only, the authors of [Walker 2009] define a new gate, the Priority-OR
gate (POR), in [Walker 2007b] to model disjunctions of events. The definition of
the POR gate is based on the definition which can be found in [Vesely 1981] of
the Exclusive-OR (XOR) gate, which was quite conflictual with the traditional def-
inition of the XOR gate and was corrected in the later version of the Fault Tree
Handbook [Stamatelatos 2002]. The symbology of the 3 temporal gates defined in
Pandora is shown in Fig. 2.19. It can be noted that the authors retain for the POR
gate the same symbol as the one of the XOR gate in [Stamatelatos 2002].

Pandora is concerned only with the order in which events occur, and this order
is modeled by means of a property called the sequence value. The sequence value of
an event X is noted S(X). Given a set of events, S(X) = 1 indicates that the event
occurs first in the set, S(X) = 2 indicates that it occurs second, and so forth. If
S(X) = 0, then it means that the event has not occurred. These sequence values can
then be used to construct Temporal Truth Tables (TTT) to demonstrate equivalences
between expressions and hence simplification and development theorems for the FTs
which contain the 3 temporal gates of Pandora. An example of TTT is shown in
Fig. 2.20, where mathematical symbols <, &, and | respectively model gates PAND,
SAND, and POR.

The 3 first columns in Fig. 2.20 enumerate all the possible failure sequences
for events X, Y , and Z, and it can be noted that simultaneous failures are also
considered and indicated by the same sequence value for events. The other columns
of the TTT indicate the sequence values of different expressions in the different cases
considered, and two expressions are considered as equivalent if the sequence values
of both expressions are the same in all the cases considered, as it is the case for the
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Figure 2.20: A Temporal Truth Table from [Walker 2009]

two expressions X < Y.Y < Z and X < Y.Y < Z.X < Z.
The qualitative temporal analysis of a FT can be performed after transforming

the expression for the structure function of the FT into a simplified form called base
temporal form (BTF) [Walker 2007a] and which consists of doublets. An expression
in BTF contains only AND gates, OR gates, and doublets. A doublet is simply a pair
of events connected by a single temporal gate, and is indicated by square brackets,
e.g. [X < Y ]. This expression in BTF can then be reduced and the minimal cut
sequences of the FT can be determined from it.

Pandora allows to perform the qualitative analysis of FTs with temporal gates
PAND, SAND, and POR. However, only one of these three gates is a dynamic gate
as defined in [Dugan 1992]. Besides, Pandora does not allow to determine the failure
probability of the TE of the FTs which it considers, and does hence not allow to
perform the quantitative analysis of DFTs.

2.2.4 Contribution of this work

The approach that we propose aims at determining the structure function of DFTs
to be able to extend the analytical techniques commonly used to analyze SFTs
to DFTs. This algebraic framework is based on a temporal definition of events
which allows to define three temporal operators named Non-inclusive Before (BF),
Inclusive BEFORE (IBF), and Simultaneous (SM).

The BF operator was introduced in [Merle 2007a, Merle 2007b] to model dy-
namic gates PAND, FDEP [Merle 2010b], and Spare [Merle 2010c], and the SM
operator was introduced in [Merle 2009] to allow to take into account the simul-
taneity of events. This behavioural model of dynamic gates allows to determine the
structure function of any DFT, and a complete list of theorems which is provided
allows to develop and simplify this structure function to a sum-of-product canonical
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form.
A minimization criterion was introduced in [Merle 2010b] to reduce this canon-

ical form of the structure function to a minimal canonical form by removing the
redundant terms which may be contained in the canonical form. The determination
of this minimal canonical form of the structure function for any DFT makes possible
the direct determination of the cut sequences of the DFT. Besides, a probabilistic
model of dynamic gates allows to perform the quantitative analysis of DFTs directly
from this minimal canonical form of their structure function.

It can be noted that the probabilistic models which are provided allow to de-
termine the failure probability of the TE of any DFT for any failure distribution
considered for basic events, as it is the case for SFTs, since the reliability formulas
that we use do not depend on the distribution considered either. If the considered
failure distribution is not analytically integrable (as for the Weibull distribution),
the probabilistic relation deducted from the minimal canonical form of the structure
function can still be used by resorting to numerical integration.

A comparison between this algebraic approach and the approaches reviewed in
Section 2.2.3 can be found in Table 2.1 (NA stands for Not Available).

Table 2.1: Comparison between the algebraic approach and the approaches reviewed
in Section 2.2.3

Approach
Qualitative Quantitative

Implementation Modularity
analysis analysis

CTMC NA
Exponential Galileo

Y
distributions [Dugan 2000]

SPN NA
Exponential Drawnet

Y/N
distributions [Vittorini 2002]

TBN NA

Gaussian

N
distributions, Drawnet

truncated [Montani 2005]
exponentials

QTA
Minimal cut

NA
Planned

Y
sequences

in HiP-HoPS
[Papadopoulos 2001]

Algebraic Cut Any
Not yet Y

approach sequences distribution

This algebraic approach allows to determine the cut sequences of any DFT,
and the failure probability of the TE of any DFT can be computed for any failure
distribution considered for basic events. Besides, it is a modular approach since
the static and dynamic parts of the subtree are equivalent to static and dynamic
parts in the structure function of the DFT. When a part of the structure function
is static, the minimal cut sets can be determined directly, and its failure probability
can be determined by means of the inclusion–exclusion formula; when a part of the
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structure function is dynamic, the cut sequences can be determined directly, and its
failure probability can be determined by means of the probability models provided.
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This chapter presents the algebraic framework which has been introduced to
model dynamic gates. The hypotheses that have been made when designing this al-
gebraic framework are presented in Section 3.1, and these hypotheses allow to define
a temporal model of events in Section 3.2. DFTs may contain static gates, so the al-
gebraic framework presented must be able to model static gates as well. A temporal
model of Boolean operators OR and AND is hence provided in Section 3.3. The 3

temporal operators which have been defined to model dynamic gates are presented in
Section 3.4. These temporal operators will allow to determine the structure function
of DFTs, and a list of theorems is provided in Section 3.5 to manipulate expressions
containing temporal operators, and hence the structure function of DFTs. Finally,
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Section 3.6 discusses the semantics similarities and differences between our algebraic
framework and Pandora, which was presented in Section 2.2.3.5 and is the closest
approach to ours.
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3.1 Hypotheses

3.1.1 Non-repairable events

The Fault Tree Handbook does not define events with time in mind. It only men-
tions that a basic event is "a basic initiating fault event that requires no further
development" [Vesely 1981]. However, it has already been stated that events rep-
resent occurrences of faults rather than the existence of faults, and the Fault Tree
Handbook further states that "under conditions of no repair, a fault that occurs will
continue to exist". These statements are retained in this algebraic framework, and
the events of FTs are considered as non-repairable. It is also assumed that events
occur instantaneously. Therefore:

• an event in this algebraic framework represents the occurrence of a fault;

• the event is false as long as the fault has not yet occurred;

• when the fault occurs, the event becomes true and will remain true thereafter;

• an event is considered as non-repairable: it cannot go from true to false, only
from false to true;

• an event is instantaneous: it goes instantly from false to true.

3.1.2 Continuous failure time distributions

According to [Stamatelatos 2002], the input data that must be supplied for a basic
event is usually one of four basic types:

1. a component failure probability in some time interval;

2. an event occurrence probability in some time interval;

3. a component unavailability and

4. a pure event probability.

As an event in our algebraic framework represents the occurrence of a fault,
and hence the failure of a component, points (1) and (2) are equivalent, as well as
points (3) and (4). Besides, the input data must necessarily be time-sensitive since
the basic events that we consider may be the input events of dynamic gates. As
a consequence, we assume that each basic event is defined by an event occurrence
probability in the set of positive times, and that this failure time distribution is
continuous, so that two basic events cannot occur simultaneously.
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3.1.3 Statistical independence

In the general case of 2 dependent basic events A and B, both events fail with a
probability

Pr {A ·B} = Pr {A} × Pr {B|A} = Pr {B} × Pr {A|B} ,

according to [Grimaldi 2004], where Pr {B|A} is the conditional probability of B

given A, which means that the occurrence of A may affect the occurrence of B and
vice versa.

We consider that basic events are statistically independent, so that any two
events A and B will fail with a probability

Pr {A ·B} = Pr {A} × Pr {B} .

3.1.4 Simultaneity

In a FT, simultaneity among events may arise in two ways. Independent basic
events can occur simultaneously if they have a discrete probability distribution with
a non-null probability mass exactly at the same time. Because the failure probability
distributions are usually considered as continuous functions with infinite support,
the simultaneous occurrence has null probability, and can be neglected. A second
case of simultaneity may arise at any level of a FT when there are repeated basic
events. FTs with repeated events represent the most powerful combinatorial model
in dependability [Malhotra 1994], and require ad hoc analysis techniques.

Nevertheless, the presence of repeated events across modules of dynamic gates
has not yet been explored in its full generality. In [Yuge 2008], repeated events are
allowed, but the paper does not provide any algorithm to derive the list of the cut
sequences.

Let us consider the DFT in Fig. 3.1, in which event A is a repeated basic event.
If basic events A, B, and C occur according to sequences [B, C, A], or [C, B, A],

Figure 3.1: An example of DFT with one repeated basic event
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intermediate events G and H occur simultaneously at the same time as A occurs.
This example shows that intermediate nodes of a FT can occur simultaneously
because of the presence of repeated basic events. The simultaneity problem has
been briefly addressed in [Boudali 2007b], and has been solved by resorting to the
concept of "non-determinism", a concept that is not easy to accept in engineering
practice because many engineers believe that the behaviour of technical systems,
and in particular control systems, must necessarily be deterministic. We assert that
a choice must be made regarding the semantics of simultaneous events, and dynamic
gates. For instance, in the case of simultaneous events in input to a PAND gate,
two choices are possible (Fig. 3.1):

• if the order relation is considered strictly, when intermediate events G and
H occur simultaneously, TE1 does not occur, and gate PAND would then be
considered as being "non-inclusive" and

• if the order relation is not considered strictly, when intermediate events G and
H occur simultaneously, TE1 occurs at the same time as G or H, and gate
PAND would then be considered as being "inclusive".

Both interpretations of the order relation can be taken into account, and alge-
braically modeled.

3.2 Temporal model of non-repairable events

The structure function of SFTs is based on a Boolean model of events, and of basic
events in particular. With this simple model, the only aspect which is taken into
account is the presence or absence of failure. However, this Boolean model cannot
render the order of occurrence of events which is necessary for the modeling of
dynamic gates. To take into account the temporal aspect of events, we consider
the top event, the intermediate events, and the basic events as temporal functions,
which are piecewise right-continuous on R

+ ∪ {+∞}, whose range is B = {0,1}.
As we consider all events as non-repairable events, each of them is perfectly

defined by its unique date of occurrence – noted d(a) for an event a. A generic
timing diagram of such an event a is given in Fig. 3.2. In this dissertation, we
denote by Enr the set of these temporal functions, which corresponds to the set of
non-repairable events.
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�

�
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d(a)
Figure 3.2: A non-repairable event
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3.3 Temporal model of Boolean operators

DFTs may contain static gates, so the algebraic framework introduced must be
able to capture the static behaviour of Boolean gates as well. Boolean gates are
commonly modeled by Boolean operators OR and AND, so a temporal model of
both operators is respectively provided in Sections 3.3.1 and 3.3.2. As it is proven
in Section 3.3.3, the set of non-repairable events Enr equipped with the Boolean
operators OR and AND as defined in Sections 3.3.1 and 3.3.2 has the same algebraic
structure as the Boolean algebra of Boolean variables which is used to model SFTs,
so the structure function of SFTs can still be determined and simplified thanks to
this algebraic framework.

3.3.1 Operator OR

The temporal definition of operator OR (with symbol +), based on the dates of
occurrence of a and b, is

+ : Enr × Enr −→ Enr

(a, b) �−→ a+ b

where

d(a+ b) =

⎧⎪⎪⎨
⎪⎪⎩
d(a) if d(a) < d(b)
d(a) if d(a) = d(b)
d(b) if d(a) > d(b)

The result of the composition of two events a and b by operator OR is illustrated
by the timing diagrams in Fig. 3.3 in three cases: Case 1: d(a) < d(b), Case 2:
d(a) = d(b), Case 3: d(a) > d(b).
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Figure 3.3: Timing diagrams of Boolean operator OR
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3.3.2 Operator AND

The temporal definition of operator AND (with symbol ·), based on the dates of
occurrence of a and b, is

· : Enr × Enr −→ Enr

(a, b) �−→ a · b

where

d(a · b) =

⎧⎪⎪⎨
⎪⎪⎩
d(b) if d(a) < d(b)
d(a) if d(a) = d(b)
d(a) if d(a) > d(b)

The result of the composition of two events a and b by operator AND is illustrated
by the timing diagrams in Fig. 3.4 in three cases: Case 1: d(a) < d(b), Case 2:
d(a) = d(b), Case 3: d(a) > d(b).
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Figure 3.4: Timing diagrams of Boolean operator AND

3.3.3 Algebraic structure of (Enr ,+, ·)
The identity elements of operators OR and AND in Enr are denoted by ⊥, and �,
respectively, to which these dates can be assigned:

d(⊥) = +∞ , d(�) = 0.

⊥ is the never-occurring event whereas � is the always-occurring event.
The operators OR and AND defined in Sections 3.3.1 and 3.3.2 satisfy the fol-

lowing theorems, for all a, b, c ∈ Enr :

• operators OR and AND are commutative

a+ b = b+ a (3.1)

a · b = b · a (3.2)
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• operators OR and AND are associative

a+ (b+ c) = (a+ b) + c (3.3)

a · (b · c) = (a · b) · c (3.4)

• operators OR and AND are idempotent

a+ a = a (3.5)

a · a = a (3.6)

• operator AND is distributive over operator OR

a · (b+ c) = (a · b) + (a · c) (3.7)

• operator OR allows ⊥ as its identity element

a+⊥ = a (3.8)

• operator AND allows � as its identity element

a · � = a (3.9)

• operator AND allows ⊥ as an absorbing element

a · ⊥ = ⊥ (3.10)

The proofs of these 10 theorems can be found in Appendix A.
According to the definition of operator OR in Section 3.3.1, + is an inner com-

position law on Enr which is associative (3.3) and allows ⊥ as its identity element
(3.8), so (Enr ,+) is a monoid [Lang 2005]. Besides, + is commutative (3.1) and
idempotent (3.5), so (Enr ,+) is an idempotent monoid.

According to the definition of operator AND in Section 3.3.2, · is an inner com-
position law on Enr which is associative (3.4) and allows � as its identity element
(3.9), so (Enr , ·) is a monoid. Besides, · is commutative (3.2) and idempotent (3.6),
so (Enr , ·) is an idempotent monoid.

On the one hand, (Enr ,+) is an idempotent monoid, so it is an Abelian monoid
and its identity element is ⊥. On the other hand, (Enr , ·) is an idempotent monoid,
so it is a monoid and its identity element is �. Besides, · is commutative (3.2)
and left-distributive over + (3.7) so · is left-distributive and right-distributive over
+, and ⊥ is an absorbing element over · (3.10). As a consequence, (Enr ,+, ·) is a
semiring. Given (Enr ,+) is idempotent, (Enr ,+, ·) is a dioid. · is commutative (3.2)
so (Enr ,+, ·) is an Abelian dioid, like ({0, 1} ,+, ·), and the properties of Boolean
algebra that are commonly used for the simplification of SFTs can still be applied
with our algebraic framework, and their structure functions can be determined as
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usual. In particular, operators OR and AND satisfy the two additional following
theorems, which are theorems which hold on Boolean algebras:

a+ (b · c) = (a+ b) · (a+ c) (3.11)

a+� = � (3.12)

as well as the 2 following theorems, which are particular cases of theorems (3.7) and
(3.11):

a+ (a · b) = a (3.13)

a · (a+ b) = a (3.14)

(Enr ,+, ·) thus has an algebraic structure which allows to express gates OR,
AND, and K-out-of-N, and to determine and simplify the structure function of SFTs
as it is commonly done by using the classical Boolean algebra of Boolean variables.

3.4 Temporal operators

This section presents the three temporal operators which have been defined to model
the order of occurrence of events in dynamic gates. The non-inclusive BEFORE op-
erator was introduced in [Merle 2007a, Merle 2007b] to model dynamic gates and
be able to determine the structure function of any DFT. Its definition is given in
Section 3.4.1. The SIMULTANEOUS operator was introduced in [Merle 2009] to
allow to take into account the simultaneity of events, and an Inclusive BEFORE
operator was introduced to be able to model an alternative inclusive version of dy-
namic gates. The definition of operators SIMULTANEOUS and Inclusive BEFORE
is given in Sections 3.4.2 and 3.4.3, respectively.

3.4.1 Operator non-inclusive BEFORE

The formal definition of operator non-inclusive BEFORE (BF, with symbol �),
based on the dates of occurrence of a and b, is

� : Enr × Enr −→ Enr

(a, b) �−→ a� b

where

d(a� b) =

⎧⎪⎪⎨
⎪⎪⎩
d(a) if d(a) < d(b)
+∞ if d(a) = d(b)
+∞ if d(a) > d(b)

The result of the composition of two events a and b by operator BF is illustrated
by the timing diagrams in Fig. 3.5 in three cases: Case 1: d(a) < d(b), Case 2:
d(a) = d(b), Case 3: d(a) > d(b).

It can be noted that a� b occurs if a occurs before b, or if a occurs and b does
not occur at all. Indeed, in this case, b ≡ ⊥ and a � ⊥ = a, according to theorem
(3.21).
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Figure 3.5: Timing diagrams of operator non-inclusive BEFORE (BF)

3.4.2 Operator SIMULTANEOUS

�

�
�

�
�

�

�

�
1

1

1

0

0

0a

b

a 
 b t

t

t

�
�

�
�

�

�
�

�
�

�
�

�

�

�
1

1

1

0

0

0

t

t

t

�
�

�
�

�
�

�

�
�

�
�

�

�

�
1

1

1

0

0

0

t

t

t

�
�

�
�

Case 1 Case 2 Case 3

Figure 3.6: Timing diagrams of operator SIMULTANEOUS (SM)

The formal definition of operator SIMULTANEOUS (SM, with symbol 
), based
on the dates of occurrence of a and b, is


 : Enr × Enr −→ Enr

(a, b) �−→ a
 b

where

d(a
 b) =

⎧⎪⎪⎨
⎪⎪⎩
+∞ if d(a) < d(b)
d(a) if d(a) = d(b)
+∞ if d(a) > d(b)

The result of the composition of two events a and b by operator SM is illustrated
by the timing diagrams in Fig. 3.6 in three cases: Case 1: d(a) < d(b), Case 2:
d(a) = d(b), Case 3: d(a) > d(b).

In Section 3.1.2, the hypothesis was made that the failure time distribution of
basic events is continuous, and that two basic events cannot occur simultaneously.
Hence, for any two statistically independent basic events a and b with the above
characteristics, the following relation holds.

a
 b = ⊥ (3.15)
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Indeed, one of the hypotheses of DFTs is the stochastic independence of events.
We express this hypothesis under the form of the deterministic equivalence given in
(3.15).

3.4.3 Operator Inclusive BEFORE

Based on the previous two operators, we can introduce a non-strict or Inclusive
BEFORE (IBF, with symbol �) operator

a� b = a� b+ a
 b (3.16)

whose definition, based on the dates of occurrence of a and b, is

� : Enr × Enr −→ Enr

(a, b) �−→ a� b

where

d(a� b) =

⎧⎪⎪⎨
⎪⎪⎩
d(a) if d(a) < d(b)
d(a) if d(a) = d(b)
+∞ if d(a) > d(b)

The result of the composition of two events a and b by operator IBF is illustrated
by the timing diagrams in Fig. 3.7 in three cases: Case 1: d(a) < d(b), Case 2:
d(a) = d(b), Case 3: d(a) > d(b).
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Figure 3.7: Timing diagrams of operator Inclusive BEFORE (IBF)

According to these timing diagrams, and to (3.16), a � b occurs in two cases:
when a occurs strictly before b, Case 1 (which corresponds to a � b); and when a

occurs at the same time as b, Case 2 (which corresponds to a
 b). It can also be
noted that a� b occurs if a occurs and b does not occur at all. Indeed, in this case,
b ≡ ⊥ and a�⊥ = a, according to theorem (3.50).

3.5 Theorems

The three temporal operators defined in Section 3.4 satisfy many theorems which
allow to develop and simplify the structure function of DFTs. The proofs of these
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theorems can be found in Appendix A. The theorems satisfied by operators non-
inclusive BEFORE, SIMULTANEOUS, and Inclusive BEFORE are presented in
Sections 3.5.1, 3.5.2, and 3.5.3, respectively. A few simplification theorems involving
the 3 operators are also introduced in Section 3.5.4.

3.5.1 Theorems satisfied by operator non-inclusive BEFORE

Operator non-inclusive BEFORE has the following properties, for all a, b, c ∈ Enr :

• it is not commutative
(a� b) · (b� a) = ⊥ (3.17)

• it is not associative

a� (b� c) = (a� b) + (a · b · ((c� b) + (c
 b)))

= (a� b) + (a · b · (c� b)) (3.18)

(a� b)� c = (a� b) · (a� c) (3.19)

• it allows ⊥ as a left absorbing element and a right identity element

⊥� a = ⊥ (3.20)

a�⊥ = a (3.21)

• it is not idempotent
a� a = ⊥ (3.22)

• it is right-distributive over operators +, ·, and 
 only

a� (b+ c) = (a� b) · (a� c) (3.23)

a� (b · c) = (a� b) + (a� c) (3.24)

a� (b
 c) = (a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) (3.25)

a� (b� c) = (a� b) + (a · b · (c� b)) (3.26)

(a+ b)� c = (a� c) + (b� c) (3.27)

(a · b)� c = (a� c) · (b� c) (3.28)

(a
 b)� c = (a
 b) · (a� c) = (a
 b) · (b� c) = (a� c)
 (b� c) (3.29)

(a� b)� c = (a� b) · (a� c) (3.30)

• it satisfies the following simplification theorems

a+ (a� b) = a (3.31)

(a� b) + b = a+ b (3.32)

a · (a� b) = a� b (3.33)

• it satisfies the following redundancy theorem

(a� b) · (b� c) · (a� c) = (a� b) · (b� c) (3.34)
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3.5.2 Theorems satisfied by operator SIMULTANEOUS

Operator SIMULTANEOUS has the following properties, for all a, b, c ∈ Enr :

• it is commutative

a
 b = b
 a (3.35)

• it is associative

a
 (b
 c) = (a
 b)
 c = (a
 b) · (b
 c) = (a
 c) · (c
 b) (3.36)

• it allows ⊥ as an absorbing element

a
⊥ = ⊥ (3.37)

• it is idempotent

a
 a = a (3.38)

• it is not distributive over any other operator but satisfies the following devel-
opment theorems

a
 (b+ c) = (a
 b) · (b
 c) + (a
 b) · (b� c) + (a
 c) · (c� b)

= (a
 b) · (b� c) + (a
 c) · (c� b) (3.39)

a
 (b · c) = (a
 b) · (b
 c) + (a
 b) · (c� b) + (a
 c) · (b� c)

= (a
 b) · (c� b) + (a
 c) · (b� c) (3.40)

a
 (b� c) = (a
 b) · (b� c) (3.41)

a
 (b� c) = (a
 b) · (b� c) (3.42)

• it satisfies the following simplification theorems

a+ (a
 b) = a (3.43)

a · (a
 b) = a
 b (3.44)

• it satisfies the following redundancy theorem

(a
 b) · (b
 c) · (a
 c) = (a
 b) · (b
 c) (3.45)
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3.5.3 Theorems satisfied by operator Inclusive BEFORE

Operator Inclusive BEFORE has the following properties, for all a, b, c ∈ Enr :

• it is not commutative
(a� b) · (b� a) = a
 b (3.46)

• it is not associative

a� (b� c) = (a� b) + (a · b · (c� b)) + (a
 b) · (b� c) (3.47)

(a� b)� c = (a� b) · (a� c) (3.48)

• it allows ⊥ as a left absorbing element and a right identity element

⊥� a = ⊥ (3.49)

a�⊥ = a (3.50)

• it is idempotent
a� a = a (3.51)

• it is right-distributive over operators +, ·, and 
 only

a� (b+ c) = (a� b) · (a� c) (3.52)

a� (b · c) = (a� b) + (a� c) (3.53)

a� (b� c) = (a� b) + (a · b · (c� b)) + (a
 b) · (b� c) (3.54)

a� (b
 c) = (a · (b� c)) + (a · (c� b)) + (a� b) + (a� c)

+(a
 b) · (b
 c) (3.55)

(a+ b)� c = (a� c) + (b� c) (3.56)

(a · b)� c = (a� c) · (b� c) (3.57)

(a
 b)� c = (a
 b) · (a� c) = (a
 b) · (b� c) = (a� c)
 (b� c) (3.58)

(a� b)� c = (a� b) · (a� c) (3.59)

• it satisfies the following simplification theorems

a+ (a� b) = a (3.60)

b+ (a� b) = a+ b (3.61)

a · (a� b) = a� b (3.62)

(a� b) + (b� a) = a+ b (3.63)

(a · (b� a)) + (b · (a� b)) = a · b (3.64)

(a� b) + (a · (b� a)) = a (3.65)

• it satisfies the following redundancy theorem

(a� b) · (b� c) · (a� c) = (a� b) · (b� c) (3.66)
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3.5.4 Simplification theorems

Temporal operators satisfy the following simplification theorems, for all a, b, c ∈ Enr :

(a� b) + (a� b) = a� b (3.67)

(a� b) + (a
 b) = a� b (3.68)

(a� b) · (a
 b) = ⊥ (3.69)

(a� b) · (b
 c) = (a� c) · (b
 c) (3.70)

(a� b) · (a� b) = a� b (3.71)

(a� b) · (b� a) = ⊥ (3.72)

(a� b) · (a
 b) = a
 b (3.73)

(a� b) + (a
 b) + (b� a) = a+ b (3.74)

(a · (b� a)) + (a
 b) + (b · (a� b)) = a · b (3.75)

(a� b) + (a
 b) + (a · (b� a)) = a (3.76)

(a� b) · (b� c) · (a� c) = (a� b) · (b� c) (3.77)

3.6 Discussion on the similarities and differences between
our approach and Pandora

Pandora [Walker 2006] was designed to enable FTs to model event sequences and
relative temporal ordering by adding new gates to the common dynamic gates, which
are gates Priority-OR (POR) and Simultaneous-AND (SAND), while the PAND
gate is the only dynamic gate considered in Pandora. We chose to consider all
the dynamic gates considered in [Dugan 2000], and to include the aspects modeled
by gates POR and SAND in Pandora in our framework under the form of specific
temporal operators, without introducing any new gate. This is the first difference
between our approach and Pandora: Pandora considers gates POR and SAND, and
the dynamic gate PAND; our approach considers all the dynamic gates considered
in [Dugan 2000]: gates PAND, FDEP, and Spare.

However, there is a semantics similarity between the temporal gates of Pandora
and the temporal operators that we define to model dynamic gates:

• in Pandora, a POR gate, whose symbol is |, with two input events A and B

means that either A occurs and B does not, or both occur and A occur first,
which corresponds to A�B in our algebraic framework;

• in Pandora, a SAND gate, whose symbol is &, with two input events A and
B means that B occurs at the same time as A occurs, which corresponds to
A
B in our algebraic framework; and
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• in Pandora, a PAND gate, whose symbol is <, with two input events A and
B means that A occurs before B occurs, which corresponds to B · (A�B) in
our algebraic framework.

It can be noted that gates POR and PAND can be modeled by the single temporal
operator Non-inclusive BEFORE (�) in our framework. Besides, both gates could
be considered as inclusive by considering the temporal operator Inclusive BEFORE
(�), whereas Pandora does not allow to take into account this second aspect.

On the one hand, Pandora does not provide any algebraic framework to define
temporal gates, and the laws provided in [Walker 2009] are demonstrated by using
Temporal Truth Tables in which all the possible sequences of event occurrences
are considered, so Pandora does not really allow the determination of a structure
function for DFTs. On the other hand, the algebraic framework that we provide
allows to determine the same theorems as the ones listed in [Walker 2009], as the
3 temporal gates defined in [Walker 2009] can be modeled by means of temporal
operators SM and BF, and to determine a structure function for DFTs. However,
the minimal cut sequences obtained by both approaches are the same. Finally, no
’inclusive’ model of temporal gates POR and PAND exists in Pandora, so all the
theorems that we provide and which contain temporal operator IBF do not exist in
Pandora.
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This chapter presents the behavioural model of dynamic gates which has been
built thanks to the 3 temporal operators defined in Chapter 3 in order to determine
the structure function of DFTs. The behavioural model of gates PAND, FDEP, and
Spare is presented in Sections 4.1, 4.2, and 4.3, respectively.
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4.1 behavioural model of the PAND gate

The definition of gate PAND recalled in Section 2.2.1.2 is shown in Fig. 4.1. As
explained in Section 3.1.4, two interpretations of the order relation "Before" can
be taken into account, and algebraically modeled, thus leading to two behavioural
models for the PAND gate. However, the non-strict inclusive interpretation of the
PAND gate seems more coherent with the designers’ expectations. For this reason,
in the remainder of this dissertation, the inclusive model will be retained, even
though both interpretations can be adopted without any change in the algebraic
framework that we propose.

Figure 4.1: Definition of gate PAND from [Vesely 1981]

If we retain the inclusive interpretation of the PAND gate, then it is assumed
that the output event Q of the PAND gate in Fig. 4.1 occurs if its input events
A and B occur simultaneously. A behavioural inclusive model of gate PAND can
hence be determined as

Q = (A ·B) · (A�B)

This model can be simplified, thanks to the theorems of Section 3.5, as follows:

Q = (A ·B) · (A�B)

(3.62)
= B · (A�B)

In the previous equation, the notation
(3.62)
= indicates that the second expression

– B · (A�B) – is obtained from the first expression – (A ·B) ·(A�B) – by applying
theorem (3.62) from Section 3.5. This notation will be used in the remainder of this
dissertation.

For the reasons explained above, this inclusive model of the PAND gate will be
the one retained in the remainder of this dissertation.

4.2 behavioural model of the FDEP gate

The definition of gate FDEP was recalled in Section 2.2.1.3, and an FDEP gate with
2 dependent basic events A and B is shown in Fig. 4.2.

In Fig. 4.2, basic events A and B can fail by themselves, or can be forced to
fail by trigger event T . In accordance with [Boudali 2006], we choose to denote the
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Figure 4.2: An FDEP gate with 2 dependent basic events

global behaviour of basic events A, and B by the substituted variables AT , and BT

to explicitly indicate the effect of trigger T : basic event A fails (AT ) if it is forced
to fail by the trigger event (T ) or if it fails by itself before the trigger event fails
(A� T ). The behavioural model of gate FDEP thus is{

AT = T + (A � T)

BT = T + (B � T)

This model can be simplified, thanks to the theorems of Section 3.5, as follows:⎧⎨
⎩ AT = T + (A � T)

(3.61)
= A + T

BT = T + (B � T)
(3.61)
= B + T

This simplification allows to prove that the behaviour of dynamic gate FDEP is
equivalent to the behaviour of gate OR, as we showed in [Merle 2010a] and as it is
proposed by some authors [Stamatelatos 2002].

4.3 behavioural model of Spare gates

According to [Stamatelatos 2002], it can be assumed that spares are cold, warm,
or hot: cold spares do not fail (their dormancy is equal to zero), hot spares fail
at the same rate as active (their dormancy is equal to one), and warm spares fail
somewhere between cold and hot spares. In this section, we consider that there is
only one type of spare event, which is the warm spare event, and that cold and hot
spare events are only particular cases of the warm spare event. For this reason, the
models of Spare gates which are presented correspond to the models of Warm Spare
gates – Spare gates with warm spare events.

The behavioural model of Spare gates will be presented in an increasing order
of complexity. The model of Spare gates with 2 input events is presented in Section
4.3.1, and the model of Spare gates with 3 input events is presented in Section 4.3.2.
Section 4.3.3 describes how to generalize the models presented in Sections 4.3.1 and
4.3.2 to the case of Spare gates with n input events. Finally, the particular case of
cold and hot spare events is considered in Section 4.3.4.
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4.3.1 behavioural model of Spare gates with 2 input events

In this section, we completely detail the behavioural model of Spare gates with 2
input events in the main configurations which may be encountered in DFTs. The
different cases are treated in an increasing order of complexity, from a single Spare
gate in Section 4.3.1.1 to 2 Spare gates sharing a spare event in Section 4.3.1.2, and
even to the generalization to n Spare gates sharing a spare event in Section 4.3.1.3.

4.3.1.1 behavioural model of a single Spare gate

Let us consider a Spare gate with 2 input events – the primary event A and one
spare event B – as shown in Fig. 4.3.

Figure 4.3: A single Spare gate with one primary event A and one spare event B

As stated in [Stamatelatos 2002], the output Q of the gate occurs when the
primary and all spares have failed, so when A and B have failed, in this case. A

and B are basic events and cannot fail simultaneously – A
 B = ⊥ – so Q occurs
if A and B fail according to sequences [A,B] or [B,A]. It is important to note that
in sequence [A,B], B fails while in its active mode (denoted as Ba), whereas in
sequence [B,A], B fails while in its dormant mode (denoted as Bd). It is essential
to distinguish both failure modes by using two different variables, for quantitative
analysis purposes. Indeed, B does not have the same failure distribution when it
fails during its dormant mode (B ≡ Bd) or during its active mode (B ≡ Ba). As
we aim at making possible the quantitative analysis of DFTs from their structure
function, this structure function must hence provide sufficient information to know
whether spare events are in their dormant or active mode. The behavioural model
of gate Spare can hence be expressed as

Q = Ba · (A�Ba) +A · (Bd �A).

