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Résumé 211



Preface

This Ph.D. thesis work was carried on in the form of a cotutelle between
the “Federico II” University of Napoli (Italy) and the “Université de Nice-
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Introduction

The leitmotiv which characterizes this Ph.D. Thesis work has been visual
data compression. In fact, my work followed two main streams, wave-
let based video compression and multispectral and multitemporal image com-
pression, even though I briefly worked on low complexity video compression
and SAR image compression as well. This division, between compression
of video and remote sensed images, mirrors the binary structure of my
Ph.D. program, which has been developed between Napoli University
(Italy) and Nice-Sophia Antipolis University (France), in the framework
of a cotutelle doctoral project. The topic I spent most of the time on, has
been wavelet video compression, at the University of Nice, while my time
at Napoli University was shared among remaining topics, with a clear pri-
ority to the multispectral image compression problem.

With the exception of low complexity video coding and SAR image
compression (on which anyway I worked only for a short period), the
common framework of this thesis has been the three-dimensional trans-
form approach. In particular, my work focused on three-dimensional wa-
velet transform (WT), and its variations, such as motion-compensated WT
or shape-adaptive WT. This approach can appear natural, as both video se-
quences and multispectral images are three-dimensional data. Neverthe-
less, in the video compression field, 3D-transform approaches have just
begun to be competitive with hybrid schemes based on discrete cosine
transform (DCT), while, as far as multispectral images are concerned, the
scientific literature misses a comprehensive approach to the compression
problem. The 3D WT approach investigated in this thesis has drawn a
huge attention by researchers in the data compression field because they
hoped it could reply the excellent performance its two-dimensional ver-
sion achieved in still image coding [4, 74, 81, 90, 92]. Moreover, the WT
approach provides a full support for scalability, which seems to be one of
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the most important topics in the field of multimedia delivery research. In
a nutshell, a scalable representation of some information (images, video,
. . . ) is made up of several subsets of data, each of which is an efficient
representation of the original data. By taking all the subsets, one has the
“maximum quality” version of the original data. By taking only some sub-
sets, one can adjust several reproduction parameters (i.e. reduce resolution
or quality) and save the rate corresponding to discarded layers. Such an
approach is mandatory for efficient multimedia delivery on heterogeneous
networks [56].

Another issue which is common to video and multispectral image cod-
ing, is the resource allocation problem which, in a very general way, can
be described as follows. Let us suppose to have M random processes
X1, X2 . . . , XM to encode, and a given encoding technique. The resource al-
location problem consists of finding a rate allocation vector, R∗ = {R∗

i }M
i=1

such that, when Xi is encoded with the given encoding technique at the
bit-rate R∗

i for each i ∈ {1, 2, . . . , M}, then a suitable cost function is min-
imized while certain constraints are satisfied. This allocation is then opti-
mal for the chosen encoding technique and cost function.

These random processes can be the spatiotemporal subbands resulting
from three-dimensional wavelet transform of a video sequence, as well as
the objects into which a multi spectral image can be divided. In both cases
the problem allows very similar formulation and then very similar solu-
tion. The approach we followed is based on rate-distortion (RD) theory,
and allows an optimal solution of the resource allocation problem, given
that it is possible to know or to estimate RD characteristics of the processes.

In the first part of this thesis, the video coding problem is addressed,
and a new video encoder is described, which aims at full scalability with-
out sacrificing performance, which end up being competitive with those
of most recent standards. Moreover, we set the target of achieving a deep
compatibility with the JPEG2000 standard. Many problems have to be
solved in order to fulfil these objectives, and the solutions we propose are
the core of the first part of this thesis.

The last chapter of the first part deals with low complexity video cod-
ing. Here the problem is to develop a video encoder capable of a full scal-
ability support but with an extremely reduced complexity, for real-time
encoding and decoding on low resource terminals. In this framework it is
not possible to perform such demanding operations as motion estimation
(ME) or motion compensation (MC), and then temporal compression is
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performed by means of conditional replenishment. My attention was then
directed to a special form of vector quantization (VQ) [30] called hierar-
chical vector quantization, which allows to perform spatial compression
with extremely low complexity. The main contributions in this problem
lie in the introduction of several table-lookup encoding steps, address vec-
tor quantization (AVQ) and predictive AVQ, and in the development of a
multiplication-free video codec.

The second part of this work is about multispectral and SAR image
compression. The first topic has been approached with the aim of defin-
ing a comprehensive framework with the leading idea of defining a more
accurate model of multispectral images than the usual one. This model
assumes that these images are made up of a small number of homogenous
objects (called regions). An efficient encoder should be aware of this char-
acteristic and exploit it for compression. Indeed, in the proposed frame-
work, multispectral images are first subdivided into regions by means of
a suitable segmentation algorithm. Then, we use an objected-oriented com-
pression technique to encode them, and finally we apply a resource allo-
cation strategy among objects.

The model proposed for multispectral images, partially matches the
one for SAR images, in the sense that SAR images as well usually consists
in homogeneous regions. On the other hand, these images are character-
ized by multiplicative noise called speckle, which makes harder processing
(and in particular, compression). Filtering for noise reduction is then an
almost mandatory step in order to compress these images. Anyway a too
strong filter would destroy valuable information as region boundaries. For
these reasons, an object based approach, preserving object boundaries and
allowing an effective de-noising could bring in several advantages.

Notation

Let us define some notation and conventions used through out the thesis.

As far as data compression is concerned, we can define the perfor-
mance of a generic algorithm by providing the quality of reconstructed
data and the cost at which it comes. Note that, in the case of lossless com-
pression, in which reconstructed data perfectly match the original, only the
coding cost is of concern. This cost is measured in bits per pixel (bpp) in the
case of single-component images:
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Rbpp =
Nb

Np

where Nb is the number of bit in the encoded stream and Np is the number
of pixels of the original image. For multi-component images we usually
use the same measure, where Np refers now to the number of pixel of a
single component. In the case of multispectral and multitemporal images,
all components (or bands) have the same dimensions, and sometimes this
expression of rate is said to be in bits per band (bpb). When color images
are concerned, we still use the same definition, but now Np refers to the
largest (i.e. luminance) component dimension, since different components
can have different sizes, as for images in 4 : 2 : 0 color spaces.

For video, the rate is usually expressed in bit per second (bps) and its
multiples as kbps, and Mbps.

Rbps =
Nb

T

=
NbF

N f

=
Nb

N f Np
NpF

= R̄bppNpF

where Nb is the number of bitstream bits, T = N f /F is the sequence dura-
tion, N f is number of frames in the sequence, F is the frame-rate in frame

per second (fps), Np is the number of pixel per frame, and R̄bpp = Nb
N f Np

is

the mean frame bit-rate expressed in bit per pixel.
Anyway, here we are mostly interested in lossy compression, in which

decoded data differ from encoded ones, and so we have to define a qual-
ity measure, which is usually related to a metric among original and recon-
structed information. The most widespread quality measures is the mean
square error (MSE)1, defined as follow:

MSE(x, x̂) =
1

N

N

∑
i=1

(xi − x̂i)
2 (1)

1Anyway, the MSE is not a metric, in the sense that it does not satisfy the triangular
inequality. The square root of MSE is a metric.
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where x and x̂ represent, respectively, original and decoded data sets, both
made up of N samples. This is a distortion or rather, a quality measure, and,
of course, it is the squared Euclidean distance in the discrete signal space
R

N. If we define the error signal ǫ = x − x̂, the MSE is the square of the
error signal.

A widely used quality measure, univocally related to the MSE is the
peak signal-to-noise ratio (PSNR), defined as:

PSNR(x, x̂) = 10 log10

(
2d − 1

)2

MSE(x, x̂)
(2)

where d is the dynamic range of signal x, expressed as the number of bits
required to represent its samples. For natural images and videos, d = 8.
For remote sensing images, usually d is between 8 and 16.

Another very common quality measure is the signal-to-noise ratio, de-
fined as the ratio among signal and error variances:

SNR(x, x̂) = 10 log10

1
N ∑

N
i=1 (xi − x̄)2

MSE(x, x̂)
(3)

assuming a zero-mean error and where x̄ = 1
N ∑

N
i=1 xi.

MSE and related distortion measure are very common as they are easily
computable and strictly related to least square minimization techniques,
so they can be used in analytical developments quite easily. As they de-
pend only on data and can be univocally computed, they are usually re-
ferred to as objective distortion measures. Unluckily, they do not always
correspond to subjective distortion measures, that is the distortion per-
ceived by a human observer. For example, a few outliers in a smooth image
can affect the subjective quality without increasing significantly the MSE.
Anyway, it is not easy to define an analytical expression for subjective
quality of visual data, while subjective measures are successfully applied
for aural signals. For this reason, in the following we limit our attention to
objective quality measures.

Outline

Here we give a brief overview about the organization of this thesis.



xiv INTRODUCTION

Chapter 1 introduces video coding. The techniques in the literature are
reviewed, focusing on hybrid DCT based algorithms (which are the
fundament of all current video standards), on “first generation” wa-
velet based encoders (i.e. before the lifting-scheme based approach),
and on low-complexity video encoding.

Chapter 2 depicts the general structure of the proposed encoder, and out-
lines the main problems and relative solutions.

Chapter 3 is about the temporal filtering stage of the encoder. Here we
use some recently proposed temporal filters, specifically designed
for video coding.

Chapter 4 describes the motion estimation problem. Several different
techniques are shown, including a theoretical approach to the opti-
mal motion estimation strategy in the context of WT based encoders.

Chapter 5 shows several techniques for motion vector encoding. The pro-
posed techniques have a tight constraint, i.e. JPEG2000 compatibility,
but, nevertheless, they are able to attain quite good performance.

In Chapter 6 we focus on the spatial analysis stage. Two main problems
are approached: how to encode WT data; and how to achieve opti-
mal resource allocation. A model-based approach allows to analyti-
cally solve the resource allocation problem, allowing our encoder to
achieve interesting performance. Performances and details on scala-
bility are given as well.

In Chapter 7 we make a short digression, in order to investigate the the-
oretical optimal rate allocation among motion vectors and motion-
compensated WT coefficients. Here it is shown that, under some
loose constraints, it is possible to compute optimal MV rate for the
high resolution case.

In Chapter 8 we investigate some problems and solution in video stream-
ing over heterogeneous networks. In particular, we address the issue
of very-low complexity and highly scalable video coding.

Chapter 9 we report some result for an object-based framework in the
field of SAR data compression.
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Chapter 10 focuses on multispectral and multitemporal image compres-
sion with an object-based technique, which uses the shape-adaptive
wavelet transform.

In Appendix A we compute an efficiency measure for generic wavelet
transform compression, extending the definition of coding gain.

Appendix B contains some results of the subband allocation algorithm
described in Chapter 6.

In the Appendix C we provide the structure and syntax of the bit-stream
produced by the proposed video encoder. This will allow us to better
explain how scalability features are implemented in this scheme.

Appendix D reports a list of acronyms.

Finally, bibliographical references and the index complete this thesis.





Chapter 1

Video Coding

Television won’t be able to hold on to any market it captures after
the first six months. People will soon get tired of staring at a plywood
box every night.

DARRYL F. ZANUCK

President, 20th Century Fox, 1946

Compression is an almost mandatory step in storage and transmission
of video, since, as simple computation can show, one hour of color video
at CCIR 601 resolution (576 × 704 pixels per frame) requires about 110 GB
for storing or 240 Mbps for real time transmission.

On the other hand, video is a highly redundant signal, as it is made
up of still images (called frames) which are usually very similar to one an-
other, and moreover are composed of homogeneous regions. The simi-
larity among different frames is also known as temporal redundancy, while
the homogeneity of single frames is called spatial redundancy. Virtually all
video encoders perform their job by exploiting both kinds of redundancy
and thus using a spatial analysis (or spatial compression) stage and a tem-
poral analysis (or temporal compression) stage.



2 1.1 HYBRID VIDEO CODING

1.1 Hybrid video coding

The most successful video compression schemes to date are those based
on hybrid video coding. This definition refers to two different techniques
used in order to exploit spatial redundancy and temporal redundancy.
Spatial compression is indeed obtained by means of a transform based
approach, which makes use of the discrete cosine transform (DCT), or
its variations. Temporal compression is achieved by computing a motion-
compensated (MC-ed) prediction of the current frame and then encoding
the corresponding prediction error. Of course, such an encoding scheme
needs a motion estimation stage in order to find motion information nec-
essary for prediction.

A general scheme of a hybrid encoder is given in Fig. 1.1. Its main
characteristics are briefly recalled here.

The hybrid encoder works in two possible modes: intraframe and in-
terframe. In the intraframe mode, the current frame is encoded without
any reference to other frames, so it can be decoded independently from
the others. Intra-coded frames (also called anchor frames) have worse com-
pression performance than inter-coded frames, as the latter benefit from
motion-compensated prediction. Nevertheless they are very important as
they assure random access, error propagation control and fast-forward de-
coding capabilities. The intra frames are usually encoded with a JPEG-like
algorithm, as they undergo DCT, quantization and variable length cod-
ing (VLC). The spatial transform stage concentrates signal energy in a few
significative coefficients, which can be quantized differently according to
their visual importance. The quantization step here is usually tuned in
order to match the output bit-rate to the channel characteristics.

In the interframe mode, current frame is predicted by motion com-
pensation from previously encoded frames. Usually, motion-compensated
prediction of current frame is generated by composing blocks taken at dis-
placed positions in the reference frame(s). The position at which blocks
should be considered is obtained by adding to the current position a dis-
placement vector, also known as motion vector (MV). Once current frame
prediction is obtained, the prediction error is computed, and it is encoded
with the same scheme as intra frames, that is, it undergoes a spatial trans-
form, quantization and entropy coding.

In order to obtain motion vectors, a motion estimation stage is needed.
This stage has to find which vector better describe current block motion
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Figure 1.1: General scheme of a hybrid video encoder

with respect to one (or several) reference frames. Motion vectors have to
be encoded and transmitted as well. A VLC stage is used at this end.

All existing video coding standards share this basic structure, except
for some MPEG-4 features. The simple scheme described so far does not
integrate any scalability support. A scalable compressed bit-stream can be
defined as one made up of multiple embedded subsets, each of them rep-
resenting the original video sequence at a particular resolution, frame rate
or quality. Moreover, each subset should be an efficient compression of the
data it represents. Scalability is a very important feature in network deliv-
ering of multimedia (and of video in particular), as it allows to encode
the video just once, while it can be decoded at different rates and quality
parameters, according to the requirements of different users.

The importance of scalability was gradually recognized in video cod-
ing standards. The earliest algorithms (as ITU H.261 norm [39, 51]) did not
provide scalability features, but as soon as MPEG-1 was released [36], the
standardization boards had already begun to address this issue. In fact,
MPEG-1 scalability is very limited (it allows a sort of temporal scalabil-
ity thanks to the subdivision in group of pictures (GOP). The following ISO
standards, MPEG-2 and MPEG-4 [37, 38, 82] increasingly recognized scal-
ability importance, allowing more sophisticated features. MPEG-2 com-
pressed bit-stream can be separated in subsets corresponding to multiple
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spatial resolutions and quantization precisions. This is achieved by in-
troducing multiple motion compensation loops, which, on the other hand,
involves a remarkable reduction in compression efficiency. For this reason,
it is not convenient to use more than two or three scales.

Scalability issues were even more deeply addressed in MPEG-4, whose
fine grain scalability (FGS) allows a large number of scales. It is possible to
avoid further MC loops, but this comes at the cost of a drift phenomenon
in motion compensation at different scales. In any case, introducing scal-
ability affects significantly performance. The fundamental reason is the
predictive MC loop, which is based on the assumption that at any mo-
ment the decoder is completely aware of all information already encoded.
This means that for each embedded subset to be consistently decodable,
multiple motion compensation loops must be employed, and they inher-
ently degrade performance. An alternative approach (always within a hy-
brid scheme) could provide the possibility, for the local decoding loop at
the encoder side, to lose synchronization with the actual decoder at certain
scales; otherwise, the enhancement information at certain scales should ig-
nore motion redundancy. However, both solutions degrade performance
at those scales.

The conclusion is that hybrid schemes, characterized with a feedback
loop at the encoder, are inherently limited in scalability, or, according to
definition given in Section 6.7, they cannot provide smooth scalability.

1.2 Wavelet transform based video coding

Highly scalable video coding seems to require the elimination of closed
loop structures within the transformations applied to the video signal.
Nevertheless, in order to achieve competitive performance, any video en-
coder has to exploit temporal redundancy via some form of motion com-
pensation. For more than a decade, researchers’ attention has been at-
tracted by encoding schemes based on the wavelet transform (WT). In
particular, we focus on the discrete version of WT, called discrete wave-
let transform (DWT).

Here we recall very briefly some characteristics of the WT, while, for
a full introduction to wavelets, the reader is referred to the large scien-
tific production in this field [86, 72, 24, 102, 87, 55]. The generic form of
a one-dimensional (1-D) discrete wavelet transform is shown in Fig. 1.2.
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Figure 1.2: Scheme for single level 1-D wavelet decomposition

Figure 1.3: An example of single level 2-D wavelet decomposition

Here a signal undergoes low-pass and high-pass filtering (represented by
their impulse responses h and g respectively), then it is down sampled by
a factor of two. This constitutes a single level of transform. Multiple lev-
els can be obtained by applying recursively this scheme at the low pass
branch only (dyadic decomposition) or with an arbitrary decomposition
tree (packet decomposition). This scheme can be easily extended to two-
dimensional (2-D) WT using separable wavelet filters: in this case the (2-D)
WT can be computed by applying a 1-D transform to all the rows and then
repeating the operation on the columns.

The results of one level of WT transform are shown in Fig. 1.3, together
with the original image. We see the typical subdivision into spatial sub-
bands. The low frequency subband is a coarse version of the original data.
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The high frequency subbands contain the horizontal, vertical and diago-
nal details which cannot be represented in the low frequency band. This
interpretation is still true for any number of decomposition levels. When
several decomposition levels are considered, WT is able to concentrate the
energy into a small number of low frequency coefficients, while the re-
maining details are represented by the few relevant high frequency coef-
ficients, which are semantically important as, in the case of image coding,
they typically carry information about object boundaries.

A common measure of transform coding efficiency is the coding gain
(CG). It has the meaning of distortion reduction achievable with trans-
form coding with respect to plain scalar quantization, or PCM (pulse code
modulation) coding [30]. The definition of coding gain is then:

CG =
DPCM

DTC
(1.1)

where DPCM is the distortion of scalar quantization and DTC is the mini-
mum distortion achievable by transform coding.

In the case of an orthogonal linear transform and at high rates, it can
be shown that the coding gain is the ratio between arithmetic mean and
geometric mean of transform coefficients variances. This justifies the in-
tuitive idea that an efficient transform should concentrate energy in a few
coefficients, as in this case the geometric mean of their variances become
increasingly smaller.

In the case of orthogonal subband coding and at high rates, it can be
shown that CG is the ratio among arithmetic and geometric mean of sub-
band variances. So, in this case as well, an effective transform should con-
centrate energy in a few subbands.

In the general case of WT, the coding gain is the ratio of weighted arith-
metic and geometric means of subband normalized variances. The normal-
ization accounts for non-orthogonality of WT, and the weights for the dif-
ferent number of coefficients in different subbands. This allows us to ex-
tend to the WT case the intuitive idea that energy concentration improves
coding efficiency. A simple proof of this result is given in Appendix A.

WT has been used for many years in still image coding, proving to of-
fer much better performance than DCT and a natural and full support of
scalability due to its multiresolution property [4, 81, 74, 90]. For these rea-
sons, WT is used in the new JPEG2000 standard [92], but the first attempts
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to use subband coding, and in particular WT, in video coding date back to
late 80s [41].

It is quite easy to extend the WT to three-dimensional signals: it suffices
to perform a further wavelet filtering along time dimension. However, in
this direction, the video signal is characterized by abrupt changes in lu-
minance, often due to objects and camera motion, which would prevent
an efficient de-correlation, reducing the effectiveness of subsequent en-
coding. In order to avoid this problem, motion compensation is needed.
Anyway, it was soon recognized that one of the main problems of WT
video coding was how to perform motion compensation in this frame-
work, without falling again into the problem of closed loop predictive
schemes, which would prevent to exploit the inherent scalability of WT.
Actually, in such schemes as [41, 42, 43] three-dimensional WT is applied
without MC: this results in unpleasant ghosting artifact when a sequence
with some motion is considered. The objective quality is just as well un-
satisfactory.

The idea behind motion compensated WT is that the low frequency
subband should represent a coarse version of the original video sequence;
motion data should inform about object and global displacements; and
higher frequency subbands should give all the details not present in the
low frequency subband and not catched by the chosen motion model as,
for example, luminance changes in a (moving) object.

A first solution was due to Taubman and Zakhor [93], who proposed
application of an invertible warping (or deformation) operator to each
frame, in order to align objects. Then, they perform a three-dimensional
WT on the warped frames, achieving a temporal filtering which is able to
operate along the motion trajectory defined by the warping operator. Un-
luckily, this motion model is able to effectively catch only a very limited
set of object and camera movements. It has been also proposed to violate
the invertibility in order to make it possible to use more complex motion
model [95]. However, preventing invertibility, high quality reconstruction
of the original sequence becomes impossible.

A new approach was proposed by Ohm in [59, 60], and later improved
by Choi and Woods [21] and commonly used in literature [106]. They
adopt a block-based method in order to perform temporal filtering. This
method can be considered as a generalization of the warping method, ob-
tained by treating each spatial block as an independent video sequence.
In the regions where motion is uniform, this approach gives the same
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results than the frame-warping technique, as corresponding regions are
aligned and then undergo temporal filtering. On the contrary, if neighbor-
ing blocks have different motion vectors, we are no longer able to correctly
align pixels belonging to different frames, since “unconnected” and “mul-
tiple connected” pixels will appear. These pixels need a special process-
ing, which does not correspond anymore to the subband temporal filtering
along motion trajectories. Another limitation of this method is that motion
model is restricted to integer-valued vectors, while it has long been recog-
nized that sub-pixel motion vectors precision is remarkably beneficial.

A different approach was proposed by Secker and Taubman [76, 77,
78, 79] and, independently by Pesquet-Popescu and Bottreau [66]. This
approach is intended to resolve the problems mentioned above, by using
motion compensated lifting schemes (MC-ed LS). As a matter of fact, this ap-
proach proved to be equivalent to applying the subband filters along mo-
tion trajectories corresponding to the considered motion model, without
the limiting restrictions that characterize previous methods. The MC-ed
LS approach proved to have significatively better performance than pre-
vious WT-based video compression methods, thus opening the doors to
highly scalable and performance-competitive WT video coding.

The video encoder we developed is based on MC-ed LS; it proved to
achieve a very good scalability, together with a deep compatibility with
the emerging JPEG2000 standard and performance comparable to state-of-
the-art hybrid encoders such as H.264. We describe in details the MC-ed
LS approach in chapter 3.

1.3 Video coding for heterogeneous networks

Recent years have seen the evolution of computer networks and the steady
improvements of microprocessor performance, so that now many new
high-quality and real-time multimedia applications are possible. How-
ever, currently, computer and network architectures are characterized by
a strong heterogeneity, and this is even more evident when we consider
integration among wired systems and mobile wireless systems. Thus, ap-
plications should be able to cope with widely different conditions in terms
of network bandwidth, computational power, visualization capabilities.

Moreover, in the case of low-power devices, computational power is
still an issue, and it is not probable that this problem will be solved by
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advances in battery technology and low-power circuit design only, at least
in the short and mid term [11].

In order to allow this kind of users to enjoy video communications on
heterogeneous environments, both scalability and low-complexity become
mandatory characteristics of both encoding and decoding algorithm.

Scalability can be used jointly with multicast techniques in order to per-
form efficient multimedia content delivery over heterogenous networks
[56, 10, 88]. With multicast it is possible to define a group of user (called
multicast Group, MG) which want to receive the same contents, for exam-
ple certain video at the lowest possible quality parameters. The multicast
approach assures that this content is sent through the network in a opti-
mized way (provided that network topology does not change too fast), in
the sense that there is the minimum information duplication for a given
topology. Then we can define more MG, each of them corresponding to
a subset of the scalable bitstream: some MG will improve resolution, oth-
ers quality, and so on. In conclusion, each user, simply choose the quality
parameters for the decoded video sequence, and automatically subscribes
the MGs needed in order to get this configuration. Thanks to the multi-
cast approach, the network load is minimized, while the encoder does not
have to encode many times the content for each different quality settings.
This scenario is known as multiple multicast groups (MMG).

The scalability problem has been widely studied in many frameworks:
DCT based compression [82, 50], WT based compression [93, 91, 80], Vec-
tor Quantization based compression [17], and many tools now exist to
achieve high degrees of scalability, even if this often comes at the cost of
some performance degradation, as previously mentioned.

On the other hand, not many algorithms have been recently proposed
in the field of low-complexity video coding. Indeed, most of proposed
video coding algorithms make use of motion compensated techniques.
Motion compensation requires motion estimation which is not suited to
general purpose, low power devices. Even in the case of no ME encoders,
current algorithms are usually based on transformation techniques, which
require many multiplication to be accomplished (even though integer-
valued version of WT and DCT exist, removing the necessity of floating
computation at the expenses of some performance degradation). Never-
theless, it is interesting to develop a fully scalable video codec which can
operate without motion compensation neither any multiplication. This
can achieved if we dismiss the transform based approach for a different
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framework.
The solution we explored is based on vector quantization. This could

sound paradoxical, as VQ major limit lies just in its complexity. Never-
theless, it is possible to derive a constrained version of VQ [20] where
quantization is carried out by a sequence of table look-ups, without any
arithmetical operation. We built from this structure, achieving a full scal-
able and very low complexity algorithm, capable of performing real-time
video encoding and decoding on low power devices (see chapter 8).



Chapter 2

Proposed Encoder Architecture

Quelli che s’innamoran di pratica sanza scienza son come ’l noc-
chier ch’entra in navilio sanza timone o bussola, che mai ha certezza
dove si vada.1

LEONARDO DA VINCI

Code G 8 r.

2.1 Why a new video encoder?

The steady growth in computer computational power and network band-
width and their diffusion among research institution, enterprises and com-
mon people, has been a compelling acceleration factor in multimedia pro-
cessing research. Indeed, users want an ever richer and easier access to
multimedia content and in particular to video. So, a huge amount of work
has been deployed in this field, and compression has been one of the most
important issues. This work produced many successful international stan-
dards, including JPEG and JPEG2000 for still image coding, and the MPEG
and H.26x families for video coding. In particular, MPEG-2 has been the

1Those who fall in love with practice without science are like a sailor who enters a
ship without helm or compass, and who can never be certain wither he is going
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enabling technology for digital video broadcasting and for optical disk dis-
tribution of high quality video contents; MPEG-4 has played the same role
for medium and high quality video delivery over low and medium band-
width networks; the H.26x family enabled the implementation of telecon-
ferencing applications.

Nevertheless, recent years have seen a further impressive growth in
performance of video coding algorithms. The latest standard, known as
MPEG-4 part 10 or H.264 [75, 105], is by now capable of 60% and more
bit-rate saving for the same quality with respect to the MPEG-2 standard.

This could lead one to think that most of the work has been accom-
plished for video coding. Some problems, however, are still far from being
completely solved, and, among them, probably the most challenging one
is scalability. As we saw, a scalable representation should allow the user
to extract, from a part of the full-rate bit-stream, a degraded (i.e. with a
reduced resolution or an increased distortion) version of the original data.
This property is crucial for the efficient delivery of multimedia contents
over heterogenous networks [56]. Indeed, with a scalable representation
of a video sequence, different users can receive different portions of the
full quality encoded data with no need for transcoding.

Recent standards offer a certain degree of scalability, which is not con-
sidered as completely satisfactory. Indeed, the quality of a video sequence
built from subsets of a scalably encoded stream is usually quite poorer
than that of the same sequence separately encoded at the same bit-rate,
but with no scalability support. The difference in quality between scalable
and non-scalable versions of the same reconstructed data affects what we
call “scalability cost” (see section 6.7 for details). Another component of
the scalability cost is the complexity increase of the scalable encoding al-
gorithm with respect to its non-scalable version. We define as smoothly
scalable any encoder which has a null or a very low scalability cost.

Moreover, these new standards do not provide any convergence with
the emerging still-image compression standard JPEG2000. Thus, they are
not able to exploit the widespread diffusion of hardware and software
JPEG2000 codecs which is expected for the next years. A video coder
could take big advantage of a fast JPEG2000 core encoding algorithm, as
it assures good compression performance and a full scalability. Moreover,
this standard offers many network-oriented functionalities, which would
come at no cost with a JPEG2000-compatible video encoder.

These considerations have led video coding research towards the wa-
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velet transform, as we saw in Section 1.2. WT has been used for many
years in still image coding, proving to offer superior performance with
respect to DCT and a natural and full support of scalability due to its mul-
tiresolution property [4, 81, 74]. For these reasons, WT is used in the new
JPEG2000 standard, but the first attempts to use WT in video coding date
back to late 80s [41]. As we saw before, it was soon recognized that one of
the main problems was how to perform motion compensation in the WT
framework [60, 21]. The motion-compensated lifting scheme [76] repre-
sent an elegant and simple solution to this problem. With this approach,
WT-based video encoders begin to have performance not too far from last
generation DCT-based coders [8].

Our work in video coding research was of course influenced by all of
the previous considerations. So we developed a complete video encoder,
with the following main targets:

• full and smooth scalability;

• a deep compatibility with the JPEG2000 standard;

• performance comparable with state-of-the-art video encoders.

To fulfil these objectives, many problems have to be solved, such as the
definition of the temporal filter (chapter 3), the choice of a suitable motion
estimation technique (chapter 4), of a motion vector encoding algorithm
(chapter 5). Moreover, it proved to be crucial to have an efficient resource
allocation algorithm and a parametric model of rate-distortion behavior of
WT coefficient (chapter 6). In developing this encoder, several other inter-
esting issues were addressed, such as the theoretical optimal rate alloca-
tion among MVs and WT coefficients (chapter 7), the theoretical optimal
motion estimation for WT based encoders (Section 4.5), and several MV
encoding techniques (Sections 5.2 – 5.5). The resulting encoder proved to
have a full and flexible scalability (Section 6.7).

These topics are addressed in the following chapters, while here we
give an overall description of the encoder.

Some issues related to this work were presented in [100, 16, 3], while
the complete encoder was first introduced in [8, 9]. Moreover, an article
has been submitted for publication in an international scientific journal [2].
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Figure 2.1: General structure of the proposed video encoder.

2.2 General encoder structure

In figure 2.1 we show the global structure of the proposed encoder. It
essentially consists of a temporal analysis (TA) block, and a spatial analysis
(SA) block.

The targets previously stated are attained by using temporal filters ex-
plicitly developed for video coding, an optimal approach to the problem
of resource allocation, and a state-of-the-art spatial compression. More-
over, we want to assure a high degree of scalability, in spatial resolution,
temporal resolution and bit-rate, still preserving a full compatibility with
JPEG2000, and without degrading performance.

The TA Section should essentially perform a MC-ed temporal trans-
form of the input sequence, outputting the temporal sub-bands and the
MVs needed for motion compensation. To this end, a motion estimation
stage and a MV encoder are needed.

The SA Section encodes the temporal sub-bands by a further WT in the
spatial dimension. Then, WT coefficients are encoded by EBCOT (embed-
ded block coding with optimized truncation) [90], thus obtaining a deep
compatibility with the JPEG2000 standard. A crucial step in the SA stage
is resource allocation among WT subbands. In other word, once we have
chosen to encode sub-bands with JPEG2000, we have to define what rate
allocate to them.
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2.3 Temporal analysis

The general scheme of the temporal analysis stage is shown in Fig. 2.2.
The input sequence undergoes motion estimation, in order to find motion
vectors. These are needed in order to perform a motion compensated wa-
velet transform. Motion vectors are finally encoded and transmitted to the
decoder, while temporal subbands feed the SA stage.
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Figure 2.2: General scheme of the motion-compensated temporal analysis.

2.3.1 Temporal filtering

Since a video sequence can be seen as a three-dimensional set of data, the
temporal transform is just a filtering of this data along the temporal di-
mension, in order to take advantage of the similarities between consec-
utive frames. This filtering is adapted to the objects’ movements using
motion compensation, as described in chapter 3.

This is possible by performing the time-filtering not in the same posi-
tion for all the considered frame, but by “following the pixel” in its motion.
In order to do this, we need a suitable set of motion vectors (MV). Indeed,
a set of vectors is needed for each temporal decomposition level.

A new class of filters, the so-called (N, 0) [46, 3], has been implemented
and studied for this kind of application. These filters are characterized by
the fact that the Low-Pass filter actually does not perform any filtering at
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all. This means, among other things, that the lowest frequency subband is
just a subsampled version of the input video sequence. This has remark-
able consequences as far as scalability is concerned (see Section 6.7.2).

