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Abstract

The Semantic Web is a new Web paradigm that provides a common framework
for data to be shared and reused across applications, enterprises and community
boundaries. The biggest problem we face right now is a way to “link” information
coming from different sources that are often heterogeneous syntactically as well
as semantically. Today much information is stored in relational databases. Thus
data integration from relational sources into the Semantic Web is in high demand.

The objective of this thesis is to provide methods and techniques to address this
problem. It proposes an approach based on a combination of ontology-based
schema representation and description logics. Database schemas in the approach
are designed using ORM methodology. The stability and flexibility of ORM facil-
itate the maintenance and evolution of integration systems. A new web ontology
language and its logic foundation are proposed in order to capture the semantics
of relational data sources while still assuring a decidable and automated reasoning
over information from the sources. An automatic translation of ORM models into
ontologies is introduced to allow capturing the data semantics without laborious-
ness and fallibility. This mechanism foresees the coexistence of others sources,
such as hypertext, integrated into the Semantic Web environment.

This thesis constitutes the advances in many fields, namely data integration, on-
tology engineering, description logics, and conceptual modeling. It is hoped to
provide a foundation for further investigations of data integration from relational
sources into the Semantic Web.
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Résumé

Le web sémantique est un nouveau paradigme web qui fournit un cadre com-
mun pour des données devant être partagées et réutilisées à travers des applica-
tions, en franchissant les frontières entre les entreprises et les communautés. Le
problème majeur que l’on rencontre à présent, est la manière de relier les infor-
mations provenant de différentes sources, celles-ci utilisant souvent une syntaxe et
une sémantique différentes. Puisqu’aujourd’hui, la plupart des informations sont
gardées dans des bases de données relationnelles, l’intégration de source de données
relationnelle dans le web sémantique est donc très attendue.

L’objectif de cette thèse est de fournir des méthodes et des techniques pour
résoudre ce problème d’intégration des bases de données. Nous proposons une
approche combinant des représentations de schémas à base d’ontologie et des
logiques de descriptions. Les schémas de base de données sont conçus en utilisant
la méthodologie ORM. La stabilité et la flexibilité de ORM facilite la maintenance
et l’évolution des systèmes d’intégration. Un nouveau langage d’ontologie web et
ses fondements logiques sont proposées afin de capturer la sémantique des sources
de données relationnelles, tout en assurant le raisonnement décidable et automa-
tique sur les informations provenant des sources. Une traduction automatisée des
modèles ORM en ontologies est introduite pour permettre d’extraire la sémantique
des données rapidement et sans faillibilité. Ce mécanisme prévoit la coexistence
d’autre sources d’informations, tel que l’hypertexte, intégrées à l’environnement
web sémantique.

Cette thèse constitue une avancée dans un certain nombre de domaine, notamment
dans l’intégration de données, l’ingénierie des ontologies, les logiques de descrip-
tions, et la modélisation conceptuelle. Ce travail pourra fournir les fondations
pour d’autres investigations pour intégrer les données provenant de sources rela-
tionnelles vers le web sémantique.
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CHAPTER 1

Introduction

1.1 Motivation

The information society requires full access to the available information, which
is often distributed and heterogeneous. Traditional information systems, as well
known, are built for that purpose by using some data models and databases.
That means to access information from other sources (or systems), an information
system must transfer the data formats of these sources to hers. This process is
time-consuming and not always easy. Besides, data acquisition (although auto-
matic or semi-automatic) requires inevitably a large investment on the technical
infrastructure and/or manpower. The purpose of the integration is therefore to
create a common gateway to sources heterogeneous and probably distributed.

Continually, new applications are introduced in enterprises, while existing legacy
applications cannot be replaced because of the investments that have been made
in the past. These new applications need to use data residing in the legacy appli-
cations, which is typically stored in a proprietary format. If a new application is
to reuse the information residing in legacy systems, this information needs to be
made available in a way that is understandable to the new application. Therefore,
besides the differences in hardware and software platforms, not only the differ-
ences in syntax, but also the differences in semantics need to be overcome. Since
systems become more and more distributed and disparate within and across or-
ganizational boundaries and market segments, semantic integration has become a
much-debated topic and it is viewed as a solution provider in both industrial and
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academic settings.

1.1.1 Challenges of Semantic Integration into the Semantic
Web

The emergence of the Semantic Web, and its anticipated industrial uptake in
the years to come, has made the sharing of information easier to implement and
deploy on a large scale in open distributed environments. Since much information
on the web is generated from relational databases (the “deep web”), the recent call
for the Semantic Web provides additional motivation for the problem of associating
semantics with database-resident data. Therefore, it will be necessary to make
existing database content available for emerging Semantic Web applications, such
as web agents and services.

However, semantic integration of relational data sources into the Semantic Web is
not a trivial task. There are (at least) three crucial issues must be considered:

• First, in the foreseeable future, databases, knowledge bases, the World Wide
Web, and the Semantic Web will coexist. A challenge for current systems is
to accommodate their contents, which are either defined by schemas based
on structure or defined by ontologies based on semantics. Therefore, the
integration should permit to handle heterogeneous sources generated by not
only different data models for databases but also formalisms for other sources,
e.g. hypertext. Besides, integration systems should have the capability of
evolution and maintenance independently from the run-time characteristics
of the underlying sources.

• Second, the design, exploitation and maintenance of such an integration sys-
tem require reasoning support over information from all those sources. How-
ever, database research mainly deals with efficient storage and retrieval with
powerful query languages, and with sharing and displaying large amounts of
documents while reasoning over the structure and the content of documents
plays only a minor role.

• Third, the automation of processing data sources requires to clarify and for-
malize the knowledge residing in databases. That is, there should have a
mechanism specifying the communication/exchange protocol, the vocabu-
laries used and the interpretation rules so that the data semantics can be
captured correctly.
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1.1.2 Objectives and Approach

The aim of this thesis is, therefore, to provide methods and techniques to solve
the three above-mentioned issues. This aim is further developed into the following
objectives:

1. To integrate resources from databases into the Semantic Web while guaran-
teeing the semantic integration ability from various resources of the Semantic
Web and the evolution and maintenance independently from the run-time
characteristics of data sources. We focus on how to make database content
available on the Semantic Web.

2. To identify the data model for databases that facilitates the integration re-
garding the presented issues.

3. To add additional deductive capabilities to integration systems to increase
the usability and reusability of data from relational databases.

4. To provide a mechanism to achieve the semantic transparence between data
sources and the integration system. The knowledge representation of such a
system should be unambiguous, supported by an inference engine, compati-
ble to the standards of World Wide Web and at the same time should permit
to capture the semantics of relational data sources.

To achieve those objectives, our approach is to combine ontology-based schema
representation and description logics. In particular, our solutions are as follows.

• We use Semantic Web ontologies to incorporate database schemas. That is,
data models of databases will be represented in Semantic Web ontologies.
In philosophy, an ontology is the study of existence. It seeks to describe the
basic categories and relationships of existence to define entities and types
of entities within its framework. The Artificial Intelligence and Web ex-
perts use this term to describe a document that defines formally relation-
ships between the terms. Ontology plays an important role in the Seman-
tic Web. It represents knowledge in the Semantic Web and is supposed to
hold application-independent domain knowledge while conceptual schemas
are developed only for the use of enterprise applications. The benefit of rep-
resenting data models in ontologies is twofold. First, it allows restructuring
and facilitating access to the database information, as in the conventional
context of Database Management Systems. Second, it permits the use of a
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Web-based ontology language as a common language and hence, a range of
advanced semantic technologies based on ontologies can be applied to data
integration. This solution will help achieving the first objective;

• We propose using ORM data models. ORM is a methodology for conceptual
data modeling based on facts. It has a high expressivity and the capability
of evolving without breaking the backward compatibility. It has been fully
formalized in First Order Logic, which is very closed to the logic in our
approach. This choice will help achieving objective 1 and 2;

• We suggest an automated reasoning for description logics. Description logics
[7] are a family of knowledge representation formalisms. It can provide a high
expressivity while guaranteeing the decidable reasoning, and that, therefore,
has been chosen as the logic foundation for many ontology languages as well
as for the current standard Web ontology language OWL. OWL is one of
the most expressive Web ontology language that is world-wide used today.
As a result, we propose using OWL to define the structure, semantics of
data resources. By this way, reasoning can be effected over information from
relational data sources. This approach is to achieve objectives 3 and 4.

1.2 Scope and Limitations

This thesis brings together two large disciplines, namely the field of Descrip-
tion Logics applied to Ontology Engineering in the Semantic Web and the field
of Conceptual Data Modeling for databases. This combination is introduced into
the field of data integration. However, this thesis does not tackle the following
problems, among others:

• Ontology mapping. Roughly, ontology mapping is to establish, either manu-
ally or semi-automatically, correspondences (i.e. mappings) between differ-
ent ontologies. Typically, those mappings are useful for data translation and
query answering on the ontology layer. However, we focus on making the
semantics of data sources available to be exploited by integration systems.

• Integration from databases not modeled by ORM. The work presented here
is focused on capturing the data semantics residing in ORM schemas. We
do not deal with other data models such as relational models, ER or UML
diagrams. Interestingly, as we will see in Chapter 1, those schemas can be
converted into ORM schemas and vice versa. As a result, our work can be
applied to integrate databases from such kinds of model.
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• Ontologies in integration systems not in decidable OWL species. We repre-
sent the semantics of data sources in OWL ontologies (a decidable OWL
species). Hence, the integration systems who would like to integrate
databases should handle their respective OWL ontologies.

1.3 Thesis Outline

The remainder of the thesis is organized as follows.

Chapter 2 introduces the background of data integration. It explains the impor-
tance of conceptual modeling and reasoning in such process. Then it analyses
conceptual modeling for relational databases so that a relevant data model is
identified for our solution.

Chapter 3 introduces the Semantic Web, the environment into which relational
data sources are integrated. It shows the importance of description logic based
ontologies in the Semantic Web, presents OWL and the description logic theory.
Most importantly, the chapter presents a survey of data integration from relational
data sources into the Semantic Web. This is the original work introduced in this
thesis. The survey clarifies the issues that our approach is going to address in the
rest of the thesis.

Chapter 4 proposes a new OWL language, namely OWL-K, in order to capture one
of the most important constraints in conceptual modeling, namely identification
constraint. This work is motivated by the analysis showing that OWL DL, a
decidable OWL species, cannot represent this constraint. Extending OWL DL to
OWL-K is, therefore, necessary to capture the semantics of relational data sources.

Chapter 5 proposes an automated reasoning for OWL-K, showing that this Web
ontology language is decidable. This feature is very important because it guaran-
tees the deductive capabilities of data integration systems over information from
relational databases.

Chapter 6 presents our mechanism to achieve the semantic transparence between
data sources and integration systems through the formalization of ORM into OWL-
K. This mechanism permits to capture the original semantics of databases and is
shown to be automatized by an algorithm and the mapping rules which semanti-
cally translate ORM schemas into OWL(-K) ontologies.

Chapter 7 describes how to implement our approach in data integration systems,
illustrates our tool, which is at the first stage, to integrate relational data sources
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into the Semantic Web.

Chapter 8 concludes the thesis. We review the work presented in the thesis and
summarize our main contributions. We also point out the open problems and so
the perspectives for future research.

The appendixes provide additional information of the implementation in Chapter
7.



CHAPTER 2

Data Integration and Conceptual Data
Modeling

Data integration is a pervasive challenge faced in applications that need to
query data across multiple autonomous and heterogeneous data sources. Data
integration is crucial in large enterprises that own a multitude of data sources, in
large-scale scientific projects where data sets are being produced independently by
multiple researchers, for better cooperation among organizations, each with their
own data sources, and in offering good search quality across millions of structured
data sources, such as relational databases, on the World Wide Web.

Data sources are heterogeneous on the syntactical and semantic levels. The syn-
tactical level encompasses the way the data model is written down. A data model
is a collection of concepts that can be used to describe the structure of a database1.
Each description generated is a database schema. For example, in one database
schema there may be a concept ‘EMP]’ and in another one there exists the concept
‘EmpNr’. If exactly the same thing is meant by these two concepts (e.g. employee
number), then we say that there is only a syntactical difference; it can be resolved
by syntactical rewriting of the schema. The semantic level encompasses the in-
tended meaning of the concepts in a schema. Here, the meaning of a concept
depends mostly on its name, which can be interpreted differently by different peo-

1The structure of a database means the concepts, data types, relationships, and constraints
that should hold on the data.
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ple. For example, an engineer might consider a peace of metal as a component in
an automobile assembly line, while a child would see it as a toy. The challenge is
to express the schemas in such a way that the definition of a term is unambiguous
and expressed in a formal and explicit way, linking human understanding with
machine understanding in an integrated environment.

In this chapter, we will present the principles and general approaches to data in-
tegration (cf. Section 2.1). We argue the benefits of conceptual modeling and
reasoning in such process in Section 2.2. Consequently, we study different con-
ceptual modeling methodologies for databases in Section 2.3. In this section, we
will discuss their features with regard to an explicit and formal expression men-
tioned above, showing the most suitable conceptual modeling methodology to our
objectives.

2.1 Information Integration and Data Integra-

tion

Information integration provides an integrated view of data stored in multiple
sources of probably heterogeneous information. The integration system can be
in principle employed to access the data and to update the stored information.
The execution of updates on integrated data requires changes in the data sources.
Therefore a tight coordination between sources and the integration system and
among different sources is needed. This form of integration is typical of interest
to Federated database [117, 11].

Recently, a looser approach to integration has emerged, where the autonomy of
sources is a basic condition, and the integration system is seen as a data sources’
“client” who cannot interfere the operation of its sources. Therefore, the execution
of updates on integrated data is not concerned. For this reason, this type of
integration is called read-only information integration. It is often known under the
name of “data integration”.

In a data integration system, the organization responsible for the system is gen-
erally distinct from and independent of thoses controlling individual sources. The
user does not access such data sources directly, but poses his or her questions to
the integration system, and is thus free from the need to know where the actual
data reside and how to access the data sources to extract them. It is the task of the
integration system to decide what sources are appropriate to answer the question
of the user, to distribute the question on such sources, to collect the responses
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returned and to present the overall response to the user.

2.1.1 Data Integration based on Peer-to-Peer Architecture

Peer-to-Peer (P2P) integration is a possible approach to data integration [63,
134, 56]. This technique consists in building the mappings that implement the
connections between data sources (i.e. the peers). Requests are posed to one
peer, and the role of the query processing is to exploit, through the mappings, the
data that is internal to the peer and even external residing in other peers in the
integration system. These mappings allow a database to query another database
so that it understands the request. Peers are autonomous systems and mappings
are dynamically created and changed. Figure 2.1 presents the general architecture
of a Peer-to-Peer data integration.

Figure 2.1: Peer-to-Peer data integration architecture

The advantage of this architecture is that it provides an environment easily ex-
tensible and decentralized to share data. Any user can contribute new data or
even mappings with other peers. However, the disadvantage of this architecture
is the combinatorial explosion of the number of connections to be put in place if
the number of databases to integrate increases. This raises many challenges. For
example, in systems where the peers have the schemas decidable but arbitrarily
connected, the indecidability of the query answering may occur [63]. In addition,
interconnections between these peers are not under the control of any peer in the
system. This is also a challenge in answering queries raised at a peer that takes
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into account mappings because answers depend heavily on the semantics of the
overall system.

2.1.2 Data Integration based on Mediated Schema

Most data integration systems employ a mediated schema, which is also known
as a global schema. This is an approach where the entry of a data integration
system is a set of data sources that are represented by their schemas (also known
as local schemas). The integrated view is a global unification of the data coming
from the multiple and heterogeneous sources in the system. This view, or uniform
query interface, is built on the mediated schema. The mediated schema is purely
logical and virtual in the sense that it is used to process queries but not to store
data. The data remain in their data sources. To link the contents of data sources
to the elements of the mediated schema, the data integration system employs a
set of translation rules called schema mappings. The purpose of mappings is to
capture structural as well as terminological connections between the local and the
mediated schemas. Given a query from a user, the system employs a set of semantic
connections between the mediated schema and local schemas of data sources to
translate the user query to queries on data sources, then combine and return the
results to the user. Figure 2.2 shows the general architecture of a data integration
system based on mediated schema.

Figure 2.2: Architecture of a data integration system based on mediated
schema

While data integration based on mediated schema supports expressive queries on
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a wide range of autonomous and heterogeneous data sources by exploiting the
semantic relationships between different source schemas, some challenges of this
approach are:

• Design of a mediated schema must be done carefully and globally;

• Data sources cannot change considerably, otherwise they could violate the
mappings to the mediated schema;

• Conceptual notions can only be added to the mediated schema by the central
administrator.

2.1.3 Procedural and Declarative Approach

There are two principle approaches to data integration, namely the procedural
and the declarative approach.

In the procedural approach, data is integrated in a ad-hoc manner according to
a set of predefined requirements of information. In this case, the fundamental
problem is how to design software modules so that they access to appropriate
sources to fulfil the predefined requirements of information. Some data integration
projects following this approach are TSIMMIS [55] and Squirrel [33, 55, 89]. They
do not require an explicit notion of integrated schemas, and are based on two types
of software components:

• wrappers wrap sources;

• mediators obtain information from one or more wrappers or other mediators,
refine this information through integration and conflict resolution of infor-
mation coming from different sources, and provides information output to
the user or to other mediators.

The basic idea is to have a mediator for all types of query required by the user.
Generally, there is no constraint on the consistency of the results retrieved from
different mediators. For every two data sources to be integrated, a manuscript or
a transformation program should be written and maintained. The latter is the
toughest problem, because if a schema changes, the change must be detected and
all the transformation manuscripts taking account of this schema, its source and its
target must be updated. This requires a lot of maintenance work. Moreover, it is
easy to forget several changes if there are so many of them. This problem becomes
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even harder when many such transformations exist in an enterprise. Therefore,
this type of ad-hoc integration is not scalable.

The major part of the current work on data integration adopts the declarative
approach for the problem. The goal of this approach is:

• to model the data in a source by an appropriate language;

• to build a unified representation of data;

• to refer to such a representation in querying the integration system; and

• to derive query answers through the appropriate mechanisms accessing
sources.

Therefore, this approach assumes that a system of data integration is character-
ized by explicitly giving users a virtual, reconciled, and unified view of data in a
knowledge representation formalism. The latter is often called the common data
model of the system. The virtual concepts in the view are mapped to the concrete
data sources, where the actual data reside, by explicit mapping assertions. Thus,
the user formulates his or her question in terms of the common data model, and
the system decides how to exploit the mappings to reformulate the question in
terms of the language appropriate to data sources.

The declarative approach provides a crucial advantage over the procedural one:

• Although building a unified representation may be costly, it allows us to
maintain a consistent unified view of the information sources;

• This view represents a reusable component of a data integration system;

• By this approach, data integration systems can be built by using conceptual
modeling and reasoning techniques whose advantages will be shown in the
next section.

2.2 Conceptual Modeling and Reasoning Advan-

tages

Conceptual modeling (CM) deals with the question on how to describe in a
declarative and reusable way the domain information of an application, its relevant
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vocabulary, and how to constrain the use of data, by understanding what can
be drawn from it. CM provides the best vehicle for a common understanding
among partners with different technical and application backgrounds. It facilitates
information exchange over the Internet and within heterogeneous data sources.
Actually, CM of an application domain and reasoning support over conceptual
models have become critical for the design and maintenance of Semantic Web
services requiring data integration.

The role and importance of CM in traditional architectures for information man-
agement systems is well known and tools for CM are commonly used to drive
system design [88]. We can give a list of advantages of CM regarding the design
and the operation of an integration system as follows.

• Declarative and system independent approach. In general terms, one can say
that CM is the obvious mean for pursuing a declarative approach to Data
Integration. As a consequence, all the advantages deriving from making
various aspects of the system explicit are obtained. The CM provides a
system independent specification of the relationships within sources.

• High level of semantics in user interface. One of the most tangible effects of
CM has been to break the barrier between user and system by providing a
higher level of semantics in the design and user interface as well. Conceptual
models are often expressed in graphic form and even expressed in closed-
natural language. This is the key factor in presenting the overall information
scenario in user interfaces.

• Incremental approach. With CM, the overall design can be regarded as
an incremental process of understanding and representing the relationships
among data in sources. One can therefore incrementally add new sources
into the integration system.

• Mappings. While in the procedural approach, the information about the
relationships among sources is hard-wired in the mediators, in a declarative
approach it can be made explicit. The importance of this clearly emerges
when information about data is widespread in separate sources that are of-
ten difficult to access and not necessarily conforming to common standards.
CM for Data Integration can thus provide a common ground for the overall
relationships and can be seen as a formal specification explicit for media-
tor design. By making the representation explicit, we gain the re-usability of
the acquired knowledge, which is not achieved within a procedural approach.
This explicit representation facilitates the mappings that can be done not
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only manually from experts because CM language is understandable for hu-
mans, but also semi-automatically because experts can verify them.

Another set of advantages that one can obtain from the introduction of CM into
data integration is related to the ability of reasoning over conceptual models. For
example, one can use reasoning to check a conceptual representation (i.e. a model)
for inconsistencies and redundancies; to maintain the system in response to changes
in the information needs; to improve the overall performance of the system, etc.
Essentially, if we take an Artificial Intelligence (AI) point of view, we can consider
a whole integration system, constituted by an integrated view (with constraints),
data sources, and mappings, as a knowledge base. In such a knowledge base,
knowledge about specific data items (i.e. extensional knowledge) and knowledge
about how the information of interest is organized (i.e. intensional knowledge) are
clearly separated: extensional knowledge is constituted by the data sources, while
intensional knowledge is formed by the integrated view and the mappings. Under
this view, computing certain answers essentially corresponds to some reasoning
activities or in other words, to some logical inference. The certain answers are
those data that are logically implied by the data present in the sources and the
information on the view and mapping.

All the advantages outlined above can be obtained by having the appropriate mod-
eling methodologies and modeling languages for representing conceptual model.

A number of conceptual modeling languages have emerged as de-facto standard
today, both in Database and Semantic Web technologies, such as ER, UML, ORM
for the structured data models (e.g. relational database schemas), XML, RDF(S),
DAML+OIL and OWL for the web semi-structured data model. However, many
such languages do not have formal semantics based on logic, or reasoners built upon
them to support the designer as well as the user. In Section 2.3, we will study
some database conceptual modeling which are most popular today. Semantic Web
technologies will be introduced in Chapter 3.

2.3 Conceptual Data Modeling

Given that most data sources are databases, specifically relational databases,
we focus in this section on different conceptual data modelings, which are at the
basis of the data integration framework. Conceptual data models describe the
structure of the whole database for a community of users. They were developed to
provide a high-level abstraction for modeling data, allowing database designers to
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think of data in ways that correlate more directly to how data arise in the world.
To capture the meaning of an application domain as perceived by its developers,
conceptual models hide the physical storage structures and provide models that
are more understandable to human. Database schemas could first be designed in
a high-level semantic model and then translated into one of the traditional models
for ultimate implementation. Capturing more semantics at the schema level allows
the designer to declaratively represent relevant knowledge about the application. It
follows that sophisticated types of constraints can be asserted in the schema, rather
than embedding them in methods. Besides, it implies more possibilities to reason
over the content of the database. Such reasoning can be exploited for deriving
useful information for the solution of new problems posed by data integration
(e.g. schema comparison and integration [35]). Thus, integrating semantics of
data sources should be from conceptual models of these sources rather than from
their logical or physical models. Before discussing the most popular conceptual
data models, let us have a look at these three model levels in relational database
design.

2.3.1 Categories of Data Models

The first step in meeting the communication challenge is to recognize that each
database appears in different views, or data models. Each model is important and
serves its own purpose, but not all are useful or even meaningful to everyone who
participates in the design process.

The physical model. It is a view that is restricted to a specific relational
database and to the physical implementation of that database. At this level, im-
plementation details such as data types (e.g. “VARCHAR(5)”) or creation syntax
(e.g. vendor specific SQL dialects) are shown. In more simple terms, a physical
model is the code of the Data Definition Language (DDL, often, in SQL). In this
language, many types of constraints can be defined, either via columns of table,
or using more complex techniques such as the use of assertions or triggers. How-
ever, for the user and performance requirement, physical models usually contain
redundant data or information. For example, in physical models performance and
convenience factors may cause new or altered indexes need to be created to speed
up the query time; new other interfaces (e.g. views, stored procedures or addi-
tional methods) may be added. Figure 2.3 is an example of a simple database
schema described in a physical model. Since end users, clients, and most project
managers are usually not steeped in such typical database terminology such as
clustered indexes and foreign keys, the physical model is not an effective means of
communication outside the realm of designers and programmers.
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CREATE TABLE Dept_Mgr(
dno INTEGER,
ssn CHAR(11) NOT NULL,
fromDate DATE,
toDate DATE,
PRIMARY KEY (ssn, fromDate),
FOREIGN KEY (dno) REFERENCES Departement,
FOREIGN KEY (ssn) REFERENCES Employes,

ON DELETE NO ACTION);

Figure 2.3: A simple schema in physical model

The logical model. Logical models serve as the basis for the creation of physical
models. Logical models are biased towards the solution of the problem (designing).
They need to specify technical details and so often use non-natural or machine lan-
guage. However, logical models may not always correspond to physical models. In
logical level, normalization [47] occurs while denormalization may occur in physi-
cal level because of user or performance requirements. Therefore, logical model is
often transformed into physical model by applying several simple modifications.

The logical model is portrayed in the tabular form of relational model and shows
the logical relationships between tables. The relational model [47] represents the
database as a collection of tables of values, where each row represents a collection
of related data values. The table name and column names are used to help in
interpreting the meaning of the values in each row. All values in a column are of
the same data type. In the formal relational model terminology, a row is called
a tuple, a column header is called an attribute, a table is called a relation. Each
relation is given a subset of attributes which is called a primary key to uniquely
identify each tuple. A relation schema is made up of the relation name and a list
of attributes. A relational database schema is a set of relation schemas and a set of
integrity constraints such as the primary key constraint, the foreign key constraint,
etc. The foreign key states that a tuple in one relation that refers to another
relation must refer to an existing tuple in that relation. The foreign key is used to
maintain the consistency among tuples of the two relations. Figure 2.4 shows an
example of a relational database schema, where the underlined attributes make up
the primary key; the attribute deptNo of Location Dept is a foreign key that gives
the department number for its location and thus its value in every Location Dept
tuple must match the id value of some tuple in the Department relation.

The limitation of relational models is that the meaning of a relation is entirely
defined by the set of tuples that correspond to the relation. This means the
meaning of a relation is not self-contained. The relation name and attribute names
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have no formal meaning. In the relational model, there are no explicit relationships
between different relations. These relationships in relational database schemas
must be retrieved using queries on the database and some additional knowledge
(e.g. a set of integrity constraints) that is not contained in the relational model.

Figure 2.4: An example of the database schema in the logical model

The conceptual model. Conceptual modeling provides richer data structuring
capabilities for DB applications. A modeling method comprises a language and
also a procedure for using the language to construct models. The language may be
graphic (i.e. diagrams) and/or textual. In contrast to logical and physical models
which specify underlying database structures to be used for implementation, con-
ceptual models portray applications by using terms and concepts familiar to the
application users. Conceptual models are then (automatically) translated (by the
tool) into the corresponding logical schemas for the target Database Management
System (DBMS).

We can use the following criteria [66] as a useful basis for evaluating conceptual
modeling methods: expressibility, clarity, semantic stability, validation mecha-
nisms and formal foundation. The expressibility of a language is a measure of
what it can be used to say. Ideally, a conceptual language should be able to model
all conceptually relevant details about the application domain. The clarity of a
language is a measure of how easy it is to understand and use. Semantic stability
is a measure of how well models or queries expressed in the language retain their
original intent in the face of changes to the application. The more changes one is
forced to make to a model or query to cope with an application change, the less
stable it is. Validation mechanisms are ways in which domain experts can check
whether the model matches the application. A formal foundation ensures mod-
els are unambiguous and executable (e.g. to automate the storage, verification,
transformation and simulation of models).

Several modeling methods have been proposed. The most popular ones are Entity-
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Relationship, Unified Modeling Language and Object Role Modeling. We will
investigate these mechanisms with regard to the above criteria in the next sections.

2.3.2 Entity-Relationship Model

One of the most widespread conceptual models becoming a standard and
extensively used in the design phase of applications is the Entity-Relationship (ER)
model [37]. In the ER model, the domain of interest is modeled by means of an
ER schema. The basic elements of the ER schema are entities, relationships, and
attributes. An entity denotes a set of objects that have common properties. Such
objects are called the instances of the entity. Elementary properties are modeled
through attributes, whose values belong to a predefined domain such as String,
Boolean. For example, an EMPLOYES entity may be described by its attributes:
EMPLOYES’s name, birthdate, salary (cf. Figure 2.5). Properties of that are
due to relations to other entities are modeled through the participation (total or
partial) of their entity in relationships. A relationship denotes a set of tuples each
of which represents a combination of instances of the entities that participate in
the relationship. Since each entity can participate in a relationship more than
once, the notion of ER-role is introduced, which represents such a participation
and to which a unique name is assigned. The arity of a relationship is the number
of its ER-roles. Cardinality constraints can be attached to an ER-role in order to
restrict the number of times each instance of an entity is allowed to participate via
that ER-role. Such constraints can be used to specify both existence dependencies
and functionality of relations. They are often used in a restricted form, where
the minimum cardinality is either 0 or 1 and the maximum cardinality is either
1 or ∞. Additionally, so called is − a relations are used to represent inclusion
assertions between entities, and therefore the inheritance of properties from a more
general entity to a more specific one. An important constraint is the key constraint
on attributes. The attributes whose values are distinct for entity instances are
called key attributes of that entity. For example, the social security number (ssn)
attribute is a key of the EMPLOYES entity because no two employees are allowed
to have the same ssn. The ER model uses diagram notations to describe ER
schemas (Figure 2.5 is an example). In the ER diagram, the key attributes are
indicated by the underlines.

The ER model is common in use because of the correspondence with the relational
model, and the known translations from ER diagrams to relational models [47].
However, while in ER modeling, entities are explicitly specified and have a mean-
ing, they only survive as meaningless names in the relational model (i.e. relation
names). Furthermore, the relationships explicitly expressed in the ER model, are
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toDate

Department
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Address

Employ
fromDate
toDate

Figure 2.5: An example of the ER schema

hidden in the relational model.

Even though the ER model seems relatively simple (in the simple case just con-
sisting of entities and relations), ER models can become quite complex, even for
relatively simple domains [128]. Besides, ER modeling lacks the formal and real-
world semantics. Reasoning on the ER schema has therefore been objectives of
several works [31].

2.3.3 UML Class Diagram

The Unified Modeling Language (UML) [104] has become widely used for soft-
ware and database modeling. UML data modeling provides more expressive power
in database schema definition. Indeed, several modeling constructs of UML data
models are borrowed from the research on semantic data modeling and semantic
networks in Artificial Intelligence (AI). For modeling notation, UML uses class
diagrams to which constraints in a textual language may be added. Essentially,
class diagrams provide an extended ER notation. Figure 2.6 shows how the ER
schema of Figure 2.5 can be displayed using UML notation.

UML class diagrams allow for modeling, in a declarative way, the static structure
of an application domain, in terms of classes and relations between them. A
class denotes a set of objects with common features, like entity in ER modeling.
A class is graphicly rendered as a rectangle divided into three parts (see, e.g.,
Figure 2.6). The first part contains the name of the class, which has to be unique
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Identity {PK}
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Budget: real
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...

0..1
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Figure 2.6: UML diagram of the example in Figure 2.5

in the whole diagram. Two other optional parts contain the attributes, like ER
modeling, and the operations of the class, i.e. the operations associated to the
objects of the class. An attribute a of type T for a class C associates to each
instance of C a set of instances of T. Attributes are unique within a class, but
two classes may have two attributes with the same name, possibly of different
types. An association in UML is a relation between the instances of two or more
classes. Therefore, associations can be bi-, thre- or n-ary. An association class
describes the properties of an association, such as attributes, operations, etc. A
particular kind of binary associations are aggregations, which denotes a part-whole
relationship, i.e., a relationship that specifies that each instance of a parent class
(the containing class) contains a set of instances of a child class (the contained
class). In UML one can use a generalization between a parent class and a child
class to specify that each instance of the child class is also an instance of the parent
class (like is-a relations in ER modeling). Hence, the instances of the child class
inherit the properties of the parent class, and satisfy additional properties that in
general do not hold for the parent class. Several generalizations can be grouped
together to form a class hierarchy.

UML allows cardinality constraints on both attributes and associations. Disjoint-
ness and covering constraints are in practice the most commonly used constraints in
UML class diagrams. Nevertheless, some useful representation mechanisms are not
considered in UML schemas such as subsetting of attributes, inverse of attributes,
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union and complement of classes, mainly because it is commonly accepted that
part of the semantics of the application can be represented within methods. UML
allows for other forms of constraints such as specifying class identifiers, functional
dependencies for associations, etc., generally through the use of OCL (Object Con-
straint Language) [113], a form of constraint expressible in First-order logic (FOL)
[52]. However, unrestricted use of OCL constraints makes reasoning on a class
diagram undecidable, since it amounts to full FOL reasoning. Besides, the use
of UML in industrial-scale software applications brings about class diagrams that
are large and complex to design, analyze, and maintain. The expressiveness of
the UML constructs may lead to implicit consequences that can go undetected
by the designer in complex diagrams, and cause various forms of inconsistencies
or redundancies in the diagram itself. This may result in a degradation of the
quality of the design and/or increased development times and costs. Several works
[15, 53, 49, 70] have proposed to describe UML class diagrams using various formal
kinds in order to reason on UML class diagrams, and formally prove properties
of interest through inference, and hence help the designer in understanding the
hidden implications of his choices when building a class diagram.

2.3.4 Object Role Modeling

Object-role modeling (ORM) [68] is a conceptual modeling method for de-
signing and querying data models. Typically, a modeler develops a data model by
interacting with others who are collectively familiar with the application. These
subject matter experts need not have technical modeling skills. Therefore, reli-
able communication occurs by discussing the application at a conceptual level,
using natural language and analyzing the information in simple units. ORM is
specifically designed to improve this kind of communication.

Originally, ORM is a successor of NIAM (Natural language Information Analysis
Method) [139] that was developed in the early 70’s to be a stepwise methodology
arriving at “semantics” of a business application’s data based on natural language
communication. Relational terms such as tables, columns, and keys do not exist
in ORM because they are abstractions used for describing things stored in a re-
lational database. Actually, Object Role Modeling got its name because it views
the application world as a set of objects (entities or values) that plays roles (parts
in relationships). ORM sometimes can be called as fact-based modeling because it
verbalizes the relevant data as elementary facts. These facts cannot be split into
smaller facts without losing information. The terms used in ORM have a direct
relevance to concepts in the real world. Thus, this view of the world lets you
describe the data in everyday terms rather than using an artificial language that
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is not effective in communicating and prone to being misunderstood. Value object
types (or simply Value types) and entity object types (or simply Entity types) are
distinguished by linguistic distinction. Value types correspond to utterable enti-
ties (e.g. ‘Code’, ‘Firstname’) while entity types refer to “non-utterable” entities
(e.g. ‘City’, ‘Person’). The relations between objects generates facts. ORM allows
relationships with one role (for example, Person works), two, three, or as many
roles as you like.

ORM has a rich language for expressing business rules, either graphicly or textually
(i.e., the graphic form can be translated into pseudo natural language statements).
In an ORM diagram, roles appear as boxes, connected by a line to their object
type. A predicate is a named, contiguous sequence of role boxes. Since these
boxes are set out in a line, fact types may be conveniently populated with tables
holding multiple fact instances, one column for each role. This allows all fact types
and constraints to be validated by verbalization as well as sample populations.
Communication between modeler and domain expert takes place in a familiar
language, backed up by population checks. It is easy to express virtually any style
of static constraints upon the ORM diagram, such as mandatory, uniqueness (i.e.
cardinality), subset, equality, exclusion, etc. These constraint types may also be
combined. For example, an exclusion constraint may be combined with mandatory
disjunction to specify that an object must either play role x or role y but not both.

Suppose Table 2.1 includes data about departments employing employees. For
simplicity, we assume that employees are identified by their names. The first
row contains three elementary facts: the department identified “IT” employs the
employee named “Hang DO”, the department identified “IT” employs from year
“1996” and the department identified “IT” employs to year “2001”. The null value
“?” indicates the absence of a fact to record a department MK’s end date. All the
facts are elementary rather than compound. Therefore, null values do not appear
in verbalization and eight facts can be extracted from Table 2.1.

Table 2.1: Some data of the department employment

Department Employee fromDate toDate
IT Hang DO 1996 2001
MK Marie CLAIRE 2000 ?
MK Hang DO 2002 2005

Although Table 2.1 includes eight fact instances, it has only three fact types:
Department employs Employee, Department employs from Date and Department
employs to Date. The facts in this table and the constraints on them can be
modeled in ORM as in Figure 2.7. In this figure, we can see the population of the



24 CHAPTER 2. DATA INTEGRATION AND CONCEPTUAL DATA MODELING

facts corresponding to each fact type. (Note that the population is not part of the
conceptual schema itself.)Department(Id) Employee(Name)employsFromemploysTo DateIT     2001MK    2003 IT    1996MK   2000MK   2002 employs/ is_employed_byIT    Hang DOMK   Marie CLAIREMK   Hang DO 

Figure 2.7: Modeling the data of Table 2.1 in ORM

ORM has well-defined formal semantics. Actually, it has been fully formalized in
FOL [131, 135, 132]. Conceptual query languages have also been designed for ORM
like ConQuer [21]. ConQuer supports not only ORM queries but also the automatic
translation from ORM to SQL queries. Furthermore, ORM includes a vast array
of schema transformations as well as optimization heuristics to determine which
transformations to use. For implementation, ORM schemas are usually mapped
to relational database schemas, in which many fact types may be grouped into a
single table (cf. Chapter 7). Actually, a correctly described ORM schema can be
translated into a 5th normal form (5NF) relational database schema [13, 12]. A
reverse engineering can also be provided to convert a relational database into an
ORM schema [137].

2.3.5 Distinguish ORM from ER modeling and UML class
diagramming

Unlike ER modeling (or simply ER) and UML class diagramming (or simply
UML), ORM treats all elementary facts as relationships, thus regarding decisions
for grouping facts into structures (e.g. relation schemas, attribute-based entities,
classes) as implementation concerns irrelevant to business semantics. The limits of
ER and UML on conceptual data modeling with regard to the ORM method have
been investigated in a series of works (e.g. [64]). In this section, we will review
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the main features that distinguish ORM from ER and UML. Note that UML is an
extension of ER. Therefore, besides the limits of the extended part of UML, the
limites of ER that we show here are also applied to UML.

Clarity limit. The semantics of ER and UML does not correspond to the real-
world semantics of the domain of interest, but must accommodate itself to the
ER and UML model. ER (UML) often requires to make arbitrary decisions about
what an entity (class), a relationship (association), or an attribute is. Even ex-
perienced modelers cannot think of data in ways that correlate to how data arise
in the world. Consequently, the ER (UML) model is incomprehensible for users.
Hence, although many users of tools for automating ER (UML) believe that they
are creating a conceptual model, referring to the conceptual modeling criteria
mentioned above, they are not. Actually, ER and UML can be classified to be at
logical abstraction level [14]. To illustrate this, we will use examples that show
the differences in the resulting schema in ER (UML) and ORM.

• Illogical attributes. Suppose adding to the schema given in Figure 2.7 two
fact types Employee lives in City and Employee works in City. In ORM, an
Employee and a City are both conceptual objects (entities). You could tell
someone that you (an Employee) works in Sophia-Antipolis (a City). But you
would never try to explain to someone unfamiliar with database design that
a City could ever be an attribute of an Employee. Let us say the attributes
of an Employee may be the weight, height; but City could not logically an
attribute of a person. Furthermore, City entity is converted to two attributes
of the Employee (LiveCity) and (WorkCity) in an ER (UML) schema. There
is no such thing as a LiveCity or a WorkCity in the real world. Accordingly,
the real-world semantics of the domain of interest is missing in ER (UML)
schema. Moreover, it is not relationally possible to have two attributes with
the same name, such as City and City, in the same logical entity. You have
to create attribute names that combine abbreviated semantic and domain
information into a single attribute name. Figure 2.8 shows the two fact
types that would be designed in ORM (a) and that would appear in an ER
(UML) schema (b).

• Entities without real-world semantics. Suppose adding to the simple schema
given in Figure 2.8(a) a fact that an Employee has missions in multiple cities.
Conceptually, this addition is simple: Add another fact type to the schema,
reusing the Employee and City objects and naming the new role played as
shown in an ORM schema in Figure 2.9(a). Note that the schema contains
only one Employee object and one City object. But in ER (UML), to add
this new information, you must establish a logical entity named MissionCity
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Employee

Social security Number
Name
…
LiveCity
WorkCity

Figure 2.8: An example illustrates the illogical attributes of an object
in ER (UML) modeling

(or something similar) and their attributes (ssn of the Employee and City)
to store all the Cities in which a given Employee has missions in (cf. Figure
2.9(b)). However, is there such a thing as a MissionCity entity? The an-
swer is that this entity is not conceptual and was arbitrarily determined to
accommodate the ER (UML) mechanisms.Employee CityliveInworkIn(a)

(b)
has mission in

MissionCity

Social Security Number
City

Employee

Social Security Number
Name
…
LiveCity
WorkCity

Figure 2.9: An example illustrates the illogical entities in ER (UML)
modeling

Attribute-based modeling limit. Attribute-based modeling in ER (UML) is
also a source of many other problems that ORM does not encounter thanks to its
attribute-free feature:

• Unstable schema. Suppose we decide to add the fact type: ‘City has Monu-
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ment’. This addition would now force us to show City as an entity type in
ER or class in UML, so we would have to replace the attribute description by
relationships. This is a significant change to the schema (cf. Figure 2.10(b)).
While in ORM, all we have to do is adding a new fact type; nothing else
changes; and we gain the added benefit of revealing the conceptual object
types (semantic domains) that bind the schema (cf. Figure 2.10(a)).Employee CityliveInworkIn (a)

(b)
has mission in

Employee

Social Security Number
Name
…

Monumenthas
City

Name
Monument[0..*]

has mission in workIn liveIn
Figure 2.10: An example illustrates the instability of ER (UML)
schemas

• Cumbersome verification. Attributes make it awkward to talk about fact
populations. ER (UML) diagrams are too cumbersome for performing the
population checks that are so vital for validating rules with clients.

• Limited and complex expressivity. Displaying some facts as attributes and
some as relationships leads to the requirement for different notations to ex-
press the same kind of constraint or rule. Avoiding attributes in ORM leads
to greater simplicity and uniformity. We do not need notations to reformu-
late constraints on relationships into constraints on attributes or between
attributes and relationships. Apart from this unnecessary complexity, some
ER/UML notations do not let you express a constraint on an attribute, even
that constraint could be expressed if the fact is modeled as a relationship
(e.g. subset).

The limites of ER (UML) shown above do not mean that using attributes is not
useful. Once having a full schema, displaying less important features as attributes
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can help provide a compact view of the schema. Actually, ORM includes ab-
straction techniques so that you can display “minor” fact types as attributes (e.g.
using unary predicate). Besides, ORM schema can be converted to ER (UML) di-
agram and vice versa [137, 22, 121]. Therefore, if you like to obtain an ER (UML)
diagram, the best way is abstracting it from an ORM schema.

Employee

Social Security Number {P}
Name: string
BirthDate: date
...
Identity Number: string {U1}
Passport Number: string {U2}

Age
Change_responsabilité
...

Employee(ssn) hasNamewasBorn NameBrthDateIdentityNumberPassportNumberhasIdhasPassport(a) Employee.Identity number is not null
or
Employee.Passport number is not null(b)

Figure 2.11: Constraintes in ORM (a) are described as an attached comment
in UML (b)

Notation expressivity. ORM graphic notations are far more expressive than
those of ER and UML. They allow constraints to be applied wherever they makes
sense. UML does not have a graphic notation for disjunctive mandatory roles.
For example, we would like to express that an employe must have an identity
number or a passport number (see its diagram in ORM and UML in Figure 2.11).
As seen at the bottom of Figure 2.11 (b), in UML this kind of constraint needs
to be expressed textually in an attached comment. Even such constraint can be
expressed in some formal language, e.g. OCL, the readability of the constraint in
UML is typically poor compared with the ORM verbalization (e.g. each Employee
has a SocialSecNr or has a PassportNr).

UML does not have a standard graphic notation for cardinality constraints on
attributes but use the textual constraints in braces after the attribute names (P =
primary identifier, U = unique, with numbers appended if needed to disambiguate
cases where the same U constraint might apply to a combination of attributes).
Or else a tool extension is needed [3], but clearly this is not portable.

Although UML provides xor-constraints between single roles, the standard seems
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to imply that these roles must belong to different associations. If so, UML cannot
use an xor-constraint between roles of a ring fact type (e.g. between the husband
and wife roles of a marriage association). ORM exclusion constraints cover this
case, as well as many other cases not expressible in UML graphic notation. The
pair-exclusion constraint in ORM can be expressed in UML by adding a textual
constraint as a comment written in some language (e.g. OCL), and connecting this
by dotted lines to the two associations. However this notation is both cluttered and
non-standard (since UML allows users to pick their own language to write textual
constraints). UML has no graphic notation for exclusion between attributes, or
between attributes and associations. In these cases, we must resort to non-standard
notations or textual constraints or use alternative ways to model them. ORM’s
exclusion constraint applies not just to a set of roles, but a set of role-sequences.
It is clear that UML’s xor-constraint is far less expressive than ORM’s exclusion
constraint.

ORM allows a subset constraint to be graphicly specified between any pair of
compatible role-sequences. This constraint is not possible in any variation of ER
modeling or in the UML class diagram without introducing intermediate (and
unnatural) structures. Actually UML allows subset constraints to be specified
between whole associations, but does not provide a graphic notation for subset
constraints between single roles or between parts of associations. Instead, UML
must use a comment including the textual constraint to express the single-role sub-
set constraint. For example, the constraint that “Employees have second names
only if they have first names” can be represented as a subset constraint in ORM. If
a UML diagram depicted the relationship “have” as an association, it would not be
able to capture the subset constraints. If firstName and secondName are modeled
as attributes of Employee, the single-role subset constraint can only be expressed
by attaching a comment: Employee.firstName is not null or Empployee.secondName
is null. Equality constraint is a shorthand for two subset constraints. As a conse-
quence, UML has no graphic notation for this kind of constraints either. Subset
and equality constraints enable various classes of schema transformations to be
stated in their most general form. ORM’s more general support for these con-
straints allows more transformations to be easily visualized.

With regard to objectified relationships (association classes), UML requires the
same name to be used for the original association and the association class, im-
peding natural verbalization of at least one of these constructs. In contrast, ORM
nesting is based on linguistic normalization (i.e. a verb phrase is objectified by a
noun phrase), thus allowing both to be verbalized naturally, with different names
for each. ORM’s concept of an external uniqueness constraint that may be ap-
plied to a set of roles in one or more predicates provides a simple, uniform way to
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capture all of UML’s qualified associations and unique attribute combinations, as
well as other cases not expressible in UML graphic notation (e.g. cases with m:n
predicates or long join paths). UML does not provide ring constraints built-in,
join constraints (even it frequently arises in real applications). Since UML does
not provide standard graphic notations for such constraints and leaves it up to the
modeler whether such constraints are specified, it is perhaps not surprising that
many UML schemas one encounters in practice simply leave such constraints out.

ORM’s graphic constraints can be automatically mapped to efficient SQL. By
contrast, code generated from UML’s OCL constraints is unlikely to be as efficient
as hand crafted SQL. UML constraints could be expressed in SQL but at the
cost of both being error prone and less clear. As always, the ORM notation has
the further advantage of facilitating validation through verbalization and multiple
instantiation.

Conceptual Query. Apart from conceptual modeling, ORM is ideal for per-
forming queries at the conceptual level. You can query a database without any
knowledge of how the facts are grouped into implementation structures. The rea-
son is that when adding new information in ORM model, you only need to extend
the schema and nothing else changes (i.e., there is no reformulation in existing
schema). Therefore conceptual queries may be formulated in terms of continuous
paths through the schema. Moving from a role through an object type to another
role amounts to a conceptual join. ER (UML) diagrams, however, typically omit
domains, so you must look them up in a table.

Suppose you want to list the titles of the projects that have an assessor. This
request may be formulated as the following ORM query: “List the ProjectTitle
of each Project that was assessed by an Employee”. If a project has at most one
assessor, this query generates the following SQL:

select projectTitle from Project
where assessor is not null

If the application allows more than one assessor per project , you do not need to
change the ORM query, because constraints have nothing to do with the meaning
of the query. However, the relational structures have changed and the following
SQL query is generated:

select X1.projectTitle from Project X1, Assessment X2
where X1.projectnr = X2.projectnr

An SQL query often needs to be changed if the relevant part of the conceptual
schema or internal schema is changed (even if the meaning of the query is unal-
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tered). However, more substantial queries in SQL than the example above can be
formulated easily as conditioned paths through ORM space.

ORM scores higher on clarity, because its structures may be directly verbalized
as sentences, it is based on fewer and more orthogonal constructs, and it reveals
semantic connections across domains. Being attribute-free, ORM is more stable
for both modeling and queries. In addition, ORM is easier to validate. In ORM
all facts are expressed in the same way, using roles. As a result, the notation is
both uniform and simple to populate.

2.4 Conclusion

In this chapter, we have introduced the principle concept of integrating in-
formation in general and data in particular. We also showed the advantages of
declarative approach and of conceptual modeling and reasoning in designing a
data integration system. It turns out that data integration tools typically require
a common and comprehensive schema design before they can be used to share
information. But with attributed-based models, these tools are difficult to extend
because schema evolution is heavyweight and may break backward compatibil-
ity. ORM, however, is capable of being evolved without breaking the backward
compatibility.

By following the fact-oriented approach and avoiding attributes, ORM avoids ar-
bitrary modeling decisions and highlights relationships through semantic domains,
enhances semantic stability, and facilitates natural verbalization. This stability
applies not only to the conceptual schema itself, but also to conceptual queries
based on the schema. For data modeling, fact-oriented graphic notations are far
more expressive, clearer and less error prone than ER and UML graphic notations.
Actually, semantics in ORM are expressed in a formal way thanks to its underlying
logic language FOL.

Since ORM includes procedures for mapping to attribute-based structures. We
believe that the favorite solution is using ORM first to do the conceptual modeling,
getting all the benefits of its simplicity and richness, and then applying to it
mapping procedures to generate other views (such as Relational model, ER, UML).

Moreover, if ORM schemas are represented explicitly, there will be a significant
scope for inter-operability. Nowadays, several tools have been developed to con-
vert graphic ORM schemas to those in XML format [43, 120]. Even though the
description of ORM schemas in XML by these tools is still in syntactic level, it



32 CHAPTER 2. DATA INTEGRATION AND CONCEPTUAL DATA MODELING

will assist inter-operation tools to exchange or parse ORM schemas.

Nevertheless, semantics of an application domain represented in conceptual data
models are now typically in diagram formats, and used in an off-time mode, i.e.
used during the design phase, not at run-time of applications. While in the Web
environment, applications and application types in general are unknown a priori,
including the manner in which they will want to refer to the data, or more precisely,
to the concepts and attributes that take their values from the database. Mainte-
nance in the systems directly integrating database schemas would become nearly
impossible. Therefore, elements of meaning (or knowledge) of the database’s un-
derlying domain have to be agreed and represented explicitly. They need to be
stored, accessed, and maintained externally to the database schema as well as to
the intended applications. This is where ontologies come into play.

In the next chapter, we will study ontology technologies on the Semantic Web and
how to integrate relational data sources into this environment.





CHAPTER 3

Ontology Technology and Data
Integration into Semantic Web

In the previous chapter, we have examined the problem of data integration,
the role of conceptual modeling in data integration and conceptual modeling for
relational data sources. In this chapter, we will investigate the environment into
which relational data sources should be integrated (Section 3.1). Based on the
argument in Section 2.4, we focus on how to represent knowledge base in the Se-
mantic Web. This leads us to study the Web Ontology technology, which includes
not only the formalisms for knowledge representation on the Web but also their
underlying mechanisms to store the semantics and to reason on it. We concentrate
on OWL in Section 3.2, the current standard Web Ontology language proposed
by W3C1. Then in Section 3.3, we introduce the underlying logic foundation of
OWL, which guarantees not only its formal semantics but also its decidability. Af-
ter that, in Section 3.4 we will investigate the recent research on data integration
from relational data sources into the Semantic Web environment, focusing on how
to represent the semantics of data in relational data sources on the Semantic Web.
In consequence, we propose our approach of integrating relational data sources
into this environment in Section 3.5.

