
HAL Id: tel-00508534
https://theses.hal.science/tel-00508534v2

Submitted on 21 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint-Based Mining of Closed Patterns in Noisy
n-ary Relations

Loïc Cerf

To cite this version:
Loïc Cerf. Constraint-Based Mining of Closed Patterns in Noisy n-ary Relations. Other [cs.OH]. INSA
de Lyon, 2010. English. �NNT : �. �tel-00508534v2�

https://theses.hal.science/tel-00508534v2
https://hal.archives-ouvertes.fr

No d’ordre : 2010-ISAL-0050 Année 2010

THÈSE

présentée devant

L’Institut National des Sciences Appliquées de Lyon

pour obtenir

Le Grade de Docteur

Spécialité

Informatique

École Doctorale : Informatique et Mathématiques

par

Loïc Cerf

C O N S T R A I N T- B A S E D M I N I N G O F C L O S E D
PAT T E R N S I N N O I S Y N - A RY R E L AT I O N S

Soutenue publiquement le 9 juillet 2010 devant le jury :

Jérémy Besson University of Vilnius, LT Examinateur
Francesco Bonchi Yahoo! Research Barcelona, ES Examinateur
Jean-François Boulicaut INSA de Lyon Directeur
Toon Calders Eindhoven Technical University, NL Examinateur
Bruno Crémilleux Université de Caen Rapporteur
Arno Siebes University of Utrecht, NL Examinateur
Hannu Toivonen University of Helsinki, FI Rapporteur
Christel Vrain Université d’Orléans Présidente

Loïc Cerf: Constraint-Based Mining of Closed Patterns in Noisy n-ary
Relations, PhD Thesis, © September 2007–July 2010

supervisor:
Jean-François Boulicaut

time frame:
September 2007–July 2010

A B S T R A C T

Useful knowledge discovery processes can be based on patterns ex-
tracted from large datasets. Designing efficient data mining algorithms
to compute collections of relevant patterns is an active research do-
main. Many datasets record whether some properties hold for some
objects, e. g., whether an item is bought by a customer or whether a
gene is over-expressed in a biological sample. Such datasets are binary
relations and can be represented as 0/1 matrices. In such matrices, a
closed itemset is a maximal rectangle of ’1’s modulo arbitrary permuta-
tions of the lines (objects) and the columns (properties). Thus, every
closed itemset supports the discovery of a maximal subset of objects
sharing the same maximal subset of properties. Efficiently extracting
every closed itemset satisfying user-defined relevancy constraints has
been extensively studied. Despite its success across many application
domains, this framework often turns out to be too narrow. First of all,
many datasets are n-ary relations, i. e., 0/1 tensors. Reducing their
analysis to two dimensions is ignoring potentially interesting additional
dimensions, e. g., where a customer buys an item (localized analysis)
or when a gene expression is measured (kinetic analysis). The presence
of noise in most real-life datasets is a second issue, which leads to the
fragmentation of the patterns to discover.

Generalizing the definition of a closed itemset to make it suit relations
of higher arity and tolerate some noise is straightforward (maximal
hyper-rectangle with an upper bound of ’0’s tolerated per hyper-plan).
On the contrary, generalizing their extraction is very hard. Indeed, clas-
sical algorithms exploit a mathematical property (the Galois connection)
of the closed itemsets that none of the two generalizations preserve.
That is why our extractor browses the candidate pattern space in an
original way that does not favor any dimension. This search can be
guided by a very broad class of relevancy constraints the patterns must
satisfy. In particular, this thesis studies constraints specifically designed
for mining almost-persistent cliques in dynamic graphs. Our extractor
is orders of magnitude faster than known competitors focusing on exact
patterns in ternary relations or on noise-tolerant patterns in binary
relations. Despite these results, such an exhaustive approach often
cannot, in a reasonable time, tolerate as much noise as the dataset
contains. In this case, complementing the extraction with a hierarchical
agglomeration of the (insufficiently noise-tolerant) patterns increases
the quality of the returned collection of patterns.

iii

R É S U M É

Les processus de découverte de connaissances nouvelles peuvent
être fondés sur des motifs locaux extraits de grands jeux de données.
Concevoir des algorithmes de fouille de données efficaces pour calculer
des collections de motifs pertinents est un domaine actif de recherche.
Beaucoup de jeux de données enregistrent si des objets présentent ou
non certaines propriétés; par exemple si un produit est acheté par un
client ou si un gène est sur-exprimé dans un échantillon biologique. Ces
jeux de données sont des relations binaires et peuvent être représentés
par des matrices 0/1. Dans de telles matrices, un ensemble fermé est
un rectangle maximal de ’1’s modulo des permutations arbitraires des
lignes (objets) et des colonnes (propriétés). Ainsi, chaque ensemble
fermé sous-tend la découverte d’un sous-ensemble maximal d’objets
partageant le même sous-ensemble maximal de propriétés. L’extraction
efficace de tous les ensembles fermés, satisfaisant des contraintes de
pertinences définies par l’utilisateur, a été étudiée en profondeur. Mal-
gré son succès dans de nombreux domaines applicatifs, ce cadre de
travail se révèle souvent trop étroit. Tout d’abord, beaucoup de jeux de
données sont des relations n-aires, c’est à dire des tenseurs 0/1. Ré-
duire leur analyse à deux dimensions revient à ignorer des dimensions
additionnelles potentiellement intéressantes; par exemple où un client
achète un produit (analyse spatiale) ou quand l’expression d’un gène
est mesurée (analyse cinétique). La présence de bruit dans la plupart
des jeux de données réelles est un second problème qui conduit à la
fragmentation des motifs à découvrir.

On généralise facilement la définition d’un ensemble fermé pour
la rendre applicable à des relations de plus grande arité et tolérante
au bruit (hyper-rectangle maximal avec une borne supérieure de ’0’s
tolérés par hyper-plan). Au contraire, généraliser leur extraction est
très difficile. En effet, les algorithmes classiques exploitent une pro-
priété mathématique (la connexion de Galois) des ensembles fermés
qu’aucune des deux généralisations ne préserve. C’est pourquoi notre
extracteur parcourt l’espace des motifs candidats d’une façon originale
qui ne favorise aucune dimension. Cette recherche peut être guidée
par une très grande classe de contraintes de pertinence que les motifs
doivent satisfaire. En particulier, cette thèse étudie des contraintes spéci-
fiquement conçues pour la fouille de quasi-cliques presque-persistantes
dans des graphes dynamiques. Notre extracteur est plusieurs ordres de
grandeurs plus efficace que les algorithmes existants se restreignant à
la fouille de motifs exacts dans des relations ternaires ou à la fouille de
motifs tolérants aux erreurs dans des relations binaires. Malgré ces ré-
sultats, une telle approche exhaustive ne peut souvent pas, en un temps
raisonnable, tolérer tout le bruit contenu dans le jeu de données. Dans
ce cas, compléter l’extraction avec une agglomération hiérarchique des
motifs (qui ne tolèrent pas suffisamment de bruit) améliore la qualité
des collections de motifs renvoyées.

v

P U B L I C AT I O N S

Most ideas and figures have appeared previously in the following
publications:

international journal

[CBRB09] Loïc Cerf, Jérémy Besson, Céline Robardet, and Jean-François
Boulicaut. Closed patterns meet n-ary relations. ACM Trans-
actions on Knowledge Discovery from Data, 3(1):1–36, March
2009. (Cited on page 53.)

international conferences

[BCTB08] Jérémy Besson, Loïc Cerf, Rémi Thévenoux, and Jean-
François Boulicaut. Tackling closed pattern relevancy in
n-ary relations. In MMD ’08: Proceedings of the First Inter-
national Workshop on Mining Multidimensional Data, pages
2–16, September 2008. (Cited on page 83.)

[CBRB08] Loïc Cerf, Jérémy Besson, Céline Robardet, and Jean-
François Boulicaut. Data-Peeler: Constraint-based closed
pattern mining in n-ary relations. In SDM ’08: Proceedings
of the Eighth SIAM International Conference on Data Mining,
pages 37–48. SIAM, April 2008. (Cited on page 53.)

[CGSB08] Loïc Cerf, Dominique Gay, Nazha Selmaoui, and Jean-
François Boulicaut. A parameter-free associative classi-
fication method. In DaWaK ’08: Proceedings of the Tenth
International Conference on Data Warehousing and Knowledge
Discovery, pages 293–304. Springer, September 2008. (Cited
on page 4.)

[CMB09] Loïc Cerf, Pierre-Nicolas Mougel, and Jean-François Bouli-
caut. Agglomerating local patterns hierarchically with
ALPHA. In CIKM ’09: Proceedings of the 18th International
Conference on Information and Knowledge Management, pages
1753–1756. ACM Press, November 2009. (Cited on page 83.)

[CNB09] Loïc Cerf, Tran Bao Nhan Nguyen, and Jean-François Bouli-
caut. Discovering relevant cross-graph cliques in dynamic
networks. In ISMIS ’09: Proceedings of the 18th International
Symposium on Methodologies for Intelligent Systems, pages
513–522. Springer, September 2009. (Cited on page 121.)

[SDCP+
07] Yolanda Sanchez-Dehesa, Loïc Cerf, Jose Maria Pena, Jean-

François Boulicaut, and Guillaume Beslon. Artificial regu-
latory networks evolution. In MLSB ’07: Proceedings of the
First International Workshop on Machine Learning for Systems
Biology, pages 47–52, October 2007.

vii

national conferences

[CBB09] Loïc Cerf, Jérémy Besson, and Jean-Francois Boulicaut. Ex-
traction de motifs fermés dans des relations n-aires bruitées.
In EGC ’09 : Actes des neuvièmes Journées Extraction et Ges-
tion des Connaissances, pages 163–168. Cépaduès-Éditions,
January 2009. (Cited on page 83.)

[GCSFB10] Dominique Gay, Loïc Cerf, Nazha Selmaoui-Folcher, and
Jean-François Boulicaut. Un nouveau cadre de travail pour
la classification associative dans les données aux classes dis-
proportionnées. In SFC ’10 : Actes des 17èmes Rencontres de
la Société Francophone de Classification, pages 47–50. Presses
Académiques, June 2010. (Cited on page 4.)

[NCB10] Kim-Ngan T. Nguyen, Loïc Cerf, and Jean-François Bouli-
caut. Sémantiques et calculs de règles descriptives dans
une relation n-aire. In BDA ’10: Actes des 26èmes Journées
Bases de Données Avancées, October 2010. Accepted but
unpublished yet. (Cited on page 156.)

book chapter

[CNB10] Loïc Cerf, Tran Bao Nhan Nguyen, and Jean-François Bouli-
caut. Mining constrained cross-graph cliques in dynamic
networks. Accepted for publication in a book coauthored by
the partners of the IQ European project, 2010.

posters

[CBRB07] Loïc Cerf, Jérémy Besson, Céline Robardet, and Jean-François
Boulicaut. Extraction d’hyper-rectangles fermés sous con-
traintes, July 2007. BDI ’07: Atelier Bases de Données Induc-
tives.

[CBRB08] Loïc Cerf, Jérémy Besson, Céline Robardet, and Jean-François
Boulicaut. Constrained-based closed pattern mining in n-ary
relations, April 2008. SML ’08: Spring Workshop on Mining
and Learning 2008.

other articles

[Cer08a] Loïc Cerf. Mining distrowatch.com logs part 1,
March 2008. http://www.blue-gnu.biz/content/mining_

distrowatch_com_logs_part_1. (Cited on page 121.)

[Cer08b] Loïc Cerf. Mining distrowatch.com logs part 2,
March 2008. http://www.blue-gnu.biz/content/mining_

distrowatch_com_logs_part_2. (Cited on page 121.)

viii

http://www.blue-gnu.biz/content/mining_distrowatch_com_logs_part_1
http://www.blue-gnu.biz/content/mining_distrowatch_com_logs_part_1
http://www.blue-gnu.biz/content/mining_distrowatch_com_logs_part_2
http://www.blue-gnu.biz/content/mining_distrowatch_com_logs_part_2

A C K N O W L E D G M E N T S

This work was achieved within the Turing research group. Without
the fruitful collaborations I was involved in, none of the results, pre-
sented in this thesis, would have been possible. That is why I want to
cheerfully thank every member of this friendly team. The researchers
who coauthored the publications listed in the two previous pages de-
serve special mentions. So, thank you Jérémy and Céline for your
developments; they were the starting points of the generalizations this
thesis exposes. Thank you Rémi, Bao, Pierre-Nicolas and Ngan for
your outstanding technical contributions. Thank you Yolanda, Chema,
Guillaume, Dominique and Nazha for your expertness in fascinating
domains. Thank you Christophe and Marc for the constructive discus-
sions we have had. And, above all, thank you Jean-François for your
excellent management, your friendship and your titanic work. It was
an honor to have this manuscript reviewed by Bruno Crémilleux and
Hannu Toivonen. I am also grateful to the international members of
the jury — Francesco Bonchi, Toon Calders and Arno Siebes — and to
its president, Christel Vrain. Last but not least, minha chérizinha: her
love and support is priceless.

This doctoral work was sequentially funded by the European project
IST-FET FP6-516169 IQ and by the French project ANR-07-MDCO-014

Bingo2.

ix

C O N T E N T S

i introduction 1

ii state of the art and theoretical basis 9

1 constraint-based closed itemset mining 13

1 Mining Closed Itemsets 13

1.1 Context 13

1.2 Definition 13

1.3 Complete Extraction 14

2 Constraining the Itemsets 19

2.1 Why Are Constraints Wanted? 19

2.2 What is a Constraint? 20

2.3 Classes of Constraints 21

2.4 On Closedness 34

3 Conclusion 35

2 generalizing closed itemset mining 37

1 Mining Noise-Tolerant Itemsets 37

1.1 Theoretical Aspects 37

1.2 State of the Art 41

2 Mining Closed Patterns in n-ary Relations 43

2.1 Theoretical Aspects 43

2.2 State of the Art 46

3 Mining Closed Patterns in Noisy n-ary Relations 48

3.1 Tolerating Noise Is a Must 48

3.2 State of the Art 48

4 Conclusion 49

iii mining n-ary relations 51

3 data-peeler: the first closed n-set extractor 55

1 Data-Peeler 55

1.1 A Closed n-Set Extractor 55

1.2 Enumeration 55

1.3 Efficient Enforcement of Cconnected 56

1.4 Efficient Enforcement of Cclosed 57

1.5 Algorithm 58

1.6 Choosing the Element to Enumerate 59

2 Improvements to the Enumeration 60

2.1 Removing Elements from S 60

2.2 Moving Elements from V to U 60

2.3 Improved Algorithm 62

3 Example of Computation 64

4 Data Structures 66

4.1 Storing the Dataset 66

4.2 Storing the Enumeration Nodes 67

4.3 Space Complexity 67

5 Experimental Results 67

5.1 Quest-Generated Datasets 67

5.2 Impact of the Enumeration Strategy 68

5.3 Comparison with Competitors 68

5.4 Scalability w.r.t. the Arity 69

6 Robustness w.r.t. Binarization 71

xi

xii contents

7 Minimizing multi-valued Logic Functions 72

7.1 Problem Setting 72

7.2 Simplifying Multi-Valued Logic Functions 73

7.3 A Global Model of R 73

7.4 A Closed n-Set Greedy Post-Processing 74

7.5 Experimental results 75

7.6 Improving Time Performances 76

8 Conclusion 79

iv mining noisy n-ary relations 81

4 fenster extracts n-sets tolerating errors in the rela-
tion 85

1 Closed ET-n-Sets 85

1.1 Absolute Noise-Tolerance 85

1.2 Relative Noise-Tolerance 86

2 Fenster 87

3 Implementation 89

3.1 Cε-connected and Cε-closed 89

3.2 Choosing the Element to Enumerate 93

4 Space Complexity 93

5 Empirical Study 94

5.1 Synthesizing Datasets 94

5.2 Global Quality Results 94

5.3 Comparison with Competitors 97

6 Mining Anomalously Dense ET-n-Sets 100

6.1 Local Pattern 100

6.2 Strong Closedness 102

6.3 Global Quality Results 103

7 Conclusion 105

5 agglomerating local patterns hierarchically with al-
pha 107

1 Agglomerating Closed ET-n-Sets 107

1.1 A Pattern Clustering Scheme 107

1.2 Hierarchical Agglomeration 108

2 Returning the Few Relevant Patterns 110

2.1 Cluster Relevancy Measure 110

2.2 Selecting the Relevant Clusters 111

3 Empirical Study 112

3.1 Quality Measures 112

3.2 Assessing the Agglomeration 114

3.3 Assessing the Selection 115

4 Conclusion 117

v application to dynamic graph mining 119

6 mining dynamic graphs 123

1 Specializing n-ary Relation Mining 123

1.1 Dynamic Graph 123

1.2 A Closed ET-3-Set Under Constraints 123

1.3 Problem Setting 126

2 Related Work 126

2.1 Cross-Graph Quasi-Clique Mining 126

2.2 Contiguity 127

3 Mining τ-Contiguous Closed ET-3-Set 127

3.1 A Piecewise (Anti)-Monotone Constraint. . . 127

contents xiii

3.2 . . . Partially Handled in Another Way 128

3.3 Enforcing the τ-Closedness 130

4 Mining τ-Contiguous Closed ET-3-Cliques 130

4.1 A Piecewise (Anti)-Monotone Constraint. . . 130

4.2 . . . Better Handled in Another Way 131

4.3 Constraining the Enumeration 133

4.4 Contraposition of Enumeration Constraints 134

4.5 Enforcing the Symmetric τ-Closedness 135

5 Conclusion 136

7 mining the vélo’v usage network 139

1 Dataset 139

2 Symmetry Between Departure and Arrival Stations 141

2.1 Avoiding False Positive Noise 141

2.2 Decreasing the Running Times 142

3 Effect of a τ-Contiguity Constraint 142

4 Agglomeration, Selection and Interpretation 143

4.1 Agglomeration and Selection 143

4.2 Seven Patterns 144

4.3 General Observations 148

5 Conclusion 150

vi conclusion 151

vii bibliography 157

L I S T O F F I G U R E S

Figure 1 The Extract closed itemset extractor (under a
frequency constraint). 17

Figure 2 Enumeration of any property e ∈ VP. 17

Figure 3 Enumeration tree Extract traverses when mining
BE. 18

Figure 4 The Extract++ closed itemset extractor (under
any conjunction of monotone and anti-monotone
constraints). 22

Figure 5 The Extract# closed itemset extractor (under any
loose anti-monotone constraint). 25

Figure 6 The Extract## closed itemset extractor (under
a loose anti-monotone constraint with a known
max function). 26

Figure 7 The Extract* closed itemset extractor (under any
piecewise (anti)-monotone constraint). 31

Figure 8 Classes of constraints preserving the freedom to
enumerate any property anytime. 32

Figure 9 Classes of constraints generalizing anti-monotone
constraints but whose enforcements require mod-
ified enumeration principles. 33

Figure 10 Enumeration of any element e ∈ V . 56

Figure 11 Enumeration of the element 4 ∈ V2 from node M
(Example 12). 56

Figure 12 Enumeration of any element e ∈ V . Cconnected
removes elements from V . 56

Figure 13 Enumeration of the element 4 ∈ V2 from node M
(Example 13). 57

Figure 14 Enumeration of any element e ∈ V . Cconnected
removes elements from V . Cclosed is checked on
Ut V extended with every element in S. 58

Figure 15 Enumeration of the element 4 ∈ V2 from node M
(Example 14). 58

Figure 16 The Data-Peeler algorithm. 59

Figure 17 Enumeration of any element e ∈ V . Cconnected
removes elements from V and S. Cclosed is checked
on Ut V extended with every element in S. 60

Figure 18 Illustration of Example 16. 61

Figure 19 Enumeration of any element e ∈ V . Cconnected
removes elements from V and S. The elements
of V that are necessarily present are moved to U.
Cclosed is checked on Ut V extended with every
element in S. 61

Figure 20 Illustration of Example 17. 62

Figure 21 The Data-Peeler improved algorithm. 63

Figure 22 Part of the enumeration tree Data-Peeler tra-
verses when mining RE. 65

Figure 23 Comparing sensible enumeration strategies. 69

Figure 24 Comparison with CubeMiner and Trias. 70

Figure 25 Effect of the arity on the extraction times. 70

xiv

List of Figures xv

Figure 26 Time to minimize, under Ck-summary, a Quest-
generated dataset. 78

Figure 27 Space to minimize, under Ck-summary, a Quest-
generated dataset. 78

Figure 28 Conversion from a relative noise tolerance (r1, r2)

to an absolute one (ε1, ε2) depending on the re-
gion of interest. 87

Figure 29 Fenster enumerating any element e ∈ V . 88

Figure 30 Illustration of Example 21. 88

Figure 31 Illustration of Example 23. 89

Figure 32 The Fenster algorithm. 90

Figure 33 Global qualities of the closed ET-3-sets with at
least four elements per attribute in a 32× 32× 32
dataset. 95

Figure 34 False positive rates of the closed ET-3-sets with at
least four elements per attribute in a 32× 32× 32
dataset. 96

Figure 35 False negative rates of the closed ET-3-sets with at
least four elements per attribute in a 32× 32× 32
dataset. 96

Figure 36 False negative rates of the closed ET-3-sets with at
least five elements per attribute in a 32× 32× 32
dataset. 97

Figure 37 Global qualities of the closed ET-3-sets with at
least five elements per attribute in a 32× 32× 32
dataset. 98

Figure 38 Global qualities of the closed ET-4-sets extracted
with at least two elements per attribute in a 16×
16× 16× 16 dataset. 98

Figure 39 Times to extract the exact closed 3-sets with at
least four elements per attribute in a 32× 32× 32
dataset. 99

Figure 40 Global quality of the collection of patterns ex-
tracted by Fenster in a 16× 16 dataset. 100

Figure 41 Global quality of the collection of patterns ex-
tracted by AC-Close in a 16× 16 dataset. 101

Figure 42 Times to extract the collection of error-tolerant
patterns with AC-Close or Fenster in a 16× 16
dataset. 101

Figure 43 Enumeration of any element e ∈ V . 102

Figure 44 The generalized Fenster algorithm. 103

Figure 45 Illustration of Example 27. 103

Figure 46 Global quality of the δ-closed ET-3-sets extracted
with at least four elements per attribute in a 32×
32× 32 dataset. 104

Figure 47 Times to extract every closed ET-3-sets with at
least five elements per attribute in a 32× 32× 32
dataset. 105

Figure 48 Two toy binary relations 109

Figure 49 KNIME dendrogram representing the hierarchical
agglomeration. 110

Figure 50 KNIME workflow when experimenting Alpha on
the synthetic ternary relations. 113

xvi List of Figures

Figure 51 Best-ones qualities of the collections output by
Fenster only and by Fenster + Alpha. 114

Figure 52 Sizes of the collections output by Fenster only
and by Fenster + Alpha. 115

Figure 53 Best-ones qualities of the output collections with
and without the selection of the relevant pat-
terns. 116

Figure 54 Sizes of the output collections with and without
the selection of the relevant patterns. 116

Figure 55 A dynamic (directed) graph (N = {a, b, c, d}, T =

{0, 0.5, 2, 3}). 123

Figure 56 The Purge_Vtimes procedure. 129

Figure 57 Enumeration of 0.5 ∈ V during the extraction of
1-contiguous 3-sets from the dataset represented
in Table 9. 129

Figure 58 Handling the symmetry constraint. 132

Figure 59 Append_contraposition. 135

Figure 60 main. 136

Figure 61 Fenster specialization for τ-contiguous closed
ET-3-clique mining. 137

Figure 62 A Vélo’v station. 140

Figure 63 Effect of a τ-contiguity on the number of closed
4-cliques and the time to extract them. 143

Figure 64 Mining RVélo’v. 144

Figure 65 During the week-end from 3 pm to 8 pm. 145

Figure 66 On Fridays, Saturdays, Sundays and Mondays
from 3 pm to 8 pm. 145

Figure 67 During the week-end from 3 pm to 8 pm. 146

Figure 68 During the week-end from 3 pm to 8 pm. 146

Figure 69 On Mondays, Tuesdays, Wednesdays, Thursdays
and Fridays from 12 noon to 5 pm. 147

Figure 70 Everyday but Sunday from 3 pm to 8 pm. 147

Figure 71 All week long from 12 noon to 9 pm. 148

Figure 72 The Heaviside step function and two logistic func-
tions. 155

L I S T O F TA B L E S

Table 1 BE ⊆ {o1, o2, o3, o4}× {p1, p2, p3}. 13

Table 2 Flexible constraints. 27

Table 3 gp ′ : BE → R+. 31

Table 4 BhiddenE ⊆ {o1, o2, o3, o4}× {p1, p2, p3}. 38

Table 5 RE ⊆ {α,β, γ}× {1, 2, 3, 4}× {A,B,C}. 44

Table 6 Minimizing random multi-valued logic functions
(density: 6.25%). 76

Table 7 Minimizing random multi-valued logic functions
(density: 25%). 76

Table 8 Minimizing random multi-valued logic functions
(density: 50%). 76

Table 9 (A0, A0.5, A2, A3) related to the dynamic graph
depicted Figure 55. 124

Table 10 Number of patterns in RVélo’v. 141

Table 11 Running times of Fenster on RVélo’v. 142

xvii

Part I

I N T R O D U C T I O N

introduction 3

Intellectus humanus fertur ad abstracta propter naturam
propriam; atque ea, quae fluxa sunt, fingit esse constantia.

Melius autem est naturam secare, quam abstrahere; id
quod Democriti schola fecit, quae magis penetravit in

naturam, quam reliquae. Materia potius considerari debet,
et ejus schematismi, et meta-schematismi, atque actus

purus, et lex actus sive motus; formae enim commenta
animi humani sunt, nisi libeat leges illas actus formas

appellare.

— Sir Francis Bacon [4]

The human understanding is, by its own nature, prone to
abstraction, and supposes that which is fluctuating to be

fixed. But it is better to dissect than abstract nature; such
was the method employed by the school of Democritus,

which made greater progress in penetrating nature than
the rest. It is best to consider matter, its conformation, and

the changes of that conformation, its own action, and the
law of this action or motion, for forms are a mere fiction

of the human mind, unless you will call the laws of action
by that name.

— translation by William Wood [56]

background

The aphorism, starting this thesis, is part of the Novum Organum.
This work, by Francis Bacon, is more a scientific method than a philoso-
phy. It argues for both the reductionism and the inductive reasoning. The
inductive reasoning is at work in data mining. It proceeds from facts to
laws; from data to models. The reductionism, “employed by the school
of Democritus”, was later developed by David Hume in his bundle
theory. In this pluralist (rather than monist) theory, an object consists
of its properties and nothing else. For instance, a wine is its origin, its
aromas, its color, its acidity, its viscosity, the grape varieties making it,
etc. Considering a set of properties P (e. g., {“from Bourgogne”,“from
Alsace”, . . . ,“earthy”,“herbaceous”,“peppery”, . . . ,“very acid”, . . .}), an
object (e. g., a wine) translates to a subset of P (e. g., a wine can be
{“from Alsace”,“earthy”,“floral”,“garnet”,“made of resling”,“made of
gewurztraminer”,“very acid”}). In this way, a set of objects O, described
with the properties in P, constitutes a binary relation B ⊆ O×P, which
encodes whether an object has a property. An interesting problem,
which hopefully helps in “penetrating nature”, is the search of patterns
in a relation that gathers objects involved in a phenomenon to under-
stand. Nevertheless, in the quoted aphorism, Francis Bacon warns us:
“forms are a mere fiction of the human mind”. Algorithms, such as the
data mining methods, do not suffer from the weaknesses of the human
mind. The patterns they detect are all the more trusty as their “form”
is formally specified and the algorithms at work are exact. The formal
specification of a data mining task is expressed in mathematical terms.
Given a dataset, exact approaches output, without any approximation,
the pattern(s) matching the mathematical expression.

4 introduction

Following the bundle theory, consider a dataset represented by a
binary relation B ⊆ O×P. To “dissect” it, it may be interesting to list
every subset of properties that describe, together, at least ten objects.
If B represents wines, it may be discovered, in this way, that more
than ten wines (in the dataset) are, at the same time, “from Alsace”,
“earthy” and “very acid”. In this example, the formal specification of
the patterns is {(O,P) ∈ 2O × 2P |O× P ⊆ B∧ |O| > 10}, i. e., the data
mining task consists in listing every subset of properties P ⊆ P shared
by a subset of objects O ⊆ O (“O× P ⊆ B”), which must be at least
ten (“|O| > 10”). This problem, namely the (10)-frequent itemset mining,
is NP-hard. Nevertheless, exact algorithms (aka complete extractors
because they extract every pattern matching the formal specification)
are efficient enough to be tractable on rather large relations. Other
famous “forms” cannot be discovered exactly in a reasonable time.
Clustering (e. g., partitioning the wines into homogeneous groups w.r.t.
their properties) and classifying (e. g., learning/predicting the origin of
a wine from its other properties) are famous examples of such “forms”.
Their optimal solutions can be formally defined but, given a large
dataset, computing them takes ages. Heuristics allow to approximately
solve them though. Interestingly, complete extractors may be useful in
a first step towards solving these difficult problems. E. g., a classifier
can be based on rules whose bodies are frequent itemsets. fitcare

[CGSB08, GCSFB10] is such a classifier 1. Although it is arguable, we
believe that delaying the lossy heuristics as far as possible (i. e., as
far as tractable) in the knowledge discovery process makes the whole
process trustier. This trust is particularly important with unsupervised
learning (like itemset mining or clustering; unlike classification), where,
by definition, the computed pattern(s) cannot be tested.

constraint-based specification

By definition, constraint-based methods outline the “form” of the
computed pattern(s) via constraints. Consider, again, the formal spec-
ification of 10-frequent itemsets. It consists of two constraints: (a)
encompassing only couples present in the relation and (b) involving
at least ten objects. The relevancy of these constraints, therefore that
of the discovered patterns, is arguable. Algorithms do not suffer from
the weaknesses of the human mind but the choice of the “form” they
recognize does! Depending on the actual application, other constraints
may match more interesting patterns. E. g., in an attempt to draw con-
clusions about wines, itemsets may be useless unless they contain an
origin (i. e., a property “from [region]”) or unless the standard deviation
of their acidity remains below a user-defined threshold (what requires
this numerical information for each wine). Nevertheless over-specifying
the patterns is not good either: surprising patterns, which usually are
the most valuable, could be missed. Anyway, beyond their ability to
select the most relevant patterns, additional constraints often are in-
dispensable to the practical computation of these patterns. Indeed a
constraint, with good mathematical properties, guides the algorithm
towards the solution(s). I. e., regions of the search space, where the
constraint is violated, are pruned. That means shorter running times
and the tractable discovery of patterns in larger datasets. Constraints
are grouped in classes w.r.t. the enumeration principles (how the search

1. We have chosen to not present it in this thesis.

introduction 5

space is traversed) that are required to take advantage of them, i. e., to
prune the search space. The complete extractors in this thesis handle
a very expressive class of constraints. As a consequence, although
these approaches are very general, they can take advantage of many
constraints and mine application-specific patterns precise constraints
finely outline.

Rather than itemset mining, this thesis generalizes closed itemset
mining. The additional adjective translates to an additional constraint
on the patterns. An itemset, associating a set of objects with a set of
properties, is closed if and only if no other (and necessarily larger)
frequent itemset has all these properties and describe all these objects.
E. g., ten wines that are both “from Alsace” and “very acid” form
a 10-frequent itemset. This pattern is not closed if there exists at
least an eleventh wine which is both “from Alsace” and “very acid”
(a larger pattern associates eleven wines with the properties “from
Alsace” and “very acid”). It is not closed either if the ten wines are all
“earthy” (a larger pattern associates the ten wines with the properties
“from Alsace”, “very acid” and “earthy”). The closedness constraint
condenses collections of frequent itemsets by only keeping the most
informative ones. Without it, the returned collections usually are too
large to be interpreted. That is why, when generalizing itemset mining,
a close attention is paid to the ability to the preservation of a useful
closedness property. On one hand, its definition should still support
a lossless condensation of the patterns. On the other hand, it must be
efficiently computed, i. e., in the class of constraints the generalized
extractors handle. These two orthogonal concerns are not specific to
the closedness constraint. They are actually found across any data
mining task and respectively relate to their declarative and procedural
semantics.

generalization towards n-ary relations

Discovering that more than ten wines are, at the same time, “from
Alsace”, “earthy” and “very acid” makes us hypothesize that these
three properties are semantically related, e. g., that wines from Alsace
generally are earthy and very acid. However, “the human understand-
ing is, by its own nature, prone to abstraction, and supposes that
which is fluctuating to be fixed”. Are we drawing a general conclu-
sion too quickly? Indeed, the “conformation” of a wine changes a lot
w.r.t. its vintage date. A first idea consists in appending {“vintage
1988”,“vintage 1989”, . . .} to the set of properties. Nevertheless, a wine
has only one vintage date, e. g., a wine “vintage 1988” cannot be, at the
same time, “vintage 1989” or “vintage 1990”. Notice that it also has
only one origin, e. g., a wine cannot be, at the same time, “from Bour-
gogne” and “from Alsace”. As a consequence, no itemset can support
the discovery that, between 1988 and 1990, the wines from Bourgogne
and from Alsace were all earthy. Indeed, by definition, no object shares
two (or more) properties that are self-exclusive. Anyway, such patterns
obviously are interesting. To mine them, this thesis proposes to split the
one-dimensional set of properties P into several orthogonal dimensions
of analysis D1, D2, D3, etc. The dataset is then expressed in terms of
elements in D1 ×D2 ×D3 × . . . , i. e., it is an n-ary relation, where n is
the number of dimensions. E. g., to analyze wines w.r.t. their origins,
their aromas and their vintage dates, these three orthogonal attributes

6 introduction

constitute three dimensions of analysis: Dorigins = {“from Bourgogne”,
“from Alsace”, . . .}, Daromas = {“earthy”,“herbaceous”,“peppery”, . . .}
and Dvintage = {“vintage 1988”,“vintage 1989”, . . .}. The dataset is
a ternary relation Rwines ⊆ Dorigins ×Daromas ×Dvintage. It contains
(“from Alsace”,“earthy”,“vintage 1988”) if and only if the wines har-
vested in Alsace in 1988 usually are earthy.

The data mining group led by Pr. Jean-François Boulicaut currently
works on the systematic generalization of data mining tasks (clustering,
classification, etc.) towards n-ary relations. This thesis exposes the
first results. It considers the complete extraction of generalized closed
itemsets. E. g., the algorithms presented in this thesis can discover
patterns such as the one discussed in the previous paragraph, i. e.,
({“vintage 1988”,“vintage 1989”,“vintage 1990”}, {“from Bourgogne”,
“from Alsace”}, {“earthy”}). Generalizing the definition of closed item-
sets, to make them suit n-ary relations, is trivial. Generalizing their
complete extraction is much harder. Indeed, an essential mathematical
property, namely the Galois connection, is lost. Our proposal iteratively
builds candidate patterns. At every iteration, any element, from any
attribute domain, can be chosen to enlarge the current candidate. This
freedom allows the design of an enumeration strategy that avoids large
regions of the search space but discovers all patterns. It outperforms,
by orders of magnitude, related work designed for ternary relation
mining.

Real-life dynamic graphs are particular ternary relations (nodes ×
nodes × timestamps). They are found in many application domains.
E. g., they support the kinetic analysis of biological networks such as
protein-protein interactions. Cross-graph closed cliques are sets of
nodes that are completely connected across several graphs. They are
relevant patterns for the local analysis of dynamic graphs. This is all
the more true when the graphs supporting a pattern are grouped in
time, i. e., their timestamps are close to each other. It turns out that both
the symmetry constraint on the two node attributes (tails and heads of
the edges) and the almost-contiguity constraint on the time attribute
are efficiently enforced by our extractors. I. e., the general approaches,
detailed in this thesis, can efficiently mine every almost-contiguous
cross-graph closed clique. This illustrates the winning combination of a
general extractor and an expressive class of constraints making it useful
for specific applications.

generalization towards noise tolerance

Real-life datasets are noisy. In the context of a relation, tuples that
should be absent from it are present and vice versa. There are many
sources of noise. One of them is due to the all-or-nothing aspect of the
property encoded by a relation. E. g., it was written, in the previous
section, that Rwines contains (“from Alsace”,“earthy”,“vintage 1988”) if
and only if the wines harvested in Alsace in 1988 usually are earthy. If
these wines sometimes are earthy, the related 3-tuple may (or not) end up
in the relation. Among other sources of noise, let us mention erroneous
measures (e. g., the oenologist was sick), subjective measures (e. g.,
the oenologist was in a good/bad mood), stochastic phenomena (e. g.,
the wine was corked), too small samples (e. g., only the best/worse
wines of a kind were tasted), etc. Mining the closed itemsets in a noisy
relation only allows to recover logarithmic fragments of the patterns

introduction 7

that would be discovered in the same relation but deprived of noise.
Indeed, closed itemsets are, by definition, not allowed to encompass
anything but tuples present in the relation. Their counterparts in n-ary
relations raise even more troubles because they usually encompass
more tuples. E. g., assume ({“vintage 1988”,“vintage 1989”,“vintage
1990”}, {“from Bourgogne”, “from Alsace”}, {“earthy”}) is a pattern to
discover in Rwines. Imagine that both (“from Alsace”,“earthy”,“vintage
1988”) and (“from Bourgogne”,“earthy”,“vintage 1990”), affected by
noise, are absent from Rwines. Then, instead of one, five (unconstrained)
closed patterns are discovered.

To recover the patterns that were affected by noise (or, at least, larger
fragments of those patterns), the formal specification of closed itemset
mining (actually, of its generalization towards n-ary relations) cannot
be kept as is. Noise tolerance parameters generalize it. They are upper-
bounds of the number of n-tuples that every element (in every attribute)
of every pattern is allowed to encompass. E. g., despite the two ab-
sent 3-tuples, ({“vintage 1988”,“vintage 1989”,“vintage 1990”}, {“from
Bourgogne”, “from Alsace”}, {“earthy”}) can be discovered in Rwines.
The analyst only needs to specify the tolerance of one absent 3-tuple
per origin (one absent 3-tuple involves the Bourgogne, another involves
the Alsace), one per vintage (both the vintages 1988 and 1989 reach this
upper-bound) and two per aroma (both missing 3-tuples involve earthy
wines). Because larger patterns are discovered when missing tuples are
allowed, constraints on their sizes can be stronger and the supernumer-
ary tuples, present in the relation because of noise, are avoided. From a
procedural point of view, an efficient incremental computation of the
quantity of noise, which candidate patterns tolerate, is not trivial. By
implementing it underneath the enumeration principles developed for
discovering closed itemsets generalized to n-ary relation, their noise
tolerant counterparts are efficiently listed. Furthermore the same broad
class of constraints is available to both fasten the extraction and fo-
cus it on the most relevant patterns. For example, almost-contiguous
cross-graph closed quasi-cliques can be discovered.

Nevertheless, in large datasets, it often remains intractable to tolerate
enough noise so that the real patterns are recovered. Following the
philosophy “completeness as far as possible”, the obtainable fragments
are used as a basis and a heuristics complements the knowledge discov-
ery process. It consists of a hierarchical agglomeration of the patterns
followed by a selection of the relevant agglomerates. To compute the
distance between two patterns, it makes sense to come back to the
relation. In this way, the tuples encompassed by the considered ag-
glomerate (minimal envelope containing the two clustered patterns) but
absent from the patterns composing it, are also taken into account. The
selection step is indispensable to make the returned pattern collection
smaller, hence more interpretable. This collection is forced to cover the
seminal pool of patterns. In this way, the completeness of the initial
extraction is, somehow, preserved. The selected patterns are the ones
showing the best trade-offs between a small proportion of (supposedly)
noise inside them and a great distance to the outside patterns.

organization of the thesis

In the next chapter, the extraction of every closed itemset under
constraints is surveyed. The most famous classes of constraints are

8 introduction

detailed along the enumeration principles that enable their efficient
enforcements. In particular, the expressive class of constraints, that
our complete extractors handle, is defined, studied and illustrated.
Chapter 2 details the difficulties in generalizing closed itemset min-
ing towards noise tolerance on one hand, and towards n-ary relations
on the other hand. The state-of-the-art approaches, that tackle these
problems, are presented and discussed. Chapter 3 exposes the first
algorithm listing every closed pattern in arbitrary n-ary relations. Af-
ter experiments showing its excellent time performances, a pre and
a post-processing are described. Both make an original use of the
supernumerary attributes (to force a certain robustness to binarization
on one hand; to minimize multi-valued logic functions on the other
hand). Chapter 4 discusses the additional tolerance to noise. After de-
tailing the fundamental implementation details, the approach is shown
to provide, within a reasonable time, only fragments of the hidden
patterns. However, agglomerating the fragments heuristically recovers
the hidden patterns. Chapter 5 details this step and the following
one, i. e., the selection of the relevant agglomerates. Chapter 6 shows
how the symmetry and the almost-contiguity constraints specialize our
algorithms in the complete extraction of almost-contiguous cross-graph
closed quasi-cliques in dynamic networks. These constraints are part
of the ones that are efficiently enforceable thanks to the enumeration
principles at work. Nevertheless, it is explained how and why specific
implementations enable greater gains in running times. Chapter 7

details a specific application, which aims at understanding how the
Vélo’v network is used. This bicycle rental service, run by the urban
community of Lyon, logged, along the two studied years, more than
ten millions rides. The chapter details how these data are turned into
a 4-ary relation of more than 100000 tuples. Despite weak minimal
size constraints, a few hours are enough for our algorithms to discover
relevant patterns. Finally, a short summary and a few perspectives
conclude this thesis.

