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1. INTRODUCTION

This thesis is devoted to the study of the thermalization dynamics of several Galerkin-
truncated conservatives systems related to the dynamics of ideal fluids and superfluid.
A Galerkin truncation is simply obtained (in the homogeneous case) by performing
a Fourier transform of a partial differential equation (PDE) and then keeping only a
finite number of Fourier modes. If the truncation is correctly performed the finite-
dimensional system inherits a number of conservation laws from the original PDE.
These finite-dimensional dynamical systems are interesting in themself because they
possess statistically stationary solutions, known as absolute equilibria [1, 2, 3, 4], that
are exact solution of the associated Liouville equation.

Perhaps the simplest of such truncated systems corresponds to the three-dimensional
Euler equation [1, 2, 3, 4, 5, 6]. The Fourier modes at the highest wavenumbers are
known to rapidly thermalize through a mechanism first discovered by TD. Lee [1] in the
50’s and further studied by RH. Kraichnan [2, 3] in the 60’s. However, the first work at-
tempting to study in detail the thermalization was done by Cichowlas et al. [5] in 2005.
They studied, by using direct numerical simulations at high resolutions, the relaxation
dynamics of the truncated Euler equation. Long-lasting transients which behave just
as those of high Reynolds-number viscous-flows were reported. In particular they found
an approximately k−5/3 Kolmogorov inertial range followed by a dissipative range. The
most striking result of this work is that a clear scale separation is exhibited. At high
wavenumbers, the Fourier modes thermalize following a k2 equipartition energy spec-
trum and this thermalized zone progressively extends to lower wavenumbers and finally
covers the whole spectrum. At intermediate times a very rich behavior was observed:
the thermalized modes playing the role of a thermostat create a fictitious microworld
that generates an effective dissipation at large scales. Posteriorly, Bos and Bertoglio
[6] studied that problem using the eddy damped quasi-normal Markovian (EDQNM)
closure theory. By simple dimensional analysis and making use of the concept of eddy-
viscosity [7] they gave an estimate of the dissipation wavenumber that corresponds to
the Kolmogorov dissipation scale based on this eddy-viscosity. They found the same
estimate that Cichowlas et al. [5] had found using a fluctuation dissipation theorem [8].

The fact that the EDQNM closure well reproduces the dynamics of truncated Euler
equation was numerically exploited by Frisch et al. [9] to relate the bottlenecks observed
in (viscous) turbulence [10, 11, 12, 13] to an incomplete thermalization of the type of
Cichowlas et al. [5]. Frisch et al. [9] studied the hyperviscous limit of the Navier-Stoke
equation, that consists on taking higher and higher power of the diffusive term (the
Laplacian). The system obtained in this limits corresponds (at least intuitively) to the
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truncated Euler equation. They found by performing numerical integration of EDQNM
equations that the bottleneck observed with the usual diffusion drastically increases
in the hyperviscous limit. At very high powers of the Laplacian a large scale k−5/3

Kolmogorov spectrum followed by a k2 power-law at small scales was observed, giving
a possible explanation of bottlenecks in turbulence as an incomplete thermalization.

It is important to remark that a truncated system is not always equivalent to the
original PDE. Both system, the truncated and original PDE, coincide as long as the
spectral convergence of the numerical scheme is ensured [14]. For spectral convergence
we understand that energy the spectrum needs to rapidly fall down (at least exponen-
tially) at a wavenumber much smaller than the truncation wavenumber kmax. If this
condition is not verified the system is thus influenced by the truncation. In most cases,
thermalization is achieved only in a truncated system. One exception is the partial
thermalization reported by Frisch et al. [9] in the hyperviscous limit. Other exceptions
occur when a very inefficient energy transfer is present in the system. In this context,
V.S. L’Vov et al. [15] proposed in superfluid turbulence, a scenario where a Kolmogorov
energy cascade and a Kelvin waves cascade are joined by a thermalized intermediate
zone. In this thesis we present two new systems where a partial thermalization is
observed in an intermediate range. The first one corresponds to the two-dimensional
magnetohydrodynamics (MHD), where a strong constant magnetic field can slowdown
the nonlinear transfer to produce a partial thermalization. The other one corresponds to
the Gross-Pitaevskii equation (GPE) where dispersive effects can also induce a partial
thermalization in an intermediate range.

We turn now to the problem of finite-time singularities. At a fixed resolution, the
spectral convergence is typically ensured only until a finite time t∗. Beyond this time,
the truncation becomes relevant and the truncated system only is well defined as a finite
dimensional dynamical system because the fields typically become not differentiable at
any point, as is the case of absolute equilibrium. The relation between t∗ and the
spectral cut-off kmax can be extremely complex because it is closely related to the
finite-time singularity problem. Typically, t∗ is an increasing function of kmax. However
if there is a finite-time singularity in the system, the spectral convergence will be lost at
that time independently of the resolution. In the context of hydrodynamics it is known
that the one-dimensional inviscid Burgers equation presents a finite-time singularity [16]
and the two-dimensional Euler equation does not [17]. For the three-dimensional Euler
equation there does not yet exist a mathematical proof or even a consistent numerical
evidence in favor of the existence or not of a finite-time singularity (see [18, 19, 20, 21]
and reference therein). Nevertheless, the truncated version of these three systems reach
the thermodynamical equilibrium after a long and interesting transient.

The property that a conservative truncated system relaxes toward the equilibrium
with a rich dynamics is very general. In this thesis we characterize the relaxation
dynamics of several systems. We study the truncated compressible and incompressible
3D Euler, the 2D Euler, the 2D MHD and the 3D Gross-Pitaevskii (GP) equations.
In all those systems the thermalized modes generate an effective dissipation that acts
at large scales. In particular, in the truncated GP equation (TGPE) we show that
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effects that are physically present in superfluids at finite temperature, such as mutual
friction and counterflow (effects that are not included in the untruncated GPE), are
naturally present in the truncated system. The richness of the dynamics produced by
the interaction between the thermalized small scales and the pseudo-dissipative large
scales motivates the present thesis.

In this thesis we first look for a quantitative understanding of the effective dissi-
pation generated by the thermalized modes. Using EDQNM theory and Monte-Carlo
simulations we are able to obtain a time and scale dependent effective viscosity. Using
this result we introduce a phenomenological two-fluid model of the truncated Euler
equation.

The previous results on the truncated Euler equation and its respective EDQNM
version were restricted to flows with a vanishing mean helicity. The helicity, that plays a
relevant role in many atmospheric processes [22] and in strongly rotating turbulence [23],
is also conserved by the Euler equation [24, 25]. The conservation of the helicity modifies
the absolute equilibrium and the corresponding spectra were found by Kraichnan [3].

We thus also present here a study of the dynamics of the truncated Euler equations
with helical initial conditions. We find a behavior similar to that of Cichowlas et al. [5]
but with mixed direct energy and helicity cascades and a small scales thermalization
exhibiting the Kraichnan helical absolute equilibrium.

We also investigate the cascades and thermalization in the case of 2D truncated Eu-
ler equation and truncated magnetohydrodynamics. Several similarities and differences
with the thee-dimensional case are observed.

In a second part of this thesis we study the GPE equation that describes superfluids
at very low temperatures. The GPE was known to posses a Kolmogorov turbulent
behavior [26, 27, 28]. Nore et al [26, 27] reported that during the turbulent regime
an energy transfer from the incompressible kinetic energy to sound waves is observed.
The Fourier TGPE was first introduced in the context of Bose condensation by Davis et
al.[29], as a description of the classical modes of a finite-temperature partially-condensed
homogeneous Bose gas. They showed that the thermodynamic equilibrium presents a
condensation transition at finite energy. The same condensation transition was later
interpreted as a condensation of classical non-linear waves [30, 31]. Berloff and Svis-
tunov [32] used a finite difference version of TGPE and obtained a finite temperature
vortex rings contraction that they related it to a mutual friction effect.

We show that the thermalization under the TGPE can also be achieved by a direct
energy cascade, similar to that one of truncated Euler flows, with a vortex annihilation
as a prelude to final thermalization. We also show that increasing the amount of
dispersion a clear bottleneck in a intermediate range is observed leading to a partially
thermalized zone.

We introduce then a stochastic Ginzburg-Landau equation (SGLE) to obtain the
absolute equilibrium of the TGPE. We show that the condensation transition that was
previously observed in [29, 30, 31] corresponds to a standard second-order transition
described by the λ− φ4 theory.

Using equilibrium states generated with the SGLE we study its interaction with
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vortex rings under the TGPE dynamics. We observe that Kelvin waves are naturally
present due to thermal fluctuations and that the ring velocity strongly depends on the
temperature.

It was previously known [33, 34] that finite-amplitude Kelvin waves in a vortex ring
induce an anomalous translational velocity. This astonishing result was first analytically
obtained within the local induction approximation (LIA) by Kiknadze and Mamaladze
[33] and then numerically by Barenghi et al. [34] using the Biot-Savart equation. By
assuming equipartition of the energy of the Kelvin waves with the heat bath we obtain
a good estimate of the effect.

Finally, we study the problem of sound radiation produced by GP vortices. The
energy radiated, that is carried to infinity by sound propagation, can be considered as
a mechanism of slow relaxation to thermodynamic equilibrium.

This thesis is organized in two main parts, the first is devoted to the ideal flows
described by Euler and MHD equations and the second one to superfluid flows of the
GPE type. In each chapter a general overview is given that covers some basics concepts
and references needed to introduce the respective publications presented in their original
forms at the end of the chapters.

The first part contains four chapters. The first chapter concerns the dynamics of
the 3D truncated Euler equation. The basic concepts on turbulence theory are recalled
Then we present a two-fluid model of the truncated Euler equations [35] and we extend
the thermalization results to the case with helical initial conditions [36]. In chapter 3 the
cascades and the thermalization of two-dimensional truncated Euler and MHD equation
are studied. In chapter 4 we study the thermalization of compressible truncated Euler
flows [37].

The second part of this starts with chapter 5 where we review some basics of sta-
tistical mechanics related to truncated systems. In chapter 6 we review some basic
properties of the GPE. We then introduce our new results on the TGPE [38]. Finally,
chapter 6 is concerned to the radiation of sound by point GP vortices [39].

There is three appendices in this thesis. In appendix A a two-fluid model version
of TGPE, that use the extended thermodynamic that was introduced in chapter 6, is
presented. Then in appendix B the numerical methods used in this thesis are detailed.
Finally, a comment submitted to Phys. Rev. Letter is included in appendix C.
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Part I

IDEAL FLUIDS





2. CASCADES AND THERMALIZATION IN

TRUNCATED EULER EQUATION

This chapter is basically made of two main parts, the first one is devoted to give a

brief overview which will permit to discus the two publications that are presented

in the second part. More specifically, in the first section some basic concepts of

turbulence theory are reviewed. Then, the truncated Euler equation is defined and

its statistical stationary solution, known as absolute equilibrium, are discussed.

Some of the literature related to the thermalization of truncated Euler flows is

reviewed, together with a brief introduction to the Eddy-Damped Quasi-Normal

Markovian theory. Finally the last two sections correspond to two published works.

In the first one, a phenomenological two-fluid model which takes in account the

large-scale dissipative effects of truncated Euler flows is presented. The second

work is concerned by the role of helicity on the thermalization of truncated Euler

flows.

Turbulence is a subject of scientific study with a long history. Leonardo da Vinci
(April 15, 1452 - May 2, 1519) was already interested studying the eddies formed behind
the pillars of a bridge. About 250 years ago Leonhard Paul Euler (15 April 1707 - 18
September 1783) proposed the now famous Euler equation that governs the dynamics of
perfect fluids. Seventy years later Claude-Louis Navier (10 February 1785 - 21 August
1836) modified this equation to include viscosity. Taking into account the work of Sir
George Gabriel Stokes (13 August 1819-1 February 1903) this equation is now known
as the Navier-Stokes equation.

The Navier-Stokes equation has a fundamental importance for both the physics
and mathematics communities. From a mathematical point of view, the existence and
smoothness of the solutions of this equation is still a complex and unsolved problem,
considered as one of the seven Millennium Prize Problems in mathematics 1.

Many tentative theoretical models have been developed in the physics community
to further the understanding of turbulence. Since the end of the 70’s, using the devel-
opment of super-computers a lot of progress has been achieved. Nowadays most of the
theoretical works are based on numerical computations.

Among all the studies on turbulence, some remarkable results were obtained by the
mathematician Andrey Nikolaevich Kolmogorov (April 25, 1903 - October 20, 1987) in

1 There is a one million dollar prize being awarded by Clay Mathematics Institute waiting for who
solve this problem. http://www.claymath.org/
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1941. His results concerning the scaling of the energy spectrum is one of the the most
simple (but not less brilliant) and deepest in the field [40, 41, 42, 43].

Another very important physicist in the field of turbulence was Robert Kraichnan
(Jan 15, 1928- Feb 26, 2008), who made major contribution to the area. In particular
in two-dimensional turbulence and introducing the so called Kraichnan passive scalar
model [2, 44, 45].

This chapter is organized as follows. First in section 2.1, a brief introduction to
fully developed turbulence is given. In section 2.2 the truncated Euler equation and the
absolute equilibrium are presented followed by a discussion of thermalization in section
2.3. Section 2.4 is devoted to introduce the basics of the eddy-damped quasi-normal
Markovian theory and how its application is relevant to the truncated Euler relaxation.
Then the hyper-viscous limit and the relation between bottlenecks and thermalization
is discussed in section 2.5. In section 2.6 we point out the differences between partial
differential equations and the corresponding truncated system. Finally sections 2.7 and
2.8 contain two publications. In the first one, a phenomenological two-fluid model which
take in account the large-scale dissipative effects of truncated Euler flows is introduced.
In the second work the role of helicity on the thermalization of truncated Euler flows
is studied.

2.1 Introduction to fully developed turbulence.

The basic equations governing the dynamics of a barotropic viscous fluid of density ρ
and velocity u are

ρ∂tu + ρ(u · ∇)u = −∇p+ νρ∇2u (2.1)

∂tρ+ ∇ · (ρu) = 0, (2.2)

f(p, ρ) = 0 (2.3)

where p is the pressure, ν the kinematic viscosity and f(p, ρ) the barotropic relation
between density and pressure.

Equation (2.1) is known as the Navier-Stokes equation and (2.2) as the continuity
equation.

For a compressible fluid an important dimensionless quantity is the Mach number

defined as M = uL/c where uL is a characteristic velocity and c =
√

∂p
∂ρ

is the velocity

of sound.
In this chapter we will only consider small Mach number, where neglecting the

propagation of sound waves the fluid can be considered as incompressible. In this limit,
equations (2.1-2.2) reduce to

∂tu + (u · ∇)u = −1

ρ
∇p+ ν∇2u (2.4)

∇ · u = 0. (2.5)
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In the inviscid case (ν = 0) the system (2.4-2.5) is known as the Euler equation.
An other very important dimensionless quantity is the Reynolds number defined as

R =
LuL

ν
, (2.6)

where L is the characteristic length of the system. This number estimates the relative
importance of the inertial terms (u · ∇)u with respect to viscous effects ν∆u. Indeed,
the first term contains two velocities and one spatial derivative while the second term
contains the viscosity, one velocity and two spatial derivatives. The order of magnitude
of their ratio is thus (velocity × length)/viscosity.

In the low R limit, the nonlinear term in equation (2.4) can be neglected and it can
often be treated analytically, this kind of flow are called laminar. On the contrary, for
large Reynolds number the flow becomes turbulent and is extremely complex. Statistical
tools are needed to obtain a quantitative understanding of the system.

The transition from laminar to turbulent flows it is characterized by the symmetries
permitted by the system (Eqs. 2.4-2.5 and boundaries ) that are successively broken as
R increases [21]. However at very large Reynolds number, some of this symmetries are
recovered in a statistical sense. Turbulence at very large Reynolds numbers with some
of the symmetries recovered in a statistical sense is called fully developed turbulence
[21].

Remark that the pressure in equation (2.4) is not a dynamic variable, indeed it is
completely determined by the incompressibility condition (2.5). Taking the divergence
of the equation (2.4) we observe that the pressure satisfies the Poisson equation

∇2p = −∂ij(uiuj) (2.7)

where we have set the density to ρ = 1, ∂ij denotes ∂2

∂i∂j
and summation over repeated

index is understood. Thus after eliminating the pressure from equation (2.4) the Navier-
Stokes is rewritten as

∂tui + (δil − ∂il∇−2)∂j(ujul) = ν∇2ui. (2.8)

Remark that this is a non local equation due to the ∇−2 operator and the divergence free
condition of the velocity field is automatically assured provided that initial condition
satisfies ∇·u = 0. The pressure can be also eliminated from equation (2.4) introducing
the vorticity

ω = ∇× u. (2.9)

Taking the curl of Eq. (2.4) and using the vectorial identity ∇|u|2 = 2u · ∇u + 2u ×
(∇× u) leads to the vorticity equation

∂tω = ∇× (u × ω) + ν∇2‘ω. (2.10)

Note that in (2.10) the non-local character is also present. Indeed, if we want to recover
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u the same ∇−2 operator must be applied to the vorticity.
In the following we will assume periodical boundary conditions and for simplicity

we will use the box [0, 2π]3. This choice of boundary conditions is relevant to the study
of homogeneous turbulence. Equation (2.10) can be easily implemented numerically
using pseudo-spectral codes [14]. The Fourier transform will be denoted hereafter by
the hat symbol .̂

2.1.1 Conservation laws

In any dynamical system, the conserved quantities or the balance equations play a
fundamental role. The following global quantities,

E = 〈1
2
|u|2〉 Ω = 〈1

2
|ω|2〉 (2.11)

H = 〈u · ω〉 Hω = 〈ω · ∇ × ω〉, (2.12)

where 〈·〉 denotes here spatial average, are important in turbulence.
The quantities defined in (2.11-2.12) are the mean energy (per unit of mass) E, the

mean enstrophy Ω, the mean helicity H and the mean vortical helicity Hω.
It is straightforward to demonstrate that the quantities defined in (2.11-2.12) satisfy

the following balance equation

dE

dt
= −2νΩ,

dH

dt
= 2νHω. (2.13)

Remark that in the inviscid case the energy and helicity (we will omit hereafter the
word mean) are conserved quantities. The conservation of the helicity was discovered
by Moreau [24] in 1961 and its dynamical importance was also pointed out by Moffat
[25] in 1969. Since then several studies on the influence of helicity have been carried
out, see for example [3, 46, 47].

In two-dimensions the helicity identically vanishes and there is an additional con-
servation law for the enstrophy

dΩ

dt
= −2νP, (2.14)

where P = 〈1
2
|∇ × ω|2〉 is the palinstrophy. The phenomenology of two-dimensional

turbulence will be further discussed in chapter 3.
One of the most basic quantity of turbulence is the energy dissipation rate

ǫ = −dE
dt
. (2.15)

The local dissipation rate is defined as

εlocal =
1

2
ν
∑

ij

(∂iuj + ∂jui)
2. (2.16)
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Note that we have that ε = 〈εlocal〉 = 〈ν|ω|2〉. This relation can be simply derived by
rewriting equation (2.7) as

∇2p = Σ −W (2.17)

with Σ = 1
4

∑
ij(∂iuj + ∂jui)

2 and W = 1
4

∑
ij(∂iuj − ∂jui)

2. About this last equation
there is an interesting analogy that was stressed in reference [48] quoted here:

It is therefore natural to establish an analogy to electrostatics, with the pressure
corresponding to the potential resulting from negative and positive charges distributed
according to the square vorticity and the energy dissipation, respectively. The vorticity
concentrations thus act like sources of low pressure and their greatest relative concentra-
tion relatively to the energy dissipation concentrations acting as source of high-pressure
will be the cause of spatial correlation between turbulent activity and low-pressure re-
gions. This analogy motivated an experimental technic using small bubbles to visualize
vortex filaments [49]. Visualization of vortex lines are displayed in figure 2.1.

Fig. 2.1: Detail of two successive video images showing a side view of a vorticity filament
observed in a turbulent flow at Reynolds number of 80000. Its length is of order of 5
cm while its diameter is of the order of 1 mm. a) THe filament at its formation. b)
Its destabilization to form kinks. Taken from reference [49]

.

It is very useful to decompose the energy as the sum of the energy at each scale ℓ.
This can be easily done using the Fourier transform of the velocity field and summing
over wavenumbers of same modulus. In practice, the energy spectrum is defined by
summing |û(k′, t)|2 on spherical shells of width ∆k = 1,

E(k, t) =
1

2

∑

k−∆k/2<|k′|<k+∆k/2

|û(k′, t)|2 . (2.18)

By construction we have E =
∑

k E(k). The helicity spectrum is defined in the same
way replacing |û(k′, t)|2 by ω̂(k′, t) · û(−k′, t). Note the energy dissipation rate is
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expressed in term of the energy spectrum as

ǫ = 2ν

∫
k2E(k) dk. (2.19)

2.1.2 Richardson cascade and Kolmogorov phenomenology.

One of the most important concepts in turbulence is the idea of cascades. Suppose
that the system originally at rest is forced at a large-scale ℓI , then the system will
dissipate the energy following the balance equation (2.11). As at very early times
the velocity field created has only variation at large-scales the energy dissipation rate
will be very small. However, due to nonlinear terms, the energy will be carried to
small-scales down to a scale where the dissipation will be strong enough to stop the
cascade. This thus led to the physical image of the “Richardson cascade" [50]. The
energy injected in the fluid at scale ℓI “cascades" down to smaller scales. This process
stops when scales ℓd small enough for the energy to be dissipated into heat are reached.
One can picture this cascade as a succession of eddies instabilities happening at scales
ℓI = ℓ0 > rℓ0 > r2

0 > . . . ℓd with r < 1, as illustrated in figure 2.3

Fig. 2.2: Representation of the Richardson cascade. Figure taken from reference [21].

In 1941, Kolmogorov [40, 41, 42] found quantitative expressions for the intensity of
fluid motions at scale ℓ and for the dissipation scale ℓd.

Let us first remark that the Navier-Stokes equation is invariant under Galilean
transformations: if u(x, t) is a Navier-Stokes solution, then u(x − u0t, t) + u0 is also a
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solution. A constant advection has thus no dynamical effect on the evolution of the
flow. Accordingly, we define the intensity of the motions at scale ℓ to be the typical
velocity variation δuℓ over distance ℓ.

The Richardson cascade leads us to a first hypothesis:

• H0 : ε is independent of ν.

The only combination of δuI and ℓI with a correct dimension is δu3
I/ℓI . Thus

ε ∼ δu3
I

ℓI
. (2.20)

The scaling law for δu(ℓ) will be obtained using the following two hypotheses:

• HI : δu(ℓ) does not depend on ν (for ℓd < ℓ < ℓI)

• H2 : δu(ℓ) is a function of only ε and ℓ.

Dimensional analysis yields
δu(ℓ) ∼ (εℓ)1/3. (2.21)

Using (2.20), (2.21) can be written

δu(ℓ) ∼ δuI

(
ℓ

ℓI

)1/3

(2.22)

Let us remark that H2 amounts to say that δu(ℓ) is a function of ℓI only through ε.
Or, in other words, that there is no way by observing at scale ℓ to distinguish between
two turbulence having the same ε but driven at two different injection scales.

We can compute the Reynolds number associated with motions at scale ℓ

Rℓ ∼
δu(ℓ)ℓ

ν
=
ε1/3ℓ4/3

ν
.

Viscous dissipation will take place at scales ℓd such that Rℓd
∼ 1. It follows that

ℓd ∼ ν3/4ε−1/4. (2.23)

Using (2.20), (2.23) can also be written

ℓd ∼ ℓIR
−3/4
I . (2.24)

The scaling 2.21 leads to an energy spectrum

E(k) = CKε
2/3k−5/3. (2.25)

The constant CK is known as the Kolmogorov constant and was supposed to be uni-
versal. Its value has been found about 1.5 [51].
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The energy dissipation scales can also be expressed substituting the Kolmogorov
spectrum in the energy dissipation rate (2.19) and finding the wavenumber kd where
the dissipation is negligible. That corresponds to the equation

ε ∼ 2ν

∫ kd

ε2/3k1/3dk, (2.26)

which leads to
kd ∼ ε1/4ν−3/4 ∼ ℓ−1

d . (2.27)

These arguments are the most important contribution to the theory of turbulence
and the Kolomogorov spectrum (2.28) has been obtained many times in experiments
and numerical simulations [48, 52] (see also [21] chapter 5 or [53] chapter 6 for a longer
discussion).

Fig. 2.3: Left: Energy spectrum from [48] where the Kolmogorov −5/3-scaling extends be-
tween k = 6 and k = 60. Center: Energy spectrum form [52]. Right: Measurements
of one-dimensional longitudinal velocity spectra. Here η is the Kolomogorov dissipa-
tive scale. See reference [53] chapter 6 for details.

Finally it is important to remark that in the derivation of the Kolmogorov scaling,
the universality assumption leads that in the inertial range the energy spectrum only
depends on ε and k. In fact, if the Kolmogorov dissipation wave-number kd (Eq. 2.27)
is take in to account, simple dimension analysis modifies the spectrum as

E(k) = CKε
2/3k−5/3F (

k

kd

), (2.28)

where F is a universal function converging to 1 in the large Reynolds number limit
(k/kd → 0). This can leads to small modifications of the −5/3 Kolmogorov scaling law.

The universality of Kolmogorov phenomenology of turbulence was questioned by
Landau [54]. His objection is based on the idea that CK must depend on the detailed
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geometry of the production of turbulence. Suppose that we have a system with N sub-
systems, each one with different values of the mean dissipation rate εi and Kolmogorov
energy spectra Ei(k) in the inertial zone. For the whole system we can define

Ē(k) =
1

N

∑

i

Ei(k) and ε̄ =
1

N

∑

i

εi. (2.29)

Universality assumption implies that for the whole system we have Ē(k) = CK ε̄
2/3k−5/3.

It follows from the definitions (2.29) that

(
1

N

∑

i

εi

)2/3

=
1

N

∑

i

ε
2/3
i . (2.30)

The previous relation does not hold unless the εi are all equals. The contradiction
depends on the possibility of consider the different systems as being part of a whole
system. If such whole system cannot be consider then there is no way to question
the universality of the Kolmogorov constant. For a further discussion see section 4 of
chapter 6 in reference [21].

2.1.3 Kolmogorov’s four-fifths law

There is an important exact result on turbulence also due to Kolmogorov [42] known as
the 4/5-law that will be given here for completeness of the exposition. Under the hy-
pothesis of homogeneity and isotropy (also that ε remains finite in the high R numbers)
Kolmogorov derived the following result [21]

In the limit of infinite Reynolds number, the third order (longitudinal) structure
function of homogeneous isotropic turbulence evaluated for increments ℓ small compared
to the integral scale, is given in terms of the mean energy dissipation per unit of mas ε
by

〈
(
δu‖(r, ℓ)

)3〉 = −4

5
εℓ, (2.31)

where the longitudinal velocity increment is δu‖(r, ℓ) = [u(r + ℓ) − u(r)| · ℓ
ℓ
.

2.2 Truncated Euler equation

2.2.1 Basic definition

The truncated Euler equation was introduced for its statistical importance in references
[1, 7]. It is obtained performing a spherical Galerkin truncation at wave-number kmax
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on the Euler equation

∂tu + (u · ∇)u = −1

ρ
∇p (2.32)

∇ · u = 0. (2.33)

The Galerkin truncation consist in taking the Fourier transform of the Euler equation
and keeping only a finite number of Fourier modes. This yields the following finite
system of ordinary differential equations for the Fourier transform of the velocity û(k)
(k is a 3 D vector of relative integers satisfying |k| ≤ kmax):

∂tûα(k, t) = − i

2
Pαβγ(k)

∑

p

ûβ(p, t)ûγ(k − p, t), (2.34)

where Pαβγ = kβPαγ + kγPαβ with Pαβ = δαβ − kαkβ/k
2.

This time-reversible finite-dimensional dynamical system exactly conserves the en-
ergy E and helicity H.

2.2.2 Absolute equilibrium, a general discussion.

The truncated Euler equation is known to posses statistical stationary solutions called
absolute equilibria [1, 3, 7, 4]. These equilibrium states correspond to Gaussian proba-
bilities, that are solutions of the associated Liouville equation.

We will now review the Liouville equation and the absolute equilibrium that corre-
spond to a general dynamical system defined by

Ẋ(t) = F(X) (2.35)

where X is a n-dimensional vector and F is at least of class C1. The Liouville equa-
tion describes the time evolution of the phase space distribution function P (X), more
precisely the temporal evolution of the probability P (X)dnX of finding the system
in the phase space volume dnX at X. This equation express the conservation of the
probability current in phase space, and it reads:

∂P (X, t)

∂t
+
∑

i

∂

∂Xi

(Fi(X)P (X, t)) = 0. (2.36)

We say that the system satisfies a generalized Liuoville theorem if

∇ · F(X) = 0. (2.37)

This is of course the case of Hamiltonian systems, which are described by the vector of
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conjugate variables X = (q1, . . . , qn, p
1 . . . , pn) and the equation of motion

Xµ(t) = ǫµν
∂H

∂Xν

(2.38)

where H is the Hamiltonian and ǫµν the symplectic tensor. Equation (2.37) is auto-
matically satisfied noting that ǫµν is an antisymmetric tensor and H is supposed to be
C2.

For a system satisfying (2.37) the Liouville equations is expressed as

∂P (X, t)

∂t
+ F(X) · ∇P (X, t) = 0. (2.39)

Suppose now that the system (2.35) admits a constant of movement K, therefore
we have that

dK

dt
=
∂K

∂Xi

∂Xi

∂t
=
∂K

∂Xi

· F(X) = ∇K · F(X) = 0. (2.40)

It follows then from equations (2.39) and (2.40) that

Pst(X) =
1

Z
e−βK , (2.41)

where Z is a normalization constant, is a stationary probability provided that e−βK

is integrable over the whole phase space. The stationary probability (2.41) is known
as the absolute equilibrium. In general if the system has m conserved quantities, βK
must be replaced by a linear combination of the invariants and the system will have m
temperatures.

Truncated Euler absolute equilibria

For simplicity will now only consider flows with a vanishing helicity. The case of helical
flows will be covered in section 2.8. With vanishing helicity the only relevant invariant
of the truncated Euler equation is the kinetic energy

E =
1

2

∑

k

|û(k, t)|2. (2.42)

Note that as the energy is a quadratic functional of the velocity the absolute equi-
libria are simple Gaussian fields. However there are some more subtle facts about on
the statistical ensemble which merit some explanation [7].

To explicitly construct the ensemble we must note that due to the incompressibility
condition, the velocity satisfies k ·û(k) = 0 and therefore not all of the three component
of û(k) are independent. Furthermore the relation û(k)∗ = û(−k) obeyed by the
Fourier transform of physical space real field also impose supplementary constrains. To
avoid these difficulties we will treat the real and imaginary parts of û(k) separately by
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introducing two new real field defined by ûν(k) = âν(k) + ib̂ν(k). First note that as
the fields âν(k) and b̂ν(k) are reals âν(−k) = âν(k) and b̂ν(−k) = −b̂ν(k). Finally, it
is possible to construct two orthonormal vector n1(k) and n2(k) spanning the plane
perpendicular to k. We introduce then four new variables ar(k) = nr(k) · â(k) and
br(k) = nr(k) · b̂(k) for r = 1, 2. Defining the set of wavevectors

Λkmax
= {k| k < kmax ∧ (kx ≥ 0 ∨ (kx = 0, ky ≥ 0) ∨ (kx = ky = 0, kz ≥ 0)} (2.43)

we have by construction that {ar(k), br(k)|k ∈ Λkmax
, r = 1, 2} is a set of independent

real variables.

It is straightforward to show that the energy can be rewritten as

E =
∑

k∈Λkmax

2∑

r=1

[ar(k)2 + br(k)2] (2.44)

The absolute equilibria is thus simply

Pst (ar(k), br(k)|k ∈ Λkmax
, r = 1, 2) =

1

Z
e−βE. (2.45)

To reconstruct the momentum of the velocity field from the absolute equilibrium
(2.45), one possibility is to directly compute the orthogonal vectors n1(k), n2(k) and
make the calculations. A simpler way is by using vectorial arguments. Indeed, first
note that

〈ûν(k)ûµ(−k)〉 = 〈âν(k)âµ(−k)〉 + 〈b̂ν(k)b̂µ(−k)〉 = 2〈âν(k)âµ(k)〉 (2.46)

where here 〈·〉 denotes ensemble average. Observe then that 〈âν(k)âµ(k)〉 is a symmetric
tensor which vanish if one component is contracted with k. It follows then that

〈âν(k)âµ(k)〉 = PµνA(k) (2.47)

where Pµν = δµν − kµkν

k2 is the projector into divergence-free functions and A(k) is a
function to be determined. Contracting the index µ, ν we obtain

〈âµ(k)âµ(k)〉 = 2〈a1(k)2〉 = (d− 1)A(k) (2.48)

it follows that A(k) = 2/(d − 1)β where d is the dimension of the space. Finally the
the second order momentum reads

〈ûν(k)ûµ(−k)〉 =
2

(d− 1)β
Pµν (2.49)
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Note that equation (2.49) leads to the absolute equilibrium energy spectra

E(k) =
2Sd−1

(d− 1)β
kd−1 (2.50)

where Sd−1 is the surface of the unitary d-sphere (S2 = 4π and S1 = 2π). Note that the
relation 〈|û(k)|2〉 = 2

β
(deduced from 2.49) can be obtained directly by using a simple

equipartition argument.
It will be important for the discussion in the rest of this thesis to remember that

energy equipartition leads to a k2-power law scaling in three-dimension and k1 scaling
in two-dimensions.

2.3 Cascades and thermalization

We present here some results on the thermalization under the truncated Euler dynamics
first obtained in Cichowlas et al [5]. They studied the so called Taylor-Green vortex
defined by the initial data

uTG
x = sinx cos y cos z (2.51)

uTG
y = − cosx sin y cos z (2.52)

uTG
z = 0. (2.53)

This vortex has several symmetries which when are take into account allow speed up
of numerical computations by a factor 32 and corresponding gain in memory storage
(see appendix B). They performed direct numerical simulation (DNS) with a standard
pseudo-spectral code dealiased with the 2/3-rule [14]. In practice, this rule means that if
a resolution of Nd collocation points is used, the truncation wave number is kmax = N/3
(and notN/2). This lost in resolution is completely necessary in order to ensure that the
truncated system is exactly conservative (see Appendix B for details). In the following
when we refer to a numerical simulation with a resolution of Nd, kmax = N/3 must to
be understood.

What they found, after long time integrations using resolutions up to 16003, is that
there is a clear spontaneous scale separation in the energy spectrum. At small scales
the energy spectrum rise as k2. These thermalized modes create a kind of micro-world
providing an effective dissipation at large scales. A progressive thermalization was
observed, the k2-thermalized zone extend to large scales. The temporal evolution of
energy spectrum taken from reference [5] is displayed in figure 2.4.

For a deeper understanding of this thermalization observe that from figure 2.4 it
is natural to define the wave-number kth where the thermalized k2 power-law zone
starts. The temporal evolution of this wavenumber explicitly indicates the degree of
thermalization of the system. We can also define the thermalized energy which plays the
role of the energy dissipated from the large scales. Using kth(t) this energy is expressed
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Fig. 2.4: Energy spectra, top: resolution 16003 at t = (6.5, 8, 10, 14) (⋄, +, ◦, ∗); bottom:
resolutions 2563 (circle ◦), 5123 (triangle △), 10243 (cross ×) and 16003 (cross +) at
t = 8. The dashed lines indicate k−5/3 and k2 scalings. Figure taken from [5].

as

Eth(t) =
kmax∑

k=kth(t)

E(k, t). (2.54)

The temporal evolution of kth and Eth is displayed in figure 2.5. Note that Eth is an
increasing function and that at large times it contains almost all the available energy
E = 0.125.

Cichowlas et al [5] also gave an estimate of the characteristic time of effective dis-
sipation τk of modes close to kth. The derivation was based on the existence of a
fluctuation-dissipation theorem [8] that ensures that dissipation around equilibrium
has the same characteristic time scales as the equilibrium time correlation function.
They exactly determined the parabolic decorrelation time by

τ 2
k∂tt 〈uν(k, t)uµ(k′, 0)〉|t=0 = −τ 2

k 〈∂tuν(k, t)∂t′uµ(k′, t)〉|t=t′=0 = 〈uν(k, 0)uµ(k′, 0)〉,
(2.55)

where the time translation invariance has been used [20]. The decorrelation time is then
found replacing the time derivative of the field with the right hand side of truncated
Euler equation (2.34). The fourth order moment was then computed using the Wick
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Fig. 2.5: Time evolution of the ratio kth/kd at resolutions 2563 (circle ◦), 5123 (triangle △),
10243 (cross ×) and 16003 (cross +) . Figure taken from [5].

theorem and the absolute equilibrium relation for the second order momentum (Eq.
2.49). The correlation time they found is

τk =
C

k
√
Eth

(2.56)

with C = 1.43382. Using this time they proposed a spectral density of energy dissipation
of the form ε(k, t) = 1

τk
E(k, t). On the other hand the total dissipated energy can be

estimated by

εth(t) =
dEth

dt
. (2.57)

If the dissipation takes place in a range αkd around kd, equating ε(kd)αkd = ǫth yields
to

kd ∼
(
εth

E
3/2
th

)1/4

k3/4
max. (2.58)

It is expected that kd ∼ kth. The temporal evolution of εth(t) and kth/kd is displayed
in figure 2.6. Note that the dissipation of energy behaves as in Navier-Stokes viscous
flows (see for example [21] chapter 5) and presents a clear maximum near of tmax = 8.

A Kolmogorov spectrum followed by an equipartition range was also observed in
a spectral diffusion model describing the time evolution of the energy spectrum [55].
This model is a second order differential equation that admits an stationary solution
compatible with the simultaneous k−5/3-k2 scalings.

To summarize the results of [5], they showed that the evolution of large-scale initial
data relax toward the thermodynamic equilibrium under the truncated Euler equation.
The thermalization takes place first a small scales, these modes act as fictitious mi-
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croworld, or thermic bath, creating at large-scale effective viscosity. The large-scale
dynamics thus behave as a viscous fluid and they are compatible with a K41 scaling.

2.4 Eddy-damped quasi-normal Markovian theory

Many statistical theories attempt to find relations between the cumulants in order to
derive the statistics of the system. This is the case for example of the Kinetic theory
which describes the macroscopic properties of gases. One paradoxical fact of such
theories is that although the the departing equations are time reversible the final kinetic
equations have lost this property. This irreversible dynamics is usually characterized by
H-theorems and the corresponding molecular viscosities can be derived using Chapman-
Enskog expansions.

A typical example is the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierar-
chy where the Lioville equation for N particles is transformed after some manipulations
into a chain of equations. The first equation relates the one-particle density probability
with the two-particle density probability, the second equation the three with the two
and one density probability and so on. This quite complex system (as hard to solve
as the original Liouville equation) can be simplified under an additional hypothesis, a
closure relating the density probability functions. A simple case is the deduction of
Boltzmann equation where the fundamental assumption is the hypothesis of molecular
chaos : the velocities of colliding particles are uncorrelated, and independent of position
[56]. Thus that the two-particles density probability is expressed as the product of the
one-particle distribution.

This panorama is quite frequent in statistical mechanical. It also occurs when
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finding equation for the moments or cumulants of a field following non-linear evolution
equations, as Euler or Navier-Stokes. If the non-linearity is quadratic then typically
the equation for the n-order cumulant involves the (n + 1)-cumulant and also those
of lower order. Thus at order n the system cannot be solved without a closure. This
fundamental problem is perhaps one of the most difficult in turbulence theory.

2.4.1 Basic assumptions

In this section we will describe the main assumptions of one important closure in turbu-
lence: the eddy-damped quasi-normal Markovian theory (EDQNM) [7]. Some results
based on EDQNM will then be used in this thesis.

Quasi-Normal theory

The first (and reasonably) hypothesis is the isotropy of the flow. Under this assumption
the second order cumulant is completely determined by the energy spectrum E(k, t).
By direct manipulation of equation (2.34) we obtain that the energy spectrum satisfies

[
∂

∂t
+ 2νk2

]
E(k, t) = T (k, t) (2.59)

[
∂

∂t
+ ν(k2 + p2 + q2)

]
Tαβγ(k,p, t) = Fαβγ(k,p,q, t) (2.60)

where

T (k, t) = −4πk2kρ Im

[
∑

p

Tσρσ(k,p, t)

]
(2.61)

〈uα(k, t)uβ(p, t)uγ(q, t)〉 = Tαβγ(k,p, t)δ(k + p + q (2.62)

and Fαβγ(k,p,q, t) is a function of the fourth and second order cumulants.
The next assumption is to assume that the statistics of the Fourier modes are

approximately Gaussian with zero mean so the fourth order cumulant can be neglected
and therefore Fαβγ(k,p,q, t) is a function only of the second order moments (or E(k)).
However is it not assumed that third order moment vanishes (as they would be for zero
mean Gaussian variable). The application of the Gaussian hypothesis to the fourth but
not the third order moment is called quasi-Gaussian or quasi-normal assumption 2.

The right hand side of equation (2.60) being function only of lower order momentum
can be directly integrated:

Tαβγ(k,p, t) =

∫ t

0

e−ν(k2+p2+q2)(t−s)Fαβγ(k,p,q, s) ds. (2.63)

2 This assumption can be justified at low Reynolds number.
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Replacing (2.63) in equation (2.61) and then in (2.59) we obtain a closed equation for
the energy spectrum. The resulting equation is
[
∂

∂t
+ 2νk2

]
E(k, t) =

∫∫

△

(xy+z3)

∫ t

0

Θ0
kpq(t−s)[k2pE(p, s)E(q, s)−p3E(q, s)E(k, s)] ds

dp dq

pq
,

(2.64)
with Θ0

kpq(τ) = e−ν(k2+p2+q2)τ 3 and △ is a strip in p, q space such that the three
wavevectors k, p, q form a triangle. x, y, z, are the cosine of the angles opposite to k,
p, q. Figure 2.7 displays a scheme of such triangle and the integration region △.

k

p

q

Fig. 2.7: Left: scheme of a triangle formed by the vectors k, p and q. Right: △ strip. Taken
from [7].

The main problem of this equation is that the positivity of energy spectrum is not
preserved [4]. The problem is basically due to the long memory of the right hand side
of equation (2.64). Nonlinear effects can cut off the interaction more efficiently than
the viscosity.

Eddy-damped quasi-normal theory.

The solution to the above problem is to assume Markovianity. This done by dropping
the temporal dependence on the past of E(·, s) in equation (2.64) and replacing the
viscous time νk2 by an eddy-damped term ηk which takes into account the nonlinear
interaction. The resulting equation is
[
∂

∂t
+ 2νk2

]
E(k, t) =

∫∫

△

Θkpq(xy + z3)[k2pE(p, t)E(q, t)p3E(q, t)E(k, t)]
dp dq

pq

(2.65)

3 Note that
∫ t
0

Θ0
kpq(τ)[. . .] ds gives a characteristic time of order ∼ 1/ν(k2 + p2 + q2).
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where the characteristic time Θkpq is defined by

Θkpq =
1 − exp (−(ηk + ηp + ηq)t)

ηk + ηp + ηq

. (2.66)

In the Eddy-damped quasi-normal (EDQNM) theory the eddy damped ηk is defined
as

ηk = νk2 + λ

√√√√√
k∫

0

s2E(s, t) ds. (2.67)

and λ = 0.36 is the classical value needed to recover the good value for the Kolmogorov
constant CK .

An important property of EDQNM that it is compatible with both Kolmogorov
k−5/3 law and absolute equilibria. This equation has been the object of many studies
because it allows to obtain very large Reynolds number with less computational cost
than in DNS [4].

2.4.2 Thermalization

The EDQNM theory has also been used to study the thermalization. Bos and Bertoglio
[6] used the EDQNM equation in the inviscid case ν = 0 and similar results to DNS of
Cichowlas et al. [5] were obtained. Figure 2.8 displays the temporal evolution under
EDQNM of the energy spectrum. The k4-scaling at large scales correspond to their

Fig. 2.8: a) Temporal evolution of energy spectrum of EDQNM with a resolution correspond-
ing to 327683 of a DNS. Taken from [6].

choice of the initial condition. A large Kolmogorov spectrum range followed by an
equipartition zone is observed. The thermalized zone progressively extend to large
scales as in DNS of Cichowlas et al. [5].
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The EDQNM theory also delivers an analytic expression of the eddy viscosity that
was obtained by M. Lesieur and D. Schertzer [57]:

νeddy =
1

15

∫ kmax

ki

Θkpp

[
5E(p) + p

∂E(p)

∂p

]
dp. (2.68)

Bos and Bertoglio [6] used the concept of eddy-viscosity to explain the scaling of
kth during the thermalization. Using equation (2.68) in the thermalized range (E(k) ∼
Ethk

2/k3
max) we obtain that

νeddy ∼
√
Eth

kmax

. (2.69)

Replacing this eddy-viscosity in the Kolomogorov dissipation scale kd (Eq. (2.27)),
the dissipation scale proposed by Cichowlas et al. in equation (2.58) is immediately
recovered. Bos and Bertoglio [6] observed that the temporal evolution of kd is also in
good agreement with kth.

The EDQNM is thus a good tool for understanding the thermalization process of
truncated Euler dynamics

2.5 Hyper-viscous limit, bottlenecks and thermalization.

In 2008 Firsch et al. [9] considered the incompressible hyper-viscous Navier-Stokes
equation

∂tu + (u · ∇)u = −∇p− ν

k2α−2
G

(
−∇2

)α
u (2.70)

∇ · u = 0. (2.71)

and they investigated the hyper-viscous limit α → ∞. In equation (2.70) k−1
G has the

dimension of a length.
The hyper-viscous limit of equation (2.70) is closely related to truncated Euler

equation. Intuitively, if we write the dissipative term in Fourier space and take the
limit we find

νk2
G

(
k

kG

)2α

−−−→
α→∞

{
0 if k < kG

∞ if k > kG.

Therefore Fourier modes with wavenumbers smaller than kG do not feel any dissipation.
Those wavenumbers larger than kG are immediately damped and remains zero just as
in the truncated Euler equation. Of course, the preceding argument is intuitive and not
a mathematical demonstration. The interaction of modes with kG is a delicate point,
however these interactions are suppressed in the limit α → ∞ in the present case, as
argued in reference [9].