2.3.2 Motion estimation

Motion estimation is a very important step in any video encoder, but for
very low complexity schemes. The motion estimation stage has to provide
the motion vectors needed by the motion compensation stage, which, in
the case of hybrid coders is the prediction stage, while in the case of WT
coders is the motion compensated temporal filter.

Many issues have to be considered when designing the ME stage. First
of all, we have to choose a model for the motion. The simplest is a block-
based model, in which frames are divided into blocks. Each block of the
current frame (i.e. the one we are analyzing for ME) is assumed to be a
rigid translation of another block belonging to a reference frame. The mo-
tion estimation algorithm has to find which is the most similar block of
the reference frame. In this encoder we used this simple block-based ap-
proach, in which motion is described by two parameters, which are the
components of the vector defining the rigid translation.

Of course, more complex and efficient models can be envisaged, based
on an affine (instead of rigid) transformations or on deformable mesh.

With respect to the chosen motion model, the ME stage has to find a
set of motion parameters (e.g. motion vectors) which minimize some cri-
terion, such as MSE between the current frame and the motion compen-
sated reference frame. The MSE criterion is the most widely used, but is
not necessarily the best possible. Indeed, a compromise between accuracy
and coding cost of MV should be considered.

2.3.3 Motion vector encoding

Once ME has been performed, we have to encode MVs. Here we con-
sider mainly lossless encoding, so that the encoder and decoder use the
same vectors, and perfect reconstruction is possible if no lossy operation
is performed in the spatial stage. However, lossy compression has been
considered as well.
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Here the main problem is how to exploit the high redundancy of mo-
tion vectors and, at the same time, preserve some kind of compatibility
with JPEG2000 encoding. Indeed, MVs are characterized by spatial cor-
relation, temporal correlation, and, in the case of WT video coding, the
correlation among MV belonging to different decomposition levels.

We studied and tested several encoding techniques, all of them char-
acterized by MV encoding by JPEG2000, after having suitably rearranged
and processed these data.

2.4 Spatial analysis

The TA stage outputs several temporal subbands: generally speaking, the
lowest frequency subband can be seen as a coarse version of the input
video sequence. Indeed, as long as (N, 0) filters are used, the low fre-
quency subband is a temporally subsampled version of input sequence
(see Section 3.4). On the other hand, higher frequency subbands can be
seen as variations and details which have not been caught by the motion
compensation. The general scheme of the spatial analysis stage is repre-
sented in Fig. 2.3.

2.4.1 Spatial filtering and encoding

The temporal subbands are processed in the SA stage, which performs a
2D transform, producing the MC-ed 3D WT coefficients which are then
quantized and encoded. The encoding algorithm should allow good com-
pression performance and scalability. To this end, the most natural choice
appears to be JPEG2000. Indeed, this standard provides a state-of-the-art
compression and excellent support for scalability. Furthermore, as it is
an international standard, many affordable hardware and software imple-
mentations of JPEG2000 are expected to appear in the next few years.

Moreover, as we will see later, with the proposed architecture allows
any JPEG2000 implementation to do much of the decoding work for the
proposed bit-stream, even providing a low frame-rate version of the orig-
inal input sequence, without any further computation. This interesting re-
sult is due to the peculiar family of filters we used for the temporal stage.
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Figure 2.3: Spatial analysis: processing of the temporal subbands pro-
duced by a dyadic 3-levels temporal decomposition.

2.4.2 Resource allocation

A suitable algorithm must be used in order to allocate the coding resources
among the subbands. The problem is how to choose the bit-rate for each
SB in order to get the best overall quality for a given total rate. This prob-
lem is addressed by a theoretical approach in order to find the optimal
allocation. Moreover, we use a model in order to catch rate-distortion
characteristics of SBs without a huge computational effort. Therefore this
model allow us then to find optimal rates for subbands with a low com-
putational cost.

2.5 Open issues

While developing the video encoder, some interesting topics have been
encountered and only partially explored.

A first interesting problem is that of an optimal ME criterion for WT-
based video encoders. Usually, one resorts to a criterion based on the min-
imization of MSE or some similar distortion measure. MSE is optimal for
predictive hybrid video coders, but not necessarily for WT-based schemes.
We analyzed this problem in some details, discovering that, for (N, 0) fil-
ters it is possible to derive a theoretically optimal ME criterion, which also
justifies why MSE performs pretty well even for WT video encoders.

Another optimality problem is related to allocation among MVs and



CHAPTER 2. PROPOSED ENCODER ARCHITECTURE 19

WT coefficients. The proposed encoder assumes that a convenient rate is
chosen for MV, and it performs an optimal allocation among subbands of
the residual rate. We analyzed this allocation problem, and we found that,
under some quite loose hypotheses, it is possible to find a theoretical opti-
mal allocation for the high bit-rate region. If some model for MV influence
on WT coefficient statistics is given, an analytical expression of optimal
MV allocation can be computed.
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Chapter 3

Temporal Filtering

Die Zeit ist eine notwendige Vorstellung, die allen Anschauun-
gen zum Grunde liegt. Man kann in Ansehung der Erscheinungen
überhaupt die Zeit selbst nicht aufheben, ob man zwar ganz wohl
die Erscheinungen aus der Zeit wegnehmen kann. Die Zeit ist also a
priori gegeben.1

IMMANUEL KANT

Kritik der reinen Vernunft, 1781

3.1 Temporal filtering for video coding

In this chapter, we present in details the temporal filtering performed in
the temporal analysis (TA) stage of the proposed coder. The remaining
block of the TA stage, namely the motion estimation and the motion vec-
tor encoding blocks, are described in the following chapters 4 and 5. The
scheme of TA is reported in Fig. 3.1 just for reference.

1Time is a necessary representation, lying at the foundation of all our intuitions. With
regard to appearances in general, we cannot think away time from them and represent
them to ourselves as out of and unconnected with time, but we can quite well represent
to ourselves time void of appearances. Time is therefore given a priori.
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Figure 3.1: Motion-compensated temporal analysis stage

Here we describe the problem of temporal filtering in WT video coding
and we shortly review a lifting scheme (LS) implementation of teh wave-
let transform [25], and how to apply it to video signals. Then motion-
compensated (MC-ed) version of LS is introduced, highlighting its major
features [76, 66]. In developing our encoder, we used a particular class
of MC-ed LS, called (N, 0) LS [46, 3], which are here described in details.
Finally, a few words are given on a memory efficient implementation of
temporal filtering, called scan-based WT [63].

An effective exploitation of motion within the spatio-temporal trans-
form is of primary importance for efficient scalable video coding. The
motion compensated filtering technique should have some very impor-
tant characteristics. First of all it should be perfectly invertible, in order to
extend the range of bit-rates where it can effectively work. Indeed, even
if only lossy coding is of concern to our work, a non-invertible temporal
transform would seriously affect performance in a wide range of bit-rates,
preventing high quality reproduction at medium-to-high bit-rates. More-
over, as usual in the field of transform coding, the transform should have
a high coding gain, which means high frequency subbands with as little
energy as possible, i.e. free from spurious details and changes not catched
by the motion model. Finally, a high quality low frequency subband is
needed. In particular, there should not be any ghosting and shadowing
artifacts, and the quality should be comparable to that obtained by tem-
porally subsampling the original sequence. This is important for two rea-
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sons. First, we obtain temporal scalability in this framework by only de-
coding low frequency temporal subbands, which then should be as good
as possible. Second, if the quality of these bands is preserved, iterative
application of the temporal decomposition on them are likely to lead to a
multiresolution hierarchy with similar properties.

The motion compensated lifting scheme proved to be able to accom-
plish all these requirements. In the next Section we review the basics of
this technique by starting with ordinary (i.e. without MC) lifting schemes.

Before this, let us establish some notation. Let p = (p1, p2) ∈ Z
2 be a

generic position in the discrete bi-dimensional space. A gray level video
signal is indicated with

x : (p1, p2, k) ∈ Z
3 → xk(p) ∈ R (3.1)

For the moment we will neglect the problem of chrominance coding.
Sometimes, to emphasize temporal dependencies, we will indicate the
video signal with xk instead of x . We will also consider the case of p ∈ R

2

for sub-pixel MC. The domain of p will be clear from the context or, other-
wise, explicitly stated. Although digital video signal assumes values only
in a discrete subset of R, for example in {0, 1, . . . , 255}, we assume the def-
inition in (3.1) so that we can treat homogeneously the video signal and
its mathematical elaborations. For example, the high and low frequency
subband resulting from temporal filtering of xk will be treated as “video
signals”. They will generally indicated with hk and lk respectively.

A motion vector field is defined as a correspondence between a spatial
location p and a vector:

v : p ∈ Z
2 → v(p) ∈ R

2

We will denote with vk→ℓ the displacement vector which defines the
position that, the pixel p in the frame k will assume in the frame ℓ.

This definition is quite general, as we assumed v ∈ R
2. When integer-

precision motion estimation is used, we have that v ∈ Z
2, while, sub-pixel

precisions are characterized by v ∈ D ⊂ R
2 where D is a discreet subset

of R
2.
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Figure 3.2: A single lifting stage of a lifting scheme

3.2 Lifting scheme and temporal transform

The lifting scheme is an efficient implementation of the wavelet transform.
As shown in [25], a wavelet filter bank (both for analysis and synthesis)
can be implemented by a lifting scheme, or, according to the original ter-
minology, it can be factored into lifting steps.

Basically, the lifting scheme implementation of the wavelet transform
consists in dividing the input signal into odd and even samples (i.e. sam-
ples from odd and even frames in the case of temporal video analysis),
on which a couple of linear operators is recursively applied. This general
scheme is shown in Fig. 3.2.

The first operator performs the prediction step, as it tries to predict the
current odd sample from a linear combination of even samples. For exam-
ple, in the LS implementation of the Haar wavelet, the prediction is just
the current even sample, while in the case of Daubechies 5/3 filter the pre-
diction is the average of the two nearest even samples. The prediction step
outputs the prediction error. A suitable combination of prediction errors
is used to update the current even value. This stage is called update step.
For the Haar wavelet, the update is obtained by just adding the prediction
error scaled by one half to the even sample. Applying this to the temporal
filtering of a video sequence xk we will obtain the following formulas for
the high pass and low pass sequences:
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hk = x2k+1 − x2k

lk = x2k +
1

2
hk (3.2)

This is the simplest lifting scheme, made up of a single lifting step A
couple of prediction and update stages is a lifting step. By combining a
suitable number of lifting steps, it is possible to obtain any wavelet filter.
The output of the last prediction stage constitutes the high-pass band of
the corresponding WT filter; the output of the last update step is the low-
pass band.

A LS is often named after the length of prediction and update stages,
taken in order from the successive lifting steps. So the Haar filter can be
called a (1, 1) LS as well.

Let us now see how the biorthogonal 5/3 filter can be implemented by
a lifting scheme. Keeping the same notation as before, we have:

hk = x2k+1 −
1

2
(x2k + x2k+2)

lk = x2k +
1

4
(hk−1 + hk) (3.3)

The filter is then implemented by adding to the current frame samples
the output of two linear operators (both of length two) which in turn de-
pends on previous and next frames samples. The 5/3 filter is also referred
to as a (2,2) lifting scheme.

The lifting scheme implementation of WT filters suggests immediately
the reverse transform formulas. From (3.2) we get the inverse Haar LS
formulas:

x2k = lk −
1

2
hk

x2k+1 = x2k + hk

while from (3.3) we can obtain the formulas to reverse the (2, 2) filter.
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x2k = lk −
1

4
(hk−1 + hk)

x2k+1 = hk +
1

2
(x2k + x2k+2) (3.4)

We have considered till now the Haar wavelet as its very simple for-
mulas allow us an easy development and interpretation. However, the
(2, 2) LS proved to give far better performance [76, 54, 66], so, in our video
encoder, we considered only (2, 2) and its variations.

3.3 Motion compensated (2,2) lifting scheme

If we consider a typical video sequence, there are many sources of move-
ment: the camera panning and zooming, the object displacements and de-
formations. If a wavelet transform were performed along the temporal
dimension without taking this movement into account, the input signal
would be characterized by many sudden changes, and the wavelet trans-
form would not be very efficient. Indeed, the high frequency subband
would have a significant energy, and the low frequency subband would
contain many artifacts, resulting from the temporal low-pass filtering on
moving objects. Consequently, the coding gain would be quite low, and
moreover, the temporal scalability would be compromised, as the visual
quality of the low temporal subband would be not satisfactory. In order
to overcome these problems, motion compensation is introduced in the
temporal analysis stage, as described in [76] and [66].

The basic idea is to carry out the temporal transform along the motion
directions. To better explain this concept, let us start with the simple case
of a constant uniform motion (this happens e.g. with a camera panning
on a static scene). Let ∆p be the global motion vector, meaning that an
object (or, rather, a pixel) that is in position p in the frame k will be in
position p + h∆p 2 in the frame k + h. Then, if we want to perform the wa-
velet transform along the motion direction we have to “follow the pixel”
in its motion from one frame to another [100]. This is possible as far as
we know its position in each frame. This means that motion estimation

2In this simple example, we do not consider the borders of the frames.
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must provide positions of the current pixel in all of the frame belonging
to the support of the temporal filter we use. So we must replace in the
equations (3.3) all the next and previous frames’ pixels with those at the
correct locations:

hk(p) = x2k+1(p) − 1

2
[x2k(p − ∆p) + x2k+2(p + ∆p)]

lk(p) =
1

2
x2k(p) +

1

4
[hk−1(p − ∆p) + hk(p + ∆p)]

Now let us generalize these formulas to an unspecified motion. For
that, we use backward and forward motion vector fields. According to
our notation, vℓ→k(p) is the motion vector of the pixel p in the frame ℓ

that denotes its displacement in the frame k. Then, if motion is accurately
estimated, we could say that the following approximation holds: xℓ(p) ≈
xk(p + vℓ→k(p)).

We observe that in order to perform a single level of MC-ed (2, 2) fil-
tering, we need a couple of motion vector field for each frame. Namely for
the frame xk we need a backward MVF, indicated with Bk = vk→k−1 and
forward MVF indicated with Fk = vk→k+1.

In the general case, we can then modify equation (3.3) as follows:

hk(p) = x2k+1(p) − 1

2
[x2k(p + v2k+1→2k(p)) + x2k+2(p + v2k+1→2k+2(p))]

lk(p) = x2k(p) +
1

4
[hk−1(p + v2k→2k−1(p)) + hk(p + v2k→2k+1(p))]

(3.5)

or, simplifying the notation by using Bk and Fk MV, we have:
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hk(p) = x2k+1(p) − 1

2
[x2k(p + F2k+1(p)) + x2k+2(p + B2k+1(p))]

lk(p) = x2k(p) +
1

4
[hk−1(p + F2k(p)) + hk(p + B2k(p))] (3.6)

The resulting motion compensated (2,2) lifting scheme, for a one-level
decomposition, is represented in Fig. 3.3. Let us see for completeness the
equations of the Haar LS. We have:

hk(p) = x2k+1(p) − x2k(p + F2k+1(p))

lk(p) = x2k(p) +
1

2
hk(p + F2k(p))

This means that the (2, 2) LS needs the double motion information that
would be necessary for a MC-ed version of the Haar filter, which requires
only forward MVs. Anyway this motion information is quite redundant
and in the following chapter we will see some technique to reduce its cost.

Note that the lifting scheme in (3.5) is perfectly invertible. The equa-
tions of reverse transform can be easily deducted the same way as (3.4) is
deducted from (3.3). A second worthy observation is that MC-ed (2, 2) LS
is by no means limited to integer precision MVF. Indeed, should motion
vectors in (3.5) be fractional, we assume the convention that when p ∈ R

2,
then xk(p) is obtained by original data by using a suitable interpolation.
This feature is very important because sub-pixel MC can bring in a sig-
nificant improvement in performance. Of course, it comes at some cost:
sub-pixel motion estimation and compensation are far more complex than
integer-pixel versions, as they involve interpolations; moreover, sub-pixel
MVs require more resources to be encoded. Usually, bilinear interpola-
tion achieves good results without a great complexity while spline-based
interpolation [97] has better results but is more expensive.

If the motion estimation is accurate, the motion compensated wavelet
transform will generate a low-energy high-frequency subband, as it only
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Figure 3.3: The (2,2) motion-compensated LS

contains the information that could not be reconstructed by motion com-
pensation. The low-frequency subband will contain objects with precise
positions and clear shapes. So, thanks to motion compensation, we are
able to preserve both high coding gain and scalability.

3.4 (N, 0) filters

Since the papers by Secker and Taubman [76] and by Pesquet-Popescu and
Bottreau [66], the MC-ed (2, 2) lifting scheme has been largely and success-
fully applied in WT video coding [76, 54, 66, 5, 103, 62, 77, 78, 29, 96, 100].
Nevertheless, it presents some problems and, indeed, its performance is
still worse than those of the H.264 encoder, which, thanks to a large num-
ber of subtle optimizations, achieves currently the best compression per-
formance and currently is the state of the art in video coding.

The main problems of MC-ed (2, 2) filter can be summarized as fol-
lows.

First, it requires a considerable bit-rate for motion vectors. This turns
out to be significantly larger than what is needed by H.264 for motion com-
pensation. Indeed, for L temporal decomposition levels with the (2, 2) LS,
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Figure 3.4: The (2,0) motion-compensated LS

∑
L
i=1(2/L) motion vectors Fields per frame are needed, instead of just one.

Moreover, higher decomposition level motion vectors are quite difficult to
estimate, as they refer to frames which are very distant in time. This re-
sults in wide-dynamics, chaotic motion fields, which usually require many
resources to be encoded.

Moreover, multiple-level, sub-pixel MC-ed temporal filtering is charac-
terized by a large computational complexity, and this could prevent real-
time implementation even for the decoder.

Lastly, as shown by Konrad in [46], the commonly used MC-ed lifting-
based wavelet transforms are not exactly equivalent to the original MCWT,
unless the motion fields satisfy two conditions, which are invertibility and
additivity. These conditions are very constraining and generally not verifi-
able. Thus, the resulting transform is inaccurate, and some errors propa-
gate in the low-pass subbands, reducing the coding gain and causing visi-
ble blocking artifacts to appear.

For all of these reasons, alternatives to the (2, 2) were proposed in the
literature. Among them, the so-called (N, 0) lifting schemes [3] appear
quite interesting. In general, the (N, 0) lifting schemes can be derived by
the corresponding (N, M) by removing the update step (this justifies the
name). For example, we derive the (2, 0) lifting scheme from the original
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(2, 2), by removing the update operator. The analytical expression of MC-
ed (2, 0) LS is the following:

hk(p) = x2k+1(p) − 1

2
[x2k(p + F2k+1(p)) + x2k+2(p + B2k+1(p))]

lk(p) = x2k(p) (3.7)

Removing the update step involves several advantages. First of all, we
reduce the MV rate, as we do not need to perform any motion compensa-
tion at the Update Step: the (2, 0) LS requires only the half the number of
MVs needed by the original (2, 2) LS. Indeed, as we can see by comparing
from Fig. 3.4 (representing the (2, 0) LS) and Fig. 3.3, the new LS does not
requires backward and forward MV for even frames.

Moreover, as no filtering is performed on the “low frequency” sub-
band, temporal scalability is remarkably improved, as it is highlighted
in Section 6.7.2. Third, these filters perfectly correspond to their bank-
filter WT counterpart, independently from MVF characteristic, and so they
are not affected by the blocking artifacts due to non-invertible and non-
additive motion vectors.

Taubman [91] noticed that at deeper levels of temporal decomposition,
frames are quite different, and therefore, using a low pass filter as the (2, 2)
(even if motion-compensated) can result in noticeable blurring of low-pass
subband. Nevertheless, he claimed a performance superiority of (2, 2) fil-
ters on (2, 0), above all on noisy sequences, and proposed some mixed
structure, characterized by the possibility to chose the temporal filter ac-
cording to the temporal decomposition level, or by some form of adaptive
filtering which results in a kind of intermediate filter between (2, 2) and
(2, 0). This adaptive scheme should be able to modify the impact of the
prediction stage accordingly with the input data.

Indeed, we saw that at low to medium bit-rate, the (2, 0) LS benefits
from lower MV rate, and as usually better performance, above all when
the sequence considered has considerable motion and low noise contents.
Note that, even if (2, 0) LS gave worse performance than (2, 2), it would be
interesting to further investigate it, because it assures a better scalability
(see Section 6.7.2) and, because its formulation is so simple, that it allows
some theoretical development otherwise impossible (see Sect. 4.5).
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Figure 3.5: Three-level dyadic decomposition for generic temporal filters

3.5 Implementation issues

So far we have considered the problem of temporal filtering with a sin-
gle decomposition level. However, remarkable improvements in perfor-
mance are obtained if more complex decompositions are considered. Fur-
ther decompositions are obtained by applying the MC-ed LS to temporal
subbands. As the high frequency subbands are usually scarcely correlated
and have low energy content, the LS is applied to the lower subband. This
process is commonly repeated for three or four levels, as in the scheme in
Fig. 3.5, giving rise to a decomposition tree. This scheme is referred to as
dyadic decomposition. Any scheme which is not dyadic is generically called
packet decomposition. Dyadic decomposition is the most common choice
for images, even though packet decomposition has been proposed in lit-
erature [101, 70]. The JPEG2000 standard provides dyadic decomposition
as default, but extensions allow generic decomposition trees. In our en-
coder we will consider only the dyadic decomposition for the temporal
stage. This means that only the lower frequency subband will be further
decomposed.

It is worth noting that, in order to perform multiple temporal decom-
positions, we need adequate motion information. In fact, all the operations
performed in order to obtain the lk and hk sequences must be repeated on
the low frequency subband. Namely, we need to perform a new ME on
the lk sequence, and then a new filtering stage. This means a sequential ar-
chitecture of the encoder, and a deep interdependence among subbands,
which requires very complex optimization processes, see Fig. 3.5. Here an-



CHAPTER 3. TEMPORAL FILTERING 33

L LL

2 2 2

Estimation

Motion

MC−ed Temporal

Transform

Sequence
Video
Input

Estimation

Motion

MC−ed Temporal

Transform

H

Estimation

Motion

MC−ed Temporal

Transform

Temporal SBs

LLLLLHLH

Figure 3.6: Three-level dyadic decomposition for (N, 0) LS

other advantage of (N, 0) LS is highlighted. Indeed, as the lk sequence is
just a subsampled version of the input sequence, different decomposition
levels can be obtained with parallel processing from the input sequence.
Namely, ME and temporal filtering can be performed independently and
in parallel for each level, see Fig. 3.6. This is favourable not only for imple-
mentation, but also for the optimization of ME, since MV for each subband
can be optimized independently level by level, see Section 4.5.

A practical problem in temporal WT implementation is related to mem-
ory requirements of time filters. When WT filtering is implemented by
loading all the data in memory and then performing WT filtering, it re-
quires a huge memory and moreover, in the case of temporal filtering of
video, this implies an encoding delay as long as the sequence duration
itself.

A simple solution to the temporal filtering problem is to crop the input
sequence in several short subsequences and than compute temporal WT
on them. This allows one to implement temporal filtering at low cost, but
introduces important impairments to coding efficiency. Indeed for each
short sequence we have to manage some kind of border effects. In partic-
ular, in order to perform WT we need to extend in some way the data “be-
yond the border”. Indeed, if we consider an even-length short sequence,
when computing the prediction step on the last frame (that has to be con-
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sidered as odd, since, conventionally, the first frame has a zero, and then
even, index), we need a further even frame. At this end we actually repli-
cate the penultimate frame. This means that this prediction is actually
performed by using data of a single frame instead of two.

The scan-based approach allows to overcome this problem, by com-
puting the temporal transform as it would be by considering all the video
sequence as a whole, i.e. without cropping it in subsequences neither cre-
ating spurious and unnecessary subsequence borders. Moreover this tech-
nique does not requires large memory amounts.

Initially proposed to reduce the blocking artifacts in the case of spa-
tial WT [64], this technique has then been adapted to the temporal motion
compensated WT as well [61, 62]. Figure 3.5 shows the differences be-
tween the block-based and the scan-based approach. In 3.5(a),block-based
temporal WT is shown. In order to perform a single level of decomposi-
tion on 8 frames, these are subdivided into two GOP of 4 frames. Each
GOP is independently filtered, but, at this end, we need a symmetrical ex-
tension of the sequence, obtained by the replication of border frame. On
the contrary, the scan-based approach, shown in Fig. 3.5(b),produces the
same coefficients that we would get by transforming all the sequence as a
whole, without a huge memory occupation. This is achieved by keeping
in memory only data necessary for computing next coefficients.
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Figure 3.7: Comparison among block-based and scan-based temporal WT.
Arrows represent the required motion vectors and dashed frames are ob-
tained by symmetry.
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Chapter 4

Motion Estimation Issues
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4.1 A brief overview of motion estimation

Motion estimation (ME) is a very important step in any video encoder, ex-
cept for very low complexity schemes. In a very general way, we can say
that motion estimation is a process which accepts a video sequence as in-
put and produces a description of movement which occurred in that video.
This motion information has many applications, and video compression
is just one of them. In particular, in video compression, ME is of course
necessary in order to perform motion-compensated operations, such as
motion-compensated prediction in the case of hybrid coding schemes, or
motion-compensated temporal filtering in the case of wavelet transform
coding. However, several other applications exist in the field of video pro-
cessing. ME is very important in such fields as video segmentation, video
surveillance, video restoration. In segmentation problems, ME helps in
recognizing objects, since all pixels belonging to the same object presents

1Everything flows
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coherent motion characteristics [35, 1]. For video surveillance application,
ME is often considered in its most basic form, that is motion detection.
In this case the relevant motion information is just the presence of mov-
ing objects. In video restoration, ME is used in order to perform MC-ed
temporal filtering for noise reduction or temporal interpolation [6].

ME algorithms can be classified according to three main characteristics:
the motion model, the cost criterion, and the search strategy. Many pos-
sible choices exist for each of these items, and it is not possible to define
the best one, as this strongly depends on applications, and, very often, on
input data. In the following, we review shortly some of the most common
choices for these three aspects of ME algorithms.

A first model is the global motion model, which provides just a single
motion information for each frame. This model is extremely simple, but
it is well fitted to describe some very common situations such as camera
panning on fixed background. Of course, this model is also very cheap in
terms of coding resources needed by motion information: we need just one
motion vector (MV) (that is two scalar parameters) per frame. The model
can be made slightly more complex by introducing an affine transforma-
tion (i.e. including zoom and rotation) instead of a simple translation. In
this case we have six motion parameters per frame. The global motion
model is very simple and is able to catch a substantial amount of motion
in a generic video sequence. However, in order to achieve a better repre-
sentation of motion, it is often used together with more complex models,
e.g. global motion and block-based motion, or global motion and object
motion.

The previous model fails when several objects are present in the scene.
A straightforward extension is the block based motion model, where each
frame is decomposed in rectangular blocks of pixels, and each block is
treated as frames were treated in the previous case. This means that for
each block we can consider simple movements such as rigid translations,
or more complex ones, as affine transformations. The most common ap-
proach provides just a translation vector for each block. It is worth not-
ing that the block size can be fixed for the whole frame (this is the motion
model compatible with the MPEG-1 and 2 syntax [36, 37]) or it can change,
allowing to adaptively describe the motion, according to its local charac-
teristics (the H.264 standard syntax [75, 105] allows variable sized blocks).

Despite its simplicity, translational block-based ME (BBME) is quite ef-
fective, and is therefore the most common ME technique. Nevertheless,
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the affine model is also used sometimes. It is considerably more complex
than the translational model, but it is able to catch correctly zooms and
rotations. On the other hand, it requires the transmission of three times
as many parameters than the previous method, so it turns out to be quite
expensive in terms of both computational complexity and coding rate.

Another common model is based on meshes. A mesh is used to cover
the frame. The model provides a motion vector (two scalar parameters)
per mesh vertex, while the motion vectors for other points are obtained
by a suitable interpolation, that is, a bilinear interpolation for rectangular
meshes, and an affine interpolation in the case of triangular meshes. The
mesh motion model is supported by the MPEG-4 syntax [38, 65] and used
in some recently proposed video encoders [79].

Finally, we cite object-based models and dense motion vector fields.
The first model provides a subdivision of video sequence into moving ob-
jects: the motion information amounts then to the motion parameters for
each object. In the dense MVF case, a vector is provided for each pixel.
This is the most general model, as any of the previous ones can be de-
scribed by a dense MVF. The main problem of dense MVF is they can re-
quire a huge amount of resources to be encoded, leaving a meagre budget
for coefficient coding. Nevertheless, this approach has some interesting
properties, and has been envisaged in scientific literature [85, 67]. We will
describe some dense MVF coding technique in Section 5.6. A representa-
tion of these motion models is given in Fig. 4.1.

The choice of a specific motion model involves a trade-off between ac-
curacy of motion description on a hand and coding cost, computational
and implementation complexity on the other. The best option strongly
depends on application and data, but, as previously mentioned, transla-
tional BBME is the most common motion model for ME. In our work we
mainly used this approach, which jointly presents reasonable complexity
and good performance, and is quite robust with respect to input data. In
the rest of this Section, for the sake of simplicity, we will mainly refer to
BBME, but our considerations apply to the other motion models as well.

The second classification criterion for ME techniques is the cost func-
tion. The estimation process is carried out by searching for motion pa-
rameters minimizing a given cost function, which usually is related to a
distance measure (a metric) between the motion-compensated version of
the current frame or block and some reference frame or block. In Section
4.2 we will describe in detail some of the most common ME criterion, like
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(a) (b)

(c) (d)

Figure 4.1: Schematic representation of motion models: (a) global motion;
(b) block based; (c) dense MVF; (d) object based.



CHAPTER 4. MOTION ESTIMATION ISSUES 41

the sum of squared differences (SSD) between current and reference data,
and a variation of it. We remark that the SSD criterion is equivalent to the
MSE. Another very common criterion is based on the sum of absolute dif-
ferences (SAD) which is simpler to compute and more robust in the pres-
ence of outliers. Of course, these are only some of the possible approaches
and not necessarily the best ones. In Section 4.5 we will study the problem
of optimal ME criterion in the case of WT video coding.

The third classification parameter for ME algorithms is the search strat-
egy. Once the motion model and the optimal criterion are established,
we have to decide how to find out the motion parameters. For the block
based motion model, the block matching (BM) approach appears to be the
most natural choice: the current block is compared with a suitably (i.e.
according to the motion model) transformed version of a block of the ref-
erence frame. The cost function for this couple of blocks is computed and
we choose the motion parameters which minimize this cost. If we con-
trol all the possible MV and chose the best one, it is said that an exhaustive
search has been performed. This is the most computationally demanding
method, but of course the one that gives the best results. However, the
computational burden of exhaustive search can be unacceptable for some
applications, like real-time video or streaming on low-power devices. For
this reason, sub-optimal search strategies for block-matching have been
proposed in literature, like the the log-search, (sometimes called three-step
search), and the diamond search [44]. These techniques usually allow a re-
markable complexity reduction without too much impairing motion infor-
mation accuracy. In our work we used mainly full search ME techniques,
as computational complexity was not a major issue in our research. Three-
step search was considered as well, since it has good performance, little
computational cost and it provides a progressive description of motion
vectors.

Besides block matching, other methods have been proposed in liter-
ature, such as phase correlation [94], optical flow, and statistical (MAP
estimation) methods [85].

Several other parameters have to be set when choosing a ME technique.
Among them, we have the block size, the search area and the precision. Let
us spend a few words to describe the impact of different precisions on a
ME algorithm. The first ME algorithms considered only integer compo-
nent MVs, but this is actually a tight constrain for the movement of video
objects. In fact, objects move independently from the spatial subsampling
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grid of a video frame, and this calls for sub-pixel motion vectors. They can
be computed by suitably interpolating the original video sequence and
applying the full-pixel ME algorithm on the increased-resolution images.
Sub-pixel motion compensation is then obtained using the interpolated
images instead of the original.

It has been early recognized that sub-pixel ME and MC can improve
significatively the performance of a video encoder [31], and, therefore,
they have been included in all video coding standards from MPEG-2 on.
MPEG-2 uses a simple bilinear interpolation for half pixel accuracy ME
and MC. The most recent standard H.264 uses a 6-tap filter for half pixel
accuracy and a further bilinear interpolation to reach quarter pixel accu-
racy. Of course, sub-pixel accuracy is more demanding in terms of compu-
tational power then full-pixel accuracy that, in turn, is already one of the
most complex parts of a generic video encoder.

In conclusion, the choice of operational values for all the considered
parameters (block size, search area, precision) involves a trade-off between
accuracy on one hand, and complexity and encoding cost on the other.

