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Conception et analyse de schémas d'ordre très élevé distribuant lerésidu. Application à la mécanique des �uides.

Résumé :
La simulation numérique est aujourd'hui un outils majeur dans la conception des objetsaérodynamiques, que ce soit dans l'aéronautique, l'automobile, l'industrie navale, etc... Un desdé�s majeurs pour repousser les limites des codes de simulation est d'améliorer leur précision, touten utilisant une quantité �xe de ressources (puissance et/ou temps de calcul). Cet objectif peutêtre atteint par deux approches di�érentes, soit en construisant une discrétisation fournissantsur un maillage donné une solution d'ordre très élevé, soit en construisant un schéma compact etmassivement parallèlisable, de manière à minimiser le temps de calcul en distribuant le problèmesur un grand nombre de processeurs. Dans cette thèse, nous tentons de rassembler ces deuxapproches par le développement et l'implémentation de Schéma Distribuant le Résidu (RDS)d'ordre très élevé et de compacité maximale.Ce manuscrit commence par un rappel des principaux résultats mathématiques concernantles Lois de Conservation hyperboliques (CLs). Le but de cette première partie est de mettre enévidence les propriétés des solutions analytiques que nous cherchons à approcher, de manière àinjecter ces propriétés dans celles de la solution discrète recherchée. Nous décrivons ensuite lestrois étapes principales de la construction d'un schéma RD d'ordre très élevé :
• la représentation polynomiale d'ordre très élevé de la solution sur des polygones et despolyèdres;
• la description de méthodes distribuant le résidu de faible ordre, compactes et conservatives,consistantes avec une représentation polynomiale des données de très haut degré. Parmielles, une attention particulière est donnée à la plus simple, issue d'une généralisation duschéma de Lax-Friedrichs (LxF);
• la mise en place d'une procédure préservant la positivité qui transforme tout schéma stableet linéaire, en un schéma non linéaire d'ordre très élevé, capturant les chocs de manièrenon oscillante.

Dans le manuscrit, nous montrons que les schémas obtenus par cette procédure sont consistantsavec la CL considérée, qu'ils sont stables en norme L8 et qu'ils ont la bonne erreur de tronca-ture. Même si tous ces développements théoriques ne sont démontrés que dans le cas de CLsscalaires, des remarques au sujet des problèmes vectoriels sont faites dès que cela est possible.Malheureusement, lorsqu'on considère le schéma LxF, le problème algébrique non linéaire asso-cié à la recherche de la solution stationnaire est en général mal posé. En particulier, on observel'apparition de modes parasites de haute fréquence dans les régions de faible gradient. Ceux-ci sont éliminés grâce à un terme supplémentaire de stabilisation dont les e�ets et l'évaluationnumérique sont précisément détaillés. En�n, nous nous intéressons à une discrétisation correctedes conditions limites pour le schéma d'ordre élevé proposé.
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Cette théorie est ensuite illustrée sur des cas test scalaires bidimensionnels simples. A�n demontrer la généralité de notre approche, des maillages composés uniquement de triangles et desmaillages hybrides, composés de triangles et de quandrangles, sont utilisés. Les résultats obtenuspar ces tests con�rment ce qui est attendu par la théorie et mettent en avant certains avantagesdes maillages hybrides. Nous considérons ensuite des solutions bidimensionnelles des équationsd'Euler de la dynamique des gaz. Les résultats sont assez bons, mais on perd les pentes deconvergence attendues dès que des conditions limite de paroi sont utilisées. Ce problème nécessiteencore d'être étudié. Nous présentons alors l'implémentation parallèle du schéma. Celle-ci estanalysée et illustrée à travers des cas test tridimensionnel de grande taille. Du fait de la relativenouveauté et de la complexité des problèmes tridimensionels, seuls des remarques qualitativessont faites pour ces cas test : le comportement global semble être bon, mais plus de travailest encore nécessaire pour dé�nir les propriétés du schémas en trois dimensions. En�n, nousprésentons une extension possible du schéma aux équations de Navier-Stokes dans laquelle lestermes visqueux sont traités par une formulation de type Galerkin. La consistance de cetteformulation avec les équations de Navier-Stokes est démontrée et quelques remarques au sujetde la précision du schéma sont soulevées. La méthode est validé sur une couche limite de Blasiuspour laquelle nous obtenons des résultats satisfaisants.
Ce travail o�re une meilleure compréhension des propriétés générales des schémasRD d'ordretrès élevé et soulève de nouvelles questions pour des améliorations futures. Ces améliorationsdevrait faire des schémas RD une alternative attractive aux discrétisations classiques FV ouENO/WENO, aussi bien qu'aux schémas Galerkin Discontinu d'ordre très élevé, de plus en pluspopulaires.

Mots clés:
Distribution du Résidu, Fluctuation Splitting, Schémas d'ordre très élevé, Lois de Conser-vation, Hyperbolicité, Équations d'Euler, Équations de Navier-Stokes, Maillages non structurés,Maillages Hybrides, Traitement Parallèle, Discrétisation Compacte.

Discipline :
Mathématiques Appliquées
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Conception and analysis of very high order distribution schemes.Application to �uid mechanics.

Abstract:
Numerical simulations are nowadays a major tool in aerodynamic design in aeronautic, au-tomotive, naval industry etc... One of the main challenges to push further the limits of thesimulation codes is to increase their accuracy within a �xed set of resources (computationalpower and/or time). Two possible approaches to deal with this issue are either to contructdiscretizations yielding, on a given mesh, very high order accurate solutions, or to constructcompact, massively parallelizable schemes to minimize the computational time by means of ahigh performance parallel implementation. In this thesis, we try to combine both approachesby investigating the contruction and implementation of very high order Residual DistributionSchemes (RDS) with the most possible compact stencil.The manuscript starts with a review of the mathematical theory of hyperbolic ConservationLaws (CLs). The aim of this initial part is to highlight the properties of the analytical solutionswe are trying to approximate, in order to be able to link these properties with the ones of thesought discrete solutions. Next, we describe the three main steps toward the construction of avery high order RDS:
• The de�nition of higher order polynomial representations of the solution over polygons andpolyhedra;
• The design of low order compact conservative RD schemes consistent with a given (highdegree) polynomial representation. Among these, particular accest is put on the simplest,given by a generalization of the Lax-Friedrich's (LxF) scheme;
• The design of a positivity preserving nonlinear transformation, mapping �rst-order linearschemes onto nonlinear very high order schemes.

In the manuscript, we show formally that the schemes obtained following this procedure areconsistent with the initial CL, that they are stable in L8 norm, and that they have the propertruncation error. Even though all the theoretical developments are carried out for scalar CLs,remarks on the extension to systems are given whenever possible. Unortunately, when employingthe �rst order LxFscheme as a basis for the construction of the nonlinear discretization, the �nalnonlinear algebraic equation is not well-posed in general. In particular, for smoothly varyingsolutions one observes the appearance of high frequency spurious modes. In order to kill thesemodes, a streamline dissipation term is added to the scheme. The analytical implications of thismodi�cations, as well as its practical computation, are thouroughly studied. Lastly, we focus ona correct discretization of the boundary conditions for the very high order RDS proposed.The theory is then extensively veri�ed on a variety of scalar two dimensional test cases. Bothtriangular, and hybrid triangular-quadrilateral meshes are used to show the generality of theapproach. The results obtained in these tests con�rm all the theoretical expectations in termsof accuracy and stability and underline some advantages of the hybrid grids. Next, we consider
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solutions of the two dimensional Euler equations of gas dynamics. The results obtained arequite satisfactory and yet, we are not able to obtain the desired convergence rates on problemsinvolving solid wall boundaries. Further investigation of this problem is under way. We thendiscuss the parallel implementation of the schemes, and analyze and illustrate the performanceof this implementation on large three dimensional problems. Due to the preliminary characterand the complexity of these three dimensional problems, a rather qualitative discussion is madefor these tests cases: the overall behavior seems to be the correct one, but more work is necessaryto assess the properties of the schemes in three dimensions. In the last chapter, we consider onepossible extension to the Navier-Stokes equations in which the viscous terms are discretized by astandard Galerkin approach. We formally show that the overall discretization is consistent withthe Navier-Stokes equations. However some accuracy issues are highlighted and discussed. Themethod is tested on a �at plate laminar boundary layer �ow. The results are satisfactory.The work presented in this thesis allows a better understanding of the general properties ofvery high order RDS, and contributes substantially to bring forward a number of open issuesfor future improvement. These improvements should make RD discretizations a very appealingalternative to now classical high order and very high order FV ENO/WENO schemes, and tothe increasingly popular class of Discontinuous Galerkin schemes.
Keywords:

Residual Distribution, Fluctuation Splitting, Very High Order Schemes, Conservative Laws,Hyperbolicity, Euler Equations, Navier-Stokes Equations, Unstructured Meshes, Hybrid Meshes,Parallel treatment, Compact Discretization.
Discipline:
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Chapter 1
Introduction

1.1 Motivation and Context
The development of high-order algorithms for the simulation of compressible �ows in complexdomains and on arbitrary meshes is one of the most important research topics in ComputationalFluid Dynamics (CFD). The continuous growth of the available computing power allows toincrease the complexity of the �ow con�gurations, object of the simulations, and to run alwaysbigger test cases usually to obtain an improved accuracy on the �ow parameters. However,improvements in the e�ciency, �exibility and robustness of the numerical algorithms are stillneeded to fully exploit this computational potential.It is generally agreed that, when dealing with complex geometries and �ow patterns, the use ofunstructured grids is somewhat mandatory. Compared to structured and multi-block structuredgrids, the generation of unstructured meshes, or more generally hybrid unstructured/structuredmeshes, can in fact be highly automated. A considerably lower degree of user-input and, con-sequently, less time [12], are needed. Moreover, unstructured mesh generation lends itself verynaturally to solution-dependent local re�nement and adaptation, which are known to improvethe simulation output, and at the same time reduce the number of elements/degrees of freedomneeded to achieve a �xed level of accuracy [12, 15, 18]. As a consequence, the design of newnumerical algorithms for the simulation of compressible �ows is largely oriented to formulationswell suited for unstructured grids (see e.g. the volumes [18, 17]).An abstract model for the �uid-mechanics equations is given by a so-called Conservation Law :a Partial Di�erential Equation (PDE) stating the conservation of some unknowns over a givenregion of space and time. The design of new numerical schemes for compressible �ow simulationsoften starts with the study of simple Conservation Laws for which one has more theoreticalinformation on the properties of the exact solution. It is generally accepted that state of theart of numerical methods for conservation laws on unstructured grids is not entirely satisfactory.The need of more �exible, accurate and robust solution algorithms for the analysis of large andcomplex systems is what drives the development of new techniques. Accuracy, robustness ande�ciency requirements lead to the following design constraints:

Accuracy: The accuracy of a numerical solution is measured as its mathematical distance to theexact solution. It is well known this error is often a power function of a characteristic size
1



2 Chapter 1. Introduction
of the used mesh. The power coe�cient measuring the speed of convergence of the methodis called the order of accuracy. It is actually possible to increase the order of accuracy ofthe approximation in a relatively simple way, without introducing expensive reconstructionsteps. Moreover, due to the fact that unstructured grids can be quite irregular (especiallyin 3D), the accuracy of the method should be as insensitive as possible to the regularity ofthe mesh;

Stability: Conservation laws admit weak solutions containing discontinuities. These solutionsare piecewise smooth without strong oscillations in correspondence of the singularities. Thenumerical method must be able to handle discontinuities without polluting the solution withspurious oscillations, what usually leads to a reduced order of accuracy. Additionally, weaksolutions of Conservation Laws also verify additional constraints imposed by the existenceof a (vanishing) dissipative mechanism1. This gives an additional stability requirementfor the numerical method. Ideally, the stability of the scheme (non-oscillatory characterand energy/entropy stability) should be parameter free, that is, it should not depend onconstants which are di�cult to optimize in a general way;
E�ciency: Since the beginning of this century, CPU designers are able to still �t the Moorelaw [70] only thanks to the increasing number of processor cores inside the CPUs. In orderto go along with this computation distribution, the numerical method of the future shouldallow a fast and e�cient implementation, particularly on parallel platforms. From thispoint of view, the main requirements are simplicity and compactness. A compact methodis one that, to update the values of the unknowns in a certain mesh location, only usesinformation contained in the closest grid entities. In parallel implementations, this allowsto minimize the overhead due to inter-processor communication. Compactness is equivalentto the locality of the discrete procedure.
1.2 Methods Overview

This section presents a brief overview of the main methods used to approximate the solutionsof compressible �ow problems.
1.2.1 Finite Volume Methods

Within these methods, the Finite Volume Methods [66, 117] are certainly the most matureand the most documented ones. The reason of this is that most of the industrial codes for CFDhave started by implementing this kind of methods. At the di�erence of the two next presentedmethods, the Finite Volume Methods are based on Cell-Centered approximation of the spatialdomain: to each node of the mesh is associated a small area in its vicinity. It is called the cell.The node interacts with its neighbors through the edges of this cell. Problem is that in multipledimensions, most FV schemes are designed by applying only one dimensional formulations alongparticular mesh directions (edges, edge normals, etc...). This often reduces dramatically theaccuracy on irregular meshes and it is why this type of scheme su�ers of strong de�ciencies as faras accuracy and e�ciency are concerned. Moreover, the construction of high order formulationnecessitates the local reconstruction of polynomials of the proper degree, what is done by looking1The entropy inequality implied by the second principle of thermodynamics is an example
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for enough neighbors such that the local polynomial coe�cients are uniquely de�ned. For veryhigh order polynomial approximation, one will then use the direct neighbors, the neighbors ofthe neighbors, aso... This renders the schemes non-compact, hence less e�cient.Even though there have been attempts to design truly multidimensional �nite volume schemes([67, 65]) and to improve high order FV schemes for unstructured meshes [20, 19, 21], the mainde�ciencies remain. These de�ciencies are neither cured by the very high order extensions ob-tained using the ENO/WENO philosophy (see [110, 111]), which are based on even more complexpolynomial reconstructions that are completely annihilating hopes of e�cient parallelization.
1.2.2 Discontinuous Galerkin Methods

As you may guess from their name, the Discontinuous Galerkin (DG) methods are basedon the Galerkin Finite Element theory, but allow the numerical solution to be discontinuous[14, 13]. Each element of the grid has its own degrees of freedom and do not share them withothers. Interactions between elements are computed by numerical �uxes that can be rathercomplex, often coming from the theory of the Riemann solvers. It is today a numerical methodenjoying a very wide and very active community because of its promising character. The mainadvantage of the method is an easy and compact generalization to high order formulation [13].This is due to the fact that high order polynomial representation of the data is not reconstructedbut de�ned on the elements of the grid, all containing extra degrees of freedom. Impressive resultshave already been shown [45, 44].Unfortunately, even if local energy stability properties can be easily proved [14], the design ofnon-oscillatory DG schemes relies either on the use of FV limiters, which can reduce dramaticallytheir accuracy, or, as stabilized FE schemes, on the use of discontinuity capturing operators[61, 46, 16]. This technique basically reduces to adding strongly dissipative terms in localizedregions where the gradient of the solution is large. This approach, if on one hand allows toprove the global L8 stability of the solution, on the other hand does not fully guarantee its localmonotonicity. More importantly, these shock-capturing (SC) terms depend on tunable constantswhich are di�cult to determine in a general way.Finally, the price to pay for this discontinuous approach is a quite expensive computationalcost. On Figure 1.1 is represented for the same mesh the conformal approach that would be usedby the continuous Residual Distribution schemes and the non-conformal discretization used inthe DG framework. It is clear the DG discretization uses more degrees of freedom. To be morerational, let us consider a mesh composed of n vertices. We can roughly estimate the number ofdegrees of freedom needed by a DG scheme and by a RD one. This is done in Tabular 1.1. TheResidual Distribution framework presents always much less unknowns than its DG equivalent,especially for low order of accuracy. For 4th order, it is for example 3 to 4 times cheaper. But ifwe look at the asymptotic behaviour with respect to the polynomial order of representation ofthe data, we see that both schemes need approximately the same amount of unknowns. In 2D,if k is the polynomial order of representation of the solution, a RD scheme needs approximately
k2n degrees of freedom when DG needs pk � 1qpk � 2qn. The same in 3D, both scheme needingasymptotically k3n degrees of freedom.
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Figure 1.1: Third Order RD and DG meshes.
2D 3DOrder DG RD DG RD2 6ns ns 24ns ns3 12ns 4ns 40ns 8ns4 20ns 9ns 80ns 27nsTable 1.1: Comparison of the number of degrees of freedom needed for second, third and fourthorder approximation in the case of a DG or a RD scheme.

1.2.3 Residual Distribution Schemes
The last class of methods we are presenting here is the one that is going to be used anddeveloped through all this thesis. The Residual Distribution Schemes (RDS), is a class ofmethods that uses a continuous representation of the variables, similarly to the standard FiniteElement methods. It has been �rst studied by P.L. Roe in the early eighties [99] and was calledat that time the Fluctuation Splitting methods. The ground entity is the residual, an integralquantity over each element, that represents the balance of information entering the element.Following some well de�ned rules, this residual is distributed to the nodes of the elements andby looping over this oversimpli�ed scheme, we prove to converge toward an approximation of theexact solution of the Conservation Law. These methods allow to discretize all the operators ofthe equation at the same time and it is proved the global accuracy of the scheme is led by theresidual computation accuracy. Furthermore, these methods can guarantee by construction thelocal monotonicity of the approximation. Solutions with discontinuities can then be computedwithout the help of any shock capturing or slope limiter term. Eventually, the distribution ofthe degrees of freedom used for the kth order polynomial representation of the data being doneinside the elements and therefore maximum compact, the update of the value of the solutionin a given location of the mesh only uses the information stored in immediately adjacent meshentities. This makes residual methods very compact and e�ciently parallelizable.
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1.3 Contribution of This Thesis

The objective of this thesis is to construct and analyze RD methods that are using highorder polynomial representation of the data on hybrid unstructured grids. The work presentedhere describes an automatic non linear method allowing to build a kth order (k P N�) ResidualDistribution Scheme from a �rst order one. In particular, the study mainly focuses on thisautomatic method applied on the linear Lax-Friedrichs scheme. This provides a monotonicitypreserving kth order conservative scheme that can be applied on unstructured hybrid grids forcomplex Conservation Laws. This work is widely illustrated with a large panel of test casesand the convergence order is often examined through mesh convergence curves. The e�ciencyof the higher order approximation is always discussed in term of accuracy as well as in term ofcomputational time and e�ort. The main goal of the higher order schemes is to reach a given levelof accuracy with a signi�cantly reduced amount of nodes, such that the global computationalcost is also drastically cut down. Hereafter we recall the background of our work and discuss itsmajor contributions.
1.3.1 State of the Art at the Beginning of the Thesis
Historical Overview and Literature Survey in RDS: An impressive bibliography is avail-able in Mario Ricchuito's thesis [89] which have been published in May 2005. One can especiallygive a look at page 20 of this manuscript for an exhaustive list of the main publications on RDSat that time.Since then, pretty much the same laboratories have carried on with this domain. The pi-oneering work of Roe has been continued by H. Nishikawa at University of Michigan [75, 74].They are today focusing on solving the second order advection-di�usion equation as a �rst ordersystem by introducing the gradients as additional variables. RD framework can then be appliedto the di�usive terms, but the price to pay is a much bigger system to solve. In Italy, M. Napoli-tano and al. from politecnico di Bari are working on the theoretical and numerical analysis ofthe various RD schemes in their steady or unsteady version [101, 39, 102]. At University ofLeeds, M.J. Hubbard and his team are studying both steady and unsteady cases [55, 58, 57] butare recently interested in particular in a discontinuous formulation of the Fluctuation SplittingSchemes [56, 59]. This gives even more �exibility to the formulation, but on the other hand asksto de�ne some numerical �uxes along the edges of the mesh. At ENSAM, Paris, A. Lerat andhis collaborators are designing a residual based scheme using a reconstructing stencil [31, 30, 32].They are making the transition between the Finite Volume spirit and the pure compact ResidualDistribution. At the University of Wisconsin, J.A. Rossmanith is showing interesting results[103, 104]. We can also notice that applications to more complex �ow models of the RD frame-work are promising. RDS have been already used for multiphase �ow problems [43], for theresolution of the shallow water equations [94, 92, 91, 103] and for the Magneto-Hydrodynamics(MHD) [38, 86]. Eventually, the von Karman Institute for Fluid Dynamics in Brussels, Bel-gium [52, 95, 63, 108, 41] under the lead of H. Deconinck and the project Scallaplix of INRIABordeaux-Sud-Ouest (R. Abgrall) [90, 3, 5, 96, 82, 10, 6, 84, 83, 85, 88] are still very active andhave produced several collaborative results [116, 93, 91, 81].
Mature Work in September 2006: This work is the continuation of the work of CédricTavé [114], who was about to �nish his PhD thesis when I started mine. Thus, [114] gives a fair
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overview of what was already available at that time and what was not. If we look at one dimensionvariable problems (usually called scalar problems), the global progress was pretty much the sameas today. It is in fact only on these simple cases that we have a real theoretical framework andthis has been of course the task of the pioneering work. Scalar very high order methods werealready developed with Lax-Friedrichs scheme in Bordeaux [8, 81, 115], and with the LDA schemeat VKI 2 [40, 52] but no results using more accurate approximations than quadratic polynomialshad been presented. Scalar unsteady problems had also found second order solutions by di�erentways that are still in competition today. One can either consider the problem in a time-spacedomain [7, 95] or �rst discretize the time dependent terms and then solve the problem by RDSas a steady problem plus a time dependent source term [5]. For multidimensional problems (asEuler or Navier-Stokes equations), second order solutions on hybrid meshes were just produced[114], and some unsteady cases were treated [95, 7]. The treatment of the viscous terms was atthe very beginning [63, 93].
1.3.2 New Developments
Higher Order Assessment: The �rst work of this PhD thesis was to develop a high orderscalar code in order to validate the theory for very high order computations. This code is usingpolynomial representation of the solution up to 4th order and the results are very good. Wehave been testing the code on several simple test cases and the general mesh convergence alwaysget the expected slope. This proves that the theory on high order RD schemes is good andthat the scheme we are using, based on the �rst order linear Lax-Friedrichs scheme, is ableto reach this very high order convergence in seemingly all the possible scalar cases. Once thispoint had been veri�ed, we could start implementing the scheme for multidimensional problemsinside the Fortran platform for �uid simulations developed at INRIA Bordeaux Sud-Ouest, called�FluidBox�.
Higher Order Quadrangle Treatment: At the beginning of this introduction, we werespeaking about the general agreement of the community on the mandatory character of unstruc-tured grids for their �exibility and adaptivity in the case of complex geometries. We call Hybridmeshes, the discretizations of the spatial domain that do not contain a unique type of element.In our case, they are built with both triangles and quadrangles. These hybrid meshes are evenmore interesting for complex geometries, because they are more �exible but above all, becausefor a given number of degrees of freedom they have up to twice as less elements.The scalar code presented in the last paragraph has also been coded to handle with quadran-gular elements. In Chapter 6, we are going to show that very high order can also be reached onhybrid meshes. Moreover, we notice that using hybrid meshes is often very interesting in termof CPU time for scalar problems: the computation of the residuals inside quadrangles is indeedmore expensive, but as we already said, there are roughly twice as less elements in a hybrid meshwhere a maximal number of quadrangles is used. Furthermore, the accuracy of the obtainedsolution is usually higher when using quadrangles, because of the higher polynomial degree ofof their shape functions. Developing the high order formulation for quadrangles �rst on scalarproblems gave us a global understanding of the di�culties of the formulation. We could thentranspose the general hybrid scheme for multidimensional problems treatment into �FluidBox�2Von Karman Institute, Brussels, Belgium
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easily.
Code Parallelization: compactness is one of the major property of the Residual Distributionschemes, because it allows to parallelize the global algorithm with great e�ciency. We had thento try to distribute the computation to several processors, in order to measure the real e�ciencyof the parallelization, but also simply to be able to run some big test cases that lasted foreverwhen using a sequential method (1 processor only). The implementation of this task did notradically change our Fortran code, adding just some new routines and processor communicationshere and there, but its optimization is a hard challenge which is still ongoing at that moment.The parallel e�ciency should be very near form 1.0 (n processors work n times faster than 1single processor), it is not the case nowadays. Even if 2 or 4 processors are really workingapproximately 2 or 4 times faster than one, we cannot reach this e�ciency for a growing numberof processors. The mean parallel e�ciency is today oscillating between 0.7 and 0.8, following thesize of the treated problem.
3D Simulations: Three dimensional problems were the main argument for the code paralleliza-tion. Excluding a very small number of simple test cases, three dimensional problems requiresuch an amount of calculations that they are almost impossible to run on a sequential machine.Just after the code has been parallelized, we developed a RD formulation for tetrahedra. Weare today able to run inviscid second order simulations on any unstructured mesh composeduniquely with tetrahedra. This is illustrated in this thesis by �gures representing continuousor discontinuous solutions around several types of aerodynamic objects, including a completeaircraft. Hybrid 3D mesh is indeed a next step in that branch, but the generalization of theactual code to hexahedra should not be very complex. On the contrary, taking into account theviscous phenomena seems to be a much harder challenge and it is an ongoing work inside INRIAproject Bacchus.
Viscous Term Treatment: RD schemes are not very well suited at that moment to deal withviscous problems. The main reason is that RD formulation assumes the approximated quantitiesto be continuous, when viscous terms make use of the unknowns and their gradients. Becausethe unknowns are piecewise polynomial per elements, their gradients are discontinuous along theedges of the mesh. To bypass this constraint, we have been using a Finite Element Galerkinformulation for the viscous terms and coupled it with the RD formulation of the inviscid partof the �uid mechanics equations. We prove here that binding these two formulations togetheris consistent but unfortunately, it seems that high order convergence cannot be reached for �nemeshes. However, the obtained solutions are satisfying, especially for coarse meshes which is apromising result for even higher order approximations.
Optimizations: here and there small improvements of the scheme are also an important part ofthe new developments brought by this thesis. These optimizations increase the execution speed ofthe code, as Jacobian matrices calculation by �nite di�erences that requires a little bit more timethan the solution we had before, but that tremendously helps the iterative convergence. We canalso notice the e�ort of always �nding the optimal number of points needed for each quadratureformula. We say optimal, because this does not always correspond to the minimal number ofpoints. Some minimal quadrature formulas need to reconstruct the unknowns at the quadrature
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points when a formula with one or to extra points makes use of already computed quantitiesand is therefore globally faster. This quadrature rules reduction is always done by studyingthe mandatory properties of the terms we are approximating. In that case, the optimization isthus not only a matter of execution speed but also a matter of memory size, as one needs lessinformation to come to the same result. It is also important to think about next developmentsand to implement a code that is generic enough to integrate further steps easily, but not to muchgeneric to keep a relative e�ciency.Finally, optimizations are indeed using a lot of development time but they are also greatlyhelping to �nd small errors in the program that are very common in our everyday work. Thesecollateral improvements are at the end greatly helping the scheme to reach its optimal perfor-mances and sometimes also help to understand better the numerical properties of the scheme.
1.4 Structure of the Manuscript

The organization of the manuscript has been conceived keeping in mind the modeling stepswhich lead, starting from a physical problem, to a discrete solution verifying certain properties.In particular, the idea behind the structure of the thesis is to �rst present the continuous prob-lem that needs to be solved, then to introduce the framework of a discrete space and discreteunknowns, to present theoretically and practically the discretization approach, and �nally vali-date it on many test cases, showing at the same time some new developments. It is hoped thisstructure starting from the most theoretical aspects of the problem and ending by some verypractical remarks is going to make clear the analytical tools that are going to be used and onwhat grounds some properties are claimed to be important. The text is structured as follows:
• The �rst part of this thesis is the most theoretical one. The goal is here to set down thewhole framework in which is drown the numerical scheme we are describing in the nextparts. Classical mathematical and physical concepts are recalled in those two chapters.

� In Chapter 2 are �rst presented in an as complete as possible way the mathematicsof Conservation Laws. The goal is here to give an exhaustive overview of the groundresults about the well-posedness of the problem and about the structure of the so-lution. Links with the physics are also given. In a second part of this chapter, weare going to recall the main ideas allowing to build the two main Conservation Lawsthat are used along this thesis: the Euler and the Navier-Stokes equations. Finally,some theoretical but also physical arguments about the boundary conditions are alsodiscussed.� Chapter 3 treats the problem of the discretization and the high order representationof the solution. It �rst starts by a very abstract explanation that shows the approx-imation of the problem is in fact just a reduction of the space of unknowns. Thecontinuous problem living in a space of in�nite dimension is recast into a discreteproblem existing in �nite dimensional functional space. A �nite amount of degreesof freedom is needed and this introduces the concept of meshing for linear or higherorder polynomial interpolation. Many useful relations and notations are introducedis this chapter. This part ends by a discussion on the advantages of the higher orderformulation.
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• The second part is dedicated to the Residual Distribution Schemes and their theory. Wewish here to give a fair overview of what is known and what is not in the world of RDschemes and to detail as much as possible the practical implementation of the RD schemebased on the �rst order Lax-Friedrichs scheme.

� Chapter 4 recalls all the theoretical results needed to understand well the computa-tion of a RD scheme. In order to stay clear, the problem is often reduced to a scalarproblem or/and to a linear approximation of the data. It is unfortunately most ofthe time the only framework in which we are able to obtain any result. In a �rstsection, we explain what a Residual Distribution Scheme is and where it does comefrom. In particular, links with other classical numerical formulations are given. Ina second section are described and studied the main properties of the RD schemes.Consistency with the continuous solution, stability of the scheme and accuracy of theapproximation are detailed and reformulated into simple properties. This chapter �-nally ends by a brief overview of the main Residual Distribution Schemes: N, LDA,Blended, PSI, SUPG and Lax-Friedrichs schemes.� In Chapter 5, we are much interested into the higher order formulation of the Lax-Friedrichs scheme. We here explain step by step what must be done in order toreach the steady state of a Conservation Law problem. First section details the highorder residual computation and the limitation technique that turns any �rst order RDscheme into a high order one. Second section speaks about the problem resolution.An explicit method is described and several solutions for an implicit treatment aregiven. They are compared in term of e�ciency. Third section deals with a convergenceproblem that is occurring when using the Limited Lax-Friedrichs scheme. We heregive an explanation of the problem and propose a cure as well as a deep analysisof its practical computation. A global overview of the boundary conditions used inthe following test cases is given in a fourth section. Finally, this part concludes bya summary of the e�ective implementation of the Stabilized Limited Lax-FriedrichsResidual Distribution Scheme.
• The third part of this thesis illustrates the above properties of the RD schemes by pre-senting a large panel of test cases. At the same time, it is the occasion to show the newdevelopments that have been realized during the past three years. This being still ongoingwork, the quality of the results is not always the one expected, and it is going to be honestlydiscussed.

� Chapter 6 deals with a generalization of the formulation to hybrid meshes. Whereasall the theoretical results of Part II are developed on triangles only, we present herea formulation adapted to quadrangles. The second section shows some numericalresults. We �rst start by validating the hybrid meshes formulation on very simplescalar test cases. Convergence curves show a quasi perfect match with the expectedresults. We then go to the system case and show that most of the phenomena observedin the scalar cases are still noticed for multidimensional problems.� In Chapter 7, the matter is the extension of the scheme to three dimensional spaces.The problem is that 3D simulations are costly in terms of calculation. That is whywe �rst begin this chapter with a detailed explanation of the parallelization of thecode. An analysis of the computational speedup is also given. When this is done,we are able to run almost any kind of simulation, whatever it size can be, as soon
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as we have enough processors. This allows us to present a large panel of inviscidresults, starting from a very simple 3D Bump test case and �nishing with a completesupersonic aircraft.� Chapter 8, the last chapter of this thesis, presents a formulation and results forviscous problems. As explained earlier, there is at that moment no possible RDstraightforward formulation for the viscous terms, because of the occurrence of thegradients of the unknowns. These viscous terms are then discretized by Finite ElementGalerkin Formulation and we show in a second section that this treatment staysconsistent but that the desired order of accuracy cannot be reached for �nest meshes.This theory is validated on a very simple Blasius Layer test case and 2D viscous testcases are then shown.

• We �nally conclude this manuscript by a summary of the content and by a global review ofthe new developments brought by this work. We also underline the current limitations ofour approach and �nally discuss some possible routes to improve and extend the presentedwork.
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In this part, we are about to explain theoretically the main context of this thesis: the mathe-matics of conservation laws, and more precisely some of the mathematics needed to solve well theproblems associated to Fluid Dynamics. For clearness of our words, we will restrict our spatialdomain to R2, or a part of R2. This will also greatly help the illustration of the presented ideas.When no further information is given, we are speaking about the whole R2. All the followingideas can be straightforwardly extended to a three-dimensional space though. Incidentally, thiswill be done in the appropriate part, see Chapter 7.We �rst recall some useful mathematical results and techniques around Fluid Mechanics. Itcontains results on systems of conservation laws and mathematical description of the well knownNavier-Stokes and Euler Equations. In a second Chapter, we present the techniques for theapproximation of a problem applying a conservation law on a given domain. The polynomialorder of the discretization is then de�ned. We �nally explain why higher order formulation istoday appealing in numerical simulation, above all in term of computation cost.
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Chapter 2

Mathematics and Fluid Mechanics

The concepts described in this chapter are well known in CFD. They are recalled here forsake of completeness and to gain better understanding of the Residual Distribution Schemes(RDS). Indeed, RDS, the object of the thesis, as most of the schemes for hyperbolic problems,are built starting on one or several of the results presented in this chapter. Because there isalways a realistic phenomenon behind a Partial Di�erential Equation (PDE), the link betweenthe PDEs and the physics will also be underlined.
The following chapter is certainly not complete though, and we will try to show the resultsin the largest possible framework. Each of the following ideas have been demonstrated either inthe scalar case or for a one-dimensional domain. In our case, we try to make these notions asclear as possible in a multidimensional system context, but this is not always possible. There aretwo potential reasons for that. First, no complete demonstration exists at this time in a generalframework, and the concept is mathematically valid only in a one dimensional domain or fora scalar unknown. Extension to more complex situation is however often assumed. Second, acomplete demonstration might exist, but the tools needed are too complex and their descriptionwould be much too long. In this case some reliable references are given. What the reader has tokeep in mind is that the following ideal mathematical problems always come from a real context,and the tools developed to solve them mainly come from the physics. That means that even ifno mathematical demonstration is today available, the extension of these notions on very simplecases is physically expected and then somewhere mathematically assumed.
In a �rst part, we set up the theoretical framework around the systems of conservation laws.We build the class of possible solutions and explain two tools needed to describe these solutionsand �nd the only relevant one: hyperbolicity and entropy conditions. Boundary problems willalso be discussed. In a second part, we present two main systems of conservation laws: theEuler equations and the Navier-Stokes equations. Because the complete formulation of theseequations has always been unclear for me, I decided to start from the main conservation lawsof mechanics (mass, momentum and energy conservation) and then build the expected PartialDi�erential System (PDS) using some physical hypothesis. This chapter is also the occasion toset down some useful notations.

15
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2.1 Systems of Conservation Laws
2.1.1 Description

Let D be an open subset of Rm, and U a vector of m variables u1, . . . , um. U is assumed tobe a function from R2�r0;�8r into D. We call system of m equations of conservation laws, thesystem BUBt � BF pUqBx � BG pUqBy � 0, X � px, yq P R2, t ¥ 0 (2.1)
where F and G are called the �ux-functions. They are smooth functions from D into Rm. Wealso introduce the �ux-vector ÝÑF � pF,Gq, which enables us to rewrite equation (2.1) into anequivalent form BUBt �ÝÑ∇ .ÝÑF pUq � 0, X � px, yq P R2, t ¥ 0. (2.1)

If we furthermore consider the �ux-functions as di�erentiable, the system can be put into aso called quasi linear form
BUBt � ~λ.

ÝÝÑ∇U � 0, X � px, yq P R2, t ¥ 0 (2.2)
with ~λ � � BFBU ,

BGBU

, the �ux Jacobians.System (2.1) expresses the conservation of the quantities u1, . . . , um. In fact, if Ω is anarbitrary sub-domain of R2 and ~n is the outward unit normal to BΩ, the boundary of Ω, itfollows from (2.1)

d

dt

�»
Ω

UdX

� »

BΩÝÑF pUq .~n ds � 0. (2.3)
That means the time variation of ³Ω UdX is equal to the mean �ux ÝÑF pUq entering Ω. Andbecause the �ux entering Ω is the �ux going out of R2zΩ, the quantities u1, . . . , um are conservedinside the whole space.
2.1.2 1D Linear Riemann Problem

To understand well the resolution of such a non-linear system of conservation laws, we will�rst restrict our problem to a one dimensional linear equation, with Riemann initial conditions,the matrix A being constant.$'&'%
BUBt �A.BUBx � 0, x P R, t ¡ 0

Upx, 0q � Ul, x   0
Upx, 0q � Ur, x ¡ 0

(2.4)
If we consider A as diagonalizable, there exists L andR, matrices of left and right eigenvectorsrespectively, such that A � RΛL, with Λ � diagpλ1, . . . , λmq. There is no restriction considering
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Figure 2.1: Solution of the 1D linear Riemann problem for a 4 dimensional unknown. Thesolution is represented in the eigenspace.
λ1, . . . , λm sorted by increasing order. It is now straightforward that V � pv1, . . . , vmq � LUveri�es the decoupled system:

$'&'%
BVBt �Λ.

BVBx � 0, x P R, t ¡ 0

Vpx, 0q � LUl � Vl, x   0
Vpx, 0q � LUr � Vr, x ¡ 0

(2.5)
One applies the theory of characteristic to each of the m independent one dimensional scalarproblem and obtains:

vipx, tq � vipx� λit, 0q, @px, tq P R� R�, @i � 1 . . .m.

