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préparée à l’Ecole Centrale Paris, laboratoire MAS et à Supélec,
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Abstract

In this thesis, we present several techniques for the processing of diffusion

tensor images. They span a wide range of tasks such as estimation and

regularization, clustering and segmentation, as well as registration.

The variational framework proposed for recovering a tensor field from

noisy diffusion weighted images exploits the fact that diffusion data represent

populations of fibers and therefore each tensor can be reconstructed using a

weighted combination of tensors lying in its neighborhood.

The segmentation approach operates both at the voxel and the fiber

tract levels. It is based on the use of Mercer kernels over Gaussian diffusion

probabilities to model tensor similarity and spatial interactions, allowing the

definition of fiber metrics that combine information from spatial localization

and diffusion tensors. Several clustering techniques can be subsequently used

to segment tensor fields and fiber tractographies. Moreover, we show how

to develop supervised extensions of these algorithms.

The registration algorithm uses probability kernels in order to match

moving and target images. The deformation consistency is assessed using

the distortion induced in the distances between neighboring probabilities.

Discrete optimization is used to seek an optimum of the defined objective

function.

The experimental validation is done over a dataset of manually seg-

mented diffusion images of the lower leg muscle for healthy and diseased

subjects. The results of the techniques developed throughout this thesis are

promising.

Key-words: DTI, Diffusion Tensor, Fiber, Kernels, Clustering, Registra-

tion, Denoising, Human Skeletal Muscle, Myopathies
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Résumé

Cette thèse propose des techniques pour le traitement d’images IRM de dif-

fusion. Les méthodes proposées concernent l’estimation et la régularisation,

le groupement et la segmentation ainsi que le recalage.

Le cadre variationnel proposé dans cette thèse pour l’estimation d’un

champ de tenseurs de diffusion à partir d’observations bruitées exploite le

fait que les données de diffusion représentent des populations de fibres et que

chaque tenseur peut être reconstruit à partir d’une combinaison pondérée

de tenseurs dans son voisinage.

La méthode de segmentation traite aussi bien les voxels que les fibres.

Elle est basée sur l’utilisation de noyaux défini-positifs sur des probabilités

gaussiennes de diffusion afin de modéliser la similarité entre tenseurs et les

interactions spatiales. Ceci permet de définir des métriques entre fibres

qui combinent les informations de localisation spatiale et de tenseurs de

diffusion. Plusieurs approches de groupement peuvent être appliquées par

la suite pour segmenter des champs de tenseurs et des trajectoires de fibres.

Un cadre de groupement supervisé est proposé pour étendre cette technique.

L’algorithme de recalage utilise les noyaux sur probabilités pour recaler

une image source et une image cible. La régularité de la déformation est

évaluée en utilisant la distortion induite sur les distances entre probabilités

spatialement voisines. La minimisation de la fonctionnelle de recalage est

faite dans un cadre discret.

La validation expérimentale est faite sur des images du muscle du mol-

let pour des sujets sains et pour des patients atteints de myopathies. Les

résultats des techniques développées dans cette thèse sont encourageants.

Mots-clés : IRM de diffusion, Tenseur de diffusion, Fibre, Noyaux, Groupe-

ment, Recalage, Débruitage, Muscle squelettique, Myopathies
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Chapter 1

Introduction

Medical imaging technologies have undergone major developments in the

last decades, making their use ubiquitous in daily clinical routines, includ-

ing patient condition assessment and monitoring, disease identification and

cure and treatment design. They are generally non-invasive and relatively

fast, allowing to image the inside of the human body and to provide relevant

information about its integrity while saving time for the physician and mini-

mizing discomfort for the patient. The medical imaging field is continuously

progressing towards more challenging and more informative technologies, as

strong emphasis is put on revealing a more accurate and relevant informa-

tion to the physician in a more demanding time frame. In this context,

diffusion tensor imaging (DTI) has emerged as a relatively recent imaging

technology that goes beyond standard structural techniques like T1 and

T2 weighted magnetic resonance imaging (MRI) by providing quantitative

information about the water diffusion process within the imaged anatomi-

cal regions. By measuring diffusion in several space directions, it allows to

model this physical phenomenon and to relate it to the underlying fiber ar-

chitecture of the tissue, since anatomical fibers represent privileged diffusive

pathways for water molecules. The modality has attracted much interest

due to its potential in estimating and reconstructing in-vivo, i.e. without

the need for any invasive inspection technique such as biopsy, the paths

connecting different regions of the white matter brain. This paved the way

to a more thorough exploration of brain architecture and connectivity and

to clinical studies involving quantitative comparisons of measures computed

14



Chapter 1. Introduction

from diffusion tensor images between control (normal) subjects and diseased

patients.

The high dimensionality and non-linearity of the data provided by the

modality imply that it conveys an important amount of information that

should be adequately processed in order to exploit the acquired images,

extract and compute the parameters of interest and explore the possibilities

of including this technique in clinical procedures of disease diagnosis and

cure design. In this thesis, we focus on the study of the human skeletal

muscle and more specifically the lower leg using diffusion tensor imaging.

Our motivation is three-fold:

• The human skeletal muscle has attracted less attention in diffusion

tensor imaging than the human brain white matter, despite the fact

that it presents a well known anatomy of fiber bundles, and the devel-

opment and use of computer-based processing techniques was rather

limited as far as the muscle is concerned.

• It is important to see whether the modality is in accordance with

the anatomical knowledge of clinical experts about the human skeletal

muscle, in particular it is of interest to assess the reliability of the

fiber direction estimation provided by the computed images as well as

the accuracy of the fiber bundling algorithms in separating different

muscle groups.

• It is of high clinical relevance to study the muscle and to better eval-

uate the potential of DTI in yielding reliable information about the

effect of neuromuscular diseases (myopathies) on the muscle fiber ar-

chitecture, especially for early illness detection as it leads to a timely

follow-up of the subject. This is a domain with very high stakes and

stimulating technical and clinical challenges, since myopathies are gen-

erally highly damaging to the muscle and result in severe dysfunctions.

Moreover, the most common diagnosis procedure is biopsy, which con-

sists in taking a sample of muscle tissue for microscopic analysis and

has the shortcoming of being invasive. Therefore diffusion tensor imag-

ing can overcome this limitation by providing quantitative ways of

evaluating the state of a patient, while being suitable for the study of

regions exhibiting a fiber architecture.
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Chapter 1. Introduction

In this thesis, we propose diffusion tensor image processing techniques with

application to the study of the human skeletal muscle. In particular, we

develop denoising, segmentation (both at the tensor and at the fiber tract

level) and registration techniques for diffusion tensor images and we show

promising quantitative and qualitative experimental results for a dataset of

healthy and diseased subjects. A comparison with the ground-truth based

on manual segmentations provided by a clinical expert is provided. The

main contribution of this thesis is that it introduces more elaborate and

informative models for interactions between tensors, both in a local and

global context. In the context of tensor field smoothing, we propose to use

a higher-order model to represent local tensor neighborhoods, allowing to

take into account more complex tensor arrangements to reconstruct a ten-

sor field from noisy measurements. As far as tensor and fiber tractography

segmentation is concerned, we use a model based on diffusion probabilities

that introduces the spatial context and hence defines a natural way to per-

form spatially-consistent clustering of tensors and fiber trajectories. Similar

ideas are applied to diffusion tensor registration, where we introduce a con-

nectivity information in the deformation of tensor fields. This approach

yields a way to quantify the effect of a field of deformations belonging to

the Euclidean motion group on the source tensor field by evaluating the

change in the distance between Gaussian diffusion probabilities. The thesis

is organized as follows:

1. Chapter 2: in this chapter, we briefly review the principles of diffu-

sion tensor imaging. We discuss the physics of diffusion (Fick’s Laws)

and introduce tensors as models for the diffusion phenomenon. We

explain the significance of the different scalar parameters that can be

computed from a tensor field. Moreover, the visual representation of

the data using fiber tracts or ellipsoids is also briefly discussed. The

last section of this chapter is dedicated to the physics of the acquisi-

tion scheme of diffusion tensor imaging, where links between the dif-

fusion propagator (probability of motion of water molecules), the ten-

sor model and the fundamental acquisition equations (Stejskal-Tanner

equations) are discussed.

2. Chapter 3: this second preliminary chapter presents the current find-
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ings and insights provided by diffusion tensor imaging for the study

of the human muscle. It gives an overview of the muscle anatomy and

neuromuscular diseases and reviews the underlying challenges of the

acquisitions. The major part of this chapter reviews the results and

methodologies used in clinical DTI studies of the skeletal muscle.

3. Chapter 4: In this chapter we introduce a novel variational method

for joint estimation and regularization of diffusion tensor fields from

noisy raw data. To this end, we use the classic quadratic data fidelity

term derived from the Stejskal-Tanner equation with a new smoothness

term leading to a convex objective function. The regularization term is

based on the assumption that the signal can be reconstructed using a

weighted average of observations on a local neighborhood. The weights

measure the similarity between tensors and are computed directly from

the diffusion images. We preserve the positive semi-definiteness con-

straint using a projected gradient descent. Experimental validation

and comparisons with a similar method using synthetic data with

known noise model, as well as classification of tensors towards un-

derstanding the anatomy of human skeletal muscle demonstrate the

potential of our method.

4. Chapter 5: This is the core chapter of the thesis, where we present a

kernel-based approach to the clustering of diffusion tensors and fiber

tracts. We propose to use a Mercer kernel over the tensor space where

both spatial and diffusion information are taken into account. This

kernel highlights implicitly the connectivity along fiber tracts. Ten-

sor segmentation is performed using kernel-PCA compounded with

a landmark-Isomap embedding and k-means clustering. Based on a

soft fiber representation, we extend the tensor kernel to deal with

fiber tracts using the multi-instance kernel that reflects not only in-

teractions between points along fiber tracts, but also the interactions

between diffusion tensors. This unsupervised method is further ex-

tended by way of an atlas-based registration of diffusion-free images,

followed by a classification of fibers based on nonlinear kernel Support

Vector Machines (SVMs). By tackling a more general case, we present

a manifold clustering algorithm for the classification of fibers using an-
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gular Hilbertian metrics. As far as clustering is concerned, we propose

to use two methods. The first approach is based on diffusion maps

and k-means clustering in the spectral embedding space. The second

approach uses a linear programming formulation of prototype-based

clustering. This formulation allows for classification over manifolds

without the necessity to embed the data in low dimensional spaces

and determines automatically the number of clusters. Promising ex-

perimental results of tensor and fiber classification of the human skele-

tal muscle over a significant set of healthy and diseased subjects are

reported.

5. Chapter 6: Following the approach proposed in Chapter 5, we present

a method to register diffusion tensor images based on a discrete op-

timization approach in a Reproducing Kernel Hilbert Space (RKHS)

setting. The presented approach encodes both the diffusion informa-

tion and the spatial localization of tensors in a probabilistic frame-

work. The diffusion probabilities are mapped to a RKHS, where we

define a registration energy that accounts both for target matching

and deformation regularity in both translation and rotation spaces.

The six-dimensional deformation space is quantized and discrete en-

ergy minimization is performed using efficient linear programming. We

show that the algorithm allows for tensor reorientation directly in the

optimization framework. Experimental validation is performed over

several pairwise registrations of images from a manually annotated

dataset of diffusion tensor images of the calf muscle and comparison

is done with a recent technique using eight quantitative criteria.

6. Chapter 7: This chapter is dedicated to a review of the contributions

of this thesis as well as to the perspectives and the possible improve-

ments that can be undertaken.
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Chapter 2

Diffusion Tensor MRI

Principles

2.1 Introduction

Diffusion Tensor MRI (DT-MRI) is a modality that provides quantitative

information about water diffusion in tissues. The basic intuition behind it

is that in organized tissues, water will have a privileged direction of diffu-

sion. Indeed, when tissues present a fiber architecture, the fibers will act as

”highways” for water molecules, thus resulting in a higher amount of diffu-

sion along the fiber direction than in the perpendicular directions. Therefore

one can see that if we could measure in-vivo the privileged direction of dif-

fusion in a local fashion, then we will be able to know the orientation of the

fiber. This information is provided (among others) by DT-MRI. DT-MRI

allows to estimate a field (3D volume) of 3 × 3 symmetric positive definite

matrices called tensors and the processing of these tensors yields informa-

tion about the structure of the imaged region, for example the eigenvector

corresponding to the largest eigenvalue of a tensor indicates the local fiber

direction at the considered voxel. The use of the tensor as a model for lo-

cal diffusion amounts to assuming that locally the motion of water protons

follow a Gaussian distribution law, i.e. the diffusion propagator is Gaussian

and the covariance of this law is given by the tensor.

In this chapter we review the physical principles of water diffusion and

the DT-MRI acquisition scheme. Given the high dimensionality of the data
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acquired using this modality, several scalar values were proposed in the lit-

erature in order to visualize standard 3D volumes that map some particular

information of the diffusion tensors. Another enticing way to visualize the

data is to reconstruct the diffusive pathways, i.e. the fiber trajectories which

are 3D curves. These provide a way of estimating connectivity between dif-

ferent areas of the imaged anatomical region.

This chapter is organized as follows: in section 2.2, we give a brief

overview of the physical principles of fluid diffusion and explain the links

to the diffusion propagator and the the tensor model. In section 2.3, we

discuss the ellipsoid representation of a tensor and provide the definitions of

the tensor attributes commonly used in DTI studies. We also review the ba-

sics of fiber tractography. Section 2.4 is dedicated to the acquisition scheme

of DTI and the link relating the diffusion signals to the diffusion propaga-

tor. We also discuss the Stejskal Tanner equations that are the fundamental

mathematical relationship between tensors and diffusion weighted images.

2.2 Physics of Diffusion and Tensors

In this section, we give a brief overview of the physics of diffusion. A more

detailed analysis can be found in [15, 11, 10]. The process of macroscopic

diffusion is governed by Fick’s law. It is similar to the heat equation which is

a partial differential equation that describes the heat diffusion in a medium,

i.e. how the heat spreads and the temperature evolves as a function of both

space and time. The process of fluid diffusion is analogous to heat diffu-

sion. Indeed, when the medium presents heterogeneities of concentration

(the analogous of temperature in the heat equation), the fluid will tend to

diffuse from the region with higher concentration to the region with lower

concentration. This is expressed through the concentration gradient which is

proportional to the diffusive flux and corresponds to the heat flow in the heat

equation. More explicitly, we have the following mathematical relationship

(Fick’s first law):

J = −D∇C (2.1)

where J is the diffusive flux, D is the diffusion coefficient or diffusivity and

∇C is the concentration gradient. Note that the negative sign enforces the

fact that the fluid should diffuse to lower-concentration regions, therefore in
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a direction opposite to the concentration gradient.

Fick’s second law is analogous to heat equation. It is a partial differential

equation describing the spatio-temporal evolution of the concentration

∂C

∂t
+ div(J) = 0 (2.2)

or equivalently
∂C

∂t
= div(D∇C) (2.3)

These equations describes the case where there is a concentration gradient.

When self-diffusion is considered, it is no longer possible to use the con-

centration as a means to describe the diffusion process. One should resort

instead to the diffusion probability or the diffusion propagator p. The dif-

fusion propagator is the probability of motion of a particle initially at a

position x to a position y after a given time t. In a similar way to equations

(2.1) and (2.2), one can define the diffusive flux and the space-time evolution

of the propagator as follows:

J = −D∇p (2.4)
∂p

∂t
= div(D∇p) (2.5)

Note that the underlying assumptions behind the use of a constant D is

that the fluid diffuses in an isotropic region, which means that there are no

privileged space directions and that the amount of diffusion in all directions

can be modeled using a single scalar. In this particular case, Fick’s law

admit a closed-form solution. Indeed the diffusion propagator can be shown

to be a spherical Gaussian distribution centered around the initial position

x and of standard deviation σ =
√

2Dt

p(y|x, t,D) =
1√

D4πt
exp

(
−(y − x)2

4Dt

)
(2.6)

This is in concordance with the relationship established by Einstein and

relating the the average (expected) distance moved in a given time during

Brownian motion of particles with the diffusion coefficient:

E(||y − x||2) = σ2 = 2Dt (2.7)
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In the case where diffusion takes place in an anisotropic medium, it is no

longer adequate to represent diffusion using a single scalar coefficient. In

order to model a diffusion process that is direction-dependent and to take

into account the constraints imposed by tissue organization, it is possible to

use a 3× 3 matrix D, that is symmetric and positive definite called tensor,

introduced in [11]. This implies that it can be written using six parameters

as follows

D =


D11 D12 D13

D12 D22 D23

D13 D23 D33

 (2.8)

Therefore the use of a second order tensor is a more general model than

the single diffusion coefficient, since it is more appropriate for the case of

anisotropic diffusion. Note that Fick’s laws can be adapted this case by

simply considering D as a matrix operator in equations (2.1) and (2.2).

The diffusion propagator is a spherical Gaussian distribution for the case of

isotropic diffusion, it is an anisotropic Gaussian in the case of anisotropic

diffusion, where the covariance information is provided by the tensor:

p(y|x, t,D) =
1√

det(D)(4πt)3
exp

(
−(y − x)tD−1(y − x)

4t

)
(2.9)

where D is the tensor at the initial position x. This is the fundamental

assumption behind the modeling of a diffusion process using second order

tensors.

2.3 The Ellipsoid Representation of a Tensor and

Tensor Indices

We now discuss the ellipsoid representation of tensors and some of the scalar

parameters that can be estimated from a tensor field, following [11, 13, 123].

A tensor is a real symmetric matrix, so it has a diagonal representation in an

orthonormal basis of eigenvectors (e1, e2, e3) with corresponding eigenvalues

(λ1, λ2, λ3). One can write a tensor D as a sum of rank one matrices as

follows:

D = λ1e1e1
t + λ2e2e2

t + λ3e3e3
t (2.10)
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(a) (b)

Figure 2.1: (a) Ellipsoid representation of a tensor, the long axis corre-
sponds to the fiber direction locally. (b) Integration of principal directions
of diffusion yields fiber trajectories.

The eigenvalues are called principal diffusivities and the eigenvectors

principal directions of diffusion. An important property of a tensor is that

one can derive from D a quadratic form q(v) = vtDv that corresponds

physically to the amount of diffusion (diffusivity) in the direction v, when

we consider a unit-norm vector v. Note that this is consistent with the

definition of the principal diffusivities since it is straightforward to see that

the eigenvalues are exactly the diffusivities in the direction of their respective

eigenvectors. Another quadratic form that can be derived from the tensor is

q̂ = vtD−1v. This form appears in the expression of the diffusion propagator

in equation (2.9). It is positive definite because the tensor D (and therefore

D−1) is positive definite, so its geometric representation in the 3D space is

an ellipsoid. The axes of the ellipsoid are the eigenvectors and the radii are

proportional to the square roots of the eigenvalues (see [Fig.2.1 (a)]). Indeed

if we denote v = (x, y, z)t the coordinates of v in the orthonormal basis of

eigenvectors of D then the isosurface q̂(v) = 1 corresponds mathematically
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to the equation of an ellipsoid

x2

λ1
+

y2

λ2
+

z2

λ3
= 1 (2.11)

The long axis of the ellipsoid corresponds to the most likely direction of

diffusion, or equivalently the local fiber orientation.

The high dimensionality of tensors is a tricky issue as far as visualization

is concerned. In order to ease the interpretation of the data , some important

scalar values that give an idea about the diffusion process are derived from

tensors:

1. Trace: the trace is the sum of the eigenvalues:

Tr(D) = λ1 + λ2 + λ3 (2.12)

It is a rotationally independent value, i.e. independent of the choice

of the basis in which the tensor is expressed. A related scalar value is

the mean diffusivity, which is the average of the eigenvalues Tr(D)
3 .

It is the average amount of diffusion. An example of a trace map is

provided in [Fig.2.2] where the axial slices of the 3D trace volume for

the calf muscle are shown.

2. Apparent Diffusion Coefficient (ADC): this quantity is direction-

dependent. Since the diffusion tensor model supposes that the diffu-

sion process is free while it is actually restricted by barriers like cell

membranes, what we can measure using DT-MRI are only apparent

diffusion coefficients. Indeed the ADC is related to the intrinsic diffu-

sion coefficient by

ADC =
D

λ2
(2.13)

where the factor λ represents the restricting effects of barriers.

Using the tensor model, the ADC in a direction v is vtDv. For exam-

ple the apparent diffusion coefficients along the axes of the laboratory

coordinate frame ADCx, ADCy and ADCz are the diagonal tensor

entries D11, D22 and D33.

3. Fractional Anisotropy (FA): an important property of the tensor

is its anisotropy. If the ellipsoid representation of a tensor is close
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in shape to a sphere, then the diffusion described by this tensor is

spherical and there are no privileged directions of diffusion. On the

other hand, if this representation is close to the shape of a cigar, this

is an indicator of diffusion anisotropy and the long axis of the ellip-

soid is likely to correspond to the local fiber orientation. Fractional

anisotropy (FA) is a measure between 0 and 1 of the anisotropy of

a tensor. It takes the value 0 for the case of isotropic diffusion and

the value 1 for the limit case of maximum anisotropy (when the shape

of the ellipsoid tends towards a cylindrical geometry with an infinite

length). FA is given by the following equation:

FA =
√

3√
2

√
(λ1 − Tr(D)

3 )2 + (λ2 − Tr(D)
3 )2 + (λ3 − Tr(D)

3 )2√
λ2

1 + λ2
2 + λ2

3

(2.14)

Like trace, FA depends only on the eigenvalues of the tensor, so it

is rotationally invariant. An example of an FA map is provided in

[Fig.2.3] where the axial slices of the 3D FA volume for the calf muscle

are shown.

4. Orientations of principal directions of diffusion: the principal

directions of diffusion are three-dimensional vectors with coordinates

in the laboratory frame. Therefore their orientation can be mapped

using a spherical coordinate frame through the elevation angle θ and

the azimuthal (in-plane) angle φ. The principal directions of diffusion

can also be encoded using RGB colors for tensor orientation visualiza-

tion.