Even when all the ME parameters have been chosen in the best possi-
ble way, we are far from being sure that the best motion vector field will
be found. Actually, a crucial compromise between accuracy and cost of
MV has to be considered. Usually, we look for the MV which minimizes
a given criterion: this would be the best MV according to such a criterion,
but we might have to spend many resources to encode it. It could hap-
pen that a slightly less accurate vector could be encoded at a much lower
price, allowing to spare resources for coding coefficients, and thus attain-
ing better overall performance. The vector which allows the best overall
performance would be the best one in a rate-distortion sense.

This compromise is somehow represented in Fig. 4.2. Here we report
the rate-distortion curve of motion vectors, with the rate needed to en-
code motion vectors (this is the cost) on the abscissas, and the correspond-
ing prediction distortion, expressed in terms of MSE (this is the accuracy)
on the ordinates. We can imagine to obtain less accurate vectors by in-
creasing the block-size, by reducing the precision, by introducing some
regularization constraints in ME, or even by a lossy encoding of MVs. The
motion vector field (MVF) which minimize MSE corresponds to the cir-
cled point of the graph, characterized by the best accuracy and the highest
cost. Nevertheless, this might prove not to be the the best possible MVF
in a rate-distortion sense, since we can reduce significantly the MVF rate
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Figure 4.2: Possible behavior of motion compensated prediction error in
function of motion rate

without too much sacrificing its accuracy, by choosing a point at the left of
the first one. If we have a limited amount of coding resources, it is prob-
able that the best operational point is placed somewhere at the left of this
extreme point, for example it could be the point marked by a × in this
graph. Sections 4.3 and 4.4 are about the quest of this optimal point.

4.2 Block based motion estimation

We introduce here some notation for block handling. Let B
(p)
k be a block

of size 2 (n × n) in the frame k, centred on pixel p = (p1, p2). We consider
even values for n. Moreover, we define Bn

0 = {−n/2, . . . , n/2 − 1}2, and

B
(p)
k (u, v) = xk(p1 + u, p2 + v) ∀(u, v) ∈ Bn

0 .
To compute our motion vectors, we first need a distortion measure be-

tween blocks, d(B1, B2). A common one is the MSE, or equivalently, the

2Square blocks are not necessary. They are used here just for the sake of simplicity.



44 4.2 BLOCK BASED MOTION ESTIMATION

SSD, defined as:

SSD(B
(p)
k , B

(q)
h ) = ∑

(u,v)∈Bn
0

[
B

(p)
k (u, v) − B

(q)
h (u, v)

]2

The relationship among MSE and SSD is simply:

MSE(B
(p)
k , B

(q)
h ) =

1

n2
· SSD(B

(p)
k , B

(q)
h )

Another common criterion is the SAD:

SAD(B
(p)
k , B

(q)
h ) = ∑

(u,v)∈Bn
0

∣∣∣B(p)
k (u, v) − B

(q)
h (u, v)

∣∣∣

These criteria provide good results as long as the mean intensity in both
frames is the roughly same. But in real video shots, intensity may vary be-
tween two consecutive frames, in which case these criteria can produce
inaccurate motion estimations. To overcome this problem, we use also
another criterion, the zero-mean normalized sum of squared Differences
(ZNSSD), as it is robust to affine intensity transformations while remain-
ing easy to compute [100]. In order to define this criterion, let us introduce

the zero-normalized version of a block B
(p)
k , indicated with B̃

(p)
k :

B̃
(p)
k (u, v) = B

(p)
k (u, v) − 1

n2 ∑
(u,v)∈Bn

0

B
(p)
k (u, v)

that is the block minus its average value.

For two given blocks B
(p)
k and B

(q)
h the ZNSSD formula is given by:

ZNSSD(B
(p)
k , B

(q)
h ) =

∑(u,v)∈Bn
0

[
B̃

(p)
k (u, v) − B̃

(q)
h (u, v)

]2

[
∑(u,v)∈Bn

0
B̃

(p)
k (u, v)2 · ∑(u,v)∈Bn

0
B̃

(q)
h (u, v)2

]1/2

For a given block B
(p)
k in frame k, we look for the best corresponding

block B
(p+v)
h in frame h by minimizing the following criterion:

Jh,k(v) = d
(

B
(p)
k , B

(p+v)
h

)
(4.1)
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where d is a distortion measure like SAD, SSD or ZNSSD. We will drop the
subscripts from criterion J when this information can be deducted by the
context. Finally we can define the estimated vector v∗

k→k+1(p) for pixel p:

v∗
k→k+1(p) = arg min

v∈W
Jk,k+1(v) (4.2)

where W = {−w, . . . , w}2 is the search window for block matching and w
is then the maximal allowed search distance.

Using the symbols of previous chapter, we can call Fk the vector com-
puted by (4.2). The estimated MVF is then :

Fk(q) = v∗
k→k+1(p) ∀q ∈ Bm

p

where

Bm
p = {p1 − m/2, . . . , p1 + m/2 − 1}

×{p2 − m/2, . . . , p2 + m/2 − 1}

and m ≤ n. For m = n, we have the usual non-overlapped block-matching
criterion, while if we set Bm

p = {p} we compute a different motion vec-
tor for each pixel, i.e. a Dense MVF. The advantage of overlapped block-
matching (m < n) with respect to non-overlapped block-matching is that,
at the cost of a slightly increased computational burden, we achieve a
smoother (less sensitive to noise) MVF.

We will refer to the criterion (4.1) as unconstrained ME, since no par-
ticular constraint is imposed on vectors. The MVF we can compute in
this way is the best possible with respect to the chosen criterion, but not
necessarily the best MVF overall. In other words, we can find a very accu-
rate vector (e.g. the one minimizing the MSE) but it cost could be so high
that overall performance suffers from this motion representation. We can
represent this situation as the rightmost (circled) point in Fig. 4.2. In this
context, it would be interesting to look for a less precise, but also less ex-
pensive motion representation, moving toward the optimal point of the
curve in Fig. 4.2. The next two Sections are dedicated to this issue.

It is also worth noting that the optimal rate for MVs is also dependent
on the global available bit-rate: it is obvious that the optimal bit rate for
MVF at 64 kbps cannot be the same as at 1 Mbps. The relationship be-
tween total available bit-rate and optimal motion bit-rate is investigated
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in chapter 7, where some interesting results are derived in the case of high
resolution (that is, high total bit-rate).

We performed many experiments in order to better understand which
criterion would perform better for the proposed encoder, and which are
the best values for the several ME parameters such as block-size, search
area radius, and block overlap. Here we summarize the main results.
The two criterion SSD and ZNSSD proved to give almost identical per-
formance in terms of impact on the overall rate-distortion performance,
with a very small (and for all practical interests negligible) advantage for
ZNSSD. On the other hand, SAD confirmed its greater robustness in pres-
ence of noise (outliers) with respect to SSD. Considering the higher com-
putational cost of ZNSSD, we mainly used SAD and SSD (MSE) for our
codec.

As far as block size is concerned, we considered only fixed block size
ME. With this settings, it turns out that in most cases a block size of 16 pix-
els provides the best compromise between cost and accuracy of MVF, at
least for total bit-rates less that 1.5Mbps. The optimal value for the search
area radius is between 12 and 16 pixel for consecutive frames: larger val-
ues would increase computational complexity without giving a remark-
able benefit. For more distant frames this value should be increased pro-
portionally to the temporal distance. Finally, block overlap proved to
slightly increase performance, but at cost of a complexity increase. Usu-
ally, an overlap within 25% of the block size proved to be a good choice.

4.3 Constrained motion estimation

When MC-ed (2, 2) LS is used, we need a backward MVF and a forward
MVF for each frame (see Fig. 3.3). For the (2, 0) LS, half the MVFs are
needed, and namely, a backward and a forward MVF for each even frame
(see Fig. 3.4).

This side information can grow up to represent a remarkable share of
the total bit-rate. Here we have a resource allocation problem: we can
use our bit budget to encode the MVFs, but we can also try to have a less
accurate description of them, using the spared bits to better encode the WT
coefficients. This problem calls for an optimal rate-distortion solution, but
it seems quite difficult to take into account MVF encoding and residual
encoding at the same time, as the second term depends on the first one.
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With a different approach, we try to answer this question in chapter 7.
Here we look for some suboptimal solution. An interesting one is what

we call constrained motion vectors. We impose some constraints on MVFs
that allow us to significantly reduce the rate needed for MVF’s encoding,
but, on the other hand, prevent us from achieving the best motion estima-
tion. Initially, we impose a very simple constraint: we want the backward
MVF to be the opposite of the forward one. Then we look for a displace-
ment vector, which under this constraint minimizes a quantity depending
on both the forward and the backward error, e.g. their sum:

v∗ = arg min
v∈W

J(v) (4.3)

with:

J(v) =
[
d

(
B

(p)
k , B

(p−v)
k−1

)
+ d

(
B

(p)
k , B

(p+v)
k+1

)]
(4.4)

Where d(B1, B2) can be any suitable distortion measure. The advantage of
constrained search is that we obtain symmetrical MVF, so we can send just
every second MVF, using the spared bit budget to better encode wavelet
coefficients [100].

On the other hand, constrained search does not allow us to get the best
estimation, except for some specific motion configurations. This reflects
the fact that the proposed criterion is based on a very simple model, in
which the motion is constant and then Bk = −Fk (i.e. zero acceleration).
The effectiveness of this ME criterion is then tightly bounded to the cor-
rectness of the zero-acceleration model. If the motion is regular in the con-
sidered video sequence (i.e. only rarely the acceleration is significant), our
model will correctly catch motion information. Otherwise, when acceler-
ation is important, the proposed model will fail and compute suboptimal
motion vectors. Nevertheless, their cost will always be less than in the
case of unconstrained ME.

In order to better understand the trade-off between accurate MVF de-
scription and improved wavelet coefficient encoding, some experiments
were performed. In the first one we compared our codec performance
when the MVFs were estimated with the unconstrained and with the con-
strained search. The experiments were carried out on the first 64 frames
of the sequence “foreman”, with a block size of 16 pixels. The results are
shown in Fig. 4.3(a). Note that the constrained search method requires
about half the rate for MVF with respect to the unconstrained method.
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Figure 4.3: Comparison between ME methods (a) and their impact on
codec performance (b)

However, in this figure we do not take into account the rate needed for
MVF encoding, as we want just to understand how much the worse mo-
tion estimation affects the motion compensated wavelet transform. The
graph shows that the loss is quite small, as the MSE increase varies from
1% to 9%.

In order to perform a thorough comparison between the two methods,
in Fig. 4.3(b) we considered also the cost of MVF encoding. Moreover, the
performance of the codec without motion compensation were also added.
The graph shows that the constrained method has the best performance
at low and medium rates, and it is roughly equivalent to unconstrained
search method at high rates.

These results can be interpreted as follows: the unconstrained MVFs
corresponds (for a given set of ME parameters, as block size and precision)
to the rightmost point of the curve in Fig. 4.2. When we impose some con-
straint, we begin to move toward the left in this graph, hopefully towards
the optimal point. Indeed, for low-to-medium bit-rates, the constrained
MVF gives better overall performance than the unconstrained one, so we
are actually getting near the optimal operation point.
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Figure 4.4: Irregular motion vector estimation

4.4 Regularized motion estimation

In this Section we keep exploring the left part of the curve in Fig. 4.2, with
the goal of further decreasing the bit-rate needed by MVF, without de-
grading the motion information too much. We try to achieve this goal by
introducing MVF regularization.

The basic idea is to impose some reasonable constraints to the ME cri-
terion, in order to get a MVF that can be efficiently encoded and that how-
ever remains a good estimation of motion. In a previous section we pro-
posed a simple symmetry constraint, which led to the cost function (4.4).
Here we modify the estimation criterion by adding a regularization con-
straint to the cost function, with the aim of obtaining a more efficiently en-
codable MVF. Indeed, even though the symmetry constraint implies some
smoothing, MVFs estimated by the criterion (4.4) can still suffer from some
irregularities: see for example Fig. 4.4, where it is reported an estimated
MVF for the “foreman” sequence: in the quite homogeneous helmet area,
the MVF, even if minimizes the metric, has a remarkable entropy.

The problem is that in a homogeneous area, many motion vectors can
have very low and very close values for the cost function. In this case,
choosing a suboptimal vector does not significatively increase prediction
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Figure 4.5: Regularized motion vector field

error, while it can help in reducing MVF entropy. Hence we introduce a
couple of new constraints: a length penalty and a spatial variation penalty.
The new criterion is expressed as follows:

v∗ = arg min
v∈W

[
J(v) + α

||v||2
||v||2max

+ β(||∇vx||2 + ||∇vy||2)
]

(4.5)

where J(v) is still expressed by (4.4). In a homogeneous area, null or ho-
mogeneous vectors are then more likely to be chosen, reducing the oc-
currence of chaotic regions in the MVF. In Fig. 4.5 the resulting MVF is
shown. It is clear that the constraints help in regularizing the MVF. Ini-
tial experiments showed the existence of values for α and β which allow
a fair regularization without degrading too much the motion information.
We can gain a deeper insight on this phenomenon by evaluating the effect
of regularization on the first order entropy of regularized MVFs and the
respective prediction MSE, see Tab.4.1. These results were obtained for
the test sequence “foreman”, with a block size of 16 × 16 and whole pixel
precision.

In this table we also reported the entropy of wavelet transformed (3
level dyadic decomposition) MVFs, in order to show that WT allows re-
ducing entropy, and that regularization is even more effective in the wa-
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α β Entropy of MVF Entropy of WT Prediction
[bits/vector] [bits/vector] MSE

0 0 4.33 0.56 48.22

0 4 3.72 0.35 49.90

0 20 3.37 0.26 56.54

10 0 3.93 0.47 48.24

10 4 3.61 0.34 49.97

10 20 3.30 0.25 56.44

30 0 3.81 0.45 48.35

30 4 3.58 0.34 50.08

30 20 3.28 0.25 56.54

100 0 3.62 0.42 48.98

100 4 3.46 0.33 50.58

100 20 3.20 0.25 56.91

Table 4.1: Regularization parameters effect
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Figure 4.6: Impact of ME methods on codec performance
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velet domain. Those results suggest that we should look for an encoding
technique that makes use of the WT of regularized MVFs, like the one
described in Section 5.6. We also remark that with a suitable choice of pa-
rameters, we can achieve an entropy reduction of 16% (and even 40% in
WT domain), while the prediction MSE increases only of 1.5%.

It is of course necessary to evaluate the impact of constrained ME on
the whole video coder. So, in Fig. 4.6 we compared global RD performance
of our video coder when the usual unconstrained ME and the proposed
constrained ME criteria are used. These results were obtained on the “fore-
man” sequence, with regularization parameters α = 10 and β = 5, preci-
sion of whole pixel, and block size of 16 × 16. The graph shows that the
proposed method yields globally better performance, especially at low to
medium rates, where we achieve up to 1.3 dB of improvement with re-
spect to the usual unconstrained technique. This result confirm the intu-
itive idea that at low rates it is better to have an approximate but cheap
description (in term of needed encoding resources) of motion and to ded-
icate more resources to transform coefficients. This technique allows us to
get a bit closer to the optimal point of Fig. 4.2.

4.5 Optimal ME for WT-based video coding

In this Section, we try to analyze the problem of optimal motion estimation
in the framework of wavelet video coding.

As mentioned above, motion compensation is of crucial importance
in order to obtain good performance in video coding, be it the classical
hybrid coding or the newer wavelet-based algorithms. A good ME is
equally very important. Nevertheless, the criterion for ME that is usu-
ally employed is the minimization of MSE (or related distortion measures)
between reference and predicted (motion compensated) frames. This ap-
proach is optimal as far as hybrid coding is concerned, but this is not nec-
essarily true for a generic wavelet video coder. In this case, a deeper anal-
ysis is needed, since we are no longer coding the prediction error, but the
transform coefficients, so minimizing the error energy could not be the
best approach anymore.

The need of an optimal approach to ME for wavelet video was early
recognized by Choi and Woods [21]. They asserted that while for hybrid
coders the objective of motion estimation is to minimize the mean squared
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prediction error, for MC-ed temporal analysis, the objective should be
changed to maximization of the coding gain (CG). As the filter they used
for temporal analysis (Haar filter) is orthogonal, the CG is expressed as
the ratio of the arithmetic and geometric means of subband variances. The
maximum CG is nearly achieved by minimizing the energy (variance) of
the temporal high frequency subband, since the variance of the temporal
low frequency subband is relatively constant. Using the Haar filter for
temporal analysis, the temporal high frequency subband is just a scaled
version of the prediction error signal. Thus, the minimization of MSE turns
to be nearly optimal in their case.

Nevertheless, when a generic temporal filter is used, a further analy-
sis is needed. Here, indeed, we want to analyze the problem of optimal
ME for MC-ed lifting scheme video coders in a more general way. We will
use a general approach as far as possible, then we will turn to (N, 0) fil-
ters, which allow a deeper analysis, and even an analytical solution of the
optimal ME criterion problem.

4.5.1 Notation

Let us now define some notation in order to manage MVs related to mul-
tiple decomposition levels. As usual, we use vk→h(p) to refer to the dis-
placement that the pixel p in frame k will have in frame h. The k-th frame

of input sequence is referred to as xk(p). We indicate with h
(0)
k (p) the first

high frequency (H) temporal subband sequence, with h
(1)
k (p) the second

high frequency (LH) subband sequence, and so on. Analogously l
(0)
k (p),

l
(1)
k (p) are the low frequency subband sequences. We consider L levels

of dyadic temporal decomposition, resulting in M = L + 1 temporal sub-

bands; we indicate with v(0) the set of all motion vectors needed to com-
pute the first temporal decomposition from the input sequence, and in

general, with v(i) the set of vectors needed to compute the (i + 1)-th tem-
poral decomposition from the previous level. These vectors are shown in
Fig. 4.7 for the case of (2, 2) LS and two levels of temporal decomposition.

We see that in this case v(0) is made up of all vectors vk→k+1 and vk+1→k

for all k, while v(1) is constituted by vectors v2k→2k+2 and v2k+2→2k for all

k. It is clear moreover that in order to compute each frame of h
(1)
k we need

all vectors of the sets v(0) and v(1).
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Figure 4.7: Scheme of a two-levels temporal decomposition with the (2, 2)

LS. In this case V1 = {v(0), v(1)}.

More in general, in order to compute a single level of temporal de-
composition with a (N, M) LS we need N vectors per frame for the high
frequency subband and M vectors per frame for the low frequency sub-
band. Let us call Vi the set of all vectors necessary to compute the i-th
decomposition level. In general, we need all the vectors from previous de-

composition levels in order to compute h
(i)
k , i.e., Vi = {v(0), v(1), . . . , v(i)}.

This means that in the general case, as far as motion vectors are concerned,
all SBs depend on one another.

4.5.2 Optimal criterion

ME is used in order to find MVs that describe displacement of objects from
a frame to another. The optimality criterion in subband coding is the max-
imization of the coding gain [30, 21], which is defined (see chapter 1 as
well) as the ratio among DPCM (the distortion of scalar quantization, i.e.
PCM coding, of input signal) and D∗

TC (the minimum distortion achiev-
able by transform coding). The optimal ME criterion should maximize the
CG instead of minimizing the MSE of prediction error. In particular, DPCM

does not depend on motion compensation, since it refers to the input, i.e.
non-transformed, signal. Therefore we can focus on minimization of D∗

TC.

We show in Appendix A how to express D∗
TC for generic WT coding

with M subbands, see Eq. (A.11). Let M be the number of subbands, Ni



CHAPTER 4. MOTION ESTIMATION ISSUES 55

the number of coefficients of band i, N the total number of WT coefficients,
and ai = Ni/N. We have:

D∗
TC = WHρ22−2b̄ (4.6)

where b̄ is the available bit rate in bpp and:

W =
M

∏
i=1

w
ai
i

H =
M

∏
i=1

h
ai
i

ρ2 =
M

∏
i=1

(
σ2

i

)ai
(4.7)

Here, wi is a weight accounting for possible non-orthogonality of WT fil-
ters, see section 6.4; hi is the subband shape factor, see Eq. (A.3).

We should consider three-dimensional (i.e. spatiotemporal) SBs, but ac-
tually we will consider only temporal SBs. Indeed, some earlier studies on
this problem showed that considering spatiotemporal SBs instead of tem-
poral SBs gives little or no gain [21].

We observe that W and b̄ do not depend on motion vectors; moreover,
we make the hypothesis that the shapes of subband pdfs do not depend
on MV either. In this case all the hi and H are not affected by ME. This
means that the optimal ME strategy should be the minimization of ρ2, that
is a kind of weighted geometric mean of temporal subband variances; as
a matter of fact, it would coincide with the geometrical mean of subband
variances if ai = 1/M and wi = 1 ∀i ∈ {1, 2, ..., M}: this happens in the
case of orthogonal subband coding.

Unfortunately, in the general case, the minimization of ρ2 is not an easy
task. This problem is quite complex because motion vectors related to the
i-th decomposition level affect all subbands {i, i + 1, . . . , M}. This means

that we cannot simply chose v(i) such that σ2
i is minimized, as this set of

vectors influences higher frequency subband variances as well. Therefore,
in the general case, this problem calls for a joint optimization of motion
vectors of all levels in order to minimize (4.7).

The joint optimization problem is difficult to approach analytically and
extremely demanding in terms of computational power. But, with a suit-
able choice of temporal filters, it is possible to simplify it remarkably. In
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Figure 4.8: Scheme of a two-levels temporal decomposition with the (2, 0)

LS. In this case V1 = {v(1)}, as h
(1)
k is computed directly from xk indepen-

dently from h
(0)
k

particular, we consider the class of (N, 0) LS. In this case, the low pass out-
put of WT is just the input sequence with temporal subsampling, then it
does not depend on motion vectors. Another crucial consequence is that
the i-th high frequency subband is computed directly from the input se-
quence, independently from other SBs.

An example is shown in Fig. 4.8, for the (2, 0) LS and two level of tem-

poral decomposition. We see that we can compute h
(1)
k directly from the

input sequence and from the vectors v(1). More in general, as we com-

pute h
(i)
k from l

(i−1)
k which in turn is just the input sequence undersam-

pled by a factor 2i, this subband depends only on v(i) instead of all the

v(0), v(1), . . . , v(i). This means also that all the subband variances are ac-
tually independent of one another, and that they can be minimized sep-

arately. In other words, each v(i) can be optimized separately, providing
that it minimizes the i-th high frequency SB variance. The optimal ME for

a (N, 0) LS has to estimate v(i) which is the trajectory of current pixel in a
subset of frame centred on current frame, and made up of N + 1 frames of
the original sequence subsampled with a factor 2i.

As the optimization is carried out in the same way for each decompo-
sition level, we will refer from now on to the first one, and will drop the
superscript from hk for the sake of simplicity.
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4.5.3 Developing the criterion for a special case

Further analytical developments are possible if we refer to a specific (N, 0)
LS as the (2, 0). Let us recall the equation for this special case.

hk(p) = x2k+1(p) − 1

2
[x2k(p + v2k+1→2k(p)) + x2k+2(p + v2k+1→2k+2(p))]

lk(p) = x2k(p)

This mean that, in this case, the trajectory v(0) for the frame 2k and for
the first decomposition level is just a couple of vectors

v(0) = {v2k+1→2k, v2k+1→2k+2}
This expression can be generalized to the i-th decomposition level:

v(i) =
{

v2i−1(2k+1)→2i−12k, v2i−1(2k+1)→2i−1(2k+2)

}

The optimal trajectory v(i)∗ is the one minimizing the high frequency
band variance. Since this subband has zero mean, this is equivalent to
minimize its energy.

We can refer to the first high frequency subband without losing gen-
erality as for the other band it suffices to refer to the suitably subsampled
version of the input sequence. For the high frequency subband, we can
simplify the notation of the lifting scheme as follows

hk(p) = x2k+1(p) − 1

2
[x2k(p + F2k+1(p)) + x2k+2(p + B2k+1(p))]

lk(p) = x2k(p)

where Bk = vk→k−1 and Fk = vk→k+1 as usual. The optimal trajectory is
given by:

v(0)∗ = arg min
B2k+1,F2k+1

E {hk(p)}

Where we have

hk(p) = x2k+1(p) − 1

2
[x2k(p + F2k+1(p)) + x2k+2(p + B2k+1(p))]

=
1

2
[x2k+1(p) − x2k(p + F2k+1(p))+

x2k+1(p) − x2k+2(p + B2k+1(p))]

=
1

2
(ǫF + ǫB)
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and ǫF [ǫB] is the forward [backward] motion-compensated prediction er-
ror:

ǫF = x2k+1(p) − x2k(p + F2k+1(p))

ǫB = x2k+1(p) − x2k+2(p + B2k+1(p))

This means that the optimal trajectory minimizes the energy of the sum
of this errors. Further developing, we have to minimize

E [hk(p)] =
1

2
E (ǫB + ǫF)

=
1

2
E (ǫB) +

1

2
E (ǫF) + 〈ǫB, ǫF〉

In conclusion,

B∗
2k+1, F∗

2k+1 = arg min
B2k+1,F2k+1

[
1

2
E (ǫB) +

1

2
E (ǫF) + 〈ǫB, ǫF〉

]
(4.8)

Equation (4.8) is what we need in order to compare the optimal ME
criterion to the usual MSE based criterion. With the usual MSE based cri-
terion, we independently minimize E (ǫB) and E (ǫF), so we probably at-
tain a low value of the optimal criterion but not necessarily the minimum,
as we do not take into account the mixed term. This term grows larger
when the two errors images are more similar. This means that the op-
timal backward and forward vector are not independent as they should
produce error images as much different as possible, being not enough to
barely minimize error images energies. In other words, regions affected
by a positive backward error, should have a negative forward error and
viceversa.



Chapter 5

Motion Vector Encoding

There are more things in heaven and earth, Horatio, than are
dreamt of in your philosophy.

WILLIAM SHEAKSPEARE

Hamlet, prince of Denmark, 1601

This chapter summarizes main results obtained in motion vector field
(MVF) coding with JPEG2000-based techniques. Motion information ob-
tained by a generic ME algorithm is usually highly redundant, so, in order
to obtain an efficient coding, the motion vectors have to be compressed. In
the previous chapter we saw several techniques for changing MV entropy
directly at the ME stage. Afterward, MVs are supposed to be losslessly en-
coded and transmitted to the receiver, and, indeed, lossless methods are
the object of the first and largest part of this chapter. However, an alter-
native approach is considered in Section 5.6, in which we perform ME
without caring for MV rate, that is we look for the most accurate motion
information, but then consider lossy MV coding techniques.

Another issue we considered in MV encoding was compatibility with
JPEG2000 standard. Since our target is to implement a video encoder with
the highest possible compatibility with this standard, we felt that also MVs
should be encoded by means of JPEG2000. Of course, as this is a still
image coding algorithm, we cannot expect to provide the best possible
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performance, but this appears to be compensated for by the compatibility
with the standard.

Before describing the techniques for MV encoding, we present a first
section where some statistics of MVs are given and analyzed. Then our
techniques are described, together with experimental results. We tested
proposed techniques in many different configurations, in order to bet-
ter understand their potential performance. Therefore, several sequences
were considered, and motion estimation precision and block size were
changed in order to investigate the influence of these parameters on vector
coding.

5.1 Motion vector distribution

We evaluated the distribution of motion vector fields in the sequences
“flowers and garden” (250 frames),“bus” (150 frames), and “foreman” (300
frames). All these sequences have a relevant motion content, but in the
first one, motion is pretty regular, in the second one, it is regular but com-
plex, as many moving objects appear on the scene, and in the third one,
motion is quite chaotic.

Full pixel and half pixel precisions were considered. In figures 5.1–5.6,
backward and forward vectors for the first three temporal decomposition
levels are shown. The log10 of relative frequency is reported, with null
vector frequency situated at image center. We remark that for successive
temporal levels the search area increases, since temporally distant frames
can involve wide movements. This results in a more spread MV distri-
bution at higher temporal levels. Anyway, the distributions show a good
regularity, and are pretty concentrated around the null vector. This comes
from regularization techniques, which tend to assign a null vector when
estimation is not accurate.

From the analysis of these distributions, we can get information on
motion content of the sequences and some hint about how to encode those
motion vectors.

Figures 5.1 and 5.2 shows that motion in the “flowers and garden” se-
quence is quite regular, with a dominant horizontal motion toward the left
direction. This sequence is actually a camera panning on an almost statical
background.

From Fig. 5.3 and 5.4 we can deduce that in the “bus” sequence motion
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is more complex, even though we have mainly horizontal movements. In-
deed, in this sequence we have an horizontal camera panning on a bus
and moving cars.

The “foreman” sequence is characterized by a more complex motion,
as it appears from Fig. 5.5 and 5.6. Many null vectors are estimated, but
the distribution exhibits several secondary peaks, coming from different
movements of the objects and of the camera in this sequence.

By analyzing these distributions and by taking a look to the video se-
quences themselves, we can conclude that MVFs for these sequences are
quite spatially correlated, but can present relevant temporal variations.
We note also that the distributions have often high values on the axes,
i.e. many vectors with a single null component are estimated. As the ME
algorithm we use does not allow vectors pointing outside the frame, the
estimation of vectors near the border of the image has often a null value
for the component orthogonal to the border, see an example in Fig. 5.7
(left).

5.2 Encoding techniques: space compression

We have proposed, implemented and tested some methods to encode mo-
tion vectors with the JPEG2000 algorithm. The basic idea is that motion
vector fields exhibit a remarkable spatial correlation, that has to be re-
duced in order to achieve compression. A still image compression algo-
rithm would accomplish the job, and so JPEG2000 is used. Of course, it
has to be adapted to these peculiar data and to our requirements. There-
fore, we used the following general settings for the JPEG2000 encoder:

• no wavelet decomposition (0 decomposition levels);

• no psychovisual weighting of components;

• all bitplane encoded.

This configuration assures reversible (lossless) coding, as, indeed we use
the EBCOT encoder on MV data. Anyway, there are several way to arrange
the data before sending them to the encoder. In this section, we consider
three simple encoding strategies, trying to take advantage from spatial
correlation of MV. We choose to not perform wavelet decomposition since
this operation proved to increase the encoding cost for the lossless case.
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Figure 5.1: MVF distribution: “flowers and garden”, full pixel precision
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Figure 5.2: MVF distribution: “flowers and garden”, half pixel
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Figure 5.3: MVF distribution: “bus”, full pixel
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Figure 5.4: MVF distribution: “bus”, half pixel
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Figure 5.5: MVF distribution: “foreman”, full pixel
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Figure 5.6: MVF distribution: “foreman”, half pixel
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Figure 5.7: Example of MVF and corresponding images for the JP2K Single
Image technique

The first strategy is the most straightforward: we consider the horizon-
tal and vertical component of a MVF as a couple of images, and the two
resulting files feed as two input components the JPEG2000 encoder, which
outputs the encoded stream and the lossless encoding rate. This is re-
peated for each MVF. An example is shown in Fig. 5.7, where we report
a MVF for the “flowers” sequence, and the corresponding couple of im-
ages. We note that these images are scaled by the block size with respect
to the video frames (as a “pixel” is obtained for each block), so the larger
the blocks, the smaller these MVF images. We refer to this first strategy as
JP2K Single Image.

The second strategy aims avoiding the problem of managing too small
images, that is what can happen with the first strategy. Let N be the num-
ber of MVFs; the horizontal components of all MVFs are pasted together in
a large image, made up of M1 × M2 MVFs where N = M1 · M2. The same
is done for the N vertical components. Then the two images are given in
input to the encoder, as two components of a single image. An example
of these MV images is given in Fig. 5.8, where we show a couple of im-
ages taken from the “flowers and garden” sequence. This example shows
how these images can be in fact quite regular, and so we can expect pretty
good performance if motion is regular. We refer to this strategy as JP2K
Big Image.
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(a) (b)

Figure 5.8: Example of MVF images for the JP2K Big Image technique:
horizontal (a) and vertical (b) components.

Third strategy: each vector field gives two components images, as in
Fig. 5.7. All of these images in a group of pictures (GOP) are regarded as
components in a multi-component image, and jointly encoded. We refer
to this last technique as JP2K Spectral.

5.2.1 Experimental results

We considered the following test sets: we encoded MVFs computed on
the first 64 frames of the gray-level ”foreman” sequence, with full and
half pixel precision, and block sizes 8 × 8 and 16 × 16. The MVs have
been computed with a block matching algorithm, which minimizes a MSE
based criterion, with a slight regularization (i.e. low values of α and β, see
Section 4.4). Up to three temporal decomposition levels have been con-
sidered, and results are provided for each of them. Indeed, as we saw
in previous Section, MV belonging to different decomposition levels can
have quite different characteristics: first the dynamics increases with the
level; moreover, at increasing levels, ME involves frames which are quite
distant in time, and then can be quite different. This means that estimated
vectors for these levels can be irregular and chaotic, in other words, diffi-
cult to encode. This will be confirmed by the increase in entropy of MV, as
observed in this test.

