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ABSTRACT 

 
Switched-Capacitor Converters (SCC) suffer from a fundamental power loss deficiency 

which make their use in some applications prohibitive. The power loss is due to the inherent 
energy dissipation when SCC operate between or outside their output target voltages. This 
drawback was alleviated in this work by developing two new classes of SCC providing binary 
and arbitrary resolution of closely spaced target voltages. Special attention is paid to SCC 
topologies of binary resolution. Namely, SCC systems that can be configured to have a no-load 
output to input voltage ratio that is equal to any binary fraction for a given number of bits. 

To this end, we define a new number system and develop rules to translate these numbers 
into SCC hardware that follows the algebraic behavior. According to this approach, the flying 
capacitors are automatically kept charged to binary weighted voltages and consequently the 
resolution of the target voltages follows a binary number representation and can be made higher 
by increasing the number of capacitors (bits). The ability to increase the number of target 
voltages reduces the spacing between them and, consequently, increases the efficiency when the 
input varies over a large voltage range. 

The thesis presents the underlining theory of the binary SCC and its extension to the 
general radix case. Although the major application is in step-down SCC, a simple method to 
utilize these SCC for step-up conversion is also described, as well as a method to reduce the 
output voltage ripple. In addition, the generic and unified model is strictly applied to derive the 
SCC equivalent resistor, which is a measure of the power loss. The theoretical predictions are 
verified by simulation and experimental results. 
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1. INTRODUCTION 

 

 

 

1.1 Background review 

 

 

The purpose of a DC-DC converter is to provide a predetermined and constant output 

voltage to a load from a poorly specified or fluctuating input voltage source. Linear regulators 

and switching converters are two common types of DC-DC converters. In a linear regulator the 

output current comes directly from the power supply, therefore the efficiency is approximately 

defined as the ratio of the output voltage to supply voltage. It is obvious that a worse efficiency 

will be obtained when the supply voltage is much larger than the output voltage. Switching 

converters are more efficient than linear regulators due to intercepted energy transfer. This is 

done by periodically switching energy storing components to deliver a portion of energy from 

the power supply to the output. Switching DC-DC converters (except for resonant converters) 

can be divided into two large groups: inductive and capacitive.  

The inductive converters using one or several inductors have been a power supply 

solution in all kinds of applications for many years due to the wide variety of possibilities in 

current and voltage requirements. Generally, the inductors in such a converter are bulky, not 

realizable on-chip and are the cause of two difficult problems. One problem are high voltage 

spikes that must be damped or recuperated otherwise, the switches which are not rated for such 

constraints can blow, while the rest of circuit can be damaged. The other problem with inductive 

converters is a pulsating input current, which can produce an electromagnetic interference (EMI) 

from other equipment and conductor lines. This interference may penetrate into susceptible 

devices and lead to unreliable operation. So, the pulsating input current requires a special filter 

and sometimes shielding. All these factors increase the board space and inductive converter cost.  

The capacitive converters based on switched capacitors are widespread in applications 

requiring small power and no isolation between input and output. They feature relatively low 

noise, minimal radiated EMI, and in most cases are fabricated as integrated circuits which have 

made capacitive converters popular for use in power management for mobile devices. An 

additional goal of such converters is the option for unloaded operation with no need for dummy 

loads or complex control. However, capacitive converters suffer from inherent power loss during 

charging and discharging of a capacitor connected in parallel with the voltage source or another 
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capacitor. Theory predicts that this power loss is proportional to the squared voltage difference 

taking place before the corresponding circuit has been configured. As a result, capacitive 

converters exhibit a rather high efficiency if the capacitors pre-charged to certain voltages are 

paralleled with components maintaining similar voltages. 

The most known type of capacitive DC-DC converter is called a charge pump; for 

historical reasons it is often considered to a step-up converter built from capacitors and diodes, 

which are used as switches. Nowadays, when charge pumps are built around transistor switches, 

their circuitry does not differ in principle from the step-down switched capacitor DC-DC 

converters. The cornerstone of both circuits is a reconfigurable array of switches and capacitors 

generally called “flying capacitors”. These capacitors are charged from the input voltage and 

then discharged to the load thus providing charge transfer and a constant output voltage.  

It is a well-known phenomenon that when a capacitive converter operates at the target 

output to input voltage ratios, the efficiency is high and may exceed 90%. This is due to the fact 

that, at these voltage ratios, the capacitors do not see appreciable voltage variations. When the 

same capacitive converter operates between or outside the target voltage ratios, the efficiency 

drops dramatically. Obviously, in practice one would expect the conversion ratio to change and 

hence there is no way to escape the losses. However, there are several "lossless" techniques to 

provide regulation of the output voltage. In most cases, these techniques change the rate at which 

the charge is transferred to the output and this leads to an increased output voltage ripple. In 

general, capacitive converters feature a set of discrete target voltage ratios that can be contrasted 

with the continuous transfer function of inductive converters. 

The down side of capacitive converters is the larger number of switches and respective 

drivers complicating the converter circuitry. Another problem of capacitive converters is a high 

inrush current during start-up that must be limited by soft-start circuitry.  
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1.2. Motivation and relevance 

 
 “Discontent is the first necessity of progress.”  

Thomas A. Edison  

 

Switched Capacitor Converters (SCC) suffer from a fundamental power loss which is a 

severe limitation because of the common requirement to regulate output voltage. The power loss 

is due to the inherent energy dissipation when a capacitor is charged or discharged by a voltage 

source or another capacitor [1-8]. Hence, SCC exhibit rather high efficiency only when operating 

at the target voltages at which the voltage differences that charge and discharge the capacitors 

are small. Earlier studies attempted to overcome the power loss by proposing SCC with an 

increased number of target voltages [9-14]. However, the common disadvantage of these SCC is 

that the target voltages are spread apart. 

It is thus evident that there is a need and it will be highly advantageous to design a SCC 

that has a large number of target voltages that are spaced at high resolution over the range of 

interest and thereby improve the efficiency. Another desired feature is a simple way to increase 

the resolution only by changing the control scheme. In addition, it would be desirable to obtain a 

smooth transition from one target voltage ratio to another. It is yet another demand to regulate 

the output voltage while maintaining high efficiency. It would also be desirable to provide low 

output voltage ripple over a wide range of target voltage ratios.  

This work presents the theory that underlines the operation of the multi-target SCC and 

allows one to design new SCC satisfying the above requirements. The theory is based on the 

redundancy of the positional number systems [38-42], which is used to develop two new SCC 

classes providing binary and arbitrary resolution of target voltages. In these new SCC classes, 

the flying capacitors are automatically kept charged to radix-r-weighted voltages, while the gap 

between neighboring target voltages is defined by the resolution. Both the radix and the 

resolution can be made higher by increasing the number of flying capacitors. 
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2. BASICS OF SWITCHED CAPACITOR CIRCUITS 

 

 

2.1 Transient and limitation of current spike 

 

“The immediate effect is likely to be what it's always been - a spike in violence.” 

Donald Rumsfeld  

 

The principle of a gradual change of energy in any physical system, and specifically in an 

electrical circuit, means that the energy stored in electric or magnetic fields cannot change 

instantaneously [1-3]. For the sake of simplicity, however, the assumption is made in transient 

analysis that the switching occurs quite instantaneously [4-8]. 

Let 0t  be the instant of time when switching starts, and two additional instants: just 

prior and just after switching be  0t  and  0t  respectively. In mathematical language, the 

value of the function )0( f  is the "limit from the left", as t approaches zero from the left, while 

)0( f  is the "limit from the right", as t approaches zero from the right. According to the above 

principle, the voltage (charge) of a capacitor just after switching is equal to the voltage (charge) 

just prior to switching: 

 
)0()0(   CC vv      (2.1.1) 

)0()0(   qq       (2.1.2) 

 

Defining an ideal switch as a zero-resistance device that gets opened or closed in zero 

time, we consider the charging circuit shown in Fig. 2.1.1(a), where the voltage source VS, the 

switch Sw and the capacitor C1 are ideal. When Sw is turned-on, the capacitor voltage v1 changes 

abruptly from zero to VS. In other words, the charging of C1 is accompanied by an infinitely high 

current pulse during an infinitesimal time. 

  

 

(a)                                       (b) 

Figure 2.1.1: Switched circuits including the ideal capacitors. 
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Using the above designations, we can write 0)0(1 v , SVv  )0(1  and )0()0( 11   vv  

which contradicts (2.1.1). In transient analysis, the last expression is called an incorrect initial 

condition for the chosen mathematical model of an ideal switched circuit. 

Consider now the switched circuit of Fig. 2.1.1(b), where the ideal switch Sw serves to 

discharge the ideal capacitor C1 pre-charged to the voltage SVv  )0(1  into another empty ideal 

capacitor C2. According to the law of charge conservation, the total charge on two capacitors C1 

and C2 connected in parallel is the sum of the initial charges SVCq 11 )0(   and 0)0(2 q , while 

the final voltages are: 

SV
CC

C
vv

21

1
21 )0()0(


       (2.1.3) 

 

So, the contradiction of )0()0(   CC vv  is observed again and, as in the previous case, 

the discharging of C1 will be accompanied by an infinitely high current pulse during an 

infinitesimal time. This contradiction can be refuted since any circuit with a real capacitor has in 

practice some resistance and inductance connected in series. The series inductance is generally  

and is neglected in present analysis.  

The infinite current spike is prevented in the switched circuits shown in Fig. 2.1.2, so that 

the initial conditions are correct. Note that such circuits may be composed by taking into 

consideration just the resistances of the connecting wires. 

 

 

(a)           (b) 

Figure 2.1.2: Switched circuits including the serial resistor. 

   

The charging circuit with the resistor is shown in Fig. 2.1.2(a), it is described by a first 

order differential equation because it comprises only one capacitor C1. So, the aim is to calculate 

the complete response of the first order circuit to the voltage step VS. According to the Kirchhoff 

Current Law )()( 1 titi CR  , this is: 

 
dt

tdv
C

R

tvVS )()( 1
1

1 


      (2.1.4) 
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Rearranging the above equation: 

dt
RCVtv

tdv

S 11

1 1

)(

)(



       (2.1.5)  

 

Now it can be simply integrated: 

Ddt
RCVtv

tdv

S


 

11

1 1

)(

)(
    (2.1.6) 

 

The integration of both sides yields: 

D
RC

t
Vtv S 

1
1 ])(ln[     (2.1.7) 

 

Since the time constant 1RC , 

tD
S eVtv )(1      (2.1.8) 

 

An initial voltage across C1 will be   

S
D VeVv  01 )0(      (2.1.9) 

 

So, the complete response is: 

)1()( 01
 t

S
t eVeVtv       (2.1.10) 

 

Note that the first term in (2.1.10) is the natural response, while the second term is the 

forced response. Both terms and the complete response were calculated in MathCAD and are 

presented in Fig. 2.1.3 together with the following current, which is limited by   RVVI S /00  . 

The time constant may be easily found from Fig. 2.1.3 by drawing a tangent line to the 

response curve at 0t . The intercept point of the tangent and the asymptotic limit projected to 

the time axis yields the time constant. The units of the time constant are seconds [τ] = Ω ·F, 

therefore it is considered as an interval during which the voltage drops (grows) relatively to its 

initial value. At the end of the τ interval, the voltage is 368.01 e  of its initial value, while at 

the end of 5τ the voltage ratio is less than 0.01. Because of this fact, it is usual to presume that 

the duration of the transient response is about 5τ. Note that, precisely speaking, the transient 

response declines to zero in infinite time, since 0te , when t . 
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v1(t) - voltage across C1
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i(t) - current through R
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up t( )
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Figure 2.1.3: Complete response of the charging circuit and its components. 

 

 When 5t , the voltage )(1 tv  is considered to be equal to the voltage SVv  )0(1  as in 

the ideal switched circuit shown in Fig. 2.1.1(a). The amount of charge transferred by an 

exponentially decaying current is equal to the product of its initial value and the time constant. 


0

0
0

0

0

0

|)()( IetIdteIdttiq tt 







    (2.1.11) 

 
 
 This result justifies using an impulse function δ to represent the very large, approaching 

infinity, magnitude of the current pulse, applied for a very short (approaching zero) time interval, 

whereas their product stays finite, as shown in Fig. 2.1.4. 

 

 

Figure 2.1.4: A large and fast decaying i(t) and an equivalent impulse. 
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 The other switched circuit with the resistor R is shown in Fig. 2.1.2(b) and serves to 

discharge the capacitor C1 (pre-charged to the voltage VS) and simultaneously to charge the 

empty capacitor C2. To find the voltages across these capacitors, consider a bi-directional current 

flow and compose two first-order differential equations: 

  

     

     













dt

tdv
RCtvtv

dt

tdv
RCtvtv

2
221

1
121

    or   
     

     













dt

tdv
RCtvtv

dt

tdv
RCtvtv

2
212

1
112

    (2.1.12) 

 

 Take the Laplace Transform of both systems: 

     
   







]1[

][

221

1121

RCssvsv

VsvsRCsvsv S    
     
     







tvsRCsvsv

VsvsRCsvsv S

2212

1112 ][
  (2.1.13) 

 

 The solutions in the Laplace domain are: 

 
 2121

2
21

1

1
)(

CCsCCRs

RCsVC
sv S




   2121
2

1
2 )(

CCsCCRs

VC
sv S


   (2.1.14) 

 

 Taking the Inverse Laplace Transform of both equations (2.1.14), we obtain the voltages 

in the time domain. To simplify the expressions we introduce the time constant 
21

21

CC

CC
R


  

since the current flows through serially connected capacitors. 

 

  tSS e
CC

VC

CC

VC
tv 







21

2

21

1
1     ]1[

21

1
2

tS e
CC

VC
tv 


    (2.1.15) 

 

while       tS e
R

V

R

tvtv
ti 


 21     (2.1.16) 

  
The boundary values are: 

 
R

V
Ii S 00        

21

1
11 lim

CC

VC
tvV S

t 



      

21

1
22 lim

CC

VC
tvV S

t 



  (2.1.17) 

 

It is evident from (2.1.16) that the asymptotic limits are the same voltages v1(0+) = v2(0+) 

as derived in (2.1.3) by using the charge conservation law. At the instant of switching, the 

current is limited by RVi S /)0(   and reaches 0.01 of this value at 5τ. 
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As follows from (2.1.14), the transient rates for C1 and C2 are different and defined by the 

time constants 1RC  and 2RC  respectively. Since in this particular case, C1 is pre-charged to VS, 

its discharging can be considered as the natural response, while the charging of empty C2 

matches the definition of a forced response. Both the voltages of (2.1.15) and the current through 

R given by (2.1.16) were calculated in MathCAD and depicted in Fig. 2.1.5. 

 

R 1 C1 10
6

 C2 2 C1 Vs 1 
C1 C2
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

C1 C2
 v2 t( )

C1 Vs 1 exp
t
















C1 C2
 i t( )

v1 t( ) v2 t( )

R

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v1(t) - voltage across C1 (natural response)
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Figure 2.1.5: Complete response of the discharging circuit and its components. 

 

 

  
 
 

 
 

 

 



 19

2.2 Inherent energy loss at voltage difference 

 

“In mathematics you don't understand things. You just get used to them.” 

