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Introduction

In general, the term translation is understood as the process of understanding the meaning of a
text in one language and subsequently producing an equivalent text in another language, con-
veying the same message. Machine Translation (MT) is a réve of the 1950s [21, 24-26, 80, 125,
171, 172, 178, 179]. Although a large number of milestones have been achieved to enliven the
réve of MT [21, 23-26, 28, 32, 41, 80, 87-90, 93, 100-102, 104, 105, 113, 115, 125, 131, 132,
134, 135, 139, 144, 162, 171, 172, 178, 179, 188], it is still a dream in the interdisciplinary re-
search of computer science, artificial intelligence, machine learning, computational linguistics,
natural language processing and engineering.

The dream of MT is fuzzy like other dreams. To make it crisp, we have to consider precise
translation tasks. General purpose, high quality and fully automatic MT is believed to be im-
possible [10, 24-26]. But the general MT problem can be reduced to various subproblems ob-
viously less complex and less hard than the general one. We will concentrate on a few of them
of particular interest, such as intralingual or interdialectal translation. That problem reduction
can be made on the basis of the domain of application, the sublanguage (a restricted and limited
part of a language) considered for translation, the intended users, the language pairs under con-
sideration, efc.

These features also help to define the goal and objectives for the subproblems of MT [21, 23-27,
41, 80, 93, 102, 115, 125, 139, 171, 172, 178, 179, 187, 190]. However, these subproblems may
still be very hard and complex, although some instances may be quite simple or not so difficult.
We will define later more precisely what we mean by complexity and difficulty. In any case,
there is a long way ahead to go [25, 26, 139, 187]. One of our goals will be to characterize the
complexity and difficulty of solving a certain class of translation problems that we will call
“weak translation problems”.

MT is known for its complex nature and multivalence is one of its main reasons. Multivalence,
the term used by Mel’Cuk [125], arises due to the non-determinism (polysemy during analysis
and synonymy in generation, and both in transfer) [6, 13, 21, 23-26, 32, 41, 51, 93, 102, 113,
115, 125, 139, 149, 154, 178, 179, 187]. The number of possible translations of an average
source language sentence may go up to thousands or in general increase dramatically with its
length [6, 13, 21, 25, 26, 41, 93, 113, 125, 139, 149, 154, 178, 179, 187]. Given a source lan-
guage SL and a target language TL, a translation unit S in SL of n words may have an exponen-
tial number of valid translations Ty, Ty, ..., Ty in TL where N = 0 (k™) for some k > 1 depend-
ing on the precise subproblem at hand.

To resolve the problem of multivalence for a given subproblem of MT, different filters are ap-
plied at various levels during the phases of preprocessing, analysis, synthesis and post-
processing to restrict the cardinality of the possible solution set of the problem to an acceptable
and reasonable range of values [6, 13, 21, 23-28, 41, 51, 80, 93, 102, 104, 113, 115, 125, 139,
149, 154, 171, 172, 178, 187].

Transliteration is also a subproblem of MT. It consists in overcoming the scriptural differences
among different writing systems used for different languages [1, 3, 4, 9, 15, 16, 47, 50, 57, 59-
61, 65,73, 82-85,97, 100, 101, 108, 112, 124, 130, 143-146, 150, 153, 165, 168, 174, 181, 189,
191] or even for the same language [118-121, 164].

We are interested in the special class of MT subproblems where N is either very small, say al-
ways less than 5, or even almost always equal to 1 because of the proximity of the written forms
of SL and TL. For example, this happens in situations (1) when the languages of a translation
pair are extremely close to each other, e.g. Bengali—-Assamese, Hindi—Marathi, Hindi—Urdu,



Methods and Tools for Weak Translation Problems

etc., (2) when translation is performed between two different varieties or dialects of a language,
either written in the same writing system (Quebecois—French, Malay—Indonesian) or in multiple
unintelligible writing systems (Punjabi, Sindhi, Seraiki) and (3) when the same language is writ-
ten in different mutually incomprehensible scripts (Kashmiri, Malay, Punjabi, Sindhi, Seraiki).

The domain of our investigation is the class of subproblems m of MT, applied to a pair
((Ly, W]), (L W,)) of combinations of a language and a writing system, such that there exists
only one (in most of the cases) or a very small set of valid “translation solutions” to a subprob-
lem 7 for a given sentence S of L; written in W;. A natural assumption is that such problems
should be very simple (in terms of complexity of the sufficient computational model) and not
very difficult (in terms of the human and computation costs involved in preparing the system to
perform translation) than the general translation problems. We will show that the complexity
and the difficulty to solve weak translation problems can vary considerably.

The complexity and the difficulty of a subproblem 7 depend on the precise instance of the weak
translation problem, here denoted by 7 ((L;, W]), (LW,)). We will also use the notation w(SL/
SW,TL/TW). For example, the complexity and difficulty of interdialectal translation is less for
Malay/Latin—Indonesian/Latin than for Hindi/Devanagari-h—-Marathi/Devanagari-m' translation.
We can categorize weak translation problems into generic and specific subproblems.

Intralingual localization is a generic problem that can be further refined in the specific prob-
lems of word for word translation and intralingual translation between different varieties of the
same language. For example, IBM product documentation in French is translated into French by
Bull?, a French computer company that sells IBM products (e.g. AS4000 under AIX) as OEM.
Bull does not use the French versions prepared by IBM because IBM terminology is not iden-
tical to Bull terminology’. This kind of translation is also mandatory to localize the Quebecois
dialect in France, e.g. the Quebecois term ‘présentement’ must be localized into ‘maintenant’ in
France and vice versa. Similar problems also exist between English (UK) & English (USA),
French of 14™ century—standard French, and Malay (Malaysia)-Indonesian (Indonesia).

To solve these problems, a full syntactic analysis is not required, but we have to perform a word
for word translation for the localization of one variety or dialect of the language into the other
and vice versa. Table 1 gives a list of generic and specific subproblems of the general weak
translation problem, together with some of their instances, in increasing complexity and diffi-
culty order.

Successive generic problems are more complex than the previous ones. For example, the Que-
becois—French pair relates to both the first and the third generic problem. In case of intralingual
localization, word for word translation is sufficient to perform lexical Quebecois—French trans-
lation, but we need to do a more complex analysis to perform interdialectal Quebecois—French
translation.

' The script used for Hindi and Marathi are different variants of the Devanagari script (the original is used
for Sanskrit).

? We refer here to the documentation of AIX, IBM proprietary version of UNIX
http://www.bull.com/index.php

3 As Hagége said, “languages are the flags of national identity”. Here, company terminologies are flags of
company identities.
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Sr. | Generic Subproblem Specific Subproblems Instances Constraints
Language localization | Word for word translation Unix documentation IBM to Bull SL=TL
||or Intralingual translation (French to French) SW=Tw
intralingual localization Québécois—French
Malay—Indonesian
Scriptural translation Transliteration Malay/Latin—-Malay/Jawi SL=TL
Transcription Sindhi/Sindhi*~ SW +TW
Phonetic transcription Sindhi/Devanagari
Punjabi/Gurmukhi—
2 Punjabi/Shahmukhi
French/Roman—French/IPA’
Transliteration Hindi—Urdu SL+TL
Transcription Bengali-Assamese SW =TwW
Phonetic transcription Hindi—Marathi
Interdialectal translation | Word for word translation Quebecois—French SL=TL
Scriptural translation English (USA)-English (UK) SW=Tw
Intralingual translation Malay/Latin—Indonesian/Latin
3 Sindhi/Sindhi—Sindhi/Devanagari | SL = TL
Punjabi/Gurmukhi— SW +=Tw
Punjabi/Shahmukhi
Malay/Jawi—Indonesian/Latin
Bilingual translation Word for word translation Hindi—Urdu SL+TL
4 Scriptural translation Bengali—Assamese SW +TwW

Bilingual translation between
linearly very similar languages

Hindi—Marathi

Table 1: Subproblems of the weak translation problem (by order of increasing complexity)

Linguistic Architecture

Following [21, 26, 28, 178, 179, 190], we have adopted and adapted the framework for syntactic

translation, shown in Figure 1, to solve the weak translation problems.
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Figure 1: Vauquois’ triangle [21, 26, 28, 178, 179]

* The derivation of the Perso-Arabic script is known as the Sindhi script.
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We use interlingua and transfer-based linguistic architectures, and experiment with expert, em-
pirical and hybrid approaches. We go through various levels of linguistic representation: source
(in SW), morphotactic, morphological, morphosyntactic and Universal Intermediate Transcrip-
tion (UIT). The refinement of Vauquois’ triangle to the weak translation problems is shown in
Figure 2.

Source Language Level Interlingua or Pivot Level Target Language Level

O <.
$.$ '9\(%
NES CRES
OPL EX
& F S ¢
NI KA
oS %
\‘Oox 5 ¢
£ & o, O
& 3%
T o % %
<& %

Syntactic Tree Transduction
D1-E1 ——— U

\ Lexical Translation /
» UIT2:D1 Phonetico-Morphological Level

Phonetico-Morphological Level

Phonetico-Morphotactic Level

Direct Transliteration

Morphotactic Level Morphotactic Level

Source (L4, Wy) Target (Lp, W3)

Figure 2: Adopted and adapted Vauquois's triangle for the weak translation problem

UIT is defined for each group of very closely related languages or dialects and serves as a Pivot.
More precisely, it is used as a phonetico-morphotactic pivot for surface morphotactic transla-
tion, as a phonetico-morphological pivot for word for word translation, and as a phonetico-
morphosyntactic lexical pivot for syntax-based translation (in conjunction with syntactic trans-
fer).

Computational Model

Researchers have employed various computational models ranging from finite-state technology
[131-135, 161, 162, 166, 167, 169] to machine learning, and empirical methods [1, 32, 33, 41,
102, 104, 115] for solving different subproblems of MT.

Following [3, 4, 100, 101, 134, 135, 162, 174], we employ finite-state technology for solving
different subproblems of the weak translation. For example, we use non-probabilistic finite-state
transducers [121] to solve the problem of scriptural translation (we will define that term pre-
cisely later). We also use Context-Free Grammar (CFG) for developing “phrase structure
grammars”.

Finite-state methods give a 16.1% word error rate for Urdu to Hindi scriptural translation
when all necessary information is present in the input text (we will explain later what we mean
by necessary information). They give a 47% word error rate when all necessary information is
not present in the input text (the usual and normal case especially for Urdu to Hindi, Punja-
bi/Shahmukhi to Punjabi/Gurmukhi, ezc.). At sentence level, the finite-state methods give a 90%
sentence error rate for Urdu to Hindi scriptural translation when the input Urdu text contains
the required information. Without the required information in the input Urdu text, they give a
99% sentence error rate.

Due to the successful use of SMT models in MT, we conjectured that SMT could give us better
results than our finite-state model. Indeed, SMT decreases the word error rate from 47% to
22.1% for Urdu to Hindi transliteration when the input Urdu text does not contain the diacritical



Introduction

marks (mandatory for performing Urdu to Hindi scriptural translation). At sentence level, it
decreases the error rate from 99% to 95%. In contrast, our finite-state model gives better results
(16.1% word error rate) than our best SMT model (27.8% word error rate) when the Urdu text
does contain all necessary diacritical marks.

The absence of information in the source side, which is the usual case for Urdu to Hindi scrip-
tural translation, is a big challenge and cannot be handled well within the framework of non-
probabilistic finite-state transducers. Although SMT increases the word accuracy in such cases,
the results are still not satisfactory as far as usability in real context is considered.

To increase the accuracy, we have proposed a hybrid model [120] for scriptural translation and
gained an overall accuracy of 79.1% (word-level) when the input Urdu text does not contain the
diacritical marks. A hybrid model, a combination of finite-state and statistical models, gives bet-
ter results than the previous two models. In short, we have employed finite-state, empirical and
statistical, context-fee grammars, tree transduction and syntax-based translation (in conjunction
with syntactic transfer) to solve different generic and specific subproblems of weak translation
problems. Table 2 shows results of Urdu to Hindi scriptural translation of different approaches
used to solve the problem of Urdu to Hindi scriptural translation on the same test set.

Approach Word Error Rate Sentence Error Rate
With information | Without information With information | Without information
FST 16.1% 47% 90% 99%
SMT 27.8% 23% 94.5% 95%
Hybrid 14.2% 20.9% 86% 93%
Table 2:Results of Urdu toHindi scriptural translation
Evaluation Methods

One of the most difficult things in MT is the evaluation of a proposed system/algorithm. A nat-
ural language is not an object of exact science like Mathematics or Physics. Therefore, the un-
derstanding of a natural language is a subjective problem that depends on multiple factors. For
example, multivalence makes it hard to associate a real objective number to an MT evaluation.

Recent MT evaluation campaigns have been criticized because only tables of figures (such as
BLEU, NIST, ORANGE, METEOR...) are shown as results, while these n-gram based meas-
ures have been shown not to correlate very well with human judgments [40]. Commercial MT
systems have been consistently ranked low by these measures, while human judges ranked them
quite high [81]. We also have achieved an average 80% word accuracy for Hindi-Urdu scriptur-
al translation with our finite-state methods that seem to be a good measure. But if we measure
the accuracy at the sentence level, then we have an accuracy of 1% to 14%. Thus, it is important
to do subjective evaluations in addition to the objective evaluations.

In general, human and machine (automatic) evaluation methods are used to evaluate an MT sys-
tem. Human evaluations of MT judge various aspects of translations, including adequacy, fideli-
ty and fluency [72, 185]. They are relevant, but costly in terms of time and money [72, 147]. For
automatic evaluations, there exist different evaluation metrics like BLEU [147], NIST [49], F-
measure [177], METEOR [111], Word Error Rate (WER) [138], and MaxSim [43]. Finally,
there are objective task-based metrics measuring human performance like post-editing time and
time to goal (e.g. time to perform a booking, a spoken dialogue translation system). Mostly, we
have used n-gram based automatic evaluation methods, but also have used subjective human
evaluation while the post editing for achieving a perfect result.

We have evaluated the quality of our results on different aspects like Sentence Accuracy (SA),
Word Accuracy (WA), post-editing time, confidence level of human evaluator, fluency, adequa-
cy and usability. We have devised scales for each aspect used for categorizing different systems
and measuring their translation quality. For example, the scale devised for SAR is formulated in
Table 3. We will discuss and formulate all these scales later in more details in the sequel.
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Scale Point Relation with SAR Description
0 SAR < 5% NULL
1 5% < SAR < 10% OK
2 10% < SAR < 15% AVERAGE
3 15% < SAR < 25% GOOD ENOUGH
4 25% < SAR < 50% GOOD
5 50% < SAR = 70% VERY GOOD
6 SAR > 70% EXCELENT

Table 3: Scale based on sentence accuracy for scriptural translation quality

N-gram co-occurrence automatic scoring metrics like BLEU and NIST are widely used as
benchmark for MT system evaluation especially BLEU, even with its known shortcomings for
evaluation of general MT systems [40]. We will show that these deficiencies are not that signif-
icant in the case of the evaluation of weak translation problems, because we have a unique or
very small number of references, say 2 to 4. Thus these metrics are good measures for the trans-
lation quality of weak translation problems. We have used BLEU and NIST to evaluate our
translation systems.

Thesis Plan

This report is mainly divided into three parts. The first part introduces the weak translation
problems. The first chapter introduces and gives an analysis of scriptural translation problem. In
the second chapter, we describe the finite-state approach for solving scriptural translation prob-
lems. Finally, we report the results of our finite-state approach on the Indo-Pak languages (the
term is explained later).

The second part also consists of two chapters. In the third chapter, we describe our experiments
for solving Hindi—Urdu scriptural translation problem using Statistical Machine Translation
(SMT) and report our results. The last part of this chapter, we illustrate our hybrid approach (a
novel combination of finite-state and statistical approaches) for solving the scriptural translation
problems for the Indo-Pak languages. In the fourth chapter, we describe our interactive scriptur-
al translation model. We also describe our evaluation methodologies for the interactive scriptur-
al translation systems.

The third and final part consists of an analysis of interdialectal machine translation, a higher-
level weak translation problem that requires more complex analysis and computation approach-
es than the scriptural translation problems. In this section, we analyze different computation ap-
proaches and required resources for solving the interdialectal translation problem for the Indo-
Pak languages. Finally, we conclude our work and give future perspectives of our study.
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Chapter 1. Scriptural Translation

Transliteration or transcription, a subproblem of general translation, is vital for Natural Lan-
guage Processing (NLP), especially in the domains of Machine Translation (MT), Cross-
Lingual Information Retrieval (CLIR), Named Entity Recognition (NER), multilingual text and
speech processing. It is also known as translation-by-sound. In this chapter, we throw light on
the importance of transliteration and/or transcription in NLP and its related fields and briefly
explain various transliteration approaches. We introduce, define and explain the term scriptural
translation. Finally, we give a brief account of different techniques for implementing scriptural
translation.

1.1. Scriptural Translation, Transliteration and Transcription

The terms transliteration and transcription are often used as generic terms for various processes
like transliteration, transcription, romanization, transcribing and technography [66]. Translitera-
tion is defined as “to write a word or letter in a different alphabet™. It denotes a process that
maps one writing system into the other, ideally letter by letter. It attempts to use a one-to-one
grapheme correspondence (orthographic conversion). A good transliteration is a reversible
process to ensure that the source word can be regenerated from the target transliterated word
[66]. On the other hand, transcription is defined as “a written representation of words or music”.
In the words of [66], “Transcription is the representation of the source script of a language in the
target script in a manner that reflects the pronunciation of the original, often ignoring graphemic
(character-to-character) correspondences.”

In general, the speech processing community uses the term transcription to denote the process of
conversion from the script or writing system to the sound (phonetic representation). For exam-
ple, the transcription of the word “love” in the International Phonetic Alphabet (IPA) is [lov].
On the other hand, the text processing community uses the term transliteration and defines it as
the process of converting a word written in one writing system into another writing system
while preserving the sound of the original word [1, 3, 4, 9, 101, 145, 146, 174]. More precisely,
the text processing community defines the term transliteration as two transcription processes
“source script to sound transcription” and “sound to target script transcription” and sometimes
as one transcription process “source script to target script transcription”. We propose the new
term scriptural translation for this combined process. Scriptural translation is the process of
transcribing a word written in the source language script into the target language script by pre-
serving its articulation in the original language in such a way that the native speaker of the tar-
get language can produce the original pronunciation.

In the remaining sections, we will use the term transliteration as it is used in the literature.

1.2. Machine Transliteration in Natural Language Processing (NLP)

Transliteration is crucial for handling Out-Of-Vocabulary (OOV) words, proper nouns and
Named Entities (NE) in various fields of NLP, especially in MT, CLIR, multilingual text and
speech processing and development of multilingual resources and applications. Back—
transliteration refers to the process of retrieving the original word in the source language from
the transliterated word in the target language. Generally, transliteration compromises on the

% Word definitions are taken from Cambridge Advanced Learner’s Dictionary.
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source language information while approximating the pronunciation of the original source word
into the target language. This makes back—transliteration a more challenging and complex prob-
lem.

Transliteration refers to phonetic translation across two languages with different writing systems
[100, 101], such as Arabic to English [1, 3, 4, 9, 168, 174]. Most prior work on transliteration
has been done for MT of English, Arabic, Japanese, Chinese, Korean, etc., [1, 3, 4, 9, 15, 16,
50, 65, 83, 85, 97, 100, 101, 130, 174, 191] for CLIR [57, 82, 112, 150, 165, 180, 181, 189], and
for the development of multilingual resources [84, 189].

Various transliteration models have been proposed by several researchers: grapheme-based
models [1, 50, 60, 61, 65, 73, 82, 84, 85, 97, 112, 130], phoneme-based models [59, 83, 100,
101, 129, 174, 180, 181], hybrid models [3, 4, 9, 15, 16] and correspondence-based models
[143, 144, 146]. Grapheme-based models establish direct correspondences between graphemes
of the source language and the target language for the purpose of transliteration. On the other
hand, phoneme-based models use the source language phonetic knowledge and its phonemes as
the pivot to perform transliteration. Hybrid and correspondence-based models use both gra-
phemes and phonemes to transliterate the source text into the target text.

In general, all transliteration models exploit different methods like Weighted Finite-State
Transducers (WFST), Machine Learning algorithms (Maximum Entropy, Decision Trees,
Memory-based learning), statistical methods and Statistical Machine Translation (SMT), etc. for
transliterating the source into the target to handle proper names, OOV words, technical terms,
Named Entities (NE), etc. in various domains of NLP [145].

1.2.1. Grapheme-based models

Grapheme-based models directly convert the source language graphemes into the target lan-
guage graphemes without relying on the knowledge of source language phonetics [65, 130,
146]. They develop direct mappings between graphemes of the source and the target languages.
Various transliteration approaches have been proposed based on the source channel model [82,
112], the joint source channel model [50, 65, 130], the SMT model [1, 73, 97, 124], the decision
tree model [84] and the transliteration network model [61, 85, 145].

Direct orthographic mapping from English to Chinese is a very difficult task due to the large
number of characters and multiple orthographic variants of Chinese [66, 67]. For example, the
English name ‘Smith’ can be segmented into /s-mi-th/ but there exist three Chinese characters
for each of /s-/, /-mi-/ and /-th/, given in Table 4 [65]. The best transliteration is shown in bold.

English /s- | -mi- | -th/
Chinese | L S Kr
Chinese 2 | Hf 5 Ld
Chinese 3 Ja58 x =
Table 4: English-Chinese direct orthographic mapping example [65]

Both [65] and [130] have reported 45.6% and 47% word error rates for English to Chinese
transliteration using the n-gram transliteration model and the n-gram noisy channel model re-
spectively. [S0] have reported a word agreement ratio of 69.3% and 67.9% for transliteration
from Bengali to English and vice versa respectively, using their modified joint source channel
model. [97] have reported that the correct transliteration of a word is generated in more than
76% of the cases. [73] has reported 51.08% and 56% of accuracy for transliteration from Chi-
nese to English using a character-based cluster-specific model and a phrase-based cluster-
specific model respectively.

All these reported results are at word or phrase level because they are treating certain types of
words like proper nouns, OOV words, technical terms and Named entities. They have not given
any evaluation at sentence level or any subjective evaluation.
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1.2.2. Phoneme-based models

Phonetic knowledge of the source language is the basis of the phoneme-based model. In this
model, a source language grapheme is first converted into a source language phoneme and then
the source language phoneme is converted into the target language grapheme. [101] proposed a
phoneme-based model for Japanese to English transliteration using WFSTs. They divided the
problem into a number of subproblems, e.g. English word probabilities, English word to pro-
nunciation, English pronunciation to Japanese pronunciation, etc. They developed a WFST for
each subproblem, and finally composed these WFSTs to perform the complete task of back—
transliteration from Japanese to English. They reported a 64% word accuracy. [174] developed a
similar model for Arabic to English transliteration and reported approximately 33% success. A
similar Chinese to English transliteration model [129] was proposed using different parameters
for different steps for performing spoken document retrieval. An extended Markov window me-
thod was proposed for English to Korean transliteration and a 54.9% word accuracy was re-
ported [83].

[180] developed a phoneme-based transliteration model for English to Mandarin Chinese using
WEFESTs to perform IR. They first generated the English pronunciation using the Festival’ speech
synthesis system. Then, the English pronunciation was converted into a sequence of generalized
initials and finals (GIFs) and then this GIFs sequence was transformed into the pin-yin (Latin-
based) transcription, but without tone. Finally, they performed the translation of pin-yin se-
quence to Chinese character sequence. They developed deterministic transformations and statis-
tical transformations. The whole process is shown in Figure 3.

English Name FRANCES TAYLOR
RAENSIHS TEY

wareen [ I

i R
1
Chinese Pinyin fu lang xi si tai le

Chinese Transliteration #5  Ef [ S )

10« 7

Initials and Finals ful ang x 1 sit

Figure 3: Four steps in English-to-Chinese transliteration of names [180]
1.2.3. Hybrid and correspondence-based models

Hybrid models try to use both graphemes and phonemes mappings for transliterating between
the source and the target languages. [3] linearly combined a phoneme-based model and a spel-
ling-based model to perform Arabic to English transliteration. Transliteration results were im-
proved by spelling correction on the source side and by applying web-based filtering on the tar-
get side. They achieved a word accuracy of approximately 50%. [4] exploited comparable cor-
pora and described a two-step method for Named Entities (NE) transliteration with a top-1 word
accuracy of 72.57%. First, they generated a ranked list of transliteration candidates using bilin-
gual and monolingual resources and then they rescored the list of candidates using different
monolingual cues. [16] and [15] linearly combined the grapheme-based and phoneme-based
models to perform transliteration between English and Japanese and reported approximately
60% word accuracy.

[143] considered both the context of a source character and its corresponding pronunciation for
English to Korean transliteration. [146] described a correspondence-based model using differ-
ent machine learning algorithms (a) maximum entropy method, (b) decision tree and (¢) memo-
ry-based learning. Their method used two component functions ®sp and ®@(spyr. The Dgp func-
tion produced correspondences between the source grapheme and source phoneme and the

7 http://www.speech.cs.cmu.edu/festival
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®spyr function (SXP—T) produced target graphemes corresponding to both the source gra-
pheme and the source phoneme. Figure 4 shows part of a decision tree constructed for ®spyr in
English to Korean transliteration. They reported 62%, 63.3% and 66.9% success for English to
Korean transliteration and 66.8%, 76% and 72.2% success for English to Japanese using the de-
cision tree, maximum entropy and memory-based learning methods, respectively.

x(SPT) | Feature type

Js $18 b o a r d > | fo®
S $|s|[m|mor |~ | m|m
Figure 4: Part of the decision tree for ®spyr [146]

None of the above described works have done any subjective evaluation like the usability and
effectiveness of their systems in the real scenarios. They have reported good percentages for
word and phrase accuracies, but we cannot easily correlate these percentages with subjective
measures like usability and effectiveness of results and user satisfaction. For example, we have
achieved 83.9% word accuracy with our finite-state methods for scriptural translation, but at
sentence level we have only 10% accuracy. According to our scale, we can classify our system
in the OK class. Although, we have a very high word level percentage, our system is only clas-
sified as OK. Thus, in addition to objective evaluation, we have also considered the subjective
evaluation because we want to develop online services that people can use in their daily life.

1.3. Scriptural Translation

Scriptural Translation is a subproblem of general translation and almost always a weak transla-
tion problem. It is a special kind of process of transcribing a word written in the source lan-
guage script into the target language script by preserving its articulation in the original language
irrespective of the word type in such a way that the native speaker of the target language can
produce the original pronunciation. Solving the scriptural translation problem is vital to bridge
the scriptural divide between speakers of the same language.

There are many languages that are written in two or more mutually incomprehensible scripts.
For example, Punjabi is written in three different scripts: Shahmukhi (a derivation of the Persio-
Arabic script), Gurmukhi and Devanagari. Kazakh and Kurdish are also written in three differ-
ent scripts, Arabic, Latin and Cyrillic. Malay has two writing systems, Latin and Jawi (a deriva-
tion of the Arabic script), efc. In Europe, Serbo—Croatian is written in the Latin script chiefly in
Croatia, in the Arabic alphabet mostly in Bosnia and in the Cyrillic and Latin scripts in Serbia
[114].

Figure 5 shows some languages that are written in two or more mutually incomprehensible
scripts, with the number of their native speakers in millions. In Figure 5, the example phrase
‘All people’ is written in various scripts for each language and its pronunciation in IPA is also
given between brackets at the end. Arrow signs show the direction of the writing systems (left-
to-right or right-to-left).
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Kashmiri (5.6 M) Kazakh (8.3M) Kurdish (16 M) Sindhi (24.2M)
>+ | Barlyq adamdar Hemi{ mirov Oluil a
v 3 & laalsl 3l ;
- D) 2 3300 3540 | BT ST
SSorF dias Bapieik amammap Cyrillic to add —
> EN —T—— N [har psan]
[budsum sontuk] [barljq sdamdar] [hemvu mirov]
Punjabi (106.5M) Malay (39.1M) Serbo—Croatian (18.5M) Saraiki (14M)

A
<

Semua manugia

Sva |j udsga

TN SHI

S fear =ile |5 | Cag sbyacka ek
e [ssmua mansia] S ol | g ' <
RS A3 s

— [sva ludska] —

[sare msan] [sare mpsan]

Figure 5: Languages with different writing systems

There are dialects of the same language that are written in mutually unintelligible scripts, like
Punjabi, Malay and Sindhi. Some examples are shown in Figure 5. There also exist pairs of
closely related languages, written in mutually incomprehensible writing systems. For example,
Hindi is written in Devanagari and Urdu is written in a derivation of the Persio-Arabic script.
Other examples are Bengali—-Assamese and Hindi—Marathi. Figure 6 shows an example sen-
tence of Hindi—Urdu.

-q.c,uﬂd/(fl}’/y}
T Y 31HT T T B

[dunija ko aman ki zorurat hee.]

The world needs peace.
Figure 6: Hindi - Urdu example sentence

Scriptural translation is an endeavor to bridge the scriptural, ethnical, cultural and geographical
divisions among various communities around the world. It is a prerequisite for weak translation
problems like inferdialectal translation, translation between closely related languages, etc.
without lexical transformation, when the source and the target language dialects or language
pairs are written in mutually unintelligible writing systems. Examples are shown in Figure 5 and
6.

It differs from general transliteration in various aspects. Generally, transliteration handles only
OOV words, proper nouns, NEs, efc. On the other hand, scriptural translation must handle all
kinds of words irrespective of their type. It provides basis for Cross-Scriptural Machine Trans-
lation (CSMT), Cross-Scriptural Information Retrieval (CSIR), Cross-Scriptural Application
Development (CSAD), Inter-Dialectal Machine Translation (IDMT), Cross-Dialectal Informa-
tion Retrieval (CDIR) and for solving the weak translation problems.

It is a generic subproblem of the general translation problem and of the weak translation prob-
lem. Table 5 gives a list of specific subproblems and instances of scriptural translation within
the broader categories of general translation problems and weak translation problems. In each
broader category, the problems and instances are listed in an increasing order of complexity and
difficulty.

¥ Some sample phrases are taken from http://www.omniglot.com/
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Sr. General Generic Specific Instances Constraints
Transliteration English-French
era £ . SL#TL
Transcription French—Spanish
. o . SW=Tw
Phonetic transcription French-Italian
General . -
. Scriptural French—Arabic
1 |translation . . . . )
translation | Transliteration English—Arabic
subproblems o . SL+TL
Transcription English—Japanese SW = TW
Phonetic transcription English—Korean

English—Chinese etc.
Malay/Latin—Malay/Jawi
Sindhi/Sindhi—
Sindhi/Devanagari
Punjabi/Gurmukhi—
Punjabi/Shahmukhi—
Transliteration Punjabi/Devanagari
Transcription French/Roman—
Scriptural | Phonetic transcription | French/IPA

translation Seraiki/Shahmukhi—
Seraiki/Devanagari—
Seraiki/Gurmuhi
Kashmiri/Urdu’—
Kashmiri/Devangari
Transliteration Hindi—Urdu
Transcription Bengali-Assamese
Phonetic transcription Hindi—Marathi

Table 5: Subproblems of scriptural translation for general translation and weak translation

SL=TL
Weak SW +=TW
2 |translation

subproblems

SL+TL
SW =Tw

Different challenges and barriers for the scriptural translation are sorted into different catego-
ries:

= Challenges and barriers within the same language (Malay/Latin—Malay/Jawi, Kashmi-
ri/Urdu—Kashmiri/Devanagari).

= Challenges and barriers between dialects of the same language (Punjabi/Shahmukhi—
Punjabi/Gurmukhi, Sindhi/Sindhi—Sindhi/Devanagari).

= Challenges and barriers between closely related languages (Hindi—Urdu, Hindi—
Marathi).

Some challenges are common to all these categories. Now we will discuss each category sepa-
rately.

1.3.1. Challenges and barriers within the same language

In this section, we describe the main challenges and barriers for the scriptural translation prob-
lems of the same language, written in two or more different scripts.

1.3.1.1. Scriptural divide

There exists a written communication gap between people who can understand each other ver-
bally but cannot read each other. They are virtually divided and become scriptural aliens. Ex-
amples are the Hindi & Urdu communities, the Punjabi/Shahmukhi & Punjabi/Gurmukhi com-
munities, etc. Examples, showing the scriptural divide, are shown in Figure 5 and Figure 6.
Such a gap also appears when people want to read some foreign language or access a bilingual
dictionary and are not familiar with the writing system. For example, Japanese—French or
French—Urdu dictionaries are useless for French learners because of the scriptural divide. The

? Kashmiri is written in Urdu script, a derivation of the Perso-Arabic script, with few additions
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author has faced the same problem when he started to learn French in Pakistan in 2005'°. Table
6 gives some figures on how this scriptural divide affects a large population of the world.

Native Speakers | 2" Language Speakers Total
Hindi 366,000,000 487,000,000 853,000,000
Urdu 60,290,000 104,000,000 164,290,000
Total 426,290,000 591,000,000 1,017,290,000
Source: (Grimes, 2000) all numbers are in millions

Table 6: Population of Hindi and Urdu [156]

Punjabi is also the native language of more than 110 million people of Pakistan and India [119].
Hindi, Urdu and Punjabi represent a total population of 1,127 million, more than the total popu-
lation of Europe (831 million in 2009)"".

1.3.1.2. Under-resourced and under-written languages

Under-resourced and under-written features of the source or target language are the second big
challenge for scriptural translation. The lack of standard writing practices or even the absence
of a standard code page for a language makes transliteration or transcription very hard. The ex-
istence of various writing styles and systems for a language leads towards a large number of va-
riants and it becomes difficult and complex to handle them.

For example, Lingala, a Bantu language group of the Niger-Congo family, is more a spoken
language than a written language, and has several different writing systems with 10 million na-
tive speakers, mainly in the two Congo states. Due to the low literacy of Lingala speakers in
Lingala (the literacy rate in Lingala as a first language is between 10% to 30%), its popular or-
thography is not standardized and varies from one region of Congo to the other'”.

Similarly, Punjabi is the largest language of Pakistan (more than 70 million) and is also more a
spoken language than a written one. There existed only two magazines (one weekly and one
monthly) in 1992 [155]. In the words of [156], “... there is little development in Punjabi, Pash-
to, Balochi and other languages...”. [117] reports the first effort towards establishing a standard
code page for Punjabi-Shahmukhi and till date, a standard code page for Shahmukhi does not
exist. Similar problems also exist for the Kashmiri and Seraiki languages.

1.3.1.3. Absence of necessary information

There are cases where the necessary and indispensable information for scriptural translation are
missing in the source text. For example, the first word U» [dunija] (world) of the example sen-
tence of Figure 6 misses crucial diacritical information, mandatory to perform Urdu to Hindi
scriptural translation. Like in Arabic, diacritical marks are part of the Urdu writing system but
are sparingly used in writings [120, 121, 194].

Figure 7(a) shows the example word without diacritical marks and its wrong Hindi conversion
according to conversion rules (explained later). The Urdu community can understand the word
in its context or without the context because people are tuned to understand the Urdu text or
word without diacritical marks, but the Hindi conversion of Figure 7(a) is not at all acceptable
or readable in the Hindi community. On the other hand, Figure 7(b) shows the example word
with diacritical marks and its correct Hindi conversion, readable by the Hindi community, ac-
cording to conversion rules. Similar problems arise for Punjabi/Shahmukhi—Punjabi/Gurmukhi,
Sindhi/Sindhi—Sindhi/Devanagari, Seraiki/Shahmukhi—Seraiki/Devanagari, efc. Missing infor-

' In some learning books, French was transcribed in the Urdu script instead of Roman to ease the process
of learning for Urdu speaking community, but I could not use the Urdu — French dictionaries directly due
to the non-familiarity with the French writing system.

" http://en.wikipedia.org/wiki/Demographics_of Europe
' http://en.wikipedia.org/wiki/Lingala
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mation in the source text makes the scriptural translation problem computationally complex and
difficult.

[al (1S ] uld] =k [al 1 1S ¢ n]wlu]&[d]>=¢>
[a] ST [j1T ] A [d]1 G =8| [a] <T[j] T [1] T [n] A [v] 3 [d] & = gfaram
(a) without necessary information (b) with necessary information

Figure 7: Example of missing information from the source side
1.3.1.4. Different spelling conventions

Different spelling conventions exist across different scripts used for the same language or for
different languages because users of a script are tuned to write certain words in a traditional
way. For example, the words . [je] (this) = § [j] +» [h] and »: [vo] (that) = s [v] +» [h] are used in
Urdu and Punjabi/Shahmukhi. The character » [h] produces the vowel sounds [e] and [o] in the
example words respectively. On the other hand, a word is exactly written as it is pronounced in
Devanagari and Gurmukhi. The example words are written as ¥ [je] & a [vo] and & [je] & 2 [vo]
respectively in Devanagari and Gurmukhi. There exist a large number of such conventions be-
tween Punjabi/Shahmukhi—Punjabi Gurmukhi, Hindi—Urdu, etc. More details are given in an-
nexes 1 to 4.

Different spelling conventions are also driven by different religious influences on different
communities. In the Indian sub-continent, Hindi is a part of the Hindu identity, while Urdu is a
part of the Muslim identity'’ [155, 157]. Similarly, Punjabi/Shahmukhi and Punjabi/Gurmukhi
are parts of the Muslim and the Sikh identities. Hindi or literary Hindi tries to derive its vocabu-
lary from Sanskrit, while Urdu borrows its literary and scientific vocabulary from Persian and
Arabic. Hindi and Urdu not only borrow from Sanskrit and Persian/Arabic, but also adopt the
original spellings of the borrowed word due the sacredness of the original language. These dif-
ferences make scriptural translation across scripts, dialects or languages more challenging and
complex.

For example, short vowels f& [1] and ¢ [u] come at the end of some Hindi and Punjabi/Gurmukhi
words of Sanskrit origin, but these short vowels ¢: [1] and : [u] can never occur at the end of a

word in Urdu and Punjabi/Shahmukhi [120, 121]. The first short vowel [1] is also used to con-

struct a compound word in Urdu and Punjabi/Shahmukhi, a compounding device borrowed
from Persian. Figure 8 shows some Hindi words of Sanskrit origin with short vowels at the end
and their Urdu transcriptions.

fo (1) | sgfh—3%us (person) [viakti], ﬁﬁcﬁ—g—?ﬁw&u (culture) [sanskrati]
g [u] | 54 (but) [kintu], €T s> (metal) [datu]

Figure 8: Hindi examples with short vowels at the end

While doing scriptural translation from Hindi to Urdu, short vowels 3 [1] and ¢ [v] at the end of
a word are converted into long vowels ¢ [i] and s %3 [u] respectively. But in back transliteration,

this approximation increases the complexity of scriptural translation. More details on different
spelling conventions are given in annexes in which we discuss different scripts in detail.

" The Hindi movement of the late 19th century played a central role in the ideologization of Hindi. The
movement started in reaction to the British Act 29 of 1837 by which Persian was replaced by Hindusta-
ni/Urdu, written in Persian script, as the official vernacular of the courts of law in North India. It is the
moment in history, when Hindi and Urdu started to emerge as Hindu and Muslim identities.
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1.3.1.5. Transliterational or transcriptional ambiguities

Character level scriptural translation across different scripts is ambiguous. For example, the
Sindhi word A [san] (human being) can be converted into Devanagari either as 8T [msan]
or 3@ [msan] (" means wrong spellings). The transliteration process of the example word from
Sindhi to Devanagari is shown in Figure 9(a). The transliteration of the third character from the
left, Noon (0) [n], is ambiguous because in the middle of a word, Noon may represent a conso-
nant [n] or the nasalization [n] of a vowel.

oy J Y g cog ool

YAV LN

g oo HaTd g Sy ey

[ pn” s a n] [1 nsss an]
(a) (b)

Figure 9: Sindhi Transliteration Example

In the reverse direction, the Sindhi Devanagari word 8T [msan] can be converted into a set of
possible transliterations [, gw'l/*, ul?f]. All these possible transliterations have the same pro-
nunciation [msan] but have different spellings in the Persio-Arabic script, as shown in Figure

9(b). Similar kinds of ambiguities also arise for other pairs of scripts, dialects or languages.
Thus these ambiguities increase the complexity and difficulty of scriptural translation.

1.3.2. Challenges and barriers within dialects

Scriptural translation between different writing systems used for two dialects of a language is a
more difficult problem. It possesses all complexity of the previous category:

= Script divide

= Under-resourced and under-written languages
=  Absence of necessary information

= Different spelling conventions

= Transliterational or transcriptional ambiguities

Additionally, it possesses other complexities, described below.
1.3.2.1. Distinctive sound inventories

Sound inventories across dialects or languages can be different. Consider the English—Japanese
pair. Japanese make no distinction between the ‘L’ [1] and ‘R’ [r] sounds so that these two Eng-
lish sounds collapse onto the same Japanese sound [101]. A similar compromise must be done
for English ‘H’ [h] and ‘F’ [f]. Consequently, the English words bass, bath and bus are translite-
rated into /N R “basu” [b(a/a)su] [15]. In case of the English Arabic pair, the English ‘P’ [p] and
‘B’ [b] are both converted into Arabic ‘2’ [b] and in the reverse direction, the Arabic ‘z’ [h] and
‘4’ [h] are collapsed onto the English ‘H’ [h] [3]. Other similar cases are shown in Table 7.

English Sounds Arabic Sounds
D [d] Deleted [174]
K [K] k], 3[q] [174]
S [s] & 10], o= [s], o= [s7] (Abdullaleel and Larkey, 2003)

Table 7: Examples from English and Arabic distinctive sound inventories
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A similar kind of comparison of Japanese and Korean vowels is shown in Table 8. The differ-
ence in the vowel systems of Japanese and Korean makes their transliteration a tricky and com-
putationally hard task.

Japanese Korean
a as in father a [a]
eas ‘ay’ in say e [e]
i as in machine i[i] As in Japanese
0 as in so o [o]
uas ‘00’ in book | u [u]
e .
} As in French
eu

u as ‘u’ in but
d as ‘a’ in Thomas
Table 8: Japanese Korean vowel comparison

For Indo-Pak languages', Punjabi/Gurmukhi (a dialect of Punjabi spoken in India) possesses
two additional sounds/characters than Punjabi/Shahmukhi (a dialect of Punjabi spoken in Pakis-
tan). Similarly, Hindi, Punjabi, Sindhi and Seraiki have the retroflex form [n], but Urdu and
Kashmiri do not. Marathi has 14 vowels in contrast to Hindi’s 11 vowels, shown in Table 9.

Hindi Vowels 37 [] 31T [a] 8 [1] & [i] 3 [u] F [u] % [1] T [e] ¥ [] 31 [0] 3it [5]

o

Marathi Vowels 37 [3] 31T [a] & [1] § [i] 3 [u] 3 [u] % [1] T [e] ¥ [«] 31T [0] 33 [0] 37 [on] 3T: [oh] & [1]

Table 9: Hindi and Marathi vowel comparison

Scriptural translation approximates the pronunciation of the source language or dialect in the
target language or dialect due to differences between sound inventories across languages or di-
alects. It is not possible to preserve all source sound distinctions while doing such approxima-
tion. Thus a distinctive sound inventory across scripts, dialects or languages increases ambigui-
ties and adds to the complexity of the scriptural translation problem. Note that it remains a
weak problem because, at sentence-level, there is almost always only one possible solution in
the context.

1.3.2.2. Lexical divergence and translational ambiguities

For scriptural translation, one needs to decide that a word will be transliterated or translated. In
the case of Bengali—English transliteration, the words ST Wel [dzenata dal] (a proper name) is
transliterated into ‘JANATA DAL’, although Sa@T [donsta] (people) and W [dsl] (group) are
common nouns. On the other hand, IWITI WS [jadevpur vifvwidjalejo], the first word
(name of a city) is transliterated into ‘JADAVPUR’ and the second word is translated to ‘UNI-
VERSITY’ [50]. Similarly, in the case of Hebrew to English translation, person names are al-
ways transliterated, although many of them have homographs that can be translated. On the oth-
er hand, names of countries may be subject to translation or transliteration, e.g. '“noIx [orfat] is
translated to ‘France’, while 13137 [kongo] is transliterated into ‘Congo’ [97].

In case of translations of dialects of the same language or closely related languages, we have to
decide that a word will be translated or transliterated. As mentioned above, Hindi derives its
vocabulary from Sanskrit while Urdu derives its vocabulary from Persian and Arabic. For their
translation, the Hindi word of Sanskrit origin $@atel [bhogvan] (God) must be translated into the
Urdu word 4 [allsh] (God), a word of Arabic origin, instead of its literal transliteration ¢! S
(not an acceptable expression for the Urdu community) and vice versa. Figure 10 shows an ex-

ample sentence to explain the lexical divergence issue for Hindi—Urdu translation. Lexically
translated words are marked in bold.

'* We will explain the term Indo-Pak languages in the next chapter.
' The word is read from right-to-left
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$9TaTeT JHER BT
[b"agevan  tumhari rakfa kre]
S =M SAf A
[kre  hifazat tomhari allah]
God may protect you.

Figure 10: Hindi-Urdu example for dialectal translation

Lexical divergence between different dialects of the same language not only requires a lexical
or word for word translation but also requires a partial syntactic analysis of at least elementary
phrases like noun phrases, verb phrases, etc., when the source word and translated words have
different linguistic properties. Hence, lexical divergence increases the complexity of scriptural
translation for interdialectal translation.

Lexical divergence is not relevant for pure scriptural translation as we only do transliteration or
transcription, but the decision that a word has to be transliterated or translated is crucial for in-
terdialectal translation. It strongly affects user’s satisfaction and acceptability of the final output
of interdialectal translation.

1.3.3. Challenges and barriers between closely related languages

1.3.3.1. Characteristics

Closely related languages are those languages that are linearly similar to each other. In other
words, the word order is mostly the same, but they are still more distant from each other than
different dialects of a language. The following problems are important for their translation.

=  Script divide

= Absence of necessary information

= Different spelling conventions

= Transliterational or transcriptional ambiguities

= Distinctive sound inventories

= Lexical divergence and translational ambiguities

Other complexities are discussed below.
1.3.3.2. Under-resourced dialect or language pairs

For automatic language and speech processing of a language, basic resources like a raw corpus,
a Part-Of-Speech (POS) tagged corpus, a morphological analyzer, a parser, etc. are crucial. Es-
pecially, such resources are necessary inputs to language-independent algorithms and methods
in NLP, whether rule-based, empirical or statistical. Only few languages like English, French,
German, Arabic, Japanese, Chinese, etc. have such computational resources, and the majority of
the languages of the world are hanging behind in this aspect of NLP and computational linguis-
tics. The lack of computational resources is a major obstacle for the NLP development of many
languages.

In the case of transliteration, all previous methods described in Section 1.2 require large compu-
tational resources, e.g. pronunciation dictionaries, parallel word lists for training, POS taggers,
monolingual or multilingual corpora, efc. Thus computational resources play an important role
in developing transliteration systems.

Languages and dialects of Indo-Pak languages are under-resourced. In case of the Hindi—Urdu
pair, not a single parallel resource existed before 2007. Similarly, the other Indo-Pak languages
have very few computational resources, especially Punjabi, Sindhi, Seraiki and Kashmiri. In the
very recent past, there existed not a single font for representing the Punjabi and Seraiki languag-
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es in the computer and a standard code page does not yet exist for these languages. The standard
code page for Urdu was only recently developed, from 1999 to 2001 [2, 79], and was approved
by the National Language Authority (NLA) of Pakistan in 2001.

1.4. Approaches for Scriptural Translation

In Section 1.2, we have explored various approaches for general transliteration. Now, we will
explore and describe different approaches for solving the scriptural translation problems.

1.4.1. Direct programming approaches

In [119], we used a direct programming and grapheme-based approach for scriptural translation
between two mutually incomprehensible scripts of Punjabi (Shahmukhi and Gurmukhi). We
gave direct mappings between Shahmukhi and Gurmukhi graphemes and used dependency rules
for handling contextual mappings.

We gave an object-oriented model for our

. . . . If str.Char=s({i + 1) = "' Then '=zer
Shahmukhi to Gurmukhi conversion and im- If i < str.Length - 2 Then
plemented the scriptural translation process as a If str.Chars(i + 2} = "s" Then

class of Visual Basic .Net with 3,355 lines of
code.

We can develop such classes for each step of
scriptural translation for various script, dialect
or language pairs, but first of all, it is not feasi-
ble to develop large classes and secondly,
changing a mapping or a contextual rule in the
code is not an easy task. To give an example, a
part of the code of the Shahmukhi to Gurmukhi
transliteration class from [119] is shown in Fig-
ure 11. The code implements a simple rule of
Shahmukhi to Gurmukhi transliteration saying
that a sequence of Alef (/) plus Zer (:3) will be

converted into & [i] when the sequence is fol-
lowed by a Choti-Yeh (), and otherwise it will

If i « str.Length — 3 Then
If str.Chars(i + 3) =
OrElse str.Chars(i + 3
Then

convertedsString +=
i+=1
Else
converted3tring += "
i 4= 2
End If
Else
convertedString += "Er
i+= 2
End If
Else
convertedString += rfEr
i4=1
End If
Else
convertedString += "fEr
i+=1
End If

j o= e

refizer

be converted into f& [1] in Gurmukhi. The study
of these mappings and contextual rules show that they can be easily implemented with a finite-
state approach using a Specialized Language for Linguistic Programming (SLLP) [29, 30, 179].
Finite-state rules equivalent to the code in Figure 11 are given in the XFST [12] in Figure 12.

Figure 11: Direct programming example [125]

Read regex [[! ] > f?];

Read regex [[' ¢:] > & || _ «];
Figure 12: XFST code example

The second line of the XFST code implements the conversion rule taking into account the Cho-
ti-Yeh () context. The comparison of the above two code examples clearly shows that it is
much easier to handle and change the XFST code than the direct programming code. In addition
to ease to construct and ease to manage, the finite-state approach also possesses other advantag-
es over the direct programming approach like space and time efficiency.
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1.4.2. Finite-state approaches

Finite-state machines (acceptors and transducers) have been used in many areas of NLP and
computational linguistics. They provide efficient, versatile and flexible tools for the representa-
tion of some linguistic phenomena. Finite-state machines are very robust, time and space effi-
cient and can be used to describe easily the local linguistic phenomena encountered in the em-
pirical study of NLP. They lead to a compact representation of dictionaries, lexical rules, idioms
and clichés, efc. Graphic tools permit to visualize and modify finite-state machines, which helps
in correcting and completing lexical rules, grammars, efc. [134, 135]

Many researchers [3, 4, 15, 16, 100, 101, 174, 180, 181] have efficiently used weighted finite-
state transducers for doing transliteration between different pairs of languages like English—
Arabic, English—Japanese, efc. and also have used different kinds of rich linguistic resources
like pronunciation dictionaries. In [121], we used non-probabilistic finite-state transducers for
building a Hindi—Urdu scriptural translation system.

All the advantages of finite-state technology and its successful use in various fields of NLP
make it a strong candidate for the purpose of translational transliteration. Finite-State Trans-
ducers (FSTs) possess certain very useful and important properties like composition, union, in-
tersection, etc. These properties enable us to divide our large and complex problem into small
parts that can be solved easily and efficiently. Finally, these small problems can be combined
together using the all above properties of FSTs.

1.4.3. Empirical, machine learning and SMT approaches

Recently, statistical, machine learning and Statistical Machine Translation (SMT) techniques
have also been employed to solve the problem of transliteration [1, 47, 50, 59, 65, 73, 84, 85,
97, 124, 130, 143, 144, 146, 165, 168, 180, 181] using different methods for transliteration like
grapheme-based, phoneme-based, etc.

The construction of transliteration models based on statistical methods or SMT is fast and swift,
but the availability of resources required for training and development is mandatory. In the case
of under-resourced languages, SMT is not a good choice to construct a translation or translitera-
tion system. In the case of scriptural translation, majority script pairs or language pairs are also
under-resourced, thus it is difficult to check the suitability of SMT for the construction of trans-
lation and transliteration systems for the considered languages.

In the case of Hindi and Urdu, we have a little parallel resource to check the suitability of SMT
for scriptural translation of the Hindi—Urdu pair, but such resources are rare for other pairs. We
will explore the possibilities of developing parallel resources for SMT systems to translate un-
der-resourced script pairs and language pairs interactively on the Web, using techniques devel-
oped for scriptural translation.

1.4.4. Hybrid approaches

We have mentioned in section 1.1.3 hybrid methods that use both grapheme and phoneme
knowledge for transliterating between languages. Here hybrid approach means to combine dif-
ferent transliteration approaches like finite-state, statistical, machine learning, etc. together to
solve the problem of scriptural translation by exploiting different advantages of different ap-
proaches, because it is possible that we may not achieve or produce sufficiently good results
that are acceptable, using finite-state or statistical approaches. To improve our results, we will
examine and analyze different approaches and study how they can be combined together for
transliteration and translational solutions. We introduce a hybrid approach by combining finite-
state approaches with statistical approaches to improve and achieve better results for the pur-
pose of scriptural translation.
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1.4.5. Interactive approaches

Current MT systems are still far from being perfect after several decades of research in the field.
In practice, the output from the current MT systems needs to be post-edited or corrected for er-
rors. We are also not optimistic to achieve 100% accuracy for scriptural translation, inter-
dialectal translation and other weak translation problems for closely related languages.

As fully automated high quality transliteration is impossible due to sound inventory differences,
different spelling conventions across writing systems, diverse vocabulary and other problems
discussed above. The absence of information in one script is also crucial for the correct translite-
ration into the other script. A scriptural translation model based on weighted graphs (loop-free)
is analyzed and explored such that re-ranking can be done interactively and we can achieve high
quality results. Thus we will also examine and analyze to introduce interactivity at the end of an
automatic transliteration or translation process to achieve good, reasonable, satisfactory, accept-
able and usable results in day to day life.

22



Chapter 2. Scriptural Translation
Using FSTs and a Pivot UIT

Finite-state Machines (FSMs) have been successfully used in various domains of Computational
Linguistics and Natural Language Processing (NLP). The successful use of FSMs have already
been shown in various fields of computational linguistics like lexical analysis, compilation of
large scale dictionaries, morphology and phonology, local syntax, syntax, text-to-speech synthe-
sis, speech recognition, Machine Translation and Machine Transliteration [3, 4, 15, 16, 87, 89,
90, 98-101, 131-135, 161, 162, 166, 167, 174, 180, 181]. All these practical and advantageous
features of FSMs make them very strong candidates to be used for solving the scriptural trans-
lation problems.

There are several platforms for developing FSMs, like the Finite-State Machine library (FSM
library'®) by AT&T, WFST: (Finite-state Template library in C++'" 2000), Xerox Finite-State
Technology (XFST)' [12], FSA [86] and OpenFST", a very recent and open source beta finite-
state library based on the FSM library by AT&T. Good and well-established candidates for de-
veloping finite-state models for scriptural translation problems are FSM Library by AT&T,
XFST by Xerox and OpenFST by Google Research and New York University.

We need a platform that can handle Unicode™ and its UTF8*' encoding as we have to handle
multilingual texts and a range of different alphabets of various languages. In 2006, the simple
text-file coding format of AT&T FSM Library could not handle Unicode characters according to
the best knowledge of the author. OpenFST was not available at the time when we started our
work and it is very recent and still needs time to mature.

Thus our only choice to develop our finite-state models was XFST. Indeed, (a) XFST supports
Unicode and UTFS, (b) XFST is easy to use and is described in a very simple and comprehen-
sive way by [12] and (c) its coding conventions are very easy. In particular, one can easily code
the contextual dependencies as shown in Figure 12 of the previous chapter. All these characte-
ristics make XFST a very good candidate to build finite-state models.

In this chapter, we investigate the effectiveness and efficiency of Finite-State Transducers
(FSTs) for the scriptural translation problems, described in the previous chapter. We also intro-
duce, define and explain a multipurpose translational pivot called Universal Intermediate Tran-
scription (UIT). First, we analyze Indo-Pak languages for the Scriptural Translation problems.
We also describe basic principles and advantages of UIT and develop UIT mappings for Indo-
Pak languages. Then, we explain and describe finite-state scriptural translation models. Finally
we describe our experimental setup and discuss our results.

'® http://www.research.att.com/~fsmtools/fsm

' http://membres.lycos.fr/adant/tfe

'8 http://www.stanford.edu/~laurik/fsmbook/home.html
' http://www.openfst.org

%% http://www.unicode.org

! http://www.utf-8.com
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2.1. Scriptural Translation for Indo-Pak Languages

The Indian subcontinent is a linguistically rich area. India alone represents 438 languages [114]
belonging to several major language families, the two largest being the Indo-Aryan and the
Dravidian families. Pakistan also represents six major languages and 58 minor ones [156]. Pun-
jabi, Sindhi, Seraiki and Kashmiri exist on both sides of the common border between India and
Pakistan and all of them are written in two or more mutually incomprehensible scripts. Hindi,
one of the official languages of India, and Urdu, the national language of Pakistan and one of
the official languages of India, are considered as two varieties of the same language called Hin-
dustani by [152].

In the words of [157], “One man’s Hindi is another man’s Urdu.” Despite the linguistic facts
and probably because languages are felt to be “the flags of national identities” [64], the Hindi
and Urdu communities claim that Hindi and Urdu are two different languages [155-157]. Punja-
bi and Seraiki also have this kind of controversy [155, 156]. The Hindi—Urdu pair exists both in
India and Pakistan or rather we should say that Urdu exists in both countries. Like the bordering
languages, Hindi is written in Devanagari script and Urdu is written in a derivation of the Per-
sio-Arabic script. We call all these languages the Indo-Pak languages because they exist both in
India and Pakistan. A family tree for the Indo-Pak and other major Pakistani languages is given
in Figure 13.

Indo European

Indo-Iranian

Indo-Aryan Iranian Dardic
[ [ [
Punjabi Balochi Kashmiri
Sindhi Pashto
Urdu
Hindi

Figure 13: Family tree of the Indo-Pak and other Pakistani languages

In contrast to the scriptural dissimilarities, different varieties of the Indo-Pak languages share
grammar, morphology, the major vocabulary, history, classical literature and cultural heritage.
Scriptural translation of the Indo-Pak languages is an attempt to bridge the scriptural, ethnical,
cultural and geographical divisions among the Indo-Pak communities around the world.

2.1.1. Scripts of Indo-Pak languages

The scripts of the Indo-Pak languages can be divided into two categories (1) scripts based on the
Persio-Arabic script, and (2) Indic scripts.

2.1.1.1. Scripts based on the Persio-Arabic script

Pakistani varieties of all Indo-Pak languages derive their alphabets from the Persio-Arabic al-
phabet. Only Urdu and Kashmiri are written both in India and Pakistan in the derived Persio-
Arabic script. They are also written in Devanagari in India alone. All of them except Sindhi are
traditionally written in the Nasta’leeq writing style, a highly cursive, context-sensitive, beautiful
and calligraphic style for languages written in the Arabic script or in its derivations [120]. Sind-
hi is traditionally written in Naskh style like the Arabic and Persian languages, but it can also be
written in the Nasta’leeq style [120].
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The distinguishing characteristics of scripts based on the Persio-Arabic script are presented now
for the benefit of the unacquainted reader. They are read from right-to-left. Unlike English, cha-
racters do not have upper and lower cases. The shape assumed by a character in a word is con-
text-sensitive, i.e. the shape is different depending upon whether the position of the character is
at the beginning, in the middle or at the end of the constituent word. This generates three
shapes, the fourth being the independent shape of the character [117-119, 121, 122, 194]. Figure
14 shows these four shapes of the character BEH (<) in the Naskh writing style.

J 4 " —

- - - -

{a (b () {d)

Figure 14: Context sensitive shapes of Beh [194]

To be precise, the above is true for all except certain characters that only have the independent
and the terminating shape when they come at the beginning and in the middle or at the end of a
word respectively, e.g. Alef (), Dal (5), Reh (v), etc. [117, 118, 122, 194]. Arabic, Persian and
Pakistani languages have a large set of diacritical marks that are necessary for the correct articu-
lation of a word. The diacritical marks appear above or below a character to define a vowel, to
build a compound word, or to geminate a character [117-119, 121, 122, 194]. They are the

foundation of the vowel system in these languages. The most common diacritical marks (fatha,
kasra and dumma) with the character BEH are shown in Figure 15.

y /
-—
. e .
Figure 15: BEH with common diacritics

Diacritics are part of the script, but are sparingly used. They are essential for ambiguities re-
moval, NLP, and speech synthesis [78, 118-122, 194, 195]. More detailed information about
Indo-Pak scripts based on the Persio-Arabic script is given in Annex 1.

2.1.1.2. Indic scripts

Two Indic scripts, Devanagari and Gurmukhi, are used for the Indo-Pak languages. Devanagari
is used for all Indo-Pak languages and Gurmukhi is used only for Punjabi and Seraiki in India.
Both Indic scripts are read from left-to-right and are partially syllabic because every consonant
inherits the vowel [3] [14, 94, 118, 119, 121, 136, 152]. For example, Devanagari consonants &

[k], & [b] and & [s] represent the [ks], [ba] and [sa] sounds respectively. In Gurmukhi, the conso-
nants o [k], & [b] and H [s] also represent the [ks], [bs] and [ss] sounds respectively. Both Deva-
nagari and Gurmukhi have vowel signs to mark other vowels with consonants [14, 94, 118, 119,
121, 136, 152]. For example, [ko], [ka], [ki] and [ki] are represented by & + <Y = &I, & + o = &I,
F+f=fFand & + T =& in Devanagariand by I+ 3=, F+or=ar, g+ f:=fgand g + <t =

gt in Gurmukhi respectively.

In Devanagari, the VIRAMA (Halant) sign (2) is used to mark the absence of the inherited vo-

wel [s] between two consonants. Two or more consonants can be combined together to form a
cluster called Conjunct by marking the absence of the inherited vowel between two consonants
[94, 118, 121, 136]. Conjuncts are contextual shapes of Devanagari in which the original shape
of a consonant changes. For example, in the word &=<r [hindi] (Hindi), there is a conjunct form

=< [nd] of consonants =7 [n] and & [d] and the consonant =7 [n] changes its shape. More detailed
information on Devanagari and Gurmukhi scripts is given in Annexes 2, 3 and 4.

25



Methods and Tools for Weak Translation Problems

2.1.2. Analysis of Indo-Pak scripts for scriptural translation

Characters of the Indo-Pak languages can be divided into various groups according to their
types like vowels, consonants, diacritics, digits, punctuation marks and other symbols.

2.1.2.1. Vowel analysis

A vowel is a sound that is produced with an open vocal tract so that there is no build-up of air
pressure at any point above the glottis**. Hindi and Kashmiri have 11 and 17 vowels respective-
ly. The rest of the Indo-Pak languages have 10 vowels that are common to all these languages.
Figure 16 shows vowel charts for Hindi, Urdu and Sindhi. The vowel [¢] is shown in the chart of
Hindi—Urdu vowels, but it has no defined representation or character in both Hindi and Urdu
and is represented by the vowel [s] [78]. The Hindi—Urdu vowel chart does not show the vocalic

RA vowel [r] of Hindi.

' [ 1¥]
e U _ I® _ ® 0
ce 80 \CO
=] \ e
£l L Jje] . R )
=0 |
H= s
® ale - ae
Hindi—Urdu Vowel Chart Sindhi Vowel Chart?

Figure 16.: Hindi, Urdu and Sindhi vowel chart (source Wikipedia)

Devanagari has in total 11 independent vowel characters, e.g. 3 [1], 3it [5], etc. and 10 dependent
vowel signs (also called Matras), e.g. 7 [1], <t [5], efc. to represent vowels of Indo-Pak languag-
es. Kashmiri has 17 vowels and it is not possible to render them with the available 11 vowel
characters and 10 vowel signs of Devanagari, so we have to make some approximations for
doing transliteration from Kashmiri’s derived Persio-Arabic script to Devanagari. These approx-
imations make Kashmiri vowel conversion from Devanagari a really hard and complex task.
More details are given in Annexes 2 to 4.

The vowel representation in scripts based on the Persio-Arabic script is highly complex and
context-sensitive [78, 118-121]. The vowels are represented with the help of five vowel charac-
ters ALEF ('), ALEF-MADA (1), WAW (), YEH (s), BARI-YEH () and AIN (¢) and 20 dia-
critical marks. Urdu, Punjabi/Shahmukhi, Sindhi/Sindhi and Seraiki/Shahmukhi possess the
same set of 15 diacritical marks, e.g. ZABAR (%), ZER (:z), PESH (%), SHADDA (%), etfc.
Kashmiri adds 5 diacritical marks and 4 characters to represent its additional vowels that are
shown in Table 10. More detailed information on scripts based on the Persio-Arabic script is
given in Annex 1.

Additional Kashmiri Vowel Characters
c .. £ oy Y R s
Diacritics 3 [e] , [:] <3 [o:] %3 [9] L [#]
Characters s[0]3[0:] & el d [

Table 10: Additional Kashmiri vowel characters and diacritics

A detailed analysis of 10 common vowels of Indo-Pak languages for Urdu and Punjabi is given
in Table 11.

** http://en.wikipedia.org/wiki/Vowel
2 Sindhi vowel chart is modified and corrected for an error in it.
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Vowel

Contextual nature of vowels in scripts based on the Persio-Arabic script

It is represented by ALEF (') + ZABAR (%) at the start of a word e.g. <! [sb] (now) and
by ZABAR (%) in the middle of a word respectively e.g. &0 [rebb] (God). It never
comes at the end of a word.

It is represented by ALEF-MADDA ()) at the start of a word e.g. =) [admi] (man) and
by ALEF (') or ALEF-MADDA () in the middle of a word e.g. U [dgana] (go), J&%k
[bilaxar] (at last). At the end of a word, it is represented by ALEF (). In some Arabic
loan words, it is represented by YEH (s) + KHARI-ZABAR (%) at the end of a word
e.g. ! [9?1a] (Superior) and by KHARI-ZABAR (:3) in the middle of a word e.g.

[tlahi] (God).

It is represented by ALEF () + YEH () at the start of a word e.g. )& [esar] (sacri-
fice), and by YEH (s) or BARI-YEH (~) in the middle of a word e.g. 'Js« [mera]
(mine), ¢S — [beghor] (homeless) etc. At the end of a word, it is represented by BARI-
YEH (<) e.g. < [sare] (all).

It is represented by ALEF (') + ZABAR (%) + YEH (u) at the start of a word e.g. ~!
[zh] (this) and by ZABAR (&) + YEH (&) in the middle of a word e.g. Jx [mal] (dirt).
At the end of a word, it is represented by ZABAR (%7) + BARI-YEH () e.g. = [ha]
(is).

It is represented by ALEF (') + ZER (s3) at the start of a word e.g. ! [1s] (this) and by
ZER (:3) in the middle of a word e.g. (b [barif] (rain). It never comes at the end of a
word. At the end of a word, it is used as KASR-E-IZAFAT to build compound words.

It is represented by ALEF (') + ZER (3:) + YEH (u) at the start of a word e.g. Jlw
[iman] (belief) and by ZER (:3) + YEH (&) in the middle or at the end of a word e.g.

sl [amiri] (richness), <28 [garib] (near), etc.

It is represented by ALEF (') + PESH (%) at the start of a word e.g. 3 [udd"sr] (there)
and by PESH (%) in the middle of a word e.g. U= [mull] (price). It never comes at the
end of a word.

It is represented by ALEF (') + PESH (%) + WAW () at the start of a word e.g. Uie&ssf
[dighsta] (dozzing) and by PESH (3)+ WAW () in the middle or at the end of a word
e.g. < sa [surat] (face), 55 [terazu] (physical balance), etc.

It is represented by ALEF (/) + WAW () at the start of a word e.g. >3 [otf"a] (nasty)
and by WAW (5) in the middle or at the end of a word e.g. 5 [holi] (slowly), %<
[kaho] (say), etc.

It is represented by ALEF (') + ZABAR (%) + WAW (J) at the start of a word e.g. <l
[5t] (hindrance) and by ZABAR (£) + WAW () in the middle or at the end of a word
e.g. <5 [mot] (death).

Table 11: Vowels analysis for Urdu and Punjabi in scripts based on the Persio-Arabic script [119, 121]

2.1.2.2. Consonant analysis

Consonants of the Indo-Pak languages can be further divided into (1) aspirated consonants and
(2) non-aspirated consonants.

2.1.2.2.1. Aspirated consonants

Unlike in Arabic and Persian, the phenomenon of aspiration exists in all Indo-Pak languages.
Hindi and Urdu have 15 aspirated consonants. In Urdu, Punjabi/Shahmukhi, Seraiki/Shahmukhi
and Kashmir, a special character HEH-DOACHASHMEE (») is used to mark the aspiration of a
consonant and aspirated consonant is represented by a combination of a consonant to be aspi-
rated and HEH-DOACHASHMEE (»), e.g. — [b] + » [h] = # [b"], & [&] + » [h] = £ [&"], - [r] +
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» [h] = 2/ [t"], etc. [118, 119, 121, 152]. On the other hand, Sindhi employs two different ways

to mark the aspiration of a consonant: either it introduces a new character for the aspirated ver-
sion of a consonant or it uses HEH-DOACHASHMEE (») like other languages [122]. Numbers
of aspirated consonants for each Indo-Pak language are shown in Table 12.

Aspirated Consonants of | Hindi | Urdu | Punjabi | Sindhi | Seraiki | Kashmiri
Indo-Pak Languages 15 15 16 11 16 6

Table 12: Numbers of aspirated consonants in Indo-Pak languages

Devanagari and Gurmukhi also employ two different ways to represent aspirated consonants.
Devanagari has 11 separate characters for aspirated consonants, e.g. & [b"], 3T [&"], etc. For the

rest of aspirated consonants, it uses a conjunct form with HA (8), e.g. T [r] + = + & [h] = & [*]
[94, 118, 120, 121, 136]. More details are given in Annexes 1 to 4.

2.1.2.2.2. Non-aspirated consonants

Urdu, Punjabi/Shahmukhi, Seraiki/Shahmukhi, Sindhi and Kashmiri (Urdu script) have added
new characters for indigenous sounds like retroflex and aspirations [118, 119, 121, 122].

Although native speakers of the Indian subcontinent cannot distinguish between the Arabic
sounds SHE (&) [e], SEEN () [s] and SAD (#) [s'] and produce a sound [s] for these charac-
ters, all derived Persio-Arabic scripts for Indo-Pak languages adopted these characters. All these
cases are shown in Table 13.

Sound [t] [s] (z] [h]
Characters 5 h sas i [ hoaciayd | o ‘
Devanagari/Gurmukhi | 9/ 3 d/H g/ 4 g/d

Table 13: One native sound for multiple characters

Urdu and Kashmiri possess in total 35 non-aspirated consonant characters to represent 25
sounds and Punjabi has 36 consonant characters to represent 26 sounds. On the other hand,
Sindhi and Seraiki have 40 and 41 consonant characters to represent 30 and 32 sounds respec-
tively.

In contrast to the derived Persio-Arabic scripts, Devanagari and Gurmukhi are descendents of
the indigenous scripts of the region like Brahmi, Sharda, efc. [14, 94] and they follow the doc-
trine of one character for one sound. Thus, both Devanagari and Gurmukhi have only one cha-
racter for each case given in Table 13. More details are given in Annexes 1 to 4.

2.1.2.3. Diacritics analysis

Diacritical marks are the backbone of the vowel systems in Urdu, Punjabi/Shahmukhi, Sindhi,
Seraiki/Shahmukhi and Kashmiri (Urdu script). They are detailed in Table 11. Consider the ex-
ample of Figure 17 for Urdu. The circled words in the sentences of Figure 17(a) and Figure
17(b) are exactly the same in the written form. But while looking at the IPA transcription of the
words right blow them, we observe that the word has two different pronunciations and conse-
quently two different meanings in these sentences. They are pronounced [tori] (wide) and [turi]
(bangle) in Figure 17(a) and Figure 17(b) respectively. In phonetic transcriptions, the vowel af-
ter the first consonant of these words is different because the diacritical marks ZABAR (%3) and
PESH (%:) are missing. These words with diacritics are also shown in the Figure 17.

A human can read and understand each sentence due to his tuned mind that knows how to read
text without diacritical marks. But in the absence of diacritical marks, it becomes difficult to
understand the phonetics and meanings of a written text for automatics language processing.
More details are given in Annex 1.

28



Scriptural Translation using FSTs and a pivot UIT

- (’a
"T"‘-"’ef %

[hae tori  buhst saEk  je]
This road is very wide
5
S
(a)

«~ Lr e

[hae surax fud mer]
My bangle is red

S
(b)

Figure 17: Ambiguity due to missing diacritical marks
2.1.2.4. Punctuations, digits and special characters analysis

Urdu, Punjabi/Shahmukhi, Sindhi, Seraiki/Shahmukhi and Kashmiri use the Arabic punctuation
marks and also possess a set of special symbols that come from various sources like religion,
poetry, etc. A few examples of these special symbols are %, & and %. These special symbols

have no equivalent in Devanagari and Gurmukhi.

Only some of them must be treated when we perform scriptural translation because they mean
full words or phrases, like the ALLAH ligature (), the MUHAMMAD ligature (/) and the
BISMILLAH ligature (f;’)/}/")['-*””»).The rest of these special symbols are ignored during the transla-
tion process. All these languages have 10 digits and a decimal sign. Detailed information on
punctuations and special symbols is given in Annexes 1 to 4.

2.1.3. Indo-Pak scriptural translation problems

We have already discussed various challenges and barriers of scriptural translation and illu-
strated them with several examples from the Indo-Pak languages in the previous chapter.

We just list them here to refresh the memory: scriptural divide, under-resourced and under-
written characters of the languages, absence of necessary information, differences in spelling
conventions, transliterational or transcriptional ambiguities, differences in sound inventories,
lexical divergence, translational ambiguities and under-resourced character of dialect or lan-
guage pairs.

2.2. Universal Intermediate Transcription (UIT)

General translation opens a way of communication between the users of two different languag-
es. Scriptural translation also provides a communication means between the two communities
that use the same language and can communicate verbally, but not scripturally. They become
alien to each other like their scripts. That is illustrated in Figure 6 with a Hindi-Urdu example.
Figure 18 shows another example the Punjabi/Shahmukhi—Punjabi/Gurmukhi pair.

<l 2 di? &b S Qe
UAST A3 HE At Hf S8t 8

[pndgabi sadi man &gogi man boli e]
Punjabi is our respectable mother tongue.
Figure 18: Example of Punjabi/Shahmukhi - Punjabi/Gurmukhi pair

Therefore, we were considering the problem of scriptural translation as a problem of translation.
Like in general translation, we introduce the concept of pivot for scriptural translation and call it
Universal Intermediate Transcription (UIT). It will not only serve the role of Pivot for the Lan-
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guage/Script pairs of the same languages written in different scripts, but also play a role of pivot
for general translation across the Indo-Pak language pairs. For example, UIT could also be used
as a pivot for the Urdu to Punjabi translation and vice versa.

The Indo-Pak languages are very close to each other and linearly very similar. A pure scriptural
translation can serve as a translation between different pairs of the Indo-Pak languages because
people can read and even understand largely the meaning of a scripturally translated text (trans-
lated into the script of their usage).

We can improve significantly this rough translation by adding a word-to-word translation
process. Scriptural translation between the Indo-Pak languages using a pivot is a first step to-
wards a fully working Indo-Pak machine translation system and the development of collabora-
tive parallel framework like ParGram® [35, 36, 38, 39, 96] to develop multilingual linguistic
resources.

An example sentence “this is my house” of Hindi-Urdu—Punjabi (Shahmukhi and Gurmukhi) is
shown in Table 14. Hindi, Urdu and Punjabi words are aligned in columns. Words that are sub-
ject to word for word translation are given in bold (first and last words).

o T | AT | W | '
Hindi
je | mera | g'r | ha
Urdu ~ Iz // &
je | mera | g'r | heae
Punjabi/Shahmukhi | ~Z e <«
&h| mera | g'r | e
Wg | AT | w3
Punjabi/Gurmukhi
&h | mera | g'r | e
this| my |house| is

Table 14: Example of scriptural translation between Indo-Pak languages

2.2.1. What is UIT?

UIT is a multipurpose pivot. In the current study, it is used as a phonetico-morphotactic pivot
for the surface morphotactic translation or scriptural translation, as a phonetico-morphological
pivot for word for word translation (lexical translation) and as a phonetico-morphosyntactic
lexical pivot for syntax-based translation (in conjunction with syntactic transfer).

In future, this multipurpose pivot will provide the basis for the development of a collaborative
parallel framework for Indo-Pak languages, in which we can develop multilingual morphologi-
cal analyzers and syntactic grammars for the Indo-Pak languages because they share a large part
of their complex phenomena of morphology, syntax, etc.

The Indo-Pak languages possess a common phonetic repertoire with a few additions or subtrac-
tion for each language or dialect. The common phonetic repertoire serves as the central phonetic
lexicon for the UIT encoding of these languages. In other words, UIT is the phonetic encoding
of a language such that a text written in the writing system of a language can be converted de-

** A parallel grammar development project in the framework of Lexical Functional Grammar for multiple
languages.
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terministically into UIT encoded text and the original text can be regenerated from the UIT en-
coded text without any ambiguity.

2.2.2. Principles of UIT

For each group G of languages and dialects that are very similar to each other, we propose to
define a pivot representation what we call “UIT-G”. We have built a “UIT-Indo-Pak” pivot that
we call UIT for short in the sequel.

UIT is a phonetic encoded pivot. IPA is a good choice for the UIT encoding scheme because the
IPA associated with each character of the Indo-Pak languages serves as the encoding standard.
But, portability and readability of IPA characters were not very good across different computer
systems and operating systems in the recent past, when we selected a good candidate for the
UIT encoding scheme in 2006.

Although we have not used IPA as encoding scheme, we have used the IPA coding associated
with each character as the encoding principle for our ASCII encoding scheme. We selected the
printable ASCII characters to base the UIT encoding scheme because it is universally portable
to all computer systems and operating systems without any problem [31, 69, 184]. UIT is a de-
terministic and unambiguous scheme of transcription for Indo-Pak languages in ASCII range
32-126, since a text in this rage is portable across computers and operating systems [69, 184],
using the associated IPA with a character as an encoding principle.

Speech Assessment Methods Phonetic Alphabet (SAMPA)® is a widely accepted scheme for
encoding IPA into ASCII. The purpose of SAMPA was to form the basis of an international
standard machine-readable phonetic alphabet for the purpose of international collaboration in
speech research [184]. The UIT encoding of Indo-Pak languages is developed as an extension of
the SAMPA and X-SAMPA that covers all symbols on the IPA chart [184].

2.2.3. UIT mappings for Indo-Pak languages

The sound or IPA associated with each character of the Indo-Pak languages is used as the main
part of the encoding of a character in UIT. All characters of the Indo-Pak languages are subdi-
vided into three categories, consonants, vowels and other symbols (punctuations and digits).

Consonants are further divided into aspirated consonants and non-aspirated consonants. For as-
piration, in phonetic transcription a simple ‘h’ following the base consonant symbol is consi-
dered adequate [184]. In the Indo-Pak languages, we have two characters with IPA [h]. Thus to
distinguish between the ‘h’ consonants and the aspiration, we use underscore ° ’ to mark the
aspirate and we encode an aspiration as ¢ h’. For example, the aspirated consonants = [{'], 2
[p"] and 2.[¢"] of the Indo-Pak languages are encoded as ‘t"_h’, ‘p_h’ and ‘t S h’ respectively.
Similarly for the dental consonants, we use the ‘ d’ marker. For example, the characters s [d]
and = [t] are encoded as ‘d d’ and ‘t d’ in UIT. Table 15 shows the UIT encodings of aspirated
consonants of the Indo-Pak languages.

The IPA symbols for retroflex consonants of the Indo-Pak languages are t, d, (, | and n, SAM-
PA uses ASCII-96 to encode the retroflex consonants [184]. Therefore the UIT encodings of the
IPA characters t, d, 1, | and n are ‘t™’, ‘d"’, ‘r’, ‘"> and ‘n"” respectively.