In order to assess the effectiveness of the proposed strategies, we com-
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No. of Time Dec. Levels
Method 1 2 3

Joint entropy 4.27 4.61 4.93

Difference entropy 4.53 4.98 5.35

JP2K Single Image 4.86 5.34 5.86

JP2K Big Image 4.32 4.61 4.91

JP2K Spectral 4.71 5.15 5.55

Table 5.1: Experimental results: full pixel precision, block size 8 × 8

No. of Time Dec. Levels
Method 1 2 3

Joint entropy 3.33 3.61 3.86

Difference entropy 3.44 3.83 3.99

JP2K Single Image 5.69 6.15 6.64

JP2K Big Image 3.55 3.92 4.25

JP2K Spectral 3.81 4.28 4.80

Table 5.2: Experimental results: full pixel precision, block size 16 × 16

pared the coding cost to the first order entropy of MVFs, called here “joint
entropy” in order to emphasize that we are considering the vectors com-
ponents jointly. Further on we will consider the component marginal en-
tropy as well. Moreover, for this test, we also computed the entropy of the
differences between each MVF and the previous one. This entropy value
represents a lower bound for a temporal predictive encoding technique.
We compute this quantity in order to assess wether such a strategy could
be favourable.

The results of our tests are synthesized in Tab. 5.1 to 5.4. In these tables,
we report the encoding cost per vector expressed in terms of bits needed
for encoding a single vector. The entropy is expressed in bits per vector as
well. Bold types are used for the lowest value for a specific decomposition
level. Italic types are used for the best encoding technique.

From these results we can draw some conclusion.

• Difference entropy is always larger than joint entropy. This suggest
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No. of Time Dec. Levels
Method 1 2 3

Joint entropy 4.90 5.18 5.43

Difference entropy 5.14 5.51 5.81

JP2K Single Image 5.83 6.30 6.77

JP2K Big Image 5.35 5.63 5.86

JP2K Spectral 5.69 6.13 6.48

Table 5.3: Experimental results: half pixel precision, block size 8 × 8

No. of Time Dec. Levels
Method 1 2 3

Joint entropy 4.23 4.46 4.66

Difference entropy 4.29 4.63 4.87

JP2K Single Image 6.98 7.46 7.92

JP2K Big Image 4.88 5.25 5.52

JP2K Spectral 5.10 5.60 6.09

Table 5.4: Experimental results: half pixel precision, block size 16 × 16

us that differential coding techniques are not well suited for MV en-
coding. Moreover, as we expected, entropy increases with temporal
decomposition levels.

• The first JPEG2000 strategy (JP2K Single Image) has the worst per-
formance, as it has to compress quite small images, with peculiar dy-
namics. Indeed, it performs especially badly when bigger blocks (i.e.
smaller MVF images) are considered. Moreover it performs badly
with full pixel and sub-pixel precisions.

• The JP2K Big Image strategy has coding cost close to the entropy
when small blocks with full pixel precision are considered, as in this
case we have bigger and more correlate MVF images. In one case
JP2K Big Image has a coding cost lower than the joint entropy. This is
not surprising, as we consider a first order entropy, while the EBCOT
coding technique takes advantage of contextual information [90]. In
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any case it is always better than the other techniques.

• The JP2K Spectral strategy performs worse than the JP2K Big Image.
A possible explanation is the small dimensions of each component,
that is in this case, only 19 × 22 pixels.

• The encoding cost per vector always increases when block size is re-
duced (but for the JP2K Single Image strategy, as already poitned
out). This could be surprising, as reducing block size increase corre-
lation between vectors. Probably this behavior is due to irregularities
in motion estimation, that affect a larger number of vector if we have
smaller block sizes.

• Encoding cost per vector always increases with better precision, as
we could expect. This increment is about 1 bit.

• Experiments provide evidence that at least one among these tech-
niques is able to get coding rates close to MVF entropy, and, in one
case, to improve upon it. This is an encouraging result, as the “fore-
man” sequence has quite an irregular motion. We expect even better
results on more regular sequences. Further tests, shown later in this
chapter, prove this intuition to be true.

5.3 Encoding techniques: time compression

In the previous section, we compressed MVFs essentially by exploiting
their spatial redundancy. In this section we analyze other JPEG2000-based
encoding techniques which also try to take advantage from the temporal
correlation of MVF.

However, we saw that a simple temporal prediction technique is not
likely to bring better performance, as difference MVFs have a larger en-
tropy than the original. So we proposed and analyzed some other tech-
niques, which are characterized by different arrangements of MVF data.

Moreover, it is worth noting that proposed techniques do not take ad-
vantage of the correlation between MV components, as these are encoded
independently. This suggests that marginal components entropy would
be a more fair benchmark for our technique than joint (or vector) entropy.
Marginal entropy is the sum of the two component entropies, and it is of
course always greater than or equal to their joint entropy.
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5.3.1 Experimental results

In this experiment we assess performance of two new techniques:

Fourth strategy. We consider separately vertical and horizontal compo-
nents, as usual. For each component, we consider the value in position
(0, 0) for each MVF to encode. With this values we build a first rectangu-
lar block. Then we do the same for all values in position (0, 1), obtaining
a second block. We continue until (0, Nc − 1), obtaining Nc blocks (Nc is
the number of column in a MVF image). Then we align all these block in
a row. We build a second row with values in positions (1, 0), (1, 1), . . . ,
(1, Nc − 1). We continue until all rows the MVF image are scanned. This
technique puts in near spatial positions MVF values that are temporally
near, trying to transform the temporal correlation of MVF in a spatial cor-
relation, to exploit with the JPEG2000 encoder. This technique is referred
to as JP2K Scan.

Fifth strategy. Let us consider the MVF images as in Fig. 5.7. Instead of
pasting them together, as in the JP2K Big Image technique, we take a the
first row from each of them and we compose a first image; then we do the
same with successive rows. Finally, we past together those images, as we
do in the JP2K Big Image technique. In this way we exploit the temporal
correlation existing among rows at the same position in successive MVFs.
Indeed, we transform this temporal correlation into a spatial correlation,
and we use JPEG2000 on the images. We refer to this method as JP2K Rows.

We considered once again the first 64 frames of “foreman” sequence,
with a block size of 16 × 16. We considered full pixel and half pixel preci-
sions.

Experimental results are shown in Tab. 5.5 and 5.6, where, for compar-
ison, we reported previous techniques performance as well. Typographic
conventions are the same that in tables 5.1 – 5.4.

JP2K Single Image and JP2K Scan seem to be the worst techniques,
since they have a coding cost always larger than the marginal entropy.
JP2K Spectral has a coding cost always lower than marginal entropy, but
very close to it. JP2K Big Image and JP2K Rows attain the best perfor-
mance (with JP2K Big Image better than JP2K Rows but for a case). They
have a coding cost significatively lower than the marginal entropy, and not
very far from the joint entropy.
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No. of Time Dec. Levels
Method 1 2 3

Joint entropy 3.33 3.61 3.86

marginal entropy 3.97 4.45 4.88

JP2K Single Image 5.69 6.15 6.64

JP2K Big Image 3.55 3.92 4.25

JP2K Spectral 3.81 4.28 4.80

JP2K Scan 4.42 5.08 5.81

JP2K Rows 3.57 4.17 4.79

Table 5.5: Vector coding cost in bit per vector: full pixel precision

No. of Time Dec. Levels
Method 1 2 3

Joint entropy 4.23 4.46 4.66

marginal entropy 5.29 5.72 6.10

JP2K Single Image 6.98 7.46 7.92

JP2K Big Image 4.88 5.25 5.52

JP2K Spectral 5.10 5.60 6.09

JP2K Scan 5.88 6.50 7.19

JP2K Rows 4.81 5.49 6.07

Table 5.6: Vector coding cost in bit per vector: half pixel precision
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5.4 Validation of MVF coding techniques

Previous experiments highlighted JP2K Big Image and JP2K Rows as the
best techniques in the case of “foreman” sequence. Then we performed
further tests on more sequences: we considered the first 128 frames of the
sequences “foreman”, “flowers and garden”, and “bus”. Moreover, we in-
troduced also a slight variation of the JP2K Big Image technique, consist-
ing of the use of a simple median-prediction algorithm applied on each
MVF image, in order to exploit the spatial correlation among neighbour-
ing vectors. Then, the prediction error images are used to build the large
image which is given as input to the JPEG2000 encoder. This technique is
referred to as JP2K Spatial Prediction.

The coding costs of these techniques are compared to the joint entropy
and to the marginal entropy of MVs, computed with respect of two dif-
ferent representations of MVs: as cartesian components or as polar com-
ponents. In conclusion we consider three statistical information about
motion vectors: the entropy of motion vectors, i.e. joint entropy of hori-
zontal and vertical component (called vector joint entropy), as usual; the
sum of marginal entropies of vector components in rectangular coordi-
nates (called (X, Y) marginal entropy); and the sum of marginal entropies
of vectors components in polar representation (called (ρ, θ) marginal en-
tropy). In this case vectors are represented as an energy level (i.e. the norm)
and a label which singles out the vectors among those with the same en-
ergy level. We note that in Z2 there are usually only a few vectors with the
same energy level [23].

The first quantity represents a limit for first order encoding techniques
operating on a vector as a single symbol. The second represents a limit for
encoding techniques operating on horizontal and vertical components of
MV. The third one represent a limit for techniques which encode the norm
and the angle of each vector. This experiment is performed in order to
understand whether such a representation could improve motion vector
encoding. We note that none of the proposed techniques exploits directly
the dependence between horizontal and vertical components of MVFs.

5.4.1 Experimental results

These techniques were tested on the first 128 frames of the “foreman”,
“flower and garden”, and “bus” sequences. A block size of 16 × 16 pixels
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and full or half pixel precision have been considered.
Results are shown in tables from 5.7 to 5.12, where we reported the

encoding cost expressed in bits per vector. In each table we set in bold the
absolute lowest value, among both entropies and coding costs; we set in
italic both the best coding technique and the best marginal entropy.

We note that all of three proposed techniques have in any test config-
uration cost lower than marginal entropy of cartesian components, which
is almost always the higher value: only in a few cases the (ρ, θ) Entropy is
greater. Of course both of them are always greater then joint entropy. This
suggests that we could take advantage of a technique encoding vectors
represented by norm and angle rather than vectors in cartesian represen-
tation. This issue is addressed in Section 5.5.

The following remarks are related to specific sequences.
For the “flower and garden” sequence, which is characterized by a very

regular motion, at full pixel resolution, all proposed techniques performs
always better than joint entropy, and the JP2K Rows technique has the
best performance. At half pixel resolution, proposed techniques performs
better than entropy but for the four decomposition levels case. Spatial
prediction and JP2K Rows are the best encoding techniques, but JP2K Big
Image has close performance.

Results obtained for the “bus” sequence are a little different. We see
that proposed techniques have good performance for 1 and 2 decomposi-
tion levels, and that spatial prediction is almost always the best. Moreover,
(ρ, θ) entropy is almost always lower than (X, Y) entropy.

Finally, for the “foreman” sequence, where we see that proposed tech-
niques performs always worse than both joint entropy and (ρ, θ) entropy,
which is always better than (X, Y) entropy. This difference is greater when
we increase precision and time decomposition level. Among proposed
techniques, JP2K Big Image performs always better than others.

In conclusion, experimental results show that, considering different
kinds of video sequences, proposed techniques keep an encoding cost
lower than MV marginal entropies (both for cartesian and polar represen-
tation). Moreover, for more regular sequences, they are able to achieve an
encoding cost lower than MV joint entropy. We can conclude that all of
these techniques are good enough for the proposed video coder. Anyway,
we expect that algorithm explicitly designed for MV encoding perform
better than the proposed techniques. This is the price we pay to achieve
JPEG2000 compatibility.
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No. of Time Dec. Levels
Method 1 2 3 4

Vector joint entropy 2.27 2.62 2.85 3.00

(X,Y) marginal entropy 2.37 2.82 3.14 3.39

(ρ, θ) marginal entropy 2.59 2.98 3.23 3.39

JP2K Big Image 1.71 2.21 2.55 2.83

JP2K Spatial Pred. 1.86 2.35 2.70 3.00

JP2K Rows 1.27 1.77 2.21 2.57

Table 5.7: Sequence “flower”, precision 1 pixel

No. of Time Dec. Levels
Method 1 2 3 4

Vector joint entropy 3.54 4.01 4.34 4.54

(X,Y) marginal entropy 3.89 4.55 5.06 5.43

(ρ, θ) marginal entropy 3.98 4.45 4.77 4.96

JP2K Big Image 3.20 3.97 4.57 5.01

JP2K Spatial Pred. 3.29 3.95 4.47 4.90

JP2K Rows 3.34 4.23 4.93 5.40

Table 5.8: Sequence “bus”, precision 1 pixel

No. of Time Dec. Levels
Method 1 2 3 4

Vector joint entropy 3.12 3.47 3.74 3.91

(X,Y) marginal entropy 3.74 4.26 4.70 5.01

(ρ, θ) marginal entropy 3.60 3.94 4.22 4.39

JP2K Big Image 3.30 3.84 4.34 4.70

JP2K Spatial Pred. 3.50 4.03 4.53 4.92

JP2K Rows 3.40 4.05 4.65 5.05

Table 5.9: Sequence “foreman”, precision 1 pixel
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No. of Time Dec. Levels
Method 1 2 3 4

Vector joint entropy 3.74 4.18 4.46 4.56

(X,Y) marginal entropy 4.08 4.69 5.13 5.31

(ρ, θ) marginal entropy 4.18 4.63 4.91 4.99

JP2K Big Image 3.26 3.95 4.46 4.69

JP2K Spatial Pred. 3.31 3.94 4.39 4.62

JP2K Rows 2.92 3.89 4.58 4.88

Table 5.10: Sequence “flower”, precision 1
2 pixel

No. of Time Dec. Levels
Method 1 2 3 4

Vector joint entropy 4.67 5.11 5.40 5.55

(X,Y) marginal entropy 5.24 5.90 6.38 6.70

(ρ, θ) marginal entropy 5.04 5.48 5.76 5.91

JP2K Big Image 4.57 5.39 5.98 6.38

JP2K Spatial Pred. 4.38 5.02 5.50 5.86

JP2K Rows 4.72 5.57 6.24 6.65

Table 5.11: Sequence “bus”, precision 1
2 pixel

No. of Time Dec. Levels
Method 1 2 3 4

Vector joint entropy 4.13 4.41 4.61 4.73

(X,Y) marginal entropy 5.12 5.58 5.95 6.19

(ρ, θ) marginal entropy 4.62 4.89 5.09 5.20

JP2K Big Image 4.66 5.19 5.65 5.94

JP2K Spatial Pred. 4.82 5.34 5.78 6.07

JP2K Rows 4.65 5.35 5.93 6.28

Table 5.12: Sequence “foreman”, precision 1
2 pixel
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Among the proposed techniques, no one clearly emerges as the best
one. Nevertheless, the JP2K Big Image is the most robust and the simplest
(it has always good performance and other techniques derive from it), so
it is the most reasonable choice.

5.5 Vector coding via energy and position

MVFs can be represented in both rectangular and polar coordinates. Ex-
periments presented in the previous Section showed that this representa-
tion is often convenient with respect to the usual cartesian representation.
A simple variant of polar representation is called “Energy and Position”
representation. Each vector has an “energy”, which can be variously de-
fined. Common choices are E = v2

x + v2
y or E = |vx| + |vy|. When vectors

are a subset of Z
2 (or can be reduced to such a kind of subset, as always

happens with 2−m-precision vectors) we can enumerate the possible en-
ergy level: let E be the set of such levels.

For each energy level e ∈ E , the set of possible vectors is finite and uni-
vocally defined. So we can choose an arbitrary indexing for each energy
level, which allows one to single out each vector of this level. Let Ie be
the set of possible indexes for the e-th energy level. Then a vector is com-
pletely described by the couple energy level, index (e, i) ∈ E × Ie ⊂ Z

2.
We also call position the index i of a vector.

If the energy is the L2 squared norm (that is E = v2
x + v2

y), it can be
shown that only a few vectors exist for each energy level [23, 53], that
is, the number of admissible positions, |Ie|, is usually 4 or 8, and, very
rarely, larger. Therefore, positions can be described with a few bits. On the
other hand, in this case the number of possible energy levels, |E |, grows
with quadratic law with respect to the size of the largest vector compo-
nent, while usually only a few of the possible energy levels are actually
occupied. So it is expensive to represent energy components.

Some results for the energy-position representation are in table 5.13.
Tests were performed on first 32 frames of the “foreman” sequence using
up to three levels of temporal decomposition. In the table we reported the
Entropy of Energy and Position information, and the corresponding cod-
ing cost. Moreover we report the Joint Vector Entropy, which is lower than
the sum of Energy and Position Entropies, and, for comparison, the global
coding cost per vector, which instead is the sum of Energy and position
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1 2 3
Level Entropy Cost Entropy Cost Entropy Cost

Energy 2.79 5.64 3.10 6.07 3.36 6.47
Position 1.04 1.16 1.00 1.18 1.00 1.23
Vector 3.33 6.80 3.61 7.24 3.86 7.70

Table 5.13: Vectors entropy and encoding cost with energy-position repre-
sentation
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Figure 5.9: Example of energy and position for first 16 MVF in “foreman”

coding costs.

Energy and positions are encoded by grouping them from several mo-
tion vector Fields. A single image is then created and sent as input to a
JPEG2000 encoder: in figure 5.9, we reported an example of Energy and
Position “images”.

We see that while position is fairly well encoded, this is not the case for
energy, as, even though actually only a few values of energy are present,
very large value can occur, requiring a suitable dynamics, which makes
the encoder job more difficult. For this, example only 93 different energy
levels were observed, while the dynamics was 12 bit (i.e. the max energy
value observed was 2047).

If the energy is the L1 norm (that is E = |vx|+ |vy|), it can be shown that
many vectors exist for each energy level, namely, the number of admissible
positions, |Ie|, is 4e. In this case thus, positions can be described with
log2 e + 2 bits. On the other hand, |E | grows linearly with respect to the
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maximum vector component, and usually not many of the possible energy
levels are actually occupied. So it is less expensive to encode energy, but
unfeasible to encode positions. First experiments in this sense revealed
worse performance than the previous case.

We conclude that the Energy-Position representation is not suitable for
JPEG2000 compatible coding of motion vectors, even though it could be in
general a good alternative to the usual Cartesian representation.

5.6 Scalable motion vector encoding by wavelet

transform

In this Section we deal with a problem that is slightly different from what
we saw in the previous Sections of this chapter. Namely, we are interested
in scalable and possibly lossy coding of Dense motion vector Fields.

As already pointed out, an efficient representation of motion informa-
tion can not be the same both at high and at low bit-rates, and when the
resources are scarce, a lossy encoding technique for MVFs becomes inter-
esting. Moreover, if we think about the heterogeneity of networks and
users, scalability also assumes an increasing importance. Hence we pro-
pose an embedded encoding algorithm, which should then assure low cost
encoding when low encoding resources are available, and the ability of
lossless encoding when a high bit-rate is available.

5.6.1 Technique description

Let us see how the proposed technique meets these demands. First of all
we compute a dense MVF (that is, a vector for each pixel) at high precision
(i.e. quarter pixel or better), obtained by spatial B-Spline interpolation [97]
of original sequence; indeed, we are going to encode MVFs with a scalable
technique allowing both lossless and lossy reconstruction, so we leave to
the MVF encoder the job of rate reduction, while in the ME we simply get
the most complete information about movement. With respect to Fig. 4.2,
we choose a ME algorithm which assures the rightmost point in the RD
curve. Then the MV encoding algorithm is charged of finding the “best”
operational point, or at least a good compromise among precision and
cost.
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Once a dense MVF is computed, its vertical and horizontal compo-
nents undergo a JPEG2000 compression scheme: bi-dimensional WT is
performed on them, with a decomposition structure that can vary, but that
we initially chose as the usual dyadic one. We can use both integer filter
like the Daubechies 5/3 filter, which allows perfect reconstruction even
with finite precision arithmetics, and non integer filter like the Daubechies
9/7 filter which guarantees better performance, implemented by lifting
scheme. First experiments suggested us to use three decomposition lev-
els on each component. The resulting subbands are encoded by EBCOT,
which gives an efficient and scalable representation of MVFs: by increas-
ing the number of decoded layers, we get an ever better MVF, and, when
all layers are used, we get a lossless reconstruction, thanks to the use of
integer filters.

5.6.2 Proposed technique main features

The proposed technique aims to reproduce and generalize the behavior of
variable size block matching (VSBM): thanks to the multi-resolution prop-
erties of WT, lossy compression of WT coefficients tends to discard data
from homogeneous area in high frequency subbands, and to preserve high
activity areas: this is conceptually equivalent to adapting the resolution of
motion information representation to its spatial variability, that is, to in-
crease or decrease the block size like in VSBM, but with the advantage of a
greatly extended flexibility in representation of uniform and non uniform
areas, which are no longer constrained to rectangular or quad-tree-like ge-
ometry. This is shown in Fig. 5.10 and 5.11, where a dense and regularized
(α = 10, β = 5) MVF and its lossy-compressed version are shown. The
value of each component is represented in gray scale, with medium gray
standing for null component.

Another advantage of the proposed technique is that it supplies a way
to degrade gracefully motion information, so that it becomes easier to find
the best allocation of the total available rate RT between MVFs RMV and
coefficients RSB (see also Chapter 7). In fact it is clear that an optimal split
must exist: performance always improve from the case we do not use MC
(Rmv = 0) to the one in which it is used (Rmv > 0), and it is also clear that
performance decreases when Rmv tends to saturate RT. With the proposed
technique we are able to smoothly vary the rate dedicated to MVFs, and so
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Figure 5.10: Original dense MVF, frame 5, horizontal and vertical compo-
nent. Entropy > 10 Mbps, rate 3.5 Mbps with lossless compression

Figure 5.11: Decoded MVF, frame 5, horizontal and vertical component.
Encoding rate 0.02 bit/vector, or 75 kbps with lossy compression
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Figure 5.12: Scalable Lossy coding of MVFs

we can more easily find the optimal allocation. In [21] it was proposed to
change MVF bit-rate by modifying the quad-tree representation of MVFs,
while in [71] the MV bit-rate was varied in function of MV precision.

Some other results of this coding technique in the lossy case are shown
in Fig. 5.12: here we report the prediction MSE of lossy-encoded MVFs
as a function of the coding rate, when the filter used for WT is changed.
We note that it is possible to strongly reduce the rate without too much
increasing the MSE. We also remark that the 9/7 filter has better perfor-
mance in a wide range of rates.

In [5] scalability of MVFs was obtained by under-sampling and approx-
imating the estimated vectors, and by refining them in the enhancement
layers, and the scalability was strictly related to subband decomposition.
Here, instead, the proposed algorithm ensures a more flexible embedded
description of MVFs.

In conclusion the proposed MVF coding technique presents the advan-
tages of providing a scalable and JPEG2000 compatible representation of
MVFs. As it is a lossy technique it cannot be directly compared to the
technique previously described in this chapter. Anyway it presents some
disadvantages as well. First, it requires a Dense MVF, which is very heavy
to compute; but the main problem is that when lossy coding is performed,
we lose sensibility on the real error introduced in motion compensation by
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the error on motion vectors. Secker and Taubman [80] showed that if the
error on MV is small, then the motion compensation error is proportional
to MV error. Anyway, this cannot be generalized to arbitrarily large errors:
it is intuitive indeed that a large error on MV in an homogeneous region
causes a smaller error than a small error in a border region does.

For these reasons, even though the proposed technique is quite inter-
esting, it has not been possible until now to find a suitable configuration
which assures good overall performance for a wide range of input video
sequences.
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Chapter 6

Space Analysis Stage and the
Resource Allocation Problem

Yo afirmo que la Biblioteca es interminable. Los idealistas ar-
guyen que las salas hexagonales son una forma necesaria del espacio
absoluto o, por lo menos, de nuestra intuición del espacio. Razonan
que es inconcebible una sala triangular o pentagonal. [...] Básteme,
por ahora, repetir el dictamen clásico: La Biblioteca es una esfera
cuyo centro cabal es cualquier hexágono, cuya circunferencia es in-
accesible.1

JORGE LUIS BORGES

La Biblioteca de Babel, 1941

6.1 Spatial filtering and encoding

In the spatial analysis stage, the temporal subbands (SBs) produced by the
temporal analysis stage undergo a spatial WT, resulting in a global three-

1I affirm that the Library is interminable. The idealists argue that the hexagonal sa-
lons are a necessary form of absolute space, or, at least, of our intuition of space. They
rationalise that a triangular or pentagonal salon is inconceivable. [...] It suffices, for now,
to repeat the classical dictate: ”the Library is a sphere whose exact center is whichever
hexagon, whose circumference is inaccessible.”
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dimensional WT. Then, these WT coefficients have to be encoded, and this
is accomplished by using JPEG2000. We report for reference the scheme of
the space analysis stage in Fig. 6.1.

Each subband can be seen as a set of images. Thus, we can encode each
SB with the EBCOT algorithm. This assures very good performance for
the lowest temporal subband, which is a subsampled version of the input
sequence if (N, 0) LS is used, or otherwise a subsampled and filtered ver-
sion of the input. On the other hand, higher frequency subbands are not
natural images, nor have similar characteristics. Indeed, when MC-ed LS
are used, high frequency SBs represent the variations of details, luminos-
ity, and motion, which have not been caught by the MC-ed temporal filter.
Several examples of this kind of images are given in Fig. 6.2. Nevertheless,
the application of JPEG2000 on this kind of data proved to have compet-
itive performance. Of course some tuning of the algorithm parameters
is required, concerning color management, the number of decomposition
levels and the floating point data representation.

Color sequences are managed as follows. Our codec can accept both
4 : 2 : 0 and 4 : 0 : 0 YUV sequences as input. If chrominance is present,
MC-ed filtering is performed on it by using suitably scaled MVs. Then the
temporal subband are composed by luminance and chrominance frames.
The allocation algorithm is performed on luminance frames only. The rate
allocation for chrominance is in a fixed ratio with the rate for the corre-
sponding luminance temporal band. More details on color management
are given in B, with some complete examples of allocation as well.

Once the encoding technique has been chosen, the main problem is the
resource allocation. In other words, we have to decide what rate to assign
to each SB, in order to achieve the best possible performance.

In this chapter, we make the basic assumption that the total rate avail-
able for subband encoding is given a priori. Actually, the choice of an opti-
mal subdivision of resources between MV and SB coding is anything but
a simple problem. Two possible approaches can be envisaged. According
to the first one, we split the problem into two steps: we look for the best
allocation among MV and subbands considered as a whole (i.e. we look for
an optimal subdivision of RT among Rmv and Rsb); then we try to allocate
Rsb among subbands. This is the implicit model we used through this and
the previous chapters. Namely, we give details of the second step of this
algorithm in this chapter, while some hints about the first step are given
in Section 7.3. This approach is also the most common in the scientific
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Figure 6.1: Spatial analysis: processing of the temporal subbands pro-
duced by a dyadic 3-levels temporal decomposition

literature [21].

Despite the simplification of subdividing the allocation process into
two steps, this problem is quite challenging, as it requires to model ac-
curately the encoder, to find an analytical description of the problem, to
solve it and to find a feasible implementation of the solving algorithm. We
address these topics in the remainder of this chapter.

The second approach aims at jointly allocating MVs and all subbands
rates. We developed some aspect of this problem from a theoretical point
of view: results are given in Section 7.4.

6.2 The resource allocation problem

The problem of allocating the coding resources among subbands presents
two kind of difficulties: first we need to define and to model a general
framework; then we have to cope with the computational complexity and
implementation issues of possible solutions.

The resource allocation problem is very common in data compression
[30]. We can generically describe this problem as follows. Let us suppose
to have a given encoding technique, and M signals to encode, produced
by as many random processes. We can consider the spatiotemporal SBs
resulting from MC-ed WT as these signals. The resource allocation prob-
lem consists in finding a rate allocation vector, R∗ = {R∗

i }M
i=1 such that,
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Figure 6.2: Examples high frequency temporal subband (H) frames

when the i-th signal is encoded with the given encoding technique at the
bit-rate R∗

i for each i ∈ {1, 2, . . . , M}, then a suitable cost function is mini-
mized while certain constraints are satisfied. Then, for the given encoding
technique, this is the optimal allocation.

Let us apply this generic definition to our problem. As previously men-
tioned, the M signals are the SBs; as cost function, we can choose the dis-
tortion of the decoded sequence, and in this case, the constraint is imposed
on the total bit-rate, which should be lower than a given threshold (rate al-
location problem). However, the total rate could be our cost function, as
well. In this case, there will be a constraint on the total distortion (dis-
tortion allocation problem). These two problems show a deep symmetry,
and, as we will see later, in our approach they have very similar solutions.

Our target is then to define a general framework for optimal resource
allocation in the context of motion-compensated WT-based video coding.
We need several tools in order to approach this problem, as we have to
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model the global distortion, to solve analytically the allocation problem
and to find an algorithm that attains the optimal solution. Once such an
algorithm has been found, a further problem is to find a limited complex-
ity implementation.

Before describing the proposed framework and solutions, we briefly
review the scientific literature about the resource allocation problems (sec-
tion 6.3). Then we introduce our contribution (Sections 6.4, 6.5, and 6.6)
which mainly consists of: defining an analytical approach for resource
allocation in the framework of WT-based video coding; extending exist-
ing models for distortion in the case of (N, 0) temporal filtering; develop-
ing an analytical solution to both rate allocation and distortion allocation
problems; defining a model for subband RD curves, which makes the al-
gorithm computationally feasible.

6.3 Existing solutions for the resource allocation

problem

The problem of allocating coding resources dates back to the 60s, when
it was recognized as a key issue in transform coding and subband cod-
ing problems. A first analytical approach is due to Huang and Schultheiss
who, in [34], stated the theoretical optimal bit-rate allocation for generic
transform coding in the high-resolution hypothesis. They derived a for-
mula which defines the optimal bit-rate to allocate to each random vari-
able, depending on their variances. Unfortunately, this simple and elegant
solution holds on only when a high rate is available for encoding.

An analytical expression of optimal rates has not been found for the
general case, and different approaches have been applied. The most suc-
cessful and widespread among them try to achieve optimal allocation by
modelling the relationship between RD characteristics of random vari-
ables and global RD characteristic. The goal is to find an optimal allocation
condition on the rates of the random variables, which assures the mini-
mization of distortion [rate] for a given maximal rate [distortion] of the
reconstructed data. For example, the well known SPIHT algorithm implic-
itly aims at optimal allocation by modelling the relationship between WT
coefficient quantization and reconstructed image distortion. The most re-
cent still images compression standard JPEG2000 divides WT coefficients
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in code-blocks, and then defines an optimality condition on code-blocks
RD curves which assures the minimum distortion of reconstructed image.
A crucial step of this rate allocation algorithm is the assessment of code
block RD curves, which however, is performed in a quite rough way.

The proposed encoder follows a similar route. We want to find a con-
dition on SB encoding which assures optimal reconstruction for the video
sequence. Two main problems arise. The first one is to model the rela-
tionship among reconstructed video distortion (or global distortion) and
SB distortion. The second one is to compute or estimate SB RD curves.
These problems are not new in the scientific literature, and some solutions
already exist. For the first problem, we propose a new extension to some
existing solution which takes into account the peculiarities of our case, i.e.
the use of (N, 0) lifting scheme for temporal filtering. For the second we
propose a brand new solution, a spline-based modelling and estimation of
RD curves.

Let us now review some existing solutions for our problems. For the
case of orthogonal subband coding, in [30] Gersho and Gray showed that
global distortion can be expressed as sum of subband distortions:

D(R) =
M

∑
i=1

Di(Ri) (6.1)

Then, Usevitch [98] extended this result to the case of biorthogonal WT,
and gave some examples for the Daubechies filters. When the filters are
not orthogonal, (6.1) should be modified by using suitable weights which
account for non-orthogonality.

The model for global distortion is useless if we do not have the SB RD
curves, or an approximation of them. Actually, obtaining a reliable repre-
sentation of RD curves for each random variable is a common problem in
many optimization algorithms.

A brute-force simple approach could be to evaluate the curve in a large
number of points: each signal (generated by each random variable) is en-
coded and decoded many times at different rates, and then resulting dis-
tortions are computed and stored. Unfortunately, in order to have accurate
estimates in the whole range of possible rate allocation values, many test
points are required. So this approach requires a very high complexity.
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6.4 Rate allocation problem

Let us make the hypothesis that the technique for SB encoding is assigned,
which, in our scheme will be JPEG2000. Let Di = Di(Ri) be the Distortion-
Rate curve for the i-th SB and for the given encoding technique. We as-
sume the MSE between original and decoded subband as distortion mea-
sure, while the rate Ri is expressed in bits per pixel. We make also the
hypothesis that such RD curves are convex, which is reasonable since we
use the JPEG2000 encoder.