When equation (2.70) is forced at large scales it is expected that, for large times a
steady state will be reached with a balance between the energy input and the hyper-
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viscous dissipation. The behavior of this steady state in the hyper-viscous limit was
studied in [9]. To perform DNS for large α is extremely expensive if the different spectral
ranges need to be identified. The authors, using the idea that EDQNM reproduce well
the dynamics of truncated Euler [6], performed several simulations for different values
of α up to α = 729 of the corresponding EDQNM equation. Numerical results taken
from [9] are presented in figure 2.9. A remarkable fact is observed: a bottleneck takes

100 102 104 106
10

−2

10
−1

100

101

102

k

k
5
/3

 E
(k

)

 

 

102 104 105103

0.182

0.189

0.195 α=1

α=2

α=3

α=9

α=27

α=81

α=729

k
2+5/3

µ=1
k
G

=10
5

Fig. 2.9: Log-log plots of the compensated spectrum k5/3E(k) versus k from a numerical in-
tegration of the hyperviscous EDQNM Eq.(2.70) for different values of α; inset:
enlarged spectra showing a secondary bottleneck. Taken from [21].

place in the energy spectra after the inertial range and before to the exponentially fall
down at the dissipation scale. This bottleneck increases with α until it reaches a k2

scaling at large wavenumber as in the truncated Euler equation. Of course, as this is a
steady state no progressive thermalization will take place.

Bottlenecks in hydrodynamics turbulence due to an inefficient energy transfer before
the dissipative zone has been discussed in [10, 11, 12, 13] (for more reference see reference
[21,22] of Frisch et al.[9]). They also have been suggested in reference [15] to exist in
superfluid turbulence before entering in the Kelvin waves cascades zone. Frisch et al.[9]
thus reinterpreted bottlenecks as an incomplete thermalization.

Two systems where bottlenecks due to thermalized Fourier modes take place at
an intermediate range (not as a direct effect of truncation) will be reported in this
thesis. The first one is in the two-dimensional magnetohydrodynamics with a strong
background magnetic field in chapter 3 and the second one in the long-time dynamics
of truncated Gross-Pitaevskii equation studied in chapter 6
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2.6 Partial differential equation or a set of ordinary

differential equation with many degrees of freedom?

At this point we have developed the basic concepts to understand the relaxation toward
the equilibrium of spectrally truncated Euler flows. However there are some crucial
aspects in the truncated systems that are sometimes forgotten or even hidden in the
scientific literature. The very existence of the UV cut-off kmax is often presented just
as numerical artifact. The purpose of this section is to put in evidence, something that
becomes clear once explained.

When a smooth field is represented by a truncated Fourier series, there is an implicit
assumption supposed. It is that the energy spectrum of the field decays fast enough to
ensure that the differences between the truncated Fourier series and the original field
are exponentially small in kmax

4. This is the reason when simulating the Navier-Stokes
equation with a given resolution there is maximal Reynolds number permitted. The
Kolmogorov dissipative wavenumber (2.27) must satisfy kd < kmax.

The exponential decay becomes very clear if the smooth function can be developed
in Fourier series, by the Parseval theorem we have for a function f ∈ C∞ that

1

V

∫
|∂n

i f(x)|2dDx =
∑

k

k2n
i |f̂k|2 <∞,∀n ∈ N. (2.72)

It follows then that f̂k must decay faster than any power. This is of course not the case
of absolute equilibria where the energy spectrum grows at large k.

The exponential decay motivates the study of singularities by the logarithmic decre-
ment technics [58]. But in this technic there is a deeper conceptual point about the
singularities, clearly explained by Frisch et al in reference [18], whose title says that
the singularities are Not out of the Blue, meaning that singularities do not suddenly
appears, we can see them coming from the complex plane to the real axis. Indeed, if
we have a Fourier representation of the field

u(x, t) =
∑

k

eik·kûk(t), (2.73)

we can extend u(x, t) to the complex plane replacing x by z = x+iy as long as the series
converges. This automatically define the analyticity strip δ(t) such that if |y| < δ(t)
then the series converges. Therefore there is no singularity (in the real axis) if δ(t)
remains positive. That is why mathematical and numerical studies on singularity try
to bound δ(t) inferiorly (or show that it vanishes in a finite time) [16, 17, 18, 19, 20, 21].

It is thus of crucial importance to distinguish between two different regimes when
numerical integration is performed. It is known [14] that with a given resolution there
is a maximum time where the spectral convergence of truncation is ensured. This
time corresponds to the moment when the energy arrives to the smallest scale resolved

4 Difference meaning for instance the L2-norm distance.
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(∼ k−1
max)

5. Beyond this time, once the spectral convergence is lost, the original par-
tial differential equation (PDE) is no anymore, strictly speaking, approximated by the
truncated equation. Note that because of thermalization the field is described by an
equilibrium probability distribution (Gaussian for truncated Euler) and therefore is not
differentiable at any point.

A natural question then arises, why continue with the temporal integration beyond
this limit? The answer is that because beyond this time, we are integrating the trun-
cated equations, which are a well posed set of very large number of ordinary differential
equation which can share a statistical behavior at small scales with a kind of dissipative
large-scale dynamics closely related to the original PDE.

The existence of a thermalized zone is in general, a property of truncated systems
and therefore strongly depends on kmax. This is a quite general statements, however
bottlenecks related to thermalization can be present in a intermediate range if a very
inefficient energy transfer is present (see chapter 3 and 6).

To summarize this discussion, if a numerical integration of a PDE (in the strict
meaning of the word) is carried, as soon as the energy spectrum starts to rise up at
small scales, the integration must be stopped. Larger computers and resolutions are
then needed to continue. On the other hand, if one allows the system to thermalize
many interesting dynamical effects can be observed in the truncated system that is
related to but not strictly the original PDE.

2.7 Publication: “Two-fluid model of the truncated Euler

equations”

In this section we introduce the publication "Two-fluid model of the truncated Euler
equations" published during this thesis [35]. In this article we study in detail the
thermalization reported in [5, 20] and a quantitative description of the dissipation at
large scales in the truncated Euler equation is given.

The article is structured as follows. First, after reviewing the basic definitions, a
low-pass filter is introduced allowing the definition of a large-scale velocity v<(x) and
small-scale velocity v>(x). The filter is centered at kth thus v>(x) corresponds to
thermalized contribution of the velocity. The statistics of the fluctuation v>(x) are
then studied and shown to be quasi-normal.

Then, using the spectral filter a local heat is defined as

Q(r) =
1

2

[
(v>)2

]<
(r). (2.74)

This field contains the large-scales of the kinetic energy of the thermalized part of the

5 The smallest energy containing scale correspond in fact to the logarithmic decrement δ(t), ob-
tained by fitting with a least-square method the logarithm of the energy spectrum at large k with
log [c(t)k−m(t)e−2δ(t)]. The factor 2 in the exponential is quite obvious from the definition of the
analyticity strip.
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flow and satisfies by construction 〈Q(r)〉 = Eth. It is observed that this field is not
homogeneous and follows a diffusion process.

This results motivates the introduction a phenomenological two-fluid model of the
truncated Euler equation, where one of the fluids describes the large scale velocity
field and the other represents the thermalized high-wavenumber modes, described by a
temperature field T :

∂tv
<
i + v<

j ∂jv
<
i = −∂ip̃+ ∂jσ

′
ij (2.75)

∂iv
<
i = 0 (2.76)

∂tT + v<
j ∂jT = DT +

1

2c

(
∂jv

<
i + ∂iv

<
j

)
σ′

ij (2.77)

where

σ′
ij = F−1[νeff(k)(ikiv̂

<
j + ikj v̂

<
i )] (2.78)

DT = F−1[−k2Deff(k)F [T ]] (2.79)

and F [·] denotes the Fourier transform and σ′
ij is a generalized form of the standard

viscous strain tensor [54].
The effective viscosity νeff and thermal diffusion Deff(k) of the model are then de-

termined using the EDQNM closure and Monte-Carlo numerical computations. These
diffusivities are found to be time and wavenumber dependent.

Once this model is established, it is directly compared to the original data coming
from the temporal evolution of truncated Euler equation and it was found to be in good
agreement.
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Abstract

A phenomenological two-fluid model of the (time-reversible) spectrally-truncated 3D Euler equation is proposed. The thermalized small scales

are first shown to be quasi-normal. The effective viscosity and thermal diffusion are then determined, using EDQNM closure and Monte-Carlo

numerical computations. Finally, the model is validated by comparing its dynamics with that of the original truncated Euler equation.
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1. Introduction

It is well known that the (inviscid and conservative)

truncated Euler equation admits absolute equilibrium solutions

with Gaussian statistics, equipartition of kinetic energy among

all Fourier modes and thus an energy spectrum E(k) ∼
k2 [1]. Recently, Cichowlas et al. [2,3] observed that the

Euler equation, with a very large (several hundreds) spectral

truncation wavenumber kmax, has long-lasting transients which

behave just as those of high Reynolds-number viscous flow;

in particular they found an approximately k−5/3 inertial range

followed by a dissipative range. How is such a behaviour

possible? It was found that the highest-k modes thermalize at

first, displaying a k2 spectrum. Progressively the thermalized

region extends to lower and lower wavenumbers, eventually

covering the whole range of available modes. At intermediate

times, when the thermalized regime only extends over the

highest wavenumbers, it acts as a thermostat that pumps out

the energy of larger-scale modes. Note that similar k−5/3/k2

spectra have already been obtained within the Leith model

of hydrodynamic turbulence which is a simple differential

closure [4], and earlier similar mixed cascade/thermodynamic

states (but with spectra different from k−5/3/k2) were discussed

in the wave turbulence literature (e.g. [5]).

∗ Corresponding author.
E-mail address: krstulov@lps.ens.fr (G. Krstulovic).

The purpose of the present work is to build a quantitative

two-fluid model for the relaxation of the 3D Euler equation. In

Section 2, after a brief recall of basic definitions, the statistics

of the thermalized small scales are studied during relaxation.

They are shown to be quasi-normal. Our new two-fluid model,

involving both an effective viscosity and a thermal diffusion, is

introduced in Section 3. The effective diffusion laws are then

determined, using an EDQNM closure prediction and direct

Monte-Carlo computations. The model is then validated by

comparing its predictions with the behaviour of the original

truncated Euler equation. Finally Section 4 is our conclusion.

2. Relaxation dynamics of truncated Euler equations

2.1. Basic definitions

The truncated Euler equation (1) are classically obtained [1]

by performing a Galerkin truncation (v̂(k) = 0 for supα |kα| >

kmax) on the Fourier transform v(x, t) =
∑

v̂(k, t)eik·x of

a spatially periodic velocity field obeying the (unit density)

three-dimensional incompressible Euler equations, ∂t v + (v ·
∇)v = −∇ p, ∇ · v = 0. This procedure yields the following

finite system of ordinary differentials equations for the complex

variables v̂(k) (k is a 3 D vector of relative integers (k1, k2, k3)

satisfying supα |kα| ≤ kmax)

∂t v̂α(k, t) = − i

2
Pαβγ (k)

∑

p

v̂β(p, t)v̂γ (k − p, t) (1)

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.11.008
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where Pαβγ = kβ Pαγ + kγ Pαβ with Pαβ = δαβ − kαkβ/k2

and the convolution in (1) is truncated to supα |kα| ≤ kmax,

supα |pα| ≤ kmax and supα |kα − pα| ≤ kmax.

This time-reversible system exactly conserves the kinetic

energy E =
∑

k E(k, t), where the energy spectrum E(k, t)

is defined by averaging v̂(k′, t) on spherical shells of width

∆k = 1,

E(k, t) = 1

2

∑

k−∆k/2<|k′|<k+∆k/2

|v̂(k′, t)|2. (2)

2.2. Small scales statistics

Perhaps the most striking result of Cichowlas et al. [2] was

the spontaneous generation of a (time dependent) minimum of

the spectrum E(k, t) at wavenumber kth(t) where the scaling

law E(k, t) = c(t)k2 starts. Thus, the energy dissipated from

large scales into the time dependent statistical equilibrium is

given by

Eth(t) =
∑

kth(t)<k

E(k, t). (3)

In this section we use the so-called Taylor–Green [6] initial

condition to (1): the single-mode Fourier transform of uTG =
sin x cos y cos z, vTG = −uTG(y, −x, z), wTG = 0.

In order to separate the dynamics of large-scale (k < kth)

and the statistics of small-scales (k > kth) we define the low-

and high-pass filtered fields

f <(r) =
∑

k

F(k) f̂keik·r (4)

f >(r) = 1 − f <(r) (5)

where f (r) is an arbitrary field and f̂k its Fourier transform; we

have chosen F(k) = 1
2 (1 + tanh[ |k|−kth

∆k
]), with ∆k = 1/2.

This filter allows us to define the large-scale velocity

field v< and the spatially dependent thermalized energy (or

heat) associated to quasi-equilibrium. Using the trace of the

Reynold’s tensor [7], Ri j = 1
2 (v>

i v>
j )<, we define the local

heat as

Q(r) = 1

2

[

(v>)2
]<

(r). (6)

By construction of the filters, (4) and (5) the heat spatial average

is equal to the dissipated energy (3) 〈Q(r)〉 = Eth. Fig. 1a

shows a 2D cut of the heat Q on the surface z = π
2 , where a

cold zone is seen to be present at the centre of the impermeable

box (x = [0, π], y = [0, π], z = [0, π]). An isosurface of

the hottest zones is displayed on Fig. 1b. It is apparent on both

figures that Q(r) is not spatially homogeneous.

2.3. Heat diffusion

The simplest quantities to study in order to quantify the

evolution of Q, are the spatial average Q(t) = 〈Q(r, t)〉 and

the root mean square variation ∆Q =
√

〈(Q2 − 〈Q〉2)〉. These

quantities are shown in Fig. 2, where that the mean heat is seen

Fig. 1. Cut at z = π
2 of Q (a) and the isosurface Q(r) = 0.8Qmax = 0.42 (b).

Fig. 2. Plots of Q(t) (a) and ∆Q(t)/Q(t) (b); solid lines are the results of the

two-fluid model (see Section 3).

to increases in time, due to the energy coming from the large

eddies, as was shown precedently in [2]. The relative fluctuation

∆Q/Q is seen to decrease from 0.9 to 0.2.

The next natural question is related to the statistical

distribution of the small eddies v>: are they approximately

Gaussian, like an absolute equilibrium? A histogram of v>
x is

shown in Fig. 3. As the heat is not homogeneous, we also

computed the histogram of the normalized field ṽ>
x = v>

x /
√

Q

which seems to better obey Gaussian statistics as can be seen on
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Fig. 3. Histogram of v>
x and ṽ>

x and normalized cumulant s4 and s6 (odd

cumulants vanish because of symmetries).

Fig. 3 and comparing the firsts normalized cumulant sn = cn√
cn

2

(cn is the cumulant of order n) in the table.

3. Two-fluid model

We now introduce our phenomenological two-fluid model

of the truncated Euler equation. One of the fluids describes

the large scale velocity field and the other represents

the thermalized high-wavenumber modes described by a

temperature field T = Q/c (c is the specific heat,

explicitly given by c = 8k3
max). This model is somewhat

analogous to Landau’s standard two-fluid model of liquid

helium at finite temperature T where there is a natural cut-

off wavenumber for thermal excitations: the classical-quantum

crossover wavenumber kmax given by h̄kmaxcS = kBT (cS is

the sound velocity and kB Boltzmann’s constant). In Landau’s

model kmax is temperature dependent and the specific heat c is

proportional to T 3. In constrast, kmax and the specific heat are

constant in our model that reads:

∂tv
<
i + v<

j ∂ jv
<
i = −∂i p̃ + ∂ jσ

′
i j (7)

∂iv
<
i = 0 (8)

∂t T + v<
j ∂ j T = DT + 1

2c

(

∂ jv
<
i + ∂iv

<
j

)

σ ′
i j (9)

where

σ ′
i j = F

−1[νeff(k)(iki v̂
<
j + ik j v̂

<
i )] (10)

DT = F
−1[−k2 Deff(k)F[T ]] (11)

and F[·] denotes the Fourier transform. σ ′
i j is a generalized

form of the standard viscous strain tensor [8]. The precise

form of the anomalous diffusion terms νeff and Deff will be

determined below, in Sections 3.1 and 3.2.

The advection terms in Eq. (7) are readily obtained from

the Reynolds equations for the filtered velocity by remarking

that the diagonal part of the Reynolds stress can, because

of incompressibility, be absorbed in the pressure. Eq. (10)

represents a simple model of the traceless part of the Reynolds

tensor [7]. In the same vein, the advection terms in Eq. (9)

are readily obtained together with higher-order moments (see

equation (1) of Reference [9]). The dissipation and source terms

in (9) are thus simple models of the higher-order moments.

It is easy to show that in the present model 〈 1
2 v<2 + cT 〉

is conserved, corresponding to the energy conservation in the

truncated Euler equation.

As the fluctuations ∆Q/Q are small (see above) we

will furthermore assume that νeff and Deff only depend on

〈Q〉 = Eth. Thus the evolution of the filtered velocity v< is

independent of the fluctuations ∆Q. As [Eth] = L2T −2, simple

dimensional analysis yields the following form for the function

νeff and Deff:

νeff =
√

Eth

kmax
f

(

k

kmax
,

k0

kmax

)

;

Deff =
√

Eth

kmax
Ψ

(

k

kmax
,

k0

kmax

)
(12)

where k0 = 2π/Lp the smallest nonzero wavenumber (Lp is

the periodicity length, 2π in the present simulations).

3.1. EDQNM determination of viscosity

An analytical determination of function νeff is possible using

the eddy-damped quasi-Markovian theory (EDQNM) [10]. It

is known that this model well reproduces the dynamics of

truncated Euler Equation, including the k−5/3 and k2 scalings

and the relaxation to equilibrium [11].

The EDQNM closure furnishes an integro-differential

equation for the spectrum E(k, t):

∂ E(k, t)

∂t
= TN L(k, t) (13)

where the nonlinear transfer TN L is modeled as

TN L(k, t) =
∫ ∫

△

Θkpq(xy + z3)[k2 pE(p, t)E(q, t)

− p3 E(q, t)E(k, t)]dp dq

pq
. (14)

In (14) △ is a strip in p, q space such that the three wavevectors

k, p, q form a triangle. x , y, z, are the cosine of the angles

opposite to k, p, q. Θkpq is a characteristic time defined as

Θkpq = 1 − exp(−(ηk + ηp + ηq)t)

ηk + ηp + ηq

(15)

and the eddy damped η is defined as

ηk = λ

√

∫ k

0

s2 E(s, t)ds. (16)

Classically λ = 0.36 and the truncation is imposed omitting all

interactions involving waves numbers larger than kmax in (14).

A simple and important stationary solution of (13) is the

absolute equilibrium with equipartition of the kinetic energy

and corresponding spectrum E(k) ∼ k2.

To compute the EDQNM effective viscosity νeff we consider

an absolute equilibrium with a small perturbation added in

the mode of wavenumber kpert and study the relaxation to

equilibrium. The corresponding ansatz is E(p, t) = 3Eth

k3
max

p2 +
γ (t)δ(p − kpert) and we suppose Eth ≫ γ , so that the total

energy is almost constant and equal to Eth.

Using the long time limit of (15) and expanding the EDQNM

transfer (14) to first order in γ yields for the delta containing

part, after a lengthy but straightforward computation:
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Fig. 4. Effective viscosity νeff (a) and thermal diffusivity Deff (b) determined by Monte Carlo computations performed at different values of Eth and kmax

(see text).

TN L(k, t) = −γ (t)δ(k − kpert)k
2

√
Eth

kmax

√
30

λ
I

(

k

kmax

)

(17)

where I is given by the explicit integral

I (x) =
√

x

×
∫ 2−x

x

1

∫ 1

−1

(p2 − 1)(1 − q2)(q2 + p2(1 + 2q2))

(p2 − q2)(2
5
2 + ((p − q)

5
2 + (p + q)

5
2 ))

dqdp.

Using (13) and (17) and the basic definition of the two-fluid

model (7)–(11), we obtain

νeff(k) =
√

Eth

kmax

√
30

2λ
I

(

k

kmax

)

. (18)

The function f (x = k
kmax

, 0) in (12) is thus given by

f (x, 0) =
√

30

2λ
I (x). (19)

In the limit x → 0, it is simple to show that f has a finite

value f (0, 0) = 7√
15λ

. Thus the EDQNM prediction in the

small k/kmax limit is

νeff =
√

Eth

kmax

7√
15λ

, (20)

with 7√
15λ

= 5.021 for the classic value of λ = 0.36. This

asymptotic value can also be obtained from the EDQNM eddy

viscosity expression calculated by Lesieur and Schertzer [12]

using an energy spectrum E(k) ∼ k2.

3.2. Monte-Carlo determination of viscosity and thermal

diffusion

In order to numerically determine the effective viscosity

νeff(k) of the two-fluid model, we use a general-periodic code

to study the relaxation of an absolute equilibrium perturbed

by adding a stationary solution of the Euler equation. We thus

consider the initial condition

u = cos kx sin ky + ueq (21)

v = − sin kx cos ky + veq (22)

w = weq (23)

where the (solenoidal and Gaussian) absolute equilibrium

velocity field satisfies 〈u2
eq + v2

eq + w2
eq〉 = 2Eth.

The resulting amplitude of the rotation in (21)–(23) is found,

after a short transient, to decay exponentially in time. The

function νeff(k) is then obtained by finding the halving time

τk , for which v̂α(k, t0 + τk) = v̂α(k, t0)/2, with t0 chosen

larger than the short transient time. The effective dissipation

thus reads

νeff(k) = log 2/(k2τk). (24)

The values of νeff(k)kmax/
√

Eth are shown in Fig. 4a for dif-

ferent values of Eth, k, kmax. A very good agreement with the

EDQNM prediction is observed. Note that there is not depen-

dence in the dimensionless parameter k0/kmax (see Eq. (12)).

An exponential fit of all data in Fig. 4a gives

νeff = 5.0723

√
Eth

kmax
e−3.97k/kmax . (25)

Note that the limit k/kmax → 0 is consistent with the EDQNM

prediction (20).

Another simple numerical experiment can be used to

characterize the thermal diffusion: the relaxation of a spatially-

modulated pseudo-equilibrium defined by

〈

u2 + v2 + w2
〉

= 2Eth + 2ǫ cos(kx) (26)

with ǫ < Eth.

An x-dependent temperature can be recovered by averaging

u2+v2+w2 over y and z. Numerical integration of the truncated

Euler equation with the initial condition (26) produces an

amplitude ǫ that decays exponentially, as in the case studied for

the determination of effective viscosity. The thermal diffusivity

Deff is determined in the same way as in Eq. (24) and the

corresponding data are shown in Fig. 4b. A power-law fit gives

Deff = 0.7723

√
Eth

kmax
(k/kmax)

−0.74. (27)

The negative exponent in (27) is characteristic of hypodiffusive

processes.

We can define an effective Prandtl number as the ratio

Peff(k) = νeff(k)/Deff(k). The Prandtl number is plotted in
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Fig. 5. Effective Prandtl number Peff = νeff/Deff. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web

version of this article.)

Fig. 6. (a) Time decay of rotation (21) and (22) (upper curve) and temperature

modulation (26) (bottom curve). Solid line: truncated Euler equations

and dashed line: two-fluid model. (b) Time-evolution of energy spectra,

truncated Euler equation: solid lines and two-fluid model: dashed lines. (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 5, where the solid blue line is obtained using the EDQNM

prediction (20) and the fit (27) and the dashed red line is

obtained using the fits (25) and (27). Note that the Prandtl

vanishes in the the small k/kmax limit and verifies Peff < 1

for all wavenumbers.

3.3. Validation of the model

In this section, numerical integration of the the two-fluid

model equations (7)–(11) are performed using a pseudo-

spectral code. Time marching is done using second-order

leapfrog finite difference scheme and even and odd time-steps

are periodically recoupled by fourth-order Runge–Kutta. The

effective viscosity and diffusivity are updated at each time step

by resetting Eth = 〈Q〉. The obtained data is compared with

that directly produced from the truncated Euler equation.

The time-evolutions resulting from initial data (21) and (22)

(in red) and (26) (in blue), both normalized to one and with

the same value of Eth is displayed on Fig. 6a. Good agreement

with the two-fluid model is obtained in both cases and the

faster relaxation of the temperature modulation is related to the

smallness of Peff < 1.

We now compare, the evolution of non-trivial spectra of

the truncated Euler equation (1) and the two-fluid model. The

truncated Euler equation is integrated using the Taylor–Green

initial data. At t ∼ 8, when a clear scales separation is present,

the large-scale fields v< (see Eq. (4)) and the heat Q (Eq. (6))

are computed and used as initial data for the two-fluid model

(7)–(11). The subsequent evolution of the two-fluid model is

then compared with that of the truncated Euler equation.

Both spectra, plotted in Fig. 6b, are in good agreement. The

straights lines represents the thermalized zone E(k, t) = c(t)k2

in the spectrum of the truncated Euler equation, where c(t) is

determined by the condition 〈Q(t)〉 =
∑

k>kth
c(t)k2.

The value of Q(t) and ∆Q/Q are plotted in Fig. 2 (solids

lines); the evolution of the fluctuation of the temperature are

well reproduced too by the two-fluid model.

4. Conclusion

The thermalized small scales were found to follow a quasi-

normal distribution. The effective viscosity was determined,

using both EDQNM and Monte Carlo. (Hypo)diffusion of heat

was obtained and the effective Prandtl number found to vanish

at small k/kmax. The two-fluid model was found to be in

good quantitative agreement with the original truncated Euler

equations.
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40 2: Cascades and thermalization in truncated Euler equation

2.8 Publication: “Cascades, thermalization, and eddy

viscosity in helical Galerkin truncated Euler flows”

We present here the publication Cascades, thermalization, and eddy viscosity in helical
Galerkin truncated Euler flows made in collaboration with Pablo Mininni and Annick
Pouquet [36]. In this work the dynamics of the truncated Euler equations with helical
initial conditions is studied. The thermalization studied by Cichowlas et al [5] is thus
generalized. With helical flows the thermalization takes place trough a mixed energy
and helicity direct cascade.

The Kraichnan absolute equilibrium [3] with non vanishing helicity H is observed at
large wavenumber. These absolute equilibrium differs with the one studied in section
2.2.2 by the existence of two temperatures. The probability distribution is

Pst(u(k)) =
1

Z
e−αE−βH , (2.80)

and the energy and helicity spectra (equation (4) of the article) can be derived from it.
Strong helicity effects are found using initial data concentrated at high wavenumbers.

We then compare the truncated Euler run with a Navier-Stokes run and some simi-
larities are found. Using the argument that bottlenecks can be explained by an incom-
plete thermalization (section 2.5 or Ref. [9]) the excess of relative helicity found at small
scales in the viscous run (previously reported in [59]) is related to the thermalization
of the truncated helical Euler flow.

The differences that are observed in the behavior of truncated Euler and Navier-
Stokes spectra are qualitatively understood using the eddy viscosity (see Sec. 2.4,
Eq.2.69)

νeddy ∼
√
Eth

kmax

(2.81)

that, because of its explicit dependence on Eth, varies considerably during the thermal-
ization when compared to the constant viscosity of Navier-Stokes run.

Finally, using the scale and time dependent eddy-viscosity computed in the publi-
cation "Two-fluid model of the truncated Euler equations" [35] the large-scales of the
truncated Euler flow are shown to quantitatively follow an effective Navier-Stokes dy-
namics based on a variable time dependent eddy viscosity.
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I. INTRODUCTION

The role played by helicity in turbulent flows is not com-

pletely understood. Helicity is relevant in many atmospheric

processes, such as rotating convective �supercell� thunder-

storms, the predictability of which may be enhanced because

of its presence �1�. However helicity, which is a conserved

quantity in the three-dimensional �3D� Euler equation, plays

no role in the original theory of turbulence of Kolmogorov.

Later studies of absolute equilibrium ensembles for truncated

helical Euler flows by Kraichnan �2� gave support to a sce-

nario where in helical turbulent flows both the energy and the

helicity cascade toward small scales �3�, a phenomena re-

cently verified in numerical simulations �4–6�. The thermal-

ization dynamics of nonhelical spectrally truncated Euler

flows were studied in �7�. Long-lasting transients due to the

effect of thermalized small-scales were shown to behave

similarly to the dissipative Navier-Stokes �NS� equation.

Note that analogous dissipative mechanisms involving small-

scale thermalization were proposed in the contexts of lattice

gases and superfluidity. The thermalizing quantities are re-

spectively discrete Boolean entities �8� in lattice gases �9�
and sound waves in superfluid turbulence �10�. Also note that

the Galerkin truncated nonhelical Euler dynamics was re-

cently found to emerge as the asymptotic limit of high-order

hyperviscous hydrodynamics and that bottlenecks observed

in viscous turbulence may be interpreted as an incomplete

thermalization �11�.
In this paper we study truncated helical Euler flows and

consider the transient turbulent behavior as well as the late

time equilibrium of the system. Here is a short summary of

our main results. The relaxation toward a Kraichnan helical

absolute equilibrium �2� is observed for the first time. Tran-

sient mixed energy and helicity cascades are found to take

place, while more and more modes gather into the Kraichnan

time-dependent statistical equilibrium. The results obtained

in �7� for nonhelical flows are extended to the helical case.

Strong helicity effects are also found using initial data con-

centrated at high wave numbers. The concept of eddy viscos-

ity, as previously developed in �7,12�, is used to qualitatively

explain differences observed between the truncated Euler

and high-Reynolds number �fixed viscosity� Navier-Stokes.

Finally, the truncated Euler large scale modes are shown to

quantitatively follow an effective Navier-Stokes dynamics

based on a �time and wave-number dependents� eddy viscos-

ity that does not depend explicitly on the helicity content in

the flow.

II. METHODS

Performing spherical Galerkin truncation at wave-number

kmax on the incompressible �� ·u=0� and spatially periodic

Euler equation �tu+ �u ·��u=−�p yields the following finite

system of ordinary differential equations for the Fourier

transform of the velocity û�k� �k is a 3D vector of relative

integers satisfying �k��kmax�:

�tû��k,t� = −
i

2
P����k��

p

û��p,t�û��k − p,t� , �1�

where P���=k�P��+k�P�� with P��=���−k�k� /k2.

This time-reversible system exactly conserves the energy

E=�kE�k , t� and helicity H=�kH�k , t�, where the energy and

helicity spectra E�k , t� and H�k , t� are defined by averaging,

respectively
1

2
�û�k� , t��2, and û�k� , t� · �̂�−k� , t� ��=��u is

the vorticity� on spherical shells of width �k=1. It is trivial

to show from the definition of vorticity that �H�k , t��
�2kE�k , t�.

We will use as initial condition u0 the sum of the two

Arnold, Beltrami, and Childress �ABC� flows in the modes

k=3 and k=4,
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u0�x,y,z� = uABC
�3� �x,y,z� + uABC

�4� �x,y,z� , �2�

where the basic ABC flow is a maximal helicity stationary

solution of Euler equations in which the vorticity is parallel

to the velocity, explicitly given by

uABC
�k� �x,y,z� =

u0

k2
��B cos�ky� + C sin�kz��x̂

+ �C cos�kz� + A sin�kx��ŷ

+ �A cos�kx� + B sin�ky��ẑ� . �3�

The parameters will be set to A=0.9, B=1, C=1.1, and u0

= �A2+B2+C2�−1/2�1 /34+1 /44�−1/2. With this choice of nor-

malization the initial energy is E=0.5 and helicity H=3�4

� �33+43� / �34+44�=3.24.

Numerical solutions of Eq. �1� are efficiently produced

using a pseudospectral general-periodic code �13� with 5123

Fourier modes that is dealiased using the 2/3 rule �14� by

spherical Galerkin truncation at kmax=170. The equations are

evolved in time using a second-order Runge-Kutta method,

and the code is fully parallelized with the message passing

interface �MPI� library. The numerical method used is non-

dispersive and conserves energy and helicity with high accu-

racy.

III. SIMULATIONS

Figure 1 shows the time evolution of the energy and he-

licity spectra that evolve from Eq. �2� compensated by k5/3.

The plots clearly display a progressive thermalization similar

to that obtained in Cichowlas et al. �7� but with the nonzero

helicity cascading to the right.

The truncated Euler equation dynamics is expected to

reach at large times an absolute equilibrium that is a statisti-

cally stationary Gaussian exact solution of the associated

Liouville equation �15,16�. When the flow has a nonvanish-

ing helicity, the absolute equilibria of the kinetic energy and

helicity predicted by Kraichnan �2� are

E�k� =
k2

�

4	

1 − �2k2
/�2

, H�k� =
k4�

�2

8	

1 − �2k2
/�2

, �4�

where �
0 and �kmax�� to ensure integrability. The values

of � and � are uniquely determined by the total amount of

energy and helicity �verifying �H��2kmaxE� contained in the

wave-number range �1,kmax� �2�.
The final values of � and � �when total thermalization is

obtained� corresponding to the initial energy and helicity are

�=4.12�107 and �=7695. Therefore the dimensionless

number �2k2
/�2 is at most of the order 10−4 and Eq. �4� thus

lead to almost pure power laws for the energy and helicity

spectra, as is manifested in Fig. 1�d�. Figure 1 thus shows a

time evolving helical quasiequilibrium. The Kraichnan pre-

diction �Eq. �4�� for the high-k part of the spectra are shown

�in solid lines� in Fig. 1. The plot shows an excellent agree-

ment with the prediction.

To obtain stronger helicity effects requires a different type

of initial data. Modifying in the initial condition �Eq. �2�� the

wave numbers �3,4� to �28,30� and running with kmax=42

yields �2kmax
2

/�2=0.846. The final energy, helicity, and rela-

tive helicity spectra are displayed in Fig. 2, where strong

helicity effects are apparent. The results are again consistent

with the prediction given by Eq. �4�. However note that these

strong effects were obtained using initial data with k0

	kmax that precludes the cascading of the initial energy and

helicity to much higher wave numbers.

IV. THERMALIZED ENERGY AND HELICITY

In order to study the thermalization dynamics of the main

run presented in Fig. 1 in the spirit of Cichowlas et al. �7�,
we define kth�t� as the wave number where the thermalized

power-law zone starts. We define the thermalized energy and

helicity as
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Eth�t� = �
kth�t�

kmax

E�k,t�, Hth�t� = �
kth�t�

kmax

H�k,t� , �5�

where E�k , t� and H�t ,k� are the energy and helicity spectra.

The temporal evolutions of Eth ,Hth, and kth�t� are shown

in Fig. 3. The values of ��t� and ��t� during thermalization

can then be obtained from Eth�t�, Hth�t�, and kth�t� by invert-

ing the system of Eqs. �5� using
�2

�2 kmax
2 �1.

Figures 1 and 3 clearly display a progressive thermaliza-

tion similar to that obtained in Cichowlas et al. �7� but with

the nonzero helicity cascading to the right. The low-k part of

the compensated spectrum in Fig. 1 presents a flat zone that

amounts to k−5/3 scaling for both the energy and helicity

spectra. This k−5/3 behavior was predicted by Brissaud et al.

�3� in viscous fluids when there are simultaneous energy and

helicity cascades. The energy and helicity fluxes, 
 and �,

respectively, determine the prefactor in the inertial range of

the spectra:

E�k� 	 
2/3k−5/3, H�k� 	 �
−1/3k−5/3. �6�

Helical flows have been also studied in high-Reynolds num-

ber numerical simulations of the NS equation. Simultaneous

energy and helicity cascades leading to the scaling �Eq. �6��
have been confirmed when the system is forced at large

scales �4–6�.
The energy and helicity fluxes, 
 and �, at intermediate

scales in our truncated Euler simulation can be estimated

using the time derivative of the thermalized energy and he-

licity: 
th=
dEth

dt
and �th=

dHth

dt
, whose temporal evolutions are

shown in Fig. 3. The predictions �Eq. �6�� for the low-k part

of the spectra are shown �in dotted lines� in Fig. 1. The plot

shows a good agreement with the data. Note that Fig. 1�a�

corresponds to t=4.8 that is just after the time when both the

maximum energy and helicity fluxes �to be interpreted below

as “dissipation” rates of the nonthermalized components of

the energy and the helicity� are achieved, see Fig. 3. In this

way Eth and Hth determine the thermalized part of the spec-

tra, while their time derivative determines an inertial range.

V. DISSIPATION AND TRUNCATED EULER

We now compare the dynamics of the truncated Euler

equation with that of the unforced high-Reynolds number NS

equation �i.e., Eq. �1� with −�0k2û��k , t� added in the right-

hand side� using initial condition �2�. The viscosity is set to

�0=5�10−4, the smallest value compatible with accurate

computations using kmax=170. A behavior qualitatively simi-

lar to that of the truncated Euler equation is obtained �see

Fig. 3�b��. However, the maxima of the energy and helicity

fluxes �or dissipation rates� occur later and with smaller val-

ues.

We referred above to dissipation in the context of the

ideal �time-reversible� flow. A proper definition of dissipation

in the truncated Euler flow is now in order. Thermalized

modes in truncated Euler are known to provide an eddy vis-

cosity �eddy to the modes with wave numbers below the tran-

sition wave number �7�. It was shown in �12� that Monte

Carlo determinations of �eddy are given with good accuracy

by the Eddy damped quasinormal Markovian �EDQNM�
two-point closure, previously known to reproduce well direct

numerical simulation results �17�. For helical flows, the

EDQNM theory provides coupled equations for the energy

and helicity spectra �18�, in which using Eq. �4� in an analo-

gous way to �12� we find a very small correction of �eddy that

depends on the total amount of helicity and is of order

��eddy /�eddy	�kmax /�	10−2. Thus the presence of helicity

does not affect significantly the dissipation at large scales

and can be safely neglected in the eddy viscosity expres-

sions. Similar results are found in a large-eddy simulation

approach to Navier-Stokes dynamics: the adjunction of heli-

cal contributions to eddy viscosity was not producing signifi-

cant changes in the results �19� �note however that such is

not the case in the presence of rotation �20��.
The eddy viscosity has a strong dependence in k and can

also be obtained, in the limit k /kmax→0, from the EDQNM

eddy viscosity of Lesieur and Schertzer �21� using here an

energy spectrum E�k�	k2. The result reads as

�eddy =

Eth

kmax

7


15�
, �7�

with �=0.36 �the one parameter of the EDQNM approach,

chosen as to recover a Kolmogorov constant as measured in

the laboratory�. The eddy viscosity �eddy is thus an increasing

function of time, see Eth�t� in Fig. 3.

The time evolution of truncated Euler and Navier-Stokes

spectra are compared in Fig. 4. At early times the value of

Eth is very small and therefore the NS viscosity �0 is larger

than �eddy, as manifested by the NS dissipative zone in Fig.

4�a�. As Eth�t� increases, both viscosities become equal �t
=2.7�. Later, at t=3.8, the Navier-Stokes spectrum crosses
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FIG. 3. �Color online� �a� Temporal evolution of Eth �−�, Hth

�·−·�, and kth�t� �¯� normalized by their respective initial values.

Etot=0.5, Htot=3.24, and kmax=170. �b� Left vertical axis: temporal

evolution of 
th=
dEth

dt
����� and Navier-Stokes energy dissipation


=2�0�k=1
kmaxk2E�k� �• • •�. Right vertical axis: �th=

dHth

dt
����� and NS

helicity dissipation �=�0�k=1
kmaxk2H�k� �� � ��.
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the truncated Euler one �Fig. 4�b��. The eddy viscosity �eddy

is then much larger than �0 and the truncated Euler dissipa-

tive zone lies below the NS one, see Fig. 4�c�. This behavior

is also conspicuous when the spectra are compared at maxi-
mum energy-dissipation time �t=4.4 for truncated Euler and
t=5.6 for NS�, see Fig. 4�d�. The corresponding relative he-
licity spectra H�k� / �2kE�k��, compensated by 2k, is dis-
played in Fig. 4�d�. A flat compensated spectrum in Fig. 4�d�
is apparent throughout the inertial range �up to k	25� for
both the NS and the truncated Euler runs. This amounts to a
scaling of k−1 for the relative helicity, corresponding to the
previously discussed approximate k−5/3 law for both the en-
ergy and helicity spectra. As Kraichnan predicted, in the ther-
malized range of the truncated Euler run the compensated
spectrum of relative helicity goes as k2. At small scales the
NS compensated spectrum of relative helicity grows, possi-
bly as k1/2 or steeper, indicating, as previously noted �see
Fig. 16 of Ref. �6��, that the spectrum of helicity at small
scales is dropping slower than the spectrum of energy.

The decay of relative helicity in the inertial range can be
interpreted as a recovery of mirror symmetry in the small

scales. However, in the thermalized range of the truncated

Euler run, the smallest scales have maximum helicity. These

two results taken together, along with the arguments of

Frisch et al. �11� relating bottlenecks to incomplete thermal-

ization, strongly suggest that the excess of relative helicity

observed at small scales in viscous runs �the k1/2 law of Fig.

4�d�� is related to the phenomenon of thermalization in the

ideal runs.

The different time scales of behavior of the truncated Eu-

ler and Navier-Stokes runs apparent in Figs. 3 and 4 were

qualitatively explained above in terms of the time depen-

dence of �eddy. We now proceed to check more quantitatively

the validity of an effective dissipation description of thermal-

ization in truncated Euler. To wit, we introduce an effective

Navier-Stokes equation for which the dissipation is produced

by an effective viscosity that depends on time and wave

number.

We will use the effective viscosity obtained in �12� which

is consistent with both direct Monte Carlo calculations and

EDQNM closure and is explicitly given by
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�eff�k� = �eddye
−3.97k/kmax,

with �eddy given in Eq. �7�.
We thus integrate Eq. �1� with the viscous term

−�eff�k�k2û��k , t� added to the right-hand side. The parameter

Eth that fixes the eddy viscosity in Eq. �7� is evolved using

the effective NS dissipation by

dEth

dt
= �

k=1

kmax

2�eff�k�k2E�k� . �8�

This ensures consistency between the effective NS dissipated

energy and the truncated Euler thermalized energy that

drives �eddy.

To initialize the effective NS equation we integrate the

truncated Euler Eq. �1� with initial condition �2� until the

k2-thermalized zone is clearly present �t=4.77�. The value of

Eth is then computed using Eq. �5�. The low-passed velocity

u�, defined by

u��r� = �
1

2
�1 + tanh�2��k� − kth���ûkeik·r,

is used as initial data for the effective Navier-Stokes dynam-

ics.

Results of a truncated Euler and effective NS with kmax

=85 are shown in Fig. 5. In Fig. 5�a� the energy and helicity

dissipated in effective NS �Etot−E�t� and Htot−H�t�, respec-

tively� are compared to Eth and Hth showing a good agree-

ment. Next, the temporal evolution of both energy spectra

from the initial time t=5.3 �Fig. 5�b�� to t=20 �Fig. 5�e�� is

confronted, demonstrating that the low-k dynamics of trun-

cated Euler is well reproduce by the effective Navier-Stokes

equations.

VI. CONCLUSION

In summary, we observed the relaxation of the truncated

Euler dynamics toward a Kraichnan helical absolute equilib-

rium. Strong helicity effects were found using initial data

concentrated at high wave numbers. Using low-wave-

number initial conditions, transient mixed energy, and helic-

ity cascades were found to take place. Eddy viscosity was

found to qualitatively explain the different behaviors of trun-

cated Euler and �constant viscosity� Navier-Stokes. The ex-

cess of relative helicity at small scales in the viscous run was

related to the thermalization in the ideal runs, using an argu-

ment in the manner of Frisch et al. �11�. The large scale of

the Galerkin truncated Euler were shown to quantitatively

follow an effective Navier-Stokes dynamics based on a vari-

able helicity-independent eddy viscosity. As a result, with its

built-in eddy viscosity, the Galerkin truncated Euler equa-

tions appears as a minimal model of turbulence.
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3. CASCADES AND THERMALIZATION IN

TWO-DIMENSIONAL MAGNETOHYDRODYNAMICS

In this chapter we study the thermalization of flows described by the two-dimensional

Euler and magnetohydrodynamics (MHD) equations. It is shown that there are

some similarities with the three dimensional case, however the relaxation dynam-

ics is richer because of the existence of additional conserved quantities and different

cascades. Finally the thermalization of truncated MHD flows with and without a

constant magnetic field in the background. When a strong magnetic field is applied,

there is a slowdown in the transfer of energy toward small scales and a partial ther-

malization take place first in an intermediate range. An article in collaboration

with Annick Pouquet is in preparation.

3.1 Introduction: Two-dimensional magnetohydrodynamics

turbulence

Typically turbulent flows are intrinsically three dimensional and vortical structures are
not confined to a plane. However in certain cases there exist a clear scale separation
between variations of the fields in one direction and the two others. In these situations
one dimension can be safely neglected. This kind of flow idealize geophysical situations
as in the Earth atmosphere (with no magnetic field) where flows can be considered as
thin layers [60]. Two-dimensional magnetohydrodynamics (MHD ) flows can be also
relevant to describe solar winds or plasmas [61, 62].

Two-dimensional turbulence has played an important role in the understanding of
the underlying physics of turbulence. It has been extensively studied in the last decades
of the 20th century. In particular following the work of Kraichnan in the late 60’s [2],
in which the existence of an inertial range where the kinetic energy is carried from
small to large scales was predicted. Two-dimensional turbulence and MHD were also
largely studied using numeric simulations because of the relatively easiness to reach
large Reynolds numbers and reasonably credible scaling laws [63, 64, 65, 66, 67, 68].

The experimental set-up to achieve two-dimensional turbulence is very difficult, and
to obtain a genuine two dimensional system is a hard task. However this experimental
area has been very active and well developed studying, in particular, the inverse cascade
with soap film and stratified shallow layers of fluids [69, 70, 71, 72]. Large vortical
structures keeping their coherence for long periods of time were reported. Figure 3.1
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shows one of these structures in an experiment with thin soap film carried out by Couder
[69].

Fig. 3.1: Grid generated turbulence obtained by towing an array of cylinders through a still
horizontal soap film. Figure taken from reference [72].

This chapter is organized as follows, first a brief introduction to the basic equations
governing the dynamics of incompressible MHD flows is given. The second section is
devoted to the study of thermalization of non conducting flows described by the trun-
cated Euler equations. Finally, the third section the thermalization of MHD truncated
flows is studied.

3.1.1 Basic equations

When we consider conducting fluids such as plasmas or liquid metals, the flow includes
an electromagnetic field which generates currents in the fluid, creating forces and chang-
ing the flow itself. The basic hydrodynamics equations of motion for the fluid will then
be coupled with the Maxwell equations. The evolution of an incompressible conducting
flow of constant density ρ is given by the set of equations

ρ∂tu + ρ(u · ∇)u = −∇p+ j × b + νρ∇2u (3.1)

j =
1

µ0

∇× b (3.2)

∂tb = −∇× E (3.3)
1

σ
j = E + u × b (3.4)

∇ · u = 0 ∇ · b = 0 (3.5)

where b is the magnetic field, E the electric field, j the current, µ the magnetic perme-
ability in a vacuum and σ the electrical conductivity.
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Defining the magnetic diffusivity η = 1/σµ0, expressing E as a function of b and u

and using equations (3.2) and (3.4) we obtain the induction equations

∂tu + (u · ∇)u = −1

ρ
∇p− 1

ρµ0

b × (∇× b) + ν∇2u (3.6)

∂tb = ∇× (u × b) + η∇2b (3.7)

∇ · u = 0 , ∇ · b = 0. (3.8)

In the following the magnetic field will be normalized by
√
µ0ρ, hence u and b have

the same dimensions1. We will set ρ = 1 and consider the fields defined on the domain
[0, 2π]2 with periodic boundary conditions.

