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Abstract

Spin squeezed states are multi-particle entangled states that have practical
interest in quantum metrology and atomic interferometer. In this thesis,
we study theoretically realistic schemes for the production of spin squeezed
states using the coherent interactions between cold atoms in a bimodal Bose-
Einstein condensate. In particular, we include decoherence process such as
particle losses, as well as spatial dynamics which limit the maximum squeez-
ing reachable in a real experiment. We find that the effect of losses cannot
be neglected as soon as the lost fraction of particles is of the order of the
squeezing parameter. The analytical solution that we find, using Monte-
Carlo wave functions approach, allows us to perform an optimization for the
spin squeezing with respect to the experiment parameters. The method that
we develop to study the entangled spatial and spin dynamics of interacting
bimodal BEC allows a full analytical treatment for spin squeezing in some
cases and can be used in the general case without the need of heavy numerics.
We apply our theoretical studies to an experiment for spin squeezing recently
realized successfully on an atom chip. Finally, we study the spin squeezing
in a related but different system of a BEC with two external modes coher-
ently coupled by the tunnel effect. We study this problem with a dynamical
two-mode model for T ¿ Tc and within a multimode approach in thermal
equilibrium for T & Tc.

Keywords: Bose-Einstein condensates, spatial dynamics and the phase of
the condensates, spin squeezing, quantum metrology, entangled states, deco-
herence

Résumé

Les états comprimés de spin sont des états intriqués qui ont intérêt pratique
dans la métrologie quantique et l’interféromètrie atomique. Dans cette thèse,
nous étudions théoriquement les schémas réalistes pour la production des
états comprimés de spin utilisant l’interaction cohérente entre les atomes
froids dans un condensat de Bose-Einstein bimodal. En particulier, nous
incluons les processus de décohérence tels que les pertes de particules, ainsi
que la dynamique spatiale, qui limitent la compression maximale accessible
dans une expérience réelle. Nous trouvons que l’effet des pertes ne peut être
négligé dès que la fraction de particules perdue est de l’ordre du paramètre
de compression. La solution analytique que nous trouvons, en utilisant des
fonctions d’onde Monte-Carlo, nous permet d’effectuer une optimisation pour
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la compression de spin en ce qui concerne les paramètres de l’expérience.
D’autre part, nous avons développé une méthode pour étudier la dynamique
spatiale et la dynamique de spin intriquées dans un condensat bimodal, ce
qui permet un traitement complet analytique dans certains cas, et peut être
utilisée dans le cas général, sans nécessiter de calculs numériques lourds.
Nous appliquons nos études théoriques à une expérience de compression de
spin récemment réalisée avec succès sur une puce à atomes. Enfin, nous
étudions la compression de spin dans un système lié mais différent d’un BEC
avec deux modes spatiaux couplés de façon cohérente par effet tunnel. Nous
étudions ce problème avec un modèle dynamique à deux modes pour T ¿ Tc

et avec une approche multimode à l’équilibre thermique pour T & Tc.

Mots clés: Condensats de Bose-Einstein, dynamique spatiale et de phase
des condensats, compression de spin, métrologie quantique, états intriqués,
décohérence
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Chapter 1

Introduction

A Bose-Einstein condensate (BEC) as originally predicted by Bose and Ein-
stein [1, 2], is a state of matter in which a large number of bosons, when
cooled to temperatures such that nλdB & 1 (with n the atomic density and
λdB =

√
2π~2/MkBT the thermal de Broglie wavelength), condense in a sin-

gle quantum mechanical state. The quantum effects then become apparent
on a macroscopic scale.

Since the first achievement of BEC in atomic gases in 1995 [3, 4, 5], a new
chapter has been opened in atomic physics. For a number of years, Bose-
Einstein condensates have proven to be powerful in exploring a wide range
of questions in both fundamental physics and applications. Such examples
include the observation of interference of two independent condensates [6, 7],
long-range phase coherence [8], four-wave mixing for the atomic field [9],
superradiance [10], amplification [11, 12], atom laser [13, 14], dark and bright
solitons [15, 16, 17, 18], and quantized vortices and vortex lattice [19, 20, 21].
Common to all of these phenomena is the existence of a coherent macroscopic
matter wave analogous to the laser field for light, opening up the field of
coherent atom optics [22]. Various potential applications have been identified
such as interferometry and frequency standards, detection of inertial effects
and a host of related technological tasks.

Unlike the photons in quantum optics that do not interact in the absence
of a nonlinear medium, interactions in BEC furnish natural nonlinearities to
the atomic field, which provide a useful tool to produce nonclassical states,
such as spin squeezed states [23] or Schrödinger cat-like states [24, 25]. These
multi-particle entangled states [26] can be created in BEC in analogy to the
nonclassical states of light created by the Kerr effect in quantum optics. Ex-
ploring the possibility of using quantum-mechanical entanglement to improve
the precision of atomic interferometer has been one of the most interesting
research topics for many years [27, 28, 29]. First evidences of nonclassical

1



2 Chapter 1. Introduction

atomic states with BEC were obtained in [30, 31].
At low temperatures in the mean-field picture, the interaction potential

energy for each atom is determined by the density and a single atomic pa-
rameter, the s-wave scattering length a. The remarkable facts is that in cold
atoms experiments, one can tune the interactions in a controllable way. By
applying an external magnetic field with the help of so-called Feshbach reso-
nances [32], the scattering length can be modified within a wide range, from
negative to positive. On the other hand, the fact that the atomic matter
waves can, to a large extent, be manipulated in space provides an alternative
way besides Feshbach resonances to tune the interactions. By changing the
trapping potential, one can modify the density distribution, as well as the
dimension of space resulting in a change of the effective scattering length
[33].

In the context of this thesis, we address the problem of producing spin
squeezed states in Bose-Einstein condensates by using the atomic elastic in-
teractions. The original motivation is to use these cold atomic samples in
quantum metrology and high precision spectroscopy to overcome the stan-
dard quantum limit [29, 34]. The first proposal for achieving spin squeezing
in a bimodal BEC was given by [23], in which it was shown that squeezing
will be created with a rate scaling as aaa + abb − 2aab, where aij is the scat-
tering length describing the interaction of an atom in state i and an atom in
state j. According to the predictions of a simple two-mode model, a large
amount of spin squeezing can be obtained with this scheme. However, there
still remained two fundamental problems to be solved. The first is related to
decoherence processes such as inelastic interactions always present in a real
experiment. The fundamental limit to spin squeezing set by particle losses
was not known in the literature. The second is how the spatial degrees of
freedom, which are not taken into account in the two-mode model, affect
the squeezing in a situation in which the dynamics is significantly excited.
This happens in general when the mean-field seen by the atoms is greatly
changed concomitantly with the origination of spin dynamics, for example in
the case of sudden spatial separation of the two previously overlapped com-
ponents of a bimodal BEC with large atom number. Therefore, one would
desire an efficient model which calculates squeezing while accounting for this
dynamics.

In the first half of this thesis, we will show our solutions to these two
problems. In chapter 2 we review the basic theory of spin squeezing in the
framework of a two-mode model, and the state of the art for achieving spin
squeezing in atomic systems. The work described in chapter 3 concerns the
production of spin squeezed states in a bimodal BEC in presence of one, two
and three-body losses [35, 36]. The investigation is linked to the fragility of
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the entangled state due to losses relevant to metrology. We show that this
problem is analytically solvable within the two-mode model after some ap-
proximations. In some cases, one can carry out analytically an optimization
to approach the ultimate spin squeezing obtainable in presence of particle
losses. We also consider the survival of squeezing after the nonlinearity is
“switched off”. In this case, the squeezing is only affected by the losses.
Very recently, the entanglement lifetime in a squeezed atomic clock has been
studied experimentally [37]. In chapter 4 we will address the problem of
spatial dynamics. We develop a semi-analytical method to study the entan-
gled spin and spatial dynamics of interacting bimodal BEC [36]. For some
particular cases even a full analytical expression giving a physical insight of
these effect can be obtained with our approach. The theoretical treatment
we developed enabled us to calculate efficiently the maximum spin squeezing
achievable in experimentally relevant situations with Sodium or Rubidium
bimodal condensates, including the effect of spatial dynamics, and of one,
two and three-body losses, which we do in chapter 5.

Since 2009, we started to collaborate with the experimental group of P.
Treutlein in Munich on a project to achieve the spin squeezed state on an
atom chip using a condensate of 87Rb in two internal states whose wave
function can be selectively manipulated. The states used for squeezing |F =
1,mF = −1〉 and |F = 2,mF = 1〉 can also be used in an atomic clock
[38, 39] so that the spin squeezing would find naturally its application there.
The result of the experiment shows the first realization of spin squeezed state
with Bose-Einstein condensates on an atom chip [40]. Simultaneously spin
squeezing in a bimodal BEC was observed using a Feshbach resonance in an
optical trap [41]. We expose in chapter 6 the theoretical part of this work,
giving the physical explanation of the observed squeezing signals.

Another possibility to achieve spin squeezed states, using two external
modes instead of two internal states, is to coherently split a condensate in
a double well potential [42]. A corresponding experiment using an atom
chip is carried out in our group in Paris directed by J. Reichel [43]. We
present our theoretical work on this project in chapter 7. At low temperature
regime (T ¿ Tc), we calculate the obtainable spin squeezing based on two-
mode model with the experimental parameters. For the regime T & Tc, we
study the crossover from sub- to super-Poissonian fluctuations observed in
the experiment with a thermal equilibrium approach in a grand canonical
ensemble. Finally, conclusions and outlook will be given in chapter 8.





Chapter 2

Basic theory for spin squeezing

In this chapter, we give a basic introduction to spin squeezing within a very
simple two-mode model. We will briefly describe how this model applies to
the case of a bimodal Bose-Einstein condensate.

2.1 General introduction on spin squeezing

2.1.1 The Spin squeezing parameter

The concept of spin squeezing was firstly introduced by Kitagawa and Ueda
[44], generalizing to spin operators the idea of squeezing developed in quan-
tum optics. A system which contains N particles in two orthogonal modes
|a〉 and |b〉 can be considered as a N/2 spin system. The collective spin
operators (sum of the individual spin-1/2 of each atom) can be defined as

Sx =
1

2

∑
i

(|b〉〈a|i + |a〉〈b|i) ; (2.1)

Sy =
i

2

∑
i

(|b〉〈a|i − |a〉〈b|i) ; (2.2)

Sz =
1

2

∑
i

(|a〉〈a|i − |b〉〈b|i) . (2.3)

The commutation relations between the operators, Sx, Sy and Sz, are the
same as the angular momentum ones [Si, Sj ] = iεij k Sk, where i, j, k = x, y, z
and εij k is the Levi-Civita symbol. Physically Sz represents the population
difference between the two spin components, while Sx and Sy give the coher-
ence between the two components. The uncertainty relations between the

5



6 Chapter 2. Basic theory for spin squeezing

three orthogonal spin components can be written as

∆Si∆Sj > 1

2
| [Si, Sj ] | = 1

2
|〈Sk〉| . (2.4)

Consider an eigenstate of the operator Sx with the eigenvalue N/2,

|Sx = N/2〉 =
1√
N !

(
a† + b†√

2

)N

|vac〉 (2.5)

where operators a† and b† create a particle in the states a and b respectively.
In this case ∆S2

x = 0, and the transverse components, Sy and Sz have a
nonzero variance,

∆S2
z = ∆S2

y = N/4 (2.6)

satisfying the uncertainty principle (2.4). For this particular state, the vari-
ance is evenly distributed in the perpendicular plane (yz-plane) to the mean
spin. Rewriting Eq.(2.6) for the z component, one finds

〈S2
z 〉 =

∑

j, l

〈szjszl〉 =
∑

j

〈s2
zj〉+

∑

j 6=l

〈szjszl〉 =
N

4
. (2.7)

The first term is simply the sum of the variances of the individual spins
equal to N/4. The second term is zero, meaning that there is no correlation
between the individual spins.

As the two spin components in state (2.5) have a well defined relative
phase, such state is also referred as coherent spin state (CSS), or phase
state. The state can be illustrated as in Fig.2.1 (a). Each individual spin
is aligned along axis-x, and the components orthogonal to x are completely
random, having a variance of 1/4. If appropriate correlations are established
among the individual spins, it is possible to partly cancel out fluctuations in
one direction at the expense of enhancing them in the orthogonal direction.
Then quantum noise is redistributed in the plane orthogonal to the mean
spin, as illustrated in Fig.2.1(b).

We say that state is spin squeezed if the variance of one spin component
orthogonal to the mean spin vector is smaller than the standard quantum
limit (SQL), i.e. |〈Sk〉|/2. More precisely, we can define a squeezing param-
eter [29],

ξ2 =
N∆S2

⊥, min

〈S〉2 (2.8)

where S⊥ represents the spin component in the plane orthogonal to the mean
spin, and ∆S2

⊥, min is the minimum of the variance in this plane. When
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z
y

x

random
S

DS = 

1/2

S
(a)

correlated
1/2

z
y

x

S

S <  D S

(b)

Figure 2.1: Schematic illustrations of N/2 spins system. (a) Coherent spin state
in which all N individual spins are aligned along x with no correlations between
them. (b) Squeezed spin state in which the individual spins are correlated, reducing
the fluctuation of one component transverse to the mean spin below the standard
quantum limit.

ξ2 < 1, the state is referred as spin squeezed state (SSS). As clear from (2.7)
spin squeezing implies correlations among the atoms. As we shall see, the
definition (2.8) is also directly connected to the reduction of projection noise
in Ramsey spectroscopy [45].

2.1.2 Spin squeezing for quantum metrology

Spin squeezed states have practical interest in atom interferometry, and high
precision spectroscopy [29, 28]. In spectroscopy, we want to measure the tran-
sition frequency between two internal states. And this is done by measuring
the accumulated relative phase difference between the two states during a
free precession time.

As illustrated in Fig.2.2, a typical Ramsey spectroscopy experiment con-
sists in the following steps: (a) at the beginning, all the atoms are prepared
in one of the internal states, for example a. On the Bloch sphere, the state
can be described as a vector pointing to the pole. (b) we apply a π/2-pulse to
create a CSS. It is equivalent to rotate the state around axis-y from the pole
to the equatorial plane. (c) the system evolves freely for some interrogation
time T , during which the mean spin rotates around axis-z, and the atomic
states accumulate a relative phase; (d) another π/2-pulse is applied. It con-
vert the relative phase into population difference. Finally, the population
difference between the two states, i.e. 〈Sz〉, is read out. Steps (a)-(d) can be
described by the unitary transformation

U(T ) = e−iπ/2Sye−iωTSze−iπ/2Sy (2.9)

where ωT is the accumulated phase during the interrogation time T . The
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π/2Tπ/2
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1

ωT / π

2
S
z
 /
 (
N
a
 +
 N

b
)

δSz

δ(ωT)

(a) (b) (c) (d)

Figure 2.2: (Top) Illustration of the Ramsey sequence on the Bloch sphere. The
red (blue) arrow represents the direction of the mean spin in present (previous)
step. (a) All the atoms are initially prepared in state a, therefore the state vector Ŝ
points along z direction. (b) A π/2-pulse rotates the state vector into the equatorial
plane, where each atom is in the superposition state. (c) During the interrogation
time, the relative phase between the two states is accumulated, which results in the
rotation of the vector around z-axis. (d) The second π/2-pulse is applied, rotating
the vector around y-axis again. And the mean value of 〈Sz〉 is measured. (Bottom)
Normalized relative atom number 2〈Sz〉/(Na + Nb) as a function of the Ramsey
phase. The red shaded area is the standard deviation of the measurement due to
quantum projection noise.

final observable can be written as (see appendix B)

〈Sz(T ) 〉 = 〈U †(T )Sz(0)U(T ) 〉
=− 〈Sz(0) 〉 cos (ωT ) + 〈Sy(0) 〉 sin (ωT )

(2.10)

with fluctuations

∆S2
z (T ) = ∆S2

z (0) cos2 (ωT ) + ∆S2
y(0) sin2 (ωT )

−∆yz(0) sin (ωT ) cos (ωT )
(2.11)

where ∆yz = 〈SySz + SzSy〉 − 2〈Sy〉〈Sz〉. For the case described in step (a),
〈Sy(0)〉 = ∆S2

z (0) = 0 and 〈Sz(0)〉 = N/2, so that 〈Sz(T )〉 = −N cos (ωT ) /2
and ∆S2

z (T ) = ∆S2
y(0) sin2 (ωT ). In this case, the highest phase sensitivity

is reached when ωT = π/2, and the variance of the measured frequency can
be expressed as [29]

|∆ω|2 =
∆S2

z (T )

|∂〈Sz(T ) 〉/∂ω|2 =
∆S2

y(0)

T 2〈Sz(0) 〉2 (2.12)
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Here we have assumed that state preparation and detection time are small
compared to the Ramsey interrogation time T , and the measurement noise
is only limited by projection noise. We have to mention that a standard
quantum limited signal in atomic clocks has already been reached [46]. From
Eq.(2.12) we find that, if one could use a spin squeezed state instead of
using a coherent spin state at the beginning of the interrogation time, the
uncertainty of the measured frequency ∆ω would be reduced. By using the
definition (2.8), one has

∆ω =
ξ(0)√
NT

(2.13)

The squeezing parameter ξ gives the gain for the uncertainties with respect
to the phase state where ξ = 1. For this reason, the achievement of large
squeezing in atomic ensembles is a major challenge in our field.

2.1.3 Different paths to spin squeezing and state of the
art

Spin squeezed states were firstly achieved [47, 48], and used to improve the
precision of spectroscopic measurement with trapped ions [49]. For neutral
atoms, there are two classes of schemes which are presently under inves-
tigation to create spin squeezing. The first class of schemes relies on the
interaction between matter and light. The explored paths are transfer of
squeezing from light to atoms [50, 51, 52], quantum coherent feedback in a
cavity [53, 54], and quantum non demolition (QND) measurements of one
spin component [55, 56, 57, 58], as recently implemented in spectroscopy
[59, 60].

The second class of squeezing schemes does not need light and relies on
atomic interactions in a bimodal Bose-Einstein condensates. The nonlineari-
ties provided by atomic interactions for the atomic field can be used to create
both spin squeezed state [23] and Schrödinger cat-like states [24, 25]. The
first demonstrations of spin squeezing in BEC were observed with the atoms
trapped in a double well [42]. By slowly increasing the height of the barrier
in the trap in presence of interactions, spin squeezed states were prepared
where relative number squeezing in the two wells simultaneously to a good
phase coherence was observed. In these cases, the squeezing does not occur
on an atomic transition but on two spatial modes for the same internal state.
We will study this scheme in chapter 7.

On the other hand, in the following four chapters, we will focus on a
dynamical squeezing scheme using condensates that would in principle allow
to create a large amount of spin squeezing [23]. In this scheme an initially
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factorized state, where each atom is in an equal superposition of the two
orthogonal modes dynamically evolves into an entangled spin squeezed state.
This scheme was recently achieved with 87Rb condensates by using a Feshbach
resonance [41] in an optical trap and by using state-dependent potential on
an atom chip to tune the atomic nonlinearity [40].

2.2 Dynamical spin squeezing in a BEC
Bose-Einstein condensates are macroscopic quantum states in which to the
lowest order approximation all atoms occupy the same state. A condensate
involving two internal states or bosonic modes besides its external degrees
of freedom, has internal degrees of freedom that are equivalent to those of
N indistinguishable pseudo spins. Such system can be mapped on the Bloch
sphere, and one can rotate the spins on the Bloch sphere by applying a pulse
which couples the two internal states or by coherent tunneling for conden-
sates into two spatial modes. On the other hand, the collisional interactions
between atoms furnish a nonlinearity to the atomic field analogous to a Kerr
nonlinearity in optics. In this case, quantum correlations are established be-
tween the atoms. Large amount of entanglement and spin squeezing then
can be achieved [23].

Here we show a two-mode model as a starting point to understand how
squeezing is created in the condensate with the dynamical scheme. In this
model, we focus on the spin dynamics of the system, neglecting the dynamics
of the spatial modes. A more detailed model in which the spatial dynamics
is also included will be given in Chapter 4.

2.2.1 Quadratic Hamiltonian

We consider a two-component weakly interacting Bose-Einstein condensate
consisting of N atoms in two orthogonal modes for example two different
hyperfine states |a〉 and |b〉. We assume that the interactions do not change
the internal state of the atoms, i.e., the interactions between the particles
are elastic. The second quantized Hamiltonian is

H =
∑

ε=a, b

∫
d3r Ψ̂†

ε(r)hεΨ̂ε(r) +
∑

ε=a, b

gεε

2

∫
d3r Ψ̂†

ε(r)Ψ̂
†
ε(r)Ψ̂ε(r)Ψ̂ε(r)

+gab

∫
d3r Ψ̂†

a(r)Ψ̂
†
b(r)Ψ̂b(r)Ψ̂a(r), (2.14)

where hε = −~2∇2/(2M)+U
(ε)
ext(r), is the one-particle Hamiltonian for atoms

in state ε including the kinetic energy and external trapping potential, and



2.2. Dynamical spin squeezing in a BEC 11

gεε′ = 4π~2aεε′/M is the strength of the interactions between particles of
type ε and ε′, aεε′ is the scattering length for a two-body collision, M is the
mass of the atom. Ψ̂ε(r) and Ψ̂†

ε(r) are boson field annihilation and creation
operators for atoms in the state ε.

We adopt here the two-mode approximation in which we neglect the ex-
citations out of the two condensate modes. The field operators can then be
approximated as

Ψ̂a(r) = a φa(r) , Ψ̂b(r) = b φb(r) (2.15)

where a (a†) and b (b†) are annihilation (creation) operators for the com-
ponent a and b. Using the Hamiltonian (2.14) we obtain the Heisenberg
equation of motion for the field operator:

i~
d

dt
Ψ̂ε(r) =

[
Ψ̂(r),H

]

= hεΨ̂ε(r) + gεεΨ̂
†
ε(r)Ψ̂ε(r)Ψ̂ε(r) + gεε′Ψ̂

†
ε′(r)Ψ̂ε′(r)Ψ̂ε(r)

(2.16)

where ε 6= ε′. For a state with a given number of atoms in a and b respectively,
we can rewrite the operator N̂ε as a C-number Nε. Inserting Eq.(2.15) into
Eq.(2.16), we derive the equations for the two wave functions, i.e. the coupled
Gross-Pitaevskii equations

i~
∂

∂t
φε(r) =

[
hε + (Nε − 1)gεε|φε(r)|2 + Nε′gεε′|φε′(r)|2

]
φε(r) . (2.17)

where the operators N̂ε have been replaced by C-numbers. The stationary
solutions for above equations satisfy

µεφε(r) =
[
hε + (Nε − 1)gεε|φε(r)|2 + Nε′gεε′|φε′(r)|2

]
φε(r) , (2.18)

where µε is the chemical potential, and both µε and φε depend on Na and Nb.
It is convenient to introduce Fock states, that are states with a well-defined
number of particles in a and in b, these numbers being preserved by the time
evolution. By using the Fock basis, the chemical potential can be written as

µε(Na, Nb) =
d 〈Na, Nb|H|Na, Nb 〉

dNε

. (2.19)

In the squeezing scheme that interests us, the initial state can be prepared
by a mixing pulse, starting from N atoms in a single condensate. After the
pulse the state can be described by

|ψ(0)〉 = |ϕ〉N =
1√
N !

[
Ca a† + Cb b†

]N |vac〉 (2.20)
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where all atoms are in the superposition state Ca|a〉 + Cb|b〉. Ca, Cb are
mixing coefficients with |Ca|2 + |Cb|2 = 1. The initial state has a well defined
relative phase ϕ = arg(C∗

aCb) between the components. When we expand
the initial state over Fock states,

|ϕ〉N =
1√
N !

N∑
Na=0

(
N !

Na!Nb!

)1/2

CNa
a CNb

b |Na, Nb〉 (2.21)

where Na + Nb = N , the binomial coefficients in Eq.(2.21), for large N , will
be peaked around the average number of particles in a and b, i.e. N̄a and N̄b.
We can use this fact to expand the Hamiltonian of the system to the second
order around N̄a and N̄b

H0 ' E(N̄a, N̄b) +
∑

ε=a, b

µε(N̂ε − N̄ε) +
1

2
∂Nεµε(N̂ε − N̄ε)

2

+
1

2
(∂Nb

µa + ∂Naµb) (N̂a − N̄a)(N̂b − N̄b)

(2.22)

where the chemical potentials µε and all the derivatives of µε should be
evaluated in N̄a and N̄b. We can rewrite (2.22) as

H0 = fN̂ + ~ vN̂(N̂a − N̂b) +
~χ2m

d

4
(N̂a − N̂b)

2

= fN̂ + 2~ vN̂Sz + ~χ2m
d S2

z

(2.23)

with

vN̂ =
1

2~

[
(µa − µb)− ~χ2m

d (N̄a − N̄b) + ~χ2m
s (N̂ − N̄)

]
(2.24)

χ2m
d =

1

2~
(∂Naµa + ∂Nb

µb − ∂Nb
µa − ∂Naµb)N̄a,N̄b

(2.25)

χ2m
s =

1

2~
(∂Naµa − ∂Nb

µb)N̄a,N̄b
. (2.26)

The function fN̂ of the total number of particles, N̂ = N̂a + N̂b, commutes
with the spin operators of the system and can be omitted. The second term
in equation (2.23) proportional to Sz describes spin precession around z with
velocity vN̂ . The third term due to elastic collisional interactions in BEC
provides the nonlinearity responsible for spin squeezing. It also provides
a second contribution to the drift of the relative phase between the two
condensates in the case N̄a 6= N̄b.
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Figure 2.3: State evolution by one-axis twisting on the Bloch sphere for N = 100.
(a) The initial state Eq.(2.5) is the eigenstate of Sx. (b) The state twisted around
axis-z with the Hamiltonian (2.27), t = 0.05/χ.

2.2.2 Solution of the symmetric case

To show the mechanism of squeezing, in this subsection, we study the Hamil-
tonian from Eq.(2.23) in the symmetric case. Such model has also been dis-
cussed in [44]. In the next subsection, we will extend the discussion to a
more general non symmetric case.

Consider Eq.(2.5) as the initial state. Assume that the two components of
the condensate have the same scattering length, then the Hamiltonian (2.23)
can be simplified as

H0 = ~χ2m
d S2

z (2.27)

where the spin operators (2.1)-(2.3) in the second quantized version can be
written as

Sx =
1

2
(b†a + a†b), (2.28)

Sy =
i

2
(b†a− a†b), (2.29)

Sz =
1

2
(a†a− b†b). (2.30)

Mapped on the Bloch sphere, such state is pictorially represented as a round
circle perpendicular to the axis-x, as shown in Fig.2.3 (a).

During the evolution, the states with different Sz on the Bloch sphere
will rotate around axis-z with a velocity proportional to Sz. Therefore the
quantum fluctuations are deformed on the Bloch sphere, so-called one axis
twisting effect, as shown in Fig.2.3 (b). The uncertainties in the plane or-
thogonal to the mean spin can be written as

∆S2
⊥(Θ) = cos2 Θ∆S2

y + sin2 Θ∆S2
z + sin(2Θ) (Re〈SySz〉 − 〈Sy〉〈Sz〉) (2.31)



14 Chapter 2. Basic theory for spin squeezing

where S⊥(Θ) is the spin component in the plane orthogonal to the mean spin,
along the direction which has an angle Θ with respect to axis-z (see Fig.2.3
(b)). Minimizing ∆S2

⊥ with respect to Θ, we get

∆S2
⊥, min =

1

2

[
2∆S2

z + Ã−
√

Ã2 + B̃2
]
, (2.32)

where

Ã = ∆S2
y −∆S2

z = 1− cos(2χ2m
d t)N−2 (2.33)

B̃ = 2Re〈SySz〉 − 2〈Sy〉〈Sz〉 = 4 sin(χ2m
d t) cos(χ2m

d t)N−2 (2.34)

and ∆S2
z = N/4 is unchanged during the evolution. In the limit of large N ,

the squeezing parameter Eq.(2.8) can be approximated as

ξ2(t) =
1

N2(χ2m
d t)2

+
1

6
N2(χ2m

d t)4, (2.35)

From Eq.(2.35) one notes that there exists a time at which the squeezing
parameter ξ2 reaches its minimum,

ξ2 ∼ N−2/3 . (2.36)

This time is referred to as the best squeezing time

|χ2m
d | tbest ' N−2/3 (2.37)

From above expressions, we find that when N →∞, one has ξ2 → 0. There
is no limit to the amount of squeezing that can be reached by increasing N .
However, we will see in the next chapter that this is only the case when there
are no decoherence present such as particle losses.