In the rate allocation problem, the cost function is the distortion of the
reconstructed sequence, indicated with D = D(R), as it depends on the
rate allocation vector R = {Ri}M

i=1. The constraint, in this case, is imposed
on total subband bit-rate RSB, which should not be larger than a given
value RMAX. The relationship between total bit-rate RSB and SB bit-rates
Ri (all of them expressed in bpp) is

RSB =
M

∑
i=1

aiRi (6.2)

where ai indicates the fraction of total pixels in the i-th subband. Namely,
if Pi is the number of pixel in the i-th SB,

ai =
Pi

∑
M
i=1 Pi

(6.3)

Thus, the constraint to impose can be written as:

M

∑
i=1

aiRi ≤ RMAX (6.4)

In order to develop our analysis, an expression for global distortion
D as a function of the vector rate R is needed. To this end, we can take
advantage from the results obtained by Usevitch [98], who developed the
expression of distortion for the case of WT decomposition by Daubechies
9/7 or 5/3 filters, and gave the tools for extending this solution to other
filters. He showed that global distortion can be expressed as a weighted
sum of subband distortions when Daubechies 9/7 or 5/3 filters are used:

D(R) =
M

∑
i=1

wiDi(Ri) (6.5)
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Subband
Filter H LH LLH LLLH LLLL

9/7 1.040435 1.022700 1.005267 0.988131 0.933540

5/3 1.4375 1.07813 0.808594 0.606445 0.316406

1/3 2 1.5 1.125 0.84375 0.316406

Table 6.1: Temporal subband weights (4 levels decomposition) for some
biorthogonal filters

The weights depend on the filter and on the decomposition scheme.
We extended this result to the case of (N, 0) lifting schemes, and we com-
puted these weights for the biorthogonal Daubechies 9/7 and 5/3 filters
and for the (2,0) lifting scheme, i.e. the 1/3 filter. The results are reported
in Table 6.1 where we consider four levels of temporal decomposition. It
is worth noting that, while Daubechies’ 9/7 (and, to a certain extent, also
5/3) filters are very near to be orthogonal (as their weights are near to the
unity) [99], this is not true at all for (N, 0) lifting schemes. Correct weight-
ing is then crucial in order to achieve a correct model for distortion, and
then to attain optimal allocation.

In conclusion, the rate allocation problem amounts to find the rate vec-
tor R which minimizes the cost function (6.5) under the constraint (6.4).

This problem can be easily solved using the Lagrange approach. We
introduce the Lagrangian functional J(R, λ):

J(R, λ) =
M

∑
i=1

wiDi(Ri) − λ(
M

∑
i=1

aiRi − RMAX)

By imposing the zero-gradient condition, we find that the resulting op-
timal rate allocation vector R∗ = {R∗

i }M
i=1 satisfies the following set of

equations:
wi

ai

∂Di

∂Ri
(R∗

i ) = λ ∀i ∈ {1, . . . , M} (6.6)

where λ is the Lagrange multiplier. We can read (6.6) this way: the op-
timal allocation rates correspond to points having the same slope on the
“weighted” curves (Ri,

wi
ai

Di).

A simple dichotomic search algorithm is proposed to find the optimal
rate allocation vector. Let us introduce the set of functions Ri(λ), defined
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implicitly by equation:

wi

ai

∂Di

∂Ri
(Ri)

∣∣∣∣
Ri=Ri(λ)

= λ,

assuming that Di is differentiable. In other words, the value of Ri(λ) is the
i-th subband’s rate which corresponds to a slope λ on the weighted RD
curve for that SB. The rate allocation problem consists in finding the slope
value λ∗ such that the total rate is equal to RMAX:

M

∑
i=1

Ri(λ∗) = RMAX

The solution is found by an iterative algorithm. Let ε be a suitable
tolerance, and j represent the number of attempts. It is sufficient to find

the first value λ(j) such that

RMAX − ε ≤
M

∑
i=1

Ri(λ(j)) ≤ RMAX (6.7)

We start by choosing an interval for slope values, say [λ
(0)
min, λ

(0)
max], in

which the solution certainly lies. Then, we initialize j = 0, and we set

λ(0) = 1
2(λ

(0)
min + λ

(0)
max). Now, while (6.7) is not met, if ∑i Ri(λ(j)) < RMAX,

we set

λ
(j+1)
min = λ(j)

λ
(j+1)
max = λ

(j)
max (6.8)

otherwise:

λ
(j+1)
min = λ

(j)
min

λ
(j+1)
max = λ(j) (6.9)

Finally, the new attempt value for slope is

λ(j+1) =
1

2

(
λ

(j+1)
min + λ

(j+1)
max

)
(6.10)

In the hypothesis of convex RD curves, we are sure that this algorithm
converge to a unique solution.
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6.5 Distortion allocation problem

Let us consider now the dual problem, that is the distortion allocation
problem. In this case, the cost function is the SB total rate RSB

RSB(R) =
M

∑
i=1

aiRi (6.11)

which should be minimized while a constraint is imposed on distortion:

D(R) =
M

∑
i=1

wiDi(Ri) ≤ DMAX (6.12)

By using the same approach as before, we obtain the Lagrangian func-
tional

J(R, λ) =
M

∑
i=1

aiRi − λ(
M

∑
i=1

wiDi(Ri) − DMAX) (6.13)

and, by imposing again the zero-gradient condition, we get:

wi

ai

∂Di

∂Ri
(R∗

i ) =
1

λ
∀i ∈ {1, . . . , M} (6.14)

This means, once again, that the optimal condition is the uniform slope
on the weighted curves (Ri,

wi
ai

Di). The algorithm proposed to find the

best allocation vector is then quite similar to the previous one. Indeed, it
is sufficient to change the termination condition which will be now

DMAX − ε ≤
M

∑
i=1

wiDi(Ri(λ(j))) ≤ DMAX (6.15)

while the interval updating now is described by (6.8) if ∑i wiDi(Ri) >

DMAX and by (6.9) otherwise. The new λ value is determined again by
(6.10). In this case as well convexity assures convergence to the unique
solution.

We remark explicitly that, in order to use this algorithm, we should be
able to compute, for each λ and for each subband, the function Ri(λ), i.e.
we should know the slope of the RD curves of every subband.
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Figure 6.3: Spline approximation of real RD curve

6.6 Model-based RD curve estimation

The problem of RD curve estimation is solved by introducing a paramet-
ric model [8], based on splines, which allows us to describe accurately
these curves with a few parameters, that is just a few points of the real
curve which, together with a tolerance parameter in the case of smoothing
splines, completely describe the spline. We tested two kinds of spline as
RD curve model: interpolation splines or smoothing splines [97].

Once this parametric representation is obtained, it is straightforward
to get the analytical expression of the RD curve first derivative, which is
what we need in order to apply the proposed rate allocation algorithm.
We note explicitly that the spline description of RD curve first derivative
is very compact and can be obtained from sample points with a very small
computational effort.

Many experiments were carried out in order to verify the effectiveness
of this representation. In all our experiments, spline proved to provide a
very good fit to any RD curve, even if different SBs have quite different
curves. For example, lowest frequency SB has a very steep curve at low
rates and a much more flat curve at higher rates. On the contrary, high
frequency SBs have more regular RD curves. Nevertheless, the proposed
approach is able to well represent any RD curve, usually with as few as
7 ÷ 10 points.
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Figure 6.4: Spline approximation of RD curve first derivative

In Fig. 6.3 we give an example of this method effectiveness. Here, we
report as a reference the “true” RD curve for the highest frequency SB com-
puted after 4 levels of motion-compensated temporal decomposition on
the first 16 frames of the “foreman” sequence (solid line). This curve has
been obtained by encoding and decoding the SB at two hundred different
rates. In the same graph we also reported the parametric representations
of this curve (dotted lines). These curves have been obtained by using just
7 points, those highlighted with a circle. We used both interpolation and
smoothing splines, and the results in both cases appear to be satisfying, as
the original curve and its parametric representations are almost indistin-
guishable.

In Fig. 6.4, for the same curve, we reported the “real” first derivative
and the first derivative of splines. Computation of splines derivatives can
be easily accomplished analytically. The resulting curves do not show the
irregularities which characterize experimental data. This mean that when
the allocation algorithm looks for points with the same derivative, we have
more robust results, especially at lower bit rates.

In conclusion, the model-based representation of RD curves is compu-
tationally very cheap (most of its complexity lies in computing test points
of RD curve) but, at the same time, it is very reliable, appearing to be a
very useful tool for applying the proposed optimal allocation algorithm.
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6.7 Scalability issues

We defined scalability as the property of a bit-stream to be decodable in
many different ways, with different visual parameters. When from an en-
coded video sequence it is possible to extract a reduced-resolution version
of the original data, the bit-stream is said to have spatial scalability. When
we can decode several versions at different frame-rates (for example only
even frames), the bit-stream is said to have time scalability. Finally, when
it is possible to decode only a part of the bit-stream, obtaining a version
of the original sequence at the same spatial and temporal resolution but
with a lower quality, we say that the bit-stream has bit-rate scalability or
quality scalability, or SNR scalability. Scalability is easily obtained with WT
based techniques. Let us consider Fig. 1.3, showing a one-level 2D WT of
an image. If we decode only the low frequency subband, we obtain imme-
diately a version of the original image at reduced resolution (there is also
a low pass filtering effect). Analogously, if we consider the WT temporal
decomposition scheme of Fig. 3.5 and we do not decode the H subband,
we obtain a temporally subsampled (and temporally filtered) version of
the input sequence. On the other hand, bit-rate scalability is a bit more
difficult to obtain. Nevertheless, the EBCOT algorithm in JPEG2000 pro-
vides a very finely scalable representation of WT coefficients, thanks to a
bit-plane representation. MPEG-4 quality scalability is obtained with bit-
plane encoding as well.

As we will see in the remainder of this chapter, the proposed codec
provides temporal, spatial, and quality scalability, ending up with a re-
markable flexibility for usage over heterogeneous networks. Temporal
and spatial scalability is easily obtained by choosing which WT subband
to decode. Quality scalability is obtained thanks to the embeddedness of
JPEG2000 bitstream.

Generally speaking, a scalable bitstream has no better performance
than what we can achieve by encoding directly the sequence at the de-
sired resolution, frame-rate and bit-rate. Moreover, the introduction of
scalability involves an increase of complexity in the encoding algorithm.
This is all the more true for hybrid video encoders, where time scalability
requires multiple prediction loops, which increase complexity and reduce
performance with respect the case where scalability is absent, in particular
for time and space scalability. For example, MPEG-4 fine grain scalability
suffers from a performance impairment of 2 to 3 dB when temporal scal-



100 6.7 SCALABILITY ISSUES

ability is used [50]. For this reason, in hybrid encoders, there are usually
only a few levels of temporal and spatial scalability. On the contrary, bit-
rate scalability is less critical.

It appears from previous considerations that introducing scalability
features in a video encoder causes some impairments. We define scalabil-
ity cost as the difference between the quality (expressed in terms of PSNR)
of the scalable bitstream decoded at a different resolution, frame-rate or
bit-rate from the original, and the quality that could have been achieved
by directly encoding the original sequence with the desired parameters.
A second component of the scalability cost is the increase in encoder al-
gorithm complexity. A smoothly scalable [9] encoder should have a null or
small scalability cost, i.e. the same (or almost the same) performance of its
non-scalable version with the same (or almost the same) complexity. In
the rest of this section we analyze in detail the scalability features of the
proposed encoder, showing that its scalability cost is quite small and that
it is in fact a smoothly scalable video encoder.

As for the notation, we indicate with R(0) the total bit-rate available for
the SBs. The non-scalable encoder must allocate these resources among

the M SBs, finding the optimal rate vector R(0) = {R
(0)
i }M

i=1, with the con-

straint ∑
M
i=1 aiR

(0)
i = R(0).

For a given total rate RT, the rate available for SBs is R(0) = RT −
RMV where RMV is the rate required to encode MVs. As we saw earlier
in this chapter, a Lagrangian algorithm can be used in order to find the
best allocation among SBs i.e. the allocation which minimizes the output
distortion for a given total rate. This algorithm takes as input the desired
target rate and a parametric model of subband rate-distortion (RD) curves,
and outputs the optimal rate allocation vector. If Di(Ri) is the distortion of
the i-th SB encoded at a rate Ri, we saw that the optimal allocation vector

R∗(0) = {R
∗(0)
i }M

i=1 satisfies the equations:

wi

ai

∂Di

∂Ri
(R

∗(0)
i ) = λ ∀i ∈ {1, . . . , M} (6.16)

where λ is the Lagrange multiplier, M is the number of SBs, and wi is a
suitable set of weights. The complexity of the rate allocation algorithm is
negligible with respect to other parts of the encoder, such as the wavelet
transform or the motion estimation.
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6.7.1 Bit-rate scalability

Bit-rate scalability (or quality scalability) should allow us to decode the

bitstream at a set of predefined bit-rates R(j) (with j = 1, . . . , N) different

from the encoding bit-rate R(0). We assume conventionally that

R(N)
< R(N−1)

< . . . < R(1)
< R(0)

As each SB is already scalably encoded with JPEG2000, we could truncate

its bitstream at an arbitrary rate R
(j)
i (where the index i refers to the i-th SB),

provided that ∑
M
i=1 aiR

(j)
i = R(j). However, with such a simple strategy,

there is no optimal bit-rate allocation among the SBs when decoding at the
j-th bit-rate. The solution is to compute in advance the bit-rate allocation

for each target bit-rate R(j) to find the optimal vector R(j) = {R
(j)
i }M

i=1.
Then we encode the i-th subband with N quality layers that correspond to

the bit-rates R
(j)
i for j = 1, . . . , N. At the decoder side, when we want the

total bit-rate R(j), it is sufficient to decode each SB at the quality level j. We
note that the MV information is not affected by the bit-rate scalability, as
we still need the same vectors as in the non-scalable case.

Thus, the scalably decoded bitstream for each target rate is almost iden-
tical to the non-scalable bitstream, as SB allocation is still optimal. The
only difference is the additional headers required for the quality layers.
As shown in Table 6.2 and in Fig. 6.5, this leads to a very small and prac-
tically negligible performance degradation. Here, we tested the SNR scal-
ability by non-scalably encoding the “foreman” sequence at 10 different
rates with our encoder. Then, we compared the resulting RD performance
with that obtained by scalably encoding the input sequence and decoding
it at the desired rates. The performance degradation is less than 0.1dB.

Another cost factor of the scalability is the complexity increase. In this
case, we must run N times the allocation algorithm instead of only once.
However, its complexity is much lower than the complexity of ME and
WT, and thus can be safely neglected.

6.7.2 Temporal scalability

As our codec produces temporal SBs by WT, it is straightforward to obtain
a temporally subsampled version of the compressed sequence from the en-
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Rate PSNR [dB] PSNR [dB] Scalability
kbps non-scalable scalable Cost [dB]

600 34.59 34.52 0.07

800 35.65 35.62 0.03

1000 36.53 36.47 0.06

1200 37.25 37.18 0.07

1400 37.87 37.81 0.06

1600 38.45 38.36 0.09

1800 38.95 38.88 0.07

2000 39.43 39.36 0.07

Table 6.2: Cost of SNR scalability (“foreman” sequence)

coded bitstream: it suffices to decode the lower temporal SBs only. How-
ever, when a generic temporal filter is used, reconstructing only lower
temporal SBs is equivalent to reconstructing a subsampled and filtered ver-
sion of the input sequence. This temporal filtering causes ghosting arti-
facts which can be very annoying to the final user. On the contrary, when
(N, 0) filters are employed, the temporal low pass filtering is indeed a pure
subsampling. Thus, reversing the WT of a sequence by taking into ac-
count only lower temporal subbands is equivalent to reversing the WT of
its temporally subsampled version. Moreover, the optimal rate allocation
among SBs is preserved through the temporal subsampling: recalling the
optimality condition (6.16), we note that discarding a SB means only de-
creasing M, but the optimality condition still holds for surviving SBs. The
only problem to deal with is the following: if we simply discard higher
temporal SBs, we loose control on the final total bit-rate. The solution is
once again to run the allocation algorithm only for the desired number of
temporal SBs, with the suitable target rate. This will generate a new set
of quality layers. A simple signaling convention can be established for
the decoder to choose correctly the quality layers according to the desired
level of temporal (and possibly quality) scalability. We point out that MV
can be easily organized in different streams for each temporal scalability
layer, as they are encoded separately accordingly to the temporal decom-
position level.

We remark that, in this case as well, the complexity increase is only
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Figure 6.5: Cost of SNR scalability

Rate PSNR [dB] PSNR [dB] Scalability
kbps non-scalable scalable Cost [dB]

375 35.22 35.05 0.17

500 36.40 36.27 0.13

625 37.35 37.22 0.13

750 38.19 38.07 0.12

1000 39.54 39.50 0.04

1250 40.70 40.67 0.03

Table 6.3: Cost of temporal scalability (“foreman” sequence)

due to the fact that now we need to run several more times the allocation
algorithm. But, as mentioned before, its computational cost is negligible
with respect to other parts of encoder.

A second set of experiments was performed in order to assess the cost
of temporal scalability. We encoded the sequence at full frame-rate, and
we decoded it at half the frame rate. Then we compared the results with
those obtained by encoding the temporally subsampled sequence (Table
6.3 and Figure 6.6). Again, we have a small scalability cost (less than 0.2
dB), as expected from theoretical considerations. This difference is ascrib-
able to quality layer overhead. It is worth noting that if filters other than
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Figure 6.6: Cost of time scalability

(N, 0) had been used, a much larger performance cost would have been
observed, due to the temporal filtering. This objective quality impairment
would correspond to annoying subjective effects such as shadowing and
ghosting artifacts.

6.7.3 Spatial scalability

Subband coding provides an easy way to obtain spatial scalability as well.
Indeed, it is sufficient, once again, to discard high frequency SBs, in this
case spatial frequencies. However, as far as the scalability cost is con-
cerned, spatial scalability is more difficult to handle. The first problem
is how to choose an “original” reduced-resolution set of data. We could
act as we did for temporal scalability, and consider a spatially subsampled
version of input data, but this choice would hardly account faithfully for
subjective quality of reconstructed data. Indeed, this “original” sequence
would be characterized by annoying spatial aliasing, and thus it would be
a flawed reference for a performance test. We can use the corresponding
QCIF sequence as a reference for a CIF input video, but a more general
solution is needed. A filtered and subsampled version of input data can
be considered, but, in this case, performance would become dependent on
the spatial low-pass filter we choose. In our codec, the low-pass spatial
analysis filter is the classical 9-taps Daubechies filter, which produces a
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low resolution sequence whose visual aspect is pleasantly smooth.
Thus, fairly assessing the spatial scalability cost is not straightforward.

Nevertheless, once a reference “original” data set is established, our algo-
rithm allows theoretically to adapt to it, by allocating resources between
spatio-temporal SBs in an optimal way. However, as we actually encode a
filtered version of reduced resolution input sequence, we cannot obtain as
good performance as if we would encode directly the subsampled version
of input data.

We run experiments similar to those presented for temporal and qual-
ity scalability. We decoded the sequence at an inferior resolution, and com-
pared the resulting performance with those obtained by directly encoding
the reduced-resolution sequence. In this case, as we expected, the objec-
tive scalability cost is quite large (up to 2dB), even though the subjective
quality is comparable.

Note that we used the same motion vectors for the half-resolution se-
quence as for the original one. We simply divided their values as well as
the blocks size by two. This motion representation is not scalable.

6.8 Experimental results

So far we have described all of the main aspects of the proposed encoder.
Now we can give some experimental results of the proposed coder.

We use our encoder to compress the “foreman”, “flowers” and “water-
fall” sequences. Here we sum up the main setting for our encoder:

• motion estimation has been performed with a block size of 16 × 16
pixels, with half pixel precision;

• four level of temporal decomposition are used;

• for each level the motion-compensated (2, 0) LS is employed;

• optimal rate allocation is performed;

• full scalability is enabled, with ten layers of quality scalability, four
layers of temporal scalability and five layers of spatial scalability;

• smoothing splines are used for RD curves modelling with seven test
points.
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Figure 6.7: Compression performance of the proposed encoder on the
“flowers and garden” sequence

We compare the proposed encoder with a state-of-the-art encoder as
H.264 and with the most widespread industrial standard MPEG-2.

The main settings for the H.264 encoder are the followings

• B frames are disabled;

• Variable block size is disabled;

• In-loop deblocking filter is enabled;

• CABAC arithmetic encoding is enabled.

These settings have been chosen in order to force the H.264 motion model
to be similar to ours.

Compression performance is shown in Fig. 6.7 – 6.9. We see that the
proposed encoder has better performance than H.264 for a regular-motion
sequence like “flowers and garden”; for the “waterfall” sequence, we ob-
serve comparable performance at low bit-rates while at higher rates the
proposed encoder has better results than the standard. This sequence has
a very regular motion content, as it is indeed constituted by a zoom out
on an almost fixed background. On the contrary, for a sequence like “fore-
man”, characterized by a more complex motion content, our encoder is
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Figure 6.8: Compression performance of the proposed encoder on the
“foreman” sequence

worse than H.264. Anyway, we can say that performance of the two en-
coders is quite close for the test sequences considered.

As far as the older MPEG-2 standard is concerned, our codec performs
several dB better. More precisely, the PSNR is usually 4 or 5 dB higher, and
the gap is never less than 3 dB.

These results are quite interesting, as the proposed encoder has some
interesting functionality that neither H.264 or MPEG-2 have. These are:

• A deep compatibility with JPEG2000;

• A high degree of scalability.

JPEG2000 compatibility needs more comment. From the encoder archi-
tecture it follows that a JPEG2000 decoder is all we need in order to decode
temporal subbands and MVFs. Moreover, if (N, 0) LS is used, the lowest
temporal subband is just a (compressed and) temporally subsampled ver-
sion of the input sequence. This means that user can partially decode the
video sequence and access to the first temporal layer of the video sequence
just by using a JPEG2000 decoder (and knowing the bit-stream syntax, see
Appendix C). Indeed, the JPEG2000 decoder performs most of the decod-
ing job, since, after obtaining temporal SBs and MVs , we only need to
perform the inverse temporal transform.
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Figure 6.9: Compression performance of the proposed encoder on the
“waterfall” sequence

The JPEG2000 compatibility is a very interesting feature, as it allows
our coder to exploit software and hardware implementation of this stan-
dard, which are likely to become more and more widespread in the next
few years.

In conclusion, the implementation of this video encoder has proved
that it is possible to have a video encoder with a deep JPEG2000 compat-
ibility without sacrificing performance, which, on the contrary, is compa-
rable to that of state of the art encoders. Moreover, the proposed encoder
has a high degree of scalability, and this has been obtained, once again,
without sacrificing performance or increasing complexity. Indeed, the per-
formance of the scalable version of our encoder is practically the same as
those of the non scalable version.



Chapter 7

Optimal Resource Allocation
among Motion Vectors and
Subbands

Jeder nach seinen Fähigkeiten, jedem nach seinen Bedürfnissen1

KARL MARX

Kritik des Gothaer Programms, 1875

7.1 Problem definition

In this chapter, we analyze the problem of optimal bit-rate allocation be-
tween motion information and transform coefficients in the general frame-
work of a motion-compensated wavelet transform video encoder. The tar-
get is to find, for a given total rate RT, the best partition RT = RMV + RSB

between motion vector rate and subband (SB) rate. Until now, the scheme
underlying our architecture was the following: we chose ME parameters,
and then, implicitly, motion vector rate. Subbands were encoded with the
residual rate.

1From each according to his abilities, to each according to his needs
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Figure 7.1: Global coding scheme

We now consider a slightly modified scheme, shown in Fig. 7.1. Here,
the problem of rate allocation among subbands and motion vectors is ex-
plicitly taken into account by introducing a RD control stage, which com-
putes this allocation. It accepts as input the total available rate RT and
some feedback information from the encoder, and outputs the rates for
motion vectors RMV and for Subbands {Ri}M

i=1. These rates are used in the
Spatial analysis stage and also in the ME and MV encoding stages, since,
as we saw, both these stages affect MV rate. In the conceptually simplest
approach, the feedback information is the distortion of the encoded se-
quence, and the RD control stage simply varies allocation until the optimal
values are found. This approach, called “brute force” approach, requires
huge computational resources (indeed, the sequence is encoded and de-
coded many times in order to evaluate the distortion), but it is conceptu-
ally simple, and it is adaptable to any input sequence.

By computing the sequence distortion for all possible rate allocations,
we certainly end up with the best one, but with a huge computational
effort. The problem is the computation needed to produce the feedback
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information for the RD control stage.
To reduce complexity we resort to model that simplifies the search for

the optimal rate allocation. We will consider in this chapter two models.

1. The rate is first allocated between MVFs and SBs, and after among
subbands: the problem is to allocate RT = RMV + RSB.

2. The rate is jointly allocated between MVFs and each subband: RT =
RMV + ∑i aiRi, where Ri (in bit/pixel) is the rate assigned to the ith
subband, ai is the ratio between the number of pixels (or coefficients)
in the ith SB and the total number of pixels, see (6.3) , and ∑i aiRi =
RSB.

The first model is simpler and can be adapted to an encoder architecture
similar to ours. For this model, with a set of suitable hypothesis, we have
found an analytical expression for the optimal MV rate. A two-steps op-
timization procedure can be envisaged: first we find the optimal rate for
MVs, and, in the hypothesis that we can modify ME and MV encoding
parameters so as to obtain the target RMV, we allocate the remaining rate
among SBs, with the algorithm proposed in the previous chapter. The first
case will be considered in Section 7.3.

The second model is more complex and more general. It does not leads
to an analytical expression for RMV but, however, it provides an equation
whose solution is the optimal allocation vector. This approach is more gen-
eral, but it is more difficult to apply to the proposed encoder. We develop
it in Section 7.4. The next section will deal with the general formulation of
the problem.

7.2 General formulation

In the hypothesis of orthogonal filters, the distortion affecting the recon-
structed sequence is exactly equal to the distortion caused by the quantiza-
tion of motion-compensated WT coefficients. Even in the case of biorthog-
onal filters, however, this equality holds with good approximation. Of
course, this distortion depends on:

• the joint probability density function (pdf) of MC-ed SBs, fsb(·);

• the rate available for SB encoding, {Ri}M
i=1;
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• the coefficient encoding technique.

Let us suppose that the encoding technique is given (for example, the
EBCOT encoder). Now we can write the encoding distortion as a func-
tional:

D = F ({Ri}M
i=1, fsb(·)) (7.1)

The effect of MV rate is implicitly accounted for in MC-ed coefficient pdfs
fsb(·).

Now we propose to fix a motion estimation and MV encoding tech-
nique in such a way that, for each value of RMV, and for each input se-
quence, both the MVs and the motion compensated SBs are unambigu-
ously defined. As a consequence, in (7.1) the dependence on fsb(·) can be
replaced by dependence on RMV and on the input sequence (the latter is
omitted in next equations for simplicity):

D = F({Ri}M
i=1, RMV) (7.2)

Note that we have no longer a functional F but a function F.
Furthermore, we suppose that our ME technique allows a graceful

degradation of MVs when RMV is decreased. It is worth noting that such
a MV encoding technique is not so easy to obtain, and it is of great impor-
tance for the effectiveness of video codec.

7.3 Separated allocation

We have kept so far a general approach to the problem. In order to find
some first result, it is useful to make some simplifying hypotheses.

First of all we assume that

Hypothesis 1 the allocation process can be performed in two independent steps.
In the first one, we can allocate the rate between MVFs and all the SBs considered
as a whole; the second one divides RSB among the subbands.

The second step of this allocation process has been addressed in the
previous chapter, here we are interested only in the first step. This hy-
pothesis allows us to consider the distortion no longer dependent on each
Ri separately, but only on RSB:
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D = F(RSB, RMV)

This is exactly what happens with the encoder architecture considered
in chapter 2. Anyway, we do not loose generality if we consider a more
generic encoding scheme, in which WT coefficient are simply quantized
and entropy encoded.

If we make the

Hypothesis 2 of high resolution, uniform quantization, and entropic encoding

we can write the distortion of non compensated WT coefficients expres-
sion in this form [30]:

Dnc = hσ22−2RSB (7.3)

where σ2 is the variance of the ensemble of all WT coefficients (considered
as a whole) and h is the correspondent pdf shape factor, defined as:

h =
1

12

{∫ ∞

−∞
[ f (x)]

1
3 dx

}3

(7.4)

and f is the normalized (i.e. divided by the variance) pdf of WT coefficients
[30]. The WT coefficients are often modeled as generalized gaussian (GG)
random variables. In this case, we have the pdf:

fα,σ(x) =
A(α)

σ
e−|B(α) x

σ |α (7.5)

where B(α) =
√

Γ(3/α)
Γ(1/α)

and A(α) = αB(α)
2Γ(1/α)

. For this distribution, the shape

factor is of course a function of α: hgg = G(α). The G(·) function is very
hard to evaluate analytically, except for the gaussian case where α = 2,
see Eq. (A.4). However, it is possible to evaluate it numerically. The GG
model is commonly adopted to model subband coefficient statistics, when
each subband is considered separately from the others, as we will do in
Section 7.4. On the contrary, here all the subband are considered together,
so we keep the general model of (7.3).

Another strong hypothesis, allowing us to solve our problem analyti-
cally is:

Hypothesis 3 MC only affects the variance of coefficients, but not the shape of
their pdf,
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then distortion for motion compensated coefficients becomes:

D = hσ2(RMV)2−2RSB (7.6)

Hypotheses 2 and 3 imply that F depends separately on RSB and RMV:

D = F1(RSB) · F2(RMV)

that is (7.6) with F1(RSB) = h2−2RSB and F2(RMV) = σ2(RMV). The implica-
tions of this property are quite subtle. It means that a variation in the MVF
rate causes always the same relative variation in distortion, independently
from the rate assigned to the SBs.

When all these hypotheses hold, we can easily deduce an optimality
condition from (7.6). Indeed, the optimal value R∗

MV of MVF rate is the
solution of a constrained minimization problem, that is:

R∗
MV = arg min

RMV

hσ2(RMV)2−RSB

RMV = RT − RSB

The problem admits a Lagrangian solution; the criterion to minimize
is:

J(RMV, RSB) = hσ2(RMV)2−RSB + λ (RMV + RSB − RT)

The partial derivatives are therefore:

∂J

∂RMV
= h

∂σ2

∂RMV
2−RSB + λ

∂J

∂RSB
= hσ2(RMV)(−2 ln 2)2−RSB + λ

∂J

∂λ
= RMV + RSB − RT

Imposing all derivatives equal to zero in the optimal {R∗
SB, R∗

MV, λ∗}
point, the solution of this problem is given by the equation:

∂σ2

∂RMV
(R∗

MV) + (2 ln 2)σ2(R∗
MV) = 0 (7.7)



CHAPTER 7. OPTIMAL RESOURCE ALLOCATION 115

So if we are able to estimate σ2(RMV), we can compute the optimal
rate R∗

MV. This means that feedback information is limited in this case to
statistics produced in the WT stage. This is an interesting result: in order
to find the optimal RMV, we do not need anymore to encode and decode
many times the video sequence (as in the “brute force” approach). We
just need to know the σ2(RMV) function, which can be obtained before the
encoding step in the spatial analysis stage.

We remark that in (7.7) the optimal rate R∗
MV does not depend on the total

rate RT. This is a direct consequence of the high resolution hypothesis.
It is also interesting to observe that, if the MV rate does not affect the pdf
shape, the optimal MV rate is in its turn independent from the shape factor
h.

7.3.1 The σ2(RMV) Function

As previously mentioned, once we know or estimate the σ2(RMV) func-
tion, we can find the optimal rate for motion vectors. We recall that this
function represents the relationship between the variance of motion com-
pensated coefficients and the rate of MVFs. So σ2(0) is the variance of non
compensated coefficients, and σ2(∞) ≥ 0 is the variance of optimally com-
pensated coefficients and usually it is non zero, as new objects in a video
can not be predicted form previous frames.

In order to asses this function we can follow the same approach we
used to represent SB RD curves in previous chapter. In other words, we
have to choose a suitable model for the σ2(RMV) function, and then es-
timate the corresponding parameters. For example, if we use a spline
model, the parameters we need are just some sample points of the real
curve. We can obtain them by computing some MVFs at different rates,
and then computing the MC-ed WT of the input sequence and the corre-
sponding variance. With a few points of the real curve, we can define the
spline model. Then (7.7) can be solved numerically.

In this Section we consider two simpler models as well, which have
two advantages with respect to the spline model. The first one is that
fewer points are necessary to compute the model parameters. The second
one is that we can find an analytical expression of the optimal rate as a
function of model parameters. This means that we do not need to solve
numerically (7.7) any longer.
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The first model we consider is the exponential.