John von Neumann 

 

 The transient in the switched circuits considered in the previous section is accompanied 

by either an infinitely high pulse or an exponentially decaying current. Energy is lost in both 

cases; however, in each case the nature of energy loss is different. In the first case of the ideal 

switched circuit, it is common to presume that the energy loss is radiation caused by the 

infinitely high current pulse. The other case is more close to practice because the current is 

limited by the series resistor, which is heated and dissipates energy. As known, the energy stored 

in the capacitor is: 

Q

V

C

QCV
E

222

22

       (2.2.1)  

 
 Consider again the charging circuit in Fig. 2.1.1 (a), where the ideal capacitor C1 is pre-

charged to the voltage V0 and holds an initial energy 22
010 VCE  . After C1 is charged 

instantaneously to VS, the final energy 22
11 SVCE   and the voltage difference 0VVV S  , its 

square  defines the energy loss:  

 
2

2
1

01

VC
EEE


      (2.2.2) 

  
The same energy is dissipated as heat when the capacitor C1 is charging through the 

resistor R as shown in Fig. 2.1.2(a). According to the Joule-Lenz law, the power is RIP 2  and 

its integrated value is the heating loss: 

     
22

2
1

2

0

22
0

VC

R

V
dteRIE t

h





 


      (2.2.3) 

 
 In the particular case when 00 V  the final energy E1 equals the dissipated (radiated) 

energy, therefore half of the energy delivered by the source is lost. This fact corresponds to the 

law of energy conservation and can be proved by taking the integral of the delivered power: 

 

2

0

11

0

1
1 S

V

SSd CVdvVCdt
dt

dv
CVE

S

 


    (2.2.4) 
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The above considerations can be applied to the ideal discharging circuit in Fig. 2.1.1(b), 

where the energy 21 CC EEE   because it is stored in both capacitors C1 and C2. The initial 

voltages across the capacitors are SVv  )0(1 , and 0)0(2 v , by substitution into (2.2.1) the 

initial energy 22
10 SVCE  . After the circuit has closed, the final energy is given by the voltages 

SV
CC

C
vv

21

1
21 )0()0(


   derived in (2.1.3), so that  21

2
1

1 2

)(

CC

VC
E S


 , while the energy loss: 

 

2

2

21

21
10

SV

CC

CC
EEE


      (2.2.5) 

  

As in the previous case this energy loss should be compared with the heating loss when 

the energy is dissipated by the resistor during current flow. The corresponding switched circuit is 

shown in Fig. 2.1.2 (b). Substituting (2.1.16) into the power integral we obtain: 

 

 
22

2

21

21
2

0

22
0

SSt
h

V

CC

CC

R

V
dteRIE


 


      (2.2.6) 

 

 So, the dissipated energy is equal to the energy loss found in (2.2.4) and caused by 

radiation, in the case of CCC  21  the loss will be 0

2

2

1

4
E

CV
EE S

h  . The more 

interesting situation is when C1 and C2 are pre-charged to different V1 and V2 respectively. 

The initial energy in this case 
22

2
22

2
11

0

VCVC
E  . To know the final energy we have to 

find new values of the final voltages using the charge conservation law: 

 

    2
21

2
1

21

1
21 00 V

CC

C
V

CC

C
vv





      (2.2.7) 

 

Substitution of these values into (2.2.1) yields  21

2
2211

1 2

)(

CC

VCVC
E




 . The energy loss will 

be again proportional to the squared voltage difference: 

 

 
2

2

21

21
10

V

CC

CC
EEE




     (2.2.8) 
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2.3 Target voltages and SCC equivalent circuit 

 

 

As mentioned above, SCC feature a set of discrete target voltages that can be contrasted 

with the continuous transfer function of inductor-based converters. This set of target voltages is 

closely related to the SCC efficiency over the full range of input voltages [26].  

The target voltage is the no-load output voltage and is equal to some multiple n of the 

input voltage. In general, n is a function of the number of flying capacitors and the way that they 

are connected to the input and output and among themselves. Such interconnections are called 

hereinafter "SCC topologies". So, the target voltage is independent of the values of the flying 

capacitors and determined only by SCC topology, while n can be a positive or negative rational 

number [11], [14], [18]. At each target voltage, the SCC efficiency reaches a maximum value 

and drops when the desired output voltage lies between or outside the target voltages. 

For example, the commercial SCC [12] operates at the fixed output voltage Vo = 1.8V 

and has two peaks of efficiency shown in Fig. 2.3.1. This SCC can be switched between two 

conversion ratios n = 1/2 and 2/3. 

 

 

Figure 2.3.1: The output characteristics of a commercial SCC. 

 

When the input voltage is lower than about 3.5V, the conversion ratio is set to n = 2/3 

and for input voltage above 3.5V it is switched to n = 1/2. Consequently, high efficiency is 

observed when the input voltage is about 2.7V (1.8/(2/3)) and at 3.6V (1.8/(1/2)). When the SCC 

operates between and outside these two target voltages, the efficiency drops as the difference 

between the output voltage and 1.8V increases. 

Any SCC can be modeled by an equivalent circuit that includes a voltage source VTRG and 

an internal resistance Req as depicted schematically in Fig. 2.3.2 [15-26]. 
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Figure 2.3.2: The SCC equivalent circuit. 

 

In the model presentation of Fig. 2.3.2, the power losses are conveniently described as a 

function of the load current which simplifies the formulation of the input to output voltage ratio 

as well as the efficiency: 

eqo

o

TRG

o

RR

R

V

V


       (2.3.1) 

 

inTRG nVV        (2.3.2) 

 

in

o

eqo

o

TRG

o

V

V

RR

R

nV

V
η 














1
     (2.3.3) 

 

It is clear, that the highest efficiency will be achieved if n is manipulated such that VTRG is 

made only slightly higher than the desired Vo, leaving a small voltage drop on Req. It is further 

clear that the best results can be obtained if the resolution by which n is altered is high and when 

its values are evenly spaced. Previous attempts to improve the efficiency by changing n on-the-

fly gave SCC configurations with a limited number of target voltages, namely with a coarse 

resolution of n. As a result, the efficiency drops significantly when the required n is in between 

the sparsely spread values of n. 

SCC can be operated in open loop or closed loop configurations. In the open loop case, n 

and Req are fixed. In this case, the output voltage will not be regulated and will depend on Vin and 

the load resistance Ro. In this situation, it is advantageous to reduce Req as much as possible to 

keep the efficiency high. Regulation can be achieved by either changing n or Req (or both) [11]. 

The no-load voltage can be changed by changing on-the-fly the SCC topology and hence 

altering n, while Req can be changed by adding resistance to the circuit e.g. by placing a linearly 

controlled MOSFET in the charging/discharging paths. Other possibilities to vary Req are 

frequency change, frequency dithering and duty cycle control [13], [14]. 
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2.4 Demystifying the Equivalent Resistor Issue 

 

“To improve is to change, to be perfect is to change often.” 

Winston Churchill 

 

In this section we derive the equivalent resistor expression for a simple case of voltage 

follower SCC depicted in Fig. 2.4.1, where R1 and R2 represent the “on” resistances of S1 and S2 

respectively, while ESR is the series loss component of the flying capacitor C. The analysis is 

based on the generic and unified average model [26], [54] and made under the assumption that 

the output capacitor Co is sufficiently large, so that the output voltage ripple is neglected. 

 

 

Figure 2.4.1: Voltage follower SCC. 

 

Two clocks φ1 and φ2 shown in Fig. 2.4.2 alternately turn on/off the corresponding 

switches S1 and S2. The clocks are non-overlapping due to a dead time p, so that the total “on” 

duration 21 ttTon   is smaller than the switching period Ts. During the interval t1 the capacitor 

C is charged by Vin through S1 and discharged to Vo during the interval t2 through S2. 

  

 

Figure 2.4.2: Two non-overlapping clocks φ1 and φ2. 

 

Let V1 and V2 be the initial voltages across the capacitor C at the instants just prior to its 

connection to the voltages Vin and Vo respectively. Since the initial voltages can be replaced by 

the voltage sources, the capacitor C is charged by 11 VVV in   during t1 and discharged to 

oVVV  22 during t2.  
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It is convenient to consider a generic charge/discharge circuit presented in Fig. 2.4.3, 

where VC is the initial voltage across the capacitor C and R is the total loop resistance (“on” 

resistance of the switch S plus the capacitor ESR). 

 

 

Figure 2.4.3: Generic charge/discharge circuit. 

 

The switch S remains turned on during tS, so that both the energy dissipated by R and the 

transferred charge can be found using RIVVV CS 0  and RCteIti  0)( . 
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Designating   CESRR

t
β




1

1
1  and   CESRR

t
β




2

2
2  we can relate the above results 

to the voltage follower SCC in Fig. 2.4.1. The energy losses for each interval t1 and t2 are: 
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CV
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  

 
)1(

2
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2
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βe

CV
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    (2.4.3) 

 

In the steady state, the charge transferred during t1 and t2 is the same: 

)1()1( 21
21

ββ eCVeCVQ        (2.4.4) 

 

Since the average current QfTQI ssav  , we can write 

)1()1( 21
21

β
s

β
sav eCVfeCVfI       (2.4.5) 

 

Rearranging the terms of (2.4.5) yields: 
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These voltage differences are substituted into (2.4.3), so that: 
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Because the total energy loss ER = E1 + E2, 
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Or after simplification: 
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The total average power loss sRsRT fETEP  , so that: 
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Comparing (2.4.10) with eqavT RIP  2 we conclude that the equivalent resistor is: 
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Employing the definition of x
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For the particular case of β1 = β2 = β, the general expression (2.4.12) is reduced to: 
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Assuming zero dead time and RCTs 2 , we can rewrite (2.4.13) as: 
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Consider an extreme case of (2.4.14) when 0β : 
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This seemingly surprising result has a simple explanation. In the circuit of Fig. 2.4.1 the 

momentary current during each switching phase is 2Io (to make the average current Iav = Io ), so 

that the losses are   RIRI oo 42 22  . 

An additional extreme case for (2.4.13) is β  that results in Req reduced to the well 

known expression: 
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To demonstrate how both the above limits (2.4.15) and (2.4.16) are reached we built the 

graphs of the corresponding terms  2coth β  and  2coth β  as depicted in Fig. 2.4.4. 
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Figure 2.4.4: Functions  2coth β  and  2coth β . 

 

It is evident that for β ≈ 5, the term   12coth β . This fact can be simply explained 

since the time constant τ = RC, β = t/τ and the transient is quite finished after t = 5τ. Thus, 

(2.4.16) corresponds to the case of full charging/discharging of the flying capacitors. On the 

other hand, when 0 , the term   2coth β , while   22coth  β . Since (2.4.14) is 

written under the assumption of RCTs 2 , where 0sT , for 0  we need  . 

In practice, R is relatively small and one can get   with sufficiently large flying 

capacitors. So, (2.4.15) corresponds to the case of partial charging/discharging while the current 

through R is constant. 
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3. PROPOSED CLASS OF SCC WITH BINARY RESOLUTION 

 

 

 

3.1 Extended Binary (EXB) Representation 

 
“It is through science that we prove, but through intuition that we discover.”  

Jules H. Poincare 

 

As mentioned above, the total SCC efficiency over the full range of input voltages can be 

improved by increasing the number of target voltages. In order to design a step-down SCC with 

closely spaced multiple target voltages, we have developed an Extended Binary (EXB) 

representation. According to this approach, the flying capacitors are automatically kept charged 

to binary weighted voltages and, consequently, the resolution of the target voltages is binary. The 

resolution can be made higher by increasing the number of flying capacitors.  

  

For the resolution n, consider a set of fractions Mn in the range (0, 1) with odd 

numerators 1, 3, …, 2n – 1 and denominator 2n. Any fraction Mn can be represented in the form: 

 

j
j

n

j
n




 2AAM

1
0      (3.1.1)  

  
 where A0 can be either 0 or 1, and Aj can take any of three values -1, 0, 1. 

 The expression (3.1.1) defines the Extended Binary (EXB) representation, which differs 

from its conventional binary counterpart since Aj can be -1. Because of the three values -1, 0, 1 

for Aj, the EXB representation is akin to binary signed-digit (BSD) representation of integer 

numbers, for example: 

5 = 0 + 4 + 2 − 1 → {0  1  1 -1} 

5 = 8 − 4 + 0 + 1 → {1 -1 0 1}     (3.1.2) 

5 = 8 + 0 − 2 − 1 → {1 0 -1 -1} 

  

 As seen from (3.1.2), the BSD representation for a given integer is not unique and this 

property is used mostly for carry-save fast computer arithmetic. We have modified the BSD 

representation for fractions Mn limited in the range (0, 1). As a result, the coefficient A0 in the 

EXB representation (3.1.1) is not allowed to be “1”. 
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 Because of the redundancy that comes from the BSD representation, any fraction Mn can 

be represented by a number of EXB codes, for example:   

  

1} - 1- 0  {1 

1}  0  1- {1 

1}- 1  1  {0

 

 

   







32

31

321

220185

202185

222085

--

--

---

     

     

  

   (3.1.3)  

 

 In the next section we provide a simple procedure to spawn all the EXB codes for a given 

fraction Mn. This procedure will be followed by a number of corollaries, which are crucial to 

define and explicate the operation of the EXB based SCC. 
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3.2 Spawning the EXB codes and its corollaries 

 

“Get your facts first then you can distort them as you please.” 

 Mark Twain 

 

 In order to generate all the EXB codes corresponding to a given fraction Mn within the 

range (0, 1), we use a procedure that involves adding and subtracting the coefficient Aj = 1 to the 

conventional binary code of Mn.  

 
Spawning the EXB codes. This procedure is iterative and starts from any Aj = 1 in the 

conventional binary code of Mn. Adding “1” to this Aj results in “0” and “1” from the left as the 

carry. To maintain the value of Mn we subtract “1” from the obtained Aj, and spawn thereby a 

new EXB code. The procedure repeats for all Aj = 1 in the original code and for all Aj = 1 in 

each spawned EXB code. 

In example (3.2.1), four alternative EXB codes are spawned from the conventional binary 

code of M3 = 3/8. The EXB codes for other fractions Mn with the resolution n = 1…3 are 

summarized in Table 3.2.1. 

1- 0  1  0   
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0  0  1  0 

  0  0  0 
1  1  0  0 
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

            
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1  1- 1- 1   

000 
1  1- 0  1 
0  0    0 
1  1- 1  0 

     1-

1





            

     
3-2-1-0 2222    

 (3.2.1) 

 
Corollary 1: For the resolution n, the minimum number of EXB codes is n + 1.  

 This is because each of the “1”s in the conventional binary code with resolution n 

generates a new EXB code and a carry. Further iterations cause the carry to propagate, so that 

each “0” in the conventional binary code is turned to “1”, which is also operated on to spawn a 

new code. So, the minimum number of codes is the original code plus n that is, n + 1.  

  
 Corollary 2: Each Aj = 1 in either the conventional binary or spawned EXB code yields at least 

one Aj = -1 in the same position j of another EXB code. 

 This is because the spawning procedure involves subtracting “1” from Aj = 0. 

  

 Both the above corollaries are very important and, as detailed in the following, provide 

the self-adjusting target voltage Mn·Vin at the output of the EXB based SCC, irrespectively of the 

values of the used capacitors. 
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Table 3.2.1: The EXB codes of Mn, n = 1…3. 