U � °
i viri gives then the expected solution of (2.4). An illustration of this result is representedon Figure 2.1.By diagonalizing the system, we have decoupled them equations and revealedm independentspeeds of propagation of information, λ1, . . . , λm. This has allowed us to describe completely thesolutions of such a problem. Generalizing this method to two dimensional problems, as in (2.2),is not as simple as in the one dimensional situation. The main drawback is that the matricesBFBU and BGBU are generally never diagonalizable in the same basis. The equations stay coupledand the system is still as hard to solve as before. But on the other hand, this gives us somevery interesting properties, strongly bounded to the physics. This is described in the following.These results are fully studied in [109], [106], [4].
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2.1.3 Linear Cauchy Problem with Constant Coe�cients

Let us consider the following two dimensional system, the coe�cient of matrices A and Bbeing constant in space, but possibly functions of the time variableBUBt �ABUBx � BBUBy � 0, x, y P R, t P r0;T s . (2.6)We search the solutions of this problem for initial conditions taken in the set of tempered dis-tributions, S 1pR2q. On this space, we can de�ne the Fourier transform as the adjoint of theFourier transform on the Schwartz class, S pR2q. And the equation becomes, if ξ is the Fouriervariable in space and Û the Fourier transform of U:
BÛBt � �iApξqÛ, @ξ P R2, t P r0;T swhere we have used the notation Apξq � Aξ1 � Bξ2.Because the Fourier transform is an isometry of L2, the problem (2.6) is well-posed in L2pR2qif and only if

sup
ξPR2

‖expp�iApξqq‖   �8. (2.7)
A problem verifying (2.7) is called weakly hyperbolic3. This result can be generalized to anySobolev space HspR2q, s P R and also to S and S 1, see [106].
2.1.4 Hyperbolicity

It is not easy to verify the condition of weak hyperbolicity though, as it requires the cal-culation of the exponential of a complex matrix. That is why many su�cient conditions of L2well-posedness have appeared, each one of them taking at some time the name of hyperbolicitycondition. In the next paragraph, we give some de�nitions of these hyperbolicity conditions,valid even in the more complex cases (non constant coe�cients) and link them to the weakhyperbolicity condition described above, in the case of problem (2.6), see [106].
De�nition 2.1 (Hyperbolicity)An operator

D � Bt � ḑ

i�1

Aipx, tqBi

is called
• hyperbolic, if the matrices Apξq � °

i Aiξi are diagonalizable with real eigenvalues forall ξ in Sd�1 �  x P Rd; ‖x‖L2 � 1
(,

• constantly hyperbolic, if moreover the multiplicities of the eigenvalues remain constantas ξ covers the sphere Sd�1,
• strictly hyperbolic, in the special case where all eigenvalues are real and simple for every

ξ.
3some authors call it simply hyperbolic and use the term strongly hyperbolic for what we will call hyperbolic
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De�nition 2.2 (Symmetrizability)Operator D is symmetrizable if there exists a symmetric positive-de�nite matrix S0, suchthat every S0Ai is symmetric.
Property 2.3If an operator is symmetrizable or constantly hyperbolic, then it is weakly hyperbolic.
Proof : If we can write Apξq � Ppξq�1DpξqPpξq with Dpξq a real diagonal matrix, we have

‖expp�iApξqq‖ ¤ ‖Ppξq‖ ‖Ppξq�1‖ ‖expp�iDpξqq‖And condition (2.7) is ful�lled when the conditioning ‖Ppξq‖ ‖Ppξq�1‖ of P is bounded indepen-dently of ξ.In the case of a symmetrizable system, S�1
0 admits a unique symmetric positive-de�nite squareroot R and one has:

Apξq � RpRS0ApξqRqR�1

The matrix RS0ApξqR is symmetric and diagonalizable in an orthogonal basis and may be writtenas QpξqTDpξqQpξq. We now have :
‖Ppξq‖ ‖Ppξq�1‖ � ‖QpξqR�1‖ ‖RQpξqT‖ � ‖R�1‖ ‖R‖,a number independent of ξ.In the case of a constantly hyperbolic operator, the eigenspaces depend continuously on ξ.Then for any ξ0 P Sd�1, there exists a neighborhood of ξ0 on which a choice of Ppξq dependscontinuously on ξ, and is thus bounded. And as the sphere Sd�1 is compact, it is covered bya �nite number of such neighborhoods. There now exists C P R� such that @ξ P Sd�1, 1

C ¤
‖Ppξq‖ ¤ C. We have found a choice of the diagonalizing matrix, possibly not continuous, butwhich conditioning is bounded.
We �nish this paragraph with the following theorem showing that in a constant coe�cientsymmetrizable hyperbolic system, the speed of propagation of the information is �nite andbounded by the maximal spectral radius of the matrix A. This result can be extended toany symmetrizable hyperbolic systems, as shown in [106].Consider again equation (2.6) and use the notation, @ξ P S1, Apξq � Aξ1 � Bξ2. If oursystem is symmetrizable, there exists a s.p.d constant matrix S0 such that S0A and S0B aresymmetric matrices. The system

S0
BUBt � S0ABUBx � S0BBUBy � 0 (2.8)

can easily be transformed into a symmetric system using the variable V � S
1{2
0 U. We thereforede�ne the characteristic polar envelopeChar �  pξ, λq P S1 � R�; det pS0Apξq � λImq � 0

(
,and for each point pX, T q P R2 � R�, the dependence cone

KpX, T q �  px, tq P R2 � r0;T s; λpt� T q � px�Xq.ξ ¤ 0,@pξ, λq P Char( .
KpX, T q is the intersection of the half-spaces passing through pX, T q with outward normal pξ, λq.It is then a convex cone with basis pX, T q, and its boundary admits almost everywhere a tangentplane which equation is: λpt � T q � px �Xq.ξ � 0 for some pξ, λq P Char, λ being necessarilymaximal. The section ofKpX, T q at time t is denoted by ωptq and we have the following theorem:
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Theorem 2.4 (Finite Propagation Speed)If V|ωp0q � 0 then Vpx, tq � 0, @px, T q P KpX, T q
Proof : If we take the scalar product of equation (2.8) by V � S

1{2
0 U, we obtain the followingadditional conservation law (viewed as an energy identity)BBt‖V‖22,m � BBx 〈A1V,V〉

m
� BBy 〈B1V,V〉

m
� 0 (2.9)

where the notation   ., . ¡m is used for the canonical scalar product in Rm and matrices A1 andB1 are A1 � S
1{2
0 AS�1{2

0 , B1 � S
1{2
0 BS�1{2

0 .For 0   ε   T , let us consider the truncated cone
K p0, εq � tpx, tq P KpX, tq; 0   t   T � εu

and integrate relation (2.9) over K p0, εq (See Figure (2.2)). On the top (resp. bottom) of thetruncated cone, the outward normal is the positive (resp. negative) axis of the time component.On the side, as we already showed it, there exists almost everywhere a normal which is pξ, λq PChar, λ being maximal in the direction ξ. Thus we have:»
K p0,εq ~∇.

�� 〈ImV,V〉m〈A1V,V〉
m

〈B1V,V〉m
�dxdt � »

ωpt�εq‖V‖22,mdx� »
ωp0q‖V‖22,mdx

� »side 〈�A1ξ1 � B1ξ2 � λIm
�
V,V

〉
dxdt

� 0

But as for all ξ, λ is maximal in the direction ξ, matrix A1ξ1 � B1ξ2 � λIm has only positiveeigenvalues and the term integrated on the side of the cone is positive. That means no informationenters the cone. And �nally, if V is identically null on the bottom it is straightforward that it isnull everywhere in K p0, εq. ε being arbitrarily small, V|KpX,T q � 0.
This result shows that in the case of constant coe�cients matrices, for any pX, tq in the space-time domain, we can de�ne a dependence cone, function of the eigenvalues of Apξq in all spacedirection ξ. We then know that the value of the solution at point pX, tq only depends on thevalue of the solution inside the cone because no information crosses the boundary of this cone.That demonstrates that in symmetrizable constant coe�cients systems the speed of propagationof compactly supported initial condition is �nite and bounded by the biggest eigenvalue of Apξq,

ξ covering Sd�1.This result can actually be extended to constant hyperbolic problems and for systems withnon constant coe�cient matrices. The mathematical tools needed to reach this goal are rathercomplex though, and that is why we just refer to the book of Benzoni-Gavage [106].
2.1.5 Weak Solutions and the Rankine-Hugoniot Conditions

Another main feature of systems of conservation laws is they do not admit in general classicalsolutions (at least C1) over the whole space-time domain. This is true even for very regular initialconditions. In other words, for a given system and an - let say C8 - initial condition, there mightexist a time T � such that @t ¥ T �, the solution U of system (2.1) is not continuous in space.Let us illustrate this with the very simplest classical example: the Burger equation.
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Figure 2.2: Dependence cone for point pX, T q. The propagation is anisotropic. K p0, εq is thepart of the cone between the two surfaces ωp0q and ωpt�εq. pξ, λq is a normal to the side surface.It is an element of Char, with λ being maximal.
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We consider the following scalar (m � 1) one-dimensional problem# BuBt � u

BuBx � 0, x P R, t ¡ 0

upx, 0q � u0pxq, x P R
(2.10)

It is a classical calculation to show that the solution is constant along the characteristic curves,and that these characteristic curves are straight lines which constant slopes depend on the initialdata. The characteristic line passing through point px0, 0q is de�ned by the equation:
x � x0 � u0px0q.tThis is illustrated on Figure 2.3 for the initial condition

u0pxq �
$&%

1, x ¤ 0,
1� x, 0 ¤ x ¤ 1,
0, x ¡ 1.

(2.11)
This is of course not a very regular initial condition, but we took this one for sake of simplicity.The result would be exactly the same with any regular decreasing initial condition. As one cansee on Figure 2.3, all characteristics curves generated in r0; 1s intersect at point p1, 1q. Thatmeans that at this point of the space-time domain, the solution u can take any value between 0and 1, and thus cannot be continuous here. In order to be able to solve problem (2.1), we mustthen consider a weaker de�nition of a solution. Instead of seeking our solution in the space ofregular functions, we are going to de�ne the solutions in the space of the distributions.
De�nition 2.5 (Weak Solution)Let U0 be a vector of m bounded function in R2. A function U P L8pR2 � r0;�8rqm iscalled a weak solution of problem (2.1) with initial condition U0, if Upx, tq P D a.e. andsatis�es for any C1 function ϕ with compact support in R2 � r0;�8r» 8

0

»
R2

�
U.

BϕBt �ÝÑF pUq.ÝÝÑ∇xϕ



dx dt� »

R2

U0pxq.ϕpx, 0qdx � 0. (2.12)
Remark 2.6If U is a C1 solution of problem (2.1), it is of course a weak solution of this problem in theabove sense.A characterization of the weak solutions of a system of conservation is given by the followingwell known theorem. One can read [48] or [49] for a proof.
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Figure 2.3: Solution of the 1D scalar Burger equation (2.10) with initial conditions (2.11). Allthe characteristics meet at point p1, 1q and the solution cannot be continuous there.
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Theorem 2.7 (Rankine-Hugoniot)

U is a piecewise C1 solution of problem (2.1) in the sense of distribution on R2 � r0;�8r ifand only if:
(i) U is a classical solution of (2.1) in the domains where it is C1;
(ii) along the surfaces of discontinuity, U satis�es the vectorial jump condition:

pU� �U�qnt � �ÝÑF pU�q � ÝÑF pU�q	 .ÝÑnx � ÝÑ0 m (2.13)
where pnt, ~nxq is a normal to the surface of discontinuity and U� and U� denotes thelimit value of the solution at the discontinuity.

2.1.6 Non Uniqueness of the Weak Solution
This section deals with another problem of our systems of conservation laws: the non unique-ness of a weak solution. As before, we are going to illustrate it by means of a classical example:the scalar Riemann problem for the Burger's equation$'&'%

BuBt � u
BuBx � 0, px, tq P Rx � Rt,

u0pxq � "
ul, x   0,
ur, x ¡ 0.

(2.14)
We suppose that ul � ur. The Rankine-Hugoniot condition (2.13) shows that we obtain aweak solution of (2.14) by propagating the discontinuity at speed s � pul � urq{2:

upx, tq � "
ul, x   st,
ur, x ¡ st.

But for ul   ur, because the characteristic curves are never intersecting, one can also builda continuous solution
upx, tq �

$&%
ul, x   ult,
x{t, ult   x   urt,
ur, x ¡ urt.

And worst, for any a between ur and ul, we have a family of admissible solutions:
upx, tq �

$''&''%
ul, x   s1t,�a, s1t   x   0,
a, 0   x   s2t,
ur, x ¡ s2t.with discontinuity propagating at speeds s1 � 0.5pul � aq and s2 � 0.5pur � aq.
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2.1.7 Entropy Solution

The mathematical problem of existence and uniqueness of the solution of problem (2.1) isat that point in a dead end. We have seen that some well chosen cases do not admit classicalsolutions. We have then extended the space of existence of the solutions to a larger class offunctions and obtained an in�nity of solutions. But realistic problems admit only one repro-ducible solution. We have now to �nd a criterion that will sort the weak solutions in order topick the only physically relevant one. This criterion is based on the concept of the entropy thatwe introduce now.In nature, there is always a dissipation phenomenon: no real problem coming from the physicsis perfectly reversible. Let us consider the following one-dimensional scalar dissipative problem,
ε ¡ 0 being a small viscous parameterBuεBt � div pfpuεqq � ε∆uε, (2.15)with initial condition uεpx, 0q � u0ε Ñ u0 when ε Ñ 0. We still suppose that uε takes its valuein D, a sub-domain of R (m � 1). If f is regular enough (Lipschitz), it has been shown thatfor any positive ε, for any initial condition u0ε P L2, equation (2.15) admits a unique solution.This result is partly demonstrated in [48]. One can also �nd a partial extension to systems (onlyexistence in the space of distribution) in [51] and [47].If we now consider a sequence of ε tending toward zero, and a sequence of solutions of (2.15)such that :
a) DC P R, ‖uε‖8 ¤ C, independently of ε;b) uε ÝÑ

εÑ0
u almost everywhere in R2 � r0;�8r ,

then u is a weak solution of (2.1) in its scalar form for initial condition u0, and moreover veri�es,in the sense of distributions, any inequality of the form:BBtSpuq � div pG puqq ¤ 0, (2.16)where
(i) S : DÑ R is a smooth convex function;(ii) G is a vector of 2 scalar smooth functions such that

S1puqf 1jpuq � G 1
jpuq, j � 1, 2. (2.17)

pS,G q is called a pair of Entropy-Flux, S an entropy function and G an entropy �ux. This resultmay also be extended to systems, see [48] page 27. If we now take relation (2.2) and multiply itby S1pUq, quick calculation shows that U satis�es an additional conservation relationBBtSpUq � ÝÑ∇ .G pUq � 0, X � px, yq P R2, t ¥ 0. (2.18)
The next important result is available in the scalar case for entropy solutions. It is the mainresult of chapter 2 of [48] were one can �nd a complete and rigorous demonstration.
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Theorem 2.8 (Kruzhkov)A weak solution u of a scalar conservation law with a bounded initial condition u0 P L8pΩq,verifying relation (2.16) for any pair of Entropy-Flux pS,G q is unique and called the entropysolution. Moreover this solution is bounded

@T ¡ 0, u P L8pΩ� r0;T sq.
We were looking for the solution of a sort of idealistic problem (without viscosity), and wefound that the only relevant solution is the one coming from the physics. By �the one comingfrom the physics�, we mean the solution being the limit of a sequence of solutions of an associatedmore realistic perturbed problem for a decreasing viscosity coe�cient ε. But we do not haveto construct such a sequence of realistic solutions in order to �nd our sought solution. We cansimply sort the solution of the idealistic problem with an entropy criterion. Entropy is then aset of additional conservation relations the solution of problem (2.1) has to verify.What one has to remember is that we started with a system verifying just the �rst principleof thermodynamics (conservation of the variables), and could �nd either no solutions (in theclass of regular ones) or an in�nity (in a weaker class of functions). But by looking at thephysics intrinsic to the problem, we found the system of conservation laws is well-posed whenit comes with an entropy condition. That is the second principle of thermodynamics and thatbinds strongly the mathematical problem to the one that comes from the physics.In the following, we are not much going to speak about entropy. It is a very important notionthough. In fact it is rather hard to de�ne a criterion ensuring the solution of a numerical schemewill converge toward the entropy solution of the associated Partial Di�erential System (PDS).It is besides not always the case as one can build numerical schemes that converge toward a badsolution in the case of problem (2.14). For example, let us consider the case when ul � �1 and

ur � 1. As we have seen, the characteristic straight lines never intersect and the solution is twoconstant plateau separated by a fan between the lines t � �x and t � x. We now apply the�nite di�erence second order consistent Mac Cormack method de�ned by:$&%
u�i � un

i � ∆t
h

�
fpun

i�1q � fpun
i q�

un�1
i � 1

2 pun
i � u�i q � ∆t

2h

�
fpu�i q � fpu�i�1q� (2.19)

with ∆t and h being the time and spatial steps respectively and f being the equation �ux,
fpuq � u2{2 in the case of the Burger equation. We see on Figure 2.4, that for any time orspatial step, the solution at time step n is identically reproduced in u� and thus in un�1. At theend, we obtain a solution with a shock which equation is x � 0 and this is actually a weak solutionof problem (2.14) as s � pur � ulq{2 � 0. The scheme has converged toward a weak solutionof the problem which is not the entropy solution. And making the problem more complex doesnot help: there exists multidimensional test cases for which unphysical shocks may appear. Ageneral criterion ensuring a scheme is always converging toward the entropy solution is then stillneeded.A last interesting result is the following theorem of Mock.
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Figure 2.4: Mac Cormack second order consistent �nite di�erence scheme applied to equation(2.14) with initial boundary conditions ul � �1 and ur � 1.
Theorem 2.9 (Mock)Let S : D ÝÑ R be a smooth convex function. A necessary and su�cient condition for S tobe an entropy for system (2.1) is that the m�m matrices S2pUqF1pUq and S2pUqG1pUq aresymmetric.
Proof : Let �rst assume S is a convex entropy for system (2.1). Then there exists a vector of smoothfunctions G , such that S1pUqF1pUq � G 1

1pUq and S1pUqG1pUq � G 1
2pUq. Let consider only the�rst relation and di�erentiate its kth-line with respect to uj . We obtain :

BBuj

�
m̧

i�1

BFiBuk

BSBui
� BG1Buk

� � 0 (2.20)
ô B2G1Bukuj

� m̧

i�1

B2FiBukuj

BSBui
� m̧

i�1

BFiBuk

B2SBuiuj
. (2.21)

Since the left-hand side is symmetric in the k and j variables, it holds for the right-hand side,and we have :
m̧

i�1

BFiBuk

B2SBuiuj
� m̧

i�1

BFiBuj

B2SBuiuk
. (2.22)

This means exactly the matrix S2pUqF1pUq is symmetric. And same argument holds for thesecond coordinate GpUq.Conversely, assuming (2.22), we have
BBuj

�
m̧

i�1

BFiBuk

BSBui

� � m̧

i�1

�BFiBuk

B2SBuiBuj
� B2FiBukBuj

BSBui


 (2.23)
� BBuk

�
m̧

i�1

BFiBuj

BSBui

�
. (2.24)

If our spatial domain is contractible (there is a homotopy that continuously deforms Ω to a point),it follows from Poincaré's lemma that there exists a function G1, such that
BG1Buk

� m̧

i�1

BFiBuk

BSBui
, @k P v1,mw

And because once more the same arguments hold for G, S is an entropy function associated withthe entropy �uxes G1 and G2.
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This result adds an extra value to the concept of entropy. Not only the existence of an entropycan ensure the well-posedness of our problem in a certain class of non-continuous functions, butit also enforces the propagation of the information at a �nite speed, because the existence of anentropy for a system is equivalent to the property of symmetrizability for this same system, andthus allows to build a dependence cone for each point of the space-time domain that cannot becrossed by any information, as demonstrated in theorem (2.4). Eventually, the symmetrizabilityof the system ensures that the initial value problem is well-posed in the L2 norm [24]. Thesolution depends continuously on the initial condition and it is thus possible to build a numericalscheme. In fact, if this was not the case, one could achieve a very ill-posed solution were theobtained numerical situation would depend on the round o� of the machine. Furthermore, [24]also shows that the symmetrized problem (2.8) is well-posed in Lp, p � 2, 1 ¤ p ¤ �8, if andonly if the symmetric Jacobian matrices S0AS�1

0 and S0BS�1
0 commute. This being generallynot the case, looking for the entropy solution of a system of conservation laws is a well-posedproblem only in L2.

2.1.8 Maximum Principle
We can go further in the analysis of the solution and show that the entropy solution of aconservation law respects a maximum principle. This prevents the sudden appearence of a newglobal extrema in the solution. This property is very important from a numerical point of view,because one would need it to be transpose to the solution of the numerical scheme used andhence ensure the L8 stability of the scheme and prevent the approximated solution to explodewithin a �nite time. The next theorem comes from [48] and is there explained and demonstratedin details. It is true only in the scalar case but for any dimension of the spatial domain. It claimsthe entropy solution is bounded in L8 norm and monotonically depends on the initial condition.

Theorem 2.10Let u0 belong to L8pR2q. Then the unique entropy solution u of problem
BuBt � BfpuqBx � BgpuqBy � 0, x � px, yq P R2, t ¥ 0

upx, 0q � u0pxq, x P R2

with smooth scalar �uxes f and g, belongs to L8pR2 � r0, T sq. This solution satis�es foralmost all t ¥ 0,
i)

‖up., tq‖L8pR2q ¤ ‖u0‖L8pR2q
ii) If v is also the entropy solution of (2.25) associated with initial condition v0, we have

u0 ¥ v0 a.e. ùñ up., tq ¥ vp., tq a.e.
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2.1.9 Boundary Conditions

Let us come back to a one dimensional system, and moreover assume that the Jacobianmatrices of the �ux have still constant coe�cients. Instead of solving our system on Rx entirely,we now would like to restrict our spatial domain to Ω � Rx, let say to R�
x for example. Thisimplies we have to give a boundary condition over the half-straight-line tp0, tq; t ¡ 0u. The studyof the admissible boundary conditions is the aim of this paragraph.Our new problem can be written as :Find U P D � Rm, such that$'&'%

BUBt �ABUBx � 0, px, tq P R� � R�
Upx, 0q � U0pxq, x P R� (Initial Condition)
Up0, tq � V0ptq, t P R� (Boundary Condition) (2.25)

We still denote by λ1, . . . , λm the eigenvalues of A sorted by increasing modulus and by r1, . . . , rmthe associated eigenvectors. For any object z of Rm, let z1, . . . , zm be its components in theeigenbasis. Furthermore, we de�ne p P v1,mw as the index such that λp   0 ¤ λp�1, p beingpossibly 1 or m. We also use the notation : Up0�, tq � lim
xÑ0�Upx, tq.Using the theory of characteristics developed in section 2.1.2 dealing with the 1D RiemannProblem, we clearly see that for any i ¤ p, for any t ¥ 0, Uip0�, tq is de�ned by : Uip0�, tq �

U0ip�λitq. This means that enforcing a boundary condition in the direction of ri, pi � 1 . . . pq isuseless as the component of U in these directions are already de�ned by the initial condition. Ifwe look at it from a purely mathematical point of view, there is no way of verifying continuouslythe condition Up0, tq � V0ptq for t ¡ 0. On the other hand, if we take a point close enough tothe space boundary, we see that its components of higher index depend only on the value of thefunction on the space boundary. Thus, if V0i is not de�ned for i ¡ p, our problem is ill-posed.The above discussion is illustrated on Figure 2.5. It can be summarized as follows:
Property 2.11In the case of a one dimensional system with constant coe�cients Jacobians, the boundaryconditions must be enforced on and only on the components of the solution which associatedcharacteristics are entering the domain.

In fact in the numerical case, if we impose some information on the outgoing characteristics,it will be blown out of the computational domain at any time step and will not interfere withthe computed solution. That is why, instead of property 2.11, numericians make often use of thefollowing characterization, coming from [42]:
Property 2.12If U is a numerical solution of system (2.25) with boundary condition V0ptq, then U is alsoa numerical solution of all the assimilated problem with boundary condition :

V1ptq P #V P D;V � V0 � p̧

i�1

αiri, αi P R

+
.
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Figure 2.5: E�ect of the boundary and initial conditions on the ith component of the unknownin both cases when λi   0 and λi ¡ 0

We now come to a more complex problem, with space dimension n and non constant coef-�cient matrices. We are here dealing just with a formal generalization of the previous section.Some results are mathematically demonstrated, but we consider the physical explanation of thephenomenon as relevant enough. At almost any point of the boundary we have a tangent planewhich is a hyperplane of Rn. It is then well de�ned by its unit normal ξ. We moreover supposethat ξ points inside the domain. If we further assume that our problem is symmetrizable, theJacobian of the �ux is diagonalizable in the direction of ξ and we once more call λ1, . . . , λm itseigenvalues in the direction ξ, sorted by increasing order and r1, . . . , rm the associated eigenvec-tors. If p is the integer index such that λp   0 ¤ λp�1, r1, . . . , rp are the direction of strictlyoutgoing information, rp�1, . . . , rm are the direction of entering information. We then see theboundary problem as a local one dimensional problem, and we assume that the problem is well-posed if the boundary condition enforces the solution on and only on the entering characteristicdirections.

2.2 Euler and Navier-Stokes Equations
We will now describe physically the two systems of equations which solutions are going tobe approximated during this thesis: the Euler and Navier-Stokes equations. We �rst start bythe main mechanical conservation laws and apply some restrictions coming from �uid mechanics.Some �ner hypothesis on the �uid behaviour will give the two systems of equations. Each termof these systems of partial derivatives will be described and analyzed. This will lead to someequivalent formulations that will be useful in the rest of the manuscript.
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2.2.1 Lagrangian Coordinates

Let Ω0 � R2 be a set of particles of the plane at time t � 0, and Ωptq its evolution at time t.For simplicity, we suppose that at any �xed time t, the function
fptq :

"
Ω0 ÝÑ Ωptq
X ÞÝÑ xis of class C8 and set up a di�eomorphism from Ω0 into Ωptq. This allows us to de�ne theJacobian of the transformation, JpX, tq � det
�BfptqBX


, which is everywhere invertible. Becauseof its structure, a quick calculation [87] gives
BJBt pX, tq � JpX, tq div�BxBt
 � JpX, tq ÝÑ∇ .~u.

The Cartesian Coordinates px, tq are not very practical in the following construction, dueto the fact that time derivatives must be calculated on the trajectories xptq, depending on t.That is why it is really interesting to use the change of variable fptq, leading to the LagrangianCoordinates pX, tq, where the spatial component X � xp0q does not depend on time. Let now ω0be any subset of Ω0 and ωptq its image through fptq. We are just going to apply basic physicalconservation laws on the continuous medium ωptq, t P R�.
2.2.2 Mass Conservation

Because by de�nition no particle enters or exits ω during the time, the global mass of ω isconserved:
Dm pωptqq

Dt
� 0

� D
Dt

�»
ωptq ρpx, tqdx

�

� »
ω0

D
Dt

pρpfpX, tq, tqJpX, tqq dX
� »

ωptq
�BρBt


� div pρ~uq dx
This being true for any ω, we obtain the local mass conservation equation

BρBt � div pρ~uq � 0, @t ¡ 0, @x P Ωptq (2.26)
2.2.3 Momentum Conservation

Following the fundamental principle of dynamics, the variation of the total momentum in ωis given by
D
Dt

�»
ωptq ρ~udx

� � »
ωptq ρ~fvdx� »

Bωptq ~FspM,~nqds (2.27)
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where ~fv is the speci�c volumic force inside ω, and ~FspM,~nq is the surface force applied to theboundary of ω at point M and into the direction ~n, the outward normal to Bω at M .A result of physics [23, 26, 53] shows that ~Fs must be a linear function of ~n. That meansthere exists a strain tensor �pMq such that

@M P Ω, @~n P R2, ~FspM,~nq � �pMq.~n.Therefore, using once more that the conservation relation above is veri�ed for any subset ω0 of Ω0and by applying the divergence theorem on the boundary term, we obtain the local momentumconservation equations, component by component (i � 1, 2)
BBt pρuiq � div pρui~uq � ρp~fvqi � div p�iq , (2.28)

assuming �i is the ith line of strain tensor �.
2.2.4 Angular Momentum Conservation

Still following the fundamental principle of dynamics, the variation of the total angularmomentum in ω is given by
D
Dt

�»
ωptq ρ ~OM ^ ~u dM

� � »
ωptq ρ ~OM ^ ~fv dM � »

Bωptq ~OM ^ p�pMq.~nq ds (2.29)
In R2, this is a scalar equation on the direction Oz and using (2.26) and (2.28), we quickly �ndthat �12 � �21. In R3, we have 3 equations, each of them leading respectively to �32 � �23,
�13 � �31 and �12 � �21. In both two and three dimensional spaces, the angular momentumequation leads to the requirement that the strain tensor � has to be symmetric.
2.2.5 Energy Conservation

The �rst principle of thermodynamics states that the variation of total energy with respectto time is equal to the power of all the forces applied to the system, plus the heat contributions.If we denote by E � 1
2‖u‖

2� e the total energy per unit volume (e being the internal energy perunit volume), by w the speci�c heat creation by unit of time, and by ~q the heat �ux inside Ω,this is translated for any time t as
D
Dt

�»
ωptq ρEdx

� � »
ωptq ρ~fv.~u dx� »

Bωptq ~FspM,~nq.~upMq ds
� »

ωptq ρw dx� »
Bωptq ~q.~n ds (2.30)

Once more using the divergence theorem if needed, and the fact ω is indi�erently chosen, weobtain the local expression of the energy conservation equation
BρEBt � div pρE~u� �.~u� ~qq � ρ~fv.~u� ρw (2.31)
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2.2.6 Application to Fluids
De�nition 2.13A continuous medium is a Newtonian �uid when the strain tensor is a linear function of thestress tensor, de�ned by pDqij � 1

2

� BuiBxj
� BujBxi




We can then demonstrate [53, 26] there exists a variable p, called pressure, and two viscositycoe�cients λ and µ called respectively �rst and second Lamé coe�cient of viscosity such that
� � p�p� λdiv p~uqqI� 2µD (2.32)

Furthermore, these equations are just equations of conservation of the mass, the momentum,and the energy. They do not take into account the second principle of thermodynamics. Wedo have to �nd criteria in the system of equation and in the behaviour laws such that thecompatibility with the second principle of thermodynamics is ensured. This second principlestates there exists a scalar function s, called the speci�c entropy, such that for any ω
D
Dt

�»
ωptq ρsdx

� ¥ »
ωptq ρwT dx� »

Bωptq ~q.~nT ds. (2.33)
We then obtain the local entropy inequality :

BρsBt � div�ρs~u� ~q
T


 ¥ ρw

T
. (2.34)

Using the expression of the heat production coming from the Energy conservation equation (2.31)
ρw � ρ

De
Dt

� div p~qq � � : D,where ':' denotes the operator � : D � �ijDij , we obtain the well known Clausius-Duhem In-equality [53, 26]:
ρ

�
T

Ds
Dt

� De
Dt


� ~q.ÝÝÑ∇T
T

� � : D ¥ 0. (2.35)This relation is essential in the study of the behaviour laws. For example, if we consider thatthe internal energy e only depends on the speci�c entropy s and on the speci�c volume v � 1{ρ,one has:
ρ
De
Dt

� ρ

�BeBs



ρ

Ds
Dt

� �BeBv



s

div p~uq
� ρ

�BeBs



ρ

Ds
Dt

� �BeBv



s

Tr pDq ,
Tr pq being the trace operator, and equation (2.35) is recast into

ρ

�
T � �BeBs



ρ

�
Ds
Dt

� �
p� �BeBv



s


Tr pDq � λ pdivp~uqq2 � 2µD : D� ~q.ÝÝÑ∇T
T

¥ 0. (2.36)
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Let us consider the case of a constant velocity �ow. The only possibility in order the Clausius-Duhem Inequality is always veri�ed is ([53])

T � �
De
Ds



ρ

and ~q.ÝÝÑ∇T
T

¤ 0.

If you consider the heat transfers follow the Fourier law ~q � �kÝÝÑ∇T , this implies in particularthat the coe�cient of heat conduction k has to be positive.Moreover, if we consider now a �ow at constant temperature, using the fact that T � �BeBs



ρ

,
Clausius-Duhem Inequality says

��
p� �BeBv



s


Tr pDq � λ pdivp~uqq2 � 2µD : D� ~q.ÝÝÑ∇T
T

¥ 0,which is always satis�ed if and only if:
p � ��BeBv



s

and λ pdivp~uqq2 � 2µD : D� ~q.ÝÝÑ∇T
T

¥ 0

A quick calculation on the second term of the last equation [53] shows that this implies
3λ� 2µ ¥ 0. (2.37)

Eventually, we can physically de�ne entropy functions p�Sq which are concave [4, 60, 54, 69]and S is then also a convex mathematical entropy. That means, following the theorem of Mock,this system of equations is also symmetrizable and its symmetrizing matrix is the hessian ∇2S.Then, all the properties of a symmetrizable system are valid here: propagation of the informationat �nite speed, aso...
2.2.7 Equation of State

We have built a system of PDE, with 4 equations and 5 unknowns (the conserved unknownsplus the pressure). In order to close the problem, we need an extra equation describing thenature of the �uid. This is an input that has to come from the physics. Indeed, the previousequations do not take into account the nature of the �uid we are dealing with (except for theviscosity coe�cients). At this state of construction, we would apply the same set of equationsto a balloon of helium as to a river of mercury, or to a cloud of vapor as to a large river. Weneed to �nd a relation between the physical variables describing the state of the �uid. Thesevariables are usually the temperature, the pressure, the speci�c volume, the internal energy andthe entropy. Starting from the equation of state of a physical system, it is possible to determineall the thermodynamic variables of the system and thus to express its properties.Examples :
• Ideal Gas: the ideal gas law is known to be

pv � NRT (2.38)whereN is the number of mole of gas contained in the volume v andR � 8.3144 J.K�1.mol�1is a universal constant.
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• Polytropic Gas: a polytropic gas is merely an ideal gas for which the heat capacity atconstant volume is constant. cv � BeBT

����
v

ñ e � cvT . Then relation (2.38) is reformulatedinto
p � pγ � 1qρe (2.39)where γ is the ratio of the heat capacities γ � cp

cv
p� 1.4 for the air).

• Other: there exists many other equations of state, as Wan der Waals [119], hypersonicstate [120], combustion [105, 37], mixed perfect gas [36], multiphase �ow, dense gas [35],etc. But none of these have been used during this thesis. We just cite them here to showthe numerous possibilities. When no further information is given, we are using the equationof state of polytropic gas.
2.2.8 Euler Equations

In this subsection, we consider the �uid as a perfect �uid. This is equivalent to the followingthree hypothesis:
1. The �uid is non-viscous : λ � µ � 0 ñ � � �pI,2. There is no body forces : ~fv � ~0,3. There is no heat transfer : w � 0, ~q � ~0.
Gathering equations (2.26),(2.28) and (2.31), we obtain the very well known Euler system :$''''''''&''''''''%

BρBt � div pρ~uq � 0

BρuiBt � div pρui~u� pδiq � 0, i � 1, 2

BρEBt � div ppρE � pq~uq � 0

(2.40)
where δi is the i-th column of the 2� 2 identity matrix.Concerning the equation of state, we will always use the incomplete equation of state ofpolytropic gas (2.39). It is called incomplete because it is not a relation between all the statevariables, but a simple pressure law. It is nevertheless a su�cient law for the closure of the Eulerequations.If we set

U �
�� ρ

ρ~u
ρE

�, and ÝÑF � pF1,F2q , with Fi �
�� ρui

ρui~u� pδipρE � pqui

� (2.41)
system (2.40) is rewritten in the compact form

BUBt � div�ÝÑF pUq	 � 0
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and if we denote by A � BF1BU , B � BF2BU and ~λ � pA,Bq the Jacobian of the �uxes, we obtainfor a smooth enough solution the equivalent quasi-linear form

BUBt � ~λ.
ÝÝÑ∇U � 0.

2.2.9 Properties of the Euler Equations
The matrices A and B are the following

A �
����

0 1 0 0pγ � 1qEc � u2 p3� γqu p1� γqv pγ � 1q�uv v u 0
u ppγ � 1qEc �Hq H� p1� γqu2 p1� γquv γu

���

B �
����

0 0 1 0�uv v u 0pγ � 1qEc � v2 p1� γqu p3� γqv pγ � 1q
v ppγ � 1qEc �Hq p1� γquv H� p1� γqv2 γv

���
where Ec � pu2 � v2q{2 and H � e � p{ρ denote the kinetic energy and the enthalpy per unitvolume, respectively. Given a unit normal ~n � pnx, nyq P S1, the matrix

~λ.~n �
����

0 nx ny 0pγ � 1qEcnx � u~u.~n ~u.~n� p2� γqunx uny � p1� γqvnx pγ � 1qnxpγ � 1qEcny � v~u.~n vnx � p1� γquny ~u.~n� p2� γqvny pγ � 1qny

~u.~n ppγ � 1qEc �Hq Hnx � p1� γqu~u.~n Hny � p1� γqv~u.~n γ~u.~n

���
is diagonalizable and one has ~λ.~n � RΛL with:

Λ �
����

~u.~n� c 0 0 0
0 ~u.~n 0 0
0 0 ~u.~n 0
0 0 0 ~u.~n� c

���,

R �
����

1 1 0 1
u� cnx u �ny u� cnx

v � cny v nx v � cny

H� ~u.~nc Ec ~u.~nK H� ~u.~nc

���,

L �
������

1
2c

�
γ�1

c Ec � ~u.~n
	 � 1

2c

�
γ�1

c u� nx

	 � 1
2c

�
γ�1

c v � ny

	
γ�1
2c2

1� pγ�1qEc

c2
pγ�1qu

c2
pγ�1qv

c2
p1�γq

c2�~u.~nK �ny nx 0
1
2c

�
γ�1

c Ec � ~u.~n
	 � 1

2c

�
γ�1

c u� nx

	 � 1
2c

�
γ�1

c v � ny

	
γ�1
2c2

�����.
We have introduced a new variable c � b

γp
ρ which represents the speed of propagation of theacoustic phenomena. It is well known that for air c � 330m.s�1 at standard temperature. Thelast decomposition of the Jacobian matrices shows that the Euler equations are a system ofconservation laws which is constantly hyperbolic.
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2.2.10 Navier-Stokes Equations

We now come to the complete Navier-Stokes equations. We say �complete� because theNavier-Stokes equations are today considered as one of the physical system that best modelssome strange phenomena observed in the reality. Even if one would add new equations and newvariables in order for instance to reproduce numerically some turbulence phenomena, they arein fact already described in the set of the Navier-Stokes equations. Turbulence equations andvariables are just an artifact aiming to overcome the lack of accuracy of the nowadays numericalschemes, relatively to the space scale of the turbulent phenomena. Most of the instabilities,turbulence, etc... making �uid mechanics such an appealing subject are solution of this PDS.As we did for the Euler equations, we �rst start by some hypothesis on the �uid:
1. The �uid is a Newtonian �uid :

� � ��p� λ

�BuBx � BvBy


 I� µ

�BuBy � BvBx


,

see De�nition 2.13,2. According to Fourier law, the heat di�usion is opposite to the gradient of temperature.The coe�cient of proportionality k ¡ 0 is the coe�cient of heat di�usion: ~q � �k~∇T ,3. There is no body forces : ~fv � ~0,4. There is no heat production inside the domain : w � 0,5. The �uid is a polytropic gas : p � pγ � 1qρe. This condition being just a pressure law,it can be easily replaced by another complete Equation of State. This one is used for itssimplicity.6. By Clausius-Duhem Inequality, we must have 3λ � 2µ ¥ 0 and we respect this constraintby enforcing the viscous coe�cient closure:
λ � �2

3
µ

If we gather these hypothesis with equations of conservation (2.26),(2.28) and (2.31), weobtain $''''&''''%
BρBt � div pρ~uq � 0BρuiBt � div pρui~u� pδiq � pλ� µq BBxi

�div ~u	� µ∆ui, i � 1, 2BρEBt � div ppρE � pq~uq � div�kÝÝÑ∇T � T~u
	
.