Part II

S TAT E O F T H E A RT A N D T H E O R E T I C A L
B A S I S

O U T L I N E

One of the earliest and most successful type of local pattern is the
itemset. Itemsets are extracted from binary relations. Generically, a
binary relation encodes Boolean properties that objects have (the couple
(object,property) is in the relation) or not (the related couple is not
in the relation). In such binary relations, an itemset is a subset of
properties associated with the objects sharing all these properties. A
closedness property allows a lossless condensation of all itemsets by
keeping only the most informative patterns. Nevertheless, complete
collections of closed itemsets remain huge, hence tedious to interpret,
and extracting them is intractable unless additional constraints are
enforced. Constraints express the relevancy of the closed itemsets
to keep. The class of constraints an extractor can use to prune the
search space, depends on its enumeration principles. After presenting
what is a closed itemset, Chapter 1 lists the classes of constraints
(definition and related enumeration principles) that are found in the
literature. In particular, this chapter explains how the reverse-search
paradigm enables a depth-first extraction of patterns under a loose anti-
monotone constraint, shows that the primitive-based and the piecewise
(anti)-monotone constraints are the same and emphasizes, through
examples, how large this class is. Those are new contributions, which
have not been published yet. Chapter 1 ends with a brief study of
the closedness constraint. It details generalizations of it that aim at
restricting the output to the anomalous patterns. The link between the
strong closedness and the stability index is shown.

Noise alters most datasets. In particular, a relation may miss some
tuples and closed itemsets, which cannot cover such tuples, only de-
scribe fragments of the hidden patterns. Furthermore, when available,
more than two attributes should be simultaneously taken into consider-
ation for a finer analysis. Chapter 2 presents these two generalizations
of closed itemset mining: towards noise tolerance and towards n-ary
relations. In both cases, the Galois connection is lost, what prevents
simple adaptations of closed itemset extractors. To tolerate noise, the
first challenge is to define the noise tolerance. It looks more natural to
tolerate proportions of noise (w.r.t. the sizes of the patterns). Nev-
ertheless, extractions with an absolute tolerance to noise scale much
better and allow an efficient enforcement of a closedness constraint.
Agglomerating itemsets is another (heuristic) way to tolerate noise. On
the contrary, generalizing closed itemsets towards n-ary relations is
straightforward. Generalizing their complete extraction is much harder.
Two algorithms were specifically designed to extract closed patterns in
ternary relations. Minimizing logic functions is a related topic, which
is briefly presented too. In n-ary relations, complete collections of local
patterns suffer even more from noise. A few proposals tackle both
problems at a time and are discussed at the end of the chapter.

11

1C O N S T R A I N T- B A S E D C L O S E D I T E M S E T M I N I N G

1 mining closed itemsets

1.1 Context

Given a finite set of objects O and a finite set of properties P, let
B ⊆ O× P a binary relation on these domains. Table 1 represents an Binary relations

associate objects with
properties. They are
useful across many
applicative domains.

example of such a relation BE ⊆ {o1, o2, o3, o4}× {p1, p2, p3}. In this
table, every ’1’ at the intersection of an object (a row) and a property
(a column) stands for the presence of the related couple in BE, i. e.,
the objects has the property. For example the bold ’1’, in Table 1, is at
the intersection of the object o1 and the property p1. It represents the
presence of (o1, p1) in BE, i. e., the object o1 has the property p1. On
the contrary a ’0’ in Table 1 is at the intersection of two elements which
form a couple absent from BE. For example the bold ’0’ in Table 1

means (o2, p3) /∈ BE, i. e., the object o2 does not have the property p3.
Binary relations are present in many application domains. For in-

stance, BE could represent customers (o1, o2, o3 and o4) buying items
(p1, p2 and p3). In this context, the bold ’1’ in Table 1 would mean that
the customer c1 bought the item p1. The bold ’0’ would be understood
as “customer c2 did not buy item p3”.

1.2 Definition

Given a binary relation B ⊆ O×P, a closed itemset is a maximal set
of objects sharing the same maximal set of properties. Considering the
tabular representation of the binary relation (such as Table 1), it is a
maximal rectangle of ’1’s modulo arbitrary permutations of the rows
and the columns. Here is a formal definition. Closed itemsets (a)

cover only couples
present in the binary
relation; (b) cannot be
enlarged without
violating (a).

Definition 1 (Closed itemset) ∀(O,P) ∈ 2O×2P, (O,P) is a closed item-
set iff:

– Cconnected(O,P) ≡ O× P ⊆ B;
– Cclosed(O,P) ≡ ∀(O ′, P ′) ∈ 2O × 2P,(

O ⊆ O ′ ∧ P ⊆ P ′ ∧Cconnected(O
′, P ′)

)
⇒ (O ′, P ′) = (O,P).

With this definition, an itemset is a set of objects and a set of properties.
It differs a little from the data-mining literature, where an itemset only
is a subset of properties (the next section explains how the “supporting”
set of objects is deducible). The unusual definition, chosen in this

p1 p2 p3

o1 1 1 1

o2 1 1 0

o3 0 1 0

o4 0 0 1

Table 1: BE ⊆ {o1, o2, o3, o4}× {p1, p2, p3}.

13

14 state of the art and theoretical basis

chapter, helps its generalization towards n-ary relations and noise
tolerance. The first constraint, Cconnected, specifies that every object in
O must have all the properties in P, otherwise (O,P) is not a closed
itemset. More precisely it is not (completely) connected. The second
constraint, Cclosed, forces any strictly larger pattern (more objects, more
properties or both) to violate Cconnected. It is, w.r.t. Cconnected, a closure
property on the sets of objects and properties altogether. It can easily
be proved that an equivalent closedness constraint only forces the
patterns with one more element (either an object or a property) to break
Cconnected. Furthermore, because Cconnected ensures the presence in B of
every couple in O× P, the closedness constraint can be reduced to the
search of absent couples involving the additional element only.

Definition 2 (Closed itemset (equivalent definition)) ∀(O,P) ∈ 2O ×
2P, (O,P) is a closed itemset iff:

– Cconnected(O,P) ≡ O× P ⊆ B;

– Cclosed(O,P) ≡

∀o ∈ O \O,¬Cconnected({o}, P), i. e., {o}× P 6⊆ B

∀p ∈ P \ P,¬Cconnected(O, {p}), i. e., O× {p} 6⊆ B

Example 1 In BE, represented in Table 1, ({o1, o2}, {p1, p2}) is a closed
itemset:

– {o1, o2}× {p1, p2} ⊆ BE (in Table 1 there are ’1’s at the intersection of
all the related rows and columns);

– Every pattern with one more element violates Cconnected:
– ¬Cconnected({o3}, {p1, p2}), i. e., {o3}× {p1, p2} 6⊆ BE;
– ¬Cconnected({o4}, {p1, p2}), i. e., {o4}× {p1, p2} 6⊆ BE;
– ¬Cconnected({o1, o2}, {p3}), i. e., {o1, o2}× {p3} 6⊆ BE.

({o1, o4}, {p3}) and ({o1, o2, o3, o4}, ∅) are other examples of closed itemsets
in BE.

If, again, the binary relation stands for customers buying items,
a closed itemset is a maximal subset of customers buying the same
maximal subset of items. Such a pattern is useful for analyzing buying
behaviors. The closedness constraint filters out all strict “sub-patterns”
(i. e., patterns where some elements are removed and none are added)
of the largest ones that are extracted. It reduces the size of the output
collection (what is necessary when it comes to interpreting it). Whatever
the dataset, two arguments justify the choice for closed patterns. The
first argument is a theorem stating that the closed patterns always are
more informative (lower p-value) that any of its “sub-patterns” (proof
in [26], which extends [25]). The second argument is the fact that allThe closedness

constraint provides a
lossless

condensation of all
itemsets by only

keeping the most
informative ones.

(closed and unclosed) connected itemsets are deducible from all closed
itemsets only [13], i. e., the latter collection is a condensed representation
[53] of the former. It means that, given any subset of properties P ′ ⊆ P

(resp. objects O ′ ⊆ O), all objects (resp. properties) that share these
properties (resp. objects) can be derived from the closed itemsets only.
They are the largest set of objects (resp. properties) a closed itemset
associates with a superset of P (resp. O).

1.3 Complete Extraction

1.3.1 Research Directions

One of the oldest (if not the oldest) algorithms, that list every closed
itemset in a binary relation, was published in 1969 [20]. The formal

1 constraint-based closed itemset mining 15

concept analysis, introduced in 1982 [91] (see [27] for a state-of-the-art
reference), studies the mathematical properties of the closed itemsets
(aka formal concepts). After discovering efficient strategies for enumerat-
ing (both closed and unclosed) itemsets under frequency constraints
(in particular Apriori [1] in 1994), data miners (re)discovered, in 1999

[61], the relevancy of a condensed representation of such collections
by listing the closed itemsets only. This research community focuses
on problems such as scalability, constraint handling, generalization to-
wards noise and n-ary relations (that do not preserve the mathematical
foundation of formal concept analysis, i. e., the Galois connection). They
are topics this thesis treats. That is why this state of the Art focuses on
data mining approaches. Nevertheless, the two communities are not
ignoring each other and interesting closed itemset extractors, such as
Titanic [81], were designed at the interface between formal concept
analysis and data mining.

1.3.2 Enumerating the Subsets of One Domain

This section does not aim at detailing the differences, in efficiency,
between the many closed itemset miners. In the opposite, it focuses on
their similarities. Indeed, the fundamental mechanisms, brought into
the complete (i. e., every closed itemset is found) extraction of the closed
itemsets, usually remain the same. This observation was formalized
in [7]. The closed itemset extractors, like most local pattern complete
extractors (such as frequent itemset miners), traverse the candidate
pattern space, 2O × 2P, by only enumerating the subsets of one of the
two domains (either the subsets of objects or the subsets of properties).
Despite its title, it can even be argued that [38] implicitly proceeds
to such an enumeration. Traditionally, the subsets of properties are
enumerated. The mathematical reason behind this ability in reducing
the traversal of the candidates in 2O × 2P to that of 2P (or 2O) is a
bijection between the closed itemsets (O,P) and their sets of properties
P (or objects O). Stated with the terminology of formal concept analysis, There is a bijection

between the closed
itemsets and their
subsets of properties
(or objects). Thus,
almost all closed
itemset extractors
enumerate subsets of
one domain.

an upper/lower adjoint of a Galois connection uniquely determines
the other. In our context, the Galois connection is the pair of functions
(f, g) defined as follows:

– ∀O ⊆ O, f(O) = {p ∈ P |O× {p} ⊆ B}.
– ∀P ⊆ P, g(P) = {o ∈ O | {o}× P ⊆ B};

It is easily proved that if (O,P) is a closed itemset then g(P) = O (and
f(O) = P). That is why enumerating the subsets P of P is equivalent
to enumerating the patterns (g(P), P) among which are found every
closed itemset (those that have f(g(P)) = P).

Example 2 In BE, represented in Table 1, when {p1} is enumerated, it is
associated with g({p1}) = {o1, o2}. However ({o1, o2}, {p1}) is not a closed
itemset because f({o1, o2}) = {p1, p2} 6= {p1}. A closed itemset is found
when {p1, p2} is enumerated: ({o1, o2}, {p1, p2}).

With the publication of [59] and [71] in 2003, the data mining com-
munity rediscovered that the extraction of every closed itemset actually
is symmetric w.r.t. the domain in which subsets are enumerated. In
other terms, applying a closed itemset extractor on a 0/1 matrix such
as Table 1 or on its transpose provides the same collection of closed
itemsets (the couples (P,O) being reversed in (O,P)). As a consequence,
it is faster to extract every closed itemset by enumerating the subsets of

16 state of the art and theoretical basis

the smallest domain. Indeed, they are less numerous (|2D| increasing
with |D|). From now on, let us assume that there are less properties
than objects. As a consequence, the subsets of P are chosen to be
enumerated, i. e., the considered patterns are of the form (g(P), P).

The closed itemset extractors do not actually aim at listing every
closed itemset but only those satisfying a relevancy constraint. Since
the first local pattern miners, and until today, one constraint has been
clearly favored to play this role: the frequency constraint. Given a
user-defined threshold γ ∈ N, a closed itemset (g(P), P) is frequent
if and only if |g(P)| > γ. The success of this constraint is twofold:
(a) it actually keeps relevant patterns (the discovered conjunction of
properties, shared by a great number of objects, is more relevant) and (b)
it allows to prune large regions of the search space (hence a reduction of
the running times) when the enumerated subsets of properties are larger
and larger along the computation. That is why most closed itemsetBy enumerating

growing subsets of
properties, the closed
itemsets involving at
least γ objects can be
listed while ignoring

many candidate
patterns.

extractors actually are frequent closed itemset extractors and enumerate
growing subsets of properties. If a candidate pattern (g(P), P) is not
frequent, every closed itemset (g(P ′), P ′) with P ⊆ P ′ is not frequent
either because g(P ′) ⊆ g(P). The region of the search space where
candidate patterns have a superset of P is empty of frequent closed
itemset. That is why the extractors do not traverse it. It is said to be
pruned.

It is important to understand what can mean “enumerating larger
and larger subsets of properties”. It can mean a breadth-first traversal of
the search space (à la Apriori [1]) that is space-consuming. For example,
the first closed itemset extractor, Close [61], does so. Nevertheless, it
can mean a depth-first traversal of the search space (à la DF [65]) too.
Indeed, to optimally take advantage of the frequency constraint, when
a candidate (g(P), P) violates it, the patterns (g(P ′), P ′) with P ⊆ P ′
should not have been traversed earlier. This is the case with a depth-
first traversal of the search space too. The first depth-first closed itemset
extractor was ChARM [95].

1.3.3 A Typical Frequent Closed Itemset Extractor

Extract is an example of a simple closed itemset extractor based on
the fundamental principles detailed in the previous section and shared
by most closed itemset extractors. This recursive algorithm enumerates
subsets of properties in a depth-first way and forces the closed itemsets
to have at least γ ∈N objects (frequency constraint). Figure 1 expresses
it with a formalism that will be used all along this thesis. Extract is
initially called with (UP, VP) = (∅,P). Here is the semantics behind
these two variables:

– UP ⊆ P contains properties that will always be present in ev-
ery closed itemset recursively discovered from the current call of
Extract. Previous works sometimes talk about a “conditional
base”.

– VP ⊆ P contains properties that may or may not be present in
the closed itemset recursively discovered from the current call
of Extract. In other terms, 2V

P
is the search space given the

“conditional base”. If VP = ∅ then the search space is reduced to
|2∅| = 1 pattern, (g(UP), UP), that is output if it is closed.

UP is the smallest possible set of properties that may be output from
the current call of Extract. It is considered in the branch of the

1 constraint-based closed itemset mining 17

Input: (UP, VP) ∈ (2P)2

Output: Every closed itemset having all properties in UP, potentially
some properties in VP and satisfying Cγ-frequent

if |g(UP)| > γ∧ ∀s ∈ P \ (UP ∪ VP), g(UP)× {s} 6⊆ B then
if VP = ∅ then

output((g(UP), UP))

else
Choose e ∈ VP

Extract(UP ∪ {e}, VP \ {e})
Extract(UP, VP \ {e})

end if
end if

Figure 1: The Extract closed itemset extractor (under a frequency constraint).

UP

VP

Parent

UP
∪ {e}

VP \{e}

Left child

e ∈ UP

UP

VP \{e}

Right child

e /∈ UP

Figure 2: Enumeration of any property e ∈ VP.

enumeration tree where every property in VP is refused in UP (second
recursive call of Extract in Figure 1). UP∪VP is the largest possible set
of properties that may be output from the current call of Extract. It is
considered in the branch of the enumeration tree where every property
in VP is moved to UP (first recursive call of Extract in Figure 1).
Cclosed is tested against the extensions of UP with every property s that
is neither in UP nor in VP. If s extends (g(UP), UP) without violating
Cconnected (i. e., g(U)× {s} 6⊆ B) then it extends any pattern recursively
discovered from the current call of Extract. Indeed, its objects always
are a subset of g(UP). It can be written that Cclosed, like the frequency
constraint, prunes the search space. This will be further discussed in
Section 2.4.1.

A binary tree can represent the enumeration (of the subsets of proper-
ties) performed by Extract. A left (resp. right) child relates to the first
(resp. second) recursive call where the closed itemsets having (resp. not
having) the last enumerated property e will be listed. Figure 2 depicts,
in this way, the partition of the search space performed by Extract.
Figure 3 is an enumeration tree Extract could traverse when applied
on BE (represented in Figure 1) with a frequency constraint, C2-frequent,
forcing at least two objects. The previous sentence uses the conditional
mood because the function “Choose” in Figure 1 was not specified.
Notice that this choice of the property to enumerate does not need to
rely on a global ordering of P. For example, the enumeration order is At every iteration,

any property can be
chosen to enlarge the
current candidate
pattern.

different in the different branches of the tree in Figure 3. In this tree,
the dashed leaves are enumeration nodes where a closed itemset is
output. The dotted leaves are pruned.

18 state of the art and theoretical basis

U
P

=
∅

V
P

=
{p

1
,
p

2
,
p

3
}

U
P

=
{p

1
}

V
P

=
{p

2
,
p

3
}

p
1
∈

U
P

U
P

=
{p

1
,
p

2
}

V
P

=
{p

3
}

p
2
∈

U
P

U
P

=
{p

1
,
p

2
,
p

3
}

V
P

=
∅

¬
C

2
-f
r
e
q
u
e
n
t

p
3
∈

U
P

U
P

=
{p

1
,
p

2
}

V
P

=
∅

({
o

1
,
o

2
},

{p
1
,
p

2
})

o
u
t
p
u
t

p
3

/∈
U

PU
P

=
{p

1
}

V
P

=
{p

3
}

¬
C

c
lo

s
e
d

p
2

/∈
U

P

U
P

=
∅

V
P

=
{p

2
,
p

3
}

p
1

/∈
U

P

U
P

=
{p

3
}

V
P

=
{p

2
}

p
3
∈

U
P

U
P

=
{p

3
,
p

2
}

V
P

=
∅

¬
C

2
-f
r
e
q
u
e
n
t

p
2
∈

U
P

U
P

=
{p

3
}

V
P

=
∅

({
o

1
,
o

4
},

{p
3
})

o
u
t
p
u
t

p
2

/∈
U

P

U
P

=
∅

V
P

=
{p

2
}

p
3

/∈
U

P

U
P

=
{p

2
}

V
P

=
∅

({
o

1
,
o

2
,
o

3
},

{p
2
})

o
u
t
p
u
t

p
2
∈

U
P

U
P

=
∅

V
P

=
∅

({
o

1
,
o

2
,
o

3
,
o

4
},

∅
)

o
u
t
p
u
t

p
2

/∈
U

P

p
1

p
2

p
3

o
1

1
1

1

o
2

1
1

0

o
3

0
1

0

o
4

0
0

1

B
E
⊆

{o
1
,
o
2
,
o
3
,
o
4
}
×

{p
1
,
p
2
,
p
3
}.

Fi
gu

re
3
:E

nu
m

er
at

io
n

tr
ee

Ex
t

r
a

c
t

tr
av

er
se

s
w

he
n

m
in

in
g
B
E

.

1 constraint-based closed itemset mining 19

An original algorithm, named COBBLER [60], proposes to further
exploit the freedom to “choose” the element to enumerate at every
recursive call. Because the collection of closed itemsets mathematically
is stable by transpose of the binary relation B, COBBLER dynamically
switches between the enumeration of properties and objects. The
work presented in this thesis reuses this idea that becomes a key for
the tractable extraction of closed patterns in n-ary relations (n > 2).
COBBLER uses a switching condition, between enumerating properties
and objects, that is based on a number of enumeration nodes estimated
in simplified enumeration trees. We believe this is the cause for a time
performance that could have been much better. Our approach uses
another switching condition.

Figure 1 only aims at presenting, with the notations of this thesis, a
simple algorithm based on the fundamental principles shared by most
closed itemset extractors. Extract is not a state-of-the-art algorithm. It
can be improved. In particular:

– Because g(UP) only loses properties at every recursive call, it could
be recursively computed (it would become an additional argument
of Extract). This would avoid the scan of all objects, O, at every
recursive call.

– When enforcing Cclosed, every tested extension could be taken in
{s ∈ P \ (UP ∪ VP) | Cconnected(g(U

P ∪ VP), {s})} (the other proper-
ties in P \ (UP ∪ VP) cannot prevent the closedness of any recur-
sively computed pattern) and this set could be recursively com-
puted too. This would reduce the time spent enforcing Cclosed.

– Every property v ′ ∈ VP such that Cconnected(g(U
P), {v ′}) could be

directly moved to UP. Indeed, such a property v ′ must be in
every closed itemset recursively discovered from the current call
otherwise this itemset would be extensible with v ′, hence unclosed.
This improvement would reduce the enumeration tree and the
running time.

Analog improvements will be discussed in the thesis in the more general
context of closed pattern mining in arbitrary n-ary relations.

2 constraining the itemsets

2.1 Why Are Constraints Wanted?

2.1.1 Focusing on Relevant Itemsets

The collection of all closed itemsets in a binary relation B ⊆ O× P

usually is huge. In the worst case it has 2min(|O|,|P|) patterns 1. Stating
a minimal number of objects γ ∈N, under which the closed itemsets
are not listed, is a progress. Indeed, conjunctions of properties must
apply to enough objects to be statistically relevant. Nevertheless the
frequency constraint is not the only relevant constraint. Depending
on the actual semantics behind B, many various constraints are useful. Constraints provide a

declarative semantics
of the relevant
(closed) itemsets.

For example, in the context of customers buying products, the analyst
could be interested in subsets of items:

– that are often bought together (by at least γ ∈N customers),
– but not too often either (at most Γ ∈N customers involved),
– have an average gross profit (for the retailer) above 1€,

1. This maximum derives from the bijection between the closed itemsets and either
their sets of objects (∈ 2O) or their sets of properties (∈ 2P). See Section 1.3.2.

20 state of the art and theoretical basis

– and with at least one item whose gross profit is below 1€ and at
least one item whose gross profit is above 2€.

In this specification of what is a relevant (closed) itemsets, the first
part, “often bought together”, is a frequency constraint. The second
part, “not too often bought together”, is an infrequency constraint. The
two last parts are more complex constraints. The “average gross profit
above 1€” is based on the mean of values that are functions of the items
or even of both the items and the customers if the gross profit of a same
item varies from one sell in B to another. Considering all applications
that may be of interest, an infinite quantity of relevancy constraints can
be imagined.

2.1.2 Reducing Extraction Times

Obviously, any constraint may be handled as a post-processing step,
i. e., the collection of all closed itemsets is extracted and a sub-collection,
on which the constraint is satisfied, is filtered afterwards. Unless there
are few (unconstrained) closed itemsets of the binary relation B, such
an approach is not tractable. Section 2.1.1 mentioned that, at worst,
there are 2min(|O|,|P|) closed itemsets of B. The problem of listing
them all is NP-hard [94] (and so is the verification of a constraint on
them all). Beyond the relevancy intrinsically expressed by a constraint,
such constraints must be handled at extraction to prune the pattern
search space, reduce the extracted collection of closed itemsets (while
keeping all those satisfying the constraint) and decrease the running
time. Ideally, only the closed itemsets satisfying the constraint shouldFor some constraints,

regions of the search
space where it is

violated can be
avoided, hence faster

extractions.

be extracted. The frequency constraint is such an ideal constraint, i. e., it
is integrated into the extractor that directly returns the closed itemsets
having enough objects and only them. In fact, the possible integration
of a constraint in an extractor depends on the enumeration principles of
this extractor. In other terms, classes of constraints are defined w.r.t. the
enumeration principles that allow to integrate them so that the search
space is pruned and the running time lowered.

2.2 What is a Constraint?

A constraint is a propositional function of the patterns, i. e., a state-
ment that uses, as a variable, a pattern (O,P) ∈ 2O × 2P and returns
either true or false. For example, the frequency constraint forcing at
least γ ∈N objects in every extracted closed itemset is formally defined
as the propositional function Cγ-frequent below:

Cγ-frequent(O,P) ≡ |O| > γ .

The infrequency constraint forcing at most Γ ∈ N objects in every
closed itemset is:

CΓ -infrequent(O,P) ≡ |O| 6 Γ .

The constraint forcing every closed itemset to represent an average
gross profit above 1€ (see Section 2.1.1) requires the use of a function
gp : P→ R+ that returns the gross profit on any item. The constraint
is defined as:

Cavg-gp>1(O,P) ≡
∑
p∈P gp(p)

|P|
> 1 .

1 constraint-based closed itemset mining 21

If the gross profit varies from one sell in B to another, there is a need
for a function gp ′ : B→ R+ that returns the gross profit made when
any customer o ∈ O bought an item p ∈ P (gp ′ is defined on O× P
because the closed itemset (O,P) satisfies Cconnected). The constraint
Cavg-gp>1 becomes Cavg-gp’>1:

Cavg-gp’>1(O,P) ≡
∑

(o,p)∈O×P gp
′(o, p)

|O× P|
> 1 .

The constraint forcing every closed itemset to contain at least one item
whose gross profit is under 1€ and at least one item whose gross profit
is above 2€ only accommodates a function gp of the items:

C∃gp61∧∃gp>2(O,P) ≡ ∃(o, o ′) ∈ O2 | gp(o) 6 1∧ gp(o ′) > 2 .

2.3 Classes of Constraints

2.3.1 Monotone and Anti-Monotone Constraints

Like the frequency constraint, several constraints allow, when, at
some point of the extraction, they are violated by (g(P), P), to prune
every pattern (g(P ′), P ′) with P ⊆ P ′. These constraints are said anti-
monotone: If an itemset violates

an anti-monotone
constraint then
itemsets with
additional properties
violate it too.

Definition 3 (Anti-monotonicity) A constraint C is said anti-monotone
iff ∀(P, P ′) ∈ (2P)2,

(
P ⊆ P ′

)
⇒
(
C(g(P ′), P ′)⇒ C(g(P), P)

)
.

For example, C2-frequent is anti-monotone, i. e., if a pattern is frequent
then every pattern having a subset of its properties is frequent as well.

To prune the search space thanks to an anti-monotone constraint
Canti-monotone, a closed itemset extractor that enumerates larger and
larger subset of properties (like Extract in Figure 1) considers the
smallest possible property set that may be recursively considered from
the current call. Using the notations of Extract, Canti-monotone is tested
on (g(UP), UP). The recursive computation can safely be aborted if the
test fails.

Example 3 Consider the execution of Extract on BE and under the anti-
monotone constraint C2-frequent (see Figure 3). At every call, Extract tests
C2-frequent(g(U

P), UP). When, at the bottom-left corner of Figure 3, Ex-
tract is called with (UP, VP) = ({p1, p2}, {p3}), this test succeeds (because
|g({p1, p2})| = |{o1, o2}| > 2). As a consequence, a closed itemset satisfying
C2-frequent may recursively be extracted and the computation goes on. Indeed,
({o1, o2}, {p1, p2}) is discovered in a descendant enumeration node.

If an itemset violates
a monotone
constraint then
itemsets with some
properties removed
violate it too.

On the contrary, if a pattern (g(P), P) allows, when it violates a
constraint, to affirm its violation by every pattern (g(P ′′), P ′′) with
P ′ ⊆ P, then the constraint is said monotone:

Definition 4 (Monotonicity) A constraint C is said monotone iff
∀(P, P ′′) ∈ (2P)2,

(
P ′′ ⊆ P

)
⇒
(
C(g(P ′′), P ′′)⇒ C(g(P), P)

)
.

For example, C2-infrequent is monotone, i. e., if a pattern is infrequent
then every pattern having a superset of its properties is infrequent as
well. Notice that negations of anti-monotone constraints are monotone
and vice versa.

22 state of the art and theoretical basis

Input: (UP, VP) ∈ (2P)2

Output: Every closed itemset having all properties in UP, potentially
some properties in VP and satisfying Cmonotone ∧Canti-monotone
if Canti-monotone(g(U

P), UP) ∧ Cmonotone(g(U
P ∪ VP), UP ∪ VP) ∧

∀s ∈ P \ (UP ∪ VP), g(UP)× {s} 6⊆ B then
if VP = ∅ then

output((g(UP), UP))

else
Choose e ∈ VP

Extract++(UP ∪ {e}, VP \ {e})
Extract++(UP, VP \ {e})

end if
end if

Figure 4: The Extract++ closed itemset extractor (under any conjunction of
monotone and anti-monotone constraints).

To prune the search space thanks to a monotone constraint Cmonotone
and without changing the enumeration, (g(UP ∪ VP), UP ∪ VP) must
be considered, i. e., the pattern with the largest possible property set
(every property in VP is accepted in UP). If this pattern satisfies
Cmonotone then the enumeration must go on, otherwise the search space
can be pruned.

Example 4 Consider the execution of Extract on BE and under the mono-
tone constraint C2-infrequent. When Extract is called with (UP, VP) =

(∅, {p2}), C2-infrequent(g(U
P ∪ VP), UP ∪ VP) is false. As a consequence,

recursive calls would not allow the extraction of any closed itemset satisfying
C2-infrequent and the search space can be pruned, i. e., the two enumeration
nodes in the bottom-right corner of Figure 3 are not to be traversed. Indeed,
neither ({o1, o2, o3}, {p2}) nor ({o1, o2, o3, o4}, ∅) (that are extracted when
C2-infrequent is not enforced) satisfies C2-infrequent.

Obviously any conjunction of monotone (resp. anti-monotone) con-
straints is a monotone (resp. anti-monotone) constraint. As a conse-
quence, any conjunction of monotone and anti-monotone constraints
can be reduced to a conjunction Cmonotone ∧Canti-monotone. The extrac-
tion of every closed itemset under Cmonotone ∧Canti-monotone is achieved
by the algorithm Extract++ in Figure 4. This extractor generalizes
Extract and enforces Cmonotone ∧Canti-monotone as explained in the pre-
vious paragraphs.If the itemset with the

smallest (resp.
greatest) possible set
of properties violates

an anti-monotone
(resp. monotone)

constraint, the search
space can be pruned.

The duality between (g(UP), UP) and (g(UP ∪ VP), UP ∪ VP) was
understood and exploited in [16]. The presented algorithm, DualMiner,
extracts (not necessarily closed) itemset by simultaneously taking ad-
vantage of both monotone and anti-monotone constraints to prune the
search space. The work presented in this thesis extends the class of
constraints DualMiner can efficiently handle but the same duality is
exploited.

A constraint that is neither monotone nor anti-monotone is harder to
integrate into the extraction (to reduce extraction times). Automatically
pre-processing such a constraint to turn it into a Boolean expression
of monotone and anti-monotone constraints is a key to a theory of
data-mining but remains an open problem. See [70] for a seminal paper
on the subject and [55] for a specific case study (though, in both cases,
the considered patterns are strings rather than itemsets). Even if a

1 constraint-based closed itemset mining 23

relaxation of the tough constraint is strictly weaker than the original
one, its integration may greatly reduce the extraction times and the
original constraint can then filter the supernumerary patterns in a
post-processing step.

[58] is a key article in the definition of classes of constraints for itemset
mining. It introduced the concepts anti-monotonicity and succinctness
(defined in the next section). The enforcement of monotone constraints
along the extraction was achieved later [34].

2.3.2 Succinct Constraints

Succinct constraints reduce the search space before the extraction
starts, i. e., the candidate pattern set is not 2O × 2P anymore. In other
terms, the satisfaction of a succinct constraint does not depend on the
binary relation B and redefines what is a syntactically relevant pattern. A succinct constraint

defines “positive” and
“negative” subsets of
properties. It forces
the properties of a
closed itemset to be
included in one
“positive” set and not
included in any
“negative” set.

The enforcement of a succinct constraint is handled by a modified
enumeration that only generates the candidate patterns that satisfy the
constraint. The considered enumeration is that of most closed itemset
extractors, i. e., the enumeration of the subsets of one property domain
(see Section 1.3.2), traditionally the properties. As a consequence
succinct constraints relate to selections of relevant elements in 2P.

Definition 5 (Succinctness) A constraint C is said succinct iff there exists
(k, l) ∈ N2, (Pi)i=1..k ∈ (2P)k and (Qj)j=1..l ∈ (2P)l such that the
patterns (g(P), P) satisfying C are those with P ∈ ∪ki=12

Pi \∪lj=12
Qj .

For example, C∃gp61∧∃gp>2 (defined in Section 2.2) is succinct. Indeed
the patterns (g(P), P) satisfying it are those with P ∈ 2P \ (2σgp62(P) ∪
2σgp>1(P)), where σgp62(P) = {p ∈ P | gp(p) 6 2} (the items with a
gross profit below 2€) and σgp>1(P) = {p ∈ P | gp(p) > 1} (the items
with a gross profit above 1€).

The succinct constraints are, historically, handled by a modified enu-
meration. However, a closed itemset extractor, such as Extract++, able
to enforce conjunctions of monotone and anti-monotone constraints,
can handle any succinct constraint. Indeed, a succinct constraint C, as
defined above, is equivalent to Csuccinct anti-monotone ∧ Csuccinct monotone,
where:

– Csuccinct anti-monotone(O,P) ≡ P ∈ ∪ki=12
Pi is anti-monotone;

– Csuccinct monotone(O,P) ≡ P /∈ ∪lj=12
Qj is monotone.

2.3.3 Convertible Constraints

Convertible constraints were introduced in [62]. This class of con-
straints lies on abandoning the freedom to enumerate any remaining
property (in VP according to the notations of Figure 4) at any recursive
call. Ordering the properties makes, on every branch of the enumeration
tree, the sequence of larger and larger subsets of properties determinis-
tic. Some constraints, which are not monotone (resp. anti-monotone),
can become monotone (resp. anti-monotone) for a particular order (i. e.,
a particular Choose function in Figure 4) of the enumerated properties.
In other terms, the properties are enumerated in a well-chosen order
that makes the constraint monotone (resp. anti-monotone) on every
branch of the enumeration tree. Such constraints are called convertible The convertibility is

the monotonicity
(resp.
anti-monotonicity)
for an arbitrary total
order on the subsets
of properties.

monotone (resp. anti-monotone).

Definition 6 (Convertible monotonicity) A constraint C is said convert-
ible monotone iff there exists a total order � of the properties in P such

24 state of the art and theoretical basis

that ∀(P, P ′′) ∈ (2P)2,
(
P ′′ ⊆ P ∧ ∀(p ′′, p) ∈ P ′′ × P \ P ′′, p ′′ � p

)
⇒(

C(g(P ′′), P ′′)⇒ C(g(P), P)
)

.

Definition 7 (Convertible anti-monotonicity) A constraint C is said con-
vertible anti-monotone iff there exists a total order � of the properties in P

such that ∀(P, P ′) ∈ (2P)2,
(
P ⊆ P ′ ∧ ∀(p, p ′) ∈ P × P ′ \ P, p � p ′

)
⇒(

C(g(P ′), P ′)⇒ C(g(P), P)
)

.

Cavg-gp>1 is an example of a convertible monotone constraint. Indeed,
by enumerating the items by increasing gross profit, i. e., ∀(p, p ′) ∈
P2, p � p ′ ⇔ gp(p) 6 gp(p ′), Cavg-gp>1 is monotone on every branch
of the enumeration tree, i. e., once satisfied at some point of the enumer-
ation tree it remains true in the whole sub-tree recursively built from
this point. Indeed, the average only increases when a greater value
(than those previously considered) is added. Notice that Cavg-gp>1
is convertible anti-monotone too (items ordered by decreasing gross
profit). However not every convertible monotone constraint is convert-
ible anti-monotone as well.

When the analyst specifies a convertible constraint, the Choose func-
tion of Figure 4 must be the one that always enumerates the smallest
property w.r.t. the order � related to the constraint, i. e., Choose returns
e ∈ VP such that ∀f ∈ VP, e � f. Then, the constraint is treated as a
monotone constraint if it is convertible monotone; as an anti-monotone
constraint if it is convertible anti-monotone. This way of handling
convertible constraints has two drawbacks:

– It is impossible to enforce several convertible constraints unless
they rely on the same order of properties (in other terms, the
convertibility is not preserved by conjunction);

– Because the Choose function is imposed by the convertible con-
straint, it cannot be defined so that the extraction time is heuristi-
cally lowered.Convertibility fixes

the search space
traversal. Losing this

degree of freedom
prevents some

performance
improvements.

When no convertible constraint is specified, a popular heuristic lowering
the extraction time is the enumeration of properties by increasing den-
sity, i. e., Choose returns a property e ∈ VP minimizing the expression
below:

|(O× {e})∩B}| .

This heuristic was rediscovered in [43] for (not necessarily closed)
itemset mining. However, it was already used in [76] for the older
related problem of identifying prime implicants in CNF propositional
logic expressions. The algorithms presented in this thesis generalizes
this heuristic when it comes to choose an element to enumerate.

2.3.4 Loose Anti-Monotone Constraints

Loose anti-monotonicity was introduced in [12]. If a candidate pat-
tern (g(P), P) with |P| > 2 satisfies a loose anti-monotone constraint
then one of its properties p can be removed and (g(P \ {p}), P \ {p})

satisfies it too.If an itemset satisfies
a loose anti-monotone

constraint then at
least one itemset with
one property removed

satisfies it too.

Definition 8 (Loose anti-monotonicity) A constraint C is said loose anti-
monotone iff ∀P ⊆ P,

(
|P| > 2∧ C(g(P), P)

)
⇒ ∃p ∈ P | C(g(P \ {p}), P \

{p}).

1 constraint-based closed itemset mining 25

Input: L ⊆ 2P
Output: Every closed itemset having a superset of the properties of
any element in L and satisfying Canti-monotone ∧CLAM
L ′ ← ∅
for all UP ∈ L do

if Canti-monotone(g(U
P), UP)∧CLAM(g(UP), UP) then

if ∀s ∈ P \UP, g(UP)× {s} 6⊆ B then
output((g(UP), UP))

end if
for all e ∈ P \UP do
L ′ ← L ′ ∪ {UP ∪ {e}}

end for
end if
L← L \ {UP}

end for
if L ′ 6= ∅ then

Extract#(L ′)
end if

Figure 5: The Extract# closed itemset extractor (under any loose anti-
monotone constraint).

Consider the constraint Cstd-gp61 specifying a standard deviation below
1€ for the gross profits of the items involved in a relevant pattern.

Cstd-gp61(O,P) ≡

√∑
p∈P(gp(p) − µ)

2

|P|
6 1, where µ =

∑
p ′∈P

gp(p ′)

|P|
.

This constraint is loose anti-monotone: if a pattern (g(P), P) satisfies
Cstd-gp61 then there exists an item p ∈ P such that (g(P \ {p}), P \ {p})
satisfies Cstd-gp61 as well. Indeed, removing the item with the gross
profit that is (one of) the farthest from µ always decreases the standard
deviation. More formally, this item p ∈ P is such that ∀p ′ ∈ P, |gp(p ′) −
µ| 6 |gp(p) − µ|.

With a loose anti-monotone constraint CLAM the candidate patterns is
traversed breadth-first. In this way, it is natural to check the existence of
a pattern with a subset of the properties and satisfying CLAM. Figure 5

gives a simple closed itemset extractor Extract# that handles such a
loose anti-monotone constraint CLAM (and an anti-monotone constraint
Canti-monotone). It is initially called with the first level of the enumeration
tree, i. e., L = {{∅}}. Notice that, whatever UP ⊆ P, any property
e ∈ P \UP may be appended to it. As a consequence, there is no
need to store the search space VP anymore. However the number of
generated patterns potentially is much larger and duplicates may be
considered. To address this issue, L ′ only keeps one occurrence of An enumeration only

taking advantage of
loose
anti-monotonicity is
far less efficient.

identical sets of properties.
In the literature, the few proposals that handle a loose anti-monotone

constraint prune the search space in a more complex way than Extract#.
To avoid the costly change in candidate enumeration (i. e., to maintain
a search space VP ⊆ P), they assume the patterns are always mined
under an anti-monotone constraint too. In this way, pruning thanks to
the loose anti-monotone constraint can be done on top of the classical
enumeration, where the anti-monotone constraint is fully exploited (i. e.,
contrary to Extract#, if (g(P ′), P ′) is considered then every (g(P), P)

26 state of the art and theoretical basis

Input: UP ⊆ P

Output: Every closed itemset having all properties in UP and satis-
fying Canti-monotone ∧CLAM
if Canti-monotone(g(U

P), UP)∧CLAM(g(UP), UP) then
if ∀s ∈ P \UP, g(UP)× {s} 6⊆ B then

output((g(UP), UP))

end if
for all e ∈ P \UP do

if max(UP ∪ {e}) = e then
Extract##(UP ∪ {e})

end if
end for

end if

Figure 6: The Extract## closed itemset extractor (under a loose anti-monotone
constraint with a known max function).

with P ⊆ P ′ satisfies the anti-monotone constraint). Moreover, they
can enforce monotone constraints. Nevertheless, their enumeration
remains breadth-first, hence potential space issues (dominated by the
storage of the greatest level denoted L in Figure 5). A more fundamental
drawback of the class of loose anti-monotone constraints is that, like
that of convertible constraints, it is not stable under conjunction. Thus,
it is generally impossible to efficiently enforce conjunctions of loose
anti-monotone constraints.