Table 13 above in section 2.1.2.2.2 shows cases where several characters are used for the same
sound in the Indo-Pak languages. We distinguish these characters in the UIT encoding by add-
ing a number (1, 2,...) after the UIT encoding of the IPA associated with their sound. For ex-
ample, the Urdu, Punjabi/Shahmukhi, Seraiki/Shahmukhi, Sindhi and Kashmiri characters &, s

% http://www.phon.ucl.ac.uk/home/sampa/
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and (7 are encoded into UIT as ‘s1’, ‘s’ and ‘s2’ respectively. The encoding of (s is ‘s’ because
it occurs more frequently than the other characters. Tables of UIT encodings of all other conso-
nants, vowels and other symbols of the Indo-Pak languages are given in Annex 5.

IPA | Hindi | Gurmukhi | Kashmiri | Punjabi | Seraiki | Sindhi | Urdu | UIT
bh i g # # - # b_h
p" L g P p & 3 # p_h
th ) = P4 P4 P = 4 | tdh
& 3 > 4 # P & 4 t_h
&" =) g 2 2. 2. 2 |dZh
t" ) g 2, 2 2, & 2 | tSh
d T 51 o3 - 5 - ddh
dq" 3 g o5 4 s o4 d h
™ g g Y Y 5 Y r_h
U ¢ Ef o} o) o | Th
Kkt g o ye 4 ye g 4 k_h
¢ | = u s s S | £ | en
| z 4 4 4 Lh
m" =3 q # # # m_h
n" 6 & P s # n_h
yvh T s s v_h

Table 15: UIT encoding of aspirated consonants of the Indo-Pak languages

2.3. Finite-state Scriptural Translation model

Finite-state technology has been successfully used in various domains of NLP [134, 135, 162].
Following [4, 100, 101, 131, 134, 135, 162, 174], we use Finite-State Transducers (FSTs) for
solving the problem of scriptural translation. A finite-state scriptural translation model is a
combination of serially composed transducers. This model possesses two variants, non-
deterministic and deterministic. In this section, we describe non-deterministic and deterministic
transducers for scriptural translation of the Indo-Pak languages. Finally we discuss the system
architecture of finite-state scriptural translation model.

2.3.1. Finite-state transducers

Both conversions of the source language text into the UIT encoded text and from the UIT en-
coded text into the target language text are regular relations on strings. Moreover, regular rela-
tions are closed under serial composition and a finite set of conversion relations when applied to
each other’s output in a specific order, also defines a regular expression [87]. Thus we model
the conversions from the source language to UIT and from UIT to the target language as finite-
state transducers. We divide both conversion problems into smaller problems and write conver-
sion rules for each reduced problem. At the end, by the composition of these small conversion
rules in an ordered sequence, we construct a single transducer that simulates the whole set of
rules. This transducer can be integrated in the finite-state computational model for scriptural
translation. We have developed such scriptural translation transducers for all Indo-Pak languag-
es. These translational transducers can be deterministic and non-deterministic.
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2.3.1.1. Non-deterministic transducers

In the definition of UIT, we said that the correspondences between an Indo-Pak language and
UIT and between UIT and a given written form are functional (unambiguous). It is true when
we consider a written form containing all information sufficient to uniquely determine the pro-
nunciation of the utterances. For example, the correspondence between a text in Hindi and its
UIT encoding is one-to-one.

Non-determinism in the automata appears when the correspondence is not one-to-one, and when
we consider the conversion process, because it is often the case that there is not enough infor-
mation in the character string itself to determine the proper pronunciation of a sentence, even if
it is unique. To remove all potential ambiguities caused by the absence of diacritics (Urdu) or by
the absence of indication of the absence of a vowel or the presence of the default vowel ‘5’
(Hindi), for example, one often needs to do a full syntactic, semantic and in some cases prag-
matic analysis of the sentence in discourse (or dialogue).

By non-determinism, we thus mean that ambiguities can appear when we convert a text written
in a language L; in a script W into a UIT text and the UIT text is converted into another lan-
guage Ly, in a script W;. For example, the conversion of the Hindi word f&dRT [sitara] (star) into
UIT gives ‘slt dA1rAl’ (deterministic output) and the conversion of ‘slt dA1rAl’ into Punja-
bi/Shahmukhi gives us a set of 18 possible transcriptions, out of which only one is correct s4>.
The whole process is shown in Figure 19.

Hindi/Devanagari q f\ d o T
UIT I td Al 125

SN U

Punjabi/Shahmukhi & (f S |

I

*

T T T
J

<

0
Figure 19: Ambiguities of Hindi/Devanagari to Punjabi/Shahmukhi scriptural translation

There are two types of regular relations that we model with finite-state transducers. The first
comprises the one-to-one mappings between characters of an Indo-Pak languages and UIT sym-
bols. We call them character mappings. The sound or IPA associated with a character serves as
the mapping relation between the character and a symbol from the UIT encoding. The others are
the contextual mappings.

For the discussion on character mappings and contextual mappings, we will consider the exam-
ple of Figure 19 and the UIT encodings of Table 15 as a small domain of application. We will
formulate regular relations for these examples and develop example transducers for this small
domain.

2.3.1.1.1. Character mappings

Table 16 gives the UIT encodings of aspirated consonants of Hindi and Punjabi/Shahmukhi,
already shown in Table 15, together with their conversion into character mapping regular rela-
tions.
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IPA | Hindi to UIT Regular Relations | Punjabi/Shahmukhi to UIT Regular Relations
bh HA—bh #—b h
p" % —ph #—p h
" T-tdh F—tdh
" o—t h #F—1t h
&" sT—>dZh s—d Zh
tfh S—tSh Z—t S h
dr T —ddh »—ddh
qr ¢—d_h s5—d _h
o €—-rh #s—1 h
o G—r_h #5—1_h
k" T—-kh 4—kh
gh g—gh 4—gh
I cg—1h 4—1h
m" F& —m h #—m_h
n" T8 —n_h #—n_h
vh »s—Vv_h

Table 16: Regular rules for aspirated consonants of Hindi and Punjabi/Shahmukhi

By interchanging the UIT encodings before the arrow sign and the respective characters of Hin-
di and Punjabi/Shahmukhi after the arrow, we can construct regular conversion relations from
UIT to Hindi and Punjabi/Shahmukhi. Similarly, regular conversion relations for the characters

of the example word of Figure 19 are shown in Table 17.

IPA | Hindi/Devanagari Regular Relations | Punjabi/Shahmukhi Regular Relations
S H—s J—sore —slorf—s2
I 71 o1
t d—td e —tdorst—tdlors—t d2
a ol — Al 1— Al
r I —>r s —>r
h g—h s— h

Table 17: Regular relations for the example of Figure 19

We can transform these conversion relations into XFST rules. Table 18 gives the sample XFST
code for Hindi to UIT scriptural translation corresponding only to the conversion relations of
Table 16 and Table 17. The first command (first line) clears the XFST stack of any previous
finite-state automaton or transducer, if any. The second command sets the character encoding to
UTF8. The third and fourth commands are compiled into different transducers and saved onto
the XFST stack when this code is compiled with the XFST compiler. The last command com-
poses all finite-state transducers constructed in the stack into a single finite-state transducer and
saves it on the stack. Each ‘read regex’ (read regular expression) command can consist of one or
multiple conversion rules and is terminated by a semicolon. We can then apply the final finite-
state transducer to some Hindi text to convert it into UIT. The example is shown in Figure 19.
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clear stack

set char-encoding UTF-8

read regex [ﬁ? -> I];

read regex [@ -> [k " " h], ¥ -> [g " " h], & -> [t " "
"_" h] , a’ _> [d "_" Z "_" h] , 6 _> [t nwen "_" h} , a _>
nwNn "_H h}, 2]' -> [t n_n d lv_lv h], QI -> [d n_n d "_" h],
-> [p "_" h], aq' -> [b "_" hJ, a > [r wen lv_n h], H _>
d->[t""d4d], ¥\ >r, oI ->1, # ->m, o -=>n, 9 -> v,
-> h];

read regex [[2 ] -> [" " h] || | & | A | ]  1;

compose net

S

[d

vy
s,

&

Table 18: Sample XFST code for Hindi to UIT scriptural translation

Similarly, we can construct the XFST rules for UIT to Punjabi/Shahmukhi scriptural translation,
shown in Table 19. The third command defines a constant containing a finite-state automaton

that we can use later in constructing transducers, especially for defining the context.

clear stack

set char-encoding UTF-8

define CONSONANTS [b | [b "™ " h] | p | [p " " h] | [t " " d]

I [t "_" d "_" h] ‘ [t L1 H] | [t wen "_" h] I [S 1] l [d "_"

z] | [d" " z""hl | [t""s] | [t""™s""™hl | [d""

d] | [d"™ "d®""h] | [d""] | [d"" " "h] |r]| [r""

hl | [z " "] | [z ™™ "™ "™ h] | s | [s2] | [£t"™"dl1l] | k|

[k " "hl | g | [g""hl | 1| [L""h] |m]| [m""h]|

n| [n" "h] | v [ [v"" Y/l] [ h | [t " " d2]];

read regex [k -> qﬂ g —-> .C [t ™" S] >¢g, [d" " Z ->¢,
[t " "] > &, [d"'"] —>% [t""d >, [d""d->,
P->¢, b >, [r""] > Jy 8 =>y, [t " "d]l > &, £ —>
s, h =>, [E " " d]l =>4 [t " " d] =>3, [s] -=> &, [s] =>
J1;

read regex [[t " " 4 1] -> 4, [t " " d 2] ->3%, [s 1] -> &,
[s 2] > /17

read regex [[" " h] ->» [| [k | g | [t ™ "™ S] | [d" " Z] |
[t " "] | [d"™" | [£t""d | [d""d | p | bl [r
"""l r | 1l |m|n]|v] 1;

read regex [I -> &, [A 1] => 1, [A 1] => »];

read regex [[A 1] ->» || [CONSONANTS]  [.#.]1];

compose net

Table 19: Sample XFST code for UIT to Punjabi/Shahmukhi scriptural translation

The code of Table 18 is deterministic and gives a unique output for a given Hindi text as we
have shown in the example of Figure 19. On the other hand, the code of Table 19 is non-

deterministic and parts of the code that cause the non-determinism are highlighted.

This non-

deterministic nature is also shown in the example of Figure 19. Commands 3 of Table 18, 6 and

8 of Table 19 are contextual mappings that we describe below.

Figure 20 shows graphically the final transducer for of the XFST code of Table 18.
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Figure 20. FST for XFST code of Table 18
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2.3.1.1.2. Contextual mappings

A contextual mapping is a contextual rule that determines a desired output when a character ap-
pears in a certain context. XFST provides a contextual replace operator [§9] for defining contex-
tual replacement, shown in Figure 21.

[Read regex [a -=> b [| ¢ d I; |
Figure 21: Contextual replace operator of XFST

The code shown in Figure 21 will be transformed by the XFST compiler into a contextual trans-
ducer that converts every occurrence of ‘a’ in the source by ‘b’ in the output when ‘a’ is pre-
ceded by ‘¢’ and followed by ‘d’ in the source text. In XFST, it is possible to express context in
the source and the target sides [12].

The third command of Table 18 models another contextual mapping saying that ‘0g’ is trans-
lated by _h’ when it is preceded by any of the characters T, o, #, and 1. The second last rule of
Table 19 models the contextual mapping rule that ‘A1’ is translated into ‘s> when it is at the end
of' a word and preceded by a consonant.

Vowel representations in Urdu, Punjabi/Shahmukhi, Sindhi, Seraiki/Shahmukhi and Kashmiri
are highly context-sensitive, as shown in Table 11. These context-sensitive vowel representa-
tions can be expressed by context-sensitive transducers in XFST. A few examples of Urdu con-
text-sensitive vowel conversions in UIT are given in Table 20 when vowels occur at the begin-
ning of a word*’.

read regex [I -> “@” || _ .#.];

read regex [[J] -> I, (1] -> U || _ .#.1;

read regex [[¢/] -> i, [¢.11 -> 1, [T -> ™", [»1]1 -> o,
7] => 0, [+7] -> u, [/ -> [e 3], [<7] -> [“{” 3]
| AL

Table 20: Sample XFST code for Urdu to UIT scriptural translation
XFST codes for the Indo-Pak languages are given in Annex 6.

2.3.1.2. Deterministic transducers

There are scriptural translational ambiguities as shown in Table 13 and accordingly our finite-
state transducers are also ambiguous and non-deterministic. We can make these ambiguous
transducers deterministic by removing certain choices and keeping only the most probable one.
For example, UIT ‘s’ can be converted into &, v and _# in Urdu and Punjabi/Shahmukhi. We
have conducted an analysis of a small corpus of 412,249 words and found interesting statistics
for the characters of Table 13. They are given in Table 21. On the basis of these numbers, we
can say that the most probable choice for ‘s’ is .

Hindi Urdu (corpus word frequency)
o |=(41,751),4(1312)

T | (53.289), 7 (751), & (86)
g |#(72,850), ¢ (1800)
ST |7 (2551),  (1489), 3 (228), 5 (215), % (2)

Table 21: Corpus word frequncies of confusing characters [121]

Similarly, we can define default choices for other ambiguities and convert our ambiguous finite-
state transducers into deterministic finite-state transducers. They are given in Annex 6.

% #. marks the beginning or end of the input word or text when used as context before or after in the
XFST code.
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2.3.2. Finite-state model architecture

The system architecture of the finite-state model consists of Text Tokenizer, UIT Encoder, UIT
Decoder, Text Generator and Finite-state Transducers. It is shown in Figure 22.

Source text
|

Finite-state Transducers

< Hindi >< Urdu
Source Tokens
' (s

Punjabi/ Punjabi/
Shahmukhi

Gurmukhi>
UIT Encoder >

Text Tokenizer

A

Seraiki/ Seraiki/
‘ Shahmukhi Devangari
UIT encoded tokens

< Punjabi/> < Seraikil
UIT Decoder < Devanagari Gurmukhi

i < sindhi >< Sindhi/ >
Target tokens Devanagari
=1

- Kashmiri/
Text Kashmiri > @evanagari
Generator
I
v
Target text

Figure 22: System architecture of the finite-state model for Indo-Pak scriptural translation

Text Tokenizer receives and converts the input source language text into constituent words or
tokens. This list of the source language tokens is then passed to the UIT Encoder that encodes
these tokens into a list of UIT tokens using the source language to UIT conversion transducer
from the repertoire of Finite-State Transducers. These UIT tokens are given to the UIT Decoder
that decodes them into target language tokens using the UIT to target language conversion
transducer from the repertoire of Finite-State Transducers. Finally, the Text Generator generates
the target language text from the translated target language tokens.

A sample run of this architecture on Hindi to Urdu scriptural translation on the example sen-
tence of Figure 6 is shown in Table 22 (the Hindi input sentence is reproduced here in the first
row). The UIT Decoder gives either a unique list of the target language tokens when determinis-
tic finite-state transducers are used, or a list of sets of possible target language tokens for each
input token when non-deterministic transducers are employed for decoding.

gﬁl’«’JIT T 3HT T ST ¢ [duntja ko amen ki zerurat hae] (The world needs peace)
Text Tokenizer | UIT Encoder - UIT D.ecoder
Unique output Ambiguous outputs
gferar dUnljA1 L5 [U5, 5]
& Ee ;/
Eal ko [ ’J/a b4 ]
31T @mn o [v]
T ki g [{,3]
S ERG zrurt d ] [ =, &/5}5 Y &/5}7 Yy
I Luj:’ , busis J;u}’ , busid
500, K/;}J’ , 5303, 3/;}' R ’iu’)i’]
J h{ « [¢.2]

Table 22: Sample run of finite-state model for scriptural translation from Hindi to Urdu

Text Generator converts the unique output of the UIT Decoder into an Urdu sentence with one
error in the fifth word (highlighted), shown in Figure 23.
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q.;du}(,(cflfy;

Figure 23: Unique output of the sample run by determintisc FSTs

On the other hand, from the ambiguous output of the UIT Decoder, we can generate 240 output
sentences, but only one is the correct scriptural translation of the source Hindi sentence in Urdu.
The correct sentence is shown in Figure 24. The sole difference between the output of the de-
terministic FST and the correct scriptural translation is highlighted in both sentences shown in
Figure 23 and Figure 24.

q..c/}/d/u”!fy;

Figure 24: Correct scriptural translation of the sample run

Figure 25 shows a part of the confusion network for the ambiguous outputs of the non-
deterministic finite-state model for scriptural translation.

Figure 25: A part of confusion network for the ambiguous outputs of the non-deterministic FSTs

2.4. Experiments and results

The scriptural translation systems for Hindi—Urdu, Punjabi and Seraiki are freely available on
Internet”’” with a simple post-editing facility like Google translate. By the post-editing, they not
only correct the output for their use but also give us suggestions for the future improvements in
the system.

For testing our finite-state systems, we have developed different test sets for different lan-
guage/script pairs of the Indo-Pak languages. Our results are presented in the next two sections.

2.4.1. Test data

The Indo-Pak languages are under-resourced, but we were fortunate enough to find some raw
monolingual corpora for Hindi, Urdu and Punjabi (Shahmukhi and Gurmukhi). We will de-
scribe the sources and details of these corpora in the next chapter. Here we will focus on the test
sets that we have developed.

For the Hindi-Urdu pair, we have developed three test sets.

= The first Hindi-Urdu test set contains 52,753 Hindi—Urdu parallel words that we have
extracted from Platts’ Urdu, Hindi and English dictionary®® [151].

= The second test set contains 200 sentences (4,281 words) of Hindi origin that are ex-
tracted at random from a Hindi corpus® of more than 3 million words.

7 http://www.puran.info
¥ It was made available by Digital South Asian Library, University of Chicago.
# 1t is freely available http://www.cfilt.iitb.ac.in/ from IIT Bombay, India.
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= The third test set contains 226 sentences (4,632 words) of Urdu origin that are extracted
at random from the Urdu corpus’’ of more than 2 million words.

We will call these test sets “HU Test Set 17, “HU Test Set 2”” and “HU Test Set 3 respectively.

It is a common practice in the Hindi community to use the characters & [k], @ [k"], T [g], ST [&],
g [d], & [d"] and & [p] instead of the characters & [q], @ [x], T [y], T [z], 5 [t], & [¢"] and & [f] re-

spectively, due to their shape similarities. In the HU Test Set 2, the extracted Hindi sentences
were edited and corrected for these typo errors. Then, we translated the extracted Hindi sen-
tences into Urdu by using our finite-state system for Hindi—Urdu scriptural translation. These
translated Urdu sentences were post-edited for any error and completed by the necessary diacrit-
ical marks.

We have shown above that the diacritical marks are vital for Urdu to Hindi scriptural transla-
tion, but they are sparingly used by people in writing. To compute the performance of our finite-
state model in this unfortunate but real situation, we developed another Urdu test data by re-
moving diacritical marks from the post-edited 200 Urdu sentences. All these files will serve as
input to our finite-state systems as well as an output reference for the automatic evaluations.

To build the HU Test Set 3, we first edited the extracted Urdu sentences for any error and res-
tored the missing but necessary diacritics. We also developed a new Urdu test data without dia-
critics from the edited Urdu sentences by removing all diacritical marks from it. Then the edited
Urdu sentences with diacritics were translated into Hindi using our finite-state system. The
translated Hindi sentences were then post-edited for any error. Again all these data will serve
both as an input as well as a reference output. Details on HU Test Set 1 are given in the next
chapter.

For Punjabi/Shahmukhi and Punjabi/Gurmukhi, we started from the classical poetic work “ ~
# &.1s” by Waris Shah®' [45] that we typed in 2004. We selected 500 couplets (5,069 words).
This classical poetic work contained in total 14,223 words. During the preparation of this test
data, we made sure that the Punjabi/Shahmukhi text contained the necessary diacritical marks.
We developed a second Shahmukhi test set from it by removing the diacritical marks. Again, as
for Hindi—Urdu, we converted the Shahmukhi text with diacritics into Gurmukhi using our fi-
nite-state system and the output was then post-edited for any error. All these files were used as
input texts and as output references for both directions.

For Seraiki/Shahmukhi and Seraiki/Devanagari, we received a Seraiki book that was originally
written in the derived Persio-Arabic script and was converted into Devanagari by using our on-
line Hindi Urdu transliteration service’. The Seraiki/Shahmukhi character set is a superset of
the Urdu script. So, Mr. Fareed Pirzada® first translated the book into Devanagari and then
post-edited it to correct the missing characters and other errors. He shared the original and trans-
lated book with us. We also selected a test set of 500 sentences from this data. The Serai-
ki/Shahmukhi text does not contain any diacritical mark. We edited our test set and restored the
necessary diacritical marks in it. As for other test sets, we developed another test data by remov-
ing the diacritical marks. It took us more than one month to develop these test sets.

Data set Language pair No. of words | No. of sentences Source
HU Test Set 1 | Hindi—Urdu 52,753 - Platts dictionary
HU Test Set 2 | Hindi—Urdu 4,281 200 Hindi corpus
HU Test Set 3 Hindi—Urdu 4,632 226 Urdu corpus
PU Test Set Punjabi/Shahmukhi—Punjabi/Gurmukhi 5,069 500 Classical poetry
Seraiki Test Set | Seraiki/Shahmukhi—Seraiki/Devanagari 2,087 509 Seraiki poetry

Table 23: Data sets for testing scriptural translaiton

30 A part is developed by the author and a part is obtained from EMILI
3! A classical Punjabi poet and writer of 18" century

32 http://www.puran.info/HUMT/index . html

33 A native speaker of Seraiki from Lahore, Pakistan.
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2.4.2. Results and discussion

For Urdu, Punjabi/Shahmukhi and Seraiki/Shahmukhi, we have two types of input data. One
contains the necessary diacritical marks and the other does not contain any diacritical mark. On
the other hand, Hindi, Punjabi/Gurmukhi and Seraiki/Devanagari have only one input data. Here
we will report the results of our deterministic finite-state models.

For Hindi to Urdu scriptural translation, we have applied the finite-state model for Hindi to Ur-
du scriptural translation on all Hindi inputs of HU Test sets 1, 2 and 3. In general, it gives us an
Urdu output with the necessary diacritical marks. To evaluate the performance of Hindi to Urdu
scriptural translation of our finite-state system against the Urdu without diacritics, we have
created a second Urdu output by removing all diacritical marks from the default Urdu output of
the Hindi to Urdu finite-state model. We have calculated the Word Accuracy and Sentence Ac-
curacy for the default and the processed Urdu outputs by comparing them with the Urdu refer-
ences with and without diacritics respectively. To compute WAR and SAR, we have used the
SCLITE utility from the Speech Recognition Scoring Toolkit (SCTK)** of NIST. The results of
Hindi to Urdu scriptural translation are given in Table 24.

Accuracy Accuracy for
for default output Processed output
Test Set Word Sentence Word Sentence
Level Level Level Level
HU TestSet1 | 32.5% - 78.9% -
HU Test Set2 | 90.8% 26.5% 91.0% 27%
HU TestSet3 | 81.2% 8.8% 82.8% 9.7%

Table 24: Result of Hindi to Urdu scriptural translation by the finite-state system

Figure 26 shows a sample Hindi source text from HU Test set 2 of Hindi origin.

HRAT FERicoh TWORIT iUl AcEITT Hell3il & &F H FolellcAsh I TF gl S, T
&1 faareas gfdem@s @1 & 3R 30 & 9 HRT WHR & FEHAfIseT & 3egey & «Ad
Y 3T FT FI 3TTRIC F @I 8 ;

$H 9& W A §U AT W HRA & HealBd AEpfaer Freedl 3N Rd & i
"iEpfae A & AT @1 af¥ica W® ¢, 39 & A W @ el e § o
Fear TR W A1 3R I5T TR W A |

3T N AT R HRA 3R faeit & ghafed w1 § W 0Rd &1 gederwill 3R goeg
CATRECsh Holl3l & Gaffeniur 3N AT e & &9 & HT & FolellcAs AR & IR H
HH A F AT R & RV AAwT Ifh 1 Fo 3ifAF SR 72 & |

FAT AT AR USH & [T IRAT Famsi 3R dlecdasm & &7 & 5y ¥ 39
orelcAs® AR HAVOlcHs Hd &7 HiaTa fawor &or & gar &Y a2

Figure 26: A sample Hindi source text for Hindi to Urdu scriptural translation
The sample Hindi input text contains in total 169 words and 5 sentences.

Table 25 shows the default Urdu output text and the Urdu reference with diacritics for the sam-
ple Hindi input of Figure 26. Wrongly translated words are highlighted.

3 http://www.itl.nist.gov/iad/mig//tools/
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Urdu reference with diacritics

Default Urdu output

K Loyt B L gk A 0 i £ Sk
L Kot ot L u‘l)ul/.:.if/ .,Qﬁufyiuf)d; K T« G 7
d L BB e T F e L G L i

W rEs EF DB L s 4T st Z./Z;K sk J,
S o LBk gl LGB R L s
¢ ol o .“Ju"vf ‘ AQV; A .“Jg)i <5 0T wp
-Lf‘/.,/;é)/ufu‘{/,j;;f,af

d/ P Iy e /f’d; o At S 13( K6 11’
94 % LS l:/fg 71 uﬁ/ou L sl ..«/@LE 527§
el il fuah L pfille, L
- .;_bz;’f u’/@b&u/&ﬂ ;:J/ﬁ

Lot L Beiie of gtk s L L WL Cdn TV

¢ L S S gun K K Ped A P o

J/::D/K ..«GL’/ 94 %L Ul u:i?'f; L‘;‘,J/W’f.:./.:ug/éJL/ ;':/M
L Kpads 4 & o Ly LAt 45 6 T < oot
LK OB T F il L SwiP

i P BB L ek TG LK sk
Jj‘fuzf/ff{Jl/‘ {.J[/ ﬁ};{uh’}/é&jﬁbﬁ“é :;/La:‘ oo
gt oA MBS B B S s 8 3T e
-u‘{/.,fo%/ui’u‘{/.,};;;{

J:«zlﬁ‘ RRYRCHT S A8 T I 7 K 5K K <7
u‘.’%i L/%‘; s g9 & wl ..«/@UZ é’fé}uf‘j/@;;/z
L2 :/}f[c f/uﬁ' ek & gt Lo £ <7
- ‘;—tﬁ;{. SHe w/&){%/ﬁ {M/

L BELE i gt ks o) £ P caa T U]
¢ J ‘,;/ E/ d/ Lo (oJsss ;%'é K:W LAt o ..«C"b/ 444

Table 25: Default Urdu output of Hindi to Urdu scriptrual translation

Table 26 shows the processed Urdu output text and the Urdu reference without diacritics for the

sample Hindi input of Figure 26.

Urdu reference without diacritics

Processed Urdu output

Fank o b 22 L gt A & ot in, L ks
LKy wds »{é JI oL ngw/,@:‘j’m ¥ _;T: J“JZ’

VRTINS XYV Pf)
s ..f/ﬁ () Py —p—yy by K oy I
st e m(ul./‘i&'..f/pv/gf"écdw 3

L/“/«:/K ..«Ql:{/ J%é usls’ ‘jl“/.i.} LE,J/WV.Z/.,..E)PV ~2AE
L Kpeds i é (P ..ng/.,oc:"i’;Lu € T ‘ J..‘/f

¥ oK T F e L L A
28 P NI AL ik T Y 2/ K sn
st e m(@/é@.ﬁ%;{‘é;u

¢ pelb ol .“Ju»“f ,»QW P A e 07 2SR
-f/.'./‘-‘/tﬁ!/ulf/.,/‘-‘/:/&r
J:AL% Lo s =y

S UFhs e e ;i/i&/(/ -
Lf‘fy 4 u).%u L sl B 28§,

Rl .“Jla“f ,»9/.,‘ Plage M <2 &7 gz
,‘f‘/.,//,f‘lu}!f/.‘.//:/mf
J&/L&‘ Lo ek =y

P AR T ,i/iﬁj/( 6T
94 /’{”( LS Lfi) 23 uﬁ/ﬁ Z st Ly 22y SK204

, L ,
e L Pl Fp e h L glileo, £ | e2B L p i Fe F it ch £ gl oy £ o

-t $Ke oy .fggéu/
&ﬁ' /"f/ Z ALy o sl ZAE <L uﬁ LeAn .7)' L:( 94 /rf( e Ly o sl A SeJ L u:&{ L eda 71’ L:'J/
) J‘/E./'/k/d/z.LU/u .:»,?'g %3 LA ..«C’”LP/ :,L‘éf ¢ JUJE/(JZ.LU/M \:«{"6 %3 LA V&.lf‘)/ 4.4C4C

- .‘..bz‘,{ d/ﬁab..il;l ;'/)/&g

Table 26: Processed Urdu output of Hindi to Urdu scriptrual translation

The finite-state scriptural translation system for Hindi to Urdu produces an Urdu output with
diacritics. However, we know that the Urdu community is used to see the Urdu text without dia-
critics. Thus, we removed all diacritical marks from the Urdu output text that is more acceptable
to the Urdu community. By this post-processing, we gain more than 40% accuracy in case of
HU Test Set 1. We also gain in accuracy for the other test sets.

The sample processed Urdu output of Table 26 shows that post-processing has no effect on it. It
also contains the same 9 error words as in Table 25, because none of these errors is caused by
the absence of diacritical marks.

Our finite-state system produces its worst results on the HU Test Set 1. We have developed our
translational rules by keeping in mind the necessary diacritical marks, while this test data is ful-
ly diacritized and contains a large number of diacritical marks. For this reason, our finite-state
system gives a very poor result on this data. We can tackle this problem by incorporating rules
of translation for a fully diacritized text.

The HU Test Set 2 gives better results than the HU Test Set 3 for Hindi to Urdu scriptural trans-
lation, because it is of Hindi origin and contains less Arabic and Persian words that cause prob-
lems in Hindi to Urdu scriptural translation. Also it contains fewer words that can cause transli-
terational or transcriptional ambiguities, as described previously. On average, the Hindi to Urdu
scriptural translation is 80% and 20% accurate at word and sentence level respectively, using
our finite-state system.
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For the classification of our scriptural translation systems, we have devised two scales. One cor-
responds to the word accuracy and the other corresponds to the sentence level accuracy. They
are shown in Figure 27 and Figure 28.

Excellent

Very Good

Good

Good Enough

Average

OK

Classification of Quality

NULL

0 50 60 70 80 90 100
Word Accuracy

Figure 27: Classification scale based on the word accuracy for scriptural transaltion

Excellent

Very Good

Good

Good Enough

Average

Classification of Quality

OK

NULL

0 10 20 40 50 70 90 100
Sentence Accuracy

Figure 28: Classification scale based on the sentence accucary rate for scriptural translation

According to the scale of Figure 27 and Figure 28, the Hindi to Urdu scriptural translation sys-
tem is classified in the ‘Good’ and the ‘Good Enough’ classes respectively.

The subjective evaluations like usability, effectiveness and adequacy depend on several factors.
For example, the sample output Urdu texts of Table 25 and Table 26 show that only 9 Hindi
words (out of 169 words) are wrongly translated into Urdu. On average, there are 1.8 errors per
sentence and the translated Urdu text conveys the meaning very well. A user with a good know-
ledge of Hindi and Urdu languages would rate our Hindi to Urdu system quite high and would
also rate the Urdu output very usable. Another user who wants to read a Hindi text, but does not
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know Hindi, would also rate this system and the Urdu output quite high and very usable respec-
tively, because it serves its purpose.

On the other hand, a user who wants to publish a Hindi book in Urdu, would rate this system not
very good. This is because he has to localize the Hindi vocabulary of Sanskrit origin as the ac-
ceptance of the Hindi vocabulary in the Urdu community, target of his published book, is very
low. Thus the subjective evaluation depends on various factors and it is not easy to compute
such measures for the evaluation of a scriptural translation system.

For Urdu to Hindi scriptural translation, we have two inputs for each HU Test Set, but we have
a single Hindi reference with which we will compare both Hindi outputs. We already know that
it will give us less word accuracy for the Urdu input without diacritical marks that are mandato-
ry for correct Urdu to Hindi scriptural translation. The results for Urdu to Hindi scriptural trans-
lation are given in Table 27.

Accuracy for Accuracy for
Test Set Urdu with Diacritics | Urdu without diacritics
Word Sentence Word Sentence
Level Level Level Level
HU Test Set1 | 68.0% - 31.2% -
HU Test Set2 | 83.9% 10% 53.0% 1%
HU Test Set3 | 98.4% 73.9% 58.9% 0.4%

Table 27: Result of Urdu to Hindi scriptural translation by the finite-state system

For examples of Urdu to Hindi scriptural translation, the Urdu input texts with and without dia-
critical marks are shown in Table 25 and Table 26 (left columns) respectively as the Urdu refer-
ence texts. Table 28 shows the Hindi reference text with the Hindi scriptural translation of the

Urdu input text with diacritical marks.

Hindi reference

Hindi output from the Urdu text with diacritics

& &1 # gollcAs HA Y4 Feal S, T H
faarezee gfasgas @1 & 3R 37 & a6 #Rd
THR & TERATAHAET & egel & oA o 319
HT HA 3TIRIC H @ § ;

$H 9g W FF FA §U AT W R & Hecg
e Treeul IR HRd & R Aiepias
AT & T 1 afica @1 8, 39 & A
R |, FATRT 3R Felll ;

Frrd TR W AW AR 5T TR W 4 |

39 H WHA A oRd AR e # ghakd
W & W ARd & veddsll AR gee confees
3l & aeffeter AR arEdr R F & H A9
& golellcA® ANE & aX H &7 ¥ FA had
TR & Rfeld woe e #71 3o 36w
ST el & |

FT A AR 9ol & faT #RAT swemsit 3R
dlecdure & &7 7 5 7 e gorereAs 3R
IAVUTIcHs Hr T HieTH fFawor & i Far =
a2

F AT F WolellcAs HAT T4 ST S |, 3T
fareda gfoemgEs @ & R 3@ & S #Rd
PR & HEPIATAHANET & FETFT & AT 8 3T
& FHIAT ITTRIE FT @ &;

$H Y& W HRAT AW g MY W AR &
HERIREIAT TR Toaedl AR TR & HIR
HiEfae sl & @A &1 afdca W@ &, 39
FAT F W AeeTfesT Aot 3 § S Hargrenr
RIded , [Weld , FATRT 3R HeATg;

Fegl TR IR 41 AR T TR ) A |

39 T THRT HRT AT 9RA IR faget 7 glafed
® & W ARG & gedierl iR gEeA ceries
Fe3T & Faffeal IR e FA F FWRAT 7 39
& WoledlcAs A9 & IR & & ¥ A 3Maa
TR & RfRE g@ear b & Fo 3f0s
ST T8 & |

FAT 3T AR IIohT & fold HRG™T dHomsii 3R
Hlecdere & RF § 7Y 0 39 FeleAcHD
3R IARETCHS HRT FT GERE @R S Y
HIAT F< M2

Table 28: Hindi output for Urdu input text with diacritics
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For the Urdu input with diacritics, the accuracy of the Urdu to Hindi finite-state scriptural trans-
lation system is 83.9% at word level for HU Test Set 2 and it is classified as ‘GOOD’ the classi-
fication scale of Figure 27. On the other hand, it shows an accuracy of 10% for the same test set
and is classified as ‘AVERAGE’ by the classification scale of Figure 28.

The average numbers of errors per sentence are 7.6 words, because the test set is of Hindi origin
and it contains a large number of words of Sanskrit origin. The words of Sanskrit origin have a
very bad effect on the finite-state scriptural translation system and the usability of the Hindi
output would be rated less by the user in general. The classification of the scale of Figure 28
would correlate more accurately with the Hindi output usability and user satisfaction as com-
pared to the classification of the scale of Figure 27.

Table 29 shows the Hindi output of the Urdu to Hindi scriptural translation for the Urdu input
text without diacritics with its Hindi reference.

Hindi reference Hindi output from the Urdu text without diacritics

HRAT FEhfdeh WU ST aceards Hell3it
& 87 F GolellcAs S U5 Fga S, HT &l
T gfdsmgas @ & IR 3§ & S8 6Rd
WHR & FERAEHET & 37eger & A o 39
FT FRT 3TIRIC A @T § ;

39 9¢ W FE A g HT W R & Healiga
aiEpias FgEaeHl 3N ORA & Mo Aiepiae
Afa & AT #7 aRica W § L, 39 &7 # A
WG , FATerT 3 FHard

FegrT TR R o 3R T57 TR G o |

3T T FHRT HF A 9RA IR fagut A glafea
W & W ARd # veddsll 3R guey confees
Fom3t & geffror 3R arEar = & a7 7 3T
& GolellcAs® ANEH & IR & A & &7 Had
TR & Rfed soe e #1 3o 36w
AR AT ¢ |

FAT 3T AR Udh & T HARAT Femafl 3R
dlecders & &7 & 5y 713 3ua gorereAs 3R
HeAVUIcHS S & HEH fqawor S T FHar
afr 2

HRAAT FHRIID IWIRTT HYAT ATAFATI Hell31l &
HAR H TXoAellcdHS HRAT WA g1 Sif , 3T FH
FEITEUA RS 8T § 3R 3IH & 96 HRd
WHR & THBIAART & IR & A1 o 37T Fr
FHRAT 3TDIET T ET & ;

IF U6 W HRIAT INd gV HT W HRI &
JRIACIAT AFRAS THATAT IR ARG & AR
qEFEF Ad & oA F GAl W@ & . 3
FAN A TH #{HA IS 3T § SN HIRgAT
RIAA , RO |, IRATSAT 3R FHeAlT ;

HEXTT T WX T 3R I TR T 4 |

T & THERT SRAT OF ARG AR deei H dHed
T § W HRA H WEWRHRI AR FESAT TARICH
FoI3 & AR 3R TIAEAT A & HAAR A
T F EOEGHS IPER & IR H & d FF
3T AR & YT AHAAIT dehcll ol HS UH
SHRI o6 § |

HAT 3T AR UISH & o HARAAT Holl3l 3R
HeRMHR & FAR T HI AT 39 TAATTHD
3R 3TAATdHS HRAT T FhAdd ael ol T
&A1 HY I 2

Table 29: Hindi output for Urdu input text without diacritics

The Urdu to Hindi scriptural translation system is classified as ‘OK’ by the scale of Figure 27
for HU Test set 2 and 3. It is classifies as ‘NULL’ for HU Test Set 1. It is also classified as
‘NULL’ by the scale of Figure 28 for all three test sets. On average, there exist 17.6 errors per
sentence. In this case, the usability of Hindi output is also very bad. The errors in Table 29 are
due to the vocabulary of Sanskrit origin and the absence of diacritical marks in the Urdu input
text. Therefore the vocabulary diversity and the missing information have a large affect on the
accuracy of the Hindi—Urdu scriptural translation and the finite-state system is classified as
‘NULL’ in terms of usability, effectiveness and user satisfaction.

For Punjabi scriptural translation, we have applied our finite-state model on the Gurmukhi in-
put. Like Hindi to Urdu translation, it also gives Punjabi/Shahmukhi output with necessary dia-
critics and we developed a processed output by removing all diacritics from it. We have com-
puted WAR and SAR results by comparing these two outputs with the Punjabi/Shahmukhi ref-
erence texts with and without diacritics.
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In the reverse direction, we have two types of input Punjabi/Shahmukhi texts, one with diacrit-
ics and the other without diacritics. The results of the Punjabi finite-state scriptural translation
systems are given in Table 30.

Accuracy Accuracy
for default output for processed output
Punjabi/Gurmukhi to I;Vord Sentence Word Sentence
Punjabi/Shahmukhi evel level level level
84.2% 27.8% 85.2% 29.9%
Accuracy for Accuracy for
Shahmukhi with diacritics | Shahmukhi without diacritics
Punjabi/Shahmukhi to Word Sentence Word Sentence
level level level level
Punjabi/Gurmukhi [ 9g 3oy, 90.3% 67.3% 6.4%

Table 30: Results of Punjabi scriptural translation by the finite-state system

Compared to the Hindi—Urdu pair, the Punjabi/Shahmukhi—Punjabi/Gurmukhi pair is computa-
tionally less hard. The post-processing to the default out of the finite-state scriptural translation
systems for Punjabi/Gurmukhi to Punjabi/Shahmukhi also helps to gain an increase of approx-
imately 1% and 2% at word and sentence levels respectively. The Punjabi/Shahmukhi to Punja-
bi/Gurmukhi scriptural translation system is classified as ‘GOOD’ by both scales of Figure 27
and 28. Thus the usability of the Punjabi finite-state scriptural translation system is higher than
the Hindi—Urdu finite-state scriptural translation system.

In the reverse direction, the Punjabi/Shahmukhi to Punjabi/Gurmukhi scriptural translation sys-
tem gives an accuracy of 98.8% and 67.3% for the Punjabi/Shahmukhi input text with and with-
out diacritics respectively. For the Punjabi/Shahmukhi input text with diacritics, the scriptural
translation system is classified as ‘EXCELLENT’ by both scales of Figure 27 and Figure 28. On
the other hand, it is classified as ‘NULL’ according to the scale of Figure 28 for the Punja-
bi/Shahmukhi input text without diacritical marks.

Similar to Hindi—Urdu and Punjabi finite-state scriptural translation, we have applied our finite-
state systems to the Seraiki test set. Here also, we have also developed a processed Serai-
ki/Shahmukhi output from the default output of our finite-state system by removing the diacrit-
ics. The results are given in Table 31.

Accuracy Accuracy
for default output for processed output
o ) Word Sentence Word Sentence
Seraiki/Devanagari to
Seraiki/Shahmukhi level level level level
81.3% 19.4% 83.7% 20.3%
Accuracy for Accuracy for
Shahmukhi with diacritics | Shahmukhi without diacritics
Seraiki/Shahmukhi to Word Sentence Word Sentence
level level level level
Seraiki/Devanagari | 95 20, 76.4% 58.6% 8.6%

Table 31: Results of Seraiki scriptural translation by the finite-state system

In the case of the Seraiki/Devanagari to Seraiki/Shahmukhi scriptural translation system, the
post-processing also helps to gain an increase in word accuracy of approximately 1 to 2 percent
both at the word and the sentence levels. The accuracy for both the default and the processed
Seraiki/Shahmukhi outputs is also more than 80% at word level. The system is classified as
‘GOOD’ and ‘GOOD ENOUGH’ according to the scale of Figure 27 and Figure 28 respective-

ly.
The absence of diacritical marks in the Seraiki/Shahmukhi has a very bad effect on the accuracy

of the finite-state scriptural translation system. The scriptural translation system is classified as
‘NULL’ for the Seraiki/Shahmukhi input text without diacritics.
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The above results support our hypothesis that lack of important information and of diacritical
marks in the source texts considerably lowers the best possible quality of the scriptural transla-
tion of the Indo-Pak languages. They are crucial and their absence in the input texts decreases
the performance considerably, from more than 80% to less than 60% at word level. Also, the
translation system classification changes from ‘GOOD’ to “NULL’. It is an unfortunate but a
real situation for Indo-Pak scriptural translation. Thus, restoring the missing information and the
diacritical marks in the input texts, or minimizing their effect on the scriptural translation of the
Indo-Pak languages is a great challenge and a complex problem.

We have also computed the BLEU and NIST scores for all these test sets. They are given in Ta-

ble 32. Classifications according to the scales of Figure 27 are also shown in the table.

Hindi to Urdu Scriptural Translation

BLEU NIST
Test Set Default Processed Default Processed
Urdu Output Urdu Output Urdu Output | Urdu Output
HU Test Set 1 0.2935 0.7893 3.2778 8.7144
(NULL) (GOOD ENOUGH)
HU Test Set 2 0.8375 0.8402 10.5823 10.6030
(GOOD) (GOOD)
HU Test Set 3 0.5823 (OK) 0.6112 8.9508 9.1513
(AVERAGE)
Urdu to Hindi Scriptural Translation
BLEU NIST
Test Set Input with Input without Input with | Input without
Diacritics Diacritics Diacritics Diacritics
HU Test Set 1 0.6789 0.3113 7.6229 3.4706
(AVERAGE) (NULL)
HU Test Set 2 0.6372 0.1817 9.1702 4.8751
(AVERAGE) (NULL)
HU Test Set 3 0.9607 0.2435 11.8271 5.9887
(EXCELLENT) (NULL)
Punjabi/Gurmukhi to Punjabi/Shahmukhi Scriptural Translation
BLEU NIST
Test Set Default Processed Default Processed
Output Output Output Output
PU Test Set 0.6709 8.8752
(AVERAGE)
Punjabi/ Shahmukhi to Punjabi/Gurmukhi Scriptural Translation
BLEU NIST
Test Set Input with Input without Input with | Input without
Diacritics Diacritics Diacritics Diacritics
PU Test Set 0.9672 0.3592 10.5464 6.6469
(EXCELLENT) (NULL)

Table 32: BLEU and NIST scores for scriptural translation of Hindi - Urdu and Punjabi

2.5. Conclusion

Finite-state methods are robust and efficient to implement scriptural translation rules in a very
precise and compact manner. Especially XFST provides us a very simple and easy SLLP for
developing finite-state transducers as compared to the other available finite-state platforms.
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The missing information and the diacritical marks in all the source texts of the Indo-Pak lan-
guages proved to be very critical, crucial and important for achieving high and accurate results.
Thus restoration of the missing information and the diacritical marks or reducing the effect of
their absence on the scriptural translation of the Indo-Pak languages is one of the major ques-
tions for further study and work.
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Chapter 3. Empirical and Hybrid
Methods for Scriptural
Translation

Statistical Machine Translation (SMT) [32, 33, 102, 105, 115] is a big leap in the field of MT,
but most of time SMT lingers with the data scarcity problem, especially in the case of under-
resourced languages or language pairs. Empirical and statistical approaches are also getting at-
tention of researchers for solving the problems of transliteration and/or transcription [1, 3, 4, 46,
50, 52, 65, 68, 71, 97, 112, 120, 124, 130, 137, 140, 143, 144, 146, 148, 164, 173]. Following
them, we have also developed statistical models for solving the problem of scriptural translation
for the Indo-Pak languages.

We found the data of a Urdu-Hindi-English dictionary [151] from Digital South Asia Library
(DSAL), University of Chicago™ for Hindi~Urdu pair (the only almost parallel data, we found).
Using these parallel and monolingual resources, we can check the usability of empirical me-
thods for scriptural translation. First we will describe the SMT model developed for Hindi-Urdu
scriptural translation. Then we describe a hybrid model, a combination of FST and statistical
methods, to utilize monolingual resources for the improvement of scriptural translation perfor-
mance. Finally, we compare different models used for scriptural translation.

3.1. SMT Model for Scriptural Translation

SMT is becoming a fashion in the field of MT because of its robustness and efficiency. It is easy
and very fast to construct an SMT system when large enough parallel data are available, using
existing freeware tools like GIZA++ [141], Moses [105] and SRILM [175]. For developing an
SMT system, we prepare the parallel data (if available) for alignment with GIZA++ that gene-
rates different types of alignment like those of Hidden Markov Model (HMM), IBM model 3, 4
and 5 alignments. We train or develop a translation model(s) from the aligned data using the
Moses decoder. We also develop target language model(s). Then by the serial combination of
the translation model and the target language model(s), we develop an SMT system. Finally, we
validate the translation system with the help of the test data and the target reference data.

For example, consider a source language, say French, f, and a target language, say English, e.
The SMT system from French to English is modeled as a conditional probability
tion P(e|f). By using Bayes’ theorem, it becomes:

P(fle)P(e)
P(f)

Where P(f|e) is the translation model and P(e) is the target language model. Finally, we arrive
at the fundamental equation of source channel approach for SMT [32].

€ = argmax P(e)P(f|e) (2)

P(elf) = (1)

3% We are thankful to Mr. James Nye, project director of Digital South Asia Library (DSAL), University
of Chicago for sharing data with us. The original data from DSAL does not contain the Urdu words in the
Perso-Arabic script and instead contains a roman transcription for Urdu words. We automatically gener-
ated the Urdu words and returned the modified data to DSAL.
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Here é has to maximize the product of P(e) and P(f|e) [33].

Following this SMT fashion, we have also developed SMT models for scriptural translation for
Hindi—Urdu using the Urdu—Hindi—English dictionary data [151].

3.1.1. Training data

In general SMT, the training data consist of parallel sentences of the converted language pair. In
our case, there exist no such data. We only have an Urdu-Hindi-English dictionary [151]. DSAL
has digitized this dictionary and has developed a web interface™ to access the dictionary. The
original dictionary contains 55,253 entries. The original published dictionary contains the Per-
sio-Arabic transcriptions of all word entries. On the other hand, it contains Hindi/Devanagari
transcriptions only for words that are not of Persio-Arabic origin.

In the digital data of DSAL, dictionary entries did not contain the Urdu words in the Persio-
Arabic script. Instead, they contained Roman transcriptions. As for the original dictionary, these
data also do not contain Hindi/Devanagari transcriptions for words of Persio-Arabic origin.

While providing the digital data in March 2007, DSAL asked us to give them back the
processed data with Urdu script. After finishing the initial processing in April 2007, we sent
back the processed data with Urdu script to DSAL. It took us 15 days to finish the initial
processing without any post-editing that was required for cleaning the data for some errors.
DSAL has updated the online Platts’ dictionary in August 2008 by adding the Urdu script that
was not present before.

Sample entries are shown in Figure 29. We are interested in the highlighted parts that contain
information about the Hindi and Urdu words of an entry.

<div2 type="article" id="abadi"><head><hi>abadi</hi></head><p><p>P
spa>abadi</pa> <i>abadi</i>, s.f. Inhabited spot or place; colony; population, number of
inhabitants; cultivated place;cultivation; the part of a village lands brought under cultiva-
tion; increased assessment (=<i>beshi</i>); prosperity; stateof comfort; happiness, joy,
pleasure.</p></div2>

<div2 type="article" id="3d_abar"><head><hi>31d¥ abar</hi></head><p><p>H
<pa>abar</pa> 3 <i>abar</i> [S. 37dR], s.m. This side, the nearbank of a riv-
er.</p></div2>

Figure 29: Sample Entries from [151]

The format of the data is not strictly XML-based, but contains certain tags. For example, for the
Hindi transcription of the headword, it uses the tag <hi></hi>. Similarly, it uses the tag
<pa></pa> for the Persio-Arabic transcription. If we examine the second entry of our example
in Figure 29, the tag <hi></hi> contains not only the Hindi transcription, but also the Roman
transcription. Thus, during the process of extraction of the Hindi and the Roman transcriptions,
we have to handle such cases carefully.

We have developed a program that parses the data and extracts Hindi and Roman transcriptions
from each dictionary entry. After the extraction phase, we do an exhaustive analysis of the ex-
tracted Roman transcriptions to build finite-state transducers that can generate Urdu words from
them and can also generate Hindi words, if missing. These transducers are given in Annex 6. It
took us approximately 250 hours of work to develop our Hindi—Urdu parallel lexicon of 55,253
words. Here Hindi—Urdu parallel words means that the same word written in Hindi/Devanagari
and Urdu/Urdu (derived Persio-Arabic script). We have used 50,000 Hindi-Urdu parallel words
as training data to train our statistical scriptural translation models for Hindi-Urdu. First of all,
we need to align the Hindi-Urdu parallel data.

3 http://dsal.uchicago.edu/dictionaries/platts/
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3.1.2. Data alignments

We can align the Hindi-Urdu parallel lexicon with different strategies.

=  We can align the data at character-level by considering each Hindi-Urdu parallel word
pair as a parallel sentence pair and each character in the 2 words as a word in a sentence
of a parallel sentence pair (Hindi-Urdu words).

= During the analysis of character-level alignments, we found that we can improve the
alignments by grouping some specific sequences of characters into clusters. We call
such alignments cluster alignments.

=  We can also align the data at syllable level. For this alignment, first we need to syllabify
each Hindi-Urdu parallel word into constituent syllables. Then we can align the parallel
data at syllable level by considering syllables in the parallel entry as parallel words.

Here we describe each alignment strategy one by one.
3.1.2.1.1. Character alignments

Table 33 shows some Hindi-Urdu parallel words with their phonetic representations and English
glosses. The first two columns show the Hindi-Urdu parallel words.

Hindi Urdu IPA English
37ed U obba Father
ST ¢ | tbolax Conveying
3ATAT | ubolana | To boil
ECLIE:] u’fﬁ' 1balis Devil
37T _ |ob"agepan Unfortunate

o
3T A opreel April
IS W stftfa Good

Table 33: Examples from a Hindi-Urdu parallel lexicon

The Urdu word list that we have developed from the Roman transcriptions of the Urdu-Hindi-
English dictionary [151] using finite-state transducers contains all required diacritics.

We have previously shown that diacritical marks are the backbone of the vowel system in Urdu
and that they are mandatory for the correct pronunciation of an Urdu word, as well as for scrip-
tural translation and Urdu NLP. To model this unfortunate but real situation, we developed
another Urdu word list that does not contain any diacritic by removing all diacritics from the
fully diacritized Urdu word list. In this way, we have developed two sorts of Hindi-Urdu paral-
lel data.

For character alignment, we put a space after each character in the Hindi and Urdu (whether
diacritized or not) words and prepare the Hindi and Urdu parallel data for character alignment.
Example words of Table 34 prepared for character alignment are shown in Table 34.

Hindi Urdu with diacritics Urdu without diacritics
FIod =y =
gaeard A Lrdet
R i fgld e Tl
sITTH JEJ) JEJo!
FHoaTASTA Jed TSI JeldSlocl
Faqzda Jo e Joo/ !
AT ¢ ol 1?32-&@5:2-! o2&

Table 34: Examples of Hindi - Urdu parallel words

We have developed two types of alignment data for character alignment.
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= Hindi and Urdu with diacritics alignment (Hi-UrWD)
= Hindi and Urdu without diacritics alignment (Hi-UrWOD)

GIZA++ gives us two types of alignments (1) source to target and (2) target to source. In our
case, GIZA++ gives us (1) Hindi to Urdu with diacritics and (2) Urdu with diacritics to Hindi
alignments for Hindi and Urdu with diacritics alignment data. Similarly, it gives us another two
alignments for Hindi and Urdu without diacritics alignment data. Table 35 shows Hindi to Urdu

with diacritics alignments of our example words of Table 34.

1.70006e-05
! AT eda
NULL ([ ]) 51) ' ([ 31]) (L 421])¢ (L1111
# Sentence pair (114) source length 6 target length 5 alignment
score : 0.00032306
2 Sd o T d
NULL ([ ]) 51]) ¢ (L 41) 1 (L31])J(21]) oL 1) (L1171

score : 0.000154595

3 |3 T ol O o T

NULL ([ 1) ([ 51) ¢ (L 471) 1 (IL31)J(L21)olll) (11
6 1) 1)

score : 5.58545e-05
4 39T 9

NULL ([ ]) e (L4 1) s (L 1) ([ 31)Jd(021]) <KL T ([11])
5 1) 1)

score : 3.20243e-05
5 [ A HF T &g

NULL ([ 1) S5 1) s (L 41)s(L3]) (L1221 < (11
71 o (L) (Lel)e (LD

score : 7.74271e-06
Y

6 (FToTdA
NULL ([ 1) 6 1) oSG (03N (14D 5 (L2 ¢ (L1
)

score : 3.13657e-05

T ¢SOl
NULL ([ 1) 5 1) 1 ([ 31) ([ 41)2A([21) g (L11)11)
Table 35: Character alignment examples from Hindi to Urdu with diacritics
3.1.2.1.2. Cluster alignments

# Sentence pair (6) source length 4 target length 5 alignment score

# Sentence pair (115) source length 7 target length 6 alignment

# Sentence pair (128) source length 7 target length 5 alignment

# Sentence pair (167) source length 9 target length 7 alignment

# Sentence pair (464) source length 6 target length 6 alignment

# Sentence pair (1183) source length 5 target length 5 alignment

Alignment plays a critical role in SMT [56, 58, 70, 74, 107, 116]. It is a key step for building an
SMT system. The quality of parallel data and the word alignment have a significant impact on
learning the translation model and consequently on the quality of the SMT system [56, 58, 74].
It is always better do an analysis of the alignment and correct the alignment errors to reduce the

Alignment Error Rate (AER).

We also analyzed the alignments produced by GIZA++. We found that we can improve our
alignments to reduce the AER. The incorrect alignments are highlighted in Table 35. We have
already described the complex and highly contextual nature of vowel systems in Urdu, Punja-
bi/Shahmukhi, Sindhi, Seraiki/Shahmukhi and Kashmiri/Urdu (see pages 26-27). In the second
row of Table 35, the Hindi vowel g [1] is aligned with ALEF () and ZER (::) is aligned to

NULL. The alignment is not completely incorrect, but the vowel $ [1] must be aligned with both
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ALEF (1) and ZER (3. Similarly, the Hindi vowel 3 [u] must be aligned with ALEF ()) and
PESH (%) in the third row. In these examples, one character of Hindi must be aligned with a se-
quence of characters in Urdu. Interestingly, we have observed that GIZA++ correctly aligns
such cases for Urdu (with or without diacritics) to Hindi alignment. The correct Urdu to Hindi
GIZA++ alignments of these examples are shown in Table 36.

# Sentence pair (114) source length 5 target length 6 alignment score
0.00150584

e Jd o |
NULL ([ ]) 8 €00 L2209 & ([ 3 ]) o ([ 4]) < (L 51) 3 ([ 61)

# Sentence pair (115) source length 6 target length 7 alignment score
0.00135167

gl Jdo
NULL ([ 1) 3 CE 2 29) & ([ 3 ]) o ([ 4 ]) < ([ 5]) e ([ 61]) =T ([7
1)

Table 36: Vowel alignment from Urdu with diacritics to Hindi

All such vowel alignments can be improved by clustering the specific sequences of characters in
Urdu side. These Urdu character sequences are listed in Table 37 with their equivalent Hindi
characters.

Urdu Hindi Urdu Hindi Urdu Hindi
f="+131[0] L="+¢ |3 A=+ "+1|30 o]
f="+13[u] L="+¢|3 0] =6+ o]
= +1|3 0] L= +¢e|3m 5=+ 55 [u]

=y 1| Tle] S=s+|Tle =6 ¢S

= TI|T[e] &= t{|T[a] s = T4 |T[e]
G=G+ 1| a] S=gt L |Ua] | F=2t ]3]
= ++1|T[a] | E=c T+ V][] =6 +4|3 @)
g=¢+ 1|51 =4+ |31 y=s+ 0]
4= 3+1|3T 0] =5+ |37 [0] % =13+ ,|37 0]
f=s+"+1|F[u] F=s+"+|F U] | =< 3|3 2]

Table 37. Urdu character sequeces for vowel alignments

In the case of consonants, we also observed few alignment problems. In Urdu, gemination® of a
consonant is marked with SHADDA (%), while in Hindi, it is written as a conjunct form. The
highlighted alignments of the first row of Table 35 align the Hindi characters & [b] and ¢ with
the Urdu characters BEH (<) and SHADDA (%) respectively. Although in the Hindi to Urdu
alignment, this alignment is not completely wrong, but this geminated consonant alignment
problem is more evident for Urdu to Hindi alignment where a Hindi consonant is aligned with
NULL. An example of Urdu to Hindi alignment is shown in Table 38.

# Sentence pair (754) source length 9 target length 10 alignment score
8.0263e-13

S T BT T
NULL ([ 9 1) § ([ 12 1) d ([ 3 1)
1) & ([ 7 1) @ ([ 81) o ([ 10 1)

(L4 d ()™ as1) % (6

BS

Table 38. Gemination alignment from Urdu to Hindi

37 Gemination happens when a spoken consonant is pronounced for an audibly longer period of time than
a short consonant. (http://en.wikipedia.org/wiki/Gemination)
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If the Hindi character sequence § + < + & = s [bb] is aligned with the Urdu character sequence

— + & =C_ [bb], then it is a completely correct and valid alignment.

We also observed alignment problems for aspirated consonants because they are represented by
a sequence of characters in Urdu and by either a single character or a sequence of characters in
Hindi. For Hindi to Urdu alignment, this problem is highlighted in row 5 and 7 of Table 35. For
Urdu to Hindi alignment, an example is shown in Table 39.

# Sentence pair (1183) source length 5 target length 5 alignment score
8.57561e-05

A

NULL ([ 1) 3 ([ 1 1) & ([ 21) 2 ([1) & ([ 341) =T ([51)

Table 39. Aspirated consonant alignment from Urdu to Hindi

All these problems increase the AER. Thus we decide to cluster such sequences for improving
the alignment and therefore the quality of scriptural translation between Hindi and Urdu. We
have developed finite-state transducers for performing the clustering operation on our Hindi Ur-
du parallel data. These transducers are given in Annex 6. Examples of words obtained after the
clustering operation are given in Table 40 with their IPA representations. The third column’s
IPA representations are for both Hindi and Urdu with diacritics entries.

Hindi withltjigzcllcllritics TPA withmH l;1CIi2critics TPA
ki) I—1!labba —I|aba
CEACIR = | éidb,«l,lblax f,!dbg!ablax
IF ool o ol !uldb,«fublana uwdbg!ablana
sgaNd vJ=!liblis JSJi|ables
¥HATITA u-,:«d-fu»"fabhqgepan u-,:«d-fim"iabhagepan
Fooxda Ju - wllepral JS sieprel
W TS ol | Zef |5 " @ | Zof |2 P a

Table 40: Hindi - Urdu example words for alignment

After running GIZA++ on the cluster Hindi-Urdu parallel data, we corrected the alignment er-
rors that are discussed above. The result is shown in Table 41.
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# Sentence pair (6) source length 3 target length 3 alignment score

0.0214204
! A s T
NULL ([ 1) 3 1) ' (208 (1 11) 1 1)
# Sentence pair (114) source length 5 target length 5 alignment
5 score : 0.0942275

gTA T

NULL ([ 1) 5 1) ¢ (L 41) 1 ([31)J (21 o (I I

# Sentence pair (115) source length 6 target length 6 alignment
score : 0.0373352

33 T of < o T

NULL ([ 1) 6 1) 1 ([ 51) o (L 41) 1 (I31)J(l21 o i
1)

# Sentence pair (128) source length 5 target length 5 alignment
score : 0.0430949

sTTXH

NULL ([ 1) 5 1) o (ENNEN (L 3 1) J (L 21]) o (NN 1)

# Sentence pair (167) source length 8 target length 7 alignment
score : 0.000313045

ST TASTA

NULL ([ 1) 6 1) o ([ 51) s ([ 41) & ([ 31) 1 (2008 (1 11) ¢

T oo (L) (L)

# Sentence pair (464) source length 5 target length 6 alignment
score : 1.71945e-05

FgaoeTdd

NULL ([ 3 1) 6 1) J SIS ([ 4 1) 5 (L 21) o (L11) 1 1)

# Sentence pair (754) source length 8 target length 7 alignment
score : 0.000371183

R ER R

NULL ([ 1) 6 1) ¢ ([ 51) 1 ([ 41 o (31 |[(NZNNE e
]

71 ()

# Sentence pair (1183) source length 3 target length 3 alignment
score : 0.0207299

T35 ol

NULL ([ 1) 3 1) o [CEN2NINEE ([ 1 1) 1))

Table 41. Cluster alignments examples from Hindi to Urdu with diacritics

It seems that better cluster alignments will help to learn a good quality translation model and
accordingly will enhance the accuracy of our SMT systems.

3.1.3. Translation models

Based on two types of character and cluster alignments of our Hindi-Urdu (with or without dia-
critics) parallel word lists, we have developed eight different translation models P(e|f) using
the Moses toolkit [105].

= Translation model learned from Hindi to Urdu with diacritics character alignment

= Translation model learned from Hindi to Urdu without diacritics character alignment
= Translation model learned from Hindi to Urdu with diacritics cluster alignment

= Translation model learned from Hindi to Urdu without diacritics cluster alignment

= Translation model learned from Urdu with diacritics to Hindi character alignment

= Translation model learned from Urdu without diacritics to Hindi character alignment
= Translation model learned from Urdu with diacritics to Hindi cluster alignment

= Translation model learned from Urdu without diacritics to Hindi cluster alignment
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For developing these translation models, we used the training script ‘train-factored-phrase-
model.perl” with options ‘grow-diag-final’ and ‘msd-bidirectional-fe’ (default options) for
alignment and re-ordering respectively to learn translation models from different type of align-
ments. We also used different target language models or re-ordering models that we describe in
the next section. In total, we have developed 24 SMT systems by combining different transla-
tion models and target language models.

3.1.4. Target language models

A target language model P(e) is a probabilistic model that scores the well-formedness of dif-
ferent translation solutions produced by the translation model [5, 106, 142, 193]. It generates a
probability distribution over possible sequences of words and computes the probability of pro-
ducing a given word w; given all the words that precede it in the sentence [5]. We have also
developed different target language models for our different translation models depending on
the alignment used in the translation model and the target language.

We broadly categorize them into word language models and sentence language models, dis-
cussed below.

3.1.4.1. Word language models

A word language model is a 6-gram statistical model that gives a probability distribution over
possible sequences of characters and computes the probability of producing a given character or
cluster c;, given the 5 characters or clusters that precede it in the word. We developed 50,000
Hindi and Urdu (with and without diacritics) word lists for learning the Hindi-Urdu alignment
and translation models. We then used the target side word lists to generate word language mod-
els.

For example, we have two types of translation models for Hindi to Urdu, one learned from Hin-
di Urdu character alignments and the other learned from Hindi Urdu cluster alignments. For
each translation model, we developed a word language model depending on either character
level word list or cluster level word list. More precisely, we developed Urdu Word Language
Models with Diacritics (UWLMWD) from our character and cluster level Urdu word lists with
diacritics using the SRILM freeware®®, and used them as target language models in the corres-
ponding scriptural SMT systems. Similarly, we developed Hindi Word Language Models
(HWLM) from our character and cluster level Hindi word lists and Urdu Word Language Mod-
els without Diacritics (UWLMWOD) from our Urdu (without diacritics) word lists.

3.1.4.2. Sentence language models

Similar to a word language model, a sentence language model is also a 6-gram statistical model
that computes the probability of producing a given character or cluster ¢;, given the 5 characters
or clusters that precede it in the sentence. The Hindi Urdu pair is an under-resourced pair, but
fortunately we were able to find monolingual corpora for Hindi and Urdu.

For Hindi, a Hindi corpus of more than 3 million words is freely made available by the “Re-
source Center for Indian Language Technology Solutions” of the Indian Institute of Technology
Bombay (IITB)*’. We processed this Hindi corpus and extracted a Hindi sentence corpus that
contains one sentence per line. It has a total of 173,087 Hindi sentences. From this processed
Hindi corpus, we developed a character-level Hindi corpus by introducing a space after each
character. We also developed another clustered Hindi corpus applying our Hindi clustering fi-
nite-state transducer on the character-level Hindi corpus. For these two characters and cluster-

3 http://www.speech.sri.com/projects/srilm/
3 http://www.cfilt.iitb.ac.in/
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level Hindi corpora, we developed character-level and cluster-level Hindi Sentence Language
Models (HSLM) using the SRILM toolkit.

We were also able to collect a monolingual Urdu corpus (Reference # ELRA-W0037) of more
than 2 million words from the “Evaluations and Language Resources Distribution Agency”
(ELRD)™. This corpus was developed under the EMILLE*' project of Lancaster University,
UK. Like for the Hindi corpus, we processed this Urdu corpus and extracted from it a sentence
corpus. It contains a total of 127,685 sentences. We developed a character-level and cluster-
level Urdu corpus by introducing a space after each character and then by applying clustering.
Finally, we developed character-level and cluster-level Urdu Sentence Language Models
(USLM) using the SRILM toolkit.

3.1.5. SMT systems for Hindi-Urdu scriptural translation

Generally, an SMT system consists of a translation model P(f|e) and a target language
el P(e). We developed 8 translation models and 18 target language models to build our Hindi-
Urdu scriptural translation systems. By combining different translation and target language
models, we have developed in total 24 SMT systems for the Hindi-Urdu scriptural translation.

12 SMT systems for Hindi to Urdu scriptural translation are shown in Figure 30.

SMT systems for Hindi to Urdu Scriptural Translation

Translation Models Language Models

Urdu Word Character LM with
> diacritics —» Urdu output

. Hindi — Urdu with diacritics
Hindi input ——{ 4>| t h ter LM |—> tput
P (learned from character alignment of Urdu Sentence Character Urdu outpu

Hindi — Urdu with diacritics data) Urdu Word Character LM with
diacritics

» + —» Urdu output
Urdu Sentence Character LM

Urdu Word Cluster LM with
> diacritics —» Urdu output

i Hindi — Urdu with diacritics
Hindi input ——— 4>| Urdu Sent Cluster LM |—> Urd tput
P (learned from cluster alignment of rdu entence - uster rau outpu

Hindi — Urdu with diacritics data) Urdu Word Cluster LM with
diacritics

» + —» Urdu output
Urdu Sentence Cluster LM

Urdu Word Character LM without
> diacritics —» Urdu output

P Hindi — Urdu without diacritics
Hindi input —» 4>| Urdu Sent Ch ter LM |—> Urd tput
P (learned from character alignment of reu sentence “haracter rau outpu

Hindi — Urdu without diacritics data) Urdu Word Character LM without
diacritics

» + —» Urdu output
Urdu Sentence Character LM

Urdu Word Cluster LM without
> diacritics —» Urdu output

i Hindi — Urdu without diacritics
Hindi input —— (leamed from oluster alignment of ] Urdu Sentence Cluster LM |—» Urdu output

Hindi — Urdu without diacritics data) Urdu Word Cluster LM without
diacritics

» + —» Urdu output
Urdu Sentence Cluster LM

Figure 30. SMT Systems for Hindi to Urdu scriptural translation

0 http://www.elda.org/
*! http://www.emille.lancs.ac.uk/index.php
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We built 4 translation models based on different Hindi-Urdu alignments and 8 target language
models, discussed above. In the Moses toolkit, we can direct the SMT system to use multiple
target language models. Thus we built 4 other target language models by combining our Urdu
(with or without diacritics) word language models (character and cluster level) and Urdu sen-
tence language models (character and cluster level).

We also built 12 SMT systems for Urdu to Hindi scriptural translation. We developed 4 transla-
tion models based on different Urdu-Hindi alignments, discussed above. We have also devel-
oped two Hindi target side language models, described before. As for the Urdu target side, we
have combined the Hindi word language model and the Hindi sentence language model to build
a combined target language model. Figure 31 shows different SMT systems developed for Urdu
to Hindi scriptural translation.

SMT systems for Urdu to Hindi Scriptural Translation

Translation Models Language Models
Urdu input ——|  Hindi Word Character LM |- Hindi output
With —»
diacritics Urdu with diacritics — Hindi e indi
4>| Hindi Sent Ch ter LM |—> Hindi output
(learned from character alignment of Ml Sentence ~naracer e ouled
. Urdu with diacritics — Hindi data)
Urd'u input Hindi Word Character LM
wlthg_ut —» » + —» Hindi output
diacritics Hindi Sentence Character LM
Urdu input ——» Hindi Word Cluster LM > Hindi output
With ——»
diacritics Urdu with diacritics — Hindi e indi
Hindi Sents Cluster LM |—>Hdtt
(learned from cluster alignment of Ml Sentence Tuset e oulpd
. Urdu with diacritics — Hindi data)
Urdu input Hindi Word Cluster LM
\{vnhpgt — > + — Hindi output
diacritics Hindi Sentence Cluster LM
Urdu input | Hindi Word Character LM |- Hindi output
With —»
diacritics Urdu without diacritics — Hindi P indi
4>| Hindi Sent Ch ter LM |—> Hindi output
(learned from character alignment of Indl Semtence Lharacter ndioutpu
. Urdu without diacritics — Hindi data)
Urd_u input Hindi Word Character LM
\{wth_o_ut —> > + —» Hindi output
diacritics Hindi Sentence Character LM
Urdu input 4>| Hindi Word Cluster LM |—> Hindi output
With —
diacritics Urdu without diacritics — Hindi P indi
4>| Hindi Sent Cluster LM |—> Hindi output
(learned from cluster alignment of Il Sentonce wuser e ouled
. Urdu without diacritics — Hindi data)
Urdy input Hindi Word Cluster LM
\{wth_oyt —» » + —» Hindi output
diacritics Hindi Sentence Cluster LM

Figure 31. SMT systems for Urdu to Hindi scriptural translation
3.1.6. Experiments and results

As our translation models are learnt from parallel word lists, the input to these systems must be
a word list and not a running text or a sentence. For this purpose, we first preprocess our Hindi
or Urdu input text and generate a Hindi or Urdu word list before feeding it into the SMT system
for translation. At the end, by post-processing the Urdu or Hindi word list produced by the SMT
system, we generate the final Urdu or Hindi output text.

We have already developed the Hindi Urdu test sets, described in the previous chapter. We use
the same test sets here for testing our SMT systems, except the HU Test Set 1, described later.
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In this way, we can easily compare the results of different models developed for Hindi-Urdu
scriptural translation.

3.1.6.1. Experiments

We used 50,000 Hindi — Urdu parallel words for learning the translation models. The other
2,753 were used as a reduced test set named HU Test Set 1. The remaining 2,500 Hindi — Urdu
parallel words were used to tune the SMT systems. We tuned each SMT system based on cha-
racter alignment or cluster alignment with the Moses ‘mert-moses.pl’ script. That doubled the
number of our SMT systems, from 24 to 48.

During the application of these SMT systems on our test sets, we experimented with different
parameters. For example, we applied our SMT systems on the input text with and without reor-
dering to evaluate the effect of reordering and tuning on the performance of these SMT systems
for Hindi-Urdu scriptural translation. This parameter selection again doubles the number of our
experiments, from 48 to 96. By default, the Moses toolkit applies the reordering and we
changed the default behavior of the Moses toolkit with the switch ‘-d 0’ to restrict the reorder-
ing.

We have three different Hindi-Urdu test sets. For Hindi to Urdu, we performed 96 experiments
for each Hindi input of each test set. Thus for testing Hindi to Urdu SMT systems, we per-
formed 288 experiments. Each Urdu output is then post-processed, as described above.

We then computed character-level, word-level and sentence-level results. In total, we obtained
576 results for Hindi to Urdu scriptural translation. In the reverse direction, from Urdu to Hindi,
the number of total experiments and results is also 576. These numbers are only for word accu-
racies. We have also computed NIST and BLEU scores for these experiments.

3.1.6.2. Results and discussion

We give results of particular interest for each test set, because it is not possible to give each and
every result here and discuss it. We subdivide the results for each test set by the translation
model, the alignment strategy, and the input/output type, because it is difficult to present all re-
sults in a one big table. First, we give and discuss the results of Hindi to Urdu scriptural transla-
tion for all three test sets. Then, we give the results for Urdu to Hindi translation. We give sen-
tence accuracy, word accuracy and character accuracy.

3.1.6.2.1. Hindi to Urdu results

For Hindi to Urdu scriptural translation, Table 42 shows all the results of SMT systems for Hin-
di to Urdu scriptural translation, developed from Hindi-Urdu with diacritics (Hi-UrWD) and
Hindi-Urdu without diacritics (Hi-UrWOD) character alignments, for HU Test Set 2.

The best results for the SMT systems, developed from Hi-UrWD character alignments are
71.5% and 5.5% at the word-level and the sentence level respectively. These results are shown
in bold.

The best result at word-level is produced by the SMT system Hi-UrWD-USLM+ UWLMWD-
No-Reordering. The same SMT system also produces the best result of 94.5% accuracy at cha-
racter-level. On the other hand, it produces the second best result (4.5%) at sentence-level. Ac-
cording to the scales of Figure 27 and Figure 28, this system is classified as ‘GOOD ENOUGH’
and ‘NULL’, respectively.

The best result at sentence level is produced by the SMT system Hi-UrWD-USLM-No-
Reordering and it is classified as ‘"AVERAGE’ and ‘OK’ by the scales of Figure 27 and Figure
28 respectively.

The worst results for the same set of SMT systems are 26.1% (NULL) and 0.5% (NULL) at
word-level and sentence level respectively.
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The best results for the SMT systems, developed from Hi-UrWOD character alignments are
68.5% and 5.5% at word-level and sentence-level, respectively, shown in bold the second grind
of the table below. In this case also, the best results at word-level and sentence-level are pro-

duced by different SMT systems.

Sentence Accuracy

Word accuracy

Character accuracy

SMT Model default | Processed |default|processed |default| processed
output output output [ output | output output
g;géggéUWLMWD'W“h' 0.5% 3% 261% | 65.7% |89.1% | 93.3%
Hi-UrWD-UWLMWD-No-Reordering | 0.5% 3% | 26.1% | 65.7% |89.1% | 933%
g;ggggéUWLMWD'T““ed'W“h' 1% 3% | 344% | 62.9% |88.7% | 92.7%
g;‘fgg%UWLMWD'T““ed'NO' 1% 3% | 344% | 62.9% |88.7% | 92.7%
Hi-UrWD-USLM-With-Reordering 1% 4% 1 48.9% | 622% |849% | 922%
Hi-UrWD-USLM-No-Reordering 1% 5.5% 49.7% | 64.2% | 85.8% 93.3%
E;%XE;SLM'T“““'W“}I‘ 05% | 35% |342% | 633% |88.6% | 92.6%
E;%ZYE;SLM'TW“'NO' 05% | 35% |342% | 633% |88.6% | 92.6%
g;%gg?SLM+UWLMWD'W“h' 1% 45% |505% | 70.9% |89.0% | 94.3%
g;?;ggéUSLMWWLMWD -No- 1% 45% | 508% | 71.5% |89.2% | 94.5%
Hi-UrWD-USLM+UWLMWD - . . . . . .
Toned With Reordoring 1% 3% |33.9% | 62.7% |88.6% | 92.6%
Hi-UrWD-USLM+UWLMWD - 1% 3% 339% | 62.7% |88.6% | 92.6%
Tuned-No-Reordering
g;ggggg‘UWLMWOD'W“h' 3% 3% | 63.6% | 63.6% |933% | 933%
g;zdoe?i'nir'UWLMWOD'No' 3% 3% | 63.6% | 63.6% |933% | 933%
Hi-UrWOD-UWLMWOD-Tuned- 3% 3% | 648% | 64.8% |92.6% | 92.6%
With-Reordering
Hi-UrWOD-UWLMWOD-Tuned-No- | = 5,/ 3% | 648% | 64.8% |92.6% | 92.6%
Reordering
Hi-UrWOD-USLM-With-Reordering | 5.5% | 5.5% | 63.2% | 632% | 92.9% | 92.9%
Hi-UrWOD-USLM-No-Reordering 5.5% 5.5% 63.8% | 63.8% | 93.5% 93.5%
g;?éggg”sLM'T““ed'W“h' 35% | 35% | 648% | 648% |92.8% | 92.8%
ELBEQXSE'USLM'T“G"'NO' 35% | 35% | 648% | 64.8% |92.8% | 92.8%
Hi-UrWOD-USLM+UWLMWOD- 5% 5% | 685% | 68.5% |93.7%| 93.7%
With-Reordering
Hi-UrWOD-USLM+UWLMWOD - 5% 5% | 685% | 68.5% |93.7%| 93.7%
No-Reordering
Hi-UrWOD-USLM-UWLMWOD - . . . . . .
Taned-With- Reordering 3% 3% | 648% | 64.8% |927% | 92.7%
Hi-UrWOD-USLM+UWLMWOD - 3% 3% | 648% | 64.8% |92.7% | 92.7%

Tuned-No-Reordering

Table 42. HU Test Set 2 results of Hindi to Urdu SMT systems (character alignments)

The word-level best result is produced by the SMT systems Hi-UrWOD-USLM+UWLMWOD-
With-Reordering and Hi-UrWOD-USLM+UWLMWOD-No-Reordering. The same SMT sys-
tems also produce the best results at character-level. These two SMT systems are classified as
‘AVERAGE’ and ‘OK’ by the scales of Figure 27 and Figure 28, respectively.
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The SMT systems that produce the best results at sentence-level are also classified as ‘AVER-
AGE’ and ‘OK’ by the scales of Figure 27 and Figure 28, respectively.