(2.42)
This is the form in which Navier-Stokes equations are usually presented. In order to simplify, wehave used the viscous tensor

T � 2µD� λdiv p~uq I � ��� λdiv p~uq � 2µ
BuBx µpBuBy � BvBxq

µpBuBy � BvBxq λdiv p~uq � 2µ
BvBy

��
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They are many di�erent ways of writing these equations, above all depending on the applicationin mind.One formulation will be however particularly useful in Chapter 8. It is a bit more complexthan this one, but it has the advantage to present the system in a complete matricial form. Ithas been inspired by Chapter 2 of P.J. Capon's Thesis [27]. If we consider the advective �uxde�ned in (2.41) and the following di�usive matrices

K11 � µ

ρ

�����
0 0 0 0�4
3u

4
3 0 0�v 0 1 0��

2Ec � u2

3 � γ
Prpe� Ecq	 u

�
4
3 � γ

Pr

�
v
�
1� γ

Pr

�
γ
Pr

����,

K12 � µ

ρ

����
0 0 0 0
2
3v 0 �2

3 0�u 1 0 0�uv
3 v �2

3u 0

���, K21 � µ

ρ

����
0 0 0 0�v 0 1 0
2
3u �2

3 0 0�uv
3 �2

3v u 0

���,
and

K22 � µ

ρ

�����
0 0 0 0�u 1 0 0�4
3v 0 4

3 0��
2Ec � v2

3 � γ
Prpe� Ecq	 u

�
1� γ

Pr

�
v
�

4
3 � γ

Pr

�
γ
Pr

����,
we can rewrite system (2.42) as

U,t � div�ÝÑF pUq	 � pKijU,jq,i � div�K.ÝÝÑ∇U
	 (2.43)

where we have used the Einstein notation and � ,j� refers to the derivative with respect to the jthspace variable.
2.2.11 Boundary Conditions

We �nish this chapter with the boundary conditions that are going along with these twomodels: the Euler and Navier-Stokes equations. These conditions are needed to close the prob-lem. It is rather hard to enumerate all the boundary conditions that have been developed forsome speci�c purposes. We are here just going to list the boundary conditions we have beenusing during this thesis. We describe them here in their continuous versions. The way they arediscretized is shown in Section 5.4.
• In�ow and Out�ow: it is sometimes useful to impose a given state at an entrance or anoutput of a domain. This is for example the case when the domain is linking two tanks ofpressure at two di�erent states. We are also going to use this at the external boundariesof a domain containing an aircraft. The goal is to simulate the �ow around the aircraft ata certain speed. The easiest way to do this is to consider the problem in the referential of
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the aircraft: the domain is �xed and the air moves at the opposite velocity of the aircraft.The external boundary are considered as at in�nity and we wish to impose there a Far-�eldState. In both cases, if U8 is the state we want to impose on boundary Γ8, one has:

Upxq � U8, @x P Γ8. (2.44)In practice, if ~n is the inward normal to Γ8, some characteristics in the direction ~n areoften leaving the domain. Then, as noticed in Property 2.11, we do not have to imposeanything on these characteristics, and the condition is usually recast into
Upxq � Ap~nq� U8, @x P Γ8.where Ap~nq� denotes the positive part of the Jacobian operator in the direction ~n.

• No-Slip Wall: when the �uid is considered viscous, it sticks to the walls. By continuity,the velocity ~u of the �ow along the wall must be the same as the velocity of the wall ~uwall
~upxq � ~uwall, @x P Γwall. (2.45)In most of cases, the wall is still and ~uwall � ~0. Then, following the eigenvalues of theadvection matrix given in Subsection 2.2.9, one has only one outgoing characteristic. Thesystem having size m � d � 2, one needs an extra boundary condition. This is providedby the heat transfer between the wall and the �uid. This can be done in two ways.The temperature can either be considered continuous. In this case, we just impose thetemperature of the wall Twall
T pxq � Twall, @x P Γwall. (2.46)Or, in the case of a steady simulation, one consider that the heat transfers are null atsteady state. The heat �ow between the wall and the �uid has to be zero and the boundarycondition reads: BTB~n pxq � 0, @x P Γwall. (2.47)

• Slip Wall: �nally, in the case of the Euler equations, the �uid is considered as non viscous,and it is completely possible that the �uid slips on the walls. But on the other hand, itis still impossible that the �uid enters the boundary (by de�nition of the wall). Then theno-slip condition of the viscous �ows is formulated as
~upxq.~n � 0, @x P Γwall. (2.48)
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Chapter 3
High Order Schemes

This chapter is devoted to a brief introduction to high order numerical schemes. The maingoal is to explain why high order schemes are today so attractive for CFD, but also what theirmain drawbacks are. It is the occasion to present roughly the concept of higher order schemesand to set down conventions and notations on mesh parameters and data representation. Ina �rst part, we are going to introduce a general framework for numerical schemes and explainwhat a high order scheme is. We also introduce the main de�nitions on mesh and geometry. In asecond part, we describe the polynomial representation of the data on triangles and quadrangles.A last section eventually treats the appealing features of high order schemes.
3.1 Numerical Schemes: a General Framework

In this section, we are about to present the numerical resolution of a PDS in a very abstractway. We see that the solution of a problem in a functional space with in�nite dimension can beapproximated by the solution of an associated problem, this time existing in a �nite dimensionalfunctional space. At the end, we have just projected the sought solution on a restricted �nitedimensional space of unknowns, without even knowing this exact solution. All numerical schemesare included in this general framework.In the following, we call E a functional space with in�nite dimension and ♦ a di�erentialoperator on E . We also denote by L a Hilbert functional space such that :
i) E � L ;ii) ♦ : E Ñ L .

3.1.1 Finite Dimension Approximation
We want to solve the following problem:

Find u P E , such that "
♦u � f, x P Ω
u � g, x P Γ � BΩ. (3.1)

41
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f and g are of course regular enough functions, in order our problem is well-de�ned. Thisis a very general problem, and most of the modelizations in physics lead to such a problem[87]. The di�culty is that we are today usually absolutely not able to �nd an exact solution ofsuch a PDS, even in some apparently very simple cases. We have to approximate the solutionand this is done numerically. We �rst remark that if u� is a solution of problem (3.1), then@v P L , 〈♦u�, v〉L � 〈f, v〉L . We now denote by Wh a subspace of E with �nite dimension n,and by wh

1 , . . . , w
h
n a basis of Wh. The subscript �h� is used in order to keep in mind that Whdepends on the geometry of Ω, and on a spatial discretization of Ω,Mh, that will be called furtherthe mesh. h represents a characteristic length associated to the mesh. The �nite dimensionalsubset also depends on the order of representation of the data on the discretized space and onother geometrical parameters. We now de�ne Ph as a projection from E to Wh, for example

Ph :

$'&'%
E ÝÑ Wh

u ÞÝÑ ņ

i�1

〈
u,wh

i

〉
L
wh

i

We will see next this is not the only way of de�ning a projection from E to Wh, and we are forthat matter usually not going to use this one. The reader has to consider this projection just asa theoretical example.We can then associate (3.1) to a �nite dimensional problem
Find uh P Wh, such that "

〈♦uh, vh〉L � 〈f, vh〉L , @vh P Wh

uh � Phpgq, @x P Γ
(3.2)

If ♦ is a linear operator, this problem can be obviously put into the matricial form A.U � Bwhere Aij � 〈
♦wh

i , w
h
j

〉
L

and Bi � 〈
f, wh

i

〉
L
� Fbc

i . Fbc
i stands here for the contribution ofsome numerical �uxes on the boundary Γ, this ensuring the boundary condition uh � Phpgq.In this case, problem (3.2) is well-posed if matrix A is invertible and admits then a uniquesolution uh P Wh. uh is then called the approximated solution. We are going to see in the nextsection how the quality of the approximation of u� by uh is quanti�ed: the order of accuracy ofthe scheme.

3.1.2 Error and Truncation Error
u� and uh are both functions of L and we can then write the global error of approximationas

‖u� � uh‖L ¤ ‖u� � Phpu�q‖Llooooooooomooooooooon
I

� ‖Phpu�q � uh‖Llooooooooomooooooooon
II

.

The two terms of the right-hand side represent di�erent things.
Term I: it is the projection error. It depends on the polynomial order of approximation of the data.Generally, if Wh is spanned by polynomials of order k and u� is regular enough, the orderof magnitude of term I is dominated by hk�1, where h is a characteristic length of thediscretization of Ω needed to de�ne Wh. That means in particular that Phpuq convergestoward u as h goes to 0 for any regular enough u P E , and that in a certain sense, Whconverges toward E as h gets smaller.
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Term II: it is called the truncation error of the scheme. As one can see, if the truncation error isalso of order k � 1, then uh is an approximation of order k � 1 in L -norm of the exactsolution u�. Thus, below we will speak of a pk � 1qth-order scheme when referring to ascheme using a kth order representation of the data and which truncation error is of orderpk � 1q. As we have already seen in the introduction, there exists several di�erent typesof high order schemes. The main di�erences between these formulations come from thefunctional space approximation.

We have now presented the main concepts of the numerical resolution of a complex problema very abstract way. The important thing here is to understand that a numerical resolution ofa problem in an in�nite functional space is done by de�ning a certain projection of the solutionon a �nite dimensional subspace. The projection of the exact solution is the unique solution of a�nite dimensional problem which can be �easily� solved. The nature of the projection is de�nedby the type of the chosen numerical scheme. This will be explained later on. What one canexpect is that the �ner the approximation of E by Wh is, the closer to u� uh is. This is alwaysthe result of theorems we call �Lax-Wendro� like� and that are essential in the development ofthe numerical schemes.Eventually, the �nite dimensional subspace Wh is in fact completely de�ned by the discretiza-tion of the domain and the order of representation of the data inside the discrete meshing. Thisis the subject of the next sections.
3.1.3 Domain Discretization

In the last paragraphs, we have implicitly considered Ω as our spatial domain. To simplifythe presentation, we suppose Ω is bi-dimensional. The illustrations will be much easier.Let Ω � R2 be the continuous spatial domain. A spatial approximation of Ω is a �nite set
Th of non overlapping elements with strictly positive area such that ¤

TPTh

T � Ω or at least such
that the area belonging to ¤

TPTh

T or to Ω but not to both, tends toward zero when the re�nementparameter h is getting smaller. Here, h represents a characteristic distance between two verticesof the mesh. In our case, it will be either the constant mesh spacing on the boundary of Ω or themaximal distance between two vertices or the square root of the area of the biggest element in
Th. We also call Mh the set of the vertices of the elements of Th, but by abuse of notation, Mhalso represents the set of any kind of entity of the mesh. It contains the vertices of the mesh aswell as the edges, the faces or the elements, etc...There are many types of meshes and there is a wide vocabulary on this subject. We givehereafter the main nomenclature used here. Even if the elements of Th are denoted by T theymust not always be triangles. They can be triangles or quadrangles or any type of polyhedralor even isoparametric elements as shown on �gure 3.1, and this will be true for the rest of thismanuscript. We are not going to speak here about isoparametric elements as a whole section isdevoted to them, see page 137. The construction of such an element is detailed in this section.When the mesh is composed only by triangles, it is called a triangulation. In order to eliminatetoo ��at� triangles, we assume that the mesh is regular enough and that there exist two constants
C1 and C2 such that the ratio of two heights of any triangle of the mesh stands between C1 and
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Figure 3.1: (Isoparametric Elements) The edges of these elements are represented by thesame polynomial order k as the one used inside the element to approximate the solution. In thatcase, k � 2 and the edges are quadratic, uniquely de�ned by the vertices and the middles of theedges. These elements are very useful to represent the boundaries with a much better accuracy.
C2.

DC1, C2 P R�, such that @T PMh,@h1, h2 heights of T,
C1 ¤ h1

h2
¤ C2 (3.3)

The same argument is suitable for quadrangles with the ratio of the diagonal lengths. Thereexists two main types of triangulations: the structured and the unstructured ones, see Figure3.2. The main di�erence is the number of direct neighbours of each vertex (the vertices of Mhsharing an edge with it). In the case of a structured triangulation, the mesh is really regular, allthe elements are identical or quasi-identical, and the number of direct neighbours stays constant.Whereas in the unstructured case, this number of direct neighbours is not necessarily constantand it is generally not. When a mesh mixes di�erent types of elements it is called a hybrid mesh.Hybrid meshes are very interesting from a geometrical point of view. As we have seen a meshingdoes not have to match the domain perfectly but must approach it with the area of the di�erencedepending on h. As one can guess it is now much easier to match some complex geometries as anobtuse angle or round nose with a hybrid unstructured mesh than with a structured triangulation.
In this thesis, we are also dealing only with conformal meshes. A mesh is conformal, whenno vertex of an element lies inside an edge of another element. This is represented on Figure 3.3.Residual Distribution Scheme on non conformal meshes is actually a rather complex developmenteven if it is not declared as impossible. The main problems are how to de�ne the direct neighboursof the non conformal vertices as well as its dual cells (see next paragraph for de�nition). It isthen quite complex to associate a basis function to those vertices. This is not the aim of thismanuscript and that is why all the meshes are thereafter conformal.For any type of meshing, the following notations are useful. For any element T of Th, wedenote by |T| its area. For any vertex i P Mh, Di is the subset of elements containing i. |Di|is the sum of the areas of the elements of Di. By abuse of notation, Di also denotes the directneighbours of i, ie. the nodes of the elements members of Di. To any node i of the mesh, we
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Figure 3.2: Unstructured (left) and structured (right) triangulation

Figure 3.3: (Non Conformal Mesh) The 3 black points denote non conformal points, becausethey lie inside the edge of another element. Q denotes the only quadrangle of this mesh.
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Figure 3.4: (Dual Cell) On this �gure is represented node i, Di the subset of elements sharing
i, its direct neighbours j1, . . . , j6 and the associated dual cell Ci. Ci is de�ned by joining themidpoints of the edges sharing i and the centroids of the triangles of Di. This can be generalizedto any polyhedral.
associate its dual cell, Ci, represented on �gure 3.4. It represents the domain of in�uence ofthe scheme for node i. It is obtained by joining the gravity centers of the elements of Di withthe midpoints of the edges meeting at i. This notion is very important in the case of FiniteVolume Schemes (FV), see Subsection 4.1.3 page 62. In the case of RD schemes, we are mainlyinterested by the dual cell area

|Ci| � |Di|
3
,especially for linear representation of the data.

Euler Formula We are here giving a formula linking the number of elements, faces, edges andvertices in a 2D mesh. It is called the Euler Formula and it has been conjectured in 1752. Thisformula has actually a much wider generalization though and can be applied on any kind of reallyweird topology [71, 112]. This is not the object of this work and we restrict our demonstrationto two dimensional unstructured hybrid meshes. The main argument of this demonstration canbe applied as it is to the three dimensional case.
Property 3.1Let Mh be a unstructured hybrid meshing of a two dimensional simply connected domain

Ω and F, E, V being respectively, the number of elements, edges and vertices in Mh. Then
F � E � V � 1 (3.4)

Remark 3.2 (Euler Characteristic)The quantity χ � F �E�V is called the Euler Characteristic. It is de�ned in any polyhedralmeshing, in any dimension, as the alternate sum χ � k0�k1�k2�k3� . . . , where kn denotes



3.2. Polynomial Representation of the Data 47
the number of cells of dimension n in the mesh. It is a constant, depending on the topologyin which Ω is drawn (the number of connected components, the number of holes in Ω, etc...).In two or three dimensions, when Ω is simply connected, we always have χ � 1.For example in a tetrahedron, we have 1 tetrahedron, 4 faces, 6 edges and 4 vertices :
V � E � F � T � 1. In a cube, we have 1 cube, 6 faces, 12 edges and 8 vertices: χ � 1.
We wrote property 3.1 that way because it is the way it will be used later. But the demon-stration below is in fact valid in a much more general framework, that is why we put here thislemma.

Lemma 3.3Let N be a cloud of points of R2, E a set of edges that links some vertices two by two and
F the number of polygons formed by these edges. We denote by C the number of connectedcomponents in N (two vertices are part of a same connected component when there existsa path of edges linking them both). Then

#N �#E � F � C (3.5)
Proof : This proof is illustrated by Figure 3.5. Let us now remove one edge. There are two possibil-ities:

1. The removal increases the number of connected components C by one (e.g. edge markedwith 'p�q' in Figure 3.5). The edge is then �single�, which means it is not part of an element,and the number of elements stays constant. As the number of vertices stays also constant,we have added one both to the right and left hand side. Formula (3.5) is conserved throughthis transformation.2. C does not change as a result of the edge removal (e.g. edge marked with 'p%q' in Figure3.5). Then there exists a path di�erent of the removed edge that links the both end pointsof this edge. The removed edge was then part of an element, and the edge removal hasdestroyed this element. The number of both edges and faces decreases by one while thenumber of vertices still stays �xed. Thus, both sides of Formula (3.5) do not change.
This means that Euler formula holds for a meshing if and only if it holds for a meshing with oneedge removed. By induction, it holds for a meshing if and only if it holds for the cloud of pointswith all edges removed. But after all edges are removed, what we are left with is only #N � nseparated vertices. Thus, C � n, #E � 0, F � 0 and the formula (3.5) is obviously satis�ed.

3.2 Polynomial Representation of the Data
Now that we have de�ned what a mesh is, we can go further and associate a basis functionto each vertex of the mesh. In the beginning of this chapter, Wh has been de�ned abstractly asa �nite dimensional subset of the whole functional space E . In fact, Wh is spanned by the basisfunctions associated to the degrees of freedom of the mesh Mh. As these basis functions forma linearly independent subset of Wh, it is a basis of Wh. One can note that we have used theword degree of freedom (DoF) instead of vertex. These notions are the same when using a linearrepresentation of the data. But we aim to develop a polynomial representation of the data with
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Figure 3.5: 7 points, 7 edges, 2 triangles and 2 connected components: 7� 7� 2 � 2.
any choosen order k. To do so, we have to add new degrees of freedom inside each element, inorder to de�ned what we are going to call Pk basis functions on these elements.
3.2.1 Lagrangian Data Representation on Triangles

We suppose the mesh is a triangulation.
Linear Mapping: Through three non-colinear points of a three dimensional space passes aunique plane. That allows for a given triangle of a mesh, to de�ne the unique plane that takesvalue 1 at some vertex and 0 at the two others. If we denote by i this vertex and T the triangle,we call this function ϕTi , and we can do the same for all the triangles of Di. Because thesefunctions de�ned on each triangles are linear, they are also linear along the edges of Di and wecan join these planes by continuity. Furthermore, these functions vanish on the vertices of theboundaries of Di. This means we can continuously connect these functions de�ned on Di withthe null function outside of Di. And if we use the convention: @T R Di, ϕTi � 0, we de�ne thebasis function associated to node i by

ϕ1
i pxq � ϕTi pxq, when x P T. (3.6)This well known continuous linear basis function is represented on Figure 3.6. Superscript 1stands for the basis function is piecewise of degree one.We now de�ne the �nite subset ξ1 �  

ϕ1
i , i PMh

(. Its elements are obviously linearlyindependent because a linear combination of these function is the null function if and only ifall the coe�cients of the combination are null. Then ξ1 is a basis of W 1
h � Span  ξ1(, and W 1

his the space of continuous functions that are piecewise linear over each triangle of Mh. In thefollowing, this space will be called P1 pMhq or simply P1 when no confusion is possible. W 1
h isisomorphic to Rn, where n is the number of vertices in Mh and if pviqiPv1,nw is a vector of Rn, itis the coordinates of the function of W 1

h taking value vi at node i, in the basis �ϕ1
i

�
iPv1,nw.
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Figure 3.6: (P1 Basis Function) ϕ1
i takes value 1 at i and 0 everywhere else.

Higher Order Mapping: As we have already seen in section 3.1.2, in order to reach a higherorder of approximation of the exact solution, we need at least the projection error of the desiredorder. This is possible with a higher order representation of the data, see [80]. We constructthe space W k
h of continuous functions that are polynomials of order k over each triangle of Mh,and prove that the projection πk

h of any regular enough function u on W k
h is converging toward

u proportionally to hk�1, [80]
|u� πk

hu| ¤ Chk�1.We moreover see further that this higher order of representation of the data allows to build ascheme with truncation error of order k � 1.Repeating what has been already done for linear basis functions, we are now looking for acontinuous function that takes value 1 at node i P Mh, 0 at any other node of Di, that is apolynomial of order k inside each triangle of Di and that can be continuously joined to the nullfunction outside of Di. In order to obtain continuous junction along the edges of Di, we needthe polynomial function to be identical on either side of the edge, and because the restriction ofour basis function to the edge is also a polynomial of order k, we need k � 1 degrees of freedomon every edge. That means k � 1 extra DoFs inside the edge plus the two tips. For sake ofsimplicity, we place these extra points regularly on the edges. A polynomial function of order kin R2 can be written as
fpx, yq � ¸

i,jPv0,kw
i�j¤k

aijx
iyj

and is then de�ned by pk�1qpk�2q
2 values at di�erent points. We have already nedge � 3�3pk�1q �

3k DoFs along the edges and need then ninside � pk�1qpk�2q
2 DoFs inside the triangle. As you cansee this last number is zero for k � 1 or 2. As we did for the DoFs on the edges, we equi-distributethese new points inside the triangle; even though we don't have to... The repartition of theseextra DoFs as well as the convention of numbering used along this thesis are shown on Figure3.7. We also extend the notations Di and Ci for the new DoFs:

• Di is still the set of triangles sharing DoF i;
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(a) P1 Triangle. 1 2

3
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5
6

(b) P2 Triangle.

(c) P3 Triangle. 4(d) P4 Triangle.
Figure 3.7: High order triangles up to 4th polynomial order. The most interesting thing here isour numbering convention.

• Ci is now the dual cell of i in the associated mesh where each triangle of order k as beencut into k2 sub-triangles (see Figure 3.8 for the P2 case).
Mh now also represents the kth-order mesh and contains the elements, edges and vertices as wellas the extra DoFs and the sub-triangles.The ith high order basis function is well de�ned as the continuous junction of the uniquepolynomials of order k de�ned on each triangle T of Di, taking value 1 at i and 0 at any otherDoF of T. It is extended by continuity by the null function outside Di. These functions arerather complex to obtain, but they are in fact products of the �rst order basis functions ϕT,1

iinside each triangle T of Di. Here are these expressions, the numbering following the one givenon Figure 3.7.k=2: • i � 1..3
ϕT,2

i � ϕT,1
i p2ϕT,1

i � 1q
• i � 4..6, j, k are the tips of the edge i is part of

ϕT,2
i � 4ϕT,1

j ϕT,1
kk=3: • i � 1..3

ϕT,3
i � 1

2
ϕT,1

i p3ϕT,1
i � 1qp3ϕT,1

i � 2q
• i � 4..9, j is the vertex of T the nearest to i, k is the other tip of the edge

ϕT,3
i � 9

2
ϕT,1

j ϕT,1
k p3ϕT,1

j � 1q
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Figure 3.8: Control cells Ci, Cj and Ck and sub-triangulation in P2 formulation.
• i � 10

ϕT,3
10 � 27ϕT,1

1 ϕT,1
2 ϕT,1

3k=4: • i � 1..3
ϕT,4

i � 1
3
ϕT,1

i p4ϕT,1
i � 3qp2ϕT,1

i � 1qp4ϕT,1
i � 1q

• i � 4..9, j is the vertex of T the nearest to i, k is the other tip of the edge
ϕT,4

i � 16
3
ϕT,1

j ϕT,1
k p4ϕT,1

j � 1qp2ϕT,1
j � 1q

• i � 10..12, j, k are the tips of the edge i is part of
ϕT,4

i � 4ϕT,1
j ϕT,1

k p4ϕT,1
j � 1qp4ϕT,1

k � 1q
• i � 13..15, j is the vertex of T the nearest to i

ϕT,4
i � 32ϕT,1

1 ϕT,1
2 ϕT,1

3 p4ϕT,1
j � 1q

We still use the convention @T R Di, ϕT,k
i � 0 and thus de�ne the kth-order basis functionassociated to node i by :

ϕk
i pxq � ϕT,k

i pxq, when x P T. (3.7)Once more the �nite subset �ϕk
i

�
iPv1,#DoFw has linearly independant elements and is then abasis of W k

h . And if pviqiPv1,nw is a vector of Rn, n being the number of degrees of freedom in the
kth-order mesh, it is the coordinates in this basis of the function of W k

h taking value vi at node
i. For any function u : R2 Ñ R, we can therefore de�ne its projection uk

h on W k
h , also denotedby πk

hu, by
πk

hu � uk
h � ¸

iPMh

u pxiqϕk
i . (3.8)

This will be often denoted by uh when the order of approximation is obvious.
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Figure 3.9: If Q is convex, there exists a unique di�eomorphism ϕ transforming pQ into Q.
3.2.2 Quadrangles Case

In order to de�ne numerical schemes that could be applied on hybrid meshes, we now have tobuild the same type of basis functions such that for any regular enough function u, its projectionon the space spanned by these basis functions is converging toward u at speed hk�1. This is donethrough what is called Qk functions.
Q1 Representation: Let us consider a general convex quadrangle Q (which means not in-evitably regular). We have 4 vertices and would like to build functions inside Q having the sameproperty as P1 functions inside a triangle:
a) ϕQi pxjq � δij ;b) ϕQi is linear along the edges of Q.

If we consider the familly of function that can be written as
fpx, yq � axy � bx� cy � d, (3.9)we obtain easily condition a) because coe�cients a, b, c and d are uniquely de�ned. On thecontrary, condition b) is never satis�ed but in the �regular� quadrangles (the ones where theedges are two by two orthogonal). That is why the basis functions inside Q are �rst de�nedon the reference quadrangular element pQ � r0; 1s2 and then mapped on Q through the uniquedi�eomorphism mapping pQ into Q, see Figure 3.9. It is explained in the following.If we consider the numbering of the reference element pQ given on Figure 3.9, we have thefollowing reference Q1 functions:pQ1

1 � p1� xqp1� yq, pQ1
2 � xp1� yq, pQ1

3 � xy, pQ1
4 � p1� xqy. (3.10)Superscript '1' here recalls these are the �rst order basis function on the reference quadrangle.These functions verify obviously above conditions a) and b) in pQ. We consider next the following
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transformation of the plane :

ϕ :

$'&'%
pQ ÝÑ Q
px ÞÝÑ 4̧

i�1

pQi ppxqxi
(3.11)

It is a C1-di�eomorphism if and only if Q is convex. We then always assume that our quadrangularelements are convex. If not, they are cut into two triangles! That allows us to de�ne JrQs asthe determinant of the Jacobian of ϕ. ϕ is not a linear transformation as the pQi are not lineareither, but it is a linear transformation along the edges of the quadrangles because the pQi arelinear along the edges of pQ. Thus, the functions de�ned by :
Q1

i � pQ1
i 0ϕ�1 (3.12)verify the conditions a) and b) inside Q. They are called the Q1 basis functions in Q. In a hybridmesh, P1 and Q1 functions can be joined continuously and a function of the approximated space

Wh is well de�ned by its value at the degrees of freedom.
Qk Representation: In the case of a higher order representation in Ω, we also wish to de�nehigher order basis functions in the quadrangle. A generalization of formula (3.9) at order k wouldbe the familly of function of the form

fpx, yq � ¸
i,jPv0,kw aijx

iyj ,

which means pk � 1q2 DoFs inside each quadrangle in order to be well-de�ned. As remarked inthe case k � 1, such a function taking value 1 at a vertex of Q and 0 at the other DoFs is notpolynomial of order k along the edges of Q, as soon as the edges of Q are not perpendicular.It can thus not be joined continuously with Pk functions, if Q is surrounded by triangles. Wethen use the same trick, de�ning �rst the kth-order basis functions on the reference quadrangle pQand then transport them to Q via formula (3.12). About the degrees of freedom: in order to beconsistant with the Pk formulation we need k� 1 DoFs inside the edges (regularly distributed),which means pk�1q2�4k � pk�1q2 DoFs inside each quadrangle that are also equi-distributed.The common distribution of the degrees of freedom for the reference quadrangle are given inFigure 3.10.
3.2.3 Time-Dependent Problem Treatment

To consider unsteady problems, we have actually two choices of schemes. The �rst one is todiscretize the time derivative terms by �nite di�erences and then obtain a time marching schemethat would solve a space problem at each time step. On the other hand, we could approximatethe unsteady solution in the space-time domain. Unfortunately, we are not going to present anyunsteady results at the end. But in the theoritical part on RDS (Chapter 4), we will alwaysextend the presented concepts to unsteady cases when possible.We are here interested in the space-time formulation and we then need elements and basisfunctions in space-time [7, 68]. We introduce what we call prismatic elements, which can beconsidered as the translation into the time direction of the space meshing. Prismatic elements
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(c) Q3 Quadran-gle. (d) Q4 Quadran-gle.
Figure 3.10: High order quadrangles up to 4th polynomial order.

associated to triangles and quadrangles are represented on Figure 3.11. For the form functions,we decouple the in�uence of space and time and de�ne the basis function at node i as the productof the kth-order basis function in space at node i by the one dimensional `th-order time basisfunction
ϕk

i pxq.λ`
iptq. (3.13)

3.3 Appeals of Higher Order Schemes
We begin this section by a quick summary of the ideas already presented in this chapter. We�rst gave an abstract de�nition of a numerical scheme and explained what a kth-order schemeis. In particular, we have seen that for a pk � 1qth-order scheme we generally need a polynomialrepresentation of the solution of order at least k. In the last paragraph, we have eventuallypresented domain discretization and kth-order representation of the data on this discretization.But what is the goal of higher order schemes ? What do we win with this much more complexrepresentation of the solution ?To be as clear as possible, we are going to treat the problem at a constant approximationerror ε. If the scheme is of order k, there exists a proportionality coe�cient Ck such that thebehaviour of the error can be modeled by

ε ¤ Ckh
k.
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Figure 3.11: (Prismatic Elements) Left: P3 in space, P2 in time. Right: Q2 in space, linearin time.
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Figure 3.12: Maximal number of DoFs needed to obtain precision ε at order k. Coe�cients Sand Ck have been normalized. The problem is supposed to be two dimensional.
Let consider a structured grid composed only of triangles, as the one presented on Figure 3.2. Ifwe set nV, nE, nDoFs and nT respectively the number of vertices, edges, degrees of freedom andtriangles inside the mesh and S the surface of the domain, we have the relations

nT � 2S
h2

� 2nV and nDoFs � nV � pk � 1qnE � pk � 1qpk � 2q
2

nT,see section 3.2 for last formula. And if we apply Euler Formula (3.4), we obtain
nDoFs ¤ k2S

�
Ck

ε


d{k (3.14)
where d stands for the dimension of the domain (2 in our case). We represent the maximalnumber of DoFs needed to obtain precision ε at order k in tabular 3.12. It is a simple exerciceto see that nDoFs is equivalent to k2 when k goes to in�nity, when the coe�cient Ck is supposedindependent of k. Then for a given sought precision ε, there always exists an optimal order with
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Figure 3.13: Maximal number of DoFs needed to reach accuracy 10�6 for order of approximation
k � 1 . . . 100.
respect to the number of DoFsneeded. And this is really important as nDoFs represents the sizeof the �nite dimensional problem to solve at the end. As one can see on �gure 3.13, even if, asfor tabular 3.12, a value of 1 has been taken for S and Ck in order to simplify the calculation,there is a huge factor between the number of DoFs needed at �rst and optimum order to reach
6th order of accuracy.Furthermore, as we will next see, in the case of the Residual Distribution Schemes the solvingalgorithm treats the problem element per element. The less elements we get in the mesh, theless computations we have to do. We have already seen that in a kth-order triangulation, thenumber of elements is proportional to ε�d{k ÝÑ

kÑ�8 1. Starting from this point of view, we wouldlike to have the largest possible order. What is hidden is that increasing order of approximationprovides less elements but on the other hand more work to do per element. And as the numberof triangles is exponentially decreasing toward 1, there once more must exist an optimum order.
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Chapter 4
Introduction to Residual Distribution

Schemes
Until now, we have been simplifying the general framework of the problem along the pages.We started by the very general case (2.1) and restricted it for sake of simplicity. From now on,the trend is being inverted, and the problem is going to be complicated along the chapters. Forthis introduction, we are going to consider the simplest framework for the conservation laws.But, even if we start here by the well described P1 steady scalar non viscous case, we still aimat explaining the end of this manuscript the treatment of a 3D, Pk, Navier-Stokes problem.We are looking for the value of a scalar unknown u verifying, on a two dimensional domain

Ω, a simple conservation equationdiv�ÝÑF puq	 � 0 (4.1)� Boundary Conditions (Dirichlet, Neumann, strong or weak...)As we did before, the �ux vector ÝÑF can be split into its two one dimensional components, F andG. For a real problem, we would have of course to add some boundary conditions, but in orderto simplify the explanation, we are going to ignore them. In fact, one could use the homogeneousboundary condition u|BΩ � 0 and obtain exactly the same results. For those interested in ourweak or strong formulation of some Dirichlet, Neumann, aso... boundary conditions, more detailsare given in Section 5.4.
4.1 Principle

The formulation of the Residual Distribution Schemes (RDS) applied to equation (4.1) israther simple to understand. However, a sound mathematical framework is still not available atthe present. Often, geometrical and more or less qualitative arguments have been used to studythe properties of the schemes. Moreover, as soon as we treat vectorial problems or want to useany kind of high order method, the formal constructions developed in the simple scalar P1 casedo not apply any longer. Most properties are nevertheless assumed to be still valid and anywayveri�ed numerically. For these reasons, we �rst present how the scheme is built, without givingany formal justi�cation, next show its computational properties (consistence, stability,...) and
59



60 Chapter 4. Introduction to RDS
only at the end give evidences that the solution of such a scheme approximates the exact solutionof (4.1) with the desired order.As the construction of such a scheme is rather simple, and mathematicians liking simplethings, it would be very interesting to �nd a complete �Residual� formulation of equation (4.1),de�ned on the continuous domain. It could really help to understand the properties of RDS,obviously, but also all the numerical formulations on conservative systems. In particular, it isvery hard to show that a RDS has an unique solution in a given functional space and we needto see the problem an other way to be able to answer to this question.
4.1.1 Residual and Residual Distribution

For each element, we de�ne the Global Residual or Element Residual as
ΦT � »

T div�ÝÑF puq	 dx � »
BTÝÑF puq.~n ds, (4.2)

where T does not have to be a triangle and ~n is the outward unit normal. This quantity representsthe global �ux ÝÑF leaving the triangle. If we look at the exact solution of the equation on thecontinuous domain (4.1), the residual should be zero on every triangle. This could be one way towrite the scheme: nullify the global amount of �ux entering or leaving each triangle. However,we want to de�ne the scheme point-wise. To be able to write an equation for each degree offreedom, we nullify the global �ux entering some control cell around each DoF.This is obtained in practice by distributing ΦT to each DoF of the element with a certaindistribution coe�cient βTi
ΦT

i � βTi ΦT, (4.3)and for each degree of freedom of the mesh, gather the received information:¸
TPDi

ΦT
i .

ΦT
i is usually called the Nodal Residual. Here is the core of the method. They are manypossibilities of distributing the global residual, each one of them having a di�erent combinationof properties: monotonicity, linearity preservation, higher order accuracy, upwinding, etc... Weare going to detail those words in the next section.If we want the scheme to be conservative, no information must suddenly appear or disappear.In other words, we need the global residual to be exactly distributed in each element¸

iPTΦT
i � ΦT. (4.4)

This can be straightforwardly rewritten in term of distribution coe�cients:¸
iPTβTi � 1.

As we see in the next subsection, gathering all the nodal residuals sent to a node correspondsin some simple cases to estimate the balance of �ux entering some control cell around i. We wishthen to nullify this global �ux, and the scheme writes
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Figure 4.1: Find barycentric coordinates pξ1, ξ2, ξ3q of B such that quadrilaterals 14B6, 24B5and 36B5 have areas β1|T|, β2|T| and β3|T| respectively. |14B6| � pξ2 � ξ3q |T|2 � β1|T| and thesame reasoning being true for the two other vertices, one gets ξi � 1� 2βi, i � 1, . . . , 3

¸
TPDi

ΦT
i � 0, @i PMh. (4.5)

4.1.2 Geometrical Interpretation in the P1 Case
Let consider a P1 mesh. Each triangle has three degrees of freedom. Because°iPT βTi � 1, it ispossible to de�ne an inner point B of T, such that for each vertex i, the quadrilateral generated bynode i, the two mid-edges next to i and B has area βTi |T|. This point has barycentric coordinatesp1� 2β1, 1� 2β2, 1� 2β3q, see �gure 4.1. If we de�ne the new control cell associated to node iwith these quadrilaterals, and denote it by Cβ

i , we obtain that the integral of equation (4.1) oneach control cell gives the expression of the scheme (4.5)
@i PMh,

¸
TPDi

ΦT
i � »

Cβ
i

div�ÝÑF puq	 dx � 0.

Then, the control cell de�nes a discrete closed ways in the domain through which the globalentering �ux is null. Linking the di�erent control cells together, we obtain a new meshing, dualof the original one (Mh). It is obvious that the balance of �ux entering any sub-domain of thisdual mesh is null. If we now consider the dual control cells as the indivisible two dimensionalentities of the domain, or as the in�nitesimal surfaces of Ω, equation (4.1) has been discretizedon the dual mesh. But βTi depends on the value of the solution uh. Then the problem writes:
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Figure 4.2: FV scheme. Neighboring cells Si and Sj (left) and cell normals (right)
Find uh and βTi puhq such that ÝÑ∇ .uh is zero over the dual mesh associated to the distributioncoe�cients βTi .The control cells de�ne a discrete closed ways in the domain through which the global entering�ux is null : equation (4.1) is solved on the dual mesh.
4.1.3 Links with Other Classical Formulations

We here present some relations between the RD framework and other classes of classicalnumerical schemes. The goal is just to show the proposed formulation can be seen as anotherpoint of view for the treatment of the conservative equations. The comparison in the followingexamples however usually stops as soon as we leave the simple P1 scalar case. If possible, moredetails will be given.
Finite Volume Schemes: The following explanation essentially comes from [2] and MarioRicchuito's thesis [89]. Symbol FV denotes the �nite volume schemes. All geometrical entitiesare illustrated on Figure 4.2.We consider a meshing of a domain, and for any DoF i its associated median dual cell Ci,generated by the midpoint of the edges and the barycentric centers of the elements i is part of,see Figure 4.2. The new meshing constituted by the DoFs and their median dual cells is calledthe median dual mesh. We consider a piecewise constant numerical approximation over the dualcells:

uh P  f : Ω ÝÑ R; @i PMh, f|Ci
is constant ( .

FV formulation of continuous scalar equation (4.1) reads¸
lijPCi

»
lij

ÝÑH pui, uj , n̄q dl � 0. (4.6)
where ÝÑHpu, v, n̄q stands for the FV numerical �ux, lij is the portion of BCi separating Ci from
Cj (see Figure 4.2) and n̄ is the outward unit normal.



4.1. Principle 63
A large set of FV scheme is included in the Q-scheme framework. This type of schemes isbased on the family of �ux functions de�ned as

ÝÑHpui, uj , ~nijq � 1
2

�ÝÑFhpuiq � ÝÑFhpujq	 .~n1
ij �Qpui, uj , ~n1

ijqpui � ujq
� 1

2

�ÝÑFhpuiq � ÝÑFhpujq	 .~n2
ij �Qpui, uj , ~n2

ijqpui � ujq (4.7)with Qpu, vq being a dissipation matrix (e.g. Roe's absolute value matrix, see [98] or [89] page61), ÝÑFh being the linear interpolant of the �ux function ÝÑF and ~n1
ij and ~n2

ij being de�ned on theleft side of Figure 4.2. They all verify the consistence property of the FV schemes:
ÝÑHpu, uq � ÝÑFhpuq ùñ @i PMh,

»
BCi

ÝÑHpui, ui, n̄q dl � 0. (4.8)
Then scheme writes:¸

lijPCi

»
lij

ÝÑH pui, uj , n̄q dl � 0

� 1
2

¸
TPDi

¸
jPT
j�i

!�ÝÑFhpujq � ÝÑFhpuiq	 .~nij

�Qpui, uj , ~nijqpui � ujq)
� ¸

TPDi

ΦT,FV
i .