Furthermore, as B cannot be both in an active state and in a dormant state, we
have

Bd ·Ba = ⊥.
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4.3.1.2 behavioural model of 2 Spare gates sharing a spare event

Let us consider 2 Spare gates with 2 input events – with primary events A and B –
sharing a spare event C, as shown in Fig. 4.4.

Figure 4.4: Two Spare gates sharing a spare event

If we focus on the Spare gate on the left side, Q1 occurs as soon as A and C have
failed – as stated in Section 4.3.1.1 – or if A fails and C is made unavailable because
B has failed before A. As a consequence, the behavioural model of the Spare gate
on the left side is{

Q1 = Ca · (A� Ca) +A · (Cd �A) +A · (B �A)

Cd · Ca = ⊥
The algebraic expression for the Spare gate on the right side can be determined

in the same way by symmetry. Consequently, the final behavioural model of any of
two Spare gates sharing a spare event is⎧⎨

⎩
Q1 = Ca · (A� Ca) +A · (Cd �A) +A · (B �A)

Q2 = Ca · (B � Ca) +B · (Cd �B) +B · (A�B)

Cd · Ca = ⊥

4.3.1.3 behavioural model of n Spare gates sharing a spare event

Let us consider n Spare gates with 1 output event Qi and 2 input events: a primary
event Pi – i ∈ {1, · · · , n} – and a common spare event S.

If we focus on the first Spare gate, Q1 occurs as soon as P1 and S have failed –
as stated in Section 4.3.1.1 – or if P1 fails and S is made unavailable because the
primary event of any of the other Spare gates has failed before P1. As a consequence,
the behavioural model of the first Spare gate is{

Q1 = Sa · (P1 � Sa) + P1 · (Sd � P1) +
∑

i �=1 P1 · (Pi � P1)

Sd · Sa = ⊥
The algebraic expression for Qi, i ∈ {1, . . . , n}, can be determined in the same

way by symmetry. Consequently, the final behavioural model of any of n Spare
gates sharing a spare event is
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{
Qi = Sa · (Pi � Sa) + Pi · (Sd � Pi) +

∑
j �=i Pi · (Pj � Pi)

Sd · Sa = ⊥

4.3.2 behavioural model of Spare gates with 3 input events

Let us consider a Spare gate with 3 input events – the primary event A and two
spare events B and C – as shown in Fig. 4.5.

Figure 4.5: A single Spare gate with one primary event A and two spare events B
and C

As stated in [Stamatelatos 2002], the output Q of the gate occurs when the
primary and all spares have failed, so when A, B, and C have failed, in this case. A,
B, and C are basic events and cannot fail simultaneously so Q occurs if A, B, and
C fail according to sequences [A,B,C], [A,C,B], [B,A,C], [B,C,A], [C,A,B], or
[C,B,A]. It is important to note that, when the quantitative analysis is performed
from the structure function, B and C will not have the same distribution function
in the 6 sequences. For instance, in sequence [A,B,C], both B and C fail during
their active mode (denoted by Ba and Ca), whereas in sequence [B,C,A], both B

and C fail during their dormant mode (denoted by Bd and Cd). The behavioural
model of the Spare gate can hence be expressed as

Q = Ca · (A�Ba) · (Ba � Ca) +Ba · (A� Cd) · (Cd �Ba)

+Ca · (Bd �A) · (A� Ca) +A · (Bd � Cd) · (Cd �A)

+Ba · (Cd �A) · (A�Ba) +A · (Cd �Bd) · (Bd �A)

As B and C cannot be both in an active state and in a dormant state, we have{
Bd ·Ba = ⊥
Cd · Ca = ⊥

The behavioural model of many Spare gates with 3 input events sharing 2 spare
events can be deduced from this model by considering the same approach as in
Section 4.3.1.2.

4.3.3 behavioural model of Spare gates with n input events

The behavioural models of Spare gates with 2 and 3 input events presented in
Sections 4.3.1 and 4.3.2 can be extended to the case of Spare gates with n input
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events.
On the one hand, the behavioural model of a single Spare gate with n input

events can be obtained by considering the n! different failure sequences of basic
events, and by denoting the dormant and active mode of each spare event by 2

substituted variables. Let us consider a Spare gate with n input events – the primary
event P and (n− 1) spare events S1 to Sn−1 – as shown in Fig. 4.6.

Figure 4.6: A single Spare gate with one primary event P and (n− 1) spare events
S1 to Sn−1

The n input events of the Spare gate can occur according to n! sequences, and
each spare event Si, i ∈ {1, . . . , n− 1} is denoted by two variables Sid and Sia

which model the dormant and active mode of the spare event, respectively. The
behavioural model of the Spare gate can hence be expressed as

Q = Sn−1a · (P � S1a) · (S1a � S2a) · . . . · (Sn−3a � Sn−2a) · (Sn−2a � Sn−1a)

+Sn−2a · (P � S1a) · (S1a � S2a) · . . . · (Sn−3a � Sn−1d) · (Sn−1d � Sn−2a)

+Sn−3a · (P � S1a) · (S1a � S2a) · . . . · (Sn−2d � Sn−1d) · (Sn−1d � Sn−3a)

+ . . .

+S1a · (Sn−1d � Sn−2d) · (Sn−2d � Sn−3d) · . . . · (S2d � P ) · (P � S1a)

+P · (Sn−1d � Sn−2d) · (Sn−2d � Sn−3d) · . . . · (S2d � S1d) · (S1d � P )

with, ∀i ∈ {1, . . . , n− 1}, Sid · Sia = ⊥.
On the other hand, the behavioural model of p Spare gates with n input events

sharing (n−1) spare events can also be determined by considering the same approach
as in Section 4.3.1.2.

4.3.4 Specific case of Cold and Hot spare events

As explained above, the behavioural models presented in Sections 4.3.1 and 4.3.2
are the behavioural models of Spare gates in the general case of warm spare events.
These behavioural models can be simplified in the specific cases of cold and hot
spare events:
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• if a spare event S is a cold spare event, it cannot fail while in a dormant state,
so Sd never occurs and any expression containing Sd in the behavioural models
can be removed;

• if a spare event S is a hot spare event, it has the same distribution function
when in an active and in a dormant state, so Sa ≡ Sd ≡ S and the behavioural
models can be simplified.

Let us consider the behavioural model of a single Spare gate with 2 input events
which was given in Section 4.3.1.1:

Q = Ba · (A�Ba) +A · (Bd �A).

On the one hand, if B is a cold spare event, it cannot fail while in its dormant
state, so Bd never occurs and the second expression – A ·(Bd�A) – can be removed.
The behavioural model of a single Spare gate with 1 primary event and 1 cold spare
event hence becomes:

Q = Ba · (A�Ba).

On the other hand, if B is a hot spare event, it has the same distribution function
when in its active and in its dormant state, so Ba ≡ Bd ≡ B. The behavioural model
of a single Spare gate with 1 primary event and 1 hot spare event hence becomes:

Q = B · (A�B) +A · (B �A)

(3.15)
= B · (A�B) +A
B +A · (B �A)

(3.75)
= A ·B.

It can hence be noted that the behavioural model of a Spare gate with hot spare
events is equivalent to the behavioural model of an AND gate.
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The behavioural model of dynamic gates which was presented in Chapter 4 al-
lows to determine the structure function of DFTs, from which the cut sequences of
the DFT can be extracted, as will be discussed in Chapter 6. However, the failure
probability of the TE of DFTs cannot be determined directly from the structure
function without a probabilistic model of dynamic gates. A few probabilistic ex-
pressions are provided in Section 5.1, and the probabilistic model of gates PAND,
FDEP, and Spare which can obtained from them is presented in Sections 5.2, 5.3,
and 5.4, respectively.
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5.1 A few probabilistic expressions

It is necessary to recall a few probabilistic expressions to be able to determine the
probabilistic model of dynamic gates. Let us consider an event x with cumula-
tive distribution function (Cdf) F (x) and probability density function (pdf) f(x) –
f(x) = F ′(x). The following expressions hold under the hypothesis of statistical
independence [Amari 2003, Fussell 1976].

Pr {a · b} (t) = Fa(t)× Fb(t)

Pr {a+ b} (t) = Fa(t) + Fb(t) − Fa(t)× Fb(t)

Pr {a� b} (t) =

∫ t

0
fa(u)(1− Fb(u)) du

Pr {b · (a� b)} (t) =

∫ t

0
fb(u)Fa(u) du (5.1)

Even though the 2 first expressions are quite common, the 2 last expressions are
not. The fourth one can be obtained easily from [Fussell 1976]. Indeed,

Pr {b · (a� b)} (t) = Pr {[a, b]} (t)
=

∫ t

0
fb(u)

(∫ u

0
fa(v)dv

)
du

=

∫ t

0
fb(u)Fa(u)du

The third expression can finally be deduced from the fourth expression by using
theorem (3.76). Indeed, according to this theorem,

(a� b) + (a
 b) + (a · (b� a)) = a

As a and b are statically independent, a
 b = ⊥, and

(a� b) + (a · (b� a)) = a

As a consequence, as a� b and a · (b� a) are disjoint,

Pr {a� b} (t) + Pr {a · (b� a)} (t) = Pr {a} (t)
⇔ Pr {a� b} (t) +

∫ t

0
fa(u)Fb(u)du = Fa(t)

⇔ Pr {a� b} (t) = Fa(t)−
∫ t

0
fa(u)Fb(u)du

⇒ dPr {a� b} (t)
dt

= fa(t)− fa(t)Fb(t) = fa(t)(1− Fb(t))

⇒ Pr {a� b} (t) =
∫ t

0
fa(u)(1− Fb(u))du
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5.2 Probabilistic model of the PAND gate

As explained in Section 4.1, we retain the inclusive behavioural model of the PAND
gate which is

Q = B · (A�B)

The probability of occurrence of B · (A � B) could be determined from the
expressions presented in Section 5.1, but the probability of occurrence of B · (A�B)

is not known. We hence need to develop this expression to get expressions whose
probability of occurrence is known. According to (3.16), a� b = a� b+ a
 b, so

Q = B · (A�B +A
B)

= B · (A�B) +B · (A
B)

(3.35),(3.44)
= B · (A�B) +A
B

If A and B are two statistically independent events, A
B = ⊥ and the proba-
bilistic model of the PAND gate can be determined as

FQ(t) = Pr {Q} (t) = Pr {B · (A�B)} (t)
(5.1)
=

∫ t

0
fB(u)FA(u) du

If A and B are two dependent events, A 
 B �= ⊥ and the expression A 
 B

must be developed to be able to determine the failure probability of the gate, as it
will be shown later in this dissertation.

5.3 Probabilistic model of the FDEP gate

According to Section 4.2, the behavioural model of the FDEP gate is{
AT = A + T
BT = B + T

The probabilistic model of the FDEP gate can be obtained easily from this
behavioural model:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

FAT
(t) = Pr {AT } (t) = Pr {A+ T} (t)

(5.1)
= FA(t) + FT (t)− FA(t)× FT (t)

FBT
(t) = Pr {BT } (t) = Pr {B + T} (t)

(5.1)
= FB(t) + FT (t)− FB(t)× FT (t)

5.4 Probabilistic model of Spare gates

This section presents the probabilistic model of Spare gates. Even though the failure
distribution of a spare event is quite easy to determine in its dormant mode, its
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failure distribution in its active mode depends both on time and on the failure date
of another event. This event can be the primary event of the Spare gate or another
spare event. For this reason, the case of the failure distribution of spare events is
addressed in Section 5.4.1. The probabilistic model of Spare gates will be presented
in an increasing order of complexity. The model of Spare gates with 2 input events
is presented in Section 5.4.2, and the model of Spare gates with 3 input events is
presented in Section 5.4.3. Section 5.4.4 describes how to generalize the models
presented in Sections 5.4.2 and 5.4.3 to the case of Spare gates with n input events.

5.4.1 Failure distribution of spare events

Let us consider a Spare gate with 2 input events – the primary event A and one
spare event B – as shown in Fig. 5.1.

Figure 5.1: A single Spare gate with one primary event A and one spare event B

The failure distribution of the primary event A does not depend on B, so the
Cdf and pdf of A are mere functions of time noted FA(t) and fA(t), respectively, as
usual.

The failure distribution of the spare event B does not depend on A as long
as B is dormant, so the Cdf and pdf of Bd are also mere functions of time noted
FBd

(t) and fBd
(t), respectively. However, the failure distribution of the spare event

B depends on A when B is active, since B becomes active at the failure date of
A, which will be denoted as tA. The Cdf and pdf of Ba hence depend both on
time t and on the failure date of A (tA). For the sake of clarity, we consider both
functions as functions of the two variables t, and tA, which will be noted FBa(t, tA)

and fBa(t, tA), respectively.
Let us illustrate this aspect on the particular case of exponential distributions.

If A has a failure rate λA, for all t ≥ 0, its Cdf and pdf are{
FA(t) = 1− e−λAt

fA(t) = λAe
−λAt

In the same way, if B has a failure rate λB and a dormancy α, for all t ≥ 0, the
Cdf and pdf of Bd are {

FBd
(t) = 1− e−αλBt

fBd
(t) = αλBe

−αλBt
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Regarding the Cdf of Ba, it is known that:

• it is exponential with failure λB;

• it is continuous with FBd
at the failure date of A (tA).

It can hence be assumed that FBa(t, tA) = 1−e−λB(t−x(tA)), where x is a function
of tA. By using the continuity of FB at t = tA, we have

FBa(tA, tA) = FBd
(tA)

⇔ 1− e−λB(tA−x(tA)) = 1− e−αλBtA

⇔ λB(tA − x(tA)) = αλBtA

⇔ tA − x(tA) = αtA

⇔ x(tA) = (1− α)tA

As a consequence, for all t ≥ (1− α)tA,

{
FBa(t, tA) = 1− e−λB(t−(1−α)tA)

fBa(t, tA) = λBe
−λB(t−(1−α)tA)

The notations used for the Cdf and pdf of the spare event B will be retained in
the remainder of this dissertation, and they can be used for any spare event S by
replacing tA with the failure date of the event on which S depends, in the case of
Spare gates with more than 2 input events.

5.4.2 Probabilistic model of Spare gates with 2 input events

In this section, we completely detail the probabilistic model of Spare gates with
2 input events in the configurations which were considered in Section 4.3.1. The
different cases are treated in an increasing order of complexity, from a single Spare
gate in Section 5.4.2.1 to 2 Spare gates sharing a spare event in Section 5.4.2.2, and
even to the generalization to n Spare gates sharing a spare event in Section 5.4.2.3.

5.4.2.1 Probabilistic model of a single Spare gate

According to Section 4.3.1.1, the behavioural model of a single Spare gate with 2

input events is
Q = Ba · (A�Ba) +A · (Bd �A).

As B cannot be both in its dormant and active mode, Ba · (A�Ba) ·A · (Bd �

A)
(3.62)
= Ba · (A�Ba) ·A ·Bd · (Bd�A) = ⊥, so the two algebraic terms Ba · (A�Ba)

and A · (Bd �A) are disjoint and

Pr {Q} (t) = Pr {Ba · (A�Ba)} (t) + Pr {A · (Bd �A)} (t)
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On the one hand, the Cdf and pdf of Bd do not depend on A, so the probability
of occurrence of the second term – Pr {A · (Bd �A)} (t) – can be determined by
means of the expressions (5.1) as

Pr {A · (Bd �A)} (t) =
∫ t

0
fA(u)FBd

(u) du

On the other hand, the Cdf and pdf of Ba depend on the failure date of
A, so Pr {Ba · (A�Ba)} (t) cannot be determined by means of the expressions
(5.1). If we respectively denote by TA and TBa the failure dates of A and Ba,
Pr {Ba · (A�Ba)} (t) can be defined as

Pr {Ba · (A�Ba)} (t) = Pr {TA ≤ TBa ≤ t}
= E

[
1{TA≤TBa}1{TBa≤t}

]
,

where 1 is the indicator function [Grimmett 2001] defined as

1A(X) =

{
1 if X ∈ A

0 if X /∈ A

and E is the expectation value [Grimmett 2001] defined as

E [1A(X)] = Pr {X ∈ A}

According to the law of total expectation [Billingsley 1995], if X is an integrable
random variable and if Y is any random variable such that E [E [X|Y ]] has a mean-
ing, the following relation holds:

E [X] = E [E [X|Y ]]

As a consequence,

Pr {Ba · (A�Ba)} (t) =

∫ t

0

(∫ t

v
fTB |TA

(u|TA = v)du

)
fTA

(v)dv

=

∫ t

0

(∫ t

v
fBa(u, v)du

)
fA(v)dv

The probabilistic model of a single Spare gate with 2 input events hence is

FQ(t) = Pr {Q} (t) =
∫ t

0

(∫ t

v
fBa(u, v)du

)
fA(v)dv +

∫ t

0
fA(u)FBd

(u) du

This probabilistic model does not depend on the failure distribution considered
for basic events. However, in the particular case of exponential distributions, we
show in Appendix B.1 that the result obtained with this probabilistic model is the
same as the result obtained with Markov Chains.
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5.4.2.2 Probabilistic model of 2 Spare gates sharing a spare event

According to section 4.3.1.2, the behavioural model of any of two Spare gates sharing
a spare event is{

Q1 = Ca · (A� Ca) +A · (Cd �A) +A · (B �A)

Q2 = Ca · (B � Ca) +B · (Cd �B) +B · (A�B)

Let us first consider the expression for Q1:

Q1 = Ca · (A� Ca) +A · (Cd �A) +A · (B �A)

It can be noted that the two first algebraic terms Ca · (A�Ca) and A · (Cd �A)

do not contain B while the third algebraic term A · (B � A) does. These three
algebraic terms are hence not disjoint. This expression for Q1 can be transformed
into another equivalent expression containing disjoint terms only by introducing B

in the two first algebraic terms.
The first algebraic term Ca · (A�Ca) corresponds to the failure sequence [A,C],

which does not depend on B. B can fail before A (sequence [B,A,C]), between A

and C (sequence [A,B,C]), after C (sequence [A,C,B]), or B may not fail at all
(sequence

[
A,C,��B

] 1). The algebraic term Ca · (A� Ca) is hence equivalent to

Ca · (A� Ca) = Ca · (B �A) · (A� Ca) + Ca · (A�B) · (B � Ca)

+B · (A� Ca) · (Ca �B) + Ca · (A� Ca) ·��B

where the four terms represent the four possible sequences obtained by including B

in the sequence [A,C].
The second algebraic term A · (Cd � A) corresponds to the failure sequence

[C,A], which does not depend on B either. B can fail before C (sequence [B,C,A]),
between C and A (sequence [C,B,A]), after A (sequence [C,A,B]), or B may not
fail at all (sequence

[
C,A,��B

]
). However, if B fails before C, C will become active,

which is impossible since C is dormant in the term A · (Cd�A). The algebraic term
A · (Cd �A) is hence equivalent to

A · (Cd �A) = A · (Cd �B) · (B �A) +B · (Cd �A) · (A�B) +A · (Cd �A) ·��B

where the three terms represent the three possible sequences obtained by including
B in the sequence [C,A].

The behavioural model of the gate hence becomes

Q1 = Ca · (B �A) · (A� Ca) + Ca · (A�B) · (B � Ca)

+B · (A� Ca) · (Ca �B) + Ca · (A� Ca) ·��B
+A · (Cd �B) · (B �A) +B · (Cd �A) · (A�B)

+A · (Cd �A) ·��B +A · (B �A)

1�B denotes the fact that B does not appear at all.
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and can be transformed to

Q1
(3.33)
= A · Ca · (B �A) · (A� Ca) + Ca · (A�B) · (B � Ca)

+B · (A� Ca) · (Ca �B) + Ca · (A� Ca) ·��B
+A · (Cd �B) · (B �A) +B · (Cd �A) · (A�B)

+A · (Cd �A) ·��B +A · (B �A),

in which the terms A · Ca · (B � A) · (A � Ca) and A · (Cd � B) · (B � A) can be
absorbed by the term A · (B�A), thus leading to the following simplified expression

Q1 = Ca · (A�B) · (B � Ca) +B · (A� Ca) · (Ca �B)

+Ca · (A� Ca) ·��B +B · (Cd �A) · (A�B)

+A · (Cd �A) ·��B +A · (B �A).

It can be noted that all the terms of this expression are disjoint. The failure prob-
ability of Q1 can hence be expressed as

Pr {Q1} (t) = Pr {Ca · (A�B) · (B � Ca)} (t)
+Pr {B · (A� Ca) · (Ca �B)} (t)
+Pr

{
Ca · (A� Ca) ·��B

}
(t) + Pr {B · (Cd �A) · (A�B)} (t)

+Pr
{
A · (Cd �A) ·��B

}
(t) + Pr {A · (B �A)} (t)

By using the same approach as in Section 5.4.2.1, these six probabilities can be
expressed under a form which does not depend on the failure distribution considered
for basic events:

Pr {Ca · (A�B) · (B � Ca)} (t) =
∫ t

0

(∫ t

w

(∫ u

w
fB(v)dv

)
fCa(u,w)du

)
fA(w)dw

Pr {B · (A� Ca) · (Ca �B)} (t) =
∫ t

0

(∫ u

0

(∫ u

v
fCa(w, v)dw

)
fA(v)dv

)
fB(u)du

Pr
{
Ca · (A� Ca) ·��B

}
(t) = (1− FB(t))

∫ t

0

(∫ t

v
fCa(u, v)du

)
fA(v)dv

Pr {B · (Cd �A) · (A�B)} (t) =
∫ t

0

(∫ u

0
fA(v)FCd

(v)dv

)
fB(u)du

Pr
{
A · (Cd �A) ·��B

}
(t) = (1− FB(t))

∫ t

0
fA(u)FCd

(u)du

Pr {A · (B �A)} (t) =
∫ t

0
fA(u)FB(u)du
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The probabilistic model for Q1 can hence be deduced from these expressions,
and the probabilistic model for Q2 can be determined by symmetry:

FQ1(t) = Pr {Q1} (t) =

∫ t

0

(∫ t

w

(∫ u

w
fB(v)dv

)
fCa(u,w)du

)
fA(w)dw

+

∫ t

0

(∫ u

0

(∫ u

v
fCa(w, v)dw

)
fA(v)dv

)
fB(u)du

+(1− FB(t))

∫ t

0

(∫ t

v
fCa(u, v)du

)
fA(v)dv

+

∫ t

0

(∫ u

0
fA(v)FCd

(v)dv

)
fB(u)du

+(1− FB(t))

∫ t

0
fA(u)FCd

(u)du+

∫ t

0
fA(u)FB(u)du

FQ2(t) = Pr {Q2} (t) =

∫ t

0

(∫ t

w

(∫ u

w
fA(v)dv

)
fCa(u,w)du

)
fB(w)dw

+

∫ t

0

(∫ u

0

(∫ u

v
fCa(w, v)dw

)
fB(v)dv

)
fA(u)du

+(1− FA(t))

∫ t

0

(∫ t

v
fCa(u, v)du

)
fB(v)dv

+

∫ t

0

(∫ u

0
fB(v)FCd

(v)dv

)
fA(u)du

+(1− FA(t))

∫ t

0
fB(u)FCd

(u)du+

∫ t

0
fB(u)FA(u)du

This probabilistic model does not depend on the failure distribution considered
for basic events. However, in the particular case of exponential distributions, we
show in Appendix B.2 that the result obtained with this probabilistic model is the
same as the result obtained with Markov Chains.

5.4.2.3 Probabilistic model of n Spare gates sharing a spare event

According to section 4.3.1.3, the behavioural model of n Spare gates sharing a Spare
event is

Qi = Sa · (Pi � Sa) + Pi · (Sd � Pi) +
∑
j �=i

Pi · (Pj � Pi)

It can be noted that this expression contains (n+ 1) algebraic terms which are
not disjoint. This expression can be transformed to a sum of disjoint terms in the
same way as it was done in Section 5.4.2.2, and the probability of occurrence of each
one of these disjoint terms can then be determined as an expression which does not
depend on the failure distribution of events. The probabilistic model of each one of
the n Spare gates can then be computed from these expressions.

Even though it has been determined, the general expression of these failure
probabilities will not be detailed in this dissertation.
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5.4.3 Probabilistic model of Spare gates with 3 input events

According to Section 4.3.2, the behavioural model of a single Spare gate with 3 input
events is

Q = Ca · (A�Ba) · (Ba � Ca) +Ba · (A� Cd) · (Cd �Ba)

+Ca · (Bd �A) · (A� Ca) +A · (Bd � Cd) · (Cd �A)

+Ba · (Cd �A) · (A�Ba) +A · (Cd �Bd) · (Bd �A)

It can be noted that the six terms of this expression are disjoint as B and C

cannot fail both in their dormant and active mode. The failure probability of Q can
hence be expressed as

Pr {Q} (t) = Pr {Ca · (A�Ba) · (Ba � Ca)} (t)
+Pr {Ba · (A� Cd) · (Cd �Ba)} (t)
+Pr {Ca · (Bd �A) · (A� Ca)} (t)
+Pr {A · (Bd � Cd) · (Cd �A)} (t)
+Pr {Ba · (Cd �A) · (A�Ba)} (t)
+Pr {A · (Cd �Bd) · (Bd �A)} (t)

By using the same approach as in Section 5.4.2.1, these six probabilities can be
expressed under a form which does not depend on the failure distribution considered
for basic events:

Pr {Ca · (A�Ba) · (Ba � Ca)} (t) =
∫ t

0

(∫ t

u

(∫ t

v
fCa(w, v)dw

)
fBa(v, u)dv

)
fA(u)du

Pr {Ba · (A� Cd) · (Cd �Ba)} (t) =
∫ t

0

(∫ t

w

(∫ u

w
fCd

(v)dv

)
fBa(u,w)du

)
fA(w)dw

Pr {Ca · (Bd �A) · (A� Ca)} (t) =
∫ t

0

(∫ t

u
fCa(v, u)dv

)
fA(u)FBd

(u)du

Pr {A · (Bd � Cd) · (Cd �A)} (t) =
∫ t

0

(∫ u

0
fCd

(v)FBd
(v)dv

)
fA(u)du

Pr {Ba · (Cd �A) · (A�Ba)} (t) =
∫ t

0

(∫ t

u
fBa(v, u)dv

)
fA(u)FCd

(u)du

Pr {A · (Cd �Bd) · (Bd �A)} (t) =
∫ t

0

(∫ u

0
fBd

(v)FCd
(v)dv

)
fA(u)du

The probabilistic model of a single Spare gate with 3 input events can hence be
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deduced from these expressions:

FQ(t) = Pr {Q} (t) =

∫ t

0

(∫ t

u

(∫ t

v
fCa(w, v)dw

)
fBa(v, u)dv

)
fA(u)du

+

∫ t

0

(∫ t

w

(∫ u

w
fCd

(v)dv

)
fBa(u,w)du

)
fA(w)dw

+

∫ t

0

(∫ t

u
fCa(v, u)dv

)
fA(u)FBd

(u)du

+

∫ t

0

(∫ u

0
fCd

(v)FBd
(v)dv

)
fA(u)du

+

∫ t

0

(∫ t

u
fBa(v, u)dv

)
fA(u)FCd

(u)du

+

∫ t

0

(∫ u

0
fBd

(v)FCd
(v)dv

)
fA(u)du

This probabilistic model does not depend on the failure distribution considered
for basic events. However, in the particular case of exponential distributions, we
show in Appendix B.3 that the result obtained with this probabilistic model is the
same as the result obtained with Markov Chains.

The probabilistic model of n Spare gates with 3 input events sharing 2 spare
events could be determined by using the same approach as in Sections 5.4.2.2 and
5.4.2.3. Even though it has been determined, it will not be detailed in this disser-
tation.

5.4.4 Probabilistic model of Spare gates with n input events

In the same way as the behavioural model of Spare gates with 2 and 3 input events
could be generalized to the case of Spare gates with n input events, the probabilistic
models presented in Sections 5.4.2 and 5.4.3 can be generalized to the case of Spare
gates with n input events.

As was mentioned in Section 4.3.3, the behavioural model of a single Spare gate
with n input events can be obtained by considering the n! different failure sequences
of basic events, and by denoting the dormant and active mode of each spare event by
2 substituted variables. Given each spare event cannot be both in its dormant and
active mode, it can be noted that the n! algebraic terms of the behavioural model of
a single Spare gate with n input events are disjoint, since these n! algebraic terms
precisely represent the n! possible failure sequences of the n input events of the
Spare gate which are, by definition, disjoint. The probability of occurrence of each
term can then be determined whatever the failure distribution considered for basic
events, and the probabilistic model of the Spare gate can hence be determined.

In the same way, the probabilistic model of p Spare gates with n input events
sharing (n − 1) spare events can be determined by using the same approach as in
Sections 5.4.2.2 and 5.4.2.3.
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As the number of algebraic terms grows exponentially with the number of in-
put events of Spare gates, these probabilistic models will not be detailed in this
dissertation.
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This chapter shows how the structure function of DFTs can be determined from
the behavioural model of dynamic gates determined in Chapter 4, and how both
the qualitative and quantitative analysis of DFTs can be performed directly from
this structure function thanks to the probabilistic model of dynamic gates which
was presented in Chapter 5. The general methodology is detailed in section 6.1, and
it is illustrated on two DFTs examples from the literature which are presented in
Section 6.2. The determination of the structure function of the two DFT examples
and their analysis are presented in Sections 6.3 and 6.4.
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6.1 Dynamic FTA based on the structure function

This section details the general methodology allowing to perform the analysis of
DFTs from their structure function. Section 6.1.1 shows how the structure function
of any DFT can be determined from the behavioural model of dynamic gates deter-
mined in Chapter 4, and how this structure function can be simplified to a minimal
canonical form thanks to the theorems presented in Chapter 3 and to a minimiza-
tion algorithm. Section 6.1.2 shows how the minimal cut sequences of the DFT can
be extracted from this minimal canonical form of the structure function, and Sec-
tion 6.1.3 explains how the quantitative analysis of DFTs can be performed directly
from this minimal canonical form thanks to the probabilistic model of dynamic gates
which was presented in Chapter 5.

6.1.1 Minimal canonical form of the structure function of Dynamic
Fault Trees

Section 6.1.1.1 shows how to determine the structure function of any DFT. This
structure function can be simplified to a canonical form, as presented in Section
6.1.1.2, and then minimized thanks to a minimization algorithm presented in Section
6.1.1.3.

6.1.1.1 Determination of the structure function

The behavioural models of dynamic gates presented in Chapter 4 allow us to de-
termine the structure function of any DFT as a function of basic events – some of
which may be spare events in their active and dormant modes – that can be repeated
without restrictions.

Given a DFT with n basic events {bi, i ∈ (1, ..., n)}, the structure function for
the TE becomes an expression containing at most the n basic events (some of which
may be spare events which can be split into two substitution variables to take into
account their active and dormant mode), and operators +, ·, �, 
, and �.

6.1.1.2 Canonical form of the structure function

The structure function can then be developed and simplified, thanks to the theorems
presented in Section 3.5, to reach a standardized sum-of-product canonical form
where each product term contains operator ·, and ordered pairs of variables linked
by operator � only. The steps to be followed to reach the canonical form are:

1. Starting from the TE, in a top down fashion, replace each dynamic gate by
its behavioural model from Chapter 4.

2. Eliminate the parenthesis by applying distributivity theorems, such as theo-
rems (3.23) to (3.30), and (3.52) to (3.59).
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3. The structure function is then expressed in a sum of product terms as in (6.1):

TE =
∑⎛

⎝∏
i

bi ·
∏
j,k

(bj � bk) ·
∏
l,m

(bl � bm) ·
∏
o,p

(bo 
 bp)

⎞
⎠ . (6.1)

4. Because bo and bp are basic events, in virtue of theorem (3.15), (6.1) can always
be simplified to the form

TE =
∑(∏

bi ·
∏

(bj � bk) ·
∏

(bl � bm)
)
. (6.2)

5. Because bj and bk are basic events, taking into account theorems (3.15) and
(3.16), we can write bj � bk = bj � bk. Hence, the expression in (6.2) becomes

TE =
∑(∏

bi ·
∏

(bj � bk)
)
.

6. According to theorem (3.22), j = k ⇒ bj�bk = ⊥, then the structure function
can be simplified to

TE =
∑(∏

bi ·
∏

(bj � bk)
)
, j �= k.

7. Finally, according to theorem (3.33), i = j ⇒ bi · (bj � bk) = bj � bk, so we get
the structure function in canonical form

TE =
∑(∏

bi ·
∏

(bj � bk)
)
, j /∈ {i, k} . (6.3)

6.1.1.3 Minimal canonical form of the structure function

In the case of SFTs, a minimal form of the structure function can be determined eas-
ily thanks to the theorems of Boolean algebra, or by resorting to BDDs [Rauzy 2001],
[Stamatelatos 2002]. Such minimal form provides the minimal cut sets of the SFT.
In the case of DFTs, the concept of minimal cut must be refined to minimal cut
sequence [Tang 2004], representing the minimal (ordered) failure sequence of events
that causes the occurrence of the TE. The exhaustive search of the minimal cut se-
quences of a DFT is an open problem, in the general case. The algebraic approach
for DFTs provides a sound theoretical basis for the determination of cut sequences.