There are three important dimensionless numbers associated with the dynamics
of magnetohydrodynamics flows 2. They are the kinetic Reynolds number Rekin, the
magnetic Reynolds number Remag and the magnetic Prandtl number Pr defined by

Rekin =
uLL

ν
Remag =

uLL

η
Pr =

Remag

Rekin

=
ν

η
(3.9)

where uL and L are a characteristic velocity and length respectively. The first two
number express the ratio of inertial forces to viscous or magnetic diffusion while the
magnetic Prandtl number express the ratio of the diffusivities. The existence of an
inertial range is expected at large Reynolds numbers and the magnetic Prandtl number
varies within a very wide range for different physical system. It is of the order 10−5 in
the interior of planet and the VKS3 experiment, 10−2 at the convection zone of the sun
and 1028 in galaxy clusters.

In two-dimensions, due to incompressibility, equations (3.6-3.8) can be written in a
much simpler way by introducing a pseudoscalar potential ψ(x, y, t) called the stream
function and the magnetic potential a(x, y, t). Using these scalar potential the velocity
and magnetic field are expressed as

ux(x, y) = ∂yψ(x, y) uy(x, y) = −∂xψ(x, y), (3.10)

bx(x, y) = ∂ya(x, y) by(x, y) = −∂xa(x, y), (3.11)

Replacing the potentials into equations (3.6-3.8), after a little bit of algebra, the induc-

1 In fact, b is expressed in terms of Alvén velocity. See subsection 3.1.2 for an Alfvén waves
description.

2 There is another dimensionless number given by the quotient of magnetic and kinetic energy
〈|b|2〉/〈|u|2〉. This number will be of order one in the present chapter.

3 Von-Karman Sodium
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tion equations can be rewritten as

∂ψ

∂t
=

1

∇2
{ψ,∇2ψ} − 1

∇2
{a,∇2a} + ν∇2ψ (3.12)

∂a

∂t
= {ψ, a} + η∇2a. (3.13)

where {f, g} = ∂xf∂yg − ∂xg∂yf .

Note that by definition the vorticity and current satisfy

ω(x, y) = ∂yux(x, y) − ∂xuy(x, y) = −∇2ψ(x, y) (3.14)

j(x, y) = ∂ybx(x, y) − ∂xby(x, y) = −∇2a(x, y) (3.15)

and similarly the kinetic and magnetic energy read 1
2
(ux(x, y)

2+uy(x, y)
2) = 1

2
|∇ψ(x, y)|2

and 1
2
(bx(x, y)

2 + by(x, y)
2) = 1

2
|∇a(x, y)|2.

It is also important to remark that regrouping some terms in equation (3.13) and
reintroducing the velocity the magnetic potential satisfies

∂a

∂t
+ u · ∇a = η∇2a, (3.16)

and therefore a it is advected as a passive scalar by the fluid. However note that this
does not imply a similar behavior for the magnetic field b.

3.1.2 Alfvén waves

The MHD equations (3.6-3.8) are for incompressible fields, however when a strong
magnetic field is imposed to the system magnetic waves propagates in a plane per-
pendicular to its wave-vector. These perturbations of the magnetic fields are known
as Alfvén waves and when considering small amplitudes the MHD equations can be
treated perturbatively [73].

Suppose then that a strong constant magnetic field b0 aligned with x-axe is intro-
duce, replacing b → b0x̂ + b into equations (3.6-3.8) we obtain for the potentials the
following evolution equations

∂ψ

∂t
=

1

∇2
{ψ,∇2ψ} − 1

∇2
{a,∇2a} + b0

∂a

∂x
+ ν∇2ψ (3.17)

∂a

∂t
= {ψ, a} + b0

∂ψ

∂x
+ η∇2a. (3.18)

For small amplitudes of magnetic and velocity fields equations (3.17-3.18) satisfy the
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linear equations

∂ψ

∂t
= b0

∂a

∂x
+ ν∇2ψ (3.19)

∂a

∂t
= b0

∂ψ

∂x
+ η∇2a. (3.20)

For the ideal case these equations lead to the Alfvén waves

ψ(x, t) = ei(ω(k)t−k·x) (3.21)

a(x, t) = −ei(ω(k)t−k·x) (3.22)

with the dispersion relation ω(k) = b0kx = b0 · k (usually written as ω = b0k‖). Note
that these waves are exact solutions of the fully non-linear system (3.17-3.18) .

The presence of Alfvén waves modifies the energy spectra, collision between wave
packets leads to turbulent cascades. This will be further discussed in section 3.3.2.

The phenomenology of magnetohydrodynamics and hydrodynamics (for non con-
ducting fluid) are very different in the sense that cascades are not the same, scaling
laws differ and the inviscid invariants of Euler equation (ν = 0, η = 0, b ≡ 0) are not
recovered form the MHD invariants when b → 0. For this reason, each case will be
discussed in different sections of the present chapter.

3.2 Two-dimensional turbulence and thermalization

For a non conducting fluid, the induction equations (3.6-3.8) reduce to the Navier-Stokes
equation

∂tu + (u · ∇)u = ∇p+ ν∇2u (3.23)

∇ · u = 0 (3.24)

which, expressed in terms of the stream function, reads

∂ψ

∂t
=

1

∇2
{ψ,∇2ψ} + ν∇2ψ. (3.25)

When the viscosity in equation (3.23) or (3.25) is zero we recover the two-dimensional
Euler equation.

The conserved quantities of the Euler equation can be easily obtained by using the
identity valid for any periodic function f, g, h of class C1

∫
f{g, h}dx dy =

∫
h{f, g}dx dy. (3.26)
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It is straightforward to demonstrate the energy balance

dEkin

dt
= −2νΩ (3.27)

where Ekin = 1
2

∫
|u|2 d2x is the kinetic energy and Ω = 1

2

∫
ω2 d2x is the enstrophy. We

also have the followings balance relations for the casimirs

dCn

dt
=

d

dt

∫
1

n
ωn(x, y)dx dy = ν

∫
ωn−1∇2ωdx dy. (3.28)

One of the main differences between two and three dimensional inviscid incompress-
ible hydrodynamics is the appearance of an infinity of new conserved quantities in 2d.
In addition to the energy (helicity vanishes in 2d) the enstrophy (n = 2 in Eq.3.28)
plays a fundamental role as another conserved quantity in 2d turbulence.

3.2.1 Cascades

Perhaps one of the most striking theoretical results on two-dimensional turbulence, first
pointed out in the late 60’s by Kraichnan [2], is the possibility of an inverse cascade of
energy and a direct enstrophy cascade.

Denoting by ε the net rate of energy transfer and following Kolmogorov [40] assump-
tions of that the energy spectrum E(k) depends only on ε and k leads to the following
energy spectra for the inertial zone

E(k) = CKε
2
3k−5/3, (3.29)

where CK is a dimensionless constant. Alternatively, assuming that E(k) depends only
on the net rate of enstrophy transfer and wave-number k, the corresponding energy
spectrum reads

E(k) = CKrη
2
3k−3 (3.30)

with CKr another dimensionless constant. The scaling law (3.30) has actually a loga-
rithmic correction steaming from the highly non-local interactions.

Studying the transfer of energy and enstrophy Kraichnan showed that the −5/3
range leads to ε < 0 and the −3 range leads to η > 0, illustrating the direction of
enstrophy and energy cascade.

3.2.2 Two-dimensional truncated Euler equation

The truncated two-dimensional equation is defined here as in previous chapter by per-
forming a spherical Galerkin truncation at wave-number kmax on the incompressible and
spatially periodic two-dimensional Euler equation. Writing equation (3.25) in Fourier
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space the truncated two-dimensional Euler equation reads

∂ψk

∂t
=

1

k2

∑

p,q

(p × q)q2ψpψqδk,p+q (3.31)

with p × q = pxqy − pyqx, δk,p the Kronecker delta and where the Fourier modes ψk

vanish if |k| ≥ kmax.

This time-reversible (t → −t, ψk → −ψk) truncated dynamics also conserves the
kinetic energy E and the enstrophy Ω. However, because of truncation the conservation
of the other Casimirs is lost.

As usual the energy and enstrophy spectra are defined by summing |û(k′, t)|2 and
|ω̂(k′, t)|2 on spherical shells of width ∆k = 1,

E(k, t) =
1

2

∑

k−∆k/2<|k′|<k+∆k/2

|û(k′, t)|2 (3.32)

Ω(k, t) =
1

2

∑

k−∆k/2<|k′|<k+∆k/2

|ω̂(k′, t)|2 , (3.33)

with û(k, t) and ω̂(k, t) the Fourier transforms of the velocity and vorticity fields.

3.2.3 Absolute equilibrium

As in three dimension the 2d truncated Euler equation admits statistical stationary
solutions known as absolute equilibria. These equilibrium states are an equipartition
distribution for the constant of motion [74]

βΩ + αE =
∑

k

(βk2 + α)|u(k)|2. (3.34)

This equipartition distribution leads for the energy and enstrophy spectra to the
following formulae

E(k) =
2πk

α+ βk2
(3.35)

Ω(k) =
2πk2

α+ βk2
, (3.36)

where the factor 2πk in the numerator comes from the contribution of all wave-numbers
of magnitude k.

The temperatures α and β are determined by the total energy Ekin and enstrophy
Ωtot and different values of this quantities lead to very different scaling laws.
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3.2.4 Numerical simulations of two-dimensional truncated Euler

equation

Thermalization by direct cascade of enstrophy

In this section we numerically study the thermalization of large-scale initial data under
the evolution of the truncated Euler equation. The initial condition chosen for this
section is

ψ(x, y) =
1

ka

sin kax sin kay +
2

kb

cos kbx, (3.37)

with the parameters set to ka = 1 and kb = 2.
Numerical solutions of equation (3.31) are efficiently produced using a pseudo-

spectral general-periodic code with 10242 collocation points that is dealiased using
the 2/3 rule [14] by spherical Galerkin truncation at kmax = 341. The equations are
evolved in time using a fourth order Runge-Kutta method. The numerical method
used is non-dispersive and conserves energy and enstrophy with high accuracy. In the
following when we refer to a numerical simulation with a resolution of N2, kmax = N/3
must to be understood (see appendix B for details).

The temporal evolution of the enstrophy spectra is displayed in Figure 3.2. Observe
that, as in 3d, a clear scale separations also appears. The plots clearly display a
progressive thermalization with the enstrophy cascading to the right.
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Fig. 3.2: Temporal evolution of enstrophy espectra.
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In order to study the thermalization dynamics we define kth(t) as the wave-number
where the thermalized power-law zone starts and the thermalized energy and enstrophy
as

Eth(t) =
kmax∑

kth(t)

E(k, t) , Ωth(t) =
kmax∑

kth(t)

Ω(k, t). (3.38)

The temporal evolution of these two quantities together with kth is displayed on figure
3.3. Note that the thermalized enstrophy increase from zero at early times to an amount
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Fig. 3.3: Temporal evolution of Eth/Etot, ΩthΩtot, kth/kmax and ηth = dΩth

dt

of the order of the total enstrophy available in the system. Using the values of Ωth and
Eth we can compute the values of α and β in equation (3.35) and (3.36). The Kraichan
absolute equilibria are displayed as solid lines at the small scales of figure 3.2. Observe
that they curve down at the left of the thermalized zone. They correspond to the
k3-scaling of the high enstrophy containing absolute equilibria.

At large-scale an enstrophy cascade is taking place and we expect from equation
(3.2) a k−1-scaling law. The enstrophy dissipation rate ηth can be estimated defining
it as the time derivative of Ωth. The respective spectra are also displayed as solid lines
at large scales on figure 3.2. Observe that in the inertial zone both, scaling law and
prefactor, are in good agreement with Ω(k) ∼ η

2/3
th k−1.

Note that the relaxation dynamics of two-dimension is mutatis mutandis similar to
that of in 3d: a direct cascade of enstrophy (energy in 3d) followed by an equilibration
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of enstrophy (energy in 3d) at small scale. However a big difference can be observed in
the respective spectra before entering in the thermalized zone: there is no dissipative
zone in two-dimensions.

This difference can be clarified by simple scaling arguments. In three dimensions,
the effective (or eddy) viscosity generated by the thermalized scales was suggested to
scale as [6]

ν3d
eddy ∼

√
Eth

kmax

. (3.39)

Using this expression for the viscosity the Kolomogorv dissipation scale kd reads

kd ∼
(

ε

ν2d
eddy

3

)1/4

∼
(

ε

E
3/2
th

)1/4

k3/4
max. (3.40)

For the runs studied in 3d having a direct cascade of energy [5, 36] the wavenumber
scale ε/E3/2

th is of order (u3
I/ℓI)/u

3
I) = kI and does not depend on kmax. Therefore the

Kolmogorov dissipation scale is smaller that kmax allowing the existence of a dissipative
zone. In two dimensions the situation is different, if there exists an effective viscosity it
will be generated by the Fourier modes in the enstrophy thermalized zone. By dimension
analysis the effective viscosity would be

ν2d
eddy ∼

√
Ωth

k2
max

. (3.41)

In the same way, replacing ν2d
eddy in the Kolomogorv dissipation scale for an enstrophy

cascade we obtain

kd ∼
(
η1/3

ν2d
eddy

)1/2

∼
(
η1/3

Ω
1/2
th

)1/2

kmax. (3.42)

The number η1/3/Ω
1/2
th is of order for one large-scale initial data and therefore kd ∼ kmax

explaining the absence of a dissipative zone in two-dimensional runs.

More sophisticated arguments for the absence of dissipative zone during the ther-
malization in two-dimensions can be given by the calculations of the eddy viscosity with
EDQNM theory. The EQDNM eddy viscosity felt by the flow at the wave-number k
product of the thermalized modes between kth and kmax is given by the formula [74]

νeddy(k|kth) =
π

4

∫ kmax

kth

Θqqk
d

dq
[q2U(q)]dq, (3.43)

with U(q) the excitation per mode (E(k) = πkU(k)) and Θkpq a characteristic time. The
thermalized zone is characterized by an equipartition of enstrophy, it follows then that
q2U(q) ∼ β−1. We obtain thus a vanishing eddy viscosity in (3.43) and consequently
no dissipation zone could be observed..
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Intermediate-scale initial data

The relaxation toward equilibrium of large-scale initial data by a direct cascade of
enstrophy and existence of an inverse energy cascade naturally suggest the study of
thermalization of small-scale initial data looking how the energy is carried to large
scales.

For numerical study, we chose the initial condition (3.37) with ka = kb = 110 and
resolution of 10242. The temporal evolution of the energy spectrum is observed in
figure 3.4. The blue straight lines correspond to scalings k3 and k−3 while the red curve
correspond to the absolute equilibrium obtained with the total energy Etot = 5/4 and
the total enstrophy Ωtot = 18150 of this run. Observed that, near of t = 1 (Fig. 3.4.a),
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Fig. 3.4: Temporal evolution of energy espectra.

at small scales an enstrophy cascade is taking place and a compatible k−3 spectrum
followed of an enstrophy equilibration k−1 spectrum appears. At large scales the level
of the energy spectrum rises following a k3 scaling low. This correspond to effect of
the nonlinear interaction of two large wavenumbers beating a low wavenumber. This
forcing correspond to the so called eddy-noise [75]. It is apparent on figure 3.5, where
the energy flux is displayed at early times, that no inverse energy cascade is established.
Remark that there is a non constant negative flux for large scales and positive flux for
highest wave-numbers.

The discrepancies at small wave-numbers in figure 3.4 .d between the absolute equi-
librium are probably due theoretical formulae (3.35-3.36) suppose a continuos distribu-
tion of wave-number on the sphere at this is not valid for the first modes.
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Fig. 3.5: Temporal evolution of energy flux.

Having shown two ways to reach the equilibrium we conclude the study of the
thermalization under the dynamics of the two-dimensional truncated Euler equation.
The next section is devoted to the study of the whole 2d MHD truncated equations.

3.3 Two-dimensional magnetohydrodynamics and

thermalization

3.3.1 Two-dimensional MHD equations

We consider now the full set of equations (3.12-3.13) describing the magnetohydrody-
namic. In the ideal case (ν = 0, η = 0) these equations conserve the energy

E =
1

2

∫
d2x [|u|2 + |b|2] (3.44)

(3.45)

and also have an infinite numbers of conserved quantities of the form

C =

∫
d2x [f(a) + ∇2ψg(a)] (3.46)

where f and g are arbitrary functions.
Among these infinity conserved quantities of equation 3.46 two remarkable quantities

are obtained for f(a) = a2, g(a) = 0 and for f(a) = 0, g(a) = a. The last one is called
cross helicity and it is usually written as

Hc =

∫
d2xb · u. (3.47)

The conserved square magnetic potential will be denoted A.
It is possible to demonstrate that in the ideal case the presence of a constant mag-

netic field b0 implies that equations (3.17-3.18) only conserve the total energy and the
cross helicity.
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As Kraichnan remarked [74], the conserved quantities of MHD equations do not
go over into the conserved quantities of hydrodynamics equations except for the total
energy. We can expect then a very different behavior, even if the magnetic field is very
weak.

3.3.2 MHD turbulent cascades

Here we will summarize the different cascades present in two-dimensional MHD. An
inverse cascade of magnetic potential is associated with the conservation of the mean
square magnetic potential[63]. Defining A(k) as the magnetic potential spectrum the
corresponding Kolmogorov spectrum is

A(k) = CAε
2/3
A k−7/3 (3.48)

where εA is the rate of square magnetic potential transfer.
The same arguments applied to the energy lead to a −5/3 law for both magnetic

and kinetic energy spectrum

Ekin(k) ≈ Emag(k) ∼ CKε
2/3k−5/3. (3.49)

However Iroshnikov [76] and Kraichnan [77] argued that this similarity scaling is invalid.
The presence of Alfven waves introduce an other time scale, that must be take into
account. Under the hypothesis of isotropy the Iroshnikov-Kraichnan spectrum reads

Ekin(k) ≈ Emag(k) = CIK(εbrms)
1/2k−3/2. (3.50)

where brms is root mean square magnetic field.
When a strong magnetic field b0 is applied the assumption of isotropy is not further

valid. However, if the velocity and magnetic fluctuation are small compared with |b0|
the system can be treated analytically with the wave-turbulce approach. This theory
gives an anisotropic energy spectrum

E(k) ∼ k−2
⊥ . (3.51)

where k⊥ is the component of k perpendicular to b0.
Other authors [78] propose that even with a strong magnetic field, the anisotropic

Kolmogorov spectrum E(k) ∼ k
−5/3
⊥ can be recovered. This will be possible because

due to dynamical effects the eddy turnover time and the Alfvén wave time becomes
equal at each scales.

The correct scaling for MHD flow is far from being established, numerical simulations
can help to clarify the problem, however the difference between spectra (3.49) and
(3.51) are so subtle that to give a clear response requires a delicate study and very high
resolution simulations.
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3.3.3 Truncated MHD equations

The truncated MHD equations for the pair of Fourier modes ψk and ak are defined in
a similar way to the truncated Euler equation

∂ψk

∂t
=

1

k2

∑

p,q

(p × q)q2ψpψqδk,p+q − 1

k2

∑

p,q

(p × q)q2apaqδk,p+q (3.52)

∂ψk

∂t
= −

∑

p,q

(p × q)ψpaqδk,p+q, (3.53)

with p × q = pxqy − pyqx, δk,p the Kronecker delta and Fourier modes satisfying ψk =
0, ak = 0 if |k| ≥ kmax.

This truncated system only conserved the quadratic invariants

E =
1

2

∑

k

|uk|2 + |bk|2 =
1

2

∑

k

k2(|ψk|2 + |ak|2) (3.54)

Hc =
∑

k

uk · b−k =
∑

k

k2ψka−k (3.55)

A =
1

2

∑

k

|ak|2 (3.56)

The respective spectra can be defined in analogue way that in the previous section.

3.3.4 Absolute equilibrium of MHD flows

The absolute equilibrium are the equipartition distribution of the invariant [79, 74]

αE + βA+ γHc =
1

2

∑

k

(αk2|ψk|2 + 2γk2ψka−k + (αk2 + β)|ak|2) (3.57)

which leads the following equilibrium spectra

Eu(k) =
2πk

2

k2α+ β

k2 (α2 − γ2) + αβ
(3.58)

Eb(k) =
2πk

2

k2α

k2(α− γ)(α+ γ) + αβ
(3.59)

Hc(k) = −2πk
k2|γ|

k2(α− γ)(α+ γ) + αβ
(3.60)

Note that for small values of β and γ we have equipartition of energy Ev(k) = Eb(k) ∼
2πk/α.
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3.3.5 Numerical simulations of two dimensional truncated MHD

equations

Thermalization by direct cascade of energy

To study the thermalization by direct cascade of energy we use as initial conditions the
so called Orszag-Tang (OT) [64] vortex defined by the potentials

ψ(x, y) = 2(cosx+ cos y) (3.61)

a(x, y) = 2 cosx+ cos 2y. (3.62)

The short time dynamics is identical to that one studied in [65] at resolution of 5122

Fourier modes (until t = 1). We integrate the truncated MHD equation until t = 20
using a resolution of 10242. The temporal evolution of the kinetic and magnetic energy
is displayed on figure 3.6.
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Fig. 3.6: Temporal evolution of EKin and Emag. 10242 Fourier modes.

The temporal evolution of kinetic and magnetic energy spectra (compensated by
k3/2) are shown in figure 3.7. Observe on figure 3.6 that for large time the energies
converge to different values. However looking at the energy spectra in figure 3.7 we
observe that the difference comes from the large scales.

As in the case of large-scale initial data thermalization under truncated Euler equa-
tion evolution, a clear scale separation appears in the energy spectra. It is possible
then to define the thermalization wave-number kth and the thermalized total energy
(3.38). The temporal evolution of Eth is displayed in figure 3.8.a. In a similar way
it is also possible to define the thermalized kinetic and magnetic energy but they are
indistinguishable as it is apparent from the energy spectra on figure 3.7.

We can estimate then the energy dissipation rate as εth = dEth

dt
. To compare the

inertial zone with the spectra of equations (3.49) and (3.51) we first plot the temporal
evolution (εth/max [εth])

3/2 and (brmsε/max [brmsε])
1/2 in figure 3.8.b. The scaling laws

of equation (3.49) (solid green line) and (3.51) (solid blue line) are displayed in figure
3.7 at large scales. The numerical constant of spectra (3.49) and (3.51) have been set to
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Fig. 3.7: 3/2-compensated kinetic (blue) and magnetic (red) espectra.
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CK = 4 and CIK = 0.5 in order to fit large-scale part of the spectrum at the maximum
time of dissipation (Fig. 3.7.a). Remark that the large-scale zone is more in favor of
an Iroshnikov-Kraichnan spectrum than a Kolmogorov spectrum.

Remark that in figure 3.7 that as in the truncated Euler equation flows, there is no
dissipative zone. This can also be understood by using the EDQNM eddy viscosity. For
MHD flow the eddy viscosity acting on velocity field is the sum of the eddy viscosity



3.3. Two-dimensional magnetohydrodynamics and thermalization 63

νuu
eddy coming from velocity field contribution and νub

eddy coming from the magnetic field.
In the same way, the eddy viscosity acting on the magnetic field is the sum of νbu

eddy and
νbb

eddy with obvious notations. Explicitly these eddy viscosities read [63]

νuu
eddy(k|kth) =

π

4

∫ kmax

kth

Θqqk
d

dq
[qEu(q)]dq νub

eddy(k|kth) =
π

4

∫ kmax

kth

Θqqk[3Eb(q) − q
dEb

dq
(q)]dq

νBv
eddy(k|kth) = π

∫ kmax

kth

ΘqqkEu(q)dq νbb
eddy(k|kth) = −π

∫ kmax

kth

ΘqqkEb(q)dq (3.63)

Note that as in the thermalized zone Eu(q) ≈ Eb(q) the the eddy viscosity acting on the
magnetic field vanish, nevertheless the velocity field feels a non zero eddy viscosity at
large scale. By dimensional analysis this eddy viscosity will depend on Eth and kmax
as in formula (3.39). Following the same arguments as in the previous section we find
the corresponding dissipative scale for the Iroshnikov-Kraichnan spectrum4

kd =

(
ε

b0ν2
eddy

)1/3

∼
(

ε

b0Eth

)1/3

k2/3
max. (3.64)

The EDNQM eddy viscosity thus predicts the existence of dissipative zone that is
however not apparent on fig.3.7. This discrepancy may be due to the lack of resolution.
In 3D truncated Euler the dissipative becomes apparent at resolutions above 2563 (see
refs [35, 5]). We thus expect to observe a dissipative zone in 2D truncated MHD in
resolutions at or above 40962.

The thermalization by a direct cascade of energy presented here, is not a property
that is particular to the Orszag-Tang vortex, the same kind of computations were
performed with random large-scale initial data with different correlations and similar
results were obtained.

Thermalization of small-scale initial data

To study how the equilibrium is reached when the kinetic and magnetic energy is
initially located at small scales we perform numerical integration of truncated MHD
equations (3.52) and (3.53) using the initial condition

ψ(x, y) =
1

ka

sin kax sin kay +
2

kb

cos kbx (3.65)

a(x, y) =
2

qa
cos qax+

1

qb
cos qby, (3.66)

with ka = 160 , kb = 321 , qa = 319 and qb = 320. Simulation is performed using a
resolution of 10242.

4 kd is estimated using IK spectrum EIK in the inertial range: ε ∼ νeddy
∫ kd EIK(q)q2dq.
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The temporal evolution of magnetic potential spectrum is displayed in figure 3.9.
Solid lines show k−7/3 and k1 scaling laws. Observe that there is a very fast dynamics,
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Fig. 3.9: Temporal evolution of magnetic potential spectrum. Solid lines show k−7/3 and k1

scaling laws.

where early large-scale magnetic potential flow is generated, followed by an equipartition
of square magnetic potential.

Figure 3.10 shows the temporal evolution of kinetic (blue) and magnetic spectra
(red). The solid lines are k1 and k3-scaling. Just after the large-scale energy is generated
a progressive thermalization form large to small scale is produced. The final state
correspond to a equipartition of magnetic potential leading to the k3-scaling law and
a kinetic energy equipartition (k1-scaling). This absolute equilibrium correspond to
formulae (3.58-3.59) with γ ≈ 0 and αk2

max/β ∼ 1.

3.3.6 Alfvén waves, thermalization and FPUT

It is known that some linear system do not reach equilibrium as was indicated in one of
the first numerical simulation carried by Fermi, Pasta, Ulam and Tsingou in the early
50’s [80]. They studied a chain of pendulums with a weakly cubic coupling term. They
showed that this system does not go to equilibrium and that recurrences appear for the
Fourier modes. This can be explained because in the continuum limit the chain satisfies
the Korteweg-de Vries equation which is know to posses solitons.

In this section we investigate how the presence of a constant magnetic field modifies
the thermalization. Introducing a strong magnetic field the system becomes a quasi one-
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Fig. 3.10: Kinetic (blue) and magnetic (red) espectra. The solid lines are k1 and k3-scaling.

dimensional nonlinear wave system and the FPUT problem could thus play a relevant
role in the relaxation toward the equilibrium.

We consider the truncated MHD equations in presence of a constant magnetic field
b0 = b0x̂

∂ψk

∂t
=

1

k2

∑

p,q

(p × q)q2ψpψqδk,p+q − 1

k2

∑

p,q

(p × q)q2apaqδk,p+q + ib0kxak(3.67)

∂ak

∂t
= −

∑

p,q

(p × q)ψpaqδk,p+q + ib0kxψk, (3.68)

with p × q = pxqy − pyqx, δk,p the Kronecker delta and the Fourier modes satisfying
ψk = 0, ak = 0 if |k| ≥ kmax.

The problem of how the presence of Alfvén waves can inhibit or slowdown the
convergence to equilibrium was (indirectly) studied in reference [65]. The authors were
interested in the study of the regularity of 2D MHD equation using the logarithmic
decrement technic [58] (see chapter 2, section 2.6 for a brief discussion). If the fields are
regular then the energy spectra must decay at least exponentially at large wave-number
k. Based on this assumption the logarithmic decrement δ(t) is defined by the large k
asymptotic of energy spectra

Eu(k) ≈ Eb(k) ∼ e−2δ(t)k. (3.69)
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Therefore we have that the fields remain regular until time t∗ if and only if δ(t) > 0 for
all t < t∗. The authors conclude that up to resolution of 5122 there is not numerical
evidence of finite time singularities. Furthermore, when a constant magnetic field was
applied the δ(t)-increment seemed to be bounded away from zero. They attributed this
to the presence of Alfvén waves which can slowdown nonlinear interaction by prop-
agating the Elssaesser fields u + b and u − b in opposite directions parallel to the
imposed magnetic field. If the increment δ(t) is really bounded then no thermalization
can be achieved because, an energy equipartition spectrum is incompatible with the
exponential decay given by equation (3.70).

A more accurate observation of the increment δ(t) reveals that in contrast with the
case of absent magnetic field, where a temporal exponential decay of δ(t) is observed,
the constant magnetic field effectively slowdowns the decreasing of δ(t). However it is
not possible to conclude that it remains inferiorly bounded for all times. It is important
to remark at this point that when δ(t) is obtained from numerical data there is a natural
inferior bound beyond which the increment becomes senseless. More precisely δ(t) can
be considered as the smallest effective excited scale in the flow and it can not be smaller
than 2π/kmax.

We performed longer time integration of equations (3.67) and (3.68) for different
values of the magnetic field b0 using a resolution of 5122. The logarithm increment is
obtained as in reference [65] by fitting the long wave-number range with the spectrum

Etot(k) = c(t)k−m(t)e−2δ(t)k, (3.70)

and the minimum admissible value is determined by the relation δ(t)2kmax = 1.

The temporal evolution of δ(t) for different values of magnetic field is displayed in
figure 3.11 in log-lin plot. The orange line corresponds to the minimum admissible value
of δ(t) for a run of resolution 5122. Figure 3.11 reproduces results obtained in [65] until
t = 1.75 where the authors stop the numerical integration (indicated by the vertical
line). Note that, effectively, the presence of a magnetic field slowdowns the nonlinear
interaction and δ(t) remains above the minimum admissible value for a longer time, but
it finally cross the line near t = 3. From the study of the δ(t) increment we can deduce
that the system can reach the equilibrium even in presence of a strong magnetic field,
but that the convergence is indeed slowdown.

To show numerically the relaxation to equilibrium, we performed long-time integra-
tions of the OT vortex and used a weak (b0 = 0.5) and strong (b0 = 4 and b0 = 8)
magnetic fields. The temporal evolution of these runs is displayed on figure 3.12. The
two solid lines respectively correspond to k−3/2 and k1 scalings. Remark that at t = 1.2
in both runs the large scales are almost equal however the down of the transfer of energy
is evident at large wave-numbers. Posteriorly, an apparent bottleneck appears at an
intermediate range for the runs with a stronger magnetic field. Finally the three runs
start to thermalize at small scales.
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Fig. 3.11: Temporal evolution of logarithm increment δ(t) with b0 = 0.5 (+), b0 = 4 (×) and
b0 = 8 (•). Resolution of 5122.
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Fig. 3.12: Temporal evolution of energy spectrum with b0 = 0.5 (+), b0 = 4 (×) and b0 = 8
(•). Solid lines correspond to k−3/2 and k1 scalings. Resolution of 5122 collocation
points.
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3.4 Conclusions

In this chapter we have shown that the truncated Euler equation relax toward the
equilibrium in an analogous way to the three dimensional case. The main difference is
presence of a direct cascade of enstrophy. This quantity plays the role of the energy
in 3d, thermalizing in equipartition at large wave-number and yielding a k−1 law in
the inertial zone. A remarkable difference with the 3d situation is the absence of a
dissipative zone that is probably due to a vanishing 2d eddy viscosity.

The MHD flows were shown to thermalize under the truncated induction equation
evolution. Similar to the 3d case of non magnetic flows, the direct cascade of energy
leads to equipartition at large wave-number. An Iroshnikov-Kraichnan k−3/2-spectrum
is observed in the inertial zone of the 2d case. When a strong magnetic field is applied
the Alfvén waves slowdown the nonlinear interactions and a big bottleneck appears in
an intermediate zone before the equipartition range extends to the smallest scales.

It would be interesting, in a future work, to reproduce in higher resolutions the
simulations involving a strong magnetic field in order to try to determinate the different
scalings.



4. GENERATION AND CHARACTERIZATION OF

ABSOLUTE EQUILIBRIUM OF COMPRESSIBLE FLOWS.

This chapter is devoted to the characterization of absolute equilibrium of compress-

ible flows. As the energy is not quadratic the absolute equilibria are not simple

Gaussian fields. A general stochastic algorithm that produce realizations of abso-

lute equilibrium of Hamiltonian system is presented. This algorithm is then applied

to irrotational compressible flows.

In this chapter we summarize the results of the publication Generation and charac-
terization of absolute equilibrium of compressible flows [37] made in collaboration with
Carlos Cartes and Enrique Tirapegui.

4.1 Introduction: Compressible Flows

We consider here the compressible Euler equation

ρ∂tu + ρ(u · ∇)u = −∇p (4.1)

∂tρ+ ∇ · (ρu) = 0. (4.2)

For isentropic fluids the pressure is related to the enthalpy w by [54]

∇w =
∇p
ρ
.

In what follows we will assume that the fluid is barotropic dynamics. The pressure
field is thus a function of ρ. We also suppose that the density field is close to 1
throughout the fluid and therefore the dependence in ρ of w can be written as

w(ρ) = c2(ρ− 1)

where c is the speed of sound.

Equations (4.1-4.2) conserve the energy H, the density Q and the momentum P
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defined by

H =

∫
ddx[

1

2
ρ(x, t)|u(x, t)|2 + ε(ρ)]. (4.3)

Q =

∫
ddxρ(x, t) (4.4)

P =

∫
ddxρ(x, t)u(x, t) (4.5)

with ε(ρ) = c2

2
(ρ− 1)2 is the internal energy. Note that as the energy is not quadratic

the absolute equilibrium are not Gaussian and cannot be easily obtained. This point
motivates the introduction of a stochastic algorithm to obtain the stationary probability.
For small fluctuations (or low temperature) the absolute equilibrium was studied by
Kraichnan [81]. This algorithm will be generalized and used to study the truncated
Gross-Pitaevskii equation in chapter 6.

4.2 Algorithm to generate absolute equilibrium

Let H(pµ, q
µ) be a hamiltonian with corresponding canonical equations

q̇µ =
∂H

∂pµ

ṗµ = −∂H
∂qµ

. (4.6)

The stochastic algorithm is defined by the Langevin equation

q̇µ =
∂H

∂pµ

(4.7)

ṗµ = −∂H
∂qµ

− ν
∂H

∂pµ
+
√

2ηνξµ(t) (4.8)

〈ξµ(t)ξν(t
′)〉 = δµνδ(t− t′). (4.9)

and it is shown in the article that the stationary probability is

Pst(pµ, q
µ) =

1

Z
e−

1
η
H(pµ,qµ). (4.10)

This algorithm when is applied to a simple case of an anharmonic oscillator with the
Hamiltonian H(p, q) = p2

2m
+ mw2q2

2
+ αq4

4
gives a very natural dissipation proportional

to q̇.

Another algorithm is introduced based in a gradient stochastic relaxation which
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shares the same stationary probability:

q̇µ = −ν ∂H
∂qµ

+
√

2ηνξ1
µ(t) (4.11)

ṗµ = −ν ∂H
∂pµ

+
√

2ηνξ2
µ(t) (4.12)

〈ξs
µ(t)ξs′

ν (t′)〉 = δµνδss′δ(t− t′). (4.13)

Note that this algorithm is independent of the Hamiltionian structure. Both algorithm
are discussed and compared in the article.



72 4: Generation and characterization of absolute equilibrium of compressible flows.

4.3 Publication: “Generation and characterization of

absolute equilibrium of compressible flows”

In the first part of the article a short review on thermalization of truncated Euler
is given. Then the relaxation to equilibrium of irrotational compressible spectrally
truncated Euler flows is studied.

The stochastic algorithm is first applied to the incompressible Euler equation written
in terms of the Weber-Clebsch potentials λ̃i, µ̃i [82]. The statistics of the velocity field
written with the Clebsch potential are found to be Gaussian validating the algorithm.

Then, the algorithm is applied to irrotational compressible fluids. The absolute
equilibrium is characterized and the distribution is shown to be non-Gaussian.

Finally, we apply the algorithm with a large-scale modulated temperature a quasi-
equilibrium is obtained. Then in the relaxation under the dynamics of truncated irrota-
tional compressible equation, an oscillating behavior is observed suggesting the presence
of second sound waves.
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1. Introduction

It is well-known [Lee, 1952; Kraichnan, 1973;
Orszag, 1977] that the (inviscid and conservative)
incompressible Euler equation (Galerkin) truncated
by keeping only a finite number of spatial Fourier
harmonics admits absolute equilibrium solutions
with Gaussian statistics, equipartition of kinetic
energy among all Fourier modes and thus an energy
spectrum E(k) ∼ k2.

A recent series of papers [Cichowlas et al., 2005;
Bos & Bertoglio, 2006; Krstulovic & Brachet, 2008;
Krstulovic et al., 2009; Frisch et al., 2008], focusing
on the dynamics of convergence toward absolute
equilibrium, revived the interest in these matters by
producing new and unexpected results. It was found

in particular that in this time-reversible system
(long-lasting) transients are obtained that mimic
(irreversible) viscous flows.

The purpose of this paper is to extend these
recent results to compressible flows. The absolute
equilibrium is Gaussian in the case of incompress-
ible flows, because the conserved quantities (energy
and helicity) are quadratic. In the case of compress-
ible flows the conserved quantities are not quadratic
and the corresponding stationary probability is thus
non-Gaussian. It is therefore a nontrivial problem to
generate such a compressible absolute equilibrium
flow.

The main result of this paper is a new algorithm
to generate compressible absolute equilibrium.

3445
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We use the Hamiltonian Clebsch representation of
the velocity field to generate density and velocity
fields that follow by construction the absolute equi-
librium stationary probability.

The paper is organized as follows: in Sec. 2 we
give a short review of the recent series of papers on
the dynamics of convergence toward absolute equi-
librium in the incompressible case. In this section,
we also review several early papers related to the
compressible dynamics. Although these papers do
not explicitly refer to absolute equilibrium, they
implicitly do so by introducing wave turbulence
theory with ultraviolet cutoff. An explicit exam-
ple of relaxation toward equilibrium in the com-
pressible case is then given in Sec. 3. Our new
algorithm is detailed in Sec. 4. In Sec. 5, numer-
ical simulations are presented, first the algorithm
is verified in the incompressible case and then the
compressible absolute equilibria are studied. Pre-
liminary results relating to the presence of second
sound in constant pressure variable temperature
relaxation are given in Sec. 6. Finally Sec. 7 is our
conclusion.

2. A Short Review on Truncated

Euler

This section contains a short review of the recent
papers on the dynamics of convergence toward abso-
lute equilibrium in the incompressible case. We will
also review several early papers related to the com-
pressible dynamics. These papers do not explicitly
refer to absolute equilibrium, however, they implic-
itly do so by introducing wave turbulence theory
with an explicit ultraviolet cutoff that is mandatory
to make the theory finite.

2.1. Basic definitions

The truncated incompressible Euler equation is a
finite system of ordinary differential equations for
the complex variables û(k) (k is a 3D vector of rela-
tive integers (k1, k2, k3) satisfying supα|kα| ≤ kmax)

∂tûα(k, t) = − i

2
Pαβγ(k)

∑

p

ûβ(p, t)ûγ(k− p, t)

(1)

where Pαβγ = kβPαγ + kγPαβ with Pαβ = δαβ −
kαkβ/k

2 and the convolution in (1) is truncated to
supα|kα| ≤ kmax, supα|pα| ≤ kmax and supα|kα −
pα| ≤ kmax.

This system is classically obtained [Orszag,
1977] from the (unit density) three-dimensional
incompressible Euler equation

∂tu + (u · ∇)u = −∇p (2)

∇ · u = 0 (3)

by performing a Galerkin truncation (û(k) = 0
for supα|kα| > kmax) on the Fourier transform
u(x, t) =

∑
û(k, t)eik·x of the spatially periodic

velocity field u.
This time-reversible system exactly conserves

the energy E =
∑

k E(k, t) and helicity H =∑
k H(k, t), where the energy and helicity spectra

E(k, t) and H(k, t) are defined by

E(k, t) =
1

2

∑

k−∆k/2<|k′|<k+∆k/2

|v̂(k′, t)|2 (4)

H(k, t) =
∑

k−∆k/2<|k′|<k+∆k/2

û(k′, t) · ω̂(−k′, t)

(5)

with spherical shells of width ∆k = 1.

2.2. Incompressible flows

Cichowlas et al. [2005], Cichowlas [2005] observed
that the incompressible Euler equation, (Galerkin)
truncated as in (1) using a large spectral truncation
wavenumber kmax, displays long-lasting transients
behaving just like high-Reynolds number viscous
flow. In particular, they found an approximately
k−5/3 inertial range followed by a dissipative range.
Such a behavior is possible because the highest-
k modes thermalize at first, through a mechanism
discovered by Lee [1952], leading to a k2 spec-
trum. Progressively the thermalized region extends
to lower and lower wavenumbers, eventually cover-
ing the whole range of available modes. At inter-
mediate times, when the thermalized regime only
extends over the highest wavenumbers, it acts as a
thermostat that pumps out the energy of larger-
scale modes. The energy spectrum for different
values of kmax and its temporal evolution taken
from [Cichowlas, 2005] are shown in Fig. 1. In this
context, the spectrally truncated Euler equations
appeared as a minimal model of turbulence.

Bos and Bertoglio [2006] studied the evolution
of the turbulent energy spectrum for the inviscid
spectrally truncated Euler equations using Eddy-
Damped Quasi-Normal Markovian (EDQNM) clo-
sure calculations. They observed that the EDQNM
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Fig. 1. Energy spectra, left: resolution 16003 at t = (6.5, 8, 10, 14) (⋄, +, ◦, ∗); right: resolutions 2563 (circle ◦), 5123 (triangle
△), 10243 (cross ×) and 16003 (cross +) at t = 8. The dashed lines indicate k2 scaling. Figure taken from [Cichowlas, 2005].

closure reproduced the behavior found in the direct
numerical simulations of reference [Cichowlas et al.,
2005]. They showed that the dissipation range was
created by nonlinear interactions with the modes
in equipartition. They defined a nonlocal effec-
tive eddy viscosity, based on the most energetic
modes in the equipartition zone and the cutoff wave
number.

Krstulovic and Brachet [2008] proposed a
phenomenological two-fluid model of the (time-
reversible) spectrally-truncated 3D Euler equation.
They showed that the thermalized small scales
follow a quasi-normal distribution. They deter-
mined the effective viscosity and thermal diffusion,
using EDQNM closure and Monte-Carlo numer-
ical computations, yielding compatible values.
(Hypo)diffusion of heat was obtained using Monte
Carlo and the corresponding effective Prandtl num-
ber was found to vanish in the small k/kmax limit.
Overall, the phenomenological two-fluid model was
found to be in good quantitative agreement with
the original truncated Euler equations.

Krstulovic et al. [2008] studied for the first
time the relaxation toward a Kraichnan [1973]
helical absolute equilibrium. They found transient
mixed energy and helicity cascades and used the
concept of eddy viscosity, as previously devel-
oped in [Cichowlas et al., 2005] and [Krstulovic &
Brachet, 2008], to qualitatively explain the differ-
ences observed between truncated Euler and high-
Reynolds number (fixed viscosity) Navier–Stokes.
They finally showed that the truncated Euler
large scale modes quantitatively follow an effec-
tive Navier–Stokes dynamics based on a (time and
wavenumber dependent) eddy viscosity that did

not depend explicitly on the helicity content in
the flow.

Frisch et al. [2008] showed that the use of a
high power α of the Laplacian in the dissipative
term of hydrodynamical equations leads asymptot-
ically to truncated inviscid conservative dynamics
with a finite range of spatial Fourier modes. They
found that, just as in reference [Cichowlas et al.,
2005], the modes at large wavenumbers thermalize,
whereas modes at small wavenumbers obey ordi-
nary viscous dynamics. They interpreted the energy
bottleneck observed for finite α as incomplete
thermalization.

2.3. Compressible flows

Putterman and Roberts [1982, 1983] investigated
the solution to nonlocal dispersive classical hydro-
dynamics at the fourth order of nonlinearity. An
extra degree of freedom appeared as a result of the
additive conservation of wave number in the interac-
tion of beams of sound waves, representing a broken
symmetry. Imposing an ultraviolet cutoff to obtain
finite results, they found that the resulting nonlin-
ear high-order equations of motion for the back-
ground plus a distribution of sound waves were iden-
tical to the Landau two-fluid hydrodynamics used
to describe superfluid Helium.

Larraza and Putterman [1986] showed that if
a nonlinear medium is pumped with energy, in
the form of mechanical waves, sufficiently far from
equilibrium the wave turbulence can support a tran-
sition from diffusive to propagative energy trans-
port that bears deep similarities to second sound in
Helium.
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Connaughton et al. [2005] studied the forma-
tion of a large-scale coherent structure (a conden-
sate) in classical wave equations by considering
the defocusing nonlinear Schrodinger equation as
a representative model. They formulated a thermo-
dynamic description of the classical condensation
process by using a wave turbulence theory with
ultraviolet cutoff. They found a subcritical con-
densation process in 3D, and no transition in 2D.
Numerical simulations of the NLS equation with
stochastic initial conditions were found to be in
quantitative agreement with the equilibrium distri-
bution of the kinetic equation derived from the NLS
equation.

3. Relaxation in Compressible

Spectrally Truncated Euler Flows

In this section, we study the relaxation to equilib-
rium of irrotational compressible spectrally trun-
cated Euler flows. The dynamics is described by a
density field ρ and the velocity u that is represented
by the velocity potential φ. The dynamics is given
by the continuity and Bernoulli equations:

∂ρ

∂t
= −∇ · (ρ∇φ) (6)

∂φ

∂t
= −1

2
u2 − ∂ε

∂ρ
(ρ) (7)

u = ∇φ (8)

ε(ρ) =
1

2c2
(ρ− 1)2 (9)

where ε(ρ) is the internal energy of the fluid and c
the speed of sound, when ρ = 1.