M3 = 1/8 M2 = 2/8 M3 = 3/8 M1 = 4/8 

A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3 

1 -1 -1 -1 1 -1 -1 0 1 -1 0 -1 1 -1 0 0 
0 1 -1 -1 0 1 -1 0 0 1 0 -1 0 1 0 0 
0 0 1 -1 0 0 1 0 1 -1 -1 1     
0 0 0 1     0 1 -1 1     
        0 0 1 1     

 
Table 3.2.1: cont’d.  

M3 = 5/8 M2 = 6/8 M3 = 7/8 

A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3 

1 0 -1 -1 1 -1 1 0 1 0 0 -1 
1 -1 1 -1 1 0 -1 0 1 0 -1 1 
0 1 1 -1 0 1 1 0 1 -1 1 1 
1 -1 0 1     0 1 1 1 
0 1 0 1         
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3.3 Combinatorial method to obtain EXB codes 

 

 “The true delight is in the finding out rather than in the knowing.” 

Isaac Asimov 

 

Due to the spawning procedure described in the previous section, we have derived 

important properties of the EXB codes. However, from the viewpoint of performance, this 

procedure is slow because each EXB code of Mn is obtained by the series, digit-by-digit adding 

and subtracting the coefficient Aj = 1. The alternative combinatorial method proposed in this 

section is parallel, and therefore faster than the previous one. 

According to the definition, the EXB representation of Mn contains n coefficients Aj, 

which can take any of three values: -1, 0, 1. We consider all combinations of these values 

arranged at n positions as a matrix M of 3n rows by n columns. This matrix is obtained by the 

full factorial design, where each level is 3, and the number of levels is n. Note that M defines the 

representations of the numbers 
2

13
 , ,

2

31  nn

  in the balanced ternary number system.  

For the sake of an exact integer calculation, we multiply both the sides of the EXB 

formula (3.1.1) by 2n. As a result each EXB weight j2  is replaced by jn2  and we have n 

powers of two, which compose a column-vector K of length n. Multiplying the matrix M by this 

vector yields a column-vector F of length 3n. To indicate A0 = 0 and A0 = 1 in the EXB codes 

we introduce a column-vector B of the same length. The positive elements of the vector F 

correspond to A0 = 0 and transferred to the vector B as zeros, while the negative elements 

correspond A0 = 1 and transferred as ones. 

We complete the negative elements of the vector F to the positive by adding 2n and 

obtain a column-vector F’. So, this vector will contain 3n elements, which are the numerators 

12 , ,1  nm   of all Mn. The search for certain m results in several row indexes, while the 

same rows of B and M compose the EXB codes for given Mn. 

For the resolution 3n , this combinatorial method is demonstrated step-by-step in the 

following, while the full factorial design matrix and the used vectors are shown in Fig. 3.3.1.  

1) All combinations of -1, 0, 1 in 3 positions are given by the full factorial design 

matrix M of 33 rows by 3 columns obtained with the MATLAB command fullfact([3 3 3])–2.  

2) The column-vector K = [4; 2; 1], so that the product of M and K is the column-vector 

F of length 33 comprising the numbers from 1 – 23 through 23 – 1.  

3) The positive numbers of the vector F are transferred to the vector B as zeros, while the 

negative numbers are transferred as ones.  
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4) At the same time the negative numbers in F are completed to the positive by adding 23, 

so that the completed vector F’ contains the numbers from 0 through 23 – 1. 

 5) Since F’ contains 33 elements, any of m = 1, …, 23 – 1 appears in F’ more than once, 

and search for certain m results in several row indexes. The same rows of B and M compose the 

EXB codes for given Mn (n = 1…3). Such a gathering is demonstrated in Fig. 3.3.1, where m = 3 

that corresponds to M3 = 3/8. 

Comparing the obtained codes with the codes presented in Table 3.2.1 we conclude that 

the combinatorial method yields the same result as the procedure spawning the EXB codes. 
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Figure 3.3.1: Full factorial design EXB matrix of size 27×3 and used vectors. 
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3.4 Translating the EXB codes to SCC topologies 
 

 

For certain EXB fraction Mn, we consider a step-down SCC system that includes a 

voltage source Vin, a set of n flying capacitors Cj and an output capacitor Co connected in parallel 

with the load Ro. These components are connected in accordance with the EXB codes of Mn in 

such a way that Co is continuously charged. In particular, the EXB coefficient A0 is responsible 

for the connection of Vin, while the connection of each flying capacitor Cj is determined by the 

EXB coefficient Aj. Irrespective of the connection of Vin the flying capacitors Cj are always 

connected serially. To configure the EXB based SCC topologies we use the following rules: 

 

1) If A0 = 1, then Vin is connected. 

2) If A0 = 0, then Vin is not connected. 

3) If Aj = -1, then Cj is charged. 

4) If Aj = 0, then Cj is not connected. 

5) If Aj = 1, then Cj is discharged.  

 

As an example we translate all the EXB codes of M3 = 3/8 presented in Table 3.4.1 to the 

corresponding SCC topologies. Since the resolution n = 3 we need three flying capacitors C1, C2 

and C3, the serial connection of which is determined by A1, A2 and A3 respectively. Thus, each 

EXB code of M3 = 3/8 leads to a specific SCC topology as depicted in Figure 3.4.1.  

 
Table 3.4.1.  

 

        
 

          
 

Figure 3.4.1: SCC topologies configured from the EXB codes of M3 = 3/8. 

M3 = 3/8 

A0 A1 A2 A3 

1 -1 -1 1 
0 1 -1 1 
1 -1 0 -1 
0 1 0 -1 
0 0 1 1 {1 -1 -1  1} {0  1 -1  1} 

{1 -1  0 -1} {0  1  0 -1} {0  0  1  1} 
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We assume that in each SCC topology of Fig. 3.4.1, the flying capacitors C1, C2 and C3 

keep the voltages V1 = 2-1·Vin, V2 = 2-2·Vin and V3 = 2-3·Vin respectively. Multiplying Vin and these 

voltages by the corresponding coefficients A0, A1, A2 and A3 in the EXB codes of M3 = 3/8, we 

find their algebraic sum, which is equal to the target voltage Vo = 3/8·Vin. 

Generally, translating all the EXB codes of certain Mn to the SCC topologies, we ought to 

obtain the target voltage Vo = Mn·Vin, under the condition that each flying capacitor Cj keeps the 

voltage Vj = 2-j·Vin. In the following we show that all the voltages in the EXB based SCC are 

self-adjusting to the above specified values and this property is due to Corollaries 1 and 2 of the 

procedure for spawning the EXB codes.  
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3.5 Self-adjusting voltages in the EXB based SCC 

 
“Make everything as simple as possible, but not simpler.” 

Albert Einstein 

 

In this section we consider the EXB based SCC under the assumption that in each SCC 

topology all the capacitors voltages remain constant but of unknown values. Applying 

Kirchhoff’s Voltage Law (KVL) to w different SCC topologies we compose a system of w linear 

equations. If this system has a unique solution, we obtain the target and binary weighted voltages 

across the output and flying capacitors respectively. 

 
The KVL states that the algebraic sum of all voltages around any closed path in a circuit 

is zero. Any SCC topology is a closed path circuit because the flying capacitors are charged and 

discharged thus providing charge transfer. The output voltage of the SCC is assumed to be 

constant and the KVL is applied to the voltages across the capacitors engaged in a SCC topology. 

 First we consider the simplest voltage halving SCC defined by M1 = 1/2. The topologies 

of this SCC are depicted in Fig. 3.5.1, where C1 and Co keep the voltages V1 and Vo respectively. 

 

  
Figure 3.5.1: Topologies of the voltage halving SCC. 

 

The system of linear equations for both topologies of Fig. 3.5.1 is: 

 








o

oin

VV

VVV

1

1      (3.5.1) 

 

The solution of (3.5.1) is trivial:   ino VVV
2

1
1        (3.5.2) 

 

Generally, a system of equations for the EXB based SCC may be composed directly from 

the corresponding EXB codes. As an example, we show that the EXB codes of M3 = 3/8 lead not 

only to the SCC topologies of Fig. 3.5.2, but also to the system (3.5.3).  

{0  1} {1 -1} 
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Figure 3.5.2: SCC topologies configured from the EXB codes of M3 = 3/8. 
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The number of equations in (3.5.3) is identical to the number w of all the EXB codes of 

M3 = 3/8 and equals to 5, while the number of unknowns is equal to 4 and defined as the 

resolution n = 3 plus one. Grouping the unknowns in (3.5.3) at the left hand side yields: 

 





















00

00

0

0

32

31

31

321

321

o   

o  

ino

o   

ino

VVV 

VV V

VVVV

VVVV

VVVVV

     (3.5.4) 

 

The system of equations (3.5.4) contains two non-zero free terms as the negative value of 

Vin. Generally, the connection of Vin is provided by Corollary 1 of the procedure spawning the 

EXB codes as follows. Consider the conventional binary code of Mn, where the coefficient Aj 

takes either “1” or “0”. Due to Corollary 1, the case Aj = 0 is turned to Aj = 1, which is used to 

generate the coefficient A0 = 1 responsible for the connection of Vin. 

So, the EXB based SCC is described by a system of linear equations which contains at 

least one non-zero free term. In linear algebra, such a system is called non-homogeneous. 

{1 -1 -1  1} {0  1 -1  1} 

{1 -1  0 -1} {0  1  0 -1} {0  0  1  1} 
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Returning to (3.5.4) we normalize it to Vin: 
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where 

  

ino

in

in

in

VVx

VVx

VVx

VVx






4

33

22

11

       (3.5.6) 

 

The conventional brief notation for (3.5.5) is Ax = b, where 
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In order to investigate the solvability of (3.5.5) we supplement the coefficient matrix A 

with the vector b and form thereby the augmented matrix A1:  
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A1                           (3.5.8) 

 

According to the Kronecker-Capelli theorem [31], [36], a non-homogeneous system has 

at least one solution if and only if the rank of its coefficient matrix A is equal to the rank of its 

augmented matrix A1. This theorem has a corollary that specifies the number of solutions. 

The solution is unique if and only if the rank the augmented matrix A1 equals the number 

of unknowns. If the rank of A equals the rank of A1, but is less than the number of unknowns, 

the system has an infinite number of solutions. If, on the other hand, the rank of A1 is greater 

than the rank of A, the system has no solutions. 
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Note that the rank of any matrix is equal to the row rank and equal to the column rank, 

and as a consequence, the maximum number of linearly independent rows of a matrix is equal to 

the maximum number of its linearly independent columns. 

For the resolution n the number of columns in the matrix A is n + 1, while the number of 

rows is provided by Corollary 1 to be w ≥ n + 1. According to the above theorem we conclude 

that the rank of A as well as the rank of A1 must be equal to n + 1, which is exactly the number 

of unknowns. So, we have to prove rigorously that the procedure spawning the EXB codes 

provides exactly n + 1 linearly independent rows (or columns) in both the matrices A and A1. 

From a practical point of view the EXB based SCC with high resolution n > 16 will be 

very expensive for realization and therefore we suppose 1 ≤ n ≤ 16. For each n we calculated the 

rank of A and the rank of A1 numerically in MATLAB, and ensured that the procedure spawning 

the EXB codes leads to a system from n + 1 linearly independent equations, while its unique 

solution is Mn. Giving a rigorous theoretical proof of this for any n is planned for future work.  

 
In the case of system (3.5.5), the rank of A is 4, which is equal to the rank of A1 and 

equal to the number of unknowns. Thus, system (3.5.5) has a unique solution and comprises one 

redundant equation. Solving (3.5.5) in the form x = A−1b we obtain: 
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Since solution (3.5.9) is unique, the voltages Vj (j = 1…3) across the flying capacitors Cj 

are self-adjusting to the specified values of 2-j·Vin, so that there is no need for any closed loop 

control scheme [48-50] to assure that these voltages are reached and hence the output will always 

self stabilize to the expected target voltage Vo = 3/8·Vin. 

Generally, for a given EXB fraction Mn with resolution n, there are two ways to provide 

the self-adjusting voltages Vj = 2-j·Vin (j = 1…n) and Vo = Mn·Vin. One way is to configure only 

those SCC topologies, which correspond to n + 1 linearly independent equations. The other way 

is to introduce redundant SCC topologies in addition to the n + 1 mentioned above. 

By configuring these w ≥ n + 1 different SCC topologies periodically we provide 

continuous charge transfer and, consequently, current flow through the load. An intuitive 

explanation for this is that while the topologies change each flying capacitor goes through a 

sequence of charge and discharge. This is assured by Corollary 2 of the procedure spawning the 

EXB codes, which states that for each “1” in the EXB code there is at least one “-1” in the same 
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position. This means that the theory predicts that in the EXB based SCC, all capacitors are going 

through the sequence of charge and discharge.  

According to the number w of different SCC topologies we introduce the same number w 

of time intervals tk, where k = 1, …, w. During the interval tk, the corresponding k-th topology 

does not change and repeats as depicted conceptually for Mn = 3/8 in Fig. 3.5.3 with a period 





w

k
ktT

1
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Figure 3.5.3: The perpetual EXB sequences of the SCC with M3 = 3/8. 

 

Irrespective of the order in which the topologies repeat, the voltages Vj and Vo eventually 

reach and stay at  the specified values of 2-j·Vin and Mn·Vin even if the SCC starts with zero or 

arbitrary voltages across the capacitors or when it is subjected to a disturbance. Due to this 

property, the EXB based SCC can be considered to be hardware for solving a system of linear 

equations by an iterative method. 
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3.6 Method to reduce output voltage ripple 

 

“To every action there is always opposed an equal reaction.”  

 Isaac Newton 

 

Output voltage ripple in the EXB based SCC can be reduced when the charging and 

discharging of each flying capacitor Cj are interleaved. Since the connection polarity of Cj is 

determined by the sign of coefficient Aj, we can form an alternating sequence of EXB codes, 

where the sign of the next Aj is opposite to the previous one. Evidently, a significant ripple 

reduction can be achieved by a balanced sequence, where the alternating nonzero coefficients Aj 

are spaced with a constant number of zeros. As shown in the following, the balanced sequence 

can be formed by replicating some of the EXB codes. 

For the sake of an exact integer calculation, we multiply each EXB weight j2  by 2n and 

compose a row-vector Y of length n. The elements of Y can represent the numbers from 1 

through 12 n  in accordance with conventional binary codes. We consider these codes as a 

matrix B of two level full factorial design created in MATLAB with the command B = ff2n(n), 

where n is the number of columns. Multiplying B and Y element-by-element yields the weight 

matrix U. To introduce Aj = ± 1 we use the same binary matrix B as exponent the for -1 and 

obtain thereby a sign matrix P. 

Having two matrices U and P we find their product M of size nn 22  , each column of 

which contains the numbers from n21  through 12 n . The negative elements of M are 

completed to the positive by adding 2n, so that each column of M will comprise the numbers 

from 1 through 12 n . For each number, we have 8 pairs of indices ] ,[ ji  corresponding to the 

rows of Y and P. Multiplying these rows element-by-element yields the balanced sequence. 

For the resolution n = 3, the matrices U and P are given in Table 3.6.1 and Table 3.6.2 

respectively, while the balanced sequences are presented in Table 3.6.3. 

 

Table 3.6.1.         Table 3.6.2. 
 