5. Tensor volume or determinant: The tensor volume is given by its

determinant, i.e. the product of the eigenvalues. It is also rotationally

invariant.

det(D) = λ1λ2λ3 (2.15)

The above-mentioned scalar parameters that can be computed from ten-

sors are helpful in extracting a specific information from highly-dimensional

data. For instance, looking at variations of trace or FA between different

populations of subjects may be useful to understand the effect of diseases

on diffusion.
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Figure 2.2: Axial slices of the trace map of the calf muscle. Diffusivities are
low so the intensities are rescaled. Blue indicates lower mean diffusivity.

Another important way to recover visually appealing information from

DTI data is fiber tractography. It consists in recovering 3D trajectories from

tensors. The basic technique for reconstructing these curves is to integrate

the field of principal directions of diffusion. This is analogous to a classical

problem in mechanics where one considers a dynamical system where the

dynamics are governed by a first order differential equation. By plotting the

field of velocities one can recover the possible trajectories of the system by

integrating this field, as can be seen schematically in [Fig.2.1 (b)]. In the case

of fiber tractography, the velocities are analogous to the principal directions

of diffusion. A tractography algorithm has several parameters including

termination criteria, for example it makes sense to stop the fiber tracking if

FA is too low, since the uncertainty on the principal direction of diffusion

would be too high (in the limit case of isotropic diffusion, all the directions

are plausible) or in the case where the curvature is too important as one

expects the fiber to have a smooth trajectory. A review of such algorithms
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can be found in [83]. Using the principal direction of diffusion may be

a limitation in regions where anisotropy is not sufficiently high. In order

to address this shortcoming, more evolved methods using the whole tensor

information were proposed and are based on the deflection of the orientation

of the fiber trajectory using the local tensor [71]. These are deterministic

(streamline) approaches to fiber tractography. Different stochastic variants

were proposed [45, 131] in order to take into account uncertainty in the fiber

orientation by inferring fiber directions using both the observations and a

probability model. This allows for more tracking robustness especially in

areas with low anisotropy.

Figure 2.3: Axial slices of the FA map of the calf muscle. The intensities
indicate true values of anisotropy (intensities are not rescaled). A mask is
used to remove the background. Red indicates high anisotropy and blue
indicates low anisotropy.
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2.4 DT-MRI Acquisition Scheme

A DT-MRI acquisition consists of several 3D volumes according to different

directions of diffusion-sensitizing magnetic field gradient. The fundamental

relationship that links diffusion tensors to the acquired signals is called the

Stejskal-Tanner equation. Given n magnetic field gradients (gk)k=1...n which

are unit-norm vectors, the signal at a voxel x for the direction k as explained

in [105] should respect the following condition

Sk(x) = S0(x) exp
(
− bgt

kD(x)gk

)
with the tensor D(x) being the tensor to estimate at the position x, b a value

that depends on the acquisition settings and S0 the baseline or diffusion-

free image (basically a T2-weighted image). The Stejskal-Tanner equation

indicates that the signal shows an exponential decay with respect to the

amount of diffusion in the direction gk given by gt
kD(x)gk. In order to

estimate the six parameters of the tensor at each voxel of the 3D volume,

at least six directions should be available, along with the baseline signal.

We provide in [Fig.2.4] an axial slice of a diffusion-free image (S0), of a

diffusion-weighted image (Sk for a selected direction k) and the estimated

tensors represented as a field of ellipsoids and colored according to their

principal directions of diffusion. It can be seen that the diffusion-weighted

image has a low-contrast, and a rather low quality, with a high amount of

noise (clearly noticeable in the background) and a chemical shift artifact

around the bone (the tibia is replicated).

Recall that MRI is based on the net magnetization of hydrogen nuclei

in the human body that is aligned with the static magnetic field of the

scanner magnet when the latter is applied. Using a radiofrequency pulse at

the Larmor frequency (resonance frequency), the net magnetization can be

flipped from the equilibrium position and the characteristic times (T1 and

T2 respectively) of the longitudinal magnetization recovery and transerve

magnetization decay provide contrast between tissues. For a detailed ex-

planation of MRI physics, we refer the reader to the textbook [80]. The

diffusion MRI pulse sequence exploits two magnetic field gradient pulses in

order to be sensitive to the protons motion.

The physical intuition behind the modality is that for moving spins, ap-
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Figure 2.4: Axial slice of the calf muscle. Top left: a diffusion-free image.
Top right: a diffusion-weighted image. Bottom: estimated tensors repre-
sented as ellipsoids with the RGB colors encoding the principal directions
of diffusion

plying the diffusion gradient according to a precise scheme will introduce

a phase shift in the signal, while for static spins no phase shift will be ob-

served. The acquisition scheme is explained schematically in [Fig.2.5]. First

a 90◦ RF (Radio-Frequency) pulse is applied so that the longitudinal spin

magnetization is removed. The result of this pulse is that the magnetization

lies in the transverse plane. Then a first gradient pulse is applied to intro-

duce a phase shift for a duration δ. This is followed by a 180◦ pulse that

inverses the first phase shift and a second gradient pulse that introduces

another phase shift.

It can be shown that the total phase shift Φ resulting from applying this

29



Chapter 2. Diffusion Tensor MRI Principles

Figure 2.5: Pulse sequence of a DTI acquisition. Arrows indicate Radio-
Frequency (RF) pulses, ”landings” are diffusion gradient pulses. The π

2
RF pulse flips the net magnetization into the transverse plane, the π pulse
inverts the magnetization. The second magnetic field gradient pulse rephases
only static spins, resulting in a lower signal for moving spins. δ is the
duration of a gradient pulse and ∆ is the time separating the application of
the two gradients.

sequence is

Φ = γδgtr (2.16)

where γ is the gyromagnetic ratio, g is the direction of the diffusion gradient

and r is the spin displacement in the time interval between the two diffusion

gradient pulses. This equation relates the signal phase shift to diffusion and

one can see that in the particular case of a static spin (r = 0) there is no

phase shift (Φ = 0). Intuitively, the first gradient pulse has a dephasing

effect on spins. If a spin is static, then the second pulse compounded with

the phase inversion of the 180◦ pulse compensates the effect of the first pulse.

However for a moving spin, there is a phase shift and the produced signal

has a smaller amplitude.

The measured diffusion signal Sg at a voxel is related to the average

value of exp(iΦ) for the spins within the voxel:

Sg = S0E(exp(iΦ)) = S0E
(
exp(iγδgtr)

)
(2.17)

The expectation of exp(iΦ) may be rewritten using the diffusion propagator

p(r|t) that gives the probability of a displacement r given a diffusion time
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t. This leads to the following expression:

Sg = S0

∫
R3

p(r|t) exp(iγδgtr)dr (2.18)

By introducing q = γδg, one can rewrite this equation as

Sq = S0

∫
R3

p(r|t) exp(iqtr)dr (2.19)

This means that Sq

S0
is the Fourier transform of the diffusion propagator, or

equivalently that the diffusion propagator is the inverse Fourier transform

of the quantity Sq

S0
.

DT-MRI makes the fundamental assumption that the diffusion propa-

gator is Gaussian. This particular case allows to relate the diffusion signal

to the tensor D that corresponds to the covariance information of the prop-

agator through the Stejskal-Tanner equations, and the b value which is the

diffusion-weighting factor introduced in [17] and given by:

b = γ2δ2||g||2
(

∆− δ

3

)
(2.20)

where ∆ is the time between the two diffusion gradient pulses. The b value

depends therefore on the acquisition parameters.

The Stejskal Tanner equations show that DTI allows to relate in a

tractable way the diffusion signals with the tensor at each spatial location,

or equivalently to recover in appealing way the diffusion propagator by esti-

mating the tensor from the available measurements. Even if the underlying

diffusion model is simple, it allows for fairly easy computations.
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Chapter 3

A Survey of DTI-based

Muscle Studies

3.1 Introduction

In this chapter, we present a survey of the existing work using DTI for a

clinical study of the skeletal muscle. We also detail the different challenges

and difficulties that are inherent to muscle diffusion imaging. The different

findings that DTI led to in the study of the skeletal muscle span a wide

range. These include injury and tissue damage assessment due to tears,

changes due to contraction and elongation, influence of exercise load, es-

timation of pennation angles and fiber orientations, aging effects on water

diffusion, gender differences as well as the evaluation of physiological criteria

that give an indication about muscle strength. The variability of different

DTI parameters across multiple muscle regions and for bundles of specific

functional roles was also studied. The experiments were done on humans as

well as on small animals.

Theses studies show that DTI is a very promising modality with var-

ious clinical applications for the assessment of the human skeletal muscle

and a better understanding of the effect of disease-induced damage on fiber

architecture. It is also noticed that diffusion tensor images carry informa-

tion about the microstructure of the muscle tissue, such as the diameter of

the myofibers which can be related to diffusion, as well as about the ar-

rangement of these fibers and their sheet organization. Moreover, it may be
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informative about water diffusion in both the intracellular and extracellu-

lar compartments. Indeed, DTI has several advantages compared to other

modalities that may be used for the study of the muscle, such as ultrasound

[27, 96]. Even though ultrasound can provide measurements of pennation

(orientation) angles and fiber length, the majority of the experiments done

in the field use 2D images which is a limitation that is overcome in DTI. 3D

information is important since the pennation angles as well as fiber length

may vary spatially. However the reliability of the obtained DTI findings is

questionable due to the high amount of noise, the partial volume effect and

the presence of chemical shift artifacts that may introduce some uncertainty

regarding the estimated DTI parameters and the inter-subject comparison.

This chapter is organized as follows: in section 3.2, we provide a brief

overview of skeletal muscle architecture. Neuromuscular diseases are pre-

sented in section 3.3. In section 3.4, we explain the difficulties of diffusion

tensor imaging of the skeletal muscle. Current findings and experimental

results of DTI studies of the muscle are discussed in 3.5. Section 3.6 is ded-

icated to the open issues and to the motivations of this work with respect

to existing studies.

3.2 A Brief Overview of Muscle Architecture

The information of this section were collected from [102]. The human skele-

tal muscles are attached to the bones and are essential for movement through

their contraction and elongation. One of the main differences between the

skeletal muscles and the other types of muscles (cardiac muscle, smooth

muscle) is that we can control the motion of the skeletal muscles volun-

tarily. Muscle tissue is composed of long and cylindrical cells which are

separated by a connective tissue, called the endomysium. The striations

that one observes in muscles are due to the arrangement of proteins within

cells.

Muscle fiber bundles have a highly organized and hierarchical structure,

as can be seen in [Fig.3.1 (a)]. This structure is modular since substruc-

tures are assembled into more sophisticated units. In fact, several muscle

fibers compose a fascicle, which is surrounded by a tissue layer called the

perimysium. Multiple fascicles constitute a fiber bundle. Each muscle fiber
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(a) (b)

Figure 3.1: (a) Skeletal muscle structure [1]. (b) The basic unit composing a
myofibril (sarcomere). The thick filaments (in red) are composed of Myosin
protein and the the thin filaments (in green) are composed of Actin.

is composed of myofibers, which can be decomposed into an arrangement

of successive basic units called sarcomeres (shown schematically in [Fig.3.1

(b)] which are joined along the long axis of the fiber. Since myofibers can

have different numbers of sarcomeres across fiber bundles, the length of the

fibers can vary. Indeed, for example the soleus fibers are shorter than the

tibialis anterior fibers. It is important to note that this variability in the

fiber length generates a variability in the maximum length change, called

maximum fiber excursion, whether by shortening or lengthening. A longer

fiber will contain more sarcomeres and hence has a wider excursion and

motion range.

There are two different kinds of fibers depending on their activity re-

sponse: the slow twitch fibers and the fast twitch fibers. The slow twitch

fibers are aerobic and used for an effort that takes an important amount

of time. The fast twitch fibers are anaerobic and are used to produce force

over a short period of time.

Fibers may differ not only in the length, but also in their orientation

or pennation with respect to the line of action (pull) of the muscle, as can

be seen in [Fig.3.2]. For example a fiber bundle can be composed of fibers

that run parallel to the line of action. In other cases, the fibers can have

a pennation angle with respect to the line of action. Different geometries

are possible: in a unipennate muscle, all the fibers have the same oblique

direction. In a bipennate muscle, two different directions are present. A

multipennate muscle has several fiber orientations. Fiber pennation is highly

informative as far as muscle mechanics are concerned, and more particularly
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Figure 3.2: Different types of fiber organization. From left to right: parallel
arrangement, unipennate muscle and bipennate muscle. The line of pull
(action) of the muscle is supposed to be vertical.

force generation. The actual transmitted force along the line of action of

the muscle is indeed less important than the force generated in the direction

of the muscle fibers, and the two force values are linked through the cosine

of the pennation angle as can be seen in the following relationship:

Fline = Ffiber ∗ cos(θ) (3.1)

where Fline is the transmitted force, Ffiber is the generated force and θ is

the pennation angle of the fiber. Note how this mathematical relationship

corroborates the fact that there is a loss in force generation due to pennation

with respect to the case where the fibers run parallel to the line of action

(θ = 0). Despite this disadvantage, pennation is a space-saving arrangement

because it allows to pack short fibers in a small cross-sectional area. This

compensates for the loss of force due to pennation by an increase in the

number of fibers that consequently develops the muscle strength. Pennation

implies that one should consider a factor called Physiological Cross-Sectional
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Area (PCSA) instead of the Anatomical Cross Sectional Area (ACSA) to

measure muscle force. The ACSA is the sum of the cross-section areas of the

fibers that compose the bundle when it is cut in a direction perpendicular to

the line of pull of the muscle. This measure can be effective and informative

in the case of parallel arrangement, however it is insufficient in the case of

pennate muscles because it understates the packing effect due to pennation.

One should therefore consider the PCSA which is defined as follows:

PCSA =
V ∗ cos(θ)

L
(3.2)

where V is the muscle volume and L is the fiber length. Note how this

formula still indicates that pennation reduces the generated force, while

taking into account the fact that numerous short fibers can be arranged in a

pennate muscle, thus compensating the force transmission loss. It is known

for example that the soleus, despite being composed of relatively short fibers,

is one of the strongest muscles in the human body.

One of the most damaging diseases that affect the architecture of the

skeletal muscle are myopathies. The next section provides the reader with

basic information about these diseases.

3.3 Myopathies

Myopathies are neuromuscular diseases that can be subdivided in two

groups: myopathies of genetic origin like muscular dystrophies (Duchenne

Dystrophy, FacioScapuloHumeral Muscular Dystrophy , etc.) which are pri-

marily caused by an alteration of fibers which degenerate progressively, and

myopathies that affect a muscle previously healthy like inflammatory my-

opathies. These diseases can affect individuals at all ages, from infants to

adults. They concern 30000 to 40000 persons in France and 400 new cases

are ascertained each year according to [2]. The most frequent myopathy

among children is the Duchenne myopathy, with nearly one diseased case

over 3500 male neonates. The clinical symptoms vary from a subject to

another, and the disease effect vary also across different muscle groups for

the same subject. They result in functional anomalies of the muscle includ-

ing fat infiltration, weakness, atrophy, paralysis, loss in muscle strength,
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(a) (b)

Figure 3.3: Axial slice of the calf muscle. (a) healthy subject. (b) diseased
subject

Figure 3.4: Axial slice of the calf muscle for two diseased subjects. Fat
replaces the muscle tissue.

muscle pain due to exercise, etc. These various signs of dysfunction may

help a physician in establishing his diagnosis. An example of axial slices of

T1-weighted images for a healthy and a diseased subject are presented in

[Fig.3.3] where one can see that fat replaces the muscle. Note that in this

case the infiltration is localized (affects a specific region of the muscle) and

that this phenomenon is not well understood. More examples of T1 images

of diseased subjects are shown in [Fig.3.4] where one can see cases of severe

fat infiltration.

There are a few procedures available for disease identification. For ex-

ample muscle tissue biopsy can be performed and consists in extracting a

small sample of tissue that can be analysed using the microscope in order to
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detect anomalies. An electromyogram (EMG) measurement may be helpful

since the assessment of the electrical activity of the muscle may ascertain

a muscle weakness. T1 and T2 weighted MRI acquisitions are also helpful

to detect signal heterogeneities due to the presence of affected regions and

localize them spatially. Moreover, for inherited myopathies blood tests can

be carried out for a molecular study of the DNA for myopathies with known

genes and mutations. They can also be performed to look for an elevated

protein level that may reflect muscle fiber necrosis.

Overall there is a lot of room for progress both in the areas of diag-

nosis and treatment of myopathies. Detection of the disease at an early

stage is important so that appropriate measures can be undertaken. Some

myopathies like Duchenne muscular dystrophy provoke serious damage and

are life-threatening. Therefore, it is crucial to better understand the effect

of these diseases on the muscle and to provide qualitative and quantitative

tools that may help in designing a cure and in detecting the disease. In

this context, diffusion tensor imaging can be a suitable modality for the

evaluation of muscle condition. However such an acquisition can be very

challenging as explained in the next section.

3.4 Challenges of Muscle DTI

Diffusion tensor acquisitions of the human skeletal muscle are technically

challenging, as reported in [70]. One of the main underlying difficulties of

such an acquisition is an intrinsic property of the muscle tissue: it has a

short spin-spin (T2) relaxation time. Moreover, muscle has a lower water

proton density than brain white matter. This results in images of overall

poor quality, with a relatively low SNR.

Another major problem is the presence of chemical shift artifacts caused

by the presence of fat. The importance of the artifacts varies with the

amount of fat in the tissue, and may degrade dramatically the quality of

the acquired images. Other artifacts are caused by the subject motion.

Moreover, in imaging techniques like EPI (Echo-Planar imaging), important

field gradient eddy currents result in image distortion. It is also known that

diffusion images are affected by a partial volume artifact, i.e. in a specific

voxel, the signal is actually the resulting signal from multiple components
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in the voxel. Given the size of the voxel usually used ( each dimension is of

the order some millimeters) and the radius of a myofiber (≈ 50µm), we are

unable to reconstruct the actual anatomical myofibers. Instead we compute

an ”average” of a bundle of several fibers in each voxel. Thus the fibers

obtained from DTI tractography differ from the fibers that one can observe

from histology. This is a major impediment in the way of replacing invasive

techniques like biopsy by non-invasive DTI.

In [32], it is emphasized that the presence of noise, the effects of the

setting of the acquisition parameters and the partial volume artifacts pose

important difficulties for the use of DTI in clinical studies of the human

skeletal muscle. A model that combines both muscle tissue and adipose

tissue for tensor simulation is proposed and tensor estimation is done in

a weighted least-square fashion. It is shown that in some conditions the

findings of DTI parameters, including not only diffusivities by also directions

of diffusions, may become unreliable. The study also confirms the stringent

requirements of DTI studies as far as SNR is concerned compared to brain

white matter DTI.

Overall finding an optimal diffusion acquisition scheme of the muscle is

still an open issue, although several possible ways to improve the quality

and the reliability of the obtained images were proposed as will be discussed

later.

We now review the literature of clinical studies of the skeletal muscle

using DTI.

3.5 Current Findings and Insights

There has been a growing interest in the application of DTI for the analysis

of the skeletal muscles. In particular several studies focused on extracting

tensor-related quantitative parameters and visual qualitative results in order

to better characterize and understand the muscle tissue.

For instance, the evaluation of the Physiological Cross Sectional Area

(PCSA) of muscles in a non-invasive way using DTI of six volunteers is dis-

cussed in [48]. PCSA is an important parameter that allows to measure

the strength of the muscle, i.e. the maximum force that it can generate.

The study shows both analytically and experimentally that there is a linear
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relationship between PCSA and the third principal diffusivity. This cor-

roborates the interpretation that the latter accounts for diffusion across the

cross-sections of the fibers and that it is related to the radius of the fiber.

In particular, the significant differences among some muscle groups in the

third eigenvalue can be explained by differences in the average radii of the

fibers composing the group.

In [57], a method for quantitative evaluation of fiber tracking in the hu-

man skeletal muscle is proposed. The work focuses on the accuracy of trac-

tography results for the tibialis anterior muscle over nine healthy subjects.

Data were acquired using a 3T MRI scanner with 10 gradient directions and

surface coils to obtain a high Signal-to-Noise Ratio (SNR). It is based on

the knowledge of the arrangement of fibers in muscles, in particular ending

and starting points. For example the tibialis presents a bipennate structure

and the fibers are expected to go from the aponeurosis to the muscle border.

The conformity of fiber tracking results to this structure is a criterion of as-

sessment of the quality of the tractography. Other criteria are proposed and

used to provide an evaluation of the stopping criteria (FA and curvature in

particular) of the tractography algorithm, however the issue of inter-subject

variability is still open and the evaluation is sensitive to variations in image

quality and to the importance of the fat artifact.

In [36], a study of the effect of muscle contraction on principal diffusiv-

ities, FA and ADC is presented. Diffusion tensor images of the calf muscle

of twenty healthy volunteers were acquired using a 1.5T MRI scanner. The

muscle was imaged at three states: rest, dorsal flexion and plantar flexion.

Two muscle groups in the calf were investigated: the medial gastrocnemius

and the tibialis anterior. The findings of the study is that the diffusion

tensor parameters undergo a change due to the change of the state of the

muscle (for example muscle contraction results in an increase of principal

diffusivities), and that this change is related the functional roles of the dif-

ferent muscle groups. It is also reported that a visual inspection of fiber

tractography can lead to the assessment of the state of the muscle.

In [89], the variations of muscle FA induced by exercise are studied. The

images are acquired for ten healthy male volunteers with a 1.5 T MRI scan-

ner and for both the right and the left calves, three muscles are considered:

the anterior tibialis , the gastrocnemius and the soleus. The right calves of
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two subjects were exercise-loaded and the evolution of FA after exercise over

time are reported. The conclusions of the study is that the FA values are

higher for the tibialis anterior and that FA decreases for the gastrocnemius

and the soleus after exercise but reaches the initial levels a week later.