In the canonical form of the structure function given in (6.3), each product
term

∏
bi ·

∏
(bj � bk) is not a single cut sequence, but an algebraic expression

providing a sufficient condition on the order of basic event failures that leads to the
TE which may contain more than one cut sequence, and actually is a cut sequence
set (CSS). In the remainder of this dissertation, CSSi will represent both a set of
cut sequences (like in (6.5)), and the algebraic expression that characterizes this set
of cut sequences (like in (6.4)).
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If there are n product terms in (6.3), the canonical form can be rewritten in the
compact form

TE =
n∑

i=1

CSSi. (6.4)

The set S of all the cut sequences of the DFT is the union of all the CSSs
previously defined:

S =
n⋃

i=1

CSSi. (6.5)

Nevertheless, a CSS may be included in one or more CSSs and hence be re-
dundant. To remove these redundant terms from the structure function, we use a
minimization criterion which was presented in [Rauzy 2001] in the case of SFTs. In
[Rauzy 2001], a cut set π is minimal if there is no cut set ρ such that ρ ⊂ π. We
extend this concept to DFTs, and to the CSSs: CSSj is minimal if there is no CSSi

such that CSSi ⊂ CSSj . If such a CSSi exists, then we estimate that CSSi is
redundant and that it can be removed from the structure function.

From a mathematical point of view, if we consider two sets A and B, A ⊂ B ⇒
A∩B = A. In the same way, CSSi ⊂ CSSj ⇒ CSSi ·CSSj = CSSi. The general-
ization to all the terms of the structure function provides the following minimization
criterion: CSSi is included in one of the CSSj if it satisfies the criterion

CSSi ·
∑
j �=i

CSSj = CSSi. (6.6)

If CSSi is included in one of the CSSj , it is redundant, and can be removed from
the structure function (6.4). Iterative application of the criterion (6.6), according
to Algorithm 1, removes all the redundant CSSs, and returns the minimal set Smin

of non-redundant CSSs.

Algorithm 1 Algorithm for the minimization of the canonical form of the structure
function of a DFT
Require: S

Smin ← S

for i = 1 to n do
CSS ← ∑

j �=i CSSj , CSSj ∈ Smin

if CSSi · CSS = CSSi then
Smin ← Smin \ {CSSi}

return Smin

If Smin contains (m ≤ n) cut sequence sets, the minimal canonical form of the
structure function can be expressed as

TE =

m∑
i=1

CSSi. (6.7)
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It can be noted that this minimal canonical form of the structure function is not
unique, as there will be as many minimal canonical forms of the structure function
as there are minimization criteria. The study of the minimization of the structure
function implies many different criteria and its complexity is beyond the scope of
this PhD thesis, so this topic will be addressed in future works. Besides, as the
minimal canonical form of the structure function is an algebraic relation which is,
by definition, not unique, a given set of minimal cut sequences may be represented
by two – or more – different structure functions which can be minimal. For instance,
in a DFT with 3 basic events A, B, and C, the algebraic term (A�B) · (A�C) is
minimal and corresponds to the two minimal cut sequences [A,B,C] and [A,C,B].
These two minimal cut sequences respectively correspond to the two algebraic terms
C · (A�B) · (B � C) and B · (A� C) · (C �B), which are not redundant, so

(A�B) · (A� C) = C · (A�B) · (B � C) +B · (A� C) · (C �B)

and these two minimal cut sequences can be contained in two different minimal
canonical forms of structure functions.

6.1.2 Qualitative analysis of DFTs based on the structure function

The purpose of the qualitative analysis of SFTs is to determine the minimal cut
sets of the FT, which represent the minimal combinations of basic events which
will cause the system to fail and which cannot be reduced in number. However,
in the case of DFTs, the concept of minimal cut must be refined to minimal cut
sequence [Tang 2004], representing the minimal (ordered) failure sequence of events
that causes the occurrence of the TE.

According to Section 6.1.1.3, the minimal canonical form of the structure func-
tion of any DFT can be obtained as

TE =
∑(∏

bi ·
∏

(bj � bk)
)
, j /∈ {i, k} ,

where each product term is a non-redundant term thanks to the use of Algorithm
1.

The qualitative analysis of DFTs can be performed directly from this structure
function. This canonical form of the structure function is a sum-of-product form, so
each product term of the structure function can provide minimal cut sets or minimal
cut sequences for the DFT. Two cases may happen:

• if a product term does not contain the temporal operator BF (�), it is static
and provides a minimal cut set for the DFT;

• if a product term contains the temporal operator BF (�), it is dynamic and
provides minimal cut sequences for the DFT. In some cases, a set of minimal
cut sequences may represent all the possible sequences which correspond to a
minimal cut set and can hence be reduced to this minimal cut set.
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This canonical form of the structure function thus provides an hybrid result for
the qualitative analysis of DFTs by allowing to determine both minimal cut sets
and minimal cut sequences. Furthermore, as it was said above, a set of minimal cut
sequences may sometimes be equivalent to a single minimal cut set. Two cases may
happen:

• if these minimal cut sequences contain spare events, they must not be reduced
to their equivalent minimal cut set since the knowledge of the state in which
spare events fail will be needed to perform the quantitative analysis of the
DFT;

• if these minimal cut sequences do not contain spare events, they can be reduced
to their equivalent minimal cut set. Indeed, even though both results are
equivalent, minimal cut sets represent a more concise – and hence more useful –
result to the practitioner than the corresponding set of minimal cut sequences.

In the remainder of this dissertation, failure sequences will be noted between
brackets. For instance, the failure sequence in which A fails before B will be noted
[A,B]. The minimal cut sequences can be extracted quite easily from the structure
function of DFTs. Let us consider a DFT with 3 basic events A, B, C and whose
structure function contains the term B · (A � B). The TE of the DFT will hence
appear if A fails before B, so the sequence [A,B] is a cut sequence of the DFT.
However, any sequence of failures of the 3 basic events in which A fails before B

is a cut sequence too, so the sequences [C,A,B], [A,C,B], and [A,B,C] also are
cut sequences for the DFT. However, as these 3 sequences represent all the possible
inclusions of C in the sequence [A,B], [A,B] can be considered as minimal with
regard to the 3 other sequences. The algebraic term B · (A � B) of the structure
function hence provides the minimal cut sequence [A,B] for the DFT.

As explained above, it may happen that a set of minimal cut sequences represents
all the possible sequences which correspond to a minimal cut set and can hence
be reduced to this minimal cut set. For instance, the six minimal cut sequences
[A,B,C], [A,C,B], [B,A,C], [B,C,A], [C,A,B], and [C,B,A] represent the six
possible failure sequences of A, B, and C, and are hence equivalent to the minimal
cut set A ·B · C.

6.1.3 Quantitative analysis of DFTs based on the structure func-
tion

The purpose of quantitative analysis is to calculate the probability of occurrence
of the TE from the probability of occurrence of the basic events [Henley 2000,
Shooman 1990].

According to Section 6.1.1.3, the minimal canonical form of the structure func-
tion of any DFT can be obtained as

TE =
∑(∏

bi ·
∏

(bj � bk)
)
, j /∈ {i, k} .
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If this minimal canonical form has m CSSs, we can compute the probability of
the TE by resorting to the standard inclusion–exclusion formula [Trivedi 2001]:

Pr {TE} = Pr {CSS1 + CSS2 + . . .+ CSSm}
=

∑
1≤i≤m

Pr {CSSi} −
∑

1≤i<j≤m

Pr {CSSi · CSSj}

+
∑

1≤i<j<k≤m

Pr {CSSi · CSSj · CSSk}

+ . . .+ (−1)m−1Pr {CSS1 · CSS2 · . . . · CSSm} (6.8)

with ∀i ∈ {1, . . . ,m} , CSSi ∈ Smin.
Each term of these sums contains the product of the algebraic expressions verified

by the CSSs that can share the same basic events, and thus are not statistically in-
dependent. However, in these product terms, some simplifications might be possible
in three cases:

• if a basic component bi or a term (bi� bj) appear in two or more CSSs, we can
apply the idempotence theorem bi · bi = bi or (bi � bj) · (bi � bj) = (bi � bj);

• if CSS� contains the term bi, and CSS′
� the term (bi� bj), by virtue of (3.33),

bi · (bi � bj) = (bi � bj); and

• if CSS� contains the term (bi � bj), and CSS′
� the term (bj � bi), by virtue of

(3.17), (bi � bj) · (bj � bi) = ⊥.

As soon as the simplification of the different terms has been performed, their
failure probabilities can be calculated thanks to the expressions presented in Section
5.1 and to the probabilistic model of dynamic gates presented in Sections 5.2 to 5.4.

6.2 Application examples

This section presents the two application examples that we chose to illustrate the
approach presented in Section 6.1. First, these 2 examples are presented and an-
alyzed in an increasing order of complexity: the HECS example contains dynamic
gates FDEP and CSP only, whereas the HCAS example contains all the dynamic
gates (PAND, FDEP, WSP, and CSP). In both cases, CSP gates have a common
spare event, so both examples allow to show how our approach addresses this com-
plexity. Besides, the second example is quite specific since it contains an additional
complexity: the input events of its WSP gate are dependent basic events of an
FDEP gate and are hence not statistically independent. Finally, both examples are
examples of the literature which allow to compare our results with the results from
the literature.
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6.2.1 The Hypothetical Example Computer System (HECS)

The first DFT example that is going to be used is the DFT of an Hypothetical
Example Computer System (HECS) from [Stamatelatos 2002] which is shown in
Fig. 6.1.

Figure 6.1: The Hypothetical Example Computer System (HECS)

The HECS includes dual-redundant processors A1 and A2 and a cold spare
processor A, which can replace either upon failure. Processors A1, A2, and A are
all identical processors, running the same operating system. The processors are dual-
redundant and use comparison monitoring for fault tolerance. Periodic checkpoints
are taken and stored to aid in recovery from errors. Comparison of results and
checkpoints are used to detect errors. When one of the two active processors is
determined to have failed, the cold spare processor takes its place. The system can
continue to operate until all three processors have failed.

The HECS also includes five memory units of which three are required. These
memory units are connected to the redundant bus via two memory interface units.
If a memory interface unit fails, the memory units connected to it are unusable.
Memory unit 3 (M3) is connected to both interfaces for redundancy; thus M3 is
accessible as long as either interface unit is operational. A memory interface unit
must hence be operational in order for the memory units which are connected to it to
be accessible, thus the memory units are functionnally dependent on the interfaces.

There are two identical redundant buses, of which one is required for system
operation. Thus the bus subsystem fails when both of the buses fail.

The last subsystem to be considered is the application subsystem. The applica-
tion software runs on the computer system. The operator is a human who interfaces
with the computer via a Graphical User Interface (GUI) that runs on an interface
device. Thus an application (software (SW)) failure, GUI (hardware (HW)) failure
or human operator error will lead to system failure.

The HECS requires the correct operation of the processing, memory, and bus
subsystems, as well as the software application. Thus the HECS will fail if any of
these subsystems fail. The DFT which models the potential failure of the HECS is
shown in Fig. 6.2.
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Figure 6.2: The DFT of the HECS

6.2.2 The Hypothetical Cardiac Assist System (HCAS)

The other DFT example that is going to be used is the DFT of an Hypothetical
Cardiac Assist System (HCAS) from [Boudali 2005a] which was inspired from a
Cardiac Assist System found in [Vemuri 1999], and whose structure can be found
in [Ren 1998] and is shown in Fig. 6.3, where TEDTS stands for Transcutaneous
Energy and Data Transmission System.

Figure 6.3: The Hypothetical Cardiac Assist System (HCAS)

The HCAS is designed to treat mechanical and electrical failures of the heart.
The system can be divided into 4 modules: Trigger, CPU unit, motor section, and
pumps. The crossbar switch (CS) and the system supervisor (SS) represent the
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Trigger, since the failure of either CS or SS triggers the failure of both CPUs. The
CPU unit can be considered as a warm spare with a primary P and a spare unit B
(which corresponds to the backup CPU). For the motor section to function, either the
motor (MOTOR) or the motor cable (MOTORC) need to be working. The pumps
unit is comprised of two cold spares, each having a primary pump (PUMP_1 and
PUMP_2), and sharing a common spare pump (Backup_PUMP). In order for the
pumps unit to fail, all three pumps need to fail and CSP_1 needs to fail before (or
at the same time as) CSP_2.

The DFT which models the potential failure of the HCAS is shown in Fig. 6.4.

Figure 6.4: The DFT of the HCAS

6.3 Dynamic FTA of the HECS

6.3.1 Minimal canonical form of the structure function of the HECS

Let us determine the structure function of the DFT of the HECS in Fig. 6.2.
This DFT can be divided into 4 independent subtrees, whose structure functions
will be successively determined, by using the modularization algorithm presented in
[Dutuit 1996]. These 4 subtrees are as follows:

• subtree 1 corresponds to the processing system failure. It contains one AND
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gate and two Spare gates, and is hence dynamic. Its TE will be denoted by
TE1;

• subtree 2 corresponds to the memory system failure. It contains one 3-out-of-5
gate, one AND gate, and five FDEP gates, and is hence dynamic. Its TE will
be denoted by TE2;

• subtree 3 corresponds to the bus system failure. It contains a single AND gate
and is hence static. Its TE will be denoted by TE3;

• subtree 4 corresponds to the application/interface failure. It contains a single
OR gate and is hence static. Its TE will be denoted by TE4.

The structure function of the DFT of the HECS can hence be expressed as

TE = TE1 + TE2 + TE3 + TE4.

6.3.1.1 Determination of the structure function of subtrees 3 and 4

The structure functions of subtrees 2 and 3 can be determined easily since both
subtrees are static. Indeed, if both buses are denoted by BUS1 and BUS2, and if
the operator is denoted by OP ,

TE3 = BUS1 ·BUS2

TE4 = HW + SW +OP

6.3.1.2 Determination of the structure function of subtree 2

According to the behavioural model of gate FDEP presented in Section 4.2, the
structure function of subtree 2 can be determined as

TE2 = M1MIU1 ·M2MIU1 ·M3MIU1·MIU2 +M1MIU1 ·M2MIU1 ·M4MIU2

+M1MIU1 ·M2MIU1 ·M5MIU2 +M1MIU1 ·M3MIU1·MIU2 ·M4MIU2

+M1MIU1 ·M3MIU1·MIU2 ·M5MIU2 +M1MIU1 ·M4MIU2 ·M5MIU2(6.9)

+M2MIU1 ·M3MIU1·MIU2 ·M4MIU2

+M2MIU1 ·M3MIU1·MIU2 ·M5MIU2

+M2MIU1 ·M4MIU2 ·M5MIU2 +M3MIU1·MIU2 ·M4MIU2 ·M5MIU2

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M1MIU1 = MIU1 +M1

M2MIU1 = MIU1 +M2

M3MIU1·MIU2 = MIU1 ·MIU2 +M3

M4MIU2 = MIU2 +M4

M5MIU2 = MIU2 +M5

(6.10)
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By replacing M1MIU1, M2MIU1, M3MIU1·MIU2, M4MIU2, and M5MIU2 in (6.9)
by their expressions in (6.10), the structure function can be developed and simplified
to the following form:

TE2 = MIU1 ·MIU2 +MIU1 ·M3 +MIU1 ·M4 +MIU1 ·M5

+MIU2 ·M1 +MIU2 ·M2 +MIU2 ·M3 +M1 ·M2 ·M3

+M1 ·M2 ·M4 +M1 ·M2 ·M5 +M1 ·M3 ·M4

+M1 ·M3 ·M5 +M1 ·M4 ·M5 +M2 ·M3 ·M4

+M2 ·M3 ·M5 +M2 ·M4 ·M5 +M3 ·M4 ·M5

6.3.1.3 Determination of the structure function of subtree 1

The behavioural model of 2 Spare gates sharing a spare event presented in Section
4.3.1.2 allows to determine the structure function of subtree 1 as

TE1 = CSP1 · CSP2,

where CSP1 and CSP2 denote the two Spare gates, with{
CSP1 = Aa · (A1�Aa) +A1 · (A2�A1)

CSP2 = Aa · (A2�Aa) +A2 · (A1�A2)

As a consequence,

TE1 = [Aa · (A1�Aa) +A1 · (A2�A1)] · [Aa · (A2�Aa) +A2 · (A1�A2)]

= Aa · (A1�Aa) ·Aa · (A2�Aa) +Aa · (A1�Aa) ·A2 · (A1�A2)

+A1 · (A2�A1) ·Aa · (A2�Aa) +A1 · (A2�A1) ·A2 · (A1�A2)

(3.17)
= Aa · (A1�Aa) · (A2�Aa) +Aa ·A2 · (A1�Aa) · (A1�A2)

+Aa ·A1 · (A2�Aa) · (A2�A1)

6.3.1.4 Determination of the minimal canonical form of the structure
function of the HECS

The structure function of the HECS hence is

TE = Aa · (A1�Aa) · (A2�Aa) +Aa ·A2 · (A1�Aa) · (A1�A2)

+Aa ·A1 · (A2�Aa) · (A2�A1)

+MIU1 ·MIU2 +MIU1 ·M3 +MIU1 ·M4 +MIU1 ·M5

+MIU2 ·M1 +MIU2 ·M2 +MIU2 ·M3 +M1 ·M2 ·M3

+M1 ·M2 ·M4 +M1 ·M2 ·M5 +M1 ·M3 ·M4 +M1 ·M3 ·M5

+M1 ·M4 ·M5 +M2 ·M3 ·M4 +M2 ·M3 ·M5 +M2 ·M4 ·M5

+M3 ·M4 ·M5 +BUS1 ·BUS2 +HW + SW +OP
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It can be noted that this form is the canonical form of the structure function,
since it is a sum-of-product form. However, even though the expressions for the
structure functions of subtrees 2, 3, and 4 cannot be further simplified, the expression
for the structure function of subtree 1,

Aa ·(A1�Aa)·(A2�Aa)+Aa ·A2·(A1�Aa)·(A1�A2)+Aa ·A1·(A2�Aa)·(A2�A1),

contains a redundant term. This expression is composed of three cut sequence sets⎧⎨
⎩

CSS1 = Aa · (A1�Aa) · (A2�Aa)

CSS2 = Aa ·A2 · (A1�Aa) · (A1�A2)

CSS3 = Aa ·A1 · (A2�Aa) · (A2�A1)

Algorithm 1 allows us to check whether one of these CSSs is included in the
other one, according to criterion (6.6), and to remove it from the structure function.

Algorithm 1 starts with Smin = S = CSS1
⋃

CSS2
⋃

CSS3. For i = 1, CSS =

CSS2 + CSS3. Consequently,

CSS1 · CSS = CSS1 · CSS2 + CSS1 · CSS3

= Aa · (A1�Aa) · (A2�Aa) ·Aa ·A2 · (A1�Aa) · (A1�A2)

+Aa · (A1�Aa) · (A2�Aa) ·Aa ·A1 · (A2�Aa) · (A2�A1)

= Aa ·A2 · (A1�A2) · (A2�Aa) · (A1�Aa)

+Aa ·A1 · (A2�A1) · (A1�Aa) · (A2�Aa)

(3.33)
= Aa · (A1�A2) · (A2�Aa) · (A1�Aa)

+Aa · (A2�A1) · (A1�Aa) · (A2�Aa)

= Aa · [(A1�A2) + (A2�A1)] · (A1�Aa) · (A2�Aa)

(3.15)
= Aa · [(A1�A2) + (A1
A2) + (A2�A1)]

·(A1�Aa) · (A2�Aa)

(3.74)
= Aa · (A1 +A2) · (A1�Aa) · (A2�Aa)

= Aa ·A1 · (A1�Aa) · (A2�Aa)

+Aa ·A2 · (A1�Aa) · (A2�Aa)

(3.33)
= Aa · (A1�Aa) · (A2�Aa) +Aa · (A1�Aa) · (A2�Aa)

= Aa · (A1�Aa) · (A2�Aa) = CSS1

As CSS1 · CSS = CSS1, CSS1 is included in CSS and can be removed from the
structure function and from Smin: Smin = CSS2

⋃
CSS3. For i = 2, CSS = CSS3.

Consequently,

CSS2 · CSS = Aa ·A2 · (A1�Aa) · (A1�A2)

·Aa ·A1 · (A2�Aa) · (A2�A1)

(3.17)
= ⊥
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As CSS2 · CSS �= CSS2, CSS2 is not included in CSS.
For i = 3, CSS = CSS2 and the same result can be obtained, so CSS3 is not

included in CSS.
As a result of the minimization algorithm, Smin contains two elements

Smin = {Aa ·A2 · (A1�Aa) · (A1�A2), Aa ·A1 · (A2�Aa) · (A2�A1)} .

The minimal canonical form of the structure function of the DFT of the HECS
finally is

TE = Aa ·A2 · (A1�Aa) · (A1�A2) +Aa ·A1 · (A2�Aa) · (A2�A1)

+MIU1 ·MIU2 +MIU1 ·M3 +MIU1 ·M4 +MIU1 ·M5

+MIU2 ·M1 +MIU2 ·M2 +MIU2 ·M3 +M1 ·M2 ·M3

+M1 ·M2 ·M4 +M1 ·M2 ·M5 +M1 ·M3 ·M4 +M1 ·M3 ·M5

+M1 ·M4 ·M5 +M2 ·M3 ·M4 +M2 ·M3 ·M5 +M2 ·M4 ·M5

+M3 ·M4 ·M5 +BUS1 ·BUS2 +HW + SW +OP (6.11)

6.3.2 Qualitative analysis of the HECS

According to Section 6.3.1, the minimal canonical form of the structure function of
the DFT of the HECS is

TE = Aa ·A2 · (A1�Aa) · (A1�A2) +Aa ·A1 · (A2�Aa) · (A2�A1)

+MIU1 ·MIU2 +MIU1 ·M3 +MIU1 ·M4 +MIU1 ·M5

+MIU2 ·M1 +MIU2 ·M2 +MIU2 ·M3 +M1 ·M2 ·M3

+M1 ·M2 ·M4 +M1 ·M2 ·M5 +M1 ·M3 ·M4 +M1 ·M3 ·M5

+M1 ·M4 ·M5 +M2 ·M3 ·M4 +M2 ·M3 ·M5 +M2 ·M4 ·M5

+M3 ·M4 ·M5 +BUS1 ·BUS2 +HW + SW +OP

This structure function contains 23 terms. On the one hand, 21 terms do not
contain the temporal operator BF (�). They are static and can hence provide
minimal cut sets for the DFT:

MIU1 ·MIU2,MIU1 ·M3,MIU1 ·M4,MIU1 ·M5,

MIU2 ·M1,MIU2 ·M2,MIU2 ·M3,M1 ·M2 ·M3,

M1 ·M2 ·M4,M1 ·M2 ·M5,M1 ·M3 ·M4,M1 ·M3 ·M5,

M1 ·M4 ·M5,M2 ·M3 ·M4,M2 ·M3 ·M5,M2 ·M4 ·M5,

M3 ·M4 ·M5, BUS1 ·BUS2, HW,SW,OP.

On the other hand, 2 terms contain the temporal operator BF (�). They are
dynamic and can hence provide minimal cut sequences for the DFT. The algebraic
term Aa ·A2 · (A1�Aa) · (A1�A2) corresponds to the two minimal cut sequences
[A1, A2, Aa] and [A1, Aa, A2], whereas the algebraic term Aa·A1·(A2�Aa)·(A2�A1)
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corresponds to the two minimal cut sequences [A2, A1, Aa] and [A2, Aa, A1]. Any
failure sequence including one of these 4 minimal cut sequences – any failure sequence
in which events A, A1, and A2 fail in the same order as in one of these 4 minimal
cut sequences – thus is a cut sequence for the DFT. The minimal cut sequences of
the DFT hence are

[A1, A2, Aa] , [A1, Aa, A2] , [A2, A1, Aa] , [A2, Aa, A1] .

The minimal cut sets and sequences of the DFT of the HECS can then be
determined as

[A1, A2, Aa] , [A1, Aa, A2] , [A2, A1, Aa] , [A2, Aa, A1] ,

MIU1 ·MIU2,MIU1 ·M3,MIU1 ·M4,MIU1 ·M5,

MIU2 ·M1,MIU2 ·M2,MIU2 ·M3,M1 ·M2 ·M3,

M1 ·M2 ·M4,M1 ·M2 ·M5,M1 ·M3 ·M4,M1 ·M3 ·M5,

M1 ·M4 ·M5,M2 ·M3 ·M4,M2 ·M3 ·M5,M2 ·M4 ·M5,

M3 ·M4 ·M5, BUS1 ·BUS2, HW,SW,OP.

Galileo provides the same minimal cut sets and sequences for the DFT of the
HECS. However, Galileo considers that A1 ·A2 ·A is a minimal cut set whereas it is
not. Indeed, [A1, A2, Aa], [A1, Aa, A2], [A2, A1, Aa], and [A2, Aa, A1] are minimal
cut sequences for the DFT, but [Ad, A1, A2] and [Ad, A2, A1] are not since such
sequences cannot occur as A is a cold spare.

This difference between the results obtained with Galileo and with our approach
is caused by the ZBDD approach used to perform the qualitative analysis in Galileo.
In our case, the difference of results occurs in the processing system failure subsys-
tem. Indeed, the qualitative analysis performed in Galileo consists in

1. replacing dynamic gates in the DFT with the static gates corresponding to
their logic constraints: the two Spare gates are hence replaced by two AND
gates, thus making impossible the modelling of the behaviour of the spare
event A, which should normally replace the first main component to fail and
which should not fail while in its dormant mode as it is a cold spare;

2. generating the minimal cut sets of the resulting SFT: the SFT of the processing
system failure subsystem hence has a single minimal cut set, which is A1·A2·A;
and

3. expanding each minimal cut set to minimal cut sequences by considering the
timing constraints: as there are only timing constraints between A1 and A

and between A2 and A and as the behaviour of the cold spare event A was
not modelled at step 1, the minimal cut sequences obtained are equivalent to
the minimal cut set A1 ·A2 ·A. However, the sequence [Ad, A1, A2], which is
included in A1 ·A2 ·A, cannot be a minimal cut sequence as A cannot fail in
its dormant mode.
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6.3.3 Quantitative analysis of the HECS

According to Section 6.3.1.4, the minimal canonical form of the structure function
of the DFT of the HECS is

TE = Aa ·A2 · (A1�Aa) · (A1�A2) +Aa ·A1 · (A2�Aa) · (A2�A1)

+MIU1 ·MIU2 +MIU1 ·M3 +MIU1 ·M4 +MIU1 ·M5

+MIU2 ·M1 +MIU2 ·M2 +MIU2 ·M3 +M1 ·M2 ·M3

+M1 ·M2 ·M4 +M1 ·M2 ·M5 +M1 ·M3 ·M4 +M1 ·M3 ·M5

+M1 ·M4 ·M5 +M2 ·M3 ·M4 +M2 ·M3 ·M5 +M2 ·M4 ·M5

+M3 ·M4 ·M5 +BUS1 ·BUS2 +HW + SW +OP

All the terms of this minimal canonical form are not statistically independent
since some of them contain the same basic events. To make the calculation of the
failure probability of the TE easier, this structure function can be divided into the 4

structure functions of the 4 subtrees of the DFT of the HECS which were determined
in Section 6.3.1.

The failure probability of the TE of the DFT can hence be determined as

Pr {TE} (t) = Pr {TE1 + TE2 + TE3 + TE4} (t)
(6.8)
= Pr {TE1} (t) + Pr {TE2} (t) + Pr {TE3} (t) + Pr {TE4} (t)

−Pr {TE1} (t)× Pr {TE2} (t)− Pr {TE1} (t)× Pr {TE3} (t)
−Pr {TE1} (t)× Pr {TE4} (t)− Pr {TE2} (t)× Pr {TE3} (t)
−Pr {TE2} (t)× Pr {TE4} (t)− Pr {TE3} (t)× Pr {TE4} (t)
+Pr {TE1} (t)× Pr {TE2} (t)× Pr {TE3} (t)
+Pr {TE1} (t)× Pr {TE2} (t)× Pr {TE4} (t)
+Pr {TE1} (t)× Pr {TE3} (t)× Pr {TE4} (t)
+Pr {TE2} (t)× Pr {TE3} (t)× Pr {TE4} (t)
−Pr {TE1} (t)× Pr {TE2} (t)× Pr {TE3} (t)× Pr {TE4} (t)

(6.12)

thanks to the inclusion–exclusion formula [Trivedi 2001], since the 4 subtrees are
statistically independent. The four expressions for Pr {TE1} (t), Pr {TE2} (t),
Pr {TE3} (t), and Pr {TE4} (t) can then be determined as follows.

6.3.3.1 Calculation of Pr {TE1} (t)

Pr {TE1} (t) = Pr {Aa ·A2 · (A1�Aa) · (A1�A2)

+ Aa ·A1 · (A2�Aa) · (A2�A1)} (t)

The algebraic term Aa ·A2 · (A1�Aa) · (A1�A2) corresponds to the two minimal
cut sequences [A1, A2, Aa] and [A1, Aa, A2], whereas the algebraic term Aa · A1 ·
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(A2 � Aa) · (A2 � A1) corresponds to the two minimal cut sequences [A2, A1, Aa]

and [A2, Aa, A1]. The structure function for TE1 can hence be rewritten as

TE1 = Aa · (A1�A2) · (A2�Aa) +A2 · (A1�Aa) · (Aa �A2)

+Aa · (A2�A1) · (A1�Aa) +A1 · (A2�Aa) · (Aa �A1),

where each algebraic term represents one of the 4 minimal cut sequences determined
previously. As there four algebraic terms are disjoint,

Pr {TE1} (t) = Pr {Aa · (A1�A2) · (A2�Aa)} (t)
+Pr {A2 · (A1�Aa) · (Aa �A2)} (t)
+Pr {Aa · (A2�A1) · (A1�Aa)} (t)
+Pr {A1 · (A2�Aa) · (Aa �A1)} (t)

=

∫ t

0

(∫ t

w

(∫ u

w
fA2(v)dv

)
fAa(u,w)du

)
fA1(w)dw

+

∫ t

0

(∫ w

0

(∫ w

v
fAa(u, v)du

)
fA1(v)dv

)
fA2(w)dw

+

∫ t

0

(∫ t

w

(∫ u

w
fA1(v)dv

)
fAa(u,w)du

)
fA2(w)dw

+

∫ t

0

(∫ w

0

(∫ w

v
fAa(u, v)du

)
fA2(v)dv

)
fA1(w)dw

thanks to the expressions presented in Section 5.1 and to the probabilistic model of
Spare gates presented in Section 5.4.

6.3.3.2 Calculation of Pr {TE2} (t)
The expression for Pr {TE2} (t) can be determined thanks to the inclusion–exclusion
formula [Trivedi 2001]. It will not be detailed here because of its size.

6.3.3.3 Calculation of Pr {TE3} (t)
The expression for Pr {TE3} (t) can be determined directly as

Pr {TE3} (t) = Pr {BUS1 ·BUS2} (t)
= FBUS1(t)× FBUS2(t)

6.3.3.4 Calculation of Pr {TE4} (t)
The expression for Pr {TE4} (t) can be determined directly as

Pr {TE4} (t) = Pr {HW + SW +OP} (t)
= FHW (t) + FSW (t) + FOP (t)

−FHW (t)× FSW (t)− FHW (t)× FOP (t)− FSW (t)× FOP (t)

+FHW (t)× FSW (t)× FOP (t)
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6.3.3.5 Failure probability of the TE of the DFT of the HECS

The four expressions obtained for Pr {TE1} (t), Pr {TE2} (t), Pr {TE3} (t), and
Pr {TE4} (t) allow to determine the failure probability of the TE of the DFT of the
HECS thanks to the relation (6.12). As the expressions obtained in Sections 6.3.3.1
to 6.3.3.4 do not depend on the distribution considered for basic events, the failure
probability of the TE does not either.

In the particular case of exponential distributions with the failure rates given
in Table 6.1, relation (6.12) allows to determine an unreliability of 95.92% for the
HECS at mission time T = 100 hours. The Galileo tool provides the same result.

Table 6.1: Failure rates of the basic events of the DFT of the HECS, from
[Stamatelatos 2002]

Basic component Failure rate
A1, A2, A 10−4

Mi 6× 10−5

MIUi 5× 10−5

BUS1, BUS2 10−6

HW 5× 10−5

SW 3× 10−2

OP 10−3

It can be noted that the result obtained is different from the result obtained in
[Stamatelatos 2002]. This difference is due to the fact that basic components were
considered as repairable in [Stamatelatos 2002]. Besides, this result does not depend
on the distribution considered for basic events. As the exponential distribution is
not necessarily the most suitable to model the failure of components, the failure
probability of the HECS could be computed by considering other more suitable
distributions, such as the Weibull distribution, as well.

6.4 Dynamic FTA of the HCAS

6.4.1 Minimal canonical form of the structure function of the HCAS

Let us determine the structure function of the DFT of the HCAS in Fig. 6.4.
This DFT can be divided into 3 independent subtrees, whose structure functions
will be successively determined, by using the modularization algorithm presented in
[Dutuit 1996]. These 3 subtrees are as follows:

• subtree 1 corresponds to the failure of the CPU unit. It contains one OR gate,
one FDEP gate, and one Spare gate, and is hence dynamic. Its TE will be
denoted by TE1;

• subtree 2 corresponds to the failure of the motor section. It contains a single
AND gate and is hence static. Its TE will be denoted by TE2;
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• subtree 3 corresponds to the failure of the pumps unit. It contains one PAND
gate and two Spare gates, and is hence dynamic. Its TE will be denoted by
TE3.