 

 

  

 

 

 

P3 P2 P1

1 1 1 
-1 1 1 
1 -1 1 

-1 -1 1 
1 1 -1 

-1 1 -1 
1 -1 -1 

-1 -1 -1 

U3 U2 U1 
0 0 0 
1 0 0 
0 2 0 
1 2 0 
0 0 4 
1 0 4 
0 2 4 
1 2 4 
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Table 3.6.3: Balanced EXB sequences for Mn, n = 1…3.  

M3 = 1/8 M2 = 2/8 M3 = 3/8 M1 = 4/8 
№ 

A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3

1 0 0 0 1 0 0 1 0 0 0 1 1 1 -1 0 0 
2 0 0 1 -1 0 1 -1 0 0 1 0 -1 0 1 0 0 
3 0 0 0 1 0 0 1 0 1 -1 -1 1 1 -1 0 0 
4 0 1 -1 -1 1 -1 -1 0 0 1 0 -1 0 1 0 0 
5 0 0 0 1 0 0 1 0 0 0 1 1 1 -1 0 0 
6 0 0 1 -1 0 1 -1 0 1 -1 0 -1 0 1 0 0 
7 0 0 0 1 0 0 1 0 0 1 -1 1 1 -1 0 0 
8 1 -1 -1 -1 1 -1 -1 0 1 -1 0 -1 0 1 0 0 

 
Table 3.6.3: cont’d. 

M3 = 5/8 M2 = 6/8 M3 = 7/8 
№ 

A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3 
1 1 0 -1 -1 1 0 -1 0 1 0 0 -1 
2 1 -1 0 1 1 -1 1 0 1 0 -1 1 
3 0 1 1 -1 1 0 -1 0 1 0 0 -1 
4 1 -1 0 1 0 1 1 0 1 -1 1 1 
5 1 0 -1 -1 1 0 -1 0 1 0 0 -1 
6 0 1 0 1 1 -1 1 0 1 0 -1 1 
7 1 -1 1 -1 1 0 -1 0 1 0 0 -1 
8 0 1 0 1 0 1 1 0 0 1 1 1 

 

Comparing Table 3.6.3 with Table 3.2.1 which contains all the EXB codes of the same 

Mn, we conclude that each balanced sequence can be formed by replicating and further arranging 

these EXB codes. Since the sign of each Aj (j >0) in Table 3.6.3 alternates, the charging and 

discharging of each flying capacitor Cj are interleaved and this reduces output voltage ripple. 

Moreover, due to a constant number of zeros spacing nonzero Aj the ripple reduction will be 

significant.  
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3.7 The EXB based SCC in step-up mode 

 

“Algebra is generous; she often gives more than is asked of her.” 

Jean le Rond d'Alembert 

 

In this section, we demonstrate how the step-down EXB based SCC can be utilized for 

step-up conversion. Considering the fact that system (3.5.3) describing the step-down SCC with 

M3 = 3/8 is solvable it should also be solvable if the indices of Vo and Vin are interchanged. Such 

a manipulation leads to the system (3.7.1) and from the hardware viewpoint means switching the 

input and output of the step-down SCC as depicted in Fig 3.7.1. 
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The solution of (3.7.1) is: 
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Figure 3.7.1: Topologies of the step-up SCC reciprocal to the case of M3 = 3/8. 
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Generally, the conversion ratios of the step-up EXB based SCC with resolution n are 

reciprocal to their step-down counterparts Mn and defined by a set of fractions with numerator 2n 

and denominators 1, …, 2n – 1. These fractions have no resolution in the common sense and 

behave as 1/x. For n = 1…5, the step-up conversion ratios 1/Mn are depicted in Fig. 3.7.2. 
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Figure 3.7.2: Step-up conversion ratios 1/Mn, n = 1…5. 

 

Note that the highest conversion ratio in this SCC embodiment is equal to 2n. Although a 

number of step-up SCC with the conversion ratio 2n have been proposed earlier [43–46], [52] 

there is no published report of a SCC with intermediate binary conversion ratios. 
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3.8 Some investigations into redundancy 

 

“Perfection is achieved, not when there is nothing more to add, 

 but  when there is nothing left to take away.”  

Antoine de Saint Exupery 

 

As shown above, for the EXB fraction with resolution n, we can spawn w ≥ n + 1 codes, 

which are translated to w different SCC topologies. Applying the KVL to these topologies yields 

a system of w linear equations with n + 1 unknowns. Since the self-adjusting voltages correspond 

to a unique solution of this system, the number of linearly independent equations in the system 

must be n + 1. Thus, we have w – n – 1 redundant equations, which can be eliminated as well as 

the corresponding SCC topologies. 

For the system written in matrix form we can apply the conventional Gaussian or Gauss-

Jordan elimination. However, these methods modify the coefficient matrix, while the aim is to 

point out its linearly dependent rows. It is also desirable to obtain the expression for each 

redundant row, which can be produced by more complicated methods [34], [35] that use a 

memory matrix and special pivoting technique. Any nonzero matrix A can be reduced by 

Gaussian elimination to an infinite number of row echelon forms by using different sequences of 

row operations. However, all row echelon forms of A correspond to exactly one matrix, which is 

called the reduced row echelon form and obtained by Gauss-Jordan elimination.  

The proposed method to identify dependent rows of the coefficient matrix A is based on 

the fact that the row space of A is the column space of its transposed counterpart A', while the 

rank of both matrices is the same. 

For example: the EXB based SCC with conversion ratio M3 = 3/8 is described by the 

system Ax = b, where: 
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Transposing A yields: 
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Subjecting A' to Gauss-Jordan elimination we obtain its reduced row echelon form: 
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Let us consider in F the columns where "1" is leading; their indices correspond to the 

indices of independent rows of A. These rows can be identified simply when the matrix F is 

taken by absolute value and then summed over the columns. The resulting vector s will comprise 

elements greater than one (3.8.4), while their indices will be the indices of dependent rows of A.  

 

 1    3    1    1    1s      (3.8.4) 

   

The only element in (3.8.4) that is greater than one is 3 which has index 4, so the fourth 

row of A can be safely eliminated. 

 

Since the flying capacitors in the EXB based SCC are always connected in series, the 

charge delivered in each SCC topology depends on the number of nonzero coefficients Aj in the 

corresponding row of A. Sorting the rows of A by the number of zeros in descending order 

before executing the above elimination procedure allows one to reduce both the adjustment 

duration and the equivalent resistor (detailed in the following).  
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4. PROPOSED CLASS OF SCC WITH ARBITRARY RESOLUTION 

 

 

 
4.1 Generic fractional (GFN) representation 

 

 
In the above proposed EXB based SCC, the number of target voltages is dependent on 

the resolution n and equal to 12 n . At each target voltage, the SCC efficiency reaches a 

maximum value. However, the efficiency drops when the desired output voltage lies between or 

outside the target voltages. This drawback can be alleviated by increasing the resolution n and, 

consequently, the number of flying capacitors. Another approach is to introduce one or several 

additional target voltages between neighbor EXB target voltages at the same number of flying 

capacitors. 

In order to realize this approach we have developed a Generic Fractional Number (GFN) 

representation, where the radix is not restricted by 2 as in the EXB representation, but can take 

an arbitrary integer value. In the GFN based SCC, the voltages across the flying capacitors are 

defined by the corresponding powers of the radix, while the resolution determines the gap 

between neighboring GFN target voltages. Both the radix and the resolution can be made higher 

by increasing the number of flying capacitors. 

For the resolution n and the radix r, consider a set of fractions Nn(r) in the range (0, 1) 

with numerators 1, 2, …, rn – 1  and denominator rn. Any fraction Nn(r) can be represented in the 

next form: 
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j

j
jn rr

1
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 where r is an integer greater than one, A0 can be either 0 or 1, and Aj can take any of the 

values: -(r-1), …, -1, 0, 1, …, (r-1). Expression (4.1.1) defines the Generic Fractional 

Numbers (GFN) representation, which differs from the conventional high-radix representations 

(e.g. decimal) since Aj can be negative. Because Aj can take any of the values 1−r, …, r−1, the 

GFN representation is akin to the Generalized Signed Digit (GSD) representation, for example: 

 

5 = 1·32 − 1·31 − 1·30 → {1 -1 -1} 

5 = 0·32 + 2·31 − 1·30 → {0  2 -1}     (4.1.2) 

5 = 1·32 − 2·31 + 2·30 → {1 -2  2} 
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 As seen from (4.1.2), the GSD representation for a given integer is not unique and this 

property is used mostly for carry-save fast computer arithmetic. We have modified the GSD 

representation for the fractions Nn(r) limited in the range (0, 1). As a result, the coefficient A0 is 

not allowed to be “-1”. Because of the redundancy coming from the GSD representation, any 

Nn(r) can be represented by a number of GFN codes, for example N2(3) = 5/9: 
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 In the next section, we provide a simple procedure to spawn all the GFN codes for a 

given fraction Nn(r). This procedure will be followed by a number of corollaries, which are 

crucial to define and explain the operation of the GFN based SCC. 
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4.2 Spawning the GFN codes and its corollaries 

 

  

 As mentioned above, the GFN code of Nn(r) with non-negative coefficients Aj is identical 

to the representation of Nn(r) in the conventional number system with radix r. This code is called 

hereinafter the original code. In order to generate all the GFN codes corresponding to a given 

GFN fraction Nn(r) within the range (0, 1), we use a procedure that involves adding and 

subtracting the coefficient Aj = r – 1 to the original code. 

  
Spawning the GFN codes. This procedure is iterative and starts from any Aj > 0 in the 

original code of Nn(r). Adding r – 1 to this Aj results in Aj < r – 1 and “1” from the left as the 

carry. To maintain the value of Nn(r), we subtract r – 1 from the obtained Aj, and spawn thereby 

a new GFN code. The procedure repeats for all Aj > 0 in the original code and for all Aj > 0 in 

each spawned GFN code. 

In example (4.2.1), three alternative GFN codes are spawned from the original code of 

N2(3) = 4/9. The GFN codes for other Nn(3) where n = 1, 2 are summarized in Table 4.2.1. 
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Corollary 1: For resolution n, the minimum number of GFN codes is 1n .  

 This is because each of the Aj > 0 in the original code with resolution n generates a new 

GFN code and a carry. Further iterations cause the carry to propagate, so that each “0” in the 

original code is turned to “1”, which is also operated on to spawn a new GFN code. So, the 

minimum number of GFN codes is the original code plus n that is, 1n .   

  
Corollary 2: Each Aj > 0 in either the original or the GFN code yields at least one Aj < 0 in the 

same position j of another GFN code. This is because the spawning procedure involves 

subtracting r – 1 from Aj < r – 1. 

 

 Both the above corollaries are very important and, as detailed in the following, provide 

the self-adjusting target voltage Nn(r)·Vin at the output of the GFN based SCC, irrespectively of 

the values of the capacitors used. 
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Table 4.2.1: The GFN codes of Nn(3), n = 1, 2. 

N2(3) = 1/9 N2(3) = 2/9 N1(3) = 3/9 N2(3) = 4/9 

A0 A1 A2 A0 A1 A2 A0 A1 A2 A0 A1 A2 

1 -2 -2 1 -2 -1 1 -2 0 1 -1 -2 
0 1 -2 0 1 -1 0 1 0 0 2 -2 
0 0 1 0 0 2    1 -2 1 
         0 1 1 

 
Table 4.2.1: cont’d. 

N2(3) = 5/9 N1(3) = 6/9 N2(3) = 7/9 N2(3) = 8/9 

A0 A1 A2 A0 A1 A2 A0 A1 A2 A0 A1 A2 

1 -1 -1 1 -1 0 1 0 -2 1 0 -1 
0 2 -1 0 2 0 1 -1 1 1 -1 2 
1 -2 2    0 2 1 0 2 2 
0 1 2          
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4.3 Combinatorial method to obtain the GFN codes 

 

 

Due to the spawning procedure described in the previous section, we have derived the 

important properties of the GFN codes. However, from the viewpoint of performance, this 

procedure is slow because each GFN code of Nn(r) is obtained by the series, digit-by-digit, 

adding and subtracting the coefficient Aj = r – 1. The alternative combinatorial method proposed 

in this section is parallel and therefore faster than the previous one. 

In accordance with the above definition, the GFN representation of Nn(r) contains n 

coefficients Aj, which takes any of 12 r  values: 1−r, …, r−1. We consider all combinations 

of these values arranged at n positions as a matrix M of nr 1)(2   rows by n columns. This 

matrix is obtained by a full factorial design, where each level is 12 r , and the number of levels 

is n. Note that M defines the representations of the numbers 
2

11)2(
 , ,

2

1)2(1  nn rr
  in the 

balanced number system with radix 2r – 1. 

For the sake of an exact integer calculation, we multiply both the sides of the GFN 

formula (4.1.1) by rn. As a result, each GFN weight jr   is replaced by jnr  and we have n 

powers of the radix r, which compose a column-vector K of length n. Multiplying the matrix M 

by this vector gives a column-vector F of length nr 1)(2  . To indicate A0 = 0 and A0 = 1 in the 

GFN codes we introduce a column-vector B of the same length. The positive elements of the 

vector F correspond to A0 = 0 and transfer to the vector B as zeros, while the negative elements 

correspond A0 = 1 and transfer to B as ones.  

We complete the negative elements of the vector F to the positive by adding nr  and 

obtain a column-vector F’. This vector contains nr 1)(2   elements, which are the numerators 

1 , ,1  nrm   of all Nn(r). The search for certain m results in several row indexes, while the 

same rows of B and M compose the GFN codes for given Nn(r). 

For radix 3r  and resolution 2n  the proposed combinatorial method is demonstrated 

step-by-step in the following, while the full factorial design GFN matrix and the vectors used are 

shown in Fig. 4.3.1.  

1) All combinations of five values -2, -1, 0, 1, 2 in two positions are defined by the 

full factorial design matrix M of 52 rows by 2 columns obtained with the MATLAB command 

fullfact([5 5])–3. 

2) The column-vector K = [9; 3; 1], so that the product of M and K is the column-vector 

F of length 52 comprising the numbers from 1– 32 through 32 – 1.  
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3) The positive elements of the vector F are transferred to the vector B as zeros, while the 

negative elements are transferred to B as ones.  

 4) At the same time, the negative numbers in F are completed to positive by adding 32, 

so that the completed vector F’ contains the numbers from 0 through 32 – 1. 

 5) Since F’ contains 52 elements, any m = 1, …, 32 – 1 appears in F’ more than once, and 

search for certain m results in several row indexes. The same rows of B and M compose the GFN 

codes of Nn(3), n = 1, 2. Such a gathering is demonstrated in Fig. 4.3.1, where m = 4 that 

corresponds to N2(3) = 4/9. 

Comparing the obtained codes with the codes presented in Table 4.2.1 we conclude that 

the combinatorial method yields the same result as the procedure spawning the GFN codes.   
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Figure 4.3.1: Full factorial design GFN matrix of size 25×2 and used vectors. 
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4.4 Translating GFN codes to SCC topologies 

 

  

For certain GFN fraction Nn(r), we consider a step-down SCC system that includes a 

voltage source Vin, a set of )1(  rn  flying capacitors and an output capacitor Co connected in 

parallel with the load Ro. The flying capacitors are divided into n groups of 1r  capacitors Cj in 

each one. These groups and Vin are connected in accordance with the GFN codes of Nn(r) in such 

a way that Co is continuously charged. In particular, the GFN coefficient A0 is responsible for the 

connection of Vin, while each group j of 1r  flying capacitors Cj is associated with the GFN 

coefficient Aj. Irrespective of the connection of Vin, the groups j are always connected in series. 