1World Wide Web Consortium. http://www.w3.org/
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3.1 Semantic Web Environment

Being an effort of a large number of researchers and industrial partners led by
W3C, the Semantic Web (SW) is an extension of the current Web [18]. Like Inter-
net, the SW is decentralized as much as possible. It provides a common framework
that allows to share and reuse data through community frontiers and applications.
In this environment, the resources such as documents, images, real world objects
like persons or institutions, or even services have the associated meaning (i.e.,
the information has the well-defined semantics); these resources can be readily
accessible to automated processes; and the interaction capacity between human
and machine is improved. In other words, the SW is developed to represent the
information which is understandable to humans (i.e. knowledge) and tractable
to machines. The SW can be seen as an effective infrastructure to improve the
visibility of knowledge on the Web. Ontologies in the SW environment, as in-
troduced in Section 3.1.2, are supposed to hold application-independent domain
knowledge while conceptual schemas were developed only for the use of enter-
prise applications. Ontologies are intended to represent agreed and shared domain
semantics. As a result, with ontology technology, the SW provides an environ-
ment in which heterogeneous information resources can be integrated; computer
systems can meaningfully communicate to exchange data and make transactions
interoperate independently of their internal technologies.

3.1.1 Semantic Web Architecture

The architecture of the SW is based on a hierarchy of languages. Each lan-
guage both exploits the features and extends the capabilities of the layers below (cf.
Figure 3.12). Therefore, this architecture is also called “Semantic Web Language
Layer”.

Unicode-URI and XML (Schema) consist of existing standards for data represen-
tation and provide a syntactical basis for the Semantic Web languages.

Unicode provides an elementary character encoding scheme, which is used by XML.
Uniform Resource Identifier (URI) is a fundamental component of the current
Web, which provides the ability to uniquely identify resources as well as relations
among resources on the Web. URI is the generic set of all names/addresses that

2The figure is motivated by the architecture proposed by Berners-Lee [17]
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Figure 3.1: The basic layers of data representation for the Semantic Web

are short strings refering to resources. All concepts used in the languages in the
upper layers are specified using Unicode and are uniquely identified by URIs.

eXtensible Markup Language (XML) [127] is a fundamental component for syntac-
tical interoperability. XML is the universal format for (semi-)structured documents
and data on the Web, proposed by the W3C. The main contribution of XML is
that it provides a common and communicable syntax for web documents. Data
is described using a number of tags with arbitrary names that can contain other
tags or arbitrary data. Tags are used to build the elements of an XML document,
which are identified by name and may have a set of attributes. Each attribute
specification has a name and a value. XML allows users to define their own tags.
It can be used as a data exchange format, in which case all parties taking part
in the exchange need to agree on a common structure for the XML document.
Another possible use of XML, as it is done in the Semantic Web, is to use it as
the serialization3 language for other languages.

The structure of XML documents is prescribed by XML Schema. It contains a set
of rules (constraints on the structure and on the content of the XML document)
with which an XML document must comply to be considered as valid according to
the schema. XML Schema describes only the physical structure (i.e. the syntax)
of an XML document but not the meaning (i.e. the semantics) of the data. XML
Schema has a broad range of (simple) data types (e.g. integer, string), and the

3Serialization is the process of converting an object into a form that can be readily transported
or persisted to a storage location.
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possibility to form (arbitrarily) complex data types (e.g., positive integers make
up a sub-type of integer).

Namespace is a context or an abstract container of names, terms, and words that
represent objects and concepts in the real world. A defined name in a namespace
corresponds to only one object.

Resource Description Framework (RDF) [99] was developed by the W3C as part
of its semantic web effort. RDF is a model for representing metadata about Web
resources. This information is identified on the Web by the URIs and needs to be
processed by applications, rather than being only displayed to people. Resources
may be divided into groups called classes. RDF describes metadata by using RDF
statements, which are ¡subject, predicate, object¿ triples. The subject is a resource
and can be the object of another statement. The predicate is a property describing
the given resource and expresses a relation between the subject and the object.
The object is the object of the relation and can be a value or an RDF statement
assigned to property. An RDF model can be represented as a directed graph,
where the subjects and objects form the nodes and the predicates form the arcs.
RDF also provides an XML-based syntax (called RDF/XML) for recording and
exchanging the metadata. An example of RDF graph, the corresponding triple
notation and the corresponding RDF/XML serialization are shown in Figure 3.2.

#sonI3S #TranThanhSon

“TRAN”

“Thanh Son”

(a)  RDF  Graph

(hasName, #sonI3S, #TranThanhSon)
(lastName, #TranThanhSon, “TRAN”)
(firstName, #TranThanhSon, “Thanh Son”)

hasName

lastName

firstName

(b)  RDF Triples

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax- ns#"
xmlns:s="http://SonClub.org/schema/">
<rdf:Description about="sonI3S">
<s:hasName>
<rdf:Description about="#TranThanhSon">
<s:lastName>TRAN</s:lastName>
<s:firstName>Thanh Son</s:firstName>
</rdf:Description>
</s:hasName>
</rdf:Description>
</rdf:RDF>

(c)  RDF/XML format

Figure 3.2: An example of RDF graph, its triples and RDF/XML serialization



38 CHAPTER 3. ONTOLOGY TECHNOLOGY AND DATA INTEGRATION INTO SEMANTIC WEB

RDF gives a formalism for metadata annotation, and a way to write it down in
XML, but it does not give any special meaning to vocabulary such as a subclass
of another class or a type of a given class. Therefore, an interpretation in RDF is
an arbitrary binary relation.

RDF Schema (RDFS) [25] is a language to describe vocabularies, classes and the
properties that may be used to describe classes, properties and other resources
in the RDF model. RDFS is a semantic extension of RDF. It further extends
RDF by adding more modeling primitives4 commonly found in ontology languages
like domain and range restriction on property, class and property taxonomy5, etc.
RDFS allows to define vocabulary terms and the relations between those terms.
The combination of RDFS and RDF is usually denoted as RDF(S).

Ontology layer is intended to bring formal languages to the reasoning. It plays
an important role in fulfilling semantic interoperability and is considered as the
core of the SW. Together with the Logic layer that enable the writing of rules,
Ontology layer provides the capability to deduce new knowledge (cf. Section 3.3).
We will examine Ontology in more detail in the next sections. The proof layer,
based on the use of rules, evaluates, together with the trust layer, the mechanism
for applications to decide whether to trust the given proof or not. The Proof
and Trust layer probably refer to the application and not to some language (e.g.,
the application could prove some statement by using deductive reasoning and a
statement could be trusted if it is proven and digitally signed by some trusted third
party and even encrypted). The user would very likely play an important role in
the Trust layer, because it is the user that should decide whether or not some
information source should be trusted. These further layers may enhance Ontology
languages in the future.

3.1.2 Ontology and Web Ontology languages

As shown in the SW architecture (cf. Figure 3.1), URIs, Unicode and XML
are considered as the basic blocks on which lie RDF(S) and the higher layer of
Ontology.

In AI and Web research, an ontology is introduced as “a formal explicit specifica-

4Modeling primitives are the basic building blocks for modeling.

5A taxonomy defines classes of object and the relations among them.
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tion of a shared conceptualization” [57]. A conceptualization refers to an abstract
model of some phenomenon in the world that identifies the relevant concepts of the
phenomenon. An ontology is a specification because it represents the conceptual-
ization in a concrete form. Explicit means that the type of concepts used and the
constraints on their use are explicitly defined. Formal refers to the fact that the
ontology should be machine-understandable. Shared indicates that an ontology
captures consensual knowledge, that is, it is not restricted to one individual but
accepted by a group.

According to this definition, an ontology must include a vocabulary that is used to
formalize the knowledge in the ontology, and corresponding definitions that define
the semantics of the vocabulary terms. Typically, the vocabulary includes terms
for concepts, relations and individuals, while the descriptions of these terms are
specified by axioms or assertions:

• Concepts (or classes) represent sets of objects with common characteristics
within the domain of interest;

• Relations (or properties) represent relationships among concepts;

• Individuals are individual objects in the domain of interest; When an indi-
vidual is a member of a class, it can be called an instance of the class.

• Axioms are sentences that are always true and are used in general to enforce
suitable characteristics of concepts, relations;

• Assertions (or facts) are sentences that are always true and are used to
enforce suitable characteristics of individuals.

The axioms and assertions in an ontology are normally constructed by the con-
structors. Constructors are the building blocks and specify the expressive power
of an Ontology language, which is used to represent ontologies. In order to con-
struct more expressive formal definitions, more relevant constraints (expressed by
using constructors) among vocabulary terms are needed. For example, classes,
subclasses and relations among objects are a very powerful tool for Web use. We
can express a large number of relations among objects by assigning properties
to classes and allowing subclasses to inherit such properties. Inclusion relations
in general (i.e., subclass and subproperty) can also present the reusability of on-
tologies: large ontologies can be constructed by assembling and refining existing
components. Ontology languages can represent more meta-information such as
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cardinality of relationships, the transitivity of relationships, etc. With Web ontol-
ogy languages, the meaning of terms or of XML codes used on a Web page can be
defined by pointers from the page to an ontology.

The early Web Ontology language is SHOE6. This language is based on HTML,
which is not considered as a building block of the Semantic Web. In SHOE infor-
mation must be repeated and this redundancy may cause significant maintenance
problems. SHOE’s data-model is similar to that of RDFS but it does not include
the reification mechanism of RDFS (i.e., an RDF statement is used as an object
in a triple).

RDFS can be seen as a very-simple web ontology language, with constructors
to define classes, properties, inclusion relations for both classes and properties
(i.e., subclass and subproperty), and domain and range constraints on properties.
However, in RDFS there are no existence or cardinality constraints (e.g., we cannot
say that all instances of person have a mother that is also a person, or that persons
have exactly two parents) and no transitive, inverse or symmetrical properties (e.g.,
we cannot say that isPartOf is a transitive property, that hasPart is the inverse of
isPartOf or that these properties are mutually symmetrical). There is no distinction
between classes and instances. More expressive constructors like axioms cannot be
expressed in RDF(S). Therefore it cannot express closed-world assumptions and
several other commonly used non-monotonic constructors. Moreover, some parts
of RDF(S) vocabularies are not assigned any formal meaning, and in some cases,
notably the reification and container vocabularies, it assigns less meaning than one
might expect.

OIL (Ontology Interence Language) [51] lays on top of RDF(S). Actually, OIL is
not completely layered, because there is a part of RDF(S), which is not a part of
OIL. Reification and meta-classes in RDFS are not allowed in OIL, which means
that not all valid RDF(S) is valid OIL. OIL has no explicit import mechanism,
inadequate support for ontology evolution, and cannot express the synonym of
classes or properties either.

DAML (DARPA Agent Markup Language)7 attempts to combine the best features
of other Semantic Web languages, including RDF, SHOE, and OIL. Like OIL,
DAML builds upon RDF. However, DAML is still not more expressive than SHOE.

6http://www.cs.umd.edu/projects/plus/SHOE/index.html

7http://www.daml.org/language/
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DAML+OIL [80] is the result of merging DAML-ONT (an early result of DAML)
and OIL. In general, what DAML+OIL adds to RDF Schema is the additional ways
to constrain the allowed values of properties, and what properties a class may have.
Some restrictions in DAML+OIL cannot be expressed in RDF(S), which means
that in some cases decidability is lost (namely when cardinality constraints are
applied to properties that are transitive, or that have transitive sub-properties).
So decidability in DAML+OIL depends on an informal prohibition of cardinal-
ity constraints on non-simple properties. A major difference between OIL and
DAML+OIL is the support for primitive and more complex data types (come di-
rectly from XML Schema) in DAML+OIL, where in OIL only the string data type
is supported.

As a result of the work of the W3C Web Ontology Working Group, the Ontol-
ogy layer has now been instantiated with the Web Ontology Language OWL (cf.
Section 3.2). OWL distinguishes from DAML+OIL by some features. A new
type of property, owl:SymmetricProperty, has been added, which can directly state
that properties are symmetric. Qualified number restrictions are not supported
in OWL, mostly to keep things simple. Several bugs and omissions in RDF and
RDF Schema have now been fixed by the RDF Core Working Group. This allows
OWL to use “official” RDF syntax (in contrast to DAML+OIL). For example,
RDF now supports cyclical class and property inclusions (using rdf:subClassOf
and rdf:subPropertyOf), so the relevant RDF properties can now be used in OWL;
RDFS supports multiple rdfs:domain and rdfs:range properties, with both being
treated as equivalent to the intersection of the individual constraints. Besides
the DAML+OIL style RDF syntax, the OWL specification also includes an ab-
stract syntax, which provides a higher level and less cumbersome way of writing
ontologies. It also has the advantage of allowing a more succinct statement of
the semantics. The abstract syntax is defined using an extended BNF (Backus
Naur Form) notation [94]. A translation from this syntax to the RDF syntax is
available.

It is important that the language used to express ontologies is formal and machine-
processable. Usually, ontology languages are based on rigorous logical theories,
equipped with reasoning algorithms and services. These logic foundations them-
selves form the formal semantics of ontology languages and provide an inference
model for automated reasoning. Indeed, the definition of what an ontology is
(a formal explicit specification) suggests that we need a formal, well-understood
language in order to make the ontology machine-understandable. For example,
SHOE bases on Datalog [54], which is a minor variant of Horn logic [58]. The ini-
tial foundation of RDFS language is semantic networks [122], where each concept
is represented by a node in a graph, a relation between two concept is presented by
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an arc in a graph, which is also called a link. However, the semantics of these links
are often unclear. Therefore W3C has used the set theory to clarify these seman-
tics (e.g. two kinds of arc is-a and instance-of ) and define the formal semantics
of RDFS [71]. However, there is no inference model provided for this language.
The only inference mechanism is based on the inclusion relation existing between
classes. There is actually a mapping from OIL to the SHIQ, a language in the
Description Logic family (cf. Section 3.3). The advantages of OIL are tied to
its description logic basis. Description logic constructors allow consistency to be
checked, which eases the construction of high-quality ontologies. DAML+OIL is
equivalent to a very expressive Description Logic SHIQ(D), which is SHIQ lan-
guage with the addition of data types (cf. Section 3.3) [77]. As the successor of
DAML+OIL, OWL is also based on Description Logics.

Capturing semantics from the existing information is the main goal for the seman-
tic web languages. But how to represent clear, explicit, machine-understandable
and -processable semantics is not a trivial task. It is a clear go-direction for the
design of languages, from SHOE to OWL. We will introduce the latter, the current
standardized Web Ontology language, in Section 3.2. Description logics, which is
used as the logic foundation for this language, will be introduced in Section 3.3.

3.2 Web Ontology Language OWL

The challenge of the Semantic Web is to create a language expressive enough
to represent the rules for inference and also to allow export rules in other knowledge
systems on the Web. DAML+OIL has been accepted as the de facto standard for
ontologies for the Semantic Web until the arrival of a new Web Ontology language,
OWL [114].

The OWL language is a revision of DAML+OIL incorporating learnings from the
design and application use of it. OWL implements layering on top of RDF(S). It
is more powerful at the level of expressiveness and easier to share and exchange
knowledge in the Semantic Web than DAML+OIL.

A drawback of DAML+OIL is that it becomes more and more complex to read
and so it’s more and more difficult to interpret and to know if an ontology can be
reused or not. OWL addresses this problem by specifying three language “layers”,
according to increasing expressiveness, namely OWL Lite, OWL DL and OWL
Full.

OWL Lite has been defined with the intention of creating a simple language that
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will satisfy users primarily needing a classification hierarchy and simple constraint
features. For example, while it supports cardinality constraints, it only permits
cardinality values of 0 or 1. OWL Lite is actually based on the description logic
SHIF(D). But some constructors in SHIF(D) (e.g. concept disjunction) are not
allowed in the syntax of OWL Lite. Having the minimum expressivity in the OWL
family, OWL Lite has the lowest formal complexity. However, it is sufficient to
represent thesaurus8 and taxonomies9 or other hierarchies with simple constraints.
The tools for implementation of OWL Lite and for migration from the existing
thesaurus and taxonomies are also less expensive.

OWL DL includes the complete OWL vocabulary, interpreted under a number
of simple constraints. The primary among these constraints is type separation.
That is, class identifiers cannot simultaneously be properties or individuals. Sim-
ilarly, properties cannot be individuals. OWL DL has a maximum expressivity
that maintains the computational completeness (i.e., all conclusions are guaran-
teed to be calculated) and decidability (i.e., all calculations eventually finish in a
finite time). This is thanks to the underlying language of OWL DL, namely the
description logic SHOIN (D) [79]. It is this description logic language that gave
the name to OWL DL. OWL DL is therefore appropriate to represent ontologies in
need of high expressivity while maintaining computability and can be viewed as an
expressive DL with Web syntax. Furthermore, OWL DL is provided with different
syntaxes. The most prominent is the RDF/XML syntax, which is actually used
in the language reference. However, the normative syntax for OWL DL is the ab-
stract syntax, described in [81], which is more succinct and more understandable.
OWL Lite and OWL DL pose several restrictions on the use of RDF and redefine
the semantics of the RDFS primitives. Thus, OWL Lite and OWL DL are not
properly layered on top of RDFS.

The most expressive species of OWL is OWL Full. It lays on top of both RDFS
and OWL DL. OWL Full includes the complete OWL vocabulary, interpreted more
broadly than in OWL DL, with the freedom provided by RDF. In OWL Full a class
can be treated simultaneously as a collection of individuals and as an individual
in its own right. Another significant difference from OWL DL is that a data type
property can be marked as an InverseFunctionalProperty. OWL Full is designed
for developers, implementers and users who need the maximum expressivity, the
freedom of RDF syntax, but with no guarantee of computability. Currently, there

8A thesaurus is a listing of words with similar, related, or opposite meanings.

9A taxomony is an explicit hierarchy.
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is still no reasoning tools or software that are capable of reasoning to complete all
the features of OWL Full.

A legal ontology in OWL Lite is also legal in OWL DL and OWL Full. All
documents in OWL (Full, DL, Lite) are valid documents in RDF(S) while only a
few documents in RDF(S) are legal documents in OWL Lite or OWL DL. Note
that all RDF(S) documents are documents in OWL Full. Compared with RDF(S),
OWL can express further such as the relations between classes (e.g. disjunction),
the cardinality (e.g. “exactly one”), equality, more types of property (e.g., object
properties or annotation property), characteristics of properties (e.g., symmetry,
transitivity, inverseFunctional, etc.), and enumerated classes.

Example 3.2.1 shows a simple OWL ontology. Its syntax in RDF/XML is shown
in Figure 3.3. A typical OWL ontology begins with a namespace declaration. The
tag owl:Ontology is used to state the beginning (or header) of the ontology. The
rdfs:label entry provides an optional human readable name for an element of the
ontology. The ontology header definition is closed with the tag </owl:Ontology>.
This prelude is ultimately closed by the tag </rdf:RDF>.

Example 3.2.1 (A simple ontology). A simple Dormitory ontology may con-
sist of the following elements:

• concepts: Student, Certificate and Trainee;

• properties: hasTrainingCertificate and compatriot;

• a background assumption of the domain: Trainee are Student who have train-
ing certificate;

3.3 Description Logics

Logic is well known as a way of using rules to make the inference. Adding logic
to the Web is already a task before the Semantic Web community. However, the
mixture of mathematical and technical decisions complicate this task. Therefore a
logic should be built so that it is powerful enough to describe the complex proper-
ties of objects in Web ontologies, but not too expressive to cause the undecidable
problem10.

10Undecidable problem: there is no algorithm that finishes in a finite time.
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<rdf:RDF
xmlns:owl ="http://www.w3.org/2002/07/owl#"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">

<owl:Ontology rdf:about="">
<rdfs:comment>An OWL ontology example</rdfs:comment>
<rdfs:label>Dormitory Ontology</rdfs:label>

</owl:Ontology>

<owl:Class rdf:ID = "Student"/> <rdfs:label>Student</rdfs:label>

<owl:Class rdf:ID ="Certificate"/>

<owl:ObjectProperty rdf:ID="hasTrainingCertificate">
<rdfs:domain rdf:resource="#Student"/>
<rdfs:range rdf:resource="#Certificate"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Trainee">
<rdfs:subClassOf rdf:resource="#Student"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasTrainingCertificate"/>
<owl:allValuesFrom rdf:resource="#Certificate"/>

</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="compatriot">
<rdf:type rdf:resource="&owl;TransitiveProperty"/>
<rdfs:domain rdf:resource="#Student"/>
<rdfs:range rdf:resource="#Student"/>

</owl:ObjectProperty>

</rdf:RDF>

Figure 3.3: An OWL ontology in RDF/XML serialization
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Description Logics (DLs) [7], a logic-based language family, can provide a high ex-
pressivity while guaranteeing the decidable reasoning. Actually, it was designed as
a decidable subset of First-Order Logic to represent and reason about the knowl-
edge of an application domain in a structured and unambiguous way, so as knowl-
edge can be retrieved and reused efficiently. Therefore, DLs have been chosen as
the logic foundation for many ontology languages as well as for the current stan-
dard Web ontology language OWL. In what follows we will give an overview of
this family.

3.3.1 Syntax and Semantics

The foundations of DLs are concept and role descriptions (or concepts and
roles for short). A concept represents a class of objects (or individuals) sharing
some common characteristics. When an individual is a member of a concept, it
is called an instance of that concept. Note that these notions are the same as
for Ontology (presented in Section 3.1.2). A role represents a relationship among
objects. We present here only DLs which use the standard notation, i.e., roles are
binary relations. In terms of ontology, a role is considered as a property. A DL
provides a set of operators, called constructors, to build more complex descriptions
from others.

Definition 3.3.1 (Concepts). Let NC be a set of concept names. The set of
concepts of a DL language L, the so-called set of L-concepts, is the smallest set
such that

1. every concept name A ∈ NC is a concept,

2. if C is a concept, then the descriptions resulting from applying the relevant
concept constructors too C are also concepts.

3. if C is a concept and R is a role, then the descriptions resulting from applying
the relevant concept constructors t C and R are also concepts.

4. if C and D are concepts and R is a role, then the descriptions resulting from
applying the relevant concept constructors to C, D and R are also concepts.

Two special concept names > (top) and ⊥ (bottom) represent the most general
concept (i.e. the universe) and the least general concept (i.e. nothing) respectively.
Their formal semantics can be seen in Table 3.1.

Definition 3.3.2 (Roles). Let R be a set of role names. The set of roles of a
DL language L is the smallest set such that
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1. every role name R ∈ R is a role,

2. if R1 and R2 are roles, then the descriptions resulting from applying the
relevant role constructors to R1 and/or R2 are also roles.

Table 3.1: Syntax and Semantics of concept descriptions in ALC language

Constructor Syntax Semantics
top > ∆I

bottom ⊥ ∅
concept name A AI ⊆ ∆I

negation ¬C ∆I\CI
conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

exists restriction ∃R.C {x ∈ ∆I |∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
value restriction ∀R.C {x ∈ ∆I |∀y.〈x, y〉 ∈ RI → y ∈ CI}

The most common constructors include boolean operators on concepts (e.g., con-
junction and disjunction), and quantification over roles. Further constructors that
have been considered important include number restrictions, which allow one to
state limits on the number of relations that an individual may have via a certain
role, and role constructors such as inverse (e.g. hasIngredient− is the inverse role of
hasIngredient and equivalent to the role isIngredientOf). Constructors can also
be used to build axioms as presented later in this section.

Description Logics have set-based model-theoretic semantics, which is specified

in terms of interpretations. An interpretation I is defined as a pair (∆I ,.I ),

where ∆I is the domain of interpretation and is a nonempty set of objects, .I
is an interpretation function. This function maps each concept A ∈ NC to a set

AI ⊆ ∆I , each role name R ∈ R to a set of binary relations over the domain

∆I ×∆I (i.e., RI ⊆ ∆I ×∆I ). The interpretation function can also be extended
to give semantics to concept and role descriptions.

Example 3.3.1 (An ALC-concept: syntax, semantics and interpretation).
Suppose we want to build a concept in the DL language ALC [116] to describes the
cakes that have cream cheese as an ingredient, following the syntax and semantics
in Table 3.1, we can build a description as follows:

Cake u ∃ hasIngredient.CreamCheese,

where Cake and CreamCheese are concepts, hasIngredient is a role. Following Defi-
nition 3.3.1, ∃ hasIngredient.CreamCheese and Cake u ∃ hasIngredient.CreamCheese
are also concepts. Suppose we have an interpretation domain
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∆I = {NYcheeseCake, St-Amour, Madeleine, Philadelphia, Neufchatel},
and an interpretation function defined as:

CakeI = {NYcheeseCake, St-Amour, Madeleine}

CreamCheeseI = {Philadelphia}

hasIngredientI = {〈NYcheeseCake, Philadelphia〉, 〈St-Amour, Neufchatel〉}
According to Table 3.1, we have:

(∃ hasIngredient.CreamCheese)I = {NYcheeseCake}
(Cake u ∃ hasIngredient.CreamCheese)I = {NYcheeseCake}

¦

The function .I can even be extended further to give semantics to axioms (i.e.
logical sentences over concepts or roles) and assertions (i.e. logical sentences over
individuals) in a DL knowledge base.

DL Knowledge Bases. A typical Description Logic knowledge base (KB) con-
sists of two distinct parts: the intensional knowledge (TBox and RBox), i.e. knowl-
edge in the conceptual level, and extensional knowledge (ABox), i.e. knowledge in
the individual level.

Intuitively, an R(ole)Box is a set of role axioms, describing how roles are related
to each other. For example, we can use role axioms to describe that the role
hasPerfume is a kind of the relationship hasSmell. Sevaral DL languages, e.g. ALC,
do not provide role axioms. In this case, RBox is disregarded in a DL knowledge
base. However, for modern DL languages (e.g. SHOIN ), the role hierarchy is
important and so RBox is an indispensable component of a DL knowledge base.
An RBox is formally defined as follows.

Definition 3.3.3. An RBox R, a so-called role hierarchy, is a finite, possibly
empty, set of role inclusion axioms of the form R1 v R2, where R1, R2 are roles.
A role equivalence axiom of the form R1 ≡ R2 is an abbreviation for R1 v R2 and
R2 v R1.

An interpretation I satisfies an inclusion axiom R1 v R2, or I models R1 v R2

(written as I |= R1 v R2), if R1
I ⊆ R2

I ; it satisfies a role equivalence R1 ≡ R2

(written as I |= R1 ≡ R2) if R1
I = R2

I . An interpretation I satisfies an RBox
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R iff it satisfies all the axioms in R. Such an interpretation is called a model of
R (written as I |= R).

A T(erminological)Box is a set of concept axioms, describing how concepts are
related to each other. Figure 3.4 is an example of Tbox, where the concept axiom
CheeseCake v Cakeu∃hasIngredient.Cheese says that only Cake that has the ingre-
dient of Cheese can be considered as CheeseCake. Formally, a TBox is defined as
follows.

Definition 3.3.4. A TBox T is a finite, possibly empty, set of general concept
inclusion (GCI) axioms of the form C v D, where C and D are concepts. A
concept equivalence axiom of the form C ≡ D is an abbreviation for C v D and
D v C.

An interpretation I satisfies a GCI C v D, or I models C v D (written as

I |= C v D), if CI ⊆ DI ; it satisfies a concept equivalence C ≡ D (written as

I |= C ≡ D), if CI = DI . An interpretation I satisfies a TBox T iff it satisfies
all the axioms in T . Such an interpretation is called a model of T (written as
I |= T ). An interpretation I satisfies a TBox T (with respect to (w.r.t) an RBox
R) iff it satisfies T and R. In this case, I is a model of T w.r.t R (written as
I |=R T ) and T is satisfiable w.r.t R.

CreamCheese v Cheese
CheeseCake v Cake u ∃hasIngredient.Cheese
AmericanCheeseCake v Cake u ∃hasIngredient.CreamCheese

Figure 3.4: A Tbox example

The third component of a DL knowledge base is the A(ssertional)Box. Abox allows
to describe a specific state of the world by introducing individuals and assertions
over them (also called individual axioms). For example, in the Abox in Figure
3.5, it is asserted that NYcheeseCake is an instance of Cake, Philadelphia is an
instance of CreamCheese and that the relationship between NY CheeseCake and
Philadelphia is an instance of the role hasIngredient. Formally, an Abox is defined
as follows.

Definition 3.3.5. An ABox A is a finite, possibly empty, set of assertions of the
form a : C and (a, b) : R, where C is a concept, R is a role, a and b are individual
names.

An interpretation I satisfies an assertion a : C (written as I |= a : C) if aI ∈ CI ;

it satisfies an assertion (a, b) : R (written as I |= (a, b) : R) if 〈aI , bI〉 ∈ RI . An
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interpretation I satisfies an ABox A iff it satisfies all the assertions in A. Such
an interpretation is called a model of A (written as I |= A). An interpretation I
satisfies an ABox A w.r.t a TBox T and an Rbox R if it is a model of A and T
and R. Such an Abox is called consistent w.r.t T and R.

NYcheeseCake : Cake, St-Amour : Cake, Philadelphia : CreamCheese
(NYcheeseCake, Philadelphia) : hasIngredient
(St-Amour, Neufchatel) : hasIngredient

Figure 3.5: An Abox example

Individual names can also be used to form concepts called nominals, which are in-
terpreted as sets consisting of exactly one individual. The DL language introduced
in Chapter 4 provides this feature.

Usually, Abox is assumed to be an open world. It implies that one cannot assume
that the knowledge in a knowledge base is complete. This is derived from the fact
that a knowledge base may have many models, only some features of which are
constrained by the assertions. For example, the assertion (St-Amour, Neufchatel) :
hasIngredient expresses that Neufchatel is an ingredient of St-Amour in all models;
in some of these models, St-Amour is only made of Neufchatel, while in others, St-
Amour may be made of some other ingredients. Another assumption about ABox
is also often used, namely the unique name assumption (UNA). UNA means that

if a and b are two distinct individual names, then aI 6= bI . In some languages
providing the nominal constructor (mostly in presence of number restrictions and
inverse role), this assumption is omitted, i.e., two nominals can refer to the same
individual (see Chapter 5).

Now we define formally a DL knowledge base.

Definition 3.3.6. A knowledge base Σ is a triple 〈R, T ,A〉, where R is an RBox,
T is a TBox, and A is an ABox.

An interpretation I satisfies a knowledge base Σ if it satisfies R, T and A. Such
an interpretation is called a model of Σ (written as I |= Σ) and Σ is said to be
satisfiable. We say that Σ logically implies α, where α is either an assertion or
an axiom if α is satisfied by every model of Σ (written as Σ |= α).

DL languages are characterized by the constructors they provide. Each DL lan-
guage is usually named according to its set of constructors. For example, the
language S, often used as a minimal language in the modern DLs, extends ALC
with transitive roles (e.g. hasAncestor). S got its name because it relates to the
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propositional (multi)modal logic S4 [115], and because adding letters to represent
additional constructors became cumbersome. The language SI extends S with
inverse roles; SHI extends SI with role hierarchy; SHIF extends SHI with
f unctional number restrictions, etc. Besides, DL languages can also be extended
with datatypes, such as SHOIN (D). In this case, roles are categorized as abstract
roles (the relationship between two objects) and concrete roles (the relationship
between an object and a data type).

3.3.2 Reasoning Services

A knowledge base may contain implicit knowledge that can be made explicit
through reasoning. A DL system not only stores axioms and assertions, but also
offers services that reason about them. Typically, reasoning with a DL knowledge
base is a process of discovering implicit knowledge entailed by the knowledge base.
For example, the assertion NYcheeseCake : AmericanCheeseCake can be deduced
from the TBox and Abox in Figure 3.4 and 3.5 respectively.

Reasoning services can be roughly categorized as basic services and complex ser-
vices, which are built upon basic ones. For example, in order to check whether a
domain model is correct, or to optimize queries that are formulated as concepts,
we may want to know whether some concept is more general than another one.
This service is, thus, a basic one and is called the subsumption problem. Let L be
a Description Logic, Σ be a knowledge base, T be the Tbox, R be the Rbox, and
C, D be concepts in L, a be an individual name. The principal basic reasoning
services include:

Knowledge Base Satisfiability. A knowledge base Σ is said to be satisfiable, written
as Σ 2 ⊥, if there exists an interpretation I that satisfies Σ. Knowledge Base
Satisfiability is the problem of checking if Σ 2 ⊥ holds, i.e., whether there exists
a model I of Σ.

Concept Satisfiability. A concept C is satisfiable w.r.t. R and T if there exists a

model I of R and T such that CI 6= ∅. Such an interpretation is called a model
of C w.r.t. R and T . Concept Satisfiability is the problem of checking if there
exists such a model.

Subsumption. A concept D subsumes a concept C w.r.t. R and T (written as

C vR,T D) if CI ⊆ DI holds in every model I of R and T . Two concepts C,

D are equivalent w.r.t. R and T (written as C ≡R,T D) if they subsume each
other w.r.t. R and T . Subsumption checking is the problem of checking if in every

model I of R and T we have CI ⊆ DI . Algorithms that check subsumption are
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also employed to calculate the concept hierarchy (i.e. taxonomy) of a knowledge
base.

Instance Checking. This service is to check if an individual is an instance of a
specific concept. An individual name a is an instance of a concept C w.r.t Σ iff in

every model I of Σ we have aI ∈ CI .

The basic reasoning services mentioned above are not independent of one another.
With the presence of the negation constructor in DL languages, all of these services
can be reduced to knowledge base satisfiability [105]. Hence, KB satisfiability can
be regarded as the most general of the mentioned reasoning problems. As we will
see later in this section, for some DLs, it is also possible to polynomially reduce
KB satisfiability to concept satisfiability.

Concept satisfiability and subsumption are reasoning problems that are usually
considered only w.r.t. an Rbox and a TBox rather than a knowledge base. The
reason is that the ABox does not interfere with these problems as long as the KB is
satisfiable. In case there is the presence of nominals, Aboxes can be captured using
nominals. Therefore, it suffices to consider satisfiability of TBoxes and Rboxes.
More precisely, we have the following theorems (presented slightly differently from
the original versions):

Theorem 3.3.1. [112] If L is a DL language that does not provide the nominal
constructor, and Σ = 〈R, T ,A〉 is a satisfiable knowledge base in L, then for every
pair of L-concepts C, D we have Σ |= C v D iff C vR,T D.

Theorem 3.3.2. [130] If L is a DL language that provides the nominal construc-
tor, and Σ = 〈R, T ,A〉 is a satisfiable knowledge base in L, then knowledge base
satisfiability can be polynomially reduced to satisfiability of R and T .

Moreover, the concept satisfiability and subsumption problems can be reduced to
each other. The reason is that C is unsatisfiable w.r.t an Rbox R and a Tbox T
iff C vR,T ⊥. Additionally, in the presence of the negation constructor in DL
languages , C vR,T D iff C u ¬D is unsatisfiable w.r.t an Rbox R and a Tbox
T . Therefore, the undecidability of one of these services implies that none of the
above basic reasoning services are computable.

A concept axiom C v D is definitional if C is a concept name. In this case, the
axiom is called the definition of C. Tbox is called simple if it is acyclic (i.e., there
are no cyclic dependencies between the axioms in the Tbox), and contains only
unique definitional axioms (i.e., T contains only one definition for each concept
name). In this case, concept satisfiability w.r.t. R and T can be reduced to
concept satisfiability w.r.t. R by a process called unfolding. The unfolding CT
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of concept C w.r.t. R and a simple Tbox T is obtained by successively replacing
every defined name in C by its definition in T until only primitive (i.e., undefined)
names occur. Since CT is obtained from C in such a way that both are interpreted
in the same way in any model of T and R, it follows that CT ≡R,T C. Hence,
C is satisfiable w.r.t. R and T iff CT is satisfiable w.r.t. R and T . Since CT
contains no defined names, CT is satisfiable w.r.t. R and T iff it is satisfiable
w.r.t. R. As a result, C is satisfiable w.r.t. R and T iff it is satisfiable w.r.t.
R. However, to reduce the size of the search space, a favorable technique is lazy
unfolding that performs the unfolding of C w.r.t. R and T on demand [96].

When a Tbox T includes arbitrary CGIs (i.e., a general TBox), the reasoning w.r.t.
T and R can also be reduced to reasoning only w.r.t R by using a technique
called internalization [5]. Internalization works by testing the satisfiability of a
new concept which incorporates (i.e. internalizes) all CGIs in T and the concept
the satisfiability of which needs to be verified. More precisely, reasoning in the DL
languages providing transitive and hierarchy role uses the internalization specified
in the following theorem (slightly different from the original version).

Theorem 3.3.3. [87] Let L be a DL language providing general negation, R be
an Rbox providing transitive roles, T be a Tbox in L and C, D be L-concepts, and
let

CT =
l

CivDi∈T
¬Ci tDi,

< be a transitive role with R v < ∀R that occurs in T , C, D, or R. < is called
the universal role. We set

R< := R∪ {R v <|R occurs in T , C, D, or R}.

C is satisfiable w.r.t R and T iff CuCT u∀<.CT is satisfiable w.r.t R<. C vR,T
D iff C u ¬D u CT u ∀<.CT is unsatisfiable.

Checking satisfiability of concepts is a key inference. As we have seen, a number
of other important inferences can be reduced to the concept (un)satisfiability.

3.3.3 Reasoning Algorithms

As mentioned in Section 3.3.2, even though knowledge base satisfiability is the
most general standard reasoning problem, it is worthwhile to consider solutions for
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the less general problems. In this section, we will briefly present how to provide
inferences for concept satisfiability and subsumption.

Since most DLs11 are within the two variable fragment of first-order predicate logic,
one can think of reducing these two reasoning problems to the known inference
problems of a first-order logic language, e.g., L2 or C2. However, the complexity
of the decision procedures obtained this way is usually higher than necessary [9].
This approach, therefore, should be used to obtain upper bound complexity results
of the reasoning problems, rather than to provide reasoning services.

In the early days, subsumption problem was usually addressed by so-called struc-
tural subsumption algorithms, i.e., algorithms that compare the syntactic structure
of concepts. While usually very efficient, these algorithms are only complete for
rather simple languages with little expressivity. In particular, DLs with (full)
negation and disjunction cannot be handled by this approach. For such languages,
tableau-based algorithms (or the so-called tableau algorithms) have turned out to
be very useful. Instead of directly testing subsumption of concepts, this approach
employs negation to reduce subsumption to concept (un)satisfiability. The idea of
tableau algorithms is using a tree to represent the model being constructed. The
first tableau algorithm for DLs was presented by Schmidt-Schau and Smolka [116]
for satisfiability of ALC-concepts. Since then, this approach has been employed to
obtain sound and complete satisfiability (and thus also subsumption) algorithms
for a great variety of DLs extending ALC (e.g. [73, 6, 79, 83, 84]).

To be useful for applications, the inferences should be sound, so that every drawn
conclusion is correct. It is also desirable to have complete inference, so that every
correct conclusion can be drawn. Obviously, these requirements may be in con-
flict, because a greater expressivity of a DL makes sound and complete inference
more difficult or even undecidable. Initially, the emphasis was on the reasoning
services of tractable DLs, with an upper bound of polynomial complexity [24].
Unfortunately, only very primitive DLs are “tractable” in this sense, e.g., the
satisfiability of ALC-concepts w.r.t. general TBox is already ExpTime-complete
[130]. Interestingly, although the theoretical complexity results are discouraging,
experimental analysis have shown that worse-case intractability rarely occurs in
practice [72, 111, 78]; even some simple optimisation techniques could lead to sig-
nificant improvement in the experimental performance of a DL system [8]. More
recent systems, such as FaCT [75], Pellet [38] and RACER [60], have demonstrated
that even with expressive DLs (e.g. SHOIQ), highly optimised implementations

11A few exceptions such as the DL introduced by Calvanese et al. [27, 31]
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can provide acceptable performance in realistic applications, moving boundaries
of “tractability” to somewhere very close to ExpTime-hard, or worse [45].

3.4 Integrating Relational Data Sources into the

Semantic Web

Although integrating semantics from relational data sources has been inter-
ested since a long time ago (e.g. data warehousing, global information systems)
[44], data integration from these sources into the Semantic Web is still a new trend
of research. This integration is meaningful only when the semantics of relational
data sources can be accessed from the Semantic Web environment. Reviewing the
works (both in theory and in application development) to address this problem,
we can classify them into two categories: query-based and semantic annotation
approaches.

3.4.1 Query-based Approach

Many of the early as well as the recent works whose goal (or perspective)
is to integrate relational data into the Semantic Web employ queries to retrieve
semantics from sources [32, 126, 62, 36, 20]. In general, queries created by some way
are sent directly to relational databases to retrieve the information corresponding
to some notion in a data integration system. The correspondence is built by
mapping rules between the relational database schemas of sources and the common
data model of an integration system. Typically, these rules are predefined by
mapping definers, who are usually human domain experts.

A theory foundation for query-based approach was introduced by Calvanese and
his colleagues [32]. They proposed a general and formal framework OIS (Ontol-
ogy Integration System) that employs the global schema (cf. Chapter 2). OIS
assumed that the source ontology is an arbitrary logical theory and therefore was
also applied to data integration [95]. The framework does not make explicit any
of the mechanisms proposed, but employs the notion of GAV and LAV to retrieve
the semantics from sources. GAV (Global-As-View) associates each term in the
global schema to one query over the source relations, while LAV (Local-As-View)
reformulates a query on a global schema in terms of queries on the sources. LAV
requires a reasoning step in query reformulation process to infer how to use the
sources for answering the query. In a case study of LAV, the authors employed
DLR, a description logic supporting n-ary roles, for the global ontology language.
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In another LAV example [30], the global ontology is expressed in DL-Lite, a re-
stricted DL formalism of ALCIQ stemmed from representation formalisms devel-
oped in ER, UML and Web ontology languages. Therefore DL reasoners can be
profited to answer queries.

While GAV approach is considered to allow for a simple query processing strategy,
LAV is preferred for the reason that this approach better supports a dynamic
environment and thus the Semantic Web.

Recently, LAV is applied in a practical paradigm by Chen and his colleagues [36].
They introduced the Dartgrid, a mediated schema-based integration framework
to facilitate the integration of heterogeneous relational databases using semantic
web technologies. The shared (or domain) ontology is represented in RDF(S). The
semantics of relational data sources are mapped manually to the domain ontology
by database providers. Mapping rules are described with Datalog-like syntax [54].
Each relational table is mapped to a view over the domain ontology. A typical
view consists of two parts: the view head is a relational predicate; the view body
is a set of RDF triples.

Halevy et al. [62] introduced Piazza peer data management system, which can be
seen as a P2P-based data integration framework with consideration of the semantic
web vision. Each peer defines its own relational peer schema whose relations are
called “peer relations”. A query will be posed over the relations from a specific
peer schema. A peer can have the data sources or not (in case of the peer playing
the role of a mediator). The data sources are defined as “stored relations”. In case
source schemas are relational models, stored relations are “relations” defined in
relational models (cf. Chapter 2). The mapping rules, which are called “storage
descriptions”, specify the data stored at a peer by mapping each stored relation
in the data source as a view over the peer relations. Arguing that most relational,
semi-structured, and even RDF data is available in XML form, Halevy et al. have
implemented Piazza system with a common XML data model. They defined a
mapping language that borrows elements of XML Query. Halevy et al. did not
state whether they employed GAV or LAV or not. In their system, mappings
are defined as one or more mapping definitions, and they are directional from a
source to a target: “we take a fragment of the target schema and annotate it with
XML query expressions that define what source data should be mapped into that
fragment”.

Tom Barrett et al. [126] followed also the query-based approach but did not
specify LAV/GAV in their method of semantic retrieval. They introduced a solu-
tion using also RDF(S) for the representation of all metadata characterizing the
content of the information source. Their mediated schema-based integration archi-
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tecture consists of two major components: Domain Brokers and Resource Brokers.
The role of the Domain Broker is query handling. It receives queries from users,
distributes queries to the appropriate Resource Brokers, merges the results from
various Resource Brokers and passes the combined response back to the user. Ev-
ery resource has an associated Resource Broker. The role of the Resource Broker is
to handle the communication to and from the resource. In particular, it translates
queries to the target format (i.e. SQL with relational data sources), converts onto-
logical terms to terms used by the resource (i.e. relational database schemas), and
translates responses back into the ontological terms used in the query. Actually,
these interchanges are specified by metadata structures defined in RDF(S). That
is, mapping rules from resource terms to ontological terms and queries over the do-
main ontology are described in their RDF-based languages. Based on the mapping
rules, the queries over the domain ontology can be translated into SQL queries.
The data returned from the source is then translated back to the ontological terms
by using mapping rules.

Usually, mapping rules are described by a mapping language. For example, as men-
tioned above, Piazza employed XML query to define mappings. Tom Barrett et
al. introduced an RDF(S)-based language to describe mapping rules. They stated
that in their mapping language, mappings are not required to be one-to-one; some
property values can be derived; class inheritance is supported and one-to-many re-
lationships between database tables can be modeled in both directions (e.g. part of
and has part). In Dartgrid, the authors proposed datalog-like syntax built on RDF
triples to describe mapping rules. D2RQ [20] was presented as a declarative lan-
guage to describe mappings between relational database schemas and OWL/RDFS
ontologies. It is an XML-based language built on experiences gained with D2R
MAP [19]. D2RQ wraps one or more local relational databases into a virtual, read-
only RDF graph. D2RQ rewrites RDQL12 queries into SQL queries. The resulting
record sets of these SQL queries are transformed into RDF triples that are passed
up to the higher layers of the Jena framework [1]. The central object of D2RQ is
ClassMap, which is a class or a group of similar classes from ontologies. ClassMap
specifies whether instances are identified by URI column value from a database or
URI pattern and key value, or blank node. One ClassMap has a set of property-
Brigdes specifying how instance properties are created. PropertiyBriges are either
DatatypePropertyBridge or ObjectPropertyBridge. Classes and relationships be-
tween classes in an ontology can be mapped to tables in a relational model. Each
property is mapped to an attribute of the table whose ClassMap has the corre-

12RDQL: The query language in Jena system [34], where D2RQ is implemented.
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spondent propertyBridge of the property. Actually, D2RQ is less expressive than
the language proposed in Dartgrid.

Throughout the works presented above, we can summarize some drawbacks of
query-based approach as follows:

1. With regard to GAV approach [32], it is possible that the data retrieved do
not obey all semantic conditions in the global ontology, or even no data is
retrieved. In this case, the system inconsistency occurs. In the usual case
of autonomous, heterogeneous sources, it is very unlikely that the data fit in
the global ontology. Therefore, GAV is too restrictive in the sense that the
integration system would be often inconsistent. This problem can only be
solved if the mapping definers understand well the semantics of the sources
or there must be a way to represent declaratively the source semantics (e.g.
the semantic annotation approach).

2. Information is exploited directly from relational sources through queries and
a set of mappings. Therefore, the expressivity of the mapping language plays
the decisive role in the integration capability. Among the mapping languages
presented above, Datalog-like language of Dartgrid system is the most ex-
pressive. However, it is built on RDF(S) that does not have the underlying
inference model. Even creating its own algorithm with consideration of the
features of web ontology languages, Dartgrid is enriched not much from in-
ference capabilities of SW technologies for high expressivity (as presented in
Section 3.3). Some works have no theoretical foundation for the mapping
(such as GAV/LAV) like Barrett et al.

3. Mapping rules are usually predefined by human experts. The manual cre-
ation of semantic mapping has long been known to be extremely laborious
and error-prone. This can be caused by many reasons as follows [44]:

• The semantics of the involved elements can be inferred from only a
few information sources, typically the creators of data, documentation,
and associated schema and data. Extracting semantics information
from data creators and documentation is often extremely cumbersome.
Frequently, the data creators have long moved, retired, or forgotten
about the data. Documentation tends to be sketchy, incorrect, and
outdated.

• Directly manipulating on databases, mapping can only use some clues
such as element names, types, data values, schema structures. However,
these clues are often unreliable. For example, the name “area” can refer
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to different real-world entities such as a location or square-feet area of
the house. The reverse problem also often holds: two elements with
different names (e.g., area and location) can refer to the same real-
world entity (the location of the house).

• Moreover, these clues are often incomplete. For example, the name
“contact-agent” only suggests that the element is related to the agent.
It does not provide sufficient information to determine the exact nature
of the relationship (e.g., whether the element is about the agent’s phone
number or her name).

• To decide the mapping, one must typically examine all elements of
the two models to make sure that there is no other mapping better
than that. This global nature of mapping adds substantial cost to the
mapping process.

Some argument for query-based approach should be that the risk of a possible
misunderstanding can usually be minimized through a face to face communi-
cation or previous agreement between the exchange partners. Nevertheless,
this cannot be accomplished within a volatile environment like the semantic
web, where peers may appear and disappear at any time.

4. Moreover, it is possible that the inconsistency of mapping repository occurs
(e.g. two mapping rules are in conflict). Inference engine for mapping lan-
guages is therefore necessary. However, in all of the works presented above,
no mapping language has a logic foundation to support reasoning. Checking
the consistency of mapping repository is still an open question.

5. Mapping rules are usually predefined by human experts. Therefore, the
semantics captured from data sources are intentional, depending on the ap-
plication. One application may decide that “email address” corresponds to
“contact”, another application may decide that it does not. Since query-
based approach does not capture the native semantics of data sources, it is
only suitable for developing a specific-domain application, but not for ex-
ploiting semantics from relational sources on the Semantics Web, where the
domain of applications/services is unpredictable (although LAV approach is
considered suitable for dynamic environment).

Consequently, it is vital to have a representation format which is unambiguous and
available on the Semantic Web to describe the semantics of data sources. That is
knowledge representation, the only way to guarantee the faultless interpretation of
data on a remote node, because knowledge representation process prevents different
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sites or partners to interpret the same data differently. The semantic annotation
approach follows this idea.

3.4.2 Semantic Annotation Approach

In general, the conceptual data models of relational data sources are trans-
formed into ontologies by some mapping rules. The ontologies are represented in
some semantic annotation, the so-called ontology language, that is expected to
capture all the semantics expressed in data models.

Berners-Lee can be seen as one of the early forerunner in semantic annotation
approach [16]. He tried to make a correspondence between relational database
schema and RDF: a record is an RDF node; the field (column) name is an RDF
property; and the record field (table cell) is a value. His mapping, however, is
rather rudimental (e.g. no integrity constraints).

Recently, a few works have proposed semantic annotations for relational data
sources on the Web [39, 98, 124, 42, 26, 46].

RDF Gateway [39], a platform for data integration, supports not only RDF(S)
but also OWL as the common data model. It connects external relational data
sources to the Semantic Web via its SQL Data Service. The SQL Data Service
queries relational databases to get the schemas required, then maps (translates)
the resulting relation schema into an RDFS/OWL ontology. The ontology lan-
guage (RDFS or OWL) is specified by a parameter called schema type. For ex-
ample, a table is mapped to an rdfs:Class if schema type=rdfs, or to an owl:Class
if schema type=owl. The name of the class is based on the name of the table.
Similarly, a column is mapped to a property in RDFS and to a data type property
in OWL, using the column name prefixed with the table name. A foreign key is
mapped to a property in RDF(S) and to object property in OWL. The domain
of the property is the table containing the column corresponding to the property.
The range of the property is the class of the referenced table. These rules can be
applied automatically to translate relational schemas into the common data model
of an integration system. However, these are only some simple rules (one-to-one
mapping).

MAFRA [119, 98], a peer-to-peer integration system based on a mapping frame-
work for distributed ontologies on the Semantic Web, brings relational databases
to the “structural level” of simple ontologies in RDF(S). This is realized semi-
automatically by their LiFT tool [138]. LiFT focuses on minimizing syntactical
and structural representation heterogeneity. It tries to capture the semantics of
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relational data sources from an extended-relational model including the traditional
relational model and the foreign key constraint. This model is retrieved from DDL
definitions13. Generally, LiFT translates relations into concepts; attributes into
data type properties (i.e. XML Schema data types). The domain of attributes
is the concept, which has been created for the relation upon which the attribute
is defined. Foreign keys are translated into properties (i.e. object properties in
OWL terminology). The translation is performed in two phases. In the first phase
concepts are established. In the second phase properties of concepts are created
from the database. The mapping rules are checked in sequential order on each
relation.

Even the translation tried to remove redundant information in DDL definitions
and in their relational models, many drawbacks of LiFT were presented by the
authors. The mapping rule whose preconditions are applied is first chosen for the
respective relation. This is due to the fact that their mapping rules might be
ambiguous. Eventually, the translation process should be influenced and directed
by the user to choose the appropriate rule for individual relations. This solution,
however, is still not implemented in their current version. In addition, limited by
the RDF(S) language, the translation for cardinalities and inverse relations could
not be implemented. The semantic intention behind a given relational structure
cannot be fully captured either. For example, the translation cannot decide which
relation represents the sub entity and which one represents the super entity. Be-
sides, we see that primary keys are not captured in LiFT and there is no reasoning
services. The latter is due to the fact that there is no inference model for RDF(S)
(cf. Section 3.1.1).