Hypothesis 4 Function σ2(RMV) has an exponential behavior:

σ2(RMV) = me−nRMV + p

Then (7.7) yields:

R∗
MV =

1

n
ln

(
m(n − 2 ln 2)

2p ln 2

)
(7.8)

Parameters m, n, and p can be estimated for example by computing σ2(0),
Dσ2(0), σ2(∞), and observing that:






σ2(0) = m + p
Dσ2(0) = −mn
σ2(∞) = p

(7.9)

We obtain an analytical solution in the hyperbolic case, as well.

Hypothesis 5 Function σ2(RMV) has a hyperbolic behavior:

σ2(RMV) =
RMV + m

nRRM + p

Then (7.7) yields:

R∗
MV =

√
ln 2

√
p2 ln 2 − 2mnp ln 2 + m2n2 ln 2 + 2np − 2mn2

2n ln 2

− (mn + p)

n
(7.10)

Parameters m, n, and p can be estimated as before observing that:






σ2(0) = m
p

Dσ2(0) = 1
p − mn

p2

σ2(∞) = 1
n

(7.11)

In figure 7.2a, we reported D(RT, RMV) for the exponential case, and
we traced the theoretical optimal points obtained with (7.8), which actu-
ally correspond to a minimum of distortion. In Fig. 7.2b, “slices” of the
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Figure 7.2: Distortion in the exponential model.

surface are represented, emphasizing that the optimal point does not de-
pends on RT.

Finally in Fig. 7.3 we report a possible behaviour of optimal MVF rate
R∗

MV as a function f of total rate RT. Our analysis shows that in the hypoth-
esis of high resolution, i.e. for high values of RT, R∗

MV does not depend on
RT. This means that, the f function tends to a constant for RT → +∞. The
value of this constant is solution of Eq. (7.7), and the curve RT, f (RT) has a
horizontal asymptote. Of course, at lower bit-rate we expect that optimal
bit-rate for MV decreases. It is interesting to remark that, even though we
have not performed tests concerning this model, an experimental analysis
on optimal MV rate reported by Taubman in [91] fits very well with our
conclusions, since it was found that an asymptotical optimal value exist
for MVs. Anyway, in that work, it was not performed a theoretical analy-
sis to justify this result. This section could constitute that justification.

In conclusion, for the separated allocation problem, we have defined a
model of MC-ed WT video encoder which allows a theoretically optimal
rate allocation among MVs and SBs. Namely, in the hypothesis of high res-
olution, if MV rate only affects SB variances, equation (7.7) allows to find
optimal MV rate. The σ2(RMV) function can be estimated from data with
a spline model, but, if we have a simpler analytical model, as those sug-
gested in this section, we have an analytical expression for the optimal MV
rate. Anyway, σ2(RMV) function parameters have to be estimated from
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data by (7.9) or (7.11).

7.4 Global allocation

In Section 7.3, we considered the coefficients from all subbands as a whole.
Now we drop some strong hypotheses and try to solve the problem in a
more general case. First, we reject hypotheses 1. On the contrary, now we
can make the following

Hypothesis 6 each motion compensated SB has independent GG statistics, and
allocation is done jointly among SBs and MVFs

The hypothesis of GG statistics is reasonable for single subbands, while it
was not well suited for the previous case, where, we indeed kept a general
formulation. We keep the high resolution hypothesis 2, and we recall that
for a GG pdf the shape factor is a function of the parameter α, indicated as
G(α). Moreover, for orthogonal SB coding2 global distortion is the sum of
all subband distortions, in this case (7.2) can be written as:

D =
M

∑
i=1

G(αi)σ2
i 2−2Ri

2We saw that for non-orthogonal SB coding, weighting factors have to be considered.
Indeed we can include their contribution into the G(αi) factor.
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Anyway, in order to develop our analysis, we still need some hypothesis
on the impact of MC on our coefficients. So we retain hypothesis 3, ac-
cording to which, the only effect of MC is to modify SB variances. In this
case, our optimization problem can be stated as follows: we look for the
set of rates {Ri}M

i=1, RMV which minimizes

D =
M

∑
i=1

G(αi)σ2
i (RMV)2−2Ri (7.12)

under the condition
M

∑
i=1

aiRi + RMV = RT (7.13)

This problem calls for a Lagrangian solution. The criterion to be mini-
mized is obviously:

J
(
{Ri}M

i=1, RMV, λ
)

=
M

∑
i=1

G(αi)σ2
i (RMV)2−2Ri+

λ

(
M

∑
i=1

aiRi + RMV − RT

)

Computing partial derivative with respect to each variable, we have:

∂J

∂Ri
= −2 ln 2 G(αi)σ2

i (RMV)2−2Ri + λai ∀i ∈ {1, . . . , M} (7.14)

∂J

∂RMV
=

M

∑
i=1

G(αi)
∂σ2

i

∂RMV
(RMV)2−2Ri + λ (7.15)

∂J

∂λ
=

M

∑
i=1

aiRi + RMV − RT (7.16)

The optimal set of values, indicated as ({R∗
i }M

i=1, R∗
MV, λ∗), is such that

all partial derivatives equal zero. From (7.14) we then obtain:
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λ∗ =
1

ai
2 ln 2 G(αi)σ2

i (R∗
MV)2−2R∗

i

2−2R∗
i =

ai

G(αi)
· λ∗

2 ln 2 σ2
i (R∗

MV)
(7.17)

R∗
i = −1

2
log2(λ∗ai) +

1

2
log2

(
2 ln 2 G(αi)σ2

i (R∗
MV)

)
(7.18)

Using (7.17) in (7.15),

M

∑
i=1

G(αi)
∂σ2

i

∂RMV
(R∗

MV)
ai

G(αi)
· λ∗

2 ln 2 σ2
i (R∗

MV)
+ λ∗ = 0

M

∑
i=1

ai

2 ln 2 σ2
i (R∗

MV)

∂σ2
i

∂RMV
(R∗

MV) + 1 = 0 (7.19)

Of course (7.19) and (7.7) coincide when M = 1. As before, MVF rate
allocation can be performed before 2D WT if we know the σ2

i (RMV) func-
tions.

Substituting (7.18) in (7.16), we have eventually:

M

∑
i=1

ai

[
−1

2
log2(λ∗ai) +

1

2
log2

(
2 ln 2 G(αi)σ2

i (R∗
MV)

)]
+ R∗

MV = RT

λ∗ = 2−2(RT−RMV)2 ln 2 ΠM
i=1

[
G(αi)σ2

i (R∗
MV)

ai

]ai

(7.20)

Now, let us review briefly how it is possible to use the equations found
in this Section to compute the optimal bit-rate allocation. First, we need
to chose a model for σ2

i (RMV) (see next section); then we can estimate the
parameters of this function in order to have an analytical or numerical
expression of it. To this end, we need to compute MC-ed WT coefficients
for some MV rates; these coefficients are used to estimate the parameter
G(αi) for all subbands, but this is not a hard task [61]; once we have a
representation for σ2

i (RMV) and an estimation for G(αi), then it is possible
to compute R∗

MV by (7.19); to use (7.20) to find λ∗; and finally (7.18) to find

{R∗
i }M

i=1.
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We remark that, in this case as well, the optimal MV rate does not de-
pend on total rate, as we are considering the high resolution case. This
means that the behavior of RMVversus RT is still that of Fig. 7.3. Moreover,
we just need to know or to estimate the σ2

i (RMV) functions in order to find
the optimal MV rate: so the feedback information for the RD control stage
can be obtained without encoding WT coefficients.

7.4.1 Models and estimation for σ2
i (RMV)

The problem now is to estimate the functions σ2
i (RMV), and similar con-

siderations to those of Section 7.3.1 hold. It is possible to model these
function as splines, or to use cheaper and probably less accurate models,
which however assure some simplification when computing R∗

MV .
We recall that σ2

i (RMV) expresses the variance of subband i as a func-
tion of RMV. We can still use some analytical models, like exponential or
hyperbolic.

Hypothesis 7 Exponential model for σ2
i (RMV)

σ2
i (RMV) = mie

−niRMV + pi

We write the solving equation as:

−
M

∑
i=1

ainimie
−niR

∗
MV

2 ln 2 (mie
−niR

∗
MV + pi)

+ 1 = 0 (7.21)

which can be resolved with numerical techniques if parameters mi, ni, pi

are known.

Hypothesis 8 Hyperbolic model for σ2
i (RMV)

σ2
i (RMV) =

RMV + mi

niRMV + pi

The solving equation is:

−
M

∑
i=1

ai(pi − nimi)

2 ln 2 (R∗
MV − mi)(niR

∗
MV − pi)

+ 1 = 0 (7.22)

Again, this equation can be numerically solved if we know parameters
mi, ni, pi.
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7.5 Non-asymptotic analysis

In this section we try to develop the case of non-asymptotic analysis, i.e.
we drop the high resolution hypothesis, while we keep hypothesis 3 on
the effect of MV rate on WT coefficients. On the other hand, we consider
the two step allocation case. We no more have a close expression for dis-
tortion, like in (7.6), but can only say that:

D = σ2(RMV)D(RSB) (7.23)

RMV + RSB = RT (7.24)

It is possible to compute the D(R) function numerically for a GG dis-
tribution of given parameters [61]. So the criterion is:

J(RMV, RSB, λ) = σ2(RMV)D(RSB) + λ(RMV + RSB − RT)

Setting to zero the partial derivatives in the optimal points, we have

∂J

∂RMV
=

∂σ2

∂RMV
(R∗

MV)D(R∗
sb) + λ∗ = 0 (7.25)

∂J

∂RSB
= σ2(R∗

MV)
∂D

∂RSB
(R∗

sb) + λ∗ = 0 (7.26)

∂J

∂λ
= R∗

MV + R∗
sb − RT = 0 (7.27)

Subtracting (7.25) from (7.26), and using (7.27):

σ2(R∗
MV)

∂D

∂RSB
(R∗

sb) −
∂σ2

∂RMV
(R∗

MV)D(R∗
sb) = 0

σ2(R∗
MV)

∂D

∂RSB
(RT − R∗

MV) − ∂σ2

∂RMV
(R∗

MV)D(RT − R∗
MV) = 0 (7.28)

Therefore, the solving equation (7.28) does depend on RT. Hopefully,
solving this equation with an accurate, non-asymptotical model should
yield a more accurate description of R∗

MV as a function of RT, closer to the
representation sketched in Fig. 7.3.
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7.6 Conclusion

In this chapter we looked for an analytical solution of the rate alloca-
tion problem, which allows us to reduce the computational effort needed
to give feedback information to the RD control stage with respect to the
“brute force” approach.

This appears to be possible if some hypotheses are assumed. The most
important is that MC does not affect SB pdf shape, but only changes vari-
ances. Moreover, here we have considered only the high resolution case.
If this holds, equations (7.7) and (7.19) show that we can compute optimal
MVF rate without encoding and decoding the video sequence, but just
knowing the σ2

i (RMV) function(s).
In particular, if we deal with all subbands as a whole and use an expo-

nential or hyperbolical model for σ2(RMV), an analytical solution in closed
form is possible (7.8) and (7.10). On the other hand, in the global allocation
case, the equation for R∗

MV does not yield a solution in closed form, but it is
always possible to find the optimal rate numerically by using (7.19). When
a model is used, RMV can be more easily found by using (7.21) or (7.22).

In order to apply these algorithms we need to compute MC-ed WT
coefficients for several MV rates. This involves a significant complexity
overhead, which is anyway much smaller than that needed in the “brute
force” approach, where we need a complete encoding/decoding loop not
for just a few MV rates but ideally for all significative values of RMV.

In both global and two-step allocation cases, feedback info needed by
the RD Control stage can be produced by the WT stage, rather that by the
complete encoder.

Finally, we dropped the hypothesis of high resolution. Lacking an ex-
pression for the total distortion, we are not able to obtain a simple solution
of the allocation problem. However, Eq. (7.28) allows to find optimal MV
rate if we are able to estimate D(R) and σ(RMV). A numerical solution
of this equation should suitably describe the behavior of RMV(RT) at all
bit-rates (see Fig. 7.3), and not only in the asymptotical case.
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Chapter 8

Low Complexity Video
Compression

Everything should be as simple as possible, but no simpler.

ALBERT EINSTEIN

8.1 Complexity issues in video coding

The last decade has witnessed an exponential growth of the information
and communication technology, with the huge diffusion of Internet and
mobile communications. Yet, expectations about the advent of widespread
broadband access have fallen short, long awaited UMTS networks have
just begun to be deployed, and most end users keep accessing voice and
data networks through narrowband channels. On the other hand, not even
UMTS, when available, will provide universal wideband access for free,
and it is quite likely that bandwidth shortage will keep being an issue, at
least for mobile-service users.

In such a scenario, given the wide variety of access channels and termi-
nals that can be envisioned, not only coding efficiency, but also scalability
(spatial, temporal, and SNR) and low computational complexity become
very important feature for video compression algorithms.
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The major current video coding standards, like the MPEG and H.26x
families, guarantee a very good performance in a wide range of condi-
tions but only a fair level of scalability, and present a significant encoding
complexity that cannot be reduced too much without a complete change
of approach. Under this point of view, wavelet-based techniques appear
more promising, due to the availability of high-performance fully scalable
coding algorithms (see previous chapters).

However, wavelet-based techniques still require a MC-ed 3D trans-
form, which can be too demanding, both in terms of complexity and mem-
ory requirements, in certain situations. The mobile-user scenario is a good
such example, since all resources, and in particular computing power, are
severely constrained by sheer terminal size, and hence simpler symmet-
ric encoding and decoding algorithms are required. This motivates our
work towards the development of a symmetric scalable codec that does
not require any multiplication at all, thus allowing a real-time video com-
munication on low-power terminals.

To this end we must resort to a very simple compression scheme, even
though this entails some performance loss in terms of increased rate or im-
paired reproduction quality. In particular, our work moves from the all-
software video coding system proposed by Chaddha and Gupta in [17],
based on conditional replenishment (CR) and hierarchical vector quanti-
zation (HVQ) [20, 18]. Such a coder, referred to as CG coder from now
on, is scalable in space/time-resolution as well as reproduction quality,
thus adapting to a wide range of bandwidths, and provides an embedded
encoded stream to allow for multicast services. In addition, it has a very
limited complexity, because the HVQ coder uses only table lookups, and
time-consuming motion compensation is not performed. A different video
codec based on HVQ was proposed in [58] but it was definitely more com-
plex, including also motion compensation, although more accurate than
[17].

In this chapter we show our improvements upon the basic CG coder,
further reducing both its computational complexity and its encoding rate.
The key idea is to exploit the correlation among VQ indexes that appears
when an ordered codebook is used [68]. This will allow us to simplify the
conditional replenishment check (a relatively complex step in this codec)
and to efficiently entropy encode the VQ indexes themselves, thus reduc-
ing the encoding rate. Furthermore, even the filtering and interpolation
steps, necessary in the pyramidal encoding scheme to guarantee spatial



CHAPTER 8. LOW COMPLEXITY VIDEO COMPRESSION 127

scalability, will be carried out using only table-lookups, all but eliminating
computation, at a cost of a negligible performance degradation [10, 14].

In Section 8.2 the CG coder is briefly revised, Section 8.3 illustrates the
proposed improvements and, finally, Section 8.4 shows a few sample ex-
perimental results.

8.2 The Chaddha-Gupta coder

The CG coder uses conditional replenishment to exploit temporal redun-
dancy and vector quantization to take advantage of spatial redundancy.
The choice of CR instead of motion compensation is dictated by the need
to reduce complexity, as the accurate estimation of motion vectors is usu-
ally quite expensive. Of course, rate-distortion performance suffers from
this choice but, if videotelephony and videoconference are the intended
applications, where the typical scene has a large fixed background, the
performance gap can be quite small.

The basic principles of CR can be described as follows. The input frame
X is divided in macroblocks (MB) and each MB is compared with the

homologous MB in the reference encoded/decoded frame X̂R. If a suit-
able distance between them (e.g., the euclidean distance) is below a given
threshold, the current MB is declared “fixed” and not coded, but repro-
duced as the reference MB. Otherwise, the MB has to be encoded with the
proposed VQ-based technique.

Using VQ in a low-complexity coder, instead, might look paradoxical,
as is well-known that VQ’s major weakness is just its exceedingly high
computational burden.

In vector quantization, a set of template blocks (or codewords) called a
codebook is designed off-line, and for each input block the encoder must
single out in the codebook the minimum distance codeword. Once the
best matching codeword is found, only its index (a single scalar) is sent
and used by the decoder to access a local copy of the codebook and ap-
proximate the input block.

Unfortunately, looking for the best matching codeword requires com-
puting a number of vector distances which is quite expensive and hardly
affordable in a real-time system. In Hierarchical VQ, however, all com-
putation is made off-line and for each possible input block the appropri-
ate codeword is selected at run time only by means of table lookups. Of
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Figure 8.1: A 3-stage HVQ encoder

course, a table with an entry for each possible input block would be pro-
hibitively large, which is why encoding is performed by means of repeated
accesses to a hierarchy of small tables. As an example, to encode an 8-
pixel block at 0.5 bit/pixel with HVQ only 7 memory accesses (to three
64-kbyte tables) are typically required (see Fig. 8.1) and no mathematical
operation, as compared to the 256 multiplications and additions required
in full-search VQ. A thorough description of the table design procedure
can be found in [18]. The price to be paid for such a smooth encoding is
a limited performance impairment (usually less than 1 dB) with respect to
unconstrained VQ.

In conclusion, the CG coder analyzes MBs of input frames, and sends
the side information corresponding to the CR success. If CR fails, the MB
is further divided in smaller blocks each of which is coded by HVQ and
represented by an index of the codebook. The index is then sent along
with the side information.

In order to further reduce the bit-rate, and also to adapt to limited-
resolution terminals, the CG coder provides for three types of scalabil-
ity, briefly sketched here (see [17] for more detail). Spatial scalability is
ensured by resorting to a Laplacian pyramid decomposition: low band-
width/resolution users receive only the base layer of the pyramid, and
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only when more resources are available an enhancement layer at double
resolution is added. A third level of resolution is obtained only by inter-
polation. Likewise, temporal scalability is obtained by using several em-
bedded layers: low bandwidth users get only every eighth frame, and add
intermediate frames (every fourth, every second, etc.) as more bandwidth
is available. Finally, bit-rate scalability is obtained by using tree-structured
(hierarchical) VQ and sending only a certain number of bits for each VQ
index.

The coder outputs an embedded scalable bit-stream, that is exploited
to provide efficiently a multicast video service by means of the multiple
multicast groups concept, just as is done in [56].

8.3 Proposed improvements

A CPU-time analysis of the CG coder (see Table 8.3 later on), conducted on
a general purpose machine, shows that almost 50% of the encoding time is
devoted to carry out the conditional replenishment, and almost all the rest
is spent on filtering and interpolation required by pyramidal coding. By
contrast, HVQ complexity is quite negligible. Our first goal, therefore, is to
cut CR complexity, and this is achieved by resorting to ordered-codebook
VQ.

8.3.1 Ordered codebooks

Usually, when we have to design a VQ codebook, the only goal is to choose
a set of codewords {y1, y2, . . . , yN} that guarantee the smallest possible
average encoding distortion. We impose here an additional constraint,
that codewords with close indexes are similar and vice versa, namely

|i − j| small ⇔
∥∥yi − yj

∥∥2
small

Such a statement is necessarily vague, as it amounts to requiring some
kind of continuity in the codeword-to-index mapping, which is clearly
impossible. Nonetheless, the design of ordered VQ codebooks is a well-
known and well-understood topic [68], and can be easily accomplished
by rearranging a generic codebook or, better yet, by designing an ordered
codebook from scratch by the Kohonen algorithm [45]. The algorithm starts
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with an arbitrary initial codebook; then, a large number of training vectors,
x(k), k = 1, 2, . . ., are examined sequentially and, for each of them, all
codewords1 are gradually updated according to the rule

y(i) = y(i) + γ(k, d) [x − y(i)]

until convergence is reached. Here, γ(k, d) regulates the speed of adapta-
tion and the ordering of the codebook and decreases both with time k, to
ensure convergence, and with the index distance from the best matching
codeword d = |i − iBM|, to ensure the desired codebook ordering. With a
careful tuning of parameters, The Kohonen algorithm has proven [68] to
guarantee both low encoding distortion and a satisfactory codeword or-
dering. An example is shown in Fig. 8.2, where a 256-codeword ordered
Kohonen codebooks is shown.

Figure 8.2: Kohonen codebook

1Not just the best matching as happens with the popular K-means algorithm.
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8.3.2 Index-based conditional replenishment

Now it is easy to reduce CR complexity. To take a fixed/moving decision
for a given MB we should first evaluate the sum of euclidean (or other)
distances of all component VQ blocks from their counterparts in the refer-
ence frame,

∑
k∈MB

‖ x(k) − xR(k) ‖2

and then compare it with a threshold.
If we have an ordered codebook with pseudo-continuity properties,

then the index distance is a faithful indicator of vector distance, and we
can take the decision by only considering the few VQ indexes of a MB
rather than all individual pixels. More precisely, for each MB, all compo-
nent VQ blocks are quantized (only table lookups), their indexes are com-
pared with the corresponding indexes of the reference MB, and a distance
measure is computed and compared with a threshold

∑
k∈MB

|i(k) − iR(k)| ≤ T

Only when this test fails VQ indexes are actually sent, otherwise the refer-
ence MB is copied.

Note that, if we did not use an ordered codebook, we could spare trans-
mitting only VQ indexes that remain exactly unchanged between successive
frames, as proposed in [32] and again in [40]. With our CR technique this
would happen for a CR threshold T = 0.

8.3.3 Index-predictive vector quantization

By resorting to an ordered VQ codebook we can also obtain a bit-rate
reduction in the spatial domain without any quality loss. In fact, spa-
tially neighboring blocks are strongly correlated and, therefore, their cor-
responding VQ indexes will be correlated as well if an ordered codebook
is used. One can exploit such a correlation through a simple predictive en-
coding scheme [68]. The index of the current codeword is predicted from
some neighboring indexes already known to the receiver. More precisely,
the prediction is equal to the index above or beside the current one, based
on which one is actually available at the receiver and, if both are present,



132 8.3 PROPOSED IMPROVEMENTS

Figure 8.3: Interpolation scheme

which one is expected to provide the best prediction. The prediction er-
ror is then entropy encoded (another table lookup) by means of Huffman
coding.

8.3.4 Table lookup filtering and interpolation

A further reduction of complexity can be obtained by performing antialias
filtering and interpolation via table look-up. In our current implemen-
tation, these operations, needed in order to implement pyramidal coding,
require only the evaluation of image sample means. For example, we have
to compute the mean value of four high-resolution layer samples in order
to obtain a base layer sample of the Laplace pyramid, and also our simple
bilinear interpolation requires some sample mean evaluation (see figure
8.3). This can be carried out by using a table in which the means between
every possible couple of input values are stored. As the input values are
bytes, and the mean is also stored as a byte, this table requires 64KB of
memory. Table lookup filtering introduces a small error since we use only
8 bits instead of 9 bits to store the mean value between 2 bytes. However,
such error is totally negligible with respect to the error introduced by CR
and VQ, as is confirmed by experimental results. Note that table look-up
implementation is also amenable for longer filters and some performance
improvement can be expected, although more memory will be required.
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8.3.5 Computational complexity of the proposed scheme

As already noted, the proposed improvements make our algorithm multi-
plication free, but also cause a more intensive use of memory. Therefore,
this approach does improve encoding speed only if memory accesses are
significatively faster than multiplications. As a matter of fact, even though
last years have been characterized by a fast increase in CPU speed and a
slower improvement in memory performance, memory access operations
are still much faster than multiplications. In addition, one could even de-
velop terminals whose hardware fully exploits the table lookup nature of
the proposed algorithm.

In any case, it is interesting to analyze the complexity of the proposed
algorithm and of the original CG-encoder, so as to foretell their behav-
ior once the hardware characteristics are known. In table 8.2 theoretical
computational complexity is evaluated for each encoder in terms of how
many and which operations are needed for every base level pixel in order
to encode both resolution levels. The meaning of all symbols is reported
in table 8.1 and, to compact notation, we use c = 1− c. However, note that
in the CG coder, CR requires floating point multiplications, while filter-
ing and interpolation need integer multiplications and therefor their cost
is quite different.

Although a direct relationship between theoretical complexity and exe-
cution time cannot be established, the total elimination of multiplications,
and heavy reduction of sums and tests in favor of memory accesses will
likely entail a much faster encoding on most hardware platforms.

Figure 8.4: Sequence “news”: original and encoded frames at 35.8 kbps
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Symbol Meaning

cb CR success fraction in base level
ce CR success fraction in enhancement level
R pixel per vector
N pixel per MB
σ sum
π product
µ memory access
λ logic operation

Table 8.1: Meaning of symbols in Table 8.2

technique Filtering HVQ CR Interp.

CG 15σ + 5π (cb + 4ce)
R−1

R µ 5σ + 5π + 5
N λ 5σ + 3π

Proposed 15µ 5R−4
R µ + 3

R σ + 1
R λ 10

R σ + 5
N λ 5µ

Table 8.2: Operations required for each base level pixel

Figure 8.5: Sequence “claire”: original and encoded frames at 29.3 kbps

8.4 Experimental results

We have implemented the original Chaddha-Gupta coder as described in
[17] and then introduced the variations described in Section 8.3, based on
the use of ordered codebooks designed by means of the Kohonen algo-
rithm. Here we report some experimental results obtained on two 180-
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technique I/O Filtering HVQ CR Interp. total

CG 1.7 8.6 1.0 17.0 6.3 34.6

proposed 1.7 3.4 1.9 1.5 2.8 11.3

Table 8.3: Computation time comparison (ms)
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Figure 8.6: Rate-distortion performance of CG and proposed coder

frame videoconference-like monochrome test sequence (see Fig. 8.4 and
8.5).

In Table 8.3 we report the time spent on each encoding step (input,
output, filtering and decimation, HVQ, CR, up-sampling and interpola-
tion) for a single CIF frame (352 × 288 pixel), when the original and mod-
ified encoder are used2. Index-based CR drastically reduces time spent
on CR, and only slightly increases time devoted to VQ (because all blocks
are now quantized). Table lookup implementation allows for a significa-
tive time reduction in filtering and interpolation with an overall time sav-
ing above 67%. Extensive experiments (not reported here) show that this
computation-time gap remains pretty much the same for a wide range of
CR thresholds. As said before, the relationship between theoretical com-
plexity and execution time is strongly implementation3 dependent, but
these example results are encouraging, anyway. We also compared our al-

2These results have been obtained using a machine equipped with a 2 GHz Pentium
IV CPU and Linux operating system.

3In terms of both hardware and software.
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gorithm performance with H.261 standard, and found that the proposed
encoder is almost an order of magnitude faster than the standard one, but
the PSNR decreases significatively, up to 5 dB at comparable rates. Al-
though our main focus is on complexity, this performance gap could very
likely be reduced to more reasonable values by suitably tuning the encod-
ing parameters.

Turning to bit-rate reduction, we have evaluated the entropy of the
index prediction error and, for a wide range of operative conditions, a re-
duction of about 20% with respect to the original 8 bits has been observed.
Thanks to this improvement, the rate-distortion performance of the modi-
fied coder turns out to be superior to that of the CG coder (see Fig. 8.6) in
most operative conditions, despite the loss due to the simplified CR. Note
that we apply index prediction only to the lower spatial-resolution layer
of the coder where a significant index correlation exists, also because this
is exactly the layer received by narrow-band users, where rate reduction
is especially needed.

In conclusion, the use of HVQ for spatial coding, and the extension
of the table lookup approach to all remaining processing steps allow for
the implementation of a multiplication-free video coder whose encoding
quality, although inferior to that of current standards, is certainly accept-
able for users with very low computation power.
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SAR Images Compression

What we observe is not nature itself, but nature exposed to our
method of questioning.

WERNER HEISENBERG

9.1 SAR images: an object-oriented model

Synthetic Aperture Radar (SAR) images have several peculiar characteris-
tics differentiating them from natural images as well as from other kinds
of remote sensed images. A compression algorithm aiming to efficiently
operate on this kind of data must be aware of these properties.

In particular, SAR images are characterized by a wide dynamic range
and are affected by a strong multiplicative noise called speckle that destroys
the statistical regularities on which common compression techniques rely.
As a matter of fact, virtually all compression schemes proposed for SAR
images [104, 107] include a filtering phase, called despeckling. Filtering
is especially useful before compression, to avoid spending valuable re-
sources to represent noise; unfortunately, it also degrades important im-
age features, like region boundaries. Indeed, it has long been observed
that filtering and compression are tightly related processing steps [104].
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Filtering out noise reduces the entropy of the image thus allowing for its
more compact and faithful representation; likewise, compression tends to
smooth out high frequencies and therefore provides a certain amount of
filtering.

Unluckily, filtering and compression not only remove noise contribu-
tions, but also cause a severe distortion of the high frequency components
of the desired image. These correspond to region boundaries and isolated
impulses, which are some of the most meaningful features of the image,
that, on the contrary, one should try to preserve as much as possible.

In order to deal with this problem, it is a common approach to resort to
edge-preserving filters [48, 47] which reduce their smoothing action near
region boundaries. Of course, their effectiveness depends on their ability
to implicitly identify the boundaries. Even wavelet-based despeckling [27]
is based on the implicit ability to distinguish between noise contributions,
which have high-frequency terms in all directions and boundaries, which,
on the contrary, have high-frequency contents only in the edge-crossing
direction.

From these considerations it should be clear that a more fundamental
approach to SAR images filtering and compression should be adapted to a
different image model. The model we consider sees an images as made up
of several homogeneous regions and a superimposed multiplicative noise.
The proposed compression scheme therefore requires the prior identifica-
tion of region boundaries or, which is the same, the segmentation of the
image in homogeneous regions. Image segmentation would guarantee a
number of relevant advantages:

1. important information about the region boundaries is retained in the
segmentation map, which can be efficiently coded in lossless modal-
ity;

2. noise can be more easily removed in inner regions (there is no risk of
damaging boundaries) with a clear improvement of image quality;

3. compression of the texture alone, without boundaries and speckle,
can be much more effective, leading to better overall performance;

4. the segmentation map is an added value for the user, and comes at
no additional cost.
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Figure 9.1: Original and noisy image.

Segmentation, compression and filtering have many deep interactions,
and intense research is under way to exploit them. Indeed, they all con-
verge toward the same broad goal, the extraction and compact represen-
tation of the most relevant features of an image, and as such they should
always be carried out jointly. It must be pointed out that segmentation
remains a formidable problem. Nonetheless, given the intense research in
the field [69] and the steady progress of concepts and technology, it is not
unreasonable to expect that reliable image segmentation algorithms will
be at hand in a few years.

In this chapter, we try to study and quantify the potential advantages
provided by image segmentation in the filtering and compression of SAR
images [13]. To keep all variables under control, we define an abstract
image model and work with synthetic images. Assuming that a perfect
segmentation is available (and leaving aside the problem of how to obtain
it) we then compare the performance of a segmentation-based compres-
sion scheme with that of a reference algorithm in a variety of operating
conditions. In the following chapters, a similar approach is used for mul-
tispectral and multitemporal images. Anyway, in these cases, segmenta-
tion is easier, because there is less noise and the strong correlation existing
among spectral bands and/or multitemporal images can help the segmen-
tation process.

In Section 9.2 we define the image model and the segmentation-based
coding scheme, together with a reference conventional scheme. Section 9.3
presents and discusses the results of a number of experiments, and Section
9.4 draws conclusions for this chapter.
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Figure 9.2: Reference (a) and segmentation-based (b) encoding schemes.

9.2 Image model and coding schemes

We synthesize the image as the sum of three components, a region map, a
set of textures, one for each region, and additive noise (this fits SAR images
if the log-intensity is taken).

An image is assumed to comprise K homogeneous regions, and the
segmentation map labels each pixel as belonging to one of the regions. By
representing each region with its mean value, we obtain a rough approx-
imation of the image, call it M, in which each region is perfectly flat, and
the boundary between regions are step-like.

Each region is then characterized by a particular texture process, (ob-
tained by passing white gaussian noise through a low-pass filter with
given cut-off frequencies). The desired original image is then X = M + T,
where T is the collection of the various region textures. White gaussian
noise N is finally added, with its power as the only relevant parameter, to
obtain the final image Y = M + T + N. Fig. 9.1 shows images X and Y for
our running example.

Fig. 9.2(a)shows the block diagram of a conventional coder. In the fol-
lowing we will use the Lee filter [48] for denoising, and JPEG2000 [92] for
compression.
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The block diagram of the proposed segmentation-based coding scheme
is shown in Fig. 9.2(b).The segmenter singles out image M, where each re-
gion is approximated by its mean value, and subtracts it from Y, leaving
only texture and noise. Of course, a real segmenter would carry out this
task only approximately, but in our experiments we assume an ideal be-
havior. The image M must be encoded without loss of information but
for a reasonably smooth map this encoding cost is quite limited, for our
running example it amounts to 0.1 bit/pixel. Denoising and compression
blocks are the same as before. It is worth noting that both filtering and
compression techniques could make use the map information, to adapt
to the statistical behavior of each component region, with further perfor-
mance improvement.