Notice that any convertible anti-monotone constraint is loose anti-
monotone. Indeed, a consequence of the definition of a convertible
anti-monotone constraint C is that there exists a total order � of the
properties such that ∀P ⊆ P,C(g(P), P) ⇒ C(g(P \ {p}), P \ {p}), where
p ∈ P is the greatest property in P w.r.t. �, i. e., ∀p ′ ∈ P, p ′ � p. This
statement still holds if the greatest property w.r.t. � is defined locally
(i. e., w.r.t. a specific P ⊆ P) rather than globally, i. e., if there exists
a function max : 2P → P that takes as input any P ⊆ P and such
that C(g(P), P)⇒ C(g(P \ {max(P)}), P \ {max(P)}). The related class of
constraints actually is the loose anti-monotonicity. Nevertheless, such a
reformulation presupposes an a priori knowledge of the function max
(and the ability to quickly compute it). It is often the case. For example
the max function related to Cstd-gp61 is:

max : P → argmaxp∈P(|gp(p) − µ|), where µ =
∑
p ′∈P

gp(p ′)

|P|
.

More precisely, there is a need for an additional arbitrary order on
the properties such that max returns a unique element (for example
the smallest w.r.t. this arbitrary order) among those that minimize
|gp(p) − µ|.

Integrating to the algorithm the knowledge of the function max,
related to the loose anti-monotone constraint CLAM, helps the extraction.A depth-first

candidate
enumeration is

possible for some
loose anti-monotone

constraints.

In particular, it becomes possible to traverse the search space depth-first
by only considering as a child a pattern where the newly added element
is the maximal one. This technique is called reverse search [3]. Figure 6

gives such an extractor, namely Extract##.

1 constraint-based closed itemset mining 27

Flexible constraints F Operators Argument(s)

C1θC2 θ ∈ {∧,∨} (C1,C2) ∈ F2

¬C - C ∈ F

e1θe2 θ ∈ {<,6} (e1, e2) ∈ E2

X1θX2 θ ∈ {⊂,⊆} (X1, X2) ∈ S2

constant b - b ∈ {true,false}

Aggregate expressions A Operators Argument(s)

a1θa2 θ ∈ {+,−,×, /} (a1, a2) ∈ A2

|X| - X ∈ S

θx∈Xval(x) θ ∈ {
∑
,max,min} X ∈ S

constant r - r ∈ R+

Syntactic expressions S Operators Argument(s)

X1θX2 θ ∈ {∪,∩, \} (X1, X2) ∈ S2

g(X) - X ∈ S

variable P - P ⊆ P

constant P - P ⊆ P

Table 2: Flexible constraints.

2.3.5 Flexible constraints

The flexible constraints were introduced in [78]. They are recursively
defined. A fixed set of

primitives recursively
defines flexibility.Definition 9 (Flexibility) A constraint C is said flexible if it is in F that

Table 2 recursively defines.

Contrary to convertible or loose anti-monotone constraints, the flexi-
ble constraints are, by definition (the first line defining F in Table 2),
stable under conjunction (and disjunction). The class of flexible con-
straints is very broad. Although it was not previously shown, even
Cstd-gp61 is flexible. With its expression based on the definition of the
variance, it does not look so:

Cstd-gp61(O,P) ≡

√∑
p∈P(gp(p) − µ)

2

|P|
6 1, where µ =

∑
p ′∈P

gp(p ′)

|P|
.

However, the theorem of König-Huyghens proves the equivalence of
this definition with the following:

Cstd-gp61(O,P) ≡

√∑
p∈P gp(p)

2

|P|
− µ2 6 1, where µ =

∑
p ′∈P

gp(p ′)

|P|
.

Both sides of the inequality are positive. As a consequence, they can be
raised to the power 2 and an equivalent expression is obtained:

Cstd-gp61(O,P) ≡
∑
p∈P gp(p)

2

|P|
−µ2 6 1, where µ =

∑
p ′∈P

gp(p ′)

|P|
.

This time, a flexible constraint is recognized. Here is how to recursively
build it from the primitives in Table 2 (the first level lists primitives; then,

28 state of the art and theoretical basis

every expression has at least one argument taken from the previous
level):

1. – variable P1 ⊆ P (∈ S).
– variable P2 ⊆ P (∈ S).
– variable P3 ⊆ P (∈ S).
– variable P4 ⊆ P (∈ S).
– constant 1 ∈ R+ (∈ A).

2. –
∑
x∈P1 val(x), with val : x→ gp(x)2 (∈ A).

– |P2| (∈ A).
–
∑
x∈P3 val(x), with val : x→ gp(x) (∈ A).

– |P4| (∈ A).

3. –
(∑

x∈P1 val(x)
)
/|P2|, with val : x→ gp(x)2 (∈ A).

– µ =
(∑

x∈P3 val(x)
)
/|P4|, with val : x→ gp(x) (∈ A).

4. – µ2 = µ× µ (∈ A).

5. –
((∑

x∈P1 val(x)
)
/|P2|

)
− µ2, with val : x→ gp(x)2 (∈ A).

6. –
((∑

x∈P1 val(x)
)
/|P2|

)
− µ2 > 1, with val : x → gp(x)2 (∈ F,

i. e., Cstd-gp61 ∈ F).

2.3.6 Primitive-Based/Piecewise (Anti)-Monotone Constraints

In [79], the authors notice that the flexible constraints only are a
subset of a more general class constraints, which are analogously en-
forced. These constraints, namely the primitive-based constraints, are
those recursively defined by a list of primitives (such as Table 2) that
are increasing or decreasing w.r.t. each of their arguments (the others
considered fixed). A constraint is increasing or decreasing w.r.t. the
order {false≺true}. An aggregate expression is increasing or decreasing
w.r.t. the order 6 on real numbers. Finally, a syntactic expression is
increasing or decreasing w.r.t. the order ⊆ on sets. Every primitive inPrimitive-based

constraints are
recursively defined

from arbitrary
primitives that either

increase or decrease
w.r.t. each of their

arguments.

Table 2 is increasing or decreasing on each of their arguments. As a
consequence, the flexible constraints are primitive based. The converse
does not hold.

Consider the constraint Cavg-gp’>1 defined in Section 2. It is not
flexible because the function gp ′ is defined over B ⊆ O×P and Table 2

does not allow such a multivariable calculus. Nevertheless, Cavg-gp’>1
is primitive-based. Consider, the following aggregate expression:∑

(x1,x2)∈X2
val(x1, x2) (X ∈ S and val : (O∪P)2 → R+)

This primitive can be added to Table 2 to define a set of constraints F ′ ⊃
F. Every constraint in F ′ is primitive based because, like the primitives
in Table 2, the additional aggregate expression is increasing with X,

i. e., ∀(X1, X2) ∈ (2O∪P)2,
(
X1 ⊆ X2 ⇒

∑
(x1,x2)∈X21

val(x1, x2) 6∑
(x1,x2)∈X22

val(x1, x2)
)

. It can now be proved that Cavg-gp’>1 is in F ′,
hence primitive-based:

1. – variable P1 ⊆ P (∈ S).
– variable P2 ⊆ P (∈ S).
– constant 1 ∈ R+ (∈ A).

2. – g(P1) (∈ S).

1 constraint-based closed itemset mining 29

– g(P2) (∈ S).
– |P2| (∈ A).

3. – g(P1)∪ P1 (∈ S).
– |g(P2)| (∈ A).

4. –
∑

(x1,x2)∈(g(P1)∪P1)2 val(x1, x2),

with val : (x1, x2)→

gp ′(x1, x2) if (x1, x2) ∈ B

0 otherwise
(∈ A).

– |P2|× |g(P2)| (∈ A).

5. –
(∑

(x1,x2)∈(g(P1)∪P1)2 val(x1, x2)
)
/
(
|P2|× |g(P2)|

)
,

with val : (x1, x2)→

gp ′(x1, x2) if (x1, x2) ∈ B

0 otherwise
(∈ A).

6. –
(∑

(x1,x2)∈(g(P1)∪P1)2 val(x1, x2)
)
/
(
|P2|× |g(P2)|

)
< 1,

with val : (x1, x2)→

gp ′(x1, x2) if (x1, x2) ∈ B

0 otherwise
(∈ F ′).

7. – ¬
((∑

(x1,x2)∈(g(P1)∪P1)2 val(x1, x2)
)
/
(
|P2|× |g(P2)|

)
< 1
)

,

with val : (x1, x2)→

gp ′(x1, x2) if (x1, x2) ∈ B

0 otherwise
(∈ F ′, i. e.,

Cavg-gp’>1 ∈ F ′).

As illustrated above, it may be tedious to prove that a particular
constraint is primitive-based. Indeed, the required primitives must
be intuitively found, proved increasing or decreasing w.r.t. each of
their arguments (the others considered fixed) and must be combined so
that an equivalent expression of the constraint is found (e. g., the last
expression proving Cavg-gp’>1 ∈ F ′ is equivalent to Cavg-gp’>1 but is not
syntactically identical).

Piecewise (anti)-monotone constraints apply to patterns that hold
in arbitrary n-ary relations (n > 2). Although it was not understood
earlier, this class of constraints actually is, when restricted to binary
contexts, that of primitive-based constraints. At first sight, this equality Piecewise

(anti)-monotone and
primitive-based are
synonymous.

is not obvious because the piecewise (anti)-monotonicity was defined so
that it is quite easy to prove a particular constraint belongs to this class.
The basic common principle is the monotonicity/anti-monotonicity per
argument. To introduce the piecewise (anti)-monotonicity, this only
needs to be defined on constraints.

Definition 10 ((Anti)-monotonicity per argument) A constraint C is said
monotone (resp. anti-monotone) w.r.t. the ith argument iff it is monotone
(resp. anti-monotone) when all its arguments but the ith are considered con-
stant.

The definition of piecewise (anti)-monotonicity relies on attributing
a separate argument to every occurrence of every variable and, then,
proving that the obtained constraint is (anti)-monotone w.r.t. each of
its arguments. It can be written that the definition of piecewise (anti)- Piecewise

(anti)-monotone
constraints are either
monotone or
anti-monotone w.r.t.
each occurrence of a
variable in their
expressions.

monotonicity is the top-down counterpart of the bottom-up definition
of primitive-based constraints.

Definition 11 (Piecewise (anti)-monotonicity) A constraint C is piece-
wise (anti)-monotone iff the rewritten constraint C ′, attributing a separate

30 state of the art and theoretical basis

argument to every occurrence of every variable in the expression of C, is
(anti)-monotone w.r.t. each of its arguments.

Given a particular constraint, the definition of piecewise (anti)-
monotonicity makes it easier to prove it primitive-based/piecewise
(anti)-monotone. Consider Cavg-gp’>1 again. Its expression is:

Cavg-gp’>1(O,P) ≡
∑

(o,p)∈O×P gp
′(o, p)

|O× P|
> 1 .

By attributing a separate argument to every occurrence of O and P,
Cavg-gp’>1 is rewritten as follows:

C ′avg-gp’>1(O1, O2, P1, P2) ≡
∑

(o,p)∈O1×P1 gp
′(o, p)

|O2 × P2|
> 1 .

C ′avg-gp’>1 is monotone on its first and third arguments. It is anti-
monotone on its second and fourth arguments. As a consequence,
Cavg-gp’>1 is, by definition, primitive-based/piecewise (anti)-monotone.
In the remaining of this thesis, the term “piecewise (anti)-monotone”
is preferred because its definition translates the approach the thesis
follows: useful constraints are first identified, then proved to be part
of the class of constraints the proposed algorithms efficiently handle.
The definition of primitive-based constraints translates the reversed
approach, i. e., designing a SQL-like language to query patterns.

Extract*, in Figure 7, extracts every closed itemset under a piecewise
(anti)-monotone constraint CP(A)M. Apart from the enforcement of
CP(A)M, it is identical to Extract++ (in Figure 4). To enforce CP(A)M,
Extract* needs the constraint C ′P(A)M where every occurrence of every
variable in CP(A)M is attributed a separate argument on which C ′P(A)M
is (anti)-monotone. At any call, every argument on which C ′P(A)M is
monotone is instantiated:

– if the argument ranges in 2O, with the largest object set that may
be considered from the current call, i. e., g(UP) (g is decreasing
w.r.t. its argument and UP is the smallest property set that may be
considered from the current call);

– if the argument ranges in 2P, with the largest property set that
may be considered from the current call, i. e., UP ∪ VP.

Dually, every argument on which C ′P(A)M is anti-monotone is instanti-
ated:

– if the argument ranges in 2O, with the smallest object set that
may be considered from the current call, i. e., g(UP ∪ VP) (g is
decreasing w.r.t. its argument and UP ∪ VP is the largest property
set that may be considered from the current call);

– if the argument ranges in 2P, with the smallest property set that
may be considered from the current call, i. e., UP.A piecewise

(anti)-monotone
constraint is

instantiated for some
variables with the

smallest, for the
others with the

greatest, possible set
of properties. If

violated the search
space can be pruned.

If this instantiation is false then no pattern recursively considered from
the current call satisfies CP(A)M (and Extract* prunes the search space).
This implication directly follows the definition of piecewise (anti)-
monotonicity and the fact that g(UP ∪ VP) and UP are the smallest
object and property sets that may be considered from the current call;
g(UP) and UP ∪ VP the largest.

Example 5 Consider the execution of Extract* on BE and under the piece-
wise (anti)-monotone constraint Cavg-gp’>1, where Table 3 defines the function

1 constraint-based closed itemset mining 31

Input: (UP, VP) ∈ (2P)2

Output: Every closed itemset having all properties in UP, potentially
some properties in VP and satisfying CP(A)M
if C ′P(A)M is satisfied when instantiated as detailed in the text ∧∀s ∈
P \ (UP ∪ VP), g(UP)× {s} 6⊆ B then

if VP = ∅ then
output((g(UP), UP))

else
Choose e ∈ VP

Extract*(UP ∪ {e}, VP \ {e})
Extract*(UP, VP \ {e})

end if
end if

Figure 7: The Extract* closed itemset extractor (under any piecewise (anti)-
monotone constraint).

p1 p2 p3

o1 0.2 1 0.2

o2 0 0.5 (0)

o3 (0) 2 (0)

o4 (0) (0) 1.5

Table 3: gp ′ : BE → R+.

gp ′ : BE → R+. At every call, Extract* tests C ′avg-gp’>1(g(U
P), g(UP ∪

VP), UP ∪ VP, UP), where C ′avg-gp’>1 is the constraint, (anti)-monotone on
each of its arguments, that was introduced earlier to prove the piecewise (anti)-
monotonicity of Cavg-gp’>1. When Extract* is called with (UP, VP) =

({p1, p2}, {p3}), this tests fails:∑
(o,p)∈g({p1,p2})×{p1,p2,p3}

gp ′(o,p)

|g({p1,p2,p3})×{p1,p2}|
> 1

≡
∑

(o,p)∈{o1,o2}×{p1,p2,p3}
gp ′(o,p)

|{o1}×{p1,p2}|
> 1

≡ 0.2+1+0.2+0+0.5+0
2 > 1

≡ 0.95 > 1

≡ false

As a consequence, recursive calls would not allow the extraction of any closed
itemset satisfying Cavg-gp’>1 and the search-space can be pruned, i. e., the two
enumeration nodes in the bottom-left corner of Figure 3 are not to be traversed.
Interestingly, at the parent node, where (UP, VP) = ({p1}, {p2, p3}), the
piecewise (anti)-monotone constraint Cavg-gp’>1 does not prune the search
space although no connected pattern, that may be recursively considered from
it, satisfies Cavg-gp’>1. The reason is C ′avg-gp’>1 is not instantiated with a real
pattern. Instead, each of its arguments is instantiated with the objects or the
attributes of either the smallest or the largest pattern that may be recursively
considered from the current call.

In fact, the enforcement of piecewise (anti)-monotone constraints gen-
eralizes that of conjunctions of monotone and anti-monotone constraints
(see Section 2.3.1). Like Extract++, Extract* enforces a monotone
(resp. anti-monotone) constraint by instantiating its first argument with

32 state of the art and theoretical basis

Piecewise (anti)-monotone

Flexible

Conjunction of monotone
and anti-monotone

Mono-
tone

Anti-
Mono-

tone

Suc-
cinct

Figure 8: Classes of constraints preserving the freedom to enumerate any prop-
erty anytime.

g(UP ∪ VP) (resp. g(UP)) and its second with UP ∪ VP (resp. UP).
Indeed, an anti-monotone constraint (see Definition 3) is a two-variable
constraint that is monotone w.r.t. the first argument (the objects) and
anti-monotone w.r.t. the second argument (the properties). Conversely,
a monotone constraint (see Definition 4) is anti-monotone w.r.t. the first
argument and monotone w.r.t. the second argument.

Interestingly, both constraints Cconnected and Cclosed are piecewise
(anti)-monotone. Cconnected is monotone w.r.t. both its arguments and
Cclosed is proved piecewise (anti)-monotone in the next section. Because
conjunctions of piecewise (anti)-monotone constraints are piecewise
(anti)-monotone, “being a closed itemset” is piecewise (anti)-monotone“Being a closed

itemset” is piecewise
(anti)-monotone.

too. As a consequence, the separation between the definition of a closed
itemset, and an additional relevancy constraint C it must satisfies,
somehow disappears if C only needs to be piecewise (anti)-monotone.

2.3.7 Relations Between the Classes

Inclusions between classes of constraints were mentioned earlier. Fig-
ure 8 and 9 depict them. The enforcement of a convertible or of the
loose (anti)-monotone constraint require more constrained enumera-
tion principles. That prevents the use of some heuristics to improve
the extraction performance. Furthermore, that make their respective
classes unstable under conjunction. That is why they were, graphically,
separated from the other classes, which do not impose any constraints
on the enumeration.

1 constraint-based closed itemset mining 33

Loose anti-monotone

Convertible anti-monotone

Anti-monotone

Figure 9: Classes of constraints generalizing anti-monotone constraints but
whose enforcements require modified enumeration principles.

34 state of the art and theoretical basis

2.4 On Closedness

2.4.1 Closedness

Because only subsets of properties are enumerated and the support-
ing objects are all obtained thanks to the g function (see Section 1.3.2),
the closedness constraint Cclosed, as stated in Definition 2, can be re-
duced to testing whether a property can extend the pattern:

Cclosed(g(P), P) ≡ ∀s ∈ P\P,¬Cconnected(g(P), {s}), i. e., g(P)× {s} 6⊆ B .

In Extract (see Figure 1), Extract++ (see Figure 4) and Extract*
(see Figure 7), this constraint prunes the search space if it is false when
instantiated as follows:

– the first occurrence of P (∀s ∈ P. . .) is instantiated with the greatest
subset of properties that may be recursively considered from the
current call, i. e., UP;

– the second occurrence of P (. . . g(P)× {s} 6⊆ B) is instantiated with
the smallest subset of properties that may be recursively considered
from the current call, i. e., UP ∪ VP.

This procedure exactly follows the enforcement of a piecewise (anti)-
monotone constraint. Indeed, Cclosed belongs to this class of constraint
and is neither monotone, nor anti-monotone, nor succinct, nor convert-
ible, nor loose (anti)-monotone.

CCI Miner [11] is an efficient closed itemset extractor which takes
advantage of conjunctions of monotone and anti-monotone constraints.
Discussing the technical reasons behind its efficiency is out of the scope
of this thesis. Beyond these aspects, this article points out the ambiguity
behind the quest for closed itemsets under constraints. Indeed, two
interpretations are possible:

– The returned collection must be the one that would be obtained by
listing every (unconstrained) closed itemset and, then, removing
those that do not satisfy the constraints;

– The returned collection must be the one that would be obtained
by listing every (not necessarily closed) itemset under constraint
and, then, removing those that have both subsets (of objects and
properties) included in another extracted pattern.

The toy algorithms illustrating this chapter, like most closed itemset
extractors, adopt the first interpretation. CCI Miner uses the secondIn this thesis, the

closedness constraint
is a closure property

w.r.t. to all
unconstrained

patterns.

interpretation. In BE, represented in Table 1, the complete collection of
the closed itemsets under the anti-monotone constraint “having at most
one property” includes ({o1, o2}, {p1}) with the second interpretation
but not with the first one. The authors of CCI Miner talk about a loss
of information. However, in this example, the analyst does not want
to look at ({o1, o2}, {p1}). Indeed, the objects o1 and o2 actually share
strictly more than one property. Furthermore, it is interesting to notice
that the stability of the constrained pattern collection by transpose of the
binary relation (see Section 1.3.2) is preserved by the first interpretation
but not by the second one. To sum up, Cclosed is the closedness con-
straint w.r.t. Cconnected alone and a different closedness constraint can be
defined with respect to another constraint, e. g., Cconnected ∧C61 property.

2.4.2 Strong Closedness and Stability

According to David J. Hand, here is the definition of a local pattern
[39]:

1 constraint-based closed itemset mining 35

A local pattern is a data vector serving to describe an anoma-
lously high local density of data points.

The closedness constraints on itemsets loosely enforces the anomalous
aspect. Indeed, in practice, many of them are very similar to each
other. Furthermore, although the closed itemsets are a condensed Strongly closed

itemsets are isolated
from the other
patterns.

representation of all (closed and unclosed) itemsets (see Section 1.2),
complete collections of closed itemsets remain huge. [22] proposed
to strengthen the closedness on properties. In this way, the anomalous
aspect of a local is enforced and the size of the extracted collection of
pattern is reduced. A closed itemset (O,P) ∈ 2O× 2P is δ-tolerant closed
if, whatever p ∈ P \ P, there always is strictly more than a proportion δ
of O that does not have p. If δ = 0, the δ-tolerant closed itemsets are
closed itemsets. In other terms, Definition 2 is generalized.

Definition 12 (δ-tolerance closed itemset) ∀δ ∈ [0, 1[and ∀(O,P) ∈
2O × 2P, (O,P) is a δ-tolerance closed itemset iff:

– Cconnected(O,P) ≡ O× P ⊆ B;

– Crel-δ-closed(O,P) ≡

∀o ∈ O \O, {o}× P 6⊆ B

∀p ∈ P \ P, |(O× {p}) \ B| > δ|O|
.

[9] proposed a similar reinforcement of the closedness on properties
but with an absolute parametrization. A closed itemset (O,P) ∈ 2O×2P The strong closedness

is defined absolutely
or in proportion to
the number of objects
in the itemset.

is δ-closed if, whatever p ∈ P \ P, there is strictly more than δ objects in
O that do not have p. Again, if δ = 0, the δ-closed itemsets are closed
itemsets and Definition 2 is generalized.

Definition 13 (δ-closed itemset) ∀δ ∈N and ∀(O,P) ∈ 2O × 2P, (O,P)
is a δ-closed itemset iff:

– Cconnected(O,P) ≡ O× P ⊆ B;

– Cδ-closed(O,P) ≡

∀o ∈ O \O, {o}× P 6⊆ B

∀p ∈ P \ P, |(O× {p}) \ B| > δ
.

Notice that allowing δ < 0 would make the δ-closedness always satis-
fied. In this way, the itemsets, which are matched, are connected but
not necessarily closed. The same notice can be made with Definition 12

modified so that δ < 0 is allowed.
The δ-closedness of a closed itemset (O,P) can alternatively be de-

fined as a stability index of the (|O|− δ)th level equal to 1.

Definition 14 (Stability index) ∀j ∈ N and (O,P) a closed itemset, its
stability index of the jth level is:

|{O ′ ⊆ O | |O ′| = j∧ f(O ′) = P}|(|O|
j

) .

[47] first defined and studied the stability index. It quantifies to what
extent the δ-closedness is satisfied. Every definition of this section
strengthen/quantify the closedness w.r.t. the properties. Applying
them to the transpose of B would strengthen/quantify the closedness
w.r.t. the objects.

3 conclusion

This chapter mainly aims at presenting related works and at easing
the introduction of generalizations of closed itemset mining this thesis

36 state of the art and theoretical basis

propose. However, it is also, by itself, a contribution. First of all, some of
the presented results (the reverse-search paradigm helping extractions
under any loose anti-monotone constraint, piecewise (anti)-monotone
as a synonym of primitive-based, link between strong-closedness and
stability) are, to the best of our knowledge, new. Then, this chapter
hopefully clarifies a global view of the extraction of closed itemsets
under constraints. In this regard, it follows a tradition of thesis, such as
that of Hannu Toivonen [83], Francesco Bonchi [10], Sau Dan Lee [48]
and Arnaud Soulet [77].

2G E N E R A L I Z I N G C L O S E D I T E M S E T M I N I N G

1 mining noise-tolerant itemsets

1.1 Theoretical Aspects

1.1.1 False Positive/Negative Noise

It was mentioned that many of the closed itemsets are very similar to
each other (see Section 2.4.2 in Chapter 1). This problem stems from
the noisy aspect of most real-life datasets. Noise is an alteration of
the data that prevents pattern discovery tasks from directly returning
the relevant regularities. There are many possible sources of noise.
It may be intrinsic to the studied system (e. g., stochastic biological
processes) or be the result of erroneous measures. It can be imputed
to mis-parameterized (or even mis-chosen) pre-processing steps too.
In particular, when a binary relation B ⊆ O × P is derived from a
numerical dataset, there is a cumbersome need to choose a threshold
beneath/beyond which an encoded Boolean property is claimed sat-
isfied. [82] theoretically and empirically shows that the number of
frequent itemsets exponentially grows with the level of noise while
their sizes exponentially decrease with it.

The noise can have two opposite effects on the Boolean properties B

encodes:

false positive noise Boolean properties are satisfied but should
be violated (supernumerary couples in B);

false negative noise Boolean properties are violated but should
be satisfied (missing couples in B).

Noise adds or
removes couples from
the relation. Large
enough closed
itemsets do not
encompass the
additional couples but
should tolerate a few
removed couples.

Size constraints (e. g., a minimal number of objects and a minimal
number of properties) usually are enough to avoid encompassing false
positive couples. Indeed, the noise is, by definition, randomly dis-
tributed. As a consequence, false positive couples usually are in small
patterns only. On the opposite, the definition of a closed itemset (more
precisely, of Cconnected) prevents a pattern from encompassing false
negative couples.

Example 6 Assume that BE, represented in Table 1, actually is affected by
noise. Deprived of noise, this relation could be BhiddenE, represented in Ta-
ble 4. Extracting, in BE, closed itemsets with at least two objects and as
many properties, provides only ({o1, o2}, {p1, p2}). It is a fragment of the
hidden pattern ({o1, o2, o3}, {p1, p2}), which would be found if (o3, p2) was
not affected by false negative noise (or if the pattern would tolerate some false
negative noise).

The false positive noise inserted the couple (o1, p3) in BE. Neverthe-
less, thanks to the frequency constraint “at least two objects”, (o1, p3) is
not enough to append p3 to the patterns. (o2, p3) would be required too.
However, thanks to the minimal size constraints and assuming a random dis-
tribution of the noise, this is unlikely o4 or p4 would extend a fragment of
({o1, o2, o3}, {p1, p2}). Unfortunately, this might happen if there is much
noise in the relation. In such a context, the fragments of the hidden patterns

37

38 state of the art and theoretical basis

p1 p2 p3

o1 1 1 0

o2 1 1 0

o3 1 1 0

o4 0 0 1

Table 4: BhiddenE ⊆ {o1, o2, o3, o4}× {p1, p2, p3}.

are small. Strong size constraints would discard them all. As a consequence,
these constraints must remain weak and false positive noise may be encom-
passed. Interestingly, in the presence of noise, a small hidden pattern, such
as ({o4, p3}) in BhiddenE, cannot be discovered. Indeed, it is of the size of the
meaningless patterns the false positive noise randomly generates.

1.1.2 Absolute vs. Relative Tolerance

To tolerate false negative noise, closed itemsets (see Definition 1)
needs to be generalized in closed ET-itemsets 1. Either an absolute or
a relative tolerance to noise can be chosen. With a relative toleranceCouples absent from

the relation are
tolerated either
absolutely or in

proportion to the size
of the closed itemset.

to noise, every object (resp. property) in a closed ET-itemset (O,P) ∈
2O × 2P can miss at most a proportion εPrel (resp. εOrel) of the properties
in P (resp. objects in O).

Definition 15 (Closed (relative) ET-itemset) ∀εrel = (εOrel, ε
P
rel) ∈ [0, 1]2

and ∀(O,P) ∈ 2O × 2P, (O,P) is a closed (relative) ET-itemset iff:

– Crel-ε-connected(O,P) ≡

∀o ∈ O, |({o}× P) \ B| 6 εPrel|P|

∀p ∈ P, |(O× {p}) \ B| 6 εOrel|O|
;

– Crel-ε-closed(O,P) ≡ ∀(O ′, P ′) ∈ 2O × 2P,(
O ⊆ O ′ ∧ P ⊆ P ′ ∧Crel-ε-connected(O

′, P ′)
)
⇒ (O ′, P ′) = (O,P).

With an absolute tolerance to noise, every object (resp. property) in
a closed ET-itemset (O,P) ∈ 2O × 2P can miss at most εP (resp. εO)
properties in P (resp. objects in O).

Definition 16 (Closed (absolute) ET-itemset) ∀ε = (εO, εP) ∈N2 and
∀(O,P) ∈ 2O × 2P, (O,P) is a closed (absolute) ET-itemset iff:

– Cε-connected(O,P) ≡

∀o ∈ O, |({o}× P) \ B| 6 εP

∀p ∈ P, |(O× {p}) \ B| 6 εO
;

– Cε-closed(O,P) ≡ ∀(O ′, P ′) ∈ 2O × 2P,(
O ⊆ O ′ ∧ P ⊆ P ′ ∧Cε-connected(O

′, P ′)
)
⇒ (O ′, P ′) = (O,P).

Considering the tabular representation of the binary relation B (such
as Table 1), an ET-itemset is a rectangle (modulo permutations of the
rows/columns), with upper-bounded proportions (resp. numbers in
Definition 16) of ’0’s on any row and on any column. The upper-bounds
on rows and on columns can be different. The closedness constraint
further forces any extension of a pattern to exceeds these noise toler-
ance thresholds. With εrel = (0, 0) or ε = (0, 0), both definitions are
equivalent to Definition 1. In other terms, closed ET-itemsets generalize
closed itemsets.

1. Like in [93], ET stands for Error-Tolerant.

2 generalizing closed itemset mining 39

Example 7 Consider a relative tolerance to noise εrel = (0.4, 0.5). In BE,
represented in Table 1, ({o1, o2, o3}, {p1, p2}) is a closed ET-itemset:

– Every object in {o1, o2, o3} (resp. property in {p1, p2}) misses, at most,
half of the properties in {p1, p2} (resp. 40% of the objects in {o1, o2, o3}):
– |({o1}× {p1, p2}) \ BE| = |∅| = 0 6 0.5|{p1, p2}|;
– |({o2}× {p1, p2}) \ BE| = |∅| = 0 6 0.5|{p1, p2}|;
– |({o3}× {p1, p2}) \ BE| = |{(o3, p1)}| = 1 6 0.5|{p1, p2}|;
– |({o1, o2, o3}× {p1}) \ BE| = |{(o3, p1)}| = 1 6 0.4|{o1, o2, o3}|;
– |({o1, o2, o3}× {p2}) \ BE| = |∅| = 0 6 0.4|{o1, o2, o3}|.

– Every “super-pattern” violates Crel-ε-connected:
– ¬Crel-ε-connected({o1, o2, o3, o4}, {p1, p2})

(because |({o4}× {p1, p2}) \ BE| = 2 > 0.5|{p1, p2}|);
– ¬Crel-ε-connected({o1, o2, o3}, {p1, p2, p3})

(because, e. g., |({o3}× {p1, p2, p3}) \ BE| = 2 > 0.5|{p1, p2}|);
– ¬Crel-ε-connected({o1, o2, o3, o4}, {p1, p2, p3})

(because, e. g., |({o3}× {p1, p2, p3}) \ BE| = 2 > 0.5|{p1, p2}|).
({o1, o2, o4}, {p2, p3}) and ({o1, o3, o4}, {p2, p3}) are two other closed ET-
itemsets in BE.

Following the example above, the verification of Crel-ε-closed on an ET-
itemset (O,P) involves 2|(O\O)∪(P\P)| checks of Crel-ε-connected. With a
relative tolerance to noise, it is impossible to define the closedness w.r.t.
the patterns with one more element (either an object or a property).
Indeed a closed ET-itemset (according to Definition 7) does not imply
each of its “sub-patterns” satisfies Crel-ε-connected. As a consequence,
enforcing Crel-ε-closed does not provide a lossless condensation of all
ET-itemsets. That is why, with a relative tolerance to noise, most With absolute

numbers (resp.
proportions) of absent
couples, closed
ET-itemsets are (resp.
are not) a lossless
condensation of all
ET-itemsets.

extractors of ET-itemsets do not force them to be closed. Therefore, the
output collections of ET-itemsets are very large, carry much redundant
information and interpreting them is tedious.

On the contrary, with an absolute tolerance to noise, Cε-closed provides
a lossless condensation of the collection of all (closed and unclosed)
ET-itemsets. It can easily be proved that an equivalent closedness
constraint only forces the patterns with one more element (either an
object or a property) to violate Cε-connected.

Definition 17 (Closed (absolute) ET-itemset (equivalent definition))
∀ε = (εO, εP) ∈ N2 and ∀(O,P) ∈ 2O × 2P, (O,P) is a closed (absolute)
ET-itemset iff:

– Cε-connected(O,P) ≡

∀o ∈ O, |({o}× P) \ B| 6 εP

∀p ∈ P, |(O× {p}) \ B| 6 εO
;

– Cε-closed(O,P) ≡

∀o ∈ O \O,

|({o}× P) \ B| > εP

or

∃p ∈ P | |((O∪ {o})× {p}) \ B| > εO

∀p ∈ P \ P,

|(O× {p}) \ B| > εO

or

∃o ∈ O | |({o}× (P ∪ {p})) \ B| > εP

Example 8 Consider an absolute tolerance to noise ε = (1, 1). In BE, rep-
resented in Table 1, ({o1, o2, o3}, {p1, p2}) is a closed ET-itemset:

– Every object in {o1, o2, o3} (resp. property in {p1, p2}) misses, at most,
one properties in {p1, p2} (resp. one object in {o1, o2, o3}):

40 state of the art and theoretical basis

– |({o1}× {p1, p2}) \ BE| = |∅| = 0 6 1;
– |({o2}× {p1, p2}) \ BE| = |∅| = 0 6 1;
– |({o3}× {p1, p2}) \ BE| = |{(o3, p1)}| = 1 6 1;
– |({o1, o2, o3}× {p1}) \ BE| = |{(o3, p1)}| = 1 6 1;
– |({o1, o2, o3}× {p2}) \ BE| = |∅| = 0 6 1.

– Every pattern with one more element violates Cε-connected:
– ¬Cε-connected({o1, o2, o3, o4}, {p1, p2})

(because |({o4}× {p1, p2}) \ BE| = 2 > 1);
– ¬Cε-connected({o1, o2, o3}, {p1, p2, p3})

(because, e. g., |({o3}× {p1, p2, p3}) \ BE| = 2 > 1);
({o1, o2, o4}, {p2, p3}) and ({o1, o3, o4}, {p2, p3}) are two other closed ET-
itemsets in BE.

The constraints Crel-ε-connected, Crel-ε-closed, Cε-connected and Cε-closed
are piecewise (anti)-monotone. Because conjunctions of piecewise (anti)-
monotone constraints are piecewise (anti)-monotone, “being a closed
ET-itemset” is piecewise (anti)-monotone. A relative tolerance to noise“Being a closed

ET-itemset” is
piecewise

(anti)-monotone.

looks more natural. Nevertheless, ET-itemsets are much easier to extract
with an absolute tolerance to noise. There are several ways to under-
stand it. One of them is comparing the enforcement of Crel-ε-connected
and Cε-connected as piecewise (anti)-monotone constraints. Cε-connected
does not need to be rewritten to be proved piecewise (anti)-monotone.
Indeed, it is anti-monotone w.r.t. each of its arguments. As a con-
sequence, when an extractor enforces Cε-connected, it instantiates its
two arguments with a pattern (O,P) that may be recursively consid-
ered from the current call. On the opposite, to be proved piecewise
(anti)-monotone Crel-ε-connected needs to be rewritten in C ′rel-ε-connected:

C ′rel-ε-connected(O1, O2, O3, P1, P2, P3)

≡

∀o ∈ O1, |({o}× P1) \ B| 6 εPrel|P2|

∀p ∈ P3, |(O2 × {p}) \ B| 6 εOrel|O3|
.

C ′rel-ε-connected is monotone w.r.t. its third and sixth arguments and anti-
monotone w.r.t. its other arguments. As a consequence, Crel-ε-connected
is, by definition, piecewise (anti)-monotone. When an extractor enforces
it, depending on the argument, C ′rel-ε-connected is partly instantiated with
the smallest subset of objects (or properties), that may be considered
from the current call, and partly with the largest. In other terms,
the instantiation is not related to a pattern and C ′rel-ε-connected may be
satisfied even if none of the patterns, that may be recursively considered
from the current call, satisfies Crel-ε-connected.

1.1.3 Loss of the Galois Connection

Contrary to closed itemset mining, extracting every closed ET-itemset
cannot rely on a Galois connection (f, g) (see Section 1.3.2 in Chapter 1).
Indeed, generalizing f (resp. g) towards noise tolerance makes it possi-
bly return several subsets of properties (resp. objects) from one subset
of objects (respectively properties). For instance, both Examples 7 and
8 mention that, with the chosen noise tolerances, ({o1, o2, o4}, {p2, p3})
and ({o1, o3, o4}, {p2, p3}) are closed ET-itemsets in BE. As a conse-
quence, g({p2, p3}) must be both {o1, o2, o4} and {o1, o3, o4}.

2 generalizing closed itemset mining 41

1.1.4 Other Definitions

The first ET-itemset complete extractors defined the connectedness
in other ways. [93] proposed these two definitions:

Definition 18 (Weak (relative) connection) ∀εrel ∈ [0, 1] and ∀(O,P) ∈
2O × 2P, Crel-ε-weakly-connected(O,P) ≡ |(O× P) \ B| 6 εrel|O× P|.

Definition 19 (Strong (relative) P-connection) ∀εPrel ∈ [0, 1], ∀(O,P) ∈
2O× 2P, Crel-εPrel-strongly-P-connected(O,P) ≡ ∀o ∈ O, |({o}× P) \B| 6 εPrel|P|.

The following analog definition could be added:

Definition 20 (Strong (relative) O-connection) ∀εOrel ∈ [0, 1], ∀(O,P) ∈
2O× 2P, Crel-εOrel-strongly-O-connected(O,P) ≡ ∀p ∈ P, |(O× {p}) \B| 6 εOrel|O|.

Crel-ε-weakly-connected forces a maximal proportion εrel of couples absent
from B among those any ET-itemset covers. Crel-εPrel-strongly-P-connected
and Crel-εOrel-strongly-O-connected actually are special cases of Crel-ε-connected

(see Definition 15):
– ∀εPrel ∈ [0, 1], Crel-εPrel-strongly-P-connected ≡ Crel-(1,εP)-connected;

– ∀εOrel ∈ [0, 1], Crel-εOrel-strongly-O-connected ≡ Crel-(εP,1)-connected.
None of these definitions is satisfactory. Indeed, they match patterns

with objects (resp. properties) that do not have any property (resp.
object) of the pattern. If the tolerated noise

is bounded per object
(resp. attribute) only,
some irrelevant closed
itemsets are
extracted.

Example 9 In BE, represented in Table 1, consider ({o1, o2, o4}, {p1, p2}).
The object o4 obviously has nothing to do with {p1, p2} since it does not
have any of these properties. However, ({o1, o2, o4}, {p1, p2}) satisfies both
Crel-0.4-weakly-connected and Crel-0.4-strongly-O-connected.