This time-reversible system (t → −t, φ → −φ)
conserves the total mass, the momentum and the
total energy:

Q =

∫
ddxρ(x, t) (10)

P =

∫
ddxρ(x, t)∇φ(x, t) (11)

H =

∫
ddx

[
1

2
ρ(x, t)∇φ(x, t)2 + ε(ρ)

]
. (12)

As done in the incompressible case in [Cichowlas
et al., 2005; Krstulovic et al., 2009] we now study
the Galerkin truncated version of Eqs. (6)–(8) for

the Fourier transforms ρ̂(k, t) ≡ ρ̂k(t) and φ̂(k, t) ≡
φ̂k(t) of the dynamical variables. This spectrally

truncated system reads

∂ρ̂k
∂t

(t) =
∑

p

ρ̂k−p(t)φ̂p(t)k · p (13)

∂ρ̂k
∂t

(t) =
1

2

∑

p

φ̂k−p(t)φ̂p(t)(k − p) · p

+
1

c2
̂(1 − ρ)k(t) (14)

where the convolution in Eqs. (13) and (14) are
truncated to supα|kα| ≤ kmax, supα|pα| ≤ kmax and
supα|kα−pα| ≤ kmax. This system also exactly con-
serves Q, P and H.

Let us now define, as in the incompressible case
(4), the internal, kinetic and total energy spectra by,

Ekin(k, t) =
1

2

∑

k−∆k
2

<|k′|<k+∆k
2

ρ̂u−k′(t) · ûk′(t)

(15)

Eint(k, t) =
c2

2

∑

k−∆k
2

<|k′|<k+∆k
2

| ̂(ρ− 1)k′ |2(t)

(16)

E(k, t) = Ekin(k, t) + Eint(k, t) (17)

By construction we have H =
∑

k E(k, t). Note that
the systems (13) and (14) (as well as (6)–(8)) pos-
sesses a Hamiltonian structure. Equations (13) and
(14) can thus be rewritten using the Hamiltonian

H =
∑

k

1

2
ρ̂ukû

∗
k +

1

2c2
| ̂(ρ− 1)k|2 (18)

as the canonical equations

∂ρ̂k
∂t

(t) =
∂H

∂φ̂∗k
,

∂φ̂∗k
∂t

(t) = − ∂H

∂ρ̂k
, (19)

where ρ̂k, φ̂
∗
k are thus conjugate variables.

As in incompressible truncated Euler, this
system admits a stationary statistical solution
with a probability distribution function given by
P{ρ̂k, φ̂k} ∼ e−βH . As H is not quadratic, the
p.d.f. will not be Gaussian and no equipartition can
be expected in the energy spectrum (17) because

of the correlation between ρ̂k and φ̂k for different
wavenumbers. However, rewriting ρ̂k = 1 + ρ̂′k, the
Hamiltonian can be written as H = HG + HNG
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with

HG =
∑

k

1

2
k2|φ̂k|2 +

1

2c2
|ρ̂′k|2 (20)

HNG =
∑

k

1

2
ρ̂′ukû

∗
k. (21)

Note that for large values of β, HNG can be
safely neglected and statistics becomes Gaussian
and equipartition, yielding in this limit E(k) ∼ k2

(in three dimensions).
It is well known that a conservative non-

linear systems with a high number of freedom
degrees may, in general, not relax to an equilib-
rium state and time periodic localized structures
can appear, as in the classical Fermi–Pasta–Ulam–
Tsingou problem [Fermi et al., 1955]. In order to
study the relaxation to the equilibrium of truncated
irrotational compressible flows and avoid long tran-
sient we will use an initial condition, close to the
equilibrium state, given by a Gaussian field per-
turbed by a large-scale modulation of the velocity
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Fig. 2. Temporal evolution of compressible energy spectra (15)–(17). t = 0, 0.94, 6.19, 18.69, 31.19, 37.44, 43.69. Solid line
represents a k2 spectrum. (a) Total energy spectrum. (b) Kinetic energy spectrum. (c) Internal energy spectrum. (d) Total
kinetic and internal energy spectra for t = 43.69.

potential. This initial condition reads

ρ0(x, y, z) = 1 + ρ′G(x, y, z) (22)

φ(x, y, z) =
1

8
√

3
(sin 4x+ sin 4y + sin 4z)

+φG(x, y, z) (23)

where ρ̂′Gk, φ̂Gk are distributed with a probability
proportional to e−βHG .

Numerical solutions of Eqs. (13) and (14)
are efficiently produced using a standard pseudo-
spectral general-periodic code with 1283 Fourier
modes that is dealiased using the 2/3 rule [Got-
tlieb & Orszag, 1977] by a Galerkin truncation at
kmax = 42. The numerical method used is nondis-
persive and conserves mass, momentum and energy
with high accuracy. The value of β is chosen large
enough to ensure that there are no points with neg-
ative ρ. The total initial energy (18) of this run is
H = 2.136.

Figure 2 shows the temporal evolution of the
energy spectrum. Note that the system effectively
relaxes but at the final time t = 43.69 in Fig. 2(d),
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there is no clear k2 law in the spectrum. This fact
can be understood by noting that the k2 law is
a consequence of equipartition of energy which, in
turn, requires that the total energy can be written
as a sum of independent contributions from each
mode, as in the incompressible case (4). In the com-
pressible case, equipartition will not be obtained
because of the non-Gaussian term (21).

An algorithm to generate such a general
non-Gaussian absolute equilibria thus appears of
practical interest for many applications such as
the determination of eddy-viscosities or a two-fluid
description. We now turn to this general problem.

4. New Algorithm to Generate

Absolute Equilibrium

4.1. Stochastic processes and

stationary probability of

Hamiltonian systems

We want to construct a stochastic process with a
probability distribution that converges to the sta-
tionary probability given by the Boltzmann weight.
This can be done in a canonical way for any Hamil-
tonian system. Let H(pµ, q

µ) be a Hamiltonian with
the corresponding canonicals equations

q̇µ =
∂H

∂pµ
, ṗµ = − ∂H

∂qµ
(24)

In what follows, we suppose the existence of a stable
equilibrium point.

Let us first modify the equations by adding a
dissipative term to the equation for ṗµ

q̇µ =
∂H

∂pµ
(25)

ṗµ = − ∂H

∂qµ
− ν

∂H

∂pµ
(26)

with ν > 0. The dissipation introduced here is the
most natural in a physical sense, as we will show
later in the basic example of an oscillator. The
dynamic has an evident Lyapunov functional given
by the Hamiltonian H:

dH

dt
=
∂H

∂qµ
q̇µ +

∂H

∂pµ
ṗµ = −ν ∂H

∂pµ

∂H

∂pµ
≤ 0, (27)

therefore the system will converge to the stable
equilibrium point.

Finally, let us introduce a white Gaussian forc-
ing term. The Langevin equation, which completely

defines the stochastic process, reads

q̇µ =
∂H

∂pµ
(28)

ṗµ = − ∂H

∂qµ
− ν

∂H

∂pµ
+
√

2ηνξµ(t) (29)

〈ξµ(t)ξν(t
′)〉 = δµνδ(t− t′). (30)

Note that when η and ν are small, the system (28)–
(30) is a perturbation of the original Hamiltonian
dynamics. In what follows, this system will be called
the damped Hamiltonian method.

The Fokker–Planck equation for the evolution
of the transition probability P (pµ, q

µ) of this pro-
cess is [Langouche et al., 1982; van Kampen, 2001]

∂

∂t
P = − ∂

∂qµ

[
∂H

∂pµ
P

]

+
∂

∂pµ

[
∂H

∂qµ
P + ν

∂H

∂pµ
P + ην

∂P

∂pµ

]
(31)

= {H,P} + ν
∂

∂pµ

[
∂H

∂pµ
P + η

∂P

∂pµ

]
(32)

where {f, g} = (∂f/∂qµ)(∂g/∂pµ) − (∂f/∂pµ)(∂g/
∂qµ) is the Poisson bracket. As H is a conserved
quantity of the original Eqs. (24), any function
of a conserved quantity will vanish in the Poisson
bracket and hence a stationary probability reads

Pst(pµ, q
µ) =

1

Z
e−

1
η
H(pµ,qµ). (33)

Let us now remark that there exists another simple
stochastic process which shares the same station-
ary probability. Its dynamics is given by gradient
equations:

q̇µ = −ν ∂H
∂qµ

+
√

2ηνξ1µ(t) (34)

ṗµ = −ν ∂H
∂pµ

+
√

2ηνξ2µ(t) (35)

〈ξs
µ(t)ξs′

ν (t′)〉 = δµνδss′δ(t − t′) (36)

however, we believe that the process (28)–(30) is of
more physical and theoretical interest.

In the case of a Hamiltonian depending on
fields, the generalization of Eqs. (28)–(30) are triv-
ial replacing partial derivatives by functional deriva-
tives and the δµν Kronecker delta in Eq. (30) by a
Dirac delta. It is important to remark that abso-
lute equilibria will formally lead, in this case, to
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infinity energy solutions, therefore a UV cut-off
must be understood leading to truncated equations
in Fourier space.

4.1.1. A simple example: Anharmonic

oscillator

Let us first consider the example of an anhar-
monic oscillator, the Hamiltonian for this system
is H(p, q) = (p2/2m) + (mw2q2/2) + (αq4/4). The
Langevin equation (28)–(30) reads

q̇ =
1

m
p (37)

ṗ = −mω2q − αq3 − ν

m
p+

√
2ηνξ(t) (38)

〈ξ(t)ξ(t′)〉 = δ(t − t′). (39)

These equations can be rewritten as

mq̈ = −mω2q − αq3 − νq̇ + ξ(t) (40)

〈ξ(t)ξ(t′)〉 = δ(t− t′) (41)

and they are just the equations of a classical forced-
damped anharmonic oscillator. In this sense, the
dissipation introduced in (26) is very natural and
with a simple physical interpretation.

4.2. Hamiltonian formulation for

general compressible fluids

We have shown in Sec. 3 that irrotational compress-
ible flows admit a Hamiltonian formulation. This
can be easily extended to general compressible flu-
ids. The equations that describe the dynamics of
general inviscid fluids are the Euler and continuity
equation for the velocity field u

∂tρ = −∇ · (ρu) (42)

Dtu = −∇w, (43)

where Dt is the convective derivative defined as

Dt = ∂t + u · ∇,
ρ is the density and w is the enthalpy for unit of
mass. For isoentropic fluids the enthalpy is related
to the pressure field p by

∇w =
∇p
ρ
.

For the purposes of this work we assume a
barotropic dynamics, hence the pressure field has
functional dependence only in ρ. We also suppose

that the density field is approximately uniform
throughout the fluid and therefore the dependence
in ρ of w can be written as

w(ρ) = c2(ρ− 1)

where c is the speed of sound for a unit density fluid.
It is well known that it is possible to find a

variational principle for Eqs. (42) and (43) with the
help of the Weber–Clebsch Transformation [Mobbs,
1982]

u =

3∑

i=1

λi∇µi + ∇φ , (44)

here, we write the velocity field as a function of the
scalar fields λi(x, t), µi(x, t) and φ(x, t).

In order to show explicitly the Hamiltonian
structure of Eqs. (42) and (43) we redefine

λ̃i = ρλi (45)

and with this representation of u we define the
Lagrangian

L =

∫
dx3dt

(
ρ∂tφ+

3∑

i=1

λ̃i∂tµ
i + H

)
,

where H is the Hamiltonian density

H = ρ
u2

2
+ ε(ρ)

and ε(ρ) is the internal energy (9) which is related
to w [Landau & Lifchitz, 1971] by the relation

ρ
∂ε

∂ρ
= ε+ p = ρw. (46)

With this choice of variables, λ̃i, µ̃i and ρ̂k, φ̂k

are now conjugate variables. The corresponding
canonical equations are then

∂tρ =
δH
δφ

= −∇ · (ρu) (47)

∂tφ = −δH
δρ

= −u · ∇φ+
u2

2
− ∂ε

∂ρ
(48)

∂tλ̃
i =

δH
δµi

= −∇ · (uλ̃i) (49)

∂tµ
i = − δH

δλ̃i
= −u · ∇µi. (50)

Let us remark that Eq. (47) is the continuity
equation (42) and that Eq. (48) is the Bernoulli
equation, with an extra advective term.
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In order to recover the Euler equation (43)
from Eqs. (47)–(50) note that reintroducing the
definition (45) of λ̃i in Eq. (49) and using Eq. (47)
we obtain ∂tλ

i = −u · ∇λi. Computing then Dtu

using the definition (44), the identity [∇,Dt] ≡
(∇u) ·∇ and thermodynamic relation (46), Eq. (42)
is obtained after some simple algebra.

The general system (47)–(50) admits two sim-
ple limits. First, when ρ is constant, the flow is
incompressible and the dynamics reduces to equa-
tions of motion for λi and µi. In this case, there
is no need to independently solve for φ, because
this field is determined by the incompressibility con-
dition ∇ · u = 0. A second simple case is when
the flow is compressible and irrotational. As the
velocity is a purely potential flow, the Clebsch vari-
ables λi, µi vanish and the dynamics reduces to
equations of motion for the fields ρ and φ only, as
in Sec. 3.

4.3. Langevin equation converging

to absolute equilibrium

Our new algorithms are obtained by inserting
within the Langevin equations (28)–(30) the Hamil-
tonian corresponding to the two particular cases of
the preceding subsection.

4.3.1. Incompressible flows

When ρ is constant, the Hamiltonian (46) reduces to

H =

∫
d3x

1

2
(λi∇µi −∇φ)2 (51)

with the corresponding Langevin equation:

∂λi

∂t
= −u · ∇λi (52)

∂µi

∂t
= −u · ∇µi + ν u · ∇λi

+
√

2ην ξi(x, t) (53)

∇ · u = 0 (54)

〈ξi(x, t)ξj(x′, t′)〉 = δijδ
3(x− x′)δ(t − t′) (55)

Note that the stationary probability is in some
way similar to that of λ − φ4 theory in the Cleb-
sch variables. Although the velocity v must have
an equipartition k2 spectrum (in 3D), the statisti-
cal properties of the Clebsch pairs are not at all
trivial.

4.3.2. Irrotational flows

In the compressible irrotational case where only the
fields ρ and φ are not zero, we recover the Hamilto-
nian (12) and the corresponding Langevin equation
reads:

∂ρ

∂t
= −∇ · (ρ∇φ) (56)

∂φ

∂t
= −1

2
(∇φ)2 − ∂ǫ

∂ρ
(ρ) + ν∇ · (ρ∇φ)

+
√

2ην ξ(x, t) (57)

〈ξ(x, t)ξ(x′, t′)〉 = δ3(x− x′)δ(t − t′). (58)

Note that when ρ is a small fluctuation around
a homogeneous value ρ0 given by the minimum of
ε(ρ), the dissipation looks like a diffusion term and
taking the gradient in Eq. (57), we obtain a Navier–
Stokes like equation.

Another important property of this Langevin
Eqs. (56)–(58) is that the mean value of ρ (average
over space and realization of the process) is con-
served as in the original Hamiltonian dynamics (6)
and (7). This property is not preserved in the gradi-
ent dynamics (35) and (36). In this case, it follows
directly from Eq. (35), and the Hamiltonian (12),
that the dynamics of 〈ρ〉 is given by

∂

∂t
〈ρ〉 = −1

2
〈∇φ2〉 −

〈
∂ǫ

∂ρ

〉

and hence, using the internal energy (9) the station-
ary value of 〈ρ〉 is

〈ρ〉st = 1 − 1

2c2
〈∇φ2〉st. (59)

Remark that this usual equation of state (9) can
lead to high values of η [see Eq. (33)] to negative val-
ues of ρ. This non-physical situation can be avoided
by changing the equation of state to one physically
more compatible with the dynamics of high ampli-
tude waves, considering for instance, terms of order
O((ρ− 1)4) in (9).

5. Numerical Validation

5.1. Incompressible rotational flows

We now proceed to validate our new algorithm in
the well-known test case of incompressible fluids.
Although the Hamiltonian (51) is not quadratic,
the velocity u must be Gaussian and therefore the
energy spectrum of the velocity must follow a k2

law.
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In the case of absolute equilibria of incom-
pressible fluids, there are only two independent
components of velocity due to the divergence free
condition (54). It can be shown [Orszag, 1970;
Cichowlas, 2005] that the second order moment of
a Fourier mode is

〈ûµ(k, t)ûν(−k, t)〉 = η

(
δµν − kµkν

k2

)

= ηPµν(k), (60)

and therefore the kinetic energy H is obtained from
Eq. (60)

H =
∑

|kα|≤kmax

1

2
〈ûα(k, t)ûα(−k, t)〉

=
η

2

∑

|kα|≤kmax

Pαα(k). (61)

As Pαα = 2 then H = ηN where N is the number
of degrees of freedom.

We perform the numerical integration of (52)–
(55) using a standard pseudo-spectral method with
a Galerkin truncation at the mode kmax with the
2/3 rule.

In Fig. 3 we plot temporal evolution of the total
energy of the velocity field for the gradient and
damped Hamiltonian method. We set ν = 1 for all
present simulations. We can see a faster convergence
to the stationary value of the energy in the gradient
method.
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Fig. 3. Temporal evolution of the total energy (51) of
the velocity field for the gradient and damped Hamiltonian
method (◦ and �) for simulations made with a resolution of
483 and ν = 1.

1 2 4 8 16
k

0.0001

0.001

0.01

0.1

E
(k

)

Fig. 4. Energy spectrum for the velocity, λ and µ fields (◦, �

and ⋄) of the gradient case for a simulation with a resolution
483. The continuous line represents an ideal k2 spectrum.

As usual, we define the energy spectrum of λ
and µ by averaging on spherical shells

Eλ(k, t) =
1

2

∑

k−∆k/2<|k′|<k+∆k/2

|λ̂k′ |2(t) (62)

Eµ(k, t) =
1

2

∑

k−∆k/2<|k′|<k+∆k/2

|µ̂k′ |2(t), (63)

and the averaged spectra over a set of a hundred
realizations of the process is shown in Fig. 4. We
can see a good agreement of the velocity spectrum
with the equipartition scaling ∼ k2. We remark that
scaling of λ and µ fields appears to obey scaling laws
that seem different from k2.

-6 -4 -2 0 2 4 6

0.001

0.01

0.1

Fig. 5. Histogram for the x component of the velocity, λ and
µ fields (◦, � and ⋄) for the damped Hamiltonian case from
a simulation made with a resolution of 483. The continuous
line represents an ideal Gaussian distribution for the velocity.
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Finally, a normalized histogram of λ, µ and one
component of u are plotted in Fig. 5. It is man-
ifest in the figure that the statistics of the veloc-
ity field are approximatively Gaussian (compare the
tails with those of the λ and µ fields). We, therefore,
conclude that our new algorithm is validated in the
sense that it reproduces the Gaussian statistics in
the incompressible limit.
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Fig. 6. (a) Convergence of compressible energy (12).
(b) Plot of 〈ρ〉. Straight line: Gaussian value, T = 0.01.

5.2. Compressible irrotational flows

In order to validate our new algorithm in the com-
pressible case (see Sec. 4.3.2) we will check that it
generates data that is a statistical stationary solu-
tion of the original equation of motion and that it
reproduces the spectrum obtained by direct relax-
ation in Sec. 3.

At low values of η, the distribution of ρ, φ is
almost Gaussian and the predicted value of rele-
vant quantities using the Hamiltonian (12) and the
stationary probability density (33) read

〈(ρ− 1)2〉 =
Nη

c2
, 〈(∇φ)2〉 = Nη, 〈H〉 = Nη
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Fig. 7. Total compressible energy spectra for T = 0.0001,
0.05, 0.1.
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Fig. 8. Histograms of ρ and ux obtained from Eqs. (56)–(58).

where N is the number of degrees of freedom. We
redefine

1

η
≡ β =

N
c2T

.

In what follows, we vary T in the numerics from
T = 0.00001 to T = 0.1 using 643 Fourier modes
and we set c = 2 and ν = 1, using the usual equation
of state (9). We start from the homogenous and
minimum energy solution ρ(x, t = 0) = 1, φ(x, t =
0) = 0 and the integration of Eqs. (56)–(58) is per-
formed until convergence is achieved.

Figure 6 shows the convergence of the energy
using both methods (56)–(58) and (35)–(36) at
T = 0.01. We checked that the final data is a
statistical stationary solution of the continuity and
Bernouilli equations (6)–(8) (data not shown). Note
that the convergence of the gradient method is not
much faster than that of the damped Hamiltonian
method. In this gradient case, the spatial average of
the density fluctuates around the stationary value
given by Eq. (59) 〈ρ〉st = 1 − (1/2)T .

Figure 7 displays the energy spectra (17) com-
puted on the time-converged solution of Eqs. (56)–
(58), at different values of the temperature. Note
that at high temperature the k2 law is not mani-
fest in the spectrum. This spectrum should be com-
pared with those of Fig. 2(d) that were obtained by
the relaxation of the original dynamics. The simi-
larity of the spectra confirms that equipartition is
not obtained in the compressible case because of the
non-Gaussian term (21).

In Fig. 8, we show an histogram of ux = ∂xφ
and ρ together with the Gaussian predictions, we
see that they seem to remain Gaussian even for the
highest values of T = 0.1. There are some low prob-
ability events with ρ < 0 and higher values of T will
lead to more negatives values of ρ.

Note, however, that the total distribution is
non-Gaussian. Indeed, if it remained Gaussian at
higher values of T , the correlation between ∇φ2

and ρ − 1 will vanish and this it is not observed
in Fig. 9 where the histograms of z = (ρ − 1)∇φ2
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Fig. 9. Histograms of z = (ρ − 1)∇φ2 and −z for T =
0.0001, 0.05, 0.1. In the insert the standard deviation σ and
skewness γ1.

and −z are shown. Note that for the lowest temper-
ature Fig. 9(a), the standard deviation is extremely
small, the pdf is symmetric and all points are heav-
ily concentrated around z = 0, the correlation
between ∇φ2 and ρ − 1 is thus completely negli-
gible. However, for higher temperatures Figs. 9(b)
and 9(c), the pdf becomes asymmetrical and the
skewness γ1 = µ3/σ

3, where µ3 is the third moment
about the mean and σ is the standard deviation, are
of order one.

6. Relaxation of Initial Data with

Temperature Oscillation

Let us now consider a practical application of
our algorithm. We want to study how truncated

irrotational compressible flows relax to the equi-
librium. A big difference with the incompressible
case studied in [Cichowlas et al., 2005; Krstulovic
& Brachet, 2008] is that waves can appear as the
principal mechanism of homogenization as in the
Landau two-fluid model for superfluids [Landau &
Lifchitz, 1971] where the temperature waves prop-
agate at a second sound speed slower than pres-
sure waves. Indeed, Larraza and Putterman [1986]
argued that, in a nonlinear medium pumped with
energy sufficiently far from equilibrium the wave
turbulence can support a transition from diffusive
to propagative energy transport that bears deep
similarities to second sound in Helium.

In this section we give preliminary results
that seem to suggest that such a behavior is
present. However, these results need to be confirmed
and further studies will be presented in a future
publication.

In order to check for the presence of this mecha-
nism, we need to reduce the emission of (first) sound
that would trivially generate propagative dynamics.
To wit, we prepare an initial condition with con-
stant pressure. In compressible flows, the pressure
appears in the δij contribution of the momentum
flux density tensor

Πij = ρuiuj + δijp (64)

where for the internal energy (9), the pressure sim-
ply reads p = (c2/2)ρ2.

Consider now fluctuating fields replacing ρ →
ρ+ ρ′ and ui → ui + u′i, where the quantities with
primes are of zero mean and with the obvious corre-
spondence ûjk = ikj φ̂k and ûjk = ikj φ̂

′
k. The mean

value of Πij over the different realization then reads

〈Πij〉 = ρuiuj + 〈ρu′i〉uj + 〈ρu′j〉ui + ρ〈u′iu′j〉

+ 〈ρ′u′iu′j〉 + δij
c2

2
(ρ2 + 〈ρ′2〉). (65)

If we assume isotropy we obtain

〈u′iu′j〉 =
δij
d
〈u′2〉 〈ρ′u′iu′j〉 =

δij
d
〈ρ′u′2〉,

where d is the dimension of the space. The δij con-
tribution part of 〈Πij〉 is then

p̃ =
c2

2
ρ2 +

c2

2
〈ρ′2〉 +

ρ

d
〈u′2〉 +

1

d
〈ρ′u′2〉. (66)

Consider that the small fluctuations of the fields
are approximatively given by the stationary Gaus-

sian pdf P{ρ̂k, φ̂k} ∼ e−βH̃ where β = N/(c2T ) and
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initial data (72) at t = 0, 1.4, 2.8.
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H̃ = HG−µQ is defined in Eqs. (10), (11) and (20).
After a straightforward calculation, it is possible to
show that

〈ρ〉 = 1 +
µ

c2
(67)

〈u′2〉 =
c2

1 + µ/c2
〈ρ′2〉 =

c2

1 + µ/c2
T (68)

〈H〉 =
c2

2

2 + µ/c2

1 + µ/c2
T. (69)

Then p̃ reads at leading order

p̃ =
c2

2

(
1 +

µ

c2

)2
+
d+ 2

2d
c2T. (70)

Thus setting

µ

c2
= −1 +

√
1 − T (d+ 2)/d (71)

yields a constant pressure p̃ = c2/2.
Consider now T and µ(T ) given by Eq. (71)

that are slow space variable functions where T has
a sinus modulation

T (x, y, z) = T0(1 + ǫ(sin (2x)

+ sin (2y) + sin (2z))). (72)

We set in the present numeric simulation T0 = 0.03
and ǫ = 0.3. The temporal evolution of the spatially
averaged temperatures over z, y and z is shown in
Fig. 10. Note that there is a fast decay of the ampli-
tude of the modulation as predicted in [Larraza &
Putterman, 1986] for compressible flows. Remark
that at t = 1.4 the phase of the wave changed
in a factor π, that gives a rough estimate of the
oscillation frequency ωT = π/1.4 = 2.244. This
value is smaller than the frequency of first sound
ω = ck = 4.

The presence of an oscillating behavior in this
constant pressure variable temperature relaxation
strongly suggests the existence of second sound.
However, this interesting behavior needs to be con-
firmed and studied in more detail. In the future,
we will investigate the relaxation of full, first and
second sound perturbations.

7. Conclusion

Our new method to generate absolute equilib-
rium of spectrally truncated compressible flows has
been shown to reproduce the well-known Gaus-
sian results in the incompressible limit. The irro-
tational compressible absolute equilibrium case was
characterized and the distribution was shown to

be non-Gaussian. The spectrum were found not to
obey a k2 scaling, just as those obtained directly by
relaxation of the original dynamics. Finally, oscil-
lating behavior in constant pressure variable tem-
perature relaxation was obtained, suggesting the
presence of second sound.
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Part II

SUPERFLUIDS





5. THERMODYNAMICS OF CLASSICAL TRUNCATED

AND QUANTUM SYSTEM

In this chapter we review some basic formulae of statistical mechanics. First

we recall the classic and quantum statistics. Then the Raleigh-Jeans and Planck

distribution are explicitly given. The ultra-violet catastrophe is then discussed.

Next, we show the condensation process of classical non-interacting gases that is

analogous to that one of Bose-Einstein condensation. Finally, low-temperature

calculations for a weakly-interacting Bose gases are given in the quantum case. .

5.1 Basic formulae of statistical mechanics

5.1.1 Classical statistics

In the following we will consider the Hamiltonian of N independent harmonic oscillators
of frequency ωk

H(pk, qk) =
N∑

k=1

p2
k

2m
+

1

2
mω2

kq
2
k, . (5.1)

The partition function in the canonical ensemble, is a multiple integral over the
phase space and its formula it is given by the semi-classical expression [56, 83]

Z(T, V,N ) =

∫
dqNdNp

(2π~)N
e−βH(pk,qk), (5.2)

where β−1 = kBT with kB the Boltzman constant.

In analogy to quantum mechanics, instead of using the conjugate variables pk, qk,
we will use the complex variables (that correspond to the creation and destruction
operators in quantum mechanics)

a†k =

√
mωk

2~
qk +

i√
2m~ωk

pk (5.3)

ak =

√
mωk

2~
qk −

i√
2m~ωk

pk. (5.4)
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After this transformation the Hamiltonian H in eq.(5.1) is expressed as

H(ak, a
†
k) =

N∑

k=1

ǫka
†
kak, (5.5)

where ǫk = ~ωk. The canonical partition function (5.2) is rewritten as

Z(T, V,N ) =

∫ N∏

k=1

da†kdak

(2π)N
e−β

PN
k=1 ǫka†

k
ak =

N∏

k=1

∫ ∞

nk=0

dnke
−βǫknk (5.6)

where we have written the complex element of area in polar coordinate (da†kdak =
2|ak|d|ak|dθ) and then make the change of variable to the occupation number variable
nk = |ak|2. The canonical partition function thus reads

ZCL(T, V,N ) =
N∏

k=1

1

βǫk
(5.7)

Observe that as consequence of classical statistics and the quadratic Hamiltonian
the equipartition the energy 1 of each oscillator is kBT . This property is know as the
theorem of the energy equipartition. It trivially follows that

nk
CL =

1

βǫk
(5.8)

H =
N∑

k=1

kBT = NkBT (5.9)

As usual, the canonical potential is defined as [84, 56, 83],

F = −β−1 logZ, (5.10)

from it directly follows all thermodynamic quantities. For example the entropy S is

S = − ∂F

∂T

∣∣∣∣
V,N

= kB

N∑

k=1

[1 + log βǫk] . (5.11)

Remember that for a classical system, the entropy is not completely defined. It de-
pends on the phase space normalization constant. This problem is fixed with quantum
mechanics which fixes this value to 2π~ (see eq.(5.2)).

1 In the canonical ensemble the energy is E = −∂β logZCL
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5.1.2 Quantum statistics

We now review the Bose-Einstein statistics. Consider a quantum system of indistin-
guishable particles. A state of the system will be characterized by the occupation
numbers {nk, k ∈ N}. The energy H and the total number of particles N of the system
are thus

H =
∞∑

k=1

ǫknk (5.12)

N =
∞∑

k=0

nk. (5.13)

For bosons the quantum canonical partition function is given by [56, 83]

Z(T, V,N) =
∑

{nk}

′ exp {−β
∞∑

k=1

ǫknk} (5.14)

where the sum is performed over all the occupation numbers {nk} such that N =
∑

k nk.
This last restriction is quite complicated to handle. To overcome this problem, the grand
canonical ensemble is often used. In this ensemble the system can interchange particles
with an external reservoir. The quantum grand canonical partition function is defined
[56, 83] as

Z(T, V, µ) =
∑

{nk}
exp {−β

∞∑

k=1

(ǫk − µ)nk}, (5.15)

where µ is the chemical potential and without restrictions on {nk}. This function can
be simplified because it is a geometrical series:

ZQ(T, V, µ) =
∞∏

k=1

1

1 − e−β(ǫk−µ)
. (5.16)

We also have that the occupation number of particles in the state k is

nk
Q =

1

eβ(ǫk−µ) − 1
(5.17)

Recall that equipartition is recovered from (5.17) in the limit βǫk ≪ 1, or equiva-
lently ~ωk ≪ kBT .

5.2 Rayleigh-Jeans and Planck distribution

We discuss now the ultra-violet (UV) catastrophe present in classical system and man-
ifest in the black body radiation problem. The Rayleigh-Jeans and Planck distribution
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for the black body radiation are obtained from eqs. (5.8) and (5.17) by replacing the
dispersions relation relation ǫ(p) = c|p|. In three dimension the the spectral density of
states ρ(p) on the shell |p| = p is given by

ρ(p) = sp
p2V

2π2~3
, (5.18)

where the polarization factor is sp = 2 for photons.

The Rayleigh-Jeans and Planck energy distributions per unit of volume are simply
uRJ(p) = ǫ(p)nCL

p ρ(p)/V and uP(p) = ǫ(p)nQ
pρ(p)/V . Expressing the momentum in

term of the frequency ω = cp/~ we obtain

uRJ(ω)dω =
ω2

c3π2
kBTdω (5.19)

uP(ω)dω =
ω2

c3π2

~ω

e
~ω

kBT − 1
(5.20)

Observe that both distributions coincide for low frequencies satisfying (or high temper-
ature) ~ω ≪ kBT . The Planck distribution has a exponential cut-off at the frequency
ωmax = kBT/~.

The total energy is given by the integral over all the frequencies. That leads to an
infinite energy for the Rayleigh-Jeans distribution. This unphysical situation, known
as UV catastrophe, is naturally solved by the quantum mechanics description taken
into account in the Planck distribution. Using the UV cut-off in the Rayleigh-Jeans
distribution the energies are

ERJ = V
ω3

max

3c3π2
kBT (5.21)

EP = V
π2

15

1

~3c3
k4

BT
4 (5.22)

We have explicitly introduced the cut-off ωmax because it naturally appears in the
thermodynamics of truncated system as those studied in chapter 2-4 (truncated Euler
and MHD equations) and in the truncated Gross-Pitaevskii equation that will be studied
next in chapter 6. Observe that the temperature dependence of the classical Rayleigh-
Jeans energy and the quantum Planck energy are very different. The specific heat does
not vanishes at low temperatures in the classical system and it is proportional to the
number of degree of freedom (or frequencies allowed) N = V ω3

max

3c3π2 of the system. We
will see in chapter 6 that the degree of freedom of a truncated system must be taken
into account in order to correctly define the thermodynamics and it plays the role of
particle with an associated “chemical potential”.
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5.3 Condensation of non-interacting gases with classical

statistics

It is well know that at low temperatures quantum statistics for bosons (5.16) lead
to situation where a large fraction of the boson occupies the fundamental state. This
process is called the Bose-Einstein condensate [54]. The fraction of condensate particles
N0/N is given by

N0

N
= 1 −

(
T

Tc

)3/2

(5.23)

where Tc = 2π~
2

kBm

[
N
V

1
2.612

]2/3
is the condensation temperature.

The Bose-Einstein it is not an exclusive property of quantum statistics. It has been
shown [30] that an analogous process takes place in a classical system with a truncation
wavenumber.

Consider a 3-dimensional classical system where the energy are the number of par-
ticles are given by (5.12-5.13), with the dispersion relation ǫ(p) = p2

2m
and to avoid the

UV divergences the momentum satisfies |p| ≤ pmax. The grand partition function of
the system trivially generalized from the canonical partition function eq.5.6 introducing
the chemical potential as

Z(T, V, µ) =
∏

|p|≤Pmax

∫ ∞

np=0

dnpe
−β(ǫp−µ)np =

∏

|p|≤Pmax

1

β(ǫp − µ)
(5.24)

Assuming a continuos repartition of momentum and using the spectral density ρ(p)
(5.18) with sp = 1, the grand canonical potential reads

Ω(T, V, µ) = β−1

Pmax∫

0

dp
p2V

2π2~3
log [β(ǫp − µ)] (5.25)

= − P 3
maxV

6π2~3β



2

3
+

2(−2mµ)3/2 tan−1
(

Pmax√−2mµ

)

Pmax
3 +

4mµ

Pmax
2 − log

{
β

(
Pmax

2

2m
− µ

)}

 .

From the standard thermodynamic relation [84, 56, 83],

N = −∂Ω

∂µ
and H = Ω − β

∂Ω

∂β
+ µN, (5.26)
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we obtain

N =
P 3

maxV

6π2~3β




6m
√−2mµ tan−1

(
Pmax√−2mµ

)

Pmax
3 − 6m

Pmax
2



 (5.27)

H =
P 3

maxV

6π2~3β



1 +
6mµ

√−2mµ tan−1
(

Pmax√−2mµ

)

Pmax
3 − 6mµ

Pmax
2



 (5.28)

It was shown in reference [30] that this system exhibits a condensation transition at
finite temperature. That means that the chemical potential vanishes and the eq.(5.27)
cannot be solved for a fixed N and T < Tc. Contours of N with ~ = 1, m = 1, V = 1
and Pmax =

√
2 are displayed in Fig.5.1
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Fig. 5.1: Contours of N . ~ = 1, m = 1, V = 1, Pmax =
√

2. We observe a vanishing µ at
T = π2/

√
2 for N = 1

The transition temperature is obtained replacing µ = 0 in eq.(5.27) and it is given
by

Tc =
Nπ2~3

mPmaxV
. (5.29)

Analogously to Bose-Einstein condensation, for temperature lower than Tc the in-
tegral over the momentum (5.26) does not capture the contribution due to condensate.
Introducing the condensate population N0 we find that the exited population satisfies

N0

N
= 1 − mPmaxV

Nπ2β~3
. (5.30)
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The number of condensed particles thus vanishes linearly at T = Tc.
In references [29, 30, 31] the condensation of non-linear waves described by the

Fourier truncated Gross-Pitaevskii equation (TGPE) was reported. They performed
microcanonical simulations by long-time integration of TGPE. Using a modified wave
turbulence theory with ultraviolet cutoff, Connaughton et al. [30] argued that the
transition to condensation should be subcritical. However, the authors later argued
that, as weak turbulence theory is expected to breakdown nearby the transition to
condensation, the subcritical nature of the transition predicted by the theory was not
physical [31]. In the next chapter 6 (and the article [38] therein) we study this transition
in the grand canonical ensemble. We then (numerically) show that the condensation
transition of TGPE corresponds the second order transition described by the λ − φ4

theory with two components.

5.4 Low-temperature thermodynamics for weakly interacting

Bose gases with quantum statistics

We now turn to the explicit computation of the low-temperature thermodynamics of
weakly interacting Bose gas. In the approximation of small momenta the Hamiltonian
of a system of bosons interacting in pairs is [85]

Ĥ =
∑

p

p2

2m
a†pap +

g2

2V

∑

p1,p2

a†p1
a†p2

ap1
ap2

. (5.31)

where g = 4πa~
2

m
, with a the s-wave scattering length.

In a Bose gas at low temperature most of the particle are in the condensate mode
p = 0. It is thus reasonable to treat the number operator a†0a0 as a number. Expanding
the Hamiltonian (5.31) and explicitly introducing the number a0 we obtain

Ĥ =
g

2V
|A0|4 +

∑

p

p2

2m
a†pap +

g

2V

∑

p6=0

a∗2
0apa−p + a2

0a
†
pa

†
−p + . . . . (5.32)

where be have kept only the quadratic terms in the operators a†p. This the so-called
Bogoliubov approximation [85, 86].

We now want to compute the statistics with the Hamiltonian (5.32). Remark that
the total number operator

N̂ = |a0|2 +
∑

p6=0

a†pap (5.33)

does not commute with H due to non-diagonal terms and therefore the canonical statis-
tics cannot be applied directly (see section 2.2 of reference [86] and references therein).
To go around this problem we use the grand canonical ensemble. Furthermore, we will
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use a more general ensemble also including the momentum operator

P̂ =
∑

p

pa†pap, (5.34)

that allows the system to exchange momentum with the reservoir.
We thus need the eigenvalues of the operator

F̂ = Ĥ − µN̂ − W · P̂. (5.35)

The operator F̂ can diagonalized using the Bogoliubov transformation

ap = upbp + vpb
†
−p. (5.36)

where up and vp are determined by imposing the diagonalization and bp are called
phonons annihilation operators. Next in chapter 6 (article [38]) the calculations corre-
sponding to the classical version of the problem are explicitly performed.

After the transformation eq.(5.35) becomes

F̂ =
g

2V
|a0|4 − µ|a0|4 +

∑

p6=+0

(ǫ(p;µ) − W · p)b†pbp (5.37)

where

ǫ(p;µ) =

√
p2

2m

(
p2

2m
+ 2µ

)
. (5.38)

Using classical statistics for a0 and Bose-Einstein statistics for the phonons the grand
canonical partition function is (keeping only non-vanishing terms in the thermodynamic
limit 2)

Z = e
βV µ2

2g

∞∏

p6=0

1

1 − e−β(ǫ(p;µ)−W·p)
. (5.39)

Setting W = (0, 0, w) the grand canonical potential splits as

Ω = Ω0 + Ωph (5.40)

with

Ω0 = −V µ
2

2g
(5.41)

Ωph = −β−1

∞∫

0

1∫

−1

dpdz
p2V

4π2~3
log


 1

1 − e
−β(

r

p2

2m

“

p2

2m
+2µ

”

−wpz)


 (5.42)

2 The thermodynamic is taken over the grand canonical potential Ω = −β−1 logZ as V

(
lim
V→∞

Ω

V

)
.
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The integral in (5.42) cannot be done explicitly. However, it can be developed in powers
of β−1 and w. To obtain a such development an integration by parts is first carried
over the logarithmic term. Then the change of variable ǫ(p;µ) = ε is used. Finally, the
integral is expanded in Talyor series and the integration is made over the energies. The
first orders of Ω obtained by this procedure explicitly read

Ω = −V µ
2

2g
− π2m3/2V

90β4µ3/2~3
− π2m5/2V w2

45β4µ5/2~3
+

π4m3/2V

126β6µ7/2~3
+
π4m5/2V w2

18β6µ9/2~3
. . . (5.43)

All the thermodynamic quantities follow from this expression. For example the specific
heat and the momentum3 are given by

C =
2π2m3/2V

15µ3/2~3
+

4π2m5/2V w2

15µ5/2~3
+ . . . (5.44)

P =
2π2m5/2V w

45β4µ5/2~3
− π4m5/2V w

9β6µ9/2~3
+ . . . (5.45)

This expression correspond to those obtained in the low-temperature limit by using the
dispersion relation ǫ(p) = (µ/m)1/2p [85].

5.5 Conclusions

In this chapter we have reviewed some basic formulae of statistical mechanics, including
the partition function for classic and quantum statistics. Using this formulae, the black
body radiation distribution was studied. The UV catastrophe, that is present in all the
system studied in this thesis, was discussed.

We have also shown that transition analogous to the Bose-Einstein condensation
also takes place with classical statistics. The idea that classical statistics can reproduce
some aspects of quantum system is well known. It was argued by Davis et al. [29] that
at finite temperature classical field statistics can be used to describe a Bose-Einstein
condensate (BEC). The main point is that in the limit where the exited states are highly
occupied (Np ≫ 1) the classical fluctuation of the field can overwhelm the quantum
fluctuations. In this context, the truncated Gross-Pitaevskii equation (TGPE) has been
proposed as a model BEC at finite temperature. We expect then that the approach of
TGPE should work at the lambda transition temperature. Some properties and results
on this equation will be presented in the next chapter.

Finally, the explicit calculation of the low-temperature Bose-Einstein grand canon-
ical potential has been given. The potential was obtained using the Bogoliubov disper-
sion relation and performing series expansions.

3 The momentum is computed as P = − ∂Ω
∂w .
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6. TRUNCATED GROSS-PITAEVSKII EQUATION.

THERMALIZATION, MUTUAL FRICTION AND

COUNTERFLOW EFFECTS

In this chapter we review the mathematical description of superfluid by the Gross-

Pitaevski equation (GPE) and its basic properties. This will allow us to discus our

publication presented at the end of this chapter that deals on on thermalization,

mutual friction and counterflow effects in TGPE. First, the GPE is introduced

and the conservation laws are explicitly given. Next, the acoustic propagation is

reviewed and the energy decomposition in terms of hydrodynamical variables is

introduced. Then, the applicability of Kolmogorov phenomenology of turbulence to

superfluids is discussed. Finally, the last section contains the publication (to be

submitted). Some supplementary material (mainly 3D density visualizations) is

given at the end of the chapter

6.1 Introduction

The phenomenology of superfluid is usually modeled by the Landau two-fluid model
[54]. This model supposes that there are two interpenetrating fluids present in the
system, the one corresponding to a perfect and potential fluid is know as the superfluid
and the other one corresponds to a viscous fluid due to thermal excitations is called
normal fluid. It is important to remark that such description considering two different
fluids is a mathematical construction, there is no way to physically separate the two
fluids. Nevertheless, there are many physical aspect that the Landau two-fluid model
allows to understand.

At finite temperature, when thermal excitations are present, these two fluids interact
producing the effect of mutual friction and counterflows. On the contrary, at very
low temperature, the thermal excitations are so weak that the normal fluid can be
neglected. Is in such approximation that the Gross-Pitaevskii equation appears as
model of superfluidity [87, 88]. This equation is a partial differential equation (PDE)
for a complex function ψ that reads

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + g|ψ|2ψ, (6.1)

where |ψ|2 is the number of particle per unit volume, m is the mass of the condensed
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particles and g = 4πa~
2

m
with a the s-wave scattering length. This equation is also known

as (defocusing) non-linear Schrödinger equation. When g < 0 it is known as focusing
NLSE.

Equation (6.1) comes from a variational principle with the action

A =

∫
dt d3x

[
i~

2

(
ψ̄
∂ψ

∂t
− ψ

∂ψ̄

∂t

)]
−
∫
dtH (6.2)

where

H =

∫
d3x

(
~2

2m
|∇ψ|2 +

g

2
|ψ|4

)
(6.3)

is the Hamiltonian.

Observe that a global change of phase of the wavefunction ψ implies a change of
the density at equilibrium. Equation (6.1) is sometimes written with an extra µψ term.
This term has no dynamical effect and can be arbitrarily added.

There exists a one-to-one correspondence between fluid dynamics and GPE. It is
given by the Madelung transformation defined by

ψ(x, t) =

√
ρ(x, t)

m
exp [i

m

~
φ(x, t)], (6.4)

where ρ(x, t) is the density and φ(x, t) is the potential velocity such that v = ∇φ. The
Madelung transformation (6.4) is singular on the zeros of ψ. As two conditions are
required (the real and imaginary part of ψ must vanish) these singularities generally
take place on points in two-dimension and on curves in three-dimensions. The Onsager-
Feynman quantum of velocity circulation around vortex lines ψ = 0 is given by h/m.