N. Stojanovic and R.Volz [124] proposed also a solution for representing the se-
mantics of relational databases in RDF(S). They defined a relational model similar
to LiFT, retrieved the model from SQL-DDL, then mapped it to frame logic [93],
which can then be represented in RDF(S). Thanks to the expressivity of Flogic,
more constraints can be translated (e.g. the primary key constraint). The mapping
process consists of five steps: capture information from physical models; analyze
the obtained information; form the ontology by applying mapping rules and re-
moving redundant information; evaluate, validate and refine the obtained ontology;
and form a knowledge base. All these steps are realized in semi-automatic way.
However, encountering the same problem as LiFT, the authors argued that the pro-
cess could not be completely automated because some ambiguous situations can

13The authors employed DatabaseMetaData interface offered by the Java JDBC standard to
avoid different SQL DDL dialects imposed by individual databases
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arise where applying several rules. Therefore, user interaction is necessary when
this kind of ambiguities occurs and domain semantics cannot be inferred. Besides,
frame logic is in general undecidable. The authors did not specify the fragment of
frame logic they used and how to convert their representation in frame logic into
RDF syntax.

The project of Buccella et al. [26] proposed a hybrid architecture and a
method, based on the use of OWL ontologies, to integrate relational data sources.
Each data source has a source ontology that is built in two steps. The first step
is (semi)automatically generating OWL initial ontology from physical data mod-
els represented in SQL/DDL. SQL/DDL code is analyzed in the order the tables
have been created. Tables without foreign keys are explored first. Each CREATE
TABLE sentence is analyzed to find the table name and attributes, which are then
converted to classes and data type properties respectively in OWL. One-to-many,
many-to-many and weak-entity relationships are transformed into OWL classes,
properties and restrictions. Actually, tables are translated into classes; attributes
are translated into data type properties if they are not the foreign keys, otherwise
into object properties. The domain of a data type property is not specified in order
to employ the property for many classes while the object properties have the pre-
defined domain and range. Simple CHECK constraints and CREATE DOMAIN
are translated to new classes describing the constraints. NOT NULL constraint
is translated to the number restriction. In case SQL/DDL code does not show
the minimal cardinality, human experts should be needed to add this cardinality
after the ontology is built. The second step to build the source ontology is adding
semantics, which allows human experts to add restrictions, classes and/or prop-
erties to the initial ontology. The authors argued that by knowing the domain
of data sources and understanding the structures, the expert could provide more
semantics to the ontology.

Although the high expressive ontology language OWL is used to represent the
semantics of relational sources, their translation is not capable of expressing the
primary keys, even the simple ones14. Let us see one of their examples: the table
MUSEUM(NAME, ADDRESS) (the primary key is NAME, ADDRESS not NUL) is
translated into DL formalism15 as follows :

14A simple key consists of only one attribute

15We rewrite their original version in OWL language in DL formalism for concise and more
easily understanding purpose. The symbol “=” is the abbreviation of “≤” and “≥”.
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> v≤ 1 ADDRESS
> v≤ 1 NAME

MUSEUM v ∀ ADDRESS.String
MUSEUM v = 1 ADDRESS
MUSEUM v ∀ NAME.String
MUSEUM v = 1 NAME

With this description, it is possible that two MUSEUMs have the same NAME.
Consequently, the meaning of primary key constraint is missing. Even though
the system allows users to add semantics to the resulting ontology, the original
semantics of the sources is already lost and human experts cannot always recover
it. Essentially, the approach of Buccella et al. encountered the same problem for
query-based approach. That is, semantics added by human experts may not be
correct because of human-errors, which can be caused by many reasons explained
above. This is due to the fact that they used SQL/DDL as the data models to
exploit the semantics of relational sources. Their semi-automatic solution with two
steps has shown the disadvantage of SQL/DDL approach, as we have presented in
Chapter 2.

Buccella et al. have chosen OWL for many of its advantages, one of which is the
reasoning capability. Nevertheless, they did not specify the OWL language used to
represent relational sources. If OWL Full is the candidate, their approach cannot
support the decidable reasoning.

Relational.OWL. In order to share relational data within a Peer-to-Peer en-
vironment, C.P. Laborda and Stefan Conrad [42] proposed a language based on
OWL, the so-called Relational.OWL. Relational.OWL represents both relational
database data and schemas. In particular, tables and columns, primary and for-
eign keys (including also compound keys16), data types and some constraints on
columns (i.e. length, scale) are considered in their language. Table 3.2 and 3.3
present the vocabulary of Relational.OWL.

Table 3.2: Classes in Relational.OWL language

rdf:ID rdfs:subClassOf rdfs:comment
dbs:Database rdf:Bag The class of databases

dbs:Table rdf:Seq The class of database tables
dbs:Column rdfs:Resource The class of database columns

dbs:PrimaryKey rdf:Bag The primary key of a table

16Compound keys are the keys consisting of more than one attributes
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Table 3.3: Properties in Relational.OWL language

rdf:ID rdfs:domain rdfs:range rdfs:comment
dbs:has owl:Thing owl:Thing A thing has other things inside

dbs:hasTable dbs:Database dbs:Table Set of tables of a database
dbs:hasColumn dbs:Table dbs:Column Set of columns of a table

dbs:isIdentifiedBy dbs:Table dbs:PrimaryKey Primary key of a table
dbs:references dbs:Columns dbs:Column Foreign key relationship

dbs:length dbs:Column xsd:nonNegativeInteger Length of an entry in column
dbs:scale dbs:Column xsd:nonNegativeInteger Scale of an entry in column

A relational database schema will be represented with the vocabulary of OWL and
of Relational.OWL. For example, the table ADDRESS(ADDRESSID, STREET,
ZIP, CITY, COUNTRYID) can be represented as follows:

<...>
<owl:Class rdf:ID="ADDRESS">
<rdf:type rdf:resource="&dbs:Table"/>
<dbs:hasColumn rdf:resource="#ADDRESS.ADDRESSID"/>
<dbs:hasColumn rdf:resource="#ADDRESS.STREET"/>
<dbs:hasColumn rdf:resource="#ADDRESS.ZIP"/>
<dbs:hasColumn rdf:resource="#ADDRESS.CITY"/>
<dbs:hasColumn rdf:resource="#ADDRESS.COUNTRYID"/>
<dbs:isIdentifiedBy>
<dbs:PrimaryKey> <dbs:hasColumn rdf:resource="#ADDRESS.ADDRESSID"/>
</dbs:PrimaryKey>

</dbs:isIdentifiedBy>
</owl:Class>

<owl:DatatypeProperty rdf:ID="ADDRESS.COUNTRYID">
<rdf:type rdf:resource="&dbs;Column"/>
<rdfs:domain rdf:resource="#ADDRESS"/>
<rdfs:range rdf:resource="&xsd;integer"/>
<dbs:references rdf:resource="#COUNTRY.COUNTRYID"/>

</owl:DatatypeProperty>
<...>

Actually, what the authors proposed is not to capture the semantics described
in relational models but to rewrite them in another annotation, which is based
on RDF(S). In other words, they did not describe the real-world semantics in
databases. The semantics, however, could be captured if their annotation, which
incorporates Relational.OWL and OWL, has the formal semantics. Nevertheless,
the resulting schema representation belongs to OWL Full. There is neither formal
semantic foundation underlying Relational.OWL, nor decidable inference model
proposed for this kind of annotation.
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OntoGrate [46] is an ontology-based data integration framework that can be ap-
plied to both peer-to-peer and schema-mediated paradigms. In order to represent
database schemas in the Semantic Web, the authors extended the expressivity of
Web ontology languages. In particular, they introduced an expressive ontology
language Web-PDDL, an extension of PDDL (Planning Domain Definition Lan-
guage) [100] that is based on the first order logic language and has Lisp-like syntax.
Web-PDDL [101] is built on top of RDF and employs mapping rules to describe
the structure and semantics of data sources in ontologies. A few simple rules were
proposed to translate relational models and integrity constraints. In particular,
relations are transformed into types; attributes are transformed into predicates;
integrity constraints (e.g. foreign key relationships) are transformed into axioms
(i.e. rules); and primary keys are transformed into facts.

In order to support the latest standard Web ontology language OWL, the authors
built an automatic translator between Web-PDDL and OWL (called PDDOWL
translator). In this case, Web-PDDL is the internal language used for ontology
integration. Users will interact with the system via OWL language. Types in
Web-PDDL will be translated into OWL classes ; predicates will be translated
into properties (data type properties for non-foreign key attributes). Axioms (rep-
resenting integrity constraints that includes foreign key relationships) were said to
be translated into RDF syntax [101]. However, facts (representing primary keys)
are not considered.

Ontograte exposed some shortcomings. While the transformation was designed to
work automatically, the author believed that further work was required to capture
more subtle database semantics. User interaction may be required to capture sub-
tle semantics from databases. As analyzed in Chapter 2, relational models are not
a good choice for extracting semantics. Additionally, integrity constraints are not
transformed into OWL ontology but into RDF. Besides, the authors have defined a
particular Web ontology language that is not familiar in the Web semantic commu-
nity and is not considered as a standard Web ontology language. As the authors
argued, some expressions in Web-PDDL cannot be represented in DAML+OIL
[101]. And OWL, in its turn, is a restricted version of DAML+OIL (cf. Section
3.2). Consequently, even one more layer is added to translate Web-PDDL to OWL
to facilitate worldwide use; the semantics expressed in Web-PDDL cannot not be
fully captured in OWL. A proof is that the primary key constraint is missing in
the translation.

Moreover, Web-PDDL itself is undecidable because its semantics is based on First
Order Logic (FOL), which is well known to be undecidable. For their use of general-
purpose theorem proving, they proposed a way to control the inference complexity
through a set of “requirement declarations” that requires domain definers to specify
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exactly the subset of PDDL the domain requires. This job requires that domain
definers (who are domain experts rather than technical experts) must be PDDL
experts, which may be impossible. In addition, general-purpose theorem proving
is unlikely to be a useful technique on the web, and therefore other special-purpose
techniques (such as Horn-clause theorem proving, or inference using description
logics) play a key role. Many shortcomings of this approach were also shown in
one of their papers [101].

3.5 Conclusion and Proposition

The Semantic Web technology, and especially the ontology technology, is the
first step to enable data integration on a semantic level both within and across orga-
nizational boundaries. Ontologies facilitate knowledge sharing and reuse through
their formal (machine-understandable) and real-world (human-understandable) se-
mantics. This is due to the fact that ontologies are built on the logic foundation
whose most important technology is Description logics. Thanks to the latter, an
ontology not only specifies the domain concepts and their relationships, but also
includes the manner in which applications or services are permitted to make use
of these concepts. Therefore, ontologies play a key role in making databases inter-
operate on the Semantic Web.

By using Semantic Web ontologies, data integration systems can benefit from the
advantages of the following two features: (i) data is published using common
vocabulary and grammar; and (ii) the semantic description of data is preserved in
ontologies and ready for inference.

To make database content available in the Semantic Web environment, its meaning
represented by the database schema must be expressed in terms of ontology. To this
end, recent research has followed two major approaches: query-based techniques
and semantic annotations. The former accesses directly to databases and retrieves
the semantics of data by employing queries and mapping rules predefined by users.
The latter employs an appropriate ontology language in order to precisely describe
the data sources and their implicit data constraints through the use of a data
model.

Query-based approach exploits information directly from sources. It seems that
this is a simpler and more effective way w.r.t the semantic annotation approach.
However, query-based approach exposes many drawbacks. Since the semantics
of data themselves are not contained inside the relational database schema (cf.
Chapter 2), specifying mapping requires usually the interference of humans. This
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process is often difficult, time-consuming and error-prone. Therefore, mapping
repository needs a consistency checking, which has not been investigated yet.
Furthermore, it seems difficult to reuse the knowledge retrieved from databases
because the semantics captured are subjective, depending on specific application.
Semantic annotation approach, on the other hand, allows one to choose a data
model appropriate to the semantic extraction and also an appropriate ontology
language to represent the semantics staying in such a data model. The semantics,
therefore, are original, independent from and reusable by different kinds of appli-
cation. The major advantages of this approach over the query-based on can be
shortly listed as follows:

• Independent semantics

• Exact meaning

• Mapping repository consistency

• Reusability

• Automatic ability

• Support for various services/applications

To capture precisely the original semantics of data sources, the expressivity of the
data model chosen is an important factor. As analyzed in Chapter 2, conceptual
data models are more suitable for extracting the semantics of data sources from
databases than logical and physical models. However, no works shown above
employed conceptual data models. Some of them employed a combination of logical
and a part of physical models (e.g. MAFRA). Some others employed relational
models and some integrity constraints but did not show from where they retrieved
these constraints (e.g. Relational.OWL, Ontograte). Some works employed even
only physical models (e.g. Project of Buccella et al.).

Another important factor is the expressivity of the ontology language chosen be-
cause it specifies the capability of capturing the semantics of data models. Some of
the works presented above employed RDF(S) (e.g. MAFRA, RDFGateway) while
the others employed the latest standard ontology language OWL (e.g. Project
of Buccella et al., Relational.OWL, Ontograte). However, only the project of N.
Stojanovic and R. Volz and Ontograte provide a logic foundation for their ontol-
ogy language. Unfortunately, the logic foundation of both of these two approaches
is undecidable. As explained above (Section 3.1.1), not only less expressive than
OWL, RDF(S) does not have the underlying inference engine. Even though OWL
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is employed, the species of OWL is not specified. In other words, users can use
OWL Full, which is also undecidable.

Regarding the capability of representing the semantics of data models and of in-
tegrity constraints, we see that, except the project of N. Stojanovic and R. Volz, all
other works above cannot fully capture the identification constraints that are often
modeled as keys in relational database schemas. The project of N. Stojanovic and
R. Volz, however, suffers from ambiguous situations that make the transformation
be directed by human. Identification constraints are the most basic and impor-
tant one not only in database modeling but also in the Semantic Web ontologies
because all the things in the real world, in some way, need to be identified.

We restate that preserving a maximum of information from data sources under
the ontology framework is necessary for the integration. It is important to say
that the process of the schema transformation is indispensable. Accordingly, the
maturity of current research and practical applications has demonstrated the need
for a more formal approach to integrate relational data sources on the Semantic
Web. The goal of our approach is to meet this need.

OWL DL is the most well-known and most investigated species of OWL. As the
underlying semantics for this current “de facto” standard SW modeling language,
DLs have unambiguous (i.e. well-understood declarative) semantics and powerful
reasoning algorithms that can automatically classify concepts in hierarchy, mem-
orize the hierarchy for further reasoning and verify a number of properties of an
ontology (e.g. correctness, completeness, decidability and complexity). As a result,
using OWL DL simplifies the semantic integration problem.

As analyzed in Chapter 2, ORM is an approach that has many advantages over
ER and UML in conceptual modeling. It can express the real-world semantics,
and can be converted to 5NF relational schemas, which in turn are used to create
the physical models of DBs.

Therefore, following semantic annotation approach, we propose employing ORM
schemas as data models, and try to translate them into OWL DL ontologies.
Source data models will be normalized and lifted to a uniform representation in a
Web ontolgogy language so that they remove conficts caused by syntactic hetero-
geneity. Then the data could be processed by OWL reasoners or be integrated by
ontological mapping tool.

To capture the identification constraints, we will extend OWL DL to a Web on-
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tology language called OWL-K17. The formal semantics of this language will be
provided by a description logic that we call SHOINK(D). This DL is an ex-
tension of the DL underlying OWL-DL with identification constraints. We will
introduce OWL-K and its underlying DL language in Chapter 4.

Inference engine for OWL-K will be investigated in Chapter 5, where we intro-
duce a Tableau algorithm for automated reasoning. As a result, the language
proposed will be guaranteed decidable, and reasoning services can be applied in
data integration systems.

Then, we propose a mechanism to transform ORM schemas into OWL-K with-
out losing the original semantics of data models (cf. Chapter 6). The semantic
mapping will be embedded into an automatic tool that will perform the schema
transformation (cf. Chapter 6 and Chapter 7).

Table 3.4: Advantages of our proposition over existing works in semantic
annotation approach

Formal
semantics

OWL Identification
constraints

Reasoning
support

Automatic
transformation

Conceptual
data models

MAFRA [98] Yes No No No No No
N. Stojanovic and
R.Volz [124]

Yes No Yes Undecidable
(Flogic)

No No

RDF Gateway [39] Yes Yes No No Yes No
Project of Buccella
et al. [26]

Yes Yes No No No No

Relational.OWL [42] No Yes Yes No No No
Ontograte [46] Yes Yes Noa Undecidable

(FOL)
Yesb No

Our proposition Yes Yes Yes Yes Yes Yes

aIdentification constraint is lost when Web-PDDL is translated into OWL.

bAlthough stating that the transformation is automatic, the authors believed that the inter-
ference of users is needed.

The main advantages of our approach over the existing works can be seen in Table
3.4. Our proposition will facilitate the reusability of knowledge18 that is implicitly
inside relational data sources for multi-purpose; leverage exploitations for various

17“K” stands for “Key”

18The “reusability” of knowledge implies the maximization of using this knowledge among
different kinds of applications.
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domains and various services on the Semantic Web; and be independent from the
run-time characteristics of the underlying sources.





CHAPTER 4

Web Ontology language OWL-K

Identification constraints (ICs) are very important in applications because all
the things in the real world, in some way, need to be identified. Essentially, ICs
imply a one-to-one relation between an identifying part and the identified one.
Even though this important feature has been modeled in Database schemas under
the name key a long time ago, as seen in Chapter 3, the current research on data
integration in the Semantic Web has not fully captured it yet.

In this chapter, we will study the problem of representing various kinds of identi-
fication constraints in OWL DL, the most expressive and decidable species of the
current standard Web Ontology language. To know whether OWL DL can be able
to represent these identification constraints, an overview of OWL DL is necessary.
Therefore, Section 4.1 will be devoted to OWL DL language. Then, in Section
4.2 we investigate the capability of OWL DL in representing ICs. It leads to the
requirement that this standard web ontology language should be extended. As a
result, in Section 4.3 we introduce a new web ontology language, namely OWL-K.
The latter is an extension of OWL DL that allows one to represent ICs in web
ontologies. OWL-K, however, could not provide a shared understanding if there
is no logic foundation underlying it. Thus, in Section 4.4 we will introduce a new
DL language, namely SHOINK(D), which forms the formal semantics of this
language. The work presented in this chapter is a revised and extended version of
[107].
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4.1 Overview of OWL DL Language

OWL DL is designed to provide a language subset that has desirable com-
putational properties for automated reasoning systems. It has the same set of
constructors as OWL, but restricts them to be used in a way satisfying decidable
inference. OWL DL, therefore, can be considered as a DL for the business segment.
The complexity of the ontology entailment problem of OWL DL is NexpTime-
complete [82]. Actually, underlying OWL DL is the DL SHOIN (D), which is
an extension of SHOQ(D) [83] with inverse roles and restricted to unqualified
number restrictions. What makes OWL DL a Semantic Web language, however, is
not its semantics, which is quite standard for a DL, but its RDF/XML exchange
syntax besides an abstract frame-like syntax. In this section, we will overview this
language.

4.1.1 Data types in OWL DL

OWL DL uses many of the built-in XML Schema data types as its built-in
data types, and it adopts the RDF(S) specification of data types and data values.

XML Schema data types [136] are divided into disjoint built-in data types1 and
user-derived data types. Derived data types can be defined by derivation from
primitive or existing derived data types by the following three means:

• Derivation by restriction on an existing type, so as to limit the number of
possible values of the derived type,

• Derivation by union, i.e., to allow value from a list of data types,

• Derivation by list, i.e., to define the list type of an existing data type.

Note that derivation by list is supported by neither RDF(S) nor OWL.

Example 4.1.1 (An XML schema User-Derived data type). The follow-
ing is the definition of a user-derived data type (of the base data type integer)
which restricts values to integers less than 26, using the restriction maxExclusive,
a so-called facet in XML terminology2.

1Refer to [136] for the full list of XML Schema built-in data types.

2Refer to [136] for the full list of XML Schema type facets.
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<xsd:simpleType name = "lessThan26">
<xsd:restriction base = "xsd:integer">

<xsd:maxExclusive value = "26"/>
</xsd:restriction>

</xsd:simpleType>

¦

RDF(S) provides a specification of data types and data values. It allows the use
of data types defined by any external type systems, e.g. the XML Schema type
system, which conform to this specification.

Definition 4.1.1 (Data type). A data type d is characterized by a lexical space
L(d) which is a non-empty set of Unicode strings, a value space V (d) which is a
non-empty set of values, and a total mapping L2V (d) from the lexical space to the
value space.

For example, the XML Schema data type xsd:boolean is characterized by
L(xsd:boolean) = {“0”, “1”, “T”, “F”}, V (xsd:boolean)={true, false}, and a map-
ping L2V (xsd:boolean)= {<“T”, true>,<“1”, true>,<“0”, false>,<“F”, false>}.
Typed literals are of the form “v” ˆˆd, where v is a Unicode string, called the
lexical form of the typed literal, and d is a URI reference of a data type. Plain
literals have a lexical form and optionally a language tag3.

The denotation of a typed literal is the value mapped from its enclosed Unicode
string by the lexical-to-value mapping of the data type associated with its enclosed
data type URIref. For example, “1”ˆˆxsd:boolean is a typed literal that represents
the boolean value true, while “1”ˆˆxsd:integer represents the integer 1. Plain
literals, e.g., “1”, are considered to denote themselves [71]. Accordingly, we use
“data literals” for both typed literals and plain literals to denote data values.

In OWL DL, data types are not classes, and object and data type domains are
disjoint with each other. Data types (e.g. the lessThan26 data type) are different
from classes (e.g. YoungPerson) in that:

• data types have fixed extension (e.g., the extension of lessThan26 is all the
integers that are less than 26), while classes could have different interpreta-
tions in different models;

3Definition of “Language tag” can be found in [4]
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• we do not have to provide a logical theory for each data type, nor do we
have to worry whether a data type is still correct whenever we extend the
ontology language;

• a hybrid reasoner can be implemented by combining a reasoner for classes
or individuals with one (or possibly more) data type reasoner(s) that can
decide the satisfiability problem of data type constraints (cf. Chapter 5).

Since built-in XML Schema data types and RDF(S) specification of data
types are usually not enough in many SW and ontology applications, OWL
provides the use of so-called enumerated data types, which are built us-
ing data literals. For example, oneOf(“0”ˆˆxsd:integer “15”ˆˆxsd:integer
“30”ˆˆxsd:integer “40”ˆˆxsd:integer) is an enumerated data type, which denotes
the set {0, 15, 30, 40}. Table 4.1 shows data ranges and their semantics in OWL
DL, where ∆D is the domain of data values, .D is a data type interpretation func-
tion, and v, v1, ..., vn are data literals.

Table 4.1: OWL DL data ranges

Abstract syntax DL Syntax Semantics
rdfs:Literal >D ∆D

Data type URIref d d dD ⊆ ∆D

oneOf(v1...vn) {v1, ..., vn} vD
1 ∪ ... ∪ vD

n ⊆ ∆D

v v vD ⊆ ∆D, ]{vD} = 1

4.1.2 Syntax and Semantics

OWL DL provides an abstract syntax and an RDF/XML syntax, as well as
a mapping from the abstract syntax to the RDF/XML syntax [81].

The abstract syntax is heavily influenced by frames in general and by the design
of OIL in particular. The frame style of the abstract syntax makes it much easier
to read (compared to the RDF/XML syntax), and also easier to understand and
to use. Moreover, abstract syntax have a direct correspondence with DL syntax
(cf. Table 4.2 and Table 4.3).

OWL DL can form descriptions of classes and properties using the constructors
shown in Table 4.2. In this table the first column gives the OWL abstract syntax
for the constructors, while the second column gives the standard DL syntax. OWL
DL uses these description-forming constructors in axioms and facts that provide
information about classes, properties, and individuals, as shown in Table 4.3. In



76 CHAPTER 4. WEB ONTOLOGY LANGUAGE OWL-K

these tables, A is a class URI reference; C, C1, ..., Cn are class descriptions; S is
an object property URI reference; R, R1, ..., Rn are object property descriptions;
o, o1, ..., on are individual URI references; d is a data type URI reference; U is a
data type property URI reference; v is a data value; ] denotes cardinality; .I is
the interpretation function; ∆I is the individual domain and ∆D is the domain of
data values.

Table 4.2: OWL DL class, property descriptions
Abstract syntax DL Syntax Semantics

Class(A) A AI ⊆ ∆I
Class(owl:Thing) > owl:ThingI = ∆I
Class(owl:Nothing) ⊥ owl:NothingI = ∅
intersectionOf(C1...Cn) C1 u ... u Cn (C1 u ... u Cn)I = CI1 ∩ ... ∩ CI2
unionOf(C1...Cn) C1 t ... t C2 (C1 t ... t Cn)I = CI1 ∪ ... ∪ CI2
complementOf(C) ¬C (¬C)I = ∆I\CI
oneOf(o1...on) o1 t ... t on ({o1} t ... t {on})I = {oI1 , ..., oIn}
o o ]{oI} = 1, oI ⊆ ∆I

restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x ∈ ∆I |∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x ∈ ∆I |∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R hasValue(o)) ∃R.{o} (∃R.{o})I = {x ∈ ∆I |〈x, {o}I〉 ∈ RI}
restriction(R minCardinality(n)) ≥ nR (≥ nR)I = {x ∈ ∆I |]{y.〈x, y〉 ∈ RI} ≥ n}
restriction(R maxCardinality(n)) ≤ nR (≤ nR)I = {x ∈ ∆I |]{y.〈x, y〉 ∈ RI} ≤ n}
restriction(U someValuesFrom(d)) ∃U.d (∃U.d)I = {x ∈ ∆I |∃y.〈x, y〉 ∈ UI ∧ y ∈ dD}
restriction(U allValuesFrom(d)) ∀U.d (∀U.d)I = {x ∈ ∆I |∀y.〈x, y〉 ∈ UI → y ∈ dD}
restriction(U hasValue(v)) ∃U.v (∃U.v)I = {x ∈ ∆I |〈x, vD〉 ∈ UI}
restriction(U minCardinality(n)) ≥ nU (≥ nU)I = {x ∈ ∆I |]{y.〈x, y〉 ∈ UI} ≥ n}
restriction(U maxCardinality(n)) ≤ nU (≤ nU)I = {x ∈ ∆I |]{y.〈x, y〉 ∈ UI} ≤ n}
ObjectProperty(S) S SI ⊆ ∆I ×∆I
inverseOf(S) S− (S−)I = {〈x, y〉|〈y, x〉 ∈ SI}
DatatypeProperty(U) U UI ⊆ ∆I ×∆D

As shown in Table 4.2, OWL classes can be specified as logical combinations (in-
tersections, unions, or complements) of other classes, as enumerations of specified
objects. The major extension over RDFS is the ability of OWL DL to provide
restrictions on how properties behave locally to a class. A class can be defined
with a particular property restricted so that

• all the values for the property in instances of the class must belong to a
certain class (or data type);

• at least one value must come from a certain class (or data type);

• there must be at least a specific value;

• there must be at least or at most a certain number of distinct values.

Table 4.3 shows that classes can be organized in a subsumption (subclass) hier-
archy, disjointness statements can be made on classes. OWL DL can also declare
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properties with their domains and ranges, organize them into a subproperty hierar-
chy. Equivalence statements can be made on classes and on properties. OWL DL
can also state whether a property is transitive, symmetric, functional, or inverse
of another property. It can express which individuals belong to which classes, and
what the property values are of specific individuals. Equality and inequality can
be asserted between individuals.

Table 4.3: OWL DL axioms and facts
Abstract syntax DL Syntax Semantics

Class(A partial C1...Cn) A v C1 u ... u Cn AI ⊆ CI1 u ... u CIn
Class(A complete C1...Cn) A ≡ C1 u ... u Cn AI ≡ CI1 u ... u CIn
EnumeratedClass(A o1...on) A ≡ {o1} u ... u {on} AI ≡ {oI1 , ..., oIn}
SubClassOf(C1, C2) C1 v C2 CI1 ⊆ CI2
EquivalentClasses(C1...Cn) C1 ≡ ... ≡ Cn CI1 = ... = CIn
DisjointClasses(C1...Cn) Ci v ¬Cj , CIi ∩ CIj = ∅,

(1 ≤ i < j ≤ n) (1 ≤ i < j ≤ n)

DatatypeProperty(U su-
per(U1) ... super(Un)

U v Ui, (1 ≤ i ≤ n) UI ⊆ UIi , (1 ≤ i ≤ n)

domain(C1) ... do-
main(Cm)

≥ 1U v Ci, (1 ≤ i ≤ m) UI ⊆ CIi ×∆D
I , (1 ≤ i ≤ m)

range(d1) ... range(dk) > v ∀U.di, (1 ≤ i ≤ k) UI ⊆ ∆I × dIi , (1 ≤ i ≤ k)
[Functional]) > v≤ 1U {〈x, y〉|]{y.〈x, y〉 ∈ UI} ≤ 1∀x ∈ ∆I}

SubPropertyOf(U1 U2) U1 v U2 UI1 ⊆ UI2
EquivalentProperties(U1...Un) U1 ≡ ... ≡ Un UI1 = ... = UIn
ObjectProperty(R super(R1)
... super(Rn)

R v Ri, (1 ≤ i ≤ n) RI ⊆ RIi , (1 ≤ i ≤ n)

domain(C1) ... do-
main(Cm)

≥ 1R v Ci, (1 ≤ i ≤ m) RI ⊆ CIi ×∆I , (1 ≤ i ≤ m)

range(C1) ... range(Ck) > v ∀R.Ci, (1 ≤ i ≤ k) RI ⊆ ∆I × CIi , (1 ≤ i ≤ k)
[inverseOf(S)] R ≡ S− RI = (S−)I
[Symmetric] R ≡ R− RI = (R−)I
[Functional] > v≤ 1R {〈x, y〉|]{y.〈x, y〉 ∈ RI} ≤ 1∀x ∈ ∆I}
[InverseFunctional] > v≤ 1R− {〈x, y〉|]{y.〈x, y〉 ∈ (R−)I} ≤ 1∀x ∈ ∆I}
[Transitive]) Trans(R) RI = (RI)+

SubPropertyOf(R1, R2) R1 v R2 RI1 ⊆ RI2
EquivalentProperties(R1...Rn) R1 ≡ ... ≡ Rn RI1 = ... = RIn
AnnotationProperty(R)
Individual(o

type(C1) ... type(Cn) o ∈ Ci oI ∈ CIi

value(R1 o1)...value(Rn on))
〈o, oi〉 ∈ Ri 〈oI , oDi 〉 ∈ RIi

value(U1 v1)...value(Un vn))
〈o, vi〉 ∈ Ui 〈oI , vD

i 〉 ∈ RIi

SameIndividual(o1...on) o1 = ... = on oI1 = ... = oIn
DifferentIndividuals(o1...on) oi 6= oj oIi 6= oIj

OWL properties can be either data type properties or object properties. The
former relates objects to data values in data ranges, while the latter relates objects
to objects. The following four property characteristics can never be specified for
data type properties:

• inverse of,
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• inverse functional,

• symmetric, and

• transitive.

The semantics of OWL DL includes also some unusual (w.r.t DL) aspects. Anno-
tations are given a simple separate meaning that can be used to associate infor-
mation with classes, properties, and individuals in a manner compatible with the
RDF semantics.

An example of OWL DL ontology in abstract syntax can be seen in Figure 4.1,
which illustrates the simple Dormitory ontology presented in Example 3.2.1. Full
details on the abstract syntax of OWL DL can be found in [81].

Ontology(
Annotation(rdfs:label "Ontology of Dormitory")
Annotation(rdfs:comment "An OWL ontology example")

Class(Certificate partial)
Class(Student partial)

ObjectProperty(hasTrainingCertificate
domain(Student)
range(Certificate))

Class(Trainee partial
restriction(hasTrainingCertificate allValuesFrom(Certificate))
Student)

ObjectProperty(compatriot
domain(Student)
range(Student)
Transitive)

)

Figure 4.1: An example ontology in the OWL DL abstract syntax

The OWL RDF/XML syntax is the exchange syntax for OWL DL. RDF is known
to have restrictions to provide a well-formed syntax for OWL (cf. section 2.2).
Therefore, the RDF/XML syntax form of an OWL DL ontology is valid if and only
if it can be translated (according to the mapping rules provided in [81]) from the
abstract syntax form of the ontology. An entity of an OWL DL ontology can be a
class, a property, or an instance. All entities in an OWL DL ontology are resources,
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i.e. elements of the RDF domain of discourse, and can be identified by URIs.
Classes and individuals can be named or not. In the former case, they are referred
to by URIs and their names are these URIs. In the latter case, they are called
“blank nodes” and are not be referenced by any URI. Entity descriptions in OWL
DL ontologies can be represented in the form of RDF triplets whose predicates
are OWL primitives. The latter are properties predefined in OWL or in RDF(S),
such as rdfs:subClassOf and owl:equivalentClass (SubClassOf and EquivalentClasses
in abstract syntax respectively). The full list of OWL primitives can be found
in [114]. All the entities in a legal OWL ontology are typed by the primitive
rdf:type. That is, there exists at least a triplet whose subject, predicate and object
are the entity concerned, rdf:type, and an OWL class respectively. Individuals in
an ontology are typed by the classes described in that ontology. The classes and
properties are typed by predefined classes in OWL. The full list of OWL classes
can be found in [114].

OWL DL direct model-theoretic semantics is very similar to the semantics pro-
vided by DLs, except that symbols for classes and properties, etc. are URI refer-
ences instead of the usual names (strings), and that the model-theoretic semantics
includes semantics for annotation properties and ontology properties (cf. [81]).
Consequently, we do not investigate this semantic formalism in this thesis.

4.2 OWL DL with Identification Constraints

In this section, we will review the capability of OWL DL in describing Iden-
tification constraints, show its limitations and identify the requirements that an
extension of OWL DL must satisfy.

In the sense of OWL DL, ICs can be defined as to state that a certain set of
properties uniquely identifies the instances of a given class. Essentially, these con-
straints put a one-to-one relation between sets of values of respective properties
and instances of a class. Although supporting considerable expressive power to the
Semantic Web (cf. Section 4.1), the mechanism to express this kind of constraints
in OWL DL is still very seriously limited. In particular, OWL DL provides two
constructors, namely (in abstract syntax) Functional and InverseFunctional, which
can be used to link individuals together. The semantics of Functional and In-
verseFunctional can be seen in Table 4.3. However, we restate it here for easier
reference:

• If a property, P, is tagged as Functional then for all x, y, and z: P(x,y) and
P(x,z) implies y = z. For example, if the property hasFlag is characterized
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nation1

nation2

nation3
nation4

flag1

flag2

flag3

Funtional: n-1 relation InverseFuntional: 1-n relation

hasFlag
nation1

nation2

nation3
nation4

flag1

flag2

flag3

hasFlag

Figure 4.2: Examples showing the limitations of OWL DL in representing ICs

as Functional, then each nation has at most one flag; if a nation has “two
flags”, they must be the same (see the illustration of Functional constructor
in Figure 4.2).

• If a property, P, is tagged as InverseFunctional then for all x, y and z: P(y,x)
and P(z,x) implies y = z. For example, if the property hasFlag above is
characterized as InverseFunctional, then two nations could be inferred to be
identical based on having the same flag (see the illustration of InverseFunc-
tional in Figure 4.2).

Suppose that one would like to identify uniquely each nation by its flag. The con-
structor Functional shown above obviously does not respond to this requirement
while InverseFunctional seems to fit well. Accordingly, one can think of Inverse-
Functional as defining ICs.

However, Figure 4.2 shows that InverseFunctional does not require that two sepa-
rate flags must correspond to separate nations. Consequently, one nation can be
identified by different flags, which is not expected. Actually, the relation put by
InverseFunctional is a one-to-many relation whereas Functional represents many-
to-one relations. Therefore one can think of using both of these constructors to
represent the notion of ICs. Applying both these constructors on the property
hasFlag, one nation cannot be identified by different flags anymore.

Nevertheless, the relations put by Functional and InverseFunctional are not com-
pulsory to all elements of the domain. As shown in Figure 4.2, not all nations
must have flags and vice versa. In the sense of DB schemas, we can say that these
constructors allow for expressing null keys, which is never permitted in primary
keys. To enforce a compulsory participation, one can think of applying exists
restriction to both properties hasFlag and inverseOf(hasFlag): restriction(hasFlag
someValuesFrom(Flag)), restriction(inverseOf(hasFlag) someValuesFrom(Nation)).

However, if one would like to specify that “Cities are uniquely identified by City
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codes”, an ontology should constrain all instances of the class City to have distinct
values for their city codes. This requirement, unfortunately, cannot be satisfied by
any combination of the three constructors presented above. The reason is that in
OWL DL InverseFunctional cannot be applied to data type property (cf. Section
4.1). Consequently, it is impossible in OWL DL to assert that hasCitycode, which
has the range of data type integer, is an identifier for instances of the class City.

Furthermore, the DL syntax and semantics of InverseFunctional and Functional
show that these constructors are special kinds of number restrictions (cf. Table 4.3
and 4.2). They essentially apply the restrictions to all elements of the universe,
i.e. owl:Thing - so called global restrictions. That is why one cannot use these
constructors to put dependencies on certain classes. For example, suppose that
the classes Nation and NationHistory both share the property hasFlag. One would
like to assert that hasFlag is a unique identifier for instances of Nation, but not for
instances of NationHistory. InverseFunctional cannot express this.

In addition, these constructors are designed to put only relations between two
elements (only possibly referring to simple keys in DB schemas), while those be-
tween an element and a set of elements (corresponding to compound keys in DB
schemas) cannot be expressed. Let us revisit the class NationHistory mentioned
above in Example 4.2.1.

Example 4.2.1. One would like to state that instances of class NationHistory are
uniquely identified by a couple of properties (hasFlag, onDate), where hasFlag is
an ObjectProperty whose values are flags and onDate is a DatatypeProperty whose
values are dates.

The constraint described in this example is obviously out of the expressivity of
OWL DL. The language has no constructors to describe that an “instance” of the
couple (hasFlag, onDate) uniquely identifies an instance of the class NationHistory.
Even if one tries to express an IC concerning only objects, i.e., suppose that
onDate is an object property, by using the combination of InverseFunctional and
Functional, it cannot capture the case of two nation history items sharing the same
flag on different dates. It is even impossible to describe this constraint with any
combination of constructors in OWL DL.

As a result, to express ICs in the Semantic Web, a new mechanism must be
designed that needs to satisfy the following requirements:

1. It should provide the “real” ICs, i.e., one-to-one relations;

2. It should support ICs on specific classes, or so called non-global ICs;
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3. It should provide ICs for data type properties, object properties, and sets of
these two kinds of properties;

4. It should support both kinds of constraints corresponding to simple and
compound keys in DB schemas;

5. It should be layered on top of OWL DL. The extension of OWL DL should
not influence the existing syntax of OWL DL. The users of OWL are therefore
able to create their web applications or ontologies in the extended language
without being influenced by the features designed for data integration. Al-
though the IC utility is useful not only in data integration but also in other
applications, users can switch off this utility if they do not need it;

6. The extension with this mechanism should have formal semantics;

7. The extension with this mechanism should be a decidable extension of OWL
DL.

The following sections and Chapter 5 will introduce a such mechanism that makes
an extended language of OWL DL called OWL-K.

4.3 Modeling ICs in OWL-K

In this section, we introduce a mechanism to represent ICs into OWL DL,
which creates an extension language called OWL-K (“K” stands for “key”). The
new mechanism is designed separately from the existing syntax of OWL DL so
that it can be switched off if the users do not need it.

4.3.1 Vocabulary

In order to satisfy the requirements shown in Section 4.2, we extend OWL
DL with IC assertions resulting in the language OWL-K. In this language, IC
assertions are modeled as entities. They are neither classes nor properties. Hence
IC assertions are defined as instances of a new class owlk:ICAssertion, which is a
subclass of rdfs:Resource (cf. Figure 4.3).

Figure 4.3 shows information about the class hierarchy using a “nodes and arcs”
graph representation of the RDF data model. If a class is a subset of another, then
there is an rdfs:subClassOf (s) arc from the node representing the former class to
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Figure 4.3: Class Hierarchy for OWL-K

the node representing the latter. Similarly, if a resource is an instance of a class,
then there is an rdf:type (t) arc from the resource to the node representing the
class. Note that not all resources, classes and arcs are shown. We only show the
principle resources, classes and arcs relating to our discussion for the extension.
The rest is the same as for OWL DL [114].

As specified in the requirements (cf. Section 4.2), an IC must put a constraint on
a set of properties. Let us see how OWL DL provides property restrictions:

• First, property restrictions are defined as classes while ICs do not create new
classes;

• Second, OWL DL distinguishes two kinds of property restrictions: value
constraints and cardinality constraints. Value constraints put constraints on
the range of a property when applied to this particular class description.
Cardinality constraints put constraints on the number of values a property
can take, in the context of this particular class description.

So restriction constructors in OWL DL put restrictions on only one property while
an IC puts a restriction on a collection of properties. Restriction constructors in
OWL DL, therefore, do not agree with ICs. To express IC assertions, we introduce
new kinds of restriction constructors, namely owlk:onClass and owlk:byProperty.

owlk:onClass is used to specify the class an IC is applied on. owlk:byProperty is
used to specify the property in the collection of properties identifying instances of
a given class. Since ICs can be applied both to data type properties and object
properties, owlk:byProperty is designed to have range both of the data-valued and
object properties. Table 4.4 shows the vocabulary extension of OWL-K compared
with OWL DL.
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Table 4.4: Vocabulary extension for OWL-K

rdfs:Class rdfs:subClassOf
owlk:ICAssertion rdfs:Resource

Property name Type rdfs:domain rdfs:range
owlk:onClass rdf:ObjectProperty owlk:ICAssertion owl:Class
owlk:byProperty rfd:Property owlk:ICAssertion owl:Property

4.3.2 Abstract Syntax

The abstract syntax is used to facilitate access to and evaluation of the lan-
guage. It is specified by means of a version of Extended BNF:

• terminals are quoted; non-terminals are bold and not quoted,

• alternatives are either separated by vertical bars (|) or are given in different
productions,

• components that can occur at most once are enclosed in square brackets
([...]); components that can occur any number of times (including zero) are
enclosed in braces ({...}). Whitespace is ignored.

IC assertions in OWL-K ontologies must be identifiable and referable like any other
entity of ontologies. Hence, as for classes, properties and instances in OWL DL
ontologies, we associate with each IC assertion in an OWL-K ontology an identifier,
which is a URI reference.

As the axioms modeled in OWL DL, a new kind of axioms to express IC assertions
is added as follows:

ICAssertionID ::= URIreference
axiom ::= ‘ICAssertion(’ ICAssertionID

description
propertyID {propertyID}‘)’

propertyID ::= datavaluedPropertyID |
individualvaluedPropertyID

datavaluedPropertyID ::= URIreference
individualvaluedPropertyID ::= URIreference

description is defined as in the OWL DL abstract syntax, which can be a class
identifier, restrictions, boolean combination of other descriptions, or also a set of
individuals.
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With this syntax, the IC in Example 4.2.1 can be described in the abstract syntax
as follows:

ICAssertion(NationHistoryIC NationHistory hasFlag onDate)

4.3.3 RDF Graphs

In the Semantic Web environment, an OWL ontology is in fact an RDF graph,
which is in turn a set of RDF triples. Hence it is necessary to relate specific ab-
stract syntax ontologies with specific RDF/XML documents and their correspond-
ing graphs. We provide a mapping from the abstract syntax for OWL-K to the
exchange syntax, namely RDF/XML syntax. Since OWL-K is the extension of
OWL DL, it inherits the existing mapping for OWL DL (see section 4 of [81]).
We introduce here only the mapping for IC assertions (cf. Table 4.5, where “T”
stands for “triples”). So that our extension preserves the normative relationship
between the abstract syntax and the exchange syntax.

Table 4.5: Transformation of IC assertion to triples

Abstract syntax S Transformation - T(S)
ICAssertion(ICAssertionID ICAssertionID rdf:type owlk:ICAssertion.
description ICAssertionID rdf:type rdfs:Resource.[opt]
propertyID1

. . . propertyIDn)
ICAssertionID owlk:onClass T(description).
ICAssertionID owlk:byProperty T(propertyID1).
. . .
ICAssertionID owlk:byProperty T(propertyIDn).

As a result, the IC in example 1 is represented in the exchange syntax as follows:

<owlk:ICAssertion rdf:ID = "NationHistoryIC">
<owlk:onClass rdf:resource = "#NationHistory" />
<owlk:byProperty rdf:resource = "#hasFlag"/>
<owlk:byProperty rdf:resource = "#onDate"/>

</owlk:ICAssertion>

4.4 SHOINK(D) - Logic Foundation of OWL-K

In this section, we introduce the logic foundation of OWL-K, namely a DL
SHOINK(D), which forms the formal semantics of our new Web ontology lan-
guage. While in OWL-K we talk about classes, object properties and data type
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properties, in SHOINK(D) we call them concepts, abstract roles and concrete
roles respectively. In DLs, we call individual domain the (abstract) interpreta-
tion domain, and domain of data values the concrete interpretation domain. An
OWL-K ontology can be seen as an SHOINK(D) knowledge base.

Particularly, SHOINK(D) is an extension of SHOIN (D), the underlying of
OWL DL, with ICs. These constraints are not a standard feature of DLs. In
consequence, adding ICs to a particular DL language is always a challenge. Over
the past years there have been many efforts to deal with this problem. Before
introducing our extension language, we see how those works represent ICs in DLs.

4.4.1 Representation of Identification Constraints in DLs

Over the last decade, there have been many efforts to represent ICs, or key
constraints in the Database sense, in DLs. One approach is introducing them as
new concepts [41, 23, 92]. De Giacomo and colleagues [41] introduced a concept
constructor χ to denote a key constraint for a subset of individuals of a concept
C. They introduced a description of the form

χ(C, R1, ..., Rm),

where each Ri corresponds to a functional role4 in our terminology. This descrip-
tion defines a concept D subsumed by C such that no distinct s, s′ ∈ D have the
same participation in R1, ..., Rm. However, by this representation, a description
χ(C, R1, ..., Rm) can yield non-deterministically D, i.e., several subsets can result
from one description.

Borgida and Weddell [23] overcame this shortcoming by proposing a definition
using the key constructor as follows:

(key C {R1...Rm})
with

(key C {R1...Rm})I := {x|x ∈ ∆I ∧ ∀y ∈ CI : [RI1 (x) = RI1 (y) ∧ ...∧
RIm(x) = RIm(y)] → x = y},

4A role R is called a functional role iff > v≤ 1R.



4.4 SHOINK(D) - LOGIC FOUNDATION OF OWL-K 87

where C is a concept, R1, ..., Rm correspond to functional roles in our terminology,

and RIi (x) denotes an individual xi such that 〈x, xi〉 ∈ RIi .

Under this definition, (key⊥{R1...Rm}) = > for any {R1...Rm}. This definition
was even later extended to support a kind of roles called feature paths [92]. It
is obvious that by this definition, a set of attributes {R1...Rm} is neither a key
for instances of a concept C, which is used in the constraint definition, nor a key
for instances of a concept D, which is defined by definition. Consequently, the
meaning of key constraints is not captured properly. Users must know that if they
want to define {R1...Rm} as a key to uniquely identify instances of a concept C,
they must define a subsumption C v (key C {R1...Rm}).
By creating new concepts, this approach needs to define concepts for key so that
they fully capture key properties. For example, let K and K ′ be two concepts
generated by setting two key constraints on a concept C. The only difference
between the constraints for K and K ′ is that the set of key attributes for K is
subsumed by the one for K ′. In the relational database sense, the relation between
K and K ′ must be that K subsumes K ′. The definition for key constraints in [41]
does not capture this property. Moreover, the DL languages in the works following
this approach are limited in expressivity or/and in decidability.

An other approach that avoids the above limitations of key representation is to
declare key constraints. Calvanese et al. [28] proposed a key-declaration in the
form:

key R1, ..., Rm,

where Ri corresponds to (possibly non-functional) roles in our terminology. Note
that there is no concept name in a key-declaration. A class C satisfies a key-

declaration “key R1, ..., Rm” if ∀o ∈ CI there are o1, ..., om ∈ ∆I such that

〈o, oi〉 ∈ RIi for 1 ≤ i ≤ m, and there is no other o′ ∈ CI such that o′ 6= o for
which these conditions hold. The semantic definition of this declaration exposes
that their key constraints are not one-to-one relations, i.e., one instance of C can
have more than one participation in R1, ..., Rm. Actually, key-declarations are
allowed only in class definitions, where key constraints are assigned to concepts.

In a later work that extends DLR, a DL with n-ary roles [29], Calvanese and his
colleagues put concepts into definitions of key constraint and called these iden-
tification assertions. An identification assertion on a concept C has the form:

(id C [i1]R1, ..., [im]Rm),
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where each Rj is an n-ary role, and [ij]Rj denotes the component ij of Rj. It is
obvious that this representation has the similar form to the one in [23]. However,
its semantics is totally different. An interpretation I satisfies the assertion (id

C [i1]R1, ..., [im]Rm) if, for all a, b ∈ CI and for all t1, s1 ∈ RI1 , ..., tm, sm ∈ RIm, we
have that:

a = t1[i1] = ... = tm[im],
b = s1[i1] = ... = sm[im],
tj[i] = sj[i], for j ∈ {1, ..., m}, and for i 6= ij



 implies a = b.

The authors defined a box called F that contains all identification assertions.
A knowledge base consists of a TBox, an ABox and a box F . Considering the
semantics of key assertions, we find that key assertions, actually, do not capture
properly the meaning of key constraints in relational database neither, i.e. one-
to-one relations, but one-to-n relations. Furthermore, there is no known practical
decision procedure to solve the problem of decidability in DLR. Even if such a
procedure exists, it causes some problems of tractability [85].

This approach is also followed by C. Lutz et al. [97]. They add key constraints
to the DLs with the concrete domain ALCO(D) and SHOQ(D), resulting in two
extended languages ALCOK(D) and SHOQK(D) respectively. The authors use
also a box distinct from ABox and TBox to store key assertions. Formally, they
introduce key boxes that are sets of key assertions of the form

(u1, ..., um keyfor C),

where m ≥ 1, each ui is called a path which is a composition f1...fng of n abstract
functional roles f1, ..., fn (n ≥ 0) and a concrete functional role g, and C is a

concept. For d ∈ ∆I , uIi (d) is defined as gI(fIn ...(fI1 (d))...).

The interpretation I satisfies a key assertion (u1, ..., uk keyfor C) if, for any a, b ∈
CI ,

uI1 (a) = uI1 (b), ..., uIn (a) = uIn (b) implies a = b.

This semantics respects the one-to-one relation of ICs. However, note that the
authors use concrete functional roles which restrict the key to only a set of values
to obtain this objective. This, as a consequence, does not allow to describe all the
possibilities of the constraint as shown in Section 4.2.

Besides, even though Lutz et al. [97] add ICs to DLs with expressive concrete
domains (i.e. domains with n-ary predicates), restricted by concrete functional
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role, ALCOK(D) and SHOQK(D) do not permit some concrete constructors
(e.g. ∀U.d,≤ nU.d,≥ nU.d) that are allowed in OWL. The concrete domain in
SHOIQK(D), which will be introduced in the next section, is less expressive.
Nevertheless, it plays a prominent role in the construction of ontologies.

4.4.2 Universal Concrete domain

A major concern when providing DL reasoning services for OWL is the support
for OWL datatyping. Concrete data types are defined by external type systems
(e.g. XML schema type system) to represent literal values.

A set of concrete data types (or data types for short) composes a universal concrete
domain D, in which the predicates representing data types are unary. For example,
with the data type ≥26 defined in D as a set of integer values greater than or
equal to 26, we can describe the concept “people who are at least 26 years old” as
Personu∃age. ≥26 where Person is a concept and age is a concrete role. Formally,
a universal concrete domain D is defined in Definition 4.4.1 (presented slightly
differently from the original version).

Definition 4.4.1 (Universal concrete Domain [112]). A universal concrete
domain D is a pair (∆D, ΦD), where ΦD is a set of concrete data type (unary
predicate) names and ∆D is the domain of all these data types. Each data type
name d ∈ ΦD is associated with a set dD ⊆ ∆D. ¬d is the name for the negation
of a data type name d with (¬d)D = ∆D\dD.

