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General introduction 
 

As one brilliant star in nanotechnology, carbon nanotubes (CNTs) have attracted 

worldwide attention in last decades. They have many potential applications in a wide range of 

fields such as aerospace, energy storage, biotechnology and electronics. This is mainly due to 

their extraordinary mechanical properties (~ 100 times stronger than steel at one-sixth the 

weight), thermal conductivity (~ 8 times higher than that of copper), and electrical properties 

(comparable to that of copper). The remarkable properties along with their quasi-1D tubular 

structures, the large aspect ratios and the low density, make CNTs promising candidates for 

multifunctional reinforcement in composite materials. Especially, the composites with good 

thermal conductivity have huge application potentials in printed circuit boards, connectors, 

thermal interface materials, heat sinks and other high-performance thermal management 

systems. A great improvement of the thermal conductivity of the composites has been obtained 

compared with that of pure polymer. However, the reported properties are still far from the 

expectation values. This is mainly due to imperfect dispersion of CNTs in the matrix, and high 

thermal contact resistance between CNTs.  

To overcome these barriers, functionalization or surface treatments (e.g. using surfactants, 

acids) of CNTs have been widely used to improve the dispersion of CNTs in the polymer 

composites. However, it has been commonly realized that surface modifications can degrade 

the CNTs intrinsic properties. 

An alternative way is to produce multi-scale hybrid materials by combining CNTs and 

micrometer materials. The CNT dispersion could be improved by using the hybrid structures as 

fillers. The effective interfacial connection between CNTs and the micrometer materials 

generates a considerable improvement of multifunctional properties of the composites. 

However, the formation mechanisms of the multiform hybrid structures have not been reported. 

In order to resolve the issues mentioned above, in this thesis we propose the in situ control 

of the organization of CNTs on micrometer ceramic particles during their growth by chemical 

vapor deposition (CVD). Due to their excellent thermal conductivity, alumina particles are 

chosen as micrometer substrates in order to develop the hybrid structures for thermal 

reinforcement in composites. We investigate furthermore the formation mechanisms of 
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multiform hybrid structures, and the involved chemical reaction kinetics in CVD reactor, for 

the purpose of large scale production of the desired structures in a controlled way.   

This thesis is divided into four chapters:  

The first chapter reviews the state of the art of research in CNT structures, properties and 

applications, and CNT growth mechanisms in CVD, as well as CNT-based nano-micro hybrid 

structures. 

The second chapter introduces three types of hybrid structures consisting of 

well-organized CNTs on alumina microspheres (µAl2O3) (shown in the figure below). The 

excellent thermal performance of CNTs-µAl2O3 hybrids in epoxy matrix is then characterized. 

The third chapter presents the detailed investigation on the roles played by CVD 

parameters and alumina microparticles in the construction of multiform hybrid structures. A 

particular attention is pad to the correlative effects of these parameters. The self-organization 

mechanism of CNTs on µAl2O3 is uncovered by various characterizations including X-ray 

diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron 

microscopy.  

The forth chapter studies gas phase chemical reaction kinetics in CVD reactor by 

numerical simulation which takes into account the physical transport phenomena. The 

non-uniform growth of hybrid structures in the reactor is explained by the space-dependent 

concentration distribution of species, especially that of ferrocene.  

 

 
Three distinct nano-micrometer hybrid structures obtained by grafting C�Ts on spherical alumina 

microparticles by chemical vapor deposition method. The arrows show the variation tendency of the hybrid 

structures with C�T diameter, length and number density. 
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Chapter I   

Carbon nanotubes and their hybrid materials 

 

1.1 Background 

Carbon is one of the elements that form the basis of lives on earth. It has the amazing 

ability to subtly bind with a wide range of elements to form millions of molecules with diverse 

and complex structures like DNA, proteins, fats, and carbohydrates, etc. These diverse organic 

compounds furthermore result in the wonderful biodiversity in nature. Besides, as major energy 

resources carbon-based fossil fuels, such as coal, natural gas and petroleum are also of great 

importance in modern civilization.  

The properties of carbon are a direct consequence of its specific electronic structure 

(1s22s22p2) and multiple orbital hybridizations (sp1, sp2 and sp3). When forming a molecule, a 

sp1 hybridized carbon atom can form two sigma (σ) bonds and two pi (π) bonds, a sp2 

hybridized one forms three σ bonds and one π bond, and a sp3 hybridized one forms four σ 

bonds. The number and nature of the bonds finally determine the geometry and properties of 

carbon allotropes.[1]  

 

 
Figure 1. Temperature-pressure phase diagram of carbon.(for detailed information see ref. [2])  

 

Pure carbon exists in several forms of allotropes, which are thermodynamically stable at 

different regions of temperature and pressure, as shown in Fig. 1[2]. Diamond and graphite are 

the two most commonly known ones. The former is made up of repeating units of sp3 

hybridized carbon atoms bonded to four other carbon atoms (Fig. 2a). Each carbon atom is in 
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a rigid tetrahedral network where it is equidistant from its neighboring carbon atoms. The 

crystal structure of diamond is a face-centered cubic lattice. Graphite consists of parallel 

graphene sheets of sp2 hybridized carbon atoms (Fig. 2b). In each sheet, carbon atoms are 

strongly connected through σ and π bonds to three nearest neighbors to form a hexagonal 

network (Fig. 2c). The sheets are held together by weak Van der Waals (VdW) forces. 

Graphite is the most stable form of carbon under ambient conditions, while diamond is stable 

at higher temperatures and pressures. The graphite/diamond/liquid triple point is at about 12 

GPa/5000 K. Other regions of the phase diagram show stability ranges for other types of carbon, 

like hexagonal diamond, hexagonal carbynes, and liquid carbon, etc.[3]  

Due to their specific structures, diamond and graphite have exceedingly different 

properties. The large binding energy between carbon atoms (717 kJ mol-1) in diamond results 

in its extremely high melting temperatures (~5000 K)[2] and unparallel hardness-the hardest 

natural material known. Diamond has also a marvelous thermal conductivity (5 times that of 

copper at room temperature)[4] and extraordinary optical characteristics (the most popular 

gemstone). Unlike diamond, graphite is such a soft material that it is commonly used in 

drawing pencil and as dry lubricants. In addition, graphite is an electrical conductor, and is 

widely used, for instance, in electrodes.  

 

 

       
 
Figure 2. Crystal structures of diamond (a), graphite (b) and graphene (c). (from: University of 

Wisconsin-Madison)  

 

Fullerenes are another kind of carbon allotropes which are closed-cage carbon molecules 

in the form of a hollow sphere, ellipsoid, or tube. Each atom is trigonally linked to its three 

near neighbors by the bonds that delineate a polyhedral network, consisting of 12 pentagons 

and n hexagons. (Such structures conform to Euler's theorem for polyhedrons in that n may be 

any number other than one including zero.) Fullerenes were named after an American 

architect Richard Buckminster Fuller, because the appearance of spherical fullerenes 

(c) 
 

(a) 
 

(b) 
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resembles the geodesic domes he designed. The best known and most stable 

fullerene-buckminsterfullerene C60 
[5], was discovered in 1985 by R. Curl, H. Kroto and R. 

Smalley who were then awarded the 1996 Nobel Prize in chemistry. One C60 molecule 

contains 60 carbon atoms which form a truncated-icosahedral structure consisting of twelve 

pentagonal rings and twenty hexagonal rings, like a soccer ball (Fig. 3a). The mean diameter 

of one C60 molecule is 6.83 Å. The C60 crystal has a face-centered-cubic lattice structure 

under ambient pressure at room temperature, in which the C60 molecules are held together by 

weak Van der Waals forces (Fig. 3b).  

 

         

Figure 3. C60 molecule (a) and its crystal unit cell (b). (from: Stony Brook University) 

 

 
The success in synthesis of macroscopic amounts of fullerenes in 1990[6] makes it 

possible to extensively investigate their properties both in laboratory and in industry. 

Consequently, numerous novel physical and chemical properties of C60 have been discovered. 

Moreover, a variety of fullerene derivatives have also been synthesized by attaching hydrogen 

or halogen atoms or organic groups in fullerene molecules. The fullerenes doped with alkali 

metal atoms have been reported to exhibit superconductivity at relatively high temperatures 

(potassium-doped at 18 K[7], Cs2Rb-doped at 33 K[8]).  

Successive discoveries of fullerene molecules and their fascinating properties stimulated 

the unprecedented enthusiasm in carbon material research. In 1991, Iijima observed using high 

resolution transmission electron microscopy (HRTEM) helical graphitic carbon nanotubules 

(Fig. 4a), which were produced using an arc-discharge evaporation method similar to that used 

for fullerene synthesis[9]. These nanotubes consist of multiple concentric graphitic sheets often 

capped at two ends. On each sheet, the carbon atom hexagons are arranged in a helical fashion 

about the tube axis. In fact, as early as 1952 Radushkevich and Lukyanovich [10, 11] had already 

reported tubular carbon filaments with nanosized diameter (Fig. 4b) in the Journal of Physical 

chemistry of Russia; In 1976, M. Endo from Japan[12], collaborating with A. Oberlin in France, 

reported also the observation of carbon nanotubes (CNTs) by electron microscopy (Fig. 4c). 

(a) 
 

(b) 
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However, due to the limitations from experimental equipments, fundamental theory, 

international research context, language, etc.[11], these latter reports did not generate such 

tremendous impact as did by the one of Iijima who first characterized in detail the helical 

structure of nanotubes. 

 

   
 

Figure 4. TEM observations of carbon nanotubes reported by Iijima in 1991[9] (a), Radushkevich in 

1952[10] (b), and Endo in 1976[12] (c). 

 

 

In 1993, single-walled carbon nanotubes (SWCNTs) were first independently reported by 

Iijima et al.[13], from NEC, and Bethune et al.[14] from IBM in California. Significantly different 

from multi-walled carbon nanotubes (MWCNTs), SWCNTs are composed of only one graphite 

sheet, as shown in Fig. 5. In the following two decades, due to their unique structures and 

extraordinary properties CNTs have greatly attracted worldwide attention. 

    

 

 

Figure 5. High resolution TEM image of a SWC�T produced by arc discharge.  

 

 

 

 

 

(c) (a) (b) 
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1.2 Carbon nanotube structures and properties 

1.2.1 Structures 

  In general, CNT is categorized into two classes according to the number of graphene 

layers in one nanotube: SWCNT and MWCNT. 

  A SWCNT could be seen as a rolled-up cylinder of a graphene[15] sheet. It has a diameter 

typically on the order of 1-1.4 nm and a length from micrometers to centimeters [16]. In contrast, 

a MWCNT consists of multiple concentric cylinders of rolled-up graphene sheets. The 

interlayer spacing is ~3.4 Å, close to that of graphite, i.e. 3.35 Å. MWCNTs have varying 

diameters (from several to hundred nanometers) and lengths (a few micrometers to several 

centimeters), depending on the production technique used. Because of their quasi-1D 

structures, CNTs have ultra high aspect ratio (length to diameter), up to 28,000,000:1[16]. 

 

          

Figure 6. (a) 2D graphene sheet with vectors[17], and (b) three chiralities of carbon nanotube: “armchair”, 

“zigzag” and “chiral” (from left to right).[18]  

 

As shown in Fig. 6a, a CNT could be constructed by wrapping up a single graphene sheet 

such that two equivalent sites of the hexagonal lattice coincide. The vector C, called chiral 

vector, is defined by a pair of integers (n, m) and two basis vectors a1 and a2 of the honeycomb 

lattice, C=na1+ma2. The length (LC) of the chiral vector C is directly related to the tube 

diameter d,  

2 2Lc n m nm
d a

π π
+ += = , 

where a is the length of unit vector, 2.46 Å. The chiral angle is defined either with respect to the 

zigzag axis (θ) or to the armchair axis (ϕ=30-θ), by  

(b) (a) 
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3
tan

2

m

n m
θ =

+
, (0≤|θ|≤30º).  

The tube axis is indicated by the vector T normal to C. Therefore, the integers (n, m) uniquely 

determine the tube diameter and the chiral angle. A ‘zigzag’ tube is formed when m=0 (θ=0º), 

and an ‘armchair’ one when n= m (θ=30º). The other types of tubes are ‘chiral’, that is, when 0 

<θ < 30º. Thus, we can see that there are infinite possibilities in the type of carbon nanotube 

structures. This feature makes it possible to produce appropriate carbon nanotubes according to 

the need of applications. 

SWCNTs are commonly observed in the form of 'ropes' held together by VdW forces[19, 20]. 

As shown in Fig. 7, individual SWCNTs packed into a close-packed triangular lattice with a 

constant of ~17 Å. The binding energy between adjacent tubes is approximately 0.5 eV per 

nanometer of contact length. In addition, the density, lattice parameter, and interlayer spacing 

of one rope are very weekly dependent on the chirality of the tubes in the mat[21]. As a good 

estimate, the lattice parameter in CNT ropes (bundled nanotubes) is d + 0.34 nm, where d is the 

tube diameter given above. First-principles calculations by Delaney et al.[20] showed that a 

broken symmetry of the (10, 10) tube caused by interactions between tubes in a rope induces a 

pseudo gap of about 0.1 eV at the Fermi level. This pseudo gap strongly modifies many of the 

fundamental electronic properties. They predicted a semimetal-like temperature dependence of 

the electrical conductivity and a finite gap in infrared absorption spectrum. 

 

     

      

Figure 7. (a) Crystalline ropes of metallic C�Ts made of about 100 SWC�Ts of uniform diameter[19]; (b) 

perspective view of a rope of (10,10) carbon nanotubes[20]. 

 
 

1.2.2 Properties 

It is well known that material properties directly depend on its structure. The unique 

tubular nanostructure endows CNTs plenty of remarkable mechanical, electronic, thermal 

(b) (a) 
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properties.  

 

1.2.2.1 Mechanical properties 

Because of the strong sp2 bonds between carbon atoms and the perfect tubular structure, 

carbon nanotubes are expected to have extraordinary mechanical properties including high 

strength, high stiffness and high flexibility.[22-24]  

Exceptionally high Young's modulus and strength have been measured for both 

individual SWCNT and MWCNT using different methods. In the calculations, CNT is 

normally seen as a structural element such as beam and shell models. By measuring the 

amplitude of the intrinsic vibration of an individual CNT in transmission electron microscope, 

the evaluated Young's modulus for an isolated MWCNT and SWCNT were 1.8 [25] and ~1.25 

TPa [26], respectively. Wong et al.[27] measured MWCNT mechanical properties using atomic 

force microscopy (AFM) by treating the nanotube as a “cantilever nanobeam”, as 

demonstrated in Fig. 8a. MWCNTs were pinned at one end to molybdenum disulfide (MoS2) 

surface. The bending force was measured versus displacement along the unpinned lengths. 

The evaluated Young's modulus and bending strength were ~1.26 TPa and 14.2 GPa, 

respectively. Yu et al. performed direct tensile loading tests of SWCNT ropes and MWCNTs 

in a “nanostressing stage” operated inside a LEO 1530 scanning electron microscope, as 

shown in Fig. 8b. The Young’s modulus obtained ranges from 320 to 1470 GPa (mean 1002 

GPa) for SWCNT[28] and from 270 to 950 GPa for MWCNT[29].  

 

 

 
   

 

Figure 8. (a) Cantilever nanobeam model: �anomeasurement of C�T mechanical properties by bending a 

C�T with an AFM tip by Wong et al.[27]. (b) Tensile loading test of individual MWC�T[29].  

(b) 

(a) 
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Theoretical evaluation of the Young’s modulus could be obtained either by directly 

computing the mechanical response or by deriving analytically[30]. The Young's modulus can 

be written as the second derivative of the strain energy divided by equilibrium volume. 

Continuum elastic theory predicts a 1/R2 variation of the strain energy, with an elastic 

constant equal to C11 of graphite (which corresponds to the Young’s modulus parallel to the 

basal plane), independent of the tube diameter [24, 31]. Therefore, in the classical approximation, 

the Young’s modulus of CNT is not expected to vary when wrapping a graphene sheet into a 

cylinder[24].  

The elastic properties of CNTs were investigated by Lu et al.[32] using an empirical 

force-constant model. It was found that for SWCNTs and MWCNTs the elastic moduli were 

insensitive to structural details such as helicity, radius, and number of walls. The Young’s 

modulus (~1 TPa) and shear modulus (~0.5 TPa) calculated were comparable to that of 

diamond. Yu et al.[28]reported the tensile strength values ranging from 13 to 52 GPa and a 

maximum tensile strain of 5.3 % for SWCNT bundles measured by tensile load experiment. 

The results are close to the prediction made by Nardelli et al.[33] using molecular dynamics 

simulation. Tensile testing of MWCNTs[29] showed that only the outmost layer breaks during 

the loading process and the corresponding tensile strength ranges from 11 to 60 GPa.  

In summary, despite of the divergence of the values reported in the literature, individual 

CNT (SWCNT and MWCNT) ultimately exhibit admirable mechanical properties. Table 1 

shows a comparison of the properties of SWCNTs and MWCNTs with these of stainless steel 

and Kevlar (a very strong a para-aramid synthetic fiber). Obviously, CNTs are the strongest 

and stiffest material in terms of tensile strength and elastic modulus, respectively.        

 
Table 1. Comparison of mechanical properties 

 

Material 
Young's Modulus 

(TPa) 
Tensile strength 

(GPa) 
Elongation at break 

(%) 
Density of solid 

( g cm−3) 
SWCNT ~1  13–53 16 ~1.3-1.4[21] 

MWCNT 0.8–0.9 11–150   

Stainless Steel ~0.2 ~0.65–3 15–50 ~7.8 

Kevlar ~0.15 ~3.5 ~2 ~1.44 
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1.2.2.2 Thermal properties 

The specific heat and thermal conductivity of CNTs are determined primarily by 

phonons, because the electronic density of states is so low that the thermal transport via “free” 

electrons is negligible at all temperatures[34]. The measurements yielded linear specific heat 

and thermal conductivity above 1 K and below room temperature while a T0.62 behavior of the 

specific heat below 1 K.[35] 

Because of their small quasi-1D geometry and strong sp2 bond structure, CNTs are very 

good thermal conductors along the tube axis, exhibiting a property known as "ballistic 

conduction". Molecular dynamics simulations[36, 37] predicted an unusually high thermal 

conductivity (TC) value ~3000-6600 W m-1 K-1 for an isolated nanotube at room temperature. 

Those values are comparable to the TC of a hypothetical isolated graphene monolayer or 

diamond. Direct measurements on individual CNTs showed that the room temperature TC of a 

MWCNT is more than 3000 W m-1K-1[38], and the one of a metallic SWCNT is about 3500 W 

m-1 K-1[39]. These values are ~ 8 times higher than the TC of copper, 385 W m-1 K-1, which is 

an excellent thermal conductor. However, for CNT bulk mat consisting of aligned CNT array 

prepared by CVD,  the measured thermal conductivity was only ~20 W m-1 K-1[40], 

suggesting that thermally opaque junctions between tubes severely limit large-scale diffusion 

of phonons.  

 

1.2.2.3 Electronic properties 

The electronic properties of CNTs are predominately determined by intralayer interaction, 

rather than by interlayer interactions between multilayers within a single carbon nanotube or 

between two different nanotubes[41]. Depending on chirality, SWCNTs can behave as metals or 

semiconductors, even if they have early identical diameters. Nanotubes with n= m (armchair 

nanotubes) are always metallic. If n − m is a multiple of 3, then the nanotube is semiconducting 

with a very small band gap (~ 10 meV), otherwise the nanotube is a moderate semiconductor 

with band gaps (~ 0.5 eV for typical diameter of 1.5 nm). For the same-chirality 

semiconducting nanotubes, the band gap is inversely proportional to the diameter,  

Egap=2γ0 ac-c/d 

where γ0 is the C-C tight-binding overlap energy, aC-C is the nearest neighbor C-C distance 

(0.142 nm) and d is the tube diameter.[17]  

Four probe measurements on individual MWCNTs showed a range of electronic behavior 
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(metallic, semiconducting and semimetallic) [42, 43]. Although MWCNT is composed of several 

cylinders of different helicity, the conduction property of MWCNT is unique. And ballistic 

electron transport at room temperature [44]and the Aharnov-Bohm effect[45] were observed. 

Electron transport measurements on individual SWCNTs[46] showed that the electrical 

conduction occurs through well separated and discrete electron states that are 

quantum-mechanically coherent over distance of at least 140 nm. The measurement results 

proved that SWCNTs indeed act as quantum wires. Calculations by White et al.[47] showed that, 

unlike normal metallic wires, conduction electrons in armchair nanotubes experience an 

effective disorder averaged over the tube's circumference, leading to electron mean free paths 

that increase with nanotube diameter. This increase should result in exceptional ballistic 

transport properties.  

Thess et al.[19] measured the resistivity of the ropes of metallic SWCNTs to be in the order 

of 10-4 Ω cm at 300 K using four-point probe technique. They noted that the ropes were the 

most highly conductive carbon fibers known. In addition, SWCNTs have a carrier mobility of 

~10,000 cm2 V–1 s–1, which is better than that of silicon, and they can carry an electrical current 

density of ~4 ×109 A cm–2, which is three orders of magnitude higher than a typical metal, such 

as copper or aluminum[48].  

 

1.2.3 Potential and current applications 

The integrity of perfect structure, unique geometry and amounts of exceptional properties 

undoubtedly makes CNTs of great significance in nanotechnology. Since the first detailed 

characterization of CNT structure using HRTEM by Iijima in 1991[9], many potential 

applications in a wide range of fields have been proposed for CNTs. These applications include 

the use of CNTs as conductive and high-strength composites, energy storage and energy 

conversion devices, sensors, field emission displays and radiation sources, hydrogen storage 

media, nanometer-sized semiconductor devices, probes, interconnects and bio-engineering.[18] 

Thanks to world widely collaborative efforts in past two decades, huge progress has been made 

in CNT applications. And several applications have been commercialized such as CNT 

application in polymers and in lithium-ion batteries (LIBs)[49]. In particular, the significant 

advance in CNT synthesis techniques promotes to do various property and application studies 

with pure high quality CNTs. Here, we will briefly introduce three major applications of CNTs 

in the fields of composites, energy storage and electronic devices.   
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1.2.3.1 Carbon nanotube composites 

The quasi-1d tubular structures together with the large aspect ratios, low density and 

various remarkable properties make CNTs promising candidates for reinforcement in 

composite materials. Since the first report on CNT/epoxy composites in 1994,[50]  many kinds 

of CNTs/polymer composites have been studied by employing different kinds of polymer as 

matrix, such as epoxy, poly (methyl methacrylate) (PMMA), polyvinyl alcohol (PVA), 

polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), polyamide 12 (PA12) and 

polystyrene (PS)[51].  

In general, Young’s modulus and tensile strength of CNT/polymer composites are found to 

increase with nanotube loading, dispersion and alignment in matrix [52-54]. Dalton et al.[55] 

fabricated the super-tough composite fibers (of 5 µm in diameter and ~100 m in length) 

consisting of 60 wt % SWCNTs and PVA by optimizing the coagulation-based carbon nanotube 

spinning method [56]. The fibers had a tensile strength of 1.8 GPa, which matches that of spider 

silk. Their toughness is higher than any natural or synthetic organic fibre discovered so far, such 

as spider dragline silk, Kevlar and graphite fiber. In addition, they used these fibers to make 

supercapacitors of 10 µm in diameter and woven them into textiles. This fibre supercapacitor 

provided a capacitance (5 F g-1) and energy storage density (0.6 W h kg-1 at 1 V) that are 

comparable to those of large commercial supercapacitors. Miaudet et al.[57] reported that the 

super-tough fibers made from SWCNTs and PVA by a wet-spinning method could absorb 870 

J g-1 with a strain-to-failure up to 430 %, and those spun out of MWCNTs and PVA have a 

toughness of 690 J g-1 and a strain-to-failure ratio up to 340 %. Furthermore, they demonstrated 

that hot-drawing treatment could greatly improve the energy absorption of the fibers at low 

strain and make them resistant to moisture, due to the improvement of the nanotube alignment 

and of the crystallinity of the PVA. Based on their excellent properties, the CNT/polymer 

composites could be used in many fields, including actuators, microelectrodes, electronic 

textiles, aerospace, sports and automotive.  

The application of CNTs as electrically conducting components in multifunctional 

polymer composites has been successfully realized and commercialized[18]. Several orders of 

magnitude enhancement in electrical conductivity has been achieved with just a very small 

loading (0.1 wt % or less[58]) of nanotubes, while maintaining the other performance aspects of 

the polymers such as optical clarity, mechanical properties, low flow viscosities, etc.[52] These 

conductive composites have a variety of applications such as electrostatic dissipation, 

electrostatic painting, electromagnetic interference shielding, printable circuit wiring, and 
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transparent conductive coating. 

Nanocomposites with good thermal conductivity have huge application potentials in 

printed circuit boards, connectors, thermal interface materials, heat sinks and other 

high-performance thermal management systems[52]. The outstanding thermal conductivity of 

individual CNT makes it excellent filler in polymer composites. The great improvement of the 

composite thermal conductivity has been obtained compared with that of pure polymer [59-61]. 

However, the results reported are still far below the prediction value evaluated from the 

intrinsic thermal conductivity of nanotubes and their volume fraction. This is mainly attributed 

to the high interfacial thermal resistance both between two CNTs and between CNTs and 

matrices[62].  

 

1.2.3.2 Energy storage   

CNTs are desirable alternative electrode materials because of their excellent electrical 

properties, good electrochemical stability and highly accessible surface area. Thus, CNTs have 

been used as electrodes in supercapacitors, actuators, Li-ion batteries, solar and fuel cells[49].     

Supercapacitors with CNTs have a high capacitance (180 and 102 F g-1 for SWCNT and 

MWCNT electrodes, respectively), high power densities (20 kW kg-1 at energy densities of ~7 

W h kg-1 for MWCNT electrodes) and extraordinarily short discharge time (7 ms for 10 

MWCNT capacitors connected in series which operated at up to 10 V) [18, 63]. These 

supercapacitors could be used for applications that require much higher power capacities than 

batteries, and much higher storage capacities than ordinary capacitors. 

Electromechanical actuators based on sheets of SWCNTs were shown to generate higher 

stress than natural muscle, and higher strain than high-modulus ferroelectrics[64]. The actuators 

function at low voltages of a few volts, compared with ~100 V used for piezoelectric stacks and 

more than 1000 V used for electrostrictive actuators.  

CNTs also have great potential as the electrodes in lithium-ion batteries because of their 

reversible capacity up to 1000 mA h g-1. CNT reinforced anode materials have been 

commercialized in LIBs[65]. Homogeneously dispersed CNTs in synthetic graphite (~ 3 wt. %) 

give rise to continuous conductive network as well as mechanically strong electrode, resulting 

in doubled energy efficiency of LIBs. Furthermore, nitrogen-doped CNTs have also shown 

efficient reversible energy storage in LIBs (480 mA h g-1), higher compared to commercial 

carbon materials used for LIBs (330 mA h g-1). In addition, vertically aligned nitrogen-doped 

CNTs can act as a metal-free electrode with much better electrocatalytic activity, long-term 

operation stability, and tolerance to crossover effect than platinum for oxygen reduction in 
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alkaline fuel cells[66].  

CNTs are also promising fillers for the development of lightweight, flexible polymeric 

solar cells[67]. Their high aspect ratio allows the formation of a percolating network of 

nanotubes at low doping levels in polymer composites.  

Finally, super CNT springs[68] could ultimately have an energy density - a measure of the 

amount of energy that can be stored in a given weight of material - more than 1,000 times that 

of steel springs, and comparable to that of the best LIBs. The foam-like films of vertically 

aligned CNTs[69] exhibit much higher compressive strength, recovery rate, and sag factor, and 

the open-cell nature of nanotube arrays gives excellent breathability. These films may be useful 

as compliant and energy-absorbing coatings. 

 

1.2.3.3 Electronic devices 

Remarkable properties of CNTs make them promising electronic materials which could be 

used in field-effect transistors (FET) and interconnects[49]. In 1998, the Delft group built the 

first room temperature single-SWCNT field-effect transistor by connecting a single 

semiconducting nanotube to two metal electrodes[70]. They demonstrated that semiconducting 

SWCNTs have a channel conductance that can be modified by orders of magnitude (∼105) by 

an externally applied gate voltage, very similar to that of MOSFET. Further reduction of FET 

size has to be realized by constructing entire electronic circuits from interconnected nanotubes. 

Such heterojunction devices have been demonstrated by grafting a metallic nanotube to a 

semiconducting one[18]. In addition, the synthesis of multiply branched and interconnected 

low effect nanotubes with targeted helicity would be one revolutionary advance for 

nanoelectronics[18].     

Metallic nanotubes could be one of ideal interconnects in nanoelectronic circuits[49]. CNTs 

can withstand high current densities up to 1010 A cm-2, more than 1000 times of that of copper. 

Thus, a bundle of closely packed parallel metallic CNTs, or a large defect-free MWCNT is 

proposed to be used for the next generation of interconnects. 

Carbon nanotubes possess the following properties favorable for field emitters: (1) high 

aspect ratio, (2) small radius of curvature at their tips, (3) high chemical stability and (4) high 

mechanical strength[72]. Electron field emission from an isolated MWCNT[73] and from a 

MWCNT[74]film was first demonstrated in 1995. Nanotubes provide stable emission, long 

lifetimes, and low emission threshold potentials[72]. These characteristics make them useful in 

the fabrication of flat panel displays. Samsung released of a 4.5 inch diode type flat panel 

display in 1999[71], as shown in Fig. 9b. After that, the display prototypes of larger sizes have 
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been gradually demonstrated, including a 9 inch (23 cm) red-blue-green color display that can 

produce moving images. In 2008, they demonstrated the world's first CNT-based active 

matrix electrophoretic display e-paper. 

 

     
 
Figure 9. (a) Diagram of a carbon nanotube transistor: a SWC�T (red; about 1 nanometer in diameter) 

bridges two closely separated platinum electrodes (labeled in yellow as "source" and "drain" electrodes; 

spaced 400 nm apart) atop a silicon surface coated with an insulating silicon oxide layer.(from: Delft 

Institute of Technology) (b) Samsung 4.5 inch SWC�T flat panel display at color mode with red, green, and 

blue phosphor columns[71].  

 

 

1.3 Chemical vapor deposition synthesis of C)Ts  

 

1.3.1 Introduction to C)T synthesis  

In general, three components are required for CNT synthesis: carbon source, heat source 

and catalyst precursor. During the last two decades, a variety of techniques have been explored 

to produce CNTs, including electric arc discharge[9, 13, 75-77], laser ablation[19], chemical vapor 

deposition (CVD)[78-80], ball milling[81], diffusion flame [82-84], electrolysis[85-88], use of solar 

energy[89], heat treatment of a polymer[90], and low-temperature solid pyrolysis[91]. Among them, 

electric arc discharge, laser ablation and CVD are the three most widely used methods.    

Arc discharge takes a significant role both in the research of fullerenes and CNTs. As we 

have indicated previously, CNTs were first observed in 1991 in the graphitic cathode deposits 

formed in electric arc discharge. The synthesis of CNTs in gram quantities using arc 

discharge[75] greatly promoted the advance of the research on CNT properties and applications. 

This method creates nanotubes through arc-vaporization of two graphite rods placed end to end, 

separated by approximately 1 mm, in an enclosure that is usually filled with inert gas (helium, 

argon) at low pressure (between 50 and 700 mbars). A potential of ~20 V is typically applied 

(b) (a) 
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between two electrodes, and the current is typically of 50 to 100 A. The average temperature in 

the interelectrode plasma regions is of the order of 4000 K[92]. Carbon atoms or small clusters 

from the vaporized graphite anode condense, either on the surface of the cathode or on the wall 

of the furnace, into nanotubes or other types of carbon, like amorphous carbon, multilayer 

graphite etc. In particular, transition metal (Fe, Co, Ni, Y…) or their alloys (Co-Ni, Ni-Y, 

Co-Fe…) catalyst powders are needed to add in the anode electrode for producing SWCNTs. 

Arc discharge is one of easiest ways to produce CNTs in large scales.[75, 93] In general, CNTs 

produced by this way have a good graphitization degree due to high synthesis temperatures. 

However, purification procedures have to be followed after the synthesis in order to separate 

CNTs from the impurities in as-produced soot.[42, 94]     

Laser ablation is also a high temperature physical vaporization method, which was the first 

technique used to generate fullerene clusters in gas phase[5]. In this process,[19, 95] a graphite 

target doped with catalytic metals is placed in the middle of a quartz tube that is heated to a 

given temperature (~1200 ºC) under inert atmosphere (He, Ar…). A laser beam (typically a 

YAG or CO2 laser) is then introduced through a window and focused onto the target. CNTs are 

generated from evaporated carbon, and finally conveyed by the buffer gas to a water-cooled 

copper collector. One main advantage of this method is the production of high quality and high 

purity CNTs with controlled diameter. However, the process is expensive because it involves 

high purity graphite rods, high power lasers and low yield of CNTs. 

As indicated above, both arc discharge and laser ablation rely on the evaporation of 

carbon atoms from solid graphite targets at temperatures higher than 3000 K. Furthermore, the 

nanotubes products are tangled together, along with impurities. These make CNTs difficult to 

large-scale applications.  

In contrast, CVD is increasingly important for CNT applications because it allows the 

selective growth of CNTs on substrate at medium temperatures in a controlled way. Besides, it 

allows the bulk production of CNTs[96]. These characteristics of CVD are particularly 

important to their applications in semiconductor field. Furthermore, CVD exhibits one 

unparallel advantage in one step direct construction of various CNT-based architectures with 

multifunctional properties.   

In the following parts, we will concentrate on discussing about the CNT synthesis by CVD 

method, which is also the technique used in this thesis. A short review will be firstly given about 

the CVD principle and the effect of various parameters on CNT growth, then, CNT formation 

mechanism and production of CNT hybrid structures will be followed in the next two parts.    
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1.3.2 Principle of chemical vapor deposition 

CVD is an important technique for surface modification and new material production. The 

process involves homogeneous gas phase reactions and heterogeneous chemical reactions on or 

near the vicinity of a heated substrate surface leading to the deposition of powders or films[97]. 

Typically, a CVD system consists of three main parts: vapor precursor supply system, CVD 

reactor and effluent gas handling system. The main function of CVD reactor is to heat substrate 

to the deposition temperature under desired atmosphere. There are a wide range of reactor 

configurations such as horizontal, vertical and barrel[97].  

Fig.10 shows the key steps involved in a CVD process. The first one is the generation (1) 

and transport (2) of active gaseous reactant species; Second, the gaseous reactants undergo gas 

phase reactions forming intermediate species (3); Third, absorption and heterogeneous 

reactions (4) occur at the gas-solid interface; Fourth, diffusion and crystallization result the 

growth of film (5); Finally, non reacted gaseous precursors and by-products (6) are exhausted 

out of the reactor (7). Thus, we could see that CVD is a complex process, which comprises 

thermodynamics, kinetics and mass transport phenomena.     

    

 
 

Figure 10. Schematic illustration of the key CVD steps during deposition[97].  
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1.3.3 Catalytic CVD synthesis of C)Ts  

1.3.3.1 Introduction 

As early as 1959, CVD was applied to produce carbon filaments and fibers by thermal 

decomposition of carbon-containing gas on metal catalysts[98]. However, it was not recognized 

that this technique could be used to synthesize CNTs until 1993 when Jose-Yacaman et 

al.[99]demonstrated the success of synthesizing MWCNTs by catalytic decomposition of 

acetylene over iron particles at 700 ºC. At the same period, Endo et al.[100] also reported 

pyrolytic CNTs produced by thermal decomposition of hydrocarbon vapor (benzene) at 

~1100°C. It was in 1996 when Dai et al.[101] first reported the synthesis of SWCNTs by 

disproportionation of carbon monoxide at 1200 °C in the presence of molybdenum particles of 

a few nanometers in size.  

The equipment used in catalytic CVD is typically a horizontal quartz tube heated by an 

electric furnace, as schematically shown in Fig. 11. CNTs can be produced using a wide range 

of metal catalysts and hydrocarbon sources.[102, 103] Carbon sources could be gas (CH4, C2H2, 

C2H4 etc.), liquid (alcohol, benzene, toluene, xylene, etc.) or solid (camphor, naphthalene, etc.). 

They, together with carrier gases (Ar, N2 etc.) are injected into the reactor through an injection 

system. The catalyst particles (Fe, Ni, Co, etc.) could be either previously deposited on the 

substrate or in situ produced from catalyst precursors. Then, the catalyst particles are heated to 

sufficiently high temperature (500-1200 ºC) to decompose the carbon sources, in the presence 

of protection gas (H2, NH3, etc.). A variety of materials could serve as substrate for nanotube 

growth, including Al2O3, SiO2, SiC, MgO, Zeolite etc. 

 

 
     
Figure 11. Schematic of catalytic CVD reactor. 

 

In general, the catalytic CVD process of CNT synthesis consists in the thermal 

decomposition of carbon sources (hydrocarbons or other carbon-containing species) on the 

surface of nanosized catalyst particles supported on substrates. CNT geometry and structure 

could be influenced by all parameters involved in the process. In the following parts, we will 

briefly review the research on the influence of catalysts, carbon sources, substrates, 

atmospheres and temperatures on CNT growth.     

Carbon sources 
Carrier gases 

 

Substrate 

 

Furnace 500-1200 ºC 

 
Exhaust  
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1.3.3.2 Catalysts  

As it is well known, metal catalyst particles are one of the essential components for CNT 

growth. The catalytic activity sensitively depends on metal nature and particle size. 

Experimental results[35] have demonstrated that transition metals such as iron, nickel or cobalt 

have sufficient catalytic activity for CNT growth. Also, the catalyst activity is size-dependent. 

Takagi et al.[104] demonstrated that any metal, even gold, silver, and copper, could act as catalyst 

for SWCNT growth when the particles are less than 3 nm in size. Ultimately, catalyst particles 

are directly related to CNT growth and CNT diameters.[105-107] 

The chemical activity of a metal element is determined by its valence electrons. The 

electronic structure of a catalyst is largely responsible for its interaction with hydrocarbons[108], 

which includes electronic charge transfer between catalyst and adsorbed hydrocarbon 

molecules(Fig.12). The change of the electronic structure of adsorbate will result in the 

dissociation of the adsorbate molecules. As the transition metals have non-filled 3d shells, they 

consequently show high catalytic activity for dissociating hydrocarbons. Furthermore, the 

specific electronic structure of each metal results in different catalytic activities. Iron, for 

example, is more efficient than nickel and cobalt to decompose hydrocarbon. In contrast, 

copper, a metal with its 3d shell completely filled, was observed to have less catalytic activity 

than iron.[109]   

  

 
Figure 12. Schematic illustration of electronic interactions of metal catalyst and hydrocarbon adsorbate. A 

filled orbital on the adsorbate overlaps with an empty one on the metal.[108]  

 
The catalyst activity in CNT formation is closely associated with their preparation 

methods and CVD conditions. Up to now, a variety of methods have been applied to prepare 

catalyst particles[108]. One of the key objectives is to control the size of particles. Nanometer 

catalysts could be previously deposited on substrate or embedded into support before the 

decomposition of hydrocarbons. Various techniques could be selected depending on the nature 



Chapter I                                    Carbon nanotubes and their hybrid structures  

 -23- 

of catalyst precursors. Catalyst particles could be formed: (1) by calcinating metal salt solutions 

such as acetates or nitrates[110, 111] (Fe(NO3)3⋅9H2O, Ni(NO3)2⋅6H2O, Co(NO3)2⋅6H2O...), (2) by 

heating thin film metals of Fe, Co and Ni deposited by sputtering or evaporation[107, 111-113], (3) 

by roughening metal surfaces[103] with various methods (such as mechanical roughening, 

electrochemical etching, plasma etching, ion bombardment, oxidization, rusting, etc.), (4) by 

using colloidal metal or oxide particle[106], or (5) by using aerogel supported metal catalysts[114, 

115]. Alternatively, catalyst nanoparticles could also be formed by floating catalyst method[103], 

that is, by in situ thermally decomposing organometallic compounds (ferrocene[116-119], 

cobaltocene[120], nickelocene[121]), Iron(II) phthalocyanine (C32H16FeN8)
[122],or metal carbonyl 

complexes (iron pentacarbonyl[123]) during the pyrolysis of carbon source. This method permits 

to easily introduce catalyst precursors into CVD reactors in the form of vapor by carrier gas. In 

parallel, ferrocene could also be first dissolved into a carbon source solution and then injected 

into the reactor. Owing to high CNT productivity, the floating catalytic CVD is commonly used 

for continuous bulk/mass production of nanotubes/nanofibers by CVD[103] (this technique will 

be discussed in details in the latter parts).  

 

 
 
Figure 13. (a) a long MWC�T with both ends imaged by TEM. (b) and (c) are magnified images showing the 

ends (solid and hollow arrows) of the SW�T.[127]  

 

The activity of metal catalysts in CNT synthesis shows a “size-effect”. It has been 

demonstrated that the diameter of CNTs is associated with that of catalyst nanoparticles, and an 

increases with particle size.[101, 106, 109, 124-129] Fig. 13 shows a TEM image obtained by Zhang et 

al.[127] Isolated SWCNTs were grown on discrete catalytic nanoparticles with diameters in the 

range of 1–3 nm by CVD. It can be clearly seen that the diameters of the SWCNTs are strongly 

(a) 

(b) (c) 
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correlated to the size of the nanoparticles to which the nanotubes are connected. In general, 

SWCNTs grow from small metal nanoparticles (≤ ~5 nm); while MWCNTs are formed from 

larger catalyst particles.[106, 125, 127] The particles with too large sizes are normally inactive to 

catalyze the growth of nanotubes[101].  

Besides particle size, catalyst stability and carbon solubility could also affect CNT growth. 

It was found that the addition of molybdenum in transition metals (iron, cobalt and nickel) 

promoted the formation of CNTs [130, 131] by stabilizing the catalyst. Furthermore, metal carbides, 

e.g. iron carbide (Fe3C), have been detected in iron nanoparticles during CNT growth processes, 

and it was therefore proposed that Fe3C might be an intermediate in the growth process [132, 133]. 