The structure function of the DFT of the HCAS can hence be expressed as

TE = TE1 + TE2 + TE3.

6.4.1.1 Determination of the structure function of subtree 2

The structure function of subtree 2 can be determined easily since it is static:

TE2 = MOTOR ·MOTORC.

6.4.1.2 Determination of the structure function of subtree 3

The behavioural model of gate PAND presented in Section 4.1 allows to express
TE3 as

TE3 = CSP2 · (CSP1� CSP2).

According to the behavioural model of a single Spare gate with 2 inputs presented
in Section 4.3.1.1,

{
CSP1 = BPa · (P1�BPa) + P1 · (P2� P1)

CSP2 = BPa · (P2�BPa) + P2 · (P1� P2)

where P1 and P2 denote PUMP_1 and PUMP_2, respectively, for the sake of
clarity. CSP1 and CSP2 denote the two Spare gates CSPGate_1 and CSPGate_2.

The following result will be exploited to determine the structure function:

A� ((A ·B) + C)
(3.52)
= (A� (A ·B)) · (A� C)

(3.53)
= ((A�A) + (A�B)) · (A� C)

(3.51)
= (A+ (A�B)) · (A� C)

(3.60)
= A · (A� C)

(3.62)
= A� C (6.13)
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CSP1� CSP2 can now be expressed as

CSP1� CSP2 = [BPa · (P1�BPa) + P1 · (P2� P1)]� CSP2

(3.56)
= (BPa · (P1�BPa))� CSP2

+(P1 · (P2� P1))� CSP2

(3.57)
= (BPa � CSP2) · ((P1�BPa)� CSP2)

+(P1� CSP2) · ((P2� P1)� CSP2)

(3.59)
= (BPa � CSP2) · (P1�BPa) · (P1� CSP2)

+(P1� CSP2) · (P2� P1) · (P2� CSP2)

= (P1�BPa) · (BPa � CSP2) · (P1� CSP2)

+(P2� P1) · (P1� CSP2) · (P2� CSP2)

(3.15),(3.16)
= (P1�BPa) · (BPa � CSP2) · (P1� CSP2)

+(P2� P1) · (P1� CSP2) · (P2� CSP2)

(3.66)
= (P1�BPa) · (BPa � CSP2)

+(P2� P1) · (P1� CSP2)

(3.15),(3.16)
= (P1�BPa) · (BPa � CSP2)

+(P2� P1) · (P1� CSP2)

On the one hand,

BPa � CSP2 = BPa � [BPa · (P2�BPa) + P2 · (P1� P2)]

(6.13)
= BPa � [P2 · (P1� P2)]

(3.53)
= (BPa � P2) + (BPa � (P1� P2))

(3.15),(3.54)
= (BPa � P2) + (BPa � P1) +BPa · P1 · (P2� P1)

(3.15),(3.16)
= (BPa � P2) + (BPa � P1) +BPa · P1 · (P2� P1)

On the other hand,

P1� CSP2 = P1� [BPa · (P2�BPa) + P2 · (P1� P2)]

(3.33)
= P1� [BPa · (P2�BPa) + P1 · P2 · (P1� P2)]

(6.13)
= P1� [BPa · (P2�BPa)]

(3.53)
= (P1�BPa) + (P1� (P2�BPa))

(3.15),(3.54)
= (P1�BPa) + (P1� P2) + P1 · P2 · (BPa � P2)

(3.15),(3.16)
= (P1�BPa) + (P1� P2) + P1 · P2 · (BPa � P2)
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Consequently,

CSP1� CSP2 = (P1�BPa) · [(BPa � P2) + (BPa � P1)

+BPa · P1 · (P2� P1)] + (P2� P1) · [(P1�BPa)

+(P1� P2) + P1 · P2 · (BPa � P2)]

(3.17)
= (P1�BPa) · [(BPa � P2) +BPa · P1 · (P2� P1)]

+(P2� P1) · [(P1�BPa) + P1 · P2 · (BPa � P2)]

= (P1�BPa) · (BPa � P2)

+BPa · P1 · (P1�BPa) · (P2� P1)

+(P2� P1) · (P1�BPa)

+P1 · P2 · (P2� P1) · (BPa � P2)

(3.13)
= (P1�BPa) · (BPa � P2) + (P2� P1) · (P1�BPa)

+P1 · (BPa � P2) · (P2� P1)

Since BPa cannot fail before P1 and P2,

CSP1� CSP2 = (P1�BPa) · (BPa � P2) + (P2� P1) · (P1�BPa)

Finally,

TE3 = [BPa · (P2�BPa) + P2 · (P1� P2)]

· [(P1�BPa) · (BPa � P2) + (P2� P1) · (P1�BPa)]

(3.17)
= P2 · (P1� P2) · (P1�BPa) · (BPa � P2)

+BPa · (P2�BPa) · (P2� P1) · (P1�BPa)

(3.34)
= P2 · (P1�BPa) · (BPa � P2) +BPa · (P2� P1) · (P1�BPa).

6.4.1.3 Determination of the structure function of subtree 1

The model of Spare gates presented in Section 4.3 is valid when the input events
of the Spare gate are independent basic events which can consequently not occur
simultaneously. However, in the case of subtree 1, basic events P and B are basic
events which have a common cause failure represented by the Trigger, and they can
hence occur simultaneously when the trigger occurs. This particular aspect can be
taken into account in the model by introducing an additional term related to the
simultaneous occurrence of PT and BT – PT 
 BT – in the algebraic model of the
Spare gate. TE1 can hence first be expressed as

TE1 = BaT · (PT �BaT ) + PT · (BdT � PT ) + PT 
BT ,

where Ba and Bd denote the active and dormant state of the spare unit B, according
to the behavioural model of the Spare gate presented in Section 4.3.1.1. As explained
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in Section 4.2, the substituted variables BaT , BdT , BT , and PT explicitly indicate
the effect of trigger T and denote the global failure of basic events B and P . Thus
we have: ⎧⎪⎪⎨

⎪⎪⎩
BT = B + T

BaT = Ba + T

BdT = Bd + T

PT = P + T

The additional term PT 
BT can first be determined since T = CS + SS:

PT 
BT = (P + CS + SS)
 (B + CS + SS)

(3.39)
= ((P + CS + SS)
B) · (B � (CS + SS))

+((P + CS + SS)
 (CS + SS)) · ((CS + SS)�B)

(3.39)
= (B 
 P ) · (P � (CS + SS)) · (B � (CS + SS))

+(B 
 (CS + SS)) · ((CS + SS)� P ) · (B � (CS + SS))

+((CS + SS)
 P ) · (P � (CS + SS)) · ((CS + SS)�B)

+((CS + SS)
 (CS + SS)) · ((CS + SS)� P )

·((CS + SS)�B)

According to (3.15), B 
 P = ⊥, and in the same way, B 
 (CS + SS) = (CS +

SS)
 P = ⊥. Consequently,

PT 
BT = ((CS + SS)
 (CS + SS)) · ((CS + SS)� P ) · ((CS + SS)�B)

(3.38)
= (CS + SS) · ((CS + SS)� P ) · ((CS + SS)�B)

(3.33)
= ((CS + SS)�B) · ((CS + SS)� P )

= ((CS + SS)�Bd) · ((CS + SS)� P )

+((CS + SS)� P ) · ((CS + SS)�Ba)

As a result,

TE1 = (Ba + CS + SS) · ((P + CS + SS)� (Ba + CS + SS))

+(P + CS + SS) · ((Bd + CS + SS)� (P + CS + SS))

+((CS + SS)�Bd) · ((CS + SS)� P )

+((CS + SS)� P ) · ((CS + SS)�Ba).

Finally, this structure function can be developed thanks to the use of theorems
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(3.23) and (3.27), and simplified to the following form:

TE1 = (P �Ba) · (Ba � (CS + SS))

+(P � (CS + SS)) · ((CS + SS)�Ba)

+(Bd � P ) · (P � (CS + SS))

+(Bd � (CS + SS)) · ((CS + SS)� P )

+((CS + SS)�Bd) · ((CS + SS)� P )

+((CS + SS)� P ) · ((CS + SS)�Ba)

Some of the terms of this structure function can be grouped to obtain the final
simplified following form:

TE1 = CS + SS + P · (Bd � P ) +Ba · (P �Ba).

6.4.1.4 Determination of the minimal canonical form of the structure
function of the HCAS

The structure function of the HCAS can finally be determined as

TE = CS + SS +MOTOR ·MOTORC + P · (Bd � P ) +Ba · (P �Ba)

+BPa · (P2� P1) · (P1�BPa) + P2 · (P1�BPa) · (BPa � P2).

It can be noted that this form is the canonical form of the structure function,
since it is a sum-of-product form. Besides, application of algorithm 1 allows us to
determine that this form is minimal according to criterion (6.6), and hence is the
minimal canonical form of the structure function of the HCAS.

6.4.2 Qualitative analysis of the HCAS

According to Section 6.4.1, the minimal canonical form of the structure function of
the DFT of the HCAS is

TE = CS + SS +MOTOR ·MOTORC + P · (Bd � P ) +Ba · (P �Ba)

+BPa · (P2� P1) · (P1�BPa) + P2 · (P1�BPa) · (BPa � P2)

This structure function contains 7 terms. On the one hand, 3 terms do not
contain the temporal operator BF (�). They are static and can hence provide
minimal cut sets for the DFT:

CS, SS,MOTOR ·MOTORC.

On the other hand, 4 terms contain the temporal operator BF (�). They are
dynamic and can hence provide minimal cut sequences for the DFT. For instance,
the algebraic term P2 · (P1 � BPa) · (BPa � P2) indicates that P1, BPa, and P2

must fail in this order, so the sequence [P1, BPa, P2] is a cut sequence for the DFT.
As any failure sequence including the sequence [P1, BPa, P2] is a cut sequence for
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the DFT, the sequence [P1, BPa, P2] is a minimal cut sequence for the DFT. Each
dynamic algebraic term of this structure function hence provides a single minimal
cut sequence for the DFT, and the minimal cut sequences of the DFT are as follows:

[Bd, P ] , [P,Ba] , [P2, P1, BPa] , [P1, BPa, P2] .

The minimal cut sets and sequences of the DFT of the HCAS can then be
determined as

[Bd, P ] , [P,Ba] , [P2, P1, BPa] , [P1, BPa, P2] ,

CS, SS,MOTOR ·MOTORC.

In this case, it can be noted that the two minimal cut sequences [Bd, P ] and
[P,Ba] are logically equivalent to the single minimal cut set P · B. However, the
minimal cut set does not render the two states of the basic event B which will be
needed to perform the quantitative analysis of the DFT. This is the reason why
these two minimal cut sequences were not reduced to the equivalent minimal cut set
B · P .

Galileo provides the same minimal cut sets for the DFT, but it does not consider
[P2, P1, BPa] and [P1, BPa, P2] as minimal cut sequences. However, Galileo con-
siders that P1 ·P2 ·BP is a minimal cut set whereas it is not. Indeed, [P2, P1, BPa]

and [P1, BPa, P2] are minimal cut sequences for the DFT (even though Galileo does
not recognize them as such), but [P1, P2, BPa], [P2, BPa, P1], [BPd, P1, P2], and
[BPd, P2, P1] are not.

Once again, this difference between the results obtained with Galileo and with
our approach is caused by the ZBDD approach used to perform the qualitative
analysis in Galileo. In our case, the difference of results occurs in the pumps unit.
The qualitative analysis performed in Galileo consists in

1. replacing dynamic gates in the DFT with the static gates corresponding to
their logic constraints: the two CSP gates and the PAND gate are hence
replaced by three AND gates, thus making impossible the modelling of the
behaviour of the spare event BP , which should normally replace the first
main component to fail and which should not fail while in its dormant mode
as it is a cold spare;

2. generating the minimal cut sets of the resulting SFT: the SFT of the pumps
unit hence has a single minimal cut set, which is P1 · P2 ·BP ; and

3. expanding each minimal cut set to minimal cut sequences by considering the
timing constraints: as there are only timing constraints between P1 and BP

and between P2 and BP and as the behaviour of the cold spare event BP

was not modelled at step 1, the timing constraints allow to obtain minimal
cut sequences which are equivalent to the single minimal cut set P1 ·P2 ·BP .
However, the sequence [BPd, P1, P2], which is included in P1·P2·BP , cannot
be a minimal cut sequence as BP cannot fail in its dormant mode.
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6.4.3 Quantitative analysis of the HCAS

According to Section 6.4.1.4, the minimal canonical form of the structure function
of the DFT of the HCAS is

TE = CS + SS +MOTOR ·MOTORC + P · (Bd � P ) +Ba · (P �Ba)

+BPa · (P2� P1) · (P1�BPa) + P2 · (P1�BPa) · (BPa � P2)

All the terms of this minimal canonical form are not statistically independent
since some of them contain the same basic events. To make the calculation of the
failure probability of the TE easier, this structure function can be divided into the 3

structure functions of the 3 subtrees of the DFT of the HCAS which were determined
in Section 6.4.2.

The failure probability of the TE of the DFT can hence be determined as

Pr {TE} (t) = Pr {TE1 + TE2 + TE3} (t)
(6.8)
= Pr {TE1} (t) + Pr {TE2} (t) + Pr {TE3} (t)

−Pr {TE1} (t)× Pr {TE2} (t)− Pr {TE1} (t)× Pr {TE3} (t)
−Pr {TE2} (t)× Pr {TE3} (t)
+Pr {TE1} (t)× Pr {TE2} (t)× Pr {TE3} (t) (6.14)

thanks to the inclusion–exclusion formula [Trivedi 2001], since the 3 subtrees are
statistically independent. The expressions for Pr {TE1} (t), Pr {TE2} (t), and
Pr {TE3} (t) can then be determined as follows.

6.4.3.1 Calculation of Pr {TE1} (t)

Pr {TE1} (t) = Pr {CS + SS + P · (Bd � P ) +Ba · (P �Ba)} (t)

According to the probabilistic model of a single Spare gate with 2 inputs presented
in Section 5.4.2.1,

Pr {P · (Bd � P ) +Ba · (P �Ba))} (t) =

∫ t

0

(∫ t

v
fBa(u, v)du

)
fP (v)dv

+

∫ t

0
fP (u)FBd

(u)du

As a consequence, according to the inclusion–exclusion formula [Trivedi 2001],

Pr {TE1} (t) = FCS(t) + FSS(t)− FCS(t)× FSS(t)

+(1− FCS(t)− FSS(t) + FCS(t)× FSS(t))

×
(∫ t

0

(∫ t

v
fBa(u, v)du

)
fP (v)dv +

∫ t

0
fP (u)FBd

(u)du

)
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6.4.3.2 Calculation of Pr {TE2} (t)
The expression for Pr {TE2} (t) can be determined directly as

Pr {TE2} (t) = Pr {MOTOR ·MOTORC} (t)
= FMOTOR(t)× FMOTORC(t)

6.4.3.3 Calculation of Pr {TE3} (t)
The expression for Pr {TE3} (t) can be determined as

Pr {TE3} (t) = Pr {BPa · (P2� P1) · (P1�BPa)} (t)
+Pr {P2 · (P1�BPa) · (BPa � P2)} (t)

=

∫ t

0

(∫ t

w

(∫ u

w
fP1(v)dv

)
fBPa(u,w)du

)
fP2(w)dw

+

∫ t

0

(∫ w

0

(∫ w

v
fBPa(u, v)du

)
fP1(v)dv

)
fP2(w)dw

thanks to the expressions presented in Section 5.1 and to the probabilistic model of
Spare gates presented in Section 5.4.

6.4.3.4 Failure probability of the TE of the DFT of the HCAS

The expressions obtained for Pr {TE1} (t), Pr {TE2} (t), and Pr {TE3} (t) allow
to determine the failure probability of the TE of the DFT of the HCAS thanks to
the relation (6.14). As the expressions obtained in Sections 6.4.3.1 to 6.4.3.3 do not
depend on the distribution considered for basic events, the failure probability of the
TE does not either.

In the particular case of exponential distributions with the failure rates given in
Table 6.2 and with a dormancy of 0.5 for the spare event B, relation (6.14) allows
to determine an unreliability of 36.35% for the HCAS at mission time T = 100000

hours. The Galileo tool provides the same result.

Table 6.2: Failure rates of the basic events of the DFT of the HCAS, from
[Boudali 2005a]

Basic component Failure rate (10−6)
CS 1

SS 2

P, B 4

P1, P2, BP 5

MOTOR 5

MOTORC 1

Once more, this result does not depend on the distribution considered for basic
events. As the exponential distribution is not necessarily the most suitable to model
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the failure of components, the failure probability of the HCAS could be computed
by considering other more suitable distributions, such as the Weibull distribution,
as well.





Chapter 7

Conclusions

This dissertation has presented an algebraic framework based on a temporal model
of events and on the introduction of temporal operators BEFORE (BF) and SI-
MULTANEOUS (SM). This framework allows to extend the analytical approaches
commonly used to analyze SFTs to DFTs. The technical contributions of this dis-
sertation can be summarized as follows:

• the algebraic framework introduced allows to provide a behavioural model of
all dynamic gates (PAND, FDEP, and Spare);

• this behavioural model of dynamic gates allows to determine the structure
function of any DFT;

• the structure function of DFTs can always be simplified to a sum-of-product
canonical form thanks to a list of theorems that we provide;

• such a canonical form of the structure function may contain redundant terms,
which may be removed from the structure function thanks to the use of an
algorithm that we provide, and which is based on a minimization criterion;

• the qualitative analysis of any DFT can be performed directly from its struc-
ture function;

• a probabilistic model of dynamic gates that we provide also allows to perform
the quantitative analysis of any DFT from its structure function. One of the
advantages of this probabilistic model is that it does not depend on the failure
distribution considered for basic events.

Much work remains to be done. We showed that a set of minimal cut sequences
can be extracted directly from the minimal canonical form of the structure function
of DFTs. However, nothing ensures that this set of minimal cut sequences is minimal
as it may contain minimal cut sequences from different cut sequence sets but which
may be redundant. Indeed, the set of minimal cut sequences can be minimized in
many ways, depending on the objective. On the one hand, it can be minimized
to make qualitative analysis easier by keeping the shortest sequences only, making
the assumption that longer sequences may have a lower probability of occurrence
and may hence be less relevant. On the other hand, it can be minimized to make
quantitative analysis easier by keeping the sequences with the highest probability
of occurrence only. The determination of the minimal set of minimal cut sequences
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hence is a more complex issue that a mere minimization issue which depends on the
targeted objective.

Besides, the work presented in this dissertation allowed to propose a formal
background for the determination of the structure function of any DFT. The the-
orems provided allow to develop and simplify this structure function to a minimal
canonical form. However, one should be aware of the complexity of the calculation
of this canonical form. The few structure function developments presented in this
dissertation show that the simplification of structure functions can be quite com-
plex and depends on the order in which the theorems are used. The expertise of
the analyst can thus be quite useful to make the determination of the canonical
form of the structure function easier. The probabilistic models of dynamic gates
can also become quite complex, in the case of Spare gates, for instance. Future
work will hence be dedicated to the elaboration of efficient algorithms allowing to
automatically perform the calculation of this structure function and the qualitative
and quantitative analysis of DFTs. Such an implementation will require the defi-
nition of temporal operators, as well as the definition of the theorems which will
be useful to simplify the structure function, making sure that the theorems defined
will not be redundant. Algorithms would allow to automatically extract the cut
sequences of the DFT from the minimal canonical form of its structure function,
and to determine which sequences include the other ones and are hence minimal.
The application of the probabilistic model of dynamic gates to specific non neces-
sarily exponential failure distributions would also be simplified by the use of some
algorithms.

Finally, the hypotheses of this algebraic framework were that events are non-
repairable and that basic events are statistically independent. Finally, we made the
hypothesis that events are non-repairable, in accordance with [Vesely 1981]. How-
ever, repairable events allow to model cyclic behaviours [Bobbio 2004] and would
hence be worth being taken into account as many users aim at modeling repairable
systems. The algebraic framework presented in this dissertation will no longer be
valid because of its hypotheses. A new set of repairable events will have to be de-
fined, and the temporal model of repairable events will have to be defined, each
repairable events having not only one date of appearance, but many dates of ap-
pearance and disappearance. A new definition of temporal operators BEFORE and
SIMULTANEOUS will have to be determined on the set of repairable events, and
the behavioural model of dynamic gates will be the same as the behavioural model
presented in this dissertation. Even though the unary operator NOT (̄ ) commonly
used in the Boolean algebra of Boolean variables could not be defined on the set
of non-repairable events because it was not stable, it could be defined on the set
of repairable events and may thus provide a Boolean algebra structure to the set
of repairable events. Some of the theorems which were presented in this disserta-
tion may no longer be valid, and the theorems which will still be valid on the set
of repairable events will have to be demonstrated by exploiting the new model of
temporal operators. Such a change in the hypotheses of the framework will hence
result in a sizeable work.
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Appendix A

Proofs of the theorems

A.1 Principle of the proof of the theorems

A.1.1 Theorems involving 2 events

When theorems involve 2 events a and b, 3 cases are possible:

• a and b occur simultaneously (d(a) = d(b));

• a occurs before b (d(a) < d(b));

• a occurs after b (d(a) > d(b)).

Such theorems were hence demonstrated by considering the 3 possible orderings
of the failure dates of a and b:

• Case 1: the two dates are equal: d(a) = d(b)

• Case 2: the two dates are different

– Case 2a: d(a) < d(b)

– Case 2b: d(a) > d(b)

A.1.2 Theorems involving 3 events

When theorems involve 3 events a, b, and c, 13 cases are possible:

• a, b, and c occur simultaneously (d(a) = d(b) = d(c));

• 2 events out of the 3 events occur simultaneously (d(a) = d(b) or d(a) = d(c)

or d(b) = d(c)). As the third event can occur before or after the 2 others, we
consider 6 cases;

• the 3 events occur at different dates (6 cases).

Such theorems were hence demonstrated by considering the 13 possible orderings
of the failure dates of a, b, and c:

• Case 1: the three dates are equal: d(a) = d(b) = d(c)

• Case 2: two dates out of three are equal

– Case 2a: d(a) = d(b) < d(c)
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– Case 2b: d(a) = d(b) > d(c)

– Case 2c: d(a) = d(c) < d(b)

– Case 2d: d(a) = d(c) > d(b)

– Case 2e: d(b) = d(c) < d(a)

– Case 2f: d(b) = d(c) > d(a)

• Case 3: the three dates are different

– Case 3a: d(a) < d(b) < d(c)

– Case 3b: d(a) < d(c) < d(b)

– Case 3c: d(b) < d(a) < d(c)

– Case 3d: d(b) < d(c) < d(a)

– Case 3e: d(c) < d(a) < d(b)

– Case 3f: d(c) < d(b) < d(a)

A.2 Proofs

In many cases, a theorem Ti will be proved by using other theorems Tj . However,
none of theorems Tj is proved by using theorem Ti nor is proved by using theorems
which are proved by using theorem Ti.

A.2.1 Proofs of the theorems satisfied by Boolean operators

Proof of Theorem (3.1) : a+ b = b+ a

1. Case 1: the two dates are equal: d(a) = d(b), meaning that a = b

By definition:
a+ b = a b+ a = b

Given a = b, a+ b = b+ a.

2. Case 2: the two dates are different

(a) Case 2a: d(a) < d(b)

By definition:
a+ b = a b+ a = a

(b) Case 2b: d(a) > d(b)

By definition:
a+ b = b b+ a = b

For all the cases of the domain of our study, a+ b = b+ a. Thus:

a+ b = b+ a

End of the proof of Theorem (3.1).
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Proof of Theorem (3.2) : a · b = b · a

1. Case 1: d(a) = d(b), meaning that a = b

By definition:
a · b = a b · a = b

Given a = b, a · b = b · a.

2. Case 2: the two dates are different

(a) Case 2a: d(a) < d(b)

By definition:
a · b = b b · a = b

(b) Case 2b: d(a) > d(b)

By definition:
a · b = a b · a = a

For all the cases of the domain of our study, a · b = b · a. Thus:

a · b = b · a

End of the proof of Theorem (3.2).

Proof of Theorem (3.3) : a+ (b+ c) = (a+ b) + c

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:
b+ c = b a+ b = a

a+ (b+ c) = a (a+ b) + c = a

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

b+ c = b a+ b = a

a+ (b+ c) = a (a+ b) + c = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b+ c = c a+ b = a

a+ (b+ c) = c (a+ b) + c = c
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(c) Case 2c: d(a) = d(c) < d(b)

By definition:

b+ c = c a+ b = a

a+ (b+ c) = a (a+ b) + c = a

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b+ c = b a+ b = b

a+ (b+ c) = b (a+ b) + c = b

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b+ c = b a+ b = b

a+ (b+ c) = b (a+ b) + c = b

(f) Case 2f: d(b) = d(c) > d(a)

By definition:

b+ c = b a+ b = a

a+ (b+ c) = a (a+ b) + c = a

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

b+ c = b a+ b = a

a+ (b+ c) = a (a+ b) + c = a

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

b+ c = c a+ b = a

a+ (b+ c) = a (a+ b) + c = a

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

b+ c = b a+ b = b

a+ (b+ c) = b (a+ b) + c = b

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b+ c = b a+ b = b

a+ (b+ c) = b (a+ b) + c = b
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(e) Case 3e: d(c) < d(a) < d(b)

By definition:

b+ c = c a+ b = a

a+ (b+ c) = c (a+ b) + c = c

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

b+ c = c a+ b = b

a+ (b+ c) = c (a+ b) + c = c

For all the cases of the domain of our study, a+ (b+ c) = (a+ b) + c. Thus:

a+ (b+ c) = (a+ b) + c

End of the proof of Theorem (3.3).

Proof of Theorem (3.4) : a · (b · c) = (a · b) · c

1. Case 1: the three dates are different: d(a) = d(b) = d(c), meaning that
a = b = c

By definition:
b · c = b a · b = a

a · (b · c) = a (a · b) · c = a

2. Case 2: two dates out of three are different

(a) Case 2a: d(a) = d(b) < d(c)

By definition:
b · c = c a · b = a

a · (b · c) = c (a · b) · c = c

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b · c = b a · b = a

a · (b · c) = a (a · b) · c = a

(c) Case 2c: d(a) = d(c) < d(b)

By definition:
b · c = b a · b = b

a · (b · c) = b (a · b) · c = b

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b · c = c a · b = a

a · (b · c) = a (a · b) · c = a
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(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b · c = b a · b = a

a · (b · c) = a (a · b) · c = a

(f) Case 2f: d(b) = d(c) > d(a)

By definition:
b · c = b a · b = b

a · (b · c) = b (a · b) · c = b

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:
b · c = c a · b = b

a · (b · c) = c (a · b) · c = c

(b) Case 3b: d(a) < d(c) < d(b)

By definition:
b · c = b a · b = b

a · (b · c) = b (a · b) · c = b

(c) Case 3c: d(b) < d(a) < d(c)

By definition:
b · c = c a · b = a

a · (b · c) = c (a · b) · c = c

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b · c = c a · b = a

a · (b · c) = a (a · b) · c = a

(e) Case 3e: d(c) < d(a) < d(b)

By definition:
b · c = b a · b = b

a · (b · c) = b (a · b) · c = b

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

b · c = b a · b = a

a · (b · c) = a (a · b) · c = a

For all the cases of the domain of our study, a · (b · c) = (a · b) · c. Thus:

a · (b · c) = (a · b) · c
End of the proof of Theorem (3.4).
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Proof of Theorem (3.5) : a+ a = a

By definition, a+ b = a if d(a) = d(b). Thus, if b = a, d(b) = d(a) and:

a+ a = a

End of the proof of Theorem (3.5).

Proof of Theorem (3.6) : a · a = a

By definition, a · b = a if d(a) = d(b). Thus, if b = a, d(b) = d(a) and:

a · a = a

End of the proof of Theorem (3.6).

Proof of Theorem (3.7) : a · (b+ c) = (a · b) + (a · c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

b+ c = b

{
a · b = a

a · c = a

a · (b+ c) = a (a · b) + (a · c) = a

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

b+ c = b

{
a · b = a

a · c = c

a · (b+ c) = a (a · b) + (a · c) = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b+ c = c

{
a · b = a

a · c = a

a · (b+ c) = a (a · b) + (a · c) = a

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

b+ c = c

{
a · b = b

a · c = a

a · (b+ c) = a (a · b) + (a · c) = a
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(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b+ c = b

{
a · b = a

a · c = a

a · (b+ c) = a (a · b) + (a · c) = a

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b+ c = b

{
a · b = a

a · c = a

a · (b+ c) = a (a · b) + (a · c) = a

(f) Case 2f: d(b) = d(c) > d(a)

By definition:

b+ c = b

{
a · b = b

a · c = c

a · (b+ c) = b (a · b) + (a · c) = b

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

b+ c = b

{
a · b = b

a · c = c

a · (b+ c) = b (a · b) + (a · c) = b

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

b+ c = c

{
a · b = b

a · c = c

a · (b+ c) = c (a · b) + (a · c) = c

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

b+ c = b

{
a · b = a

a · c = c

a · (b+ c) = a (a · b) + (a · c) = a

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b+ c = b

{
a · b = a

a · c = a

a · (b+ c) = a (a · b) + (a · c) = a
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(e) Case 3e: d(c) < d(a) < d(b)

By definition:

b+ c = c

{
a · b = b

a · c = a

a · (b+ c) = a (a · b) + (a · c) = a

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

b+ c = c

{
a · b = a

a · c = a

a · (b+ c) = a (a · b) + (a · c) = a

For all the cases of the domain of our study, a · (b+ c) = (a · b) + (a · c). Thus:

a · (b+ c) = (a · b) + (a · c)
End of the proof of Theorem (3.7).

Proof of Theorem (3.8) : a+⊥ = a

1. Case 1: d(a) = d(⊥) = +∞
By definition:

a+⊥ = a

2. Case 2: d(a) �= d(⊥), meaning that d(a) < d(⊥)

By definition:
a+⊥ = a

For all the cases of the domain of our study, a+⊥ = a. Thus:

a+⊥ = a

End of the proof of Theorem (3.8).

Proof of Theorem (3.9) : a · � = a

1. Case 1: d(a) = d(�) = 0

By definition:
a · � = a

2. Case 2: d(a) �= d(�), meaning that d(a) > d(�)

By definition:
a · � = a

For all the cases of the domain of our study, a · � = a. Thus:

a · � = a

End of the proof of Theorem (3.9).
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Proof of Theorem (3.10) : a · ⊥ = ⊥

1. Case 1: d(a) = d(⊥) = +∞
By definition:

a · ⊥ = ⊥

2. Case 2: d(a) �= d(⊥), meaning that d(a) < d(⊥)

By definition:
a · ⊥ = ⊥

For all the cases of the domain of our study, a · ⊥ = ⊥. Thus:

a · ⊥ = ⊥

End of the proof of Theorem (3.10).