[74] worded this critic. In fact, with any of these three definitions and
large enough patterns, completely disconnected elements (either objects
or attributes) can be part of an ET-itemset whatever the noise tolerance
(as far as it is not 0). With an absolute tolerance to noise, the analog
definitions raise the same issue. Several works, mentioned in the next
section, use the absolute counterpart of Definition 19:

Definition 21 (Strong (absolute) P-connection) ∀εP ∈ N, ∀(O,P) ∈
2O × 2P, CεP-strongly-P-connected(O,P) ≡ ∀o ∈ O, |({o}× P) \ B| 6 εP.

1.2 State of the Art

1.2.1 ET-Itemset Complete Extractors

Several research groups have considered the complete extraction of
ET-itemsets in binary relations (see [37] for a survey). None of them
is fully satisfactory. As explained in Section 1.1.2, a relative tolerance Every state-of-the-art

ET-itemset extractor
suffers from several of
the following
troubles: discovery of
some irrelevant
patterns, no (or
strange) closedness
constraint, scalability
issues, compulsory
additional
constraints, lossy
heuristics.

to noise makes the extraction task very hard and a closedness con-
straint does not provide a lossless condensation of the ET-itemsets. As
a consequence, the extractors tolerating proportions of noise, suffer from
great scalability issues and they output large collections of ET-itemsets
carrying much redundant information, hence a difficult interpretation.
Furthermore, until the very recent publication of [68] (excluded), every
proposal was either relying on lossy heuristics or imposing additional
constraints. Among the extractors relying on lossy heuristics, AFI [52]

42 state of the art and theoretical basis

was the first algorithm to use the connection constraint of Definition 15

(but no closedness constraint) but approximates the number of objects
involved in a pattern. Among the approaches that impose additional
constraints, AC-Close [21] is significant. Indeed, it is the only closed
ET-itemset extractor with a relative tolerance to noise (Definition 15

is used). Furthermore the experiments show it runs much faster than
AFI. These results are possible thanks to a frequency constraint on an
exact closed itemset every ET-itemset must contain. Thus, AC-Close
requires an awkward minimal number of objects exact closed itemsets
(by opposition to ET-itemset) must involve. It extracts them and, in a
second step, extends them in closed ET-itemsets. Despite the perfor-
mance improvement w.r.t. AFI, Section 5.3 in Chapter 4 empirically
shows AC-Close is intractable on medium-size relations.

To completely extract ET-itemsets in larger relations, the algorithms
with an absolute tolerance to noise remains. FT-Apriori [63] extracts
every frequent ET-itemset matching Definition 21. As detailed in Sec-
tion 1.1.4, such a definition raises issues. To avoid extracting ET-itemsets
with some properties that almost every object (in the pattern) misses,
each of these properties is forced to hold for at least γ ∈N objects of
the pattern. This frequency constraint, restricted to the objects of the
ET-itemset, filters out some of the least relevant patterns. However,
because it deals with couples present in (rather than absent from) B,
ET-itemsets with many objects may still gather properties that many
objects of the pattern do not have. Furthermore, because no closedness
constraint is enforced, the extracted collections contain redundant in-
formation. VB-FT-Mine [46] builds upon FT-Apriori and significantly
improves both the running times (thanks to the use of bit vectors) and
the space requirements (thanks to a depth-first enumeration). The au-
thors of [66] consider different definitions of an ET-itemset. All of them
tolerate noise in an absolute way. To extract them, the BIAS framework
enumerates growing subsets of properties and words the noise toler-
ance w.r.t. every enumerated property as an inequality. Integer linear
programming allows to derive (one of) the largest set of objects that
satisfies every inequality. [67] optimizes this procedure and generalizes
the definition of an ET-itemset. Its objects are either those that have (or
miss) at most, at least, or exactly a given number of properties among
those in the pattern. Thus, Definition 21 is generalized (but remains the
definition of interest to tolerate noise). The authors propose a recursive
equation that computes the number of objects in an ET-itemset from
those of the ET-itemsets with one property less. Beyond the absence
of a constraint bounding the noise tolerance w.r.t. properties and the
absence of a closedness constraint, this approach requires much space.
Indeed, it stores all subsets of properties that were previously consid-
ered and the associated numbers of objects. On the positive side, the
approach can easily be implemented in any frequent itemset extractor
and its running time does not increase much w.r.t. the extraction of
exact itemsets. DR-Miner [6] extracts complete collections of closed
ET-itemsets (Definition 7) but its closedness constraint is differently
and, somehow, oddly defined. It forces every element (either an object
or a property) “outside” a closed ET-itemset to gather strictly more
couples absent from the mined relation than any element “inside” it.
This excludes some ET-itemsets that would be closed if some additional
couples were missing outside the pattern.

2 generalizing closed itemset mining 43

1.2.2 Agglomerating Itemsets

A popular heuristic to tolerate noise consists in extracting exact
patterns that are, in a second step, clustered. The most fundamental
parameter is the choice of a relevant metric. [84] proposes to cluster Agglomerating exact

patterns to tolerate
noise is a popular

heuristics. It requires
the definition of a

metric.

complete collection of association rules. The involved distance simply
is the number of objects covered by one rule (i. e., by the itemset union
of its left and right parts) and not the other. [36] somehow makes this
measure relative to the number of objects covered by both association
rules. [8] also proposes the use of such a relative measure but on
both the objects and the properties. A generalization of this metric
enables a fuzzy hierarchical clustering. Initially, every closed itemset
is associated with two Boolean vectors where a ’0’ (respectively ’1’)
stands for the absence (respectively the presence) of an element (either
an object or a property) in the closed itemset. Then classical fuzzy
operators and a 1-norm are used to compute the distance between two
clusters and a fuzzy union agglomerates them if they are the closest
pair at the current iteration. MicroCluster [98] discovers complete
collections of local patterns in real-valued matrices. In particular, it
can extract the closed itemsets. A post-processing step is proposed to
handle noise by deleting or merging some of the extracted patterns.
The involved distances are based on counts of couples. For example,
two patterns are merged when the number of couples covered by at
least one of the two patterns is greater than γ times the number of
couples belonging to the envelope of the two patterns but not to any of
the two patterns. Until now, every approach presented in this section
uses a metric (in the pattern space) that is solely based on the patterns,
i. e., the agglomeration ignores the regions of the data that are not in the
relation subspaces described by any of the two itemsets. In particular,
the number and the repartition of the couples absent from B, but
covered by the agglomerated patterns, is not taken into consideration.
On the contrary, [92] argues for using not only the information the
patterns directly express but the binary relation they were extracted
from too. The proposed metrics quantifies the entropy in the clusters
considered as sets of independent Boolean vectors. Thus, the two
attributes are not symmetric.

2 mining closed patterns in n-ary relations

2.1 Theoretical Aspects

2.1.1 N-ary Relations

Given an arity n ∈N and n finite sets (Di)i=1..n, let R ⊆ ×i=1..nD
i

the n-ary relation where patterns are to be discovered. All along the N-ary relations
generalize binary
relations by
associating elements
from n attribute
domains.

remaining of this thesis, R denotes this dataset. Table 5 represents
an example of such a relation RE ⊆ {α,β, γ} × {1, 2, 3, 4} × {A,B,C},
hence a ternary relation. In this table, every ’1’ at the intersection of
three elements stands for the presence of the related triplet in RE. For
example the bold ’1’, in Table 5, is at the intersection of the elements
α, 1 and A. It represents the presence of (α, 1,A) in RE. On the
contrary a ’0’ in Table 5 is at the intersection of three elements which
form a triplet absent from RE. For example the bold ’0’ in Table 5

means (α, 2, C) /∈ RE. In practice, the relations we are interested in are

44 state of the art and theoretical basis

A B C A B C A B C

1 1 1 1 1 1 1 1 1 0

2 1 1 0 1 0 0 1 1 0

3 0 1 0 0 0 1 1 0 1

4 0 0 1 1 0 1 1 1 1

α β γ

Table 5: RE ⊆ {α,β, γ}× {1, 2, 3, 4}× {A,B,C}.

much larger than RE. Anyway, RE is enough to illustrate most of the
examples in Parts iii and iv.
N-ary relations are present in many application domains. For in-

stance, RE could represent customers (1, 2, 3 and 4) buying items (A, B
and C) along three months (α, β and γ). In this context, the bold ’1’ in
Table 5 would mean that the customer 1 bought the item A during the
first month. The bold ’0’ would be understood as “customer 2 did not
buy item C during the first month”.

2.1.2 A Natural Definition

The patterns in ×i=1..n2
Di are called n-sets. They associate n sub-

sets of elements from the n domains of the relation. To simplify the
exposition of this thesis, an n-set (Si)i=1..n will often be assimilated
with ∪i=1..nS

i (without loss of generality, the attribute domains Di are
considered disjoint). For example, given an n-set A = (Ai)i=1..n and
an element e ∈ ∪i=1..nD

i, we write:
– e ∈ A instead of e ∈ ∪i=1..nA

i;

– A \ {e} instead of

(A1 \ {e}, A2, . . . , An) if e ∈ D1

...

(A1, . . . , An−1, An \ {e}) if e ∈ Dn

.

Nevertheless, to avoid too much abuse of notation, the union and the
inclusion of n-sets are formally defined below.

Definition 22 (n-set union t) ∀A = (Ai)i=1..n ∈ ×i=1..n2
Di and ∀B =

(Bj)j=1..n ∈ ×j=1..n2
Dj , AtB = (A1 ∪B1, . . . , An ∪Bn).

Definition 23 (n-set inclusion v) ∀A = (Ai)i=1..n ∈ ×i=1..n2
Di and

∀B = (Bj)j=1..n ∈ ×j=1..n2
Dj , A v B⇔ A1 ⊆ B1 ∧ · · ·∧An ⊆ Bn.

Notice that, by definition, the union of two n-sets is the n-set with
the minimal envelope enclosing both of them. The inclusion of n-sets
is useful to define a closedness constraint. Closed n-sets in n-ary
relations (n > 2) generalize closed itemsets in binary relations. In
other terms, closed 2-sets are closed itemsets. The generalization of
Definition 1 towards n-ary relations is natural. Considering the 0/1
representation of the n-ary relation (such as Table 5), a closed n-set is a
maximal hyper-rectangle of ’1’s modulo arbitrary permutations of the
hyper-plans. Here is a more formal definition:Closed n-sets (a)

cover only tuples
present in the

relation; (b) cannot be
enlarged without

violating (a).

Definition 24 (Closed n-set) ∀X = (Xi)i=1..n ∈ ×i=1..n2
Di , X is a

closed n-set iff:
– Cconnected(X) ≡ ×i=1..nX

i ⊆ R;

2 generalizing closed itemset mining 45

– Cclosed(X) ≡ ∀X ′ ∈ ×j=1..n2
Dj ,

(
X v X ′∧Cconnected(X

′)
)
⇒ X ′ = X.

According to the first constraint, Cconnected, taking one element from
each of the subsets constituting a closed n-set is constructing an n-tuple
that is in R. The second constraint, Cclosed, tells that X is closed if
any strictly larger pattern (more elements from any domains) violates
Cconnected. It is, for Cconnected, a closure property on the n subsets of D1,
D2, . . . and Dn altogether. It can easily be proved that an equivalent
closedness constraint only forces the patterns with one more element
(from any domain) to break Cconnected. Furthermore, because Cconnected
ensures the presence in R of every n-tuple in ×i=1..nX

i, checking the
closedness constraint can be reduced to searching for absent n-tuples
involving one additional element only.

Definition 25 (Closed n-set (equivalent definition)) ∀X = (Xi)i=1..n ∈
×i=1..n2

Di , X is a closed n-set iff:
– Cconnected(X) ≡ ×i=1..nX

i ⊆ R;
– Cclosed(X) ≡ ∀i = 1..n, ∀s ∈ Di \Xi,
¬Cconnected(X

1, . . . , {s}, . . . , Xn), i. e., X1 × · · · × {s}× · · · ×Xn 6⊆ R.

Example 10 In RE, represented in Table 5, ({α, γ}, {1, 2}, {A,B}) is a closed
3-set:

– {α, γ}× {1, 2}× {A,B} ⊆ RE (in Table 5 there are ’1’s at the intersection
of all the related hyper-plans);

– Every pattern with one more element violates Cconnected:
– ¬Cconnected({β}, {1, 2}, {A,B}), i. e., {β}× {1, 2}× {A,B} 6⊆ RE;
– ¬Cconnected({α, γ}, {3}, {A,B}), i. e., {α, γ}× {3}× {A,B} 6⊆ RE;
– ¬Cconnected({α, γ}, {4}, {A,B}), i. e., {α, γ}× {4}× {A,B} 6⊆ RE;
– ¬Cconnected({α, γ}, {1, 2}, {C}), i. e., {α, γ}× {1, 2}× {C} 6⊆ RE.

({α,β, γ}, {1, 2}, {A}) and ({α,β, γ}, {1, 2, 3, 4}, ∅) are two other examples of
closed 3-sets.

If, again, a ternary relation stands for customers buying items along
three months, a closed 3-set is a maximal subset of customers buying
the same maximal subset of items during a maximal subset of months.
Such a pattern is useful for analyzing buying behaviors. The closedness
constraint filters out all strict “sub-patterns” (i. e., patterns where some
elements are removed and none are added) of the largest ones that are
extracted. The justification for this constraint is the same as with itemset
mining: a lossless (and necessary w.r.t. the interpretation) reduction of
the output, which keeps the most informative pattern of every equiva-
lence class. With collections of n-sets, a “lossless condensation” means The closedness

constraint provides a
lossless
condensation of all
n-sets by only
keeping the most
informative ones.

that, whatever j = 1..n and given any (n− 1)-set X ∈ ×i=1..n∧i 6=j2
Di ,

all elements in Dj that relate with every combination of n− 1 elements
taken from the n− 1 subsets of X can be derived from the closed n-sets
only. They are the largest set of elements in Dj a closed n-set associates
with an (n− 1)-set larger than X (w.r.t. the v order).

2.1.3 Loss of the Galois Connection

Unless R is a binary relation (i. e., n = 2), extracting every closed
n-set cannot rely on a Galois connection (see Section 1.3.2 in Chapter 1).
Indeed, several closed n-sets can share a same subset of elements
from one attribute domain. For instance, Example 10 mentions both
({α, γ}, {1, 2}, {A,B}) and ({α,β, γ}, {1, 2}, {A}) are closed 3-sets in RE.
They both involve the subset {1, 2} of the second attribute domain.

46 state of the art and theoretical basis

Nevertheless, n−1 “components” of a closed n-set uniquely determines
the last one. For instance, in RE, there exists only one closed 3-set that
involves exactly {α, γ} and {1, 2} (or {α, γ} and {A,B} or {1, 2} and {A,B}).
The related functions are not injective. As a consequence, they are not
part of Galois connections.

There does not seem to exist any “simple” bijection between n-ary
relations and binary ones helping for the extraction of closed n-sets.Extracting every

closed n-set does not
look reducible to

mining closed
itemsets or

multi-relational
patterns.

Such a transformation would certainly lead to a combinatorial explosion
of the number of elements. Indeed the attributes of the binary relation
should combine several elements of the different domains to encompass
the n-ary relation. It is trivial to turn an n-ary relation into n binary
relations: give an id to every n-tuple and relate this id with each of
the n elements. This transformation does not help the extraction of
patterns. Indeed, in any of the constructed binary relations, every id is
related to one and only one element in Di (i = 1..n). In particular, in
these binary relations, the only closed itemsets, with frequencies strictly
greater than 0, have at most one element in Di (i = 1..n). Anyway, the
complete extraction of closed patterns in multi-relational settings is an
interesting but difficult task. In particular, defining the closedness is
problematic (see, e. g., [69] and [18]).

2.2 State of the Art

2.2.1 Ad-hoc Methods for Ternary Relations

[41] proposes two algorithms to extract every closed 3-set in ternary
relations. The first one, called Representative slice mining, is simple and
very inefficient. It consists in enumerating all subsets of the smallest
attribute domain. For each of them, a binary relation is computed by
bitwise and operations between the elements of the subset. Then, any
closed itemset extractor can be used on each of these relations and a
post-processing step removes the 3-sets (the closed itemsets associated
with the subset of elements that were used to generate the binary
relation) that are not closed. The second algorithm, called CubeMiner,
directly operates on the ternary relation R. It consists in using the 3-setsCubeMiner and

Trias extract every
closed 3-set

satisfying minimal
size constraints. Both
suffer from scalability

issues.

(X, Y, Z), called cutters, presenting the following particularity: none of
the 3-tuples they cover are in R. Thus, the authors generalize the notion
of cutter introduced in [5] for closed itemset mining. CubeMiner first
considers the whole ternary relation as a candidate pattern. Along a
depth-first enumeration, the cutters are recursively applied to generate
three candidate children containing less tuples absent from R than the
parent: a first one without the elements in X, a second one without
the elements in Y and a third one without the elements in Z. For each
child pattern, several checks are required to ensure its closedness and
uniqueness. For the pattern to be unique, its newly removed elements
must not be included in a cutter previously applied on this branch
of the enumeration tree. To verify this, every formerly applied cutter
is intersected with the current one. For the pattern to be closed, the
elements of these formerly applied cutters should not extend it. Thus,
every candidate pattern is twice compared to the formerly applied
cutters. The related computational cost, at every enumeration node,
grows linearly with the height of the enumeration tree (and, naturally,
most of its nodes are at the bottom of it). Furthermore, the cutters

2 generalizing closed itemset mining 47

are not ordered in a particular way that could reduce the size of the
enumeration tree and the running time.

Trias [40] extracts every closed 3-set in a ternary relations R ⊆
D1 ×D2 ×D3. It relies on closed itemset extractions. Assuming D1 is
the attribute domain with the smallest cardinality, Trias first constructs
the binary relation B1 ⊆ D1 × (D2 ×D3) where (x1, x2, x3) ∈ R ⇔
(x1, (x2, x3)) ∈ B. Every closed itemset (X1,B2) is extracted from this
relation. Let us name D2 (resp. D3) the elements in D2 (resp. D3)
that are in at least one couple of B2. Usually, B2 is different from
D2 ×D3, i. e., (X1, D2, D3) is not connected. That is why, in a second
step, Trias extracts every closed itemset in B2 (considered as a binary
relation on D2 ×D3). Every closed itemset (X2, X3) in B2 form, with
X1, a connected 3-set in R. However, (X1, X2, X3) is not necessarily
closed w.r.t. D1. To finally output or filter out the 3-set, Trias checks
whether (X2, X3) is connected in any of the binary relations related to
the elements in D1 \X1. The more elements, in average, in D1 \X1, the
more unclosed 3-set that are generated before being discarded. That is
why the running time of Trias is much dependent on the size of the
smallest attribute domain.

2.2.2 Minimizing Relations
Closed n-sets
somehow summarize
parts of the relation.
That is why mining
them relates to
simplifying
multi-valued logic
functions.

Considering the n sets (Di)i=1..n as the domains of n multi-valued
variables, the relation R can be seen as the truth table of a multi-
valued logic function with {0, 1} as a range. Boolean functions are
a specialization of this framework where every domain gathers two
elements (usually bound to the semantics “true” and “false”). The
Karnaugh map [44] is a tool to simplify such Boolean functions. This
method is to be applied by hand (“by eye” would be more correct
since it exploits the human capability to discern geometrical patterns).
For this reason, it works well for up to four variables but becomes
unpractical for more than six variables. It relies on organizing the
truth table in such a way that every maximal rectangle of ’1’ gives
a prime implicant (a disjunction of conjunctions) tiling the part of the
Boolean function responsible for the ’1’s in the rectangle. Once every
’1’ is covered by at least one prime implicant, the disjunction of the
prime implicants is a simplification of the original Boolean function.
The Quine-McCluskey algorithm [54] was designed to deal with more
variables. The procedure basically remains the same. However, the
organization of the truth table, used in the Karnaugh map, is substituted
by a tabular form, which better suits computers’ way of processing
data. This algorithm always returns the minimal form of the Boolean
function to the cost of finding all prime implicants. Espresso [14] uses
a different approach. The returned function is not always the minimal
form (but close to it) and the computation is reduced (in both space and
time) by orders of magnitude. It is still heavily used, in particular in
Programmable Logic Devices. Espresso was generalized in Espresso-
MV [73] to deal with multi-valued logic functions. Indeed, multiple-
valued logic functions have applications in several areas. The most
successful one probably is the enhancement of circuit performances in
terms of chip area, operation speed and power consumption (see, e. g.,
[24]).

The data mining community recently granted some attention to
tiling binary relations (i. e., 2-variable multi-valued logic functions). In
particular, [30] defined several problems related to the minimization of

48 state of the art and theoretical basis

binary relations through collections of large enough (area constraint)
patterns. “Itemsets that compress” [75] now are a new paradigm of data
mining. They were used to classify [85], to derive emerging patterns
[88], to anonymize data [89], to treat missing values [87], to find groups
[86], etc.

3 mining closed patterns in noisy n-ary relations

3.1 Tolerating Noise Is a Must

When mining relations of higher arity, noise becomes more and more
problematic. First of all, the patterns to discover encompass exponen-On relations of higher

arity, noise scourges
more and more the

collections of closed
n-sets.

tially more n-tuples. As a consequence, there is a higher probability
that some of them were affected. Moreover, at a fixed number of false
negative n-tuples, the number of closed n-sets linearly increases with
n (Cclosed is a maximality constraint w.r.t. every attribute). When n-ary
relations are derived from numerical data, the samples of data that de-
cide whether a property holds (i. e., whether the related n-tuple should
be in the relation) gets smaller. For example, in a transactional context,
deciding whether a category of customers frequently buys an item (bi-
nary relation binding categories of customers and items) is less prone
to noise than deciding whether a category of customers from a particular
country frequently buys an item (ternary relation binding categories of
customers, countries and items) because the former decision is based
on more data. Despite this growing necessity to tolerate noise when
mining relations of higher arity, the topic has not been much studied in
the literature yet.

3.2 State of the Art

3.2.1 Complete Extractors

DCE [31] extracts, from real-valued tensors, every dense n-set. HavingDCE extracts dense
patterns in tensors.

The chosen definition
matches some

irrelevant patterns
and the condensation

by closure is lossy.

a density greater than α ∈ R is a constraint similar to Cavg-gp’>α, de-
fined in Section 2.2 of Chapter 1 and proved piecewise (anti)-monotone
in Section 2.3.6 of the same chapter. This constraint can also be seen
as the weak connection (see Definition 18) generalized to real-valued
tensors. It suffers from the same relevancy problem, i. e., an element
can be part of a pattern but disconnected or very weakly connected
with the other attributes of the pattern. DCE does not exploit the
piecewise (anti)-monotonicity of the minimal density constraint but
some kind of generalized loose anti-monotonicity (see Section 2.3.4 in
Chapter 1). Indeed, given a dense n-set, there exists a “sub-pattern”
with one element less that is dense. This element, from any attribute
domain (hence, the “generalization”), relates to the hyper-plan of the
pattern with the smallest sum of the real values it contains, hence the
definition of the max function (see Section 2.3.4 in Chapter 1). Thus,
DCE is depth-first and, at every recursive call, enumerates n-sets with
such an additional element. In this way, every candidate pattern is
traversed once, the minimal density constraint becomes anti-monotone
on any enumeration branch and prunes the search space. Because the
tolerance to noise is relative, a closedness constraint would not provide
a lossless condensation of the dense n-sets and reducing its test to the
patterns with one additional element (from any attribute domain) is

2 generalizing closed itemset mining 49

not correct. Anyway, the authors propose such a procedure to reduce
the problematic sizes of the output collections.

Given an n-ary relation, a subspace cluster is a local pattern (rather
than cluster) of the form (Xi)i=1..m where every Xi is a subset of a
different attribute domain and m 6 n. It constrains the data restricted
to every pair of elements to be strongly connected. Besides the number Closed ET-n-sets are

less constrained than
subspace clusters
(with one constraint
per pair of elements).
However, the latter
does not necessarily
have n dimensions.

of tests required to be a subspace cluster (product of the number of
elements per attribute), these tests involve the whole relation. More
precisely, in a subspace cluster, every pair of elements (whatever the
attribute domain(s) they belong to) must frequently appear together in
the relation. This frequency is defined w.r.t. its expected value obtained
by making the assumption of a uniform distribution of the n-tuples in
the relation. CACTUS [28] and Clicks [96] extract maximal (closedness
constraint) subspace clusters from arbitrary n-ary relations. The latter
generalizes the former that only mines a restricted class of subspace
clusters.

3.2.2 Agglomerating 3-Sets

TriCluster [99] is an extension of MicroCluster, described in Sec-
tion 1.2.2. It discovers complete collections of local patterns in real- Heuristic

agglomerations of
closed itemsets are
easily generalized to
closed n-sets.

valued tensors. In particular, it can extract the closed 3-sets. A post-
processing step is proposed to handle noise by deleting or merging
some of the extracted patterns. The involved distances are based on
counts of 3-tuples. For example, two patterns are merged when the
number of 3-tuples covered by at least one of the two patterns is greater
than γ times the number of tuples belonging to the envelope of the
two patterns but not to any of the two patterns. Notice that this metric
(in the pattern space) is solely based on the patterns, i. e., the agglom-
eration ignores the regions of the data that are not in the relation
subspaces described by any of the two patterns. In particular, the
number and the repartition of the couples absent from R, but covered
by the agglomerated patterns, is not taken into consideration.

4 conclusion

Generalizing closed itemset mining towards noise tolerance and n-
ary relations (n > 2) is challenging. To avoid matching irrelevant
patterns, the noise tolerance sets upper-bounds for the number (or the
proportion) of couples absent from the relation in every restriction of
the patterns to its individual elements (objects and properties). On
the contrary, defining a closed n-set is rather natural. Nevertheless,
in both cases, complete extractors cannot rely on Galois connections
and running times are problematic. To tolerate more noise than what
complete extractors can achieve (while remaining tractable), patterns
can be heuristically agglomerated. To do so, a notion of distance
between the patterns must be defined.

Part III

M I N I N G N - A RY R E L AT I O N S

O U T L I N E

The previous chapter argued for two needed generalizations of closed
itemset mining: towards noise tolerance and towards n-ary relations.
This thesis eventually proposes a solution to both issues together. For
the time, this part focus on generalizing (exact) closed itemset mining
towards relations of higher arity. Thus, it deals with the complete
extraction of closed patterns that hold in n-ary relations. This type
of pattern, namely the closed n-set, was defined in Section 2 of the
previous chapter. This section also emphasized that none of the previ-
ous work on local pattern extraction can efficiently deal with relations
having an arity beyond 3. Data-Peeler is the first algorithm that
was designed to extract closed n-sets whatever n > 2. It does not
make any assumption on the proportions of the dataset either. In fact,
Data-Peeler does not favor, a priori, any attribute or set of attributes.
Despite its generic scope, Data-Peeler turns out to be, on ternary
relations, orders of magnitude faster than its competitors. Section 2 in
Chapter 1 emphasized that the enumeration principles of an extractor
determines the class of constraints it can efficiently enforce. In the case
of Data-Peeler, this class, namely the piecewise (anti)-monotone con-
straints, is very broad and the analyst can choose among many useful
relevancy constraints. Both Data-Peeler and the class of piecewise
(anti)-monotone constraints were first published in [CBRB08]. However
some improvements to Data-Peeler’s enumeration were added in an
extended article [CBRB09].

When the original data are numerical, they need, in a pre-processing
step, to be converted into Boolean properties so that Data-Peeler can
be used. Different binarization methods lead to different perspectives
on the data. Considering several methods altogether (they form an
additional dimension to the dataset) and mining, with Data-Peeler,
patterns that are frequent across them, is a way to specify a certain
robustness w.r.t. binarization. [CBRB09] introduced this idea. This
article also presents a heuristic method to globally model the dataset
by post-processing the local patterns it contains. It is about obtaining a
tiling, i. e., a coverage of the whole dataset by a minimal collection of
patterns. In the context of n-ary relations, this problem is equivalent
to the minimization of multi-valued logic functions. Some previous
works ensure the optimality of the minimization but are intractable on
medium-size datasets. That is why a greedy procedure is proposed. It
provides, in reasonable times, tilings (of arbitrary n-ary relations) that
are better than the state of the Art Espresso-MV.

53

3DATA-PEELER: THE FIRST CLOSED N-SET EXTRACTOR

1 data-peeler

1.1 A Closed n-Set Extractor

Data-Peeler extracts every closed n-set in an arbitrary n-ary relation
R ⊆ ×i=1..nD

i. Section 2.1.2 in Chapter 2 discussed the (natural) Data-Peeler

extracts every closed
n-set.

definition of a closed n-set. Let us recall it. An n-set X = (Xi)i=1..n ∈
×i=1..n2

Di is a closed n-set if and only if:
– Cconnected(X) ≡ ×i=1..nX

i ⊆ R;
– Cclosed(X) ≡ ∀i = 1..n,∀s ∈ Di \Xi,
¬Cconnected(X

1, . . . , {s}, . . . , Xn), i. e., X1 × · · · × {s}× · · · ×Xn 6⊆ R.

1.2 Enumeration

Like many complete algorithms for constraint-based local pattern
mining, Data-Peeler is based on enumerating candidates in a way
that can be represented by a binary tree where (a) at every node, an
element e is enumerated; (b) every pattern extracted from the left child
does contain e; (c) every pattern extracted from the right child does not
contain e. This leads to a partition of the search space, i. e., the union The enumeration

follows a binary tree.
At every node, both
the smallest and the
greatest n-set in the
sub-tree are known
and any element from
any attribute domain
can be chosen to
extend the smallest
n-set.

of the closed n-sets found in both enumeration sub-trees are exactly
the closed n-sets to be extracted from the parent node (correctness) and
each of these closed n-sets is found only once (uniqueness). In the case
of Data-Peeler, the enumerated element e can always be freely chosen
among all the elements (from all attribute domains D1, D2, . . . , Dn)
remaining in the search space.

Each node N in the enumeration tree is a pair (U,V) where U and V
are two n-sets. N represents all the n-sets containing all the elements of
U and a subset of the elements of V . In other words, this is the search
space of the n-sets (X1, . . . , Xn) s.t. ∀i = 1..n, Ui ⊆ Xi ⊆ Ui ∪ Vi.
The root node, ((∅, . . . , ∅), (D1, . . . ,Dn)), represents all possible n-sets.
On the contrary, nodes such that ∀i = 1..n, Vi = ∅ represent a single
n-set, (U1, . . . , Un). More generally, a node (U,V) represents 2

∑n
i=1 |V

i|

n-sets.

Example 11 The node M = (U,V) = (({α}, ∅, {C}), ({γ}, {1, 4}, {A,B}))
represents 25 (i. e., 32) 3-sets. E. g., it represents the 3-sets ({α}, ∅, {C}),
({α}, {4}, {C}) and ({α, γ}, {1, 4}, {A,B,C}). On the contrary, it represents
neither ({α}, ∅, ∅) (C must be in the 3-set) nor ({α,β, γ}, {4}, {C}) (β must
not be in the 3-set).

At a node N = (U,V), Data-Peeler chooses an element e from V

(the selection criterion is discussed in Section 1.6) and generates two
new nodes, NL = (UL, VL) = (U ∪ {e}, V \ {e}) and NR = (UR, VR) =

(U,V \ {e}). NL (resp. NR) represents the n-sets of N that contain (resp.
do not contain) e. Figure 10 depicts this simple partitioning of the
search space.

55

56 mining n-ary relations

U

V

Parent

U∪ {e}

V \{e}

Left child

e ∈ U

U

V \{e}

Right child

e 6∈ U

Figure 10: Enumeration of any element e ∈ V .

U = ({α}),∅,{C})

V = ({γ},{1,4},{A,B})

M

U = ({α},{4},{C})

V = ({γ},{1},{A,B})
ML

4 ∈ U

U = ({α},∅,{C})

V = ({γ},{1},{A,B})
MR

4 6∈ U

Figure 11: Enumeration of the element 4 ∈ V2 from node M (Example 12).

Example 12 Considering the node M of Example 11, the selection of the ele-
ment 4 ∈ V2 leads to the two nodes ML = (({α}, {4}, {C}), ({γ}, {1}, {A,B}))

and MR = (({α}, ∅, {C}), ({γ}, {1}, {A,B})) (see Figure 11).

1.3 Efficient Enforcement of Cconnected

Cconnected allows to reduce the search space of the left child, i. e., the
size of VL. In other terms, some n-sets, that are represented by theCconnected reduces the

search space when an
element is claimed

present.

parent node, are not to be represented by the left child. Indeed, the
elements of V that violate Cconnected if added to UL can be removed from
VL. Formally, these elements are {v ∈ VL |U1L×· · ·× {v}×· · ·×UnL 6⊆ R}.
They are found in the following way: ∀v ∈ V , whenever an element e is
moved from V to U, if U1× · · · × {e}× · · · × {v}× · · · ×Un 6⊆ R then v is
removed from V . In this way, at any enumeration node, U can “receive”
any element from V without violating Cconnected. Figure 12 depicts this
enforcement of Cconnected, which ensures that every n-set satisfying this
constraint is browsed once (and only once).

U

V

Parent

U∪ {e}

{v ∈ V \{e} | Cconnected(U∪ {e}∪ {v})}

Left child

e ∈ U

U

V \{e}

Right child

e 6∈ U

Figure 12: Enumeration of any element e ∈ V . Cconnected removes elements
from V .

3 data-peeler: the first closed n-set extractor 57

U = ({α},∅,{C})

V = ({γ},{1,4},{A,B})

M

U = ({α},{4},{C})

V = ({γ},{1},∅)
ML

4 ∈ U

Cconnected removes

A and B from V

U = ({α},∅,{C})

V = ({γ},{1},{A,B})
MR

4 6∈ U

Figure 13: Enumeration of the element 4 ∈ V2 from node M (Example 13).

Example 13 In our running example, according to RE (see Table 5), neither
the element A nor the element B can be added to UL = ({α}, {4}, {C}) to form
a 3-set satisfying Cconnected. Indeed, (α, 4,A) /∈ RE and (α, 4, B) /∈ RE. As a
consequence, Cconnected removes those two elements from V3: we finally obtain
ML = (({α}, {4}, {C}), ({γ}, {1}, ∅)) (see Figure 13).

Until now, we discussed how to extract all n-sets satisfying Cconnected
in n-ary relations. We now need to enforce the closedness property.

1.4 Efficient Enforcement of Cclosed

For a better performance, the closedness constraint must be handled
during the enumeration process (safe pruning) rather than in a post-
processing phase. At a given enumeration node N, if there exists an An enumeration

sub-tree is pruned
when its largest
closed n-set can be
extended by an
element out of the
search space.

element s ∈ Dj \ (Uj ∪ Vj) such that Cconnected(Ut V ∪ {s}) is satisfied,
then every n-set represented by N can be extended with s to form a
larger n-set satisfying Cconnected. Indeed, ∀V ′ v V , ∀s ∈ Dj \ (Uj ∪ Vj),
Cconnected(U t V ∪ {s}) ⇒ Cconnected(U t V ′ ∪ {s}). None of the n-sets
N represents being closed, the whole enumeration sub-tree rooted
by N is safely pruned. Data-Peeler does not miss the closed n-sets
“containing” U: they are found in the part of the enumeration tree
where s ∈ U.

Given an element s that potentially extends every n-set represented
by the current node, there is no need to browse the whole subspace of
the relation related to Ut V ∪ {s}. Indeed, because Cconnected(Ut V) is
always true (see Section 1.3), all its n-tuples absent from R involve s.
As a consequence, browsing (U1 ∪ V1)× · · · × {s}× · · · × (Un ∪ Vn) is
enough. Furthermore, as soon as one of its n-tuples is found missing
from R, the check is aborted (s does not prevent the closure of every
n-set represented by the current node).

Furthermore, one the most interesting advantage of our enumera-
tion strategy is that there is actually no need to check whether every
element in (∪i=1..nD

i) \ (∪i=1..nU
i ∪ Vi) may prevent the closure. In-

deed, any element that has been removed from V thanks to Cconnected
(see Section 1.3) cannot. Indeed, the reason of the removal of such an el- Only the elements

refused “by
enumeration” may
prevent the
closedness.

ement f from V is that Cconnected(U∪ {f}) is false. In such circumstances,
Cconnected(Ut V ∪ {f}) cannot be true either. When checking Cclosed the
only elements that need to be tried as extensions are those that were
previously chosen to be enumerated but refused (right child). These
elements are stored in an n-set that will always be denoted S. Figure 14

complements Figure 12 with this n-set S. Given the three n-sets U, V

58 mining n-ary relations

U

V

S

Parent

U∪ {e}

{v ∈ V \{e} | Cconnected(U∪ {e}∪ {v})}

S

Left child

e ∈ U

U

V \{e}

S∪ {e}

Right child

e 6∈ U

Figure 14: Enumeration of any element e ∈ V . Cconnected removes elements
from V . Cclosed is checked on Ut V extended with every element in
S.

U = ({α},∅,{C})

V = ({γ},{1,4},{A,B})

S = ({β},∅,∅)

M

U = ({α},{4},{C})

V = ({γ},{1},∅)
S = ({β},∅,∅)

ML

¬Cclosed

4 ∈ U

Cconnected removes

A and B from V

U = ({α},∅,{C})

V = ({γ},{1},{A,B})

S = ({β},{4},∅)
MR

¬Cclosed

4 6∈ U

Figure 15: Enumeration of the element 4 ∈ V2 from node M (Example 14).

and S attached to an enumeration node, the closedness constraint is
checked as follows:

∀s ∈ S, U1 ∪ V1 × · · · × {s}× · · · ×Un ∪ Vn 6⊆ R .

Example 14 Still using the running example, assume that S = ({β}, ∅, ∅) is
bound to the enumeration node M. Neither ML nor MR satisfies Cclosed. In-
deed ({β}, {1, 4}, {C}) is connected and so is ({β}, {1}, {A,B,C}) (see Table 5).
Figure 15 depicts the enumeration aborted for the two children nodes. To con-
clude, among the 32 3-sets represented by M, none are both connected and
closed.

1.5 Algorithm

Data-Peeler is a depth-first search algorithm. It takes three argu-
ments: U, V and S. It starts with U0 = (∅, . . . , ∅), V0 = (D1, . . . ,Dn)

and S0 = (∅, . . . , ∅). Its major steps are presented in the pseudo-code of
Figure 16, which can be seen as a translation of the diagram of Figure 14.
First of all, the closedness property is checked (see Section 1.4). If it
is satisfied and no element remains to be enumerated, the n-set U is
output. Otherwise an element e of V is chosen (Section 1.6 discusses
this step) and the search space is split between the n-sets that contain
e and those that do not (see Section 1.2). Finally, Data-Peeler is re-
cursively called on the two related enumeration nodes. Notice that the
n-set S is only fed by the elements e that are chosen to be enumerated
but refused (right child). The elements that Cconnected removes from
the search space V are not moved to S since they cannot prevent the
descendant nodes to be closed.

3 data-peeler: the first closed n-set extractor 59

Input: U,V, S
Output: Every closed n-set represented by (U,V)

if Cclosed(Ut V) then
if V = (∅, . . . , ∅) then

output(U)
else

Choose e ∈ V
Data-Peeler(U∪ {e}, {v ∈ V \ {e} | Cconnected(U∪ {e}∪ {v})}, S)
Data-Peeler(U,V \ {e}, S∪ {e})

end if
end if

Figure 16: The Data-Peeler algorithm.

1.6 Choosing the Element to Enumerate

As explained in Section 1.2, an element e ∈ V must be chosen to
be enumerated. Its choice determines the two nodes NL and NR
deriving from the current one. The more elements their V n-sets
contain, the greater the remaining search space. VR always contain
|V |− 1 elements. That is why Data-Peeler’s selection strategy for e
focuses on minimizing the number of elements in VR, i. e., it aims at
maximizing the number of elements Cconnected removes from the search
space when e is set present. The enumerated

element is
heuristically chosen
such that the search

space at the left node
is minimized.

Whenever an element is enumerated, Cconnected removes some el-
ements if (a) they are in V and (b) elements from the n − 1 other
attributes are in U. The following formula gives the maximum number
of n-tuples in R that are browsed when enforcing Cconnected after an
element from Vd is enumerated:∑

k6=d

(
|Vk|×

∏
l/∈{d,k}

|Ul|
)

.

Data-Peeler enumerates an element on the attribute domain d maxi-
mizing this formula. The choice for an element e ∈ Vd remains. It is
the one (or one of those) presenting the lowest density in R, i. e., an
element e ∈ Vd minimizing the expression below:

|(D1 × · · · × {e}× · · · ×Dn)∩R| .

This heuristic generalizes the one presented in Section 2.3.3 of Chapter 1

and can be justified as follows: the less elements are connected in R,
the more likely Cconnected removes elements from V to build VL. The
experiment in Section 5.2 empirically shows that the proposed choice
criterion outperforms other sensible criteria.