This indicates that carbon solubility in metal catalyst particles might play a significant role in 

CNT growth. However, other experiments showed that the catalytic activity of pure Fe3C for 

the decomposition of acetylene is negligible.[134] Moreover, Herreyre et al[135] reported that the 

formation of Fe3C in catalyst particles was correlated to the decrease of reaction rates and the 

poisoning of catalysts in disproportionation of carbon monoxide on Fe2O3 at 808 K. Therefore, 

the roles of metal carbides in CNT growth are still a subject of debate.    

In addition, crystallographic orientations of the nanoparticles might also play a role in the 

CNT growth, for example, in determining CNT chirality.[108]  

 

1.3.3.3 Substrates  

A variety of supports have been used to synthesize CNTs, including SiO2 
[109, 131, 136, 137], 

Al2O3
[115, 131] , MgO[138], CaCO3

[139], porous Zeolite[140] and anodic aluminum oxide(AAO)[141, 

142], graphite[109], etc. However, it was found that catalyst particles supported on different 

substrates result in various CNT structures and morphologies, as well as different yields.[131, 143]  

Apparently, substrates serve as “holder” of catalyst particles. The substrate greatly 

influences the catalyst particle size, and thereby the diameter of CNTs. For example, Zeolites 

have a porous structure that could accommodate catalyst particles in their small pores. 

Consequently, catalyst particles with a narrow size distribution were obtained on the substrate, 

and their diameter is limited to the pore size of substrate. Using zeolite particles as a floating 

catalyst support, Hayashi et al.[140] have successfully synthesized small freestanding SWCNTs, 

which has a diameter of about 0.43 nm (Fig. 14). On the contrary, metal catalyst particles have 

larger mobility on flat substrates, so that they generally agglomerate together to form bigger 

particles.     
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Figure 14. Schematic of free-standing SWC�Ts grown by using zeolite particles (brown base) as a floating 

catalyst support (red balls indicate catalyst particles).[140]  

 

The interaction between catalysts and substrate materials is of great importance to CNT 

growth. The strength of the interaction has a direct influence on CNT growth mode. As 

described by Baker and Sinnott et al,[144, 145] “bottom-growth” (or “root-growth”) and 

“tip-growth” could be seen during CNT growth process depending on the interaction strength 

between catalyst and substrate (Fig. 15). The interaction is generally characterized by the 

contact angle at the growth temperature, analogous to “hydrophobic” (weak interaction) and 

“hydrophilic” (strong interaction) surfaces.[103] 

 

 
Figure 15. Schematics of root-growth and tip-growth modes for carbon filament growth[145]. 

 

It is worth noting that catalyst nanoparticles are often generated from compounds 

containing transition metals, like oxides, salts or metallocenes, etc. The formation of 

nanoparticles involves a series of chemical and physical phenomena, including chemical bond 

formation and dissociation, mass transfer, catalyst crystallization. Therefore, for a given metal 

catalyst, the CNT growth depends not only on substrate chemical nature but also the CVD 

conditions used. For example, Ren et al[105] demonstrated that the aligned CNT array of several 

square centimeters was grown on nickel-coated glass below 666 ºC using acetylene as carbon 
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source and ammonia as dilution gas. They found that CNTs grew only when NH3 was 

introduced first, followed by C2H2, or when both C2H2 and NH3 were introduced at the same 

time. Otherwise, no growth of CNTs was found.   

The crystallinity of substrate also exhibits an influence on the selective growth of oriented 

CNTs. Ward et al.[146] studied in detail the influence of substrate on nanotube growth by 

decomposing methane at 950 ºC. Aluminum–iron–molybdenum multi-layer thin films were 

deposited on various substrates, including (0 0 1) p-type silicon, ‘over-etched’ (001) silicon, 

porous (001) silicon, poly-silicon on (001) silicon, poly-silicon on PECVD silica, 6-H SiC, 

(001) MgO, (0001) SiO2, (0001) A12O3 and ‘spun-on’ alumina film. It was found that the 

roughness and the crystallinity of substrates greatly affected the distribution of the size of iron 

particles, and consequently determined the selective growth of SWCNTs. Su et al.[147] reported 

the preferred 2D orientations of SWCNTs grown by CVD of methane on silicon-based surfaces 

at 900 ºC. The SWCNTs grown on Si (100)-based surfaces took two perpendicular directions, 

but those grown on Si (111)-based surfaces took three preferred directions that were separated 

by 60º. Molecular simulations indicated that the observed orientations were the result of 

interactions between the nanotubes and the substrate surface lattices. The growth of SWCNTs 

was guided by the surface lattice to follow a potential minimum path. Han et al.[148] also 

reported the growth of aligned SWCNTs on a-plane and r-plane sapphire substrates using 

ferritin as the catalyst. Similarly, the CNTs of micrometers in length grew on a-plane sapphire 

normally to the [0001]direction. In contrast, no orientation was achieved for growth on the 

c-plane and m-plane sapphire, or when Fe films, instead of ferritin, were used as the catalyst. 

Maret et al. [149] reported the preferential growth of nanotubes along[110] and [110]directions 

on a single-crystal MgO (001) surface. The nanotubes were grown at 900 °C by CVD using a 

mixture of carbon monoxide and hydrogen. The Co catalyst nanoparticles self assembled on 

MgO under ultra high vacuum conditions. They attributed the directional growth of CNTs to the 

interactions between oxygen atoms of the MgO substrate and carbon nanotubes.  

 

1.3.3.4 Carbon sources 

In addition to carbon monoxide [101, 123, 150], a large variety of hydrocarbons have been 

used as carbon feedstock to synthesize CNTs by CVD. The most commonly used ones include 

acetylene[113], methane[131, 151-153] , ethylene[150, 154], benzene[119], toluene[120], xylene[155], 

pyrene[154], butane[116], cyclohexane[121, 156] and anthracene[157].  

At CNT synthesis temperatures, carbon source mainly decomposes according to the 
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following two ways: homogenous thermal decomposition in gas phase and catalytic 

decomposition on catalyst particles. The thermodynamic stability of carbon sources will 

influence their pyrolysis. Variation of the Gibbs function (∆rG) during the decomposition 

reaction of hydrocarbons into graphite and hydrogen is opposite to the Gibbs free energy of 

the formation of hydrocarbons at reaction temperatures. Fig. 16 plots the ∆rG of 

decomposition of the commonly used hydrocarbons (data from ref 158). The stability of 

carbon sources increases with the variation of the Gibbs energy. The term pyrolytic is defined 

as converting the carbon source to solid carbon as the main product and to different volatile 

compounds as by products[103]. For example, the pyrolytic reaction producing elementary 

carbon from methane is thermodynamically unfavorable at temperatures below 800 K. 

Therefore, methane is commonly used as carbon sources for SWCNT growth at higher 

temperatures. It could also be derived from the plot that acetylene is a carbon source 

thermodynamically unstable at low temperatures. Hernadi et al.[159] reported the production of 

CNTs by catalytically decomposing different carbon containing compounds over transition 

metals (Fe, Co, Ni, Y) supported on silica. The catalytic reactions were carried out at the 

temperatures ranging from 700 to 800 ºC. It was found that the highest yields of CNTs were 

obtained using acetylene as carbon source. According to the CNT yields, the reactivity order 

of the carbon containing compounds is: acetylene > acetone > ethylene > n-pentane > 

propylene >> methanol=toluene >>methane. This order is different from the one expected by 

the free energies of formation of the compounds (acetylene > ethylene > toluene > propylene 

> methane > n-pentane > methanol > acetone). That means the pyrolytic reactions in gas 

phase are not the only rate-determining factor in CNT production. In fact, the varied activities 

of catalyst particles for different carbon sources have to be taken into account. In addition, as 

CVD is a complex chemical system with no-equilibrium reactions, the process is also 

significantly influenced by chemical kinetics and mass transport phenomena.  
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Figure 16. Inverse free Gibbs energy of formation of some commonly used carbon sources.  
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1.3.3.5 Atmosphere 

The carrier gases commonly used in CNT synthesis by CVD include argon[160], helium[161], 

nitrogen[162, 163], hydrogen[12, 164] and ammonia[105]. Hydrogen usually serves as a protective gas 

to prevent the oxidation of catalyst particles during CNT growth. In addition, hydrogen can also 

reduce the rate of dehydrogenation reactions, and thus prevent the formation of less ordered and 

thermodynamically stable carbon structures[165]. Therefore, a few amount of hydrogen (in 

general ~10 %) is added in inert gas during CNT synthesis by floating CVD.[155, 166] 

Juang et al.[167] studied the effect of NH3 on the growth of CNTs in atmospheric thermal 

CVD at 900 ºC. Argon, NH3 and methane were used as diluting, reactive and carbon source 

gases, respectively. It was found that NH3 enhanced the catalyst (Ni) activity by preventing it 

from passivation.  

The addition of oxygen containing species such as water (H2O), carbon dioxide (CO2), 

oxygen (O2) in carrier gas could lead to the synthesis of high quality CNTs.[168, 169] Cao et al.[170] 

reported the synthesis of aligned CNTs by floating CVD in presence of water vapor. Certain 

amounts of distilled water were added into the ferrocene dissolved xylene solution. They found 

that a small amount of water was helpful to eliminate amorphous carbon in the final product, 

and to further open CNT caps by oxidation. Hata et al. [168] reported the efficient synthesis of 

high-dense vertically aligned SWCNTs, as shown in Fig. 17, using water (~150 ppm) assisted 

ethylene CVD method. The produced CNT forests with carbon purity above 99.98% had 

heights up to 2.5 millimeters. They argued that a small amount of water in CVD enhances the 

activity and lifetime of the catalysts by preventing amorphous carbon coving the catalysts.[168, 

171] Vertically aligned dense SWCNTs have also been synthesized by an ethanol CVD 

method[172]. The above studies demonstrate that oxygen-containing species have significant 

influences on CNT growth. Zhang et al.[169] have further studied the roles played by hydrogen 

and oxygen in CNT growth by CVD. They found that adding oxygen (~ 1%) to methane in the 

CVD returned the high efficient growth of densely packed SWCNTs. They revealed the role of 

oxygen in the CNT growth is to balance C and H radials and, specifically, to provide a C-rich 

and H-deficient condition which favors the formation of sp2-like graphitic structures. 
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Figure 17. (a) SW�T forest grown with water-assisted CVD: a 2.5-mm-tall SW�T forest on a 7-mm by 7-mm 

silicon wafer. A matchstick on the left and ruler with millimeter markings on the right is for size reference. (b) 

SEM images of organized SW�T structures-cylindrical pillars (A and B).[168]  

 

Sulfur is another additive which is often introduced in CVD processes for enhanced 

production of CNTs. Cheng et al.[119] reported that sulfur is a CNT growth promoter. The 

addition of thiophene in floating CVD atmosphere promoted the reproducible growth of 

SWCNTs, and increased the yield of either SWCNTs or MWCNTs under different growth 

conditions. Valles et al.[173] reported that the use of sulfur containing catalyst enhanced the 

growth of helical CNTs. Furthermore, it was also found that adding sulfur in the form of 

thiophene vapor favors the growth of Y-shaped carbon nanotubes (YCNTs) under certain 

hydrocarbon flow conditions.[173, 174]  

In addition, doping CNTs by substitution with other chemical elements is believed to be a 

promising approach for tailoring the electrical and optical properties of nanotubes. Because 

such substitution can introduce donor or acceptor states near the Fermi level. Boron (B) and 

nitrogen (N) are two commonly used doping elements. Doping by either B or N alone tends to 

produce metallic behavior.[175] And the B and N co-doped MWCNTs possess a bandgap that is 

adjustable by chemical composition and atomic configuration.[175] The N-doped or/and 

B-doped CNT could be synthesized by the addition of nitrogen precursors or/and boron 

precursors in CVD. For instance, Wang et al.[176] directly synthesized B and N codoped 

MWCNTs via a bias-assisted hot filament CVD process. Based on the pure CNT synthesis 

procedure, B2H6 and ethylenediamine were additionally fed with methane during the nanotube 

growth over the powdery MgO-supported Fe-Mo bimetallic catalyst. 

 

(a) 

(b) 
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1.3.3.6 Temperature 

Temperature is an essential parameter which has significant influences not only on 

catalyst activity, but also on CNT geometry, purity, yields and growth kinetics.[177] Higher the 

synthesis temperature is, more active the catalysts are, much easier the combination of 

catalyst particles becomes. The agglomeration of catalyst particles will therefore result in the 

increase of the diameter of CNTs.  

Besides, the CNT synthesis temperatures should also be chosen according to the carbon 

feedstocks used. Low temperatures are favorable to reduce the formation of undesired carbon 

deposits such as amorphous carbon. As we know, the amorphous carbon is deposited from the 

thermal decomposition of carbon feedstock gas, whereas CNTs are grown from the catalytic 

decomposition.[103] On the other hand, high temperatures are desired for the production of 

CNTs with good crystallinity. As the diffusion of carbon through the catalyst particles is a 

thermally activated process, high temperatures promote the growth of CNTs at a high rate, 

which is desirable for the mass production of CNTs. In general, there is a compromise 

between obtaining high purity and high crystallinity of CNTs. Taking floating CVD for 

example, the synthesis of MWCNTs is usually conducted at temperatures below 800 °C, but 

the production of SWCNTs is at higher temperature.[178]  

 

1.4 C)T growth mechanisms in CVD 

1.4.1 General mechanism  

Large-scale production of CNTs with well-defined configurations relies on the clear 

understanding of their growth mechanism. In the last two decades, a considerable progress has 

been made in the CNT mechanism research, especially, in in-situ observation of CNT growth 

with HRTEM. However, supplementary works are still required for a better understanding of 

the mechanism.   

“Vapor-liquid-solid” mechanism [145, 179, 180]is the first model employed to explain the CNT 

growth in CVD. In fact, this model is an extension of the one that Baker et al.[144] proposed to 

describe the growth of carbon fibers by catalytic decomposition of carbon feedstock, as shown 

in Fig. 15. According to this model[144, 145], carbon feedstock first decomposes on the 

front-exposed surfaces of the metal particle into hydrogen and carbon which then dissolves in 

the metal particles. Next, the carbon diffuses through the particle and is precipitated on the 
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opposite half to form tubular fiber having similar diameter to the metal particle size. Comparing 

with other forms of carbon such as graphitic sheets with open edges, tubular structure with no 

dangling bonds is energetically favorable[181]. Such a process will continue until the front tip of 

the catalyst particle is deactivated due to the formation carbon layer around it. The rate limiting 

step in this mechanism is believed to be the diffusion of carbon species from the front side to the 

rear side. Two probable driving forces of carbon diffusion are suggested to be the temperature 

gradient and the concentration gradient[144]. The temperature gradient in the particle is thought 

to be created by the exothermic decomposition of hydrocarbons at the exposed front faces and 

endothermic deposition of carbon at the rear faces, which are initially in contact with the 

support surface. Depending on the catalyst-substrate interactions, CNTs could grow according 

to two different modes, as shown in Fig. 15[144]. The weak interactions result in the tip growth 

mode whereas the strong ones yield the root-growth mode. 

This primary model could give a rough explanation to some phenomena observed in CNT 

growth. For instance, it indicates the important role of the catalytic decomposition of carbon 

feedstock, the influence of the catalyst particle size on CNT diameter, and the formation of 

metal carbides during CNT growth, etc. However, the model is far from perfect to well describe 

the complex CNT nucleation and growth processes. Obviously, it does not take into account the 

“nanosize-effect” of catalyst particles.  

The first effect of the particle size is on the catalyst melting point and physical state during 

CNT nucleation and growth. Take iron nanoparticles as an example. Considering that most 

CVD processes are conducted at temperatures far below the melting temperature of iron (1534 

ºC), and below the iron-carbon eutectic temperature (1147 ºC), it is therefore reasonable to 

expect that iron particles are in solid state during CNT growth. However, for nanosized metal 

particles, the melting temperature Tm is dependent on their size (radius, r). The dependence 

relationship could be approximately estimated based on the Kelvin equation as [182],  

0
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where T0 is the bulk melting temperature (1811 K); ∆Hfus is the latent heat of fusion (13.8 kJ 

mole-1); V is the molar volume of a metal molecule, which can be calculated from the density 

(7.87 × 103 kg m-3); σsl is the surface tension between liquid and solid (0.86 J m-2). It could be 

estimated that at commonly used CVD temperatures (500-800 °C) the metal particles with 

diameters less than 2-3.5 nm are expected to be in liquid state. Besides, nanoparticles also 

exhibit a melting point drop in the hydrocarbon gas atmosphere.[183] After dissolving certain 

amounts of carbon, the above evaluated diameter values might be increased a little. On the other 



Chapter I                                    Carbon nanotubes and their hybrid structures  

 -32- 

hand, it was reported that the melting point of metal nanoparticles is also dependent on 

catalyst-substrate interaction. For example, the melting point of nickel cluster increases with 

increasing the catalyst-substrate interaction.[184] If the temperatures above carbon-metal 

eutectic point are used, CNTs would grow according to the vapor-liquid-solid mechanism 

where diffusion through a liquid-phase particle is responsible for the synthesis of filaments. 

Otherwise, for instance, catalyst nanoparticles in solid state, or locally molten on the surface, 

the mechanism is not applicable.       

The second effect of particle size is on the CNT growth modes. Recently, Gohier et al.[185] 

demonstrated that for the examined metal particles the CNT growth mode switches from 

“tip-growth” for large particles (>>5 nm) to “base-growth” for smaller ones (<5 nm). SWCNTs 

and nanotubes with few walls (typically <7 walls) grew from their base, while larger 

multi-walled nanotubes were fed with carbon via their tips which support the catalyst particles. 

In this research, CNTs were grown by a plasma assisted catalytic CVD using cobalt, nickel and 

iron catalyst particles in different sizes. 

Thus, the“Yarmulke” mechanism was then proposed by Dai et al.[101] to reflect the specific 

characteristics of nanoparticles-very high surface energy. Since nanoparticles have a high 

percentage of surface atoms, it is energetically favorable for an excess carbon in CVD to 

assemble a graphene cap on the particle surface, with its edges strongly chemisorbed to the 

metal. Because the basal plane of graphite has an extremely low surface energy (10-20 times 

smaller than most metals), the total surface energy diminishes. Once the smallest yarmulke has 

formed, new arriving carbon continuously inserts into the region between the tube edge and the 

catalytic particle. The driving force for the extrusion of CNTs is believed to originate from the 

decrease in the free energy in the assembling reaction that occurs at the interface of the metal 

nanoparticle catalyst[186].  

Although above progresses made, the description of CNT nucleation and growth is still far 

from clear. The following key questions remain suspended in controversy. First, whether is the 

catalyst a liquid or a solid during CNT growth? Due to the high surface energy, area, and 

mobility[103], the metal nanoparticles behave completely differently than their bulk metal form. 

Thus, the second question is whether it is prerequisite for catalyst particles to be in liquid state 

for the growth of CNTs by CVD. Then, how does the catalyst particle behave during CNT 

nucleation and growth? How do the carbon atoms dissociated on the catalyst particle diffuse in 

order to form one CNT, through bulk diffusion or surface diffusion? Are there metal carbides 

generated during CNT growth? If yes, what is their role for the nanotube growth?  

In-situ time-resolved HRTEM provides an efficient tool which permits us to observe and 
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record with sufficient spatial and temporal resolution the dynamics of CNT nucleation and 

growth at the atomic scale. Hence, Ajayan said[187], this is a long-awaited solution to the 

mystery of nanotube growth. Helveg et al.[188] recorded, in real time, CNT growth from 

methane decomposition over supported nickel nanocrystals (5- 20 nm) at ~500 ºC inside a high 

resolution transmission electron microscope. As shown in Fig. 18, the CNT growth was driven 

by periodic shape changes (between spherical and elongated) of the nickel nanocrystals. The 

shape variations were driven by the reactions between the catalyst and the carbon source vapor. 

Specifically, the nucleation and growth of graphene layers were found to be assisted by a 

dynamic formation and restructuring of mono-atomic step edges at the nickel surface in 

elongated form. The contraction was attributed to the fact that the increase in the Ni surface 

energy can no longer be compensated by the energy gained when binding the graphitic fibre to 

the Ni surface. Density-functional theory calculations demonstrated that step edges act as 

growth centers for graphene growth mainly because carbon binds more strongly to such sites 

than to sites at the closepacked facets on Ni. The transport of C atoms from the free Ni surface 

to the sites at the graphene-Ni interface was the rate limiting step for the nanofibre growth. In 

this observation, CNTs grew following a tip-growth mechanism.  

 

 
Figure 18. Images a–h illustrate the elongation/contraction process of one nickel nanocrystal. Drawings are 

included to guide the eye in locating the positions of mono-atomic �i step edges at the C–�i interface. The 

images are acquired in situ with CH4:H2=1:1 at a total pressure of 2.1 mbar with the sample heated to 536 ºC. 

Scale bar, 5 nm.[188] 

 

Lin et al. [189] studied the SWCNT growth by the catalytic decomposition of acetylene 

over a Ni-MgO catalyst at 650 ºC using an in situ ultrahigh vacuum transmission electron 

microscope under a pressure of ~4×10-6 Torr. They observed that SWCNTs preferentially 

grew on smaller sized catalyst particles (diameter ≤ 6 nm) via base-growth mechanism, 

whereas larger catalyst particles favored nanocage formation. The study of the growth 



Chapter I                                    Carbon nanotubes and their hybrid structures  

 -34- 

dynamics of a SWCNT showed the existence of an incubation period prior to rapid growth. 

Furthermore, selected area electron diffraction showed that the nickel particles remained as 

metallic Ni, instead of forming nickel carbides Ni3C during CNT growth. Similarly, Wako et 

al.[190] also observed the three stages (incubation, growth and termination) of the CVD growth 

of a SWCNT on SiO2 substrate using in situ scanning electron microscopy (SEM). In 

particular, cobalt-filled apo-ferritin was used to disperse the Co catalysts on the substrate, and 

thus to minimize the overlapping of the grown SWCNTs. 

Hofmann et al.[96]studied the decomposition process of acetylene over SiOx-supported Ni 

and Fe catalysts by an atomic-scale environmental transmission electron microscope (Fig. 19). 

It was revealed that the nanoparticles showed crystalline fringe contrast and high deformability 

before and during nanotube formation. In situ time-resolved X-ray photoelectron spectroscopy 

analysis of the CNT growth was carried out under C2H2 atmosphere (~2×10-7 mbar) at 580 ºC. 

The evolution of the C 1s core level spectrum revealed a transition from chemisorbed carbon to 

carbide carbon and to a sp2-bonded carbon network. A SWCNT nucleated by lift-off of a carbon 

cap. The cap stabilization and nanotube growth according to base-growth mechanism involved 

the dynamic reshaping of the catalyst nanocrystal itself. For carbon nanofiber, the graphene 

layer stacking was determined by the successive elongation and contraction of the catalyst 

nanoparticle at its tip, resulting in a tip-growth mode. 

   

       
 
Figure 19. (A) (a) HRTEM image of �i-C interface at the tip of a C�F grown ex situ at 700 ºC in 2.7:1 

�H3:C2H2 at 5.2 mbar total pressure. (b) Schematic ball-and-stick model of area highlighted in (a). (B) (a-c) 

Environmental TEM image sequence of �i-catalyzed C�T root growth recorded in 8×10-3 mbar C2H2 at 

615 ºC. (d-f) Schematic ball-and-stick model of different SW�T growth stages.[96]    

 

Rodríguez-Manzo et al.[191] in situ observed the formation of SWCNTs by irradiating a 

MWNT-metal-MWNT heterojunction[192] with an intense electron beam(103A cm-2) in a 

transmission electron microscope. Fig. 20a demonstrated the process of the formation, 

elongation, and breakage of a SWCNT with the separation of a metal into two halves. During 

(A) (B) 
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the processes at temperatures ranging from 450 to 700 ºC, the metal remained crystalline in 

face-centered cubic (fcc) structure. In addition, they investigated the growth of SWCNTs from 

highly curved surfaces of transition metal particles that were saturated with carbon. They 

concluded that high curvature (radius less than 3 nm) is a necessary condition for nanotube 

growth, and that the local solubility of carbon in the metal determines the nucleation of 

nanotubes. Furthermore, the absence of a cap to the CNT nucleation indicated that the nanotube 

structure is not necessarily defined by the formation of a cap with a certain size. Instead, the 

diameter and structure of the nanotube are controlled by the shape and size of the catalyst 

particle. 

 

   

Figure 20. (a) A SWC�T formation and breakage by irradiating a MW�T-Co-MW�T heterojunction with an 

intense focused electron beam at 600 ºC. (b) A SW�T grows from a sharp �i tip that was obtained from a 

broken double-cone structure, and re-ingests into the blunt �i particle after rounding of the metal tip at 470 

ºC. [191]   

 

In summary, in-situ HRTEM observation of CNT growth reveals that catalyst particles 

with high local curvature surface are an essential condition for CNT formation. The nucleation 

and growth of graphene layer are driven by the dynamic formation and restructuring of 

monoatomic step edges at catalyst surface through the diffusion of metal atoms. The growth of 

CNTs is rather related to the amplitude and frequency of the reshaping process of catalyst 

nanocrystal. The diameter and structure of nanotubes are controlled by the geometry, size and 

orientation of catalyst particles. However, the reshaping process of catalyst particles needs a 

foreign driving force, which could be either the carbon deposition reaction between catalyst and 

carbon sources, or the energy in other forms such as irradiation. The catalyst particles both in 

(a) (b) 



Chapter I                                    Carbon nanotubes and their hybrid structures  

 -36- 

solid and liquid states could catalyze the formation of CNT. Carbon atoms could diffuse 

through catalyst particle though bulk-diffusion or (and) surface-diffusion, depending on the 

initial state of catalyst particle, carbon sources, and the used experimental conditions such as 

pressure and temperature. The rate determining step of CNT growth might be the amplitude and 

frequency of the catalyst particle reshaping along CNT axial direction, as well as the carbon 

adsorption, diffusion or precipitation on the catalyst particles.        

 

1.4.2 Mechanism in floating catalytic CVD  

The growth of CNTs by floating catalytic CVD is distinguished from other CVD processes 

by in situ formation of catalyst particles during the decomposition of hydrocarbons. In general, 

transition metal catalysts (Fe, Ni, Co) nucleate from the decomposition of catalyst precursors 

like organometallic compounds (ferrocene[112-115], cobaltocene[120], nickelocene[121]) and iron 

pentacarbonyl[123]. These catalyst precursors, either dissolved in liquid carbon source solution 

or evaporated by heating, are fed into CVD reactor by carrier gas. Normally, the process is 

carried out under atmospheric atmosphere. Thus, reductive gas such as hydrogen is also added 

as protective gas during catalyst formation and CNT growth. Specifically, the catalyst 

formation in floating CVD is sensitively dependent on CVD parameters, including temperature, 

substrate, carbon sources and protective gas. 

Vertically aligned CNT arrays were synthesized by pyrolyzing the solutions of Fe(C5H5)2 

and C6H6 
[193, 194], Fe(C5H5)2 and C7H8

[195], or Fe(C5H5)2 and C8H10
[155, 196]at the temperatures of 

~ 850 ºC. The produced CNTs are highly crystalline and with a large diameter, ~100 nm (outer 

diameter). In addition, these procedures give a relatively high CNT growth rate, as high as ~50 

µm min-1 [196].  

The growth of CNTs in floating CVD follows the common mechanism: bottom-up growth. 

That is, CNTs nucleate and grow from the surface of substrate where catalyst particles are 

located. Li et al.[197] reported the selective growth of stacked multiple layers of vertically 

aligned CNTs on silicon oxide substrate by decomposing a solution of ferrocene/xylene at 770 

ºC (Fig. 21a). It was demonstrated that each layer of CNTs nucleated and grew from the original 

substrate surface at the bottom of the existing multiple stacks of CNTs. The stacked layers of 

aligned nanotubes acted as fully permeable membranes for the downward diffusion of growth 

precursor vapors, allowing growth to occur at the buried solid interface. The preexisting 

multiple nanotube stacks lifted up to accommodate the vertical growth of fresh layers, allowing 

the formation of nanotube towers extending in millimeter lengths. At the same time, Pinault et 

al.[198] also reported the similar phenomenon. Aligned MWCNTs were synthesized by 
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aerosol-assisted catalytic CVD through sequential injections of aerosols containing both carbon 

and catalyst precursors. Each sequence was traced by a specific duration or precursor mixture. 

It was demonstrated that any sequence involved the growth of a new layer on the substrate 

surface by lifting up any pre-existing one. The continuous feeding of the catalyst precursor was 

prerequisite to the continuous CNT growth, and the catalyst was playing its role mainly on the 

substrate surface. By alternatively injecting 13C-enriched benzene/ferrocene solution, it was 

demonstrated that the produced CNT array carpet was composed of four stacked parts with 

different 13C/12C ratio, as shown in Fig. 21b. The stacking order was consistent with the 

chronology of the injection sequences of the solution. This result proved that carbon species 

diffused through the whole carpet thickness and subsequently feed the origin of the nanotube 

growth located on the surface substrate. [198]   

 

      
 

Figure 21. Base-growth mechanism of C�Ts in floating CVD process: (A) SEM image of an array of 4-stack 

nanotube pillars selectively grown on patterned silicon oxide substrate by the CVD of xylene/ferrocene 

solution. The fully grown stack gets lifted up as the new layer grows underneath, on the buried substrate. The 

height of each stack corresponds to these deposition times (C�T growth rate is typically ~10 µm min-1). [197] 

(B) SEM image of a cross section of one aligned MWC�T array synthesized by alternatively injecting 
13C-enrich benzene/ferrocene solution at 850 ºC (C�T growth rate was ~21µm min-1), and 12C and 13C 

mapping along the MWC�T layer length showing four separated regions with different 13C/12C ratios. [198] 

 
In general, CNT grown by floating CVD have one iron particle located at its root. 

Heresanu et al.[199] studied the nature of the catalyst particle generated from the pyrolysis of the 

aerosols of ferrocene/toluene under Ar atmosphere (no reductive gas). Different ex-situ 

measurements on the quenched samples demonstrated the iron-based catalyst particles were 

carbon-rich and oxygen-free, and might be supersaturated carbon-metal particles. However, 

catalyst particles were oxidized to Fe3O4 or γ-Fe2O3 during the normal cooling process. Pinault 

et al.[195] investigated the early stages of the growth of CNTs by the same process. It was found 

(A) (B) 
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that a layer of iron oxide nanoparticles (Fe2O3 or Fe3O4) was first formed on Si substrate before 

the growth of CNTs. Even though the oxides are due to residual oxygen in the reactor, the 

results show that the formation of metal catalyst form metallocene first takes place on substrate 

surface, and then the produced catalyst particles catalyze the decomposition of carbon sources 

to produce CNTs. In addition, CNTs produced by floating CVD are partially filled with iron 

nanoparticles in the γ phase with a face-centered cubic crystal structure. [156, 200] The 

nanoparticles exhibits a preferential crystallographic <110> axis along the nanotubes[156], and 

might accelerate the growth of nanotube arrays [196].  

 

1.5 C)T based hybrid materials 

1.5.1 Introduction  

As discussed previously, the unique structure and remarkable properties of individual 

CNTs make them excellent candidates in diverse applications. On the other hand, the fact that 

CNTs are insoluble in all solvents and are easy to agglomerate together has imposed great 

limitations to their applications [201]. Many efforts have been made to modify CNT surface 

structure through chemical treatments in order to integrate them into inorganic, organic, and 

biological systems[201]. In the meantime, a wide range of nanotube based hybrid materials have 

also been developed by the combination of CNTs with other materials. These hybrid materials 

with attractive features exhibit promising applications in the fields of nanobiotechnology, 

energy conversion/fuel storage, catalysis, electronic nanodevices etc.[202]  

 

1.5.2 C)Ts-based hybrid materials  

The first kind of CNT-based hybrid structure is CNT-polymer composites which are 

constructed by the combination of CNTs and different polymers. In the composites, the CNTs 

serve as multifunctional fillers, and the polymer is used as matrix. As introduced in section 

1.2.3.1, these hybrid materials have been largely researched in laboratory and in industry for a 

variety of applications.  

The second kind of the hybrid materials is formed by the combination CNTs and metallic 

or semiconducting nanoclusters.[202-204] Metal nanoparticles such as Pt, Au and Rh possess 

unique electronic, optical, magnetic and catalytic properties. The combination of CNTs with 

these nanoparticles may lead to a successful integration of their properties in the produced 

hybrid materials.[205, 206] Herein, CNTs serve as supporting materials for the deposition and 
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stabilization of the nanoparticles. These hybrid materials have several potential applications in 

gas sensors, biosensors, electronic nanodevices, polymer electrolyte fuel cells, heterogeneous 

catalysis, etc.[202] The produced heterojunctions between CNTs and semiconductor 

nanoparticles such as CdSe quantum dots (QDs), CeTe QDs and SnO2 have attractive 

applications in biological labeling, solar cell, light emitting devices, etc.[202] 

Another type of the hybrid materials is developed by the attachment of biomolecules on 

CNTs, or by the interaction of biomolecules and cells with CNTs.[207-209] The combination of 

the conducting properties of CNTs and the recognition properties of the biomaterials gives 

rise to new bioelectronic systems such as biosensors. Such hybrid structures include the 

heterojunctions of CNTs-proteins, CNTs-DNA and CNTs-cells. Besides, there are also the 

hybrid structures constructed by filling the inner cavities of SWCNTs by other elements, such 

as fullerenes (C60, C70, ...), metallofullerenes (La2@C80 , Gd@C82, …), pure elements (Ru, Ag, 

Au,…), biomolecules (small proteins-lactamase, DNA, RNA, …), etc.[201, 210]   

Among all the CNT-based hybrid structures, the CNT-polymer hybrid materials are of 

particular importance. The electrical and thermal conductivities and the mechanical properties 

of the polymer composites [211-213] could be considerably improved by the addition of CNTs. 

However, the multifunctional properties of the composites are still far from expectations[214]. 

This is mainly due to the imperfect dispersion of CNTs in the matrix, and the lack of efficient 

load and charge transfers between the interface of matrix and filler[215]. Since CNTs have large 

aspect ratios, they are always organized into aggregates. It is extremely difficult to separate 

individual nanotubes during the mixing with polymers or ceramic matrix. Especially, when the 

weight fraction of nanotubes is high in the composites, the large surface area of nanotubes 

results in a very high viscosity of the nanotube-polymer mixtures. To overcome such barriers 

and to maximize the advantage of nanotubes as reinforcing materials in composites, surface 

functionalization[216] or chemical treatments[52] (e.g. using surfactants, acids) of the CNTs 

have been widely used. Nevertheless, it has been commonly accepted that these surface 

modifications can degrade the intrinsic properties of CNTs [52]. Further efforts are still needed 

to make in order to close the gap between the high expectations and moderate performance of 

CNT-based composites.  
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1.5.3 )ano-micro hybrid structures  

1.5.3.1 Introduction  

On the contrary to chemical surface modification method, multi-scale combination of 

CNTs and micrometer supports seems to be an alternative way to overcome such obstacles. In 

particular, the micro supports could be either micrometric ceramic particles or various fibers. 

Instead of conventionally mixing two kinds of materials in a random way, CNTs are 

individually grafted on the surface of the microscopic supports to form the nano-micro hybrid 

structures. Fig. 22 demonstrates two types of the hybrid structures CNTs-µFiber and 

CNT-µAl2O3, which are generated by grafting CNTs on carbon fibers and alumina spheres 

with diameters in micrometer, respectively.  

The nano-micro hybrid structures have a reinforced interface between each CNT and the 

micrometer support. We could easily manipulate the nanotubes by simply controlling 

micrometer materials. At the same time, rather than in entangled state, CNTs could be 

distributed on the surface of micrometer particles or fibers in a separated state. This is desired 

to avoid the agglomeration of CNTs and to obtain good dispersion in composites. Furthermore, 

the nano/micro, nano/macro, and micro/macro micrometer reinforcements in the composites 

favor to transfer efficiently the loads between the matrix and the fillers. Thus, enhanced 

properties are expected to achieve by using the hybrid materials as fillers in composites. 

Indeed, the composites reinforced with CNT/carbon fibers[217] or CNT/micro SiC particles[218] 

showed a noticeable improvement of the interfacial strength between the matrix and 

reinforcements. Besides, the unique combination of two kinds of materials of different scales 

favors the development of the composites with multifunctional properties.  

 

    

Figure 22. Two types of nano-micro hybrid materials: (a)C�Ts-µFiber: MWC�Ts grafted on carbon 

microfibers[219]; (b) C�T-µAl2O3: MWC�Ts grafted on alumina microspheres. 

 

(a) (b) 
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1.5.3.2 In-situ CVD synthesis 

In-situ grafting of CNTs on the surface of micrometric substrates could be realized by 

CVD method.[217, 218, 220] Unlike the CNT growth on flat substrate, the organization of CNTs 

on micrometer-size particles depends on both the substrate properties, including their size, 

morphology and their structure, and on the CVD synthesis parameters used, such as carbon 

source, catalyst precursor, gas atmosphere, hydrogen ratio, temperature, growth time, gas flow 

etc.  

The submicron SiO2 spheres (diameter: ~ 0.5-1 µm) and CNT hybrid structures, reported 

by Huang[221], were obtained by pyrolyzing iron (II) phthalocyanine at 800-1000 °C. Then, 

isolated CNTs were perpendicularly grown on the surface of high curvature SiO2 particles. 

Selective growth of aligned CNTs was also obtained on the photolithographically patterned 

SiO2 particles. The hybrid structure of CNTs and micro SiC particles was synthesized by Ci et 

al. [218] using floating CVD. CNTs were directly grown on the surface of micro SiC particles 

(size in 1-4 µm and 10-20 µm) by decomposing a ferrocene-xylene mixture at 650-850 °C 

under N2/H2 (10:1) atmosphere. Large scale growth of vertically aligned CNT arrays on big 

diameter (~700 µm) ceramic spherical particles have been reported by Zhang et al. [222, 223] and 

Xiang et al. [224] using ethylene or liquefied petroleum gas as carbon source, and ferrocene as 

catalyst precursor. It was also demonstrated that CNT arrays crack randomly into different 

bundles on the ceramic particles when the length of CNTs is above 400 µm. The growth of 

MWCNTs on alumina particles (volumetric diameter ~ 322 µm) supported iron catalyst 

powders were studied by Philippe et al.[225] in a fluidized bed-catalytic CVD, using ethylene 

as carbon source. The aligned MWCNT mats were first grown around the catalyst grains. 

Then the entangled CNTs were formed from the particles located inside the porosities of the 

support, with a fragmentation of the catalyst grains. In addition, hybrid structures of CNTs on 

ceramic fibers and carbon fibers have been produced by directly growing CNTs using CVD. 

Afterwards, these hybrid structures have been used to improve mechanical and thermal 

properties of the composite materials [217, 226-228].   

CVD is an efficient method that permits to in situ construct the nano-micro hybrid 

structures, and in particular, the hybrid structures constituted of CNTs and microscopic 

ceramic particles. However, the control of CNT organization and orientation in the hybrid 

structures has not been deeply investigated yet, especially in the case of micro ceramic 

particles without any pretreatment. The density and the distribution of CNTs have certainly an 

influence on the multifunctionality of the composite materials, especially on electrical and 
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thermal properties. Therefore, it is desirable to control CNT arrangements in the hybrid 

structures for achieving advanced multifunctional composite properties. The widely reported 

well-aligned CNT architectures, in the forms of arrays of CNT carpets, pillars, forests, 

etc…[221, 229-234], were generally obtained by exploring pre-patterned substrates or predefining 

catalyst nanoparticles into certain morphologies on the corresponding substrate. The selective 

decomposition of carbon sources resulted in different CNT patterns. Obviously, these 

complex pattern techniques and strict application conditions greatly increase the difficulty and 

costs of elaborating aligned CNTs. Therefore, it is relevant to propose a facile CVD method to 

produce multiform hybrid architectures constituted of well organized CNTs and micro 

ceramic particles without any pretreatment.  

 

1.5.3.3 Enhanced properties  

The nano-micro hybrid materials take advantage of the excellent properties of each 

component material. They are therefore expected to have more attractive properties and large 

application potential in structure materials and multifunctional composites which could be used 

in the aerospace, automotive and sporting goods industries 

Thostenson et al.[217] studied the reinforcement role of the multiscale hybrid fillers 

constituted of microscopic carbon fibers grown by nanotubes on their surface. The 

single-fiber composite tests demonstrated that the CNT/fiber reinforcement improved 

interfacial load transfer at the fiber/matrix interface, because the presence of CNTs at the 

fiber/matrix interface improves the interfacial shear strength of the composites. Ci and 

Bai[218]studied the nano-micro multiscale reinforcements in the epoxy composites. The 

nano/micro hybrid structures were synthesized by directly growing CNTs on the surface of 

micrometric SiC particles by floating catalytic CVD. Compared with pure epoxy and the SiC 

particle reinforced epoxy composites, the composites containing 0.5 wt% CNTs/SiC hybrid 

materials exhibited an increase in Young’s modulus (24 %) and tensile strength (15 %). They 

attributed this improvement in the mechanical properties to the reinforced interfacial 

behaviors by CNTs.   

Besides, the enhanced thermal conductivity of the hybrid structures has also been 

reported. Han et al.[235] reported an increased thermal conductivity of the poly-alpha-olefin 

nanofluids containing a hybrid sphere/CNT, about 21% incensement at room temperature for 

particle volume fractions of 0.2 %. Here, the hybrid sphere/CNT was constituted by growing 

numerous CNTs (~2 µm in length) on the alumina/iron oxide spheres (~70 nm in diameter). In 
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such hybrid nanoparticles, heat is expected to transport rapidly from one CNT to another 

through the centre sphere and thus leading to less thermal contact resistance between CNTs 

when compared to simple CNTs dispersed in fluids. Recently, Naito et al.[236] measured the 

thermal conductivities of high tensile strength polyacrylonitrile (PAN)-based (T1000GB) and 

high modulus pitch-based (K13D) carbon fibers with CNTs grown on them by CVD using a 

thermal diffusivity meter. The results showed that the thermal conductivities of both types of 

fiber were improved by grafting CNTs. The improvement for the CNTs-grafted T1000GB and 

K13D fibers were 47 % and 30 %, respectively, compared with their original conductivities 

(12.6 ± 1.0 W m-1K-1 for T1000GB and 745.5 ± 16.0 W m-1K-1 for K13D). 