Let V be a set of variables. A data type conjunction of the form

c =
k∧

j=1

dj(vj), (4.1)

where dj ∈ ΦD (possibly negated) and vj ∈ V, is called satisfiable iff there exists
a function δ mapping the variables in c to data values in ∆D such that δ(vj) ∈ dD

j

for 1 ≤ j ≤ k. Such a function δ is called a solution for c.

A set of data types ΦD is called conforming iff the satisfiability problem for finite
(possibly negated) data type conjunctions over ΦD is decidable.

For example, let N = (<D
2 , {<2}) be a universal concrete domain where the domain

of the data type <2 is <D
2 = {0, 1}. A data type conjunction for the concept

≥ 3Uu∀U. <2, where U is a concrete role, should be c =<2 (v1)∧ <2 (v2)∧ <2 (v3),
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where {v1, v2, v3} ∈ V. c is satisfiable if and only if there exists a solution δ such
that δ(v1) ∈<D

2 , δ(v2) ∈<D
2 and δ(v3) ∈<D

2 .

4.4.3 SHOINK(D) Syntax and Semantics

Definition 4.4.2. Let R+ be a set of transitive role names, R be a set of abstract
role names with R+ ⊆ R. A set of abstract roles RA is R ∪ {R−|R ∈ R} where
R− is the inverse role of R. Let RD be a set of concrete role names, RA∩RD = ∅.
The set of SHOINK(D)-roles (or roles for short) is RA ∪RD.

A role hierarchy (Rbox) R is a finite set of role inclusion axioms which are of the
form R v S for R,S ∈ RA or R, S ∈ RD.

An interpretation I = (∆I ,.I ) consists of a non-empty abstract interpretation
domain ∆I, ∆I ∩ ∆D = ∅, and a function .I that maps every role to a subset of
∆I ×∆D or of ∆I ×∆I such that for P ∈ R and R ∈ R+,

〈x, y〉 ∈ P I iff 〈y, x〉 ∈ (P−)I ,

if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI then 〈x, z〉 ∈ RI.

The interpretation I satisfies a role hierarchy R iff RI ⊆ SI for each R v S ∈ R.
Such an interpretation is called a model of R.

Table 4.6: SHOINK(D) role syntax and semantics

Constructor name Syntax Semantics

abstract atomic role R RI ⊆ ∆I ×∆I

concrete role U UI ⊆ ∆I ×∆D

transitive role R ∈ R+ RI = RI+

inverse role R− {〈x, y〉|〈y, x〉 ∈ RI}
role hierarchy R v S RI ⊆ SI

The SHOINK(D) role syntax and semantics can be seen in Table 4.6. Besides,
there are some notations for roles:

1. To avoid roles in the form of R−−, a function Inv is defined to return the
inverse of a role. For R ∈ R, Inv(R) := R− and Inv(R−) := R.
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2. Let ∗vR be the transitive-reflexive closure of v on R∪{Inv(R) v Inv(S)|R v
S ∈ RA}, the equivalence of two roles R ≡R S means that R ∗vR S and
S ∗vR R.

3. A role R is transitive if and only if its inverse Inv(R) is transitive. In case
R ≡R S, S is transitive if R or Inv(R) is a transitive role name. In order
to avoid these case distinctions, the function Trans returns true iff R is a
transitive role, regardless whether it is a role name, the inverse of a role
name, or equivalent to a transitive role name (or its inverse):

• Trans(S,R) := true if, for some R with R ≡R S, R ∈ R+ or Inv(R) ∈
R+;

• Trans(S,R) := false otherwise.

4. A role R is a simple role w.r.t R if Trans(S,R) = false for all S ∗vR R.

5. In the following, if R is clear from the context, we may abuse our notation
and use ∗v, ≡ and Trans(S) instead of ∗vR, ≡R and Trans(S,R).

Definition 4.4.3. Let NC be a set of concept names, NI be a set of nominals
with NI ⊆ NC. The set of SHOINK(D)-concepts (or concepts for short) is the
smallest set such that

• every concept name C ∈ NC is a concept,

• if C and D are concepts and R is an abstract role, U is a concrete role and
d is a datatype then (C tD), (C uD), (¬C), (∀R.C), (∃R.C), (∀U.d), and
(∃U.d) are also concepts, and

• if C is a concept, R is a simple role5, or a concrete role and n ∈ IN , then
(≤ nR) and (≥ nR) are also concepts.

The interpretation function .I of an interpretation I = (∆I ,.I ) maps every concept

to a subset of ∆I as shown in Table 4.7.

Definition 4.4.4. An identification constraint is an expression in the form of

R1, ..., Rn IdforC,

5Restricting number restrictions to simple roles is required in order to yield a decidable logic
[87]
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Table 4.7: SHOINK(D) concept syntax and semantics

Constructor name Syntax Semantics
atomic concept A AI ⊆ ∆I

data type d dD ⊆ ∆D

negation ¬C ∆I\CI
data type negation ¬d ∆D\dD

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

exists restriction ∃R.C {x ∈ ∆I |∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
value restriction ∀R.C {x ∈ ∆I |∀y.〈x, y〉 ∈ RI → y ∈ CI}
exists data type restriction ∃R.d {x ∈ ∆I |∃y.〈x, y〉 ∈ RI ∧ y ∈ dD}
value data type restriction ∀R.d {x ∈ ∆I |∀y.〈x, y〉 ∈ RI → y ∈ dD}
atleast restriction ≥ nR {x ∈ ∆I |]{y.〈x, y〉 ∈ RI} ≥ n}
atmost restriction ≤ nR {x ∈ ∆I |]{y.〈x, y〉 ∈ RI} ≤ n}
nominal o ]{oI} = 1, oI ⊆ ∆I

concrete value v ]{vD} = 1, vD ⊆ ∆D

where C is a concept, each R is a simple role or a concrete role.

An interpretation I satisfies an expression R1, ..., Rn IdforC iff

∀s, s′ ∈ CI such that 1 ≤ i ≤ n, 〈s, ti〉 ∈ RI
i and 〈s′, t′i〉 ∈ RI

i , ti = t′i ∀i imply
s = s′ and vice versa.

A KBox K is a finite set of ICs. I is a model of K iff I satisfies all constraints in
K. A concept C is satisfiable w.r.t a KBox K iff C and K have a common model.

C is subsumed by a concept D w.r.t K (written C vK D) iff CI ⊆ DI for all
models I of K.

Intuitively, an IC indicates that two instances of a concept C never share the
same participation in these n roles, and an instance of C never be identified by
more than one participation in these n roles. The roles must be simple to yield a
decidable logic (as proved in Chapter 5). With this definition of SHOINK(D)
semantics, we can have the mapping from the OWL-K abstract syntax of ICs to
its respective DL syntax and semantics as shown in Table 4.8.

Table 4.8: Mapping from OWL-K abstract syntax to DL syntax and semantics

Abstract syntax DL syntax Semantics
ICAssertion(ICAssertionID R1, ..., Rn IdforC I |= R1, ..., Rn IdforC iff
C R1 ... Rn) ∀ s, s′ ∈ CI , 1 ≤ i ≤ n,

{〈s, ti〉, 〈s′, t′i〉} ∈ RIi ,
ti = t′i ∀ i imply s = s′ and vice versa
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For example, the identification constraint in Example 4.2.1 above will be repre-
sented in SHOINK(D) as

hasFlag, onDate Idfor NationHistory,

where hasFlag is an abstract role, onDate is a concrete role, and NationHistory is
a concept.

With SHOINK(D)-ABox defined as in Definition 3.3.5, we define SHOINK(D)
knowledge bases as follows:

Definition 4.4.5 (SHOINK(D) knowledge bases). A SHOINK(D) knowl-
edge base Σ is a tuple 〈R, T ,K,A〉 where R is an RBox, T is a TBox, K is a
KBox, and A is an ABox.

An interpretation I is a model of Σ if I |= R, I |= T , I |= K and I |= A.

As stated in Theorem 2.3.2, SHOINK(D) KB satisfiability can be reduced to
satisfiability of only RBox, TBox, and KBox.

Definition 4.4.6. A TBox T is satisfiable w.r.t. an RBox R and a KBox K if
there is a model I of T , R and K. A concept C is satisfiable w.r.t. an RBox R,

a TBox T and a KBox K if there is a model I of R, T and K such that CI 6= ∅.
Such an interpretation is called a model of C w.r.t. R, T and K. A concept D

subsumes a concept C w.r.t. R, T and K (written C vR,T ,K D) if CI ⊆ DI
holds in every model I of R, T and K. Two concepts C, D are equivalent w.r.t.
R, T and K (written C ≡R,T ,K D) if they are mutually subsuming w.r.t. R, T
and K.

As mentioned in Chapter 3, subsumption can be reduced to satisfiability,
C vR,T ,K D iff C u ¬D is unsatisfiable w.r.t R, T and K and C is not sat-
isfiable w.r.t R, T and K iff C vR,T ,K ⊥. Moreover, concept satisfiability w.r.t
R, T and K can be reduced to the satisfiability w.r.t R, K by using the inter-
nalization technique (see section 2.3.2). Therefore, we only consider the concept
satisfiability w.r.t R and K.

When R and K is clear from the context, we may abuse our notation and use v
and ≡ instead of vR,K and ≡R,K respectively.

Note that for an IC R Idfor C, a TBox can have two axioms C v≤ 1R and
D v≥ 3R, therefore R is not required to be a functional role (cf. Table 4.7).
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4.5 Conclusion

OWL DL is a popular resource description language in the Semantic Web en-
vironment. Therefore, to integrate relational data sources in the Semantic Web, it
should be capable of expressing the notion of Identification Constraints, which have
been modeled as key constraints in relational Databases. Although this standard
web ontology is quite expressive, it has a very serious limitation on representing
ICs.

In this chapter we have introduced a new Web ontology language OWL-K. This is
an extension of OWL DL that allows one to describe various kinds of ICs. The syn-
tax of OWL-K is both intuitive to human users and compatible with existing Web
standards (such as XML, RDF(S) and OWL). Its semantics is formally specified
via a new DL language SHOINK(D). This DL is an extension of SHOIN (D)
with ICs. Adding ICs to DLs is nevertheless not a trivial task. Many works have
tried to address this problem. Although we describe ICs in our DL in a form
similar to the one in [97], our IC descriptions are more powerful in the sense that
they have the capacity to fully capture all possible expressions of ICs.

The design of OWL-K shows that the language satisfies all the first six requirements
presented in the end of Section 4.2. The last requirement has, however, not been
handled in this chapter yet. We will deal with this one in the next chapter, showing
that OWL-K’s expressivity is adequate, i.e., the language is expressive enough for
defining the relevant concepts in enough detail, but not too expressive to make
reasoning infeasible.





CHAPTER 5

Reasoning for OWL-K

Reasoning is important because it is necessary for the ontology design1, on-
tology integration2, as well as for ontology deployment3. We deal with reasoning
problem for OWL-K by building a Tableau algorithm for SHOIQK(D), a lan-
guage a bit more expressive than the description logic underlying OWL-K, i.e.
SHOINK(D). Actually, SHOINK(D) can be considered as a SHOIQK(D)
sub-language which admits the application of qualified number restrictions only to
the universe (>) (cf. Table 5.1). Therefore, a Tableau algorithm for SHOIQK(D)
can also be applied for SHOINK(D). Moreover, while qualified number restric-
tions are not a part of standard OWL at the moment, they are already supported
by many OWL tools (e.g. Protégé-OWL [74], Racer [59]).

Throughout this chapter, we will also consider several fragments of SHOIQK(D).
By disallowing the use of data types, we obtain the DL SHOIQK from
SHOIQK(D). The DL SHOIQ(D) is obtained from SHOIQK(D) by admit-
ting only empty KBox. By disallowing the use of inverse roles, we obtain the
fragment SHOQ(D) of SHOIQ(D). SHOIQ is obtained from SHOIQ(D) by

1e.g. checking class consistency, (unexpected) implied relationships.

2e.g. asserting inter-ontology relationships, computing integrated class hierarchy/consistency.

3e.g., determining if sets of facts are consistent w.r.t. ontology, determining if individuals are
instances of ontology classes.
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Table 5.1: Qualified number restrictions in SHOIQK(D)

Constructor name Syntax Semantics
atleast restriction ≥ nR.C {x ∈ ∆I |]{y.〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ n}
atmost restriction ≤ nR.C {x ∈ ∆I |]{y.〈x, y〉 ∈ RI ∧ y ∈ CI} ≤ n}
atleast data type restriction ≥ nR.d {x ∈ ∆I |]{y.〈x, y〉 ∈ RI ∧ y ∈ dD} ≥ n}
atmost data type restriction ≤ nR.d {x ∈ ∆I |]{y.〈x, y〉 ∈ RI ∧ y ∈ dD} ≤ n}

disallowing the use of data types.

We will begin with the general method of tableau algorithms, which will be pre-
sented in Section 5.1. Then in Section 5.2, we will introduce an appropriate tableau
for SHOIQK(D). To construct such a tableau, first of all, we introduce some key
techniques that are employed in the tableau algorithm for SHOIQ [84] and that
influence on our construction (Section 5.3.1). To deal with the problems arising
from the integration of concrete domains into SHOIQ (note that SHOIQ(D)
has not been fully described in the literature yet) and from interactions between
concrete domains and ICs, in Section 5.3.2 we introduce some assumptions about
concrete domains. These assumptions are necessary for the decidability of our
tableau algorithm. After that, in Section 5.3.3 we discuss the problems arising
from adding ICs to SHOIQ(D) and propose a solution to build a sound and
complete algorithm for reasoning problem. Section 5.3.4 is devoted to the con-
struction of the algorithm. Section 5.3.5 introduces a reasoning procedure in the
presence of concrete domains. The properties of the algorithm, namely termina-
tion, completeness and soundness, will be studied in Section 5.4, showing that
in the presence of identification constraints, our algorithm still guarantees logical
implication. About related works, in Section 5.5 we present the approach of Lutz
et al. [97] and distinguish our algorithm from theirs. Finally, we mention the
complexity of our algorithm in the conclusion.

5.1 General Method of Tableau Algorithms

Instead of directly testing subsumption of concepts, Tableau algorithms em-
ploy negation to reduce subsumption to concept (un)satisfiability (cf. Section
3.3.2). Tableau algorithms check the satisfiability of a concept X by trying to
construct a model (i.e. a witness) for X. The idea is using a tree to represent the
model being constructed. Each node x in the tree represents an individual and
is labeled with a set L(x) of concepts of which x represents an instance. Each
edge 〈x, y〉 from a node x to a node y in the tree represents a relationship between
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two individuals and is labeled with a set L(〈x, y〉) of role names of which 〈x, y〉
represents an instance4.

If nodes x and y are connected by an edge 〈x, y〉, then y is called a successor of x
and x is called a predecessor of y; ancestor is the transitive closure of predecessor
and descendant is the transitive closure of successor.

To determine the satisfiability of a concept X, a tree T is initialized to contain the
root node x, with L(x) = {X}, and expanded by repeatedly applying the expansion
rules5 that either extend the node labels or add new nodes. T is fully expanded
or complete when none of the rules can be applied or an obvious contradiction, i.e
clash, occurs. A complete clash-free tree T can be converted into a model which
is a witness to the satisfiability of X.

To simplify the algorithm, X is normalized in negation normal form (NNF). This
means that negations (¬) appear only in front of concept names.

For example, in the language ALC (cf. Table 3.1) we want to know whether the
concept (∃R.A) u (∃R.B) is subsumed by ∃R.(A u B). This means that we must
check whether the concept description

C := (∃R.A) u (∃R.B) u ¬(∃R.(A uB))

is unsatisfiable. Note that in ALC, a clash occurs when for some node x on the
tree T, either ⊥ ∈ L(x) or {D,¬D} ∈ L(x) for some concept D.

C is first transformed into an equivalent concept C0 in NNF:

C0 := (∃R.A) u (∃R.B) u ∀R.(¬A t ¬B))

The tableau algorithm for ALC [116] uses the expansion rules in Table 5.2 to
search possible models for C0 as follows:

1. Initialize a tree T to contain a single node x labeled L(x) = {C0}
2. Apply the u-rule to C0 ∈ L(x):

4For some simple DLs (e.g. ALC), the set has only one element and hence each edge is labeled
with a role name.

5Expansion rules correspond to the expressivity provided by a particular DL language.
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Table 5.2: The tableau expansion rules for ALC
u-rule: if C1 u C2 ∈ L(x), and {C1, C2} * L(x)

then L(x) = L(x) ∪ {C1, C2}
t-rule: if C1 t C2 ∈ L(x), and {C1, C2} ∩ L(x) = ∅

then L(x) = L(x) ∪ {C} where C ∈ {C1, C2}
∃-rule: if ∃R.C ∈ L(x), and there is no y such that L(〈x, y〉) = R and

C ∈ L(y)
then create a new node y with L(〈x, y〉) = R, L(y) = {C}

∀-rule: if ∀R.C ∈ L(x), and there is some y such that L(〈x, y〉) = R and
C /∈ L(y)

then L(y) = L(y) ∪ {C}

L(x) = L(x) ∪ {∃R.A, ∃R.B, ∀R.(¬A t ¬B)},

3. Apply the ∃-rule to {∃R.A, ∃R.B} ∈ L(x):

(a) Create a new node y and an edge 〈x, y〉
L(y) = {A}, L(〈x, y〉) = R

(b) Create a new node z and an edge 〈x, z〉
L(z) = {B}, L(〈x, z〉) = R

4. Apply the ∀-rule to ∀R.(¬A t ¬B)} ∈ L(x) with L(〈x, y〉) = R and
L(〈x, z〉) = R:

L(y) = L(y) ∪ {¬A t ¬B},
L(z) = L(z) ∪ {¬A t ¬B}

5. Apply the t-rule to ¬A t ¬B ∈ L(y):

(a) Save T and try: L(y) = L(y) ∪ {¬A}
This is an obvious contradiction because {A,¬A} ∈ L(y).

(b) Restore T and try: L(y) = L(y) ∪ {¬B}

6. Apply the t-rule to ¬A t ¬B ∈ L(z):

(a) Save T and try: L(z) = L(z) ∪ {¬B}
This is an obvious contradiction because {B,¬B} ∈ L(z)

(b) Restore T and try: L(z) = L(z) ∪ {¬A}
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Figure 5.1: A complete tree for ∃R.A) u (∃R.B) u ∀R.(¬A t ¬B)

None of the expansion rules are now applicable to T. Therefore, T is complet.
Since no clash occurs in the complet T, the algorithm returns satisfiable. The
model represented by T is:

∆I = {x, y, z},
AI = {y}, BI = {z},
RI = {〈x, y〉, 〈x, z〉}.

In the presence of transitive roles, satisfiable concepts may not have models re-
flected directly by trees anymore. For example, there exist some cycles in models
while cycles do not exist on trees (cf. Figure 5.2). Abstractions of models, so-called
tableaux, are then used to prove soundness and completeness of tableau algorithms.
Tableau algorithms try to construct a tableau for an input concept. If the concept
has a tableau, then it must have a model and vice versa.

Figure 5.2: A complete tree and model in the form of graph for the ALCHR+-
concept ∃R.C u ∀R.(∃R.C), R is a transitive role [76].

In the presence of nominals, models for satisfiable concepts can no longer be rep-
resented by trees but by graphs. A graph consists of sub-trees and an arbitrary
graph connecting the roots/leaves of those trees. Note that a forest is a graph
where there are no connections between leaves/roots. Procedure of building a
graph is like building a tree: from an initialized system, applying expansion rules
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until the system is complet or a clash occurs. A complete and clash-free graph
can be converted into a model which is a witness to the satisfiability of the input
concept.

5.2 A Tableau for SHOIQK(D)

We assume that all the concepts including those in KBox are in NNF. A
SHOIQK(D)-concept X is transformed into an equivalent one in NNF by ex-
haustively applying the rules displayed in Table 5.3 to X. We use ¬̇X to denote
the result of converting ¬X into NNF.

Table 5.3: NNF rewrite rules for SHOIQK(D)

¬(C u D) ≡ ¬C t ¬D ¬(C t D) ≡ ¬C u ¬D ¬¬C ≡ C

¬(∃R.C) ≡ ∀R.¬C ¬(∀R.C) ≡ ∃R.¬C

¬(∃U.d) ≡ ∀U.¬d ¬(∀U.d) ≡ ∃U.¬d

¬(≥ nR.C) ≡ (≤ (n− 1)R.C) if n ≥ 1 ¬(≥ 0R.C) ≡ ⊥
¬(≤ nR.C) ≡ (≥ (n + 1)R.C)

¬(≥ nU.d) ≡ (≤ (n− 1)U.d) if n ≥ 1 ¬(≥ 0U.d) ≡ ⊥
¬(≤ nU.d) ≡ (≥ (n + 1)U.d)

Due to Theorem 3.3.2, SHOIQK(D)-KB satisfiability can be reduced to satisfi-
ability of TBox, RBox and KBox. In Chapter 3, we see that the internalization
is used to reduce reasoning w.r.t a (possibly cyclic) Tbox to concept satisfiabil-
ity. Therefore, to reduce reasoning w.r.t TBox and RBox and KBox to reasoning
w.r.t Rbox and KBox only, we use an “approximation” of a universal role < to
internalize a Tbox as follows:

Let R be an Rbox, T be a Tbox, K be a KBox, X is a concept, o1, ..., ol are all
nominals occurring in X, T or K and let

CT =
l

CivDi∈T
¬Ci tDi,

< be a transitive role with R v < for each R occurs in T ,R,K, or X. We set

R< := R∪ {R v <, R− v <|R occurs in T ,R,K or X}.
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X is satisfiable w.r.t T , R, K iff

X u CT u ∀<.CT u ∃<.o1 u ... u ∃<.ol

is satisfiable w.r.t R< and K.

As a consequence, without loss of generality, we restrict our attention to satisfia-
bility of SHOIQK(D)-concept w.r.t an RBox and a Kbox.

When testing the satisfiability of a SHOIQK(D)-concept w.r.t an RBox and a
KBox, we must consider some sets of concepts defined as follows:

Definition 5.2.1 (Set of sub-concepts). Let X be a SHOIQK(D)-concept.
sub(X) is the set of all the sub-concepts of X (including X) and is described
as follows:

1. if X is of the form ¬C, ∀R.C, ∃R.C, ≤ nR.C, ≥ nR.C, then C is a sub-
concept of X and sub(X) = {X} ∪ sub(C),

2. if X is of the form C uD, C tD, then C and D are sub-concepts of X and
sub(X) = {X} ∪ sub(C) ∪ sub(D),

3. otherwise sub(X) = {X}.

Let Con(K) be the set of concepts in a KBox K, R be an RBox. We define the
smallest set of “relevant” SHOIQK(D)-concepts cl(X,K,R) that is closed under
sub-concepts and negation as follows:

cl(X,K,R) = cl(X,K) ∪ {∀R.C|R ∗v S, ∀S.C ∈ cl(X,K) andR in R,
X or K},
where

cl(X,K) = sub(X) ∪ sub(Con(K)) ∪ {¬̇C|C ∈ {sub(X) ∪
sub(Con(K))} and

sub(Con(K)) =
⋃

C∈Con(K)

sub(C).

In the following, we use cl(X) instead of cl(X,K,R) for short.

Definition 5.2.2 (Tableau). Let X be a SHOIQK(D)-concept in NNF, R be
an Rbox, K be a KBox, RA

X ,RD
X be the sets of abstract and concrete roles oc-

curring in X, K or R, together with their inverses. A tableau T for X w.r.t R
and K is defined as a tuple (SA,SD,L, EA, ED) such that:
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• SA is a set of individuals,

• SD is a set of concrete values,

• L : SA → 2cl(X) maps each individual to a set of concepts which is a subset
of cl(X),

• EA : RA
X → 2SA×SA maps each abstract role to a set of pairs of individuals,

• ED : RD
X → 2SA×SD maps each concrete role in RD

X to a set of pairs of an
individual and a concrete value.

• There exists some individual s0 ∈ SA such that X ∈ L(s0) and

∀C, C1, C2 ∈ cl(X), R, S ∈ RA
X , U, U ′ ∈ RX

D, s, t ∈ SA or SD, it holds that:

(P1) if C ∈ L(s), then ¬C /∈ L(s),

(P2) if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),

(P3) if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

(P4) if 〈s, t〉 ∈ EA(R) and R ∗v S then 〈s, t〉 ∈ EA(S),

(P5) if ∀R.C ∈ L(s) and 〈s, t〉 ∈ EA(R) then C ∈ L(t),

(P6) if ∃R.C ∈ L(s) then there is some t ∈ SA such that 〈s, t〉 ∈ EA(R) and C ∈ L(t),

(P7) if ∀S.C ∈ L(s) and 〈s, t〉 ∈ EA(R) for R ∗v S with Trans(R) then ∀R.C ∈ L(t),

(P8) 〈s, t〉 ∈ EA(R) iff 〈t, s〉 ∈ EA(Inv(R)),

(P9) if ≥ nS.C ∈ L(s) then ]ST (s, C) ≥ n,

(P10) if ≤ nS.C ∈ L(s) then ]ST (s, C) ≤ n,

(P11) if ≤ nS.C ∈ L(s) and 〈s, t〉 ∈ EA(S) then {C, ¬̇C} ∩ L(t) 6= ∅,
(P12) if o ∈ L(s) ∩ L(t) then s = t,

(P13) if 〈s, t〉 ∈ ED(U) and U ∗v U ′ then 〈s, t〉 ∈ ED(U ′),

(P14) if ∀U.d ∈ L(s) and 〈s, t〉 ∈ ED(U) then t ∈ dD,

(P15) if ∃U.d ∈ L(s) then there is some t ∈ SD such that 〈s, t〉 ∈ ED(U) and t ∈ dD,

(P16) if ≤ nU.d ∈ L(s) then ]UT (s, d) ≤ n,

(P17) if ≥ nU.d ∈ L(s) then ]UT (s, d) ≥ n,

(P18) If R1, ..., Rn IdforC ∈ K and 〈s, ti〉 ∈ EA(Ri) or ∈ ED(Ri) for 1 ≤ i ≤ n then {C, ¬̇C}∩
L(s) 6= ∅

(P19) If R1, ..., Rn IdforC ∈ K, C ∈ (L(s) ∩ L(s′)), 〈s, ti〉 and 〈s′, t′i〉 ∈ EA(Ri) or 〈s, ti〉 and
〈s′, t′i〉 ∈ ED(Ri) and s = s′ then ti = t′i for 1 ≤ i ≤ n.

(P20) If R1, ..., Rn IdforC ∈ K, C ∈ (L(s) ∩ L(s′)), 〈s, ti〉 and 〈s′, t′i〉 ∈ EA(Ri) or 〈s, ti〉 and
〈s′, t′i〉 ∈ ED(Ri) and ti = t′i for 1 ≤ i ≤ n then s = s′.
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with

ST (s, C) := {t ∈ SA|〈s, t〉 ∈ EA(S) ∧ C ∈ L(t)},

UT (s, d) := {t ∈ SD|〈s, t〉 ∈ ED(U) ∧ t ∈ dD}.
Lemma 5.2.1. A SHOIQK(D)-concept X in NNF is satisfiable w.r.t an Rbox
R and a KBox K iff X has a tableau w.r.t R and K.

Proof. We concentrate on the new features w.r.t SHOQ(D) and SHOIQ, i.e.
data type number restrictions and KBox. The rest is comparable to the one found
in [83, 84, 86]. Generally, the model is built from a given tableau for a concept X
by taking SA as the interpretation domain of X and adding the role-successorships
for transitive roles. Then, by induction on the structure of formulas, we prove that
if C ∈ L(s) then s ∈ CI for each C ∈ cl(X) and s ∈ SA. (P16) and (P17) ensure
the correct interpretation for data type number restrictions. (P18), (P19) and
(P20) ensure that ICs are interpreted correctly. For the converse, each model is
a tableau by definition of semantics. For completion, in the following we present
the full proof.

For the “if” direction, let T = (SA,SD,L, EA, ED) be a tableau for X w.r.t R and
K. We build a model I for X w.r.t R and K:

∆I := SA,

AI := {s ∈ SA|A ∈ L(s)} for all concept name A ∈ cl(X),

RI :=




EA(R)+ if Trans(R)

EA(R) ∪
⋃

S ∗vR,S 6=R

SI otherwise,

UI := ED(U),

where EA(R)+ is the transitive closure of EA(R).

To show that I is the model of X w.r.t R and K, we have to prove that (i) I |= R,
(ii) XI 6= ∅ and (iii) I |= K.

The definition of RI shows that if 〈x, y〉 ∈ RI then either 〈x, y〉 ∈ EA(R)+ in

case R is transitive, or 〈x, y〉 ∈ EA(R)∪
⋃

S ∗vR,S 6=R

SI to interpret correctly the non-

transitive roles that can have a transitive sub-role. (P4) and (P13) of the tableau
ensure that the role hierarchy is interpreted correctly. The interpretation of inverse
roles is satisfied by (P8) of the tableau. By definition of EA and ED, I |= R.

XI 6= ∅ is proved by induction on the norm ‖ X ‖ of X, which is defined as
follows:
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Definition 5.2.3 (Norm of SHOIQK(D)-concepts). Let C, C1, C2 be
SHOIQK(D)-concepts, R be an abstract role, U be a concrete role, d be a
data type,

‖ A ‖ :=‖ ¬A ‖ := 0 for a concept name A
‖ C1 u C2 ‖ :=‖ C1 t C2 ‖ := 1+ ‖ C1 ‖ + ‖ C2 ‖
‖≤ nR.C ‖ :=‖≥ nR.C ‖ := 1+ ‖ C ‖
‖ ∃R.C ‖ :=‖ ∀R.C ‖ := 1+ ‖ C ‖
‖≤ nU.d ‖ :=‖≥ nU.d ‖ :=‖ ∀U.d ‖ :=‖ ∃U.d ‖ := 1

Now we show that for each D ∈ cl(X) and s ∈ SA, D ∈ L(s) implies s ∈ DI .

• If D = A then by definition s ∈ DI .

• If D = ¬A then A /∈ L(s) by (P1) of Definition 5.2.2. Therefore s /∈ AI .

• If D = (C1 u C2) then due to (P2), C1 ∈ L(s) and C2 ∈ L(s). Therefore by
induction we have s ∈ C1

I and s ∈ C2
I . Hence s ∈ (C1 u C2)

I .

• If D = (C1tC2), s ∈ (C1tC2)
I is proved similarly to case 3 above by (P3).

• If D = ∃R.C then due to (P6), D ∈ L(s) implies the existence of an
individual t ∈ SA such that 〈s, t〉 ∈ EA(R) and C ∈ L(t). By induction we
have t ∈ CI , by definition of RI and (P8) we have 〈s, t〉 ∈ RI . Hence,
s ∈ (∃R.C)I .

• If D = ∀R.C. Let t ∈ SA be an arbitrary individual such that 〈s, t〉 ∈ RI .
By definition, either

– 〈s, t〉 ∈ EA(R), then by (P5) we have C ∈ L(t), or

– 〈s, t〉 /∈ EA(R), then there exists a path 〈s, s1), 〈s1, s2), ..., 〈sn, t〉 ∈ EA(S)
with Trans(S) and S ∗v R. Due to (P7), ∀S.C ∈ L(si) for 1 ≤ i ≤ n.
Due to (P5), we have C ∈ L(t).

In both cases, by induction we have t ∈ CI , hence s ∈ DI .

• D =≥ nS.C. Due to (P9), we have ]ST (s, C) ≥ n. Therefore there are
n individuals t1, t2, ..., tn such that ti 6= tj for i 6= j, 〈s, ti〉 ∈ EA(S) and

C ∈ L(ti) for 1 ≤ i ≤ n. By induction we have ti ∈ CI and because
EA(S) ⊆ SI , s ∈ DI .
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• D =≤ nS.C. Since S is a simple role, by definition SI = EA(S). Due

to (P10), we have ]ST (s, C) ≤ n. If ]SI (s, C) > ]ST (s, C) then there

exists some t with 〈s, t〉 ∈ SI and t ∈ CI but C /∈ L(t). Due to (P11),
C ∈ L(t) or ¬̇C ∈ L(t) for each t with 〈s, t〉 ∈ EA(S). Therefore, ¬̇C ∈ L(t)

that implies t ∈ (¬̇CI ) by induction, contradicting t ∈ CI . Therefore,
]SI (s, C) ≤ ]ST (s, C) ≤ n.

• D = o. Let D ∈ L(s) and D ∈ L(t). Due to (P12), we have s = t. Hence,
D is interpreted correctly as a nominal and s ∈ DI .

• D = ∃U.d. (P15) implies the existence of a value t ∈ SD such that 〈s, t〉 ∈
ED(U) and t ∈ dD. By definition of UI , we have 〈s, t〉 ∈ UI . Hence s ∈
(∃U.d)I .

• D = ∀U.d. Let t ∈ SD be an arbitrary value such that 〈s, t〉 ∈ UI . By
definition of UI , 〈s, t〉 ∈ ED(U). Therefore, due to (P14) t ∈ dD and
s ∈ DI .

• D =≥ nU.d. Due to (P17), we have ]UT (s, d) ≥ n. By definition, UI =
ED(U) so we have ]{t.〈s, t〉 ∈ UI ∧ t ∈ dD} ≥ n and s ∈ DI .

• D =≤ nU.d. Due to (P16), we have ]UT (s, d) ≤ n. By definition, UI =
ED(U), therefore ]{t.〈s, t〉 ∈ UI ∧ t ∈ dD} ≤ n. Hence s ∈ DI .

Now it remains to demonstrate that I is a model of K. Let R1, ..., Rn IdforC ∈ K.

Let s, s′ ∈ CI such that for 1 ≤ i ≤ n, 〈s, ti〉 and 〈s′, t′i〉 ∈ Ri
I , and s = s′.

Since Ri is either a simple role or a concrete role, by definition either 〈s, ti〉 and
〈s′, t′i〉 ∈ EA(Ri) or 〈s, ti〉 and 〈s′, t′i〉 ∈ ED(Ri). Due to (P18) of Definition 5.2.2,
we have {C,¬C} ∩ L(s) 6= ∅ and {C,¬C} ∩ L(s′) 6= ∅. If ¬C ∈ L(s) then
s ∈ (¬C)I , in contradiction to the above assumption. Therefore we have C ∈ L(s)
and C ∈ L(s′) analogically. Hence C ∈ (L(s) ∩ L(s′)). Due to (P19), ti = t′i for
1 ≤ i ≤ n.

Similarly, if s, s′ ∈ CI such that 〈s, ti〉 and 〈s′, t′i〉 ∈ Ri
I , and ti = t′i for 1 ≤ i ≤ n,

then due to (P20), we have s = s′.

Therefore, I |= K.

For the “only if” direction, we build a tableau for X if X has a model I w.r.t R
and K. Let I = (∆I ,.I ) be a model of X with I |= R and I |= K. We build a
tableau for X T = (SA,SD,L, EA, ED) as follows:
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SA := ∆I

SD := ∆D

EA(R) := RI

ED(U) := UI

L(s) := {C ∈ cl(X)|s ∈ CI}

We demonstrate that T is a tableau for X w.r.t R and K, i.e., T satisfies the
tableau properties.

• Except for (P4), (P13), (P7) and (P18)-(P20), all properties are satisfied
as a direct consequence of the definition of the interpretation I and of the
definition of L.

• (P4) and (P13) are satisfied because I |= R.

• For (P7), let s ∈ (∀S.C)I and 〈s, t〉 ∈ RI with Trans(R) and R ∗v S. If
t /∈ (∀R.C)I then ∀u such that (t, u) ∈ RI (because R is transitive), u /∈ CI .
Since 〈s, t〉 ∈ RI , 〈t, u〉 ∈ RI and Trans(R) so 〈s, u〉 ∈ RI . We have R ∗v S,
so 〈s, u〉 ∈ SI and s /∈ ∀S.C - in contradiction to the assumption. Hence, T
satisfies (P7).

• (P18), (P19) and (P20) are satisfied by definition of the interpretation I,
of E and of L in T .

¥

5.3 Constructing a SHOIQK(D)-Tableau

From Lemma 5.2.1 proven above, we can check the satisfiability of a concept
X w.r.t an RBox and a KBox by building a tableau for X. If such a tableau
is built successfully, the concept X is satisfiable. We try to construct a tableau
for a SHOIQK(D)-concept by building a completion graph for it. Intuitively, in
a completion graph there may exist the nodes representing individuals that are
under some IC, or representing data values. Therefore it is necessary to introduce
some terms:

Definition 5.3.1 (Identifying and Identified nodes). Let C be a concept,
R1, ..., Rn be (abstract or concrete) roles with n ≥ 1, K be a KBox, and G be a
graph w.r.t K. A node x is called identified in G if there exist n nodes y1, ..., yn in
the graph such that C ∈ L(x), Ri ∈ L(〈x, yi〉) for 1 ≤ i ≤ n, and R1, ..., Rn IdforC
in K. Such a node yi is called an identifying node of x.
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Definition 5.3.2 (Nodes in a graph). On a graph G, abstract nodes are the
nodes representing instances of concepts, nominal nodes represent instances of
nominals, blockable nodes are abstract nodes that can be blocked, and concrete
nodes are the nodes representing data values.

Essentially, the set of abstract nodes consists of nominal and blockable nodes. The
set of nominal nodes is disjoint from the set of blockable nodes. Identified nodes are
abstract nodes, while identifying nodes can be either abstract or concrete nodes.

Two nodes x and y are called equal (written x
.
= y) if they represent the same

instances of a concept (in case x and y are abstract nodes) or the same value (in
case x and y are concrete nodes).

Two nodes x and y are called unequal or distinguished (written x ˙6=y) if they
represent distinct individuals (in case x and y are abstract nodes) or distinct
values (in case x and y are concrete nodes).

5.3.1 Blocking and Merging

In this section, we introduce two important techniques employed in the tableau
algorithm for SHOIQ [84], namely pair-wise blocking and merging. The former in
the presence of ICs produces the problems that will be discussed in the following
sections while the latter will be used to solve them.

5.3.1.1 Blocking

For expressive logics (e.g. DLs including transitive roles), the expansion process
for a tree (or a graph) could be repeated indefinitely. To deal with this problem,
tableau algorithms employ blocking strategy, that is, halting the expansion process
when a cycle is detected. If a node y satisfies a given blocking condition then no
further expansion of y is performed. y is then called the blocked node. A node x
is called the blocking node of y if it blocks y according to the blocking condition.

For SHOIQ, a concept can be satisfiable but for which there exists no finite
model. That is, any model of such a concept contains an infinite sequence of
individuals. In order to deal with infinite models - namely to have an algorithm
that terminates correctly even if the input concept has only infinite models - a
pair-wise blocking strategy is introduced: if a path contains two pairs of successive
nodes that have pairwise identical labels and whose connecting edges have identical
labels, and all nodes on the path from the successor in the first pair (including
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itself) are blockable, then the path beyond the second pair is no longer expanded -
it is blocked (cf. Figure 5.3). The successor in the second pair is called “blocked”
by the successor in the first pair. The part from the blocking node to the blocked
node is called a blocking cycle. A node in a finite completion graph may stand for
infinitely many elements of a model. A completion graph can then be unraveled
into an infinite model by recursively replacing the blocked node with a copy of the
tree rooted at the blocking node. The identical labels make sure that copies of the
blocking node and its descendants can be substituted for the blocked node and its
respective descendants.

Figure 5.3: Pair-wise blocking

5.3.1.2 Merging

Merging defines the procedure Merge(y, x) that merges y into x in a graph. In-
tuitively, when a node y is merged into a node x, the label L(y) will be added to
L(x), all edges leading to y will be “moved” so that they lead to x, and all edges
leading from y to nominal nodes are “moved” so that they lead from x to the same
nominal nodes, then y and all the blockable sub-trees below y are removed from
the completion graph by a procedure called Prune(y). More precisely, let V be
a set of nodes, E be a set of edges, L be a set of labels, and ˙6= be an inequality
between nodes in a graph G, Merge(y, x) will merge a node y into a node x in G,
creating a resulting graph of G as shown in Table 5.4.
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Table 5.4: Merging mechanism for SHOIQ
Procedure Prune(y)

For every successor z of y
remove 〈y, z〉 from E
If z is blockable then Prune(z)

EndFor
remove y from V

End Procedure

Procedure Merge(y,x)
For every node z such that 〈z, y〉 ∈ E

if {〈x, z〉, 〈z, x〉} ∩ E = ∅
then add 〈z, x〉 to E and L(〈z, x〉) := L(〈z, y〉)

if 〈z, x〉 ∈ E then L(〈z, x〉) := L(〈z, x〉) ∪ L(〈z, y〉)
if 〈x, z〉 ∈ E then L(〈x, z〉) := L(〈x, z〉) ∪ {Inv(S)|S ∈ L(〈z, y〉)}
remove 〈z, y〉 from E

EndFor
For every nominal node z such that 〈y, z〉 ∈ E

if {〈x, z〉, 〈z, x〉} ∩ E = ∅
then add 〈x, z〉 to E and L(〈x, z〉) := L(〈y, z〉)

if 〈x, z〉 ∈ E then L(〈x, z〉) := L(〈x, z〉) ∪ L(〈y, z〉)}
if 〈z, x〉 ∈ E then L(〈z, x〉) := L(〈z, x〉)∪ {Inv(S)|S ∈ L(〈y, z〉)}
remove 〈y, z〉 from E

EndFor
L(x) := L(x) ∪ L(y)
add x ˙6=t for every t such that y ˙6=t
Prune(y)

End Procedure

5.3.2 Prerequisite

We need some prerequisites before we can start constructing a SHOIQK(D)-
tableau. When devising a tableau algorithm for a description logic with concrete
domains but without committing to a particular concrete domain, it is commonly
assumed that the sets of data types over the concrete domain are conforming, which
implies decidability of the satisfiability of data types conjunctions. Compared with
SHOQ(D) [83] and SHOIQ [84], data type number restrictions (cf. Table 4.7
and 5.1) and identification constraints are new features in SHOIQK(D). This
makes the assumption mentioned above is not enough for decision procedures for
SHOIQK(D) as well as for SHOINK(D). In what follows, we will explain this
in detail and consequently give some more assumptions.
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5.3.2.1 Concrete Domain and Number Restrictions

We verify the satisfiability of the concept ≥ 3U. <2
6 where U is a concrete role

and <2 is a predicate name defined in the concrete domain N = ({<D
2 }, {<2})

with <D
2 = {0, 1}.

Figure 5.4: A model of the concept ≥ 3U. <2

Constructing a graph for this concept (cf. Figure 5.4), we see that the node x
must connect to at least 3 successive nodes by the edges whose labels contain U .
Specified by number restriction, these three nodes represent three different data
values. Due to the definition of universal concrete domain, this holds if there exists
a solution δ that maps three variables representing these three nodes to different
values. However N can only provide value 0 or 1. So there are at least two nodes
that share the same value. This comes into conflict with number restrictions.
Therefore, to check concept satisfiability in the presence of number restrictions, a
concrete domain reasoner not only find a solution δ but also should provide a DL
reasoner with the value equality of variables in data type conjunctions.

Definition 5.3.3 (Q-conforming). A set of data types of a universal concrete
domain D is Q-conforming if there exists an algorithm that

• takes a finite conjunction c of data types from D as input,

• returns clash if c is unsatisfiable, otherwise

• returns an equality set Veq ∈ V×V over the set of variables V used in c such
that for a solution δ for c and for all v, v′ ∈ V, (v, v′) ∈ Veq iff δ(v) = δ(v′).

5.3.2.2 Concrete Domain and ICs

ICs in SHOIQK(D) provoke the same problem as the one shown by Lutz et
al. for ALCOK(D) [97]. In particular, the problem is illustrated by checking

6In case of SHOINK(D), the equivalent description is ≥ 3U u ∀U. <2
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the satisfiability of the concept (presented slightly differently from the original
version):

∃R.A u ∃R.(¬A uB) u ∃R.(¬A u ¬B) u ∀R.∃U. <2,

where A, B are concepts, R is an abstract role, U is a concrete role, <2 is the
predicate name defined above.

Figure 5.5: A graph illustrating the interaction between ICs and concrete
domain

The graph for this concept (cf. Figure 5.5) has three leaves whose values are 0
or 1. As a result, for every solution δ there are at least two leaves that share the
same value. Those concrete nodes, as defined above, are equal. Without loss of
generality, we suppose that the two equal nodes are v1 and v2 in the graph.

Now suppose that this concept is checked w.r.t a KBox that contains an IC
U Idfor>. This IC requires that the predecessor of v1 and of v2, y1 and y2 respec-
tively, must be equal. However, y1

˙6=y2 according to the construction of the graph
for the concept. Consequently, the concept becomes unsatisfiable.

Similarly to the case of number restrictions above, if a concrete domain reasoner
does not provide the information on variables that take the same values in its
solutions, a DL reasoner may not decide on concept satisfiability. Hence, a data
type reasoner should have the capability to return this information. We can use
Definition 5.3.3 to define an IC conformity of a set of data types and say that a set
of data types of a concrete domain D is K-conforming if there exists an algorithm
that has the behavior shown in Definition 5.3.3. Combining the condition for Q-
conforming and K-conforming, we can say that a set of data types of a concrete
domain D is QK-conforming if there exists an algorithm that has the behavior
shown in Definition 5.3.3.

We assume that the sets of data types from universal concrete domains for
SHOIQK(D) are QK-conforming.



5.3 CONSTRUCTING A SHOIQK(D)-TABLEAU 113

5.3.2.3 Concrete Domain, Infinite Model and ICs

Unraveling may cause an infinite number of concrete nodes because a node in a
blocking cycle may have concrete nodes as its successors. Data type conjunctions,
therefore, are no longer finite and the sets of data types from a universal concrete
domain D for SHOIQK(D) are no longer (QK-)conforming. To deal with this
problem, we define an unraveled data type conjunction as follows:

Definition 5.3.4 (Unraveled data type conjunction). Let D = (∆D, ΦD) be
a universal concrete domain, V be a set of variables. For d ∈ ΦD, v ∈ V, given a
sequence S := {d1(v1), d2(v2), d3(v3)...},
The nth partial data type conjunction cn is the conjunction of the first n terms of
S:

cn =
n∧

j=1

dj(vj), (5.1)

An unraveled data type conjunction cÃ is the conjunction of the terms of S. cÃ
is satisfiable iff there exists a function δ that is a solution for ci for all i, i.e., δ
maps the variables in ci to data values in ∆D such that for 1 ≤ j ≤ n, δ(vj) ∈ dD

j .
Such a function δ is called a solution for cÃ.

If there is no blocking cycle, then a solution for cÃ is a solution for an appropriate
finite data type conjunction c and vice versa. When there are blocking cycles, it
is obvious that a solution for cÃ is also a solution for c. Therefore, in all cases, if
there is no solution for c then there is no solution for cÃ.

In the presence of ICs, the equality of concrete nodes in an unraveled “chain”
may leads to unsatisfiability of the concept. To see this, consider two nodes x and
x′ in an unraveled chain (cf. Figure 5.6) such that y1

.
= y′1, y2

.
= y′2, and there

exists U1, U2 IdforC in a KBox K. This IC requires that x and x′ must be equal.
However, due to unraveling, x ˙6=x′. Hence, a contradiction occurs.

Therefore, unraveling w.r.t ICs can only be satisfiable if there exists a solution that
maps variables associated with infinite domains to distinct values. It is obvious
that if cÃ is satisfiable, then such a solution is always found because we can
always find a value distinct from the others in an infinite domain. In this case,
the variable equality is applied only to variables associated with finite domains.
Note that an infinite number of individuals cannot be identified by values in finite
domains. This property is still modeled correctly with a solution mentioned above
because similarly to the example in Figure 5.6, if in a blocking cycle there exists
an identified node whose identifying nodes are associated with finite domains, then
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Figure 5.6: A graph illustrating the interaction between ICs and unraveling

when unraveling a contradiction will occurs.

Definition 5.3.5 (QIK-conforming). A set of data types of a universal con-
crete domain D is QIK-conforming if there exists an algorithm that

• takes an unraveled data type conjunction cÃ from a universal concrete do-
main D as input,

• search a solution for cÃ that maps variables associated with infinite data type
domains in cÃ to distinct values,

• returns clash if no such a solution is found, otherwise

• returns an equality set Veq ∈ V × V over the set of variables V used in
cÃ such that for a solution δ for cÃ and for all v, v′ ∈ V, (v, v′) ∈ Veq iff
δ(v) = δ(v′).

Regarding to the problems shown in two previous sections, we assume that the
sets of data types from universal concrete domains for SHOIQK(D) are QIK-
conforming7.

7The letter I in “QIK-conforming” is inspired by the interaction between inverse roles and
number restrictions if unraveled chain collapses into a cycle.
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5.3.3 ICs and Problems in Constructing a SHOIQK(D)-
Tableau

We extend the algorithm proposed by I. Horrocks and U. Sattler [84] for
SHOIQ to deal with Kbox and concrete domains in SHOIQK(D). The tableau
expansion rules for SHOIQ can be seen in Table 5.5. Before formally presenting
our algorithm, we must discuss some problems that need to be overcome when
trying to construct a tableau.

Table 5.5: The tableau expansion rules for SHOIQ
u-rule: if C1 u C2 ∈ L(x), x is not indirectly blocked, and {C1, C2} * L(x)

then L(x) = L(x) ∪ {C1, C2}
t-rule: if C1 t C2 ∈ L(x), x is not indirectly blocked, and {C1, C2} ∩ L(x) = ∅

then L(x) = L(x) ∪ {C} where C ∈ {C1, C2}
∃-rule: if ∃R.C ∈ L(x), x is not blocked, and no safe R-neighbor y of x with

C ∈ L(y)
then create a new node y with L(〈x, y〉) = {R}, L(y) = {C}

∀-rule: if ∀R.C ∈ L(x), x is not indirectly blocked, and there is an R-neighbor y
of x with C /∈ L(y)

then L(y) = L(y) ∪ {C}
∀+-rule: if ∀S.C ∈ L(x), x is not indirectly blocked, and there is an R with

Trans(R) and R ∗v S, there is an R-neighbor y of x with ∀R.C /∈ L(y)
then L(y) = L(y) ∪ {∀R.C}

choose-rule: if ≤ nR.C ∈ L(x), x is not indirectly blocked, and there is an R-neighbor
y of x with {C, ¬̇C} ∩ L(y) = ∅

then set L(y) = L ∪ {E} for some E ∈ {C, ¬̇C}
≥-rule: if ≥ nR.C ∈ L(x), x is not blocked, and there are no n safe R-neighbors

y1, ..., yn of x with C ∈ L(yi) and yi
˙6=yj ∀1 ≤ i < j ≤ n

then create n new nodes y1, ..., yn with L(〈x, yi〉) = {R}, L(yi) = {C}, and
yi

˙6=yj ∀1 ≤ i < j ≤ n.
≤-rule: if ≤ nR.C ∈ L(z), z is not indirectly blocked, ]RG(z, C) > n and there

are two R-neighbors x, y of z without x ˙6=y, and C ∈ L(x) ∩ L(y)
then if x is a nominal node then Merge(y, x)

else if y is a nominal node or ancestor of x then Merge(x, y)
else Merge(y, x);

NN-rule: if ≤ nS.C ∈ L(x), x is a nominal node and there is a blockable S-neighbor
y of x such that C ∈ L(y), x is a successor of y and,
there is no m such that 1 ≤ m ≤ n, (≤ mS.C) ∈ L(x) and
m nominal S-neighbors z1, ..., zm of x with C ∈ L(zi) and zi

˙6=zj for all
1 ≤ i < j ≤ m

then ”guess” m with 1 ≤ m ≤ n and set L(x) = L(x) ∪ {(≤ mS.C)}
create m new nodes y1, ..., ym with L(〈x, yi〉) = {S}, L(yi) = {C, oi}
∀oi ∈ NI new in G, yi

˙6=yj for 1 ≤ i < j ≤ m.
o-rule: if for o ∈ NI , there are two nodes x, y with o ∈ L(x)∩L(y) without x ˙6=y

then Merge(x, y)
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First of all, let us consider concrete nodes in a graph. Unlike label of an abstract
node, label of a concrete node contains only data types. Therefore, merging con-
crete nodes does not invalidate the graph. For this reason, we merge a concrete
node y into a concrete node x if and only if y

.
= x. We introduce a rule called

v-rule to realize this merging.

Now we will see how ICs produce new problems that are actually associated with
the infinite model property of SHOIQK(D). To see this, suppose that in a graph
G we have two identified nodes x, x′ which represent instances of a concept C
such that R1, R2 IdforC in a Kbox, and identifying nodes y1, y2, y

′
1, y

′
2 such that

Ri ∈ L(〈x, yi〉) ∩ L(〈x′, y′i〉), 1 ≤ i ≤ 2. If y1
.
= y′1 and y2

.
= y′2, then the IC

requires that x must be equal to x′. Consequently, it must be that L(x) = L(x′),
L(〈x, y1〉) = L(〈x′, y′1〉) and L(y1) = L(y′1).