A.2.2 Proofs of the theorems satisfied by operator non-inclusive
BEFORE

Proof of Theorem (3.17) : (a� b) · (b� a) = ⊥

1. Case 1: the two dates are equal: d(a) = d(b), meaning that a = b

By definition: {
a� b = ⊥
b� a = ⊥

(a� b) · (b� a) = ⊥

2. Case 2: the two dates are different

(a) Case 2a: d(a) < d(b)

By definition: {
a� b = a

b� a = ⊥
(a� b) · (b� a) = ⊥

(b) Case 2b: d(a) > d(b)

By definition: {
a� b = ⊥
b� a = b

(a� b) · (b� a) = ⊥
For all the cases of the domain of our study, (a� b) · (b� a) = ⊥. Thus:

(a� b) · (b� a) = ⊥

End of the proof of Theorem (3.17).
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Proof of Theorem (3.18) :

a� (b� c) = (a� b) + (a · b · ((c� b) + (c
 b))) = (a� b) + (a · b · (c� b))

This proof will be done in 2 steps:

• Step 1: a� (b� c) = (a� b) + (a · b · ((c� b) + (c
 b)))

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that
a = b = c

By definition:

b� c = ⊥
{

c� b = ⊥
c
 b = c

a� (b� c) = a

{
a� b = ⊥
(c� b) + (c
 b) = c{

a� b = ⊥
a · b · ((c� b) + (c
 b)) = a

(a� b) + (a · b · ((c� b) + (c
 b))) = a

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

b� c = b

{
c� b = ⊥
c
 b = ⊥

a� (b� c) = ⊥
{

a� b = ⊥
(c� b) + (c
 b) = ⊥{

a� b = ⊥
a · b · ((c� b) + (c
 b)) = ⊥

(a� b) + (a · b · ((c� b) + (c
 b))) = ⊥

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b� c = ⊥
{

c� b = c

c
 b = ⊥
a� (b� c) = a

{
a� b = ⊥
(c� b) + (c
 b) = c{

a� b = ⊥
a · b · ((c� b) + (c
 b)) = a

(a� b) + (a · b · ((c� b) + (c
 b))) = a

(c) Case 2c: d(a) = d(c) < d(b)
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By definition:

b� c = ⊥
{

c� b = c

c
 b = ⊥
a� (b� c) = a

{
a� b = a

(c� b) + (c
 b) = c{
a� b = a

a · b · ((c� b) + (c
 b)) = b

(a� b) + (a · b · ((c� b) + (c
 b))) = a

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b� c = b

{
c� b = ⊥
c
 b = ⊥

a� (b� c) = ⊥
{

a� b = ⊥
(c� b) + (c
 b) = ⊥{

a� b = ⊥
a · b · ((c� b) + (c
 b)) = ⊥

(a� b) + (a · b · ((c� b) + (c
 b))) = ⊥

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b� c = ⊥
{

c� b = ⊥
c
 b = c

a� (b� c) = a

{
a� b = ⊥
(c� b) + (c
 b) = c{

a� b = ⊥
a · b · ((c� b) + (c
 b)) = a

(a� b) + (a · b · ((c� b) + (c
 b))) = a

(f) Case 2f: d(b) = d(c) > d(a)

By definition:

b� c = ⊥
{

c� b = ⊥
c
 b = c

a� (b� c) = a

{
a� b = a

(c� b) + (c
 b) = c{
a� b = a

a · b · ((c� b) + (c
 b)) = b

(a� b) + (a · b · ((c� b) + (c
 b))) = a

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)
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By definition:

b� c = b

{
c� b = ⊥
c
 b = ⊥

a� (b� c) = a

{
a� b = a

(c� b) + (c
 b) = ⊥{
a� b = a

a · b · ((c� b) + (c
 b)) = ⊥
(a� b) + (a · b · ((c� b) + (c
 b))) = a

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

b� c = ⊥
{

c� b = c

c
 b = ⊥
a� (b� c) = a

{
a� b = a

(c� b) + (c
 b) = c{
a� b = a

a · b · ((c� b) + (c
 b)) = b

(a� b) + (a · b · ((c� b) + (c
 b))) = a

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

b� c = b

{
c� b = ⊥
c
 b = ⊥

a� (b� c) = ⊥
{

a� b = ⊥
(c� b) + (c
 b) = ⊥{

a� b = ⊥
a · b · ((c� b) + (c
 b)) = ⊥

(a� b) + (a · b · ((c� b) + (c
 b))) = ⊥

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b� c = b

{
c� b = ⊥
c
 b = ⊥

a� (b� c) = ⊥
{

a� b = ⊥
(c� b) + (c
 b) = ⊥{

a� b = ⊥
a · b · ((c� b) + (c
 b)) = ⊥

(a� b) + (a · b · ((c� b) + (c
 b))) = ⊥

(e) Case 3e: d(c) < d(a) < d(b)
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By definition:

b� c = ⊥
{

c� b = c

c
 b = ⊥
a� (b� c) = a

{
a� b = a

(c� b) + (c
 b) = c{
a� b = a

a · b · ((c� b) + (c
 b)) = b

(a� b) + (a · b · ((c� b) + (c
 b))) = a

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

b� c = ⊥
{

c� b = c

c
 b = ⊥
a� (b� c) = a

{
a� b = ⊥
(c� b) + (c
 b) = c{

a� b = ⊥
a · b · ((c� b) + (c
 b)) = a

(a� b) + (a · b · ((c� b) + (c
 b))) = a

For all the cases of the domain of our study,

a� (b� c) = (a� b) + (a · b · ((c� b) + (c
 b))).

Thus:
a� (b� c) = (a� b) + (a · b · ((c� b) + (c
 b)))

• Step 2: (a� b) + (a · b · ((c� b) + (c
 b))) = (a� b) + (a · b · (c� b))

For this proof, we will use the following theorem:

(3.16) : a� b = a� b+ a
 b

(a� b) + (a · b · ((c� b) + (c
 b)))
(3.16)
= (a� b) + (a · b · (c� b))

End of the proof of Theorem (3.18).

Proof of Theorem (3.19) : (a� b)� c = (a� b) · (a� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

a� b = ⊥
{

a� b = ⊥
a� c = ⊥

(a� b)� c = ⊥ (a� b) · (a� c) = ⊥
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2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

a� b = ⊥
{

a� b = ⊥
a� c = a

(a� b)� c = ⊥ (a� b) · (a� c) = ⊥

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

a� b = ⊥
{

a� b = ⊥
a� c = ⊥

(a� b)� c = ⊥ (a� b) · (a� c) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

a� b = a

{
a� b = a

a� c = ⊥
(a� b)� c = ⊥ (a� b) · (a� c) = ⊥

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

a� b = ⊥
{

a� b = ⊥
a� c = ⊥

(a� b)� c = ⊥ (a� b) · (a� c) = ⊥

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

a� b = ⊥
{

a� b = ⊥
a� c = ⊥

(a� b)� c = ⊥ (a� b) · (a� c) = ⊥

(f) Case 2f: d(b) = d(c) > d(a)

By definition:

a� b = a

{
a� b = a

a� c = a

(a� b)� c = a (a� b) · (a� c) = a

3. Case 3: the three dates are different
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(a) Case 3a: d(a) < d(b) < d(c)

By definition:

a� b = a

{
a� b = a

a� c = a

(a� b)� c = a (a� b) · (a� c) = a

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

a� b = a

{
a� b = a

a� c = a

(a� b)� c = a (a� b) · (a� c) = a

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

a� b = ⊥
{

a� b = ⊥
a� c = a

(a� b)� c = ⊥ (a� b) · (a� c) = ⊥

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

a� b = ⊥
{

a� b = ⊥
a� c = ⊥

(a� b)� c = ⊥ (a� b) · (a� c) = ⊥

(e) Case 3e: d(c) < d(a) < d(b)

By definition:

a� b = a

{
a� b = a

a� c = ⊥
(a� b)� c = ⊥ (a� b) · (a� c) = ⊥

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

a� b = ⊥
{

a� b = ⊥
a� c = ⊥

(a� b)� c = ⊥ (a� b) · (a� c) = ⊥

For all the cases of the domain of our study, (a� b)� c = (a� b) · (a� c). Thus:

(a� b)� c = (a� b) · (a� c)

End of the proof of Theorem (3.19).
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Proof of Theorem (3.20) : ⊥� a = ⊥

1. Case 1: d(a) = d(⊥) = +∞
By definition:

⊥� a = ⊥

2. Case 2: d(a) �= d(⊥), meaning that d(a) < d(⊥)

By definition:

⊥� a = ⊥

For all the cases of the domain of our study, ⊥� a = ⊥. Thus:

⊥� a = ⊥

End of the proof of Theorem (3.20).

Proof of Theorem (3.21) : a�⊥ = a

1. Case 1: d(a) = d(⊥) = +∞
By definition:

a�⊥ = ⊥ = a

2. Case 2: d(a) �= d(⊥), meaning that d(a) < d(⊥)

By definition:

a�⊥ = a

For all the cases of the domain of our study, a�⊥ = a. Thus:

a�⊥ = a

End of the proof of Theorem (3.21).

Proof of Theorem (3.22) : a� a = ⊥
By definition, a� b = ⊥ if d(a) = d(b). Thus, if b = a, d(b) = d(a) and:

a� a = ⊥

End of the proof of Theorem (3.22).



118 Appendix A. Proofs of the theorems

Proof of Theorem (3.23) : a� (b+ c) = (a� b) · (a� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

b+ c = b

{
a� b = ⊥
a� c = ⊥

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

b+ c = b

{
a� b = ⊥
a� c = a

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b+ c = c

{
a� b = ⊥
a� c = ⊥

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

b+ c = c

{
a� b = a

a� c = ⊥
a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b+ c = b

{
a� b = ⊥
a� c = ⊥

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b+ c = b

{
a� b = ⊥
a� c = ⊥

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥
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(f) Case 2f: d(b) = d(c) > d(a)

By definition:

b+ c = b

{
a� b = a

a� c = a

a� (b+ c) = a (a� b) · (a� c) = a

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

b+ c = b

{
a� b = a

a� c = a

a� (b+ c) = a (a� b) · (a� c) = a

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

b+ c = c

{
a� b = a

a� c = a

a� (b+ c) = a (a� b) · (a� c) = a

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

b+ c = b

{
a� b = ⊥
a� c = a

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥
(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b+ c = b

{
a� b = ⊥
a� c = ⊥

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥
(e) Case 3e: d(c) < d(a) < d(b)

By definition:

b+ c = c

{
a� b = a

a� c = ⊥
a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

b+ c = c

{
a� b = ⊥
a� c = ⊥

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥
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For all the cases of the domain of our study, a� (b+ c) = (a� b) · (a� c). Thus:

a� (b+ c) = (a� b) · (a� c)

End of the proof of Theorem (3.23).

Proof of Theorem (3.24) : a� (b · c) = (a� b) + (a� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

b · c = b

{
a� b = ⊥
a� c = ⊥

a� (b · c) = ⊥ (a� b) + (a� c) = ⊥

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

b · c = c

{
a� b = ⊥
a� c = a

a� (b · c) = a (a� b) + (a� c) = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b · c = b

{
a� b = ⊥
a� c = ⊥

a� (b · c) = ⊥ (a� b) + (a� c) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

b · c = b

{
a� b = a

a� c = ⊥
a� (b · c) = a (a� b) + (a� c) = a

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b · c = c

{
a� b = ⊥
a� c = ⊥

a� (b · c) = ⊥ (a� b) + (a� c) = ⊥
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(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b · c = b

{
a� b = ⊥
a� c = ⊥

a� (b · c) = ⊥ (a� b) + (a� c) = ⊥
(f) Case 2f: d(b) = d(c) > d(a)

By definition:

b · c = b

{
a� b = a

a� c = a

a� (b · c) = a (a� b) + (a� c) = a

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

b · c = c

{
a� b = a

a� c = a

a� (b · c) = a (a� b) + (a� c) = a

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

b · c = b

{
a� b = a

a� c = a

a� (b · c) = a (a� b) + (a� c) = a

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

b · c = c

{
a� b = ⊥
a� c = a

a� (b · c) = a (a� b) + (a� c) = a

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b · c = c

{
a� b = ⊥
a� c = ⊥

a� (b · c) = ⊥ (a� b) + (a� c) = ⊥
(e) Case 3e: d(c) < d(a) < d(b)

By definition:

b · c = b

{
a� b = a

a� c = ⊥
a� (b · c) = a (a� b) + (a� c) = a
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(f) Case 3f: d(c) < d(b) < d(a)

By definition:

b · c = b

{
a� b = ⊥
a� c = ⊥

a� (b · c) = ⊥ (a� b) + (a� c) = ⊥

For all the cases of the domain of our study, a� (b · c) = (a� b)+(a� c). Thus:

a� (b · c) = (a� b) + (a� c)

End of the proof of Theorem (3.24).

Proof of Theorem (3.25) :

a� (b
 c) = (a · (b� c)) + (a · (c� b)) + (a� b) + (a� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

b
 c = b

⎧⎪⎪⎨
⎪⎪⎩

b� c = ⊥
c� b = ⊥
a� b = ⊥
a� c = ⊥

a� (b
 c) = ⊥

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = ⊥
a · (c� b) = ⊥
a� b = ⊥
a� c = ⊥

(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = ⊥

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

b
 c = ⊥

⎧⎪⎪⎨
⎪⎪⎩

b� c = b

c� b = ⊥
a� b = ⊥
a� c = a

a� (b
 c) = a

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = a

a · (c� b) = ⊥
a� b = ⊥
a� c = a

(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = a
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(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b
 c = ⊥

⎧⎪⎪⎨
⎪⎪⎩

b� c = ⊥
c� b = c

a� b = ⊥
a� c = ⊥

a� (b
 c) = a

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = ⊥
a · (c� b) = a

a� b = ⊥
a� c = ⊥

(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = a

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

b
 c = ⊥

⎧⎪⎪⎨
⎪⎪⎩

b� c = ⊥
c� b = c

a� b = a

a� c = ⊥

a� (b
 c) = a

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = ⊥
a · (c� b) = a

a� b = a

a� c = ⊥
(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = a

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b
 c = ⊥

⎧⎪⎪⎨
⎪⎪⎩

b� c = b

c� b = ⊥
a� b = ⊥
a� c = ⊥

a� (b
 c) = a

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = a

a · (c� b) = ⊥
a� b = ⊥
a� c = ⊥

(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = a
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(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b
 c = b

⎧⎪⎪⎨
⎪⎪⎩

b� c = ⊥
c� b = ⊥
a� b = ⊥
a� c = ⊥

a� (b
 c) = ⊥

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = ⊥
a · (c� b) = ⊥
a� b = ⊥
a� c = ⊥

(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = ⊥

(f) Case 2f: d(b) = d(c) > d(a)

By definition:

b
 c = b

⎧⎪⎪⎨
⎪⎪⎩

b� c = ⊥
c� b = ⊥
a� b = a

a� c = a

a� (b
 c) = a

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = ⊥
a · (c� b) = ⊥
a� b = a

a� c = a

(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = a

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

b
 c = ⊥

⎧⎪⎪⎨
⎪⎪⎩

b� c = b

c� b = ⊥
a� b = a

a� c = a

a� (b
 c) = a

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = b

a · (c� b) = ⊥
a� b = a

a� c = a

(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = a
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(b) Case 3b: d(a) < d(c) < d(b)

By definition:

b
 c = ⊥

⎧⎪⎪⎨
⎪⎪⎩

b� c = ⊥
c� b = c

a� b = a

a� c = a

a� (b
 c) = a

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = ⊥
a · (c� b) = c

a� b = a

a� c = a

(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = a

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

b
 c = ⊥

⎧⎪⎪⎨
⎪⎪⎩

b� c = b

c� b = ⊥
a� b = ⊥
a� c = a

a� (b
 c) = a

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = a

a · (c� b) = ⊥
a� b = ⊥
a� c = a

(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = a

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b
 c = ⊥

⎧⎪⎪⎨
⎪⎪⎩

b� c = b

c� b = ⊥
a� b = ⊥
a� c = ⊥

a� (b
 c) = a

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = a

a · (c� b) = ⊥
a� b = ⊥
a� c = ⊥

(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = a
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(e) Case 3e: d(c) < d(a) < d(b)

By definition:

b
 c = ⊥

⎧⎪⎪⎨
⎪⎪⎩

b� c = ⊥
c� b = c

a� b = a

a� c = ⊥

a� (b
 c) = a

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = ⊥
a · (c� b) = a

a� b = a

a� c = ⊥
(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = a

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

b
 c = ⊥

⎧⎪⎪⎨
⎪⎪⎩

b� c = ⊥
c� b = c

a� b = ⊥
a� c = ⊥

a� (b
 c) = a

⎧⎪⎪⎨
⎪⎪⎩

a · (b� c) = ⊥
a · (c� b) = a

a� b = ⊥
a� c = ⊥

(a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) = a

For all the cases of the domain of our study,

a� (b
 c) = (a · (b� c)) + (a · (c� b)) + (a� b) + (a� c)

Thus:

a� (b
 c) = (a · (b� c)) + (a · (c� b)) + (a� b) + (a� c)

End of the proof of Theorem (3.25).
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Proof of Theorem (3.26) : a� (b� c) = (a� b) + (a · b · (c� b))

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.2) : a · b = b · a
(3.4) : a · (b · c) = (a · b) · c
(3.6) : a · a = a

(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.8) : a+⊥ = a

(3.10) : a · ⊥ = ⊥
(3.13) : a+ (a · b) = a

(3.14) : a · (a+ b) = a

(3.16) : a� b = a� b+ a
 b

(3.18) : a� (b� c) = (a� b) + (a · b · (c� b))

(3.23) : a� (b+ c) = (a� b) · (a� c)

(3.25) : a� (b
 c) = (a · (b� c)) + (a · (c� b)) + (a� b) + (a� c)

(3.33) : a · (a� b) = a� b

(3.35) : a
 b = b
 a

(3.44) : a · (a
 b) = a
 b

(3.70) : (a� b) · (b
 c) = (a� c) · (b
 c)

(3.71) : (a� b) · (a� b) = a� b

(3.72) : (a� b) · (b� a) = ⊥

a� (b� c)
(3.16)
= a� ((b� c) + (b
 c))

(3.23)
= (a� (b� c)) · (a� (b
 c))

(3.18),(3.25)
= ((a� b) + (a · b · (c� b))) · ((a · (b� c)) + (a · (c� b))

+(a� b) + (a� c))

(3.7)
= (a� b) · ((a · (b� c)) + (a · (c� b)) + (a� b)

+(a� c)) + (a · b · (c� b)) · ((a · (b� c))

+(a · (c� b)) + (a� b) + (a� c))

(3.1)
= (a� b) · ((a� b) + (a · (b� c)) + (a · (c� b))

+(a� c)) + (a · b · (c� b)) · ((a · (b� c))

+(a · (c� b)) + (a� b) + (a� c))
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a� (b� c)
(3.7),(3.14)

= (a� b) + (a · b · (c� b)) · (a · (b� c))

+(a · b · (c� b)) · (a · (c� b)) + (a · b · (c� b))

·(a� b) + (a · b · (c� b)) · (a� c)

(3.2),(3.4)
= (a� b) + (a · a · b) · ((b� c) · (c� b))

+(a · a · b) · ((c� b) · (c� b)) + (b · (c� b))

·(a · (a� b)) + (b · (c� b)) · (a · (a� c))

(3.33),(3.71),(3.72)
= (a� b) + (a · a · b) · ⊥+ (a · a · b) · (c� b)

+(b · (c� b)) · (a� b) + (b · (c� b)) · (a� c)

(3.6),(3.10)
= (a� b) +⊥+ (a · b) · (c� b) + (b · (c� b)) · (a� b)

+(b · (c� b)) · (a� c)

(3.4)
= (a� b) +⊥+ (a · b · (c� b)) + (b · (c� b)) · (a� b)

+(b · (c� b)) · (a� c)

(3.1),(3.2)
= (a� b) + (a� b) · (b · (c� b)) + (a · b · (c� b)) +

+(b · (c� b)) · (a� c) +⊥
(3.8),(3.13)

= (a� b) + (a · b · (c� b)) + (b · (c� b)) · (a� c)

(3.2)
= (a� b) + (a · b · (c� b)) + (a� c) · (b · (c� b))

(3.16)
= (a� b) + (a · b · (c� b))

+(a� c) · (b · ((c� b) + (c
 b)))

(3.7)
= (a� b) + (a · b · (c� b)) + (a� c) · (b · (c� b))

+(a� c) · (b · (c
 b))

(3.35),(3.44)
= (a� b) + (a · b · (c� b)) + (a� c) · (b · (c� b))

+(a� c) · (b
 c)

(3.33)
= (a� b) + (a · b · (c� b)) + (a · (a� c)) · (b · (c� b))

+(a� c) · (b
 c)

(3.2),(3.4)
= (a� b) + (a · b · (c� b)) + (a · b · (c� b)) · (a� c)

+(a� c) · (b
 c)

(3.8),(3.13)
= (a� b) + (a · b · (c� b)) + (a� c) · (b
 c)

(3.70)
= (a� b) + (a · b · (c� b)) + (a� b) · (b
 c)

(3.8),(3.13)
= (a� b) + (a · b · (c� b))

End of the proof of Theorem (3.26).

Proof of Theorem (3.27) : (a+ b)� c = (a� c) + (b� c)
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1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

a+ b = a

{
a� c = ⊥
b� c = ⊥

(a+ b)� c = ⊥ (a� c) + (b� c) = ⊥

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

a+ b = a

{
a� c = a

b� c = b

(a+ b)� c = a (a� c) + (b� c) = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

a+ b = a

{
a� c = ⊥
b� c = ⊥

(a+ b)� c = ⊥ (a� c) + (b� c) = ⊥
(c) Case 2c: d(a) = d(c) < d(b)

By definition:

a+ b = a

{
a� c = ⊥
b� c = ⊥

(a+ b)� c = ⊥ (a� c) + (b� c) = ⊥
(d) Case 2d: d(a) = d(c) > d(b)

By definition:

a+ b = b

{
a� c = ⊥
b� c = b

(a+ b)� c = b (a� c) + (b� c) = b

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

a+ b = b

{
a� c = ⊥
b� c = ⊥

(a+ b)� c = ⊥ (a� c) + (b� c) = ⊥
(f) Case 2f: d(b) = d(c) > d(a)

By definition:

a+ b = a

{
a� c = a

b� c = ⊥
(a+ b)� c = a (a� c) + (b� c) = a
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3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

a+ b = a

{
a� c = a

b� c = b

(a+ b)� c = a (a� c) + (b� c) = a

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

a+ b = a

{
a� c = a

b� c = ⊥
(a+ b)� c = a (a� c) + (b� c) = a

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

a+ b = b

{
a� c = a

b� c = b

(a+ b)� c = b (a� c) + (b� c) = b

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

a+ b = b

{
a� c = ⊥
b� c = b

(a+ b)� c = b (a� c) + (b� c) = b

(e) Case 3e: d(c) < d(a) < d(b)

By definition:

a+ b = a

{
a� c = ⊥
b� c = ⊥

(a+ b)� c = ⊥ (a� c) + (b� c) = ⊥

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

a+ b = b

{
a� c = ⊥
b� c = ⊥

(a+ b)� c = ⊥ (a� c) + (b� c) = ⊥

For all the cases of the domain of our study, (a+b)�c = (a�c)+(b�c). Thus:

(a+ b)� c = (a� c) + (b� c)

End of the proof of Theorem (3.27).
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Proof of Theorem (3.28) : (a · b)� c = (a� c) · (b� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

a · b = a

{
a� c = ⊥
b� c = ⊥

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

a · b = a

{
a� c = a

b� c = b

(a · b)� c = a (a� c) · (b� c) = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

a · b = a

{
a� c = ⊥
b� c = ⊥

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

a · b = b

{
a� c = ⊥
b� c = ⊥

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

a · b = a

{
a� c = ⊥
b� c = b

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

a · b = a

{
a� c = ⊥
b� c = ⊥

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥
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(f) Case 2f: d(b) = d(c) > d(a)

By definition:

a · b = b

{
a� c = a

b� c = ⊥
(a · b)� c = ⊥ (a� c) · (b� c) = ⊥

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

a · b = b

{
a� c = a

b� c = b

(a · b)� c = b (a� c) · (b� c) = b

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

a · b = b

{
a� c = a

b� c = ⊥
(a · b)� c = ⊥ (a� c) · (b� c) = ⊥

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

a · b = a

{
a� c = a

b� c = b

(a · b)� c = a (a� c) · (b� c) = a

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

a · b = a

{
a� c = ⊥
b� c = b

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥
(e) Case 3e: d(c) < d(a) < d(b)

By definition:

a · b = b

{
a� c = ⊥
b� c = ⊥

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥
(f) Case 3f: d(c) < d(b) < d(a)

By definition:

a · b = a

{
a� c = ⊥
b� c = ⊥

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥
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For all the cases of the domain of our study, (a · b)� c = (a� c) · (b� c). Thus:

(a · b)� c = (a� c) · (b� c)

End of the proof of Theorem (3.28).

Proof of Theorem (3.29) :

(a
 b)� c = (a
 b) · (a� c) = (a
 b) · (b� c) = (a� c)
 (b� c)

This proof will be done in 3 steps:

• Step 1: (a
 b)� c = (a
 b) · (a� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that
a = b = c

By definition:

a
 b = a a� c = ⊥
(a
 b)� c = ⊥ (a
 b) · (a� c) = ⊥

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

a
 b = a a� c = a

(a
 b)� c = a (a
 b) · (a� c) = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

a
 b = a a� c = ⊥
(a
 b)� c = ⊥ (a
 b) · (a� c) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

a
 b = ⊥ a� c = ⊥
(a
 b)� c = ⊥ (a
 b) · (a� c) = ⊥

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

a
 b = ⊥ a� c = ⊥
(a
 b)� c = ⊥ (a
 b) · (a� c) = ⊥

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

a
 b = ⊥ a� c = ⊥
(a
 b)� c = ⊥ (a
 b) · (a� c) = ⊥
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(f) Case 2f: d(b) = d(c) > d(a)

By definition:

a
 b = ⊥ a� c = a

(a
 b)� c = ⊥ (a
 b) · (a� c) = ⊥

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

a
 b = ⊥ a� c = a

(a
 b)� c = ⊥ (a
 b) · (a� c) = ⊥

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

a
 b = ⊥ a� c = a

(a
 b)� c = ⊥ (a
 b) · (a� c) = ⊥

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

a
 b = ⊥ a� c = a

(a
 b)� c = ⊥ (a
 b) · (a� c) = ⊥

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

a
 b = ⊥ a� c = ⊥
(a
 b)� c = ⊥ (a
 b) · (a� c) = ⊥

(e) Case 3e: d(c) < d(a) < d(b)

By definition:

a
 b = ⊥ a� c = ⊥
(a
 b)� c = ⊥ (a
 b) · (a� c) = ⊥

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

a
 b = ⊥ a� c = ⊥
(a
 b)� c = ⊥ (a
 b) · (a� c) = ⊥

For all the cases of the domain of our study, (a 
 b) � c = (a 
 b) · (a � c).
Thus:

(a
 b)� c = (a
 b) · (a� c)
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• Step 2: (a
 b)� c = (a
 b) · (b� c)

For this proof, we will use the following theorems:

(3.29) part 1 : (a
 b)� c = (a
 b) · (a� c)

(3.35) : a
 b = b
 a

(a
 b)� c
(3.35)
= (b
 a)� c

(3.29)
= (b
 a) · (b� c)

(3.35)
= (a
 b) · (b� c)

• Step 3: (a
 b)� c = (a� c)
 (b� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that
a = b = c

By definition:

a
 b = a

{
a� c = ⊥
b� c = ⊥

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

a
 b = a

{
a� c = a

b� c = b

(a
 b)� c = a (a� c)
 (b� c) = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

a
 b = a

{
a� c = ⊥
b� c = ⊥

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

a
 b = ⊥
{

a� c = ⊥
b� c = ⊥

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

a
 b = ⊥
{

a� c = ⊥
b� c = b

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
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(e) Case 2e: d(b) = d(c) < d(a)

By definition:

a
 b = ⊥
{

a� c = ⊥
b� c = ⊥

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
(f) Case 2f: d(b) = d(c) > d(a)

By definition:

a
 b = ⊥
{

a� c = a

b� c = ⊥
(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

a
 b = ⊥
{

a� c = a

b� c = b

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
(b) Case 3b: d(a) < d(c) < d(b)

By definition:

a
 b = ⊥
{

a� c = a

b� c = ⊥
(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

a
 b = ⊥
{

a� c = a

b� c = b

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
(d) Case 3d: d(b) < d(c) < d(a)

By definition:

a
 b = ⊥
{

a� c = ⊥
b� c = b

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
(e) Case 3e: d(c) < d(a) < d(b)

By definition:

a
 b = ⊥
{

a� c = ⊥
b� c = ⊥

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥



A.2. Proofs 137

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

a
 b = ⊥
{

a� c = ⊥
b� c = ⊥

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
For all the cases of the domain of our study, (a
 b) � c = (a � c)
 (b � c).
Thus:

(a
 b)� c = (a� c)
 (b� c)

End of the proof of Theorem (3.29).

Proof of Theorem (3.30) : (a� b)� c = (a� b) · (a� c)

For this proof, we will use the following theorems:

(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.16) : a� b = a� b+ a
 b

(3.19) : (a� b)� c = (a� b) · (a� c)

(3.27) : (a+ b)� c = (a� c) + (b� c)

(3.29) : (a
 b)� c = (a
 b) · (a� c)

(a� b)� c
(3.16)
= ((a� b) + (a
 b))� c

(3.27)
= ((a� b)� c) + ((a
 b)� c)

(3.19),(3.29)
= (a� b) · (a� c) + (a
 b) · (a� c)

(3.7)
= ((a� b) + (a
 b)) · (a� c)

(3.16)
= (a� b) · (a� c)

End of the proof of Theorem (3.30).

Proof of Theorem (3.31) : a+ (a� b) = a

1. Case 1: the two dates are equal: d(a) = d(b), meaning that a = b

By definition:
a� b = ⊥

a+ (a� b) = a

2. Case 2: the two dates are different

(a) Case 2a: d(a) < d(b)

By definition:
a� b = a

a+ (a� b) = a
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(b) Case 2b: d(a) > d(b)

By definition:
a� b = ⊥

a+ (a� b) = a

For all the cases of the domain of our study, a+ (a� b) = a. Thus:

a+ (a� b) = a

End of the proof of Theorem (3.31).

Proof of Theorem (3.32) : (a� b) + b = a+ b

1. Case 1: the two dates are equal: d(a) = d(b), meaning that a = b

By definition:
a� b = ⊥ a+ b = a

(a� b) + b = b

Given a = b, (a� b) + b = a+ b.

2. Case 2: the two dates are different

(a) Case 2a: d(a) < d(b)

By definition:
a� b = a a+ b = a

(a� b) + b = a

(b) Case 2b: d(a) > d(b)

By definition:
a� b = ⊥ a+ b = b

(a� b) + b = b

For all the cases of the domain of our study, (a� b) + b = a+ b. Thus:

(a� b) + b = a+ b

End of the proof of Theorem (3.32).

Proof of Theorem (3.33) : a · (a� b) = a� b

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.2) : a · b = b · a
(3.14) : a · (a+ b) = a

(3.31) : a+ (a� b) = a

a · (a� b)
(3.31)
= (a+ (a� b)) · (a� b)

(3.1),(3.2)
= (a� b) · ((a� b) + a)

(3.14)
= a� b

End of the proof of Theorem (3.33).
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Proof of Theorem (3.34) : (a� b) · (b� c) · (a� c) = (a� b) · (b� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

⎧⎨
⎩

a� b = ⊥
b� c = ⊥
a� c = ⊥

{
a� b = ⊥
b� c = ⊥

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

⎧⎨
⎩

a� b = ⊥
b� c = b

a� c = a

{
a� b = ⊥
b� c = b

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

⎧⎨
⎩

a� b = ⊥
b� c = ⊥
a� c = ⊥

{
a� b = ⊥
b� c = ⊥

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

⎧⎨
⎩

a� b = a

b� c = ⊥
a� c = ⊥

{
a� b = a

b� c = ⊥
(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

⎧⎨
⎩

a� b = ⊥
b� c = b

a� c = ⊥

{
a� b = ⊥
b� c = b

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥
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(e) Case 2e: d(b) = d(c) < d(a)

By definition: ⎧⎨
⎩

a� b = ⊥
b� c = ⊥
a� c = ⊥

{
a� b = ⊥
b� c = ⊥

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥
(f) Case 2f: d(b) = d(c) > d(a)

By definition: ⎧⎨
⎩

a� b = a

b� c = ⊥
a� c = a

{
a� b = a

b� c = ⊥
(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition: ⎧⎨
⎩

a� b = a

b� c = b

a� c = a

{
a� b = a

b� c = b

(a� b) · (b� c) · (a� c) = b (a� b) · (b� c) = b

(b) Case 3b: d(a) < d(c) < d(b)

By definition: ⎧⎨
⎩

a� b = a

b� c = ⊥
a� c = a

{
a� b = a

b� c = ⊥
(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥

(c) Case 3c: d(b) < d(a) < d(c)

By definition: ⎧⎨
⎩

a� b = ⊥
b� c = b

a� c = a

{
a� b = ⊥
b� c = b

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥
(d) Case 3d: d(b) < d(c) < d(a)

By definition: ⎧⎨
⎩

a� b = ⊥
b� c = b

a� c = ⊥

{
a� b = ⊥
b� c = b

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥
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(e) Case 3e: d(c) < d(a) < d(b)

By definition: ⎧⎨
⎩

a� b = a

b� c = ⊥
a� c = ⊥

{
a� b = a

b� c = ⊥
(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥

(f) Case 3f: d(c) < d(b) < d(a)

By definition: ⎧⎨
⎩

a� b = ⊥
b� c = ⊥
a� c = ⊥

{
a� b = ⊥
b� c = ⊥

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥

For all the cases of the domain of our study, (a�b)·(b�c)·(a�c) = (a�b)·(b�c).
Thus:

(a� b) · (b� c) · (a� c) = (a� b) · (b� c)

End of the proof of Theorem (3.34).

A.2.3 Proofs of the theorems satisfied by operator SIMULTANE-
OUS

Proof of Theorem (3.35) : a
 b = b
 a

1. Case 1: the two dates are equal: d(a) = d(b), meaning that a = b

By definition:
a
 b = a b
 a = b

Given a = b, a
 b = b
 a.