The enhanced mechanical and multifunctional properties make the nano-micro hybrid 

materials promising fillers in structure materials and multifunctional composites, which have 

huge application potentials in aerospace, automotive and sporting goods industries, etc. 

 

1.6 Conclusion  

In this chapter, we have reviewed some basic knowledge and the state of the art research 

of CNTs. Briefly, CNTs possess a perfect quasi-1D structure and extraordinary mechanical 

properties, thermal conductivity and electrical properties. Thus, they have huge application 

potentials in the fields of composites, electronic devices, bioengineering, etc. Among many 

synthesis techniques, CVD is of increasing significance for large-scale production of 

well-controlled CNTs. Besides, it also exhibits an unparallel advantage in one-step 

construction of various CNT-based architectures with multifunctional properties. Thanks to 

the development of in-situ high resolution transmission electron microscopy, the dynamics of 

CNT nucleation and growth could be recorded at the atomic scale with sufficient spatial and 

temporal resolution. However, due to the complexity resulted from the multi 

physical-chemical processes during CVD synthesis, the mechanisms of CNT nucleation and 

growth are still not clear up to now.  

CNTs based hybrid materials are largely investigated because of their novel properties 

and attractive application potentials in a wide range of fields such as catalysis, energy 

conversion and biotechnology. Especially, in-situ CVD synthesized multiscale hybrid 

materials consisting of CNTs and micro particles or fibers are one kind of the most promising 

materials which could be used as multifunctional fillers in composites. Due to the unique 

nano-micro hybridization, two great obstacles of CNT based composites - CNT agglomeration 

and poor interfacial load transfer between filler-filler and filler-matrix, could be easily 

overcame when employing these hybrid structures as fillers. However, a controlled elaboration 
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of the hybrid structures has not been reported yet. In consequence, the intrinsic extraordinary 

qausi-1D properties of CNTs and the unique multifunctional characteristics of the nano-micro 

hybrid fillers have never been realized in the composites.  

In chapter II, we will first demonstrate the multiform well-controlled hybrid structures 

produced by directly growing CNTs on the surface of alumina microspheres by floating CVD. 

Then, the outstanding thermal reinforcement of the hybrid materials are obtained by adding 

them as fillers in polymer composites. 
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Chapter II     

Multiform nano-micrometer hybrid structures  

and thermal transport 

 

2.1 Introduction 

The nano-micro hybrid materials based on CNTs and micrometer ceramic particles have 

tremendous applications in a wide range of fields. Their performance strongly depends on the 

structures and properties of individual components, as well as the component synergetic 

corporation. Numerous experiments have demonstrated that undesired agglomeration of CNTs, 

significant contact resistance and their poor charge transfer interface greatly restrict the 

improvement of the properties of the composites. Therefore, the organization of CNTs on the 

micrometer-sized particles is extremely significant to obtain enhanced multifunctional 

properties of the composites based on the hybrid structures.  

In this chapter, we present firstly the multiform hybrid structures consisting of CNTs and 

alumina microspheres (µAl2O3). The CNTs are in situ grafted on the surface of µAl2O3 by CVD 

of iron and carbon precursors. Three distinct types of CNT organization patterns and their 

evolution are demonstrated. Secondly, in order to examine their thermal performance, the 

CNTs-µAl2O3 hybrid structures are added into epoxy to prepare Epoxy/CNTs-µAl2O3 

composites. The enhanced thermal conductivities of the composites were obtained at ultra-low 

CNT weight fractions compared with that of the composites constituted of pristine CNTs and 

epoxy. This promising result shows the huge application potential of CNTs-µAl2O3 as 

multifunctional fillers. More importantly, the enhanced properties demonstrate the high 

significance of CNT organization on micro particles to achieve the desired properties. This is 

also one of the main motivations leading us to further in detail study the formation mechanisms 

of the multiform hybrid structures in the chapter III.   
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2.2 Experimental 

2.2.1 Materials 

Main materials involved in this study are listed in table 2.  

 

Table 2. Information of main materials used in this research  

 

materials 
Molecular 
formula 

Physical 
states 

Purity �otes 

Xylene C8H10 l* 98.5+% Assay, isomers plus ehtylbenzene, Alfa Aesar 

Ferrocene Fe(C5H5)2 s* 99 % Alfa Aesar 

Iron(III) 

chloride 
FeCl3 s 98 % Anhydrous, Alfa Aesar 

Argon Ar g*  Carrier gas 

Hydrogen H2 g  Carrier gas 

Acetylene C2H2 g  Carbon source 

Epoxy Resin     

Hardener    
Resoltech 

Micro alumina 
particles 

Al2O3 
s,(size in 
3-10 µm) 

99.8% 
Containing SiO2 (800 ppm), Na2O(600 ppm), 

Fe2O3 (150 ppm) and CaO (70 ppm) 
 

* s, l and g stand for solid, liquid and gas, respectively.  

 

2.2.2 Floating CVD equipment and processes 

The CNTs-µAl2O3 hybrid structures were synthesized by floating CVD in a horizontal 

quartz tube (110 cm long, inner diameter 45 mm), as shown in Fig. 23a. One layer (~0.5 mm 

in thickness) of the particles was first homogeneously dispersed on the surface of a quartz 

plate (3×50 cm2), which was then put in the center of the reactor. The CVD reactor was then 

heated to a given temperature (ranging from 450 to 900 °C) by an electric resistance furnace 

(60 cm long) under argon and hydrogen atmosphere. Herein, gas flows were accurately 

controlled by electronic mass flow meters (Bronkhorst, France). After heating the reactor 

about 30 minutes, the ferrocene-xylene solution was fed by a syringe system and carried into 

the preheated stable reaction zone by the carrier gases (Ar+H2) in the form of spray. In some 

of experiments, acetylene was additively injected into the reactor in order to adjust CNT 
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growth. In general, the injection lasted for 10-15 min. At the end, the furnace was cooled 

down under argon and hydrogen atmosphere (1 l min-1). 

 

 

Figure 23. (a) Schematic of the CVD system used in this research for the synthesis of the nano-micro hybrid 

materials. (b)Temperature profiles along the wall of the quartz tube of 46 mm in diameter at the temperatures 

ranging from 450 to 780 ºC. The normal positions of firebrick and quartz plate are indicated in the figure. 

Gas flow of 1 l min-1 becomes stable after 20 cm, which pass through a thin metal tube with an inner diameter 

smaller than 1 mm. 

  

The temperature profiles are measured along the wall of the quartz tube at the studied 

temperatures, as shown in Fig. 23b. The position of quartz plate is marked by two red dot 

lines between two gray rectangles representing two firebrick regions. As the carrier gases 

arrive in the reactor by passing through a thin metal tube with diameter smaller than 1 mm, 
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the gas flow is unstable until to the position of 25 cm where quartz plate is placed. As a 

consequence, small fluctuations of the temperature are detected in the front part of tube, less 

than 25 cm for the flow rate of 1 l min-1. After this position, the temperature becomes stable. 

 

2.2.3 Characterization methods 

Mass spectrometry was used to analyze the composition of the exhaust gas during the 

synthesis of the hybrid structures. The exhaust gas was in situ captured using a stainless steel 

capillary tube and then analyzed by a quadrupole mass spectrometer (MS, Pfeiffer Vacuum, 

ThermostarTM GSD 301 T3). The analysis helps to understand the involved reactions in CNT 

growth, and to develop the numerical simulation model (chapter IV). 

The powder samples were collected at different places on the quartz plate surface. They 

were then characterized by the following techniques: Scanning Electron Microscope (SEM, 

LEO Gemini 1530), Transmission electron microscope (TEM, Jeol 1200 EX), High resolution 

transmission electron microscope (HRTEM, Philips CM20-UT), Raman spectrometer X-ray 

diffraction (XRD, Siemens D5000, Cu-Kα radiation (λ=1.54069 Å) ), Atomic force 

microscope (AFM, Digital Instruments Nanoscope IIIa ) 

 

2.3 Multiform hybrid structures of C)Ts-µµµµAl2O3 

As we know, the general formation process of the hybrid structures consists in two steps. 

First, nanoscale catalyst particles are formed on micro alumina spheres by the decomposition 

of ferrocene. Second, the formed catalyst particles generate MWCNT nucleation and growth. 

Therefore, the catalyst particles ensure the effective grafting of CNTs on µAl2O3 along their 

axial direction. This configuration could largely take advantage of the extraordinary axial 

properties of CNTs, and is therefore favorable to the efficient charge and load transfer in 

composite materials.  

In our research, pristine spherical µAl2O3 particles with no pretreatment are chosen as 

substrate for the synthesis of the nano-micro hybrid materials. First, alumina is an efficient 

substrate for CNT growth in CVD process. Second, the big curvature (~106 rad m-1) and 

symmetric geometry of µAl2O3 promote the CNT dispersion. Finally, its excellent thermal 

conductivity, dielectric properties, wear-resistance and high temperature stability favor it to 

develop advanced multifunctional hybrid structures for a variety of applications.  
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Figure 24. Schematics and corresponding SEM images of three distinct C�Ts-µAl2O3 hybrid structures due 

to different C�T distribution patterns. (a-b) “short-dense-homogenous”: highly dense and vertically aligned 

short C�Ts homogeneously cover the whole surface of µAl2O3; (c-d) “six-branch”: C�Ts in independent 

branches are uniformly distributed in six nearly orthogonal directions. (e-f) “urchin-like”: low area number 

density and long C�Ts get out from µAl2O3 like the spines of sea urchin.  

 

Three obtained hybrid structures with distinct CNT organizations are schematically 

described as follows: “short-dense-homogeneous”, “six-branch”, and “urchin-like” (Fig. 24). 

(d) 
 

(f) 
 

(c) 

(b) 
 

(a) 

(e) 
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This classification is based on CNT diameter, length, number density and their organization 

states. As shown in the schematic, the consecutive structure transformation from 

“short-dense-homogeneous” to “urchin-like” is like flowering process in nature. As two 

examples, we will show experimentally the transformations by varying CNT diameter and 

length through just changing hydrogen ratio and temperature in the CVD process. 

 

2.3.1 Variation of C)T length 

Fig. 25 shows different CNT organizations on µAl2O3 and their consecutive 

transformation with increasing CNT length and aspect ratio (L/D, length/diameter). The 

aspect ratio is changed by adjusting hydrogen ratio (fH2) in the total carrier gas flow (1 l min-1). 

Hydrogen flow varied from 0.4 to 0 l min-1 in series of 0.4, 0.2, 0.1, 0.05 and 0 l min-1. The 

CNT synthesis temperature is kept constant at 550 °C. Moreover, acetylene is fed at 10 ml 

min-1 simultaneously with the xylene solution.  

In Fig. 25a, CNTs are organized in “short-dense-homogenous” patterns when their 

lengths are ~1µm and their aspect ratios are ~100. Scanning electron microscopy and 

Transmission electron microscopy characterizations display homogenously and vertically 

aligned CNTs on the surface of the alumina substrate. Such hybrid structures are obtained 

when fH2 is 40 vol. %. However, at the same hydrogen level, the whole continuous CNT layer 

gradually splits into six equal parts when the aspect ratio is 120 (Fig. 25b). The further 

decrease of fH2 (20 %, 10 % and 5 %) yields to an increase of the CNT average length, and 

thus to an augmentation of aspect ratio (~150 when fH2 =20 % (Fig. 25c); ~350 when fH2 

=10 % (Fig. 25d) and ~ 450 when fH2 =5 % (Fig. 25e). In the absence of hydrogen, six thinner 

and longer CNT branches grow at the six poles of the spherical alumina microparticle, as 

shown in Fig. 25f. This is explained by the fact that the decompositions of both catalyst 

precursor and carbon source are accelerated when hydrogen is removed from the reaction 

system. Whereas, a supplementary contribution of µAl2O3 substrate to CNT growth is limited. 
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Figure 25.  SEM images of self organized C�T patterns on µAl2O3 with different aspect ratios (L/D). The 

hybrid organization changes from “short-dense-homogenous” to “six-branch” when the hydrogen ratio 

decreases from 40 % to 0. (a) L/D =100 when fH2 is 40 %; (b) L/D =120 when fH2 is 40 %; (c) L/D =150 when 

fH2 is 20 %; (d) L/D =350 when fH2 is 10 %; (e) L/D =450 when fH2 is 5 %; (f) L/D =1000 when no H2. 
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Fig. 26a shows the evolution of CNT aspect ratio with increasing fH2 in carrier gas. The 

lower is the hydrogen ratio, the bigger is the CNT aspect ratio, and finally the more evident is 

the “six-branch” morphology. However, CNT diameter remains the same value, ~ 10 nm (Fig. 

26b), when the hydrogen ratio varies. At the mean while, CNT area number density in the 

growth regions keeps nearly the same level, except in the absence of hydrogen. Consequently, 

the increases of CNT length and aspect ratio result in the change of MWCNT organization on 

µAl2O3 particles, which furthermore produce the variation of the hybrid structures from 

“short-dense-homogenous” to “six-branch”. Therefore, in this case, the lengths of CNTs are 

the main factors responsible for their organization on the µAl2O3. The consecutive variation 

of the hybrid structures lets us thinking about a natural flowering process. 

 

      

 

Figure 26. (a) The curve represents the evolution of C�T length and aspect ratio with decreasing hydrogen 

ratio. (b) High resolution TEM image of C�Ts obtained when hydrogen ratio is 10 %. 

 
 

2.3.2 Variation of C)T diameter and number density 

Fig. 27 shows the different CNT organizations on µAl2O3 and the corresponding 

consecutive transformations from “six-branch” to “urchin-like” states, with the increase of 

CNT diameter. These hybrid structures were prepared using xylene as carbon source at 

temperatures ranging from 550 to 800 °C. The total gas flow rate was fixed to 0.8 l min-1, in 

which hydrogen and argon flow rates were fixed at 0.08 l min-1 and 0.72 l min-1, respectively. 

Highly dense MWCNTs grown in six different parts are vertically aligned on the µAl2O3 at 

550 °C (Fig. 27a), and their diameters and lengths are ~ 10 nm and ~1 µm, respectively. 

When CNT diameters are around 10 nm (600 °C) or 15 nm (650 °C), they are always 
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configured in “six-branch” (Fig. 27b and c). However, the “six-branch” structures become 

less evident when CNT average diameters are ~20 nm (Fig. 28a) at 700 °C (Fig. 27d). Beyond 

this temperature, the chemical decomposition of ferrocene and xylene is intensified. Finally, 

both the average diameter and length increase continuously with the temperature, while the 

area number density decreases. As a result, the “urchin-like” hybrid architecture appears at 

750 and 800 °C (Fig. 27e-f).  

 

  

  

  

 

Figure 27. SEM images of the self-organized C�T patterns on µAl2O3 obtained at different temperatures. The 

diameter and length were modulated by increasing the synthesis temperature from 550 to 800 °C with a step 

of 50 °C, as chronologically represented in images a-f. 

 

(e) 750 °°°°C 

(c) 

(a) 

(d) 

(f) 800 °°°°C 

(b) 550 °°°°C 

650 °°°°C 700 °°°°C 

600 °°°°C 
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The CNT diameters have a considerable augmentation and vary in a large region at these 

temperatures. Indeed, SEM and TEM observations confirm a decrease of CNT area number 

density on the surface of µAl2O3. The influence of the temperature on MWCNT diameter, 

length and aspect ratio is shown in Fig. 28b. Both diameter and length of CNTs increase 

continuously with the temperature, and even drastically after 700 °C. Whereas, the CNT 

aspect ratio in these cases fluctuates in a narrow range from 100 to 300. At this point, it is 

worth to note that the diameter variations contribute more than the length to the hybrid 

structuration.  

                                  

 

Figure 28. (a) High resolution TEM image of one C�T obtained at 750 °C. (b) Temperature dependence of 

the average diameter, length and the corresponding aspect ratio of C�Ts.  

 

It is worth noticing that CNT diameter is generally related to the number density of CNTs 

on the surface of particles in the catalytic CVD process. This could be previously seen in Fig. 25 

and 27. CNTs with small diameters have normally higher density than those with big diameters. 

The high CNT growth temperature promotes normally the formation of “urchin-like” structures 

with lower density of CNTs when xylene is used as carbon source. 

Sometimes, “urchin-like” hybrid structures with high number density of CNTs could also 

be seen even at high temperature, especially for the alumina particles located in the front part of 

the quartz plate. In this area, near the injection zone of carrier gases and carbon source-catalyst 

precursor solution, higher density catalyst precursors and their decomposed fragments are 

present. In addition, this zone contains high concentration of decomposed carbon sources which 

promote the CNT growth at high rates. Consequently, CNTs with high density on micro 

alumina spheres are formed (Fig. 29a and b). As it is shown, CNTs with high density have still 

“urchin-like” structures, as in the case of low density. This is different from the previous cases 

(Fig. 25 and 27), where the high number density of CNTs generates preferentially “six-branch” 
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structures at low synthesis temperatures. Such “urchin-like” structures show that big diameter 

CNTs, obtained at high temperatures maintain their vertical alignment on the surface of µAl2O3, 

even at high density. This confirms that the diameter contributes more than the number density 

to the self-organization of CNTs. 

 

  

Figure 29.  “Urchin-like” hybrid structures with high C�T area number density on micro alumina particles. 

The synthesis was conducted at 800 °C using xylene as carbon source. The solution (ferrocene dissolved in 

xylene with a concentration of 0.1 g ml-1) was injected into the furnace at 0.2 ml min-1 for 15 min. (a) high 

C�T area number density: collected from the front of quartz plate (~20 cm before the middle part); (b) high 

magnification SEM of image a.  

 

2.3.3 Raman spectroscopy of the three hybrid structures 

Hybrid structures are characterized by Raman spectroscopy in order to understand their 

chemical structures and homogeneity. The spectra corresponding to the three different hybrid 

structures and pristine spherical alumina are plotted in Fig. 30. In the case of the “six-branch” 

and “urchin-like” structures, the commonly evident peaks related to alumina are visible around 

220, 286 and 408 cm-1, and two slight ones at 610 and 730 cm-1. But the peak relative intensity 

ratios differ for these two types of structures. Furthermore, one significant peak (252 cm-1) for 

“urchin-like” structures disappears in the spectrum of “six-branch” structure. But for 

“short-dense homogeneous” structure, Raman peaks between 200 and 900 cm-1 are not visible. 

This can be attributed to the different CNT coverage levels on alumina surface which influence 

the accessibility of the excitation laser. Indeed, high density CNTs cover almost the entire 

surface of the ceramic particles, and thus, no evident signals are detected for the “short-dense 

homogeneous” structure. 

Then, the disorder-induced D-band (sp2–hybridized carbon materials) is clearly visible at 

1350 cm-1 in all three cases. The graphite-like G band corresponding to in-plane tangential 

mode of two carbon atoms in a graphene unit cell is identified around 1581 cm-1.[237] 

(b) (a) 
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Graphitization rate of CNTs in hybrid structures could be evaluated by the half width at 

half-maximum of G band, the intensity of D band and the relative intensity ratio (ID /IG).[238] A 

general comparison of the characteristic peaks of CNTs shows that “urchin-like” structures 

have the highest graphitization rate, in terms of sharper peaks at 1350 and 1580 cm-1 and the 

smallest intensity ratio ID/IG.  
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Figure 30. Raman spectra of pristine µAl2O3 and hybrid structures with three different morphologies. The 

spectra were obtained at room temperature using an excitation wavelength of 514.5 nm. The legend indicates: 

pristine µAl2O3 powders without any treatment and decomposition of carbon; “short-dense-homogeneous” 

hybrid structures (shown in Fig. 25a) produced at 550 °C using 0.4 l min-1 H2 and 10 ml min-1 C2H2; 

“six-branch” hybrid structures (shown in Fig. 25d) produced at 550 °C using 0.1 l min-1 H2 and 10 ml min-1 

C2H2; “urchin-like” hybrid structures (shown in Fig. 27e) produced at 750 °C using 0.1 l min-1 H2 and 0.05 g 

ml-1 ferrocene in xylene. 
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2.4 Thermal reinforcement of C)Ts-µµµµAl2O3 hybrids 

2.4.1 Introduction 

Carbon nanotubes are widely used as thermal filler because of their exceptional intrinsic 

thermal conductivity (TC) and aspect ratios larger than 1000. The TC of SWCNTs has been 

reported[36] as high as 6000 W m-1 K-1 and the one of MWCNTs was experimentally measured 

at 3075 W m-1 K-1 at room temperature[239], which remains above the performances of 

diamond (TC = 2200 W m-1 K-1).[240, 241] Therefore the improvement of the TC of composites 

based on CNTs was extensively investigated through the past years.[61, 242] A recent work 

revealed that a TC of 0.28 W m-1 K-1 or a 40% increase had been reached in composites with 

a 10 % weight fraction (wt%) of CNTs dispersed in polyvinylacetate matrix by using classical 

sonication method.[243] Another optimised configuration was proposed by Haddon and 

co-workers who brought into play a hybrid filler based on the combination of SWCNTs and 

graphite nanoplatelets.[244] An improved TC of 1.7 W m-1 K-1 -about a fivefold increase was 

obtained for epoxy composites. The hybrid loading mass fraction was as high as 10 %, 

including 7 wt% graphite nanoplatelets and 3 wt% SWCNTs.   

Those weight fractions appear to be far larger than the one of percolation, which should 

be smaller than 0.1% in CNT reinforced composites.[49] The percolation should yield a 

significant TC augmentation that was never observed so far. A previous investigation on CNT 

based nanofluids emphasized that the mixture TC remains thirty times lower than the 

expected theoretical value and much worse at low mass fractions.[62] This unsatisfying 

behaviour was attributed to interfacial contact resistances[245], which several teams tried to 

decrease, but with little success. It is very plausible that the TC improvement at percolation 

was never achieved in practice due to insufficient CNT dispersion leading to the 

predominance of thermal contact resistances.[62] Indeed, due to their large aspect ratio, CNTs 

are so easy to tangle together that a large number of contacts among them produce (fig. 31a). 

More often, they are also observed in forms of large aggregate even after long time dispersion 

(Fig. 31b). Therefore, no efficient percolating networks are visible in many cases.[243]  
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Figure 31. AFM images showing a large number of contacts existing among C�Ts (a) and one of C�T 

aggregates (b). C�Ts are first ultrasonically dispersed in distilled water for 10 min, and then deposited on a 

thin film (~ 5 µm in thickness) of photoresist AZ5214E coating on a silicon wafer. After, the film is further 

thinned by centrifugation at 3000 rpm for 30 seconds, and finally hardened through a short exposure of 

ultraviolet light (~ 6 seconds).    

      

The nano-micro hybrids could be one attracting solution to improve CNT dispersion and 

reduce the number of CNT contact. In this part, we test the thermal performance of 

CNTs-µAl2O3 hybrids by adding them in polymers. Optimistically, the experiments show that 

the epoxy composites with extremely low CNTs weight fraction corresponding to the 

percolation can have the predicted thermal conductivity values, which are as high as those 

previously obtained at weight fractions one order of magnitude larger. 

The promising properties are indeed attributed to the microarchitecture of CNT-µAl2O3 

hybrids. These nano-micro fillers provide efficient structures in terms of dispersion and the 

CNT network within the polymer matrix. The homogeneous dispersion of the CNT-µAl2O3 

hybrid fillers could be realized by simply implementing a mechanical dispersion, instead of 

any chemical pre-treatment. In the formed composites, the number of thermal contacts 

between CNTs is drastically decreased, which greatly limited the phonon conduction between 

CNTs. Moreover, our numerical modelling reveals that the thermal conductivity of the 

obtained composites does not depend on the contact resistances between CNTs, but only on 

the CNTs thermal conductivity and geometry. Indeed, the percolation is generated and the 

predicted thermal conductivity enhancements of 130 % at CNT mass fractions of only 0.15 %, 

ten times lower than previous state of the art research is measured.  

 

 

(b) (a) 
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2.4.2 Experimental 

2.4.2.1 Preparation of C)Ts-µµµµAl2O3/Epoxy composites 

In order to evaluate the influence of CNT dispersion on the thermal conductivity of the 

composites, the “urchin-like” CNTs-µAl2O3 hybrid structures (as shown in Fig. 32) were 

chosen as fillers to prepare the CNTs-µAl2O3/Epoxy (Diglycidyl Ether of Bisphenol A, 

DGEBA) composites. At the mean time, the composites constituted of pristine MWCNTs (with 

a density of 1.87 g cm-3) and epoxy were also prepared for the purpose of comparison. Two 

types of fillers were synthesized by the decomposition of a mixture of xylene and ferrocene 

with concentration of (0.05 g ml-1) at 750 °C during 15 minutes. However, the synthesized 

MWCNTs were in the form of carpet. The spherical particles are present in the α-alumina 

(hexagonal) crystal phase with an average diameter D ranging from 2 to 7 µm and a density of 

3.69 g cm-3. Further Raman spectroscopy was performed on the two types of fillers and pristine 

α-Al2O3 (Fig. 33). Specific peaks corresponding to alumina and CNTs were identified in 

conformity with previous studies.[246, 247] The two fillers have similar structures and α-Al2O3 

does not favor the formation of defects in CNTs. 

 

  

Figure 32. SEM images of C�Ts-µAl2O3 hybrids. Homogenously structured micro-nanometric hybrids are 

obtained by CVD. The overall diameter of the C�Ts-µAl2O3 hybrid filler is ~ 30 µm, the average length and 

diameter of the MWC�Ts are 13 µm and 40 nm, respectively. Thermogravimetric analyses indicate that the 

average wt% of C�Ts on one alumina particle is 20 %.  
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Figure 33. Raman spectra of C�Ts, C�Ts-µAl2O3 and pristine α-Al2O3 particles. (a) For C�T based 

materials, the disorder-induced D-band (sp2 –hybridized carbon materials) is clearly visible at 1350 cm-1. 

The graphite-like G band corresponding to in-plane tangential mode of two carbon atoms in a graphene unit 

cell, is identified around 1580 cm-1. �ote that the sharp peaks below 1350 cm-1 are not representative of C�Ts. 

They are only due to diffusion of the silica substrate (microscope slide) where C�T were deposited for 

analysis. The Raman spectrum (Renishaw) of C�Ts-µAl2O3 hybrids is determined by the weight modulated 

sum of the spectra of each component. Therefore, the presence of alumina is justified by the Raman lines 

below 900 cm-1. (b-c) Spectral noises and background broadband deformations from pristine C�T spectrum 

are removed with the Savitzky-Golay smoothing procedure. Peak fitting under Lorentzian function for D and 

G-bands indicates intensity ratios ID/IG equal to 0.84 and 0.61, for C�T and C�Ts-µAl2O3, respectively. This 

shows that the C�Ts grown on alumina microparticles have better graphitization rate than the pristine ones. 

 

Among the methods cited in the literature for dispersing micrometric or nanometric 

fillers[52, 248], chemical surface functionalization is widely used.[249-251] Nevertheless, hard 

chemical modifications using surfactants can deteriorate CNTs electrical and thermal 

properties. Therefore, an alternative method involving mechanical strains is implemented in 

this work. A solution constituted of fillers and monomer was dispersed thanks to a three-roll 

mill (Exakt Vertriebs GmbH, Germany) following a well established protocol. A three-roll mill 

allows for applying controlled pressure and shear forces on the fluid containing the mixture of 
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CNTs and epoxy resin.[252] By controlling the gap between the rolls, their rotation speeds and 

the residence time of the liquid in the machine, we have finally optimized the dispersion of the 

fillers, as displayed in Fig. 34. Naturally, the viscosity of the blend decreased due to the 

mechanical forces applied on it. It has thus been deduced that the nanofiller organization is 

strongly related to the blending time and the gap between the rolls. Note that a too long 

blending time generates the detachment of CNTs from the surface of ceramic particles leading 

the nanofillers to aggregate again.  

 

   

Figure 34. Fillers dispersion in epoxy. (a) The schematic represents the spatial arrangements of 

C�Ts-µAl2O3 fillers within a polymer. Fillers dispersion is chronogically represented from the state S1 

(beginning of the dispersion process) to S3 (end). Optical microscope images indicate pristine C�T 

dispersion in the monomer obtained by using a contrast enhanced silicon wafer after 5 (Fig. 34b, 

heterogeneous dark areas) and 20 minutes (Fig. 34c, homogeneous medium). 

 

Then, an appropriate amount of hardener at the relevant stoichiometry was added to the 

latter solution. Afterwards it was cast into an aluminium mould (designed in our laboratory in 

agreement with ISO 527 and ASTM D638 standards) and followed by successive vacuum in 

order to remove air bubbles. Samples were cured at room temperature during 12 h. Finally, a 

postcure at 90 °C for 6 h was performed to ensure complete of curing. 

 

2.4.2.2 Measurement of thermal conductivity 

Thermal conductivity characterizations were carried out on nanocomposites (1 mm thick, 

10×10 mm2 cross section) with a non-contact method thanks to a light flash apparatus LFA 

447[245, 253] at 20 °C. Differential Scanning Calorimetry (DSC) analyses were performed to 

estimate the samples specific heat Cp at 20 °C (Tables 3 and 4). The average bulk densities ρ for 

the epoxy/CNTs and epoxy/ CNTs-µAl2O3 nanocomposites were measured at 1.10 g cm-3 and 

1.13 g cm-3, respectively. Finally, the TC κ is calculated from the relation:  
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κ =ρ• Cp •α ,                    (1) 

The thermal diffusivity α was measured by using the following methodology: first, the 

front side of the sample was heated by a short Xenon light impulse while an infrared detector 

measured the resulting temperature rise on the back surface versus time. Secondly, the detector 

signal was analyzed with the one-dimensional transient heat conduction equation yielding the 

value of α within 5 % of accuracy. The measurements were repeated 3 times and excellent 

reproducibility of the experiments was concluded. DSC analyses were performed on 

nanocomposites (weights between 5-8 mg) with a Diamond DSC Perkin Elmer. To confirm 

curing, a first cycle from 30 to 260 °C by a 10 °C min-1 temperature ramp, and then cooling at 

5 °C min-1 back to 30 °C was realized. The glass transition temperature Tg and specific heat Cp 

were acquired on a second cycle from 0 to 200 °C (heating) and then cooling to 30 °C. 

Field-emission SEM observations were realized using a LEO Gemini 1530 operated at 5 kV. 

Nanocomposites were broken in liquid nitrogen and the fractured surface was metalized with 

tungsten using a Gatan 682 coating system. 

 

Table 3. Thermal properties and DSC measurements of Epoxy/C�T nanocomposites at 20 °C 

C�T(wt%) ρ(g.cm-3) α (mm2.s-1) 

Cp (LFA) a 

(J.g-1.K-1) 

Cp (DSC) b 

(J.g-1.°C-1) Tg (°C) 

κ 

(W m-1 K-1) 

0 1.12 0.13 1.33 1.21 74 0.18 

0.06 1.09 0.15 1.36 1.53 70 0.25 

0.1 1.11 0.17 1.43 1.25 68 0.24 

0.2 1.11 0.16 1.32 1.35 71 0.24 

0.4 1.06 0.15 1.40 1.46 67 0.23 

0.5 1.11 0.17 1.41 1.39 67 0.26 

0.6 1.10 0.18 1.25 1.29 68 0.26 

0.7 1.11 0.19 1.25 1.36 70 0.29 

0.85 1.10 0.24 1.37 1.33 64 0.35 

1 1.11 0.23 1.28 1.36 110 0.35 

1.5 1.10 0.25 1.40 1.32 96 0.363 
 

a The Cp (LFA) column refers to specific heat measurements with the LFA apparatus by employing a 
comparative method based on a differential identification of a known standard sample of alumina.  
b The Cp (DSC) column indicates the measurements obtained by a Diamond Perkin Elmer DSC machine. 
TCs were calculated considering Cp values measured by DSC rather than the ones obtained by the LFA 447 
method, which slightly overestimated the values. 
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Table 4. Thermal properties and DSC measurements of Epoxy/Al2O3-C�T nanocomposites at 

20 °C 

C�T(wt%) ρ (g.cm-3) α (mm2.s-1) 
Cp (LFA) 

(J.g-1.K-1) 

Cp (DSC) 

(J.g-1.°C-1) 
Tg (°C) 

κ 

(W m-1 K-1) 

0 1.12 0.13 1.33 1.21 74 0.18 

0.02 1.13 0.14 1.44 1.39 70 0.22 

0.04 1.15 0.20 1.35 1.15 71 0.26 

0.06 1.17 0.20 1.21 1.25 72 0.29 

0.10 1.10 0.22 1.46 1.39 69 0.34 

0.16 1.09 0.28 1.56 1.32 71 0.40 

0.2 1.13 0.17 1.11 1.29 98 0.25 

0.36 1.13 0.18 1.24 1.26 120 0.26 

0.42 1.13 0.18 1.27 1.29 89 0.26 

 
 

 

2.4.3 Results 

 

In Fig. 35a and b, the thermal conductivity of the hybrid filler based composite increases 

rapidly at wt% starting from 0.02 to 0.15% and reaches the value of 0.4 W m-1 K-1, which is 

130 % more than the epoxy TC. To our knowledge, none of the previous works proposing 

CNTs based nanocomposites could succeed in preserving the unique thermal property of one 

MWCNT when including it as filler in a polymer composite. This increase also proves that 

the early percolation due to the high aspect ratio of CNTs is adequately generated starting 

with the smaller microparticles and then involving larger ones. When comparing the TCs of 

hybrid filler composite materials to those of CNTs based samples, the curves in Fig. 35 reveal 

that the same thermal conductivity increase appears, but at a weight fraction smaller by one 

order of magnitude. The comparison with previous experimental data of the literature[52, 252, 254] 

tends to emphasize that our mechanical dispersion process seems to be superior to the ones 

based on chemical treatment[254] (e.g. SDS surfactant) of CNTs, because the TC of our CNTs 

without any pre-treatment increases at lower wt%. This outcome is supported by previous 

works showing that CNT dispersion in a thermoplastic polymer is efficiently achieved under 

mechanical strains.[255] 
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Figure 35. (a)Thermal conductivities of the Epoxy/C�Ts composites (blue triangles) and the Epoxy/ 

C�Ts-µAl2O3 composites (red diamonds) versus C�T weight fraction. As a comparison, the thermal 

conductivities of the C�T-PU composites (pink squares) reported in ref [256] were also given. (b) The epoxy 

TC increases as a function of the C�Ts wt%. The one order of magnitude difference in wt% between the 

hybrid Al2O3–C�Ts and pristine C�Ts TC augmentation is clearly emphasized. 

 

After the extraordinary increase of the thermal conductivity for wt% up to 0.15 %, the TC 

of the hybrid filler based sample drastically decreases to the level of the CNT composites. The 

first explanation is that the CNT surface becomes so large that the liquid matrix cannot fill all 

the interstices in such a way that air bubbles with a very low TC remain in the composite. 

DSC analyses confirm that at high filler loadings, the structure of the polymer matrix is 

altered, which leads to the disruption of the nanotube-polymer interface, and also to 

interphase creation.[257] This change in behaviour is indicated by the modification of the glass 

transition temperature Tg located at 70 °C at low mass fractions but reaching higher values ~ 

100 °C for loadings larger than 0.15 %. Such increase of the Tg attests the earlier arrest of the 

molecular chain dynamics. During composite preparation, the viscosity of the blend strongly 

increases for CNT mass fractions larger than 0.15 %, in such a way that the mixing between 

epoxy and hybrid fillers becomes more difficult to achieve. Ultimately, when nanocomposites 

have high filler loadings, only few air bubbles are visible during SEM analyses (Fig. 36a). 

The second explanation is that the area occupied by the CNTs on the microparticle increases 

more rapidly than the microparticles surface as the wt% increases. Our fabrication process 

implies that the ratio between both surfaces is indeed proportional to wt1/3. When the CNT 

density on the microparticle surface becomes too high, CNTs agglomerate and form only a 

few very wide bundles in such a way that the percolation is broken (Fig. 36b). The last reason 

for the TC diminution at wt = 0.15% is the increase of the number of contacts between CNTs 

when the mass fraction exceeds the one of percolation. 

(b) (a) 
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Figure 36. (a) SEM image of the fracture surface of epoxy composite loaded at 0.2. The alumina particle is 

partly visible with surrounding C�Ts. �ote that some C�Ts are pulled off from the alumina particles and 

others are not visible because the image represents a fracture surface of the composite, broken in liquid 

nitrogen. The metallization process of the fractured surface for SEM observations explains also the fact that 

C�Ts are detached from the surface of the ceramic particle. An air bubble, with an average diameter of 3 nm 

is visible, as represented with a red arrow. (b) SEM image of C�Ts-µAl2O3 hybrids with high C�T density. 

Fillers with such a configuration yield composites with lower TC than the ones from Fig. 32. Ultimately, in 

these fillers C�T wt% becomes so large that they tend to aggregate into wide bundles, which breaks the 

percolation. 

 

Additional fabrication and characterization of epoxy-Al2O3 nanocomposites loaded at 0.5 

and 1 wt% have provided TCs of 0.23 and 0.16 W m-1 K-1, respectively. Those figures highlight 

the degradation of the thermal performances after reaching wt% = 1% even without the 

presence of CNTs. This result tends to corroborate the evolution of the TC in our CNTs-µAl2O3 

polymer composites. These explanations might open the path for new improvements but we 

emphasize that using CNTs at mass fractions larger than the one of percolation does not take 

advantage of the CNT assets that are put forward in this work. 

 

2.4.4 )umerical simulation of thermal reinforcement  

The room temperature TCs of epoxy polymer and α-alumina particles of κm = 0.17 W m-1 

K-1 and κAl2O3 = 46 W m-1 K-1 respectively, are obtained from the literature and confirmed by 

our experiments.[52, 258] The prediction of κ is conducted in a preliminary stage by deriving the 

non percolating CNTs-µAl2O3 hybrid fillers. The approximations of a small volume fraction η 

of the filler (<0.3%) and a large filler TC compared to the one of the matrix yield:[259] 

κ=κm •(1+3η)              (2) 

(a) (b) 
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Note that the contact resistance between the filler and the matrix is neglected, which is a 

reasonable guess due to the very low TC of the epoxy. Eq. (2) clearly shows (i) that the TC 

contribution of the hybrid fillers is added to the one of the matrix which supports the idea that 

the filler contribution is not correlated to the one of the matrix and (ii) that this TC contribution 

in relative value should not exceed the wt% because 3η ≈ ηρAl2O3/ρEpoxy= < 1 wt%. The increase 

in TC obtained when adding CNTs is larger than 100% instead. The result of Eq. (2) therefore 

leads to the conclusion that only percolating CNTs are responsible for this outstanding 

augmentation. Another consequence to Eq. (2) is that the effect on heat conduction of alumina 

microparticles, if taken as the only filler, is remarkably negligible. This point supports the 

assertion that the only role of the microparticles is to structure CNTs with optimal dispersion in 

such a way that it seems sound to compare the TCs of hybrid charges and pure CNT based 

samples according to their CNT wt%. 

First, this model quantifies the nanocomposites TC for a specified microparticle diameter 

D by establishing a simple model based on a cubic element of edge length L that includes one 

microparticle and its surrounding CNTs, as illustrated in Fig. 37a. We express the thermal 

resistance in one direction in this volume at the percolation threshold. This resistance is 

decomposed into the microparticle resistance, the thermal resistances of the CNTs having 

approximately the same direction as the heat flow and the contact resistance between the 

CNTs linking two microparticles. It can be easily shown that the microparticle resistance is 

significantly smaller than the one of CNTs and of the CNTs-CNTs contact. Consequently, the 

filler TC κF arises from the Fourier Law of heat conduction as a function of the CNT length 

LC�T, cross section SC�T and TC κC�T as well as of the number �C�Ts of CNTs linking two 

microparticles in the following form: 

 κ F = �C�Ts

2LC�T

κ C�T SC�T

+ RC











−1

/ L = �C�Ts

GC�T

L
          (3) 

The term inside brackets can be identified as the conductance GC�T associated with two CNTs 

in contact. RC, which represents the contact resistance between two CNTs due to weak Van 

der Waals interactions, can be derived from reference [260] by rescaling the published data 

obtained for small CNT diameters by the ratio of the CNT cross sections -the resistance RC 

being reversely proportional to the contact area and the ratio of the contact areas being equal 

to the ratio of the cross sections-, which provides the value of RC = 9.26×106 K W-1. κCNT is 

extracted from reference [38] owing to a linear interpolation depending on the CNT diameter. 

The obtained value of κCNT = 2386 W m-1 K-1 is kept as a reference. The total number of 

CNTs noted � on one microparticle can be deduced from the known ratio of 0.25 between the 
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mass of the � and the mass of one microparticle. We assume a homogenous percolation 

where the microparticles form a cubic lattice in such a way that �C�Ts = �/6 CNTs are linked 

with another microparticle because of the six possible directions available in a cubic lattice. 

The second neighbours are not percolating and are consequently excluded. The ratio between 

the contact resistance RC and CNTs resistances 2LC�T/κC�TSC�T being in the order of 0.516, we 

infer that the contributions of the contact resistance and the CNTs resistances are in 

competition. A noticeable predominance of CNTs resistance can still be established. 