Besides spin squeezing, the nonlinearity will introduce another effect
which makes the relative phase between the two components collapse. The
time scale for such effect, compared with spin squeezing, is much longer. Note
that, squeezing and phase spreading are indeed caused by the same physical
process, namely the nonlinear term in the Hamiltonian. For the simple case
which we consider here, the term describing the relative phase coherence is

〈b†a〉 = 〈Sx〉 =
N

2
cosN−1

(
χ2m

d t
) ' N

2
exp

[
−1

2
N

(
χ2m

d t
)2

]
, (2.38)

which has a Gaussian decay. The phase coherence will collapse in a time
scale

|χ2m
d | tc ∼ N−1/2 (2.39)

For large number of atoms, tc is much longer than tbest, meaning that at the
best squeezing time we still have very good phase coherence.
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Figure 2.4: (a) Average spin. (b) Variance of the spin components in the plane
orthogonal to the mean spin.

2.2.3 More general non symmetric case

Now we consider a more general initial state (2.20), that is the eigenstate of
the spin operator Sϑ, ϕ with

Sϑ, ϕ = Sx sin ϑ cos ϕ + Sy sin ϑ sin ϕ + Sz cos ϑ, (2.40)

where ϑ and ϕ are two polar angles giving the direction of the mean spin,
and cos ϑ = |Ca|2 − |Cb|2, ϕ = arg(C∗

aCb), as shown in Fig.2.4 (a). The
Hamiltonian has the form of Eq.(2.23). The minimal variance of the spin
∆S2

⊥, min in the plane (x′, y′) orthogonal to the mean spin, represented in
Fig.2.4 (b), is the same as Eq.(2.32) with x → z′. Referring to Fig.2.4, the
three spin components (S ′x, S ′y, S ′z) expressed in the original frame (Sx, Sy, Sz)
can be written as

S ′x = (cos ϑ cos ϕ cos Θ− sin ϕ sin Θ) Sx (2.41)
+(cos ϑ sin ϕ cos Θ + cos ϕ sin Θ) Sy − sin ϑ cos Θ Sz

S ′y = −(cos ϑ cos ϕ sin Θ + sin ϕ cos Θ) Sx (2.42)
−(cos ϑ sin ϕ sin Θ− cos ϕ cos Θ) Sy + sin ϑ sin Θ Sz

S ′z = sin ϑ cos ϕSx + sin ϑ sin ϕSy + cos ϑSz (2.43)

By changing the coordinates, in the original frame of reference the minimal
variance can be written as

∆S2
⊥,min =

1

2
(cos2 ϑ cos2 ϕ + sin2 ϕ)∆S2

x +
1

2
(cos2 ϑ sin2 ϕ + cos2 ϕ)∆S2

y

+
1

2
sin2 ϑ∆S2

z −
1

4
sin2 ϑ sin 2ϕ∆xy − 1

4
sin 2ϑ cos ϕ∆zx

− 1

4
sin 2ϑ sin ϕ∆yz − 1

2

√
Ã2 + B̃2

(2.44)
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where

Ã = (sin2 ϕ− cos2 ϑ cos2 ϕ)∆S2
x + (cos2 ϕ− cos2 ϑ sin2 ϕ)∆S2

y

− sin2 ϑ∆S2
z −

1

2
(1 + cos2 ϑ) sin 2ϕ∆xy +

1

2
sin 2ϑ cos ϕ∆zx (2.45)

+
1

2
sin 2ϑ sin ϕ∆yz ;

B̃ = cos ϑ sin 2ϕ(∆S2
x −∆S2

y)− cos ϑ cos 2ϕ∆xy − sin ϑ sin ϕ∆zx

+ sin ϑ cos ϕ∆yz ; (2.46)

and where we introduced the correlations

∆ij = 〈SiSj + SjSi〉 − 2〈Si〉〈Sj〉, i 6= j = x, y, z . (2.47)

The expectation values related to the collective spin operators Si defined in
Eqs.(2.28)-(2.30) can be expressed by the quantum averages given by,

〈b†a〉 = C∗
b Ca e−2ivtNJ N−1

1 (2.48)

〈b†b†ba〉 = |Cb|2C∗
b Ca e−i(2v−χ2m

d )tN(N − 1)J N−2
1 (2.49)

〈a†a†ab〉 = |Ca|2C∗
aCb ei(2v+χ2m

d )tN(N − 1)J N−2
−1 (2.50)

〈b†b†aa〉 = C∗2
b C2

a e−4ivtN(N − 1)J N−2
2 (2.51)

where we introduced the function Jβ with β = −1, 1, 2

Jβ = |Ca|2e−iβχ2m
d t + |Cb|2eiβχ2m

d t (2.52)

and the drift velocity

v =
1

2~
[
(µa − µb)− ~χ2m

d (N̄a − N̄b) + ~χ2m
s (N − N̄)

]
, (2.53)

where N is the total initial number of atoms.
In the following chapters, where the particle losses and spatial dynamics

are taken into account, we will always calculate the these quantum averages
within the relevant model. The squeezing parameters ξ2 then can be obtained
with the definition (2.8) from these quantum averages (see appendix A).



Chapter 3

Effect of decoherence : particle
losses

In the previous chapter, we have considered the spin squeezing created by the
interactions between the cold atoms. For such a scheme, particle losses will be
an unavoidable source of decoherence. In experiments of cold atoms, there are
several kinds of losses: one-body losses caused by collision of condensed atoms
with the hot background gas; two-body losses due to spin-dipole interactions
or spin-exchange interactions; three-body losses caused by collisions followed
by recombination of two atoms to form a molecule. Indeed, the last one is
more intrinsic in the scheme considered here, since three-body losses come
always with the coherent interactions, and reflect the fact that ultracold
atoms are in a metastable gas phase.

In this chapter we study the effect of decoherence by using an analytical
Monte-Carlo wave functions approach [61, 62, 63]. The principle goal is to
answer the fundamental question: whether or not one could improve without
limits the squeezing by increasing the number of particles in the system. We
have seen from Eq.(2.37) that the best squeezing time tends to zero when
the total number of atoms N →∞, which suggests that one would still have
ξ2 → 0 in presence of decoherence. Indeed we will show that this is the case
when only one-body losses are present, although ξ2 tends to zero more slowly
than N−2/3 that is the result in the absence of losses. When two-body and
three-body losses are considered in addition to one-body losses, the situation
changes completely as now decoherence itself increase with N . The main
results of this chapter are published in [35, 36].

17
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3.1 Spin squeezing with particle losses
We still restrict to the two-mode model as discussed in the previous chapter.
The Hamiltonian in the no-loss case

H0 = fN̂ + ~vN̂(N̂a − N̂b) +
~χ2m

d

4
(N̂a − N̂b)

2 (3.1)

is the same as Eq.(2.23). In presence of losses, the evolution is ruled by a
master equation for the density operator ρ of the system. In the interaction
picture with respect to H0, with one, two, and three-body losses, we have:

dρ̃

dt
=

3∑
m=1

∑

ε=a,b

γ(m)
ε

[
cm
ε ρ̃ c†mε − 1

2
{c†mε cm

ε , ρ̃ }
]

+ γab

[
cacb ρ̃ c†ac

†
b −

1

2
{c†ac†bcacb, ρ̃ }

]
,

(3.2)

where ρ̃ = eiH0t/~ ρ e−iH0t/~, ca = eiH0t/~ a e−iH0t/~, and similarly for b. Note
that now the annihilation operators cε depend on time. The constants γ

(m)
ε

and γab are defined as

γ(m)
ε =

K
(m)
ε

m

∫
d3r|φ̄ε(r)|2m , (3.3)

γab = Kab

∫
d3r|φ̄a(r)|2|φ̄b(r)|2 . (3.4)

K
(m)
ε is the m-body rate constant (m = 1, 2, 3 ) and φ̄ε(r) (ε = a, b ) is the

condensate wave function for the ε component with Na = N̄a and Nb =
N̄b particles. The wave function φ̄ε(r) can be obtained from the stationary
solution of Gross-Pitaevskii equation (2.18). Kab is the rate constant for a
two-body loss event in which two particles coming from different components
are lost at once1. The number of condensate atoms Nε accordingly decays
as:

Ṅε(t) =−
3∑

m=1

K(m)
ε

∫
d3rNm

ε (t)|φ̄ε(r, t)|2m

−Kab

∫
d3rNa(t)Nb(t)|φ̄a(r, t)|2|φ̄b(r, t)|2 .

(3.5)

We study this problem by using the Monte-Carlo wave function approach
[61, 62], in which the state of the system is described by a state vector, and

1Here the three-body losses in which three particles coming from different components
are not taken into account
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the irreversibility in the evolution is introduced by stochastic quantum jumps
plus non unitary evolution applied to the state vector. When we average
expectation values of an observable over a large number of realizations for
the state vector evolution starting from the same initial state, we recover the
quantum average that would result from solving the master equation (3.2).
We define an effective Hamiltonian Heff and the jump operators J

(m)
ε (J (2)

ab )

Heff = −i~
2

3∑
m=1

∑

ε=a,b

γ(m)
ε c†mε cm

ε −
i~
2

γab c†ac
†
bcacb ; (3.6)

J (m)
ε =

√
γ

(m)
ε cm

ε , J
(2)
ab =

√
γabcacb . (3.7)

We assume that a small fraction of particles will be lost during the evolution
so that we can consider χ2m

d , χ2m
s , γ

(m)
ε and γab as constant parameters of the

model. The state evolution in a single quantum trajectory is a sequence of
random quantum jumps at times tj and non-unitary Hamiltonian evolutions
of duration τj :

|ψ(t)〉 = e−iHeff(t−tk)/~J (mk)
εk

(tk)e
−iHeffτk/~J (mk−1)

εk−1
(tk−1)

. . . J (m1)
ε1

(t1)e
−iHeffτ1/~|ψ(0)〉 ,

(3.8)

where now εj = a, b or ab. As the Hamiltonian (3.1) is a function of N̂a and
N̂b, we can move all the annihilation operators a and b in the quantum jumps
of Eq.(3.7) to the right hand side by using the commutation relations

a f(N̂a, N̂b) = f(N̂a + 1, N̂b) a , b f(N̂a, N̂b) = f(N̂a, N̂b + 1) b . (3.9)

Since for the phase state (2.20) one has

exp
[
−∆(N̂a − N̂b)

]
|ϕ〉N = |ϕ + 2∆〉N , (3.10)

a |ϕ〉N = Ca

√
N |ϕ〉N−1, b |ϕ〉N = Cb

√
N |ϕ〉N−1, (3.11)

application of a jump J
(mj)
εj (tj) to the N -particle phase state at time tj yields

J (mj)
εj

(tj)|ϕ〉N ∝ |ϕ + ∆jtj 〉N−mj
, (3.12)

∆j = 2χ2m
s δεj , ab + (χ2m

s + χ2m
d )mj δεj , a + (χ2m

s − χ2m
d )mj δεj , b (3.13)

After a quantum jump, the phase state is changed into a new phase state,
with mj particle less and with the relative phase between the two modes
showing a random shift ∆j tj with respect to the phase before the jump,
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Figure 3.1: Illustration of the degradation of relative phase by a three-body loss
event. Initially the mean spin is assumed to be aligned with axis-x. After a
quantum jump, if three particles in state a (red) are lost, the relative phase will
show a positive shift, while if three particles in state b (blue) are lost, the relative
phase will show a negative shift. Averaging over all stochastic processes finally
degrades the relative phase.

which reduces the squeezing. Note that in the symmetric case χ2m
s = 0, and

no random phase shift occurs in the case of a jump of ab. Indeed we will find
that at short times in the symmetric case, these kind of crossed ab losses are
harmless to the squeezing.

Here we give an example of how random loss events degrade relative phase
and squeezing. We consider the three-body losses for a symmetric case where
N̄a = N̄b and aaa = abb. In this case, χ2m

s = 0. By using the commutation
relations Eq.(3.9), the jump operator for each component can be written as

Ja(tj) =

√
γ

(3)
a e−i3χ2m

d tj Sza3, Jb(tj) =

√
γ

(3)
b ei3χ2m

d tj Szb3 (3.14)

Applying a quantum jump to the N -particle phase state results in

Jεj
(tj)|ϕ〉N ∝ |ϕ + 3χ2m

d (δεj , a − δεj , b)tj〉N−3 , (3.15)

where εj = a, b, implying that, in each loss event, if three particles in state a
are lost, the relative phase will show a positive shift, while if three particles
in state b are lost, the relative phase will show a negative shift, as illustrated
in Fig.3.1. After averaging over all stochastic processes, the relative phase is
degraded, and the spin squeezing is reduced.

For the nonsymmetric case where χ2m
s 6= 0, there is another effect that

degrades the spin squeezing. Namely the random loss event makes the direc-
tion of mean spin fluctuate for different trajectories. This is due to the fact
that the second term in Eq.(3.1) which gives the mean spin precession around
z also depends on the total number of atoms when the two components see
different mean-field, as shown in Eq.(2.24). This results in some extra phase
noise due to losses.
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The expectation value of any observable Ô is obtained by averaging over
all possible stochastic realizations, that is all kinds, times and number of
quantum jumps, each trajectory being weighted by its probability

〈Ô〉 =
∑

k

∫

0<t1<t2<···tk<t

dt1dt2 · · · dtk
∑

{εj ,mj}
〈ψ(t)|Ô|ψ(t)〉 . (3.16)

Note that the single trajectory (3.8) is not normalized. The norm will provide
its correct “weight” in the average.

3.1.1 Exact analytical solution for one-body losses

With one-body losses only, the problem is exactly solvable. This is because
for one-body losses the effective Hamiltonian (3.6) is proportional to N̂a and
N̂b, so it does not affect the state. By using the property that

cεj
(tj)Heff(N̂a, N̂b) = Heff(N̂a + δεj , a, N̂b + δεj , b) cεj

(tj) , (3.17)

we can move all the jump operators in Eq.(3.8) to the right side close to
the initial state |ψ(0)〉. The evolution of a single quantum trajectory with k
quantum jumps results in

|ψ(t)〉 = exp

{
−1

2

k∑
j=1

(
γaN̂a + γbN̂b

)
t

}[
N !

(N − k)!

]1/2

· αk|ϕ + βk〉N−k, C′a, C′b

(3.18)

where the mixing coefficients for the phase state are changed into C ′
a =

e−γat/2Ca and C ′
b = e−γbt/2Cb due to the losses, and

|αk|2 =
k∏

j=1

[|Ca|2γa δεj , a + |Cb|2γb δεj , b

]
, (3.19)

βk =
k∑

j=1

tj
[
(χ2m

d + χ2m
s ) δεj , a − (χ2m

d − χ2m
s ) δεj , b

]
. (3.20)

Note that the phase of αk in Eq.(3.18) will disappear when calculate the
quantum average 〈ψ(t)|Ô|ψ(t)〉, such that the result only concerns |αk|. By
using Eq.(3.16), the averages needed to calculate spin squeezing with one-
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body losses only are given as follows,

〈a†a〉 = |Ca|2N exp(−γat) (3.21)

〈b†b〉 = |Cb|2N exp(−γbt) (3.22)

〈a†a†aa〉 = |Ca|4N(N − 1) exp(−2γat) (3.23)

〈b†b†bb〉 = |Cb|4N(N − 1) exp(−2γbt) (3.24)

〈b†a†ab〉 = |Cb|2|Ca|2N(N − 1) exp[−(γa + γb)t] (3.25)

〈b†a〉 = C∗
b Ca e−2ivtN exp

[
−1

2
(γa + γb)t

]
LN−1

1 (3.26)

〈b†b†ba〉 = |Cb|2C∗
b Ca e−i(2v−χ2m

d )tN(N − 1) exp

[
−1

2
(γa + 3γb)t

]
LN−2

1 (3.27)

〈a†a†ab〉 = |Ca|2C∗
aCb ei(2v+χ2m

s )tN(N − 1) exp

[
−1

2
(3γa + γb)t

]
LN−2
−1 (3.28)

〈b†b†aa〉 = C∗2
b C2

a e−4ivtN(N − 1) exp [−(γa + γb)t] L
N−2
2 (3.29)

where we introduced the functions Lβ with β = −1, 1, 2

Lβ =
|Ca|2

γa + iβ(χ2m
d + χ2m

s )

[
γae

iβχ2m
s t + iβ(χ2m

d + χ2m
s )e−(γa+iβχ2m

d )t
]

+
|Cb|2

γb − iβ(χ2m
d − χ2m

s )

[
γbe

iβχ2m
s t − iβ(χ2m

d − χ2m
s )e−(γb−iβχ2m

d )t
]

(3.30)
and the drift velocity is defined as in Eq.(2.53).

3.1.2 Two and three-body losses: approximated analyt-
ical solution

When two and three-body losses are taken into account, the evolution of
the effective Hamiltonian will change the state in such a way that a phase
state would not be a phase state anymore, and the analysis becomes more
complicated. However analytical results can still be obtained by using a
constant loss rate approximation [63]. If a small fraction of particles is lost
during the evolution, the effective Hamiltonian (3.6) can be approximated as

Heff ' − i~
2

3∑
m=1

∑

ε=a, b

γ(m)
ε N̄m

ε − i~
2

γabN̄aN̄b ≡ − i~
2

λ (3.31)
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This approximation implies that the loss rate through out the whole evolution
is constant. Indeed with the approximation (3.31), the initial phase state
remains a phase state. As a consequence, when a quantum jump occurs,
only the relative phase and the total number of particle changes (see equation
(3.12)). The evolution of a single quantum trajectory with k quantum jumps
can then be written as

|Ψ(t)〉 = e−λt/2

k∏
j=1

J (mj)
εj

(tj)|Ψ(0)〉 = e−λt/2αk|ϕ + βk〉N−N(k) (3.32)

where

|αk|2 =
k∏

j=1

{
3∑

m′=1

∑

ε′=a, b

δmj , m′δεj , ε′N̄
m′|Cε′|2m′

γ
(m′)
ε′

+N̄2|Ca|2|Cb|2γabδεj , ab

}
(3.33)

βk =
k∑

j=1

tj

{
2χ2m

s δεj , ab +
3∑

m′=1

m′δmj , m′
[
(χ2m

d + χ2m
s )δεj , a

−(χ2m
d − χ2m

s )δεj , b

]}
(3.34)

N(k) =
k∑

j=1

3∑

m′=1

m′δmj , m′(δεj , a + δεj , b) + 2δεj , ab , (3.35)

In the expression (3.33) of |αk|2 we replace N with N̄ consistently with the
constant loss rate approximation. The averages needed to calculate the spin
squeezing for one, two and three-body losses are:

〈a†a〉 = |Ca|2e−λt [N − (∂σ1 + ∂σ2)] F0(σ1, σ2) (3.36)

〈b†b〉 = |Cb|2e−λt [N − (∂σ1 + ∂σ2)] F0(σ1, σ2) (3.37)

〈a†a†aa〉 = |Ca|4e−λt [N − (∂σ1 + ∂σ2)− 1] [N − (∂σ1 + ∂σ2)] F0(σ1, σ2) (3.38)

〈b†b†bb〉 = |Cb|4e−λt [N − (∂σ1 + ∂σ2)− 1] [N − (∂σ1 + ∂σ2)] F0(σ1, σ2) (3.39)

〈b†a†ab〉 = |Cb|2|Ca|2e−λt [N − (∂σ1 + ∂σ2)− 1] [N − (∂σ1 + ∂σ2)]

·F0(σ1, σ2) (3.40)

〈b†a〉 = C∗
b Cbe

−(2iv+λ)t
(
|Ca|2e−iχ2m

d t + |Cb|2eiχ2m
d t

)N−1

· [N − (∂σ1 + ∂σ2)] F1(σ1, σ2) (3.41)

〈b†b†ba〉 = |Cb|2C∗
b Cae

−(2iv−iχ2m
d +λ)t

(
|Ca|2e−iχ2m

d t + |Cb|2eiχ2m
d t

)N−2

· [N − (∂σ1 + ∂σ2)− 1] [N − (∂σ1 + ∂σ2)] F1(σ1, σ2) (3.42)
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〈a†a†ab〉 = |Ca|2C∗
aCbe

(2iv+iχ2m
d −λ) t

(
|Cb|2e−iχ2m

d t + |Ca|2eiχ2m
d t

)N−2

· [N − (∂σ1 + ∂σ2)− 1] [N − (∂σ1 + ∂σ2)] F−1(σ1, σ2) (3.43)

〈b†b†aa〉 = C∗2
b C2

ae
−(4iv+λ)t

(
|Ca|2e−2iχ2m

d t + |Cb|2e2iχ2m
d t

)N−2

· [N − (∂σ1 + ∂σ2)− 1] [N − (∂σ1 + ∂σ2)] F2(σ1, σ2) (3.44)

where we introduced the functions Fβ(σ1, σ2)

Fβ(σ1, σ2) = exp

{
3∑

m=1

emσ1γ
(m)
a [1− e−imβ(χ2m

d +χ2m
s )t]

imβ(χ2m
d + χ2m

s )Qm
β

+
emσ2γ

(m)
b [eimβ(χ2m

d −χ2m
s )t − 1]

imβ(χ2m
d − χ2m

s )Qm
β

+
eσ1+σ2γab[1− e−i2βχ2m

s t]

i2βχ2m
s Q2

β

} (3.45)

with β = −1, 0, 1, 2, and

Qβ = |Ca|2 exp
[−iβ(χ2m

d + χ2m
s )t

]
+ |Cb|2 exp

[
iβ(χ2m

d − χ2m
s )t

]
, (3.46)

and all the expressions should be evaluated in σ1 = ln N̄a, σ2 = ln N̄b. The
expression of v is given in (2.53).

We check the validity of the constant loss rate approximation by numeri-
cal simulation. In Fig.3.2 (a) we show the squeezing parameter as a function
of time for 1000 87Rb atoms evenly split |Ca|2 = |Cb|2 = 1/2. The atoms in
states a and b are trapped in harmonic potentials whose minima are 0.44µm
apart corresponding to an experimentally relevant situation (see chapter 6).
The rate constants for the losses are different for two components. We com-
pare the analytical solution in the constant loss rate approximation with an
exact Monte-Carlo simulation. The comparison shows that our constant rate
approximation is very accurate when a small fraction of particles is lost at
the time at which the best squeezing is achieved. In Fig.3.2 (b) we show
the corresponding total number of particles and 〈Sz〉 as a function of time.
According to the figures one can see that the constant loss rate approxima-
tion neglects two effects: (i) the decrease of the loss rate in time as less and
less particles are in the system, as shown in Fig.3.2 (b) (top) where Ntotal

calculated from the constant rate approximation decreases faster than the
one obtained from simulation; (ii) the change of the ratio 〈N̂a〉/〈N̂b〉 due to
the asymmetric loss rate between the two components, as shown in Fig.3.2
(b) (bottom): 〈Sz〉 in our analytical model remains constant while in the
simulation it increases with time.

In Fig.3.3 we compare two cases with large asymmetric two-body losses.
In (a) we consider initially 〈Na〉 = 〈Nb〉, which is the most favorable condi-
tion for squeezing [66]. Due to the asymmetric losses, the population ratio
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Figure 3.2: (a) Spin squeezing with one, two and three-body losses. Green solid
line: squeezing parameter in the no-loss case. Red solid line: analytical solution
with the constant loss rate approximation. Blue solid line: Monte-Carlo simulation
with 2000 realizations. (b) Corresponding total number of particles and 〈Sz〉 as a
function of time. Parameters correspond to 87Rb atoms in the states |F = 1,mF =
−1〉 and |F = 2,mF = 1〉: initial number of atoms N = 1000 with N̄a = N̄b = 500;
trap frequencies ω⊥ = 2π×515Hz, ωx = 2π×115Hz, the minimum of the two traps
for a and b are separated by 0.44µm; m=87 a.m.u., aaa = 100.44 rB, abb = 95.47 rB,
aab = 98.09 rB, rB is the Bohr radius. The rate constants for the losses are:
K

(1)
a = K

(1)
b = 1.0 s−1, K

(2)
b = 119 × 10−21 m3s−1 [64], Kab = 78 × 10−21 m3s−1

[64], K
(3)
a = 6 × 10−42 m6s−1 [65]. Using the stationary solution (2.18), these

physical parameters result in χ2m
d = 0.51 s−1, χ2m

s = 0.05 s−1, v = 51.34 s−1,
γ

(1)
a = γ

(1)
b = 0.2 s−1, γ

(2)
a = 0, γ

(2)
b = 5.8 × 10−3 s−1, γ

(2)
ab = 2.9 × 10−3 s−1,

γ
(3)
a = 2.55× 10−8 s−1, γ

(3)
b = 0, which are directly used in two-mode model.

between the two spin components changes. The squeezing reduces as the
mean spin leaves the equator and approaches the poles. However, in the con-
stant loss rate approximation it remains constant, and consequently a better
spin squeezing shall be predicted than reality. On the other hand, the fact
that more particles are lost in the constant loss rate approximation makes
the effect of losses on squeezing overestimated. These two effects partially
compensate in the even splitting case, and we get a good agreement between
the approximate solution and the exact one. In the case of (b) instead,
we consider 〈Na〉 6= 〈Nb〉. We initially put more particles in the high loss
rate component b. Then the two effects described above add up instead of
compensating each other in the constant loss rate approximation, giving a
degradation of squeezing with respect to reality. Such splitting configuration,
so-called breathe-together configuration will be discussed in detail in chapter
4. Note however that even for such large and highly non-symmetric losses,
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Figure 3.3: (Top) Spin squeezing with two-body losses in a bimodal condensate
as a function of time. Red solid line: analytical solution with constant loss rate
approximation. Blue solid line: Monte-Carlo simulation with 4000 realizations.
(Bottom) Corresponding total number of particles and 〈Sz〉 as a function of time.
(a) Symmetrically split condensates with N̄a = N̄b = 104. Parameters: χ2m

d =
5.38 × 10−3 s−1, χ2m

s = 5.42 × 10−4 s−1, v = 13.88 s−1, γ
(2)
a = 0, γ

(2)
b = 8.92 ×

10−5 s−1. (b) Breathe-together configuration with N̄a = 7432 and N̄b = 12568.
Parameters: χ2m

d = 5.39×10−3 s−1, χ2m
s = 1.39×10−3 s−1, v = 13.85 s−1, γ

(2)
a = 0,

γ
(2)
b = 7.71× 10−5 s−1, calculated from the stationary solution of Gross-Pitaevskii

equation (2.18) with the trap frequency is ω = 2π × 42.6Hz, m=87 a.m.u., and
the scattering length aaa = 100.44 rB, abb = 95.47 rB, aab = 88.28 rB, rB is the
Bohr radius. The rate constants for two-body losses are: K

(2)
a = 0, K

(2)
b = 119 ×

10−21 m3s−1.
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the constant loss rate approximation proves to be rather accurate up to the
best squeezing time.

3.2 Optimization of spin squeezing in the sym-
metric case

In this section, we explore the analytical solutions obtained in the constant
loss rate approximation. We will concentrate on the symmetric condensates
case. We assume that the two components have the same average number
of atoms, scattering length, and loss rates. In this case we can carry out
analytically the optimization of squeezing in presence of losses.