During out discussion of the results of our finite-state scriptural translation systems for the Indo-
Pak languages, we have shown a sample Hindi input text in Figure 26. For the same sample in-
put Hindi text, Table 43 shows the Urdu output of the SMT systems Hi-UrWD-
USLM+UWLMWD-No-Reordering and Hi-UrWD-USLM-No-Reordering that produced the
best results at word-level and sentence-level, respectively.

Processed Urdu output of

Urdu reference without diacritics Hi-UrWD-USLM+UWLMWD-No-Reordering
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L Kyt ol L 124 s ngw/w:’:’m € T« Gt dh et d U A e K;{Lefg/,ﬁm“’{w € ST g
¥ B8 T F e L G L S P RN N (S P2

I .ffc’ P P A Py by K sk 1|2 P Hf; C 2L S s 4ot G 3 K sk I
Lﬂ?u’.’ﬁ‘/u‘l < obs 2 {C)L/.LJ'QJ/QL//{" L;dla; 7 ddww¢wnglrﬁzﬂjguL/.J@j L//‘f‘d/b’:dlﬁ
¢ ol ,:Ju:*f‘ Ky Plae A& 2 3T 2,4 C ot B B A A = e 3T oz,
«(f‘/.,//tv‘ﬂ/ulf/.,/?/,:/k[ «UA/.‘./’}’J‘//JIJ/.,/’?:/M

e, ol ey b s o A8 T iiﬁ;/{ Vand $eds 2 s sy P o 2k T KK 6 T
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¢ SIS S a6 K P e ¢ Lo/ S s 285 6 K P 9 L,

Processed Urdu output of

Urdu reference without diacritics Hi-UrWD-USLM-No-Reordering
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Table 43: Sample Hindi to Urdu outputs for SMT systems with the best results

On average, there are 9.4 and 16 errors per sentence in the Urdu outputs of the SMT systems
Hi-UrWD-USLM+UWLMWD-No-Reordering and Hi-UrWD-USLM-No-Reordering. In terms
of usability of the output text, these outputs are not usable and require a huge amount of effort
for post-editing. Therefore, these SMT systems would be ranked quite low by a user.

The sentence level classification of a scriptural translation system is important because it corre-
lates well with the user satisfaction and the usability of the scriptural translation output accord-
ing to our observation of the results of the finite-state scriptural translation and the results re-
ported above for the SMT systems for scriptural translation. Therefore, it is of our primary in-
terest to improve the sentence level accuracy and classification.

From here onward, we will not give all the results like we did in Table 42. We report only the
results of particular interest. The complete tables with all the results are given in Annex 7.

For HU Test Set 3, the best results produced by the SMT Hindi to Urdu scriptural translation
systems, developed from Hindi-Urdu with diacritics (Hi-UrWD) and Hindi-Urdu without dia-
critics (Hi-UrWOD) character alignments are shown in Table 44.
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Sentence Accuracy Word accuracy Character accuracy
SMT Model default | processed | default |processed| default | processed
output output output output output output
Hi-UrWD-USLM-No-Reordering 0.9% 4% 57.3% 71.1% 90.6% 93.3%

Table 44: HU Test Set 3 best results of Hindi to Urdu SMT systems (character alignments)

The SMT system of Table 44 is classified as ‘GOOD ENOUGH’ and ‘NULL’ according to the
scales of Figure 27 and Figure 28, respectively.

For HU Test Set 2 and 3, the best results produced by the SMT systems, developed from the Hi-
UrWD and Hi-UrWOD cluster alignments, are given in Table 45.

HU Test Set 2
Sentence Accuracy Word accuracy Character accuracy
SMT Model default | processed | default |processed| default | processed
output output output output output output
Hi-UrWD-USLM-No-Reordering 1% 5.5% 53.4% 66.6% 86.2% 93.6%

Hi-UrWOD-USLM-With-

. 5.5% 5.5% 65.3% 65.3% 93.0% 93.0%
Reordering

Hi-UrWOD-USLM-No-

. 5.5% 5.5% 66.2% 66.2% 93.6% 93.6%
Reordering

Hi-UrWOD-
USLM+UWLMWOD-Tuned- 5.5% 5.5% 69.5% 69.5% 93.6% 93.6%
With-Reordering

Hi-UrWOD-
USLM+UWLMWOD-Tuned-No- | 5.5% 5.5% 69.7% 69.7% 93.6% 93.6%
Reordering

HU Test Set 3
SMT Model Sentence Accuracy Word accuracy Character accuracy

default | processed | default |processed| default | processed
output output output output output output

Hi-UrWD-USLM-No-Reordering |  0.9% 4.9% 58.0% 69.3% 89.0% 93.4%

Hi-UrWOD-

USLM+UWLMWOD-Tuned- 3.5% 3.5% 68.0% 68.0% 92.7% 92.7%

With-Reordering

Hi-UrWOD-

USLM+UWLMWOD-Tuned-No- | 3.5% 3.5% 68.0% 68.0% 92.7% 92.7%

Reordering

Table 45: HU Test Set 2 and 3 best results of Hindi to Urdu SMT systems (cluster alignments)

For HU Test Set 2, the SMT system producing the best results is classified as ‘AVERAGE’ and
‘OK’ according to the classification scales of Figure 27 and Figure 28, respectively. For HU
Test Set 3, the sentence-level classification the SMT system is ‘NULL’ and the word-level clas-
sification of the SMT system is also ‘AVERAGE".

For HU Test Set 1, the best results are 78.4% and 79.7% for the default and the processed Urdu
output by the SMT systems Hi-UrWOD-USLM+UWLMWOD-Tuned-No-Reordering and Hi-
UrWD-USLM+UWLMWD-Tuned-No-Reordering, developed from the cluster alignments, re-
spectively. HU Test Set 1 consists of a word list, so there is no meaning of sentence-level results
here. These SMT systems are classified as ‘GOOD ENOUGH’ according to the classification
scale of Figure 27.

For HU Test Set 1, the best results are 78.3% and 80.2% for the default and the processed Urdu
output by the SMT systems Hi-UrWOD-USLM+UWLMWOD-Tuned-No-Reordering and Hi-
UrWD-USLM+UWLMWD-Tuned-No-Reordering, developed from the character alignments,
respectively. HU Test Set 1 consists of a word list, so there is no meaning of sentence-level re-
sults here. These SMT systems are classified as ‘GOOD ENOUGH’ and ‘GOOD’ according to
the classification scale of Figure 27.
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We have computed the edit distances, BLEU and NIST scores that are given in Annex 7.
3.1.6.2.2. Urdu to Hindi results

Table 46 shows the best results of Urdu to Hindi scriptural translation by our SMT systems, de-
veloped from the Urdu with diacritics to Hindi (UrWD-Hi) and Urdu without diacritics to Hindi
(UrWOD-Hi) character alignments for HU Test Set 2 and 3.

HU Test Set 2
Sentence Accuracy Word accuracy Character accuracy
SMT Model with without with without with without
diacritics | diacritics |diacritics | diacritics | diacritics | diacritics
UrWD-Hi-HSLM+HWLM- . . . . . .
Tuned-With-Reordering 5.5% 2% 72.2% 57.9% 91.8% 85.8%
-Hi- + _
UrWD-Hi-HSLM+HWLM 5.5% 2% 722% | 57.9% | 91.8% | 85.8%
Tuned-No-Reordering
_Hi- + _
UrWOD-Hi-HSLM+HWLM 0.5% 5% 50.1% | 77.0% | 86.8% | 94.6%
With-Reordering
_Hi- + _No-
UrWOD-HI-HSLMAHWLM-No- | 5o, 5% 50.1% | 77.0% | 853% | 94.6%
Reordering

HU Test Set 3

SMT Model Sentence Accuracy Word accuracy Character accuracy
with without with without with without
diacritics | diacritics |diacritics | diacritics | diacritics | diacritics

UrWD-Hi-HSLM+HWLM- o o o o o o
Tuned-With-Reordering 5.3% 0.4% 77.8% 57.9% 94.4% 86.7%
UrWD-Hi-HSLM+HWLM- 5.3% 04% | 77.8% | 57.9% | 944% | 86.7%
Tuned-No-Reordering
UrWOD-Hi-HSLM+HWLM- 0% 04% | 448% | 60.1% | 873% | 90.8%
With-Reordering
UrWOD-Hi-HSLM+HWLM-No- |,/ 04% | 448% | 60.1% | 87.7% | 90.8%
Reordering

Table 46: HU Test Set 2 and 3 best results of Urdu to Hindi SMT systems (character alignments)

We have previously given the sample Urdu input texts with and without diacritics from HU Test
Set 2 in Table 25 and Table 26, respectively (see page 42). In Table 47, we give the Hindi out-
put for the sample Urdu input text with diacritics (Urdu input text of Table 25) of the SMT sys-
tem UrWD-Hi-HSLM+HWLM-Tuned-No-Reordering with its Hindi reference.

On average, the Hindi output of Table 47 contains 10.8 errors per sentence. The SMT system is
classified as ‘OK’ according to the sentence-level classification scale of Figure 28. A real user
of the system would rate this output very low or even totally unacceptable.

Table 48 shows the Hindi output of the SMT system UrWOD-Hi-HSLM+HWLM-No-
Reordering for the sample Urdu input without diacritics (Urdu input text of Table 26). The SMT
system is also classified as ‘OK’ according to the classification scale of Figure 28. The Hindi
output of Table 48 also contains 10.8 errors per sentence.

In terms of usability and user satisfaction, these results are not very good. Rather, they are very
bad. If we build an online service with the SMT system, then it would be possible that a user
would try a few times to translate his text. But he would eventually stop using this online ser-
vice due to very poor results in terms of post-editing efforts and user satisfaction.
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Hindi reference

Hindi output from the Urdu text with diacritics
UrWD-Hi-HSLM+HWLM-Tuned-No-
Reordering

HRA HiEHcieh RORIT HiYT dIEAIT FHell3f & & &
GoleAlcas T Y4 dgaT St , 39 &1 fareag=r giasmgas
6T & 3R 3 & 9Tg $R TRHR & TFERIATINIT & IETeT &
AT 31 3T &7 T ITARIE FT T

3 UE W FE A G H W AR & HecIETT Feepiaish
FrEaHl AR AR & iR Fepicres wifer & fstor & arfdca
RIAed , R , IATerT 3R FHolmd ;

FFT FR I IR T TR AN |

39 T FIHRY HF O AR AR faget & glafea w1 @
HRT T Teahrll AR gaed confies Hensil & aafieor
3R AT e & &1 # 319 & Folellch FITErd & TR &
FH A FA 3T TR & RIS TAwT Ifh F $o 3i0H
ST 76T & |

FT 319 GAR AT % T AR Forsit R Heademer &
& A Y T AU GolercAs 3R IFATOcHS F A
aferd faeor ot 1 har hY A 2

AT WS WRE ST ddHITA Helld &
FYAY H TAGHSD PRI WA S8 oif , 3T HT
Aeameds WGsREs © ¢ 3R 3§ & $3fe oRd
WHR & HEHIAGHAET & HUOHY & o 3T &
FRET 3TTDICT HT TET & ;

39 UG W HRET FA §U T W HRA & JeAcRivedar
qEfas FAGAUT IR oRA & Mo HiWHih AT F
foRAe @1 gRaEt wr ¢, 30 HsaR F 0 feafies
3R FHellg

HAGITT TR IR 47 3R To%T R W o |

3T T WHR R o HR 3R fagat # ghafed w@r
T W AN i WEREN iR Fueud geraies Had &
guieser AR gOEdl WA & HLNAR H AT &H
TAIGAS IRE & IR H & § FA AAd G &
Refid T wFd & $o 3 w36 § |
HI HT FAR UBH & ¥ HARAT Hod AR
HlAROHR & FAR F FI el 39 TATHS
HR HAREGAS HRET H HABNUT [daxd ¥ Hr
Far X 9 2

Table 47: A sample SMT system Hindi output with its reference

Hindi reference

Hindi output from the Urdu text with diacritics
UrWD-Hi-HSLM+HWLM-Tuned-No-Reordering

AT FERfcieh WRIT ST AEITd el & &
# golelicAd ®A YA dga off , WO & famreame
gfasmgEs W ¢ IR 3§ F G ARG WER &
TERfATANT & 3regel & A1 8 3T T FA STEe
HIEE

ﬁq’cxwmmgcrmwméﬁmﬁg’m
aiEpides FFawtl 3R oA & MR diepias Afd &
fAdor &1 arfdea 1 &, 38 & 7 Tl BewtfPeer Dot
3T § S HgTerd |, Wedcd |, [Wold , YT 3R FHolld

Fog TR W) o 3R o TR W o |

39 T FHR FE O HR AR faget & glafea w@r @
W AR A gedTR R guew corifes e &
FIffeRoT 3R ITEAT A & 8T H Y F FolellcAh
e & X H FH ¥ A A9 TR & Rfea a@=g
=afes 1 Fo AfE A T6 ¢ |

FT HT FAR UdH F AT ARG Femst iR
dlecdere & &9 d R o sue geeeRs 3R
IATUTIcAS S F AiEE fqaRor & &1 Hur Y A 2

AR @EGids WRS HOoT qadds &eld &
FoNA A LATIHAS HReT WV gl S , AT H
Aeameds WfasREs © ¢ 3R 3§ & $3e HRd
THR & FEHIGHAET & HUOHY & a1 o 3T &
FRET 3TTDICT FT TET & ;
sﬂqawmzumgumwméammm
FiEPics FAGAUT AR 0RA & iR HiFHich Al &
AR @1 gRast W1 § ., 30 FaR & 0l e ffes
3R FHellS

HAGHIT R W 1 3R To%T FaX 1 o |

3T T WHR BRI o 7R AR faget # glafea w@r
€ W AR H NIRRT iR Foeud geldicsd Heard &
aueieer R gUEd FRd F & 3T &
WAIdAS IPEH & IR H &7 T F7 IA0d TR &
R aeeea @ad 7 Fo 30F JeTHd 78 § |
HI HT AR TSH & O HARDT Hod AR
AT R & HAR F FI el 39 TAGHS
AR IFARCECEAS FRET FT FAHNU [Ga¥ad ST Hr
Far Y I 2

Table 48: A sample SMT system Hindi output with its reference for Urdu input without diacritics

In general, the sentence-level accuracy of an SMT system for scriptural translation is always
between 5% and 10%, so that it is always classified as ‘OK’ according to the scale of Figure 28.
The reason behind this very low accuracy might be the training data. In our case, the training
data is a parallel word list and not a parallel corpus (a usual case for a general SMT system).
Unfortunately, we do not have any Hindi-Urdu parallel corpus to test our hypothesis that the
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accuracy of Hindi-Urdu scriptural translation can be improved by training the SMT models with
a Hindi-Urdu parallel corpus instead of using a Hindi-Urdu parallel word list.

In terms of usability, user satisfaction and effectiveness, the scriptural translation SMT models
would be classified very low and bad by users in the real life. All the results of our SMT expe-
riments are given in Annex 7.

3.1.6.3. Effects of different parameters on SMT results

In the words of [70], “It is an open question whether improved word alignment actually im-
proves statistical MT”. A translation model is a fundamental and crucial part of an SMT system
and it is learnt from the word alignment. Thus our hypothesis is that one can build better SMT
systems with better word alignments.

In our results, we observed that the improvement of the cluster alignment improves sometimes
slightly and sometimes considerably the quality of the SMT systems, but it is not always true.
Its effect on results of HU Test Set 1 from Hindi to Urdu scriptural translation systems is shown
in Figure 32.

90.00%
80.00%
70.00%

60.00% w5 w
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

Different Hindi to Urdu SMT Systems

Word Accuracy Rate

Character Alignment  ® Cluster Alignment

Figure 32. Effect of cluster alignments on SMT systems from Hindi to Urdu scriptural translation

100.00%

The effect of cluster alignment on the quality of Hindi-Urdu SMT systems is shown in Figure
80.00%

Word Accuracy Rate

1

33 on results of HU Test Set 2.
0.00% -

Different Urdu to Hindi SMT Systems
B Character Alignment HU Test Set 2 with diacritics M Cluster Alignment HU Test Set 2 with diacritics
B Character Alignment HU Test Set 2 without diacritics Cluster Alignment HU Test Set 2 without diacritics

Figure 33. Effect of cluster alignments on SMT systems from Urdu to Hindi scriptural translation
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In our results, cluster alignment shows a mixed behavior, as shown by the above figures. Thus
we cannot conclude that improving the word alignment can help to develop an better quality
SMT system.

From the output of each Hindi to Urdu SMT system, we developed another processed output by
removing all the diacritical marks. This post-processing on the target side always increases the
performance in terms of user acceptability because a native Urdu speaker is used to see Urdu
text without diacritics. Most of the time, we get an increase of more than 20% in the perfor-
mance of our systems. Sometimes, this gain is more than 30%. The effect of this post-
processing on the results of SMT systems developed from Hindi Urdu with diacritics cluster
alignments is shown in Figure 34.
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Figure 34. Effect of post-procsseding on Hindi ot Urdu SMT systems with cluster alignments

We varied the reordering parameter of the Moses decoder during the testing phase of our SMT
systems. If we restrict or do not allow the reordering, then the word accuracy of our systems
either increases or remains unaffected at all in both directions of Hindi Urdu scriptural transla-
tion.

The tuning process has an interesting effect on the performance of our scriptural translation sys-
tems. A tuned system increases the word accuracy when these systems are applied to the HU
Test Set 1, the test data developed from the Urdu, Hindi and English dictionary data [151],
while it has a mixed effect on the performance of our SMT systems. The tuning process gives us
an increase of merely 1% to approximately 35% for HU Test Set 1. The effect of reordering and
tuning on the performance of Urdu to Hindi SMT systems developed from Urdu without diacrit-
ics-Hindi character alignment is shown in Figure 35 on Urdu input without diacritics.

100.00%

80.00%

60.00%
40.00%

20.00%
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B With Reordering B No Reordering & Tuned with Reordering © Tuned no Reordering

Figure 35. Effect of reordering and tunning on Urdu to Hindi scriptural translation
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In the graph above, it is important to note that only two set of systems have crossed the 60%
word accuracy mark. For Urdu to Hindi scriptural translation, we have reached the maximum
77.90% and 82.80% word accuracies for Urdu input without and with diacritics, respectively.
For Hindi to Urdu, we have observed the maximum word accuracies of 78.40% and 80.20% for
default and processed Urdu output, respectively.

3.2. Hybrid model for scriptural translation

The results of our scriptural SMT systems (less than 7% sentence accuracy in general) are not
good in terms of user satisfaction, usability and effectiveness in real usage. On the other hand,
the expert scriptural translation systems, implemented as finite-state transducers, produce better
results than the SMT systems. The finite-state expert scriptural translation system translates the
sample Hindi text of Figure 26 in Urdu with 9 errors (1.8 errors per sentence) while the scrip-
tural SMT system translated it with 47 errors (9.4 errors per sentence).

The quality of the finite-state scriptural translation system is practical and it is usable in real life,
but its quality is badly affected by the vocabulary diversity across languages or dialects and
transliterational/transcriptional ambiguities. For example, our Hindi-Urdu finite-state scriptural
translation system translates HU Test Set 3 (a test set of Urdu origin) with a sentence accuracy
less than 10%. On the other hand, it translates HU Test Set 2 (a test set of Hindi origin) with a
sentence accuracy of more than 25%. It is classified as ‘OK’ and ‘GOOD’ for HU Test Set 3
and HU Test Set 2 respectively. We already discussed the reasons of this variation in sentence
accuracy in Section 2.4.2.

The missing information in the source text is another factor that appallingly affects the transla-
tion quality of the scriptural translation systems. The absence of diacritical marks decreases the
sentence accuracy of the finite-state scriptural translation from 73.9% to 0.4% when it is applied
to the Urdu input text of HU Test set 3.

Our expert systems (non-probabilistic finite-state transducers) for scriptural translation systems
are not capable to handle vocabulary diversity, transliteration/transcriptional ambiguities and
missing information. A scriptural translation expert system uses the character level knowledge
to translate a source text in a target text. To handle the vocabulary diversity, transliteration-
al/transcriptional ambiguities and missing information, it requires a word level knowledge.

We propose a hybrid model that is able to handle the problem of missing information, translite-
rational/transcriptional ambiguities and vocabulary diversity by using the target language mod-
els.

That model is a multilevel process. It firsts performs the scriptural translation of the source text
in the target text and relates each source word with a set of target words. The cardinality of this
set is 1 in most of the cases, but can reach a maximum of 4. The target language model is used
as a statistical filter that uses the target language knowledge to filter out the correct solution.

3.2.1. Monolingual data

We have already described the Hindi corpus used while discussing the SMT systems for Hindi
Urdu scriptural translation. That corpus contains more than 3 million words. We have used it for
developing our Hindi word filter to filter out the correct vowelized Hindi word from a collection
of candidate translations of an Urdu word.

3.2.2. Language models

We first extracted all 173,088 sentences from the Hindi corpus. We removed all punctuation
marks. Then we added tags ‘<s>’ and ‘</s>’ at the start and at the end of each sentence. We
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then trained a tri-gram Hindi language model using the command ‘ngram-count’ of the SRILM
toolkit [175].

This Hindi language model serves the purpose of a statistical filter. This statistical filter is mere-
ly a weighted finite-state transducer that produces the best possible word in case of ambiguities
or the unique solution for the input word. In the case of our example word shown above, there
exists only one possible solution.

3.2.3. Word ambiguity network

We have created an ambiguity network for each unique word of our Hindi corpus accepting all
Hindi words produceable by a naive character-based transduction from the corresponding Urdu
word. For example, the Urdu word s [urdu] (Urdu) is converted into the Hindi word 3/er (a
wrong translation in Hindi) by Urd to Hindi finite-state scriptural translation system. Figure 36
shows the confusion network of all 42 possible words, with all possible vowels. Only one can-
didate 3%¢ [urdu] is the correct Hindi word that we want to be filtered out sybsequently with the
help of Hindi corpus. The Hindi corpus contains in total 120,538 unique words. We have ex-
tracted all these unique words.

7 \ 2
—— I -
d"/j\s__/(\_ /,-"'"‘_ _‘-‘-“""--._‘ o
- ™~ e =7 Y
- ., 7 < ¥
NS N T .
H — T h
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\;/“\/ Vo N~ 2 o~ U
| 57 T 7 L e A TN —
\_/ VU = N\ D)
— N N ‘ IV, SR\
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k! e T e o —
\ T T
kY / X /
Y / —

Figure 36. Word confusion network example

The process of development of a confusion network for each word present in the Hindi corpus is
a regular process. Thus we have developed a finite-state transducer, say R (a regular relation).
For a given Hindi word w, R(w) is a confusion automaton. This transducer takes a Hindi word
from the Hindi corpus and develops a list of all possible variations of that word by extracting all
paths from the associated automaton. Figure 37 shows a few rules of this transducer. The com-
plete transducer is given in Annex 6.

3 (—) NULL
5 (—) NULL
(=)

Figure 37. Example rules for generating a word confusion network

All these rules are ambiguous. They mean that the character to the left of the (—) operator may
be converted into to the right of the operator. Thus each rule doubles the number of possible
variations for the input corpus Hindi word. Figure 38 shows the all possible variations of our
example word of Figure 36.
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AAFAAAS
AERRARA
Fpgsaad
FRARALA
ARgraag
FRETALA

Figure 38. Possible word variations for the example word

These confusion networks are deployed in the form of a word map file in which each line con-
tains a possible variation of a Hindi corpus word followed by all those corpus words from which
this possible variation can be generated by applying our finite-state transducer. Figure 39 shows
some entries of our word map file.

] 35 35

ELCCUI- Ll

IGEAaT 3Gk

ERCAT T VM T T

AT gt gt

ol Tolr el

THIAIAST  EFATANT

ATl EaFaATelISN

o Tell feolr Tor

3RS 3RS FAST IS 3RS AT IS
THIAIAST  TheATAlT TS SFaTolloll CahalTellol
CFATATST  CohelTallol CoFalTellol CaralTollol EahalTelloT
Ly N RGN R AT

Figure 39. A sample word map

In total, the word map file contains 962,893 entries. There are 49,378 entries with 2 words. The
maximum number of possible words found for an entry word is 11. Table 49 shows the analysis
of these ambiguities in the word map.

Ambiguities | No. of entries | Ambiguities | No. of entries
2 49,378 7 66
3 6,098 8 29
4 1811 9 6
5 481 10 0
6 182 11 1

Table 49. No. of Ambiguites in word map

We have already said in the previous chapter that the Hindi community commonly uses the cha-
racters & [k], @ [k"], a1 [g], 5T [&], 5 [d], € [d"] and & [p] instead of the characters & [q], @ [x], T

[v], = [z], 3 [¢], & [¢"] and % [f] respectively due to their shape similarities. We have highlighted
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a line in our sample word net which contains 6 ambiguities. If we standardize the Hindi corpus,
then we will be end up with a unique corpus word for entries of that kind.

3.2.4. Hybrid Model for scriptural translation

Figure 40 shows the architecture of the proposed hybrid model for scriptural translation [120].
Urdu Input

Urdu Hindi Scriptural Translation
Finite-state Machine (UHST-FSM)

"Hindi Word UHST-FSM Hindi output
Map ¢
Statistical Disambiguator
Hindi Language i
model

Output Hindi Text

Figure 40. Hybrid model for scriptural translation

Now we discuss all components of our hybrid model for scriptural translation one by one. We
will also show the effect of each step on some example Urdu sentences from HU Test Set 2
shown in Figure 41 with their Hindi reference. These examples have two parts: one contains
necessary diacritics, and the other does not contain any diacritical mark.

=SS oSS an Soe) (1)
= LS G S Sadl Gy 5 e ()

Examples et 2 R ) ol e RN NS () ()
s 0 b aal) sl e sl ~ S ()
Ha sga 3% s 7 RAr § (1 have not done a great work)
References >

Feald TR W Y 3R T5T TR 9 7 (Both at the central level and at the state level)

Figure 41. Example of Urdu sentences with their Hindi reference for our hybrid model
3.2.4.1. Finite-state scriptural translation

The finite-state model was already described and discussed in full details in Chapter 2. So we
will not discuss it again here. Figure 42 shows the Hindi translation of our example Urdu sen-
tences using our finite-state system for Hindi-Urdu scriptural translation. We have highlighted
the words that are not correct according our Hindi references.

(1) (i)ﬁﬁagaaﬁmmaﬁ%m%
(ii) # =7 §gd 3HUh FH g DA &
2) (i) Peerar TR W AT 3R TS TR W A

(i) heXTT FR W #F 3R T FaAX 9T &
Figure 42. UHT-FSM output

3.2.4.1.1. Statistical disambiguator

This component statistically disambiguates the multiple possible solutions given by the word
map using the statistical Hindi language model. The whole process of statistical disambiguation
is described in Figure 43.
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UHST-FSM
Hindi output

Statistical Hindi
language model

Final Hindi

Word Map Confusion networks output

Figure 43. Statistical disambiguation process

We have used the ‘disambig’ utility of the SRILM toolkit [175] for producing the final Hindi
output using the word map and statistical Hindi language model. The final output of our hybrid
model is given in Figure 44 with the Hindi reference of each sentence. The wrong translation of
a word is highlighted.

1) (i)ﬂﬁagamwaﬁféﬁm%
(i) # & T 1Mo F A fa §
Hindi reference (1) & ¥ aga 318 &1 IgT fohaT &
2) () ForT TR W N 3R ToF T 9 &
(ii) HigT TR T i 3R To7 T W o

Hindi reference (1) $heaid TR WX &7 3R IT TR w® &
Figure 44. Example Hindi output of the hybrid model

In the UHST-FSM output, we had 12 wrongly translated words out of total 34 words. Our hybr-
id model for Urdu to Hindi scriptural translation wrongly translated only one word.

3.2.5. Experiments and results

For testing purposes, we have used HU Test Set 2 and HU Test 3, described above. Table 50
gives the results of our hybrid model on our test sets.

Sentence Accuracy Word accuracy
Test Set With diacritics | Without diacritics | With diacritics | Without diacritics
HU Test Set 2 14% 7% 85.8% 79.1%

Table 50. Results o hybrid model for HU Test Set 2

As compared to the results of our finite-state system for Urdu to Hindi scriptural translation, we
have gained an increase of 26.1% and 6% in the word-level and the sentence-level accuracy for
the Urdu input text without diacritics. We have also gained an increase of 1.9% and 4% in the
word-level and the sentence-level for the Urdu input text with diacritics. Thus, with the help of
target language resources, we can improve the quality of our systems for scriptural translation.

3.3. Comparisons of different models

In this section, we compare the quality of different types of computation models and systems for
our scriptural translation. For comparison purposes, we devised two scales, one based on the
word accuracy and the other based on the sentence accuracy that classify the quality of different
systems for scriptural translation and consequently helps us to classify different systems. The
scale was previously shown in Figure 27 and Figure 28 (page 43).

We will compare and classify different systems for scriptural translation according to these two
scales.
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3.3.1. Finite-state vs. SMT

We have developed 12 basic systems for each Hindi to Urdu and Urdu to Hindi scriptural trans-
lation. By tuning, we got another set of 12 systems. We could compare each and every system
with the finite-state system for doing Hindi-Urdu scriptural translation. But here we have com-
pared only the SMT systems with the best and the second best results with finite-state systems
for each direction of Hindi-Urdu scriptural translation.

Figure 45 shows the comparison of the SMT systems with the finite-state system for Hindi to
Urdu scriptural translation on all HU Test Sets.

100
90
80
70
60
50
40
30
20
10
0 T . T T T T . )
NULL OK AVERAGE GOOD GOOD VERY GOODEXCELENT
ENOUGH
B SMT HU Test Set 1 B SMT HU Test Set 1 B SMT HU Test Set 2
B SMT HU Test Set 2 B SMT HU Test Set 3 SMT HU Test Set 3
FST HU Test Set 1 FST HU Test Set 2 FST HU Test Set 3

Figure 45. Comparison of SMT and FST systems for Hindi to Urdu translation

A similar comparison for Urdu to Hindi scriptural translation is shown in Figure 46.

120
100
80 —
60 —
40 - s =
20 - - -
0 I T T T T T T 1
NULL OK AVERAGE GOOD GOOD VERYGOOD EXCELENT
ENOUGH
B SMT HU Test Set 1 WD B SMT HU Test Set 1 WOD B SMT HU Test Set 2 WD
B SMT HU Test Set 2 WOD B SMT HU Test Set 3 WD W SMT HU Test Set 3 WOD
W FST HU Test Set 1 WD FST HU Test Set 1 WOD FST HU Test Set 2 WD

Figure 46. Comparison of SMT and FST systems for Urdu to Hindi translation

A comparison of Figure 45 and Figure 46 shows that the overall quality of Hindi to Urdu scrip-
tural translation is better than the quality in the reverse direction. Although we have a system
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that is categorized as excellent for Urdu to Hindi scriptural translation, we also have two sys-
tems that are categorized as NULL.

3.3.2. Finite-state vs. Hybrid

We have developed a hybrid model for Urdu to Hindi, so we have compared the quality of our
hybrid model with the FST system for Urdu to Hindi scriptural translation.

100
80
60
40
20
0 T T T T T T 1
NULL OK  AVERAGE GOOD  GOOD  VERY EXCELENT
ENOUGH GOOD
WFSTWD mHybrid WD m FSTWOD  Hybrid WOD

Figure 47. Comparison of FST and hybrid systems for Urdu to Hindi scriptural translation

We have gained an increase of 26.1% in case of Urdu input without diacritics with our hybrid
system against the FST system.

3.3.3. SMT vs. Hybrid

We have compared the SMT systems and the hybrid system for Urdu to Hindi scriptural transla-
tion. Figure 48 shows the comparison graphically.

100
80
60
40
20
O T T T T T 1
NULL OK AVERAGE GOOD GOOD VERY EXCELENT
ENOUGH GOOD
BSMTHU TestSet 1 WD  ®mSMTHU Test Set2 WD = SMT HU Test Set 3 WD
Hybrid WD B SMT HU Test Set 1 WOD m SMT HU Test Set 2 WOD
SMT HU Test Set 3 WOD Hybrid WOD

Figure 48. Comparison of SMT and hybrid systems for Urdu to Hindi scriptural translation

In both types of Urdu input with or without diacritics, the hybrid model outperforms the SMT
systems.
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3.4. Conclusion

Statistical and empirical methods are very successful in different fields of NLP. Our hypothesis
was that they would help to produce more efficient and accurate systems. The results of scrip-
tural SMT systems are comparable with the finite-state scriptural translation system at word-
level, but they are much lower at sentence-level. In terms of user satisfaction, usability and ef-
fectiveness of the translation output, the scriptural SMT systems would also be classified very
low by users in real scenarios.

The hybrid model outperforms the SMT systems in terms of sentence-level accuracy, user satis-
faction, usability and effectiveness of the translation results. The hybrid model also works better
than the finite-state scriptural translation systems.
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Chapter 4. Interactive Scriptural
Translation

The idea of interactivity is to use the successes of automated machine translation research and
the human interaction together to make the translation results accurate and usable in real life.
The MT results are not yet good enough to be used in real life, but MT research has seen a great
number of successes during the past years. We can combine those successes of MT research
with knowledge of MT users to produce translations with high precision and quality in an inter-
active way.

During machine translation research, we focus on the development (analysis, transfer and gen-
eration), but usually we do not consider the user perspectives like usability, acceptability, satis-
faction and adequacy of the translation. The user is the target of our research, so we must give
his perspectives a proper place.

First, we briefly discuss the state of the art in the field of interactive machine translation. Then
we discuss the motivations behind the development of an Interactive Scriptural Translation Sys-
tem (ISTS). We also discuss the computational model of the interactive scriptural translation
system. At the end, we describe our objective and subjective evaluations design, that is, how we
will evaluate the usability, efficiency and effectiveness of our ISTS in real usage on internet.

4.1. Interactive Machine Translation

The concept of interactivity was first introduced in the late 1960s by Martin Kay and Ronald
Kaplan in the MIND project (Management of Information through Natural Discourse) [18, 91].
They used the notion of interactivity during the analysis of the source text for performing MT
when an expert user interacted with the system to disambiguate between ambiguous analyses.
Following this concept, many researchers have developed interactive systems for various pairs
of languages [17, 18, 22, 34, 123, 186, 192].

ITS (Interactive Translation System) is another important interactive system for MT [126-128].
It used man-machine interaction during the analysis and transfer phases of the automatic ma-
chine translation. The automatic translation output was then post-edited by a human translator.
It was a multilingual and one-to-many translation system. It translated the source language Eng-
lish into the target languages Spanish, Portuguese, German, French and Chinese (a limited part).

ITS-2 [183] is based on the transfer-based architecture, with its three components of analysis,
transfer and generation for French to English and vice versa. It introduced interaction at various
levels of the translation process, like the lexicographic, syntactic, and lexical transfer levels.

[53-55, 109, 110] have brought an interesting focus shift to the field of Computer Aided Trans-
lation (CAT) in which interaction is directly aimed at the production of the target text, rather
than at the disambiguation of the source text analysis. They introduced the target text mediated
style for interactive machine translation.

Historically, CAT and MT have been considered different but close technologies [92]. In recent
years, statistical approaches have also been used to develop IMT systems [11, 103].

77



Methods and Tools for Weak Translation Problems

4.2. Motivation

The idea of interactivity is not new to the field of machine translation. In words of [128],

“To date, fully automatic translation has been shown to be commercially useful on-
ly when it is intended to be merely indicative (e.g. Russian-English MT at Rome
Air Force Base) or when the system is tailored to a sub-language (e.g. TAUM-
METEO). If the need is for high-quality translation of general text, the only possi-
bilities seem to be (i) a highly successful large-scale Al approach, probably with a
self-learning capability or (2) an interactive approach, with limited self-learning
capability if possible.”

These 30 years old observations seem to be true even in the present day. Following these obser-
vations, we suppose that we can also improve our scriptural translation systems with the notion
of interactivity.

We have discussed and described finite-state, SMT and hybrid systems for scriptural translation
of the Indo-Pak languages. In addition to the best translation results that are shown to the user,
those systems also compute additional translation results that are not rated the best by the auto-
matic system. We have gained a reasonably good, usable and satisfactory accuracy of approx-
imately 20% sentence accuracy (80% word accuracy) and an average 20 minutes post-editing
time per page with fully automatic finite-state scriptural translation. But we can improve these
measures by cleverly utilizing the computed additional translation results with the help of our
users in an interactive interface between the user and the translation system.

For example, we have mentioned that a native speaker of Seraiki applied our online Urdu to
Hindi system® to translate a Seraiki/Shahmukhi book into a Seraiki/Devanagari book of more
than 15,000 words. He spent 40 minutes per page for post-editing. We have already reduced this
post-editing time to 20 minutes by developing a finite-state scriptural translation system for the
Seraiki/Shahmukhi-Seraiki/Devanagari pair®’. We expect that we can further reduce this post-
editing time by using an intelligent interaction with the user. Therefore, we have designed an
interactive scriptural translation system to interact with the user in the real scenarios and to take
advantage of user feedbacks to improve the quality of the automatic scriptural translation sys-
tems. This improved automatic scriptural translation with added interactivity will thus reduce
the user efforts to perfect the translated text.

Recent MT evaluation campaigns have been criticized because only tables of figures (such as
BLEU, NIST, ORANGE, METEOR...) are shown as results, while these n-gram-based meas-
ures have been shown not to correlate well with human judgments [40]. Commercial MT sys-
tems have been consistently ranked low by these measures, while human judges ranked them
quite high [81]. Thus, it is important to show real results by systems in operation, and to do sub-
jective evaluations in addition to the objective evaluations.

4.3. Interactive Finite-state Scriptural Translation System

We have developed finite-state scriptural translation systems, discussed in Chapter 2, using Fi-
nite-State Transducers (FSTs). We have two varieties of FSTs. One is deterministic, and the
other, non-deterministic, produces confusion networks for the input text. These non-
deterministic finite-state transducers produce a set of possible solutions for each word of the
input text. These sets of possible solutions contain the correct solution words more than 95% of
the times. But the results of our finite-state system show that it correctly translates an input
word approximately 80% (word accuracy) of the times. It is interesting to note that the chance

** http://www.puran.info/HUMT/index.html
# http://www.puran.info/saraikiMT/index.html
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of calculating the correct word is more than 95%, but the accuracy of our system is only 80% at
word level.

Generally, the accuracy of finite-state scriptural translation systems is approximately 10% to
20% at sentence-level (with roughly 80% word accuracy). For Hindi to Urdu scriptural transla-
tion of HU Test Set 2, the sentence accuracy is 27% (91% word accuracy). For Urdu to Hindi
scriptural translation of HU Test Set 3 with diacritics, the sentence accuracy is 73.9% (98.4%
word accuracy). Therefore, with the increase of word accuracy to more than 95%, we can in-
crease the sentence accuracy from 10% to approximately more than 50%. It increases the usabil-
ity, the acceptability and user confidence in our scriptural translation systems.

Instead of the user post-editing an incorrect word manually, it would take him less time to select
the correct word (already computed) from the list of all candidates, provided that the correct
word is among the first five choices, than to type it. In this way, we hope not only to improve
the accuracy of our system from 10% to above 50% at sentence-level, but also to reduce the
post-editing time of the user of our translation system. Consequently, we hope to gain more sa-
tisfaction and confidence of the user, and to improve the usability and effectiveness of the trans-
lations produced using our system. Therefore, we have developed an Interactive Finite-state
Scriptural Translation System (IFSTS) by modifying the non-deterministic finite-state transduc-
ers discussed in Chapter 2.

4.3.1. System Architecture

The system architecture of the Interactive Finite-state Scriptural Translation System (IFSTS) is
shown in Figure 49.

——Source—» —Source Structure—
Interactive Graphical Weighted finite-state
-«—Interaction—»| User Interface scriptural translation

Update Word-to-word translation

Word-to-word Scriptural Translation Transducers

-a-Target Structure—

<«+—Target

Figure 49. System architecture of interactive finite-state scriptural translation system

The interactive Graphical User Interface (GUI) is shown in Figure 50. The user can type or open
a source text file for translation. Our system accepts a plain text file as an input file.

Scriptural
Translation System

Source Language Target Language
Select the Source Language ~ |Select the Target Language ~

Source Text Open Source File

Figure 50. Interactive graphical user interface
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The interactive GUI is a way to interact with the user. It takes the source text and the translation
pair (source language/script and target language/script), given and selected by the user respec-
tively. Then it builds a source structure that contains the source text and the translation pair and
passes it to the underlying weighted finite-state scriptural translation component when the user
presses the ‘Translate’ button. The weighted finite-state scriptural translation component trans-
lates the input text with the help of weighted non-deterministic finite-state transducers and
word-to-word scriptural translation transducers. It builds a farget structure that consists of
weighted confusion networks for the target text and gives back the target structure to the interac-
tive GUL.

The word-to-word scriptural translation transducers act as Translation Memories (TM), dis-
cussed later. The default output is taken to be the best path through the weighted confusion net-
work and is shown to the user in the interactive GUI to correct it interactively. All ambiguous
words are distinguished by highlighting them. The user interacts with the interactive GUI with
the help of the mouse and the keyboard. S/he post-edits the translated text to her/his satisfaction.
User interaction also helps to update the translation memories. We explain the user interaction
later in Section 4.3.3.

In the remainder of this section, we discuss these components one by one.

4.3.2. Weighted finite-state scriptural translation

For the weighted finite-state scriptural translation, we have modified the non-deterministic fi-
nite-state transducers presented in Chapter 2 and introduced the notion of weights. We assign a
weight of 1 to all unambiguous translation rules. For ambiguous translation rules, weights de-
pend on the frequency analysis of corpora, explained later. Figure 51 shows the weighted finite-
state scriptural translation and the word-to-word scriptural translation transducers components.

Source Structure

|
v

Text Tokenizer

Weighted Finite-state Scriptural Translation

Source words

Word-to-word
Scriptural Translation «—» ygs
Transducers

Translation .
Memory Word? Finite-state Transducers

< Hindi >< Urdu >
Source Words

Target Words v < Punjabi/ > Punjabi/
hi

from Shahmuk Gurmukhi
™ UIT Encoder =

| Seraiki/ Seraiki/
UIT Encoded Words Shahmukhi Devangari
: )

Punjabi/ Seraiki/
UIT Decoder >\ Devanagari Gurmukhi

\
Weighted Confusion Networks
v

y

Target Structure Generator

v
Target Structure

Figure 51. Weighted finite-state scriptural translation with the help of translation memories

The weighted finite-state translation component receives the source structure, built by the inter-
active GUL. The translation pair tells the source and the target language of the scriptural transla-
tion.
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Text Tokenizer takes the source text from the source structure and segments it into its con-
stituent words or source words. First of all, the source words are looked up into translation
memories stored as finite-state word-to-word scriptural translation transducers. If a word exists
in the translation memory, then it is directly converted into the equivalent target word using a
word-to-word scriptural translation transducer.

If it does not exist in the translation memory, then it is converted into UIT with the help of a
finite-state transducer (source language/script to UIT transducer) by the UIT Encoder. Then,
each UlT-encoded word is converted by the UIT Decoder into a set of weighted possible so-
lutions, as shown in the table below.

We represent these sets of possible weighted solutions in the form of weighted confusion net-
works. In case of ambiguities, the confusion network contains multiple weighted paths for each
ambiguous word. Otherwise, it contains a unique path with a weight of 1.

We demonstrate the working of the IFSTS on the example sentence of Figure 6. Table 51 shows
possible solutions for the example sentence with weights attached to each possible solution
word.

@'&T I 31FT FI I & [dunija ko aman ki zorurat hae] (The world needs peace)

Text Tokenizer | UIT Encoder UIT Decoder

gferar dUnljA1 [L5(0.90), ~(0.10) ]

Fr ko [ 4(0.80), # (0.20)]

s @mn [ (D]

#r ki [ §(0.80), §(0.20)]

S zrurt d [ =27 (0.0006), =.s/% (0.00036), =175 (0.00006), =.sf
(0.000052), .75 (0.0000005), ...]

3 h{ [ = (0.70), & (0.30)]

Table 51. Sample run of weighted scriptural translation

Finally, the Target Structure Generator builds a target structure using the outputs of
the UIT Decoder and the word-to-word scriptural translation transducer. The target struc-
ture is given to the interactive GUI that stores the structure in memory and interacts with the
user for possible post-editing.

4.3.2.1. Weighted finite-state transducers

In the case of Hindi-Urdu scriptural translation, the weights for scriptural translation rules come
from the analysis of an Urdu corpus that contains 412,249 words in total. We have shown an
example words frequency analysis in Table 21 of Chapter 2. We reproduce the table here for the
convenience. It shows the Urdu corpus frequencies of words that contain the characters shown
in Table 52. It also gives word frequency ratio.

Hindi Urdu (corpus words) Word frequency ratio
o |=(41,751), 4 (1312) = (10.13%), 5 (0.32%)
g |u (53,289), 7 (751), = (86) v (12.93%), 7 (0.18%), = (0.02%)
g |2(72,850),¢ (1800) 2 (17.67%), ¢ (0.44%)
5 |’ (2551), (7 (1489), 5 (228), 5 (215), 5 (2) |7 (0.62%), # (0.36%), 5 (0.06%), 5 (0.522%), 3
' (0.000485%)

Table 52: Frequency analysis of Urdu corpus

To assign a weight to each ambiguous translation rule between different states of our finite-state
transducer, we have used the frequency analysis. For example, we have assigned, 0.0062 to the
rule ‘z — J°, 0.0036 to the rule ‘z — (7’ and so on. Similarly, we have assigned weights to all
ambiguous translation rules in our finite-state transducers that convert a UIT encoded text into a
target language text. A sample weighted finite-state transducer, developed from rules for the
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characters shown in the table above from UIT to Urdu scriptural translation, is shown in Figure
52.

z2:0.00052/1>

5:0.13/u

t d:0.1/w
t d:0.0032/b

h:0.177/. .
h:0.0044/¢

2:0.0062/;

2:0.0036/,0
2:0.00055 /5

Figure 52. A sample finite-state transducer for weighted finite-state scriptural transaltion

5:0.0017/0
5:0.00021/&

These weighted finite-state transducers produce a weighted confusion network for each input
word, and consequently for the input text that we use to interact with the user in our interactive
GUI. A sample weighted confusion network for the example sentence (in Urdu, the output) is
shown in Figure 53.

5.2e-05/x 93k

0.0006/w 3 .
0.00036/ g fio
5e-05/w 833

Figure 53. A sample weighted confusion network for the example sentence
4.3.2.2. Word-to-word scriptural translation transducers

In the case of Hindi-Urdu scriptural translation, we used a parallel word list of more than 55,000
words for developing the SMT systems for Hindi-Urdu scriptural translation, discussed in the
previous chapter. Using the Hindi-Urdu parallel word list, we developed a word-to-word scrip-
tural translation transducer for Hindi-Urdu scriptural translation. Table 53 shows a sample
XFST code of that last transducer.

read regex [[3TRIEN} -> [s8o4,01), [T} -> [o,01}, [3TeRgA} -—>
[ooumT),  [3E) > [sool), [ARNTA} ->  [pdoynl), [HREAN >

[oodigsnl}, FOUF —> [au,01}];
Table 53. Sample XFST code for word-to-word scriptural translation transducer

Figure 54 shows the sample word-to-word scriptural translation transducer for the XFST code,
shown in the table above.
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Figure 54. A sample word-to-word transducer

A word-to-word scriptural translation transducer is deterministic most of the times, but in some
cases it is also non-deterministic and outputs a confusion network. A part of the Urdu to Hindi
word-to-word scriptural translation transducer is shown in Figure 55. It shows the ambiguous
nature of these word-to-word scriptural translation transducers.

ﬁFf:J__._.o

Figure 55. Ambiguous nature of word-to-word scriptural translation transducers

In the transducer above, the Urdu word J« can be translated into #er [mil] (mile), Fe [mel]
(dirt) or A« [mel] (mail) in Hindi so that we have three possible solutions for this Urdu source

word. In case of word-to-word translation, the maximum degree of ambiguity we have encoun-
tered during our work is 3. We could introduce weights to the confusion networks, produced by
the word-to-word scriptural translation transducers, with the help of word frequency analysis of
corpora. But we have not done this because the user has to select among the three possible solu-
tions, which is not a big search space, in the interactive GUI.

In case of Hindi-Urdu scriptural translation, we start with 55,000 parallel words to build our
word-to-word scriptural translation transducers. For other pairs of the Indo-Pak languages we do
not have such parallel word lists. Thus we have developed a sample word list of 20 words for
each pair and have developed word-to-word scriptural translation transducers for these pairs.
These pairs are at the moment: Punjabi/Shahmukhi-Punjabi/Gurmukhi and Seraiki/Shahmukhi-
Seraiki/Devanagari.
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Because of interactivity, IFSTS will automatically enrich these word-to-word transducers for
other language/script pairs when the interactive translation service will be used over the Inter-
net. It will store all unseen source words and their post-edited translations into a text file, and
then automatically generate the XFST code from these stored text files and compile them into
word-to-word scriptural translation transducers. Finally, it will compose these newly built word-
to-word transducers with the previous version of the word-to-word transducer and update the
system with the new version of the word-to-word transducer for each language/script pair. Each
time word-to-word transducers are updated, the accuracy of IFSTS will increase.

Word-to-word scriptural translation components for IFSTS are cost-effective in terms of com-
puting time and space, as are finite-state transducers, used in the domain of NLP. The other
main reason for developing finite-state word-to-word transducers is that our weighted scriptural
translation component is also a finite-state system. Thus these two systems can communicate
easily and are compatible with each other.

4.3.3. Interactive GUI

Figure 50 shows the interactive GUI of our IFSTS. We can open a text file or paste the source
text in the text box to input text. After selecting the source and the target languages, we press
the translate button to translate the source text.

For example, after typing the example sentence of Table 51 in the input text box and selecting
Hindi and Urdu as the source and the target languages respectively, we have pressed the trans-
late button. The interface changes as shown in Figure 56. By default, it shows the translation
result generated from the best path through the weighted confusion networks of the target struc-
ture, in the output text area. The interactive GUI also highlights the ambiguous words to show
them to the user during the post-editing task. The user interacts with the interactive GUI with
the help of mouse and keyboard actions.

Scriptural
Translation System

Source Language Target Language
Hindi v | Urdu v

Source Text [ Open Source File
T T 39T T TR T

Target Text

s 2

& sl ‘a1l

Figure 56. Interactive graphical user interface of IFSTS after translation process

When the user clicks on an ambiguous highlighted word, the interactive GUI shows to the user
all possible ambiguities, which IFSTS has already computed during the automatic translation
task, for the word in focus. The interface changes as shown in Figure 57.
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Scriptural
Translation System

Source Language Target Language
Hindi ~|Urdu N

Source Text [ Open Source File
gieiar o 31T T TR T

]

. /I o
-

| & L]

| Replace with selected |

Target Text

Figure 57. All possible word options in IFSTM

The user can replace the specific word in focus with a word from the list shown, or type the cor-
rect word directly.

It is desired that the correct solution, if computed, appears among the top 3 or 5 words such that
the user does not have to look at a large number of words to find the correct solution. We have
devised a learning approach that consists in automatically storing the unseen words and as a re-
sult compiling and updating the word-to-word scriptural translation transducers from time to
time. In this way, we can accommodate the user feedback during interactive post-editing.

Once the system has added an unseen word to the word-to-word translation component, the user
will see no ambiguity at all, or have to select the correct solution among a maximum of 3 words.
But during the early system usage, the user has to seriously post-edit the text to increase the
productivity of the interactive finite-state scriptural translation system and to reduce his post-
editing time.

In the figure above, the correct word for the focused word in the output text is ranked first
among all possible solutions. In average, for a good computer user, it takes approximately 10 to
15 seconds to type a word. This time may vary from user to user, but in any case, the time taken
to replace the incorrect word from the output text with the correct word with three clicks is less
than 5 seconds.

We automatically store the source and the post-edited translation results in order to develop pa-
rallel corpora for the Indo-Pak languages as a by-product. We also store the unseen words and
their post-edited translations for developing parallel word lists for the language/script pairs of
the Indo-Pak languages. These resources will be utilized in future for developing statistical
translation systems for the said languages.

We also ask users to rank the quality of the translation of the IFSTS, once they have finished the
post-editing task.

That interactive system is not available online yet, but we are planning to put it online in the
near future.
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4.4. Evaluation Design for Interactive Scriptural Translation Model

We have not tested or evaluated the interactive scriptural translation model in the real scenario,
as we do not yet have Hindi, Urdu, Punjabi and Seraiki users to test the system and give us their
feedback. But we will have them as soon as our system will be usable online. We have planned
to undertake a comprehensive evaluation campaign with the help of colleagues in India and Pa-
kistan in the near future by putting IFSTS on Internet.

For the evaluation design, we have considered different parameters, namely the mouse and key-
board actions to compute the efforts of users to post-edit the translated text to their satisfaction
in the interactive system. For that, we record the total number of clicks and key strokes that each
user has performed for post-editing. Another important measure is the post-editing time, that is,
the time a user has spent to correct the result of automatic translation. The other objective eval-
uation measures which we have considered for the evaluation design of IFSTS, are character-
level, word-level, and sentence-level accuracies. We have also considered edit distances be-
tween the automatic translation output and the post-edited translation.

In terms of subjective evaluation of IFSTS, we have considered user satisfaction, fluency, and
adequacy of the translation. Table 54 shows different objective and subjective measures that we
will use for the online permanent evaluation of our IFSTS for the Indo-Pak languages as an on-
line Web service.

Objective measures Subjective measures
Character Accuracies at characters, word and sentence level User satisfaction
Edit distance at word and sentence level Translation Fluency
Post-editing time Translation Adequacy
Number of clicks by the user to do post-editing Translation Usability
BLEU and NIST scores

Table 54. Objective and subjective measures for IFSTS

IFSTS automatically computes the objective evaluation measures. On the other hand, subjective
measures cannot be calculated automatically. For these measures, we will ask a series of ques-
tions to the user after post-editing of a translation. For example, we will ask him/her to associate
a satisfaction measure with the translation that he has finished editing by clicking on the value
corresponding to his opinion. The scale of user satisfaction is shown in Figure 58.

Not satisfied  Slightly satisfied Satisfied Very satisfied Totally satisfied
0 1 2 3 4

Figure 58. Scale of user satisfaction

Similarly, we will use scales for other subjective evaluation measures, shown in Figure 59.

Usability
Not usable Slightly usable Usable Highly usable Completely usable
0 1 2 3 4
Fluency
Not fluent Slightly fluent Fluent Highly fluent Completely fluent
0 1 2 3 4
Adequacy
Not adequate  Slightly adequate Adequate Highly adequate Completely adequate
0 1 2 3 4

Figure 59. Scale of user satisfaction

After each post-edition in IFSTS, the user will be asked questions about the subjective meas-
ures, will select his answer to each question with simple clicks, and will submit it to the system.
In this way, we will get real subjective measures for the scriptural translation systems for the
Indo-Pak languages.
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Chapter 5. Interdialectal Translation —
another Weak Translation
Problem

MT between different languages, like Arabic, Chinese, English, French and Japanese, has been
an attractive but extremely difficult and multifaceted research area since the 1950s. Translation
is not only important between different languages but also between dialects of the same lan-
guage. Interdialectal translation is another weak translation problem.

In this chapter, we discuss different problems of interdialectal translation. Then we perform an
analysis of interdialectal translation and layout a computational model for it. We also discuss
different tools and SLLPs for developing an interdialectal translation system. Finally, we dis-
cuss the scope of interdialectal translation.

5.1. Problems of Interdialectal Translation

Interdialectal translation is a weak translation problem, like scriptural translation, because there
exists only one correct solution or a very limited number of correct solutions in the target dialect
for a given sentence in the source dialect. For example, the French term ‘congére’ must be
translated into the Quebecois term ‘banc de neige’ and vice versa. It is clear from the French—
Quebecois example that we have to develop parallel lexicons for performing interdialectal trans-
lation between dialects of languages like French, English, Hindi, Punjabi and Urdu. Table 55
shows some specific subproblems of the generic problem of interdialectal translation with a few
example instances and constraints.

Generic Subproblem Specific Subproblems Instances Constraints
Interdialectal translation | Word-to-word translation Québécois—French SL=TL
Scripturasl translation English (USA)-English (UK) SW=Tw
Intralingual translation Malay/Latin—Indonesian/Latin
Sindhi/Sindhi— SL=TL
Sindhi/Devanagari SW +=TwW
Punjabi/Gurmukhi—
Punjabi/Shahmukhi
Malay/Jawi—Indonesian/Latin
Hindi/Devanagari—Urdu/Urdu

Table 55. Subproblems of interdialectal translation

Interdialectal translation is computationally more complex and difficult than scriptural transia-
tion because it requires additional resources and linguistic knowledge. In the following two sec-
tions, we show that interdialectal translation is more complex and difficult than word-to-word
translation using only a parallel lexicon. We also discuss the problem of under-resourcedness in
the context of interdialectal translation.

5.1.1. Lexical divergence and word-to-word translation

We have partially discussed lexical divergence between dialects of a language in Chapter 1 dur-
ing our analysis of scriptural translation. For a given word in the source dialect, we have to de-
cide whether the word will be translated according to a bidialectal dictionary (word-to-word
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translation) or whether it will be scripturally translated into the target dialect using scriptural
translation [50, 97].

For French and Quebecois interdialectal translation, we have to develop an interdialectal lexicon
for performing basic interdialectal translation. Unlike English, French differentiates between
nouns, adjectives, adverbs and verbs on the basis of gender and sometime number. For example,
the English noun phrase ‘a car’ is translated into “une voiture’ and the noun phrase ‘a bicycle’ is
translated into ‘un vélo’, because the French nouns ‘voiture’ for ‘car’ and ‘vélo’ for ‘bicycle’
are feminine and masculine, respectively. Therefore, we have to translate the article ‘a’ into
‘une’ and ‘un’ respectively for these two French nouns.

In English, we do not differentiate between nouns, adjectives, adverbs and verbs on the basis of
gender. Therefore interdialectal translation between dialects of English (English UK—-English
USA) is less complex than interdialectal translation of French (French-Quebecois). Table 56
shows a sample list of French—Quebecois parallel words.

French Gender Quebecois Gender English
Congere F Banc de neige M Snowdrift
Airelle a feuilles étroites F Bleuet M Blueberry
Moustique M Maringouin M Mosquito
Séjour M Salon M living-room
Maintenant Adv Présentement Adv Now
Voiture F Char M Car
Copain M Chum M Boy friend
Copine F Blonde F Girl friend
Boutique F Dépanneur M Convenience store

Table 56. Sample French - Quebecois parallel word list

There is sometimes a non-parallelism in number, in the case of collective nouns. A mere word-
to-word translation is not sufficient for the interdialectal translation of languages like French,
Spanish and Italian, in which the agreements of gender, number and/or person are difficult as-
pects. It requires more linguistic knowledge than found in a simple parallel lexicon. For the
French—Quebecois interdialectal translation, our parallel lexicon must contain the morphosyn-
tactic properties (gender, number...) of the parallel words in the lexicon.

Additionally, depending on the dialect or language pair, we have to perform syntactic analysis at
the level of elementary phrases or even of complete sentences to accurately perform interdialec-
tal translation, discussed in detail later. Thus, interdialectal translation is more complex than
simple word-to-word translation and scriptural translation.

5.1.2. Under-resourcedness

Under-resourcedness is another problem when building an interdialectal translation system. We
can find simple parallel lexicons for language pairs like French and English, as the one shown in
Table 56, but it is difficult to find annotated parallel lexicons even for dialects of resource-rich
languages.

When we consider under-resourced and under-studied languages, we cannot find even a simple
parallel lexicon. For example, there does not exist a single parallel lexicon for Hindi—Urdu (at
the end of 2009).

5.2. Analysis of Interdialectal Translation

For analysis purposes, we can divide the process of interdialectal translation into various parts.
We demonstrate the analysis of interdialectal translation with the help of examples from the
French—Quebecois and Hindi—Urdu dialect pairs. We also demonstrate that Hindi—Urdu inter-
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dialectal translation is more difficult and complex than French—Quebecois interdialectal transla-
tion.

5.2.1. Word-to-word translation decision

The first step in interdialectal translation is to decide whether a word in the sentence of a source
dialect is subject to word-to-word translation or only to scriptural translation. For the French—
Quebecois pair, scriptural translation between dialects is not required because both dialects are
written in the same writing system. On the other hand, it is essential for the Hindi—Urdu pair.

For word-to-word translation, we must have or develop (in case of non-existence) a lexicon of
parallel words to produce a word-to-word translation for the source dialect into the target dialect
of a language. Two example Quebecois sentences are shown in Figure 60 with their word-to-
word translation in French. Equivalent or translated words are highlighted in the source and the
target sentences. Adjustments due to gender differences of translated words are shown in italics
in target sentences.

Quebecois sentences French word-to-word translation
(1a) Mon char est noir. (2a) Ma voiture est noire.
(1b) C’est un dépanneur. (2b) C’est une boutique.

Figure 60. Examples of Quebecois to French word-to-word translation with gender adjustments

For the Hindi—Urdu pair, Table 57 shows some example parallel words.

Hindi Urdu English
ﬁFﬂT[VISEQI‘] [vusat] =>4 Expansion
AT [monufja] [msan] ¢4 Human
$TOT [1tftf"a] [xovahif] ji# | Desire
3 [uftor] [&ovab] .| Answer
T [stor] [soth] ¢ |Level
HTYROT [sadaron] [am] (& Common

Table 57. Sample parallel lexicon for Hindi - Urdu

Figure 61 shows an example sentence for Hindi—Urdu interdialectal translation. For that pair,
we have to perform scriptural translation in addition to interdialectal translation.

Hindi sentence Urdu word-to-word translation

W F @R fFar mr g 1 _

[ghor ka wvistar kija goja ha] [ghor ka vusat kija goja ha]
The house is expanded
Figure 61. Example of Hindi—Urdu word-to-word translation without agreement adjustments

5.2.2. Agreement recomputation

Examples of Figure 62 show the strict word-to-word translation without adjustments for gender.
We have highlighted the words (nouns) that are translated into equivalent nouns in French. The
Quebecois nouns in the source dialect sentences are masculine, while their French equivalent
nouns are feminine. Thus both French translations contain errors, unacceptable for a French
reader. The errors in the French translations are also highlighted in Figure 62.

Quebecois sentences French word-to-word translation
(1a) J’ai un char noir. (2a) Jai un voiture noir.
(1b) C’est un dépanneur. (2b) C’est un boutique.

Figure 62. Examples of Quebecois to French word-to-word translation without gender adjustments
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In these examples, we have to recompute the article-noun and adjective-noun agreements for
correctly translating the Quebecois sentences into French. We cannot recompute such agree-
ments without the linguistic knowledge of the source and the translated lexemes. Therefore, we
must have a parallel lexicon with morphosyntactic knowledge of the source and the target lex-
emes. Additionally, we must perform a syntactic analysis at the level of sentences or at least
elementary phrases (noun phrase, adjective phrase, adverb phrase...) to recompute agreements
between words.

Similarly, we have highlighted the Hindi and Urdu words (noun) in Figure 63. In the Hindi—
Urdu pair, the problem not only exists in the noun phrase, underlined in Figure 63, but also in
the verb phrase (also highlighted in the figure below) that depends upon the subject noun
phrase. Thus there exist two types of agreement problems, short distance agreements and long
distance agreements that we must handle to produce a grammatically correct interdialectal trans-
lation. Some agreement problems in the Urdu word-to-word translation are highlighted in Fig-
ure 63.

Hindi sentence Urdu word-to-word translation

W F BOEaR Far = 1 _
q_fl{w;(é

[ghor ka wvistar kija goja hee] [ghor ka vusat kija goja ha]
The house is expanded
Figure 63. Example of Hindi—Urdu word-to-word translation

In the Hindi—Urdu example, the short distance agreement problem of the underlined subject
noun phrase can be corrected by converting the case marker & [ka] into # [ko].

5.2.2.1. Short distance agreements

The short distance agreement problem between words appears locally within elementary phrases
like in the Quebecois—French and Hindi—Urdu examples above. We list a few short distance
agreements within elementary phrases in Table 58.

Sr. | Short distance agreements
1 | Article-noun agreement
2 | Adjective-noun agreement
3 | Article-adjective agreement
4 |Case agreements
Table 58. Short distance agreements

5.2.2.2. Long distance agreements

The correspondences of gender and number across phrases in the same sentence are more com-
plex to handle in languages like French, Italian, Spanish, Hindi, Urdu and Punjabi. They require
a full syntactic analysis of the sentence. We show examples of agreements across different
phrases in the same French sentences in Table 59. The words with correspondences are in bold.

French Examples English
Les livres que j'avais recus. The books I had received.
Nous sommes allés au cinéma. We went to the cinema.
Les voitures ont été lavées. The cars were washed.

Table 59. Examples of long distance agreements

A Hindi—Urdu example has already been given in Figure 63. The highlighted parts, which are
not underlined, have correlation with the highlighted parts that are underlined in the Hindi and
Urdu sentences. It is a subject-verb agreement problem in which the verb phrase depends on the
subject nouns phrase. Two more examples of subject-verb agreements are shown in Figure 64.
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Hindi sentence Urdu translation
AN HR AT el ©

0% s Ko
[meri kar tez tfolfi hee] [meri kar tez tdlti hee]

English: My car runs fast.

o bk e

[mera gPora tez talta ha) [mera glora tez tfolta hee]
English: My horse runs fast.

Figure 64. Example of Hindi—Urdu word-to-word translation
5.2.3. Partial or complete syntax analysis

For solving the short distance agreement within an elementary phrase, it suffices to perform a
partial syntactic analysis at the level of elementary phrases. On the other hand, we have to per-
form a full syntactic analysis of a sentence for solving long distance agreements. The important
point to note here is that we need to perform an analysis (partial or full) only when it is required.
It means that we do not need to analyze every sentence. In other words, we have to analyze a
sentence on demand.

For example, we do not need to perform syntactic analysis when the morphosyntactic properties
of the translated words in a sentence are the same in the source and target dialects. In this case, a
simple word-to-word translation is sufficient to produce a grammatically correct interdialectal
translation. On the other hand, when the morphosyntactic properties of the translated words are
different in the source and target dialects, we must perform a partial or full syntactic analysis.

5.3. Computational Models for Interdialectal Translation

In this section, we discuss computational models that we can choose to develop different com-
ponents for an interdialectal translation system.

5.3.1. Word-to-word translation

For a word-to-word translation component of an interdialectal translation, we have different
choices. We can store the parallel lexicon of all word forms in a database like MySQL, then we
can search for each word in the database and decide that we will translate the word in question
or not. For a small parallel word list, this solution might work very well. But this is not an ade-
quate solution for searching each word in the database for an interdialectal system with a large
parallel word list, because it will take a lot of time to search each word in the database and the
system will be very slow. Furthermore, word-to-word translation is not a single process in the
system. There are other complex and time-consuming computational steps like analysis and
generation. Thus, this choice is not the best choice.

A binary search tree could be a good choice. We can compile a word-to-word dictionary in the
form of a binary tree and store it in memory. A word can be accessed in logarithmic time in a
binary search tree. Another good choice could be a hash-table, in which a word can be searched
in a constant time.

A finite-state transducer could also be a good choice for developing a word-to-word translation
component. Finite-state transducers are time and space effective. It could take the source word
and translate it into the target word. A string-to-string transducer can easily perform the word-
to-word translation.
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Additionally for languages with rich morphology, we need a morphological analyzer for compu-
ting the morphosyntactic properties of the source and the target words. On the basis of these
properties, we will decide whether we need or do not need to perform the syntactic analysis. We
can develop a morphological analyzer for dialects of the translation language, the language for
which we are performing interdialectal translation, in a finite-state paradigm. In this way, we
can combine the finite-state transducer for word-to-word translation and the morphological ana-
lyzer to perform word-to-word translation, as well as to decide whether or not to perform syn-
tactic analysis.

We do not need to do scriptural translation for the Quebecois—French pair, but we need to per-
form it for the Hindi—Urdu pair. We have already implemented the scriptural translation system
for Hindi—Urdu in finite-state technology. It will be easy to integrate the scriptural translation
system and the interdialectal translation system, if both are developed with the same technology.
Therefore, finite-state technology is a good choice for developing the word-to-word translation
component and the morphological analyzer with the specifications that we have laid down.

5.3.2. Partial or complete syntactic analysis

For interdialectal translation, the above given examples illustrate that short-distance agreements
can be resolved with a partial syntactic analysis of elementary phrases for interdialectal transla-
tion. On the other hand, long-distance agreements require a complete syntactic analysis of the
full sentences.

The first question is whether a partial or complete parser exists for a dialect of a language or
not. For example, there exists no readily available parser for the Quebecois dialect of French,
which is a resource rich language. In the case of Indo-Pak languages, there exist no readily
available parsers for Urdu and Hindi. For Punjabi, Sindhi, Seraiki and Kashmiri, there are no
parsers at all, according to the best knowledge of the author.

Building language parsers is a time-consuming and difficult task. It requires language know-
ledge and expertise. For example, it takes approximately one year to build a rule-based large
vocabulary coverage parser for a language, if we already have language knowledge and exper-
tise. Thus building a complete parser is out of scope of our current work, although it is our fu-
ture prospect to build full parsers for the Indo-Pak languages.

There exist tools to derive a parser from annotated corpora (tree banks), like the Charniak parser
[44]. The simplest way to learn a context-free grammar from a parsed corpus (a tree bank), is to
read the grammar off the parsed sentences. A parsed sentence is shown in Figure 65.

/S\
NP VP
NP
pron vb dt n|n
She heard the noise

Figure 65: A parsed sentence [44]

From the figure above, we can learn the following context-free rules, shown in Table 60.
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S - NP VP
NP - pron
Vp — vb NP
NP - dt nn

Table 60: A sample context-free grammarlearnt from tree bank [44]

In the case of the Indo-Pak languages, there exist no such annotated corpora (tree banks). There-
fore, we cannot develop grammars in this way for these languages.

There remains the possibility to quickly build partial analysis structures in an expert way. This
process requires several resources:

= amorphological analyzer.

= asegmenter.

= amonolingual dictionary containing morphological and syntactic features.

= an adequate SLLP to build a partial grammar that can be enhanced to build a complete
grammar for syntactic analysis.

Finite-state technology is an adequate choice to build a morphological analyzer that can be inte-
grated easily with our finite-state scriptural translation systems.

Building a segmenter for Indo-Pak languages is not very difficult task because their writing sys-
tems use spaces and punctuations for marking word and sentence boundaries, is not very diffi-
cult task. But it is a difficult and complex problem for language where word and sentence boun-
daries are not clearly marked, like Chinese, Japanese, Khmer and Thai. Building a monolingual
dictionary is also a very time-consuming and difficult task and requires a lot of efforts in terms
of money and human work.

For building a partial or full syntactic analyzer, there exist many grammar development tools
like Xerox Linguistic Environment (XLE by Xerox)*, Xerox Incremental Parser (XIP by Xerox
Research Center Europe XRCE, Grenoble)”’, ROBRA [179] (Boitet, Ariane-G5 system), TE-
LESI (Chauché, SYGMART 1985), etc.

XLE consists of algorithms for parsing and generating Lexical Functional Grammars (LFG)
along with a rich graphical user interface for writing grammars. XIP is an on-the-fly rule compi-
ler with a very powerful formalism, and an API to integrate its syntactic and semantic text pars-
ing functionalities into end-user applications. It comes with an interface for grammar developers
to build upon XRCE's XIP grammars. XIP includes finite-state technology and much more (ar-
bitrary transformations). It seems to be a good choice for developing syntactic analyzers that
can be integrated with our finite-state translation systems (scriptural and word-to-word) for the
Indo-Pak languages.

5.3.3. Tree transduction and agreement recomputation

After the decision that we have to perform the syntactic analysis partially or fully, we create a
partial or full syntax tree for the elementary phrase or the full sentence of the source dialect.
Then we transform the source dialect syntax tree into the target dialect syntax tree with correct
agreements between words in the target side. Finally, we generate the target dialect text from
this transformed syntax tree.

Tree transducers were independently introduced by Rounds [163] and Thatcher [176] as a gene-
ralization of finite-state transducers. The Rounds/Thatcher tree transducer is very similar to a

* http://www2.parc.com/isl/groups/nltt/xle/
* http://Www.Xrce.xerox.com
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left-to-right FST, except that it works top-down, pursuing sub-trees independently, with each
sub-tree transformed depending only on its own passed-down state [62, 63].

A tree transducer T compactly represents a potentially infinite set of input/output tree pairs: ex-
actly those pairs (Ty, T,) for which some sequence of productions applied to T; (starting in the
initial state) results in T,. This is similar to an FST, which compactly represents a set of in-
put/output string pairs; in fact, T is a generalization of an FST.

The tree transducers can be learnt from a finite training set of input and output tree pairs [62,
63]. But for automatic learning, we do need a training set that contains input and output tree
pairs. There exists no such training data for French—Quebecois, English (UK)—English (USA),
and Hindi—Urdu. Thus, we cannot learn these tree transducers automatically.

The other way to develop tree transducers is the expert way. We manually develop transduction
rule grammars and then apply these grammars on an input source language syntactic tree to pro-
duce a target language syntactic tree. There exist different tools to implement these tree trans-
duction grammars, discussed previously in section 5.3.2.

5.3.4. Syntactic translation model for interdialectal translation
Figure 66 shows the proposed interdialectal translation model.

Input Text

v

Source Text Segmenter

\
Segmented source text

— Morphological Analyzer

\
Annotated source text

Syntactic Analyzer

\
Source syntax tree

Source Text

Tree Transducer

\
Target syntax tree

| Finite-state Scriptural
Translation System

“» Target Text Generator |«

v

Output Text

Figure 66: Proposed interdialectal translation model

In the proposed interdialectal translation model, an input text is received by Source Text
Segmenter, which segments the source text and passes the segmented source text to Mor-
phological Analyzer.

Morphological Analyzer is a crucial component of our interdialectal translation model.
It not only decides that a word will be word-to-word translated or scripturally translated, but
also decides that a syntactic analysis is required or not. If a syntactic analysis is not required,
then it directly passes the segmented source text to Target Text Generator that gene-
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rates the target text, using Finite-state Scriptural Translation System, if
necessary. Otherwise, Morphological Analyzer passes the annotated source text to
Syntactic Analyzer.

Syntactic Analyzer performs the partial or full syntactic analysis and generates the
source syntax tree. This source syntax tree is then passed to Tree Transducer, that per-
forms the source to target syntax tree transformation and generates the corresponding target syn-
tax tree. Finally, Target Text Generator produces the output text using Finite-
state Scriptural Translation System, if necessary.

5.4. Scope of Interdialectal Translation

Interdialectal translation is important for languages like English, French, Italian and Spanish. It
is even important and inevitable when the two dialects in question use two unintelligible writing
systems like Hindi—Urdu, Punjabi/Shahmukhi—Punjabi/Gurmukhi and Sindhi/Sindhi—
Sindhi/Devanagari. The Hindi—Urdu pair alone represents a population of more than 1000 mil-
lion people (including native and second languages speakers) around the word and they require
an automatic way to read the books, journals, newspapers and websites published in the other
script. Thus it is worthwhile to develop interdialectal systems for these languages.
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Chapter 6. Towards an Interdialectal
Translation System

In the previous chapter, we have given an analysis and discussed computational problems that
are important for building an interdialectal translation system. We have laid down a model
based on an expert computational approach, and on a linguistic architecture based on syntactic
transfer. We have not yet implemented an interdialectal system in its totality, but we have de-
veloped some necessary parts that will be combined together to build an interdialectal transla-
tion system. Thus we are moving towards building an interdialectal translation system in the
near future.

In this chapter, we present a preliminary study of two approaches for developing an Inter-
Dialectal Translation System (IDTS). One is the empirical approach (SMT) using direct lin-
guistic architecture, and the other is the syntactic translation approach, using an expert (rule-
based) computational architecture. We also discuss the practical problems like data scarcity and
building necessary resources (when they does not exist) that will be used to build the translation
system in the future.

6.1. Approaches for Building an IDTS

In this section, we examine two approaches to build an IDTS.

6.1.1. Empirical approach

Empirical approaches are data driven approaches, requiring large amounts of data for building a
translation system between a language or dialect pair. This approach is very fast and requires
not prior linguistic and expert knowledge of the language pairs. In other words, it is a robust,
fast and language-independent approach. In 1949, Warren Weaver introduced the idea to deal
with the problem of MT with statistical methods and information theory [32, 182]. Brown et al.
revived this idea in 1990 and laid down a statistical approach to MT [32]. An extract of their
paper is given below:

“The field of machine translation is almost as old as the modern digital com-
puter. In 1949 Warren Weaver suggested that the problem be attacked with
statistical methods and ideas from information theory, an area which he,
Claude Shannon, and others were developing at the time (Weaver 1949). Al-
though researchers quickly abandoned this approach, advancing numerous
theoretical objections, we believe that the true obstacles lay in the relative
impotence of the available computers and the dearth of machine-readable
text from which to gather the statistics vital to such an attack.”

In the present day, the field of statistical methods in MT has matured. A large number of data-
driven and language-independent algorithms have been developed. SMT has been used to de-
velop statistical (more exactly, probabilistic) translation system between various language pairs
like English—French, English—Spanish, English—Arabic, French—Spanish, etc., for which a large
amount of parallel data is available.

In the case of interdialectal translation, the power of modern PCs is sufficient to build SMT sys-
tems, but the scarcity of parallel data is a major and vital problem. Parallel data for dialects of a
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resource-rich language like English and French either do not exist or exist in a very small quan-
tity. In the case of under-resourced languages, there are no parallel data. For example, we have
not found a single (even very small) machine-readable parallel lexicon or corpus for any dialect
pair of Indo-Pak languages. Thus it is out of question to use empirical approach immediately for
developing interdialectal translation systems in this context.

6.1.2. Syntactic translation approach

Following [21, 25, 26, 28, 178, 179, 190], we adopt and adapt the framework for syntactic
translation to solve the problem of interdialectal translation in an expert manner. We have al-
ready shown the proposed syntactic translation model for interdialectal translation in conjunc-
tion with syntactic transfer in the previous chapter. We use interlingua and transfer-based lin-
guistic architecture, shown in Figure 67.

Source Language Level Interlingua or Pivot Level Target Language Level
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Figure 67: Adapted Vauquois' triangle

At the morphotactic and phonetico-morphotactic levels, we have already developed scriptural
translation systems for Indo-Pak languages.

For higher levels, first we need to develop analysis systems on the source side and synthesis
systems on the target side. At the phonetic, morphological and lexical translation levels, we
have to develop interdialectal parallel word lists and morphological analyzers.

In the case of Indo-Pak languages, there exist a large number of studies on the morphology of
Hindi [7, 8, 42, 158, 160, 170]. For Urdu, there also exist some studies on its morphology [19,
20, 37, 38, 75-77, 159]. In both cases, there is no readily available morphological analyzer that
can be used freely for research purposes. On the other hand, there exists no study on the mor-
phology of the other Indo-Pak languages.

At the phonetic and morphosyntactic levels, there is also some prior work on the syntactic anal-
ysis of Hindi and Urdu, but we found no such work for the other Indo-Pak languages. Therefore,
in the absence of all these necessary components, we cannot check the performance and effec-
tiveness of our proposed syntactic translation model for interdialectal translation. Also, it was
not possible to develop all these linguistic and computational resources during our PhD.
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In the following section, we discuss how we can use our previous systems for scriptural transla-
tion for Indo-Pak languages to develop useful linguistic and computational resources interac-
tively on Internet.

6.2. Building Parallel Resources for Interdialectal Translation on Web

We have developed an interactive scriptural translation system, discussed in Chapter 5. This
interactive system will be used in multifaceted ways. It will help to evaluate subjectively and
objectively the performance of our scriptural translation systems. With the help of users of our
online interactive scriptural translation system, it will also be used to develop different parallel
resources that will be used to develop future statistical and syntactic interdialectal translation
systems.