 

 

   

Figure 37. (a) Schematic of the cubic element used in the model yielding the hybrid filler TC. (b-d) 

�anocomposites TCs versus C�T wt%. In schematic (a), the thermal resistance of the cube is modelled in the 

direction of the heat flow. RC is the thermal contact resistance between two C�Ts linking two microparticles 

belonging to two neighbouring cubes. �C�Ts is the number of those C�Ts having the length LCNT, the cross 

section SCNT and the thermal conductivity κCNT. �ote that C�Ts with directions perpendicular to the cube 

front face are not represented. (b-c) The measured TCs of the hybrid Al2O3 microparticles-C�T fillers (red 

diamonds) and of the C�Ts (blue diamonds) based composites described in this work are reported as well as 

the recent data from the literature [256] (grey triangles). The prediction of Eq. (6) is also indicated for C�Ts 
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thermal conductivity of 2386 W m-1 K-1 (dark green thick line) 1000 W m-1 K-1 (green line) and 100 W m-1 K-1 

(light green thin line). (c) Thermal conductivity enhancement at ultra-low mass fraction of hybrid fillers is 

clearly identified. 

 

In a second phase, the distribution of the microparticle diameter, which is supposed to be 

uniform, is taken into account. The values of NCNTs and L = 2LCNT+D at a given microparticle 

diameter D are indeed imposed by the homogenous percolation or the equality between L and 

the lattice constant of a cubic lattice formed by the microparticles. This equality yields the 

following mass fraction at percolation: 

                   

  

wt = 0.13
ρ

Al2O3

ρ
Epoxy

D

L








3

                                (4) 

This simplified expression is obtained by noticing that the CNT mass in the cubic element 

equals to the mass of one microparticle divided by four. Considering D in the range of 2 to 7 

µm, the corresponding mass fraction is found in the interval of 0.01 to 0.3%. Introducing the 

mass fraction in Eq. (3) brings the following new expression for the TC: 

                     

  

κ wt( )−κ
m

= wt 
m

Epoxy

6m
C�T

G
C�T

L
                        (5) 

where mCNT and mEpoxy are the masses of one CNT and of the epoxy included in the L3 

volume, respectively. Starting from the lowest mass fraction where only the smallest 

microparticles will percolate, we progressively add the contributions of larger microparticles 

as wt increases by integrating and normalizing the second term in the RHS of Eq. (5) between 

the lowest and the running mass fractions, wtmin calculated from Eq. (4) when D = 2 µm and 

wt, respectively, in order to reach the following expression: 

                ( ) min

2 6
Epoxy C�T

tot m

C�T

m Gwt wt
wt

m L
κ κ +− =                      (6) 

The TC increase appears as proportional to the wt% as well as to κCNT and SCNT and reversely 

proportional to L and LCNT. The validity of this cumulative description relies on the 

assumption that the percolating networks based on microparticles with different diameters do 

not interfere.  

As shown in Fig. 37b and c, the agreement between our model and experimental values 

appears when κCNT approaches the reference value of 2386 W m-1 K-1, an optimal match 
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between the model and the four first points is reached when κCNT = 2180 W m-1 K-1, which 

proves that the TC of the single CNT is retrieved within an inaccuracy range smaller than 10 

% in the composite, and that the theoretical percolation limit is also obtained.  

In summary, we found the remarkably low percolation threshold and high TC of 

Al2O3-CNT filler based nanocomposites taking advantage of the large aspect ratio of CNTs as 

well as of their unique thermal conductivity. Preserving the thermal conductivity of one 

MCWNT and observing the theoretical percolation from the thermal conductivity evolution 

are proven for the first time in this work. This new field of performances is unlocked by 

generating a CNT microarchitecture as well as by developing a mechanical dispersion. We 

believe that those structuration and dispersion have significantly reduced the number of 

thermal contact resistances between CNTs. The result is an excellent CNT dispersion leading 

to the observed limit properties. We expect very significant impacts for thermal interface 

materials especially concerning microelectronic devices through the increase of the packaging 

materials TC. The design of an industrial composite material combining improved thermal 

performances and satisfying mechanical properties that are not affected by a high filler 

loading, also becomes achievable. 
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2.5 Conclusion 

 

Multiform nano/micrometer hybrid materials have been produced using floating CVD by 

in situ grafting CNTs on the surface of µAl2O3. It is found that CNT organization is strongly 

dependent on its diameter, length, and area number density on the microparticles. The different 

organization states result three distinct hybrid architectures: “short-dense-homogeneous”, 

“six-branch” and “urchin-like”. MWCNTs are initially organized in 

“short-dense-homogenous” state for small diameter (10 nm) and have low aspect ratio 

(L/D=100), then in “six-branch” for higher aspect ratio due to length increase, and last in 

“urchin-like” for diameter increase. The consecutive transformations of the hybrid structures, 

like a flowering process in nature, are demonstrated, for example, by adjusting hydrogen ratio 

and temperature. Ultimately, the reported multiform hybrid structures can be easily produced in 

large scales (Appendix 1).  

Enhanced thermal conduction is found when the CNTs-µAl2O3 is used as fillers in 

polymer composites. The CNTs-µAl2O3/Epoxy composites show a remarkably low 

percolation threshold (0.15 wt % CNTs) and high thermal conductivity (130 % enhancement) 

which is as high as the values previously obtained at wt % one order of magnitude larger. In 

these composites, well-organized CNTs-µAl2O3 structures and homogeneous dispersion of 

CNTs have significantly reduced the number of thermal contact resistances between carbon 

nanotubes (CNT), and thus take mostly advantage of the large aspect ratio of CNTs as well as 

of their unique TC. The multifunctional properties of the CNTs-µAl2O3 composites make 

them promising candidates for various applications in the fields of microelectronic devices or 

aeronautics.  

 The nano-micro hybridization presented in this chapter provides one efficient way to 

control CNT organization states and furthermore improve its dispersion in composites. The 

resulted CNTs based hybrid materials exhibit the unique multifunctional properties and 

incomparable advantages over pristine CNTs in the field of composites. Thus, it is encouraged 

to study in detail their formation mechanisms in order to develop in a large scale these hybrid 

materials with well-controlled structures.  
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Chapter III        

Studies on formation mechanism of multiform 
C�Ts-µµµµAl2O3 hybrid structures 

 

3.1 Introduction 

The CNTs-µAl2O3 hybrid structures are promising multifunctional fillers in composites. 

Their polymer composites have remarkably low thermal percolation threshold. A high 

reinforcement in thermal conduction of the composites could be achieved using ultra-low mass 

fraction of CNTs, due to the unique architecture and improved dispersion of CNTs in matrix 

material. The thermal contact resistance between CNTs in the composites is greatly dependent 

on their organization in the hybrid structures. Therefore, it is desired to produce well-defined 

hybrid structures with controlled CNT organization, in order to develop the composites with 

high thermal performance. The realization of the control over the hybrid structures strongly 

relies on the understanding of CNT growth processes and their organization mechanism on 

micro substrates.      

In this chapter, we firstly study the influence of CVD parameters on CNT growth on 

micrometer ceramic particles, and on geometry of CNTs-µAl2O3 hybrid structure. The 

parameters include temperature, catalyst precursor, carbon sources, and hydrogen ratio. Then, 

we discuss about the significant roles played by the alumina spherical microparticles in the 

construction of the multiform hybrids. The impacts of microparticle morphology and 

crystallographic structure are specially pronounced. The next part demonstrates the connection 

between CNTs and microparticles, and the CNT growth dynamics. Finally, the formation 

mechanism of multiform hybrid structures is uncovered. The specific surface crystal steps 

potentially determine the heterogeneous growth of CNTs on µAl2O3, and the number of CNT 

branches in the hybrid structures, as well as the branch orientations. The self-assembly of CNTs 

on µAl2O3 is due to weak Van der Waals interaction forces between neighboring CNTs. The 

proposed “nano-cantilever” model explains that the CNT self-assembly is greatly dependent on 

their diameter, length and number density on µAl2O3. 
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3.2 Influences of CVD parameters 

 

Figure 38. Schematic of key parameters and their correlative interactions during the construction of 

C�Ts-µAl2O3 hybrid structures by CVD method.  

 

The CNTs-µAl2O3 hybrids are obtained by in-situ growing MWCNTs on the surface of the 

pristine µAl2O3. Briefly, the construction CVD process mainly consists in the following three 

steps. First, it is the nucleation and growth of iron particles, which result from the thermal 

decomposition of catalyst precursor-ferrocene on the µAl2O3 particles. Second, the carbon 

containing species are catalytically decomposed on the iron nanoparticles to enable CNT 

growth. Third, the growing CNTs organize into various arrangement states. Different 

organizations of CNTs result in distinct hybrid structures with varied morphologies. The above 

processes occur simultaneously in the gas atmosphere inside CVD reactor and on the surface of 

micro substrates. Thermal decomposition reactions in gas atmosphere serve as indispensable 

support of catalyst and carbon atoms. They are greatly dependent on temperature, catalyst 

precursor, carbon sources and atmosphere condition. Meanwhile, the surface properties of 

substrate might directly determine initial nucleation of catalyst particles and all consecutive 

surface reactions. There are strong correlative interactions between these factors, and their 

relationships are schematically shown in Fig. 38.  

The following parts will separately present the influence of each CVD parameter on the 

formation of CNTs-µAl2O3 hybrids. The interactive relation and the synergetic corporation of 
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the parameters are emphasized in order to develop high quality hybrid materials with controlled 

structures.  

 

3.2.1 Catalyst precursor 

3.2.1.1 Thermal decomposition of ferrocene  

In our studies, ferrocene, Fe(C5H5)2, is used as catalyst precursor for catalytic growth of 

CNTs on micrometric ceramic particles. It is well known that ferrocene is an organometallic 

chemical compound having a ‘sandwich’ structure of bis-cyclopentadienyl iron[261]. The iron 

atom in ferrocene is normally assigned to the +2 oxidation state. Each cyclopentadienyl (Cp) 

ring is then allocated a single negative charge, bringing the number of π-electrons on each ring 

to six, and thus making them aromatic. These twelve electrons (six from each ring) are then 

shared with the metal via covalent bonding, which, when combined with the six d-electrons on 

Fe2+, results in the complex having an 18-electron, noble gas electron configuration. 

Consequently, ferrocene is an air-stable solid, whose melting and boiling points are ~ 174 ºC 

and ~ 249 ºC, respectively. Meanwhile, it is easy to sublimate at temperatures as low as ~ 90 

ºC[262]. Often, ferrocene is used as catalyst precursor in CVD process for catalytic growth of 

CNTs. It could be vaporized in the first stage of furnace having a low temperature, and then 

carried by carrier gas into the second reaction zone to grow CNTs. Alternatively, as ferrocene is 

soluble solubility in most organic solvents, it could also be directly dissolved into carbon source 

solutions such as xylene, benzene and toluene. Then, the resulted solution is directly injected 

into CVD reactor with the help of carrier gas. Here, we use the latter method. Concretely, 

ferrocene is first dissolved into xylene solution, which is then injected into the reactor in the 

form of spray. 
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Figure 39. (a) Mass spectrum measured during the thermal decomposition of ferrocene in the center of the 

quartz tube at 400 ºC. (b) Standard mass spectrum of ferrocene (data from �IST).  

(a) (b) 
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The thermal decomposition temperature of ferrocene has been reported around 400 ºC[119]. 

Fig. 39a shows the mass spectrum of the exhaust gas from the thermal decomposition of 

ferrocene in the quartz tube at 400 ºC. Comparing with the mass spectrum of pure ferrocene 

(Fig. 38b), it could be seen that cyclopentadiene (C5H6) is the main decomposition product, in 

addition to iron. 

It is worth noting that the thermal decomposition of ferrocene does not produce pure iron 

nano particles. The sublimation temperature has considerable influence on the final product 

structure. A various number of structures have been reported by high temperature pyrolysis of 

ferrocene at different sublimation temperatures[262]. Indeed, in the final products, there exist 

amounts of CNTs filled with iron particles in their centers, as well as iron particles tightly 

surrounded by carbon layers. Fig. 40a shows the hybrid structures obtained by the direct 

decomposition of pure ferrocene at 750 ºC under argon (720 ml min-1) and hydrogen (80 ml 

min-1) atmosphere. Ferrocene powder was evaporated at a rate of ~30 mg min-1 in the front of 

quartz tube at a temperature about 250 ºC. The diameter of iron filled CNTs range from 15 to 

50 nm, and the length was about 2-2.5 µm. On the other hand, clean CNTs in bundles as long as 

~ 130 µm are formed on µAl2O3 at 750 ºC (Fig. 40b), when acetylene is fed during the 

evaporation of ferrocene at lower rate (~ 20 mg min-1). The CNT diameter is around 15 nm. 

This indicates that the nucleation of catalyst particles from ferrocene on µAl2O3 is not an 

isolated thermal decomposition process. Furthermore, the catalytic growth of CNTs is also 

dependent on carbon source and CVD atmosphere conditions.    

 

  

Figure 40. (a) SEM images of iron-filled carbon nanostructures and carbon surrounded iron particles 

formed on µAl2O3 by decomposition of ferrocene at 750 ºC. Left-upside: higher magnification SEM image of 

a local region on the µAl2O3 surface. (b) SEM images of clean and long C�Ts grown on µAl2O3 by 

decomposition ferrocene under C2H2 containing atmosphere.  

 

In the followed studies, one-step injection of ferrocene is used in order to get a better 

(a) (b) 
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control on Fe/C ratios in CVD reactor. Ferrocene is dissolved into xylene solution according 

to certain percentages. The mixture is directly injected by a syringe injector, and then it is 

carried into the reaction zone by carrier gas. 

  

3.2.1.2 Influence of ferrocene concentration in xylene 

In the first place, we have studied the influence of ferrocene concentration in xylene 

solution on the formation of CNTs-µAl2O3 hybrid structures at 780 ºC. The flow rates of 

argon and hydrogen were 0.72 and 0.08 l min-1, respectively. The ferrocene concentrations 

used and the corresponding Fe/C ratios are shown in table 5. The ferrocene-xylene solution 

injection rate was ~0.2 ml min-1. The injection lasted for 20 min.  

 

Table 5. Concentrations of ferrocene dissolved in xylene solution and corresponding molar 
ratios between iron and carbon atoms 

Parameters                 variation range       

Ferrocene concentration 
(g ml-1) 

1E-3 5E-3 1E-2 5E-2 1E-1 

Fe/C molar ratio 8.28E-5 4.12E-4 8.22E-4 3.98E-3 7.65E-3 

 

 

Ferrocene concentration (cferrocene) has a significant influence on CNT growth on µAl2O3, 

especially on CNT diameter and length (Fig. 41). Only few CNTs grow on the surface of the 

microparticles when cferrocene is 0.001 g ml-1. These short CNTs are like “spaghettis” which 

randomly stick on several parts of the particle surface (Fig. 41a). The diameter of CNTs is ~ 10 

nm. When cferrocene increases to 0.005 g ml-1, highly dense CNTs tightly cover the whole 

surface of particles (Fig. 41b). Meanwhile, amounts of small carbon encapsulated iron 

particles are also deposited both on the surfaces of CNTs and micro particles. CNT diameter is 

in a range from 15 to 20 nm, and its length is ~ 2 µm. By contrast, when cferrocene is 0.01 g ml-1, 

low density CNTs are vertically deposited on the surface of µAl2O3, resulting in the 

“urchin-like” hybrid structures. Compared with the narrow CNT diameter distribution 

obtained at lower cferrocene, CNTs have the diameters varying in a large range from 15 nm to 

more than 100 nm, and most of them are larger than 30 nm (Fig. 41c). Besides, the CNT length 

also increases up to 15 µm. With further increasing cferrocene to 0.05 and 0.1 g ml-1, the CNT 

lengths reach up to ~30-50 µm, and its number density on µAl2O3 also increases (Fig. 41d). 

Because of their big lengths, vertically aligned CNTs incline toward the direction where there 
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is less limitation during their growth, like the gap among µAl2O3. However, no obvious 

difference has been noticed in CNT growth at the above two cferrocene. Fig. 40e shows the CNT 

diameter distribution at different cferrocene. It could be seen that low ferrocene concentrations 

(cferrocene< 0.01 g ml-1) promote the formation of CNTs which have a narrow diameter 

distribution, and small lengths. By contrast, CNTs with large diameters are found on µAl2O3 

when cferrocene is more than 0.01 g ml-1. Moreover, the diameter distribution enlarges with 

increasing cferrocene. At the same time, CNT length also increases with cferrocene in a nonlinear 

way.  

 

  

  

 
Figure 41. SEM Images of C�Ts-µAl2O3 hybrid structures obtained at different ferrocene concentrations: (a) 

0.001 g ml-1, (b) 0.005 g ml-1, (c) 0.01 g ml-1, (d) 0.05 g ml-1. LC�T indicates the C�T length. (f) C�T diameter 

distributions at different cferrocene.  

 

The above results demonstrate the significant role of cferrocene in CNT growth on µAl2O3. 
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The size distribution of final iron catalyst particles shows a cferrocene dependency at the studied 

conditions. High Fe/C ratio solutions result normally large iron particles, which in turn produce 

CNTs with large diameters. Moreover, CNTs growth dynamics are also related to cferrocene when 

only xylene is used as carbon source at 780 ºC. It is found that large iron particles mostly 

promote to grow long CNTs, vice versa. The CNT diameter and growth rate are directly related 

to cferrocene. 

Another interesting fact is the variation of CNT number density with cferrocene. When 

cferrocene is 0.001 g ml-1 (Fe/C ratio 8.28E-5), a few of thin CNTs are formed. Then highly dense 

CNTs grow on µAl2O3 when the Fe/C ratio increases to 4.12E-4. However, when cferrocene is 

equal to 0.01 g ml-1, low density CNTs with large diameters are found. Then, the further 

increase of cferrocene results again in an increase of CNT density. This phenomenon confirms 

again the intervention of carbon source in catalyst nucleation process. Also, it indicates that 

when cferrocene is high, there might be the combination of small catalyst particles at CNT 

nucleation stage in order to form large catalyst particles.          

 Fig. 42 shows the variation of the relative intensity ratios of MS peaks with ferrocene 

concentration. These MS peaks correspond to xylene and the decomposition products of 

ferrocene and xylene such as toluene (C7H8), benzene (C6H6), cyclopentadienyl (C5H5), 

acetylene (C2H2), methane (CH4). It is well known that MS ion currents are directly correlated 

with the concentrations of the corresponding components including the molecule fragments 

from ionization, and the products from gas phase decomposition. The relationship between ion 

current and component concentration can be described by equation (3-1): 

                          iiiii CCS�FI ... ε==                                   (3-1) 

where Ii and Ci correspond to the ion current and the concentration of component i, respectively. 

NF and Si are the normalization factor and calibration factor of the component i, which can be 

combined into a linear coefficient εi. In our research, argon is the most abundant gas, which has 

a volume percentage more than 80 % in the reactor atmosphere. Therefore, its corresponding 

MS current intensity at m/z= 40 is chosen as the reference for the calculation of the relative 

relation of other products. The relationship between relative intensity (Ii/IAr) and relative 

concentration (Ci/CAr) of the component i can be described as: 
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Then, the concentration of component i can be calculated as follows: 
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Fig. 42 shows that the relative intensity of each component decreases with the increase of the 

ferrocene concentration in xylene solution until 0.05 g ml-1. This indicates that ferrocene favors 

the decomposition of carbon source, and thus the production of CNTs. Beyond, one significant 

variation of peak intensity is observed compared with the peak intensities at 0.05 g ml-1. It is 

known that the increase of ferrocene concentration generates the augmentation of the Fe/C 

molar ratio. Thus, the feeding of a sufficient amount of iron is necessary to obtain a high CNT 

growth rate, and to increase their coverage on µAl2O3. The CNTs with a large diameter could 

only be obtained when the Fe/C molar ratio is more than 8.22E-4 at the used conditions. The 

further increase of Fe/C ratio produces the CNTs with larger diameters and higher density on 

µAl2O3. This corresponds well to the decrease rates of the component relative intensity ratios 

shown in Fig. 42. When the Fe/C molar ratio is larger than 3.98E-3, small variation of carbon 

source decomposition indicates one balance reached between the iron and carbon interaction 

in gas phase. In addition, little variation in CNT production yield indicates a saturated stable 

catalyst formation rate on µAl2O3 at the researched conditions.  
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Figure 42. Relative ratios between the intensities of MS peaks corresponding to xylene decomposition 

products and that of Ar at m/z =40, obtained at different cferrocene. 
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3.2.1.3 Influence of the ferrocene-xylene solution feed rate 

The influence of the ferrocene-xylene solution injection rate on CNT growth on µAl2O3 is 

investigated at 550 °C in the presence of acetylene. The concentration of ferrocene in the 

solution is about 0.05 g ml-1, and the flow rate of acetylene is 6 ml min-1. The solution injection 

rates are listed in table 6. As C2H2 is much more active than xylene at 550 °C, the Fe/C molar 

ratios are calculated according to the mole of iron in ferrocene and that of carbon in ferrocene 

and C2H2. The total gas flow rate is 1 l min-1, containing 5 % hydrogen and 95 % argon. 

 

Table 6. Feed rate of ferrocene-xylene solution and corresponding molar ratios between iron 
and carbon 

Parameters           variation range      

Solution feed rate(ml min-1) 0.05 0.1 0.17 0.27 

C2H2 flow rate (ml min-1)  6 

Fe/C molar ratio a 0.020 0.033 0.046 0.058 

                 a: Fe/C molar ratio is the ratio between iron in ferrocene and carbon in ferrocene and C2H2 

 

The hybrid structures obtained at different solution feed rates are presented in Fig. 43. It is 

found that µAl2O3 spheres are densely covered by CNTs with lengths ~ 0.2 µm when the 

solution feed rate is 0.05 ml min-1. When the feed rate is higher than 0.05 ml min-1, the 

“six-branch” structures are dominant in the final products. The length of CNT bundles has 

narrow variation (about 4-4.5 µm) with the further increase of the solution feed rate. The same 

phenomenon is observed in CNT density on µAl2O3. This could be explained by the following 

reasons. First, the strong interference of acetylene yields small catalyst particles with 

homogeneous size during the deposition of iron on the surface of µAl2O3. Second, certain Fe/C 

molar ratios are required for obtaining high CNT growth rate. As its active chemical feature, 

acetylene could very easily decompose into carbon on catalyst particles even at relatively low 

temperatures. Therefore, when the Fe/C ratio is about 0.020, the low iron ratio in the reactor 

greatly limits the catalyst formation rate, which in turn influences the carbon deposition from 

acetylene. A big jump in CNT growth rate has been observed when the Fe/C ratio is over 0.033. 

Beyond this value, the CNT growth rate becomes stable even a further increase of the Fe/C 

ratio. This indicates the maximum growth rate of CNTs in the presence of sufficient carbon and 

iron precursors at the used temperatures. At the different solution injection rates, the CNT 

diameter keeps almost at the same level, varying from 6 to 10 nm.    
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Figure 43. SEM images of C�Ts-µAl2O3 hybrid structures obtained at 550 °C with different ferrocene-xylene 

solution feed rates: (a) ~ 0.05 ml min-1, (b) ~ 0.1 ml min-1, (c) ~ 0.17 ml min-1, (d) ~ 0.27 ml min-1. The flow 

rate of C2H2 was 6 ml min-1, which corresponds to 6 vol. %.  

 

Fig. 44 shows the variation of the MS ion currents of the main products in the reactor when 

the solution feed rates are varied from 0.05 to 0.27 ml min-1. Although a constant flow rate of 

acetylene is used, a small variation is detected at m/z 26 due to the increase of ferrocene and 

xylene feed rate. The variation of the curve slope shows that more acetylene is consumed at the 

higher solution injection rates. We observed an evident increase of the ion current at m/z 106, 

which corresponds to xylene, but minor variations are noted at the other masses. Obviously, the 

augmentation of xylene quantity in the system will consequently increase the detected ion 

intensities at the corresponding masses. Furthermore, the ion intensity ratios (lower part in Fig. 

44) show unnoticeable variations with the increase of solution feed rate. Thus, it could be 

concluded that the augmentations of the ion currents at m/z 15, 26, 52, 65, 78, 92 and 106 are 

attributed to the increased amount of xylene. However, only few amount of benzene due to the 

decomposition of xylene is discharged because of the increase of the solution feed rate. 

Therefore, under the given hydrogen and acetylene ratios, the increase of ferrocene quantity 

accelerates the CNT growth. Consequently, we observe an evolution of the CNT length, as 

described above. 

(d) (c) 

(b) (a) 
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Figure 44. Mass spectra analysis on the influence of ferrocene-xylene solution feed rates on the growth of 

C�Ts. The upper part of the figure demonstrates the variations of the ion currents of the main products at m/z 

15, 26, 52, 65, 78, 92 and 106. The lower part indicates the variations of the ratios between the ion currents 

at m/z 15, 26, 52, 65, 78, 92, 106 and the one at m/z 91. In addition, the ratios between the ion intensities at 

m/z 77 and 78 are also plotted. 

 

In summary, ferrocene plays an essential role in CNT growth on µAl2O3 and the 

formation of the CNTs-µAl2O3 hybrid structures. Its concentration and feed rate significantly 

influence catalyst nucleation, CNT diameter, and CNT growth dynamics. When xylene is used 

as carbon source at relatively high temperature (780 ºC), high ferrocene concentrations (Fe/C 

ratios) promote the growth of CNTs having large diameters and lengths. The diameter varies 

in a wide range. The “urchin-like” CNT-µAl2O3 hybrid structures are formed when cferrocene is 

higher than 0.01 g ml-1. When acetylene is used as carbon source at relatively low temperature 

(550 ºC), high ferrocene-xylene solution injection rates accelerate the growth of thin CNTs 

with homogeneous diameter. These CNTs self-organize into “six-branch” structures on 

µAl2O3 when the Fe/C ratio is more than 0.033.       

 

3.2.2 Carbon sources 

 

As we have demonstrated in the previous part, the “urchin-like” hybrid structures could be 

synthesized by the decomposition of xylene solution dissolving certain percent ferrocene at 

relatively high temperatures. However, the diameter of CNTs in the obtained hybrid structures 

always varies in a large range, from 10 nm to more than 100 nm. Although the hybrid structures 
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consisting of homogenous CNTs have also been obtained at relatively low temperatures, the 

CNT growth rate is very weak. Moreover, the CNT crystallinity is not so good. On the other 

hand, acetylene is an active carbon source which has been widely used to synthesize CNTs 

which have homogenous diameters, and relatively high growth rates, as shown in Fig. 40b. 

However, little research has been reported in the literature about the production of CNTs using 

mixed carbon sources which are composed of two hydrocarbons with extremely different 

properties. One, acetylene, is highly active hydrocarbon in gas state, but the other, xylene, is a 

liquid hydrocarbon with a relatively high thermodynamic stability.  

In the following two parts, we will discuss about the influence of the addition of acetylene 

on the hybrid morphologies, and the diameter and growth rate of CNTs.    

       

3.2.2.1 Adding Acetylene at high temperatures 

The influence of the addition of acetylene on the hybrid structures is first investigated at 

780 ºC. Acetylene and the xylene solution dissolving ferrocene (0.05 g ml-1) are spontaneously 

injected into the CVD reactor. The solution feed rate is ~ 0.2 ml min-1. The total gas 

(Ar+H2+C2H2) flow is ~ 0.8 l min-1, in which the hydrogen fraction is kept constant, ~10 %. 

Three different C2H2 flow rates studied are 20, 40 and 60 ml min-1, corresponding to three 

volume fractions ~ 2.5, 5 and 7.5 %, respectively. The injection of two carbon sources is 

stopped spontaneously after 15 min. 
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Figure 45. SEM images of the C�Ts-µAl2O3 hybrids obtained by adding different volume percentage of 

acetylene (fC2H2) in carrier gas at 780 ºC. (a-b) fC2H2 =2.5%: (b) the high magnification of the region marked 

by the white square in (a). (c-d) fC2H2 =5%: the hybrid structures containing very dense C�Ts assembling in a 

bundle, and amounts of aggregates consisting of the alumina particles covered by highly dense C�Ts and 

amorphous carbon depositing on C�Ts (Inserted high magnification SEM image of the region marked by a 

red square). (e-f), fC2H2 =7.5%: the hybrid structures consisting of six branch C�T bundles (marked by six 

arrows in (f)) on µAl2O3. And each bundle contains highly dense C�Ts and amorphous carbon, shown in the 

inserted figure.  

      

Fig. 45 shows the different CNTs-µAl2O3 hybrid structures obtained by adding different 

volume concentrations of acetylene in the atmosphere. The alumina microparticles are found to 

be covered by dense CNTs growing in different spatial directions (Fig. 45a) when fC2H2 =2.5 %. 

The CNT length is ~60 µm. The CNT arrangement in these structures is greatly disordered, 

compared with the regular CNT arrangement in the hybrid structures obtained without 

(a) C2H2 20ml min-1 (2.5%) 

(e) C2H2 60ml min-1 (7.5%) 

(b) 

C2H2 40ml min-1 (5%) (c) (d) 

(f) 
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acetylene at 780 ºC (Fig. 41d). But the diameter of the CNTs obtained with the addition of 

acetylene has a narrower distribution range, from 10 to 40 nm (Fig. 45b), instead of the range 

from 10 to 100 nm in the case without acetylene. Furthermore, a few of carbon capsulated iron 

particles are found on the surface of µAl2O3. However, the CNTs assemble into a bundle with a 

length of ~ 60 µm when fC2H2 increases to 5% (Fig. 45c). The alumina particles are closely 

surrounded by highly dense CNTs, and they locate in the front of each CNT bundle. A closer 

observation of the particle surface (Fig. 45d) shows that CNTs have homogenous diameter (~ 

15-20 nm), and randomly cross over each other. Besides, amounts of aggregates are also formed, 

which consists of the alumina particles covered by bundles with highly dense CNTs and 

amorphous carbon (Inserted high magnification image in Fig. 45c). When higher volume 

fractions of acetylene is used (fC2H2=7.5%), the CNTs assemble into six distinctive bundles of 

60 µm in length (Fig. 45e), in which thin CNTs (~10 nm) are randomly tangled together, and 

accompanied by huge amounts of amorphous carbon (inserted image in Fig. 45f). Moreover, it 

is found that the six CNT bundles arrange in an orthogonal way on the alumina particles (Fig. 

45f).  

As it is shown, the addition of higher percent acetylene promotes to the formation of more 

amorphous carbon during CNT growth. But, certain percentages of acetylene are necessary to 

feed sufficient carbon sources for the growth of CNTs at a high rate. Due to its low pyrolysis 

activation energy, acetylene could pyrolyze into solid carbon in gas phase at high temperatures. 

High fC2H2 also favors the formation of amorphous carbon during CNT growth. Therefore, the 

control of acetylene concentration is desired in order to produce the hybrid structures consisting 

of homogeneous CNTs without impurities.       

Another evident effect of the addition of acetylene is the reduction of the CNT diameter 

distribution range. At the researched temperatures, the higher the volume fraction of C2H2 is, 

the smaller the average diameter of CNTs is. As we have discussed early, the diameter of CNTs 

is strongly related to that of catalyst particles. The homogeneous CNTs with a small diameter 

indicate again the intervention of acetylene in the formation of iron catalyst particles. 
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Figure 46. Influence of the addition of C2H2 (2 vol %) in carrier gas on the C�T growth on quartz plate and 

µAl2O3 at 750 ºC. (a-d) Carbon source injection time sequence: 5 min (C8H10+ C2H2) -3 min (C8H10) -3 min 

(C8H10+ C2H2) -3 min (C8H10) -3 min (C8H10+ C2H2). Images a and b show the multilayer C�Ts on quartz 

plate and their secondary electron image, respectively; Images c and d demonstrate the growth of C�Ts on 

µAl2O3 located in the regions of 0-5 cm and 20-30 cm, respectively. (e-h) Carbon source injection time 

sequence: 5 min (C8H10) -3 min (C8H10+ C2H2) -3 min (C8H10) -3 min (C8H10+ C2H2) -3 min (C8H10). Images 
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e and f show the multilayer C�Ts grown on quartz plate and their secondary electron image, respectively; 

Images g and f demonstrate the growth of C�Ts on µAl2O3 located in the regions of 0-5 cm (g) and 20-30 cm 

(h).    

 

The influence of C2H2 on the CNT growth is further studied by multiple discontinuous 

injections of acetylene at 750 ºC. The xylene solution containing 0.05 g ml-1 ferrocene is 

continuously fed during the whole process of 17 min, whereas acetylene is discontinuously fed 

in the interval of 3 min. Argon and hydrogen flow rates are 0.8 and 0.2 l min-1, respectively. The 

two following different cases are studied.  

In the first case, carbon source injection time sequence is 5 min (C8H10+ C2H2) -3 min 

(C8H10) -3 min (C8H10+ C2H2) -3 min (C8H10) -3 min (C8H10+ C2H2). C2H2 is first injected 5 min 

and then stopped for 3 min. Then, the 3 min injection of acetylene repeats two times at the 

interval of 3 min. Fig. 46a shows one CNT carpet of ~54 µm in thickness. The multiple layer 

CNT structure is clearly demonstrated by secondary electron image (Fig. 46b), in which two 

white bands of 4 µm corresponds to two CNT growth periods without acetylene. The different 

contrast is mainly due to large amounts of iron particles produced during these periods. 

According to the layer thicknesses, the initial CNT growth rate with acetylene is estimated 

about ~5.2 µm min-1. This rate is quite higher than the CNT growth rates in the periods without 

acetylene (~ 1.3 µm min-1), and higher than these in the two growth periods with acetylene (~ 

3.3 µm min-1). The inserted diameter distribution curves demonstrate that the addition of 

acetylene favors to decrease CNT diameter. The high CNT growth rates in the first 5 min with 

acetylene might be due to fewer obstacles to the arrival of catalyst and carbon source precursors 

on the substrate surface. However, no CNT layers are found on µAl2O3, as shown in Fig. 46c 

and d. CNTs organize into different states depending on their deposition position. The 

ultra-highly dense CNTs align into one large bundle on the alumina microparticles located in 

the front part of quartz plate (Fig. 46c). The CNT diameter is very homogeneous, ~15 nm. 

However, CNTs with low number density are found on the particles placed in the middle region 

of the plate. The CNTs form the “urchin-like” structures with the particle in the core position. 

The CNT diameter has a large distribution range varying from 20 to 70 nm, and the mean 

diameter is ~ 50 nm. The hybrid structures are very similar to these obtained without adding 

acetylene at 780 ºC (Fig. 41d). This indicates that the influence of acetylene on CNT growth is 

weakened in the latter region of the reactor in the reactor at high temperature.   

In the second case, carbon source injection time sequence is as follows: 5 min (C8H10) -3 

min (C8H10+ C2H2) -3 min (C8H10) -3 min (C8H10+ C2H2) -3 min (C8H10). The ferrocene-xylene 
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solution is first injected for 5 min, and then the feeding of acetylene (flow rate 20 ml min-1) of 3 

min is carried out 2 times at the interval of 3 min. Figures 46e-f show the multiple layers of 

CNT carpet obtained on the quartz plate. A layer of CNTs with a thickness of ~ 8 µm are grown 

from the decomposition of xylene and ferrocene in the first 5 min, with a growth rate of ~ 1.6 

µm min-1. The CNT growth rate increases to 6 µm min-1 when acetylene is added into the 

reactor. A very thin layer mainly consisting of iron particles surrounded carbon is formed when 

the injection of acetylene is stopped. There is nearly no CNT growth in the followed 3 min. The 

reinjection of acetylene activates the growth of CNTs at the same rate of 6 µm min-1. This 

phenomenon shows once again that the addition of acetylene accelerates CNT growth. The 

CNT diameter distribution comparison curves (Fig. 46f) show that CNTs grown in the presence 

of acetylene have smaller diameters and a narrower distribution range than that of CNTs grown 

without acetylene. The CNT growth on µAl2O3 is similar to that in the first case: large 

“bundle-like” structure in the front part (Fig. 46g) and “urchin-like” hybrid structures in the 

middle part (Fig. 46h). But the CNT density in the “bundle-like” structure is much lower than 

that in first case (Fig. 46g and c). Furthermore, the CNT diameter (~ 25 nm) is also larger than 

the one in the first case (first injecting acetylene).       

The above comparison experiments demonstrate that the addition of a certain percentage 

of acetylene is helpful to accelerate CNT growth and to narrow its diameter distribution range. 

Furthermore, different initial carbon sources could also affect the diameter distribution of CNTs 

in hybrid structures. At relatively high temperatures, a strong influence of acetylene on CNT 

growth takes place mainly in the front part of the reactor. Beyond certain distance, CNT growth 

is mainly resulted from the pyrolysis intermediates of xylene and acetylene.    

 

3.2.2.2 Adding Acetylene at relatively low temperatures 

The influence of C2H2 is also investigated at 550 °C. As discussed in the previous part, the 

high density CNTs could be obtained on µAl2O3 at this temperature. The ferrocene-xylene 

solution was always fed at the rate of 0.2 ml min-1 for ~ 15 min.  
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Figure 47. SEM images of the C�Ts-µAl2O3 hybrid structures obtained at 550 °C using different C2H2 

concentrations: (a) 6 ml min-1 (0.6 %), (b) 10 ml min-1 (1 %), (c) 20 ml min-1 (2 %) and (d) 40 ml min-1 (4 %). 

 

Fig. 47 shows the hybrid structures obtained using different C2H2 concentrations varying 

from 0.6 to 4 vol. %. It can be seen that the hybrid structures always consist of regularly 

separated CNT bundles on µAl2O3, and CNTs have a narrow diameter distribution ranging from 

6 to 10 nm, at different acetylene concentrations. However, the CNT density and the CNT 

bundle length increase consecutively, from ~ 2.5 to 10 µm, with increase of C2H2 concentration. 

This indicates that the addition of acetylene promotes the nucleation of iron catalyst particles 

from ferrocene at low CNT synthesis temperatures. Additionally, high concentration C2H2 

feeds more effective carbon sources to catalyst particles, and thus accelerates CNT growth rate.   

 

(c) (d) 

(b) (a) L= 2.5 µm L= 4 µm 

L= 10 µm L= 10 µm 
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Figure 48. Comparison of the MS ion intensities at m/z 52, 58 and 78 under different C2H2 concentrations 

with (solid symbols) and in the absence (hollow symbols) of ferrocene-xylene solution at 550 ºC. 

 

   Fig. 48 shows the three most evident variations of the ion intensities at m/z 52, 58 and 

78 under different C2H2 concentrations are shown in Fig. 48. For comparison, their ion current 

intensities in the absence of ferrocene-xylene solution are also given. At each acetylene 

concentration, the ion current intensity is always higher with ferrocene-xylene solution than 

without. This indicates that the presence of this solution provides additional ion contribution at 

corresponding masses. High C2H2 concentrations yield an increase of the difference in ion 

intensities at each mass. However, except the ion intensity at m/z 58, the augmentation exhibits 

a nonlinear increase: fast from 0.6 to 2 %, and then slow beyond 2 %. The nucleation of small 

iron particles is intensified when the C2H2 concentration increases. This may promote the 

growth of CNTs with high density. 

In summary, the addition of acetylene in reactor atmosphere significantly modulates the 

CNT growth from the decomposition of ferrocene-xylene solution. First, the addition of 

acetylene could narrower the diameter distribution of CNTs synthesized at high temperatures. 

This is realized by the interference of acetylene in catalyst particle formation on the 

microparticles. Due to its high chemical activity, acetylene could efficiently provide effective 

carbon for CNT growth once the catalyst particle size reaches a critical value. According to our 

observation, this catalyst particle critical value is about 5 nm. On the other hand, its high 

activity makes it very easy to form amorphous carbon in gas phase, especially, at high 

temperatures. Furthermore, the strong influence of acetylene is found in the front part of the 

reactor. Beyond certain distance, its impact is weakened with the distance. This is a competitive 

result from the fluid dynamics of carrier gas and the chemical kinetics of acetylene reactions. At 

relatively low temperatures, enhanced CNT growth rates have been obtained by the addition of 
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acetylene. The synthesized “six-branch” CNTs-µAl2O3 structures contain the homogenous 

CNTs with diameters ranging from 6 to 10 nm.  

 

3.2.3 Temperature 

 

In general, CNT nucleation and growth rates are dominated by the substrate surface 

properties and the pyrolytic reactions occurring in the gas phase. As a decisive thermodynamic 

parameter, temperature has significant influences on the thermal decomposition of ferrocene 

and carbon sources. The former process generates the formation of iron particles. The latter one 

provides the continuous feeding of effective carbon species for CNT growth. In the following 

two parts, we will discuss about the temperature influence on the formation of CNT-µAl2O3 

hybrid structures using xylene and xylene-acetylene as carbon sources.  

    

3.2.3.1 Xylene as carbon source  

The influence of temperature is first studied using xylene as carbon source. The 

temperature is varied from 550 to 900 ºC with the interval of 50 ºC. The ferrocene concentration 

in xylene solution is 0.05g ml-1. The flow rates of argon and hydrogen are 0.72 and 0.08 l min-1, 

respectively. The injection of the solution lasts for 15 min.  

As demonstrated in Fig. 27, the “six-branch” hybrid structures transfer to the “urchin-like” 

ones with the increase of CNT growth temperature from 550 to 800 ºC. At the same time, The 

CNT lengths increase continuously with the temperature. The CNT diameters are inclined to 

increase and vary in a large region (Fig. 28). A further increase of the temperature results in 

much longer and larger CNTs, ~150 µm in length and ~50-100 nm in diameter at 850 ºC (Fig. 