Equation (6.1) expressed in terms of the hydrodynamical variables reads

∂ρ

∂t
+ ∇ · ρv = 0 (6.5)

∂φ

∂t
+

1

2
(∇φ)2 +

g

m2
ρ− ~2

2m2

∇2√ρ
√
ρ

= 0 (6.6)

Equation (6.5) is the continuity equation and eq.(6.6) is the known as the Bernoulli
equation plus a term called quantum pressure. These are the equations governing the
dynamics of isentropic, compressible and irrotational fluids.
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6.1.1 Conserved quantities and Galilean invariance

Equation (6.1) is invariant under phase rotation, time and space translation. Using
Noether theorem [89] it is straightforward to show that the conservation laws are

∂t(ψψ̄) + ∂k

{
i

~

2m
(ψ∂kψ̄ − ψ̄∂kψ)

}
= 0 (6.7)

∂t

(
i~

2
(ψ∂jψ̄ − ψ̄∂jψ)

)
+ ∂kΠkj = 0 (6.8)

∂t

(
~2

2m
∂kψ∂kψ̄ +

1

2
g|ψ|4

)
+ ∂kQk = 0 (6.9)

where the momentum and energy flux respectively are

Πkj =
~2

2m
(∂kψ̄∂jψ + ∂kψ∂jψ̄) + (

g

2
|ψ|4 − ~2

4m
∂ll|ψ|2)δk

j (6.10)

Qk =
i~3

4m2

(
∂kψ∂jjψ̄ − ∂kψ̄∂jjψ

)
+ g|ψ|2

(
i~

2m
(ψ∂kψ̄ − ψ̄∂kψ)

)
. (6.11)

It follows directly from (6.7-6.9) that the Hamiltonian H, the total number of par-
ticles N and the momentum P defined by

H =

∫

V

d3x

(
~2

2m
|∇ψ|2 +

g

2
|ψ|4

)
(6.12)

N =

∫

V

|ψ|2 d3x (6.13)

P =

∫

V

i~

2

(
ψ∇ψ̄ − ψ̄∇ψ

)
d3x. (6.14)

are conserved by the GPE dynamics.
Finally remark that GPE (6.1) is invariant under the Galilean transformation

ψ′(x, t) = ψ(x − vst, t) exp

{
im

~

[
vs · x − 1

2
v2

s t

]}
. (6.15)

Under this transformation eqs.(6.10-6.14) transform as

H ′ =
1

2
mNv2

s + P · vs +H (6.16)

N ′ = N (6.17)

P′ = mNvs + P. (6.18)

Π′
kj = mNvskvsj + vskPj + vsjPk + Πkj (6.19)

Q′ = (
1

2
mNv2

s + P · vs +H)vs +
1

2
v2

sP + Π · vs + Q (6.20)
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6.1.2 Sound propagation

The simplest stable solution of eq.(6.1) correspond to a wave function of homogeneous
density |ψ|2 = |A0|2. The linearization of eq.(6.1) around the solution ψ = A0e

−iµt

(with µ = g|A0|2/~) leads to the Bogoliubov dispersion relation

ω(k) =

√
g|A0|2
m

k2 +
~2

4m2
k4. (6.21)

The sound velocity thus given by c =
√
g|A0|2/m and dispersive effects take place for

length scales smaller than the coherence length defined as

ξ =
√

~2/2m|A0|2g. (6.22)

ξ is also the length scale of the vortex core [27, 90].

6.1.3 Energy decomposition

Using the Madelung transformation (6.4) the energy can be decomposed into different
terms of different nature. Following Nore et al. [27] we define the total energy per unit
of volume etot as

etot =
1

V
[H − µN ] − µ2

2g
. (6.23)

This energy reexpressed in terms of the hydrodynamical variables reads

etot =
1

V

∫
d3x

[
1

2
(
√
ρv)2 +

g

2m

(
ρ− µ

gm

)2

+
~2

2m2
(∇√

ρ)2

]
(6.24)

We recognize three terms, the total kinetic energy Ekin, the internal energy Eint and
the quantum energy eq defined by

ekin =
1

V

∫
d3x

1

2
(
√
ρv)2 (6.25)

eint =
1

V

∫
d3x

g

2m2

(
ρ− µm

g

)2

(6.26)

eq =
1

V

∫
d3x

~2

2m2
(∇√

ρ)2 . (6.27)

With this decomposition we have etot = ekin + eint + eq.
To separate the energy coming from sound waves, the total kinetic energy can be

further decomposed into compressible eckin and incompressible eikin by computing the
kinetic term as

√
ρv = (

√
ρv)c + (

√
ρv)i where ∇ · (√ρv)i = 0. This decomposition is

obtained applying the projector Pµν = ∂µ∂ν − δµν

∇2 . The incompressible kinetic energy
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contains the contribution of vortices to the kinetic energy.
As the quantities in integrals (6.25-6.27) are quadratic, the respective spectra eckin(k),

eikin(k), eint(k) and eq can be easily defined by Parseval theorem summing over the
angles. For instance the kinetic energy spectrum is defined as

ekin(k) =

∫
|√̂ρv(k)|2k2dΩk, (6.28)

where dΩk is the surface measure of the sphere 1.

6.1.4 Kolmogorov spectrum and Kelvin waves cascade

There is two main length scales in superfluid. The first one corresponds to the mean
inter-vortex distance ℓ and the second one to the vortex core size ξ. At length scales
much larger than ℓ is expected that the dynamics will be blind to the quantum nature
of the vortex tangle. The phenomenology in this range of scale can be described by
classical fluid dynamics. For a complex vortex tangle, we expect a turbulent behavior
that can be thus described by Kolmogorov phenomenology (see chapter 2). This point
has been largely investigated numerically and experimentally [26, 27, 91, 92, 28].

Fig. 6.1: Left ) Incompressible kinetic energy spectrum from [27].Solid line shows least-square
fit over 2 < k < 16 Ei

kin = 0.08k−1.7. Center) Pressure fluctuation at T = 1.4K from
[91] . c) Compressible and Incompressible kinetic energy spectrum from [93]

For scales smaller of the inter-vortex distance ℓ a different mechanism is expected.
At these scales, vortex reconnection is important. Once the vortex reconnect, cusps
are produced and Kelvin waves propagate along the vortex filament producing sound
emission. This mechanism carries the energy from the scale to ℓ to smaller scales. It is
expected to observe in this range a Kelvin wave cascade. There are many theoretical
approaches to compute the exponent of the energy spectrum of the Kelvin waves cascade
[94, 95, 96, 97]. Finally, as the energy transfer by Kelvin waves is less efficient than

1 Remark that by definition ekin =
∫
k
ekin(k)
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a direct (Kolmogorov) cascade a scenario with both, Kolmogorov and Kelvin waves
cascades, joined by a k2 power-law partial thermalized zone was suggested by [15].

6.2 Finite-temperature models of Bose-Einstein condensation

As discussed at the beginning of this chapter the GPE (6.1) is a valid description of
weakly-interacting Bose-Einstein condensates (BEC) in the limit T → 0 and neglects
effects due to thermal fluctuations. There are several models that have been proposed
to take into account the effect of the thermal cloud of uncondensed particles [90, 98].
In this section we will give a rough overview of how these different models arise. Most
of the discussion is based on the review [90].

The starting point is the second quantization Hamiltonian expressed in the occu-
pation number representation. It is written in terms of the Bose field operators Ψ̂(r, t)
and Ψ̂†(r, t), that respectively represent the annihilation and creation of a particle in
the point r at time t. The Hamiltonian reads

Ĥ =

∫
drΨ̂†(r, t)ĥ0Ψ̂(r, t) +

g

2

∫
drΨ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t) (6.29)

where

ĥ0 = − ~2

2m
∇2 + Vext(r, t). (6.30)

is the operator describing a free particle in an external pseudo-potential Vext(r, t). In the
second term of eq.(6.29) we have used the interaction potential V (r − r′) = gδ(r − r′)
(with g defined just below eq.(6.1)). This approximation is valid for dilute gases (na3 ≪
1 with n the particle density) at low temperature.

The temporal evolution of the Bose field is given by

i~
∂Ψ̂(r, t)

∂t
= [Ψ̂(r, t), Ĥ] = ĥ0Ψ̂(r, t) + gΨ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t). (6.31)

Assuming that there is a macroscopically occupied state (the condensate), it is
natural to reexpress the Bose field in two part; Ψ̂(r, t) = φ̂(r, t) + δ̂(r, t) corresponding
respectively to a field operator for the condensate part φ̂(r, t) and the non-condensate
part δ̂(r, t).

In the limit of a large number of condensate atomsN0 ≫ 1 the operator φ̂(r, t) can be
replaced by a classical field often called the condensate wavefunction. This replacement
is known as the Bogoliubov approximation. With this the Bose field becomes

Ψ̂(r, t) = φ(r, t) + δ̂(r, t). (6.32)

This approximation breaks the global phase symmetry leading a to a non-conservation
of the number of particles (intuitively N0 ± 1 ≈ N0 for N0 ≫ 1). It is thus natural to
compute the statistics of this system in the grand canonical ensemble, however statistics
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can also be computed in the canonical ensemble after the introduction of new operators
(see [90, 86] for details).

The total density of particles n(r, t) is thus written as

n(r, t) = nc(r, t) + ñ(r, t) (6.33)

nc(r, t) = |φ(r, t)|2 (6.34)

ñ(r, t) = 〈δ̂†(r, t)δ̂(r, t)〉, (6.35)

where nc(r, t) and ñ(r, t) respectively are the condensate and the non-condensate den-
sity. As the thermal fluctuations typically overwhelm the quantum fluctuations the
operator δ̂ is identified with the operator for the thermal cloud.

Replacing eq.(6.32) in (6.29) the Hamiltonian splits as

Ĥ = H0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 (6.36)

H0 =

∫
dr
[
φ∗ĥ0φ+

g

2
|φ|4
]

(6.37)

Ĥ1 =

∫
dr
[
δ̂†(ĥ0 + g|φ|2)φ+ h.c

]
(6.38)

Ĥ2 =

∫
dr
[
δ̂†(ĥ0 + 2g|φ|2)δ̂ +

g

2
((φ∗)2δ̂δ̂ + h.c.)

]
(6.39)

Ĥ3 = g

∫
dr
[
φδ̂†δ̂†δ̂ + h.c

]
(6.40)

Ĥ4 =
g

2

∫
drδ̂†δ̂†δ̂δ̂ (6.41)

where h.c stands for Hermetian conjugate.
Most of the finite-temperature models of BEC are obtained by approximating the

different contributions of the Hamiltonians in eq.(6.36). The most drastic approxima-
tion is to assume that all the particles are in the condensate (valid at T ≈ 0) and
consequently δ = δ† = 0. This approximation directly leads to the GPE (6.1).

Mean-field models including finite temperature effects are based on closures analo-
gous to those ones discussed in section 2.4; high-order powers of thermal operators are
expressed in terms of lower-order powers as

δ̂†δ̂†δ̂δ̂ ≃ 4〈δ̂†δ̂〉δ̂†δ̂ + 〈δ̂†δ̂†〉δ̂δ̂ + 〈δ̂δ̂〉δ̂†δ̂† − (2〈δ̂†δ̂〉〈δ̂†δ̂〉 + 〈δ̂δ̂〉〈δ̂†δ̂†〉) (6.42)

δ̂†δ̂δ̂ ≃ 2〈δ̂†δ̂〉δ̂ + δ̂†〈δ̂δ̂〉 (6.43)

δ̂†δ̂†δ̂ ≃ 2δ̂†〈δ̂†δ̂〉 + 〈δ̂†δ̂†〉δ̂. (6.44)

Observe that, by definition 〈δ†〉 = 〈δ〉 = 0. In this approximation we thus have 〈δ̂†δ̂δ̂〉 =
0.

Inserting the preceding equations in eq.(6.36) leads to a quadratic Hamiltonian
in the thermal operators. Considering different terms leads to the approximations:
Hartree-Fock, Hartree-Fock-Bogoliubov and Hartree-Fock-Bogoliubov-Popov. These ap-
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proximations do not describe dynamical effects because they discard particle-exchanges
between thermal and condensate and between pairs of thermal atoms. These model
and their respective approximations are described in detail in reference [90]. In general,
they lead to a statistical description of the thermal cloud, computed with the reduced
mean-field Hamiltonian and a time-independent modified GPE for the condensate that
includes the mean values of thermal operators powers. This set of equations can be, in
principle, self-consistently solved.

Dynamical effect can be directly obtained by replacing the Bogoliubov approxima-
tion (6.32) in the evolution equation (6.31) and then performing averages:

i~
∂φ

∂t
= [ĥ0 + g|φ|2]φ+ 2g〈δ̂†δ̂〉φ+ g〈δ̂δ̂〉φ∗ + g〈δ̂†δ̂δ̂〉 (6.45)

i~
∂ñ

∂t
= 〈[δ̂†δ̂, Ĥ]〉 (6.46)

These equations are an unclosed hierarchy because they involve powers of the thermal
operators. This difficulty can be handled with an adequate closure, or an appropriate
mean-field. The term 〈δ̂†δ̂δ̂〉 in eq.(6.45), that is neglected in the static approximation,
plays a relevant role in the particle exchange of condensate and thermal atoms. A
theory that takes into account this term is (among others) the Zaremba-Nikuni-Griffin
(ZNG) framework, that yields a modified-dissipative GPE for the condensate coupled
with a Boltzman equation for the thermal cloud. For completeness we write down the
ZNG equations below. A derivation can also be found in the review [90].

Let us first introduce the distribution function f(p, r, t) that, for an atom of mo-
mentum p at location r and time t, is defined as the expectation value

f(p, r, t) = 〈f̂(p, r, t)〉 (6.47)

where f̂(p, r, t) is the Wigner operator

f̂(p, r, t) =

∫
dr′eip·r′/~δ̂†

(
r +

r′

2
, t0

)
δ̂

(
r − r′

2
, t0

)
. (6.48)

With this, the non-condensate density becomes

ñ(r, t) =

∫
dp

(2π~)3
f(p, r, t) . (6.49)
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The ZNG equations are

i~
∂φ

∂t
(r, t) =

[
ĥ0 + g

(
|φ(r, t)|2 + 2ñ(r, t)

)
− iR(r, t)

]
φ(r, r) (6.50)

∂f

∂t
+

p

m
· ∇rf − (∇rU) · (∇pf) = C12[f ] + C22[f ] (6.51)

U(r, t) = Vext(r, t) + 2g
[
|φ(r, t)|2 + ñ(r, t)

]
(6.52)

R(r, t) =
~

|φ(r, r)|2
∫

dp

(2π~)3
C12[f(p, r, t)] . (6.53)

The collision term C12 involves the transfer of an atom from the thermal cloud
into the condensate and its inverse process, while the term C22 involves the collision
between thermal atoms. These equations conserve the total number of particles. The
expressions of C12 and C22 are quite complex and depend on the energy of excitations
and on the values of ñ and φ(r, t). Explicit formulae are given in reference [90].

The ZNG equations were recently numerically simulated in reference [99]. The
authors studied the vortex dynamics in a harmonically trapped condensate. Putting
an off-centered vortex the showed that it decays by spiraling out toward the edge of the
condensate. They found that the decay agrees with the Hall-Vinen phenomenological
mutual friction model for superfluid vortices [94]. This model consists in a dynamic
equation for the vortex line velocity vL

vL = vsl + αs′ × (vn − vsl) − α′s′ × [s′ × (vn − vsl)], (6.54)

where s′ is the tangent of the vortex line, vsl is the is the local superfluid velocity that
is the sum of the ambient superfluid velocity vs and the self-induced vortex velocity ui

and vn is the normal velocity. The constants α, α′ depend on the temperature and are
proportional to the normal density ρn.

There exists other approaches that are not based on mean-field theory, such as the
stochastic GPE and the truncated TGPE (also known as Projected Gross-Pitaevskii
equation, that is discussed in detail in publication below). There is not consensus at
the moment on which is the best model.

In this thesis we use the approach of the truncated GPE that allows to naturally
consider thermal fluctuations, a physical phenomenon that is not taken into account by
mean-field theories. We will show in the publication included in the next section that
the TGPE appears as a minimal model of superfluidity at finite temperature, where
counterflows and mutual friction effects are naturally present.
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6.3 Publication: “Energy cascade with small-scales

thermalization, counter flow metastability and

anomalous velocity of vortex rings in Fourier-truncated

Gross-Pitaevskii equation”

In this section we introduce the results presented in the work “Energy cascade with
small-scales thermalization, counter flow metastability and anomalous velocity of vor-
tex rings in Fourier-truncated Gross-Pitaevskii equation” (to be submitted to Physical
Review B). From the results detailed in the article presented below, two letters will be
written and submitted to Physical Review Letters. The first letter will be devoted to
the anomalous translational speed of vortex rings caused by thermally exited Kelvin
waves. The second letter will address the new mechanism of thermalization by direct
energy cascade.

We also add at the end of this section some supplementary figures that were not
included in the article.
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The statistical equilibria of the (conservative) dynamics of the Gross-Pitaevskii Equation (GPE)
with a finite range of spatial Fourier modes are characterized using a new algorithm, based on a
stochastically forced Ginzburg-Landau equation (SGLE), that directly generates grand canonical
distributions. The SGLE–generated distributions are validated against finite-temperature GPE–
thermalized states and exact (low-temperature) results obtained by steepest descent on the (grand
canonical) partition function. A standard finite-temperature second-order λ-transition is exhibited.

A new mechanism of GPE thermalization through a direct cascade of energy is found using
initial conditions with mass and energy distributed at large scales. A long transient with partial
thermalization at small-scales is observed before the system reaches equilibrium. Vortices are shown
to disappear as a prelude to final thermalization and their annihilation is related to the contraction of
vortex rings due to mutual friction. Increasing the amount of dispersion at truncation wavenumber is
shown to slowdown thermalization and vortex annihilation. A bottleneck that produces spontaneous
effective self truncation with partial thermalization is characterized in the limit of large dispersive
effects.

Metastable counter-flow states, with non-zero values of momentum, are generated using the SGLE
algorithm. Spontaneous nucleation of vortex ring is observed and the corresponding Arrhenius law
is characterized. Dynamical counter-flow effects on vortex evolution are investigated using two exact
solutions of the GPE: traveling vortex rings and a motionless crystal-like pattern of vortex lines.
Longitudinal effects are produced and measured on the crystal pattern. A dilatation of vortex rings
is obtained for counter flows larger than their longitudinal velocity. The vortex ring longitudinal
velocity has a dependence on temperature that is an order of magnitude above that of the perfect
crystal, an effect that is related to the presence of finite-amplitude Kelvin waves. This anomalous
vortex ring velocity is quantitatively reproduced by assuming equipartition of energy of the Kelvin
waves. Orders of magnitude are given for the predicted effects in weakly interacting Bose-Einstein
condensates and superfluid 4He.
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I. INTRODUCTION

Finite temperature superfluids are typically described
as a mixture of two interpenetrating fluids1. At low tem-
peratures the normal fluid can be neglected and Landau’s
two-fluids model reduces to the Euler equation for an
ideal fluid that is irrotational except on (singular) vor-
tex lines around which the circulation of the velocity is
quantized. At finite temperature, when both normal fluid
and superfluid vortices are present (e.g. in the counter-
flow produced by a heat current) their interaction, called
“mutual friction”, must also be accounted for2.

In the low-temperature regime the Gross-Pitaevskii
equation (GPE) (also called the Nonlinear Schrődinger
Equation) is an alternative description of superfluids and
Bose-Einstein Condensates (BEC)3. The GPE is a par-
tial differential equation (PDE) for a complex wave field
that is related to the superflow’s density and velocity by
Madelung’s transformation4. The (non singular) nodal
lines of the complex wave field correspond to the quan-
tum vortices that appear naturally in this model with
the correct amount of velocity circulation. Just as the
incompressible Euler equation, the GPE dynamics is
known to produce5–8 an energy cascade that leads to a
Kolmogorov regime with an energy spectrum scaling as
E(k) ∼ k−5/3. This Kolmogorov regime was also experi-
mentally observed in low temperature helium9,10. In this
experimental context, note that so much progress has
been made that it is now possible to visualize superfluid
vortices both in the low-temperature regime and in the
presence of counter flow by following the trajectories of
solid hydrogen tracers in helium11,12.

It has been suggested that the GPE should also be able
to describe the classical equilibrium aspects of a finite-
temperature homogeneous system of ultracold gases, pro-
vided that that a projection (or truncation) on a finite
number of Fourier modes is performed3,13. Such classi-
cal truncated systems have a long history in the context
of fluid mechanics. Indeed, if the (conservative) Euler
equation is spectrally truncated, by keeping only a finite
number of spatial Fourier harmonics, it is well known
that it admits absolute equilibrium solutions with Gaus-
sian statistics and equipartition of kinetic energy among
all Fourier modes14–17.

Recently, a series of papers focused on the dynam-
ics of convergence of the truncated Euler equation to-
ward the absolute equilibrium. It was found that (long-
lasting) transient are obtained that are able to mimic
(irreversible) viscous effects because of the presence of a
“gas” of partially-thermalized high-wavenumber Fourier

modes that generates (pseudo) dissipative effects18–23.
The main goal of the present paper is to obtain and

study finite temperature dissipative and counter flow ef-
fects by extending to the Fourier-truncated GPE the dy-
namical results that were obtained in the framework of
the truncated Euler equation. We now give a short re-
view of what is already known about the truncated GPE
dynamics.

The Fourier truncated Gross-Pitaevskii equation was
first introduced in the context of Bose condensation by
Davis et al.13 as a description of the classical modes
of a finite-temperature partially-condensed homogeneous
Bose gas. They considered random initial data defined
in Fourier space by modes with constant modulus and
random phases up to some maximum wavenumber (de-
termined by the energy). They found that, the numeri-
cal evolution of the truncated Gross-Pitaevskii equation
reached (microcanonical) equilibrium and that a conden-
sation transition of the equilibrium was obtained when
the initial energy was varied.

The same condensation transition was later studied
by Connaughton et al.24 and interpreted as a condensa-
tion of classical nonlinear waves. Using a modified wave
turbulence theory with ultraviolet cutoff, they argued
that the transition to condensation should be subcriti-
cal. They found their theory in quantitative agreement
with numerical integration of the GPE, using the same
stochastic initial conditions than those of reference13.
However, the authors later argued that, as weak turbu-
lence theory is expected to breakdown nearby the transi-
tion to condensation, the subcritical nature of the tran-
sition predicted by their theory was not physical25.

Berloff and Svistunov26, starting from periodic initial
conditions similar to those of Davis et al.13, used a finite-
difference scheme (exactly conserving energy and particle
number) to characterized the dynamical scenario of the
relaxation toward equilibrium. Using the same finite-
difference scheme, Berloff and Youd27 then studied the
dissipative dynamics of superfluid vortices at nonzero
temperatures and observed a contraction of the vortex
rings that followed a universal decay law.

Our main results are the followings. The classical abso-
lute equilibrium of ideal fluids when generalized to GPE
superfluids describes a standard28,29 second-order phase
transition. Long transient with energy cascade and par-
tial small-scales thermalization are present in the relax-
ation dynamics. Dynamical counter-flow effects on vor-
tex evolution are naturally present in the system and the
vortex ring have anomalous velocities caused by ther-
mally excited Kelvin waves.

The paper is organized as follows: Section II is devoted
to the basic theoretical background that is needed to ac-
count for the dynamics and thermalization of the Fourier
truncated GPE.

In Sec. III, the thermodynamic equilibrium is ex-
plored. The microcanonical and grand canonical distri-
butions are numerically shown to be equivalent. Exact
analytical expressions for the low-temperature thermody-
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namic functions are obtained. A standard second-order λ
phase transition is exhibited at finite-temperature using
the SGLE-generated grand canonical states.

In Sec. IV, the direct energy cascade is considered as
a new mechanism for GPE thermalization. Using initial
data with mass and energy distributed at large scales, a
long transient with partial thermalization at small-scales
is characterized. Vortex annihilation is observed to take
place and is related to mutual friction effects. A bottle-
neck producing spontaneous self truncation with partial
thermalization and a time-evolving effective truncation
wavenumber is characterized in the limit of large disper-
sive effects at the maximum wavenumber of the simula-
tion.

In Sec. V, the new SGLE algorithm is used to generate
counter-flow states, with non-zero values of momentum,
that are shown to be metastable under SGLE evolution.
The spontaneous nucleation of vortex ring and the cor-
responding Arrhenius law are characterized. Dynamical
counter-flow effects are investigated using vortex rings
and straight vortex lines arranged in crystal-like patterns.
An anomalous translational velocity of vortex ring is ex-
hibited and is quantitatively related to the effect of ther-
mally excited finite-amplitude Kelvin waves. Orders of
magnitude are estimated for the corresponding effects in
weakly interacting Bose-Einstein condensates and super-
fluid 4He.

Section VI is our conclusion. The numerical methods
and low-temperature thermodynamic functions are de-
scribed in an appendix.

II. THEORETICAL BACKGROUND

This section deals with basic facts needed to under-
stand the dynamics and thermalization of the Fourier
truncated GPE. We first recall in section II A 1 the
(untruncated) GPE dynamics, its associated conserved
quantities and the corresponding spectra; this material
can be skipped by the reader already familiar with the
GPE model of superflow4,6. The Fourier truncated GPE,
its thermodynamical limit and the different statistical en-
sembles are then defined.

The thermodynamics of the truncated system is intro-
duced in section II B using the microcanonical distribu-
tion. The canonical and grand canonical distributions are
also used as they allow to directly label the equilibrium
states by temperature and particle numbers.

A stochastically forced Ginzburg-Landau equation
(SGLE) is considered in section IIC and shown to de-
fine a new algorithm that directly generates the grand
canonical distributions.

A. Galerkin truncated Gross-Pitaevskii equation

1. Conservation laws and Galilean invariance of the GPE

Superfluids and Bose-Einstein condensates3,30 can be
described at low temperature by the Gross-Pitaevskii
equation (GPE) that is a partial differential equation
(PDE) for the complex field ψ that reads

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + g|ψ|2ψ, (1)

where |ψ|2 is the number of particles per unit volume,

m is the mass of the condensed particles and g = 4πã~
2

m ,
with ã the s-wave scattering length. This equation con-
serves the Hamiltonian H, the total number of particles
N and the momentum P defined in volume V by

H =

∫

V

d3x

(
~2

2m
|∇ψ|2 +

g

2
|ψ|4

)
(2)

N =

∫

V

|ψ|2 d3x (3)

P =

∫

V

i~

2

(
ψ∇ψ − ψ∇ψ

)
d3x. (4)

It will be useful for the next sections to explicitly write
the conservation law of the momentum ∂t

i~
2 (ψ∂jψ −

ψ∂jψ) + ∂kΠkj = 0, where the momentum flux tensor
Πkj is defined as6

Πkj =
~2

2m
(∂kψ∂jψ+∂kψ∂jψ)+ δkj(

g

2
|ψ|4− ~2

4m
∇2|ψ|2).

(5)
It is well known that the GPE (1) can be mapped into

hydrodynamics equations of motion for a compressible ir-
rotational fluids using the Madelung transformation de-
fined by

ψ(x, t) =

√
ρ(x, t)

m
exp [i

m

~
φ(x, t)], (6)

where ρ(x, t) is the fluid density and φ(x, t) is the ve-
locity potential such that v = ∇φ. The Madelung
transformation (6) is singular on the zeros of ψ. As
two conditions are required (both real and imaginary
part of ψ must vanish) these singularities generally take
place on points in two-dimension and on curves in three-
dimensions. The Onsager-Feynman quantum of velocity
circulation around vortex lines ψ = 0 is given by h/m.

When eq.(1) is linearized around a constant ψ = A0,

the sound velocity is given by c =
√
g|A0|2/m with dis-

persive effects taking place for length scales smaller than
the coherence length defined by

ξ =
√

~2/2m|A0|2g. (7)

ξ is also the length scale of the vortex core3,6.
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Following reference5 we define the total energy per unit
volume etot = (H−µN)/V −µ2/2g where µ is the chem-
ical potential (see section II B). Using the hydrodynam-
ical variables, etot can we written as the sum of three
parts: the kinetic energy ekin, the internal energy eint
and the quantum energy eq defined by

ekin =
1

V

∫
d3x

1

2
(
√
ρv)2 (8)

eint =
1

V

∫
d3x

g

2m2

(
ρ− µm

g

)2

(9)

eq =
1

V

∫
d3x

~2

2m2
(∇√

ρ)
2
. (10)

Using Parseval’s theorem, one can define correspond-
ing energy spectra: e.g. the kinetic energy spec-
trum ekin(k) is defined as the sum over the angles of∣∣∣ 1
(2π)3

∫
d3reirjkj

√
ρvj

∣∣∣
2

. ekin can be further decomposed

into compressible eckin and incompressible Ei
kin, using√

ρv = (
√
ρv)c + (

√
ρv)i with ∇ · (

√
ρv)i = 0 (see6 for

details).
Finally note that the GPE (1) is invariant under the

Galilean transformation

ψ′(x, t) = ψ(x− vst, t) exp

{
im

~

[
vs · x − 1

2
v2
s t

]}
. (11)

Under this transformation eqs.(2-4) transform as

H ′ =
1

2
mNv2

s + P · vs +H (12)

N ′ = N (13)

P′ = mNvs + P. (14)

2. Definition of the Fourier truncated GPE

For a periodical 3d system of volume V the Fourier
truncated GPE is defined by performing a Galerkin trun-
cation that consists in keeping only the Fourier modes
with wavenumbers smaller than a UV cut-off kmax.

Expressing ψ in terms of the Fourier modes Ak as

ψ(x, t) =
∑

k

Ak(t)eik·x , with
k

kmin
∈ Z3, (15)

and where kmin = 2π/V 1/3 is the smallest wavenumber.
The Galerkin (Fourier) truncated Gross-Pitaevskii equa-
tion (TGPE) is defined as

−i~∂Ak

∂t
= −~2k2

2m
Ak −

∑

k1,k2

Ak1
A∗

k2+k1
Ak+k2

, (16)

where the Fourier modes satisfy Ak = 0 if k ≥ kmax

and the sum is performed over all wavenumbers satis-
fying |k1|, |k2|, |k2 + k1|, |k + k2| < kmax. This time-
reversible finite system of ordinary differential equa-
tions with a large number of degree of freedom N ∼

(kmax/kmin)3 also conserves the energy, number of parti-
cles and momentum.

The direct numerical evolution of the convolution in
eq.(16) would be very expensive in computational time
O(N6), where N is the resolution. This difficulty is
avoided by using pseudo-spectral methods31 and the
non-linear term is calculated in physical space, using
FFTs that reduce the CPU time to O(N3 logN). In-
troducing the Galerkin projector P that reads in Fourier
spacePG[Ak] = θ(kmax − k)Ak with θ(·) the Heavside
function, the TGPE (16) can be written as

i~
∂ψ

∂t
= PG[− ~2

2m
∇2ψ + gPG[|ψ|2]ψ]. (17)

Equation (17) exactly conserves energy and mass and, if
it is correctly de-aliased using the 2/3-rule31 (dealias-
ing at kmax = 2

3
N
2 ), it also conserves momen-

tum (see Appendix A for a explicit demonstration).
The Galerkin truncation also preserves the Hamilto-
nian structure with the truncated Hamiltonian H =∫
d3x

(
~
2

2m |∇ψ|2 + g
2 [PG|ψ|2]2

)
.

Note that perhaps a more standard definition of
dealiasing in eq.(17) could have been PG[|ψ|2ψ] us-
ing 1/2-rule (dealiasing at kmax = 1

2
N
2 ) rather than

PG[PG[|ψ|2]ψ] with the 2/3-rule. Using the former defini-
tion there is no restriction |k2| < kmax on the convolution
in eq.(16). Both methods are equivalent in the partial
differential equation (PDE) limit (exponential decay of
energy spectrum for k ≪ kmax) and admit the same in-
variants. However the scheme of eq.(17) is preferable be-
cause kmax is larger at the same resolution. If dealiasing
is not preformed in equation (17) the errors in the con-
servation of momentum can rise up to 50% in a few units
of time (see Appendix A). In a finite difference scheme
the conservation of momentum should also be checked
carefully as it is bound to produce spurious effects.

Another effect caused by periodic boundary condition
is that the velocity vs in the Galilean transformation (11)
is quantized by the relation

vs =
~

m

2π

V 1/3
ns, (18)

where ns ∈ Z3 and vs becomes continuous only in the
limit ~/(mV 1/3) → 0. The Galilean invariance is slightly
broken by the TGPE (16) because of modes close to the
truncation wavenumber kmax. However it is recovered
in the PDE limit where high wavenumber modes are
converging exponentially and also in the thermodynamic
limit: kmax

kmin
→ ∞ defined below because the offending

terms represent only a surface effect in Fourier space.

3. Thermodynamical limit and statistical ensembles

Let us first note that the energy H, the number of
particles N and the momentum P in eqs. (2-4) are all
proportional to the total number of modes N ∼ k3

maxV
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and therefore are all extensive quantities. Also note that
by definition of the coherence length (7), the number
ξkmax determines the amount of dispersion at truncation
wavenumber in the system.

The thermodynamic limit V → ∞ of the truncated
Gross-Pitaevskii system is thus defined as the limit

N → ∞ , ξkmax = constant, (19)

in order to obtain equivalent systems. In this limit the
relevant thermodynamic variables are the intensive quan-
tities H/V , N/V and P/V . In practice, to perform nu-
merical computations we will fix the volume to V = (2π)3

and we will vary kmax (see paragraphs before section III).
Let us define, as usual the microcanonical ensemble32

by the probability dw of finding the system in states with
given values of energy Hin, number of particles Nin (the
subscript “in” stands for initial data) and momentum Pin

given by:

dw = cte eSδ(H −Hin)δ(N −Nin)δ3(P−Pin)dHdNd3P,
(20)

where S = log Γ is the entropy with Γ the number of
accessible micro-states.

Microcanonical statistical states can be obtained nu-
merically by time-integrating the TGPE until the system
reaches thermodynamic equilibrium13,24. These thermal-
ized states are formally determined by the control values
Hin, Nin and Pin that are set in the initial condition. It
has been shown in references13,24 by varying the values
of Hin that TGPE present a phase transition analogous
to the one of Bose-Einstein condensation, where the 0-
wave-number A0 vanish for finite values of Hin. Note
that an explicit expression of dw or S cannot be easily
obtained in the microcanonical ensemble and therefore
the temperature is not easily accessible.

A simple way to explicitly control the temperature
is to use the canonical or grand canonical formulation.
The grand canonical distribution probability is given by
a Boltzman weight

Pst =
1

Z e
−βF (21)

F = H − µN − W · P, (22)

where Z is the grand partition function, β is the inverse
temperature and µ is the chemical potential. In what
follows we will refer to W as the counterflow velocity.

Note that when W = 0, F = H−µN and the statistic
weight of distribution (21) corresponds to the λ−φ4 the-
ory studied in second order phase transitions28,29. This
point will be further discussed in subsection III C.

Finally remark that the states with W 6= 0 are ob-
tained, in the thermodynamic limit, by a Galilean trans-
formation of the basic W = 0 state (see below eq. (64)).
However, for finite size systems, because of the quantifi-
cation of the Galilean transformation (eqs.(11) and (18))
new metastable states with counterflow appear. These
metastable states and their interactions with vortices will
be studied in detail below in section V A.

In the grand canonical ensemble (21-22) the mean en-
ergy H, number of particles N and momentum P are
easily obtained by defining the grand canonical potential

Ω = −β−1 logZ (23)

and using the relations

N = −∂Ω

∂µ
, P = −∂Ω

∂P
, H =

∂Ω

∂β
+µN+W ·P. (24)

Note that the microcanonical states (20) are character-
ized by the values Hin, Nin and Pin. On the other hand,
the grand canonical states are controlled by the conjugate
variables: β, µ and W. The different statistical ensem-
bles are expected to be equivalent in the thermodynamics
limit (19) and therefore

Hin = H̄ , Nin = N , Pin = P, (25)

in this limit. The equivalence of ensembles will be nu-
merically tested below in subsection III A.

In the grand canonical ensemble, the pressure p is usu-
ally defined from the grand canonical potential (23) by
the relation32 Ω = −pV . This definition presents two
problems in the TGPE system. First, due to classical
statistics Ω has a logarithmic divergence at β = ∞. Sec-
ond, this definition does not coincide with the standard
relation in fluid dynamics involving the diagonal part of
the momentum flux tensor Πij (see eq.(5)). Both these
problems can be solved by considering the total number
of modes as a new thermodynamics variable, as we will
see in the next section.

B. Thermodynamics of truncated system

When a Galerkin truncation is performed on a system
a new variable kmax explicitly appears. One thus find
that the thermodynamic potentials depend on the total
number of modes. Denoting λN the conjugate variable
to the total number of modes N the standard thermody-
namic relation for the energy easily generalizes as

dE = −pdV + TdS + µdN + λNdN + W·dP (26)

with S the entropy and where we have included the to-
tal momentum dependence dP as in Landau two-fluid
model1. E = H is the macroscopic energy and the bar
over H stands for some ensemble average. We will omit
the bar over the others microscopic quantities. Note that
the Fourier modes formally play the role of “particles”
and λN is formally the “chemical potential” associated
to those “particles”.

The thermodynamic potentials can be easily general-
ized to take in to account the new variables. It is useful
to define the Gibbs potential G, grand canonical Ω and
a generalized grand canonical potential Ω′ (with a Leg-
endre transformation on N ) as

G = E − TS + pV − W·P (27)

Ω = E − TS − µN − W·P (28)

Ω′ = E − TS − µN − λNN − W·P (29)
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from where their respective variations follows:

dG = V dp− SdT + µdN + λNdN − P · dW (30)

dΩ = −pdV − SdT −Ndµ+ λNdN − P · dW(31)

dΩ′ = −pdV − SdT −Ndµ−NdλN − P · dW.(32)

Based on standard arguments of extensive variables32

and noting that λN and W are intensive variables we
find the standard formula of the Gibbs potential with
two types of particles

G = µN + λNN . (33)

Using eqs.(27) and (33) in eqs.(28) and (29) we find

Ω = −pV + λNN , Ω′ = −pV (34)

The relations (26-34) determine all the thermodynamic
variables and potentials. For instance note that the pres-
sure p can be obtained from eq.(31), eq.(32) or eq.(34)
by

p = − ∂Ω

∂V

∣∣∣∣
T,µ,N ,W

= −Ω − λNN
V

= −Ω′

V
(35)

where λN = ∂Ω
∂N
∣∣
V,T,µ,W

.

We proceed now to show that thermodynamic defini-
tion (35) of the pressure coincides with the standard re-
lation in fluid dynamics. In order to make explicit the
dependence of the energy H on the volume V let us de-
fine the dimensionless space variables x̃ = x/V

1
3 and ψ̃ =

V 1/2ψ. Expressed in term of these variables the Hamil-

tonian (2) reads H =
∫
d3x̃

(
~
2

2m
1

V
2
3
|∇̃ψ̃|2 + 1

V
g
2 |ψ̃|4

)
.

Taking the derivative with respect to V and reintroduc-
ing x and ψ yields

∂H

∂V
= − 1

V

∫
d3x

(
~2

2m

2

3
|∇ψ|2 +

g

2
|ψ|4

)
. (36)

This expression corresponds to the spatial average of the
the diagonal part of Πik. As by definition E = H and
the derivative has been implicitly done at constant total
number of modes and momentum we find, using the ther-
modynamic relation (26) and eq.(36), that the pressure
satisfies

p = − ∂E

∂V

∣∣∣∣
S,N,N ,P

= − ∂H

∂V

∣∣∣∣
N,N ,P

, (37)

where the second equality holds for adiabatic
compressions32.

Finally remark that replacing Ω in eq.(28) we obtain
the thermodynamic relation

E + pV − µN − W·P = TS + λNN . (38)

Note that, in a classical system, the entropy is defined
up to an additive constant related to the normalization
of the phase-space. However the quantity TS + λNN

is completely determined because each term in the left
hand side of eq.(38) is well defined. By the same argu-
ments d (NλN /T ) is also a completely determined quan-
tity. If the variable N had not been taken into account,
the corresponding pressure would be −Ω/V and therefore
wrongly defined and depending on the normalization con-
stant. The grand canonical potential Ω will be explicitly
obtained at low-temperature in subsection III B where
the above considerations can be explicitly checked.

C. Generation of grand canonical distribution

using a stochastic Ginzburg-Landau equation

Grand canonical equilibrium states given by the statis-
tics (21-22) cannot be easily obtained because the Hamil-
tonian H in eq.(2) is not quadratic and therefore the sta-
tistical distribution is not Gaussian. Nevertheless it is
possible to construct a stochastic process that converges
to a stationary solution with equilibrium distribution (21-
22). This process is defined by a Langevin equation con-
sisting of a stochastic Ginbzurg-Landau equation (SGLE)
that reads

~
∂Ak

∂t
= − 1

V

∂F

∂A∗
k

+

√
2~

V β
ζ̂(k, t) (39)

〈ζ(x, t)ζ∗(x′, t′)〉 = δ(t− t′)δ(x − x′), (40)

where F is defined in eq.(22) and ζ̂(k, t) is the (kmax-
truncated) Fourier transform of the gaussian white-noise
ζ(x, t) defined by eq.(40). The Langevin equation (39-40)
explicitly reads in physical space

~
∂ψ

∂t
= PG[

~2

2m
∇2ψ + µψ − gPG[|ψ|2]ψ − i~W · ∇ψ]

+

√
2~

V β
PG[ζ(x, t)]. (41)

In the T → 0 limit eq.(41) reduce to the advective real
Ginzurg-Landau equation (up to a redefinition of µ) that
was introduced in reference6. This equation has the same
stationary solutions of than the TGPE (17) in a system of
reference moving with velocity W. When also included in
the TGPE the term µψ in eq.(41) has, because of particle
number conservation, the only effect of adding a global
time-dependent phase factor to the solution.

The probability distribution P [{Ak, A
∗
k}k<kmax

] of the
stochastic process defined by eqs.(39-40) can be shown
to obey the following Fokker-Planck equation33,34

∂P

∂t
=

∑

k<kmax

∂

∂Ak

[
1

V ~

∂F

∂A∗
k

P +
1

V ~β

∂P

∂A∗
k

]
+ c.c . (42)

It is straightforward to demonstrate that the probabil-
ity distribution (21) is a stationary solution of eq.(42),
provided that βF is a positive defined function of
{Ak, A

∗
k}k<kmax

.
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In order to directly control the value of the number
of particles or the pressure, the SGLE must we supplied
with one of two ad-hoc equation for the chemical poten-
tial. These equation simply read

dµ

dt
= −νN (N −N∗)/V (43)

dµ

dt
= −νp(p− p∗) (44)

where the pressure p is computed as p = −∂H
∂V (see

eq.(36)). Equation (43) controls the number of particles
and fixes its mean value to the control value N∗. Simi-
larly eq.(44) controls the pressure and fixes its value at
p∗. Equations (43-44) are not compatible and they must
not be used simultaneously. Depending on the type of
the temperature scans, the SGLE must be used together
with either eq.(43), eq.(44) or solely with a fixed value of
µ.

In the rest of this paper we will perform several numeri-
cal simulations of the TGPE (16) and SGLE (41). For nu-
merics, the parameters in SGLE (omitting the Galerkin
projector P) will be rewritten as

∂ψ

∂t
= α∇2ψ + Ω′

0ψ − β0|ψ|2ψ − iW · ∇ψ +

√
kBT

α
ζ,

with similar changes for TGPE.
In terms of α, Ω′

0 and β0 the physical relevant parame-
ters are the coherence length ξ and the velocity of sound
c defined in section II A 1 (eq.(7) and text before). They
can be are expressed as

ξ =
√
α/Ω′

0 , c =
√

2αβ0ρ∗ (45)

with ρ∗ = Ω′
0/β0. The value of the density at T = 0

set to ρ∗ = 1 in all the simulations presented below. In
order to keep the value of intensive variables constant
in the thermodynamic limit (19), with V constant and
kmax → ∞ the inverse temperature is expressed as β =
1/kNT where kN = V/N . With these definitions the
temperature T has units of energy per volume and 4πα
is the quantum of circulation.

With ξ fixed, the value of ξ/c only determine a time-
scale. The velocity of sound is set to c = 2 and the dif-
ferent runs presented below are obtained by varying only
the coherence length ξ, the temperature T , the counter-
flow velocity W and the UV cut-off wavenumber kmax.
The number ξkmax is kept constant when the resolution
is changed, except in section IV B where dispersive ef-
fects are studied. Finally in all numerical results the
energy and momentum are presented per unit of volume
V = (2π)3 and the control values of number of particles
and pressure in eqs.(43-44) are set to mN∗/V = ρ∗ = 1
and p∗ = c2ρ∗2/2 = 2. Numerical integration are per-
formed by using periodic pseudo-spectral codes and the
time-stepping schemes are Runge-Kutta of order 4 for
TGPE and implicit Euler for SGLE.

III. CHARACTERIZATION OF

THERMODYNAMIC EQUILIBRIUM

In this section, the thermodynamic equilibrium is ex-
plored and characterized. The microcanonical and grand
canonical distributions are first shown to be numerically
equivalent in a range of temperatures by comparing the
statistics of GPE and SGLE generated states in sec-
tion III A. The steepest descent method is then applied
to the grand partition function in section III B to ob-
tain exact analytical expressions for the low-temperature
thermodynamic functions. The basic numerical tools are
validated by reproducing these low-temperature results.
In section III C a standard second-order λ phase transi-
tion is exhibited at finite-temperature using the SGLE-
generated grand canonical states and the deviations to
low-temperature equipartition are characterized.

A. Comparison of microcanonical and grand

canonical states

We now numerically compare the statistics of the grand
canonical states produced by the new algorithm SGLE
to the statistics of the microcanonical states obtained by
long-time integrations of TGPE. The coherence length
is set to ξ =

√
2/10 and 323 collocation points are used

(kmax = 10). The initial condition for the TGPE runs
are chosen with random phases in a similar way than in
references13,24. We obtain low, medium and high values
of the energy with constant density ρ = mN/V = 1 (see
table I).

TABLE I: Parameters of TGPE initial condition and time
steps.

H T TGPE time steps SGLE time steps

0.09 0.09 40000 9600

0.5 0.5 20000 9600

1.96 1.8 20000 9600

4.68 4 20000 5000

To compare with the SGLE generated statistics a scan
in temperature at constant density ρ = 1 is performed
in order to obtain the temperature corresponding to the
energies of the TGPE runs. Using the thermalized final
states obtained from TGPE and converged final states of
SGLE histograms of the of the density ρ(x) in physical
space are confronted in Fig.1. They are found to be in
excellent agreement.

Note that when the energy (or temperature) increases
more weight becomes apparent on the histograms near
ρ = 0, indicating the presence of vortices. The Gaussian
character of the histogram in Fig. 1 a motivates the low-
temperature calculation of the next section.
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FIG. 1: Comparison of density histograms obtained by SGLE
and TGPE dynamics (ξ = 2/10

√
2 and resolution 323) with

energy equal to a) H = 0.09, b) H = 0.51, c) H = 1.96 and
d) H = 4.68 (see table I). The solid line in a) is a Gaussian of
standard deviation ¯δρ2 = 0.016 (see below eq.(59)) computed
with the low-temperature calculations of section III B.

The SGLE converges much faster than the TGPE as
apparent in table I. Because of the accurate conserva-
tive temporal scheme needed for the integration of the
TGPE, the SGLE yields a large economy of the CPU
time needed to reach equilibrium. On the local machines
where these computations were performed the SGLE was
typically more than 10 times faster than TGPE. Finally
note that, even at this relatively low 323 resolution, the
thermodynamic limit as been reached in the sense that
the micro and grand canonical distribution coincides.