Within each group j, the type of connection of the flying capacitors Cj is determined by the 

absolute value |Aj| and its complement ∆j = r – |Aj| – 1. In order to configure the GFN based SCC 

topologies we use the following rules. 

 

1) If A0 = 1 then Vin is connected. 

2) If A0 = 0 then Vin is not connected. 

3) If Aj < -1 then |Aj| capacitors Cjx of group j are connected in series with the same polarity 

and charged. The remaining ∆j capacitors are connected in parallel and compose an 

"equalizing" capacitor Cje. This capacitor is connected in parallel to each Cjx capacitor 

running thereby over the |Aj| series connection. 

4) If Aj = -1 then all 1r  capacitors Cjx of group j are connected in parallel and charged. 

5) If Aj = 0 then all 1r  capacitors Cjx of group j are disconnected.  

6) If Aj = 1 then all 1r  capacitors Cjx of group j are connected in parallel and discharged.  

7) If Aj > 1 then Aj capacitors Cjx of group j are connected in series with the same polarity and 

discharged. The remaining ∆j capacitors are connected in parallel and compose an 

"equalizing" capacitor Cje. This capacitor is connected in parallel with each Cjx capacitor 

running thereby over the Aj series connection. 

 

 As an example we translate the GFN codes of N1(3) = 3/9 and N2(3) = 4/9 presented in 

Table 4.4.1 to the corresponding SCC topologies. Since in the first case of N1(3) = 3/9 the 

resolution n = 1 and the radix r = 3, we need a single group of two flying capacitors C1.1 and C1.2, 

which is associated with the GFN coefficient A1. Within this group the type of connection of C1.1 

and C1.2 is determined by |A1| and ∆1 = 2 – |A1|. Thus, each GFN code of N1(3) = 3/9 leads to a 

specific SCC topology as depicted in Figure 4.4.1.  
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Table 4.4.1. 

N1(3) = 3/9 N2(3) = 4/9 

A0 A1 A2 A0 A1 A2

1 -2 0 1 -1 -2 
0 1 0 0 2 -2 
   1 -2 1 
   0 1 1 

 

We assume that within the group j = 1 engaged in each SCC topology of Fig. 4.4.1, the 

flying capacitors C1.1 and C1.2 keep the same voltage V1 = 3-1·Vin. Multiplying Vin and V1 by the 

corresponding coefficients A0 and A1 in the GFN codes of N1(3) = 3/9, we find their algebraic 

sum, which is equal to the output target voltage Vo = 3/9·Vin.  

 

  
Figure 4.4.1: SCC topologies configured from the GFN codes of N1(3) = 3/9. 

 

Note that the SCC topologies of Fig. 4.4.1 represent the industry-standard SCC with the 

conversion ratio 1/3, which is actually equal to N1(3) = 3/9. Because the industry-standard SCC 

uses a single group of the flying capacitors, they can be considered as a sub-class of the GFN 

based SCC with resolution n = 1. The topologies of this SCC sub-class are configured from the 

GFN codes of N1(r) where |A1| is equal to either 1 or r – 1. Substituting these values in the 

formula of the GFN representation yields the conversion ratios of this GFN based SCC sub-class 

as a pair of complementary fractions rr 1)(N1   and rr 11)(N1  .  

 

Let us now consider the more complicated case of N2(3) = 4/9, where the resolution n is 

increased to 2, while the radix r is not changed and equal to 3. In this case, we need two groups 

of two flying capacitors in each. These groups are numbered j = 1, 2 and associated with the 

coefficients A1 and A2 respectively. Within each group j, the flying capacitors are indexed as Cj.1 

and Cj.2, while the type of their connection is determined by |Aj| and ∆j = 2 – |Aj|. Thus, in 

accordance with the above rules, each GFN code of N2(3) = 4/9 leads to a specific SCC topology 

as depicted in Figure 4.4.2.  
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C1.1
+

C1.2+

C2.1

C2.2 Co Ro
+

Vo

{0  1  1}

 
Figure 4.4.2: SCC topologies configured from the GFN codes of N2(3) = 4/9. 

 

To demonstrate that the output voltage Vo in each SCC topology of Fig. 4.4.2 can, in 

principle, be equal to 4/9·Vin we assume that within the groups j = 1, 2 the flying capacitors C1.x 

and C2.x keep the voltages V1 = 3-1·Vin and V2 = 3-2·Vin, respectively. As in the previous case, we 

multiply Vin, V1, V2 by the corresponding coefficients A0, A1, A2 in the GFN codes of N2(3) = 4/9 

and find their algebraic sum, which is equal to the output target voltage Vo = 4/9·Vin.  

Generally, translating all the GFN codes of certain Nn(r) to the SCC topologies, we ought 

to obtain the target voltage Vo = Nn(r)·Vin, under the condition that, within group j, each flying 

capacitor Cjx keeps the voltage Vj = r−j·Vin. In the following we show that all the voltages in the 

GFN based SCC are self-adjusting to the above specified values and this property is due to 

Corollaries 1 and 2 of the procedure for spawning the GFN codes. 
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4.5 Self-adjusting voltages in the GFN based SCC  

 

 

In this section we consider the GFN based SCC under the assumption that the voltages of 

the capacitors engaged in each SCC topology remain constant, but of unknown value. Applying 

the KVL to w different SCC topologies we compose a system of w linear equations. If this 

system has a unique solution, we obtain the target and the radix-r-weighted voltages across the 

output and the flying capacitors respectively. 

Consider the GFN based SCC with the conversion ratio N1(3) = 1/3. Its topologies 

reproduced from the example in the previous section are presented in Fig. 4.5.1. 

 

  
Figure 4.5.1: Topologies of the SCC with conversion ratio 1/3. 

 

Designating the voltages across C1.1, C1.2 and Co by V1, V1.2 and Vo respectively, we 

compose the next system of linear equations. 

 








o

oin

VVV

VVVV

2.11.1

2.11.1      (4.5.1) 

 

Because in (5.1.3) both V1.1 = Vo and V1.2 = Vo, we conclude that C1.1 and C1.2 may be 

connected to Co independently, one after another in different time instants. On the other hand, 

due to the parallel connection of C1.1 and C1.2 we can introduce V1 = V1.1 = V1.2, so that the 

solution of (4.5.1) will be:  

ino VVVV
3

1
2.11.1       (4.5.2) 

 

For the particular case when each coefficient Aj takes 1)(10  r  ,  ,  only, a system of 

equations for the GFN based SCC may be composed directly from the corresponding GFN codes. 

As an example, we show that the GFN codes of N2(3) = 4/9 lead not only to the SCC topologies 

of Fig. 4.5.2, but also to the system of equations (4.5.3).  
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+
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{0  1  1}

 
Figure 4.5.2: SCC topologies configured from the GFN codes of N2(3) = 4/9. 
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The number of equations in (4.5.3) is equal to 4 and equal to the number of all GFN 

codes of N2(3) = 4/9. Adding one to the resolution n = 2 yields the number of unknowns equal to 

3. Let us group the unknowns in (4.5.3) on the left hand side: 

 

















0

2 

022

2 

21

21

21

21

o  

ino

o

ino

VVV 

VVVV

VVV

VVVV

     (4.5.4) 

 
System (4.5.4) contains two non-zero free terms as the negative value of Vin. Generally, 

the connection of Vin is provided by Corollary 1 of the procedure spawning the GFN codes as 

follows. Consider the original code of Nn(r), where the coefficient Aj can take only positive 

values 0, …, r – 1. Due to Corollary 1 the case of Aj = 0 is turned to Aj = 1, which is used to 

spawn the coefficient A0 = 1 responsible for the connection of Vin. So, the GFN based SCC is 

described by a non-homogeneous system of linear equations. 
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Returning to (4.5.4), we normalize it to Vin: 
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     (4.5.5) 

where 

  

ino

in
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VVx
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VVx
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3
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11

      (4.5.6) 

 

We consider (4.5.5) in the form Ax = b, where 
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Supplementing A with b we form the augmented matrix A1 that allows us to investigate 

the solvability of (4.5.5). 
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A1                           (4.5.8) 

 

According to the Kronecker-Capelli theorem [31], [36], a nonhomogeneous system has a 

unique solution if and only if the rank of its coefficient matrix A is equal to the rank of its 

augmented matrix A1 and equal to the number of unknowns. 

For the resolution n, the number of columns in the matrix A is n + 1, while the number of 

rows is provided by Corollary 1 to be w ≥ n + 1. According to the above theorem, we conclude 

that the rank of A as well as the rank of A1 must be equal to n + 1, which is exactly the number 

of unknowns. So, we have to prove rigorously that the procedure spawning the GFN codes 

provides exactly n + 1 linearly independent rows (or columns) in both the matrices A and A1. 

As mentioned above, the GFN based SCC uses )1(  rnv  flying capacitors. From a 

practical point of view, large values of ν imply that the SCC will be very expensive for 

realization and therefore we suppose 1 ≤ ν ≤ 30 as shown in Table 4.5.1. 
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Table 4.5.1. 

resolution, n radix, r number of caps, v

10 3 20 

8 4 24 

7 5 28 

6 6 30 

 

For each pair of n and r we calculated the rank of A and the rank of A1 numerically in 

MATLAB, and ensured that the procedure for spawning the GFN codes leads to a system of 

1n  linearly independent equations, while its unique solution is Nn(r). Giving a rigorous 

theoretical proof of this for arbitrary values of n and r is planned for future work.  

 

In the case of the system of equations (4.5.5), the rank of A is 4, which is equal to the 

rank of A1 and to the number of unknowns. Thus, system (4.5.5) has a unique solution, which is 

found in the form x = A−1b: 
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    (4.5.9) 

 

Since (4.5.9) is unique, the voltages Vj (j = 1…2) across each Cjx within group j and the 

output voltage Vo are self-adjusting to the specified values of 3-j·Vin and 4/9·Vin. 

 

Generally, for a given fraction Nn(r), there are two ways to provide the self-adjusting 

voltages Vj = r−j·Vin and Vo = Nn(r)·Vin. One way is to configure only those SCC topologies, 

which correspond to 1n  linearly independent equations. The other way is to introduce 

redundant SCC topologies in addition to the n + 1 mentioned above. 

By configuring these w ≥ n + 1 different SCC topologies periodically we provide a 

continuous charge transfer through the load. An intuitive explanation for this is that, while the 

topologies change, each group of flying capacitors goes through a sequence of charging and 

discharging. This is assured by Corollary 2 of the procedure for spawning the GFN codes, which 

states that for each Aj > 0 in the GFN code there is at least one Aj < 0 in the same position. This 

means that the theory predicts that, in the GFN based SCC, all groups of flying capacitors are 

going through a sequence of charging and discharging.  
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According to the number w of different SCC topologies, we introduce the same number w 

of time intervals tk, where k = 1, …, w. During the interval tk, the corresponding k-th topology 

does not change and repeats as depicted conceptually for N2(3) = 4/9 in Fig. 4.5.3 with a period 





w

k
ktT

1

 at the intervals wpkt  , where p = 0, 1, 2, ... is the number of period. 
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Figure 4.5.3: The perpetual GFN sequence of the SCC with N2(3) = 4/9. 

 

Irrespective of the order in which the topologies repeat, the voltages Vj and Vo eventually 

reach and stay at the specified values of r−j·Vin and Nn(r)·Vin even if the SCC starts with zero or 

arbitrary voltages across the capacitors or when it is subjected to a disturbance. Due to this 

property, the GFN based SCC can be considered to be hardware for solving a system of linear 

equations by an iterative method. 



 60

4.6 The GFN based SCC in step-up mode 

 

 

As shown above, the step-down EXB based SCC can be simply modified to operate in 

step-up mode. In this section we demonstrate the same for the step-down GFN based SCC 

described earlier by system (4.5.3), which is solvable even if the indices of Vo and Vin are 

interchanged. Such a manipulation leads to the system of equations (4.6.1) and from the 

hardware viewpoint means switching the input and output of the SCC as depicted in Fig 4.6.1. 
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The solution of (4.6.1) is: 
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Figure 4.6.1: Topologies for the step-up SCC reciprocal to the case of N2(3) = 4/9. 

 

Generally, the conversion ratios of the step-up GFN based SCC with resolution n are 

reciprocal to their step-down counterparts Nn(r) and defined by a set of fractions with numerator 

rn and denominators 1, 2, …, rn – 1. These fractions have no resolution in the common sense and 

behave as 1/x. For n = 1…3, the step-up conversion ratios 1/Nn(3) are depicted in Fig. 4.6.2. 
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Figure 4.6.2: Step-up conversion ratios 1/Nn(3), n = 1…3. 
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5. PROPOSED NUMERICAL ANALYSIS 

 

 

5.1 Investigating the Voltage Convergence Issue 

 
“Nothing is too wonderful to be true if it be consistent with the laws of nature.”  

Michael Faraday 

 

In this section we apply the charge conservation law and Kirchhoff’s Voltage Law (KVL) 

to demonstrate that the SCC output voltage and the voltages across the flying capacitors 

converge to the target and the radix-r-weighted values respectively, under the condition that the 

charge redistributes immediately. This condition means, in particular, that the SCC load is 

disconnected, while all the capacitors and switches used are ideal. So, the considered SCC 

contains no resistive elements, while any SCC topology can be configured instantaneously and, 

as a consequence, a momentary transition from one SCC topology to another is allowed. 

The charge conservation law states that charge can neither be created nor destroyed, only 

transferred. Applying this law to a SCC, we conclude that when capacitors holding initial 

voltages are engaged in a certain SCC topology, the existing charge is redistributed 

proportionally between the capacitances, so that the final voltages are balanced. These final 

voltages can be used as initial voltages in further iterations when the SCC topology is changed. 

The KVL states that the algebraic sum of all voltages around any closed path of a circuit 

is zero. Since any SCC topology is a closed path circuit, we apply the KVL to the final voltages 

across the engaged capacitors. Due to the input voltage source Vin engaged in some SCC 

topologies, the KVL algebraic sum can be equal to either Vin or zero. Designating the current and 

next iterations by i and 1i , we introduce a total number m of capacitors in the 1i  iteration 

and express the final voltage 1i
kV  across each engaged capacitor Ck by initial voltage i

kV  as 

follows: 
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Expression (5.1.1) is a system of 1m  linear equation with 1m  unknowns, so it is 

solvable in principle. 
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Solving (5.1.1), we obtain the final voltages 1i
kV  for use as the initial conditions in the 

next iteration. The iterations are done while the SCC topologies change according to either the 

EXB or the GFN codes. Because the SCC operation is determined by a periodic repetition of 

SCC topologies, at some iteration the steady-state needs to be reached. 

It is important to distinguish between the terms "equilibrium" and "steady-state". Because 

of the ideal components that have been used, a solution of (5.1.1) assumes the equilibrium or 

charge (voltage) balance immediately after the SCC topology has been configured. The steady-

state for the unloaded SCC with ideal components implies a constant (target) output voltage, 

while the charge transferred to the output capacitor after some iteration is zero. The number of 

iterations needed to reach the steady-state defines the adjustment duration. 