49). Whereas, by comparing with the hybrid structures obtained at lower temperatures, the 

number density of CNTs on µAl2O3 is greatly decreased. Moreover, CNT arrangement on the 

substrate surface also changes from a vertically aligned state to a random one. Often, it is found 

that several small alumina particles are attached to a large one. However, the hybrid structures 

are completely changed when the temperature is increased to 900 ºC. Only a few of CNTs 

decorated with iron particles are formed on µAl2O3(Fig. 49b). Instead, The higher 

magnification SEM (Fig. 49c) of one selected region on the surface of µAl2O3 and its 

corresponding secondary electron image (Fig. 49d) demonstrate that the alumina microspheres 
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are densely covered by amorphous carbon balls. Each ball encapsulates a small iron particle 

sized in a range from 10 to 20 nm. It is worth mentioning that the CNT diameter is similar to the 

iron particle size, and no CNT with large diameter is found. This result is coherent with that 

reported by Eres et al[263], that is, the CNT growth with ferrocene losses vertical alignment at 

900 ºC, and the growth rate exhibits a dramatic steep drop. This is mainly due to the enhanced 

gas-phase thermal decomposition of Fe(C5H5)2 above 850 °C, which immediately produces 

iron particles in gas phase before ferrocene molecule arrival on substrate surface. The enhanced 

thermal decomposition of carbon sources at high temperatures could also accelerate the carbon 

deposition on the forming iron particles. One direct consequence is the presence of a large 

amount of carbon encapsulated iron particles on the outside walls of CNTs and on the surface of 

micro alumina (Fig. 49b-d).   

   

  

  

Figure 49. SEM images of the hybrid structures obtained at high temperatures. (a) Hybrid structures 

synthesized at 850 °C. Inserted high magnification image shows the irregular C�T arrangement and its low 

number density on one µAl2O3 attached by several small ones. (b) Hybrid structures synthesized at 900 °C: 

C�Ts are decorated with plenty of small iron particles on their surface (Inserted higher magnification image). 

(c-d) High magnification of the selected red zone in (b) and its corresponding secondary electron image. 

 

The temperature dependence of the CNTs-µAl2O3 hybrid structures reveals the 

significance of the generation rate of catalyst particles. The iron particle formation is mainly 

(b) 

900 °°°°C 

(c) 

(a) 

850 °°°°C 

(d) 
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determined by the thermal decomposition of ferrocene and the interaction between ferrocene 

and carbon sources. These two processes are strongly temperature-dependent.  
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Figure 50. MS analyses of the three different temperature regions of xylene decomposition, ranging from 

400 to 1000 °C. Two red dot lines indicate two critical temperatures of the decomposition of the solution.  

 

Fig. 50 shows the main MS intensity peaks which have evident variations when the 

temperature increases from 400 to 1000 °C. From the figure, it could be seen that with the 

temperature increase, the decomposition process of the ferrocene-xylene solution undergoes 

three different periods, marked by two red dot lines. The slight augmentation of the curves from 

400 to 600 °C due to might be the  incomplete evaporation of the solution spray droplets at 

low temperatures. In fact, only a little of xylene decomposes into toluene at this temperature 

range.  This could be seen from the variation of the intensity ratios of I106/I91 (Fig. 51a) and 

I92/I106 (Fig. 51b). The MS of pure o-xylene has the two strongest ion intensity peaks at m/z 91 

and 106 (see Appendix 2), which are attributed to the species C7H8
+ and C8H10

+. In the MS of 

toluene, there is also a characteristic peak at m/z 91 corresponding to toluene molecule. In Fig. 

51a, a slight decrease of the intensity ratio I106/I91 indicates a weak decomposition (~3 % at 600 

°C) of xylene when the temperature is between 400 and 600 ºC. On the other hand, a slight near 

linear increase (~2.5 % at 600 °C)) of I92/I106 is found at this temperature period (Fig. 51b). 

Furthermore, no variation of I78/I92 could be seen with the increase of the temperature from 400 

to 600 °C ( Fig. 51c). This indicates that no benzene is produced at these temperatures. 

Therefore, the decomposed xylene is almost completely transferred into toluene when the 

temperature is lower than 600 °C.    
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Figure 51. MS analysis of the decomposition of xylene solution containing 0.05 g ml-1 ferrocene at the 

temperatures ranging from 400 to 1000 °C. Two red dot lines indicate two critical temperatures of the 

decomposition of the solution. (a) The ratios between the ion intensities at m/z=106 (C8H10
+) and 

m/z=91(C7H7
+). (b) The ratios between the ion intensities at m/z=92 (C7H8

+) and m/z=106 (C8H10
+). The 

inserted figure is the amplification of the curve between 400 and 650 °C. (c) The relative ratios between the 

ion intensities at m/z=106 (C8H10
+), m/z=92 (C7H8

+), m/z=78 (C6H6
+) and m/z=40 (Ar+). (d) The relative 

intensity ratios of I106/I78 and I92/I78. For comparison, the ion intensity curve of I78/I40 is plotted at the 

bottom of figure. 

    

In the second stage, the decomposition of the xylene solution increases when the 

temperature varies from 600 °C to 900 °C. Fig. 50 shows the quasi-linear decreases of the ion 

intensities at m/z 106(C8H10
+) and 91(C7H7

+), whereas the increases of the ones at m/z 78 

(C6H6
+) and 15(CH3

+), with the increase of the temperature. However, the I92 (C7H8
+) first 

shows an increase from 600 to 800 °C, and then a decrease from 800 to 900 °C. The evident 

increase of I78 (C6H6
+) could only be seen after 750 °C. Moreover, the intensity ratio I106/I91 

decreases in a nearly linear way from 0.38 to 0.01 with the increase of the temperature from 

600 °C to 900 °C (Fig. 51a). The decreasing I106/I91 indicates that there are certainly the 

generation of C7H8 species in gas phase due to the increased decomposition of C8H10. At the 

same time, the ratio I92/I106 undergoes a firstly slow linear increase from 0.2 at 600 °C to 1.85 

(a) (b) 

(c) (d) 
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at 750 °C, and then a dramatic one above 750 °C (Fig. 51b). This means that there remain a 

few amounts of xylene in the gas phase above 750 °C. The further observation (Fig. 51c) of 

the variation of the ion intensities at m/z 106, 92 and 78 show that most xylene is transferred 

into toluene from 600 to 750 °C. At this temperature region, there is a very weak 

augmentation of benzene concentration. Whereas, the rapid augmentation of I78 indicates the 

increased production of benzene in a linear way, with the increase of temperature from 750 to 

900 °C. Benzene could be produced from either the residual xylene, or the generated toluene. 

As shown in Fig. 51c, both the I78/I40 and I106/I40 decrease with the increase of the temperature. 

However, the former exhibits a slower decrease rate than the latter. The similar phenomena 

are also seen from the variations of the relative intensities of I106/I78 and I92/I78 (Fig. 51d). 

Therefore, it could be deduced that most benzene is produced from the decomposition of 

toluene. At 900 °C, the concentration of benzene is significantly higher than this of toluene, 

which is further greatly higher that that of xylene (Fig. 51b and d). In addition, the ion 

intensities at m/z=12(C+) and 26 (C2H2
+) have a weak increase with the temperature. Whereas, 

the intensity at m/z=51 first decreases in the temperature range from 600 to 750 °C, and then 

increases. This is mainly due to the variation of the concentrations of toluene and xylene in 

the gas phase.  

In the third temperature region (T ≥ 900 °C), the benzene concentration becomes to 

decrease, and the residual toluene is continuously decomposed. When the temperature is equal 

to 1000 °C, the levels of benzene and toluene in the residual gas are very weak, near zero. 

However, there remains a little of xylene in the gas. This results in an increase of the ratio 

I106/I91 (Fig. 51a) and a decrease I92/I106 (Fig. 51b). Moreover, the species CH3 and CH4 

formed from the decomposition of xylene and toluene are largely consumed at 1000 °C.      

In summary, the ferrocene-xylene solution undergoes a complex decomposition process 

when the temperature varies in the range from 400 to 1000 °C. The whole temperature region 

could be divided into 3 major zones. In the first region (T≤ 600 °C), there is only a little of 

xylene decomposed at the used conditions. As a result, short CNTs with small diameter are 

grown on µAl2O3 at a very weak rate. In the second region (600 ≤T≤ 900 °C), the increased 

pyrolysis rates of xylene and its subsequent products such as toluene promote the growth of 

CNTs with large diameters and lengths. However, the high decomposition rates at 900 °C also 

promote the direct formation of amorphous carbon in gas phase. Beyond this temperature, 

there are no CNTs grow on µAl2O3 at the researched conditions.     
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3.2.3.2 Xylene-acetylene as carbon sources  

The effect of temperature is also studied in the range from 450 to 700 °C when the 

xylene-acetylene mixture is used as carbon source. It is reported that the lowest decomposition 

temperature of ferrocene is around 400 °C.36 But, no CNT growth is observed on µAl2O3 

particles under our experimental conditions. Ferrocene, concentrated at 0.05g ml-1, was 

dissolved in xylene, which was fed into the furnace at a rate of ~ 0.2 ml min-1. In the mean time, 

C2H2 was fed at a flow rate of 20 ml min-1. The feeding of the ferrocene-xylene solution and 

acetylene lasted for 15 min. Argon and hydrogen served as carrier gases at flow rates of 0.88 

and 0.1 l min-1, respectively.  

Fig. 52 displays the SEM images corresponding to the CNTs-µAl2O3 hybrid structures 

obtained at the temperatures ranging from 450 to 700 °C. Only few short CNTs are grown on 

µAl2O3 at 450 °C, and their distribution pattern looks like an inscribed cube inside an alumina 

sphere (Fig. 52a). The deficient CNT growth indicates that at this temperature ferrocene has a 

weak decomposition rate. In contrast, the hybrid structures consisting of six CNT bundles are 

abundantly observed in the final products when the temperature is beyond 450 °C (Fig. 52b-i). 

At the low temperatures from 475 to 550 °C, the CNT bundles are regularly distributed in the 

six orthogonal directions. The CNT length consecutively increases from ~ 2 µm at 450 °C to ~9 

µm at 550 °C, but CNT diameter remains around 10 nm. The CNT bundles obtained at 550 °C 

is also quite different from these at lower temperatures. CNTs in the bundles obtained at 550 °C 

are nearly parallel to each other. Whereas, the CNT bundles obtained at the lower temperatures 

are contracted at their ends. 
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Figure 52 SEM images of C�Ts-µAl2O3 hybrid structures obtained using 20 ml min-1 C2H2 and 0.2 ml min-1 

ferrocene-xylene solution at the following temperatures: (a) 450 °C, (b) 475 °C, (c) 500 °C, (d) 550 °C, (e-f) 

600 °C, (g-h) 650 °C and (i-j) 700 °C. Images f, h and j are SEM images of the hybrid structures collected in 

the latter regions of the quartz plate. The C�T bundle lengths at different temperatures are indicated in each 
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figure.     

 

High density CNTs are observed on the µAl2O3 placed in the quartz plate between 5 and 

20 cm at 600 °C (Fig. 52e). The CNT length is ~20 µm and its diameter remains ~ 10 nm. 

However, CNTs grown on the microparticles beyond 30 cm is much shorter in length (~8 µm) 

but larger in diameter ranging between 10 -15 nm. Similarly, the long CNT bundles around 45 

µm are found on the alumina microparticles located between 5 and 20 cm at 650 °C, but shorter 

bundles on the particles located in the range of 20-30 cm. However, the diameter of CNTs in the 

different regions has little variation, ranging between 10 -15 nm. Beyond this temperature, the 

CNT density evidently decreases on the µAl2O3 which are located at the first 10 cm of the 

quartz plate. The bundles have a reduced length, ~ 25 µm. Moreover, a variation of CNT 

diameter is also observed from 5 to 15 nm. Most of CNTs have diameters ranging from 10 to 15 

nm. No CNT bundle could be observed on the µAl2O3 located in the latter region of the reactor. 

The CNTs of 10 µm in length arrange in all directions on µAl2O3, forming the “urchin-like” 

hybrids. The diameter distribution bar diagram (inserted in Fig. 52j) shows that most CNTs 

have diameters ranging from 15 to 25 nm, and a few of CNTs have a big diameter of 40 nm, or 

even 60 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53. Schematic of C�T deposition on alumina microparticles dispersed on quartz plate at different 

growth temperatures. The color change represents the variation of C�T deposition quantity. Two yellow 

arrows show the increasing tendencies of C�T diameter. The figure at right bottom shows the variations of 

C�T diameter and length with temperature.      
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Fig. 53 shows the distribution of CNTs obtained at the temperatures from 500 to 700 ºC on 

µAl2O3 particles which are homogenously dispersed on the surface of quartz plate of 50 cm in 

length. We can see that the starting deposition position of CNTs moves toward the front of 

quartz plate with increasing temperature. As indicated in the figure, the decomposition of 

xylene becomes intense after 600 ºC. This could explain why CNT diameter largely increases 

after this temperature, especially at 700 ºC. At the same time, the highly dense CNT deposition 

region narrows with the increase of temperature after 550 ºC. This is mainly due to the 

increased consumption rates of ferrocene at higher temperatures. The following MS 

measurements give us more explanations.  

 

Figure 54. (a) Mass spectra of the exhaust gas at 550 °C. (b) Evolution of the ion currents at masses (m/z) 

corresponding to the predominant fragments formed during the reactions. (c) Relative intensity ratios of the 

fragments of C6H5, C6H6, C7H7, C7H8, C8H10, showing the decomposition of xylene and the production of 

benzene. 

 

Fig. 54a shows the mass spectra of the exhaust gas produced by the decomposition of the 

acetylene and xylene mixture at 550 °C. The ion current peaks at m/z 40(20) and 2 are attributed 
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to the carrier gases Ar and H2, respectively. The ones at m/z 44, 32, 28 and 14 correspond to the 

components of residual air such as CO2, O2 and N2, respectively. Acetylene and xylene are 

identified by their specific molecular peaks at m/z 26 and 106, respectively. Finally, the 

fragments C4Hx, C5Hx, C6Hx, C7Hx (subscript x indicates integral numbers) resulting from the 

pyrolysis in furnace or ionizations in mass spectrometer are displayed in the spectra. 

Fig. 54b shows the evolution of the ion currents at the masses corresponding to C8H10
+ 

(m/z 106), C7H8
+ (m/z 92), C6H6

+ (m/z 78), C5H5
+ (m/z 65), C4H10

+ (m/z 58), C4H4
+ (m/z 52), 

C2H2
+ (m/z 26) and CH4

+ (m/z 16) with the increase of temperature from 450 to 900 °C. Some 

noticeable intensity changes are observed at m/z 16, 26, 78, 92 and 106, which correspond to 

the fragments of CH4
+, C2H2

+, C6H6
+, C7H8

+ and C8H10
+, respectively. Obviously, C2H2 

undergoes a significant change: it first decreases very slowly from 450 to 550 °C, and then 

abruptly to a constant at 700 °C. The ion current at m/z 106 corresponding to xylene exhibits 

first a slight increase until 550 °C due to the increasing evaporation of the xylene solution. Then, 

the current starts to decrease because of the beginning of the decomposition. The intensity at 

m/z 92 undergoes an important increase from 550 to 800 °C, and then an evident decrease after 

800 °C. This indicates that toluene begins to largely decompose after this temperature. 

However, the monotonous increase of the relative intensity at m/z 78 indicates the continuous 

generation of benzene in the reactor, especially after 700 °C. The intensity at m/z 66 

corresponding to the fragment of C5H6
+ starts to decrease significantly only when the 

temperature is larger than 800 °C.   

Furthermore, the decomposition of xylene and the generation of toluene and benzene can 

be more precisely evaluated from the evolution of the relative ratios between the intensities at 

m/z 106, 92, 91, 78 and 77. According to the standard spectra library provided by Pfeiffer 

Vacuum, the relative intensity ratios are different in the spectra of xylene, toluene and benzene. 

They are as follows: I106 / I91: ~0.577 (xylene), I92 / I91: ~0.075 (xylene) and ~0.784 (toluene), 

and I78 / I77: ~0.661 (xylene) and ~6.938 (benzene). The evolutions of the I106 / I91, I92 / I91 and I78 

/ I77 (Fig. 54c) show that xylene does not evidently decompose under these experimental 

conditions until 550 °C. The decomposition rate of xylene increases quickly after 600 °C. 

Similarly, it is found that toluene and benzene appear in exhaust gases obtained at temperatures 

higher than 550 °C. Their concentrations quickly increase. This means a large part of xylene 

decomposes into toluene and benzene.  
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Figure 55. MS analyses of the impact of acetylene on the decomposition of xylene into toluene and benzene. 

(a) Comparison of relative intensities at m/z 78 (C6H6
+), 92 (C7H8

+) and 106 (C8H10
+) obtained by measuring 

of the exhaust gases from the decomposition of carbon source with (solid symbols) or no (hollow symbols) 

acetylene. (b) Relative intensity ratios I106/I78 and I92/I78 in the cases with (solid symbols) or no acetylene 

(hollow symbols) in the system.  

 

The impact of acetylene on the decomposition of xylene is further demonstrated by 

comparing the relative intensities at m/z 78 (C6H6
+), 92 (C7H8

+) and 106 (C8H10
+) between the 

two cases with or without acetylene. MS measurements are conducted on the following two 

kinds of exhaust gases at the temperatures ranging from 450 to 900 ºC. In the first case, xylene 

is used as the only carbon source. In the second case, acetylene is added into the reactor at a 

flow rate of 20 ml min-1. The concentration of ferrocene in xylene solution is 0.05 g ml-1. As 

shown in Fig. 55a, the relative intensity of xylene with C2H2 is lower than that without C2H2 

when the temperature is lower than 700 ºC. However, no evident difference has been observed 

in the relative intensities at m/z 78 and 92 between the cases with or no addition of acetylene. 

Beyond 700 ºC, the addition of acetylene produces little variation of the intensities at m/z 92 

and 106, but an increasing augmentation of the one at m/z 78. This means that more acetylene is 

transformed into benzene at high temperatures than at low ones. As shown in Fig. 55b, the 

intensity ratios I106/I78 and I92/I78 of two cases (with and no C2H2) also indicate the addition of 

acetylene generates a slight decrease of the relative abundances of xylene and toluene in the 

system, compared with that of benzene.    

In summary: based on the MS analyses and SEM characterizations, it could be concluded 

that the evolution of hybrid structures is mainly related to the pyrolysis of C2H2 at the 

temperatures ranging from 450 to 600 °C. The synthesized hybrid structures consist of CNTs in 

“the six-branch” structures, and the CNTs have a homogeneous diameter, ~10 nm. A further 

increase of the temperature yields the increased decomposition of xylene. Due to the intensified 
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decomposition of ferrocene, CNT diameter and length increase with temperature. In turn, the 

“urchin-like” hybrid structures which consist of CNTs with large diameters are synthesized.    

 

3.2.4 Hydrogen ratio 

 

In this research, the synthesis of the hybrid structures is conducted under ambient 

atmosphere pressure. The MS measurements demonstrate the presence of a relatively high 

percentage of oxygen in the system, which could be from air, or impurities contained in carrier 

gases. It has been proven that a small amount of oxygen enhances catalyst activity and prolongs 

catalyst lifetime by preventing amorphous carbon formation on the catalyst surface, and thus 

promotes CNT growth. On the other hand, too much oxygen in reactor could result in the 

oxidization metal catalyst particles, as well as the consumption of hydrocarbons by the 

formation and discharge of CO and CO2 gases. Therefore, hydrogen serving as protective gas is 

added in floating CVD system for CNT synthesis. However, reactive hydrogen (H•) has been 

demonstrated to play a negative effect to CNT growth by plasma assistant CVD of methane at a 

low pressure of 0.3-0.4 torr (1 torr = 133 Pa) [169]. Increasing H2 presence always leads to 

systematic decrease in SWCNT yield, because high concentrations of H species do not favor 

the formation and growth of sp2-like carbon structures.  

In the following part, we will discuss about the influence of hydrogen ratio on the growth 

of hybrid structures by the thermal decomposition of carbon sources at different temperatures.    

  

3.2.4.1 Hybrids from xylene decomposition at relatively high temperatures 

The influence of hydrogen is studied when xylene is used as carbon source at 780 ºC. 

Ferrocene, concentrated at 0.05g ml-1, is dissolved into xylene solution, which is then injected 

into the reactor at a rate of ~ 0.2 ml min-1. The solution feeding time is 12 min. The hydrogen 

ratio is varied from 0 to 40 % in the carrier gases at a total flow rate of 1 l min-1. That is, the used 

hydrogen flow rates are 0, 0.1, 0.2 and 0.4 l min-1. The samples are collected in the region from 

1 to 3 cm of the quartz plate.  

Fig. 56 shows the hybrid structures obtained with different hydrogen ratios in carrier gases. 

No presence of hydrogen in the atmosphere favors the formation of long CNTs which are 

decorated on their outer surfaces with a large number of carbon particles (Fig. 56a). The CNT 
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diameter mainly varies from 30 to 45 nm. The CNT density on alumina particles is so high that 

CNTs self assemble as one bundle with a length of ~ 80 µm. At the same time, no hydrogen 

presence in the carrier gases also promotes the generation of a layer of amorphous carbon 

deposition on the microparticles. This layer containing iron atoms, along with a few of thin and 

long CNTs (Fig. 56b). However, these impurities are considerably decreased when hydrogen is 

added in the carrier gases. Few particles are found on CNTs grown with 40 % hydrogen (Fig. 

56g-h). Instead, large amounts of iron particles encapsulated by a layer of carbon are deposited 

on the surface of µAl2O3, as shown in Fig. 56d, f and h. No evident variation is observed in the 

CNT diameter and density with the increase of hydrogen ratio. The CNT bundles have a large 

length, more than ~80 µm at different hydrogen ratios. As one part of CNT bundle is often 

covered by the neighboring hybrid structures, it is very difficult to measure the CNT length 

variation with hydrogen ratio. But the variation of the thickness of CNT carpets collected on the 

quartz plate indirectly demonstrates that the presence of hydrogen in atmosphere decreases the 

CNT growth rate. As shown in Fig. 57, a CNT layer of ~ 350 µm in thickness has been obtained 

in 12 min when no hydrogen is present in atmosphere. That is, the average CNT growth rate is 

about 30 µm min-1. As a comparison, the CNT layer thickness decreases to ~110 µm, that is, the 

average growth rate of CNTs is only ~ 9µm min-1 when 10 % hydrogen is added. Furthermore, 

it is found that CNT diameter almost keeps the same level at the two conditions mentioned 

above.   

Fig. 58 shows the variation of the MS intensities at m/z 15, 18, 26, 51, 78, 92, 106 and 120 

with the increase of hydrogen ratio. These peaks have experienced a noticeable intensity change, 

and they are attributed to the species CH3
+, H2O

+, C2H2
+, C4H3

+, C6H6
+, C7H8

+ and C8H10
+, 

respectively. First, the increase of the intensity of H2O
+ indicates that high ratios of hydrogen 

reduce more quantity of oxygen in the reactor. The oxygen is mainly from the carrier gases and 

air. As indicated early, certain amount of oxygen in reactor promotes CNT growth. This could 

be one reason of why CNT length decreases with the increase of hydrogen ratio. Second, the 

decrease of the intensity of C8H10
+ demonstrates that hydrogen promotes the decomposition of 

xylene at relatively high temperatures. The augmentation of the intensity of C6H6
+ represents 

the increased concentration of benzene in the exhaust gas at high hydrogen ratios. But the 

abundance of toluene keeps nearly the same level at different hydrogen ratios. In addition, a 

slight increase has also been observed in current intensities of the peaks at m/z 30 (C2H6
+) and 

51 (C4H3
+).   
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Figure 56. SEM images of the hybrid structures obtained with different hydrogen ratios fH2 at 780 ºC. (a-b) 

fH2 = 0: large amounts of particles decorating on C�Ts (image a), and the alumina particle covered by a thin 

carbon layer containing iron atoms (image b). (c) fH2 = 10 % (0.1 l min-1). (d) high magnification SEM image 

of the surface of alumina particle. (e) fH2 = 20 % (0.2 l min-1). (f) high magnification of the circled particle in 

e. (g) fH2 = 40% (0.4 l min-1). (h) high magnification of C�Ts and alumina particle surface in g, and the 

inserted bar graph shows C�T diameter distribution.  
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Figure 57. SEM images of the C�T carpets obtained with different hydrogen ratios: (a-b) fH2=0, and (c-d) 

fH2=10 %. Images b and d are the high magnification of images a and c, respectively. The inserted bar graphs 

show the distributions of C�T diameters at the two different hydrogen ratios. 

 

The above analyses demonstrate that the reductive hydrogen prevents the formation of 

amorphous carbon particles during CNT growth when xylene is used as carbon source at 

relatively high temperatures. High hydrogen ratios in carrier gases promote the decomposition 

of xylene to benzene, but the decrease of CNT growth rate. The presence of large amounts of 

carbon layer encapsulated iron particles is due to the insufficient feeding of the effective 

carbon which could directly contribute to CNT nucleation and growth.  
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Figure 58. Evolution of MS ion current intensity peaks attributed to the fragments CH3
+, H2O

+, C2H2
+, 

C4H3
+, C6H6

+, C7H8
+ and C8H10

+, with the increase of hydrogen ratio in CVD reactor.     

    

 

3.2.4.3 Hybrids from the decomposition of xylene/acetylene mixture  

In the previous part, we have discussed the influence of hydrogen ratio on CNT growth 

on µAl2O3 when xylene is used as carbon source. It has been noticed that high hydrogen ratios 

promote the decomposition of xylene and the formation of aligned CNTs with less impurities 

such as amorphous carbon particles. However, a large number of iron particles encapsulated by 

carbon layers are deposited on the surface of µAl2O3. These particles have sizes similar to the 

CNT diameters, but they fail to catalyze CNT growth. Consequently, a certain quantity of iron 

is not contributed to the growth of CNTs. In contrast, iron particles could be sufficiently used to 

grow CNTs when certain amount of acetylene is added into the reactor. Moreover, the produced 

CNTs have a homogeneous diameter and a high number density. This indicates that the 

interaction between catalyst precursor and carbon source strongly influences the catalyst in 

CNT growth activity.      

In this part, we will study the impact of hydrogen ratio on CNT growth using the 

acetylene/xylene mixture as carbon sources at 780°C. A constant acetylene flow rate, 20 ml 

min-1 , is used, that is, 2 % in total carrier gases. The hydrogen ratio is varied from 0 to 40 % in 

a series of 0, 0.05, 0.1, 0.2 and 0.4 l min-1. The ferrocene-xylene solution is injected at a rate of 

~ 0.2 ml min-1 for 12 min.  

Fig. 59 shows the hybrid structures obtained with different hydrogen ratios. For 

comparison, the hybrid structures synthesized at each hydrogen ratio have been collected from 

several different regions of the quartz plate.  



Chapter III Studies on formation mechanism of multiform CNTs-µAl2O3 hybrid structures 

 -106- 

Firstly, it is found that high hydrogen ratios favor the formation of “clean” CNTs without 

impurities. The hybrid structures synthesized using fH2=20 % and 40 % consist of pure CNTs 

on µAl2O3, as shown in Fig. 59a-f. On the other hand, the impurities including amorphous 

carbon particles and iron particles are observed in the hybrid structures obtained using low 

hydrogen ratios or no hydrogen, as shown in Fig. 59j-n. These results confirm the important 

roles played by hydrogen in floating CVD process for the synthesis of CNTs-µAl2O3 hybrid 

structure. High concentration hydrogen prevents impurity formation by lowering the 

dehydrogenation rates of acetylene, or by recombining with carbon to reproduce hydrocarbon 

fragments.  

Secondly, with the increase of hydrogen ratio the organization of CNTs on µAl2O3 varies 

from six branches (Fig. 59j, m and n) to one bundle (Fig. 59a, d, g, h and k), and then to the 

“urchin-like” structures (Fig. 59b-c and e-f). Correspondingly, the mean diameter of CNTs 

also varies from ~15 to ~30 nm, and then to ~60 nm, respectively. It is worth noting that the 

CNT diameter also depends on the growth position of CNTs in the reactor. As indicated in Fig. 

59, CNTs grown in the front of the reactor show little variation in diameter (~15 nm) with the 

hydrogen ratio. However, CNTs formed in the middle or back region of the reactor have large 

diameters, except the one when fH2 = 0. The values of 30 and 40 nm in mean diameter are 

observed for CNTs formed in the region from ~10 to 20 cm on quartz plate when the 

hydrogen ratio is 5 and 10 %, respectively. But higher hydrogen ratios (20 and 40 %) result 

in the CNTs with larger diameter, ~ 60 nm. However, the growth of CNTs in the region after 

20 cm is completely different at different hydrogen ratios. For instance, the “urchin-like” 

hybrid structures are formed when hydrogen ratio is larger than 20 %. In these structures, the 

CNT average diameter is ~ 60 nm, but their length greatly decreases compared with the ones 

in the previous regions. In contrast, when the hydrogen ratio is less than 20 %, the growth of 

CNTs is always accompanied with various different kinds of impurities including 

carbon-encapsulated iron particles decorated on the outer surface of CNTs (Fig. l and n) and 

these deposited on the surface of µAl2O3(Fig. 59i). Another one evident difference along the 

length of quartz plate is the CNT density on µAl2O3, as shown in the inserted images in Fig. 

59. It is found that at various hydrogen ratios the CNT number densities decrease with the 

increase of the growth position increasing the length. These variations are especially 

significant when the hydrogen ratio is less than 20 % (Fig. 59g-n).      
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Figure 59. SEM images of the hybrid structures synthesized with varied fH2 from 0 to 40 %. The lines with 

scales (unit: cm) represent the distribution of hybrid structures along the length of quartz plate at each 

hydrogen ratio. Acetylene is added as carbon source along with xylene. The total gas flow rate is 1 l min-1. 
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The length of CNTs on µAl2O3 varies as does the area number density. That is, they 

gradually decrease along the CNT growth position on the quartz plate. Indeed, this could be 

directly seen from the variation of the thickness of deposition on the quartz plate. Always, the 

thickness decreases with the position of the deposition. Fig. 59m and n show that the CNT 

length decreases from 7 micrometer in the region of 5-15 cm to 1 micrometer in the region of 

15-20 cm when no hydrogen is added in the system. The length of one CNT bundle shown in 

Fig. 59j is ~ 100 µm, but the CNT length in Fig. 59l is only about several micrometers. It is 

worth noting that CNT length difference along the deposition position becomes less evident 

with the increase of the hydrogen ratio. For instance, the CNT length of ~ 60 µm is measured 

in the region from 0 to 5 cm, and the one of ~35 µm is measured for CNTs in the 

“urchin-like” structures in the back region when hydrogen ratio is 20 %.   

The above analyses demonstrate the significant influence of hydrogen ratio on the hybrid 

structures produced using the acetylene/xylene mixture as carbon source. The hydrogen 

influence is effectuated by varying the distribution of the concentrations of the effective carbon 

or iron species which could directly contribute to CNT growth. The variation of the 

CNTs-µAl2O3 hybrid structures along the CNT deposition position demonstrates the influence 

of hydrogen ratio on chemical kinetics of the decomposition of carbon sources (acetylene and 

xylene) and catalyst precursor (ferrocene).   

 

3.2.4.1 Hybrids from acetylene decomposition at relatively low temperatures  

The influence of hydrogen ratio on the formation of hybrid structures is also studied by 

decomposition of the acetylene/xylene mixture at relatively low temperature(50°C). The 

hydrogen flow rate varies from 0.4 to 0 l min-1, corresponding to the ratio from 40 % to 0. 

Whereas, a constant acetylene flow rate of 10 ml min-1 (1 %) is used at various hydrogen flow 

rates.  

The considerable influences on the CNT length and the morphology of the hybrid 

structures have been observed (Fig. 25). The CNT length decreases nearly exponentially with 

the increase of hydrogen ratio. At the same time, the “six-branch” hybrid structures transform 

to “short-dense-homogenous” ones. This proves again the inhibition role of hydrogen in the 

dehydrogenization of acetylene on the catalyst particles.  
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Figure 60. MS analyses of the influence of hydrogen ratio on the pyrolysis of acetylene. (a) Comparison of 

the ion intensities of hydrogen (m/z=2) and argon (m/z=40) measured at 550 °C before (hollow symbols) and 

after (solid symbols) the injections of C2H2 (10 ml min-1) and ferrocene-xylene solution (0.05 g ml-1). The 

argon flow rates are 1-x (x=0, 0.06, 0.1, 0.2, 0.4 l min-1), where x is hydrogen flow rate. (b) Evolution of the 

ion currents at m/z 26, 78 and 106 with increasing hydrogen ratio. For better display, the intensity at m/z 106 

has been divided by 3. 

 

Fig. 60 shows the MS analyses on the decomposition of carbon sources at different 

hydrogen ratios. The ion current intensities at m/z 2 and 40, corresponding to hydrogen and 

argon, respectively, were measured using a C2H2 gas flow rate of 10 ml min-1. For comparison, 

the ion intensities before injecting acetylene and ferrocene-xylene solution were also measured, 

as shown in Fig. 60a. In the two cases, the intensities at m/z 40 decrease linearly and parallel to 

each other with increasing the hydrogen ratio and the ones at m/z 2 increase almost linearly. 

However, an increasing difference is visible for the intensity at m/z 2 with or without acetylene. 

This difference is attributed to the consumption of hydrogen, by its interactions with carbon 

sources and catalyst precursor or carbon. It is justified by the fact that the pyrolysis of acetylene 

in CNT growth is degraded with increasing hydrogen ratio. This could be seen from the gradual 

increase in ion intensity at m/z 26 (Fig. 60b). In addition, the ion intensity at m/z 78 

demonstrates a small variation at different hydrogen ratios, and it reaches a maximum value at 

20 % of hydrogen. Nevertheless, the ion intensity is derived from the ionization of xylene 

during MS measurements. Therefore, the production of benzene during the pyrolysis of 

acetylene at different hydrogen ratios is negligible. 

In summary, the hydrogen ratio in carrier gases plays a significant role in the production 

of the hybrid structures. These influences are greatly dependent on the natures of carbon 

sources and the used temperatures. First, the addition of hydrogen favors to inhibit the 

formation of amorphous carbon structures during CNT growth, especially when acetylene is 
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used as carbon source at relatively high temperatures. Second, a certain amount of hydrogen 

could prevent the catalyst particles from the oxidation by the oxygen in ambient atmosphere 

condition. Third, hydrogen decreases the dehydrogenation processes from hydrocarbons, and 

thus decreases CNT growth rate. Especially, the dehydrogenization of acetylene is greatly 

suppressed by adding high concentration ratio hydrogen. This helps to decrease the differences 

produced in CNT growth rate and hybrid structures along the CNT deposition distance in the 

reactor. At low temperatures (T ≤ 550 ºC), CNTs grow mainly from the decomposition of 

acetylene. The hydrogen ratio shows little effect on the CNT diameter. But, its influence on the 

CNT growth rate is clearly seen from the variation of CNT length and the transformation of 

hybrid structures.   

 

3.3 Effects of substrate properties  

 

The contribution of the micrometer substrates to CNT organization is greatly different 

from that of the large substrates with a flat surface such as quartz plate. In the following parts, 

we will study the significant roles played by alumina microspheres in the creation of multiform 

hybrid structures.               

 

3.3.1 Effect of substrate morphology 

 

 “Carpet-like” CNT arrays are generally grown on large flat substrates by floating CVD. 

Quartz plate is one of the commonly used flat substrates. Fig. 61 shows one CNT carpet of 100 

µm in thickness, formed by the decomposition of C2H2 (0.01 l min-1) and ferrocene-xylene 

solution (0.05 g ml-1) at 800 ºC for 10 min. The flow rates of argon and hydrogen gases are 0.71 

and 0.08 l min-1, respectively. It could be seen that the “carpet” consists of highly dense CNTs 

which are approximately parallel to each other, and which are quasi-vertically aligned on the 

substrate surface. It is worth noting that the flat substrate contains a large number of micrometer 

crystalline grains, and its general surface curvature is infinitely small, close to zero.    
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Figure 61. (a) Schematic of the growth of C�Ts on quartz plates. (b-c) SEM images of highly dense 

vertically- aligned C�Ts grown on quartz plate. c is the high magnification SEM image of the square zone 

marked in (b).   

 

When micrometer particles are used as substrates, CNT growth varies with individual 

particle shape. For instance, more CNTs are found to grow on the two sides than on the 

periphery of the micro alumina plates (Fig. 62a-b). However, when “triangular-prism-like” 

micrometer alumina particles are used as substrates, few of CNTs could be found on the flat 

base surface. By contrast, high density CNTs grow on the peripheral side surfaces along three 

different directions (Fig. 62c). High magnification image (Fig. 62d) shows that the side surfaces 

are constituted of many regularly arranged small crystalline steps. Fig. 62e shows two alumina 

micrometer hemispheres separated by CNTs grown perpendicularly on the two internal fracture 

surfaces. The two CNT cylinders are connected together at the intersection part. Oppositely, 

CNTs grown on the spherical surfaces organize into several “branches” in different directions. 

Based on the SEM results, it can be concluded that the morphology of microparticles has a 

great influence on CNT organization, and thus on the hybrid structures. In this study, ceramic 

microspheres with the sizes mainly ranging from 1 to 7 µm are used as substrates to create the 

nano-micro hybrid structures. Compared with the large plate substrates, the microspheres have 

a much higher surface curvature (~ 106 rad m-1) which is favorable to obtain well-dispersed 

CNTs potentially grown in all spatial directions, like the “urchin-like” CNTs-µAl2O3. This kind 

of hybrid fillers has an unparallel advantage in improving the heterogeneity of CNTs-based 

composite properties.   
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Quartz plate 
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Figure 62. SEM images of C�Ts grown on the alumina microparticles with different morphologies. (a-b) 

micrometer plates: ferrocene-xylene solution (0.05 g ml-1) with H2 (0.1 l min-1) and Ar (0.9 l min-1) at 780 ºC, 

(b) is the higher magnification of a. (c-d) “triangular-prism-like” micrometer alumina particles: 

ferrocene-xylene solution (0.05 g ml-1) with C2H2 (0.02 l min-1), H2 (0.1 l min-1) and Ar (0.88 l min-1) at 550 ºC, 

(d) is the higher magnification of (c); (e-f) micro alumina hemispheres: the same condition as the previous 

one, f is the higher magnification of (e). 

 

 

 

 

 

(f) 

(d) 

(b) (a) 

(c) 

(e) 



Chapter III Studies on formation mechanism of multiform CNTs-µAl2O3 hybrid structures 

 -113- 

 

3.3.2 Effect of particle size 

 

The particle size is another parameter that could possibly influence the obtention of 

regular hybrid structures. We know that the diameter of spherical particles directly relates with 

their surface area and curvature, which could in turn affect the quantity of CNTs grafted on one 

µAl2O3 and the CNT density. The variation of local surface structure is pronounced with the 

increase of the particle size, during their formation process. These heterogeneities might also be 

an impact factor that generates the variation of the hybrid structures.          

Here, we demonstrate, for example, the variation of the “six-branch” hybrid structures 

with increasing the alumina microparticle diameter from 0.5 to 10 µm. The CNTs are 

synthesized at 600 ºC by injecting C2H2 (0.02 l min-1) and the ferrocene-xylene solution (0.05 g 

ml-1) during 8 min. The gas flow rates of Ar and H2 are 0.8 and 0.2 l min-1, respectively. Fig. 63 

shows the hybrid structures constituted of high density CNTs on the µAl2O3 with different 

diameters. Only a few CNTs grow on the µAl2O3 with a diameter of 700 nm, as demonstrated in 

the inserted high magnification SEM image. Moreover, CNTs seem to self-organize into two 

thin branches which are in fact a combination of several thinner branches with a length of ~ 15 

µm. The combination is due to the small surface area available CNT growth and the narrow 

space between CNT branches. When the particle diameter is ~ 1.8 µm, the quantity of CNTs on 

µAl2O3 has a considerable increase, compared with that on the particles of 700 nm. In apparent, 

CNTs self-assemble into three branches in different sizes. In fact, the large upward branch 

contains several thinner ones. The combination trace is obviously indicated by the boundaries 

of thinner CNT branches (marked by the arrows in the corresponding figure). Even though 

CNT quantity and density greatly increase in each branch, the branch length remains always ~ 

15 µm. The further increase of microparticle size (φAl2O3 =3.5 and 5 µm) results in six nearly 

orthogonal CNT branches on one particle. Each branch containing density of CNTs has nearly 

the same bundle size, and the same bundle length of 15 µm. However, the hybrid structures 

with the larger diameter (φAl2O3 =7.5 µm) have a varied CNT branch number, not always six. 

Furthermore, the branch size also varies in a large range, and its morphology becomes 

irregular.  

Therefore, the particle size shows little influence on CNT growth rate at the researched 

conditions, but considerable one on the morphology of hybrid structures. When the particle 
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size is too large, CNT bundles with varied numbers can be obtained, and the size of the bundles 

(CNT numbers) is varied. On the other hand, when the particle is small, low area number 

density CNT bundles are often combined into one or two bundles when the CNT length is 

beyond a certain value.      

 

 

Figure 63. SEM images showing the evolution of the “six-branch” high-density C�Ts-µAl2O3 hybrid 

structures with the increase of alumina microsphere diameter. 

 

As a comparison, we also demonstrate the impact of the µAl2O3 size on the hybrid 

structures constituted of CNTs with relatively low number densities and short lengths (Fig. 

64). Several CNTs are sparsely dispersed on the small particles of 900 nm in diameter, and no 

evident bundles could be seen due to too small quantity of CNTs. The branch shape appears to 

be much clearer when the diameter of alumina microspheres increases up to 1.4 µm. The 

six-branch hybrid structures are found when the particle size is larger than 2 µm. However, 

the CNT branches are not well aligned, or even seriously curved on these particles owing to 

the weak CNT quantity contained in each branch. The “six-branch” hybrid structures become 

dominant with the further increase of the alumina microparticle size. Moreover, almost the 

same bundle length around 6 µm is observed on the microparticles with different diameters, 

except a shorter length of 1.5 µm on the particles of 900 nm in diameter. We can see that the 
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particle size mainly influences the number of CNTs in each branch. The hybrid structures 

with small alumina particles contain less CNTs in each branch, and thus show more flexibility 

than that obtained on the large microparticles. In a word, the particle size exhibits little 

influence on CNT diameter and growth rate. But the variation of the particle surface area and 

curvature with diameter could result in considerable variations in CNT quantity and their 

organization. In general, the well-aligned “six-branch” hybrid structures are observed on the 

alumina particles with diameters ranging from 3 to 6 µm. 