6.2.1. Parallel lexicon

During the interaction between our online scriptural translation system and its users and post-
editing process, we also ask users to give an equivalent word for a translated word to produce a
good localized translation in the desired target dialect. Figure 10 shows an example of Hindi—
Urdu pair for interdialectal translation. For convenience, it is reproduced here.

HITATT a?q%'lfro T&TT oy
[b"agavan tomhari rakfa  kre]
s = SAF A
[kre h1fazat tomhari allah]
God may protect you.

The words in bold in the Hindi sentence are translated into the bold words in the Urdu sentence.

In the interactive interface, we can type the Hindi sentence in the source text field. After select-
ing Hindi as the source language and Urdu as the target language, we pressed the Translate
button. The interface looks like the Figure 68.

Scriptural
Translation System

Source Language Target Language
Hindi v/ Urdu v

Source Text [ Open Source File
WHOFgﬁl {hY] EFQEH

Target Text

e, 7~
/& B Ol

Figure 68: Interactive scriptural translation interface after automatic translation process
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The first translated Urdu word is not ambiguous, but requires localization of the source word in
the Urdu dialect. If the user wants to change this word, he can click on the word and the inter-
face changes as shown in Figure 69. The interface provides a means to type in an equivalent
word in the target dialect. This process serves two objectives. First, the user gets his desired
output and the system gets a good satisfaction measure from him. Second, our Hindi—Urdu pa-
rallel lexicon grows, if it does not yet contain the source Hindi word and that is beneficial be-
cause it will be used to develop later a Hindi—Urdu interdialectal translation system.

Scriptural
Translation System

Source Language Target Language
Hindi v/ Urdu v

Source Text l Open Source File
[
HITATU] (:|DJ'6|'{| Y EFQH”

Target Text
- v 7
</ B d/{qj -;,'f}u{

Type Equivalent Word of your choice

)
F]

Figure 69: Interactive scriptural translation interface for adding equivalent words

This is a slow process for developing parallel lexicons for dialect pairs, but after a few years, we
will have a parallel lexicon large enough to serve our purpose for the development of interdia-
lectal translation systems.

The other important factor to keep in mind is that we may also find some non-serious users who
can spoil the efforts of serious online users. To deal with this problem, we have developed two
different instances of our interactive scriptural translation system. The first instance is freely
available on Internet and everybody can use it. The other instance is dedicated to trusted and
serious users and requires its users to login. A serious user on Internet can communicate with
the system administrator to get her/his login by providing required information to the adminis-
trator.

6.2.2. Parallel corpus

The process of development of a parallel lexicon has been discussed above. During the same
process, the interactive scriptural translation system also stores the source and the translated tar-
get text after post-editing by the user in a translation memory. This translation memory consists
of parallel terms and parallel sentences. It not only helps to improve the translation quality of
the currently available system, but will also serve the future development of statistical scriptural
and interdialectal translation systems.
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6.3. Building Linguistic Components

For the syntactic translation model for interdialectal translation, we require computational lin-
guistic systems like morphological analyzer, syntactic analyzer and syntactic transformation
component.

6.3.1. Morphological analyzer

There exist some prior studies on the morphology of the Hindi—Urdu pair [7, 8, 19, 20, 37, 38,
75-77, 158-160, 170], but a readily usable morphological system is not available yet. As dis-
cussed above, finite-state technology is suitable for the development of a morphological analyz-
er in our case. Like finite-state technology [89, 131-135, 161, 162, 166, 167], finite-state mor-
phology is also very well documented and mature [12, 90, 161, 162].

In the presence of previous studies for the Hindi—Urdu pair, it is possible to build a finite-state
morphological analyzer for each language of the Hindi—Urdu pair in three to four months with a
limited vocabulary. But there does not exist any detailed study on morphology for the other
pairs of Indo-Pak languages. Therefore, it may take a year or more to develop a morphological
analyzer for an Indo-Pak language. Developing morphological analyzers for Indo-Pak languages
is one of our future plans.

There exist various finite-state engines that can be used for the development of a morphological
analyzer for a language in finite-state paradigm like ATEF (by J. Chauché, available at GE-
TALP), OpenFST (by Google Research and New York University), FSM (by AT&T labs), Q-
Systems (A. Colmerauer, available at GETALP) and XFST (by Xerox). ATEF is computational-
ly very powerful for implementing a finite-state morphological analyzer [29, 30, 179], as it can
handle not only flexional morphology, but also derivational and compositional morphology, and
offers a very powerful way to define a full subgrammar to handle unknown words.

OpenFST and FSM are also very powerful finite-state engines, but it a bit hard to code a finite-
state morphological analyzer in these systems, as they are general-purpose finite-state engines
and do not contain specific features to facilitate the development of a morphological analyzer.

We chose XFST to implement morphological analyzers for Indo-Pak languages because we
have used XFST for developing our finite-state scriptural translation systems and we are famili-
ar with this finite-state engine. It is very well documented in [12] and also contains a good
SLLP (specialized language for linguistic programming) for developing a finite-state morpho-
logical analyzer.

6.3.2. Syntactic and Syntax tree transformation grammars

Building parsers, syntactic analyzers and syntax tree transformation grammars is our long-term
future commitment with Indo-Pak languages. Some studies about the syntax and parsing of
Hindi—Urdu pair are available, but there exist no concrete parser for these languages. The other
Indo-Pak languages also lack in this aspect of computational linguistics.

Following our choice of XFST for morphological analyzers, we can select Xerox Linguistic En-
vironment (XLE) by PARC or Xerox Incremental Parser (XIP) linguistic engines for developing
syntactic analyzers for Indo-Pak languages. These two systems can also be used to develop tree
transformation or tree transduction grammars for the syntactic translation process at higher le-
vels of the linguistic translation framework.
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We selected XIP for implementing syntactic analyzers and tree-transduction grammars for Indo-
Pak languages because we have a complete access to XIP software and its documentation due to
the long-standing collaboration of our lab with Xerox Research Center Europe (XRCE)*.

6.4. Conclusion

Interactive online scriptural translation systems will be used to overcome the problems that have
restrained us from developing a practical interdialectal translation system. We have devised
ways to build parallel lexicons and corpora to develop statistical interdialectal translation sys-
tems in the future. It will take some years to gather necessary and sufficient parallel resources.

We have also devised a theoretical syntactic translation model and have identified different lin-
guistic components that are required to develop an interdialectal translation system. Although
we have not yet developed a practical interdialectal translation system, we have developed theo-
retical translation model and a future road map for the development of many interdialectal trans-
lation systems for pairs of dialects or of very similar languages or sublanguages.

% http://www.xrce.xerox.com/
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MT history is more than half a century old. The field of MT started to emerge with the advent of
computer systems. In the beginning, it was used to translate Russian texts into English for de-
fense and intelligence purposes. It was a very hot research area in the past and it is also a very
central and highly funded area in the present. The need of MT is increasing day by day because
the world is becoming a global village.

In general, a given sentence S of n words in the source language SL may have an exponential
number of valid translations, say N = k™ for some k. A weak translation problem is a transla-
tion problem for which N is very small, say less than 5 or almost always 1. In this study, we re-
stricted our scope to the study and analysis of weak translation problems only.

We adopted a step-by-step approach to deal with weak translation problems. We started with the
scriptural translation problem that seemed to be a computationally less hard and relatively sim-
ple problem. In the current literature, the terms transliteration and transcription are often con-
fused. We have defined and proposed the new term ‘scriptural translation’ to denote a combined
process of transliteration and/or transcription.

We were optimistic at the start that we would not only be able to solve the scriptural translation
problem, but also the much harder and complex problems of interdialectal translation and of
translation between closely related languages.

Actually, the study and analysis of the scriptural translation problem proved to be much more
complex and hard than our preliminary estimates. We have experimented with finite-state, sta-
tistical and hybrid models to solve the scriptural translation problems. The graph of Figure 70
shows a brief comparison of results obtained on HU Test Set 2 using these three different mod-
els for the Urdu to Hindi scriptural translation.
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40
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0

Word Level Accuracy Sentence Level Word Level Accuracy Sentence Level
Accuracy Accuracy

With necessary information Without necessary information

B Finite-state system M Statistical system Hybrid system

Figure 70: Comparison of Urdu to Hindi scriptural translation systems at word and sentence level
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The analysis of our scriptural translation results shows that subjective evaluations like user sa-
tisfaction, usability of translation result in real life, fluency and adequacy of translated texts are
also very important in addition to the objective evaluations like word accuracy, sentence accura-
cy, and edit-distance. For subjective evaluation purposes, we have devised different scales to
compute different subjective measures for our scriptural translation systems.

To get a real life rating for our translation systems and improve the performance of our scriptur-
al translation systems, we have also developed an online interactive scriptural translation sys-
tem. This interactive scriptural translation system serves different purposes.

Although we were not yet able to develop practical interdialectal translation systems, we have
presented a theoretical study of how we can develop interdialectal translation systems based on
Statistical Machine Translation (SMT) and syntactic translation (based on syntactic transfer and
linguistic framework) approaches. That includes a study of what kind of linguistic resources
(parallel lexicons and corpora) and lingware modules (morphological and syntactic analyzers)
are required for building interdialectal translation systems. The availability of interactive scrip-
tural translation systems will play a vital role in developing data resources online using the very
large Internet community.

We have mainly experimented on Indo-Pak languages, which represent a large population of the
world. The Hindi—Urdu pair alone represents 1,017 million speakers around the globe. Only
Chinese has more than 1,000 million speakers. Table 61 shows the number of speakers of Indo-
Pak languages.

Sr. | Language | Number of Speakers
1 Hindi 853,000,000
2 Urdu 164,290,000
3 Punjabi 120,000,000
4 Sindhi 21,382,120
5 Seraiki 13,820,000
6 Kashmir 5,640,940

Total 1178,133,060

Table 61: Number of speakers of Indo-Pak languages

We have made available online our scriptural translation system for Hindi—Urdu*’, Punja-
bi/Shahmukhi—Punjabi/Gurmukhi* and Seraiki/Shahmukhi-Seraiki/Devanagari”’. We will also
make available scriptural translation systems for Sindhi/Sindhi—Sindhi/Devanagari and Kashmi-
ri/Urdu—Kashmiri/Devanagari in the near future.

We have presented theoretical studies for the development of interdialectal translation in the
third part of this thesis. In future, we intend to use use this study and develop necessary linguis-
tic resources and lingware modules for developing statistical and syntactic translation systems
for Indo-Pak languages. Table 61 shows the importance of this study in terms of the size of the
populations that, we hope, will benefit from our study.

*" http://puran.info/HUMT/index.html
* http://puran.info/PMT/index.html
* http://puran.info/saraikiM T/index.html
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Annex 1 Analysis of Writing Systems:
Urdu, Punjabi/Shahmukhi,

Seraiki/Shahmukhi and
Kashmiri

Analysis of Urdu

Pakistan is a country with at least 6 major languages and 58 minor ones. The national language,
Urdu, has over 11 million mother-tongue speakers, while those who use it as a second language
could well be more than 105 millions. It is also spoken as a mother tongue by over 48 million
persons in India as well as by the diaspora settled in the Arab states (mainly the Gulf), Mauri-
tius, Britain, North America and the rest of the world (estimated to be over 60 millions) [156]. It
also enjoys the status of being one of the official languages of India and is also the official lan-
guage of different states of India like Uttar Pradesh, Indian-controlled Jammu and Kashmir, etc.
The total count of persons who can speak and understand Urdu is more than 160 million [156].

Brief History of Urdu

Urdu belongs to the Indo-Aryan family and thus is an Indo-European language. It has developed
to its present shape under the strong influence of Arabic, Persian, Punjabi, Sanskrit, and other
indigenous languages of the Indian sub-continent during the Delhi Sultanate and the Mughal
Empire from the 12" to the 18" century.

Muslims first started directly to influence the Indian sub-continent by the start of the 8" century,
when in 712 Muhammad Bin Qasim, a 17-year old General, attacked Daibul (now Karachi, Pa-
kistan) to rescue Muslim women and children from the prison of Raja Dabhir, ruler of Sindh (a
province in south west of Pakistan). After that there is a long chain of Muslim conquerors like
Mahmud Ghaznavi, Shahab-ud-din Muhammad Ghuri, Zaheerud-din Muhammad Babar, etc.
The Delhi Sultanate was established by Sahab-ud-din Muhammad Ghuri and was managed by
his successors like Qutab-ud-din Aibak, Shams-uddin Altutmush, etc. from the 13" to the 16™
century. This was the first Muslim empire in this area. In the 16™ century, Zahir-ud-din Mu-
hammad Babur, the first Mughal emperor, established the Mughal Empire in the Indian sub-
continent. The Mughal Empire continued from 1526 to 1857.

The kings of the Delhi Sultanate and the Mughal Empire brought the Persian language with
them. Persian, being the official language of the king’s court, was considered the language of
power. So it had a strong influence on the indigenous languages. Also these kings had brought
large armies with them who could speak Arabic, Persian and Turkish. Urdu started to develop
by the interaction of invading army men and indigenous people during the Delhi Sultanate and
the Mughal Empire. The Persian language played an important and crucial role in the formation
and development of common languages of the central, north and northwest regions of south
Asia. Following the vast Islamic empire in south Asia, a hybrid language of Arabic, Persian,
Turkish, and indigenous languages began to form around the 10™ and the 11™ century. One di-
alect of this hybrid language would eventually be known as Urdu. Urdu is a Turkish word
meaning ‘army’ or ‘herd’. It grew from the interaction of (often Persian-speaking) Muslim sol-
diers and native people. Soon the Persian script and Nasta’leeq form of cursive style were
adopted, with additional characters added to accommodate the South-Asian phonological sys-
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tem. A new language, based on the South-Asian grammar with a vocabulary largely divided be-
tween Persian and indigenous languages, developed and was called Urdu.

Urdu soon gained distinction as the preferred language in the Persian courts of the Muslim Em-
pire and to this day retains an important place in the literary and cultural spheres. Many dis-
tinctly Persian forms of literature, such as ‘Ghazals’ and ‘Nazms’, came to influence and also to
be affected by the South-Asian culture, producing a distinct melding of Middle-Eastern and
South-Asian heritages. A famous cross-over writer was Amir Khusro whose Persian and Urdu
couplets are read to this day in the subcontinent.

Urdu Alphabet

Urdu is transcribed in a derivation of the Persian alphabet that is itself a derivation of the Arabic
alphabet. It is read and written from right to left. Nasta’leeq, a cursive, context-sensitive and a
highly complex writing system, is widely used for the Urdu calligraphy. The shape assumed by
a character in a word is context-sensitive. The Urdu alphabet contains 35 simple consonants, 15
aspirated consonants, one character for nasal sound, 15 diacritical marks, 10 digits and other
symbols. In Unicode, Arabic and its associated languages like Persian, Urdu, Punjabi, Sindhi
etc. have been allocated 1,200 code points (0600h — 06FFh, FB50h — FEFFh) [195].

Urdu Alphabet Standard

The Urdu standard regulating body in Pakistan is National Language Authority (hereafter
NLA). NLA has developed the Urdu Zabta Takhti (UZT 1.01 — Standard Urdu Alphabet) [2, 79]
that is given in Figure 71. Unicode values and IPAs (International Phonetic Alphabet) are also
given with each character in Figure 71 to make it compatible with Unicode standards and to
make it understandable by unacquainted readers.

It is a 256 bit codepage and has been divided into various logical sections. It is divided into the
following logical sections:

1. Control Characters (0 — 31, 127)

Punctuation and Arithmetic Symbols (32 — 47, 58 — 65)
Digits (48 — 57)

Urdu Diacritics (66 — 79, 123 — 126)

Urdu Characters (80 — 122)

Reserved control characters (128 — 159, 255)

Special Symbols (160 — 176, 192 — 199)

Reserved expansion Space (177 — 191, 200 — 207, 240 — 253)
. Vendor Area (208 — 239)

10. Toggle character (254)

The figure below shows the UZT [2, 79], approved by the National Language Authority (NLA)
of Pakistan.

VNG AW
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Standard Urdu Alphabet approved by NLA

3 4 5 6 7 g9 A
3 @ 1 (a)
DEF0 000 0627
] HS i
06F1 e 0623
b a3
' il ()
sinn 0654 0612
o il
v | =(b)
06F3 0655 0628
" S | 2
06F4 0670 067E
- S | =
06FS 0656 M62A
ol B | S
06FG 0657 0679
N I T
06F7 ween [ £
A e z (k)
06F8 e 062C
Pl 2en) | 2(t)
065 D64B 686
f | Eam | z(h)
003 A 064D 062D
i DHUn) | Z(X)
618 064C 052E
< -E’ 2(d)
wac 0615 062F
1 N . J.
o | ou || 2 | 2@
: 06D 0030 0658 0638 06AS o650 | 0601
E De | > [ 2 | 3@ | <@ |bw '
- | OB3E | oesg 0630 06AF | ogaF | 0653
D %,
FEEE o orr f o 2(r) Jy ¥ (la)
L] oor | O [ ges 0631 o644 | FEFB
Abbreviations e e
Sp: Space, COr: Currency, Do Decimal, Dv; [0 Control Area (not to be used) ﬁ(h}""" PA
Division, HS: Hard Space. US: Under Score, = shape & oex
D Dash, —: Code plate switching Reserved Are (for future use) pe T Unicode
Vendor Arca

Figure 71: Urdu Zabta Takhti

This code page is kept similar to ASCII code (where possible). This is because people are famil-
iar with the character distribution in ASCII as it is a worldwide standard. In addition, owing to
its universal acceptability, many hardware and software systems (especially the earlier ones,
some of which are still deployed) conform very closely to the ASCII standard [2].
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Analysis of Urdu script

Consonants

There are two types of consonants in Urdu, non-aspirated consonants (simple consonants) and
aspirated consonants. They are discussed separately below.

Non-aspirated consonants

There are 35 non-aspirated consonant letters representing 27 consonant sounds. In Urdu, one
consonant sound may be represented by two or more characters, e.g. the sound [s] is represented
by 3 different letters, Seh (&), Seen () and Sad (). Here, “consonant” means symbol not
sound. Out of 35 consonants, 32 consonants are adopted from the Persian alphabet. Retroflex
sounds are not present in Persian, but they exist in Urdu and other languages of the Indian sub-
continent. 3 retroflex consonants are added to the 32 consonants of Persian to accommodate the
missing sounds. Shapes for these sounds were derived from the existing characters at some
point back in history. These characters are Tteh (&) [t], Ddal (5) [d] and Rreh (%) [¢]. In other
categories, Urdu consonants contain velar, palatal, dental, labial, sibilant and glottal consonants.
These consonants are listed in the table below with their corresponding Unicode values in hex-
adecimal and their IPAs.

Sr. |Character |Unicode |Sr. |Character |Unicode |Sr. |Character |Unicode
1 < [b] 0628 13 |L[r] 0631 25 |<[f] 0641
2 < [p] 067E 14 |50 0691 26 |4&l[q] 0642
3 <[t 062A 15 |5[z] 0632 27 |STkK] 06A9
4 St 0679 16 |5[z] 0698 28 |<L1g] 06AF
5 < [s] 062B 17 o [s] 0633 29 |d[M 0644
6 z [&] 062C 18 | [f] 0634 30 |a[m] 0645
7 z (4] 0686 19 |u=]s] 0635 31 |u[n] 0646
8 ¢ [h] 062D 20 |o=(z] 0636 32 |s[v] 0648
9 ¢ [x] 062E 21 | =[] 0637 33 |e[h] 06C1
10 |2[d] 062F 22 |kh(z] 0638 34 |sj] 06CC
11 |5[d] 0688 23 e [?] 0639 35 |3[t] 0629
12 |3[z] 0630 24 & [yl 063A

Table 62: Non-aspirated Urdu consonants

Aspirate consonants

The phenomenon of aspiration also does not exist in Persian. On the other hand, aspiration ex-
ixts in languages of Indian subcontinent, like Punjabi, Urdu, Hindi, etc. In Urdu, there exist 15
aspirated consonants. Unlike retroflex sounds, aspirates are not assigned separate characters. A
special letter called Heh Doachashmee (») is used to mark the aspiration. Aspirates are
represented as the combination of a consonant to be aspirated and Heh Doachashmee (») e.g. —
[b] + 2 [h] = # [b"], & [&B] + 2 [h] = #. [&"], etc. All 15 aspirates of Urdu are listed in Table 63.
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Sr. | Character | Sr. | Character | Sr. | Character | Sr. | Character
1 | #[b"] 5 2. [&" 9 | k"] 13| 2[m"]

2 | =[] 6 | &6 |10 | Lg" M

30| A1 7| e [d" 11| &[] 15| 2"
4|41 8 [-41d 12|21

Table 63: Aspirated Urdu consonants

The first 10 aspirates of the table above are present in a very large number of words as com-
pared to the remaining 5 aspirates. There is no doubt about the existence of first set of 10 aspi-
rates. But there are doubts about the existence of others. Khan [95] has pointed out the existence
of aspirates [r"], [¢"], [I"], [m"] and [n"] in Urdu. He has mentioned some words which are be-
lieved to have these aspirates. According to him, the words <l [sor"ana] (pillow), (¥4
[bar"svan] (twelfth) contain an aspirated [r"]. He also pointed out that ["] is aspirated in the fol-
lowing words "/ [sar"i] (an indian dress for ladies), &7 [bur'a] (old man). Likewise he has giv-
en words #¥ [kol'u] (oil expeller), s [kultari] (axe) for aspirated [1']. For aspirated [m"], he has
given the word 4 [kum"ar] (potter) and for aspirated [n"], he has given words L& [nen"a] (tiny)
and LS [ken"sja] (name of Hindu god Krishna, means beautiful boy).

As a small exercise, we looked up these words in two dictionaries (1) “4 Dictionary of Urdu,
Classical Hindi and English” [151] and (2) “<& 55,8 (An Urdu Dictionary) [48]. All above
mentioned words and with the same spellings are present in the first dictionary (an old dictio-
nary, compiled in 1911) except the word _i#4 [bar"svan]. On the other hand, only four words
with the same spellings are present in the second dictionary (the new one). In remaining words,
the aspiration marker Heh Doachashmee (») is replaced by Heh [h] (+). The word i# 4 [bar"svan]
is not found at all in either dictionaries. Both dictionaries include words containing aspirates
[t"], [¢"], [1*], [m"] and [n"]. Therefore, we cannot rule out the existence of these aspirates in Ur-
du.

Vowels

Urdu has 10 vowels. Seven of these 10 vowels also have nasalized forms [78] and this raises the
total number of vowels to 17. Unlike English and French, Urdu has not assigned separate cha-
racters to vowels. In Urdu, vowels are represented with the help of four long vowel characters
Choti Yeh (), Vav (»), Alef (/) and Alef Madda (7) and with the help of diacritical marks (Arab-
ic Fatha — Zabar %, Arabic Damma — Pesh : and Arabic Kasra — Zer ¢). The representation of a
vowel is context-sensitive, i.e. a vowel may be represented in two or more ways according to
the context in a word. Nasalization of a vowel is marked with Noon Ghunna (u). Noon Ghunna
always comes at the end of a word. In the middle of a word, nasalization is done by Noon (0).
To distinguish between Noon and nasalized Noon, a diacritical mark (%) is placed above the dot

of a nasalized Noon, e.g. A1 [ansu] (tears), £¥ [Iopd] (excessive), etc. This Noon Ghunna diacrit-

ical mark (i) is normally dropped by common people and is not present in common texts. Urdu
vowels and their analysis have previously been given in Table 11.

Diacritical Marks

Urdu is very rich in diacritical marks, the backbone of its vowel system. There are 15 diacritical
marks in Urdu. Zer (33), Zabar (23), Pesh (%), etc. play an important role in the construction of
Urdu vowel system as previously discussed. Mainly, diacritical marks represent the vowel
sounds, but they are also used for other purposes. For example, one of these diacritical marks
(%) is used to geminate the sound of a consonant, and two diacritics (¢, &) are used to build
compound words. Jazam (%) is used to mark the absence of a vowel after the base consonant.

Zer, Zabar and Pesh when doubled are pronounced with added of the sound [n]. For example,
Do-Zabar (%), Do-Zer (;2) and Do-Pesh (%) represent sounds [on], [in] and [un], respectively,
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where ‘Do’ means two. This is called ‘Tanwin’ and takes place only at the end of Arabic loan
words [152]. These “Tanwins” rarely occur in Urdu [152].

Analysis of diacritical marks is given in Table 64.

Sr. Diacritic Analysis
! ZABAR % Zabar represents the vowel sound [s] and also represents the vowels [5]
and [2] in certain contexts, discussed in Table 11.
5 ZER ¢ Zer represents the vowel sound [1] and also represents the vowel [i] in a
g certain context.
3 PESH & Pesh represents the vowel sound [u] and also represents the vowel [u].
4 SHADDA % In Arabic, Persian and Urdu, Shadda is used to geminate the sound of a
consonant [152].
5 HAMZA-e-1ZAFAT | Hamza-e-Izafat is represented by a small Hamza mark above and is
& used to connect two words to form a compound word.
6 KASR-c-IZAFAT ¢ Kasr-e-Izafat is represented by Zer (G.) at the end of a word and is
~ | used to connect two words to form a compound word.
7 JAZM & Jazm is used to mark the absence of a vowel after the base consonant
(Platts 1909). It has same effect as ARABIC SUKUN (Unicode 0652).
3 NOON-GHUNNA | Already discussed above in this section.
MARK &
9 KHARI ZABAR In some Arablcf loan words, Khari Zabar is used in the middle or at the
end of an Arabic loan word to represent the vowel [a].
10 KHARI ZER ¢ Kharl Zer represents the v.owel sound [i]. It is rarely used in Urdu and
' is used in only a few Arabic loan words.
11 ULTA PESH & Ulta Pesh represents the vowel sound [u]. It is also rarely used in Urdu
in a few Arabic loan words.
12 CHOTA TOAY # It is not used commonly. It is used in a few Arabic loan words only.
i i ) ®
13 DO-ZABAR & It is used with Alef (') and Gol Teh (°) at the end of a word to produce
the sound [an].
14 DP-PESH & Ft represents the vowel sounds [un]. It is used at the end of a few Arab-
ic loan words only.
15 DO-ZER ¢ It represents the vowel sounds [1n]. It is used at the end of a few Arabic
. loan words only.
Table 64: Analysis of diacritical marks
HAMZA

HAMZA (/) is a placeholder and is used to separate two successive vowel sounds. In the exam-
ple word Uil [asarf] (comfort), HAMZA is separating two vowel sounds [a] (Alef) and [1]
(Zer) and in the word 57 [ao] (come), HAMZA is separating two vowel sounds [a] (Alef Madda)

and [o] (Vav) In the example word (Wl [asarf] (comfort), HAMZA is separating the two vowel

sounds Alef and Zer, but normally common people drop Zer and write (&Sl instead of (il and
HAMZA plays the role of Zer. Hence HAMZA may be considered as a vowel.

Analysis of Punjabi/Shahmukhi

Punjabi/Shahmukhi alphabet is a superset of the Urdu alphabet. It has one additional non-
aspirated consonant, the retroflex Noon, Rnoon (¢) [n] [117, 119]. The rest is the same as Urdu.
Punjabi is also traditionally written in Nasta’leeq style.
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Analysis of Seraiki/Shahmukhi

Seraiki/Shahmukhi is again a superset of Punjabi. It has three additional characters. The rest is
the same as Urdu and Punjabi/Shahmukhi. It is traditionally written in Nasta’leeq style.

Analysis of Kashmiri/Urdu

Kashmiri employs the Urdu alphabet with a few additions to represent its specific vowels.
Kashmiri has two additional Yehs (s), one with an oval below () and the other with a ‘v’ mark
above (). It also has two additional Waws (), one with a circle at the ending tail () and the
other with a ‘v’ mark above (3). It has two more diacritical marks, a slightly modified Hamza
(¢) written above and below the character. The extra characters of Kashmiri are shown in Table
65. It is also traditionally written in Nasta’leeq style.

Sr. | Symbol | Unicode | Sr. | Symbol | Unicode
sl - 4 & [e] 06CE
s[o] 06C4 5 |°[e] -

3 3[o:] 06C6 N -

Table 65: Kashmiri characters

Analysis of Sindhi/Sindhi

Sindhi has 40 non-aspirated consonants and 11 aspirated consonants. In the Sindhi script, aspi-
ration is expressed in different ways. For example, the aspiration of Jeem (z) is indicated by
Heh Doachashmee (») like in Urdu and Punjabi, and the aspiration of Beh (<) is expressed by a
separate new character with four dots below <. Sindhi aspirated and non-aspirated consonants
that are not present in Urdu or have different shapes from those in Urdu are given in Table 66.

w
=

Symbol | Unicode | Sr. | Symbol | Unicode
< [B] 067B 12 | 21d" 068D
[b" | 0680 13 | 5[t] 0699
[t"] 067F 14 | 230" |-
STt] 067D 15 | G[p" | 06A6
[t" 067A 16 | &=[k] 06AA
] 0684 17 | <[k" | 06A9
1] 0683 18 | Sd] 06B3
z " | 0687 19 | L[n] | 06BI
ifd' | 068C 20 | 5[n] 06BB
2[d] 068A 21 | ¢ [j] 064A
11 | 3[d] 068F
Table 66: Aspirated and non-aspirated Sindhi consonants

[+

Ol |w|lajlun|ls|w|o]|—
C

—_
(=

Sindhi has 16 vowels that are also context-sensitive. Sindhi is traditionally written in Naskh.
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Annex 2 Analysis of the Hindi Writing
Systems

Hindi, an Indo-European language, enjoys the status of being the mother tongue of 366 million
persons of India [156]. It is one of the official languages of India and is used as the language of
administration, media, education and literature in Delhi, Uttar Pradesh, Bihar, Madhya Pradesh,
Rajasthan, Haryana and Himachal Pradesh. Elsewhere in India, Hindi is used, alongside Eng-
lish, as a second language. Hindi is also spoken in Bangladesh, Belize, Botswana, Canada,
Germany, Guyana, Kenya, Nepal, New Zealand, the Philippines, Singapore, South Africa, Suri-
nam, Trinidad, Uganda, UAE, UK, USA, Yemen, and Zambia. The total count of persons who
can speak and understand Hindi is more than 850 millions [156].

Hindi Alphabet

Historical emergence of the Hindi/Devanagari script

The Hindi alphabet known as Devanagri is a simplified version of the alphabet most used for
Sanskrit, Nagari (literally “urban”) or Devanagari (“godly urban”) which evolved from the
Brahmi writing system used in Ashoka’s times (3" century BC). During the six following centu-
ries, Brahmi evolved into two distinct subtypes, the northern and the southern ones. Between the
6th and the 10th century, the northern subtype in the form of the Gupta script, used during the
Gupta dynasty (4™ and 5™ century), evolved into a central subtype known as the Kutila (“bent”)
or Kutiya, also called Sidhamatrka (“with complete vowels™), a cursive version of the Gupta
script. Kutila evolved into early Nagari and proto-Bengali (used for Maithili and modern Benga-
li) scripts. Early Nagari developed into the modern Nagari (used for Hindi, Marathi, Nepali),
Kaithi used by the Kayasth cast of writers and clerks, Gujarati (19" century) and Modi, a cur-
sive type used in Shivaji’s times (18" century) for writing Marathi. Parallel to this northern and
central subtype, the western subtype evolved into Sharda, Landa (used by the merchant and cler-
ical Hindu communities in Panjab and Sindh) and Takri (used in Himachal Pradesh and Jammu)
scripts. Gurmukhi, a script used for writing Punjabi in India, is a derivation of Sharda, Landa
and Takri. Nagari imposed itself as the main regional and then the national (India’s constitution
1950) script for Hindi [136].

Features of Devanagari script

Hindi/Devanagari is read and written left-to-right. All graphic systems derived from the Brahmi
have been termed syllabic alphabets. Compared with other syllabic scripts like the Japanese hi-
ragana and katakana, which have one symbol for [ks] and different symbols for [ki] and [ku], it
is clear that Hindi/Devanagari script is partly syllabic as the graphic symbol for a consonant on-
ly inherits the vowel sound [s]. [94, 136] All other vowels are noted as consonant + vowel dia-
critical mark e.g. & [k] + 2 [1] = & [ki], & [k] +  [v] = F [ku], etc.

Consonants do not have the upper and lower cases and are always pronounced exactly the same
way unlike English. There are 40 consonants in Hindi. All consonants inherit the vowel sound
[2] and the inherent [5] is silent after the final consonant [94, 136].
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All vowels have two forms except the short vowel [a], one being the diacritical mark and the

other being the independent character. The diacritical form of a vowel is used when a vowel ap-
pears in the middle or at the end of a word or a syllable. Diacritical marks are written before,
after, under or above a consonant. The independent character form of a vowel is used when it
occurs at the start of a word or a syllable. The independent form is written as a separate charac-

ter, e.g. in 37T [ab] (water), the vowel sound [a] is represented by the character 3T [94, 136].

The feature that makes the Devanagari much more complex is that two or more consonants can
be combined together to form a consonant cluster. The cluster form is used to denote the non-

intervention of the inherent [3] or another vowel between two or more consonants e.g. fg=¢,

[hindi] (Hindi), arelm [gvala] (cowherd) (consonant clusters are underlined), etc. The cluster

form is normally known as ‘Conjunct’. A example Hindi sentence in Devanagari is shown be-
low:

R Rea@areT & TSR ot &

Hindi is the official language of India
Figure 72: An example Hindi sentence

Standard codepage of Hindi

The Hindi/Devanagari script has 40 consonants, 11 independent vowel characters, 10 vowel di-
acritical marks, 10 digits, etc. It is read and written from left to right. In Unicode standard 4.1,
The Hindi alphabet is assigned 128 code points, 0900 — 097F. The Hindi code page is given in
Table 67.

090 091 092 093 094 095 096 097
0 V0910 |30920 |T0930 |<X0940 | 350950 | FK 0960 | .0970
1 [£0901 |370911 |30921 |T0931 |0941 | 0951 | 0961
2 | 0902 | 30912 | ©0922 | TM0932 | 0942 | 20952 | & 0962
3 | ©:0903 | 30913 |UT0923 |@50933 | 0943 | 20953 | & 0963
4 | 320904 |3H0914 |T0924 |B0934 | 0944 | 0954 | 10964
5 | 370905 |®0915 |20925 |T0935 | <0945
6 |3m0906 |@0916 |Z0926 |er0936 | 0946
7 130907 |3W0917 |€0927 | W0937 | 30947 \
8 | 30908 |T0918 |0928 | {0938 | 30948
9 | 30909 |F0919 [30929 |E0939 | <T0949
A | F09A |T091A | T092A T 094A
B | %090B |©091B | % 092B <Y 094B
C | ®090C |ST091C |§092C | 2093C | <}094C
D |T090D |3091D |87092D |s5093D | 094D
E |TO09E |3 091E | #O092E | <T093E
F |[TO09F |[TO091F |ZJ092F | f¥093F

Table 67: Standard codepage of Hindi (Unicode)

Analysis of Devanagari for Hindi

This section contains a detailed analysis of the Hindi/Devanagari writing system.
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Vowels

All Hindi vowels can be represented in two different ways except the vowel [s], one being the
diacritical form and other being the independent character form. Hindi contains 11 main vowels.
According to Montaut [136], all vowels can be nasalized except the vowel [r]. Hence the total

number of vowels is 21. On the basis of ways of vowel representation, Hindi vowels can be fur-
ther subdivided into vowel diacritical marks and independent vowels. They are discussed and
analyzed below.

Vowel diacritical marks

The diacritical form of a vowel is used when a vowel appears in the middle or at the end of a
word or a syllable. Vowel diacritical marks are written before, after, under or above a consonant
e.g. frd® [kitab] (book), ST [zomin] (earth), AT [ghumoena] (to revolve around), #IT [mera]

(mine), 3@ [axeri] (last), etc. The vowel diacritical mark for the vowel [o] does not exist as
each constant symbol inherits it [94, 136].

There are 10 vowel diacritical marks in Hindi (=T [a], 72 [1], <Y [i], ¢ [v], < [ul,  [x], & [e], 2 [e],
¥ [o], <} [5]) and two symbols (<, ) for nasalization. According to Kellogg [94], the nasaliza-
tion mark ‘Anunasik’ (%) is used for the nasalization of a preceding vowel e.g. & [bas] (buffa-

lo), &l [kehi] (somewhere), 3 [gd] (cow), Far [kjo] (why), etc. But Montaut [136] adds that
‘Anunasik’ (&) is replaced by a simple dot above ‘Anusavar’ () when the vowel glyph goes
over the upper line e.g. 8 [bas] (buffalo), #&i[kehi] (somewhere), &t [kjé] (why), etc. ‘Anu-
savar’ is a much stronger nasalized form than ‘Anunasik’. ‘Anunasik’ and ‘Anusavar’ both de-

note the nasalization of a preceding vowel, and therefore never begin a syllable or a word. The
diacritical mark < [r] is used only in Sanskrit loan words and is very rare in Hindi texts. Vowel

diacritical marks and their analysis with examples are given in Table 68.
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Sr. | Vowel Diacritical Mark Analysis
| Diacritical mark of the vo-|All consonants inherit the vowel [a] hence it does not have a vowel
wel [9] does not exist. mark e.g. &7 [keran] (ear), Te« [robb] (God)
) o [a] It jomes after a consonant e.g. 9= [gana] (to sing), ST [&ana] (to
g0
T3 [1] It comes before a consonant e.g. f&eer [dill] (heart), f&or [k1ron] (ray)
4 T[] It comes after a consonant e.g. 37HR [omir] (rich), &« [gerib] (near)
. It comes below a consonant e.g. ¥wal [sunder| (beautiful), Feteir
5 3 [o] 3 q
[sunna] (to hear)
6 o [u] It comes below a consonant e.g. @ [kortut] (deed), I [surot]
o (face)
It comes below a consonant e.g. FaT0T [krpan] (sword), &4 [krfn] (the
7|l . . ¢ ¢
god Krishna of Hindus)
8 3 e] It comes above a consonant e.g. #IT [mera] (mine), o [tera] (your)
" It comes above a consonant e.g. %elal [p"elana] (to stretch), dger
9 < [ee]
[peedsl] (on foot)
10 |<Y[o] Zt jomes after a consonant e.g. I« [rona] (to weep), AT [rog] (mala-
e Itycomes after a consonant e.g. #ld [mot] (death), =T [r5dna] (to
trample)
The vowel [9] is inherited by all consonants thus nasalized form of
C+%[3] the vowel [o] is represented by ‘Anunasik’ (<) or ‘Anusavar’ (s,
12 (C represents a consonant) placed above a consonant (just a dot above a consonant) e.g. =T or
=191 [n3ga] (naked), TfeT or e [r3gin] (colorful)
13 |or+ < ord [d] a1 or 31 [ga] (cow), T or T [sig] (disguise)
14 |+ Ford[i]
15 |+ & or= [q] FEI or FE [kohi] (somewhere), gF or &1 [nahi] (no)
16 |5+ or[g] HT [moda] (a thread like worm)
17 |w+Fore[d] #% or Hg [miy"] (moustache)
18 &+ For<[g] # or # [mé] (in), I or TE [rohé] (live).
19 |3+ Jord[&] & or &9 [bas] (buffalo), & or & [ma] (1)
20 |<¥+ < or[8] | or Gier [s6d"a] (fragrant), G or &iear [dokena] (to roar)
21 |at+Jord[3] ea or Wea [r3dna] (to trample), stamr or stem [bga] (silly boy)

Table 68: Analysis of devangari vowel dicritics
Independent Vowels

The independent vowel character is used when a vowel appears at the start of a word or a sylla-
ble. All 11 main vowels have their independent character forms including the vowel [s]. Their
nasalized versions are derived in the same way as they are derived for vowel diacritical marks in
the previous section. The independent vowel character is used when it comes at the start of a
word e.g. $AT [iman] (faith), 379K [aggar] (if), T [ek] (one), etc. or when it comes at the start of
a syllable e.g. =T [darra] (circle) contains two syllables [da] and [ira] and the vowel [1] at the
beginning of second syllable is written by the independent form §, ASRR3igrsT [nazorddaz] (ignore)
contains syllables [ns], [zs], [rs], and [5daz] and at the beginning of the fourth syllable the vowel
[3] is written by the independent vowel form 37 , etc. It is clear from examples above that the

independent vowel form is used at the beginning of a syllable when it begins with a vowel and
its preceding syllable ends in a vowel. In other words, the independent vowel character is used
for a vowel when two vowels appear consecutively in the middle of a word.
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In Arabic loan words, the independent vowel character is used to transcribe Ain (¢), e.g. d&I3d
[tobij2t] (physical status) = <uesa F31#R [t2mir] (build) L3, etc. This creates confusions that an
independent vowel character actually represents a vowel sound or Ain (¢).

Hindi vowels with examples are given in Table 69.

Sr. | Vowel Character Examples

1 3 [3] 31507 [atffa] (good), sSR3iETeT [nazarddaz] (ignore), etc.
2 3T [a] AT [ag] (fire), E:cB-lTTI’é [xudarai] (proud), etc.

3 g [1] Eﬂw_oﬁHT [1klota] (only son), &TSIT [daira] (circle), etc.

4 $ [i] SHTS [iman] (faith), fF&aTSAT [kotmnaijé] (hard lucks), etc.
5 3 [u] 3¢ [udd"sr] (there), ABAT [noumar] (newly young), etc.
6 3 [u] FUH [ud"am] (noise), 3313 [utaii] (asking permission to lift), etc.
7 * [r] 2R 3T [prrja] (decision committee)

8 T [e] T [ek] (one), 9TT [pae] (may get), etc.

9 U [a] T [eesa] (like this)

10 3 [o] 3T [odg"a1] (out og sight), fogem3nt [difad] (directions), etc.
11 3t 0] aa [osat] (average), 3fterar [otana] (to boil), etc.

12 |31[5] 379IRT [5gara] (spark), 31AST [3grez] (Englishman), etc.

13 3T [d] 3@ [ak*] (eye), 39T [Ggan] (courtyard), etc

14 g [i] gﬂ' [itf] (inch), gﬂ?ﬂ [itfona] (to be attracted), etc.

15 |31l 374 [ind"an] (fuel), 3¢ [if] (brick), etc.

16 |3 [0] 33Tel [0gli] (finger), 3 T [0t] (camal), etc.

17 |3 [i] 3 = [dtfa] (High), 3 [{ig"] (dozing), etc.

18 |T[é] T [éfa] (pulled)

19 |¥[&] V& [#t"ona] (to twist), UaT [&da] (rolling), etc.

20 |3 (8] 31sT$ [6dai] (depth)

21 3t [5] 3iterr [5d"a] (with the face down), el [5gi] (silence), etc.

Table 69:Analysis of Devangari vowel characters
Consonants

Hindi consonants can be divided into non-aspirated consonants and aspirated consonants. The
other main thing relative to consonants is the conjunct form, a cluster of two or more conso-
nants. These are discussed separately below.

Non-aspirated consonants

There are 29 non-aspirated consonant characters that represent 28 consonant sounds. The sound
[f] is represented by two characters 2T and ¥. Hindi/Devanagari consonants contain velar, palatal,

dental, labial, sibilant, retroflex and glottal consonants like Urdu/Urdu. These consonants are
given in Table 70.
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Sr. |Character |Unicode |Sr. |Character |Unicode |Sr. |Character |Unicode
1 & [k] 0915 11 | [d] 0926 21 |9 [f] 0937
2 T [g] 0917 12 |7 [n] 0928 22 |8 [s] 0938
3 5 [ng] 0919 13 |9I[p] 092A 23 |& [h] 0939
4 T [4] 091A 14 |&[b] 092C 24 | [q] 0958
5 |9 (&) 091C 15 |# [m] 092E 25 |@[x] 0959
6 3T [nds] 091E 16 [Tl 092F 26 |7yl 095A
7 <[l 091F 17 | [r] 0930 27 |91 [z] 095B
8 g [d] 0921 18 |l [1] 0932 28 |31l 095C
9 T [n] 0923 19 |9 [v] 0935 29 (W If] 095E
10 | I[t] 0924 20 (RAU[f] 0936

Table 70: Non-aspirated Hindi consonants

Aspirated consonants

There are a total of 15 aspirates in Hindi. They are represented in two different ways. Unlike
Urdu, some of them are represented by separate characters. There are 11 such aspirated conso-

nants in Hindi that are represented by separate characters. They are listed in Table 71.

Sr. |Character |Unicode |Sr. |Character |Unicode |Sr. |Character |Unicode
1 g [k"] 0916 5 |5 0920 9 |% [p" 092B

2 =g 0918 6 |47 0922 10 |3 [b"] 092D

3 (T4 091B 7 |9 0925 11| "] 095D

4 |FIH 091D 8 |TId1 0927

Table 71: Aspirated Hindi consonants

Remaining consonants are represented by the combination of a consonant to be aspirated and
the conjunct form of Ha (8) e.g. geg«[dul"n] (bride), $ #FeR [kum"ar] (potter), =gl [dulhan]
(bride)). They are treated by some linguists as similar to other aspirated consonants ([kum"ar],
[nan®a], [dul"sn]) and not to the sequence CC (C + h)” (where C stands for consonant).

Conjunct forms

Conjunct forms of consonants are used when no intervening vowel separates two or more con-
sonants [94, 136]. This makes Devanagari much more complex as both consonants in contact
may modify their form. In writing, clusters are usually formed by the unmodified form of the
second consonant and the shortened form of the first. There are 6 different ways to form clusters
in Hindi:

1.

When the first contains a final vertical bar, this bar is dropped, e.g. the cluster of T [g]
and o [1] is 3o [gl] and it is formed by omitting the final vertical bar of 9T, the cluster of

d [t] and o [1] is <o [t1] and it is formed by omitting the final vertical bar of d, etc.

When the first letter has a round shape, both consonants are written vertically with their
entire graph e.g. g, g, etc.

When the first letter is g [h], the second starts in the low curve e.g. the cluster of @ [h]
and T [j]is &@.
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4. Cluster forms of ¥ [r] are the most diverse. When ¥ [r] is the first consonant of a cluster,
the sign - is placed above the second consonant, e.g. the cluster of ¥ [r] and & [k] is &Y
[tk], the cluster of ¥ [r] and & [v] is & [rv], etc. When T [r] is the second consonant of a
cluster, then with some consonants, the sign " is used e.g. the cluster of & [k] and T [r] is
¥ [kr], the cluster of & [g"] and T [r] is & [gr], etc. With some consonants, the sign :; is

used, e.g. the cluster of @ [d"] and T [r] is & [d"r], the cluster of 5 [d] and ¥ [r] is & [dr],
etc.

5. The consonant d [t] has special forms of conjuncts with T [r], & [k] and itself. When T [r]
is clustered with & [¢], it also changes the shape of & [t] and the cluster form is S [tr].
Conjunct forms of  [t] with & [k] and itself are @ [kt] and & [tt] respectively.

6. The cluster form &7 [kf] (s [k] + ¥ [[] = &7 [k[]) occurs only in Sanskrit loan words e.g.
3787 [ok(r] (letter), &TAT [kfsma] (pardon), etc.

Cluster forms may occur at the start, in the middle and at the end of word. The consonant g [d"]

never forms a cluster. Computationally, cluster forms make Devanagari a quite complex writing
system.
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Annex 3 Analysis of Punjabi/Gurmukhi

Gurmukhi derives its character set from Landa (old script of Indian sub-continent) and was
standardized by Guru Angad Dev (second Sikh Guru, 1504-1552) in the 16th century, when it
contained 35 consonants. The word Gurmukhi literally means "from the mouth of Guru". The
whole of the Guru Granth Sahib (Holy book of Sikhs) is written in Gurmukhi. Its alphabets are
Abugida, as each consonant has an inherent vowel (a) that can be changed using vowel signs. It
is a left to right script and unlike Shahmukhi, its characters do not assume different shapes and
also do not have small and capital forms. An example sentence is give below:

Urrsh At He At W S5t @

Figure 73: Example sentence of Punjabi in Gurmukhi script

Modern Gurmukhi has 41 consonants, 9 vowels symbols, 2 symbols for nasal sounds, 1 symbol
that duplicates the sound of any consonant, 3 subjoined forms of the consonants Ra, Ha and Va
and 1 post-base form of Ya. In Unicode, Gurmukhi sub-range is from U+0A00 to U+0A7F.
This provides 128 code points for the Gurmukhi characters, of which only 77 are currently used
(Unicode 4.0.1). In addition, Danda and Double Danda are contained in the Devanagari sub-
range at U+0964 and U+0965 respectively.

The analysis of Punjabi/Gurmukhi vowels and consonants is the same as previously discussed
for Hindi/Devanagari. Gurmukhi employs different character shapes, except for a few characters
that are the same as in Devanagari.

Gurmukhi does not have conjunct forms like Hindi/Devanagari. It has only a very limited con-
junct forms that are called ‘PAIREENs’ (Sub-joins). There are three PAIREEN in Gurmukhi,
“HAAHAA”, “VAAVAA” and “RAARAA” shown in Table 5. In the case of PAIREEN VAA-
VAA and PAIREEN RAARAA, these sub-joins are used in those words that have been derived
from Sanskrit and are very rarely used.

PAIREEN HAAHAA is more frequently used in writings that the other two PAIREENS. It is
used to mark the aspiration of some characters as a conjunct form of HA is used to mark aspira-
tion of some Hindi consonants, discussed previously.

Table 72 shows the standard Unicode codepage for Gurmukhi.
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0AO | OA1 | 0A2 | 0A3 | 0A4 | 0AS5 | 0A6 | 0A7

Table 72: Unicode codepage for Gurmukhi
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Annex 4 Analysis of Devanagari for
Sindhi, Seraiki and Kashmiri

Sindhi and Seraiki have some consonants that are not present in Hindi. In the recent past, Un-
icode has added some extra characters derived from the previously available characters for
Sindhi and the same set of characters is also used in Seraiki. For example, a character for the
sound [6] is derived from the Hindi character & [b] by putting a line below the character &. These

additional Sindhi and Seraiki characters are shown in Table.

Sr. | Character | Unicode
1 ER) 097F
2 3 [6] 097E
3 o] 097C
4 T [d] 097B

The rest of the analysis of Devanagari for Sindhi and Seraiki is the same as previously discussed
for Hindi.
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Annex 5 UIT Mappings for Indo-Pak
Languages

Urdu UIT Mappings

Urdu/Urdu is a subset of the Punjabi/Shahmukhi alphabet, and it will be covered in the map-
pings for Punjabi/Shahmukhi. Thus, we have covered Urdu UIT mappings in Punja-
bi/Shahmukhi UIT mappings tables, given below.

Punjabi UIT Mappings

Consonant mappings

Sr. |Shahmukhi [IPA |Gurmukhi |UIT |Sr. |Shahmukhi [IPA |Gurmukhi UIT
1 |« b |9 b 27 | k [ k

2 e p M p |28 | g [T g

30 |= t 3 td 29 |J 1 5 1

4 |2 t Z t 30 | m |H m

5 |& S H sl 31 |u n e} n

6 |e & |7 dz 32 | no|= n

7 & tf g tS |33 | \% g \%

8 h J hl 34 | h J h

9 X H X 35 % t 3 t d2
10 | d Sl dd |36 |¢ j o ]
13 d 3 d 37 |t b" F b_h
12 5 z o z 38 |ote p" e p_h
13 |/ r Gl r 39 |t = tdh
14 |’ T 3 r 40 (ot o) t h
15 | zZ = z 41 |t & g dZh
16 2 3 |9 Z |42 |t g & t S h
17 U S H s 43 |t d g ddh
18 | F ) H S 44 |ot5 d [ d h
19 |/ s " s2 |45 ot ™ |g+u+g [rh
20 |/ zZ = 72 |46 |t o F+o+d r' h
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21 |+ t 3 t dl 47 |o+S k" |y k h
22 s z |= 73 |48 |otS g |y g h
23 ¢ ? Ty ? 49 |+ I BT 1 h
24 ¢ v dT G (50 |otr m"  (H+o+g  m_h
25 |2 f = f 51 |oty n" [&+o+g nh
26 |3 q [T+ q 52 |ots v [@otg |v_h
Table 73: Punjabi/Shahmukhi consonants mappings
Vowel mappings
Sr. | Shahmukhi | IPA | Gurmukhi | UIT | Sr. Shahmukhi | IPA | Gurmukhi | UIT
1 7 a nr A 13 + 1 fa M1
2 “+ o ) n @ 14 ¢ 4] 154 U1
3 H I fe I 15 e a nr 2A1
4 "+ U 154 U 16 & 9,e |w¥ @?
5 et gH e g e,e3 | 17 st e g 2el
6 gt | @ n} L3 |18 |g++¢e i il %l
7 S+ i g i 19 g+ +e ® n 2{1
8 i u g u 20 s+ o) 154 201
9 | o 154 0 21 | sHHE 5] v»? 201
10 | s+ ) n 0] 22 g u g 2ul
11 | ¢ ) Y ? 23 <t e g ¢4
12 |+ ° " ? 24 | eHHE @ nt ?7{4
Table 74: Vowel mappings at the start of a word
Sr. |Shahmukhi|IPA Gurmukhi | UIT Sr. |Shahmukhi |IPA |Gurmukhi|UIT
1 |74 a UL A 19 | i o i2
2 3 - @ 20 | u o u2
3 1 fir I 21 |& -
4 |& v o U 22 |¢ a r A3
5 e e 3 e, e4 23 ¢ ) Y ?
6 |tyts e {, {4 24 |+ o | ?
7 st i a il 25 |+ 1 fe 11
8 | u o ul 26 |+¢ U 154 U1
9 s 0 3 ol 27 | a |[wr 2A1
10 |+ h) ) o) 28 |¢H a |[wr Al1?
11|yt i,e o, 12i1, 12el |29 |4+¢E e g ?el
12 |+ o,U,u 8868 gg} RULI30 Js++¢ i & 211
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13 |t e g 2e4 31 |[g++¢ ® | 2{1
14 |% an @nl 32 |+ o 154 201
15 |& un oS Ulnl 33 |t > |t 201
16 |o mn fots Ilnl 34 |+ u |8 2ul
17 |% - 5 35 |t e g ¢4
18 - - 36 |t+¢ ® | 2{4
Table 75: Vowel mappings in the middle or at the end of a word
Sr. |Shahmukhi | IPA | Gurmukhi| UIT | Sr. |Shahmukhi| IPA | Gurmukhi| UIT
1 |74 a T AlLLA |6 | e 8] el, e4
2 I fis 11 7 et gt e |2 {1, {4
30 |gte i oY il 8 |» 0 3 ol
4 & v o Ul |9 |+t > |8 01
5 Pt u o ul
Table 76: Vowel sign mappings
Other symbols
Sr. | Shahmukhi | IPA | Gurmukhi UIT Sr. |Shahmukhi| TPA | Gurmukhi UIT
1 U ) 3 ~ 15| ¢+++ |o+m (52 Om
. . (as de-
2 U ) ; 16 ¥ - +DECIMAL
cimal)
3 - . 17 - - [ +SSTBD
+GURZERO
4 - o URZERO 18 - - Il +DSTBD
5 | : I B S U B : 0 +ZERO
+GURTWO
6 r - 2 HURTWO 20 1 - 1 +ONE
+GURTHREE
7 r - 3 URTHREE 21 2 - 2 +TWO
+GRUFOUR
8 ~ - ¥ +RUFOUR 22 3 - 3 +THREE
+GURFIVE
9 0 - Y +URFIVE 23 4 - 4 +FOUR
+
10 y i ¢ oS 4| s . 5 +FIVE
+GURSEVEN
11 < - 9 +URSEVEN 25 6 - 6 +SIX
+GUREIGHT
12 A - T \UREIGHT 26 7 - 7 +SEVEN
13 9 - v +S[E{}§I\IIII\I]\]IEE 27 8 - 8 +EIGHT
14 & - v 28 |9 - 9 +NINE

Table 77: Other symbol mappings

143




Annex

Seraiki UIT Mappings

Seraiki possesses four characters not in Pujabi/Shahmukhi. These additional characters and their

UIT mappings are given in Table below.

Sr. | Seraiki/Devanagari | IPA |Seraiki/Shahmukhi| UIT
1 g b - bl
> 3 d é d'1
3 <l & d Z1
4 T g 4 gl
Table 78: Seraiki mappings for additional characters
Sindhi UIT Mappings

A large majority of characters of Sindhi have already been covered in UIT mappings for Punja-

bi. The additional character mappings are shown in the table below.

Sr. | Sindhi | IPA |Devanagari| UIT | Sr. | Sindhi | IPA | Devanagari| UIT
1|+ b g bl |12 |, qr [ d h
2 |e bt q bh |13 |? T 3 r

3 |& th g tdh|l4 |27 h [ r_h
4 |z t [ (15 |3 p" % p h
5 & t <) t h [16 |S k ) k

6 |& i) dz1 |17 |JS k" g k h
7 e n El N2 |18 | ) El) gl
8 & tfh 5 dd [19 |J 1 5 N1
9 |5 dr 3] ddh|20 [¢ n or n'
10 |3 d g d |21 |¢ j I j

11 |3 d g d'l

Table 79: UIT mappings of additional Sindhi/Sindhi and Sindhi/Devanagari characters

Hindi UIT Mappings

Consonant mappings

Sr. | Hindi UIT | Sr.| Hindi | UIT Sr. | Hindi | UIT | Sr. | Hindi | UIT
1 | ®[k] k 123" | t h | 23 [d[b]| b [34|F[q]| q
2 @ kM| kh [13]|38[d]]| & 24 |H[b"| b h |35 |@[x]| x
3 | M [g] g 14 |&[d"]| d h | 25 |A[mM]| m |36 |q[y]| X
4 |g[g"| gh [15]|0T[n]| n 26 | T[] j |37 |3[z]]| =z
5|1 %ml | N1 |[16|d[t]| td [ 27 [ T[] | r [38|3[]|
6 | TM] | tS [17 [T | tdh |28 [0 | 1 [39|&["]|r h
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7 || tSh|[18|&[d]| dd | 29 |[d[v]| vV [40|®[f]| F
8 |T[&K]| dz |19 |&a[d™]|ddh| 30 |Aq[f]| S |41 | @
9 |ST[B"]|dZh|20|T[n]| n 31 | w[f] | SI
10 |T[gdg]| N2 |21 | 9[p] P 32 | F[s]| s
11| T[] t |22 |®w[p"| ph | 33 |&[h]| h
Table 80: UIT mappings of Hindi/Devanagari consonants
Vowel mappings
Sr. | Hindi | UIT | Sr. | Hindi | UIT | Sr. | Hindi | UIT | Sr. | Hindi | UIT
1| B | @ | 7 |=®@]| r1 |13 |AT[@]| A~ | 19 | T [&] | {~
2 |3M[al| A | 8 | Tle]| e | 14| 8[F] | I~ |20 |3T[8]] o~
3080 | I |9 |Q[e]| { |15] 0[] ]| ic |21 ]|3[3]] O~
4 S| i [10([30[0]]| o |16|3[5] ]| U~
5 3w | U |11 |3tp)] O |17 |F[d]| u~
6 |F[ul| u |12|3[3]| @ | 18| T[&] | e~
Table 81: UIT mappings of Hindi vowel characters
Sr. | Hindi | UIT | Sr. | Hindi | UIT | Sr. | Hindi | UIT | Sr. | Hindi | UIT
1| affa]l | AL | 6 | ]| 2 [11] €[] | @ |16 | & [@] | u~
2 | FE | 1 | 7 | Del | e | 12| oTF(a] | Al~| 17| S5 [E] | e~
30| i | 8 [ B[l | { |13 em |~ |18 Jo[@] | {~
4 (gl | U |9 |No]| o |14 T[] | i~ | 19| <T3[3] | o~
5 gul| uw [10]<¥p]| O [15] go([0] | U~ |20 | <ts[3] | O~

Table 82: UIT mappings of Hindi vowel signs
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Annex 6 Finite-state Transducers

Hindi to UIT Finite-state Transducer

clear stack

set char-encoding UTF-8
!****************************************************

! START
| A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AR AR AR A AR AR A A A A KK

[ i e i e S S S S S S S S S S S 3

! Definition of vairables

! 40 consonants hEITTSTBGIASIACESGUTAACTATHIHAILTd/NIHGhEIASGH
define CONSONANTS
(R Y|T|TIS|STIAAICTISISIGIONTIAICIYTTNS T HATTTTIAT

HIEIP WA ISIFIP];

define HINUMBER [©|?]R]3|¥[|Y|&Ib|C|R];

define ENGNUMBER [0 | 1 | 2 | 3 | 4 | 5|1 6 | 71| 8 | 91;
define HINUMBEREXPRESSION [ [HINUMBER [HINUMBER]*] ];
define ENGNUMBEREXPRESSION [ [ENGNUMBER [ENGNUMBER]*] ];

[ e e e e S S S S S S S S S S S S 4

! Rules for Hindi to UIT Conversion
!*******************

! R R e b b b b dh Sh db g g b b b b b 4

! Other Symbols

read regex [&-> ".", &1-> H;
!*******************

! Rules for Consonants
!*******************

! Simple consonants

read regex [ -> k, Y-> [k " " h], T->qg, H-> [g" " h], §-> [N 1], T
> [t ""s8], B> [t""s""h], T->[d""z], H->[d""z""
h], I > [N 2], T-> [t " "], &-> [t """ "™ "™h], §->1[d4d"""], &@-> [d
mewom oW py, O > (o], > [t " ndl, > [t " "d""h], §-> [d
mrd], > [d""d""hl, d>n, 9>p, B> [p " " h], §-> Db, H->
b " "h], A->m, >3, T>r, d>1, d->v, A>3, ¥-> [s 1], H->

s, F>h Fooq @k, A>6 A> 2z, > [x """, T-> [0 "

hl, B-> f];

! Other Aspirated Consonants

read regex [[Q®]-> ["_" h] || (X | A| dA]_ 1;
! Special case for YA

read regex [Id-> [ h] || _ [.#. | "™ "11;
!*******************

! Rules for Nasalization
!*******************

w

read regex [{r-> "~", o> MaAN]e
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|k, ,kkkkhhkkkhkrkkhkrkkhxkx**

! Rules for Vowels
!*******************

read regex [U-> [I 2 e 1], >[I 2 e 1], 3T -> [T 2 0 1], 3> [T 2 o

111;
! Dependent vowel sings that are very rare in thier use

v v

read regex [©-> [e 1], &-> [e 1], &1-> [o 1], h-> [0 1]1];

! Dependent vowel signs that are very common in their use

read regex [&T-> (A 1], f&-> (1 11, > [i 1], §-> (U 1], @-> [u 1], §->
N N . .

[r 1 1], %> [e 11, &-> ["{" 1],':-:‘]'-> [o 1]/':~}T'> [0 1117

T3] > (119 o 1]

read regex [3H -> "?", 3AT-> ["?" A 1], $§-> [I 2], 3-> [I 2 U 1], é-> [I

2111, (3]->[I2ul], T-> [I2e 1], (W]-> [T 2 "{" 1], 3T > [I 2 o

17, 3M-> (12011, &> [r 1115

! when vowel sign U comes after a consonant and before the independent
vowel signs at the end of a word

read regex [[] -> [u 1] || CONSONANTS _ [[3T | § | € [ & | <] [4. | "
"111:

! when vowels A, I & u come in the middle or at the end of a word af-

ter a vowel or nasalization
hY

read regex [3M-> [A 1], 3> [0 1] || [B] §| 3'ﬁ\'3'T|f'13\3'|"§‘T|'13\'13.3'\|'1£|'1'3'
E<ERs MRS SR RNRe s SRR B

! special string at the start of a word n equivalent in Urdu is BEH +
ALEF + LAM

! read regex [[§TUXW]-> [b I 1 A1 1] || [.%. | " "1 1;

! vowels at the start of a word
read regex [3H -> "@", 3T > 2, > 1, é’—> i, 3>U, ->u, ¥ > [r 1],
T-> e, LN ", 3> o, 3> 0, T > e, T g, 37> o, 3> 0 || [.%. |

AL N

<

read regex [[g]-> [u 1], [f¥]-> [i 1] || CONSONANTS _ [.#. | " "] I;
read regex [U-> e || "-" nowoq;

B S S S S S S S S S S S S S S S 3

! Rules for specail strings
!*******************

read regex [[C|'-:3T]-> [pulrzrl, [TFTHAG]> [AbAld""dl, [Hdsd
OTE]-> ["@" 1 "." LA L1 h] || [2 - ["" | #.11  [.4. | " "11;

| *,kkkk khkhkkhhkhkkhrkkhrkkx%k

! special words

read regex [[ AT DTE > ["e" 1 "." 1 A1 h], 3 > [O m], [d]-> [n A
11, (T3] -> [§ hl, (@A -> [v hl, (@S]-> [vh] || " " | .1 [.#. |
" "]];

| *k,kkk hkkkhkrkkhkrkkhkkx*x*%

! Rules for Numbers
!*******************

read regex [© -> "+HIZERO", % -> "+HIONE", X -> "+HITWO", 3 -> "+HITHREE",

¥ -> "+HIFOUR", Y -> "+HIFIVE", & -> "+HISIX", b -> "+HISEVEN", (¢ ->
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"+HIEIGHT", & -> "+HININE", | -> "+ssTBD", I -> "+DSTBD", "." ->

"+HIABRIVATION"];

! Decimal separator

read regex ["+DOT" -> "+HIDECIMAL", "+COMMA"™ -> "+HITHSEP" || HINUMBE-
REXPRESSION  HINUMBEREXPRESSION];

read regex ["0" -> "+ZERO", 1 -> "+ONE", 2 -> "+TWO", 3 -> "+THREE", 4
-> "4FQUR", 5 -> "+FIVE", 6 -> "+SIX", 7 -> "4+SEVEN", 8 -> "+EIGHT", O
-> "+NINE"];

read regex ["+DOT" -> ["+DECIMAL"], "+COMMA" -> "+THSEP" | | ENGNUMBE-
REXPRESSION ENGNUMBEREXPRESSION] ;

| **********;********

! Marks
read regex [" . " _> "+DOT", "?" _> "+QMA.RK", ", " _> "+COMMA", ",. " _>
"+SEMICOLON", ":" -> "+COLON", "%" -> "4+PERCENT", "+NL" -> "+NL"];

! khkkhkhkkkhkhkhkkhkkhkkhkhkkkkKxk

! Hindi text normalization rules

! Removing all dot below from the text as they have been incorrectly
or mistakenly put in the text.

read regex [{-> 0];

! normalizing consonants with a dot below

read regex [[®h ¢]-> &, @& > W™, [TAC]->d, (o ¢]-> 9, [E]->75,

[@o]-> @, [Wa]-> B);
!****************************************************

! END
(BRI S i S b b I b b db b S db I b S b S IR S b e S b S b S b b S b S S b b db b S Sb b S 4b b3

compose net

UIT to Hindi Finite-state Transducer

clear stack
set char-encoding UTF-8
!*******************

'Definition of Varibales
!*******************

define CONSONANTS [b | [b "™ " h] | p | [p " "™ hl | [t ™" d] | [t "
d "_" h] ‘ [t L1 "] I [t nwNn "_" h] | [S l} | [d "_" Z] | [d "_H Z H_H
h] | [t H_H S] | [t ll_ll S H_" h] | [h 1] | X I [d ll_ll d] | [d H_" d
"7" h] ‘ [d "> "] | [d mween "7" h] | [Z 1] | r ‘ [r "7" h] ‘ [r "> "] |
[ ™" ™ " h] | z | Z2 | s | s | [s2] | [z2]) | [£"™"™d1l] | [z 3] |
Gl £l gl k| [k"™"hl g [g™"™"h]l | 1| [1""h] |m|] [m"™"
hl] I n | [n"™ " h] | v [ [v""h]l | h | J | [£t""d2] | H| [N 1]

(N2 | [n""] (2 ""] | [1) | [4&d™ ™2 1] | [d" "™ 1] | [g 1]11;

define VOWELS ["@" | A | I | l e | "™ | 4 1 ul] O] o [A1] | [A

U
21 1 A3 1 [ 1y 1 (rz2) | (uill  fe 11 | ["{" 1] | [1 1] | [u 1]
(0 1] | [o 1] | [e 3] | [e 4] [ ["{"™ 3] | ["{" 4] | [1 2] | [u 2]];

[ e e S S S S S S S S S S S S S 4

! Multi-character symbols

!*******************

read regex ["+DOT" -> ".", U"{QOMARK" -> "?", '"4DECIMAL" -> ".",
"+comMpA" -> ",", "4THSEP" -> ",", "4SEMICOLON" -> ";", "+COLON" ->
" . " , "+PERCENT" _> H%H, "+ZERO" _> "O" , "+ONE "w _> 1, "+TWO" _> 2,
"ITHREE" -> 3, "+FOUR" -> 4, "+FIVE" -> 5, "+SIX" -> 6, "+SEVEN" -> 7,

"+EIGHT" -> 8, "+NINE" -> 9, "+DSTBD" -> I, "+SSTBD" -> |,
"LHIDECIMAL" -> ".", "4+HITHSEP" -> ",", "4+HIZERO" -> ©, "4+HIONE" -> ¢,
"tHITWO" -> R, "+HITHREE" -> 3, "+HIFOUR" -> ¥, "+HIFIVE" -> G,
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"SHISIX" -> &, "+HISEVEN" -> b, "+HIEIGHT" -> ¢, "+HININE" -> R,

"+HIABRIVATION" -> 4;

Il khdhhkhrhkkhkhkhkhkhhhk*xk*%
! Diacritics

!*******************
read regex ["." ->;
!*******************

! Consonants
!*******************

! Simple Consonants
read regex [b > d, p >Y, [t " "d] ->d, [t "'"] ->¢C, x >, [d

"_" dal] —> ar [d "\"] -> gl r —> TI z => .a-l Z => .a-r s —> ql S => er G

> 4d9q, £ >W, g->%h, k >%h, g->9, 1 >©e, m->H, n->d, v >

d, h->g, 3 —>d, H->@, [N1] -> 5, [N 2] -> A;
! Consonants Set 2
read regex [[s 1] -> ¥, [d " " Z2] -> 9, [t " " sS] ->d, [h 1] -> §,

[z 1] > A, [r """ >3, [s1] >V, [s2] =>H, [z2] -3, [t""
d1] -=>d, [z3] >, [t""d2] ->d [n""] -0, [1""] ->d,

[b 1] -> &, [d" " 1] -> 5, [g 1] -> d];
! Consonants Set 3

read regex [[d " " Z 1] -> 9I];

! Aspirated Consonants

read regex [ [" " h] -> [Z§@]];

read regex [[b " " h] ->&#, [p" " h] >, [t " "d" " h] >, [t
memvmp] ->&, [d""zZ""h] ->%, [t""s""h > [d""d
mrh] ->®, [d"™" " "h] ->&, [r"™"""h] >3 [k""h >,
[g "_" h] —> H];

! HEH at the end of a word as vowel A
read regex [h ->©T || [CONSONANTS]  [.#. | "™ "11;

| *, kK, k hkhkkhhkkkhrkkhrkxkhx%k

! Nazalization
read regex ["~" —>£q;
read regex ["~" ->@ || [CONSONANTS] _ 1;

read regex [ ["~" 1] ->C;
!*******************

! Vowels
!*******************

! Vowel characters
read regex [A -> 3T, "@" -> 3, 1 >3, U >3, i —> é, o —> 3ﬁ, o ->
3, u->F e >T (" >, [r1] > K

read regex [[e 3] -> U, ["{" 3] -> ﬁb
! Vowel signs
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read regex [[A 1] -> T, [I 1] -> ﬁ?, [U 1] -—> & [i 1] —>iﬂ} [o 1] -—>

Y

X, 011 >, w1l > fe 11 >3, (" 1] -> 3, [e 4] -> &, ["("

khkkhkhkkkhkhkkkhkhAk kA kA kkhk kK

Special cases

R -
41 >, [r 11 >4
|
!
! khkkhkhkhk kA hkkhkkhkhhkhkhkkKkk
! Special cases of vowels

read regex [["Q" n] -> ol || [? - .#.] 17

read regex [[A 2] -> T, [A 3] -> T, [I 2] -> 8, [1i 2] -> X, [u 2] -

>4, ["@" n 1] ->3&, [T 1n 1] -> (I8], (U 1n 1] > [&A];

read regex [[u 1] ->% || CONSONANTS _ [[A | 1 | e | "~"]1 .#.11;

! Vowel with Ain

read regex ["?2" -> 3];

read regex ["?" ->&T || CONSONANTS 15

read regex [["?2" A 1] -> 3, [A 1 "2"] -> [¢T5]];

read regex [["@" "?"] -> W, ["?" I 1] -> g, ["?2" U 1] -> 3, ["?2" e 1]
-> T, ["2" i 1] ->§, ["2" "{" 1] -> q, ["2" o 1] -> 3, ["2" 0 1] ->
A, [rer w1l > F, ("2 e 4] -> T, [ v 4] -> U

!read regex [["@" "?2"] -> W, ["?2" I 1] -> 3, ["?" U 1] -> 3, ["?" e 1]
-> T, ["2" i 1] ->§, ["2" "{" 1] -> q, ["2" o 1] -> 3, ["2" 0 1] ->
A, [mer ouw 1] > F, ("2 oe 4] > T, [ver ovqv 4] > U | [k | "
"ol 1;

! Ain after the final i sound in the word

read regex [["?" i 1] -> [ﬁTé]II I P U L B

read regex [[A 1] -> 3T, [I 1] -> 3, v 11 -> 3, [1i 1] -> é, [0 1] ->
3, 011 >3 w1 > F [e1] > T [("(" 1] > T, [e 4] -> T,
[("{"™ 41 -—> ﬁ, (r 1 1] -> F& || VOWELS _ 1;

read regex [[I 2 1 1] -> é, [T 2 e 1] —> T, [T 2 "{" 1] -> ﬂ, [T 2 o
1] >3, (I 2u1l] —>3F, [I2U01] >3, [T201] -> 3, [12e 4] -
> Q];

| K,k khhkkhkhrkhkhkrxkhkhkxkhhkxk*x*x

i Compound Words

read regex [["-" e "-"] -> ["-" U"."], ["-" e 1 "-"] -> ["-" W"-"]];
!*******************

! Special words

read regex [ ["@" 1 "." 1 A 1h] —> [HALHTME], [pulr] > [Ty
[ A BN I

read regex [["@" 1 "." 1 A1 h] -> [HACTXTE], [v h] —> [a'-:::-T], [J h]

> [T, mAa 1] >, (0m] => 38| [4. | " "] [ 4. | ""]1];

! khkkhkkhkkhkhkhkhkhkkkk ki khkhkhhkk

! Multi-character symbols

read regex ["+DOT" -> "+DOT", "+QMARK" -> "+QMARK", "+DECIMAL" ->
"+DECIMAL", "+COMMA™" -> "+COMMA", "+NL" -> "+NL", "+THSEP" ->
"+THSEP", "+SEMICOLON" -> "+SEMICOLON", "+COLON" -> "+COLON",
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"+PERCENT" -> "+PERCENT", "+ZERO" -> "+4+ZERO", "+ONE" -> "+ONE", "+TWO"

-> "4+Two", "+THREE" -> "+THREE", "+FOUR" -> "4FOUR", "+FIVE" ->
"+FIVE", "+SIX" -> "4+SIX", "+SEVEN" -> "+SEVEN", "+EIGHT" -> "+EIGHT",
"+NINE" -> "4+NINE", "+DSTBD" -> "+4+DSTBD", "+SSTBD" -> "+4+SSTBD",

"+GURDECIMAL" -> "+4+HIDECIMAL", "+GURTHSEP" -> "+HITHSEP", "+GURZERO"
> "+HIZERO", "+GURONE" -> "4+HIONE", "+GURTWO" -> "+HITWO", "+GURTHREE"

-> "+HITHREE", "+GURFOUR" -> "+HIFOUR", "+GURFIVE" -> "4+HIFIVE",
"+GURSIX" -> "+4HISIX", "+GURSEVEN" -> "4+HISEVEN", "+GUREIGHT" ->
"+HIEIGHT", "+GURNINE" -> "+HININE", "+URQMARK" -> "+QMARK", "+URSTBD"
-> "+SSTBD", "+URCOMMA" -> "+COMMA", "4+URPERCENT" -> "+PERCENT",
"+URSEMICOLON" -> "+SEMICOLON", "+URSTAR" -> "x", "+URDECIMAL" ->
"+HIDECIMAL", "+URTHSEP" -> "+HITHSEP", "+URZERO" -> "+HIZERO",

"+URONE" -> "4+HIONE", "4+URTWO" -> "4+HITWO", "+URTHREE" -> "+HITHREE",
"+URFOUR" -> "+HIFOUR", "+URFIVE" -> "4+HIFIVE", "+URSIX" -> "+HISIX",

"+URSEVEN" -> "+HISEVEN", "+UREIGHT" -> "+HIEIGHT", "+URNINE" ->
"+HININE", "+HIABRIVATION" -> "+HIABRIVATION", "+HIDECIMAL" ->
"+HIDECIMAL", "+HITHSEP" -> "+HITHSEP", "+HIZERO" -> "+HIZERO",

"+HIONE" -> "+HIONE", "+HITWO" -> "+HITWO", "+HITHREE" -> "+HITHREE",
"+HIFOUR" -> "+HIFOUR", "+HIFIVE" -> "+HIFIVE", "+HISIX" -> "+HISIX",
"+HISEVEN" -> "+HISEVEN", "+HIEIGHT" -> "+HIEIGHT", "+HININE" ->
"+HININE", "" -> 0];

compose net

Urdu to UIT Finite-state Transducer

clear stack

set char-encoding UTF-8
!*******************

'Definition of Varibales

! Simple Consonants

define CONSONANTS [ | sfélo|ole|JSI-SIGldle afaloaloml o SR e e le <@l 5
! Aspirated Consonants

define ASPICONSONANTS [ [ [leld<SI<S|5LR1zlz]S )|l ;

! Aspirated Consonants with ZER

define ASPIZERCONSONANTS [[4 . [Oleld<SI<S|5 03zl ]SlwlslwT

! Aspirated Consonants with ZABAR

define ASPIZABARCONSONANTS [[4 [Jeld<S|<S3uRzlzelwlwl=] ;

! Aspiracted Consonants with PESH

define ASPIZERCONSONANTS [[& [0leld<SI<SI581z |zl 5

! Aspirated Consonants with SHAD + ZER

define ASPISHADZERCONSONANTS [[4 .~ [0leld|<SI<S| 5L z]z|&l = ;

! Aspirated Consonants with SHAD + ZABAR

define ASPISHADZABARCONSONANTS [ [ ~ [geld<SI<S|5 P zlz/el<lel=] ;
! Aspiracted Consonants with SHAD + PESH

define ASPISHADZERCONSONANTS [[2 ~ [0leld<S|<SI5L181z |zl 5
define ENGNUMBER [0 | 1 | 2 | 3 | 4 | 51 6 | 7 1 8 | 91;

define URDNUMBER [* | Y | Y | Y | ¥ | & | % | ¥ | A | 47;

ldefine ENGNUMEXP [[([ "+" | "-" ]1)] [ [ENGNUMBER [ENGNUMBER | ","]*]
["." ENGNUMBER*]~<2 ]];

'define URDNUMEXP [[([ "+" | "-" 1)] [ [URDNUMBER [URDNUMBER | ¢]*] [,
URDNUMBER*]"<2 11;

define ENGNUMBEREXPRESSION [ [ENGNUMBER [ENGNUMBER]*] ];

define URNUMBEREXPRESSION [ [URDNUMBER [URDNUMBER]*] ];:

Ik, ,kkk hkkkhhkkk rkkhx*x**

! Diacritics
!*******************

! here we will ignore Mada Sign, Hamza Above, Hamza Below, and Noong-
huna Mark diacritics
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|

read regex [ -> 0, . -> [T 1], ~-> [U 1], " -> [A 3], © -> [i 2], & ->
[u 2], ->["e" n1l], .->[I1n1l], M""< " -=>[U1ln1l], ,0< ,0<-%

.
O <- 30 <- ;] 7
! *khkk Kk hkkhkhkhkkhkkhkkkkhkkkkkxk

! Consonants

! Simple Consonants

read regex [ @ -> b, @ -> p, & -> [t " " d], S o> [t "], &> [s
11, ¢z > [d " " Z2], g -> [t " " s8]l, z ->[h 1], ¢ -> [x], ¥ -> [d""
dl, S ->1[d "™"], 3> [z 1], b ->1r, 3->[r ™", 3 ->2z, 5->12, o
-> s, B ->8, ua->[s2], oo > [z2], b->1(t""d1], & -> [z 3],
@ > f, 3 >q S>>k S ->g,Jd->1,s->m 5->v, s ->h, s >
[T 21, & -> [I 2], ¢ -> 7, & -> G, & -> [t " " d 2], 4 ->h];

! Simple Consonants + SHAD

read regex [ [ <] => [b "." b], [ <] -> [p "." pl, [ <] -> [t " " d

B

nonp n_n a1, [“‘i‘] -> [t "o n o "\"J, ["u] -> [s 1 "." s 11, [wc] —
> [d "_" Z " . " d " " Z} , [‘ E] _> [t " " S " . " t " " S] , [‘ C] _> [h l

" h1], [l > Ix ".x], (3 > [d" " "d".nd""dl, [3 > [d
memowwg vy, 03 => [z 1"tz 1], [0 0] > [ ".torl, 031 > (r
mhrorm ey, 03] > [z " oz), 03] > [z z), [Dow] -> [s Lt
sl, & > [s"."ms], [val > [s2"."s2], [Va] -> [z2"." z2],
L] > (" "d1r .t "d1ll, "5 > 1z3"."z3], [ < > [f
mrfl, U3 > gtamal, US> kmmkl, 0L > g namgl, [

-=> [1 "." 11, [ el => [m "." m], [ e -> [h "." h],
[#] => [h "." h], [(3] => [t "™ "d2™"."t" "d2]];
! Aspirated Consonants

read regex [ & —> [" " h] [| [O]e|d[SISI5L]3] g lelelelel< _ 1;
! Aspirated Consonants + ZABAR

read regex [ [4 <] -> [b " " h], [ Q] -> [p " " h], [ & -> [t " "
d" "h], [ & -> [t """ "h], [ gl ->[d""z""h, & gl ->
(£ " "™s™""™h], [# 3 ->[d""d" "h], [ 3 ->[d""" "h], [
4] => [r " " h], [* 3] -> [r """ "h], &S] > (k" "h], & >
[g " " hl, [# d] -> [1 " " h], [# ¢ -> [m" " h], [ O] => [n"_"
hll;

! Aspirated Consonants + ZER

read regex [ [#.<] -> [b" " h I 1], [*#.<9] > [p" " hTII1], [ O] —>
[t " "d""hT1], [#.&] -> [t """ "hTI1l], [4.g] ->[d" "2 ""
hI1], [4.g] > [t""S"™ "hTI1], [4.3 ->[d""d""™hT1I1l], [3

L

4] => [d """ "hI1], (4. 0] -> [r" "hTI1], [ 3] —> (£ " """
hIi1l], [.<S] > [k""h1I1], 4. ->[g" "h11], [».d] —> [1
" hTI1], [ -> [m "™ " hI1], [4.0] -> [n" " hI1]];

! Aspirated Consonants + ZER to ignore ZER while transliteration when
followed by CHOTI YEH

read regex [ [4.<] -=> [b " " h], [#.2] -> [p " " h], [ &) -> [t " "
d " " h], [ &] > [t """ "h], [A.g] ->[d""z""h], [ g ->
[£" "™s™""h], [#.3 ->[d""d" "h], [ 3 ->[d"" " "h], [ O
4] => [r " " h], *. 51 => [r ™" " " h], [».S] -> [k " " h], ». & -
> [g " "hl, #.dl => [1" "h], . ¢ => [m" " h], [ 0] -> [n"_"
hl || _ 11;

! Aspirated Consonants + PESH

read regex [ [# @] -=> [b " " hU1], [ @] > [p" " hU1l], [ & ->
[t " "d""hU1l], [# & -> [t"" " "hUl], [#'g] ->[d""z""
huill, ['gl > [t""Ss""hU1l], [ ->[d""d" "huUi1l], [3

L

A‘] => [d4 """ " " hU1l], [A, Jl > [r " " hU1], [A‘ 3] => [ "momow
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hu1l], [+ < > [k""hvu1ll, [ & > [g""hUu1ll, [» d] -> [1
""hU1ll, el => m " " hU1l], [#°0] -> [n" " hU1]Il;

! Aspirated Consonants + PESH to ignore PESH while transliteration
when followed by WAW

read regex [ [# @] -> [b " " h], [# @] -> [p " " h], [# @] -> [ " "
d" "™ h], [#&] > [t """ "h], gl ->[d""z""hl, g ->
[£" " S" "™h], [#'3 ->([d" "d" "nhn], 3 ->[d"" " "h], [
Al => [r " " h], [# 3] => [r """ " "h], [ ] -> [k " "h], [ & -
> [g " "h], 4 d] ->[1""h], [ ¢ =>[m" "hl, [# ¢ -> [n""
hl || _ ul;

! Aspirated Consonants + SHAD

read regex [ [4 @] -> [b "." b " "h], [ @ ->[p"."p" "h], [ <
A > [t " md".mt " rd " "h], [&0 Q] -> [t "rov,ropormonmow o p
4" z] -=> [d""zZz"."d""z""h], [4 g] > [t""s"."¢t""s
"M h], [473] —> [d" "d"."md""d""h], [#°3 ->[d"" g
" "hl, [#70] => [r "." r " " h], [A73] -> [r "rov.vop mronovop), [S
A7 > [k "." k" "h], [ & > [g"."g" "h], [ J ->[1"."1
" " h], [#7e] => m "." m " " h], [#°0] -> [n"." n" " h],[[42] > [b
"M b " "h], (4] -> [p"."p" "h], [4&] > [t""d".mt""d
"rhl, [[A&] —> [t g ] Tag] o-> """z g"n
Z" "hl, [2g] > [t""s"™."t""s""h], [(#43 ->[d""d"."
d"™ " d""hn], 43 > [d"™"r.mgmmmmn], 7oAyl > [r"."r
"t h], (&3] > [r "ot vy [Tads] -> [k """ k" " on],
[4S] => [g"."g" "h], [4J] > [1"." 1" "h], [(4¢] > [m "." m
" " h], [40] => [n "." n " " hl];

! Aspirated Consonants + SHAD + ZABAR

read regex [ [# @] -> [b "." b " " h], [ Q] -> [p"."p " "h], [&
A7) > et gt et d ], [0 T &) => [t oo
hl, [ “gl > [d""z™"."d""z" "hl, [ “gl > [t""s"."¢t

- e

" " S "_" h] , [A J] _> [d "_" d " . A\ d "_" d "_" h] , [A - ‘3] _> [d nmen
[

"

L

e T o 4 7 )] => [r "." r " " hl, [» S Mor
memom mop], [477S] > [k ".m k" "h], & & > (g "."g" "h], [d
A7) > [l ™" 1" "h], & e => m"."m" "h], [ "¢ ->[n"."n
"_" hll;
! Aspirated Consonants + SHAD + ZER
read regex [ [4.°<x] -> [b "." b ""hTIl], [2."@] => [p"."p " "hiI
1], [*.7<] > [t "d"."t""d" "hTIl1l]l, [#. <] => [t """ "¢
mCwew v h T 1], [, gz] > [d""zZz".md""Z""hIl], [4 el >
t""s""."t""s"™"hTIlI1], [2.72] -> [d "rdm".md""d" "h
], .73 > (@™ " d ™" hI1], [&. 73] -> [r"." " "h
1, [2.73] => [p " om,mop oo ""hI1l], [ 7S] > [k "."k" "h
], 4.8 > (g ".mg" "nIl], [ 7J] > [1"."1""hiI1l], [.
] > m"."m"™ "hI1l], [#.7¢0] ->[n"."n""hTII1]l;
Aspirated Consonants + SHAD + ZER while transliteration when fol-

lowed by CHOTI YEH

read regex [ [#. @] -> [b "." b " " h], [#. 9] -> [p "."p " " h], [&
A 7] > [errdm.r et md " h], [A.7 Q) > [ o g e
h], [#. gl -> [d"™"z™"."d""2""h], [ "g] ->[t""sS"."t
mrg M mp], [AL T3] —>[d""d".md"™"d" "h], [4. 3 -> [d""
g mttom von], (A7 5] -> [r ", r " "h], [ 3] -> [r "oy
momom v h], [A.7S] -> [k "." k" " h], [ 78] > (g "." g "_ " h], [ J
A ] -> [l ™" 1"™"nh], [#. ¢ ->[m"."m™" "h], [#. 0] -> [n"."n
" " hl Il _ il;

! Aspirated Consonants + SHAD + PESH
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3w 3w

read regex [ [# @] > [b"."b " " hU1], [ 79 -> [p"."p " "hU
17, [A,M‘L’] > [tt""4a""."tet""d" "hUl1l], [A‘wi\] -> [t "ot
mmw v g1], A T gzl > [d""z"."d""z""hyu1l], [» gl ->
[E""ms "mgmmsg U l], 473 > [d""d"."d""d""hU
1, 73 > @™ " mrdgmr " mhy1l], 273 > [r"."r " "hU
11, 73] > [rmmrmp vy 1], (47 > [k"." k" "hU
1], (478 => [g"."mg" "hUu1ll, (#7J] > (1" "."1""hU1l], [ e
A] > m "."m " "hU1l], [+ 0] ->[n"."n""hU1lll;

|

Aspirated Consonants + SHAD + PESH while transliteration when fol-
lowed by WAW

3w

read regex [ [ '<] —> [b "." b " " h], [4 "¢ -> [p"."p" "h], [&
A7) > grmrmdrt.memmd " mh], A0 7 & > (g g oo
hl, (# gl -=>[d""z"."d""z""h], [ “g ->[t""s"."¢t
mms ™ "h], [ 73 ->[d""d".md" "d" "h], [& "3 ->[d""
mrd "t vh], (2707 5] -> [r . r " "nh], [& 73 -> [r"" "y
mewon vop), (0778 > [k mm kb, 077 & > (gt g ], [T
A’ > [1 " 1"™"nh], ® e ->m"."m" "h], & 0] -> [n"."n
"' h] ] _ul;

|,k ,kkkk hkkkhkhkkhkkkkhkkx*x*

! Gol Heh at the end of a word

! Gol Heh is considered as a vowel Al when it is at the end of a word
and is preceeded by a consonant. we will not convert it into Al, as
when we need to convert the text back in Shahmukhi, it will produce
ambiguity. we will handle this issue when we will convert UIT into
Gurmukhi. Two Gol Hehs at the end of word are considered as consonant
'h'. Or a Gol heh is considered as consonant 'h' when it is at the end
of word and is preceeded by a vowel.