9.3 Numerical results

We consider, in the first experiment, a noise-free image (Y = X), and we
compress it by JPEG2000 with no previous filtering. In Fig. 9.3 (dotted
lines) we show the mean-square error (MSE) as a function of the encoding
rate (R) in bit/pixel. In addition, in order to measure edge degradation,
we also report the boundary-region mean-square error (B-MSE), which is
computed only on pixels that are within 3 points of an edge. It results
that, even in the absence of noise, the edges are significantly degraded by
the compression process. Fig. 9.3 also reports global MSE and boundary
MSE for the segmentation-based coder (solid lines). Despite the additional
cost of segmentation, the performance gain is striking, especially for the
boundary regions. As a matter of fact, MSE and B-MSE now are closer
together (the increase in the latter is only due to the high frequencies as-
sociated with the change of texture from region to region) confirming that
segmentation is especially valuable for boundary preservation.

Let us now consider the noisy image Y (SNR=6.98 dB) and, first of all,
let us study the case in which no filtering is carried out. Fig. 9.3 shows
that JPEG2000 has a much harder time now compressing the Y image, as
the MSE (always global) decreases much more slowly. What is worse, the
MSE computed with respect to the desired image X stops decreasing after
a given rate, when the encoder begins devoting most of its resources to
faithfully represent the added noise.

Therefore, for such noisy images, pre-filtering seems to be a manda-
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Figure 9.3: Global and boundary MSE for noise-free image

tory step. On the other hand, even an edge-preserving filter, like Lee’s,
tends to smooth out edges. This is clear from the data of Tab. 9.3. After
Lee-filtering image Y the MSE decreases significantly from 11181 to 2117
with a 5 × 5 window, down to 1369 with a 9 × 9 window. However, this
does not hold for the B-MSE which, after an initial reduction from 11062 to
3893, begins increasing again up to 5904, confirming that the filter, while
reducing noise, is also smearing region boundaries.

The picture is completely different when a reliable segmentation map
is available. In this case we apply the filter after having subtracted from
each region its mean, so there are no longer sharp transition among re-
gions. When we filter this image, both MSE and B-MSE decrease consis-
tently as the filter window grows, reaching much smaller values than in
the previous case, especially near the boundaries.

Fig. 9.5 reports the coding performance (only global MSE) when the
Lee filter is used. The MSE is evaluated both with respect to the desired
image X and to the noisy image Y. Comparing the results with those of
Fig. 9.3, it is clear that filtering improves performance. In fact, although
the MSE with respect to the noisy original Y is about unchanged, it is
much smaller when the desired image X is considered. Such the original
is available here only because synthetic images are considered, but a sim-
ilar behavior could be expected of real images. As for the comparison be-



CHAPTER 9. SAR IMAGES COMPRESSION 143

Figure 9.4: MSE for the compressed noisy image (no filtering)

window w/o segm. with segm.

size MSE B-MSE MSE B-MSE

5 × 5 2117 3893 1815 1759

7 × 7 1479 4439 982 937

9 × 9 1369 5120 725 728

11 × 11 1401 5578 622 634

13 × 13 1489 5904 582 581

Table 9.1: MSE after Lee filtering



144 9.3 NUMERICAL RESULTS

Figure 9.5: MSE for the compressed noisy image (Lee filtering)

tween conventional and segmentation-based encoding, the difference is,
once again, quite large. It is worth underlining once more that the strong
noise level considered puts an insurmountable limit to the performance
and after 0.25 bpp (in this case) increasing further the encoding resources
is a pure waste.

Finally, to gain insight about visual quality Fig. 9.6 compares the test
image encoded at 0.25 bpp without (left) and with (right) segmentation. It
is clear that segmentation guarantees a superior quality, especially around
the region boundaries.

Figure 9.6: Decoded images at 0.25 bit/pixel: (left) without segmentation;
(right) with segmentation
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9.4 Conclusions

The analysis developed in this chapter suggests that segmentation has a
huge potential in image coding as it allows one to separate edges from
texture and to process both pieces of information in the most appropriate
way. This is especially true when a strong noise component is present, as
is the case for SAR images, since noise and edges often occupy the same
frequencies and the former cannot be filtered without impairing the latter.
Nevertheless, even in the case of less noisy images, this approach can be
applied successfully, as we will see in next chapters.

Of course, a number of problems are open for further investigation,
concerning the image model, the processing blocks, and the experimental
setting. First of all, a more elaborate image model could be considered, re-
placing step edges with graded edges, using more realistic texture models,
and modelling the region process as well (e.g., the boundary roughness).
Then, all steps of the compression scheme should be revisited and possibly
updated, from denoising (e.g., trying wavelet-based techniques), to tex-
ture compression and map coding. Despite all the foreseeable problems,
we feel that the segmentation-based approach will prove advantageous in
most practical situations.



146 9.4 CONCLUSIONS



Chapter 10

Multispectral and Multitemporal
Images Compression

The usual approach of science of constructing a mathematical
model cannot answer the questions of why there should be a uni-
verse for the model to describe. Why does the universe go to all the
bother of existing?

STEPHEN W. HAWKING

A Brief History of Time: From the Big Bang to Black Holes, 1988

10.1 Multispectral images compression

Multispectral (MS) images are collected by array of sensors, each of which
is sensitive to a certain frequency band of the electromagnetic radiation.
Typically, the system is mounted on-board a satellite in order to acquire
images of the earth surface. A multispectral image is then made up of a
set of bi-dimensional images or bands, representing the same area, but in
different spectral windows. When the number of bands is large, the name
hyperspectral images is used. In Fig. 10.1 we show a schematic represen-
tation of a multispectral image as three-dimensional set of data, highlight-
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Figure 10.1: Schematic representation of a multispectral image

ing the spectral contribution of cell in position (x, y) sampled at certain
frequencies.

The spectral bands constituting an MS image have the same size and
typically come in sets of strongly correlated images. In Fig. 10.2 we give
an example of some bands taken from a MS image of 63 bands, with a 9
bits dynamics, and a size of 1920 × 512 pixels. Here only a square section
of 256 × 256 pixels is shown. This example highlights that each subband
is usually made up of several regular regions, separated by more or less
sharp edges. In addition, spectral bands are usually very correlated, even
though large differences can appear in particular regions. A deeper insight
on bands correlation is given in Fig. 10.3, where we report the inter-band
correlation image, in which pixel (i, j) has a luminance proportional to
correlation between bands i and j. It is clear that groups of strongly corre-
lated (almost identical) bands exist. In particular, we observe that bands
1–20 are well correlated among them and with bands 36–63. Bands 21–27
and 29 are correlated among them but not with other bands. Bands 32–35
have similar characteristics, while bands 28 and 31 are uncorrelated from
any other, since they are completely noisy.

The high inter-band correlation and the the fact we find similar riparti-
tions into homogeneous regions in almost all the frequency bands are two
characteristic that can be used in building an accurate MS image model,
which can be exploited to efficiently encode them. Actually, compression
is an important issue for remote-sensing multispectral and hyperspectral
images since they represent large areas of the Earth at high spatial reso-
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Figure 10.2: Example bands from a multispectral image
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Figure 10.3: Interband correlation
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lution and, increasingly, on a large number of spectral bands. Therefore,
huge resources are needed for transmission to the ground station, storage,
and diffusion to the end users. For this reason, much attention has been
devoted in recent years to the compression of such images, as the many
papers appeared in the literature testify. The major focus is on transform
coding, based on discrete cosine transform (DCT), Karhunen-Loève trans-
form (KLT), or discrete wavelet transform, followed by a suitable encoding
step.

Encoding schemes based on hybrid transforms are among the most
popular. They treat differently spectral and spatial redundancies, as, for
example, in [73], where a KLT is carried out in the spectral domain, fol-
lowed by a two-dimensional DCT in the spatial domain. A similar scheme
is considered in [28] with the DWT instead of the DCT. The idea behind
the hybrid transform is the different nature of the dependencies in the spa-
tial and spectral domain. In fact, along the spectral dimension, the signal
depends almost exclusively on the pixel land cover and hence, if only a
few land covers are present in the image, the KLT works fairly well. In
the spatial dimensions, on the contrary, the signal depends on the scene
geometry and is less predictable, with many discontinuities near region
boundaries. In this case, usually DCT and DWT perform better than the
KLT.

However, the transform coding approach, by itself, is not completely
suited to compress this kind of images, and a better modelling effort is
necessary to fully exploit data redundancies. The model we propose is
suggested by the observation that a remote-sensing image is often com-
posed by a small number of regions with homogeneous parameters (land-
cover, texture, etc.). If such regions are recognized and extracted, they can
be separately encoded. The reference scheme, shown in Fig. 10.1, should
therefore comprise a segmentation stage, which is able to single out the
elementary component from the MS image; this map is then used in the
region-based encoder, and it is necessary at the decoder side as well. For
this reason, a map coding stage is required. The encoded map is sent as
side information to the decoder.

In order to implement each stage of this scheme, several challenging
problems must be addressed, concerning the segmentation, the lossless
coding of the map, and the lossy coding of the region textures. We resort
to the wavelet transform because of its simplicity and good compaction
performance, followed by the SPIHT algorithm [74], an efficient and flexi-
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Figure 10.4: Region-based coding scheme

ble zerotree-based coding technique. Shape-adaptive versions of both the
WT and SPIHT have been implemented, in order to encode regions of ar-
bitrary shape [15]. In Sections 10.1.1–10.1.5, we describe in some detail the
various tools proposed and used in the coding scheme, that is, the segmen-
tation algorithm, the lossless map coding technique, the transformation
used in the spectral domain, the shape-adaptive wavelet transform, the
shape-adaptive SPIHT algorithm, and the rate-allocation strategy. Then,
in Section 10.1.7, we present and comment some experimental results.

10.1.1 Segmentation

A meaningful segmentation of the image is of central importance for the
success of a region-based coding scheme, but it is also a complex and
largely unsolved problem. In our application we have two requirements:
on one hand, we want each region to be formed by pixels of the same
class, so as to exhibit homogeneous statistics and increase the efficiency of
subsequent encoding. On the other hand, we would like to segment the
image in a small number of large regions, in order to have a simple map
to encode, and to use shape-adaptive transforms on nice regular shapes.

Such requirements are partially contrasting, since remote-sensing im-
ages typically present a large number of small regions and isolated points
because of the sensor noise. A relatively smooth map can be obtained by
resorting to the Bayesian approach, so as to include prior information in
the segmentation process. In particular, we applied the technique pro-
posed in [26, 69], based on a tree-structured Markov random field (MRF)
image model, which proved to be accurate and fast. In addition, a few
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(a) (b)

Figure 10.5: Band 7 of original image (a) and segmentation map (b)

morphological operations were carried out in order to eliminate small re-
gions and smooth out contours.

An example of the results is given in Fig. 10.5, where we show a band of
the original 256×256-pixel image (a), and the segmentation map obtained
with the MRF-based technique with morphological filtering (b). Although
the final map comprises only seven regions, not all of them are really ho-
mogeneous, as appears for example in the upper-left region, which is com-
posed of different kinds of fields and even some woods. This will likely af-
fect the final performance, and the best compromise between smoothness
and homogeneity is still an open question. Indeed, map geometry affects
encoding performance in multiple ways. First, it changes the cost of map
representation, but this term usually does not affect a lot performance.
Secondly, it influences the ability of spatial shape-adaptive transform to
concentrate energy in low frequency transform coefficients, and it is well
known how this property is important for efficient compression. A more
faithful map could help in this case in reducing high frequency contribu-
tion of borders, which would indeed be split between neighboring regions.
Thirdly, map geometry directly affects scansion technique efficiency (see
Section 10.1.3). In this case, a more accurate map would probably more
complex and less regular as well, reducing the efficiency of zerotree-based
scansion algorithms. These considerations make it clear that an optimal
trade-off among accuracy and regularity of a segmentation map is still far
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to be found.

10.1.2 Map coding

After the segmentation map has been processed to smooth contours and
erase small regions, it can be coded without loss of information at a limited
cost. We use a simple scheme based on adaptive arithmetic coding. We
do not expect that this encoder has the best possible performance, but,
as the cost of segmentation map affects very little performance (except
for extremely low rates), we do not consider more sophisticated encoding
scheme.

Let K be the number of regions; in order to reduce complexity, the K-
ary map is first converted into a sequence of K − 1 binary maps, which are
then encoded with the adaptive arithmetic encoder. In order to define the
context we consider a causal neighborhood made up of 4 pixels. Each pixel
can assume three values, as a third symbol is needed to signal out-of-map
neighbors. Then 34 = 81 are possible, but we further simplify the scheme
by considering just five contexts, based on the count of zeros and ones.
The context we consider are the following: all-zeros, majority-of-zeros, all-
ones, majority-of-ones and mixed. For our smooth maps, the vast majority of
pixels have an all-zeros/all-ones contexts, and are significantly compressed,
leading to a negligible cost for map coding. Of course, this scenario could
change in case a more faithful map is used. This simple algorithm allows
to encode the map of Fig. 10.5b with 0.080 bpp.

10.1.3 Shape-adaptive wavelet transform

Segmentation provides us a partition of the image into a set of homoge-
neous regions, whose textures are compressed by means of transform cod-
ing. In particular, we resort to the wavelet transform to exploit its many
appealing properties, first of all its ability to work on the whole image and
compact energy in a few coefficients, treating equally well smooth regions
and discontinuities. Of course, the basic transform must be adapted to op-
erate on regions with arbitrary shapes. A simple approach, already used in
the well-known shape-adaptive DCT [83, 84], is to flush the pixels to the
left edge of the bounding box, apply 1d transform along the rows, then
flush again the coefficients to the upper edge and transform the coefficient
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Figure 10.6: Row filtering example. An object mask and the resulting
SAWT mask for the local subsampling strategy are reported. “Even” lo-
cation are marked by a circle.

along the columns. This technique is very simple but changes the mu-
tual position of pixels, thus reducing the correlation between transformed
pixels and, in the end, the compaction ability of the transform. Another
possibility is to extend, with various strategies, the signal in the bound-
ing box outside the region of interest, but the obvious drawback is the
increase, possibly large, in the number of coefficients to be later encoded.

Recently, however, a new shape-adaptive wavelet transform algorithm
has been proposed by Li and Li [49] which overcomes all these problems.
This transform operates “in place”, exploiting the spatial locality of DWT
coefficients. As a consequence, it preserves the spatial correlation, locality
properties of wavelet transforms, and the self-similarity across subbands,
which is at the core of zerotree-based coding algorithms. In addition, the
number of coefficients after transform is the same as the number of pixels
in the object, and no redundancy is introduced. Finally, for a rectangu-
lar region the transform reduces to the conventional wavelet transform.
For all these reasons Li and Li’s algorithm was included in the MPEG-4
standard, and we use it in our coding scheme. However, some parame-
ters of this transform have to be tuned, and namely we have to choose the
subsampling strategy.

Shape-adaptive WT basically relies on the ability of performing wa-
velet transform on arbitrary length vectors. Once a technique is defined
to perform filtering and subsampling on vectors, it suffices to apply it to
each image’s row and column to obtain a bi-dimensional SA transform.
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Of course, filtering an arbitrary length vector (which can be a row or a
column of considered object) with wavelet high-pass and low-pass filters
does not require any special processing. On the contrary, we have to be
careful about the subsequent subsampling. The subsampling strategy de-
pends on filter’s type (orthogonal and biorthogonal filters require different
processing) and length (odd or even) [50]. Anyway, as for spatial filtering
biorthogonal odd filters (and namely Daubechies 9/7 and 5/3 filters) are
far the most used, we will consider this case only. The subsampling tech-
niques we consider in the following have been proposed by Li and Li in
[50].

Let us start by considering the processing of isolated samples: they
are always considered to belong to the low-pass subband, and the filter-
ing of course consists just in a suitable scaling. For a generic vector, ac-
cording to a first possible strategy, we consider that its first sample has
always a “zero” (i.e. even) index. Then, the first, third, ... samples of the
low-pass filter output will belong to the low-frequency subband, and the
second, fourth, ... samples of the high-pass filter output will belong to
the high-frequency subband. This implies that, if the considered vector
has an even number of pixels, high and low frequency subband will have
the same number of coefficients, while if this number is odd, the low pass
subband will have one more sample than the high pass subband. An ex-
ample of local subsampling is given in Fig. 10.6. All rows begin with an
“even” sample, then odd sized rows produce a low frequency subbands
with one sample more than high frequency one. This subsampling tech-
nique is called local subsampling, and, it should give advantage to zerotree
scansion techniques, as it concentrate as more coefficient as possible in the
low-pass subband.

The second possible approach consists in considering a global subsam-
pling grid. According to it, the first sample of any vector can be even-
indexed or odd-indexed as well, except for the case of isolated samples,
which are treated as in the previous case. As a consequence, after the SA-
WT we can have more samples in the low or high frequency subband. This
strategy is called global subsampling. In this case, spatial position among
subbands is better preserved. This proved to give better performance [49],
and for this reason, we have employed global subsampling in our com-
pression scheme. An example of global subsampling is given in Fig. 10.7:
even and odd positions depend on a global reference grid, with “globally”
odd samples going to the high pass band, and “globally” even samples to
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Figure 10.7: Row filtering example. An object mask and the resulting
SAWT mask for the global subsampling strategy are reported.“Even” lo-
cation are marked by a circle.

the low pass band.
An example of SA-WT is given in Fig. 10.8. Three level of spatial WT

are applied on a single object obtained from the images previously shown.

10.1.4 Shape-adaptive SPIHT

SPIHT (set partitioning in hierarchical trees) is a well-known zerotree-
based algorithm for the progressive quantization of wavelet transform co-
efficients. It is simple, intrinsically scalable, and very efficient, which is the
reason of its popularity. In addition, it can be readily modified to encode
images of arbitrary geometry after a shape-adaptive WT.

We introduced only two major changes with respect to the basic algo-
rithm [15]. First, only active nodes, that is nodes belonging to the support
of the SA-WT of the object, should be considered while scanning a spatial
orientation tree. This information is available at the decoder since the seg-
mentation map is sent without loss. The second modification concerns the
lowest frequency band, where coefficients cannot be grouped anymore in
2 × 2 squares, as in the original algorithm, since they are not always well
defined anymore, and a single root is considered instead, each with (up
to) three offsprings.

Even though the encoding algorithm is readily modified to account
for the arbitrary geometry, its performance might well suffer because of
elongated or fragmented shapes, since many bits could be spent to en-
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(a) (b)

Figure 10.8: Multispectral image and example of SA-WT

code sparsely populated branches. More precisely, SA-WT can produce
active nodes in the high frequencies which have no active parents. We
call this kind of node an orphan. The presence of orphans in the SA-WT
mask reduces the efficiency of the SPIHT sorting algorithm. We remember
that this algorithm makes a partition of WT coefficients into sets (called
hierarchical trees) such that the significance test is carried out on all coef-
ficients of a set. The number of coefficients being equal, the presence of
orphans increases the number of partition trees, and, as a consequence,
the number of bits needed for the sorting pass. Therefore, the percentage
of orphans is an indicator of the SA-SPIHT efficiency for a given shape. In
Table 10.1 we give some geometrical statistics for the segmentation map of
Fig. 10.5b, here reported with the object index. We consider a 5-level SA-
WT decomposition for each object. We observe that elongated objects (like
2, 3 and 4) and irregular objects (like 6 and 7) have the largest percentage
of orphan nodes in their SA-WT masks, suggesting a lower effectiveness
of SA-SPIHT.

We conclude this section remarking that both bi-dimensional and three
dimensional versions of the SA-SPIHT algorithm can be envisaged, and,
actually, both of them have been implemented and used in our experi-
ments.
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Object Coeff’s Orphans Orphans
Number Number Number Percentage

1 24016 117 0.49%

2 4130 406 9.85%

3 10069 418 4.16%

4 4778 416 8.72%

5 15860 383 2.42%

6 2653 197 7.43%

7 4030 179 4.43%

1 2 

3 

4 
5 

6 7 

Table 10.1: Geometrical statistics for SA-SPIHT with respect to the objects
of the reported segmentation map.

10.1.5 Rate allocation

Resources can be allocated to different objects constituting the MS image.
The definition of object is quite flexible, and we will consider a few cases.
A 2D-region is a set of pixels belonging to a single frequency band and hav-
ing the same label on the segmentation map. All the 2D-regions of the MS
image corresponding to the same label form a 3D-region; we will consider
also all the 2D-regions in the same band as an object. In the following, we
will generically refer to objects, which can actually bands, a 2D-regions or
a 3D-regions.

Bit-rate allocation could well be driven by the application or even by
the user itself in order to privilege certain areas over the others. When
the goal is only the minimization of the distortion, we resort to the opti-
mal Lagrangian approach, progressively allocating resources to the vari-
ous objects.

Let us call D the distortion of the whole MS image, N its number of
pixels, B the number of bits used to encode the image, xj the j-th pixel
of original image and x̂j its reconstructed version. Let M be the number
of objects, and let us indicate with a subscript i the parameters of the i-
th object: Di and Ri are its distortion and rate (in bpp), Ni the number of
pixel, Bi is the number of bits used to encode the object (Bi = NiRi), xi,j

the j-th pixel and x̂i,j the reconstructed version.

If we use the MSE as the distortion measure, we have that
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(10.2)

So we have to minimize (10.1) under the constraint that the number of
total bits used ∑i Bi is less than the total bit-budget BMAX:

M

∑
i=1

Bi ≤ BMAX

⇔
M

∑
i=1

Ni

N
Ri ≤

BMAX

N

⇔
M

∑
i=1

aiRi ≤ RMAX (10.3)

We used ai = Ni/N instead of wi only to be able to write the optimal al-
location equation with exactly the the same formulation we had for video,
see (6.4) and (6.5). We could develop the Lagrangian solution to this opti-
mization problem as in chapter 6, and we would obtain the same solution:
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Space Spectral Object Encoding Rate
index Transform Transform Dimension Technique Allocation

1 WT 3d SPIHT N/A

2 2D WT KLT 2d SPIHT Band

3 3d SPIHT N/A

4 WT 3d SA-SPIHT 3D-region

5 2D SA WT KLT 2d SA-SPIHT 2D-region

6 3d SA-SPIHT 3D-region

Table 10.2: Encoding techniques

optimal allocation among objects is obtained when rates Ri are such that
the same slope is obtained on all the RD curves (Ri,

wi
ai

Di) = (Ri, Di). We

observe that this algorithm can be applied independently from the shape
and the dimensionality of the objects.

However, we emphasize that, differently from what happens for the
case of video, the RD curves are those of reconstructed objects, see (10.2)
that is, they are no longer curves in the wavelet domain, but in the lumi-
nance domain. As a consequence, we can develop different algorithms
than those seen in chapter 6 in order to achieve optimal allocation. A
simple solution would be the following. Using the SPIHT algorithm it
is possible to obtain a good estimate of current distortion during the en-
coding process. Then we start encoding simultaneously all object, and we
proceed by assigning the next bit (or encoding resource unit) to the object
which currently has the RD curve with the largest slope, i.e. to the object
which would have the largest distortion reduction. This algorithm con-
verges towards the best possible (discrete) allocation.

10.1.6 Implemented techniques

Using the tools described in previous Sections, we can assembly several
encoding techniques. They differ for the spectral transform technique, the
spatial transform, the encoding algorithm, the dimensionality of objects,
the rate allocation strategy. We considered the techniques listed in Tab.
10.2 whose main characteristics we resume in the following:
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1. 3D WT + 3D SPIHT. This is the ordinary 3D SPIHT, and it is consid-
ered the reference technique. A three-dimensional WT is performed,
using Daubechies 9/7 filters in the spatial domain and Haar filter in
the spectral domain. The WT coefficients are encoded with the 3D
version of SPIHT [43, 89].

2. 1D KLT + 2D WT + 2D SPIHT + Band Rate Allocation. We change
the spectral transform using the KLT. Then each “spatial” section of
the 3D set of transformed coefficients is encoded by 2D SPIHT. The
rate of each “band” is decided by the allocation algorithm.

3. 1D KLT + 2D WT + 3D SPIHT. A simple variation of the first algo-
rithm, in which the spectral filtering technique is the KLT instead of
DWT.

4. 1D WT + 2D SA WT + 3D SA SPIHT + 3D-region Rate Allocation.
Spectral WT and spatial SA WT are performed. Each three dimen-
sional region is encoded by 3D SA SPIHT, and the optimal Rate Al-
location algorithm decides the rates.

5. 1D KLT + 2D SA WT + 2D SA SPIHT + Object and Band Rate
Allocation. After KLT along spectral direction and spatial 2D SA
WT, each 2D object is encoded with 2D SA SPIHT. Then, the Rate
Allocation algorithm decides rates for each object in each band.

6. 1D KLT + 2D SA WT + 3D SA SPIHT + Object Rate Allocation.
The difference with algorithm 4 is the spectral transform.

10.1.7 Experimental results

The first experiment is carried out on a 256 × 256 section of a 63-band
multispectral image (GER sensor) whose sample bands were shown in
Fig. 10.2. The corresponding segmentation map of Fig. 10.5b has been
encoded as described in Section 10.1.2 with a cost of 0.080 bit/pixel. Like
for the wavelet transform, to obtain a good encoding efficiency, 5 levels
of decomposition are used in the spatial domain (Daubechies 9/7 filters),
but only 3 in the spectral domain (Haar filters), because only 8 bands of
the image are jointly encoded here. The WT transform has been performed
before along spectral direction (all the levels of decomposition) and then
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Figure 10.9: Coding schemes performance

along the spatial directions. This means that we do not use a dyadic de-
composition, which, on the other hand would have limited the number
of spatial decomposition levels to the maximum possible along the spec-
tral direction i.e. only 3. Since an increase of the number of spatial de-
composition levels improves overall coding performance, we gave up the
dyadic decomposition. This is a common choice for WT analysis of three-
dimensional data [43, 89, 28], and it is generically referred to as packet de-
composition. Of course, this affects SPIHT trees structure as well, but it
suffices to build these trees by considering as offsprings of a given node
the coefficients in the homologous position in the next higher resolution
band(s) [43].

After encoding all objects, the optimal rate allocation procedure was
carried out. We start by comparing the encoding techniques which does
not use segmentation (flat coding). We use as quality measure of decoded
images the SNR as defined in Eq. (3) of the Introduction. We encoded the
test set of images with techniques 1, 2, and 3. The results are reported in
Fig. 10.9a.
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From this first experiment, we see that a remarkable difference is given
by the spectral transform. Using the KLT on the spectral direction gives
up to 1.5 dB of gain with respect to the WT (this is observed between
techniques 1 and 3 which only differ in the spectral transform). We ob-
serve also that coding bi-dimensional images and performing an optimal
resource allocation gives a further advantage in performance (about 1 dB
between technique 2 and 3), but this advantage seems to fade out at higher
bit-rates. Actually, further experiments proved that at high bit-rate, the 3D
technique (no. 2) performs better than the 2D version (no. 2).

Moreover, it is worth noting that KLT is applicable only when a little
number of spectral band have to be encoded, otherwise its computational
cost and side information (related to KLT eigenvalues) become too expen-
sive. However, if we consider up to32, KLT is the best spectral transform,
in the case of flat coding.

From this first experiment we observe that as few changes as the use
of resource allocation and of the KLT, allow us to clearly outperform a
state-of-the-art technique as 3D-SPIHT.

In a second set of experiments, we compared object based techniques
4–6, and the results are shown in Fig. 10.9b. We see in this case as well that
the spectral transform affects heavily performance, with KLT being clearly
better than WT,as testified by the (approximately) 2 dB gap between tech-
niques 4 and 5 performance curves.

As far as rate allocation is concerned, we note that, once again, when
it is possible to determine each band bit-rate (i.e. using 2d-regions as ob-
jects), coding performance improves: technique 5 outperforms technique
6. Anyway, in this case the difference is smaller (about 0.8 dB).

Then we compared flat and object-based techniques. Results are shown
in Fig. 10.10 – 10.11, where techniques 2 and 5 were compared on different
image sets.

In Fig. 10.10a we simply compared techniques 2 and 5 on the GER im-
ages. The two techniques have almost the same performance, with the flat
approach slightly better than the object-based one.

We finally performed further experiments on other image sets. We
considered two sets of multispectral images from a multitemporal image
(Landsat)1, and a synthetic MS image. Some sample bands of the Landsat

1As we will see in Section 10.2 a multitemporal image is made up of several set of
multispectral images taken in different moments.
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Figure 10.10: Performance of flat and object-based techniques on different
images
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(b) Synthetic Images

Figure 10.11: Performance of flat and object-based techniques on different
images
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image are shown in Fig. 10.12 in next section.

In Fig. 10.10b we show coding performance of techniques 2 and 5 for
the first set of Landsat images. Even in this case, the two techniques have
very close performance, with the object-based technique having better re-
sults for some ranges of bit-rate. Similar results have been obtained for the
second set of Landsat images, see Fig. 10.11a.

The synthetic image has been build by taking four square blocks (with
a size 32 × 32 pixels each) from 16 bands of the GER image. Each square
has been taken from a different region so that it has uniform texture, and
is quite different from the others. The segmentation map of this synthetic
image is perfectly known. We note that the object-based approach out-
performs the flat approach all over the bit-rate range, up to 0.4 dB, see
Fig. 10.11b. However, this is the best possible configuration for the object-
based approach, as segmentation is perfect and texture inside regions is
very uniform.

From these experiments we can conclude that the techniques we pro-
posed clearly outperform state-of-the-art algorithms such as SPIHT3D. A
remarkable part of the performance gain is due to the use of suitable trans-
formation along the spectral axis, as the KLT. A second contribution comes
from an optimal rate allocation strategy among “objects”, which can be
bands, 2d-regions or 3d-regions. The region based approach can give a
further performance improvement, but, mainly it is important because it
allows a great flexibility in coding and in resource allocation. Namely, the
user could be interested not to global performance but only to a single re-
gion. The region-based approach allows the user to give more resources
to the region of interest. Moreover, this approach can give some compres-
sion performance improvement above all when the segmentation is very
accurate and the objects have nevertheless a regular shape. These two re-
quirements are partially in contrast, and this explains why, in general, re-
gion oriented approach has performance so close to the flat approach case.
Moreover, further performance improving is possible within the object-
base coding scheme: map coding cost can be reduced using more so-
phisticated techniques, and improving performance at very low bit-rates;
the spectral transform can be adapted to the single object, improving the
energy compaction; finally, a object-oriented encoding algorithm should
be designed, since SA-SPIHT is just an adaption from an algorithm for
rectangular-shaped objects.
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10.2 Multitemporal image compression

A Multitemporal (MT) image is obtained by sensing many times the same
area in different moments. As a consequence, a MT image is often made up
by several multispectral images taken at different times. A strong correla-
tion usually exist among the bi-dimensional images constituting a multi-
temporal image.

Multitemporal images allow one to follow the evolution in time of a
given region of interest by means of change detection techniques [52, 33,
7], and therefore represent valuable tools for natural resource manage-
ment. For many advanced applications the basic data-unit of interest be-
comes a set of multispectral or hyperspectral images acquired at different
times. The transmission and archival of such a huge amount of data is a
very demanding task, despite the constant improvement of storage and
communication media, and some form of data compression is often desir-
able or necessary. General-purpose image compression techniques, such
as JPEG2000, are not suitable in this case, as they neglect important in-
formation about the source, especially the strong dependence among the
various spectral bands and temporal images.

Despite the relevance of this problem, only a few papers address the
compression of multitemporal images in the literature [57, 19], with ap-
proaches not really tailored to the task. More relevant to the problem is
the literature on the compression of multispectral images, as we saw in
the previous section as well.

Even for MT images, compression techniques based on segmentation,
seems very promising for several reasons, partially different from those
considered for MS images. A first reason is that segmentation can single
out regions where significant changes have occurred; this information is
embedded in the encoded stream and represents a very valuable infor-
mation for many applications. Turning to compression efficiency, as for
the MS image case, segmentation allows one to encode each region inde-
pendently (object-based coding) and therefore to devote more encoding
resources to regions of interest (e.g. those where changes have occurred),
adapt encoding parameters to local features of the region (adaptive coding),
or even select different encoding techniques for different regions (dynamic
coding). Finally, for multispectral multitemporal images, the additional
cost of encoding the segmentation map is shared by all bands, and hence
it is typically negligible.
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Given all these considerations, an object-based compression scheme
seems to be an interesting tool in the case of multitemporal image com-
pression. Therefore, we resort to an adaptation of the scheme proposed
for multispectral image coding.