~nij is de�ned on �gure 4.2 and since the boundary of Si is closed, one has¸
TPDi

¸
jPTÝÑFhpUiq.~nij � 0,

what has been subtracted in the above equation.The only thing left to check in order to prove this class of FV schemes is included in the RDframework is the conservative property in each element: the quantity of information sent to thenodes must be equal to the global residual of the element.¸
iPTΦT,FV

i � ¸
iPT 1

2

¸
jPT,j�i

!�ÝÑFhpujq � ÝÑFhpuiq	 .~nij �Qpui, uj , ~nijqpui � ujq)
� ¸

iPT 1
2

¸
jPT,j�i

�ÝÑFhpujq � ÝÑFhpuiq	 .~nij

� ¸
iPT

ÝÑFhpuiq.~ni

2

� »
BTÝÑFhpuq.n̄ ds

� ΦT
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This shows that any �nite volume scheme operating on the median dual cells with a Q-formnumerical �ux function de�ned in (4.7) is equivalent to the RD scheme with the local nodalresiduals

ΦT
i � ¸

jPT,j�i

!�ÝÑFhpujq � ÝÑFhpuiq	 .~nij �Qpui, uj , ~nijqpuj � uiq),
obtained with a continuous piecewise linear approximation of the �ux. Note that the analysisis general and can be extended to nonlinear problems and systems. Moreover, as shown in [89]page 62, it applies to general FV numerical �uxes and not only to (4.7). Surprisingly, startingfrom the piecewise constant FV approximation, we arrived to a scheme based on a continuous�ux approximation which, moreover, respects all the assumptions of the Lax-Wendro� theorempresented in next section.
Galerkin Finite Element Method: It is well known the Finite Element Method (FE)enjoys a complete mathematical formulation which transforms formally the strong continuousproblem (4.1) into its weak form, and the two formulations are consistent. We consider here its
P1 numerical resolution. We have in that case to solve the �nite dimensional problem:»

Ω

ÝÝÑ∇ψi.
ÝÑF puhq dx � 0, @i PMh. (4.9)

ψi denotes the P1 basis function associated to node i. As explained in the introduction of thischapter, the boundary conditions have been neglected or supposed to be homogeneous Dirichletcondition. Then, if the �ux ÝÑF is continuously approximated by its P1 projection ÝÑF h, ÝÑ∇ .ÝÑF hpuhqis constant over every element and we obtain
@i PMh,

¸
TPDi

»
T ψi

ÝÑ∇.ÝÑF hpuhq dx � 0

� ¸
TPDi

1
3

»
TÝÑ∇.ÝÑF hpuhq dx

� ¸
TPDi

1
3
ΦT.

This shows the P1 Galerkin Finite Element Method is a P1 centered Residual DistributionScheme with uniform constant distribution coe�cients:
βFEi � 1

3
.

Petrov-Galerkin Formulation: The Galerkin Finite Element Method is known to be un-stable. This can be easily shown in the case of a constant advection problem (see [1, 73, 64]):
~λ.
ÝÑ∇u � 0. (4.10)A new class of schemes has been developed [73, 25, 72] in order to stabilize the FE in the caseof conservation laws; they are called the Petrov-Galerkin scheme and just add to the Galerkinformulation a stabilization term. They are all included into the formulation:»

Ω

ÝÝÑ∇ψi.
ÝÑF puhq dx� ¸

TPDi

»
T
�BÝÑFBu .ÝÝÑ∇ψi

�
τ̄
ÝÑ∇ .ÝÑF puhq dx � 0, @i PMh. (4.11)
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τ̄ is a matrix of local nondimensionalization which characteristic size must be proportional to

hp}~u}�cq . And if we use the notation
kTi � »

T B
ÝÑFBu .ÝÝÑ∇ψi dx, (4.12)

and suppose the advection wind BÝÑFBu to be constant inside T, we obtain that P1 Petrov-Galerkinschemes can be rewritten into the form
@i PMh,

¸
TPDi

�
1
3
� kTi τ̄|T| 
ΦT,

which means they �t the RDS formalism with distribution coe�cients
βTi � 1

3
� kTi τ̄|T| .This is unfortunately not true in the general case, as the extra dissipative term in (4.11) cannotbe expressed in terms of kTi .Another thing to observe is that this dissipative term brings to the scheme some kind ofupwind bias in the distribution, which is one way to explain the stabilizing character of thisterm. In particular, because ÝÝÑ∇ψi is perpendicular to the edge opposite to i and points towardnode i, kTi is positive when i is downstream and negative when i is upstream. Then the constantdistribution coe�cient βi � 1{3 of the pure Galerkin FE formulation is modulated by a coe�cientthat measures the power and the direction of the advection inside the element. One can lookat [89] or [3] for an energy stability study. It gives a better understanding of the stabilizationmechanism but also of the RD stability. One has to remember that the schemes with an upwindcharacter are always more stable, as they push the information in the direction of the advectionand therefore always dissipate the possible numerical errors.

RDS is a particular Galerkin Scheme The following idea has �rst been expressed in 1993during the �rst von Karman Institute for Fluid Dynamics Lecture Series or in [28]. It consistsin claiming RDS is a particular �nite element weak formulation with modi�ed basis functions.That for, we de�ne what we call the Bubble Functions γT. It is de�ned over each element of themesh as the unique piecewise linear continuous form function taking value 1 at the barycentriccenter of T and 0 over the edges, see Figure 4.3. We can then de�ne
N T

i � ϕT,1
i � αTi γT (4.13)as a new linear form function over the element, with αTi a �tting parameter. The extra nodalform function αTi γT will also be denoted by γTi . In order the scheme stays conservative, we needto ensure the following condition: ¸

iPTN T
i � 1 ùñ ¸

iPT γTi � 0. (4.14)
Let us apply the �nite element theory to equation (4.1) with the approximated functionalspace being spanned by the N T

i . We furthermore assume that
@T PMh,@i PMh, αTi � 3βTi � 1. (4.15)
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Figure 4.3: (Bubble Function) This shape function allows to modify the space of approximationwhile maintaining the continuous representation of the variable because γT|BT � 0.
Then in P1, the scheme writes

@i PMh,
¸
TPDi

»
T N T

i div�ÝÑF hpuhq	 dx � 0

� ¸
TPDi

»
T N T

i dx
ΦT
|T|

� ¸
TPDi

βTi ΦT,
which is exactly the P1 RD scheme. This formulation can be straightforwardly extended to 3D.Unfortunately, we have trouble to extend this idea to higher order formulation. It would bepossible if

αTi � ΦT,k
i �ΨT,k

i³T γTdiv�ÝÑF hpuhq	 dx (4.16)
were always de�ned. But it is not always the case, as div�ÝÑF hpuhq	 is no more constant in
Pk, k ¡ 1, and can take positive as negative values inside T.
4.2 Properties of RDS

This section is devoted to the de�nition of the numerical properties of RDS. This will helpto understand the construction of the high order residual schemes that are going to be presentedin the next chapter.
4.2.1 Consistency

We start by verifying under which conditions the computed solution is really an approximationof the weak solution of problem (4.1). The following Lax-Wendro�-Like Theorem has been
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demonstrated in 2002 by Abgrall and Roe and a complete proof can be found in the associatedarticle [9]. Although [9] treats the complete unsteady case, we are �rst going to consider onlythe steady problem. The demonstration is almost completed in that case and we will then justgive a remark on how to deal with the time derivative terms.To begin with, we need to de�ne the framework we are going to work in.
Assumption 4.1The mesh Mh is conformal and regular. The word conformal has already been de�ned insection 3.1.3 and on Figure 3.3. By regular we mean that the triangles are roughly the samesize, more precisely that there exist two constants C1 and C2 such that the ratio of twoheights of any triangle of the mesh stands between C1 and C2, as already expressed in (3.3).

If Mh is a mesh verifying assumption 4.1 and Dk
h is the set of dual volumes associated withthe degrees of freedom i PMh (Pk), we de�ne the following vectorial subspaces

W k
h � PkpMhq,

X k
h � !

vh;@D P Dk
h, vh|D � constant ) .As de�ned in (3.8), πk

h de�nes the piecewise kth order interpolation of any function de�ned atany degree of freedom i PMh. Then the mass lumping operator :
Lk

h :

$&% W k
h ÝÑ X k

h

v ÞÝÑ ¸
iPMh

vpxiqχDi

where χDi
is the characteristic function of cell Di, de�nes an isomorphism between W k

h and X k
hwhich reciprocal function is the function πk

h restricted to X k
h .The next assumption must be seen as asserting continuity of the local nodal residual ΦT

i withrespect to the nodal values of uh inside T. In particular, when uh is constant over T, ΦT
i puhqmust be zero.Assumption 4.2Let Mh be a meshing verifying assumption 4.1. Then for any C P R� and any uh P X k

hensuring }uh}L8 ¤ C, there exists C 1 P R� which depends only on C and the geometry of
Mh, such that: @T PMh,@i P T, |ΦT

i | ¤ C 1h ¸
jPT |ui � uj |.

In the case of a P1 interpolation, if ÝÑFh is also the P1 projection of the continuous �ux ÝÑF , wecan write:
ΦT

i � βTi ΦT � βTi »
TÝÑ∇ .ÝÑFhpuhqdx

� βTi »
BTÝÑFhpuhq.~n ds � βTi ¸

iPT 1
2
ÝÑFhpuiq.~ni

� βTi ¸
i�j

�ÝÑFhpuiq � ÝÑFhpujq	 .~ni

2
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We have here used a convention that is going to be really useful in the rest of the manuscript.In the last equation, ~n represents the generic outward unit normal to the edges of the triangle,while ~ni represents the inward normal to the edge opposite to node i, scaled by the length of thisedge. If the distribution coe�cients βTi are uniformly bounded and the approximation of �ux ÝÑFis regular enough, assumption 4.2 is ful�lled. Unfortunately, this is not as simple for higher orderschemes, and we have to verify this hypothesis case by case. In the following, we just assumethat assumption 4.2 is always veri�ed.As an additional hypothesis, we need to de�ne how regular the approximation ÝÑFh of ÝÑF mustbe.Assumption 4.3The approximation ÝÑFh of the �ux ÝÑF veri�es:

i) ÝÑF h is a continuous function from X k
h into X k

h ,ii) For any sequence puhqh bounded in L8pR2q independently of h and converging in L2
locpR2qto u, we have

lim
hÑ0

}ÝÑFhpuhq � ÝÑF puq}L1
locpR2q � 0.

As we have seen above, the Pk projection of continuous �ux ÝÑF is usually going to be used forthe �ux approximation: ÝÑFhpvq � ¸
iPMh

ÝÑF pviqϕk
i . (4.17)

In this case, the two items of assumption 4.3 are always veri�ed.In the following theorem we ignore the boundary conditions or just assume they are homo-geneous Dirichlet boundary conditions.
Theorem 4.4 (Lax-Wendro� Like)Let puhqh be a sequence of numerical solutions of (4.5) for some given meshesMh. We assumethat the meshes always verify assumption 4.1, and that the scheme satis�es assumptions 4.2and 4.3. We also assume there exist a constant C depending only on C1 and C2 and a function

u P L2pR2q such that
sup

h
sup
x PΩ |uhpxq| ¤ C

lim
hÑ0

‖u� uh‖L2
locpR2q � 0

Then u is a weak solution of (4.1).
Proof : Let Υ be any C1 function of R2 with compact support in Ω and Υi its value at node i. Wealso de�ne the Galerkin residual

ΨT
i puhq � »

T ϕk
i
ÝÑ∇ .ÝÑFhpuhqdx, (4.18)

where ϕk
i stands for the kth order Lagrangian basis function at node i. Let us take scheme system(4.5), multiply by Υi and sum over the degrees of freedom. We obtain:¸

iPMh

Υi

¸
TPDi

ΦT
i puhq � 0.
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If we swap the two summation indices, add and remove �ΨT

i puhqΥi

� and use the conservationproperty ¸
iPT

�
ΦT

i puhq �ΨT
i puhq� � ΦT � ΦT � 0,

we get, with q being the number of DoFs in each element
1
q

¸
TPMh

¸
i,jPT

�
ΦT

i puhq �ΨT
i puhq� pΥi �Υjqloooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

I

� ¸
TPMh

¸
iPTΨT

i puhqΥilooooooooooomooooooooooon
II

� 0. (4.19)

We �rst begin with term II:
II � ¸

TPMh

¸
iPT

»
T ϕk

i pxqÝÑ∇ .ÝÑFhpuhqΥidx (4.20a)
� »

Ω

�
πk

hΥ
� pxqÝÑ∇.ÝÑFhpuhqdx (4.20b)

� � »
Ω

ÝÝÝÝÝÑ
∇pπk

hΥq.ÝÑFhpuhqdx� »
Ω

ÝÝÑ∇Υ.ÝÑF puqdx
� »

Ω

ÝÝÑ∇Υ.ÝÑF puqdx (4.20c)
� � »

Ω

ÝÝÑ∇Υ.ÝÑF puqdx� »
Ω

�ÝÝÑ∇Υ�ÝÝÝÝÝÑ
∇pπk

hΥq	 .ÝÑFhpuhqdx
� »

Ω

ÝÝÑ∇Υ.
�ÝÑF puq � ÝÑFhpuhq	 dx (4.20d)

� � »
Ω

ÝÝÑ∇Υ.ÝÑF puqdx� ohp1q (4.20e)
In equation (4.20b), we just use the fact that °iPT Υiϕ

k
i is the Pk projection of C1 test function

Υ. In equation (4.20c), we apply the Green formula, enjoying the compact support of Υ and addand remove the second integral. Equation (4.20d) is just a crafty redistribution of the terms, inorder to come to the last sought line.
The second integral in (4.20d) is bounded by the L1 norm of pÝÝÑ∇Υ � ÝÝÝÝÝÑ

∇pπk
hΥqq because thesequence of uh is bounded in L8 norm and ÝÑFh is a continuous function on X k

h . And since Υ isa C1
0 function in Ω, }ÝÝÑ∇Υ�ÝÝÝÝÝÑ

∇pπk
hΥq}L1pR2q � ohp1q.

Because Υ is C1 with compact support in Ω, its gradient is uniformly bounded by a constantindependent of h. The third integral in (4.20d)) is then dominated by }ÝÑF puq � ÝÑFhpuhq}L1pR2qwhich tends to 0 by assumption 4.3(ii), as }uh}8 is bounded independently of h, and uh ÝÑ
hÑ0

uin L2
loc.Let give a look to term I. We �rst obviously have

I ¤ 1
q

¸
TPMh

¸
i,jPT |ΦT

i puhq �ΨT
i puhq| |Υi �Υj | (4.21)

and since Υ is C1
0 in Ω, |Υi �Υj | is dominated by h. sup

Ω
}ÝÝÑ∇Υ} � Ch. Then

I ¤ Ch

q

¸
TPMh

¸
i,jPT |ΦT

i puhq �ΨT
i puhq| (4.22)
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and by assumption 4.2, we obtain

I ¤ Ch2

q

¸
TPMh

¸
i,jPT |ui � uj | (4.23)

It is now quite a hard work to show this last estimation tends to zero with h. It would be veryeasy if the uh were C1, but it is not the case here. The following lemma proves the last neededlimit. Its demonstration can be found in the appendix of [9].
Lemma 4.5

We consider Ω � R2, a bounded domain, and puhqh a sequence such that uh P X k
h , @h. We assume

there exist a constant C independent of h and u P L2
locpΩq such that

sup
h

sup
x PΩ|uhpxq| ¤ C and lim

hÑ0
‖u� uh‖L2pR2q � 0

Then

lim
hÑ0

� ¸
TPMh

|T|
¸

i,jPT |ui � uj |
� � 0

The hypothesis of the Lemma are exactly those of Theorem 4.4 which ends to demonstrate that:¸
TPDi

ΦT
i puhq � 0, @i PMh,@h

ñ »
Ω

ÝÝÑ∇Υ.ÝÑF puqdx � ohp1q
and u is thus a weak solution of continuous equation (4.1).
We have here presented the problem in the steady two dimensional scalar high order case. Aswe have seen in the beginning of this section, the assumption 4.2 and 4.3 are usually automaticallyveri�ed by the RDS. The only thing we have to do is to ensure assumption 4.1 which dependsonly on the meshing.

Vectorial Case: It is in fact possible to prove the same result for unsteady vectorial problemsin any space dimension, and that is what is done in the appendix of [9]. We have chosen not totreat the complete demonstration mainly to avoid some really extensive notations and reduce thelength of the proof. For the vectorial problems, the only thing to do is to consider the vectorialnorm instead of the absolute value. The proof is otherwise similar. This proof can also be verystraightforwardly extended to more than two dimensions of space.
Unsteady Case: For the unsteady case, there is a bit more work to do depending on thetreatment of the time derivatives. As we observed in Section 3.2.3, there are two ways of treatingthe unsteady problems. The �rst one is to consider the unsteady conservation law in space asa steady conservation law in space-time. Then a two dimensional unsteady problem becomes asteady three dimensional one, and this entirely �ts the framework used in the theorem demon-stration. Equation (4.5) is just expressed into prismatic elements, see Figure 3.11. On the otherhand, one would like to discretize the time derivative terms by �nite di�erences and then obtain
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Figure 4.4: Cut through the shock of a Burger solution for di�erentRD schemes. All the schemesare going to be presented in Section 4.4. The LDA scheme is known to be non positive and wecan see that in the two over/under-shoots on both sides of the shock. The exact solution is ofcourse monotone. The right �gure is just a zoom of the left one.
a time marching scheme that would solve a two dimensional space problem at each time step.Equation BuBt �ÝÑ∇ .ÝÑF puq � 0, @x, t P Ω� r0;T s (4.24)is approximated by

@i PMh,
un�1

i � un
i

∆t
� ¸

TPDi

ΦT
i pun

hq � 0. (4.25)
The proof of the Lax Wendro�-Like theorem now needs a test function Υ, C1

0 both in space andtime and prove that the term un�1
i �un

i
∆t implies

� »
Ω�r0;T s uBΥBt dxdt�

»
Ω
u0Υp., 0qdx� oph.dtqp1q. (4.26)

For the space dependent term, one has just to handle with integrals in space and time insteadof just space sums. More details are given in the appendix of [9].
4.2.2 Maximum Principle and Monotonicity Preserving Condition

As we have already seen in Chapter 2, solutions of conservation laws may lack regularity andeven be discontinuous. These discontinuities have always been a source of numerical instabilitiessince the beginning of numerical computations, partly because the data are mostly representedcontinuously. If we consider for example a strong shock and allow the solution to overshoot orundershoot the shock (see Figure 4.4), we are in fact introducing exciting frequencies inside thescheme. And if it is not stable enough, the solution will blow up quickly starting from the regionof the shock. One may also control only the stability in a certain norm (let say L2) but notin another (for example L8). Then during a certain amount of time steps, the distance of thecomputed solution to the real one could decrease in L2 norm, but exponentially grow in the L8one. Such a situation always leads to a numerical blow up.
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Even if not speaking about numerical blow up, just allowing theoretically some oscillationsin the solution always leads them to appear, because the round o� introduces numerical errorsthat are often ampli�ed. This is observed routinely in the simulations, when using non-monotoneschemes. Overshoots and undershoots spoil the solution and sometimes destroy accuracy. Thatis why we need to de�ne a criterion that will ensure the solution to be smooth, and such that thescheme conserves this property. A way to do this is to enforce the solution to verify a discretemaximum principle. Moreover, as seen in Section 2.1.8, this criterion is intrinsically bound withthe entropy condition and has a certain physical meaning. To do so, we �rst admit that anyresidual distribution scheme can be recast into the form:

ΦT
i � ¸

jPT cTij pui � ujq , (4.27)
where once more T is not inevitably a triangle. We see in the following that this hypothesisis true for all the RD schemes developed at this time. As one can see, the value of cTii can bearbitrary. It is further useful to consider that

@i PMh,@T P Di, cTii � 0As numerical problem (4.5) is non linear, we �nd in fact its solution uh as the steady state atin�nite time of the pseudo-unsteady problem
BuiBτ � ¸

TPDi

ΦT
i � 0, @i PMh. (4.28)

We use the word �pseudo� because the iterative time τ is non real: it is a numerical artifact.The di�erential equation is now solved in uh and τ using a numerical explicit scheme. It isnot the only way to get to the steady state but it is the formulation for which the explanationsand the de�nitions are the simplest. The numerical scheme reads
@i PMh,

un�1
i � un

i

∆τ
� ωn

i

¸
TPDi

ΦT
i pun

hq � 0 (4.29)
ô @i PMh,

un�1
i � un

i

∆τ
� �ωn

i

¸
TPDi

¸
jPT cTij

�
un

i � un
j

� (4.30)
� �ωn

i

¸
jPDi

�� ¸
TPDiXDj

cTij
��
un

i � un
j

�
,

ωn
i standing here for a local pseud-time stepping parameter that ensures the sought stabilitythrough maximum principle, as we will see in the following, see Susection 5.2.1 page 96.If we denote by c̃ij the quantity

@i, j PMh, c̃ij �
$&%

¸
TPDiXDj

cTij , if j P Di, j � i

0, else (4.31)
we have the following property:
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Property 4.6 (Local Extremum Decreasing)The numerical scheme de�ned in the previous equation is called Local Extremum Decreasing(LED) if and only if

c̃ij ¥ 0, @i, j PMh. (4.32)
Proof : Let us suppose, un

i is a local maximum. Then, un
i � un

j is positive @j P Di and the quantity�°jPDi
c̃ij
�
un

i � un
j

� is negative. At next time step, we will have : un�1
i ¤ un

i .Exactly like in the maximum case, if un
i is a local minimum, un�1

i is obviously going to begreater than un
i .Eventually, if equation (4.32) is not true, it is always possible to build a vector of un

i 's whichlocal extrema will be increased through this explicit scheme.
In fact, the most important sentence in this proof is the last one. Because the Local ExtremumDecreasing property does not ensure the explicit scheme to be stable, it just describes what isnot going to happen. It says that if the solution blows up, it won't come from an increasingof the extrema. The problem of stability is not solved however because this condition does notprohibit another node to become an extremum, or a maximum to become suddenly a senselessminimum. The maximum principle or the L8 stability is still not obtained.Ensuring condition (4.32) is not easy. That is why we usually ensure a stronger but nonnecessary condition, much easier to verify : the Sub-element LED, also called the MonotonicityPreserving condition.

De�nition 4.7 (Monotonicity Preserving Property)The above explicit scheme is called Monotonicity Preserving if
@i PMh,@T P Di,@j P T cTij ¥ 0. (4.33)

There are two remarks to add to this de�nition. First, a Monotonicity Preserving scheme isobviously Local Extremum Decreasing. Second, we are going to see in Section 5.2 that under thisnew condition, the explicit scheme veri�es a discrete maximum principle under a CFL condition.The scheme is then stable in L8 norm. Furthermore, we are also going to describe an implicitmethod to solve di�erential system (4.28), and prove condition (4.33) is su�cient to ensure adiscrete maximum principle and then stability in L8 norm for the solution obtained by thismethod. The solution of an implicit monotonicity preserving RDS is unconditionally stable!
Vectorial Case : Finally, one would like to generalize these results in the case of vectorialproblems. In that case, the cij coe�cients become matrices, and one would like to �nd a criterionsimilar to (4.32), that would ensure the solution respects some maximum principle. But this is avery hard task as it is complex to de�ne what a local maximum is. A node can absolutely be alocal maximum for a variable and at the same time a local minimum for another variable. Thisstill stays as an open question, and we therefore de�ne that for multidimensional problems, thescheme is said to be monotonicity preserving when all the cij are positive in the sense

@M PMnpRq, M ¥ 0 ô �
xTMx ¥ 0, @x P Rn

�
. (4.34)



74 Chapter 4. Introduction to RDS
In fact, this de�nition has a meaning as it ensures in some way a discrete energy stability, see[2].
4.2.3 Accuracy

As already discussed in section 3.1.2, an important property of a numerical scheme is itsaccuracy. It is crucial to know how far the computed approximated function uh is from theweak solution u� of the continuous problem. In this subsection, we are going to analyze the twodimensional steady scalar problem discretized by means of an approximation at �xed polynomialdegree k. The extension to 3D or vectorial problem is straightforward. The following argumentsalso work for the time dependent case, when using space-time prismatic elements. They justhave to be adapted to the situation. If the time derivative terms are treated by �nite di�erences,one could use the following demonstration to analyze the accuracy in space, and then add thestudy of accuracy in time of the chosen time stepping scheme to get the complete space-timeaccuracy analysis.It is impossible to determine }u��uh}, as u� is completely unknown. However, the injectionof the exact solution into the scheme gives a good estimation of the distance between uh and
u�. As problem (4.1) is solved through scheme (4.5), one can de�ne the truncation error vectorpξiqiPMh

by @i PMh, ξi � ¸
TPDi

ΦT
i pπk

hu
�q, (4.35)

πk
hu

� being still the Pk projection of u�. One could study the norm of this vector. We ratherprefer to study the quantity Θpπk
hu

�q, called the truncation error, and de�ned for any testfunction Υ P C1
0pΩq by:

Θpπk
hu

�q � ¸
iPMh

Υiξi � ¸
iPMh

Υi

¸
TPDi

ΦT
i pπk

hu
�q. (4.36)

Υi is of course the value taken by the test function Υ at node i. We give then the followingde�nition:
De�nition 4.8 (kth order accuracy for steady problems)A Residual Distribution Scheme is said to be kth order accurate at steady state, if it veri�es

Θpπk
hu

�q � Ophkq
for any smooth exact solution u�, with Θpπk

hu
�q given by (4.36).

As we did in Section 4.2.1, we need to de�ne the Galerkin residual
ΨT

i puhq � »
T ϕk

i
ÝÑ∇ .ÝÑFhpuhqdx,

where ϕk
i still stands for the kth order Lagrangian basis function at node i. If we swap the twosums in (4.36), add and remove the Galerkin residual and use the fact that¸

iPTΦT
i puhq �ΨT

i puhq � ΦT � ΦT � 0,
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we obtain

Θpπk
hu

�q � 1
q

¸
TPMh

¸
iPT

�
ΦT

i pπk
hu

�q �ΨT
i pπk

hu
�q	 pΥi �Υjqlooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

I� ¸
TPMh

¸
iPTΨT

i pπk
hu

�qΥilooooooooooooomooooooooooooon
II

(4.37)
We �rst start with term II. Because u� is the weak solution of (4.1),»

Ω
Υk

h
ÝÑ∇.ÝÑF pu�qdx � 0,

and
II � »

Ω
Υk

h

�ÝÑ∇ .ÝÑFhpπk
hu

�q � ÝÑ∇.ÝÑF pu�q	 dx
� � »

Ω

ÝÝÑ
∇Υk

h.
�ÝÑFhpπk

hu
�q � ÝÑF pu�q	 dx

Now, pπk
hu

�q is a Pk approximation of u�, ÝÑF is supposed to be continuous and ÝÝÑ∇Υk
h is bounded,because Υ P C1

0pΩq. Then if ÝÑFh is an approximation of �ux ÝÑF of order k � 1, we have:
II � Ophk�1q. (4.38)

Let us now come to term I. The number of degrees of freedom per element is bounded, as
k is �xed. The number of triangles in Mh is of order Oph�2q and because the gradient of Υ isbounded in Ω, Υi �Υj � Ophq. What gives:

I � Oph�2q �Ophq � �
OpΦT

i pπk
hu

�qq �OpΨT
i pπk

hu
�qq	 (4.39)But

ΨT
i pπk

hu
�q � »

T ϕk
i
ÝÑ∇ .ÝÑFhpπk

hu
�qdx

� »
T ϕk

i

�ÝÑ∇.ÝÑFhpπk
hu

�q � ÝÑ∇ .ÝÑF puq	 dx
� »

BT ϕk
i

�ÝÑFhpπk
hu

�q � ÝÑF puq	 .~n dx� »
TÝÝÑ∇ϕk

i .
�ÝÑFhpπk

hu
�q � ÝÑF puq	 dx

� Ophk�2q.Then the truncation error Θpπk
hu

�q is of desired order k � 1, if ΦT
i pπk

hu
�q is of order k � 2.We conclude by the following proposition, extended to d dimensions for sake of completeness:

Proposition 4.9 (High Order Accuracy)A Residual Distribution Scheme using Pk Lagrangian interpolation polynomial is of order
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pk � 1q if, when u� is the weak solution of (4.5), the following two conditions are ful�lled:
a) ÝÑFh, the �ux approximation, is of order pk � 1q;
b) For a problem in d spatial dimensions, the local nodal residuals verify:

ΦT
i pπk

hu
�q � Ophk�dq. (4.40)

Condition (4.40) guarantees that the scheme has formally a Ophk�1q error. In practice, it isabsolutely not sure this convergence rate will be observed, unless some stability constraints arealso met. For example, we have proved the Galerkin scheme (that can be easily put into a RDform) is always of the desired formal order. But it is also well known that this type of scheme isunstable and diverges when the mesh is re�ned. In this sense, the conditions of Proposition 4.9are only necessary.
4.2.4 Linearity Preserving Condition

As we have just seen in the previous subsection, reaching pk�1qth accuracy needs in particularthat ΦT
i pπk

hu
�q � Ophk�2q. What we are going to see here is that this condition is in particularachieved as soon as the distribution coe�cients βTi are bounded independently of h. That iswhat we call the Linearity Preserving Condition.Let us give a look at the injection of the Pk projection of an exact smooth solution u� intothe element residual.

ΦTpπk
hu

�q � »
TÝÑ∇ .ÝÑFhpπk

hu
�qdx

� »
BT

�ÝÑFhpπk
hu

�q � ÝÑF pu�q	 .~n dx

� Ophk�2q.Then, if the distribution coe�cients are bounded independently of h, the RD scheme reachesthe desired order. In that case
ΦT

i pπk
hu

�q � βTi ΦTpπk
hu

�q � Ophk�2qand
Θpπk

hu
�q � Ophk�1q.Furthermore, we have seen in Assumption 4.2 that if the distribution coe�cients of an RDSare bounded, the local nodal residuals ΦT

i depend continuously on the values of uh at nodes
j P T, which is a required condition for Theorem 4.4.
De�nition 4.10A RD scheme is called Linearity Preserving (LP) if its distribution coe�cients βTi de�nedin (4.3) are uniformly bounded independently of h with respect to the solution and the dataof the problem:

max
TPMh

max
iPT |βTi |   C   8, @ΦT, uh, u

0
h, τ, . . . (4.41)
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LP schemes satisfy by construction the necessary condition for pk � 1qth order of accuracyof Proposition 4.9.
We will see further a method recasting automatically a non-LP scheme into a LP one. Thismethod will be used to transform any known RDS of any order of accuracy into a scheme havingthe maximal order of accuracy.

4.3 Godunov Theorem
Before presenting some classicalRD schemes, and analyze their properties, we wish to presentthe following theorem that is restricting the panel of possible RD schemes for high order gen-eralization. This theorem is going to be formulated in the scalar framework. Generalization tovectorial valued problem is assumed. We �rst begin by the following de�nition:

De�nition 4.11 (Linear Scheme)A Residual Distribution Scheme of the form (4.30) is said to be linear if all the cij areindependent of the numerical solution.
We recall from the introduction that the goal is here to build a numerical scheme that isstable and of the maximal order of accuracy. If we consider a Pk formulation, one wishes then toobtain a scheme that is both pk�1qth order accurate and monotonicity preserving. The followingtheorem claims [50, 76]:

Theorem 4.12 (Godunov)A Pk Residual Distribution Scheme that is both pk � 1qth order accurate (which means LP)and monotonicity preserving cannot be linear.
Proof : This proof is given here because it is valuable for an RD scheme of any polynomial order ofapproximation, applied on any type of element with q DoFs. It has been inspired by [114].Let us consider an LP linear scheme on an element T having q DoFs. Then the distributioncoe�cients βTi , i P T as well as the cij are independent of the solution u. We recall:

ΦT
i � βTi ΦT � ¸

j�i

cij pui � ujq . (4.42)
Then by summing over i P T, one obtains:¸

iPTΦT
i � ΦT

� ¸
iPT

¸
jPT pcij � cjiqui

� ¸
iPT kiui

where ki coe�cients are also independent of u and moreover verifying¸
iPT ki � ¸

i,jPT pcij � cjiq � 0, (4.43)
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what allows us to write

ΦT � ¸
j�i

kj puj � uiq . (4.44)
Then by (4.42), one gets¸

j�i

cij pui � ujq � ¸
j�i

�βTi kj pui � ujq , (4.45)
and by identi�cation, because all the coe�cients of the sums are independent of u,

cij � �βTi kj . (4.46)
Finally, that means that ¸

jPT cij � 0 and at least one cij is negative. This contradict the fact
that the scheme is monotonicity preserving, see equation (4.33).

4.4 Some RD schemes
We �nish this chapter by a review of the di�erent known Residual Distribution Schemes.There exists three di�erent types of them in the literature. They are classi�ed as follows: thefour �rst schemes (N, LDA, Blended and PSI) are called multidimensional upwind, the �fth(SUPG) is called upwind and could have been presented along with the Finite Volume schemes(FV) and the Lax-Wendro� scheme (LW). Finally, the last presented Lax-Friedrichs (LxF)scheme is known as a centered scheme. These three terms in italic are going to be explained inthe related subsections.For each of these schemes we describe its main properties, advantages and drawbacks. Weshall also give some remarks on how easily each scheme can be extended to higher order. All ofthese schemes have �rst been developed in the scalar framework, but when possible we will alsogive their generalization to the system case.

4.4.1 Multidimensional Upwind Schemes
Scalar Case : A multidimensional upwind scheme is a scheme that respects the directionalnature of the advection. Let us consider the two dimensional scalar advection problem

BuBt � ~λ.
ÝÑ∇u � 0, x P Ω � R2. (4.47)

~λ represents at any point the direction of advection. A multidimensional upwind scheme is anumerical scheme that distributes all the information downstream, or equivalently that sends noinformation to the upstream nodes. An illustration is given on Figure 4.5. On this �gure, wealso de�ne ~ni as the inward normal to the opposite edge of node i, scaled by the length of thisedge. Then the quantity
ki � ~λ.~ni

2
(4.48)



4.4. Some RD schemes 79

Figure 4.5: Left: 1-Target triangle. Node 1 is the only downstream node. It receives the globalresidual ΦT entirely. Right: 2-Target triangle. Node 1 is upstream and receives nothing fromthe global residual.
tells us if node i is upstream or downstream, depending on its sign. Even though a more generalformalism can be developed for a PDS, this geometrical interpretation only applies to the scalarcase. In this case, a multidimensional upwind scheme is characterized by the following property:

@T PMh,@i P T, ki ¤ 0 ñ ΦT
i � 0. (4.49)As one can see on Figure 4.5, there are only 2 possibilities for a P1 triangle. It could be 1-Targetas on the left �gure. In this case all the multidimensional upwind RD schemes reduce to thesame: they all send the totality of the global residual to the unique downstream node. Then P1multidimensional upwind RD schemes just di�er by the way they distribute the global residualto the downstream nodes in the 2-Target triangles (right Figure).

Vectorial Case : In the system case, ~λ is a vector of matrices, ki is thus a m �m matrix.Because the system is hyperbolic, we have m eigendirections and their associated eigenvalues.The system scheme is now called multidimensional upwind if it sends something only on theeigendirections for which the associated eigenvalues are positive. There is no physical streamanymore, as the diagonalization depends on the direction of ~ni, but numerically, we can considerthat in this direction we have m characteristics directed by the m eigenvalues of ki, and that ishould receive no information on the eigendirection for which the characteristic curve is aimingat the opposite side, see Figure 4.6.Let us introduce some useful notations: in the following, if Λ is a diagonal matrix, then |Λ|is the diagonal matrix formed by the absolute values of the diagonal elements of Λ. Now ifK � RΛL is a diagonalizable matrix, then
|K| � R|Λ|Land we now de�ne K� � K� |K|

2
, and K� � K� |K|

2
.
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Figure 4.6: (Multidimensional Upwind) One dimensional characteristic problem. λ1, λ2   0,
λ3, λ4 ¡ 0. Then node i should receive information only on the eigendirections ~r3 and ~r4:
ΦT

i .~r1 � ΦT
i .~r2 � 0.

When the problem is scalar, it is obvious that the absolute value notation coincide with the realabsolute value, and
k� � minpk, 0q, k� � maxpk, 0q.

4.4.2 The N-Scheme
The N (Narrow) scheme is a �rst order scheme, �rst designed by P.L. Roe ([100, 97], or[89] page 86), very e�cient in the case of pure advection equations. It has been since then thebasis for the construction of LP nonlinear positive discretizations (see PSI scheme, Subsection4.4.5). Moreover, thanks to its multidimensional upwind character, it has the lowest numericaldissipation among �rst-order schemes (see e.g. [89] p86). It is de�ned by the following localnodal residuals:

ΦN
i � k�i pui � ũq, (4.50)where the �average� state ũ is obtained by recovering the conservation relation. In the P1 case,this gives ¸

iPTΦN
i � ¸

iPTpk�i uiq � ũp¸
iPT k�i q� ΦT � »

T ~λ.ÝÑ∇u dx � »
T ¸

iPTui

�
~λ.
ÝÝÑ
∇ϕ1

i

	
dx

� ¸
iPT kiui.

And because ki � k�i � k�i and ¸
iPT ki � 0 ñ ¸

iPT k�i � �¸
iPT k�i
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we have:

ũ �
¸
iPT k�i ui¸
iPT k�i

(4.51)
A big problem of this scheme, is that nothing ensures °iPT k�i to be non null. This appearin particular in the regions where the advection phenomena becomes negligible. For example,the problem is encountered for the Euler equations near stagnation points. These points beingisolated, one applies in practice a numerical �ux to bypass the problem. Anyway we will use thefollowing notation

N � �¸
iPT k�i

��1

. (4.52)
The N scheme is then recast into the form

ΦN
i � ¸

jPT k�i Nk�j pui � ujq, (4.50)
which shows immediately that the N-Scheme is monotonicity preserving. And we have

cNij � k�i Nk�j ¥ 0, @i, j P T.
Finally, there is no way of controlling the bounds of the ratio

βTi � ΦT
i

ΦT ,and the N scheme is not LP. The N-Scheme always stays �rst order accurate, and there is thenno need to generalize it to higher order polynomial approximation. All of this will be discussedin Subsection 4.4.5 describing its associated LP scheme.
Vectorial Case : In the vectorial case, the matrix N is de�ned easily by equation (4.52)outside the vicinity of the stagnation points, and there is then no di�culty de�ning the nodalresiduals by (4.50). Because the sum, product and inversion of matrices conserve the positivityin the sense of (4.34), the vectorial N-Scheme is monotonicity preserving but it is still not LP.
4.4.3 The LDA Scheme

The LDA (Low Di�usion A) scheme is a multidimensional upwind scheme with boundeddistribution coe�cients:
ΦLDA

i � βLDA
i ΦT, βLDA

i � �k�i N. (4.53)Because it respects the LP condition, it is automatically second order. But on the other hand,in can be written as in (4.27) with
cLDA
ij � �k�i Nkj . (4.54)As one can see, there is no way of determining the sign of the cij , and the scheme does notverify the monotonicity preserving condition. Non physical oscillations appear in the computed
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solutions when they show discontinuities. As presented on Figure 4.4 in subsection 4.2.2, thenumerical solution overshoots or undershoots the exact one in the region of the shock. However,it is a very interesting scheme, because it is very little dissipative and gives excellent results onregular enough test cases. This is the reason why this scheme has received a lot of attention inthe past decade. The same arguments stay valid in the case of a vectorial problem.
High Order Formulation : Another main drawback of this method is that it is not easyto generalize to Pk formulation, k ¡ 1. Let us keep the example of the scalar advection problem(4.47) to illustrate this. The scheme can easily be extended to 2D P2 problems, with

ki � »
T ~λ.ÝÝÑ∇ϕ2

i dx,

ϕ2
i being the P2 Lagrangian function associated to node i. In that particular case, the scheme iswell de�ned, because ³TÝÝÑ∇ϕ2

i dx is non null for all the degrees of freedom i. But if we go now toa 3D problem,
ϕ2

i � ϕ1
i p2ϕ1

i � 1q ñ ÝÝÑ
∇ϕ2

i � ÝÝÑ
∇ϕ1

i p4ϕ1
i � 1q, i � 1 . . . 3and because ÝÝÑ∇ϕ1

i is constant over the tetrahedron and ³T ϕ1
i dx � |T|

4 , we have»
TÝÝÑ∇ϕ2

i dx � 0, i � 1 . . . 3. (4.55)Then the values of the solution on the vertices of the tetrahedra do not contribute to the scheme:they can be arbitrary! And we have the same problem if we consider a 2D P3 problem on triangles.If we look at numbering convention given on Figure 3.7 page 50, because basis function at DoF 10is symmetric over the triangle, one has: »
TÝÝÝÑ∇ϕ2

10dx � 0, (4.56)and the value of the solution at the barycentric center of each triangle is useless. In order tobypass this problem, we use today the sub-triangulation. Here is the process and its illustrationin the case of a 2D P2 problem.
• Cut the triangle into 4 sub-triangles TI , TII , TIII , TIV , as shown on Figure 4.7;
• For each of sub-triangle TX , compute a second order global residual

ΦTX � 6̧

i�1

ui

»
TX

~λ.
ÝÝÑ
∇ϕ2

i dx, X � I, . . . , IV, (4.57)
• Compute the �rst order distribution coe�cients in TX using

kTX
j � ~λ.