In [70], an approach for the study of the pennation angles (the orientation

of muscle fibers with respect to the aponeurosis) of the tibialis anterior

muscle is discussed. Data were acquired from eight healthy subjects using a

3T MRI scanner. The tibialis anterior was segmented manually and points

were manually selected on the aponeurosis. The points were then meshed

to obtain a surface representation of the aponeurosis. Polynomial fitting

allows to compute a tangent plane at specific locations and to obtain the

pennation angles. The main finding of the study is that the pennation angles

vary with respect to the location due to a spatial variation in the direction

of the aponeurosis.

An earlier work on the effect of exercise on DWI [84] suggests an increase

in ADC values due to muscle stimulation. The experiments were done on

the forearm muscle for nine subjects and considers a bi-exponential diffu-

sion signal to model two compartments in muscle microstructure. For both

compartments, the diffusion coefficients increase with respect to the rest

state.

In [130], the possibility of using DTI in order to evaluate muscle injury

and damage is explored. The study is based on data acquired from twelve

subjects of whom eight are healthy and four suffer from muscle injury. Mus-

cles of interest are the gastrocnemius and the soleus. The hypothesis that

injuries introduce more disorder in the muscle are confirmed by significant

changes in DTI indices. Due to muscle tears, FA is decreased and princi-

pal diffusivities are increased. Fiber tractography in damaged areas reveals

shorter and less ordered fibers.

The work in [47] studied the influence of aging on DTI parameters. DTI

using a 1.5 T MRI scanner of the calf muscle for 38 healthy subjects from

different age groups showed an alteration for some of the indices, and this

alteration varied among muscle groups. The focus was on the plantar flexors

(gastrocnemius and soleus) and the tibialis anterior. While it is shown that

the eigenvalues decreased significantly with increasing age for the plantar

flexors, reflecting a smaller fibers, they did not vary significantly with age
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for the tibialis anterior. However an opposite behavior was noticed for FA.

This implies that even if all the muscle groups undergo some changes with

increasing age, these changes may differ from a muscle group to another.

The study of the arrangement of fiber fascicles using DTI was explored

in [19] on a healthy subject with a 1.5T DT-MRI scan. SPGR (based on an

incoherent gradient echo pulse sequence) images were acquired at the same

location and the soleus and tibialis anterior were manually delineated. It

is noticed that the arrangement of the fibers was found to be in agreement

with cadaveric measurements. Indeed, the soleus fibers were found to be

short and oblique with respect to the aponeurosis, while the tibialis anterior

fibers were found to be long and with a low pennation angle.

A qualitative and quantitative comparison between Magnetic Resonance

Spectrum Imaging (MRSI) and DTI in the evaluation of fiber orientation

in skeletal muscle is provided in [115, 114]. MRSI spectra of the muscle

reveal orientation dependent peaks and therefore are useful to estimate fiber

orientation in each muscle group. It is shown that for several muscle groups

there is an agreement between the findings of MRSI and DTI and that

significant differences in fiber orientation across some muscle groups can be

established.

Another study of fiber orientation in the rat tibialis anterior was provided

in [38] in order to evaluate the possibility of using DTI for the analysis and

the simulation of muscle mechanics where fiber directions provide relevant

information for the construction of a finite-element mesh model of the mus-

cle. Comparison with fascicle directions visible directly on high resolution

MRI and with an actual longitudinal section through the muscle provides

a good agreement with DTI findings. A muscle contraction was simulated

using the generated mesh.

Similarly in [109], DTI experiments on the cat semimembranous muscle

is performed to estimate the orientation of the fibers and explore their pos-

sible use in biomechanical studies. The results obtained from DTI showed

that the principal direction of diffusion coincided with the directions of mus-

cle fibers determined through invasive visual inspection. This confirms the

anisotropic nature of the muscle tissue, which is important for the analysis

of its mechanical properties such as strain and stress.

The joint use of DTI and other MR imaging techniques is discussed
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in [18]. The goal is to build models of the musculoskeletal system with

two main advantages: overcoming oversimplified assumptions about mus-

cle assumptions and obtaining case-specific models based on these imaging

techniques. The work emphasizes the important and promising role of DTI

as a non-invasive tool for the study of muscle architecture, in particular

the fascicle arrangement. Combined with the other imaging techniques that

provide information about muscle and joint dynamics and anatomy, DTI

may be useful to design treatments for movement disorders.

In [103] a tetrahedral diffusion gradient scheme is proposed and com-

pared to a standard orthogonal scheme over five volunteers, showing an im-

provement in terms of SNR. Acquisitions of the calf muscle are done along 4

different unit vectors (in both directions). It is shown that while this scheme

does not allow to recover the entire diffusion tensor, it is possible to obtain

the off-diagonal elements. Diagonal terms are not recovered, instead their

sum (trace) can be computed. By making the hypothesis of axial symmetry,

it is possible to approximate the orientations of the principal directions of

diffusion in spherical coordinates and to compute two indices of anisotropy.

An important finding of this study is that trace seems to have low variance

across muscle groups and across subjects, so a significant change in trace

may be an indication of tissue damage. It is also reported that there is low

variability of the elevation angle θ between muscle groups while an opposite

behavior is noticed for the azimuthal angle φ.

Another optimized imaging sequence was proposed in [104]. The se-

quence has the advantage of both limiting the distortion effects induced by

Eddy currents and of providing good quality images in terms of SNR using

a stimulated echo preparation instead of a standard spin-echo preparation.

The acquisition scheme was validated using both phantoms and real data

obtained from four healthy subjects. It yielded satisfactory maps of DTI

parameters (orientation of principal directions of diffusion, FA, ADC and

eigenvalues) for the two heads of the gastrocnemius, the soleus and the tib-

ialis anterior.

The work in [98] is about the optimization of the b parameter in a DTI

acquisition sequence at 1.5 T. Using a range of reasonable values of b, the

acquisition is done on five volunteers, with the muscles of interest being

the lateral gastrocnemius and the tibialis anterior. The study used both
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qualitative criteria (the quality of fiber tractography is assessed visually)

and quantitative criteria (SNR and fiber density). It is emphasized that a

balance should be found between SNR and sensitivity to diffusion. Indeed,

for relatively low b values, the SNR is acceptable but the quality of the

tractography is degraded and at high b values the SNR is low. The work

suggests that the use of a value b = 625s/mm2 is optimal for a DTI muscle

acquisition at 1.5T.

Another parameter that can be optimized is the magnetic field strength,

and in [99], it is investigated whether a 1.5 T or a 3 T MRI scanner should

be used for muscle imaging. Experiments are done on five subjects and with

different b values. Muscles of interest are the two heads of the gastrocnemius

and the soleus. The quantitative assessment criterion is the SNR and the

study looked for differences of DTI parameters (anisotropy indices, eigenval-

ues and trace). Different field strengths did not affect DTI parameters apart

from the third eigenvalue. This means that to a certain extent diffusion in

muscle does not vary between the two values of field strengths used in the

experiments. However as expected, imaging at 3T gave better SNR than a

1.5T acquisition.

A validation of fiber tractography in the lateral head of the gastrocne-

mius of five rats is provided in [33], with images acquired using a 4.7 T

scanner. A comparison is done with direct anatomical inspection (dissec-

tion). A method for fiber bundling is proposed using a thresholding on a

similarity measure and a nearest-neighbor grouping. The similarity measure

is based on finding corresponding segments in two fiber tracts and estimating

their average amount of overlap. The medial axis is computed along with

the pennation angles over the entire length of each bundle. A strong corre-

lation between pennation angles obtained from DTI and from dissection is

found.

Another similar evaluation of fiber tractography in the skeletal muscle

of six mice is provided in [58]. In order to segment the dorsal flexor muscles

from the other muscle groups, the former were exercise-loaded, resulting

in an enhancement in their T2-weighted signal. This segmentation was

validated using dissection. This allowed to recover the muscle boundaries

and to assess the amount of fiber tracts with erroneous trajectories, i.e. not

respecting the detected boundaries. The study reports that fiber tracking
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yielded rather accurate results.

A theoretical model of water diffusion in muscle is proposed in [49] based

on cylindrical geometry. It accounts both for the muscle component and

for the extracellular component (the endomysium) with different volume

fractions. The assumption of cylindrical geometry implies that diffusion

in the fiber component can be modeled using two coefficients, one for the

fiber direction and another for the perpendicular direction. This model was

fitted to diffusion data from twenty-four subjects to study gender differences.

It is ascertained that there are statistically significant differences in DTI

parameters between males and females. The diffusion model shows that the

proportion of the muscle fibers with respect to the extracellular component

is more important for males than for females. This may be an explanation

for the noticed gender differences.

Another theoretical model for diffusion in the muscle was proposed in

[97]. It is based on approximating the cross-section of the fiber by the simple

model of a square and using the explicit expression relating the diffusion

signal decay to the length of the square edges. This is used to estimate the

radii of the fibers. Experiments were done on a group of control rats and

denervated rats, the latter exhibiting subsequent muscle atrophy. It is shown

that the estimated fiber diameter for the denervated group is significantly

less important than the one of the normal group. An opposite behavior is

noticed for FA. This shows that atrophy changes the structure of muscle

fibers in a way that can be detected using DTI. A similar study was done

on mice in [134] and showed that denervation atrophy resulted in a similar

change in DTI parameters (increase of FA and decrease of second and third

eigenvalues). It is therefore suggested that the changes in these parameters

are good indicators of myofiber atrophy.

While most of DTI studies of the human skeletal muscle focused on the

lower leg, other muscle regions, such as the forearm, the thigh and the tongue

were studied. For instance, fiber tracking in the human forearm is shown to

reflect the anatomical architecture of the forearm and to reveal its different

components in [46]. Experiments are done on a healthy volunteer with a

3T scanner. Segmentation of different muscle groups was achieved by using

ROI seeding and running fiber tractography.

The tongue has also a complex and heterogeneous structure of skeletal
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muscle fibers. It was studied in [85] using DTI for a macroscopic analysis

as well as two-photon microscopy for microscopic analysis. For two pho-

ton microscopy, an autocorrelation image was built to determine repetitive

structures and finding the fiber orientation was done by computing the Hes-

sian and taking the direction of the eigenvector corresponding to the small-

est eigenvalue. The experiments were done on three mammalian (porcine)

tongues. Both modalities reveal two populations of fibers in the lingual core

with nearly orthogonal directions. However DTI is unable to resolve cross-

ings of fibers with different orientations. The feasibility of in-vivo imaging

of the human tongue was demonstrated in [50] by extending the method in

[85] and validating it on three healthy subjects.

We note also a recent study [64] of the thigh (quadriceps muscle, in

particular the vastus lateralis oblique and the vastus medialis oblique) us-

ing DTI in order to compare healthy subjects and patients affected by

chronic lateral patellar dislocation. Both anatomical and physiological cross-

sectional areas as well as pennation angles are computed. Using data from

eight subjects, half of whom with patellar dislocation, it is ascertained that

the muscle force vectors are more laterally oriented in the subjects with dis-

location. This study corroborates the usefulness of DTI in biomechanical

studies of the muscles. Moreover, the work in [22] ascertained the feasibility

of tractography in human thigh muscles on five volunteers. Using ROI seed-

ing, fiber tracts for several muscle groups of the thigh were reconstructed,

showing a concordance with anatomical knowledge.

Inflammatory myopathies were studied using DWI of the thigh muscle

in [90]. Results are given for 19 subjects and for two types of inflammatory

myopathies, one of which is accompanied by a fat replacement. Typically it

is established that muscle inflammation result in increasing values of ADC.

In contrast, areas with fat replacement have lower ADC than normal mus-

cle, even if they still show an anisotropic structure. This implies that a fiber

structure was partially preserved. A recent study [92] used a more evolved

diffusion model that uses a bi-exponential signal in order to quantify capil-

lary perfusion. It is shown that in inflammated regions, the volume fraction

of perfusion is lower than that of normal muscle.
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3.6 Conclusion

DTI has recently found a wide range of applications for a better under-

standing of the human skeletal muscle. The rich information carried by

tensor images are of high clinical relevance. Indeed several studies men-

tioned above have shown a modification of DTI-derived scalar indices or

fiber tracts following injuries or structural disorder in the muscle. DTI of-

fers also possibilities for a better modeling of the mechanical behavior of

fiber bundles, which allows computer-based simulations to help physicians

create suitable solutions and treatments for muscle dysfunction.

We note however that the use of medical image analysis algorithms for

processing of muscle DTI has been tentative and limited. Apart from the

algorithm in [33], no fiber clustering algorithm was proposed in the field

and the studies are heavily based on manual segmentations. Moreover, dif-

fusion tensor segmentation of muscle images did not attract much attention,

when compared to brain studies. The same applies for other areas such as

denoising and registration.

In the following chapters of this thesis, we propose denoising, segmenta-

tion and registration algorithms for DTI of the human skeletal muscle and

show their usefulness for a better understanding of the muscle architecture.
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Chapter 4

A Convex Framework for

DTI Estimation and

Regularization

4.1 Introduction

Diffusion tensors are computed from diffusion signal measurements. DTI is

therefore based on inferring the estimation of a field of 3×3 symmetric posi-

tive definite matrices from these measurements. However, this inference is a

tricky issue as the DTI experimental protocol yields noisy observations due

to the diffusion-sensitizing magnetic gradient. Furthermore, the clinical pro-

tocols refer to relatively low magnet strength, or a rather low signal-to-noise

ratio. Therefore, signal reconstruction is crucial to obtain an appropriate

estimate of the tensor field and for subsequent use of this estimate in appli-

cations like fiber tractography.

Several methods have been proposed to address diffusion tensor esti-

mation and regularization. The method presented in [123] presents an ex-

plicit estimate of diffusion tensors using a linear decomposition over a dual-

tensor basis. In [30], a two-step regularization was proposed consisting of

the restoration of the principal diffusion directions using a total variation-

model followed by the smoothing of the eigenvalues using an anisotropic

tensor-driven formulation. In [14], the maximization of a log-posterior prob-

ability based on the Rician noise model is considered to smooth directly the
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diffusion-weighted images. A heat diffusion on a graph is proposed in [132].

This graph diffusion leads to the regularization of the tensor field and the

positive definiteness of the regularized field is enforced by construction. A

Bayesian model based on a Gaussian Markov Random Field was used in [79]

to smooth the diffusion tensors. In [25], the authors consider the tensors as

lying on a Riemannian manifold and use the corresponding distance to de-

rive a local weighted averaging for DTI denoising. Tensors are assumed to

be positive-definite matrices which was taken into account in [35] where an

anisotropic filtering of the L2 norm of the gradient of the diffusion tensor

was considered and their proposed PDE scheme constrains the estimation to

lie on this space. A non-spectral variant where matrix-based manifold flows

are defined is also discussed. Such a concept was further developed in [118]

where a variational method was proposed that aimed to minimize the Lp

norm of the spatial gradient of the diffusion tensor under a constraint involv-

ing the non-linear form of Stejskal-Tanner equation. A non linear diffusion

scheme is described in [121] where smoothing is made direction-dependent

using a diffusion matrix in the PDE system. More recently, in [43] a joint

reconstruction and regularization was proposed in the context of an en-

ergy minimization in a Log-Euclidean framework. The existing variational

methods focused disproportionately on enforcing the positive-definiteness

constraint, with the regularization term usually chosen as a function of the

norm of the gradient. The main limitation of most of the above-mentioned

methods is the nature of the cost function (non-convex) that entails a pre-

liminary initialization step, while little attention was paid to defining ap-

propriate smoothness components that account for the expected nature of

tensors.

In this chapter we propose a new variational approach to jointly estimate

and regularize diffusion tensor images. We use a convex energy functional

which combines the linearized form of Stejskal-Tanner equation as a data

fidelity term and a new regularization term involving precalculated weights

which measure the similarity between neighboring tensors. We show the

results of our method both on synthetic datasets and real data of diffusion

tensor muscle images.
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4.2 DTI Estimation and Regularization

Let us assume that n DTI acquisitions (Sk)k=1...n with respect to different

magnetic gradient directions (gk)k=1...n are available. Ideally, the expected

signal at a voxel x for the direction k as explained in [105] should respect

the following condition

Sk(x) = S0(x) exp
(
− bgt

kD(x)gk

)
(4.1)

with the tensor D being the unknown variable and b a value that depends

on the acquisition settings. The estimation of the tensors in the volume

domain Ω can be done through direct inference (6 acquisitions are at least

available), which is equivalent to minimizing:

Edata(D) =
∫

Ω

n∑
k=1

(
log

(
Sk(x)/S0(x)

)
+ bgt

kD(x)gk

)2
dx

This energy is based on the linearized diffusion tensor model which is rea-

sonable for moderate values of SNR [95]. Such a direct estimation is quite

sensitive to noise, on the other hand, it refers to a convex term, which is

rather convenient when seeking its lowest potential. The most common

approach to account for noise is through the use of an additional regular-

ization term which constrains the estimation of D to be locally smooth.

One of the most prominent uses of DTI is fiber extraction. Therefore it is

natural to assume that locally these fibers do have similar orientations. In

such a context, the tensor can be expressed as a linear combination of the

tensors lying in its neighborhood since they are likely to represent the same

population of fibers. Such a regularization constraint was introduced in the

case of image restoration in [9]. This assumption still holds at the bound-

aries between different groups of fibers as long as the linear combination is

thoroughly chosen to ensure that the contribution of tensors belonging to

a different fiber population is negligible. Indeed, in order to reconstruct a

tensor at a specific location, one should assign a more important weight to

neighbors that are similar to the considered tensor. This leads us to define
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the following regularization component:

Esmooth(D) =
∫

Ω

∣∣∣∣∣∣∣∣D(x)− 1
Z(x)

∫
y∈Nx

w(x,y)D(y)dy
∣∣∣∣∣∣∣∣2

F

dx

where w(x,y) reflects the similarity between tensors D(x) and D(y), ||A||F
being the Frobenius norm ||A||F =

√
tr(AtA) and Z(x) is a normalization

factor, i.e Z(x) =
∫
y∈Nx

w(x,y)dy.

We can note that we consider here a higher-order model than the gradient

of the tensor field, i.e. a weighted Laplacian. Indeed one can define a discrete

Laplacian operator by considering that the tensors can be represented as

the nodes of a graph, with edges linking neighboring nodes. The weighted

Laplacian is simply the sum over the neighbors of the differences between

tensors weighted by the values affected to the graph edges, as can be seen

in the following equation:

4x(D) =
1

Z(x)

∑
y∈Nx

w(x,y)(D(y)−D(x)) (4.2)

where 4x(D) is the discrete Laplacian of the tensor field in the position

x. Since the regularization energy is based on the norm of the Laplacian,

the model is also more accurate than the underlying assumption of total-

variation based approaches where the tensor field is considered piecewise

constant

The most critical aspect of such an approximation model is the definition

of weights, measuring the similarity between tensors within the local neigh-

borhood. The use of Gaussian weights is a common weight’s selection, i.e[
w(x,y) = e

−d2(D(x),D(y))

2σ2

]
, where d(.; .) is a distance between tensors and σ

a scale factor. Hence, with a suitable choice of σ, the regularization energy is

edge-preserving. Indeed, high values of σ entail an important regularization

while low values imply a more stringent choice of the neighbors contributing

to the tensor D(x).

In the context of simultaneous estimation and regularization it is more

appropriate to define similarities directly on the observation space rather

than the estimation space. Such a choice will lead to a tractable estimation,

while preserving the convexity of the cost function. Our distance defini-
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tion as well as our minimization step are based on the representation of

symmetric positive semi-definite matrices S3
+ as a convex closed cone in the

Hilbert space of symmetric matrices S3, where the standard scalar product

is defined by 〈A,B〉F = tr(AtB) which induces the corresponding Frobenius

norm.

4.2.1 Measuring Similarities from Diffusion Weighted Im-

ages

We aim at simultaneously estimating and smoothing the tensor field, there-

fore the weights w(x,y) in Esmooth should be precalculated using the raw

data. The most straightforward estimation of the distances can be done

through the algebraic distance between the log(Sk/S0) for two neighbor-

hood voxels in any direction

d
(
D(x),D(y)

)
=

1
b

√√√√ N∑
k=1

(
log

(
Sk(x)/S0(x)

)
− log

(
Sk(y)/S0(y)

))2

One can easily show that such an expression does not reflect similarity be-
tween tensors according to the norm ||.||F . In fact, based on [123], this leads
to

d
(
D(x),D(y)

)
=

√√√√ N∑
k=1

(
gt

k

(
D(x)−D(y)

)
gk

)2

=

√√√√ N∑
k=1

< D(x)−D(y),Gk >2
F

where Gk = gkgt
k do not form necessarily an orthonormal basis. We use a

Gram-Schmidt orthogonalization scheme to calculate an orthonormal basis
G̃k such that G̃k =

∑
l αklGl (each new vector of the new basis is a linear

combination of the vectors of the initial basis). This procedure allows us to
have an approximation of ||D(x) −D(y)||F directly from the raw data Sk

and S0 as follows

||D(x)−D(y)||F =

√√√√ N∑
k=1

< D(x)−D(y), G̃k >2
F

=
1
b

√√√√ N∑
k=1

( ∑
l

αkl

(
log (Sk(x)/S0(x))− log (Sk(y)/S0(y))

))2
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4.2.2 Semi-Definite Positive Gradient Descent

One now can seek the lowest potential of the cost function towards recov-

ering the optimal solution on the tensor space. The present framework

consists of a convex energy (a quadratic function of the tensor field) with a

global minimum which can be reached using a projected gradient descent on

the space of semi-definitive positive matrices. The projection from S3 onto

S3
+ denoted by ΠS3

+
is well defined and has an explicit expression. Indeed,

projecting M amounts to replacing the negative eigenvalues in its spectral

decomposition by 0 [35, 59]. Note that we minimize over the set of semi-

definite positive matrices because it is topologically closed, as opposed to

the set of definite positive matrices. For a suitable choice of a time step dt

that shall be discussed later, the projected gradient of a convex functional

over a closed, non-empty convex set of a Hilbert space is convergent. More

important is the fact that in areas where the flow is decreased in some di-

rections (for example due to pathologies), the amount of diffusion can be

very low. Therefore, for an adequate estimation in regions with modified

or anomalous diffusion properties we do not penalize low eigenvalues with

priors like the one used in the Log-Euclidean framework [43]. In the cur-

rent setting, the problem is well posed and the projected gradient descent

algorithm is convergent for a suitable choice of the time step dt. Using a

weighting factor λ between the data attachment term and the regularization

energy, the gradient descent can be expressed using the derivatives of the

data and smoothness energies ∂Edata
∂D(x) and ∂Esmooth

∂D(x) respectively as shown in

the following equation

Dt+1(x) = ΠS3
+

(
Dt(x)− dt

∂E

∂D(x)
(Dt)

)
= ΠS3

+

(
Dt(x)− dtλ

∂Esmooth

∂D(x)
(Dt)− dt

∂Edata

∂D(x)
(Dt)

)
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The expressions of the gradients of the data term and the smoothness energy

with respect to the tensor field can be computed explicitly as follows

∂Esmooth

∂D(x)
(D) = 2D(x)− 2

∫
y∈Nx

w(x,y)
Z(x)

D(y)dy

− 2
∫
y∈Nx

w(x,y)
Z(y)

(
D(y)−

∫
z∈Ny

w(z,y)
Z(y)

D(z)dz
)
dy

=2
(
4x(D)−

∫
y∈Nx

w(x,y)
Z(y)

4y(D)dy
)

=2
∫
y∈Nx

w(x,y)
(
4x(D)
Z(x)

− 4y(D)
Z(y)

)
dy

∂Edata

∂D(x)
(D) = 2b

N∑
k=1

(
log

(
Sk(x)/S0(x)

)
+ bgt

kD(x)gk

)
Gk

Note that the gradient of the smoothness energy results in a force that

takes into account higher-order neighborhood correlation between tensors

by considering both the close neighborhood of the tensor as well as the

neighborhood of the closest neighbors.