 

 

Figure 64. SEM images showing the evolution of the “six-branch” C�Ts-µAl2O3 hybrid structures with the 

increase of alumina microsphere diameter. The hybrids are constituted of the C�Ts with a low number density 

on µAl2O3. 

     

3.3.3 Effect of microparticle structures and surface properties  

 

Besides, the hybrid structures, especially the “six-branch” ones, are also related to the 

special structure characteristics of µAl2O3. The spherical alumina particles were fabricated by 

melting in a plasma flame irregular alumina particles, which were previously sized and fused. 

Afterwards, the molten droplets of Al2O3 were formed into spherical shapes due to 
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surface-tension effects. As previously reported [264], the alumina particles produced by this 

way exhibit certain differences in crystallography because of different cooling rates in one 

particle. Indeed, the X-ray diffraction spectrum (Fig. 65a) shows that the pristine 

microparticles contain not only thermodynamically stable hexagonal α-Al2O3, which is the 

predominant phase, but also metastable tetragonal δ and monoclinic θ phases. The spectrum 

corresponding to the µAl2O3 particles heated at 800 °C reveals that no evident 

phase-transformations have occurred in comparison with the spectrum of pristine µAl2O3. 

Generally, the structure of δ- and θ-Al2O3 is located within the surface layer due to the rapid 

quench speed during the solidification of particles.[265] This is also proven by the Raman 

spectrum of the pristine particles (Fig. 65b). The α-Al2O3 characteristic peaks at 418 and 645 

cm-1 for A1g modes and at 378, 433, 451,578 and 751 cm-1 for Eg modes are invisible in the 

spectrum.[266] Whereas, the intensities of Raman shift between 200 and 900 cm-1, associated to 

δ- and θ-Al2O3, are more evident. The six evident peaks are present at the positions around 

257, 455, 632, 748, 782 and 848 cm-1. It indicates that the predominant α-Al2O3 could be 

surrounded by a thin layer of δ- and θ-Al2O3 structure, so that only small amount of α-Al2O3 

can be accessed by the laser source.  

 

 

Figure 65. (a) XRD spectra of the pristine alumina microparticles and the particles heated at 800 ºC during 

4h; (b) Raman spectrum of pristine alumina particles.  

 

As reported in references [222, 224, 225], the growths of CNTs on spherical ceramic particles 

and various fibers generate also the “bundle-like” or “plate-like” structures when the CNT 

length is larger than certain values. However, in these reported structures, the organizations of 

CNTs on the substrates are completely random and irregular way. Oppositely, large quantities 

of the regular “six-branch” structures are surprisingly formed in our case. Moreover, the same 
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“six-branch” hybrid structures appear under the experimental conditions are varied in a wide 

range.  

 

 

Figure 66. (a) Schematic of one µAl2O3 sphere inscribing a cube where six faces correspond to the 

projections of six C�T bundles along their axis directions, respectively, and which twelve edges 

correspond to the boundaries between two bundles. (b) Six orthogonal C�T bundles grown on one alumina 

microsphere; (c) High magnification SEM image showing the boundaries between C�T bundles. The 

“six-branch” hybrid structures are grown with C2H2 (40 ml min-1) at 550 °C during 15 min. The total flow 

rate of carrier gas was 1 l min-1 and the concentration of ferrocene in xylene was 0.05 g ml-1.          

 

As shown in Fig. 66, the six CNT bundles are orthogonally organized on the surface of one 

spherical alumina particle. Ideally, an inscribed cube (Fig. 66a) could be gotten by cutting the 

microparticle along the boundaries formed between two neighbor nanotube bundles. The axes 

of six nanotube bundles will be perpendicular to the six corresponding faces of the cube. That is, 

the projection of each bundle along its axis is located inside one corresponding face. Oppositely, 

the boundary regions on µAl2O3 could also be seen from the distribution of CNTs grown at 

relatively low temperatures. Fig. 67a shows the CNTs grown by feeding acetylene at a rate of 

10 ml min-1 for 15 min at 450 °C. Their distribution on µAl2O3 forms twelve edges of a cube. 

Fig. 67b-c show CNTs obtained by injecting acetylene for 3 minutes at 600 °C. By comparing 

with Fig. 67a, CNT growth gradually expands towards the centers of the square regions. Fig. 

67d shows that CNTs self assemble into six-branch structures after 30 minutes growth at 475 °C. 

In particular, a concave area is observed on the top of each CNT branch. The variation of the 

CNT distribution shown in Fig. 67 indicates that the nucleation and growth of CNTs on µAl2O3 

are not homogeneous processes at relatively low temperatures. They first nucleate and grow in 

the cube-edge regions, and then expand toward the centers of the faces as indicated by yellow 
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arrows in Fig. 67. In consequence, the lengths of CNTs located in the centers of six face regions 

are less than these of neighbor CNTs, resulting in a concave area on the top of each CNT 

branch.            

 

Figure 67. SEM images showing the variation of C�T distribution on µAl2O3 spherical particles. The C�Ts 

are grown by feeding acetylene (10 ml min-1) and hydrogen (0.1 l min-1): (a) for 15 minutes at 450 °C. (b-c) 

for 3 minutes at 600 °C. (d) for 30 minutes at 475 °C. The yellow arrows represent the expansion tendency of 

C�T growth region.  

 

However, the heterogeneous growth of CNTs on the cube-face corresponded region could 

be eliminated by increasing hydrogen ratios in carrier gases. The same growth rate results in the 

CNTs with the same length. Consequently, a convex CNT cap could be observed on top of each 

CNT branch, just as shown in Fig. 68. CNTs in each branch are perpendicularly aligned on its 

corresponding cube face. However, the growth of CNTs on the whole surface of microparticles 

is not homogeneous, so that they self organize into six branches.  

 

 

Figure 68. (a) Schematic of 2 dimensional view of one µAl2O3 sphere grafted by six orthogonal nanotube 

branches. In each branch, C�Ts have the same length, L. The blue convex curves indicate the C�T convex 

caps. (b) SEM image of C�Ts grown on µAl2O3 sphere for 20 minutes at 600 °C, using 1 % acetylene and 30 

% hydrogen in the total carrier gases of 1 l min-1.    
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The hidden “cube-like” surface structure of µAl2O3 generates the heterogeneous CNT 

growth. The heterogeneity might be derived from the following factors. First, the varied 

chemical compositions (such as impurities, Al and O atoms) in the surface layer of µAl2O3 

could result in the different CNT nucleation and growth rates. Second, different surface phase 

structures generate the variation of CNT growth on the alumina particles. Third, different 

types of crystal planes might also produce the “six-branch” hybrid structures.  

In fact, the micro spherical particles have an alumina purity as high as 99.8 %, as well as 

SiO2 (800 ppm), Na2O (600 ppm), Fe2O3 (150 ppm) and CaO (70 ppm). The proportion of 

these impurities in the particles is so weak that XRD measurements could not detect their 

presence. Thus, it is impossible for so few amounts of impurities to concentrate in certain 

regular surface region of the alumina particles.  

XRD and Raman measurements have detected that the presence of the metastable 

θ-Al2O3 and δ-Al2O3 in the particle surface layer. These metastable phases are always present 

in the particles which have been heat-treated at 800 ºC for 4 h. In order to verify the influence 

of the particle surface composition (Al or O atoms), the alumina microparticles treated by 

basic or acidic solutions are used for CNT synthesis. The pristine alumina particles of 5 g in 

mass are ultrasonically washed for 1 hour in 30 ml 5 mol l-1 NaOH solution. As a comparison, 

other 5g particles are washed for 3 hours in 45 ml 6 mol l-1 HCl solution. Then, the solutions 

are removed after the precipitation of the particles which have been washed several times with 

distilled water. After being dried in air by heating at 100 ºC, the particles are used as substrate 

to grow CNTs using 0.05 g ml-1 ferrocene-xylene solution at 750 ºC. The gas flow rates of 

argon and hydrogen are 0.72 and 0.08 l min-1, respectively. As shown in Fig. 69a-b, the 

growth of CNTs on the treated particles is greatly different from the one on pristine particles. 

In both cases, a thin shell consisting of iron particles and carbon is formed on the surface of 

particles. It is observed that when the length is beyond a critical value, the CNTs grow out of 

the shell by breaking it up at certain places. Most CNTs have a diameter ranging from 10 to 

20 nm. The growth of CNTs is only observed in some regions of the particle surface. The 

regions “without CNTs” are smooth under scanning electron microscope. In addition, the 

CNT growth under a shell has also been observed on the pristine alumina particles at 780 ºC 

when an amount of 3‰ thiophene is added in 0.05 g ml-1 ferrocene-xylene solution (Fig. 70a). 

The whole surface of one particle is completely covered by a shell consisting of carbon layer 

decorated with small iron particles. The shell could be split into several pieces at certain 

places by the growth of CNTs. Meanwhile, a wavy CNT carpet of ~180 µm in thickness is 

grown on the quartz plate during 15 min. The mean diameter of CNTs is ~ 50 nm. This 
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indicates that the addition of thiophene could change the deposition rate of iron and carbon on 

the alumina particle surface. Too fast carbon deposition rate results in a continuous shell 

instead of carbon nanotubes. Furthermore, an evident boundary indicated in Fig. 70c exists 

between two surface regions of alumina particle. This boundary reflects the heterogeneous 

surface structure of µAl2O3, which results in an evident difference in the amount of deposited 

iron particles and carbon on the two neighboring regions.  

 

   

Figure 69. SEM images of C�Ts grown on the alumina particles treated by �aOH solution (a) and HCl 

solution (b). (c) C�Ts grow on the surface of alumina particles by breaking up a shell consisting to iron 

particles and carbon (see the inserted image). The red line indicates a regular boundary formed by the 

deposited particles.     

 

 

Figure 70. (a) SEM image of the C�T growth on µAl2O3 using the ferrocene-xylene solution containing 3 

‰ thiophene at 780 ºC. (b) SEM image of one carpet constituted of wavy C�Ts grown on the quartz plate. 

(c)One small µAl2O3 surface region after removing the cover shell. The red line shows a regular boundary 

between two regions having varied amounts of carbon encapsulated iron particles and carbon.    

 

(a) (b) (c) 

(a) (b) (c) 
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Figure 71. Raman spectra of pristine alumina particles and the particles treated with HCl solution.  

 

We have seen that the surface treatments mentioned above could greatly alter the iron 

and carbon deposition rates which in turn influence the CNT growth on the microparticles. 

Fig. 71 shows the comparison of Raman spectrum of the pristine particles with that of the 

particles treated by HCl solution. The differences of two spectra demonstrate the variation of 

the surface properties of particles due to acid treatment. But, the surface heterogeneity is still 

present on the treated particles. This means that the heterogeneity comes from the intrinsic 

structure of the microparticles, instead of the chemical compositions.    

 

3.3.4 C)T growth on heat-treated µAl2O3  

 

As concluded in previous parts, the heterogeneous nucleation and growth of CNTs on the 

µAl2O3 surface originate in the inherent crystal structure of the microparticles. Meanwhile, 

the pristine microparticles have a multiphase structure. Therefore, the regular distribution of 

metastable phases in particle surface layer might be one reason that results in the growth of 

“six-branch” hybrid structures.     

It has been reported that the metastable θ-Al2O3 and δ- Al2O3 could occur structural 

transformation after moderate heat treatment, and they transform completely to α-Al2O3 when 

the heat treatment temperature is higher than 1473 K.[265] In order to eliminate these metastable 

phases, high temperature heat treatment has been carried out on the pristine particles. This 

treatment could also help to release the surface strain energy generated during the fast particle 

cooling process. The microspheres were first heated from room temperature to 1350 °C in air at 

a rate of 330 °C per hour using a high temperature electric furnace. They are then cooled down 

to room temperature after holding at 1350 °C for 4 h. As shown in Fig. 72, the θ-Al2O3 and δ- 



Chapter III Studies on formation mechanism of multiform CNTs-µAl2O3 hybrid structures 

 -122- 

Al2O3 are nearly completely transformed into α-Al2O3 after the thermal treatment. Then, the 

heat-treated µAl2O3 particles are used as substrate to synthesize CNTs under different 

conditions.    
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Figure 72. X-ray diffraction spectra of the pristine alumina microparticles and the high-temperature 

heat-treated microparticles  

 

First, the growth of CNTs on the heat-treated microparticles has been conducted using 

0.05 g ml-1 ferrocene-xylene solution at 780 ºC. The solution feeding rate is ~ 0.2 ml min-1. 

Varied hydrogen flow rates are used in order to study the influence of hydrogen on CNT growth 

on the heat-treated microparticles. And hydrogen ratio varies in a sequence of 0, 10 %, 20 % 

and 40 %. The total carrier gas flow is 1 l min-1. The solution feeding lasts for 12 min. Fig. 73 

shows the variation of hybrid structures with hydrogen ratio at 780 ºC. The CNTs with high 

density are grown on the heat-treated µAl2O3 particles when the high ratio of hydrogen, ~40 %, 

is added into the reactor. They align in all directions, rather than in multi-branch structures. 

With the decrease of the hydrogen ratio, the density of CNTs is also considerably decreased. 

Moreover, more impurities including amorphous carbon and iron particles are observed on the 

µAl2O3 surface. In particular, the carbon layer encapsulated iron particles are found on the outer 

walls of nanotubes. These phenomena are greatly similar to those observed using pristine 

alumina particles. But the average diameter of CNTs is always around ~40 nm at different 

hydrogen ratios. The CNT length is failed to evaluate because one part of the bundles is always 

covered by the neighboring hybrid structures. The CNT diameter variation using the 

heat-treated particles is also similar to those using the pristine particles.  
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Figure 73. SEM images of the hybrid structures constructed by growing C�Ts on the high temperature 

heat-treated µAl2O3 particles at different hydrogen ratios: (a) 40 %, (b) 20 %, (c) 10 % and (d) 0. 

 

Second, the growth of CNTs on the heat-treated microparticles has also been investigated 

using the acetylene/xylene mixture as carbon sources at 600 ºC. The gas flow rates of acetylene, 

hydrogen and argon used are 0.01, 0.3 and 0.7 l min-1, respectively. Ferrocene is dissolved in 

xylene solution at a concentration of 0.05 g ml-1. The solution is fed into the reactor at a rate of 

~ 0.13 ml min-1. The carbon source feeding time is varied from 1 to 20 minutes in order to 

investigate the variation of the CNT organization states with its growth time. Fig.74a-e show 

the hybrid structures obtained using the injection times of 1, 2, 5, 10 and 20 min, respectively. 

Similarly, CNTs self assemble into six branches on the surface of the heat-treated particles (Fig. 

74a-e). The large lengths make CNT bundles easy to combine with their neighbors. As shown in 

Fig. 74e, the six CNT bundles adhere to each other when their length is ~54 µm. In the 

researched periods, CNT length is found to increase with injection time in a nearly linear way 

(Fig. 74f). However, no variation of CNT diameter is observed with increasing the injection 

time. The six-branch hybrid structures are similar to the ones obtained with the pristine 

microparticles.   

(c) 

(b) (a) 

(d) 



Chapter III Studies on formation mechanism of multiform CNTs-µAl2O3 hybrid structures 

 -124- 

 

Figure 74. SEM images of the hybrid structures constructed by growing C�Ts on the heat-treated alumina 

particles using the mixture of acetylene and xylene as carbon source at 600 ºC for the following different 

injection times: (a) 1 min, (b) 2 min, (c) 5 min, (d) 10 min and (e) 20 min. (f) Evolution of C�T bundle length 

with the injection time at the studied conditions.   

 

As shown above, both the “urchin-like” structures and the “six-branch” structures are 

obtained even using the heat-treated particles which are uniquely composed of α-Al2O3. CNTs 

grow in the same way on these particles as on the pristine ones. This confirms that the 

heterogeneous growth of CNTs, especially the “six-branch” structures originate in the intrinsic 

crystallographic structures of α-Al2O3. The heterogeneous crystal structures vary the nucleation 

of iron catalyst particles, and thus generate the growth of CNTs in the six separated regions on 

the surface of alumina microparticles.     
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3.4 C)T growth dynamics  

3.4.1 Connection of C)T and µµµµAl2O3  

Up to now, we have demonstrated a large number of different hybrid structures obtained 

by in situ growing CNTs on µAl2O3. In these hybrids, the connection between CNTs and 

microparticle is due to the catalyst particles which are derived from the decomposition of 

ferrocene. It is worth noting that the continuous feeding of ferrocene is required to the 

continuous growth of CNTs. That means the iron quantity in the reactor is gradually augmented 

with increasing ferrocene-feeding time. Naturally, we would like to ask the following two 

questions: what about the earliest growth state of CNTs on µAl2O3, and what do the new 

coming irons serve for the continuous CNT growth? 

First, the initial stage of CNT growth on µAl2O3 is studied by injecting carbon and catalyst 

precursors in a very short time. As shown in Fig. 75a, small CNTs of ~ 70 nm in length have 

been obtained by injecting the mixture of ferrocene-xylene solution and acetylene at 600 ºC for 

~10 s. The flow rate of acetylene is ~ 10 ml min-1. The CNTs have a diameter ranging from 5 to 

10 nm, which is close to the diameter of CNTs produced with longer growth time. This 

indicated that the diameter of CNTs is determined at their initial growth stage when the mixture 

carbon sources are used at relatively low temperatures. Few iron particles are found without 

growing CNTs. This confirms again the high efficiency of the mixture carbon source to CNT 

growth. However, the CNTs have a low number density, and they disperse sparsely on the 

alumina particle surface. Due to the poor electrical conductivity of µAl2O3, it is very difficult to 

clearly distinguish out the locations of catalyst particles from such thin CNT by SEM. 

Therefore, we use the same experimental conditions to grow CNTs on the Surfs plate (silicon 

wafer) surface. AFM measurements (Fig. 75c) prove that there exists one catalyst particle at the 

end of CNT. Thanks to this particle, the CNT is catalyzed to grow, and is fixed on the surface 

of substrate. 

After the nucleation of catalyst particles on substrate, they will catalyze the growth of 

CNTs according to the “bottom-up” mode. That is, the elongation of CNTs results from 

carbons precipitated out of the catalyst particles which are located on their roots. The strong 

interaction between catalyst particles and substrate makes CNTs to attach on the surface of 

microspheres. The white bright points shown in Fig. 76a show the connections between CNTs 

and the micrometer substrate. The CNTs of ~10 nm in diameter are synthesized using 

acetylene as carbon source at 600 ºC. Fig. 76b and c show the connection between CNTs and 
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µAl2O3 which are realized using xylene as carbon source at 780 ºC. It is found that the roots of 

CNTs contain the catalyst particles with different shapes: angular, cylindrical, conical… 

Moreover, several catalyst particles are often found at the root of CNT (Fig. 76b). Fig. 76d also 

shows the elongated iron particles inside the CNT. The detachment of CNTs from the 

microparticles is realized by the dissociation of the root catalyst particles from the substrate 

surface, as shown in Fig. 76e-h. The catalyst particles are always found to stick at the nanotube 

roots. The SEM images show furthermore the combined catalyst particles from several smaller 

ones. Especially, the combination of the ends of two different carbon nanotubes is found when 

two corresponding catalyst particles are very close (Fig. 76g-h).   

   

Figure 75. (a) SEM images of µAl2O3 after very short time injection of ferrocene-xylene solution and 

acetylene at 600 ºC, (b) high magnification SEM image of a. (c) AFM image of one C�T having an iron 

particles at one of its ends. The C�Ts are obtained on the Surfs plate surface (SiO2 layer supported on Si) 

using the same conditions as the previous ones but longer time (3 min). 

    

Figure 76. (a) SEM images of the hybrid structures consisting of C�Ts of 10 nm in diameter and µAl2O3. The 

bright points on the surface of µAl2O3 show the connection of each C�T with the microparticle. (b-d) 

Different morphologies of iron particles which fix C�Ts on the surface of microparticles. (e-h) SEM images 

of the roots of two C�Ts disconnected from the substrate. Figures d, f and h are the second electron SEM 

(c) (a) (b) 

(h) (g) (f) (e) 

(a) (b) (c) (d) 
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images corresponding to the figure c, e and g, respectively. 

 

3.4.2 Growth kinetics of C)Ts on alumina microparticles  

 

 Figure 77.  Evolution of the morphologies of C�Ts-µAl2O3 hybrids with growth time. The C�T growth was 

conducted at 600 °C using 30 vol. % hydrogen, for different times:1, 2, 5, 10 and 20 min. 

 

The dynamics of CNT growth on pristine µAl2O3 has been investigated by gradually 

increasing catalyst and carbon precursor feeding time in a sequence of 1, 2, 5, 10 and 20 min. 

The mixture of acetylene (0.01 l min-1) and xylene (at an injection rate of ~ 0.2 ml min-1) is used 

as carbon source. Argon and hydrogen flow rates are 0.7 and 0.3 l min-1, respectively. The 

evolution of CNTs-µAl2O3 hybrids at different growth times is shown in Fig. 77. It is found that 

under the studied conditions the hybrids have always the “six-branch” structures from a short 

CNT growth time (~1 min) to a long one (20 min). The length of CNT branches progressively 

augments in a quasi linear manner with the growth time (Fig. 77f). This is similar to the case 

(b) (c) 

(d) (e) 

(f) 

0 5 10 15 20 25

0

20

40

60

 

 

L
e
n
g
th
 (

µ
m
)

Time (min)

 Length L
 Fit curve

L=2.4t + 0.9

(a) 



Chapter III Studies on formation mechanism of multiform CNTs-µAl2O3 hybrid structures 

 -128- 

reported by Zhang et al.[222] and Xiang et al.[224]. Consequently, the vertically aligned branches 

with short length (Fig. 77b) grow gradually into the curved ones with irregular wave shapes 

(Fig. 77e), due to the increased obstacles from the surrounding particles with the increase of 

CNT length. At the same time, the CNT branches become easier to deform. It should be 

mentioned that the CNT number densities in bundles obtained at longer growth times are 

significantly higher than that shown in Fig. 77a. This indicates that at the initial stage of CNT 

growth the number of catalyst particles on µAl2O3 increases with the catalyst and carbon 

feeding time.  

In addition, we found that amounts of catalyst particles are embedded inside the CNTs. the 

CNTs obtained at 450 and 500 ºC have a low degree of crystallography. Often, they are found 

deformed at positions where iron particles are contained. Another interesting phenomenon 

observed is that at several conditions the outer walls of CNTs with large diameters are found 

noncontinuous, instead of straight, especially, the CNTs synthesized using xylene as carbon 

sources at high temperatures (Fig. 78). 

 

   

Figure 78.  SEM images of C�Ts having fluctuant outer surface and encapsulating iron particles, obtained 

using xylene as carbon source at high temperatures.  

 

According to the above phenomena, we propose the following CNT growth model to 

explain their elongation during the CVD of carbon and catalyst precursors on the alumina 

microspheres. As shown in Fig. 79, the nucleation and growth of iron catalyst particles is 

initiated by heterogeneous deposition of ferrocene vapor in certain regions of the surface of 

µAl2O3 (Fig. 79-I). Simultaneously, the interaction between depositing iron and decomposing 

hydrocarbons results in CNT nucleation and growth on the catalyst particles (Fig. 79-II). 

Certainly, catalyst particle size is considerably influenced by carbon source. Then, depending 

on the chemical kinetics condition in reactor, the following different paths could be followed 

for further growth of CNTs. Homogeneous deposition of carbon and iron around the formed 

(b) (a) 
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catalyst particles could make CNTs to straightly grow forward (Fig. 79-II). Continuous feeding 

of iron could make the ancient catalyst particle to be encapsulated inside the CNT. The 

asymmetric deposition of the new coming iron as shown in Fig. 79-IV and -V could change the 

nanotube growth direction according to the orientation of the new forming catalyst particles. 

Furthermore, the integration of the carbon-encapsulated iron particles (Fig. 79-VI) would 

generate the variation of CNT morphology, in particular, the fluctuant outer surface. Finally, 

the nucleation of iron particles could also take place in the gas phase when the thermal 

decomposition rate of ferrocene is very high. The nucleated catalyst particles would directly 

absorb hydrocarbons in gas phase, and then deposit on the outer walls of growing carbon 

nanotubes (Fig. 79-VII). This phenomenon is often observed at high CNT synthesis 

temperatures, such as 900 ºC.          

 

Figure 79.  Schematic of the models for the growth of C�Ts with varied structures on the alumina 

microparticles.  
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3.5 Self-organization mechanism 

3.5.1 Crystal steps determined heterogeneous C)T growth 

As we know, the formation of the hybrids is initiated by the nucleation of iron particles on 

the surface of µAl2O3. The anisotropy surface structure would certainly generate varied catalyst 

formation rates, which thus influence CNT nucleation and growth.  

Although the alumina microparticles have multi-phase structure, the metastable θ- & 

δ-Al2O3 are not the determinative factors for the formation of the “six-branch” hybrid structures. 

This has been proven by the fact that the similar structures have been obtained using the high 

temperature treated µAl2O3 and the pristine ones. The six CNT bundles demonstrate a cube-like 

structure in µAl2O3. Highly dense CNTs could be formed in the six-face regions, but only few 

ones in the twelve edge regions. This difference reveals the existence of higher catalyst 

nucleation ratios at the face regions than at the edge regions.  

Fig. 80 shows the six-branch hybrid structures consisting of CNTs and the heat-treated 

µAl2O3 particles. The CNT synthesis is conducted at 600 °C, with the injection of acetylene at a 

flow rate of 0.01 l min-1. The six CNT branches are regularly aligned on the surface of 

microparticles. Instead of a smooth sphere, the heat-treated µAl2O3 particle surface is 

composed of a number of crystalline steps of varied sizes, and some flat regions. This indicates 

that the fast quench cooling process generates a huge amount of stress on the microparticle 

surface. The quick solidification of the particles makes them keep the spherical shape of the 

molten droplet. During the high temperature heat-treatment, the release of the formed stress 

promotes the reorganization of aluminum and oxygen atoms in order to form most stable crystal 

structures. The high magnification SEM images demonstrate that the growth of CNTs takes 

place at crystal step sites, rather than in the flat regions. The direction of CNT branches is 

strongly dependent on the orientation of the crystal steps. For instance, as shown in Fig. 80b, 

CNTs are perpendicular to the edges of the crystal steps indicated by two red lines. Moreover, it 

is found that the CNT number density varies with the crystal step size.  



Chapter III Studies on formation mechanism of multiform CNTs-µAl2O3 hybrid structures 

 -131- 

 

Figure 80. (a-b) SEM images of the six-branch hybrid structures consisting of C�Ts and heat-treated µAl2O3. 

The high magnification images show that C�Ts preferentially grow on the step sites rather than on the flat 

plane area. C�T growth direction is dependent on the orientation of the crystal steps.  

     

The surface morphology of the heat-treated µAl2O3 particles is demonstrated in Fig. 81a. 

Indeed, the whole particle surface is homogeneously divided into the different regions which 

have the crystal steps of different sizes and specific orientations. Obviously, the band regions 

indicated by the arrows contain very few crystal steps, and this is a relatively smooth surface. 

The regular distribution of these defects-less bands on the microparticle surface forms a 

cube-like motif. In contrast, a number of crystal steps are observed in the regions surrounded by 

every four band-like regions (Fig. 81b). The steps stack up one over another, and finally 

terminate with a small platform at the highest points (red arrow in Fig. 81a). On the other hand, 

the pristine particles often take on “smooth” surfaces (Fig. 81c). In fact, a closer observation 

unveils that the pristine particle surface is extremely similar to the one of heat-treated particles. 

That is, a large number of crystal steps are distributed on the surface. The only difference 

between the two kinds of particles is that the pristine ones contain a much larger number of 

(a) 

(b) 
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steps of much finer sizes. The surface motif of the pristine particles could be reproduced after 

deposition of a thin carbon layer containing iron (Fig. 81e). The smooth bands and small crystal 

steps could be clearly seen in the figure. Therefore, we see another important role played by 

heat-treatment, that is, to enlarge the size of the hidden surface crystal steps through atom 

reconstruction. In consequence, the heterogeneous surface nature becomes more evident to 

observe using SEM on the heat-treated particles. Therefore, the growth of CNTs in the six 

orthogonal directions is originally determined by the intrinsic surface crystal structure of 

µAl2O3 particles.  

 

Figure 81. SEM images of the surface morphologies of the heat-treated µAl2O3 particles (a-b) and the 

pristine µAl2O3 particles (c-d). (e) Reproduction of the surface structure of the pristine alumina particles by 

depositing a thin carbon layer. The yellow arrows in the figure (a) indicate the regions with few crystal steps.   

 

Normally, the particles, larger than 1 µm in diameter, are polycrystalline. This is due to 

their specific production procedure, that is, the rapid solidification of the molten particles 

moving at high speeds. The combination of the small molten droplets could take place to form a 

larger ones. However, these combined small droplets solidify so quickly that the mass diffusion 

between them is insufficient to form a completely homogeneous particle. This feature has been 

observed with the heat-treated particles after carbon deposition on their surface, as shown in Fig. 

82a-d. In particular, the strong color contrast is found on different regions of the particle surface. 

The energy dispersive spectroscopy analysis shows that there is no difference in the chemical 

composition of the two types of grains with different colors. The contrast is due to the different 

(e) (c) (d) 

(b) (a) 
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carbon absorption properties of each contained sub-grain. Furthermore, the “band-like” zones 

are also observed on the particle surface. They are found to traverse amazingly the different 

subgrains (Fig. 82b-c). Little difference could be observed between CNT growths on these 

different subzones (Fig. 82d). This indicates that the surface layer plays a significant role on the 

formation of CNTs.     

 

       

   

Figure 82. (a-c) SEM images of the heat-treated alumina particles composed by several different sub- 

particles. c is the higher magnification SEM image of b. (d) growth of short C�Ts on the particles. (e-f) 

Energy dispersive spectroscopy analyses of the two kinds of sub-particles with difference colors. The spectra 

e and f correspond to the white (I) and black (II) particles, respectively.  

     

In order to determine the crystalline orientations of µAl2O3, the small particles with a 

diameter less than 1 µm are studied, rather than the large polycrystalline ones. That is because 

the small particles are normally derived from one molten droplet which has homogeneous 

composition distribution inside the whole particle. Moreover, it is only possible to do the 

electron diffraction analysis on the small particles in TEM. Their small sizes permit to transmit 

a sufficient quantity of accelerated electrons. Then, the relationship between the crystal 

orientation and the CNT growth direction could be brought to light by analyzing the 

microparticle diffraction pattern (diffraction mode) and the CNT arrangement (image mode). 

The diffraction analysis procedure is schematically shown in Fig. 83. After the alignment of 

electron beam, the six-branch hybrid structures should be aligned in order to make at least two 

CNT branches perpendicular to the electron beam, that is, parallel to the TEM display screen. 

The transmission electron images of the hybrid structure are taken at the selected magnification. 
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Then the diffraction is conducted on the whole surface of the particle, or on several selected 

areas (selected area diffraction mode). Normally, it is done in the regions near the roots of CNT 

branches. The crystal orientation of µAl2O3 could be determined by the electron diffraction 

patterns. The organization directions of CNT branches could therefore be established by 

comparing the TEM images of the hybrid structure and the diffraction patterns of the particle.           

 
Figure 83. Schematic of the procedure of electron diffraction analysis on six-branch hybrid structure  

 

 

      

Figure 84. (a) TEM image of the hybrid structure, (b) Electron diffraction on the whole µAl2O3 particle, and 

(c) projection of the α-Al2O3 primitive cell along the [021] direction, in which the big red balls indicate O2- 

ions, and the small violet ones indicate Al3+ ions.     

 

A number of diffraction analyses have been conducted on many different alumina particles. 

Fig. 84a shows the TEM image of one hybrid structure containing six CNT bundles, in which 

two vertical branches (marked by the red bars) are parallel to the TEM display screen. The 
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whole alumina particle is selected to do electron diffraction, whose pattern is shown in Fig. 84b. 

It is worth to mention that the pattern is obtained on the particle, which has been attacked for 

certain time by converged electron beam. The white area in the center of alumina particle 

corresponds to the region with weakened thickness. The plane indices corresponding to the 

diffraction spots are identified as the ones given in the figure. Correspondingly, the diffraction 

axis is calculated along the [021] direction. The projection of the α-Al2O3 primitive cell along 

the axis direction is schematically shown in Fig. 84c. The blue arrow in Fig. 84a denotes the 

[100] direction. This direction is nearly parallel to the alignment directions of the CNT bundles 

marked with the red lines. The small difference might be due to a slight deformation of the 

microparticle, which is resulted by electron attack. This indicates that the particle cube-surface 

planes belong to planes {100}.  

Fig. 85 shows another type of electron diffraction pattern obtained with one small particle 

which is ~ 800 nm in diameter. The electron diffraction (Fig. 85b) is conducted on the selected 

area, marked by the TEM beam stop (Fig. 85a). One CNT bundle is grown from this region. 

Then, the particle is aligned to make two CNT bundles parallel to the TEM display screen. A 

pattern with well-aligned diffraction spots is obtained. The corresponding plane indices and the 

projection of the primitive cell are demonstrated in Fig. 85b and c, respectively. The calculated 

axis direction is [010]. The blue arrows indicating the normal vectors of the (002) and (100) 

planes exactly point to two CNT bundles (Fig. 85a). This confirms the diffraction result 

presented in Fig. 84. Furthermore, it shows that CNT bundles could also be formed in the 

regions where the crystal orientation corresponds to the family of planes {002}. Therefore, the 

directions of CNT bundles could be normal to α-Al2O3 {100} and {002} planes.  

 

              

Figure 85. (a) TEM image of the hybrid structure, (b) Electron diffraction on the selected region marked by 

the beam stop in (a). (c) projection of the α-Al2O3 primitive cell along the [010] direction, in which the big 

red balls indicate O2- ions, and the small violet ones indicate Al3+ ions.  
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Furthermore, CNT growth has also been conducted on alumina single crystals with 

different types of surface plane. Because it is of significant importance to precisely identify the 

influence of alumina crystal planes on CNT nucleation and growth. Two samples with 

α-Al2O3 (1 100) and (0002) surfaces are chosen as substrates. The polishing is first done in 

order to remove the surface defects formed during the cutting of the two single crystals. The 

optical microscopy images show two smooth sample surfaces (Fig. 86). Then, the electron back 

scattering diffraction (EBSD) analysis is carried out on the two surfaces. The results proves that 

the two sample surfaces are exactly (1 100)  and (0002) . Next, the two monocrystals are used 

as substrates to synthesize CNTs using acetylene/xylene mixture as carbon source at 700 ºC. 

The acetylene flow rate is ~ 0.02 l min-1. The flow rates of argon and hydrogen carrier gases are 

0.9 and 0.1 l min-1, respectively. The injection of carbon sources lasts for about 20 min. 

   

    

    

Figure 86. Characterizations of two alumina single crystals oriented in [1-100] and [0002] directions, and 

their influence on C�T growth. (a-b) Optical microscopy images of the two monocrystal sample surfaces 

after polishing. (c-d) Characterization of electron backscatter diffraction (EBSD) on the two sample surfaces. 

(e-f) SEM images of C�T carpets obtained on the two monocrystal surfaces at 700 ºC. (g) high magnification 

SEM of C�Ts shown in figure e.  

(c) 

(a) 

(d) 

(e) (g) 

(b) 

(f) 

Al2O3 (1-100) surface Al2O3(0002) surface 

Al2O3 (1-100) surface 

Al2O3 (1-100) surface Al2O3 (0002) surface 

Al2O3 (0002) surface  
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Fig. 86e-f show two CNT carpets obtained on single crystal α-Al2O3 (1 100)  and 

(0002) surfaces. Highly dense CNTs are grown on the above two surfaces. The carpet on the 

former surface has a thickness of ~ 10 µm, but ~20 µm on the latter one. A higher CNT growth 

rate is found on the (0002) surface, about 2 times higher than on the (1 100) surface. However, 

the diameter of CNTs obtained on the two surfaces is at the same level, ~ 10 nm (Fig. 86g). In 

spite of the difference in CNT growth rate, the growth of high density CNTs on the two types of 

crystal surfaces indicates that the alumina {0002} and {1-100} surfaces have little difference in 

terms of the nucleation of iron catalyst particles and CNTs at the studied conditions.    

This result further confirms that the heterogeneous growth of CNTs in six branches on 

µAl2O3 originates from the difference in the distribution of crystal steps on the particle surface. 

Compared with the nucleation of catalyst particles on flat surface, this at crystal step sites 

requires less energy[267].The regions with a large number of crystal steps are the preferential 

nucleation sites of iron catalyst nanoparticles. The step size and distribution could significantly 

influence the distribution of catalyst particles. However, the smooth regions with few crystal 

steps are not favorable for the growth of catalyst particles and CNTs. In consequence, the 

arrangement of CNT bundles in the six-branch hybrid structures is determined by the crystal 

step orientation. The CNT organization in the six bundles is in fact a representation of the 

intrinsic surface alumina structures of µAl2O3.  

The six-branch CNTs-µAl2O3 is related to the cube-like particle surface feature. The 

formation of the latter is due to the specific production process of alumina microspheres. As 

mentioned earlier, the spherical particles were fabricated by melting irregular alumina particles 

in a plasma flame. In general, the cubic part in the center of particles may not be completely 

molten. Thus, they could serve as nucleation seed during the particle solidification process. The 

seeds with a regular morphology may consequently generate the difference in the cooling rates 

of different surface regions.   

The cube-like feature and step structures of the µAl2O3 surface are schematically 

demonstrated in Fig. 87a. The whole sphere surface is divided into six symmetric regions by 

twelve regularly connected bands (pink zones in Fig. 87a). The twelve pink band zones 

correspond to the twelve edges of an inscribed cube. In these regions, there are few crystal steps. 

In contrast, the six regions are composed of a large number of well-organized crystal steps. In 

each region, the steps could be seen as a series of regularly stacked crystal planes which have 

different sizes. A small platform is formed near the highest point. Ideally, these planes are 

parallel to the corresponding cube face, which is probably parallel to crystal planes {0002} and 
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{1-100}. For the material of hexagonal structure, the crystal planes {0002} have the highest 

atom density, and thus correspond to the most stable planes. As shown in the inserted figure 

(Fig. 87a), iron catalyst particles preferentially nucleate at the crystal step sites. Large step sizes 

lead to low catalyst densities, vice versa. Then, high density CNTs are nucleated on the catalyst 

particles which distribute in the six regions. The orientations of the steps determine the 

distributions of iron catalyst particles, and furthermore the CNT organization directions. With 

the growth of CNTs on µAl2O3, the six orthogonal bundle structures are finally formed (Fig. 

87b). At the same time, it worth to remind that this influence of the µAl2O3 surface structures on 

CNT growth and organization could be modulated by increasing the hydrogen ratios and the 

synthesis temperature.  

 
  
Figure 87. Heterogeneous surface structures of µAl2O3 particles and resulted hybrid structures with six C�T 

bundles. (a) Schematics of the step surface structures of the µAl2O3. The pink regions correspond to the 

twelve edges of the inscribed cube. The inserted figure shows the catalyst nucleation and C�T growth at the 

step sites. Red arrows indicate the C�T bundle directions. (b) Schematic of the hybrid structures consisting in 

the six C�T bundles on the pristine µAl2O3 with a step structure demonstrated in (a). 

 

3.5.2 )ano-cantilever model  

 

It is noticed that CNTs in the hybrid structures possess specific diameter, length and 

density. It is desirable to propose an appropriate model, which could globally describe the 

relationship between the geometry and density of CNTs and the organization of hybrid 

structures. In the following parts, we use a CNT nano-cantilever model to analyze the 

deflection of a single CNT from vertically-aligned state to the state parallel with its 

neighboring CNTs (Fig. 88a), due to the weak van der Waals interaction (VdW) forces which 

promote the formation of CNT bundles.  

 (a) (b) 
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  Indeed, the VdW forces extensively exist in CNT growth process, and in the obtained 

materials. For instance, they largely contribute the self-assembly of single-walled CNTs into 

bundles, and the self-folding of one CNT into racket-structures.[268-271] Another significant 

effect of VdW forces is the formation of high density vertically aligned single-walled or 

MWCNT arrays which are normally produced on flat substrate by CVD method [80, 231, 272]. As 

previously indicated, the exceptional mechanical properties, especially high Young’s modulus 

(~ 1 TPa) [35, 273], ensure short CNTs high stiffness enough to resist to the bending 

deformation, and to grow perpendicularly on the surface of the substrate. 

In the case of the “short-dense-homogenous” and the “urchin-like” hybrid structures, 

CNTs grow vertically on the surface of spherical particles. Meanwhile, in “six-branch” 

structures, CNTs self-assemble into bundle structures, in which parallel CNTs are aligned 

along six-directions. The deflection of CNTs is a competitive result between the VdW forces 

and the CNT resistance to bending. 

The continuum Lennard-Jones (LJ) model is widely used to evaluate the VdW potential 

energy of interactions in any types of graphitic structures, including CNTs.[268, 271, 274] It was 

found that the interaction potentials between two arbitrary CNTs have the same curve when 

plotted in terms of the reduced parameters, the well depth φ(R0) and equilibrium VdW gap 

(R0-ρ), which is from 3.107 to 3.169 Å.[268, 274, 275] As Sun suggested, R0-ρ has a value of 3.15 

Å. R0 is the equilibrium spacing at the minimum energy for the two interacting entities; ρ 

corresponds to the sum of the diameters of two interacting CNTs. The potential of two 

parallel and infinitely long single-walled CNTs can be represented by a simple analytical form 

as suggested by Girifalco[268] et al. and Sun et al.[274], as follows: 
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and R is the perpendicular distance between CNT centers, which could be written as            
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Therefore, the interaction potential between two MWCNTs could be written as: 
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At this point, the problem is transferred to how to obtain the value of φ(R0).  
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Here, we use the method proposed by Sun et al [274, 275] to evaluate approximately the 

potential expression. The interaction between two MWCNTs A and B interaction is expressed 

by an index ( A
innerr , nA)-( B

innerr , nB) in the continuum model. A
innerr and B

innerr  indicate the inner 

radii for tubes A and B, respectively. nA and nB stand for the number of layers in tubes A and 

B, respectively. The interlayer spacing is assumed constant, c=3.39 Å. The potential energy 

(φAB ) for ( A
innerr , nA)-( B

innerr , nB) was calculated by summarizing all the interactions ( ijφ ) between 

the i layer of tube A and the j layer of tube B, here i=1, 2, …, nA and j=1, 2, …, nB. As 

proposed by Sun et al. [275], the well depth of two MWCNTs 0
ABφ could be approximately 

estimated by: 
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where                                         

0 (3.13 37.9 ) (3.13 37.9 )ij A B
i jR Rφ = − − × −                                       (4b) 

( 1)t t
i innerR R i c= + − ×  (i=nt, …, nt-3; t= A, B)                                   (4c) 

The potential terms ( 0
ABφ and 0

ijφ ) and radii ( t
iR and t

innerR ) are in units of meV/Å and Å, 

respectively.  