ÝÝÑ
nTX

j

2
, j P TX , X � I, . . . , IV, (4.58)

• Distribute the global residual
ΦT � »

T ~λ.ÝÝÑ∇uhdx � IV̧

X�I

»
TX

~λ.
ÝÝÑ∇uhdx, (4.59)

by sub-triangle, using equation (4.53).
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Figure 4.7: Convention of numbering of the P2 sub-triangles.
Because it uses the �rst order distribution coe�cients by sub-triangles, this method is alwaysde�ned and takes into account the value of the solution at every degree of freedom. The price topay is the complexity of the algorithm: instead of computing 1 global residual and distributingit to kpk�1q

2 DoFs, one has to interpolate k2 global residuals on the sub-triangles and distributeeach of them to the 3 associated DoFs.
4.4.4 The Blended Scheme

In the last years, there have been many studies trying to create a new class of schemes byblending two types of schemes, one being monotonicity preserving but not LP (as the N-Scheme),the other one being on the contrary LP but not monotone (as the LDA-Scheme). One can �ndgood examples of these schemes in [7, 2].The idea is to de�ne a new scheme by
ΦB

i � lΦN
i � p1� lqΦLDA

i , (4.60)where l of course depends on the solution uh. Then the challenge is to �nd the correct criterionde�ning the blending parameter l, in order to avoid the inconveniences of the schemes one isblending and only keep their advantages. One can also see the blending parameter as a poten-tiometer that favors the LDA scheme in the regular region and takes advantage of the robustnessof the N scheme in the discontinuous areas. Very interesting things have been discovered in thisdirection, in particular that the PSI scheme (or N-Limited Scheme) we are going to describe inthe next paragraph can be seen as an appropriate blending between the N and the LDA schemes(see [2]).
4.4.5 The PSI Scheme

The PSI (Positive Streamline Invariant) scheme of Struijs [113] in certainly the most successful
RD scheme ever designed, for it is multidimensional upwind, conservative, LP, monotonicitypreserving and maximal compact. It actually comes from the N-scheme, which is why it isoften called the limited N-scheme. As we have already seen, the N-scheme is monotonicitypreserving but does not provide bounded distribution coe�cients. We then would like to buildnew distribution coe�cients βT,�

i , i P T, such that:
•
°

iPT βT,�
i � 1, in order to keep the conservative property;
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• @i P T, βT,�

i has the same sign as βTi , in order to conserve the monotonicity preservingproperty;
• DC P R such that @T PMh,@i P T, βT,�

i ¤ C, in order the scheme gains the LP property.
The best way to do that today is to consider, [113]

βT,�
i � �

βTi ��°
jPT �

βTj 	� . (4.61)
It is called the limitation technique and it is the center point of the development of the highorder schemes. There are plenty of other limitation techniques and this will be discussed inSection 5.1. But this one is today the best because it is simple to code and always de�ned, as°

jPT �
βTj 	� ¥ 1 when ΦT � 0.

Higher Order Formulation : We have now a scheme that stays compact, and is conservative,
LP and monotonicity preserving. Unfortunately, all this theory is nowadays valid only on thevery simple scalar P1 case. As we said in the paragraph dealing with the N-scheme, there isno way of generalizing directly the N-scheme to Pk formulation, with k ¡ 1. If we considerthe direct generalization on the Pk triangles, we get the same problem expressed in the LDAsubsection 4.4.3: some DoFs play no role in the formulation and their value are arbitrary. Inorder to overcome this problem, the technique consists in formulating the numerical distributionby sub-triangles. The practical scheme becomes:

• Compute a second order global residual for each sub-triangle TX

ΦTX ,2 � 6̧

i�1

ui

»
TX

~λ.
ÝÝÑ
∇ϕ2

i dx, X � I, . . . , IV,

• Compute the �rst order upwind parameters
kTX ,1

j � ~λ.
ÝÝÑ
nTX

j

2
, j P TX , X � I, . . . , IV,

• Compute the �rst order distribution coe�cients in TX

ΦTX ,1 � ¸
jPTX

kTX ,1
j uj ,

ΦTX ,1
i � �

kTX ,1
i

	� pui � ũTX
q with ũTX

� °
jPTX

�
kTX ,1

j

	�
uj°

jPTX

�
kTX ,1

j

	�
βTX ,1

i � #
Φ
TX,1
i

ΦTX,1 ΦTX ,1 � 0
0 else
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• Limit the �rst order distribution coe�cients in TX

βTX ,�
i �

�
βTX ,1

i

	�
°

jPTX

�
βTX ,1

j

	�
• Distribute the global residuals

ΦTX ,2 � βTX ,�
i ΦTX ,2, X � I, . . . , IV.

First this procedure is rather complex, and it is much more di�cult to implement thanthe procedure of generalization of the Lax-Friedrichs scheme to higher order, presented in thefollowing Subsection 4.4.7. The next problem of this algorithm, is that the limited �rst orderdistribution coe�cients βTX ,�
i are not those of the second order scheme. Therefore, nothinganymore guarantees the scheme to be monotonicity preserving and this new PSI scheme haspretty much the same properties as the extended LDA scheme, except it is more complex todeal with. It is nowadays globally agreed that the PSI scheme does not present an easy enoughgeneralization to higher order.

4.4.6 The SUPG Scheme
Let us come to the simply upwind schemes. These schemes are not multidimensional upwindin the sense they do not verify condition (4.49). But they have an upwind character as they takeinto account the physics of the problem and always give a greater importance to nodes situateddownstream. As we have already seen in subsection 4.1.3, the SUPG (Streamline Upwind PetrovGalerkin) scheme can be expressed as an RD scheme when P1 formulation is used. The schemewrites:

ΦSUPG
i � ΦT

3
� »

Tp~λ.ÝÝÑ∇ϕk
i qτ̄ p~λ.ÝÝÑ∇uk

hq dx, (4.62)which can be seen as a centered homogeneous residual distribution (the Finite Element Galerkinscheme) plus a streamline dissipative term that have of course some upwind properties, as ex-plained at the end of the part concerning Petrov-Galerkin formulation in Subsection 4.1.3.If we give a look to the P1 case, the matrix τ̄ being de�ned in subsection 4.1.3, it is classicalcalculation to determine the distribution coe�cients
βSUPG

i � 1
3
� kTi τ̄|T| � 1

3
� kTi°

jPT|kTj | . (4.63)
It is then straightforward the βSUPG

i are bounded, and the scheme is LP. But unfortunately,the SUPG in not monotonicity preserving and the scheme provides parasitic oscillations aroundthe regions of discontinuity.
Higher Order Formulation : On the other hand, this scheme is quite easy to generalize to
Pk formulations (k ¡ 1) and to three dimensional problems. The only di�culty is to �nd theright quadrature formula for the dissipative term. This is a point that is discussed further in themanuscript, see Section 5.3 page 103.
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4.4.7 The Lax-Friedrichs Scheme

We �nally come to the scheme that is going to be used widely in the rest of this thesis. It iscalled the Lax-Friedrichs scheme (LxF) and referred as the Rusanov scheme in the literature. Itis called a centered scheme because it does not give a greater importance to one node or anotherfollowing some geometrical or physical criteria. Its formulation stays symmetrical relatively tothe degrees of freedom of the element. Its convergence is usually slower, because it does notinclude totally the physics of the problem, and the solution propagates slower in the domain.The main advantage of this scheme is its �exibility and its straightforward generalization to anytype of elements (quadrangles, tetrahedra, hexahedra, aso... ) and any type of discretization(Pk, Qk, or whatever). As we are going to see, it is also monotone and �rst order, and can beturned into an LP scheme easily, using the same technique recasting the �rst order N-schemeinto the LP PSI scheme. The problem in this case is that when limiting the LxF scheme, theresulting discrete algebraic system may be ill-posed, and the discrete solution of the pseudotime-stepping scheme is not going to converge toward the expected steady solution. We show inthe next chapter that this comes from the fact the LxF scheme is totally centered, and that, asin the centered Galerkin case, it needs an additional upwind bias to fully converge.If q denotes again the number of degrees of freedom in the element T, the scheme writes:
ΦLxF

i � 1
q

�
ΦT � αT ¸

jPTpui � ujq
�
. (4.64)

It is obviously conservative and it is monotonicity preserving as soon as the scheme parameter
αT is large enough. To illustrate this, let us consider the discretization by a Pk Lagrangianapproximation of the steady conservation law in quasi-linear form:

~λ.
ÝÑ∇u � 0. (4.65)The unknown u may be scalar or vectorial.

ΦT � »
T ~λ.ÝÝÑ∇uhdx

� ¸
iPTui

�»
T ~λ.ÝÝÑ∇ϕk

i dx



� ¸
iPT k̄k

i ui � �¸
jPT k̄k

j pui � ujq.
Then, we can rewrite the scheme as

ΦLxF
i � ¸

jPT
αT � k̄k

j

q
pui � ujq, (4.66)

which is exactly the form of equation (4.27), with
cTij � αT � k̄k

j

q
. (4.67)

And because k̄k
j is always diagonalizable, if condition

@T PMh, αT ¥ ρ
�
k̄k

j

	
,@j P T (4.68)
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is met, the scheme is Local Extremum Decreasing, which means monotone when a CFL conditionis provided. ρ denotes here the spectral radius in the case of a vectorial problem. If the problemis scalar, one just has to ensure

@T PMh, αT ¥ k̄k
j ,@j P T (4.68)

Higher Order Scalar Discretization : As one can also see in (4.64), there is absolutely norestriction on q, and the scheme can be applied on any kind of elements. In particular, it worksperfectly for higher order discretization. But on the other hand, there is nothing ensuring thatthe distribution coe�cients
βTi � ΦLxF

i

ΦTare bounded. It is well known this scheme is only �rst order as it is. The Rusanov scheme isalso very dissipative and this comes from the second term of (4.64). This term tends to diminisheverywhere the gradient and thus dissipate very much the solution. One can check that on Figure5.4 page 106.However, by limiting this scheme as done for the PSI scheme, one obtains the Limited Lax-Friedrichs scheme (LLxF) that is still compact, very �exible, monotonicity preserving, and thistime formally pk � 1qth order accurate. This would be the ultimate conservative scheme, if theassociated algebraic was not ill-posed. In order to bypass this problem, we are going to add astreamline dissipative term, similar to the one used in the SUPG scheme, and this is one of themain point of the next chapter.
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Chapter 5
Construction of a High Order Residual

Distribution Scheme
In this chapter, we are going to deal with the general case of a system of conservation laws.As in Chapter 2, m denotes the size of the vector of variables: U P D � Rm. The systemof conservation laws is usually the Euler system and then m � d � 2, where d is the spatialdimension of the problem. We do not allow U to take any value in Rm because the physics oftenadd some constraints on the unknowns: the density ρ, the internal energy e, the temperature T ,the pressure p, aso... must for example stay positive. D represents these constraints.

D � "
U � pρ, ρ~u, ρEq P Rm; ρ ¡ 0, E � |~u|2

2
¡ 0

*
We are also considering only the steady solution of the PDS and the continuous system writes:Find U P D, such that ÝÑ∇ .ÝÑF pUq � 0, @x P Ω (5.1)� Boundary Conditions.

This chapter mainly focuses on the Lax-Friedrichs scheme presented in Subsection 4.4.7. Thisis the scheme that has been used in most of the calculations carried out during this thesis. As wehave seen in the previous paragraph, the �rst order LxF scheme, �rst designed for P1 triangles,can be easily generalized to higher order polynomial representation in any kind of polyhedral cell.Along the following section, we explain step by step how the steady solution of (5.1) is obtainedwith this high order scheme. The theory is mainly developed on P2 triangles, but details couldbe given for even higher representation of the data in triangles or for Qk approximation. Inmost of cases, the generalization is straightforward. The �rst section deals with the details ofcomputation of the total and nodal residuals already theoretically seen in Subsection 4.1.1. Moredetails are given about the limitation technique recasting any RD scheme into an LP one. Ina second section, we speak about the practical resolution of the non linear problem obtained inSection 5.1. We examine the several choices we have to reach the steady state solution of theproblem. A third chapter is going to present the main drawback of the LxF method and the waywe nowadays get around it. The limited LxF scheme often leads to an ill-posed linear problemthat prevents the solution to converge. This problem is cured with an additional stabilizationterm and we here explain its inconveniences and how we evaluate it numerically. In a last section,
89
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we present the main boundary conditions we need for the simulations of Euler or Navier-Stokesproblem, and we detail their practical implementation. Finally this chapter ends by a shortsummary of the main points of the high order RDS implementation.
5.1 Total and Nodal Residual - Limitation
5.1.1 Global Residual

The scheme �rst starts with the evaluation of the Global Residual or Element Residual, whichis given by
ΦT � »

T div�ÝÑF hpUhq	 dx (5.2a)
� »

BTÝÑF hpUhq.~n ds. (5.2b)
As remarked in the preamble, T has not to be a triangle, and this is valid for any kind ofnumerical approximation. Now, the Lax-Wendro� Theorem of subsection 4.2.1 and Proposition4.9 enforce conditions on the �ux approximation. These conditions are met when approximatingthe exact �ux by its kth order Lagrangian projectionÝÑF hpUq � ¸

iPMh

ÝÑF iϕ
k
i , (5.3)

where ÝÑF i � ÝÑF pUiq � ÝÑF pUpxiqq .Then, the approximated �ux ÝÑF h is a kth order polynomial over the edges and by construction,see section 3.2, we have the exact number of degrees of freedom on the edges to represent uniquelythis polynomial. Formulation (5.2) is thus totally suitable to compute the Element Residual by
ΦT � ¸

edgePBT
� ¸

iPedge
ÝÑF i

‖~nedge‖
»
edge ϕk

i ds

�
.~nedge, (5.4)

which is just a linear combination of the values taken by ÝÑF at the DoFs of T, with coe�cients
1

‖~nedge‖ ³edge ϕk
i ds. These integrals are simple to evaluate and their values are identical for everytriangle. They can be precomputed. Hereafter we report the exact quadrature of the GlobalResidual for k � 1 . . . 3 in a triangle, the numbering being de�ned on Figure 3.7 page 50, and

~ni being the inward normal to the opposite edge of i when it is a vertex of T, or the outwardnormal to the edge i is belonging to when it is an extra DoF.
• P1:

ΦT � 3̧

i�1

ÝÑF i.~ni

2
(5.5)

• P2:
ΦT � 3̧

i�1

ÝÑF i.~ni

6
� 6̧

i�4

2
3
ÝÑF i.~ni (5.6)
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• P3:

ΦT � 3̧

i�1

ÝÑF i.~ni

8
� 9̧

i�4

3
8
ÝÑF i.~ni (5.7)

All of this is obviously true in the case of quadrangles. The extensions of these interpolations toany kind of con�guration is obvious. As one can notice, for P3 triangle, the value of the globalresidual does not depend of the value of ÝÑF 10. This is however not really a problem as node
10 will still play a role in the LxF nodal residual and receive a part of the global residual afterlimitation. This remark is general for all the extra DoFs that are situated inside the elements.
5.1.2 Local Nodal Residual

Now we have computed the global residual, we wish to distribute it to the nodes via the �rstorder Lax-Friedrichs nodal residuals. In fact, these signals are only used to build the higher orderLimited Lax-Friedrichs scheme. We recall �rst order LxF nodal residual for q degrees of freedom
ΦLxF

i � 1
q

�
ΦT � αT ¸

jPTpUi �Ujq
�
, (5.8)

which is obviously conservative. The big deal here is to compute well the parameter αT. Aswe have seen in Subsection 4.4.7, αT ensures monotonicity preserving condition when it is largeenough. But on the other hand, if it is too large, the centered term ΦT
q will become insigni�cantcompared to the second term °

jPTpUi �Ujq, related to the local gradient of the solution. Thelarger αT is, the less related to the physics of the problem the scheme is. One wishes then to�nd the �nest criterion to de�ne αT. As we have seen in Subsection 4.4.7, a necessary conditionis
αT ¥ ρ

�
k̄k

j

	
, @j P T. (5.9)Fortunately, the eigenvalues of the ki matrices are known in the case of the Euler System (seeSubsection 2.2.9) and this condition is recast into:

αT � max
iPT p‖~ui‖ � ciq .maxedge |edge| (5.10)where ci denotes the speed of the sound at point i.

5.1.3 Limitation Techniques
Finally, the LxF scheme is only �rst order and we wish to obtain a higher order one. Whichmeans we need to get at least the LP condition. In 4.4.5, we have already presented a procedureturning the �rst order N scheme into the impressive high order PSI scheme. We �rst begin byadapting this algorithm to the case of the vectorial LxF scheme and then discuss other possibilitiesof limitations.

Scalar Case : In the scalar case, we begin by de�ning the �rst order Distribution Coe�cients:
βTi � #

ΦLxF
i

ΦT , if ΦT � 0,
0, else. (5.11)
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and use the limitation technique already presented in (4.61) to get the pk�1qth order DistributionCoe�cients:

β�i � �
βTi ��°

jPT �
βTj 	� . (5.12)

We recall that this formula is always de�ned as°jPT �
βTj 	� ¥ 1 if ΦT � 0. Using this procedure,the new limited scheme with β�i distribution coe�cients has the following properties:

• The scheme is conservative ¸
iPTβ�i � 1. (5.13)

• The scheme is linearity preserving. β�i is always de�ned because °jPT �
βTj 	� ¥ 1 when

ΦT � 0 and:
0 ¤ β�i ¤ 1. (5.14)

• If the �rst order scheme is monotonicity preserving then the pk � 1qth order one is aswell because @i P T, β�i .βTi ¥ 0. (5.15)If one has
ΦLxF

i � βTi ΦT � ¸
jPT cijpui � ujq,with positive cij coe�cients, one obtains

Φ�
i � β�i ΦT � ¸

jPT β
�
i

βTi cijpui � ujq,
where β�i

βTi cij ¥ 0, @i, j P T.
System Case : As soon as the residuals are multidimensional, the Distribution Coe�cientsbecome matrices, and the procedure is much more complex. Of course, one could limit theresidual line by line (or equivalently one unknown after another) and this works quite well (see[8, 92]). The main advantage of this choice is to be able to maintain some constraints directlyon the variables, for example positivity for the density. But in the case of the Euler equations,it works actually much better to limit the characteristic variables ([10] page 106). To do so,we �rst project the nodal residuals on the left eigenvectors Li of the hyperbolic problem (5.1),evaluated using the average state:

Ū � 1
q

¸
iPTUi,

and in the direction tangential to the stream ~n~u � ~u
‖~u‖ . ~u denotes here the mean velocity in thetriangle ie. the velocity vector associated to Ū. The left eigenvectors are de�ned in Subsection2.2.9. The q projected residuals for a given linear form Li

�
ΦLxF

j

	 are then limited using scalarformula (5.12), with
βij � Li

�
ΦLxF

j

	
°

jPT Li

�
ΦLxF

j

	 � Li

�
ΦLxF

j

	
Li pΦTq .
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This gives q limited coe�cients xij , j � 1 . . . q. The limited vector Φ�

j is then reconstructedas the vector having coordinates pxijqi�1...m in the basis of the m right eigenvectors Ri, dualsof the Lis. This last paragraph dealing with the limitation of multidimensional RD scheme issummarized in algorithm 1.
Algorithm 1 Vectorial Limitationfor i � 0 to m dofor all j P T do

βij ÐÝ LipΦLxF
j q

LipΦTq
xij ÐÝ pβijq�¸

jPT pβijq�
end forend forfor all j P T do
Φ�

j ÐÝ m̧

i�1

xijRi

end for
Geometrical Representation in the Scalar 2D P1 Case : Ideally, one would like thelimitation also takes into account the Upwind property. This would provide a stable pk � 1qthorder scheme, a perfect scheme. There exists such a limitation technique in the scalar 2D P1case and we need a geometrical representation to illustrate it, see Figure 5.1. On the left partof the �gure is represented the Struijs limitation (5.12) for P1 triangles. In the scalar case, thethree distribution coe�cients βTi de�ne a unique point B in R2 by its barycentric coordinates inT. For the Struijs limitation, there are three main regions for B. B can be �rst situated insidethe triangle (zone 1). In that case, all the βTi are positive and smaller than 1, and if we denote
B� the image of B by the limitation process, one has: B� � B. B can also be in zone 2,3 or 4.In that case, one βTi is positive and the to other are negative. Then β�i � 1 and β�j � 0,@j � i.
B� is limited toward the closest vertex to B. Finally, the most complex situation is when Bis in zone 5,6 or 7. In that case, one βTi is negative and the two other are positive. Then, thelimitation provides β�i � 0 and B� is situated on the edge opposite to node i. Furthermore,Struijs limitation technique conserves the ratio between the two strictly positive distributioncoe�cients:

β�j
β�k � βTj

βTk .As shown on the left on Figure 5.1, B is limited along the straight line joining B and node iand B� is then situated at the intersection between this straight line and the edge opposite to
i. Unfortunately, nothing ensures the new distribution point B� to be downstream. In the caseof Figure 5.1 for example, it is thoroughly possible B stays in region 4, as point B1. B� is thennode 3 which is the upstream node, and this is exactly the opposite situation of the Upwindproperty (4.49).
An Upwind Limitation : If we want to turn the scheme into an upwind scheme, thelimitation technique has to depend somewhere of ~λ, the direction of advection. One possibility
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Figure 5.1: Geometrical interpretation of the limitation technique. Point B has barycentriccoordinates �βT1 , βT2 , βT3 �. The geometrical transformation B ÞÑ B� depends of the area in whichlies B. On the right is presented the classical Struijs limitation technique while on the right�gure we illustrate a try for an upwind limitation.
is the following: in the scalar P1 case, if one considers the unique line de�ned by B and directionvector ~λ, it crosses the straight lines de�ned by the edges of T at 2 or 3 points. If the advectionspeed is parallel to one edge, we consider that the intersection point is situated at �8. We thende�ne B1 as the one of the three intersection points that is situated the farther downstream from
B. If all the intersection points are situated upstream with respect to B, we set B1 � B. Then
B� is obtained as the Struijs limitation of the barycentric point B1. This is shown on the rightpart of Figure 5.1. This gives a very e�cient scheme in P1 and for a two dimensional domains.The iterative convergence is as fast as for a classical upwind scheme (N Scheme, LDA scheme)and the result is good whereas no stabilization have been used. To assess this we have computeda very simple pure advective problem on the unit square r0; 1s2 for constant vertical advection
~λ � p0, 1q: $&%

~λ.
ÝÑ∇u � 0

upx, 0q � sin2p5πxq
up0, yq � up1, yq � 0

(5.16)
The upper boundary is let free. We have run this second order test case on 5 di�erent triangulargrids having 10, 20, 40, 80 and 100 nodes on each boundary respectively. On Figure 5.2, we haverepresented above the isolines of the solutions on the �nest grid and the iterative convergence.The solution is nice and the iterative convergence is fast. Below is presented the grid convergence.The slope is indeed only 1.45. But if we compare these results with the ones that will be presentedin Subsection 6.2.1, we see they are everywhere better. The result is clear: the upwind limitationis much faster and gives better results. Moreover, this new limitation technique does not ful�llcondition (5.15), because the barycentric point B is allowed to change zone (for example fromzone (4) to zone (5) for point B1 on the right part of Figure 5.1). Then, it should not bemonotonicity preserving anymore. But in practice, we observe that the solution is smooth andstays bounded between its initial extremal values.Unfortunately, its generalization to other cases that P1 scalar problems is not easy at all. We
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Figure 5.2: P1 results for scalar problem (5.16) obtained with LxF scheme limited by the limi-tation technique illustrated on the right part of Figure 5.1. Above are given the isolines of thesolution on the �nest grid as well as its iterative convergence. Below is shown a comparisonin term of grid convergence between this new scheme and the classical one that is going to bedetailed next.
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have tried to apply it to vectorial problems, but it has not given any interesting results at thatmoment. The di�culty being to handle with the distribution coe�cients βTi that are now matricesof size m. Furthermore, it is absolutely not possible to de�ne the barycentric point B when usinga higher order polynomial representation, because there are kpk�1q

2 distribution coe�cients. Somemore interest should be given to this limitation technique as it is very promising.
Other Limitation Techniques : During this thesis, we have been trying many other lim-itation possibilities. Another technique would be to allow some βTi to be negative, while the
βT

j , j PMh stay globally bounded. The main trend is the lower the negative bound on the βTiis, the more dissipative the limited scheme becomes. If the bound is to low, the βT
j , j P Mhstay as they are and the scheme is so dissipative that it becomes �rst order. This direction ofresearch is really exciting but has not given any interesting result so far, and the best limitationtechnique still remains the Struijs one.

5.2 Solution of the Algebraic Equation
As we have already seen several times, the steady state vectorial solution Uh veri�es the nonlinear equation ¸

TPDi

ΦT
i pUhq � 0, @i PMh. (5.17)

This section aims at explaining the di�erent options we have to solve this problem. In fact, allthe solutions come from the same common idea. As seen in Subsection 4.2.2, Uh is seen as thesteady numerical state of the pseudo-unsteady problem
|Di|

BUiBτ � ¸
TPDi

ΦT
i pUhq � 0, @i PMh, (5.18)

where |Di| is only here to make the equation dimensionally correct and τ is a pseudo time used toreach the steady state of (5.18), which is obviously the solution of (5.17). We then discretize thiscontinuous problem by �nite di�erences and obtain the pseudo-time stepping numerical scheme:
|Di|

Un�1
i �Un

i

∆τ
� ¸

TPDi

ΦT
i pUχ

hq � 0, @i PMh. (5.19)
The parameter χ represents the time step at which the residual is estimated. We have two cases:

• χ � n: new solution at time n� 1 can be computed explicitly. That is why this scheme iscalled the explicit scheme,
• χ � n�1: new solution at time n�1 cannot be computed directly. Its value is the implicitsolution of an non linear equation. That is why this scheme is called the implicit scheme.

5.2.1 The Explicit Scheme
The solution at time τ � n� 1 is updated via the formula

Un�1
i � Un

i � ωn
i

¸
TPDi

ΦT
i pUn

hq, @i PMh, (5.20)
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with ωn

i being a pseudo time stepping parameter which dimension is
rωn

i s � timearea .This parameter is useful to ensure the L8 stability of the scheme, as we will now see.
Scalar Case : If one uses formulation (4.27) on page 72, one has:

@i PMh, un�1
i � �

1� ωn
i

¸
jPDi

c̃ij

�
un

i � ωn
i

¸
jPDi

c̃iju
n
j , (5.21)

c̃ij being de�ned like in (4.31), page 72 as:
c̃ij � ¸

TPDiXDj

γTi cTij , (5.22)
with cTij coming from the �rst order scheme and γTi � β�i

βTi ¥ 0 when βTi � 0 or γTi � 0 else,representing the limitation process. Because equation (5.10) ensures all c̃ij to be positive andthe sum of the barycentric coe�cients being 1, un�1
i is a mean value of the �un

j

	
jPDi

if and onlyif
0 ¤ ωn

i ¤ 1¸
jPDi

c̃ij
. (5.23)

It is then sure @i PMh, min
jPMh

un
j ¤ un�1

i ¤ max
jPMh

un
j ,and therefore @n P N,@i PMh, inf

xPΩu0pxq ¤ un
i ¤ sup

xPΩ u0pxq,which is the L8 stability of the numerical solution.In practice, it is complex and not needed to compute the c̃ij though, because we have astronger but non necessary criterion that ensures L8 stability. As seen in (4.67), page 86, for theLxF scheme the �rst order monotonicity coe�cients verify ¸
jPT cij � αT and because 0 ¤ γTi ¤ 1,

1¸
jPDi

c̃ij
¥ 1¸

TPDi

αT ¥ 0.

Then a good and easy estimation of the pseudo time stepping parameter ωn
i to ensure themonotonicity of the scheme is

ωn
i � 1¸

TPDi

αT . (5.24)



98 Chapter 5. Construction of a High Order RDS
System Case : Unfortunately, the same reasoning cannot be done in the system case, becausethe c̃ij are now matrices. We then keep the stability criterion (5.24) and use it as it is in themutidimensional problem because αT are scalar quantities. In practice, the explicit LxF schemeapplied to a vectorial problem has always given stable results so far.
Advantages and Drawbacks of the Explicit Formulation : The main advantages of theexplicit method are that it is very robust and easy to implement. As soon as condition (5.23) isful�lled, the scheme starts to converge. Very complex cases with very sharp discontinuities can beeasily computed. And the explicit scheme can be coded in a couple of hundred lines. One just hasto: read the mesh and do the geometry (elements areas, edges normals, extra DoFs,...), initializethe solution, and at each time step compute the local nodal residuals and update the solution,taking into account the boundary conditions. An iteration is then computationally costless. Buton the other hand, the convergence is very slow and one has to perform a lot of iterations toreach the steady state of equation (5.18). The convergence rate is measured by a norm of vector�°TPDi

ΦT
i pUnq�

iPMh
. We usually use the L2 norm. For a same given problem, the explicitversion of the scheme requires 10 to 100 times more iterations than the implicit version to fullyconverge. The di�erence comes mainly from the pseudo time step. While explicit scheme timestep is restricted for stability, we show the implicit scheme is unconditionally positive. At theend of an implicit simulation, the pseudo time steps can be arbitrarily large. Furthermore, thedomain of in�uence of a node during an iteration of an explicit scheme is just its direct neighbors.The solution propagates inside the domain at the speed of the advection. Whereas in the implicitscheme the solution is updated globally and nodes far from the boundaries are already updatedat iteration 2.

5.2.2 The Implicit Scheme
At each time step, the solution of the numerical scheme is updated using:

Un�1
i � Un

i � ωn
i

¸
TPDi

ΦT
i pUn�1

h q, @i PMh. (5.25)
Scalar Case : We �rst start by demonstrate that this scheme in its scalar version is uncon-ditionally positive. As for the explicit scheme, we suppose it can be put into the form (4.27).
Property 5.1 (Unconditional Positivity)For any pseudo time step ∆τ , if the nodal residuals can be expressed as in (4.27), the scheme(5.25) in its scalar form veri�es the global discrete maximum principle

@i PMh, min
jPMh

un
j ¤ un

i ¤ max
jPMh

un
j (5.26)

Proof : We start by de�ning the vector of unknown Un by
@i PMh, pUnqi � un

i ,and the two constant vectors Un
min and Un

max by
@i PMh, pUn

minqi � min
jPMh

un
j , pUn

maxqi � max
jPMh

un
j .
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Then one can write Un

min ¤ Un ¤ Un
max.If one considers equation (4.27), scheme (5.25) is reformulated into:

AUn�1 � BUn (5.27)
with

Aii � 1
ωn

i
�°jPDi

c̃ij Aij � �c̃ij
Bii � 1

ωn
i

Bij � 0

c̃ij being de�ned by (4.31), page 72. Matrix B has only positive coe�cients, then
AUn�1 � BUn ¥ BUn

min � AUn
min. (5.28)

If the scheme is Local Extremum Decreasing, the c̃ij are all positive and A is diagonal dominant.This implies A is invertible and A�1 has only positive coe�cients [118]:
A�1

ij ¥ 0, @i, j PMh.

We can then multiply both sides of (5.28) by A�1 and obtain the lower part of equation (5.26).A similar reasoning for the upper part gives the complete result.

Vectorial Case : Once more, this demonstration can not be extended to the system case atthat moment. In fact, all the reasonning can be generalized to vectorial unknowns except onething. Let us explain this point and start the generalization of the proof.We suppose the system has m unknowns and the mesh has n degrees of freedom. Then theproblem has size n.m, the vector of unknowns having n components, each one of them being avector of size m. We build then Un
min and Un

max such that
@i PMh, pUn

minqi ¤ pUnqi ¤ pUn
maxqi.Equation (5.25) is recast into

AUn�1 � BUn (5.29)with
Aii � I

ωn
i
�°

jPDi
c̃ij Aij � �c̃ij

Bii � I
ωn

i
Bij � 0where I is the identity matrix and c̃ij are m�m positive matrices in the sense of (4.34), becausethe scheme is supposed to be Local Extremum Decreasing. Thus, equation (5.28) is still true,with A being a diagonal block dominant matrix. What is missing is a theorem showing that Amust be invertible and that A�1 has only positive blocks.Anyway, by experience the implicit scheme behaves perfectly in the system case. The initialextrema are maintained troughout the simulation whatever the pseudo time step could be.

Practical Computation : Of course, as only Un is known, it is impossible to compute
ΦT

i pUn�1
h q. But the residuals depend continuously of the values of the solution and it is thenpossible to linearize the values of the local nodal residuals by

ΦT
i pUn�1q � ΦT

i pUnq � ¸
jPMh

BΦT
i pUnqBUj

�
Un�1

j �Un
j

	
. (5.30)
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Thus, if one uses notation

∆Un
j � Un�1

j �Un
j , (5.31)and the fact that the ΦT

i only depends on the values of the solution at the degrees of freedom ofT, equation (5.25) is rewritten into� I
ωn

i

� ¸
TPDi

BΦT
i pUnqBUi

�
∆Un

i � ¸
jPDi
j�i

�� ¸
TPDiXDj

BΦT
i pUnqBUj

�∆Un
j � ¸

TPDi

ΦT
i pUn

hq, (5.32)
which is a matrix system in ∆Un. I is the m � d � 2 identity matrix and the right hand side(RHS) is the explicit residual.

The main point is at this time to compute the Jacobians of the nodal residuals: BΦT
i pUnqBUj

.For example, limitation formula (5.12) is not everywhere di�erentiable. Once more we havehere several solutions, each one of them having its advantages and drawbacks. To understandwell why many possibilities are o�ered, let us give a look to the huge matrix of problem (5.32),de�ned by d� 2 blocks. Because the scheme is unconditionally stable, we look at the matrix fordi�erent values of ωn
i P R�. This matrix is sparse. We have 1

ωn
i
everywhere on the diagonal andthe pd � 2q � pd � 2q block at line i and row j is non null if and only if node i and j are directneighbors (belonging to a same element). The smaller the time steps ωn

i are, the more dominantthe diagonal coe�cients are. Thus at the limit ωn
i Ñ 0, we obtain the fully explicit scheme. Onthe other hand, if we consider ωn

i going to in�nity, the scheme turns into something looking as
un�1 � un � �

f 1punq��1
.fpunq,which is the global formulation of a Newton scheme. It is well known that the Newton schemedoes not always converge. But when it does, it converges very well (in a quadratic manner).We need to be close enough to the solution to be in its basin of attraction. For this reason, inthe implicit case ωn

i does not ensure the stability but can be seen as a potentiometer betweenrobust but slow fully explicit scheme and powerful, fast but possibly unadapted Newton scheme.Then the Jacobians forming the big matrix are descent directions, and because we just aimfor the steady state, these directions do not need to be exact. This is very interesting becausecomputing the Jacobians exactly is expensive. We present here the di�erent ways to approximatethese Jacobians.
5.2.3 First Order Jacobians

In a �rst approach, we approximate the exact Jacobians by the Jacobians of the �rst ordernodal residuals (5.8) page 91, where αT is considered to be constant. The matrices of the vectorof matrices BÝÑFBU have been given in the case of a 2D domain in Subsection 2.2.9. Let us computeline i of the linearized problem. The Jacobians write
BΦT

i pUnqBUj
�

$''''&''''%
1
q

�
wi
BÝÑFBU pUiq.~ni � pq � 1qαTI� , if j � i

1
q

�
wj
BÝÑFBU pUjq.~nj � αTI� , if j � i

(5.33)
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where the vector w is the set of coe�cients of the linear combination of the ÝÑF j .~nj in thecomputation of ΦT, see equations (5.5), (5.6) and (5.7). We recall that ~ni is the inward normalto the opposite edge of i when it is a vertex of T, or the outward normal to the edge i is belongingto when it is an extra DoF. We give here the vector w in the Pk case

• k � 1:
w � r1
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s

• k � 2:
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• k � 3:
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Remark 5.2In the fourth order case, we can notice the zero at the last component of w correspondingto the 10th node situated inside the triangle. This will be also the case for all the degrees offreedom that do not lie on the edges of T. It is however not a bad news, because the di�usivepart of the Lax-Friedrichs scheme is still distributing something to these nodes. The value ofthese nodes being involved in the global scheme they cannot be arbitrary.
Because the BÝÑFBU are known, these Jacobians are easy to compute and this method is relativelyfast. The problem is that the descent direction is really too di�erent from the exact Newton one.The quadratic convergence of the Newton method is never met in that case. But compared tothe explicit scheme, the method is really e�cient in terms of the number of iterations and of theCPU time. One starts with small time steps in order to be sure to go toward the steady solutionand as soon as the residual ε2 � ‖

�°TPDi
ΦT

i pUnq�
iPMh

‖2 is enough reduced, one increases thetime steps an switches to the pseudo Newton method.A practical study of the di�erent methods of resolution is done on the 3D Bump test casepresented in Subsection 7.3.1, page 151. In particular, we compare the e�ciency of these linearJacobians with the ones we are presenting next, that are a bit more complex to compute, butthat tremendously help to reach the Newton quadratic convergence.
5.2.4 Finite Di�erence Jacobians

Another approach that has been developed during this thesis is to evaluate the Jacobianby �nite di�erences. The problem is that it is 2 to 3 times more expensive than the previousmethod. In this case the quadratic convergence can be met and the steady state is obtainedmuch faster, especially when machine zero is sought. In the case of the �rst order Jacobian, theconvergence rate usually slows down when approaching the machine zero (ε2 ¤ 10�6), whereasin the case of �nite di�erences, it tends to accelerate. All the following discussion is illustratedby the 3D bump problem presented in subsection 7.3.1, page 151. One can especially give a lookto Figures 7.11 and 7.12 page 153, for a comparison between this Jacobian approximation andthe one described in last subsection.
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The Jacobian matrices are �lled in line by line. Line l P v1,mw (lth variable) of the pd� 2q �pd� 2q block situated at line i and row j is �lled in with

�
ΦT

i pUn � δl Vjlq � ΦT
i pUnq

δl


T

, (5.34)
where Vjl is a vector having the same size as Un, having 1 on the line corresponding to the lthvariable of node j, and zeros everywhere else. T represents the vector transposition. δl is the�nite di�erence parameter. Its value determines the precision of the approximation and dependson the variable considered. It should not be too small in order to avoid round o� problems, andnot too big in order to obtain an accurate Jacobian. In our computations, we usually use thefollowing heuristic formula

δl � maxp10�10, 10�8. max
jPMh

|Un
jl|q. (5.35)

As one can see, this method requires to compute mkpk�1q
2 times more nodal residuals than theexplicit scheme. It is expensive, but Figures 7.11 and 7.12 page 154 shows it is worth it, in termsof CPU time or iterations. The main drawback of this method is pretty much the same as theone of the Newton method. At the beginning of a simulation, the domain is usually initializedwith a homogeneous constant solution which is far away from the steady solution. One hasthen to start with very small time steps in order to converge robustly. Then why use a complexexpensive method to �nally use a scheme equivalent to the explicit one ? That is why, in somecases we start with the �rst order Jacobian implicit method until the global residual has beendivided by a certain amount (between 10 and 100), and then switch to the faster �nite di�erencemethod.