Let us define the norm ||.||TF over the whole tensor field D as ||D||TF =∫
Ω ||D(x)||F dx. Considering two tensor fields D1 and D2, we show in the

following that the gradient of our energy functional is L-Lipschitz. The

constant L will allow us to choose automatically a time step that insures

the convergence of the algorithm.

∥∥∥∥∂Edata

∂D(x)
(D1)−

∂Edata

∂D(x)
(D2)

∥∥∥∥
F

= 2b2
N∑

k=1

< Gk,D1(x)−D2(x) >F

≤ 2b2
N∑

k=1

||Gk||F ||D1(x)−D2(x)||F

Therefore ‖∇Edata(D1)−∇Edata(D2)‖TF ≤ 2b2
∑N

k=1 ||Gk||F ||D1 −
D2||TF . Besides, we can easily show the following inequality

‖∇Esmooth(D1)−∇Esmooth(D2)‖TF ≤ 2(1 + 2|Nx|+ |Nx|2)||D1 −D2||TF

where |Nx| is the number of the considered neighbors. Thus the gradient of

the objective function is L-Lipschitz with L = 2b2
∑N

k=1 ||Gk||F +2λ(|Nx|+
1)2. Choosing 0 < dt < 1

b2
PN

k=1 ||Gk||F +λ(|Nx|+1)2
makes the projected gradi-
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ent descent convergent [16].

We can give an interpretation of our regularization energy in terms of

diffusion-weighted images smoothing. It can be easily verified that for each

direction k ∫
Ω

< D(x)−
∫
y∈Nx

w(x,y)
Z(x)

D(y)dy,Gk >2
F dx =

1
b2

∫
Ω

[
log

(
Sk(x)
S0(x)

)
− log

 ∏
y∈Nx

(
Sk(y)
S0(y)

)w(x,y)
Z(x)

 ]2

dx
(4.3)

Using Cauchy-Schwartz inequality we obtain:

1
b2

∫
Ω

[
log

(Sk(x)
S0(x)

)
− log

 ∏
y∈Nx

(
Sk(y)
S0(y)

)w(x,y)
Z(x)

 ]2

dx ≤ Esmooth||Gk||2F

This inequality provides a lower bound for the regularization energy Esmooth

that involves the acquired diffusion signals. We can see that minimizing

Esmooth has a direct implication on the normalized diffusion weighted images
Sk
S0

. Reconstructing the tensors using a linear combination of the tensors in

its neighborhood leads to the reconstruction of the normalized signals using

a weighted geometric mean of the neighboring signals where the weights

are not calculated only with a single volume Sk but also with the volumes

obtained from the other magnetic gradient directions.

4.3 Experimental Validation

In order to validate the performance of the method we (i) have generated

artificial tensors volumes corrupted with synthetic noise, (ii) used manual

segmentation on T1 muscle images and tried to improve the separability of

classes in the DTI space after regularization.

4.3.1 Artificially Corrupted Tensors

Let us consider two volumes, one that consists of two classes with orthogonal
axes on a 20 × 20 × 20 lattice and a helix in which the internal voxels
are anisotropic and the external ones are spheric [Fig.4.1-b]. For the first
volume, the tensor fields for each region are D1 = 0.001 × [1 0.5 0.5 0 0 0]
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and D2 = 0.001 × [0.2 0.4 0.2 0 0 0] where D is presented in the form of
D = [Dxx Dyy Dzz Dxy Dxz Dyz]. The helix dataset can be found at [3].
We considered for both datasets a field strength b = 700s.mm−2, a constant
value for S0 = 60 for all volume voxels and twelve directions for diffusion
gradient, which are used to generate the DTI corresponding to such tensor
estimations. The chosen directions are the following: 1 1 1 1 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41

0.41 −0.41 −0.41 0.41 0.41 1 1 0.41 −0.41 −1 −1 −0.41
−0.41 −0.41 0.41 0.41 1 0.41 −0.41 −1 −1 −0.41 0.41 1



The images were corrupted with a white zero-mean Gaussian noise form-

ing a data set where ground-truth on the tensor are available. An estimation

of the tensor field relative to the noisy images provides the noisy tensors

data.

Then, to perform comparisons we considered the regularization algo-

rithm on noisy tensors presented in [35]. The following parameters were

used for our method: λ = 50, Nx = 3 × 3 × 3, dt = 10−7 with 50 iter-

ations. To evaluate the performance of these methods, we considered the

average sum of squared differences (SSD) between the regularized tensors

and ground truth ones. In [Table 4.1], we can see that our estimation and

regularization approach achieves better results and produces a tensor close

to the ground truth. Our method performs better than the algorithm in

[35] when the level of noise is relatively important. In fact, our method con-

siders a more robust resemblance degree between voxels. Such a criterion

insures a better selection of neighboring tensors involved in the estimation

of a given tensor. On the other hand, the anisotropic diffusion based regu-

larization relies on gradient information which is not robust in case of high

noise. In order to assess qualitatively our algorithm, we reported in [Fig. 4.1]

the resulting tensors using our regularization method and the constrained

anisotropic one. We can observe that our method achieves a better direction

preservation, even in the presence of a strong noise.

4.3.2 Real Data Experiments

In order to perform validation using real data, the following experiment

was considered. DTI acquisitions of human skeletal muscle (calf) using
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Helix dataset Homogeneous regions
σn 0.5 1.2 3 1.5 4 9
Noisy Ten-
sor

1.08 6.24 39.54 9.82 71.25 393.38

Method in
[35]

0.33 1.60 10.57 3.32 22.47 120.70

Our
Method

0.41 1.38 3.78 0.44 4.23 18.30

Table 4.1: Average Sum of Square Differences (SSD)×104. Comparisons
between our method and the one in [35]

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 4.1: Tensors on a volume slice: (a) Noisy tensors (b) Ground-truth
(c) Result obtained with [35] (d) Result obtained with our method

12 directions were carried out on a 1.5 T MRI scanner with the following

parameters: repetition time (TR)= 3600 ms, echo time(TE) = 70 ms, slice

thickness = 7mm and b value of 700s.mm−2. In order to improve the signal-

to-noise ratio, the acquisition was repeated thirteen times (one can use the

average of the measurements) while a high resolution T1-weighted volume

was also obtained and manually segmented [Fig. 4.2]. The muscles that

were considered in our study were the soleus (SOL), lateral gastrocnemius

(LG), medial gastrocnemius (MG), posterior tibialis (PT), anterior tibialis

(AT), extensor digitorum longus (EDL), and the peroneus longus (PL).

In order to proceed with an evaluation of the proposed method, the

following scenario was considered: Using the manual segmentation, and
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Figure 4.2: A slice of the T1-weighted volume, different muscle groups seg-
mented manually

the observed measurements of a given acquisition (12 directions), we have

constructed seven weak linear classifiers (in our case a multi-class linear

SVM[62]) separating each class of muscle versus all others. Then, the suc-

cess rate (percentage of voxels being attributed to the right class) from the

classifier with respect to the ground truth was determined. We remark

that linear separation is hardly achieved for PT, PL, EDL and AT while

it yields quite satisfactory results for the MG, LG and to a lesser extent

SOL which form the major part of the muscle. We have performed this

test thirteen times for: (i) direct estimation (DE), (ii) direct estimation

and regularization (DER), as well as using direct estimation of the aver-

age measurements of the thirteen acquisitions (ADE). One would expect

that since muscles consist of myo-fibers of the same nature, the classifica-

tion should be improved if the estimation of the tensors is properly done,

i.e. with appropriate regularization. However, it is important to note that

the aim of this chapter is not automatic classification of voxels in different

muscle regions using DTI (in such a case more advanced classifiers can be

used).

In [Table 4.2], we present quantitative validation of the present frame-

work for the linearly separable muscles. One can see that our method leads

to an improvement in the correct classification rates with respect to a plain

direct estimation. We also obtain better results when compared to the av-

eraging+estimation method.

For qualitative evaluation, we show the result of our regularization on a

slice of the volume in [Fig. 4.3], where one can see that the regularization
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Overall MG LG SOL
DE 78.1% 86.16% 51.1 % 84.43%

ADE 84.46% 90.47% 65.72% 88.43%
DER 86.45% 91.82% 69.76% 89.97%

Table 4.2: Correct classification rates for the different methods and for each
muscle group. The first and third row show the average correct classification
rates for the set of 13 volumes

algorithm smoothes some irregularities in the tensor field. We also run a

fiber tracking algorithm on the tensor field without regularization and after

the application of our method. In [Fig. 4.4], we can see that the obtained

fiber tractography is of better visual quality for the regularized tensor field.

Figure 4.3: Estimated tensors without regularization, tensors obtained with
our method

4.4 Discussion

In this chapter a novel approach to direct estimation and regularization

of diffusion tensor images was proposed. The main strength of our ap-

proach is the novel regularization term that assumes linear approximation

of neighborhood tensors as well as the convex nature of the proposed cost

function which can be easily optimized. Our method was compared to
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the anisotropic constrained regularization using generated data with known

noise model, and significantly improved human skeletal muscle segmenta-

tion/classification through DTI using real data.

The selection of the bandwidth σ is a critical parameter of the process.

Data-driven variable bandwidth models is a natural extension of the method.

One would expect that the optimal bandwidth depends on the form of the

observed anatomical structure which varies spatially. This suggests a a

possible improvement to the method can be obtained by using a spatially

dependent σ. Another possible extension of this work is to replace the

Frobenius norm in the energy functional by the Riemannian metric [25] or

the Log-Euclidean metric [43]. However this will be done at the expense of

the convexity of the function and the computational time.

The noise model for MRI images is known to be Rician. This model can

be used with the proposed regularization prior especially for images with

very low SNR but will result in a non-convex optimization framework.

The next chapter will focus on the segmentation of diffusion tensors and

fiber tractographies of the calf muscle.
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(a)

(b)

Figure 4.4: Fiber tractography on the tensor field (a) without regulariza-
tion (b) after the application of the proposed algorithm. Fibers which are
generated due to background noise are removed.
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Chapter 5

Kernel-based Clustering of

Diffusion Tensors and Fiber

Tracts

5.1 Introduction

5.1.1 Context and Motivation

Segmentation of diffusion data is important for a better understanding of

the potential of the modality in providing relevant information and criteria

that allow to discriminate different components (fiber bundles) of the muscle

tissue. The segmentation task presents difficult challenges due to the high

dimensionality of the data and the presence of rather important amounts

of noise and artifacts. One has also to mention that segmentation either at

the tensor or the fiber level requires adequate choices of data representa-

tion, a metric that quantifies the similarity between data appropriately and

a clustering algorithm that aims at minimizing a relevant criterion of class

assignment. Moreover, separating the different muscle groups of the skeletal

muscles of the lower leg (calf) in regions consistent with anatomical knowl-

edge is a crucial step for a localized quantitative study and comparison of

healthy and diseased fiber bundles.

As seen in chapter 3, DTI previous studies of the human skeletal muscle

provided a comparative study between subjects and different muscle regions

of scalar values derived from tensors like trace, fractional anisotropy, etc.
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They also evaluated experimentally important quantitative parameters like

PCSA. However, little emphasis was put on muscle segmentation (apart from

the method in [33]) in comparison with brain white matter, where several

approaches were proposed. In the following, we review the existing methods

for tensor and fiber clustering.

5.1.2 Previous Work

Diffusion Tensor Segmentation and Clustering

The existing diffusion tensor clustering algorithms can be subdivided in three

groups. The first class of methods uses a variational approach along with

an adequate distance over the manifold of 3× 3 symmetric positive definite

matrices. For instance in [74], a 3D surface is evolved using an implicit

level set representation to segment a region of interest where the spatial

gradient is computed using the geodesic distance and the distributions of

the tensors in each region are modeled as Gaussian. In [117], the Mumford-

Shah functional is minimized using a distance between tensors derived from

the Burg divergence. A level set technique is also used in [81] to extract the

cingulum based on the Finsler metric. Similarly in [63], several similarity

measures are investigated and guide the evolution of coupled level sets.

The second class of methods uses common clustering algorithms to

achieve segmentation of the tensor field. In [8], the authors propose to use

the Log-Euclidean metric to obtain a kernel density estimate of the prob-

ability distribution of tensors and include it in a fuzzy k-means framework

where the spatial interactions are handled using local Gaussian kernels with

a fixed bandwidth. In [39], mean-shift clustering is applied for the segmen-

tation of the Thalamus using Gaussian kernels both in the tensor and in the

position space.

The third class of methods consists of graph theoretical approaches and

manifold learning techniques that try to capture the structure of the tensor

field and propagate the information between neighbors. In [122], a graph-

cut approach is used with seed-point initialization. Spectral clustering is

performed in [139] through the eigenanalysis of an affinity matrix between

tensors based on a selected similarity measure. In [53], several manifold

learning techniques are extended to deal with non-Euclidean spaces and
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spatial connectivity is ensured by considering isotropic neighborhoods. The

particular case of Locally Linear Embedding (LLE) is further discussed in

[54] with different choices of tensor metrics.

Fiber Clustering

Graph theoretical approaches have been particularly popular for fiber clus-

tering. For instance, a Gaussian model of the fibers and a normalized-cut

approach based on the Euclidean distance between the moments is presented

in [20]. In [86], spectral clustering along with the Hausdorff distance between

fibers is considered. The method presented in [21] relies on Laplacian Eigen-

maps and similarity between fibers is determined using their end points. In

[107], the authors suggest another manifold learning technique by construct-

ing a graph-based distance that captures local and global dissimilarities be-

tween fibers and use LLE for clustering of the tracts. Curve modeling has

attracted attention and was handled in [76] by defining a spatial similarity

measure between curves and using the Expectation-Maximization algorithm

for clustering. The method proposed in [119] considers the simultaneous use

of medoid-shift clustering and isomap-like manifold learning and proposed

to include prior knowledge in the segmentation process using a white matter

fiber atlas. Mean-shift was also used in [140] where each fiber is first em-

bedded in a high dimensional space using its sequence of points, and kernels

with variable bandwidths are considered in the mean-shift algorithm. Fibers

were represented in [100] using their differential geometry and frame trans-

portation and a consistency measure was used for clustering. Another fiber

modeling approach was proposed recently in [116] where fiber bundles were

represented using a probabilistic framework based on a hierarchical Dirich-

let processes mixture (HDPM), therefore allowing to avoid computations of

pairwise distances over an important number of fiber tracts.

Other clustering approaches use agglomerative techniques based on a

defined similarity criterion between fibers. For example in [37], the corre-

sponding segments between each pair of fiber tracts is found and a similarity

measure is defined so that both the amount of overlap and the Euclidean

distance between the corresponding segments are taken into account. The

clustering is performed by thresholding of the similarity measure and group-

ing of the nearest neighbors. In the same spirit, the method in [29] uses a
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threshold over a distance between fibers like the Chamfer or the Hausdorff

distances and ensures that the distance between every pair of fibers within

a class is below the predefined threshold. Agglomerative hierarchical clus-

tering was also investigated in [135, 136] by starting from singleton clusters

and merging the closest clusters based on a distance between paths. The

clustering is made consistent across subjects using registration and match-

ing of the centers of starting, middle and end points as feature vectors. This

allows to find correspondences between clusters.

Of particular interest in the field are the supervised methods that try

to achieve a segmentation consistent with a predefined atlas. Registration

of B0 images and a hierarchical classification of fibers is performed in [78]

using the B-spline representation of fibers. The method proposed in [86] is

further extended in [87] by means of a Nystrom approximation of the out-

of-sample extension of the spectral embedding. The atlas provided by this

technique is used as an initialization for an Expectation-Maximization algo-

rithm for groupwise registration and labeling in [137]. This is particularly

useful in order to remove the noise in tractography labeling and the outlier

tracts. Similarly, an atlas provides anatomical knowledge in [124] in order

to initialize the classification and is followed by several steps that improve

the clustering and reject the outlier tracts.

5.1.3 Contributions of this Work

We address several issues in this chapter. While the previous fiber cluster-

ing methods discard the tensor information and rely on the obtained tracts

as sets of spatial positions, the method we propose handles tensors and is

easily extended to segment fibers while taking into account the initial tensor

field. We also bridge the gap between tensor and fiber clustering. To this

end, we propose a kernel over the tensor space that is consistent with the

physical intuition of diffusion tensors as representing the covariance of the

probability distribution of water protons positions. Unlike the existing sim-

ilarity measures and the use of isotropic Gaussian kernels or neighborhoods

for spatial interaction, the proposed kernel quantifies not only the dissimi-

larity between tensors, but takes into account their localization in space in

a tractable way and enhances implicitly the connectivity along fiber tracts,

i.e. in the feature space provided by the kernel embedding, tensors which
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are aligned will be closer than tensors which do not lie on the same fiber

tract, which is not guaranteed by spatially isotropic Gaussian kernels. We

use kernel-PCA for embedding in a Euclidean space and landmark-Isomap

for information propagation along diffusive pathways to obtain the final em-

bedding. This is important as it allows to reflect the diffusion flow along

the muscle fibers which are characterized by an elongated structure. The

clustering is done in the embedding space by a plain k-means algorithm.

The proposed kernel is extended to deal with fiber tracts as input of the

clustering algorithm by way of the summation kernel, which is a handy way

to define kernels over sets. Not only we take into account in this kernel the

interactions between the points (as spatial positions) but also the informa-

tion provided by the whole tensor field. Given that the fiber pathways are

provided, only kernel-PCA and k-means are sufficient for clustering in the

fiber domain. We give an interpretation of the fiber kernel as a comparison

of soft representations of the fiber tracts and show that it provides a natural

generalization for Gaussian kernel Correlation.

Moreover, we show how this unsupervised algorithm can be made su-

pervised in an efficient way. Given that the kernel satisfies the Mercer

conditions, we can look at the problem from a discriminative perspective

and use kernel Support Vector Machine (SVM) pairwise classifiers in order

to segment the calf muscle in regions consistent with a previously defined

atlas.

We further develop this kernel-based viewpoint and build Hilbertian an-

gular metrics between fibers. These are derived from their counterparts

between tensors, providing a more general framework. We investigate two

additional approaches for clustering purposes. The first approach resorts to

k-means in the diffusion maps embedding space. Note that diffusion maps

were used for Orientation Distribution Function (ODF) segmentation in Q-

ball images in [120], where spatial coherence was imposed using the Marko-

vian relaxation of the affinity matrix. However the fiber domain provides no

straightforward spatial neighborhood relationships like those given by the

nearest neighbors in the 3D image grid. We show that the proposed metrics

impose spatial coherence in the fiber domain while taking into account the

information provided by the tensor field.

The second clustering approach is motivated by the limits of manifold
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embedding methods. Indeed, the use of embeddings and common clustering

techniques like k-means requires to choose the dimension of the embedding

and the number of clusters. It would be preferable to obtain the num-

ber of clusters as a result of the clustering algorithm, especially when the

inter-subject variability (which is rather important for skeletal muscles) may

require the use of different number of clusters across subjects. Moreover, se-

lecting the embedding dimension is an issue since a too low dimension will

result in information loss and a too high dimension will include an impor-

tant dispersion in the data. Furthermore, clustering on the manifold directly

is a tricky issue since one has to compute intrinsic means on submanifolds

where an explicit expression of geodesic distances is not necessarily avail-

able. Another issue is the sensitivity of methods like k-means to initializa-

tion. Therefore, we propose a method that performs manifold clustering of

fibers without resorting to manifold embeddings or computations of intrinsic

means. It is based on linear programming (LP) and uses the geodesic dis-

tances in a way similar to [119] from the fibers to a reduced set of landmark

fibers to perform the clustering. Unlike k-means, the algorithm provides

automatically the number of clusters, is not sensitive to initialization and

the class centers are chosen as exemplars from the dataset.

The remainder of this chapter is organized as follows: In section 5.2,

we discuss the kernel over the tensor space and provide an analysis of its

properties and advantages. A more general case is also explored. More-

over, we discuss its use in a kernel-PCA and landmark-Isomap setting for

clustering of diffusion tensors. In section 5.3 we propose several fiber clus-

tering strategies based on extensions of the similarity measures defined in

the tensor space, both in a supervised and unsupervised fashion. Section

5.4 is dedicated to the experimental results and we discuss the perspectives

of this work in section 5.5.