In the symmetric case and constant loss rate approximation it turns out
that ∆S2

z = 〈N̂〉/4. This allows to express ξ2 in a simple way,

ξ2 =
〈a†a〉
〈b†a〉2

(
〈a†a〉+ Ã−

√
Ã2 + B̃2

)
, (3.47)

with

Ã =
1

2
Re

(〈b†a†ab− b†b†aa〉) (3.48)

B̃ = 2 Im
(〈b†b†ba〉) . (3.49)

An analytical expression for spin squeezing can be calculated from (3.36)-
(3.44) with N̄a = N̄b, χ2m

s = 0, γ
(m)
a = γ

(m)
b = γ(m). We shall use them to

find simple results for the best squeezing and the best squeezing time in the
large N limit. Let us define the rates related to the fraction of lost particles,

Γ(m) =

(
N

2

)m−1

mγ(m) ; Γab =
N

2
γab . (3.50)

The quantity Γ(m)t gives the fraction of lost particles due to m-body losses.
In the absence of losses, the best squeezing and the best squeezing time in
units of 1/χ2m

d scale as N−2/3. We then set N = ε−3 and rescale the time
as χ2m

d t = τε2. We expand (3.47) for ε ¿ 1 up to order 2 included, keeping
Γ(m)/χ2m

d constant, we obtain:

ξ2(t) =
1

N2(χ2m
d t)2

+
1

6
N2(χ2m

d t)4 +
1

3
Γsqt, (3.51)

where
Γsq =

∑
m

Γ(m)
sq and Γ(m)

sq = mΓ(m) . (3.52)
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The key point is that in this expansion, for large N and short times, the
crossed losses ab do not contribute. Introducing the squeezing ξ2

0(t) in the
no-loss case Eq.(2.35), we obtain:

ξ2(t) = ξ2
0(t)

[
1 +

1

3

Γsqt

ξ2
0(t)

]
. (3.53)

The result (3.53) very simply accesses the impact of losses on spin squeezing.
First it shows that losses cannot be neglected as soon as the lost fraction
of particles is of the order of ξ2

0 . The more squeezed the state is, the more
sensitive to the losses. Second, it shows that in the limit N → ∞ and
ξ2
0(tbest) → 0, the squeezing in presence of losses is of the order of the lost
fraction of particles at the best time: ξ2(tbest) ∼ Γsqtbest/3. This also sets the
limits of validity of our constant loss rate approximation. For our approxi-
mation to be valid, the lost fraction of particle, hence squeezing parameter
at the best squeezing time, should be small.

Minimizing ξ2(t) in Eq.(3.51) with respect to t, one finds the best squeez-
ing time and the corresponding squeezing

tbest =

[
f(C)

2

]1/3
N−2/3

χ2m
d

, (3.54)

ξ2(tbest) =

[
1

f(C)2/3
+

f(C)4/3

24
+

Cf(C)1/3

3

](
2

N

)2/3

, (3.55)

where f(C) =
√

C2 + 12 − C, C = Γsq/2χ
2m
d . In order to find optimal

conditions to produce spin squeezing in presence of losses and set the ultimate
limits of this technique, from now on, we assume that the number of particles
is large enough for the condensate to be in the Thomas-Fermi regime with
the scattering lengths

aab < aaa = abb . (3.56)

In this case, the two components of the condensate do not demix as the cross
interaction energy is smaller than the self interaction energy components.
We introduce the sum and difference of the intra and inter-species s-wave
scattering lengths:

as = aaa + aab (3.57)
ad = aaa − aab . (3.58)

In the symmetric case considered, the two components of the condensate
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Figure 3.4: (a) Spin squeezing obtained by a minimization of ξ2 over time in a fixed
trap, as a function of the initial number of particles, calculated from Thomas-Fermi
approximation (3.59)-(3.63), without loss of particles (solid line), with one-body
losses (dashed line), with two-body losses (dotted line), with three-body losses
(dash-dotted line), respectively. Parameters: as = ad = 5.32 nm, ω̄ = 2π× 200Hz,
K(1) = 0.1 s−1, K(2) = 2× 10−21 m3/s, K(3) = 18× 10−42 m6/s. The symbols plus
(crosses) are results of a numerical simulation with 400 Monte-Carlo realizations for
two-body (three-body) losses. (b) Spin squeezing obtained at tbest as a function
of the initial number of particles, without losses (red solid line), with one, two,
and three-body losses (blue solid line), when the trap frequency is optimized for
each number of particles using (3.64). The dashed line is the lower bound of spin
squeezing when N →∞. The rate constants are the same as (a).

have the same profiles. Under the Thomas-Fermi approximation, we have

µa = µb =
1

2
~ω̄

[
15

2

Nas

aho

]2/5

, (3.59)

χ =
23/532/5

53/5

(
~
M

)−1/5

ω̄6/5N−3/5 ad

a
3/5
s

, (3.60)

Γ(1) = K(1) , (3.61)

Γ(2) =
152/5

27/57π

(
~
M

)−6/5

ω̄6/5N2/5a−3/5
s K(2) , (3.62)

Γ(3) =
54/5

219/531/57π2

(
~
M

)−12/5

ω̄12/5N4/5a−6/5
s K(3) , (3.63)

where aho =
√
~/Mω̄ is the harmonic oscillator length, ω̄ is the geometric

mean of the trap frequencies. Note that for two spatially separated conden-
sates, aab = 0, and as = ad .
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We first analyze the dependence of the squeezing on the initial number
of particles, including separately for clarity one, two, and three-body losses.
Fig.3.4 (a) shows the best squeezing ξ2(tbest) as a function of the initial atom
number N when only one kind of losses is present. The trap frequency is fixed.
The curve without losses proportional to N−2/3 is also shown for comparison.
We choose the parameters for the 87Rb atoms in the state |F = 1〉. In this
case, the scattering length a = 5.32 nm. According to the figure, one-body
losses do not change qualitatively the picture without losses and we have
ξ2(tbest) ∝ N−4/15 for N → ∞. In the same limit, with two-body losses,
ξ2(tbest) is independent of N . With three-body losses, ξ2(tbest) ∝ N4/15 for
N → ∞, implying that, for a fixed ω̄, there is a finite number of particles
that optimizes squeezing.

In a fixed trap, when one tries to improve the squeezing by increasing the
number of atoms, the density of the condensate will also increase. Therefore
the three-body losses become more and more important in this case. To
overcome this problem, one could, in the meantime, try to lower the density
by opening the trap for example. Reducing the density decreases the fraction
of lost particles due to two and three-body losses. However, the interaction
parameter χ responsible for the squeezing is also reduced in this way and the
squeezing time gets longer thus increasing the importance of one-body losses
that are independent of the density.

The tradeoff between these two effects defines the optimum trap fre-
quency. Note that the square brackets in Eq.(3.55) is an increasing func-
tion of C, we can then optimize ξ2(tbest) by minimizing C with respect to
ω̄. Under the conditions K(1) 6= 0 and K(3) 6= 0, the minimum of C, Cmin is
obtained for Γ(1) = 3Γ(3), yielding

ω̄opt =
219/1275/12π5/6

151/3

~
M

a
1/2
s

N1/3

(
K(1)

K(3)

)5/12

. (3.64)

ω̄opt is the optimized trap frequency. Note that this optimization concerns
one and three-body losses only. The effect of decoherence due to two-body
losses quantified by the ratio Γ(2)/χ is independent of the trap frequency. The
best squeezing under the Thomas-Fermi approximation occurs when there is
a balance between one-body and three-body losses.

Once the trap frequency is optimized, ξ2(tbest, ω̄
opt) is a decreasing func-

tion of N , as shown in Fig.3.4 (b). The lower bound for ξ2, reached for
N →∞ is then

inf
t,ω̄,N

ξ2 =

[
5
√

3M

28π~

]2/3 [√
7

2

K(1)K(3)

a2
d

+
K(2)

ad

]2/3

. (3.65)
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Figure 3.5: (a) Three-body recombination loss rate constant K(3) versus B taken
from [69]. (b) Spin squeezing ξ2(tbest) optimized with respect to ω̄ as a function
of the scattering length a, when the magnetic field is varied on the left side of the
B0 = 1007.4G Feshbach resonance of 87Rb. (c) The number of particles for each
point in (b), calculated for η = 10 %. K(1) = 0.01 s−1 and K(2) = 0.

The fact that ξ2 is a decreasing function of N is important for broad interest
applications such as spectroscopy where, apart from the gain coming from
spin squeezing, one always gains in increasing N , as shown in Eq.(2.13).
Another simple outcome of this analytic study is that, for positive scattering
lengths aaa, aab, the maximum squeezing is obtained when aab = 0 that is
for example for spatially separated condensates. Another possibility is to
use a Fechbach resonance to decrease the inter-species scattering length aab

[67, 68], knowing that the crossed a− b losses do not harm the squeezing at
short times.

In practice, in order to approach this lower bound, one can choose N = Nη

such that ξ2 = (1 + η) inf ξ2 (e.g. η = 10 %), then calculate the optimized
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trap frequency (3.64) with Nη. For a suitable choice of the internal state, in
an optical trap, the two-body losses can be neglected K(2) = 0. One can get
in this case very simple formulas for the optimized parameters and squeezing.
For η = 10 %,

Nη ' 17.833

[K(1)K(3)]
1/2

~ ad

M
, (3.66)

tbest ' 0.277

[
M

~K(1)

]2/3 [
K(3)

a2
d

]1/3

, (3.67)

ξ2 ' 0.356

[
MK(1)

~

]1/3 [
MK(3)

~ a2
d

]1/3

. (3.68)

Note that in (3.68) the scattering length appears at the denominator. We
then ask ourselves whether we can use a Feshbach resonance to increase the
intra-species scattering length a = aaa = abb (but also K(3)) to improve the
squeezing. In Fig.3.5 (b) we plot the squeezing parameter versus a assuming
aab = 0 and K(1) = 0.01 s−1. Predicted values of K(3), as a function of the
magnetic field strength B, are shown in Fig.3.5 (a), which is taken from
[69] for 87Rb in the state |F = 1,mF = 1〉 (theoretical work). Close to the
resonance, the scattering length a as a function of B is approximately given
by

a(B) = abg[1−∆B/(B −B0)] (3.69)

where B0 = 1007.4G, ∆B = 0.21G and abg = 5.32 nm. From Eq.(3.69)
plus Fig.3.5 (a), we obtain the rate constant K(3) as a function of a. We
calculate ω̄opt and the number of particles needed for η = 10 % for each point
in the curve, see Fig.3.5 (c). Close to Feshbach resonance, the squeezing
gets worse as K(3) increases (even if the figure we do not enter the regime
K(3) ∼ ~ a4/M). The dip giving large squeezing corresponds to a strong
decrease in K(3) around 1003.5G (K(3) ' 3× 10−45m6/s). In the theoretical
article [69], the authors explain that it is due to an atom-dimer zero-energy
resonance at this magnetic field strength. If the dip were confirmed by the
experiments, it would allow a squeezing parameter ξ2 = 4.4 × 10−5 to be
reached.

3.3 The survival time of squeezing

As we show in chapter 2, spin squeezed states are useful resources that would
allow a precision gain over the standard quantum limit in interferometric
measurements. However, in order to use it, for example in atomic clocks, the
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squeezed state should survive during the interrogation time. In this section,
we consider the problem of the survival time of a spin squeezed state in
presence of losses.

We imagine that the system evolves in two periods: for 0 < t < T1,
the system is squeezed in a tight trap with the nonlinear parameter χ2m

d1 , in
presence of all kinds of losses; and for T1 < t < T1 +T2, we move to a shallow
trap to lower the density, consequently the nonlinear parameter is decreased
χ2m

d2 ' 0. The Hamiltonian for the two periods is

H0j = f
(j)

N̂
+ ~ v

(j)

N̂
(N̂a − N̂b) +

~χ2m
dj

4
(N̂a − N̂b)

2 , (3.70)

with j = 1, 2 indicating the first and second period, and

v
(j)

N̂
=

1

2~

[
(µaj − µbj)− ~χ2m

dj (N̄a − N̄b) + ~χ2m
sj (N̂ − N̄)

]
(3.71)

χ2m
dj =

1

2~
(∂Naµaj + ∂Nb

µbj − ∂Nb
µaj − ∂Naµbj)N̄a,N̄b

(3.72)

χ2m
sj =

1

2~
(∂Naµaj − ∂Nb

µbj)N̄a,N̄b
. (3.73)

For χ2m
d2 ' 0, the effect of losses in the the second period can be briefly

summarized as follows: (i) similar as the first period, each loss event in the
second period will also cause a random phase shift of the state, e.g. see
Eqs.(3.77) and (3.81), which degrades the relative phase between the two
modes, consequently degrades the spin squeezing; (ii) in case χ2m

s2 6= 0, there
is extra effect: in each single trajectory, the mean spin rotates around the
axis-z with the velocity depending on the remaining number of particles,
therefore during the interrogation time, the loss events induce fluctuations
in the direction of mean spin, which results in more phase noise.

Note that in a real Ramsey sequence using spin squeezed state, before the
interrogation period starts, one has to rotate the state such that the squeezed
axis is aligned along the equatorial plane of the Bloch sphere (phase squeezed
state), which makes it more sensitive to phase noise. The lifetime for spin
squeezed state in a real Ramsey sequence will be discussed in chapter 6.

3.3.1 Simple case with one-body losses only

In this subsection, we consider a simple symmetric case with one-body losses
only in the second period. For the first period, starting with the phase state
(2.20), the system evolves according to the Hamiltonian H01 described in
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Eq.(3.70) with χ2m
s1 = vN̂1 = 0. We again use the constant rate approxima-

tion. The effective Hamiltonian then can be approximated as in Eq.(3.31)

Heff1 ' − i~
2

3∑
m=1

∑

ε=a, b

γ
(m)
ε1 N̄m

ε − i~
2

γab1N̄aN̄b ≡ − i~
2

λ1 (3.74)

with γ
(m)
a1 = γ

(m)
b1 = γ

(m)
1 and N̄a = N̄b = N/2. In the second period,

we assume that we change to a very shallow trap such that the interaction
between the atoms is stopped, the nonlinear parameter χ2m

d2 = 0. The system
evolves under the influence of one-body losses only. The effective Hamiltonian
can be written as

Heff2 = −i~
2

γ
(1)
2

(
N̂a + N̂b

)
(3.75)

The rate constants K(m) and Kab are the same in the two periods. However,
the real loss rates γ

(m)
εj and γabj as defined in Eq.(3.3) and (3.4) are different

since the wave functions are different due to the trap configurations.
The evolution of a single quantum trajectory with k jumps at times tj in

the first period and m jumps at times tl in the second one reads

|Ψ(T1, T2)〉 =e−λ1T1/2

{
[N −N(k)]!

[N −N(k)−m]!

}1/2

exp

[
−1

2

m∑

l=1

γ
(1)
2 (tl − T1)

]

· αkα̃mP̂m|ϕ + βk〉N−N(k)−m, C′a, C′b
(3.76)

where αk, βk and N(k) are defined as in Eq.(3.33)-(3.35), α̃m is the same as
in Eq.(3.19), C ′

a = e−γ
(m)
2 T2/2Ca, C ′

b = e−γ
(m)
2 T2/2Cb and

P̂m =
m∏

l=1

{
δεl, ae

−iT1

h
v
(1)

N̂+1
(N̂a−N̂b+1)+χ2m

d1 (N̂a−N̂b+1)
2
/4
i

+ δεl, be
−iT1

h
v
(1)

N̂+1
(N̂a−N̂b−1)+χ2m

d1 (N̂a−N̂b−1)
2
/4
i}

.

(3.77)

After average over all possible stochastic realizations, one finds that the
squeezing parameter can be written as follows,

ξ2(T1, T2) =
1

4

〈N̂(T1)〉2
〈Sx(T1)〉2 −

[
1

4

〈N̂(T1)〉2
〈Sx(T1)〉2 − ξ2(T1)

]
e−γ

(1)
2 T2

' 1− [
1− ξ2(T1)

]
e−γ

(1)
2 T2 .

(3.78)

where in the second line we have used the fact that for T1 ¿ 1 one has
〈Sx(T1) 〉 ' N/4. Eq.(3.78) indicates the life time of squeezing. The quantity
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Figure 3.6: Spin squeezing ξ2 as a function of time. The scattering length is chosen
for 87Rb atoms in the state |F = 1,mF = 1〉, a = 5.32 nm, and the corresponding
rate constants are: K(1) = 0.01 s−1, K(2) = 0, K(3) = 6 × 10−42 m6/s [69]. The
solid line represents the evolution consisting of two periods. In the first period,
which is optimized with (3.66)-(3.68), the trap frequency is ω̄opt = 2π × 20.06Hz
and initial number of particles N = 2.8 × 105, the best squeezing, reached at
T1 = tbest = 4.4× 10−2 s, is ξ2 = 5.7× 10−4. In the second period, we assume that
the system evolves under the influence of one-body losses. The rate constants in the
two periods are the same. The other parameters are calculated with Thomas-Fermi
approximation (3.59)-(3.63). The dashed line represents the evolution consisting
only one periods. The parameters are the same as the first period plotted with the
solid line. (a) Short time behavior with T1 + T2 = 0.2 s. (b) Long time behavior
with T1 + T2 = 1 s.

1 − ξ2 simply decays exponentially, with the decay rate γ
(1)
2 . This result

shows that the spin squeezing can be kept some time after the interactions
have been stopped. It also shows that the more squeezed the state is, the
harder to keep.

To give an example, in Fig.3.6 we show a plot for 87Rb atoms. We choose
the scattering length of the state |F = 1,mF = 1〉, i.e. a = 5.32 nm. The
rate constant K(1) = 0.01 s−1, K(2) = 0, K(3) = 6 × 10−42 m6/s [65]. In
the optimized conditions (3.66)-(3.68) the initial number of atoms is N =
2.8×105 and ω̄opt = 2π×20.06Hz. ξ2 = 5.7×10−4 is reached at T1 = tbest =
4.4×10−2 s. If we stopped the interaction at that time, as shown in the figure
(solid line), a large amount of squeezing ξ2 ' 0.01 will be still available after
1 s. On the contrary, if we continue to squeeze with χ2m

d2 6= 0, as plotted in
the figure (dashed line), there will be no spin squeezing after 0.4 s.
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3.3.2 In presence of one, two, and three-body losses

In this subsection we give the analytical solution in presence of all kinds of
losses in both periods within the constant rate approximation. The effective
Hamiltonian

Heffj ' − i~
2

3∑
m=1

∑

ε=a, b

γ
(m)
εj N̄m

ε − i~
2

γabjN̄aN̄b ≡ − i~
2

λj (3.79)

The evolution of a single quantum trajectory with k jumps at times tj in the
first period and m jumps at times tl in the second one reads

|Ψ(T1, T2)〉 = e−λ1T1/2−λ2T2/2αkα̃mÔm|ϕ + βk + β̃m〉N−N(k)−N(m) (3.80)

where αk, βk, N(k) and α̃m, β̃k, N(m) are defined as in Eq.(3.33)-(3.35), and

Ôm =
m∏

l=1

{
3∑

m′=1

[
δεl, ae

−iT1 v
(1)

(N̂+m′)(N̂a−N̂b+m′)−iT1χ2m
d1 (N̂a−N̂b+m′)2/4

+ δεl, be
−iT1 v

(1)

(N̂+m′)(N̂a−N̂b−m′)−iT1χ2m
d1 (N̂a−N̂b−m′)2/4

]

+ δεl, abe
−iT1 v

(1)

(N̂+m′)(N̂a−N̂b)−iT1χ2m
d1 (N̂a−N̂b)

2/4
}

.

(3.81)

The averages needed to calculate spin squeezing are

〈a†a〉 = |Ca|2e−λ1T1−λ2T2 [N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)]

G0(σ1, σ2, σ̃1, σ̃2) (3.82)

〈b†b〉 = |Cb|2e−λ1T1−λ2T2 [N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)]

G0(σ1, σ2, σ̃1, σ̃2) (3.83)

〈a†a†aa〉 = |Ca|4e−λ1T1−λ2T2 [N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)− 1]

[N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)] G0(σ1, σ2, σ̃1, σ̃2) (3.84)

〈b†b†bb〉 = |Cb|4e−λ1T1−λ2T2 [N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)− 1]

[N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)] G0(σ1, σ2, σ̃1, σ̃2) (3.85)

〈b†a†ab〉 = |Cb|2|Ca|2e−λ1T1−λ2T2 [N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)− 1]

[N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)] G0(σ1, σ2, σ̃1, σ̃2) (3.86)
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〈b†a〉 = C∗
b Cbe

−(2iv1+λ1)T1−(2iv2+λ2)T2

[
|Ca|2e−iχ2m

d1 T1−iχ2m
d2 T2

+ |Cb|2eiχ2m
d1 T1+iχ2m

d2 T2

]N−1

[N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)]

G1(σ1, σ2, σ̃1, σ̃2) (3.87)

〈b†b†ba〉 = |Cb|2C∗
b Cae

−(2iv1−iχ2m
d1 +λ1)T1−(2iv2−iχ2m

d2 +λ2)T2

[
|Ca|2e−iχ2m

d1 T1−iχ2m
d2 T2

+ |Cb|2eiχ2m
d1 T1+iχ2m

d2 T2

]N−2

[N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)]

[N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)− 1] G1(σ1, σ2, σ̃1, σ̃2) (3.88)

〈a†a†ab〉 = |Ca|2C∗
aCbe

(2iv1+iχ2m
d1 −λ1)T1+i(2iv2+iχ2m

d2 −λ2)T2

[
|Cb|2e−iχ2m

d1 T1−iχ2m
d2 T2

+ |Ca|2eiχ2m
d1 T1+iχ2m

d2 T2

]N−2

[N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)]

[N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)− 1] G−1(σ1, σ2, σ̃1, σ̃2) (3.89)

〈b†b†aa〉 = C∗2
b C2

ae
−(4iv1+λ1)T1−(4iv2+λ2)T2

[
|Ca|2e−2iχ2m

d1 T1−2iχ2m
d2 T2

+ |Cb|2e2iχ2m
d1 T1+2iχ2m

d2 T2

]N−2

[N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)]

[N − (∂σ1 + ∂σ2)− (∂σ̃1 + ∂σ̃2)− 1] G2(σ1, σ2, σ̃1, σ̃2) (3.90)

where the drift velocity is

vj =
1

2~

[
(µ(j)

a − µ
(j)
b )− ~χ2m

dj (N̄a − N̄b) + ~χ2m
sj (N − N̄)

]
, (3.91)

and µ
(j)
a , µ

(j)
b are the chemical potentials for component a and b in the j-th

period. We introduced the function Gβ(σ1, σ2, σ̃1, σ̃2)

Gβ(σ1, σ2, σ̃1, σ̃2) = exp

{
3∑

m=1

[
Am1 emσ1 +Am2 emσ̃1−imβ(χ2m

d1 +χ2m
s1 )T1

+Bm1 emσ2 + Bm2 emσ̃2+imβ(χ2m
d1 −χ2m

s1 )T1

]
+

eσ1+σ2γab1[1− e−i2βχ2m
s1 T1 ]

i2βχ2m
s1 D 2

β

+
eσ̃1+σ̃2γab2 e−i2βχ2m

s1 T1 [1− e−i2βχ2m
s2 T2 ]

i2βχ2m
s2 D 2

β

}
(3.92)
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with β = −1, 0, 1, 2,

Amj =
γ

(m)
aj

{
1− exp

[−imβ(χ2m
dj + χ2m

sj )Tj

]}

imβ(χ2m
dj + χ2m

sj )Dm
β

, (3.93)

Bmj =
γ

(m)
bj

{
exp

[
imβ(χ2m

dj − χ2m
sj )Tj

]− 1
}

imβ(χ2m
dj − χ2m

sj )Dm
β

. (3.94)

The denominator Dβ is defined as

Dβ =|Ca|2 exp
[−iβ(χ2m

d1 + χ2m
s1 )T1 − iβ(χ2m

d2 + χ2m
s2 )T2

]

+|Cb|2 exp
[
iβ(χ2m

d1 − χ2m
s1 )T1 + iβ(χ2m

d2 − χ2m
s2 )T2

]
.

(3.95)

All the expressions should be evaluated in σ1 = σ̃1 = ln N̄a, σ2 = σ̃2 = ln N̄b.
In Fig.3.7 we give an example for 87Rb atoms. The parameters correspond

to the states |F = 1,mF = −1〉 and |F = 2,mF = 1〉. We show the squeezing
parameter as a function of time for the initial number of atoms N = 1250,
evenly split. The trap frequencies in the first period are ω⊥ = 2π × 500Hz,
ωx = 2π×109Hz, and in the second period ω⊥ = 2π×50Hz, ωx = 2π×10Hz.
The minima of the trap for components a and b are separated by 0.52µm
in the first period, while in the second period the two components see the
same trap. The rate constants are the same throughout the whole evolution.
The parameters χ, γ can be deduced from the stationary solution of Gross-
Pitaevskii equation (2.18). In Fig.3.7 bottom we show the fraction of the
number of particles remaining in the trap. One finds that even in such
shallow trap in the second period, the fraction of lost particle due to two-
body losses is still comparable with one-body losses. This is caused by the
high loss rate in F = 2 state. The squeezing parameter ξ2 = 3.8 × 10−2 is
reached at T1 = 13.0ms. After transfer to the second shallow trap, the state
remains squeezed until 1.0 s. Compared to the Monte-Carlo simulations, we
find very good agreement with our analytical result (3.82)-(3.90).
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Figure 3.7: (Top) Spin squeezing ξ2 as a function of time with one, two and three-
body losses. (Bottom) Fraction of the particles remaining in the system during the
evolution. Red solid line: analytical solution with constant loss rate approximation.
Blue solid line: Monte-Carlo simulation with 1000 realizations. Parameters: initial
number of atoms N = 1250 with N̄a = N̄b = 625; trap frequencies for the first
period ω⊥ = 2π × 500Hz, ωx = 2π × 109Hz, the minimum of the two traps
for a and b are separated by 0.52µm; for the second period ω⊥ = 2π × 50Hz,
ωx = 2π×10Hz. m = 87 a.m.u.. The scattering length is chosen for 87Rb atoms in
the state |F = 1,mF = −1〉 and |F = 2,mF = 1〉: aaa = 100.44 rB, abb = 95.47 rB,
aab = 98.09 rB, rB is the Bohr radius. The rate constants for the losses: K

(1)
a =

K
(1)
b = 0.2 s−1, K

(2)
b = 70 × 10−21 m3s−1, Kab = 50 × 10−21 m3s−1, K

(3)
a = 6 ×

10−42 m6s−1, which are the same for both two periods. These parameters, from the
stationary solution (2.18), result in χ2m

d1 = 0.49 s−1, χ2m
s1 = 0.04 s−1, v1 = 55.03 s−1;

χ2m
d2 = 5.2 × 10−5 s−1, χ2m

s2 = 2.0 × 10−3 s−1, v2 = 2.49 s−1; γ
(1)
a1 = γ

(1)
b1 = γ

(1)
a2 =

γ
(1)
b2 = 0.2 s−1, γ

(2)
b1 = 6.1 × 10−3 s−1, γ

(2)
b2 = 2.2 × 10−4 s−1, γab1 = 1.4 × 10−3 s−1,

γab2 = 1.5 × 10−4 s−1, γ
(3)
a1 = 6.05 × 10−8 s−1, γ

(3)
a2 = 7.40 × 10−11 s−1, which

are directly used in two-mode model. The time of evolution for the first period
T1 = 13.0ms, and for the second period T2 = 1.0 s.





Chapter 4

Spin squeezing and spatial
dynamics

In the previous two chapters, we studied spin squeezing in the framework of
a two-mode model, where we assume that the condensate wave functions are
always in the stationary ground state. In the real experiment, a straightfor-
ward way to produce the initial phase state in a bimodal condensate is to
start with one atomic condensate in a given internal state a and perform a
π/2-pulse coupling coherently the internal state a to a second internal state
b. However, as the strength of the interaction between two atoms a−a, b− b
and a− b are in general different, the change in the mean-field energy excites
the spatial dynamics of the condensate wave functions. In the evolution sub-
sequent to the pulse, the spin dynamics creating squeezing and the spatial
dynamics are entangled [23, 70, 71, 66] and occur on the same time scale set
by an effective interaction parameter χ. This makes it a priori more difficult
to obtain simple analytical results.

In this chapter we develop a simple formalism which allows us to calculate
analytically or semi-analytically the effect of the spatial dynamics on spin
squeezing. It neglects initial thermal excitations and reduces to the simple
two-mode model described in the previous chapters for the case of stationary
condensates. Using our treatment we show that at particular times in the
evolution the spatial dynamics and the spin dynamics disentangle and the
dynamical model gives the same result as a simple two-mode model. The
main results of this chapter are published in [36].

41
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4.1 State evolution
Our starting point is again the second quantized Hamiltonian for the two-
component Bose-Einstein condensate (2.14),

H =
∑

ε=a, b

∫
d3r Ψ̂†

ε(r)hεΨ̂ε(r) +
∑

ε=a, b

gεε

2

∫
d3r Ψ̂†

ε(r)Ψ̂
†
ε(r)Ψ̂ε(r)Ψ̂ε(r)

+gab

∫
d3r Ψ̂†

a(r)Ψ̂
†
b(r)Ψ̂b(r)Ψ̂a(r), (4.1)

where
hε = −~2∇2/(2M) + U

(ε)
ext(r) (4.2)

is the one-particle Hamiltonian for atoms in state ε including the kinetic
energy and external trapping potential. The field operators can be written
as

Ψ̂a(r) = a〈r|, Ψ̂b(r) = b〈r| (4.3)

where a〈r| annihilates a particle in component a at the position r.
We assume that we start from a condensate with N atoms in the state a;

the stationary wave function of the condensate is φ0(r). After a π/2-pulse,
the system is prepared in a phase state, where the external wave function is
φ0(r),

|ψ(0)〉 =
1√
N !