Example 15 In our running example, at node M, the choice of enumerating
4 ∈ V2 actually follows the heuristic stated above:

choice of v2 :
∑
k6=d

(
|Vk|×

∏
l/∈{d,k} |U

l|
)

is maximized for d = 2:

d = 1 : (|V2|× |U3|) + (|V3|× |U2|) = (2× 1) + (2× 0) = 2;
d = 2 : (|V1|× |U3|) + (|V3|× |U1|) = (1× 1) + (2× 1) = 3;
d = 3 : (|V1|× |U2|) + (|V2|× |U1|) = (1× 0) + (2× 1) = 2.

choice of 4 : |({α,β, γ}× {e}× {A,B,C})∩R| is minimized for e = 4:

60 mining n-ary relations

U

V

S

Parent

U∪ {e}

{v ∈ V \{e} | Cconnected(U∪ {e}∪ {v})}

S

e ∈ U

U∪ {e}

{v ∈ V \{e} | Cconnected(U∪ {e}∪ {v})}

{s ∈ S |Cconnected(U∪ {e}∪ {s})}

Left child

Cconnected removes

elements from S

U

V \{e}

S∪ {e}

Right child

e 6∈ U

Figure 17: Enumeration of any element e ∈ V . Cconnected removes elements
from V and S. Cclosed is checked on U t V extended with every
element in S.

e = 1 : |{(α, 1,A), (α, 1, B), (α, 1, C), (β, 1,A), (β, 1, B), (β, 1, C),

(γ, 1,A), (γ, 1, B)}| = 8;

e = 4 : |{(α, 4, C), (β, 4,A), (β, 4, C), (γ, 4,A), (γ, 4, B), (γ, 4, C)}|

= 6.

2 improvements to the enumeration

2.1 Removing Elements from S

Every n-set represented by a node N = (U,V) “contains” U. As a
consequence, the elements in S that violate Cconnected when added to
U, will not enlarge any n-set represented by N. They can be removed
from S. Formally, these elements, which are safely removed fromGiven an

enumeration sub-tree,
the elements that
cannot extend its

smallest n-set,
cannot prevent any of

them to be closed.

S, are {s ∈ S |U1 × · · · × {s}× · · · ×Un 6⊆ R}. They are found in the
following way: ∀s ∈ S, whenever an element e is moved from V to U, if
U1 × · · · × {e}× · · · × {s}× · · · ×Un 6⊆ R then s is removed from S. This
process is similar to the enforcement of Cconnected (see Section 1.3) but
applied on S instead of V . This optimization speeds up the enforcement
of Cclosed for all the nodes deriving from N. The gain is two-fold:

– S containing less elements, the global cost pertaining to the en-
forcement of Cclosed is lowered;

– When enforcing Cclosed, there is no need to browse {U1× · · ·× {s}×
· · · ×Un | s ∈ S}: all these tuples are present otherwise some s ∈ S

would have been removed by this optimization.
This improvement slightly modifies Data-Peeler’s enumeration. The

enumeration taking advantage of it is depicted in Figure 17.

Example 16 Given the node (U,V) = (({α, γ}, {1, 2}, {B}), (∅, ∅, {A})) and
the relation RE represented in Table 5, assume that S = ({β}, ∅, ∅). β is
removed from S1 because Cconnected({β}, {1, 2}, {B}) is false (see Figure 18).

2.2 Moving Elements from V to U

Every n-set represented by a node N = (U,V) is “included in” (see
Definition 23) Ut V . As a consequence, an element of Vi which, in R,

3 data-peeler: the first closed n-set extractor 61

U = ({α,γ},{1,2},{B})

V = (∅,∅,{A})

S = ({β},∅,∅)

U = ({α,γ},{1,2},{B})

V = (∅,∅,{A})

S = (∅,∅,∅)

Cconnected removes

β from S

Figure 18: Illustration of Example 16.

U

V

S

Parent

U∪ {e}

{v ∈ V \{e} | Cconnected(U∪ {e}∪ {v})}

S

e ∈ U

U′ = U∪ {e}

V ′ = {v ∈ V \{e} | Cconnected(U∪ {e}∪ {v})}

S′ = {s ∈ S | Cconnected(U∪ {e}∪ {s})}

Cconnected removes

elements from S

U′ ∪ W′

V ′ \W′

S′

Left child, where

W′ = {v′ ∈ V ′ s.t.

Cconnected(U′1 ∪ V ′1,...,{v′},...U′n ∪ V ′n)}

W′ always in U

U

V ′′ = V \{e}

S′′ = S∪ {e}

e 6∈ U

U∪ W′′

V ′′ \W′′

S′′

Right child, where

W′′ = {v′′ ∈ V ′′ s.t.

Cconnected(U1 ∪ V ′′1,...,{v′′},...Un ∪ V ′′n)}

W′′ always in U

Figure 19: Enumeration of any element e ∈ V . Cconnected removes elements
from V and S. The elements of V that are necessarily present are
moved to U. Cclosed is checked on UtV extended with every element
in S.

is associated to all the elements of ×j6=iUj ∪ Vj is necessarily element
of every closed n-set represented by N. It can be moved to U. Thus, Given an

enumeration sub-tree,
the elements that
extend its largest
n-set are in every

closed n-set.

these elements, which can be moved to U, are {v ∈ V |U1 ∪ V1 × · · · ×
{v}× · · · ×Un ∪ Vn ⊆ R}. In the worst case (all the elements of V can
extend N), given N, finding the elements of this set means checking the
presence in R of this number of n-tuples:

n∑
k=1

(
|Vk|×

∏
l 6=k

|Ul ∪ Vl|
)

.

This cost may look high. However, recall that the enumeration sub-tree
whose root is N contains, at worse (no pruning), 21+

∑n
i=1 |V

i| − 1 nodes.
That is why removing elements from V as soon as possible significantly
reduces the number of nodes to consider and, as a consequence, the
running time of Data-Peeler.

Again, this improvement modifies the enumeration of Data-Peeler.
Figure 19 depicts the enumeration taking advantage of the two im-
provements that have just been described.

62 mining n-ary relations

U = ({α,γ},{1,2},{B})

V = (∅,∅,{A})

S = (∅,∅,∅)

U = ({α,γ},{1,2},{B,A})

V = (∅,∅,∅)

S = (∅,∅,∅)

A always in U

closed 3-set

Figure 20: Illustration of Example 17.

Example 17 Consider the node (({α, γ}, {1, 2}, {B}), (∅, ∅, {A})) obtained in
Example 16. The element A is safely moved from V3 to U3 (see Figure 20).
Indeed, ({α, γ}, {1, 2}, {A}) satisfies Cconnected (see Table 5). Once this second
improvement applied, ({α, γ}, {1, 2}, {B}) is claimed closed 3-set. Indeed V
does not contain any element and neither does S, hence the closedness.

2.3 Improved Algorithm

Figure 21 details, at a high level of abstraction, how Data-Peeler

recursively extracts every closed n-set. It is similar to Figure 16 but
includes the two improvements that have just been presented. In this
respect, it can be seen as a pseudo-code translation of Figure 19. A
constraint CP(A)M was added too. This user-defined constraint aims at
focusing Data-Peeler on the relevant closed n-sets, i. e., every closed
n-set that satisfies CP(A)M. Furthermore, along the extraction, CP(A)M
guides the search, i. e., the search space is pruned when it is certain
the related region (the n-sets represented by the current enumeration
node) is empty of n-set satisfying CP(A)M. In many practical settings
with large domain sizes and/or high densities, the use of constraints is
a key to extraction tractability. At any call the smallest and the largest
n-set that may be recursively considered are known (respectively U
and Ut V). As a consequence Data-Peeler can handle any piecewise
(anti)-monotone constraint (see Section 2.3.6 in Chapter 1), i. e., CP(A)M
can be any constraint in this very broad class.Data-Peeler

efficiently handles
any piecewise

(anti)-monotone
constraint.

The definition of piecewise (anti)-monotonicity (i. e., Definition 11),
given in Chapter 1, is sufficiently generic to apply to n-sets. It is not
recalled here. The enforcement of CP(A)M in Data-Peeler is analog
with the one presented in Section 2.3.6 of Chapter 1, i. e., C ′P(A)M is
CP(A)M rewritten such that every occurrence of its variables is attributed
a separate argument that is instantiated with the largest (if C ′P(A)M
is monotone w.r.t. this argument) or the smallest (if C ′P(A)M is anti-
monotone w.r.t. this argument) subset of the same attribute domain
that may be recursively considered from the current call. In other terms,
every argument of C ′P(A)M that ranges in 2D

i
(i = 1..n) is instantiated

with:
– Ui ∪ Vi if C ′P(A)M is monotone w.r.t. this argument;
– Ui if C ′P(A)M is anti-monotone w.r.t. this argument.

Example 18 Consider the following constraint forcing the extracted closed
n-sets to be globally large:

Cν-volume(X
1, . . . , Xn) ≡ |X1 × · · · ×Xn| > ν .

3 data-peeler: the first closed n-set extractor 63

Input: U,V, S
Output: Every closed n-set represented by (U,V) and satisfying
CP(A)M
if C ′P(A)M is satisfied when instantiated as detailed in the text
∧Cclosed(Ut V) then

if V = (∅, . . . , ∅) then
output(U)

else
Choose e ∈ V
U ′ ← U∪ {e}
V ′ ← {v ∈ V \ {e} | Cconnected(U∪ {e}∪ {v})}
S ′ ← {s ∈ S | Cconnected(U∪ {e}∪ {s})}
W ′ ← {v ′ ∈ V ′ | Cconnected(U

′1 ∪ V ′1, . . . , {v ′}, . . . U ′n ∪ V ′n)}
Data-Peeler(U ′ ∪W ′, V ′ \W ′, S ′)
V ′′ ← V \ {e}

S ′′ ← S∪ {e}
W ′′ ← {v ′′ ∈ V ′′ | Cconnected(U

1 ∪ V ′′1, . . . , {v ′′}, . . . Un ∪ V ′′n)}
Data-Peeler(U∪W ′′, V ′′ \W ′′, S ′′)

end if
end if

Figure 21: The Data-Peeler improved algorithm.

Because every argument of Cν-volume occurs exactly once in the above ex-
pression, attributing a separate argument to every occurrence actually pro-
vides the same expression. Anyway, without any transformation, Cν-volume
is (anti)-monotone w.r.t. each of its arguments. For example, it is mono-
tone w.r.t. the first argument: ∀(X1, . . . , Xn) ∈ 2D

1 × · · · × 2Dn and
∀X1 ′ ⊆ D1,

(
X1 ⊆ X1 ′ ⇒ |X1 × · · · ×Xn| > ν⇒ |X1

′ × · · · ×Xn| > ν
)

.
As a consequence Cν-volume is piecewise (anti)-monotone. Because, it actually
is monotone w.r.t. each of its arguments, Data-Peeler tests, at every recur-
sive call, Cν-volume(U t V). If the test succeeds at least U t V , the current
node represents, satisfies Cν-volume. If the test fails the search space is pruned.
Indeed, every n-set, the current node represents, violates Cν-volume.

Example 19 Consider the following constraint forcing the extracted closed
n-sets to approximately gather the same number of elements in the first at-
tribute as in the second attribute.

Cε-square(X
1, X2) ≡ |X1|

|X2|
−

|X2|

|X1|
6 ε∧

|X2|

|X1|
−

|X1|

|X2|
6 ε∧X1 6= ∅∧X2 6= ∅

The parameter ε ∈ R+ tunes the approximation: the smaller ε, the stronger
the constraint (ε = 0 forces |X1| = |X2|). Cε-square has two arguments, X1

and X2, but each of them occurs four times in the expression of the con-
straint. To prove the piecewise (anti)-monotonicity of Cε-square, the constraint
is rewritten in C ′ε-square with a separate argument for each of the eight occur-
rences:

C ′ε-square(X
1
1, X

1
2, X

1
3, X

1
4, X

1
5, X

2
1, X

2
2, X

2
3, X

2
4, X

2
5)

≡ |X11|

|X21|
−

|X22|

|X12|
6 ε∧

|X23|

|X13|
−

|X14|

|X24|
6 ε∧X15 6= ∅∧X

2
5 6= ∅ .

C ′ε-square is (anti)-monotone w.r.t. each of its arguments, what proves, by defi-
nition, the piecewise (anti)-monotonicity of Cε-square. More precisely, C ′ε-square

is monotone w.r.t. X13, X14, X15, X21, X22 and X25 and anti-monotone w.r.t. X11,

64 mining n-ary relations

X12, X23 and X24. As a consequence, to enforce Cε-square, Data-Peeler tests,
at every recursive call, C ′ε-square(U

1, U1, U1 ∪ V1, U1 ∪ V1, U1 ∪ V1, U2 ∪
V2, U2 ∪ V2, U2, U2, U2 ∪ V2). If the test fails the search space is pruned.
Indeed, every n-set, the current node represents, violates Cε-square.

3 example of computation

Figure 22 depicts a part of the computation of Data-Peeler on RE
(represented in Table 5) where every closed 3-set satisfying C5-volume
(introduced in Example 18) is to be extracted. The dashed leaf is a such
a pattern. The dotted leaves are pruned. The choice of the element to
enumerate follows the rule enunciated in Section 1.6.

3 data-peeler: the first closed n-set extractor 65

U
=

(∅
,
∅
,
∅
)

V
=

({
α

,
β

,
γ
},

{1
,
2
,
3
,
4
},

{A
,
B

,
C

})

S
=

(∅
,
∅
,
∅
)

.
.
.

β
∈

U

U
=

(∅
,
∅
,
∅
)

V
=

({
α

,
γ
},

{1
,
2
,
3
,
4
},

{A
,
B

,
C

})

S
=

({
β

},
∅
,
∅
)

β
/∈

U

U
=

({
α

},
∅
,
∅
)

V
=

({
γ
},

{1
,
2
,
3
,
4
},

{A
,
B

,
C

})

S
=

({
β

},
∅
,
∅
)

α
∈

U

U
=

({
α

},
∅
,
{C

})

V
=

({
γ
},

{1
,
4
},

{A
,
B

})

S
=

({
β

},
∅
,
∅
)

C
∈

U

C
c
o
n
n
e
c
t
e
d

re
m

o
v
e
s

2
a
n
d

3
fr

o
m

V

U
=

({
α

},
{4

},
{C

})

V
=

({
γ
},

{1
},
∅
)

S
=

({
β

},
∅
,
∅
)

¬
C

5
-
v
o
l
u
m

e

4
∈

U

C
c
o
n
n
e
c
t
e
d

re
m

o
v
e
s

A
a
n
d

B
fr

o
m

V

U
=

({
α

},
∅
,
{C

})

V
=

({
γ
},

{1
},

{A
,
B

})

S
=

({
β

},
{4

},
∅
)}

¬
C

c
l
o
s
e
d

4
/∈

U

U
=

({
α

},
∅
,
∅
)

V
=

({
γ
},

{1
,
2
,
3
,
4
},

{A
,
B

})

S
=

({
β

},
∅
,
{C

})

C
/∈

U

U
=

({
α

},
{1

,
2
},
∅
)

V
=

({
γ
},

{3
,
4
},

{A
,
B

})

S
=

({
β

},
∅
,
∅
)1

a
n
d

2
a
lw

a
y
s

in
U

C
c
o
n
n
e
c
t
e
d

re
m

o
v
e
s

C
fr

o
m

S

U
=

({
α

,
γ
},

{1
,
2
},
∅
)

V
=

(∅
,
{3

,
4
},

{A
,
B

})

S
=

({
β

},
∅
,
∅
)

γ
∈

U

U
=

({
α

,
γ
},

{1
,
2
},

{B
})

V
=

(∅
,
∅
,
{A

})

S
=

(∅
,
∅
,
∅
)

B
∈

U

C
c
o
n
n
e
c
t
e
d

re
m

o
v
e
s

3
a
n
d

4
fr

o
m

V
a
n
d

β
fr

o
m

S

U
=

({
α

,
γ
},

{1
,
2
},

{B
,
A

})

V
=

(∅
,
∅
,
∅
)

S
=

(∅
,
∅
,
∅
)

U
o
u
tp

u
t

A
a
lw

a
y
s

in
U

U
=

({
α

,
γ
},

{1
,
2
},
∅
)

V
=

(∅
,
{3

,
4
},

{A
})

S
=

({
β

},
∅
,
{B

})

B
/∈

U

U
=

({
α

,
γ
},

{1
,
2
},

{A
})

V
=

(∅
,
∅
,
∅
)

S
=

({
β

},
∅
,
{B

})

¬
C

5
-
v
o
l
u
m

e

A
∈

U

C
c
o
n
n
e
c
t
e
d

re
m

o
v
e
s

3
a
n
d

4
fr

o
m

V

U
=

({
α

,
γ
},

{1
,
2
},
∅
)

V
=

(∅
,
{3

,
4
},
∅
)

S
=

({
β

},
∅
,
{B

,
A

})

¬
C

5
-
v
o
l
u
m

e

A
/∈

U

U
=

({
α

},
{1

,
2
},
∅
)

V
=

(∅
,
{3

,
4
},

{A
,
B

})

S
=

({
β

,
γ
},
∅
,
∅
)

γ
/∈

U

U
=

({
α

},
{1

,
2
},

{B
})

V
=

(∅
,
{3

},
{A

})

S
=

({
γ
},
∅
,
∅
)

B
∈

U

C
c
o
n
n
e
c
t
e
d

re
m

o
v
e
s

4
fr

o
m

V
a
n
d

β
fr

o
m

S

U
=

({
α

},
{1

,
2
},

{B
,
A

})

V
=

(∅
,
∅
,
∅
)

S
=

({
γ
},
∅
,
∅
)

¬
C

5
-
v
o
l
u
m

e

A
∈

U

C
c
o
n
n
e
c
t
e
d

re
m

o
v
e
s

3
fr

o
m

V

U
=

({
α

},
{1

,
2
},

{B
})

V
=

(∅
,
{3

},
∅
)

S
=

({
γ
},
∅
,
{A

})

¬
C

5
-
v
o
l
u
m

e

A
/∈

U

U
=

({
α

},
{1

,
2
},
∅
)

V
=

(∅
,
{3

,
4
},

{A
})

S
=

({
β

,
γ
},
∅
,
{B

})

¬
C

5
-
v
o
l
u
m

e

B
/∈

U

.
.
.

α
/∈

U

A
B

C
A

B
C

A
B

C

1
1

1
1

1
1

1
1

1
0

2
1

1
0

1
0

0
1

1
0

3
0

1
0

0
0

1
1

0
1

4
0

0
1

1
0

1
1

1
1

α
β

γ

R
E
⊆

{α
,
β
,
γ
}
×

{1
,
2
,
3
,
4
}
×

{A
,
B
,
C
}.

Fi
gu

re
2

2
:P

ar
t

of
th

e
en

um
er

at
io

n
tr

ee
D

a
t
a

-P
e

e
l

e
r

tr
av

er
se

s
w

he
n

m
in

in
g
R
E

.

66 mining n-ary relations

4 data structures

In this section, the size (in bits) of an element ID is denoted a and
the size (in bits) of a pointer is denoted b.

4.1 Storing the Dataset

Unlike for binary relation mining algorithms, it is not possible to
store the projection (usually called “tidset”) of the input dataset R

on each element e ∈ D1 ∪ · · · ∪Dn. The use of sophisticated data
structures like FP-trees [38] remains an open problem because of the
multiple attributes to consider and the required ability to enumerate
any of them all along the enumeration. As a consequence, the whole
dataset must be stored in main memory so that Cconnected and Cclosed
can be enforced.

Two classes of data structures were investigated, namely a bitset-
based structure, and a list-based structure. In both cases, the dataset
is stored in a complete prefix tree of height n− 1 corresponding to
the n− 1 first attributes. The nodes at depth i = 0..n− 2 always have
|Di+1| children, one for every element of Dn+1. From depth 0 to n− 2,
the edges binding a node to its children are pointers. Each leaf stands
for a prefix of size n− 1 of every element of D1 × · · · ×Dn−1. The
difference between the two studied structures relies in how the last
attribute elements are stored.

4.1.1 Bitset-Based Structure

In such a structure, every leaf of the prefix tree points to a bitset
representing the last attribute elements. A “0” (respectively “1”) in the
bitset stands for the absence (respectively the presence) of the related
element of R. The presence of such an element is tested in constant
time. The space occupied by the dataset is:

b

n−1∑
i=0

i∏
j=1

|Di|

︸ ︷︷ ︸
the depths from 0 to n−1

+

n∏
j=1

|Dj|

︸ ︷︷ ︸
the bitsets

.

4.1.2 List-Based Structure

Here, every leaf points to a list of IDs of elements of Dn. Each of
them represents an element of R. The presence of such an element is
tested in O(log |Dn|). Choosing Dn to be the smallest attribute domain
minimizes the access time. If d =

|R|∏n
i=1 |D

i|
denotes the density of the

dataset, the space requirement is:

b

n−1∑
i=0

i∏
j=1

|Dj|

︸ ︷︷ ︸
the depths from 0 to n−1

+a× d
n∏
j=1

|Dj|

︸ ︷︷ ︸
the lists

.

Compared to the bitset-based structure, a space gain occurs if and
only if d < 1

a . Taking a = 64 (size of an integer on modern hardware),
the density of the dataset must be under 1.56% for the list-based struc-
ture to present a space advantage over the bitset-based structure. Thus,

3 data-peeler: the first closed n-set extractor 67

the bitset-based structure is always better in data access time and, in
most cases, in space requirement too. Therefore, this structure was
chosen for our implementation. The dataset is stored

in a bitset-based
structure for faster
accesses and space

gains unless the
relation is very

sparse.

Notice that other sparser structures were theoretically investigated.
They consist in using an incomplete prefix tree. Of course, the time
access cost increases (O(

∑n
i=1 log |Di|) for a totally sparse tree). Fur-

thermore, the space requirement can be greater since we need to add an
element ID to each node. Indeed the child node addressed by a pointer
cannot be identified from the position of the child in the list of children
(some are “missing”). It can be shown that a space gain occurs only
when, in average, a node at depth i has less than b

a+b |D
i+1| children.

Unless the dataset is very sparse and/or non-homogeneous, even depth
n− 2 does not satisfy such a property. This justifies the fact that we
focused on the list-based structure where only the deepest level is sparse.

4.2 Storing the Enumeration Nodes

Both U and S can be statically stored in stacks. At every recursive
call, one single element is pushed in either U (when constructing NL)
or S (when constructing NR) and popped once this recursive call is
completed.

Any element of V can be removed when Cconnected is enforced. As a
result, V cannot be statically stored. The construction of the enumer-
ation tree being depth-first, the worst case is bound to reaching the
deepest node. At worst, the depth of the enumeration tree is

∑n
i=1 |D

i|

where each recursive call removes only one element from V . In this
case, the required space to store V is:

a

∑n
j=1 |D

j|∑
i=1

i =
a

2

n∑
j=1

|Dj|× (

n∑
j=1

|Dj|− 1) .

4.3 Space Complexity

Combining the results from Section 4.1 and Section 4.2, the space
complexity of Data-Peeler is linear in the size of the input relation
(
∏n
i=1 |D

i|). More precisely it is: Unless the relation is
binary, its storage
dominates the space
complexity.

– O((|D1| + |D2|)2) if n = 2 (the space requirement for the V set
predominates);

– O(
∏n
i=1 |D

i|) if n > 2 (the space requirement for the dataset pre-
dominates).

5 experimental results

Every experiment, this section describes, has been performed on
a GNU/Linux™ system equipped with an AMD Sempron™ 2600+
processor and 512 MB of RAM. Data-Peeler is implemented in C++
and compiled with GCC 4.1.2.

5.1 Quest-Generated Datasets

To study the behavior of Data-Peeler and compare it to competi-
tors in different situations, we have used the IBM Quest data gener-
ator [2]. Various synthetic basket datasets with predefined attributes

68 mining n-ary relations

and densities have been generated. Three attributes are considered: the
customers, the bought items, and the time periods (in months).

To test the scalability of Data-Peeler w.r.t. the arity of the relation
(the size of the input data remaining constant), three kinds of uniformly
random datasets are generated:

1. 16 attributes with 2-valued domains (Boolean attributes);

2. 8 attributes with 4-valued domains;

3. 4 attributes with 16-valued domains.

In such a relation, every tuple has a given probability to be in R. When
generating a large dataset, its density d =

|R|∏n
i=1 |D

i|
is close to this

probability. Datasets built in this way usually do not contain any large
closed n-sets: the extraction problem is known to be hard.

5.2 Impact of the Enumeration Strategy

Let us first empirically compare the enumeration strategy presented
in Section 1.6 with two other sensible strategies:

1. For each node (U,V), the attribute j is chosen such that it has the
smallest non-empty Vj. Among the elements in Vj, the element
with the smallest density in R is enumerated.

2. For each node (U,V), the enumerated element e ∈ V is chosen
such that (D1× . . .× {e}× . . .×Dn) \R has the largest cardinality.

The first strategy enumerates every element of the n− 2 domains
with the smallest cardinalities. Then, when enumerating elements
from the two remaining attributes, Cconnected may finally succeed in
reducing the V n-set. Indeed, n− 1 attributes need to be set (Ui 6= ∅)
for Cconnected to, hopefully, remove elements from the last attribute. The
second strategy globally sorts the elements of all domains. If every
attribute domain has the same cardinality, this order follows a growing
density. Otherwise, an element e from a small attribute domain size is
favored since D1 × . . .× {e}× . . .×Dn is larger.

Tests have been performed on the datasets generated by Quest.
Whereas Data-Peeler’s enumeration strategy scales very well, the
other strategies force us to choose small size attributes to be able to
plot results: 36 customers buying in average 6 items out of 18 (density
of about 33%) per month. The number of months vary from 6 to 36 and
we enforce the constraint that every closed 3-set must involve at least
three customers, two items and three months.

Figure 23 presents the results. Data-Peeler’s enumeration strategy
largely outperforms the two other strategies. The performance of Enu-Compared to other

sensible choices,
Data-Peeler’s

enumeration strategy
supports extractions

that are orders of
magnitude faster.

meration 1 mainly depends on the size of the smallest attribute domain
(above 18 months, the smallest attribute domain becomes the set of
items that is constant). As mentioned earlier, the complete enumera-
tion of the smallest domain causes this behavior. The performance of
Enumeration 2 emphasizes the need, when choosing the element to
enumerate, to take into account the characteristics of the current node.

5.3 Comparison with Competitors

Data-Peeler is compared to both CubeMiner [41] and Trias [40] on
3-ary relations. Their implementations were kindly provided by their
respective authors. The comparison is achieved on Quest-generated

3 data-peeler: the first closed n-set extractor 69

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35

tim
e

(s
)

number of months

Basket Analysis Problem Along Time

Data−Peeler enumeration
Enumeration 1
Enumeration 2

Figure 23: Comparing sensible enumeration strategies.

datasets. 144 customers buying in average 6 items out of 72 (density of
about 8.3%) per month have been generated. We make the number of
months vary from 6 to 66 and constrain every closed 3-set to involve at
least two customers, two items and two months.

Figure 24 presents the results. Data-Peeler outperforms its competi-
tors by several orders of magnitude. The growing number of months Data-Peeler

outperforms its
competitors by
several orders of
magnitude.

(the smallest domain) significantly alters Trias’ performance, whereas
it has less effect on CubeMiner. For example, considering data along
48 months, to extract all the 5801 closed 3-sets, CubeMiner takes 1 hour
and 50 minutes, Trias 3 hours and 14 minutes, whereas Data-Peeler

only needs 2.5 seconds. Unlike its competitors, even with 600 months,
Data-Peeler is still able to extract all closed 3-sets in a reasonable time,
i. e., 1 minute and 21 seconds for 431892 closed 3-sets.

5.4 Scalability w.r.t. the Arity

The three kinds of uniformly random datasets, presented in Sec-
tion 5.1, are generated with densities varying between 0 and 0.5. Given
a density, the sizes of the input data are the same for all three datasets.
The extracted closed n-sets are forced to contain at least four tuples (this
constraint depends neither on the arity of the relation nor on the sizes
of its domains). The results are plotted in Figure 25. When the datasets
are sparse (e. g., a 0.05 density), a high arity has a negative impact
on Data-Peeler’s performance. With greater densities, the extraction
times, on the three datasets, are of the same order of magnitude.

70 mining n-ary relations

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

tim
e

(s
)

number of months

Basket Analysis Problem Along Time

Data−Peeler
CubeMiner

Trias

Figure 24: Comparison with CubeMiner and Trias.

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5

tim
e

in
 s

density

Uniformly Random Data Sets

Data set 1 (n = 16, |D| = 2)
Data set 2 (n = 8, |D| = 4)
Data set 3 (n = 4, |D| = 16)

Figure 25: Effect of the arity on the extraction times.

3 data-peeler: the first closed n-set extractor 71

6 robustness w.r .t. binarization

Many relations are derived from numerical datasets. To decide
which tuples eventually are in R, several binarization methods exist
and/or, for a given method, various parameter settings are possible. Binarizations turn

numerical datasets
into relations.

Consider, e. g., gene expression data analysis. This application domain
has motivated the design of many closed pattern extractors (e. g., [59]
and [99]). The gene expression is a real number that needs to be
turned into a Boolean value, i. e., a yes/no answer to a question like “Is
this gene over-expressed in this experiment?”. Transformations from
numerical datasets to Boolean ones are called binarizations.

Given a numerical dataset (that may have been normalized earlier),
a simple binarization consists in deriving a value α from the whole
dataset and defining R as the tuples associated to a value greater
(or smaller) than α. For example, α could be chosen as one quarter
of the maximal value in the dataset and R would contain every tuple
associated with a value greater than α

4 . The same kind of procedure can
be separately applied on different subspaces of the dataset. For example,
to decide whether a given gene is over-expressed, there is no reason to
consider the expressions of the other genes, and R could be the couples
(gene, sample) such that “gene” has, in “sample”, an expression level
above its own average. Many other transformations, from numerical
datasets to a Boolean ones, have been proposed [64]. Anyway, the Choosing a

binarization is taking
up a perspective on
the data.

simple examples, that have just been given, already provide many
different sensible choices depending on whether or how to normalize
the numerical data, how local/global the binarization should be, how
to derive a threshold, etc.

Given a numerical dataset, it remains unclear which method to
pick up and how to parametrize it. Different binarized versions of
a same dataset actually are different perspectives on the data. All
these perspectives may be interesting. Focusing on one perspective
may hide relevant patterns which would be present with many other.
As a consequence, the analyst, who wants to discover unexpected
patterns, often does not have any reason to prefer a perspective to
another. We actually suggest him/her not to make any choice. To be
more precise, we suggest him/her to make all the choices at a time
and use Data-Peeler to extract closed patterns that are relevant across
several perspectives on the data.

The most interesting patterns are (at least partially) found across
several versions of the same dataset binarized in different ways. Tagging
the n-tuples with the binarization methods that select it is like adding
a new attribute to our dataset. Geometrically, this process can be A minimal size

constraint on an
attribute gathering
several binarizations
is a formal
specification of
“robustness w.r.t.
perspectives”.

imagined as “stacking” the different Boolean versions of the initially
numerical dataset. In this way, if the initial dataset is a two-dimensional
matrix, the different 0/1 versions of it are stacked in a 0/1 cube whose
height is the number of different binarizations that were applied. More
generally, if the initial dataset is an n-dimensional tensor, an (n+ 1)-ary
relation is built. Extracting, with Data-Peeler, the closed (n+ 1)-sets
under a minimal size constraint on the binarization attribute, provides
patterns that are relevant across many perspectives on the data. In other
terms, these closed (n+ 1)-sets are robust to the binarization method.
Beyond “real” n-ary relations, this original approach emphasizes how
mining closed n-sets can improve the knowledge discovery processes
on classical numerical matrices.

72 mining n-ary relations

7 minimizing multi-valued logic functions

7.1 Problem Setting

A relation is usually represented as a set of tuples. Storing and
retrieving a relation by listing all its tuples one by one is both time
and space consuming. That is why minimizing the expression of an
arbitrary n-ary relation R is an interesting problem. Since a collection
of n-tuples is not a satisfactory solution, we may look for relevant
collections of patterns that, in this context, are generically called tiles.
The tiling task consists in finding a collection of (possibly overlapping)
tiles that is as compact as possible but still entirely expresses R, i. e.,
the union of the n-tuples in all tiles equals R.

Choosing the tiles to be closed n-sets looks like a clever idea. In-
deed, a closed n-set can be seen as a syntactical summary of a part
of R. Indeed, it is shorter to write a closed n-set than to list all theClosed n-sets

summarize parts of
the relations.

tuples it encompasses. For example, without any loss of information,
we can write that the relation RE, represented in Table 5, contains
({β, γ}, {1, 2, 4}, {A}) instead of listing all the tuples this closed 3-set
encompasses:

(β, 1,A), (β, 2,A), (β, 4,A), (γ, 1,A), (γ, 2,A), (γ, 4,A)

A collection of well-chosen closed 3-sets shortly expresses the whole
relation RE:

({α, γ}, {1, 2}, {A,B})

({β, γ}, {3, 4}, {C})

({α,β}, {1}, {A,B,C})

({γ}, {1, 2, 4}, {A,B})

({β}, {1, 2, 4}, {A,C})

({α,β, γ}, {4}, {C})

({α}, {1, 2, 3}, {B})

By definition, closed n-sets satisfy both Cconnected and Cclosed. How-
ever, for the sake of minimizing the expression of R, constraining the
tiles to be closed does not make sense. Indeed, in some situations,The closedness

constraint does not
make sense when

tiling.

when two (or more) closed n-sets are overlapping, one of them can be
“cropped” so that the relation is expressed in a shorter way. For exam-
ple, in the collection above, ({β}, {1, 2, 4}, {A,C}) can be “cropped” in
({β}, {2, 4}, {A,C}) if ({α,β}, {1}, {A,B,C}) is kept (unaltered) in the col-
lection. Indeed, this closed 3-set already encompasses {β}× {1}× {A,C}.
That is why the tiles are advantageously chosen among the n-sets rather
than the closed n-sets. The n-set domain is a superset of the closed n-
sets domain where Cconnected still needs to be checked but where Cclosed
does not necessarily hold. With tiles in this larger pattern domain, the
previous tiling of RE can be improved into the following one:

({α, γ}, {1, 2}, {A,B})

({β, γ}, {3, 4}, {C})

({α,β}, {1}, {A,B,C})

({γ}, {1, 2, 4}, {A,B})

({β}, {2, 4}, {A})

({α}, {4}, {C})

({α}, {3}, {B})

3 data-peeler: the first closed n-set extractor 73

7.2 Simplifying Multi-Valued Logic Functions

Interestingly, the attributes (Ai)i=1..n can be seen as variables of
a multi-valued logic function whose truth table is given by R. No-
tice that Boolean functions are a specialization of this framework
(∀i = 1..n, |Di| = 2). In this perspective, tiling R is equivalent to mini-
mizing (simplifying is used too) the related multi-valued logic function. Minimizing a

multi-valued logic
function is tiling its

truth table.

For example, the tiling of RE written above provides this simplified
expression of the related multi-valued logic function:

(A1 = α∨A1 = γ)∧ (A2 = 1∨A2 = 2)∧ (A3 = A∨A3 = B)

∨ (A1 = β∨A1 = γ)∧ (A2 = 3∨A2 = 4)∧ (A3 = C)

∨ (A1 = α∨A1 = β)∧ (A2 = 1)∧ (A3 = A∨A3 = B∨A3 = C)

∨ (A1 = γ)∧ (A2 = 1∨A2 = 2∨A2 = 4)∧ (A3 = A∨A3 = B)

∨ (A1 = β)∧ (A2 = 2∨A2 = 4)∧ (A3 = A)

∨ (A1 = α)∧ (A2 = 4)∧ (A3 = C)

∨ (A1 = α)∧ (A2 = 3)∧ (A3 = B)

Given a tiling, its quality can be measured with the number of logic
operators (∨ and ∧) in the simplified expression of the related multi-
valued logic function, the smaller the better. For example, 18 ∨ and
14 ∧ are present in our simplified expression of the multi-valued logic
function related to RE. The quality of this tiling is 18+ 14 = 32.

7.3 A Global Model of R

The simplification of multi-valued logic functions is an interesting
application of tiling. Nevertheless, this coverage of R can be seen as
a solution to a machine learning problem too. Consider R as a set of
positive examples and (×i=1..nD

i) \ R as a set of negative examples.
A tiling is a consistent hypothesis that complies with the observed
data, i. e., it covers every positive example and no negative example.
With this perspective, minimizing the tiling is searching for the shortest
hypothesis that remains consistent. This relates to the famous minimum Tiling can be seen as

searching for the
shortest hypothesis
that is consistent
with the data.

description length principle coined in [72] (see [35] for a comprehensive
and modern reference):

Choose the model that gives the shortest description of data.

In this respect, a tiling is a global model of R. Taking up a framework
“From Local Patterns to Global Models” (see, e. g., [45]), we propose to
derive it from the closed n-sets Data-Peeler lists.

When a user-defined relevancy constraint C is applied to the local
patterns, the n-tuples in R that are covered by none of the closed n-
sets may be considered spurious, i. e., they are false-positive examples.
Then, if R is deprived of these n-tuples before being tiled, the obtained
result is a shorter hypothesis that remains correct (it covers no negative
example) but becomes incomplete (it does not cover the false-positive
examples). The “force” of the chosen relevancy constraint C tunes the
trade-off between briefness and completeness. The incompleteness of a
shorter model can be seen as tolerating positive noise and becomes, to
some extent, a wanted feature.

Interestingly, the same post-processing, presented in the next section,
but based on error-tolerant patterns, i. e., patterns that can cover a few
negative examples, also allows to obtain a shorter hypothesis to the

74 mining n-ary relations

cost of losing the consistency. More precisely, the hypothesis remains
complete (it covers every positive example) but becomes incorrect (some
negative examples are covered as well). Error-tolerance thresholds tune
the trade-off between briefness and correctness. The incorrectness of
a shorter model can be seen as tolerating negative noise and becomes,
to some extent, a wanted feature. The next part will define such error-
tolerant patterns that hold in n-ary relations.

7.4 A Closed n-Set Greedy Post-Processing

The set of all closed n-sets returned by Data-Peeler (without enforc-
ing any constraint but Cconnected and Cclosed) is a tiling of the relation
since it integrally covers it. Its quality is very poor though: most of the
time, it is far worse than listing every tuple one by one. Nevertheless,
the closed n-sets are here considered a starting point. Post-processing
Data-Peeler will take care of removing useless information from the
computed closed n-sets to obtain a tiling of R with a good quality.

7.4.1 Removing the Complete Sets

Consider a tile (Xi)i=1..n. If one of the Xi set equals the whole
attribute domain Di, listing its elements one by one is useless. For ex-
ample, in RE, ({α,β}, {1}, {A,B,C}) can be shortened into ({α,β}, {1},−)

meaning that, whatever v ∈ {A,B,C}, the 3-tuples (α, 1, v) and (β, 1, v)

are in RE. In this way, when a tile has Xi = Di (i = 1..n), the number
of required logic operators to express it is lowered (i. e., the quality is
improved) by |Di|. Let us express the previous example using the multi-If an entire attribute

domain is involved in
a tile, its elements do

not need to be
written.

valued logic form. (A1 = α∨A1 = β)∧ (A2 = 1)∧ (A3 = A∨A3 =

B∨A3 = C) requires 5 logic operators to be written. Once turned into
(A1 = α∨A1 = β)∧ (A2 = 1), only 5− |D3| = 2 logic operators are
needed.

7.4.2 Tightening the Tiles

Given an element in any set of a tile, consider the tuples encom-
passed by the tile and involving this element. Verifying whether the
previously output tiles encompass them is straightforward. Here isGiven a tile, its

hyper-plans that were
previously

encompassed are
cropped.

how it is achieved: whenever a tile is output, the tuples it encom-
passes are removed from the relation. In this way, the elements
of another tile can be considered one by one and removed if, in
the related hyper-plans, none of the tuples remain in the relation.
E. g., a tile ({β, γ}, {1, 2, 4}, {A}) can be tightened into ({β}, {2, 4}, {A}) if
({α,β}, {1},−) and ({γ}, {1, 2, 4}, {A,B}) were previously output. Indeed
they already encompass both {β, γ}× {1}× {A} (hyper-plan related to
the element 1) and {γ}× {1, 2, 4}× {A} (hyper-plan related to the ele-
ment γ). The quantity of information safely removed in this way greatly
depends on the order in which the tiles are processed.

7.4.3 Ordering the Tiles

Relying on the order in which n-sets are discovered by Data-Peeler

does not provide a good minimization of R. It is advantageously
replaced by the following heuristic:

3 data-peeler: the first closed n-set extractor 75

Heuristic 1 Output first the tile presenting the best ratio between the num-
ber of newly encompassed (i. e., not encompassed by previously output tiles)
tuples and the number of logic operators (∨ and ∧) needed to express it.

Tiles with the greatest
ratio newly

encompassed

tuples /
description size

are favored.