If x, y1 and x′ are ancestors of y′1, y1 and y′1 are blockable, and all nodes on the
path from y1 to y′1 are blockable, then due to pair-wise blocking condition y′1 is
blocked by y1 (cf. Figure 5.7). As a consequence, y′1 is considered distinguished
from y1 in unraveling. Hence, a contradiction occurs.

Figure 5.7: Illustration of IC satisfaction leads to blocking satisfaction

To avoid this situation, one may think of merging identified nodes before block-
ing condition could be checked. However, if there exist nodes z, z′ such that x, x′

are their R-successor respectively, and L(x) includes ≤ 1R−.>, then merging may
cause the individual represented by x′ to be related to more than one other in-
dividual by role R. As a consequence, the graph would be invalid (cf. Figure
5.8).

Therefore, a Tableau algorithm must be designed such that it has at the same
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Figure 5.8: Illustration of merging identified nodes leads to an invalid graph

time the capability to handle both the satisfaction of all the constraints, including
ICs, and the interaction of complex relational structures and finite tree structures
(representing infinite models), while still guaranteeing termination.

To meet these requirements, we base ourselves on the decisive properties as follows:

Lemma 5.3.1. In a graph constructed by a Tableau algorithm for a
SHOIQK(D)-concept, one node has more than one incoming edge only if it is
a nominal or a concrete node.

Proof. Without loss of generality, we suppose that there exists a blockable node
s having two incoming edges from nodes x and y. An edge leads to an existing
node if and only if merging is applied. Suppose that s is the result of merging the
blockable node s′ into s (a successor of y and x respectively). The rules that trigger
the merging include v-rule (introduced above), o- and ≤-rules which inherit from
SHOIQ expansion rules (cf. Table 5.5). The v-rule, as explained above, only
applies to concrete nodes. The o-rule applies only to nominal nodes. Therefore
these two rules are not applied to s and s′. By definition of the ≤-rule, s and s′

must have the same parent. This comes into conflict with the assumption.

¥

Due to Lemma 5.3.1, we may nominalize identified nodes, i.e. representing identi-
fied nodes as nominals, and merge them into one without invalidating the graph.
Actually, we can make use of the rules applying to nominal nodes to handle the
impact of inverse roles and number restrictions on identified nodes as shown above.
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Nevertheless, there are some cases we should make clear. The first case is illus-
trated in Figure 5.9, where the identified nodes xi, x

′
i represent instances of a

concept C, U is a concrete role, U IdforC in a Kbox, vi are their identifying
nodes, and xi is in a broken blocking cycle. The reason that a blocking cycle is
broken is that nominal nodes do not exist in blocking cycles. When a node xi in
a blocking cycle is nominalized, the block is no longer existent and consequently,
blocking cycles are generated. The generation process, however, cannot be re-
peated infinitely because the sets of data types from universal concrete domains
for SHOIQK(D) are QIK-conforming. That is, two identified nodes xi and x′i
share the same identified node vi only if vi is associated with a data type whose
domain is finite. For any i and j, the identifying nodes vi and vj of xi and xj

(respectively) are associated also with such a data type. As a result, there must
exist two nodes vi

.
= vj and the generation of cycles terminates.

Figure 5.9: Blocking cycles are broken

The second case is illustrated in Figure 5.10, where both identified nodes x and
x′ are in a blocking cycle, y is the identifying node of both x and x′, R IdforC
in a KBox. Hence, x and x′ must represent the same instance of C. We see
that merging x′ into x does not make a cycle. If x and x′ are nominalized, the
expansion of the blocking cycle will not terminate. Besides, merging these two
nodes into one is not influenced by inverse roles and number restrictions, hence
does not invalidate the graph. Therefore in this case we merge x′ into x without
generating a nominal.
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Figure 5.10: Merging identified nodes without nominalization

Lemma 5.3.2. Let s and s′ be the blockable nodes satisfying an IC in a graph.
Merging s′ and s into one node does not invalidate the graph with the following
merging condition:

• If all identifying nodes of s and s′ are their successors and s and s′ do not
share the same predecessor then add new nominal oK to L(s) and to L(s′).

• otherwise merge the descendant into its ancestor.

Proof. In case a new nominal is created, s and s′ are merged by the o-rule and s
and s′ become the nominal node. Thus, the validation of the graph is guaranteed
by the expansion rules for nominal nodes. If s and s′ are merged without creating
a nominal, then by merging condition, s and s′ share the same predecessor or at
least one of their identifying nodes x is not one of their successors. If s and s′ share
the same predecessor then merging of s and s′ does not make the blockable node
s have two incoming edges. In case s and s′ do not share the same predecessor,
without loss of generality we suppose that x is the predecessor of s′. If there exists
another predecessor of s′, by Lemma 5.3.1 s′ must be a nominal node. This comes
into conflict with the assumption. So s and x must be ancestors of s′. This leads
to the merging by the second condition which will make s′ and s share the same
predecessor. Since the blockable node s has only one incoming edge (by Lemma
5.3.1), merging s and s′ does not make a blockable node have two incoming edges.

¥
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The merging conditions in Lemma 5.3.2 are realized by the K-rule. Additionally,
we introduce the K+-rule to make sure that a node is either an identified node or
not. Now we are ready to define the algorithm.

5.3.4 Algorithm

This section represents an algorithm to build a tableau for an input
SHOIQK(D)-concept.

Definition 5.3.6 (Completion graph). Let X be a SHOIQK(D)-concept in
NNF, R be an RBox, K be a KBox with its concepts in NNF.

A completion graph for X w.r.t R and K is a directed graph G =
(VA, VD, E,L, ˙6=,

.
=) such that

• each abstract node x ∈ VA is labeled with a set

L(x) ⊆ cl(X) ∪NI ∪ {(≤ mR.C)|(≤ nR.C) ∈ cl(X) and
m ≤ n} ∪ {(≤ 1R)|R ∈ K},

where NI is a set of nominals.

• each concrete node x ∈ VD is labeled with a set L(x) ⊆ clD(X) where clD(X)
is the set of all the data types (possibly negative) in cl(X),

• each edge 〈x, y〉 ∈ E is labeled with a set L(〈x, y〉) of roles (possibly inverse)
in X, R or K;

• ˙6= is a binary and symmetrical relation between nodes in the graph to distin-
guish the unequal individuals or values,

• .
= is a binary and symmetrical relation between equal nodes in the graph to
show their equality.

If 〈x, y〉 ∈ E then y is called the successor of x and x is called the predecessor of y.
Ancestor is the transitive closure of predecessor and descendant is the transitive
closure of successor. A node y is called an R-successor of a node x if y is a
successor of x and S ∈ L(〈x, y〉) with S ∗v R. A node y is called an R-neighbor of
a node x if y is an R-successor of x or if x is an Inv(R)-successor of y.

If x ∈ VA then x is either a nominal node or a blockable node. x is a nominal
node if L(x) contains a nominal. x is a blockable node if it is not a nominal node.



5.3 CONSTRUCTING A SHOIQK(D)-TABLEAU 121

A nominal o ∈ NI is said to be new in G if at that moment, no node in G has o
in its label.

For a role R and a node x in G, the set of R-neighbors of x with C in their label
is defined as

RG(x,C) = {y|y is an R-neighbor of x and C ∈ L(y)}.

Similarly, we define the set of U -successors of a node x in G, with d in their label,
as

UG(x, d) = {y|y is an U -successor of x and d ∈ L(y)}.
Definition 5.3.7 (Clash). For a node x, L(x) contains a clash if one of the
following conditions satisfied:

1. For a concept name A, {A,¬A} ⊆ L(x),

2. For an abstract role S (concrete role U), ≤ nS.C (≤ nU.d) ∈ L(x) and there
are n+1 S-neighbors (U-successors) y0, ..., yn of x with C ∈ L(yi) (d ∈ L(yi))
∀0 ≤ i ≤ n such that yi

˙6=yj ∀0 ≤ i < j ≤ n,

3. For two concrete nodes y and x such that y ˙6=x, the data type reasoner returns
y

.
= x,

4. For an o ∈ NI there is a node y such that y ˙6=x with o ∈ L(y) ∩ L(x),

5. {d1, ..., dn} ∈ L(x) and d1
D ∩ ... ∩ dn

D = ∅.

6. C ∈ L(x) and R1, ..., Rn IdforC ∈ K, there are two Ri-neighbors of x yi, zi

for some i such that yi
˙6=zi.

7. For x′ ˙6=x there exists a concept C such that C ∈ L(x′) ∩ L(x) and

R1, ..., Rn IdforC ∈ K, Ri ∈ L(〈x′, yi〉) ∩ L(〈x, yi〉) for 1 ≤ i ≤ n.

8. For a complet graph G, x in a blocking cycle, C ∈ L(x), U1, ..., Un are
concrete roles such that U1, ..., Un IdforC ∈ K, for all i there are Ui-successor
yi of x, di ∈ L(yi) such that dD

i is a finite set.

A graph is clash-free iff none of its nodes contains a clash. A graph is complete if
no rule given in Table 5.5 and Table 5.6 is applicable or for a node x in the graph,
L(x) contains a clash.
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If o1, ..., ol are the nominals in X, to check the satisfiability of the concept X, the
algorithm initializes a completion graph

G = ({r0, r1, ..., rl}, ∅, ∅, {L(r0) = {X},L(ri) = {oi}}, ∅, ∅) for 1 ≤ i ≤ l

The graph G is then expanded by repeatedly applying the rules given in Table 5.5
and Table 5.6 until no rule can be applied anymore or a clash occurs. If the graph
is complete and clash-free then X is satisfiable w.r.t R and K.

Table 5.6: Additional tableau expansion rules for SHOIQK(D)

∃D-rule: if ∃U.d ∈ L(x), x is not blocked , and no U -successor y of x with d ∈ L(y)
then create a new leaf y with L(〈x, y〉) = {U}, L(y) = {d}

∀D-rule: if ∀U.d ∈ L(x), x is not indirectly blocked, and there is a U -successor y
of x with d /∈ L(y)

then L(y) = L(y) ∪ {d}
≥D-rule: if ≥ nU.d ∈ L(x), x does not blocked, and there are no n U -successors

y1, ..., yn of x with d ∈ L(yi) and yi
˙6=yj ∀1 ≤ i < j ≤ n

then create n new leaves y1, ..., yn with L(〈x, yi〉) = {U}, L(yi) = {d}, and
yi

˙6=yj ∀1 ≤ i < j ≤ n.
≤D-rule: if ≤ nU.d ∈ L(z), z is not indirectly blocked, ]UG(z, d) > n and there

are two U -successors x, y of z without x ˙6=y, and d ∈ L(x) ∩ L(y)
then Merge(y, x)

v-rule: if there are two nodes x, y without x ˙6=y, the data type reasoner returns
x

.= y
then Merge(x, y)

K+-rule: if x has Ri-neighbor yi ∀1 ≤ i ≤ n and R1, ..., Rn IdforC ∈ K,
x is not blocked and {C, ¬̇C} ∩ L(x) = ∅,

then L(x) = L(x) ∪ {E} for E ∈ {C,¬C}
K-rule: if there exists C ∈ L(x) ∩ L(x′), R1, ..., Rn IdforC ∈ K,

and Ri ∈ L(〈x, yi〉) ∩ L(〈x′, yi〉)∀1 ≤ i ≤ n without x ˙6=x′

then if x is a nominal node then Merge(x′, x)
else if s′ is a nominal node then Merge(x, x′)

else if yi is the Ri-successor of x and of x′ ∀1 ≤ i ≤ n
and predecessor of x is not the predecessor of x′

then L(x) = L(x) ∪ {oK} and
L(x′) = L(x′) ∪ {oK} for oK ∈ NI new in G
else if x′ is the descendant of x then Merge(x′, x)
else Merge(x, x′)

A node is called blocked iff it is blocked directly or indirectly. A node x is called
directly blocked iff none of its ancestors is blocked and it has three ancestors x′, y, y′

such that
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1. x is an successor of x′, y is an successor of y′;

2. y, x and all the nodes on the path from y to x are blockable;

3. L(x) = L(y) and L(x′) = L(y′);

4. L(〈x′, x〉) = L(〈y′, y〉).

A node x is indirectly blocked iff it is blockable and one of its ancestors is blocked.
If x is blocked by y, then we say that y blocks x.

To support concrete nodes, we employ the merging mechanism presented in Ta-
ble 5.4 for nodes in a graph G = (VA, VD, E,L, ˙6=,

.
=), but modify the Prune(y)

procedure, where y is a node in G, as follows:

1. for every successor z of y, remove 〈y, z〉 from E. If z is neither a nominal
nor a successor of another node then Prune(z);

2. remove y from G.

If a node y is merged into a node x, we call x a direct heir of y. y is called an heir
of x if it is either a direct heir of x or a direct heir of a node z that is an heir of x.

As for SHOIQ, we use the safe R-neighbor to assure that enough R-neighbors
of a nominal node are created. An R-neighbor y of a node x is called safe if x is
blockable or if x is a nominal node and y is not blocked.

Level of nominal nodes. Let o1, ..., ol be the nominals in the input concept X. The
level of a nominal node is defined inductively as follows:

• each node x with oi ∈ L(x), 1 ≤ i ≤ l is of level 0,

• a nominal node x is of level i if x is not of some level j with j < i and x has
a neighbor in level i− 1.

• a new nominal node x is of level 0 if it has no nominal neighbor.

Since identified nodes may not have nominal neighbors, we set the level 0 for them.
The level of nominal nodes is used to set the priority to apply the expansion rules
in the graph. It is very important for the termination of the construction. When
a node in a lower level is merged into another, the level of the latter node may be
reduced because merging preserves all the connections between the nominal nodes.
The rules are applied to the nodes from the lower level to the higher level.
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The priority of applying the rules. For the rules which are the same as those given
for SHOIQ, we keep the priority of application as described in [84]. The new
rules for concrete domains and for ICs are applied with the lowest priority. More
precisely, we have the following:

1. o-rule is applied with the highest priority,

2. next, applying the ≤- and NN-rule. They are applied first to the nominals
from the lower level upwards. In case these two rules are applied to the same
node, the NN-rule is applied first,

3. other rules for SHOIQ(D) are applied after that,

4. v-rule is applied only when two concrete nodes are equal.

5. other rules for ICs are applied with the lowest priority.

This priority strategy is crucial for the termination of the algorithm.

5.3.5 Concrete Domain and Reasoning Procedure

As shown above, data type number restrictions and ICs can cause the unsat-
isfiability of a concept. While constructing a graph, whenever new concrete nodes
are created, a conflict may occur. Therefore a data type reasoner should not be
executed once, after all the expansion rules have been exhaustively applied, as for
SHOQ(D) but several times during the construction. Table 5.7 shows a procedure
checking satisfiability for a SHOIQK(D)-concept.

Table 5.7: Reasoning procedure for SHOIQK(D)

Function Sat(G)
If G contains a clash then return unsatisfiable
elseif concrete nodes are generated then Check variable equality
If G contains a clash then return unsatisfiable
If G is complete then return satisfiable
G′ := application of an extension rule to G

Return Sat(G′)

Procedure SHOIQK(D) Reasoning procedure
Initialize G
Result = Sat(G)

End Procedure
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5.4 Properties of the Algorithm

In order to prove that our tableau algorithm is a sound and complete decision
procedure for SHOIQK(D)-concept satisfiability, it is necessary to demonstrate
that the models it constructs are valid w.r.t the semantics, that it will always find
a model if one exists, and that it always terminates.

5.4.1 Termination

Lemma 5.4.1 (Termination). When started with a SHOINK(D)-concept X
in NNF, a role box R and a KBox K, the Tableau algorithm terminates.

Proof. Let m = ]cl(X), k be the number of abstract roles and their inverses in
X, K and R, n≥ be the maximum number in the atleast number restrictions, n≤
be the maximum number in the atmost number restrictions, o1, ..., ol be all the
nominals in X, λ = 22m+k and n./ be the maximum of n≤ and n≥.

The algorithm builds a graph that contains a set of nominal nodes interconnected
arbitrarily, a set of concrete nodes, and “trees” of blockable nodes. Each “tree”
is rooted at r0 or at a nominal node. Each branch might end at a nominal or a
concrete node.

Using the terminology proposed by Horrock et al. [84], we distinguish two cate-
gories of rules:

• generating rules generate the new nodes and consist of ∃-, ∃D-, ≥-, ≥D-,
NN- and K-rules;

• shrinking rules reduce the number of nodes and include ≤-, ≤D-, o-, v- and
K-rules.

Note that the K-rule is either reduces the number of nodes (in case one of the nodes
applied is nominal or the blockable nodes applied have the ancestor/descendant
relationship or share the same predecessor), or increases the number of new nomi-
nal nodes by expanding the label of two blockable nodes with a new nominal. The
K-rule is not applied to the concepts in a node label but to a pair of nodes.

Termination is a consequence of the following properties of the expansion rules:

1. By rule definition, all but the shrinking rules extend the graph by creating
new nodes (and edges respectively) or by extending the node label.
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2. New nodes are only generated by generating rules. And these rules are
applied at most once to each concept in a node label. This property is
obvious when there is no merging. In case of merging, one of the three
following situations occurs. Note that if a node y is merged into a node z
and y is an S-neighbor of x then L(y) is added to L(z), z inherits all the
inequalities of y, and either z is a S-neighbor of x (in case x is a nominal
node or y is a successor of x), or x is removed by an application of Prune(x)
(in case x is a blockable node and a successor of y).

(a) For the ∃-rule (∃D-rule), if ∃S.C ∈ L(x) (∃U.d ∈ L(x)) then a new node
y is created with L(〈x, y〉) = {S} (L(〈x, y〉) = {U}) and L(y) = {C}
(L(y) = {d}). Therefore, if y is merged into a node z, then either x is
removed from the graph by an application of Prune(x), or x has z as an
S-neighbor (U-successor) with C ∈ L(z) (d ∈ L(z)). Consequently, the
∃-rule (∃D-rule) is no longer applicable to ∃S.C ∈ L(x) (∃U.d ∈ L(x)).

(b) For the ≥-rule (≥D-rule), if ≥ nS.C ∈ L(x) (≥ nU.d ∈ L(x)) then n
new nodes y1, ..., yn are generated with L(〈x, yi〉) = {S} (L(〈x, yi〉) =
{U}) , L(yi) = {C} (L(yi) = {d}), and yi

˙6=yj ∀1 ≤ i < j ≤ n. If
yi is merged into an existing node then either x is removed from the
graph, or x has n S-neighbors (U-successors) z1, ..., zn with C ∈ L(zi)
(d ∈ L(zi)) ∀1 ≤ i ≤ n, zi

˙6=zj ∀ 1 ≤ i < j ≤ n, and some zi is an heir
of yi for 1 ≤ i ≤ n. Consequently, the ≥-rule (≥D-rule) is no longer
applicable to ≥ nS.C ∈ L(x) (≥ nU.d ∈ L(x)).

(c) For the NN-rule, if ≤ nS.C ∈ L(x) then m new nominal nodes y1, ..., ym

are created with L(〈x, yi〉) = {S}, L(yi) = {C}, yi
˙6=yj ∀ 1 ≤ i < j ≤ m,

1 ≤ m ≤ n and ≤ mS.C ∈ L(x). If yi is merged into an existing node
then ≤ mS.C is still in L(x) and x has m nominal nodes z1, ..., zm as
S-neighbors with C ∈ L(zi) ∀1 ≤ i ≤ n, zi

˙6=zj ∀ 1 ≤ i < j ≤ m, some zi

is an heir of yi for 1 ≤ i ≤ n. Consequently, the NN-rule is no longer
applicable to ≤ nS.C ∈ L(x).

(d) As a generating rule, the K-rule is applied at most once to a pair of
blockable nodes and these nodes as well. By adding a new nominal
concept to the two labels of the blockable nodes, these nodes are no
longer blockable. Besides, the o-rule that has the highest priority has
merged already these two nodes together. Consequently, the K-rule is
no longer applicable to this pair of nodes.

As for SHOIQ, a generating rule applied to a concept in the label of a node
x can create at most n≥ blockable successors of x. Since there are at most
m concepts in L(x), a node can have at most m× n≥ blockable successors.
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3. With the pair-wise blocking condition, the length of a path consisting entirely
of blockable nodes is bounded by λ [84].

4. The K-rule is a special rule which is applied at most once to a pair of nodes.
The reason is that in all cases, the two nodes applied are merged (either
by the K-rule itself or by the o-rule which is in the highest priority). This
“pair”, therefore, does not exist anymore. As a generating rule, the K-rule is
applied at most once to a pair of blockable nodes and to these nodes as well.
The reason is that by adding a nominal to the label of these nodes, the two
nodes are no longer blockable. The number of new nominal nodes created
by the K-rule is therefore bounded by a half of the number of the blockable
nodes that are applied by this generating rule.

5. Let n≥U be the maximum number in atleast data type number restriction.
Each abstract node can have at most m × n≥U concrete successors . The
number of concrete nodes is therefore bounded linearly by the number of
abstract nodes.

6. Due to QIK-conformity of data type sets, the K-rule is not triggered for
identified nodes whose identifying nodes are associated with infinite data
type domains. Let nD be the maximum number of values in the finite do-
mains of data types in D. A new nominal node created by the K-rule may
extend the blocking cycle at most nD times (in case a nominal is added to
a blockable node in the cycle and breaks the cycle). By property 3, this
blocking cycle contains less than λ blockable nodes (since at least one node
becomes nominal). Therefore the maximum number of blockable nodes gen-
erated along a path is less than nD × λ. However, for the same reason a
new nominal node generated by the NN-rule may extend at most n≤ times
the blocking cycle. So the maximum number of blockable nodes generated
along this path is less than n≤ × λ. Let N≤ = Max(n≤, nD). The number
of blockable nodes along a path thus is bounded by N≤ × λ. By property 2,
the number of paths for a “tree” is bounded by (m×n≥)λ. At the beginning
we have (l + 1) “trees”. As a consequence, the number of blockable nodes
in G is bounded by (l + 1) × N≤ × λ × (m × n≥)λ. A new nominal node
is created by the K-rule by adding a new nominal to the blockable prede-
cessor of nominal or concrete nodes. Otherwise, two identified nodes cannot
have the same identifying nodes (by Lemma 5.3.1). Therefore, by prop-
erty 4, the number of nominal nodes generated by the K-rule is bounded by
NK = ((l + 1)/2)×N≤ × λ× (m× n≥)λ.

7. The total number of nominals is bounded by O(l × λ×N≤ × (m× n./)
2λ).
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Unlike for SHOIQ, the new nominals are now generated not only by the
NN-rule but also by the K-rule. Moreover, there is an interaction between
these two nominal generating sources. On the one hand, the new nominals
generated by the K-rule may be subjected to the NN-rule to create new
nominals. On the other hand, the new nominals generated by the NN-rule
may be the identifying nodes that make the K-rule apply to two blockable
nodes and may create a new nominal. Since the number of nominal nodes
generated by the K-rule is bounded as shown in property 6, we still have to
consider the number of nominal nodes generated by the NN-rule.

Note that the NN-rule and the K-rule are only applied after or while a
nominal is added to the label of a blockable node x. Besides, adding a
nominal to the label of a blockable node can lead to the addition of a nominal
to its predecessor’s label (by the ≤- or the K-rule). Repeating this argument,
it is possible that all the ancestors of x become nominal nodes. At the
beginning, there are only the nominals in level 0. Therefore, by definition
of nominal node level, the application of the NN- or the K-rule can only
create nominal nodes of level 0 or 1. Since the maximum length of a path
containing entirely blockable nodes is λ, the newly created nominal nodes
can only be of a level below or equal to λ.

Now we calculate the upper bound of the number of nominal nodes in G
generated by the NN-rule.

At the beginning, there are l nominal nodes of level 0 in the graph. By
property 6, the number of new nominal nodes of level 0 created by the K-
rule is bounded by NK . The total number of nominal nodes of level 0 in G
therefore is bounded by NK +l. As a consequence, the NN-rule applies on the
nominal nodes of level 0 and creates at most (m×n≤)(NK +l) nominal nodes
of level 1. The K-rule generates the nominal nodes of level 1 from blockable
predecessors of nominal nodes of level 0. By property 6, the number of
nominal nodes of level 1 generated by the K-rule is bounded by NK also.
Therefore, the total number of nominal nodes of level 1 in G is bounded by
(m × n≤)(NK + l) + NK . Similarly, the nominal nodes of level i are those
created by the application of the NN-rule to the nodes of level i − 1 in the
graph and those of level i created by the K-rule. Consequently, the total
number of nominal nodes of level i in G is bounded by

l(m× n≤)i + NK

i∑

k=0

(m× n≤)k.

The counting process terminates when the K-rule and NN-rule have gener-
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ated all the nominal nodes of level λ. The number of nominal nodes generated
by the NN-rule in G, therefore, is bounded by

l

λ∑
i=1

(m× n≤)i + NK

λ∑
i=0

i∑

k=0

(m× n≤)k.

Due to property 6, the number of nominal nodes generated by the NN-rule
in G is bounded by O(l × λ × N≤ × (m × n./)

2λ). This is also the upper
bound of the total number of nominals in G.

¥

5.4.2 Soundness

Lemma 5.4.2 (Soundness). If the expansion rules can be applied to a concept
X, an Rbox R and a KBox K such that they produce a complete and clash-free
completion graph G then X has a tableau w.r.t R and K.

Proof. The way of proving is similar to the one for SHOIQ. Let G =
(VA, VD, E,L, ˙6=,

.
=). A set of paths of G is defined in order to handle the pro-

duction of individuals. As sets of datatypes over the concrete domain is QK-
conforming and G is complet and clash-free, there exists a solution δ for the set of
concrete nodes of G. The tableau is defined from the graph G by taking the set of
nominals and paths as the set of individuals, taking the set of values obtained by δ
as the set of concrete values, and taking the label of a node as a function mapping
an individual to a set of concepts. Other elements in the tableau tuple are then
defined based on the given definitions. By checking the paths while unraveling the
“tree” parts of G, all the properties of the tableau are satisfied.

Precisely, a path is a sequence of pairs of blockable nodes of G. The form of
a path is p := 〈(x0, x

′
0), ..., (xn, x′n)〉. For such a path, we define Tail(p) := xn

and Tail′(p) := x′n. 〈p|(xn+1, x
′
n+1)〉 is a path lengthened of p and corresponds

to 〈(x0, x
′
0), ..., (xn, x′n), (xn+1, x

′
n+1)〉. A set of paths of GPaths(G) is defined

inductively as follows:

• For each blockable node x that is a successor of a nominal node or a root
node in G, 〈(x, x)〉 ∈ Paths(G);

• For each path p ∈ Paths(G) and a blockable node y ∈ G:
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– if y is a successor of Tail(p) and y is not blocked then 〈p|(y, y)〉 ∈
Paths(G), and

– if y is a successor of Tail(p) and y is blocked by z, then 〈p|(z, y)〉 ∈
Paths(G)

By this definition, we imply that if p = 〈p′|(x, x′)〉 and x is not blocked, then x′ is
blocked iff x′ 6= x, x′ is never blocked indirectly. Moreover, L(x) = L(x′) due to
the blocking definition.

Let Nom(G) be the set of nominal nodes in G, we define a tableau for the graph
G T = (SA,SD,L′, EA, ED) as follows:

SA = {Nom(G) ∪ Paths(G)}
SD = {δ(x)|x ∈ VD}

L′(p) =

{ L(Tail(p)) if p ∈ Paths(G);
L(p) if p ∈ Nom(G).

EA(R) = {〈p, q〉 ∈ Paths(G)× Paths(G)|
q = 〈p|(x, x′)〉 and x′ is an R-successor of Tail(p) or

p = 〈q|(x, x′)〉 and x′ is an Inv(R)-successor of Tail(q)}∪
{〈p, x〉 ∈ Paths(G)×Nom(G)|x is an R-neighbor of Tail(p)}∪
{〈x, p〉 ∈ Nom(G)×Paths(G)|Tail(p) is an R-neighbor of x}∪
{〈x, y〉 ∈ Nom(G)× Nom(G)|y is an R-neighbor of x}

ED(R) = {〈x, δ(y)〉 ∈ SA × SD|y is an R-successor of either Tail(x) in
case x ∈ Paths(G) or x in case x ∈ Nom(G)}

CLAIM: T is a tableau for X w.r.t R and K.

We demonstrate that T satisfies all the properties of Definition 5.2.2.

• By definition of the algorithm, X ∈ L(r0) or there exists an heir x0 of r0 such
that X ∈ L(x0). Without loss of generality, we suppose that X ∈ L(x0). If x0

is a nominal node then by definition of L′, we have X ∈ L′(x0). Otherwise
x0 is a root node that cannot be blocked. Therefore, by the definition of
Paths(G), 〈(x0, x0)〉 ∈ Paths(G). Consequently, by definition of Tail, we
have Tail(〈(x0, x0)〉) = x0. Therefore, X ∈ L′(〈(x0, x0)〉). As a result, in all
the cases there exists an individual s ∈ SA with X ∈ L′(s).
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• (P1) is satisfied because G is clash-free. (P2) and (P3) are satisfied because
Tail(p) is not blocked by definition and G is complete.

• (P4) and (P13) are satisfied by definition of R-neighbor and of U -successor
that take into account the role hierarchy, and the condition complete and
clash-free of G.

• (P5) Consider ∀R.C ∈ L′(s) and 〈s, t〉 ∈ EA(R).

– If 〈s, t〉 ∈ Paths(G) × Paths(G) then ∀R.C ∈ L(Tail(s)) by definition
of L′ and either

- Tail′(t) is an R-successor of Tail(s) by definition of EA(R). In
this case, the complete application of rules ensures that C ∈
L(Tail′(t)). By definition of path, either Tail′(t) = Tail(t), or
L(Tail′(t)) = L(Tail(t)) because of the blocking condition. There-
fore C ∈ L(Tail(t)). Consequently C ∈ L′(t) by definition of L′,
or

- Tail′(s) is an Inv(R)-successor of Tail(t). If Tail′(s) = Tail(s) then
Tail(s) is an Inv(R)-successor of Tail(t). Hence, C ∈ L(Tail(t)).
If L(Tail′(s)) = L(Tail(s)) (in case the blocking condition is ef-
fected), then ∀R.C ∈ L(Tail′(s)). Consequently, C ∈ L(Tail(t)).
By definition, C ∈ L′(t).

– If 〈s, t〉 ∈ Nom(G)×Nom(G) then ∀R.C ∈ L(s) and t is an R-neighbor
of s. Therefore C ∈ L(t). By definition, C ∈ L′(t).

– If 〈s, t〉 ∈ Nom(G) × Paths(G) then ∀R.C ∈ L(s). Tail(t) is an R-
neighbor of s. Therefore C ∈ Tail(t). By definition, C ∈ L′(t).

– If 〈s, t〉 ∈ Paths(G) × Nom(G) then ∀R.C ∈ L(Tail(s)). Since t is an
R-neighbor of Tail(s), by definition of the ∀-rule we have C ∈ L(t).
Consequently C ∈ L′(t).

• (P6) Consider ∃R.C ∈ L′(s) with s ∈ SA.

– If s ∈ Paths(G) then ∃R.C ∈ L(Tail(s)). Since Tail(s) is not blocked
and the graph G is complete, there must exist an R-neighbor t of Tail(s)
with C ∈ L(t).

- if t is a nominal node then t ∈ SA and L′(t) = L(t). Consequently,
C ∈ L′(t) and 〈s, t〉 ∈ EA(R).

- if t is a blockable node and an successor of Tail(s) then 〈x|(t′, t)〉 ∈ SA

with either t′ = t or t′ blocks t, and 〈s, 〈s|(t′, t)〉〉 ∈ EA(R).
L′(〈s|(t′, t)〉) = L(Tail(〈s|(t′, t)〉)) so that L′(〈s|(t′, t)〉) = L(t′).
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Consequently, L′(〈s|(t′, t)〉) = L(t) because either t′ = t or
L(t′) = L(t) by the blocking definition. As a result, we have
C ∈ L′(〈s|(t′, t)〉).

- if t is a blockable node and a predecessor of Tail(s) then s =
〈〈p|(t, t)〉|(Tail(s), Tail′(s))〉 by definition of path, where 〈p|(t, t)〉
is a path in Paths(G). C ∈ L(t) so that C ∈ L(Tail(〈p|(t, t)〉)).
Consequently, C ∈ L′(〈p|(t, t)〉). By definition of path, Tail(s)
is a successor of t. Therefore Tail′(s) = Tail(s). As a result,
〈s, 〈p|(t, t)〉〉 ∈ EA(R).

– If s ∈ Nom(G) then ∃R.C ∈ L(s). The graph G is complete. Therefore
there must exist an R-successor t of s with C ∈ L(t).

- if t is a nominal node then 〈s, t〉 ∈ EA(R) and C ∈ L′(t).
- if t is a blockable node then 〈s, 〈p|(t, t)〉〉 ∈ EA(R) and C ∈

L(Tail(〈p|(t, t)〉)). Therefore C ∈ L′(〈p|(t, t)〉)

• (P7) is proved similarly to (P5).

• (P8) is satisfied by definition of inverse role.

• (P9) Consider ≥ R.C ∈ L′(s) with s ∈ SA.

– If s ∈ Nom(G) then ∃R.C ∈ L(s). Since G is complete, there exists
n safe R-neighbors t1, ..., tn of s with ti ˙6=tj ∀1 ≤ i < j ≤ n and C ∈
L(ti) ∀1 ≤ i ≤ n. By construction, ti corresponds to an yi ∈ SA ∀1 ≤
i ≤ n and yi 6= yj ∀1 ≤ i ≤ j ≤ n.

- if ti is a nominal node then ti ∈ SA, 〈s, ti〉 ∈ EA(R). By definition
L′(ti) = L(ti), hence C ∈ L′(ti).

- if ti is a blockable node, then ti cannot be blocked because it is a
safe R-neighbor of s. Therefore, there exists a path 〈p|(ti, ti)〉 ∈
Paths(G). By definition of SA and EA(R), we have 〈p|(ti, ti)〉 ∈
SA and 〈s, 〈p|(ti, ti)〉〉 ∈ EA(R). By definition, L′(〈p|(ti, ti)〉) =
L(Tail(〈p|(ti, ti)〉)). Consequently, by definition of Tail, we have
L′(〈p|(ti, ti)〉) = L(ti). Therefore, C ∈ L′(〈p|(ti, ti)〉).

– If s ∈ Paths(G) then ≥ R.C ∈ L(Tail(s)). The graph G is complete.
Therefore there exists n R-neighbors t1, ..., tn of Tail(s) with ti ˙6=tj ∀1 ≤
i < j ≤ n and C ∈ L(ti)∀1 ≤ i ≤ n.

- if ti is an R-successor of Tail(s) then there exists a node t′i with
〈s|(t′i, ti)〉 ∈ Paths(G) and either t′i = ti or ti is blocked by t′i.
Hence 〈s|(t′i, ti)〉 ∈ SA and in any case we have L(t′i) = L(ti). Since
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ti ˙6=tj ∀1 ≤ i < j ≤ n, we have 〈s|(t′i, ti)〉 6= 〈s|(t′j, tj)〉∀1 ≤ i <
j ≤ n (even if t′i = t′j). By definition, 〈s, 〈s|(t′i, ti)〉〉 ∈ EA(R).
By definition, L′(〈s|(t′i, ti)〉) = L(Tail(〈s|(t′i, ti)〉)). Therefore, by
definition of Tail, we have L′(〈s|(t′i, ti)〉) = L(t′i) = L(ti). As a
result, we have C ∈ L′(〈s|(t′i, ti)〉).

- if Tail(s) is an Inv(R)-successor of ti, then there is at most one
such ti and there exists a path pti with Tail(pti) = ti and
〈pti|(Tail(s), Tail(s))〉 ∈ Paths(G). By definition of EA(R),
〈〈pti|(Tail(s), Tail(s))〉, pti〉 ∈ EA(R). C ∈ L(ti) implies that
C ∈ L(Tail(pti)). By definition of L′, C ∈ L′(pti). By definition,
we have also pti ∈ SA and 〈s, pti〉 ∈ EA(R).

• (P10) Consider ≤ R.C ∈ L′(s) with s ∈ SA. Since Paths(G) is clash-
free, there exists at most n R-neighbors yi of s with C ∈ L(yi). By similar
arguments as for (P9) and by construction, each t ∈ SA with 〈s, t〉 ∈ EA(R)
corresponds to an R-neighbor yi of s or of Tail(s), and none of these R-
neighbors gives raise to more than one such yi. Moreover, L′(t) = L(yi).
Consequently, (P10) is satisfied.

• (P11) Consider ≤ R.C ∈ L′(s) with s ∈ SA. (P11) is satisfied because
Paths(G) is complete and each t ∈ SA with 〈s, t〉 ∈ EA(R) corresponds to an
R-neighbor yi of s (in case s ∈ Nom(G)) or of Tail(s) (in case s ∈ Paths(G)).

• (P12) is the result of the construction of the graph G, G is complete and
nominal nodes are not “unraveled”.

• (P14) Consider ∀U.d ∈ L′(s) and 〈s, v〉 ∈ ED(U) with s ∈ SA and v ∈ SD.
The graph G is complet and clash-free. Therefore there must exist a concrete
node y in G such that δ(y) = v and y is an U -successor of Tail(s) or of s. The
complet application of rules ensures that d ∈ L(y). Consequently, v ∈ dD.

• (P15) Consider ∃U.d ∈ L′(s) with s ∈ SA. The graph G is complet and
clash-free. Therefore there must exist an U-successor y of Tail(s) or of s with
d ∈ L(y) and δ(y) ∈ SD. Consequently, by definition we have δ(y) ∈ dD and
〈s, δ(y)〉 ∈ ED(U).

• (P16) Consider ≤ nU.d ∈ L′(s) with s ∈ SA. The graph G is complet and
clash-free. Therefore there exists at most n U-successors yi of Tail(s) or of s
with d ∈ L(yi). Consequently, by definition we have δ(yi) ∈ SD, δ(yi) ∈ dD

and 〈s, δ(yi)〉 ∈ ED(U) with 0 ≤ i ≤ n.

• (P17) Consider ≥ nU.d ∈ L′(s) with s ∈ SA. The graph G is complet and
clash-free. Therefore there must exist at least n U-successors yi of Tail(s) or
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of s with d ∈ L(yi)∀1 ≤ i ≤ n and yi
˙6=yj ∀1 ≤ i < j ≤ n. Consequently, by

definition we have δ(yi) ∈ SD, δ(yi) ∈ dD and 〈s, δ(yi)〉 ∈ ED(U) ∀1 ≤ i ≤ n
and δ(yi) 6= δ(yj) ∀1 ≤ i < j ≤ n.

• (P18) is the result of the construction of the graph and of the condition
complete and clash-free of G.

• (P19), (P20) are satisfied by the construction of graph, by complete appli-
cation of rules and by the condition complete and clash-free of G.

¥

5.4.3 Completeness

Lemma 5.4.3 (Completeness). If T is a tableau for X w.r.t R and K then all
the expansion rules can be applied to X,R and K such that they produce a complete
and clash-free completion graph for X.

Proof. Let T = (SA,SD,L′, EA, ED) be a tableau for X w.r.t R and K. While
constructing a graph, the non-deterministic rules (t-, choose-, ≤-, NN- and K+-
rule) can be applied in such a way that we obtain a complete and clash-free graph.
As proved in Lemma 5.4.1, the construction terminates. Therefore we obtain a
completion graph.

In particular, we will use the given tableau to guide the application of the non-
deterministic rules. To do this, we will inductively define a function π, mapping
each abstract node in the completion graph G to an element of SA and each
concrete node in G to an element of SD, such that π satisfies the conditions
specified in Definition 5.4.1.

Definition 5.4.1 (Conditions for π). For each node x, y ∈ G,

• If x is an abstract node, then L(x) ⊆ L′(π(x)),

• If x is a concrete node, then π(x) ∈ dD with d ∈ L(x),

• For a role R, if y is an R-neighbor of x then 〈π(x), π(y)〉 ∈ EA(R) (in case
R is an abstract role) or 〈π(x), π(y)〉 ∈ ED(R) (in case R is a concrete role),

• x ˙6=y implies π(x) 6= π(y),

• x
.
= y implies π(x) = π(y).
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CLAIM: Let G be a completion graph and π be a function that satisfies Definition
5.4.1. If a rule is applicable to G then the rule is applicable to G in a way that
yields a completion graph G′ and an extension of π that satisfies Definition 5.4.1.

Let G be a completion graph and π be a function that satisfies Definition 5.4.1.
Consider the application of the rules:

• u-rule: If C1 u C2 ∈ L(x), then C1 u C2 ∈ L′(π(x)). This implies C1, C2 ∈
L′(π(x)) due to (P2) of Definition 5.2.2. Therefore, the rule can be applied
without violating Definition 5.4.1.

• t-rule: If C1 tC2 ∈ L(x), then C1 tC2 ∈ L′(π(x)). (P3) of Definition 5.2.2
implies {C1, C2} ∩ L′(π(x)) 6= ∅. Therefore, the t-rule can add a concept
C ∈ {C1, C2} to L(x) such that L(x) ⊆ L′(π(x)) holds.

• ∃-rule: If ∃R.C ∈ L(x), then ∃R.C ∈ L′(π(x)). (P6) of Definition 5.2.2
implies that there is an element t ∈ SA such that 〈π(x), t〉 ∈ EA(R) and
C ∈ L′(t). The application of the ∃-rule generates a new variable y with
L(〈x, y〉) = {R} and L(y) = {C}. We set π := π[y 7→ t] which yields a
function that satisfies Definition 5.4.1 for the modified graph.

• ∃D-rule: If ∃U.d ∈ L(x), then ∃U.d ∈ L′(π(x)). (P15) of Definition 5.2.2
implies that there is an element t ∈ SD such that 〈π(x), t〉 ∈ ED(U) and
t ∈ dD. The application of the ∃D-rule generates a new variable y with
L(〈x, y〉) = {U} and L(y) = {d}. We set π := π[y 7→ t] which yields a
function that satisfies Definition 5.4.1 for the modified graph.

• ∀-rule: If ∀R.C ∈ L(x), then ∀R.C ∈ L′(π(x)), and if y is an R-neighbor
of x, then 〈π(x), π(y)〉 ∈ EA(R) due to Definition 5.4.1. Consequently, by
(P5) of Definition 5.2.2, we have C ∈ L′(π(y)). Therefore, the ∀-rule can be
applied without violating Definition 5.4.1.

• ∀D-rule: If ∀U.d ∈ L(x), then ∀U.d ∈ L′(π(x)), and if y is an U -successor
of x, then 〈π(x), π(y)〉 ∈ ED(R) due to Definition 5.4.1. Consequently, by
(P14) of Definition 5.2.2 we have π(y) ∈ dD. Therefore, the ∀D-rule can be
applied without violating Definition 5.4.1.

• ∀+-rule: If ∀S.C ∈ L(x), then ∀S.C ∈ L′(π(x)), and if there is some R ∗v S
with Trans(R) and y is an R-neighbor of x, then 〈π(x), π(y)〉 ∈ EA(R) due to
Definition 5.4.1. Consequently, by (P7) of Definition 5.2.2, we have ∀R.C ∈
L′(π(y)). Therefore, the ∀+-rule can be applied without violating Definition
5.4.1.



136 CHAPTER 5. REASONING FOR OWL-K

• choose-rule: If ≤ nR.C ∈ L(x), then ≤ nR.C ∈ L′(π(x)), and, if there
is an R-neighbor y of x, then 〈π(x), π(y)〉 ∈ EA(R) due to Definition 5.4.1.
Consequently, by (P11) of Definition 5.2.2, we have {C, ¬̇C}∩L′(π(y)) 6= ∅.
Therefore, the choose-rule can add an appropriate concept E ∈ {C, ¬̇C} to
L(y) such that L(y) ⊆ L′(π(y)) holds.

• ≥-rule: If ≥ nR.C ∈ L(x), then ≥ nR.C ∈ L′(π(x)). Consequently, by
(P9) of Definition 5.2.2, we have ]RT (π(x), C) ≥ n. Therefore, there are n
individuals t1, ..., tn ∈ SA such that 〈π(x), ti〉 ∈ EA(R), C ∈ L′(ti) ∀1 ≤ i ≤ n,
and ti 6= tj ∀1 ≤ i < j ≤ n. The ≥-rule generates n new nodes y1, ..., yn.
By setting π := π[y1 7→ t1, ..., yn 7→ tn], we obtain a function π that satisfies
Definition 5.4.1 for the modified graph.

• ≥D-rule: If ≥ nU.d ∈ L(x), then ≥ nU.d ∈ L′(π(x)). Consequently, by
(P17) of Definition 5.2.2, we have ]UT (π(x), d) ≥ n. Therefore, there are n
concrete values t1, ..., tn ∈ SD such that 〈π(x), ti〉 ∈ ED(R), ti ∈ dD ∀1 ≤ i ≤
n, and ti 6= tj ∀1 ≤ i < j ≤ n. The ≥D-rule generates n new nodes y1, ..., yn.
By setting π := π[y1 7→ t1, ..., yn 7→ tn], we obtain a function π that satisfies
Definition 5.4.1 for the modified graph.

• ≤-rule: If ≤ nR.C ∈ L(x), then ≤ nR.C ∈ L′(π(x)). Consequently, by
(P10) of Definition 5.2.2, we have ]RT (π(x), C) ≤ n. If on the graph
we have ]RG(x,C) > n, which implies that there are at least n + 1 R-
neighbors y0, ..., yn of x such that C ∈ L(yi), then there must be two nodes
y, z ∈ {y0, ..., yn} such that π(y) = π(z) (because otherwise ]RT (π(x), C) > n
would hold). As a result, y ˙6=z cannot hold because of Definition 5.4.1. There-
fore, the ≤-rule can be applied without violating Definition 5.4.1.

• ≤D-rule: If ≤ nU.d ∈ L(x), then ≤ nU.d ∈ L′(π(x)). Consequently, by
(P16) of Definition 5.2.2, we have ]UT (π(x), d) ≤ n. If on the graph we
have ]UG(x, d) > n, which implies that there are at least n + 1 U-successors
y0, ..., yn of x such that d ∈ L(yi), then there must be two nodes y, z ∈
{y0, ..., yn} such that π(y) = π(z) (because otherwise ]UT (π(x), d) > n would
hold). As a result, y ˙6=z cannot hold because of Definition 5.4.1. Therefore,
the ≤-rule can be applied without violating Definition 5.4.1.

• NN-rule: If ≤ nR.C ∈ L(x), then ≤ nR.C ∈ L′(π(x)). Consequently, by
(P10) of Definition 5.2.2, we have ]RT (π(x), C) ≤ n. The NN-rule generates
m new nodes y1, ..., ym with 1 ≤ m ≤ n and yi

˙6=yj ∀1 ≤ i < j ≤ m. Suppose
that there are m individuals t1, ..., tm ∈ SA such that 〈π(x), ti〉 ∈ EA(R),
C ∈ L′(ti)∀1 ≤ i ≤ m, and ti 6= tj ∀1 ≤ i < j ≤ m. By setting π := π[y1 7→
t1, ..., ym 7→ tm], we obtain a function π that satisfies Definition 5.4.1 for the
modified graph.



5.4 PROPERTIES OF THE ALGORITHM 137

• o-rule: If there are two nodes x, y on the graph with a nominal concept
o ∈ L(x)∩L(y), then o ∈ L′(π(x))∩L′(π(y)). By (P12) of Definition 5.2.2
we have π(x) = π(y). Therefore, x ˙6=y cannot hold because of Definition
5.4.1. Consequently, o-rule can be applied without violating Definition 5.4.1.

• v-rule: If there are two concrete nodes x, y on the graph with x
.
= y, then

π(x) = π(y). Therefore, x ˙6=y cannot hold because of Definition 5.4.1. Con-
sequently, v-rule can be applied without violating Definition 5.4.1.

• K+-rule: If a node x has an Ri-neighbor yi ∀1 ≤ i ≤ n then either
〈π(x), π(yi)〉 ∈ EA(Ri) or 〈π(x), π(yi)〉 ∈ ED(Ri) by Definition 5.4.1. And if
R1, ..., Rn IdforC ∈ K, then {C,¬C}∩L′(π(x)) 6= ∅ by (P18) of Definition
5.2.2. Therefore, the K+-rule can add an appropriate concept E ∈ {C, ¬̇C}
to L(x) such that L(x) ⊆ L′(π(x)) holds.

• K-rule: If Ri ∈ L(〈x, yi〉)∩L(〈x′, yi〉) ∀ 1 ≤ i ≤ n then either 〈π(x), π(yi)〉 and
〈π(x′), π(yi)〉 ∈ EA(Ri) or 〈π(x), π(yi)〉 and 〈π(x′), π(yi)〉 ∈ ED(Ri)∀ 1 ≤
i ≤ n by Definition 5.4.1. And if C ∈ L(x) ∩ L(x′) then C ∈ L′(π(x)) ∩
L′(π(x′)). Therefore, if R1, ..., Rn IdforC ∈ K then π(x) = π(x′) by (P20)
of Definition 5.2.2. Consequently, theK-rule can be applied without violating
Definition 5.4.1.

For the initial completion-graph consisting of a single node x0 with L(x0) = {X},
˙6= = ∅ and

.
== ∅, we give a function π that satisfies Definition 5.4.1 by setting

π(x0) := s0 for some s0 ∈ SA with X ∈ L′(s0) (such an s0 exists since T is a
tableau for X). Whenever a rule is applicable to T , it can be applied in a way that
maintains the properties in Definition 5.4.1, and, since the algorithm terminates,
we have that any sequence of rule applications must terminate. Definition 5.4.1
implies that any graph G generated by these rule applications is clash-free because
it is easy to see that neither of the clashes can hold in G:

• G cannot contain a node x such that {C,¬C} ∈ L(x) because L(x) ⊆
L′(π(x)). If {C,¬C} ∈ L(x) holds on the graph, then (P1) of Definition
5.2.2 would be violated for π(x);

• G cannot contain a node x with ≤ nR.C (≤ nU.d) ∈ L(x) and n + 1 R-
neighbors (U -successors) y0, ..., yn of x with C ∈ L(yi) (d ∈ L(yi)) ∀1 ≤ i ≤ n
and yi

˙6=yj ∀ 0 ≤ i < j ≤ n because ≤ nR.C (≤ nU.d) ∈ L′(π(x)), and yi
˙6=yj

implies π(yi) 6= π(yj) , by Definition 5.4.1. Therefore ]RT (π(x), C) > n
(]UT (π(x), d) > n), in contradiction to (P10) ((P16)) of Definition 5.2.2;
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• G cannot contain two concrete nodes y and x with y ˙6=x and data type
reasoner returns y

.
= x because y ˙6=x implies π(y) 6= π(x) by Definition 5.4.1.

Data type reasoner returns y
.
= x that implies π(y) = π(x) by Definition

5.4.1, contradicting (P17) of Definition 5.2.2;

• G cannot contain a node x satisfying the clash of form (5). Since if di ∈ L(x)
then π(x) ∈ dD

i for 1 ≤ i ≤ n by Definition 5.4.1. Therefore, dD
1 ∩ ...∩dD

n = ∅
will contradict (P14), (P15), (P17) of Definition 5.2.2;

• G cannot contain a node x satisfying the clash of form (6), because if C ∈
L(x) then C ∈ L′(π(x)) by Definition 5.4.1. And if R1, ...Rn IdforC ∈ K
and there are two Ri-neighbors of x yi, zi for some i such that yi

˙6=zi, then
〈π(x), π(yi)〉, 〈π(x), π(zi)〉 ∈ EA(R) or 〈π(x), π(yi)〉, 〈π(x), π(zi)〉 ∈ ED(R),
and π(yi) 6= π(zi) due to Definition 5.4.1, contradicting (P19) of Definition
5.2.2;

• G cannot contain a node x satisfying the clash of form (7), because if
C ∈ L(x′) ∩ L(x) then C ∈ L′(π(x′)) ∩ L′(π(x)) by Definition 5.4.1.
And if R1, ...Rn IdforC ∈ K and there is an Ri-neighbor yi such that
Ri ∈ L(〈x′, yi〉) ∩ L(〈x, yi〉) for 1 ≤ i ≤ n, then 〈π(x), π(yi)〉 and
〈π(x′), π(yi)〉 ∈ EA(R) or 〈π(x), π(yi)〉 and 〈π(x′), π(yi)〉 ∈ ED(R) ∀1 ≤ i ≤ n
due to Definition 5.4.1, contradicting (P20) of Definition 5.2.2.