As an example, we consider the EXB based SCC with the conversion ratio M3 = 3/8. The 

input voltage source Vin is engaged (A0 = 1) in the SCC topology depicted in Fig. 5.1.1(a) and 

disengaged (A0 = 0) in the SCC topology shown in Fig. 5.1.1(b).  

 

i
oV

 

1i
oV

 

(a)      (b) 

Figure 5.1.1: Topologies of the SCC with conversion ratio M3 = 3/8. 

 

In the SCC topology of Fig. 5.1.1(a), let the initial voltages across the engaged capacitors 

C1, C2 and Cout be iV1 , iV2  and i
oV , respectively. Using the EXB code {1 -1 0 -1}, we can 

write the KVL sum: 
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where 1
1
iV , 1

2
iV  and 1i

oV  are the final voltages. The total number of capacitors engaged 

in the SCC topology of Fig. 5.1.1(a) is m = 3. Applying the charge conservation law to each one, 

we have three equations of the kind 
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The expressions (5.1.2) and (5.1.3) compose the system of 41 m  linear equations 

with 4 unknowns. For given voltages inV  and i
kV  grouped on the right hand side, we obtain:  
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Because A2 = 0, the capacitor C2 is disengaged and consequently ii VV 2
1

2  . Rewriting 

the system of equations (5.1.4) in matrix form: 
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It is evident from (5.1.5) that the terms jC1  are multiplied by the corresponding Aj, as 

well as 1i
jV  in the KVL sum. Since the EXB resolution is n = 3, the main diagonal of the 

coefficient matrix in (6.1.5) is formed simply from 1n  ones and zero. Solving (5.1.5), we 

obtain the voltages 1i
kV  for use as the initial conditions (given voltages) in the next iteration 

defined by the EXB code {0 1 -1 1} and the SCC topology of Fig. 6.1.1 (b).  The KVL sum for 

this case is: 
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The total number of capacitors engaged in the SCC topology of Fig. 5.1.1(b) did not 

changed from m = 3. Applying the charge conservation law we have three equations of kind 
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As in the previous case we group the given voltages 1i
kV  of (5.1.7) on the right-hand side 

and obtain the system of 41 m  linear equations with 4 unknowns: 
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Rewriting (5.1.8) in matrix form, we have: 
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The coefficient matrix in (5.1.9) is formed in the same manner as in (5.1.5) using the 

EXB code {0 1 -1 1} and its resolution n = 3. Solving (5.1.9), we obtain the voltages 2i
kV , 

which are substituted as the initial conditions in the next iteration. 

Using the above technique, we have conducted a convergence analysis of the considered 

SCC in MATLAB 7.1. The iterations were done for the EXB codes shown in Table 5.1.1. 

 

Table 5.1.1  

M3 = 3/8 

A0 A1 A2 A3

1 -1 -1 1 
0 1 -1 1 
1 -1 0 -1 
0 1 0 -1 
0 0 1 1 
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For the sake of convenience, we set the input voltage [V] 8inV , the identical flying 

capacitors F7.4321  CCC  and the output capacitor F470oC . The initial voltages 

across all the capacitors are zero. As shown in Fig. 5.1.2, the voltages across the flying 

capacitors C1, C2 and C3 converge to binary weighted values 4, 2 and 1 [V], respectively. The 

output voltage converging to the target value 3[V] is depicted in Fig. 5.1.3, while Fig. 5.1.4 

depicts the charge decaying to zero.   

 

 

Figure 5.1.2: Convergence of the voltages V1, V2, V3 at zero initial conditions. 

 

 

Figure 5.1.3: Convergence of the output voltage at zero initial conditions. 

 

 

Figure 5.1.4: Decaying to zero charge at zero initial conditions.  
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Consider a case of non-zero initial conditions: the output capacitor is pre-charged to the 

initial voltage 1[V], and the flying capacitors C1, C2, C3 are pre-charged to the initial binary 

weighted voltages 4, 2, 1 [V] respectively. As shown in Fig. 5.1.5 the voltages across C1, C2, C3 

change during the charge transfer, but return to their initial values when the steady-state is 

reached. The initial output voltage 1[V] converges to the target value 3[V] as shown in Fig. 5.1.5, 

while the decaying to zero charge is depicted in Fig. 5.1.6. 

 

 

Figure 5.1.5: The voltages V1, V2, V3 returning to binary weighted initial values. 

 

 

Figure 5.1.6: Convergence of the output voltage at binary weighted initial conditions. 

 

  

Figure 5.1.7: Decaying to zero charge at binary weighted initial conditions. 
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An additional way to display the convergence is a locus of the charge decaying to zero, 

where the number of axes corresponds to the number of SCC topologies, while each axis is the 

absolute value of the charge. The charge locuses for both cases of zero and binary weighted 

initial conditions are shown in Fig. 5.1.8. Because the locuses have a winding behavior, the 

voltages across the capacitors are self-adjusting to the values predicted by the EXB 

representation. 

20μC

15μC

10μC

|Q i|

|Q i +1|

|Q i +2|

|Q i +3|

|Q i +4|
  

15μC

10μC

5μC

|Q i|

|Q i +1|

|Q i +2|

|Q i +3|

|Q i +4|
 

(a)       (b) 

Figure 5.1.8: Charge locuses for zero (a) and binary weighted (b) initial conditions.  

 

Due to the elimination procedure described in Section 5.5, we can safely omit the fourth, 

redundant SCC topology determined by EXB code {0 1 0 -1}. Convergence of the output 

voltage for this case and zero initial conditions is depicted in Fig. 5.1.9. 

 

 

Figure 5.1.9: Convergence of Vo when {0 1 0 -1} SCC topology is omitted. 

 

Let us now consider the case when the elimination procedure described in Section 3.8 is 

executed for the EXB coefficients Aj (j >0) sorted by the number of zeros in descending order, so 

that the total capacitor in each SCC topology is increased. 
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The result of this elimination is presented in Table 5.1.2, while the output voltage 

converging to the target value at zero initial conditions is depicted in Fig. 5.1.10. 

 

Table 5.1.2 

M3 = 3/8 

A0 A1 A2 A3

1 -1 0 -1 
0 1 0 -1 
0 0 1 1 
1 -1 -1 1 

 

 

Figure 5.1.10: Convergence of Vo when the total capacitor is increased. 

 

For the EXB codes of Table 5.1.2 and the same flying capacitors, we change the output 

capacitor from F470oC  to F220oC . For zero initial conditions, the output voltage 

converges as shown in Fig. 5.1.11. 

 

 

Figure 5.1.11: Convergence of Vo when Co is changed from 470µF to 220µF.  
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For the same EXB codes, we set the flying capacitors to be F401 C , F202 C  and 

F103 C  that is binary weighted, while the output capacitor F470oC . Convergence of the 

output voltage for this case and zero initial conditions is depicted in Fig. 5.1.12. 

 

 

Figure 5.1.12: Convergence of Vo when C1, C2, C3 are changed to be binary weighted. 

 

As follows from Fig. 5.1.8 – Fig. 5.1.12, the adjustment duration depends on the ratios 

between the flying and the output capacitors and on which redundant SCC topologies were 

eliminated. From Fig. 5.1.2 and Fig. 5.1.5, we conclude that the voltages across the flying 

capacitors can change polarity and consequently, in the practical implementation of a SCC, these 

capacitors must be non-polarized. 
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5.2 Derivation of the Equivalent Resistor Expressions 

 
“There exists everywhere a medium in things, determined by equilibrium.” 

Dmitri Mendeleev 

 

The preceding studies [15–25] prove that the power loss in a SCC can be modeled by a 

single equivalent resistor Req. In this section we derive Req for the EXB based SCC employing 

the periodic charge balance condition for each flying capacitor. The derivation is based on the 

generic and unified average model [26], [54]. 

Since any SCC in practice comprises parasitic resistances, the charge Q is transferred by 

an exponentially decaying current RCteIti  0)(  with the initial value RVI Δ0  , where R is 

the total parasitic resistance. For a time interval t1, we consider the current )(ti  as an average 

current 1tQIav   depicted schematically in Fig 5.2.1. 

 

 

Figure 5.2.1: Exponential and average currents on a time interval. 

 

In the steady state operation of a SCC, the charge received by a flying capacitor must be 

equal to the delivered charge. Assuming that the SCC topologies are configured for equal time 

intervals tttt w  21  and designating the average current in the k-th SCC topology by Ik, 

we conclude that the sum of average currents through each flying capacitor is equal to zero:  
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k
k

w

k
k ItQ      (5.2.1)   

 

This periodic charge balance condition is verified by simulation for the EXB based SCC 

with conversion ratio M3 = 3/8 and demonstrated in Fig. 5.2.2 for the flying capacitor C1 in the 

circuit of Fig. 6.1.2. Applying (5.2.1) to each flying capacitor Cj, we express each average 

current Ik by the average output current Io. 
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Figure 5.2.2: Charge balance for a single flying capacitor. 

 

The previously spawned EXB codes of M3 = 3/8 are presented in Table 5.2.1, while the 

SCC topologies are shown in Fig. 5.2.3. The directions of average currents for each flying 

capacitor Cj are associated with the coefficients of column Aj in Table 5.2.1. Multiplying each 

column element-by-element by the currents I1, …, I5 we obtain Table 5.2.2 .  

 

Table 5.2.1.                  Table 5.2.2.  

M3 = 3/8 

A0 A1 A2 A3

1 -1 -1 1 
0 1 -1 1 
1 -1 0 -1 
0 1 0 -1 
0 0 1 1 

 

  

        

+

+

C Rout out
+

C1

C3

     
 

Figure 5.2.3: Topologies of the SCC with conversion ratio M3 = 3/8. 

 

M3 = 3/8 

C1 C2 C3 
-I1 -I1 I1 
I2 -I2 I2 

-I3 0 -I3 
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{1 -1 -1  1} {0  1 -1  1} 

{1 -1  0 -1} {0  1  0 -1} {0  0  1  1} 

Q1 Q2

Q4Q3 Q5
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Under the condition (5.2.1), we transpose Table 5.2.2 and obtain three expressions which 

are equal to zero. Because in each SCC topology of Fig. 5.2.3, the charge Qk is delivered to the 

output, an additional expression is o

w

k
k II 

1

. Thus, for the average currents 51  , , II   we have a 

system of linear equations: 
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Since Table 5.2.2 comprises redundant rows, the number of equations in (5.2.2) is less 

than the number of unknowns, and the system (5.2.2) has an infinite number of solutions: 
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We consider a particular solution of (5.2.2) when I4 is equal to zero. In practice this 

means that the fourth row in Table 5.2.2 is eliminated and consequently, the fourth SCC 

topology is not configured at all.  For each SCC topology we can find a total capacitor Ck and a 

total resistor Rk, which are substituted to 
kk

k CR

t
 . According to the theory given in Section 

2.4, the power dissipated in each topology is: 
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Since each Ik is expressed by Io, each Pk depends on 2
oI  as well as the total dissipated 

power given by the sum of all Pk: 
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      (5.2.5) 

 

We can rearrange (5.2.5) so that 2
oI  will be outside the brackets, reducing 2

oI  we obtain 

the equivalent resistor expression dependent of Rk and Ck. In all the SCC topologies, the number 

of switches used is not changed and is equal to 4 as shown in Fig. 5.2.4. 
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Figure 5.2.4: Switches used in each topology of the EXB based SCC with M3 =3/8. 
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Assuming an identical on-resistance r for all switches and neglecting other parasitic 

resistances (e.g. ESR), we define the total on-resistance as rR 4 . Since the flying capacitors 

are always connected in series, the total capacitors Ck can be found using a number of non-zero 

coefficients Aj )0( j  in Table 5.2.1. In the experimental set-up, identical flying capacitors 

7.4C μF are used, while 2.1r  Ohm, and the switching frequency 100sf  kHz. 
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So, the equivalent resistor for the SCC conversion ratio M3 = 3/8 is: 
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Employing RCTs 4  we can rewrite (5.2.6) in the following form: 
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RReq     (5.2.7) 

 

When beta tends to zero, the expression (5.2.7) is reduced to: 

 

rRReq 2

15

8

15
lim

0



      (5.2.8) 
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The above derivation reveals that the equivalent resistor is inversely proportional to the 

total capacitor in each SCC topology and, consequently, depends on which redundant topologies 

were eliminated. The elimination procedure described in Section 3.8 allows increasing the total 

capacitors when the EXB coefficients Aj )0( j  are sorted by the number of zeros in descending 

order as shown in Table 5.2.3. For both M3 = 3/8 and M3 = 5/8 we eliminate the fifth row. 

 

Table 5.2.3: Sorted EXB codes of Mn, n = 1…3. 

M3 = 1/8 M2 = 2/8 M3 = 3/8 M1 = 4/8 

A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3 

0 0 0 1 0 0 1 0 1 -1 0 -1 1 -1 0 0 
0 0 1 -1 1 -1 -1 0 0 1 0 -1 0 1 0 0 
1 -1 -1 -1 0 1 -1 0 0 0 1 1     
0 1 -1 -1     1 -1 -1 1     
            

 
Table 5.2.3: cont’d.  

M3 = 5/8 M2 = 6/8 M3 = 7/8 

A0 A1 A2 A3 A0 A1 A2 A3 A0 A1 A2 A3 

1 0 -1 -1 1 0 -1 0 1 0 0 -1 
1 -1 0 1 1 -1 1 0 1 0 -1 1 
0 1 0 1 0 1 1 0 1 -1 1 1 
1 -1 1 -1     0 1 1 1 

        
 

The corresponding coefficients for Ik and Ck are summarized in Table 5.2.4.  

 
Table 5.2.4: Coefficients required in Req derivation. 

M3 = 1/8 M2 = 2/8 M3 = 3/8 M1= 4/8 
k

Ik/Io Ck/C Ik/Io Ck/C Ik/Io Ck/C Ik/Io Ck/C 

1 1/2 1 1/2 1 1/8 1/2 1/2 1 
2 1/4 1/2 1/4 1/2 3/8 1/2 1/2 1 
3 1/8 1/3 1/4 1/2 1/4 1/2   
4 1/8 1/3   1/4 1/3   

 
Table 5.2.4: cont’d. 

M3 = 5/8 M2 = 6/8 M3 = 7/8 
k 

Ik/Io Ck/C Ik/Io Ck/C Ik/Io Ck/C

1 1/4 1/2 1/2 1 1/2 1 
2 1/8 1/2 1/4 1/2 1/4 1/2 
3 3/8 1/2 1/4 1/2 1/8 1/3 
4 1/4 1/3   1/8 1/3 
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Assuming an identical total resistor R in the SCC topologies and using Table 5.2.3 and 

Table 5.2.4, the equivalent resistor expressions were derived for all the ratios Mn, n = 1, …, 3 as 

presented in Table 5.2.5. An important issue in this derivation is that the same equivalent resistor 

is obtained for a pair of complementary conversion ratios Mn and 1 – Mn.  

 
Table 5.2.5: Equivalent resistors for all the ratios Mn, n = 1, …, 3. 
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0

lim
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6. SIMULATION RESULTS 

 
 

“Science is what we understand well enough to explain to a computer. 

 Art is everything else we do.” 

 Donald E. Knuth 

 

 

6.1. Verification of the equivalent resistor values 

 

 

In order to configure the topologies of the EXB based SCC, each flying capacitor needs 

to have three types of connections {-1, 0, 1}. Since the pair {-1, 1} is responsible for the 

connection polarity, we consider a bridge switched circuit. Compose two capacitor bridges and 

connect one to another by rotation, the obtained double bridge cascade is presented in Fig. 6.1.1. 