5.2 Diffusion Tensor Clustering

5.2.1 A Probability Kernel on Tensors

Diffusion tensors measure the motion distribution of water molecules. More

explicitly, they refer to the covariance of a Gaussian probability over the
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displacements r of the water protons given a diffusion (mixing) time t:

p(r|t,D) =
1√

det(D)(4πt)3
exp

(
−rtD−1r

4t

)
(5.1)

Given a diffusion tensor D localized at voxel x, we can obtain the proba-

bility of the position y of the water molecule previously localized at x in a

straightforward way:

p(y|x, t,D) =
1√

det(D)(4πt)3
exp

(
−(y − x)tD−1(y − x)

4t

)
(5.2)

Therefore, a natural way to define a kernel over the tensor space where

position is taken into account is to consider the expected likelihood ker-

nel [61]. Let us consider two tensors D1 and D2 localized at x1 and

x2 respectively, and a diffusion time t. The expected likelihood kernel

kt((D1,x1); (D2,x2)) between the pairs (D1,x1) and (D2,x2) is defined

as the expectation of Gaussian probability p2(y|x1, t,D1) under the proba-

bility law of p1(y|x2, t,D2) and is given by the following expression:

kt((D1,x1); (D2,x2)) = Ep2(y|x2,t,D2)(p1(y|x1, t,D1)) (5.3)

=
∫

p1(y|x1, t,D1)p2(y|x2, t,D2)dy (5.4)

Note that the diffusion time t is naturally a parameter for this kernel and

that to be more precise mathematically, this kernel is not actually defined

on the space of tensors S3
+ but rather over the product space S3

+×R3. Based

on the derivation in [61] and using the expression provided in 5.2, one can

obtain the following closed-form expression of this kernel:

kt((D1,x1); (D2,x2)) =
1√

(4πt)3
k1(D1,D2)k2((D1,x1); (D2,x2)) (5.5)
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where

k1(D1,D2) =
1√

det(D1 + D2)

k2((D1,x1); (D2,x2)) = exp
(
− 1

4t
(xt

1D
−1
1 x1 + xt

2D
−1
2 x2)

)
×

exp
(

1
4t

(D−1
1 x1 + D−1

2 x2)t(D−1
1 + D−1

2 )−1(D−1
1 x1 + D−1

2 x2)
)

(5.6)

We notice that k2 has a much simpler expression. Indeed, using the following

inversion properties

(D1 + D2)−1 = D−1
1 −D−1

1 (D−1
1 + D−1

2 )−1D−1
1 (5.7)

(D1 + D2)−1 = D−1
2 −D−1

2 (D−1
1 + D−1

2 )−1D−1
2 (5.8)

we obtain the following compact expression for k2:

k2((D1,x1); (D2,x2)) = exp
(
− 1

4t
(x1 − x2)t(D1 + D2)−1(x1 − x2)

)
(5.9)

5.2.2 Properties of the Tensor Kernel

The kernel stems from an L2 inner product defined on the Hilbert space of

square-integrable functions, to which Gaussian probability densities belong.

Therefore the kernel verifies the Mercer conditions, i.e. it is positive definite.

We hereafter provide an analysis of this kernel:

• The first term k1(D1,D2) may be rewritten as follows:

k1(D1,D2) =
1√

det(D2)
1√

det(Id + D1D−1
2 )

=
1√

det(D2)
1√∏3

i=1(1 + λi)
(5.10)

where Id is the 3× 3 identity matrix and λi are the generalized eigen-

values of the pair of matrices (D1,D2). This is reminiscent of the

geodesic distance on the manifold of 3× 3 symmetric positive definite

matrices d =
√∑3

i=1(log(λi))2 [91] which is also based on the gen-

eralized eigenvalues: the distance (respectively the kernel) is increas-

ing (respectively decreasing) with increasing (respectively decreasing)
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generalized eigenvalues, which is a reasonable behavior (recall that the

kernel reflects similarity). The symmetry is ensured in the geodesic

distance by the squared logarithm function because the latter is invari-

ant with respect to the inverse transformation λi 7→ 1
λi

(recall that the

generalized eigenvalues of the pair (D2,D1) are the inverse of those

of the pair (D1,D2)), while it can be seen that the factor 1√
det(D2)

has a similar role since it also preserves the symmetry. Note that the

original expression is clearly symmetric.

• Three special cases of the second factor k2 are interesting:

1. When D1 = D2 = D

k2((D,x1); (D,x2)) = exp
(
− 1

8t
(x1 − x2)tD−1(x1 − x2)

)
(5.11)

As expected, when the tensors are equal, what appears is the

Mahalanobis distance between positions x1 and x2 with respect

to D. In particular when the tensor D is isotropic, i.e. D = µId,

k2((D,x1); (D,x2)) = exp
(
− 1

8µt ||x1 − x2)||2
)
, which is plainly a

Gaussian kernel between the points x1 and x2.

2. When x1 = x2 = x, k2((D1,x); (D2,x)) = 1, which means that

the kernel k reduces to k1. Again this was expected since the

kernel will rely only on tensor similarity if there is no difference

in spatial positions.

3. When t → ∞, this corresponds to the limit case where the spa-

tial interaction is not taken into account (k2 = 1). As in the

previous case, the kernel will rely only on tensor similarity as an

infinite time of diffusion will remove the information of spatial

arrangement. Hence the diffusion time t is important to weight

the contribution of each term in the kernel definition.

• The first special case is of particular interest in diffusion tensor analysis

to enhance the connectivity between tensors which are aligned on the

same fiber tract. Let us consider the tensor configuration in [Fig.5.1]

where all tensors are equal to D = µ(
→
e1
→
e1

t
+

→
e2
→
e2

t
) + ν

→
e3
→
e3

t
, where

(
→
ei)i=1...3 are the canonical basis of R3 and ν > µ are the eigenvalues of
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Figure 5.1: A configuration where the tensor kernel implicitly puts more
weight on the connection between D1 and D2 than between D1 and D3,
reflecting their alignment.

D. The tensors have therefore a principal direction of diffusion along
→
e3. The tensors are all equal yet the second term k2 allows to affect

more affinity between tensors 1 and 2 than between tensors 1 and 3.

Indeed, we can compute the kernel values to obtain

k2((D,x1); (D,x2)) = exp
(
− d2

8νt

)
(5.12)

k2((D,x1); (D,x3)) = exp
(
− d2

8µt

)
(5.13)

where d = ||x1 − x2|| = ||x1 − x3||. Since ν > µ, we can see that the

similarity between the tensors 1 and 2 is higher than the similarity the

tensors 1 and 3, despite the fact that the tensors are all equal. The

kernel captures locally the fiber structure and takes into account the

spatial context by introducing a coupling between tensors and their

spatial positions.

Now we discuss the more general case where powers of diffusion proba-

bilities are considered with a normalized L2 inner product.
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5.2.3 A More General Case: Multivariate Normals as a Sub-

set of the Exponential Distributions Family

The structure of the set of multivariate normal distributionsM as a statisti-

cal manifold endowed with the Fisher information geometry was discussed in

[35], where a closed-form solution of the geodesic distance [91] over this man-

ifold is available for the particular case of Gaussian distributions with com-

mon mean. Here we view the multivariate normal distributions as a subset

of the exponential distributions family. Let us consider a normal probability

density p. In this context, given the exponential decay of the distribution, it

is interesting to notice that not only p is an element of the Hilbert space L2

of square integrable functions (the case discussed above) but any power pα,

with α a strictly positive real number is also square integrable. Also the L2

inner product between probabilities is not normalized as can be seen from

the factor 1√
det(D2)

that appears in the expression of the tensor similarity

term k1. This motivates the use of normalized probability product kernels

[61] to define a family of angular similarities between multivariate normal

distributions. We identify the multivariate normal probabilities with their

couples of parameters.

kα(p1, p2) =
∫

p1(x)αp2(x)αdx√∫
p1(x)2αdx

√∫
p2(x)2αdx

(5.14)

where p1 and p2 are two multivariate normal distributions. kα is simply the

normalized L2 inner product between pα
1 and pα

2 . The geometric interpreta-

tion of this quantity is that it is the cosine of the angle between pα
1 and pα

2 .

It defines a Mercer kernel over the space of multivariate normal distribu-

tions, i.e. for any subset p1...N ofM, the Gram matrix G of Cα with entries

Gij = kα(pi, pj) is semi-definite positive. The Mercer property allows the

construction of a mapping φα associated with the kernel Cα that provides

an embedding of M in the Reproducing Kernel Hilbert Space (RKHS) Hα

such that kα(p1, p2) =< φα(p1), φα(p2) >Hα , where < ., . >Hα is the inner

product of Hα. This allows to have the following Hilbertian metric dα|Hα
:

dα|Hα
(p1, p2) =

√
kα(p1, p1)− 2kα(p1, p2) + kα(p2, p2) (5.15)
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Given that kα is a normalized scalar product, i.e. kα(p, p) = 1, we obtain

the following expression:

dα|Hα
(p1, p2) =

√
2− 2kα(p1, p2) (5.16)

Note that kα is the generalization of the normalized Expected Likelihood

kernel since it corresponds to the special case α = 1. Similar computations

to those in 5.2.1 lead to very similar equations:

kα(p1, p2) = ktensor(D1,D2)kspatial
α (p1, p2) (5.17)

where

ktensor(D1,D2) = 2
√

2
det(D1)

1
4 det(D2)

1
4√

det(D1 + D2)

kspatial
α (p1, p2) = exp

(
− α

4t
(x1 − x2)t(D1 + D2)−1(x1 − x2)

)
(5.18)

We can see that ktensor
α is a tensor similarity term and is independent of the

parameter α. The difference with respect to k1 is that ktensor
α is normalized.

The second term kspatial
α is also very similar to k2. Again it is a spatial

connectivity term where appears the Mahalanobis distance between the lo-

cations x1 and x2 with respect to the sum of tensors (D1 +D2). The power

α operates as a scale parameter in the exponential function, so changing the

parameter α amounts to a rescaling of the diffusion time t.

In the next subsection, we discuss how to embed the tensors in a Eu-

clidean space based on the kernel information as a preliminary step to clus-

tering.

5.2.4 Embedding of the Tensors through Kernel PCA and

Landmark Isomap

Let us consider the N pairs (Di,xi)i=1...N representing a tensor field. We

construct the N ×N kernel matrix K of entries Kij = kt((Di,xi); (Dj ,xj))

for a fixed diffusion time t and normalize it to obtain K̃ such that K̃ij =
Kij√
KiiKjj

. These pairs are then embedded in a k-dimensional Euclidean space

using an eigenvalue decomposition of K̃ = USUt where U is an orthogonal

73



Chapter 5. Kernel-based Clustering of Diffusion Tensors and Fiber Tracts

N × k matrix and S is a k × k diagonal matrix, or equivalently by using a

kernel PCA. The coordinates of the embedded tensors are given by the N×k

matrix X = U
√

S where
√

S is obtained by setting the diagonal elements of

S to their square roots [101]. Each row m of X holds the coordinates in the

feature space of the m-th pair.

Given the k-dimensional representation X of the tensor field, one has to

propagate the local interaction between the tensors and take into account

the distance along diffusive pathways, i.e. simulate the water flow along

these trajectories. This is done using the Isomap algorithm which is based

on three steps [106]:

1. Consider the data points as vertices of a graph with edges linking

neighbors. The notion of neighborhood can be defined using a thresh-

old over distances (two points are neighbors if the distance between

them is smaller than a threshold) or using k-neighborhoods (two points

are neighbors if one is among the k closest points to the other).

2. Between every two points of the dataset, find the shortest path over the

graph using the Dijkstra algorithm based on the Euclidean distance in

the feature space and compute a new distance matrix that holds the

lengths of the path. This step is important in diffusion tensor analysis

in order to propagate diffusion information along fiber tracts.

3. Perform Multidimensional Scaling (MDS) to obtain the new embed-

ding, i.e. a configuration of points that respects approximately the

distance matrix computed in the previous step. Since the kernel en-

hances fiber connectivity, we expect the new configuration to reflect

the diffusion flow in the tissues.

Kernel PCA and Isomap are techniques that were previously used for statis-

tical analysis of diffusion tensors in [65, 113], however here they are applied

in the context of clustering in the space of Gaussian diffusion probabili-

ties. Note that in practice we use a faster version of this algorithm called

landmark-Isomap [34] that reduces the computational time of the first step

by computing the distance of the points to a reduced set of landmarks cho-

sen randomly in the dataset. The clustering is done afterwards using a plain

k-means algorithm. Note that the kernel PCA step amounts to denoising
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in the feature space and that from a theoretical point of view (with perfect

data), we could have used from the outset the Euclidean distance (L2 norm)

implied by the kernel kt in the Isomap algorithm without the kernel PCA

projection, since the latter requires only the distances between points given

by the metric based on normalized kernels in [Eq. 5.16].

We now propose a supervised algorithm for tensor segmentation based

on Support Vector Machine (SVM) classifiers and probability kernels.

5.2.5 Supervised SVM Tensor Clustering

We briefly review the principles of two class SVMs [110]. Given N points xi

with known class information yi (either +1 or −1), SVM training consists in

finding the optimal separating hyperplane described by the equation wtx +

b = 0 with the maximum distance to the training examples. It amounts to

solving a dual convex quadratic optimization problem and each data point

x is classified using the SVM output function f(x) = (
∑N

i αiyixxi) + b.

The algorithm is extended to achieve non linear separation using a kernel

function K(x,y)(symmetric, positive semi-definite) that is used instead of

the standard inner product. For the case of multi-class learning, several

pairwise SVM classifiers are built and the classification is done in a one

against all fashion.

In our case the data points are tensors and the used kernel function

is given by the normalized probability kernel ktensor(D1,D2) that verifies

the Mercer property and is therefore suitable for SVM learning. Note that

the learning and testing procedures make the assumption that the global

rotation between the used learning and testing datasets is negligible, which

is the case when the DT-MRI acquisitions are done in approximately the

same conditions.

In order to impose spatial regularity in the segmentation, we use a

Markov Random Field framework. It also allows to use all the scores given

by the SVMs, instead of making the labeling decision by simply taking the

maximum score. Therefore, we define the following energy E to minimize:

E =
∑
i∈Ω

us(l(i)) + λ
∑

i∈Ω,j∈N (i)

up(l(i), l(j)) (5.19)
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(a) The primal-dual principle (b) The primal-dual schema

Figure 5.2: (a) The optimal cost cTx∗ is between the costs bTy (cost of
a dual feasible solution) and cTx (the cost of an integral-primal and dual
feasible solutions). The intuitive idea that is exploited is that if the gap
between the primal and dual costs is reduced, the gap between the optimal
cost and the primal cost is also reduced. (b) The primal-dual technique
consists in building a sequence of dual and integral-primal feasible solutions
so that the approximate solution is within a certain range from the optimal
solution. The primal-dual paradigm can be subsequently applied.

where Ω is the image domain, l(i) is the label of the voxel i, N (i) is the

considered neighborhood, us is the potential given by the SVM scores and up

is a pairwise potential that imposes spatial regularization. The parameter

λ is a trade-of factor between the two terms. We choose us(l(i)) = log(1 +

exp(−αfl(D(i)))) which is a decreasing potential in the score given by a

one-against-all SVM classifier fl. The following pairwise potential is chosen:

up(l(i), l(j)) = (1− δl(i),l(j)) (5.20)

where δ is the Kronecker delta. This means that we penalize a configuration

where different labels are assigned to neighboring voxels, resulting in a less

important amount of noise in the segmentation result. In order to minimize

the energy, we use the Fast-PD algorithm proposed in [67, 68].

We now provide a description of the Fast-PD algorithm that is used to

optimize the Markov Random Field energy. This description will be helpful

in the remainder of the thesis, in particular in subsection 5.3.4 and in chapter

6. The algorithm is based on introducing auxiliary variables and reformu-

late the energy minimization as a linear programming problem, i.e. the

optimization consists now in minimizing a linear function in the auxiliary

variables under linear equality and inequality constraints. The optimiza-

tion is based on the primal-dual technique, which is a popular approach in

the Linear Programming literature. In order to have a clearer picture of
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the mechanisms used in the algorithm , let us consider the following linear

programs, which are called primal and dual Linear Programs (LPs):

Primal: min cTx Dual: max bTy

s.t. Ax = b,x ≥ 0 s.t. ATy ≤ c
(5.21)

where A is a matrix that provides with the vectors b and c the (linear)

nequality constraints of the primal and dual problems. The optimization

variables of the problems are x and y. Note however that the variable x

considered in the primal problem is continuous while the solution to the

original MRF energy should be integral. This is the at the root of ma-

jor difficulties in solving the MRF problem since it is in general NP-hard.

Therefore the sought solution is but an approximation of the solution of the

original problem. A primal-dual f -approximation technique refers to the

following paradigm (illustrated also in Fig. 5.2(a)):

Primal-Dual Paradigm. If x and y are integral-primal and dual feasible

solutions having a primal-dual gap less than f , i.e.:

cTx ≤ f · bTy, (5.22)

then x is an f-approximation to the optimal integral solution x∗, i.e. cTx∗≤
cTx ≤ f · cTx∗.

This paradigm paves the way to the primal-dual strategy, since it sug-

gests reducing the duality gap in order to have an approximate solution that

is closer to the optimum. The strategy consists in computing iteratively an

f -approximate solution (this strategy is explained in [Fig.5.2(b)]):

Primal-Dual Strategy. Iteratively computing pairs of integral-primal and

dual solutions {(xk,yk)}tk=1, until the elements xt, yt of the last primal and

dual solutions are both feasible and have a primal-dual gap which is less than

f , i.e. the paradigm (5.22) can be applied.

One the main strengths of the Fast-PD algorithms is its versatility since

it makes very few hypotheses about the MRF energy function. In particular,

the only stringent requirement is that the MRF pairwise potential function is
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nonnegative. Moreover, note that bounds on the optimality of the computed

solution are given. The global optimum is therefore computed up to certain

precision that can be input by the user. Also, this technique has a favorable

computation time, resulting in a significant efficiency improvement with

respect to exisiting methods in the literature[67, 68].

In the following section, we extend in a tractable way the proposed kernel

defined over the tensor field to the fiber domain.

5.3 Fiber Clustering

5.3.1 Probability Kernel in the Fiber Domain

The fiber trajectories are obtained through the integration of the vector

field of principal directions of diffusion. Based on the continuous tensor

field approximation (by means of interpolation), we represent each fiber

tract as a sequence of tensors localized in spatial positions, i.e. is a set of

pairs τi = (Di,xi)i=1...n where n is the number of points lying on the fiber.

Note that the tractography already requires tensor interpolation and that

the interpolated tensors are therefore kept for kernel computation. So it is

natural to extend the tensor kernel using a kernel over sets. We simply use

the summation kernel [56] to obtain the following Mercer kernel Kt between

two fibers F1 and F2:

Kt(F1,F2) =
1
n1

1
n2

∑
(Di,xi)∈F1

∑
(Dj ,xj)∈F2

kt((Di,xi); (Dj ,xj)) (5.23)

where n1 (resp. n2) is the number of points of the fiber F1 (resp. F2). This

kernel sums the interactions between tensors belonging to the fiber tracts.

It captures the diffusion and spatial links between diffusive pathways. It is

important to notice that while all the interactions are summed, the diffusion

time t acts as a scale parameter. Therefore for a suitable choice of t, a ten-

sor interacts only with tensors lying in a local neighborhood and far-away

tensors have a negligible impact on the summation. While this formulation

does not take into account geometric shape information like pointwise cur-

vature and torsion, it allows to avoid finding point correspondences that is

needed in the case where Hausdorff or Chamfer distances are used. It has
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also the advantage of yielding directly a symmetric similarity between fiber

tracts. Indeed given the separability of the tensor kernel in a tensor similar-

ity term and a spatial connectivity term, the fiber kernel can be seen as a

similarity between fibers that tries to match tensors as local features within

an anisotropic neighborhood. As in the case of tensors, the segmentation of

the fiber tracts is achieved using kernel PCA and k-means clustering.

5.3.2 A Physical Interpretation of the Fiber Kernel

One can see that the summation kernel is simply the expected likelihood

kernel between distributions providing a soft representation for fibers. More

explicitly, we consider a dynamical system where a particle can be initially at

a position xi on the fiber tract and moves to a position y with the following

probability

p(y|t, (Di)i=1...n) =
n∑

i=1

p(xi)p(y|xi, t,Di) (5.24)

With a uniform prior distribution on xi, p(y|t, (Di)i=1...n) =
1
n

∑n
i=1 p(y|xi, t,Di). If the initial positions were independent (which

is not the case because they are the result of the tractography), this would

have amounted exactly to an adaptive kernel density estimation of the posi-

tion of the water molecules along the fiber tracts where the point-dependent

Gaussian kernels use the diffusion tensors as covariance matrices to model

the uncertainty. However the distributions in equation 5.24 still provide a

soft representation of the fibers and measure the compactness of the spatial

configuration of the fiber tract. By bilinearity of the expected likelihood

kernel, it is straightforward to see that the expected likelihood kernel of the

distributions given in Equation 5.24 is exactly the summation kernel.

5.3.3 Extension of the General Case to the Fiber Domain

We can extend the normalized kernels to the fiber domain though the use

of a Hilbert space fiber tract model. A fiber is again represented as a set

of probability measures (pi)i=1...N where N is the number of points of the

fiber. Every probability measure (pi) has a pair of parameters (xi,Di) where

xi. When considering the mapping φα of these measures in the RKHS

Hα, we can represent F as a weighted average of φα(pi)i=1...N , i.e. F =
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∑N
i=1 wiφα(pi). A straightforward choice of weights is ∀i, wi = 1

N .