[
Ca a†|φ0〉 + Cb b†|φ0〉

]N

|vac〉 (4.4)

The operator a†|φ0〉 creates a particle in state a with wave function φ0. Since
the inter-species scattering length aab and the intra-species scattering length
abb are different from aaa, the sudden change in the mean-field after the
pulse will excite the spatial dynamics [72]. Due again to interactions, the
evolution of the spin dynamics and the spatial dynamics will be entangled.
To study this problem, it is convenient to use the Fock states with a well
defined number of particles in |a〉 and |b〉, these numbers being preserved
during time evolution subsequent to the mixing pulse. Expanded over the
Fock states, the initial state (4.4) reads:

|ψ(0)〉 =
N∑

Na=0

(
N !

Na!Nb!

)1/2

CNa
a CNb

b |Na : φ0, Nb : φ0〉, (4.5)

where Nb = N −Na, and

|Na : φa, Nb : φb〉 =

[
a†|φa(Na,Nb)〉

]Na

√
Na!

[
b†|φb(Na,Nb)〉

]Nb

√
Nb!

|vac〉 . (4.6)
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The commutation relations between the field operators and the creation op-
erators â†|φa(Na,Nb)〉 (b̂

†
|φb(Na,Nb)〉) are

[
â〈r|, â

†
|φa(Na,Nb)〉

]
= 〈r|φa(Na, Nb)〉 = φa(Na, Nb, r) (4.7)

[
b̂〈r|, b̂

†
|φb(Na,Nb)〉

]
= 〈r|φb(Na, Nb)〉 = φb(Na, Nb, r) (4.8)

Within an Hartee-Fock type ansatz for the N -body state vector, we calculate
the evolution of each Fock state in (4.5), and we get [70]:

|Na : φ0, Nb : φ0〉 →
e−iA(Na, Nb; t)/~|Na : φa(Na, Nb; t), Nb : φb(Na, Nb; t)〉 ,

(4.9)

where φa(Na, Nb; t) and φb(Na, Nb; t) are solutions of the coupled Gross-
Pitaevskii equations:

i~
∂φε

∂t
=

[
hε + (Nε − 1)gεε|φε|2 + Nε′gεε′|φε′|2

]
φε (4.10)

with the initial conditions

φa(0) = φb(0) = φ0 (4.11)

and the time dependent phase factor A solves (see appendix C):

d

dt
A(Na, Nb; t) =−

∑

ε=a,b

Nε(Nε − 1)
gεε

2

∫
d3r|φε|4

−NaNbgab

∫
d3r|φa|2|φb|2 .

(4.12)

To calculate the expectation value of operators, one then has to solve (4.10)
for all values of Nε, and put back the expression (4.9) in (4.5).

With this treatment we fully include the quantum dynamics of the two
condensate modes a and b, as one does for the simple two modes model, but
also including the spatial dynamics of the two modes and their dependence
on the number of particles. The approximation we make is to neglect all
the other modes orthogonal to the condensates which would be populated
thermally. An alternative method is to use a number conserving Bogoliubov
theory that explicitly includes the operators of the condensates as in [71].
In that case all the modes are present but the modes orthogonal to the
condensates are treated in a linearized way. In [71] the author compares
this number conserving Bogoliubov approach to our approach, which is also
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used in [23], and he finds very similar result for the spin squeezing. He
also finds that within his treatment the thermally excited modes strictly do
not affect the squeezing in the scheme we consider here. If the perturbative
method has the advantage of being systematic, our approach, supplemented
with a further approximation (the modulus-phase approximation introduced
in section 4.2) allows us to get some insight and obtain simple analytical
results.

Similarly as in Eq.(2.28)-(2.30), we introduce three spin operators ex-
pressed in terms of field operators [23]

Sx =
1

2

∫
d3r[Ψ̂†

b(r )Ψ̂a(r ) + Ψ̂†
a(r )Ψ̂b(r )], (4.13)

Sy =
i

2

∫
d3r[Ψ̂†

b(r )Ψ̂a(r )− Ψ̂†
a(r )Ψ̂b(r )], (4.14)

Sz =
1

2

∫
d3r[Ψ̂†

a(r )Ψ̂a(r )− Ψ̂†
b(r)Ψ̂b(r)]. (4.15)

Definitions (4.13)-(4.15) explicitly take into account the spatial wave func-
tions of the condensate and depend in particular on the overlap between the
two modes. By using Eqs.(2.44)-(2.47), the spin squeezing then can be calcu-
lated in terms of averages of field operators products (see appendix A). The
state of the system at time t is obtained by evolving Eq.(4.4) with Eq.(4.9).
To calculate the averages on needs to compute the action of the field opera-
tors Ψ̂a and Ψ̂b on the Fock state (4.6). By using the commutators (4.7) and
(4.8), one has

Ψ̂a(r)|Na : φa(Na, Nb), Nb : φb(Na, Nb)〉
= φa(Na, Nb, r)

√
Na|Na − 1 : φa(Na, Nb), Nb : φb(Na, Nb)〉,

(4.16)

Ψ̂b(r)|Na : φa(Na, Nb), Nb : φb(Na, Nb)〉
= φb(Na, Nb, r)

√
Nb|Na : φa(Na, Nb), Nb − 1 : φb(Na, Nb)〉.

(4.17)

The explicit expression of the averages that are needed to calculate the spin
squeezing parameter are given as follows,

〈Ψ̂†
b(r)Ψ̂a(r)〉

=
N∑

Na=1

N !

(Na − 1)!Nb!
|Ca|2(Na−1)|Cb|2NbC∗

b Ca φ∗b(Na − 1, Nb + 1, r)φa(Na, Nb, r)

ei[A(Na−1, Nb+1)−A(Na, Nb)]/~[〈φa(Na − 1, Nb + 1)|φa(Na, Nb)〉]Na−1

[〈φb(Na − 1, Nb + 1)|φb(Na, Nb)〉]Nb−1 ,
(4.18)
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〈Ψ̂†
b(r)Ψ̂

†
a(r

′)Ψ̂a(r)Ψ̂b(r
′)〉

=
N∑

Na=1

N !

(Na − 1)!(Nb − 1)!
|Ca|2Na|Cb|2Nb φ∗b(Na, Nb, r)φ

∗
a(Na, Nb, r

′)

φa(Na, Nb, r)φb(Na, Nb, r
′)[〈φa(Na − 2, Nb + 2)|φa(Na, Nb)〉]Na−1

[〈φb(Na − 2, Nb + 2)|φb(Na, Nb)〉]Nb−1 ,
(4.19)

〈Ψ̂†
b(r)Ψ̂

†
b(r

′)Ψ̂a(r)Ψ̂a(r
′)〉

=
N∑

Na=1

N !

(Na − 2)!Nb!
|Ca|2(Na−2)|Cb|2NbC∗2

b C2
a φ∗b(Na − 2, Nb + 2, r)

φ∗b(Na − 2, Nb + 2, r′)φa(Na, Nb, r)φa(Na, Nb, r
′)ei[A(Na−2,Nb+2)−A(Na,Nb)]/~

[〈φa(Na − 2, Nb + 2)|φa(Na, Nb)〉]Na−2[〈φb(Na − 2, Nb + 2)|φb(Na, Nb)〉]Nb ,
(4.20)

〈Ψ̂†
b(r)Ψ̂

†
b(r

′)Ψ̂b(r)Ψ̂a(r
′)〉

=
N∑

Na=1

N !

(Na − 1)!(Nb − 1)!
|Ca|2(Na−1)|Cb|2NbC∗

b Ca φ∗b(Na − 1, Nb + 1, r)

φ∗b(Na − 1, Nb + 1, r′)φb(Na, Nb, r)φa(Na, Nb, r
′)ei[A(Na−1,Nb+1)−A(Na,Nb)]/~

[〈φa(Na − 1, Nb + 1)|φa(Na, Nb)〉]Na−1[〈φb(Na − 1, Nb + 1)|φb(Na, Nb)〉]Nb−1 ,
(4.21)

〈Ψ̂†
a(r)Ψ̂

†
a(r

′)Ψ̂a(r)Ψ̂b(r
′)〉

=
N∑

Na=1

N !

(Na − 1)!(Nb − 1)!
|Ca|2Na|Cb|2(Nb−1)C∗

aCb φ∗a(Na + 1, Nb − 1, r)

φ∗a(Na + 1, Nb − 1, r′)φa(Na, Nb, r)φb(Na, Nb, r
′)ei[A(Na+1,Nb−1)−A(Na,Nb)]/~

[〈φa(Na + 1, Nb − 1)|φa(Na, Nb)〉]Na−1[〈φb(Na + 1, Nb − 1)|φb(Na, Nb)〉]Nb−1 .
(4.22)

These quantum averages correspond to an initial state with a well-defined
total number of particles N . In case of fluctuations in the total number of
particles, where the density matrix of the system is a statistical mixture of
states with a different number of particles, a further averaging of N over a
probability distribution P (N) is needed.

To calculate above quantum averages, I have written a collection of sim-
ulation routines in Fortran including (i) the solution of the stationary of
Gross-Pitaevskii equations for the initial wave function φ0, and (ii) dynam-
ical evolutions described by Eq.(4.10). The wave functions φa and φb will
be used to calculate the quantum averages (4.18)-(4.22), from which the
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squeezing parameter can be deduced. These simulations will be used to com-
pare with our semi-analytical approach in the following sections. To find
the initial wave function, we use the conjugate gradient method to find the
ground state of GP (see appendix D). Such method is also used in the sim-
ulations in a double well potential to look for the first excitation state of
GP (see chapter 7). For the dynamical evolution, our simulations are based
on spectral methods. In three dimensions and in the absence of particular
symmetries (e.g. spherical symmetry), they can only be carried out on a
cluster machine (see chapter 6) due to the fact that there are many GP for
different Nε to evolve. The calculations can be greatly simplified by using
our semi-analytical approach as shown in the next section.

4.2 Dynamical modulus-phase approach

4.2.1 General model

For a large number of atoms and especially in three dimensions, the procedure
described in the previous section relying on the solution of (4.10) and (4.12)
for a large number of Fock states can be a very heavy numerical task. To
overcome this difficulty, in order to develop an analytical approach, we can
exploit the fact that for large N in the initial state (4.5) the distributions
of the number of atoms Na and Nb are very peaked around their average
values with a typical width of order

√
N . Moreover, assuming that possible

fluctuations in the total number of particles are described by a distribution
P (N) having a width much smaller than the average of the total number
of particles N̄ , we can limit to Na and Nb close to N̄a = |Ca|2N̄ and N̄b =
|Cb|2N̄ . We then split the condensate wave function into modulus and phase,

φε = |φε| exp(iθε) ε = a, b , (4.23)

and we assume that the variation of the modulus over the distribution of Nε

can be neglected while we approximate the variation of the phase by a linear
expansion around N̄ε [70]. The approximate condensate wave functions read

φε(Na, Nb) ' φ̄ε exp

[
i

∑

ε′=a,b

(Nε′ − N̄ε′)(∂Nε′θε)N̄a,N̄b

]
(4.24)

where φ̄ε ≡ φε(Na = N̄a, Nb = N̄b). Note that the wave functions as well
as their phases discussed in this chapter depend on time and space. For
simplicity, in the following, we omit the label t for all expressions, and the
label t and r for φε and θε.
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The modulus phase approximation takes into account, in an approximate
way, the dependence of the condensate wave function on the number of par-
ticles. It is precisely this effect that is responsible of entanglement between
spatial dynamics and spin dynamics. Introducing time and position depen-
dent quantities,

χd(r) =
1

2
[(∂Na − ∂Nb

)(θa − θb)]N̄a,N̄b
, (4.25)

χs(r) =
1

2
[(∂Na + ∂Nb

)(θa − θb)]N̄a,N̄b
, (4.26)

χ0(r) =
1

2
[(∂Na − ∂Nb

)(θa + θb)]N̄a,N̄b
, (4.27)

the scalar product of the wave vectors can then be written as

〈φa(Na − β, Nb + β)|φa(Na, Nb)〉
=

∫
d3r|φ̄a(r)|2 exp{iβ[χ0(r) + χd(r)]} , (4.28)

〈φb(Na − β, Nb + β)|φb(Na, Nb)〉
=

∫
d3r|φ̄b(r)|2 exp{iβ[χ0(r)− χd(r)]} , (4.29)

〈φb(Na − β, Nb + β)|φa(Na, Nb)〉
=

∫
d3rφ̄∗b(r)φ̄a(r) exp[i(Na − β)χd(r)− iNbχd(r)] exp[iβχ0(r)]

exp[i(N − N̄)χs(r)− iN(|Ca|2 − |Cb|2)χd(r)] (4.30)

〈φa(Na + β, Nb − β)|φb(Na, Nb)〉
=

∫
d3rφ̄∗a(r)φ̄b(r) exp[−iNaχd(r) + i(Nb − β)χd(r)] exp[−iβχ0(r)]

exp[−i(N − N̄)χs(r)− iN(|Ca|2 − |Cb|2)χd(r)] (4.31)

where β = −1, 1, 2. By using the Gross-Pitaevskii equations (4.10) for
φε(Na, Nb) and for φε(N̄a, N̄b), one obtains

i~
∂

∂t

[
(Na − N̄a)

∂θε

∂Na

|N̄a,N̄b
+ (Nb − N̄b)

∂θε

∂Nb

|N̄a,N̄b

]

=(Nε − N̄ε)gεε|φε|4 + (Nε′ − N̄ε′)gεε′|φε|2|φε′|2
(4.32)
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where ε 6= ε′ = a, b. Using (4.32) together with the initial condition (4.11),
we obtain the terms concerned the phase factor A in Eq.(4.12)

[A(Na − 1, Nb + 1)− A(Na, Nb)]/~

=− (Na − 1)

∫
d3r|φ̄a|2[χ0(r) + χd(r)]−Nb

∫
d3r|φ̄b|2[χ0(r)− χd(r)] ,

(4.33)
and

[A(Na − 2, Nb + 2)− A(Na, Nb)]/~

=− 2(Na − 2)

∫
d3r|φ̄a|2[χ0(r) + χd(r)]− 2Nb

∫
d3r|φ̄b|2[χ0(r)− χd(r)]

−
∫

d3r{|φ̄a|2[χ0(r) + χd(r)] + |φ̄b|2[χ0(r)− χd(r)]} .

(4.34)
The averages and variances of the spin operators (4.13)-(4.15) are obtained
by using (4.18)-(4.22) after spatial integration,

∫
d3r〈ψ̂†b(r)ψ̂a(r)〉

=NC∗
b Ca

∫
d3rφ̄∗b(r)φ̄a(r)

[ |Ca|2eiχd(r) + |Cb|2e−iχd(r)
]N−1

· exp
[−iN̄

(|Ca|2 − |Cb|2
)
χd(r) + i(N − N̄)χs(r) + iχ0(r)

]F1 ,

(4.35)

∫
d3rd3r′〈ψ̂†b(r)ψ̂†a(r′)ψ̂a(r)ψ̂b(r

′)〉

=N(N − 1)|Ca|2|Cb|2
∫

d3rd3r′φ̄∗b(r)φ̄a(r)φ̄
∗
a(r

′)φ̄b(r
′) ,

(4.36)

∫
d3rd3r′〈ψ̂†b(r)ψ̂†b(r′)ψ̂a(r)ψ̂a(r

′)〉

=N(N − 1)C∗2
b C2

a

∫
d3rd3r′φ̄∗b(r)φ̄a(r)φ̄

∗
b(r

′)φ̄a(r
′)

[
|Ca|2eiχd(r)+iχd(r′)

+ |Cb|2e−iχd(r)−iχd(r′)
]N−2

exp
{−iN̄(|Ca|2 − |Cb|2) [χd(r) + χd(r

′)]
}

· exp
{
2i [χ0(r) + χ0(r

′)] + i(N − N̄) [χs(r) + χs(r
′)]

}F2 .
(4.37)∫

d3rd3r′〈ψ̂†b(r)ψ̂†b(r′)ψ̂b(r)ψ̂a(r
′)〉

=N(N − 1)C∗
b Ca|Cb|2

∫
d3rφ̄∗b(r)φ̄a(r)

[ |Ca|2eiχd(r) + |Cb|2e−iχd(r)
]N−2

· exp
{−i

[
N̄(|Ca|2 − |Cb|2) + 1

]
χd(r) + iχ0(r) + i(N − N̄)χs(r)

}F1

(4.38)
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∫
d3rd3r′〈ψ̂†a(r)ψ̂†a(r′)ψ̂a(r)ψ̂b(r

′)〉

=N(N − 1)C∗
aCb|Ca|2

∫
d3rφ̄∗a(r)φ̄b(r)

[ |Ca|2e−iχd(r) + |Cb|2eiχd(r)
]N−2

· exp
{
i
[
N̄(|Ca|2 − |Cb|2)− 1

]
χd(r)− iχ0(r)− i(N − N̄)χs(r)

}F−1 .
(4.39)

where we have defined

Fβ = exp {i [A(Na − β, Nb + β)− A(Na, Nb)] /~}
· [〈φa(Na − β, Nb + β)|φa(Na, Nb)]

Na−β−δβ,−1

· [〈φb(Na − β, Nb + β)|φb(Na, Nb)]
Nb−δβ,−1 .

(4.40)

For the calculations we have used Eqs.(4.28)-(4.31) and (4.33)-(4.34). All
quantities can be written in terms of the wave functions φε(N̄a, N̄b), and
the quantities χd, χs, χ0 defined (4.25)-(4.27). In some cases (see subsection
4.2.2) these quantities can be explicitly calculated analytically. In the general
case, it is sufficient to evolve five coupled Gross-Pitaevskii equations (4.10) to
get the wave functions φa(r, t), φb(r, t) for (N̄a, N̄b±δNb) and (N̄a±δNa, N̄b)
with δNa,b 6= 0 (to calculate numerically χd, χs, χ0), and with δNa,b = 0
(to calculate the central wave functions φ̄a,b). Although we do not expect a
perfect quantitative agreement with the full numerical model for all values
of parameters (see Fig.4.1 and Fig.4.3), we will see that the analytical model
catches the main features and allows us to interpret simply the results.

In the particular case of stationary wave functions of the condensates,
the phase of the condensate simply depends on the chemical potential. The
parameters χd, χs and χ0 become space-independent:

χst
d = − t

2~
[(∂Na − ∂Nb

)(µa − µb)]N̄a,N̄b
(4.41)

χst
s = − t

2~
[(∂Na + ∂Nb

)(µa − µb)]N̄a,N̄b
(4.42)

χst
0 = χst

s . (4.43)

In this case we recover the two-mode model explored in chapter 2 and chapter
3. The nonlinear parameter χ2m

d , χ2m
s , and χ2m

0 introduced in chapter 2 can
be written in terms of Eqs.(4.41)-(4.43), χ2m

d = −χst
d /t and χ2m

s = −χst
s /t.

To test our modulus-phase dynamical model, in Fig.4.1, we consider a
situation in which the external dynamics is significantly excited after the
π/2-pulse which populates the state b. Parameters correspond to a bimodal
Rb condensate in |F = 1,mF = 1〉 and |F = 2,mF = −1〉 with N̄a =
N̄b = 5 × 104 and where a Feshbach resonance is used to reduce aab by
about 10% with respect to its bare value [67, 68]. The considered harmonic
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Figure 4.1: Spin squeezing as a function of time in the cases in which the spatial
dynamics is strongly excited after the π/2-pulse populating a second internal state.
Blue solid line: full numerical calculation with 3000 Fock states. Red dashed
line: modulus-phase model. Violet dash-dotted line: stationary two-mode model
using (4.41)-(4.43). Parameters: ω = 2π × 2 kHz, m=87 a.m.u., aaa = 100.44 rB,
abb = 95.47 rB, aab = 88.28 rB. No particle losses. rB is the Bohr radius.

trap is very steep ω = 2π × 2 kHz. In the figure we compare our modulus-
phase approach (dashed line) with the full numerical solution (solid line) and
with a stationary calculation using (4.41)-(4.42) (dash-dotted line) which is
equivalent to the two-mode model. The oscillation of the squeezing parameter
in the two dynamical calculations (dashed line and solid line) are due to
the fact that the sudden change in the mean-field causes oscillations in the
wave functions whose amplitude and the frequency are different for each Fock
state. From the figure, we find that our modulus-phase approach obtained by
integrating 5 Gross-Pitaevskii equations (dashed line) reproduces the main
characteristics of the full numerical simulation using 3000 Fock states (solid
line). The stationary two mode model on the other hand is not a very good
approximation in this case. Only for some particular times the three curves
almost touch. At these times the wave functions of all the Fock states almost
overlap and, as we will show in our analytical treatment, spatial dynamics
and spin dynamics disentangle.

In Fig.4.2 (a) we move to a shallow trap and less atoms. We note that in
this case both the modulus-phase curve and the numerical simulation are very
close to the stationary two-mode model which is then a good approximation
at all times.
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Figure 4.2: (Top) Spin squeezing as a function of time in the cases in which
the spatial dynamics is weakly excited after the π/2-pulse populating a second
internal state. Blue solid line: full numerical calculation with 1000 Fock states.
Red dashed line: modulus-phase model. Violet dash-dotted line: stationary two-
mode model using (4.41)-(4.43). (Bottom) Angle giving the direction of the mean
spin projection in the equatorial plane of the Bloch sphere. Parameters: ω =
2π×42.6Hz, (a) N̄a = N̄b = 1×104, (b) N̄a = 7432, N̄b = 12568. Other parameters:
m=87 a.m.u., aaa = 100.44 rB, abb = 95.47 rB, aab = 88.28 rB. No particle losses.
rB is the Bohr radius.

4.2.2 Breathe-together configuration

In this section we restrict to a spherically symmetric harmonic potential
Uε = Mω2r2/2 identical for the two internal states. For values of the inter-
species scattering length such that

aab < aaa, abb (4.44)

and for a particular choice of the mixing angle such that the mean-field seen
by the two condensates with N̄a and N̄b particles is the same:

N̄agaa + N̄bgab = N̄bgbb + N̄agab ≡ N̄g , (4.45)

the wave functions φ̄a and φ̄b solve the same Gross-Pitaevskii equation. In
the Thomas-Fermi limit, the wave functions φ̄a and φ̄b share the same scaling
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solution φ̄ [73, 74] and “breathe-together” [70],

φ̄a = φ̄b = φ̄(r, t) ≡ e−iη(t)

L3/2(t)
eiMr2L̇(t)/2~L(t)φ̄0

[
r

L(t)

]
(4.46)

with

η̇ =
g

gaa

µ̄

L3~
(4.47)

d2L
dt2

=
g

gaa

ω2

L4
− ω2L ; (4.48)

φ̄0(r) =

(
15

8πR3
0

)1/2 [
1− r2

R2
0

]1/2

(4.49)

µ̄ is the chemical potential of the stationary condensate before the π/2-pulse,
when all the N atoms are in state a, and R0 =

√
2µ̄/mω2 is the corresponding

Thomas-Fermi radius, L(t) is the scaling parameter. The initial conditions
for (4.48) are L(0) = 1 and L̇(0) = 0.

Note that the scaling solution identical for the two modes a and b is valid
only for Na = N̄a, Nb = N̄b and does not apply to all the wave functions
φa(Na, Nb) and φb(Na, Nb) appearing in the expansion equation (4.5). Nev-
ertheless, an advantage of choosing the mixing angle in order to satisfy the
breathe-together condition (4.45), is that the mean spin has no drift velocity.
In Fig.4.2 we calculate the spin squeezing (Top) and the angle ϕ giving the
direction of the mean spin projection on the equatorial plane of the Bloch
sphere (Bottom). Parameters are the same in Fig.4.2 (a) and (b) except for
the mixing angle: in (a) we have N̄a = N̄b while in (b) the mixing angle is
chosen to satisfy (4.45). Note that ϕ in the latter case practically does not
evolve. The maximum squeezing is worse in the breathe-together configu-
ration than in the even-mixing case [66]. However, this conclusion does not
hold when particle losses are taken into account. One of such example will
be given in chapter 5.

By linearization of φa(Na, Nb) and φb(Na, Nb) around the breathe-together
solution φ̄ε and using classical hydrodynamics, it is even possible to calculate
analytically the parameters χd and χs relevant for the squeezing dynamics
[70]. One obtains:

χd(r, t) =− 1

2~

(
2

5

µ̄

N

)
gaa + gbb − 2gab

gaa

·
{∫ t

0

[
dt′

L3(t′)

]
+

5

2

ImB(t)

Ω5

[(
r

L(t)R0

)2

− 3

5

]} (4.50)

χs(r, t) =
(|Cb|2 − |Ca|2

)
χd(r, t) = χ0(r, t) . (4.51)
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with χd, χs, and χ0 defined in (4.25)-(4.27), and

Ω5 =

(
N̄aN̄b

N2

gaa + gbb − 2gab

gaa

)1/2

51/2ω (4.52)

where B(t) is solution of the differential equations

iȦ =
Ω5

L2(t)
B (4.53)

iḂ =
Ω5

L3(t)
A (4.54)

to be solved together with equation (4.48), with initial conditions A(0) =
B(0) = 1. In practice, when we expand the condensate wave functions around
the breathe-together solution equation (4.46) as in [70], we encounter the
hydrodynamics operator S [75]

S[α] ≡ −Ngaa

M
div[φ̄2

0 gradα] . (4.55)

The deviation of the relative phase and the relative density from the breathe-
together solution expand over two eigenmodes of S: A zero-energy mode
which grows linearly in time and gives the dominant features of phase dy-
namics and squeezing (integral term in the curly brackets in Eq.(4.50)), and
a breathing mode of frequency Ω5 which is responsible for the oscillations of
the squeezing parameter.

The fact that in breathe-together conditions and within the modulus-
phase approximation χs = χ0 is shown as follows. Evaluating (4.32) for
ε = a, Na = N̄a; ε = b, Nb = N̄b and subtracting the two relations, one
obtains

∂

∂t

( ¯∂θa

∂Nb

−
¯∂θb

∂Na

)
= 0 (4.56)

where we used the fact that in breathe-together conditions |φ̄a| = |φ̄b|. Equa-
tion (4.56) implies that the time derivative of χs − χ0 is zero. As for t = 0
χs = χ0 = 0, we conclude that χs = χ0 at all times.

We give an example corresponding to strongly oscillating wave functions
in Fig.4.3 where we compare the spin squeezing obtained from the analytical
theory with a numerical simulation. In the analytical formula, the entangle-
ment between spatial degrees of freedom and spin dynamics is apparent as
χd in Eq. (4.50) is position dependent. The points in which the dynamical
curve (dotted line) touches the stationary two mode curve (dash-dotted line)
correspond to ImB = 0 (see the bottom curve) where space and spin dy-
namics disentangle. We note however that the validity conditions of classical
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Figure 4.3: (Top) Test of the analytical formula Eq.(4.50) in the deep Thomas-
Fermi regime. Spin squeezing as a function of time. Blue solid line: full numerical
calculation. Red dashed line: modulus-phase approach. Black dotted line: ana-
lytical curve using equation (4.50). Violet dash-dotted line: stationary two-mode
model using (4.41)-(4.43). (Bottom) Function ImB. Spatial and spin dynamics
disentangle when ImB(t) = 0. Parameters: N̄a = N̄b = 5 × 105, ω = 2π × 2 kHz,
m=87 a.m.u., aaa = abb = 0.3 aho,aab = 0.24 aho. aho is the harmonic oscillator
length: aho =

√
~/Mω. No particle losses.

hydrodynamics are more stringent for a mixture of condensates with rather
close scattering lengths than for a single condensate [70]. We checked nu-
merically that in order for equation (4.50) to correctly predict the frequency
of the oscillations in the squeezing parameter, we have to enter deeply in the
Thomas-Fermi regime.