B. Low-temperature calculation

The gaussian histogram of Fig.1.a strongly suggest
that some quadratic approximation should be able to
obtain exact analytical expressions for the thermody-
namic functions at low temperature. In this section we
use a such an approximation to compute the grand par-
tition function Z and the grand canonical potential57

Ω = −β−1 logZ defined in (28).
The first step is to express the energy F of eq.(22)

in terms of the Fourier amplitudes Ak. This leads to
a non quadratic function F [Ak, A

∗
k] explicitly given in

appendix B (eqs.B1-B3). The grand partition function is
a product integral over all the Fourier amplitudes

Z(β, µ,W) = V N
∫
dA0dA

∗
0

2π

∏

k<kmax

dAkdA
∗
k

2π
e−βF [Ak,A

∗

k].

(46)
The integrals in (46) cannot be done explicitly, however
it is possible to give a low-temperature approximation

using the method of steepest descent28,35. In addition
to F an external field −µ0|A0|2V will be added in or-
der to explicitly obtain the mean value of condensate
Fourier mode ¯|A0|2 by direct differentiation. The physi-
cal partition function is obtained by setting µ0 = 0. The
integrals are dominated by the saddle-point determined
by ∂F

∂A∗

k

− µ0A0V δk,0 = 0 that gives the solution (see

eqs.(B4) and (B5))

g|A0|2
∣∣
sp

= µ+ µ0 Ak = 0 fork 6= 0, (47)

where the subscript “sp” stands for saddle-point. Note
that in general ¯|A0|2 6= |A0|2

∣∣
sp

and the mean value is

equal to the saddle-point one only at T = 0. Other solu-
tions that can be obtained when W 6= 0 will be discussed
in detail in section V.

In the saddle-point Ak = 0 for k 6= 0, we thus need
to keep only quadratic terms in Ak to obtain the low-
temperature approximation. Denoting p = ~k, at lead-
ing order F can be rewritten as F = F0 + F1 + F2 with

F0 = V (
g

2
|A0|4 − µ|A0|2) (48)

F1 = V
∑

p 6=0

(
p2

2m
− µ+ 2g|A0|2 − W · p)|Ap|2 (49)

F2 = V
g

2

∑

p 6=0

A∗2
0ApA−p +A2

0A
∗
pA

∗
−p. (50)

To obtain the low-temperature partition function we

must compute the determinant of the matrix ∂2F
∂Ap∂Aq

−
µ0V δp,0δq,0. This determinant can be obtained using the
Bogoliubov transformation

Ap = upBp + vpB
∗
−p (51)

with up = A0

|A0|
1√

1−L2
p

, vp = A0

|A0|
Lp√
1−L2

p

and where

Lp is determined by imposing the diagonalization of
F − µ0|A0|2V . Lp is explicitly given in eq.(B6). Is easy
to show that (51) is a canonical transformation and the
normalization condition of the Poisson bracket implies
|up|2 − |vp|2 = 1.

Expressing F in the Bogoliubov basis we obtain

F = V



g
2
|A0|4 − µ|A0|2 +

∑

p 6=0

(ǫ(p;µ, µ0) − W · p) |Bp|2




(52)
with the dispersion relation (see appendix B)

ǫ(p;µ, µ0) =

√(
µ+ 2µ0 +

p2

2m

)2

− (µ+ µ0)2. (53)

The exited modes Bp are called phonons in quantum
mechanics. Here, because of classical statistics and
the quadratic Hamiltonian, there is equipartition among
phonon modes. Replacing the value of the chemical po-
tential by the saddle-point µ = g|A0|2

∣∣
sp

(with µ0 =
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0), eq.(53) yields the well known Bogoliubov dispersion
relation36. The Bogoliubov relation ǫ(p) can also be di-
rectly obtained from the GPE by expressing ψ in hy-
drodynamics variables, using the Madelung transforma-
tion (6) and linearizing around an homogenous density
ρ0 = m|A0|26.

The partition function now trivially factor-
izes in independent parts Z(β, V, µ,W,N , µ0) =
Z0(β, µ, µ0)

∏
p 6=0 Zp(β, µ,W, µ0) where

Z0(β, V, µ, µ0) =
√

2π3

√
V

gβ
e

V β(µ+µ0)2

2g (54)

Zp(β, µ,W, µ0) =
1

β(ǫ(p;µ, µ0) − W · p)
(55)

The total number of modes N =
∑
k 1 and the grand

canonical potential Ω are sums over all wave-numbers

Ω(β, V, µ,W,N ) = −β−1


logZ0 +

∑

p 6=0

logZp


(56)

from where all thermodynamic quantities directly follows
by using the thermodynamic relation (31).

Replacing the sum by an integral the expression for
the number of modes reads

N =

∫ Pmax

0

p2V

2π2~3
dp =

P 3
maxV

6π2~3
. (57)

Setting W = (0, 0, w) the integral form of eq. (56) reads

Ω(β, V, µ, w,N ) = −V (µ+ µ0)
2

2g
+

Pmax∫

0

1∫

−1

p2V

2π2~3
log


β
√(

µ+ 2µ0 +
p2

2m

)2

− (µ+ µ0)2 − βpwz


dz dp

2

= −V (µ+ 2µ0)

2g
− P 3

maxV

6π2β~3

{
2

3
− log [βǫ(Pmax;µ)] − f

[
4mµ

P 2
max

](
1 − w2m

2µ

)
− µ0

µ
f0

[
4mµ

P 2
max

]}
(58)

where in (58) the thermodynamic limit (19) of infinite
volume58 has been taken and the conditions w2 ≪ µ/m,
µ0/µ ≪ 1 have been used. The functions f [z] and f0[z]
are explicited in eqs.(B10-B11). Note that the depen-
dence of the grand canonical potential Ω on the number
of modes N is implicitly given by Pmax and eq.(57). The
first term in Ω is due to the condensated mode at p = 0.

The low-temperature approximation to all thermody-
namic functions is directly obtained from equation (58)
by first setting µ0 = 0 and then differentiating (58), using
relation (31). It is straightforward to check that both def-
inition of the pressure in eq. (35) coincide. Furthermore
the higher order moments of the density can be easily
computed by taking successive derivatives of the grand
canonical potential. For instance it is straightforward to
show that the variance of the density ρ (see Fig.1.a) is
given by

V 2〈δρ2〉 = −β−1m2 ∂
2Ω

∂µ2
. (59)

It can also be checked on the explicit expression for the
entropy S (see eqs.(B9)) that, as expected for a classical
system, the entropy depends by a logarithmic term on the
phase-space normalization. However the function TS +
λNN is independent of phase-space normalization (see
discussion below eq.(38)).

Finally, low-temperature expressions for the energies
(8-10) and their corresponding spectra can be easily ob-
tained using Madelung transformation (6). At low tem-

peratures the fluctuations are smalls and ekin depends
only on φ and eq + eint only on ρ. The total energy is
thus decomposed in two non-interacting terms. Equipar-
tition of energy between the total kinetic energy ekin and
quantum plus internal energy eq + eint is thus expected
at low temperature.

The next subsections will be concerned with the van-
ishing counterflown case w = 0. The states with non-zero
counterflow w will be studied in details in section V.

C. λ transition and vortices

To characterize the condensation transition, we present
here four temperature scans performed using SGLE (41).
Three of them are at resolution of 643 with respectively
constant chemical potential, density and pressure (us-
ing eqs.(43-44)). The fourth scan is performed at con-
stant pressure but at a resolution of 1283. The coherence
length is fixed so that ξkmax = 1.48 is kept constant.

Figure 2.a displays the results of the scans. Note that
the behavior at low-temperature is in good agreement
with the low-temperature analytical calculations of sec-
tion III B and the explicit formulae given in appendix B.
Also note that the constant pressure scans at resolutions
of 643 and 1282 coincide for all temperatures showing
that the thermodynamic limit (19) discussed in section
II B is obtained at these resolutions.

Figure 2.b displays the temperatures dependence of the
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FIG. 2: a) Temperature dependence of the density ρ, pres-
sure p and chemical potential µ for SGLE scans at constant
density, pressure and chemical potential (see legend on fig-
ure). b) Temperature dependence of the condensate fraction
|A0|/ρ (same scans as in a)). c) Specific heat cp = ∂H

∂T

˛

˛

p

at constant pressure and resolution 1283 the solid line corre-
sponds to a fit (see eq.(60)). d) Temperature dependence of
the energies ec

kin, ei
kin, ekin and eq + eint at constant density;

equipartition of energy between ekin and eq + eint is apparent
at low temperatures.

condensate fraction |A0|/ρ for the four SGLE runs. Note
that the condensation transition previously obtained (in
the constant density case) by microcanonical simulations
in references13,24 is reproduced and also present (at dif-
ferent critical temperatures) in the constant pressure and
chemical potential scans.

The SGLE algorithm directly provides the tempera-
ture. It thus allows to easily obtain the specific heat from
the data. Figure 2.c displays the specific heat at constant
pressure cp = ∂H

∂T

∣∣
p

for the scan at resolution 1283. As

the (w = 0) statistic weight of distribution (21,22) corre-
sponds to that of (standard two-component) second order
phase transitions28,29, we thus expect the condensation
transition visible on Fig.2.c to be in this standard class.
This point is confirmed by the solid lines in Figure 2.c
that correspond to a fit with the theoretical prediction
given by the renormalization group (RG)

cp =
A±

α
|τ |−α(1 + a±c |τ |∆ + b±c |τ |2∆ + . . .) +B± (60)

where τ = T−Tλ

Tλ
and the + and − signs refer to T > Tλ

and T < Tλ, see reference37. The fit was obtained in the
following way: first the identification of the transition
temperature Tλ is done by finding the zero of the linear

interpolation of the second order difference of H. Then
the three closest point to Tλ are discarded from the fit.
Posteriorly, using the critical exponents α = −0.01126
and ∆ = 0.529 given by the RG the data is fitted as in
reference37 over the non-universal constant. The values
obtained giveA+/A− = 0.98, very close to that one found
to be about 1.05 in reference37.

Finally on Fig.2.d the temperature dependence at con-
stant density of the different energies (8-10) expressed in
terms of hydrodynamical variables is displayed. Observe
that the incompressible kinetic energy Ei

kin vanishes for
low temperatures T ≪ T ρλ , where T ρλ = 2.48 is the tran-
sition temperature at constant density. This is due the
disappearance of vortices, that it is also manifest in the
density histograms in Fig.1. At low temperature equipar-
tition of energy between the total kinetic energy ekin and
quantum plus internal energy eq + eint, as discussed at
the end of section III B, is apparent on the figure.

IV. ENERGY CASCADE, PARTIAL

THERMALIZATION AND VORTEX

ANNIHILATION

A new mechanism of thermalization through a direct
cascade of energy is studied in section IV A. Using ini-
tial conditions with mass and energy distributed at large
scales, a long transient with partial thermalization of the
density waves is obtained at small-scales. Vortex annihi-
lation is observed to take place and is related to mutual
friction effects. A bottleneck effect that produces spon-
taneous self truncation with partial thermalization and a
time-evolving effective truncation wavenumber is charac-
terized in section IVB for large dispersive effects at the
maximum wavenumber of the simulation.

A. Partial thermalization

We now study the (partial) thermalization of the su-
perfluid Taylor-Green (TG) vortex. This flow, that was
first introduced in reference6, develops from an initial
condition that is prepared by a minimization proce-
dure using the advected real Ginzburg-Landau equation
(ARGLE)6. The nodal lines of the initial condition ψTG

are the vortex lines of the standard TG vortex and obeys
all its symmetries. Numerical integrations are performed
with a symmetric pseudo-spectral code, making use of
the TG symmetries to speed up the computations and
optimize memory use, as described in reference6. We use
the equivalent to 2563 collocation points and the coher-
ence length is set to ξ =

√
2/80 giving ξkmax = 1.48.

The temporal evolution of ekin, eikin, eckin, eq + eint is
displayed in Fig.3.a and the corresponding energy spectra
in Fig.3.c. Observe that at t = 0 eikin contains almost all
the energy because the highly vortical initial condition.
The early times (t ≤ 15) correspond to those described,
in the PDE regime of the GPE (1) previously reported
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FIG. 3: a) Temporal evolution of energies ec
kin, ei

kin, ekin and
eq + eint. At large times, the incompressible energy vanishes
and equipartition of energy between ekin and eq + eint is ob-
served. b) Temporal evolution of ei

kin at resolution of 643,
1283 and 2563 with constant ξkmax = 1.48. c-f) Energy spec-
tra at t = 0, 15, 69, 77 at resolution 2563. Figure e) shows
that equipartition is reached for all mode.

in5,6. An energy transfer from eikin to density waves is
observed.

Continuing the temporal integration the spectral con-
vergence of the GP partial differential equation is lost.
The dynamics is thus now influenced by the trunca-
tion wavenumbers kmax and thermalization starts to take
place. Two new regimes are observed. The first one for
20 . t . 80 corresponds to a partial thermalization at
small-scales is apparent on Fig.3.d-f. Note that equiparti-
tion of eckin and eq+eint starts to establish. This thermal-
ized zone progressively extends to larger wave-numbers.
During this phase eikin decrease at almost constant rate.
It is apparent on Fig.3.b that this phase is delayed by
increasing the resolution (at constant ξkmax).

Around t = 80 ( Fig.3.a and f) equipartition is estab-
lished for each wave-number and eikin almost vanishes.
The vortices thus disappear, first reconnecting into sim-
pler structures and then decreasing in size (as can be
directly observed on density visualizations, pictures not
shown). Note that the annihilation of the vortices can
be related to the contraction of vortex rings due to mu-

tual friction reported in27. For t > 80 the system finally
reaches the thermodynamic equilibrium. The absence of
vortices and the equipartition of energy between eckin and
eq + eint is a consequence of the low energy initial con-
dition ψTG as it is apparent in the temperature scan in
Fig.2.d. We have thus presented for the first time a new
mechanism of thermalization through a direct cascade of
energy of the TGPE similar to that of the incompressible
truncated Euler equation reported in reference18.

B. Dispersive slowdown of thermalization and

bottleneck

We now turn to the study of dispersion effects on the
thermalization of the TGPE dynamics and on vortex an-
nihilation. To wit, we prepare three different initial con-
ditions with different values of ξkmax using the TG ini-
tial condition described in the preceding section. We
fix the value of the coherence length to ξ =

√
2/20 and

use resolutions of 643, 1283 and 2563 corresponding to
ξkmax = 1.48, 2.97 and 6.01 respectively. The three ini-
tial condition therefore represent the same field at differ-
ent resolutions.

The temporal evolutions of ekin, eikin, eckin and eq +eint

for the three runs (indexed by the resolution) are dis-
played on Fig.4.a. They are identical until t ≈ 5 where
the run of resolution 643 starts to lose its spectral con-
vergence. At at t ≈ 20 all runs appear to have ther-
malized on Fig.4.a. However the kinetic energy spec-
tra on Fig.4.b shows a clear difference between the runs
(the dashed line corresponds to k2 power-law scaling).
The high-wavenumber modes of the 643 run are thermal-
ized. For the 1283 run the high-wavenumbers begin to
fall down and, at resolution 2563, two zone are clearly
distinguished. An intermediate thermalized range with
an approximative k2 power-law scaling is followed by a
steep decay zone well before kmax = 85. Remark that in
the 2563 run the spectral convergence is still ensured and
the (partial) thermalization is thus obtained within the
GP PDE-dynamics.

The temporal evolution of ekin(k) for the 2563 run is
displayed in Fig.4.c. The large wave-number k3 power-
law behavior at t = 0 is an artifact of the high-k decom-
position of energies in the presence of vortices (see pp.
2649-2650 of ref.6 and38) and a faster decay is recovered
as soon as the vortices disappear. The thermalized in-
termediate zone is observed to slowly extends to smaller
wave-numbers. This naturally defines a self-truncation
wave-number kc(t) where the energy spectrum starts to
drastically decrease.

In order to determine kc(t) we have tested fits to
ekin(k) using two type of trial spectra with three
free parameters: efit I(k) = A(t)k−n exp [−2δ(t)k] and
efit II(k) = A(t)k−n exp [−γ(t)k2]. The efit II(k) fit was
found to work better in the sense that it both gives the
correct n = −2 prefactor at intermediate and large times
and also gives a better fit to the data at high k (data not
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FIG. 4: a) Temporal evolution of energies (as in Fig3.a) for
ξkmax = 1.48, 2.97 and 6.01 (resolution 642, 1283 and 2563 re-
spectively). Yellow stars are the kinetic energy reconstructed
from fit data using eq.(62). b) Kinetic energy spectrum at
t = 17.4 for ξkmax = 1.48, 2.97 and 6.01; the dashed black
line indicates k2 power-law scaling. c) Temporal evolution of
kinetic energy spectrum; the solid red lines correspond to fits
using eq.(61) and the dashes black line indicate k−3 power-
law scaling. d) Temporal evolution of effective self-truncation
wavenumber kc at different resolutions.

shown). Fixing the prefactor at the value n = −2, we
finally define our working two-parameter fit as:

efit(k, t) = A(t)k2e
−

»

( 9π
16 )

1
3 ( k

kc(t) )
2

–

(61)

efit(t) =

∫ kmax

0

efit(k, t)dk. (62)

The factor (9π/16)1/3 in eq.(61) was set in order to obtain
both limits Akc/3 and Akmax/3 from efit(t) when kmax →
∞ and kc → ∞ respectively. The fits are also displayed
in Fig.4.c. They are in good agreement with the data
after vortices have disappeared. The temporal evolution
of efit(t) is displayed in Fig.4.a. It does converge to the
thermalized value of the energy. Finally the temporal
evolution of the self-truncation wavenumber kc(t), which
seems to have a well defined limit at infinite resolution,
is displayed in Fig.4.d for the three runs.

As the dynamics of modes at wave-numbers larger than
kc is weakly nonlinear, it should be amenable to a descrip-
tion in terms of wave turbulence theory; this could per-

haps explain the slowdown of the thermalization in this
zone. The new regime indicates that total thermaliza-
tion is delayed when increasing the amount of dispersion
(controlled by ξkmax) but is preceded by a partial ther-
malization (quasi-equilibrium up to kc) within a PDE.

V. METASTABILITY OF COUNTERFLOW,

MUTUAL FRICTION AND KELVIN WAVES

Counter-flow states with non-zero values of momen-
tum generated by the new SGLE algorithm and their
interaction with vortices are investigated in this section.
The counter-flow states are shown to be metastable under
SGLE evolution; the spontaneous nucleation of vortex
ring and the corresponding Arrhenius law are character-
ized in section V A. Dynamical counter-flow effects are
investigated in section V B using vortex rings and vor-
tex lines patterns that are exact solutions of the GPE.
Longitudinal and transverse mutual friction effects are
produced and measured. An anomalous translational ve-
locity of vortex ring is exhibited and is quantitatively
related to the effect of thermally excited finite-amplitude
Kelvin waves. Orders of magnitude are estimated for the
corresponding effects in BEC and superfluid 4He.

A. Metastability of grand canonical states with

counterflow

1. Thermodynamic limit of states with nonzero counterflow

The counterflow states with W 6= 0 are determined by
thermal fluctuations around the minima of the energy F
eq.(22). These minima correspond to the solution of

δF

δψ∗ = 0 = − ~2

2m
∇2ψ+gPG[|ψ|2]ψ−µψ+i~W·∇ψ (63)

that are plane-waves of the form

ψ(x;vs) = g−
1
2

√
µ−mW · vs +

mv2
s

2
e−i

m
~

vs·x, (64)

where the velocity vs indexes the different solutions.
In the thermodynamic limit, the Galilean group de-

fined by the transformations (11-14) is continuously in-
dexed by the velocity vs. All wavefunctions (64) are
thus equivalent by Galilean transformation (and redef-
inition of the chemical potential). Under the Galilean
transformation (11) the energy F is transformed as F ′ =
F − (mW · vs − mv2

s /2)N + vs · P. Note that, among
all the minima of F the one with vs = W minimizes F ′.
This state corresponds to a condensate moving with uni-
form velocity W. The W ·P term is thus only imposing
a Galilean transformation of the global minimum.

However, when working in a finite volume, the Galilean
transformation is quantized (see eq. (18)) and an the
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minima of F ′ of lowest energy corresponds to a conden-
sate moving with the uniform velocity vs closest to W.
At finite temperature and volume, when W is not too
large, we thus have two ways to produce momentum in
the system. The first one corresponds to Galilean trans-
formations and the second one to fluctuations of the ex-
ited phonons; with the momentum of phonons imposed
by the term W · P in the grand canonical distribution
(21), and vs = 0 in (64). Metastability is thus expected
when W 6= 0 with quasi-equilibrium corresponding to
condensates at different wavenumbers with an energy
barrier between each of those states.

In the context of the Landau two-fluid model1 the ve-
locity vs of the condensate corresponds to the super-
fluid velocity and the momentum carried by the exited
phonons is written as P = ρn(vn − vs) where ρn and vn

are called the normal density and velocity respectively.

The counterflow velocity defined by W̃ = vn − vs is a
Galilean invariant.

The above discussion shows that, in general the vari-
able W in the SGLE (41) corresponds to W = vn. In
the thermodynamic limit W = vs and there is thus no

counterflow W̃ = vn −vs = 0. For finite-size systems, in

general vs 6= W and W̃ 6= 0.

We thus define (when vs = 0) the normal density by

ρn =
∂Pz
∂wz

∣∣∣∣
wz=0

. (65)

2. Thermodynamics of metastable states at small
temperature and small counterflow

To validate the SGLE in the presence of counterflow
two scans are performed at constant density using a res-
olution of 643 and ξkmax = 1.48. The condensate is set
at k = 0 in the SGLE initial data and the tempera-
ture is fixed to T = 0.2. This low temperature allows
us to increase the value of the counterflow wz (here-
after we set wx = wy = 0) keeping the condensate at
k = 0. The dependence of the momentum Pz on wz
is presented in Fig.5.a. The solid line corresponds to
the low-temperature calculations (eq. (58) and appendix
B eqs.(B9)). The second run correspond to a temper-
ature scan (at low counterflow wz = .1). The temper-
ature dependence of ρn is displayed together with the
low-temperature calculation on the inset of Fig.5.a.

Figure 5.a-b display histograms of Pz and −Pz in phys-
ical space, both obtained at T = 1 with the condensate
at k = 0 but with zero and non-zero counterflow. Ob-
serve that the histograms are both centered at Pz = 0
but the non-zero counterflow induces an asymmetry in
the statistical distribution that yields a non-zero value
for the mean momentum.
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FIG. 5: Counterflow dependence of momentum Pz (wx =

wy = 0). Inset: Temperature dependence of ρn = ∂Pz
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˛
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wz=0
.

b) Histograms of momentum Pz and −Pz (in log − lin) with
no counterflow at T = 1. No asymmetry is observed. c) His-
tograms of momentum Pz and −Pz with counterflow wz = .4
at T = 1. An asymmetry, induced by counterflow, is appar-
ent. Observe that both histograms are centered at Pz = 0.

3. Spontaneous nucleation of vortex rings and Arrhenius
law

At temperatures and counterflow velocities large
enough the stochastic process defined by the SGLE can
jump between different metastable states. In this sec-
tion, we show how the different states are explored, un-
der SGLE evolution, by spontaneous nucleation of vor-
tex rings. To wit, we present a numerical integration of
SGLE at resolution 643 with ξkmax = 1.48. With this
choice of parameters the velocity quantum (18) is fixed
to 0.2. The temperature is set to T = 0.775 and the
counterflow to wz = 0.8. The condensate is set at k = 0

in the SGLE initial data and the density is kept constant
to ρ = 1.

The temporal evolution of the momentum Pz is dis-
played in Fig.6.a (right scale). Observe that the system
first spends some time at the state (I) with Pz ≈ 0.05
and that, around t = 55, it jumps to the state (II) with
Pz ≈ 0.225. These two metastable states correspond to
quasi-equilibrium at k = 0 and k = 1 as is apparent in
Fig.6.a (left scale) where the temporal evolution of |A0|2
and |A1|2 (see eq. (15)) are displayed.

To illustrate the dynamic of the condensate jump from
k = 0 to k = 1 3d visualization of the density at t = 54.5,
t = 56 and t = 60.5 are presented on Fig.6.b. The wave-
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FIG. 6: a) Temporal evolution of |A0|2 and |A1|2 (left scale)
under SGL dynamics. Observe that there are two quasi-
stationary states (I and II) and the condensate makes a tran-
sition from k = 0 to k = 1. The temporal evolution of the
momentum pz is displayed in the same plot (right scale). Note
that transition from one state to the other is accompanied by
an increase of momentum. b) 3d visualization of density at
t = 54.5, t = 56 and t = 60.5; the blue clouds corresponds
to density fluctuations and the vortices are displayed as red
isosurface (see colorbar on Fig.8 below). c) Histogram of mo-
mentum pz and −pz at the two quasi-stationary states (I
and II) in lin − lin plot. d) Arrhenius law: data form SGL
dynamics (points) and theoretical eq. (66) (solid line).

function ψ is first low-pass filtered and the density is then
visualized using the VAPOR59 software. At early times
(t < 50, pictures not shown) there were no vortices in
the box. At t ≈ 54 a vortex ring is nucleated, then it in-
creases its size under SGLE evolution until it reconnects
with the neighbor rings (recall that periodic boundary
condition are used). The ring finally contracts and dis-
appears (pictures not shown) . During this evolution, the
local phase defect of the ring becomes global and changes
the condensate wavenumber. Histograms of momentum
Pz and −Pz in the two metastable states I and II are
presented in Fig.6.c in a lin − lin plot. Observe that
both metastable states are asymmetrical as in Fig.5.c.
However, I is centered at Pz = 0 and II at Pz = 0.2, re-
spectively corresponding to the wavenumbers k = 0 and
k = 1.

It is well known that the the escape time of a
metastable quasiequilibirum is given, in general, by an
Arrhenius law39,40

tesc ∼ tce
−β∆F , (66)

where ∆F is the activation energy of the nucleation so-
lution and tc is a characteristic time. Here, the nucle-
ation solution is given by a vortex ring that satisfies
∂F
∂ψ∗

= 0. The energy barrier is thus determined by

∆F = Hring(R
∗) − Vring · Pring(R

∗), where the analytic
expressions for the energy Hring, the momentum Pring

and the radius are given by

Vring =
~

2m

1

R∗ [ln (
8R∗

ξ
) − a] (67)

P ∗
ring =

2π2~ρ∞
m

R∗2 (68)

H∗
ring =

2π2~2

m2
ρ∞R

∗[ln (
8R∗

ξ
) − 1 − a] (69)

where ρ∞ is the density at the infinity and a is a core
model-depending constant with value a = 0.615 for the
GPE vortices4. Formulae (67-69) and the value of a have
been numerically validated in reference41 using a Newton
method42–44.

In order to numerically check that the escape time in-
deed follows an Arrhenius law we now perform runs with
with ξkmax = 1.48 and resolution 323. The counter-flow
is fixed at w = 1.4 and the condensate is set initially at
k = 0 (constant density ρ = 1). At each fixed temper-
ature T , several numerical integration of SGLE are per-
formed and the escape times for the condensate to leave
the wavenumber k = 0 are measured. These escape times
are then averaged over more than 10 realizations. Figure
6.d displays the escape time tesc obtained in this way as a
function of the inverse temperature 1/T in log− lin. The
slope of the solid line is computed using the analytic for-
mulae (67-69) of ∆F . Both, numerical and theoretical
Arrhenius laws are in good agreement. It is thus pos-
sible to use the SGLE dynamics to prepare metastable
states with finite value of counterflow and lifetime quan-
titatively given by the Arrhenius law (66).

B. Dynamical effects of finite temperature and

counterflow on vortices

We now turn to the study the dynamical effects of
counterflow on TGPE vortex evolution, we set up finite
temperature and finite counterflow initial states that also
contain vortices. Two cases are investigated: (i) vortex
lines, in a perfect crystal pattern that does not produce
self induced velocity and (ii) vortex rings, producing self
induced velocity.

1. Perfect crystal

To numerically study the effect of counterflow on vor-
tices we prepare an initial condition ψcristal consisting
in a periodical array (of alternate sign) straight vor-
tices similar to those used in45 to study the scattering
of first sound. The lattice (obtained with a Newton
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method42–44) it is stationary exact solution of GPE. As
the vortices are separated by a distance d = π, they can
be considered isolated in the limit ξ ≪ d. Note that this
limit is obtained when the resolution is increased at con-
stant ξkmax. To include temperature effect we prepare
absolute equilibria ψeq using SGLE with the counterflow
aligned with the z-axis (perpendicular to the vortices in
ψcrystal). Then the initial condition ψ = ψcrystal × ψeq

is evolved with the TGPE. Several runs were performed
at different resolutions (with ξkmax = 1.48), temperature
and counterflow values (see legend on Fig. 7.b).

Figure 7.a displays the temporal evolution of (R‖, R⊥)
the respectively parallel and perpendicular component of
the vortex filament to the counterflow for T = 0.5, 1 and
wz = 0.4. The trajectories are obtained by first averaging
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FIG. 7: a) Trajectory of a straight vortex in the crystal pat-
tern for T = 1, T = 0.5 and wz = .4. Inset: run with T = 1
until t = 600. b) Temperature dependence of the advection
velocity v‖/wz for the crystal and ∆vL/ui for the vortex rings;
dashed line corresponds to to eq.(71) with B′ = 0.8334 and
solid line to the theoretical prediction (82). c) Temporal evo-
lution of the square of the length of the vortex ring for differ-
ent values of counterflow, T = 1 and initial radius R = 15ξ.

along the direction of the vortices, then the (averaged)
coordinate of the vortices is found by seeking the zero of
the reduced 2d wavefunction. Observe that the vortex,
originally located at (3π

4 ,
3π
4 ), moves in the direction of

the counterflow and its velocity clearly depends on the
temperature. It is apparent that a perpendicular move-
ment is also induced at short times. This movement has
two phases, the first one is related to an adaptation and
makes the crystal slightly imperfect. Then the perpen-
dicular movement almost stops (a very small slope can
be observed for long time integration). The initial phase
where the parallel and perpendicular motions have sim-
ilar velocities lasts longer when ξ/d is decreased by in-
creasing the resolution (data not shown). Observe that
the imperfection of the crystal in the final configurations

is almost equal for the two temperatures presented in
Fig.7.a, but the parallel velocities are considerably dif-
ferent. Thus, the self-induced parallel velocity caused by
the slight crystal imperfection is thus very small and not
driving the longitudinal motion.

We now concentrate on the measurement of R‖ for
which the present configuration is best suited.
R‖ has a linear behavior, that allows to directly mea-

sure the parallel velocity v‖. The temperature depen-
dence of v‖/wz is presented on Fig.7.b for different values
of wz and d/ξ (corresponding to the different resolutions).

For superfluid vortices the standard phenomenological
dynamic equation of the vortex line velocity vL is4

vL = vsl +αs′× (vn−vsl)−α′s′× [s′× (vn−vsl)], (70)

where s′ is the tangent of the vortex line, vsl is the is the
local superfluid velocity that is the sum of the ambient
superfluid velocity vs and the self-induced vortex velocity
ui and vn = w+ vs is the normal velocity. The constants
α, α′ depend on the temperature. The existence of the
transverse force (related to the third term of r.h.s. in
Eq.70) has been subject of a large debate in the low-
temperature community in the last part of the 90’s46–52

and the controversy is still not resolved. Applied to the
present case, eq.(70) predicts v⊥ = −αwz and v‖ = α′wz.
The value of the constant α′, related to the transverse
force, depends on the normal density and the scattering
section. It can be expressed as

α′ = B′ ρn
2ρ

(71)

where B′ is a order one constant4. A fit to the mea-
sured values of v‖/wz yields B′ = 0.8334, see fig.7b.
We thus conclude that finite-temperature TGPE coun-
terflow effects measured on R‖ for the crystal pattern are
in quantitative agreement with standard phenomenology
(eq.(70)). We have seen above that the effect on R⊥ is of
the same order of magnitude that the one on R‖, as long
as crystal imperfection does not come into play.

2. Vortex rings

We now turn to study the effect of counterflow on vor-
tex rings. The initial condition is prepared as in the
previous section but with the crystal ψcrystal replaced
by a vortex ring ψring, that is an exact stationary (in a
co-moving frame) solution of GPE. The plane contain-
ing the vortex rings of radius R is perpendicular to the
counterflow and the rings are numerically obtained by a
Newton method42–44.

In the case of vortex rings the general formula (70)
yields

Ṙ = −α(ui − wz) (72)

vL = vs + (1 − α′)ui + α′wz, (73)
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where ui denotes the ring velocity at zero temperature,
explicitly given by Vring in formula (67) (replacing R∗

by the corresponding radius). In the special simple case
wz = 0, a finite-temperature contraction of the vortex
ring is predicted. This transverse effect effect was first ob-
tained and measured by Berloff, using a finite-difference
scheme version of the TGPE that exactly conserves the
energy and particle number27.

The temporal evolution of the square of the vortex
length of a ring of initial radius R = 15ξ at tempera-
ture T = 1 and counterflow wz = 0, 0.2 and 0.4 is dis-
played on Fig.7.c. For w = 0, the dynamics under TGPE
evolution reproduces the Berloff ring contraction27. The
temperature dependence of the contraction obtained for
w = 0 (data not shown) quantitatively agrees with
Berloff’s results. A dilatation of vortex rings is appar-
ent on Fig.7.c for w larger than the measured vortex ring
velocity vL = 0.23.

However, vL has a very strong dependence on temper-
ature that is also present for w = 0. The temperature
dependence of ∆vL/ui where ∆vL = ui − vL and is dis-
played on Fig.7.b. We have checked that the velocity
vL directly measured at T = 0 is indeed given by ui.
Equation (70) predicts (in the absence of counterflow) a
longitudinal velocity for the vortex ring vL = (1− α′)ui.
Observe that ∆vL/ui is one order of magnitude above
the transverse mutual friction coefficient measured in the
perfect crystal.

3. Anomalous translational velocity and Kelvin waves

In this section we relate the finite temperature slow-
down to the anomalous translational velocity of vortex
ring with finite-amplitude Kelvin waves reported in53,54.
Kelvin waves are clearly observed in 3d visualizations of
vortex rings driven by TGPE as it is apparent on fig.8
obtained in the same way that fig.6.b.

Following reference54, Kelvin waves of amplitude A
and wavelength 2πR/N on a ring of radius R are
parametrized, in cylindrical coordinates r, φ and z, as

x = (R+A cosNφ) cosφ (74)

y = (R+A cosNφ) sinφ (75)

z = −A sinφ. (76)

In the limit N ≫ 1 the dispersion relation ω(k) of the
Kelvin wave (74-76) is given by53

ω(k) =
~

2m
k2[ln (

8R

ξ
) − a] (77)

where k = N/R and a is the core model-depending con-
stant in formula (67).

The anomalous translational velocity caused by an ex-
cited Kelvin wave was first reported by Kiknadze and
Mamaladze53 in the framework of the local induction ap-
proximation (LIA). The effect was then obtained and nu-
merically characterized within the Biot-Savart equation

a) b)

c) d)

0 0.375 1.125 1.50.75

FIG. 8: 3d visualization of density at t = 18, 19, 20 and 21
at temperature T = 1. Blue cloud correspond to density fluc-
tuations and a vortex ring of radius R = 20ξ with thermally
excited Kelvin waves is displayed in red isosurfaces

by Barenghi et al.54. The anomalous translational veloc-
ity va of a vortex ring reads (in the limit N ≫ 1, see eq.
(26) of reference53)

va ≈ ui(1 − A2N2

R2
) (78)

where ui = Vring is the self-induced velocity (67) without
Kelvin waves.

The variation of the energy of a vortex ring caused by
a (small amplitude) Kelvin wave can be estimated as

∆E =
dH

dR

∆L

2π
(79)

where H is the energy given by Eq.(69) and the length
variation ∆L produced by the Kelvin wave (74-76) is
given, at lowest order in the amplitude A/R, by ∆L =
πA2N2/R. Assuming equipartition of the energy of
Kelvin waves with the heat bath implies ∆E = kBT ,
which yields the value of A2N2/R2 as function of T :

A2N2

R2
=

m2kBT

π2ρ~2R(log 8R
ξ − a)

. (80)

The equipartition law (80) can also be directly obtained
as the classical limit of the quantum distribution com-
puted by Bareghi et al.55, up to a redefinition of the core
constant model a (see eq.(25) in reference55).
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We finally assume that the slowing down effect of each
individual Kelvin wave is additive and that the waves
populate all the possible modes. Kelvin waves are bend-
ing oscillations of the the quantized vortex lines, with
wavenumber k . 2π/ξ. The total number of modes can
thus be estimated as

NKelvin ≈ 2πR/ξ. (81)

Replacing A2N2/R2 in eq.(78) by eq.(80) and multiply-
ing by the total number of waves NKelvin we obtain the
following expression for the anomalous translational ef-
fect due to thermally exited Kelvin waves

∆vL
ui

≡ ui − va
va

≈ 2kBTm
2

πρξ~2

1

log 8R
ξ − a

(82)

The temperature dependence of the equipartition esti-
mate (82) of the thermal slowdown is plotted on Fig.7.b
(top straight line). The data obtained form the measure-
ments of the rings velocity in the TGPE runs is in very
good agreement with the estimate (82).

As discussed in3,13the TGPE gives a good approxi-
mation of Bose-Einstein condensate (BEC) only for the
modes with high occupation number. In this sprit quan-
tum effects on the Kelvin waves oscillations must also be
taken into account to obtain the total slowing down effect
in a BEC. The TGPE estimation (82) can be adapted to
weakly interacting BEC by the following considerations.

At very low temperature, only a limited range of low-
wavenumber Kelvin waves are in equipartition. This
range is determined by the relation k ≤ keq with
~ω(keq) = kBT and the dispersion relation (77), it reads:

keq =

√
kBT 2m

~2[ln (8R
ξ ) − a]

. (83)

The coherence length ξ defined in eq. (7) can be ex-
pressed in terms of the s-wave scattering length ã defined
by g = 4πã~2/m and the mean inter-atomic particle dis-
tance ℓ ≡ n−1/3 ≈ |A0|−2/3 as

ξ = (8πnã)−1/2 = ℓ
1√
8π

(
ℓ

ã

)1/2

. (84)

For weakly interacting BEC the coherence length thus
satisfies ξ ≫ ℓ.

Using the Bose-Einstein condensation temperature of
non-interacting particles (valid for ã≪ ℓ)3

Tλ =
2π~2

kBm

[
n

ζ( 3
2 )

]2/3
(85)

where ζ(3/2) = 2.6124 . . ., the number of Kelvin waves
can be expressed as

keq =

√
4π n2/3

ζ( 3
2 )2/3[ln (8R

ξ ) − a]

(
T

Tλ

)1/2

. (86)

Observe that keq varies from keq = 0 at T = 0 to
wavenumber of order keq ∼ ℓ−1 at Tλ and it is equal
to kξ = 2π/ξ at T ∗ defined by

T ∗ = 8π2ζ(
3

2
)2/3[ln (

8R

ξ
) − a]

(
ã

ℓ

)
Tλ. (87)

Therefore at temperatures T ∗ < T < Tλ the energy of all
Kelvin waves are in equipartition and equation (82) thus
applies directly.

It is natural to suggest that an additional effect, caused
by the quantum fluctuations of the amplitudes of Kelvin
waves, will take place at low temperatures T < T ∗ . This
quantum effect can be estimated by using the standard
relation for the energy of the fundamental level of a har-
monic oscillator ∆E = ~ω(k)/2. Applied to the Kelvin
waves, this relation yields the k-independent quantum
amplitude A2

Q = m/4π2Rρ. The quantum effect can thus
be estimated as the sum

NKelvin∑

N=N eq

Kelvin

A2
QN

2

R2
∼
A2
QNKelvin

3

3R2
=

2mπ

3ρξ3
=

64π5/2

3
√

2

(a
ℓ

)3/2

.

(88)
The total effect is obtained superposing the thermal effect
and the quantum effect and the final result is

∆vL
ui

∣∣∣∣
T<T∗

=
64π5/2

3
√

2

(
ã

ℓ

)3/2

+
(4/

√
π)

ζ( 3
2 )C[Rξ ]3/2

(
T

Tλ

)3/2

(89)

∆vL
ui

∣∣∣∣
T>T∗

=
8
√

2π

ζ( 3
2 )2/3C[Rξ ]

(
ã

ℓ

)1/2
T

Tλ
(90)

where C[R/ξ] = log
(

8R
ξ

)
− a.

In the case of superfluid Helium, where ã ∼ ℓ, the
GPE description is only expected to give qualitative pre-
dictions and, at best, order of magnitude estimates (see
ref.4). It is thus difficult to extend the above consider-
ations, obtained in the case of weakly interacting BEC
with ã≪ ℓ, to Helium.

Nevertheless the results obtained above in the weakly
interacting case strongly suggest the presence of new
slowing down effects, not included in the usual mu-
tual friction descriptions of Helium that predicts ∆vL

ui
∼

ρn/ρ ∼ (T/Tλ)
4. The new effects, because of their tem-

perature dependence (see eq. (90)), should be dominant
at low-temperature.

The zero-temperature quantum slowdown is indepen-
dent of the ring diameter and the finite temperature ef-
fects are stronger for small rings. Time of flight measure-
ments of vortex rings in 4He could be used to determine
the translational velocity. The effect could also be stud-
ied in ultra-cold atomic gases BEC. For these systems
the effect of the inhomogeneity of the superfluid should
be taken into account.
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VI. CONCLUSIONS

In summary our main results were obtained by mak-
ing use of a stochastically forced Ginzburg-Landau equa-
tion (SGLE) that allowed us to efficiently obtain and
control truncated Gross-Pitaevskii absolute equilibrium.
This allowed us to show that the condensation transition
observed in references13,24,25 corresponds to a standard
second-order transition described by the λ− φ4 theory.

We also found that thermodynamic equilibrium can be
obtained by a direct energy cascade, in a way similar to
that of Cichowlas et al.18, accompanied by vortex anni-
hilation as a prelude to final thermalization. Increasing
the amount of dispersion of the system a slowdown of the
energy transfer was produced inducing a partial thermal-
ization independently of the truncation wavenumber.

Using the SGLE in the presence of a counterflow we
observed that the counterflow can block the contraction
of vortex rings reported by Berloff and Svistunov27 and
also induce a dilatation. We directly measured the mu-
tual friction coefficient related to the transverse force.
An unexpected result was found by immersing a vor-
tex ring in a finite-temperature bath: a strong depen-
dence of the translational velocity in the temperature
was observed. This effect was an order of magnitude
above the transverse mutual friction effect. We explained
this effect by relating it to to the anomalous transla-
tional velocity due to finite amplitude Kelvin waves that
was previously found by Kiknadze and Mamaladze53 and
Barenghi et al54. Assuming equipartition of the energy
of the Kelvin waves with the heat bath yields a formula
that gives a very good quantitative estimate of the nu-
merically observed effect. This new formula also gives
an experimentally-testable quantitative prediction for the
thermal slowdown of vortex rings in weakly interacting
Bose-Einstein condensates and superfluid 4He.

The TGPE dynamics was thus found to contain many
physically sound phenomenon of finite-temperature su-
perflows. This strongly suggests the possibility to obtain
the propagation of second sound waves in the TGPE.
Some preliminary results support this conjecture (data
not shown), however very high resolutions seem to be
needed and this will be the subject of a future work.
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Appendix A: Conservation Laws and Dealiasing

In the standard case, for quadratic nonlinearities
and quadratic invariants, the system can be correctly
dealiased using the 2/3−rule that consists in truncation
for wavenumber |k| < kmax = N/3, where N/2 is the

largest wavenumber of the discrete system. With this
procedure, one third of the available modes are not used.
Such discrete dealiased pseudo-spectral system exactly
conserve the quadratic invariant and is therefore identi-
cal to the original Galerkin truncated system.

In the TGPE case, the problem is more complicated
because the equation is cubic and the invariants are quar-
tic. Let us first recall Parseval’s theorem that states∫
d3xf(x)g∗(x) = V

∑
k f̂kĝ

∗
k, where f̂k and ĝk are the

Fourier transform of f and g. This identity remains valid
in truncated systems and it holds whether the functions
are dealiased or not. The integration by parts formula is
a consequence of Parseval’s theorem:

∫
d3x f

∂g∗

∂xj
= V

∑

k

−ikj f̂kĝ∗k = −
∫
d3x

∂f

∂xj
g∗.

Remark that the product rule (fg)′ = f ′g + fg′ is only
valid if the fields are dealiased.

The conservation of the total number of particles is
directly obtained using the GPE (1)

dN

dt
=

∫
d3x(ψ̇ψ̄+ψ ˙̄ψ) =

i~

2m

∫
d3x(ψ̄∇2ψ−ψ∇2ψ̄) = 0.

where the last equality is a consequence of the Parse-
val identity and is thus true independently of dealiasing.
Similar relations lead to the conservation of the energy
H.

Using the dealiased TGPE (17) the conservation law
for the momentum reads

dPj
dt

= 2g

∫
d3x

[(
∂jPG[|ψ|2]

)
|ψ|2 + PG[|ψ|2]∂j |ψ|2

]
.

(A1)
If ψ is dealiased the 2/3−rule implies that

∫
d3x(PG[|ψ|2]ψ̄)∂jψ =

∫
d3xPG

[
PG[|ψ|2]ψ̄

]
∂jψ

∂j
(
PG[|ψ|2]ψ̄

)
=
(
∂jPG[|ψ|2]

)
ψ̄ + PG[|ψ|2]∂jψ̄

∂j |ψ|2 = ψ∂jψ̄ + ∂jψψ̄,

it follows that
dPj

dt = 0. Without a Galerkin projector

in eq. (17) the aliased field would obey
(
|ψ|2ψ̄

)
∂jψ +(

|ψ|2ψ
)
∂jψ̄ 6= ∂j(|ψ|4) and the conservation of momen-

tum would therefore be lost.

Conservation of N , H and P can be numerically
checked by using absolute equilibria with non-zero mo-
mentum. The conservation of P is ensured only if the
system is dealiased. The error of aliased runs grow up
to a 50% in a few units of time and is independent of
the time-step (data not shown). We thus believe that it
would important to explicitly check the conservation of
momentum when using finite-difference schemes, even if
they exactly conserve the energy and the particle num-
ber.
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Appendix B: Low-temperature calculation of

thermodynamic functions

We are interested in computing the grand partition
function Z in eq.(46) where F = H − µN − W · P is
written in terms of Fourier amplitudes as

H

V
=
∑

k

~2k2

2m
|Ak|2 +

g

2

∑
A∗

k3+k1
Ak2

A∗
k4+k2

δk3,−k4

(B1)

N = V
∑

k

|Ak|2 (B2)

Pj =
∑

k

~kj |Ak|2V (B3)

where Ak = 0 if k ≥ kmax and the second sum in H is
over k1, k2, k3, k4.