In our case, CNT diameter is homogeneous in the “short-dense-homogeneous” and the 

“six-branch” hybrid structures. According to HRTEM observations, CNT has an inner radius 

of ~25 Å, and contains 8 graphene layers. It is therefore reasonable to assume all the CNTs 

with the same index, in the form (rinner, 8). Then, we calculate using equations 4 the potential 

between any pair of CNTs 0
ABφ = -360.72 meV. Furthermore, the potential ABφ  could be 

finally expressed by  

( )
4 10360.72 3.41 3.41

0.4
0.6 50 0.28 50 0.28

AB R
R R

φ
     = − −    − + − +    

.             (5) 

The force between two MWCNTs resulting from VdW interaction potential is:  

( ) ( )ABd R
f R

dR

φ
= − .                            (6)    

Using the above ABφ expression, the interaction force ( )f R  could be expressed by 
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(N/Å).         (7) 

Evidently, in all the hybrid structures, MWCNTs are grown on µAl2O3 through base 

growth mode.[144]  That is, one end of MWCNTs is fixed on the substrate by catalyst 

particles, but the other one is free. In order to emphasize the roles of CNT length and diameter 

in the self-organization mechanism, we assume MWCNT as hollow homogeneous cylindrical 

cantilever, as done in the earlier experimental and theoretical studies.[270, 276] The beam 

endures an attractive force from adjacent CNT. For vertically-aligned CNT arrays, the 

distance R between two CNTs could be approximately estimated by 1/R �≅ , where � is the 

CNT area number density. The interaction force of two adjacent CNTs is simply seen as a 

uniform distributed VdW force, f(R), along the length (L) of the beam axis, as shown in Fig. 

88a.  

According to Euler-Bernoulli equation, the deflection of the beam u(x) at the position x is 

given by: 

                             ( )
4

4

d u
EI f R

dx
=                              (8) 

where E is the Young’s modulus of CNT and I is the second moment of its cross-section. The 

moment is: 

                           ( )4 4
64

I d d
o i

π= −                              (9) 

where do and di are the outer and inner diameters of CNT, respectively.[277] As we only 

consider small bending deflection of the short beam (~1 µm), the shear force can be neglected. 

Moreover, we assume the VdW forces as constant along the length of CNT because of the 

high area number density of CNTs and their small deflection angle. After integrating equation 

8, the CNT maximum bending deflection can be expressed by: 

                        
4

( )
( )

max 8

f R L
u L

EI
=                                (10) 
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Figure 88. Weak VdW interactions between C�Ts and nano-cantilever model to analyze the agglomeration 

of C�Ts on µAl2O3.  (a) Schematic of the interaction (uniform distribution loading) of two adjacent C�Ts: 

perpendicularly grown C�Ts (L, length) are seen as nano-cantilevers with one end fixed on the surface of 

µAl2O3, with a radius rAl2O3. The gap between two roots of C�Ts is noted with d. θ corresponds to the angle 

resulting from the deflection of one C�T. (b)Schematic of the initial agglomeration of C�Ts at one pole of 

alumina particle due to the weak VdW interactions; (c) Curves of VdW forces between one pair of parallel 

MWC�Ts indicated by C�T(25,8)-(25,8) and C�T(40,32)-(40,32), according to the model proposed by  
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Girifalco[268] et al. and Sun et al.[274]; (d) Relationships between the maximum deflections of C�Ts (25, 

8)-(25,8) and (40, 32)-(40, 32), and their lengths, when C�T gaps are 20, 30, 50 and 100 Å, respectively. 

Solid and hollow symbols indicate C�T(25, 8) and C�T(40, 32), respectively. 

 

It is noticed that the maximum bending deflection of one CNT depends on the VdW 

forces, the rigidity (EI) and the length of CNT. MWCNT rigidity is proportional to the second 

moment of its cross-section, which is a function of the outer and inner diameters (equation 9). 

The VdW forces are related to the distance between two CNTs. Therefore, the CNT deflection 

is controlled by its diameter, length and density on the surface of the alumina sphere.   

To analyze the characteristics of CNT interaction in there different hybrids, two types of 

CNTs are chosen for detailed discussions. CNT (25, 8) corresponds to the CNT contained in 

the “short-dense-homogeneous” and the “six-branch” structures, and CNT (40, 32) represents 

the CNT in the “urchin-like” one. According to the obtained VdW forces (Fig. 88c), the 

bending deflection of two CNTs with the increase of length is calculated using different gaps 

between two CNTs (Fig. 88d).  

First, it can be seen that the maximum blending deflections of both two groups of CNTs 

vary substantially with the distance between CNTs, or CNT density. Smaller is the distance 

between two CNTs, much easier is the deflection. Meanwhile, when the gap between two 

CNTs increases from 20 to 100 Å, the deflection falls down suddenly. This phenomenon 

becomes more and more evident with increasing the distance. Second, for a given gap 

distance, CNT(40, 32) exhibits much higher resistance to the blending deflection than 

CNT(25, 8). This could be first seen from the fact that small diameter CNT(25, 8) always 

losses the stability (deflection increases rapidly) earlier than CNT(40, 32), for the same gap 

distance. This phenomenon is more evident when the gap distance is smaller. The same 

relationship of the difference between two deflection augmentation rates and CNT gap 

distance has been found. The difference of the rigidities of CNTs is less important to the 

deflection, when the distance between two CNTs is big, as shown in Fig. 88d (gap =100 Å, 

L~1µm). A considerable difference between the deflections of CNT(25, 8) and CNT(40, 32) 

is only found when CNT is long.  

CNT density is more than 1015 m-2 in the “short-dense-homogeneous” and “six-branch” 

structures. This means that the gap between CNTs with diameter of 10 nm is less than 100 Å. 

From the Fig. 88d, we find that the CNT under the VdW forces has an evident deflection 

when the CNT length is more than 1µm. However, the area number density is much lower 
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than 1014 m-2 for CNTs in the “urchin-like” hybrid structures. For instance, for CNTs with 

diameter of 50 nm, the gap between the CNTs will be about 5000 Å, therefore the deflection 

of the CNT is negligible and it will keep growing perpendicularly on the surface of alumina 

particles. 

The analyses described above show that the weak VdW forces between CNTs of 10 nm 

in diameter are large enough to create bundles, when their length reach certain critical value. 

In our research, this value is around 1 µm for the µAl2O3 spheres, which have the diameters 

ranging from 2 to 5 µm.  However, we noticed that CNTs grown on ceramic spheres with 

diameters about 700 µm, would evidently crack into different bundles only when their length 

is more than 400 µm[222]. This is because the ceramic spheres have smaller curvature ~ 103. 

Whereas, the curvature of the alumina microparticles is nearly about 106 in our case. 

In order to be parallel with the neighboring CNTs, the maximum deflection of one CNT 

on the spherical substrate can be estimated by 
0

d
u L

r
sub

≅ , where L is the CNT length, d is the 

gap between two CNTs, and rsub is the radius of the sphere. If we consider the CNT density 

and u0 as constant, a critical value of the ratio 
L

r
sub

 is required to obtain the bundle 

structures on spherical substrates. That corresponds to : 01 1

02 2

L r
sub

L r
sub

≅ , where L01, L02 are the 

critical lengths of the CNTs, and rsub1, rsub2 are the radii of the spherical particles. We find that 

the in our materials, the CNT crack length is 1 µm on the alumina spheres of 2-5 µm in 

diameter, which is coherent with the 400 µm in length determined by Zhang et al. for ~700 

µm on the ceramic spheres of ~700 µm in diameter.[222] 

Therefore, when the length is smaller than 1µm (even for high area number density and 

small diameter ~10 nm), CNT stiffness is sufficient to resist to bending deflection. Thus, 

CNTs stand vertically on the spherical surface of µAl2O3, like in the 

“short-dense-homogenous” structures. Nevertheless, when the diameter remains about 10 nm, 

the increasing length greatly promotes the deflection. As a result, MWCNTs agglomerate into 

branches, like in the “six-branch” structures. MWCNTs with diameters beyond 20 nm have an 

enhanced rigidity, which prohibits the deflection of the elongated CNT. In this case, the most 

favorable hybrid structure is the “urchin-like” ones, which has lower CNT density on µAl2O3.  
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3.6 Conclusion  

 

In this chapter, we have investigated in detail the influences of four key CVD parameters 

on CNT growth and organization on micrometer alumina particles. These parameters are 

catalyst precursor, carbon sources, temperature, and hydrogen ratio. The studies demonstrate 

that the CVD parameters have considerable influences on the growth and organization of CNTs 

on micrometer alumina particles. The coordination between the decomposition rates of catalyst 

and carbon precursors is greatly dependent on the interactions of these parameters.     

The variation of ferrocene concentration and its feeding rate generates the variation of 

Fe/C ratios in CVD reactor. The small ferrocene concentration is unfavorable to the generation 

of well-organized hybrid structures, due to weak number density of catalyst particles and weak 

CNT growth rates. The increase of ferrocene concentration promotes the nucleation of catalyst 

particles, and in turn accelerates the CNT growth. High ferrocene concentrations favor the 

formation of large diameter catalyst particles at high temperatures. And the particle diameter 

varies in a wide range. The “urchin-like” hybrid structures form when the ferrocene 

concentration in xylene solution is more than 0.01 g ml-1, corresponding to 8.22E-4 in the 

iron/carbon molar ratio. At the low temperature (550 °C), high ferrocene-xylene solution 

injection rates promote the formation of the “six-branch” hybrid structures from the 

decomposition of acetylene.  

 The studies of the influence of carbon sources show that the decomposition of xylene 

requires a relatively high temperature in order to obtain the “urchin-like” hybrid structures. The 

addition of acetylene greatly increases CNT growth rate and number density at all the 

temperatures studied. More importantly, the distribution range of CNT diameter is 

homogenized by the strong interference of acetylene in the nucleation process of catalyst 

particles. A considerable reduction of the numbers of carbon-encapsulated and 

CNT-encapsulated iron particles indicates high utilization efficiency of catalyst particles when 

the mixture carbon source (xylene-acetylene) is used.    

The temperature plays an essential role in the decomposition of catalyst precursor and 

carbon sources. The increase of temperature greatly improves CNT growth rate, and also CNT 

diameter and crystallinity. Meanwhile, the difference of hybrid structures along the CNT 

growth position in the reactor is generated, due to the increased concentration gradient of iron 
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and carbon species. This difference could be decreased by using acetylene/xylene mixture as 

carbon source at relatively low temperatures.      

 The presence of reductive hydrogen in CVD reactor prevents the formation of amorphous 

carbon particles during CNT growth on alumina microspheres, especially at relatively high 

temperatures. The high hydrogen ratios in carrier gases promote the decomposition of xylene to 

benzene, but reduce the dehydrogenation rates of the hydrocarbons. Therefore, a decreased 

CNT growth rate is found with increasing hydrogen ratio. Importantly, the high hydrogen ratios 

also favor to decrease the hybrid structure difference along the reactor length.  

The alumina microparticles also play an essential role in the construction of multiform 

hybrids. The impact of the microparticle morphology on hybrid structures has been 

demonstrated. The symmetric CNT growth in six surface regions is discussed based on the 

multiphase structures of alumina particles. The growth of CNTs on the heat-treated particles 

reveals this heterogeneous CNT growth is not originated from the metastable δ−Al2O3 and 

θ-Al2O3. 

The initial CNT growth state and the connection between CNTs and microparticles are 

also demonstrated. It is found that the root of each CNT contains the catalyst particles which 

have different morphologies. Often, several particles get together around one nanotube. The 

detachment of CNTs from the microparticles is realized by the dissociation of the root catalyst 

particles from the substrate surface. The CNTs grow on the alumina microspheres in a linear 

way. The possible CNT elongation and deformation models are also proposed to explain 

various different CNT structures.   

Finally, the self-organization mechanism of CNTs on µAl2O3 is uncovered, which includs 

the heterogeneous growth and the self-assembly of CNTs. The heat-treated alumina spheres 

bring to light the specific microparticle surface structures. A huge number of crystal steps on 

the microparticle surface determine the potential numbers of CNT branches. Their specific 

arrangement consequently orients the CNT growth directions. The nano-cantilever model is 

proposed to explain the CNT self-organization mechanism due to weak Van der Waals 

interaction forces between neighboring CNTs. The calculation based on the model shows that 

CNT self-assembly is greatly dependent on their diameter, length and density on µAl2O3. 
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Chapter IV    

Gas phase chemical reaction kinetics in CVD 
reactor 
 

4.1 Introduction  

 

In the previous chapter, we have demonstrated significant influences of the CVD 

parameters on the CNT growth on µAl2O3. A number of different CNTs-µAl2O3 hybrid 

structures have been obtained by varying the temperature, carbon source, hydrogen ratio, and 

catalyst precursor concentration. There are strong interactions among these parameters. For 

instance, the variation of CNTs-µAl2O3 hybrid structures produced by addition of acetylene is 

greatly dependent on the used temperature and hydrogen ratio. At the same time, chemical 

reaction kinetics in the CVD reactor also relies on physical mass and heat transport processes. 

The specific CVD reactor geometry creates intrinsic temperature and species concentration 

gradients, which generate the variation of non-uniform iron and carbon deposition on the 

substrate, and thus varied hybrid structures along the reactor length. However, reduction of 

these differences is required to large-scale production of the hybrid structures. Therefore, a 

comprehensive understanding of the coupling interactions of the physical and chemical 

phenomena in CVD reactor is desired to synthesize high-quality hybrids with desired 

structures in a controlled way.  

    In this chapter, the multi physical-chemical CVD processes are numerically analyzed by 

combining chemical reaction kinetics with physical transport phenomena. The simulation 

takes into account all influence factors such the reactor geometry, CVD parameters, chemical 

reactions, and mass and energy transports. It is helpful to understand the gas phase chemical 

reaction kinetics in the CVD reactor. This comprehensive study could guide us to improve the 

reactor and the synthesis method for the large-scale production of the desired hybrid 

structures in a controlled way.  
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4.2 CVD process analysis   

4.2.1 CVD reactor geometry 

 

 

Figure 89. (a) Schematic of the quartz tube reactor having an inner diameter of 45 mm and a length of 1 m. A 

quartz plate (3×50 cm2) is put in the middle of heated region (60 cm in length). (b) Schematic of the solution 

spray formed by Ar and H2 carrier gas with a flow rate of 1 l min-1. The angle (θ1-θ2) defines the quartz tube 

interior surface region where deposit a large amount of solution droplets. The angle θ3 (~ 5º) defines the front 

end of the quartz plate.  

 

The used CVD reactor is schematically shown in Fig. 89a. It is a quartz tube with an 

inner diameter of 45 mm. The alumina microparticles are first homogeneously dispersed on 

the surface of a quartz plate which is then put in the middle of heated region of 60 cm in 

length. The two end parts about 20 cm in length are naturally cooled in air. The 

ferrocene/xylene solution is continuously injected from one end of the tube (as indicated by 

the arrow in Fig. 89a), then it is carried into the heated zone in spray form by carrier gases 

(Ar+H2). The distribution of the solution droplets are schematically shown in Fig. 89b. The 

largest spray angle is 55 º when the gas and solution injection rates are 1 and 0.2 l min-1, 

respectively. A certain amount of droplets is directly deposited on the interior wall of the 

quartz tube. The deposition region corresponds to the zone defined by the angle (θ1- θ2). The 

angle between the front of substrate and the central line is very small, ~5 º. This measurement 

is conducted at room temperature with an ethanol solution. In contrast to large amounts of 

droplet deposition on the region defined by the angle (θ1-θ2), little deposition is found on the 

surface of the quartz plate. This means, the solution could be well atomized into droplets with 

θ2≈15º θ1≈55º 

θ3≈5º 
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fine sizes even at the room temperatures. The small droplet sizes greatly promote the 

vaporization of the solution at the experimental temperatures. As little deposition of carbon is 

observed on the tube wall out of the heated region during CNT growth, in the latter analysis 

we only consider the physical and chemical phenomena occurred in the heated zone. And, it is 

assumed that the ferrocene/xylene solution has been completely vaporized in this zone. The 

inlet and outlet positions are marked in Fig. 89a.  

 

4.2.2 Chemistry and kinetics of chemical reactions  

The chemical reactions involved in the CVD process could be generally classified into the 

following two major categories: homogeneous gas-phase reactions and heterogeneous surface 

reactions. The former consists of all the chemical processes occurring in the gas phase, 

including the decomposition reactions of carbon sources and catalyst precursors. In this study, 

xylene, acetylene, and their mixture are used as carbon sources. The catalyst precursor is 

ferrocene. The heterogeneous reactions are the reactions which take place on the surface of 

catalyst particles and micrometer alumina. They are greatly related to the formation of iron 

catalyst particles and to the carbon deposition for CNT growth by dehydrogenation of the 

hydrocarbons. Due to the lack of surface reaction mechanisms and kinetics data, we consider 

only the gas phase homogeneous reactions in this study.     

As it is well known, thermal decomposition of hydrocarbons is strong dependent on the 

reactor temperature. In different temperature ranges, the hydrocarbons have varied reaction 

mechanisms. It is worth noting that in our studies, the growth of CNTs on µAl2O3 is mainly 

conducted at temperatures ranging from 500 to 800 ºC. Therefore, the following discussion will 

be focused on the main gas-phase chemistry features in this temperature range. And, the 

reaction rate constant k is expressed using the modified Arrhenius equation,    

a g

n
k=AT exp(E  /R T) ,                                      (4-1) 

where A denotes the pre-exponential factor, T the temperature (K), n the exponent for 

temperature dependence of A; Ea activation energy (J mol-1), and Rg the gas constant, 8.314 J 

mol-1 K-1. The unit of pre-exponential factor is (m3 mol-1)a-1s-1, where a is the order of the 

reaction.   
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4.2.2.1 Decomposition of xylene  

The mass spectrometry measurements have demonstrated the generation of toluene, 

benzene and methane from the xylene decomposition, especially at the temperatures higher 

than 700 ºC. The direct transformations from xylene to toluene (R1), and from toluene to 

benzene (R2) were suggested to be neglected in the temperature range from 500 to 800 °C, 

due to the strong R-CH3 bonds in toluene and xylene (434.7 kJ mol-1)[278].  

C8H10 => C7H7 + CH3                                           R1        

C7H8 => C6H5 + CH3                                                                  R2      

Instead, hydrogen (H) addition-exchange reactions are much easier than these direct bond 

cleavage reactions. As proposed by Benson and Shaw[279], xylene and toluene could decompose 

to benzene by the following hydrogenolysis mechanism (R3-R4):     

H+ C8H10 <=> C7H8+CH3                                        R3    

H+ C7H8 <=> C6H6 + CH3                                        R4 

H2+ CH3 <=> H + CH4                                            R5 

We notice that all the above three reactions are initiated by the substitution of methyl group 

(-CH3) with H. However, the direct production of H from molecular hydrogen is very slow. So 

the hydrogen equilibrium (R6),   

H2= H + H                                                             R6 

is indirectly set up by the following mechanisms[280]:  

C8H10<=>C8H9+H                                                      R7 

C8H9+H2<=>C8H10+H                                                   R8 

C7H8<=>C7H7+H                                                       R9 

C7H7+H2<=>C7H8+H                                                   R10 

The calculated reaction (R6) equilibrium constant is K6=4.0×106 exp (-436000/RT). The 

combination of R3 –R6 produces the following two global reactions (R11-R12):  

C8H10+H2<=>C7H8+CH4      r11=k11⋅[C8H10][ H2]
1/2                  R11 

C7H8 + H2<=>C6H6+CH4     r12=k12⋅[C7H8][ H2]
1/2                   R12 

where k11=K6
1/2k3=9.2×109⋅exp(-220000/RT) and k12=K6

1/2k4=4×109⋅exp(-224000/RT). The 

above global reactions (R11-R12) has been used to simulate the xylene pyrolysis and 

subsequent toluene pyrolysis in gas phase, by Endo et al.,[281] Kuwana et al.,[282] and Wasel et 
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al.[283] The global reactions showed excellent agreement with experiment results at 

temperatures below 1000 K. Kuwana et al.[284] conducted furthermore the simulation of the 

pyrolyses of xylene at different temperatures, using a detailed xylene oxidation reaction 

mechanism (160 species, 1175 reactions) constructed by Dagaut et al[285, 286]. This 

comprehensive mechanism includes the direct cleavage of R-CH3 bonds, the generation of 

ethane, ethylene and acetylene, the decomposition of benzene, etc. The simulation results 

agreed well with the ones based on the global mechanism when the temperature was below 

1073 K. Meanwhile, the simulation showed toluene, benzene and methane are three major 

pyrolysis products of xylene.  

     Considering that the CNT synthesis temperatures used in this study, the global mechanism 

(R11-R12) proposed by Bensow and Shaw[280] is used to describe the pyrolysis of xylene in our 

CVD reactor. Indeed, this model covers the three major species detected by mass spectrometry.    

 

4.2.2.2 Pyrolysis of acetylene  

Thermal pyrolysis of acetylene has been widely studied. Becker and Hüttinger[287] 

proposed a simplified model to predict the kinetics of carbon deposition from acetylene. They 

reported that the pyrolysis of acetylene at 1000 ºC generated three main gaseous reaction 

products: ethylene, benzene and methane, as well as some more substituted benzenes and 

two-member ring compounds such as ethylbenzene (C6H5-CH2CH3), naphthalene (C6H4-C4H4), 

biphenyl (C6H5-C6H5), toluene, and diethyl benzene (C6H4(C2H5)2). Back et al[288] indicated 

that vinyl acetylene (C4H4) is one initial product from acetylene pyrolysis at temperatures 

below 1200 K. Kiefer et al.[289] also indicated that molecular polymerization is the main feature 

of the homogenous pyrolysis of acetylene at temperatures below 1100 K. Recently, Norinaga 

and Deutschmann[290] have modeled, based on a detailed reaction mechanism, the pyrolysis of 

acetylene under one condition relevant to the CVD of pyrolytic carbon at 900 ºC. Their 

simulation predicted that acetylene was primarily transformed into vinylacetylene (86 %), 

diacetylene (17 %), and benzene (7 %). The sensitivity analysis indicated the following three 

acetylene-related reactions are most sensitive among hundreds of reactions:  

            2C2H2 <=> C4H4                                                                R13 

          2C2H2 <=> C4H2+ H2                                                          R14 

C2H2 + C4H4 <=> C6H6                                     R15 
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Given that the pyrolysis of acetylene takes place under hydrogen atmosphere, the following 

reaction between H2 and C2H2 should also be taken into account.  

C2H2 + H2 <=> C2H4                                       R16 

Based on the above discussion, the reactions R12-R16 are chosen to describe the 

principal features of the acetylene pyrolysis in our CVD system.  

 

4.2.2.3 Decomposition of ferrocene 

Lewis and Smith[291] measured the thermal gas-phase decomposition of ferrocene using a 

very low pressure pyrolysis technique. A very high activation energy, ~382 kJ mol-1, has been 

obtained for the reaction R17: 

Fe(C5H5)2 = Fe + C5H5 + C5H5    k17= 2.19×1016[s-1]exp(-382000/RT)      R17 

No decomposition of ferrocene was observed when the temperature was below 1120 K. 

Dormans[292] reported the reduction of ferrocene at temperatures between 673 and 1173 K in 

hydrogen atmosphere, whereas no decomposition of ferrocene was observed until 1173 K 

under helium atmosphere. These measurements demonstrate the positive roles played by 

hydrogen in ferrocene decomposition. The interaction mechanism was proposed by Hirasawa et 

al[293] as follows,  

(C5H5)2Fe+H => C5H5Fe +C5H6  k18=1×107exp(51.4[kJ mol-1]/RT)  R18 

C5H5Fe+H =>Fe +C5H6       k19=1×107exp(12.54[kJ mol-1]/RT)   R19 

Linteris[294] further proposed an one step decomposition model with an overall decomposition 

rate constant, k16=1.0×1014[s-1]exp(-209[kJ mol-1]/RT), in order to more realistically simulate 

the overall decomposition rate of ferrocene. They approximated the decomposition process 

with an one step process with an overall activation energy of 209 kJ mol-1. Based on the 

Hirasawa’s model[293], Kuwana and Saito[295] proposed a global reaction between ferrocene and 

hydrogen,    

Fe(C5H5)2+H2 =>Fe + 2C5H6                                R20 

with an estimated reaction constant k20=1.6×1011(m3/2 mol-1/2 s-1)exp(-218000/RT).  

Here, we use the global reaction mechanism (R20) to describe the decomposition of 

ferrocene in our system.  

In summary, table 7 gives the whole global mechanism used in this simulation.  
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Table 7. Global gas-phase reactions of xylene, acetylene and ferrocene in the CVD reactor 

Index Reaction Rate constant expression Reference 

R11 C8H10+H2<=>C7H8+CH4 r11 = 9.2×109⋅exp(-220000/RT) [C8H10][ H2]
1/2 Benson et al[280] 

R12 C7H8 + H2<=>C6H6+CH4 r12 =4×109⋅exp(-224000/RT) [C7H8][ H2]
1/2 Benson et al[280] 

R13 2C2H2 <=> C4H4 
k13 = 5.5×106exp(-154650/RT) [m3 mole-1 s-1] 

k-13 = 8.65×1013 exp(-312850/RT) [s-1] Norinaga et al[290] 

R14 2C2H2 => C4H2+ H2 k14= 1.5×107 exp(-178670/RT) [m3 mole-1 s-1] Norinaga et al[290] 

R15 C2H2 + C4H4 => C6H6 k15= 4.47×105 exp(-126000/RT) [m3 mole-1 s-1] Norinaga et al[290] 

R16 C2H2+ H2 => C2H4 k16= 1.41×1035T-9.06 exp(-214000/RT) [m3 mole-1 s-1] Norinaga et al[290] 

R20 Fe(C5H5)2+H2=> Fe +2C5H6 k20=1.6×1011(m3/2 mol-1/2 s-1)exp(-218000/RT) Kuwana et al[295] 

 

4.2.3 Thermodynamics and transport properties 

4.2.3.1 Fluid thermodynamic properties  

The gas fluid in CVD system consists of a number of chemical species, including the 

injected catalyst and carbon precursors, and their decomposition products. In the fluid, the 

carrier gas argon takes an absolute molar percentage, ~ 85 %. For this reason, argon is treated as 

“solvent” of the gas mixture. Thus, the reaction fluid thermodynamic properties could be 

approximately evaluated by these of argon.  

The molar enthalpy h, the molar entropy s, and the heat capacity Cp, could be expressed 

using the following polynomials, 

2 3 4 53 52 4
1 6( )

2 3 4 5i g

a aa a
h R a T T T T T a= + + + + +                (4-2) 

2 3 43 54
1 2 7( ln )

2 3 4i g

a aa
s R a T a T T T T a= + + + + +                (4-3) 

2 3 4
, 1 2 3 4 5( )p i gC R a a T a T a T a T= + + + +                       (4-4) 

where T is the temperature (K), and Rg is the ideal gas constant, 8.314 (J mol-1K-1). Further, hi is 

the species’ molar enthalpy (J mol-1), and si represents its molar entropy (J mol-1K-1) at standard 

state. The coefficients a1-a7 of argon are listed in table 8 (see the values of other species in 

Appendix 3). It is worth to point out that the coefficients of Fe(C5H5)2 and Fe(C5H5) are 

obtained by the polynomial fitting of their specific heat values provided by the reference [293].  
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Table 8. Thermal dynamic parameters of argon[290] 

Polynomial coefficient, a  a1 a2 a3 a4 a5 a6 a7 

alow,K(300 ≤ T ≤ 1000 K) 2.5 0 0 0 0 -7.45375×102 4.366 

ahigh,K (1000 ≤ T ≤ 5000 K) 2.5 0 0 0 0 -7.45375×102 4.366 

 
 

Chemical reactions have energy exchange with atmosphere by heat absorption or emission. 

For one reaction j,  

aA bB cC dD+ +⇌      

the reaction rate rj could be described by the formula   

reactant product

ij ijf r
j j i j i

i i
r k c k c

ν ν−

∈ ∈
= ∏ − ∏                                      (4-5) 

where f
jk and r

jk denote the forward and reverse rate constants, respectively. ci designates the 

concentration of species i, and νij denotes the stoichiometric coefficients (negative for reactants 

and positive for products). Therefore, the overall heat Q could be calculated from the sum of 

heat (Qi) generated by each chemical reaction: 

( ) ( )j j j i j i
j j j i

Q Q H r hν= = − = −∑ ∑ ∑∑                          (4-6) 

j i j i
i

S sν= −∑                                             (4-7) 

where Hj denotes the enthalpy of reaction rj, Sj the entropy of reaction rj, hi and si are the 

species’ molar enthalpy and entropy, respectively.  

 

4.2.3.2 Transport properties  

4.2.3.2.1 Dynamic viscosity 

For gases, the dynamic viscosity could be expressed according to the kinetic gas 

theory[296] as  

3
6

2

( 10 )
2.669 10 i

i

i v

T M
η

σ
− ⋅

= ⋅
Ω

                                (4-8) 

where η represents the dynamic viscosity (N s m-2), and Ωv is the collision integral, given by 

20.20
( *) [exp( *)] [exp( *)]

*
B

v A T C DT E FT
T

δ−Ω = + − + − +                (4-9)  
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with  *
T

T k
ε

=                                                 (4-10) 

and 
2

3

1

2

µδ
εσ

=                                                (4-11)  

where µ is the species dipole moment (Debye). 

The synthesis of CNTs is carried out under atmospheric pressure. In general, the used 

carrier gas flow rates range from 0.8 to 1.0 l min-1. In order to atomize xylene solution into fine 

spray, the gases have a flow rate as high as ~ 40 m s-1, at the entrance of the quartz tube. At the 

front of the heated zone (Fig. 89a), the flow rate is greatly reduced owing to the solution 

atomization interaction and the flow area expansion. The gas flow is in laminar regime, 

according to the Reynolds number (Re=40 < 2200), calculated following the formula:   

Re
VD QD

A

ρ
µ υ

= =                                          (4-12) 

where V is the mean flow velocity (m s-1), D is a characteristic diameter of the tube (m), µ is the 

dynamic viscosity of the fluid (N s m-2); ν is the kinetic viscosity (ν = µ / ρ) (m2 s-1), ρ is the 

density of the fluid (kg m-3), Q is the volumetric flow rate (m3 s-1), and A is the cross-sectional 

area of the quartz tube (m²). 

 

4.2.3.2.2 Mass diffusivity  

Besides mass convection, the diffusion is another kind of hydrocarbon transfer 

mechanism.  Considering its absolute abundance in the CVD reactor, argon could be seen as 

the solvent of gas phase species. Correspondingly, other species would be solutes, which 

interact with argon molecules. Based on kinetic gas theory, the binary diffusion coefficient 

could be expressed as follows,  

3 3
3 ( )(2 10 )

2.695 10 A B A B
AB

A B D

T M M M M
D

pσ σ
− + ⋅

= ⋅ ⋅
Ω

               (4-13) 

where DAB is the binary diffusion coefficient (m2 s-1), M is the molecular weight (kg mol-1), T 

represents the temperature (K), p is the pressure (Pa), and σ is the characteristic length (Å) of 

the Lennard-Jones (12-6) potential. In addition, ΩD is the collision integral, given by the 

following equation[296]: 

20.19
( *) [exp( *)] [exp( *)] [exp( *)]

*
B AB

D A T C DT E FT G HT
T

δ−Ω = + − + − + − +      (4-14)                          
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with 
1/2

*
( )b

A B

T
T k

ε ε
= , 1/2( )AB A Bδ δ δ= , 1/2( )AB A Bσ σ σ= , and 

2

3

1

2

µδ
εσ

= .  

where ε is the maximum depth of the potential well, σ is the characteristic length, and µ is the 

species dipole moment (Debye). These values are listed in table 9. As the solvent 

approximation is used for gases, the binary diffusivity is used to calculate the diffusivity of 

species A in a solvent B.  

Due to the difficulty in finding the parameters ε and σ of ferrocene, the following formula 

proposed by Wang et al[297] was used to approximately evaluate these parameters.  

1/31.236 wMσ =                                                       (4-15) 

0.5837.15 wMk
ε =                                                     (4-16) 

These formulas indicate the strong correlations between the LJ parameters of PAHs (polycyclic 

aromatic hydrocarbons) and their molecular weight.  

 

Table 9. The Lennard-Jones (12-6) potential parameters  
 

Substance Indexa 
Potential well 

depth 
 

collision diameter 
Å  

Dipole moment 
Debye 

Molar mass 
(Kg mol-1) 

Ar 0 136.500 3.330 0.000 4×10-2 

H2 1 38.000 2.920 0.000 2×10-3 

CH4 2 141.400 3.746 0.000 1.6×10-2 

C2H2 1 265.300 3.721 0.000 2.6×10-2 

C2H4 2 238.400 3.496 0.000 2.8×10-2 

C4H2 1 357.000 4.720 0.000 5×10-2 

CH2CHCCH 2 373.700 4.790 0.000 5.2×10-2 

C5H6 1 408.000 5.200 0.000 6.6×10-2 

C6H6 2 468.500 5.230 0.000 7.8×10-2 

C7H8 2 523.600 6.182 0.43 9.2×10-2 

C8H10 2 523.600 5.960 0.000 1.06×10-1 

bFe(C5H5)2 - 769.72 7.056 - 1.86×10-1 

Fe - 3000 4.3 - 5.6×10-2 

*a: an index indicating whether the molecular has a monatomic(0), linear (1)or nonlinear(2) geometrical 
configuration. http://maeweb.ucsd.edu/~combustion/cermech/sandiego20021001.trans 
 b: Values evaluated using the formulas proposed by Wang et al[297].  
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4.2.3.2.3 Thermal conductivity   

Besides thermal convection, thermal conduction is another energy transfer mechanism 

inside the reactor which contains the temperature gradient. According to the Stiel-Thodos 

equation[298], the thermal conductivity of species is expressed as follows,  

 (1.15 0.88 )p gk C R
M

η= +                                           (4-17) 

where k is the thermal conductivity (W m-1 K-1), and Cp denotes the heat capacity (J mol-1 K-1).  

                  

4.3 Modeling of gas phase reaction kinetics   

4.3.1 Governing equations  

In order to develop a relatively robust model which can well describe the transport and 

kinetics of chemical species, one needs to solve the set of governing equations for transport of 

momentum and mass, and energy in a chemically reacting flow. Given the symmetry of the 

reactor and the continuous mass feeding, the reacting fluid is described by the 2d stationary 

momentum, mass and heat balance equations 4-18 to 4-21. The resolution of these equations 

is carried out using the commercial computational software COMSOL.   

First, the fluid flow is described by the weakly compressible Navier-Stokes equations:  

( ) [ ( ( ) ) (2 / 3)( ) ]Tpρ η η⋅∇ = ∇ ⋅ − + ∇ + ∇ − ∇ ⋅u u I u u u I                (4-18) 

( ) 0ρ∇ ⋅ =u                                                  (4-19) 

where u is the velocity vector, u=(u, v) (m s-1), η denotes the dynamic viscosity(N s m-2), ρ is 

the density of the fluid (kg m-3), and p is the pressure(Pa). 

The boundary conditions for the gas flow are : 

0 0.01 /u m s⋅ = =u n                  Inlet  

=u 0                              Walls and quartz plate 

5
0 1.0 10p p Pa= = ×   

[ ( ( ) ) (2 / 3)( ) ] 0Tη η∇ + ∇ − ∇ ⋅ ⋅ =u u u I n   Outlet (pressure, no viscous stress) 

Second, the mass transfer in the reactor is given by the convection-diffusion equation:  

( )i i iD c R c∇ ⋅ − ∇ = − ⋅∇u  (ci = concentration)                      (4-20) 

where Di denotes the diffusion coefficient (m2 s-1), and Ri is the reaction term (mol m-3 s-1).  
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The corresponding boundary conditions are as follows:   

,0i ic c=                 inlet  

 ( ) 0i iD c⋅ − ∇ =n     outlet  

i ic⋅ = ⋅n � u n  

here, the initial molar concentrations of the injected species are as follows: cH2,0=4.46 mol m-3, 

cC8H10,0=1.62 mol m-3, cC2H2,0=0.446 mol m-3, and cFeC10H10,0=5.38×10-2 mol m-3. 

Third, the energy balance in the reactor is described by the convection and conduction 

equation:  

( ) pk T Q C Tρ∇ ⋅ − ∇ = − ⋅∇u  (T=Temperature)                     (4-21) 

where Cp denotes the specific capacity (J kg-1 K-1), k is the thermal conductivity (W m-1 K-1), 

and Q is the heat source term (W m-3). As the heat Q of the chemical reactions (R11-R20) is 

very weak, therefore it is neglected in this simulation.  

The used boundary conditions are as follows: 

0T T=   inlet   

surfT T=  Tube surface  

0cond k T⋅ = − ∇ ⋅ =q n n    outlet 

pC Tρ⋅ = − ⋅q n u n        outlet (convection flux boundary condition) 

where Tsurf is an interpolation function of the temperatures measured along the quartz tube 

wall (as shown in table 10).   

 

Table 10. Temperature values measured along the length of the rector wall at different given 

temperatures.   

Temperature distribution(°°°°C) 
Distance(m) 

780 700 650 600 550 450 

0.57 736 658 601 554 480 375 

0.52 761 681 631 580 518 414 

0.47 774 693 641 591 538 434 

0.42 780 699 647 597 545 444 

0.37 786 703 653 602 552 452 

0.32 789 705 657 605 557 459 

0.27 787 704 657 604 557 460 

0.22 780 697 651 596 551 455 

0.17 770 690 645 587 543 449 

0.12 749 672 628 569 521 422 

0.07 718 631 592 536 476 383 

0.02 650 572 509 459 402 317 
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4.3.2 Isothermal reaction kinetics 
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Figure 91. Isothermal decompositions of the ferrocene-xylene vapor without (a-e) and with (f-j) acetylene 
at the temperatures of 500, 600, 700, 800 and 900 ºC. 
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Figures 91a-e show the isothermal decomposition kinetics of the ferrocene-xylene vapor 

in a perfectly mixed reactor at temperatures from 500 to 900 ºC. The calculations are based on 

the global decomposition mechanisms given in table 7. The same initial concentrations of 

species are applied for the different temperatures, that is, 1.62 mol m-3 for xylene, 5.38×10-2 

mol m-3 for ferrocene, 4.46 mol m-3 for hydrogen, and 40 mol m-3 for argon. The species 

residence time is ~ 60 s when the flow rate of carrier gas is equal to 1 l min-1. It could be seen 

that temperature has considerable influences on the decomposition kinetics of xylene and 

ferrocene. This indirectly indicates that in real CVD reactors the temperature variation certainly 

results in the variation of the relative ratios of the species concentrations. The analysis on the 

reaction processes could help us to better understand the varied CNT growths at different 

temperatures. 

At the temperatures lower than 600 ºC (Fig. 91a-b), little xylene is decomposed during its 

residence in the reactor. The xylene decomposition ratio is less than 2 % at 500 ºC, and < 8 % at 

600 ºC. Meanwhile, the ratio of decomposed ferrocene greatly increases from 3.5 % at 500 ºC to 

83 % at 600 ºC. Xylene takes an important proportion in the gas atmosphere at these 

temperatures. The concentrations of methane and cyclopentadiene are greatly increased from 

500 to 600 ºC. At 700 ºC, xylene has a large decomposition ratio, ~ 80 % (Fig. 91c-d). At the 

same time, ferrocene is nearly completely decomposed in a short time. The major hydrocarbons 

in the gas phase are methane, toluene, benzene and residual xylene at this temperature. The 

major hydrocarbons become to methane and benzene generated from the decomposition of 

xylene and toluene. Methane and benzene are the absolutely-dominant species in the gas 

atmosphere at 900 ºC (Fig. 91e), and ferrocene, xylene and toluene are completely decomposed 

in a very short time.  

As a comparison, Fig. 91f-j show the corresponding reaction kinetics of the mixture of 

ferrocene-xylene vapor and acetylene at the same temperatures. The initial concentration of 

acetylene is 0.045 mol m-3. A similar result is observed. Little amount of carbon sources (xylene 

and acetylene) are decomposed at 500 ºC (Fig. 91f), and benzene and methane are two absolute 

dominant hydrocarbons in gas atmosphere at high temperatures, especially at 900 ºC (Fig. 91j). 

However, within these two temperature limits, the decomposition of acetylene produces 

amounts of higher mass hydrocarbons such as diacetylene, vinylacetylene and benzene, as 

shown in Fig. 91g-i. The ratio of diacetylene gradually increases with temperature. Meanwhile, 

that of vinyl acetylene first increases and then decreases.   



Chapter IV                           Gas phase chemical reaction kinetics in CVD reactor 

 -161- 

The comparison between the above analyses with the products obtained under the same 

conditions shows that CNT growth relies on the match between ferrocene decomposition rate 

and effective carbon source concentrations. High ferrocene decomposition rates at high 

temperatures makes it completely consumed in the front stage of furnace. This corresponds well 

with our experimental observation that the starting growth point of CNTs on the quartz plate 

draws back, and the length of the growth region shortens with the increase of temperature. The 

low CNT growth rates at 500 and 600 ºC demonstrate that xylene was not a direct precursor for 

nanotube growth when it is used as carbon source. In contrast, acetylene could serve as a direct 

carbon precursor for CNT growth. This is indicated by the enhanced growth rates of CNTs 

when acetylene is added into the CVD system. This conclusion corresponds well with the 

resulted reported by Eres et al[299].       