! *hkkhkkhkkhkkhkhkhkhkkkkkkkhkkk*

! Short Vowels with consonants

! WAW as vowel o after a consonant

read regex [$ -> [o 1] || [CONSONANTS | ASPICONSONANTS | ASPISHADCONSO-
NANTS | § | v | n] _ 1;

! ZABAR + WAW as au after a consonant

read regex [[/ 3] => [O 1] || [CONSONANTS | ASPICONSONANTS | ASPISHAD-
CONSONANTS | j | v | n] _ 1;

! PESH + WAW as u after a consonant

read regex [[} %] -> [u 1] || [CONSONANTS | ASPICONSONANTS | ASPISHAD-
CONSONANTS | 3 | v | n] _ 1;

! WAW as au after a consonant

read regex [s -> [0 1] || [ASPIZABARCONSONANTS | ASPISHADZABARCONSO-
NANTS] _ 1;

! WAW as u after a consonant

read regex [s -> [u 1] || [ASPIPESHCONSONANTS | ASPISHADPESHCONSONANTS]

1

! YEH as vowel e after a consonant

read regex [ & -> [e 1] || [CONSONANTS | ASPICONSONANTS | ASPISHADCON-
SONANTS | 3 | v | nl _ 1;

! ZABAR + YEH as vowel ai after a consonant

read regex [[ 1 "}"] <- [¢] || [CONSONANTS | ASPICONSONANTS | ASPISHAD-
CONSONANTS | j | v | n] _ 1;

! ZER + YEH as vowel 1 after a consonant

read regex [[.&] -> [1i 1] || [CONSONANTS | ASPICONSONANTS | ASPISHAD-
CONSONANTS | j | v | n]l _ 1;

! YEH as 1 after a consonant

read regex [¢ -> [i1i 1] || [ASPIZERCONSONANTS | ASPISHADZERCONSONANTS]

1

! YEH as 1 after a consonant
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read regex [1 "}"] <~ &1 || [ASPIZABARCONSONANTS | ASPISHADZABARCONSO-
NANTS ] 1;

|k, Kk kA hkhkkhkhk A krkkhhkx*x*%

! Long Vowels not at the start of a word
*hkkhkkhkhkhkhkkkkkkkkkkkk

i

! Cases of Bari YEH

! Bari Yeh not at the end of a word

read regex [« -> [e 4]1];

! Bari YEH after ZABAR and not at the end of a word

read regex [ 4"}"]<-~11;

read regex [[«¢] -> [I 2 e 4], [«&] —> [I 2 e 4]];

read regex [4 "}"] <~ 1 || [ASPIZABARCONSONANTS | ASPISHADZABARCONSO-
NANTS] _ 1;

! Bari yeh will always form the vowel with a number 4 in the middle or
at the end of a word
! Vowels with AIN any where else

read regex [ & -> ["?2"] 1;

read regex [ [&] -> ["?"] 1;

read regex [ [g] -> ["?2" I 1], [(&] -> ["2" U 11];

read regex [ [sg]l -> ["?2" e 11, [¢.g]l -> ["2" i 11, [I1"}""M<-[¢ ¢

sell > ["?" o 1), [ s gl -> ["?" 0 1), [5 gl -> ["2" ull, [«¢g] ->
[.,?" e 4], [4n}u n?u] <_ [L t]];
! Vowels with ALEF any where else

read regex [ | -> A];

read regex [ ) -> [A 1] 1;

read regex [ [l -> [A 1] 1;

read regex [ [.)] —> I, [V -> U];

read regex [ [¢)] -> e, [¢.)] > 1, L] <[c M >0, [ s 11 >0, [!
5’1 > u, ()] > [e 3], [3"}"]<-[« '11;

! Vowels with AIN at the start of a word or a syllable

read regex [ |A&A]|"M<-g [ " " | "-"1  1;

read regex [ [ |#]]"M<-[e¢ | " " | "=-"1 1;

read regex [ [. g] -> ["2" T 11, [C gl -> ["2" U 11 || [.#. | | " " |
"-"] 17

read regex [ [sg]l -> ["?2" e 1], [s.gl -> ["2" i 11, [J1"}""”"]<-[¢ ¢

sell > ["?" o 1), [ s gl -> ["?" 0 1), [s5 gl -> ["2" ull, [«¢g] —->
[n?u e 4], [°|#] || [4 "}" "?"]<_ [/_ & I non I n_n] B ];
! Vowels with ALEF at the start of a word or a syllable

read regex [V -> A [| [.#. | | " " | "-"1 1;

read regex [ | #A]|["@"]1<-V | " " | "-"1  1;

read regex [ [ |#]|["@"]<-[V | ™™ | "="1 1;

read regex [ [V => I, ' => U || [.%. | | ™" | "="] 1;

read regex [ [¢!)] -> e, [¢.)] > 1, [LI]"M"<[c 1 >0, [ s 11 >0, [!
51 =>u, [ -> [e 3], U|AINB"Y"<-[= V1 ™ | "] 1

! *khkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkh*k

! HAMZA after YEH as "@" vowel sound

read regex [[L ] -> [J I 2], [¢#«] -> [7J I 2] || [CONSONANTS | ASPI-
CONSONANTS | ASPISHADCONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSO-
NANTS | ASPISHADZABARCONSONANTS | ASPISHADPESHCONSONANTS | ASPIZERCON-
SONANTS | ASPISHADZERCONSONANTS | j | v | n] . [CONSONANTS | ASPICON-
SONANTS | ASPISHADCONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSO-
NANTS | ASPISHADZABARCONSONANTS | ASPISHADPESHCONSONANTS | ASPIZERCON-
SONANTS | ASPISHADZERCONSONANTS | j | v | nll;

| *kk,kkkkhkhk kA kh kA krAkkhkhkkx%k

! NOONGHUNA
read regex [u —-> "~"];
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! NOON as a nasalization

read regex [ —-> "~"];

! Noon followed by Noonghuna mark
read regex [[ﬁ ol => "~"1;

! *khkkhkkhkkhkkhkhkhkhkhkhkkhkhkhkhhhhk

! NOON when it is not considered as NOONGHUNA

read regex [[ ¢l -> [n "." nll;

! NOON after ALEF, AIN, ALEF Mada, Bari YEH

'read regex [0 > n || [ gl<|"V T 1

! NOON before ALEF, ALEF Mada, Bari YEH, and some diacritics

read regex [0 ->n || _ []¢ T T s slolela| M 1 i 11 1 ¢
v |31 I | ["e" n] | A] I;

! NOON at the end of a word

read regex [0 ->n || _ [e [.#. | " "11 1;

read regex [u > 1 || - [ .#. | B | wnon | H_"] ],.

! NOON at the start of a word

read regex [U ->n || [ .#. | | ™" | "="] 1;

! khkkhkkhkkhkhkhkhkhkhkhkkhkkhkhkhhhhk

read regex [5 -> v, ¢ -> 3 || [ [?2 - [.#. | " "11 |1 _ 1;

read regex [ -> [o 1] || [[IT 2 41 1] | [T 2 e 1] | [I]1 | [I 111 1
! Special words with YEH + WAW

read regex [s -> v || 6 _ 1;

! YEH preceeded by a consonant and followed by WAW ¢usml 3 cosmlen ¢S 8
okl A Qloban S

read regex [¢ -> [I 1 j] || [CONSONANTS | ASPICONSONANTS | ASPISHAD-
CONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSONANTS | ASPISHADZABAR-
CONSONANTS | ASPISHADPESHCONSONANTS | ASPIZERCONSONANTS | ASPISHADZER-

CONSONANTS] [ [ols|') [.#. 1 ™ "111;

! Consonant + YEH + WAW + Consonant at the start of the word

read regex [[s] -> [e 1 v] || [[.#. |° | ™ "] [CONSONANTS | ASPICON-
SONANTS | ASPISHADCONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSO-
NANTS | ASPISHADZABARCONSONANTS | ASPISHADPESHCONSONANTS | ASPIZERCON-
SONANTS | ASPISHADZERCONSONANTS] ] . [CONSONANTS | ASPICONSONANTS | AS-
PISHADCONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSONANTS | ASPI-

SHADZABARCONSONANTS | ASPISHADPESHCONSONANTS | ASPIZERCONSONANTS | AS-
PISHADZERCONSONANTS] ] ;

! YEH + WAW at the end of a word

read regex [s -> [o] || [[CONSONANTS | ASPICONSONANTS] | .#.] ]  [¢ "
"111;

read regex [[s¢] -> [J o 11 || _ [.%. " | ™ "11;

[ S S e S S S S S S 3

! WAW as Consonants
! YEH and WAW before NOON at the end of a word

read regex [s -> v || _ [[e] [ .#. | " " 111;

! WAW after ZER

read regex [s -> v || [[[CONSONANTS | ASPICONSONANTS] .] | [[CONSONANTS
| ASPICONSONANTS] ,w]] _ 1;

read regex [[ 5] -> [v "." v]l;

! Waw is followed by a vowel

read regex [5 -> v || _ [ 1o o 1717117 Tele|MY 1 14 11115
read regex [5 > v || [s|ls|e|N_[s]s]e|N]
! Waw at the start of a word

read regex [5 -=> v || [.#. | | "™ " | "="] 17

! dAhkkhkhkkhhkkhkhkkhkkkhkkhkhkk*kx*

! YEH and WAW at the end after ALEF, ALEF mada, HAMZA + YEH, HAMZA +
Bari YEH at the end of a word

! will create problem with the word hvAl (air)
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read regex [s -> [U 1] || [T|‘ 1M [ [T 24i1] | [I2e1l1] | [T 24il
U] | [I 2 e 1 °|#] [[U | non | n_vv]]];

B S e e S S S S S S S S S S S 24

! When Yeh will be considered as a consonant

read regex (el -> 5 "." 311
! YEH after PESH
read regex [$ -> J || [[[CONSONANTS | ASPICONSONANTS | ASPISHADCONSO-

NANTS | ASPIZABARCONSONANTS | ASPIPESHCONSONANTS | ASPISHADZABARCONSO-
NANTS | ASPISHADPESHCONSONANTS | ASPIZERCONSONANTS | ASPISHADZERCONSO-

NANTS | ‘[3] | [[CONSONANTS | ASPICONSONANTS | ASPISHADCONSONANTS | AS-
PIZABARCONSONANTS | ASPIPESHCONSONANTS | ASPISHADZABARCONSONANTS | AS-
PISHADPESHCONSONANTS | ASPIZERCONSONANTS | ASPISHADZERCONSONANTS | ‘[J
11 1

read regex [F sl -> [1i 1 J]1 || [CONSONANTS | ASPICONSONANTS | ASPI-

SHADCONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSONANTS | ASPISHAD-
ZABARCONSONANTS | ASPISHADPESHCONSONANTS]  1;

read regex [[w ] -> [1 1 3] || [ASPIZERCONSONANTS | ASPISHADZERCONSO-
NANTS]  1;

read regex [[. «] -> [i 1 j]1 || [CONSONANTS | ASPICONSONANTS | ASPI-
SHADCONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSONANTS | ASPISHAD-
ZABARCONSONANTS | ASPISHADPESHCONSONANTS]  ];

! Yeh is followed by a diacritic or a vowel characters

read regex [6 > 3 || _ (el VS e [T 1771177 1 14 1110

! YEH and WAW before NOON at the end of a word

read regex [¢ -> J || _ [[ e 1 [ .#. | "™ "™ 111;

! Yeh in between of two Alefs

Gk e ol

read regex [ > J || [sls|Ve|']_[s|s'lel|'11;

! Yeh followed by Shad after Alef or Ain

read regex [[‘¢] -> [ "." 31 || [g]|"] 1

bogke)

read regex [¢ -> 3 || [[.#. [ T_[eT0™"|"""11:

! YEH at start of a word

read regex [ -> F || [.4. | | ™" | "="]1 _1;

! YEH at the end of a word

read regex [ -> [1 11 || _ [.#. | | ™" | "="1];

! *hkkhkkhkkhkhkhhkhkkkkkkkhkkk*k

! Special words with HAMZA + WAW

! HAMZA + WAW (may have ambiguity)

read regex [ [s8] -> [I 2 o 11, [s¢] -> [I 2 o 11, [;’u] -> [I 2 ul],
[57¢] -> [I 2 u 1]];

*hkkhkkhkkhkhkhkkhkkkkkkkkkkxk

|
! Special words with HAMZA + YEH
! HAMZA + YEH -> [I 2 e 1] after a vowel

read regex [[6U&] -> [I 2 e 1], [ss] —> [I 2 e 1]];
! HAMZA + YEH -> [I 2 i 1] after a Consonant

read regex [[6 &] -> [I 2 1 1], [s ] -> [I 2 i 1] || [CONSONANTS | AS-
PICONSONANTS | ASPISHADCONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCON-
SONANTS | ASPISHADZABARCONSONANTS | ASPISHADPESHCONSONANTS | ASPIZER-

CONSONANTS | ASPISHADZERCONSONANTS | d|}] 1

! HAMZA + YEH any where else
read regex [[s.&] -> [I 2 i 1], [v.¢] -> [I 2 1 11]1;

| *,kkk khkhkkhhkkkhrkkhrkkhx%k

! Special strings at the end of a word
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read regex [ [ 6] > A2, [ 6] -=>A 2, [[)] => ["@" n], [ss] -> [I 2 i
11, [6&] -> [I 24 11, [s¢] -> [I 20 1], [s6] -> [I 20 1] Il _ [.%.

o
| ‘ won ‘ H_HJ J .
’

! *hkkhkkhkkhkhkhkhkhkkkkkkkhkkk*

! KAF + YEH + WAW + NOON + KAF + HEHGOL, CHEH + WAW + NOON + KAF +
HEHGOL

! when kIl comes at the end of some words

read regex [[+<8) -> (k I 11 |1 ([ | _[[d<1I0'a)|[sal [l [~ 1" "]
|.#] | won | n_n]];

' YEH + WAW + NOONGHUNA and KAF + YEH + WAW + NOONGHUNA as words and
words ending in K I 1

read regex [[uss] -> [Jul "~"], [0scS] > [k jul""], [SusecS
8] > [k jul""kTI1l, [¢S0sg] -> [t " "Sul""kIl], [5eS
ol > [kjul""], Sys S —>[kjul""kIl], [S0usgl —>

[t " " S u 1 w.omn k I 1] | | [ '#' I " " ] [ '#' I " " ]];

| **;****************

! Compound Words

'read regex [ . -> ["-" e "=-"], & > ["-" e 1 "=-"] || [CONSONANTS |
ASPICONSONANTS] . ("™ "11;
read regex [ [. " "] -=> ["-" e "-"] || [CONSONANTS | ASPICONSONANTS]

1:

I kkkkkkkkxrkhkkkkk k& *x

! Vowels only

read regex [[°|.#']_[u_u|uu|°|'#.] || " H<_[\ | non | n_"]];

read regex [[.'],))@"<-['1 -> 1, [M1 -> U || [.#. | | #&1_["™"|""| | "
[ "="11;

read regex [[s)] -> i, [¢.)] -> 1, [sN.[""]<[c '] -=> 0o, [s5 ' -> 0, [!
};] > u, [L\] > [e 3}[ [=|.#‘]_[n_n|u n|=|.#‘] || [3 H}ll]<_ [L’\ | woon | "_"]
1
| kkkkkxkhkhkhkkkkkxkh*
|

Special Words

read regex [[4] -> ["@" 1 "." 1 A 1 h]l];

read regex [[& )] -> [("e" 1 ".m 1 A 1 nh], [¢JddI] -=> ["e" 1 ".m 1 a1
hl, [¢Jdd)] -=> [(me" 1 "."m 1 A1h], [¢dd)] —> [("e" 1 "."m 1 A1 h]l;
read regex [[6<S] -> [k I 1], [e3] -> [v h]l, [¢&] -> [J h] || [ .#. | "

"L T

!***;***************

! Number

!*******************

read regex [* -> "+URZERO", ) -> "+URONE", Y -> r"+4UrTWO", Y ->
"+URTHREE", ¥ -> "4+URFOUR", & -> "4URFIVE", % -> "4URSIX", Y ->
"+URSEVEN", A —-> "4UREIGHT", % -> "+URNINE"];

! Decimal and thousand separator

read regex [» -> ["+URDECIMAL"], ¢ -> "+URTHSEP"];

read regex ["+DOT" -> "+URDECIMAL", "+COMMA" -> "+URTHSEP" || URNUMBE-
REXPRESSION _ URNUMBEREXPRESSION] ;

read regex ["O" -> "+ZERO", 1 -> "4+ONE", 2 -> "4+TWO", 3 -> "+THREE", 4
-> "4FOUR", 5 -> "+4+FIVE", 6 -> "+SIX", 7 -> "+SEVEN", 8 -> "+EIGHT", 9

-> "4NINE", ";" -> "+SEMICOLON", ":" —-> "4COLON", "%" -> "4+PERCENT"];
read regex ["+DOT" -> "+DECIMAL", "+COMMA" -> "+THSEP" || ENGNUMBEREX-
PRESSION _ ENGNUMBEREXPRESSION] ;

read regex ["." -> "+DOT", ¢ -> "4+URQMARK", - -> "+URSTBD", >
"4URCOMMA", "," -> "4+COMMA", "+NL" -> "+NL", /-> "+URPERCENT", ¢ ->

"+URSEMICOLON", *

compose net

-> "4URSTAR", "" -> 0];
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UIT to Urdu Finite-state Transducer

clear stack
set char-encoding UTF-8

[ e e i S S S S S S S S S S 3

! Definitions of wvariables

define CONSONANTS [b | [b " " h] | p | [p " "™ hl | [t "™ ™d] | [t "
d " ™h] | [t"™"] | [t"™"""h] | [s1) [ [d" "2z | [a""z""
h] T [t " " S | [£t""S""h] | [h1] | x| [d""d | [d""d
"_" h] ‘ [d " "] | [d wen "_" h] | [Z 1] | T ‘ [r "_" h] ‘ [r " "] |
[x """ "h] | z |2 s | S| [S1] | [s2] | [z2] | [£""d1l]
231 1 GI £1lql k| [k""hl gl [g""hl | 1] I[L""hl|m
| m " "hl In | [n""h [ vI|[v""hl [Th|3j|[t""d2 |H
| INIT L N 2] | [n ] [Tty b 1] | fd "tz 1] ] [d "]
| lg 111;

define VOWELS ["@" | A | IT | U | e | "{" | 1 | ul O] ol [A1l] | [A
21 | [A 3] | [T 1] | [T 2] |

[ (U 1] | [e 1] | ["{"™ 11 | [1 1] | [u 1]
|

[0 1] | [o 1] | [e 3] ("™ 37 1 ["{" 41 | [1 2] | [u 2]);

[ R e S S S S S S S S S S S 24

! Multi-character symbols
!*******************

read regex ["+DOT" -> ".", "4+QMARK" -> "?", '"4+DECIMAL" -> "."
"+COMMA" -> ",", "4+THSEP" -> ",", "4+SEMICOLON" -> ";", "4+COLON" ->
m.m  MIPERCENT" -> /, "4ZERO" -> "Q", U"4ONE" -> 1, "+TWOo" -> 2,
"+THREE" -> 3, "+FOUR" -> 4, "4FIVE" -> 5, "+SIX" -> 6, "+SEVEN" -> 7,
"+EIGHT" -> 8, "+NINE" -> 9, "+URZERO" -> +, "+4URONE" -> ), "+4URTWO" -
> Y, "4+URTHREE" -> Y, "+URFOUR" -> Y, "4+URFIVE" -> &, "4+URSIX" -> 7,
"+URSEVEN" -> VY, "4UREIGHT" -> A, "4URNINE" -> 9, "+URQMARK" -> ¢,
"LURSTBD" -> -, "+URCOMMA" -> ¢, "+URPERCENT" -> %, "+URSEMICOLON" -> ¢,

"+URSTAR" -> *, "+URDECIMAL" -> ,, "+URTHSEP" -> ¢];

[ R R R e S S S S S S S S S S g4

read regex ["." -> ];
! *hkkhkkhkkhkhkhhkhkkkkkkkhkkkx

|k, ,kkk hkhkkhhkk kkkkhx*x**

! Consonants
!*******************

! Simple Consonants

! Consonants Set 1

@, [t " mdl ->&, [T > &, x —> F, [d
"mrd]l >3, [d""] >3, r >, z-> Z->3 s ->uw, S ->U0 G-
>¢, f->G, qg->38 k>, g-><X%,1->d, m->a n->0 v->3 h
->e, § ->¢, H->4, [N1] -> [Lg], [N 2] -> [go]l;

! Consonants Set 2

read regex [b -> «, p -

read regex [[s 1] -> <&, [d vzl —>¢g, [t""S] >, [h1l] >, [z
1] => 3, [r ""] => 3, [S 1] -> & [s 2] -> ua, [z 2] -> o, [t " " d
1] >k, [z 3] ->& [t ""d2] ->35 [n""] ->¢0 [1"™"] ->4d, [b

1] > <, [d4 """ 1] > 5, [g 1] > K, r11 > i
! Consonants Set 3

read regex [[d " " Z2 1] -> ¢z, [r 1 1] -> D];

! Other Aspirated Consonants

read regex [ ["_ " h] -> &];

! Germinated Simple Consonants

read regex [[b "." bl -> [«], [p "." p]l —> ['{], [t "mrdm".mt " " d]
> (@), [gmrorum e ) > 78], (s 1 M. s 1] -> (&), 4tz
d" "zl > [gl, [t"™"sm""t""s] ->[¢gl, [h1"."h1l] -> [z,
[x "." x] -> [¢g], [d "rd Tt dmm " d > (721, [d ™" . d "] >
(3, [z 1 "."z1] => (3, [r"."r] -> 2], [r ™" """ >[5
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T, tz mmzl => (3], (2 mz]l > (31, (s ".tos] > [, (8 .S >
(W4, [sS 1 "." s 1] -> [, [s2"." s 2] > [[v=a], [z2"." z2] —>
[(o=], [t""d1"."t""™d1l] -> [b], [z3"."z3] -> ["L], [G"."
Gl -> ['gl, [f"." f] -> ['<], [q"." q) -> [&], [k "." k] > ['<], [g
"l => (SR, (1t 1) => (7d), m .t m] => (o), (oot onl o-> (o,
[v."." vl => [s], [h "." h] => [°], [§ "." 3] => [¢], [t " "d2"."¢t
"rd2] > [3, [m"t .o > [Cg), (2ol > [0 d],
b1 "."bl]l > [ <, [d""z1"."d" "2z1] -> ["gl, [d™" 1" ."
d "1l > 73, g1 " g 1] > L))

! Germinated Aspirated Consonants

read regex [[b "." b " " h] -> [ &4 «], [p "." p " " h] -> [ &2Q], [t
momg mm g womg oo p] o> [Ta], [fonteomm g e "mh] -> [ ady,
momog mowgmmg mmp] > [Tag], [£"MS MM Mmg o] >
, fdmmdmmd " md " "h]l -> [(43], [d"" . d "t " h] -
5, frm.mr v mon) o> [Ca), [rotorumop oo woh] o [T a 5,

A
[

» _J

k"."m k" " h] -> [ ] g "." g u_u h] -> [‘ch], [1 "." 1 n_n h] -
‘Ad, [m n.nmn "hl o> [‘A(.\], [n "."1’1"7" h] -> [‘AO], [v "." v

" " h] -> [[A3]];
! kdhkkhkhkkhhkkhhkkhkkhkkhkkkkkk

[d
[
>
[
>

! Nazalization
! hAhk Ak hkkhhkkhhkkhkkhkkhkhkkhkxk

["~" => O];
read regex [["~" 1] —-> O];
read regex ["~" -> o || _ [.#. | " "11;
read regex [["~" 1] -—> o || _ [.#. [ " "11;

|k, ,kkkk hkkkhkrkkk rkxkhkkx**

read regex

! Vowels
| Ak hhhkhkhkhkk,k khkkhkkhhkhkhkkk*x%

! Vowels in the middle or at the end

read regex [A —> !<-"@")J, T -> [V, U -> [V, i ->[s.11, o> [s)], O
> (s, 0> 5, e > e < [""]e

read regex [[e 3] -> [g<-"?",[« N<-[3"}"].[«"];

! Vowel with diacritics

read regex [[A 1] -> \, [I 11 -=> .,[U 1] -> ’, (1 11 -=> [¢ .1, [0 11 ->
5, [01] => [5 1, [ull => [s5'1, [e 1] —> ¢ ]<-[1""].,s], [e 4] -> ,o
< ]<-[a"}"N1;

read regex [0 - [ [+ 21  ["~" [.#. | "™ "111;

read regex [["@" n] -> 115

[(a 2] -> [ &l, [&3] ->", [I2] ->[¢], [12] > %, [u?2]
> &, [("e" n1] -> 7, [I 1n1l] ->_, [Uln1l] -> ";

khkkhkhkhkkhkhk Ak hk Ak kA khkkk

read regex

Special cases

|
|
[ S S e S S S S S S 3
|

! Special cases of vowels
read regex [I -> ¢ || [VOWELS | "?"] ((h [ .#. | ™" 11 | A | o |

ll?ll]]; -

read regex [[I 1] -> & || CONSONANTS _ [[h [ .#. | "™ " 11 | A | o |
"?"]];

read regex [[U 1 v] -> [ 5] || CONSONANTS _ A];

read regex [[i 1 j] -> [. ] || CONSONANTS 1

read regex [[1 1] -> &, [e 1] —> [« ]<-[1"}"1.[e] 11 _ [.4. 1 ™ "11;

read regex [[I 2 i 1] -> [¢ ¢], [I 2 e 1] -> [E ], [T 2 "{" 1] -> [+
sl, [T 201] => [s+¢], [T 2 ul] -> [s¢], [T 20U 1] -> [s¢], [I 2 O 1]
> [s¢], [T 2 e 4] > [«+]];
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! *hkkhkhkkhhkkhhkkhkkhkkhkkkkkk
! Compound Words

read regex [[n_n e n_n] -> [/ " u], [n_n e 1 n_n] - [c " u]];
!*******************

! Special words

read regex [[k I 1] -> [6<S] || [ #. | " " 1];

read regex [[k I 1] -> [6<S] || [[.#. | " "] [[k 3 ul™""] | [t""S
ul ""] | [t""ZDb]l | [d"" 2ol | [n2A1] | [b 1111 _ [.#. | "
"11;

read regex [ ["@"™ 1 "." 1 A 1 h] -> [e°'ddy;

read regex [[k I 1] -> [6<5] || [ .#. | ™ " ] [ #. 1 " " 11;

| *,kk kA khk kA kA kA krAkkhrkkx*k

! Multi-character symbols

read regex ["+DOT" -> "DOT", "+QMARK" -> "+QMARK", "+DECIMAL" ->
"+DECIMAL", "+comMMA"  ->  "+COMMA", "+NL" ->  "+NL", "+THSEP" ->
"+THSEP", "+SEMICOLON" -> "+SEMICOLON", "+COLON" -> "+COLON",
"+PERCENT" -> "+PERCENT", "+ZERO" -> "+4+ZERO", "+ONE" -> "+ONE", "+TWO"
-> "+TwO", "+THREE" -> "+THREE", "+FOUR" -> "4+FOUR", "+FIVE" ->
"+FIVE", "+SIX" -> "+4+SIX", "+SEVEN" -> "+SEVEN", "+EIGHT" -> "+EIGHT",
"+NINE" -> "4NINE", "+DSTBD" -> "+URSTBD", "+SSTBD" -> "+4+URSTBD",

"+GURDECIMAL" -> "+URDECIMAL", "+GURTHSEP" -> "+URTHSEP", "+GURZERO"
> "4+URZERO", "+GURONE" -> "4URONE", "+GURTWO" -> "+URTWO", "+GURTHREE"

-> "+URTHREE", "+GURFOUR" -> "+URFOUR", "+GURFIVE" -> "4URFIVE",
"+GURSIX" -> "+4URSIX", "+GURSEVEN" -> "4+URSEVEN", "+GUREIGHT" ->
"+UREIGHT", "+GURNINE" -> "+URNINE", "+URQMARK" -> "+URQMARK",
"+URSTBD" -> "+4URSTBD", "+URCOMMA" -> "4+URCOMMA", "+URPERCENT" ->
"+URPERCENT", "+URSEMICOLON" -> "+URSEMICOLON", "+URSTAR" ->
"+URSTAR", "+URDECIMAL" -> "+URDECIMAL", "+URTHSEP" -> "+URTHSEP",
"+URZERO" -> "4URZERO", "4+URONE" -> "4URONE", "+URTWO" -> "+URTWO",
"+URTHREE" -> "+URTHREE", "+URFOUR" -> "+URFOUR", "+URFIVE" ->

"+URFIVE", "4URSIX" -> "+URSIX", "+URSEVEN" -> "+URSEVEN", "+UREIGHT"
-> "+UREIGHT", "+URNINE" -> "4URNINE", "+HIABRIVATION" -> "+4+URSTBD",
"+HIDECIMAL" -> "+URDECIMAL", "+HITHSEP" -> "+URTHSEP", "+HIZERO" ->
"+URZERO", "+HIONE" -> "+URONE", "+HITWO" -> "+URTWO", "+HITHREE" ->
"+URTHREE", "+HIFOUR" -> "+4+URFOUR", "+HIFIVE" -> "+URFIVE", "+HISIX" -
>  "4URSIX", "+HISEVEN" -> "+URSEVEN", "+HIEIGHT" -> "+UREIGHT",
"+HININE" -> "+4+URNINE"];

compose net

Punjabi/Shahmukhi to UIT Finite-state Transducer

clear stack
set char-encoding UTF-8
!*******************

!Definition of Varibales
!*******************

! CONSONANTS | ASPICONSONANTS | ASPISHADCONSONANTS | ASPIZABARCONSO-
NANTS | ASPIZERCONSONANTS | ASPIPESHCONSONANTS | ASPISHADZABARCONSO-
NANTS | ASPISHADZERCONSONANTS | ASPISHADPESHCONSONANTS

! Simple Consonants

define CONSONANTS
L[ f3lo | ol IS S| Bl atal ol ol Gl 313 3 e el |l

! Aspirated Consonants

define ASPICONSONANTS [[4[s|0]e|d|<L|<S|35]0]3zlz]S|e|w|<];

! Aspirated Consonants with Shad

define ASPISHADCONSONANTS [[& [s|o|a|d|<S|<S|5|o|5|zlz]elele| s

! Aspirated Consonants with ZABAR

define ASPIZABARCONSONANTS [[4 [s|0|e|d|<LL <S5 0]3]zlz|ele|R]|<];
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! Aspirated Consonants with ZER
define ASPIZERCONSONANTS [[4.[s|0|e|d|S|<S|3|0]3] el &R«
! Aspiracted Consonants with PESH
define ASPIPESHCONSONANTS [[4 [s|0]e|d| < |<S|3]0]3 el &|e|w]|<l;
! Aspirated Consonants with SHAD + ZABAR

w oo z L - I é L Y -
Pre T OISRzl =T B Lol SR =i
define ASPISHADZABARCONSONANTS [[ “[s|ole|d|<S|<S|3|ol3]elz|e|e|w]|<
2];
! Aspirated Consonants with SHAD + ZER

v . z L L - v . > L -
!HAfDH%ﬂéMA$maqq%wﬂHﬁ/LMJéMWJ$wdqqu]
define ASPISHADZERCONSONANTS [[. [s|o]e|d|<S|<S|3|o|3] || |e|e|<
Al
! Aspiracted Consonants with SHAD + PESH
define ASPISHADPESHCONSONANTS [[ “[s|o|e]| | |<S|5]0]3 ] zlz|e|ele|w
Al

! English Numbers

define ENGNUMBER [0 | 1 | 2 | 3 | 4 |1 51 61 7181 9];
! Urdu Numbers

define URDNUMBER [* | )Y | Y | Y | ¥ | & | % | ¥ | A | 47;
define ENGNUMBEREXPRESSION [ [ENGNUMBER [ENGNUMBER]*] ];
define URNUMBEREXPRESSION [ [URDNUMBER [URDNUMBER]*] ];:

[ R e e e e S S S S S S S S S S g4

! Diacritics
!*******************

! Shahmukhi Diacritics < - .
! here we will ignore Mada Sign, Hamza Above, Hamza Below, and Noong-
huna Mark diacritics

B

o>

read regex [ -> 0, -> [I 1], [U 17, -> [A 3], -> [i 27, ->
[u 2], ->(["@" n1l], .-> [I 1n1], ""<" " ->[U1n1], ,0< ,0<-%
0<- ,0<-1];

!*******************

! Consonants

!*******************

! Simple Consonants

! 1st Hamza i1s Hamze+Chotiyeh Ligature and 2nd Hamza is hamza itslef
read regex [ < -> b, @ > p, & > [t " " d], & > [t ""], & > [s
11, ¢ > [d""2l, g > [t ""5sl, ¢->1T[1], ¢ -> [x], 2 ->[d""
dl, S =>[d ™", Y => [z 1], o ->1, 3->1r """, 3 ->2z, 5->72,
-> s, B ->8, ua->[s 2], oo > [z2], b->1(t""d1], L -> [z 3],
@ ->f, 3 ->q, S->%k, L ->g,d->1,a->m s5->v, s ->h, & ->
[I 2], &->1[I2], ¢ ->3,¢->G, 8 ->1[t""d2], g->I[n"""], & ->
hl;

!]Simple Consonants + SHAD

read regex [ [ <] -> [b "." b], [ @ -> [p "." pl, [[ <] > [t " "d
mrprmd], (] > e e ], T&] > [s 1" s 1], (gl -
>[d""z""d" "z, [[gl > [t""s"."t""s], [zl > [h1
" nl), D@l -> [x "."x], [ > [d""md".mdn""dl, (3 -> [d
memomomog ), 03 -> [z 1z 1], [0 0] > [ "t orl, 5] > [r
meror.m e ], 03] > [z " oz), 03] > [zt 2], [owl -> (s Lt
s], [Tl > [s "." 8], [[ua] -> [s2"."s2], [[Ua] -> [z2"." z 2],
k] > (e "d1m "t "d1], ["& ->[z3"."z3], [ < -> [f
mE], DA > [gm.tal, DS o-> [kt kl, D8] > (g gl [CJ]
-> (1" 1), Uel => [m"."m], ["¢] => [h"." h], ["&] -> [G"." GI,
Cg -> [n " " "."n"" ], ["a] => [h "."h], [3] ->[t""d2"."t
"omd 2]];
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! Aspirated Consonants

read regex [ 4 —> ["_" h) || [e|d|S|S|5[0)3 2 glelelalel< | v] _
1:

! Aspirated Consonants + ZABAR

read regex [ [4 <] -> [b " " h], [# <] -> [p "_" h], [» <] —> [t " "
d" "™h], [ &) ->[t"™" " "nh], [ g] ->[d""z""h, [ g ->
[£" " S™" "™h], [# 3 ->([d" "d" "nhn], [ 3] ->[d"" " "h], [ J
A] => [r " " h], [# 5] -> [r """ "h], [4 S -> [k" "h], [a & ->
[g " " h]l, [ d] => [1 " "h], [ ¢ -> [m"_" hll;

! Aspirated Consonants + ZER

read regex [ [*#. <] -> [b" " h I 1], [*. %] -> [p " " h I 1], [». <] —>
[t""d""hTI1l], [#.&] -=> [t """ " hTI1l], [4.g] -> [d" "z " "
hI1], [4.g] > ([t""S"™"hTI1], [4.3] ->[d" "d""hT11], [3
4] =>[d"™"""™hI1l], *. 0] -=> [r" "hT1l], [4 3] -> [r " """
hIil], [#.<S] > [k""h1I1], 4. > [g" "h1I1l], [».d] —> [1
""hI1l], [*.e] > [m" " hTII1]];

! Aspirated Consonants + ZER to ignore ZER while transliteration when
followed by CHOTI YEH

read regex [ [#. <] -> [b " " h], [*.<] -> [p " " h], [».<] > [t """
d " "h], [4.&] => [t """ "h], [A.g] ->[d" " 2Z""h], [*#.g ->
[£" " S" "™h], [#.3] ->[d" "d" "nh], . 3 ->[d"" " "h], [.J
A] -> [r " " h], [#.3] -> [r """ " " h], [4.S] -> [k " " h], o 8] -
> [g " "hl, [#.d] => [1 " " h], [#.¢] => [m " " h] || _ i];

! Aspirated Consonants + PESH

read regex [ [# @] -> [b " "hU1], [#'Q] -> [p" " hU1l], [# & >
[t " "d""hUl], [ <] ->[t"" " "hUu1l], [»'g] -> [d""z""
hu1l], [#'g] -> [t" " S"™"huUul], [#3] ->[d" "d" "hU1l], [3
A7 > [d ™" " "hUull, A O] => [r" "hU1l], [ 3] -> [r """
hull, S > (k" "hUu1l], [+ & ->[g""hU1l], [ J] > [1
""hU1], 47 > [m " " hU1]];

! Aspirated Consonants + PESH to ignore PESH while transliteration
when followed by WAW

read regex [ [# <] -> [b " " h], [# @] -> [p " " h], [# <] -> [t """
d " "™h], (@] -> [t """ "h], gl ->[d""z""h], [»'g ->
[£""S" "™h], [# 3 ->([d" "d""nhn], » 3 ->[d""" "n, [
4] => [r " "h], 51 => [r ™" " "h], » S > (k" "h], & -
> [g " "hl, °d] -> (1" "h], [#¢ -> [m" " h] [| _ul;

! Aspirated Consonants + SHAD

read regex [ [# <] => [b "." b " " h], [4 @] -> [p"."p " " h], ["©
A —> [t " " d "t g "Rl [&7 Q] -> [t "rov,mop oo omop],
4" z] > [d"™"z™"."d""z""h], [ g ->[t""s"."t""sg
mmp), [T > [d " "dr.md " md" "h], [4°3 -> [d "o g o
"™ hl, [#70] => [r "." r " " h], [A°3] -> [r " or.vop mron v op], [ S
A7 > [k "." k" "h], 4 & > [g"."g" "h], [ d] ->[1"."1
""hl, "¢ > [m"."m " "h], [[4<] > [b"."b" "h], [[4x] >
[p "." p" "h], [[&&] > [t""d"."t""d""h], [&3&] -> [t
mem o e gowrww w h] o Tagz] o -> [d""z".md""Z" "h], [ ag] ->
[t " "gmmgmmgmwp], a3 > [d""d"."d""d" "h], [43
T ->qd "o d Rl [CAL] > [r "t r " " h], [CA35] > [r
memowwopowrwow wop), [T aS) -> [k .k " " h], (4% > [g".ng
" "hl, [[4d] -> [1"." 1" "h], ["#s] -> [m "." m "_" h]];

! Aspirated Consonants + SHAD + ZABAR

read regex [ [ "] => [b "." b " " h], [ "] -> [p "." p " " h], [
a7 7] > [tmrdamrm.me . md " "h], [& T & -> [t "ror,mog oo
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hl, [ "¢l ->[d""z™"."d""™zZ""h], [» gl > [t " "s "t
mrg m mh], a0 T3] =>[d""d".md""d" "h], [ 3 ->[d""
m.rd o von], (A7 L1 > [r . r " " hl, &0 7 3] > [ :
memom mop], [#77S] > [k . k" "h], &L > (g "."g" "h], [d
2] > [1"."1"™"™h], [ ] -> [m"."m™" " h]];

! Aspirated Consonants + SHAD + ZER

read regex [ [A."9] => [b "." b ""hT1Il], [A,‘gﬂ > [p"."p " "hTI
11, .7« > [t "d"."t""d" "hTI1l]l, [#. 3] => [t " """ ¢
mmem v hI1], A7l > [d""z"md""Z""hI1l], [». gl —>

v

t""s"."t""SsS""hI1l], [#.73] ->[d""d"."d""d" "hI
], .73 => (@™ mrd ™" " hI1], [&.7 3] -> [r"." " " hI
1, [&.73] => [r "™ vy T 1], [A7S] -> [k "." k" "hI
], 4.8 > (g ".mg""hI1l], [ °J] > [l "."1""h1I1l], [. ¢
] -=> [m"."m™" " hI1ll;

Aspirated Consonants + SHAD + ZER while transliteration when fol-
lowed by CHOTI YEH

read regex [ [&. ’ @] > [b"." Db n_n hl, [2. - Q] -> [p "." p "_" h], [
A _ ‘] _> [t "7" d n" . ” t "7" d "7" h] , [A _ - é] _> [t mwen " . " t nwen " "
h] 7 [A _ ’ G] _> [d "_" Z A\ . A\ d |'_|' Z n A1) h] , [A _ . E] _> [t "_'l S " . 11] t

v

" " S "_" h] , [A _ J] _> [d "_" d A\ . A\ d "_" d "_" h] , [A _ ‘3] _> [d nmen
[

t.rd o h], [A 3] > [r"." r " " hl, [» 731 => [ mmomvop
mrron vh), 4 7S] > [k ".m k" "h), (&7 X&] > [g .t g " h], [d
A1 ->[1"." 1" ™"™h], [4.7e] => [m "." m "_"hl Il _ il;

! Aspirated Consonants + SHAD + PESH

read regex [ [4°"@] > [b "." b ""hU1l], [A}‘gﬂ > [p"."p " "hU

5w . v L

1], [A g_a] -> [t nowogon o u_u d n_n h U 1], [A u] - [t IRRTERTERT

nwen "_" h U 1] , [A o G] _> [d "_" Z "w . "w d "_" Z "_" h U 1] , [A o G] _>

3w

[E"™"s""t"™"s""hUu1l], [# 73 ->[d""d"."d""d" "hU
17, 278 > q@amr o eger e mpyg1], A0 > [r """ "hU
1], [2775] —> [porvonmpom v pyl], A7S] > [k k " " hU
1], 7S > [g".mgr"hUll, 7 > 1" 1" "hUull, [
4] > [m "."m " " hU1]];

|

Aspirated Consonants + SHAD + PESH while transliteration when fol-
lowed by WAW

read regex [ [A L_|:| - [b nonop n_n h], [A‘n‘&?l] - [p nom P non hJ, [h_|

3w

A ] -> [t ll—ll d ll'll t won d ll—ll h], [A o &] -> [t wen ll'll t wrwoowoon

h], [A, ’ C] - [d n_n /AL LG | n_n /AR h], [A) - E] -> [t L B S L

- s

mrgm mpy, a7 > [d"md".rdm"d" "h), [& 3 -> [dm"
mord v vh], (207 0] -> [r . r " "h], [& 73] -> [r """t
meweon vp), (4778 > [k kb, 077 &) > [g .t g ], [T
A7 > (1.1 "Rl A7 > [m " m " " h] [ ul;

l****************_***

! Gol Heh at the end of a word

! Gol Heh is considered as a vowel Al when it is at the end of a word
and 1is preceeded by a consonant. we will not convert it into Al, as
when we need to convert the text back in Shahmukhi, it will produce
ambiguity. we will handle this issue when we will convert UIT into
Gurmukhi. Two Gol Hehs at the end of word are considered as consonant
'h'. Or a Gol heh is considered as consonant 'h' when it is at the end
of word and is preceeded by a vowel.

! *khkkhkAhkkhkkhkhkhkhkhkhkkhkhkhkhhhhk

! Short Vowels with consonants

! WAW as vowel o after a consonant

read regex [s -> [o 1] || [[[CONSONANTS | ASPICONSONANTS] "1 | CONSO-
NANTS | ASPICONSONANTS | ASPISHADCONSONANTS | j | v | n] . 1;
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! ZABAR + WAW as au after a consonant

read regex [[’ 3] => [0 11 || [[[CONSONANTS | ASPICONSONANTS] “] | CON-
SONANTS | ASPICONSONANTS | ASPISHADCONSONANTS | j | v | n] _ 17

! PESH + WAW as u after a consonant

read regex [[} 3] => [u 11 || [[[CONSONANTS | ASPICONSONANTS] ~] | CON-
SONANTS | ASPICONSONANTS | ASPISHADCONSONANTS | j | v | n] _ 1;

! WAW as au after a consonant

read regex [s -> [0 1] || [ASPIZABARCONSONANTS | ASPISHADZABARCONSO-
NANTS]  1;

! WAW as u after a consonant

read regex [s -> [u 1] || [ASPIPESHCONSONANTS | ASPISHADPESHCONSONANTS]

1
1 YEH as vowel e after a consonant
read regex [ & -> [e 1] || [[[CONSONANTS | ASPICONSONANTS] "] | CONSO-
NANTS | ASPICONSONANTS | ASPISHADCONSONANTS | j | v | n] 1
! [[CONSONANTS | ASPICONSONANTS] ﬂ
! ZABAR + YEH as vowel ai after a consonant
read regex [[ 1"}"]<-[s] || [[[CONSONANTS | ASPICONSONANTS] '] | CONSO-
NANTS | ASPICONSONANTS | ASPISHADCONSONANTS | j | v | n] 1
! ZER + YEH as vowel i after a consonant

read regex [[.«] -> [i 1] || [[[CONSONANTS | ASPICONSONANTS] "] | CON-
SONANTS | ASPICONSONANTS | ASPISHADCONSONANTS | J | v | n] . 1;

! YEH as i after a consonant

read regex [¢ -> [1 1] || [ASPIZERCONSONANTS | ASPISHADZERCONSONANTS]

_1;
! YEH as 1 after a consonant
read regex [1 "}"] <- &1 || [ASPIZABARCONSONANTS | ASPISHADZABARCONSO-

NANTS] 17

Ik, ,kkkhhkkkhkkk krkkhk*x**

! Vowels
| Ak hkhhkhkhkhkk k k kkhkhhhhkkk*x%

! Long Vowels not at the start of a word

! *hkkhkkhkhkhkhhkhkkkkkkkhkkk*

! Cases of Bari YEH

! Bari Yeh not at the end of a word

read regex [« -> [e 41]1;

! Bari YEH after ZABAR and not at the end of a word

read regex [ 4"}"]<-211;

read regex [[e¢] -> [I 2 e 4], [« ] -> [I 2 e 411,

read regex [4 "}"] <- ] || [ASPIZABARCONSONANTS | ASPISHADZABARCONSO-
NANTS] _ 1;

! Bari yeh will always form the vowel with a number 4 in the middle or
at the end of a word
! Vowels with AIN any where else

read regex [ & -> ["?2"] 1;

read regex [ [g&] -> ["?"] 1;

read regex [ [.g] -> ["2" I 1], [g] -> ["2" U 11];

read regex [ [sg] -> ["2" e 1], [s.g] -> ["?2" i 1], [,[1"}""?M"]<[s ¢

sgll -> ("2 o 11, [ s gl -> ["?" O 1], (s gl => ["?" u 1], [« ¢g] —>
["?" e 4], [4"}n IV?"]<_ [L &]];
! Vowels with ALEF any where else

|

read regex [ | -> A];

read regex [ ) -> [A 1] 1;

read regex [ [)] -> [A 1] 1;

read regex [ [.)] -> 1, [)] -> Ul;

read regex [ [6)] > e, [6.)] > i, [s],)"}"'<-[6 V] >0, [ 511 ->0, [!
']

51 > u, [ -> [e 31, [3"}"]<-[= NM11:
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! Vowels with AIN at the start of a word or a syllable

read regex [ |#A]|"?M<-¢ | " "1 _1;
read regex [ [ |#]]"™M<-[¢& | " "1 _1;:
read regex [ [ g] -> ["2" I 1], [ &] -> ["2" U 1] || [.#. | |

17
read regex [ [vg] -> ["?" e 1]

[("2" e 41, [|H#][A""""] <[ &1 " " _1;

! Vowels with ALEF at the start of a word or a syllable

read regex [V -=> A || [.#. | ~ | " "] 1

read regex [ | #]|["@"]1<-V 1 " "1 _1;

read regex [ [ |#]|["@"1<-[' 1| " "1 1;

read regex [ [)] —> I, [ > U || [.#. | | "™ _1;

read regex [ [6)] > e, [6.)] > i, [3],"}"<-[6 '] -=>0o, [ 5] -> 0,
31 >, eV > e 31, CIANB"YY <=1 1

| *,kkkk khkhkkhhkkkhrkkhrkkx%k

! NOONGHUNA

read regex [u -> "~"];
! *khkkhkkhkkhkkhkhkhkhkhkhkkhkkhkhkhhhhk

! NOON when it is not considered as NOONGHUNA
! NOON as a nasalization

read regex [ -> "~"];

! Noon followed by Noonghuna mark

read regex [[& O] -> "~"];

! Noon + diacrictical marks

read regex [0 ->n || [ 'S

read regex [[¢] -> [n "." nll;

! NOON followed by Heh Doachashmi as an aspirated consonant
read regex [[#0] -> [n " " hl];

! Noon + Diacritics+ Heh Doachashmi

read regex [[4 O] -> [n " " h 1];

read regex [[#.0] -> [n " " h I 11];

read regex [[#.¢0] -> [n " " h] || _ [1 1 .#.11;

read regex [[2#.0] -> [n " " h ¢ _|[[1;

read regex [[4 O] -> [n " " hU1l]l]l;

read regex [[2°0] -> [n " " h J_j|r];

read regex [[# 0] -> [n "." n " " hl];

read regex [[# "0l -=> [n "." n " " h 1];

read regex [[A,wu] > [n"." n" "hTII1]];

read regex [[4.°¢] => [n "." n " " h] || [1 1 .#.11;
read regex [[4.°¢] -=> [n "." n " " h s |[1;

read regex [[A‘wu] > [n"." n" "hUI1]l;

read regex [[# 7¢] -> [n "." n " " h 5_||[1;

! Noon + Heh Doachashmi + Diacritics

read regex [[.2¢] -> [n " " h] || _ [1 1 .#.1];

read regex [[#® O] -> [n "." n " " hl];

read regex [[. 20l => [n "." n " " h] || [1 1 .#.11;

! NOON before ALEF, ALEF Mada, Bari YEH, and diacritics

read regex [0 ->n || [ Olela|MV 1 1 | ¢|G|sls | v I 3| I11;
! NOON at the end of a word

read regex [U ->n || _ [e [.#. | " "11 1;

read regex [0 ->n || _ [.#. | | " "] 1;

! NOON at the start of a word

read regex [U0 ->n || [.#. | | " "] 1:

167

T A P R L&) B P
sgll > ["?" o 1), [ s gl -> ["?" 0 1], [s gl -> ["?" u ll, [« g]

->



Annex

|k, ,kkkkhhkkkhkrkkhkrkkhxkx**

! Special Cases for Ain with Alef
!*******************

read regex [g -> "?" || _ [1i]];

read regex [I &‘ -=> [A 1 "2"] || 2 _1;
read regex [[ | #]|["""@"]<-[¢' | " "1 _1;
read regex [[lg] -> ["?2" A 1]1];

l*******************

! Special Cases for Waw
!*******************

read regex [s -> [o 1], - [A 17, I —> A, g =>"2" || [T | 1] 4] 17
read regex [s > v, ¢ > J || [ [?2 - [.#. | " ™11 V|11 _ 1;

|k, ,kkkkhhkkkhrkk kkkkhxkx**

! Special Cases for Yeh
!*******************

! Yeh before Alef or Waw as I vowel

read regex [ -> I || _ [t|3|‘|”]

read regex [ -> [I 1] || [ [[CONSONANTS | ASPICONSONANTS] w] | CONSO-
NANTS | ASPICONSONANTS | ASPISHADCONSONANTS | ASPIZABARCONSONANTS |
ASPIPESHCONSONANTS | ASPISHADZABARCONSONANTS | ASPISHADPESHCONSONANTS
v 131 _ [glslVh]

read regex [[. ] -> [i 1] || [[[CONSONANTS | ASPICONSONANTS] "] | CON-
SONANTS | ASPICONSONANTS | ASPISHADCONSONANTS | ASPIZABARCONSONANTS |
ASPIPESHCONSONANTS | ASPISHADZABARCONSONANTS | ASPISHADPESHCONSONANTS
v 131 _ telslV

read regex [[ue] -> [1 1] | [ASPIZERCONSONANTS | ASPISHADZERCONSO-
NANTS]  [g]s]']')

! Yeh before Gol heh at the end of a word

read regex [ -> I || _ [o [.#. | ™ "I111;

read regex [¢ -> [I 1] || [[[CONSONANTS | ASPICONSONANTS] w] | CONSO-
NANTS | ASPICONSONANTS | ASPISHADCONSONANTS | ASPIZABARCONSONANTS |
ASPIPESHCONSONANTS | ASPISHADZABARCONSONANTS | ASPISHADPESHCONSONANTS
[ v | 31 [ [ .#. 1 " " 11];

read regex [[. &] -> [i 1] || [[[CONSONANTS | ASPICONSONANTS] "1 | CON-
SONANTS | ASPICONSONANTS | ASPISHADCONSONANTS | ASPIZABARCONSONANTS |
ASPIPESHCONSONANTS | ASPISHADZABARCONSONANTS | ASPISHADPESHCONSONANTS
[ v | 31  [e [ #. [ " " 111;

read regex [[¢] -> [1 1] | [ASPIZERCONSONANTS | ASPISHADZERCONSO-
NANTS]  [e [ .#. | "™ "™ 111;

bousela glely)

| kxxxkxxk*xxread regex [6 -> [1 1] || [}|]|\]_[&[L5|‘]]

[ R e e S S S S S S S S S S g4

! When Waw will be considered as a consonant
! Waw is followed by a vowel

2

read regex [5 -> v || _ [ |5 o | 1117 Taels|V) 1 i1 2115
read regex [s5 > v || [s|le|V|el'] [s]s]Ve]')
read regex [[ 5] -> [v "." v]l;

! Waw + Diacritics+ Heh Doachashmi

read regex [[4 3] -> [v " " h 1];

read regex [[#.3] -> [v " " h I 1]];

read regex [[#.3] -> [v " " h] || _ [i 1 .#.11;
read regex [[#.3] -> [v " " h ¢ _||[]

read regex [[# 5] -> [v " " h U 1]],

read regex [[4 3] -> [v " " h s s

read regex [[2 3] -> [v "." v " " h]];

read regex [[# "] -> [v "." v " " h 1];

168



Annex 6

read regex [[#. 3] -> [v "." v " " h I 1]];

read regex [[4. 3] -> [v "." v " "™ h] |l _[11 11;

read regex [[4.73] -> [v "." v " " h ¢ _|[I;

read regex [[# "5] -> [v "." v " " h U 1]];

read regex [[& "] -> [v "." v "_"h s |15

! Noon + Heh Doachashmi + Diacritics

read regex [[.& 3] -> [v " " h] || _ [1 1 .#.11;

read regex [[# 5] -> [v "." v " " h]];

read regex [[. #3] -> [v "." v " "™ h] |l _[11 11;

! Waw is followed by Shad

! \}u s\j’g‘\i;?

read regex [[ s3] -> [U 1 v] || [CONSONANTS | ASPICONSONANTS | ASPISHAD-
CONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSONANTS ASPISHADZABAR-
CONSONANTS | ASPISHADPESHCONSONANTS | j] . [H];

! Waw at the start of a word

read regex [s5 -> v || [.#. | | " "] 1

!*******************

! When Yeh will be considered as a consonant

read regex [[¢] -> [§ "." j11;

read regex [[ «] -> [i 1 j] || [CONSONANTS | ASPICONSONANTS ASPI-
SHADCONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSONANTS ASPISHAD-
ZABARCONSONANTS | ASPISHADPESHCONSONANTS]  1;

read regex [[, ] -> [1 1 j1 || [ASPIZERCONSONANTS | ASPISHADZERCONSO-
NANTS] _ 1;

read regex [[.° &l -> [1 1 31 || [CONSONANTS | ASPICONSONANTS ASPI-
SHADCONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSONANTS ASPISHAD-

ZABARCONSONANTS | ASPISHADPESHCONSONANTS] . 1;
! Yeh in between of two Alefs

Dodke (Jue

read regex [6 -> 3 || [[.#. | s|N_[le|T[""|11;
! Yeh followed by Shad after Alef or Ain

read regex [['¢] -> [J "." 31 Il (gl _ 1:
Lok

read regex [¢ -> 3 || [[-#. | N _[[e1[""|11;

! Yeh is followed by a diacritic

read regex [ -> F || _ [
! Yeh at the start of a word

read regex [6 -> F || [.#. | | " "1 _1;
! Yeh at the end of a word
read regex [& -> [1i 11 || _ [.#. | | "™ "11;

|k, ,kkkkhhkkkhrkk kkkkhxkx**

! Special Cases
!*******************

! Special Cases for Hamza Waw
!*******************

read regex [[s8] -> [I 2 o 1] , [s¢] -> [I 2 o 1]11;

! Hamza + Waw gives sound of long vowel 'u' when it comes 2nd last in

the word and the word is a verb. usea usilslea (osila

! In case, the word is a noun, the Hamza + waw gives the sound of 'o'.
so solve this problem, we need POS tagging of words.

read regex [[s8] -> [I 2 u 1] , [s¢] -> [I 2 u 1]

[ S S i i S e S I S S S S S S S S 3

! HAMZA after YEH as "@" vowel sound

read regex [[se¢] -> [I 2 1 1], [l -> [I 2 1 1]1]1;
! It seems that Hamza + Waw is never followed by Choti-Yeh.
that exist is sl (I think that it is wrong spelling of wistw)
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! Special strings at the end of a word

read regex [ [ ] -> A 2, [ 8] -> A 2];

! First Hamza i1s Hamza and second is Hamza + Yeh Ligature

read regex [ [ 6] ->A 2, [[ 6] =>A 2, [ V] => ["e" n], [6s] —> [I 21
11, [ &] -> [I 2 i 11, [s5¢] -> [I 2 o0 1], [s&] -> [I 2 o 11 11
B N )

read regex [[e¢¢] -> [I 2 1 1l e]l, [«es&] >[I 2 1i1e]l |l [.#. |

g| won | H_H] ] :

[ S e R I S S S S S S S S S S S S 4

! Compound Words

'read regex [ . -> ["-" e "=-"], ¢ => ["-" e 1 "-"] || [CONSONANTS | AS-
PICONSONANTS] " "];
read regex [ . -> ["-" e "-"] || [CONSONANTS | ASPICONSONANTS] " "];

!*******************

! Vowels alone

read regex [|.#]_[""|""|1#A]]"@"<-V| ™ " | "="11;

read regex [[./],"@"<-[ '] -> 1, [V => U || [.#. [ #)_[""|""[1 " " |
"-"11;

read regex [[s'] -> i, [s.'] —> i, ][} ]1<-[s '] => o0, [s 11 ->0, [}
s =>u, [ => e 31, U[AI_[™"[""[T#INEB" <[« 1 ™" 1 "="1 1

B S e S S S S S S S S S S S S S 3

! Special words

read regex [[4] -> ["@" 1 "." 1 A1 h] || [2 -1 _1;:

read regex [[& )] -> [("e" 1 ".m 1 A 1 nh], [¢JddI'] -=> ["e" 1 ".m 1 a1
hl, [¢Jdd)] -=> [(me" 1 "."m 1 A1h], [¢dd)] -> [("e" 1 "."m 1 A1 h]l;
read regex [[6<S] -> [k I 1], [e 3] -> [v h], [¢&] -> [ h] || [.#. | "

"I Lkt

I**;****************

! Number

!*******************

read regex [* -> "+URZERO", ) -> "+URONE", Y -> r"+4UrTWO", Y ->
"+URTHREE", ¥ -> "4+URFOUR", & -> "4URFIVE", % -> "4URSIX", Y ->
"+URSEVEN", A —-> "4UREIGHT", % -> "+URNINE"];

! Decimal and thousand separator

read regex [» -> ["+URDECIMAL"], ¢ -> "+URTHSEP"];

read regex ["+DOT" -> "+URDECIMAL", "+COMMA" -> "+URTHSEP" || URNUMBE-
REXPRESSION _ URNUMBEREXPRESSION] ;

read regex ["O" -> "+ZERO", 1 -> "4+ONE", 2 -> "4+TWO", 3 -> "+THREE", 4
-> "4+FOUR", 5 -> "+4+FIVE", 6 -> "+4SIX", 7 -> "+SEVEN", 8 -> "+EIGHT", 9
-> "+NINE"];

read regex ["+DOT" -> "+DECIMAL", "+COMMA" -> "+THSEP" || ENGNUMBEREX-
PRESSION _ ENGNUMBEREXPRESSION] ;
read regex ["." -> "4+DOT", ¢ -> "4URQMARK", - -> "+URSTBD", >

"+URCOMMA", "," -> "+COMMA", "+NL" -> "4NL", /-> "+URPERCENT", ¢ ->
"+URSEMICOLON", * —> "4+URSTAR"];
! Punjabi-Shahmukhi Text Normalization

=z F b L
read regex [0<-"" S<- 83 I ETE e & <-01;

compose net

UIT to Punjabi/Shahmukhi Finite-state Transducer

clear stack

set char-encoding UTF-8
!*******************

!Definition of Varibales
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|k, ,kkkkhhkhkkhkhkk krkkhxkx**

define CONSONANTS [b | [b " " h] | p | [p " "™ h] | [t " " d] | [£"™"
d ll—ll h] ‘ [t "\"] | [t mweNn ll—ll h] | [S l} | [d "_" Z] | [d ll—ll Z "—"
h] | [t "_" S] | [t "_" S "_" h] I [h 1] | X I [d "_" d] | [d "_" d

n n h] ‘ [d "\"] | [d nwen "_" h] | [Z 1] | r ‘ [r n A\ h] ‘ [r "\"] |

[r nruoonwon h} | z | Zl s | S | [S 2] | [Z 2] | [t "7"_d l] | [Z 3] | G

£ 1 gl k| (k" "h] | gl [g""h | 1| [1L""h |m] [m""
hl I'n | [n" " h] [ v [ [v" "h] | h|J | [t" "d2] | H]| [NI]
(N2) [ [n"™"] [ ™" | [b1] | [d" "2z 1] | [d" " 1] | [g 1]1];
define VOWELS ["@" | A | T | U | e | "™{" | i | ul O] ol [A1l] | [A
2 1 A 37 1 [z 1) | (2] | [(ul]l | [e 2] | ["{" 1] | [1 1] | [u 1]

|

(O 1] | [o 1] | [e 3] | [e 4] ("™ 37 1 ["{" 41 | [1 2] | [u 2]);

[ R e e I S S S S S S S S S S S S 4

! Multi-character symbols
!*******************

read regex ["+DOT" -> ".", "+QMARK" -> "?", "+DECIMAL" -> ".",
"_I_COMMA" _> " , " , "+THSEP" _> " , " , II+SEMICOLON" _> "; " , "+COLON" _>

" . " , "+PERCENT" _> Z, "+ZERO" _> HOH , "+ONE" _> 1, "+TWO" _> 2,
"+THREE" -> 3, "+FOUR" -> 4, "+FIVE" -> 5, "+SIX" -> 6, "+SEVEN" -> 7,
"+EIGHT" -> 8, "+NINE" -> 9, "+URZERO" -> *, "4+URONE" -> \, "+URTWO" -
> Y, "4URTHREE" -> Y, "+URFOUR" -> Y, "4URFIVE" -> &, "4URSIX" -> 7,
"+URSEVEN" -> VY, "4+UREIGHT" -> A, "4URNINE" -> 9, "4+URQMARK" -> ¢,
"+URSTBD" -> -, "+URCOMMA" -> ¢, "+URPERCENT" -> X, "+URSEMICOLON" -> ¢,
"+URSTAR" -> *, "+URDECIMAL" -> ,, "+URTHSEP" -> «¢];
!*******************

! Diacritics

!*******************

read regex ["." -> ];

!*******************

! Consonants
!*******************

! Simple Consonants

! Consonants Set 1

read regex [b -> <, p - ;e mdl o> &, e > iy x =->¢g, [d
"mrdl ->, [d"™"] >3, r >, 0z ->), Z->353 s >0, S->U0 G-
> ¢, £ >, g->38, k>, >&, 1 ->d, m->a n->0 v->35 h
-> e, >, H->2%, [N1] -> [L0], [N 2] -> [gall;

! Consonants Set 2

Q
I

read regex [[s 1] -> &, [d " " 2] ->¢, [t" " S] >z, [h1l] >¢, [z
11 => 3, [r ""] => 3, [S 1] -> & [s 2] -> ua, [z 2] -> oA, [t " " d
11 =>4k, [z 31 > L, (£ " "d2] ->5% [n""] ->10, [1L""] ->d, [b
11 > @, [d " " 1] -> 3, [g 1] —> &);

! Consonants Set 3

read regex [[d " " Z 1] -> ¢];

! Aspirated Consonants

read regex [ ["_ " h] -> &];

! Germinated Simple Consonants

read regex [[b "." b] -> [[«], [p "." pl] —> [{], [t "rdmm.t ot "o " d]
=> @], e e ] > 7Q], (s 1M s 1] -> (&), [d gL
d" "zl > [gl, [t" "s"."mt""s] > [gl, [h1"."h1l -> [¢gl,
[x "." x] -> [¢l, [d " "d"."d""d -> [, [d"""."d""] ->

(3, [z 1" z1) => 3, [x ") => [0, [£"" """ >[5
1, lz"."z] => [3], (2 "." 2] -> [3], [s"."s] -> [, [s"." 8] ->
(&), [S1 "."ms 1] => [, [s2"."s 2] -> [oa], [z2"." z2] ->
[wu'é], [(c""4da1"."t""d1l] —-> [w-la], [z 3 "." z 3] -> ['L], g ".n"
Gl -> [&1, [£"." £] —> ['S], [qg "." g —> ['&], [k "." k] —> [S], I[g

morgl > [CXR), (1. 1] -> [d], m"."m] -> ["e]l, [n "." n] -> [O],
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[v. "." v] => ["5], [h "." h] => [°], [§ "." 4] —> [6], [t " "d2"."¢t
"rd 2] > (3], [n "™ "."n "™ "] -> "], [2Z"™""."1""] —> ["J],
b1 "."b1l] -> [ <], [d "mvzim".mda""z1] -> Czl, [d " ™1 ™.
d"™" 1] -> '3, [g1"." g1l > (K]

! Germinated Aspirated Consonants

read regex [[b "." b " " h] -> C2<], [p"." p " " h] -> "2 <], [t
"mrdm"T.mt""d" " h] -> [Ca &), [¢ " v, " " h] -> [ a &,
[d""z"."md""™z""h] -> [ 4g], [t""s"."t""s""h] >
["2z], [d "rdmmt.md”"d" " hl > ["a23], [d " " ".mdgn"" " " h] -
> [ & 3], [r "." r " " h] —> "2 )], [z "™ .y " " h] > " & 31,
[k "." k" "h] > [(4S], [g"."g" "h] -> [, [1"."1""n] -
> [C2d], [m"."m " " h] => (4], [n"."n" "h] > [ 20], [v"."v
" " h] -> [[45]];

! *hkkhkkhkhkkhkhkhkhkkkkkkkhkhkk*

! Nazalization

! R R e b b b b ah Sh db g g b b b b o 4

read regex ["~" -> O],

read regex [["~" 1] -> O];

read regex ["~" -> o [| _ [.#. | "™ "11;

read regex [["~" 1] -> o || _ Lo#. | ™ ™11,

B e e S S S S S S S S S S S S S 4

! Vowels
| *hkkhhkhkhkhkhkkhhkhhkkhkhkhk*

! Vowels
| Ak dh K,k hkhkhkk Ak Ak khkhhhhkk*%*

! Vowels in the middle or at the end

read regex [A —> !<-"@")J, T -> [.)], U -> [V, i ->[s.11, o> [s)], O
> s, u > 5, e > (e <" ] s g

read regex [[e 3] -> [g<-"?",[« N<-[3"}"].[«'];

! Vowel with diacritics

read regex [[A 1] -> ), [I 1] -> _,[U 1] -> ', [i 1] -=> [¢.], [o 1] ->
5, [01] => (s 1, [ul]l => [s'1, [e 1] —> ¢ ]<[1"1".,s], [e 4] -> ,o
e ]<-[a""N17:

! *khkkhkkhkkhkkhkhkhkhkhkhkkhkkhkhkhhhhk

! Special cases

i *hkkhkhkkhhkkhkhkkhhkkhkkkkkkkkk

! Special cases of vowels

read regex [o -> s || [1 11 _ ["~" [.#. | "™ "111;

read regex [["@" n] -> [ '1]1;

read regex [[A 2] —-> [‘ <], [A 3] —> ', [I 2] => [¢], [1 2] -> , [u 2]
> &, ["e" n1] ->, [I1n1] ->_, [Uln1] -> 1;

read regex [I -> ¢ || [VOWELS | "?"] ([h [ .#. | ™" 11 | A | o |
"l

read regex [[I 1] -> & || CONSONANTS ((h [ .#. | "™ " 11 | A | |
"1

read regex [[U 1 v] -> [ 5] || CONSONANTS _ A];

read regex [[i 1 j] -> [. ] || CONSONANTS 1

read regex [[1 1] -> &, [e 1] —> [« J<-[1"}"],[«] || _ [.#. 1 " "11;
read regex [[I 2 1 1] -> [E ¢], [I 2 e 1] -> [E ], [T 2 "{" 1] -> [+
sl, [T 2 o0 1] => [s¢], [I 2 ul]l] -=> [s¢], [I 2 U 1] => [s¢], [I 2 O 1]
> [s¢], [T 2 e 4] > [«e+]];

read regex [[T 2 i 1 el -> [|#] |l[lessl ™™ | "="] 1;
! *hkkhkhkkhhkkhhkkhkkhkkhkkkkkk