The saddle-point is determined by the condition ∂F
∂A∗

k

−
µ0A0V δk,0 = 0 which, explicitly written for k = 0 and
k 6= 0, reads

(g|A0|2 − µ+ µ0)A0 + 2g
∑

k1 6=0

A0|Ak1
|2 (B4)

+g
∑

k1,k2 6=0

Ak1
A∗

k2−k1
A−k2

= 0

~2k2

2m
Ak − µAk − ~W · kAk (B5)

+g
∑

k1,k2 6=0

Ak1
A∗

k2+k1
Ak+k2

= 0

from which eq.(47) follows.
To diagonalize F = H−µN −W ·P we first apply the

Bogoliubov transformation toH−µN and then show that
P is also diagonal in this basis. Replacing Bp, defined by
the transformation (51), in H − µN (recall that p = ~k)
and then imposing the diagonalization determines the
coefficient Lp:

Lp =
−2|A0|2g − p2

2m + µ+ ǫ(p)

|A0|2g
(B6)

where ǫ(p) is given by

ǫ(p) =

√(
2|A0|2g +

p2

2m
− µ

)2

− |A0|4g2. (B7)

The dispersion relation (53) is obtained by replacing
|A0|2 by its saddle-point value eq.(47).

We now express P in the Bogoliubov base. Using (51)
directly yields

|Ap|2 = |up|2|Bp|2 + |vp|2|B−p|2 +(u∗pv
∗
pBpB−p + c.c).

(B8)

Replacing eq.(B8) in the definition of P (B3), the last two
terms vanish by symmetry and using the relation |up|2 −
|vp|2 = 1, the momentum (B3) reads P =

∑
p p|Bp|2V .

Gathering H − µN and W · P formula (52) is finally
obtained.

The mean value of the condensate amplitude is ob-

tained as V |A0|2 = − ∂Ω
∂µ0

∣∣∣
µ0=0

. All the thermodynamic

variables are directly generated by first putting µ0 = 0 in
(58) and then by differentiation using relation (31). The
fluctuations of the number of particles are computed as

δN2 = −β−1 ∂2Ω
∂µ2 . These quantities are explicitly listed

below.

|A0|2 =
µ

g
− N
V βµ

f0

[
4mµ

P 2
max

]

p̄ =
µ2

2g
+

N
V β

(
2

3
− f

[
4mµ

P 2
max

]
+

2

3

2w2m2

P 2
max

f ′
[

4mµ

P 2
max

])

N̄ =
V µ

g
− N
β

(
3

2µ
f

[
4mµ

P 2
max

]
− 8w2m3

P 4
max

f2

[
4mµ

P 2
max

])

S = N
(
f

[
4mµ

P 2
max

]
(1 +

2w2m

4µ
) − log

[
βǫ(Pmax;µ)

e−
5
3

])

λN = β−1 log [βǫ(Pmax;µ)] − 1

3β

2w2m2

P 2
max

1

1 + 4mµ
P 2

max

P̄z =
N
β

wm

µ
f

[
4mµ

P 2
max

]
+

3N
10β

w3m2

µ2
f1

[
4mµ

P 2
max

]

δN2 =
V

gβ
+

3N
4β2µ2

f1

[
4mµ

P 2
max

]
,

(B9)

f [z] = z − z3/2 cot−1
(√
z
)

(B10)

f0[z] = 3(z + 3f [z[)/4 (B11)

f1[z] =
z

z + 1
− f(z) (B12)

f2[z] =
d

dz
(f [z]/z) (B13)

The dependence of the entropy on the phase-space nor-
malization constant is manifested by the presence of the
logarithm term in S and λN . Note that the function
S + βλN is, however, completely defined. Also note
that the pressure p must be computed, by definition, at
constant total number of modes N . All the thermody-
namic relations discussed in section II B can be explic-
itly checked on the low-temperature expressions. The
previous formulae have been confronted with the SGLE
numerically generated data in Fig.2.a-b.
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6.3.1 Supplementary material

Partial thermalization

We give here some 3D density visualization corresponding to the partial thermalization
using the initial conditions of the Taylor-Green vortex.

Fig. 6.2: 3d visualization of the density Taylor-Green vortex at t = 0, t = 15, t = 30, t = 45,
t = 60 and t = 75. 2563.

We observe that the initial condition evolves to first form a complex vortex tangle.
This is the turbulent phase where Kolmogorov spectrum is found. Then vortices recon-
nect and form simpler structures. Finally, only some large size rings are presented that
contract due to mutual friction effects.

Spontaneous nucleation under TGPE

In section V.A the metastability was explicitly observed and the dynamics under SGLE
was characterized with an Arrhenius law. Due thermal fluctuations (explicitly given by
the thermal bath induced by the noise ζ(t)) vortex rings were spontaneous nucleated.
Under the dynamics of TGPE there is no such forcing term. However the thermalized
modes can play the role of a thermostat. Of course, the system is completely different
because the energy, the momentum and number of particle remain constant during the
evolution under TGPE while in SGLE the conjugate variable remain constant.

To study the nucleation of vortex rings under TGPE we prepare an initial condition
using SGLE with 643 collocation points and ρ = 1. The temperature is set to T = 0.8
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and the counterflow to w = 1. When SGLE reaches a quasi-equilibrium (at k = 0)
the wavefunction is saved and posteriorly used as initial condition of TGPE. Three-
dimensional visualizations of the density are displayed on Fig.6.3. A vortex ring is

Fig. 6.3: Spontaneous nucleation under TGPE. 3d visualization of the density. t = 0, t = 54,
t = 114, and t = 228.

nucleated near of t ≈ 50, then it increases it size due to counterflow effects. Finally the
vortex ring reaches a maximum value as observed on figure 6.4. This maximum value is
explained since as the momentum depends on radius square of the ring, arbitrary large
rings are not compatible with the conservation of momentum.

Dynamical effects of finite temperature and counterflow on vortices: Crystal

visualizations

We present here a 3D visualizations of the density ρ corresponding to the dynamic
evolution of a crystal (see section V.B1 of the article) for a typical run presented in
figure 7.b of the article. The corresponding temporal evolution with 643 collocations
points, T = 1 and w = 0.4 is displayed in Fig.6.5.
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Fig. 6.4: Temporal evolution of vortex ring length square (L/ξ)2. A spontaneous nucleation
is observed at t ≈ 50. 643 collocation points, T = 0.775 and w = 1.

Fig. 6.5: 3d visualization of the density. t = 0, t = 150, t = 160, and t = 165. Kelvin waves
are clearly observed in the crystal
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Thermal induced Kelvin waves in a vortex ring

In section B.3 of the article, assuming equipartition of the energy of Kelvin waves with
the heat bath, we determined the value of the amplitude of the waves A as function of
T :

A2 =
m2kBT

π2ρ~2R(log 8R
ξ
− a)

R2

N2
, (6.55)

which allows to obtain the rms amplitude of waves as

Arms =

√
m2kBTR

π2ρ~2(log 8R
ξ
− a)

(NKelvin∑

N=1

1

N2

)1/2

≈
√

m2kBTR

6ρ~2(log 8R
ξ
− a)

. (6.56)

The equipartition law (6.55) can also be directly obtained as the classical limit of the
quantum distribution computed by Barenghi et al. [100], up to a redefinition of the
core constant model a (see eq.(25) in reference [100]).

The data used for the 3D visualization of the density allows to perform a rough
measurement of the rms amplitude of the Kelvin waves. Remark that, as the density
fields used for the visualization have been low-filtered, a lower value of Arms will be
obtained. We expect thus that measurements and formula (6.56) can only coincide in
order of magnitudes. The coordinates of the vortex rings in a plane perpendicular to
the ring are obtained by finding the minimum of a cubic interpolation of the density.
The temperature dependence of Arms/R is plotted on figure 6.6. Observe that orders
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Fig. 6.6: 3d visualization of the density. t = 0, t = 150, t = 160, and t = 165. Kelvin waves
are clearly observed in the crystal

of magnitudes are in agreement with prediction (6.56). Also observe that the largest
amplitudes are of order Arms ∼ 0.05R avoiding the possibility of self-reconnection at
these temperatures.

A more precise measurement of Arms can be obtained by finding the coordinate
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of the vortex ring on the complete field (not low-filtered). This can be done with
high accuracy using a Newton method (see appendix B) in the same way that in the
publication presented in chapter 7. Finding the coordinates of the ring during the
numerical integration should permit to have a much better sampling than that used
for the 3D visualization. We will attempt in a future work to study in detail the
thermal induced Kelvin waves for different values of the vortex ring radius and higher
temperatures.



7. RADIATION AND VORTEX DYNAMICS IN THE

GROSS-PITAEVSKII EQUATION

In this chapter we present our publication [39], done in collaboration with Enrique

Tirapegui. We studied the sound emission produced by the interaction of several

vortices in a two-dimensional homogeneous system. The radiative field is explicitly

obtained as a series in the Mach number M . Using this expression the total

power radiated is computed. This result is then applied to a simple test case of

two corotating vortices. Then, numerical simulations of two-dimensional Gross-

Pitaevskii equation are performed and confronted to the theoretical predictions.

The numerical data give support to the theoretical estimate of radiation.

7.1 Publication: “Radiation and vortex dynamics in the

nonlinear Schrödinger equation”

As it has been discussed in previous chapter an effective dissipation is observed in
conservative superfluid dynamics driven by the GPE. It has been shown [27] that the
incompressible kinetic energy, that one related to the vortices, is transferred to sound
waves. This process is achieved by vortex reconnection, once two filaments reconnect a
cusp is produced exiting long-wavelength helical waves known as Kelvin waves. These
waves subsequently decay into sound waves.

The problem of vortex reconnection is a purely three-dimensional phenomenon and
to study these complicated effects from first principles present a formidable task. There
exist some models, pioneered by Schwarz [101], that allows directly evaluate and con-
sider the Kelvin waves on a vortex filament. In this article we are interested in vortex
dynamics under the GPE evolution and we consider the simpler analogous problem:
a two-dimensional configuration of several vortices, where the effects can be studied
analytically.

Based on the acoustic approximation of GPE and assumed vortex trajectories we
computed the far field and the power radiated by the moving vortex using a development
in the Mach number M . One interesting fact, directly related to the non-local character
of the two-dimensional Green function of the wave equation, is that the formulae depend
on non-integer derivatives of the trajectories. At lower order the total radiated power
depends on the 3/2-derivative of the trajectory instead of the 2-derivative that is present
in three dimensions.
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The theoretical prediction is then applied to a test case of two corotating vortices of
frequency ω. Because of this simple configuration and simplicity of the computations an
explicit series is obtained. We present here only the final results of the power radiated
energy

J =
4π2~2ω

m2

∞∑

n=1

∞∑

m=1

(−M2)n+m

(2n− 1)!(2m− 1)!

n∑

l=0

(
2n

l

)(
2m

l +m− n

)
(n− l)2(n+m)−1

=
4π2~2ω

m2
M4

(
1 − 4M2

3
+

17M4

4
− 157M6

18
+

91783M8

4320
− . . .

)
. (7.1)

This problem was also numerically studied in reference [102], they found emission
of dipolar sound waves for the case of a vortex in a harmonic trap (see also [103]) and
quadrupolar radiation for the corotating vortices configuration.

Finally in the publication included below some numerical simulations were per-
formed. From the numerical point of view this was a very difficult task because radia-
tive effects are of order M4, at it is apparent in formula (7.1). Because of energy lost
by radiation the trajectories of the rotating vortices are not closed and weakly increase
their radius at each turn. We numerically measured the relative variation of the ra-
dius (of order M4) with resolution up to 40962 collocation points checking carefully the
conservation of energy. This computation needs long time integration (the time needed
for a revolution diverges in the limit M → 0). The numerical data gave support to the
estimate of radiation1.

Although the lower order term of the theoretical prediction (7.1) has been known
since the 60’s [104], this work is to best of our knowledge, the first clear numerical
evidence supporting this prediction.

We will attempt in the future to study the sound-vortex interaction in this con-
figuration because it has been recently observed [105] that such vortices undergo an
annihilation process assisted by sound, which is the route to Bose-Einsten condensa-
tion in 2D. It would be interesting to relate the mutual friction effects described in the
previous chapter to this process.

1 The conservation of energy was carefully checked and numerical errors are smaller than 10−6.
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I. INTRODUCTION

Strong turbulent effective dissipation has been observed
to take place in inviscid and conservative systems, in the
context of !compressible" low-temperature superfluid turbu-
lence #1,2$. Vortices are thus subject to some significant dy-
namical dissipation mechanism. It has been suggested that
sound emission from the vortices is the major decay process
#3–5$. Detailed mechanisms are fully three dimensional
!3D". They involve initial vortex reconnection followed by

secondary excitation of long-wavelength helical waves,

known as Kelvin waves, along the vortex line and their sub-

sequent decay into sound waves #6$. It appears that evaluat-

ing these complicated 3D effects from first principles is a

formidable task at the present time.

The purpose of the present paper is to compute the sim-

pler analogous problem in two dimensions. We thus consider

sound emission produced by the interaction of several vorti-

ces in a 2D homogenous system obeying the nonlinear

Schrödinger !NLS" equation.

Our main result is that the far field, and thus the radiation

effect can be directly computed in terms of an assumed vor-

tex motion #see Eq. !17"$. These main formulas are then

applied to the simple test case of two corotating vortices,

reproducing theoretical estimates of the same test case #7,8$,
and the prediction is compared to the result of numerical

integrations of the NLS equation.

The paper is organized as follows. In Sec. II we establish

the basic proprieties of the NLS equation and recall the gen-

eral expression for the field produced by moving vortices.

Section III is devoted to the derivation of explicit trajectory-

dependent expressions for the radiative contribution to the

far field and the radiated energy flux. Section IV contains the

determination of vortex trajectories by numerical solutions of

the NLS and the comparison with theoretical predictions.

Discussion and conclusions are finally given in Sec. V.

II. NONLINEAR SCHRÖDINGER EQUATION

We consider the nonlinear Schrodinger equation !NLSE"
written with the physically relevant parameters: the coher-

ence length " and the sound velocity c,

i
!#

!t
=

c

%2"
!− "2$# − # + &#&2#" . !1"

This equation has Galilean invariance with the transforma-

tion #!x , t"→#!x−vt , t"ei!v·x−v
2
t/2" and it also has a Lagrang-

ian structure from which we can calculate an energy-

momentum tensor and the conserved quantities

corresponding to space-time translations #4$.
We can map the NLSE to hydrodynamics equations using

the Madelung transformation defined by

#!x,t" = %%!x,t" exp'i
&!x,t"
%2c"

( . !2"

Replacing Eq. !2" in the NLSE !1" and separating real and

imaginary parts we get

!%

!t
+ ! · !% ! &" = 0, !3"

!&

!t
+

1

2
!"&"2 = c2!1 − %" + c2"2

$%%

%%
. !4"

We recognize here the continuity equation !3" for a fluid of

density % and velocity v=!& and the Bernoulli equation !4",
except for the last term which is usually called quantum

pressure since it has no analog in standard fluid mechanics !it
is proportional to '2 in the superfluidity context and it can be

neglected when the semiclassical limit is taken".
We note that, if the function # has a zero, the density % is

well defined but the phase & is undefined. The existence of a

zero requires the real and the imaginary parts of # to vanish

simultaneously and consequently these kind of singularities

generically appear as curves in 3D and points in 2D. These

topological defects have the property that their circulation is

a multiple of 4() !)=c" /%2", and for this reason they are

called quantum vortices in the context of superfluidity. In 2D

a stationary vortex solution centered at the origin can be

constructed in polar coordinates !% ,*" using the ansatz

%!r ,*"=%0!r"2 and &!r ,*"=2)m*, with m!Z the vortex
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charge. The function %0!r" satisfies the equation

!
2%0

!r2
+

1

r

!%0

!r
+

1

"2'1 − %0
2 −

"2m2

r2 (%0 = 0

with boundary conditions %0!0"=0, %0!+"=1. This equation

can be solved numerically and one finds that %0 is an increas-

ing function in #0,+$. The region where the function is much

smaller than 1, the core of the vortex, increases with m for

fixed " and c.

Replacing % from !4" into !3" we obtain the exact equation

!
2&

!t2
− c2$& = −

!&

!t
$& −

!!!&"2

!t
− ! · ' !!&"2

2
! &(

+
!,

!t
+ ! · !, ! &"

where ,!%"= !c2"2
/2"$%% /%%. Far from the vortex, the field

is almost constant and we can perturb it by putting

%=1+2s. If we consider long-wavelength propagative distur-

bances the appropriates scalings are

& = o!1", s = o!-" ,

!

!xi

= o!-",
!

!t
= o!-" ,

with - a small parameter. We obtain:

,!s" =
c2"2

2
#$s − s$s − !"s"2 + o!-5"$ !5"

and then

!,

!t
+ ! · !, ! &" =

c2"2

2
$

!s

!t
+ o!-5" = −

c2"2

2
$2& + o!-5" .

Finally we find in the leading order

!
2&

!t2
− c2$& = −

!&

!t
$& −

!!"&"2

!t
− ! · ' !!&"2

2
! &(

−
c2"2

2
$2& . !6"

Equation !6" was derived in #9$ and it is invariant under

Galilean transformations.

Near the vortex #7$ and considering the asymptotic pro-

prieties of %0
2 in the core it is possible to show that

!,

!t
+ ! · !, ! &" = o!-3" . !7"

Hence, to the lowest order, the phase satisfies a wave equa-

tion with a boundary condition in its circulation:

1

c2

!
2&

!t2
= $& , !8"

)
C

! & · dl = 4(m) , !9"

where m is an integer, )=c" /%2, and C is a circuit around the

center of the vortex, i.e., the point in 2D where the field

vanishes.

In the case of a moving vortex of charge m, trajectory R!t"
and velocity Ṙ!t" it is possible to give a formal expression of

the time derivative of the solution of Eqs. !8" and !9" #10$.
Introducing a branch of discontinuity and using the Green

function of the wave equation, this expression reads

&̇!x,t" = 4()m-ij)
−+

+

dt!Ṙi!t!"
!G

!x j
#x − R!t!",t − t!$ ,

!10"

where -ij is the Levi-Cività symbol !-12=1=−-21, -11=-22

=0" and G is the two-dimensional Green function,

G!x − x!,t − t!" = −
c*!c!t − t!" − &x − x!&"

2(%c2!t − t!"2 − &x − x!&2
. !11"

We remark the well-known fact !Huygens principle" that

in even dimensions the Green function of the wave equation

does not have a local support as it is the case in odd dimen-

sions; this implies from formula !10" that the value of &̇ at a

given time depends on all the past history of the vortex.

Because of this we can expect nonlocal expressions in the far

field.

III. FAR FIELD

We now turn to the derivation of an expression for the

field far away from the center of the moving vortex !far

field". This expression will allow us to characterize the ra-

diation emitted by a vortex describing an arbitrary trajectory.

Our calculation will be done in the limit of small velocities,

v.c, and we shall assume that the vortex is constrained to

move in a bounded domain in which case all divergence in

the integrals are avoided. As we have pointed out the NLS

equation can be derived from a Lagrangian from which we

can construct an energy-momentum tensor and a Poynting

vector S in order to calculate the energy flux. The radiation

can be expressed by

J = lim
r→+

)
0

2(

S · n̂r d* . !12"

where S at the leading order reads S= !!& /!t"!& #4$. In the

far-field approximation !& · n̂ can be replaced by &̇ /c, and

therefore the only nonvanishing contributions come from

terms of order O!1 /%r" in the time derivative of the phase.

In order to express Eq. !10" as a function of the trajectory

we can formally write

&̇!x,t" = 4()m-ij

!

!x j)
−+

+

dt!d2yṘi!t!"

/G!x − y,t − t!"0„y − R!t!"… !13"

and perform the 0 expansion

KRSTULOVIC, BRACHET, AND TIRAPEGUI PHYSICAL REVIEW E 78, 026601 !2008"

026601-2



0!y − R" = 0!y" − Rk

!

!yk

0!y" +
1

2
RkRl

!

!yk!yl

0!y"

/
1

3!
RkRlRm

!

!yk!yl!ym

0!y" + ¯ . !14"

To calculate the vortex-trajectory-dependent integral in

Eq. !10" we define for an arbitrary function W :C→C and a

function f :R→R
n the W derivative of f by

W'1
d

dt
( f!t" = )

−+

+
d2

2(
W!1i2" f̂!2"ei2t !15"

where f̂ is the Fourier transform of f and 1 an arbitrary

parameter.

Replacing Eq. !14" in Eq. !13" and using the definition

!15" we obtain !see Appendix A for details"

&̇!x,t" = 2)m-ij*! j+K0' r

c

d

dt
(Ṙi, − ! jk+K0' r

c

d

dt
(ṘiRk,-

+ 2)m-ij*1

2
! jkl+K0' r

c

d

dt
(ṘiRkRl,

−
1

6
! jklm+K0' r

c

d

dt
(ṘiRkRlRm,- + ¯ , !16"

where all trajectories are evaluated at t, !i1i2¯in

=!
n
/!xi1

!xi2
¯!xin

and Kn!z" is the modified Bessel function

of the second kind.

When z→+, K0!z".%( /2ze−z the K0 derivative of the

first term of Eq. !16" can be evaluated as

K0' r

c

d

dt
(Ṙi!t" .%(

2

c

r
!t−1/2e−!r/c"d/dtṘi!t" + o!r−3/2"

=%(

2

c

r
!t−1/2Ṙi!tr" + o!r−3/2"

where tr= t−r /c is the retarded time. Thus the radiative con-

tribution of the two lowest orders of Eq. !16" is explicitly

given by

&̇!x,t" = − )m%2(

r
-ij/c1/2n̂ j!t−1/2'Ri

c
(/

t=tr

− )m%2(

r
-ij/c1/2n̂ jn̂k!t3/2' ṘiRk

c2
(/

t=tr

. !17"

We remark the important difference between this formula

!17" and the radiation formulae for moving electrons in three

dimensions #11$. Here one finds that in the lowest order the

field depends of the
3

2
-derivative of the vortex trajectory in-

stead of the 2-derivative which appears in the 3D case #12$.
We also note that all the functions are evaluated at the re-

tarded time and the fractional derivatives that appear here put

in evidence the nonlocality of the 2D Green function, i.e.,

one must know the whole trajectory of the vortex from

t=−+ to t= tr in order to calculate Eq. !17". Now using !17"
together with the expression of the flux of energy !12" yields

after a straightforward calculation

J =
2m2)2(2

c2
&!t3/2R&2 +

2m2)2(2

c4
!t3/2!ṘiR j"!t3/2!ṘkRl"Nijkl,

!18"

where Nijkl= !1 /("00
2(-i3-k4n3n jn4nld*. This explicit for-

mula for the radiation of a moving vortex in terms of its

trajectory is one of our main results.

In the case of a single uniformly rotating vortex,

R!t"=aei2t, the formula can be simplified. The term &!t3/2R&2

is given by

&!t3/2R&2 = )
−+

+
d21

2(

d22

2(
!i21"3/2!− i22"3/2

/R̂!21"R̂*!22"eitr!21−22"

= )
−+

+
d21

2(

d22

2(
!i21"3/2!− i22"3/2!a2("2eitr!21−22"

/0!21 − 2"0!22 − 2" = a223,

and therefore the lower-order term of Eq. !18" reads

J =
2m2)2(2

c2
a223 = m2(2c2"2M22 , !19"

where we have reintroduced c and " and defined the Mach

number M =a2 /c.

We shall apply now this result to the case of two rotating

vortices, separated by a distance 2a, with the same unitary

charge !m=1". It is well known that in the incompressible

approximation the vortices will rotate in a perfect circle one

around the other with a frequency 2=) /a2. For two vortices

the total far field produced is just the superposition of the

field produced by each one, taking into account their charges

which here are equal. In the case of two rotating vortices

their trajectories are symmetric and then the odd power of R

in Eq. !16" vanishes. Hence we get to the lowest order

&̇!x,t" = − 4)-ij! jk+K0' r

c

d

dt
(ṘiRk,

= 2)a22Re

/1ei22!t−*"*422

c2
K0"'i

22

c
r( + i

22

cr
K0!'i

22

c
r(-2 .

!20"

Note that the wavelength 5=2(c /2 of waves emitted by

the vortex appears explicitly in formula !20" and the incom-

pressible limit a.r.5 is easily obtained using the

asymptotic of K0!z" for small z !see Appendix A". It reads

&̇ = − 8)2
a2

r2
cos 2!2t − *" !21"

which is the well-known first order of the multipolar expan-

sion #7,8$. The next orders can be obtained similarly.

The radiative far field is obtained in the limit a.5.r

and yields, using Eq. !12", the energy lost due to radiation,
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J = 16(2)2
a424

c4
2 = 8(2c2"2M42 . !22"

Note that this energy flux is very small. If we now make an

energy balance between the radiated energy J and the varia-

tion of energy due to a change in the distance between the

vortex, we can obtain a simple equation for the radius a. At

lowest order the energy is simply E=
1

2
0dx!"&"2. For two

vortices separated a distance 2a the interaction part of the

energy, after some algebra, reads #7,8$

Eint = − 4(c2"2 ln 2a . !23"

Thus dEint /dt=−J leads to an evolution equation for the

radius:

da

dt
=

(c"5

2%2

1

a5
. !24"

From this equation we obtain the law a!t"
= #a0

6+ !3( /%2""5ct$1/6 which shows that the vortex distance

increases, but very slowly. This result was obtained in 1966

by Klyatskin #8$ using a matching between a compressible,

but vortex independent far field and an incompressible near

field. Note that there are some misprints in the literature #7,8$
which lead to erroneous values of prefactor in formula !24";
see #15$ for details.

Because of the very simple form of the terms in develop-

ment !16" one can get &̇ explicitly at any order in M. This

explicit series reads !see Appendix B":

&̇!x,t" = 3
n=1

+

&̇M2nM2n !25"

with

&̇M2n!x,t" = − 4)%(c2

r

1

!2n − 1"!3l=0

n '2n

l
(!n − l"2n−1/2

/cos*2!n − l"!* − 2tr" +
(

2
'2n −

1

2
(- !26"

and it follows that the total radiated power can be expanded

as

J = 16(2)223
n=1

+

3
m=1

+
!− M2"n+m

!2n − 1"!!2m − 1"!3l=0

n '2n

l
(' 2m

l + m − n
(

/!n − l"2!n+m"−1 !27"

=16(2)2M42'1 −
4M2

3
+

17M4

4
−

157M6

18

+
91783M8

4320
− ¯ ( . !28"

This series has a finite radius of convergence equal to Mc

=0.667; hence we can expect that radiation effects in the

NLSE will be well described by !28" only for lower values of

M.

IV. NUMERICAL DETERMINATION OF RADIATION
AND VORTEX TRAJECTORIES

To numerically the integrate NLSE, we will use using

standard #13$ pseudospectral methods. In order to work with

complex periodic fields !which must have zero total topo-

logical charge" we place the two rotating vortices within a

box of mirror symmetries. Equation !1" is solved numerically

using pseudospectral methods that were specially tailored to

the mirror symmetries of the initial data in order to gain on

both computer time and central memory storage. The corre-

sponding Fourier pseudospectral algorithms are described in

detail in Ref. #4$.
The 2(-periodic fields are symmetric by reflection on the

lines x=0,( and y=0,( that constitute the boundaries of the

so-called impermeable box. We prepare an initial condition

by letting a charge-2 vortex, situated at the center of the

impermeable box, evolve under the Ginzburg-Landau real

!GLR" dynamics #which can be easily obtained from

Eq. !1" by performing a Wick rotation 6= it$. The vortex

then splits into two single-charge vortices and the GLR

dynamics is continued until they reach a distance 2a

!see Ref. #4$ for details". These initial data are then evolved

under NLS dynamics !1". The physical parameters are

c=0.0625, "=0.0177, 0.0089, 0.0044, 0.0022, and

5122 ,10242 ,20482 ,40962 Fourier modes are used, respec-

tively.

A typical result with 5122 Fourier modes is shown on

Fig. 1, where we plot the density %= &#&2 and emitted waves

can be clearly observed. Note that the wavelength

5=c2( /2=0.2493 is illustrated by a double arrow.

The vortex trajectories are determined by the following

procedure. First a rough location is found by seeking the grid

point with minimum density %. In a second step Newton

iterations are used in order to determine the precise location

of the vortex by solving the equation #!x"=0. A typical vor-

tex trajectory obtained in this way, with an initial separation

x

y
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1.5
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2.5

0.992

0.994
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0.998

1

1.002

1.004

1.006

1.008

λ=0.25

FIG. 1. !Color online" Radiation of a vortex pair with an initial

separation of 2a=2.53" !M =0.56, 5=0.2493". Run of NLSE with

absorbing boundaries !see below" using 5122 Fourier modes.
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of 2a=2.18", is plotted on Fig. 2!a". It is apparent on the

figure that the vortex follows a spiral trajectory, with a very

weak increase of its radius at each turn.

There are two natural time scales in the problem. The first

one corresponds to the transient adaptation to the initial con-

dition and it is of the order of the time for the wave coming

from one vortex to travel to the other. Thus, an inferior

bound is ttr=2a /c depending on the original separation 2a.

The second time scale corresponds to the time taken by the

waves produced by the vortices placed in neighbor imperme-

able cells to arrive at another cell. It can easily be estimated

as tw=( /c. In the present numerical calculations these values

are ttr=0.5–5 and tw=50. The temporal evolution of the

Mach number M =a2 /c is plotted in Fig. 2!b"; note that the

transient time ttr and the arrival of waves at tw=50 !vertical

dashed line" are clearly observed.

During the transient time the vortices emit a large amount

of sound that significantly perturbs the vortex trajectories

when it arrives at the neighbor cells, as can be seen in Fig.

2!b". In order to isolate the vortex we added absorption in the

border of the cell, performing a modified GLR step between

each NLS step. The GLR modified step consists in the GLR

equation with the right-hand side modulated by a function

that is null almost everywhere except near the border. The

results of absorption are also shown in Fig. 2!b". Note that

oscillations are effectively reduced without significant modi-

fication of the vortex trajectories before tw.

In Fig. 2!c" the radius as a function of time is displayed

for different initial conditions. Note that the slope increases

when the Mach number M diminishes, as well as the oscil-

lations.

Figure 2!d" displays the temporal evolution of the radius

corresponding to the run with the smallest Mach number.

Note that the total increase of the radius after the transient

time is less than 0.08% #see inset in Fig. 2!d"$. This explains

the large fluctuation in the corresponding curve in Fig. 2!c".
We now turn to the comparison of the results of the nu-

merical integrations of the NLSE with the theoretical predic-

tion !24". To wit, we measure the relative variation of M in a

fraction 1 of turns of the vortex pair for each trajectory !ob-

tained with different " and resolutions". This turnover time is

simply T=2( /2=2(%2a2
/c" and from the theoretical pre-

diction !24" it follows that

M!1T" = M0#1 + 241(2M0
4$−1/6 . M0!1 − 41(2M0

4"

!29"

for M small. Note that the Mach numbers can be expressed

directly using " and a by M =" /%2a.

Each initial condition obtained using GLR dynamics is

evolved under the NLSE for more than a turn of the vortices.

The mean value of #1−M!1T" /M0$ / !41(2M0
4" !over the

NLS evolution" for different values of Mach number and

resolutions is plotted in Fig. 3 The value of 1 is always

between 1 /8 and 1. It is chosen in each case in order to

obtain clear data.

The error bars shown for small Mach number in Fig. 3 are

produced by the oscillation of the trajectories #see Fig. 2!c"$.
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FIG. 2. !Color online" !a" Vor-

tex trajectory with an initial sepa-

ration of 2a=2.18". !b" Temporal

evolution of Mach number with

and without absorbing boundaries.

Initial separation of 2a=2.18". !c"
Temporal evolution of a!t"6−a0

for different Mach numbers. !d"
Temporal evolution of a!t" with

Mach number M =0.077. Inset:

Temporal evolution of a!t" /a0 af-

ter the transient. !a" and !b" use

5122 Fourier modes and !d" and

!c" 40962.
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These errors can be reduced by taking lower values of " at

constant M, but the resolution must then be increased in

order to well resolve the vortex. Thus, with a fixed resolution

it is impossible to go to arbitrarily lows values of the Mach

number. However, using up to 40962 Fourier modes, the val-

ues seem to approach well the theoretical prediction as the

Mach number decreases, as is apparent in the inset of Fig. 3.

On the other hand, for the computed intermediate values of

M, the data are not in good agreement, even when using the

high orders in M of the series !28". It is clear that at these

intermediate Mach numbers the dispersive effects of the

NLSE, which were not taken into account in our computa-

tion, become relevant.

V. CONCLUSION

Our main result for the radiation far field directly ex-

pressed in terms of vortex motion #Eqs. !25"–!28"$ was vali-

dated by comparison with the result of numerical simulations

of the NLS equation in a simple test case. The numerical data

showed that the relative variation of $M /M4 in a fraction of

turns is below the theoretical prediction at intermediate val-

ues of M. However, the data also display a clear tendency for

$M /M4 to increase in the small Mach number limit, in a

way that seems consistent with reaching the theoretical

value.
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APPENDIX A: FAR-FIELD CALCULATION

Formulas !13" and !14" are concerned with integrals of

the type

)
−+

+

dt!f!t!"G!x,t − t!" = )
−+

+

dt!)
−+

+
d2

2(
f̂!2"ei2t!G!x,t − t!"

= )
−+

+
d2

2(
f̂!2"

ei2t

2(
K0'i

r2

c
( ,

where Kn!z" is the modified Bessel function of the second

kind #14$. We can use the K0 derivative in order to give a

formal expression; hence

)
−+

+

dt!f!t!"G!x,t − t!" =
1

2(
K0' r

c

d

dt
( f!t" . !A1"

In the last expression, the function K0 is understood as a

functional operator applied in Fourier space. We now use the

series expansion around z=+ of the function K0,

K0!z" =%(

2
e−z'z−1/2 −

1

8
z−3/2 +

9

128
z−5/2 + o!z−7/2"( ,

and the fractional derivative Eq. !A1", becomes

K0' r

c

d

dt
( f!t" =%(

2
/*' r

c
(−1/2

!s−1/2f −
1

8
' r

c
(−3/2

!s−3/2f

+
9

128
' r

c
(−5/2

!s−5/2f + ¯ -/
tr

, !A2"

where tr= t−r /c. Formula !16" is directly obtained by replac-

ing Eq. !14" in Eq. !13", using Eqs. !A1" and !A2" and noting

that !G /!yk=−!G /!xk.

In order to get the multipolar expansion we write the se-

ries expansion of K0!z" for z.0:

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M

(1
−

M
(β

T
)/

M
0
)/

(4
β

π
2

M
04
)

10
−1

10
−3

10
−2

10
−1

10
0

FIG. 3. !Color online" Relative variation of #1−M!1T" /M0$ / !41(2M0
4" as a function of M. Solid line is the theoretical prediction !28",

with limit 1 for M→0. Inset: same plot in log-log scale. Runs with 40962 !!", 20482, !/", and 10242 !7" Fourier modes.

KRSTULOVIC, BRACHET, AND TIRAPEGUI PHYSICAL REVIEW E 78, 026601 !2008"

026601-6



K0!z" . − ln!z" + ln!2" − 3E +
1

4
#− ln!z" + ln!2" − 3E + 1$z2

+ o!z4" !A3"

with 3E=0.572 215 6. . . the Euler-Mascheroni constant. The

multipolar expression !21" follows directly from Eqs. !20"
and !A3".

APPENDIX B: SERIES EXPANSION

In this appendix we compute the series !25". Let n be an

even number; from Eq. !13" it is apparent that the contribu-

tion of order Mn to the series is coming from the term

&̇MnMn =
4)- j0j1

!n − 1"!
! j0j2. . .jn

+K0' r

c

d

dt
(Ṙ j1

R j2
¯ R jn

,
=

4)

cn!n − 1"!
%(c

2r
- j0j1

n̂ j0
n̂ j2

¯ n̂ jn

/ !tn−1/2!Ṙ j1
R j2

¯ R jn
" , !B1"

where we have used that, in the radiative limit,

K0' r

c

d

dt
( f!t" =%(c

2r
&!s−1/2f!s"&s=tr

and thus ! jk
=−n̂ jk

c−1
!t.

Let ,k!C be such that Rk=Re!,ke
i2t"; then

Ṙ j1
R j2

¯ R jn
=

1

2n
!i2, j1

ei2t − i2,̄ j1
e−i2t"!, j2

ei2t + ,̄ j2
e−i2t" ¯ !, jn

ei2t + ,̄ jn
e−i2t" ,

Ṙ j1
R j2

¯ R jn
=

2

2n
!i, j1

, j2
¯ , jn

ein2t + c.c."

+
2

2n
!− i,̄ j1

, j2
¯ , jn

ei!n−2"2t + i, j1
,̄ j2

¯ , jn
ei!n−2"2t + ¯ + i, j1

, j2
¯ ,̄ jn

ei!n−2"2t + c.c."

+
2

2n
!− i,̄ j1

,̄ j2
¯ , jn

ei!n−4"2t + i, j1
,̄ j2

,̄ j3
¯ , jn

ei!n−4"2t + ¯ + i, j1
, j2

¯ ,̄ jn−1
,̄ jn

ei!n−4"2t + c.c." + ¯

+
2

2n
!− i,̄ j1

,̄ j2
¯ ,̄ jn/2

, jn/2+1
¯ , jn

ei!n−2n/2"2t + ¯ + c.c." . !B2"

We can directly check that

− - j0j1
n̂ j0

,̄ j1
n̂ j2

, j2
= - j0j1

n̂ j0
, j1

n̂ j2
,̄ j2

,

- j0j1
n̂ j0

, j1
= iae−i*,

n̂ j, j = ae−i*,

n̂ j,̄ j = aei*,

and thus each term inside each parenthesis in the right-hand side of Eq. !B2" has the same value. We see in !B2" that the

contribution with the frequency !n−2l"2 has l terms !of the total of n" with , conjugate and thus ! n

l " ways of choosing them.

Hence

- j0j1
n̂ j0

¯ n̂ jn
Ṙ j1

R j2
¯ R jn

= −
2an

2n−1
Re4'n

0
(ein!2tr−*" + 'n

1
(ei!n−2"!2tr−*" + ¯ + 5n

n

2
6ei!n−2n/2"!2tr−*"7 !B3"

=−
2an

2n−13
l=0

n/2 'n

l
(Re!ei!n−2l"!2tr−*"" . !B4"

From !B1" we obtain
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&̇MnMn = 4)%(c

2r

2an

2n−1!n − 1"!3l=0

n/2 'n

l
(!tn−1/2Re!ei!n−2l"!2tr−*""

= 4)%(2c

2r
'a2

c
(n 1

2n−1!n − 1"!3l=0

n/2 'n

l
(!n − 2l"n−1/2Re!in−1/2ei!n−2l"!2tr−*"" !B5"

and finally formula !25" follows directly.

The total radiated power !28" is easily obtained by noting that

)
0

2*

d* cos*!n − 2l"!2tr − *" +
(

2
'n −

1

2
(-cos*!m − 2k"!2tr − *" +

(

2
'm −

1

2
(- = (0n−m,2l−2k cos

(

2
!n − m"

for all n ,m , l ,k integer.
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8. CONCLUSIONS

In this thesis we have studied several different Fourier Galerkin-truncated conserva-
tive systems. We showed that, in a very general way, the systems relax toward the
equilibrium with a rich and interesting transient. The thermalized small scales acts as
thermostats generating a pseudo-dissipation at large scales.

Because of this pseudo-dissipation a Kolmogorov regime can be observed in the
truncated Euler equation. This fact motivated study of the effective viscosity in the
truncated Euler equation. We were able to propose a phenomenological two-fluid model
of the truncated Euler equation our treatment of helical flows allowed us to observe a
mixed energy and helicity cascade, followed by a Kraichnan helical absolute equilibrium.
Using our previously determined eddy-viscosity we showed that the large scales of the
truncated Euler flows quantitatively behave as an effective Navier-Stoke equation with
a time and scale dependent viscosity.

We thus turned to the study of the 2D truncated Euler equation. The main differ-
ence with the 3d case is the presence of a direct cascade of enstrophy. This quantity
plays the role of the energy in 3D, thermalizing in equipartition at large wave-number
and yielding a k−1 law in the inertial zone. A remarkable difference with the 3D situ-
ation is the absence of a dissipative zone that is probably due to a vanishing 2D eddy
viscosity.

We the extended our study to the magnetohydrodynamic case. Similar to the 3d
case of non magnetic flows, the direct cascade of energy leads to an energy equipartition
at large wave-number. An Iroshnikov-Kraichnan k−3/2-spectrum was observed in the
inertial zone. When a strong magnetic field is applied, the Alfvén waves slowdown
the nonlinear interactions and an apparent bottleneck appears in an intermediate zone
before the equipartition range extends to the smallest scales. This is an interesting
result because the partial thermalization zone appears while the spectral convergence is
still ensured. The different scaling-laws present in the energy spectra strongly suggest
to reproduce in the future, with higher resolutions, the simulations involving a strong
constant magnetic field in order determine the different exponents.

We then decided to study the case of the compressible truncated Euler flows. A
new algorithm allowing the construction of absolute equilibrium of spectrally truncated
compressible flows was introduced. The algorithm used stochastic processes based on
the Clebsch representation of the velocity field to generate density and velocity fields
that followed by construction the absolute equilibrium stationary probability. This
algorithm was posteriorly adapted to the truncated Gross-Pitaevskii equation.

Some preliminary results were obtained that strongly suggested the existence of
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second sound waves in the compressible truncated Euler equation and TGPE dynamics.
However, it was is not possible to distinguish the effect from a ballistic propagation.
Note that it is not possible to increase the temperature in the compressible truncated
Euler equation without changing the equation of state. The TGPE thus seems to
to be a good system to look for second sound in a future detailed study. A better
configuration could be obtained by studying at higher resolution (larger than 1283) the
heat propagation of a hot spot. We will perform in the future a parametric study in
such a configuration by varying the temperature and the amount of dispersion of the
system controlled by the value of ξkmax.

The second part of this thesis was devoted to the Gross-Pitaevskii equation. We
studied the sound emission produced by the interaction of several vortices in a 2-d
homogenous system. We obtained analytics predictions for the power radiated by mov-
ing vortices and found that the numerical simulations that we performed at very high
resolution gave support to the estimate of radiation.

Studying the truncated Gross-Pitaevskii equation (TGPE) we found several aston-
ishing results. To obtain the absolute equilibrium of this equation we introduced a
stochastically forced Ginzburg-Landau equation (SGLE), that very efficiently allowed
to perform temperature scans. We explicitly showed that the condensation transition
observed in references [29, 30, 31] corresponds to a standard second-order transition
described by the λ− φ4 theory.

We also showed that the thermodynamical equilibrium can be achieved by a direct
energy cascade, in a way similar to Cichowlas et al.[5], but with a thermalization of
sound waves at small scales, accompanied by vortex annihilation as a prelude to final
thermalization. An amazing result was observed increasing the amount of dispersion of
the system. A slowdown of the energy transfer was produced inducing a partial ther-
malization independently of the truncation wavenumber. This was the second example
of a partial thermalization within the frame of a PDE reported in this thesis.

Using the SGLE in the presence of a counterflow we discovered interesting properties
present in the TGPE dynamics. The counterflow can avoid and reverse the contrac-
tion of vortex ring due to mutual friction reported by Berloff and Svistunov [32]. We
also observed that when the counterflow pass trough a crystal pattern it induces a
collective movement in the crystal. This allowed us to directly measure the mutual
friction coefficient related to the transverse force. An astonishing result was found by
immersing a vortex ring in a thermic bath: a strong dependence on the temperature
of the translational velocity was observed. This effect was a order of magnitude above
the transverse mutual friction effect measured in the perfect crystal. We related this
to the anomalous translational velocity due to finite amplitude Kelvin waves in vortex
rings reported by Kiknadze and Mamaladze [33] and Barenghi et al [34]. By assuming
equipartition of the energy of the Kelvin waves with the heat bath we obtained a good
estimate of the observed effect and we gave a quantitative prediction for the thermal
slowdown of vortex rings in He4.

When counterflow is aligned to an ordered vortex arrays it can induce an instability
called Donnelly-Glaberson. This instability was observed experimentally by Swanson
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et al [106] in 1983 and numerical simulations based on Bio-Savart law performed by
Tsubota et al. [107] allowed to obtain a physical visualization of the instability. We
will attempt in the future to study this instability in the context of TGPE.

We thus showed that the TGPE appears as minimal model of superfluidity at fi-
nite temperature, where counterflows and mutual friction effects are naturally present.
Because of the experimental technics has were recently developed allowing the visu-
alization of vortex structures in superfluid He4 by following solid hydrogen particles
[108, 109], more and more pictures coming from experiments will be available in the
future that could be confronted with visualization form TGPE and vice-versa.
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A. ACOUSTIC PROPAGATION OF TRUNCATED

GROSS-PITAEVSKII EQUATION: A SIMPLE TWO-FLUID

MODEL DERIVATION

In this appendix we derive a set of acoustic equations for the TGPE based on the Landau
two-fluid model of He4 [54] and the extended thermodynamics relations of section IIB
of the article [38] presented in chapter 6. This derivation has an academical character
because dissipative effects are neglected. To obtain a more realistic description a kinetic
description of TGPE should be used.

The present calculations allows to overpass the difficulty that the well known formula
for the second sound velocity u2 of He4 at T = 0 given by

u2 =

√
Ts2ρs

cpρ
, (A.1)

where s is the entropy per unit mass, becomes meaningless in a classical system because
the absolute value of s is not defined.

The starting point is the conservation relations (6.7), (6.8), (6.9) and the Galileo
transformation relations (6.15) - (6.20). We consider a constant number of modes
N . We also assume that the vectors vs and P are small quantities and that all the
thermodynamics quantities depend slowly on space, by a small perturbation around to
an homogeneous state where a local thermodynamical equilibrium is supposed to be
instantly established.

As usual in hydrodynamics, we will consider the energy and momentum per unit of
volume and the chemical potential per unit of mass. Keeping the same notation with
the new units the thermodynamical relation (26) of [38] in chapter 6 (H ≡ E, dV = 0
and dN = 0) becomes

dE = Td(ρs) + µdρ+ W · dP, (A.2)

where S = V ρs is the total entropy .

In the acoustic regime the conservation equations (6.7), (6.8) and the Galilean trans-
formation relations (6.15) - (6.20) simplifies to
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∂ρ

∂t
= −∇ · P (A.3)

∂H

∂t
= −∇ · Q (A.4)

P = ρvs + P0 (A.5)

∂P

∂t
= −∇p (A.6)

H = H0 (A.7)

Q = (H0 + p)vs + Q0 (A.8)

where the subindex 0 denotes that the quantities are evaluated in the referential where
vs = 0 and we implicitly assume that terms multiplying small quantities do not depend
on space.