Let us consider a fibers F1 (resp. F2) represented using a set of prob-

abilities (pi)
(1)
i=1...N1

(resp. (pi)
(2)
i=1...N2

) and weights w
(1)
i (resp. w

(2)
i ). The

angular similarity Ĉα between F1 and F2 points is defined as follows:

Kα(F1,F2) =
<

∑N1
i=1 w

(1)
i φα(p(1)

i ),
∑N2

j=1 w
(2)
j φα(p(2)

j ) >Hα∥∥∥∑N1
i=1 w

(1)
i φα(p(1)

i )
∥∥∥
Hα

∥∥∥∑N2
j=1 w

(2)
j φα(p(2)

j )
∥∥∥
Hα

(5.25)

Using the bilinearity of the inner product < ., . >Hα , we can express Kα

using kα :

Ĉα(F1,F2) =

∑N1
i=1

∑N2
j=1 w

(1)
i w

(2)
j kα(p(1)

i , p
(2)
j )∥∥∥∑N1

i=1 w
(1)
i φα(p(1)

i )
∥∥∥
Hα

∥∥∥∑N2
j=1 w

(2)
j φα(p(2)

j )
∥∥∥
Hα

(5.26)

where
∥∥∥∑Nk

i=1 w
(k)
i φα(p(k)

i )
∥∥∥
Hα

=
√∑Nk

i=1

∑Nk
j=1 w

(k)
i w

(k)
j kα(p(k)

i , p
(k)
j ) for k =

{1, 2}. Again this allows to derive a Hilbertian metric between fibers in a

similar way to equation 5.16.

5.3.4 Alternative Unsupervised Clustering Techniques

In 5.3.1, we suggested the use of a kernel PCA technique for fiber clustering.

In the following, we discuss two alternative strategies: diffusion maps and

linear programming clustering. Both are used for manifold clustering, the

first gives an estimation of a diffusion distance and the second overcomes

some limitations of manifold embeddings.

Diffusion Maps

Diffusion maps [28] are a spectral embedding of a set X of n nodes, for

which local geometries are defined by a kernel κ : X ×X → R. The kernel

κ satisfies κ(x, y) ≥ 0, and κ(x, y) = κ(y, x). This kernel can be interpreted

as an affinity between nodes. The resulting graph (an edge between x and

y carries the weights κ(x, y)) can be transformed into a reversible Markov

chain by the so called normalized graph Laplacian construction. In [69] a

related construction was used to define a geometry on a set of observations,
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or trajectories. We define

s(x) =
∑

y

κ(x, y) and p(x, y) =
κ(x, y)
s(x)

. (5.27)

This new kernel is no longer symmetric, but it satisfies

∀x,
∑

y

p(x, y) = 1. (5.28)

Therefore it can be interpreted as the probability of the transition from node

x to node y in one time step, or a transition kernel of a Markov chain. It

gives a diffusion operator

Pf(x) =
∑

a(x, y)f(y)dµ(y), (5.29)

P is the Markov matrix with the entries p(x, y) and its powers P τ allow to

propagate information through the Markov chain in τ timesteps according

to the transition kernels. According to P τ we can define a family of diffusion

distances parameterized by τ on the set of nodes

Dτ (x, y) =
∑

l=1,...,m

(pτ (x, l)− pτ (y, l))2

π(l)
(5.30)

where π(l) = s(l)/
∑

j s(j) is the probability of the node x in the unique

stationary distribution (the uniqueness is fulfilled if the graph is connected).

Dτ is an L2 distance between the posterior distributions of reaching x or y

from all points l in the graph. It captures the connectivity in the Markov

chain, summing over all possible paths from x to y. It is low if there is a

large number of paths of length τ with high transition probabilities between

the nodes x and y.

The operator P defines a geometry which can be mapped to an Euclidean

geometry by an eigenvalue decomposition of P . The latter results in a se-

quence of eigenvalues λ1, λ2 . . . and corresponding eigenfunctions Ψ1,Ψ2, . . .

that fulfill PΨi = λiΨi. The diffusion map after τ timesteps Ψτ : X → Rw

embeds each node i = 1, . . . , n in the Markov chain into a w dimensional

Euclidean space where the clustering of the data points can be done using
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k-means

i 7→ Ψτ (i) ,


λτ

1Ψ1(i)

λτ
2Ψ2(i)

...

λτ
wΨw(i)

 (5.31)

In this space, the Euclidean distance reflects the distances (parameterized

by τ) defined by the Diffusion distance Dτ .

‖Ψτ (i)−Ψτ (j)‖ = Dτ (i, j). (5.32)

Note that a common choice for the kernel κ(., .) is the Gaussian kernel, i.e.

κ(x, y) = exp
(
−d2(x,y)

2σ2

)
, where d is a distance over the set X and σ a scale

factor. In our case, d corresponds to the fiber metric defined in section 5.3.

Manifold Clustering via Linear Programming

Clustering refers to the process of organizing a set of objects into groups such

that the members of each group are as similar to each other as possible. A

common way of tackling this problem is to formulate it as the following

optimization task: given a set of objects V = {p1, . . . , pn}, endowed with

a distance function d(·, ·) that measures dissimilarity between objects, the

goal of clustering is to choose K objects from V, say, {q1, . . . , qK} (these

will be referred to as cluster centers hereafter) such that the obtained sum

of distances between each object and its nearest center is minimized, or:

min
q1,...,qK∈V

∑
p∈V

min
i

d(p, qi) . (5.33)

An important drawback of the above formulation is that it requires the

number of clusters K to be provided beforehand, which is problematic as

this number is very often not known in advance. Note that a wrong value

for K may have a very negative effect on the final outcome. One would thus

prefer K to be automatically estimated by the algorithm as a byproduct of

the optimization process. To address this issue, we will let K be a variable

here, and, instead of (5.33), we will use the following modified objective

function, which additionally assigns a penalty g(qi) to each one of the chosen
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cluster centers qi:

min
K

min
q1,...,qK∈V

∑
p∈V

min
i

d(p, qi) +
K∑

i=1

g(qi)

 . (5.34)

But, even if K is known, another serious drawback of many of the existing

optimization-based techniques for clustering is that they are particularly

sensitive to initialization and thus may get easily trapped in bad local min-

ima. For instance, K-means (one of the most commonly used clustering

methods) is doomed to fail if its initial cluster centers happen not to be

near the actual cluster centers. To deal with that, here we will rely on a

recently proposed clustering algorithm [66], which has been shown to yield

approximately optimal solutions to the NP-hard problem (5.34). This algo-

rithm relies on reformulating (5.34) as an equivalent integer program, whose

LP-relaxation (denoted as Primal hereafter) has the following form:

Primal ≡ min
x

∑
p,q∈V,p6=q

d(p, q)xpq +
∑
q∈V

g(q)xqq (5.35)

s.t.
∑

q∈V
xpq = 1, xpq ≤ xqq, xpq ≥ 0 (5.36)

If constraints xpq ≥ 0 are replaced with xpq ∈ {0, 1}, then the resulting

integer program is equivalent to clustering problem (5.34). In this case, each

binary variable xpq with p 6= q indicates whether object p has been assigned

to cluster center q or not, while binary variable xqq indicates whether object

q has been chosen as a cluster center or not. Constraints
∑

q∈V xpq = 1

simply express the fact that each object must be assigned to exactly one

center, while constraints xpq ≤ xqq require that if p has been assigned to

q then object q must obviously be chosen as a center. The most crucial

issue for tackling this integer LP is setting the variables xqq correctly, i.e,

deciding which objects will be chosen as centers. To this end, the so-called

stability of an object has been introduced in [66]. This is a measure which

tries to quantitatively answer the following question: how much does one

need to further penalize an object to ensure that it will never be selected

as an optimal cluster center? Intuitively, the greater the stability of an

object, the more appropriate that object is to become a cluster center. For

having a practical algorithm based on object stabilities, an efficient way of
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estimating them is required. It turns out that this can indeed be done very

fast by moving to the dual domain and appropriately updating a solution of

a dual relaxation to Primal. Since each dual cost provides a lower bound

to the cost of the optimal clustering, an additional advantage of working in

the dual domain is the ability to provide online optimality guarantees and to

avoid bad local minima. This concept is formalized with the help of the LP

relaxation Primal, thus leading to the following definition for the stability

S(q) of an object q:

S(q) = inf{perturbation s applied to penalty g(q) (i.e., g(q)← g(q) + s)

such that Primal has no optimal solution x with xqq > 0}

An object q can be stable or unstable depending on whether it holds S(q) ≥ 0

or S(q) < 0. Furthermore, a stable object with a large value of S(q) has

high probability to actually be an optimal center in (5.34). The reason is

that the assumption of a large S(q) ≥ 0 is essentially a very strong require-

ment (much stronger than simply requiring q to be an active center in the

relaxed problem Primal): it further requires that q is an active center for a

whole family of problems. Let us denote Primalq(s) a modified instance of

problem Primal where the value s has been added to the penalty for object

q, i.e, g(q)← g(q) + s. This entails that, for all problems Primalq(s) with

s ≤ S(q). Based on this observation, the algorithm in [66] uses the following

strategy for choosing its set of cluster centers Q: it adds stable objects to

Q in a sequential manner, each time selecting an object of approximately

maximum stability. Furthermore, whenever it inserts a stable object q in

Q (i.e, whenever it sets xqq = 1), it also reestimates the stabilities of the

remaining objects (this is because, for example, an object may become un-

stable if another object q gets selected as a new cluster center). To this end,

the additional constraint xqq = 1 is included in problem Primal, and this

updated LP is then used for the reestimation of stabilities. Of course, the

whole process repeats until no more stable objects can be found. We refer

the reader to [66] for more details.

We now discuss the case where the objects lie on a manifold. This implies

the use of the geodesic distance as a similarity measure. Ideally this distance

should correspond to the pairwise cost d(p, q) for p 6= q in the linear program-
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ming formulation proposed in (5.35). A first possible choice is to compute

the geodesic distances between all the pairs of points using the Dijkstra al-

gorithm in an Isomap-like fashion, as suggested in [119]. The shortest path

is found using a local approximation of the geodesic distance, for example a

Euclidean distance. The pairwise cost d(p, q) is set to d(p, q) = dg(p, q) where

dg is the corresponding geodesic distance. However, inspired by the land-

mark Isomap algorithm [34], we can compute the geodesic distances from

all the data points to a reduced set of randomly selected landmarks. This

will reduce the computational load that a full computation of the geodesic

distances between every pair of data points would entail. Let (lm)m=1...nl

be a set of such chosen nl landmarks. We would like to replace dg(p, q) by

a reasonable approximation. Given that the geodesic distance between two

points is the length of the shortest path linking these points, we note the fol-

lowing ∀m ∈ [1 . . . nl], |dg(p, lm)−dg(q, lm)| ≤ dg(p, q) ≤ dg(p, lm)+dg(q, lm),

which implies

sup
m
|dg(p, lm)− dg(q, lm)| ≤ dg(p, q) ≤ inf

m
(dg(p, lm) + dg(q, lm)) (5.37)

This provides a lower bound and an upper bound to the cost dg(p, q) in the

case where only the geodesic distances to some landmarks are computed.

Note that in the particular case where p and q are landmarks dg(p, q) =

supm |dg(p, lm)− dg(q, lm)| = infm(dg(p, lm) + dg(q, lm)). On the other hand

we can also note that

inf
m

(dg(p, lm) + dg(q, lm))− 2η ≤ dg(p, q) (5.38)

dg(p, q) ≤ sup
m
|dg(p, lm)− dg(q, lm)|+ 2η (5.39)

where η = infm min(dg(p, lm), dg(q, lm)). Therefore it makes sense to replace

the cost dg(p, q) whether by its upper bound or its lower bound, since both

approximate the cost up to 2η. A byproduct of inequalities (5.38) and (5.39)

is that both approximations are exact if p or q are landmarks, since in that

case we have η = 0.

It is interesting to note in this setting that the lower bound is the L∞

norm between the distance-to-landmarks representation of p and q. Indeed,

let up (resp. uq) be the nl-dimensional vector of geodesic distances of p
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(resp. q) to the landmarks

up = [dg(p, l1), . . . , dg(p, lnl
)]t , uq = [dg(q, l1), . . . , dg(q, lnl

)]t (5.40)

By definition, supm |dg(p, lm) − dg(q, lm)| = ||up − uq||∞. Thus the lower

bound approximation has the advantage of defining a metric cost. Intu-

itively, for a number of landmarks sufficiently larger than the intrinsic di-

mension of the manifold, the distance vector representation will provide a

good characterization of the points on the manifold.

5.3.5 A Supervised Fiber Clustering Framework

When considering the special case where the tensor field is constant (equal

to a tensor D), we obtain the following equation for the fiber kernel:

Kt(F1,F2) ∝
1
n1

1
n2

∑
xi∈F1

∑
xj∈F2

exp
(
− 1

8t
(xi − xj)tD−1(xi − xj)

)
(5.41)

which is the anisotropic form of the Gaussian kernel correlation [108]:

KGt(F1,F2) ∝
1
n1

1
n2

∑
xi∈F1

∑
xj∈F2

exp
(
−||xi − xj)||2

8µt

)
(5.42)

where D = µId which means that we suppose the tensors are isotropic.

We can see that the proposed kernel deals with a generic tensor field and

provides a generalization of the Gaussian kernel correlation. A by-product

of this reasoning is that Gaussian kernel correlation is a kernel on fibers that

considers only point positions. One could have seen from the outset that is

a Mercer kernel since it is a summation of Mercer (Gaussian) kernels. This

will be particularly useful to learn spatial interactions between fibers as will

be detailed in the following.

Given an atlas of fibers segmented by an expert in R regions, we can

learn the spatial interactions between these fibers using the Gaussian ker-

nel correlation in Equation 5.42. Indeed, it can be used as an input in a

kernel Support Vector Machines (SVMs) [110] to learn boundaries between

the different segmented regions, including background fibers that are not

localized in the region of interest. The kernel SVMs provide support vectors
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(fibers), which are the fibers that define the decision boundaries. Note that

the SVMs are used in a one-against-one fashion in order to deal with mul-

tiple regions. A point of interest here is that from the initial set of training

fibers, we have only to keep a sparse subset of support fibers that will guide

the classification process. The fact that the Gaussian kernel correlation de-

fines a Mercer kernel allows to look at the problem from a discriminative

classification perspective.

Given a new set of fibers that we wish to segment in a manner consistent

with the already-defined atlas, we start by finding the affine transformation

that maps the diffusion-free (B0) image of the training atlas to the cor-

responding one in the testing dataset, as in [78]. This tranformation is

subsequently used to register the testing set of fibers to the space of the

support fibers obtained from the atlas. We are therefore able to compute

the scores of the R(R−1)
2 pairwise SVM classifiers on the testing dataset. In

the following subsection, we show how to use the SVM classification results

to obtain the segmentation while respecting the interactions provided by the

fiber kernel.

5.4 Results and Experiments

Thirty subjects (twenty healthy patients and ten patients affected by my-

opathies) underwent a diffusion tensor imaging of the calf muscle using a

1.5 T MRI scanner. The following parameters were used : repetition time

(TR)= 3600 ms, echo time(TE) = 70 ms, slice thickness = 7 mm and b

value of 700 s.mm−2 with 12 gradient directions and 13 repetitions. The

size of the obtained volumes is 64 × 64 × 20 voxels with a voxel resolution

of 3.125 mm× 3.125 mm× 7 mm. We acquired simultaneously high resolu-

tion T1-weighted images that were segmented manually by an expert into 7

muscle groups to provide the ground truth and fiber trajectories were recon-

structed using [44]. We recall the muscle architecture of the calf in [Fig.5.3

(a)], where we show a manual segmentation overlaid on an axial slice of a

high-resolution T1-weighted image. As in chapter 4, the following muscle

groups are considered: the soleus (SOL), lateral gastrocnemius (LG), medial

gastrocnemius (MG), posterior tibialis (PT), anterior tibialis (AT), extensor

digitorum longus (EDL), and the peroneus longus (PL).
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(a) (b)

Figure 5.3: (a) An example of a manual segmentation of an axial slice of
a high-resolution T1-weighted image showing different muscle groups in the
calf. (b) An axial slice of a T1-weighted image of the calf of a diseased
patient where the zone in hypertension is fat that replaced the muscle.

In the following, we present the obtained experimental results on a syn-

thetic dataset and for tensor classification and fiber bundling of the lower

leg muscles, both in supervised and unsupervised ways.

5.4.1 Tensor Clustering

Preliminary Experiments

We first generated a 20×40 lattice of synthetic tensors composed of two close

fiber bundles. The first bundle has a vertical principal direction, the second

starts with a vertical direction then deviates with a 45◦ angle [Fig.5.4 (a)].

We added a Gaussian noise of standard deviation 10◦ to these directions.

The eigenvalues of the tensors were set to {2 10−3, 1.5 10−3, 10−3}. We

tested the following values of diffusion time t: {104, 105}. We compare the

behavior of the kernel PCA + Isomap embedding with spectral clustering

using the metric d(D1,D2) = arccos(<
→
e1,

→
e2>) where

→
e1 (resp.

→
e2) is the

principal direction of diffusion of D1 (resp. D2), as in [139]. Following [139],

the scale parameter in the affinity matrix is set as the sample variance of

d between neighboring tensors. The clustering is obtained using k-means

with 50 restarts in the spectral embedding space. The result is obtained by

considering the clustering with the least distortion. Distortion is computed

as the ratio of intra-class and inter-class variances. However, we do not
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(a) (b) (c)

Figure 5.4: (a) Synthetic noisy field of principal directions of diffusion. (b)
Result of spectral clustering based on angles between principal directions of
diffusion without Markovian relaxation. (c) Result of our method

use a Markovian relaxation of the affinity matrix, hence removing spatial

constraints. [Fig.5.4 (c)] shows the segmentation result obtained by our

approach (stable across the tested set of diffusion times) and [Fig.5.4 (b)]

shows its counterparts for spectral clustering without Markovian relaxation.

We can notice that unlike spectral clustering, the proposed algorithm finds

a clustering solution which is more compatible with the tensor arrangement.

This is due to the fact that it captures both tensor similarity and spatial

connectivity and that the spectral clustering considered in this experiment

does not enforce spatial regularity.

To further assess qualitatively the method, we used the proposed kernel

PCA + Isomap embedding to see if it is faithful to the known structure of

the muscles. Of particular interest is the soleus which is a major part of

the calf. It has a bipennate structure where oblique fibers converge towards

a central aponeurosis [Fig.5.5 (c)]. In [Fig.5.5 (a), (b)], we show the (here

three-dimensional) proposed embedding for the soleus muscle of one subject

for t = 2 105. The obtained points reveal the structure of the muscle, which

means that the embedding is faithful to the diffusion flow in the tissues as

the points are aligned along the diffusive pathways.

Unsupervised Classification of the Muscle Groups

For each subject, a region of interest (ROI) was manually delineated and we

tested the performance of the tensor clustering algorithm both for healthy

and diseased subjects. Recall that in regions affected by myopathies, the

tensors have a relatively small volume since fat replaces the fibers (as can be
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Figure 5.5: (a), (b) Two views of a three-dimensional embedding of the ten-
sors of the soleus muscle, k-means clustering shows its bipennate structure.
(c) Anatomy of the soleus [82].

seen in [Fig.5.3 (b)]). These were eliminated through simple thresholding

over the determinant. In all the experiments, we set the diffusion time t

to t = 2 105 and we used a ten-dimensional embedding. For a quantitative

evaluation of the method, we follow the validation protocol proposed in

[139]: for each subject, the manually delineated ROI was segmented at

two different levels (in 7 and 10 classes). The resulting clusters are then

classified according to the labels given by the expert. As in [139], several

clusters are allowed to have the same label. We also test the algorithm on a

section near the knee which is characterized by a higher amount of noise and

artifact obtained automatically by a threshold (set to 20) on the diffusion-

free images. We report in [Fig.5.11] the boxplots of the dice volume overlap

with the expert labels for all the subjects and its counterpart for the spectral

clustering as described previously but with spatial regularity being enforced

by the means of Markovian relaxation. We can see that our algorithm

performs slightly better for the case of the manually-delineated ROI, however

for the noisy automatic ROI, spectral clustering is misled by isolated points

(see [Fig.5.7 (a), (b)]), whereas the performance of the presented algorithm

is not significantly worsened (the problem with the Markovian relaxation is

that it relies on the 3D grid structure and continuity of the image, this can

be addressed using hierarchical clustering instead of k-means, as in [139]).

Note also that the thresholding over the determinant removes some of the

tensors originating from the chemical shift artifact that do not belong to

the foreground. From a qualitative point of view, one can see in [Fig.5.6

90



Chapter 5. Kernel-based Clustering of Diffusion Tensors and Fiber Tracts

(a), (b)] that the algorithm was able to segment correctly fine structures

like AT and PL and the segmentation result is rather smooth. Additional

examples of unsupervised tensor classification are provided in [Fig.5.8] and

in [Fig.5.9]. We can observe that in [Fig.5.9 (b)] the algorithm did not

achieve an optimal segmentation result since it chose to assign the tensors

belonging to the artifact at the boundary between the soleus and the lateral

gastrocnemius to a separate class.

Supervised Tensor Classification

The major components of the calf muscle are the two heads of the gastrocne-

mius and the soleus. These three muscle groups have different orientations.

This motivates the learning of the tensors of each class in order to have a

prior information about the class membership of a tensor in a volume that

we aim to segment. We consider four manually labeled volumes of randomly

chosen healthy subjects as a training set (approximately 27500 tensors are

used for training, note that the size of the training dataset is sufficiently

larger than the dimension of the space of symmetric matrices which con-

tains the tensors). The sixteen remaining images of healthy patients are

used as the testing dataset. We build three one-against-all SVM classifiers

based on the training set. The parameter α in the single potential us of the

MRF energy is set to α = 10 in all the experiments. The trade off factor

λ in [Eq.5.19] is set to be λ = 5nnodes
npairs

where nnodes is the number of nodes

(tensors) and npairs is the number of interacting pairs of tensors.

The boxplots of the computed dice coefficients are shown in [Fig.5.23]

when only SVM scores are used and when these are combined with MRF reg-

ularization. We can observe that the MRF regularization improves slightly

the classification results. Observe in [Fig.5.10] how the use of the MRF

model results in smoother results and removes part of the artifact near the

boundary between SOL and LG.