• G cannot contain a node x satisfying the clash of form (8), because if in the
complet graph G, x in a blocking cycle such that C ∈ L(x), for 1 ≤ i ≤ n
Ui is a concrete role, U1, ..., Un IdforC ∈ K and there are n Ui-successor yi

such that Ui ∈ L(〈x, yi〉), di ∈ L(yi) with dD
i is a finite set, then unraveling

will generate a node x′ ˙6=x such that C ∈ L(x′), and n Ui-successor y′i such
that y′i

.
= yi. Due to Definition 5.4.1, π(x′) 6= π(x) and for 1 ≤ i ≤ n

π(y′i) = π(yi), contradicting (P20) of Definition 5.2.2.

¥

5.4.4 Conclusion

As an immediate consequence of Lemmas 5.2.1, 5.4.1, 5.4.2, and 5.4.3, the
completion algorithm always terminates, and answers with “X is satisfiable w.r.t.
R and K” iff X is satisfiable w.r.t. R and K. By Theorem 3.3.2 mentioned in
Chapter 3, we can decide inference problems w.r.t. knowledge bases.

Theorem 5.4.1. The Tableau algorithm presented in Section 5.3 is a decision
procedure for SHOIQK(D)-concept satisfiability problem w.r.t knowledge bases.
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5.5 Related Work

The latest effort to provide reasoning for DLs integrated with ICs was pre-
sented in [97]. The authors described two tableau-based decision procedures for
concept satisfiability in ALCOK(D) w.r.t. Boolean KBox8 and in SHOQK(D)
w.r.t path-free KBox9. ForALCOK(D), the author employed the notion of levT(a)
to denote the depth at which an abstract node a occurs in a completion tree T
(starting with the root node at depth 0). They defined ≺ as a linear ordering
of abstract nodes on the tree such that levT(a) ≤ levT(b) implies a ≺ b, and ∼
is an equivalence relation on the set of concrete nodes on the tree. The authors
introduced also an equivalence relation ≈a on abstract nodes, which is induced by
the relation ∼, and yields the equivalence relation on concrete nodes ≈c⊇∼. For
each role name R, an abstract node b is an R/ ≈a-neighbor of an abstract node
a if there exists an abstract node c such that a ≈a c and b is an R-successor of c.
x ≈c y if x ∼ y or there are an abstract node a and a concrete role g such that x
and y are g/ =≈a-neighbors of a. Key assertions (i.e. ICs in our terminology) are
used to define the ≈a relation.

When an abstract node b is added to a tree, it is inserted into ≺ such that b ≺ c
implies levT(b) ≤ levT(c).

The reasoning procedure realizes a tight coupling between the concrete domain
reasoner and the tableau algorithm: if the concrete domain reasoner finds that
two concrete nodes are equal, the tableau algorithm may use this to deduce (via
the computation of ≈a and ≈c) even more equalities between concrete nodes. The
concrete domain reasoner may then return further “equalities” ∼ and so forth.

A tableau algorithm for SHOQK(D) is designed as a combination of the one
for SHOQ(D) [83] and the one for ALCOK(D). To prove the termination of
the algorithm for ALCOK(D)-concepts, the authors introduced the notion of role
depth of concepts. The most important difference of the algorithm for SHOQK(D)
from the one for ALCOK(D) is that concepts of positive role depth can be added
to arbitrary nodes in the completion forest10. Furthermore, the depth of a node

8Only boolean combinations of concept names appear in a Boolean KBox

9Only functional concrete roles appear in a path-free KBox

10A forest is generated because some completion rules remove nodes and edges from the com-
pletion tree.
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might change because a node might become a root node due to some completion
rules. Thus the role depth does not automatically decrease with the depth of nodes
in the forest (as in the case of ALCOK(D)) and a naive tableau algorithm would
construct infinite forests. To enforce termination artificially, the relation ≺ is no
longer required to respect the level of a node as in the ALCOK(D) case. A new
node x is introduced into the completion forest such that y ≺ x for all already
existing nodes y.

The authors introduced a subset blocking mechanism in which they define the
reflexive closure ¹ of ≺. Unlike the subset blocking presented in [87], the blocking
node in their solution is not necessarily an ancestor of the blocked node, but can
be anywhere in the forest. The blocked nodes may even have unblocked successors.
Their modification is explained as for obtaining a NExpTime upper bound.

Stating that tableaux are only used in proof, the authors introduced a tableau
for SHOQK(D) that includes a function mapping concrete predicates used in the
input concept and KBox to sets of values over the concrete domain. By this way,
they argued that a concrete domain reasoner that can decide on the satisfiability
of the predicate conjunctions built for tableaux is not necessary. However, to build
such a tableau, the authors used a kind of concrete domain reasoner called D-tester
that verifies the satisfiability of those conjunctions and returns the equivalence of
concrete nodes on forests.

The equivalence relation ∼ on concrete nodes, which is returned by D-tester, is
still used to compute the relation ≈a that is then used by the tableau algorithm
for SHOQK(D). However, because KBoxes are path-free, it is not necessary to
compute the relation ≈c from ≈a as in the ALCOK(D) case. D-tester is called
each time that the R∃c rule is applied (because this rule requires the update of
the relation ∼).

There is no merging in their tableau algorithm. All the nodes in an equivalence
class are assigned the same label. This is realized by choosing one representative
whose node label contains the labels of all other nodes in the class and then
copying the labels of all other nodes in the class from the representative label.
The representative is the ≺-minimal node of the equivalence class.

Some main differences of our solution from the work presented in [97] are:

• We do not use identification constraints to define the equivalence relation on
a graph, neither on abstract nodes nor on concrete nodes. We introduce a
rule that verifies whether two nodes on a graph satisfy an IC in KBox, and
merges them if they are identified by the same identifying set.



5.6 CONCLUSION 141

• We do not have to deal with the representative of nodes in an equivalence
class. The reason is that by merging, there is no longer equivalent nodes on
the graph.

• We have to deal with the infinite model property of SHOIQK(D), which
provokes the problems that do not exist in SHOQK(D).

• We do not employ many notions applied in [97], such as the depth of abstract
nodes, role depth, ordering of all abstract nodes, to enforce termination.
Instead, we extend the notion of level of nominal nodes and of the priority
of rule applications for SHOIQ to obtain termination.

5.6 Conclusion

In this chapter, we have introduced a reasoning procedure for the web ontology
language OWL-K. Our decidable reasoning will provide utilities that ontology users
and developers are expecting. In particular, it provides the capability to integrate
data sources from relational databases into the Semantic Web environment through
the ontology language OWL-K. It helps to verify the consistency of databases and
ontologies in the design and development and to retrieve the semantics of data in
the exploiting phase.

We do not choose to make a unique name assumption for our algorithm. However,
it can easily be adapted to the unique name case by a suitable initialisation of
the inequality relation. We do not address the data type reasoner and assume
that it has an algorithm satisfying the requirement of our Tableau algorithm.
As mentioned in Chapter 4, roles used in ICs are not required to be functional
roles11. Actually, only individuals identified uniquely by those roles must be related
to at most one other individual by each of those roles. Therefore, checking IC
satisfiability, including number restrictions, is of a local nature and applied only
to some nodes in the graph.

We have designed an algorithm that behaves like “pay as you go”:

• if KBox is empty then the algorithm is treated as for SHOIQ(D);

11A role R is called a functional role iff > v≤ 1R.
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• if no condition of ICs is satisfied then the expansion rules for ICs are not
applied;

• if no data types are used, the algorithm is treated as for SHOIQK;

• if neither data types nor ICs are asserted, the algorithm is treated as for
SHOIQ.

Consequently, the performance of SHOIQK(D) is comparable with that of
SHOIQ, given that SHOIQ is NExpTime-complete [84]. However, regarding
concrete domains and ICs, we have to leave the complexity of the algorithm as
an open problem. If there exists an algorithm for QIK-conformity in NP, then
given the bound of number of nodes proved above (cf. the proof for Lemma 5.4.1),
it is not hard to prove that our algorithm is 2-NExpTime-complete, but it is not
obvious whether NExpTime-complete is also enough. Some results in this chapter
have previously been published in [106].





CHAPTER 6

Modeling ORM schemas in OWL-K

In the previous chapters, we have built OWL-K, a web ontology language
with an underlying decidable description logic. OWL-K layers on top of OWL
DL, and extends it with identification constraints. The latter is one of the most
important factor in conceptualizing, both for relational databases and semantic
web ontologies. Therefore, we consider OWL-K as a fundamental web ontology
language to capture information from relational data sources through their con-
ceptual schemas.

In this chapter, we will study a mechanism to model ORM schemas in OWL-K.
The goal of this modeling is to integrate relational data sources modeled in ORM
into the Semantic Web environment. In modeling ORM schemas, we mention also
“OWL” (without “K”). It means that the transformation can be performed using
OWL DL (the sub language of OWL-K). We will analyse data modeling in ORM,
and try to represent ORM schemas in OWL(-K) ontologies. Besides presenting
RDF/XML syntax, which makes ORM schemas usable in the Semantic Web, we
will also introduce OWL-K abstract and DL syntax of ORM schemas, showing
that the semantics of ORM diagrams are guaranteed.

The chapter is organized as follows. Section 6.1 briefly introduces how to model
data in ORM. Consequently, we can identify the scope of our work in modeling
ORM schemas in OWL-K. In Section 6.2, Section 6.3 and Section 6.4, we show
how components in ORM schemas can be formalized in this web ontology language.
Section 6.5 presents an algorithm to perform the translation of an ORM schema
in an OWL-K ontology. Section 6.6 concludes the chapter.
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6.1 Data Modeling in ORM

Understanding data modeling in ORM is necessary for modeling ORM
schemas in OWL-K. In Chapter 2, we have shown the main features of ORM
that distinguish ORM from ER and UML methods. However, to understand how
ORM performs data modeling, more explanation is needed. This section will talk
about that. Consequently, we will identify the scope of the transformation of ORM
into OWL-K. Full description of ORM methodology can be found in [67, 64].

In the 1970s, substantial research was carried out to provide high level seman-
tics for modeling information systems. Falkenberg introduced the fundamental
ORM framework, which was called the “object-role model” [50]. This framework
allowed n-ary and nested relationships, but depicted roles with arrowed lines. Ni-
jssen adapted this framework by introducing the circle-box notation for objects
and roles that has become standard, and adding a linguistic orientation and de-
sign procedure to provide a modeling method called ENALIM (Evolving NAtural
Language Information Model) [109, 110]. Other researchers extended the method
with the semantics [91], subtypes, and an ORM query language (RIDL) [102]. The
method was renamed “Nijssen Information Analysis Method” (NIAM). In later
years the acronym “NIAM” was given different expansions, and is now known
as “Natural language Information Analysis Method”. Halpin, then, provided the
first full formalization of the method [65], including schema equivalence proofs,
and made several refinements and extensions to the method.

Many researchers have contributed to the ORM method over the years. Today
various versions of the method exist, but all adhere to the fundamental object-role
framework (e.g. [118, 61, 129, 132, 48, 10]). In this thesis, we adopt the ORM 2,
the second generation of ORM developed by Halpin [69] and supported by many
tools (see Chapter 7).

6.1.1 Conceptual Schema Design Procedure

ORM focuses on data modeling, since the data perspective is the most stable
and it provides a formal foundation on which operations can be defined. For cor-
rectness, clarity and adaptability, information systems are best specified first at the
conceptual level, using concepts and language that people can readily understand.
Analysis and design involves building a formal model of the application area or
universe of discourse (UoD). To do this properly requires a good understanding
of the UoD and a means of specifying this understanding in a clear, unambiguous
way. ORM simplifies this process by using natural language, as well as intuitive



146 CHAPTER 6. MODELING ORM SCHEMAS IN OWL-K

diagrams that can be populated with examples, and by expressing the information
in terms of elementary relationships.

The ORM’s conceptual schema design procedure (CSDP) specifies the information
structure of the application by identifying the types of fact that are of interest;
constraints on these; and perhaps derivation rules for deriving some facts from
others. With large applications, the UoD (i.e. the application domain) can be di-
vided into convenient modules, the CSDP is then applied to each, and the resulting
subschemas are integrated into the global conceptual schema.

Table 6.1 shows the steps in a CSDP. Step 1 is the most important. Examples
of the information required from the system are verbalized in natural language,
such as in the form of output reports or manual versions of the required system.
To avoid misinterpretation, a UoD expert should perform or at least check the
verbalization. Step 2 is to draw a draft diagram of the fact types and apply a
population check. As a check, each fact type has been populated with at least
one fact, shown as a row of entries in the associated fact table. It is useful for
validating the model with the client and for understanding constraints. However,
the sample population is not part of the conceptual schema itself. Step 3 checks
for entity types and may combine several types such that the original information
about them is preserved. Another aspect of Step 3 is to see if some fact types
can be derived from others by arithmetic. In this case, a derivation rule must be
supplied below the schema diagram. Note that this rule is not included in the
ORM diagram. The other steps are devoted to adding constraints such that the
diagram is always consistent.

Table 6.1: The conceptual schema design procedure

Step
1. Transform familiar information examples into elementary facts, apply quality

checks.
2. Draw the fact types, apply a population check.
3. Check for entity types that should be combined, note any arithmetic deriva-

tions.
4. Add uniqueness constraints.
5. Add mandatory constraints, check for logical derivations.
6. Add value, set comparison and subtyping constraints.
7. Add other constraints and perform final checks.

Once the procedure is finished, the global schema is mapped to a relational
database schema by conceptual schema transformations (see Chapter 7).
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6.1.2 ORM Diagrams

As mentioned in the previous section, an ORM conceptual schema is depicted
by a diagram. An ORM diagram is built using information about relations between
object types or, in other words, about facts. In ORM, a fact is always elementary.
An elementary fact asserts that a particular object has a property, or that one
or more objects participate in a relationship, where that relationship cannot be
expressed as a conjunction of simpler (or shorter) facts.

A fact comprises objects and the roles the objects play. All the roles in a fact
together make up the predicate of that fact. The great majority of facts contain
two roles. To illustrate the anatomy of a fact, we revisit the example in Chapter
2:

The Department with the ID “IT” employs / works for the Employee with the
name “Hang DO”.

In an ORM diagram, you would symbolize this fact using the notation shown in
Figure 6.1 and explained below.

Object type
Department(Id) Employee(Name)employs/ is_employed_byIT    Hang DOMK   Marie CLAIREMK   Hang DO RoleConstraint

Role connector Predicate

Sample population

Figure 6.1: Symbolizing a fact

An object type, which appears as a soft rectangle (either solid or dashed), cate-
gorizes data into different kinds of meaningful sets. For example, the Department
object type divides the application domain into those things that are departments
(or department IDs) and those that are not. A thing or noun in the application
domain will always be an object type in ORM.

A predicate is a verb, or verb phrase, that connects the object types in a fact type.
A predicate provides the semantic context for objects and consists of one or more
roles that objects play.
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Each role in a predicate is expressed by a role box and is played by one object
type. In Figure 6.1, the left role (role position 1 in the predicate) is employs.
What is being said is that a department employs an employee. Or you might
say, “department is playing the role of employing an employee”. At the right role
position (role position 2), the Employee object type is playing a role with respect
to the Department object type. If you read the predicate from right to left, you can
say, “employee is employed by department”. The role is employed by is separated
from the role employs in the predicate by a slash.

A solid dot at the role end signifies a constraint over that role position. In this
case, the dot represents a mandatory constraint.

Sample population provides examples of allowable values for the object types at
their respective role positions. Sample data in each row represent a valid instance
(or fact) for a fact type. Each column is associated with a role that an object
plays in the fact. The set of instances in a column represents the legal values for
the fact at that column or role position.

A fact type defines the set of all possible instances of objects that play roles within
a fact. Actually, ORM diagrams depict fact types and constraints on them. As
shown in the above example, Department employs Employee is a fact type. It defines
the set of allowable values (via its constraints) of the object types that play roles
within it. Department “IT” employs Employee “Hang DO” is just a single fact
instance, or an example, of the data allowed for the fact type. Department employs
Employee could also have instances such as the following:

Department “MK” employs Employee “Marie CLAIRE”

Department “MK” employs Employee “Hang DO”

Figure 6.2 summarizes the main symbols used in modeling data in ORM. A value
type is usually shown as a named, dashed soft rectangle (symbol 1). Another
notation for value types encloses the value type name in parentheses (cf. symbol
4). An entity type is depicted as a named solid soft rectangle (symbol 2). In symbol
3, an exclamation mark is added to declare that an entity type is independent. The
reference scheme may be abbreviated as in symbol 4 by displaying the reference
mode in parentheses beside the name of the entity type, e.g. Country(code). Value
constraints are described by a list next to the object type. Symbol 6 shows a
binary predicate, comprised of two roles. If we want to talk about a relationship
type we may objectify it (i.e. make an object out of it) so that it can play roles.
Graphically, the objectified predicate is enclosed in either a soft rectangle (symbol
7) or an ellipse, and named. Objectified predicates are also called nested object
types. A solid arrow (symbol 8) denotes the subtype constraint. A mandatory role
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Figure 6.2: Main symbols in ORM diagrams

constraint is usually shown as a solid dot (symbol 10). A disjunctive mandatory
constraint may be applied to two or more roles. This may often be shown by
connecting the roles by dotted lines (symbol 9) to a circled solid dot (symbol
11). Internal uniqueness constraints are depicted as simple lines (symbol 12).
A predicate may have one or more uniqueness constraints, at most one of which
may be declared primary (i.e. preferred) by adding a double line (symbol 13).
An external uniqueness constraint shown as a circled underline (symbol 14) may
be applied to two or more roles from different predicates by connecting to them
with dotted lines. To declare an external uniqueness constraint primary, we use a
circled double underline instead of circled underline (symbol 15). Symbol 16 shows
four kinds of frequency constraint. Applied to a sequence of one or more roles,
these constraints indicate that instances that play those roles must do so exactly
n times (symbol 16, top), at least or at most n times (symbol 16, middle), or
between n and m times (symbol 16, bottom). Symbols 17-19 denote set comparison
constraints, and may only be applied between compatible role sequences. A circled
“⊆” (symbol 17) is a subset constraint. A circled “=” (symbol 18) is an equality
constraint. A circled “×” (symbol 19) is an exclusion constraint. Symbol 20-23
shows four pairs of ring constraint, that may be applied to a pair of roles played
by the same host type. Each pair depicts two kinds of constraint one of which
negates the other.

In the following sections, we will try to model ORM schemas described by using
the above symbols into OWL-K. We do not address derivation rules in this thesis
because as mentioned in the previous section, these rules are actually not a part
of ORM diagrams. We limit our translation to ORM in binary version, i.e., only
unary and binary predicates are appeared in ORM diagrams. Note that a relational
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database schema is actually binary (binary relationships between a relation and an
attribute). Therefore, the binary version of ORM is enough for modeling relational
data.

6.2 Basic Components

The fundamental components of ORM are object types, which consist of en-
tities and values, and roles. Nil is never depicted in an ORM diagram. That
is, object types are non-nil. Object types are connected by the roles they play,
composing the fact types. All the roles in a fact type make up its predicate whose
arity is the number of roles. In this section we describe the nature of object types,
predicates and roles, and provide their transformation into OWL-K.

6.2.1 Value Types

A value object type (or value type for short) is an object type that cannot be
defined by other object types. For example, Lastname is a value type, which is
illustrated in an ORM diagram as in Figure 6.3. There are two kinds of values,
namely strings and numbers. A value is a string if it has no arithmetic significance.
For example, the LastName “Smith” is just the string of characters S-m-i-t-h. A
value is a number if the value represented by the symbol can be operated on
mathematically. For example, in the fact type Employee hasAge YearOld, YearOld
would be represented by a number. Lastname

Figure 6.3: A value type represented in an ORM diagram

Value type is used to describe entities. For example, you could never find the
LastName “Smith”, but you could certainly find a Employee having the last name
“Smith”.

If a value type is represented as a class in OWL, then the value type Lastname
will be defined in OWL as the following:

<owl:Class rdf:ID = "Lastname"/>
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In this case, no class representing a value type should be appeared on the left
hand side of an axiom, i.e., be defined by others in an axiom. For example, the
class Lastname defined above should never be a subclass of another. However,
the above class definition example in OWL shows that this feature cannot be ex-
pressed explicitly (e.g. as a primitive class or as a class having no subclass). With
this expression, we know only the existence of the class while in ORM diagram,
we can easily find that Lastname is the primitive by the figure that illustrates it.
Since an ontology is an open knowledge base, a class may no longer be primitive
if an ontology extension is performed (e.g. adding to an ontology an axiom whose
left-hand side includes a class that has never appeared on that side before). Thus,
the semantics of the original part (w.r.t the extended part) of an ontology may
have been changed. Consequently, the ontology may no longer be consistent. In
this case, there should have a mechanism to verify the consistency of ontologies
representing ORM diagrams and to ensure that the semantics of ontologies fully
capture the original semantics expressed in ORM diagrams. Moreover, represent-
ing value types by classes does not capture the string or number property of value
types. Nevertheless, instances of value types are actually strings or numbers. And
a data type is not defined by any object type. Therefore, we translate value types
as data types rather than classes in OWL (see Figure 6.4).A Datatype URIref A

Figure 6.4: VL-rule - Modeling value types in OWL

A value type will be represented as a new simple data type derived from the built-
in XML Schema data type string or integer. For example, the value type Lastname
above can be defined as follows:

<xsd:simpleType name = "Lastname">
<xsd:restriction base = "xsd:string">
<xsd:maxLength value = "30"/>

</xsd:restriction>
</xsd:simpleType>

6.2.2 Entity Types

An entity object type (or entity type for short) is an object type representing
a conceptual thing in the real world. Tangible objects, such as Employee, and
intangible concepts, such as Subject, are both considered entity types. Essentially,
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an entity type is a concept or, in other words, a class in OWL. As mentioned
above, an entity type can also be declared independently by using an exclamation
mark in graphical notation. This means that instances of that type may exist
without participating in any facts. By default, it is not the case, i.e., object is
not introduced into the universe if it does not take part in some fact. In an OWL
ontology, we can declare any class without concerning its participation in some
axiom. Thus such an entity type obviously corresponds to a class in OWL. We
summarize the modeling of entity types in Figure 6.5.AA! <owl:Class rdf:ID = ‘‘A’’ />

Figure 6.5: EN-rule - Modeling entity types in OWL

To give an example, the entity type Employee above will be represented in an ORM
diagram (on the left) and in OWL (on the right) as shown in Figure 6.6.Employee <owl:Class rdf:ID = ‘‘Empoyee’’ />

Figure 6.6: Example of modeling entity types in OWL

An entity type can be described by other entity or value types, or by a composition
of different object types. When identified by a single value type, entity type is
described using the reference mode (cf. symbol 4 in Figure 6.2). There are two
other kinds of entity type: nested (cf. symbol 7 in Figure 6.2) and composite. All
these descriptions of entity type must use constraints. Therefore, we postpone the
translation of these types until Section 6.4.

6.2.3 Predicates and Roles

A predicate is the part of a fact type that describes the roles the objects play.
A predicate of arity n is displayed as a named, contiguous sequence of n boxes,
where n ≥ 1. Figure 6.7 shows some predicate examples. Each box depicts a role
which can be named or not. The name of a role is written in or beside the relevant
box. Predicates are normally treated as ordered. In this case, the name of a
predicate is usually the ordered list of names of its role components. It means that
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different readings may be provided so the information may be read in any direction.
For example, in the fact type Department employs/works for Employee, the predicate
name is employs/works for and we can read from left to right as “Department
employs Employee”, or from right to left as “Employee works for Department”.
By default, predicates are read left-to-right and top-down; prepending “<<” to a
predicate reading reverses the reading order.R1 R2 R3

Figure 6.7: Unary, binary and ternary predicates in an ORM diagram

In an ORM diagram, each role box must be connected by a role connector to
exactly one soft rectangle. Moreover, each predicate name appears only once.
Informally, each role is designed so that only objects satisfying the predicate of
the attached rectangle play that role. A fact type receives its arity from the arity
of its predicate. That is, if the predicate of a fact type is unary (binary), then the
fact type is unary (binary).

Unary Fact Types. A unary fact type represents a property of an object type. For
example, one states that Room is available to describe rooms which are available.
Note that in OWL, ranges are not necessary to be specified for properties. Con-
sequently, roles in unary fact types can be translated into an object property in
OWL whose domain is the object type (cf. Figure 6.8).RC <owl:ObjectProperty rdf:ID=’’R’’>        <rdfs:domain rdf:resource = ’’#C’’/></owl:ObjectProperty>isAvailableRoom <owl:ObjectProperty rdf:ID=’’isAvailable’’>        <rdfs:domain rdf:resource = ’’#Room’’/></owl:ObjectProperty>E.g.

Figure 6.8: R0-rule - Modeling roles in unary predicates in OWL

A value type would not play the role in a unary fact type. The reason is that
neither a string nor a number can be identified as a single instance, and that you
could not identify an instance of a string or number to play the role.

Binary Fact Types. Binary fact types are by far the most common. A role in a
binary predicate goes always with two object types one of which plays the role with
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the other. For example the role represents is played by the object type Student with
the object type Country in the fact type Student represents Country. Therefore, an
OWL property representing such a role should have the domain specified by the
object type playing the role, and the range specified by the object type subjected
to by the role.

A role can be attributive, i.e., it can define a value of an entity type. For exam-
ple, in the fact type Employee has Lastname, where Employee is an entity type
and Lastname is a value type, has is an attributive role. Since value types are
represented as data types in OWL, an attributive role corresponds to a data type
property in OWL. Figure 6.9 shows the translation of attributive roles into OWL.C <owl:DatatypeProperty rdf:ID=’’R’’>        <rdfs:domain rdf:resource = ’’#C’’/>        <rdfs:range rdf:resource = ’’#A’’/>        </owl:DataypeProperty><owl:DatatypeProperty rdf:ID=’’has’’>        <rdfs:domain rdf:resource = ’’#Employee’’/>        <rdfs:domain rdf:resource = ’’#Lastname’’/></owl:DatatypeProperty>E.g.

R AEmployee has Lastname
Figure 6.9: R1-rule - Modeling attributive roles in OWL

Otherwise, a role connects one entity to another (in case of binary predicate). In
this case, the role will be translated into object property in OWL. Revisiting the
fact type Department employs Employee, where both Department and Employee
are entity types, we see that the role employs corresponds to an object property in
OWL. Figure 6.10 shows the rule for this translation.C1 <owl:ObjectProperty rdf:ID=’’R1’’>        <rdfs:domain rdf:resource = ’’#C1’’/>        <rdfs:range rdf:resource = ’’#C2’’/>       </owl:ObjectProperty>

E.g.

R1Department employs C2Employee <owl:ObjectProperty rdf:ID=’’employs’’>        <rdfs:domain rdf:resource = ’’#Department’’/>        <rdfs:range rdf:resource = ’’#Employee’’/>       </owl:ObjectProperty>
Figure 6.10: R2-rule - Modeling non-attributive roles in OWL

Besides, there may exist two role names in a binary predicate. For example, in the
fact type Department employs/works for Employee, employs and works for are
two role names in the predicate. Actually, the role in position 1 of the predicate
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describes the relationship of the object that plays the role to the object type sub-
jected to by the role, while the role in position 2 of the predicate describes the same
relationship but in the inverse order. That is, employs describes the relationship of
the entity type Department to the entity type Employee while works for describes
the same relationship but from Employee to Department. Hence, the role in position
2 is actually the inverse role of the role in position 1 and vice versa. Therefore, in
case a binary predicate comprises two predefined non-attributive roles, one role is
mapped as an object property as shown above while the other is mapped as the
inverse of it. Figure 6.11 shows the translation for inverse roles.<owl:ObjectProperty rdf:ID=’’R2’’>        <owl:inverseOf rdf:resource = ’’#R1’’/>       </owl:ObjectProperty>

E.g.

R1/ R2Department employs/works_for Employee <owl:ObjectProperty rdf:ID=’’works_for’’>        <owl:inverseOf rdf:resource = ’’#employs’’/>       </owl:ObjectProperty>
Figure 6.11: IR-rule - Modeling inverse roles in OWL

6.3 Object Constraints

ORM introduces some constraints that can be set on object types. In this
section, we will discuss these constraints and show their translation into OWL.
Constraints that apply to roles will be dealt with in Section 6.4.

6.3.1 Value Constraints

Value constraints (VCs) specify a list of possible values for an object type.
To restrict an object type’s population to a given list, the relevant values may be
listed in braces (cf. on the right top of symbol 5 in Figure 6.2). If the values
are ordered, a range may be declared separating the first and last values by “..”
(cf. on the right bottom of symbol 5 in Figure 6.2). For example, an entity type
VegetarianMenu is restricted to Menu1..Menu3 and a value type Sex is restricted to
‘M’, ‘F’. Open ranges are also supported (e.g. “> 0” for InterestRate).

OWL provides an exhaustive enumeration of individuals that together form the
instances of a class. This kind of class is defined with the owl:oneOf property
whose value must be a list of individuals that are the instances of the class. Since
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we translate entity types into classes in OWL, value constraints on entity types
can be translated into OWL using the owl:oneOf constructor. In OWL a list of
individuals must be represented explicitly, hence all elements of a range of value of
an entity type must be stated. For example, the entity type VegetarianMenu above
should be listed completely as a set of Menu1, Menu2, and Menu3. The rule of
translation of VCs on entity types and its application to the VC on VegetarianMenu
are shown in Figure 6.12.

VegetarianMenu {Menu1..Menu3}
{c1, c2,…, cn} <owl:oneOf rdf:parseType="Collection">    <owl:Thing rdf:about="#c1"/>    <owl:Thing rdf:about="#c2"/>     ...    <owl:Thing rdf:about="#cn"/></owl:oneOf><owl:Class rdf:ID ="VegetarianMenu">  <owl:oneOf rdf:parseType="Collection">    <owl:Thing rdf:about="#Menu1"/>    <owl:Thing rdf:about="#Menu2"/>    <owl:Thing rdf:about="#Menu3"/>  </owl:oneOf></owl:Class>

Figure 6.12: VC1-rule - Modeling VCs on entity types in OWL

For VCs on value types, we have translated value types into datatypes in OWL.
Besides, OWL provides also owl:oneOf to define an enumeration of data values,
namely an enumerated datatype. Consequently, we will use owl:oneOf to translate
the VCs in the form of enumeration of value types. As for the case of transla-
tion for VCs on entity types, owl:oneOf for datatype does not support the VCs
in the form of range. Therefore, all the elements in a closed range must be
listed explicitly. Note that in the case of an enumerated datatype, we cannot use
rdf:parseType=”Collection” as for the translation of VCs on entity types, but the
basic list constructors rdf:first, rdf:rest and rdf:nil. Figure 6.13 shows the detailed
translation for this kind of constraint and an application to the value type “Sex”
above. In Figure 6.13, we use “xmltype” to denote “&xsd;integer” or “&xsd;string”.
Note that in OWL, an enumerated datatype can only be defined in a data type
property definition.

An open range of a value type actually limits the number of possible values for
that type, based on the string or number type. Therefore, this constraint can be
translated as a derivation by restriction on an existing type, which is actually
considered as a new simple data type derived from the built-in XML Schema
data type string or number. As presented in Chapter 4, this kind of derivation
is supported by OWL. Therefore, we apply the VL-rule to this constraint. That
is, open range value constraints on value types will be translated into new simple
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Sex {‘M’, ‘F’}
{v1, v2,…, vn} <owl:oneOf><rdf:List><rdf:first rdf:datatype="xmltype">v1</rdf:first><rdf:rest>             <rdf:List>               <rdf:first rdf:datatype="xmltype">v2</rdf:first>                ...                  <rdf:first rdf:datatype="xmltype">vn</rdf:first>                  <rdf:rest rdf:resource="&rdf;nil" />            </rdf:List>          </rdf:rest>        </rdf:List></owl:oneOf><owl:DataRange rdf:ID = "Sex">    <owl:oneOf>       <rdf:List>          <rdf:first rdf:datatype="&xsd;string">M</rdf:first>          <rdf:rest>            <rdf:List>              <rdf:first rdf:datatype="&xsd;string">F</rdf:first>              <rdf:rest rdf:resource="&rdf;nil" />            </rdf:List>          </rdf:rest>       </rdf:List>    </owl:oneOf></owl:DataRange>

E.g.

Figure 6.13: VC2-rule - Modeling enumerated VCs on value types in OWL

data types derived from the built-in XML Schema data type string or integer. For
example, “> 0” on value type InterestRate will be translated as

<xsd:simpleType name = "InterestRate">
<xsd:restriction base = "xsd:decimal">
<xsd:minExclusive value = "0.00"/>

</xsd:restriction>
</xsd:simpleType>

6.3.2 Subtypes and Supertypes

A subtype is a special kind of object type. It is an entity object type whose
population represents a portion of the population of another entity type, called
the supertype. For example, Employee can be a subtype of a supertype Person.
Every supertype and subtype must play at least one role. A subtype is displayed
graphically by first representing it as a distinct object type, then drawing an arrow
from this rectangle to the rectangle that represents the supertype (cf. Figure 6.14).
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Actually, this arrow is a constraint that links the two entity types.

Employee(Name)PersonHang DOMarie CLAIRE
Maire CLAIREHang DOJane DAVISTony LEE SubtypeSupertype

Figure 6.14: Modeling derived predicates with one asterisk in OWL

An entity type is translated into a class in OWL, hence subtype corresponds actu-
ally to subclass in OWL. Thus, we use the rdfs:subClassOf constructor to translate
this kind of constraint, as shown in Figure 6.15.

C1C2 <owl:Class rdf:about="#C1">        <rdfs:subClassOf rdf:resource="#C2"/></owl:Class>
Figure 6.15: ST-rule - Modeling subtypes and supertypes in OWL

6.3.3 Exclusion and Exhaustion Constraints

By default, ORM subtypes may overlap. ORM allows graphic constraints to
be added to indicate that subtypes are mutually exclusive, collectively exhaustive,
or both.

Two types are mutually exclusive if an instance of one type is not simultaneously
an instance of the other type. For example, Figure 6.16(a) describes two object
types Man and Woman that are subtypes of Person and are mutually exclusive (by
using a circled “×” connected to the relevant subtypes via dotted lines). In OWL,
we can use the owl:disjointWith constructor to express this exclusion. Hence, the
exclusion example above can be translated into OWL as shown in Figure 6.16(b).
The translation rule generalized for the exclusion constraint on n subtypes can be
seen in Figure 6.16(c).

Two subtypes are collectively exhaustive if the union of their populations exhausts
the population of their supertype. For example, in the example above, Person must
be either Man or Woman. We say that the union of the populations of the subtypes



6.3 OBJECT CONSTRAINTS 159PersonMan Woman <owl:Class rdf:about="#Man">  <owl:disjointWith rdf:resource="#Woman"/></owl:Class>
(a) (b)

CC1 C2
<owl:Class rdf:about="#C1">    <owl:disjointWith rdf:resource="#C2"/>     ...    <owl:disjointWith rdf:resource="#Cn"/></owl:Class>

(c)

Cn... <owl:Class rdf:about="#C2">    <owl:disjointWith rdf:resource="#C3"/>     ...    <owl:disjointWith rdf:resource="#Cn"/></owl:Class>…<owl:Class rdf:about="#Cn-1">    <owl:disjointWith rdf:resource="#Cn"/></owl:Class>

E.g.

ME-rule:

Figure 6.16: Modeling the mutual exclusion constraint in OWL

Man and Woman exhausts the population of the supertype Person and depict this
relation in ORM diagram as in Figure 6.17(a) (using a circled dot). In OWL,
we can use owl:unionOf constructor to describe the constraint, so the exhaustion
example in Figure 6.17(a) can be represented in OWL as in Figure 6.17(b). The
translation rule generalized for the exhaustion constraint on n subtypes can be
seen in Figure 6.17(c). PersonMan Woman

(a) (b)

CC1 C2
(c)

Cn...

E.g.

CE-rule:

<owl:Class rdf:about="#Person">  <owl:unionOf rdf:parseType="Collection">    <owl:Class rdf:about="#Man" />    <owl:Class rdf:about="#Woman" />  </owl:unionOf></owl:Class>
<owl:Class rdf:about="#C">  <owl:unionOf rdf:parseType="Collection">    <owl:Class rdf:about="#C1" />    ...    <owl:Class rdf:about="#Cn" />  </owl:unionOf></owl:Class>

Figure 6.17: Modeling the collective exhaustion constraint in OWL
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When both exclusion and exhaustion constraints need to be applied (e.g. the case
of subtypes Man and Woman of supertype Person), in ORM diagram we can use
a single symbol (a circled and crossed dot) instead of the two symbols presented
above.

6.4 Role Constraints

Role constraints are rules that govern the population of a database and restrict
the data allowed in the database. A constraint can be applied to the population for
one or more objects that play a single role, to a role sequence, i.e. a group of roles
in one fact type, or to a set of role sequences in many fact types. The number of
objects and roles involved in a constraint depends on the purpose and type of the
constraint. This section will describe how to translate fact types under constraints
into OWL. It also describes the translation of object types with reference mode,
composite and nested object types.

6.4.1 Mandatory Constraints

Simple Mandatory Constraints. A mandatory constraint (MC) on a role is
often called a simple MC. It specifies that every instance of its object type must
play the role. The object type subjected to by the role can be either a value type
or an entity type. For example, a simple MC is applied on the role works for to
show that every employee must work for some department.

In OWL, the value constraint owl:someValuesFrom is a built-in OWL property
specifying that all individuals of the restricted class must be linked to at least
one value of the property concerned. In other words, for each individual x of the
restricted class, there exists a y (either an instance of the class description or value
of the data range) such that the pair (x,y) is an instance of the concerned property.

MCs, therefore, can be expressed by the constraint owl:someValuesFrom in OWL.
The translation rule MC2-rule for this kind of constraint and an example are
shown in Figure 6.18. As mentioned in Section 6.1.2, in an ORM diagram a role
is explicitly indicated as mandatory by adding a solid large dot at the role end of
the role connector. In the figure, a soft rectangle that is half solid and half dashed
is an abbreviation for any object type.

Note that the translation in Figure 6.18 is applied to only binary predicates. Be-
sides, we can also have simple MCs applying to unary predicates. For example,
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Department(Id)Employee(Name) works_for
R <owl:Restriction>      <owl:onProperty rdf:resource="#R" />      <owl:someValuesFrom rdf:resource="#C" /></owl:Restriction>

E.g. <owl:Class rdf:about="#Employee">  <rdfs:subClassOf>    <owl:Restriction>      <owl:onProperty rdf:resource="#works_for" />      <owl:someValuesFrom rdf:resource="#Department" />    </owl:Restriction>  </rdfs:subClassOf></owl:Class>     
C

Figure 6.18: MC2-rule - Modeling MCs in binary predicates in OWL

it is obligatory that each employee is paid. In this case, we can also employ the
constraint owl:someValuesFrom in OWL for the translation. Due to R0-rule, the
range of the role in a unary predicate (while not specified) can be considered as
the universe, or in other words, as owl:Thing in OWL. Therefore, we translate a
simple MC applying to a role in a unary predicate as in Figure 6.19.R <owl:Restriction>   <owl:onProperty rdf:resource="#R"/><owl:someValuesFrom rdf:resource="&owl;Thing"/></owl:Restriction>ispaid <owl:Class rdf:about="#Employee">  <rdfs:subClassOf>     <owl:Restriction>        <owl:onProperty rdf:resource="#ispaid"/>        <owl:someValuesFrom rdf:resource="&owl;Thing"/>      </owl:Restriction> </rdfs:subClassOf></owl:Class>Employee(Name)E.g.

Figure 6.19: MC1-rule - Modeling MCs in unary predicates in OWL

Note that no value type plays a mandatory role, because value type represents just
strings or numbers some of which might never be used in an application.

Disjunctive Mandatory (Inclusive-Or) Constraints. A disjunctive mandatory con-
straint (DMC) is a mandatory constraint on a combination of two or more roles
connected to the same object type. It specifies that each instance of an object
type’s population must occur in at least one of the constrained roles. For example,
one would like to express that every Employee must be paid or be provided with
house. Hence, we translate this constraint as a disjunction of all the simple MCs
on the constrained roles respectively. In OWL, disjunction is described by the
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owl:unionOf property.

Figure 6.20 shows the translation of an DMC on two predicates in detail. In an
ORM diagram, a DMC is depicted by placing the solid dot in a circle connected
by dotted lines to the roles it applies to. In the figure, the predicate whose second
role box is dashed is an abbreviation for either an unary or a binary predicate. We
use this notation also in the following sections.

E.g.     <owl:Class rdf:about="#Employee">         <rdfs:subClassOf>            <owl:Class>                <owl:unionOf rdf:parseType="Collection">                    <owl:Restriction>                        <owl:onProperty rdf:resource="#isProvidedwith"/>                        <owl:someValuesFrom rdf:resource="#House"/>                    </owl:Restriction>                    <owl:Restriction>                        <owl:onProperty rdf:resource="#ispaid"/>                        <owl:someValuesFrom rdf:resource="&owl;Thing"/>                    </owl:Restriction>                </owl:unionOf>            </owl:Class>        </rdfs:subClassOf>    </owl:Class>
Employee(Name)isProvidedwithispaid

<owl:unionOf rdf:parseType="Collection">    <Apply rule MC1 or rule MC2 on R1>    <Apply rule MC1 or rule MC2 on R2></owl:unionOf>R2R1
House

Figure 6.20: Modeling DMCs on two predicates in OWL

The translation of DMC is generalized to the case of n predicates as in Figure
6.21. The n predicates including R1, ..., Rn respectively (n ≥ 2) are either unary
or binary.

.

.

.

R2 <owl:unionOf rdf:parseType="Collection">    <Apply rule MC1 or rule MC2 on R1>    <Apply rule MC1 or rule MC2 on R2>     …    <Apply rule MC1 or rule MC2 on Rn></owl:unionOf>
R1
Rn

Figure 6.21: DMC-rule - Modeling DMCs in OWL
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6.4.2 Internal Uniqueness Constraints

Uniqueness constraints (UCs) are used to express that each instance of an
object type plays a set of roles at most once. A role sequence is a group of
roles in one predicate. The set of roles under the constraint consists of one or
many sequences of roles in different predicates. Therefore, UCs can be categorized
into two kinds: internal uniqueness constraints (UCs on only one predicate) and
external uniqueness constraints (UCs on many predicates). In this section, we
talk about internal uniqueness constraints. External uniqueness constraints will
be discussed in Section 6.4.5.

Internal uniqueness constraints (IUCs) are UCs on a single predicate. An internal
uniqueness constraint is indicated by a simple line (cf. symbol 12 in Figure 6.2)
over a role or a role sequence. The simple line spanning n roles of a predicate
(n > 0) means that the combination of n columns of data in the respective table
is unique. For example, an IUC on the role has in the fact type Employee has
Lastname means that each Employee has at most one Lastname. In other words,
each occurrence of an employee in the population is unique.

These constraints, therefore, make think of the maxCardinality restriction in OWL.
The cardinality constraint owl:maxCardinality is a built-in OWL property that links
a restriction class to a data value belonging to the value space of the XML Schema
datatype nonNegativeInteger. A restriction containing an owl:maxCardinality con-
straint describes a class of all individuals that have at most n semantically distinct
values (individuals or data values) for the property concerned, where n is the value
of the cardinality constraint. Since IUCs restrict the number of occurrences of an
object to only one, n should be equal to one. IUCs do not apply to unary fact
types because an instance cannot be repeated within the population of a unary
fact type.

There are three possible ways (or patterns) to define data uniqueness for a binary
fact type: many-to-one, one-to-one, and many-to-many.

6.4.2.1 Many-to-One

When an IUC is applied to a single role in a binary fact type, the role under the
IUC cannot include duplicate values, while the other role can. We already saw
this type of relationship with the fact type Employee has Lastname. The common
term for describing this kind of relationship between two objects is “many-to-
one”. The constrained role is said to have a many-to-one relationship with the
unconstrained role. For example, we can say “There is a many-to-one relationship
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between Employee and Lastname” because the same last name can occur with
many employees, but one employee can have only one last name. This pattern
has the direct translation into the maxCardinality described above. The detailed
translation and an example can be seen in Figure 6.22. In the example, two
employees (with the name “Hang Do” and “Mai Do”) have the same last name
(“Do”). <owl:Restriction>  <owl:onProperty rdf:resource="#R" />  <owl:maxCardinality     rdf:datatype="&xsd;nonNegativeInteger">1  </owl:maxCardinality></owl:Restriction><owl:Class rdf:about="#Employee">   <rdfs:subClassOf>    <owl:Restriction>      <owl:onProperty rdf:resource="#has"/>        <owl:maxCardinality         rdf:datatype="&xsd;nonNegativeInteger">1      </owl:maxCardinality>    </owl:Restriction>  </rdfs:subClassOf></owl:Class>

E.g.

REmployee(Name) has Lastname
Hang Do 

James Lee
Mai Do

Marie Claire 

Do
Lee
Do

Claire

Many employees have the same last name.
Each employee has at most one last name.

Figure 6.22: IUC1-rule - Modeling IUCs spaning one role in OWL

6.4.2.2 One-to-One

Applying an internal uniqueness constraint to each role in a binary fact type means
that neither role can include duplicate values. For example, in the fact type Man
maries/is married by Woman we want to say that a man maries only one woman
and one woman is married by only one man. By applying IUCs to each role in
the predicate maries/is married by, we can see that there are no repeated instances
in either role position in the sample population table of this fact type (cf. Figure
6.23).

6.4.2.3 Many-to-many

The many-to-many pattern is the weakest uniqueness constraint. In case IUCs
span the both roles of a binary predicate, the two object types are in a many-
to-many relationship. By default, a binary relationship is many-to-many without
condition. Revisit the fact type Department employs/works for Employees, we see
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Apply IUC1-rule to R1 and to R2

E.g.

R1/R2Man marries/is married by Woman<owl:Class rdf:about="#Man">   <rdfs:subClassOf>    <owl:Restriction>      <owl:onProperty rdf:resource="#married"/>        <owl:maxCardinality         rdf:datatype="&xsd;nonNegativeInteger">1      </owl:maxCardinality>    </owl:Restriction>  </rdfs:subClassOf></owl:Class>
Lee 

Smith
Adams 

Do
White
Claire

Each role must include a unique value<owl:Class rdf:about="#Woman">   <rdfs:subClassOf>    <owl:Restriction>      <owl:onProperty rdf:resource="#is_married_by"/>        <owl:maxCardinality         rdf:datatype="&xsd;nonNegativeInteger">1      </owl:maxCardinality>    </owl:Restriction>  </rdfs:subClassOf></owl:Class>
Figure 6.23: IUC2-rule - Modeling pattern one-to-one of IUCs in OWL

that the predicate employs/works for satisfies this constraint. Hence such “con-
straints” are simply ignored (cf. Figure 6.24).

Ignore this « constraint ».R1/ R2
E.g.Department Employeeemploys/works forIT    Hang DOMK   Marie CLAIREMK   Hang DO Instances can repeat within 

each role but each row must be 
unique.

Figure 6.24: IUC3-rule - Modeling the many-to-many pattern of IUCs in OWL

6.4.2.4 Preferred IUC

A preferred IUC is indicated by a double line. The notion of preferred uniqueness is
conceptual, corresponding to a business decision to prefer a particular identification
scheme. Therefore, we use rdfs:comment to translate this remark into an annotation
in OWL (cf. Figure 6.25).
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E.g.Employee Lastnamehas <owl:ObjectProperty rdf:about="#Employee">   <rdfs:subClassOf>      <owl:Restriction>         <owl:onProperty rdf:resource=”#has”/>         <owl:maxCardinality             rdf:datatype=”&xsd;nonNegativeInteger”>1         </owl:maxCardinality>         <rdfs:comment> This constraint is preferred         </rdfs:comment>      </owl:Restriction>   </rdfs:subClassOf></owl:ObjectProperty>

Figure 6.25: PIUC-rule - Modeling the preferred IUCs in OWL

6.4.3 Frequency Constraints

Internal uniqueness constraints are a special case of frequency constraints
(FCs). An FC of n (where n is an integer) on a role or a role sequence means
any given instantiation of the role (sequence) occurs exactly n times (in that rela-
tion). Note that when n = 1, this constraint is reduced to IUC many-to-one. An
FC of ≥ n or of ≤ n on a role (sequence) means that each instantiation of the role
(sequence) occurs at least or at most n times. An FC of n..m on a role (sequence)
means that each instantiation of the role (sequence) occurs at least n and at most
m times. By allowing that n = m, an FC of n may be defined as an FC of n..m.
By allowing that n = 0, an FC of ≤ m may be defined as an FC of n..m. By
allowing that m is a very large number (e.g. 99999), an FC of ≥ n may be defined
as an FC of n..m. So the FC of n, of ≤ n and of ≥ n are special cases of the FC
of n..m.

For example, to the fact type Department employs Employee, one would apply a
frequency constraint to the role played by Department to make sure the required
number of employees in each department. If each Department must always employ
exactly five employees, place a frequency constraint of 5 on the role played by
Department (cf. Figure 6.26(a)). If each Department must employ at least two
employees, the constraint is depicted as in Figure 6.26(b). If each Department
must employ at most twenty employees, the constraint is depicted as in Figure
6.26(c). If each Department must employ at least five but no more than twenty
employees, place a frequency constraint with a minimum of 5 and a maximum of
20 on the role played by Department (cf. Figure 6.26(d)).

Note that we translate role in ORM into property in OWL. Hence, the meaning of
FCs shown above can be expressed by cardinality constraints in OWL. OWL pro-



6.4 ROLE CONSTRAINTS 167Department(Id) Employee(Name)employs5
Department(Id) Employee(Name)employs5..20Department(Id) Employee(Name)employs >2 Department(Id) Employee(Name)employs <20

(a)

(b)

(c)

(d)

Figure 6.26: Example of using FCs in ORM

vides three constructors for restricting the cardinality of properties locally within
a class context. The owl:maxCardinality, owl:minCardinality, and owl:cardinality
describe at most, at least, and exactly the number of instances of a class for
the concerned property respectively. Therefore, we will use the pair of con-
structors owl:minCardinality and owl:maxCardinality to translate the FC of n..m.
owl:minCardinality, owl:maxCardinality, and owl:Cardinality are used to translate FCs
of ≥ n, FCs of ≤ n, and FCs of n respectively. The detailed translation is given
in Figure 6.27. Note that in Chapter 4, we have not presented the constructor
owl:cardinality because actually, this constructor is redundant. That is it can al-
ways be replaced by a pair of matching owl:minCardinality and owl:maxCardinality
constraints with the same value. However, for a convenient shorthand for users,
we apply this constructor here instead of the couple of owl:minCardinality and
owl:maxCardinality. n

Rn..m
R >n
R <n
R

<owl:Restriction>  <owl:onProperty rdf:resource="#R" />  <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">n  </owl:maxCardinality></owl:Restriction>
<owl:Restriction>  <owl:onProperty rdf:resource="#R" />  <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">n  </owl:minCardinality></owl:Restriction>
<owl:Restriction>  <owl:onProperty rdf:resource="#R" />  <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">n  </owl:minCardinality>  <owl:maxCardinality    rdf:datatype="&xsd;nonNegativeInteger">m</owl:maxCardinality></owl:Restriction>

<owl:Restriction>  <owl:onProperty rdf:resource="#R" />  <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">n  </owl:cardinality></owl:Restriction>- FC1-rule

- FC2-rule

- FC3-rule

- FC4-rule

Figure 6.27: Modeling FCs in OWL



168 CHAPTER 6. MODELING ORM SCHEMAS IN OWL-K

6.4.4 Simple Reference Schemes

Entities are “real world” objects that are identified by definite descriptions
(e.g. the Department with Id “MK”). Such descriptions are defined in terms of
ORM as reference schemes. In simple cases, a reference scheme indicates that an
entity type (e.g. Department) is uniquely identified by a value (e.g. “MK”). We
call this scheme simple reference scheme.

If an entity type has a simple and preferred reference scheme, this may be ab-
breviated by a reference mode in parenthesis situated next to the entity type (cf.
symbol 4 in Figure 6.2). A reference mode is the manner in which the value refers
to the entity. It is a convenient way to primarily identify a given instance of an
entity. As seen in the previous sections, the entity type Department and its simple
reference scheme are defined as Department(Id).

Essentially, simple reference schemes can be explained by adding an attributive
role, and by imposing an MC and two IUCs on both the two roles of the predi-
cate. However, the inverse of an attributive role cannot be represented in OWL
(cf. Chapter 4). Actually, a simple reference scheme sets up an IC on a class (rep-
resenting the entity type) by a single data type property (representing attributive
role). Hence, we call simple reference schemes IC patterns on a single role. Be-
sides, OWL-K supports ICs. Consequently, we use IC assertions in OWL-K to
represent this pattern as shown in Figure 6.28.