To do so, the closed n-sets are stored in main memory instead of
being directly output. Whenever a tile is output, the part of R it
encompasses is removed. Thus a large tile may be moved towards the
end of the sequence (and even never be output) if there are larger tiles
encompassing many of its tuples. The algorithms terminates when R is
completely covered.

Notice that the sequence of remaining tiles is not maintained ordered
at any time. Instead, only the first tile is considered. If the quantity of
tuples it encompasses (initialized at extraction time) has decreased it is
moved down the sequence. Otherwise, it is output.

7.4.4 Don’t Care Set

Don’t care set is the name given to a set RDCS of tuples that can either
be considered as elements of R or not. Typically they are impossible
combinations of values for the n attributes. The don’t care set plays an
interesting role in the minimization problem: its elements can enable
bigger tiles even though they are not required to be part of a tile. Tiling
with Data-Peeler easily takes advantage of a don’t care set. The closed A don’t care set can

be specified.n-sets are extracted on R∪RDCS. Then the tuples of RDCS are removed
(i. e., they are considered covered) and the post-process, detailed in this
section, is performed unchanged.

7.5 Experimental results

Here again, the experiments have been performed on a GNU/Linux™
system equipped with an AMD Sempron™ 2600+ processor and 512

MB of RAM. The performance in minimizing a multi-valued logic
function are evaluated with respect to:

– The time it takes to tile (extraction of the closed n-sets included);
– The number of logic operators (∨ and ∧) in the tiling.

7.5.1 Comparision with Espresso-MV

An implementation of the Espresso-MV algorithm [73] (shipped with
the MVSIS 3.0 package [29] for logic synthesis and verification) was
used as a reference in our tests. Espresso-MV is a generalization to
multi-valued functions of the Espresso-II algorithm [14], which only
simplifies Boolean functions (see Section 2.2.2 in Chapter 2).

Data-Peeler and Espresso-MV are compared on the uniformly
random datasets presented in Section 5.1. The dimensions of these
datasets are recalled:

1. 16 attributes with 2-valued domains (Boolean attributes);

2. 8 attributes with 4-valued domains;

3. 4 attributes with 16-valued domains.

Typical results (no significant variation from a random generation to
another) are listed in the Tables 6, 7 and 8 for three different densities
(6.25%, 25% and 50%).

76 mining n-ary relations

Time performances in s Quality in number of ∨ and ∧

Dataset E-MV D-P Var. rate E-MV D-P Var. rate

1 2.21 10.62 +380.54% 46068 46518 +0.97%

2 146.88 1.95 -98.67% 23662 23166 -2.09%

3 103.62 0.52 -99.49% 10734 10035 -6.51%

Table 6: Minimizing random multi-valued logic functions (density: 6.25%).

Time performances in s Quality in number of ∨ and ∧

Dataset E-MV D-P Var. rate E-MV D-P Var. rate

1 36.09 19.75 -45.27% 107869 109722 +1.71%

2 957.75 6.34 -99.33% 69460 57014 -17.91%

3 552.11 4.39 -99.20% 28118 23082 -17.91%

Table 7: Minimizing random multi-valued logic functions (density: 25%).

7.5.2 Discussion

boolean attributes Data-Peeler’s simplification is between 0 and
3% worse than Espresso-MV’s. On the positive side, Data-PeelerIn the general case,

our approach
minimizes more and
runs orders of
magnitude faster then
Espresso-MV.

performs faster when the density of the dataset is 15% or more.

multi-valued attributes When the attributes take more than 2

values, Data-Peeler significantly outperforms Espresso-MV both
in quality and running time. The gain in quality grows with the
number of values per attribute and the density of the dataset.
With a 50% density, Data-Peeler builds minimized expressions
of the relation that are more than one third smaller than what
Espresso-MV achieves. The gain in time is impressive: Data-
Peeler performs the task in about 1% of the time required by
Espresso-MV.

7.6 Improving Time Performances

7.6.1 Ck−summary

With some background knowledge about R, some constraints most
closed n-sets will satisfy may be known. If these constraints are piece-
wise (anti)-monotone, Data-Peeler more quickly extracts the closed
n-sets. If every closed n-set actually satisfies the specified constraints,By translating

background
knowledge into

piecewise
(anti)-monotone

constraints, the tiling
can be fasten without
too much degradation

of its quality.

the computed tiling is identical. Otherwise, the constrained closed
n-sets may not totally cover R. In this case, the collection of tiles is
completed by a linear procedure browsing the uncovered dataset and
outputting aggregates of tuples along the largest attribute domain.
Clearly, the quality of the tiling gradually decreases with the stringiness
of the constraints until no closed n-set satisfies them. In this extreme

Time performances in s Quality in number of ∨ and ∧

Dataset E-MV D-P Var. rate E-MV D-P Var. rate

1 122.21 48.81 -60.06% 120170 122452 +1.89%

2 1781.62 25.31 -98.57% 99763 66512 -33.32%

3 1064.33 50.81 -95.22% 45060 27886 -38.11%

Table 8: Minimizing random multi-valued logic functions (density: 50%).

3 data-peeler: the first closed n-set extractor 77

case, the tiling is the collection of aggregates of tuples along the largest
attribute domain. Depending on the mined relation, some specific
constraints may greatly reduce the extraction times while providing
a collection of closed n-sets that allow a good minimization of the
dataset.

With large relations, specifying a constraint may even be compulsory
so that the tiling problem is tractable. This tractability relates to time
but also to space requirements. Indeed, the proposed post-process
stores every tile in main memory. Without any background knowledge
about the relation R to tile, the more natural constraint to enforce is
related to the order in which the tiles are stored: the ratio between the
volume of a closed n-set and the number of logic operators (∨ and ∧)
needed to express it must exceed a given threshold k ∈ R. Expressed Without any

background
knowledge, a minimal
ratio volume /
description size

decreases time and
space requirements.

formally, the constraint is:

Ck-summary ≡
n∏
i=1

|Xi| > k
n∑
i=1

f(Xi), where f(Xi) =

0 if Xi = Di

|Xi| otherwise

Ck-summary (k ∈ R) is piecewise (anti)-monotone. In RE, the six closed
3-sets satisfying C1.5-summary ∧ C1-volume encompass 17 tuples out of
23. They are completed with aggregates of the remaining tuples along
the attribute having largest domain (the second one for RE), i. e., with
tiles restricted to one element in every other attribute. Once the steps
detailed in Section 7.4 applied, the tiling is:

({α,β}, {1},−)

(−, {1, 2}, {A})

({γ},−, {A})

(−, {4}, {C})

({γ}, {1, 2, 4}, {B})

({α}, {2, 3}, {B})

({γ}, {3}, {C})

({β}, {3}, {C})

({β}, {4}, {A})

The four first tiles come from the extracted closed 3-sets. The five last
tiles are aggregates of tuples along the second attribute. In this example,
two closed 3-sets do not generate any tile (see Section 7.4.3).

7.6.2 Experimental Results

A synthetic Quest-generated dataset (144 customers buying in av-
erage 6 items out of 72 during 144 months) was tiled under the
Ck-summary ∧ C1-volume constraint. The running time (extraction in-
cluded) and the space requirements (estimated by the number of ex-
tracted closed 3-sets) are respectively plotted in Figures 26 and 27.

The Quest-generated dataset is not much prone to be tiled. In other
terms, the 3-sets it contains do not make good summaries. Indeed,
none of them satisfy C2.8-summary ∧ C1-volume. As a consequence the
quality of the tiling of the Quest-generated dataset is not much altered
when k increases. Indeed, when no 3-set is extracted, the tiling (the
conjunction of every aggregate of tuples along the largest attribute
domain), is less than 14% bigger. Thus, enforcing C1.5-summary divides
by two the space requirements against a minor alteration of the quality
of the tiling (+0.84% logic operators).

78 mining n-ary relations

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 0.5 1 1.5 2 2.5 3
 0

 20

 40

 60

 80

 100

 120

 140

 160

nb
 o

f l
og

ic
 o

pe
ra

to
rs

tim
e

(s
)

k

Basket Data Minimization

Quality
Running time

Figure 26: Time to minimize, under Ck-summary, a Quest-generated dataset.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 0.5 1 1.5 2 2.5 3
 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

nb
 o

f l
og

ic
 o

pe
ra

to
rs

nb
 o

f e
xt

ra
ct

ed
 3

-s
et

s

k

Basket Data Minimization

Quality
Space requirement

Figure 27: Space to minimize, under Ck-summary, a Quest-generated dataset.

3 data-peeler: the first closed n-set extractor 79

8 conclusion

Whatever the arity of the relation, Data-Peeler extracts, under con-
straints, every closed n-set in it. Its enumeration principles, which
do not favor any attribute, make it orders of magnitude faster than
its competitors focusing on ternary relations. Furthermore, any piece-
wise (anti)-monotone constraint can guide this enumeration towards
the most relevant patterns. Although many datasets naturally are n-
ary relations, many others are numerical and require a binarization
step before using Data-Peeler. An additional attribute, gathering
different perspectives on the data, and a minimal size constraint on
its elements allow the discovery of patterns that are robust w.r.t. bi-
narization. Another original use of Data-Peeler is as a first step to
minimize multi-valued logic functions. A post-process outputting, at
every iteration, the pattern encompassing the more tuples (that have
not been encompassed yet) was designed. It provides better results
than the state-of-the-art Espresso-MV.

Part IV

M I N I N G NOISY N-ARY RELATIONS

O U T L I N E

The previous part dealt with generalizing closed itemset mining to-
wards n-ary relations. An additional challenge is tackled in Chapter 2:
noise tolerance. The good performance of Data-Peeler motivated us to
reuse its principles and add noise tolerance on top of it. Thus, instead
of mining noise tolerant itemsets, the proposed approach, Fenster,
completely extracts noise tolerant closed patterns from n-ary relations,
i. e., both needed generalizations to closed itemset mining (see Chap-
ter 2) are addressed at a time. This approach was presented in [CBB09].
Chapter 4 defines the closed ET-n-set and details how to efficiently
mine them. The principles behind Data-Peeler are found unchanged
at a high level of abstraction. The constraints Cconnected and Cclosed are
only redefined to tolerate noise. Nevertheless much work was required
to efficiently implement the enforcement of these constraints. This
will be emphasized by theoretically comparing the time complexity
of Fenster w.r.t. a similar extractor that would naively verify these
constraints. Empirically, Fenster is fast. No comparison can be made
on relations with an arity greater than three because Fenster is the
only approach tackling such a general task. In the particular case of
binary relations, Fenster is shown to perform orders of magnitude
faster than a state of the Art algorithm.

The collections of patterns Fenster computes have good global qual-
ities, i. e., the closed ET-n-sets altogether cover the dataset deprived of
noise. Ideally, every extracted pattern would be an anomalously high
local density of n-tuples present in the relation. This follows obser-
vations made in [BCTB08] and relates to a strengthened closedness
constraint that filters out the patterns that can be extended without
introducing many n-tuples absent from the relation (see Section 2.4.2 in
Chapter 1). However, reinforcing the closedness significantly decreases
the global quality of the collection of patterns Fenster extracts because
individual closed ET-n-sets only are fragment of an hidden pattern
the analyst would like to find. Increasing the quantity of noise they
tolerate would theoretically solve this issue. Unfortunately, more noise
tolerance means longer extraction times. Even with relations suffering
from rather low levels of noise, it turns out to be impossible to tolerate
it all while preserving reasonable running times for Fenster.

A solution to this problem was detailed in [CMB09] and is further
developed in Chapter 5. It suggests to revise our completeness demand
downwards. Fenster provides fragments of the patterns dissimulated
under some noise but these patterns globally are relevant. This brings
the idea of agglomerating the fragments. A merging operator and a
metric, which makes use of the relation (and not only of the closed
ET-n-sets), define a hierarchical agglomeration of the patterns. An
additional step selects, among the agglomerates, those that are relevant
according to the intuition behind a local pattern (an anomalously high
local density of n-tuples present in the relation). The experiments show
that the whole approach, namely Alpha, returns small collections
of patterns that are not only globally but also individually of a high
quality.

83

4FENSTER EXTRACTS N-SETS TOLERATING ERRORS IN THE
RELATION

1 closed et-n-sets

1.1 Absolute Noise-Tolerance

The definition of a closed n-set is too strict to enable the discovery
of relevant patterns in noisy n-ary relations. A closed ET-n-set is a
relaxation of the definition of a closed n-set. It is based on absolute
noise-tolerance parameters ε = (εi)i=1..n ∈Nn. Given those parame- Closed ET-n-sets

tolerate absent
n-tuples up to
absolute
upper-bounds per
element.

ters, the type of pattern that is to be mined is defined by a conjunction
of two constraints, Cε-connected and Cε-closed.

Definition 26 (Cε-connected) ∀X = (X1, . . . , Xn) ∈ 2D1 × · · · × 2Dn ,
Cε-connected(X) ≡ ∀i = 1..n, ∀e ∈ Xi, |(X1× · · ·× {e}× · · ·×Xn) \R| 6 εi.

Definition 27 (Cε-closed) ∀X = (X1, . . . , Xn) ∈ 2D1 × · · · × 2Dn ,
Cε-closed(X) ≡ ∀X ′ = (X ′1, . . . , X ′n) ∈ 2D1 × · · · × 2Dn ,(
(∀i = 1..n, Xi ⊆ X ′i)∧Cε-connected(X

′)
)
⇒ X = X ′.

Definition 28 (Closed ET-n-set) ∀X ∈ 2D
1 × · · · × 2Dn , X is a closed

ET-n-set iff Cε-connected(X)∧Cε-closed(X).

Let us discuss the meaning of the noise-tolerance parameters on
a closed ET-n-set (X1, . . . , Xn). The parameter εi quantifies, on any
element in Xi, the maximal number of n-tuples that are allowed to
be absent from R. In other terms, with a spatial vision of a pattern
(an n-dimensional rectangle in R modulo permutations of the ele-
ments), εi is the maximal number of ’0’s on any hyper-plan of the
ith dimension. Furthermore Cε-closed forces (X1, . . . , Xn) to be closed,
i. e., any extension of it will break Cε-connected. If ∀i = 1..n, εi = 0 then
Cε-connected ≡ Cconnected and Cε-closed ≡ Cclosed. It can be written that
the closed ET-n-set is a generalization of the closed n-set.

Since the definition of a closed ET-n-set uses an absolute noise-
tolerance (it considers numbers rather than proportions of ’0’s), the
following function helps in referring to counts of n-tuples absent from
R on any element of an n-set.

Definition 29 (Function 0) ∀X = (X1, . . . , Xn) ∈ 2D1 × · · · × 2Dn , ∀i =
1..n, ∀e ∈ Di, 0(X, e) = |(X1 × · · · × {e}× · · · ×Xn) \ R|.

Let us use this function to rewrite Definition 26 and 27:

Definition 30 (Cε-connected) ∀X ∈ 2D1 ×· · ·×2Dn , Cε-connected(X) ≡ ∀i =
1..n, ∀e ∈ Xi, 0(X, e) 6 εi.

Definition 31 (Cε-closed) ∀X ∈ 2D1 × · · · × 2Dn , Cε-closed(X) ≡ ∀i = 1..n,

∀e ∈ Di \Xi,

0(X, e) > εi

or

∃j 6= i, ∃f ∈ Xj s.t. 0((X1, . . . , Xi ∪ {e}, . . . , Xn), f) > εj

.

85

86 mining noisy n-ary relations

Definition 30 is a direct rewrite of Definition 26. Definition 31 is
more than that. It is equivalent to Definition 27 because if a pattern
can be extended without violating Cε-connected, then there is such an
extension with one element only (and the reverse obviously is true too).
Furthermore, Definition 31 details the two ways to break Cε-connected.
Either the element to extend the closed ET-n-set gathers, when projected
on the pattern, too many n-tuples absent from R or this additional
element makes the number of ’0’s on an orthogonal element (an element
from another domain of the relation) exceed the related noise-tolerance
parameter. Examples taken from RE (see Table 5) help in understanding
that:

Example 20 Let ε = (1, 1, 1). X = ({α, γ}, {1, 2, 3}, {B}) is a closed ET-3-
set in RE. X satisfies Cε-connected since each of its hyper-plans contains, at
most, one 3-tuple absent from RE: 0(X,α) = 0, 0(X, γ) = 1, 0(X, 1) = 0,
0(X, 2) = 0, 0(X, 3) = 1 and 0(X,B) = 1. X satisfies Cε-closed because
extending it with any additional element either means that the hyper-plan of X
on this element contains strictly more than one 3-tuple absent from RE (e. g.,
0(X,β) = 2) or at least one of the hyper-plans on an orthogonal element in X
would contain strictly more than one 3-tuple absent from RE (e. g., 4 cannot
extend X because 0(({α, γ}, {1, 2, 3, 4}, {B}), B) = 2). (α,β, γ}, {1, 2}, {A,B})
is another closed ET-3-set in RE.

1.2 Relative Noise-Tolerance

The reader may wonder why our definition of a closed ET-n-set is
based on absolute parameters and not relative ones. The reasons are the
same as those cited in the binary case (see Section 1.1.2 in Chapter 2),
i. e., using a relative tolerance to noise makes the extraction suffer from
great scalability issues and the closedness constraint does not provide
a lossless condensation of all ET-connected n-sets (and, without it,
output collections are very large and much redundant). Nevertheless,Closed ET-n-sets

are a lossless
condensation of all

ET-n-sets.

thanks to its enumeration principles inherited from Data-Peeler, our
closed ET-n-set extractor, named Fenster, can efficiently enforce any
piecewise (anti)-monotone constraints. Such a constraint allows to focus
on a tight range of sizes (for the extracted closed ET-n-sets) where a
user-defined relative parametrization can be converted into an absolute
one. Using this constraint, Fenster returns the same collection ofFenster efficiently

handles any piecewise
(anti)-monotone

constraint. E. g., it
can focus on the

region of the search
space where the

absolute noise
tolerance is

equivalent to a
relative one.

patterns as one based on a relative parametrization (in the chosen range
of sizes). Given user-defined relative parameters (ri)i=1..n ∈ [0, 1]n and
absolute tolerances to errors (εi)i=1..n ∈Nn, here is this constraint:

Cin-region-of-interest(X) ≡
n∧
i=1

(
εi 6 ri

∏
j6=i

|Xj| < εi + 1
)

.

The proof of the piecewise (anti)-monotonicity of Cin-region-of-interest is
based on, first, splitting the double inequalities, then, showing that the
left ones are anti-monotone and the right ones monotone.

Given a relative parametrization (ri)i=1..n and an interesting range
of sizes (i. e., a region of interest), the absolute parameters (εi)i=1..n
are easily computed. Figure ?? depicts these regions in the case of a
binary relation, i. e., it plots the contour lines of every region related
to every absolute parametrization (ε1, ε2) (restricted to {0, 1, 2}× {0, 1}

in the figure). The x-axis (resp. the y-axis) relates to the size of the
extracted closed ET-n-sets on the first (resp. second) attribute. The

4 fenster extracts n-sets tolerating errors in the relation 87

|X2| ∈
[
2
r1
, 3
r1

[
(2, 0) (2, 1)

|X2| ∈
[
1
r1
, 2
r1

[
(1, 0) (1, 1)

|X2| ∈
[
0, 1
r1

[
(0, 0) (0, 1)

|X1| ∈
[
0, 1
r2

[
|X1| ∈

[
1
r2
, 2
r2

[
Figure 28: Conversion from a relative noise tolerance (r1, r2) to an absolute one

(ε1, ε2) depending on the region of interest.

couple of integers inside a region are the absolute parameters Fenster

uses to extract all ET-n-sets whose “geometry” fits in the region. When
n > 3, analog (but not rectangular anymore) regions can be drawn
in an n-dimensional coordinate system (|X1|, . . . , |Xn|). When several
regions contain (relatively defined) closed ET-n-sets of interest, several
extractions, under the strong constraint Cin-region-of-interest, allow, by
union of their returned collections of patterns, to list them all.

2 fenster

Fenster builds upon the powerful enumeration principles of Data-
Peeler to exhaustively list the closed ET-n-sets. This allows, in par- From an abstract

perspective, Fenster

proceeds like
Data-Peeler.

ticular, to efficiently enforce any piecewise (anti)-monotone constraint.
From an abstract perspective, Fenster looks like Data-Peeler with
Cε-connected instead of Cconnected and Cε-closed instead of Cclosed. Never-
theless, as it will be detailed in Section 3.1, the efficient enforcement of
Cε-connected and Cε-closed requires, at every enumeration node to reuse
counts of absent n-tuples that were previously made and that need to
be updated.

Similarly to Data-Peeler, three n-sets U = (U1, . . . , Un), V =

(V1, . . . , Vn), and S = (S1, . . . , Sn) are attached to every enumera-
tion node of Fenster. We recall that all the elements in the n-set
U ∈ 2D1 × · · · × 2Dn are contained in any closed ET-n-set extracted
from the node. The n-set V ∈ 2D1 × · · · × 2Dn contains the elements
that may be present in the closed ET-n-sets extracted from the node,
i. e., the search space. Finally, the n-set S ∈ 2D1 × · · · × 2Dn contains
the elements that may prevent the ET-n-sets, extracted from this node,
from being closed.

The enforcement of Cε-closed is analog to that of Cclosed by Data-
Peeler (see Section 1.4). Figure 29 depicts the enumeration of Fenster.
The n-sets U, V and S attached to the children nodes are computed from
the parent’s analogous n-sets, the enumerated element and the data
(for the left child only). In particular, in a left child, Fenster ensures
that U can receive any element from V without violating Cε-connected.
Hence, at every enumeration node, the n-set U is ε-connected, i. e.,
Cε-connected(U). Furthermore the reduction of S performed by Data-
Peeler (see Section 2.1) is applied by Fenster too. In the end, Figure 29

is very similar to Figure 17.

Example 21 Let ε = (1, 1, 1). Consider that Fenster, working on the
relation RE (represented in Table 5), reaches the enumeration node where
U = ({α, γ}, ∅, {B}), V = (∅, {1, 2, 3, 4}, {A}) and S = ({β}, ∅, {C}). Fenster

chooses to enumerate the element A ∈ V3 and generates the two children
depicted in Figure 30. In the left child, 3 and 4 are removed from V2 because

88 mining noisy n-ary relations

U

V

S

Parent

U∪ {e}

{v ∈ V \{e} | Cǫ-connected(U∪ {e}∪ {v})}

S

e ∈ U

U∪ {e}

{v ∈ V \{e} | Cǫ-connected(U∪ {e}∪ {v})}

{s ∈ S |Cǫ-connected(U∪ {e}∪ {s})}

Left child

Cǫ-connected removes

elements from S

U

V \{e}

S∪ {e}

Right child

e 6∈ U

Figure 29: Fenster enumerating any element e ∈ V .

U = ({α,γ},∅,{B})

V = (∅,{1,2,3,4},{A})

S = ({β},∅,{C})

U = ({α,γ},∅,{B,A})

V = (∅,{1,2},∅)
S = ({β},∅,{C})

A∈ U

Cǫ-connected removes

3 and 4 from V

U = ({α,γ},∅,{B})

V = (∅,{1,2,3,4},∅)
S = ({β},∅,{C,A})

A 6∈ U

Figure 30: Illustration of Example 21.

neither Cε-connected({α, γ}, {3}, {B}) nor Cε-connected({α, γ}, {4}, {B}) is true. In
this example, none of the elements in the S n-set of the left child can be
removed.

At this point the reader may wonder why Fenster does not take
advantage of the last improvement to Data-Peeler’s enumeration, i. e.,
why an element v ∈ V cannot be moved to U when Cε-connected(U

1 ∪
V1, . . . , {v}, . . . , Un ∪ Vn) holds. In fact, if ∀i = 1..n, εi 6= 0, then
Cε-connected(U

1 ∪ V1, . . . , {v}, . . . , Un ∪ Vn) is not sufficient to entail
the presence of v in every closed ET-n-set represented by the cur-
rent enumeration node (U,V). Stated in mathematical terms, the ε-Counts of absent

n-tuples involving
an element in the

search space never
allow to claim this

element present.

closedness of an n-set (U in our extraction context) is not unique (but
all of them are listed by Fenster). Indeed, given a domain i = 1..n,
while Cε-connected(U

1∪V1, . . . , {v}, . . . , Un∪Vn) may be true for several
v ∈ Vi, an orthogonal element f ∈ Vj6=i may gather more than εj n-
tuples absent from R in the n-set extended by several of these elements
in Vi. As a consequence, such an element v does not belong to every
closed ET-n-set represented by (U,V). This is easier to understand via
an example on RE (see Table 5).

Example 22 Let ε = (1, 1, 1). Consider the enumeration node where U =

({α, γ}, {1, 2}, {B}) and V = (∅, {3, 4}, ∅). Both Cε-connected({α, γ}, {3}, {B})

and Cε-connected({α, γ}, {4}, {B}) are true. However neither 3 nor 4 will be part
of every closed ET-n-set the current node represents: ({α, γ}, {1, 2, 3}, {B})

does contain 3 but not 4; ({α, γ}, {1, 2, 4}, {B}) does 4 but not 3.

Nevertheless, a weaker improvement was implemented. It consists
in checking whether the elements of V altogether can extend U while

4 fenster extracts n-sets tolerating errors in the relation 89

U = ({α,γ},∅,{B,A})

V = (∅,{1,2},∅)

S = ({β},∅,{C})

U = ({α,γ},{1,2},{B,A})

V = (∅,∅,∅)

S = ({β},∅,{C})

¬Cǫ-closed

1 and 2 always in U

Figure 31: Illustration of Example 23.

preserving Cε-connected. In other terms, Cε-connected(UtV) is tested. If it Given an
enumeration sub-tree,
if its largest n-set is

ET-connected,
Fenster jumps to it.

is satisfied, a direct jump to the leftmost leaf of the enumeration sub-tree
(rooted by the current node) is performed. This jump is safe, i. e., it does
not “jump over” closed ET-n-sets. Indeed Cε-connected(U t V) implies
that every n-set strictly “included in” (see Definition 23) Ut V can be
extended by the missing elements. By definition, they are not ε-closed.
Because most of the nodes are at the bottom of the enumeration tree (in
a complete binary tree, half of the nodes are leaves), this improvement,
though weaker than its analog in Data-Peeler, significantly reduces
the extraction times.

Example 23 In the left child of Example 21, U t V = ({α, γ}, {1, 2}, {B,A})

and Cε-connected({α, γ}, {1, 2}, {B,A}) is true. The improvement is applied (see
Figure 31) but the obtained node is not ε-closed: β ∈ S1 can extend it.

In summary, at a high level of abstraction, Fenster is Data-Peeler

with Cε-connected and Cε-closed respectively substituting Cconnected and
Cclosed and the second improvement to Data-Peeler’s enumeration
weakened. The pseudo-code for Fenster is displayed in Figure 32.
Fenster, like Data-Peeler, recursively traverses the search space depth-
first, is initially called is with U = (∅, . . . , ∅), V = (D1, . . . ,Dn), and S =

(∅, . . . , ∅) and CP(A)M can be any piecewise (anti)-monotone constraint
the relevant closed ET-n-sets satisfy.

3 implementation

3.1 Cε-connected and Cε-closed

3.1.1 Performance Issue

Even though the enumeration of Fenster was inspired by that of
Data-Peeler, Fenster is not a trivial extension of Data-Peeler. A
naive enforcements of the new constraints Cε-connected and Cε-closed
would lead to disastrous extraction times. Contrary to Data-Peeler, Contrary to

Data-Peeler, a
naive implementation
of Fenster would
access large parts of
the dataset at every
iteration.

Fenster cannot traverse small subspaces of the dataset in search of
one n-tuple absent from R. When an element e is chosen, the absence
in R of one n-tuple with e, i. e., on one hyper-plan, is not enough to
enforce Cε-connected, whereas it is when enforcing Cconnected. Searching
for several n-tuples absent from R in this hyper-plan is not enough
either. Fenster needs to know the other n-tuples absent from R that
were previously tolerated in every n-set represented by the current
node, i. e., the n-tuples in (×i=1..nU

i) \ R. It needs to know where, i. e.,
on which hyper-plans, they are and how many of them are found on

90 mining noisy n-ary relations

Input: U,V, S
Output: Every closed ET-n-set containing every element in U, possi-
bly some elements in V , and satisfying CP(A)M
if Cε-connected(Ut V) then
U← Ut V
V ← (∅, . . . , ∅)

end if
if CP(A)M may be satisfied by an n-set descending from this node
∧Cε-closed(Ut V) then

if V = (∅, . . . , ∅) then
output(U)

else
Choose e ∈ V
Fenster(U∪ {e},
{v ∈ V \ {e} | Cε-connected(U∪ {e}∪ {v})},
{s ∈ S | Cε-connected(U∪ {e}∪ {s})})
Fenster(U,V \ {e}, S∪ {e})

end if
end if

Figure 32: The Fenster algorithm.

each of these hyper-plans. The enforcement of Cε-closed raises the same
trouble: given U, V and S, the ε-closedness of some n-set represented
by (U,V) cannot be proved by only consulting with the n-tuples in
×i=1..nU

i ∪ Vi involving the elements in S. As a consequence, a naive
enforcement of Cconnected (resp. Cε-closed) would, at every iteration,
count the numbers of n-tuples absent from R in every hyper-plan of U
(resp. Ut V) and on each of its projections on the elements in V (resp.
S). Such an implementation would be intractable even on rather small
relations.

3.1.2 Noise Counters in Relevant Subspaces of the Relation

To drastically improve the performance, Fenster relies on the fol-
lowing observation: from a parent enumeration node to its children, U
and Ut V do not change much. U only grows by one element in theFenster

incrementally
computes counters

helping the
verification of the

constraints defining a
closed ET-n-set.

left child and Ut V looses one element in the right child, potentially
more in the left child. Instead of traversing ×i=1..nU

i ∪Vi ∪ Si at every
iteration, Fenster updates counters of absent n-tuples. Focusing on
the symmetric differences between the n-sets UP and VP at the parent
node and the respective n-sets U and V at the child node is enough to
updates such counters. This means a much better time performance
(than the naive approach) to the cost of a worse memory consumption
(to store the counters). Later, it will be formally shown that the time
gain is huge while the space complexity is, in fact, dominated by the
dataset when n > 4.

Let us finally list the counters that are relevant when enforcing
Cε-connected and Cε-closed. Keeping in mind their definitions while look-
ing at Figure 32 provides the following list:

– To check Cε-closed(Ut V):
– ∀s ∈ S, 0(Ut V, s);
– ∀s ∈ S, ∀u ∈ U, 0(Ut V ∪ {s}, u).

4 fenster extracts n-sets tolerating errors in the relation 91

– Given e ∈ V and UL = U ∪ {e} (the elements that are present in
every n-set descendant of the left child), to compute {v ∈ V \

{e} | Cε-connected(UL ∪ {v})}}:
– ∀v ∈ V, 0(UL, v);
– ∀v ∈ V, ∀u ∈ UL, 0(UL ∪ {v}, u).

– Given e ∈ V and UL = U ∪ {e} (the elements that are present
in every n-set descendant of the left child), to compute {s ∈
S | Cε-connected(UL ∪ {s})}:
– ∀s ∈ S, 0(UL, s);
– ∀s ∈ S, ∀u ∈ UL, 0(UL ∪ {s}, u).

By factorizing the last two points, four families of counters are useful:
– ∀f ∈ S, 0(Ut V, f);
– ∀f ∈ S, ∀u ∈ U, 0(Ut V ∪ {f}, u);
– ∀f ∈ V t S, 0(UL, f);
– ∀f ∈ V t S, ∀u ∈ UL, 0(UL ∪ {f}, u).
Because any element in V may, in the descendant nodes, belong to

a U or a S n-set, these counters, 0(U t V, f), 0(U t V ∪ {f}, u), 0(UL, f)
and 0(UL ∪ {f}, u), are maintained updated for every (f, u) ∈ (Ut V t
S)2 \U2. In this way, some counters are only used when the element
defining the hyper-plan is in a specific set (e. g., a counter 0(Ut V, f)
is not used until f ∈ S). Anyway, it is advantageous to maintain them
updated for every element that may reach a state where they would
be useful (e. g., 0(U t V, f) is maintained updated even if f ∈ V). An
alternative strategy would be to initialize a counter when required.
It would be less efficient because, along the enumeration tree, there
are exponentially many states where a given counter is useful. As a
consequence, the cost of an on-demand initialization of the counter
(scan of part of the dataset) multiplied by this number of states exceeds
the cost of maintaining them all updated until used or useless. Thus,
all counters are initialized while storing the dataset and, whenever
elements are moved or removed from V , the counters are updated by
only traversing the symmetric differences between the n-sets UP and
VP at the parent node and the respective n-sets U and V at the child
node. In Fenster, this update is further improved: the counters of the
type 0(UL ∪ {f}, u) and 0(Ut V ∪ {f}, u) ((f, u) ∈ (Ut V t S)2 \U2) are
replaced by: Fenster

incrementally
updates counters of
absent n-tuples
involving elements or
pairs of elements.

– 0(UL, f, u) = |(U1L × · · · × {f}× · · · × {u}× · · · ×UnL) \ R|;
– 0(Ut V, f, u) = |(U1 ∪ V1 × · · · × {f}× · · · × {u}× · · · ×Un ∪ Vn) \
R|.

The desired quantities 0(UL ∪ {f}, u) and 0(Ut V ∪ {f}, u) can be com-
puted, still without any access to the relation:

– 0(UL ∪ {f}, u) = 0(UL, u) + 0(UL, f, u);
– 0(Ut V ∪ {f}, u) = 0(Ut V, u) + 0(Ut V, f, u).

The new counters involving much smaller subspaces (one dimension
less) than the original ones, they do not need to be updated as often,
hence the additional time gain.

Example 24 Consider, like in Example 22, that Fenster, working on the
relation RE (represented in Table 5), reaches the enumeration node where
U = ({α, γ}, {1, 2}, {B}) and V = (∅, {3, 4}, ∅). Consider, moreover, that S =

({β}, ∅, {A}). Although this enumeration node is rather small, it is associated
with too many counters to list them all here. Among them, 0(U,α) = 0,
0(Ut V,α) = 1, 0(U, 3) = 1, 0(Ut V, 3) = 1, 0(U,A) = 0, 0(Ut V,A) =
2, 0(U,α, 3) = 0, 0(U t V,α, 3) = 0, 0(U,α,A) = 0, 0(U t V,α,A) = 2,
0(U, 3,A) = 1, 0(Ut V, 3,A) = 1, etc.

92 mining noisy n-ary relations

3.1.3 Time Gain

Consider an enumeration node (U,V), its n-set S and the last enu-
merated element e. With the naive enforcement of Cε-connected and
Cε-closed, |×i=1..n U

i|+ |{×i=1..nU
i ∪ Vi ∪ {s} | s ∈ S}| n-sets would be

traversed at a left child (the first term to enforce Cε-connected, the second
to enforce Cε-closed) and |{×i=1..nU

i ∪ Vi ∪ {s} | s ∈ S}| at a right child
(where only Cε-closed is enforced). If, in a left child, ×i=1..nU

i is tra-
versed only once to enforce both Cε-connected and Cε-closed, the time cost
is O(|{×i=1..nU

i ∪ Vi ∪ {s} | s ∈ S}|) for any enumeration node.
The use of the counters, we came up with in the previous section,

restricts the number of n-sets traversed when updating them to |U1 ×
· · ·× {e}×· · ·×Un|+ |{U1∪V1×· · ·× {e}×· · ·× {s}×· · ·×Un∪Vn | s ∈
S}| at a left child and |{U1 ∪V1×· · ·× {e}×· · ·× {s}×· · ·×Un ∪Vn | s ∈
S}| at a right child. Since, in a left child, Fenster actually traverses
U1 × · · · × {e} × · · · × Un only once for updating both the counters
related to Cε-connected and Cε-closed, the time Fenster takes traversing
the dataset to update counters is O(|{U1 ∪ V1 × · · · × {e}× · · · × {s}×
· · · ×Un ∪ Vn | s ∈ S}|) for every enumeration node. By comparison
with the naive approach and supposing e ∈ Dd, this is |Ud ∪ Vd| times
less. The enumeration strategy, hence the number of enumeration
nodes, being the same in both cases, it could be written that the use of
counters allows an equivalent division of the total extraction times the
naive implementation would provide.

Nevertheless, this is true only if the time spent using the counters
(to actually enforce Cε-connected and Cε-closed) is dominated by the time
spent updating them. To study that, the number of counters accessed
at every node is computed. To enforce Cε-connected, it is, at worst (none
of the elements in V are removed), |V |+ 2

∑
i=1..n |Vi|

∑
j6=i |U

j|. To
enforce Cε-closed, it is, at worst (every element in S extends U t V),
|S|+ 2

∑
i=1..n |Si|

∑
j6=i |U

j ∪Vj|. In both cases, the first term relates to
checking whether every hyper-plan v ∈ V (resp. s ∈ S) contains too
many (resp. enough) n-tuples absent from R to satisfy Cε-connected (resp.
Cε-closed) and the second term relates to checking whether an hyper-
plan v ∈ V (resp. s ∈ S), if added to U (resp. Ut V) would make any
orthogonal element exceed its noise tolerance threshold. The total num-
ber of counters used to enforce Cε-connected and Cε-closed is dominated
by 2

∑
i=1..n |Si|

∑
j6=i |U

j ∪ Vj|. This number is now compared to the
number of n-sets traversed when updating the counters. When n = 2

it takes more time to use the counters than to update them. The time
taken to use the counters is O(|((U1 ∪V1)× {S2})∪ ({S1}× (U2 ∪V2))|),
i. e., similar to the time the naive implementation would take to enforce
Cε-connected and Cε-closed. When n = 3, the times to update and use
the counters are on the same order, whereas the update dominates
when n > 4. This is deduced from comparing the numbers computedOn n-ary relations

with n > 3, using
counters makes

Fenster as fast as
the naive

implementation on
(n− 1)-ary

relations.

above but here is a more intuitive way to understand it: the number of
n-sets traversed, at every iteration, to update the counters is an hyper-
plan (related to e) of the dataset, i. e., an (n− 1)-dimensional subspace,
whereas the number of used counters, whatever the arity of R, is on the
order of a 2-dimensional subspace of the dataset (the finest counters are
numbers of n-tuples absent from R at the intersection of two orthogonal
hyper-plans). To conclude, the counters present an advantage over the
naive implementation when n > 3. Fenster, working on such an n-ary
relation, is as fast as the naive implementation processing a relation on
domains of the same sizes but with an arity of n− 1.

4 fenster extracts n-sets tolerating errors in the relation 93

3.2 Choosing the Element to Enumerate

At every recursive call, any element, from any attribute, can be
enumerated (function Choose in Figure 32). Section 5.2 in Chapter 3

empirically showed that different sensible strategies produce different
enumeration trees whose sizes (hence, the time required to traverse
them) varies between several orders of magnitude. Compared to Data-
Peeler, Fenster profits from more information at its disposal when
it comes to choose an element to enumerate: the counters allow a
finer choice. In this way, Fenster builds smaller enumeration trees. The attribute domain

of the enumerated
element is chosen like

Data-Peeler does.
In this domain, the

chosen element
introduces as many
absent n-tuples as

possible.

Like Data-Peeler (see Section 1.6), Fenster chooses the enumerated
element in two stages:

1. The attribute domain, in which the element will be enumerated,
is chosen.

2. The element itself is chosen.

The first stage is that of Data-Peeler: the chosen attribute domain
Dd maximizes the following function that increases with the average
number of elements that may be, in the left child, removed from V .∑

k6=d

(
|Vk|×

∏
l/∈{d,k}

|Ul|
)

.

Understood with Fenster’s way of enforcing Cε-connected, this function
actually computes the number of n-tuples that are browsed to update
the counters 0(UL, f) and 0(UL, f, u) (f ∈ Vk6=d, u ∈ Ul/∈{d,k}) involved
in this process.

Then, Fenster takes advantage of the counters 0(UL, f). It chooses
the element f ∈ Vd providing the greatest 0(UL, f). The justification for
this choice is simple: the more n-tuples in U1× · · ·×Un that are absent
from R, the less room for others, hence the smaller the search space of
the left child. For the same reason applied to the left grandchild (and
beyond), when several elements in Vd maximizes 0(U, f), an element
leading to a greater 0(Ut V, f) is preferred.

Example 25 In the Example 21, illustrated by Figure 30, the choice of enu-
merating A ∈ V3 actually follows the heuristic stated above:

choice of v3 :
∑
k6=d

(
|Vk|×

∏
l/∈{d,k} |U

l|
)

is maximized for d = 3:

d = 1 : (|V2|× |U3|) + (|V3|× |U2|) = (4× 1) + (1× 0) = 4;
d = 2 : (|V1|× |U3|) + (|V3|× |U1|) = (0× 1) + (1× 2) = 2;
d = 3 : (|V1|× |U2|) + (|V2|× |U1|) = (0× 0) + (4× 2) = 8.

choice of a: Among the elements in V3, e = A maximizes the value of
0(({α, γ}, ∅, {B}), e) (this value is 0 but V3 only contains A).