! Compound Words

read regex [["-" e "-
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|k, ,kkkkhhkhkkhkhkk krkkhxkx**

! Special words

read regex [[k I 1] -> [6<S] || [[.#. | " "] [[k 3 ul™""] | [t""S
ul""] | [£t""ZDb]l | [d""Zol]l | [nA1] | [b 1111  [.#. | "
"11;

read regex [ ["@" 1 "." 1 A 1 h] -> [+ddN];

read regex [[k I 1] -> [6<S] || [ .#. | "™ " 1 [ 4.1 "™ " 11;

[ e e i S S S S S S S S S S S S 3

! Multi-character symbols

read regex ["+DOT"™ -> "DOT", "+QMARK" -> "+QMARK", "+DECIMAL" ->
"+DECIMAL", "+comMMA"  ->  "+COMMA", "+NL" ->  "+NL", "+THSEP" ->
"+THSEP", "+SEMICOLON" -> "+SEMICOLON", "+COLON" -> "+COLON",
"+PERCENT" -> "+PERCENT", "+ZERO" -> "+4+ZERO", "+ONE" -> "+ONE", "+TWO"
-> "+TwO", "+THREE" -> "+THREE", "+FOUR" -> "4+FOUR", "+FIVE" ->
"+FIVE", "+SIX" -> "+4+SIX", "+SEVEN" -> "+SEVEN", "+EIGHT" -> "+EIGHT",
"+NINE" -> "4NINE", "+DSTBD" -> "+URSTBD", "+SSTBD" -> "+4+URSTBD",

"+GURDECIMAL" -> "+URDECIMAL", "+GURTHSEP" -> "+URTHSEP", "+GURZERO"
> "4+URZERO", "+GURONE" -> "4URONE", "+GURTWO" -> "+URTWO", "+GURTHREE"

-> "+URTHREE", "+GURFOUR" -> "+URFOUR", "+GURFIVE" -> "4URFIVE",
"+GURSIX" -> "+4URSIX", "+GURSEVEN" -> "4+URSEVEN", "+GUREIGHT" ->
"+UREIGHT", "+GURNINE" -> "+URNINE", "+URQMARK" -> "+URQMARK",
"+URSTBD" -> "+4URSTBD", "+URCOMMA" -> "4+URCOMMA", "+URPERCENT" ->
"+URPERCENT", "+URSEMICOLON" -> "+URSEMICOLON", "+URSTAR" ->
"+URSTAR", "+URDECIMAL" -> "+URDECIMAL", "+URTHSEP" -> "+URTHSEP",
"+URZERO" -> "4URZERO", "+4URONE" -> "4URONE", "+URTWO" -> "+URTWO",
"+URTHREE" -> "+URTHREE", "+URFOUR" -> "+URFOUR", "+URFIVE" ->

"+URFIVE", "4URSIX" -> "+4URSIX", "+URSEVEN" -> "+URSEVEN", "+UREIGHT"
-> "+4UREIGHT", "+URNINE" -> "4+URNINE", "+HIABRIVATION" -> "+4+URSTBD",
"+HIDECIMAL" -> "+URDECIMAL", "+HITHSEP" -> "+URTHSEP", "+HIZERO" ->
"+URZERO", "+HIONE" -> "+URONE", "+HITWO" -> "+URTWO", "+HITHREE" ->
"+URTHREE", "+HIFOUR" -> "+4+URFOUR", "+HIFIVE" -> "+4+URFIVE", "+HISIX"

>  "4URSIX", "+HISEVEN" -> "+URSEVEN", "+HIEIGHT" -> "+UREIGHT",
"+HININE" -> "+4+URNINE"];

compose net

Punjabi/Gurmukhi to UIT Finite-state Transducer

clear stack

set char-encoding UTF-8
!*******************

!Definition of Varibales
!*******************

! Gurmukhi Consonants, total 38:

JHJWSdedSECoIeeIaCUOUCHIHUISZBTHAJHIHT IS

define CONSONANTS [ | H | JT| W | S| T | 8| H| 8| 8| 2| 5| 3| €|
SIS IH|ISI US| HI S| H W[ J| BB | S| H|IH| I H

| 9T J1 F1 2:
define ENGNUMBER [O | 12 | 2 | 3 | 4 | 5 | o | 7| 8 | 9];

define GURNUMBER [0 | 1| 2| 3| ¥| U| €] 9| ¥ | ¥J;
define GURNUMBEREXPRESSION [ [GURNUMBER [GURNUMBER]*] 1];
define ENGNUMBEREXPRESSION [ [ENGNUMBER [ENGNUMBER]*] ];:

|k, ,kkkhhkhkkhhkk rkkhxkx**

! Rules for Gurmukhi to UIT Conversion
!*******************

B e e S S S S S S S S S S S S S 4

! Other Symbols
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read regex [&-> ".", {3-> H];
!*******************

! Rules for Consonants
!*******************

! Simple Consonants

read regex [d-> k, H-> [k " "™ h], dI-> g, W-> [g " " h], 2-> [N 1], T-
>[t""s], > [t""s""h], > [d""z], §->([d" " 2" "hl,
> [N2], > [t"™"], &> [t"™" " "h], F->[d""], T->[d""
""h], > [n""], 3> [t""dl, > [t""d""h], > [d""
], d4-> [d " "d" " hl, &-> [n], Y-> [p], @-> [p " " h], §-> [b], I-
> b "™ " hl, H-> [m], W -> [j], d-> [r], &> [1], &> [1 """], © >
(vl, H-> [s], H#-> [s], d-> [h], H-> [x], I -> [G], d-> [z], F-> [r
"y, 8-> f];

read regex [[FT]-> gl;

! Geminated Consonants

read regex [[&d]-> [k "." k], [“H]-> [k "." k"™ " h], [£d]-> [g"."
gl, [#W]-> [g"." g" "h], [@8]->[N1"."N1], [¢d]-> [t " """
t"mg], O8> [t" s g ], [GH] > [d" "z "."d
"zl (@8] > [d" "z .nd" "z " "h], [$8-> [N2"."NZ2], [&
T]-> [t o], (B8] > (£ o g e p] (] -> [d
momd MMy, [BR] > [d "t .t d " oh], [BE]-> [n "t .t ononn,

[@3]-> [t " "d .t "dl, [@H->[t""d"."t""d""h], [&
->[dm""d".md""d], [@O->[d""d".md" "d" "h], [&&]-
> [n "."n], [GU]->[p"."pl, [€S]->[p"."p" " h], [GH->[b"."
bl, [8]-> [b "." b " " h], [“H]-> [m "." m], [SH]->[§ "." 5], [J]
> [r"."or], [BB]-> (1" 1], (@8> (1oL, (B> (v
"ovvl, [OH]-> [S . s], [GH]-> [s "." s], [©d]-> [h "." h], [GH]->
[x "." x], [@d]->[G"."G], [H]-> [z "." z], [FF]->[r" """
mny, (B8] [f Lt £]];

read regex [[afawq]-> [g "." gll;

! Aspirated Consonants

read regex [[Zd]-> [" " h] || [ B H| & | F]_ 1;

! Special case for YA

read regex [W-> [ h] || _ [.#. | "™ "11;

[ e e S S S S S S S S S S S S 24

! Rules for Nasalization
!*******************

! there are two main nasalization markers. @ BINDI is used with vowel
characters and vowel symbols whose glyph goes above the tope horizon-
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tal bar. otherwise, # TIPI 1is wused. But it is normal practice that
people use only BINDI.

read regex [.' -> "~", [SJN "~", .:::.w_> ["NH l}},’

!*******************

! Rules for Vowels
!*******************

! Vowel signs
read regex [7-> [A 11, fo> (1 17, F-> [1 1], ¢-> [U 11, ©-> [u 1], &>

e 1], &-> ["{" 1], 3-> [0 1], &-> [0 1]1]1;

! Vowel characters not at the start of a word

read regex [M-> "?2", W-> ["?" A 1], &> [r 21, o> [T 2 1 1] @ ->
2U1], > (1 2u1], ¥> [I2e 1], wos v 8> (120 1], W> 0];
lread regex [[&TW]-> "2"];

! when vowel sign U comes after a consonant and before some indepen-
dent vowel signs at the end of a word

read regex [[&] -> [u 1] || CONSONANTS _ [[WF | & | & | < | <] [4. | »
"111;
read regex M'-> [A 1], 8-> [0 1] || (R & € o fo d o033

|3 S oS T 17

read regex (8-> 1 || Ao | o por 3o @]7 R @|-:::-W-:?:-]];

! Vowel Characters at the start of a word
read regex [M-> "g", W->2a, &> 1, &>1i, @>0u, @5 u T ¢, >
e, 8> 0, >0 1 k.m0

read regex [[Q]-> [u 1], [ﬁﬂ-> [1 1] || CONSONANTS _ [.#. | " "] 1;
!*******************

! Rules for specail strings
!*******************

! special words

read regex [[Y&d]-> [pul ], [THT8]-> [AbAld" "d], MaBa
Jo-> ["e™ 1 "." 1 A1 h] [ (2] _ [.#. | " ");

read regex [ME&aJwN-> ["e" 1 "." 1 A 1h], €-> [0n], [&]-> [nA
11, (@3]-> (3 hl, (€3 -> (vhl, €3->[vhl [| ["" | 4.1 _ [.4. |

" "]];

| *k,kkk hkhkkhkrkkhkrkkhhkx*x*%

! Rules for Numbers
!*******************

read regex [O -> "4+GURZERO", 1 -> "+GURONE", 2 -> "+GURIWO", 3 ->

"LGURTHREE", ¥ -> "+GURFOUR", Y -> "+GURFIVE", £ -> "+GURSIX", 9 ->

"+GURSEVEN", T -> "4GUREIGHT", ¥ -> "4+GURNINE", | -> "+sSsTBD", | ->
"+DSTBD"];

! Decimal separator

read regex ["+DOT" -> "+GURDECIMAL", "+COMMA" -> "+GURTHSEP" || GUR-

NUMBEREXPRESSTION GURNUMBEREXPRESSION] ;
read regex ["O" -> "+ZERO", 1 -> "4+ONE", 2 -> "4+TWO", 3 -> "+THREE", 4
-> "4+FOUR", 5 -> "+4FIVE", 6 -> "+SIX", 7 -> "+SEVEN", 8 -> "+EIGHT", 9

-> "+NINE"];
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read regex ["+DOT" -> ["+DECIMAL"], "+COMMA" -> "+THSEP" || ENGNUMBE-
REXPRESSION _ ENGNUMBEREXPRESSION] ;

read regex ["." -> "+DOT", "?" -> "+QMARK", "," -> "4+COMMA", ";" ->
"+SEMICOLON", ":" -> "+COLON", "%" -> "+PERCENT", "+NL" -> "+NL"];

| *k,kkk hkkkhkrkk khkkhrkx*x*%

! Rules for Text Normalization
!*******************

read regex [[E€ f] -> fE, [ﬁii' g] > fE, RS ’T] -> éT, e \] > 8, 8 o] > 9,
[@ =] -> g];

read regex [T-> 0 || [?2 - 9] 1;

read regex [[H@]->H, [dM<]->dl, [H3]->dH, [@¢]-> G, [Fa¢]->8, [HI

-> H];
compose net

UIT to Punjabi/Gurmukhi Finite-state Transducer

clear stack
set char-encoding UTF-8

|k, ,kkkk hkkkhhkkk krkkhx*x**

!Definition of Varibales
!*******************

define CONSONANTS [b | [b " " h]l | p | [p " "™ hl | [t " "™d] | [t "™
d "7" h] ‘ [t "\"] | [t nwsn "7" h] | [S lJ | [d "7" Z] | [d "7" Z "7"
h] | [t "7" S] | [t "7" S "7" h] | [h l] | X I [d "7" d] | [d "7" d
ll_ll h] ‘ [d LI ll] | [d wen "_" h] | [Z 1] | r ‘ [r ll_ll h] ‘ [r " ll] |
[r """ " hl | z 1 2] s | S| [s2] | [z2] | [t" "d1l]l | [z3]1G
' £ 1 gl k| [k" "hl | gl [g" "h 1 [ [1L"™hl | m] [m""
hl ' n | [n" " h] | v [ [v""h]l | h | J [ [t""d2] | H]| [NI1] |
(N2] | [n" "] | [12"") | [b1l) | [d" "™ 2Z 1] | [d" "™ 1] | [g 1]];

define VOWELS ["@" | A | I | Ul e | "(" | il ul Ol ol [A1] | [A

2 1A 3] 1 [ 1y (r 2] | (ul]l | [e 1) | ["{" 1] | [2 1] | [u 1] |
(0 1] | [o 1] | [e 3] | [e 4] | ["{"™ 3] | ["{" 4] | [1 2] | [u 2]];

|k, ,kkkk hkkkhkkkk kkkhkkx**

! Multi-character symbols
!*******************

read regex ["+DOT" -> ".", "+QMARK" -> "?", "+DECIMAL" -> "."
"4COMMA" -> ",", "4THSEP" -> ",", "4+SEMICOLON" -> ";", "4+COLON" ->
" : " , II+PERCENT" _> "%"’ "_I_ZERO" _> "O" , "+ONE" _> l, "+TWO" _> 2,
"+THREE" -> 3, "+FOUR" -> 4, "+FIVE" -> 5, "+3SIX" -> 6, "+SEVEN" -> 7,
"+EIGHT" -> 8, "+NINE" -> 9, "+DSTBD" -> I, "+SSTBD" -> |,
"+GURDECIMAL" -> ", "+GURTHSEP" -> ", "+GURTHSEP" -> "

14 14

"+GURZERO" -> O, "4+GURONE" -> 9, "+GURTWO" -> 2, "+GURTHREE" -> 3,
"LGURFOUR" -> ¥, "+GURFIVE" -> 4, "+GURSIX" -> €, "+GURSEVEN" -> 9,

"+GUREIGHT" -> T, "+GURNINE" -> ¥J;

| X, kkhhkhhhkhkhkhkhkkxkxkkx
! Diacritics
!*******************
read regex ["." ->I;
!*******************

! Consonants
!*******************

! Simple Consonants
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read regex [b -> ¥, p -> Y, [t " "d] ->3F, [t "'"] ->C, x ->H, [d
"m"d] >%, [d""] >&, r ->d, z->d, z2->d, s->H s ->H, G
> dl, f ->8, g-—>[d%], k->d, g->d, 1 > m->H, n->8, v-
>€, h->d, §J ->UW, H->05, [N1] -> %, [N 2] > &|;

! Consonants Set 2

read regex [[s 1] -> H, [d " " 2] ->H, [t " " S] ->9, [h 1] -> J,
[z 1] ->4H, [r " "] ->F, [s1] ->H, [s 2] ->H, [z 2] ->d, [t """
d 1] >3, [z 3] ->4H, [t""d2] >3, [n""] ->F [1""] —>85,

[b 1] >4, [d"" 1] > &, [g 1] -> dI];
! Consonants Set 3

read regex [[d " " Z 1] -> H];

! Aspirated Consonants

read regex [ [" " h] -> [J]];

read regex [[b " " h] -> &, [p " " h] ->¢, [t " "d" " h] ->H, [t
e h] >%, [d""Z""h] >%, [t""S" "h] ->8, [d" "d

||_|| h] -> 'q" [d wNn "_" h} -> EI', [k n_n h] -> H” [g n_n h] -> 'LLI'];
! Germinated Simple Consonants

read regex [[b "." b] -> [ H], [p "." p] -> [¢Y], [t " "d"." ¢t """
dl => [#3], [t "o e ] > [($E], [s 1 M. s 1) -> [GH], [d "
z".md" "zl > [@H], [£t""s"."t""s] ->[¥F], [(h1l"." h 1]
-> [3d], [x "." x] -> [@H], [d""d"."d" "d] -> [G€], [d"" "
d ™" > [@F], [z1"." z1] -> [FH], [r"." r] -> [&J], [r """ "."
r "] o> [(OF], [z . oz)] -> [$H], [z "." 2] -> [¢H], [s "." s] -> [
A, [s"."s] -> [@H], [S1"."s1] -> [¢H], [s2"." s 2] -> [&H],

[Z 2 n_n z 2] —-> [._\.1__'_], [t "7" d l n_n t "7" d 1] -> [._\.3_], [Z 3 n.n z

3] -> [ H], [G"." 6] -> [&d], [£"." £] —> [ @], [q "." q] -> [&
Fa], (k"L k] o> [@F], [g"." gl -> [(d], (1.0 1] -> (@8], [m"."

v -

m] -> [H], [n"." n] -> [&&], [v"." v] -—> [€], [h "." h] -> [&J],
31 > [€@W], [t ""d2"."t""d2] > [E3F], [n"""."n
menl o> [E], (1ol ] > (@8], b1l "." b 1] -> [ H], [d
mmzlnn gz 1] > [@H], [d"™" 1 mrd 1] > [$F], [g 1

" og 1] -> [vaT], [Nl "." N 1] -> [vs], [N 2 "." N 2] -> [VE]],’
! Germinated Aspirated Consonants

read regex [[b "o n_n h] -> [vg'], [p non P n_n h] -> [va], [t u_n d
"o+ n_n d n_n h] -> [v'a'], [t we n won ¢ wen n_n h} -> [VE], [d n_n 7

" . " d "_" Z "_" h] _> [.::; -8], [t "_" S nw . " t "_" S "_" h] _> [.::; g], [d
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won d H.H d "7" d "7" h] -> [.:::.v'q'], [d wen ll.ll d wsn

"o n_n h] -> [VH], [g nwon g n_n h] -> [vu{]];
! HEH at the end of a word as vowel A

read regex [h ->T || [CONSONANTS]  [.#. | ™ "11;
! special cases for YA

'read regex [[J h] -> W || _ .#.];

! dAhkkhkhkkhhkkhhkkhkkkhkkhkhkh*kx*

! Nazalization

read regex ["~" —>£ﬂ;

read regex ["~" ->¢' || [CONSONANTS | & | €] 1;

read regex [ ["~" 1] —>{q;
!*******************

I Vowels
!*******************

! Vowel characters

"7" h}

->

g,

read regex [A -> W, "@" -> WY, T -> f\E, U -> @, i -> ET, o -> @, o ->

wW,u->8 e > 8 nr o>

read regex [[e 3] -> &, ["({" 3] —> W];
! Vowel signs

read regex [[A 1] -><f, [I 1] —>Tf3, [u 1] —><, [1 1] -> <,

[0 1] ->3, [u1l] -> T, [e 1] -> &, ["(" 1] -> 3, e 4]

A
>'._,'];
| kkkkkhkk kA kA Ak Ak k kK
|
|
|

Special cases
*hkkhkhkkkhkkhkhkkhkkhkkhkkhkkkhkkk

Special cases of vowels

read regex [["Q" n] -> & || [? - .#.] 17

read regex [[A 2] -> T, [A 3] -> of, [I 2] -> fg,

read regex [[u 1] ->% || CONSONANTS  [[A | i | el
! Vowel with Ain

read regex ["?" -> W|;
read regex ["?" ->T || CONSONANTS  1;

read regex [["?" A 1] -> W', A 1 "?2" -> [ﬁrﬁﬂ];

read regex [["?" I 1] -> ﬁL ["2" U 1] -> @} ["2" e 1] -—>

-> '@', [ll?" H{H 1] -> 'Yq', ["?H o l] -> @', ["?" 0 1]
Q', ["?H e 4] -> 'g', ["?" "{H 4] -> Yq],.

'read regex [["@" "?"] -> Q, [("2" 1 1] -—> ﬁ?, [("2" U 1] ->

_> g, ["?" i l] _> 'éT, ["?" "{" 1] _> yq‘, ["?" o) l]

Y)?l", [n?n u 1] —-> Q" [n?n e 4] —-> g, [n?n n{n 4] —-> yﬂ‘ || ['#'

H.H] ];

| Ain after the final i sound in the word

178

["@" n 1] -> &, [I 1 n 1] -> (f2&], (U1 n 1] -> [&B]];

"

o 1] ->3,

-> 3, 4] -

(i 2] -> <Y, [u 2] -
HL11

g‘, [n?n l 1]

>, (e ou 1] ->

Q, [H?H e 1]

-> 8, ["?" 0 1] —>
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read regex [["?" i 1] -> [STE®] (| _ [.#. | " "1];
read regex [[A 1] -> W, [T 1] > f&, (v 1] > €, (i 1] -> &, [0 1] —>
€ 011 >, w1 >€ [e1] >8 [ 1] > [ed] > [
41 —> W || [voweLs | & €| | € €1 €1 " _ 1;

read regex [[I 2 1 1] -> éﬂ, [T 2 e 1] -> g} [T 2 "{" 1] -> Vﬁ, [T 2 o
11 >€, (12u1] >@ (1201 >8 (1201 >N, [I2e4] ->

2];

| *k,kkkk khkhk A khkkhkhkkhhkkx*k

! Compound Words

read regex [[n_n e n_n] -> [n_n g’"_"], [n_n e l n_n] -> [n_n g’"_"] || B
[ "1

|k, ,kkkkhhkkkhhkkhkkkkhxkx**

! Special words

read regex [ ["@" 1 "." 1 A 1h] -> MEBaIe], [pulr] -> [Usd],
[hh] => || _ [.4. | " "1];

read regex [["@" 1 "." 1 A 1 h] -> ME & eI, [vhl —> €3], [ h]
-> W3], (nAal] > &, [om] -> & || [.%. "] [ .#. 1" " 1]

| *,kkkk khk kA kh kA khkkhhkkx%k

! Multi-character symbols

read regex ["+DOT" -> "DOT", "+QMARK" -> "+QMARK", "+DECIMAL" ->
"+DECIMAL", "+CcoMMA"  -> "+COMMA", "+NL" ->  "+NL", "+THSEP" ->
"+THSEP", "+SEMICOLON" -> "+SEMICOLON", "+COLON" -> "+COLON",
"+PERCENT" -> "+PERCENT", "+ZERO" -> "+4+ZERO", "+ONE" -> "+ONE", "+TWO"
-> "4+TwOo", "+THREE" -> "+THREE", "+4+FOUR" -> "4FOUR", "+FIVE" ->
"+FIVE", "+SIX" -> "4+SIX", "+SEVEN" -> "+SEVEN", "+EIGHT" -> "+EIGHT",
"+NINE" -> "+NINE", "+DSTBD" -> "+DSTBD", "+SSTBD" -> "+SSTBD",
"+GURDECIMAL" -> "+GURDECIMAL", "+GURTHSEP" -> "+GURTHSEP", "+GURZERO"
-> "+GURZERO", "+GURONE" -> "+GURONE", "+GURTWO" ->  "+GURTWO",
"+GURTHREE" -> "+GURTHREE", "+GURFOUR" -> "+GURFOUR", "+GURFIVE" ->
"+GURFIVE", "+GURSIX" -> "+GURSIX", "+GURSEVEN" -> "+GURSEVEN",

"+GUREIGHT" -> "+GUREIGHT", "+GURNINE" -> "+GURNINE", "+URQMARK" ->
"+QMARK", "4+URSTBD" -> "+4+SSTBD", "+URCOMMA" -> "+COMMA", "+URPERCENT"
-> "+PERCENT", "+URSEMICOLON" -> "+SEMICOLON", "+4URSTAR" -> "x",
"+URDECIMAL" -> "+GURDECIMAL", "+URTHSEP" -> "+GURTHSEP", "+URZERO" ->
"+GURZERO", "4+URONE" -> "+GURONE", "+URTWO" -> "+GURTWO", "+URTHREE" -

> "+GURTHREE", "+URFOUR" -> "+GURFOUR", "+URFIVE" -> "+GURFIVE",
"+URSIX" -> "4+GURSIX", "+URSEVEN" -> "+GURSEVEN", "+UREIGHT" ->
"+GUREIGHT", "+URNINE" -> "+GURNINE", "+HIABRIVATION" -> "+DOT",

"+HIDECIMAL" -> "+GURDECIMAL", "+HITHSEP" -> "+GURTHSEP", "+HIZERO" ->
"+GURZERO", "+HIONE" -> "+GURONE", "+HITWO" -> "+GURTWO", "+HITHREE" -

> "+GURTHREE", "+HIFOUR" -> "+GURFOUR", "+HIFIVE" -> "+4+GURFIVE",
"+HISIX" -> "4+GURSIX", "+HISEVEN" -> "+GURSEVEN", "+HIEIGHT" ->
"+GUREIGHT", "+HININE" -> "+GURNINE"];

I'"+URSTBD" -> "+SSTBD", "+URQMARK" -> "+QOMARK", "+URTHSEP" ->
"+GURTHSEP", "+URDECIMAL" -> "+GURDECIMAL", "+URSEMICOLON" ->
"+SEMICOLON", +URPERCENT" -> "+4+PERCENT", "+URCOMMA" -> "+COMMA",

"+URSTAR" -> "*x",
compose net
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Seraiki/Shamukhi to UIT Finite-state Transducer

clear stack

set char-encoding UTF-8
!*******************

!Definition of Varibales
!*******************

! Simple Consonants
define CONSONANTS
rJvd - . é - PP . . £ BT <k . S -

[Splelles] sfolellolel SISl 3l Rl aloaloalstlon 33 5 REE ez e [l
! Aspirated Consonants
define ASPICONSONANTS [[4[s|ulea|d|S|<S|30]3] el |e|e|e|wl;
! Aspirated Consonants with Shad
define ASPISHADCONSONANTS [[& [s|o|e|d|S|<S|3|ol3]zlz|elele|<l;
! Aspirated Consonants with ZABAR
define ASPIZABARCONSONANTS [[4 [s|0|e|d|<LL <S5 0]3]zlz|ele|R]|<];
! Aspirated Consonants with ZER
define ASPIZERCONSONANTS [[& [s|o|e|d|S|<S|3]|03]zlz|e|lele|wl;
! Aspiracted Consonants with PESH
define ASPIPESHCONSONANTS [[& [s|o|e|d| S35 z]z|elele|wl;
! Aspirated Consonants with SHAD + ZABAR

w oo z L - I é L Y -
Pre T OISRzl =T B Lol S SoRe ==
define ASPISHADZABARCONSONANTS [[ [s|o|e|d| S| |3|0]32zlz|e|e|e|<
2];
! Aspirated Consonants with SHAD + ZER

" . z L L - v . é L -
LT [l SISO T | [ - [U|€|d|‘5|‘—<‘|j|{|”|’|€|G|‘i’|‘—’|‘z‘|‘~—’]
define ASPISHADZERCONSONANTS [[. [s]|ole|d|S[S|3]0]3]zlz]|el@|@]<
Al
! Aspiracted Consonants with SHAD + PESH
define ASPISHADPESHCONSONANTS [[ “[s]|ole|d|<SL|<S|3|o]3]zlz|e|e|w|e
Al
! English Numbers
define ENGNUMBER [0 | 1 | 2 | 3 | 4 | 51| 6 | 71 81 91;
! Urdu Numbers
define URDNUMBER [* | Y | Y | Y | ¥ | & | 7 | YV | A 37;
define ENGNUMBEREXPRESSION [ [ENGNUMBER [ENGNUMBER]*] ];
define URNUMBEREXPRESSION [ [URDNUMBER [URDNUMBER]*] ];
!*******************
! Diacritics
!*******************
! Shahmukhi Diacritics ¢ - -
! here we will ignore Mada Sign, Hamza Above, Hamza Below, and Noong-
huna Mark diacritics

read regex [ -> 0, . -> [I 1], ~-> [U 11, ' -> [A 3], © -> [i 2], & ->
[u 2], ->["e"n1l], .->[I1n1l], M"< " ->[U1ln1l], .,0<,0<-%
0<-,0<7;

Ik, ,kkkkhhkkkhrkkhrkkhxk**

! Consonants
!*******************
! Simple Consonants

! 1st Hamza 1is Hamze+Chotiyeh Ligature and 2nd Hamza is hamza itslef
L N e

read regex [ @ -> b, @ -> p, & > [t " " d], @ -> [t "'"], @ -> [s
1], ¢z > [a "™ " z], & -> [t " " s], ¢ -> [h1], z > [x], 2 > [d "
dl, S -> [d "™ "], 3> [z 1], , ->1, 3 ->[r " "], 5 ->2z, 5->12, o
-> s, B ->8, ua->[s 2], oa > [z2],b->1(t""d1], L -> [z 3],
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Z

< > f, 8 >q S >k, S >qg, Jd->1,->m 5->v, > ->h, ¢ ->
[I 2], & >1[I2], ¢ ->3,¢->G, s ->1[t""d2], &->I[n"""], 2>
h, @ -> [b 1], ¢ -> [d " " z 1], ;ﬁ > [d ™" 1], L > [g1]];

! Simple Consonants + SHAD

read regex [ [ <] -> [b "." bl, [ Q] -=> [p "." pl, [ <] > [t " " d
mrrrmd], Q] > e e ), T8 > [s 1 " s 1], (gl -
> d"" "z "rd""zl, gl >(t""s"."t""s], [[g] ->[h1
"o 1], [CE] > [x"."x], 3 > [d""d".md""dl, [3 -> [d
memow w g omemy 3 o-> [z 1" z1), ("o > [r"."rl, [O3
memomvop vy, 03] > [z "t oz], 03] > (2 .zl D] -> s Lt
s], &l -> [s"."mS], [[ua] -> [s 2 "." 52 >
k] >t " "d1m .t rdi1], (& > ,
"l D31 -> (g ".mal, [0S o-> (kML k [g "." gl, [*d]
=> [1"." 1], ¢l => [m"."m), [e] => [h"."h], [ ¢l ->[G"." G],
("¢l => [n " " "."n " "], ["a] => [h "." h], ["8] => [t " "d2"."t

-
[ [
]

—

n_n d 21, [“‘T,] -> [b1l "." b 1], [‘G] -> [d "_" z 1 "."md "_" Z 11, [ é

7> qamr1mrd 1], (L > (g1t g 1l];

! Aspirated Consonants

read regex [ & —> ["_" h] || [o|d|S[S[3[o]32zlele|e|@]e | v]
1:

! Aspirated Consonants + ZABAR

read regex [ [# <] -> [b " " h], [ Q] -> [p " " h], [ & -> [t " "
d"_" hl, [ Q] => [t " "_" hl, 4zl —> [d """z " " hl, 4zl —>
[£" " S™" "™h], [# 3 ->([d" "d" "nhn], [ 3] ->[d"" " "hl, [ J
A] => [r " " h], [# 5] -> [r """ "n], [4 S > [k" "h], [a & ->
(g "_" hl, (4 d] > [1 "_" hl, [4 2] > [m "_" hll;

! Aspirated Consonants + ZER

read regex [ [#. <] -> [b" " h I 1], [*#.¢] -> [p" "hTIl1l], [».9] >
[t " "d"™"hTI1], [#.&] -> [t """ "hTI1l], [4.g] ->[d" "2 """
hI11], [*.g] > [t""s""hTI1l], [#.°] > [d""d" "hTIlI1l], [3
A ] > ([d""™""hTII1l], [*.2] > [r"_"hTIIl], [». 31 => [x " "
h11], [#.<S] -> [k "™ "hT1I1l], [& JRE G [g" " hT1l], [2.d] -> [1
""hII1], *.e] > [m" "hTII1]];

! Aspirated Consonants + ZER to ignore ZER while transliteration when
followed by CHOTI YEH

read regex [ [#.<] -> [b " " h], [4.<] -> [p " " h], [4. &) -> [t " "
d"™ "hl, [#.<] -> [£ """ "h], [.g] -> [d" "z" "h], [#.g] ->

[£ " " s " wh], [6.3 > [d" "d" "), (o35 ->[dmroe v, [
A] -> [r "71' h], [A’j] -> [r wen "7" h], [A,d] - [k "7" h], [A’,_S] C
> [g l|_|l hl, [A,d] -> [1 "—l' hi, [A,e] -> [m "_n h] || B i1;

! Aspirated Consonants + PESH

read regex [ [4 @] -> [b" " h U 1], [ 9] -> [p " " h U 1], [» &) ->
[t ll_ll d ll_ll h U 1] , [A 4 d] _> [t nmen ll—ll h U 1] , [A 4 G] _> [d "_" Z "_"
h U 1] , [A 4 G] _> [t "_" S "_" h U 1] [A 4 J] _> [d H_H d H_H h U 1] , [S

L

4
A ] _> [d nwen "_" h U lJ, [A 4 J] _> [r "_" h U 1], [A 4 J] _> [r nwsn "_"
hul], [+ S => (k" "hUu1ll, (# & ->[g""hU1ll, [ J] -> [1
" " hU1l]J, [A}e] -=> [m " " hU1l]]l;
! Aspirated Consonants + PESH to ignore PESH while transliteration
when followed by WAW

read regex [ [A"e] -> [b " " hJ], [A’ef] -> [p " " hl, [A’«L] -> [t """
1y

d n_n h], [A‘&iﬂ] —-> [t nn n_n h], [A‘C] —-> [d n_u 7 u_u h [A’E] >

2

[t H_H g H_H h], [AJ J] -> [d "_lv d lv_lv h], [_Q ‘3] -> [d wen "_" h], [ D)
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A] => [x "_" h], 2" 3] => [ " "_" hl, 2" S] -> [k "_" hi, &' &) -
> [g "_" hl, [2°d] -> [1 "_" hl, [2"a] -> [m "_" hl || _ ul;

! Aspirated Consonants + SHAD

read regex [ [4 @] -> [b "." b " "h], [ @ ->[p"."p" "h], [ <
A] -> [t " "d "t " "md" "h], [ & -> [t "ronrogomnomowop),
4"zl > [d""z""d""z""h], [ g ->[t""s"."t""s
" " h], [#73 -> [d""d".md""d" " h], [4 3] >[4 oL g o
" "hl, 3] -> [ "." r" " h], [#73] => [ "vomLmop e " " h], [S
A7 > [k "." k" "h], [ & > [g"."g" "h], [ J ->[1"."1
""h], [ 2] => m"."m" "h], [4<] -> [b"."b" "h], [[4g] ->
[P "." p " "h], [[2&] —>[t""d"."t""d""h], [ 2 &S] > [t
e g w w B TAag] -> [d" "z "."d""zZ""h], [ ag] ->
[t " "s"™."™t"™"™s " "h], [(43 > [d""d".md""d" " hl], [ a3
T ->qd o d o Rl [CAL] > [r "t r " " h], [C435] -> [r
R S e [ &S] —> [k "." k" " nl, [ A& > [g"." g
" " h], [(#d] -—> [1 "." 1" " h], [4¢ -> [m "." m "_" hll;

! Aspirated Consonants + SHAD + ZABAR

read regex [ [4 "«] -> [b "." b " " hl, [ @] -> [p"." p " " hl], [<&
A7 7] > [t "rndm".me""d" "h], [# & -> [t "ronnog oo
hl, # "zl -=>[d""z"."d""zZ" "h], [4 "] ->[t""s"."¢t
mMs " v hl, [ T3 > [d""d".md""d" " h], [» 3] > 4"
m.td "ttt v oh], [0 7 O] -> [r "." " "hl], [& 31 > 1 .
mrwon voh), (807 > [k ".m k" "h], (&% > [g . g "hl, [d
A7 -> (1 ".m1"™"™h], [ 2] > [m"."m" " hll;

! Aspirated Consonants + SHAD + ZER

read regex [ [#. @] -> [b "." b " " h I1l], [#.°@] -=> [p "."p " " h I
11, [A.7¢] > [g""d"."t""d""hi1ll, (o7& —> [t "ot
mewmeow w7 1], A gl > [d""z".md""Z""hI1l], [ "g] ->
Mg Mt e Mg T 1], 473 ->[d""d".md""d""hTI

t
1, [4. 73] => [d " mow g oo ""hI1l], [#. 2] -> [r"." " "hTI
1, [#.75] => [r"rorrp o oy T 1], [ 7S] > [k "." k" " h T
], 4.8 > [g"."g" "hI1], [#.7J] -> [1"."1""h1I1l], [. ¢
] > [m"."m™"™ " hI1]];

Aspirated Consonants + SHAD + ZER while transliteration when fol-
lowed by CHOTI YEH
read regex [ [#. <] -> [b "." b " " hl, 4.7 -> [p "." p " " hl], [«
A7) > [tmmd e " d" "h], [&. 7 Q] —> [t oo og v oo
hl, (. gl -=>[d""z"."d""z""h], [#. gl > [t""s"."¢
mms " "h], [A.73 ->[d""d".md""d""h], [4. 3 ->[d""
m.rd "ttt v oh], (AL O] -> [r "." " "h], [&. 73] -> [r """y
mrwon vop], (878 > [k ".m k" "h], &% > [g"."g" "n], [d
A1 -> [1"." 1" "™h], [ a2 => [m"."m" " h] || il;

! Aspirated Consonants + SHAD + PESH
read regex [ [# @] -> [b "." b " "hU1], [ 7@ -> [p"."p" "hU
17, 779 > (" mda e md" " hU 1], [ &) -> [t "ot
memm mpyl), (A Tgl > [d"" "z ."d""z""hUu1l], [ "g] ->

3w

"_" S " . " t "_" S "_" h U 1] , [A J] _> [d "_" d A\ . n d "_" d "_" h U

3w

(a3

3w

-> [d"r . da"t " " hU1], [2 Jl > [r "." r " " hU
, 2775 > [pommom,m oo """ hUl1ljl, [2°7S] —> [k "." k " "hU
, #7738 > [gm".mg" "hU1l], [#7J] -> (1 "." 1" "huUu1l], [ Ta
-=> m"."m" " hU1l]]l;
Aspirated Consonants + SHAD + PESH while transliteration when fol-
lowed by WAW

—

t
I
]
]
]

- % PP
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read regex [ [® <] > [b"." b " " h], [& <l > [p "." p" " h], [ &
A" 7] > [t mrdmm.me " md " "h], (87T & > (g oo og oo
h], [ "zl > [d"™"z"."d""z2""h], [ “g ->[t""S"."t
mms " "h], [ 73 ->[d""d".md" "d" "h], [ "3 ->[d""
mrd "t v vh], (2707 5] -> [r . r " "nh], [& 73 -> [r"" "t
mewon vop), (0778 > [k m.m ko mh), 077 & > (gt g "], [T
A7 > (1 ".m 1" "h], (7 => [m"."m" "h] [| _ul;

|k, ,kkkhhkkkhhkkhrkkhkkx**

! Gol Heh at the end of a word

! Gol Heh is considered as a vowel Al when it is at the end of a word
and is preceeded by a consonant. we will not convert it into Al, as
when we need to convert the text back in Shahmukhi, it will produce
ambiguity. we will handle this issue when we will convert UIT into
Gurmukhi. Two Gol Hehs at the end of word are considered as consonant
'h'. Or a Gol heh is considered as consonant 'h' when it is at the end
of word and is preceeded by a vowel.

! *hkkhkkhkhkhkhkhkhkkkkkkkhkhkk*

! Short Vowels with consonants

! WAW as vowel o after a consonant

read regex [$ -> [o 1] || [CONSONANTS | ASPICONSONANTS | ASPISHADCONSO-
NANTS | § | v | n] _ I;

! ZABAR + WAW as au after a consonant

read regex [[/ 3] => [O 1] || [CONSONANTS | ASPICONSONANTS | ASPISHAD-
CONSONANTS | j | v | n] _ 1;

! PESH + WAW as u after a consonant

read regex [[} %] -> [u 1] || [CONSONANTS | ASPICONSONANTS | ASPISHAD-
CONSONANTS | j | v | n] _ 1;

! WAW as au after a consonant

read regex [s -> [0 1] || [ASPIZABARCONSONANTS | ASPISHADZABARCONSO-
NANTS] _ 1;

! WAW as u after a consonant

read regex [s -> [u 1] || [ASPIPESHCONSONANTS | ASPISHADPESHCONSONANTS]

17

1 YEH as vowel e after a consonant

read regex [ & -> [e 1] || [CONSONANTS | ASPICONSONANTS | ASPISHADCON-
SONANTS | 3 | v | nl _ 1;

! ZABAR + YEH as vowel ai after a consonant

read regex [[ 1 "}"] <- [¢] || [CONSONANTS | ASPICONSONANTS | ASPISHAD-
CONSONANTS | j | v | n] _ 1;

! ZER + YEH as vowel 1 after a consonant

read regex [[.&] -> [1i 1] || [CONSONANTS | ASPICONSONANTS | ASPISHAD-
CONSONANTS | j | v | n] _ 17

! YEH as 1 after a consonant

read regex [¢ -> [i1i 1] || [ASPIZERCONSONANTS | ASPISHADZERCONSONANTS]

_ 1

! YEH as i after a consonant

read regex [1 "}"] <~ ] || [ASPIZABARCONSONANTS | ASPISHADZABARCONSO-
NANTS] 1;

|k, kkk khkkkhkrkkhkhkk,kkx**%

! Vowels
!*******************

! Long Vowels not at the start of a word
khkkhkhkkkhkhkhkkhkkhkkkkhkhkhkKxk

|
! Cases of Bari YEH
! Bari Yeh not at the end of a word

read regex [« —-> [e 4]1]1;
! Bari YEH after ZABAR and not at the end of a word

read regex [ 4"}"]<-211;
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read regex [[e¢] -> [I 2 e 4], [« G] -> [I 2 e 4]11;

read regex [4 "}"] <- 1 || [ASPIZABARCONSONANTS | ASPISHADZABARCONSO-
NANTS]  1;

! Bari yeh will always form the vowel with a number 4 in the middle or
at the end of a word

! Vowels with AIN any where else

read regex [ & -> ["?"] 1;

read regex [ [&] -> ["?"] 1;

read regex [ [Lg] -> ["?" I 1], [g] -> ["?2" U 1]];

read regex [ [gg]l -> ["?2" e 1], [&.g]l -> ["2" i 1], [J1"}"""]<-[¢ ¢
sgll => ["?" o011, [ s gl -> ["2" 0 1], [s gl -> ["?" ul]l, [«¢g] ->
["2" e 4], [4"}""M] <[« &11:

! Vowels with ALEF any where else

read regex [] -> Al;

read regex [ | -> [A 1] 1;

1 > [A 1] 1;

read regex [ [.)] -—> I, [V -> U];

read regex [ [¢!)] -> e, [6.)] > 1, L] <[c M >0, [ s 11 >0, [!
371 > u, 2] > [e 31, [3"}"]<-[« 11;

! Vowels with AIN at the start of a word or a syllable

read regex [ [

read regex [ |H#A]|"M"<-¢ | " "1 _1;
read regex [ [ |#]]"™M<-[¢e | " "1 _1:
read regex [ [ g] -> ["2" I 1], [ gl => ["2" U 1] || [.#. | | "™

17 -
read regex [ [LS t] -> [n?n e l], [LE, t] -> ["?" l l}, [ ,[l H}lv ll?lv] <- [6/ t
sgll -> ("2 o 11, [ s gl -> ["" 0 1], [5 gl -> ["?" u 1], [«g] ->

[("2" e 41, A" "M <[ &1 " "1 1;:

! Vowels with ALEF at the start of a word or a syllable

read regex [V => A || [.4. | | " "] Ry

read regex [ | #]|["@"]1<-V 1 " "1 _1;

read regex [ [ | #]|["@"1<-[' | " "1 1;

read regex [ [V => I, ['V1 => U || [.4. | | ™" _1;

read regex [ [l -> e, [¢.)] > i, [B],"}"<-[6 1 ->0, [ 5V ->0, [
51 =>u, [ => [e 3], U|AINB"I<[="V 1 ™"  1;

! R e b b b b b ah Sh db g g b b b b b 4

! NOONGHUNA

read regex [uv -> "~"];

! *hkkhkkhkhkhkhhkhkkkkkkkhkkk*k

! NOON when it is not considered as NOONGHUNA
! NOON as a nasalization

read regex [0 -> "~"];

! Noon followed by Noonghuna mark

read regex [[ﬁ ol => "~"1;

! Noon + diacrictical marks

read regex [0 -> n || _ [’V|5 i}V|1“’r|J];

read regex [[ O] -> [n "." nl];

! NOON followed by Heh Doachashmi as an aspirated consonant
read regex [[#0] -> [n " " hl]l;

! Noon + Diacritics+ Heh Doachashmi

read regex [[4 O] -> [n " " h 11

read regex [[#.0] -> [n " " h I 11];

read regex [[#.0] -> [n " " h] || [1 1 .#.1]1;

read regex [[2.0] -> [n " " h s _|[I1;

read regex [[# O] -> [n " " h U 1]];
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read regex [[# ¢l -> [n " " h 5 |[[1;

read regex [[Awu] > [n"." n " " hl]];

read regex [[4 0] -=> [n "." n " " h 1];

read regex [[4.70] -=> [n "." n " " h I 1]];

read regex [[#. 0] -> [n "." n " " h] || 3 [i 1 .#.11;
read regex [[4.70] -=> [n "." n " " h

read regex [[# "¢l -> [n "." n " " h U 1]]

read regex [[4 "0l => [n "." n " " h s |[1;

! Noon + Heh Doachashmi + Dlacrltlcs
i1 .#.11;

read regex [[.40] -> [n " " h] || [
1:
]

read regex [[# ] -> [n "." n " " h]

read regex [[,5AQ] > [n"." n" " h [ [1 1 H11;

! NOON before ALEF, ALEF Mada, Bari YEH, and diacritics
read regex [0 ->n || _ [ olela|MV 1 41 ¢|l|sls | v I j
! NOON at the end of a word

read regex [U -> n || _ [e [.#. | " ™11 1;

read regex [U -> n || P 2 I LS I

! NOON at the start of a word

read regex [g ->n || [.#. | | " "] 1;
!*******************

i
A
s
-

! Special Cases for Ain with Alef
!*******************

read regex [g -> "2" || _ [i]];

read regex [[g!] -> [A 1 "2"] || 2 _1;
read regex [[ | #]|["""@"1<-[¢' | " "1 _1;:
read regex [['g] -> ["?2" A 1]];

!*******************

! Special Cases for Waw

!*******************

read regex [5 -> [o 1], ' => [Aa 1], V => 1A, ¢ => "2" || [T | 1 | 4] 1;
!*******************

! Special Cases for Yeh
!*******************

! Yeh before Alef or Waw as I vowel

read regex [ -> I || _ [g]s]'|"]

read regex [¢ -> [I 1] || [CONSONANTS | ASPICONSONANTS | O | v | 7]
elslh

! Yeh before Gol heh at the end of a word

read regex [ -> I || _ [o [.#. | ™ "I111;

read regex [ -> [I 1] || [CONSONANTS | ASPICONSONANTS | v | 7] [s [

A" 11

1oosehb glbely)

I xxxkxxkxxxx*¥read regex [¢ -> [1i 11 || [s|']'] _[e[s]"]

!*******************

! When Waw will be considered as a consonant

! Waw is followed by a vowel

2

read regex [5 -> v || _ [ S o | 117 Taels|V) 141 2115
read regex [5 -> v || [J|6|]|t|‘]_[6|3|]|t|”]

read regex [[ 5] -> [v "." v]l;

! Waw + Diacritics+ Heh Doachashmi

read regex [[4 3] -> [v " " h 1];

read regex [[#.3] -> [v " " h I 1]];

read regex [[#.3] -> [v " " h] || _[1 1 .#.11;

read regex [[2.3] -> [v " " h s |[1;

read regex [[# 5] -> [v " " h U 1]];
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read regex [[4 351 -> [v " " h s |[[1;

read regex [[# 3] -> [v "." v " " hll;

read regex [[& "] -> [v "." v " " h 1];

read regex [[2. 3] => [v "." v ""hI1]];

read regex [[(2.7 5] -=> [v "." v " " h] | [11 .#.1]1;

read regex [[2.73] -> [v "." v " " h ¢ _|[I;

read regex [[# “5] -> [v "." v " " h U 1]];

read regex [[4# "] -> [v "." v " " h s |[]

! Noon + Heh Doachashmi + Diacritics

read regex [[.#3] -> [v " " h] || _[1 1 .#.11;

read regex [[# 3] -> [v "." v " " hll];

read regex [[.723] => [v "." v " " h] |11 .#.11;

! Waw is followed by Shad

! \}u c\:g ‘\3%

read regex [[,}] -> [U 1 v] || [CONSONANTS | ASPICONSONANTS | ASPISHAD-
CONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSONANTS | ASPISHADZABAR-
CONSONANTS | ASPISHADPESHCONSONANTS | j] _ 11;

! Waw at the start of a word

read regex [s5 -> v || [.#. | | " "] 1;
!*******************

! When Yeh will be considered as a consonant

read regex [[¢] -> [§ "." j11;

read regex [[ «] -> [i 1 j] || [CONSONANTS | ASPICONSONANTS | ASPI-
SHADCONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSONANTS | ASPISHAD-
ZABARCONSONANTS | ASPISHADPESHCONSONANTS]  ];

read regex [[, ] -> [1 1 j1 || [ASPIZERCONSONANTS | ASPISHADZERCONSO-
NANTS] _ 1;
read regex [[.° &l -> [1 1 3] || [CONSONANTS | ASPICONSONANTS | ASPI-

SHADCONSONANTS | ASPIZABARCONSONANTS | ASPIPESHCONSONANTS | ASPISHAD-
ZABARCONSONANTS | ASPISHADPESHCONSONANTS] . 1;
! Yeh in between of two Alefs

bodke odie bl

read regex [¢ -> 3 || [[-#. | s[T_[le|"N[""]11:
! Yeh followed by Shad after Alef or Ain

read regex [[‘¢] -> [ "." 31 || [g]|"] 1
Lok

read regex [¢ -> 3 || [[-#. | N _[[e1[""|11;

! Yeh is followed by a diacritic

read regex [ -> J || _ [
! Yeh at the start of a word

read regex [6 -> F || [.#. | | " "1 _1;
! Yeh at the end of a word
read regex [& -> [1i 11 || _ [.#. | | "™ "11;

|k, ,kkkk hkkkhhkk rkkhxkx**

! Special Cases
!*******************

! Special Cases for Hamza Waw

!*******************

read regex [[s8] -> [I 2 o 1] , [s¢] -> [I 2 o 1]11;

! Hamza + Waw gives sound of long vowel 'u' when it comes 2nd last in
the word and the word is a verb. us uslsles (usila

! In case, the word is a noun, the Hamza + waw gives the sound of 'o'.
so solve this problem, we need POS tagging of words.

read regex [[s8] -> [I 2 u 1] , [se] -> [I 2 u 1]l || _ [O]o]ll;
! *khkkhkkhkkhkhkhkhkhkhkhkkhkhkhkhhhkk

! HAMZA after YEH as "@" vowel sound
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read regex [[se¢] -> [I 2 1 1], [l -> [I 2 1 1]1]1;

! It seems that Hamza + Waw is never followed by Choti-Yeh. only word
that exist is sl (I think that it is wrong spelling of wistw)

! Special strings at the end of a word

read regex [ [ ] -> A 2, [ ] -> A 2];

! First Hamza is Hamza and second is Hamza + Yeh Ligature

read regex [ F s] -=> A 2, f ] -> A 2, [’\] -> ["@" n], [ws] -> [I 2 i
11, el > [T 2 1 1], [s5¢] -> [I 2 o 1], [s&] -> [T 2 o 1] ||

. 1™ " 15

! kA khkhk kA hkkhkkhkhkhkhkhkkKxk
! Compound Words

read regex [ . -> ["-" e "=-"], & -=> ["-" e 1 "-"] || [CONSONANTS | AS-
PICONSONANTS] R

[ R R e e e S S S S S S S S S S 24

! Vowels alone

read regex [|.#] _[""[l#]]"@"<-'| "™ "11;

read regex [[.V],)@"<-[M1 -> 1, V] => U || [.#. VLA _"" ™ "1
read regex [[s)] > i, (6.1 —> i, [].[V]<[c™ 1 -> 0, [s5° 11 ->0, [}
51 =>u, [ => (e 31, A1 _[""[1#1NB3"Y" <[« V1 ™ "1 1;

|k, ,kkkk hkkkhhkkhkrkxkhxkx**

! Special words

read regex [[4] -> ["@" 1 "." 1 A1 h] || [2 -1 _1;

read regex [[4 )] -> [("@" 1 ".m 1 A 1 nh], [¢ddI] -> ["e" 1 ".m 1 a1
hl, [ JdJdN -=> [(me" 1 ".m 1 A1 h], [¢dd) => ["@" 1 "." 1 A 1 hll;
read regex [[6<5] -> [k I 1], [¢ 5] -> [v h]l, [6&] -> [J h] || [.%. | "

"I Lk 1t M

|k, ,kkkk hkhkkhkhkkhkrkkhrkxk*

! Number

!*******************

read regex [* -> "+URZERO", ) -> "+URONE", Y -> "4UrRTWO", Y ->
"4+URTHREE", ¥ -> "4+URFOUR", & -> "4URFIVE", % -> "4URSIX", Y ->
"+URSEVEN", A -> "+UREIGHT", % -> "+URNINE"];

! Decimal and thousand separator

read regex [s» —-> ["+URDECIMAL"], ¢ —-> "+URTHSEP"];

read regex ["+DOT" -> "+URDECIMAL", "+COMMA" -> "+4+URTHSEP" || URNUMBE-
REXPRESSION  URNUMBEREXPRESSION];

read regex ["O" -> "+ZERO", 1 -> "+4+ONE", 2 -> "+4+TWO", 3 -> "+THREE", 4
-> "4+FOUR", 5 -> "+4FIVE", 6 -> "+SIX", 7 -> "+SEVEN", 8 -> "+EIGHT", 9
-> "4NINE"];

read regex ["+DOT" -> "+DECIMAL", "+COMMA" -> "+THSEP" || ENGNUMBEREX-
PRESSION  ENGNUMBEREXPRESSION];

read regex ["." -> "+poT", ¢ -> "4+URQMARK", - -> "+URSTBD", >
"LURCOMMA", "," -> "4+COMMA", "+NL" -> "4NL", /-> "4+URPERCENT", ¢ ->

"+URSEMICOLON", *

compose net

-> "4+URSTAR", "" -> 0];

UIT to Seraiki/Shahmukhi Finite-state Transducer

clear stack
set char-encoding UTF-8

|k, ,kkk hkhkkhkhkk krkkhxkx**

!Definition of Varibales
!*******************

! CONSONANTS | ASPICONSONANTS
define CONSONANTS [b | [ " " h] | p | [p " " h] | [£ "™ " d] | [t "™ "
d "7" h] ‘ [t L1 "] | [t mwern " " h] |



won h] ‘ [d lv‘lv] | [d wrwoowoon h] | [Z 1] | r ‘ [r won h] ‘ [r lv‘lv]

h] | [t " " S] | [t A\ " S "7" h] | [h l] | X I [d ” n” d] | [d "7" d
|
G

[T n oo hl] | z | 2] s | S | [s 2] | [z 2] | [t "_vrd 11 | [z 31 |

hl ' n | [n"™ " h] | v [ [v" "h] | h]j _
(N 2] | [n"™") | [2""] | [1) | [4d™™2Z 1] | [d" " 1] g 111;
define VOWELS ["@" | A | I | U | e | "{(" | 1 | u] O] ol [A 1] | [A
2] | [A3) | [T 11 | [T 2] | [U 1] | [e 2] | (["{™ 1] | [i 1) | [u 1]

[0 1] | [o 1] | [e 3] | [e 4] | [™{"™ 31 | ["({" 4] | [1 2] | [u 2]1;

| *,k,kkkhhkkhkrkk khkkhrkx*x*%

l'f 1l gl k[ k"™ "h] | gl [g""hl | 1] [1""h] |m][m™""
(e " " d2] | B [N1] |
|

! Multi-character symbols
!*******************

read regex ["+DOT" -> ".", "+QMARK" -> "?", "+DECIMAL" -> ".",
"+COMMA" -> ",", "4THSEP" -> ",", "4+SEMICOLON" -> ";", "+COLON" ->
m.", "YPERCENT" -> /4, "+ZERO" -> "Q", "+ONE" -> 1, "+TWO" -> 2,
"+THREE" -> 3, "+FOUR" -> 4, "4FIVE" -> 5, "+SIX" -> 6, "+4SEVEN" -> 7,
"+EIGHT" -> 8, "+NINE" -> 9, "+URZERO" -> *, "+URONE" -> ), "+URTWO" -
> Y, "+URTHREE" -> Y, "+URFOUR" -> Y, "4+URFIVE" -> 8, "+URSIX" -> 7,
"+URSEVEN" -> VY, "+UREIGHT" -> A, "+URNINE" -> 9, "+URQMARK" -> ¢,
"LURSTBD" -> -, "+URCOMMA" -> ¢, "+URPERCENT" -> %, "+URSEMICOLON" -> ¢,

"+URSTAR" -> *, "+URDECIMAL" -> ,, "+URTHSEP" -> ¢];
| ok ok ok ok ok kK ok ok ok ko Kk k kK

! Diacritics
!*******************
read regex ["." -> 1;
!*******************

! Consonants
!*******************

! Simple Consonants

! Consonants Set 1

@, (£ " mdl > S, (] > &, % ->F, [d
mrnd]l ->3, [d""] >3, r >0, z->3 2->3 s->uw, S->U G-
>¢, f->49, q->38 k>S5, g-><X%,1->d, m->p n->0 v->3 h
-> e, -> G, H->4, [N1] -> [L0], [N 2] -> [gall;

! Consonants Set 2

read regex [b -> <, p -

read regex [[s 1] -> «, [d" " 2] ->¢, [t " " S] >, [h1l] ->¢, [z

1] => %, [r "'"] -> j, [S 1] => &, [s 2] -> ua, [z 2] -> Ua, [t " " d

1] >k, [z23] ->&, [£""d2] ->5 [n"r] >y, (1] ->Jd, (b

1] > @, [d " 1) ->3, (g 1] > L
! Consonants Set 3

read regex [[d " " Z 1] -> gl;

! Aspirated Consonants

read regex [ ["_ " h] -> &];

! Germinated Simple Consonants

read regex [[b ll'll b] -> [wg._’], [p ll'll p] -> [“T‘]I [t "_" d ".ll t won d}

-

-> [wg_j], [t nrwowow n\n] - [“gi,], [S 1 """ g l] - [“U’_,], [d u_u AL
d "_" Z] _> [‘G] , [t "_" S " . " t "_" S] _> [MG] , [h l " . " h lJ _> [ C] ,
[ " . " X] _> [‘t] , [d "_" d " . " d ll_" d] _> [’ J] , [d mwen " . " d "we ll] _>

(31, [z 1 ™" 2 1) => (3, [£"."x] => o], [£" """ r"mr] >[5
1, [z "." z] => [3], [2 "." 2] -=> ['3], [s "." s] -> [‘w], [S "." S] ->
(o8, [S 1 "." s 1] -> [[&], [s2"."s 2] > [va], [z2"." 2z 2] —>
[wub], [(c""4da1"."t""d1l] —-> [VL], [z 3 "." z 3] -> ['L], g ".n"
Gl —> [[gl, [f£"." f] -—> [<], [qg"." q] -> [&], [k "." k] -> ['S], [g

, [2m.m1] => [(d1, [m"."m] —> ["el, [n "." n]l —> ["0],
31, [h "™ h) => ], [3"." 3] -> [¢], [t" "d2"."t
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"7" d 2] -> [3], [1’1 newowow n‘n] -> [” @], [l (U TR | n‘n] - [” d],

[b 1 "." b 1] _> [ %] , [d "_" Z l "'" d "_" Z 1] _> [‘ G] , [d nmen l "."

v

d "l > 3], [g 1" g 1] > [(f);

! Germinated Aspirated Consonants
read regex [[b "." b " " h] -> [C4<], [p"."p " " h] -> " &<, [t
mrd .ttt md " " h] > [CaG], (£ g o on v op] o> [T A a,
d""zm"rd""z""hl > [&ag], [t""s""t""s""h] >
’ I, [d™"dam".md""d" " h] —> [F223], [d "™ ".mgm o monmp]
A ls], [r "." r " "™ h] > &3], [ "™ ".m o onn] -> [ a3,
k"." k" "h] ->[aS], [g"."g""h] ->[4%, [1"."1" " n]
[2d], [m"™."m™"™ " h] => [(2a], [n"."n" "h] -> ["20], [v"."v
"_" h] => [[23]];

| *,kkkk khkhkkhhkkkhrkkhrkkhx%k

! Nazalization
! dAhkkhkhkkhhkkhkhkkhkkkhkkkhkhkk*kx*

[n,vn -> U];
read regex [["~" 1] -> U];
read regex ["~" -> o || _ [.#. | " "11;

read regex [["~" 1] -> o || _ [.#. | " "11;
!*******************

read regex

I Vowels
!*******************

! Vowels in the middle or at the end

read regex [A -> \<—"@§"j, I >0V, u->10M,1i->1s.1, o-> [s'1, O
=> (31, u = s, e > e < [" )L [e

read regex [[e 3] -> [g<-"?", [« N<-[3"}"].[«'];

read regex [[A 1] -> I, [T 11 -> .,[U 1] -> ’, (i 11 > [¢.], [o 1] ->
5, [011 => [s 1, [ull => [s'1, [e 1] -> ¢ ]<-[1""].¢], [e 4] -> ,o
< ]<-[4""111;

read regex [["@" n] -> [ 1];

read regex [[A 2] -> [ &], [A 3] -> ', [I 2] => [¢], [i 2] -> &, [u 2]

-> &, [("e" n1] ->, [I 1n1l] ->_, [Uln1l] ->";

khkkhkhkkhkhk ki hk Ak ki kA kA hkkxk

|

! Special cases

! khkkhkhkkkhkkhkhkkhkkhkkkkhkkkkkk
|

Special cases of vowels

read regex [I -> & || [VOWELS | "2?"] _ [[h [ .#. | " " 11 | A | o |
"?"]];

read regex [[I 1] -> « || CONSONANTS  [[h [ .#. [ ™ "™ 11 | A | o |
"?H]];

read regex [[U 1 v] -> [ 5] || CONSONANTS _ A];

read regex [[1 1 j] -> [. &] || CONSONANTS  1I;

read regex [[1i 1] -> &, [e 1] => [« ]<-[1"}"1.[e] 11 _ (4. 1 ™ "11;

read regex [[I 2 i 1] -> [¢ ¢], [I 2 e 1] -> [E ], [T 2 "{" 1] -> [+
sl, [T 2 o0 1] => [s+¢], [I 2 ul] -> [s¢], [I 2 U 1] => [s¢], [I 2 O 1]
-> [s¢], [T 2 e 4] -> [«+]];

read regex [[I 2 1 1] -=> [s+<¢] || 1:
! dAhkkhkhkkhhkkhkhkkhkkhhkkhkhkk*kx*

! Compound Words

read regex [[n_n e n_n] -> [n_n e 1 n_u} -> ¢ H [n "JJ;
!*******************

! Special words
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read regex [[k I 1] -> [#<S] || [[.#. [ " "] [[k Jul""] | [t""S
ul""] | [t""Zbl | [d""Zol]l | [nA1] | [b 1111 _ [.#. | "
"11;

read regex [ ["@" 1 "." 1 A 1 h] -> [¢dd1];

read regex [[k I 1] -> [65] || [ .#. | ™ " ] [ .#. 1 ™" 11;

[ e e I S S S S S S S S S S S S 3

! Multi-character symbols

read regex ["+DOT" -> "DOT", "+QMARK" -> "4+QMARK", "+DECIMAL" ->
"+DECIMAL", "+CcoMMA" ->  "+COMMA", "+NL" ->  "+NL", "+THSEP" ->
"+THSEP", "+SEMICOLON" -> "+SEMICOLON", "+COLON" -> "+COLON",
"+PERCENT" -> "+PERCENT", "+ZERO" -> "+4+ZERO", "+ONE" -> "4+ONE", "+TWO"
-> "4+TwO", "+THREE" -> "+THREE", "4+FOUR" -> "4FOUR", "+4FIVE" ->
"+FIVE", "+SIX" -> "4+SIX", "+SEVEN" -> "+SEVEN", "+EIGHT" -> "+EIGHT",
"+NINE" -> "+NINE", "+DSTBD" -> "+URSTBD", "+SSTBD" -> "+URSTRBD",

"+GURDECIMAL" -> "+URDECIMAL", "+GURTHSEP" -> "+URTHSEP", "+GURZERO"
> "+URZERO", "+GURONE" -> "4+URONE", "+GURTWO" -> "+URTWO", "+GURTHREE"

-> "+URTHREE", "+GURFOUR" -> "+4URFOUR", "+GURFIVE" -> "+URFIVE",
"+GURSIX" -> "4URSIX", "+GURSEVEN" -> "+URSEVEN", "+GUREIGHT" ->
"+UREIGHT", "+GURNINE" -> "+URNINE", "+URQMARK" -> "+URQMARK",
"+URSTBD" -> "+URSTBD", "+URCOMMA" -> "+4+URCOMMA", "+URPERCENT" ->
"+URPERCENT", "+URSEMICOLON" -> "+URSEMICOLON", "+URSTAR" ->
"+URSTAR", "+URDECIMAL" -> "+URDECIMAL", "+URTHSEP" -> "4+URTHSEP",
"+URZERO" -> "4URZERO", "4URONE" -> "+URONE", "+4+URTWO" -> "4+URTWO",
"+URTHREE" -> "+URTHREE", "+URFOUR" -> "+URFOUR", "+URFIVE" ->

"+URFIVE", "+URSIX" -> "4URSIX", "4+URSEVEN" -> "+URSEVEN", "+UREIGHT"
-> "+UREIGHT", "+URNINE" -> "+4URNINE", "+HIABRIVATION" -> "+4+URSTBD",
"+HIDECIMAL" -> "+URDECIMAL", "+HITHSEP" -> "+4URTHSEP", "+HIZERO" ->
"+URZERO", "+HIONE" -> "4URONE", "+HITWO" -> "+4+URTWO", "+HITHREE" ->
"+URTHREE", "+HIFOUR" -> "+URFOUR", "+HIFIVE" -> "4+URFIVE", "+HISIX" -
>  "+URSIX", "+HISEVEN" -> "+URSEVEN", "+HIEIGHT" -> "+UREIGHT",
"+HININE" -> "4+URNINE"];

compose net

Seraiki/Devanagari to UIT Finite-state Transducer

clear stack
set char-encoding UTF-8

I kkkhhkhkkhhkhkkhhkhkhhhkhhhkhhhhhhhhdhhkhkhkhrkkhkhkhrkkhkhkhkhkhkhrhhkrhkhkrkhrkxkhx%

! START

[ R R I I I I I I I I I k3

| *k Kk, khkkkhh kA khAkkhhkkx*k

! Definition of vairables

! 44 consonants ShUIMHISUSASANCOSGUIAACUATHIHAIIAIARNTHGhEISGISGH
Iasd

define CONSONANTS
(PG TSI ITIOISIGITI TSI TI®FHH TN T|AIT]

HIGIPITIAMIAITICIDITIAISI];

define HINUMBER [©]8|13|¥|Y|&|b|L|R];

define ENGNUMBER [0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 1| 8 | 9];
define HINUMBEREXPRESSION [ [HINUMBER [HINUMBER]*] ];
define ENGNUMBEREXPRESSION [ [ENGNUMBER [ENGNUMBER]*] 1];
!*******************

! Rules for Hindi to UIT Conversion

!*******************

! khkkhk ki hkhkkik kA Ak kA Ak hkkk

! Other Symbols
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read regex [&-> ".", &1-> H;
!*******************

! Rules for Consonants
!*******************

! Simple consonants

read regex [®-> k, W-> [k " " h], T->g, -> [g" " h], §-> [N 1], &
> [t "™ "s], &> [t " "s""h], AT->1[d" "z, H->[d""z""
h], I > [N 2], T-> [t " "], &> [t """ "h], §->[d"""], @-> [d
memow v h], OT-> [no"], d-> [t " "dl, ¥-> [t " "d""h], §-> [d
"mrnd], ¥>[d""d""hl,d>n, T>p, B> [p" " h], §->b, H->
" "hl, A->m T->4, T>r, d->1, d>v, A->5, ¥-> [51], >

s, §>h Foq @k, A>6 A>z, 5> [x "', T-> [0 " "

hl], %> £, T-> [g 1], A-> [d " "z 1], 8-> [d """ 1], &-> [b 1]];
! Other Aspirated Consonants

read regex [[Z&]-> ["_" h] || | | H| o] d]_ 1;

! Special case for YA

read regex [Hd-> [J h]l || _ [.#. | "™ "1]1;

| **x,kkk hkkkhkkkkhkkkkhk*x**

! Rules for Nasalization
!*******************

w .
read regex [{r-> "~T o> MAN]S
!*******************

! Rules for Vowels
!*******************

read regex [W-> [I 2 e 1], @-> [I 2 e 1], 3T -> [T 2 0 1], 3t -> [T 2 o

111;
! Dependent vowel sings that are very rare in thier use

read regex [&-> [e 1], 3-> [e 1], ©1-> [0 1], &T-> [0 1]1;

! Dependent vowel signs that are very common in their use

read regex [@T-> [A 1], &> [1 11, M > [i 1], g-> [U 1], {-> [u 1], §->
[r 1 1], 3-> [e 1], &> ["{" 1], <T-> [0 1], t-> [0 1]1;

read regex [3T-> "2", 3T -> ["?2" A 1], §-> [I 2], 3-> [I 2U 1], $§-> [I
2111, (3]> ([T 2ul], T-> [I2e 1], (W]-> [T 2 "(" 1], 3T > [I 2 o
1], 3> (12011, > [r 11];

lread regex [[¢T3]-> "2"];
! when vowel sign U comes after a consonant and before the independent
vowel signs at the end of a word

read regex [[%] -> [u 1] || CONSONANTS _ [[3T | é’\ TS -::5-] [#. | "
"111;

read regex [3T-> [A 1], 3> [0 1] | (31 &1 3 1o 1M1 giqiq1a
RN = =R = AN S B ¥

read regex [§-> I || [A | o |<T || 31| 3ﬁ]_ [T | 3T | ol | X);

! special string at the start of a word n equivalent in Urdu is BEH +
ALEF + LAM

! read regex [[§TOW]-> [b I 1 A1 1] || [.%. | " "1 1;:
! vowels at the start of a word
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read regex [H -> "@", 3T > 1, > I, é{-> i, 3->U, F->u, ¥ > [r 1],
T-> g, T > ", 3> o, 3 > o, ﬁ'-> e, T-> e, 3'ﬁ'-> o, 3> o [ [.#. |
" Hl\] ],.

read regex [[g]-> [u 17, [fﬁ]-> [i 1] || CONSONANTS _ [.#. | "™ "] 1;

| *k,kkk hhkkhkrkk A khkkhxkx*x*%

! Rules for specail strings
!*******************

read regex [[CI'-:i_:;T]-> [pulzrl], [TFTHAG]->[AbAL1Id" "d], [HAdod
.:::.'l‘g]_> [n@n 1 "."m 1A 1 h] || [? — [n " | .#_]] [_#_ | " n]];

[ S e e i S S S S S S S S S S S 3

! special words
read regex [[A AT GTE]-> ["@" 1 "." 1 A 1h], 3-> [0m], [dA]-> [nA

11, (T3] -> [ hl, (@] -> (v hl, (@3]-> [vhl (| ["" | .#.1 _ [.#. |
" l']];

|k, ,kkkhhkkkhkhkk krkkhkkx*x*

! Rules for Numbers
!*******************

read regex [© -> "+HIZERO", § -> "+HIONE", R -> "+HITWO", 3 -> "+HITHREE",
¥ -> "4HIFOUR", Y -> "+HIFIVE", & -> "+HISIX", b -> "+HISEVEN", ¢ ->

"+HIEIGHT", & -> "+HININE", | -> "+ssTBD", |l -> "+DsTBD", "." ->

"+HIABRIVATION"];

! Decimal separator

read regex ["+DOT" -> "+HIDECIMAL", "+COMMA" -> "+HITHSEP" || HINUMBE-
REXPRESSION  HINUMBEREXPRESSION];

read regex ["O" -> "+ZERO", 1 -> "+4+ONE", 2 -> "+4+TWO", 3 -> "+THREE", 4
-> "4+FOUR", 5 -> "+4FIVE", 6 -> "+SIX", 7 -> "+SEVEN", 8 -> "+EIGHT", 9
-> "+NINE"];

read regex ["+DOT" -> ["+DECIMAL"], "+COMMA"™ -> "+THSEP" | | ENGNUMBE-
REXPRESSION ENGNUMBEREXPRESSION] ;

| **********:********

! Marks
read regex [" . " _> "+DOT", "?" _> "+QMARK", ", " _> "+COMMA", ",. " _>
"+SEMICOLON", ":" -> "+COLON", "%" -> "+PERCENT", "+NL" -> "+NL"];

! khkk Kk hkkhkAkhkkhkkhkkhkhkhkkKxk

! Hindi text normalization rules

! Removing all dot below from the text as they have been incorrectly
or mistakenly put in the text.

read regex [{-> 0];

! normalizing consonants with a dot below

read regex [[&h ] -> &, [T <] -> W, [T <] -> 9, [oFc]-> 9, [80]->75,
[B3]-> &, [PE]-> B];

| A A A A A A A A A A A A A A A A A A A A A A A A A A A AR A A A A AR A A AR AR A AR A AR A A KKK

! END
[ R R e e I I I I I I I I b 3

compose net

UIT to Seraiki/Devanagari Finite-state Transducer

clear stack

set char-encoding UTF-8
!*******************
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'Definition of Varibales
!*******************

define CONSONANTS [b | [b ™ " h] | p | [P " " h]l | [t ™ "™ d] | [t """
d "_" h] ‘ [t we "] I [t nwen " " h] | [S l} | [d "_" Z] | [d "_H Z H_"
h] | [t "_H S] | [t ll_ll S "_" h] | [h l] | X I [d ll_ll d] | [d " " d
"7" h] [d "we "] | [d nwrn "7" h] | [Z 1] | r [r "7" h] [r " "] |
[x """ " hl | z | 2| s | S| [s2] | [z2] | [t""d1l] | [z 3] |
Gl £ lal k| k" "h] | gl [g" "h] 1] 1" "h] [m] [m"_"
hl I n | [n" " hl | v | [v" "hl I h | 3| [t" "d2] | H]| [NI1] |
(N2]1 [ [n"™"] | (""" | [1] | [&4d" "2 1] | [d" "™ 1] | [g1lll;
define VOWELS ["@" | A | I | U | e | "{" | 1 | ul O] ol [A1] | [A
21 L [A31 | [T 11 | [T 2) | [U1] | [e 207 | ["™{™ 211 | [1 2] | [u 11 |
(O 11 | [o 1] | [e 31 | [e 4] | ["{"™ 31 | ["{™ 4] | [1 2] | [u 2]];
!*******************

! Multi-character symbols

!*******************

read regex ["+DOT" _> " ", "+QMARK" _> "?" , "+DECIMAL" _> " . ",
"+COMMA" -> ",", "4+NL" -> "+NL", "+THSEP" -> ",", "+SEMICOLON" -> ";",
"+COLON" =-> ":", "+PERCENT" -> "%", "+ZERO" -> "O", "+ONE" -> 1,
"+TWO" -> 2, "+THREE" -> 3, "+FOUR" -> 4, "+FIVE" -> 5, "+SIX" -> 6,
"+SEVEN" -> 7, "+EIGHT" -> 8, "+NINE" -> 9, "+DSTBD" -> |l, "+SSTBD" ->
|, "+HIDECIMAL" -> ".", "+HITHSEP" -> ",", "+HIZERO" -> ©, "4+HIONE" ->
¢, "4+HITWO" -> R, "+HITHREE" -> 3, "+HIFOUR" -> ¥, "+HIFIVE" -> G,
"tHISIX" -> &, "+HISEVEN" -> B, "+HIEIGHT" -> ¢, "+HININE" -> R,
"+HIABRIVATION" -> o];

!*******************

! Diacritics

!*******************

read regex ["." ->;

!*******************

! Consonants

!*******************

! Simple Consonants

read regex [b -> &, p ->9, [t " "d] ->d, [t""] ->¢C, x ->W, [d
"rdr > ar [a " "] -> gl r —-> TI z —> .a-l Z => .a-r s —> ql S => er G
> 4d9q, £ >W, g->%h, k ->%%h, g->9, 1 >©e, m->H, n->d, v >
a-l h -> gl j -> q-I H _>':::':r [N 1] > gr [N 2] —> a-]r'

! Consonants Set 2

read regex [[s 1] -> ¥H, [d " " Z2] -> 9, [t " " sS] ->Hd, [h 1] -> §,
[z 1] -=> 9, [r ""] -=>5, [s 1] >N, [s 2] ->9¥H, [z 2] >, [t " "
dl ->d, [z 3] -=>9, [t " "d2] ->d, [n" "] =>0, [1 " "] ->0d, [b
11 =>4, [d """ 1] -> 8, [g 1] -> d];

! Consonants Set 3

read regex [[d " " Z 1] -> ]

! Aspirated Consonants

read regex [ [" " h] -> [Z§@]];

read regex [[b " " h] ->&#, [p" " h] >, [t " "d" " h] >, [t
mwen ll_ll h] _> 6, [d "—" Z "—ll h] _> g’ [t "_" S ll—ll h] _> a’ [d "_" d
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n_vv h] -> {]’, [d nwen n_n h] -> a, [r nen n_n h] -> Eg, [k n_n h] -> @',
[g n_vv h] -> a‘];

! Germinated Simple Consonants
'read regex [[b non b] —-> [vg'], [p non p} —-> [ 1_"], [t "7" d "." t "7"

-

dl -> (&3], [t " ovn g o] o> (8], [s 1" s 1] -> [GH], [d" "
z".md" "zl -> [¢HA, [£t""s"."t""s] ->[¢YT], [A1l"."h 1]
> [¢d], [x "." x] -> [GH], [d""d".nd""d] -> [¢€], [d""
d ™l > (@3], [z1".z 1] -> [&H], [r"." r] -> [(&F], [r "o
rovr] o> (3], [z . oz] -> [$H], (2 M.t 2] -> (9], [s "Lt os] > (9
A, [s"."s] -> [¢H], [S1"."s1] -> [¢H], [s2"." s 2] -> [&H],

[Z 2 nowo oo 2] —-> [VH'], [t u_n d l "o+ n_n d 1] -> [VB'], [Z 3 nono oo

3] => [@HE], [6"." 6] -> [&d], [£"." £f] -> [¢&], [g"." gq] -> [&
T, (kR > [EF], (g n.tgl > [Ed, (1M 1) > (8], [motLn
m] -> [GH], [n "." n] -> [¥B], [v"." v] -> [&F], [h"." h] > [&T],

3 "." 31 > [=4dW, (t""d42"."mt""d2 -> [@F], [n"" "."n
meml o> [E], (1ol ] > (@8], b1 "." b 1] -> [ H], [d
mmz ol gz 1] -> [EH], [d"™" 1" d 1] > [$F], [g1
morg 1] -> [@d], N1 "." N 1] -> [$R], [N2 "." N 2] -> [C&]];

! Germinated Aspirated Consonants

!read regex [[b "." b " " h] -> [C;EQ, p"." p "™ " h] —> [C;Eﬂ, (e " "
dm™.mt " mdg o mh] -> [GH], [t "o o mp] > (], 4"
z".md""zZz"™"h] > [@F], [t""S"."t""s""h > [T8], [d

won d H.H d "7" d "7" h] -> [.:::.v'q'], [d wen ll.ll d wsn "7" h} -> [.:::."Er], [k

"o n_n h] -> [VH], [g nwon g n_n h] -> [vu{]];
! *khkkhkkkkhkhkhkkhkkhkkhkhkkkkkxk

! Nazalization

read regex ["~" ->;

read regex ["~" ->¢ || [CONSONANTS | ASPICONSONANTS] _ 1;
read regex [ ["~" 1] -><;