5.4.2 Fiber Clustering

Unsupervised Fiber Clustering using Kernel PCA

To test the unsupervised kernel-PCA clustering algorithm, we only kept the

fibers which have a majority of points lying in the manually delineated ROI.
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(a) (b)

Figure 5.6: Axial slices of the segmentation of the tensors for (a) a healthy
subject in 10 classes, manual ROI (b) a diseased subject in 7 classes where
the MG is partially affected, manual ROI.
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(a) (b)

Figure 5.7: Axial slices of the segmentation of the tensors for (a) noisy
automatic ROI of a section near the knee using spectral clustering and k-
means (b) noisy automatic ROI using our method.
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(a) (b)

Figure 5.8: Additional tensor clustering results for (a) a healthy subject, (b)
a diseased subject.
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(a) (b)

Figure 5.9: Supplementary examples of tensor clustering. Note that in (a)
the algorithm mistakes the artifact (in red) for a class.
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(a) (b)

Figure 5.10: Axial slices of the supervised SVM classification of tensors in
three classes (MG, LG and SOL) (a) SVM scores only are used. (b) SVM
scores are combined with MRF regularization.
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(a) (b)

Figure 5.11: Boxplot of the dice overlap coefficients for tensor clustering
in 7 and 10 classes for (a) manual ROI and (b) automatic noisy ROI. SC7
(resp. SC10) refers to spectral clustering in 7 (resp. 10) classes and KC7
(resp. KC10) refers to kernel clustering in 7 (resp. 10) classes. The box has
lines at the lower quartile, median, and upper quartile values. The whiskers
are lines extending from each end of the box to show the extent of the rest
of the data. Outliers are data with values beyond the ends of the whiskers.

(a) (b)

Figure 5.12: Axial, coronal and sagittal views of kernel PCA fiber segmen-
tation for (a) a healthy subject in 10 classes, (b) a diseased subject in 7
classes.
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Figure 5.13: Boxplot of the dice overlap coefficients for (a) unsupervised
kernel PCA fiber clustering in 7 and 10 classes, (b) supervised fiber clustering
using affine and deformable registration.

The number of fibers in the different datasets ranged approximately from

1000 to 2500, which makes the computation and eigenanalysis of the kernel

matrix achievable in a rather reasonable time. The diffusion time t was set to

t = 2 104 and we used a ten-dimensional embedding for kernel-PCA. Figure

5.12 shows the clustering results in 10 (resp. 7) classes for the fiber tracts

of a healthy (resp. diseased) subject. The fibers in [Fig.5.12 (a)] correspond

to the tensors segmented in [Fig.5.6 (a)]. It is interesting to notice that

despite the fact that the tractography algorithm was unable to recover fiber

tracts in the diseased regions due to the presence of degenerate tensors,

the clustering algorithm could still segment the fiber tracts of the healthy

region in anatomically relevant subgroups. Additional visual examples that

illustrate the performance of the algorithm are shown in [Fig.5.14]. For

quantitative assessment, we report in [Fig.5.13 (a)] the boxplot of the dice

overlap measures of the fiber segmentation with the expert labeling for 7 and

10 classes. Overall, the algorithm performs well in separating the regions of

the calf muscle with a mean dice coefficient of 79.5% (respectively 80.93%)

and a standard deviation of 5.04% (respectively 5.14%) for 7 (respectively

10) classes.

Unsupervised Fiber Clustering Using Diffusion Maps

We tested the diffusions maps clustering method at two levels: for 7 and

10 clusters. The dimension of the diffusion maps embedding w was set

to the number of clusters. The number of timesteps τ in (5.31) was set
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Figure 5.14: Some visual examples of Kernel-PCA fiber segmentation.
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to τ = 1. We tested two values for the scale parameter of the Gaussian

kernel: σ = {0.5, 1} and in all the experiments, the diffusion time t was set

to t = 2 104. Again, the clustering in the embedding space is done using

k-means with 50 restarts.

In [Fig.5.17], we present the boxplots of the dice overlap coefficients for

the thirty subjects, using the different values of σ for 7 and 10 clusters. We

can note that the quantitative results are rather satisfactory. For example,

with the parameter σ set to σ = 1, we obtain a mean dice overlap coefficient

of 0.78 (resp. 0.82) and a standard deviation of 0.05 (resp. 0.045) for 7 (resp.

10) classes . For a qualitative assessment, we show in [Fig.5.15, 5.16] the

obtained fiber classification in 7 clusters for two healthy and two diseased

subjects. The obtained fiber tracts are rather noisy, especially for diseased

patients where the fat artifact is stronger. Despite the low quality of the

tractography, the algorithm could still segment it in coherent fiber bundles.

Unsupervised Fiber Clustering Using Linear Programming

In all the linear programming clustering experiments we set the diffusion

time to t = 2 104 and the parameter α in the fiber metric to α = 1. To

compute the Hilbertian metrics between fiber tracts, the weights wi of each

fiber F in (5.26) were chosen as the inverse of the number of points in F.

We selected 30% of the fibers as landmarks and for the computation of the

geodesic distances using the Dijkstra algorithm, we considered a k-NN graph

where k was set to k = 12. The cost g(F) of choosing a fiber F as a class

center in (5.35) was set to a constant g = β µ 1
2
(dg(Fi,Fj)i6=j) where µ 1

2

is the statistical median. We tested the following values of β: {7, 10, 13}.
For the sake of comparison, we evaluate also the performance of k-means

clustering using the same metric and a manifold embedding. The dimen-

sionality of the embedding is chosen to be the number of clusters obtained

by our method, which is a common choice in embedding-based approaches.

The k-means algorithm is run 50 times and each time we compute the dice

overlap of the clustering result with the ground-truth segmentation. We

consider both the average dice coefficients over the restarts of the k-means

algorithm and the dice coefficient of the clustering with the least distortion.

We run the following experiments:
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Figure 5.15: Axial, coronal and sagittal views of diffusion-maps based trac-
tography segmentation in 7 classes overlaid on diffusion-free (B0) images for
two healthy subjects

1. We compute all the geodesic distances between every pair of points and

use them for linear programming clustering. We compare the obtained

result with an Isomap embedding followed by k-means.

2. We compute the geodesic distances to a set of landmarks and use

the lower (resp. upper) bound approximation for linear programming

clustering. We compare the obtained result with a landmark-Isomap

embedding followed by k-means.

We provide in [Fig.5.18, 5.19, 5.20] the boxplots showing the distributions of

the dice coefficients for the thirty subjects using different values of β for our

algorithm, compared with k-means after manifold embedding. We can note

that linear programming clustering performs significantly better than the av-

erage score achieved by k-means both for a full and landmark-based compu-

tation of the geodesic distances. Furthermore, it achieves results equivalent
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Figure 5.16: Axial, coronal and sagittal views of diffusion-maps based trac-
tography segmentation in 7 classes overlaid on diffusion-free (B0) images for
two diseased subjects

to the best k-means with an average dice coefficient of approximately 0.8 and

in some cases it improves marginally the dice overlap. The advantage is that

our result is reproducible, i.e. unlike k-means it is not sensitive to initializa-

tion. When comparing the three versions of linear programming clustering,

we can see in [Fig.5.21 ] that the lower bound and upper bound approxima-

tions perform similarly apart from the case β = 10 where the lower bound

approximation performed better, which may be explained by the metricity

of the corresponding cost. The full computation yields slightly better results

than the approximations. This corroborates the analysis provided is section

5.3.4. For qualitative evaluation, we show in [Fig.5.22 (a)] (resp. [Fig.5.22

(b)]) a clustering result obtained for a healthy (resp. diseased) subject for

β = 10. Ground truth segmentation for the healthy subject is provided in

[Fig.5.22 (c)]. There are too few fibers in [Fig.5.22 (b)] because the tractog-

raphy fails to recover fibers through the manual region of interest. This is
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Figure 5.17: Boxplots of dice overlap coefficients for the thirty subjects with
different values of σ and k (the number of clusters) for the diffusion-maps
based clustering.

due to the presence of tensors with very low determinant (low diffusion). It

is interesting to note that with the same parameter β = 10, the algorithm

found ten clusters for the healthy subject while it found only three for the

diseased patient, which seems to reflect the advantage of letting the number

of clusters a variable of the optimization problem. Note also how the soleus

(in cyan in [Fig.5.22 (c)]) is subdivided in an anterior and a posterior part

in [Fig.5.22 (a)], which is consistent with its anatomy.

Supervised Fiber Clustering Using Kernel SVMs

A manually segmented volume was used as an atlas. Atlas fibers were as-

signed to a class based on a simple voting procedure: each fiber is classified

according to the majority vote class of the voxels it crosses. We experi-

mented both with affine [44] and deformable [51] registration to map the

B0 images of the testing case to the B0 images of the atlas. We use kernel

SVM classification to learn the fibers of the atlas as explained in subsection

5.3.5, using 21 one-against-one pairwise classifiers. The scale parameter in

the Gaussian correlation kernel was set to σ = 2
√

µt = 10. We report

in [Fig.5.13 (b)] the boxplot of the dice overlap coefficients both for de-

formable and affine registration. We can note that we obtain significantly
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Figure 5.18: Boxplots of dice overlap coefficients for the thirty subjects and
linear programming clustering using full computation of distances (LP-FC).
Clockwise β takes the following values 7 , 10 and 13. Comparison is done
with respect to the average score of k-means (AV-KM) and the score of the
k-means clustering with least distortion (MAX-KM) after manifold embed-
ding. (b) LP clustering using lower bound approximation (LP-LLWBD). (c)
LP clustering using upper bound approximation (LP-LUPBD). (d) Compar-
ison between LP-FC, LP-LLWBD and LP-LUPBD.

better results with deformable registration, which was expected given the

relatively high inter-patient variability and that muscles are soft tissues, so

the anatomy and shape are likely to vary significantly across patients. In

[Fig.5.24 (a)], we show an example of supervised segmentation compared

with the ground truth in [Fig.5.24 (b)]. We can observe that as opposed to

the unsupervised setting ([Fig.5.12 (a)]), the MG is not oversegmented.

5.5 Conclusion

In this chapter, we proposed a kernel-based method for clustering of both

tensors and fibers in diffusion tensor images. It exploits the physical in-

terpretation behind the modality and offers a unified approach towards

tensor and fiber grouping. The kernel defined over the tensor space en-
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Figure 5.19: Boxplots of dice overlap coefficients for the thirty subjects
and linear programming clustering using lower bound approximation (LP-
LLWBD).

compasses both localization and diffusion information and naturally reflects

tensor alignment along fiber tracts. We showed its flexibility by extending it

to deal with fibers and gave the physical intuition behind its mathematical

definition as a kernel over sets of tensors. Moreover, we investigated the

use of diffusion maps and linear programming clustering using the derived

metrices for unsupervised fiber clustering. We also showed how to include

expert knowledge by means of kernel SVMs.

The next chapter of this thesis will focus on the use of the defined kernels

for deformable registration of diffusion tensors using a discrete optimization

framework in order to minimize an objective function that is based on the

notions used in this chapter for segmentation and clustering.
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Figure 5.20: Boxplots of dice overlap coefficients for the thirty subjects
and linear programming clustering using upper bound approximation (LP-
LUPBD).
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Figure 5.21: Boxplots of dice overlap coefficients for the thirty subjects
and linear programming clustering. Comparison between the LP-FC, LP-
LLWBD and LP-LUPBD versions.
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(a) (b)

(c)

Figure 5.22: Fiber segmentation obtained with linear programming (β =
10) for (a) a healthy subject in 10 classes (b) a diseased subject in 3 classes.
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Figure 5.23: Boxplots of dice overlap coefficients for supervised SVM tensor
classification when only SVM scores are used and when these are combined
to an MRF model.

(a) (b)

Figure 5.24: Axial, coronal and sagittal views for (a) supervised kernel
SVM fiber classification in 7 classes (b) the ground truth segmentation.
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Chapter 6

DTI Registration Using

Kernels and Discrete

Optimization

6.1 Introduction

Medical image registration is an important step in many clinical studies. It

consists in recovering the transformation that should be applied such that

a correspondence is established between two images. Image registration has

found many applications in medical imaging as it can permit the analysis

of the temporal evolution of an illness, the fusion of information coming

from different modalities and the inter-subject comparison to name some of

them. This step is of great importance, as a lack of accuracy in spatial nor-

malization can influence dramatically the quality of the drawn conclusions.

In the same context, diffusion tensor registration can be helpful in clinical

studies where the DTI characteristics can provide valuable information to

differentiate between normal and diseased populations.

Diffusion tensor (DT) registration is an inherently intricate problem be-

cause of the directional and high-dimensional nature of the data. Indeed,

this process not only requires spatial transformation, but also tensor reori-

entation to account for its rotational component [6]. The high-dimensional

nature of the data poses challenges on the definition of the similarity mea-

sures that will drive the registration process. On the other hand, the di-
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rectional nature of the data highly complicates the warping of DT-images,

as no simple interpolation is sufficient to maintain the consistency between

tensor orientations before and after the warping. Consequently, appropriate

tensor reorientation that depends on the local rotations introduced by the

spatial transformation is needed. The existing diffusion tensor registration

algorithms can be subdivided in two classes.

The first class of methods transforms the diffusion tensor data in multi-

channel feature images and uses vector-data registration algorithms. For

instance, in [126], both geometric features describing the distribution char-

acteristics of tensor geometry over an isotropic neighborhood and orientation

features based on principal directions distributions are combined for vector

registration. Similarly, tensor shape and orientation are both taken into

account in [60] using the Geodesic Loxodrome-based distance and a mod-

ified version of Multidimensional Scaling. The approach proposed in [125]

uses attributes from T1-weighted images to register the corresponding dif-

fusion images along with the Hierarchical Attribute Matching Mechanism

for Elastic Registration (HAMMER). The tensor reorientation scheme is

based on the alignment on principal directions based on estimation of the

fiber direction probability density at each voxel of the source image. The

work in [55] investigated the use of multi-channel demons registration using

the T2-weighted signal and tensor eigenvalues in a feature vector. Another

multi-channel approach based on rotationally invariant Gabor features was

presented in [112]. In [55], several scalar values derived from diffusion ten-

sors are studied for feature selection and tensor components provide better

experimental performance. The method in [94] proposes a multi-resolution

scheme based on tensor-template matching through the extension of simi-

larity measures from the scalar to the tensor case. In [93], it is reported

that the use of rotationally-dependent components such as the elements of

the diffusion tensor may improve in some cases the registration accuracy

with respect to the case where only rotationally-invariant indices are used.

However as mentioned in [31], the direct use of tensors can encounter im-

portant problems of bad local minima in the optimization procedure. Other

rotationally dependent components may be used, for example the diffusion

weighted images were matched in [72] using mutual information. More re-

cently, the approach in [75] proposes to characterize a tensor in the image
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by running a local fast marching on a neighborhood and use the arrival time

for matching across images. In [127], the proposed algorithm includes re-

gional tensor statistics and edge maps to capture relevant information in a

multiscale fashion for hierarchical registration. In [138], the attributes used

are derived from the fiber tracts instead of the tensors. 3D probability maps

of fiber bundles are built and their matching is performed to find an optimal

affine transformation between corresponding fiber bundles (correspondences

are determined through a clustering-based atlas). The fusion of the different

local affine transformations is done through the polyaffine framework, which

provides an explicit expression of the Jacobian of the deformation field and

paves the way to finite strain reorientation. Another algorithm based on

fiber tract registration was proposed in [73] where a rigid transformation is

found between a set of curves through the representation of fibers by the

means of pointwise curvature and torsion followed by subcurve matching.

More recently, in [40], a model of fiber tracts based on currents that defines

a fiber metric is proposed to find a diffeomorphism between fiber bundles.

The second class of approaches opts for the use of a metric for tensor

matching in a framework previously used for scalar image registration. For

instance, the algorithm in [26] uses the symmetrized Kullback-Leibler diver-

gence between probability distributions in the fluid registration framework,

followed by a preservation of principal directions (PPD) tensor reorientation.

In [5, 4], a multiscale elastic registration algorithm is considered and several

possibilities for the similarity term of the registration energy are consid-

ered, in particular measures of similarities between tensors and correlation

between some scalar indices derived from the tensor images, such as the

lattice anisotropy. The methods proposed in [128] and [133] use an explicit

reorientation scheme in the registration framework. The former suggests an

exact Finite-Strain (FS) differential and includes it in the demons algorithm,

the latter proposes a piecewise affine deformation model and optimizes over

the available rotational component of each affine transformation. It also

provides an affine registration framework based on an L2 distance between

diffusion profiles. An explicit PPD reorientation in the optimization frame-

work is also proposed in [23], where the Large Deformation Diffeomorphic

Metric Mapping (LDDMM) algorithm is extended to deal with tensor fields.

To recover the displacement field, geodesics on the space of diffeomorphisms
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linking two tensor images are recovered and the Frobenius norm is used for

matching. LDDMM was also used for registration of fields of principal direc-

tions of diffusion considered as unit vectors in [24]. The work in [52] tackles

the problem of linear tensor registration through an analogy with optical

flow by making the assumption of diffusion tensor constancy and shows that

recovering the transformation can be done simply by solving a linear system,

and this is adapted to the case where point (and tensor) correspondences

are available as constraints that guide the registration process.

We note that in a DT registration context, it is important to combine

spatial and diffusion information and not to treat them separately, i.e. to

include tensor connectivity where the spatial context is linked to the diffu-

sion information. Unlike the existing literature, we propose a method that

combines simultaneously both tensor and spatial information in a proba-

bilistic framework. Using a probabilistic kernel, diffusion tensor images are

mapped implicitly to a RKHS, where we define local smoothness proper-

ties of the registration deformation to account both for the transformation

regularity and for the reorientation of tensors. This mapping defines also a

closed-form metric for tensor matching. Furthermore, we extend the frame-

work proposed in [51] to diffusion tensor images by minimizing the defined

energy in a discrete setting using the fast Primal-Dual (fast-PD) algorithm

[68]. This is done by considering a quantized six-dimensional deformation

space where the quaternion representation of rotations allows for proper

interpolation and discrete sampling.

The remainder of this chapter is organized as follows: in section 2, we

recall the kernel definition and precise useful properties and notations. The

concept of the proposed deformable registration framework is presented in

section 3. Section 4 is dedicated to experimental results and the perspectives

of this work are discussed in section 5.

6.2 Mapping Diffusion Probabilities to a Hilbert

Space

Given the orientational nature of DT data, considering tensors indepen-

dently from their particular spatial arrangement is a major drawback in a

registration process. To overcome this issue, we rely on the tools used in
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the segmentation framework which were detailed in chapter 5. We consider

the normalized L2 inner-product kt(p1, p2) between two multivariate nor-

mal probability densities p1 and p2 with parameters (x1,D1) and (x2,D2)

respectively:

kt(p1, p2) =
∫

p1 (y|x1, t,D1) p2 (y|x2, t,D2) dy√∫
(p1 (y|x1, t,D1))

2 dy
√∫

(p2 (y|x2, t,D2))
2 dy

(6.1)

Recall that the kernel kt has a closed form expression and that it verifies

the Mercer property over the space of multivariate normal distributions.

The Mercer property accounts for the existence of a mapping φ associated

with the kernel kt that provides an embedding from the space of Gaussian

probabilities in the Reproducing Kernel Hilbert Space (RKHS) H such that

kt(p1, p2) =< φ(p1), φ(p2) >H, where < ., . >H is the inner product of H.

This allows to define the Hilbertian metric δt:

δt(p1, p2) =
√

2− 2kt(p1, p2) (6.2)

It is important to note that kt and δt are invariant with respect to trans-

lational and rotational transformations. Indeed, when considering a trans-

lation vector t and a rotation matrix R, this property can be verified easily

by replacing x1 (resp. x2) by Rx1 + t (resp. Rx2 + t) and D1 (resp. D2)

by RD1Rt (resp. RD2Rt) in the closed form expression of the kernel). In

order to ease the notation, in the remainder of the chapter we will identify

a Gaussian probability distribution with its parameters and denote:

δt(p1(y|x1, t,D1), p2(y|x2, t,D2)) = δt((x1,D1), (x2,D2)) (6.3)

6.3 Deformable Registration

Let us consider a source DT image U : Ω 7→ S+(3) and a target image V ,

where Ω is the source image domain and S+(3) is the space of symmetric

positive definite matrices. We aim at computing a deformation field T :

Ω 7→ R3 × SO(3) where SO(3) is the special orthogonal group. At each

point x ∈ Ω, T (x) = (t(x),R(x)) is a pair composed of a translation vector

t(x) and a rotation matrix R(x) that deforms U in an image W such that
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W (x + t(x)) = R(x)U(x)R(x)t. Hence W is the deformed (moved) DT

image, i.e. the source U is transformed in an image W . The goal is to find

a balance between the minimization of the mismatch of W with the target

V and the regularity of the applied deformation.

6.3.1 Deformation Model

We consider a grid-based deformation model that can provide for one-to-one

and invertible transformations. The basic idea of the deformation model is

that by superimposing a grid G : [1,K]× [1, L]× [1,M ] (where K, L and M

are smaller than the dimensions of the domain) onto the moving image, it is

possible to deform the embedded image by manipulating the control points

belonging to the grid. Consequently, the goal is to recover the deformation

vector Tp = (tp,Rp) that should be applied to the node p of the grid, in

order for the images to be aligned. In such a framework, the deformation

T (x) = (t(x),R(x)) that should be applied to an image position x can be

obtained through interpolation of the deformations obtained at the control

points:

t(x) =
∑
p∈G

ηs(|x− p|)tp, R(x) =
∑
p∈G

ηr(|x− p|)Rp. (6.4)

ηs and ηr are functions that weight the influence of each control point of the

grid to each point of the domain in relation to their spatial distance from it.

The group of rotations matrices is not a linear space, i.e. a weighted average

of rotations taken elementwise does not preserve orthogonality. Therefore

the interpolation of rotations is not performed in SO(3) but in the quaternion

space, i.e.

q(x) =

∑
p∈G ηr(|x− p|)qp∥∥∥∑
p∈G ηr(|x− p|)qp

∥∥∥ , (6.5)

where q(x) (resp. qp) is the quaternion representation of R(x) (resp. Rp).