2. Case 2: the two dates are different

(a) Case 2a: d(a) < d(b)

By definition:
a
 b = ⊥ b
 a = ⊥

(b) Case 2b: d(a) > d(b)

By definition:
a
 b = ⊥ b
 a = ⊥

For all the cases of the domain of our study, a
 b = b
 a. Thus:

a
 b = b
 a

End of the proof of Theorem (3.35).
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Proof of Theorem (3.36) :

a
 (b
 c) = (a
 b)
 c = (a
 b) · (b
 c) = (a
 c) · (c
 b)

This proof will be done in 3 steps:

• Step 1: a
 (b
 c) = (a
 b)
 c

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that
a = b = c

By definition:

a
 b = a b
 c = b

(a
 b)
 c = a a
 (b
 c) = a

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

a
 b = a b
 c = ⊥
(a
 b)
 c = ⊥ a
 (b
 c) = ⊥

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

a
 b = a b
 c = ⊥
(a
 b)
 c = ⊥ a
 (b
 c) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

a
 b = ⊥ b
 c = ⊥
(a
 b)
 c = ⊥ a
 (b
 c) = ⊥

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

a
 b = ⊥ b
 c = ⊥
(a
 b)
 c = ⊥ a
 (b
 c) = ⊥

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

a
 b = ⊥ b
 c = b

(a
 b)
 c = ⊥ a
 (b
 c) = ⊥
(f) Case 2f: d(b) = d(c) > d(a)

By definition:

a
 b = ⊥ b
 c = b

(a
 b)
 c = ⊥ a
 (b
 c) = ⊥
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3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

a
 b = ⊥ b
 c = ⊥
(a
 b)
 c = ⊥ a
 (b
 c) = ⊥

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

a
 b = ⊥ b
 c = ⊥
(a
 b)
 c = ⊥ a
 (b
 c) = ⊥

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

a
 b = ⊥ b
 c = ⊥
(a
 b)
 c = ⊥ a
 (b
 c) = ⊥

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

a
 b = ⊥ b
 c = ⊥
(a
 b)
 c = ⊥ a
 (b
 c) = ⊥

(e) Case 3e: d(c) < d(a) < d(b)

By definition:

a
 b = ⊥ b
 c = ⊥
(a
 b)
 c = ⊥ a
 (b
 c) = ⊥

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

a
 b = ⊥ b
 c = ⊥
(a
 b)
 c = ⊥ a
 (b
 c) = ⊥

For all the cases of the domain of our study, (a
 b)
 c = a
 (b
 c). Thus:

(a
 b)
 c = a
 (b
 c)

• Step 2: a
 (b
 c) = (a
 b) · (b
 c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that
a = b = c

By definition:

b
 c = b

{
a
 b = a

b
 c = b

a
 (b
 c) = a (a
 b) · (b
 c) = a
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2. Case 2: two dates out of three are equal
(a) Case 2a: d(a) = d(b) < d(c)

By definition:

b
 c = ⊥
{

a
 b = a

b
 c = ⊥
a
 (b
 c) = ⊥ (a
 b) · (b
 c) = ⊥

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b
 c = ⊥
{

a
 b = a

b
 c = ⊥
a
 (b
 c) = ⊥ (a
 b) · (b
 c) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

b
 c = ⊥
{

a
 b = ⊥
b
 c = ⊥

a
 (b
 c) = ⊥ (a
 b) · (b
 c) = ⊥
(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b
 c = ⊥
{

a
 b = ⊥
b
 c = ⊥

a
 (b
 c) = ⊥ (a
 b) · (b
 c) = ⊥
(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b
 c = b

{
a
 b = ⊥
b
 c = b

a
 (b
 c) = ⊥ (a
 b) · (b
 c) = ⊥
(f) Case 2f: d(b) = d(c) > d(a)

By definition:

b
 c = b

{
a
 b = ⊥
b
 c = b

a
 (b
 c) = ⊥ (a
 b) · (b
 c) = ⊥
3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

b
 c = ⊥
{

a
 b = ⊥
b
 c = ⊥

a
 (b
 c) = ⊥ (a
 b) · (b
 c) = ⊥
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(b) Case 3b: d(a) < d(c) < d(b)

By definition:

b
 c = ⊥
{

a
 b = ⊥
b
 c = ⊥

a
 (b
 c) = ⊥ (a
 b) · (b
 c) = ⊥
(c) Case 3c: d(b) < d(a) < d(c)

By definition:

b
 c = ⊥
{

a
 b = ⊥
b
 c = ⊥

a
 (b
 c) = ⊥ (a
 b) · (b
 c) = ⊥
(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b
 c = ⊥
{

a
 b = ⊥
b
 c = ⊥

a
 (b
 c) = ⊥ (a
 b) · (b
 c) = ⊥
(e) Case 3e: d(c) < d(a) < d(b)

By definition:

b
 c = ⊥
{

a
 b = ⊥
b
 c = ⊥

a
 (b
 c) = ⊥ (a
 b) · (b
 c) = ⊥
(f) Case 3f: d(c) < d(b) < d(a)

By definition:

b
 c = ⊥
{

a
 b = ⊥
b
 c = ⊥

a
 (b
 c) = ⊥ (a
 b) · (b
 c) = ⊥
For all the cases of the domain of our study, a
 (b
 c) = (a
 b) · (b
 c).
Thus:

a
 (b
 c) = (a
 b) · (b
 c)

• Step 3: (a
 b) · (b
 c) = (a
 c) · (c
 b)

For this proof, we will use the following theorems:

(3.2) : a · b = b · a
(3.35) : a
 b = b
 a

(3.45) : (a
 b) · (b
 c) · (a
 c) = (a
 b) · (b
 c)

(a
 b) · (b
 c)
(3.45)
= (a
 b) · (b
 c) · (a
 c)

(3.2)
= (a
 c) · (b
 c) · (a
 b)

(3.35)
= (a
 c) · (c
 b) · (a
 b)

(3.45)
= (a
 c) · (c
 b)
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End of the proof of Theorem (3.36).

Proof of Theorem (3.37) : a
⊥ = ⊥

1. Case 1: d(a) = d(⊥) = +∞
By definition:

a
⊥ = a = ⊥

2. Case 2: d(a) �= d(⊥), meaning that d(a) < d(⊥)

By definition:
a
⊥ = ⊥

For all the cases of the domain of our study, a
⊥ = ⊥. Thus:

a
⊥ = ⊥

End of the proof of Theorem (3.37).

Proof of Theorem (3.38) : a
 a = a

By definition, a
 b = a if d(a) = d(b). Thus, if b = a, d(b) = d(a) and:

a
 a = a

End of the proof of Theorem (3.38).

Proof of Theorem (3.39) :

a
 (b+ c) = (a
 b) · (b
 c) + (a
 b) · (b� c) + (a
 c) · (c� b)

= (a
 b) · (b� c) + (a
 c) · (c� b)

This proof will be done in 2 steps:

• Step 1: a
 (b+ c) = (a
 b) · (b
 c) + (a
 b) · (b� c) + (a
 c) · (c� b)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that
a = b = c

By definition:

b+ c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = a

b� c = ⊥
a
 c = a

c� b = ⊥
b
 c = b

a
 (b+ c) = a
(a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = a
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2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

b+ c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = a

b� c = b

a
 c = ⊥
c� b = ⊥
b
 c = ⊥

a
 (b+ c) = a
(a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b+ c = c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = a

b� c = ⊥
a
 c = ⊥
c� b = c

b
 c = ⊥
a
 (b+ c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

b+ c = c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
b� c = ⊥
a
 c = a

c� b = c

b
 c = ⊥
a
 (b+ c) = a

(a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = a

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b+ c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
b� c = b

a
 c = a

c� b = ⊥
b
 c = ⊥

a
 (b+ c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = ⊥
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(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b+ c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
b� c = ⊥
a
 c = ⊥
c� b = ⊥
b
 c = b

a
 (b+ c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = ⊥

(f) Case 2f: d(b) = d(c) > d(a)

By definition:

b+ c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
b� c = ⊥
a
 c = ⊥
c� b = ⊥
b
 c = b

a
 (b+ c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = ⊥

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

b+ c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
b� c = b

a
 c = ⊥
c� b = ⊥
b
 c = ⊥

a
 (b+ c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = ⊥

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

b+ c = c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
b� c = ⊥
a
 c = ⊥
c� b = c

b
 c = ⊥
a
 (b+ c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = ⊥
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(c) Case 3c: d(b) < d(a) < d(c)

By definition:

b+ c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
b� c = b

a
 c = ⊥
c� b = ⊥
b
 c = ⊥

a
 (b+ c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = ⊥
(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b+ c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
b� c = b

a
 c = ⊥
c� b = ⊥
b
 c = ⊥

a
 (b+ c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = ⊥
(e) Case 3e: d(c) < d(a) < d(b)

By definition:

b+ c = c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
b� c = ⊥
a
 c = ⊥
c� b = c

b
 c = ⊥
a
 (b+ c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = ⊥
(f) Case 3f: d(c) < d(b) < d(a)

By definition:

b+ c = c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
b� c = ⊥
a
 c = ⊥
c� b = c

b
 c = ⊥
a
 (b+ c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (b� c)

+(a
 c) · (c� b) = ⊥
For all the cases of the domain of our study,

a
 (b+ c) = (a
 b) · (b
 c) + (a
 b) · (b� c) + (a
 c) · (c� b)
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Thus:

a
 (b+ c) = (a
 b) · (b
 c) + (a
 b) · (b� c) + (a
 c) · (c� b)

• Step 2: a
 (b+ c) = (a
 b) · (b� c) + (a
 c) · (c� b)

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.3) : a+ (b+ c) = (a+ b) + c

(3.5) : a+ a = a

(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.16) : a� b = a� b+ a
 b

(3.36) : (a
 b) · (b
 c) = (a
 c) · (c
 b)

(3.39) part 1 : a
 (b+ c) = (a
 b) · (b
 c) + (a
 b)

· (b� c) + (a
 c) · (c� b)

a
 (b+ c)
(3.39)
= (a
 b) · (b
 c) + (a
 b) · (b� c) + (a
 c) · (c� b)

(3.5)
= ((a
 b) · (b
 c) + (a
 b) · (b
 c))

+(a
 b) · (b� c) + (a
 c) · (c� b)

(3.3)
= ((a
 b) · (b
 c) + (a
 b) · (b� c))

+((a
 b) · (b
 c) + (a
 c) · (c� b))

(3.36)
= ((a
 b) · (b
 c) + (a
 b) · (b� c))

+((a
 c) · (c
 b) + (a
 c) · (c� b))

(3.7)
= (a
 b) · ((b
 c) + (b� c)) + (a
 c) · ((c
 b) + (c� b))

(3.1)
= (a
 b) · ((b� c) + (b
 c)) + (a
 c) · ((c� b) + (c
 b))

(3.16)
= (a
 b) · (b� c) + (a
 c) · (c� b)

End of the proof of Theorem (3.39).

Proof of Theorem (3.40) :

a
 (b · c) = (a
 b) · (b
 c) + (a
 b) · (c� b) + (a
 c) · (b� c)

= (a
 b) · (c� b) + (a
 c) · (b� c)

This proof will be done in 2 steps:

• Step 1: a
 (b · c) = (a
 b) · (b
 c) + (a
 b) · (c� b) + (a
 c) · (b� c)
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1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that
a = b = c

By definition:

b · c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = a

c� b = ⊥
a
 c = a

b� c = ⊥
b
 c = b

a
 (b · c) = a
(a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = a

2. Case 2: two dates out ot three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

b · c = c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = a

c� b = ⊥
a
 c = ⊥
b� c = b

b
 c = ⊥
a
 (b · c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = ⊥

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b · c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = a

c� b = c

a
 c = ⊥
b� c = ⊥
b
 c = ⊥

a
 (b · c) = a
(a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = a

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

b · c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
c� b = c

a
 c = a

b� c = ⊥
b
 c = ⊥

a
 (b · c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = ⊥
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(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b · c = c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
c� b = ⊥
a
 c = a

b� c = b

b
 c = ⊥
a
 (b · c) = a

(a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = a

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b · c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
c� b = ⊥
a
 c = ⊥
b� c = ⊥
b
 c = b

a
 (b · c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = ⊥

(f) Case 2f: d(b) = d(c) > d(a)

By definition:

b · c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
c� b = ⊥
a
 c = ⊥
b� c = ⊥
b
 c = b

a
 (b · c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = ⊥

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

b · c = c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
c� b = ⊥
a
 c = ⊥
b� c = b

b
 c = ⊥
a
 (b · c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = ⊥
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(b) Case 3b: d(a) < d(c) < d(b)

By definition:

b · c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
c� b = c

a
 c = ⊥
b� c = ⊥
b
 c = ⊥

a
 (b · c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = ⊥

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

b · c = c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
c� b = ⊥
a
 c = ⊥
b� c = b

b
 c = ⊥
a
 (b · c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = ⊥

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b · c = c

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
c� b = ⊥
a
 c = ⊥
b� c = b

b
 c = ⊥
a
 (b · c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = ⊥

(e) Case 3e: d(c) < d(a) < d(b)

By definition:

b · c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
c� b = c

a
 c = ⊥
b� c = ⊥
b
 c = ⊥

a
 (b · c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = ⊥

(f) Case 3f: d(c) < d(b) < d(a)
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By definition:

b · c = b

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a
 b = ⊥
c� b = c

a
 c = ⊥
b� c = ⊥
b
 c = ⊥

a
 (b · c) = ⊥ (a
 b) · (b
 c) + (a
 b) · (c� b)

+(a
 c) · (b� c) = ⊥

For all the cases of the domain of our study,

a
 (b · c) = (a
 b) · (b
 c) + (a
 b) · (c� b) + (a
 c) · (b� c)

Thus:

a
 (b · c) = (a
 b) · (b
 c) + (a
 b) · (c� b) + (a
 c) · (b� c)

• Step 2: a
 (b · c) = (a
 b) · (c� b) + (a
 c) · (b� c)

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.3) : a+ (b+ c) = (a+ b) + c

(3.5) : a+ a = a

(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.16) : a� b = a� b+ a
 b

(3.35) : a
 b = b
 a

(3.36) : (a
 b) · (b
 c) = (a
 c) · (c
 b)

(3.40) part 1 : a
 (b · c) = (a
 b) · (b
 c) + (a
 b) · (c� b)

+ (a
 c) · (b� c)

a
 (b · c) (3.40)
= (a
 b) · (b
 c) + (a
 b) · (c� b) + (a
 c) · (b� c)

(3.5)
= ((a
 b) · (b
 c) + (a
 b) · (b
 c))

+(a
 b) · (c� b) + (a
 c) · (b� c)

(3.3)
= ((a
 b) · (b
 c) + (a
 b) · (c� b))

+((a
 b) · (b
 c) + (a
 c) · (b� c))

(3.36)
= ((a
 b) · (b
 c) + (a
 b) · (c� b))

+((a
 c) · (c
 b) + (a
 c) · (b� c))
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a
 (b · c) (3.35)
= ((a
 b) · (c
 b) + (a
 b) · (c� b))

+((a
 c) · (b
 c) + (a
 c) · (b� c))

(3.7)
= (a
 b) · ((c
 b) + (c� b)) + (a
 c) · ((b
 c) + (b� c))

(3.1)
= (a
 b) · ((c� b) + (c
 b)) + (a
 c) · ((b� c) + (b
 c))

(3.16)
= (a
 b) · (c� b) + (a
 c) · (b� c)

End of the proof of Theorem (3.40).

Proof of Theorem (3.41) : a
 (b� c) = (a
 b) · (b� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

b� c = ⊥ a
 b = a

a
 (b� c) = ⊥ (a
 b) · (b� c) = ⊥

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

b� c = b a
 b = a

a
 (b� c) = a (a
 b) · (b� c) = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b� c = ⊥ a
 b = a

a
 (b� c) = ⊥ (a
 b) · (b� c) = ⊥
(c) Case 2c: d(a) = d(c) < d(b)

By definition:

b� c = ⊥ a
 b = ⊥
a
 (b� c) = ⊥ (a
 b) · (b� c) = ⊥

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b� c = b a
 b = ⊥
a
 (b� c) = ⊥ (a
 b) · (b� c) = ⊥

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b� c = ⊥ a
 b = ⊥
a
 (b� c) = ⊥ (a
 b) · (b� c) = ⊥



156 Appendix A. Proofs of the theorems

(f) Case 2f: d(b) = d(c) > d(a)

By definition:

b� c = ⊥ a
 b = ⊥
a
 (b� c) = ⊥ (a
 b) · (b� c) = ⊥

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

b� c = b a
 b = ⊥
a
 (b� c) = ⊥ (a
 b) · (b� c) = ⊥

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

b� c = ⊥ a
 b = ⊥
a
 (b� c) = ⊥ (a
 b) · (b� c) = ⊥

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

b� c = b a
 b = ⊥
a
 (b� c) = ⊥ (a
 b) · (b� c) = ⊥

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b� c = b a
 b = ⊥
a
 (b� c) = ⊥ (a
 b) · (b� c) = ⊥

(e) Case 3e: d(c) < d(a) < d(b)

By definition:

b� c = ⊥ a
 b = ⊥
a
 (b� c) = ⊥ (a
 b) · (b� c) = ⊥

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

b� c = ⊥ a
 b = ⊥
a
 (b� c) = ⊥ (a
 b) · (b� c) = ⊥

For all the cases of the domain of our study, a
 (b� c) = (a
 b) · (b� c). Thus:

a
 (b� c) = (a
 b) · (b� c)

End of the proof of Theorem (3.41).
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Proof of Theorem (3.42) : a
 (b� c) = (a
 b) · (b� c)

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.2) : a · b = b · a
(3.4) : a · (b · c) = (a · b) · c
(3.6) : a · a = a

(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.8) : a+⊥ = a

(3.14) : a · (a+ b) = a

(3.16) : a� b = a� b+ a
 b

(3.22) : a� a = ⊥
(3.35) : a
 b = b
 a

(3.36) : a
 (b
 c) = (a
 b) · (b
 c)

(3.38) : a
 a = a

(3.39) : a
 (b+ c) = (a
 b) · (b� c) + (a
 c) · (c� b)

(3.41) : a
 (b� c) = (a
 b) · (b� c)

(3.44) : a · (a
 b) = a
 b

(3.54) : a� (b� c) = (a� b) + (a · b · (c� b)) + (a
 b) · (b� c)

(3.55) : a� (b
 c) = (a · (b� c)) + (a · (c� b)) + (a� b) + (a� c)

+ (a
 b) · (b
 c)

(3.58) : (a
 b)� c = (a
 b) · (a� c)

(3.59) : (a� b)� c = (a� b) · (a� c)

(3.69) : (a� b) · (a
 b) = ⊥
(3.73) : (a� b) · (a
 b) = a
 b

a
 (b� c)
(3.16)
= a
 ((b� c) + (b
 c))

(3.39)
= (a
 (b� c)) · ((b� c)� (b
 c))

+(a
 (b
 c)) · ((b
 c)� (b� c))

a
 (b� c)
(3.41)
= (a
 b) · (b� c)

(b� c)� (b
 c)
(3.59)
= (b� c) · (b� (b
 c))

(3.55)
= (b� c) · ((b · (b� c)) + (b · (c� b)) + (b� b) + (b� c)

+(b
 b) · (b
 c))

(3.1)
= (b� c) · ((b� c) + (b · (b� c)) + (b · (c� b)) + (b� b)

+(b
 b) · (b
 c))
(3.14)
= b� c
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(a
 (b� c)) · ((b� c)� (b
 c)) = ((a
 b) · (b� c)) · (b� c)

(3.4)
= (a
 b) · ((b� c) · (b� c))

(3.6)
= (a
 b) · (b� c)

a
 (b
 c)
(3.36)
= (a
 b) · (b
 c)

(b
 c)� (b� c)
(3.58)
= (b
 c) · (b� (b� c))

(3.54)
= (b
 c) · ((b� b) + (b · b · (c� b))

+(b
 b) · (b� c))

(3.6),(3.22)
= (b
 c) · (⊥+ (b · (c� b)) + (b
 b) · (b� c))

(3.1)
= (b
 c) · ((b · (c� b)) + (b
 b) · (b� c) +⊥)

(3.8)
= (b
 c) · ((b · (c� b)) + (b
 b) · (b� c))

(3.38)
= (b
 c) · ((b · (c� b)) + (b · (b� c)))

(3.7),(3.44)
= (b
 c) · ((c� b) + (b� c))

(3.2),(3.7),(3.35)
= (c� b) · (c
 b) + (b� c) · (b
 c)

(3.69),(3.73)
= (c
 b) +⊥

(3.8),(3.35)
= b
 c

(a
 (b
 c)) · ((b
 c)� (b� c)) = ((a
 b) · (b
 c)) · (b
 c)

(3.4)
= (a
 b) · ((b
 c) · (b
 c))

(3.6)
= (a
 b) · (b
 c)

a
 (b� c) = (a
 b) · (b� c) + (a
 b) · (b
 c)

(3.7)
= (a
 b) · ((b� c) + (b
 c))

(3.16)
= (a
 b) · (b� c)

End of the proof of Theorem (3.42).

Proof of Theorem (3.43) : a+ (a
 b) = a

1. Case 1: the two dates are equal: d(a) = d(b), meaning that a = b

By definition:
a
 b = a

a+ (a
 b) = a
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2. Case 2: the two dates are different

(a) Case 2a: d(a) < d(b)

By definition:
a
 b = ⊥

a+ (a
 b) = a

(b) Case 2b: d(a) > d(b)

By definition:
a
 b = ⊥

a+ (a
 b) = a

For all the cases of the domain of our study, a+ (a
 b) = a. Thus:

a+ (a
 b) = a

End of the proof of Theorem (3.43).

Proof of Theorem (3.44) : a · (a
 b) = a
 b

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.2) : a · b = b · a
(3.14) : a · (a+ b) = a

(3.43) : a+ (a
 b) = a

a · (a
 b)
(3.43)
= (a+ (a
 b)) · (a
 b)

(3.1),(3.2)
= (a
 b) · ((a
 b) + a)

(3.14)
= a
 b

End of the proof of Theorem (3.44).

Proof of Theorem (3.45) : (a
 b) · (b
 c) · (a
 c) = (a
 b) · (b
 c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

⎧⎨
⎩

a
 b = a

b
 c = b

a
 c = a

{
a
 b = a

b
 c = b

(a
 b) · (b
 c) · (a
 c) = a (a
 b) · (b
 c) = a

2. Case 2: two dates out of three are equal
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(a) Case 2a: d(a) = d(b) < d(c)

By definition: ⎧⎨
⎩

a
 b = a

b
 c = ⊥
a
 c = ⊥

{
a
 b = a

b
 c = ⊥
(a
 b) · (b
 c) · (a
 c) = ⊥ (a
 b) · (b
 c) = ⊥

(b) Case 2b: d(a) = d(b) > d(c)

By definition: ⎧⎨
⎩

a
 b = a

b
 c = ⊥
a
 c = ⊥

{
a
 b = a

b
 c = ⊥
(a
 b) · (b
 c) · (a
 c) = ⊥ (a
 b) · (b
 c) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition: ⎧⎨
⎩

a
 b = ⊥
b
 c = ⊥
a
 c = a

{
a
 b = ⊥
b
 c = ⊥

(a
 b) · (b
 c) · (a
 c) = ⊥ (a
 b) · (b
 c) = ⊥

(d) Case 2d: d(a) = d(c) > d(b)

By definition: ⎧⎨
⎩

a
 b = ⊥
b
 c = ⊥
a
 c = a

{
a
 b = ⊥
b
 c = ⊥

(a
 b) · (b
 c) · (a
 c) = ⊥ (a
 b) · (b
 c) = ⊥

(e) Case 2e: d(b) = d(c) < d(a)

By definition: ⎧⎨
⎩

a
 b = ⊥
b
 c = b

a
 c = ⊥

{
a
 b = ⊥
b
 c = b

(a
 b) · (b
 c) · (a
 c) = ⊥ (a
 b) · (b
 c) = ⊥

(f) Case 2f: d(b) = d(c) > d(a)

By definition: ⎧⎨
⎩

a
 b = ⊥
b
 c = b

a
 c = ⊥

{
a
 b = ⊥
b
 c = b

(a
 b) · (b
 c) · (a
 c) = ⊥ (a
 b) · (b
 c) = ⊥
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3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition: ⎧⎨
⎩

a
 b = ⊥
b
 c = ⊥
a
 c = ⊥

{
a
 b = ⊥
b
 c = ⊥

(a
 b) · (b
 c) · (a
 c) = ⊥ (a
 b) · (b
 c) = ⊥
(b) Case 3b: d(a) < d(c) < d(b)

By definition: ⎧⎨
⎩

a
 b = ⊥
b
 c = ⊥
a
 c = ⊥

{
a
 b = ⊥
b
 c = ⊥

(a
 b) · (b
 c) · (a
 c) = ⊥ (a
 b) · (b
 c) = ⊥
(c) Case 3c: d(b) < d(a) < d(c)

By definition: ⎧⎨
⎩

a
 b = ⊥
b
 c = ⊥
a
 c = ⊥

{
a
 b = ⊥
b
 c = ⊥

(a
 b) · (b
 c) · (a
 c) = ⊥ (a
 b) · (b
 c) = ⊥
(d) Case 3d: d(b) < d(c) < d(a)

By definition: ⎧⎨
⎩

a
 b = ⊥
b
 c = ⊥
a
 c = ⊥

{
a
 b = ⊥
b
 c = ⊥

(a
 b) · (b
 c) · (a
 c) = ⊥ (a
 b) · (b
 c) = ⊥
(e) Case 3e: d(c) < d(a) < d(b)

By definition: ⎧⎨
⎩

a
 b = ⊥
b
 c = ⊥
a
 c = ⊥

{
a
 b = ⊥
b
 c = ⊥

(a
 b) · (b
 c) · (a
 c) = ⊥ (a
 b) · (b
 c) = ⊥
(f) Case 3f: d(c) < d(b) < d(a)

By definition: ⎧⎨
⎩

a
 b = ⊥
b
 c = ⊥
a
 c = ⊥

{
a
 b = ⊥
b
 c = ⊥

(a
 b) · (b
 c) · (a
 c) = ⊥ (a
 b) · (b
 c) = ⊥
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For all the cases of the domain of our study,

(a
 b) · (b
 c) · (a
 c) = (a
 b) · (b
 c).

Thus:

(a
 b) · (b
 c) · (a
 c) = (a
 b) · (b
 c)

End of the proof of Theorem (3.45).

A.2.4 Proofs of the theorems satisfied by operator Inclusive BE-
FORE

Proof of Theorem (3.46) : (a� b) · (b� a) = a
 b

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.2) : a · b = b · a
(3.6) : a · a = a

(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.8) : a+⊥ = a

(3.13) : a+ (a · b) = a

(3.16) : a� b = a� b+ a
 b

(3.17) : (a� b) · (b� a) = ⊥
(3.35) : a
 b = b
 a

(a� b) · (b� a)
(3.16)
= ((a� b) + (a
 b)) · ((b� a) + (b
 a))

(3.35)
= ((a� b) + (a
 b)) · ((b� a) + (a
 b))

(3.7)
= (a� b) · (b� a) + (a� b) · (a
 b) + (a
 b) · (b� a)

+(a
 b) · (a
 b)

(3.6)
= (a� b) · (b� a) + (a� b) · (a
 b) + (a
 b) · (b� a)

+(a
 b)

(3.1),(3.2)
= (a� b) · (b� a) + (a
 b) + (a
 b) · (a� b)

+(a
 b) · (b� a)

(3.13)
= (a� b) · (b� a) + (a
 b)

(3.17)
= ⊥+ (a
 b)

(3.1)
= (a
 b) +⊥ (3.8)

= a
 b

End of the proof of Theorem (3.46).
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Proof of Theorem (3.47) :

a� (b� c) = (a� b) + (a · b · (c� b)) + (a
 b) · (b� c)

For this proof, we will use the following theorems:

(3.16) : a� b = a� b+ a
 b

(3.26) : a� (b� c) = (a� b) + (a · b · (c� b))

(3.42) : a
 (b� c) = (a
 b) · (b� c)

a� (b� c)
(3.16)
= a� (b� c) + a
 (b� c)

(3.26),(3.42)
= (a� b) + (a · b · (c� b)) + (a
 b) · (b� c)

End of the proof of Theorem (3.47).

Proof of Theorem (3.48) : (a� b)� c = (a� b) · (a� c)

For this proof, we will use the following theorems:

(3.2) : a · b = b · a
(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.16) : a� b = a� b+ a
 b

(3.30) : (a� b)� c = (a� b) · (a� c)

(3.35) : a
 b = b
 a

(3.42) : a
 (b� c) = (a
 b) · (b� c)

(a� b)� c
(3.16)
= ((a� b)� c) + ((a� b)
 c)

(3.35)
= ((a� b)� c) + (c
 (a� b))

(3.30),(3.42)
= (a� b) · (a� c) + (c
 a) · (a� b)

(3.2),(3.35)
= (a� b) · (a� c) + (a� b) · (a
 c)

(3.7)
= (a� b) · ((a� c) + (a
 c))

(3.16)
= (a� b) · (a� c)

End of the proof of Theorem (3.48).

Proof of Theorem (3.49) : ⊥� a = ⊥
For this proof, we will use the following theorems:

(3.5) : a+ a = a

(3.16) : a� b = a� b+ a
 b

(3.20) : ⊥� a = ⊥
(3.35) : a
 b = b
 a

(3.37) : a
⊥ = ⊥
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⊥� a
(3.16)
= ⊥� a+⊥
 a

(3.35)
= ⊥� a+ a
⊥ (3.20),(3.37)

= ⊥+⊥ (3.5)
= ⊥

End of the proof of Theorem (3.49).

Proof of Theorem (3.50) : a�⊥ = a

For this proof, we will use the following theorems:

(3.8) : a+⊥ = a

(3.16) : a� b = a� b+ a
 b

(3.21) : a�⊥ = a

(3.37) : a
⊥ = ⊥

a�⊥ (3.16)
= a�⊥+ a
⊥ (3.21),(3.37)

= a+⊥ (3.8)
= a

End of the proof of Theorem (3.50).

Proof of Theorem (3.51) : a� a = a

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.8) : a+⊥ = a

(3.16) : a� b = a� b+ a
 b

(3.22) : a� a = ⊥
(3.38) : a
 a = a

a� a
(3.16)
= a� a+ a
 a

(3.22),(3.38)
= ⊥+ a

(3.1)
= a+⊥ (3.8)

= a

End of the proof of Theorem (3.51).

Proof of Theorem (3.52) : a� (b+ c) = (a� b) · (a� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

b+ c = b

{
a� b = a

a� c = a

a� (b+ c) = a (a� b) · (a� c) = a

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

b+ c = b

{
a� b = a

a� c = a

a� (b+ c) = a (a� b) · (a� c) = a
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(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b+ c = c

{
a� b = a

a� c = ⊥
a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

b+ c = c

{
a� b = a

a� c = a

a� (b+ c) = a (a� b) · (a� c) = a

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b+ c = b

{
a� b = ⊥
a� c = a

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥
(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b+ c = b

{
a� b = ⊥
a� c = ⊥

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥
(f) Case 2f: d(b) = d(c) > d(a)

By definition:

b+ c = b

{
a� b = a

a� c = a

a� (b+ c) = a (a� b) · (a� c) = a

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

b+ c = b

{
a� b = a

a� c = a

a� (b+ c) = a (a� b) · (a� c) = a

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

b+ c = c

{
a� b = a

a� c = a

a� (b+ c) = a (a� b) · (a� c) = a
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(c) Case 3c: d(b) < d(a) < d(c)

By definition:

b+ c = b

{
a� b = ⊥
a� c = a

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b+ c = b

{
a� b = ⊥
a� c = ⊥

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥

(e) Case 3e: d(c) < d(a) < d(b)

By definition:

b+ c = c

{
a� b = a

a� c = ⊥
a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

b+ c = c

{
a� b = ⊥
a� c = ⊥

a� (b+ c) = ⊥ (a� b) · (a� c) = ⊥

For all the cases of the domain of our study, a� (b+ c) = (a� b) · (a� c). Thus:

a� (b+ c) = (a� b) · (a� c)

End of the proof of Theorem (3.52).

Proof of Theorem (3.53) : a� (b · c) = (a� b) + (a� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

b · c = b

{
a� b = a

a� c = a

a� (b · c) = a (a� b) + (a� c) = a

2. Case 2: two dates out of three are equal
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(a) Case 2a: d(a) = d(b) < d(c)

By definition:

b · c = c

{
a� b = a

a� c = a

a� (b · c) = a (a� b) + (a� c) = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

b · c = b

{
a� b = a

a� c = ⊥
a� (b · c) = a (a� b) + (a� c) = a

(c) Case 2c: d(a) = d(c) < d(b)

By definition:

b · c = b

{
a� b = a

a� c = a

a� (b · c) = a (a� b) + (a� c) = a

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

b · c = c

{
a� b = ⊥
a� c = a

a� (b · c) = a (a� b) + (a� c) = a

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

b · c = b

{
a� b = ⊥
a� c = ⊥

a� (b · c) = ⊥ (a� b) + (a� c) = ⊥
(f) Case 2f: d(b) = d(c) > d(a)

By definition:

b · c = b

{
a� b = a

a� c = a

a� (b · c) = a (a� b) + (a� c) = a

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

b · c = c

{
a� b = a

a� c = a

a� (b · c) = a (a� b) + (a� c) = a
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(b) Case 3b: d(a) < d(c) < d(b)

By definition:

b · c = b

{
a� b = a

a� c = a

a� (b · c) = a (a� b) + (a� c) = a

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

b · c = c

{
a� b = ⊥
a� c = a

a� (b · c) = a (a� b) + (a� c) = a

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

b · c = c

{
a� b = ⊥
a� c = ⊥

a� (b · c) = ⊥ (a� b) + (a� c) = ⊥
(e) Case 3e: d(c) < d(a) < d(b)

By definition:

b · c = b

{
a� b = a

a� c = ⊥
a� (b · c) = a (a� b) + (a� c) = a

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

b · c = b

{
a� b = ⊥
a� c = ⊥

a� (b · c) = ⊥ (a� b) + (a� c) = ⊥
For all the cases of the domain of our study, a� (b · c) = (a� b)+(a� c). Thus:

a� (b · c) = (a� b) + (a� c)

End of the proof of Theorem (3.53).

Proof of Theorem (3.54) :

a� (b� c) = (a� b) + (a · b · (c� b)) + (a
 b) · (b� c)

For this proof, we will use the following theorems:

(3.16) : a� b = a� b+ a
 b

(3.18) : a� (b� c) = (a� b) + (a · b · (c� b))

(3.41) : a
 (b� c) = (a
 b) · (b� c)
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a� (b� c)
(3.16)
= (a� (b� c)) + (a
 (b� c))

(3.18),(3.41)
= (a� b) + (a · b · (c� b)) + (a
 b) · (b� c)

End of the proof of Theorem (3.54).