Department idby DeptName
C IdCRref

E.g. <owlk:ICAssertion rdf:ID = "IcDeptbyName">    <owlk:onClass rdf:resource = "#Department" />    <owlk:byProperty rdf:resource = "#idby"/></owlk:ICAssertion>
<owlk:ICAssertion rdf:ID = "IcC">    <owlk:onClass rdf:resource = "#C" />    <owlk:byProperty rdf:resource = "#Rref"/></owlk:ICAssertion>

Figure 6.28: RS-rule - Simple reference scheme translation into OWL-K

If a reference mode is used then the simple reference scheme is preferred. Note that
in this case, no explicit role name is given to link the entity type to values. Hence,
to translate a reference mode we use its equivalence diagram and name a distinct
role for the scheme. Similarly to the case of preferred IUC, we use rdfs:comment to
translate the preference for the scheme into an annotation in OWL. The detailed
translation rule and an example are given in Figure 6.29.
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Department idForDept Id
C IdCRref

E.g. <owlk:ICAssertion rdf:ID = "IcDept">    <owlk:onClass rdf:resource = "#Department" />    <owlk:byProperty rdf:resource = "#idForDept"/></owlk:ICAssertion>
i) Apply R1-rule to Rrefii) Apply RS-rule to IC pattern on Rref<owl:DatatypeProperty rdf:ID=”idForDept”>   <rdfs:domain rdf:resource="#Department"/>   <rdfs:range rdf:resource=”#Id”/></owl:DatatypeProperty>

C(IdC) iii) Apply <rdfs:comment> annotation to C
      <owl:Class rdf:about=”#Department”>         <rdfs:comment> IcDept is preferred         </rdfs:comment>      </owl:Class>

Department(Id)
Figure 6.29: RM-rule - Reference mode translation into OWL-K

6.4.5 External Uniqueness Constraints

In case UCs are applied to the roles of many predicates, these constraints are
called external uniqueness constraints (EUCs). An EUC is denoted by a circle
underline which connects to the predicates by dotted lines. Each end of the dotted
line connects to a relevant role in a predicate.

Building(ID) Campus(Name)BuildingNameis onhas
1   Sophia
2   Valrose
3   Valrose
4   Valrose

1   Sophia    Eulcide
2   Valrose   Alphonse
3   Valrose   Euclide
4   Valrose   Dieudonne

1   Eulcide
2   Alphonse
3   Euclide
4   Dieudonne

EUC

Figure 6.30: The EUC describes no building name duplicated on the same
campus

For example, a building name (e.g. Euclide) might occur on different campuses,
although it must be unique for each campus. While each building is uniquely
identified by its ID, there is still no way of ensuring that no building name is
duplicated on the same campus. Figure 6.30 shows how an EUC on roles in two
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predicates can achieve the desired result.

Essentially, EUCs are used to express unique identification and functional depen-
dency (FD) relationships.

6.4.5.1 EUCs for Unique Identifications

As seen in Figure 6.30, the EUC on the roles played by Campus and BuildingName
combined with IUCs and MCs means that an instance of Campus combined with
an instance of BuildingName is unique with respect to an instance of a Building.
In other words, a building can be uniquely identified by the campus it is on and
by its name. Therefore, we call this combination as an identification constraint
and translate it, the so-called IC pattern on multiple roles, into an IC assertion
in OWL-K. This combination is also given the name composite reference scheme.
Figure 6.31 gives the translation of IC patterns on the roles of two predicates into
OWL-K.

Building(ID) Campus(Name)BuildingNameis onhas
C R1R2 <owlk:ICAssertion rdf:ID = "IcC">     <owlk:onClass rdf:resource = "#C" />     <owlk:byProperty rdf:resource = "#R1"/>     <owlk:byProperty rdf:resource = "#R2"/></owlk:ICAssertion>

E.g. <owlk:ICAssertion rdf:ID = "IcBuilding">     <owlk:onClass rdf:resource = "#Building" />     <owlk:byProperty rdf:resource = "#is_on"/>     <owlk:byProperty rdf:resource = "#has"/></owlk:ICAssertion>
Figure 6.31: Modeling IC patterns on two roles in OWL-K

The transformation of IC pattern is generalized to the case of n binary predicates
as in Figure 6.32.

An IC pattern using an EUC is also used to describe a composite type (as men-
tioned in Section 6.2.2) when chosen as the primary reference scheme of the entity
type. In this case, the EUC is denoted by a circled double underline. For example,
to look for a room, you go to the building first and then find the room number
within that building. Room is, therefore, most naturally described as a composite
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C R1R2 <owlk:ICAssertion rdf:ID = "IcC">     <owlk:onClass rdf:resource = "#C" />     <owlk:byProperty rdf:resource = "#R1"/>     <owlk:byProperty rdf:resource = "#R2"/>       …     <owlk:byProperty rdf:resource = "#Rn"/></owlk:ICAssertion>Rn.
.
.

Figure 6.32: EUC1-rule Modeling IC patterns on n roles in OWL-K

object type that has multiple roles used to reference itself. Figure 6.33 shows how
to describe this composite type in ORM using EUC. You could use an identifier,
such as a room ID, to identify a room. However, that seems a bit awkward. More-
over, rooms, not room IDs, have other objects such as tables, computers, etc. in
them.

Room Building(id)RoomNumberis inhasE,101      E     101
A,206      A     206
E1,206    E1   206
A,208      A     208

Preferred EUC

E,101      101
A,206      206
E1,206    206
A,208      208

E,101      E
A,206      A
E1,206    E1
A,208      A

Figure 6.33: The EUC is used to describe composite entity types

A circled double underline denotes that the constraint provides the preferred iden-
tification scheme. Similarly to the IUC case, we use rdfs:comment to translate this
remark into an annotation in OWL-K (cf. Figure 6.34).
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i) Apply EUC1-rule on the IC patternii) Apply <rdfs:comment> annotation to class Cabout the preferred reference scheme.C R1R2Rn.
.
.

Figure 6.34: PEUC-rule - Modeling IC patterns using the preferred EUCs in
OWL-K

6.4.5.2 EUCs for Functional Dependencies

Except the case described above, the application of EUCs results in FDs. To
illustrate FDs represented in ORM, we revisit the example about department in
Chapter 2 (section 2.3.4): each department can be specified by an employee and
the date from where the department employs him or her. In other words, an
entity type Department is functionally dependent on the couple (Date,Employee)
through the roles employsFrom and employs respectively. Note that in OWL-K,
constructors, except IC assertions, are applied to one role only. In that way, it is
not capable of expressing FDs on many roles [23]. However, observe that an FD
of one object A on two objects B and C can be described as an FD of A to an
object A’, which is uniquely identified by the couple (B,C). Hence, we make use
of this idea to formalize this kind of EUC. An FD of an object A to an object
A’ is actually a one-to-many relationship between A and A’. Consequently, this
constraint is an IUC in the pattern many-to-one. A’, in its turn, is uniquely
identified by a pair (B,C). We can describe this by an IC pattern using an EUC
on two roles subjecting to B and C respectively. For example, the given EUC
on the inverse role of employsFrom and of employs can be replaced by creating an
entity EmpDate that specifies the entity type Department and is uniquely identified
by the couple (Date,Employee). A new role, so called specDept, is created to set
the functional dependency of Department on EmpDate. In Figure 6.35, the ORM
schemas on the right are equivalent to those on the left.

Since the one-to-many relationship may be viewed in the inverse direction as the
many-to-one pattern of IUC. We employ the latter to describe the former. As
a result, FDs can be translated into OWL-K using the translation of many-to-
one pattern of IUCs and of an IC pattern using an EUC. Figure 6.36 gives the
translation in detail.
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C R1R2
E.g.

Department(Id) employsFromemploys EmpDate employsFromemploysDepartment(Id)specDept

CfdC
R1R2Rfd

DateEmployee(Name) DateEmployee(Name)
IT      Hang DO
MK    Marie Claire
MK    Hang DO
IT      Mai DO

IT      1996
MK    2000
MK    2002
IT      2002

IT     Hang DO      1996
MK   Marie Claire  2000
MK   Hang DO      2002
IT     Mai DO         2002

ED1    1996
ED2    2000
ED3    2002
ED4    2002

ED1   Hang DO
ED2   Marie Claire
ED3   Hang DO
ED4   Mai DO

IT      ED1
MK    ED2
MK    ED3
IT      ED4

ED1   Hang DO      1996
ED2   Marie Claire  2000
ED3   Hang DO      2002
ED4   Mai DO         2002

Figure 6.35: ORM schema equivalence

C R1R2
E.g.

Department(Id) employsFromemploys
EmpDate employsFromemploysDepartment(Id)specDept

CfdC
R1R2Rfd

DateEmployee(Name)

DateEmployee(Name)

<owlk:ICAssertion rdf:ID = "IcEmpDate">    <owlk:onClass rdf:resource = "#EmpDate" />    <owlk:byProperty rdf:resource = "#employsFrom"/>    <owlk:byProperty rdf:resource = "#employs"/></owlk:ICAssertion>
<owl:Class rdf:ID="EmpDate">  <rdfs:subClassOf>    <owl:Restriction>      <owl:onProperty rdf:resource="#specDept"/>      <owl:maxCardinality         rdf:datatype="&xsd;nonNegativeInteger">1      </owl:maxCardinality>    </owl:Restriction>  </rdfs:subClassOf></owl:Class>

i)  Apply R2-rule to Rfdii)  Apply IUC1-rule to Rfdiii) Apply EUC1-rule to the IC parttern on Cfd
<owl:ObjectProperty rdf:ID=”specDept”>   <rdfs:domain rdf:resource="#EmpDate"/>   <rdfs:range rdf:resource=”#Department”/></owl:ObjectProperty>

Figure 6.36: Modeling EUCs on two roles for FDs in OWL-K
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The translation of EUCs for FDs is generalized to the case of n binary predicates
as in Figure 6.37.

C R1R2 CfdC
R1R2RfdRn .

.

.

.

.

.Rn
i)  Apply R2-rule to Rfdii)  Apply IUC1-rule to Rfdiii) Apply EUC1-rule to the IC partternon Cfd

Figure 6.37: EUC2-rule - Modeling EUCs for FDs in OWL-K

Note that except the combination of constraints that expresses an IC, other con-
straints are translated separately. It means that we apply the respective rule for
each given constraint. For example, in the department example in Chapter 2, we
see also the MCs on the roles employsFrom, employs and is employed by. These
MCs are translated “normally” due to MC2-rule.

6.4.6 Nested Object Types

The process of making an object out of a relationship is called objectification
or also known as nesting. The result of objectifying a binary predicate may be
viewed as an entity type that is called a nested object type and that has a com-
posite reference scheme whose reference projection bears an equality constraint
to the fact type being objectified. To identify a nested object type, a predicate
nesting constraint is used. This constraint is depicted in an ORM diagram by
a soft rectangle around the predicate (called nesting the predicate) in the fact
type concerned. A nested object type is given a name. There is nesting of unary
predicates and nesting of predicates with non-spanning uniqueness constraints.

Unlike a composite object type, which is identified by multiple roles in two or
more fact types, a nested object type is identified by the roles in a single fact
type. Actually, nested object types combine their role instances in similar ways to
composite object types. Hence, one can think of applying the translation rule for
composite object types to nested object types. However, a composite object type
plays the roles concerned while a nested object type does not play the roles that
identify it. Consequently, this way of translation is not appropriate.
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Hang DO
Emilie Smith
Marie Claire
Mai DO
Coco Lee

Emilie Smith
Coco Lee

Dateis atquitsQuitting
Emilie Smith  2002
Coco Lee       2002 Employee(Name) Dateis atquitsgot / is of Quitting

Emilie Smith
Coco Lee

Q1  2002
Q2  2002

Emilie Smith  Q1
Coco Lee       Q2

(a) (b)

Figure 6.38: An example illustrates the nesting of unary predicates

Nesting unary predicates. Figure 6.38(a) shows an example of nesting a unary
predicate, which objectifies the fact type Employee quits as Quitting, which is in
its turn used as an object type in the fact type Quitting is at Date. Figure 6.38(a)
is best understood as an abbreviation of Figure 6.38(b). We call the schema in
Figure 6.38(b) is the result of unraveling the schema in Figure 6.38(a). Quitting is
a normal entity type with linking fact types to Employee and Date. Quitting has a
reference scheme because the internal uniqueness constraints on two roles and the
mandatory constraint on the link fact type to Employee ensure an injection one-
to-one from Quitting to Employee. The equality constraint depicted by a circled
“=” indicates that the population of the Employee who quits must be identical to
the population of Employee in the fact type Employee got Quitting. Therefore, we
try to translate a nested object type in the unary predicate case by translating
its explained schema. As shown in Figure 6.38, we need to translate two new
roles generated by unraveling the nested object type, the reference scheme and
the equality constraint. We have already the rules for translation of roles and
of reference schemes. We will deal with the translation of equality constraints
in Section 6.4.7.2. Figure 6.39 summarizes our translation rule for nesting unary
predicates.

RCR RgetR/isOfR CR i) Apply R2-, IR-rule to getR, isOfRii) Apply rule to the equality constraint on getR and Riii) Apply RS-rule to the reference scheme on CRCC
Figure 6.39: NUP-rule - Modeling the nesting of a unary predicate in OWL-K

Nesting binary predicates with non-spanning uniqueness constraints. We can see
an example of this kind of nesting in Figure 6.40(a). The ORM schema in the
figure objectifies the fact type Person plays Sport as Playing, which is then used as
an object type in the fact type Playing is at SkillLevel.
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Person Sport SkillLevelis atplaysPlaying
Emilie Smith   Golf
Coco Lee       Tennis
Marie Claire   Tennis
Coco Lee       Golf

(Emilie Smith,Golf)      A
(Coco Lee,Tennis)       A
(Marie Claire,Tennis)   B
(Coco Lee,Golf)           C

Person Sport
SkillLevelis at

plays<< is by << is ofPlaying
Emilie Smith   Golf
Coco Lee       Tennis
Marie Claire   Tennis
Coco Lee       Golf

Emilie Smith   P1
Coco Lee       P2
Marie Claire   P3
Coco Lee       P4

Golf       P1
Tennis   P2
Tennis   P3
Golf       P4

P1    A
P2    A
P3    B
P4    C

1.1 1.22.1 2.2
(a) (b)

Figure 6.40: An example illustrates the nesting of unary predicates without
IUCs.

Actually, the schema is understood as an abbreviation of Figure 6.40(b). Play-
ing is a normal entity type with linking fact types to Person and Sport. Playing
has a composite reference scheme since the external and internal uniqueness, and
mandatory constraints on the link fact types ensure an injection one-to-one from
Playing to (Person, Sport) pairs. The annotation (1.1, 1.2) indicates a role pro-
jection formed by projecting respectively on the left and right roles of the fact
type Person plays Sport. The annotation (2.1, 2.2) indicates the reference projec-
tion for Playing that is formed by projecting respectively on the link roles played
by Person and Sport. Role sequence annotations visually disambiguate those rare
cases where the role sequences are otherwise ambiguous. Similarly to the nesting
of unary predicates, we translate the nesting of binary predicates by using the
translation rules for roles, composite object types, and for equality constraints.
The detailed translation rule is given in Figure 6.41.

R1/R2CC1 C2 C1 C2R1/R2
<<isByR1 <<isOfR2C i) Apply rule xx on isByR1, isOfR2ii) Apply rule equality on inverse of isByR1, isOfR2, and R1/R2iii) Apply rule IC xxx on C1.1 1.22.1 2.2

Figure 6.41: NBP-rule - nesting of binary predicates without IUCs.

For the case of nesting many-to-one (or one-to-many) or one-to-one binary asso-
ciations, the fact types are usually compound, rather than elementary. Therefore
they can be split without information loss into the two simpler fact types. Fig-
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ure 6.42 gives two examples corresponding to the case of many-to-one (cf. Figure
6.42(a)) and of one-to-one (cf. Figure 6.42(b)) to show that objectifying is not
necessary. However, when needed, these kinds of nesting can be also translated
into OWL-K using the NBP-rule associated with the relevant IUC rules for the
associations.

Person Cityoccurred onwas born inBirth Date Person Citywas born on Datewas born in
(a)

DateisOnMan Womanmaries/mariesCurrentMarriage
DatehasWifeOnMan

Womanmarries/marries hasHusbandOn1.11.2 2.1
2.2

Man Womanmaries/maries<<isOfMan <<isOfWomanCurrentMarriage DateisOn
(b)

understood as

Figure 6.42: Examples showing nested object types split into simpler fact
types.

6.4.7 Set-comparison Constraints

Subset, equality, and exclusion constraints are denoted by a circle containing
⊆, =, and × respectively, connected to the associated roles with dashed lines.



178 CHAPTER 6. MODELING ORM SCHEMAS IN OWL-K

6.4.7.1 Subset constraints

The subset constraint (SC) restricts the way the population of one role or role
sequence relates to the population of another role or role sequence. A subset
constraint shows that each instance in the population of one role or role sequence
must be included in another. For example, to track the start date and the end
date of project, we have a constraint that no project can have an end date unless
it has a start date (cf. Figure 6.43).

Project(ProjId) startFromendAt
P1 2002P2 1998
P2 2003 Date

Figure 6.43: Subset constraint describing projects having no end date without
a start date.

Figure 6.43 shows a subset constraint between two single roles in two separate fact
types, which says that any instances of Project in the lower fact type must also
occur in the upper fact type. The arrow should point from the subset role to the
superset role. The population of the subset role is a subset of the population of
the superset role. It means that you cannot record an end Date for a given Project
unless you also record a start Date.

The population of a role describes a class of all individuals for which there exists
at least one instance of the object type subjected to by the role. The constructor
owl:someValuesFrom describes a class of all individuals for which there exists at
least one value of the property concerned. The population is, therefore, can be
translated into a class in OWL using the value constraint owl:someValuesFrom. The
subset relationship between two populations is then translated into the subclass
relationship in OWL. The detailed translation for the subset constraint between
two single roles is shown in Figure 6.44. Note that here, we show the case for only
two binary fact types. Without loss of generality, we can consider that unary fact
types are binary ones where the object type subjected to by the concerned role is
the universe, i.e., corresponds to the class owl:Thing in OWL. Therefore, the rule
SC1 is also applied to unary fact types.

In case a SC is applied to two role sequences each of which contains two roles in the



6.4 ROLE CONSTRAINTS 179R1R2 <owl:Restriction>    <owl:onProperty rdf:resource="#R2"/>    <owl:someValuesFrom rdf:resource="#C2"/>    <rdfs:subClassOf>        <owl:Restriction>            <owl:onProperty rdf:resource="#R1"/>            <owl:someValuesFrom rdf:resource="#C1"/>         </owl:Restriction>    </rdfs:subClassOf></owl:Restriction>C1C2
Figure 6.44: SC1-rule - Modeling subset constraint between two roles in OWL.

binary predicate, we have a SC between two binary predicates. This constraint
restricts that the set of pairs of instances in an entire role sequence must be a
subset of the population of the other role sequence. For example, one may use
this constraint to express that a department can only fire the employees it has
recruited before. This constraint, in other words, describes that one population
of a constrained role sequence is subsumed by the other. Therefore, we translate
this SC into OWL as a relationship rdfs:subPropertyOf. Figure 6.45 shows the
translation rule and the mapping description for the example described above.R1R2 <owl:ObjectProperty rdf:about="#R2">   <rdfs:subPropertyOf rdf:resource="#R1"/></owl:ObjectProperty>

recruitsfires
E.g. Employee(Name)Department(Id)

IT Hang DOIT Mai LEMK Marie CLAIRE
IT Mai LE <owl:ObjectProperty rdf:about="#fires">   <rdfs:subPropertyOf rdf:resource="#recruits"/></owl:ObjectProperty>

<owl:DatatypeProperty rdf:about="#R2">   <rdfs:subPropertyOf rdf:resource="#R1"/></owl:DatatypeProperty>or

Figure 6.45: SC2-rule - Modeling subset constraint between two binary pred-
icates in OWL.

6.4.7.2 Equality constraints

Like the subset constraint, the equality constraint restricts the way the popula-
tion of one role or role sequence relates to the population of another role or role
sequence. An equality constraint sets up a relationship in which the population
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of the constrained roles or role sequences must be the same. Actually, an equality
constraint can be represented by two subset constraints on the same set of con-
strained roles or role sequences where the subset relationship is set on both two
directions (cf. Figure 6.46). Hence, we can apply the rule for subset constraints
to the case of equality constraints. Figure 6.46 shows how to apply these rules.R1R2 C1C2 R1R2 C1C2 R1R2 R1R2i) Apply SC1-rule to R1 and R2 such that the population ofR2 is a subset of that of R1ii) Apply SC1-rule to R1 and R2 such that the populationof R1 is a subset of that of R2 i) Apply SC2-rule to R1 sequence and R2 sequencesuch that R2 sequence is a subset of R1 sequence.ii) Apply SC2-rule to R1 sequence and R2 sequencesuch that R1 sequence is a subset of R2 sequence.

(a) (b)

Figure 6.46: Modeling equality constraints using the rules for subset con-
straints.

Besides, OWL provides the owl:equivalentClass property to describe that the two
classes involved have the same set of individuals. Hence, in case an equality con-
straint is applied to two single roles of two fact types, we replace the two subset
relationships (described in Figure 6.46(a)) by the equivalent relationship between
the populations of the concerned roles by using the owl:equivalentClass property.
For example, to define that a menu is meatetarian if it has meat, one can use the
equality constraint between two roles. The rule of translation and its application
to this example are shown in Figure 6.47.

Regarding the translation for nested object types (cf. Section 6.4.6), this rule is
applied to the case of nesting unary predicates. NUP-rule can thus be rewritten
as follows:

i) Apply R2-, IR-rule to getR, isOfR
ii) Apply EQ1-rule to (getR,R)
iii) Apply RS-rule to the reference scheme on CR

To describe that the set of pairs of instances in an entire role sequence is the same
as the population of the other role sequence, we can use the owl:equivalentProperty
constructor of OWL, which states that two properties have the same set of in-
stances. Therefore, in case an equality constraint is applied to two binary predi-
cates, we replace the two subset relationships (described in Figure 6.46(b)) by the
equivalent relationship between the populations of the concerned roles by using
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Menu has MeatisMeatetarian
R1R2 C1C2 <owl:Restriction>    <owl:onProperty rdf:resource="#R2"/>    <owl:someValuesFrom rdf:resource="#C2"/><owl:equivalentClass>        <owl:Restriction>            <owl:onProperty rdf:resource="#R1"/>            <owl:someValuesFrom rdf:resource="#C1"/>         </owl:Restriction> </owl:equivalentClass></owl:Restriction>

E.g. <owl:Restriction>    <owl:onProperty rdf:resource="#isMeatetarian"/> <owl:allValuesFrom rdf:resource="&owl;Thing"/>    <owl:equivalentClass>        <owl:Restriction>            <owl:onProperty rdf:resource="#has"/>            <owl:someValuesFrom rdf:resource="#Meat"/>         </owl:Restriction>    </owl:equivalentClass></owl:Restriction>menu1 beefmenu3 chicken
menu1menu3

Figure 6.47: EQ1-rule - Modeling equality constraints between two roles in
OWL

the owl:equivalentClass property. For example, one may use an equality constraint
between two predicates to express that if an employee has a business trip then it
will be paid. The rule of translation and its application to this example are shown
in Figure 6.48.

Employee(Name) has BusinessTrip(Code)isPaidfor
R1R2 <owl:ObjectProperty rdf:about="#R2"><owl:equivalentProperty rdf:resource="#R1"/></owl:ObjectProperty>

Hang DO CB298Marie CLAIRE US111
Hang DO CB298Marie CLAIRE US111 <owl:ObjectProperty rdf:about="#isPaidfor"><owl:equivalentProperty rdf:resource="#has"/></owl:ObjectProperty>

E.g.

<owl:DatatypeProperty rdf:about="#R2"><owl:equivalentProperty rdf:resource="#R1"/></owl:DatatypeProperty>or

Figure 6.48: EQ2-rule - Modeling equality constraints between two predicates
in OWL
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6.4.7.3 Exclusion constraints

An exclusion constraint (EC) is like a DMC except that it sets up a mutually
exclusive relationship that is also optional. In other words, each instance in the
population of an object type can play only one of the constrained roles but is not
required to play any role. For example, if you take a 13 euro menu, you can choose
either a dessert or an entre, but not both of them. This expression can be modeled
in ORM using an EC as in Figure 6.49(a).

Menu13E hasEntréehasDessert EntréeDessert FullMenu hasEntréehasDessert EntréeDessert
(a)

menu1  melon
menu2  salad

menu3  ice cream

menu1
menu2
menu3
menu4

fmenu1  melon
fmenu2  salad

fmenu1  ice cream
fmenu2  mangue

fmenu1
fmenu2

(b)

Figure 6.49: The population of Menu13E is not the population of FullMenuR1R2 <owl:Class rdf:about="#Menu13E">        <rdfs:subClassOf>            <owl:Class>                <owl:complementOf>                    <owl:Class>                        <owl:intersectionOf rdf:parseType="Collection">                            <owl:Restriction>                                <owl:onProperty rdf:resource="#hasDessert"/>                                <owl:someValuesFrom rdf:resource="#Dessert"/>                            </owl:Restriction>                            <owl:Restriction>                                <owl:onProperty rdf:resource="#hasEntrée"/>                                <owl:someValuesFrom rdf:resource="#Entrée"/>                            </owl:Restriction>                        </owl:intersectionOf>                    </owl:Class>                </owl:complementOf>            </owl:Class>        </rdfs:subClassOf>    </owl:Class>

<owl:complementOf>     <owl:Class>         <owl:intersectionOf rdf:parseType="Collection">              <Apply MC1-rule or MC2-rule to R1>              <Apply MC1-rule or MC2-rule to R2>         </owl:intersectionOf>     </owl:Class></owl:complementOf>
E.g.

Menu13E hasEntréehasDessert EntréeDessert
Figure 6.50: Modeling ECs on two predicates in OWL



6.4 ROLE CONSTRAINTS 183

Actually, the population resulting from an EC on the concerned roles is the com-
plement of the population resulting from MCs on all those roles. For example,
the expression above can also be restated that the 13 euro menus are not the
menus consisting of both entre and dessert. This negation can be expressed in
OWL by the owl:complementOf property. The object of owl:complementOf is the
entity type playing the concerned roles but under the simple MCs. We show the
detailed translation for ECs on two predicates in Figure 6.50. For the translation
of the above expression, seeing that the menus, so-called full menus, consisting
both entre and dessert can be modeled in ORM using MCs (cf. Figure 6.49(b)),
we employ full menus as the object of owl:complementOf. The translation is thus
given in Figure 6.50.

The translation of ECs is generalized to the case of n predicates as in Figure 6.51.R1R2 <owl:complementOf>     <owl:Class>         <owl:intersectionOf rdf:parseType="Collection">              <Apply MC1-rule or MC2-rule to R1>              <Apply MC1-rule or MC2-rule to R2>…              <Apply MC1-rule or MC2-rule tn Rn>         </owl:intersectionOf>     </owl:Class></owl:complementOf>.
.
.Rn

Figure 6.51: EC-rule - Modeling ECs on n roles of n predicates in OWL

In an ORM diagram, we may also see an EC between two role sequences. This
type of EC enforces a restriction that the instances in an entire role sequence must
be different from the instances in the other role sequence.

Man WomanisFriendisLover Need negation constructor for OWL properties!Fred LucyPat Marie
Fred MariePat Lucy

Figure 6.52: Exclusion constraints for sequences of roles

For example, Figure 6.52 describes that a man is either a friend or a lover of a
woman and vice versa. Note that a man or a woman can have both the relationship
“is friend” and “is lover”. In this case, the negation of subsumption of one pop-
ulation of a role sequence to the other must be expressed. In OWL terminology,
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we can say that one property must be not subsumed by an other. Unfortunately,
so far OWL-K and its underlying DL do not support this kind of expression.

6.4.7.4 General Set-comparison Constraints

In ORM, there are also set comparison constraints which applies to many sequences
of one or more roles. A dotted line connects the constraint to roles in the relevant
argument for the constraint (cf. Figure 6.53). We call these constraints the general
set comparison constraints. 1.1 1.22.1 2.2Need constructors to create new roles from existing ones.

1.1 1.22.1 2.2 1.1 1.22.1 2.2
Figure 6.53: General equality constraints in ORM

One example of set-comparison constraints on many sequences is the equality
constraint used for explaining nested object types (cf. Figure 6.40). Revisit the
example of the nested object type Playing in Section 6.4.6, the equality constraint
indicates that the (Person, Sport) pairs in the population of the Person plays Sport
fact type must be identical to the population of the (Person, Sport) pairs projected
from the Person and Sport roles in the join path Playing is by Person and Playing is
of Sport.

Actually, an equality constraint can be seen as setting the equality of two role
sequences that are generated from the populations of the existing roles. However,
as presented in Chapter 4, the current standard OWL DL and OWL-K do not
support new property creation from existing ones. Hence, the translation of this
kind of constraint into the current version of OWL-K is not possible.

6.4.8 Ring constraints

A ring constraint applies to a pair of roles played by the same object type in a
fact type. Ring constraints are depicted as icons next to the predicates (cf. Figure
6.2). Ring constraints include reflexive and irreflexive (cf. Figure 6.2, symbol 20
top and bottom respectively), symmetric and asymmetric (cf. Figure 6.2, symbol
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21 top and bottom respectively), cyclic and acyclic (cf. Figure 6.2, symbol 22 top
and bottom respectively), and transitive and intransitive (cf. Figure 6.2, symbol
23 top and bottom respectively). A reflexive constraint says that an object can
play the both two roles of the predicate at the same time while the irreflexive
one does not allow. For example, “Jake cannot be the father of Jake” asserts
an irreflexive constraint. A symmetric constraint says that if you have a data
combination of (A, B), then you have (B, A) while asymmetric constraint does
not allow this. For example, if Jake is the father of Joe then Joe cannot be the
father of Jake. An acyclic constraint says that there are no cycles in a relation.
For example, if you have a data combination of (A, B) and (B, C), you cannot have
a data combination of (C, A). Thus, if Jake is a father of Joe and Joe is a father
of Tom, then Tom cannot be a father of Jake. A cyclic constraint allows cycles
in a relation. A transitive constraint says that if you have a data combination of
(A, B) and (B, C), then there exists the data combination of (A, C). Intransitive
constraint does not allow this. For example, if Smith is the immediate supervisor
of Johnson and Johnson is the immediate supervisor of Davis, then Smith cannot
be the immediate supervisor of Davis.

Among these types of ring constraint, only symmetric and transitive con-
straints can be translated directly into OWL thanks to the built-in OWL
class owl:SymmetricProperty and owl:TransitiveProperty. A role under a symmet-
ric or a transitive constraint will be translated into an instance of the class
owl:SymmetricProperty or of the class owl:TransitiveProperty respectively. The
translation rules and examples are shown in Figure 6.54.<owl:SymmetricProperty rdf:about="#R">  <rdfs:domain rdf:resource="#C"/>  <rdfs:range  rdf:resource="#C"/></owl:SymmetricProperty>SC-rule RC

TR-rule RC <owl:TransitiveProperty rdf:about="#R">  <rdfs:domain rdf:resource="#C"/>  <rdfs:range  rdf:resource="#C"/></owl:TransitiveProperty>
Figure 6.54: Modeling ring constraints in OWL

Other ring constraints require more role constructors. For example, to translate
the negation of transitive (i.e. intransitive) or of symmetric (i.e. asymmetric)
constraints, we need a way to describe the inequality of the populations of role.
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6.5 Mapping Algorithm

All the translations analyzed in the previous sections can be summarized in
tables 6.2 and 6.3, where DL syntax guarantees the meaning of ORM diagrams,
OWL-K abstract syntax relates the semantics to the RDF/XML exchange syntax
presented above, and the symbol “-” means that the relevant equality constraint
cannot be expressed.

The basic process is to go through the schema, just as an automated system would
do, looking for the following descriptions in the schema:

1. Object types (entities and values),

2. Simple reference schemes,

3. Predicates and roles,

4. Constraints,

(a) Identification constraints on one role,

(b) Identification constraints on many roles,

(c) Other constraints.

The detailed algorithm is described as follows.

6.5.1 Mapping object types and reference modes

We translate first all the object types in an ORM schema. In ORM, reference
modes are described inside the rectangle of the respective entity type. Hence,
without influencing other translations we translate reference modes in this step.
Moreover, we see that value constraints identify also object types. Consequently,
in mapping object types we consider also the value constraints on them.

Given an ORM schema SORM , mapping object types and reference modes de-
fines a procedure MappingObject(SORM , SOWL−K) that maps all object types in
SORM , along with their reference modes (if exist) and the value constraints (if
exist), to elements of an OWL-K ontology SOWL−K following the relevant rules
described in the previous sections (cf. Table 6.2 and Table 6.3). The procedure
MappingObject(SORM , SOWL−K) is described in Table 6.4.
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Table 6.2: Mapping rules in DL and OWL-K abstract syntax

Rule ORM DL OWL-K abstract syntax
1. VL- A A Datatype URIref A

Range A
2. EN- C C Class(C partial)

C!
3. VC1- {o1, ..., on} o1 t ... t on oneOf(o1...on)
4. VC2- {v1, ..., vn} {v1, ..., vn} oneOf(v1...vn)
5. R0- R in unary predicate ≥ 1R v C ObjectProperty(R

played by C > v ∀R.> domain(C) range(owl:Thing))
6. R1- R played by C ≥ 1R v C DatatypeProperty(R

subjecting to value
type A

> v ∀R.A domain(C) range(A))

7. R2- R played by C1 ≥ 1R v C1 ObjectProperty(R
subjecting to entity
type C2

> v ∀ R.C2 domain(C1) range(C2))

8. IR- R2 is inverse of R1 R2 ≡ R−1 ObjectProperty(R2

inverseOf(R1))
9. ST- C1 is subtype of C2 C1 v C2 SubClassOf(C1 C2)

10. ME- C1, ..., Cn mutually Ci v ¬ Cj DisjointClasses(C1... Cn)
exclusive (1 ≤ i < j ≤ n)

11. CE- C1 ..., Cn exhaust C C ≡ C1 u...u Cn Classe(C complete C1... Cn)
12. MC1- MC on R played by C C v ∃ R.> Class(C partial restriction

in unary predicate (R someValuesFrom(>)))
13. MC2- MC on R played by C1 C1 v ∃ R.C2 Class(C1 partial restriction

subjecting to C2 (R someValuesFrom(C2)))
14. DMC- DMC on R1, ..., Rn ∃ R1.C1 t ... unionOf(restriction(R1

subjecting to C1, ...,
Cn respectively

t∃ Rn.Cn someValuesFrom(C1))...
restriction(Rn

someValuesFrom(Cn)))
15. IUC1- IUC on R ≤ 1 R restriction(R maxCardinality(1))
16. IUC2- IUC on R1/R2 ≤ 1 R1 restriction(R1 maxCardinality(1))

≤ 1 R2 restriction(R2 maxCardinality(1))
17. IUC3- IUC on (R1,R2)
18. PIUC- preferred IUC on R ≤ 1 R restriction(R maxCardinality(1)

annotation(rdfs:comment ”...”))
19. FC1- n to R ≥ n R, ≤ n R restriction(R cardinality(n))
20. FC2- ≥ n to R ≥ n R restriction(R minCardinality(n))
21. FC3- ≤ n to R ≤ n R restriction(R maxCardinality(n))
22. FC4- n..m to R ≥ n R, ≤ m R restriction(R minCardinality(n))

restriction(R maxCardinality(m))
23. RS- IC pattern on role R

for C
R Idfor C ICAssertion(ICAssertionID C R)

24. RM- C(Id) ≥ 1 Rid v C DatatypeProperty(Rid

> v ∀ Rid.Id domain(C) range(Id))
Rid Idfor C ICAssertion(ICAssertionID C Rid)

annotation(rdfs:comment ”...”))
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Table 6.3: Mapping rules in DL and OWL-K abstract syntax (cont.)

Rule ORM DL OWL-K abstract syntax
25. EUC1- IC pattern on R1,..., Rn ICAssertion(IdC C R1... Rn)

(R1,..., Rn) for C Idfor C
26. PEUC- preferred EUC, R1,..., Rn ICAssertion(IdC C R1... Rn

IC pattern on
(R1,..., Rn) for C

Idfor C annotation(rdfs:comment ”...”))

27. EUC2- EUC as FD for C ≥ 1 Rfd v Cfd ObjectProperty(Rfd

on R1, R2, ..., Rn > v ∀ Rfd.C domain(Cfd) range(C))
Cfd v≤ 1 Rfd SubClassOf(Cfd

restriction(R maxCardinality(1)))
R1,..., Rn Idfor
Cfd

ICAssertion(IdC Cfd R1...Rn)

28. NUP- R objectified R2-, IR-rule R2-, IR-rule to getR
as CR to getR

R2-, IR-rule R2-, IR-rule to isOfR
to isOfR
EQ1-rule EQ1-rule to (R,getR)
to (R,getR)
RS-rule to CR RS-rule to CR

29. NBP- R1/R2 objectified R2-, IR-rule R2-, IR-rule to getR
as CR to getR

R2-, IR-rule R2-, IR-rule to isOfR
to isOfR
- -
EUC1-rule to CR EUC1-rule to CR

30. SC1- subset from R2 ∃ R2.C2 SubClassOf(restriction(R2

subjecting to C2 v someValuesFrom(C2))
to R1 subjecting ∃ R1.C1 restriction(R1

to C1 someValuesFrom(C1)))
31. SC2- subset from R2/.. R2 v R1 SubPropertyOf(R2 R1)

to R1/..
32. EQ1- equality between ∃ R2.C2 ≡ ∃

R1.C1

EquivalentClasses(

R2 subjecting to
C2 and

restriction(R2 someValuesFrom(C2))

R1 subjecting to
C1

restriction(R1 someValuesFrom(C1)))

33. EQ2- equality between R2 ≡ R1 EquivalentProperties(R2 R1)
R2/.. and R1/..

34. EC- Exclusion on ¬(∃ R1.C1 u ... complementOf(restriction(R1

R1, ..., Rn u∃ Rn.Cn) someValuesFrom(C1)) ...
subjecting to C1,
..., Cn respectively

restriction(Rn

someValuesFrom(Cn)))
35. SC- symmetric on R R ≡ R− ObjectProperty(R Symmetric)
36. TR- transitive on R Trans(R) ObjectProperty(R Transitive)
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Table 6.4: Mapping object types and reference modes

Procedure MappingObject(SORM , SOWL−K)
For each object type in SORM

{if object type is entity then
{if value constraints exists then

Mapping object type by the VC1-rule
else Mapping object type by the EN-rule;
if Reference mode exists then
Mapping simple reference scheme by the RS-rule

}
else if object type is value then
if enumerated value constraints exists then

Mapping object type by the VC2-rule
else Mapping object type by the VL-rule;

}
End Procedure

6.5.2 Mapping Predicates and Roles

A role always stands in a predicate. Mapping a role implies, therefore, map-
ping its predicate, which, in its turn, means mapping all the roles in the predicate
and the inverse relation between those roles. Note that a role in a predicate may
not be named because in designing an ORM schema, it may not be used. There-
fore, the role that does not have a name will not be mapped in this step.

Given an ORM schema SORM , mapping predicates and roles defines a proce-
dure MappingRole(SORM , SOWL−K) that maps all named roles in SORM to el-
ements of an OWL-K ontology SOWL−K following the relevant rules described
in the previous sections (cf. Table 6.2 and Table 6.3). The procedure
MappingRole(SORM , SOWL−K) is described in Table 6.5.

6.5.3 Mapping Constraints

Some constraints can set up IC patterns. Therefore, in order not to make
redundant translation we need to translate these constraints first. Each constraint
in an IC pattern will be labeled “translated” after the mapping. Consequently,
the mapping constraint will later look for constraints without label “translated” to
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Table 6.5: Mapping predicates and roles

Procedure MappingRole(SORM , SOWL−K)
For each predicate in SORM

For each role in the predicate
if the role is named then
{if the predicate is unary then

Mapping the role by the R0-rule;
if the predicate is binary then
if the object type subjected by the role is value then

Mapping the role by the R1-rule
else
{Mapping the role by the R2-rule;
if the other role of the predicate is named then
Mapping the role as inverse of the other by the IR-rule;

}
}

End Procedure

translate. However, we see that an IC pattern on multiple roles may contain the
constraints in some IC patterns on single role. Hence, an IC pattern can only be
translated if not all of its constraints are labeled “translated”. Furthermore, there
is also a case that all the constraints in an IC pattern on a single role participate
in some IC patterns on multiple roles. Therefore, to avoid missing IC patterns
on single role (in case all there constraints are already marked “translated”), we
translate IC patterns on single role before IC patterns on multiple roles. By this
way, we do not have to check the status “translated” of constraint while mapping
IC patterns (both on single and multiple roles). Since IC patterns on multiple
roles can contain preferred EUCs or not, the algorithm must check both the cases
to apply the relevant rule. Other constraints in an ORM schema, which are not
marked “translated” can be translated later in any order. Note that the relation
subtype-supertype is also a constraint. Hence, we also translate it in this step.

Given an ORM schema SORM , mapping constraints defines a procedure
MappingConstraint(SORM , SOWL−K) that maps all constraints in SORM to el-
ements of an OWL-K ontology SOWL−K following the relevant rules described
in the previous sections (cf. Table 6.2 and Table 6.3). The procedure
MappingConstraint(SORM , SOWL−K) is described in Table 6.6.
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Table 6.6: Mapping constraints

Procedure MappingConstraint(SORM , SOWL−K);
For each set of constraints generating IC pattern on a single role in SORM

{Mapping the set of constraints using RS-rule;
Label the set of constraints = “translated”;
}

For each set of constraints generating IC pattern on multiple roles in SORM

{If EUC is preferred then
Mapping the set of constraints using PEUC-rule

else Mapping the set of constraints using EUC1-rule;
Label the set of constraints = “translated”;
}

For each constraint not translated in SORM

{Mapping the constraint using the relevant rule in Table 6.2 or 6.3;
Label the constraint = “translated”;
}

End Procedure

6.5.4 Mapping Procedure

Given an ORM schema SORM , mapping an ORM schema to an OWL-K on-
tology defines a procedure ORM2OWLK(SORM , SOWL−K) that maps all com-
ponents in SORM to elements in an OWL-K ontology SOWL−K . The procedure
ORM2OWLK(SORM , SOWL−K) is described in Table 6.7.

Table 6.7: Mapping an ORM schema to an OWL-K ontology

Procedure ORM2OWLK(SORM , SOWL−K)
MappingObject(SORM , SOWL);
MappingRole(SORM , SOWL);
MappingConstraint(SORM , SOWL);

End Procedure

Algorithm Correctness. Following the mapping steps, we translate the components
of an ORM schema consecutively. Thus, it is obvious that the resulting OWL-K
ontology contains the descriptions identical to the ones that are translated sepa-
rately from ORM diagram components as introduced in the previous sections.
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Algorithm Complexity. The algorithm reads an ORM schema in a polynomial way.
With the loop For, it is easy to see that the mapping takes a polynomial time
w.r.t the number of object types, roles, and the constraints in the input schema.
With regard to space complexity, this algorithm requires a memory to store a finite
number of object types, roles associated with its predicates, and of constraints on
them. Consequently, the mapping takes a polynomial space w.r.t the number of
object types, roles, and the constraints in the input schema.

6.6 Conclusion

In this chapter, we have proposed a new formalization of ORM schemas in a
web ontology language. The RDF/XML syntax of ORM schemas helps integrating
relational sources modeled in ORM into the semantic web environment. Several
formalizations of ORM schemas have also been proposed in the literature [123].
They have been proved very useful with respect to establishing a common under-
standing of the formal meaning of ORM schemas. However, to the best of our
knowledge, none of them has the explicit goal of building a framework to integrate
information into the Semantic Web environment.

Unlike the previous works that transform database schemas in a particular anno-
tation into those in RDF/XML without understanding the meaning of database
schemas (cf. Chapter 3), our work has showed how the meaning of ORM schemas
can be captured in the Semantic Web. Particularly, the semantics of ORM dia-
grams are guaranteed preserved by their OWL-K abstract syntax associated with
DL syntax.

Importantly, the mechanism presented above has overcome the shortcomings of
the previous works in representing identification constraints (cf. Chapter 3). Our
translation can be performed totally automatically and correctly (in the sense of
semantic translation) without human interference. Moreover, the mapping algo-
rithm is rather simple in the sense that it is performed in polynomial space w.r.t
the input diagram and terminates in polynomial time. Furthermore, our mecha-
nism is capable of capturing functional dependencies, which is a critical constraint
as well.

In this chapter, we have also showed that most of constraints in ORM schemas,
described through the main symbols for ORM diagramming, can be semantically
translated into OWL-K. We have also pointed out that some constraints, i.e.,
general set-comparison constraints and nested object types, which is a result of
general equality constraint application, and ring constraints, cannot be expressed
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in OWL-K. The reason is that all of these constraints require, in one way or
another, role constructors that OWL-K and its underlying DL do not support.
Consequently, this fundamental web ontology language for data integration needs
to be extended to fully capture the expressivity of ORM. We will talk about this
extension in our topics for future research (cf. Chapter 8).

The next chapter will introduce a process integrating relational data sources into
the web semantic environment through constructing a mapping tool and a demon-
stration.



CHAPTER 7

Implementation
Exploit Information from RDB in

Semantic Web

In this chapter, we will present how to use the work introduced in the previous
chapters to exploit information from relational databases in the Semantic Web.
To illustrate the whole process, we give an example of modeling information in
ORM (Section 7.1). Section 7.2 will show how the resulting ORM schema can be
implemented into a physical relational database. Also, an ORM schema can be
retrieved from a physical databases. Section 7.3 present a way to handle ORM
diagrams. Consequently, the ORM diagram example will be applied and the result
will be then used to generate a Web ontology (Section 7.4). This is achieved
by implementing OWL-K language and developing the Orm2OwlK tool. The
last section will summarize the work that we have done from the implementation
perspective.

7.1 Illustration Example

As shown in Chapter 6, ORM diagrams can describe many complicated and
high expressive scenarios. In this chapter, we do not expect to cover all the mean-
ings that ORM can express in illustration. Seeing that identification constraints
are the most basic and important factor in data modeling, we give an illustration
example focusing on mandatory and uniqueness constraints. All the processes pre-
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sented later in this chapter will be illustrated by the example. Other cases can be
applied similarly. The illustration example is given as follows.

Example 7.1.1. Suppose that one would like to describe the information of the
students who attended an International meeting of the best students in the world.
Each student had a unique name. Each country was coded by country Id and
had a country name. Each subject was coded by subject id and had a subject name.
Each country had only one student per subject who was elected to represent his/her
country in this discipline. Because several students could have the same name, a
student was preferred to be identified uniquely by the country he/she presented and
the subject at which he/she was the best. For social events, each student could
attend many groups, which were coded by group id. Each group had only one topic
so that the groups a student attended must have different topics.

The information in example 7.1.1 is modeled in an ORM diagram (in ORM2
graphical notation [69]) as shown in Figure 7.1.

Student Country(id)Subject(id)Group!(id) Topic representsbestAtcontains/attendshasTopic
Name<<has isKnownasmeans CountryNameSubjectName

Figure 7.1: ORM schema example

7.2 Relational Mapping

For implementation, a conceptual schema is mapped to a logical schema,
where the information is grouped into structures supported by the logical data
model. The conceptual fact types may be partitioned into sets, with each set
mapped to a different table in a relational database schema. Additional non-
logical details (e.g. indexes, clustering, column order, final data types, procedures,
etc.) may then be specified to complete the internal schema for implementation
on the target DBMS.

In particular, after the ORM conceptual model has been specified, mapping takes
patterns of facts, objects, roles, and constraints and creates a relational database
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schema from these patterns. An algorithm is used to group the fact types into
normalized tables. If the conceptual fact types are elementary (as they should
be), then the mapping is guaranteed to be free of redundancy, since each fact
type is grouped into only one table, and fact types which are mapped to the same
table all have uniqueness constraints based on the same attribute(s). A simple
key may be thought of as a uniqueness constraint spanning exactly one role. A
compound key is a uniqueness constraint spanning more than one role. A compidot
(compositely identified object type) is either a nested object type, or an object
type whose primary reference scheme is based on an external uniqueness constraint
(e.g. the entity type Room mentioned in the previous chapter). The basic stages
in the mapping algorithm are as follows. For more information of this subject,
refer to [67].

1. Initially treat each compidot as an atomic “black box” by mentally eras-
ing any predicates used in its identification, and absorb subtypes into their
supertype.

2. Map each fact type with a composite key into a separate table, basing the
primary key on this key.

3. Group fact types with simple keys attached to a common object type into
the same table, basing the primary key on the identifier of this object type.

4. Unravel each mapped compidot into its component attributes.

Conceptual object types are semantic domains. Because current relational systems
do not support this feature, domain names are usually omitted. Syntactic domains
(data types) may be specified next to the column names if desired.

Roles may be mapped to attribute (column) names. If one role is optional and
the other mandatory then the fact type is grouped with the object type on the
mandatory side. For example, the Head of Department fact type is grouped into
the Department table. A mandatory role is captured by making its corresponding
attribute mandatory in its table (not null is assumed by default), by marking as op-
tional all optional roles for the same object type which are mapped to the same ta-
ble, and by running an equality/subset constraint from those mandatory/optional
roles which are mapped to attribute names in another table.

Set-comparison constraints are mapped to corresponding constraints on the at-
tributes to which the relevant roles are mapped. Subtype constraints are mapped
to qualifications on optional columns or subset constraints (e.g. foreign key con-
straints).
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Many constraints need to be coded as procedures. For example, if the relation
examines is irreflexive, in basic SQL this constraint may be enforced by checking
for a null return from:

select * from examines where Examiner = Candidate.

Other refinements to the algorithm have been developed (e.g. mapping of inde-
pendent object types, certain derived fact type cases, and partially null keys).
Conceptual schemas may even be optimized before the relational mapping takes
place. The tables produced are in 5th normal form (because the conceptual fact
types are elementary).

Both the mapping from the conceptual to the abbreviated relational schema, and
the subsequent mapping to the DBMS code can be fully automated1. Many ORM
conceptual modeling tools, such as NORMA (Neumont ORM Architect) [2], Mi-
crosoft Visio for Enterprise Architects (VEA) [40], VisioModeler [103], make map-
ping easy by automating the entire process. For example, Figure 7.2 shows the
relational database schema mapped from the ORM conceptual schema under dis-
cussion using the Visio tool.

Country

PK Country id

U1 IsKnownas CountryName

Subject

PK Subject id

U1 Means SubjectName

Group

PK Group id

HasTopic Topic

Group Student

PK,FK1 Group id
PK,FK2 Country id
PK,FK2 Subject id

Student

PK,FK1 Country id
PK,FK2 Subject id

Name

Figure 7.2: The relational DB schema mapped from Figure 7.1

There are five table schemes, with four foreign key connections between them.
Each table has its name in the shaded header, with its columns listed below.
Primary keys are underlined, marked “PK” and appear in the top compartment

1Mapping to the DBMS code depends on the target relational DBMS.
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for the columns. Mandatory (not null) columns are in bold. Foreign key columns
are marked “FK”n where n is the number of the foreign key with a table. The
foreign key connection is depicted as an arrow from the foreign key to its target
key. Unique value columns are marked “U”n where n is the number of the unique
column with a table.

In this example, the names of the tables and columns are those that are generated
automatically by default. In practice they can be renamed and many of the default
data types can also be changed. Various configuration options exist for controlling
how table and column names are generated.

The DDL script for a selected target DBMS can also be generated. Appendix A
presents the DDL script of the ORM schema from Figure 7.1, generated by the
VEA tool.

Besides, physical databases could also have their structures reverse engineered to
logical database schemas or to ORM schemas (e.g. using the VEA product).

7.3 ORM diagrams in XML structure

Diagrams are typically used in off-time mode, i.e. during the design phase.
They are not suitable for inter-operability because they depends on specific prod-
ucts. Different products or even one product but different releases often make it
difficult to read diagrams by other diagramming software packages as well as other
applications. Moreover, some diagram formats, such as Visio format, are not an
open format. This means that for exploiting a diagram, the appropriate software
package should be installed at site.

Consequently, ORM diagrams should be represented in an open and textual syntax
in order to be shared, exchanged, and processed at run-time. Several tools, such
as NORMA [2], Orthogonal ToolBox [120], have been developed with this aim. In
this thesis, we employ Orthogonal ToolBox which is a free add-on to VEA and can
expose ORM schemas as XML documents.

The structure of XML documents describing ORM diagrams are presented in Fig-
ure 7.3.