Equations (A.3-A.8) must be supplied with an equation for the superfluid velocity
vs. To wit, observe that the Bernoulli eq.(6.6) can be rewritten as

∂φ

∂t
= −δH

δρ
. (A.9)

First identify vs = ∇φ̄, where the bar stands for an ensemble average. Then, for

adiabatic compressions [84] we have δH
δρ

= ∂E
∂ρ

∣∣∣
S
. Finally, from the thermodynamic

relation (A.2) we obtain the equation

∂vs

∂t
= −∇µ, (A.10)

just as in the Landau two-fluid model.
The link between the Landau two-fluid model and eqs.(A.3-A.10) is evident using

the identifications

ρ = ρn + ρs (A.11)

P0 = ρn (vn − vs) (A.12)

The next step is be able from the conservation equations and the thermodynamical
relations to obtain the fountain effect. Combining the thermodynamic relations of the
Gibbs potentials G and dG (equations (27) and (30) of [38] in chapter 6) we obtain

ρdµ+
N
V
dλN = dp− ρsdT − P · dW, (A.13)

where S = V ρs. Assuming local thermodynamical equilibrium we obtain at the leading
order

ρ∇µ = ∇p− sρ∇T − N
V
∇λN . (A.14)

Replacing ∇p and ∇µ by Eqs. (A.6) and (A.10) and the momentum P by Eq. (A.5)
and (A.12) we obtain

∂P0

∂t
= −sρ∇T − N

V
∇λN . (A.15)
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Defining

λ̃N =
λN
T
, seff = s+

N
ρV

λ̃N (A.16)

equation (A.15) becomes

∂P0

∂t
= −seffρ∇T − N

V
∇λ̃N . (A.17)

Note that Eq.(A.17) is well defined because seff and ∇λ̃N are uniquely determined (see
the discussion at the end of sections IIB and IIIB in [38] in chapter 6). This equation
is analogous to the corresponding one of Landau two-fluid model [54] (see section A.2
below).

Using definitions (A.16), the thermodynamic relation (38) of [38] in chapter 6 ex-
pressed per unit of volume reads at leading order

H + p− µρ = Tρ seff . (A.18)

To obtain an equation describing the thermomechanical effect we will first find an
equation for the entropy flux. Using the thermodynamical relation (A.2) the energy
conservation relation (A.4) and Eq.(A.8), we find at leading order reads

∂H

∂t
= T

∂(ρs)

∂t
+ µ

∂ρ

∂t
= −∇ · [(H0 + p)vs + Q0]. (A.19)

Using Eq.(A.3), (A.12) and the thermodynamic relation (A.18) we obtain the entropy
flux equation

T
∂(ρs)

∂t
+ ∇ · [Tρ seffvs + Q0 − µP0] = 0 (A.20)

Defining the density q by the relation

Q0 − µP0 = qT seff (vn − vs) , (A.21)

and using the identity
∂seff

∂t
=

1

ρ

∂

∂t
(ρ seff) − seff

ρ

∂ρ

∂t

together eqs. (A.3) and (A.5) we finally obtain an equation for temporal variation of
seff

∂seff

∂t
+
seff(q − ρn)

ρρn

∇ · P0 =
N
ρV

∂λ̃N
∂t

. (A.22)

Equation (A.22) corresponds to the thermomechanical effect and together with Eq.(A.17)
describe a second sound mode. Remark that it is a completely defined equation (it does
not directly depend on the entropy).

To numerically study the effect predicted by eqs. (A.17) and (A.22) we prepare
an initial condition using the SGLE with a space-variable temperature and chemical
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potential of the form

T = T0(1 + ǫ sinx) (A.23)

µ = µ0 + µ1 sin x. (A.24)

We use a resolution of 1283, the mean temperature is fixed at T0 = 2 and the mean
chemical potential µ0 is chosen in order to keep the density at ρ = 1. To reduce the
emission of density waves the value of µ1 is automatically adjusted to obtain a flat
pressure profile. The initial condition is then evolved under the TGPE dynamics.

To visualize the x-dependent fields we average on y and z directions. The ini-
tial values of H − µN (that is proportional to T ) and P0 are displayed on Fig.A.1.a.
Observe on Fig.A.1.b that the temperature gradient induces a current P0 according to
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Fig. A.1: Temporal evolution of a space-modulated temperature initial condition. a-b) H−µN
and P0 at t = 0 and t = 1.1. c) x− t diagram of H − µN (upper) and P0 (bottom).

(A.17). Figure A.1.c displays a x− t diagram of the run. Observe that the damping is
considerable.

These preliminary results, that become observable at resolutions of 1283, strongly
suggest the existence of second sound waves in the TGPE dynamics. However, is not
possible with this configuration to distinguish from a ballistic propagation. A better
configuration could be obtained by using a Taylor-Green symmetric code, in order to
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easily increase the resolution, and studying the heat propagation of a hot spot. We
will attempt in the future perform a parametric study of this problem varying the
temperature and the amount of dispersion of the system (ξkmax).

A.1 Propagation of Sound in truncated Gross-Pitaevskii

equation

The generalized acoustic equations of TGPE are obtained combing Eqs.(A.3), (A.6),
(A.17) and (A.22). This set of coupled equations reads

∂2ρ

∂t2
= ∇2p (A.25)

∂2seff

∂t2
=

s2
eff

ρn

(q − ρn)∇2T +
N
ρV

∂2λ̃N
∂t2

+
seff

ρn

N
ρV

(q − ρn)∇2λ̃N (A.26)

The space varying quantities in Eqs. (A.25) and (A.26) are function of only two inde-
pendent variables. The simplest choice is the chemical potential and the temperature
pair. Writing

T = T̄ + δT µ = µ̄+ δµ (A.27)

ρ = ρ̄+
∂ρ

∂T
δT +

∂ρ

∂µ
δµ p = p̄+

∂p

∂T
δT +

∂p

∂µ
δµ (A.28)

seff = s̄eff +
∂seff

∂T
δT +

∂seff

∂µ
δµ λ̃N = ¯̃λN +

∂λ̃N
∂T

δT +
∂λ̃N
∂µ

δµ (A.29)

where the bars denotes that the corresponding quantities are evaluated at the homoge-
neous value T̄ and λ̄. Replacing Eqs.(A.27) - (A.29) in Eqs.(A.25) and (A.26) leads to
a set of coupled hyperbolic equations for the pair δT and δµ with two wave propagation
velocities.

Using the low-temperature expressions obtained1 in section IIIB in [38] in chapter
6, we obtain in the limit T → 0 the two velocity u1 and u2

u2
1 = µ , u2

2 = µ

[
2
3
− f

[
4mµ
P 2

max

]]2

f
[

4mµ
P 2

max

] , (A.30)

where f [z] = z − z3/2 cot−1 (
√
z) is the function defined in Eq.B9 of [38] in chapter 6.

1 The value of Q0 in Eq.(A.21) can be directly computed with the low-temperature calculations.
The quartic term Qk of Eq.(6.11) is evaluated by using the Wick theorem that gives the relation
ψψ∗ψ∂kψ∗ = 2 |ψ|2 ψ∂kψ. The value of the energy flux obtained is Q0 = 2

3
N
β W and it has been also

corroborated with data form SGLE.
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It is straightforward to show that

lim
x→∞

[
2
3
− f [x]

]2

f [x]
=

1

3
, (A.31)

and therefore in the limit of vanishing dispersion P 2
max

4mµ
∼ (ξkmax)

2 → 0, we thus find
that the quotient of the sound velocities is

u2

u1

=
1√
3
. (A.32)

This correspond to the well know zero-temperature limit of the Landau two-fluid model.
Remark however that this limit is somewhat anomalous seen from the Gross-Pitaevskii
equation because as ξ is the size of vortex core, that implies that vortices are not
resolved by the TGPE. However, at finite values of ξkmax some interesting behavior
could be found. The dependence of u2

2/u
2
1 on 4mµ

P 2
max

is displayed on the left plot of figure
A.2.
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1/3. right) Temperature dependence of u1 (blue) , u2 (red) obtained from Eqs.(A.25)

and (A.26) and
√

∂p
∂ρ

∣∣∣
S

(brown),
√

∂p
∂ρ

∣∣∣
T

(green). Inset: zoom at low temperature.

At finite temperature the formal expression are too large to be written here. Using
the typical values used for numerical simulations in [38] (chapter 6) the temperature
dependence of the velocities is shown on plot on the right of Fig.A.2.

Note that the value of first sound velocity decrease faster than
√

∂p
∂ρ

∣∣∣
S

and
√

∂p
∂ρ

∣∣∣
T

computed using low-temperature calculations in [38] (chapter 6).
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A.2 Brief discussion on quantum statistics and two-fluid

model

Suppose that in the previous section quantum statistics have been used instead of
classical statistics. With quantum statistics the potential associated with the number
of modes exactly vanishes: λN = 0. Therefore seff = s. It is also possible to show,
using the quantum statistics developed in section 5.4, that from the definition (A.21)
we obtain q = ρ. Thus the eq.(A.20) for the entropy flux reduce to

∂(ρs)

∂t
+ ∇ · (ρsvn) = 0 (A.33)

This equation, exactly corresponds to that of two-fluid model where only the normal
fluid can transport the entropy. It is the starting point of Landau’s derivation of his
model.

It is straightforward to show that in the T → 0 limit we recover the first and second
sound velocities

u2
1 = µ , u2

2 =
µ

3
(A.34)

of the Landau’s model.
We have thus shown that the Landau two-fluid model can be naturally derived from

the conservation equations of GPE. This fact is simply related to the correspondence
of the Gross-Pitaevskii equation to the hydrodynamics description.
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B. NUMERICAL METHODS

In this appendix we give a short description of the numerical methods used in this
thesis.

B.1 Fourier transform

All the numerical simulations performed in this thesis have periodical boundary con-
ditions on the domain [0, 2π]D. For simplicity in the present section we will consider
D = 1. A field f can be represented by its Fourier series

f(x) =
∞∑

k=−∞
f̂(k)eikx (B.1)

where the Fourier transform is defined by

f̂(k) =
1

2π

∫ 2π

0

f(x)e−ikxdx. (B.2)

If we have a partition of the interval [0, 2π] with N collocation points x0, x1 . . . ;xN1

with xj = j∆x the discrete Fourier transform reads

f̂N(k) =

j=N
2∑

j=−N
2

f(xj)e
ik 2πj

N . (B.3)

The wavevectors k thus take the values −N
2
,−N

2
+ 1, . . . , N

2
− 1.

The Fourier transform requires O(N) operations to be computed. In practice,
Fourier transforms are performed by using the Fast Fourier Transform (FFT) algo-
rithm that reduce to O(N log2N) the number of operations [110].

The generalization to D dimensions is straightforward.
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B.2 Solving a PDE

The PDE’s considered in this thesis can be written in the general form

∂u

∂t
= Lu+NL[u] (B.4)

where L is a linear operator and NL[u] is the non-linear term of the equation.

B.2.1 Pseudo-spectral methods

In Fourier space the non-linear term NL[u] in eq.(B.4) involves convolutions that are
expensive to compute numerically . We thus solve the equations of the type (B.4) by
using standard pseudo-spectral codes [14], that consist in evaluating the non-linear term
in physical space using the FFT. This procedure reduces the computational time from
O(N2D) for the convolution in the case of quadratic nonlinearity to O(ND log2N) for
pseudo-spectral method.

The error of approximating a PDE by a pseudo-spectral code is O(1/NN). Thus a
pseudo-spectral resolves much better a PDE than a finite difference scheme with the
same resolution.

B.2.2 Dealiasing

However the gain of computational time and precision obtained by using pseudo-spectral
codes generates a problem called aliasing. Suppose that NL[u] in eq.(B.4) has a nonlin-
earity of order 2. The interaction of two Fourier modes k1 and k2 generates contribution
to the wavenumber k1 − k2 and k1 + k2. By definition of the discrete Fourier trans-
form (B.3) the wavenumbers are defined modulus N . Therefore wavenumbers satisfying
|k1 ±k2| > N/2 are considered as small wavenumbers. This situation can induces prob-
lems with the conservation laws of the PDE.

The system can be dealiased by the the following procedure. Suppose a nonlin-
earity of order m. The de-aliasing consist in reducing the Fourier space to a sub-set
(−kmax, kmax) and to eliminate at each time-step the Fourier modes outside this interval.
The condition that determines kmax is given by mkmax − N < −kmax, i.e kmax <

N
m+1

.
This is known as the 1/(m+ 1)-rule [14].

With this procedure a factor m−1
m+1

of the resolution is lost. However, the Leibnitz
rule for the derivative of a product is recovered. Suppose that f and g are two aliased
field, we have then

(̂fg)′(k) = i
∑

j+n=modN
k

kf̂N(j)ĝN(j)f̂N(j) = i
∑

j+n=modN
k

(j + n)modN
f̂N(j)ĝN(j)f̂N(j),

(B.5)
and the sum cannot be split in two terms. If the fields are de-aliased with the 2/3-rule
the sum can be separated and we recover the Leibnitz rule. Most of the conservation
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laws are based on this rule and can be broken if the fields are aliased.
We have used the 2/3-rule in all our numerical schemes used in the present thesis.

For the TGPE, where the non-linearity is cubic, we proposed a new scheme that needs
an extra FFT for which the 2/3-rule can be used instead of the 1/2-rule. In ther-
malized truncated system, where the contribution of the fields is dominated by large
wavenumbers, the lack of a correct de-aliasing scheme can induce considerable errors in
the conservation of invariants. The TGPE presents a particularity; the energy and the
number of particles is conserved even if the system is aliased. However, errors in the
conservation of momentum can rise up to a 50% in a few units of time (see Appendix of
article [38] in chapter 6). Figure B.1 shows the conservation of the energy, the number
of particles and the momentum of the TGPE using a Runge-Kutta of order 4 (see next
section). Observe that the error of the conservation of the momentum does not depends
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Fig. B.1: Temporal evolution of ofH, N and Pz normalized by their values at t = 0. The colors
correspond to numerical integration of the dealiased NLS (Yellow dt = 0.5 × 10−2

and Blue dt = 0.25 × 10−2) and not de-aliased (Green dt = 0.5 × 10−2 and Red
dt = 0.25 × 10−2). Initial condition obtained with SGLE at T = 1, w = 0.5 and
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on the time-step dt.

B.2.3 Time-stepping

Suppose that at t = 0 the value of u0 = u(0) is known. In the following we denote
tn = n dt and un = u(tn). The time-stepping used in this thesis for solving equation of
the type B.4 are:

• Explicit Euler (order O(dt))

un+1 = un + Euler[un] (B.6)

Euler[un] = dt (Lu+NL[u])

• Implicit Euler (order O(dt))

un+1 =
un + dtNL[u]

1 − dtL
(B.7)
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• Runge-Kutta (order O(dt4))

un+1 = un +
k1

6
+
k2

3
+
k3

3
+
k4

6
+
k1

6
(B.8)

k1 = Euler[un]

k2 = Euler[un +
k2

2
]

k3 = Euler[un +
k2

2
]

k4 = Euler[un + k3]

Because a high accuracy in the conservation of invariants is needed in the study of
thermalization, in all the conservative systems we used a Runge-Kutta scheme. For the
stochastic algorithm we used explicit Euler and for the advected real Ginzburg-Landau
equation (ARGLE) we used an Implicit Euler scheme.

B.2.4 White-noise

The space-time δ-correlated white noise used in simulations is first generated in physical
space as

ζ(xi, yj, zk) =

√
nxnynz

dt
ζijk (B.9)

where ζijk are independent Gaussian number [110] of zero mean and variance 1. Then
the fields are transformed to Fourier space and de-aliased.

B.2.5 Taylor-Green symmetries

The symmetrical pseudo-codes are optimized in the way of references [67, 27] to take
in account the symmetries of the Taylor-Green vortex: rotational of angle π around
the axis (x = z = π/2), (y = z = π/2) and (x = y = π/2) and mirror symmetry with
respect to the planes x = 0, π, y = 0, π, z = 0, π.

Using these symmetries, the velocity field admits the following representation:

vx(r, t) =
∞∑

m=0

∞∑

n=0

∞∑

p=0

ux(m,n, p, t) sinmx cosny cos pz (B.10)

vy(r, t) =
∞∑

m=0

∞∑

n=0

∞∑

p=0

uy(m,n, p, t) cosmx sinny cos pz (B.11)

vz(r, t) =
∞∑

m=0

∞∑

n=0

∞∑

p=0

uz(m,n, p, t) cosmx cosny sin pz (B.12)

with u(m,n, p, t) = 0 unless m,n, p are either all even or all odd integers. For GPE,



B.3. Newton method 165

the symmetries imply a similar decomposition with cosmx cosny cos pz.
The symmetries also imply for the Fourier modes

ux(m,n, p, t) = (−1)ruy(n,m, p, t) (B.13)

uz(m,n, p, t) = (−1)ruz(n,m, p, t) (B.14)

with r = 1 if m,n, p are all odd and r = 2 if m,n, p are all even.
The relations (B.13) and (B.14) allow us to obtain vy from vx and vz. The decom-

position (B.10) permit to gain a factor 32 in memory storage and CPU time compared
with general pseudo-spectral codes.

B.3 Newton method

In this thesis the Newton method is used in several occasions to obtain a zero of a
function or a stationary state of a non-linear operator.

In general, consider a smooth unction f : Rn → Rm and let x0 be an initial guess of
the problem f(x) = 0. The Newton method consist by iteratively solving for the linear
approximation of f at the precedent known point xn:

f(xn + h) ≈ f(xn) +Df(xn)h = 0 (B.15)

xn+1 = xn + h. (B.16)

It is possible to show, by using the Banach fixed point theorem, that his algorithm
converge exponentially to the solution of the problem. However, in the general case
Df(xn) is a m× n not necessarily invertible matrix. To solve (B.15) can be extremely
complex and expensive in computational time.

In the particular case of 2D GPE studied in chapter 7, Df(xn) is a 2× 2 invertible
matrix and the system (B.15) can be explicitly solved. Choosing the initial guess x0 by
finding the minimum of |ψ|2 on the mesh, the algorithm quickly converges to the zero
of ψ with an accuracy much larger than the mesh size.

B.3.1 Partial differential equations

The Newton method can be also applied to PDE’s to obtain stationary states. The
algorithm (B.15-B.16) applies directly by replacing the the Jacobian Df(xn) by the
respective linearized operator.

When, this method is numerically applied, the linearized operator becomes a matrix
of dimension of the order ND ×ND and the linear system cannot be easily solved. This
difficulty was technically solved by using the bi-conjugate gradient method Bi-CGSTAB
[111]. The application of the Newton method to obtain stationary states (stable and
unstable) of a PDE is used and explained in detail in references [112, 113, 114].
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Initial guesses

The initial guess used by the Newton method to generate a vortex ring of radius R was
obtained by performing some steps of ARGLE using as initial condition the function

ψ(x, y, z) = eizU(x, y) + 1 − U(x, y) (B.17)

U(x, y) =
tanh

(
R−r
2ξ

)
+ 1

tanh
(

R
2ξ

)
+ 1

(B.18)

r(x, y) = 2

√
cos2

(x
2

)
+ cos2

(y
2

)
, (B.19)

For the crystal, the initial guess was based on the Clebsh representation described
in reference [27]

λ =
√

2 cosx , µ =
√

2 cos y (B.20)

ζ = λ+ iµ (B.21)

ψ(x, y, z) =
ζ

|ζ| tanh
|ζ|√
2ξ
. (B.22)
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In a recent Letter [1], Yepez et al. performed numerical
simulations of the Gross-Pitaevskii equation (GPE) us-
ing a novel unitary quantum algorithm with very high
resolution. They claim to have found new power-law
scalings for the incompressible kinetic energy spectrum:
”...(the) solution clearly exhibits three power law regions

for Eincomp
kin (k): for small k the Kolmogorov k−

5
3 spec-

trum while for high k a Kevlin wave spectrum of k−3...”.
In this comment we point out that the high wavenum-

ber k−3 power-law observed by Yepez et al. is an arti-
fact stemming from the definition of the kinetic energy
spectra and is thus not directly related to a Kelvin wave
cascade. Furthermore, we clarify a confusion about the
wavenumber intervals on which Kolmogorov and Kelvin
wave cascades are expected to take place. Finally, we
point out that the incompressible kinetic energy spec-
trum of the initial data chosen by Yepez et al. scales like
k−1 at small wavenumbers, perhaps not the best choice
to obtain a clean Kolmogorov regime.

The dynamics of a superflow is described by the GPE

∂tψ = ic/(
√

2ξ)(ψ − |ψ|2ψ + ξ2∇2ψ), (1)

where the complex field ψ is related by Madelung’s trans-

formation ψ =
√
ρ exp

(
i φ√

2cξ

)
to the density ρ and ve-

locity ~v = ∇φ of the superfluid. In these formulae, ξ is
the coherence length and c is the velocity of sound (for a
fluid of unit mean density). The superflow is irrotational,
except on the nodal lines ψ = 0 which are the superfluid
vortices.

The GPE dynamics Eq. (1) conserves the energy that
can we written as the sum (the space-integral) of three
parts: the kinetic energy Ekin = 1/2(

√
ρvj)

2, the inter-
nal energy Eint = (c2/2)(ρ − 1)2 and the quantum en-
ergy Eq = c2ξ2(∂j

√
ρ)2. Using Parseval’s theorem, one

can define corresponding energy spectra: e.g. the ki-
netic energy spectrum Ekin(k) as the angle-average of∣∣∣ 1
(2π)3

∫
d3reirjkj

√
ρvj

∣∣∣
2

[2].

The 3D angle-averaged spectrum of a smooth isolated
vortex line is known to be proportional to that of the
2D axisymmetric vortex, an exact solution of Eq. (1)
given by ψvort(r) =

√
ρ(r) exp(±iϕ) in polar coordinates

(r, ϕ). The corresponding velocity field v(r) =
√

2cξ/r is
azimuthal and the density profile, of characteristic spatial
extent ξ, verifies

√
ρ(r) ∼ r as r → 0 and

√
ρ(r) =

1+O(r−2) for r → ∞. Thus
√
ρvj has a small r singular

behavior of the type r0 and behaves as r−1 at large r.
In general for a function scaling as g(r) ∼ rs the (2D)
Fourier transform is ĝ(k) ∼ k−s−2 and the associated
spectrum scales as k−2s−3. Thus Ekin(k) scales as k−3

for k ≫ kξ ∼ ξ−1 and as k−1 for k ≪ kξ. [3].

Following the above discussion, the k−3 power-law ob-
served in [1] is an artifact stemming from the definition
of the kinetic energy spectra and is not directly related
to a Kelvin wave cascade.

Another very important scale, not discussed in the Let-
ter [1], is the scale ℓ of the mean intervortex distance.
The hydrodynamic (Kolmogorov) energy cascade is ex-
pected to end at kℓ ∼ ℓ−1 [2] and the Kelvin wave cascade
to begin there, after an eventual bottleneck [4]. Note
that ℓI ≫ ℓ≫ ξ, where ℓI is the energy containing scale.
We thus believe that nothing particularly interesting is
taking place between kξ and the maximum wavenumber
kmax of the simulation and that there is a confusion in
[1] between kℓ and kξ.

Furthermore, the initial data used in [1] (see the sup-
plementary material) is a 3D set of 12 straight vortex
lines, with intervortex distance ℓ of the order of the box
size. The k−1 scaling of the initial data Ekin(k) thus ex-
tends down to small wavenumbers kI ∼ ℓ−1

I . This behav-
ior of the initial data is in contrast to the Taylor-Green
initial data used in [3], where destructive interferences de-
plete the value of Ekin(k) in the interval for kI < k < kℓ.
The initial data chosen in [1] is thus perhaps not the best
choice to obtain a clean Kolmogorov regime. This might
explain the high level of compressible kinetic energy in
the −5/3 scaling zone that is apparent in the movie of
the supplementary material.

We thank M. Abid and C. Nore for useful discussions.

[1] Jeffrey Yepez, George Vahala, Linda Vahala, and Min Soe.
Phys. Rev. Lett., 103(8):084501, 2009.

[2] C. Nore, M. Abid, and M. E. Brachet. Phys. Rev. Lett.,
78(20):3896–3899, May 1997.

[3] C. Nore, M. Abid, and M. E. Brachet. Phys. of Fluids,
9(9):2644–2669, 1997.

[4] Victor S. L’vov, Sergei V. Nazarenko, and O. Rudenko.
newblock Phys. Rev. B, 76(2):024520, 2007.



BIBLIOGRAPHY

[1] T.D. Lee. On some statistical properties of hydrodynamical and magneto-
hydrodynamical fields. Quart Appl Math, 10(1):69–74, Jan 1952.

[2] R. Kraichnan. Inertial ranges in two-dimensional turbulence. Phys. Fluids,
10(7):1417–&, Jan 1967.

[3] R. Kraichnan. Helical turbulence and absolute equilibrium. Journal of Fluid
Mechanics, 59(7):745–752, Jan 1973.

[4] SA Orszag. Analytical theories of turbulence. Journal of Fluid Mechanics, 41:363–
&, Jan 1970.

[5] C Cichowlas, P Bonaiti, F Debbasch, and M Brachet. Effective dissipation
and turbulence in spectrally truncated Euler flows. Physical Review Letters,
95(26):264502, Jan 2005.

[6] W. J. T Bos and J.P. Bertoglio. Dynamics of spectrally truncated inviscid tur-
bulence. Phys. Fluids, 18(7):071701, Jan 2006.

[7] S.A. Orszag. Statistical Theory of Turbulence. in, Les Houches 1973: Fluid
dynamics, R. Balian and J.L. Peube eds. Gordon and Breach, New York, 1977.

[8] R. Kraichnan. Classical fluctuation-relaxation theorem. Physical Review,
113(5):1181–1182, Jan 1959.

[9] Uriel Frisch, Susan Kurien, Rahul Pandit, Walter Pauls, Samriddhi Sankar Ray,
Achim Wirth, and Jian-Zhou Zhu. Hyperviscosity, Galerkin truncation, and bot-
tlenecks in turbulence. Physical Review Letters, 101(14):144501, Jan 2008.

[10] G Falkovich. Bottleneck phenomenon in developed turbulence. Phys. Fluids,
6(4):1411–1414, Jan 1994.

[11] Y Kaneda, T Ishihara, M Yokokawa, K Itakura, and A Uno. Energy dissipa-
tion rate and energy spectrum in high resolution direct numerical simulations of
turbulence in a periodic box. Phys. Fluids, 15(2):L21–L24, Jan 2003.

[12] W Dobler, NEL Haugen, TA Yousef, and A Brandenburg. Bottleneck effect in
three-dimensional turbulence simulations. Physical Review E, 68(2):026304, Jan
2003.



170 Bibliography

[13] P. D Mininni, A Alexakis, and A Pouquet. Nonlocal interactions in hydrody-
namic turbulence at high Reynolds numbers: The slow emergence of scaling laws.
Physical Review E, 77(3):036306, Jan 2008.

[14] D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods. SIAM,
Philadelphia, 1977.

[15] Victor S L’vov, Sergei V Nazarenko, and Oleksii Rudenko. Bottleneck crossover
between classical and quantum superfluid turbulence. Physical Review B,
76(2):024520, Jul 2007.

[16] JD Fournier and U Frisch. The deterministic and statistical burgers-equation. J
Mec Theor Appl, 2(5):699–750, Jan 1983.

[17] C Bardos, S Benachour, and M Zerner. Analyticity of periodic-solutions of 2-
dimensional eulers equation. Cr Acad Sci A Math, 282(17):995–998, Jan 1976.

[18] U Frisch, T Matsumoto, and J Bec. Singularities of Euler flow? not out of the
blue! J Stat Phys, 113(5-6):761–781, Jan 2003.

[19] C Cichowlas and ME Brachet. Evolution of complex singularities in Kida-Pelz
and Taylor-Green inviscid flows. Fluid Dyn Res, 36(4-6):239–248, Jan 2005.

[20] C. Cichowlas. Equation d’Euler tronquée: de la dynamique des singularités com-
plexes à la relaxation turbulente. Université Pierre et Marie Curie - Paris VI,
2005.

[21] U. Frisch. Turbulence: The Legacy of A. N.Kolmogorov. Cambridge University
Press, Cambridge, November 1995.

[22] DK Lilly. The structure, energetics and propagation of rotating convective
storms .2. helicity and storm stabilization. Journal of the Atmospheric Sciences,
43(2):126–140, Jan 1986.

[23] P. D Mininni and A Pouquet. Helicity cascades in rotating turbulence. Physical
Review E, 79(2):026304, Jan 2009.

[24] JJ Moreau. Constantes d’un îlot tourbillonaire en fluide parfait barotrope. C. R.
Acad. Sci. Paris, 252:2810–2812, 1961.

[25] H Moffatt. The degree of knottedness of tangled vortex lines. J. Fluid Mech,
35:117–129, Jan 1969.

[26] C Nore, M Abid, and ME Brachet. Kolmogorov turbulence in low-temperature
superflows. Physical Review Letters, 78(20):3896–3899, Jan 1997.

[27] C Nore, M Abid, and ME Brachet. Decaying Kolmogorov turbulence in a model
of superflow. Phys. Fluids, 9(9):2644–2669, Jan 1997.



Bibliography 171

[28] Jeffrey Yepez, George Vahala, Linda Vahala, and Min Soe. Superfluid turbulence
from quantum kelvin wave to classical kolmogorov cascades. Physical Review
Letters, 103(8):084501, Aug 2009.

[29] MJ Davis, SA Morgan, and K Burnett. Simulations of Bose fields at finite tem-
perature. Physical Review Letters, 87(16):160402–160402, 2001.

[30] C Connaughton, C Josserand, A Picozzi, Y Pomeau, and S Rica. Condensation
of classical nonlinear waves. Physical Review Letters, 95(26):263901, Jan 2005.

[31] Antonio Picozzi Gustavo Düring and Sergio Rica. Breakdown of weak-turbulence
and nonlinear wave condensation,. Physica D, 238(16):1524–1549, August 2009.

[32] Natalia G Berloff and Anthony J Youd. Dissipative dynamics of superfluid vortices
at nonzero temperatures. Physical Review Letters, 99(14):4, Oct 2007.

[33] L Kiknadze and Y Mamaladze. The waves on the vortex ring in heii. Journal of
Low Temperature Physics, 126(1-2):321–326, Jan 2002.

[34] C. F Barenghi, R Hanninen, and M Tsubota. Anomalous translational velocity of
vortex ring with finite-amplitude Kelvin waves. Physical Review E, 74(4):046303,
Jan 2006.

[35] G Krstulovic and M Brachet. Two-fluid model of the truncated Euler equations.
Physica D: Nonlinear Phenomena, 237(14-17):2015–2019, Aug 2008.

[36] G. Krstulovic, P. D. Mininni, M. E. Brachet, and A. Pouquet. Cascades, ther-
malization, and eddy viscosity in helical Galerkin truncated Euler flows. Physical
Review E, 79(5):056304, May 2009.

[37] G. Krstulovic, C. Cartes, M. Brachet, and E. Tirapegui. Generation and charac-
terization of absolute equilibrium of compressible flows. International Journal of
Bifurcation and Chaos (IJBC), 19(10):3445–3459, 2009.

[38] Giorgio Krstulovic and Marc Brachet. Energy cascade with small-scales ther-
malization, counter flow metastability and anomalous velocity of vortex rings in
fourier-truncated Gross-Pitaevskii equation. To be published, 2010.

[39] G Krstulovic, M Brachet, and E Tirapegui. Radiation and vortex dynamics in
the nonlinear schrödinger equation. Physical review. E, Jan 2008.

[40] A.N.Kolmogorov. The local structure of turbulence in incompressible viscous fluid
for very large Reynolds. Proceedings: Mathematical and Physical Sciences, Jan
1941.

[41] A. N.Kolmogorov. On degeneration decay of isotropic turbulence in an incom-
pressible viscous liquid. C. R. Acad. Sci. U.S.S.R, 31:538–540, 1941.



172 Bibliography

[42] A. N.Kolmogorov. Dissipation of energy in locally isotropic turbulence. C. R.
Acad. Sci. U.S.S.R, 32:16–18, 1941.

[43] A. N.Kolmogorov. A refinement of previous hypotheses concerning the local struc-
ture of turbulence in a viscous incompressible fluid at high Reynolds number. J.
Fluid Mech., 13:82–85, 1962.

[44] R. Kraichnan. Small-scale structure of a scalar field convected by turbulence.
Phys. Fluids, 11(5):945–&, Jan 1968.

[45] R. Kraichnan. Passive scalar: Sealing exponents and realizability. Physical Review
Letters, 78(26):4922–4925, Jan 1997.

[46] A Brissaud, U Frisch, J Leorat, and M Lesieur. Helicity cascades in fully developed
isotropic turbulence. Phys. Fluids, 16(8), Jan 1973.

[47] H Moffatt and A Tsinober. Helicity in laminar and turbulent flow. Annual review
of fluid mechanics, 24:281–312, Jan 1992.

[48] ME Brachet. Direct simulation of three-dimensional turbulence in the Taylor–
Green vortex. Fluid Dyn Res, 8:1–8, 1991.

[49] S Douady, Y Couder, and ME Brachet. Direct observation of the intermittency of
intense vorticity filaments in turbulence. Physical Review Letters, 67(8):983–986,
Jan 1991.

[50] L. F. Richardson. Weather prediction by numerical process. Cambridge University
Press England, 1922.

[51] KR Sreenivasan. On the universality of the kolmogorov constant. Phys. Fluids,
7(11):2778–2784, Jan 1995.

[52] F Champagne. The fine-scale structure of the turbulent velocity field. Journal of
Fluid Mechanics, 86(1):67–108, Jan 1978.

[53] Stephen B. Pope. Turbulent flows. Cambridge University Press, Cambridge, 2000.

[54] L. D. Landau and L. M. Lifshitz. Course of Theoretical Physics, Volume VI:
Fluid Mechanics. Butterworth-Heinemann, 2 edition, January 1987.

[55] C Connaughton and S Nazarenko. Warm cascades and anomalous scaling in a
diffusion model of turbulence. Physical Review Letters, 92(4):044501, Jan 2004.

[56] Kerson Huang. Statistical Mechanics. John Wiley & Sons, New York, 2 edition,
1987.



Bibliography 173

[57] M. Lesieur and D. Schertzer. Amortissement auto-similaire d’une turbulence à
grand nombre de amortissement auto-similaire d’une turbulence à grand nombre
de Reynolds. J. Mécanique, 17:609–646, 1978.

[58] C. Sulem, P.-L. Sulem, and H. Frisch. Tracing complex singularities with spectral
methods. Journal of Computational Physics, 50:138–161, April 1983.

[59] P Mininni, A Alexakis, and A Pouquet. Large-scale flow effects, energy transfer,
and self-similarity on turbulence. Physical Review E, Jan 2006.

[60] J Charney. The dynamics of long waves in a baroclinic westerly current. J.
Meteor, 4(5):135–161, Jan 1947.

[61] N Weiss. The expulsion of magnetic flux by eddies. Proceedings of the Royal
Society of London. Series A, 293(1434):310–328, Jan 1966.

[62] F Krause and G Rüdiger. On the turbulent decay of strong magnetic fields and
the development of sunspot areas. Solar Physics, 42:107–119, Jan 1975.

[63] A Pouquet. On two-dimensional magnetohydrodynamic turbulence. Journal of
Fluid Mechanics, 88:1–16, 1978.

[64] SA Orszag and CM Tang. Small-scale structure of two-dimensional magnetohy-
drodynamic turbulence. Journal of Fluid Mechanics, 90(1):129–143, 1979.

[65] Uriel Frisch, A Pouquet, PL Sulem, and M Meneguzzi. The dynamics of two-
dimensional ideal mhd. J Mec Theor Appl, pages 191–216, Jan 1983.

[66] U Frisch and PL Sulem. Numerical-simulation of the inverse cascade in two-
dimensional turbulence. Phys. Fluids, 27(8):1921–1923, Jan 1984.

[67] ME Brachet, M Meneguzzi, and PL Sulem. Small-scale dynamics of
high-Reynolds-number two-dimensional turbulence. Physical Review Letters,
57(6):683–686, Jan 1986.

[68] H. Politano, A. Pouquet, and PL. Sulem. Inertial ranges and resistive instabilities
in two-dimensional magnetohydrodynamic turbulence. Phys Fluids B-Plasma,
1(12):2330–2339, Jan 1989.

[69] Y Couder. Two-dimensional grid turbulence in a thin liquid film. Journal de
Physique Lettres, 45:353–360, Jan 1984.

[70] J Sommeria. Experimental study of the two-dimensional inverse energy cascade
in a square box. Journal of Fluid Mechanics, 170:139–168, Jan 1986.

[71] O Cardoso, D Marteau, and P Tabeling. Quantitative experimental study of the
free decay of quasi-two-dimensional turbulence. Physical Review E, 49(1):454–461,
Jan 1994.



174 Bibliography

[72] H Kellay and W Goldburg. Two-dimensional turbulence: a review of some recent
experiments. Reports on Progress in Physics, 65:845–894, Jan 2002.

[73] Galtier, S Nazarenko, A Newell, and A Pouquet. A weak turbulence theory for
incompressible magnetohydrodynamics. Journal of Plasma Physics, 63(5):447–
488, Jan 2000.

[74] R Kraichnan and D Montgomery. Two-dimensional turbulence. Reports on
Progress in Physics, 43:547–619, Jan 1980.

[75] HA Rose. Eddy diffusivity, eddy noise and subgrid-scale modelling. Journal of
Fluid Mechanics, 81:719–734, 1977.

[76] PS Iroshnikov. Turbulence of a conducting fluid in a strong magnetic field. Sov.
Astron, 7:566–571, 1964.

[77] R. Kraichnan. Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids,
8(7):1385–&, Jan 1965.

[78] P Goldreich and S Sridhar. Toward a theory of interstellar turbulence. 2: Strong
alfvenic turbulence. The Astrophysical Journal, 438(2):763–775, Jan 1995.

[79] D Fyfe and D Montgomery. High-beta turbulence in 2-dimensional magnetohy-
drodynamics. Journal of Plasma Physics, 16(OCT):181–191, Jan 1976.

[80] E Fermi, J Pasta, and S Ulam. Studies of nonlinear problems. LASL Report
LA-1940, Jan 1955.

[81] R. Kraichnan. On the statistical mechanics of an adiabatically compressible fluid.
J Acoust Soc Am, 27(3):438–441, Jan 1955.

[82] S. D. Mobbs. Variational principles for perfect and dissipative fluid flows. Proc.
R. Soc. Lond.A, 381(1781):457–468, 1982.

[83] Walter Greiner, Ludwig Neise, and Horst Stöcker. Thermodynamics and statistical
mechanics. Springer, Jan 2001.

[84] L. D. Landau and L. M. Lifshitz. Course of Theoretical Physics, Volume V:
Statistical Physics (Part 1). Butterworth-Heinemann, August 1996.

[85] E. M. Lifshitz and L. P. Pitaevskii. Course of Theoretical Physics, Volume IX:
Statistical Physics (Part 2). Butterworth-Heinemann, January 1980.

[86] VA Zagrebnov and JB Bru. The bogoliubov model of weakly imperfect bose gas.
Phys Rep, 350(5-6):292–434, Jan 2001.

[87] EP Gross. Hydrodynamics of a superfluid condensate. J Math Phys, 4(2):195–&,
Jan 1963.



Bibliography 175

[88] VL Ginzburg and LP PitaevskiiI. On the theory of superfluidity. Sov Phys Jetp-
Ussr, 7(5):858–861, Jan 1958.

[89] L. D. Landau and L. M. Lifshitz. Course of Theoretical Physics, Volume I: Me-
chanics. Butterworth-Heinemann, 3rd edition, January 1976.

[90] Nick P Proukakis and Brian Jackson. Finite-temperature models of bose–einstein
condensation. J. Phys. B: At. Mol. Opt. Phys., 41(20):203002, Oct 2008.

[91] M Abid, ME Brachet, J Maurer, C Nore, and P Tabeling. Experimental and
numerical investigations of low-temperature superfluid turbulence. Eur J Mech
B-Fluid, 17(4):665–675, Jan 1998.

[92] J Maurer and P Tabeling. Local investigation of superfluid turbulence. Euro-
physics Letters, 43(1):29–34, Jan 1998.

[93] M Kobayashi and M Tsubota. Kolmogorov spectrum of superfluid turbulence:
Numerical analysis of the Gross-Pitaevskii equation with a small-scale dissipation.
Physical Review Letters, 94(6):065302, Jan 2005.

[94] R. J. Donnelly. Quantized Vortices in Helium II. Cambridge Univ. Press, 1991.

[95] E Kozik and B Svistunov. Kelvin-wave cascade and decay of superfluid turbulence.
Physical Review Letters, 92(3):035301, Jan 2004.

[96] S Nazarenko. Kelvin wave turbulence generated by vortex reconnections. Jetp
Lett+, 84(11):585–587, Jan 2007.

[97] Victor S L’vov and Sergey Nazarenko. Spectrum of Kelvin-wave turbulence in
superfluids. arXiv, nlin.CD, Jan 2009.

[98] Nick P Proukakis and Brian Jackson. Finite-temperature models of bose-einstein
condensation. J Phys B-At Mol Opt, 41(20):203002, Jan 2008.

[99] B Jackson, N. P Proukakis, C. F Barenghi, and E Zaremba. Finite-temperature
vortex dynamics in bose-einstein condensates. Physical Review A, 79(5):053615,
Jan 2009.

[100] CF Barenghi, RJ Donnelly, and WF Vinen. Thermal excitation of waves on
quantized vortices. Phys Fluids, 28(2):498–504, Jan 1985.

[101] K W Schwarz. Three-dimensional vortex dynamics in superfluid He4: Line-line
and line-boundary interactions. Phys. Rev. B, 31(9):5782–5804, May 1985.

[102] CF Barenghi, NG Parker, NP Proukakis, and CS Adams. Decay of quantised
vorticity by sound emission. J Low Temp Phys, 138(3-4):629–634, Jan 2005.



176 Bibliography

[103] N. G. Parker, N. P. Proukakis, C. F. Barenghi, and C. S. Adams. Controlled
vortex-sound interactions in atomic bose-einstein condensates. Phys. Rev. Lett.,
92(16):160403, Apr 2004.

[104] V I Klyatskin. Sound radiation by a system of vortices, izv. AN SSSR Mekhanika
Zhidkosti i Gza, (1):87–92, 1966.

[105] Sergey Nazarenko and Miguel Onorato. Freely decaying turbulence and bose-
einstein condensation in gross-pitaevski model. Journal of Low Temperature
Physics, 146(1-2):31–46, Jan 2007.

[106] CE Swanson, CF Barenghi, and RJ Donnelly. Rotation of a tangle of quantized
vortex lines in He-ii. Physical Review Letters, 50(3):190–193, Jan 1983.

[107] M Tsubota, T Araki, and CF Barenghi. Rotating superfluid turbulence. Physical
Review Letters, 90(20):205301, 2003.

[108] Gregory P Bewley, Daniel P Lathrop, and Katepalli R Sreenivasan. Superfluid
helium - visualization of quantized vortices. Nature, 441(7093):588–588, Jan 2006.

[109] Gregory P Bewley, K. R Sreenivasan, and Daniel P Lathrop. Particles for tracing
turbulent liquid helium. Exp Fluids, 44(6):887–896, Jan 2008.

[110] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-
ling. Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (v.
1). Cambridge University Press, 2 edition, September 1992.

[111] H. A. van der Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-cg
for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and
Statistical Computing, 13(2):631–644, 1992.

[112] C Huepe and ME Brachet. Scaling laws for vortical nucleation solutions in a
model of superflow. PHYSICA D-NONLINEAR PHENOMENA, 140(1-2):126–
140, JUN 1 2000.

[113] Tuckerman LS, Huepe C, and Brachet ME. Numerical methods for bifurcation
problems. 9:75–83, 2004.

[114] CT Pham, C Nore, and ME Brachet. Boundary layers and emitted excitations in
nonlinear Schrodinger superflow past a disk. PHYSICA D-NONLINEAR PHE-
NOMENA, 210(3-4):203–226, OCT 15 2005.



177



RÉSUMÉ:

Cette thèse regroupe des études portant sur la dynamique de relaxation de différents sys-
tèmes conservatifs ayant tous une troncature de Galerkin sur les modes de Fourier. On montre
que, de façon très générale, ces systèmes relaxent lentement vers l’équilibre thermodynamique
avec une thermalisation partielle à petite échelle qui induit une dissipation effective à grande
échelle, tout en conservant les invariants globaux.

La première partie de ce travail est consacrée à l’étude de la viscosité effective dans
l’équation d’Euler incompressible tronquée. L’utilisation des méthodes de Monte-Carlo et
de la théorie EDQNM permet la construction d’un modèle à deux fluides de ce système. Cette
étude est ensuite généralisée au cas des écoulements hélicitaires. La dynamique de relax-
ation des écoulements décrits par les équations de la magnétohydrodynamique et des fluides
compressibles tronqués est finalement caractérisée.

Dans une deuxième partie, nous généralisons l’étude de la thermalisation au cas de l’équation
de Gross-Pitaevski tronquée. On trouve que des effets existant dans les superfluides à tem-
pérature finie, comme la friction mutuelle et le “counterflow”, sont naturellement présents dans
ce modèle. On propose ainsi l’équation de Gross-Pitaevskii tronquée comme un modèle simple
et riche de la dynamique superfluide à température finie.

La radiation produite par le mouvement de vortex ponctuels décrits par l’équation de

Gross-Pitevskii 2D est finalement caractérisée analytiquement et numériquement.

MOTS-CLÉS: Euler tronquée, magnétohydrodynamique, thermalisation, viscosité
effective, Gross-Pitaevskii,troncature de Galerkin, friction mutuelle, turbulence.

ABSTRACT:

In this thesis several different Fourier Galerkin-truncated conservative systems are studied.
It is shown that, in a very general way, these systems relax toward the thermodynamic equi-
librium with a small-scale thermalization that induces an effective dissipation at large scales
while conserving the global invariants.

The first part of this work is concerned with the study of the effective viscosity of the trun-
cated Euler equation, making use of the EDQNM closure theory and Monte-Carlo methods.
We propose a two-fluid model of the system and this work is extended to the case of helical
flows. The relaxation dynamics described by the two-dimensional truncated magnetohydro-
dynamics equations and three-dimensional compressible fluids is then characterized.

In a second part, a generalization of the previous study to the truncated Gross-Pitaevski
equation is given. Finite-temperature effects that are present in superfluids, such as mutual
friction and counterflow, are found to be naturally included in the truncated Gross-Pitaevski
equation. This system thus appears as simple and rich model of superfluidity at finite tem-
perature.

Finally, the radiation produced by moving point Gross-Pitaevskii vortices is studied ana-

lytically and numerically.

KEYWORDS: Truncated Euler, magnetohydrodynamics, thermalization, effec-
tive viscosity, Gross-Pitaevskii, Galerkin truncation, mutual friction, turbulence.