 

4.3.3 Reaction kinetics in the CVD reactor 

4.3.3.1 )on-uniform mass transport 

In fact, the decomposition of carbon and catalyst precursor is rarely uniform in real CVD 

reactors, especially in tube-like ones. The temperature gradient inside the reactor could 

generate varied chemical decomposition kinetics. In general, temperature distribution is greatly 

related to reactor geometry. Fig. 23 shows the variation of the tube wall temperatures along the 

reactor length. The non uniform temperature field will absolutely generate the variation of 

chemical reaction rates in the CVD system. This could result in the variation of relative ratios 

between the species. However, the coordination between the decomposition of carbon sources 

and ferrocene is of great significance to get the hybrid structures with homogeneous structures.   

As we know, the CNT growth on µAl2O3 follows the “bottom-up” mechanism. The carbon 

deposition mainly occurs on active catalyst particles located on the surface of alumina 

microparticles. Convection and diffusion are two mass transfer mechanisms involved in this 

process. They are responsible for the feeding of carbon and iron species for continuous CNT 

growth. Fig. 92a and b show the convective and diffusive fluxes of xylene and ferrocene at 700 

ºC, respectively. It is found that in the center region of the reactor the chemical species are 

principally transported forwards by gas convection. On the other hand, the species principally 

exchange through mass diffusion in radial directions, owing to concentration gradients. In 

particular, the diffusion dominates the mass transport in the layer near substrate surface, where 

the gas flow rate is very weak. These could be easily explained by the specific distributions of 

gas fluid velocity inside the CVD reactor, as well as the temperature field, as shown in Fig. 93a 
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and b. The fluid has the highest flow rate in the center region, but a weak one in regions near the 

tube inner wall and quartz plate due to viscosity interaction. The non-isothermal characteristic 

of the reactor displays the varied temperature gradients in the reactor, especially in the inlet and 

outlet regions. These differences would ultimately result in varied species concentration fields, 

which further influence nanotube formation and growth rate.   

 

  

Figure 92. Convective and diffusive transport of xylene (a) and ferrocene (b) at 700 ºC  

 

  

Figure 93. Velocity field (a) and temperature gradient (b) inside the CVD reactor heated at the given 

temperature of 700 ºC.  

 

4.3.3.2 Chemical species concentration fields 

4.3.3.2.1 Comparisons between experimental measurement and simulation 

Before discussion on the concentration distribution of the chemical species in the reactor 

space, we conduct a comparison between MS measurements and simulation results. Fig. 94a 

shows the concentration variations of xylene in the exhaust gas with temperature. The 

concentrations obtained from experiment and simulation have a similar variation tendency with 

the increase of temperature. A good agreement is obtained between the two results when the 

temperature is lower than 700 ºC. The increasing differences at higher temperatures could be 

(a) (b) 

(b) (a) 
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due to the fact that this simulation does not take into account carbon decomposition reactions on 

the substrate surface. The intensified surface reactions at high temperatures result in the 

enlargement of the difference between the experiment and simulation results. Fig. 94b shows 

the variations of xylene and acetylene concentrations at the end of the reactor with temperature. 

Moreover, the experiment and simulation share a similar variation tendency of the xylene and 

acetylene concentrations.  

 

 

Figure 94. Comparisons of the carbon source concentrations obtained by MS measurements and simulations. 

(a) Decomposition of xylene at different temperatures, and (b) decomposition of xylene and acetylene.  

    

The above analyses demonstrate that the simulation model could generally describe the 

consumptions of carbon and catalyst precursors under our experiment conditions. It could be 

used to predict the variation tendency of the chemical species.  

 

4.3.3.2.2 Xylene as carbon source 

Figure 95 demonstrates the concentration distribution of the main chemical species 

involved in the decomposition of ferrocene-xylene solution at different temperatures. The 

reactor geometry is schematically shown in Fig. 95a. The concentration variations along the 

centerline are displayed in Fig. 95b. Both xylene and ferrocene have very low decomposition 

rates at 550 °C. Little xylene and ferrocene are decomposed in the first stage of the reactor. It is 

at the position of ~ 0.2 m where the concentrations of C7H8, C5H6, CH4 and Fe reach up to 0.001 

mol m-3. From this point, these species concentrations gradually increase with the distance, and 

finally reach to the maximum value of ~ 0.01 mol m-3 in the region near the outlet. This result 

corresponds very well with our experimental observations at 550 °C. That is, CNTs grow in a 
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very weak rate on µAl2O3 (Fig. 27a), and the growth is only observed on the microparticles 

located in the zone farther than 0.2 m. At 600 °C, the decomposition ratio of ferrocene greatly 

increases, compared with the one of xylene. The position corresponding to the concentration of 

0.001 mol m-3 moves towards the inlet. Little benzene is produced at this temperature from the 

xylene decomposition. When the temperature is increased above 700 °C, the decomposition 

rate of ferrocene is so high that it is quickly decomposed in the first stage of the reactor. In the 

zone after ~ 0.23 m at 700 °C and ~ 0.12 m at 800 °C, the ferrocene concentration becomes very 

weak, lower than 0.001 mol m-3. In addition, the decomposition of xylene is greatly accelerated 

above 700 °C. The increased decomposition of toluene generates large amounts of benzene at 

the end of reactor. The dominant species in the exhaust gas are toluene and methane at 700 °C, 

whereas, they are benzene and methane at 800 °C. By comparison, the species concentration 

distributions along the line near quartz plate surface are given in Fig. 95c. The concentration 

variation tendency with temperature is found similar to the one along the centerline. However, 

due to the slow gas flow rates, higher decomposition rates of ferrocene and hydrocarbons are 

found in the region near the quartz plate surface, than that in the reactor center. In consequence, 

the product species such as methane, benzene, toluene and iron have relatively high 

concentrations.  

Figure 95d shows the space-dependent concentration distribution of the main chemical 

species such as C8H10, C7H8, C6H6, CH4, FeC10H10, and Fe. Obviously, each chemical species 

has a specific concentration distribution field. For a given temperature, the relative ratios of the 

species vary with the space position. Likewise, in the same space region, the variation of the 

temperature field also makes a considerable change of the species concentration ratios.    
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Figure 95. (a) CVD reactor geometry and the positions of the centerline and the line near quartz plate 

surface (5 mm above the plate surface). The length unit is m. Concentration distribution: (b) along the 

centerline and (c) along the line near quartz plate surface. (d) Surface graph of concentration distribution of 

the main chemical species at 780 ºC.   
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4.3.3.2.3 Xylene and acetylene as carbon sources 

Figure 96a and b show the temperature-dependent species concentration distributions 

along the centerline and the near surface line, respectively. The addition of acetylene in the 

system shows little influence on the gas phase decompositions of ferrocene and xylene, which 

accelerate with the increase of temperature. In particular, ferrocene tends to be consumed in 

the beginning zone of the reactor at high temperatures. However, due to its high chemical 

activity, acetylene could efficiently contribute carbon to CNT growth. Therefore, its addition 

in the system provides more effective carbon sources. This effect is demonstrated by 

enhanced CNT growth at temperatures lower than 550 ºC. Moreover, the addition of acetylene 

makes the CNT deposition region draw back about 10-15 cm on the quartz plate, compared 

with the CNT deposition without acetylene. This indicates a very small decomposition ratio of 

ferrocene could generate CNT growth in the presence of acetylene. As shown in Fig. 96a and 

b, the pyrolysis of acetylene produces low concentration C4H4 in the end zone of reactor at 

550 ºC. Besides C4H4, other acetylene pyrolysis species such as C4H2 and C6H6 also exhibit an 

increase in their concentrations when the temperature is higher than 600 ºC. Especially, their 

concentrations in the front of reactor considerably increase at the higher temperatures. The 

species concentration distributions in the reactor are displayed in Fig. 96c. As indicated 

previously, the chemical reactions are non-isothermal process in the reactor, and the 

concentration distribution of each species is space-dependent at a given temperature.     
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Figure 96. Chemical species concentration distributions along the centerline (a), and the near surface line (b) 

obtained by simulation of the decompositions of the mixture of xylene and acetylene at different temperatures. 

(c) Surface graph of concentration distribution of the main chemical species at 780 ºC. 

 

4.3.3.3 Effective Iron and carbon species distribution  

In the chapter III, we have demonstrated that ferrocene concentration has considerable 

impact on CNT growth and organization on µAl2O3. Different hybrid structures are obtained 

by varying Fe/C ratios in feedstock. However, all the carbon containing species are not 

effective carbon sources which efficiently contribute carbon atoms for CNT growth. In the 

formation of pyrocarbon, the light unsaturated species (e.g. C2H2) and methyl radicals were 

reported to be more efficient for the carbon deposition[300]. Moreover, different kinds of 

hydrocarbons have varied dehydrogenization properties on iron catalyst particles, and thus 

generate varied CNT growth rate. Therefore, it is desired to find out the dominant effective 

hydrocarbons in CNT growth process. At the same time, the iron in the reactor exists under 
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several forms, including decomposed iron atoms and non-decomposed iron compounds. 

Understanding of the role of these iron existences in CNT growth is of great significance to 

improve the yield of the hybrid materials with uniform structures.  

The difference between the simulation concentration value and the MS measured one of 

each chemical species could give clues about the hydrocarbon efficiency for CNT growth. 

Because the carbon decomposition on the quartz tube wall and substrate surface is not taken 

into account of the simulation. Therefore, the chemical species having large concentration 

difference are extremely possible to contribute more carbon atoms during CNT growth. 

Figure 97a shows an increasing difference between the concentrations measured and 

simulated of each chemical species with increasing temperature, when xylene is used as 

carbon source. In particular, the measured concentrations of toluene and benzene are very 

weak, in contrast to evident simulation values. It indicates that the species from xylene 

decomposition are more efficient to CNT growth than xylene itself. The increased toluene, 

benzene and methane concentrations in the reactor correspond well the increased CNT growth 

rates at high temperatures. A similar phenomenon is also found when the mixture of acetylene 

and xylene is used as carbon source, as shown in Fig. 97b. The measured concentrations of 

acetylene are smaller than the simulated ones at different temperatures. This corresponds well 

to our observation that the addition of acetylene accelerates the CNT growth even at relatively 

low temperatures.  

An incubation period is observed to accumulate sufficient amount of effective carbon 

sources which have concentrations high enough to promote CNT nucleation and growth, as 

shown in Fig. 91. The period duration is greatly dependent on the reaction temperature. 

Correspondingly, as shown in Fig. 95 and 96, there contains low concentrations of chemical 

species derived from the xylene decomposition in the first stage of the reactor. The 

concentrations greatly increase in the region far from the inlet. The increase of temperature 

results in the decrease of the shortest distances where the decomposition-generated species 

have a concentration of 0.001 mol m-3 (Fig. 95 and 96). This is one of the reasons why the 

deposition of CNTs occurs only on the microparticles located in the region far from the front 

of quartz plate. The increased temperatures generate the starting deposition point of CNTs 

moves toward the inlet of the reactor.      
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Figure 97. Comparisons of main chemical species concentrations obtained by MS measurements and 

simulation: (a) xylene as carbon source, and (b) xylene and acetylene as carbon sources. 

 

On the other hand, the nucleation of iron catalyst particles is derived from the 

decomposition of ferrocene. Iron originates from iron atoms from the decomposition of 

ferrocene in gas phase, as well as the surface reaction of iron containing compounds. It is 

observed that CNT quantity is gradually decreased with the increase of the distance inside the 

reactor. Beyond certain distance, no CNT growth is found. The CNT decomposition region 

shrinks with increasing temperature. This phenomenon becomes more evident at high 

temperatures, as demonstrated in Fig. 53.   

However, iron concentration inside the reactor increases along the tube length at the 

temperatures ranging from 450 to 800 °C. Figure 98a shows the concentration field of iron 

generated from the decomposition of ferrocene at different temperatures. The concentration 

variation tendency with temperature could be clearly seen. Iron concentration in the front part 

of the reactor increases with temperature. At a given temperatures, for example at 600 ºC, the 

iron concentration is gradually augmented with the distance. Ferrocene has a high 

decomposition rate at temperatures higher than 700 ºC. The decomposed iron could be 

quickly transferred forwards thanks to the convective gas flow. The distribution of the iron 

and ferrocene concentrations along the centerline of the reactor is demonstrated in Fig. 98b.  
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Figure 98. (a) Iron concentration fields at the temperatures from 450 to 780 ºC. (b) Variation of iron and 

ferrocene concentrations along the axis of the quartz tube with the increase of temperature.  

 

It is commonly believed that high iron concentrations in gas phase could promote the 

growth of CNTs with a high rate. However, our experiments demonstrate that after the 

starting growth point, CNT deposition decreases with the distance. That is, CNTs grown in 

the front part of the reactor have high number density and large length, whereas, CNTs have 

lower number density and small length in the latter part, accompanied with carbon 

encapsulated iron particles. In particular, no CNTs could be found at the last stage (l≥ 0.3 m) 

at the high temperatures. X-ray fluorescence analysis (table 11) also shows the decreased 

quantity of iron deposited on the µAl2O3 with the increase of the distance. A quantity of 0.2 g 

of ferrocene was vaporized at the entrance of quartz tube with a temperature around 250 ºC. 

The reactor temperature was set to 600 ºC. The flow rate of carrier gas is 1 l mn-1, including 90 

% Ar and 10 % H2. Before the examination, the alumina microparticles collected at different 

positions are heated to 600 ºC in air in order to burn out the decomposed carbon.  
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Table 11. Percentage of iron deposited on alumina microparticles located on different position 

Position (m) 0.3 0.4 0.5 

Fe percentage (�o C2H2) 0.24% 0.14% 0.14% 

Fe percentage (C2H2 10 ml min-1) 1.3% 1.3% 0.14% 

 

The above results demonstrate the quantity of iron deposited on the microparticles is not 

proportional to the iron in gas phase. Indeed, the bottom-up CNT growth mechanism in 

floating CVD indicates the fact that catalyst particles are formed on substrate surface rather 

than in gas phase when the temperature is lower than 800 ºC. The iron particles are 

preferentially nucleated at certain active sites on µAl2O3, by mass diffusion of the iron atoms 

generated from the decomposition of ferrocene. Once the catalyst particles are formed, they 

could serve as active sites for the further decomposition of iron and carbon, owing to their 

higher catalytic activity than substrate materials. Dyagileva et al[301] studied the thermal 

decomposition of iron metallocenes in vacuum. It was found that the metallocene pyrolysis in a 

closed system was a homogeneous-heterogeneous process occurring both in a volume and on a 

surface. The catalytic activity of solid decomposition products was observed at the temperature 

as low as 673 K. and a first-order decomposition of ferrocene was assumed at particle surface 

with the rate constant, ksurf =1.43×107[s-1]exp(-171000/RT). Kuwana and Saito[295] have used 

the above surface chemical reaction constant to simulate the iron nanoparticle formation from 

ferrocene in the CVD reactor.    

Fe (C5H5)2=> Fe + 2C5H5  ks1=1.43×107[s-1]exp(-171000/RT)              (S1) 

It could be seen that the catalytic surface decomposition reactions have a much higher rate 

than the gas phase decomposition. Moreover, ferrocene has a decreasing concentration with 

the distance. For instance, the residual ferrocene is more than the decomposed one in the first 

0.4 m of the reactor at 600 °C. Therefore, it is greatly reasonable to say that the ferrocene 

decomposes on the formed iron catalyst particles to release iron atom. The increased iron 

feeding rate accelerates the carbon deposition on substrate surface from gas-phase 

hydrocarbons, and thus promotes the CNT growth. On the other hand, ferrocene has low 

concentration in the last stage of the reactor. The feeding of iron to catalyst particles is mainly 

from the adsorption/absorption of iron generated in gas phase though mass diffusion. So slow 

renewability of iron catalyst greatly limits dehydrogenization of the hydrocarbons, and thus 

results in a weak CNT growth rate. Specially, the fast decomposition of ferrocene at high 
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temperatures could generate high iron concentrations, which promote the direct nucleation of 

iron particles in the gas phase. In consequence, the iron could easily nucleate as small 

particles during their transport process. These particles directly catalyze the decomposition of 

hydrocarbons on their surfaces. When the temperature is not favorable to CNT nucleation, 

these iron particles are covered by a thin carbon layer. In particular, the carbon encapsulated 

iron particles are largely observed when the ferrocene-xylene solution is decomposed at 900 

ºC.  

    Therefore, we could conclude that the decomposition of ferrocene on the catalyst particle 

surface is of great importance for acceleration of CNT growth.  

    The non-uniform hybrid structures are mainly resulted from the heterogeneous CNT 

growth in different stages of the reactor. The non-isothermal condition, along with the 

concentration gradient of each chemical species, generates varied CNT growth kinetics inside 

the reactor. The proposed numerical simulation could describe the general variation tendency 

of each chemical species concentration with temperature. This is a very helpful tool to get a 

better understanding of the chemical gas-phase reactions in CVD process.   

 

4.3.4 Two end injections of the ferrocene-xylene solution 

      

   The previous analyses demonstrate that more catalyst particles nucleate in the front of 

reactor than in the end part when the temperature is higher than 600 ºC. However, a 

temperature higher than 700 ºC is required to the formation of the “urchin-like” structures. 

But, these structures could only be obtained in a very short zone in the front of the reactor 

when the used temperature is more than 750 ºC. So the hybrid structure yields are very low.  

According to our simulation results, high CNT growth rates are due to the accelerated 

iron feeding by catalytic ferrocene decomposition on the surface of the formed catalyst 

particles. And, low ferrocene concentrations and increased gas phase iron nucleation at high 

temperatures do not favor the CNT formation in the back region of the reactor. In order to 

improve the yields of the hybrid structures, the ferrocene-xylene solution is injected from the 

two ends of the quartz tube, as schematically shown in Fig. 99. Ferrocene is dissolved in 

xylene with a concentration of 0.05 g ml-1. The solution feeding rate is ~0.2 ml min-1. Two 

carrier gas flows at an equal rate of 1 l min-1 are also injected from two ends of the reactor in 

order to carry forwards the xylene solution. Here, each gas flow is constituted of Ar (90 %) 
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and H2 (10 %). The decomposition of the catalyst and carbon precursors lasts for 10 min at 

780 ºC.  

Figure 99b-c shows the CNTs-µAl2O3 hybrid structures obtained by injecting the 

ferrocene-xylene solution from two ends of the reactor. The atmosphere temperatures around 

the spray heads are ~ 250 ºC. The CNTs have a length around 25 µm for 10 min growth. And, 

the CNT diameter varies in the range of 25-60 nm. It is found that the homogeneity of the 

hybrid structures on the quartz plate is improved compared with the previous “one-end 

injection” method. It is also observed that the hybrids have better structures in the regions near 

the two ends of quartz plate than those in the center region. This is because the low gas 

circulation in the reactor center results in the low catalyst and carbon precursor feeding rate.  

Interestingly, another kind of hybrid structure is also obtained by the “two-end injection” 

method during our studies. The two carrier gas flows have a equal rate of 0.9 l min-1, and the 

atmosphere temperature around the spray heads is ~ 400 ºC. Similarly, the hybrids collected in 

two end regions of quartz plate have homogenous structures. As shown in Fig. 99d-e, the CNT 

in this hybrid structure are capped by one catalyst particle at each end. One of them locates on 

the surface of µAl2O3, forming a connection between the CNT and microparticle. The other 

one freely suspends in atmosphere. High magnification SEM image (Inserted image in Fig. 

99e) reveals that the particles possess regular crystal forms, rather than the spherical shape. 

As far as we know, it has not been reported in literature the large scale synthesis of CNTs 

with two ends capped by catalyst particles. This structure could provide an easy way to create 

novel CNTs-based hybrid structures. For instance, CNT-CNT joint could be largely created 

by CVD, which could be used in fields of electronics. In addition, 3D CNT network with 

strong connection could be easily developed based on these CNTs. This kind of materials has 

great application potential in the composites with multifunctional properties.  
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Figure 99. (a)Schematic of CVD equipment for the synthesis of C�Ts-µAl2O3 hybrids by a “two end 

injection” method. SEM images of C�Ts-µAl2O3 hybrid structures: (b-c) spray head temperature around 250 

ºC; (d-e) spray head temperature around 400 ºC; (f) Schematic of two kinds of novel C�T hybrid structures 

(C�T-C�T Joint and 3D C�T network) based on C�Ts with iron particles at two ends.  
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4.4 Conclusion 

In this chapter, gas phase chemical reaction kinetics in CVD reactor is numerically 

analyzed. The non-equilibrium CVD processes containing multi physical-chemical 

phenomena are simulated by combining chemical reaction kinetics with physical transport 

phenomena. The numerical model takes into account the influences of the reactor geometry, 

CVD parameters, chemical reactions, and mass and energy transports.  

A global gas phase chemical reaction model is applied based on the MS measurements of 

the exhaust gases under various experiment conditions. This model could well describe the 

main decomposition characteristics of xylene, ferrocene and acetylene in the used temperature 

range. It is demonstrated that the temperature has considerable influences on kinetics of the 

isothermal decomposition of catalyst and carbon precursors in a perfectly mixed reactor. Due 

to the temperature gradient in the CVD reactor and the specific mass transfer mechanisms, the 

space-dependent concentration distribution of each species is revealed by simulating the 

reacting fluids. Moreover, the variations of concentration fields with temperature are 

separately discussed according to the presence or the absence of acetylene in the reactor 

system. It is found that low ferrocene and xylene decomposition ratios in the front of the 

reactor are not favorable to catalyst nucleation and CNT growth at low temperatures. On the 

other hand, high temperatures generate fast decomposition of the precursors. Especially, 

ferrocene could be quickly consumed in a short distance when the temperature is more than 

700 °C. The addition of acetylene can enlarge the CNT growth region at the temperatures 

lower than 600 °C, because the high chemical activity makes acetylene an efficient carbon 

sources for CNT growth, rather than xylene. The comparison between the experimental results 

and simulation ones indicates that catalytic decomposition of ferrocene can greatly accelerate 

the feeding of iron atoms to catalyst particles, and thus results in the CNT growth in a high 

rate. This well explains the fact that the deposition quantity of CNTs decreases along the 

distance. The improved homogeneity of the hybrid structures by a “two end injection” method 

further confirms the prediction of the simulation. In surprise, a novel kind of CNTs-µAl2O3 

hybrid structures is also obtained, in which the CNT is capped by an iron crystal at its each 

end. 
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General conclusion and perspectives  

 
General conclusion 

The objectives of this thesis were to develop a multifunctional hybrid material containing 

well-organized CNTs and micrometer alumina particles by CVD, to study the formation 

mechanisms of the multiform structures, and to investigate the involved chemical reaction 

kinetics in CVD reactor for large scale production of the desired hybrid structures in a 

controlled way. The main results obtained during this research are summarized into the 

following three categories.     

� Multiform hybrid structures and their exceptional thermal conductivities:  

The hybrid materials consisting of carbon nanotubes and micrometer alumina particles 

were produced by floating CVD, using a mixture of acetylene and xylene as carbon sources, 

and ferrocene as catalyst precursor. Three distinct hybrid architectures are 

“short-dense-homogeneous”, “six-branch” and “urchin-like”. When the “urchin-like” 

CNTs-µAl2O3 was added as fillers in Epoxy, the CNTs-µAl2O3/Epoxy composites had a 

remarkably low percolation threshold (0.15 wt % CNTs) and high thermal conductivity (130 % 

enhancement). The well-organized hybrid structures and homogeneous dispersion of CNTs 

result in a significant reduction of the thermal contact resistance between CNTs in the 

composites.   

� Mechanisms of the C�T organizations on µAl2O3 for the formation of multiform 

hybrid structures:  

The formation of the CNTs-µAl2O3 hybrid structures are greatly dependent on the 

coordination between carbon and iron depositing rates, which is a result of the competitive 

interactions of various CVD parameters such as catalyst precursor, carbon sources, temperature, 

and hydrogen ratios. Low CNT nucleation and growth rates are generated by the low iron 

deposition rates which could be resulted from the low ferrocene concentrations in xylene 

solution, the slow feeding rates of the ferrocene-xylene solution or the small decomposition 

rates at low temperatures. The increase of the ferrocene decomposition rates with temperature 

promotes the formation of the “urchin-like” hybrid structures which are constituted of CNTs 
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with big diameters varying in a wide range. The carbon feeding rates are strongly related to the 

decomposition rates of xylene in the gas phase. Due to the high chemical stability of xylene, it is 

only at temperatures higher than 700 °C that a high growth rate of CNTs could be achieved 

when xylene is used as carbon sources. The addition of acetylene in the system greatly 

increases the CNT growth rates and area number densities even at temperatures lower than 600 

°C. Moreover, acetylene promotes the homogenization of the size of catalyst particles, and 

improves their catalytic efficiency for CNT growth by a considerable reduction of the quantity 

of carbon-encapsulated iron particles as well as CNT-encapsulated ones. The presence of 

hydrogen in the CVD system prevents the oxidation of catalyst particles, and decreases the 

quantities of amorphous carbon particles formed during CNT growth. The high hydrogen ratios 

inhibit the dehydrogenation of the hydrocarbons on the catalyst particles. In addition, CNTs 

grow on the alumina microspheres in a linear way when the mixture of acetylene and xylene is 

used as carbon source. 

CNTs in the “six-branch” hybrid structures organize into six orthogonal bundles on 

µAl2O3. The observation of these hybrid structures obtained using the heat-treated µAl2O3 

reveals that the growth of CNTs principally occurs at crystal step sites, which largely exist on 

the surface of the particles. The CNT organization varies with the orientation of the crystal 

steps. The specific surface structures potentially determine the growth of CNTs in six 

orthogonal directions. The directions of six orthogonal CNT bundles are normal to {0002} or 

{1-100} planes, according to the analysis of TEM selected area diffraction. 

Besides, the self assembly of CNTs takes place during their growth, due to weak Van der 

Waals interaction forces between neighboring CNTs. The calculation based on the proposed 

nano-cantilever model shows that the CNT self assembly is greatly dependent on the diameter, 

length and area number density of CNTs on µAl2O3.  

� Chemical reaction kinetics in the CVD reactor:    

The CVD processes containing multi physical-chemical phenomena are simulated by 

combining chemical reaction kinetics with physical transport phenomena. A global chemical 

reaction model is used to describe the main characteristics of the decomposition of xylene, 

ferrocene and acetylene in gas phase. The reaction kinetics is firstly calculated in a perfectly 

mixed reactor. Then, the space-dependent concentration distributions at different temperatures 

were established in the cases, where xylene or its mixture with acetylene is used as carbon 

source. The comparison between experimental and simulation results indicates that acetylene, 

along with the species decomposed from xylene, is efficient carbon source for CNT growth. 
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The catalytic decomposition of ferrocene greatly accelerates the deposition of iron atoms on 

the catalyst particles, and thus results in the CNT growth at high rates. 

 

Perspectives 

The multifunctional nano/micrometer hybrid structures developed in this thesis have 

promising applications in the field of composites. The following aspects would be interesting 

for the future research:      

� Further characterizations of the crystal structures of micrometer substrates would be 

required to identify their influences on catalyst particles nucleation and orientation. 

� One detailed chemical mechanism would be desired to better describe the gas phase 

decomposition of carbon and catalyst precursors, and the catalytic dehydrogenations of 

hydrocarbons for the deposition of carbon on catalyst particles.  

� More efforts are encouraged to quantitatively determine the interfacial connection between 

single CNT and the microparticle by atomic force microscopy, and to study its evolution 

with CNT structures and geometries including the diameter and length.  

� More investigations are proposed to study the thermal and mechanical reinforcements of 

different hybrid structures in polymer composites. 

� It is promising to produce multifunctional ceramic materials with improved plasticity 

based on the nano-micro hybrid structures.  
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Appendices 
 
Appendix 1 
 
SEM images of three MWCNT-µAl2O3 hybrid structures 
 

 

 

 

 
“Short-dense-homogeneous” hybrid structures: (a) carbon sources: xylene and acetylene, acetylene flow 

rate: 10 ml min-1, H2 volumetric ratio: 40%, temperature: 550 °C. 

“Six-branch” hybrid structures: (b) carbon sources: xylene and acetylene, acetylene flow rate: 10 ml 

min-1, H2 volumetric ratio: 5 %, temperature: 550 °C; (c) carbon source: xylene, temperature: 600 °C; (d) 

carbon source: xylene, temperature: 650 °C. 

(g) 

(f) (e) 

(d) (c) 

(b) (a) 
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“urchin-like” hybrid structures: (e) carbon source: xylene, temperature: 750 °C; (f) high magnification 

SEM of figure e; (g) carbon source: xylene, temperature: 800 °C. 

 
Appendix 2 
 
Mass Spectrometry Data of several products related to this research (from Pfeiffer vacuum 
Spectra library) 
 

Product 
names 

Molecular 
formula 

�umber 
of peaks 

m/z and relative intensity   

26 25 13 24 27 12 14 28 Acetylene C2H2 8 
999 201 56 56 28 25 2 2 

91 106 105 39 51 77 27 78 92 107 O-xylene C8H10 10 
999 576 241 174 161 127 110 84 75 48 

91 92 50 39 65 51 63 90 27 38 93 Toluene C7H8 11 
999 784 709 206 138 107 101 91 60 57 55 

78 52 51 50 77 39 79 76 38 Benzene C6H6 9 
999 194 186 157 144 142 64 60 58 

28 32 14 16 40 29 20 18 34 Air - 9 
999 160 72 18 14 8 1 1 1 

40 20 36 18 38 Argon Ar 5 
999 200 3 1 1 

18 17 16 20 19 Water  H2O 5 
999 230 11 3 1 

 
 
Appendix 3   
 
Thermodynamic data[290] 
 

Ar 120186Ar 1 G 0300.00 5000.00 1000.00 1 

0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 2 

-0.07453750E+04 0.04366000E+02 0.02500000E+02 0.00000000E+00 0.00000000E+00 3 

0.00000000E+00 0.00000000E+00-0.07453750E+04 0.04366000E+02 4 

H2 121286H 2 G 0300.00 5000.00 1000.00 1 

0.02991423E+02 0.07000644E-02 -0.05633828E-06 -0.09231578E-10 0.15827519E-14 2 

-0.08350340E+04-0.13551101E+01 0.03298124E+02 0.08249441E-02 -0.08143015E-05 3 

-0.09475434E-09 0.04134872E-11 -0.10125209E+04 -0.03294094E+02 4 

C 121086C 1 G 0300.00 5000.00 1000.00 1 

0.02602087E+02-0.01787081E-02 0.09087041E-06-0.11499333E-10 0.03310844E-14 2 

0.08542154E+06 0.04195177E+02 0.02498584E+02 0.08085776E-03-0.02697697E-05 3 

0.03040729E-08-0.11066518E-12 0.08545878E+06 0.04753459E+02 4 

CH4 121286C 1H 4 G 0300.00 5000.00 1000.00 1 

0.01683478E+02 0.10237236E-01 -0.03875128E-04 0.06785585E-08 -0.04503423E-12 2 
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-0.10080787E+05 0.09623395E+02 0.07787415E+01 0.01747668E+00 -0.02783409E-03 3 

0.03049708E-06 -0.12239307E-10 -0.09825229E+05 0.13722195E+02 4 

C2H4 121286C 2H 4 G 0300.00 5000.00 1000.00 1 

0.03528418E+02 0.11485185E-01-0.04418385E-04 0.07844600E-08 -0.05266848E-12 2 

0.04428288E+05 0.02230389E+02 -0.08614880E+01 0.02796162E+00 -0.03388677E-03 3 

0.02785152E-06 -0.09737879E-10 0.05573046E+05 0.02421148E+03 4 

C4H2 121686C 4H 2 G 0300.00 5000.00 1000.00  1 

0.09031407E+02 0.06047252E-01 -0.01948788E-04 0.02754863E-08 -0.13856080E-13 2 

0.05294735E+06 -0.02385067E+03 0.04005191E+02 0.01981000E+00 -0.09865877E-04 3 

-0.06635158E-07 0.06077413E-10 0.05424065E+06 0.01845736E+02 4 

C6H6 20387C 6H 6 G 0300.00 5000.00 1000.00 1 

0.12910740E+02 0.01723296E+00 -0.05024210E-04 0.05893497E-08 -0.01947521E-12 2 

0.03664511E+05 -0.05002699E+03 -0.03138012E+02 0.04723103E+00 -0.02962207E-04 3 

-0.03262819E-06 0.01718691E-09 0.08890031E+05 0.03657573E+03 4 

C5H6 HR11/99BLYP00C 5H 6 0 0G 300.000 5000.000 1402.000 0  1 

1.26575005E+01 1.53301203E-02 -5.23821364E-06 8.12867095E-10 -4.71504821E-14 2 

1.03083446E+04 -4.75386061E+01 -4.78259036E+00 6.09873033E-02 -5.17363931E-05 3 

2.25173536E-08 -3.92621113E-12 1.58382836E+04 4.43226201E+01    4 

C7H8  BurcatL 6/87C   7H   800G   200.000  6000.000 1000 1 

 0.12940034E+02 0.26691287E-01-0.96838505E-05 0.15738629E-08-0.94663601E-13 2 

-0.69764908E+03-0.46728785E+02 0.16152663E+01 0.21099438E-01 0.85366018E-04 3 

-0.13261066E-06 0.55956604E-10 0.40756300E+04 0.20282210E+02 4 

C2H2 121386C 2H 2 G 0300.00 5000.00 1000.00    1 

0.04436770E+02 0.05376039E-01-0.01912816E-04 0.03286379E-08-0.02156709E-12 2 

0.02566766E+06-0.02800338E+02 0.02013562E+02 0.15190446E-01-0.16163189E-04  3 

0.09078992E-07-0.01912746E-10 0.02612444E+06 0.08805378E+02 4 

C8H10 Burcat  T 9/96C   8H  1000G   200.000  6000.000 1000 1 

 0.15987319E+02 0.32676385E-01 -0.11890299E-04 0.19360904E-08 -0.11659656E-12 2 

-0.47073870E+04 -0.63675039E+02 0.24506692E+01 0.26239143E-01 0.99991348E-04 3 

-0.15573183E-06 0.65643572E-10 0.10189486E+04 0.16445176E+02    4 

Fe(C5H5)2  300 2000  

-11.72079  0.14038  -1.32E-04  6.08E-08  -1.07E-11  25760.247  70.6  

Fe(C5H5)  300 2000  

-4.46195  0.06996 -6.82436E-5 3.24365E-8  -5.85716E-12  40745.087  43.024053  

Fe   300 2000  

2.81253  0.00185  -4.09804E-6  2.7248E-9  -5.71774E-13  49035.474  5.2537387  

�ote: the coefficients of Fe(C5H5)2, Fe(C5H5) and Fe are obtained by the polynomial fitting of their specific heat values 
provided in ref [293].  
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Résumé 

 
Les nanotubes de carbone (CNTs), intégrant à la fois la structure parfaite, la géométrie unique, et des 

propriétés exceptionnelles, sont d'une grande importance dans le domaine des nanotechnologies. Leur 

association avec d'autres matériaux produit de nouvelles propriétés remarquables, et étend par conséquent 

leurs domaines d'applications comme charges multifonctionnelles. Cette thèse vise à développer un 

nouveau matériau hybride avec une structure multi-échelle à base de CNTs et de particules micrométriques 

d'alumine (µAl2O3) par une méthode de dépôt chimique en phase vapeur (CVD). Nos études démontrent 

que les structures CNTs-µAl2O3 ont une propriété exceptionnelle en matière de transport thermique dans les 

composites polymères. Celle-ci nous a amenée à explorer plus en profondeur les mécanismes de 

l’organisation des CNTs sur µAl2O3, et d’étudier la cinétique de réactions chimiques dans l’espace gazeux 

du réacteur CVD. 

Dans le premier chapitre, nous faisons une revue de l'état de l'art sur la structure, les propriétés et les 

applications des CNTs, ainsi que les mécanismes de croissance de CNTs par CVD. Une attention 

particulière est également accordée aux structures hybrides nano-micrometriques qui sont synthétisées par 

greffage in-situ des CNTs sur des substrats micrométriques.  

    Dans le deuxième chapitre, nous présentons trois types de structures hybrides, qui sont classifiées 

selon différents modes d'organisation des CNTs sur les microsphères d'alumine. L'évolution des structures 

hybrides est démontrée en faisant varier le diamètre, la longueur et la densité numérique des CNTs sur 

µAl2O3. L’organisation specifique et la dispersion homogène des CNTs permettent de diminuer 

considérablement leurs résistances de contacts thermiques lorsque les matériaux hybrides CNTs-µAl2O3 

sont utilisés comme charges dans les composites polymères. Une amélioration importante de la 

conductivité thermique des composites Epoxy/CNTs-µAl2O3, par rapport à celle des composites constitués 

de CNTs et de résine époxy, est obtenue à une fraction massique ultra-faible en CNTs. 

Dans le troisième chapitre, nous avons étudié en détail les rôles joués par les paramètres CVD et les 

microparticules sphériques d’alumine dans la construction de structures hybrides multiformes. En 

particulier, les fortes corrélations entre la température, les sources de carbone et les ratios d'hydrogène ont 

été discutées. Le lien entre les CNTs et les microparticules est mis en évidence, ainsi que la dynamique de 

croissance des CNTs. L’auto-organisation des CNTs sur µAl2O3 est expliquée par les deux mécanismes 

suivants. Dans un premier temps, la structure hétérogène de la surface des particules entraîne une 

distribution différente des particules du catalyseur, et leur arrangement cristallin spécifique détermine 

potentiellement l’orientation des CNTs. Dans un deuxième temps, l'auto-assemblage des CNTs est dû à 

l’interaction des forces faibles de Van der Waals entre CNTs voisins. Le calcul basé sur le modèle du 

nano-cantilever montre que l’auto-assemblage des CNTs dépend fortement de leur diamètre, de leur 

longueur et de leur densité numérique sur µAl2O3.  

Dans le quatrième chapitre, la cinétique chimique des réactions dans l’espace gazeux du réacteur CVD 

est numériquement analysée. Le processus non-équilibré de CVD qui contient plusieurs phénomènes 

physico-chimiques est simulé avec succès en combinant la cinétique des réactions chimiques avec les 

phénomènes de transport physique. Les champs des concentrations de chaque espèce est révélée aux 

températures utilisées par simulation des réactions chimiques. Les sources effectives de carbone et de fer 

pour la croissance des CNTs ont été éclaircies en comparant les résultats de simulation avec les 

observations expérimentales, y compris les mesures de spectrométrie de masse. Ces analyses sont 

nécessaires pour améliorer la production des hybrides avec des structures homogènes.  

 



 

Abstract  

 
Carbon nanotubes (CNTs), integrating perfect structure, unique geometry, and exceptional properties, 

are of great significance in nanotechnology. Their hybridization with a variety of other materials generates 

huge amounts of attractive properties, and thus expands largely their application fields as multifunctional 

fillers. This thesis aims to develop a novel multi-scale hybrid material based on carbon nanotubes and 

micrometer alumina particles (µAl2O3) by an in-situ floating chemical vapor deposition (CVD) method. 

Our studies demonstrate that the CNTs-µAl2O3 structures have outstanding thermal transport properties in 

polymer composites. This greatly motivates us to further explore the organization mechanisms of CNTs on 

microparticles, and to investigate gas phase chemical reaction kinetics in CVD reactor.    

In the first chapter, we review the state of the art of research in CNT structure, properties and 

applications, as well as CNT growth mechanisms in CVD. Special attention is also paid to the nano-micro 

hybrid structures which are synthesized by in-situ grafting CNTs on micrometer substrates.  

In the second chapter, we present three types of hybrid structures which are classified according to 

distinct CNT organization patterns on alumina microspheres. The evolution of the hybrid structures is 

demonstrated by varying CNT diameter, length and number density on µAl2O3. The specific organization 

and homogeneous dispersion of CNTs could significantly reduce their thermal contact resistances when the 

CNTs-µAl2O3 hybrid materials are used as fillers in polymer composites. Enhanced thermal conductivities 

of the Epoxy/CNTs-µAl2O3 composites are obtained at ultra-low CNT weight fractions compared with that 

of the composites constituted of pristine CNTs and epoxy.  

In the third chapter, we investigate in detail the roles played by CVD parameters and alumina 

spherical microparticles in the construction of multiform hybrid structures. In particular, the strong 

correlations among the temperature, carbon sources and hydrogen ratios are discussed. The connection 

between the CNTs and the microparticles are demonstrated, along with the CNT growth dynamics on 

µAl2O3. The self-organization behavior of CNTs on µAl2O3 is explained by the following two mechanisms: 

first, heterogeneous surface structures of µAl2O3 generate varied nucleation of catalyst particles, and their 

specific crystal arrangement potentially determines CNT growth orientations; second, the self assembly of 

CNTs is due to weak Van der Waals interaction forces between neighboring nanotubes. The calculation 

based on the nano-cantilever model shows that the CNT self assembly is greatly dependent on their 

diameter, length and number density on µAl2O3. 

In the forth chapter, gas phase chemical reaction kinetics in CVD reactor is numerically analyzed. The 

non-equilibrium CVD processes which involve multi physical-chemical phenomena are successfully 

simulated by combining the chemical reaction kinetics with the physical transport phenomena. The 

space-dependent concentration distribution of each species is revealed by simulating the reacting fluid at 

the used temperatures. The effective carbon and iron precursors for CNT growth are illuminated by 

comparing simulation results with experimental observations including mass spectrometry measurements. 

These analyses of chemical reactions in CVD system are helpful to improve the production of the hybrids 

with homogeneous structures.    

 


	Couverture.pdf
	Remerciements.pdf
	Thesis-DLH.pdf
	Abstract.pdf