5.2.5 Exact Jacobians
Finally, we have investigated a third method which is nowadays a total failure. We have notfound so far the reasons why this method is not working, even if it seems promising on the paper.It should be faster than the �nite di�erentiate and cost less in term of calculations. The ideais to di�erentiate the program that generates the residual with respect to some input variables(the nodal value of the solution in our case). This can be done automatically with the INRIAsoftware TAPENADE4, see [62]. To explain quickly how it works, here is an example with thefollowing Fortran 95 code:

SUBROUTINE test(x,f)

REAL, DIMENSION(:), INTENT(in) :: x

REAL, INTENT(out) :: f

f=SUM(x**2)

END SUBROUTINE test

then TAPENADE sends back4http://tapenade.inria.fr:8080/tapenade/index.jsp
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SUBROUTINE TEST_D(x, xd, f, fd)

IMPLICIT NONE

REAL, DIMENSION(:), INTENT(IN) :: x

REAL, DIMENSION(:), INTENT(IN) :: xd

REAL, INTENT(OUT) :: f

REAL, INTENT(OUT) :: fd

REAL, DIMENSION(SIZE(x)) :: arg1

REAL, DIMENSION(SIZE(x)) :: arg1d

INTRINSIC SUM

arg1d(:) = 2*x*xd

arg1(:) = x**2

fd = SUM(arg1d(:))

f = SUM(arg1(:))

END SUBROUTINE TEST_D

which still compute f as a function of x, but also the directional derivatives BfBx .xd. Then thefollowing main program
PROGRAM main

REAL, DIMENSION(5) :: x

REAL :: f,fd

x=(/ 1.0, 5.0, 3.0, 1.0, 6.0 /)

CALL test_d(x,(/1.0,0.0,0.0,0.0,0.0/),f,fd)

PRINT*, f,fd

END PROGRAM mainprints on the screen
72.000000 2.0000000and if one uses p{0.0, 2.0, 0.0, 0.0, 0.0{q for xd, one gets
72.000000 10.0000000We have applied this software to the procedure that computes the nodal residuals and askedto di�erentiate it exactly with respect to vector Un. The critical non di�erentiable points havebeen regularized. For example, the absolute value function is replaced by

|x| � "
|x|, if |x| ¤ ε
x2�ε2

2ε , else (5.36)Unfortunately, we have not been able to compute one single simple case with this method. Thesimulation crashes after a �nite number of iterations. It would be interesting to go further intothis approach, as it is less expensive that the �nite di�erences and should show some betterconvergence.
5.3 Convergence Problems and Stabilization Term

The main reason we have been looking for a �upwinding Limitation� is that it is a sure cureto the main �aw of the Limited Lax-Friedrichs scheme (LLxF). In order to illustrate this �aw,we make use of the two following scalar problems:
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1. Circular Advection: the domain is the square r0; 1s2 and the scalar solution veri�es$&% �yBuBx � x

BuBy � 0, @px, yq P r0; 1s2
up0, yq � cos2pπyq, @y P r0; 1s. (5.37)

The advection speed ~λ � � �y
x


 is circular and the exact solution is just the rotation ofthe entering pro�le at x � 0.2. Burger Equation: the domain is Ω � r0; 1s2 and the scalar problem writes$''''&''''%
BuBy � u

BuBx � 0, @px, yq P Ω

upx, 0q � 1� 2x, @x P r0; 1s
up0, yq � 1, @y P r0; 1s
up1, yq � �1, @y P r0; 1s

(5.38)
The exact solution is given by a fan in region

tpx, yq P Ω; y ¤ x and y ¤ 1� xu ,a vertical shock starting at point p0.5, 0.5q and two constant plateau at value 1 and �1 onboth sides.
As one can see on Figure 5.3, the convergence rate of the LLxF scheme for problem (5.37) isreally poor compared to the �rst order LxF scheme or the PSI one. And if we look at the solutionon Figure 5.4, the isolines are all wiggled. It is absolutely not a problem of stability, because wehave shown the scheme is L8 stable. It is a problem of convergence: we can see that throughthe fact that the scheme has not reached the steady state. What is even more interesting islooking to the solution of (5.38) that shows discontinuities and that is also represented on Figure5.4. Here we see that the shock is well resolved, in one cell, and that the wiggles only appearin the smooth regions. They apparently do not come from the discontinuity but from somespurious modes the scheme is not able to dump. This is a general remark about this problem,as the discontinuities are always well handled and the wiggles always occur in the smooth partsof the �ow. Then the full convergence is never reached and, even if the limited version of theLxF scheme is theoretically second order, only �rst order is observed in practice. We are nextgoing to see qualitatively the origin of these spurious modes and describe concretely the way weovercome this problem.
5.3.1 Nature of the Problem

The problem we are encountering is a di�cult problem for which we can unfortunately provideonly qualitative answers. Let us come back to a scalar problem for sake of simplicity. If we�rst neglect the boundary conditions or consider them included into the nodal residuals, we havealready seen the scheme reads ¸
TPDi

ΦT
i puhq � 0, @i PMh. (5.39)
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Figure 5.3: Iterative convergence curve for problem (5.37) treated with the second order PSIscheme, the �rst order Lax-Friedrichs scheme and the theoretically second order limited versionof the Lax-Friedrichs scheme.
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Figure 5.4: Isolines of the solution of problem (5.37) and (5.38) obtained with the non limited(�rst row) and the limited (second row) version of the Lax-Friedrichs scheme, and with thesecond order PSI scheme (third row). It is clear the non limited version of the LxF scheme isvery dissipative and thus �rst order. The limited version should be second order, but because ofthe appearance of spurious modes, we do not get convergence to machine zero and the solutionis �nally �rst order. The PSI solution is used as a reference.
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If we use form (4.27) and separate the in�uence of the boundary conditions, we get¸

TPDi

¸
jPT cT,�

ij pui � ujq � lpuhq, @i PMh, (5.40)
which can be put into the non linear matrix form

ApUqU � LpUq, (5.40)
where U is the vector of unknowns and LpUq is the contribution of the boundary conditions.From the previous discussions, it comes for the LxF scheme

cT,�
ij � γTi cTij � β�i

βTi pαT � kjq
q

¥ 0. (5.41)
Then matrix A � paijqi,jPMh

which coe�cients are
aii � ¸

TPDi

¸
jPT cT,�

ij , aij �
# �°TPDiXDj

cT,�
ij , j P Di

0, else
is diagonally dominant. Its coe�cients are positive on the diagonal and negative elsewhere. Thisis a very good start to show well-posedness. Unfortunately, in the case of the Lax-Friedrchsscheme, it is absolutely possible there exists a node in Mh such that

βT,�
i � 0, @T P Di, (5.42)

and the associated equation writes 0 � 0. The value of uh at node i is not determined butcan usually exist only in a certain interval. The non linear associated algebraic problem is thenill-posed, has no fully determined solution, and there is no chance the time stepping method(5.19) converges. This explanation matches exactly what we observe on the convergence curveson Figure 5.3 and 5.4. In a �rst part, the scheme converges well, ensuring the global constraintsof the problem. After some iterations, the steady state solution appears, and the value of thenode where the algebraic problem occurs have reach their intervals of constraint. The solutionhas now enough degrees of freedom to let some spurious mode appear and the convergence stops.To understand well why such a situation as (5.42) may exist, one has to remark that theLimited Lax-Friedrchs scheme is a totally centered scheme. There is nothing in its constructionthat gives a greater importance to one node than to another, for any physical reason. The direc-tion of distribution is mainly given by the solution gradient in T, above all when the coe�cient
αT, ensuring the monotonicity preserving property, is big. It can then occur that the signal isnot necessarily sent in the direction of the advection, and situation illustrated on Figure 5.5 isplausible: node i receives absolutely no information from its neighbours. In the case of an upwindscheme, this situation cannot occur because every node i is situated downstream in at least oneelement of Di. It is therefore sure that this node will receive a part of the global residual of thiselement. We can then write:

aii ¡ Ch, @i PMh, (5.43)and the associated algebraic problem is well-posed.
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Figure 5.5: This �gure illustrate equation (5.42). In the case of the simply limited LxFscheme,it can occur that some node i receives no information from its direct neighbours.

Figure 5.6: The SUPG-like term ensures every node to receive a certain signal by its upwindproperty.
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5.3.2 Cure

The cure for this problem of ill-posedness comes from the SUPG scheme. As we have alreadyseen in Subsection 4.4.6, the SUPG scheme is built with a centered signal ΦT
3 plus a streamlinedissipation

DT
i � »

Tp~λ.ÝÝÑ∇ϕk
i qτ̄ p~λ.ÝÝÑ∇uk

hq dx. (5.44)This last term has a dissipative property that actually stabilize the Galerkin scheme, and it hasalso an upwind character which is exactly what we are looking for, see Figure 5.6. If we considera P1 scheme applied to a constant advection scalar problem, this term adds»
T τ̄ p~λ.ÝÝÑ∇ϕ1

i q2dx ¡ 0

on the diagonal of the matrix A, described in previous subsection. Then condition of well-posedness (5.43) is met and the scheme is going to converge.As already seen in Subsection 4.1.3, matrix τ̄ is needed for local nondimensionalization, inorder the formulation stays consistent. Its characteristic size must be hp}~u}�cq , which is exactlythe dimension of matrix N given by equation (4.52) page 81. When available, we will then usematrix N for τ̄ , and we have observed that the results were slightly better when using this option.Sometimes, there is no need to compute matrix N though, and because it is computationallycostly (one has to compute the ki, �nd their negative parts, and invert°iPTpkiq� ) and dangerousbecause we have seen N is not always de�ned, we rather use the term:
DT

i � h

αT
»
Tp~λ.ÝÝÑ∇ϕk

i qp~λ.ÝÝÑ∇uk
hq dx. (5.45)

What we furthermore need is that this extra term does not destroy the properties of theLxF scheme. One has �rst to notice that because °iPT ϕk
i � 1,¸

iPTDT
i � 0.

The global conservation of the scheme is then always maintained. We also absolutely need thatthis term is of the same order of accuracy as the global residual. We recall (see Property 4.9)that a necessary condition for a scheme to be of order pk � 1q, is that the distributed signals tothe nodes are of order pk � 2q. Let u� be the exact solution of the continuous scalar problemand πk
hu

� its Pk projection. We have
DT

i pπk
hu

�q � »
Tp~λ.ÝÝÑ∇ϕk

i qτ̄ p~λ.ÝÝÝÝÑ∇πk
hu

�q dx
� »

Tp~λ.ÝÝÑ∇ϕk
i qτ̄ �

~λ.
�ÝÝÝÝÑ
∇πk

hu
� �ÝÝÑ∇u�		 dx

� |T|�Oph�1q �Ophq �Ophkq� Ophk�2q,
which is expected, because τ̄ is built to destroy the physical dimension of ~λ.ÝÝÑ∇ϕk

i . DT
i pπk

hu
�q hasthe same size as ΦTpπk

hu
�q. In the case one would not like to compute a matrix having the same
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properties as τ̄ , it is conceivable to use a constant instead, as hp}~u}�cq or simply h. What havebeen observed numerically is that the more e�ort is done, the more e�cient the stabilization termis. A scheme using matrix N for τ̄ will converge faster that its twin using h instead. However,for simplicity, we are usually going to consider that τ̄ � h in the following.Finally, as we have seen through the examples given in Subsection 5.3.1, the spurious modesoccur only in the smooth regions. And the price to pay to converge with help of this newdissipative term is to loose the formal monotonicity. We can explain that quickly in the scalarexplicit case. The scheme writes now:

un�1
i � �

1� ωn
i

¸
jPDi

γTi c̃ij � h

»
Tp~λ.ÝÝÑ∇ϕk

i q2dx
�
un

i

� ¸
jPDi

ωn
i

¸
TPDiXDj

�
γTi cTij � h

»
Tp~λ.ÝÝÑ∇ϕk

i qp~λ.ÝÝÑ∇ϕk
j qdx
un

j (5.46)
un�1

i is a barycenter of the un
j , j P Di and the sum of the barycentric coe�cients is 1. Thescheme veri�es a maximum principle if and only if¸

TPDiXDj

�
γTi cTij � h

»
Tp~λ.ÝÝÑ∇ϕk

i qp~λ.ÝÝÑ∇ϕk
j qdx
 ¥ 0, @j � i.

This condition is unreachable as there must exist an element T in which βTi   0 ñ βT,�
i � 0 ñ

γTi � 0, and as soon as ³Tp~λ.ÝÝÑ∇ϕk
i q2dx ¡ 0, there exists j P T such that ³Tp~λ.ÝÝÑ∇ϕk

i qp~λ.ÝÝÑ∇ϕk
j qdx  

0. Now, there are two things: the stabilized scheme is not positive anymore, which is preoc-cupying for problems with shocks, and the limited �rst order scheme behaves well around thediscontinuities. The solution is thus to stabilize the scheme only in the smooth regions. This isdone by multiplying the dissipation term (5.44) by a shock-capturing function θTpx, uhq, de�nedby
θT � "

1, where uh is smooth
h, in the discontinuities (5.47)There are many possible choices for the parameter θT. The best choice we have experimentedso far is

θT � 1�max
iPT

�
maxTPDi

max
jPT |uj � ūT|

|uj | � |ūT| � ε



, (5.48)where ε � 10�12 or any positive number near to machine zero, and ūT � p°jPT ujq{p°jPT 1q.One could notice this formulation is not compact anymore, as the value at node i does not dependonly on the values at its direct neighbours. In fact, there is a way of computing this formula thatmaintains the maximal compactness of the scheme. This is presented in Algorithm 2. The trickis to add an extra variable θ̃σ that allows to compute the compact part inside the parenthesis ofEquation (5.48). The rest of the formula is evaluated only at next time step by copying θ̃σ into

θσ and using (5.49).In the case of a multidimensional problem, Algorithm 2 can however not be used as it is.Equations (5.50) and (5.51) are only valid in the case of a scalar problem. For vectorial problems,the shock capturing is then only based on one variable, and we usually compute it by replacingthe quantity u by the density or the entropy component.
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Algorithm 2 Sketch of the implementation of one of the possible shock capturing function. Theevaluation of θT (cf. equation (5.48)) is kept compact by updating and swapping the monitors
θσ and θ̃σ.1: Initialize by θσ � 1 for all DoFs,2: Set ε � 10�12,3: for each iteration k do4: Set θ̃σ � 0 for each σ,5: for each element T do6: Evaluate the local shock capturing coe�cient θT , with

θT � 1�max
σPT θσ, (5.49)

7: Evaluate a mean value in T
ūT �

¸
jPTuj¸
jPT 1

(5.50)
8: Evaluate

ξT � max
σPT

� |uσ � ūT||uσ| � |ūT| � ε


 (5.51)
9: for each σ P T do10: θ̃σ � maxpθ̃σ, ξTq11: end for12: end for13: Swap : θσ � θ̃σ,14: end for
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5.3.3 Stabilization Term Computation

The goal of this section is to explain the practical computation of term (5.44). One �rst looksfor an exact quadrature formula. If one uses a Pk polynomial representation, the integrand is ofpolynomial order pk � 1q2, and one needs a quadrature formula of at least pk � 1q2-th order ofaccuracy. Term (5.44) is computed as
DT

i � h|T|θT

¸
xqP quadωq

�
~λpxqq.ÝÝÑ∇ϕk

i pxqq	�~λpxqq.ÝÝÑ∇uk
hpxqq	 . (5.52)

The problem is that a quadrature formula of pk � 1q2-th order of accuracy represents quicklya tremendous amount of quadrature points when k is growing. Then the question is: do wereally need an exact quadrature, and if not, what is the criterion on the quadrature formulaensuring the dissipation term to play its role ? To answer this question, we need to de�ne whatthe necessary properties of this term are. First, the term has to be of the same magnitude ofaccuracy as the nodal residuals. As we have already seen in the previous subsection, if we injectthe Pk projection of the solution of the continuous problem into the dissipation term, all theterms of the quadrature sum will be of the desired order of accuracy.
h|T|θT

�
~λpxqq.ÝÝÑ∇ϕk

i pxqq	�~λpxqq.ÝÝÝÝÑ∇πk
hu

�pxqq	 � Ophk�2q, @xq P quad.Second, we have to ensure the term has some dissipative properties, because we want it todistribute some information toward the ill-posed nodes and then dump the spurious modes. Inother word, we need the following bilinear form
DT

i pu, vq � h|T|θT

¸
xqP quadωq

�
~λpxqq.ÝÑ∇upxqq	�~λpxqq.ÝÑ∇vpxqq	 (5.53)

to be positive de�nite. This reduces to ensure
DT

i pu, uq � 0 ùñ ~λ.
ÝÑ∇u � 0. (5.54)This condition is met when all the weight coe�cients ωq are positive and the quadrature formulauses enough quadrature points to de�ne uniquely the pk � 1qth order polynomial ÝÝÑ∇uh. Thecomputation of the stabilization term is sumed up in the three following points:

• The formal order of accuracy is unconditionally met;
• @q P quad, ωq ¡ 0, for example, ωq is always 1 or 1

#tquadu ;
• Quadrature formula uses kpk�1q

2 quadrature points:
# tquadu � kpk � 1q

2and if we �nally consider the general case of a vectorial problem, the practical computation ofthe stabilization term writes:
DT

i � h|T|θT

kpk�1q{2¸
q�1

¸
jPTUj

�
~λpxqq.ÝÝÑ∇ϕk

i pxqq	�~λpxqq.ÝÝÑ∇ϕk
j pxqq	 (5.55)
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Order 2 3 4 5DoF 3 6 10 15
ϕT 3 6 9 12
Dt

i 1 3 6 10Consistent 1 6 16 ¡¡Table 5.1: This tabular shows the number of quadrature points needed to compute the globalresidual and the dissipation term. Line Dt
i shows the number of points needed in our formulation,and line �Consistent� shows the number of points needed when an exact quadrature would havebeen used. The bottom right box just tells this number is very big in the 5th order case. Wehave not �nd a quadrature rule integrating exactly a 2D polynomial of order 16!

One can compare on Tabular 5.1 the number of quadrature points needed in an exact quadratureformula with the number of quadrature point strictly necessary. With this small trick, we havevery much reduced the computational cost of this dissipation term.In the case of an implicit scheme, one wishes to �nd the Jacobian matrix associated to thisextra term. That for, we make the hypothesis that the advection is constant (or at least notdepending on the value of the solution) and the Jacobian is straightforward. The contributionof the dissipation to the ith line and jth row of the left hand side matrix is given by
pJDissipqij � h|T|θT

kpk�1q{2¸
q�1

¸
jPT

�
~λpxqq.ÝÝÑ∇ϕk

i pxqq	�~λpxqq.ÝÝÑ∇ϕk
j pxqq	 (5.56)

Finally, one can look at Figures 5.7, and 5.8 to observe the e�ects of this additional term onthe isolines of the solution, as well as on the associated convergence curve. The convergence iscompleted to machine zero and the obtained solution is much better. The results are of the samequality as those obtained with the PSI scheme.
5.4 Boundary Conditions

At this stage, we have not been much speaking about the boundary conditions. They havebeen mostly neglected for sake of simplicity. It is a di�cult topic because their constructionis often intuitive and their explanation never totally rigorous. In CFD, there are two typesof boundary conditions: the strong and the weak ones. The strong boundary conditions arebound to the Dirichlet condition: uhpxq � 0, x P Bω. A value is strongly imposed to oneor several variables of the solution. This is the case of the supersonic in�ow or the solid wallboundaries. They are interesting because the boundary condition is reliably exactly imposed.Nevertheless, these conditions are not very much appreciated because they are not fully consistentwith the global formulation of the scheme. The scheme comes from the weak formulation of thecontinuous problem and one needs then to start from here to build the boundary conditions.What we generally obtain is an extra boundary �ux to distribute to the degrees of freedom lyingon the border of Ω. This is what we call the weak boundary conditions.
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Figure 5.7: Iterative convergence for the stabilized Lax-Friedrichs scheme. The machine zero isreached and the theoretical second order of the scheme is met, as illustrated below.

Figure 5.8: Iterative convergence for the stabilized Lax-Friedrichs scheme. The machine zero isreached and the theoretical second order of the scheme is met, as illustrated below.
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5.4.1 Supersonic In/Out-Flow

The big advantage of the supersonic �ows is that all the characteristics of the problem pointtoward the same direction. All the information is advected is the direction of the velocity. For asupersonic in�ow, we are then sure nothing will go upstream and try to leave the domain. For theelements on the border, the nodal values completely depend on the values on the boundary. It istherefore possible to impose the input values strongly, without fearing any re�exion phenomenon.Because all the characteristics are entering the domain, we need to impose all the m variablesin order the problem is well-posed (see Subsection 2.1.9), and the boundary condition is appliedby ensuring
Un

i � Uout, @i P BΩ,@n. (5.57)For an explicit scheme, one covers all the boundary nodes and just nullify their received residuals.If condition (5.57) is ful�lled at time step n � 0, it will be ensured at any time step. In thecase of an implicit scheme, we do the same for the residuals, plus we nullify the whole ith line ofblocks in the system matrix, just letting the pd� 2q � pd� 2q identity block at row i. Then onehas
∆Un

i � 0 ùñ Un�1
i � Un

i � U0
i � Uout.

In the case of the out�ow, it is even simpler. At any time step, all the information on theout�ow border are radically blown out by the supersonic �ow. This is what we want and this isexactly what happens numerically. Then we have to do nothing:
Proposition 5.3 (Supersonic Out�ow)The supersonic out�ow boundary condition is applied by doing nothing more to the numericalscheme.
5.4.2 Solid Wall Boundary Conditions

Solid wall boundary conditions are useful in the case of a viscous �uid, which means whenusing a Navier-Stokes model. In the case of an Euler simulation, this conditions are usuallyreplaced by the slip wall conditions, see bellow. When a �uid is viscous, the friction makesboundary layers appear in the vicinity of the solid wall, because the �ow sticks to the surface.Then one wishes to ensure ~u � ~0 on the boundary. This is done as in the previous subsectionjust by nullifying the residual linked to the speed of the �ow for the degrees of freedom lying onthe boundary. In the explicit case, we then just maintain the initial values of the speed on thewall (which must be 0). In the implicit case, we obtain the same result by moreover replacingthe corresponding lines with the identity lines in the matrix of the system.This method is however true only for a still walls. What if the wall is moving, as in a Couette�ow, or a Stokes �ow ? One wishes at that time to impose ~u � ~uwall on the boundary. Theproblem with nullifying the velocity residuals is that one maintains the momentum value andnot the velocity, whereas the value of the density changes. The solution is to replace the velocityresiduals by ∆ρ ~uwall. Thus, one has
~un�1

i � pρ~uqn�1
i

ρn�1
i

� pρ~uqni �∆ρ ~uwall
ρn�1

i

� ~uwall.
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This works in the implicit case with the appropriated matrix lines, but we also have a secondpossibility. Instead of changing the right hand side, we can maintain it to zero and replace theline of the diagonal block of the matrix corresponding to the velocity at i by� �uwallx 1 0 0�uwally 0 1 0

�
. (5.58)This has exactly the same e�ect.

5.4.3 Slip Wall Boundary Conditions
As we have already said in the previous subsection, in the case of Euler simulations the �uidis considered to be non viscous, and it is not stuck to the walls. The �uid is nevertheless stillnot able to pass through the walls and the no-slip condition is changed into the slip condition

~u.~n � 0.As explained in Subsection 2.1.5, page 20, U is the solution of problem (5.1) with boundaryconditions, if it veri�es, for any ϕ P C1pΩq
� »

Ω

ÝÑ∇ϕ.ÝÑF pUqdx� »
BΩ ϕÝÑF pUq.~n ds � 0, (5.59)

ô ¸
TPMh

�� »
TÝÑ∇ϕ.ÝÑF pUqdx� »

BTXBΩ ϕÝÑF pUq.~n ds
 � 0

with ~n being the outward unit normal to the boundary. We here consider that the same boundarycondition is applied to the whole edge of Ω. In the reality, there are usually many di�erentboundary conditions to apply to the problem, and one has then to split the contour integralinto the right pieces. Now, Uh approximates the exact solution as the unique solution of W k
h �SpaniPMh

 
ϕk

i

( verifying (5.59) for any shape function ϕi associated to node i. If i is situatedinside Ω, ϕi has a compact support in Ω and the right integral in (5.59) is zero. The schemereduces to gather the signals coming from the di�erent elements of Di. But if i lies on theboundary, the right integral is not null anymore and its role is to enforce the slip wall boundary�ux, which is given for the Euler equations by
ÝÑF pUq|p~u.~n�0q.~n �

����
0
pnx

pny

0

���. (5.60)
Then for a DoF on the boundary, after applying the Green formula inside T to the left integral,the weak formulation over the mesh Mh reads:¸

TPDi

� »T ϕk
i .div�ÝÑF hpUhq	 dx (5.61)

� »
BTXBΩ ϕk

i

�ÝÑF hpUhq|p~u.~n�0q �ÝÑF hpUhq	 .~n ds� � 0,which is the residual distribution plus a additional boundary term enforcing �ux
ÝÑF slippU, ~nq � �ÝÑF pUq|p~u.~n�0q �ÝÑF pUq	 .~n �

����
�ρ~u.~n�ρu~u.~n�ρv~u.~n�ρh~u.~n

��� (5.62)
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on the boundary edges. h � E � p{ρ denotes the speci�c enthalpy.Without any further explanation, this is exactly what we do in the case of a RDS. We �rstcompute the global residuals and distribute them to their respective DoFs. Afterward, we go allover the edges of Mh lying on the boundary, compute the terms

Bedge
i � »

edge ϕk
i
ÝÑF slippUn, ~nq ds, (5.63)

and add them to the residual of the corresponding boundary DoFs. One has to remark that asÝÑF h is built as the Pk projection of the continuous �ux ÝÑF , the computation of this term is just alinear combination of the values of the enforced �ux at the degrees of freedom of the edge, whichcoe�cients are the ith line of the symmetric mass matrix�
Mk

	
ij
� » 1

0
ϕk

i ϕ
k
j ds. (5.64)The computational formula writes:

Bedge
i � ¸

jPedge
�
Mk

	
ij

�ÝÑF hpUjq|p~u.~n�0q �ÝÑF hpUjq	 .~nedge, (5.63)
where ~nedge is still the outward normal to the boundary but its norm is the length (|edge|) ofthe considered edge.
5.4.4 Far-�eld Conditions

In CFD, we are often simulating problems that require in�nite large domains. We can ofcourse not consider these domains entirely and we then use large computational domains suchthat the boundaries are far enough from the simulated aerodynamic object. It is thereforeusual to consider these external boundaries as if they were situated at the in�nity and that thesolution is almost constant around these boundaries. We wish then to impose a far-�eld �ux onthese edges, as if the domain were drown in a in�nite space �lled with a homogeneous steadystate. Because the equations are invariant by Galilean transformation, this will act as if theaerodynamic object was moving at the speed at in�nity in a steady domain.We have seen in Subsection 2.1.9 that the good way of treating boundary conditions is toenforce the external conditions only on the entering characteristics, and to let the solution beon the outgoing characteristics. In the case of the two dimensional Euler equations and for asubsonic �ow, there are usually 3 entering characteristics and 1 outgoing one. Furthermore,we assume that the solution is constant enough on the vicinity of the boundary such that theadvection is constant, and the �ux can be approximated by
ÝÑF pUq � BÝÑF pUqBU U � ~λpUqU. (5.65)Now the �ux crossing an edge has two components. Because the problem is hyperbolic, if nedgeis the outward normal scaled by the length of the edge, one hasÝÑF pUq.~nedge � ~λpUq.~nedge U (5.66)� KpU,~nedgeqU� K�pU,~nedgeqU�K�pU,~nedgeqU.
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The last two terms represent the outgoing and ingoing �ux respectively. Following, what hasjust been said, we want the ingoing �ux to be the �ux at in�nity and the outgoing one to be the�ux related to the solution. This is called the Steger-Warming �ux and it is de�ned by

ÝÑF SW pU,U8, ~nq � K�pU,~nqU8 �K�pU,~nqU. (5.67)If we follow the arguments in previous subsection 5.4.3, one needs to add the contributions ofthe edges sharing i to the residuals of a node i of the boundary. They write
Bedge,SW

i � »
edge ϕk

i

�ÝÑF SW pUn,U8, ~nedgeq � ÝÑF hpUnq.~nedge	 ds
� »

edge ϕk
i

�K�pU,~nedgeqpU8 �Uq	 ds. (5.68)
Once more the �ux is supposed to be of the same polynomial order as the solution, and theSteger-Warming contribution is computed as

Bedge,SW
i � ¸

jPedge
�
Mk

	
ij

�K�pUj ,~nedgeqpU8 �Ujq	 (5.69)
Boundary Condition Jacobians : In the case of an implicit scheme, one needs to computethe Jacobians of these boundary contributions and add them at the right place in the matrixof the problem. For the Steger-Warming boundary condition, it is not a di�cult task, as theadditional Jacobian at line i and row j is�

Mk
	

ij
K�pUj ,~nijq. (5.70)

This is also valid for the previous slip wall boundary condition. In this case, one has �rst tocompute the Jacobian of the imposed �ux,
Jslip � BÝÑF slipBU ,

and the Jacobian of the boundary contributions at line i and row j writes�
Mk

	
ij
JslippUi, ~nq. (5.71)

5.5 Summary of the E�ective Implementation
Here is a quick summary of this chapter. The goal is to fully describe in a couple of linesthe way the Limited Stabilized Lax-Friedrichs scheme is implemented is P2. U represents thenumerical solution at pseudo time-step n. The proposed method is implicit. For explicit scheme,just remove the items dealing with the left hand side matrix. The solution is either scalar orvectorial. Di�erence will be given when needed. Except RHS which represents the Right HandSide (also called the explicit residual), all the notation have been already presented.
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For all the elements T of the mesh do:

• Compute the Global Residual along the edges of T
ΦT � 3̧

i�1

ÝÑF i.~ni

6
� 6̧

i�4

2
3
ÝÑF i.~ni

• Compute αT as
αT � max

iPT p‖~ui‖ � ciq .maxedge |edge|and for each degree of freedom of T , compute the Nodal Residual
ΦT

i � 1
6

�
ΦT � αT ¸

jPTpUi �Ujq
�

• In the case of a vectorial problem, apply algorithm 1 page 93. In the scalar case, computethe �rst order Distribution Coe�cients
βTi � ΦT

i

ΦT ,limit them
β�i � �

βTi ��°
jPT �

βTj 	�and get the second order Nodal Residual
Φ�

i � β�i ΦT.
• Compute the Stabilization Term

DT
i � |T|2θT

kpk�1q{2¸
q�1

¸
jPTUj

�
~λpxqq.ÝÝÑ∇ϕk

i pxqq	�~λpxqq.ÝÝÑ∇ϕk
j pxqq	

• Assemble the left hand side matrix, using either the �rst order Jacobians or the �nitedi�erence Jacobians with the matrix associated to the stabilization term
pJDissipqij � |T|2θT

kpk�1q{2¸
q�1

¸
jPT

�
~λpxqq.ÝÝÑ∇ϕk

i pxqq	�~λpxqq.ÝÝÑ∇ϕk
j pxqq	

• Gather the received signals
@i P T, RHSpiq� � Φ�

i �DT
i

For all the edges lying on the boundary do:
• Compute and distribute to the DoFs of the edge the associated Boundary Flux, in thecase of a weak boundary condition. Add the boundary �ux Jacobians to the left hand sidematrix. In the case of a strong boundary condition, do nothing. These conditions must betreated after all the weak boundary conditions have been covered.
• Apply the strong boundary conditions and their e�ects on the matrix.
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Solve the obtained system, update the solution and go to next time step!



Part III
New Developments and Illustrations
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Chapter 6
Hybrid Meshes

One of the main advantages of the RD Lax-Friedrichs scheme we are presenting in this thesis,is its easy generalization to any type of polyhedral element. Using the Qk basis functions de�nedin Chapter 3 on any convex quadrangle, we discuss in this chapter the extension of the LLxFto the computations on hybrid meshes. As we shall see, the use of such meshes presents someinterest when looking at the accuracy of the obtained solution and the computational time. Sofar, the method has only been developed for 2D problems, but we are convinced the results weare showing stay valuable for 3D meshes containing hexahedra.
6.1 Formulation of the Stabilized LLxF Scheme on Quadrangles
6.1.1 Global and Nodal Residuals

We recall that for any convex quadrangle Q there exists a unique Q1 di�eomorphism ϕtransforming the reference element pQ � r0; 1s2 into Q, completely described by formula (3.11).The Qk basis functions de�ned on the reference element are transported to Q thanks to ϕ andwe obtain pk� 1q2 basis functions on Q that are polynomial of order k along the edges of Q andthat verify: @i, j P Q, Qk
i pxjq � δij .The fact that the restriction of our approximated function is polynomial of the right order onthe edges is very useful, because one just has to use the degrees of freedom of the edges and theright weight coe�cients to compute the Global Residual of Q as a contour integral. This isshown on Figure 6.1.We now have all the necessary elements to formulate the Lax-Friedrichs scheme on quadran-gles, thus obtaining the �rst order distribution coe�cients that we limit in order to obtain thepk� 1qth order distribution coe�cients. As one can see, nothing really changes compared to thetriangular formulation, and the extension is straightforward. Concerning the Stabilization Term,there are some di�erences with respect to the Pk case. The next paragraph is devoted to thisaspect.
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Figure 6.1: Global Residual computation in Q1, Q2 and Q3 quadrangles.
6.1.2 Stabilization Term Computation

As we have seen in Subsection 5.3.3, the Stabilization Term is calculated via a quadratureformula. In order to be e�cient, we need enough quadrature points to de�ne the gradient ofthe solution uniquely in the quadrangle. The problem is that the form functions are de�ned asthe Qk functions over the reference quadrangle composed with the Q1 transformation ϕ. Werecall that the Jacobian of this transformation is denoted by J . Moreover, the gradient of a
Qk function does not have to be Qk�1. The only thing that is sure is that the gradient of thesolution is a Qk function and we are going to use all the DoFs of the quadrangle as quadraturepoints, in order for the Stabilization Term to have some dissipative properties. The StabilizationTerm is computed as follows:

DQ
i � hθQ »

Q ~λ.ÝÝÑ∇Qi
~λ.
ÝÑ∇u dx

� hθQ »
Q̂ ~λ pϕppxqq .ÝÝÑ∇Qi pϕppxqq ~λ pϕppxqq .ÝÑ∇u pϕppxqq |Jppxq| dpx

� hθQ pk�1q2¸
q�1

¸
jPQuj

~λ pϕppxqqq .ÝÝÑ∇Qi pϕppxqqq ~λ pϕppxqqq .ÝÝÝÑ∇Qj pϕppxqqq |Jppxqq|.
If ψ denotes the inverse function of ϕ, one has

Qi � pQ � ψ.Then ÝÝÑ∇Qi � J�1 .
ÝÝÑ
∇ pQi � ψ,and

DQ
i � hθQ pk�1q2¸

q�1

¸
jPQuj

~λpxqq.J�1
ÝÝÑ
∇ pQippxqq ~λpxqq.J�1

ÝÝÝÑ
∇ pQjppxqq |J |ppxqq (6.1)
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In practice, we consider that J is constant over pQ and of the same order as |Q|. Then,equation (6.1) is usually computed as

DQ
i � hθQ

|Q| pk�1q2¸
q�1

¸
jPQuj

~λpxqq.ÝÝÑ∇ pQippxqq ~λpxqq.ÝÝÝÑ∇ pQjppxqq, (6.2)
and the associated Jacobian matrix is obvious.
6.2 Numerical Results
6.2.1 Constant Advection

We start this chapter of results by a very simple scalar case. The domain Ω is the unit squarer0; 1s2 and the advection is constant and vertical, ~λ � p0, 1q. The problem reads:$&%
~λ.
ÝÑ∇u � 0

upx, 0q � sin2p5πxq
up0, yq � up1, yq � 0

(6.3)
The values on the upper boundary are let free. The values on the other boundaries are imposedstrongly at the beginning of the computation and never updated. The unique solution is obviouslythe transport of the input function:

u�px, yq � sin2p5πxq.
We have computed this problem on many di�erent grids. The characteristic mesh size h ishere the inverse of the number of vertices lying on one boundary (the edges of the domain arehomogeneously discretized). For di�erent values of h, we have generated di�erent meshes, oneswith triangles only, the other ones being hybrid (contain triangles and quadrangles). The hybridgrids are generated with GMSH [34, 33] using the �recombine� function that combine as muchtriangles of the triangular grid as possible into convex quadrangles. For each values of h, thetriangulation has thus exactly the same number of vertices as the hybrid mesh and we usuallyhave 2 times more elements in the triangulation than in the hybrid mesh. This is summarizedin Table 6.1. We are going to study the h-convergence of the Stabilized Lax-Friedrichs schemein triangulation, hybrid mesh and of course compare the e�ciency of one approximation withrespect to the other.On Figure 6.2, one can see the coarser hybrid mesh used on the left side, and the isolinesof the 4th order solution obtained on the �nest hybrid mesh on the right. On Figure 6.3 wehave represented the h-convergence curves for the hybrid meshes, the triangular ones and themean square straight lines for the points corresponding to the hybrid grids. The desired orderis met for all the polynomial approximations. In the case of the second order, we obtain indeeda slope of 1.3 which is far from the slope of 2 expected, but we can see that the two points forthe two �rst grids are almost at the same error level. The explanation is simple: the meshesare so coarse that the input function is advected only as far as one or two elements from thebottom boundary and the measured error is roughly the L1 norm of the exact solution. We canconsider that the �rst point is not relevant for 1st order simulation and if we use just the four



126 Chapter 6. Hybrid Meshes
h Vertices Triangles Quadrangles0.1 114 190 36 770.05 468 858 128 3650.025 1784 3410 480 14650.0125 7777 15236 1982 66270.01 11454 22510 2858 9826Table 6.1: Number of vertices, triangles and quadrangles constituting the di�erent meshes usedfor the grid convergence. The left number in the column Triangles corresponds to the numberof triangles in the triangular mesh, while the right one is the number of triangles in the hybridgrid. Hybrid grids have then about two times less elements than the triangular twin ones.

Figure 6.2: Coarser hybrid grid and the 4th order solution obtained on the �nest hybrid grid forproblem (6.3).
other points, the slope of the mean square straight line is now 1.8, which is far better. Anothervery interesting remark is that for the same number of vertices and the same sought order ofaccuracy, the hybrid grid is generally doing a better job. This being true above all for the �nestgrid (h P t0.0125, 0.01u). We explain that the following way: if we consider a convex quadrangle,we can divide it into two triangles. If we make use of a Pk approximation on the triangles, we aregoing to add extra DoFs on the edges and inside the triangles. But if we now recombine thesetwo triangles, we obtain exactly the quadrangle with its Qk DoFs. And in the case of trianglesthe approximation of the exact solution is piecewise polynomial of order k, while in the case ofthe quadrangle, for the same number of DoFs, we have the approximation of polynomial order
k, plus the mixed terms coming from the Qk framework. Then the global �nite dimensionalsubspace of approximation for the triangular mesh is included in the subspace of approximationfor the quadrangular grid, and it is correct that the approximation is better with quadranglesthan with triangles.Finally, one would also like to compare the two simulations in term of computational time.The CPU time (in seconds) needed for 1000 iterations are reported on Table 6.2. The compu-tation on the hybrid grid is almost always faster, except for the 4th order approximation on the
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Figure 6.3: Mesh convergence for the simple constant advection problem (6.3). The mean squareslope are calculated with the errors measured on the hybrid meshes (represented by circles,squares and triangles). The star points correspond to the same simulations on triangular grids(same problem, same number of vertices).
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�nest grid. This was expected, as the hybrid grid has roughly two times less elements than itstriangular associated mesh. For 2nd order approximation, we have 4 DoFs per quadrangles whiletriangles have only 3. The ideal speed ratio is then 1.5 which is not so far from the 1.41 ob-tained. But as soon as we use higher order approximation, we recall that the number of DoFs ina quadrangle is pk� 1q2, while there are only kpk�1q

2 DoFs in a triangle. Then using higher orderapproximation brings about 2 times more work in a quadrangle than in a triangle. Plus, thecomputation of the dissipation term uses all the DoFs in a quadrangle, while it uses only kpk�1q
2degrees of freedom in a triangle. That explains why the speed ratio goes to 1 for larger k, and weare pretty sure this ratio would be smaller than 1 for 5th order approximation. However, the useof quadrangles remains interesting since they give a lower error compared to the one obtainedon triangles.

h P1 Q1 P2 Q2 P3 Q30.1 0.286 0.206 0.369 0.31 0.53 0.470.05 1.32 0.927 1.68 1.43 2.43 2.240.025 5.42 3.76 7.1 6.04 10.55 9.810.0125 25.05 17.75 34.02 30.59 51.9 50.780.01 37.24 27.06 53.34 46.22 72.95 76.811.41 1.16 1.05Table 6.2: Computational time in seconds for 1000 iterations for the di�erent meshes and orderof approximation. The last line gives the mean speed ratio for the considered order of approxi-mation.
6.2.2 Circular Advection

Consider a solid body rotation speed ~λ � p�y, xq, and the resulting inner equation:
x
BuBy � y

BuBx � ~λ.
ÝÑ∇u � 0. (6.4)

We solve this problem on the computational domain r�1; 1s�r0; 1s. Let ~n be the outward normalto the boundaries of the domain. It will be useful to classify the boundaries as follows:
• ~λ.~n   0: the �ow is entering the domain along the edge. We say that the edge belongs to

Γ�, the set of the in�ow boundaries.
• ~λ.~n ¡ 0: the �ow is going out of the domain along the edge. We say that the edge belongsto Γ�, the set of the out�ow boundaries.