4 space complexity

The n-sets U, V and S and all the counters associated with the ele-
ments they gather need to be copied whenever a left child enumeration
node is built. In spite of that, the depth-first traversal of the search
space makes the space complexity of Fenster be dominated by the
storage of the relation, similar to that of Data-Peeler (see Section 4.1
in Chapter 3), when n > 4. In this case, it is O(

∏n
i=1 |D

i|). When Unless the relation is
binary or ternary, its
storage dominates the
space complexity. The
time and space costs
of copying the
counters is
significantly reduced
if the right children
overwrite the parents.

n ∈ {2, 3}, the counters occupy most of the memory and the space

94 mining noisy n-ary relations

complexity is O(|Di|2 × |Dj|), where Di is the largest attribute domain
and Dj the second largest.

The time and space requirements are significantly reduced by mak-
ing the right child enumeration nodes overwrite their parent. In this
way, the counters do not need to be copied. Overwriting the parent
enumeration nodes with their left children would not provide as much
gain. Indeed, in a right child enumeration node, the search space V
is only reduced by one element and U stays unchanged. Because of
that, the enumeration sub-tree rooted by a right child node is far less
often pruned (by Cε-closed or CP(A)M) than that of a left child, where,
in particular, the search space V may be greatly reduced. As a conse-
quence, the recursive calls of Fenster (see Figure 32), down to a leaf,
usually involve far more right children than left ones and, in practical
settings, overwriting the parent enumeration nodes with their right
children significantly decreases the average number of nodes to be
kept in memory. It even provides substantial gains in terms of average
extraction time because the cost of copying all counters is taken off.

5 empirical study

Fenster was coded in C++ and compiled with GCC 4.3.2. Most
of the following experiments were performed on an Intel® processor
cadenced at 2.8GHz, 3 Gb of RAM and running a GNU/Linux™ operat-
ing system. Because AC-Close only runs on Windows™, the experiment
involving it was performed on another computer equipped with an
Intel® processor cadenced at 2.26GHz and 3 Gb of RAM. The implemen-
tations of CubeMiner [41], Trias [40] and AC-Close [21] were kindly
provided by their respective authors.

5.1 Synthesizing Datasets

Four, possibly overlapping, n-sets are randomly placed in a cubic
dataset, i. e., all attribute domains have the same cardinality. The ob-
tained relation is named Rhidden. Some noise was added to Rhidden.
In this way we obtain the relation R that is mined. The noise fol-
lows a Bernoulli distribution, i. e., every n-tuple has the same prob-
ability (called “noise level”) to be switched (an n-tuple absent from
Rhidden becomes present in R or the opposite). The experiments are
performed with relations whose noise level varies between 0 and 0.45

(0.5 corresponds to purely random datasets). The mining task being
symmetric w.r.t. the attributes, every tested parametrization satisfies
∀i = 1..n, εi = ε ∈N.

5.2 Global Quality Results

Let E the set of n-tuples encompassed by at least one closed ET-n-
set. The global quality of the mined collection of closed ET-n-sets is
measured by: |Rhidden∩E|

|Rhidden∪E|
. It will be shown later that this measure doesFenster obtains

good global quality
results, i. e., the

n-tuples
encompassed by all
closed ET-n-sets it

extracts are those in
the hidden patterns.

not reflect the quality as perceived by analyst. However the good global
qualities Fenster obtains allow, via a post process detailed in the next
chapter, to derive collections of patterns the analyst actually perceives
as good.

4 fenster extracts n-sets tolerating errors in the relation 95

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

gl
ob

al
 q

ua
lit

y

noise level

epsilon = (0, 0, 0)
epsilon = (1, 1, 1)
epsilon = (2, 2, 2)
epsilon = (3, 3, 3)
epsilon = (4, 4, 4)

Figure 33: Global qualities of the closed ET-3-sets with at least four elements
per attribute in a 32× 32× 32 dataset.

The global qualities obtained with ternary relations are plotted in
Figure 33. In this setting, the hidden patterns gather eight elements
in every attribute domain (of 32 elements) and Fenster constrains
the closed ET-3-sets to have at least four elements per attribute. The
best parametrization is ε = (2, 2, 2) for levels of noise below 0.15. At
this point, the quality of the extracted collection of closed ET-3-sets is
almost perfect, whereas the collection of exact closed patterns shows a
quality of 0.25. The noisiest settings are advantageously mined with
ε = (3, 3, 3). This confirms that greater noise tolerances are preferred Closed ET-n-sets in

noisier relations
benefit from greater
tolerances to noise.

to mine relations suffering from higher levels of noise.
Figures 34 and 35 provide a finer analysis of these results. In Fig-

ure 34, |E\Rhidden|
|E|

, i. e., the proportion of false positive 3-tuples (en-
compassed by E and not Rhidden), is plotted, whereas Figure 35, repre-
sents |Rhidden\E|

|Rhidden|
, i. e., the proportion of false negative 3-tuples (encom-

passed by Rhidden and not E). It becomes clear why, in this experiment,
ε = (2, 2, 2) is always better than weaker tolerances to noise: it lowers
the false negative rate while keeping the false positive rate null. More
generally, the false positive rate increases with ε, whereas the false
negative rate decreases. The quality measure benefits from a good
trade-off between these two tendencies. Nevertheless, in critical appli-
cations, lowering the false negative rate may be more important than
maximizing the quality measure. In such cases, it is worth using greater
noise tolerance parameters.

Too loose size constraints provide high false positive rates. Indeed, it
is easier for a small pattern to include an element, outside the hidden
pattern, that is altered by the false positive noise. Reinforcing the size
constraints filters out these small patterns, i. e., lowers the false positive
rate. To confirm that, the same datasets were mined under minimal
size constraints raised to five elements per attribute. Thanks these
reinforced minimal size constraints, no closed ET-3-set encompasses
3-tuples absent from Rhidden, i. e., the size constraints have the fore-
cast filtering effect on the collection of patterns. Unfortunately, these

96 mining noisy n-ary relations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

fa
ls

e
po

si
tiv

e
ra

te

noise level

epsilon = (0, 0, 0)
epsilon = (1, 1, 1)
epsilon = (2, 2, 2)
epsilon = (3, 3, 3)
epsilon = (4, 4, 4)

Figure 34: False positive rates of the closed ET-3-sets with at least four elements
per attribute in a 32× 32× 32 dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

fa
ls

e
ne

ga
tiv

e
ra

te

noise level

epsilon = (0, 0, 0)
epsilon = (1, 1, 1)
epsilon = (2, 2, 2)
epsilon = (3, 3, 3)
epsilon = (4, 4, 4)

Figure 35: False negative rates of the closed ET-3-sets with at least four elements
per attribute in a 32× 32× 32 dataset.

4 fenster extracts n-sets tolerating errors in the relation 97

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

fa
ls

e
ne

ga
tiv

e
ra

te

noise level

epsilon = (0, 0, 0)
epsilon = (1, 1, 1)
epsilon = (2, 2, 2)
epsilon = (3, 3, 3)
epsilon = (4, 4, 4)

Figure 36: False negative rates of the closed ET-3-sets with at least five elements
per attribute in a 32× 32× 32 dataset.

constraints not only filter out the closed ET-3-sets that go outside the
hidden patterns, but some closed ET-3-sets that remain inside them too.
As a consequence, the false negative rates in Figure 36 are always worse
than their counterparts of Figure 35 and the resulted global qualities
usually are worse too (see Figure 37).

Fenster was tested on 4-ary relations too. The experimental protocol
still follows what was explained in Section 5.1. The hidden patterns
gather four elements in every attribute domain (of 16 elements) and the
closed ET-3-sets are forced to have at least two elements per attribute.
Figure 38 gives the global qualities obtained in this setting. Whatever
the level of noise, the collections of closed ET-4-sets obtained with
ε = (1, 1, 1, 1) have a better quality than the collections of exact closed
4-sets (i. e., ε = (0, 0, 0, 0)). With a noise level of 0.25, the quality of
the collection of exact closed 4-sets is below 0.3, whereas it reaches
0.65 when ε = (1, 1, 1, 1). Furthermore, because of the loose minimal
frequency constraint, ε = (2, 2, 2, 2) is too high.

5.3 Comparison with Competitors

Since Fenster is, to the best of our knowledge, the only algorithm
able to deal with both error-tolerance and arbitrary n-ary relations
(n > 3), it is compared to CubeMiner [41], Trias [40] and Data-Peeler

in the particular context of exact closed 3-set mining. Thus, the ternary
setting, presented in the previous section, was used to compare the
time performance of Fenster with that of these three approaches. The
extraction times are depicted in Figure 39. Even though Fenster has
been designed to tolerate noise, it is about one order of magnitude
faster than both CubeMiner and Trias. Its enumeration principles,
shared with Data-Peeler, grants these good results. Comparing the
performance of Data-Peeler and Fenster allows to quantify the over-
head brought by the tolerance to noise (in particular the update and

98 mining noisy n-ary relations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

gl
ob

al
 q

ua
lit

y

noise level

epsilon = (0, 0, 0)
epsilon = (1, 1, 1)
epsilon = (2, 2, 2)
epsilon = (3, 3, 3)
epsilon = (4, 4, 4)

Figure 37: Global qualities of the closed ET-3-sets with at least five elements
per attribute in a 32× 32× 32 dataset.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

gl
ob

al
 q

ua
lit

y

noise level

epsilon = (0, 0, 0, 0)
epsilon = (1, 1, 1, 1)
epsilon = (2, 2, 2, 2)

Figure 38: Global qualities of the closed ET-4-sets extracted with at least two
elements per attribute in a 16× 16× 16× 16 dataset.

4 fenster extracts n-sets tolerating errors in the relation 99

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

tim
e

(s
)

noise level

CubeMiner
Trias

Fenster
Data−Peeler

Figure 39: Times to extract the exact closed 3-sets with at least four elements
per attribute in a 32× 32× 32 dataset.

the use of the counters presented in Section 3.1), useless in this exact
context. This overhead remains below one order of magnitude. With no tolerance to

noise, the
performance overhead
of Fenster w.r.t.
Data-Peeler

remains below one
order of magnitude.

Several approaches were designed to extract error-tolerant patterns
from noisy binary relations (see Section 1.2.1). Fenster was compared
to AC-Close [21] on this particular (w.r.t. what Fenster can achieve)
task. Two main reasons justified the choice of AC-Close as a competitor.
Like Fenster, this algorithm mines closed ET-patterns, whereas most of
the other approaches do not force the returned itemsets to be closed.
Moreover, by constraining the cardinality of the exact support of a
pattern to exceed αs (where s is a minimal size constraint on the ET-
pattern and α ∈ [0, 1] is a user-defined parameter), AC-Close somehow
circumvents the performance issues the other approaches go through.
Indeed, in their experimental section, the authors claim that AC-Close
runs much faster than AFI described in [52]. Nevertheless, when
using AC-Close with α = 0.75 and s = 4, the task proposed in this
section was intractable on a 32× 32 dataset containing four 8× 8 hidden
patterns. As a consequence, smaller 16× 16 datasets containing four
overlapping 4× 4 patterns were built. The closed patterns extracted
by both Fenster and AC-Close are constrained to gather at least two
elements per attribute 1. α was set to 0.5 and various (relative) noise
tolerance levels ε were tested. Like with Fenster, such a level is
applied to both attributes. Figures 40 and 41 respectively plot the
quality results of Fenster and AC-Close. Because the hidden patterns
are small, the best results are obtained with no tolerance to noise. In this
setting AC-Close and Fenster compute the same collections of patterns.
It is noticeable that a relative tolerance to noise allows more subtle
variations of the returned collections. Figure 42 compares the time
performance of Fenster (absent points were measured at 0s and cannot
be plot on the chosen logarithmic scale) and AC-Close. On this small
dataset, Fenster already runs three orders of magnitude faster than

1. AC-Close cannot enforce a minimal size constraint on both attributes. As a conse-
quence the minimal size constraint on one of them is enforced in a post-processing step.
Without this post-process, worse quality measures are obtained.

100 mining noisy n-ary relations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

gl
ob

al
 q

ua
lit

y

noise level

epsilon = (0, 0)
epsilon = (1, 1)

Figure 40: Global quality of the collection of patterns extracted by Fenster in a
16× 16 dataset.

AC-Close. As mentioned earlier, this difference increases with the sizeCompared to one of
the fastest ET-itemset
extractors with a
relative tolerance to
noise, Fenster

outperforms it by
orders of magnitude.

of the dataset (even if the same ratio size of an attribute domain /
minimal size constraint is kept). The choice for an absolute tolerance
to noise is here empirically validated: even the fastest approaches with
a relative tolerance to noise relatively do not scale-up to medium-size
datasets.

6 mining anomalously dense et-n-sets

6.1 Local Pattern

When extended, a closed ET-n-sets that does not suffer from the
introduction of many n-tuples absent from R may be considered irrele-
vant. Indeed, it does not respect David J. Hand’s definition of a local
pattern [39]:

A local pattern is a data vector serving to describe an anoma-
lously high local density of data points.

According to this definition, the closed ET-n-sets that are fragments
of larger regions of the same “density” (of n-tuples present in R) are
undesirable. To avoid their extraction the closedness constraint must be
strengthened, i. e., an ET-n-set should not be considered closed when
some extension of it by one element s does not introduce many more
n-tuples absent from R, either on s itself or on any orthogonal element.
Formally, this change only consists in using different noise tolerances
for the two constraints defining a closed ET-n-set (Definitions 26/30 and
27/31). Let us consider ε = (εi)i=1..n ∈Nn, the noise tolerance usedSetting higher noise

tolerance parameters
for the closedness
constraint only is
strengthening the

closedness.

to define the ε-connectedness of ET-n-sets, and δ = (δi)i=1..n ∈ Zn,
the noise tolerance used to define their δ-closedness. The particular
case ε = δ corresponds to Cδ-closed being the “natural” closedness w.r.t.
Cε-closed. It was the setting adopted in this chapter until now. Given
i = 1..n, setting δi > εi strengthens the closedness constraint on the
ith attribute, i. e., filters out the patterns that can be extended by an

4 fenster extracts n-sets tolerating errors in the relation 101

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

gl
ob

al
 q

ua
lit

y

noise level

epsilon = 0.1
epsilon = 0.2
epsilon = 0.3
epsilon = 0.4

Figure 41: Global quality of the collection of patterns extracted by AC-Close in
a 16× 16 dataset.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

tim
e

(s
)

noise level

Fenster with epsilon = (0, 0)
Fenster with epsilon = (1, 1)
AC−Close with epsilon = 0.1
AC−Close with epsilon = 0.2
AC−Close with epsilon = 0.3
AC−Close with epsilon = 0.4

Figure 42: Times to extract the collection of error-tolerant patterns with
AC-Close or Fenster in a 16× 16 dataset.

102 mining noisy n-ary relations

U

V

S

Parent

U′ = U∪ {e}

V ′ = {v ∈ V \{e} |Cǫ-connected(U∪ {e}∪ {v})}

S′ = S∪ {v ∈ V \{e} | ¬Cǫ-connected(U∪ {e}∪ {v})}

e ∈ U

U′

V ′

{s ∈ S′ | Cδ-connected(U∪ {e}∪ {s})}

Left child

Cδ-connected removes

elements from S′

U

V \{e}

S∪ {e}

Right child

e 6∈ U

Figure 43: Enumeration of any element e ∈ V .

element (from any attribute domain) without introducing strictly more
than δi n-tuples absent from R on any element in the ith dimension of
the extended pattern.

Example 26 Consider the parametrization ε = δ = (1, 1, 1). It was shown
in Example 20 ({α, γ}, {1, 2, 3}, {B}) is a closed ET-3-set in RE. Setting δ3

to 2 instead of 1 filters this pattern out. Indeed, when extending it with 4,
0(({α, γ}, {1, 2, 3, 4}, {B}), B) = 2 is not strictly greater than δ3 = 2.

Choosing δi < εi looks useless. However, notice that negative values
for every δi (i = 1..n) makes the definition of a δ-closed ET-n-set
match every ε-connected (but not necessarily closed) n-set. Therefore,
a δ-closed ET-n-set generalizes this type of pattern too and Fenster

can extract complete collections of, for instance, frequent ET-n-sets
(minimal size constraints on some attribute).

6.2 Strong Closedness

Extracting every closed ET-n-set with a strong closedness forces
modifications in the enumeration of Fenster and, as a consequence, in
the algorithm. More precisely, at a given enumeration node (U,V), an
element in V that cannot extend U without violating Cε-connected may
still prevent the δ-closedness of some ET-n-sets (U,V) represents. As
a consequence, such an element is, like before, removed from V but,
this time, it is inserted in S too. With the same argument, in a leftAn element that

cannot extend an
n-set may still

prevent its strong
closedness.

child node where e has just been enumerated, an element s ∈ S can
be removed from S when ¬Cδ-connected(U∪ {e}∪ {s}) (notice the use of
δ instead of ε). These are the only differences that must be brought
to Fenster to make it able to extract δ-closed ET-n-sets defined with
ε 6= δ. The modified enumeration is depicted in Figure 43. The related
pseudo-code is given in Figure 44. At the implementation level, the
counters presented in Section 3.1 still fulfill the task.

Example 27 Let ε = (1, 1, 1) and δ = (2, 1, 1). Contrary to Example 21
(where ε = δ), the elements 3 and 4 from V2 are, in the left child, moved
to S2 instead of being only removed from V2. In a second step, element 3
is removed from S2 because Cδ-connected({α, γ}, {3}, {B,A}) is false. Indeed
0(({α, γ}, {3}, {B,A}), 3) = 2 is strictly greater than δ2 = 1. In the opposite,

4 fenster extracts n-sets tolerating errors in the relation 103

Input: U,V, S
Output: Every δ-closed ET-n-set containing every element in U,
possibly some elements in V , and satisfying CP(A)M
if Cε-connected(Ut V) then
U← Ut V
V ← (∅, . . . , ∅)

end if
if CP(A)M may be satisfied by an n-set descending from this node
∧Cδ-closed(Ut V) then

if V = (∅, . . . , ∅) then
output(U)

else
Choose e ∈ V
U ′ ← U∪ {e}
V ′ ← {v ∈ V \ {e} | Cε-connected(U∪ {e}∪ {v})}
S ′ ← S∪ {v ∈ V \ {e} | ¬Cε-connected(U∪ {e}∪ {v})}
Fenster(U ′, V ′, {s ∈ S ′ | Cδ-connected(U∪ {e}∪ {s})})
Fenster(U,V \ {e}, S∪ {e})

end if
end if

Figure 44: The generalized Fenster algorithm.

U = ({α,γ},∅,{B})

V = (∅,{1,2,3,4},{A})

S = ({β},∅,{C})

U = ({α,γ},∅,{B,A})

V = (∅,{1,2},∅)

S = ({β},{3,4},{C})

A∈ U

Cǫ-connected moves

3 and 4 from V to S

U = ({α,γ},∅,{B,A})

V = (∅,{1,2},∅)

S = ({β},{4},{C})

Cδ-connected removes

3 from S

U = ({α,γ},∅,{B})

V = (∅,{1,2,3,4},∅)

S = ({β},∅,{C,A})

A /∈ U

Figure 45: Illustration of Example 27.

the element 4 is kept in S2. Indeed Cδ-connected({α, γ}, {4}, {B,A}) is true.
Figure 45 illustrates this example.

6.3 Global Quality Results

The synthetic 32× 32× 32 datasets, presented in Section 5, are reused
to test the effect of a parametrization where ε 6= δ. Identical εi (resp.
δi) parameters are chosen for every domain. Figure 46 gives the global
qualities obtained with minimal size constraints of four elements per
attribute. Strengthening the closedness usually provides worse results
than adopting a natural closedness, i. e., ε = δ. The same deterioration With a strong

closedness, the
quality of the closed
ET-n-sets is worse.

of the global quality occurs whatever the arity of the relation. In
fact, the good global qualities obtained with ε = δ are computed
from collections of hundreds, or, for higher levels of noise, thousands of
closed ET-n-sets that are multiple fragments of the four hidden patterns.
These fragments are larger than with exact closed n-set mining but

104 mining noisy n-ary relations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

gl
ob

al
 q

ua
lit

y

noise level

epsilon = delta = (3, 3, 3)
epsilon = (3, 3, 3), delta = (4, 4, 4)

epsilon = delta = (4, 4, 4)
epsilon = (4, 4, 4), delta = (5, 5, 5)

Figure 46: Global quality of the δ-closed ET-3-sets extracted with at least four
elements per attribute in a 32× 32× 32 dataset.

they remain fragments, i. e., an ε-closed ET-n-set is extensible, with one
of the missing element from the hidden pattern, without introducing
many n-tuples absent from the relation. In other terms, it does not
verify a stronger closedness constraint.

With a strong closedness, a local minimum for the global quality is
always observed at a low level of noise (around 0.05 in our experiments).
Here is the reason for that: at low levels of noise, the tested noise
tolerances ε allow, for every hidden pattern, the extraction of large
fragments of it (but not the entire hidden pattern) that almost include
the missing elements to form the hidden pattern (because the noise
level is low). As a consequence, they are often filtered out by a stronger
closedness constraint. For example, at a noise level of 0.05 and with
ε = (4, 4, 4), the largest closed ET-3-sets are the 8×8×8 hidden patterns
with two elements missing out of the 24. With a greater tolerance to
noise, i. e.greater εi (i = 1..n) parameters, the entire hidden patterns
would be extracted and strengthening the closedness would, indeed,
implement the notion of local pattern as defined by David J. Hand.
Unfortunately, greater εi (i = 1..n) parameters mean longer extractions
and compensating the whole false negative noise usually turns out to
be intractable. Figure 47 gives the times it takes Fenster to extract theTolerating more noise

costs much time.
Fenster can extract

larger fragments of
the hidden pattens;

not the hidden
patterns.

closed ET-3-sets whose global qualities were plotted in Figure 33. A
jump of almost one order of magnitude accompanies every increase of
the εi parameters.

Real-life datasets where the whole false negative noise can be com-
pensated by Fenster, while remaining tractable, are, at least, very rare.
When this cannot be ensured, setting ε = δ is safer. The tractabil-
ity issue is inherent to the computational task Fenster tackles. The
closed itemset enumeration problem in binary relations is NP-hard
(see, e. g., [94]). Generalizing the definition of a closed pattern to make
it noise-tolerant widens the traversed search space because it has a
severe impact on pruning. Consider exact closed n-set mining. When
an n-tuple is, for sure, part of a candidate n-set but absent from the
relation, neither this n-set nor the larger n-sets encompassing it is a

4 fenster extracts n-sets tolerating errors in the relation 105

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

tim
e

(s
)

noise level

epsilon = (0, 0, 0)
epsilon = (1, 1, 1)
epsilon = (2, 2, 2)
epsilon = (3, 3, 3)
epsilon = (4, 4, 4)

Figure 47: Times to extract every closed ET-3-sets with at least five elements
per attribute in a 32× 32× 32 dataset.

closed n-set and the related search space can be safely pruned. In the
same situation, the search for noise-tolerant patterns cannot be aborted:
either the current candidate n-set or a larger one 2 is a closed ET-n-set.
To discover it, the search space must be traversed further.

7 conclusion

Fenster generalizes Data-Peeler to make it tolerate false negative
noise. Thus, n-tuples can be both absent from the relation and en-
compassed by closed ET-n-sets. Like Data-Peeler, Fenster performs
complete extractions under piecewise (anti)-monotone constraints. How
much noise is tolerated is parametrized by as many integers as there
are attributes in the relation. In every closed ET-n-set, these integers
are upper-bounds of the number of n-tuples involving an element from
the related attribute domain, encompassed by the closed ET-n-set but
absent from the relation. Although the generalization towards noise
tolerance looks trivial from an abstract point of view, the implemen-
tation requires, to be efficient, to incrementally compute counters of
absent n-tuples in many subspaces of the relation. As far as not too
much noise is tolerated, Fenster remains tractable on relatively large
relations. The gain, in term of global quality (coverage of the hidden
patterns and only them), is obvious. Nevertheless Fenster usually
cannot, in a reasonable time, tolerate as much noise as contained in the
relation. As a consequence, the returned closed ET-n-sets are fragments
(though larger fragments than without noise tolerance) of hidden pat-
terns. Because of that, a strengthened closedness constraint does more
harms than it helps in finding patterns that are isolated from the others.

2. Even several larger n-sets may be closed since the closure is not always unique (see
Section 2).

5AGGLOMERATING LOCAL PATTERNS HIERARCHICALLY
WITH ALPHA

1 agglomerating closed et-n-sets

1.1 A Pattern Clustering Scheme

Let us recall the objectives and difficulties raised in Section 6 of
the previous chapter. The relevant patterns the analyst is in quest for
should comply with David Hand’s definition of a local pattern [39]:

A local pattern is a data vector serving to describe an anoma-
lously high local density of data points.

Furthermore, because of time complexity issues, a complete extractor
such as Fenster usually cannot tolerate as much errors as necessary to
directly list the hidden patterns. Instead, it returns multiple fragments
of these patterns. In such situations, the analyst is either forced to
(a) interpret complete lists of insufficiently error-tolerant (hence much-
overlapping) closed n-sets, or (b) revise his/her completeness demand
downwards.

Anybody who has tried to manually interpret long lists of poorly
relevant local patterns knows how counter-productive it can be, and
this is definitively not an option. Another possibility can be to mine the
data by means of incomplete (i. e., missing some solution patterns w.r.t.
the specified constraints) but tractable approaches. Nevertheless, it is
also possible to compute, under constraints, all closed and (as much
as possible) noise-tolerant patterns before a post-processing phase that
aims at deriving another collection that would be shorter and that
would contain more relevant patterns. The latter approach appears
appealing because the lossy heuristics are delayed as far as possible in
the knowledge discovery process, hence trustier than a purely heuris-
tic one. It is about inserting an automatic intermediary task between
the complete extraction of patterns and the needed interpretation by
analysts, postponed hence made easier.

Even though the fragments extracted by Fenster are, individually,
far from the hidden patterns, the returned collections globally have
good qualities (see Section 5.2). This means that the agglomeration
of the patterns matches the relation deprived of noise. That is why a
pattern agglomeration task was investigated as a way to heuristically
reconstruct the hidden patterns from the fragments listed in a complete
manner. This task can be compared with solving an n-dimensional Following the

philosophy
“completeness as far as
tractable”, Alpha

post-processes
Fenster to tolerate
more noise.

jigsaw puzzle: every piece is a pattern returned during the complete
extraction phase and the image to produce is a perfect version of the
one given on the box (the dataset), which is, contrary to classical jigsaw
puzzle, altered by some noise. The perfect image must be composed of
large (possibly) overlapping hyper-rectangles (modulo any permutation
of the hyper-plans of any dimension) of ’1’ values “embedded” in a
’0’ valued hyper-space. It looks like a tough game and an automatic
clustering can help.

Unlike classical clustering approaches, our goal is not to partition the
original dataset but a set of small local patterns so that every cluster

107

108 mining noisy n-ary relations

represents a larger local pattern. Global (i. e., at every iteration, a global
clustering refines the previous one) and divisive (the complete collec-
tion of local patterns, considered as a whole, is successively divided
into smaller clusters) clustering approaches are not suitable because
of the difference in nature between the elements to cluster (the com-
plete collection of local patterns that tolerate a few errors) and the
resulting clusters (large local patterns tolerating much noise). Using
again the analogy with a jigsaw puzzle, the quality of the constructed
image should not be reduced to how well every piece interlocks with
its neighbors. This image should also match the noisy one on the box.
To take into account this objective, the global and divisive approaches
are, by nature, not much suitable. On the contrary, a bottom-up ag-
glomeration successively merges previously established clusters (the
previously assembled pieces) into larger ones, hence allowing to test
the partial results against the original dataset (the noisy image on the
box). Therefore, we need for a hierarchical agglomerative clustering
scheme. The fact it does not require to fix, a priori, the number ofAlpha hierarchically

agglomerates the
patterns.

clusters is also extremely useful. Indeed, the number of relevant local
patterns to discover usually is unknown.

It should be noticed that, even though the hidden patterns can over-
lap, there is no need for a fuzzy clustering method. Indeed, the closed-
ness constraint on every ET-n-set extracted from the noisy relation
makes it usually be a fragment of one hidden pattern only. If this is
not the case, such a pattern can be associated to any of the overlapping
pattern without much consequence since the n-dimensional space it
occupies, at the intersection of several hidden patterns, must be covered
by many other slightly different closed ET-n-sets.

1.2 Hierarchical Agglomeration

Like any hierarchical agglomeration scheme, Alpha requires an ag-
glomeration operator and a metric. The extracted closed ET-n-sets
being fragments of the searched patterns, the merging operator essen-
tially is a union. It is t (see Definition 22). Defining a metric on n-setsThe agglomeration of

patterns is their
minimal envelope.

is not trivial. It should not only depend on the n-sets but also on the
relation they were extracted from. In this way, before agglomerating

The distance between
patterns takes into

account the relation
they locally describe.

two n-sets, the information about the subspaces of the relation out-
side them, but inside the minimal envelope enclosing them, can be
taken into account. The importance of using the initial relation in the
agglomeration process is illustrated by the two relations in Figure 48.
When mining closed 2-sets having at least three elements per attribute
(bold ’1’ in the tables), the two settings are identical if restricted to the
elements covered by these patterns. Nevertheless the closed 2-sets of
Figure 48a are obviously better candidates for an agglomeration than
those of Figure 48b. In fact, the reasoning (see, e. g., [52]) to define
how error-tolerant a local pattern is can be applied to the n-set whose
outline is the envelope of the two patterns. Thus, such a definition
must be based on the quantity of n-tuples absent from the relation in
the worst hyper-plan of this n-set. Contrary to Fenster whose time
performance could not be reached with a relative tolerance to noise,
Alpha uses a metric based on proportions of n-tuples absent from R.

5 agglomerating local patterns hierarchically with alpha 109

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 0

0 1 1 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1
(a)

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1
(b)

Figure 48: Two toy binary relations

Definition 32 (Unweighted metric) Given an n-set X = (X1, . . . , Xn),
d(X) denotes its (unweighted) intrinsic distance measure and is computed as
follows:

d(X) =
n

max
i=1

(
max
x∈Xi

(|K \ R|

|K|

))
,

where K = X1 × · · · ×Xi−1 × {x}×Xi+1 × · · · ×Xn.

Example 28 It was shown in Example 20 X = ({α, γ}, {1, 2, 3}, {B}) is a
closed ET-3-set (with ε = (1, 1, 1)) in RE (represented in Table 5). This
pattern would be in the initial collection Alpha agglomerates. Its intrinsic
distance measure is 12 . Indeed, its worst hyper-plan, in terms of proportion
of 3-tuples absent from RE, is the one related to the element 3, i. e., {α, γ}×
{3}× {B}. It contains two 3-tuples, (α, 3, B) and (γ, 3, B), among which one,
(γ, 3, B), is absent from RE.

The intrinsic distance is easily generalized to specify to what ex-
tent noise is tolerated in every element. In some specific contexts Background

knowledge about the
noise distribution can
parametrized the
metric.

(e. g., when the noise distribution is known and not uniform), such a
parametrization may be useful:

Definition 33 (Weighted metric) Given an n-set X = (X1, . . . , Xn) and a
weight function w : ∪ni=1D

i → R+ (a greater weight meaning less tolerance
to noise for the related element), d(X) denotes its weighted intrinsic distance
measure and is computed as follows:

d(X) =
n

max
i=1

(
max
x∈Xi

(
w(x)

|K \ R|

|K|

))
,

where K = X1 × · · · ×Xi−1 × {x}×Xi+1 × · · · ×Xn.

The distance between two n-sets is the (weighted or unweighted)
intrinsic distance of their agglomeration. The distance between

two patterns is the
proportion of absent
n-tuples in the worst
hyper-plan of their
agglomeration.

Definition 34 (Distance between n-sets) Given two n-sets X and Y, the
distance between them is d(Xt Y).

Example 29 Alpha initially computes the distance between every pair of
closed ET-n-sets extracted with Fenster. Going on with Example 28, Al-
pha computes, in particular, the distance between X = ({α, γ}, {1, 2, 3}, {B})

and another closed ET-3-set, Y = ({γ}, {1, 2, 3, 4}, {A,B}). Their agglomera-
tion would provide Xt Y = ({α, γ}, {1, 2, 3, 4}, {A,B}). Its worst hyper-plan,
in terms of proportion of 3-tuples absent from RE, is the one related to the
element 3, i. e., {α, γ}× {3}× {A,B}. It contains four 3-tuples. Among them,
two, (α, 3,A) and (γ, 3, B) are absent of RE. Thus, by definition, its intrinsic
distance is 24 and so is the (unweighted) distance between X and Y.

110 mining noisy n-ary relations

d(X U Y) - max(d(X), d(Y))

d(X)

X U Y

X

Y

d(Y)

Z

Figure 49: KNIME dendrogram representing the hierarchical agglomeration.

Given the agglomeration operator and the metric, the hierarchical
agglomeration performed by Alpha is now well defined. The con-
structed clusters, i. e., the agglomerated n-sets, can be organized into
a binary tree called a dendrogram. For a visual interpretation of the
result, the height of a node, representing a cluster, is advantageously
set to its intrinsic distance measure. Figure 49 depicts a part of such a
tree. Notice that most of the leaves of the dendrogram have an intrinsic
distance that is not 0. Indeed, following the idea “completeness as far
as tractable”, this dendrogram depicts the hierarchical agglomeration
of closed ET-n-sets defined with the greatest possible tolerance to noise
and extracted with Fenster. Thus, n-tuples covered by some closed
ET-n-sets may be absent from the mined relation and their intrinsic
distance is strictly positive. Notice also that the intrinsic distance is not
always increasing along the clustering, i. e., an agglomerated n-set may
have an intrinsic distance that is less than those of the two n-sets that
were agglomerated. Indeed, this distance is a proportion of n-tuples
that is not necessarily increasing when the n-set is enlarged.

2 returning the few relevant patterns

The computed dendrogram contains more local patterns than the ini-
tial complete collection of patterns that are not enough noise-tolerant 1.
Nevertheless, some of them now are relevant because they tolerate
enough noise. To support the search for these relevant patterns, Alpha

ranks them and automatically selects only the best, being confident that
this process preserves every relevant cluster.

2.1 Cluster Relevancy Measure

David J. Hand’s definition of a local pattern (see Section 1.1) is a
guideline to assess the relevancy of the clusters. In the context of an
n-ary relation R, a good cluster X describes an “anomalously high local
density” of n-tuples present in R when, simultaneously,:

1. 2N− 1 clusters for N closed ET-n-sets.

5 agglomerating local patterns hierarchically with alpha 111

– it is apart from the rest of the data (“anomalously”), i.e., it maxi-
mizes its distance with the other clusters in the tree (but its ances-
tors and descendants);

– it minimizes the proportion of n-tuples absent from R on its worst
hyper-plan (“high local density”).

Both information can be easily quantified from the constructed den-
drogram:

– the minimal distance between a parent cluster and its two children
X and Y, i.e. d(X t Y) − max(d(X), d(Y)), is how distant X and
Y are from each other and, even more, from the other clusters.
Indeed, these two clusters were agglomerated because they were
the closest at that time of the clustering;

– the intrinsic distance measure of X, i.e. d(X), is the proportion of
n-tuples absent from R on its worst hyper-plan.

Both quantities being proportions of n-tuples absent from R, the
relevancy of X can now be computed by difference. The definition of a

local pattern
translates to a
relevancy measure.

Definition 35 (Relevancy of an n-set) Given an n-set X and its parent
Xt Y in the binary tree obtained by hierarchical agglomeration, r(X) denotes
the relevancy of X and is computed as follows:

r(X) = d(Xt Y) − max(d(X), d(Y)) − d(X) .

Figure 49 depicts this computation.

Example 30 Going on with Example 29, assume X = ({α, γ}, {1, 2, 3}, {B})

and Y = ({γ}, {1, 2, 3, 4}, {A,B}) were actually agglomerated, i. e., at a certain
iteration of the hierarchical clustering, their distance d(X t Y) = 2

4 was the
smallest among all pairs of (previously agglomerated or not) 3-sets. The rele-
vancy of X is 24 −max(12 ,

1
2) −

1
2 = −1

2 . This negative value for r(X) means
X is irrelevant. Indeed, Xt Y having the same intrinsic distance as X, X is a
fragment of larger pattern (Xt Y or maybe a larger one). Instead of studying
X, the analyst had better take a look at this larger pattern (that should receive
a higher relevancy value).

2.2 Selecting the Relevant Clusters

Ranking the clusters from the dendrogram w.r.t. to their relevancy
values allows the analyst to start the interpretation with the most
promising ones. However, the list of patterns he/she has to interpret
is very long and its tail contains poorly relevant clusters. For example,
it contains the initially extracted collection of small patterns (leaves of
dendrogram), which usually do not tolerate enough noise. We explain
how Alpha automatically selects a small collection while keeping every
relevant pattern. It assumes that all the initially extracted closed ET-n-
sets are fragments of some relevant local pattern, i. e., that this complete
extraction has been performed under constraints, like minimal size
constraints, that prevent the false positive noise from being caught.
This ensures that every closed ET-n-set satisfying them is a subset of a
relevant local pattern the analyst is interested in. Thus, Alpha reads,
by decreasing relevancy order, the list of clusters. It outputs the cluster
it reads and removes from the list its sub-patterns (i. e., the patterns
beneath it in dendrogram). Once every initially extracted closed ET-
n-set (leaf of the dendrogram) was removed (i. e., was covered by at
least one previously read cluster), the procedure stops. In this way, the Alpha selects

relevant patterns that
cover the initial
complete collection of
closed ET-n-sets.

112 mining noisy n-ary relations

completeness of the first extraction is, somehow, preserved. Indeed,
every pattern of this initial collection is part of at least one output
cluster.

The selection procedure, which has just been exposed, presents this
property: “a cluster with a lower relevancy than at least one of its
ancestors is not to be kept”. This makes sense because it must be a frag-
ment of such a larger ancestor cluster. Interestingly, like in hierarchical
tiling [32], it remains possible that both a large cluster and one of its
sub-clusters are considered relevant. Whenever it happens the latter has
a greater relevancy than the former, i. e., it describes an “anomalously
high local density” of present n-tuples inside another anomalously
high, but lower, local density of present n-tuples. Another interesting
point relates to the assumption stated in the previous paragraph: “all
the initially extracted closed ET-n-sets are fragments of some relevant
local pattern”. If the initial complete extraction is performed under too
loose constraints, parts of some closed ET-n-sets cover regions of the
dataset that actually are out of any relevant local pattern (but contain
some n-tuples present in the relation because of noise). In other terms
the assumption is not satisfied. However, this does not matter much.
Indeed, such a closed ET-n-set X, that covers positive noise, receives a
high relevancy value because:

– its distance to the closest cluster Y is high (the worst hyper-plan of
Xt Y is out of any relevant pattern, hence it contains many tuples
absent from the relation);

– its intrinsic distance measure is low (the noise it contains was suffi-
ciently low not to prevent its extraction by a complete algorithm).

As a consequence, X is high in the list of ranked clusters and is browsed
before any of its “super-patterns”, which will probably not be selected
(their intrinsic distances being very high). In this way, the list of kept
clusters is not seriously lengthened. Furthermore, X being small (it
is the only pattern in the cluster) it can easily be identified by the
analyst or automatically filtered out by size constraints in a final post-
processing step.

3 empirical study

3.1 Quality Measures

Since the global quality, introduced in the previous chapter, does not
reflect the quality as perceived by the analyst, it is finally time, to replace
it with another measure, or, more precisely, with two complementary
measures. Given a small collection of hidden local patterns (the local
patterns in the relation deprived of noise) and another collection of
extracted local patterns, these measures rate how useful the latter is
for discovering the former. The first measure is the size of the output
collection of patterns: if it is too large, interpreting it may be too costly.
The second measure is the average similarity between every hidden
pattern and its most similar counterpart in the extracted collection. This
measure is named best-ones quality. It is mathematically expressed as
follows.

5 agglomerating local patterns hierarchically with alpha 113

Figure 50: KNIME workflow when experimenting Alpha on the synthetic
ternary relations.

Definition 36 (Best-ones quality) Given H a set of hidden patterns, P a
set of extracted patterns and s : H × P → [0, 1] a similarity measure, the
best-ones quality of P, denoted q(P,H) and ranging in [0, 1], is:

q(P,H) =
1

|H|

∑
H∈H

(
max
P∈P

(s(H, P)
)

.

To define a similarity measure s between two n-sets, several sensible
options exist. We chose the average of a classical distance between the
sets of elements in every attribute domain.

Definition 37 (Similarity between n-sets) Given X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn) two n-sets, s(X, Y) denotes the similarity between X and
Y and is computed as follows:

s(X, Y) =
1

n

n∑
i=1

|Xi ∩ Yi|
|Xi ∪ Yi|

.