 

 

Figure 6.1.1: Double-bridge cascade. 

 

The adjacent switches in the cascade allow either capacitor to be disabled, while the 

opposite switches can parallel a capacitor with the neighbor. So, this cascade provides not only 

three types of connections {-1, 0, 1}, but can also be used for building the GFN based SCC. 

 

Using the double-bridge cascade, four additional switches and one additional capacitor, 

we compose the simulation circuit of the EXB based SCC with resolution n = 3 as depicted in 

Fig. 6.1.2. The simulations are done in the PSIM 7 simulator especially designed for power 

electronics, motor control, and dynamic system. Some of its advantages include fast simulation 

and lack of convergence problems. The PSIM bidirectional switches are ideal, i.e. have zero 

internal resistance, whereas the calculations done in the previous section assume an identical on-

resistance r = 1.2 Ω of all the switches.  So, we need to introduce sub-circuits that comprise the 

ideal switch and a series resistor of 1.2 Ω as shown in Fig. 6.1.3. 
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Figure 6.1.2: Simulation circuit for the EXB based SCC. 

  

 

Figure 6.1.3: Switch subcircuit. 

 

The switch controller in the circuit of Fig. 6.1.2 is built using the PSIM embedded C 

Script Block, which is clocked by an internal oscillator. The duration of each clock is the 

switching period Ts = 10μs divided by n + 1, where n ≤ 3 is the resolution of the EXB based SCC.  

 

To verify the equivalent resistor values given in Table 5.2.5 we run the simulations for 

the EXB codes given in Table 5.2.3 and measure the output voltage Vo for different load 

resistances Ro = 100, 200, …, 500Ω when the SCC has reached the steady-state. 
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Fig. 6.1.4 depicts the measured voltages Vo for the case of M1 = 4/8. The measurements 

for the complementary ratios Mn and 1 – Mn are presented side by side in Fig. 6.1.5 - 6.1.7. 

 

 

Figure 6.1.4: Simulation result for M1 = 4/8. 

 

        
(a)        (b) 

Figure 6.1.5: Simulation result for M3 = 1/8 (a) and M3 = 7/8 (b). 

 

        
(a)       (b) 

Figure 6.1.6: Simulation result for M2 = 2/8 (a) and M2 = 6/8 (b). 
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(a)       (b) 

Figure 6.1.7: Simulation result for M3 = 3/8 (a) and M3 = 5/8 (b). 

 

Considering the SCC equivalent circuit (Fig. 6.1.8), we can write the output voltage Vo 

using the formula of voltage divider (6.1.1), where the target voltage VTRG = Mn·Vin. 

 

 

Figure 6.1.8: The SCC equivalent circuit. 

 

TRG
oeq

o
o V

RR

R
V 


      (6.1.1) 

 

Rearranging (6.1.1) we obtain the equivalent resistor as: 

  

o
o

TRG
eq R

V

V
R 








 1      (6.1.2) 

 

For each ratio from M3 = 1/8 through M3 = 7/8, the values of Vo measured at t = 50ms 

and the values of Req calculated according to (6.1.2) are summarized in Table 6.1.1. 
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Table 6.1.1: Parameter sweep data for all the ratios Mn, n = 1, …, 3. 

M3 = 1/8 M2 = 2/8 M3 = 3/8 M1 = 4/8 Ro, 

Ohm Vo,(V) Req,(Ω) Vo,(V) Req,(Ω) Vo,(V) Req,(Ω) Vo,(V) Req,(Ω)

100 0.938 6.61 1.897 5.43 2.846 5.411 3.816 4.822 
200 0.968 6.612 1.947 5.444 2.921 5.409 3.906 4.813 
300 0.978 6.748 1.964 5.499 2.947 5.395 3.937 4.801 
400 0.984 6.504 1.973 5.474 2.959 5.542 3.952 4.858 
500 0.987 6.586 1.978 5.561 2.968 5.391 3.962 4.796 
 

Table 6.1.1: cont’d.  

M3 = 5/8 M2 = 6/8 M3 = 7/8 Ro, 

Ohm Vo,(V) Req,(Ω) Vo,(V) Req,(Ω) Vo,(V) Req,(Ω) 

100 4.743 5.419 5.692 5.411 6.565 6.626 
200 4.868 5.423 5.841 5.444 6.776 6.612 
300 4.911 5.437 5.894 5.395 6.849 6.614 
400 4.933 5.433 5.919 5.474 6.886 6.622 
500 4.946 5.459 5.936 5.391 6.908 6.659 

 

The averaged values of Req are presented in Table 6.1.2. These values are found to be in 

excellent agreement with their theoretical counterparts given in Table 5.2.5.  

 
Table 6.1.2: The values of Req the obtained by simulations and theoretically.  

eq

n
R

M  M3 = 1/8 M2 = 2/8 M3 = 3/8 M1 = 4/8 M3 = 5/8 M2 = 6/8 M3 = 7/8

Averaged 6.612 5.482 5.43 4.818 5.434 5.423 6.627 
Theoretical 6.615 5.42 5.428 4.82 5.428 5.42 6.615 
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6.2 Utilizing the EXB based SCC in step-up mode 

 

 

According to the concept demonstrated in Section 3.7.1, the step-down EXB based SCC 

can be utilized for a step-up conversion when its input and output are interchanged. To test the 

validity of this concept, we switch the input and output in the SCC circuit of Fig. 6.1.2 as shown 

in Fig 6.2.1. 

 

 

Figure 6.2.1: Simulation circuit for the step-up case. 

 

As in the previous section we run the simulations for the EXB codes given in Table 5.2.3 

and measure the output voltage Vo for different load resistances Ro = 1kΩ, 1.5kΩ, …, 3kΩ when 

the SCC has reached the steady-state. 
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For the EXB codes of M3 = 3/8 and M3 = 5/8, the measured voltages Vo are depicted in 

Fig. 6.2.2. As expected, these voltages are the reciprocals of their step-down counterparts.  

 

         

(a)        (b) 

Figure 6.2.2: Simulation result for 1/M3 = 8/3 (a) and 1/M3 = 8/5 (b). 

 

The values of Vo measured at t = 0.2s and the values of Req calculated according to (6.1.2) 

for both conversion ratios 1/M3 = 8/3 and 1/M3 = 8/5 are summarized in Table 6.2.1. 

 
Table 6.2.1 

1/M3 = 8/3 1/M3 = 8/5 Ro, 

Ohm Vo,(V) Req,(Ω) Vo,(V) Req,(Ω)

1000 7.703 38.556 4.734 13.942 
1500 7.799 38.659 4.756 13.877 
2000 7.849 38.476 4.767 13.845 
2500 7.878 38.715 4.773 14.142 
3000 7.898 38.744 4.778 13.813 

 

As seen from Table 6.2.1, the value of Req for 1/M3 = 8/3 is greater then for 1/M3 = 8/5. 

This can be explained by considering the coefficients A0 in the EXB sequences of M3 = 3/8 and 

M3 = 5/8 (Table 5.2.3). When A0 = 1, the load is connected and therefore the EXB sequence 

where the number of A0 = 1 is large provides low Req. The EXB sequence of M3 = 5/8 comprises 

three A0 = 1, while the sequence of M3 = 3/8 comprises two, so the value of Req for 1/M3 = 8/3 is 

expected to be greater. 
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6.3 Test for unipolar voltages across the switches 

 

 

The switches used in the above simulations are bidirectional, however from a practical 

point of view, these switches are expensive. In this section we examine the feasibility of 

replacing some bidirectional switches with unidirectional devices, which comprise a diode 

between the terminals (for example a MOSFET). When this diode is forward biased the regular 

operation of the SCC can be disturbed. So, we need to check the polarity of voltages across all 

the switches. In the case of unipolar voltages, the corresponding switches can be unidirectional. 

The connection of voltage probes to the circuit of Fig. 6.1.2 is depicted in Fig. 6.3.1. 

 

 

Figure 6.3.1: Measuring the voltages across the switches. 
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Fig. 6.3.2 depicts the measured voltages for the case of M1 = 4/8. The measurements for 

the complementary ratios Mn and 1 – Mn, n = 1…3, are shown side by side in Fig. 6.3.3 - 6.3.5. 

  

 

Figure 6.3.2: Measured voltages for M1 = 4/8. 
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(a)       (b) 

Figure 6.3.3: Measured voltages for M3 = 1/8 (a) and M3 = 7/8 (b). 
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(a)       (b) 

Figure 6.3.4: Measured voltages for M2 = 2/8 (a) and M2 = 6/8 (b). 
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(a)       (b) 

Figure 6.3.5: Measured voltages for M3 = 3/8 (a) and M3 = 5/8 (b). 
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Inspecting Fig. 6.3.2 - Fig. 6.3.5 for unipolar voltages, we map the switches used in the 

circuit of Fig. 6.1.2 as presented in Table 6.3.1, where "u" and "b" designate unidirectional and 

bidirectional switch respectively. 

 

Table 6.3.1: Mapping the switches used. 

S
nM  81  82 83 84 85 86 87  

S1 u u u u u u u 

S2 u u u u b b b 

S3 u u u u u u u 

S4 u u u u u u u 

S5 b b b u u u u 

S6 b b b b b b b 

S7 u u b u b u b 

S8 u u u u u u u 

S9 u u u u u u u 

S10 b u b u b u u 

S11 b u b u b u b 

S12 u u u u u u u 
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7. EXPERIMENTAL RESULTS 

 

 

“We judge ourselves by what we feel capable of doing, while 

 others judge us by what we have already done.” 

 Henry W. Longfellow 

 

 

7.1 Response to a step in input voltage 

 

The measurements depicted in Fig. 7.1.1 and Fig. 7.1.2 are done for the conversion ratios 

M3 = 3/8 and M3 = 5/8, respectively, while Vin = 8V and the load resistance Ro = 3.6kΩ. 

 

        

(a)       (b) 

Figure 7.1.1: The SCC cold start, M3 = 3/8, Co = 470µF (a) and Co = 22µF (b). 

Vertical scale: 1V/div; Horizontal scale: 10ms/div. 

 

        

a)      (b) 

Figure 7.1.2: The SCC cold start, M3 = 5/8, Co = 470µF (a) and Co = 22µF (b). 

Vertical scale: 1.68V/div; Horizontal scale: 10ms/div. 
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7.2 Response to a step in load resistance 

 

 The load is switched from the nominal resistor 3.6kΩ to the indicated value. The top 

trace is the output voltage, while the bottom trace is the control signal. 

 

        

(a)       (b) 

Figure 7.2.1: The SCC response, M3 = 3/8, Co = 470µF, Ro = 128Ω (a) and Ro = 62Ω (b). 

Vertical scale: 40mV/div (a) and 70mV/div (b); Horizontal scale: 12.4ms/div. 

Peak to peak output voltage is 155.5mV (a) and 299.3mV (b). 

 

        

(a)        (b) 

Figure 7.2.2: The SCC response, M3 = 3/8, Co = 22µF, Ro = 128Ω (a) and Ro = 62Ω (b). 

Vertical scale: 40mV/div (a) and 70mV/div (b); Horizontal scale: 12.4ms/div. 

Peak to peak output voltage is 155.5mV (a) and 299.3mV (b). 
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(a)       (b) 

Figure 7.2.3: The SCC response, M3 = 5/8, Co = 470µF, Ro = 128Ω (a) and Ro = 62Ω (b). 

Vertical scale: 60mV/div (a) and 120mV/div (b); Horizontal scale: 12.4ms/div. 

Peak to peak output voltage is 253.8mV (a) and 488.7mV (b). 

 

 

        

(a)       (b) 

Figure 7.2.4: The SCC response, M3 = 5/8, Co = 22µF, Ro = 128Ω (a) and Ro = 62Ω (b). 

Vertical scale: 60mV/div (a) and 110mV/div (b); Horizontal scale: 12.4ms/div. 

Peak to peak output voltage is 242.2mV (a) and 471.6mV (b). 
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7.3 Efficiency versus load resistance 

 

The efficiencies measured for the step-down EXB based SCC are presented in Fig. 7.3.1 

and Fig. 7.3.2, while Fig. 7.3.1 depicts the efficiency for the step-up case as given in [55]. 
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Figure 7.3.1: Efficiency of the step-down SCC with M3 = 3/8. 
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Figure 7.3.2: Efficiency of the step-down SCC with M3 = 5/8. 
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Figure 7.3.3: Efficiency of the step-up SCC with 1/M3 = 8/3. 
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7.4 Load characteristics and effect of Req 

 

 

To test the validity of the equivalent circuit (Fig. 7.4.1) over a wide operational range, we 

consider the formula for the voltage divider (7.4.1), where the target voltage VTRG = Mn·Vin. 

 

 

Figure 7.4.1: The SCC equivalent circuit. 

 

o

o

oeq

TRG
o R

V

RR

V
I 


       (7.4.1) 

 

Defining y as:  
TRG

o

TRG

eq

o

o

V

R

V

R

V

R
y        (7.4.2) 

 

One can rewrite (7.4.2) as:   y(x) = ax + b      (7.4.3) 

  

where x = Ro, a = 1/VTRG and b = Req/VTRG. Hence, when plotting Ro/Vo versus Ro, one 

should get a straight line with a slope of 1/VTRG (Fig. 7.4.2) and intersection of the X axis (y = 0) 

at Req/VTRG, from which Req can be calculated. 

 

o

o

V

R

eqR  

Figure 7.4.2: Intersection yielding the equivalent resistor. 
 

The output resistance was tested for Vin = 8V and fs = 100kHz. Each SCC topology is 

configured for the time interval t = Ts/(n + 1), where Ts = 10μs, and n < 3 is the resolution. 
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For n = 3 and the conversion ratios M3 = 3/8 and M3 = 5/8 all five SCC topologies are 

configured (one topology is redundant) and t = Ts/5. 
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(a)       (b) 

Figure 7.4.3: Experimental result for M3 = 1/8 (a) and close-up view (b). 
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Figure 7.4.4: Experimental result for M2 = 2/8 (a) and close-up view (b). 
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Figure 7.4.5: Experimental result for M3 = 3/8 (a) and close-up view (b). 
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Figure 7.4.6: Experimental result for M1 = 4/8 (a) and close-up view (b). 
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Figure 7.4.7: Experimental result for M3 = 5/8 (a) and close-up view (b). 
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Figure 7.4.8: Experimental result for M2 = 6/8 (a) and close-up view (b). 
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Figure 7.4.9: Experimental result for M1 = 7/8 (a) and close-up view (b). 

 

The experimentally obtained values of Req are presented in Table 7.4.1. Although the 

theoretical and simulated values (Table 5.2.5 and Table 6.1.2) close, the experimental values are 

somewhat apart. This is probably due to the effects of parasitic elements that have not been 

considered in the theoretical model.  

 
Table 7.4.1: The values of Req obtained experimentally, by simulations and by theory. 