4.3 Extracted spin squeezing

As we pointed out, the definitions Eq.(4.13)-(4.15) explicitly include the spa-
tial overlap between the two modes. Here we give an alternative definition
that can be used always, whether or not the modes overlap. To this aim, we
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introduce the time-dependent operators

ã =

∫
d3r φ̄∗a(r, t)ψ̂a(r), (4.57)

b̃ =

∫
d3r φ̄∗b(r, t)ψ̂b(r), (4.58)

where φ̄ε(r, t) is the solution of Gross-Pitaevskii Eq. (4.10) for mode ε with
N̄a, N̄b particles. We then introduce the spin operators:

S̃x =
1

2
(b̃†ã + ã†b̃), (4.59)

S̃y =
i

2
(b̃†ã− ã†b̃), (4.60)

S̃z =
1

2
(ã†ã− b̃†b̃). (4.61)

We call “extracted” spin squeezing the squeezing obtained from the spin op-
erators defined in Eq.(4.59)-(4.61). Within this definition, we still take into
account entanglement between external motion and spin dynamics, but we
give up the information about the overlap between the two modes. By using
the instantaneous modes (4.57)-(4.58) and within the modulus-phase ap-
proach (4.24), the quantum averages useful to calculate spin squeezing are
expressed in terms of the functions:

χex
d (r, r′) =

1

2
(∂Na − ∂Nb

)[θa(r)− θb(r
′)](N̄a, N̄b) (4.62)

χex
s (r, r′) =

1

2
(∂Na + ∂Nb

)[θa(r)− θb(r
′)](N̄a, N̄b) (4.63)

χex
0 (r, r′) =

1

2
(∂Na − ∂Nb

)[θa(r) + θb(r
′)](N̄a, N̄b) . (4.64)

By using the relation
∫

d3r|φ̄ε|2 exp
[
i(∂Na − ∂Nb

)θε(N̄a, N̄b)
]

' exp

[
i

∫
d3r|φ̄ε|2(∂Na − ∂Nb

)θε(N̄a, N̄b)

]
.

(4.65)

we obtain:

〈b̃†ã〉 = NC∗
b Ca

∫
d3r1d

3r2|φ̄b(r1)|2|φ̄a(r2)|2
[|Ca|2eiχex

d (r2,r1)

+ |Cb|2e−iχex
d (r2,r1)

]N−1
exp

[−iN̄(|Ca|2 − |Cb|2)χex
d (r2, r1)

+i(N − N̄)χex
s (r2, r1) + iχex

0 (r2, r1)
]

,

(4.66)
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〈b̃†ã†ãb̃〉 = N(N−1)|Ca|2|Cb|2 , (4.67)

〈b̃†b̃†ãã〉 = N(N − 1)C∗2
b C2

a

∫
d3r1d

3r2d
3r3d

3r4|φ̄b(r1)|2|φ̄b(r2)|2|φ̄a(r3)|2|

· φ̄a(r4)|2
{|Ca|2ei[χex

d (r4,r2)+χex
d (r3,r1)] + |Cb|2e−i[χex

d (r4,r2)+χex
d (r3,r1)]

}N−2

· exp
{−iN̄(|Ca|2 − |Cb|2) [χex

d (r4, r2) + χex
d (r3, r1)]

+i(N − N̄) [χex
s (r4, r2) + χex

s (r3, r1)] + 2i [χex
0 (r4, r2) + χex

0 (r3, r1)]
}

· exp

{
−i

∫
d3r5

(|φ̄a(r5)|2 [χex
0 (r5, r5) + χex

d (r5, r5)]

+|φ̄b(r5)|2 [χex
0 (r5, r5)− χex

d (r5, r5)]
)}

,
(4.68)

〈b̃†b̃†b̃ã〉 = N(N − 1)C∗
b Ca|Cb|2

∫
d3r1d

3r2|φ̄b(r1)|2|φ̄a(r2)|2

· [|Ca|2eiχex
d (r2,r1) + |Cb|2e−iχex

d (r2,r1)
]N−2

exp
{−i

[
N̄(|Ca|2 − |Cb|2)

+1] χex
d (r2, r1) + i(N − N̄)χex

s (r2, r1) + iχex
0 (r2, r1)} ,

(4.69)

〈ã†ã†ãb̃〉 = N(N − 1)C∗
aCb|Ca|2

∫
d3r1d

3r2|φ̄a(r1)|2|φ̄b(r2)|2

· [|Cb|2eiχex
d (r1,r2) + |Ca|2e−iχex

d (r1,r2)
]N−2

exp
{
i
[
N̄(|Ca|2 − |Cb|2)

−1] χex
d (r1, r2)− i(N − N̄)χex

s (r1, r2)− iχex
0 (r1, r2)

}
.

(4.70)
Comparing the above expressions with Eq.(2.48)-(2.51), one realizes that in
the stationary case, where χd, χs and χ0 are space independent, the extracted
spin squeezing dynamical model reduces again to a two-mode model that we
study in detail in the chapter 3. We will use this extracted spin squeezing in
the following chapters.



Chapter 5

Experiment proposals for spin
squeezing

In this chapter, we apply our treatment to cases of practical interest. In sec-
tion 5.1, we first consider a bimodal 87Rb condensate. Rb is one of the most
common atoms in BEC experiments and it is a good candidate for atomic
clocks using trapped atoms on a chip [38]. Restricting to states which are
equally affected by a magnetic field to first order, the most common choices
are |F = 1,mF = −1〉 and |F = 2,mF = 1〉 which can be magnetically
trapped, or |F = 1,mF = 1〉 and |F = 2,mF = −1〉 that must be trapped
optically but for which there exists a low-field Feshbach resonance which can
be used to reduce the inter species scattering length [67, 68]. Indeed a par-
ticular feature of these Rb states is that the three s-wave scattering lengths
characterizing interactions between a−a, b−b and a−b atoms are very close
to each other. A consequence is that the squeezing dynamics is very slow
when the two condensates overlap. The inter-species Feshbach resonance [67]
can be used to overcome this problem and speed up the dynamics [68, 41].

In schemes involving the |F = 2,mF = ±1〉 of Rb, the main limit to
the maximum squeezing achievable is set by the large two-body losses rate
in these states. As a second case of experimental interest we then consider
Na atoms in the |F = 1,mF = ±1〉 states [23]. Although theses states have
opposite shifts in a magnetic field, they present the advantage of negligible
two-body losses. Using our analytical optimization procedure, we calculate
the maximum squeezing achievable in these systems including the effect of
spatial dynamics and particle losses.

In section 5.2, we examine a different scenario for Rb condensates in
which, instead of changing the scattering length, one would spatially separate
the two condensates after the mixing π/2-pulse and hold them separately
during a well chosen squeezing time, so that the squeezing dynamics acts

57
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Figure 5.1: Spin squeezing with and without losses in a bimodal Rb condensate
from the stationary two-mode model. A Feshbach resonance is used to reduce the
inter-species scattering length by 10%. Violet dash-dotted line: without losses.
Blue dashed line: with one and three-body losses. Red solid line: with one, two
and three-body losses. (a) For a 50− 50 mixing of the two states: N̄a = N̄b = 104,
χ2m

d = 5.367×10−3s−1, χ2m
s = 5.412×10−4 s−1. (b) In breathe-together conditions:

N̄a = 7432, N̄b = 12568, χ2m
d = 5.392 × 10−3 s−1, χ2m

s = 1.386 × 10−3 s−1. Other
parameters: ω = 2π × 42.6Hz, m=87 a.m.u., aaa = 100.44 rB, abb = 95.47 rB,
aab = 88.28 rB, rB is the Bohr radius. Particle losses: K

(a)
1 = K

(b)
1 = 0.01 s−1,

K
(a)
2 = 0, K

(b)
2 = 119 × 10−21 m3s−1 [64], K

(ab)
2 = 78 × 10−21 m3s−1 [76], K

(a)
3 =

6× 10−42 m6s−1 [65].

only when the clouds are spatially separated and it freezes out when the
two clouds are put back together. The control of the atomic nonlinearity
is an important feature of the schemes using Rb that we will consider in
the next chapter. Very recently, both schemes we have studied for Rb atoms
were implemented in experiment, using Feschbach resonance in [41] and using
state-dependent potentials on an atom chip in [40]. The main results of this
chapter are published in [36].

5.1 Overlapping condensates Rb or Na

We first consider a bimodal 87Rb condensate in |F = 1,mF = 1〉 and |F =
2,mF = −1〉 states where the scattering length aab is lowered by about 10%
with respect to its bare value using a Feshbach resonance [67, 68].

In Fig.5.1 (a) and (b) we compare a situation in which the initial con-
densate is split evenly in the a and b components to a situation in which the
mixing is chosen in order to satisfy the “breathe-together” conditions (4.45).
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Figure 5.2: Spin squeezing with and without losses in a bimodal Na condensate
from the stationary two-mode model. Violet dash-dotted line: without losses. Blue
dashed line: with one and three-body losses. Optimized parameters: N̄a = N̄b =
4× 104 ω = 2π× 183Hz, m=23 a.m.u., aaa = abb = 51.89 rB, aab = 48.25 rB, rB is
the Bohr radius. χ2m

d = 5.517× 10−3 s−1, χ2m
s = 0. Particle losses: K

(a)
1 = K

(b)
1 =

0.01 s−1, K
(a)
2 = K

(b)
2 = 0, K

(a)
3 = K

(b)
3 = 2× 10−42 m6s−1 [77].

For the considered parameters, which are the same as Fig.4.2 (a) and (b),
the spatial dynamics is not important and the two-mode model is a good
approximation at all times. The squeezing in presence of losses is calculated
using our general results of chapter 3 for asymmetric condensates. Although
without losses the even splitting is more favorable, with one, two, three-body
losses, results for the best squeezing are comparable ξ2 ' 6 × 10−2. In the
same figure 5.1, we also show a curve obtained for one and three-body losses
only (dashed-line). It is clear that for the considered Rb states the dom-
inant contribution for decoherence comes from the two-body losses in the
F = 2 state severely limiting the maximum amount of obtainable squeezing.
We have checked that the crossed ab losses have limited contribution in this
case, as expected.

By using two states in the lower hyperfine manifold, one can greatly
reduce two-body losses. A possible example is of using Na atoms in the |F =
1,mF = ±1〉 states [23]. In Fig.5.2 we calculate the best obtainable squeezing
with these two states. Parameters are chosen according to our optimization
procedure of section 3.2. A large amount of squeezing ξ2 = 1.9 × 10−3

can be reached at the best squeezing time. However, here the inter-species
scattering length aab is not changed. As a result, the nonlinearity introduced
by interactions will not be stopped after the best squeezing time is reached.
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Figure 5.3: (Top) |φa(z, t)|2 and |φb(z, t)|2 in arbitrary units as the clouds are sepa-
rated and put back together after an interaction time of about 15 ms. The harmonic
potential for the a-component does not move, while that for the b-component is
shifted vertically with a speed δ̇z. The distance between the two trap centers when
they are separated is δz = 4

√
~/Mωz. (Bottom) Variation in time of δ̇z. Param-

eters: N̄a = N̄b = 5 × 104, ωx,y = 2π × 2.31Hz, ωz = 2π × 1 kHz, m=87 a.m.u.,
aaa = 100.44 rB, abb = 95.47 rB, aab = 98.09 rB, rB is the Bohr radius. No particle
losses.

Using our full numerical and our approximated dynamical approaches, (not
shown in the figure) we checked that the two-mode model is an excellent
approximation for these parameters.

5.2 Dynamically separated Rb BEC

In this subsection we consider a bimodal Rb condensate in |F = 1,mF = −1〉
and |F = 2,mF = 1〉 states. Rather than using a Feshbach resonance to
change gab, we consider the possibility of suddenly separating the two clouds
right after the mixing π/2-pulse using state-dependent potentials [78, 79],
and recombining them after a well chosen interaction time. A related scheme
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Figure 5.4: Spin squeezing as the two Rb condensates are separated and put back
together after an interaction time of about 15 ms. Red dashed line: Spin squeezing
obtained from the definitions (4.13)-(4.15) of the spin operators explicitly including
the overlap between the clouds. Blue solid line: extracted spin squeezing based of
the “instantaneous modes” (4.57)-(4.58). Parameters as in Fig.5.3.

using Bragg pulses in the frame of atom interferometry was proposed in
[80]. We consider disc-shaped identical traps for the two states a and b with
ωz > ωx,y ≡ ω⊥, that can be displaced independently along the z axes. In
order to minimize center-of-mass excitation of the cloud, we use a triangular
ramp for the displacement velocity, as shown in Fig.5.3 (Bottom), with total
move-out time 2τ = 4π/ωz [81]. In Fig.5.3 (Top) we show the z-dependence
of densities of the clouds, integrated in the perpendicular xy plane, as the
clouds are separated and put back together after a given interaction time.

We use our dynamical modulus-phase model in 3 dimensions to calculate
the spin squeezing in this scheme. As the spatial overlap between the two
clouds reduces a lot as they are separated, in Fig.5.4 we calculate both the
spin squeezing obtained from the definitions (4.13)-(4.15) of spin operators
(dashed line), and the “extracted spin squeezing” introduced in Section 4.3
based on the “instantaneous modes” (4.57)-(4.58) (solid line). The oscillations
in the dashed line are due to tiny residual center of mass oscillations of the
clouds that change periodically the small overlap between the two modes.
They are absent in the extracted spin squeezing curve (solid line) as they
do not affect the spin dynamics. When the clouds are put back together
and the overlap between the modes is large again, the spin squeezing and
the extracted spin squeezing curves give close results (not identical as the
overlap of the two clouds is not precisely one).
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In Fig.5.5 (a) we compare the extracted spin squeezing curve of Fig.5.4
(solid line) with a two-mode stationary calculation (dash-dotted line) assum-
ing stationary condensates in separated wells. We notice that the squeezing
progresses much more slowly in the dynamical case. Indeed when we separate
the clouds, the mean-field changes suddenly for each component exciting a
breathing mode whose amplitude and frequency is different for each of the
Fock states involved. In the quasi 2D configuration considered here, the
breathing of the wave functions is well described by a scaling solution in
2D for each condensate separately [73, 74] adapted to the case in which the
trap frequency is not changed, but the mean-field is changed suddenly after
separation of the two internal states:

φε(r⊥, t) =
e−iηε(t)

Lε(t)
exp

[
imr2

⊥L̇ε(t)

2~Lε(t)

]
φ0

(
r⊥
Lε(t)

)
(5.1)

with

η̇ε =
g̃εε

g̃aa

µ̄

L2
ε~

(5.2)

d2Lε

dt2
=

Nε

N

g̃εε

g̃aa

ω2
⊥
L3

ε

− ω2
⊥Lε ; (5.3)

φ0(r⊥) =

(
2

πR2
0

)1/2 [
1− r2

⊥
R2

0

]1/2

. (5.4)

In Eqs(5.2)-(5.4), µ̄ is the chemical potential of the stationary condensate
before the π/2 pulse, when all the N atoms are in state a, R0 =

√
2µ̄/mω2

⊥
is the corresponding Thomas-Fermi radius, and g̃εε is a reduced coupling
constant to describe the interaction between two atoms in the ε condensate
in quasi 2D system,

g̃εε =
4π~2aεε

M

√
Mωz

2π~
(5.5)

where we assume that the condensate wave functions in the confined direction
are Gaussian, and aεε is the 3D scattering length. The initial conditions for
(5.3) are Lε(0) = 1 and L̇ε(0) = 0.

We can use (5.1) to calculate the squeezing (dotted curve) and we note
that it reproduces well the spin squeezing curve obtained integrating 5 Gross-
Pitaevskii equations in 3D (full line). As we studied in detail in Section 4.2.2,
oscillations of the wave functions cause oscillations of the squeezing param-
eter due to entanglement between spatial and spin dynamics. Indeed what
we see in the extracted spin squeezing curve of Fig.5.5 (a) is the beginning
of a slow oscillation for the squeezing parameter. In Fig.5.5 (b) we show the
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Figure 5.5: Spin squeezing as a function of time. (a) Comparison between a
dynamical calculation and a stationary calculation. Blue solid line: extracted
spin squeezing in 3D. Black doted line: 2D analytical scaling solution based on
(5.3). Violet dash-dotted line: stationary calculation in 3D without losses. Red
solid line: stationary calculation in 3D with losses. Spin squeezing progresses
more slowly in the dynamical calculation than in the stationary calculation. (b)
Long time behavior. Black doted line: scaling solution. Violet dash-dotted line:
stationary calculation without losses. Red solid line: stationary calculation with
losses. Parameters: χ2m

d = 5.003 × 10−3 s−1, χ2m
s = 1.342 × 10−4 s−1, K

(1)
a =

K
(1)
b = 0.01 s−1, K

(2)
a = 0, K

(2)
b = 119× 10−21 m3s−1 [64], K

(3)
a = 6× 10−42m6 s−1

[65]. The other parameters are as in Fig.5.3.

long time behavior. There are indeed times at which the spatial and spin
dynamics disentangle, and the dynamical curve and the steady state curve
touch (see Sect. 4.2.2). Unfortunately these times are not accessible here in
presence of losses (in particular the high two-body losses in the higher hyper-
fine state). Notice that in the first 15 ms of evolution considered in Fig.5.4
and Fig.5.5 (a) the effect of losses is small and the main limitation at short
times is provided by the spatial dynamics. We checked that similar results
can be obtained with a different geometry where we prepare the condensate
in a cigar-shape trap and separate them along the longitudinal direction.

For a lower number of atoms, the sudden change in the mean-field and the
consequent oscillations of the squeezing parameter are reduced. In Fig.5.6
we show the spin squeezing obtained by suddenly separating two BEC of Rb
atoms in |F = 1,mF = −1〉 and |F = 2,mF = 1〉 states with 1000 atoms in
each component. The dotted line is a dynamical calculation using the quasi
2D scaling solution (5.3) (and no losses), while the dash-dotted line and the
solid line are stationary calculations without and with losses respectively.
Note that around t = 0.02s, where the dynamical curve and the stationary
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Figure 5.6: Spin squeezing as a function of time in two small Rb condensates.
Black doted line: scaling solution based on (5.3). Violet dash-dotted line: station-
ary calculation without losses. Red solid line: stationary calculation with losses.
Parameters: K

(1)
a = K

(1)
b = 0.01 s−1, K

(2)
a = 0, K

(2)
b = 119 × 10−21 m3s−1 [64],

K
(3)
a = 6 × 10−42 m6s−1 [65]. The other parameters: N̄a = N̄b = 103, ωx,y =

2π × 11.82Hz, ωz = 2π × 2 kHz, m=87 a.m.u., aaa = 100.44 rB, abb = 95.47 rB,
aab = 98.09 rB, rB is the Bohr radius. χ2m

d = 0.213s−1, χ2m
s = 2.763× 10−3 s−1.

curve touch, a squeezing of about ξ2 ∼ 2× 10−2 could be reached despite the
high losses in the F = 2 state.



Chapter 6

Spin squeezing on atom chip:
Munich experiment

In chapter 5, we considered two schemes to realize spin squeezing in Bose-
Einstein condensate with Rb atoms. Recently both schemes were successfully
implemented in experiment, using a Feshbach resonance in an optical trap
in [41] and using state-dependent potentials on an atom chip in [40]. We
participated in the latter achievement realized in the group of P. Treutlein
in Munich, giving the theoretical support.

In the experiment, the nonlinearity is adjusted by controlling the overlap
between the condensates wave functions, as it is proposed in section 5.2.
Initially, each atom is put in a superposition of two internal states |a〉 and
|b〉. The nonlinearity furnished by interactions is “switched-on” after the
state preparation, driving the factorized state to evolve into a spin squeezed
state. Once the spin squeezed state is achieved, the nonlinearity can be
“switched-off”.

We expose here the theoretical part of the work, giving the physical ex-
planation of the observed squeezing signals. This squeezing scheme could be
applied in chip based atomic clocks experiments such as the one presently
going on in Syrte in the observatoire de Paris. Other remarkable results in
the field of spin squeezing on similar systems have been obtained, using a
quantum coherent feedback mechanism in a cavity [54].

6.1 State preparation and coherent manipula-
tion

The states used in the experiment are the ground state hyperfine levels |a〉 ≡
|F = 1,mF = −1〉 and |b〉 ≡ |F = 2,mF = 1〉 of 87Rb, as shown in Fig.6.1

65
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Figure 6.1: (a) Hyperfine structure of the 87Rb ground state. The states |a〉
and |b〉 experience nearly identical Zeeman energy shifts Uz. For internal state
manipulation of the atoms, the two-photon transition |a〉 → |b〉 is resonantly cou-
pled, with detuning δmw from the intermediate state |F = 2,mF = 0〉 (green
lines). (b) Experiment: resonant Rabi oscillations of the relative atom number
Nrel = (Nb −Na)/(Nb + Na) recorded by varying the duration of the state prepa-
ration pulse. The efficiency of a π-pulse is (96 ± 1)%. The decay with a time
constant of 15ms is due to gradients in Ω near the structured metallic chip surface
which imposes boundary conditions on the electromagnetic field.

(a), which are also employed in chip-based atomic clocks with magnetically
trapped atoms [38, 39]. Both states are magnetically trappable, have nearly
identical magnetic moments which results in the same Zeeman energy shifts
Uz (see Fig.6.1 (a)), and thus possess excellent coherence properties.

The initial phase state is created by applying a π/2-pulse to the single
condensate prepared in state |a〉, as described in chapter 4. On the Bloch
sphere it is equivalent to rotate the state from the poles to the equator around
−y axis, as shown in Fig.6.2. For a more general pulse of duration τ , the
corresponding unitary transformation is

U = eiΩτSy , (6.1)

where Sj (j = x, y, z) are the spin operators defined in (2.28)-(2.30). After
the unitary transformation, one has

〈Sz(τ)〉 = sin (Ωτ) 〈Sx(0)〉+ cos (Ωτ) 〈Sz(0)〉 , (6.2)

〈Sx(τ)〉 = cos (Ωτ) 〈Sx(0)〉 − sin (Ωτ) 〈Sz(0)〉 . (6.3)

When Ωτ = π/2 all the spins are aligned along axis-x.
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Figure 6.2: Evolution of the BEC internal state on the Bloch sphere. Starting
with all atoms in |a〉, a π/2-pulse prepares a coherent spin state with mean spin
〈S〉 along x and isotropic quantum noise in the yz-plane (fuzzy red circle).

In the experiment, this operation is applied by coherently driving the
two-photon transition |a〉 → |b〉 with radio frequency and microwave ra-
diation (green lines in Fig.6.1 (a)). This two-photon drive is turned on
only for internal-state manipulation. The microwave is blue detuned with
δmw = 2π × 360 kHz to the |F = 2,mF = 0〉 state, resulting in a two-
photon Rabi frequency of Ω = 2π × 2.1 kHz. Fig.6.1 (b) shows the resulting
Rabi oscillations for a detuning δ = 0 from two-photon resonance. The effi-
ciency of a π-pulse is (96 ± 1) %. The preparation time for the initial state
τ = 120 µs, is therefore much shorter than the spin dynamics and spatial
dynamics timescales. So the external motion of the atoms does not change
during the pulse. This justifies the initial state Eq.(4.4) at t = 0, where we
assume that the two components have the same external wave functions.

6.2 Tunable nonlinearity

As described in previous sections, the three s-wave scattering lengths for the
states |a〉 and |b〉 are very close, aaa : aab : abb = 100.4 : 97.7 : 95.0 [64]. If
the two components of the condensate overlap spatially, the nonlinear term
characterizing the speed of squeezing χd is very small as an almost complete
compensation occurs in Eq.(2.25) of the two-mode model,

χ2m
d =

1

2~
(∂Naµa + ∂Nb

µb − ∂Nb
µa − ∂Naµb)N̄a,N̄b

' 0 (6.4)

the squeezing dynamics is very slow in this case. To overcome the problem,
we can separate the two components spatially, making the crossed terms
∂Naµb and ∂Nb

µa zero and thus χ2m
d > 0. The squeezing dynamics only takes

place when the two components are separated. This is a new and versatile



68 Chapter 6. Spin squeezing on atom chip: Munich experiment

1
10

−3

10
−2

10
−1

10
0

0 0.2 0.4 0.6 0.8

10
1

density overlap λ

 [
s−

1
]

χ2m

+

Static magnetic
trap

=

Overall potentials
Microwave
potentials

> 0χ
d

χ
d
～ 0

(a) (b)
d

Uz

Umw

Figure 6.3: (a) Control of the nonlinearity χd on the atom chip. χd depends
on the difference of intra- and inter-state atomic interactions. Its dependence on
the normalized density overlap λ of the two BEC components is shown, calculated
from stationary mode functions in potentials of increasing separation. The total
number of atoms N = 1250. The trap frequencies: νx = 109Hz, ν⊥ = 500Hz. The
trapping distance between the trap centers going from 0 to 4.0µm. (b) Illustration
of the state dependent potentials. Without microwave, the two components see the
same static magnetic trap Uz, therefore χd is very small. The microwave induces
an internal state dependent energy level shifts Umw for the two states (blue and red
correspondingly). Consequently the overall potentials seen by the two components
are different, and χd is enlarged.

technique for tuning of interactions in a BEC that also works in magnetic
traps and for atomic state pairs where no convenient Feshbach resonance
exists. In Fig.6.3 (a) we show the parameter χ2m

d defined in (6.4) as a function
of the normalized density overlap

λ =

∫
d3r|φa(r)|2|φb(r)|2√∫

d3r|φa(r)|4
∫

d3r|φb(r)|4
(6.5)

calculated from the stationary mode functions (2.18) in traps of increasing
separation from 0 to 4.0µm. Note that χ2m

d can be tuned over three orders
of magnitude.

In the experiment, the overlap of φa and φb is controlled with a state-
dependent trapping potential. It consists of a static magnetic potential com-
bined with a microwave near-field potential created with an on-chip waveg-
uide. The microwave couples |a〉 and |b〉 to auxiliary states with a position-
dependent Rabi frequency ΩR(r). The coupling results in dressed states |a〉
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Figure 6.4: Oscillation of the atoms after the first π/2-pulse. In the scheme, the
minimum of the trap for state |a〉 is displaced with dtrap = 4.3 µm by ramping
up the power in the microwave near-field within 50µs, while the minimum of the
trap for state |b〉 remains unchanged. As a consequence the state |a〉 performs an
oscillation with the amplitude ' 2dtrap. The total number of atoms is N = 400.
Trap frequencies: νx = 115Hz, ν⊥ = 500Hz. (a) Experiment: center of mass
oscillation as a function of time [79]. The red circles (blue squares) corresponds to
the state |b〉 (|a〉). TR corresponds to the overall time the microwave was turned
on. (b) Theory: longitudinal densities integrated along the tight confinement axes
of the cylindrical traps obtained from dynamical simulation of the coupled Gross-
Pitaevskii equations (4.10) with N̄a = N̄b = 200. Parameters are the same as in
(a).

and |b〉 which are shifted in energy by the microwave potential U
(ε)
mw(r) with

respect to the bare states. For different microwave frequency and polariza-
tion, the energy shifts for state |a〉 and |b〉 can be different or even opposing.
The overall potentials seen by the dressed states are

U
(ε)
ext = Uz + U (ε)

mw . (6.6)

where Uz is the static magnetic trapping potential. In this way, the microwave
near-field adds internal-state dependence to the potential in a controlled
way. Combined with strong microwave power gradients, this leads to a state
dependent potential as plotted in Fig.6.3 (b).

6.2.1 Large separation of the trapping potentials

In Fig.6.4 we show an experiment in which the condensates are state depen-
dently split and recombined [79]. The total number of atoms N = 400. The
frequency of the microwave field is chosen such that the detuning from the
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Figure 6.5: Longitudinal densities for the two states |a〉 (blue) and |b〉 (red) in-
tegrated along the tight confinement axes of the cylindrical traps calculated from
dynamical simulation. The total number of atoms N = 1250. The trap frequencies
νx = 109Hz, ν⊥ = 500Hz. After the first π/2-pulse, the minimum of the trap for
both states are displaced with d

(a)
trap = −0.126 µm, d

(b)
trap = 0.394 µm within 50µs.

transition |F = 1,mF = −1〉 ↔ |F = 2,mF = −1〉 is 2π × 600 kHz. In this
case the microwave is very far off resonance from all transitions connecting to
|b〉. The potential U

(b)
ext remains essentially unchanged. For the component a,

the admixture with the auxiliary states is still small so that decoherence due
to magnetic field noise has a small effect. After the preparation π/2-pulse,
the microwave is switched on within 50µs which corresponds to a sudden
displacement of the potential minimum for state |a〉 by dtrap = 4.3 µm. The
sudden displacement results in center of mass oscillation of the displaced
component with the amplitude ' 2dtrap and a frequency ' νx, while the
state |b〉 almost remains at rest, see Fig.6.4 (a). In Fig.6.4 (b) we show the
result obtained from the numerical solutions of the coupled Gross-Pitaevskii
equations (4.10) with N̄a = N̄b = 200. The small oscillations of the state |b〉
are due to the repulsive interactions between the atoms, which can be well
explained in mean-field picture.