Proof of Theorem (3.55) :

a� (b
 c) = (a · (b� c)) + (a · (c� b)) + (a� b) + (a� c) + (a
 b) · (b
 c)

For this proof, we will use the following theorems:

(3.16) : a� b = a� b+ a
 b

(3.25) : a� (b
 c) = (a · (b� c)) + (a · (c� b)) + (a� b) + (a� c)

(3.36) : a
 (b
 c) = (a
 b) · (b
 c)

a� (b
 c)
(3.16)
= (a� (b
 c)) + (a
 (b
 c))

(3.25),(3.36)
= (a · (b� c)) + (a · (c� b)) + (a� b) + (a� c)

+(a
 b) · (b
 c)

End of the proof of Theorem (3.55).

Proof of Theorem (3.56) : (a+ b)� c = (a� c) + (b� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

a+ b = a

{
a� c = a

b� c = b

(a+ b)� c = a (a� c) + (b� c) = a

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

a+ b = a

{
a� c = a

b� c = b

(a+ b)� c = a (a� c) + (b� c) = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

a+ b = a

{
a� c = ⊥
b� c = ⊥

(a+ b)� c = ⊥ (a� c) + (b� c) = ⊥
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(c) Case 2c: d(a) = d(c) < d(b)

By definition:

a+ b = a

{
a� c = a

b� c = ⊥
(a+ b)� c = a (a� c) + (b� c) = a

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

a+ b = b

{
a� c = a

b� c = b

(a+ b)� c = b (a� c) + (b� c) = b

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

a+ b = b

{
a� c = ⊥
b� c = b

(a+ b)� c = b (a� c) + (b� c) = b

(f) Case 2f: d(b) = d(c) > d(a)

By definition:

a+ b = a

{
a� c = a

b� c = b

(a+ b)� c = a (a� c) + (b� c) = a

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

a+ b = a

{
a� c = a

b� c = b

(a+ b)� c = a (a� c) + (b� c) = a

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

a+ b = a

{
a� c = a

b� c = ⊥
(a+ b)� c = a (a� c) + (b� c) = a

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

a+ b = b

{
a� c = a

b� c = b

(a+ b)� c = b (a� c) + (b� c) = b
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(d) Case 3d: d(b) < d(c) < d(a)

By definition:

a+ b = b

{
a� c = ⊥
b� c = b

(a+ b)� c = b (a� c) + (b� c) = b

(e) Case 3e: d(c) < d(a) < d(b)

By definition:

a+ b = a

{
a� c = ⊥
b� c = ⊥

(a+ b)� c = ⊥ (a� c) + (b� c) = ⊥

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

a+ b = b

{
a� c = ⊥
b� c = ⊥

(a+ b)� c = ⊥ (a� c) + (b� c) = ⊥

For all the cases of the domain of our study, (a+b)�c = (a�c)+(b�c). Thus:

(a+ b)� c = (a� c) + (b� c)

End of the proof of Theorem (3.56).

Proof of Theorem (3.57) : (a · b)� c = (a� c) · (b� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition:

a · b = a

{
a� c = a

b� c = b

(a · b)� c = a (a� c) · (b� c) = a

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

a · b = a

{
a� c = a

b� c = b

(a · b)� c = a (a� c) · (b� c) = a
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(b) Case 2b: d(a) = d(b) > d(c)

By definition:

a · b = a

{
a� c = ⊥
b� c = ⊥

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥
(c) Case 2c: d(a) = d(c) < d(b)

By definition:

a · b = b

{
a� c = a

b� c = ⊥
(a · b)� c = ⊥ (a� c) · (b� c) = ⊥

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

a · b = a

{
a� c = a

b� c = b

(a · b)� c = a (a� c) · (b� c) = a

(e) Case 2e: d(b) = d(c) < d(a)

By definition:

a · b = a

{
a� c = ⊥
b� c = b

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥
(f) Case 2f: d(b) = d(c) > d(a)

By definition:

a · b = b

{
a� c = a

b� c = b

(a · b)� c = b (a� c) · (b� c) = b

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

a · b = b

{
a� c = a

b� c = b

(a · b)� c = b (a� c) · (b� c) = b

(b) Case 3b: d(a) < d(c) < d(b)

By definition:

a · b = b

{
a� c = a

b� c = ⊥
(a · b)� c = ⊥ (a� c) · (b� c) = ⊥
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(c) Case 3c: d(b) < d(a) < d(c)

By definition:

a · b = a

{
a� c = a

b� c = b

(a · b)� c = a (a� c) · (b� c) = a

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

a · b = a

{
a� c = ⊥
b� c = b

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥
(e) Case 3e: d(c) < d(a) < d(b)

By definition:

a · b = b

{
a� c = ⊥
b� c = ⊥

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥
(f) Case 3f: d(c) < d(b) < d(a)

By definition:

a · b = a

{
a� c = ⊥
b� c = ⊥

(a · b)� c = ⊥ (a� c) · (b� c) = ⊥
For all the cases of the domain of our study, (a · b)� c = (a� c) · (b� c). Thus:

(a · b)� c = (a� c) · (b� c)

End of the proof of Theorem (3.57).

Proof of Theorem (3.58) :

(a
 b)� c = (a
 b) · (a� c) = (a
 b) · (b� c) = (a� c)
 (b� c)

This proof will be done in 3 steps:

• Step 1: (a
 b)� c = (a
 b) · (a� c)

For this proof, we will use the following theorems:

(3.2) : a · b = b · a
(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.16) : a� b = a� b+ a
 b

(3.29) : (a
 b)� c = (a
 b) · (a� c)

(3.35) : a
 b = b
 a

(3.36) : a
 (b
 c) = (a
 b) · (b
 c)
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(a
 b)� c
(3.16)
= ((a
 b)� c) + ((a
 b)
 c)

(3.35)
= ((a
 b)� c) + (c
 (a
 b))

(3.29),(3.36)
= (a
 b) · (a� c) + (c
 a) · (a
 b)

(3.35)
= (a
 b) · (a� c) + (a
 c) · (a
 b)

(3.2)
= (a
 b) · (a� c) + (a
 b) · (a
 c)

(3.7)
= (a
 b) · ((a� c) + (a
 c))

(3.16)
= (a
 b) · (a� c)

• Step 2: (a
 b)� c = (a
 b) · (b� c)

For this proof, we will use the following theorems:

(3.35) : a
 b = b
 a

(3.58) part 1 : (a
 b)� c = (a
 b) · (a� c)

(a
 b)� c
(3.35)
= (b
 a)� c

(3.58)
= (b
 a) · (b� c)

(3.35)
= (a
 b) · (b� c)

• Step 3: (a
 b)� c = (a� c)
 (b� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that
a = b = c

By definition:

a
 b = a

{
a� c = a

b� c = b

(a
 b)� c = a (a� c)
 (b� c) = a

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition:

a
 b = a

{
a� c = a

b� c = b

(a
 b)� c = a (a� c)
 (b� c) = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition:

a
 b = a

{
a� c = ⊥
b� c = ⊥

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
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(c) Case 2c: d(a) = d(c) < d(b)

By definition:

a
 b = ⊥
{

a� c = a

b� c = ⊥
(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥

(d) Case 2d: d(a) = d(c) > d(b)

By definition:

a
 b = ⊥
{

a� c = a

b� c = b

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
(e) Case 2e: d(b) = d(c) < d(a)

By definition:

a
 b = ⊥
{

a� c = ⊥
b� c = b

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
(f) Case 2f: d(b) = d(c) > d(a)

By definition:

a
 b = ⊥
{

a� c = a

b� c = b

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition:

a
 b = ⊥
{

a� c = a

b� c = b

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
(b) Case 3b: d(a) < d(c) < d(b)

By definition:

a
 b = ⊥
{

a� c = a

b� c = ⊥
(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥

(c) Case 3c: d(b) < d(a) < d(c)

By definition:

a
 b = ⊥
{

a� c = a

b� c = b

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
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(d) Case 3d: d(b) < d(c) < d(a)

By definition:

a
 b = ⊥
{

a� c = ⊥
b� c = b

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
(e) Case 3e: d(c) < d(a) < d(b)

By definition:

a
 b = ⊥
{

a� c = ⊥
b� c = ⊥

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
(f) Case 3f: d(c) < d(b) < d(a)

By definition:

a
 b = ⊥
{

a� c = ⊥
b� c = ⊥

(a
 b)� c = ⊥ (a� c)
 (b� c) = ⊥
For all the cases of the domain of our study, (a
 b) � c = (a � c)
 (b � c).
Thus:

(a
 b)� c = (a� c)
 (b� c)

End of the proof of Theorem (3.58).

Proof of Theorem (3.59) : (a� b)� c = (a� b) · (a� c)

For this proof, we will use the following theorems:

(3.2) : a · b = b · a
(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.16) : a� b = a� b+ a
 b

(3.19) : (a� b)� c = (a� b) · (a� c)

(3.35) : a
 b = b
 a

(3.41) : a
 (b� c) = (a
 b) · (b� c)

(a� b)� c
(3.16)
= ((a� b)� c) + ((a� b)
 c)

(3.35)
= ((a� b)� c) + (c
 (a� b))

(3.19),(3.41)
= (a� b) · (a� c) + (c
 a) · (a� b)

(3.35)
= (a� b) · (a� c) + (a
 c) · (a� b)

(3.2)
= (a� b) · (a� c) + (a� b) · (a
 c)

(3.7)
= (a� b) · ((a� c) + (a
 c))

(3.16)
= (a� b) · (a� c)
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End of the proof of Theorem (3.59).

Proof of Theorem (3.60) : a+ (a� b) = a

For this proof, we will use the following theorems:

(3.3) : a+ (b+ c) = (a+ b) + c

(3.16) : a� b = a� b+ a
 b

(3.31) : a+ (a� b) = a

(3.43) : a+ (a
 b) = a

a+(a�b)
(3.16)
= a+((a�b)+(a
b))

(3.3)
= (a+(a�b))+(a
b)

(3.31)
= a+(a
b)

(3.43)
= a

End of the proof of Theorem (3.60).

Proof of Theorem (3.61) : b+ (a� b) = a+ b

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.3) : a+ (b+ c) = (a+ b) + c

(3.16) : a� b = a� b+ a
 b

(3.32) : (a� b) + b = a+ b

(3.43) : a+ (a
 b) = a

b+ (a� b)
(3.16)
= b+ ((a� b) + (a
 b))

(3.3)
= (b+ (a� b)) + (a
 b)

(3.1)
= ((a� b) + b) + (a
 b)

(3.32)
= (a+ b) + (a
 b)

(3.1),(3.3)
= (a+ (a
 b)) + b

(3.43)
= a+ b

End of the proof of Theorem (3.61).

Proof of Theorem (3.62) : a · (a� b) = a� b

For this proof, we will use the following theorems:

(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.16) : a� b = a� b+ a
 b

(3.33) : a · (a� b) = a� b

(3.44) : a · (a
 b) = a
 b

a · (a� b)
(3.16)
= a · ((a� b) + (a
 b))

(3.7)
= (a · (a� b)) + (a · (a
 b))

(3.33),(3.44)
= (a� b) + (a
 b)

(3.16)
= a� b

End of the proof of Theorem (3.62).
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Proof of Theorem (3.63) : (a� b) + (b� a) = a+ b

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.3) : a+ (b+ c) = (a+ b) + c

(3.5) : a+ a = a

(3.16) : a� b = a� b+ a
 b

(3.35) : a
 b = b
 a

(3.74) : (a� b) + (a
 b) + (b� a) = a+ b

(a� b) + (b� a)
(3.16)
= ((a� b) + (a
 b)) + ((b� a) + (b
 a))

(3.1),(3.3)
= (a� b) + ((a
 b) + (b
 a)) + (b� a)

(3.35)
= (a� b) + ((a
 b) + (a
 b)) + (b� a)

(3.5)
= (a� b) + (a
 b) + (b� a)

(3.74)
= a+ b

End of the proof of Theorem (3.63).

Proof of Theorem (3.64) : (a · (b� a)) + (b · (a� b)) = a · b
For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.3) : a+ (b+ c) = (a+ b) + c

(3.5) : a+ a = a

(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.16) : a� b = a� b+ a
 b

(3.35) : a
 b = b
 a

(3.44) : a · (a
 b) = a
 b

(3.75) : (a · (b� a)) + (a
 b) + (b · (a� b)) = a · b

(a · (b� a)) + (b · (a� b))
(3.16)
= (a · ((b� a) + (b
 a)))

+(b · ((a� b) + (a
 b)))

(3.7)
= (a · (b� a)) + (a · (b
 a))

+(b · (a� b)) + (b · (a
 b))

(3.35)
= (a · (b� a)) + (a · (a
 b))

+(b · (a� b)) + (b · (b
 a))
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(a · (b� a)) + (b · (a� b))
(3.44)
= (a · (b� a)) + (a
 b) + (b · (a� b)) + (b
 a)

(3.1),(3.3)
= (a · (b� a)) + ((a
 b) + (b
 a))

+(b · (a� b))

(3.35)
= (a · (b� a)) + ((a
 b) + (a
 b))

+(b · (a� b))

(3.5)
= (a · (b� a)) + (a
 b) + (b · (a� b))

(3.75)
= a · b

End of the proof of Theorem (3.64).

Proof of Theorem (3.65) : (a� b) + (a · (b� a)) = a

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.3) : a+ (b+ c) = (a+ b) + c

(3.5) : a+ a = a

(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.16) : a� b = a� b+ a
 b

(3.35) : a
 b = b
 a

(3.44) : a · (a
 b) = a
 b

(3.76) : (a� b) + (a
 b) + (a · (b� a)) = a

(a� b) + (a · (b� a)
(3.16)
= ((a� b) + (a
 b)) + (a · ((b� a) + (b
 a)))

(3.7)
= ((a� b) + (a
 b)) + (a · (b� a)) + (a · (b
 a))

(3.35)
= ((a� b) + (a
 b)) + (a · (b� a)) + (a · (a
 b))

(3.44)
= ((a� b) + (a
 b)) + (a · (b� a)) + (a
 b)

(3.1),(3.3)
= (a� b) + ((a
 b) + (a
 b)) + (a · (b� a))

(3.5)
= (a� b) + (a
 b) + (a · (b� a))

(3.76)
= a

End of the proof of Theorem (3.65).

Proof of Theorem (3.66) : (a� b) · (b� c) · (a� c) = (a� b) · (b� c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition: ⎧⎨
⎩

a� b = a

b� c = b

a� c = a

{
a� b = a

b� c = b

(a� b) · (b� c) · (a� c) = a (a� b) · (b� c) = a
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2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition: ⎧⎨
⎩

a� b = a

b� c = b

a� c = a

{
a� b = a

b� c = b

(a� b) · (b� c) · (a� c) = a (a� b) · (b� c) = a

(b) Case 2b: d(a) = d(b) > d(c)

By definition: ⎧⎨
⎩

a� b = a

b� c = ⊥
a� c = ⊥

{
a� b = a

b� c = ⊥
(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥

(c) Case 2c: d(a) = d(c) < d(b)

By definition: ⎧⎨
⎩

a� b = a

b� c = ⊥
a� c = a

{
a� b = a

b� c = ⊥
(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥

(d) Case 2d: d(a) = d(c) > d(b)

By definition: ⎧⎨
⎩

a� b = ⊥
b� c = b

a� c = a

{
a� b = ⊥
b� c = b

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥
(e) Case 2e: d(b) = d(c) < d(a)

By definition: ⎧⎨
⎩

a� b = ⊥
b� c = b

a� c = ⊥

{
a� b = ⊥
b� c = b

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥
(f) Case 2f: d(b) = d(c) > d(a)

By definition: ⎧⎨
⎩

a� b = a

b� c = b

a� c = a

{
a� b = a

b� c = b

(a� b) · (b� c) · (a� c) = b (a� b) · (b� c) = b
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3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition: ⎧⎨
⎩

a� b = a

b� c = b

a� c = a

{
a� b = a

b� c = b

(a� b) · (b� c) · (a� c) = b (a� b) · (b� c) = b

(b) Case 3b: d(a) < d(c) < d(b)

By definition: ⎧⎨
⎩

a� b = a

b� c = ⊥
a� c = a

{
a� b = a

b� c = ⊥
(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥

(c) Case 3c: d(b) < d(a) < d(c)

By definition: ⎧⎨
⎩

a� b = ⊥
b� c = b

a� c = a

{
a� b = ⊥
b� c = b

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥
(d) Case 3d: d(b) < d(c) < d(a)

By definition: ⎧⎨
⎩

a� b = ⊥
b� c = b

a� c = ⊥

{
a� b = ⊥
b� c = b

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥
(e) Case 3e: d(c) < d(a) < d(b)

By definition: ⎧⎨
⎩

a� b = a

b� c = ⊥
a� c = ⊥

{
a� b = a

b� c = ⊥
(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥

(f) Case 3f: d(c) < d(b) < d(a)

By definition: ⎧⎨
⎩

a� b = ⊥
b� c = ⊥
a� c = ⊥

{
a� b = ⊥
b� c = ⊥

(a� b) · (b� c) · (a� c) = ⊥ (a� b) · (b� c) = ⊥
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For all the cases of the domain of our study,

(a� b) · (b� c) · (a� c) = (a� b) · (b� c).

Thus:

(a� b) · (b� c) · (a� c) = (a� b) · (b� c)

End of the proof of Theorem (3.66).

A.2.5 Proofs of simplification theorems

Proof of Theorem (3.67) : (a� b) + (a� b) = a� b

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.3) : a+ (b+ c) = (a+ b) + c

(3.5) : a+ a = a

(3.16) : a� b = a� b+ a
 b

(a� b) + (a� b)
(3.16)
= ((a� b) + (a
 b)) + (a� b)

(3.1),(3.3)
= ((a� b) + (a� b)) + (a
 b)

(3.5)
= (a� b) + (a
 b)

(3.16)
= a� b

End of the proof of Theorem (3.67).

Proof of Theorem (3.68) : (a� b) + (a
 b) = a� b

For this proof, we will use the following theorems:

(3.3) : a+ (b+ c) = (a+ b) + c

(3.5) : a+ a = a

(3.16) : a� b = a� b+ a
 b

(a� b) + (a
 b)
(3.16)
= ((a� b) + (a
 b)) + (a
 b)

(3.3)
= (a� b) + ((a
 b) + (a
 b))

(3.5)
= (a� b) + (a
 b)

(3.16)
= a� b

End of the proof of Theorem (3.68).
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Proof of Theorem (3.69) : (a� b) · (a
 b) = ⊥

1. Case 1: the two dates are equal: d(a) = d(b), meaning that a = b

By definition: {
a� b = ⊥
a
 b = a

(a� b) · (a
 b) = ⊥

2. Case 2: the two dates are different

(a) Case 2a: d(a) < d(b)

By definition: {
a� b = a

a
 b = ⊥
(a� b) · (a
 b) = ⊥

(b) Case 2b: d(a) > d(b)

By definition: {
a� b = ⊥
a
 b = ⊥

(a� b) · (a
 b) = ⊥
For all the cases of the domain of our study, (a� b) · (a
 b) = ⊥. Thus:

(a� b) · (a
 b) = ⊥

End of the proof of Theorem (3.69).

Proof of Theorem (3.70) : (a� b) · (b
 c) = (a� c) · (b
 c)

1. Case 1: the three dates are equal: d(a) = d(b) = d(c), meaning that a = b = c

By definition: {
a� b = ⊥
b
 c = b

{
a� c = ⊥
b
 c = b

(a� b) · (b
 c) = ⊥ (a� c) · (b
 c) = ⊥

2. Case 2: two dates out of three are equal

(a) Case 2a: d(a) = d(b) < d(c)

By definition: {
a� b = ⊥
b
 c = ⊥

{
a� c = a

b
 c = ⊥
(a� b) · (b
 c) = ⊥ (a� c) · (b
 c) = ⊥
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(b) Case 2b: d(a) = d(b) > d(c)

By definition: {
a� b = ⊥
b
 c = ⊥

{
a� c = ⊥
b
 c = ⊥

(a� b) · (b
 c) = ⊥ (a� c) · (b
 c) = ⊥
(c) Case 2c: d(a) = d(c) < d(b)

By definition: {
a� b = a

b
 c = ⊥
{

a� c = ⊥
b
 c = ⊥

(a� b) · (b
 c) = ⊥ (a� c) · (b
 c) = ⊥
(d) Case 2d: d(a) = d(c) > d(b)

By definition: {
a� b = ⊥
b
 c = ⊥

{
a� c = ⊥
b
 c = ⊥

(a� b) · (b
 c) = ⊥ (a� c) · (b
 c) = ⊥
(e) Case 2e: d(b) = d(c) < d(a)

By definition: {
a� b = ⊥
b
 c = b

{
a� c = ⊥
b
 c = b

(a� b) · (b
 c) = ⊥ (a� c) · (b
 c) = ⊥
(f) Case 2f: d(b) = d(c) > d(a)

By definition: {
a� b = a

b
 c = b

{
a� c = a

b
 c = b

(a� b) · (b
 c) = b (a� c) · (b
 c) = b

3. Case 3: the three dates are different

(a) Case 3a: d(a) < d(b) < d(c)

By definition: {
a� b = a

b
 c = ⊥
{

a� c = a

b
 c = ⊥
(a� b) · (b
 c) = ⊥ (a� c) · (b
 c) = ⊥

(b) Case 3b: d(a) < d(c) < d(b)

By definition: {
a� b = a

b
 c = ⊥
{

a� c = a

b
 c = ⊥
(a� b) · (b
 c) = ⊥ (a� c) · (b
 c) = ⊥
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(c) Case 3c: d(b) < d(a) < d(c)

By definition:

{
a� b = ⊥
b
 c = ⊥

{
a� c = a

b
 c = ⊥
(a� b) · (b
 c) = ⊥ (a� c) · (b
 c) = ⊥

(d) Case 3d: d(b) < d(c) < d(a)

By definition:

{
a� b = ⊥
b
 c = ⊥

{
a� c = ⊥
b
 c = ⊥

(a� b) · (b
 c) = ⊥ (a� c) · (b
 c) = ⊥

(e) Case 3e: d(c) < d(a) < d(b)

By definition:

{
a� b = a

b
 c = ⊥
{

a� c = ⊥
b
 c = ⊥

(a� b) · (b
 c) = ⊥ (a� c) · (b
 c) = ⊥

(f) Case 3f: d(c) < d(b) < d(a)

By definition:

{
a� b = ⊥
b
 c = ⊥

{
a� c = ⊥
b
 c = ⊥

(a� b) · (b
 c) = ⊥ (a� c) · (b
 c) = ⊥

For all the cases of the domain of our study, (a� b) · (b
 c) = (a� c) · (b
 c).
Thus:

(a� b) · (b
 c) = (a� c) · (b
 c)

End of the proof of Theorem (3.70).

Proof of Theorem (3.71) : (a� b) · (a� b) = a� b

For this proof, we will use the following theorems:

(3.2) : a · b = b · a
(3.14) : a · (a+ b) = a

(3.16) : a� b = a� b+ a
 b

(a�b) ·(a�b)
(3.16)
= ((a�b)+(a
b)) ·(a�b)

(3.2)
= (a�b) ·((a�b)+(a
b))

(3.14)
= a�b

End of the proof of Theorem (3.71).
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Proof of Theorem (3.72) : (a� b) · (b� a) = ⊥
For this proof, we will use the following theorems:

(3.5) : a+ a = a

(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.16) : a� b = a� b+ a
 b

(3.17) : (a� b) · (b� a) = ⊥
(3.35) : a
 b = b
 a

(3.69) : (a� b) · (a
 b) = ⊥

(a� b) · (b� a)
(3.16)
= (a� b) · ((b� a) + (b
 a))

(3.7)
= (a� b) · (b� a) + (a� b) · (b
 a)

(3.35)
= (a� b) · (b� a) + (a� b) · (a
 b)

(3.17),(3.69)
= ⊥+⊥ (3.5)

= ⊥

End of the proof of Theorem (3.72).

Proof of Theorem (3.73) : (a� b) · (a
 b) = a
 b

For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.2) : a · b = b · a
(3.14) : a · (a+ b) = a

(3.16) : a� b = a� b+ a
 b

(a�b)·(a
b)
(3.16)
= ((a�b)+(a
b))·(a
b)

(3.1),(3.2)
= (a
b)·((a
b)+(a�b))

(3.14)
= a
b

End of the proof of Theorem (3.73).

Proof of Theorem (3.74) : (a� b) + (a
 b) + (b� a) = a+ b

1. Case 1: the two dates are equal: d(a) = d(b), meaning that a = b

By definition:

⎧⎨
⎩

a� b = ⊥
a
 b = a

b� a = ⊥
a+ b = a

(a� b) + (a
 b) + (b� a) = a

2. Case 2: the two dates are different
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(a) Case 2a: d(a) < d(b)

By definition: ⎧⎨
⎩

a� b = a

a
 b = ⊥
b� a = ⊥

a+ b = a

(a� b) + (a
 b) + (b� a) = a

(b) Case 2b: d(a) > d(b)

By definition: ⎧⎨
⎩

a� b = ⊥
a
 b = ⊥
b� a = b

a+ b = b

(a� b) + (a
 b) + (b� a) = b

For all the cases of the domain of our study, (a � b) + (a 
 b) + (b � a) = a + b.
Thus:

(a� b) + (a
 b) + (b� a) = a+ b

End of the proof of Theorem (3.74).

Proof of Theorem (3.75) : (a · (b� a)) + (a
 b) + (b · (a� b)) = a · b
For this proof, we will use the following theorems:

(3.1) : a+ b = b+ a

(3.2) : a · b = b · a
(3.4) : a · (b · c) = (a · b) · c
(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.14) : a · (a+ b) = a

(3.33) : a · (a� b) = a� b

(3.44) : a · (a
 b) = a
 b

(3.74) : (a� b) + (a
 b) + (b� a) = a+ b

(a · (b� a)) + (a
 b) + (b · (a� b))
(3.33),(3.44)

= (a · (b · (b� a))) + (a · b · (a
 b))

+(b · (a · (a� b)))

(3.2),(3.4)
= (a · b · (b� a)) + (a · b · (a
 b))

+(a · b · (a� b))

(3.1),(3.7)
= a · b · ((a� b) + (a
 b) + (b� a))

(3.74)
= a · b · (a+ b)

(3.2),(3.4)
= (a · (a+ b)) · b (3.14)

= a · b
End of the proof of Theorem (3.75).
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Proof of Theorem (3.76) : (a� b) + (a
 b) + (a · (b� a)) = a

For this proof, we will use the following theorems:

(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.14) : a · (a+ b) = a

(3.33) : a · (a� b) = a� b

(3.44) : a · (a
 b) = a
 b

(3.74) : (a� b) + (a
 b) + (b� a) = a+ b

(a� b) + (a
 b) + (a · (b� a))
(3.33),(3.44)

= (a · (a� b)) + (a · (a
 b))

+(a · (b� a))

(3.7)
= a · ((a� b) + (a
 b) + (b� a))

(3.74)
= a · (a+ b)

(3.14)
= a

End of the proof of Theorem (3.76).

Proof of Theorem (3.77) : (a� b) · (b� c) · (a� c) = (a� b) · (b� c)

For this proof, we will use the following theorems:

(3.7) : a · (b+ c) = (a · b) + (a · c)
(3.13) : a+ (a · b) = a

(3.16) : a� b = a� b+ a
 b

(3.34) : (a� b) · (b� c) · (a� c) = (a� b) · (b� c)

(a� b) · (b� c) · (a� c)
(3.16)
= (a� b) · (b� c) · ((a� c) + (a
 c))

(3.7)
= (a� b) · (b� c) · (a� c) + (a� b) · (b� c) · (a
 c)

(3.34)
= (a� b) · (b� c) + (a� b) · (b� c) · (a
 c)

(3.13)
= (a� b) · (b� c)

End of the proof of Theorem (3.77).
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Application of probabilistic
models to the case of exponential

distributions

B.1 Case of a single Spare gate with 2 input events

B.1.1 Result obtained with Markov Chains

The state transition diagram of a single Spare gate with 2 input events is shown in
Fig. B.1. States 4 and 5 represent the failure of the Spare gate: state 4 represents the
occurrence of the failure sequence [A,B] whereas state 5 represents the occurrence
of the failure sequence [B,A].

Figure B.1: State transition diagram of a single Spare gate with 2 input events

The corresponding differential system is
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dP1(t)
dt = −(λA + αλB)P1(t)

dP2(t)
dt = λAP1(t)− λBP2(t)

dP3(t)
dt = αλBP1(t)− λAP3(t)

dP4(t)
dt = λBP2(t)

dP5(t)
dt = λAP3(t)

(B.1)

Solving this differential system (B.1) allows to determine the failure probability
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of the Spare gate

Pr {Q} (t) = P4(t) + P5(t)

= 1− e−λAt − λA

λA − (1− α)λB
e−λBt +

λA

λA − (1− α)λB
e−(λA+αλB)t

B.1.2 Result obtained with our probabilistic model

According to Section 5.4.2.1, the probabilistic model of a single Spare gate with 2

input events is

FQ(t) = Pr {Q} (t) =
∫ t

0

(∫ t

v
fBa(u, v)du

)
fA(v)dv +

∫ t

0
fA(u)FBd

(u) du.

In the case of exponential distributions,

⎧⎨
⎩

FA(t) = 1− e−λAt, ∀t ≥ 0

FBd
(t) = 1− e−αλBt, ∀t ≥ 0

FBa(t, tA) = 1− e−λB(t−(1−α)tA), ∀t ≥ (1− α)tA

On the one hand,

Pr {Ba · (A�Ba)} (t) =

∫ t

0

(∫ t

v
fBa(u, v)du

)
fA(v)dv

=

∫ t

0

(∫ t

v
λBe

−λB(u−(1−α)v)du

)
λAe

−λAvdv

=

∫ t

0

(
e−λB(v−(1−α)v) − e−λB(t−(1−α)v)

)
λAe

−λAvdv

=

∫ t

0

(
e−αλBv − e−λB(t−(1−α)v)

)
λAe

−λAvdv

=

∫ t

0

(
λAe

−(λA+αλB)v − λAe
−λBte−(λA−(1−α)λB)v

)
dv

=

∫ t

0
λAe

−(λA+αλB)vdv − e−λBt

∫ t

0
λAe

−(λA−(1−α)λB)vdv

=
λA

λA + αλB
(1− e−(λA+αλB)t)

− λA

λA − (1− α)λB
e−λBt(1− e−(λA−(1−α)λB)t)

=
λA

λA + αλB
(1− e−(λA+αλB)t)

− λA

λA − (1− α)λB
(e−λBt − e−(λA+αλB)t)
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Pr {Ba · (A�Ba)} (t) =
λA

λA + αλB
− λA

λA − (1− α)λB
e−λBt

+

(
λA

λA − (1− α)λB
− λA

λA + αλB

)
e−(λA+αλB)t)

=
λA

λA + αλB
− λA

λA − (1− α)λB
e−λBt

+
λA(λA + αλB)− λA(λA − (1− α)λB)

(λA + αλB)(λA − (1− α)λB)
e−(λA+αλB)t)

=
λA

λA + αλB
− λA

λA − (1− α)λB
e−λBt

+
λAλB

(λA + αλB)(λA − (1− α)λB)
e−(λA+αλB)t

On the other hand,

Pr {A · (Bd �A)} (t) =

∫ t

0
FBd

(u)fA(u)du

=

∫ t

0
(1− e−αλBu)λAe

−λAudu

=

∫ t

0
λAe

−λAudu−
∫ t

0
λAe

−(λA+αλB)udu

= 1− e−λAt − λA

λA + αλB
(1− e−(λA+αλB)t)

=

(
1− λA

λA + αλB

)
− e−λAt +

λA

λA + αλB
e−(λA+αλB)t

=
αλB

λA + αλB
− e−λAt +

λA

λA + αλB
e−(λA+αλB)t

The failure probability obtained with the probabilistic model hence is

Pr {Q} (t) = 1− e−λAt − λA

λA − (1− α)λB
e−λBt +

λA

λA − (1− α)λB
e−(λA+αλB)t,

and it can be noted that this failure probability is the same as the failure probability
obtained in Section B.1.1. However, the probabilistic model provided in Section
5.4.2.1 does not depend on the failure distribution considered for basic events.

B.2 Case of 2 Spare gates sharing a spare event

B.2.1 Result obtained with Markov Chains

The state transition diagram of 2 Spare gates sharing a spare event is shown in Fig.
B.2.
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Figure B.2: State transition diagram of 2 Spare gates sharing a spare event

Q1 fails if Ca · (A� Ca) holds (states 6, 11, 12, and 13), if A · (Cd � A) (states
9, 15, and 16), or if A · (B �A) holds (states 7, 13, 14, and 16). States 6, 7, 9, and
11 to 16 hence represent the failure of Q1.

Q2 fails if Ca · (B � Ca) holds (states 8, 11, 13, and 14), if B · (Cd � B) holds
(states 10, 15, and 16), or if B · (A� B) holds (states 5, 11, 12, and 15). States 5,
8, 10, and 11 to 16 hence represent the failure of Q2.