Note that this is an approximation for the spherical interpolation since the

weighted average is normalized, i.e. backprojected to the hypersphere. The

matrix representation R(x) is then obtained easily from q(x).
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6.3.2 DT Image Registration: Continuous Domain

Given the above-defined deformation model, the DT images will be deformed

in such a way that an appropriately defined dissimilarity criterion with re-

spect to the distance δt implied by the kernel kt is minimized:

Edata =
∫

Ω
δt((x,W (x)), (x, V (x)))dx. (6.6)

Edata is simply a data term that will drive the deformation towards a minimal

mismatch between the deformed image W and the target image V . Note that

in Edata, only the tensor similarity term in the closed form expression of the

kernel is relevant, since we will compare tensors that share the same location.

We can rewrite Edata using the the control points of the superimposed grid

G. Indeed, each voxel x is back-projected to the points of the grid, in the

following form:

Edata =
1
|G|

∑
p∈G

∫
Ω

η−1
p (|x− p|)δt((x,W (x)), (x, V (x)))dx. (6.7)

The back-projection function η−1 computes the influence of the position x to

the control point p. If the nearest neighbor weighting scheme is considered,

then each position x contributes to only one control point p with a weight

equal to one. In the general case, it takes the following form

η−1
p =

ηp(|x− p|)∫
Ω ηp(|x− p|)

. (6.8)

It should be noted that, as the different indices imply, different weighting

schemes can be used for the interpolation of the displacement field (ηs), the

interpolation of the rotations (ηr) as well as for the back-projection to the

nodes of the grid (ηp).
The minimization of Edata is ill-posed as there are fewer constraints

than the number of variables to be determined. A common way to tackle
such a limitation is to consider a regularization term that will smooth the
deformation field, and more importantly take into account local structural
information of the source image U . We suppose that the deformation field
will be approximately, up to a suitable change in the diffusion time t to
account for local scale, locally isometric in the RKHSH, i.e. that it preserves
the distance δt between spatially neighboring Gaussian probabilities when
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deforming U and accounts for a possible change of scale. This leads us to
define the following smoothness term:

Esmooth =
∫

G

∫
z∈Nx

|δt((x, U(x)), (z, U(z)))− δtxz((x,W (x)), (z,W (z)))| dzdx

(6.9)

where x = x + t(x), z = z + t(z), txz = t ||x−z||2
||x−z||2 and Nx is a local neigh-

borhood of x on the grid G. We expect the minimization of Esmooth to favor

tensor reorientation so that the local source image structure can be preserved

in the deformed image. In other words, it is through the regularization term

that the rotations and the translations are coupled in such a way that local

structure in the deformed image, expressed by the distance between spatially

neighboring Gaussian probability distributions, remains consistent with the

local structure in the source image. An important underlying property is

that the coupling provided by the smoothness term constrains the rotations

with respect to displacements, so that tensors do not rotate independently

from the translation they undergo with respect to their neighbors. More

schematically, it is as if any pair of neighboring grid tensors (x, z) were

linked by a spring of a known rest length l0(x, z) provided by the Hilbert

space distance in the source image:

l0(x, z) = δt((x, U(x)), (z, U(z))) (6.10)

Deforming the tensors (by means of both rotation and translation) will affect

the length of the spring which is given by

l(x, z) = δtxz((x,W (x)), (z,W (z))) (6.11)

It is straightforward to see that the minimization of the smoothness energy

will amount to keeping the length of the spring l close enough to its rest

length l0. In order to recover the optimal deformation parameters, we have

to minimize the registration energy

E = Edata + αEsmooth, (6.12)

where α is a trade-off factor.

A natural way to continue would be to apply a gradient-descent opti-
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mization scheme. Such an approach is intuitively simple and easy to imple-

ment, however it suffers from some important disadvantages. It is prone to

stuck in local minima and it is not modular as it depends both on the used

deformation model and the objective criterion to be minimized. Moreover,

it is computationally demanding. Ideally, one would prefer a method that

would be able to provide a solution in an efficient way and at the same time

guarantee that it will be ”close” to the optimal one. Methods that comply

with the previous characteristics can be found in the discrete optimization

field.

Following recent ideas in scalar image registration [51] and recent ad-

vances in discrete optimization [68], we opt for the use of a discrete opti-

mization technique called Fast-PD [68]. As seen in chapter 5, Fast-PD can

provide an optimal solution (up to a user-defined bound) in an efficient way.

Moreover, it allows for a gradient-free optimization thus permitting the use

of different deformation methods. In the following, we detail the discretiza-

tion of the deformation space as well as the Markov Random Field (MRF)

formulation of the problem.

6.3.3 DT Image Registration: Discrete Domain

To be able to apply the Fast-PD optimization, it is obligatory to provide

a quantized version of the deformation space. Let Θ = (d1, . . . ,dn) be a

quantized version of the deformation space R3 × SO(3), then to each quan-

tized deformation di, a label li can be assigned to it, thus defining a discrete

set of labels L = {l1, . . . , ln}. Then, assigning a label lp to the node p,

where lp ∈ L, corresponds to applying the deformation dlp to the node,

that is translating it by tlp and rotating the corresponding tensor by Rlp .

The quantization of spatial displacements is intuitive, the case of rotations

is however less straightforward. In order to quantize the group of rotation

matrices, we use their quaternion representation. The problem is equivalent

to sampling points over the unit sphere S3 of R4. We use layered Sukharev

Grid sequences [129] that offer a multi-resolution, deterministic and uniform

sampling of S3 by back-projecting points sampled over a hypercube inscribed

in S3 outward onto the spherical surface. The set Θ is therefore formed by

the pairs of sampled translations and rotations.

Following [51], we cast the registration problem as a discrete multi-
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labeling problem. In such a context, the goal is to recover the optimal

individual label lp that should be assigned to each node p of the grid. This

can be done using the theory of MRFs, the general form of which is the

following:

EMRF =
∑
p∈G

Vp(lp) + α
∑
p∈G

∑
q∈N (p)

Vpq(lp, lq) (6.13)

where Vp(·) are the unary potentials that encode the data term and Vpq(·, ·)
are the pairwise potentials that encode smoothness constraints. N (p) rep-

resents the neighborhood system of the node p. The unary potentials will

be defined according to the data term in (Eq.6.6):

Vp(lp) ≈
∫

Ω
η−1

p (|x− p|)δt((x,W (x)), (x, V (x)))dx, (6.14)

where W is deformed by applying the label lp to the node p, that is trans-
lating it and rotating the corresponding tensor accordingly. This is actually
a local approximation of the similarity measure as the complex interaction
of the neighboring control points is not taken into account. However this ap-
proximation allows for an efficient computation of the unary potentials while
providing satisfactory results. The main idea of the efficient scheme used to
compute the unary potentials is that as the labels should be applied to all
nodes, the computations are done by applying global translations and rota-
tions and then projecting back the cost to the respective nodes. Similarly
the pairwise potentials are derived following (Eq.6.9):

Vpq(lp, lq) =
∣∣δt((p, U(p)), (q, U(q)))− δtpq((p,W (p)), (q,W (q)))

∣∣ (6.15)

where (p,W (p)) (resp. (q,W (q))) are obtained by applying the deforma-

tion parameters of the label lp (resp. lq). To further clarify the idea behind

the regularization term, it should be pointed out that this term is similar

in spirit to what is usually done when trying to solve the problem of 3D ar-

ticulated body matching [7], where in order to have consistent deformations

the links between the articulations are constrained to deform coherently.

Similarly, in this context the problem amounts to deforming articulations

at the control points of the grid , where the local coordinate frame of the

articulation is given by the tensor.

The main challenge of discrete optimization methods is the quantization

of the search space. When quantizing the deformation space a compromise
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between the computational complexity and the ability to capture a good

minimum is sought. A great number of labels will allow us to be confident

that the optimal solution will be approached but will result in high com-

putational times and great memory demands. On the other hand, a small

number of labels will keep the computational time small but will, in gen-

eral, fail to approach the optimal solution with precision. A compromise

can be achieved through a compositional approach, where the final solution

is obtained through successive optimization problems [111, 51]. In each suc-

cessive optimization problem finer grids (and consequently shorter diffusion

times t) and label sets will be applied. Thus, by keeping the set of the labels

to a reasonable size it becomes possible to approximate the optimal solution

in an efficient way.

6.4 Experimental Validation

For validation purposes, we considered DT images of the calf muscle of 10

healthy subjects. Recall that the size of the obtained volumes is 64×64×20

voxels with a voxel resolution of 3.125mm×3.125mm×7mm and that high-

resolution T1-weighted images were simultaneously acquired and segmented

in 7 muscle groups by an expert. In order to assess quantitatively our

method, we consider several evaluation criteria that estimate both spatial

normalization accuracy and angular alignment.

In order to measure the spatial mismatch between the deformed and

the target images, we deform the ground-truth segmentations and compute

the dice overlap, the sensitivity and the specificity of the deformed source

segmentation with respect to the target segmentation. Four angular simi-

larity criteria are also evaluated on the target mask: the mean difference in

the azimuthal angle θ and the polar angle φ in spherical coordinates of the

principal directions of diffusion, their average angular separation (AAS) as

well as the average overlap of eigenvalue-eigenvector pairs (AOE). We also

compute the mean difference in fractional anisotropy (FA). The AOE [12] is

defined as follows
1
N

N∑
i=1

∑3
j=1 λi

j λ̄
i
j(e

i
j · ēi

j)
2∑3

j=1 λi
j λ̄

i
j

. (6.16)

where λi
j , ei

j and λ̄i
j , ēi

j denote the j−th eigenvalue-eigenvector pair that
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is in the i−th voxel in each one of the images, and N is the number of the

voxels of the region of interest. This measure evaluates the mean alignment

of two tensors that are placed at corresponding positions in the pair of

images. As far as the AAS [6] is concerned, it is defined as follows

∑N
i=1

√
FAiF̄Ai arccos |e1

i · ē1
i |∑N

i=1

√
FAiF̄Ai

. (6.17)

By e1
i , ē

1
i (resp. FAi, F̄Ai) we denote the principal eigenvector (resp. the

FA) of the tensor which is situated at the i−th voxel in the pair of the im-

ages. This similarity criterion provides information on how well the principal

eigenvectors are aligned.
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Figure 6.1: Boxplots of the evaluation criteria over the 50 registrations
before registration (Init), with our method with a single identity rotation
label (KMRF-Worot) and several rotation labels (KMRF), as well as the
method in [128] (DT-REFinD).

Among the possible 90 registrations, we chose randomly a subset of 50

pairs of DT images. In all our experiments, we used a three-level multires-

olution scheme. The grids used at the three levels were of size 6 × 6 × 5,

12 × 12 × 10 and 18 × 18 × 15. The following diffusion times were used:

t =
{
2 105, 5 104, 2 104

}
. The parameter α in (Eq.6.13) was set to α = 1.
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Figure 6.2: Boxplots of the evaluation criteria over the 50 registrations
before registration (Init), with our method with a single identity rotation
label (KMRF-Worot) and several rotation labels (KMRF), as well as the
method in [128] (DT-REFinD).

A number of 73 = 18 × 4 + 1 translation labels were used per resolution

level, sampled along the horizontal and vertical directions as well as the di-

agonals. For rotation sampling, we generated 103, 104 and 105 quaternions

using Sukharev layered grids. Of these we selected 100, 50 and 25 for the

three levels respectively. These samples were chosen as the closest with re-

spect to the geodesic distance arccos(., .) on S3 to the identity matrix (or

equivalently with the smallest angle). Towards imposing the diffeomorphic

property on the deformation field, we use a cubic B-spline interpolation of

the displacement field, with the maximum displacement being restricted to

0.4 times the grid spacing. We used a simple trilinear scheme for tensor

interpolation and a nearest-neighbor backprojection (ηp).

For the sake of comparison, we provide the values of the computed evalu-

ation criteria before and after registration. We also compare our method to a

reference algorithm recently proposed in [128] (the software is publicly avail-

able at http://www-sop.inria.fr/asclepios/software/MedINRIA/) and

to the result of our method without a rotational component, i.e. with a sin-

121

http://www-sop.inria.fr/asclepios/software/MedINRIA/


Chapter 6. DTI Registration Using Kernels and Discrete Optimization

gle rotation label equal to the identity matrix. For the reference algorithm,

we considered a three-level multiresolution pyramid with a smoothing kernel

of size 1 and a maximum displacement of 4. The main strength of [128] is

its use of a true gradient derivation, allowing a more precise reorientation

of tensors by differentiating the finite strain reorientation scheme.

Figure 6.3: From left to right and top to bottom: moving, fixed and de-
formed tensors. All are overlaid on the B0-image of the target subject.
RGB colors encode principal directions of diffusion. Red arrow indicates a
region where spatial normalization is clearly suboptimal before registration.

We report in [Fig.6.1, 6.2] the boxplots of the evaluation criteria over the

50 registrations for our method and for the approaches described above. We

can see from the boxplots that our approach improves significantly all the

evaluation criteria with respect to the initial state (no registration) and that

it achieves close results to [128]. We run a paired statistical Student t-test
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with a significance level of 0.05 for comparison and we found that the two

approaches performed equivalently for the dice and FA, that our method

achieved better results for θ, AAS and sensitivity while [128] performed

better in φ, AOE and specificity. The inclusion of rotation labels improved

(in a significant way according to the t-test) all the four angular evaluation

criteria with respect to the no-rotation experiments.

For qualitative evaluation, we report in [Fig.6.3] a view of moving tensors,

target tensors and deformed tensors, all overlaid on the B0-image of the

target subject. We can see that the spatial mismatch is minimized while the

tensor field obtained is smooth and the directions of the deformed tensors are

similar to the fixed ones. In order to further assess qualitatively the obtained

results, we chose randomly a subject as the template and then registered the

remaining images to it. The group-average image is computed before and

after the registration by a voxel-wise averaging of the corresponding tensors

in the individual subjects. The group-average image is then compared to the

template by computing the absolute difference of the FA values of the tensors

in the respective images. The color code is the following: red corresponds to

high values, while blue corresponds to values close to zero. As it can be seen

in [Fig.6.4] the great differences that exist before the spatial normalization

have been decreased significantly. The algorithm runs in approximately 15

minutes on a standard PC.
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Figure 6.4: Difference between the FA values of the template and the group-
average image before (left hand-side) and after (right hand-side) the spatial
normalization.
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6.5 Discussion

We introduced a novel approach to diffusion tensor registration. The main

contribution is two-fold. On one hand we proposed to use a diffusion prob-

ability kernel that models both spatial and data dependencies in the tensor

field in order to drive the registration process. The proposed formulation

allows for the matching of the deformed and the target images while reori-

enting the tensors and taking into account the local structural information

of the source image. On the other hand, we showed that the discrete MRF-

based formulation for scalar images proposed in [51] can also be extended to

the case of tensor images. A possible improvement of the proposed frame-

work is to consider automatic and location-dependent adaptive quantization

of the search space in the context of discrete optimization. This could im-

prove significantly the performance of the method especially when seeking

an adequate discretization of such high-dimensional spaces. We can also

investigate the use of more evolved interpolation techniques on the Special

Euclidean group SE(3) = R3×SO(3) of 3D rigid poses like dual quaternions.

These methods could provide better reconstruction of the displacement and

rotation fields through the obtained solution at the control points.
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Conclusion

7.1 Contributions

Throughout this thesis, we investigated the use of novel models for process-

ing of diffusion tensor images of the human skeletal muscle. We presented

methods for joint estimation and smoothing of diffusion tensor fields, and

techniques for segmentation of tensors and fiber tracts, both in supervised

and unsupervised fashions. We also proposed a diffusion tensor registration

framework based on discrete optimization, Markov Random Field modeling,

and probability kernels.

As far as diffusion tensor estimation and denoising is concerned, the pre-

sented approach allows to jointly compute and regularize a tensor field based

on noisy observations. The main strength of this technique is its ability to

incorporate a prior model about local neighborhoods of tensors that over-

comes the limitation of the piecewise constant tensor field assumption and

the convexity of the defined objective function that allows for a tractable

variational optimization. The backbone of the segmentation framework is

the use of Gaussian diffusion probabilities that incorporate the spatial in-

formation and the definition of kernels on the product space of symmetric

positive definite matrices and spatial positions. Hence the approach takes

into account the spatial regularity requirement for the segmentation result.

More importantly, this paves the way to the definition of similarity measures

between fiber tracts that use the tensor information and do not require the

computation of point correspondences, while using a single scale parame-
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ter (the diffusion time) that stems from the Gaussian diffusion propagators.

These similarity measures can be interpreted in an appealing way as affini-

ties between soft probabilistic representations of the fiber trajectories. The

Mercer kernels used for unsupervised segmentation were also exploited in

a supervised setting, using Support Vector Machine classifiers in order to

learn tensors or fiber tracts from a manually labeled template. This is done

thanks to the fact that they verify the positive semi-definite (Mercer) con-

ditions. This shows the flexibility and the versatility of such an approach.

Various clustering techniques were tested on a significant dataset of the lower

leg muscle for a population of healthy and diseased subjects, providing en-

couraging experimental results. Besides embedding techniques like kernel

PCA (that is naturally used due to the Mercer property of the used kernels)

and diffusion maps, the use of linear programming optimization combined

with pairwise cost approximations that reproduce the behavior of landmark

Isomap allows to obtain automatically the number of clusters in a way that

is insensitive to the initial conditions. This provides robust and reproducible

clustering results.

The registration framework is based on the kernels used in the segmen-

tation process. They allow to define a notion of deformation regularity that

couples the rotation applied to tensors with the translations of their spatial

locations. The proposed objective function aims at optimizing the match

between the moved image and the target image while respecting a constraint

on the deformation regularity. The variables of the objective function are in

the group of rigid motions which depend on six parameters. This group is

quantized to generate likely discrete solutions and the optimization is done

efficiently in a Markov Random Field framework.

The algorithmic developments proposed in this thesis offer new repre-

sentations of the diffusion data, such as the use of local weights for tensor

reconstruction based on the piecewise linear assumption and the use of a

model of fiber tracts that includes the tensor information. These represen-

tations can be used handily for a wide range of applications like denois-

ing, segmentation and registration. The experimental results on the human

skeletal muscle show a practical case where these techniques can be useful.
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7.2 Future Directions

A possible future direction is the development of an analysis tool that is able

to extract relevant statistical information about the diffusion properties like

diffusivity and anisotropy indices based on fiber clustering techniques, fol-

lowing the lines of tract-based statistics presented in [88, 77]. This can be

useful to detect subtle differences between populations. One can also use the

defined kernels in a variational framework for diffusion tensor segmentation.

Another important perspective of this work is to fuse the diffusion tensor

data with the T1 weighted MRI images that have the advantage of having

a higher resolution but where one still observes a lack of contrast between

the different muscle groups. Since these images were acquired along with

the diffusion images in our experimental protocol, it is interesting to assess

the possibility of combining the information provided by both modalities.

This is eased by the natural alignment of these modalities when acquiring

simultaneously the data, so that inter-modality registration is superfluous.

For example, the fiber directions can be used as features to guide muscle seg-

mentation when the gradient of T1 intensity is not reliable enough. Indeed

while all muscle groups have the same graylevel intensity in the T1-weighted

images and the contours are not clearly defined, the fiber orientations or the

other principal directions of diffusion can be more discriminative.

Another interesting direction consists in using diffusion tensor informa-

tion with an adequate shape prior such as the one proposed in [42, 41] in

order to co-segment both T1 and diffusion data. The same applies for regis-

tration and atlas building, since co-registration of T1 weighted images and

diffusion images is a challenging issue since one has to find a compromise

between these two modalities and a way to improve registration with respect

to the case where only a single modality is used.

As far as tensor estimation and smoothing is concerned, an important

issue that has to be tackled is the regularization of diffusion images with an

anomalous signal, for example originating from a tumor or a disease. In the

case of diffusion tensor images of the human skeletal muscle, this is relevant

in the areas where myopathies result in fat infiltration and alter fiber prop-

erties. Regularization of tensor fields should not smooth out the anomalous

tensors since they are of crucial importance for diagnosis. Also the nature
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itself of the tensor estimates (should they be positive definite or semi-definite

positive ?) is not negligible since supposing that very low eigenvalues do not

correspond to physical intuition can mislead tensor estimation in the case

of the cessation of water flow in some directions due to a disease.

Diffusion tensor registration remains a very challenging issue. One pos-

sible improvement to the technique we proposed is to consider geodesics

between control points and to consider an approximation of the geodesic

distance over the field of Gaussian diffusion probabilities. Then the regular-

ity of a deformation can be estimated using the distortion induced on the

computed geodesic distances. However the optimization of the deformation

in this context seems to be problematic.

Regarding the experiments, the potential of the fiber clustering tech-

niques discussed in this thesis in segmenting fiber tracts of the brain white

matter should be evaluated and compared to the performance of other ap-

proaches proposed in the literature, using various fiber metrics like Chamfer

and Hausdorff distances. Also the experiments can be run on tractogra-

phies obtained from more evolved and robust techniques like those based

on stochastic modeling. They can significantly improve the quality of fiber

tracts and recover better trajectories, especially in the case of diseased sub-

jects.

Another open issue is the correlation of diffusion data with histological

images obtained using biopsy. In particular relationships between the fiber

diameter estimated at a microscopic level and tensor parameters should be

investigated. Moreover, for diseased subjects, possible effects of fiber diam-

eter shrinking ascertained using histology on diffusion tensor data should

be explored. An enticing perspective is to learn the histological patterns

as a function of diffusion tensor information and to be able subsequently to

reproduce in a non-invasive way the result of a biopsy based on diffusion

data.

The ultimate goal is to provide the acquisition improvements and the

algorithmic tools that can make diffusion tensor imaging a robust, reliable

and clinically useful means for diagnosis and monitoring of myopathies. This

requires the implementation and optimization of better acquisition sequences

and an in-depth understanding of the effect of myopathies on diffusion. The

use of more complex models like High Angular Resolution Diffusion Imaging
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(HARDI) is to be envisaged, however this should be a consecutive step to

an optimal use of the tensor model for the extraction of attributes that can

be helpful for physicians dealing with neuromuscular diseases.
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