6.2.2 Small separation of the trapping potentials

As the auxiliary states used to create the state-dependent potentials do not
have identical magnetic moments, the admixture of these states to the states
|a〉 and |b〉 increases the sensitivity to the magnetic field noise. As a result,
there is more phase noise when the microwave field is switched on, which is
not favorable for achieving spin squeezing. The experimentalists then choose
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Figure 6.6: (Top) Simulated center of mass motion of the two states |a〉 (blue) and
|b〉 (red) as a function of time. A slightly asymmetric splitting of the potentials (see
the caption of Fig.6.5) results in an asymmetric oscillation. (Bottom) Measured
Ramsey fringes in the normalized population difference Nrel after the second π/2-
pulse and simulated contrast of the fringes C (red), which is modulated by the
splitting and recombination of the BEC. The discrepancy between the measured
contrast of the Ramsey fringes and the simulated contrast is probably due to the
residual motion along the transverse direction which is not taken into account in
the theoretical calculations. The simulated density overlap λ (blue) is shown for
comparison. The parameters are the same as in Fig.6.5.

a larger detuning of the microwave near-field compared with the previous
case, so that admixtures of other states to |a〉 and |b〉 are smaller and the
states are more robust against magnetic field noise. In the spin squeezing ex-
periment, the detuning of the microwave near-field is chosen as 2π× 12MHz
from the transition |F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉. In this configura-
tion, both states experience a microwave potential of opposite sign, and with
different magnitude due to the different hyperfine transition strengths. When
a microwave power of Pmw = 120mW is launched into the chip, a splitting
of the potential minima for the two states of dtrap = 0.52 µm results.

The mean-field effect becomes more important when the separation of
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the trap dtrap is small. In Fig.6.5 and 6.6, we show an example with trap
separation dtrap = 0.52 µm. The total number of atoms N = 1250. The trap
frequencies are νx = 109Hz, ν⊥ = 500Hz. Note that in this case, the center of
mass positions, Fig.6.6 (top), shows a maximum separation of about 3.0 µm
À 2dtrap. The mean-field repulsion causes an almost complete separation
of the two mode functions (see Fig.6.5 for the density distribution), even if
their respective potentials are displaced by just a fraction of the Thomas-
Fermi radius. Due to this effect, contrary to what one would first expect,
the nonlinearity can be significantly increased with small trap separation.
Another consequence of mean-field effect is that it takes 12.7ms and not
1/νx = 8.7ms for the two components to overlap again.

6.3 Ramsey fringes and contrast
In the experiment for spin squeezing, besides reducing the fluctuation of
one spin quadrature, it is also important to keep good phase coherence. The
coherence can be deduced by measuring the contrast of Ramsey fringes. This
is done by applying the following sequence: (i) prepare the initial state with
the first π/2-pulse; (ii) switch on the microwave potentials to separate the two
components for a duration time T ; (iii) switch off the microwave potentials
and apply the second π/2-pulse; (iv) measure the atom number difference
between the two internal states as a function of T . In Fig.6.6 (bottom) we
show the measured Ramsey fringes in the normalized population difference
Nrel. The duration time T is changed from 0 → 30ms. The contrast of the
fringes can be calculated with the quantum average of the field operators just
before the second pulse [70],

C =
2|〈∫ d3r Ψ̂†

b(r)Ψ̂a(r) 〉|∑
ε=a,b〈

∫
d3r Ψ̂†

ε(r)Ψ̂ε(r) 〉
(6.7)

From the above equation, we can see that the contrast is influenced by two
factors: (i) It is modulated by the splitting and recombination of the BEC.
When the two components spatially overlap, the contrast reaches its maxi-
mum. (ii) It is also affected by the spin dynamics which causes the collapse
of the relative phase at long times.

For an accurate description of our system, accounting for both the spatial
and the spin dynamics, we use the dynamical theory presented in chapter 4.
In Fig.6.6 (bottom) we show the corresponding contrast of the Ramsey fringes
(red) calculated by Eq.(4.35) from the numerical simulation with dynamical
modulus-phase approach. The good agreement with the measurement indi-
cates that the simulation correctly accounts for the motion of the BEC in
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Figure 6.7: Comparison of full numerical simulation and the modulus-phase ap-
proach with the experimental trap configurations. (Top) The contrast of the fringes
C as a function of trap separation time T . (Bottom) The squeezing parameter ξ2

as a function of T . The total number of atoms N = 640. The trap frequencies:
νx = 115Hz, ν⊥ = 515Hz. After the first π/2-pulse, the minimum of the trap for
state |a〉 is displaced with 0.45 µm by ramping up the power in the microwave near-
field within 50µs, while the minimum of the trap for state |b〉 remains unchanged.
Red solid line: full numerical simulations with 192 Fock states. Blue solid line:
modulus-phase approach.

the trap. In Fig.6.6 (bottom) we also show the density overlap λ (blue) as a
function of time during the splitting for comparison.

To check the validity of our modulus-phase approach in the experimental
trap configurations, we compare our calculations with a full numerical simu-
lations (as described in section 4.1) carried out on a cluster machine for the
number of atoms N = 640. In fig.6.7 we show the contrast of the Ramsey
fringes C and the corresponding spin squeezing parameter ξ2 as a function
of the separation time T . Due to the reduction of the overlap, the squeezing
parameter greatly increases when the contrast approaches 0. It decreases
when the overlap increases again (contrast approaches 1). The good agree-
ment confirms that both spatial and spin dynamics are correctly taken into
account.

In order to optimize the squeezing, we shall tune the nonlinearity in such
a way that the best squeezing is reached when the two components over-
lap again, and the contrast C approaches its maximum. The best squeezing
time, which depends on the spin dynamics, can be estimated by calculating
the two-mode model spin squeezing in presence of particle losses introduced



74 Chapter 6. Spin squeezing on atom chip: Munich experiment

14 16 18

16 18

2 4 6 8 10 12
0

0.5

1

time [ms]

C

4 6 8 10 12 14
10

−2

10
0

10
2

time [ms]

ξ
2

(a)

(b)

Figure 6.8: (a) Contrast of the Ramsey fringes calculated with the two-mode
model with (green solid line) and without (blue solid line) losses, and calculated
with the modulus-phase approach (red solid line). (b) Spin squeezing in modulus-
phase approach (red solid line) and in two-mode model with (green solid line) and
without losses (blue solid line). The parameters for the two-mode model are: χ2m

d =
0.49 s−1, χ2m

s = 0.04 s−1, v = 55.03 s−1, calculated from the stationary solution
(2.18). The rate constants for the losses are: K

(1)
a = K

(1)
b = 0.2 s−1, K

(2)
b =

119×10−21 m3s−1 [64], K
(2)
ab = 78×10−21 m3s−1 [64], K

(3)
a = 6×10−42 m6s−1 [65].

Other parameters are the same as in Fig.6.5.

in chapter 3. Here we give an example with the same parameters as in Fig.6.5.
The nonlinear parameter, χ2m

d = 0.49 s−1, is calculated from the stationary
solution of Gross-Pitaevskii equation (2.18) with the corresponding trap sep-
aration. In Fig.6.8 (b), we show the squeezing parameter as a function of
time calculated from two-mode model in presence of losses (green solid line),
and without losses (blue solid line). The squeezing parameter calculated from
dynamical modulus-phase approach is also shown (red solid line). Accord-
ing to the figure, the dynamical squeezing parameter reaches its minimum
at about 12.7ms when the two components overlap again. This time is very
close to the best squeezing time in presence of losses, although without losses
it comes much later. Note that the two-mode curve obtained for stationary
BEC in separated traps (dtrap = 0.52 µm) is shifted by 2.8ms in time in the
figure, since before that the two components are not well separated and χd

therefore is very small1. In Fig.6.8 (a) we show the contrast C calculated
from the two-mode model with (blue solid line) and without (green solid line)
losses. In this case, the contrast is not affected by the splitting and recombi-

1This can be further confirmed by comparing the two-mode model spin squeezing curve
with the “extracted” spin squeezing which is indeed flat during the first 2.8ms.
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nation of the BEC. At 12.7ms, the contrast C = 98.6 %. The slight reduction
is due to the spin dynamics which causes phase spreading. The contrast cal-
culated from the modulus-phase approach is also plotted (red solid line) for
comparison. At the same time, C = 94.4 %. The small difference between
the two approaches are due to the non perfect overlap.

6.4 Main results and data analysis

In this section we present the experiment sequence and the main result pub-
lished in [40]. In order to explain the observed squeezing signals, besides the
model we setup in chapter 3 and 4, taking into account the particle losses and
spatial dynamics, we further introduce some technical noise in our theoreti-
cal model, such as fluctuations of the microwave power, the phase noise, etc.
The observed spin squeezing can be well explained after taking into account
these imperfections.

6.4.1 Experimental sequence

The experiment starts from a pure BEC of N = 1250±45 atoms in the state
|a〉 in a harmonic trap with longitudinal (axial) trap frequency νx = 109Hz
(ν⊥ = 500Hz). Then the states |a〉 and |b〉 are coherently coupled with a res-
onant π/2-pulse, preparing a coherent spin state. The microwave near-field
is turned on within 50µs, separating the two traps by dtrap ' 0.52 µm (for
parameters of the microwave near-field see subsection 6.2.2). After 12.7ms,
the two BEC components perform one oscillation and recombine. The mi-
crowave potential is switched off, and the squeezing dynamics, as well as the
relative atomic motion, stops. Then another pulse with variable durations is
applied to rotate the state around the mean spin by an angle Θ. Finally, the
number of atoms in both components Na and Nb are detected, consequently
the transverse spin components SΘ = (cos Θ)Sz − (sin Θ)Sy before the final
rotation are obtained. The whole scheme can be illustrated on the Bloch
sphere as shown in Fig.6.9 (a)-(d). In (e) we plot the simulated center of
mass motion of the two BEC components, and in (f) we show the simulated
contrast of the Ramsey fringes and the experimental sequence corresponding
to (a)-(d).

According to Fig.6.9 (e), after the two BEC components are recombined,
there is still a small residual center of mass motion. However, the simulated
contrast of the Ramsey fringes is about 94%, predicting good phase coherence
between the two components. As we discussed in the previous chapter, the
reduction of the contrast is due to two effects. One comes from the overlap of
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Figure 6.9: (a)-(d) Evolution of the BEC internal state on the Bloch sphere.
Starting with all atoms in |a〉, a π/2-pulse prepares a coherent spin state with
mean spin along x and isotropic quantum noise in the yz-plane (fuzzy red circle).
Subsequent nonlinear evolution deforms the noise circle into an ellipse, creating a
spin squeezed state with reduced noise at an angle Θmin. A second pulse rotates
the state around −x by a variable angle Θ, followed by detection of Sz. (e) The
simulated center of mass motion of the two states |a〉 (blue) and |b〉 (red) as a func-
tion of time. (f) The simulated contrast of the Ramsey fringes and the experiment
sequence. In between the pulses for internal-state manipulation (green), a state-
dependent microwave potential is turned on (blue; pulse durations and microwave
ramp times exaggerated for clarity). It dynamically splits and recombines the two
BEC components, so that nonlinearity parameter χ > 0 during the time T .

the two BEC components, and the other comes from the phase spreading. In
section 6.3 we calculated χ2m

d corresponding to this trap configuration, which
rules the phase dynamics and squeezing in a stationary two-mode model.
χ2m

d = 0.49 s−1 results in ∼ 1.4 % of reduction of contrast at t = 12.7ms.
A more accurate calculation accounting for the dynamical evolution of the
condensate wave function, the “extracted spin squeezing” model, gives the
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Figure 6.10: Observed spin noise for the spin squeezed state (solid circles) and for a
coherent spin state (reference measurement, open circles). The normalized variance
∆nS2

Θ = 4∆S2
Θ/〈N〉 is shown as a function of the turning angle Θ in the yz-plane,

with statistical error bars. The photon shot noise due to the imaging process has
been removed. In the squeezed state, a spin noise reduction of −3.7 ± 0.4 dB is
observed for Θmin = 6◦, corresponding to ξ2 = −2.5±0.6 dB of metrologically useful
squeezing for the Ramsey contrast of C = (88±3)%. Solid lines are results from our
dynamical simulation. Blue: squeezed state with losses but without technical noise;
red: squeezed state with losses and technical noise; black: reference measurement
with losses and technical noise.

same result (C = 98.2 %), implying that the reduction of the contrast is
mainly due to non perfect overlap between the clouds.

6.4.2 Data analysis

The spin noise reduction obtained from our theoretical calculation is shown
in Fig.6.10 along with the data measured in the experiment. The data for a
coherent spin state where the traps were not separated during the sequence,
so-called reference measurement, is also shown for comparison. We plot the
normalized variance ∆nS

2
Θ = 4∆S2

Θ/〈N〉, so that ∆nS
2
Θ = 0 dB corresponds

to the standard quantum limit.
In the figure, the circles represent the experiment data corresponding

to the squeezing measurement (solid circles) and the reference measure-
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ment (open circles). In the squeezing measurement, the spin noise ∆nS
2
Θ

falls significantly below the standard quantum limit, reaching a minimum of
∆S2

Θ = −3.7 ± 0.4 dB at Θmin = 6◦. The corresponding measured interfer-
ence contrast is C = (88 ± 3) %, which is in fact worse than the simulated
one 94%. The difference can most likely be explained by small motion in
the transverse direction which is excited in the experiment but not modeled.
The corresponding squeezing parameter ξ2 = −2.5 ± 0.6 dB, proving that
the state is useful for quantum metrology and the condensate atoms are en-
tangled. The reference measurement, by contrast, stays above the standard
quantum limit for all values of Θ.

The solid lines are the theoretical calculations in which we add the effect
of particle losses (one, two, three-body) as well as several technical noise
sources, which will be discussed separately in the following.

Spin squeezing without technical noise

The blue line in Fig.6.10 shows the expected squeezing taking into account
atom losses and spatial dynamics but no technical noise. In order to obtain
accurate rate constants for the losses, the experimentalists measured the life
times of the states a and b separately and in a 50/50 superposition in the
trap without separation. In the theory, we calculate the number of atoms
remaining in the trap with Monte-Carlo simulations, in which we adjust the
rate constants K

(2)
b , K

(2)
ab , and K

(3)
a to fit the measured data, while the other

rate constants are referred to literatures (one-body losses are determined by
measurement). A comparison between measurement and simulation results
is shown in Fig.6.11. Then the rate constants determined in this way are
used in all simulations related to particle losses.

The variance ∆S2
Θ 2m, including the effect of atom losses, is calculated by

Monte-Carlo simulations within the two-mode model. With the experimental
parameters, χ2m

d = 0.49 s−1, χ2m
s = 0.04 s−1, v = 55.03 s−1, at t ' 12.7ms,

the fraction of lost particles is less than 3 %. The final result ∆S2
Θ, taking

into account atom losses as well as the spatial dynamics is obtained by

∆S2
Θ = ∆S2

Θ SP + ∆S2
ΘLS , (6.8)

where we have defined

∆S2
ΘLS = ∆S2

Θ 2m(with losses)−∆S2
Θ 2m(without losses) (6.9)

as the variance due to losses, and ∆S2
Θ SP is the variance calculated with

the modulus-phase approach including the spatial dynamics. As shown in
Fig.6.10, the maximum reduction in the normalized variance calculated in
this way is −12.8 dB at Θ ' 8◦, significantly larger than observed.
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Figure 6.11: Measurements and simulations for atoms prepared in pure state |a〉
and |b〉 and in an even superposition (|a〉+ |b〉)/√2. The solid lines are the results
from the Monte-Carlo simulation with rate constants adjusted for a best fit to
the experimental data. The fitted rate constant: K

(1)
a = K

(1)
b = 0.2 s−1, K

(2)
a = 0,

K
(2)
b = 70×10−21 m3s−1, K

(2)
ab = 50×10−21 m3s−1, K

(3)
a = 6×10−42 m6s−1, K

(3)
b =

0. The corresponding wave function needed to calculate the loss rate in Eqs.(3.3)-
(3.4) can be obtained from the stationary solution (2.18), identical traps for both
components. In the case of 50/50 superposition, one has χ2m

d = 1.73 × 10−3 s−1,
χ2m

s = 4.57× 10−2 s−1, v = 45.04 s−1. The nonlinearity in this case is negligible.

Estimate the effect of technical noise

The red line Fig.6.10, which describes the measured data well, additionally
includes the fluctuation of the total number of atoms N , fluctuations of the
microwave power Pmic of 0.5% r.m.s., and phase noise of ∆ϕ = 8◦ r.m.s. All
fluctuations are consistent with independent measurements.

• Fluctuations of total number of atoms

The standard deviation of the total number of atoms N in the experiment
is 45. Only shots where the total atom number differs by no more than 150
from the mean atom number are used for the analysis. In our calculation with
the modulus-phase approach, after the results obtained for well defined total
number of atoms, we apply a further averaging of N for Eqs.(4.35)-(4.39)
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over a normal probability distribution

P (N) ∝ exp

[
−

(
N − N̄

)2

2σ2
N

]
(6.10)

with σN = 45, N̄ = 1250, and N is taken from 1100 to 1400. We find that,
with this standard deviation, the fluctuation of the total number of atoms has
very limited effect to the squeezing. This is confirmed by the experiments,
where it shows that a tighter (75 atoms) or wider (250 atoms) post-selection
does not significantly change the data quality.

• Fluctuations of microwave power

Another source of technical noise comes from the fluctuations of the mi-
crowave power Pmic during the second coupling pulses. Due to fluctuating
microwave level shifts, it results in the fluctuations of the detuning δmw in
the two-photon drive, which makes the resonant pulse become non-resonant,
implying that, on the Bloch sphere, the axis around which we turn the noise
ellipse drifts from the equator, and becomes misaligned with the mean spin
(see the green Rabi vector ~Ω in Fig.6.12 (a)). Assume that ∆ϑ is the drifting
angle between ~Ω and the equatorial plane. The biggest effect to Sz compo-
nent for a given ~Ω will appear when the rotation approaches to 180◦, i.e.
Θ = 180◦. This is the reason why the second dip in Fig.6.10 does not go
down below the value for Θ = 0 (also for the reference measurement). The
first dip at Θ ' 6◦ is weakly affected.

The energy level shifts due to the microwave in pulse are 7.6 kHz. To-
gether with the Rabi frequency of the two-photon drive ΩR = 2.1 kHz, this
results in the drifting angle ∆ϑ as a function of fluctuations of the microwave
power

∆ϑ =
7.6

2.1

∆Pmic

Pmic
. (6.11)

The measured fluctuation of the pulse power is ∆Pmic/Pmic = 0.5 % r.m.s.,
resulting the standard deviation of the fluctuation of ϑ about 1◦.

The other effect brought by the fluctuation of the microwave power is
that the angle Θ by which we turn the noise ellipse fluctuates from shot to
shot. Since the Rabi frequency ΩR ∝

√
Pmic, the dependence of the ∆Θ (see

Fig.6.12 (b)) on the fluctuation of the pulse can be formulated as

∆Θ

Θ
=

∆ΩR

ΩR

=
1

2

∆Pmic

Pmic
. (6.12)

For the largest rotation where Θ = 360◦, this results in the standard deviation
of the fluctuation of Θ about 0.9◦. In the experiment, the measured variance
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Figure 6.12: (a) Illustration of the fluctuation of Rabi vector ~Ω on the Bloch
sphere. The mean spin ~S is aligned with axis-x, and the second pulse applies a
rotation around ~Ω (green) by an angle Θ. Assume that ~Ω is drifted above (below)
the equatorial plane by an angle ∆ϑ due to the fluctuation of the microwave power.
After rotating 180◦, the mean spin will shift ±2∆ϑ from the equatorial plane. (b)
Illustration of the fluctuation of Θ in the plane orthogonal to the mean spin, where
Θ is the angle between the minor axis of the noise ellipse (red arrow) and axis-
x′. Due to the fluctuation of the pulse power, the noise ellipse is over-rotated
(scantly-rotated) by an angle ∆Θ (blue line). Here ∆ϑ and ∆Θ are exaggerated
for clarity.

of spin ∆S2
z coming back to shot noise at Θ = 360◦ implies that the effect of

∆Θ within this level is very limited.
In order to take into account these technical noise in our theoretical

model, we apply a further averaging of ϑ and Θ for the quantum averages
obtained from Eqs.(2.41)-(2.43) over a normal probability distributions P (ϑ)
and P (Θ). Since these fluctuations are determined by the microwave power
fluctuation (6.11) and (6.12), we choose

P (ϑ) ∝ exp

[
−

(
ϑ− ϑ̄

)2

2σ2
ϑ

]
, (6.13)

where σϑ = 0.018 obtained from Eq.(6.11) with ∆Pmic/Pmic = 0.5 % r.m.s.,
and ϑ̄ = π/2 is the angle between the mean spin and the axis-z. When ϑ = ϑ̄,
the Rabi vector is perfectly aligned with the mean spin. Then for each ϑ,
linked ∆Θ/Θ with ∆ϑ via Eq.(6.11) and (6.12), the angle Θ is given by

Θ− Θ̄

Θ̄
= 0.138

(
ϑ− ϑ̄

)
. (6.14)

Therefore, the fluctuation of ϑ and the fluctuation of Θ are correlated.
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Figure 6.13: (a) Illustration of the phase noise which spreads the noise ellipse
(fuzzy red) along the equator. Due to the phase noise, the mean spin has an
uncertainty [−∆ϕ, ∆ϕ]. (b) After rotating around the Rabi vector ~Ω (green vector)
by 90◦ or 270◦, the phase noise is transferred to the fluctuation of Sz.

• Phase noise

The phase noise is the main reason why the maximum achieved squeezing
is smaller than the theoretically predicted value. As it always spreads the
noise ellipse along the equator, as shown in Fig.6.13, the impact of phase noise
on ∆S2

Θ reaches its maximum when the angle Θ approaches 90◦ and 270◦. It
is the case for both reference measurements and squeezing measurements.

A likely explanation of the phase noise are fluctuations of the magnetic
trap position in the inhomogeneous microwave near-field caused by a fluc-
tuating current or by mechanical vibrations. Consequently, the phase noise
in the reference sequence is smaller compared with that in the squeezing
measurement. Other sources of technical noise, such as the fluctuation of
the microwave power in the coplanar waveguide, fluctuations of the external
magnetic field, power fluctuations and phase instabilities of the radio fre-
quency and microwave generators and amplifiers for the two-photon drive,
and fluctuations of the on-chip currents together contribute a phase noise
of about 2◦, as determined in various measurements in the experiment (see
Supplementary Information of [40]).

In our theoretical model, we take into account the phase noise by applying
an average of ϕ over a normal probability distribution for Eqs.(2.41)-(2.43),

P (ϕ) ∝ exp

[
−(ϕ− ϕ̄)2

2σ2
ϕ

]
, (6.15)

with σϕ = 3◦ for the reference measurement and σϕ = 8◦ for the squeezing
measurement. Here ϕ̄ is the azimuthal angle for the mean spin.
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Figure 6.14: The illustrated scheme of using the spin squeezed state for interfero-
metric measurement. Starting with a spin squeezed state, a (Θ−π/2)-pulse rotate
the state so that its squeezed axis is oriented along the equator of the Bloch sphere.
During the interrogation time, the interferometer phase is accumulated along the
squeezed direction. Finally a π/2-pulse is applied to read out the interferometer.

Note that here we model three kinds of technical noise and take them into
account in the red curve of Fig.6.10. Only for phase noise we put different
values for squeezing measurement and reference measurement. Due to the
presence of microwave near-field, the phase noise cannot be estimated con-
sistently in the two measurements, as discussed before. This makes σϕ as a
fitting parameter of the model. It also implies that any other technical noise
which is not modeled will be treated as phase noise. Consequently, to fit the
data in the dips, we might have overestimated the phase noise. This explains
why the red curve at −90◦ does not fit perfectly the measured data.

6.5 Using the squeezed state in an atomic clock

In order to use the squeezed state to improve the sensitivity of an inter-
ferometric measurement such as an atomic clock, it is important that the
squeezing can be kept for long interrogation times. Indeed, apart from ther-
mal effects, the two fundamental limitations of the squeezed state’s lifetime
are (i) particle loss and (ii) quantum phase spreading which occurs after the
production of the squeezed state, i.e. during the interrogation time. One can
significantly reduce the influence of these effects by transferring the atoms
into a shallow trap with reduced atom density after the squeezing sequence.
Also, since during the interrogation time no microwave near-field is present,
technical phase noise can be suppressed to the extremely low level.

Following the treatment of section 3.3, we performed Monte-Carlo simu-
lations to see how long the squeezing remain after creation when performing
a Ramsey sequence in a shallow trap. The simulated sequence works as fol-
lows: we produce a spin squeezed state assuming no technical fluctuations.
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Figure 6.15: Squeezing lifetime in a clock sequence. Results of a Monte-Carlo
simulation on how the squeezing evolves under particle losses and residual non-
linearity in a shallow trap which could be used in a clock experiment. The spin
squeezed state is created with the scheme presented in subsection 6.4. Before the
Ramsey sequence, the atoms are transferred to a shallow trap with the frequencies
fx = 10Hz, f⊥ = 50Hz. The residual nonlinearity is χ2m

d = 5.2 × 10−5 s−1. The
dashed line indicates the standard quantum limit. The state remains squeezed for
Ramsey interrogation time TR of up to 0.6 s in this trap.

The trap configuration is the same as in section 6.4, resulting the two-mode
nonlinearity χ2m

d = 0.49 s−1. The state is then transferred into the weaker
trap without separation (fx = 10Hz, f⊥ = 50Hz) after 12.7ms. The residual
nonlinearity in this trap is χ2m

d = 5×10−5 s−1, quantum phase spreading can
therefore be neglected. We then rotate the state by (Θmin − π/2) so that
its squeezed axis is oriented along the equator of the Bloch sphere, realizing
a phase-squeezed state. In this case, squeezing is more fragile to the phase
noise, as well as to the losses. After a variable Ramsey time TR, during
which the interferometer phase is accumulated along the squeezed direction,
a π/2-pulse is applied to read out the interferometer. The whole scheme is
illustrated in Fig.6.14. The rate constants for particle losses are the same
throughout the process, as shown in the caption of Fig.6.11. However, after
transferring to the shallow trap, the loss rate is decreased as the atom density
is reduced.

Fig.6.15 shows ξ2 as a function of TR. The use of the squeezed state in
such a trap would improve the sensitivity for TR of up to 0.6 s compared
to a classical interferometer with a coherent spin state as input. Compared
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with Fig.3.7 where the state is not rotated by (Θmin− π/2) at the beginning
of Ramsey time, the spin squeezing in the Ramsey sequence is more fragile
to the losses. This is because, as described in chapter 3, each loss event
will cause a random phase shift of the state. If the squeezed axis is aligned
along the equator, the state will suffer much more from these random phase
shift. This explains why in Fig.6.15 at the end of 1.0 s there is completely no
squeezing, while in Fig.3.7 the state remains squeezed.





Chapter 7

Condensate in a double-well:
Paris experiment

In the previous chapters, our studies are mainly focused on a BEC with
two internal states. However, our model can also be applied to two external
modes of BEC, for example a condensate coherently split in a double well
potential, provided a term describing a coherent coupling between the two
components included in the Hamiltonian. In this case, two effects nontrivial
contribute to the system: (i) the repulsive interactions between the atoms
reduces the fluctuations of the atom number difference, consequently increas-
ing the uncertainty of the relative phase; (ii) the coherent coupling between
the two components due to tunneling tends to reestablish the relative phase.
The analogies in the system with internal states, considered before, would be
to keep the coherent coupling during the squeezing.

In the experiment carried out in Paris, a 87Rb Bose-Einstein condensate
created on an atom chip was split into two parts by raising a barrier in the
middle of the trap, deforming the trap from a single well to a double well.
At low enough temperature, number squeezed states with relative popula-
tion fluctuations -4.9 dB below shot-noise were observed. In section 7.1, we
briefly summarize the experiment results obtained by the experimentalists.
In section 7.2 we describe our theoretical calculations within the framework
of the two-mode model, and compare our result with the experimental data
obtained at low temperature. This part of work is published in [43]. In
section 7.3 we extend our studies to finite temperature, where the two-mode
model is no longer valid, and we show results based on a thermal equilibrium
approach [82].