)(
M

eq

n
R  M3 = 1/8 M2 = 2/8 M3 = 3/8 M1 = 4/8 M3 = 5/8 M2 = 6/8 M3 = 7/8

Experimental 7.65 6.82 7.35 5.3 7.16 6.53 6.94 
Simulated 6.612 5.482 5.43 4.818 5.434 5.423 6.627 

Theoretical 6.615 5.42 5.428 4.82 5.428 5.42 6.615 
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7.5 Output voltage regulation 
 

 

As mentioned above, output voltage regulation of a SCC can be achieved by changing the 

equivalent resistor Req. We propose here two alternative approaches that are compatible with the 

structures of the EXB and GFN based SCC. In these SCC, it would be desirable to keep the 

voltages across the capacitors at their nominal values and not change them by partial charges or 

discharges. One approach to accomplish this is to use dithering that is, switching from one 

transfer ratio to another. In the regular one ratio mode, the SCC will scan over all the codes that 

correspond to the desired conversion ratio Mn. For conversion ratios which are in between the 

discrete Mn values one can dither between two neighboring ratios as depicted in Fig. 7.5.1. 

 

Dither period

M3 = 3/8

time

M3 = 3/8M3 = 3/8 M1 = 4/8M3 = 3/8
 

Figure 7.5.1: Dithering between M3 = 3/8 and M1 = 4/8 (in 4:1 ratio). 

 

In the case depicted in Fig. 7.5.1 the dither duration is 5 sequences, 4 of 3/8 and one for 

4/8, consequently the average ratio will be: 
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     (7.5.1) 

 

  For Vin = 8V and Ro = 437Ω the output voltage is depicted in Fig 7.5.2, where the vertical 

scale is 10mV/div, while the horizontal scale is 100μS/div. 

 

 

Figure 7.5.2: Output ripple. Dithering between M3 =3/8 and M1=1/2.  
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Another method proposed here for output voltage control is to introduce a linear, low 

dropout (LDO) voltage regulator at the output (Fig. 7.5.3). In this case, the LDO will provide the 

regulation for the LSB while the SCC maintains a low voltage across the LDO. 

 

 

Figure 7.5.3: Block diagram of output voltage regulation by LDO at the output. 

 

The concept of regulation with a LDO at the output was tested [55] using a LT1121-3.3 

(Linear Technology) with a fixed output voltage of 3.3V. As shown in Fig. 7.5.3, the output and 

input voltages were sampled and the control was programmed to select the minimal conversion 

ratio which provides an output voltage greater than 3.6V. The LT1121 has a minimum dropout 

voltage of 0.3V, so at least 3.6V is required at the input. This implies that the upper limit of the 

efficiency is 3.3/3.6 = 0.92 and that is without taking into account the losses of the SCC. 

In this preliminary, proof of concept, closed loop experiment, the EXB based SCC was 

configured to operate in both step-up and step-down modes by introducing extra switches that 

could flip the input and output terminals. The measured efficiency [55] for the input voltage 

range of 1.8V to 10V is depicted in Fig. 7.5.4.  
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Figure 7.5.4: Efficiency of EXB based SCC operating with an LDO. 
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8. DISCUSSION AND CONCLUSIONS 

 

“Never express yourself more clearly than you are able to think.” 

Niels Bohr 

 

An EXB fractional representation is proposed and extended to the general radix case 

defined as GFN. In the case of the EXB, the radix is 2, while the general GFN can be defined for 

any radix r. Hence, the particular GFN case of r = 2 and the corresponding fractions Nn(2) is in 

fact the EXB case. Based on these new fractional representations, a novel procedure is proposed 

for the design of high resolution multi-target SCC that emulate the EXB and GFN codes. It is 

shown that these SCC can be considered as hardware computational systems that solve a set of 

equations determined by the EXB, or in the general case, by the GFN representations. It is 

further shown that, for a given number of capacitors, one can generate many target voltages by 

configuring the flying capacitors interconnections according to different EXB or GFN codes. 

These codes are used to derive the equivalent resistor, which defines both the output 

voltage drop and the power loss due to conversion inefficiencies. The experimentally obtained 

values of the equivalent resistor were found to be in good agreement with both the theoretically 

predicted values of Req and those obtained in simulations. The new theoretically supported 

concepts were verified by simulation and experiment for static and dynamic responses. The 

experiments were conducted on the step-down and step-up EXB based SCC. Several control 

schemes were tested, including linear and dithering approaches to provide continuous regulation 

of the output voltage. Both of the proposed control approaches were found to function properly, 

however the dithering scheme gave rise to a higher output ripple. This could be explained by the 

fact that in this control method the SCC has to be reconfigured dynamically between two Mn 

values.  

Notwithstanding the good results, a number of theoretical issues are still open and require 

further investigation. Although some realizations of the proposed SCC have been described by 

way of illustration, they can be put into practice with many modifications that are within the 

scope of application engineers. 
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APPENDIX A. Circuit diagrams 
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Microcontroller PIC18F452 providing fs = 100kHz. 
MAX4678 quad SPST normally-off CMOS switch 
74HC237 decoder 3-to-8 lines with address latches 
4.7μF×50V MLCC marked as C340C475M5U5TA 
470μF×50V electrolytic capacitor 
0.1μF ceramic bypass capacitors 

Unused components: 
 

74HC573 octal 3-state transparent latch 
INA118 instrumental amplifier 
LM393 comparators 
Precision resistors 

C
ir

cu
it

 d
ia

gr
am

 o
f 

th
e 

E
X

B
 b

as
ed

 S
C

C
. P

ar
t I

I:
 M

ic
ro

co
nt

ro
ll

er
 c

on
ne

ct
io

n 
to

 8
-b

it
 p

ow
er

 s
ta

ge
. 



 108

A
lt

er
na

ti
ve

 s
ch

em
at

ic
 o

f 
th

e 
E

X
B

 b
as

ed
 S

C
C

 f
or

 s
im

ul
at

io
n 

in
 th

e 
IS

IS
 P

ro
te

us
 7

 s
of

tw
ar

e 

 
  
 



 109

 
 

Example how to reduce the circuit to 3-bit by eliminating the intermediate stages 
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APPENDIX B. Program listings 

 

 

%******************************************************     
%            Spawning the EXB codes 
%****************************************************** 
clc 
clear all 
M=fullfact([3 3 3])-2; 
K=[4 2 1]; 
F=M*K'; 
F1=F; 
h=numel(F); 
B=zeros(h,1); 
i=find(F<0); 
msb=sum(K)+1; 
F1(i,:)=F1(i,:)+msb;  
B(i,:)=1; 
for g=1:msb-1 
i=find(F1==g); 
exb=[B(i) M(i,:)] 
end 
 
%******************************************************     
%            Spawning the GFN codes 
%****************************************************** 
clc 
clear all 
M=fullfact([5 5])-3; 
K=[3 1]; 
F=M*K'; 
F1=F; 
h=numel(F); 
B=zeros(h,1); 
i=find(F<0); 
msb=2*sum(K)+1; 
F1(i,:)=F1(i,:)+msb;  
B(i,:)=1; 
for g=1:msb-1 
i=find(F1==g); 
exb=[B(i) M(i,:)] 
end 
 
%******************************************************     
%      Investigating the voltage convergence issue 
%****************************************************** 
clc;     
clear all; 
close all; 
% input EXB codes of M3=3/8 
exb=[ 
     1    -1    -1     1 
     0     1    -1     1 
     1    -1     0    -1 
     0     1     0    -1 
     0     0     1     1]; 
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% forming the main diagonal 
% due to the resolution of M3 
n=numel(exb(1,:))+1;  
E=eye(n);  
% grouping A0 at the right 
A1=exb(:,2:4); 
A2=-exb(:,1); 
A=[A1 A2]; 
% values of the capacitors   
uF=10^(-6); 
Co=470*uF; 
flycap=4.7*uF.*ones(3,1); 
caps=[flycap; Co]; 
Vin=8; Vo=0; 
% initial voltages 
pres_Vc=[0; 0; 0; Vo; 0]; 
% convergence double loop 
old=0; 
Q=[0, 0]; 
Vall=pres_Vc';    
for j=1:200 
for i=1:5 
% adding the EXB row 
E(n,:)=[A(i,:),0]; 
% coefficient -1 for Vo 
E(n,n-1)=-1; 
% adding the EXB collumn 
A(i,1:n-1); 
E(:,n)=E(n,:); 
% dividing by the capacitances 
E(1:n-1,n)=E(1:n-1,n)./caps; 
% put Vin to the initial voltages 
pres_Vc(n)=Vin.*A(i,n-1); 
% solving  
next_Vc=E\pres_Vc; 
% very small charge value 
% next_Vc(n) 
% changing the initial voltages 
pres_Vc=next_Vc; 
% extracting the final values 
cnt=old+i; 
all=pres_Vc(1:n-1); 
Vall(cnt,:)=[cnt all']; 
Q(cnt,:)=[cnt, pres_Vc(n)]; 
end 
old=j*i; 
end 
% displaying the flying voltages 
subplot(2,1,1) 
stairs(Vall(:,1), Vall(:,2:n-1),'LineWidth',1 ); 
axis normal 
grid 
xlabel('iteration number'); 
ylabel('V1, V2, V3  [V]') 
% displaying the output voltage 
subplot(2,1,2) 
stairs(Vall(:,1), Vall(:,n),'LineWidth',1 ); 
axis normal 
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grid 
xlabel('iteration number'); 
ylabel('Vout [V]') 
% displaying the decaying charge 
close all; 
subplot(2,1,1) 
stairs(Q(:,1), Q(:,2),'LineWidth',1 ); 
axis normal 
grid 
xlabel('iteration number'); 
ylabel('Charge [C]') 
% displaying the charge locus 
nt=5; x=0; 
angle=2*pi/nt; 
fin=numel(Q(:,2)); 
for shift=1:nt 
   x(shift:nt:fin)=(shift-1).*angle; 
end 
close all; 
theta=x'; 
rho=abs(Q(:,2)); 
polar(theta,rho,'-*b') 
 
 
 
C code for the PSIM script block: 
 
 
//   ***    ARRAYS FOR 1/8 Vdd   
//  the EXB code {0 0 0 1} 
const unsigned char SW18_1[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        0,   0,   0,    0,   1,   1,    0,   0,   0,    1,     1,   0}; 
//  the EXB code {0 0 1 -1} 
const unsigned char SW18_2[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        0,   0,   0,    0,   1,   1,    1,   0,   0,    0,     0,   1}; 
//  the EXB code {1 -1 -1 -1} 
const unsigned char SW18_3[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   0,   0,    1,   0,   0,    0,   0,   1,    0,     0,   1}; 
//  the EXB code {0 1 -1 -1} 
const unsigned char SW18_4[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        0,   1,   0,    0,   0,   1,    0,   0,   1,    0,     0,   1}; 
 
//   ***    ARRAYS FOR 2/8 Vdd  
//  the EXB code {0 0 1 0} 
const unsigned char SW28_1[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        0,   0,   0,    0,   1,   1,    1,   0,   0,    0,     1,   0}; 
//  the EXB code {1 -1 -1 0} 
const unsigned char SW28_2[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   0,   0,    1,   0,   0,    0,   0,   0,    1,     0,   1}; 
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//  the EXB code {0 1 -1 0} 
const unsigned char SW28_3[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        0,   1,   0,    0,   0,   1,    0,   0,   0,    1,     0,   1}; 
 
//   ***    ARRAYS FOR 3/8 Vdd  
//  the EXB code {1 -1 0 -1} 
const unsigned char SW38_1[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   0,   0,    0,   1,   0,    0,   0,   1,    0,     0,   1}; 
//  the EXB code {0 1 0 -1} 
const unsigned char SW38_2[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        0,   1,   0,    0,   0,   1,    1,   0,   0,    0,     0,   1}; 
//  the EXB code {0 0 1 1} 
const unsigned char SW38_3[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        0,   0,   0,    0,   1,   1,    0,   1,   0,    0,     1,   0}; 
//  the EXB code {1 -1 -1 1} 
const unsigned char SW38_4[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   0,   0,    1,   0,   0,    0,   0,   0,    1,     1,   0}; 
 
//   ***    ARRAYS FOR 4/8 Vdd  
//  the EXB code {1 -1 0 0} 
const unsigned char SW48_1[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   0,   0,    0,   1,   0,    0,   0,   0,    1,     0,   1}; 
//  the EXB code {0 1 0 0} 
const unsigned char SW48_2[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        0,   1,   0,    0,   0,   1,    1,   0,   0,    0,     1,   0}; 
 
//   ***    ARRAYS FOR 5/8 Vdd 
//  the EXB code {1 0 -1 -1} 
const unsigned char SW58_1[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   1,   0,    0,   0,   0,    0,   0,   1,    0,     0,   1}; 
//  the EXB code {1 -1 0 1} 
const unsigned char SW58_2[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   0,   0,    0,   1,   0,    0,   0,   0,    1,     1,   0}; 
//  the EXB code {0 1 0 1} 
const unsigned char SW58_3[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        0,   0,   1,    0,   0,   1,    0,   0,   0,    1,     1,   0}; 
//  the EXB code {1 -1 1 -1} 
const unsigned char SW58_4[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   0,   0,    0,   1,   0,    1,   0,   0,    0,     0,   1}; 
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//  ***     ARRAYS FOR 6/8 Vdd 
//  the EXB code {1 0 -1 0} 
const unsigned char SW68_1[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   1,   0,    0,   0,   0,    0,   0,   0,    1,     0,   1}; 
//  the EXB code {1 -1 1 0} 
const unsigned char SW68_2[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   0,   0,    0,   1,   0,    1,   0,   0,    0,     1,   0}; 
//  the EXB code {0 1 1 0} 
const unsigned char SW68_3[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        0,   0,   1,    0,   0,   1,    1,   0,   0,    0,     1,   0}; 
 
//   ***    ARRAYS FOR 7/8 Vdd 
//  the EXB code {1 0 0 -1} 
const unsigned char SW78_1[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   1,   0,    0,   0,   0,    1,   0,   0,    0,     0,   1}; 
//  the EXB code {1 0 -1 1} 
const unsigned char SW78_2[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   1,   0,    0,   0,   0,    0,   0,   0,    1,     1,   0}; 
//  the EXB code {1 -1 1 1} 
const unsigned char SW78_3[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        1,   0,   0,    0,   1,   0,    0,   1,   0,    0,     1,   0}; 
//  the EXB code {0 1 1 1} 
const unsigned char SW78_4[] =  
{//   S1  S2  S3  S4  S5  S6  S7  S8  S9  S10  S11 S12 
        0,   0,   1,    0,   0,   1,    0,   1,   0,    0,     1,   0}; 
 
 
//   *** MAIN FOR Vo=3/8Vdd ***     
 
unsigned char a=0; 
unsigned char b=0; 
unsigned char num=0; 
static unsigned char cnt=0; 
 
b = in[0]; // clock pulse 
if ( b !=a ) // each transition 
{ a = b;   cnt++;   
if ( cnt >4 )  { cnt = 1; } 
switch (cnt) 
{  case 1: 
   for (num = 0; num < 12; num++) 
   {out[num] = SW38_1[num];} 
   break;  
   case 2: 
   for (num = 0; num < 12; num++) 
   {out[num] = SW38_2[num]; } 
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   break;   
   case 3: 
   for (num = 0; num < 12; num++) 
   {out[num] = SW38_3[num];} 
   break;   
   case 4: 
   for (num = 0; num < 12; num++) 
   {out[num] = SW38_4[num];} 
   break; } 
} 
// end for Vo=3/8Vdd 
 
 
 
 