An ORM diagram is described in four sections: Objects, Roles, Facts and Con-
straints. Each item in the document (i.e. objects, roles, facts, constraints) is
identified uniquely by an “id” and has several properties, e.g. “name”, “internal”.
Some properties have boolean values. For example, “Independent (T/F)” denotes
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ORM Model

Objects

Facts

Roles

Constraints

Other objects
  - Object type
  - Reference mode
  - {Played role ids}

Identifier Objects
  - Value type
  - ObjectNamespace

Other roles
  - {Constraints on role (T/F)}
  - Predicate position
  - Name

``is identified by’’ role
  - Mandatory =T
  - Unique = T
  - Predicate position = 1
  - Name = “is identified by”

- Id
- Name
- Independent (T/F)
- External (T/F)
- Datatype

- Id
- Player object Id

- Id
- Arity
- Reading
- {Role ids}
- {Constraint ids}

- Id
- isInternal (T/F)
- NumberOfSequences
- NumberOfItemsPerSequence
- Constraint type
- IsPrimaryReference (T/F)
- {Role sequences(sequence position, role Id)}

Figure 7.3: The XML schema for ORM diagrams in Orthogonal Toolbox

the property “Independent” of an object can receive the value true (T) if the object
type is constrained as independent, or false (F) otherwise.

Objects are classified into two kinds, namely identifier objects that are used as
reference mode, and the remains. Besides the common properties of an object, an
identifier object is specified as a value type. Moreover, it has a property called
“ObjectNamespace” that denotes the object type identified uniquely by it. Other
objects are featured by their object type, reference mode, and the set of ids of the
roles they play.

A role can also be a “normal” role or a role used for reference mode. All the roles
played by identifier objects are named “is identified by” and their properties have
specified values, i.e., they are in position 1 of the predicate (Predicate position =
1), under the constraints Mandatory (Mandatory = T) and Uniqueness (Unique
=T). Note that those roles do not exist in the respective ORM diagram. However,
Orthogonal generates the explanation for reference mode in the XML format of
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ORM schemas. This facilitates understanding and extracting the original ORM
schemas. Hence, in translating ORM schemas into OWL-K, our implementation
can make use of this feature. Other roles are featured by a set of constraints.
Each constraint in the set has the value “true’ if it is set on the role, and the value
“false” otherwise.

Each fact is characterized by its id, its arity, its reading (textual reading based on
the predicate), the set of ids of roles in the fact and the set of ids of contraints on the
fact. Each constraint can be internal (“isInternal = true”) or external (otherwise),
preferred (“IsPrimaryReference= true”) or not (IsPrimaryReference= false). A
constraint has a constraint type (e.g. Mandatory, Uniqueness) and a set of role
sequences which consist of sequence positions and ids of the roles it is put on.

The XML document of the ORM diagram in Figure 7.1 can be seen in Appendix
B.

7.4 Generating Ontologies

7.4.1 OWL-K ontologies

OWL-K built-in vocabulary. At present, all the modeling primitives of OWL-K
extension (w.r.t OWL DL), using the RDF/XML exchange syntax, come from the
OWL-K namespace

http://dieuthu.free.fr/2007/orm2owl/owlk\#

Appendix C contains the corresponding RDF schema for the OWL-K language con-
structors. This schema provides information about the OWL-K built-in vocabulary
extension (w.r.t OWL-DL). Conventionally, OWL(-K) classes have a leading up-
percase character, properties a leading lowercase character. Thus, owlk:ICAssertion
is a class, and owlk:onClass is a property. The RDF Schema file for OWL-K is not
expected to be imported explicitly (i.e., with owl:imports) into an ontology. People
who import this schema should expect the resulting ontology to be an OWL Full
ontology.

Content. An OWL-K ontology starts with a prolog, which is the part of the
document that precedes the data. As with most RDF documents, the OWL-
K code should be subelements of an rdf:RDF element. This enclosing element
generally holds XML namespace and base declarations. Thus, the minimal prolog,
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containing declarations that identify a document as an OWL-K ontology, should
be as in Figure 7.4. An OWL-K ontology consists of any number of class axioms,
property axioms, and facts about individuals.

The structure of an OWL-K ontology serialized in RDF/XML is shown in Figure
7.4. Like OWL, an OWL-K ontology in RDF/XML syntax is represented physi-
cally in a structured document in plain text with structured elements using tags.
The built-in vocabulary is conventionally associated with the namespace name
owlk. OWL-K ontologies should not use names from this namespace except for
the built-in vocabulary. The definitions of elements in an OWL-K ontology are
described between two tags <rdf:RDF> and </rdf:RDF>. As file extension, an
OWL-K ontology can have either .rdf or .owl.

<rdf:RDF
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:owlk="http://dieuthu.free.fr/2007/orm2owl/owlk#"

>

<owl:Ontology rdf:about=""/>

<!-- OWL DL and OWL-K code -->

...

</rdf:RDF>

Figure 7.4: OWL-K ontology structure

7.4.2 Orm2OwlK Tool

The ultimate goal of building the Orm2OwlK tool is to set up a mediator for
a data integration system. This system will allow one to integrate relational data
sources through their ORM schemas into the Semantic Web, and to exploit the
original data semantics for various Web services. Within this scope, the tool is
also for publishing and sharing OWL-K ontologies on the World Wide Web.

At the first stage, the goal of the tool is to promote the widespread deployment of
OWL-K ontologies as well as of data integration using ORM schemas. Moreover,
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the design of OWL-K should be widely reviewed by researchers, developers and
users. Therefore, we have developed the Orm2OwlK tool as a Web application.

Orm2OwlK is developed using J2EE (Java 2 Platform Enterprise Edition). The
latter is a platform-independent, Java-centric environment from Sun for develop-
ing, building and deploying Web-based enterprise applications online.

The Java API for XML Processing (JAXP) is an API designed to help writing
programs for processing XML documents. JAXP enables applications to parse,
transform, validate and query XML documents using an API that is independent of
a particular XML processor implementation. The two basic parsing interfaces are
the Document Object Model (DOM) parsing interface and the Simple API for XML
(SAX) parsing interface. SAX is an event-driven methodology for processing XML.
It reads an XML document from beginning to end, and each time it recognizes
a syntax construction, it notifies the application that is running it. XML SAX
parsers tend to be of low level and may be difficult to program. An important
alternative is the DOM parser, defined by the W3C DOM Working Group. It is
a set of interfaces for building an object representation, in the form of a tree, of a
parsed XML document. Unlike a SAX parser, a DOM parser allows random access
to particular pieces of data in an XML document. However, JAXP is compatible
with only DOM-Level 1 (DOM-Level 2 is already supported by the most common
navigators, e.g. Netscape 6, IE 5). Hence, we employed SAX when it is convenient
for implementing our algorithm, and DOM in some cases.

In addition to the parsing interfaces, JAXP provides an XSLT (XML Stylesheet
Language for Transformations) interface to make available data and structural
transformations on an XML document. For this release of our tool, we employ
XSLT as a parser to transform ORM schemas into OWL ontologies.

Orm2OwlK implements the mapping algorithm presented in Chapter 6. It imports
ORM schemas in the XML format proposed by Orthogonal (cf. Section 7.3).
Because each item in the XML document is identified uniquely by an id, we handle
the mapping on only the id numbers of those items. Therefore, the translation
does not encounter the problem of name replication, i.e. different items with the
same name. In case the role is named “is identified of”, we attach the respective
role id to distinguish one from another. Similarly, we name an ICAssertion id for a
primary reference scheme the name of the concerned object type attached with its
id. For example, Group 51 is the ICAssertion id of the object type Group whose
id is 51. We name an ICAssertion id for a reference scheme (not preferred) the
name of the concerned object type attached with the id of a role identifying it, e.g.
Subject 35. For a new additional element (e.g. in case of functional dependencies),
its name will be the combination of two object types (roles) concerned and a unique
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id if it is an object type (role), e.g. Student Topic 107. The interface of the tool
can be seen in Figure 7.5 and Figure 7.6.

First, an ORM schema in XML format is parsed and loaded into the application
by using our input form (cf. Figure 7.5). The schema in XML format is then
shown in the window of the tool. In Figure 7.5 we can see a segment of the
ORM schema from Figure 7.1 in XML. The button allows one
to translate automatically this ORM schema in XML syntax into an OWL-DL or
OWL-K ontology.

Figure 7.5: The interface 1 of Orm2OwlK

When one clicks this button, the second interface will be posted (cf. Figure 7.6).
This page shows both abstract syntax (the upper window) and RDF/XML syntax
(the lower window) of the resulting OWL ontology. The abstract syntax win-
dow is for easily understanding the semantics of the respective schema while the
RDF/XML syntax window shows the format of the ontology used on the Web.
In Figure 7.6, we can see a part of the OWL ontology resulting from the ORM
schema given in Figure 7.1. The entire OWL ontology for this schema example is
shown in Appendix D.



204
CHAPTER 7. IMPLEMENTATION

EXPLOIT INFORMATION FROM RDB IN SEMANTIC WEB

Figure 7.6: The interface 2 of Orm2OwlK

7.5 Conclusion

In this chapter, we have shown how to integrate relational data sources into
the Semantic Web with an illustration example. Throughout the chapter, one
can have an overview of the whole process to capture the data semantics from
relational data sources. All the steps necessary of the process are also clarified in
the chapter. Consequently, we can say that:

• The whole semantic extracting process from relational data sources is semi-
automatic. The reason is that in general the repository format in which
ORM (or other modeling method’s) schemas are stored is proprietary or
even “closed” inside the CASE tool’s software. To incorporate the functions
of these tools into a unified system, which can capture automatically the
semantics of the relational sources, the coorperation with tool’s suppliers
may be needed.

• The semantic capturing process consists of three automatic sub process. The
first one is effected by conceptual designing tools (and their reverse engines).
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The second one is the syntactic transformation of conceptual schemas into
XML format, and is realized by some convert tools (e.g. Orthogonal toolbox).
The third one, the most important process, is capturing the semantics of
a given schema in XML format and represent them in an OWL ontology,
which will be, in its turn, exploited by Web services. This process is done
automatically by our Orm2OwlK tool.

• There is no human interference in specifying the semantics of the data source
during the whole process. Users are only required to trigger a sub process
and provide the input for it. As mentioned above, it is possible to do this
work without human getting in the way.

What we have been done in this chapter is only at the first stage. The future work
will be discussed later in the last section - Conclusion and Perspectives - of this
thesis.



CHAPTER 8

Conclusion and Perspectives

This thesis concludes with a review of the work presented. We summarize our
main results and discuss how they meet the needs of data integration in the SW.
Based on this discussion, we list open problems and point out further interesting
research for data integration from relational data sources into the SW.

8.1 Thesis Overview

This thesis proposes the solutions for the problems that hold back the auto-
matic semantic capturing in data integration from relational data sources into the
SW in a decidable way (cf. Chapter 3).

First, it proposes using ORM schemas as a common and comprehensive data model
to integrate information from relational data sources. An important advantage
of this proposition is the flexibility of data integration system: the changes in
data semantics can easily be updated in the integration system without repeating
the semantic capturing process for the whole databases. Moreover, conceptual
modeling in ORM is far more expressive, clearer and less error prone than ER and
UML. Hence, the process can be done automatically using ORM schemas.

Second, it proposes an integration into the SW using the most common and latest
standard Web Ontology language OWL for many of its advantages, among which
are the world-wide usability and the reasoning capability. To realize the integra-
tion, it proposes a decidable extension of OWL DL, namely OWL-K, that supports
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identification constraints. The latter is crucial in designing databases and hence
should be expressible in OWL ontologies.

Integration into the SW is proposed to be carried out on the ontology level by
incorporating ORM schemas into OWL(-K) ontologies. Hence, data integration
can take advantage of more advanced techniques for ontologies (e.g. ontology
mappings) than those for relational database schemas.

Regarding a solution for data integration in a decidable way, i.e., automated rea-
soning is allowed in the integration system so that knowledge consistency can
be verified and data information can be retrieved, the thesis proposes a Tableau
algorithm as a decision procedure for SHOIQK(D), which provides the formal
semantics of OWL-K. An important feature of this algorithm is its flexibility. That
is, the performance of the algorithm depends on the expressivity of the input on-
tology. It is comparable with the one for OWL DL.

To realize the automatic semantic capturing process, the thesis proposes a formal-
ization of ORM in OWL-K, which includes a set of mapping rules and an algorithm
that uses these rules to generate automatically OWL(-K) ontologies from ORM
schemas. The thesis shows that the semantics of ORM schemas captured in OWL(-
K) ontologies are preserved thanks to its formalization in the DL SHOINK(D).
This automatic process is illustrated by the Orm2OwlK tool.

To sum up, the thesis has demonstrated that our approach provides a flexible and
decidable way to integrate relational data sources into the SW and an automatic
process to capture data semantics truthfully.

8.2 Main Contributions

This thesis contributes to many research fields. Some results in the thesis have
been previously published in [106, 107, 108]. First, throughout the thesis, we have
introduced a new approach of data integration from relational data into SW and
an implementation at the first stage (Chapter 7). Second, the main contributions
to the AI field, in particular to the Description logic theory, have been presented in
Chapters 5 and 4, in which we have provided insights in the extension of DLs with
identification constraints and concrete domains. The contributions of the thesis
to the SW has been exposed in Chapters 4 and 5, in which we have proposed a
new decidable web ontology language. Although not being considered as the main
objective, our new formalization of a conceptual modeling method presented in
Chapter 6 makes an important contribution to conceptual modeling field. In what
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follows, we describe in detail these contributions.

8.2.1 Contributions to the Advances in Data Integration

8.2.1.1 Survey of Data Integration From Relational Databases into the
SW

Data integration has been a long-standing challenge for the database community
and lately for the SW community. It has received steady attention over the past
decades, and has now become a prominent area of database and SW research. In
this thesis, we have described recent progress in data integration from relational
databases into the SW, and discussed the difficulties underlying the integration
process. We have focused in particular on data semantic capture, a topic that is
not trivial and has not much success in the recent works. We then identified open
research issues. The survey demonstrates that data integration into SW lies at
the heart of many database and AI problems, and that addressing it will require
solutions that mix database and AI techniques.

8.2.1.2 Foundation for Data Integration from Relational Sources into
the SW

The work we have done in this thesis is a decisive step to integrate relational
data sources into the SW in an automatic way. It will make existing relational
database content, particularly semantics, available for SW applications, such as
web agents and services. First, our approach supports systems in accommodating
their contents, which are either defined by schemas based on structure or defined
by ontologies based on semantics. Hence, databases and SW resources can be inte-
grated together. Relational sources described not only by ORM but also by ER or
UML schemas can be integrated because ER and UML schemas can be transformed
into ORM schemas. Second, our automatic tool can generate ontologies describ-
ing 100% accurate semantics of data sources. As such, data semantic extraction
is not laborious and error-prone, and integration systems can be interactive and
usable by domain experts who are not necessary computer experts. Third, the
semantics of data are reflected truthfully and independently in SW ontologies. As
a result, data semantics can be reusable for various purposes and be independent
from the run-time characteristics of the underlying sources. Moreover, integration
systems can be evolved without breaking the backward compatibility thanks to our
choice of ORM. Last but not least, a powerful inference engine based on a Tableau
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algorithm can be used in design of integration system and in exploitation of in-
formation from relational databases in the SW. As far as we know, our approach
is the unique that uses an expressive Description logic provided with an inference
engine for data integration from relational sources into the Semantic Web.

In particular, the work presented in this thesis will prove useful for applications
requiring global schema based architecture as well as P2P-based integration archi-
tecture:

Integration system based on global schema. For semantic web applications using
the same domain, integration system based on a global schema may be preferred.
Once data schemas are represented in OWL ontologies, the latter sets up a source
ontology layer that holds explicit and formal application-independent knowledge
and can be increased independently from web services. Domain ontologies (in the
role of global schemas), which set up the service-oriented layer, hold application-
dependent (domain) knowledge and are influenced by the intended use of the
knowledge and possible requirements. Original query in terms of domain ontology
will be translated into a union of queries in terms of source ontologies through inter-
ontology relationships or ontology mappings. Then the system will translate the
queries into those on the respective data schema using our mapping rules. These
queries, in its turn, is translated into SQL queries on databases. The answers can
be translated back into those in terms of ontology by using our mapping rules, and
then are finally returned to the Web user through ontology mappings between the
source and domain ontologies. The process is shown in Figure 8.1(a).

Integration system based on P2P Architecture. In a P2P system, there is no existing
domain ontology. After we get the OWL ontologies from data models, we can put
the OWL ontologies on the web. Suppose some semantic web agents or services
wish to access (e.g. query) the data in databases, they use some semantic web
query language to send queries to the databases through the OWL ontology at
a point. Original queries will be transferred to other points in terms of target
ontologies through frames of reference for their queries. Through our mapping
rules between OWL ontologies and ORM schemas, queries on ontologies can be
transferred to queries on schemas, which are, in their turn, translated into SQL
queries on databases. The answers can then be transferred back to the ontology
layer to reply the user on the Web by using our mapping rules between ontology
layer and schema layer. The process is illustrated in Figure 8.1(b).
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Figure 8.1: Integrating relational databases into the Semantic Web using
OWL-K and ORM schemas

8.2.2 Contributions to the Advances in the Theory of De-
scription Logics

To deal with reasoning for data integration systems, we provide a flexible DL
reasoning procedure which supports concrete datatypes and identification con-
straints.

• Concrete domains for SHOIQ. Integrating Universal concrete domains into
SHOQ has been introduced a long time ago [83]. Nevertheless, applying this
feature to SHOIQ has not been presented in the literature until our work
is done. Essentially, integrating concrete domains into SHOIQ is not a
trivial task because this DL has infinite model property. In this thesis, we
have introduced a solution to deal with it. Furthermore, we have also shown
that this integration works well with another new feature, i.e. identification
constraints, by introducing how to reason in presence of concrete domains
and ICs, and demonstrated that our algorithm is still decidable with its
properties relating to concrete domains.

• Identification constraints integrated into SHOIQ(D). Although DL lan-
guages nowadays can provide a very high expressivity, identification con-
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straints are not supported in their nature. In this thesis, we have extended
SHOIQ(D), which is a bit more expressive than the DL underlying the
standard SW ontology language OWL DL, to fully capture the semantics of
ICs. The extended language is called SHOIQK(D). We have proposed a
practical Tableau algorithm for this new language. The algorithm is proved
sound, complete, and terminating. Hence, the extended DL we introduced
is decidable. Furthermore, we have designed the algorithm that behaves like
“pay as you go” which increases its usability and performance. Our exten-
sion has met user requirements because all the things in the real world, in
some way, need to be identified and hence this kind of constraint is very
important in knowledge representation.

8.2.3 Contribution to Web Ontology Language Develop-
ment

Identification constraints have always been high on the list of requests from
users in the SW environment. Despite many researches in theory, this kind of
constraints, however, has not been available in Web ontology languages yet. The
work in this thesis has met this requirement by introducing a decidable extension
of OWL DL, namely OWL-K. OWL-K satisfies all the requirements for a SW
ontology language to be applied not only in data integration but also in other Web
applications required by ontology users and developers:

1. Provides the “real” ICs;

2. Supports ICs on specific classes, or so called non-global ICs;

3. Provides ICs for data type properties, object properties, and sets of these
two kinds of properties;

4. Supports both kinds of constraints corresponding to simple and compound
keys in DB schemas;

5. Layers on top of OWL DL;

6. Has formal semantics; and

7. Is a decidable language.

Representation of ICs in the Semantic Web plays an important role. It assists in the
designing phase of ontologies and provides the capacity to handle the consistency
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of KBs. It also provides the capacity to resolve the problem of interoperability
and semantic integration of heterogeneous data sources, particularly of relational
data sources in the Web environment.

8.2.4 Contribution to the Advances in the Theory of Con-
ceptual Modeling

Several formalizations of ORM schemas have been proposed in the literature
[65, 123, 90]. They have been proved very useful with respect to establishing a
common understanding of the formal meaning of ORM schemas. However, the
logics used in their works are not decidable.

In this thesis, we have shown that the DL we use to formalize ORM schemas is
decidable. Consequently, our formalization can be considered as an approach that
not only satisfies the above objective but also allows automated reasoning on ORM
schemas (e.g., detecting constraint conflicts or implications).

8.3 Open Problems and Future Work

Although the data semantics can be captured in the SW by our solution, we
do not mean that the work we have introduced in this thesis solves all the problems
of data integration in the SW. We are just at the beginning of a new and exciting
research field and there is still much work to do. In this section, we point out open
problems and suggest future research directions.

8.3.1 Concrete Domains for SHOIQK

In this thesis, we do not address the concrete reasoner and assume that
SHOIQK(D) has an algorithm satisfying our tableau algorithm requirement. The
latter is datatype sets for SHOIQK(D) are QIK-conforming. That is, in a model
all values that share the same datatype associated with an infinite domain are used
only once. More research should be needed to remove this constraint while still
guaranteeing the termination of the algorithm.

One may say that in reality an infinite datatype domain can be considered as a
finite datatype domain whose number of data values is large enough and vice versa.
Moreover, ABox is assumed to be an open world. Therefore, without loss of gener-
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ality, for a practical algorithm, he can define that a non-determining individual is
the one who has certain specific relation with ⊥ (or unknown individuals/values).
The unraveling process will terminate when it reaches a non-determining node.
Consequently, he can define that if in a unraveled chain there exists an identified
node all the identifying nodes of which are equals to some others existing nodes,
then such an identified node is non-determining. That is, all the identifying nodes
will be considered as representations of unknown values and will be removed from
the chain. The edges connecting the identified node to these nodes become rep-
resentations of “relations with ⊥”. As a result, the QK-conformity assumption is
still valid for the algorithm and he can remove the QIK-conformity assumption.
In this case, with the same argument (or proof), the algorithm is terminating be-
cause unraveled chains are finite and no infinite datatype domain is employed in
TBoxes as well as in KBoxes.

However, this approach have to solve the problems raised with real finite domains,
or else it may give a resulting model by mistake.

8.3.2 Complexity of Reasoning Procedure

We have shown that if there exists an algorithm for QIK-conformity in NP,
our Tableau algorithm is in 2-NExpTime-complete. However, the upper bound
may be lower and we have not investigated this problem in the thesis yet. If the
algorithm is proved to have a lower complexity, it will be obviously more attractive
to application. Thus, this problem should be solved in the future.

8.3.3 Implementation, Evaluation, and Optimization of
Reasoning Procedure

To realize our approach in data integration systems, which include exploita-
tion of data semantics and hence reasoning on them, an implementation of the
reasoning procedure for SHOIQK(D) is needed. The fact that the sub language
of SHOIQK(D) (i.e. SHOIQ) has a difficult entailment problem (NExpTime-
complete) but still practical is essentially thanks to much work in optimization.
The latter is not a trivial task that requires much more research (e.g. [76], [133]).
Consequently, we have left the implementation of our Tableau algorithm described
in this thesis to the future work, which includes also an evaluation and the study
of optimization techniques to improve the performance of the algorithm.
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8.3.4 IC Representation in DLs and Web Ontology Lan-
guages

For simplicity, we allow only simple roles in IC descriptions. Therefore, we
should think of a mechanism to inform users about that. Besides, we expect
to investigate the presence of transitive roles in IC descriptions and reasoning
decidability in this case.

We defined ICs without qualified restrictions. That is, an individual is identified
uniquely by a set of any other individuals (in the universe) related to the individual
by roles in the appropriate IC description. Note that in SHOIQK(D), one can
specify that an individual may be related to individuals of different concepts by
the same role R. For example, a TBox could have two axioms GoodProd v≥
3 hasIngredient.Fruit and GoodProd v≤ 1 hasIngredient.Fat. Therefore, one
question to be considered is whether we can employ qualified restrictions in ICs,
for example R.D, S.A Idfor C ?

Note that this question is worth our attention because many ontology design tools
support already qualified cardinality restrictions (cf. Chapter 5). Furthermore,
OWL 1.1, an extension of OWL DL being submitted to W3C as a standard Web
Ontology language, supports also this feature.

8.3.5 ORM Schema Representability in Web Ontology
Languages

Datatype limitations. In Chapter 7, we see that data types resulting from value
type mapping are not shown in the resulting OWL(-K) ontology. Actually, even
supporting RDF(S) specification of data types, OWL (including OWL DL and
OWL-K as well) does not have a mechanism to access customized data types. The
reason is that the XML schema type system does not provide a standard way to
access the URI references of user-derived (customized) data types. This drawback
makes XML Schema user-derived data types not accessible by RDF(S) and OWL.

Role description limitations. As seen in Chapter 6, OWL DL and OWL-K cannot
describe general set-comparison constraints and ring constraints in terms of ORM.
These constraints require, actually, some role constructors that OWL DL, and thus
OWL-K do not support.

Lately, based on requests of major users of OWL DL, OWL 1.1 has been proposed
that deals with these shortcomings [125]. OWL 1.1 allows user-defined datatypes
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to be defined in an OWL ontology. Besides, OWL 1.1 provides a more powerful
way to describe properties such as reflexive, irreflexive, symmetric, antisymmetric,
and disjoint properties, and property chain inclusion axioms. The specification
of OWL 1.1 is currently being discussed and OWL 1.1 is now a W3C Member
Submission.

Therefore, expecting that OWL 1.1 will become standardized in the near future,
we plan to apply OWL 1.1 to data integration from relational sources into the
Semantic Web. Consequently, the future work should be:

1. Integrating universal concrete domain into the DL underlying OWL 1.1.
Even OWL 1.1 supports data types, the given DL language underlying OWL
1.1 does not take concrete domains into account [125]. This is still an open
problem to be dealt with in the future.

2. Investigating the expressivity of OWL 1.1 in representing ORM schemas.
Because OWL 1.1 is an extended of OWL DL, not of OWL-K, we should first
verifying the capability of OWL 1.1 in capturing identification constraints.
If this is not possible, more work need to be done such as:

• Integrating ICs into OWL 1.1 considering IC representation perspec-
tives mentioned above.

• Developing a practical reasoning procedure for the new extension lan-
guage considering concrete domain influence.

3. Trying to describe the ORM constraints that cannot be described in OWL-
K in OWL 1.1 or its extension with ICs (in case ICs should be integrated).
If the expressivity of the Web ontology language is still lower than that of
ORM, we should consider a further extension to the Web ontology language
while guaranteeing its decidability. Hence, a practical reasoning procedure
should also be considered.

4. Modeling ORM schemas in the new Web ontology language. Note that
although OWL 1.1 provides higher expressivity than OWL DL, it has also
restrictions on new constructors. Hence, the modeling should consider all
these conditions.

5. Implementing the modeling and reasoning mechanisms.
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8.3.6 Further Steps in Building a Data Integration System

8.3.6.1 Orm2OwlK Tool Enhancement

In the next stage of developing the tool, along with the implementation of the data
integration system, two scenarios may be proposed:

• Create the tool as a plug-in component in conceptual model design tools.
Hence when an enterprize wants to share their databases in the Semantic
Web, the conceptual schemas of the required databases will be formalized as
Web ontologie(s).

• Create the tool as a component of the mediator in a data integration
system. The system will use the mapping rules to access information in
databases when necessary. There must have a way to connect among physi-
cal databases, their conceptual schemas, and their respective Web ontologies
to enable transparent inter-operability.

8.3.6.2 Query Processing

To exploit information from relational sources, our future research in building a
data integration system should be query processing which focuses on the auto-
matic translation of queries on SW applications to queries on relational databases.
Identification constraints help to capture the complex interrelationships in the do-
main of interest better. However, they have a deep impact on how certain answers
are computed, and hence they must be fully taken into account during query an-
swering. Consequently, a query language supporting IC for OWL-K should be
introduced. Then based on the formalization presented in this thesis, the trans-
lation will make queries represented in the query language for OWL-K ontologies
to queries in a query language for ORM schemas (e.g. Conquer [21]). Because
queries on ORM schemas can be converted into queries on relational DBMS (cf.
Chapter 2), information in relational DBMS can be retrieved by this way.





APPENDIX A

DDL Script from ORM Schema

The following DDL script is generated from the ORM schema example in chapter
7 for an Access DBMS, and by the VEA tool.

create table ‘Subject‘ (
‘Subject id‘ CHAR(10),
‘Means SubjectName‘ CHAR(10),
constraint ‘Subject_PK‘ primary key (‘Subject id‘) );

create table ‘Group contain Student‘ (
‘Group id‘ CHAR(10),
‘Country id‘ CHAR(10),
‘Subject id‘ CHAR(10),
constraint ‘Group contain Student_PK‘ primary key
(‘Group id‘, ‘Country id‘, ‘Subject id‘) );

create table ‘Student‘ (
‘Country id‘ CHAR(10),
‘Subject id‘ CHAR(10),
‘Name‘ CHAR(10),
constraint ‘Student_PK‘ primary key (‘Country id‘, ‘Subject id‘) );

create table ‘Group‘ (
‘Group id‘ CHAR(10),
‘HasTopic Topic‘ CHAR(10),
constraint ‘Group_PK‘ primary key (‘Group id‘) );

alter table ‘Subject‘ add constraint ‘Subject_UC1‘ unique (
‘Means SubjectName‘);
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alter table ‘Group contain Student‘
add constraint ‘Student_Group contain Student_FK1‘ foreign key (

‘Country id‘,
‘Subject id‘)

references ‘Student‘ (
‘Country id‘,
‘Subject id‘);

alter table ‘Group contain Student‘
add constraint ‘Group_Group contain Student_FK1‘ foreign key (

‘Group id‘)
references ‘Group‘ (

‘Group id‘);

alter table ‘Student‘
add constraint ‘Subject_Student_FK1‘ foreign key (

‘Subject id‘)
references ‘Subject‘ (

‘Subject id‘);



APPENDIX B

ORM Schema in XML

This appendix shows the content of the XML document converted from the ORM
schema example in Chapter 7.

<?xml version="1.0" encoding="utf-8"?>

<!--Generated by Orthogonal Toolbox (v1.5.1712.33831)

on Tuesday, January 15, 2008 at 7:14:00 AM-->

<!--Orthogonal Toolbox is a free utility produced by

Orthogonal Software Corporation -->

<!--http://www.orthogonalsoftware.com -->

<VisioModels>

<ORMSourceModels>

<ORMSourceModel FileName="D:\Thesis\Example\Student1.vsd"

FileSavedOn="1/15/2008 6:39:10 AM">

<Roles>

<Role RoleID="15" IsMandatory="true" IsUnique="true" PredicatePosition="1"

RoleReading="represents" RolePlayerObjectID="18" />

<Role RoleID="29" IsMandatory="false" IsUnique="true" PredicatePosition="2"

RolePlayerObjectID="31" />

<Role RoleID="28" IsMandatory="true" IsUnique="true" PredicatePosition="1"

RoleReading="isKnownas" RolePlayerObjectID="19" />

<Role RoleID="23" IsMandatory="false" IsUnique="false" PredicatePosition="2"

RolePlayerObjectID="25" />

<Role RoleID="22" IsMandatory="true" IsUnique="true" PredicatePosition="1"

RoleReading="bestAt" RolePlayerObjectID="18" />

<Role RoleID="16" IsMandatory="false" IsUnique="false"

PredicatePosition="2" RolePlayerObjectID="19" />

<Role RoleID="43" IsMandatory="false" IsUnique="false" PredicatePosition="2"

RolePlayerObjectID="45" />

<Role RoleID="42" IsMandatory="true" IsUnique="true" PredicatePosition="1"

RoleReading="has" RolePlayerObjectID="18" />

<Role RoleID="36" IsMandatory="false" IsUnique="true" PredicatePosition="2"

RolePlayerObjectID="38" />

<Role RoleID="35" IsMandatory="true" IsUnique="true" PredicatePosition="1"

RoleReading="means" RolePlayerObjectID="25" />
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<Role RoleID="63" IsMandatory="true" IsUnique="true" PredicatePosition="1"

RoleReading="is identified by" RolePlayerObjectID="51" />

<Role RoleID="56" IsMandatory="false" IsUnique="true" PredicatePosition="2"

RolePlayerObjectID="54" />

<Role RoleID="55" IsMandatory="true" IsUnique="true" PredicatePosition="1"

RoleReading="is identified by" RolePlayerObjectID="19" />

<Role RoleID="49" IsMandatory="false" IsUnique="false" PredicatePosition="2"

RoleReading="attends" RolePlayerObjectID="18" />

<Role RoleID="48" IsMandatory="false" IsUnique="false" PredicatePosition="1"

RoleReading="contains" RolePlayerObjectID="51" />

<Role RoleID="79" IsMandatory="false" IsUnique="false" PredicatePosition="2"

RolePlayerObjectID="81" />

<Role RoleID="78" IsMandatory="false" IsUnique="true" PredicatePosition="1"

RoleReading="hasTopic" RolePlayerObjectID="51" />

<Role RoleID="72" IsMandatory="false" IsUnique="true" PredicatePosition="2"

RolePlayerObjectID="70" />

<Role RoleID="71" IsMandatory="true" IsUnique="true" PredicatePosition="1"

RoleReading="is identified by" RolePlayerObjectID="25" />

<Role RoleID="64" IsMandatory="false" IsUnique="true" PredicatePosition="2"

RolePlayerObjectID="62" />

</Roles>

<Objects>

<Object ObjectID="31" ObjectName="CountryName"

ObjectKind="Value Type" IsIndependent="false"

IsExternal="false" ConceptualDatatype="C-Fixed Length(10)"

PhysicalDatatype="CHAR(10)">

<PlayedRoles>

<PlayedRole PlayedRoleID="29" />

</PlayedRoles>

</Object>

<Object ObjectID="25" ObjectName="Subject" ReferenceMode="id"

ObjectKind="Entity Type" IsIndependent="false" IsExternal="false"

ConceptualDatatype="C-Fixed Length(10)"

PhysicalDatatype="CHAR(10)">

<PlayedRoles>

<PlayedRole PlayedRoleID="35" />

<PlayedRole PlayedRoleID="23" />

</PlayedRoles>

</Object>

<Object ObjectID="19" ObjectName="Country" ReferenceMode="id"

ObjectKind="Entity Type" IsIndependent="false" IsExternal="false"

ConceptualDatatype="C-Fixed Length(10)"

PhysicalDatatype="CHAR(10)">

<PlayedRoles>

<PlayedRole PlayedRoleID="28" />

<PlayedRole PlayedRoleID="16" />

</PlayedRoles>

</Object>

<Object ObjectID="18" ObjectName="Student" ObjectKind="Entity Type"

IsIndependent="false" IsExternal="false">

<PlayedRoles>

<PlayedRole PlayedRoleID="49" />

<PlayedRole PlayedRoleID="42" />

<PlayedRole PlayedRoleID="22" />

<PlayedRole PlayedRoleID="15" />

</PlayedRoles>

</Object>

<Object ObjectID="45" ObjectName="Name" ObjectKind="Value Type"

IsIndependent="false" IsExternal="false"

ConceptualDatatype="C-Fixed Length(10)" PhysicalDatatype="CHAR(10)">

<PlayedRoles>

<PlayedRole PlayedRoleID="43" />
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</PlayedRoles>

</Object>

<Object ObjectID="38" ObjectName="SubjectName" ObjectKind="Value Type"

IsIndependent="false" IsExternal="false"

ConceptualDatatype="C-Fixed Length(10)" PhysicalDatatype="CHAR(10)">

<PlayedRoles>

<PlayedRole PlayedRoleID="36" />

</PlayedRoles>

</Object>

<Object ObjectID="62" ObjectName="Groupid" ObjectKind="Value Type"

IsIndependent="false" IsExternal="false" ObjectNamespace="Group"

ConceptualDatatype="C-Fixed Length(10)"

PhysicalDatatype="CHAR(10)" />

<Object ObjectID="54" ObjectName="Countryid" ObjectKind="Value Type"

IsIndependent="false" IsExternal="false" ObjectNamespace="Country"

ConceptualDatatype="C-Fixed Length(10)"

PhysicalDatatype="CHAR(10)" />

<Object ObjectID="51" ObjectName="Group" ReferenceMode="id"

ObjectKind="Entity Type" IsIndependent="true" IsExternal="false"

ConceptualDatatype="C-Fixed Length(10)"

PhysicalDatatype="CHAR(10)">

<PlayedRoles>

<PlayedRole PlayedRoleID="78" />

<PlayedRole PlayedRoleID="48" />

</PlayedRoles>

</Object>

<Object ObjectID="70" ObjectName="Subjectid" ObjectKind="Value Type"

IsIndependent="false" IsExternal="false" ObjectNamespace="Subject"

ConceptualDatatype="C-Fixed Length(10)"

PhysicalDatatype="CHAR(10)" />

<Object ObjectID="81" ObjectName="Topic" ObjectKind="Value Type"

IsIndependent="false" IsExternal="false"

ConceptualDatatype="C-Fixed Length(10)" PhysicalDatatype="CHAR(10)">

<PlayedRoles>

<PlayedRole PlayedRoleID="79" />

</PlayedRoles>

</Object>

</Objects>

<Facts>

<Fact FactID="30" Arity="2" IsExternal="false" Storage="Stored">

<FactRoles>

<FactRole FactRoleID="28" />

<FactRole FactRoleID="29" />

</FactRoles>

<FactReadings>

<FactReading>Country isKnownas CountryName</FactReading>

</FactReadings>

<FactConstraints>

<FactConstraint FactConstraintID="106" />

<FactConstraint FactConstraintID="33" />

<FactConstraint FactConstraintID="32" />

</FactConstraints>

</Fact>

<Fact FactID="24" Arity="2" IsExternal="false" Storage="Stored">

<FactRoles>

<FactRole FactRoleID="22" />

<FactRole FactRoleID="23" />

</FactRoles>

<FactReadings>

<FactReading>Student bestAt Subject</FactReading>

</FactReadings>

<FactConstraints>
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<FactConstraint FactConstraintID="92" />

<FactConstraint FactConstraintID="26" />

<FactConstraint FactConstraintID="96" />

</FactConstraints>

</Fact>

<Fact FactID="17" Arity="2" IsExternal="false" Storage="Stored">

<FactRoles>

<FactRole FactRoleID="15" />

<FactRole FactRoleID="16" />

</FactRoles>

<FactReadings>

<FactReading>Student represents Country</FactReading>

</FactReadings>

<FactConstraints>

<FactConstraint FactConstraintID="89" />

<FactConstraint FactConstraintID="20" />

<FactConstraint FactConstraintID="96" />

</FactConstraints>

</Fact>

<Fact FactID="44" Arity="2" IsExternal="false" Storage="Stored">

<FactRoles>

<FactRole FactRoleID="42" />

<FactRole FactRoleID="43" />

</FactRoles>

<FactReadings>

<FactReading>Student has Name</FactReading>

</FactReadings>

<FactConstraints>

<FactConstraint FactConstraintID="86" />

<FactConstraint FactConstraintID="46" />

</FactConstraints>

</Fact>

<Fact FactID="37" Arity="2" IsExternal="false" Storage="Stored">

<FactRoles>

<FactRole FactRoleID="35" />

<FactRole FactRoleID="36" />

</FactRoles>

<FactReadings>

<FactReading>Subject means SubjectName</FactReading>

</FactReadings>

<FactConstraints>

<FactConstraint FactConstraintID="103" />

<FactConstraint FactConstraintID="40" />

<FactConstraint FactConstraintID="39" />

</FactConstraints>

</Fact>

<Fact FactID="57" Arity="2" IsExternal="false" Storage="Stored">

<FactRoles>

<FactRole FactRoleID="55" />

<FactRole FactRoleID="56" />

</FactRoles>

<FactReadings>

<FactReading>Country is identified by Countryid</FactReading>

</FactReadings>

<FactConstraints>

<FactConstraint FactConstraintID="61" />

<FactConstraint FactConstraintID="59" />

<FactConstraint FactConstraintID="60" />

</FactConstraints>

</Fact>

<Fact FactID="50" Arity="2" IsExternal="false" Storage="Stored">

<FactRoles>
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<FactRole FactRoleID="48" />

<FactRole FactRoleID="49" />

</FactRoles>

<FactReadings>

<FactReading>Group contains Student</FactReading>

<FactReading>Student attends Group</FactReading>

</FactReadings>

<FactConstraints>

<FactConstraint FactConstraintID="52" />

<FactConstraint FactConstraintID="100" />

</FactConstraints>

</Fact>

<Fact FactID="73" Arity="2" IsExternal="false" Storage="Stored">

<FactRoles>

<FactRole FactRoleID="71" />

<FactRole FactRoleID="72" />

</FactRoles>

<FactReadings>

<FactReading>Subject is identified by Subjectid</FactReading>

</FactReadings>

<FactConstraints>

<FactConstraint FactConstraintID="77" />

<FactConstraint FactConstraintID="75" />

<FactConstraint FactConstraintID="76" />

</FactConstraints>

</Fact>

<Fact FactID="65" Arity="2" IsExternal="false" Storage="Stored">

<FactRoles>

<FactRole FactRoleID="63" />

<FactRole FactRoleID="64" />

</FactRoles>

<FactReadings>

<FactReading>Group is identified by Groupid</FactReading>

</FactReadings>

<FactConstraints>

<FactConstraint FactConstraintID="69" />

<FactConstraint FactConstraintID="67" />

<FactConstraint FactConstraintID="68" />

</FactConstraints>

</Fact>

<Fact FactID="80" Arity="2" IsExternal="false" Storage="Stored">

<FactRoles>

<FactRole FactRoleID="78" />

<FactRole FactRoleID="79" />

</FactRoles>

<FactReadings>

<FactReading>Group hasTopic Topic</FactReading>

</FactReadings>

<FactConstraints>

<FactConstraint FactConstraintID="82" />

<FactConstraint FactConstraintID="100" />

</FactConstraints>

</Fact>

</Facts>

<Constraints>

<Constraint ConstraintID="26" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"
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RoleSequenceItemRoleID="22" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="20" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="15" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="46" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="42" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="40" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="35" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="39" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="36" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="33" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="28" />

</RoleSequenceItems>
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</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="32" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="29" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="61" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Mandatory">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="55" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="60" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="true">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="56" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="59" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="55" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="52" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="2" ConstraintType="Uniqueness"

IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="48" />

<RoleSequenceItem SequencePositionNumber="2"

RoleSequenceItemRoleID="49" />

</RoleSequenceItems>

</RoleSequence>
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</RoleSequences>

</Constraint>

<Constraint ConstraintID="77" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Mandatory">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="71" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="76" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="true">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="72" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="75" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="71" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="69" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Mandatory">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="63" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="68" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="true">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="64" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="67" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"
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IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="63" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="92" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Mandatory">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="22" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="89" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Mandatory">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="15" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="86" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Mandatory">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="42" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="82" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Uniqueness"

IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="78" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="106" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Mandatory">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="28" />
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</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="103" IsInternal="true" NumberOfSequences="1"

NumberOfItemsPerSequence="1" ConstraintType="Mandatory">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="35" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="100" IsInternal="false" NumberOfSequences="1"

NumberOfItemsPerSequence="2" ConstraintType="Uniqueness"

IsPrimaryReference="false">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="49" />

<RoleSequenceItem SequencePositionNumber="2"

RoleSequenceItemRoleID="79" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

<Constraint ConstraintID="96" IsInternal="false" NumberOfSequences="1"

NumberOfItemsPerSequence="2" ConstraintType="Uniqueness"

IsPrimaryReference="true">

<RoleSequences>

<RoleSequence SequenceNumber="1">

<RoleSequenceItems>

<RoleSequenceItem SequencePositionNumber="1"

RoleSequenceItemRoleID="16" />

<RoleSequenceItem SequencePositionNumber="2"

RoleSequenceItemRoleID="23" />

</RoleSequenceItems>

</RoleSequence>

</RoleSequences>

</Constraint>

</Constraints>

</ORMSourceModel>

</ORMSourceModels>

</VisioModels>
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RDF Schema of OWL-K

<?xml version="1.0"?> <!DOCTYPE rdf:RDF [
<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY owl "http://www.w3.org/2002/07/owl#" >
<!ENTITY owlk "http://dieuthu.free.fr/2007/orm2owl/owlk#" >

]>

<rdf:RDF
xmlns:rdf ="&rdf;"
xmlns:rdfs="&rdfs;"
xmlns:owl ="&owl;"
xmlns ="&owlk;"
xml:base ="&owlk;"
xmlns:owlk ="&owlk;"

>

<owl:Ontology rdf:about="">
<imports rdf:resource="http://www.w3.org/2000/01/rdf-schema"/>
<rdfs:isDefinedBy rdf:resource="http://dieuthu.free.fr/2007/orm-owl/" />
<rdfs:comment>This file specifies in RDF Schema format the

built-in classes and properties that together form the basis of
the RDF/XML syntax of the extension of OWL K w.r.t OWL DL.
We do not expect people to import this file explicitly into their
ontology. People that do import this file should expect their ontology
to be an OWL Full ontology.

</rdfs:comment>
<versionInfo> June 2007 </versionInfo>

</owl:Ontology>
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<rdfs:Class rdf:ID="ICAssertion">
<rdfs:label>ICAssertion</rdfs:label>
<rdfs:subClassOf rdf:resource="&rdf;Resource"/>

</rdfs:Class>

<rdf:Property rdf:ID="onClass">
<rdfs:label>onClass</rdfs:label>
<rdfs:domain rdf:resource="#ICAssertion"/>
<rdfs:range rdf:resource="#ObjectProperty"/>

</rdf:Property>

<rdf:Property rdf:ID="byProperty">
<rdfs:label>byProperty</rdfs:label>
<rdfs:domain rdf:resource="#ICAssertion"/>
<rdfs:range rdf:resource="#ObjectProperty"/>

</rdf:Property>

</rdf:RDF>
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ORM Schema in OWL-K Ontology

This appendix shows the content of the OWL-K ontology which captures all the
information expressed in the ORM schema example in chapter 7. Appendix D.1
shows the ontology in abstract syntax. Appendix D.2 shows the ontology in
RDF/XML syntax.

D.1 OWL-K Ontology in Abstract syntax

Namespace(rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#)
Namespace(xsd = http://www.w3.org/2001/XMLSchema#)
Namespace(rdfs = http://www.w3.org/2000/01/rdf-schema#)
Namespace(owl = http://www.w3.org/2002/07/owl#)
Namespace(owlk = http://dieuthu.free.fr/2007/orm2owl/owlk#)

Ontology(
Annotation(rdfs:comment "An OWL ontology from an ORM schema")

Class(Subject partial)
Class(Country partial)
Class(Student partial)
Class(Group partial)

DatatypeProperty(is_identified_by_63 domain(Group) range(Groupid))

ICAssertion(Group_51 Group is_identified_by63)
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DatatypeProperty(is_identified_by_55 domain(Country) range(Countryid))

ICAssertion(Country_19 Country is_identified_by55)

DatatypeProperty(is_identified_by_71 domain(Subject) range(Subjectid))

ICAssertion(Subject_25 Subject is_identified_by71)

DatatypeProperty(isKnownas Domain(Country) Range(CountryName))

ObjectProperty(bestAt Domain(Student) Range(Subject))

ObjectProperty(represents Domain(Student) Range(Country))

DatatypeProperty(has Domain(Student) Range(Name))

DatatypeProperty(means Domain(Subject) Range(SubjectName))

ObjectProperty(contains Domain(Group) Range(Student))

ObjetcProperty(attends inverseOf(contains))

DatatypeProperty(hasTopic Domain(Group) Range(Topic))

ICAssertion(Country_28 Country isKnownas)

ICAssertion(Subject_35 Subject means)

ICAssertion(Student_18 Student represents bestAt)

Class(Student partial restriction(has someValuesFrom(Name)))

Class(Student partial restriction(has maxCardinality(1)))

Class(Group partial restriction(hasTopic maxCardinality(1)))

ObjectProperty(contains_hasTopic_108
domain(Student_Topic_107) range(Group))

Class(Student_Topic_107 partial
restriction(contains_hasTopic_108 maxCardinality(1)))

ICAssertion(Student_Topic_107_107 Student_Topic_107 contains hasTopic)
)
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D.2 OWL-K Ontology in RDF/XML syntax

This appendix presents the RDF/XML serialization of the OWL-K ontology that
describes the ORM schema in Figure 7.1.

<rdf:RDF
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:owlk="http://dieuthu.free.fr/2007/orm2owl/owlk#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

>

<owl:Ontology rdf:about="">
<rdfs:comment>An OWL ontology from an ORM schema</rdfs:comment>

</owl:Ontology>

<owl:Class rdf:ID="Subject"></owl:Class>
<owl:Class rdf:ID="Country"></owl:Class>
<owl:Class rdf:ID="Student"></owl:Class>
<owl:Class rdf:ID="Group"></owl:Class>

<owl:DatatypeProperty rdf:ID="is_identified_by_63">
<rdfs:domain rdf:resource="#Group"></rdfs:domain>
<rdfs:range rdf:resource="#Groupid"></rdfs:range>

</owl:DatatypeProperty>

<owlk:ICAssertion rdf:ID="Group_51">
<owlk:onClass rdf:resource="#Group"/>
<owlk:byProperty rdf:resource="#is_identified_by63"/>

</owlk:ICAssertion>

<owl:DatatypeProperty rdf:ID="is_identified_by_55">
<rdfs:domain rdf:resource="#Country"></rdfs:domain>
<rdfs:range rdf:resource="#Countryid"></rdfs:range>

</owl:DatatypeProperty>

<owlk:ICAssertion rdf:ID="Country_19">
<owlk:onClass rdf:resource="#Country"/>
<owlk:byProperty rdf:resource="#is_identified_by55"/>

</owlk:ICAssertion>

<owl:DatatypeProperty rdf:ID="is_identified_by_71">
<rdfs:domain rdf:resource="#Subject"></rdfs:domain>
<rdfs:range rdf:resource="#Subjectid"></rdfs:range>

</owl:DatatypeProperty>
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<owlk:ICAssertion rdf:ID="Subject_25">
<owlk:onClass rdf:resource="#Subject"/>
<owlk:byProperty rdf:resource="#is_identified_by71"/>

</owlk:ICAssertion>

<owl:DatatypeProperty rdf:ID="isKnownas">
<rdfs:domain rdf:resource="#Country"></rdfs:domain>
<rdfs:range rdf:resource="#CountryName"></rdfs:range>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="bestAt">
<rdfs:domain rdf:resource="#Student"></rdfs:domain>
<rdfs:range rdf:resource="#Subject"></rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="represents">
<rdfs:domain rdf:resource="#Student"></rdfs:domain>
<rdfs:range rdf:resource="#Country"></rdfs:range>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="has">
<rdfs:domain rdf:resource="#Student"></rdfs:domain>
<rdfs:range rdf:resource="#Name"></rdfs:range>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="means">
<rdfs:domain rdf:resource="#Subject"></rdfs:domain>
<rdfs:range rdf:resource="#SubjectName"></rdfs:range>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="contains">
<rdfs:domain rdf:resource="#Group"></rdfs:domain>
<rdfs:range rdf:resource="#Student"></rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="attends">
<owl:inverseOf rdf:resource="#contains">

</owl:inverseOf>

<owl:DatatypeProperty rdf:ID="hasTopic">
<rdfs:domain rdf:resource="#Group"></rdfs:domain>
<rdfs:range rdf:resource="#Topic"></rdfs:range>

</owl:DatatypeProperty>

<owlk:ICAssertion rdf:ID="Country_28">
<owlk:onClass rdf:resource="#Country"/>
<owlk:byProperty rdf:resource="#isKnownas"/>

</owlk:ICAssertion>
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<owlk:ICAssertion rdf:ID="Subject_35">
<owlk:onClass rdf:resource="#Subject"/>
<owlk:byProperty rdf:resource="#means"/>

</owlk:ICAssertion>

<owlk:ICAssertion rdf:ID="Student_18">
<owlk:onClass rdf:resource="#Student"/>
<owlk:byProperty rdf:resource="#represents"/>
<owlk:byProperty rdf:resource="#bestAt"/>

</owlk:ICAssertion>

<owl:Class rdf:about="#Student">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#has"/>
<owl:someValuesFrom rdf:resource="#Name"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Student">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#has"/>
<owl:maxCardinality rdf:datatype=
"http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
1</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Group">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasTopic"/>
<owl:maxCardinality rdf:datatype=
"http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
1</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="contains_hasTopic_108">
<rdfs:domain rdf:resource="#Student_Topic_107"></rdfs:domain>
<rdfs:range rdf:resource="#Group"></rdfs:range>

</owl:ObjectProperty>

<owl:Class rdf:about="#Student_Topic_107">
<rdfs:subClassOf>
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<owl:Restriction>
<owl:onProperty rdf:resource="#contains_hasTopic_108"/>
<owl:maxCardinality rdf:datatype=
"http://www.w3.org/2001/XMLSchema#nonNegativeInteger">
1</owl:maxCardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

<owlk:ICAssertion rdf:ID="Student_Topic_107_107">
<owlk:onClass rdf:resource="#Student_Topic_107"/>
<owlk:byProperty rdf:resource="#contains"/>
<owlk:byProperty rdf:resource="#hasTopic"/>

</owlk:ICAssertion>

</rdf:RDF>
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