87
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Figure 7.1: (a) Illustration of chip geometry (b) Profile of the trapping potential
along the splitting axis x for I2 = 0mA (dashed line) and I2 = 2.4mA (solid line).

7.1 Summary of the experimental results

In the experiment, the double well potential is created by a two-layer atom
chip. It is a static magnetic potential with adjustable barrier height and well
spacing, in which the 87Rb atoms in the Zeeman state |F = 2,mF = 2〉 are
trapped. In the transverse directions, the trap is approximately harmonic
with frequencies νy,z ∼ 1 kHz. The trap is split along the slow axis by
changing the wire current I2 on the chip (see Fig.7.1), allowing for double
wells consisting of two approximately spherical traps. A thermal gas or a
condensate is split in this double well, and the fluctuations of the atom
number difference Nl − Nr between the left and the right well after the
splitting are measured.

In the first experiment, by increasing the current I2 from 0 to 3.9mA,
an almost pure BEC of 1300 atoms is split within different ramping time τr.
The experimentalists observe a decrease of fluctuations below the shot-noise
limit with increasing τr up to 50ms, followed by a slow increase for longer
times, see Fig.7.4 in section 7.2.

In the second experiment, the effect of the temperature on the squeezing
is investigated. A gas of 87Rb is split with fix total ramping time τr = 50ms.
The initial temperature is varied by changing the final frequency of the evap-
orative cooling ramp. The measured squeezing is plotted in Fig.7.6. Total
atom number and condensed fraction are also shown. According to the fig-
ure, a number squeezing down to -4.9 dB is observed at low temperature. On
the other hand, when the condensed fraction roughly equals the thermal frac-
tion, super-Poissonian fluctuations with a maximum of +3.8 dB are observed.
Poissonian fluctuations are recovered above the critical temperature.
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7.2 Dynamical two-mode model
In this section, we describe our theoretical calculations within the framework
of two-mode model, in which we assume that only the lowest two energy
modes of the system are relevant to the dynamics, and we neglect the other
modes orthogonal to these two modes. This is valid at very low temperature
T ¿ Tc where the population in the higher lying energy modes is negligible.

An intuitive choice of the two modes would be the condensate wave func-
tions localized in each well. Here we are interested in the regime where these
two BECs are weakly linked by tunneling effect, so-called Josephson regime
[83]. In this case, the wave functions can be expressed in terms of stationary
symmetric and antisymmetric eigenstates of the GPE [84].

7.2.1 Construction of the two-mode model

We consider a symmetric double well potential along axis-x, and harmonic
along axis-y, z. The many-body Hamiltonian can be written as

H =

∫
d3r Ψ̂†(r)

[
−~

2∇2

2M
+ U(r)

]
Ψ̂(r) +

g

2

∫
d3r Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

(7.1)
where U(r) is the external double well trap potential, g = 4π~2a/M , a is the
s-wave scattering length. At very low temperature T ¿ Tc, we can assume
that only two lowest energy states are macroscopically populated. As we
did in the two-mode model for spin squeezing, the field operators can be
approximated as

Ψ̂(r) = clφl(r) + crφr(r), (7.2)

where cl and cr are annihilation operators for the two modes, and φl,r(r)
are the condensate wave functions localized in each well (left and right).
They can be constructed by the symmetric φS(r) and antisymmetric φA(r)
stationary eigenstates of the GPE [84, 85]

φl(r) =
φS(r)− φA(r)√

2
, φr(r) =

φS(r) + φA(r)√
2

. (7.3)

where φS,A(r) satisfy

µS,AφS,A(r) =

[
− ~2

2M
∇2 + U(r) + Ng|φS,A(r)|2

]
φS,A(r), (7.4)

with µS, A being the corresponding chemical potential. φS(r) and φA(r) are
the ground state and first excitation state of the Gross-Pitaevskii Hamilto-
nian. The advantage of expressing the two modes wave functions in terms
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of φS,A(r) is that these two eigenstates are the local nonlinear modes of the
entire double well trap that can be found exactly for any given trap separa-
tion [86]. Indeed, one should note that the two-mode model has a limited
validity in the case of low barrier, when in principle one is not allowed to
neglect higher excited modes. However, it becomes more and more accurate
the higher the barrier gets, since in this case the two lower lying modes move
closer together in energy compared to the higher ones. Hence it should allow
a good description of the splitting process [87].

By using the atom-number states in the left and right well, Eq.(7.2), as
the basis of the Hilbert space of the system, the two-mode Hamiltonian can
be written as [85, 88],

H2M =
Ec

8
(c†l cl − c†rcr)

2 − Ej

N
(c†l cr + c†rcl) +

δEc

4
(c†l cr + c†rcl)

2

=
Ec

2
S2

z −
2Ej

N
Sx + δEcS

2
x

(7.5)

where the terms proportional to the total atom number have been ignored,
and in the second line of (7.5) we have used the definition of the spin operators
given by (2.28)-(2.30). Ej and Ec are so-called the Josephson coupling energy
and the charging energy respectively, both of which can be calculated by
solving the stationary solution of the Gross-Pitaevskii equation (7.4) [88],

Ec = 8kSA , (7.6)

Ej =
N

2
(µA − µS)− N(N + 1)

2
(kAA − kSS) , (7.7)

δEc =
1

4
(kSS + kAA − kSA) , (7.8)

with
kij =

g

2

∫
d3r |φi(r)|2|φj(r)|2 (with i, j = S, A). (7.9)

The first term in the Hamiltonian (7.5) describes the local interaction within
the two wells. The second term corresponds to the tunneling of particles from
one well to the other. The last term takes additional two-particle processes
like two-particle tunneling into account [88]. We verified by simulation that
with our experimental parameter this term is small compared with other two
terms (less than 10−4Ej/N and 10−2Ec/8 for barrier height Vb ' 0, and
less than 10−7Ej/N and 10−12Ec/8 for high barrier height). We thus will
neglected it for the following discussions.

We calculate numerically the two basis for the two-mode model, i.e. the
stationary solution of Gross-Pitaevskii equation φS(r) and φA(r) in Eq.(7.4)
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Figure 7.2: (a) Chemical potential for the symmetric and antisymmetric state
(blue) and the height of the barrier (red) versus the current I2. (b) The Josephson
coupling energy Ej and the charging energy Ec versus the current I2. The total
atom number N = 1300. The scattering length a = 100 rB, where rB is the
Bohr radius. The 3D double well trap configuration is given by another simulation
developed for the atom chip by the experimentalists.

in 3D, by using the conjugate gradient method (see appendix D). In experi-
ment, the trap is deformed into a double well within a time τr by changing
the wire current I2 on the chip. In the simulation, we calculate φS(r) and
φA(r) for each trap configuration corresponding to a given I2 (20 points)
with the 87Rb atoms in state |F = 2,mF = 2〉. Since I2 depends on time
(see Eq.(7.10) and (7.11) in the next subsection), finally Ej and Ec can be
interpolated as a function of time.

In Fig.7.2 (a) we plot the chemical potential for the ground state (sym-
metric) and first excitation state (antisymmetric) as a function of the current
I2 for 1300 atoms. The height of the barrier Vb is also plotted for comparison.
µA approaches µS, and Vb exceeds the chemical potential when the current
is about 2.3mA. In Fig.7.2 (b) we show the Josephson coupling energy Ej

and the charging energy Ec versus the current. For a 1300 atom BEC, Ec

is typically 3.5Hz, weakly dependent on the barrier height, and Ej is about
100 kHz for the barrier Vb ' 0. There is an exponential decay of Ej af-
ter the current reaches about 2.25mA, which corresponds to Vb ' 1.3 kHz.
When the current is larger than 2.5mA, the barrier is much higher than the
chemical potential, and Ej almost vanishes.
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Figure 7.3: The current used for raising the barrier as a function of time. Blue
line: linear function ramp. Red line: spline function ramp. The total ramping time
τr = 10ms.

7.2.2 Dynamical evolution: influence of the barrier ramp-
ing time

The barrier is raised by continuously increasing the current I2 from 0 to
3.9mA, corresponding to a barrier height well above the chemical potential,
see Fig.7.2 (a). The current ramp as a function of time is shown in Fig.7.3,
where two ramping schemes are plotted: a linear function ramp

I2(t) =

(
t

τr

)
Ifinal (7.10)

and a spline function ramp with zero derivative at initial and final times

I2(t) =

[
6

(
t

τr

)5

− 15

(
t

τr

)4

+ 10

(
t

τr

)3
]

Ifinal (7.11)

where τr is total ramping time, and the final current Ifinal = 3.9mA.
We perform a dynamical simulation with the two-mode model Hamilto-

nian (7.5), where the two relevant parameters Ec and Ej are obtained by
solving the 3D Gross-Pitaevskii equation for the experimental trap with dif-
ferent I2 [85]. In the simulations, the initial state is described by a thermal
density matrix,

ρ(t0) ∼ exp [−εj(t0)/kBT ] |j〉〈j| , (7.12)

where εj(t0) is the eigenvalue of the Hamiltonian (7.5) at time t0, and |j〉 is
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Figure 7.4: (a) Contour plot of the variance of the relative atom number calculated
from Eq.(7.14). Spline function ramp with the total ramp time τr = 10ms. The
initial temperature is varied from 20 nK to 140 nK. (b) Measured (blue squares)and
calculated (red dashed line) number squeezing factor ξN as a function of ramping
time τr of the barrier. The initial temperature for the two-mode calculation is
53 nK, fit with the experiment data for τr = 10ms. The total number of atoms
N = 1300.

the corresponding eigenstate1, T is the temperature, and kB is the Boltzmann
constant. Then the state evolves according to the Von Neumann equation
up to the end of the ramp,

i~
dρ

dt
= [H, ρ ] (7.13)

The variance of the relative atom number between the two wells can be
calculated as

Var (Nl −Nr)(t) = Tr [ ρ(t)(Nl −Nr)
2 ] (7.14)

where we have assumed that the two wells are symmetric such that the
average of the relative atom number between the two wells is zero.

During the splitting the dynamics is initially adiabatic: the population
of each eigenstate |j〉 does not change, i.e. the entropy of the system is
conserved, which results in effective cooling [42]. The system is expected to
remain adiabatic if the barrier is raised slowly enough compared with the time
scale needed by the atoms to tunnel from one well to another [89], which is
approximately proportional to 1/

√
EcEj. The adiabaticity will break down

at a large separation of the two condensates, in the very weak tunneling
regime when Ej approaches to zero, resulting in a frozen value of Var(Nl −

1εj can be obtained by diagonalizing the Hamiltonian (7.5) in the Fock basis.
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Figure 7.5: The number squeezing factor ξN and phase coherence as a function
of time during the splitting using linear ramp described by Eq.(7.10). The total
ramp time τr = 50ms, and the number of atoms N = 1300.

Nr). The time at which the adiabaticity breaks down depends on the ramping
time τr, the parameters Ec and Ej, and the initial condition ρ(t0) [89]. In
Fig.7.4 (a) we show the variance of the relative atom number as a function
of time for different initial temperature T calculated evolving the density
matrix ρ(t) with Eq.(7.13). A spline function ramp sequence (7.11) is chosen
with a fixed total ramp time τr = 10ms.

Comparing Var (Nl −Nr) at the end of the ramp obtained from our cal-
culation with the experiment data with the same τr, we find that an initial
temperature of 53 nK at t0 = 4.66ms reproduces the measured fluctuations
for τr = 10ms. We then use this temperature as the initial condition for the
other ramps τr = 20 ∼ 150ms. By varying the ramp time τr we obtain the
number squeezing factor

ξ2
N(τr) =

Var(Nl −Nr)(τr)

N
(7.15)

as shown in Fig.7.4 (b). For short ramp time (up to 50ms ramp), the fluc-
tuation of the atom number obtained from our simulation (red dashed line)
are consistent with the experiment measurement (blue squares). However,
for longer ramp time, the fluctuations increase with τr in experiment. Ex-
perimentalists think that this is due to technical heating of the BEC, which
is not included in the two-mode model simulations.

In another experiment, the atoms are split by ramping I2 linearly, as
shown in Eq.(7.10), with a fixed ramping time 50ms. At low temperature
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Figure 7.6: (a) Effect of the temperature on the number squeezing. The final
frequency of the RF ramp of evaporative cooling is varied before splitting the
cloud. Red squares: number squeezing factor. Green circles: estimated atomic
shot-noise level which takes into account technical noise. (b) Total atom number
N (red diamonds) and condensed fraction N0/N prior to the splitting (blue circles).

when most of the atoms are in the condensate, the best measured number
squeezing factor is ξN = −4.9 dB. Using our two-mode model calculation, in
Fig.7.5 (a), we plot the number squeezing factor ξN as a function of time.
According to the figures, Var(Nl −Nr) does not evolve anymore after 30ms.
In Fig.7.5 (b), we show the phase coherence as a function of time,

〈cos ϕ〉(t) =
2〈Sx(t)〉

N
(7.16)

where ϕ is the relative phase between the two modes. At t ' 30ms, the phase
coherence is 〈cos ϕ〉 ∼ 0.93, implying that this is a spin squeezed state which
can be used to get a possible metrology gain of -4.4 dB below the standard
quantum limit. However at the end of the 50ms ramp, the phase coherence
approaches to zero. This is due to the nonlinearity introduced by the atomic
interactions that makes the relative phase collapse.

For 1300 atoms, the thermal fraction is so small that it is very difficult to
measured the temperature with the standard time-of-flight expansion method
in the experiment. It is proposed in [90] that in this case, the temperature
of the system can be deduced from the variance of the relative phase if the
parameters of the system, Ej and Ec, are known. Here we obtain the temper-
ature from the variance of the relative atom number. To check the validity
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of this method for our system, we compare the deduced temperature directly
with the experiment data for larger number of atoms. By changing the final
frequency of the evaporate cooling ramp, the smallest thermal fraction that
could be measured in the experiment is 0.65, for a total number of atoms
N ' 4.3 × 103 (see Fig.7.6 (b)). The corresponding temperature deduced
by using the ideal Bose formula is 460 nK. In order to compare this mea-
sured temperature with our model, we have to “improve it” including the
fluctuations of the thermal fractions. To this aim, here we assume that only
condensate contributes to the squeezing, while thermal atoms always have
shot noise fluctuations:

Var (Nl −Nr) = Var (Nl −Nr)BEC + Nth (7.17)

where Nth is the number of thermal atoms. We then calculate the total
squeezing factor

ξ2
N = ξ2

N0

N0

N
+

N −N0

N
(7.18)

as a function of initial temperature, where N0 is the number of atoms in the
condensate. We then compare ξ2

N with the experiment result, and find T '
470 nK, which is in good agreement with the result obtained from condensed
fraction measurements.

7.3 Thermal equilibrium multi-mode approach

In the experiment, finite temperature plays a very important role in the
fluctuations of the atom number difference Nl − Nr. As shown in Fig.7.6,
well below the critical temperature Tc, reduced fluctuations down to -4.9 dB
below the shot-noise level is observed. Fluctuations rise to more than +3.8 dB
below to Tc, before reaching the shot-noise level for higher temperatures.
The observed sub- and super-Poinssonian fluctuations of the atom number
difference Nl − Nr indeed originate from the interplay between interactions
and quantum statistics. To study the effect of finite temperature T & Tc,
the two-mode is no longer valid. In this section we study this problem in
the grand canonical ensemble2. Although the trap used here is a three-
dimensional harmonic potential instead of a double well potential, the result
that we obtained is very similar to those in the double well. We will show
that the peak of fluctuations for T < Tc is in fact a general feature, which

2Since the signal we are interested in is the atom number difference between two wells,
the non-physical fluctuations of the total number of condensate particles due to the use of
grand canonical ensemble will not affect the results.
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L R

Figure 7.7: We consider fluctuations of the particle number difference Nl − Nr

between the left and the right halves of a three-dimensional harmonic potential.

already appears in a single harmonic well and, even more surprisingly, for an
ideal gas.

In subsection 7.3.1 we address the ideal gas case for which we find the
complete analytical solution in the grand canonical ensemble. In subsection
7.3.2 we give some physical interpretations of our result got for the ideal
gas, and in the end of this subsection, we briefly discuss the interacting case.
This part of work is published in [82], in which I carried out the analytical
calculations for ideal gas.

7.3.1 Ideal gas: exact solution

We consider an ideal gas of bosons in a three-dimensional harmonic potential.
The signal we are interested in is the particle number difference Nl −Nr be-
tween the left and right halves of the harmonic potential along one direction,
as shown in Fig.7.7. In terms of the atomic field operators:

Nl −Nr =

∫

r∈L

Ψ̂†(r)Ψ̂(r)−
∫

r∈R

Ψ̂†(r)Ψ̂(r) (7.19)

Due to the symmetry of the problem, Nl−Nr has a zero mean value. It is con-
venient to express its variance in terms of the unnormalized pair correlation
function

g(2)(r, r′) = 〈Ψ̂†(r)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r) 〉 (7.20)

By using the bosonic commutation relation for the field operators, one has

Var(Nl−Nr) = 〈N〉+ 2

[∫

r∈L

∫

r′∈L

g(2)(r, r′)−
∫

r∈L

∫

r′∈R

g(2)(r, r′)
]

(7.21)
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We assume that the system is in thermal equilibrium in the grand canonical
ensemble with β = 1/kBT the inverse temperature and µ the chemical po-
tential. For an ideal gas, the density operator is Gaussian. We can then use
Wick’s theorem and express g(2)(r, r′) in terms of the first-order coherence
function g(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉:

g(2)(r, r′) = g(1)(r, r′)g(1)(r′, r) + g(1)(r, r)g(1)(r′, r′) (7.22)

The g(1)(r, r′) is a matrix element of the one-body density operator

g(1)(r, r′) = 〈r′| 1

z−1eβh1 − 1
|r〉 (7.23)

where h1 is the one-particle Hamiltonian

h1 =
p2

2M
+

∑
α=x,y,z

1

2
Mω2

αr2
α . (7.24)

To compute g(1), it is convenient to expand the one-body density operator in
powers of the fugacity z = eβµ [25]:

g(1)(r, r′) = 〈r′|
∞∑

l=1

zle−lβh1|r〉 (7.25)

On the other hand for a harmonic potential the matrix elements of e−βh1 are
know [91]. We then have

g(1)(r, r′) =
∞∑

l=1

zl

(
Mω̄

2π~

)3/2 ∏
α=x,y,z

[sinh (lηα)]−1/2 exp

{
−Mωα

4~

·
[
(rα + r′α)2 tanh

(
lηα

2

)
+ (rα − r′α)2 coth

(
lηα

2

)]} (7.26)

where we introduce the geometrical mean of the oscillation frequencies ω̄ =
(ωxωyωz)

1/3 and
ηα = β~ωα . (7.27)

It is convenient to renormalize the fugacity introducing

z̃ = z exp

(
−

∑
α

ηα/2

)
(7.28)

that spans the interval (0, 1). After some algebra (see appendix E), the
variance of Nl −Nr is expressed as a double sum that we reorder as

Var (Nl −Nr) = 〈N〉+
∞∑

s=1

csz̃
s (7.29)
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and

cs =
s−1∑

l=1

1− 4
π

arctan
√

tanh
(

1
2
lηx

)
tanh

[
1
2
(s− l)ηx

]
∏

α=x,y,z

[
1− e−ηαs

] (7.30)

with c1 = 0. Correspondingly, the mean atom number is expressed as

〈N〉 =

∫
d3r g(1)(r, r′)

=
∞∑

l=1

z̃l
∏

α=x,y,z

[
e−lηα sinh (lηα)

]−1/2
[
8 coth

(
lηα

2

)]1/2

=
∞∑

l=1

z̃l
∏

α=x,y,z

1 + coth(lηα/2)

2

(7.31)

This constitutes our analytical solution of the problem in the grand canonical
ensemble. In Fig.7.8 we show an example of fluctuation of the particle num-
ber difference for realistic parameters of an atom-chip experiment. In the
following, we perform some approximations or transformations in order to
obtain explicit formulas and get some physical insight. We consider the limit
of a large atom number and a high temperature kBT À ~ωα for all α. We
will give the approximated result in two different regimes: Non-condensed
regime and Bose-condensed regime.

Non-condensed regime

Taking the limit ηα ¿ 1 in Eq.(7.31) we get

〈N〉 '
(

kBT

~ω̄

)3

g3(z̃) (7.32)

where gα(z) =
∑∞

l=1 zl/lα is the Bose function. From this equation we recover
the usual definition of the critical temperature Tc:

kBTc =

[
N

ζ(3)

]1/3

~ω̄ , (7.33)

where ζ(3) = g3(1) with ζ the Riemann function. Taking the same limit in
(7.29) gives

Var(Nl −Nr) ' 〈N〉
[
1 +

g2(z̃)− g3(z̃)

ζ(3)

T 3

T 3
c

]
. (7.34)
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Figure 7.8: Normalized variance of the particle number difference Nl − Nr as a
function of temperature in a cigar-shaped trap with ωy = ωz = 2ωx. The number
of particles is 〈N〉 = 6000 (black lines) and 〈N〉 = 13000 (red lines). The inset
is a magnification of the T > Tc region. Solid lines: exact result (7.29) together
with (7.31). Dashed line for T > Tc: approximate result (7.34) together with
(7.32). Dashed line for T < Tc: approximate result resulting from the improved
estimates (7.47) and (7.48). The temperature T is expressed in units of the critical
temperature Tc defined in Eq.(7.33).

At T = Tc this leads to

Var(Nl −Nr)(Tc) ' 〈N〉ζ(2)

ζ(3)
' 1.37〈N〉 (7.35)

showing that the non-condensed gas is weakly super-Poissonian, as already
observed in Fig.7.8. Alternatively, one may directly take the limit ηα → 0 in
Eq.(7.26), yielding

g(1)(r, r′) =
∞∑

l=1

z̃l

l3/2λ3
dB

∏
α=x,y,z

exp

[
− lMω2

α

2kBT

(
rα + r′α

2

)2

− π

lλ2
dB

(rα − r′α)
2

]
.

(7.36)
This semiclassical approximation coincides with the widely used local density
approximation, in which one can replace the chemical potential µ = ln z/β
in the g(1) function for a spatially uniform condensate

g(1)(r, r′) =
∞∑

l=1

zl

l3/2λ3
dB

∏
α=x,y,z

exp

[
− π

lλ2
dB

(rα − r′α)
2

]
(7.37)
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by µ − U(r), where U(r) is the r dependent external potential. By using
Eq.(7.36), one recovers (7.32) and (7.33).

Bose-condensed regime

In this degenerate regime z̃ → 1, therefore the series (7.29) and (7.31) con-
verge very slowly. In particular, when z̃ = 1 summation diverges. A useful
exact rewriting is obtained by pulling out the asymptotic behaviors of the
summands. For Eq.(7.29),

Var (Nl −Nr) = 〈N〉+ c∞〈N0〉+
∞∑

s=1

(cs − c∞)z̃s (7.38)

where

c∞ = lim
s→∞

cs = 2
∞∑

l=1

[
1− 4

π
arctan

√
tanh

(
lηx

2

) ]
(7.39)

obtained by using

lim
s→∞

s−1∑

l=1

= lim
s→∞

s/2−1∑

l=1

+ lim
s→∞

s−1∑

l=s/2

, (7.40)

and 〈N0〉 = z̃/(1− z̃) is the mean number of condensate particles. The mean
atom number is rewritten as

〈N〉 = 〈N0〉+
∞∑

l=1

z̃l

[
−1 +

∏
α=x,y,z

1 + coth (lηα/2)

2

]
. (7.41)

Taking the limit ηα → 0 in each term of the sum over l in (7.41), and taking
the first order of ηα in the expansion, we obtain the usual condensate fraction

〈N0〉
〈N〉 ' 1− T 3

T 3
c

(7.42)

where we have used the critical temperature defined in (7.33). The same
procedure may be applied to the sum over s in (7.38). The calculation of the
small-η limit of c∞ requires a different technique: Contrarily to the previous
case, the sum in (7.39) is not dominated by values of the summation index
l ¿ 1/ηα and explores high values of l ∼ 1/ηx. As a remarkable consequence,
the local-density approximation fails in this case. We find that one rather
has to replace the sum over l by an integral in (7.39):

c∞ '
∫ +∞

0

dl

[
2− 8

π
arctan

√
tanh

(
lηx

2

) ]
=

2 ln 2

ηx

(7.43)
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This leads to the dimple formula for T < Tc:

Var (Nl −Nr) ' 〈N〉
[
1 +

ζ(2)− ζ(3)

ζ(3)

T 3

T 3
c

+ 2 ln 2

(
kBTc

~ω̄

)
T

Tc

(
1− T 3

T 3
c

)]

(7.44)
where we have used expression (7.42) for 〈N0〉. Comparing with Eq.(7.34)
we find that the last term in Eq.(7.44) is a new contribution involving the
macroscopic value of 〈N0〉 below in critical temperature. Since kBTc À
~ωx here, it is the dominant contribution to the fluctuations of the particle
number difference. It clearly leads to the occurrence of a maximum of these
fluctuations, at a temperature which remarkably is independent of the trap
anisotropy: (

T

Tc

)

max

' 2−2/3 ' 0.63 . (7.45)

The corresponding variance is strongly super-Poissonian in the large atom-
number limit:

[Var (Nl −Nr)]max ' 〈N〉
[
1 +

3

4
ln 2

(
2〈N〉
ζ(3)

)1/3
ω̄

ωx

]
. (7.46)

For the parameters of the upper curve in Fig.7.8, these approximate for-
mulas lead to a maximal variance over 〈N〉 equal to ' 27.5, whereas the
exact result is ' 22.2, located at T/Tc ' 0.61. We thus see that finite size
corrections remain important even for the large atom number 〈N〉 = 13000.
Fortunately, it is straightforward to calculate the next order correction. For
the condensate atom number, we simply expand the summand in (7.41) up
to the next order, we recover the known result [92]:

〈N0〉
〈N〉 ' 1− T 3

T 3
c

− T 2

T 2
c

3ζ(2)

2ζ(3)

~ωm

kBTc

(7.47)

with the arithmetic mean ωm =
∑

α ωα/3. For c∞ we use the Euler-Mac
Laurin summation formula, applied to the previously integrated function in
(7.43) over the interval (1, +∞), and we obtain

c∞ =
2 ln 2

ηx

− 1 + Aη1/2
x + O

(
η3/2

x

)
(7.48)

with A = −25/2ζ(−1/2)/π ' 0.374 [82]. Using these more accurate formulas
for 〈N0〉 and c∞ in the second term of the right-hand side of (7.39) leads to
an excellent agreement with the exact result, see the dashed lines in Fig.7.8
practically indistinguishable from the solid lines. Not that the effect of the -1
correction in (7.48) is to change the shot noise term 1 in the square brackets
(7.44) and (7.46) into 1− 〈N0〉/〈N〉.
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7.3.2 A brief physical analysis

Here we make a brief analysis of the result obtained in the previous sub-
section. I refer to [82] for more detailed calculations. To investigate the
contribution of different physical effects on our observable, one can split the
field operator into the condensate and the non-condensed part,

Ψ̂(r) = φ(r)a0 + δΨ̂(r) , (7.49)

where φ(r) is the ground mode wave function of the harmonic potential.
Then the correlation function g(2) can be expressed in terms of three contri-
butions: one originates from the condensate mode, one originates from the
non-condensed gas only, and the other originates from a beating between the
condensate and the non-condensed fields.

It is found that the first two terms have very limited contributions to
Var(Nl − Nr). Indeed in equilibrium, the first term gives no contribution,
and the non-condensed gas makes the fluctuations of Nl −Nr weakly super-
Poissonian when T = Tc. On the other hand, below Tc, the third term has
an important contribution. The variance originated from this term can be
finally written as

Var(Nl −Nr)bt ' 〈N0〉c∞ . (7.50)

This gives a physical meaning to the mathematical splitting (7.38) for T < Tc:
the second term and the sum over s in the right-hand side of Eq.(7.38) re-
spectively correspond to the condensate-non-condensed beating contribution
and to the purely non-condensed contribution.