Solving the differential system which is equivalent to the state transition diagram
in Fig. B.2 allows to determine the failure probability of Q1, and Q2:

Pr {Q1} (t) = P6(t) + P7(t) + P9(t) + P11(t) + P12(t)

+P13(t) + P14(t) + P15(t) + P16(t)

Pr {Q2} (t) = P5(t) + P8(t) + P10(t) + P11(t) + P12(t)

+P13(t) + P14(t) + P15(t) + P16(t)

The expressions for both probabilities will not be detailed here because of their size.
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B.2.2 Result obtained with our probabilistic model

According to Section 5.4.2.2, the probabilistic model of 2 Spare gates sharing a spare
event is

FQ1(t) = Pr {Q1} (t) =

∫ t

0

(∫ t

w

(∫ u

w
fB(v)dv

)
fCa(u,w)du

)
fA(w)dw

+

∫ t

0

(∫ u

0

(∫ u

v
fCa(w, v)dw

)
fA(v)dv

)
fB(u)du

+(1− FB(t))

∫ t

0

(∫ t

v
fCa(u, v)du

)
fA(v)dv

+

∫ t

0

(∫ u

0
fA(v)FCd

(v)dv

)
fB(u)du

+(1− FB(t))

∫ t

0
fA(u)FCd

(u)du+

∫ t

0
fA(u)FB(u)du

FQ2(t) = Pr {Q2} (t) =

∫ t

0

(∫ t

w

(∫ u

w
fA(v)dv

)
fCa(u,w)du

)
fB(w)dw

+

∫ t

0

(∫ u

0

(∫ u

v
fCa(w, v)dw

)
fB(v)dv

)
fA(u)du

+(1− FA(t))

∫ t

0

(∫ t

v
fCa(u, v)du

)
fB(v)dv

+

∫ t

0

(∫ u

0
fB(v)FCd

(v)dv

)
fA(u)du

+(1− FA(t))

∫ t

0
fB(u)FCd

(u)du+

∫ t

0
fB(u)FA(u)du

In the case of exponential distributions,⎧⎪⎪⎨
⎪⎪⎩

FA(t) = 1− e−λAt, ∀t ≥ 0

FB(t) = 1− e−λBt, ∀t ≥ 0

FCd
(t) = 1− e−αλC t, ∀t ≥ 0

FCa(t, v) = 1− e−λC(t−(1−α)v), ∀t ≥ (1− α)v

where v is the failure date of the event on which C depends. Indeed, C becomes
active as soon as A or B fails, so the failure distribution of C depends on tA if A
fails first, and on tB if B fails first.

Besides, the terms of the behavioural model can be identified to the states of
the state transition diagram in Fig. B.2:

Pr {Ca · (A�B) · (B � Ca)} (t) = P11(t)

Pr {B · (A� Ca) · (Ca �B)} (t) = P12(t)

Pr
{
Ca · (A� Ca) ·��B

}
(t) = P6(t)

Pr {B · (Cd �A) · (A�B)} (t) = P15(t)

Pr
{
A · (Cd �A) ·��B

}
(t) = P9(t)

Pr {A · (B �A)} (t) = P7(t) + P13(t) + P14(t) + P16(t)
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exponential distributions

Let us apply the probabilistic model for Q1 to the case of exponential distribu-
tions.

• Validation of the expression for Pr {Ca · (A�B) · (B � Ca)} (t)

Pr {Ca · (A�B) · (B � Ca)} (t) =
∫ t

0

(∫ t

w

(∫ u

w
fB(v)dv

)
fCa(u,w)du

)
fA(w)dw

∫ u

w
fB(v)dv =

∫ u

w
λBe

−λBvdv = e−λBw − e−λBu

∫ t

w

(∫ u

w
fB(v)dv

)
fCa(u,w)du

=

∫ t

w

(
e−λBw − e−λBu

)
λCe

−λC(u−(1−α)w)du

= e−λBw

∫ t

w
λCe

−λC(u−(1−α)w)du−
∫ t

w
λCe

−λBue−λC(u−(1−α)w)du

= e−λBw

∫ t

w
λCe

−λC(u−(1−α)w)du−
∫ t

w
λCe

−((λB+λC)u−λC(1−α)w)du

= e−λBw(e−λC(w−(1−α)w) − e−λC(t−(1−α)w))

− λC

λB + λC
(e−((λB+λC)w−λC(1−α)w) − e−((λB+λC)t−λC(1−α)w))

= e−(λB+αλC)w − e−(λC t+(λB−(1−α)λC)w)

− λC

λB + λC
(e−(λB+αλC)w − e−((λB+λC)t−λC(1−α)w))

=
λB

λB + λC
e−(λB+αλC)w − e−(λCt+(λB−(1−α)λC)w)

+
λC

λB + λC
e−((λB+λC)t−λC(1−α)w)
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Pr {Ca · (A�B) · (B � Ca)} (t)
=

∫ t

0

(∫ t

w

(∫ u

w
fB(v)dv

)
fCa(u,w)du

)
fA(w)dw

=

∫ t

0

λB

λB + λC
e−(λB+αλC)wλAe

−λAwdw

−
∫ t

0
e−(λC t+(λB−(1−α)λC)w)λAe

−λAwdw

+

∫ t

0

λC

λB + λC
e−((λB+λC)t−λC(1−α)w)λAe

−λAwdw

=
λAλB

λB + λC

∫ t

0
e−(λA+λB+αλC)wdw − λA

∫ t

0
e−(λC t+(λA+λB−(1−α)λC)w)dw

+
λAλC

λB + λC

∫ t

0
e−((λB+λC)t+(λA−(1−α)λC)w)dw

=
λAλB

(λB + λC)(λA + λB + αλC)
(1− e−(λA+λB+αλC)t)

− λA

λA + λB − (1− α)λC
(e−λCt − e−(λC t+(λA+λB−(1−α)λC)t))

+
λAλC(e

−(λB+λC)t − e−((λB+λC)t+(λA−(1−α)λC)t))

(λB + λC)(λA − (1− α)λC)

=
λAλB

(λB + λC)(λA + λB + αλC)
(1− e−(λA+λB+αλC)t)

− λA

λA + λB − (1− α)λC
(e−λCt − e−(λA+λB+αλC)t)

+
λAλC

(λB + λC)(λA − (1− α)λC)
(e−(λB+λC)t − e−(λA+λB+αλC)t)

=
λAλB

(λB + λC)(λA + λB + αλC)
− λA

λA + λB − (1− α)λC
e−λCt

+
λAλC

(λB + λC)(λA − (1− α)λC)
e−(λB+λC)t

− λAλBλCe
−(λA+λB+αλC)t

(λA − (1− α)λC)(λA + λB − (1− α)λC)(λA + λB + αλC)

= P11(t)

• Validation of the expression for Pr {B · (A� Ca) · (Ca �B)} (t)

Pr {B · (A� Ca) · (Ca �B)} (t) =
∫ t

0

(∫ u

0

(∫ u

v
fCa(w, v)dw

)
fA(v)dv

)
fB(u)du

∫ u

v
fCa(w, v)dw =

∫ u

v
λCe

−λC(w−(1−α)v)dw

= e−λC(v−(1−α)v) − e−λC(u−(1−α)v) = e−αλCv − e−λC(u−(1−α)v)
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exponential distributions∫ u

0

(∫ u

v
fCa(w, v)dw

)
fA(v)dv

=

∫ u

0

(
e−αλCv − e−λC(u−(1−α)v)

)
λAe

−λAvdv

= λA

∫ u

0
e−αλCve−λAvdv − λA

∫ u

0
e−λC(u−(1−α)v)e−λAvdv

= λA

∫ u

0
e−(λA+αλC)vdv − λA

∫ u

0
e−(λCu+(λA−(1−α)λC)v)dv

=
λA

λA + αλC
(1− e−(λA+αλC)u)

− λA

λA − (1− α)λC
(e−λCu − e−(λCu+(λA−(1−α)λC)u))

=
λA

λA + αλC
(1− e−(λA+αλC)u)− λA

λA − (1− α)λC
(e−λCu − e−(λA+αλC)u)

=
λA

λA + αλC
− λA

λA − (1− α)λC
e−λCu

+
λAλC

(λA − (1− α)λC)(λA + αλC)
e−(λA+αλC)u

Pr {B · (A� Ca) · (Ca �B)} (t)
=

∫ t

0

(∫ u

0

(∫ u

v
fCa(w, v)dw

)
fA(v)dv

)
fB(u)du

=

∫ t

0

λA

λA + αλC
λBe

−λBudu−
∫ t

0

λA

λA − (1− α)λC
e−λCuλBe

−λBudu

+

∫ t

0

λAλC

(λA − (1− α)λC)(λA + αλC)
e−(λA+αλC)uλBe

−λBudu

=
λAλB

λA + αλC

∫ t

0
e−λBudu− λAλB

λA − (1− α)λC

∫ t

0
e−(λB+λC)udu

+
λAλBλC

(λA − (1− α)λC)(λA + αλC)

∫ t

0
e−(λA+λB+αλC)udu

=
λA

λA + αλC
(1− e−λBt)− λAλB

(λB + λC)(λA − (1− α)λC)
(1− e−(λB+λC)t)

+
λAλBλC(1− e−(λA+λB+αλC)t)

(λA − (1− α)λC)(λA + αλC)(λA + λB + αλC)

=
λAλC

(λB + λC)(λA + λB + αλC)
− λA

λA + αλC
e−λBt

+
λAλB

(λB + λC)(λA − (1− α)λC)
e−(λB+λC)t

− λAλBλC

(λA − (1− α)λC)(λA + αλC)(λA + λB + αλC)
e−(λA+λB+αλC)t

= P12(t)

• Validation of the expression for Pr
{
Ca · (A� Ca) ·��B

}
(t)
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Pr
{
Ca · (A� Ca) ·��B

}
(t) = (1− FB(t))

∫ t

0

(∫ t

v
fCa(u, v)du

)
fA(v)dv

∫ t

v
fCa(u, v)du =

∫ t

v
λCe

−λC(u−(1−α)v)du

= e−λC(v−(1−α)v) − e−λC(t−(1−α)v) = e−αλCv − e−λC(t−(1−α)v)

∫ t

0

(∫ t

v
fCa(u, v)du

)
fA(v)dv

=

∫ t

0

(
e−αλCv − e−λC(t−(1−α)v)

)
λAe

−λAvdv

= λA

∫ t

0
e−αλCve−λAvdv − λA

∫ t

0
e−λC(t−(1−α)v)e−λAvdv

= λA

∫ t

0
e−(λA+αλC)vdv − λA

∫ t

0
e−(λC t+(λA−(1−α)λC)v)dv

=
λA

λA + αλC
(1− e−(λA+αλC)t)

− λA

λA − (1− α)λC
(e−λC t − e−(λCt+(λA−(1−α)λC)t))

=
λA

λA + αλC
(1− e−(λA+αλC)t)− λA

λA − (1− α)λC
(e−λC t − e−(λA+αλC)t)

=
λA

λA + αλC
− λA

λA − (1− α)λC
e−λC t

+
λAλC

(λA − (1− α)λC)(λA + αλC)
e−(λA+αλC)t

Pr
{
Ca · (A� Ca) ·��B

}
(t) = (1− FB(t))

∫ t

0

(∫ t

v
fCa(u, v)du

)
fA(v)dv

= e−λBt

∫ t

0

(∫ t

v
fCa(u, v)du

)
fA(v)dv

=
λA

λA + αλC
e−λBt − λA

λA − (1− α)λC
e−(λB+λC)t

+
λAλC

(λA − (1− α)λC)(λA + αλC)
e−(λA+λB+αλC)t

= P6(t)

• Validation of the expression for Pr {B · (Cd �A) · (A�B)} (t)

Pr {B · (Cd �A) · (A�B)} (t) =
∫ t

0

(∫ u

0
fA(v)FCd

(v)dv

)
fB(u)du
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exponential distributions∫ u

0
fA(v)FCd

(v)dv =

∫ u

0
λAe

−λAv(1− e−αλCv)dv

=

∫ u

0
λAe

−λAvdv −
∫ u

0
λAe

−(λA+αλC)vdv

= 1− e−λAu − λA

λA + αλC
(1− e−(λA+αλC)u)

=
αλC

λA + αλC
− e−λAu +

λA

λA + αλC
e−(λA+αλC)u

Pr {B · (Cd �A) · (A�B)} (t)
=

∫ t

0

(∫ u

0
fA(v)FCd

(v)dv

)
fB(u)du

=
αλC

λA + αλC

∫ t

0
λBe

−λBudu−
∫ t

0
e−λAuλBe

−λBudu

+
λA

λA + αλC

∫ t

0
e−(λA+αλC)uλBe

−λBudu

=
αλC

λA + αλC

∫ t

0
λBe

−λBudu− λB

∫ t

0
e−(λA+λB)udu

+
λAλB

λA + αλC

∫ t

0
e−(λA+λB+αλC)udu

=
αλC

λA + αλC
(1− e−λBt)− λB

λA + λB
(1− e−(λA+λB)t)

+
λAλB

(λA + αλC)(λA + λB + αλC)
(1− e−(λA+λB+αλC)t)

=
αλAλC

(λA + λB)(λA + λB + αλC)
− αλC

λA + αλC
e−λBt

+
λB

λA + λB
e−(λA+λB)t − λAλBe

−(λA+λB+αλC)t

(λA + αλC)(λA + λB + αλC)

= P15(t)

• Validation of the expression for Pr
{
A · (Cd �A) ·��B

}
(t)

Pr
{
A · (Cd �A) ·��B

}
(t) = (1− FB(t))

∫ t

0
fA(u)FCd

(u)du
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∫ t

0
fA(u)FCd

(u)du =

∫ t

0
λAe

−λAu(1− e−αλCu)du

=

∫ t

0
λAe

−λAudu−
∫ t

0
λAe

−(λA+αλC)udu

= 1− e−λAt − λA

λA + αλC
(1− e−(λA+αλC)t)

=
αλC

λA + αλC
− e−λAt +

λA

λA + αλC
e−(λA+αλC)t

Pr
{
A · (Cd �A) ·��B

}
(t)

= (1− FB(t))

∫ t

0
fA(u)FCd

(u)du

= e−λBt

∫ t

0
fA(u)FCd

(u)du

=
αλC

λA + αλC
e−λBt − e−(λA+λB)t +

λA

λA + αλC
e−(λA+λB+αλC)t

= P9(t)

• Validation of the expression for Pr {A · (B �A)} (t)

Pr {A · (B �A)} (t) =

∫ t

0
fA(u)FB(u)du

=

∫ t

0
λAe

−λAu(1− e−λBu)du

= λA

∫ t

0
e−λAudu− λA

∫ t

0
e−(λA+λB)udu

= 1− e−λAt − λA

λA + λB
(1− e−(λA+λB)t)

=
λB

λA + λB
− e−λAt +

λA

λA + λB
e−(λA+λB)t

= P7(t) + P13(t) + P14(t) + P16(t)

The expressions obtained for the probability of occurrence of the 6 disjoint terms
of the behavioural model of Section 5.4.2.2 are the same as the expressions obtained
with Markov Chains. The failure probability of Q1, and Q2 (by symmetry), can be
determined as

Pr {Q1} (t) = 1− e−λAt − λA

λA + λB − (1− α)λC
e−λC t

+
λA

λA + λB − (1− α)λC
e−(λA+λB+αλC)t

Pr {Q2} (t) = 1− e−λBt − λB

λA + λB − (1− α)λC
e−λCt

+
λB

λA + λB − (1− α)λC
e−(λA+λB+αλC)t
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exponential distributions

and these failure probabilities are the same as those obtained with Markov Chains.

B.3 Case of a single Spare gate with 3 input events

B.3.1 Result obtained with Markov Chains

The state transition diagram of a single Spare gate with 3 input events is shown in
Fig. B.3. States 11 to 16 represent the failure of the Spare gate.

Figure B.3: State transition diagram of a single Spare gate with 3 input events

Solving the differential system which corresponds to the state transition diagram
in Fig. B.3 allows to determine the failure probability of the Spare gate:

Pr {Q} (t) = P11(t) + P12(t) + P13(t) + P14(t) + P15(t) + P16(t)

= 1− e−λAt − λA

λA − (1− α)λB
e−λBt

− λAλB(λA + αλB − (1 + α)(1− β)λC)

(λA − (1− β)λC)(λB − (1− β)λC)(λA + αλB − (1− β)λC)
e−λCt

+
λA

λA − (1− α)λB
e−(λA+αλB)t +

λA

λA − (1− β)λC
e−(λA+βλC)t (B.2)

+
λAλB

(λA − (1− α)λB)(λB − (1− β)λC)
e−(λB+βλC)t

− λA(λA + αλB)

(λA − (1− α)λB)(λA + αλB − (1− β)λC)
e−(λA+αλB+βλC)t
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B.3.2 Result obtained with our probabilistic model

According to Section 5.4.3, the probabilistic model of a single Spare gate with 3

input events is

Pr {Q} (t) =

∫ t

0

(∫ t

u

(∫ t

v
fCa(w, v)dw

)
fBa(v, u)dv

)
fA(u)du

+

∫ t

0

(∫ t

w

(∫ u

w
fCd

(v)dv

)
fBa(u,w)du

)
fA(w)dw

+

∫ t

0

(∫ t

u
fCa(v, u)dv

)
fA(u)FBd

(u)du

+

∫ t

0

(∫ u

0
fCd

(v)FBd
(v)dv

)
fA(u)du

+

∫ t

0

(∫ t

u
fBa(v, u)dv

)
fA(u)FCd

(u)du

+

∫ t

0

(∫ u

0
fBd

(v)FCd
(v)dv

)
fA(u)du

In the case of exponential distributions,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

FA(t) = 1− e−λAt, ∀t ≥ 0

FBd
(t) = 1− e−αλBt, ∀t ≥ 0

FBa(t, tA) = 1− e−λB(t−(1−α)tA), ∀t ≥ (1− α)tA
FCd

(t) = 1− e−βλC t, ∀t ≥ 0

FCa(t, v) = 1− e−λC(t−(1−β)v), ∀t ≥ (1− β)v

where v is the failure date of the event on which C depends. Indeed, C becomes
active as soon as A fails if B has failed before A, or as soon as B fails, so the failure
distribution of C depends on tA or tBa .
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exponential distributions

• Validation of the expression for Pr {Ca · (A�Ba) · (Ba � Ca)} (t)

Pr {Ca · (A�Ba) · (Ba � Ca)} (t) =
∫ t

0

(∫ t

u

(∫ t

v
fCa(w, v)dw

)
fBa(v, u)dv

)
fA(u)du

∫ t

v
fCa(w, v)dw =

∫ t

v
λCe

−λC(w−(1−β)v)dw = e−βλCv − e−λC(t−(1−β)v)

∫ t

u

(∫ t

v
fCa(w, v)dw

)
fBa(v, u)dv

= λB

∫ t

u

(
e−βλCv − e−λC(t−(1−β)v)

)
e−λB(v−(1−α)u)dv

= λB

∫ t

u
e−((λB+βλC)v−(1−α)λBu)dv − λB

∫ t

u
e−(λC t+(λB−(1−β)λC)v−(1−α)λBu)dv

=
λB

λB + βλC
(e−(αλB+βλC)u − e−((λB+βλC)t−(1−α)λBu))

− λB

λB − (1− β)λC
(e−(λC t+(αλB−(1−β)λC)u) − e−((λB+βλC)t−(1−α)λBu))

=
λB

λB + βλC
e−(αλB+βλC)u − λB

λB − (1− β)λC
e−(λC t+(αλB−(1−β)λC)u)

+
λBλC

(λB − (1− β)λC)(λB + βλC)
e−((λB+βλC)t−(1−α)λBu)

Pr {Ca · (A�Ba) · (Ba � Ca)} (t)
=

∫ t

0

(∫ t

u

(∫ t

v
fCa(w, v)dw

)
fBa(v, u)dv

)
fA(u)du

=
λAλB

λB + βλC

∫ t

0
e−(λA+αλB+βλC)udu

− λAλB

λB − (1− β)λC

∫ t

0
e−(λC t+(λA+αλB−(1−β)λC)u)du

+
λAλBλC

(λB − (1− β)λC)(λB + βλC)

∫ t

0
e−((λB+βλC)t+(λA−(1−α)λB)u)du

=
λAλB

(λB + βλC)(λA + αλB + βλC)
(1− e−(λA+αλB+βλC)t)

− λAλB(e
−λCt − e−(λA+αλB+βλC)t)

(λB − (1− β)λC)(λA + αλB − (1− β)λC)

+
λAλBλC(e

−(λB+βλC)t − e−(λA+αλB+βλC)t)

(λA − (1− α)λB)(λB − (1− β)λC)(λB + βλC)
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=
λAλB

(λB + βλC)(λA + αλB + βλC)

− λAλB

(λB − (1− β)λC)(λA + αλB − (1− β)λC)
e−λC t

+
λAλBλC

(λA − (1− α)λB)(λB − (1− β)λC)(λB + βλC)
e−(λB+βλC)t

− λAλBλCe
−(λA+αλB+βλC)t

(λA − (1− α)λB)(λA + αλB − (1− β)λC)(λA + αλB + βλC)

= P11(t)

• Validation of the expression for Pr {Ba · (A� Cd) · (Cd �Ba)} (t)

Pr {Ba · (A� Cd) · (Cd �Ba)} (t) =
∫ t

0

(∫ t

w

(∫ u

w
fCd

(v)dv

)
fBa(u,w)du

)
fA(w)dw

∫ u

w
fCd

(v)dv =

∫ u

w
βλCe

−βλCvdv = e−βλCw − e−βλCu

∫ t

w

(∫ u

w
fCd

(v)dv

)
fBa(u,w)du

= λB

∫ t

w

(
e−βλCw − e−βλCu

)
e−λB(u−(1−α)w)du

= λB

∫ t

w
e−(λBu+(−(1−α)λB+βλC)w)du− λB

∫ t

w
e−((λB+βλC)u−(1−α)λBw)du

= e−(αλB+βλC)w − e−(λBt+(−(1−α)λB+βλC)w)

− λB

λB + βλC
(e−(αλB+βλC)w − e−((λB+βλC)t−(1−α)λBw))

=
βλC

λB + βλC
e−(αλB+βλC)w − e−(λBt+(−(1−α)λB+βλC)w)

+
λB

λB + βλC
e−((λB+βλC)t−(1−α)λBw)

Pr {Ba · (A� Cd) · (Cd �Ba)} (t)
=

∫ t

0

(∫ t

w

(∫ u

w
fCd

(v)dv

)
fBa(u,w)du

)
fA(w)dw

=
βλAλC

λB + βλC

∫ t

0
e−(λA+αλB+βλC)wdw − λA

∫ t

0
e−(λBt+(λA−(1−α)λB+βλC)w)dw

+
λAλB

λB + βλC

∫ t

0
e−((λB+βλC)t+(λA−(1−α)λB)w)dw
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=
βλAλC

(λB + βλC)(λA + αλB + βλC)
(1− e−(λA+αλB+βλC)t)

− λA

λA − (1− α)λB + βλC
(e−λBt − e−(λA+αλB+βλC)t)

+
λAλB

(λA − (1− α)λB)(λB + βλC)
(e−(λB+βλC)t − e−(λA+αλB+βλC)t)

=
βλAλC

(λB + βλC)(λA + αλB + βλC)
− λA

λA − (1− α)λB + βλC
e−λBt

+
λAλB

(λA − (1− α)λB)(λB + βλC)
e−(λB+βλC)t

− βλAλBλCe
−(λA+αλB+βλC)t

(λA − (1− α)λB)(λA − (1− α)λB + βλC)(λA + αλB + βλC)

= P12(t)

• Validation of the expression for Pr {Ca · (Bd �A) · (A� Ca)} (t)

Pr {Ca · (Bd �A) · (A� Ca)} (t) =
∫ t

0

(∫ t

u
fCa(v, u)dv

)
fA(u)FBd

(u)du

∫ t

u
fCa(v, u)dv =

∫ t

u
λCe

−λC(v−(1−β)u)dv = e−βλCu − e−λC(t−(1−β)u)

Pr {Ca · (Bd �A) · (A� Ca)} (t)
=

∫ t

0

(∫ t

u
fCa(v, u)dv

)
fA(u)FBd

(u)du

= λA

∫ t

0

(
e−βλCu − e−λC(t−(1−β)u)

)
e−λAu(1− e−αλBu)du

= λA

∫ t

0

(
e−βλCu − e−λC(t−(1−β)u)

)
(e−λAu − e−(λA+αλB)u)du

= λA

∫ t

0
e−βλCue−λAudu− λA

∫ t

0
e−βλCue−(λA+αλB)udu

− λA

∫ t

0
e−λC(t−(1−β)u)e−λAudu+ λA

∫ t

0
e−λC(t−(1−β)u)e−(λA+αλB)udu

= λA

∫ t

0
e−(λA+βλC)udu− λA

∫ t

0
e−(λA+αλB+βλC)udu

− λA

∫ t

0
e−(λCt+(λA−(1−β)λC)u)du+ λA

∫ t

0
e−(λC t+(λA+αλB−(1−β)λC)u)du
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=
λA

λA + βλC
(1− e−(λA+βλC)t)− λA

λA + αλB + βλC
(1− e−(λA+αλB+βλC)t)

− λA

λA − (1− β)λC
(e−λC t − e−(λA+βλC)t)

+
λA

λA + αλB − (1− β)λC
(e−λC t − e−(λA+αλB+βλC)t)

=
αλAλB

(λA + βλC)(λA + αλB + βλC)

− αλAλB

(λA − (1− β)λC)(λA + αλB − (1− β)λC)
e−λC t

+
λAλC

(λA − (1− β)λC)(λA + βλC)
e−(λA+βλC)t

− λAλCe
−(λA+αλB+βλC)t

(λA + αλB − (1− β)λC)(λA + αλB + βλC)

= P13(t)

• Validation of the expression for Pr {A · (Bd � Cd) · (Cd �A)} (t)

Pr {A · (Bd � Cd) · (Cd �A)} (t) =
∫ t

0

(∫ u

0
fCd

(v)FBd
(v)dv

)
fA(u)du

∫ u

0
fCd

(v)FBd
(v)dv = βλC

∫ u

0
e−βλCv(1− e−αλBv)dv

= βλC

∫ u

0
e−βλCvdv − βλC

∫ u

0
e−(αλB+βλC)vdv

= 1− e−βλCu − βλC

αλB + βλC
(1− e−(αλB+βλC)u)

=
αλB

αλB + βλC
− e−βλCu +

βλC

αλB + βλC
e−(αλB+βλC)u

Pr {A · (Bd � Cd) · (Cd �A)} (t)
=

∫ t

0

(∫ u

0
fCd

(v)FBd
(v)dv

)
fA(u)du

=
αλB

αλB + βλC

∫ t

0
λAe

−λAudu− λA

∫ t

0
e−(λA+βλC)udu

+
βλAλC

αλB + βλC

∫ t

0
e−(λA+αλB+βλC)udu

=
αλB

αλB + βλC
(1− e−λAt)− λA

λA + βλC
(1− e−(λA+βλC)t)

+
βλAλC

(αλB + βλC)(λA + αλB + βλC)
(1− e−(λA+αλB+βλC)t)
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=
αβλBλC

(λA + βλC)(λA + αλB + βλC)
− αλB

αλB + βλC
e−λAt

+
λA

λA + βλC
e−(λA+βλC)t − βλAλCe

−(λA+αλB+βλC)t

(αλB + βλC)(λA + αλB + βλC)

= P14(t)

• Validation of the expression for Pr {Ba · (Cd �A) · (A�Ba)} (t)

Pr {Ba · (Cd �A) · (A�Ba)} (t) =
∫ t

0

(∫ t

u
fBa(v, u)dv

)
fA(u)FCd

(u)du

∫ t

u
fBa(v, u)dv =

∫ t

u
λBe

−λB(v−(1−α)u)dv = e−αλBu − e−λB(t−(1−α)u)

Pr {Ba · (Cd �A) · (A�Ba)} (t)
=

∫ t

0

(∫ t

u
fBa(v, u)dv

)
fA(u)FCd

(u)du

= λA

∫ t

0

(
e−αλBu − e−λB(t−(1−α)u)

)
e−λAu(1− e−βλCu)du

= λA

∫ t

0

(
e−αλBu − e−λB(t−(1−α)u)

)
(e−λAu − e−(λA+βλC)u)du

= λA

∫ t

0
e−(λA+αλB)udu− λA

∫ t

0
e−(λA+αλB+βλC)udu

− λA

∫ t

0
e−(λBt+(λA−(1−α)λB)u)du

+ λA

∫ t

0
e−(λBt+(λA−(1−α)λB+βλC)u)du

=
λA

λA + αλB
(1− e−(λA+αλB)t)

− λA

λA + αλB + βλC
(1− e−(λA+αλB+βλC)t)

− λA

λA − (1− α)λB
(e−λBt − e−(λA+αλB)t)

+
λA

λA − (1− α)λB + βλC
(e−λBt − e−(λA+αλB+βλC)t)

=
βλAλC

(λA + αλB)(λA + αλB + βλC)

− βλAλC

(λA − (1− α)λB)(λA − (1− α)λB + βλC)
e−λBt

+
λAλB

(λA − (1− α)λB)(λA + αλB)
e−(λA+αλB)t

− λAλBe
−(λA+αλB+βλC)t

(λA − (1− α)λB + βλC)(λA + αλB + βλC)

= P15(t)
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• Validation of the expression for Pr {A · (Cd �Bd) · (Bd �A)} (t)

Pr {A · (Cd �Bd) · (Bd �A)} (t) =
∫ t

0

(∫ u

0
fBd

(v)FCd
(v)dv

)
fA(u)du

∫ u

0
fBd

(v)FCd
(v)dv = αλB

∫ u

0
e−αλBv(1− e−βλCv)dv

= αλB

∫ u

0
e−αλBvdv − αλB

∫ u

0
e−(αλB+βλC)vdv

= 1− e−αλBu − αλB

αλB + βλC
(1− e−(αλB+βλC)u)

=
βλC

αλB + βλC
− e−αλBu +

αλB

αλB + βλC
e−(αλB+βλC)u

Pr {A · (Cd �Bd) · (Bd �A)} (t)
=

∫ t

0

(∫ u

0
fBd

(v)FCd
(v)dv

)
fA(u)du

=
βλC

αλB + βλC

∫ t

0
λAe

−λAudu− λA

∫ t

0
e−(λA+αλB)udu

+
αλAλB

αλB + βλC

∫ t

0
e−(λA+αλB+βλC)udu

=
βλC

αλB + βλC
(1− e−λAt)− λA

λA + αλB
(1− e−(λA+αλB)t)

+
αλAλB

(αλB + βλC)(λA + αλB + βλC)
(1− e−(λA+αλB+βλC)t)

=
αβλBλC

(λA + αλB)(λA + αλB + βλC)
− βλC

αλB + βλC
e−λAt

+
λA

λA + αλB
e−(λA+αλB)t − αλAλBe

−(λA+αλB+βλC)t

(αλB + βλC)(λA + αλB + βλC)

= P16(t)

The expressions obtained for the probability of occurrence of the 6 disjoint terms
of the behavioural model of Section 5.4.3 are the same as the expressions obtained
with Markov Chains, as well as the failure probability of the Spare gate.
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Résumé  Dans le contexte de la sûreté de fonctionnement des systèmes critiques, nous nous intéressons aux 
analyses par arbres de défaillance dynamiques (AdDD). 
algébrique permettant de déterminer la fonction de structure des AdDD 
communément utilisées pour analyser les arbres statiques aux arbres dynamiques. Dans un premier temps, nous 
passons en revue les principales approches utilisées pour analyser les arbres de défaillance dynamiques, ainsi que 
leurs limites respectives. Le cadre algébrique permettant la modélisation des AdDD est ensuite présenté. Ce 
cadre algébrique est fondé sur un modèle temporel des événements et sur la définition de trois opérateurs 

Ces opérateurs temporels 
permettent de définir algébriquement le comportement des portes dynamiques, et donc la fonction de structure 
des AdDD. Un modèle probabiliste de ces portes dynamiques est ensuite donné afin de pouvoir déterminer la 
probabilité de défaillance de  à partir de cette fonction de structure. Nous 
montrons enfin comment la fonction de structure des AdDD peut être ramenée à une forme canonique grâce à 
des théorèmes de réécriture, puis à une forme minimale grâce à la définition 
comment les AdDD peuvent être analysés de manière analytique et directe à partir de cette forme canonique 
minimale de la fonction de structure. Nous illustrons cette approche avec deux exemples AdDD issus de la 
littérature. 
 
Mots clés  Approche algébrique, modèle comportemental, modèle probabiliste, fonction de structure, arbres de 
défaillance dynamiques, analyse qualitative, ensembles de séquences de coupe, analyse quantitative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract  In the context of the reliability of critical systems, we focus on Dynamic Fault Tree (DFT) analysis. 
Our contribution is the definition of an algebraic framework allowing to determine the structure function of 
DFTs and to extend the analytical methods commonly used to analyze Static Fault Trees to DFTs. First, we 
review the main approaches which allow to analyze DFTs, as well as their limits. Then, the algebraic framework 
allowing the modelling of DFTs is presented. This algebraic framework is based on a temporal model of events, 
and on the definition of three temporal operators allowing to model the sequences of appearance of events. These 
temporal operators allow to algebraically define the behaviour of dynamic gates, and hence the structure function 
of DFTs. A probabilistic model of these dynamic gates is given to determine the failure probability of the top 
event of DFTs from this structure function. Finally, we show how the structure function of DFTs can be 
simplified to a canonical form thanks to some theorems and to a minimal form thanks to the definition of a 
minimization criterion. Last, we show how DFTs can be analyzed analytically and directly from this minimal 
canonical form of the structure function. We illustrate this approach on two DFT examples from the literature. 
 
Keywords  Algebraic approach, behavioural model, probabilistic model, structure function, dynamic fault trees, 
qualitative analysis, cut sequence sets, quantitative analysis. 