!*******************

! Vowels
| Ak hhhkhkhkhkk,k k kkhkhhhkkkk*x%

! Vowel characters

read regex [A -> 3T, "@e" -> 3, 1 -> S, U >3, i -> é, o -> 3, 0 ->
M ou>F e >T, nm >

read regex [[e 3] -> T, ["{" 3] -> U];

! Vowel signs

read regex [[A 1] -> &I, [I 1] -> T3, (U 1] -> ¢

o’

(i 11 >, [0 1] ->

X, 011 >, w1 > fe 11 >3, [v(" 1] -> 3, [e 4] -> &, ["("

Y

a1 ->3;
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*hkkhkkhkkhkhkhkkkkkkkkkkkk

|

! Special cases

! khkkkhk Ak Kk Ak hk Ak kA khkkk
|

Special cases of vowels
read regex [["Q@" n] -> d];
read regex [[A 2] -> T, [A 3] -> T, [I 2] -> 8, [1i 2] -> X, [u 2] -
["e" n 1] -> &, [I 1n 1] -> (], (U1 n 1] -> [

> 1,

read regex [[u 1] ->% || CONSONANTS _ [[A | 1 | e | "~"]1 .#.11;

! Vowel with Ain

read regex ["?2" -> 3];

read regex ["?" ->&T || CONSONANTS 15

read regex [["?2" A 1] -> 3, Ao 1 "?2" -> [&18]];

read regex [["@" "?"] -> W, ["?" I 1] -> g, ["?2" U 1] -> 3, ["?2" e 1]
-> T, ["2" i 1] ->§, ["2" "(" 1] -> q, ["2" o 1] -> 3, ["2" 0 1] ->
A, [rer w1l > F, ("2 e 4] -> T, [ v 4] -> U

!read regex [["@" "?2"] -> W, ["?2" I 1] -> 3, ["?" U 1] -> 3, ["?" e 1]
-> T, ["2" i 1] ->§, ["2" "(" 1] -> q, ["2" o 1] -> 3, ["2" 0 1] ->
A, [mer ouw 1] > F, ("2 oe 4] > T, [ver ovqv 4] > U | [k | "
"ol 1;

! Ain after the final i sound in the word

read regex [["?" i 1] -> [&T8] | _ [.4. | ™ "]1;

read regex [[I 2 1 1] -> é, [T 2 e 1] —> T, [T 2 "{" 1] -> ﬂ, [T 2 o
11 >3, [(12u1] >3, [T12U01] >3, [T 201] —> 3, [12e 4] -

> T,

read regex [[A 1] -> 3T, [I 1] -> 3, v 11 -> 3, [1i 1] -> é, [0 1] ->
3, 011 >3 w1 > F [e1] > T [("(" 1] > T, [e 4] -> T,
["{" 4] —> W, [r 1 1] -> %K || VOWELS _ 1;

| Compound Words

read regex [["-" e "-"] —> ["-m W', [n-m e 1 "-n] —> [m_m T "] |
(" "11;

[ S e S S S S S S S S S S S S S 4

! Special words

read regex [ ["@" 1 "." 1 A1 h] > [HALCATUE], [pulr] > [T
T AT

read regex [["@" 1 "." 1 A 1 h] —> (AT ¢ETTE], [v h] -> [N, [§ h]
> [T, nA 1] >, [(0m] => 38| [4. | " "1 [ 4. | ""1];

[ e e I S S S S S S S S S S S S 3

! Multi-character symbols

read regex ["+DOT" -> "+DOT", "+QMARK" -> "+QMARK", "+DECIMAL" ->
"+DECIMAL", "+CcoMMA"  ->  "+COMMA", "+NL" ->  "+NL", "+THSEP" ->
"+THSEP", "+SEMICOLON" -> "+SEMICOLON", "+COLON" -> "+COLON",
"+PERCENT" -> "+PERCENT", "+ZERO" -> "+4+ZERO", "+ONE" -> "4+ONE", "+TWO"
-> "4+TwO", "+THREE" -> "+THREE", "+FOUR" -> "4FOUR", "+4FIVE" ->
"+FIVE", "+SIX" -> "+SIX", "+SEVEN" -> "+SEVEN", "+EIGHT" -> "+EIGHT",
"+NINE" -> "+NINE", "+DSTBD" -> "+DSTBD", "+SSTBD" -> "+4+SSTRBD",
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"+GURDECIMAL" -> "+HIDECIMAL", "+GURTHSEP" -> "+HITHSEP", "+GURZERO" -
> "+HIZERO", "+GURONE" -> "+HIONE", "+GURTWO" -> "+HITWO", "+GURTHREE"
-> "+HITHREE", "+GURFOUR" -> "+HIFOUR", "+GURFIVE" -> "+HIFIVE",
"+GURSIX" -> "+HISIX", "+GURSEVEN" -> "4+HISEVEN", "+GUREIGHT" ->
"+HIEIGHT", "+GURNINE" -> "+4+HININE", "+URQMARK" -> "+QMARK", "+URSTBD"
-> "+SSTBD", "4+URCOMMA" -> "+COMMA", "4+URPERCENT" -> "+PERCENT",
"+URSEMICOLON" -> "+4+SEMICOLON", "+4URSTAR" -> "*",6 "+URDECIMAL" ->
"+HIDECIMAL", "+URTHSEP" -> "+HITHSEP", "+URZERO" -> "+HIZERO",
"+URONE" -> "4+HIONE", "+URTWO" -> "+HITWO", "+URTHREE" -> "+HITHREE",
"+URFOUR" -> "+HIFOUR", "+4+URFIVE" -> "+HIFIVE", "+URSIX" -> "+HISIX",
"+URSEVEN" -> "+HISEVEN", "+UREIGHT" -> "+HIEIGHT", "+URNINE" ->
"+HININE", "+HIABRIVATION" -> "+HIABRIVATION", "+HIDECIMAL" ->
"+HIDECIMAL", "+HITHSEP" -> "+HITHSEP", "+HIZERO" -> "+HIZERO",
"+HIONE" -> "4+HIONE", "+HITWO" -> "+HITWO", "+HITHREE" -> "+HITHREE",
"+HIFOUR" -> "+HIFOUR", "+HIFIVE" -> "+HIFIVE", "+HISIX" -> "+HISIX",
"+HISEVEN" -> "+HISEVEN", "+HIEIGHT" -> "+HIEIGHT", "+HININE" ->
"+HININE"];

compose net

Word Ambiguity Transducer

clear stack
set char-encoding UTF-8

define CONSONANTS [ | @ | 3T | | 5 | T | & | A | A | A | T | 3|53
e o d ¥ |19 |d 9% | d§ | H | T | I || 3|
| Y FH 1 H | @ | T FTI3| T B
define VOWELSING [ | T | &% | g 1 g 1 &1 3133
et el

read regex [[Bh @] (->) &, [ W] (->) @, (AT (->) 9, (@Y (->) 9, [T
(> T, @B (> &, (SF] (> S, T (>) H, T (> T, [T
(->) &, (88] (> 8, (8¢ (->) &, [UTU] (->) O, (dd] () d, [d3d (->)
Y, @Sl (> &, @4 (> 49, [(dd (=) o 99 () 9, 9% (->) B,
Fd] (> & FH () A, HHA (> A TI (> T, T (> T, [od]
(> ©, [@a (> d (AU (->) A (¥9] (->) ¥, FH (>) & (€8 (>
E [®F (> F @H (> G TA(>) T, (T (>) A, 33 (> 3,
(38 (->) & [% WP (->) B

read regex [@ -> 0 || _ [.4.1 3 | 3 | § |18 |3 | F | F | T | T |3
;L T TR FR I T S - S B < SR < S N B (R N N 2 S [ 3 |

read regex [@ -> 0 || [.4.] 3 | 3T | 8| & |3 | F | % | T | ¥ | 30
;| ST~ S TR R S I S I S RSB S B R B [ S A=) G S N3 IS
read regex [¢ -> 0 [| [2 - [T | & | & | & _ (8l

read regex [@ -> 0 || [[X | & | & | &l _ (2 - 8ll:

read regex [@ -> 0 [| [2 - [T | & | & | & _ (2 - 8l

read regex [of (-=>) < || [?2 - [.#.190]] 12 - [.#.0a0 | f3 ) <% Gl

IR SRR SRR SRR SRR SRR ||
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read regex [§ -> [@J, A -> [ A || [? - .4.] _ 1

read regex [§ -> [ dM], T -> [ ] || .#. 1;

read regex [ (->) &, W (->) ©, AW (->) Id, A (->) o, S(->) 5, & (->) &,
% (->) B];

read regex [& (->) &, ¥ (=) &, g () o, & (>) @, B (>) o, g (>) 0
|| [CONSONANTS] _ 1;

read regex [<Y (->) £ || [CONSONANTS] _ [? - .#.11;

read regex [f\ -> 'IZ?I', 9]

3 -> ¥, § -> < || [CONSONANTS] _ [.#. | [& .#.11];

LN
'read regex [0 (->) 3T || [% | o] AP

read regex [T (->) 37 || [CONSONANTS]  [? - .#.11;

read regex [ (->) 3 || [CONSONANTS] _ [? - [T | = | S \

|5|-:3-|-:Z\:-|-:.\’:-\-:Z>kl£|-::ﬁ'|{:?l'|-:iﬂ\|<2:-\_#_]]];

<

read regex [d (->) <¥ || [cONSONANTS] _ [? - [of | f& | &%
ARSI SN SRR~ AR~ = = S || P

1 T 3AMSS33F %K TT N3

read regex [§ (->) 3, é{ (->) T, T (->) T, F (->) 3, 3t (->) 3 || [.#.
=] I

b . v N\ b

read regex [&% -> &, © -> @, ¢ >, >3, 38, of >, > o), f
-> 3, fr->U,ff->U, 3-ﬁ->3-ﬁ, A > 30, oT > A, ¥ > Aa];

compose net
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Annex 7 Results

Hindi to Urdu Results

Character alignment results

Sentence Accuracy

Word accuracy

Character accuracy

Models default | processed | default | processed | default | processed
output output output output output output

Hi-UrWD-UWLMWD-With-Reordering 59.6% 74.9% 94.1% 94.8%
Hi-UrWD-UWLMWD-No-Reordering 59.7% 75.3% 94.3% 95.0%

1- - - -With- 0 0
Hi UrWD UWLMWD-Tuned-With 69.9% 79 6% 95.4% 95.9%
Reordering

1- - - -No- ) )
Hi UrWD UWLMWD-Tuned-No 69.9% 79.7% 95.5% 95.9%
Reordering
Hi-UrWD-USLM-With-Reordering 16.1% 48.7% 74.8% 89.1%
Hi-UrWD-USLM-No-Reordering 17.5% 53.4% 77.4% 92.1%

1- - _ -With- 0 0
Hi UrWD USLM-Tuned-With 57 49, 76.0% 92.9% 95.0%
Reordering
Hi-UrWD-USLM-Tuned-No-Reordering 57.6% 76.6% 92.9% 95.0%

1- - -With- 0 [
Hi UrWD USLM+UWLMWD-With 35.49 67.8% 85.2% 93.7%
Reordering

1- - No- ) )
Hi UrWD USLM+UWLMWD -No 36.1% 69.9% 86.3% 94.7%
Reordering

1- - _ - o )
H1. UrWD USLM+UWLMWD Tuned 70.0% 79.7% 95.4% 95.9%
With-Reordering

1- - _ - 0 )
Hi-UrWD USLM+UWLMWD Tuned 70.0% 79.7% 95.4% 95.9%
No-Reordering

1. _ _ 1th- 0, 0,
Hi UrWQD UWLMWOD-With: 59,49, 59 4% 94.7% 94.7%
Reordering

1 _ _ _ _ 0, 0,
H1WOD. Ur-UWLMWOD-No 59,59, 59 59, 94.8% 94.8%
Reordering

1 _ _ _ 1th- 0, 0,
Hi UrWQD UWLMWOD-Tuned-With 77 5% 77 5% 95.2% 95.2%
Reordering

1_ _ _ _ _ 0, 0,
Hi UrWQD UWLMWOD-Tuned-No 77.5% 77 5% 95.2% 95.2%
Reordering
Hi-UrWOD-USLM-With-Reordering 48.0% 48.0% 90.4% 90.4%
Hi-UrWOD-USLM-No-Reordering 50.4% 50.4% 91.7% 91.7%

1. _ _ _ 1th- 0, 0,
Hi UrWQD USLM-Tuned-With 77 8% 77 8% 95.3% 95.3%
Reordering

1. _ _ _ _ 0, 0,
Hi UrWQD USLM-Tuned-No 77.9% 77.9% 95.3% 95.3%
Reordering

1 - _ 1th- 0, 0,
Hi UrWQD USLM+UWLMWOD-With 65.1% 65.1% 93.6% 93.6%
Reordering

1- - -No- ) )
Hi UrWQD USLM+UWLMWOD -No 65.7% 65.7% 93.9% 93.9%
Reordering
Hi-UrWOD-USLM+UWLMWOD - o o 95.3% 95.3%
Tuned-With-Reordering 78.3% 78.3%

1- - - 0 0
Hi-UrWOD-USLM+UWLMWOD 78.3% 78.3% 95.3% 95.3%

Tuned-No-Reordering

Table 83: HU Test Set 1 results of Hindi to Urdu SMT systems (character alignments)
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Sentence Accuracy

Word accuracy

Character accuracy

Models

default | processed
output output

default | processed
output output

default | processed
output output

Hi-UrWD-UWLMWD-With-Reordering 0 2.2% 24.3% 64.1% 89.5% 91.1%
Hi-UrWD-UWLMWD-No-Reordering 0 2.2% 24.3% 64.2% 89.5% 91.1%
1 _ _ _ 1th- 0, 0 o
géoliégggUWLMWD Tuned-With 0 1.3% 36.8% 60.6% 88.9% 90.3%
1 _ _ _ _ V) 0 o
Eéoliégilr)lgUWLMWD Tuned-No 0 1.3% 36.8% 60.6% 88.9% 90.3%

Hi-UrWD-USLM-With-Reordering

1.3% 2.2%

52.7% 67.0%

87.7% 92.7%

Hi-UrWD-USLM-No-Reordering

1.3% 2.2%

52.8% 67.8%

88.2% 93.1%

Hi-UrWD-USLM-Tuned-With-
Reordering

0.9% 1.3%

37.9% 61.9%

89.3% 90.8%

Hi-UrWD-USLM-Tuned-No-Reordering

0.9% 1.3%

37.9% 61.9%

89.3% 90.8%

1- - -With- 0, 0, 0 0
Hé(}iggilr)lgUSLMJrUWLMWD With 0.9% 4% 5739 70.9% 90.5% 93.2%
1- - + - - 0, 0, 0, )
Hé(g;\e)\rlilr)lgUSLM UWLMWD -No 0.9% 4% 573% 71.1% 90.6% 93.3%

Hi-UrWD-USLM+UWLMWD -Tuned-
With-Reordering

0.4% 1.3%

36.4% 60.4%

88.8% 90.2%

Hi-UrWD-USLM+UWLMWD -Tuned-
No-Reordering

0.4% 1.3%

36.4% 60.4%

88.8% 90.2%

Hi-UrWOD-UWLMWOD-With-
Reordering

1.8% 1.8%

62.9% 62.9%

91.4% 91.4%

HiwOD-Ur-UWLMWOD-No-
Reordering

1.8% 1.8%

62.9% 62.9%

91.4% 91.4%

Hi-UrWOD-UWLMWOD-Tuned-With-
Reordering

1.3% 1.3%

62.0% 62.0%

90.5% 90.5%

Hi-UrWOD-UWLMWOD-Tuned-No-
Reordering

1.3% 1.3%

62.0% 62.0%

90.5% 90.5%

Hi-UrWOD-USLM-With-Reordering

2.2% 2.2%

67.2% 67.2%

93.7% 93.7%

Hi-UrWOD-USLM-No-Reordering

2.7% 2.7%

67.2% 67.2%

93.8% 93.8%

Hi-UrWOD-USLM-Tuned-With-
Reordering

1.3% 1.3%

64.5% 64.5%

91.2% 91.2%

Hi-UrWOD-USLM-Tuned-No-
Reordering

1.3% 1.3%

64.5% 64.5%

91.2% 91.2%

Hi-UrWOD-USLM+UWLMWOD-With-
Reordering

4% 4%

68.3% 68.3%

92.9% 92.9%

Hi-UrWOD-USLM+UWLMWOD -No-
Reordering

4% 4%

68.3% 68.3%

92.9% 92.9%

Hi-UrWOD-USLM+UWLMWOD -
Tuned-With-Reordering

1.3% 1.3%

63.4% 63.4%

90.9% 90.9%

Hi-UrWOD-USLM+UWLMWOD -
Tuned-No-Reordering

1.3% 1.3%

63.4% 63.4%

90.9% 90.9%

Table 84: HU Test Set 3 results of Hindi to Urdu SMT systems (character alignments)
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Cluster alignment results

Sentence Accuracy

Word accuracy

Character accuracy

Models default | processed | default | processed | default | processed
output output output output output output

Hi-UrWD-UWLMWD-With-Reordering 59.6% 74.9% 93.7% 94.6%
Hi-UrWD-UWLMWD-No-Reordering 59.7% 75.3% 93.8% 94.7%

1 _ _ _ 1th- 0, 0,
I;; OLrI(rilKr/iligUWLMWD Tuned-With 69.9% 79.6% 94.6% 95.5%

1 _ . _ _ 0, 0,
Hi UrWD UWLMWD-Tuned-No 69.9% 7979 94.6% 95.5%
Reordering
Hi-UrWD-USLM-With-Reordering 16.1% 48.7% 74.1% 89.1%
Hi-UrWD-USLM-No-Reordering 17.5% 53.4% 76.3% 91.6%

1 _ _ - 1th- 0, 0,
I;;()LrlcrigiligUSLM Tuned-With 57 4% 76.0% 91.8% 94.3%
Hi-UrWD-USLM-Tuned-No-Reordering 57.6% 76.6% 92.0% 94.5%

1- - -With- [\ o
I;; (}r];gggUSLM+UWLMWD With 3549 67.8% 82.6% 93.3%

1- - -No- o 0
Hi UrWD USLM+UWLMWD -No 36.1% 69.9% 83.5% 94.2%
Reordering

1- - _ - 0 o
Hl. UrWD USLM+UWLMWD Tuned 70.0% 79 79, 94.6% 95.5%
With-Reordering

1- - _ - [\ o
Hi-UrWD USLM+UWLMWD Tuned 70.0% 79 79, 94.6% 95.5%
No-Reordering

1- - -With- o o
Hi UrWQD UWLMWOD-With 61.9% 61.9% 94.5% 94.5%
Reordering

i -Ur- -No- [\ o
H1WOD. Ur-UWLMWOD-No 62.1% 62.1% 94.6% 94.6%
Reordering

1- - - -With- 0 )
Hi UrWQD UWLMWOD-Tuned-With 78.1% 78.1% 94.9% 94.9%
Reordering

1- - - -No- 0 )
Hi UrWQD UWLMWOD-Tuned-No 78.1% 78.1% 94.9% 94.9%
Reordering
Hi-UrWOD-USLM-With-Reordering 50.5% 50.5% 90.3% 90.3%
Hi-UrWOD-USLM-No-Reordering 53.7% 53.7% 92.0% 92.0%

1- - - -With- 0 )
E;Oli(rl:\r/i(r)lg USLM-Tuned-With 78.2% 78.2% 94.9% 94.9%

1- - - -No- ) )
Hi UrWQD USLM-Tuned-No 78.3% 78.3% 95.0% 95.0%
Reordering

1- - -With- [\ [\
Hi UrWQD USLM+UWLMWOD-With 67.1% 67.1% 93.6% 93.6%
Reordering

1- - _No- 0 0
Hi UrWQD USLM+UWLMWOD -No 68.1% 68.1% 94.1% 94.1%
Reordering
Hi-UrWOD-USLM+UWLMWOD - o o 95.0% 95.0%
Tuned-With-Reordering 78.4% 78.4%

1- - - 0 0
Hi-UrWOD-USLM+UWLMWOD 78 4% 78 4% 95.0% 95.0%

Tuned-No-Reordering

Table 85: HU Test Set 1 results of Hindi to Urdu SMT systems (cluster alignments)
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Sentence Accuracy

Word accuracy

Character accuracy

Models default | processed | default | processed | default | processed
output output output output output output
Hi-UrWD-UWLMWD-With-Reordering 0.5% 3% 37.3% 64.8% 87.4% 92.8%
Hi-UrWD-UWLMWD-No-Reordering 0.5% 3% 37.3% 64.8% 87.4% 92.8%
E;%ZE;WLMWD'Tuned'W“h' 1% 3% 37.9% | 662% | 87.9% | 93.2%
E;g;gﬁ;UWLMWD'T“ed'NO' 1% 3% 37.9% | 662% | 87.9% | 93.2%
Hi-UrWD-USLM-With-Reordering 1% 45% | 527% | 652% | 852% | 92.6%
Hi-UrWD-USLM-No-Reordering 1% 5.5% 53.4% 66.6% 86.2% 93.6%
E;g;gﬁgUSLM'Tuned'W“h' 0.5% 3% 327% | 619% | 85.7% | 91%
Hi-UrWD-USLM-Tuned-No-Reordering 0.5% 4.5% 33.0% 62.3% 85.8% 91.1%
E;g;gﬁgUSLMJrUWLMWD'W“h' 1% 5% 51.6% | 69.0% | 87.6% | 93.9%
Hi-UrWD-USLM+UWLMWD -No- 1% 5% 51.6% | 692% | 87.7% 94%
Reordering
Hi-UrWD-USLM+UWLMWD -Tuned- 1% 3% 37.7% | 665% | 88% | 93.4%
With-Reordering
Hi-UrWD-USLM+UWLMWD -Tuned- 1% 3% 37.7% | 665% | 88% | 93.4%
No-Reordering
Hi-UrWOD-UWLMWOD-With- 3% 3% 643% | 643% | 93.1% | 93.1%
Reordering
HiWOD-Ur-UWLMWOD-No- 3% 3% 643% | 643% | 93.1% | 93.1%
Reordering
Hi-UrWOD-UWLMWOD Tuned-With- | .- o e | earn | 920% | 920%
Reordering ’ ’ ’ ’
Hi-UrWOD-UWLMWOD-Tuned-No- 3% 3% 64.7% | 647% | 922% | 92.2%
Reordering
Hi-UrWOD-USLM-With-Reordering 5.5%% | 5.5%% | 653% | 653% | 93% 93%
Hi-UrWOD-USLM-No-Reordering 5.5%% | 5.5%% | 662% | 662% | 93.6% | 93.6%
géﬁggggﬂsLM'T““ed'W“h' 35% | 35% | 652% | 652% | 923% | 923%
ggﬁ;ﬁr’g?USLM‘Tuned‘No' 35% | 35% | 654% | 654% | 923% | 923%
Hi-UrWOD-USLMFUWLMWOD-With- | 3 50, | 350, | 6950 | 69.5% | 93.6% | 93.6%
Reordering
Hi-UrWOD-USLMFUWLMWOD -No- | 3 50/ | 3500 | 607% | 69.7% | 93.6% | 93.6%
Reordering
Hi-UrWOD-USLM-UWLMWOD - . . . . . .
Taned. With- Reordering 3% 3% 653% | 653% | 923% | 92.3%
Hi-UrWOD-USLM+UWLMWOD - 3% 3% 653% | 653% | 923% | 92.3%

Tuned-No-Reordering

Table 86: HU Test Set 2 results of Hindi to Urdu SMT systems (cluster alignments)
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Sentence Accuracy

Word accuracy

Character accuracy

Models

default | processed
output output

default | processed
output output

default | processed
output output

Hi-UrWD-UWLMWD-With-Reordering

0.4% 0.9%

36.7% 61.9%

87.5% 90.4%

Hi-UrWD-UWLMWD-No-Reordering

0.4% 0.9%

36.7% 61.9%

87.5% 90.4%

Hi-UrWD-UWLMWD-Tuned-With-
Reordering

0.4% 1.3%

38.0% 62.2%

87.3% 90.4%

Hi-UrWD-UWLMWD-Tuned-No-
Reordering

0.4% 1.3%

38.0% 62.2%

87.3% 90.3%

Hi-UrWD-USLM-With-Reordering

0.9% 4.4%

57.8% 69.0%

88.7% 93.2%

Hi-UrWD-USLM-No-Reordering

0.9% 4.9%

58.0% 69.3%

89% 93.4%

Hi-UrWD-USLM-Tuned-With-
Reordering

0.4% 0.9%

34.9% 59.8%

85.8% 88.8%

Hi-UrWD-USLM-Tuned-No-Reordering

0.4% 0.9%

35.1% 60.0%

85.9% 88.9%

Hi-UrWD-USLM+UWLMWD-With-
Reordering

0.9% 3.1%

56.3% 67.2%

88.6% 92.1%

Hi-UrWD-USLM+UWLMWD -No-
Reordering

0.9% 3.1%

56.3% 67.3%

88.7% 92.3%

Hi-UrWD-USLM+UWLMWD -Tuned-
With-Reordering

0.4% 1.3%

37.9% 62.6%

87.4% 90.5%

Hi-UrWD-USLM+UWLMWD -Tuned-
No-Reordering

0.4% 1.3%

37.9% 62.5%

87.4% 90.5%

Hi-UrWOD-UWLMWOD-With-
Reordering

1.8% 1.8%

63.2% 63.2%

91.3% 91.3%

HiwOD-Ur-UWLMWOD-No-
Reordering

1.8% 1.8%

63.2% 63.2%

91.3% 91.3%

Hi-UrWOD-UWLMWOD-Tuned-With-
Reordering

1.3% 1.3%

62.4% 62.4%

90.3% 90.3%

Hi-UrWOD-UWLMWOD-Tuned-No-
Reordering

1.3% 1.3%

62.4% 62.4%

90.3% 90.3%

Hi-UrWOD-USLM-With-Reordering

2.2% 2.2%

67.3% 67.3%

93.5% 93.5%

Hi-UrWOD-USLM-No-Reordering

2.7% 2.7%

67.4% 67.4%

93.6% 93.6%

Hi-UrWOD-USLM-Tuned-With-
Reordering

1.3% 1.3%

63.1% 63.1%

90.5% 90.5%

Hi-UrWOD-USLM-Tuned-No-
Reordering

1.3% 1.3%

63.1% 63.1%

90.5% 90.5%

Hi-UrWOD-USLM+UWLMWOD-With-
Reordering

3.5% 3.5%

68.0% 68.0%

92.7% 92.7%

Hi-UrWOD-USLM+UWLMWOD -No-
Reordering

3.5% 3.5%

68.0% 68.0%

92.7% 92.7%

Hi-UrWOD-USLM+UWLMWOD -
Tuned-With-Reordering

1.3% 1.3%

63.4% 63.4%

90.6% 90.6%

Hi-UrWOD-USLM+UWLMWOD -
Tuned-No-Reordering

1.3% 1.3%

63.4% 63.4%

90.6% 90.6%

Table 87: HU Test Set 3 results of Hindi to Urdu SMT systems (cluster alignments)

BLEU and NIST scores

In this section, we will give n-gram measures for our Hindi to Urdu SMT systems.
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NIST Score BLEU Score
Models default | processed | default | processed
output output output output
Hi-UrWD-UWLMWD-With-Reordering 5.9784 8.0052 0 0
Hi-UrWD-UWLMWD-No-Reordering 6.0158 8.0509 0 0
Hi-UrWD-UWLMWD-Tuned-With-Reordering 7.8037 8.8162 0 0
Hi-UrWD-UWLMWD-Tuned-No-Reordering 7.8079 8.8287 0 0
Hi-UrWD-USLM-With-Reordering 1.5946 5.1224 0 0
Hi-UrWD-USLM-No-Reordering 1.7343 5.7940 0 0
Hi-UrWD-USLM-Tuned-With-Reordering 6.4067 8.4455 0 0
Hi-UrWD-USLM-Tuned-No-Reordering 6.4067 8.4496 0 0
Hi-UrWD-USLM+UWLMWD-With-Reordering 4.2943 7.4975 0 0
Hi-UrWD-USLM+UWLMWD -No-Reordering 4.3898 7.7600 0 0
Hi-UrWD-USLM+UWLMWD -Tuned-With-Reordering 7.8189 8.8404 0 0
Hi-UrWD-USLM+UWLMWD -Tuned-No-Reordering 7.8230 8.8528 0 0
Hi-UrWOD-UWLMWOD-With-Reordering 1.1582 6.5470 0 0
HiwOD-Ur-UWLMWOD-No-Reordering 1.1582 6.5632 0 0
Hi-UrWOD-UWLMWOD-Tuned-With-Reordering 1.2787 8.5562 0 0
Hi-UrWOD-UWLMWOD-Tuned-No-Reordering 1.2787 8.5562 0 0
Hi-UrWOD-USLM-With-Reordering 0.7026 5.2779 0 0
Hi-UrWOD-USLM-No-Reordering 0.7317 5.5465 0 0
Hi-UrWOD-USLM-Tuned-With-Reordering 1.2832 8.5924 0 0
Hi-UrWOD-USLM-Tuned-No-Reordering 1.2832 8.5966 0 0
Hi-UrWOD-USLM+UWLMWOD-With-Reordering 1.1016 7.1791 0 0
Hi-UrWOD-USLM+UWLMWOD -No-Reordering 1.1016 7.2399 0 0
Hi-UrWOD-USLM+UWLMWOD -Tuned-With-Reordering | 1.2874 8.6457 0 0
Hi-UrWOD-USLM+UWLMWOD -Tuned-No-Reordering 1.2874 8.6457 0 0

Table 88: HU Test Set 1 results of Hindi toUrdu SMT System (Character Alignments)

NIST Score BLEU Score
Models default | processed | default | processed
output output output output
Hi-UrWD-UWLMWD-With-Reordering 6.5945 8.1599 0 0
Hi-UrWD-UWLMWD-No-Reordering 6.6109 8.1964 0 0
Hi-UrWD-UWLMWD-Tuned-With-Reordering 7.7555 8.6802 0 0
Hi-UrWD-UWLMWD-Tuned-No-Reordering 7.7555 8.6843 0 0
Hi-UrWD-USLM-With-Reordering 1.7959 5.2422 0 0
Hi-UrWD-USLM-No-Reordering 1.9101 5.7714 0 0
Hi-UrWD-USLM-Tuned-With-Reordering 6.4113 8.3427 0 0
Hi-UrWD-USLM-Tuned-No-Reordering 6.4278 8.4063 0 0
Hi-UrWD-USLM+UWLMWD-With-Reordering 3.8957 7.3650 0 0
Hi-UrWD-USLM+UWLMWD -No-Reordering 3.9800 7.6120 0 0
Hi-UrWD-USLM+UWLMWD -Tuned-With-Reordering 7.7585 8.6825 0 0
Hi-UrWD-USLM+UWLMWD -Tuned-No-Reordering 7.7585 8.6825 0 0
Hi-UrWOD-UWLMWOD-With-Reordering 1.1748 6.8304 0 0
HiWOD-Ur-UWLMWOD-No-Reordering 1.1748 6.8511 0 0
Hi-UrWOD-UWLMWOD-Tuned-With-Reordering 1.2791 8.6160 0 0
Hi-UrWOD-UWLMWOD-Tuned-No-Reordering 1.2791 8.6160 0 0
Hi-UrWOD-USLM-With-Reordering 0.7617 5.5584 0 0
Hi-UrWOD-USLM-No-Reordering 0.7991 5.9138 0 0
Hi-UrWOD-USLM-Tuned-With-Reordering 1.2753 8.6350 0 0
Hi-UrWOD-USLM-Tuned-No-Reordering 1.2711 8.6384 0 0
Hi-UrWOD-USLM+UWLMWOD-With-Reordering 1.1265 7.4028 0 0
Hi-UrWOD-USLM+UWLMWOD -No-Reordering 1.1348 7.5124 0 0
Hi-UrWOD-USLM+UWLMWOD -Tuned-With-Reordering | 1.2749 8.6548 0 0
Hi-UrWOD-USLM+UWLMWOD -Tuned-No-Reordering 1.2708 8.6506 0 0

Table 89: HU Test Set 1 results of Hindi toUrdu SMT System (Cluster Alignments)

204




Annex 7

NIST Score BLEU Score
Models default | processed | default | processed

output output output output
Hi-UrWD-UWLMWD-With-Reordering 2.2444 6.8904 0.0299 0.3465
Hi-UrWD-UWLMWD-No-Reordering 2.2444 6.8904 0.0299 0.3465
Hi-UrWD-UWLMWD-Tuned-With-Reordering 3.0665 6.7243 0.0659 0.3173
Hi-UrWD-UWLMWD-Tuned-No-Reordering 3.0665 6.7260 0.0659 0.3177
Hi-UrWD-USLM-With-Reordering 4.6298 6.3587 0.1590 0.2930
Hi-UrWD-USLM-No-Reordering 4.7342 6.6469 0.1644 0.3167
Hi-UrWD-USLM-Tuned-With-Reordering 3.0698 6.7467 0.0631 0.3150
Hi-UrWD-USLM-Tuned-No-Reordering 3.0698 6.7439 0.0631 0.3149
Hi-UrWD-USLM+UWLMWD-With-Reordering 4.7808 6.5498 0.1875 0.4221
Hi-UrWD-USLM+UWLMWD -No-Reordering 4.8110 7.6274 0.1889 0.4291
Hi-UrWD-USLM+UWLMWD -Tuned-With-Reordering 3.0062 6.6902 0.0627 0.3141
Hi-UrWD-USLM+UWLMWD -Tuned-No-Reordering 3.0062 6.6930 0.0627 0.3143
Hi-UrWOD-UWLMWOD-With-Reordering 3.6281 6.5377 0.0942 0.3177
HiWwOD-Ur-UWLMWOD-No-Reordering 3.6281 6.5377 0.0942 0.3177
Hi-UrWOD-UWLMWOD-Tuned-With-Reordering 3.5007 6.9538 0.0834 0.3400
Hi-UrWOD-UWLMWOD-Tuned-No-Reordering 3.5007 6.9538 0.0834 0.3400
Hi-UrWOD-USLM-With-Reordering 3.5395 6.5059 0.0884 0.3031
Hi-UrWOD-USLM-No-Reordering 3.5677 6.5928 0.0897 0.3098
Hi-UrWOD-USLM-Tuned-With-Reordering 3.5259 6.9494 0.0842 0.3357
Hi-UrWOD-USLM-Tuned-No-Reordering 3.5338 6.9578 0.0843 0.3365
Hi-UrWOD-USLM+UWLMWOD-With-Reordering 3.6108 7.3188 0.0934 0.3876
Hi-UrWOD-USLM+UWLMWOD -No-Reordering 3.6180 7.3288 0.0935 0.3882
Hi-UrWOD-USLM+UWLMWOD -Tuned-With-Reordering | 3.4818 6.9491 0.0832 0.3389
Hi-UrWOD-USLM+UWLMWOD -Tuned-No-Reordering 3.4897 6.9575 0.0833 0.3398

Table 90: HU Test Set 2 results of Hindi toUrdu SMT System (Character Alignments)

NIST Score BLEU Score
Models default | processed | default | processed

output output output output
Hi-UrWD-UWLMWD-With-Reordering 3.0900 6.6153 0.0659 0.3235
Hi-UrWD-UWLMWD-No-Reordering 3.0900 6.6169 0.0659 0.3243
Hi-UrWD-UWLMWD-Tuned-With-Reordering 3.1825 6.8067 0.0713 0.3368
Hi-UrWD-UWLMWD-Tuned-No-Reordering 3.1825 6.8006 0.0713 0.3364
Hi-UrWD-USLM-With-Reordering 4.8674 6.5294 0.1978 0.3310
Hi-UrWD-USLM-No-Reordering 4.9680 6.7265 0.2058 0.3495
Hi-UrWD-USLM-Tuned-With-Reordering 2.8450 6.3987 0.0564 0.2885
Hi-UrWD-USLM-Tuned-No-Reordering 2.8870 6.4584 0.0591 0.2963
Hi-UrWD-USLM+UWLMWD-With-Reordering 4.8079 7.1149 0.1992 0.3899
Hi-UrWD-USLM+UWLMWD -No-Reordering 4.8149 7.1379 0.1994 0.3917
Hi-UrWD-USLM+UWLMWD -Tuned-With-Reordering 3.1653 6.8250 0.0722 0.3417
Hi-UrWD-USLM+UWLMWD -Tuned-No-Reordering 3.1653 6.8250 0.0722 0.3417
Hi-UrWOD-UWLMWOD-With-Reordering 3.6353 6.6375 0.0935 0.3244
HiWOD-Ur-UWLMWOD-No-Reordering 3.6353 6.6375 0.0935 0.3244
Hi-UrWOD-UWLMWOD-Tuned-With-Reordering 3.4950 6.9415 0.0834 0.3367
Hi-UrWOD-UWLMWOD-Tuned-No-Reordering 3.4950 6.9415 0.0834 0.3367
Hi-UrWOD-USLM-With-Reordering 3.5886 6.8023 0.0928 0.3291
Hi-UrWOD-USLM-No-Reordering 3.6255 6.9379 0.0933 0.3405
Hi-UrWOD-USLM-Tuned-With-Reordering 3.5376 6.9892 0.0847 0.3430
Hi-UrWOD-USLM-Tuned-No-Reordering 3.5376 7.0137 0.0847 0.3449
Hi-UrWOD-USLM+UWLMWOD-With-Reordering 3.6794 7.4576 0.0950 0.4017
Hi-UrWOD-USLM+UWLMWOD -No-Reordering 3.6894 7.4737 0.0952 0.4031
Hi-UrWOD-USLM+UWLMWOD -Tuned-With-Reordering | 3.5449 6.9911 0.0847 0.3417
Hi-UrWOD-USLM+UWLMWOD -Tuned-No-Reordering 3.5449 6.9949 0.0847 0.3418

Table 91: HU Test Set 2 results of Hindi toUrdu SMT System (Cluster Alignments)

205




Annex

NIST Score BLEU Score
Models default | processed | default | processed

output output output output
Hi-UrWD-UWLMWD-With-Reordering 2.2439 6.9533 0.0214 0.3419
Hi-UrWD-UWLMWD-No-Reordering 2.2415 6.9627 0.0214 0.3425
Hi-UrWD-UWLMWD-Tuned-With-Reordering 3.4667 6.5750 0.0887 0.2988
Hi-UrWD-UWLMWD-Tuned-No-Reordering 3.4667 6.5750 0.0887 0.2988
Hi-UrWD-USLM-With-Reordering 5.3530 7.2819 0.1969 0.3626
Hi-UrWD-USLM-No-Reordering 5.4020 7.3960 0.2001 0.3730
Hi-UrWD-USLM-Tuned-With-Reordering 3.6150 6.7348 0.0970 0.3094
Hi-UrWD-USLM-Tuned-No-Reordering 3.6193 6.7297 0.0974 0.3090
Hi-UrWD-USLM+UWLMWD-With-Reordering 5.7124 7.6774 0.2362 0.4237
Hi-UrWD-USLM+UWLMWD -No-Reordering 5.7212 7.7119 0.2367 0.4270
Hi-UrWD-USLM+UWLMWD -Tuned-With-Reordering 3.4138 6.5460 0.0857 0.2959
Hi-UrWD-USLM+UWLMWD -Tuned-No-Reordering 3.4138 6.5424 0.0857 0.2959
Hi-UrWOD-UWLMWOD-With-Reordering 3.7810 6.7270 0.0958 0.3241
HiwOD-Ur-UWLMWOD-No-Reordering 3.7794 6.7219 0.0957 0.3240
Hi-UrWOD-UWLMWOD-Tuned-With-Reordering 3.5116 6.7420 0.0781 0.3084
Hi-UrWOD-UWLMWOD-Tuned-No-Reordering 3.5116 6.7420 0.0781 0.3084
Hi-UrWOD-USLM-With-Reordering 3.6878 7.3158 0.0797 0.3621
Hi-UrWOD-USLM-No-Reordering 3.6839 7.3208 0.0796 0.3624
Hi-UrWOD-USLM-Tuned-With-Reordering 3.6711 7.0923 0.0835 0.3370
Hi-UrWOD-USLM-Tuned-No-Reordering 3.6696 7.0918 0.0834 0.3371
Hi-UrWOD-USLM+UWLMWOD-With-Reordering 3.7594 7.5148 0.0875 0.3859
Hi-UrWOD-USLM+UWLMWOD -No-Reordering 3.7570 7.5197 0.0875 0.3860
Hi-UrWOD-USLM+UWLMWOD -Tuned-With-Reordering | 3.5871 6.9340 0.0798 0.3250
Hi-UrWOD-USLM+UWLMWOD -Tuned-No-Reordering 3.5864 6.9351 0.0797 0.3250

Table 92: HU Test Set 3 results of Hindi toUrdu SMT System (Character Alignments)

NIST Score BLEU Score
Models default | processed | default | processed

output output output output
Hi-UrWD-UWLMWD-With-Reordering 3.1516 6.3242 0.0798 0.2933
Hi-UrWD-UWLMWD-No-Reordering 3.1516 6.3215 0.0798 0.2930
Hi-UrWD-UWLMWD-Tuned-With-Reordering 3.3308 6.3589 0.0903 0.2981
Hi-UrWD-UWLMWD-Tuned-No-Reordering 3.3308 6.3541 0.0903 0.2972
Hi-UrWD-USLM-With-Reordering 5.5061 6.9699 0.2260 0.3601
Hi-UrWD-USLM-No-Reordering 5.5228 7.0220 0.2273 0.3648
Hi-UrWD-USLM-Tuned-With-Reordering 3.1461 6.1437 0.0762 0.2658
Hi-UrWD-USLM-Tuned-No-Reordering 3.1740 6.1795 0.0784 0.2710
Hi-UrWD-USLM+UWLMWD-With-Reordering 5.3055 6.7717 0.2115 0.3411
Hi-UrWD-USLM+UWLMWD -No-Reordering 5.3158 6.7960 0.2120 0.3434
Hi-UrWD-USLM+UWLMWD -Tuned-With-Reordering 3.3181 6.4043 0.0895 0.3008
Hi-UrWD-USLM+UWLMWD -Tuned-No-Reordering 3.3181 6.4016 0.0895 0.3006
Hi-UrWOD-UWLMWOD-With-Reordering 3.7729 6.7817 0.0949 0.3286
HiWOD-Ur-UWLMWOD-No-Reordering 3.7729 6.7817 0.0949 0.3286
Hi-UrWOD-UWLMWOD-Tuned-With-Reordering 3.5158 6.7927 0.0788 0.3145
Hi-UrWOD-UWLMWOD-Tuned-No-Reordering 3.5158 6.7953 0.0788 0.3147
Hi-UrWOD-USLM-With-Reordering 3.7471 7.3287 0.0824 0.3662
Hi-UrWOD-USLM-No-Reordering 3.7423 7.3443 0.0822 0.3664
Hi-UrWOD-USLM-Tuned-With-Reordering 3.5646 6.8894 0.0809 0.3234
Hi-UrWOD-USLM-Tuned-No-Reordering 3.5646 6.8946 0.0809 0.3236
Hi-UrWOD-USLM+UWLMWOD-With-Reordering 3.7952 7.4885 0.0904 0.3854
Hi-UrWOD-USLM+UWLMWOD -No-Reordering 3.7920 7.4924 0.0903 0.3854
Hi-UrWOD-USLM+UWLMWOD -Tuned-With-Reordering | 3.5798 6.9320 0.0811 0.3279
Hi-UrWOD-USLM+UWLMWOD -Tuned-No-Reordering 3.5798 6.9346 0.0811 0.3280

Table 93: HU Test Set 3 results of Hindi toUrdu SMT System (Cluster Alignments)
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Urdu to Hindi Results

Character alignment results

Sentence Accuracy

Word accuracy

Character accuracy

Models With | Without | With | Without | With | Without
diacritics | diacritics |diacritics | diacritics |diacritics| diacritics

UrWD-Hi-HWLM-With-Reordering 65.0% 32.4% 93% 80.9%
UrWD-Hi-HWLM-No-Reordering 65.2% 33.2% 93.1% 81.6%
gg?eﬁéHWLM'Tmed'W“h' 799% | 352% | 96% 81%
UrWD-Hi-HWLM-Tuned-No- o o o o
Reordoring 799% | 352% | 96% 81%
UrWD-Hi-HSLM-With-Reordering 48.5% 26.2% 88.5% 75.9%
UrWD-Hi-HSLM-No-Reordering 49.9% 27.4% 89.4% 78.4%
gggi'ﬁéHSLM'T“ned'W“h' 783% | 32.8% | 95.6% | 79.3%
UrWD-Hi-HSLM-Tuned-No- 783% | 328% | 956% | 79.3%
Reordering
UrWD-Hi-HSLMHWLM-With- 66.1% | 343% | 932% | 80.7%
Reordering
UrWD-HI-HSLM+HWLM -No- 66.8% | 350% | 93.5% | 81.7%
Reordering
UrWD-Hi-HSLM+HWLM -Tuned- 80.0% | 37.5% | 96.2% 81%
With-Reordering
UrWD-H1-HSLM+HWLM -Tuned-No- 80.0% 37 50, 96.2% 81%
Reordering
UrWOD-Hi-HWLM-With-Reordering 7.5% 28.9% 79.9% 85.8%
UrWOD-Hi-HWLM-No-Reordering 7.5% 29.0% 82.3% 86%
gg(?e?i;g“HWLM'T“ned‘wnh' 9.6% | 440% | 82.6% | 85.6%
UrWOD-Hi-HWLM-Tuned-No- 9.6% | 44.0% | 82.6% | 85.6%
Reordering
UrWOD-Hi-HSLM-With-Reordering 64% | 258% | 762% | 803%
UrWOD-Hi-HSLM-No-Reordering 6.4% 26.2% 78.9% 81.2%
EZZZ(%?;I;"HSLM‘T““ed'W“h' 92% | 431% | 81.6% | 84.6%
UrWOD-Hi-HSLM-Tuned-No- 92% | 43.1% | 81.6% | 84.6%
Reordering
UrWOD-Hi-HSLM+HWLM-With- 83% | 354% | 799% | 84.8%
Reordering
UrWOD-Hi-HSLM+HWLM -No- 83% | 35.6% | 81.8% 85%
Reordering
UrWOD-Hi-HSLM+HWLM -Tuned- 9.7% | 457% | 82.1% | 85.6%
With-Reordering
UrWOD-Hi-HSLMTHWLM -Tuned- o | a5 | saa | ss.en

No-Reordering

Table 94: HU Test Set 1 results of Urdu to Hindi SMT systems (character alignments)
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Sentence Accuracy

Word accuracy

Character accuracy

Models With Without With Without With Without
diacritics | diacritics |diacritics| diacritics |diacritics| diacritics

UrWD-Hi-HWLM-With-Reordering 2.5% 1.5% 57.4% 52.6% 90.8% 86.7%
UrWD-Hi-HWLM-No-Reordering 2.5% 1.5% 57.5% 52.7% 90.2% 86.8%
gzgzﬁéHWLM'Tuned'W“h' 4% 2% 65.9% | 52.1% | 913% | 85.1%
EZX&E;HWLM'T““'NO' 4% 2% 65.9% | 52.1% | 913% | 85.1%
UrWD-Hi-HSLM-With-Reordering 3% 2% 67.9% | 618% | 93.5% | 88.4%
UrWD-Hi-HSLM-No-Reordering 3% 2% 68.0% 62.1% 92% 88.8%
UrWD-Hi-HSLM-Tuned-With- 4.5% 2% 682% | 53.9% | 912% | 84.7%
Reordering 5% () 2% 9% 2% 1%
gzggﬁéHSLM'Tuned'No' 4.5% 2% 682% | 53.9% | 912% | 84.7%
g;ggﬁéHSLWHWLM'W“h' 3% 15% | 655% | 597% | 92.4% | 88.2%
g;ggﬁéHSLWHWLM -No- 3% 15% | 655% | 59.8% | 91% 88.4%
UrWD-Hi-HSLM+HWLM -Tuned- 5.5% 2% 722% | 57.9% | 91.8% | 85.8%
With-Reordering

g;ng;éHSLWHWLM -Tuned-No-| = 5 5, 2% 722% | 57.9% | 91.8% | 85.8%
UrWOD-Hi-HWLM-With-Reordering | 0.5% % 37.2% | 523% | 842% | 89.2%
UrWOD-Hi-HWLM-No-Reordering 0.5% 1% 37.2% 52.3% 83.8% 89.2%
g;g(?e?i;gi'HWLM'Tuned'With‘ 0.5% 15% | 44.0% | 587% | 83.4% | 88.4%
g;gig;g"HWLM'Tuned'No' 0.5% 15% | 44.0% | 587% | 834% | 88.4%
UrWOD-Hi-HSLM-With-Reordering | 0.5% 4% 488% | 753% | 868% | 94.3%
UrWOD-Hi-HSLM-No-Reordering 0.5% 4% 48.9% 75.4% 84.5% 94.3%
gzg(?e?i;giﬂsLM'Tuned'With' 0.5% 25% | 456% | 66.1% | $2.8% | 903%
g;gig;g"HSLM‘Tuned'No' 0.5% 25% | 45.6% | 66.1% | 82.8% | 903%
g;gig;g"HSLMMWLM'W“h' 0.5% 5% 50.1% | 77.0% | 86.8% | 94.6%
g;gig;g"HSLM+HWLM -No- 0.5% 5% 50.1% | 77.0% | 853% | 94.6%
UrWOD-Hi-HSLM+HWLM -Tuned- 1% 3% 499% | 721% | 843% | 91.9%
With-Reordering

UrWOD-Hi-HSLMF-HWLM ~Tuned- 1% 3% 499% | 721% | 843% | 91.9%

No-Reordering

Table 95: HU Test Set 2 results of Urdu to Hindi SMT systems (character alignments)
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Sentence Accuracy

Word accuracy

Character accuracy

Models With Without With Without With Without
diacritics | diacritics |diacritics| diacritics |diacritics| diacritics

UrWD-Hi-HWLM-With-Reordering 0.9% 04% | 592% | 457% | 90.9% | 85.8%
UrWD-Hi-HWLM-No-Reordering 0.9% 0.4% 59.3% 45.7% 91.1% 85.9%
gggi'fn‘éHWLM'Tuned'W“h' 4% 04% | 740% | 504% | 94% 86.3%
gggiﬁéHWLM'Tuned'No' 4% 04% | 740% | 504% | 94% 86.3%
UrWD-Hi-HSLM-With-Reordering 22% 0 642% | 500% | 913% | 85.4%
UrWD-Hi-HSLM-No-Reordering 2.2% 0 64.7% 50.3% 92.1% 86.1%
gggifn;HSLM'Tuned'W“h' 2.7% 0 73.8% | 497% | 93.7% | 85.6%
gggiﬁéHSLM'Tuned'No' 2.7% 0 73.8% | 497% | 937% | 85.6%
UrWD-Hi- HSLM+HWLM-With- 13% 0 652% | 487% | 92.4% | 86.4%
Reordering
UrWD-Hi-HSLM+HWLM -No- 1.3% 0 65.2% | 488% | 92.4% | 86.6%
Reordering
UrWD-Hi-HSLM+HWLM -Tuned- 5.3% 04% | 778% | 53.8% | 944% | 86.7%
With-Reordering
UrWD-Hi-HSLM+HWLM -Tuned-No- | - ¢ 5, 04% | 778% | 53.8% | 944% | 86.7%
Reordering
UrWOD-Hi-HWLM-With-Reordering 0 0 332% | 42.5% | 86.1% | 87.8%
UrWOD-Hi-HWLM-No-Reordering 0 0 33.2% 42.5% 86.2% 87.8%
UrWOD-Hi-HWLM-Tuned-With- ) ) 1o | siew | sesw | ssi%
Reordering ’ ’ ’ ’
UrwOD-Hi-HWLM-Tuned-No- 0 0 £2.1% | 518% | 863% | 88.1%
Reordering
UrWOD-Hi-HSLM-With-Reordering 0 09% | 425% | 362% | 8% 89.2%
UrWOD-Hi-HSLM-No-Reordering 0 0.9% 42.5% 56.3% 85.5% 89.3%
g;zzge?i;g“HSLM'T““ed'W“h' 0 04% | 43.9% | 56.0% | 858% | 88.8%
gg(‘l)e?i;g'HSLM'Tuned'No' 0 04% | 43.9% | 56.0% | 858% | 88.8%
UrWOD-Hi-HSLM+HWLM-With- 0 04% | 448% | 60.1% | 873% | 90.8%
Reordering
it A 0 04% | 448% | 60.1% | 877% | 90.8%
Reordering ’ ’ ’ ’ ’
UrWOD-Hi-HSLM+HWLM -Tuned- 0 0 472% | 599% | 86.8% | 89.9%
With-Reordering
UrWOD-Hi-HSLM+HWLM -Tuned- 0 0 472% | 59.9% | 86.9% | 89.9%

No-Reordering

Table 96: HU Test Set 3 results of Urdu to Hindi SMT systems (character alignments)
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Cluster alignment results

Sentence Accuracy

Word accuracy

Character accuracy

Vodels With | Without | With | Without | With | Without
diacritics | diacritics |diacritics| diacritics |diacritics | diacritics

UrWD-Hi-HWLM-With-Reordering | 72.5% | 33.6% | 72.5% | 33.6% | 944% | 81.9%
UrWD-Hi-HWLM-No-Reordering 72.9% | 343% | 72.9% | 343% | 94.5% | 82.6%
g;gzg;éHWLM'Tuned'W“h' 812% | 348% | 812% | 348% | 96.1% | 81.5%
gézzﬁéHWLM'Tuned'No' 812% | 349% | 812% | 349% | 96.1% | 81.6%
UrWD-Hi-HSLM-With-Reordering 552% | 269% | 552% | 269% | 904% | 772%
UrWD-Hi-HSLM-No-Reordering 56.9% | 283% | 56.9% | 283% | 912% | 792%
g;gzﬁéHSLM‘Tuned'W“h' 793% | 341% | 793% | 34.1% | 95.6% | 802%
> rﬁﬁ;SLM’T”‘]ed‘No' 789.3% | 43.1% | 793% | 34.1% | 95.6% | 80.2%
gzxz ﬁéHSLMmWLM'W“h' 713% | 341% | 713% | 34.1% | 943% | 81.4%
> rlfn;HSLMmWLM -No- 718% | 347% | 71.8% | 347% | 946% | 82.3%
%ﬁ%ﬁiﬁ?mWLM ~Tuned- 827% | 361% | $28% | 36.1% | 964% | 81.4%
EZXZ?C' r‘f;;gHSLMmWLM “Tuned-No-| o) g0 | 3619 | 82.8% | 36.1% | 964% | 81.5%
UrWOD-Hi-HWLM-With-Reordering | 83% | 32.5% | 83% | 32.5% | 78% %6.3%
UrWOD-Hi-HWLM-No-Reordering 83% | 32.6% | 83% | 32.6% | 799% | 86.5%
UrWOD-Hi-HWLM-Tuned- With- 92% | 431% | 92% | 43.1% | 794% | 85.6%
Reordering

gzxzﬁngWLM‘Tuned’No‘ 92% | 431% | 92% | 43.1% | 794% | 85.6%
UrWOD-Hi-HSLM-With-Reordering % 281% | 7.0% | 281% | 743% | 804%
UrWOD-Hi-HSLM-No-Reordering 7.1% 28.6% 7.1% 28.6% 77.4% 81.5%
UrWOD-Hi-HSLM-Tuned- With- 92% | 43.6% | 92% | 43.6% | 773% | 84.6%
Reordering

gzx&zg'HSLM'Tuned'No' 92% | 436% | 92% | 436% | 793% | 84.6%
Ezgiﬁi"HSLM*HWLM'th' 84% | 37.1% | 84% | 37.1% | 773% | 84.8%
EZX(%;;Z"HSLMWWLM -No- 85% | 374% | 85% | 374% | 797% | 852%
%X%ZQ)E:SEEMMWLM “Tuned- 1 g oot | a62% | 9.6% | 462% | 767% | 86.2%
UrWOD-Hi-HSLMF+HWLM -Tuned- | o 5 | 46100 | 950% | 46.1% | 798% | 862%

No-Reordering

Table 97: HU Test Set 1 results of Urdu to Hindi SMT systems (cluster alignments)
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Sentence Accuracy

Word accuracy

Character accuracy

Models With Without With Without With Without
diacritics | diacritics |diacritics| diacritics |diacritics| diacritics

UrWD-Hi-HWLM-With-Reordering 3.5% 5% | 61.6% | 51.8% | 91.7% | 86.7%
UrWD-Hi-HWLM-No-Reordering 3.5% 1.5% 61.7% 51.8% 91.1% 86.8%
gggi'fn‘éHWLM'Tuned'W“h' 4% 2% 64.4% | 52.0% | 91% 85.3%
gggiﬁéHWLM'Tuned'No' 4% 2% 64.4% | 52.0% | 91% 85.3%
UrWD-Hi-HSLM-With-Reordering 5% 2% 695% | 607% | 94.1% | 88.1%
UrWD-Hi-HSLM-No-Reordering 5% 2% 69.6% 60.8% 92.3% 88.5%
gggifn;HSLM'Tuned'W“h' 45% 2% 68.1% | 550% | 913% | 85.3%
gggiﬁéHSLM'Tuned'No' 4.5% 2% 68.1% | 55.0% | 91.3% | 853%
gg?eﬁéHSLMJFHWLM'W“h' 45% 15% | 68.6% | 592% | 934% | 88.3%
g;m?eﬁéHSLMJFHWLM -No- 45% | 15% | 68.6% | 592% | 92.1% | 88.4%
UrWD-Hi-HSLM+HWLM -Tuned- 5% 2% 69.5% | 574% | 91.6% | 85.9%
With-Reordering

gg?eﬁéHSLMMWLM -Tuned-No- | 5, 2% 69.5% | 574% | 91.6% | 85.9%
UrWOD-Hi-HWLM-With-Reordering | 0.5% % 384% | 55.0% | 81.6% | 89.7%
UrWOD-Hi-HWLM-No-Reordering 0.5% 1% 38.4% 55.0% 81.6% 89.7%
ggiﬂi"HWLM'T“ned'W“h' 0.5% 1% 43.0% | 57.9% | 80.7% 88%
g;g&ghg"HWLM'Tuned'N"' 0.5% 1% 43.0% | 57.9% | 80.7% 88%
UrWOD-Hi-HSLM-With-Reordering | 0.5% 4% 492% | 759% | 843% | 94.3%
UrWOD-Hi-HSLM-No-Reordering 0.5% 4% 49.2% 76.0% 82.6% 94.3%
g;zzge?i;g“HSLM'T““ed'W“h' 1% 3% 504% | 702% | 81.5% | 91.1%
gg(‘l)e?i;g'HSLM'Tuned'No' 1% 3% 504% | 702% | 812% | 91.1%
gg(?e?i;gl'HSLMJFHWLM'W“h' 0.5% 5% 50.7% | 77.9% | 841% | 94.7%
ggge?i;gl'HSLMMWLM -No- 0.5% 5% 50.7% | 77.9% | 83.1% | 94.7%
UrWOD-Hi-HSLM+HWLM -Tuned- | ) 5,/ 2% 47.1% | 69.1% | 81.1% | 91.3%
With-Reordering

UrWOD-Hi-HSLM+HWLM -Tuned- | ) 5,/ 2% 47.1% | 692% | 82% 91.3%

No-Reordering

Table 98: HU Test Set 2 results of Urdu to Hindi SMT systems (cluster alignments)
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Sentence Accuracy

Word accuracy

Character accuracy

Models With Without With Without With Without
diacritics | diacritics |diacritics | diacritics | diacritics| diacritics

UrWD-Hi-HWLM-With-Reordering 1.8% 0.4% 66.2% 46.1% 92.5% 86%
UrWD-Hi-HWLM-No-Reordering 1.8% 0.4% 66.3% 46.2% 92.5% 86%
E;ﬁg}f;;HWLM'de'W“h' 22% | 04% | 717% | 504% | 93.5% | 86.6%
EZZ&E&HWLM'TM“'NO' 2.2% 0 717% | 504% | 93.5% | 86.6%
UrWD-Hi-HSLM-With-Reordering 1.8% 0 66.0% | 49.0% | 91.9% | 85.1%
UrWD-Hi-HSLM-No-Reordering 1.8% 0 66.5% 49.4% 92.4% 85.8%
E;Xg}f;éHSLM'TWd'W“h' 2.7% 0 717% | 49.8% | 93.3% 86%
E;ng}f;éHSLM'T““ed‘N(" 2.7% 0 717% | 49.8% | 93.3% 86%
géggﬁéHSLWHWLM'W“h' 2.7% 0 69.0% | 48.8% | 933% | 86.4%
g;ggﬁéHSLWHWLM -No- 2.7% 0 69.1% | 48.8% | 93.1% | 86.4%
&X%ﬁ;ﬂfﬁ?*HWLM ~Tuned- 3.5% | 04% | 75.1% | 534% | 93.8% | 86.7%
E;XifgéHSLWHWLM “Tuned-No- |~ 3 50, 04% | 751% | 534% | 93.8% | 86.7%
UrWOD-Hi-HWLM-With-Reordering 0 04% | 34.6% | 472% | 82.1% | 88.4%
UrWOD-Hi-HWLM-No-Reordering 0 0.4% 34.6% 47.2% 83.1% 88.4%
g;g(?e?i}gl_HWLM'Tuned'Wlth‘ 0 0 412% | 527% | 83% 88%
Eﬁl’f(?eﬂj;"HWLM‘T““"d‘N"‘ 0 0 412% | 527% | 83% 88%
UrWOD-Hi-HSLM-With-Reordering 0 04% | 42.9% | 564% | 82.9% | 89.7%
UrWOD-Hi-HSLM-No-Reordering 0 0.4% 42.9% 56.5% 83.7% 89%
E;X(?eﬂjjﬂsLM'T“H"“'W“h' 0 04% | 48.1% | 595% | 84.7% | 88.4%
E;Xiﬂg‘HSLM'T““d'N"' 0 04% | 48.1% | 595% | 85% 89.7%
E;ZZ(?GI;;II;“HSLWHWLM'W““' 0 04% | 459% | 60.9% | 84.7% | 90.5%
EZZZ(?GI;;I;'HSLMHWLM -No- 0 04% | 459% | 60.9% | 852% | 90.5%
oW ODAHISLMATWEM -Tuned: 0 0 445% | 572% | 83.5% | 89.3%
With-Reordering

UrWOD-Hi-HSLM+HWLM -Tuned- 0 0 44.5% 572, 0159 £9.3%

No-Reordering

Table 99: HU Test Set 3 results of Urdu to Hindi SMT systems (cluster alignments)

NIST and BLEU Scores

In this section, we will give n-gram measures for our Urdu to Hindi SMT systems.
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NIST Scores BLEU Scores
Models With Without With Without
diacritics | diacritics |diacritics | diacritics
UrWD-Hi-HWLM-With-Reordering 7.3106 3.6209 0 0
UrWD-Hi-HWLM-No-Reordering 7.3396 3.7122 0 0
UrWD-Hi-HWLM-Tuned-With-Reordering 8.9915 3.9369 0 0
UrWD-Hi-HWLM-Tuned-No-Reordering 8.9915 3.9369 0 0
UrWD-Hi-HSLM-With-Reordering 5.4505 2.9171 0 0
UrWD-Hi-HSLM-No-Reordering 5.6023 3.0575 0 0
UrWD-Hi-HSLM-Tuned-With-Reordering 8.8185 3.6605 0 0
UrWD-Hi-HSLM-Tuned-No-Reordering 8.8185 3.6605 0 0
UrWD-Hi-HSLM+HWLM-With-Reordering 7.4363 3.8341 0 0
UrWD-Hi-HSLM+HWLM -No-Reordering 7.5110 3.9172 0 0
UrWD-Hi-HSLM+HWLM -Tuned-With-Reordering 9.2328 4.1958 0 0
UrWD-Hi-HSLM+HWLM -Tuned-No-Reordering 9.2328 4.1958 0 0
UrWOD-Hi-HWLM-With-Reordering 0.8191 3.2329 0 0
UrWOD-Hi-HWLM-No-Reordering 0.8191 3.2371 0 0
UrWOD-Hi-HWLM-Tuned-With-Reordering 1.0532 4.9269 0 0
UrWOD-Hi-HWLM-Tuned-No-Reordering 1.0532 4.9269 0 0
UrWOD-Hi-HSLM-With-Reordering 0.6963 2.8871 0 0
UrWOD-Hi-HSLM-No-Reordering 0.6963 2.9238 0 0
UrWOD-Hi-HSLM-Tuned-With-Reordering 0.0113 4.8232 0 0
UrWOD-Hi-HSLM-Tuned-No-Reordering 0.0113 4.8232 0 0
UrWOD-Hi-HSLM+HWLM-With-Reordering 0.9079 3.9601 0 0
UrWOD-Hi-HSLM+HWLM -No-Reordering 0.9121 3.9809 0 0
UrWOD-Hi-HSLM+HWLM -Tuned-With-Reordering | 1.0684 5.1185 0 0
UrWOD-Hi-HSLM+HWLM -Tuned-No-Reordering 1.0684 5.1185 0 0

Table 100: HU Test Set 1 results of Urdu to Hindi SMT systems (character alignments)

NIST Scores

BLEU Scores

Vodels Wit T Without | With | Withou
diacritics | diacritics | diacritics| diacritics
UrWD-Hi-HWLM-With-Reordering 8.1570 3.7564 0 0
UrWD-Hi-HWLM-No-Reordering 8.1985 3.8353 0 0
UrWD-Hi-HWLM-Tuned-With-Reordering 9.1377 3.8946 0 0
UrWD-Hi-HWLM-Tuned-No-Reordering 9.1377 3.9029 0 0
UrWD-Hi-HSLM-With-Reordering 6.2001 2.9970 0 0
UrWD-Hi-HSLM-No-Reordering 6.3942 3.1567 0 0
UrWD-Hi-HSLM-Tuned-With-Reordering 8.9306 3.8092 0 0
UrWD-Hi-HSLM-Tuned-No-Reordering 8.9306 3.8092 0 0
UrWD-Hi-HSLM+HWLM-With-Reordering 8.0164 3.8156 0 0
UrWD-Hi-HSLM+HWLM -No-Reordering 8.0787 3.8778 0 0
UrWD-Hi-HSLM+HWLM -Tuned-With-Reordering 9.3117 4.0368 0 0
UrWD-Hi-HSLM+HWLM -Tuned-No-Reordering 9.3200 4.0368 0 0
UrWOD-Hi-HWLM-With-Reordering 0.8915 3.6336 0 0
UrWOD-Hi-HWLM-No-Reordering 0.8955 3.6419 0 0
UrWOD-Hi-HWLM-Tuned-With-Reordering 0.9970 4.8280 0 0
UrWOD-Hi-HWLM-Tuned-No-Reordering 0.9970 4.8280 0 0
UrWOD-Hi-HSLM-With-Reordering 0.7503 3.1419 0 0
UrWOD-Hi-HSLM-No-Reordering 0.7618 3.1993 0 0
UrWOD-Hi-HSLM-Tuned-With-Reordering 0.9868 4.8826 0 0
UrWOD-Hi-HSLM-Tuned-No-Reordering 0.9868 4.8826 0 0
UrWOD-Hi-HSLM+HWLM-With-Reordering 0.9030 4.1460 0 0
UrWOD-Hi-HSLM+HWLM -No-Reordering 0.9111 4.1834 0 0
UrWOD-Hi-HSLM+HWLM -Tuned-With-Reordering | 1.0337 5.1789 0 0
UrWOD-Hi-HSLM+HWLM -Tuned-No-Reordering 1.0297 5.1748 0 0

Table 101: HU Test Set 1 results of Urdu to Hindi SMT systems (cluster alignments)
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NIST Scores

BLEU Scores

Models With Without With Without
diacritics | diacritics |diacritics | diacritics
UrWD-Hi-HWLM-With-Reordering 5.7115 5.0324 0.2391 0.1820
UrWD-Hi-HWLM-No-Reordering 5.7246 5.0441 0.2401 0.1823
UrWD-Hi-HWLM-Tuned-With-Reordering 6.6006 4.8655 0.3389 0.1750
UrWD-Hi-HWLM-Tuned-No-Reordering 6.6022 4.8655 0.3392 0.1750
UrWD-Hi-HSLM-With-Reordering 6.9156 6.1713 0.3568 0.2785
UrWD-Hi-HSLM-No-Reordering 6.9445 6.2082 0.3603 0.2819
UrWD-Hi-HSLM-Tuned-With-Reordering 6.9042 5.0990 0.3663 0.1947
UrWD-Hi-HSLM-Tuned-No-Reordering 6.9042 5.0990 0.3663 0.1947
UrWD-Hi-HSLM+HWLM-With-Reordering 6.7530 5.9653 0.3275 0.2552
UrWD-Hi-HSLM+HWLM -No-Reordering 6.7603 5.9681 0.3287 0.2558
UrWD-Hi-HSLM+HWLM -Tuned-With-Reordering 7.4260 5.5867 0.4363 0.2328
UrWD-Hi-HSLM-+HWLM -Tuned-No-Reordering 7.4260 5.5867 0.4363 0.2328
UrWOD-Hi-HWLM-With-Reordering 3.0849 5.0815 0.0661 0.1895
UrWOD-Hi-HWLM-No-Reordering 3.0856 5.0815 0.0662 0.1895
UrWOD-Hi-HWLM-Tuned-With-Reordering 3.8962 5.8543 0.1075 0.2396
UrWOD-Hi-HWLM-Tuned-No-Reordering 3.8962 5.8543 0.1075 0.2396
UrWOD-Hi-HSLM-With-Reordering 4.3257 8.1055 0.1353 0.4856
UrWOD-Hi-HSLM-No-Reordering 4.3311 8.1173 0.1354 0.4871
UrWOD-Hi-HSLM-Tuned-With-Reordering 4.1129 6.8617 0.1190 0.3434
UrWOD-Hi-HSLM-Tuned-No-Reordering 4.1129 6.8617 0.1190 0.3434
UrWOD-Hi-HSLM+HWLM-With-Reordering 4.4933 8.3579 0.1495 0.5221
UrWOD-Hi-HSLM+HWLM -No-Reordering 4.4944 8.3579 0.1495 0.5221
UrWOD-Hi-HSLM+HWLM -Tuned-With-Reordering | 4.4721 7.6385 0.1471 0.4347
UrWOD-Hi-HSLM+HWLM -Tuned-No-Reordering 4.4731 7.6385 0.1471 0.4347

Table 102: HU Test Set 2 results of Urdu to Hindi SMT systems (character alignments)

NIST Scores

BLEU Scores

Models Wi T Without | With | Withou
diacritics | diacritics | diacritics| diacritics
UrWD-Hi-HWLM-With-Reordering 6.1140 4.9280 0.2912 0.1753
UrWD-Hi-HWLM-No-Reordering 6.1272 4.9444 0.2925 0.1760
UrWD-Hi-HWLM-Tuned-With-Reordering 6.4231 4.8720 0.3234 0.1718
UrWD-Hi-HWLM-Tuned-No-Reordering 6.4246 4.8720 0.3237 0.1718
UrWD-Hi-HSLM-With-Reordering 7.0765 6.0199 0.3904 0.2662
UrWD-Hi-HSLM-No-Reordering 7.0994 6.0430 0.3942 0.2693
UrWD-Hi-HSLM-Tuned-With-Reordering 6.9060 5.2401 0.3707 0.2015
UrWD-Hi-HSLM-Tuned-No-Reordering 6.9060 5.2401 0.3707 0.2015
UrWD-Hi-HSLM+HWLM-With-Reordering 7.0374 5.8839 0.3820 0.2511
UrWD-Hi-HSLM+HWLM -No-Reordering 7.0463 5.8884 0.3834 0.2512
UrWD-Hi-HSLM-+HWLM -Tuned-With-Reordering 7.0917 5.5505 0.3970 0.2296
UrWD-Hi-HSLM-+HWLM -Tuned-No-Reordering 7.0934 5.5505 0.3973 0.2296
UrWOD-Hi-HWLM-With-Reordering 3.2368 5.3894 0.0729 0.2150
UrWOD-Hi-HWLM-No-Reordering 3.2376 5.3894 0.0729 0.2150
UrWOD-Hi-HWLM-Tuned-With-Reordering 3.8123 5.7376 0.1016 0.2319
UrWOD-Hi-HWLM-Tuned-No-Reordering 3.8123 5.7376 0.1016 0.2319
UrWOD-Hi-HSLM-With-Reordering 4.3812 8.2119 0.1392 0.4954
UrWOD-Hi-HSLM-No-Reordering 4.3867 8.2208 0.1394 0.4968
UrWOD-Hi-HSLM-Tuned-With-Reordering 4.5328 7.3296 0.1501 0.4070
UrWOD-Hi-HSLM-Tuned-No-Reordering 4.5338 7.3296 0.1501 0.4070
UrWOD-Hi-HSLM+HWLM-With-Reordering 4.5599 8.4932 0.1523 0.5372
UrWOD-Hi-HSLM+HWLM -No-Reordering 4.5610 8.4932 0.1523 0.5372
UrWOD-Hi-HSLM+HWLM -Tuned-With-Reordering | 4.2725 7.2652 0.1308 0.3867
UrWOD-Hi-HSLM+HWLM -Tuned-No-Reordering 4.2735 7.2734 0.1309 0.3871

Table 103: HU Test Set 2 results of Urdu to Hindi SMT systems (cluster alignments)
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NIST Scores

BLEU Scores

Models With Without With Without
diacritics | diacritics |diacritics | diacritics
UrWD-Hi-HWLM-With-Reordering 6.3125 4.5042 0.2826 0.1329
UrWD-Hi-HWLM-No-Reordering 6.1378 4.5095 0.2829 0.1331
UrWD-Hi-HWLM-Tuned-With-Reordering 7.9140 4.9542 0.4581 0.1726
UrWD-Hi-HWLM-Tuned-No-Reordering 7.9140 4.9582 0.4581 0.1726
UrWD-Hi-HSLM-With-Reordering 6.6686 4.8693 0.3301 0.1638
UrWD-Hi-HSLM-No-Reordering 6.7433 4.9092 0.3355 0.1652
UrWD-Hi-HSLM-Tuned-With-Reordering 7.8936 4.8541 0.4542 0.1614
UrWD-Hi-HSLM-Tuned-No-Reordering 7.8936 4.8541 0.4542 0.1614
UrWD-Hi-HSLM+HWLM-With-Reordering 7.0345 4.8709 0.3538 0.1528
UrWD-Hi-HSLM+HWLM -No-Reordering 7.0377 4.8740 0.3541 0.1531
UrWD-Hi-HSLM+HWLM -Tuned-With-Reordering 8.4280 5.3472 0.5180 0.1981
UrWD-Hi-HSLM+HWLM -Tuned-No-Reordering 8.4280 5.3472 0.5180 0.1981
UrWOD-Hi-HWLM-With-Reordering 2.9901 4.1696 0.0548 0.1147
UrWOD-Hi-HWLM-No-Reordering 2.9901 4.1696 0.0548 0.1147
UrWOD-Hi-HWLM-Tuned-With-Reordering 3.9224 5.2526 0.0964 0.1889
UrWOD-Hi-HWLM-Tuned-No-Reordering 3.9224 5.2526 0.0964 0.1889
UrWOD-Hi-HSLM-With-Reordering 3.8282 5.6215 0.1015 0.2360
UrWOD-Hi-HSLM-No-Reordering 3.8378 5.6338 0.1022 0.2360
UrWOD-Hi-HSLM-Tuned-With-Reordering 4.1884 5.7510 0.1155 0.2310
UrWOD-Hi-HSLM-Tuned-No-Reordering 4.1884 5.7510 0.1155 0.2310
UrWOD-Hi-HSLM+HWLM-With-Reordering 4.1357 6.1735 0.1149 0.2837
UrWOD-Hi-HSLM+HWLM -No-Reordering 4.1357 6.1735 0.1149 0.2837
UrWOD-Hi-HSLM+HWLM -Tuned-With-Reordering | 4.4350 6.1203 0.1288 0.2656
UrWOD-Hi-HSLM+HWLM -Tuned-No-Reordering 4.4350 6.1203 0.1288 0.2656

Table 104: HU Test Set 3 results of Urdu to Hindi SMT systems (character alignments)

NIST Scores

BLEU Scores

Vodels Wit T Without | With | Withou
diacritics | diacritics | diacritics| diacritics
UrWD-Hi-HWLM-With-Reordering 6.9270 5.5413 0.3391 0.1340
UrWD-Hi-HWLM-No-Reordering 6.9353 4.5505 0.3400 0.1342
UrWD-Hi-HWLM-Tuned-With-Reordering 7.6400 4.9599 0.4280 0.1737
UrWD-Hi-HWLM-Tuned-No-Reordering 7.6400 4.9639 0.4280 0.1738
UrWD-Hi-HSLM-With-Reordering 6.7390 4.7316 0.3349 0.1533
UrWD-Hi-HSLM-No-Reordering 6.8219 4.7887 0.3422 0.1568
UrWD-Hi-HSLM-Tuned-With-Reordering 7.6529 4.8742 0.4273 0.1620
UrWD-Hi-HSLM-Tuned-No-Reordering 7.6529 4.8742 0.4273 0.1620
UrWD-Hi-HSLM+HWLM-With-Reordering 7.3232 4.8761 0.3831 0.1548
UrWD-Hi-HSLM+HWLM -No-Reordering 7.3322 4.8792 0.3845 0.1551
UrWD-Hi-HSLM+HWLM -Tuned-With-Reordering 8.1287 5.3109 0.4814 0.1916
UrWD-Hi-HSLM+HWLM -Tuned-No-Reordering 8.1287 5.3109 0.4814 0.1916
UrWOD-Hi-HWLM-With-Reordering 3.1570 4.6754 0.0621 0.1505
UrWOD-Hi-HWLM-No-Reordering 3.1570 4.6754 0.0621 0.1505
UrWOD-Hi-HWLM-Tuned-With-Reordering 3.8982 5.3438 0.0951 0.1982
UrWOD-Hi-HWLM-Tuned-No-Reordering 3.8982 5.3438 0.0951 0.1982
UrWOD-Hi-HSLM-With-Reordering 3.8832 5.6539 0.1038 0.2362
UrWOD-Hi-HSLM-No-Reordering 3.8973 5.6706 0.1054 0.2378
UrWOD-Hi-HSLM-Tuned-With-Reordering 4.5634 6.0536 0.1387 0.2598
UrWOD-Hi-HSLM-Tuned-No-Reordering 4.5634 6.0536 0.1387 0.2598
UrWOD-Hi-HSLM+HWLM-With-Reordering 4.2820 6.2695 0.1253 0.2885
UrWOD-Hi-HSLM+HWLM -No-Reordering 4.2820 6.2695 0.1253 0.2885
UrWOD-Hi-HSLM+HWLM -Tuned-With-Reordering | 4.2419 5.8788 0.1184 0.2394
UrWOD-Hi-HSLM+HWLM -Tuned-No-Reordering 4.2419 5.8788 0.1184 0.2394

Table 105: HU Test Set 3 results of Urdu to Hindi SMT systems (cluster alignments)
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For preparing an exended Franch summary of my PhD thesis, we have used AXiMAG system,
an inhouse collaborative translation system developed by our GETALP lab. First, we translated
the introduction and conclusion of my PhD thesis using AXiMAG system and then post-edited
the French translation. Here I will give the English — French parallel text.

Introduction

In general, the term translation is understood
as the process of understanding the meaning of
a text in one language and subsequently pro-
ducing an equivalent text in another language,
conveying the same message.

Machine Translation (MT) is a réve of the
1950s [21, 24-26, 80, 125, 171, 172, 178,
179].

Although a large number of milestones have
been achieved to enliven the réve of MT [21,
23-26, 28, 32, 41, 80, 87-90, 93, 100-102, 104,
105, 113, 115, 125, 131, 132, 134, 135, 139,
144, 162, 171, 172, 178, 179, 188], it is still a
dream in the interdisciplinary research of
computer science , artificial intelligence , ma-
chine learning , computational linguistics ,
natural language processing and engineering .