Note that the obtained super-Poissonian behavior has a close quantum
optics analogue: the measurement of the fluctuation can be seen in a picto-
rial way as a balanced homodyne detection of the non-condensed field where
the condensate field acts as a local oscillator. Since one or the other of these
two fields vanishes for T tending to 0 or Tc, the beating effect, and thus
Var(Nl−Nr), are obviously maximal at some intermediate temperature. On
the other hand, in the regime where only one kind of field is present: for the
coherent Bose condensate without interactions (T ¿ Tc), as well as for ther-
mal particles (T À Tc), Poissonian fluctuations are expected. The weakly
super-Poissonian fluctuations originated from non-condensed particles (7.35)
for T → Tc are analogous to the bunching effect in quantum optics.

Now we consider the interacting case. For the condensate, it is expected
that the fluctuations of Nl − Nr are sub-Poissonian instead of Poissonian
due to the atomic interactions. When T approaches Tc from the side of low
temperature, the appearance of the thermal fraction would greatly enhance
the fluctuation. However due to interactions which tends to lower the fluctu-
ations, the enhancement is not as large as in the case of without interactions.
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And this is confirmed by the classical field simulations in [82]. Another
difference with respect to the non-interacting case is that under the Thomas-
Fermi approximation, we find very weak dependence of the enhancement of
[Var(Nl −Nr)]max on the atom number, scaling as 〈N〉−1/15.



Chapter 8

Conclusions and outlook

In this thesis, we studied theoretically realistic schemes for the production of
spin squeezed states in Bose-Einstein condensates. These states are multi-
particle entangled states that have practical interest in atomic interferometry,
and in high precision spectroscopy. As it was proposed in the literature, a
large amount of spin squeezing can be obtained by coherent interactions
between cold atoms in a bimodal BEC. In real experiments, this scheme
however will be limited by the effect of decoherence given by particle losses,
and also by the spatial dynamics of the condensate wave functions.

Using an analytical Monte-Carlo wave functions approach, we obtained
the maximum spin squeezing reachable in presence of decoherence (losses)
unavoidably accompanying the elastic interactions among atoms. Our cal-
culations showed how squeezing is degraded by this effect of decoherence:
during the evolution each loss event causes an random phase shift between
the two BEC components that depends on the kind of the loss event and
on the time at which the loss takes place, which in the end degrades the
squeezing. We also found that the effect of losses cannot be neglected as
soon as the lost fraction of particles is of the order of the squeezing param-
eter. The more squeezed the state is, the more sensitive to the losses. The
analytical solution that we found also allows us to perform an optimization
for the spin squeezing. Once the experimental parameters are optimized, the
best squeezing is obtained for an atom number N →∞ and not for a finite
value of N , which is important for applications such as spectroscopy where
large number of atoms will be favorable.

On the other hand, we developed a method to study the entangled spatial
and spin dynamics of interacting bimodal BEC, which allows a full analytical
treatment in some cases and can be used in the general case to investigate a
priori complicated situations in 3D without the need of heavy numerics. Our
treatment also gave a physical insight into the effect of spatial dynamics: the

105
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oscillations of the squeezing parameter during the evolution indeed originate
from the excitations of hydrodynamics modes in the condensates, which have
different frequencies depending on the number of atoms in the two BEC
components. We showed that disentanglement of the spin and the spatial
dynamics occurs at particular times and the spin squeezing at these points
can be predicted by a simple two-mode model.

These studies give a more complete description of the scheme of achieving
spin squeezing using interactions in a realistic situations on the one hand,
and enabled us to compare the theoretical predictions with the spin squeezing
achievable in experiment on the other hand. As an application, we considered
two spin squeezing schemes: overlapping Na condensates or Rb condensates
with the scattering length tuned by Feshbach resonance, and Rb conden-
sates spatially separated with state-dependent potentials. We found more
than −10 dB squeezing can be obtained, despite of particle losses and spatial
dynamics.

During our thesis, spin squeezing relying on atomic interactions has been
demonstrated experimentally in both schemes that we have considered. We
participated to one of them, realizing the spin squeezed state with state-
dependent potentials on an atom chip. In experiment, with 1250 ± 45 Rb
atoms, −2.5±0.6 dB spin squeezing was achieved. The data show good agree-
ment with our theoretical model which also takes into account the technical
imperfections in the experiment.

In parallel, we studied the spin squeezing in a related but different sys-
tem of a BEC with two external modes coherently coupled by the tunnel
effect. Our study corresponds to the experiment of splitting a gas of ultra-
cold 87Rb atoms in a double-well potential created on an atom chip. In the
low temperature regime (T ¿ Tc), the observed reduction in spin noise in
the experiment is −4.9 dB. By using a two-mode model, we predicted that
−4.4 dB spin squeezing, combining noise reduction and phase coherence, can
be achieved. In the regime across Tc, we study the occurrence of important
super-Poissonian fluctuations, which are also observed in experiment. With
a thermal equilibrium approach in a grand canonical ensemble, we found
that the fluctuations are weakly super-Poissonian for T > Tc. And if one
lowers the temperature from Tc down to zeros, fluctuations increase, reach a
maximum, and then decrease again as the non-condensed fraction vanishes.

To go further in the future, it would be interesting to use these non-
classical states to improve the precision of quantum metrology. Using non-
condensed atoms, an atomic clock improved by spin squeezed input state
beyond the projection noise limit has been demonstrated experimentally
[60, 37]. The interrogation time in those experiments goes from dozens to
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hundreds of µs. In [41], it is also demonstrated that an atomic interferometer
with an accuracy exceeding the normal quantum limit for unentangled atoms
can be achieved with the spin squeezed state created in BEC. Our theoreti-
cal calculations show that, by transferring the atoms into a shallow trap, the
spin squeezed states created in [40] can survive more than 0.5 second under
the influence of particle losses, which implies that an atomic clock beyond
the standard quantum limit is reachable with these states. In this case we
found that the main limit imposed to the life time of squeezing is the high
two-body losses in F = 2 state. Suppressing this effect would be helpful to
keep the squeezing.

On the other hand, when larger number of atoms is used in the spec-
troscopy, more attentions should be paid to spatial dynamics, as the sudden
change in the mean-field after the mixing pulse will become larger. Neverthe-
less, at the time when spatial and spin dynamics disentangle, large amount
of spin squeezing unaffected by spatial dynamics can still be obtained.

There also remain some open questions in this scheme. For example,
in addition to losses of particles, which we have already studied, there is
another source of decoherence inevitable in an experiment of cold atoms, the
effect of finite temperature. Recently we are generalizing our study of spin
squeezing in a Bose-Einstein condensate to a non-zero temperature, i.e. when
several atomic modes of the field are initially occupied. By using Bogoliubov
theory in [71], it was shown that within the order of

√
δN/N (where δN

is the number of non-condensed particles), the spin squeezing obtainable
are independent of the temperature of the condensate. However, with the
modulus-phase approach, we can take into account higher order corrections
with the same approach. As we did in the case of loss of particles, the goal is
to determine the ultimate limitation imposed by this source of decoherence.





Appendix A

Quantum averages related to
squeezing parameter

In this appendix, we derive the expressions of ∆S2
j and ∆ij (i, j = x, y, z),

which are needed to calculate the minimum variance of the spin component
orthogonal to the mean spin ∆S2

⊥, min in Eq.(2.44). Using the collective spin
operators, ∆S2

j and ∆ij can be written as

∆S2
j = 〈S2

j 〉 − 〈Sj〉2 , (A.1)
∆ij = 〈SiSj + SjSi〉 − 2〈Si〉〈Sj〉 . (A.2)

We then express 〈Sj〉, 〈S2
j 〉 and 〈SiSj〉 in terms of the quantum averages of

the field operators Ψ̂a(r) and Ψ̂b(r) (or the two-mode operators a and b).
According to the definitions (4.13)-(4.15) and (2.28)-(2.30), the averages of
the spin operators are given by

〈Sx〉 =
1

2

∫
d3r 〈Ψ̂†

b(r )Ψ̂a(r ) + Ψ̂†
a(r )Ψ̂b(r )〉, (A.3)

〈Sy〉 =
i

2

∫
d3r 〈Ψ̂†

b(r )Ψ̂a(r )− Ψ̂†
a(r )Ψ̂b(r )〉, (A.4)

〈Sz〉 =
1

2

∫
d3r 〈Ψ̂†

a(r )Ψ̂a(r )− Ψ̂†
b(r)Ψ̂b(r)〉, (A.5)

or

〈Sx〉 =
1

2
〈b†a + a†b〉, (A.6)

〈Sy〉 =
i

2
〈b†a− a†b〉, (A.7)

〈Sz〉 =
1

2
〈a†a− b†b〉. (A.8)
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Using the bosonic commutation relations

[Ψ̂ε(r), Ψ̂
†
ε′(r

′)] = δεε′ δ (r− r′) , [Ψ̂ε(r), Ψ̂ε′(r
′)] = 0 (A.9)

[a, a†] = 1 , [a, a] = [a, b] = [a, b†] = 0 , (A.10)

one obtains

〈S2
x〉 =

1

2
Re

∫
d3r d3r′ 〈Ψ̂†

b(r)Ψ̂
†
a(r

′)Ψ̂a(r)Ψ̂b(r
′) + Ψ̂†

b(r)Ψ̂
†
b(r

′)Ψ̂a(r)Ψ̂a(r
′)〉

+
1

4

∫
d3r 〈Ψ̂†

a(r)Ψ̂a(r) + Ψ̂†
b(r)Ψ̂b(r)〉 , (A.11)

〈S2
y〉 =

1

2
Re

∫
d3r d3r′ 〈Ψ̂†

b(r)Ψ̂
†
a(r

′)Ψ̂a(r)Ψ̂b(r
′)− Ψ̂†

b(r)Ψ̂
†
b(r

′)Ψ̂a(r)Ψ̂a(r
′)〉

+
1

4

∫
d3r 〈Ψ̂†

a(r)Ψ̂a(r) + Ψ̂†
b(r)Ψ̂b(r)〉 , (A.12)

〈S2
z 〉 =

1

4

∫
d3r d3r′ 〈Ψ̂†

a(r)Ψ̂
†
a(r

′)Ψ̂a(r)Ψ̂a(r
′) + Ψ̂†

b(r)Ψ̂
†
b(r

′)Ψ̂b(r)Ψ̂b(r
′)〉

−1

2

∫
d3r d3r′ 〈Ψ̂†

b(r)Ψ̂
†
a(r

′)Ψ̂b(r)Ψ̂a(r
′)〉

+
1

4

∫
d3r 〈Ψ̂†

a(r)Ψ̂a(r) + Ψ̂†
b(r)Ψ̂b(r)〉 , (A.13)

or

〈S2
x〉 =

1

2
Re〈b†a†ab + b†b†aa〉+

1

4
〈a†a + b†b〉 , (A.14)

〈S2
y〉 =

1

2
Re〈b†a†ab− b†b†aa〉+

1

4
〈a†a + b†b〉 , (A.15)

〈S2
z 〉 =

1

4
〈a†a†aa + b†b†bb〉 − 1

2
〈b†a†ab〉+

1

4
〈a†a + b†b〉 . (A.16)

Similarly the quantum averages of operators SiSj + SjSi can be written as

〈SxSy + SySx〉 = −Im
∫

d3r d3r′ 〈Ψ̂†
b(r)Ψ̂

†
b(r

′)Ψ̂a(r)Ψ̂a(r
′)〉 , (A.17)

〈SySz + SzSy〉 = Im
∫

d3r d3r′〈Ψ̂†
a(r)Ψ̂

†
a(r

′)Ψ̂a(r)Ψ̂b(r
′)

+Ψ̂†
b(r)Ψ̂

†
b(r

′)Ψ̂b(r)Ψ̂a(r
′)〉 , (A.18)

〈SzSx + SxSz〉 = Re
∫

d3r d3r′ 〈Ψ̂†
a(r)Ψ̂

†
a(r

′)Ψ̂a(r)Ψ̂b(r
′)

−Ψ̂†
b(r)Ψ̂

†
b(r

′)Ψ̂b(r)Ψ̂a(r
′)〉 , (A.19)
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or

〈SxSy + SySx〉 = −Im〈b†b†aa〉 , (A.20)

〈SySz + SzSy〉 = Im〈a†a†ab + b†b†ba〉 , (A.21)

〈SzSx + SxSz〉 = Re〈a†a†ab− b†b†ba〉 . (A.22)

Therefore to calculate the squeezing parameters, finally one needs to calculate
ten quantum averages of the field operators as shown above, and nine of the
two-mode operators since the space independent operator b†a†ba is equivalent
to b†a†ab. An example of these nine quantum averages is given by Eqs.(3.21)-
(3.29) in chapter 3, where particle losses are taken into account. In particular,
when there are no particle losses, the total number of atoms N is conserved.
One then has

∫
d3r 〈Ψ̂†

a(r)Ψ̂a(r)〉 = 〈a†a〉 = N |Ca|2 , (A.23)
∫

d3r 〈Ψ̂†
b(r)Ψ̂b(r)〉 = 〈b†b〉 = N |Cb|2 , (A.24)

∫
d3r d3r′ 〈Ψ̂†

a(r)Ψ̂
†
a(r

′)Ψ̂a(r)Ψ̂a(r
′)〉 = 〈a†a†aa〉 = N(N − 1)|Ca|4 , (A.25)

∫
d3r d3r′ 〈Ψ̂†

b(r)Ψ̂
†
b(r

′)Ψ̂b(r)Ψ̂b(r
′)〉 = 〈b†b†bb〉 = N(N − 1)|Cb|4 , (A.26)

∫
d3r d3r′ 〈Ψ̂†

b(r)Ψ̂
†
a(r

′)Ψ̂b(r)Ψ̂a(r
′)〉 = 〈b†a†ab〉 = N(N − 1)|Ca|2|Cb|2 .(A.27)

In this case, the squeezing parameter can be obtained with five quantum
averages of the field operators, as shown in Eqs.(4.18)-(4.22) after spatial
integration, or four quantum averages of the two-mode operators, as shown
in Eqs.(2.48)-(2.51).





Appendix B

Rotation of a state on the Bloch
sphere

On the Bloch sphere, rotating a state |ψ〉 by an angle φ around an axis-j,
where j = x, y, z, can be described by a unitary transformation

Uj = e−iφSj (B.1)

where Sj is the collective spin operators defined in (2.28)-(2.30). The state
after the rotation |ψ′〉, and the corresponding expectation value of spin com-
ponents Sk (k = x, y, z) can be written as follows,

|ψ′〉 = e−iφSj |ψ〉 (B.2)

〈ψ′|Sk|ψ′〉 = 〈ψ|eiφSj Sk e−iφSj |ψ〉 = 〈ψ|S ′k|ψ〉 . (B.3)

The measurement of Sk after the rotation is equivalent to the measurement
of S ′k before the rotation. Let us define the ladder operators

Sx± = Sy ± iSz , (B.4)

Sy± = Sz ± iSx , (B.5)

Sz± = Sx ± iSy . (B.6)

According to the commutation relations [Sj, Sj±] = ±Sj±, one has

Sn
j Sj± = Sn−1Sj±(Sj ± 1) = · · · = Sj± (Sj ± 1)n . (B.7)

We assume that F (Sj) is a function of the operator Sj which can be expanded
in series

F (Sj) =
∑

n

F (n)(0)

n!
Sn

j (B.8)
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where F (n)(0) is the n-th order derivative of F in Sj = 0. By using Eq.(B.7),
one finds

exp [iF (Sj)] Sj± exp [−iF (Sj)] = Sj± exp [iF (Sj ± 1)− iF (Sj)] (B.9)

Choosing F (Sj) = φSj, one concludes that

eiφSj Sj± e−iφSj = Sj± e±iφ . (B.10)

Now we consider the unitary transformation (2.9) rewritten as follows,

U = e−iθSye−iφSzeiϕSy . (B.11)

Using Eq.(B.10), the measurement of the operator Sz after the transforma-
tion is equivalent to the measurement of the operator

U †SzU = S ′z = Sx (sin ϕ cos θ − cos ϕ cos φ sin θ) + Sy sin φ sin θ

+ Sz (sin ϕ cos φ sin θ + cos ϕ cos θ)
(B.12)

where Sx, Sy and Sz are the operators before the transformation.



Appendix C

Evolution of the phase factor A

Assume that at time t the state vector can be written as

|ψ(t)〉 = e−iA(t)/~|Na : φa(t), Nb : φb(t) 〉 (C.1)

Nε is the number of particles in component ε conserved during the evolution.
The state evolution, according to Schrödinger equation, reads

i~
d

dt
|ψ〉 = H|ψ〉 (C.2)

where H is the Hamiltonian in the Hartree-Fock approximation, whose quan-
tum average is

〈H 〉 =
∑

ε=a,b

[
Nε〈φε|hε|φε〉+

gεε

2
Nε (Nε − 1)

∫
d3r|φε|4

]

+ NaNbgab

∫
d3r|φa|2|φb|2 .

(C.3)

In Eq.(C.3) hε is the one-particle Hamiltonian (4.2), and the evolution of φε

are described by coupled Gross-Pitaevskii equation (4.10). Inserting Eq.(C.1)
into the Schrödinger equation (C.2), and then multiply by 〈Na : φa, Nb :
φb | eiA(t)/~ on both sides, one gets

Ȧ + i~〈Na : φa, Nb : φb | d
dt
|Na : φa, Nb : φb 〉

= 〈Na : φa, Nb : φb |H|Na : φa, Nb : φb 〉
(C.4)

By using the Gross-Pitaevskii equation (4.10) for the derivative of the wave
function φε and the average of the Hamiltonian (C.3), we obtain the evolution
of the phase factor A,

Ȧ = −
∑

ε=a,b

Nε(Nε − 1)
gεε

2

∫
d3r|φε|4 −NaNbgab

∫
d3r|φa|2|φb|2 . (C.5)
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Numerical solution of GPE

In this appendix, we show the method to calculate the stationary solution of
Gross-Pitaevskii equation

i~
φ(r)

dt
=

[
− ~2

2M
∇2 + U(r) + Ng|φ(r)|2

]
φ(r), (D.1)

where U(r) is the external trapping potential, g is the strength of the inter-
action, and N is total the number of atoms.

In chapter 4, one needs to calculate the ground state of Eq.(D.1) to ob-
tain the wave function φ0(r) as the initial condition for the dynamical spin
squeezing model Eq.(4.11). In chapter 7, both ground state and first excita-
tion state of Eq.(D.1), φS(r) and φA(r), are needed in order to calculate the
double-well system parameters Ec (Eq.7.6) and Ej (Eq.7.7). Furthermore,
the method presented here can be extended to the coupled Gross-Pitaevskii
equation (2.17), by which we calculate the ground states φa(r) and φb(r) with
the correspond number of atoms Na = N̄a and Nb = N̄b. These states will
be needed in the two-mode model for spin squeezing described in chapter 2
and chapter 3.

The main idea of our method is to find the local minimum of the energy
functional

E[φ, φ∗] =

∫
d3r

[
Nφ∗(r)h0φ(r) +

N2g

2
|φ(r)|4

]
, (D.2)

where h0 = −~2∇2/(2M) + U(r), by varying the wave function φ under the
constraint that φ is normalized to unity, i.e.

∫
d3r |φ(r)|2 = 1 . (D.3)
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To do this, we first assume that, in the next time step, the wave function can
be written as

φ = φ1 + λ δφ1 . (D.4)

where φ1 is the wave function in the present step. Rewriting the energy
functional (D.2), taking into account the constrain, one gets

E[φ, φ∗] =
N

∫
φ∗h0φ∫
φ∗φ

+
N2g

∫
φ∗φ∗φφ

2
∫

φ∗φ
. (D.5)

Inserting Eq.(D.4) into Eq.(D.5) allows ont to implement a line minimization
of E[φ, φ∗] with respect to λ. By defining the following functions,

Tn(0) =

∫
φ∗1 φ1 , (D.6)

Tn(1) = 2Re
∫

φ∗1 δφ1 , (D.7)

Tn(2) =

∫
δφ∗1 δφ1 , (D.8)

Tc(0) = N

∫
φ∗1 h0 φ1 , (D.9)

Tc(1) = 2ReN

∫
φ∗1 h0 δφ1 , (D.10)

Tc(2) = N

∫
δφ∗1 δφ1 , (D.11)

Ti(0) =
N2g

2

∫
|φ1|4 , (D.12)

Ti(1) = 2ReN2g

∫
|φ1|2 φ∗1 δφ1 , (D.13)

Ti(2) = N2g

[
2

∫
(Reφ∗1 δφ1)

2 +

∫
|φ1|2|δφ1|2

]
, (D.14)

Ti(3) = 2ReN2g

∫
|δφ1|2 φ∗1 δφ1 , (D.15)

Ti(4) =
N2g

2

∫
|δφ1|4 , (D.16)

where the terms such as h0 φ1 are calculated by splitting Fourier spectral
method [93], the energy (D.5) can be written as a function of λ,

E(λ) =

∑2
k=0 Tc(k)λk

∑2
k=0 Tn(k)λk

+

∑4
k=0 Ti(k)λk

[∑2
k=0 Tn(k)λk

]2 =

∑4
k=0 p(k)λk

∑4
k=0 q(k)λk

, (D.17)
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with

p(0) = Ti(0) + Tc(0) · Tn(0) , (D.18)

p(1) = Tc(1) · Tn(1) + Ti(1) + Tc(1) · Tn(0) , (D.19)

p(2) = Tc(0) · Tn(2) + Tc(2) · Tn(0) + Ti(2) · Tc(1) · Tn(1) , (D.20)

p(3) = Tc(1) · Tn(2) + Tc(2) · Tn(1) + Ti(3) , (D.21)

p(4) = Ti(4) + Tc(2) · Tn(2) , (D.22)

q(0) = T 2
n(0) , (D.23)

q(1) = 2Tn(0) · Tn(1) , (D.24)

q(2) = 2Tn(0) · Tn(2) + T 2
n(1) , (D.25)

q(3) = 2Tn(1) · Tn(2) , (D.26)

q(4) = T 2
n(2) . (D.27)

Solving the equation numerically for λ

dE(λ)

dλ
= 0 , (D.28)

we obtain λmin which brings the energy E[φ, φ∗] in the next step to a minimum
along the direction δφ1. After several iterations, E[φ, φ∗] is moved to a place,
corresponding to the final wave function φ, very close to its local minimum.

A key point of this method is how to chose the direction δφ1. An intuitive
choice would be the gradient direction, which results in

δφ1 = −δE[φ1, φ
∗
1]

δφ1

∝ − [
h0φ1 + U(r)φ1 + Ng|φ1|2φ1

]
. (D.29)

However, this choice, leading to the algorithm Steepest Descent Method, is
not very efficient for our case. The algorithm used here is is so-called Conju-
gate Gradient Methods [94], in which the direction δφ1 is constructed to be
conjugate to the old gradient, insofar as possible to all previous directions
traversed. This results in the real direction δφ̃1 along which we perform the
energy diminishing,

δφ̃1 = δφ1 −
∫

δφ∗1
(
δφ̃0 − δφ1

)

∫ |δφ̃0|2
δφ̃0 , (D.30)
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where δφ̃0 is the direction used in the previous step, and δφ1 is calculated
from Eq.(D.29). For the first step, we choose δφ̃1 = δφ1. Replacing δφ1 by
δφ̃1 in Eq.(D.4), we finally get the wave function in the next step

φ = φ1 + λmin δφ̃1 . (D.31)

After each iteration, the wave function φ should be renormalized.
Since the final wave function φ(r) is obtained by looking for the local

minimum of the energy functional E[φ, φ∗], choosing the trial wave function
properly can simplify the calculation. For example in the calculations for the
double-well, the trial wave function for the ground state is the 3D Thomas-
Fermi profile centered in the minimum of each well, and for the first excitation
state, we choose the trial wave function as

φtrial
A (r) = tanh(x) · φS(r) , (D.32)

where φS(r) is the ground state obtained from the same trap configuration,
and the double-well is split along the x direction. The method will fail
when Eq.(D.28) does not have a real solution for λ, implying that there does
not exist a minimum along δφ̃1. It rarely happens in the calculations of
the ground states, but appears sometimes when calculate the first excitation
states with a very low barrier height (Vb ' 0). In this case, using more points
in the spatial grid, which means increasing the dimension of E, could help.
Another solution is to change the trail wave function to avoid reaching φ1

which will abort the calculation. Indeed, we find that Eq.(D.32) is a very
good trail wave function for the first excitation states.

Our method is very efficient that a complete 3D trap configuration can be
used in the simulation. In the calculations for double-well, the spatial grid
is chosen as 256 × 100 × 64. With the above trial wave functions, both the
ground state and the first excitation can be found within 30 minutes (using
single processor of Intel Xeon CPU 3.00GHz). In Fig.D.1 and Fig.D.2 we
give an example, the ground states and the first excitation states calculated
for double-well. As described in chapter 7, the 3D trapping potential is given
by another simulation developed by the experimentalists, based on current
configuration on the atom chip. The trap approximately has a banana shape,
and the atom chip lies in the plane perpendicular to the z direction. We
show the density profile integrated along axis-y. The corresponding current
are I2 = 2.02 : 0.04 : 2.30mA.
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Figure D.1: Density profile of the ground states in the double-well, integrated
along axis-y. The total number of atoms is N = 1300. The corresponding current
are I2 = 2.02 : 0.04 : 2.30mA.

Figure D.2: Density profile of the first excitation states in the double-well, inte-
grated along axis-y. The total number of atoms is N = 1300. The corresponding
current are I2 = 2.02 : 0.04 : 2.30mA.





Appendix E

Var(Nl −Nr) calculated from the
g(1) function

To calculate the variance of Nl −Nr in Eq.(7.21), one needs to calculate

I = 2

{∫

r∈L

∫

r′∈L

[
g(1)(r, r′)

]2 −
∫

r∈L

∫

r′∈R

[
g(1)(r, r′)

]2
}

(E.1)

By using the g(1) function given in Eq.(7.26), we find

[
g(1)(r, r′)

]2
=

∞∑
s=1

s−1∑

l=1

z̃s

(
Mω̄

2π~

)3 ∏
α=x,y,z

(
e−sηαCα

)−1/2

· exp

{
−Mωα

4~

[
Aα (rα + r′α)

2 −Bα (rα − r′α)
2
]}

, (E.2)

where we have defined

Aα = tanh

(
lηα

2

)
+ tanh

[
(s− l)ηα

2

]
, (E.3)

Bα = coth

(
lηα

2

)
+ coth

[
(s− l)ηα

2

]
, (E.4)

Cα = sinh (lηα) sinh [(s− l)ηα] . (E.5)

For the function f(x, x′) = exp[−α(x + x′)2 − β(x − x′)2] and α, β > 0, one
has the integration relation

∫ +∞

−∞
dx

∫ +∞

−∞
dx′ f(x, x′) =

π

2

1√
αβ

. (E.6)
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Using Eq.(E.6), the integration of
[
g(1)(r, r′)

]2 in y and z direction gives
∫ +∞

−∞
dy dz

∫ +∞

−∞
dy′ dz′

[
g(1)(r, r′)

]2

=
∞∑

s=1

s−1∑

l=1

z̃s

(
Mω̄

2π~

)3
{ ∏

α=y,z

(
2π~
Mωα

) [
e−sηα/22 sinh

(sηα

2

)]−1
}

(E.7)

· (e−sηxCx

)−1/2
exp

{
−Mωx

4~

[
Ax (x + x′)2 −Bx (x− x′)2

]}
,

where we have used the fact that

AαBα =
4

Cα

sinh2
(sηα

2

)
. (E.8)

Then it remains the integration along x direction. Again for the function
f(x, x′), if β > α > 0, one has

∫ 0

−∞
dx

∫ 0

−∞
dx′ f(x, x′)−

∫ 0

−∞
dx

∫ +∞

0

dx′ f(x, x′)

=
1√
αβ

[
π

4
− arctan

√
α

β

]
.

(E.9)

Using Eq.(E.9), the integration of
[
g(1)(r, r′)

]2 in Eq.(E.1) can be written as

I =
∞∑

s=1

s−1∑

l=1

z̃s

{ ∏
α=x,y,z

[
e−sηα/22 sinh

(sηα

2

)]−1
}

·
{

1− 4

π
arctan

√
tanh

(
lηx

2

)
tanh

[
(s− l)ηx

2

]}
,

(E.10)

where we have used the fact that

Aα

Bα

= tanh

(
lηα

2

)
tanh

[
(s− l)ηα

2

]
. (E.11)
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