As we have seen in Chapter 2, we need to impose the solution on the in�ow boundaries, whilethe solution can be let free on Γ�.We are going to use three di�erent types of grids. The domain is divided in two by thestraight line x � 0. The �rst grid is a triangulation of both sub-domains. This mesh will becalled �TriTri�. The second one is a triangulation of left side combined with a hybrid mesh onthe right side. It is called �TriQua�. Finally, the last mesh is a hybrid grid on both sides and wecall it �QuaQua�. These meshes as well as the Γ� and Γ� boundaries are represented on Figure
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6.4. For all the test cases, the solution is going to be null outside the disk of radius 3

4 . Then,the advected form will be imposed only on boundary p1q and the value 0 will be maintained onboundaries p2q and p3q.We are going to impose a shape function on boundary p1q, with compact support in r�3
4 ; 0s,and observe the advected function on the output boundary r0; 1s. We start by the regular function

sin8

�
4πx
3



, (6.5)

on boundary p1q. If value 0 is maintained on the other in�ow boundaries, the exact solution isobviously "
sin8

�
4πr
3

�
, if r �a

x2 � y2   3
4

0, else (6.6)The value of the solution at the degrees of freedom of the output edge x � r0; 1s are representedon Figure 6.5 for 2nd and 3rd order simulations. First thing, even if the mesh is rather coarse, the
3rd order simulation gives a very �ne result for all the grids. There is no big di�erence betweenthe meshes in that case. It is much interesting to look at the 2nd order approximation. In allcases, the scheme is di�usive. But what is clear is that the more quadrangles are used in thegrid, the less di�usive the output function is. This con�rms the remarks made in the previoussubsection: the quadrangle approximation uses a wider space of approximation and is then moreaccurate.We now consider a discontinuous solution. The input form function on boundary p1q is thecharacteristic function of interval r14 ; 3

4 s, ξr 14 ; 3
4
sp|x|q and the exact solution is given by"

1.0, if 1
4   r �a

x2 � y2   3
4

0.0, else (6.7)
The output degrees of freedom are plotted on Figure 6.6. As before, the solutions on gridscontaining quadrangles are very slightly better. The discontinuities are a bit better resolved.But we have been testing this case above all to check the behaviour of the scheme in presence ofdiscontinuities. As we said in Subsection 5.3.2, the stabilization term destroys the monotonicitypreserving property of the LLxF scheme, and we should use a shock capturing function θ toannihilate the e�ects of this term in the vicinity of discontinuities. Here we have set θ uniformlyequal to 1. However, the 2nd order simulation is very good and we can not really see any spuriousoscillations. On the 3rd order simulation, we can see that some over- and undershoots appear atpoints 1, 2 and 3. These oscillations could have been almost completely eliminated with a goodshock capturing function θ. But, the global behaviour of the stabilized limited Lax-Friedrichsscheme is rather good, the oscillations are almost insigni�cant. Eventually, it is important tonotice that the formulation on triangles seems to be a bit more stable as the overshoot at point
2 is nonexistent for triangular grid.
6.2.3 Higher Order E�ciency

We now come to the system case. We consider an Eulerian Mach 0.3 �ow around a unitsphere. The computational domain is r�10; 10s2. It is maybe not big enough, as we are goingto see in the following. We have built many di�erent grids for this problem. They are builton the approximation of the sphere boundary with 10, 20, 40, 80 and 100 points respectively.
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Figure 6.4: �TriTri�, �TriQua� and �QuaQua� meshes used for Problem (6.4). The green edgesp1q, p2q and p3q are the in�ow boundaries.
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Figure 6.5: Value of the solution at the DoFs situated on the output boundary for 2nd and 3rdorder approximation. The input function is given by (6.5).
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Figure 6.7: Density isolines of the third order solution obtained on the �nest hybrid grid repre-sented over the coarser hybrid mesh.
The inner domain is discretized either with triangles only or by a hybrid grid containing mostlyquadrangles, such that the hybrid grid has roughly two times less elements than the associatedtriangulation. All of these meshes have been generated thanks to the free software GMSH [33, 34]developed by Christophe Geuzaine (University of Liège) and Jean-Francois Remacle (CatholicUniversity of Louvain). 2nd and 3rd order simulations have been computed on these meshes.The coarser hybrid grid as well as the isolines of the solution obtained with the �nest hybridgrid with a 3rd order scheme are given on Figure 6.7. From the isolines, we can see that thesolution is not perfect, especially on the rear of the cylinder. Even if the test case should beisentropic, numerical entropy is created on the boundaries, mostly at the stagnation point andit spoils the solution elsewhere. We will see further that this is actually a way of measuringthe order of accuracy of the used numerical scheme. Another way is by measuring the globallift or drag around the sphere. As one can see on Figure 6.7, the mesh has no symmetry andthe solution is then not going to be symmetrical around the sphere boundaries. We can thenmeasure the numerical lift coe�cient as the contour integral of the pressure around the sphereboundary:

Cl � »
Bsphere p ~n. ~dy

� ¸
edges pA � pB

2
~nedge. ~dy, in the P1 case

� ¸
edges pA � 4pC � pB

6
~nedge. ~dy, in the P2 case.
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Here pA, pB and pC stand for the values of the pressure at both ends and in the middle of theedge respectively. This lift coe�cient should converge toward zero as the mesh gets �ner. Wecan see the convergence curves on Figure 6.8. The two di�erent colors denote the two di�erentorders of representation of the data. The circle and square points are the lift coe�cients obtainedwith the hybrid grids. All the points represented by stars are the lift coe�cients correspondingto the triangular meshes. Finally, the lines are the mean square straight lines for the set ofpoints obtained with the hybrid grids. For second order simulation, the result matches exactlywhat have been observed on scalar problems: the slope of the mean square straight line is almostthe perfect one and the quadrangular result is always slightly better than the triangular one.Conversely, the result obtained with the 3rd order code is less clear. There are several reasonsfor this. First of all, we note that the simulations on the hybrid grids are globally worse thanthe ones on the triangulations. But for these 3rd order computations, the iterative convergencehave not been reached. We have represented the iterative convergence curves for 2nd and 3rdorder simulations on Figure 6.9. The scheme is implicit with �rst order Jacobians. Whereasall the simulations of second order of accuracy converge to 10�12, the third order computationsrefuse to converge lower than 10�5. We cannot explain why at that moment, but we hope weare just facing an implementation error in the code. What we are however sure of, is that thislack of iterative convergence in�uences the lift convergence because the steady state is not fullyreached. We also observe on Figure 6.8 that the slope of the 3rd order computations is a bit farfrom the expected one. Even though it is still better than the 2nd order one. Indeed, the lackof iterative convergence could explain this, but there is another thing: in all these calculations,the boundary are represented linearly. The edges are straight lines and the lift coe�cient is aparameter that is local to the boundary. Even if the scheme is third order accurate inside thedomain, its accuracy could be locally reduced. The obtained slope is a combination of the thirdorder expected accuracy and the second order accuracy of the boundary representation. We willsee further that not only the solution can be represented with higher order, but also the edgesof the mesh. We call this representation isoparametrical.Concerning the entropy production, we can see on Figure 6.10 that some entropy calculatedas

s � ln
�
p

p8

� γ ln

�
ρ

ρ8

 (6.8)is created in the vicinity of the sphere. On this �gure, we have represented the isolines of entropygenerated with second order scheme (top left), with third order scheme (bottom) and with thesecond order scheme applied on the degrees of freedom of the third order scheme (top right).It is clear that the creation of numerical entropy is much reduced by using the third orderscheme, even when comparing with the mesh having the same number of DoFs. The qualityof the solution is indeed also improved. It is even much more interesting to give a look at thecomputational time. For the triangular grid, the second order simulation has a cost of about

0.96s per iteration, the third order one 3.36s per iteration and the second order simulation on thethird order DoFs about 3.44s per iteration. This is expected because each element of the secondorder mesh is split into 4 to obtain the second order mesh equivalent to the third order one. The
3rd order simulation computationally costs about the same than the second order simulation onthe split mesh, but the obtained result is much more accurate.This subsection has shown the high order formulation is doing a very good job on the hybridmeshes, as it is seriously improving the solution for about the same computational cost. Unfor-tunately, we are not observing the expected mesh convergence slope, this being essentially dueto the linear representation of the boundary. The next subsection is dealing with a higher order
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Figure 6.10: Same 60 isolines of created numerical entropy for second order scheme (up-left),second order scheme on the third order sub-triangulated mesh (up-right) and third order scheme(below).
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of representation of the boundary edges. We will see how this improves even more the computedsolution but, for the time being does not give exactly the expected results.
6.2.4 Isoparametrical Elements

The goal is here to represent the boundary edges with quadratic parametric curves. Let usconsider two neighbour vertices of the boundary, A and B, and the real boundary edge linkingthem. Until now we have been approximating this curved edge by the segment rABs. We wantto improve this approximation. To do that, we look for three vectors of size n � 2, the numberof spatial dimensions, such that the parametric curve
Xptq � ~at2 �~bt� ~c (6.9)is an approximation of order O �

‖AB‖2
� of the real boundary. We then have 6 degrees of freedomto de�ne the new edge. First, we have to ensure the curve passes through A and B. We thusrede�ne (6.9) as a Bézier curve and we get:

Xptq � XAp1� tq2 �XBt2 � ~ctp1� tq, (6.10)where XA and XB are the coordinates of A and B respectively and ~c is two extra degrees offreedom.One could choose and extra point on the real edge (for example the orthogonal projection C1of C the middle of rABs) and compute ~c such that the quadratic approximation of the curve alsopasses through C1. Unfortunately, because we do not impose the direction of the derivatives atA and B, the global reconstructed boundary pro�le is not C1 and we even observe some Gibbsphenomenon in the region where the curvature of the pro�le is strong (the stagnation point ofan airfoil for example). We have done several tests with this con�guration, and the quality ofthe global solution is not improved at all and even deteriorated at some times. The idea is thento impose just the exact direction of the �rst derivatives at A and B (2 extra constraints) andto take the middle edge C� as C� � X
�

1
2



. (6.11)

If ~VA and ~VB are two exact tangents to the boundary pro�le at points A and B, whatever betheir norms, the last coe�cient of equation (6.10) is the unique solution of#
~c^ ~VA � 2XA ^ ~VA
~c^ ~VB � 2XB ^ ~VB (6.12)

Even if only the edges of the boundary are modi�ed, we consider that the whole mesh isisoparametric, and we have to rede�ne all the quantity that have been calculated previously inthe case of �straight triangles�. The global residual is still calculated as a contour integral, butbecause both the �ux and the normal to the edges are quadratic functions of the coordinates,the integrand is of order 4. The classical Simpsons rule does not integrate the global residualexactly anymore. We then use Gauss quadrature points and integrate the residual just byevaluating the needed quantities at the quadrature points. This is what have been done in thefollowing simulation. However, by experience, using Simpsons rule does not seem to destroy theaccuracy. It is then a cheaper solution as it does not require to reconstruct the unknowns at
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the quadrature points. For the dissipation term, the reasoning is the same than in Subsection5.3.3. The accuracy of the scheme is always maintained and the term is dissipative if and only ifwe have enough quadrature points to de�ne the gradients a unique way. Equation (5.55) is stillvalid, but the gradients of the basis functions are di�erent and have to be recomputed. Finally,the slip wall boundary contribution on the sphere edge is calculated as (5.63), with a 4th orderquadrature because once more the boundary �uxes and the normals are quadratic functions ofthe coordinates.We have plotted on Figure 6.11 the same entropy contours for the second order, the third orderand the third order with parametric boundaries solutions as well as the lift convergence curve.For the entropy isolines, the result is pretty clear: compared to second order, the third ordersimulation reduces the numerical entropy production, even more when using the isoparametricrepresentation of the boundaries. In the last case, the entropy production is almost insigni�cantcompared to the P1 computation. Unfortunately, things do not improve as far as the convergenceof the lift coe�cient is concerned. The 3rd order slope is not reached as expected, and the slopeof the mean square straight line is even worse than in the case of the linear representation of theboundaries. However, except for the �nest grid, all the point for the isoparametrical simulationare situated beneath those of the previous 3rd order simulation. As in the case of the linearrepresentation of the boundaries, the scheme has not fully converged, and this may be due to alack of maturity of the hybrid scheme.
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Chapter 7
3D Simulations

This chapter is devoted to the simulation of the Euler equation in three dimensions. Even ifwe are going to treat only steady Euler test cases, we �rst start by generalizing the constructionof the unsteady Navier-Stokes system done for a two dimensional domain in Section 2.2. Thethree dimensional steady Euler system is obtained by ignoring the time dependent terms andremove the viscous e�ects. The speed has now three components u, v and w and the vector ofunknowns is
U �

������
ρ
ρu
ρv
ρw
ρE

�����. (7.1)
The three dimensional unsteady Navier-Stokes equations read:

BUBt � div�ÝÑF pUq	 � pKijU,jq,i � div�K.ÝÝÑ∇U
	
. (7.2)

where, using δi to denote the ith column of the 3� 3 identity matrix,
ÝÑF � pF1,F2,F3q , Fi �

�� ρui

ρui~u� pδipρE � pqui

�, i � 1 . . . 3

is the advection �ux and K is a d � d di�usive matrix of m �m (m � d � 2) matrices that aredetailed in Appendix A. In Appendix B we have also reported the Jacobians of the advective�ux A � BF1BU , B � BF2BU and C � BF3BU . The diagonalization of the 3D advection speed in anydirection ~n is also given. The left and right eigenvectors as well as the eigenvalues are neededfor example to de�ne the limitation over the characteristic components of the residual.3D computations are much more complex compared to the 2D ones. First of all, the resultis harder to analyze. It is much more complicated to �nd a local irregularity (for example aproblem on the boundary) in a three dimensional solution than in a 2D one. In 2D, one canrepresent and see all the points of the domain globally. But in 3D, the only thing we can watchare slices of the solution. In a second time, it is really much easier to reach the limit of aprocessor capacity with a 3D computation. It is not uncommon that a node has 100 neighbours
141
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in a P2 simulation on tetrahedra. Then each line of the matrix needs about 40kBytes of RAM.Multiplied by the approximately 3n DoFs (n being the number of vertices), this represents 0.1nMBytes to load just the matrix of the linear system in the RAM of the computer. Then if n islarger than 105 the computation cannot be done on a single processor. In order to distribute thismemory load between several processors, we have been developing a parallelized version of thecode. We make here a small parenthesis to present the implementation and the performances ofthe parallelization of the RD schemes.
7.1 Parallelization

Parallel computing is a form of computation in which many calculations are carried outsimultaneously, operating on the principle that large problems can often be divided into smallerones, which are then solved concurrently ("in parallel") [11]. In our case, one of the good featureof the Residual Distribution Schemes is they are compact. That means that at each time step,the value of a degree of freedom is updated using only the values of its direct neighbours (theDoFs sharing the same elements). If we have the possibility to use n processors, we can thendivide the mesh into n load balanced sub-domains (containing approximately the same numberof DoFs) and ask to each of the processors to update the values of the DoFs of one singledomain only. We will call inner degrees of freedom, the set of DoFs of a sub-domain whosedirect neighbours are all lying in this sub-domain. For these DoFs, their values can be updatedindependently of the values of the DoFs of the other sub-domains. As we said in the beginning:�they are solved concurrently�. The problem comes from the DoFs lying on the vicinity of theedge of each sub-domain. For these nodes, the processors have to share some data in order theirvalues are correctly updated. If this is not done a smart enough manner, the computation iscertainly not going to be n time faster, which is one of the main goals of the parallelization. Forexample, if we do the so called synchronized parallelization, each processor waits for the otherswhen he is done with his task, and the memory sharing is realized only when all the processorshave �nished their computing. This is not an e�cient technique at all. In fact, the size of theproblem is usually very big compared to the number of processors available. This means that thenumber of inner degrees of freedom is very large compared to the quantity of data the processorhas to share. Then, one can renumber the elements of the sub-domains such that the elementshaving a node on the edge of the sub-domain have the larger number. When the processor startsthe iteration, it can simultaneously update the values of the inner degrees of freedom and sharethe needed updated values (during the previous iteration). This is possible because on modernprocessors, the algebra unit is always separated from the communication one. This technique iscalled the asynchronized parallelization and provide a much better speedup.
7.1.1 Domain Decomposition

For the domain decomposition, we have been using Scotch, which is a �Software package andlibraries for sequential and parallel graph partitioning, static mapping, and sparse matrix blockordering, and sequential mesh and hypergraph partitioning� 5, developed at INRIA BordeauxSud-Ouest by François Pellegrini [77, 78, 79]. It is available under the CeCILL-C free/libre
5http://www.labri.fr/perso/pelegrin/scotch/scotch_en.html
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software license [29], which has basically the same features as the GNU LGPL (�Lesser GeneralPublic License�). The main characteristics of Scotch for domain decomposition are the following:

• Balance of the computation load across processors,
• Minimization of the inter-processor communication cost,
• Treatment in Opnedgesq.
As we have seen in the previous section the load balancing is a very important step. Duringa computation, it is not really to be desired some processor has one or more iterations in advancecompared to the others. To prevent such a situation, we still have to synchronize all the processorsat the end of an iteration. If the load balancing is well done, the computational cost of sucha procedure is negligible. But it is costly when a processor is much slower than the others. Inthis case, all the processors are going to compute globally at the same speed as the slowest one.The quality of the domain decomposition is also quanti�ed by the inter-processor communicationcost. This results from the exchange between the processors of the values lying on DoFs whosedirect neighbours are not all in the same domain. Because the RDS are compact, all these specialDoFs are situated in a stripe which width does not exceed one element. We will call this regionthe overlap. Then minimizing the inter-processor communication cost is equivalent to minimizethe number of DoFs situated in the overlap, which can be simply done by minimizing the lengthof the separating surface between the domains.In a �rst attempt of parallelization, we have not chosen a good solution, though. We havedecomposed the mesh element by element, and balanced the processors load by taking intoaccount only the vertices of the mesh. This is not the best choice as soon as we want to executea higher order simulation, because we were generating the higher order mesh on the alreadydecomposed domain. Nothing ensures the load balancing is maintained and it is pretty surethere exist splitting ways using some extra DoFs that minimize much better the overlappingareas. Thanks to the work of Cédric Lachat, during his Master degree internship at INRIABordeaux, we are today �rst generating the higher order mesh and only then do the domaindecomposition with Scotch. However, this work is too recent and all the results presented in thischapter are using the previous solution. That is also why the next Subsection about the overlaptreatment assumes that the domain decomposition has been done on the �rst order mesh.

7.1.2 Overlap Treatment
All the arguments of this section are illustrated on Figures 7.3, 7.4 and 7.5. Let us �rst givea look at Figure 7.3. We have two domains, one blue, one red, each one of them belonging to adi�erent processor that will be called simply the blue and red processor respectively. The mesh is

P2 and all the degrees of freedom lying on the splitting way belong to the blue processor. In orderto update well their values, the blue processor has to know the values of all its direct neighbours.In particular, it has to know the values of the green DoFs (see Figure 7.4), that belongs actuallyto the red processor. The same thing on the red side, see Figure 7.5. To update correctly thevalues of the nodes situated at a distance of less than one element from the separating edges, thered processor has to know the good values of the nodes lying on the separating edges. Then theblue domain is extended by one element width and the red one is extended by the separatingedges. However, the values of these green ghosts nodes are not updated at all in the associated
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Figure 7.1: A example of a domain decomposition on 16 processors for a subsonic NACA012mesh.
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Figure 7.2: Detail around the stagnation point of the upper �gure.
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Figure 7.3: Detail of an overlap on a P2 mesh. The blue degrees of freedom belong to the blueprocessor while the red ones belong to the red processor. The gray area represents the overlapband. All the values within this band will have to be exchanged between the two neighbourprocessors.
domain and the processors have to exchange their values during each iterations, otherwise thecomputation would be wrong.What is done in practice is that during the domain decomposition, the larger indices are givento the elements having at least one node in the overlap. Then, at the beginning of each iteration,the values on the ghosts DoFs have not been update in each domain, and they are thus wrong.But each processor starting by the elements having the smaller indices, these values are notneeded at the beginning. Usually the number of inner nodes being very large compared to thenumber of nodes in the overlap, the processors have a su�cient amount of time to communicateto their neighbours processors the right values of their ghosts DoFs. This is possible because thecalculation units of the CPUs can work separately from the communication units.
7.1.3 Speedup Analysis

They are two main advantages to the parallelization. The �rst one is to distribute theglobal computation load homogeneously between the available processors. The second one is toseriously accelerate the simulation. Ideally, if all the communications are executed behind theinner nodes computation, the simulation time should be divided by n, the number of processors.We have represented on Figure 7.6 the computational acceleration (also called speedup) broughtby 2,4,8,16 and 32 processors. As one can see, the speedup curve is far from the ideal one andhere follows the explanation.First of all, as we have already said, the domain decomposition is not necessarily well loadbalanced, because the splitting have been done on the �rst order mesh. We represent on Table7.1 the load unbalance measured by:
100

nmax � nmin
nmax ,
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Figure 7.4: Blue processor computational domain. The blue degrees of freedom are the updatedvalues. The green ones are the ghosts nodes needed to update the values of the blue pointscorrectly.

Figure 7.5: Red processor computational domain. The red degrees of freedom are the updatedvalues. The green ones lying on the separating edges are the ghosts nodes needed to update thevalues of the red points correctly.
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where nmax (resp. nmin) is the maximal (resp. minimal) number of DoFs in a domain. As one

Procs 2 4 8 16 32
P1 1.7% 1.8% 8% 25% 42%
P2 3.8% 3.9% 9% 26% 47%Table 7.1: Load unbalance for P1 and P2 simulations on a rather coarse mesh.

can see, the load balance for the P2 simulations is always worst than for the P1 ones. Plus, thismesh has only 11000 nodes. A 32 processors parallel simulation is not relevant at all: the loadbalance is bad and it is pretty much sure that the overlap communication time is not negligibleanymore, compared to the inner domain computational time. This is the reason why the speedupcurve bends when more processors are used. If one looks at the speedup curve for the P1, onecan see that the speedup rate is very close to 1 for 2 and 4 processors, when the load balanceis correct. As soon as the load unbalance exceeds 5%, we can see that on the curve. Even if weare doing asynchronized parallelization, we still have to wait for all the processors to �nish theongoing iteration prior to begin a new one. Then, the simulation is globally going at the speedof the most loaded processor.We �nish this section just by saying there is still much to do in this domain. For example,Discontinuous Galerkin methods which are also maximum compact and bene�t parallelizationsince a couple more years than the RDS, claim speedup rates oscillating between 0.98 and 0.99on big enough problems.
7.2 3D Formulation

As we have already seen in the previous chapter, the 3D formulation has been developed so faronly for tetrahedra. All the elements are thus tetrahedra, still denoted by T. In the system case,we have not tested polynomial approximation of higher order than 2. We �rst start this sectionby giving the numbering convention inside each tetrahedron for P1 and P2 formulation. OnFigure 7.7 are given the numbering convention of the DoFs, the faces, the edges and, if needed,the sub-tetrahedra. Similarly to the 2D case, it will be useful to consider that for i � 1, . . . , 4, ~niis the normal to the face opposite to vertex i, pointing toward i and which length is scaled by thearea of its associated face. For extra DoFs, we use the following convention: for i � 5, . . . , 10,
~ni is the opposite of the sum of the two normals associated to the vertices which are not theextremity of the edge on which lies DoF i. If one look at Figure 7.7, we have:

~n5 � �p~n3 � ~n4q, ~n6 � �p~n1 � ~n4q, ~n7 � �p~n2 � ~n4q,
~n8 � �p~n2 � ~n3q, ~n9 � �p~n1 � ~n3q, ~n10 � �p~n1 � ~n2q.There is a good explanation to such a convention. We need to compute the global residual of thetetrahedron, and as we did before, we compute it on the external envelop of the element. The3D integral is split into four 2D ones:

ΦT � »
T div�ÝÑFhpUq	 dx � »

BTÝÑFhpUq.~n
� ¸

face
�»

faceÝÑFhpUq
 .~nface
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Edges: 
1  2  1  1  2  3
2  3  3  4  4  4

SubTets: 

 1   5   7   8
 2   6   5   9
 3   7   6  10
 8   9  10  4
 7   8   5   9
 7   5   6   9
 7   6  10  9
 7  10  8   9

Figure 7.7: Numbering convention for P1 and P2 tetrahedra. When splitting the tetrahedroninto sub-tetrahedra, the inside rhombohedron is split by its 7� 9 diagonal.
ÝÑFh being a Pk function, this last integral is just a linear combination of the �uxes on theDoFs sharing the face, the coe�cients being the integral of the 3D Lagrangian basis functionover the considered faces. The global residual is computed in practice as:

• In P1,
ΦT � 4̧

i�1

ÝÑF i.~ni

3
.

• In P2,
ΦT � 10̧

i�5

ÝÑF i.~ni

3
.

One can notice that in P2, the vertices of the tetrahedron do not interfere into the computation ofthe global residual. However, their values will still be used in the rest of the distribution process.
Otherwise, the rest of the scheme is almost straightforward. The Lax-Friedrichs �rst orderresidual is easily generalized to tetrahedra, the limitation is done following algorithm 1 page 93and the stabilization term is computed using enough quadrature points in order the gradientsare de�ned uniquely.
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Figure 7.8: Two dimensional bump mesh. The three dimensional bump domain is obtained by a
y shift of this 2D shape. This regular mesh is not representative of the one that has been used.
7.3 Numerical Results
7.3.1 3D Bump

The �rst test case presented in this section is a standard three dimensional bump. The maininterest in this test case is to validate the code implementation, and to put the higher order betteraccuracy forward. We are also going to advance the implicit e�ciency of the �nite di�erenceJacobian compared to the �rst order Lax-Friedrichs Jacobian.The domain is obtained by shifting along the y axis a two dimensional bump domain in
Oxz shown on Figure 7.8. The �ow enters the channel at section x � xinput with a velocityhaving only an x component and leaves at section x � xoutput. The Mach number on thesesections is Ma � 0.5. All the sides of the channel (the bottom �bump� side plus the left, rightand upper sides) are considered to be slip walls. The P1 mesh is made of 87349 tetrahedra and
17493 vertices. In the case of a P2 computation, the 87349 tetrahedra contain 128004 degreesof freedom. The problem starts to be quite big, as it requires at every iteration the resolutionof a 5.105 � 5.105 sparse linear system. That is why the presented simulation have been splitbetween 16 processors.On Figures 7.9 and 7.10 we present the results obtained with second and third order 3Dschemes. The cut are realized along the plane z � 0.5 which is the mid value of coordinate z inthe mesh. On the �rst �gure is represented in color the density component. Isolines representthe pressure. The black isolines are those of the second order solution, while the purple onecome from the third order solution. First the purple isolines are globally smoother and moresymmetric. This can be seen especially for the closest isolines to the top of the bump. Second,we see that they are some troubles at the beginning of the bump on both sides. It is likely thisis due to the fact the mesh is rather coarse. And the third order solution does not improve verymuch the second order result in this region because the boundary are still represented linearly.On Figure 7.10, we have just represented the isolines of the horizontal velocity u. Second ordersolution is in black and third order in red. The red isolines are globally much smoother, especiallyon the entrance side. On this side it is clear that the third order formulation has improved thesolution. But if we give a look at the output side, the di�erence between the two formulations is
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Figure 7.9: Solution of the 3D problem. In color is represented the density for the third ordersolution. Isolines are based on the pressure component of the solution. The second order solutionis in black while the pink isolines denotes the third order solution.

more balanced. The red isolines are not varying with a monotone manner and the black isolinesare not smooth at all. Globally, the solution is pretty good though and the 3D implementationof the code is validated.
Finally, we can give a look to the iterative convergence. To solve this problem, we have usedtwo di�erent types of Jacobian matrices of the residuals. we have used the �rst order Jacobianmatrices, presented in Subsection 5.2.3, and the �nite di�erence Jacobian matrices, see Subsection5.2.4. We show here that the �nite di�erence Jacobian matrices are more expensive in termsof calculations, but that it �nally tremendously improves the scheme convergence. On Figure7.11, we have represented the residual convergence with respect to the number of iterations.We see here that the scheme with �nite di�erence Jacobian matrices converges to 10�6 withinabout a thousand iterations while it would have taken more than 20, 000 iterations for �rst orderJacobians scheme to reach the same level of convergence. What is hidden behind is that thecomputation of the �nite di�erence Jacobian matrices is in fact much more expensive than forthe �rst order Jacobians. We can see that on Figure 7.12 where we see that the scheme with�nite di�erence Jacobian matrices is approximately 3 times faster than the one using �rst orderJacobian matrices in term of CPU time. A quick calculation show then that the computationof the �nite di�erence Jacobian matrices is approximately 6 times more expensive that the �rstorder Jacobian matrices. What is a bit disappointing is that the fastest scheme seems to saturatewhen reaching 10�7 residual error, whereas it should to converge toward at least 10�11. It is apity, because as one can see the convergence of the scheme with �rst order Jacobian matricesalways changes slope around 10�5 and there usually seriously slows down. The advantage of the�nite di�erence Jacobian matrices would then be increased when higher iterative convergence isneeded.
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Figure 7.10: Comparison of the isolines of the horizontal velocity u of the second (black) andthird order (red) solutions of the 3D bump problem.
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Figure 7.11: Residual L1 norm convergence plotted with respect to the number of iterations forthe schemes using �nite di�erence and �rst order matrices.
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Figure 7.12: Residual L1 norm convergence plotted with respect to the CPU time (in seconds)for the schemes using �nite di�erence and �rst order matrices.
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7.3.2 Subsonic Blunt Airfoil

The second test case is a �blunt� airfoil. The shape of the simulated aerodynamic objectis similar to a cigar. We have run the simulations on four unstructured meshes, composedonly of tetrahedra. These meshes have been generated by the VKI6, in cooperation within theEuropean ADIGMA project. The main characteristics of the meshes are detailed on Tabular7.2. Second and third order simulations have been completed on these meshes, as well as secondorder simulations on the 3rd order DoFs. The �ow parameters are the following:
• Incidence: α � 5�;
• Mach Number: Ma = 0.5.

Mesh Vertices p�103q P2 DoFs p�106q Tetrahedra p�106q1 33.8 0.26 0.192 45.6 0.35 0.253 80.5 0.62 0.444 245 1.87 1.31Table 7.2: Number of P1 and P2 DoFs as well as the number of tetrahedra for the four meshesaround the blunt airfoil. The domain is a sphere which diameter is 10 times larger that the airfoilcord.
On Figures 7.13 and 7.14 are represented the solutions for the three types of schemes: P1,

P2 and P1 on the P2 DoFs. The color palette represents the entropy and the isolines are basedon the density component. It is very clear on these images that the third order simulationhas really improved the solution. And the graphical representation is not even quadratic. Torepresent the P2 solution, we have just given the vectorial values at each degree of freedom andask the visualization software to show the solution linearly by sub-tetrahedra. Then the realthird order solution looks even smoother. There are two important things to notice. First, thenumerical entropy production at the stagnation point is much reduced when using a higher orderscheme. Once more the problem is perfectly adiabatic and the entropy should be constant allover the mesh. Second, we observe that the isolines of entropy are wiggled along the blunt body.We do not have any precise explanation for this. We know that the airfoil is represented byfaces: its surface is not smooth. We can see that above all when looking at the �nose� aroundthe stagnation point. Furthermore, these wiggles appear in the region where the gradient ofthe variables is very small. Eventually, one can see that there is an extra numerical entropyproduction at the tail of the body. This is clear on the third order solution and on the solution ofsecond order on the P2 mesh. This an extra argument to claim that the scheme is very sensitiveto the boundary representation and to the boundary treatment in the code. Therefore, it wouldbe very interesting to develop an isoparametrical representation of the boundaries in 3D, and tosee if this helps this problem. However, this is not a simple task because the generalization ofthe two dimensional technique used in Subsection 6.2.4 gives a discontinuous representation ofthe boundary faces in 3D. The �rst thing is then to �nd a way of representing the boundaries acontinuous quadratic manner.6Von Karman Institute, Brussels, Belgium
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Figure 7.13: 2 solutions of the three dimensional Blunt Airfoil problem. The top one is the secondorder one, and the bottom one represents the solution obtained with a second order scheme onthe subdivision of the third order mesh. Color palette represents the entropy while the isolinesare based on the density component of the solution.
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Figure 7.14: Third order solution for the Blunt Airfoil problem. As for Figure 7.13, the colorpalette represents the entropy while the isolines are based on the density component of thesolution.



158 Chapter 7. 3D Simulations
7.3.3 Transonic M6 Wing

We present here this test case because it is computed with transonic data and the solution isthen discontinuous. It is interesting to analyze the comportment of the 3D scheme with shocks.The mesh has 265, 000 nodes and 1.64 million tetrahedra. The �ow at in�nity has the followingcharacteristics:
• Incidence: α � 3�;
• Mach: Ma � 0.84

On Figure 7.15 is represented the top side of the body plus the solution over the plane z � 0. Incolor is represented the pressure and the isolines are based on the Mach number. This is onlya P1 solution. Unfortunately, we have not been able to run a third order simulation. In thatcase, the computation starts to converge and then suddenly crashes. The reasons have not beendiscovered yet. It could come from the discontinuous character of the solution as from somedefault in the parallelization, or even from a bad implementation of the code for higher order3D. But we more likely believe that this comes from the mesh and the boundary representation.As we can see on Figure 7.16, the end of the wing is represented very coarsely and there areeven holes near the trailing edge. In P2, this could lead to the appearance of some unphysicalphenomena that would make the computation crash. The second order solution of Figure 7.15is nevertheless very good, we can notice that the shocks are well resolved and that the expectedlambda shock can be seen between the main shock and the leading edge.We also represent on Figure 7.17 the pro�le of the pressure component around the wing at
z � 0. Of course, due to the fact the incident �ow comes bellow the wing, the upper part ofthe curves correspond to the lower part of the wing and vice versa. At x � 0 is the stagnationpoint with the maximal pressure value of the whole domain. On the upper side, the pressuregoes down to a local minimum which looks like to a small shock. It is the root of the lambdashock we observe then along the wing. At approximately x � 0.6, we observe the main shockwhich is pretty sharp an does not show any spurious oscillation. Finally, it is interesting to lookat the trailing edge where we seem to have an unphysical value in the last layer of the mesh.The pressure suddenly drops down. We cannot explain that at that moment.
7.3.4 A Complete 3D Aircraft

We �nally end this chapter with an Euler simulation on a complete aircraft. The name ofthe model is SSBJ, and it is a private supersonic jet (SuperSonic Business Jet) that has beendesigned by Dassault. The meshes have been designed by F. Alauzet at INRIA Rocquencourt.The mesh has 203 kNodes and 1.15 million tetrahedra. The P1 solution presented here hasbeen computed on 32 processors. As for the M6 Wing, no P2 results are available at that momentbut we are keeping fare hope to publish them in a couple of months. The caracteristics of thesimulation are the following:
• Incidence: α � 5�;
• Mach: Ma � 2.0
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Figure 7.16: Zoom on the mesh at the end of the wing. We can see the representation of thebody is very poor, there are even holes near the trailing edge. This could possibly explain whythe third order simulation crash suddenly after a small convergence.

Figure 7.17: Pro�le of pressure around the wing at z � 0.
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On Figure 7.18, we have represented all the shock surfaces around the aircraft. The body ofthe jet is colored by the density component. On Figure 7.19, we have represented the isolines ofthe density component over three di�erent clipping planes situated at coordinates x � 1, x � 3,

x � 4. The skin of the aircraft is colored by the x-velocity component.
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.0.Thecoloronthebodyrepresentsthedensity

component.
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Figure 7.19: Isolines of the density component over 3 di�erent clipping planes. The body coloris the u component.



164 Chapter 7. 3D Simulations



Chapter 8

Navier-Stokes Simulations

The physical system of the viscous Navier-Stokes equations have been presented in Subsection2.2.10. The main di�erence with the Euler equations is the right hand side viscous term thatnot only involves the conservative variables, but also their spatial derivatives. This is still a bigproblem for the residual formulation of the Navier-Stokes equations. The ground idea of theRDSis that the solution is represented continuously, so that there is no need of any numerical �ux torepresent the interactions between the elements. One could of course store also the gradients ofthe conservative variables and rewrite the formulation in terms of the density, the momentum,the energy and their spatial derivatives, but this would be costly as this would multiply thenumber of unknown by the number of spatial dimensions. One could also consider the gradientfunctions inside each element and choose an associated smooth approximation: for example an
L2 projection of the discontinuous gradients on the space of continuous functions. This methodhas two main drawbacks. First this method comes with a non negligible extra cost. At eachtime step, one has to reconstruct the chosen approximation. Second, the L2 projection cannotbe implemented in a compact way, and this destroys the maximal compactness of the scheme.Therefore, the parallel e�ciency of the scheme is going to be much reduced.

We have then chosen to discretize this viscous term by a Finite Element Galerkin formulation.The reasons are it handles well the discontinuous character of the gradients of the variables dueto the compact support of the basis functions, and it keeps a maximum compact expression. The�rst section is going to describe the practical numerical formulation of the viscous term. Secondsection aims at explaining the theoretical consistency between the residual formulation of theinviscid �ux and the Galerkin formulation of the viscous part. We are there going to see theproblem is well-posed, but unfortunately not high order anymore. In the two next sections, weare going to present some results obtained with this formulation. The two dimensional Blasiusboundary layer is our �rst test case showing that the formulation is working reasonably well.We compare the obtained results with the nondimensional exact solution. The second test caseis a viscous NACA012 test case on which we are going to study the convergence rate of ourformulation. This chapter will �nally end with a review of other formulation that are today usedor in development for the discretization of the viscous terms in the RDS framework.
165
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8.1 Finite Element Galerkin Formulation

We �rst recall that the steady Navier-Stokes equation can be put into the form
div�ÝÑFE pUq	 � div�ÝÑF V pUq	 , (8.1)

where ÝÑFE and ÝÑF V stand for the Euler and the viscous �ux respectively. Then, the Galerkincontribution of the right hand side to node i of the mesh is given by:
Vi � � »

Ω

ÝÝÑ∇ϕi � ÝÑF V pUhqdx, (8.2)
where once more, ϕi is the Lagrange basis function associated to node i. This contribution isindeed split into the the sum of the integrals on the elements T where ϕi is not identically zero,which gives the element viscous contributions:

V T
i � � »

TÝÝÑ∇ϕi � ÝÑF V pUhqdx. (8.3)
These integrals are computed thanks to a quadrature formula. For third order problem we usuallyuse a 6 points Gaussian quadrature formula. In the implicit case, it is also useful to express theviscous �ux in its quasi-linear form given in Subsection 2.2.10:

ÝÑF V
i puhq � dim̧

j�1

KijU,j ,

where symbol ,j stands for the derivative with respect to the jth spatial variable. Tensor K �pKijqi,jPv1,dimw is fully described page 38. Then the viscous contribution to node i writes
V T

i � |T| 6̧

q�1

ωq
ÝÝÑ∇ϕipxqq � ÝÑF V pUhpxqqq

� |T| 6̧

q�1

¸
jPT

!
ωq
ÝÝÑ∇ϕipxqq � �KpxqqÝÝÑ∇ϕjpxqq	)Uj

� ¸
jPTMT

ijUj .