The dream of MT is fuzzy like other dreams.

To make it crisp, we have to consider precise
translation tasks.

General purpose, high quality and fully auto-
matic MT is believed to be impossible [10, 24-
26].

But the general MT problem can be reduced to
various subproblems obviously less complex
and less hard than the general one.

We will concentrate on a few of them of par-
ticular interest, such as intralingual or inter-
dialectal translation.

That problem reduction can be made on the
basis of the domain of application, the sublan-
guage (a restricted and limited part of a lan-
guage) considered for translation, the intended
users, the language pairs under consideration,

Introduction

En général, le terme traduction est compris
comme le processus de compréhension du sens
d'un texte dans une langue et ensuite de pro-
duction d'un texte équivalent dans une autre
langue, transmettant le méme message.

La traduction automatique (TA) est un réve
des années 1950 [21, 24-26, 80, 125, 171, 172,
178, 179].

Bien qu'un grand nombre d'étapes importantes
aient été réalisées pour animer le réve de la
TA [21, 23-26, 28, 32, 41, 80, 87-90, 93, 100-
102, 104, 105, 113, 115, 125, 131, 132, 134,
135, 139, 144, 162, 171, 172, 178, 179, 188],
c'est toujours un réve dans la recherche inter-
disciplinaire en informatique, intelligence arti-
ficielle, apprentissage automatique, linguis-
tique computationnelle, traitement des langues
naturelles, et ingénierie.

Le réve de la TA est brouillé, comme d'autres
réves.

Pour le rendre précis, nous devons considérer
des taches précises de traduction.

La TA généraliste, de haute qualité et entiére-
ment automatique est censée étre impossible
[10, 24-26].

Mais le probléme général de la TA peut étre
réduit a divers sous-problémes évidemment
moins complexes et moins durs que le pro-
bléme général.

Nous nous concentrerons sur quelques-uns
d'entre eux, d'un intérét particulier, tels que la
traduction intralingue ou interdialectale.

Cette réduction du probléme peut étre faite sur
la base du domaine de l'application, du sous-
langage (une partie restreinte et limitée d'une
langue) considéré pour la traduction, des utili-
sateurs prévus, des couples de langues consi-
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etc.

These features also help to define the goal and
objectives for the subproblems of MT [21, 23-
27, 41, 80, 93, 102, 115, 125, 139, 171, 172,
178, 179, 187, 190].

However, these subproblems may still be very
hard and complex, although some instances
may be quite simple or not so difficult.

We will define later more precisely what we
mean by complexity and difficulty.

In any case, there is a long way ahead to go
[25, 26, 139, 187].

One of our goals will be to characterize the
complexity and difficulty of solving a certain
class of translation problems that we will call
“weak translation problems”.

MT is known for its complex nature and mul-
tivalence is one of its main reasons. Multiva-
lence , the term used by Mel'Cuk [125], arises
due to the non-determinism ( polysemy during
analysis and syrnonymy in generation, and both
in transfer) [6, 13, 21, 23-26, 32, 41, 51, 93,
102, 113, 115, 125, 139, 149, 154, 178, 179,
187].

The number of possible translations of an av-
erage source language sentence may go up to
thousands or in general increase dramatically
with its length [6, 13, 21, 25, 26, 41, 93, 113,
125, 139, 149, 154, 178, 179, 187].

Given a source language SL and a target lan-
guage TL, a translation unit S of » words may
have an exponential number Ty, T, ..., Ty N =
k" of wvalid translations Ty,T,,...,Ty in TL,
where N = O(k") for some k > I depending on
the precise subproblem at hand.

To solve the problem of multivalence for a
given subproblem of MT, different filters are
applied at various levels during the phases of
preprocessing, analysis, synthesis and post-
processing to restrict the cardinality of the
possible solution set of the problem to an ac-
ceptable and reasonable range of values [6, 13,
21, 23-28, 41, 51, 80, 93, 102, 104, 113, 115,
125,139, 149, 154, 171, 172, 178, 187].

dérés, etc.

Ces fonctionnalités aident également a définir
le but et les objectifs des sous-problémes de la
TA [21, 23-27, 41, 80, 93, 102, 115, 125, 139,
171, 172, 178, 179, 187, 190].

Toutefois, ces sous-problémes peuvent encore
étre tres difficiles et complexes, bien que cer-
taines instances puissent étre trés simples ou
pas aussi difficiles.

Nous définirons plus tard avec plus de préci-
sion ce que nous voulons dire par complexité
et difficulté.

Dans tous les cas, il ya un long chemin a par-
courir pour progresser [25, 26, 139, 187].

Un de nos objectifs sera de caractériser la
complexité et la difficulté de résoudre une cer-
taine classe de problémes de traduction que
nous appellerons « problemes faibles de tra-
duction ».

La TA est connue pour son caractére com-
plexe et la multivalence (ambiguité et polys-
méie) en est I'une des principales raisons. Mul-
tivalence, le terme utilisé par Mel'C¢uk [125],
apparait en raison du non-déterminisme (poly-
semie en cours d'analyse et synonymie en gé-
nération, et les deux en transfert) [6, 13, 21,
23-26, 32, 41, 51, 93, 102, 113, 115, 125, 139,
149, 154, 178, 179, 187].

Le nombre de traductions possibles d'une
phrase moyenne en langue source peut aller
jusqu'a des milliers ou en général augmenter
de facon spectaculaire avec sa longueur [6, 13,
21, 25, 26, 41, 93, 113, 125, 139, 149, 154,
178,179, 187].

Une langue source SL étant donnée, ainsi
qu'une langue cible 7L, une unité de traduction
S de n mots peut avoir un nombre exponentiel
Ty, T,, ..., Ty de traductions valides, ou N =
O(k") pour un certain k > I dépendant du sous-
probléme précis a traiter.

Pour résoudre le probléme de la multivalence
pour un sous-probléme donné de TA, diffé-
rents filtres sont appliqués a différents niveaux
pendant les phases de pré-traitement, d'ana-
lyse, de synthése et de post-traitement pour
restreindre la cardinalité de l'ensemble des so-
lutions possibles du probléme a un plage de
valeurs acceptable et raisonnable [6, 13, 21,
23-28,41, 51, 80, 93, 102, 104, 113, 115, 125,
139, 149, 154, 171, 172, 178, 187].
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Transliteration is also a subproblem of MT. It
consists in overcoming the scriptural differ-
ences among different writing systems used
for different languages [1, 3, 4, 9, 15, 16, 47,
50, 57, 59-61, 65, 73, 82-85, 97, 100, 101,
108, 112, 124, 130, 143-146, 150, 153, 165,
168, 174, 181, 189, 191] or even for the same
language [118-121, 164].

We are interested in the special class of sub-
problems of MT = where N is either very
small, say always less than 5, or even almost
always equal to 1 because of the proximity of
the written forms of SL and TL.

For example, this happens in situations (1)
when the languages of a translation pair are
extremely close to each other, e.g. Bengali—
Assamese, Hindi—-Marathi, Hindi—Urdu, etc.,
(2) when translation is performed between two
different varieties or dialects of a language,
either written in the same writing system
(Quebecois—French, Malay—Indonesian) or in
mutually unintelligible writing systems (Pun-
jabi, Sindhi, Seraiki) and (3) when the same
language is written in different mutually in-
comprehensible scripts (Kashmiri, Malay,
Punjabi, Sindhi, Seraiki).

The domain of our investigation is the class of
subproblems 7 of MT, applied to a pair

<(Lil M/])r (Lle)> of
combinations of a language and a writing sys-
tem, such that there exists only one (in most of
the cases) or a very small set of valid “transla-
tion solutions” to a subproblem =, for a given
sentence S of L; written in W;.

A natural assumption is that such problems
should be very simple (in terms of complexity
of the sufficient computational model) and not
very difficult (in terms of the human and com-
putation costs involved in preparing the sys-
tem to perform translation) than the general
translation problems.

We will show that the complexity and the dif-
ficulty to solve weak translation problems can
vary considerably.

The complexity and the difficulty of a sub-
problem 7z depend on the precise instance of
the weak translation problem , here denoted

La translittération est aussi un sous-probléme
de la TA. Elle consiste a surmonter les diffé-
rences scripturales entre les différents sys-
témes d'écriture utilisé pour différentes
langues [1, 3, 4, 9, 15, 16, 47, 50, 57, 59-61,
65, 73, 82-85, 97, 100, 101, 108, 112, 124,
130, 143-146, 150, 153, 165, 168, 174, 181,
189, 191] ou méme pour la méme langue
[118-121, 164].

Nous nous intéressons a la classe spéciale des
sous-problémes © de TA ou N est soit trés pe-
tit, disons toujours inférieur a 5, voire presque
toujours égal a 1 en raison de la proximité des
formes écrites de SL et TL.

Par exemple, cela arrive dans les situations (1)
ou les langues d’une paire de traduction sont
trés proches 1'une de D’autre, par exemple,
bengali -assamais, hindi-marathi, hindi-
ourdou, etc., (2) lorsque la traduction est effec-
tuée entre deux variétés ou dialectes d’une
langue, que ce soit écrit dans le méme systéme
d’écriture (québécois-francais, malais-
indonésien) ou dans de systemes d’écriture
mutuellement incompréhensibles (Penjabi,
sindhi, Seraiki) et (3) lorsque la méme langue
est écrite dans les différents scripts mutuelle-
ment incompréhensibles (cachemiri, malais,
penjabi, sindhi, seraiki).

Le domaine de notre recherche est la classe
des sous-problémes 7 de TA, appliqués a une
paire  ((L;, W;), (LyW,)) de combinaisons
d’une langue et d’un systeme d’écriture, telle
qu’il existe une seule (dans la plupart des cas)
ou un ensemble trés petit de « solutions de tra-
duction » valides a un sous-probléme m, pour
une phrase donnée S de L; écrite en W;.

Une hypothése naturelle est que ces problémes
devraient étre trés simples (en termes de com-
plexit¢ du modele informatique suffisant) et
pas treés difficiles (en termes des cotits hu-
mains et des cofits de calcul entrainés par la
préparation du systéme pour effectuer la tra-
duction) que les problémes de traduction géné-
rale.

Nous allons montrer que la complexité et la
difficulté de résolution des problémes faibles
de traduction peuvent varier considérable-
ment.

La complexité¢ et la difficult¢ dun sous-
probléme 7 dépendent de I’instance précise du
probleme de traduction faible, ici représenté
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by T ((Lir VV]), (Lle))

We will also use the notation w(SL/SW,TL/
Vy/ 4

For example, the complexity and difficulty of
interdialectal translation is less for Ma-
lay/Latin—Indonesian/Latin than for Hin-
di/Devanagari-h—Marathi/Devanagari-m trans-
lation™.

We can categorize weak translation problems
into generic and specific subproblems.

Intralingual localization is a generic problem
that can be further refined in the specific prob-
lems of word for word translation and intra-
lingual translation between different varieties
of the same language.

For example, IBM product documentation in
French is translated into French by Bull’', a
French computer company that sells IBM
products (eg AS4000 under AIX) as OEM.

Bull does not use the French versions prepared
by IBM because IBM terminology is not iden-
tical to Bull terminology.

This kind of translation is also mandatory to
localize the Quebecois dialect in France, e.g.
the Quebecois term 'présentement' must be
localized into 'maintenant' in France and vice
versa.

Similar problems also exist between English
(UK) & English (USA), French of 14 ™ cen-
tury—standard French, and Malay (Malaysia)—
Indonesian (Indonesia).

To solve these problems, a full syntactic anal-

*® The script used for Hindi and Marathi are
different variants of the Devanagari script (the
original is used for Sanskrit).

I We refer here to the documentation of AIX,
IBM  proprietary  version of UNIX
http://www.bull.com/index.php.

> As Hagége said, “languages are the flags of
national identity”. Here, company terminolo-
gies are flags of company identities.

par ((Lir VV])' (Lle))

Nous utiliserons également la notation (SL/
SW, 7L/TW.

Par exemple, la complexité et la difficulté¢ de
la traduction interdialectale est moindre pour
le malais/latin-indonésien/latin que pour la
traduction hindi/devanagari-h-
marathi/devanagari-m.

Nous pouvons classer les problemes faibles de
traduction en sous-problémes génériques et
spécifiques.

La localisation intralinguale est un probléme
générique qui peut étre affinée par les pro-
blémes spécifiques de la traduction mot a mot
et la traduction intralinguale entre les diffé-
rentes variétés de la méme langue.

Par exemple, la documentation de produits
IBM en frangais est traduite en frangais par
Bull, une société informatique francgaise qui
vend des produits IBM (par exemple, sous
AIX AS4000) en OEM.

Bull n'utilise pas les versions francaises prépa-
rées par IBM, car la terminologie IBM n'est
pas identique a la terminologie de Bull.

Ce type de traduction est également obliga-
toire pour localiser le dialecte québécois en
francais, par exemple le terme québécois
« présentement » doit étre localisé en « main-
tenant » en France et vice-versa.

Des problémes similaires existent également
entre l'anglais (Royaume-Uni) et l'américain
(USA), le frangais du 14°™ siécle et le frangais
standard, et le malais (Malaisie) et 1'indonésien
(Indonésie).

Pour résoudre ces problémes, une analyse syn-

Les script utilisés pour le hindi et le marathi sont
différentes variantes de [’alphabet devanagari
(Poriginal est utilisé pour le sanskrit).

Nous nous référons ici a la documentation de AIX,
IBM version propriétaire de UNIX
http://www.bull.com/index.php

Comme Hagege I’a dit: « les langues sont les dra-
peaux des identités nationales ». Ici, les terminolo-
gies des compagnies sont des drapeaux de I’identité
des compagnies.
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ysis is not required, but we have to perform a
word for word translation for the localization
of one variety or dialect of the language into
the other and vice versa.

Table 1 gives a list of generic and specific
subproblems of the general weak translation
problem , together with some of their in-
stances, in increasing complexity and difficul-
ty order.

Successive generic problems are more com-
plex than the previous ones.

For example, the Quebecois—French pair re-
lates to both the first and the third generic
problem.

In case of intralingual localization, word for
word translation is sufficient to perform lexi-
cal Quebecois—French translation, but we need
to do a more complex analysis to perform in-
terdialectal Quebecois—French translation.

taxique compléte n’est pas nécessaire, mais
nous devons effectuer une traduction mot a
mot pour la localisation d'une variante ou d'un
dialecte de la langue dans un autre et vice ver-
sa.

La Table 1 donne une liste de sous-problémes
spécifiques et génériques du probléme faible
de traduction général, ainsi que certaines de
leurs instances, en ordre de complexité et de
difficulté croissante.

Les problémes génériques successifs sont plus
complexes que les précédents.

Par exemple, la paire frangais-québécois con-
cerne a la fois le premier et le troisiéme pro-
bléme générique.

En cas de localisation intralinguale, la traduc-
tion mot a mot est suffisante pour effectuer la
traduction lexicale québécois-frangais, mais
nous avons besoin d’effectuer une analyse plus
complexe pour effectuer une traduction inter-
dialectale francais-québécois.

Generic Subproblem | Specific Subproblems .
S Instances Constraints
r. - X 5né- - X 5
Spus probléme géné Spus problémes spé Instances Contraintes
rique cifiques
Language localiza- Unix documentation IBM
tion to Bull (French to French)
localisation linguis- |Word for word tran- | Documentation Unix
tique slation d’IBM vers Bull (frangais
Traduction mot & mot | VErS francais)
1 or Québécois—French SL=TL
ou Intralingual transla- | Québécois-francais SW=TwW
tion
intralingual localiza- |traduction intralin- .
tion guale Malay—Indonesian
T . Malais-indonésien
localisation intralin-
guale
Transliteration Malay/Latin—Malay/Jawi
Scriptural translation | Translitération Malais/latin-malais/jawi SL = TL
2 Traduction scriptu- o Sir.ldhi/Sindhi“‘ - Sin- SW = TW
rale Transcription dhi/Devanagari
Transcription Sindhi/sindhi

> The derivation of the Perso-Arabic script is | La dérivation de 1’écriture arabo-persane est con-

known as the Sindhi script.

nue sous le nom de script sindhi.
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—Sindhi/devanagari
Phonetic transcription Punjabi/Gurmukhi—
Transcription phoné- [ Punjabi/Shahmukhi
tique Punjabi/gurmukhi-
Punjabi/shahmukhi
French/Roman—
French/IPA™
Frangais/roman-
frangais/IPA
Transliteration Hindi—Urdu
Translitération Hindi-ourdou
Bengali—Assamese
Transcription Bengali-assamais SL £ TL
Transcription SW = TW
Phonetic transcription Hindi-Marathi
T _ . |Hindi-marathi
ranscription phoné-
tique
Quebecois—French
Québécois-frangais
English (USA)-English
(UK)
Anglais (USA)-anglais SL=TL
(UK) SW=Tw
Word for word tran-
slation Malay/Latin—
Traduction mot & mot Indonesian/Latin
Malais/latin-
Interdialectal transla- . . indonésien/latin
tion Scriptural translation ————
. . Traduction scripturale S¥ndh¥/ Sindhi— .
traduction interdia- Sindhi/Devanagari
lectale pp o |Sindhifsindhi sin-
niralingual transia- | 4hj/devanagari
tion
traduction intralin- Punjabi/Gurmukhi—
guale Punjabi/Shahmukhi SL=TL
Punjabi/gurmukhi- SW +TwW
Punjabi/shahmukhi
Malay/Jawi—
Indonesian/Latin
Malais/jawi-
indonésien/latin
Bilingual translation |Word for word trans- |Hindi—Urdu SL+TL
Traduction bilingue |lation Hindi-ourdou SW #TW

>* International Phonetic Alphabet (IPA).

222

Alphabet phonétique international (API).




French summary

blables

Traduction mot a mot

Scriptural translation
Traduction scripturale

Bilingual translation
between linearly very
similar languages

Traduction bilingue

entre des langues li-
néairement trés sem-

Bengali—Assamese
Bengali-assamais

Hindi—Marathi
Hindi-marathi

Table 1: Subproblems of the weak translation | Table 1 : Sous-problemes du probléme faible

problem (by order of increasing complexity)

Linguistic Architecture

Following [21, 26, 28, 178, 179, 190], we have
adopted and adapted the framework for syntac-
tic translation , shown in Figure, to solve the
weak translation problems.

de traduction (par ordre croissant de com-

plexite)

Architecture linguistique

A la suite de [21, 26, 28, 178, 179, 190], nous
avons adopté et adapté le cadre pour la tra-
duction syntaxique, montré dans la Figure 1,
pour résoudre les problémes faibles de traduc-
tion.

Deep understanding level

Interlingual level

Logico-semantic level 5

antic transfer

T
//g\f"“‘*'
. . -c\'.“(\‘“
Mixing levels j/f/\“

Ontological interlingua

Semantico-linguistic interlingua

SPA-structures (semantic
& predicate-argument)

Multilevel description

Syntactico-functional level /

Syntagmatic level

/ Multilevel transfer A

Syntactic iransfer (deep)

s }'nmIQs[er isurface)

'\ F-structures (functional)

X C-structures (constituent)

==

™~
cansiaiion

Tagged text

Text

Figure 1: Vauquois’ triangle [21, 26, 28, 178,
179]

Figure 1: Vauquois triangle [21, 26, 28, 178,
179]
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We use interlingua and transfer-based linguis-
tic architectures, and experiment with expert,
empirical and hybrid approaches.

We go through various levels of linguistic re-
presentation: source (in SW), morphotactic,
morphological, morphosyntactic and Universal
Intermediate Transcription (UIT) .

The refinement of Vauquois' triangle to the
weak translation problems is shown in Figure
2.

Nous employons des architectures linguis-
tiques a interlingua et a transfert, et expéri-
mentons avec des approches expertes, empi-
riques et hybrides.

Nous passons par divers niveaux de représen-
tation linguistique : source (dans le systéme
d’écriture source SW), morphotactique, mor-
phologique, morphosyntaxique, et transcrip-
tion intermédiaire universelle (UIT).

Le raffinement du "triangle de Vauquois" aux
problémes faibles de traduction est montré
dans la Figure 2.

Source Language Level

1:01-E1

Phonetico-Morphological Level  UIT1:D1

Phonetico-Morphotactic Level

Py o }
Wt
et
wa“g -

Morphotactic Level

Source (Ly, Wy)

Interlingua or Pivot Level

Lexical Translation

Ty UIT =

Direct Transliteration

Target Language Level

= UIT2:D1 Phonetico-Morphological Level

Phonetico-Morphotactic Level

gy,
- w"'ﬁ’m‘on

#  Morphotactic Level
Target (Lp, Wa)

Figure 2: Adopted and adapted Vauquois's tri-

angle for the weak translation problem

UIT is defined for each group of very closely
related languages or dialects and serves as a
Pivot.

More precisely, it is used as a phonetico-
morphotactic pivot for surface morphotactic
translation, as a phonetico-morphological pivot
for word for word translation, and as a phoneti-
co-morphosyntactic lexical pivot for syntax-
based translation (in conjunction with syntactic
transfer).

Figure 2: le triangle de Vauquois adopté et
adapté au probleme faible de traduction

L’UIT est définie pour chaque groupe de
langues apparentées de trés prés ou de dia-
lectes et sert de pivot.

Plus précisément, il est employé comme un
pivot phonético-morphotactique pour la tra-
duction morphotactique de surface, comme
pivot phonético-morphologique pour la tra-
duction mot a mot, et comme pivot phonéti-
co-morphosyntactique pour la traduction ba-
sée sur la syntaxe (en conjonction avec le
transfert syntaxique).
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Computational Model

Researchers have employed various computa-
tional models ranging from finite-state technol-
ogy [131-135, 161, 162, 166, 167, 169] to ma-
chine learning , and empirical methods [1, 32,
33, 41, 102, 104, 115] for solving different
subproblems of MT.

Following [3, 4, 100, 101, 134, 135, 162, 174],
we employ finite-state technology for solving
different subproblems of the weak translation
problem.

For example, we use non-probabilistic finite-
state transducers [121] to solve the problem of
scriptural translation (we will define that term
precisely later).

We also use Context-Free Grammar (CFG) for
developing “phrase structure grammars”.

Finite-state methods give a 16.1% word error
rate for Urdu to Hindi scriptural translation
when all necessary information is present in the
input text (we will explain later what we mean
by necessary information).

They give a 47% word error rate when all ne-
cessary information is not present in the input
text (the usual and normal case especially for
Urdu to Hindi, Punjabi/Shahmukhi to Punja-
bi/Gurmukhi, etc .).

At sentence level, the finite-state methods give
a 90% sentence error rate for Urdu to Hindi
scriptural translation when the input Urdu text
contains the required information.

Without the required information in the input
Urdu text, they give a 99% sentence error rate.

Due to the successful use of SMT models in
MT, we conjectured that SMT could give us
better results than our finite-state model.

Indeed, SMT decreases the word error rate
from 47% to 22.1% for Urdu to Hindi translite-
ration when the input Urdu text does not con-
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Modéele de calcul

Les chercheurs ont utilisé différents modéles
de calcul a partir de la technologie a états
finis [131-135, p. 161, 162, 166, 167, 169]
pour l'apprentissage machine et des méthodes
empiriques [1, 32, 33,41 102, 104, 115] pour
résoudre les différents sous-problémes de
MT.

A la suite de [3, 4, 100, 101, 134, 135, 162,
174], nous employons la technologie a états
finis pour la résolution de sous-problémes
différents du probléme faible de traduction.

Par exemple, nous utilisons des transducteurs
d’états finis non-probabilistes [121] pour ré-
soudre le probléme de la traduction scriptu-
rale (nous définirons précisément ce terme
plus tard).

Nous utilisons aussi des grammaires hors-
contexte (CFG) pour le développement de
« grammaires syntagmatiques ».

Les méthodes a états finis donnent un faux
d’erreur en mots de 16,1% pour la traduction
scripturale  ourdou-hindi  quand  toute
I’information nécessaire est présente dans le
texte d’entrée (nous expliquerons plus tard ce
que nous voulons dire par « information né-
cessaire »).

Elles donnent un faux d'erreur en mots de
47% quand tous les renseignements néces-
saires ne sont pas présents dans le texte d'en-
trée (cas habituel et normal, notamment pour
ourdou-hindi, punjabi/shahmukhi-
punjabi/gurmukhi, efc.).

Au niveau des phrases, les méthodes a états
finis donnent un taux d'erreur de 90% en
phrases pour la traduction scripturale ourdou-
hindi quand le texte ourdou en entrée contient
l'information requise.

Sans information requise dans le texte ourdou
en entrée, elles donnent un taux d’erreur en
phrases de 99%.

En raison de ['utilisation réussie des modeles
SMT en TA, nous avons conjecturé que la
SMT pourrait nous donner de meilleurs résul-
tats que notre modele a états finis.

En effet, la SMT diminue le taux d’erreur en
mots de 47% a 22,1% pour la translittération
ourdou-hindi quand le texte ourdou en entrée
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tain the diacritical marks (mandatory for per-
forming Urdu to Hindi scriptural translation ).

At sentence level, it decreases the error rate
from 99% to 95%.

In contrast, our finite-state model gives better
results (16.1% word error rate) than our best
SMT model (27.8% word error rate) when the
Urdu text does contain all necessary diacritical
marks.

The absence of information in the source side,
which is the usual case for Urdu to Hindi scrip-
tural translation, is a big challenge and cannot
be handled well within the framework of non-
probabilistic finite-state transducers .

Although SMT increases the word accuracy in
such cases, the results are still not satisfactory
as far as usability in real context is considered.

To increase the accuracy, we have proposed a
hybrid model [120] for scriptural translation
and gained an overall accuracy of 79.1%
(word-level) when the input Urdu text does not
contain the diacritical marks.

A hybrid model, a combination of finite-state
and statistical models, gives better results than
the previous two models.

In short, we have employed finite-state, empiri-
cal and statistical, context-fee grammars, tree
transduction and syntax-based translation (in
conjunction with syntactic transfer) to solve
different generic and specific subproblems of
weak translation problems.

Table 2 shows results of Urdu to Hindi scrip-
tural translation of different approaches used to
solve the problem of Urdu to Hindi scriptural
translation on the same test set.
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ne contient pas les marques diacritiques (né-
cessaires pour effectuer une bonne traduction
scripturale ourdou-hindi).

Au niveau de la phrase, elle fait diminuer le
taux d’erreur de 99% a 95%.

En revanche, notre modéle a états finis donne
de meilleurs résultats (16,1% de taux d'erreur
en mots) que notre meilleur modele SMT
(27,8% de taux d'erreur en mots) lorsque le
texte en ourdou contient toutes les marques
diacritiques nécessaires.

L'absence d'information du c6té source, qui
est le cas habituel pour la traduction scriptu-
rale ourdou-hindi, est un défi important, et ne
peut pas étre traitée tout a fait bien dans le
cadre des transducteurs d'états-finis non-
probabilistes.

Bien que la SMT augmente la précision en
mots dans de tels cas, les résultats ne sont
toujours pas satisfaisants dans la mesure ou la
qualité d’usage dans un contexte réel est prise
en considération.

Pour augmenter la précision, nous avons pro-
posé un modele hybride [120] pour la traduc-
tion scripturale et obtenu une précision glo-
bale de 79,1% (au niveau des mots) lorsque le
texte ourdou en entrée ne contient pas les
signes diacritiques.

Un modele hybride, combinaison des mo-
deles a états finis et statistiques, donne de
meilleurs résultats que les deux modeles pré-
cédents.

En bref, nous avons employé des modéles a
états finis, empiriques et statistiques, des
grammaires hors-contexte, de la transduction
d'arbres et de la traduction basée sur la syn-
taxe (en conjonction avec le transfert syn-
taxique) pour résoudre différents sous-
problémes génériques et spécifiques des pro-
blemes faibles de traduction.

La Table 2 montre les résultats de la traduc-
tion scripturale ourdou-hindi des différentes
approches utilisées pour résoudre le probléme
de la traduction scripturale hindi-ourdou sur
le méme jeu de test.
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Word Error Rate Sentence Error Rate
Approach | Taux d’erreur en mots Taux d’erreur en phrases

With information | Without information | With information | Without information
Approche | Avec I'information|Sans Uinformation | Avec I'information|Sans linformation
FST 16.1% 47% 90% 99%
SMT 27.8% 23% 94,5% 95%
Hybrid [14,2% 20,9% 86% 93%
Hybride

Table 2: Results of Urdu toHindi scriptural
translation

Evaluation Methods

One of the most difficult things in MT is the
evaluation of a proposed system/algorithm.

A natural language is not an object of exact
science like Mathematics or Physics.

Therefore, the understanding of a natural lan-
guage is a subjective problem that depends on
multiple factors.

For example, multivalence makes it hard to
associate a real objective number to an MT
evaluation.

Recent MT evaluation campaigns have been
criticized because only tables of figures (such
as BLEU, NIST, ORANGE, METEOR...) are
shown as results, while these n-gram based
measures have been shown not to correlate
very well with human judgments [40].

Commercial MT systems have been consis-
tently ranked low by these measures, while
human judges ranked them quite high [81].

We also have achieved an average 80% word
accuracy for Hindi-Urdu scriptural translation
with our finite-state methods that seem to be a
good measure.

But if we measure the accuracy at the sentence
level, then we have an accuracy of 1% to 14%.

Thus, it is important to do subjective evalua-

Table 2: Resultats de traduction scripturale
ourdou-hindi

Méthodes d’évaluation

Une des choses les plus difficiles en TA est
I’évaluation d’un systéme/algorithme propos¢.

Une langue naturelle n’est pas un objet
d’étude d’une science exacte comme les ma-
thématiques ou la physique.

Par conséquent, la compréhension d’une
langue naturelle est un probléme subjectif qui
dépend de multiples facteurs.

Par exemple, la multivalence rend difficile
d’associer un vrai nombre objectif a une éva-
luation de la TA.

Les campagnes d'évaluation de TA récentes
ont été critiquées parce que seuls des tableaux
de chiffres (par exemple, BLEU, NIST,
ORANGE, METEOR ..) sont présentés
comme résultats, alors qu'on a montré que ces
mesures basées sur des n-grammes n'ont pas
de bonne corrélation avec les jugements hu-
mains [40].

Les systétmes commerciaux de MT ont tou-
jours été classés au bas de ces mesures, tandis
que les juges de I'homme les a classées trés
¢élevé [81].

Nous avons également obtenu une exactitude
moyenne en mots de 80% pour la traduction
scripturale Hindi-Urdu avec nos méthodes a
états finis, et cette mesure semble €tre une
bonne mesure.

Mais si nous mesurons 1’exactitude au niveau
des phrases, alors nous avons une exactitude
de 1% a 14%.

Ainsi, il est important de faire des évaluations
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tions in addition to the objective evaluations.

In general, human and machine (automatic)
evaluation methods are used to evaluate an
MT system.

Human evaluations of MT judge various as-
pects of translations, including adequacy, fi-
delity and fluency [72, 185].

They are relevant, but costly in terms of time
and money [72, 147].

For automatic evaluations, there exist different
evaluation metrics like BLEU [147], NIST
[49], F-measure [177], METEOR [111], Word
Error Rate (WER) [138], and MaxSim [43].
Finally, there are objective task-based metrics
measuring human performance like post-
editing time and time to goal (eg time to per-
form a booking, a spoken dialogue translation
system).

Mostly, we have used n-gram based automatic
evaluation methods, but also have used subjec-
tive human evaluation while the post editing
for achieving a perfect result.

We have evaluated the quality of our results
on different aspects like Sentence Accuracy
(SA), Word Accuracy (WA), post-editing time
, confidence level of human evaluator , fluency
, adequacy and usability .

We have devised scales for each aspect used
for categorizing different systems and measur-
ing their translation quality.

For example, the scale devised for SAR is
formulated in Table 3. We will discuss and
formulate all 228 étai scales later in more
228¢tails in the sequel.

subjectives en plus des évaluations objectives.

En général, les méthodes d’évaluation hu-
maines et machine (automatique) sont utilisées
pour évaluer un systéme de TA.

Les évaluations humaines de la TA jugent di-
vers aspects de la traduction, y compris 'adé-
quation, la fidélité et la fluidité [72, 185].

Elles sont pertinentes, mais cotiteuses en
termes de temps et d'argent [72, 147].

Pour les évaluations automatiques, il existe
des mesures d'évaluation différentes, comme
BLEU [147], NIST [49], la F-mesure [177],
METEOR [111], I'erreur en mots, Word Error
Rate (WER) [138], et MaxSim [43]. Enfin, il y
a des métriques objectives finalisées (liées a la
tdche), mesurant la performance humaine,
comme le temps de post-édition et le temps
pour atteindre un objectif (par exemple le
temps pour effectuer une réservation, pour un
systéme de traduction de dialogues parlés).

Nous avons principalement employé des mé-
thodes d’évaluation automatiques basées sur
des n-grammes, mais nous avons également
employé 1’évaluation subjective humaine du-
rant la post-édition pour obtenir un résultat
parfait.

Nous avons évalué la qualité de nos résultats
sur différents aspects comme [’exactitude en
phrases (SA), l’exactitude en mots (WA), le
temps de post-édition, le niveau de confiance
de [l'évaluateur  humain, la  fluidite,
l’adéquation et ' utilisabilité.

Nous avons mis au point des échelles pour
chaque aspect utilisé pour classer les différents
systémes et mesurer leur qualité de traduction.

Par exemple, I’échelle congue pour le SAR est
formulée dans la Table 3. Nous allons discuter
et formuler toutes ces échelles plus tard en
plus de détails dans la suite.
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Scale Point Relation with SAR Description

Point d’échelle | Relation avec les SAR | Description

0 SAR <5% NULL
NULL

1 5% < SAR < 10% OK
OK

2 10% < SAR < 15% AVERAGE
MOYEN

3 15% < SAR <25% GOOD ENOUGH
ASSEZ BON

4 25% < SAR < 50% GOOD
BON

5 50% < SAR > 70% VERY GOOD
TRES BON

6 SAR > 70% EXCELLENT
EXCELLENT

Table 3: Scale based on sentence accuracy for
scriptural translation quality

N-gram co-occurrence automatic scoring metrics
like BLEU and NIST are widely used as bench-
mark for MT system evaluation especially BLEU,
even with its known shortcomings for evaluation
of general MT systems [40].

We will show that these deficiencies are not that
significant in the case of the evaluation of weak
translation problems , because we have a unique
or very small number of references, say 2 to 4.

Thus these metrics are good measures for the
translation quality of weak translation problems .

On top of WER and SER, we have also used
BLEU and NIST to evaluate our translation sys-
tems.

Thesis Plan
This report is divided into three main parts.

The first part introduces the weak translation prob-
lems.

The first chapter introduces and gives an analysis
of scriptural translation problem.

In the second chapter, we describe the finite-state
approach for solving scriptural translation prob-
lems. Finally, we report the results of our finite-
state approach on the Indo-Pak languages (the
term is explained later).

Table 3: Echelle basée sur [’exactitude en

phrases pour la qualité scripturale de traduction

Des métriques automatiques fondées sur les co-
occurrences de N-grammes comme BLEU et NIST
sont largement utilisées comme étalons pour 1'éva-
luation de systémes de TA, en particulier BLEU,
méme avec ses défauts connus par rapport a 1'éva-
luation des systémes de TA généralistes [40].

Nous allons montrer que ces lacunes ne sont pas si
importantes dans le cas de 1’évaluation des pro-
blemes faibles de traduction, parce que nous avons
une seule ou un nombre trés petit de références, par
exemple 2 a 4.

Ainsi, ces mesures sont de bonnes mesures pour la
qualité de la traduction des problemes faibles de
traduction.

En sus de WER et SER, nous avons employé BLEU
et NIST pour évaluer nos systemes de traduction.

Plan de la thése
Ce rapport est divisé en trois parties principales.

La premicre partie présente les problémes faibles de
traduction.

Le premier chapitre introduit le probléme de la tra-
duction scripturale et en donne une analyse.

Dans le deuxiéme chapitre, nous décrivons
I’approche a états finis pour résoudre des problémes
de traduction scripturale. En conclusion, nous pré-
sentons les résultats de notre approche a états finis
sur les langues Indo-Pak (le terme est expliqué plus
tard).
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The second part also consists of two chapters.

In the third chapter, we describe our experiments
for solving Hindi—Urdu scriptural translation prob-
lem using Statistical Machine Translation (SMT)
and report our results.

The last part of this chapter, we illustrate our hybr-
id approach (a novel combination of finite-state
and statistical approaches) for solving the scriptur-
al translation problems for the Indo-Pak languag-
es.

In the fourth chapter, we describe our interactive
scriptural translation model.

We also describe our evaluation methodologies for
the interactive scriptural translation systems.

The third and final part consists of an analysis of
interdialectal machine translation , a higher-level
weak translation problem that requires more com-
plex analysis and computation approaches than the
scriptural translation problems.

In this section, we analyze different computation
approaches and required resources for solving the
interdialectal translation problem for the Indo-Pak
languages.

Finally, we conclude our work and give future
perspectives of our study.

Conclusion and Perspectives
MT history is more than half a century old.

The field of MT started to emerge with the advent
of computer systems.

In the beginning, it was used to translate Russian
texts into English for defense and intelligence pur-
poses.

It was a very hot research area in the past and it is
also a very central and highly funded area in the
present.

The need of MT is increasing day by day because
the world is becoming a global village.

In general, a given sentence of n words in the
source language may have an exponential number
of valid translations, say N = k" for some k.

A weak translation problem is a translation prob-
lem for which N is very small, say less than 5 or
almost always 1.

In this study, we restricted our scope to the study
and analysis of weak translation problems only.

La deuxiéme partie se compose €galement de deux
chapitres.

Dans le troisiéme chapitre, nous décrivons nos ex-
périences pour résoudre le probléme de la traduc-
tion scripturale hindi-ourdou en utilisant la traduc-
tion automatique statistique (TAS) et présentons
nos résultats.

Dans la derniere partie de ce chapitre, nous illus-
trons notre approche hybride (une combinaison iné-
dite des approches d’états finis et statistiques) pour
résoudre les problémes de traduction scripturale
pour des langues Indo-Pak.

Dans le quatriéme chapitre, nous décrivons notre
modele interactif de traduction scripturale.

Nous décrivons également nos méthodes
d’évaluation des systémes de traduction interactive
scripturale.

La troisiéme et derniére partie consiste en une ana-
lyse de la traduction automatique interdialectale,
un probléme faible de traduction de plus haut ni-
veau qui nécessite des approches plus problémes a
I’analyse et au calcul que les problémes de traduc-
tion scripturale.

Dans cette section, nous analysons différentes ap-
proches computationnelles et les ressources requises
pour résoudre le probléme de la traduction interdia-
lectale pour les langues Indo-Pak.

Enfin, nous concluons notre travail et donnons des
perspectives d’avenir de notre étude.

Conclusion et perspectives
L'histoire de la TA a plus d'un demi-siécle.

Le domaine de la TA a commencé a émerger avec
I'avénement des systémes informatiques.

Au début, la TA a été utilisée pour traduire des
textes russes en anglais pour la défense et le rensei-
gnement.

C'était un domaine de recherche trés intense dans le

passé et c'est aussi un domaine trés central et béné-
i u u .

ficiant d'un financement actuellement

La nécessité de la TA augmente de jour en jour
parce que le monde devient un village planétaire.

En général, une phrase donnée de n mots dans la
langue source peut avoir un nombre exponentiel de
traductions valides, par exemple N = k" pour un
certain k.

Un probléme de traduction faible est un probléme
de traduction pour lequel N est trés faible, inférieur
a 5 ou presque toujours égal a 1.

Dans cette étude, nous avons limité notre champ a
1"étude et a l'analyse des problemes faibles de tra-
duction seulement.
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We adopted a step-by-step approach to deal with
weak translation problems.

We started with the scriptural translation problem
that seemed to be a computationally less hard and
relatively simple problem.

In the current literature, the terms transliteration
and transcription are often confused. We have de-
fined and proposed the new term 'scriptural trans-
lation' to denote a combined process of translitera-
tion and/or transcription.

We were optimistic at the start that we would not
only be able to solve the scriptural translation
problem, but also the much harder and complex
problems of interdialectal translation and of trans-
lation between closely related languages.

Actually, the study and analysis of the scriptural
translation problem proved to be much more com-
plex and hard than our preliminary estimates.

We have experimented with finite-state, statistical
and hybrid models to solve the scriptural transla-
tion problems.

The graph of Figure 3 shows a brief comparison of
results obtained on HU Test Set 2 using these
three different models for the Urdu to Hindi scrip-
tural translation.

Nous avons adopté une approche étape par étape
pour traiter les problémes faibles de traduction.

Nous avons commencé par le probléme de traduc-
tion scripturale, qui semblait étre un probléme com-
putationnellement moins dur et relativement simple.

Dans la littérature actuelle, les termes de translitté-
ration et de transcription sont souvent confondus.
Nous avons défini et proposé le nouveau terme de
« traduction scripturale » pour désigner un proces-
sus combiné de translittération et / ou de transcrip-
tion.

Nous étions optimistes au début et pensions que
nous pourrions non seulement résoudre les pro-
blémes de traduction scripturale, mais également les
problémes beaucoup plus durs et complexes de tra-
duction interdialectale et de traduction entre des
langues tres proches.

En fait, 1'é¢tude et I'analyse du probléme de traduc-
tion scripturale se sont avérées beaucoup plus com-
plexes et difficiles que nos estimations prélimi-
naires.

Nous avons expérimenté des modeéles a états finis,
statistiques et hybrides pour résoudre les problémes
de traduction scripturale.

Le graphique de la Figure 3montre une bréve com-
paraison des résultats obtenus sur le Test Set 2 HU
a l'aide de ces trois modéeles différents, pour la tra-
duction scripturale de hindi en ourdou.
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Figure 3: Comparison of Urdu to Hindi scriptural | Figure 3 : Comparaison de systemes de traduction

translation systems at word and sentence level

scripturale d'ourdou en hindi aux niveaux des mots
et des phrases
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The analysis of our scriptural translation results
shows that subjective evaluations like user satis-
faction, usability of translation result in real life,
fluency and adequacy of translated texts are also
very important in addition to the objective evalua-
tions like word accuracy, sentence accuracy, and
edit-distance.

For subjective evaluation purposes, we have de-
vised different scales to compute different subjec-
tive measures for our scriptural translation sys-
tems.

To get a real life rating for our translation systems
and improve the performance of our scriptural
translation systems, we have also developed an
online interactive scriptural translation system.

This interactive scriptural translation
serves different purposes.

system

Although we were not yet able to develop practical
interdialectal translation systems, we have pre-
sented a theoretical study of how we can develop
interdialectal translation systems based on Statis-
tical Machine Translation (SMT) and syntactic
translation (based on syntactic transfer and linguis-
tic framework) approaches.

That includes a study of what kind of linguistic
resources (parallel lexicons and corpora) and
lingware modules (morphological and syntactic
analyzers) are required for building interdialectal
translation systems.

The availability of interactive scriptural translation
systems will play a vital role in developing data
resources online using the very large Internet
community.

We have mainly experimented on Indo-Pak lan-
guages, which represent a large population of the
world.

The Hindi—Urdu pair alone represents 1,017 mil-
lion speakers around the globe.

Only Chinese has more than 1,000 million speak-
ers.

Table 4 shows the number of speakers of IndoPak
languages.

L'analyse de nos résultats de traduction scripturale
montre que les évaluations subjectives, comme la
satisfaction des utilisateurs, la facilité d'utilisation
des résultats de la traduction dans la vie réelle, la
fluidité et I'adéquation des textes traduits, sont éga-
lement trés importantes, en sus des évaluations ob-
jectives, comme la précision en mots en phrases, et
la distance d'édition.

Aux fins d'évaluation subjective, nous avons congu
des échelles différentes pour calculer les différentes
mesures subjectives de nos systémes de traduction
scripturale.

Pour obtenir une estimation liée a la vie réelle pour
nos systémes de traduction, et améliorer l'efficacité
de nos systémes de traduction scripturale, nous
avons également développé un systéme de traduc-
tion scripturale interactif en ligne.

Ce systéme de traduction scripturale interactive sert
a différents objectifs.

Bien que nous n'ayons pas encore été en mesure de
développer des systémes pratiques de traduction
interdialectale, nous avons présenté une étude théo-
rique sur la fagon dont nous pouvons développer
des systémes de traduction interdialectale basés sur
des approches de traduction automatique statistique
(TAS) et de traduction syntaxique (basées sur le
transfert syntaxique et sur un cadre linguistique).

Cela comprend une étude sur le type de ressources
linguistiques (lexiques et corpus paralléles) et de
modules linguiciels (analyseurs morphologiques et
syntaxiques) nécessaires pour la construction de
systémes de traduction interdialectale.

La disponibilité de systémes de traduction scriptu-
rale interactifs jouera un role essentiel dans le déve-
loppement de ressources en ligne utilisant la tres
grande communauté Internet.

Nous avons essentiellement fait des expériences sur
des langues Indo-Pak, qui représentent une grande
part de la population du monde.

La paire Ourdou-Hindi représente a elle seule 1.017
millions de locuteurs dans le monde entier.

Seul le chinois compte plus de 1.000 millions de
locuteurs.

Le tableau 4 indique le nombre de locuteurs des
langues Indo-Pak.
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Sr. |Language |Number of Speakers

1 Hindi 853,000,000

Urdu 164,290,000

Punjabi 120,000,000

Seraiki 13,820,000

Kashmir 5,640,940

2
3
4 Sindhi 21,382,120
5
6

Total 1178,133,060

Table 4: Number of speakers of Indo-Pak lan- | Tableau 4 : Nombre de locuteurs de langues Indo-

guages Pak

We have made available online our scriptural | Nous avons mis en ligne notre systéme de traduction

translation system for Hindi—Urdu™, scripturale pour hindi-ourdou,
Punjabi/Shahmukhi—Punjabi/Gurmukhi’®, punjabi / shahmukhi-punjabi / gurmukhi,
and Seraiki/Shahmukhi—Seraiki/Devanagari’’. et seraiki/shahmukhi-seraiki/devanagari.

We will also make available scriptural translation | Nous allons également mettre a disposition des sys-
systems for Sindhi/Sindhi—Sindhi/Devanagari and | témes de traduction scripturale pour sindhi/sindhi-
Kashmiri/Urdu—Kashmiri/Devanagari in the near | sindhi/devanagari et cachemiri/ourdou cachemi-
future. ri/devanagari dans un proche avenir.

We have presented theoretical studies for the de- | Nous avons présenté des études théoriques pour le
velopment of interdialectal translation in the third | développement de la traduction interdialectale dans

part of this thesis. la troisiéme partie de cette thése.

In future, we intend to use use this study and de- | A l'avenir, nous avons l'intention d'utiliser utiliser
velop necessary linguistic resources and lingware | cette étude et de développer les ressources linguis-
modules for developing statistical and syntactic | tiques et des modules linguiciels nécessaires pour le
translation systems for Indo-Pak languages. développement de systémes de traduction statistique

et syntaxique pour les langues Indo-Pak.

Table 4 shows the importance of this study in | Le Table 4 montre l'importance de cette étude en
terms of the size of the populations that, we hope, | fonction de la taille des populations qui, nous 1'espé-
will benefit from our study. rons, pourront profiter de notre étude.

Extended French Summary

Introduction

En général, le terme traduction est compris comme le processus de compréhension du sens d'un
texte dans une langue et ensuite de production d'un texte équivalent dans une autre langue,
transmettant le méme message. La traduction automatique (TA) est un réve des années 1950
[21, 24-26, 80, 125, 171, 172, 178, 179]. Bien qu'un grand nombre d'étapes importantes aient
été réalisées pour animer le réve de la TA [21, 23-26, 28, 32, 41, 80, 87-90, 93, 100-102, 104,
105, 113, 115, 125, 131, 132, 134, 135, 139, 144, 162, 171, 172, 178, 179, 188], c'est toujours
un réve dans la recherche interdisciplinaire en informatique, intelligence artificielle, apprentis-

55 http://puran.info/HUMT/index.html
3¢ http://puran.info/PMT/index.html
S http://puran.info/saraikiM T/index.html
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sage automatique, linguistique computationnelle, traitement des langues naturelles, et ingénie-
rie.

Le réve de la TA est brouillé, comme d'autres réves. Pour le rendre précis, nous devons considé-
rer des tiches précises de traduction. La TA généraliste, de haute qualité et entierement automa-
tique est censée &tre impossible [10, 24-26]. Mais le probléme général de la TA peut &tre réduit
a divers sous-problémes évidemment moins complexes et moins durs que le probléme général.
Nous nous concentrerons sur quelques-uns d'entre eux, d'un intérét particulier, tels que la tra-
duction intralingue ou interdialectale. Cette réduction du probléme peut étre faite sur la base du
domaine de l'application, du sous-langage (une partie restreinte et limitée d'une langue) considé-
ré pour la traduction, des utilisateurs prévus, des couples de langues considérés, etc.

Ces fonctionnalités aident également a définir le but et les objectifs des sous-problémes de la
TA [21, 23-27, 41, 80, 93, 102, 115, 125, 139, 171, 172, 178, 179, 187, 190]. Toutefois, ces
sous-problémes peuvent encore étre tres difficiles et complexes, bien que certaines instances
puissent étre trés simples ou pas aussi difficiles. Nous définirons plus tard avec plus de préci-
sion ce que nous voulons dire par complexité et difficulté. Dans tous les cas, il ya un long che-
min a parcourir pour progresser [25, 26, 139, 187]. Un de nos objectifs sera de caractériser la
complexité et la difficulté de résoudre une certaine classe de problémes de traduction que nous
appellerons « problémes faibles de traduction ».

La TA est connue pour son caractére complexe et la multivalence (ambiguité et polysméie) en
est l'une des principales raisons. Multivalence, le terme utilisé par Mel'¢uk [125], apparait en
raison du non-déterminisme (polysémie en cours d'analyse et synonymie en génération, et les
deux en transfert) [6, 13, 21, 23-26, 32, 41, 51, 93, 102, 113, 115, 125, 139, 149, 154, 178, 179,
187]. Le nombre de traductions possibles d'une phrase moyenne en langue source peut aller jus-
qu'a des milliers ou en général augmenter de fagon spectaculaire avec sa longueur [6, 13, 21, 25,
26, 41, 93, 113, 125, 139, 149, 154, 178, 179, 187]. Une langue source SL étant donnée, ainsi
qu'une langue cible 7L, une unité de traduction S de » mots peut avoir un nombre exponentiel
Ty, Ty, ..., Ty de traductions valides, ou N = O(k") pour un certain k > / dépendant du sous-
probléme précis a traiter.

Pour résoudre le probléme de la multivalence pour un sous-probléme donné de TA, différents
filtres sont appliqués a différents niveaux pendant les phases de pré-traitement, d'analyse, de
syntheése et de post-traitement pour restreindre la cardinalité de I'ensemble des solutions pos-
sibles du probléme a un plage de valeurs acceptable et raisonnable [6, 13, 21, 23-28, 41, 51, 80,
93,102, 104, 113, 115, 125, 139, 149, 154, 171, 172, 178, 187].

La translittération est aussi un sous-probléme de la TA. Elle consiste a surmonter les différences
scripturales entre les différents systémes d'écriture utilisé pour différentes langues [1, 3, 4, 9, 15,
16, 47, 50, 57, 59-61, 65, 73, 82-85, 97, 100, 101, 108, 112, 124, 130, 143-146, 150, 153, 165,
168, 174, 181, 189, 191] ou méme pour la méme langue [118-121, 164].

Nous nous intéressons a la classe spéciale des sous-problémes n de TA ou N est soit trés petit,
disons toujours inférieur a 5, voire presque toujours €gal a 1 en raison de la proximité des
formes écrites de SL et TL. Par exemple, cela arrive dans les situations (1) ou les langues d’une
paire de traduction sont trés proches I’une de 1’autre, par exemple, bengali -assamais, hindi-
marathi, hindi-ourdou, etc., (2) lorsque la traduction est effectuée entre deux variétés ou dia-
lectes d’une langue, que ce soit écrit dans le méme systéme d’écriture (québécois-frangais, ma-
lais-indonésien) ou dans de systémes d’écriture mutuellement incompréhensibles (Penjabi, sin-
dhi, Seraiki) et (3) lorsque la méme langue est écrite dans les différents scripts mutuellement
incompréhensibles (cachemiri, malais, penjabi, sindhi, seraiki).

Le domaine de notre recherche est la classe des sous-problémes = de TA, appliqués a une paire
((Ll-,Wj), (LxW,;)) de combinaisons d’une langue et d’un systéme d’écriture, telle qu’il existe
une seule (dans la plupart des cas) ou un ensemble trés petit de « solutions de traduction » va-
lides a un sous-probléme =, pour une phrase donnée S de L; écrite en W;. Une hypothese natu-
relle est que ces problémes devraient étre trés simples (en termes de complexité du modéle in-
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formatique suffisant) et pas trés difficiles (en termes des colits humains et des cofits de calcul
entrainés par la préparation du systéme pour effectuer la traduction) que les problémes de tra-
duction générale. Nous allons montrer que la complexité et la difficulté de résolution des pro-
blémes faibles de traduction peuvent varier considérablement.

La complexité et la difficulté d’un sous-probléme z dépendent de I’instance précise du probleme
de traduction faible, ici représenté par 7 ((L;, Wj), (LiW,)). Nous utiliserons également la nota-
tion m(SL/SW,TL/TW). Par exemple, la complexité et la difficulté de la traduction interdialec-
tale est moindre pour le malais/latin-indonésien/latin que pour la traduction hindi/devanagari-h-
marathi/devanagari-m. Nous pouvons classer les problémes faibles de traduction en sous-
problémes génériques et spécifiques.

La localisation intralinguale est un probléme générique qui peut étre affinée par les problémes
spécifiques de la traduction mot a mot et la traduction intralinguale entre les différentes varié-
tés de la méme langue. Par exemple, la documentation de produits IBM en francais est traduite
en francais par Bull, une société informatique frangaise qui vend des produits IBM (par
exemple, sous AIX AS4000) en OEM. Bull n'utilise pas les versions francaises préparées par
IBM, car la terminologie IBM n'est pas identique a la terminologie de Bull.

Ce type de traduction est également obligatoire pour localiser le dialecte québécois en francais,
par exemple le terme québécois « présentement » doit étre localisé en « maintenant » en France
et vice-versa. Des problémes similaires existent également entre l'anglais (Royaume-Uni) et
l'américain (USA), le francais du 14°™ siécle et le frangais standard, et le malais (Malaisie) et
l'indonésien (Indonésie). Pour résoudre ces problémes, une analyse syntaxique compléte n’est
pas nécessaire, mais nous devons effectuer une fraduction mot a mot pour la localisation d'une
variante ou d'un dialecte de la langue dans un autre et vice versa. La Table 1 donne une liste de
sous-problémes spécifiques et génériques du probleme faible de traduction général, ainsi que
certaines de leurs instances, en ordre de complexité et de difficulté croissante.

Les problémes génériques successifs sont plus complexes que les précédents. Par exemple, la
paire francais-québécois concerne a la fois le premier et le troisiéme probléme générique. En cas
de localisation intralinguale, la traduction mot a mot est suffisante pour effectuer la traduction
lexicale québécois-frangais, mais nous avons besoin d’effectuer une analyse plus complexe pour
effectuer une traduction interdialectale francais-québécois.
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Sr. Spus—probleme géné- | Sous-problémes spéci- Instances Contraintes
rique fiques
localisation linguis- Traducti £ 3 mot Documentation Unix
tique raduction mot a Mot | >1p\ vers Bull (frangais SL=TL
1 ou . . . | vers francais) -
. . . |traduction intralin- R - SW=Tw
localisation intralin- Québécois-frangais
guale — —
guale Malais-indonésien
Translitérat Malais/latin-malais/jawi
ransiiteration Sindhi/sindhi™ — Sin-
Transcription dhl/Fle\{anagar1 - SL=TL
Punjabi/gurmukhi-
A . SW +TW
T . . | Punjabi/shahmukhi
ranscription phoné- F - roman
. S rangais -
) Earliductlon scriptu- | tique francais/API™
Translitération Hindi-ourdou
Bengali-assamais
Transcription SL+#TL
T
T . . |Hindi-marathi SW=TWw
ranscription phoné-
tique
Québécois-francais
éﬁ%l)als (USA)-anglais SL =TL
Traduction mot a mot Malais/latin SW=TWw
traduction  interdia- [ Traduction scripturale indon€sien/latin
3 P Sindhi/sindhi sin-
lectale . .
: . . | dhi/devanagari
traduction intralin- —— -
guale Punjabi/gurmukhi- SL=TL
Punjabi/shahmukhi SW+TW
Malais/jawi-
indonésien/latin
Traduction mot a mot |Hindi-ourdou
Bengali-assamais
Traduction scripturale
. o SL +TL
4 |Traductionbilingue | - 4 tion  bilingue| . . . SW = TW
.| Hindi-marathi
entre des langues li-
néairement trés sem-
blables

Table 1 : Sous-probléemes du probleme faible de traduction (par ordre croissant de complexité)

Architecture linguistique

A la suite de [21, 26, 28, 178, 179, 190], nous avons adopté et adapté le cadre pour la traduc-
tion syntaxique, montré dans la Figure 1, pour résoudre les problémes faibles de traduction.

58 i o T
La dérivation de I’écriture arabo-persane est connue sous le nom de script sindhi.

> Alphabet phonétique international (API).
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Deep understanding level Ontological interlingua

TInterlingual level Semantico-linguistic interlingua

SPA-structures (semantic

Logico-semantic level & predicate-argument)

Mixing levels Multilevel description

Syntactico-functional level F-structures {functional)

Tagged text

Text

Figure 1: Vauquois triangle [21, 26, 28, 178, 179]

Nous employons des architectures linguistiques a interlingua et a transfert, et expérimentons
avec des approches expertes, empiriques et hybrides. Nous passons par divers niveaux de repré-
sentation linguistique : source (dans le systéme d’écriture source SW), morphotactique, morpho-
logique, morphosyntaxique, et transcription intermédiaire universelle (UIT). Le raffinement du
"triangle de Vauquois" aux problémes faibles de traduction est montré dans la Figure 2.

Source Language Level Interlingua or Pivot Level Target Language Level

O <.
&S X
NS D 2.
SPY S
§$9 Q <
~ & Z ‘e
N0 O, £
o ? [
NS )
OO S o
S A
~ AN
PR )
S 28
$& %%
T8 %,
Syntactic Tree Transduction
Phonetico-Morphosyntactic Level Phonetico-Morphosyntactic Level

Phonetico-Morphological Level Phonetico-Morphological Level

Phonetico-Morphotactic Level

Direct Transliteration
Morphotactic Level #  Morphotactic Level

Source (L1, Wy) Target (Lo, W2)
Figure 2: le triangle de Vauquois adopté et adapté au probléme faible de traduction

L’UIT est définie pour chaque groupe de langues apparentées de trés pres ou de dialectes et sert
de pivot. Plus précisément, il est employé comme un pivot phonético-morphotactique pour la
traduction morphotactique de surface, comme pivot phonético-morphologique pour la traduc-
tion mot a mot, et comme pivot phonético-morphosyntactique pour la traduction basée sur la
syntaxe (en conjonction avec le transfert syntaxique).
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Modéle de calcul

Les chercheurs ont utilisé différents modéles de calcul a partir de la technologie a états finis
[131-135, p. 161, 162, 166, 167, 169] pour l'apprentissage machine et des méthodes empiriques
[1,32,33,41 102, 104, 115] pour résoudre les différents sous-problémes de MT.

A la suite de [3, 4, 100, 101, 134, 135, 162, 174], nous employons la technologie a états finis
pour la résolution de sous-problémes différents du probléme faible de traduction. Par exemple,
nous utilisons des transducteurs d’états finis non-probabilistes [121] pour résoudre le probléme
de la traduction scripturale (nous définirons précisément ce terme plus tard). Nous utilisons
aussi des grammaires hors-contexte (CFG) pour le développement de « grammaires syntagma-
tiques ».

Les méthodes a états finis donnent un taux d’erreur en mots de 16,1% pour la traduction scrip-
turale ourdou-hindi quand toute 1’information nécessaire est présente dans le texte d’entrée
(nous expliquerons plus tard ce que nous voulons dire par « information nécessaire »). Elles
donnent un taux d'erreur en mots de 47% quand tous les renseignements nécessaires ne sont pas
présents dans le texte d'entrée (cas habituel et normal, notamment pour ourdou-hindi, punja-
bi/shahmukhi-punjabi/gurmukhi, efc.). Au niveau des phrases, les méthodes a états finis donnent
un taux d'erreur de 90% en phrases pour la traduction scripturale ourdou-hindi quand le texte
ourdou en entrée contient l'information requise. Sans information requise dans le texte ourdou
en entrée, elles donnent un taux d’erreur en phrases de 99%.

En raison de I’utilisation réussie des modeles SMT en TA, nous avons conjecturé que la SMT
pourrait nous donner de meilleurs résultats que notre modele a états finis. En effet, la SMT di-
minue le taux d’erreur en mots de 47% a 22,1% pour la translittération ourdou-hindi quand le
texte ourdou en entrée ne contient pas les marques diacritiques (nécessaires pour effectuer une
bonne traduction scripturale ourdou-hindi). Au niveau de la phrase, elle fait diminuer le taux
d’erreur de 99% a 95%. En revanche, notre modéle a états finis donne de meilleurs résultats
(16,1% de taux d'erreur en mots) que notre meilleur modele SMT (27,8% de taux d'erreur en
mots) lorsque le texte en ourdou contient toutes les marques diacritiques nécessaires.

L'absence d'information du c6té source, qui est le cas habituel pour la traduction scripturale our-
dou-hindi, est un défi important, et ne peut pas étre traitée tout a fait bien dans le cadre des
transducteurs d'états-finis non-probabilistes. Bien que la SMT augmente la précision en mots
dans de tels cas, les résultats ne sont toujours pas satisfaisants dans la mesure ou la qualité
d’usage dans un contexte réel est prise en considération.

Pour augmenter la précision, nous avons proposé un modele hybride [120] pour la traduction
scripturale et obtenu une précision globale de 79,1% (au niveau des mots) lorsque le texte our-
dou en entrée ne contient pas les signes diacritiques. Un mod¢le hybride, combinaison des mo-
deéles a états finis et statistiques, donne de meilleurs résultats que les deux modéles précédents.
En bref, nous avons employ¢ des modeles a états finis, empiriques et statistiques, des gram-
maires hors-contexte, de la transduction d'arbres et de la traduction basée sur la syntaxe (en con-
jonction avec le transfert syntaxique) pour résoudre différents sous-problémes génériques et
spécifiques des problémes faibles de traduction. La Table 2 montre les résultats de la traduction
scripturale ourdou-hindi des différentes approches utilisées pour résoudre le probléme de la tra-
duction scripturale hindi-ourdou sur le méme jeu de test.

Taux d’erreur en mots Taux d’erreur en phrases

Approche [ Avec I’information | Sans I'information | Avec I’information | Sans I’information
FST 16.1% 47% 90% 99%
SMT 27.8% 23% 94,5% 95%
Hybride |14.2% 20,9% 86% 93%

Table 2: Résultats de traduction scripturale ourdou-hindi
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Méthodes d’évaluation

Une des choses les plus difficiles en TA est I’évaluation d’un systéme/algorithme proposé. Une
langue naturelle n’est pas un objet d’étude d’une science exacte comme les mathématiques ou
la physique. Par conséquent, la compréhension d’une langue naturelle est un probléme subjectif
qui dépend de multiples facteurs. Par exemple, la multivalence rend difficile d’associer un vrai
nombre objectif & une évaluation de la TA.

Les campagnes d'évaluation de TA récentes ont été critiquées parce que seuls des tableaux de
chiffres (par exemple, BLEU, NIST, ORANGE, METEOR ...) sont présentés comme résultats,
alors qu'on a montré que ces mesures basées sur des n-grammes n'ont pas de bonne corrélation
avec les jugements humains [40]. Les systémes commerciaux de MT ont toujours été classés au
bas de ces mesures, tandis que les juges de I'homme les a classées trés ¢levé [81]. Nous avons
également obtenu une exactitude moyenne en mots de 80% pour la traduction scripturale Hindi-
Urdu avec nos méthodes a états finis, et cette mesure semble étre une bonne mesure. Mais si
nous mesurons 1’exactitude au niveau des phrases, alors nous avons une exactitude de 1% a
14%. Ainsi, il est important de faire des évaluations subjectives en plus des évaluations objec-
tives.

En général, les méthodes d’évaluation humaines et machine (automatique) sont utilisées pour
évaluer un systeme de TA. Les évaluations humaines de la TA jugent divers aspects de la tra-
duction, y compris l'adéquation, la fidélité et la fluidité [72, 185]. Elles sont pertinentes, mais
colteuses en termes de temps et d'argent [72, 147]. Pour les évaluations automatiques, il existe
des mesures d'évaluation différentes, comme BLEU [147], NIST [49], la F-mesure [177], ME-
TEOR [111], I'erreur en mots, Word Error Rate (WER) [138], et MaxSim [43]. Enfin, il y a des
métriques objectives finalisées (liées a la tache), mesurant la performance humaine, comme le
temps de post-édition et le temps pour atteindre un objectif (par exemple le temps pour effectuer
une réservation, pour un systéme de traduction de dialogues parlés). Nous avons principalement
employé des méthodes d’évaluation automatiques basées sur des n-grammes, mais nous avons
également employé 1’évaluation subjective humaine durant la post-édition pour obtenir un résul-
tat parfait.

Nous avons évalué la qualité de nos résultats sur différents aspects comme [’exactitude en
phrases (SA), ['exactitude en mots (WA), le temps de post-édition, le niveau de confiance de
l’évaluateur humain, la fluidité, ’adéquation et I'utilisabilité. Nous avons mis au point des
échelles pour chaque aspect utilisé pour classer les différents systémes et mesurer leur qualité de
traduction. Par exemple, 1’échelle congue pour le SAR est formulée dans la Table 3. Nous allons
discuter et formuler toutes ces échelles plus tard en plus de détails dans la suite.

Point d’échelle | Relation avec les SAR | Description
SAR <5% NULL

5% < SAR <10% OK

10% < SAR <15% MOYEN
15% < SAR <25% ASSEZ BON
25% < SAR < 50% BON

50% < SAR >70% TRES BON

6 SAR > 70% EXCELLENT

Table 3: Echelle basée sur I'exactitude en phrases pour la qualité scripturale de traduction

(O, SN LUSE 1SN E N

Des métriques automatiques fondées sur les co-occurrences de N-grammes comme BLEU et
NIST sont largement utilisées comme étalons pour 1'évaluation de systémes de TA, en particu-
lier BLEU, méme avec ses défauts connus par rapport a I'évaluation des systemes de TA généra-
listes [40]. Nous allons montrer que ces lacunes ne sont pas si importantes dans le cas de
I’évaluation des problemes faibles de traduction, parce que nous avons une seule ou un nombre
trés petit de références, par exemple 2 a 4. Ainsi, ces mesures sont de bonnes mesures pour la
qualité de la traduction des problemes faibles de traduction. En sus de WER et SER, nous avons
employé BLEU et NIST pour évaluer nos systémes de traduction.
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Plan de la thése

Ce rapport est divisé en trois parties principales. La premicre partie présente les problémes
faibles de traduction. Le premier chapitre introduit le probléme de la traduction scripturale et en
donne une analyse. Dans le deuxieme chapitre, nous décrivons I’approche a états finis pour ré-
soudre des problémes de traduction scripturale. En conclusion, nous présentons les résultats de
notre approche a états finis sur les langues Indo-Pak (le terme est expliqué plus tard).

La deuxiéme partie se compose également de deux chapitres. Dans le troisiéme chapitre, nous
décrivons nos expériences pour résoudre le probléme de la traduction scripturale hindi-ourdou
en utilisant la traduction automatique statistique (TAS) et présentons nos résultats. Dans la der-
nicre partie de ce chapitre, nous illustrons notre approche hybride (une combinaison inédite des
approches d’états finis et statistiques) pour résoudre les problémes de traduction scripturale pour
des langues Indo-Pak. Dans le quatriéme chapitre, nous décrivons notre mod¢le interactif de
traduction scripturale. Nous décrivons également nos méthodes d’évaluation des systémes de
traduction interactive scripturale.

La troisiéme et dernicre partie consiste en une analyse de la traduction automatique interdialec-
tale, un probléme faible de traduction de plus haut niveau qui nécessite des approches plus pro-
blemes a I’analyse et au calcul que les problémes de traduction scripturale. Dans cette section,
nous analysons différentes approches computationnelles et les ressources requises pour résoudre
le probléme de la traduction interdialectale pour les langues Indo-Pak. Enfin, nous concluons
notre travail et donnons des perspectives d’avenir de notre étude.

Conclusion et perspectives

L'histoire de la TA a plus d'un demi-siécle. Le domaine de la TA a commencé a émerger avec
I'avénement des systémes informatiques. Au début, la TA a été utilisée pour traduire des textes
russes en anglais pour la défense et le renseignement. C'était un domaine de recherche trés in-
tense dans le passé et c'est aussi un domaine trés central et bénéficiant d'un financement actuel-
lement. La nécessité de la TA augmente de jour en jour parce que le monde devient un village
planétaire.

En général, une phrase donnée de n mots dans la langue source peut avoir un nombre exponen-
tiel de traductions valides, par exemple N = k" pour un certain k. Un probléeme de traduction
faible est un probléme de traduction pour lequel N est trés faible, inférieur a 5 ou presque tou-
jours égal a 1. Dans cette étude, nous avons limité notre champ a 1"étude et a I'analyse des pro-
blemes faibles de traduction seulement.

Nous avons adopté une approche étape par étape pour traiter les problémes faibles de traduction.
Nous avons commencé par le probléme de traduction scripturale, qui semblait étre un probléme
computationnellement moins dur et relativement simple. Dans la littérature actuelle, les termes
de translittération et de transcription sont souvent confondus. Nous avons défini et proposé le
nouveau terme de « traduction scripturale » pour désigner un processus combiné de translittéra-
tion et / ou de transcription.

Nous étions optimistes au début et pensions que nous pourrions non seulement résoudre les pro-
blémes de traduction scripturale, mais également les problémes beaucoup plus durs et com-
plexes de traduction interdialectale et de traduction entre des langues trés proches.

En fait, I'étude et I'analyse du probléme de traduction scripturale se sont avérées beaucoup plus
complexes et difficiles que nos estimations préliminaires. Nous avons expérimenté des modeles
a états finis, statistiques et hybrides pour résoudre les problemes de traduction scripturale. Le
graphique de la 3 montre une bréve comparaison des résultats obtenus sur le Test Set 2 HU a
l'aide de ces trois mode¢les différents, pour la traduction scripturale de hindi en ourdou.

240



French summary

100
90
80
70
60
50
40
30
20
10

Word Level Accuracy Sentence Level Word Level Accuracy Sentence Level
Accuracy Accuracy

With necessary information Without necessary information

M Finite-state system M Statistical system Hybrid system

Figure 3 : Comparaison de systémes de traduction scripturale d'ourdou en hindi aux niveaux des mots et
des phrases

L'analyse de nos résultats de traduction scripturale montre que les évaluations subjectives,
comme la satisfaction des utilisateurs, la facilité d'utilisation des résultats de la traduction dans
la vie réelle, la fluidité et 'adéquation des textes traduits, sont également trés importantes, en
sus des évaluations objectives, comme la précision en mots en phrases, et la distance d'édition.
Aux fins d'évaluation subjective, nous avons congu des échelles différentes pour calculer les
différentes mesures subjectives de nos systemes de traduction scripturale.

Pour obtenir une estimation liée a la vie réelle pour nos systémes de traduction, et améliorer I'ef-
ficacité¢ de nos systeémes de traduction scripturale, nous avons également développé un systéme
de traduction scripturale interactif en ligne. Ce systéme de traduction scripturale interactive sert
a différents objectifs.

Bien que nous n'ayons pas encore été en mesure de développer des systémes pratiques de tra-
duction interdialectale, nous avons présenté une étude théorique sur la fagon dont nous pouvons
développer des systémes de traduction interdialectale basés sur des approches de traduction au-
tomatique statistique (TAS) et de traduction syntaxique (basées sur le transfert syntaxique et sur
un cadre linguistique). Cela comprend une étude sur le type de ressources linguistiques
(lexiques et corpus paralleles) et de modules linguiciels (analyseurs morphologiques et syn-
taxiques) nécessaires pour la construction de systémes de traduction interdialectale. La disponi-
bilité¢ de systemes de traduction scripturale interactifs jouera un rdle essentiel dans le dévelop-
pement de ressources en ligne utilisant la trés grande communauté Internet.

Nous avons essentiellement fait des expériences sur des langues Indo-Pak, qui représentent une
grande part de la population du monde. La paire Ourdou-Hindi représente a elle seule 1.017 mil-
lions de locuteurs dans le monde entier. Seul le chinois compte plus de 1.000 millions de locu-
teurs. Le tableau 4 indique le nombre de locuteurs des langues Indo-Pak.
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Sr. |Language |Number of Speakers
1 Hindi 853,000,000

2 Urdu 164,290,000

3 Punjabi 120,000,000

4 Sindhi 21,382,120

5 Seraiki 13,820,000

6 Kashmir 5,640,940

Total 1178,133,060

Tableau 4 : Nombre de locuteurs de langues Indo-Pak

Nous avons mis en ligne notre systéme de traduction scripturale pour hindi-ourdou, punjabi /
shahmukhi-punjabi / gurmukhi, et seraiki/shahmukhi-seraiki/devanagari. Nous allons également
mettre a disposition des systémes de traduction scripturale pour sindhi/sindhi-sindhi/devanagari
et cachemiri/ourdou cachemiri/devanagari dans un proche avenir.

Nous avons présenté des études théoriques pour le développement de la traduction interdialec-
tale dans la troisiéme partie de cette thése. A I'avenir, nous avons l'intention d'utiliser utiliser
cette étude et de développer les ressources linguistiques et des modules linguiciels nécessaires
pour le développement de systemes de traduction statistique et syntaxique pour les langues In-
do-Pak. Le Table 4 montre I'importance de cette étude en fonction de la taille des populations

qui, nous I'espérons, pourront profiter de notre étude.
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Résumé

Etant données une langue source L1 et une langue cible L2, un segment (phrase ou titre)
S de n mots écrit en L1 peut avoir un nombre exponentiel N=0O(k") de traductions
valides T1...TN. Nous nous intéressons au cas ou N est trés faible en raison de la
proximité des formes écrites de L1 et L2. Notre domaine d'investigation est la classe des
paires de combinaisons de langue et de systéme d'écriture (Li-Wi, Lj-Wj) telles qu'il
peut y avoir une seule traduction valide, ou un trés petit nombre de traductions valides,
pour tout segment S de Li écrit en Wi. Le probleme de la traduction d'une phrase
hindi/ourdou écrite en ourdou vers une phrase équivalente en devanagari tombe dans
cette classe. Nous appelons le probleme de la traduction pour une telle paire un
probléme faible de traduction.

Nous avons congu et expérimenté des méthodes de complexité croissante pour résoudre
des instances de ce probléme, depuis la transduction a états finis simple jusqu'a a la
transformation de graphes de chaines d'arbres syntaxiques partiels, avec ou sans
l'inclusion de méthodes empiriques (essentiellement probabilistes). Cela conduit a
l'identification de la difficulté de traduction d'une paire (Li-Wi, Lj-Wj) comme le degré
de complexité des méthodes de traduction atteignant un objectif souhaité (par exemple,
moins de 15% de taux d'erreur). Considérant la translittération ou la transcription
comme un cas spécial de traduction, nous avons développé une méthode basée sur la
définition d'une transcription intermédiaire universelle (UIT) pour des groupes donnés
de couples Li-Wi, et avons utilis¢ UIT comme un pivot phonético-graphémique. Pour
traiter la traduction interdialectale dans des langues a morphologie flexionnelle riche,
nous proposons de faire une analyse de surface sur demande et limitée, produisant des
arbres syntaxiques partiels, et de I'employer pour mettre a jour et propager des traits tels
que le genre et le nombre, et pour traiter les phénomenes aux limites des mots.

A coté d'expériences a grande échelle, ce travail a conduit a la production de ressources
linguistiques telles que des corpus paralleles et annotés, et a des systémes opérationnels,
tous disponibles gratuitement sur le Web. Ils comprennent des corpus monolingues, des
lexiques, des analyseurs morphologiques avec un vocabulaire limité, des grammaires
syntagmatiques du hindi, du punjabi et de I'ourdou, des services Web en ligne pour la
translittération entre hindi et ourdou, punjabi (shahmukhi) et punjabi (gurmukhi), etc.
Une perspective intéressante est d'appliquer nos techniques a des paires distantes LW,
pour lesquelles elles pourraient produire efficacement des présentations d'apprentissage
actif, sous la forme de sorties pidgin multiples.

Mots-clés:

Traduction Automatique, translittération automatique, probléme faible de traduction, traitement
multiscriptural, traitement multilingue, automates d'états finis, transducteurs d'états finis,
méthodologie basée sur des regles, approche interlingue, transcription intermédiaire, approche
basée sur les graphes, traduction interactive, morphologie, transformation morphologique,
transformation mot-a-mot, analyse partielle en constituants, arbre syntaxique partiel,
transformation d'arbres, méthodes empiriques, méthodes probabilistes, langues de I'Asie du sud,
systémes d'écriture, ourdu, hindi, punjabi, sindhi, cachemirien, seraiki.



Abstract

Given a source language L1 and a target language L2, a written translation unit S in L1
of n words may have an exponential number N=0O(k")) number of valid translations
T1...TN. We are interested in the case where N is very small because of the proximity
of the written forms of L1 and L2. Our domain of investigation is the class of pairs of
language and writing system combinations (Li-W1i, Lj-Wj) such that there may be only
one or a very small number of valid translations for any given S of Li written in Wi. The
problem of translating a Hindi/Urdu sentence written in Urdu into an equivalent one in
Devanagari falls in this class. We call the problem of translation for such a pair a weak
translation problem.

We have designed and experimented methods of increasing complexity for solving in-
stances of this problem, from simple finite-state transduction to the transformation of
charts of partial syntax trees, with or without the inclusion of empirical (mainly proba-
bilistic) methods. That leads to the identification of the translation difficulty of a (Li-
Wi, Lj-Wj) pair as the degree of complexity of the translation methods achieving a de-
sired goal (such as less than 15% error rate). Considering transliteration or transcription
as a special case of translation, we have developed a method based on the definition of a
universal intermediate transcription (UIT) for given groups of Li-Wi couples and used
UIT as a phonetico-graphemic pivot. For handling interdialectal translation into lan-
guages with rich flexional morphology, we propose to perform a limited on-demand
surface analysis into partial syntax trees and to use it to update and propagate features
such as gender and number and to handle word boundary phenomena.

Beside large-scale experiments, this work has led to the production of linguistic re-
sources such as parallel and tagged corpora and of running systems, all freely available
on the Web. They include monolingual corpora, lexicons, morphological analyzers with
limited vocabulary, phrase structure grammars of Hindi, Punjabi and Urdu, online web-
services for transliteration between Hindi & Urdu, Punjabi (Shahmukhi) & Punjabi
(Gurmukhi), efc. An interesting perspective is to apply our techniques to distant L-W
pairs, for which they could efficiently produce active learning presentations in the form
of multiple pidgin outputs.

Keywords:

Machine Translation, Machine Transliteration, Weak Translation Problem, Multiscriptural
processing, Multilingual processing, Finite-state Automata, Finite-state Transducers, Rule-based
Methodology, Interlingua Approach, Intermediate Transcription, Graph-based Approach, Inter-
active Translation, Morphology, Morphological Transformation, Word-to-word Transformation,
Partial Phrase Structure Analysis, Partial Syntax Tree, Tree Transformation, Empirical Me-
thods, Probabilistic Methods, South Asian Languages, Writing Systems, Urdu, Hindi, Punjabi,
Sindhi, Kashmiri, Seraiki.