The proposed scheme for multitemporal images is based on the follow-
ing major steps:

1. the images collected at times t1, t2, . . . , tN, are jointly segmented;

2. based on the analysis of the segmentation maps, changed and un-
changed regions are detected;

3. the segmentation maps are jointly encoded without loss of informa-
tion;

4. the region textures are lossy coded independently, with rate alloca-
tion based on the results of change detection.

Segmentation is once again carried out by means of an algorithm based
on TS-MRF (tree-structured Markov random field) image model [26, 69].
Texture compression is carried out by means of shape-adaptive wavelet
transform followed by our shape-adaptive version of the SPIHT algorithm
to quantize transform coefficient. The first results related to this technique
have been presented in [12].

In next Sections 10.2.1–10.2.3 we provide more detail on the process-
ing tools used for segmentation and coding, while in Section 10.2.4 we
describe the experimental setting and discuss numerical results.

To make description more concrete and easy to understand, we refer
already to the data that will be used in the experiments. We work on two
Landsat TM images (only optical bands) of an agricultural area near the
river Po (Italy) taken in April and May 1994. The images are 494x882 pixel
but we take a smaller square region of 512x512 pixel (some white lines
added at the margin) to speed up processing. Fig. 10.12a and Fig. 10.12b
show band 3 of the selected area in April and in May.

Together with the image, we also have information about which classes
were present at both times (wet rice fields, cereals, wood, and bare soil in
April, both wet and dry rice fields, cereals, wood, and corn in May) and
some patches where ground truth data, involving all classes of interest,
were collected at both times.
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(a) Band 3 in April (b) Band 3 in May

Figure 10.12: Example of multitemporal image (Landsat)

10.2.1 Classification

As said before, to carry out segmentation we resort to a Bayesian ap-
proach, in order to take into account spatial dependencies. In particular,
we use the TS-MRF model proposed in [22] which provides several advan-
tages over non-structured models, and especially allows us to organize a
priori the classes in a meaningful way through a binary tree. Based on the
available information, we choose the tree of classes shown in Fig. 10.13.
The tree is build as follows: first we consider the four classes present in
April. They are grouped according to the fact that they have changed or
not in May. So the tree root has two branches, accounting for changed
and unchanged classes. The unchanged branch has as many leaves as the
unchanged classes in April are, i.e. two in this case (Cereal and Wood).
The changed classes branch has as many nodes as the April changed class
are, i.e. two (bare soil and wet rice). Then, each of this node is split in the
classes it produces. We note that, according to the segmentation algorithm
characteristics, each tree node has at most two offsprings, so each split can
not produce more than two classes, and so, sometimes, further splits are
necessary, as for deriving the three classes wet rice, dry rice and corn from
the class bare soil. Combining information from April and May, seven
classes are singled out, five of them changed and the rest unchanged.
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Changed
Classes

Unchanged
Classes

1 2

73 4

5 6

WR in
April

BS in
April

1. Cereal

2. Wood

3. Wet Rice (WR)

4. DR from WR

5. WR from BS

6. DR from BS

7. Corn from BS

Figure 10.13: Tree structure used for data fitting (left) and classes (right).
The classes 4-7 represent land changes from April to May (WR = wet rice
fields; DR = dry rice fields; BS = bare soil).

Given this semantic tree and the class statistics (mean vectors and co-
variance matrices), the classification algorithm works, for each pixel, by
descending the classification tree down to a leaf, and thereby refining pro-
gressively its label, taking into account both observed data and the labels
of neighboring pixels. The reader is referred to [26] and [69] for details.
The final result on our image is shown in Fig. 10.14a.

10.2.2 Change detection map and map coding

Given the classification of Fig. 10.14a, the creation of a change detection
map is straightforward. As for the case of MS images, some smoothing
is needed on this map, otherwise it could contain a very large number of
objects, sometimes composed of just a few points, which would not add
information to the map’s semantic but would compromise the efficiency of
the subsequent texture encoding step. Therefore we carry out two simple
morphological operations, the elimination of small unchanged regions, and
the opening/closure of the regions to smooth their contours. The final
result is shown in Fig. 10.14b.

We point out explicitly that no changed region is eliminated and there-
fore, in case a coding modality will be chosen that privileges these regions,
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(a) (b)

Figure 10.14: Segmentation map provided by TSMRF algorithm (a) and
change detection map (b) — dark areas are unchanged

they will be all faithfully represented.
Efficiency is not really an issue for lossless coding of a binary map

(since the map is very simple), so we keep using our trivial context-based
arithmetic coding, described in 10.1.2. For the considered map, the cod-
ing cost is just 0.033 bit/pixel, to be further divided among all the image
bands. Note that this map is sent immediately as a side information and
is itself a useful product for many applications.

10.2.3 Texture coding

Classification provides us with a set of homogeneous regions, or objects,
which is encoded with our techniques based on three-dimensional trans-
forms and 2D/3D Shape-Adaptive SPIHT, as we saw in Section 10.1.4 for
multispectral images.

This object-based coding scheme achieves good compression perfor-
mance and provides the user with a great flexibility in encoding strategy.
Moreover, as for the case of MS image, we can exploit the fact that sharp
transitions among objects are greatly reduced after segmentation (so the
transform produces a smaller number of significant high frequency coef-
ficients), and the possibility to employ an optimal rate allocation strategy
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among objects, which allows us to minimize reconstruction distortion for
a given total rate.

Nevertheless, any arbitrary rate allocation strategy can be chosen. Here
we consider a few application-driven scenarios: once fixed the overall bit
budget, the user can

1. decode completely both sets of images (April and May);

2. decode completely the April images, but only regions which change
in May;

3. decode only changed regions of both sets of images.

Going from scenario 1 to 3, the user subtracts resources to unchanged re-
gions to improve the quality of changed ones. Of course, one can also
envision a situation in which changed regions are only prioritized in time,
but transmitted anyway, as well as many others made possible by this
flexible data structure.

10.2.4 Numerical results

In a first experiment, we encoded the all the multitemporal images with
the proposed algorithm, using a rate allocation strategy intended to min-
imize distortion of decoded data. We compared our technique’s perfor-
mance (namely we used the technique labelled as 6 in Tab. 10.2) with
the popular 3D-SPIHT algorithm’s (technique 1), by computing the SNR
achieved for several coding bit-rate. The results are shown in Fig. 10.15,
where we can verify that, as for the case of multispectral images, the pro-
posed improvements to the basic 3D-SPIHT encoder, allow a remarkable
increase in SNR performance up to over 2 dB. The subjective quality im-
provement is even more relevant, as borders sharpness, which is a subjec-
tively valuable feature, is completely preserved through compression.

We tried some other different encoding strategies as well, in order to
test the flexibility of our architecture. As an example, we only decoded
changed region of both sets of images, obtaining the results in Fig. 10.16a
for April and in Fig. 10.16b for May (band 3). Here, changed regions are
encoded at 0.5 bit/pixel. With respect to the case where the whole image
is encoded (with the same available bit budget), the MSE on the region of
interest decreases from 3.06 to 2.06, which corresponds to an increment of
1.72 dB in SNR.
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Figure 10.15: Performance comparison with 3D-SPIHT

(a) April (b) May

Figure 10.16: Decoding only changed regions for band 3
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10.3 Conclusion

In this chapter, a new architecture for segmentation-based compression of
multispectral and multitemporal images is presented. The Bayesian seg-
mentation approach allows us to easily find some valuable information, as
image segmentation, object classification, and change detection. The pro-
posed compression scheme exploits an object-based algorithm, which on
one hand can take advantage of segmentation information, while on the
other allows a remarkable flexibility in allocation of coding resources. The
proposed architecture is anyway very flexible. We implemented several
variations of this basic scheme. The experiments we performed prove that,
for multispectral images the KLT transform is the best choice as spectral
transform, and that object-based approach usually give some performance
advantage over flat approaches, even though the amount of this difference
depends on the images used. Anyway, it provides the user with valuable
information as classification and segmentation maps, so it is an interesting
alternative to flat methods even in the case that the performance are the
same.

Moreover, the proposed scheme can be further improved, as we can
think to use transform and encoding technique more tailored to objects,
as, for example, a classified KLT (that is, we perform independently KLT
on each class, exploiting its own statistical properties). For the encoding
technique, we remember that SA-SPIHT is just an adaptation of an algo-
rithm designed for rectangular objects. We saw that this produces some
inefficiencies in the scanning process (orphan nodes). It is reasonable to
think that an algorithm designed for arbitrarily shaped object can give
better performance.

However, the proposed algorithm is already fairly efficient, as its per-
formance are superior or comparable to a state-of-the-art technique as 3D-
SPIHT. Moreover, it provides the user with a complete flexibility for re-
source allocation among objects, according to their semantic, to the region
of interest for the user, or just to a MSE minimization strategy.



Appendix A

Coding Gain for Biorthogonal WT

Coding gain is a measure of the efficiency of a given transformation. It is
defined as the ratio between the distortion achievable with quantization of
the input signal (or PCM distortion, DPCM) and the minimum distortion
achievable with transform coding (or transform coding distortion D∗

TC).
For orthogonal subband coding, in the high resolution hypothesis, this
turns out to be the ratio among arithmetic and geometric mean of subband
variances. We want to find a similar interpretation of this quantity in the
case of non-orthogonal wavelet transform coding.

After L levels of WT, the input signal is subdivided into M subbands.
We will consider in the followings only biorthogonal filters for WT. For this
kind of wavelet basis, Usevitch [98] showed that reconstruction MSE can
be related to subband MSE. Let us call xk (k = 1, 2, . . . , N) the input signal,
and xi,k (k = 1, 2, . . . , Ni) the i-th subband signal. Moreover, let us indicate
with x̂ the reconstructed version of these signals. The distortion measure
is the MSE between x and x̂. In [98] it is shown that for biorthogonal filters,

DTC =
1

N

N

∑
k=1

(xk − x̂k)
2

=
M

∑
i=1

aiwiDi (A.1)

where ai = Ni/N accounts for the number of coefficients of each subband,
wi accounts for the possible non-orthogonality of filters, and Di is the MSE
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of subband i:

Di =
1

Ni

Ni

∑
k=1

(xi,k − x̂i,k)
2

Now, in the hypothesis of high resolution, we can write [30]:

Di = hiσ
2
i 2−2bi (A.2)

where bi is the number of bits per sample for encoding the i-th subband,
σ2

i is its variance, and hi is the so-called shape factor, which depends on
the the normalized pdf of i-th band, fi(·) :

hi =
1

12

{∫ ∞

−∞
[ fi(x)]

1
3 dx

}3

(A.3)

For example, in the case of Gaussian distribution,

hg =
1

12






∫ ∞

−∞



 e
−x2

2√
2π





1
3

dx






3

=

√
3π

2
(A.4)

The minimal transform coding distortion can be found by solving a
constrained minimization problem. We have to minimize:

DTC =
M

∑
i=1

aiwihiσ
2
i 2−2bi (A.5)

under the constraint:
M

∑
i=1

Nibi = B (A.6)

where B is the available bit budget. Defining b̄ = B/N, we can write (A.6)
as

M

∑
i=1

aibi = b̄ (A.7)
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We introduce the Lagrangian functional J(b, λ)

J(b, λ) =
M

∑
i=1

aiwihiσ
2
i 2−2bi + λ(

M

∑
i=1

aibi − b̄)

The optimal values (b∗, λ∗) are obtained when the partial derivatives of J
are set to zero

∂J

∂bi
(b∗, λ∗) = aiwihiσ

2
i (−2 ln 2)2−2b∗i + aiλ

∗ = 0

and, therefore

b∗i =
1

2
log2

[
wihiσ

2
i

]
+

1

2
log2

(2 ln 2)

λ∗ (A.8)

Imposing ∑
M
i=1 aib

∗
i = b̄

b̄ =
M

∑
i=1

ai

[
1

2
log2 wihiσ

2
i +

1

2
log2

(2 ln 2)

λ∗

]

b̄ =
1

2

M

∑
i=1

[
ai log2 wihiσ

2
i

]
+

1

2
log2

(2 ln 2)

λ∗

where we used ∑i ai = 1; it follows that

1

2
log2

(2 ln 2)

λ∗ = b̄ − 1

2

M

∑
i=1

[
ai log2 wihiσ

2
i

]

= b̄ − 1

2
log2

[
WHρ2

]
(A.9)

where we have defined W = ∏i

(
w

ai
i

)
, H = ∏i

(
h

ai
i

)
, ρ2 = ∏i

[
(σ2

i )
ai
]

respectively. Substituting (A.9) in (A.8)

b∗i =
1

2
log2

[
wihiσ

2
i

]
+ b̄ − 1

2
log2

[
WHρ2

]

= b̄ − 1

2
log2

[
wihiσ

2
i

WHρ2

]
(A.10)
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This result means that the optimal bit budget for the i-th subband is given
by the mean available bit-rate b̄ = B

N corrected by a term accounting for
subband variance, non-orthogonality weight, and shape factor. We do not
take into account the problems that b∗i should be a positive and integer
number. Substituting in (A.5), we have

D∗
TC =

M

∑
i=1

aiwihiσ
2
i 2−2b̄ WHρ2

wihiσ
2
i

= WHρ22−2b̄ (A.11)

The PCM coding distortion in hypothesis of high resolution is

DPCM = hσ22−2b̄

where σ2 is the variance and h is the shape factor of input signal. Usevitch
showed [99] that the relationship among output and subband variances is

σ2 =
M

∑
i=1

aiwiσ
2
i

Finally, we can write the coding gain as

CG =
DPCM

D∗
TC

=
hσ22−2b̄

WHρ22−2b̄

=
h

H

∑
M
i=1 aiwiσ

2
i

∏
M
i=1 wi

(
σ2

i

)ai

=
h

H

σ2
AM

σ2
GM

(A.12)

where we defined:

σ2
AM =

M

∑
i=1

ai

(
wiσ

2
i

)
(A.13)

σ2
GM =

M

∏
i=1

(
wiσ

2
i

)ai
(A.14)
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In the hypothesis of gaussian signal, hi = h and then H = h∑i ai = h.
It is known that, if each subband has the same number of coefficients
(ai = 1/M ∀i ∈ {1, 2, . . . , M}), and orthogonal filters are employed (wi =
1 ∀i ∈ {1, 2, . . . , M}), the coding gain can be expressed as the ratio of
the arithmetic and geometric means of subband variances: this result,
reported in [30] is valid only for orthogonal subband coding. Equation
(A.12) generalizes and extends it to the more general case of arbitrary wa-
velet decomposition with non-orthogonal filters. In this case, we can read
σ2

AM as a weighted (by weights ai) arithmetic mean of normalized vari-

ances wiσ
2
i , where the normalization accounts for non-isometry of the wa-

velet transform. Likewise, we can interpret σ2
GM as a “weighted” geomet-

ric mean (by the same weights ai) of the normalized variances.
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Appendix B

Allocation Algorithm Results

This appendix gives some examples of rate allocation algorithm results.
They are shown in table B.1, B.2, and B.3, for the “flower” sequence, and a
total bit-rate of 500 kbps, 1 and 2 Mbps. We used the (2, 0) LS for comput-
ing temporal subbands, 3 levels of temporal decomposition, and 7 points
for the spline representation of RD curves in the allocation algorithm. The
colour management strategy is described in next section.

B.1 Colour management

We consider 4 : 2 : 0 colour sequences, i.e. colour sequences made up of a
luminance sequence and two chrominance sequences, each of which has
half the rows and half the columns of the luminance sequence. A colour
sequence is processed almost exactly like a gray level sequence. Indeed,
MC-ed temporal filtering is performed on chrominance components in the
same way as for the luminance component, but for the MVs. We use lumi-
nance MVs scaled by two, as a consequence of the chrominance subsam-
pling factor.

The resource allocation algorithm described in Sections 6.4 and 6.5 is
performed by considering luminance data only, as it is hard to define a
significant distortion measure on the whole (luminance and chrominance)
video signal. Therefore, after the rate for luminance has been decided,
we have to choose the rate for chrominance. We resort to a very sim-
ple solution: we reserve in advance a fixed quota of subband rate for the
chrominance information. This quota is usually around 10% – 15%. This
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Subband Y Rate UV Rate Total Rate

H 16.4 1.7 18.1

LH 49.7 0.8 50.5

LLH 69.2 7.2 76.4

LLL 273.2 27.6 300.8

Tot SB 408.5 37.3 445.8

Headers: 0.2

MVF rate: 51.6

Total Rate 497.6

Table B.1: Rate allocation for the “flowers” sequence, total rate 500kbps

Subband Y Rate UV Rate Total Rate

H 85.7 1.7 87.4

LH 172.3 18.1 190.4

LLH 178.9 18.2 197.2

LLL 428.1 42.5 470.6

Tot SB 865.1 80.5 945.6

Headers: 0.2

MVF rate: 51.6

Total Rate: 997.5

Table B.2: Rate allocation for the “flowers” sequence, total rate 1Mbps

ratio is chosen empirically. Then we run the rate allocation algorithm (with
the residual rate) for the luminance component. Then we compute the
rate for each chrominance subband by applying the chosen scale factor
to the correspondent luminance temporal subband. Finally chrominance
components are encoded with JPEG2000 as well, but separately from the
chrominance signal. This provides a further colour scalability to our codec.
We reported some example of rate allocation among chrominance and lu-
minance components in Tables B.1 – B.3.

In these cases, a fraction up to 10% of luminance rate was allocated
to chrominance subbands. Anyway, when the allocated rate is too small,
we can end up with aberrant layers, which are then discarded completely
as for H and LH chrominance band at 0.5Mbps and the H chrominance
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Subband Y Rate UV Rate Total

H 356.2 35.4 391.6

LH 444.4 43.4 487.8

LLH 354.0 34.9 388.9

LLL 618.1 60.4 678.5

Tot SB 1772.7 174.1 1946.8

Headers: 0.2

MVF rate: 51.6

Total Rate: 1998.6

Table B.3: Rate allocation for the “flowers” sequence, total rate 2Mbps

subband at 1Mbps. The aberrant bit rates are typed in italic. The very
small rate assigned to them is used to transmit their mean value.

It is interesting to observe that, at low bit-rates (Tab. B.1) the LLL lu-
minance subband requires more than 50% of total rate while this fraction
falls to 30% at high rates (Tab. B.3).
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Appendix C

Video Bitstream Structure and
Scalability Issues

This appendix describes in details the structure of encoded bitstream pro-
duced by a first version of our video encoder (version 1.5.1, March 16th
2004).

Even though this was just a preliminary version, this scheme provides
information about how we obtain deep scalability and how we manage
colour coding in our encoder. This structure cannot be considered as the
final one, as two issues were not accomplished at that time. First, as far
as allocation algorithms are involved, the encoder operates on the whole
sequence, without creating GoPs. As a consequence, the bitstream is not
subdivided into GoPs. Of course this involves a coding delay as long as
the sequence itself, and this prevents any real-time application. Moreover
it is too much demanding in terms of memory resources. Of course the
bitstream structure described here can be applied to each GoP instead that
to the whole sequence. The second problem is that motion vectors are not
yet integrated into this bitstream, but this problem has an easy solution
as well. It suffices to integrate each temporal level MV stream produced
by the JPEG2000 encoder into the corresponding temporal subband bit-
stream. Actually, these changes have been implemented in more recent
version of the encoder (version 2.0.0, September 2004).

In the version 1.5.1 of the encoder, the bitstream is organized over three
levels:

• sequence level;
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Variable Length Variable Length Variable Length

Main Header Subband LL...L Subband LL...H Subband H

9 bytes

Figure C.1: Encoded stream main structure

• subband level;

• image level.

In next sections we will describe in details each level.

C.1 Sequence level structure

Encoded bitstream at sequence level is shown in Fig. C.1. A main header
of 9 bytes is followed by an adequate number N of ”subband” structures.
This number can be deduced by main header informations, see Fig. C.2,
which is made up of nine fields, each of them represented with one byte
(unsigned char). The fields are:

• index of the first image to be encoded in the original sequence;

• number of images in the encoded sequence;

• number of temporal decomposition levels;

• temporal transform kernel ((2, 2) or (2, 0));

• motion vector block size dimensions, for rows and columns;

• motion vector precision (full pixel, half pixel, quarter or eighth of
pixel);

• number of quality layers (for bit-rate scalability);

• presence of colour.

The number of temporal decomposition levels allows one to compute
the number of temporal subbands. The presence of colour influences the
bit-stream at Image Level.
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Figure C.2: Main header structure

C.2 Subband level structure

At subband level (see Fig. C.3), we have a subband header and a suitable
number of images, m, which is deducted by the header. The fields of this
header (see Fig. C.4) are the following:

• Subband type (char),

• size (2 short integers),

• number of non aberrant layers for luminance (int 8 bit),

• number of non aberrant layers for chrominance (int 8 bit),

• number of images in the subband.

The subband type is ”l” for integer valued subbands (as lowest sub-
bands with (N, 0) lifting schemes), and ”h” for all subbands with not inte-
ger values or with a range different from {0, 1, . . . , 255}.

Aberrant layers are those for which the optimal rate computed with
the rate allocation algorithm is so small that the JPEG2000 encoder is not
able to encode them. Therefore, these layers are not encoded at all, but
their mean value is transmitted.

The number of non aberrant layers for chrominance is present even if
colour is not encoded, but in this case it has no meaning. This is just for
uniforming the bit-stream structure in the two cases.
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C.3 Image level structure

The bitstream structure at the Image Level depends on the presence of
colour. If only luminance is present, chrominance data are not in the
stream, and the structure of the Image Level bit-stream is given in Fig. C.5.
Thus, in the general case, the Image structure is composed by a luminance
field and an optional Chrominance Field. Each of them is made up of an
header and the JPEG2000 data. The header information for the luminance
are (see Fig. C.6):

• Length of JPEG2000 data (integer, possibly 0);

• Scale factor (expressed by its log2 on 8 bit);

• Mean value of the subband (expressed as float with 4 bytes).

Chrominance header structure is the following (see Fig. C.7):

• Length of JPEG2000 data (integer, possibly 0);

• U component scale factor (expressed by its log2 on 8 bit);

• V component scale factor (expressed by its log2 on 8 bit);

• Mean value of subband U component (expressed as float on 4 bytes);

• Mean value of subband V component (expressed as float on 4 bytes).
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Appendix D

List of Abbreviations

APVQ Address Predictive Vector Quantization
CR Conditional Replenishment
DCT Discrete Cosine Transform
DWT Discrete Wavelet Transform
EZW Embedded Wavelet Zerotree
EBCOT Embedded Block Coding with Optimized Truncation
FGS Fine Grain Scalability
GG Generalized Gaussian
ISO International Standard Organization
ITU International Telecommunication Union
JPEG Joint Photograph Expert Group
KLT Karhunen-Loève Transform
HVQ Hierarchical Vector Quantization
LS Lifting Scheme
MC motion compensation
MC-ed Motion-Compensated
ME Motion Estimation
MG Multicast Group
MMG Multiple Multicast Groups
MPEG Motion Picture Expert Group
MRF Markov Random Field
MS Multispectral
MT Multitemporal
MV Motion Vector
MVF motion vector field
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PCM Pulse Code Modulation
PDF Probability Density Function
PSNR Peak Signal-to-Noise Ratio
SA Spatial Analysis
SAD Sum of Absolute Differences
SA-WT Shape-Adaptive Wavelet Transform
SAR Synthetic Aperture Radar
SB Subband
SBC Subband Coding
SNR Signal-to-Noise Ratio
SPIHT Set Partitioning In Hierarchical Trees
SSD Sum of Squared Differences
TA Temporal Analysis
VLC Variable Length Coding
VQ Vector Quantization
WT Wavelet Transform
ZTC Zerotree Coding
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[5] V. Bottreau, M. Bénetière, B. Felts, and B. Pesquet-Popescu. A fully
scalable 3D subband video codec. In Proceedings of IEEE Internan-
tional Conference on Image Processing, pages 1017–1020, Thessaloniki
(Greece), October 2001.

[6] A. Bovik, editor. Handbook of image and video compression. Academic
Press, 2000.

[7] L. Bruzzone and D.F. Prieto. An adaptive semiparametric and
context-based approach to unsupervised change detection in mul-
titemporal remote-sensing images. IEEE Transactions on Image Pro-
cessing, pages 452–466, April 2002.



196 BIBLIOGRAPHY
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Summary

The common framework of this thesis is the three-dimensional (3D) trans-
form approach to the compression of visual data, as video sequences and
multispectral (MS) images. Moreover, SAR images compression and low-
complexity video coding are considered. In particular, the work focuses
on 3D wavelet transform (WT), and its variations, such as motion-com-
pensated WT or shape-adaptive WT. This approach can appear natural, as
both video sequences and MS images are three-dimensional data. Nev-
ertheless, in the video compression field, 3D-transform approaches have
just begun to be competitive with hybrid schemes based on discrete cosine
transform (DCT), while, as far as MS images are concerned, the scientific
literature misses a comprehensive approach to the compression problem.
The 3D WT approach investigated in this thesis has drawn a huge atten-
tion by researchers in the data compression field because they hoped it
could reply the excellent performances its two-dimensional version achieved
in still image coding. Moreover, the WT approach provides a full support
for scalability, which seems to be one of the most important topics in the
field of multimedia delivery research. A scalable representation of some
information is made up of several subsets of data, each of which is an effi-
cient representation of the original information. By taking all the subsets,
one has the “maximum quality” version of the original data. By taking
only some subsets, one can adjust several reproduction parameters (i.e.
reduce resolution or quality) and save the rate corresponding to discarded
layers. Such an approach is mandatory for efficient multimedia delivery
on heterogeneous networks.

Another issue which is common to video and MS image coding, is the
resource allocation problem which, in a general way, can be described as
follows. Let us suppose to have M random processes X1, X2 . . . , XM to
encode, and a given encoding technique. The problem consists in finding
a rate allocation vector, R∗ = {R∗

i }M
i=1 such that, when Xi is encoded with

the encoding technique at the bit-rate R∗
i for each i ∈ {1, 2, . . . , M}, then a

suitable cost function is minimized while certain constraints are satisfied.
This allocation is then optimal for the chosen encoding technique and cost
function. These random processes can be the spatiotemporal subbands
resulting from three-dimensional wavelet transform of a video sequence,
as well as the objects into which a multi spectral image can be divided.
In both cases the problem allows formally identical formulation and then
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identical solution. The approach we followed allows an optimal solution
of the resource allocation problem, given that it is possible to know or to
estimate RD characteristics of the processes.

In the first part of this thesis, the video coding problem is addressed,
and a new video encoder is described, which aims at full scalability with-
out sacrificing performances, which end up being competitive with those
of most recent standards. Moreover, we set the target of achieving a deep
compatibility with the JPEG2000 standard. Many problems have to be
solved in order to fulfil this objectives, and the solutions we propose are
the core of this thesis first part. The main contribution lie in: research of
suitable temporal filters, constrained and regularized motion estimation,
JPEG2000 compatible motion vector coding, rate-distortion curves mod-
elling, optimal rate allocation algorithm, general JPEG2000 compatibility,
quality, temporal and spatial scalability. The last chapter of the first part
deals with low complexity video coding. The problem is to develop a
video encoder capable of a full scalability support but with an extremely
reduced complexity, for real-time encoding and decoding on low resource
terminals.

The second part of this work is about MS and SAR image compression.
The first topic has been approached with the aim of defining a compre-
hensive framework with the leading idea of defining a accurate model
of MS images. This model assumes that these images are made up of a
small number of homogenous objects (called regions). An efficient en-
coder should be aware of this characteristic and exploit it for compression.
Indeed, MS images are firstly subdivided into regions by means of a suit-
able segmentation algorithm. Then, we use an objected-oriented compres-
sion technique to encode them, and finally we apply a resource allocation
strategy among objects. Many alternatives exist for the spectral and spatial
transform, and for the encoding algorithm. We propose and test several
combinations with the aim of finding the best one. The model proposed
for MS images, partially matches the one for SAR images, in the sense
that SAR images as well usually consists in homogeneous regions. On the
other hand, these images are characterized by multiplicative noise called
speckle, which makes harder processing (and in particular, compression).
An object based approach, could be useful in this case as well.

The thesis is concluded by the bibliography and the appendices.



Résumé

Notre thèse de doctorat porte principalement sur la transformée en on-
delettes (TO) tridimensionnelle, et ses variations, comme la TO compensée
en mouvement ou la TO adaptée à la forme, pour le codage des séquences
vidéo et des images multispectrales (MS). Cette approche peut sembler a
priori normale, néanmoins, dans le domaine de la compression vidéo, les
approches basées sur les transformée 3D ont juste commencé à être con-
currentielles avec les schémas hybrides basés sur la transformée cosinus
discret (DCT). Notons qu’en ce qui concerne les images MS, la littérature
scientifique n’appréhende pas le problème de la compression par une ap-
proche intégrale. L’approche TO 3D, étudiée dans cette thèse, a reçu une
attention particulière par les chercheurs qui s’intéressent au domaine de
la compression de données, car la version bi-dimensionnelle a des tres
bons résultats pour le codage d’images fixes. D’ailleurs, l’approche de
TO fournit un support total à la scalabilité qui semble être l’une des as-
pects les plus importantes dans le domaine de la livraison de multimédia.
Une représentation scalable d’information se compose de plusieurs sous-
ensembles de données, dont chacune d’elle est une représentation effi-
cace de l’information originale. Une telle approche est obligatoire pour la
livraison efficace de multimédia sur les réseaux hétérogènes. Le problème
d’allocation des ressources est un autre aspect commun au codage vidéo
et aux images MS. Nous pouvons le décrire de la manière suivante. Sup-
posons que nous avons M processus aléatoires X1, X2 . . . , XM à coder, et
une technique de codage donnée. Le problème consiste à trouver les débits
R∗ = {R∗

i }M
i=1 tels que, quand Xi est codé au débit R∗

i pour chaque i ∈
{1, 2, . . . , M}, une fonction de coût appropriée est réduite au minimum
tandis que certaines contraintes sont satisfaites. Cette allocation est alors
optimale pour les fonctions de codage et de coût choisies. Ces processus
aléatoires peuvent être, soit les sous-bandes spatio-temporelles résultant
de la transformée en ondelettes tridimensionnelle d’une séquence vidéo,
soit les objets dans lesquels une image multispectrale peut être divisée. Le
problème peut donc être formulé de la même manière dans les deux cas, et
donc aboutir à une solution identique. L’approche que nous avons suivie
permet de parvenir à une solution optimale du problème d’allocation de
ressource si il est possible de connaı̂tre ou estimer les caractéristiques RD
des processus.

Dans la première partie de cette thèse, nous analysons le problème
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du codage vidéo et nous décrivons un nouvel encodeur vidéo. Cet en-
codeur vidéo est doté d’une pleine scalabilité sans sacrifier les perfor-
mances qui sont comparable à la majorité des normes de codage plus
récentes. D’ailleurs, nous avons placé la cible pour réaliser une com-
patibilité avec la norme JPEG2000. Beaucoup de problèmes doivent être
résolus afin d’atteindre ces objectifs. Les solutions que nous proposons
sont le noyau de la première partie de cette thèse. Les contributions prin-
cipales sont la recherche des filtres temporels appropriés ; l’estimation
du mouvement contrainte et régularisée, le codage de vecteur de mou-
vement compatible avec JPEG2000 ; la modélisation des courbes débit-
distorsion courbe, l’algorithme optimal d’allocation de débit, la compat-
ibilité générale avec JPEG2000, la scalabilité de la qualité temporelle et
spatiale. Le dernier chapitre de la première partie traite du codage vidéo
à basse complexité. Le problème est de développer un encodeur visuel
qui soit capable de supporter totalement la scalabilité mais avec une com-
plexité extrêmement réduite, notamment pour le codage et le décodage en
temps réel sur des terminaux à faibles ressources.

La deuxième partie de notre thèse aborde la compression des image
multispectrale et SAR. Nous avons souhaité appréhender ce sujet afin de
définir un cadre global avec l’idée principale de définir un modèle précis
des images MS. Ce modèle suppose que ces images se composent d’un
nombre restreint d’objets homogènes (appelés régions). Un encodeur effi-
cace devrait exploiter cette caractéristique pour la compression. En effet,
les images MS sont d’abord subdivisées en régions au moyen d’un algo-
rithme approprié de segmentation. Puis, nous employons une technique
orientée vers les objets pour les coder, et finalement nous appliquons une
stratégie d’allocation de ressource parmi les objets. Il existe diverses so-
lutions pour les transformées spatiales et spectrales, et pour l’algorithme
de codage. Nous proposons et examinons plusieurs combinaisons avec le
but de trouver la meilleure.

Le modèle proposé pour les images MS correspond partiellement à
celui des images SAR car celles-ci sont en général composées de régions.
D’autre part, ces images sont caractérisées par le bruit multiplicatif, appelé
le speckle, qui rend le traitement plus dur (notamment la compression).
Une approche basée par objet, a également pu être utilisée dans ce cas-ci.

La thèse est conclue par la bibliographie et les annexes.