This last equation reveals why the quasi-linear form of the viscous �ux is so appealing. For theimplicit formulation, we have just to assemble the matrices Mij , and the ith line of the iterationlinear system writes:� I
ωi

� ¸
TPDi

�BΦT
iBUi
�MT

ii


�
∆Ui � ¸

jPDi
j�i

�� ¸
TPDiXDj

�BΦT
iBUj
�MT

ij


�∆Uj

� � ¸
TPDi

�
β�i ΦT pUq � ¸

jPTMT
ijUj

� (8.4)
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8.2 Consistency of the Viscous Term Treatment

We consider that all the boundary conditions are treated weakly and whether we imposea �ux or the solution on the boundary, we always enforce a numerical �ux that is going to bedenoted by ÝÑFh pUboundq. For all boundary types, the contribution of boundary condition to node
i in element T is BT

i . It is zero when i is strictly inside the domain. Now, the Navier-Stokesscheme writes: ¸
TPDi

�
ΦT

i � V T
i

�� ¸
BTXBΩBT

i � 0 (8.5)
We recall, following what has been said in Section 5.4, that weak boundary conditions are of theform:

BT
i � »

BTXBΩ ϕk
i

�ÝÑFh pUboundq � ÝÑFhpUhq	 .~n dx. (8.6)
We de�ne ΘT

i as the Galerkin Navier-Stokes residual, meaning
ΘT

i pUhq � ΨT
i � V T

i (8.7)where ΨT
i has been de�ned in (4.18) as the Galerkin Euler residual. Then for any Υ P C1pR2q,if Υi is its value at node i, one has:¸

iPMh

Υi

¸
TPDi

�
ΦT

i � V T
i

�� ¸
iPMh

Υi

¸
BTXBΩBT

i � 0 (8.8)
ñ ¸

TPMh

¸
i,jPT

�
ΦT

i puhq �ΨT
i puhq� pΥi �Υjqloooooooooooooooooooooooooomoooooooooooooooooooooooooon

I

� 1
q

¸
TPMh

¸
iPTΥiΘT

i pUhqlooooooooooooomooooooooooooon
II� ¸

TPBΩ
¸
iPTΥiB

T
ilooooooomooooooon

III

� 0 (8.9)
Now the proof is really similar to the one of Theorem 4.4 page 68. Let us begin by term III.Following what has been done for term II in the proof of Theorem 4.4, we have:

III � »
BΩ

�
πk

hΥ
	 pxq�ÝÑFh pUboundq � ÝÑFhpUhq	 .~ndx (8.10a)

� »
BΩ ΥÝÑF pUboundq.~n dxlooooooooooooomooooooooooooon

i

� »
BΩ

�
πk

hΥ
	 pxqÝÑFhpUhq.~n dxlooooooooooooooooomooooooooooooooooon

ii�ohp1q (8.10b)
Now if we give a look to term II, we get easily that

II � »
Ω

�
πk

hΥ
	 pxqÝÑ∇ .ÝÑFhpUhqdx� »

Ω

ÝÝÝÝÝÑ
∇pπk

hΥq.ÝÑFh
V pUhqdx (8.11)

and if we use term ii of equation (8.10b), we can apply the Green formula and obtain
II � � »

Ω

ÝÝÝÝÝÑ
∇pπk

hΥq.�ÝÑFhpUhq � ÝÑFh
V pUhq	 dx. (8.12)
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Then starting the similar reasoning as at equation (4.20c), we get:

II � � »
Ω

ÝÝÑ∇Υ.
�ÝÑF pUq � ÝÑF V pUq	 dx� ohp1q. (8.13)

Finally, term I is the same as in equation (4.19) and Lemma 4.5 proves it is bounded by
h. We can now conclude, because if puhqh is a sequence of numerical solution of (8.5) verifyingassumptions of Theorem 4.4 and u P L2pR2q is a function such that

lim
hÑ0

‖u� uh‖L2
locpR2q � 0,then »

Ω

ÝÝÑ∇Υ.
�ÝÑF puq � ÝÑF V pUq	 dx� »

BΩ ΥÝÑF pUboundq.~n dx � ohp1qand u is a weak solution of the Navier-Stokes equations with the Ubound boundary conditions.
8.3 Accuracy Discussion

In this section, we wanted to prove that the problem mixing the residual formulation of theadvective term and the Galerkin formulation of the viscous term is well-posed but that we cannot expect to reach the pk � 1qth order maximal accuracy. The demonstration has not beencompleted so far and that is why we only give here a intuition of what is going on and someroutes to begin with the complete proof.We �rst start by recalling the following theorems, for which proves can be found in [1].
Theorem 8.1 (Neças)Let V and W two Hilbert spaces and Vh � V and Wh � W two approximations of thesespaces that have the same space dimension. Let a P LpV �W,Rq and f P V1. Then, thefollowing problem " Find uh PWh such that

apuh, vhq � fpvhq,@vh P Vh
(8.14)

is well-posed if and only if there exist a constant αh ¡ 0 such that
inf

whPWh

sup
vhPVh

apwh, vhq
‖wh‖W ‖vh‖V

¥ αh. (8.15)
In that case, we have the following estimation

@f P V 1, ‖uh‖W ¤ 1
αh
‖f‖V 1 . (8.16)

Lemma 8.2 (Céa)Under the previous hypothesis, if u is the unique solution of problem
" Find u PW such that
apu, vq � fpvq,@v P V (8.17)
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we have

‖u� uh‖W ¤ �
1� ‖a‖

αh



inf

whPWh

‖u� wh‖W . (8.18)
Next, we consider the following 1D advection-di�usion problem"

a
ÝÑ∇u � ε∆u, x P Ω � r0; 1s
up0q � up1q � 0

(8.19)
We have taken the homogeneous Dirichlet boundary condition to get rid of the boundary treat-ment. This will greatly simplify the explanation. Let us proceed to the variational formulation.Let ϕ be a test function, we have

a

» 1

0
ϕ
ÝÑ∇udx� ε

» 1

0

ÝÑ∇ϕÝÑ∇udx � 0

This has a sense when u and ϕ belong to H1
0pr0; 1sq. Then we set

X � H1
0pΩqand the problem becomes in its weak formulation:" Find u P X such that

a
³1
0 v
ÝÑ∇udx� ε

³1
0

ÝÑ∇vÝÑ∇udx � 0,@v P X (8.20)
This reasoning is very classical. Now, we divide r0; 1s into N regular intervals, and we set:
h � 1

N and @i P v0;Nw, xi � ih. Ti denotes interval rxi;xi�1s. On this 1D mesh, we de�ne basisfunctions. For node i and interval T, the basis function writes:
ϕTi � λTi � αTi γT, (8.21)where λTi is the P1 Lagrange basis function in i, and γT is a piecewise linear continuous functionthat is null outside of T and that takes value 1 at the mid point of T. αTi is a coe�cient thatwill actually depend on the solution but its value stays bounded. This basis function can thusbe seen as a non linear perturbation of the Lagrange basis functions. Because γT is zero at allthe nodes of the mesh, the basis functions can be joined continuously and it allows us to de�nethe functional space approximation:

Xh � SpaniPv1;N�1w tϕiu � H1
0.Then for u P X, if u belongs moreover to H2, because the αTi are bounded, we have the estimation

‖πXh
puq � u‖1,Ω ¤ Ch, (8.22)constant C depending on ‖u‖2,Ω.The scheme writes then: �nd uh P Xh, such that @i P v1;N � 1w,

0 � i̧

k�i�1

�
a

» 1

0
ϕTk

k

ÝÑ∇udx� ε

» 1

0

ÝÝÝÑ
∇ϕTk

k

ÝÑ∇udx
 (8.23)
� i̧

k�i�1

�
1
2
p1� αTk

k qΦT � ε

» 1

0

ÝÝÝÑ
∇λTk

k

ÝÑ∇udx
 (8.24)
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which is the 1D formulation of scheme (8.5) for problem (8.19), if

βTi � 1
2
p1� αTk

k q ùñ αTk
k � 2βTi � 1.The coe�cient αTi is then bounded under the LP conditionProblem (8.19) is well posed if we can �nd a positive coe�cient αh such that (8.15) is metfor the bilinear form

apu, vq � a

» 1

0
v
ÝÑ∇udx� ε

» 1

0

ÝÑ∇vÝÑ∇udx.
In fact, what we are expecting to �nd is that there exists two constants C1 and C2 such that

C1h ¤ αh ¤ C2h,which means that the problem is indeed well posed, but also by Lemma 8.2 that the errorestimation loses one order of accuracy when h becomes smaller. By (8.22),
inf

whPWh

‖u� wh‖1,Ω ¤ ‖u� πXh
puq‖1,Ω ¤ Ch,then

‖u� uh‖1,Ω ¤ h� ‖a‖
C2and the scheme is �rst order accurate while h ¡¡ ‖a‖

C2
and it looses its accuracy for smaller valuesof h.

8.4 Two Dimensional Blasius Layer
We start this sequence of viscous test cases by the Blasius Layer because it is one of the onlytest cases for which we have an exact solution, meaning that we know the equation governingthe boundary layer. The problem is the following: the domain is the upper right quarter of theplane. The line y � 0 is a planar non-slip wall. The �ow enters the domain along axis x � 0and is homogeneous and parallel to the wall, with velocity u8. This problem have been solvedby P.R.H Blasius in 1907 [22, 107]. The main ideas are presented here. The �uid is consideredincompressible and the main assumption is to consider that the thickness δ of the boundary layeris very small compared to the size L of the non-slip wall. If we now look at the dimensionalorder of the derivatives in the complete Navier-Stokes equation, we can neglect some terms andobtain the incompressible boundary layer equationsBuBx � BvBx � 0 (8.25)

u
BuBx � v

BuBy � �1
ρ

BpBx � ν
B2uBy2

(8.26)
BpBy � 0 (8.27)For simplicity, we have used the kinematic viscosity ν � µ

ρ . Furthermore, by this dimensionalstudy, we reveal a characteristic thickness size
δpxq �c

νx

u8 , (8.28)
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and because the solution must be self-similar due to the in�nite size of the wall, the speed pro�leis given by

u � u8 gpsq, s � y{δpxq. (8.29)Because of equation (8.27), the pressure is just a function of x, and the non-slip wall does notperturb the �ow far away from the boundary layer. The pressure is there equal to pe, the externalpressure for the non perturbed problem and BpBx � 0 everywhere.Now equation (8.25) tells us that pu dx � v dyq is a closed di�erential form and followingPoincaré's lemma, there exist ψ such that
u � BψBy and v � �BψBx .Then
ψ � y»

0

u d y �a
U8νxfpsq,

where f is an antiderivative function of g. It is now easy to compute u, v and all their derivativesas a function of f , and by replacing all the terms in (8.26), we obtain the Blasius boundary layerequation
ff2 � 2f p3q � 0, (8.30)coming with boundary conditions

fp0q � f 1p0q � 0
lim

sÑ�8 f 1psq � 1

because u � v � 0 along the wall and lim
yÑ�8 � u8. We have been solving this equationnumerically and this is how we obtain our reference solution.Let us come to the numerical test case. The domain is r0; 20s�r0; 10s, the segment ty � 0^ 0 ¤ x   13uis a slip wall boundary while the rest of the line, ty � 0^ 13 ¤ x ¤ 20u is a non slip boundary.The incoming �ow has Reynolds number 450 and Mach 0.1. At the upper boundary, we use aSteger-Warming boundary condition in order to reproduce the far-�eld state. What we do onthe output edge is a bit complex. The �ow not being homogeneous along the output line, wecannot enforce a global far-�eld state. But we know we have 3 outgoing characteristics out of 4.Then we just need to impose one variable on the ingoing characteristic, for example the pressure.The boundary condition consists �nally into enforcing a right state, equal to the inner state atleft but with a �xed pressure. The �rst order mesh has 15213 vertices and 30430 triangles. Wehave represented a zoom around the boundary layer of the computed solution on Figure 8.1.On this �gure the x-velocity is represented in color, while the black isolines represent the Machnumber contours. The quality of the solution is very good. But if we look at Figure 8.2, whichrepresents the isolines of the density component, we see there are small problems. First, on theslip boundary, the isolines make a small hook in the last layer of elements. In fact, we observethis phenomenon in many other computations using the slip boundary conditions (Naca, Bluntairfoil,...) and we haven't �nd any strong explanation to this at that moment. It is de�nitelyrelied to the slip boundary condition formulation and we are convinced this is due to a wrongimplementation of the boundary �ux. Second, we see there are small problems along the outputboundary. The isolines are not completely straight in the vicinity of the output and the isoline
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Figure 8.1: Third order solution of the Blasius problem. In color is represented the values of uthe x-velocity. Isolines represent Mach number contours.
the nearer to the non-slip boundary reattach to the wall when it should not. This is also linkedwith the choice of the output boundary condition. The chosen formulation might not reproducenumerically the case of an in�nite long non-slip wall and the boundary layer is modi�ed in thevicinity of the output boundary.We subsequently tried to compare the solution obtained with the computed exact solutioninside the boundary layer. We have extracted the values of the second and third order solutionsalong the line x � 17 and plotted the dimensionless u pro�le with the expected exact pro�le.The result can be seen on Figure 8.4. The agreement is globally very good, especially inside theboundary layer, and the third order solution is a little bit better than the second order one inthis region. However, we can observe an overshoot on both second and third order solutions,compared to the exact one. The assumptions leading to the Blasius equation (8.30) included inparticular the fact that the domain were in�nite in the y direction, which is of course not the casein our numerical simulation. Then, boundary condition lim

yÑ�8 � u8 is no more valid due to massconservation. This could explain partly were the overshoot could come from. In order to assessthis hypothesis, we have tried other third order computations for di�erent Reynolds numbers.
Re � 450 is the solution presented on Figure 8.4. We have represented the di�erent pro�les onFigure 8.5. First the axes have been changed. Instead of plotting the pro�le as a function of the
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Figure 8.2: Third order solution of the Blasius problem. Density Isolines.

Figure 8.3: Zoom along the slip wall of the previous �gure.
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vertical coordinate y, we have used for abscissa the dimensionless distance to the wall s � y

δpxq .And instead of nondimentionalizing the x-velocity by the external velocity ue � up17, 10q, wehave divided it by u8, the input velocity. We know that the lower the Reynolds is, the thickerthe boundary layer is, the smaller s is at upper boundary y � 10 and the nearer to the boundarylayer the boundary condition is applied. This is clear on graphic 8.5: by mass conservation theexternal velocity ue must be greater than the input velocity u8, and it is even greater for smallerReynolds numbers. Due to the upper boundary condition, the non-slip wall modi�es the �owglobally and this explain partly the obtained overshoot.
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Figure 8.4: Second order, third order and exact x-velocity pro�le along the line x � 17 for theBlasius Problem.
8.5 Viscous NACA012 Test Case

We yet consider a viscous �ow around a NACA012 airfoil. The �ow parameters are thefollowing:
• Incidence: 0� of incidence;
• Mach: Ma � 0.5;
• Reynolds: Re � 500.

This test case is known to be steady. We have run second and third order computations on 8di�erent meshes containing between 609 and 230 � 103 vertices. On Figure 8.7 are representedthe horizontal velocity in color and the density isolines at third order for the �nest mesh. We
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Figure 8.5: Third order and exact x-velocity pro�le along the line x � 17 for the Blasius Problemfor di�erent Reynolds number.
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Figure 8.7: Third order solution on the �nest mesh for the steady viscous NACA012 test case.
x-velocity in color and isolines of the density component.
see that the global shape of the solution is the one expected, with the boundary layer aroundthe airfoil and its wake. Now, because the incidence is null, the lift coe�cient should be zero,but because the mesh is not symmetric, the numerical value of the lift coe�cient is non zero.And it should converge to zero with the right order of convergence when the mesh gets �ner.We have represented the value of the computed lift coe�cients at steady state with respect to
h � a

#tDoFsu on Figure 8.8. Except for one strange value at second order for the 6th mesh,all the second order estimated lift coe�cients are larger in absolute value than their associatedthird order lift coe�cients. Furthermore, the slope of the least square line is larger for the 3rdorder simulation than for the 2nd order one. This means the third order scheme is doing a betterjob for viscous simulation. But on the other hand the slope is not the one expected. If 1.7 is agood result for the expected slope 2, 2.1 is a bit far from the slope 3 expected and it is clear thatthe convergence is not regular at all. The mix between the residual formulation of the advectiveterm and the Galerkin treatment of the second order di�usive term does not seem to providethe right convergence rate. This might be explained by looking at the variational formulationof the problem. However, the �nal result is not so bad, because the mesh convergence is stillacceptable and the solution is pretty nice.
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Chapter 9
Conclusion and Perspectives

This thesis work has been devoted to the development and analysis of very high order non-oscillatory compact residual distribution schemes (RDS) for the solutions of non linear conser-vation laws (CLs) on unstructured hybrid meshes. The design methodology is the following:
1. Build a compact conservative linear monotone and stable RDS for scalar problems;2. De�ne a geometrical discretization of the spatial domain that enables to build a kth or-der continuous piecewise polynomial approximation of the variables in the domain. Thisdiscretization must handle with unstructured hybrid grids;3. Design a monotonicity preserving procedure called � limitation� that recasts the �rst orderlinear scheme into a pk� 1qth order one. This limitation technique also has to preserve theconservative character of the �rst order scheme;4. Generalize the method to multidimensional non linear CLs, as Euler or Navier-Stokes equa-tion in our case.
The theoretical aspects of these design steps have been presented in a as rigorous manner aspossible along all this manuscript. The theory has been then supported by numerous test cases.These numerical illustrations are �rst used to validate the scheme design and second allow tojustify the straightforward generalization to non linear multidimensional CLs, for which almost notheoretical results are available. All the numerical results given in this manuscript match well theexpected behaviour and almost all of them show that the higher order discretization has greatlyimproved the solution for a limited calculation extra cost. Furthermore, the compact nearest-neighbours stencil of the scheme allowed us to parallelize the code quickly and successfully, sothat huge problems such as a complete aircraft simulation, only take a couple of hours now onthe computational cluster.This conclusive chapter is divided as follows: in a �rst section, we brie�y summarize thecontent of this manuscript and underline the main achievements of this thesis work. In a secondsection, we put the success of the high order RD schemes into perspective, discuss about theirmain weaknesses, and compare them with the other classical high order schemes for CLs. Finally,we end this manuscript with a global overview of the work that has still to be done and of thepossible future applications of such a class of numerical schemes.
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9.1 Content Summary
9.1.1 Conservation Laws

This manuscript has started with a global recall of the basic theoretical results for Con-servation Laws. Conservation Laws are the mathematical formulation of the �rst principle ofthermodynamic for a given problem. It just claims �nothing disappears, nothing suddenly appears,everything is transformed �.We have begun by showing the classical approach of the PDEs is not su�cient because somevery regular simple problems admit discontinuous solutions. Most of CLs problems do not admitany solution in C1. Then, we have de�ned a larger class of solutions verifying a weaker form ofthe problem, that includes the class of the classical solutions. Unfortunately, the mathematicalproblem in its weaker form may admit an in�nite number of solutions and is thus not well-posed.But if we look at the same problem perturbed by a small dissipative term, it is well-posed andmoreover brings an extra condition enforcing the solution to respect some entropy constraint.The unique solution of the weak problem has been therefore de�ned as the limit of the perturbedproblem for a decreasing dissipation coe�cient and we have shown that this solution can in factbe sorted out from the in�nity of weak solutions of the CL by an entropy criteria. This is exactlythe second principle of thermodynamic.We have been next interested in the class of CLs that are diagonalizable and that we callhyperbolic. For this type of problems, we have seen that in every direction of the space the infor-mation propagates along propagating waves, and that we can de�ne in space-time characteristiccurves that rule the travel of the data. The information moves everywhere at �nite speed andthe value at one point of the space-time only depends on the values situated inside a dependencecone. This characteristic vision of the problem allowed us to give a theoretical look at the bound-ary conditions. The information crosses the boundary at the relative speeds of the propagatingwaves in the direction normal to the boundary. Applying boundary conditions for hyperbolic
CLs consists then in diagonalizing the problem in the direction normal to the boundary and inenforcing the solution only on the component of the entering waves.Finally, in a last part, we have described the construction of the two systems of conservationlaws for �uid mechanics: the Euler and Navier-Stokes equations. These systems are built byapplying the conservation principle to the conserved variables: the mass, the momenta and thetotal energy. The very general conservative system has been reformulated for the case of a�uid by applying some restrictive constraints on the nature of the strain tensor and by using anequation of state of the gas dynamic, in order to close the problem. The Euler and Navier-Stokesequations di�er just by the fact they do or not consider the viscous e�ects and the heat transfers.
9.1.2 High Order Discretization

In the second chapter, we have studied the solution approximation and the spatial discretiza-tion of the domain. It is a fact that, even for very simple problems, the exact continuous solutionmay not be known and has to be approximated. We do this today by de�ning a �nite dimensionalfunctional space that approximates the continuous functional space in the sense the projectionof an element of the continuous functional space onto the �nite dimensional space convergestoward the considered element when the number of dimensions goes to in�nity. We next show
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that the components in a certain basis of the projection of the unknown continuous solution onthe �nite dimensional functional space are the unique solution of a non linear equation linkedwith the weak formulation of the CL. This �nite dimensional equation is now solved giving anapproximation of the continuous solution which accuracy can be directly related to the natureof the �nite dimensional functional space and its dimension.The �nite dimensional functional space is usually de�ned as the space of piecewise polynomialfunctions over a spatial discretization, the mesh. We have �rst started by the case when theapproximated solution is piecewise linear, over triangles only, which is easy and classical becauseby 3 points of a 3D space passes a unique plane. At each degree of freedom of the mesh isassociated a piecewise linear basis function and the �nite dimensional functional space is spannedby these functions. We have then generalized this construction and de�ned basis functions overthe triangular mesh that are piecewise polynomial of order k. This is what we have called the
kth order discretization. In order to handle with hybrid meshes, we have eventually detailed theconstruction of a kth order polynomial discretization over quadrangle, Qk, that is compatiblewith the one de�ned over triangles.In a last paragraph, we have discussed about the main advantages of the high order discretiza-tion. We have above all shown that for a given accuracy of the approximated solution, therealways exists an optimal order of representation of the data such that the number of degrees offreedom in the mesh � and therefore the size of the associated algebraic problem � is minimized.
9.1.3 High Order Distribution Schemes

In Chapters 4 and 5, we have described in details the construction of the high order ResidualDistribution Schemes and often linked it to its practical implementation.After having brie�y and very generally introduced the RDS, we have �rst presented theirmain theoretical properties and explained the way they are ensured. In particular, we havestarted with the study of the consistency of the scheme with the continuous weak formulation ofthe Conservation Law. This is given in Theorem 4.4, page 68. We have then recalled the need ofa monotonicity preserving formulation for stability of the numerical scheme and explained theway this property is enforced. Finally, we have studied the conditions under which the kth orderaccuracy of the approximated solution is reached. It can be summarized as follows:
• The approximation of the data has to be of pk � 1qth order and continuous;
• The distribution coe�cients βTi must be all bounded by a constant (LP property);
• The scheme has to be non linear (Godunov).
Knowing the properties of the RDS, we have given a non exhaustive list of the main RDSand compared them in term of theoretical behaviour. The N scheme is linear (thus �rst order),monotonicity preserving, conservative and upwind. By limiting its distribution coe�cients, weobtain the PSI scheme that is now LP. Unfortunately, the generalization of this almost perfectscheme to more than second order polynomial discretization does not seem to be possible. TheLDA scheme which is LP, conservative, upwind, but not monotonicity preserving has a possiblegeneralization to high order discretization which is not simple. Looking at this, we have then
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decided that for the study of high order RDS, the simplest would be to use the centered Lax-Friedrichs scheme which is linear, monotonicity preserving and conservative. The main advantageof this scheme is that its formulation is very �exible and can be adapted to any polynomial orderof approximation and any polyhedral spatial discretization. Furthermore, by using the limitationprocedure that turns the N scheme into the PSI scheme, we get a pk�1qth order accurate scheme.Considering exclusively the LxF version of the RDS, we have then detailed the schemeimplementation step by step, for scalar or multidimensional problems. The scheme starts bycomputing for each element the global residual (5.2). This quantity represents the amount ofinformation that is leaving the element. This global residual is sent to the nodes of the elementthrough the nodal residuals (5.8) which allow to de�ne the distribution coe�cients (5.11). Thedistribution coe�cients are then limited in order to get the LP condition and the scheme is LP,monotonicity preserving and conservative. The boundary conditions have been presented in twodi�erent classes. The most usual one and also the most correct is to de�ne the weak formulationof the boundary condition and to impose some boundary �ux along the input edges. But it isalso practical to enforce sometimes the boundary conditions strongly. In that case, the values ofthe unknowns on the boundary are imposed at the beginning of the calculation and maintainedall along the simulation. Finally, at the end of every iteration, the problem is solved by usingeither an explicit or an implicit method.Unfortunately, the LxF scheme is a centered scheme and does not respect some physicalupwind constraints. It is absolutely not sure that every downstream node is going to receive somesignal from the distribution. After a short convergence, it happens that some unknowns can takeany values in a given interval. The solution not uniquely de�ned and some spurious modes mayappear even if the scheme is monotonicity preserving. We have overcome this problem by addingan extra dissipative term that has some upwind properties and that cures the ill-posedness. Theorigin of the problem and the computation of the cure term have been deeply studied throughoutthis thesis.
9.1.4 New Achievements

This thesis work has been looking at many di�erent aspects of the resolution of ConservationLaws with High Order RDS and often brought some original contributions. At the beginningof this thesis, the theory for scalar problems was the same as the one presented here, but nosimulation beyond 3rd order of approximation could be realized here in Bordeaux and the com-putation could be done only on triangulations. For systems, only the P1 explicit and implicitwith 1st order Jacobians formulations for one and two dimensional Euler problems were availablein FluidBox.We have started this work by developing a new code that is today able to solve any scalarconservation law on hybrid meshes with an accuracy up to 4th order. What has been shownwith this code is that 2nd, 3rd and 4th order can be reached by using their respective polynomialapproximations. Moreover, quadrangular grids are very interesting because they contain upto twice less elements than their equivalent triangulations and the obtained solution is usuallymore accurate because Qk functions are using cross terms that increase the accuracy of theapproximation. This code has also permitted to look for new limitation techniques as the oneillustrated on Figure 5.1, page 94. This limitation technique gives very good result and allows toget rid of the stabilization term, but it can be unfortunately applied only in the P1 scalar case.
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After having validated the high order formulation on simple scalar problems, we could gofurther and try to generalize it to multidimensional problems. High order residual formulation ofthe Euler equations has been implemented into the INRIA Fortran platform for �uid simulations,

FluidBox. In two dimensions, the code is today able to deal with hybrid meshes and piecewisequadratic representation. For most of the test cases, the advantage of the third order scheme isobserved as it usually greatly improves the accuracy of the result for an equivalent computationale�ort. The numerical entropy creation is always much reduced with P2 approximation. However,the results are not perfect and sometimes far from the expected solution. The problems seemingto take their origin at the boundary, we have focused on the enforcement of the boundaryconditions. Many formulations have been tried with relative success and we have presented herea higher order representation of the boundary edges by isoparametrical elements. It is half asuccess because the formulation is working and the numerical entropy is even more reduced, butthe order of convergence is still not reached (see for example the sphere problem in Subsection6.2.3). Finally, aiming at always accelerating the scheme convergence, we have been lookingat improving the degree of approximation of the residual Jacobians. We have here shown thatthe Jacobians computed by �nite di�erences are on one hand more expensive to build than thesimple linearization of the LxF residual, but on the other hand so much improving the iterativeconvergence that their global advantage is clear. We have also tried to build the exact Jacobianswhich should theoretically even better improve the iterative convergence, but no test case hasever been positive and this experiment is nowadays a complete failure.Three dimensional problems have been next considered. In 3D, the number of degrees offreedom is quickly very big and our sequential formulation (treated by a single processor) wasnot su�cient. The �rst challenge was then to parallelize the code. Thanks to the compactnessof the RDS, this has been achieved quite quickly, for a satisfying � even if not perfect � parallele�ciency. The P1 and P2 formulations over tetrahedrons have been then tested. The secondorder scheme is working on all kind of test cases and gives quite good results. Solution of acomplete supersonic aircraft could be also computed. Unfortunately, the P2 formulation has stillsome di�culties and the comparison with higher order formulation has not been completed.In the last chapter of this manuscript, we have presented our recent results for the simulationof viscous test cases. In our scheme, the viscous terms of the Navier-Stokes equations havebeen discretized by a Galerkin formulation. In a �rst part of Chapter 8, we have proved theconsistency of this formulation with the weaker form of the Navier-Stokes equations. Then thescheme is converging toward an approximation of the solution of the continuous viscous problem.However, it is generally agreed that the obtained accuracy is not maximal. It is likely the globalscheme (Residual formulation of the advective terms plus Galerkin formulation of the di�usiveterms) looses an order of accuracy when dealing with �ner grids. But as we have seen for thetwo dimensional Blasius boundary layer, page 170, and for the viscous NACA test case page 174,the higher order formulation is still improving the global result and the mesh convergence slope.At the end we can say that even if not expected, this formulation gives good results as it is andseems to be promising for the future.
9.2 Weaknesses of the High Order RDS

All along this manuscript, even if some drawbacks of the High Order Residual Distributionschemes have been revealed, we have much underlined the advantages and further possibilities
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Figure 9.1: Iterative convergences for two similar problems. The left one is related to a scalarBurger problem, while the right one concerns a vectorial jet problem. Both solutions presentshocks.
of such schemes and not talked so much about its weaknesses. We devote this whole section to afair critics of the High Order RDS and more particularly of the Lax-Friedrichs version we havebeen developing since chapter 5.
9.2.1 Iterative Convergence

It is a fact that higher order schemes enable to reach higher accuracy with a reduced numberof elements and DoFs. We have been proving this all along the manuscript. But on the otherhand, High Order RDS su�er from much slower iterative convergence and they seem to havemore di�culties to reach machine zero as the polynomial order of representation of the dataincreases. Then for a given su�cient high accuracy, all the time that would have been gained byusing a very high order scheme needing much less degrees of freedom than a second order schemeand thus much less time per iteration is lost through the increased number of iterations neededto get full convergence. On Figure 9.1, we have represented on the left the explicit iterativeconvergence of the scalar version of the LxF scheme for second, third and fourth order. On theright is plotted the convergence history for a P1 and P2 scheme applied on a vectorial problemand using an implicit solving procedure with �rst order linear Jacobians. It is here obvious thatthe higher the polynomial order of representation is, the slower the scheme converges towardmachine zero. And the convergence slope losses approximately a factor two for any increaseof one unit of the order of representation of the data. That is a pretty big problem. There isnowadays no solution to remedy to this problem, but we can however give some ideas. We havebeen speaking of the �nite di�erence Jacobians for the implicit matrix computation.
9.2.2 Boundary Conditions

Another weakness of the RDS that have already been underlined during this manuscript isthe treatment of the boundary conditions. We have already seen that for a high order scheme,



9.2. Weaknesses of the High Order RDS 185

Figure 9.2: Isolines of density of the second (red) and third (black) order solution of Mach 0.5inviscid NACA012 test case. Detail of the slip wall boundary.
the order of representation of the boundary edges is not su�cient and seems to reduce themesh convergence order, especially when considering quantities that are strongly bounded to theboundaries, as the lift, drag and momentum coe�cients or the entropy deviation. However, inSubsection 6.2.4 we have developed a way of representing the boundary edges with high orderaccuracy in 2D. Unfortunately, this treatment does not provide the expected results: it is indeedimproving the global solution, in particular in term of entropy production, but on the other hand,the mesh convergence slope is not very much improved. Then, if the wrong mesh convergence isalmost independent of the boundaries representation, we can suppose that it is related directly tothe way we enforce the boundary values. Copying what is done for the Galerkin Finite Elementmethods as presented in Section 5.4 might not be very well suited for RD schemes. On Figure9.2, we have represented a close zoom to the upper boundary edge of a NACA012 airfoil and theisolines of the P1 and P2 solution of a Mach 0.5 inviscid �ow. The isolines should be everywhereorthogonal to the boundary edge which is not the case here. The isolines bend strongly in thelast level of elements as if there was a boundary layer there which is obviously not the casebecause it is a Euler solution. It is likely that the boundary treatment provides an extra entropyproduction along the pro�le whatever the order of representation of the edges is. It is moreovera phenomena that is observed only for RDS and not for DG or FV for example.

In order to go further into the resolution of aeronautical problems by High Order RDS, itseems obvious to �nd a global residual formulation of the projected weak problem, so that theboundary conditions stay consistent with the inner scheme and the right mesh convergence isobserved for all the possible parameters of problem.
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9.2.3 Stabilization Term

In the case of the Lax-Friedrichs RDS, we have seen that the high order formulation isill-posed. This is due to the centered character of the �rst order scheme: some values are notuniquely de�ned. At that time, we overpass this di�culty by adding an extra stabilization termthat enables the scheme to fully converge. Even if many e�orts have been given throughout thisthesis to improve our understanding of this term and to compute it well, this solution is still notsatisfying. The main reasons are:
• This term destroys the monotonicity preserving property of the LLxF scheme. Using thisterm as it is leads to solution with over/undershoots in the vicinity of discontinuities. Inorder to limit this e�ect, we have to use an additional shock capturing term that is usuallyde�ned intuitively and that has often to be �tted to each test case. This goes exactly theopposite way of a completely parameter-free scheme. Furthermore, even when using theshock capturing term, monotonicity is still not ensured and nothing prevents the solutionof some tough test cases to blow up suddenly;
• The implementation of this extra term is rather complex and its computation may be costlyespecially in the case of quadrangles where we have to use all the degrees of freedom of theelement and to reconstruct the residual Jacobians at these nodes;
• This term does not take place into a global formulation for the approximation of the Con-servation Laws. It is added to the residual formulation in order to �x the ill-posedness of thesimple LLxF scheme. It can be quite rightly considered as a simple patch to counterbalancethe default of the LLxF scheme.

Many tries have been made to get rid of this stabilization term, each time without success. Wehave been looking for new limitations that would give some upwind property to the schemebut when a solution is found for one situation, its generalization to other situations is alwaysimpossible. A global residual distribution formulation is now needed to �nd a scheme that wouldcombine all the advantages of the schemes presented in Section 4.4.
9.2.4 Navier-Stokes Global Formulation

As we have seen in Chapter 8, we are today able to perform Navier-Stokes simulations, but weare in fact discretizing the viscous term with a Galerkin residual. Even if the global formulationusing the RDS framework for the Euler part of the equation and a Galerkin formulation ofthe viscous terms stays consistent with the initial conservation law, it seems that the optimalpk � 1qth order is lost for the �nest meshes. A global residual formulation of the Navier-Stokesequations is needed.
9.3 Perspectives

In order to conclude this manuscript and to see the problem beyond the drawbacks of themethod that have just been described, we present in this section a non exhaustive list of thepossible perspectives for the Residual Distribution Schemes. The very high order discretization
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of the conservation laws used in this thesis has shown a potential that certainly justi�es itsfurther development. There are still several fronts that greatly need to be developed. We detailthem in the following paragraphs.
Unsteady Case

Even if a little bit of the unsteady terms treatment has been discussed in Chapter 3, nounsteady results have been presented in this manuscript. It is however an important part of thework that has been started at INRIA Bordeaux Sud-Ouest. Unfortunately, scalar results are atthat time not very satisfying and that is why the unsteady case has been somehow forgottenin this manuscript. There are today two main ways to treat the unsteady test cases. First,the unsteady Conservation Law (2.1), page 16, can be seen as a steady equation in space-time.By using a RD framework within the prismatic elements described in Subsection 3.2.3, page55, we hope to obtain a scheme that is both pk � 1qth order accurate in space and p` � 1qth intime. Second, the unsteady terms can be �rst discretized by �nite di�erences (as a Runge-Kuttamethod or anything else giving the desired accuracy in time) and the RD formalism is nextapplied. We then obtain a formulation that is very similar to the steady case, just adding a timedependent source term in the right hand side. The main advantage of this second formulation isa big reduction of unknowns with respect to the �rst one. Only the space is meshed when the aspace-time domain is discretized in the �rst case.
Viscous Term Treatment Improvement

As we have just said in the previous section, the formulation we have presented in thismanuscript su�ers from a lack of consistency between the RD formulation of the Euler termsand the Galerkin approximation of the viscous terms. This leads to the loss of an order ofaccuracy when looking at the mesh convergence for rather �ne meshes. One wishes then to �ndan approximation of the Navier-Stokes equations that would be globally more consistent. Asmart solution developed by Nishikawa [75, 74] is to add the gradients of the solution as extraunknowns. Thus, the RD formalism can be applied directly on the Navier-Stokes equations andthe pk�1qth order of accuracy is expected. The main inconvenient of this method is the doublingof the amount of unknowns per degree of freedom. But on the other hand, the method has themaximal order of accuracy and is still maximal compact, so that it can be easily very e�cientlyparallelized. The numerical mathematics being today very much interested in the developmentof computations on very large clusters, this method is very promising.
Turbulent Cases

Residual Distribution Methods will have a real future when their applications to industrialproblems will be possible. Among the many gaps that still need to be �lled, the simulation ofturbulent test cases is mandatory. To do so, the correct RDS discretization of some turbulentmodels has to be assessed and included in the code.
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Low Mach / Incompressible Flows

Speaking about the industrial applications of the RDS, it would be also very interestingto look at the behaviour of the scheme for Low Mach or even Incompressible �ows. It is wellknown that the conditioning of the algebraic problem becomes worse with a decreasing Machnumber. Oscillations appear in the numerical solution when the Mach number lowers undersome threshold. Many articles in the literature give then recipes to overcome this problem andit seems possible to apply some of them to the RD framework. Preliminary results on the designof wind power plants are already available and give surprisingly good results.
Other Applications

At INRIA Bordeaux Sud-Ouest, the RD framework is also applied to problems that are not�uid mechanics problems. For example, the method can be applied on Magnetohydrodynamicsproblems (MHD), such as reentry problems, or Aeroacoustics problems (noise generation), or evenGeophysics problems (sismic waves propagation), etc... The development of such a method ondi�erent problems that imply di�erent outlooks is necessary for the global improvement and theglobal assessment of the method.
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Appendix A
3D Di�usive Matrix

K is a d� d di�usive matrix of m�m (m � d� 2) matrices Kij , i, j � 1, . . . , d, such thatthe 3D Navier-Stokes equations write:
BUBt � div�ÝÑF pUq	 � div�K.ÝÝÑ∇U
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and
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Appendix B
3D Jacobians

We detail here the three dimensional Jacobians of the advective �ux A � BF1BU , B � BF2BU andC � BF3BU .
A �

������
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If ~λ � pA,B,Cq is the advection speed, then for any ~n � pnx, ny, nzq P S2, ~λ.~n is diagonaliz-able and one has ~λ.~n � RΛL with:
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