3.1.1 Experimental Protocol

This empirical study follows that of the 32× 32× 32 datasets pre-
sented in Section 5 of Chapter 4. The experimental protocol is the
same except that, at every noise level, ten relations are synthesized and
the results presented in this section always are averages on these ten
relations. In this way, they are statistically more relevant. We recall that,
in every relation, four hidden 3-sets, with eight elements per attribute,
are randomly placed (they may overlap). The noise distribution is
uniform. Given one of the relations, an analyst wants to find the four
hidden patterns it contains and, if possible, only them. However he/she
does not know, a priori, their exact geometries. To avoid missing some
of them, he/she constrains the output patterns to gather at least five
elements per attribute.

Figure 50 presents the experimental protocol in the form of a KNIME
workflow. Fenster extracts, under constraints, every closed ET-3-set in
the noisy relation read by File Reader. Alpha agglomerates them (see
Section 1.2). Sorter and Selector ranks and selects the most relevant
clusters (see Section 2). N-Set Descriptor appends size information to
the output so that the next three Row Filters keep only those having at
least five elements per attribute. Finally, Quality Assessor computes
the best-ones quality measure (see Definition 36) of the remaining local
patterns by comparison with the hidden patterns, i. e., those in the
initial relation deprived of noise.

The experiments have been performed with a computer running
the GNU/Linux™ operating system on an AMD Sempron™ 2600+
processor with 1.25 GBytes of RAM. Alpha was developed within
KNIME [19] using Java 6.

114 mining noisy n-ary relations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25 0.3

be
st

-o
ne

s
qu

al
ity

noise level

Exact Fenster (minimal sizes = 4x4x4) + Alpha
Exact Fenster (minimal sizes = 3x3x3) + Alpha

Fenster with epsilon = 0
Fenster with epsilon = 1
Fenster with epsilon = 2
Fenster with epsilon = 3
Fenster with epsilon = 4

Figure 51: Best-ones qualities of the collections output by Fenster only and by
Fenster + Alpha.

3.2 Assessing the Agglomeration

Extracting, with Fenster, the closed ET-3-sets having at least five
elements per attribute and directly interpreting them is, at least, tedious.
Figures 51, and 52 compare the results of Fenster alone to those of
Fenster + Alpha (following the experimental protocol detailed in the
previous section). When run alone, Fenster is tested with five different
tolerances to noise (the εi parameters of Definition 26 and 27). When
used as a pattern collection provider to Alpha, Fenster is parametrized
to extract exact closed 3-sets, i.e., (ε1, ε2, ε3) = (0, 0, 0). The principle
“completeness as far as tractable”, stated in Section 1.1, is not respected
here to support a clear assessment of Alpha’s added-value. Indeed,
this intermediary task is, in this way, forced to deal with all the noise in
the relations. Even in this disadvantageous setting, Fenster + Alpha

significantly outperforms Fenster alone. As expected, the best-onesThe quality of the
individual patterns
significantly increases
with Alpha w.r.t.
Fenster alone. Their
number significantly
decreases.

quality of the closed ET-3-sets is very poor if little noise is tolerated.
Nevertheless, even with the greatest tested tolerance to noise, which
implies very long extraction times (see Figure 47), the quality of the
collections computed by Fenster clearly is below that of Alpha +
Fenster, which is almost 1 until a noise level of 0.15 (see Figure 51).
Furthermore, if there is little noise in the relations, the number of closed
ET-3-sets explodes when Fenster tolerates more noise. For example,
with a noise level of 0.075 and an error-tolerance (ε1, ε2, ε3) of (4, 4, 4),
Fenster returns after about 23 minutes of computation, in average,
14475 closed ET-3-sets, against 4.8 patterns for Fenster + Alpha (see
Figure 52). Among these 4.8 patterns, 4 are those the analyst is in quest
for, i. e., q(P,H) = 1.

The minimal size constraints on the closed 3-sets that Alpha pro-
cesses have not been discussed yet. These constraints are meant to
provide enough fragments to enable the construction of the relevant
patterns by agglomeration. Thus, they are chosen by merely looking at
the number of completely extracted closed 3-sets. At least four elements
per attribute is chosen when the level of noise is strictly below 0.15.

5 agglomerating local patterns hierarchically with alpha 115

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.05 0.1 0.15 0.2 0.25 0.3

si
ze

 o
f c

ol
le

ct
io

n

noise level

Exact Fenster (minimal sizes = 4x4x4) + Alpha
Exact Fenster (minimal sizes = 3x3x3) + Alpha

Fenster with epsilon = 0
Fenster with epsilon = 1
Fenster with epsilon = 2
Fenster with epsilon = 3
Fenster with epsilon = 4

Figure 52: Sizes of the collections output by Fenster only and by Fenster +
Alpha.

At this point, keeping the same constraints provides, in average, 16.1
closed 3-sets (see Figure 52). This is obviously too few to construct,
by agglomeration, the hidden patterns. That is why, in the relations
with levels of noise above 0.15, the closed 3-sets are only constrained
to gather at least three elements per attribute. With these looser size
constraints, Fenster extracts more (much overlapping) closed 3-sets.
Once agglomerated, the hidden patterns in the relations with a 0.15

level of noise are always perfectly found, i. e., q(P,H) = 1. Furthermore
the selection step (see Section 2) retains only these four patterns (see
Figure 52).

3.3 Assessing the Selection

Stated in the terms of Section 3.1, the selection step aims at decreasing
the size of the output collections while keeping the best-ones quality
(see Definition 36) as high as possible. To empirically test it, the Sorter

and Selector node is dropped from the KNIME workflow depicted in
Figure 50. The results, plotted in Figure 53 and 54, are compared to
those obtained with the selection. Until a noise level of 0.15, the size
of the selected collection remains below 50, i. e., is between one and
two orders of magnitude smaller than its superset obtained without
the selection. At the same time, the best-ones quality almost remains
identical. It can be written that the effect of the selection is, in those
settings, very positive. With noise levels beyond 0.15, the hierarchical
agglomeration constructs patterns that are very similar to the hidden
ones. Unfortunately, the relevancy measure (see Definition 35) gives
higher scores to the sub-patterns of the ones the analyst would like to
be presented. That is why less than four patterns are, at the same time, In very noisy

relations, the hidden
patterns are found by
agglomeration but the
relevancy measure
does not score them
as well as their
sub-patterns.

selected and with at least five elements per attribute. With such very
noisy relations, the selection step does not help and the analyst had
better take a look at the long list of clusters. Indeed, the relevant ones
are almost perfectly constructed up to a noise level of 0.25.

116 mining noisy n-ary relations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.05 0.1 0.15 0.2 0.25 0.3

be
st

-o
ne

s
qu

al
ity

noise level

Exact Fenster (minimal sizes = 4x4x4) + Alpha
Exact Fenster (minimal sizes = 3x3x3) + Alpha

Exact Fenster (minimal sizes = 4x4x4) + Alpha without selection
Exact Fenster (minimal sizes = 3x3x3) + Alpha without selection

Figure 53: Best-ones qualities of the output collections with and without the
selection of the relevant patterns.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.05 0.1 0.15 0.2 0.25 0.3

si
ze

 o
f c

ol
le

ct
io

n

noise level

Exact Fenster (minimal sizes = 4x4x4) + Alpha
Exact Fenster (minimal sizes = 3x3x3) + Alpha

Exact Fenster (minimal sizes = 4x4x4) + Alpha without selection
Exact Fenster (minimal sizes = 3x3x3) + Alpha without selection

Figure 54: Sizes of the output collections with and without the selection of the
relevant patterns.

5 agglomerating local patterns hierarchically with alpha 117

4 conclusion

Closed ET-n-sets globally well cover the hidden patterns. However,
unless there is very little noise, Fenster can only extract, in a reasonable
time, fragments of these patterns. Alpha hierarchically agglomerates
these fragments. The involved metric takes into account not only the
patterns but also the relation they were extracted from. Contrary to Fen-
ster, Alpha uses a (more natural) relative tolerance to noise because it
does not pretend to provide a condensed representation of the ET-n-set
(it is heuristic) and because that does not increase its running times
(quadratic in the number of closed ET-n-sets). The hidden patterns are
supposed to be nodes in the constructed dendrogram. Nevertheless,
this dendrogram contains about twice more patterns than the number
of closed ET-n-sets Fenster returned. To ease the interpretation, the
output collection needs to be small. To do so, Alpha ranks the agglom-
erated patterns by relevancy. This measure is the difference between
the distance to the other agglomerated patterns (the greater the better)
and the quantity of noise in the pattern (the smaller the better). In
this respect, Alpha complies with David Hand’s definition of a local
pattern. Finally, a simple cover test cuts off the least relevant patterns.
Experimented on synthetic ternary relations, Alpha presents small lists
of top-quality patterns even when the noise level reaches 15%.

Part V

A P P L I C AT I O N T O D Y N A M I C G R A P H
M I N I N G

O U T L I N E

Until now, the content of this thesis has been consisting in generaliz-
ing closed itemset mining to make it applicable to n-ary relations on
one hand and to noisy contexts on the other hand. The resulting more
generic patterns would be useless if, in addition, the extractor, namely
Fenster, could not deal with the particular aspects of a given dataset.
Fortunately, it has been shown that its enumeration principles allow
the analyst to specify any relevancy constraint as long as it is piecewise
(anti)-monotone. Such constraints are particularly useful on datasets
that are not only ternary relations but dynamic (directed) graphs too.
The beginning of Chapter 6 explains the specialization between ternary
relations and dynamic directed graphs. Then, two constraints, namely
the almost-contiguity and the symmetry constraints, are proved piece-
wise (anti)-monotone. As a consequence, Fenster can use them to
guide the extraction of the related patterns. These results were initially
presented in [CNB09]. To further fasten the extraction of the closed
ET-n-sets under these two constraints, modifications of the algorithm
(rather than the generic enforcement of the constraints) are welcome.
Chapter 6 details them.

Every method presented in this thesis was applied to real-life datasets.
In particular, ternary and 4-ary relations derived from the logs of
DistroWatch.com (a comprehensive presentation of the Free, as in free-
dom, operating systems) were mined. This even led to the publication
of results in a two-part article ([Cer08a] and [Cer08b]) designed for a
general audience. However, we decided to present, in Chapter 7, results
on other data: the usage logs of the Vélo’v network. This network
consists of 327 stations, spread over Lyon and its nearby. A rider rents a
bicycle and returns it to any other station. Understanding how Vélo’v is
used is valuable, for example to improve the fulfilled service. To study
it, the routes, between every pair of stations, are tagged frequent (or
not) for some days of the week and some time periods. In the difficult
context of this application (four attributes, more than 100000 tuples,
weak minimal size constraints, etc.), the algorithms presented in this
thesis remain tractable. The knowledge discovery process, which takes
advantage of them, returns meaningful patterns. In particular, both
the symmetry and the almost-contiguity constraints significantly lower
the running times without much limiting the discovery of unexpected
patterns.

121

6M I N I N G D Y N A M I C G R A P H S

1 specializing n-ary relation mining

1.1 Dynamic Graph

Graph mining is a popular topic. Many researchers focus on graph
pattern discovery from one large graph, while others consider large
collections of graphs. Dynamic graphs (e. g., dynamic interaction net-
works or dynamic co-interest graphs) belong to this second category. Dynamic graphs are

useful across many
applicative domains.

Indeed, a dynamic graph is a set of graphs labelled with timestamps.
Two complementary directions of research are observed. On one hand,
the global properties of graphs, like the power-law distribution of node
degrees or diameters, are studied (see, e. g., [49]). On the other hand,
local pattern discovery techniques are used to identify local properties
of the graphs. These local techniques benefit from the huge research
effort on 0/1 data analysis. Indeed a graph can be seen as a particular
bi-partite graph or as an adjacency matrix. This chapter exploits this
analogy and the generic closed ET-n-set extractor Fenster is specialized
in the extraction of relevant local patterns in dynamic graphs.

Let T ∈ R|T| a finite set of timestamps. Let N a set of nodes. A
(possibly directed) graph is uniquely defined by its adjacency matrix
A ∈ {0, 1}N×N. A dynamic graph involving the nodes of N along T

is uniquely defined by the |T|-tuple (At)t∈T gathering the adjacency
matrices of the graph at every timestamp t ∈ T. Visually, such a stack of
adjacency matrices can be seen as a |T|× |N|× |N| cube of 0/1 values. We Dynamic graphs are

particular ternary
relations.

write at,ntail,nhead = 1 (resp. at,ntail,nhead = 0) when, at the timestamp t,
a link from ntail to nhead is present (resp. absent).

Example 31 Figure 55 depicts a dynamic directed graph. It involves four
nodes: a, b, c and d. Four snapshots of this graph are available at timestamps
0, 0.5, 2 and 3. Table 9 gives the related 4-tuple (A0, A0.5, A2, A3).

1.2 A Closed ET-3-Set Under Constraints

1.2.1 Specializing Closed ET-3-Set Mining

In [50], the authors noticed that the problem of enumerating all
maximal complete bipartite sub-graphs of a graph is equivalent to

a

b

c

d

(a) A0

a

b

c

d

(b) A0.5

a

b

c

d

(c) A2

a

b

c

d

(d) A3

Figure 55: A dynamic (directed) graph (N = {a, b, c, d}, T = {0, 0.5, 2, 3}).

123

124 application to dynamic graph mining

a b c d a b c d a b c d a b c d

a 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1

b 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1

c 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

d 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1

A0 A0.5 A2 A3

Table 9: (A0, A0.5, A2, A3) related to the dynamic graph depicted Figure 55.

extracting the closed patterns from its adjacency matrix. This chapter
exploits a more general observation: enumerating all maximal cross-
graph quasi-complete bipartite sub-graphs is equivalent to extracting
the closed ET-3-sets (see Definition 28) in the “stack” of their adjacency
matrices (such as that of Table 55). Thus, Fenster can discover this
type of patterns from dynamic graphs.

Nevertheless, the maximal cross-graph quasi-complete bipartite sub-
graphs usually are too generic to be relevant for knowledge discovery
purposes. In particular, the analyst often is specifically interested
in quasi-cliques, i. e., among the quasi-complete bipartite sub-graphs,
he/she wants to focus on those that involve the same set of nodes, both
as tails and heads of the arcs in the pattern. Furthermore, a dynamicCross-graph closed

quasi-cliques can be
defined as particular

closed ET-3-sets. The
relevant ones usually

involve timestamps
that are close to each

other.

graph is not a generic set of graphs. It is naturally associated with
a metric that gives how many seconds separate any two graphs, i. e.,
the absolute value of the difference between their timestamps. As a
consequence, the analyst usually is specifically interested in patterns
that involves contiguous (or almost-contiguous) timestamps. Indeed,
such patterns described phenomena that are persistent along well
localized time intervals. These two points can be translated into two
constraints on every closed ET-3-set (T,Ntail, Nhead) ∈ 2T × 2N × 2N
Fenster extracts from the ternary relation associated with the dynamic
graph. To ease the understanding of this section, every example uses
no tolerance to noise, i. e., ε = (0, 0, 0).

1.2.2 τ-Contiguous Closed ET-3-Set

It has just been argued that closed ET-3-sets that involve timestamps
that are close makes more sense than those that involves timestamps
that are very far from each other. This qualitative constraint now is
quantified: given τ ∈ R+, a τ-contiguous pattern is such that it is
possible to browse the whole subset of timestamps by jumps from one
timestamp to another without exceeding a delay of τ for each of these
jumps.

Definition 38 (τ-contiguity) A pattern (T,Ntail, Nhead) is τ-contiguous, de-
noted Cτ-contiguous(T,N

tail, Nhead), iff ∀t ∈ [min(T),max(T)], ∃t ′ ∈ T s.t. |t−
t ′| 6 τ.

Notice, in Definition 38, that t does not necessarily belong to T (if
|T | > 2, [min(T),max(T)] is infinite). Cε-connected ∧ Cτ-contiguous being
stronger than Cε-connected alone, a related and weaker closedness con-
straint can be defined. Intuitively, a local-closed pattern is closed w.r.t.
both N sets and to the timestamps of T in the vicinity of those involved
in the pattern. In other words, a timestamp that is too far away (delay
exceeding τ) from any timestamp inside the pattern, cannot prevent

6 mining dynamic graphs 125

its local-closedness. When required, the term τ-local-ε-closedness, that Mining
almost-contiguous

ET-3-sets, the
closedness in time is

limited to the
timestamps close to

the pattern.

includes the parametrization τ ∈ R+ of the locality and ε ∈N3 of the
noise tolerance, is used.

Definition 39 (τ-local-ε-closedness) A pattern (T,Ntail, Nhead) is τ-local-
ε-closed, denoted Cτ-local-ε-closed(T,N

tail, Nhead), iff
∀t ∈ T \ T,

(
∃t ′ ∈ T s. t. |t− t ′| 6 τ⇒ ¬Cε-connected({t}, N

tail, Nhead)
)

∀ntail ∈ N \Ntail,¬Cε-connected(T, {n
tail}, Nhead)

∀nhead ∈ N \Nhead,¬Cε-connected(T,N
tail, {nhead})

Definition 40 (τ-contiguous closed ET-3-set) A pattern (T,Ntail, Nhead)

is a τ-contiguous closed ET-3-set iff it satisfies the conjunction Cε-connected ∧

Cτ-contiguous ∧Cτ-local-ε-closed.

Example 32 ({2, 3}, {a, b, c, d}, {d}) is a 1.75-contiguous closed 3-set in the
toy dataset represented in Table 9. However, it is neither 0.5-contiguous (the
timestamps 2 and 3 are not close enough) nor 2-closed (0 can extend the set of
timestamps). This illustrates the fact that the number of τ-contiguous closed
3-sets is not monotone in τ.

A τ-contiguous closed ET-3-set is an obvious generalization of a
closed ET-3-set. Indeed, ∀τ > max(T) − min(T), Cτ-contiguous ≡ true∧
Cτ-local-ε-closed ≡ Cε-closed.

1.2.3 τ-Contiguous Closed ET-3-Clique

A relevant pattern should involve one set of nodes, i. e., every graph
should be considered as such and not as a bipartite graph where the
nodes are duplicated in two disjoint sets (one set that includes the
nodes as heads of the arcs, another where they are tails of the arcs). In
other terms, a pattern (T,Ntail, Nhead) where Ntail 6= Nhead is irrelevant.
That is why a symmetry constraint is added.

Definition 41 (Symmetry) A pattern (T,Ntail, Nhead) is symmetric, denoted
Csymmetric(T,N

tail, Nhead), iff Ntail = Nhead.

Again, Cε-connected ∧ Cτ-contiguous ∧ Csymmetric being stronger than
Cε-connected ∧Cτ-contiguous, a related and weaker closedness constraint
can be defined. To be said unclosed, a pattern need to be extensible, Mining ET-3-cliques,

the closedness on the
nodes is limited to
those extending the
pattern in both
directions of the
edges.

without breaking Cε-connected, by a node that would be both a tail and a
head in the extended pattern.

Definition 42 (Symmetric τ-local-ε-closedness) (T,Ntail, Nhead) is sym-
metric τ-local-ε-closed, denoted Csym-δ-closed(T,N

tail, Nhead), iff∀t ∈ T \ T,
(
∃t ′ ∈ T s. t. |t− t ′| 6 τ⇒ ¬Cε-connected({t}, N

tail, Nhead)
)

∀n ∈ N \ (Ntail ∩Nhead),¬Cε-connected(T,N
tail ∪ {n}, Nhead ∪ {n})

Symmetric τ-contiguous closed ET-3-sets are called τ-contiguous closed
ET-3-cliques to shorten a little its denomination. Here is its definition:

Definition 43 (τ-contiguous closed ET-3-clique) (T,Ntail, Nhead) is a τ-
contiguous closed ET-3-clique iff it satisfies the conjunction Cε-connected ∧

Cτ-contiguous ∧Csymmetric ∧Csym-δ-closed.

126 application to dynamic graph mining

Example 33 Consider again the dynamic graph represented in Table 9. Both
({2, 3}, {a, c, d}, {a, c, d}) and ({0, 3}, {b, d}, {b, d}) are symmetric. Among
them, ({0.5, 2, 3}, {c, d}, {c, d}) is not closed w.r.t. Cclosed because its third
component can be extended with a, i. e., Cconnected({0.5, 2, 3}, {c, d}, {a}). How-
ever, it is symmetric 1.75-closed. Indeed, the node a cannot simultaneously
extend its second and third components without violating Cconnected.

1.3 Problem Setting

Let (At)t∈T ∈ {0, 1}T×N×N and τ ∈ R+. This chapter deals with com-
puting every τ-contiguous closed ET-3-clique that hold in this dataset.
In other terms, every pattern satisfying Cε-connected ∧ Cτ-contiguous ∧

Csymmetric ∧Csym-δ-closed must be listed. In practical settings, such a col-
lection is huge. It makes sense to further constrain the extraction task
by taking into account an application-dependent relevancy constraint C.
Thus, the problem becomes the complete extraction of the τ-contiguous
closed ET-3-cliques verifying C.

2 related work

2.1 Cross-Graph Quasi-Clique Mining

Collections of large graphs were built to help in understanding
genetics. These graphs commonly have tens of thousands of nodes
and are much noisy. For about five years, extracting knowledge by
crossing such graphs has been a hot topic. For example, there is a need
to extract patterns that remain valid across several co-expression graphs
obtained from microarray data or to cross the data pertaining to physical
interactions between molecules (e. g., protein-protein, protein-gene)
with more conceptual data (e. g., co-expression of genes, co-occurrence
of proteins in the literature). One of the most promising pattern helping
in these tasks is the closed 3-clique or, better, the closed quasi-3-clique.
CLAN [90] is able to extract closed 3-cliques from collections of large
and dense graphs. Crochet+ [42], Cocain* [97] and Quick [51] are the
state-of-the-art extractors of closed quasi-3-cliques. They all use the
same definition of noise tolerance: every node implied in a pattern must
have, in every graph independently from the others, a degree exceeding
a user-defined proportion of the maximal degree it would reach if the
clique was exact. Thus, a pattern involving a subset T of the graphsIn the literature,

cross-graph
quasi-cliques tolerate

noise in a more
constrained way: one
constraint per couple

(node,graph).
Moreover, the graphs

are undirected.

and a subset N of the nodes needs to satisfy |T ×N| constraints to be a
quasi-3-clique, i. e., one constraint per couple (timestamp,node).

This definition of noise tolerance is different from the one involved
in the definition of the closed ET-n-sets Fenster extracts. Indeed, in
Definition 26, an upper-bounded number of absent n-tuples (rather
than a proportion) is tolerated per element involved in the pattern, i. e.,
(T,Ntail, Nhead) is, by definition, an ET-3-set iff:

– ∀t ∈ T , the dynamic graph contains all 3-tuples in {t}×Ntail ×
Nhead but εtimestamps or less.

– ∀ntail ∈ Ntail, the dynamic graph contains all 3-tuples in T ×
{ntail}×Nhead but εtail or less.

– ∀nhead ∈ Nhead, the dynamic graph contains all 3-tuples in T ×
Ntail × {nhead} but εhead or less.

In this way, (T,Ntail, Nhead) needs to satisfy |T |+ |Ntail|+ |Nhead| con-
straints to be an ET-3-set. If only symmetric patterns are considered,

6 mining dynamic graphs 127

i. e., Ntail = Nhead = N, this number becomes |T |+ 2|N|. In the specific
context of undirected graphs (contrary to Fenster, none of the previ-
ously cited approaches can deal with directed graphs), the constraints
Fenster applies on the tails and on the heads are identical. As a conse-
quence, only |T |+ |N| constraints defines an ET-3-clique. By comparing
this number to |T ×N|, it can be written that it is easier for a pattern
to be an ET-3-set than a quasi-clique in the sense of Crochet+, Cocain*
or Quick (the patterns involving only one timestamp or one node are
exceptions to this assertion but they are not much interesting). As a
consequence our approach does not scale well to graphs connecting
thousands of nodes. Nevertheless, because Fenster indifferently enu-
merates timestamps and nodes (no attribute is favored), it can extract
closed ET-3-cliques in large collections of smaller graphs, whereas the
other algorithms cannot (or they must be used with a very strong mini-
mal size constraint on the number of involved graphs). The use of the
τ-contiguity constraint further increases this difference.

2.2 Contiguity

The τ-contiguity stems from an analogous constraint, called max-gap
constraint, initially applied to sequence mining. It was introduced The

almost-contiguity
constraint comes from
sequence mining.

in the GSP approach [80]. The way the τ-contiguity is enforced in
our approach (see Section 3) is similar to that of this seminal article.
The min-gap and the window size constraints [80] uses could as well
be enforced in our approach. Nevertheless, in [80], these constraints
modify the enumeration order, whereas, in our approach, they reduce
the search space and let the enumeration strategy unaltered. Further-
more, the nature of the mined patterns is much different. In the context
of [80], the considered datasets are multiple sequences of itemsets
and the extracted patterns are sub-sequences of itemsets whose order
(but not position in time) is to be respected in all (1-dimensional) sup-
porting sequences. In our approach, the supporting domain contains
(2-dimensional) graphs and their position in time must be aligned.

Notice that the max-gap constraint was used in other contexts too.
For example, [17] and [57] enforce it to extract episodes (repetition of
sub-sequences in one sequence) and [23] somehow combines sequence
and episode mining by extracting, under a max-gap constraint, frequent
sub-sequences whose support is the sum of the number of repetitions
in all sequences of the dataset.

3 mining τ-contiguous closed et-3-set

3.1 A Piecewise (Anti)-Monotone Constraint. . .

Fenster can enforce the constraint Cτ-contiguous (see Definition 38) at
extraction time. Indeed, it is piecewise (anti)-monotone. The

almost-contiguity
constraint is
piecewise
(anti)-monotone.

Proof 1 Let C ′τ-contiguous the following constraint:

C ′τ-contiguous(T1, T2, T3, N
tail, Nhead)

≡ ∀t ∈ [min(T1),max(T2)], ∃t ′ ∈ T3 s.t. |t− t ′| 6 τ .

The three arguments T1, T2 and T3 substitute the three occurrences of T (in
the definition of Cτ-contiguous). C ′τ-contiguous is monotone in on its third ar-
gument and anti-monotone on its first and second arguments (T ⊆ T1 ⇒

128 application to dynamic graph mining

min(T) > min(T1) and T ⊆ T2 ⇒ max(T) 6 max(T2)). Moreover, since
the two last arguments of C ′τ-contiguous do not appear in its expression, this
constraint is both monotone and anti-monotone on them. Therefore, by defi-
nition, Cτ-contiguous is piecewise (anti)-monotone.

3.2 . . . Partially Handled in Another Way

Given the 3-setsU = (Utimes, Utail, Uhead) and V = (V times, V tail, Vhead)

attached to the current enumeration node, the proof in Section 3.1
suggests to check whether it is possible to browse all elements in
[min(Utimes),max(Utimes)]∩ (Utimes ∪ V times) by jumps of, at most, τ.

By also taking a look “around” [min(Utimes,max(Utimes)]∩ (Utimes ∪
V times), Fenster can do better than just telling whether there is no
hope in extracting τ-contiguous ET-3-sets from the current enumeration
node. Indeed, it can prevent the traversal of some of such nodes. More
precisely, Fenster removes from V times the elements that would, if
enumerated, generate left children violating Cτ-contiguous. To do so, theGiven an

enumeration sub-tree,
the almost-contiguity

constraint removes
from the search space

the timestamps that
are too far away from
the largest ET-3-set.

delay between t = min(Utimes) and before(t) = max({t ′ ∈ V times | t ′ <
t}) is considered. If it is strictly greater than τ then every element in
{t ′ ∈ V times | t ′ < t} can be removed from V times. Otherwise, the process
goes on with t = before(t) until a delay greater than τ is found or
until t = min(V times) (in this case no element from V times lesser than
min(Utimes) is removed). In a reversed way, the elements in V times

that are too great to be moved to Utimes without violating Cτ-contiguous
are removed as well. Figure 56 gives a more technical definition of
Fenster’s way to purge V times thanks to Cτ-contiguous.

In the same way, some elements of Stimes may be too far away
from the extrema of Utimes ∪ V times to prevent the local-closedness
of any descending ET-3-set. These elements are those that cannot
be added to Utimes without making the current enumeration node
violate Cτ-contiguous. Fenster removes them by applying a proce-
dure Purge_Stimes to every enumeration node. It is very similar
to Purge_Vtimes (see Algorithm 56) except that it is Stimes which is
browsed backward from before(min(Utimes ∪V times)) and forward from
after(max(Utimes ∪ V times)).

Example 34 Considering the extraction of 1-contiguous 3-sets from the ex-
ample dataset represented in Table 9, if the first enumerated element is 0.5,
Figure 57 depicts the root enumeration node and its two children. In the left
child, Purge_Vtimes removes 2 and 3 from its attached V times set because
2− 0.5 > 1.

These purges of V and S remind the way Fenster handles Cε-connected.
Nevertheless Cε-connected is anti-monotone on all its arguments, whereas
Cτ-contiguous is only piecewise (anti)-monotone. That is why some enu-
meration nodes violating Cτ-contiguous may be generated despite the
calls of Purge_Vtimes (whereas a generated enumeration node always
complies with Cε-connected). As a consequence, checking, at every enu-
meration node, whether Cτ-contiguous holds remains necessary. For the
same reason, some elements in the 3-sets V and/or S attached to both
left and right children may be purged thanks to Cτ-contiguous (whereas
Cε-connected cannot reduce the search space of a right child).

6 mining dynamic graphs 129

Input: Utimes, V times

if Utimes 6= ∅ then
V times ← sort(V times)

t← min(Utimes)

if t > min(V times) then
before(t)← max({t ′ ∈ V times | t ′ < t}) {Binary search in V times}
while before(t) 6= min(V times)∧ t− before(t) 6 τ do
t← before(t)
before(t)← previous(V times, t) {V times is browsed backward}

end while
if t− before(t) > τ then
V times ← V times \ [min(V times), before(t)]

end if
end if
t← max(Utimes)

if t < max(V times) then
after(t)← min({t ′ ∈ V times | t ′ > t}) {Binary search in V times}
while after(t) 6= max(V times)∧ after(t) − t 6 τ do
t← after(t)
after(t)← next(V times, t) {V times is browsed forward}

end while
if after(t) − t > τ then
V times ← V times \ [after(t),max(V times)]

end if
end if

end if

Figure 56: The Purge_Vtimes procedure.

U = (∅,∅,∅)

V = ({0,0.5,2,3},{a,b,c,d},{a,b,c,d})

S = (∅,∅,∅)

U = ({0.5},∅,∅)

V = ({0,2,3},{a,b,c,d},{a,b,c,d})

S = (∅,∅,∅)

0.5∈ U

U = ({0.5},∅,∅)

V = ({0},{a,b,c,d},{a,b,c,d})

S = (∅,∅,∅)

Purge Vtimes

Purge Stimes

U = (∅,∅,∅)

V = ({0,2,3},{a,b,c,d},{a,b,c,d})

S = ({0.5},∅,∅)

0.5 /∈ U

U = (∅,∅,∅)

V = ({0,2,3},{a,b,c,d},{a,b,c,d})

S = ({0.5},∅,∅)

Purge Vtimes

Purge Stimes

Figure 57: Enumeration of 0.5 ∈ V during the extraction of 1-contiguous 3-sets
from the dataset represented in Table 9.

130 application to dynamic graph mining

3.3 Enforcing the τ-Closedness

The constraint Cτ-local-ε-closed (see Definition 39) is piecewise (anti)-
monotone.The closedness

constraint remains
piecewise

(anti)-monotone when
limited in time.

Proof 2 Let C ′τ-local-ε-closed the following constraint:

C ′τ-local-ε-closed(T1, T2, T3, T4, N
tail
1 , N

tail
2 , N

tail
3 , N

head
1 , Nhead

2 , Nhead
3)

≡

∀t ∈ T \ T1,(
∃t ′ ∈ T2 s.t. |t− t ′| 6 τ⇒ ¬Cε-connected({t}, N

tail
1 , N

head
1)

)
∀ntail ∈ N \Ntail

2 ,¬Cε-connected(T3, {n
tail}, Nhead

2)

∀nhead ∈ N \Nhead
3 ,¬Cε-connected(T4, N

tail
3 , {n

head})

C ′τ-local-ε-closed is anti-monotone on its second argument and monotone on
all its other arguments. Therefore, by definition, Cτ-local-ε-closed is piecewise
(anti)-monotone.

A way to enforce Cτ-local-ε-closed follows from the proof of its piece-
wise (anti)-monotonicity: an enumeration node, i. e., its attached 3-
sets U = (Utimes, Utail, Uhead) and V = (V times, V tail, Vhead), may lead to
some local-closed ET-3-set if (Utimes ∪V times, Utail ∪V tail, Uhead ∪Vhead):

– cannot be extended by any element in T \ (Utimes ∪ V times) distant,
by at most τ, from an element in Utimes;

– cannot be extended by any element in N \ (Utail ∪ V tail);
– cannot be extended by any element in N \ (Uhead ∪ Vhead).
As done for Cε-closed, to avoid useless (and costly) tests, Fenster

maintains the 3-set S = (Stimes, Stail, Shead) containing only the ele-
ments that may prevent the closure of the ET-3-sets descending from
the current enumeration node, i. e., the previously enumerated ele-
ments and not those that were removed from V thanks to Cε-connected ∧

Cτ-contiguous. Moreover, as explained in Section 3.2, Fenster purges S

before checking Cτ-local-ε-closed. Since it is used in conjunction with
Cτ-contiguous, Cτ-local-ε-closed can be more strongly enforced: no ele-
ment in Stimes ∩ [min(Utimes) − τ,max(Utimes) + τ] is allowed to ex-
tend (Utimes ∪ V times, Utail ∪ V tail, Uhead ∪ Vhead). Indeed, an element
in Stimes ∩ [min(Utimes) − τ,max(Utimes) + τ] may be distant, by strictly
more than τ, from any element in Utimes but this will never be the
case at the leaves descending from the current enumeration since
Utimes must then be τ-contiguous. All in all, Fenster prunes the
sub-tree descending from the current enumeration node if (Utimes ∪
V times, Utail ∪ V tail, Uhead ∪ Vhead) can be extended by any element in
Stimes ∩ [min(Utimes) − τ,max(Utimes) + τ], Stail or Shead.

4 mining τ-contiguous closed et-3-cliques

4.1 A Piecewise (Anti)-Monotone Constraint. . .

In an ET-3-clique, both subsets of N are identical. An equivalent defi-
nition to the symmetry constraint (Definition 41) would be as follows:
Csymmetric(T,N

tail, Nhead) ≡ Ntail ⊆ Nhead ∧Nhead ⊆ Ntail. In this form,
a piecewise (anti)-monotone constraint is identified.“Being a clique” is

piecewise
(anti)-monotone. Proof 3 Let C ′symmetric the following constraint:

C ′symmetric(T,N
tail
1 , N

tail
2 , N

head
1 , Nhead

2) ≡ Ntail
1 ⊆ N

head
1 ∧Nhead

2 ⊆ Ntail
2 .

6 mining dynamic graphs 131

Ntail
1 and Ntail

2 substitute the two occurrences of Ntail (in the alternative def-
inition of Csymmetric). In the same way, Nhead

1 and Nhead
2 substitute the two

occurrences of Nhead. C ′symmetric is monotone on its third and fourth argu-
ments (Ntail

2 and Nhead
1) and anti-monotone on its second and fifth arguments

(Ntail
1 and Nhead

2). Moreover, since the first argument (T) does not appear
in the expression of C ′symmetric, this constraint is both monotone and anti-
monotone on this argument. Therefore, by definition, Csymmetric is piecewise
(anti)-monotone.

Being piecewise (anti)-monotone, the symmetry constraint can be
efficiently exploited by Fenster. However, the enumeration tree can
be further reduced if this constraint is enforced when choosing the
element to be enumerated.

4.2 . . . Better Handled in Another Way

In this section, a distinction between the nodes considered as tails
(i. e., the rows of the adjacency matrices) and the nodes considered as
heads (i. e., the columns of the adjacency matrices) must be made. They
are respectively named Ntail and Nhead. Intuitively, when an element
ntail in V tail ⊆ Ntail is chosen to be present (resp. absent) in any ET-3-
clique extracted from the current enumeration node (see Section 1.2 in
Chapter 3), the element nhead in Vhead ⊆ Nhead standing for the same
node should be enumerated just after and only to be present (resp.
absent) too. Thus, the enumeration tree is not a binary tree anymore The enumeration of a

node as a head (resp.
tail) follows that of
the same node as a
tail (resp. head) and
either both are
present or both are
absent.

(some enumeration nodes only have one child).
When handled as a piecewise (anti)-monotone constraint, the sym-

metry constraint leads to many more enumeration nodes. When nhead

is chosen to be enumerated, the left (resp. right) child where nhead is
present (resp. absent) is generated even if its counterpart ntail in the
other set was previously set absent (resp. present). Then the symmetry
constraint prunes the sub-tree rooted by this node. Since there is no
reason for nhead to be enumerated just after ntail, the intuition tells us
that the number of such nodes, whose generation could be avoided by
modifying the enumeration (as explained in the previous paragraph),
increases exponentially with the average number of enumeration nodes
between the enumeration of ntail and that of nhead. This is actually
not a theorem because Csym-δ-closed or C may prune some descendant
sub-trees before nhead is enumerated. Anyway, in practical settings,
handling the symmetry constraint via a modification of the enumera-
tion usually is much more efficient than via the general framework for
piecewise (anti)-monotone constraints.

Figure 58 informally depicts these two approaches (the probable
diminutions of the V sets in the left children and the possible pruning
due to Cε-closed or C are ignored). T1 and T2 are subsets of T. N1 and
N2 are subsets of N. In both examples, the elements mhead and nhead of
Nhead are enumerated. The resulting nodes are, of course, the same (the
dotted nodes being pruned). However this result is straightforward
when the enumeration constraint is handled through a modification of
the enumeration (Figure 58b), whereas it usually requires more nodes
when it is handled as an ordinary piecewise (anti)-monotone constraint
(Figure 58a). The number of additional nodes in the latter case grows
exponentially with the number of elements enumerated between ntail

and nhead (e. g., mtail could be enumerated in between).

132 application to dynamic graph mining

U
=

(T
1
,
N

1
∪

{n
t
a
il
},

N
1
)

V
=

(T
2
,
N

2
∪

{m
t
a
il
},

N
2
∪

{n
h
e
a
d
,
m

h
e
a
d
})

n
t
a
il
∈

U

U
=

(T
1
,
N

1
∪

{n
t
a
il
},

N
1
∪

{m
h
e
a
d
})

V
=

(T
2
,
N

2
∪

{m
t
a
il
},

N
2
∪

{n
h
e
a
d
})

m
h
e
a
d
∈

U

U
=

(T
1
,
N

1
∪

{n
t
a
il
},

N
1
∪

{m
h
e
a
d
,
n

h
e
a
d
})

V
=

(T
2
,
N

2
∪

{m
t
a
il
},

N
2
)

n
h
e
a
d
∈

U

?
∈

U
?

/∈
U

U
=

(T
1
,
N

1
∪

{n
t
a
il
},

N
1
∪

{m
h
e
a
d
})

V
=

(T
2
,
N

2
∪

{m
t
a
il
},

N
2
)

¬
C

s
y
m

m
e
t
r
ic

n
h
e
a
d

/∈
U

U
=

(T
1
,
N

1
∪

{n
t
a
il
},

N
1
)

V
=

(T
2
,
N

2
∪

{m
t
a
il
},

N
2
∪

{n
h
e
a
d
})

m
h
e
a
d

/∈
U

U
=

(T
1
,
N

1
∪

{n
t
a
il
},

N
1
∪

{n
h
e
a
d
})

V
=

(T
2
,
N

2
∪

{m
t
a
il
},

N
2
)

n
h
e
a
d
∈

U

?
∈

U
?

/∈
U

U
=

(T
1
,
N

1
∪

{n
t
a
il
},

N
1
)

V
=

(T
2
,
N

2
∪

{m
t
a
il
},

N
2
)

¬
C

s
y
m

m
e
t
r
ic

n
h
e
a
d

/∈
U

(a
)

Sy
m

m
et

ry
ha

nd
le

d
as

an
or

di
na

ry
pi

ec
ew

is
e

(a
nt

i)
-m

on
ot

on
e

co
ns

tr
ai

nt
.

U
=

(T
1
,
N

1
∪

{n
t
a
i
l
},

N
1
)

V
=

(T
2
,
N

2
∪

{m
t
a
i
l
},

N
2
∪

{n
h
e
a
d
,
m

h
e
a
d
})

n
t
a
i
l
∈

U

U
=

(T
1
,
N

1
∪

{n
t
a
i
l
},

N
1
∪

{n
h
e
a
d
})

V
=

(T
2
,
N

2
∪

{m
t
a
i
l
},

N
2
∪

{m
h
e
a
d
})

n
h
e
a
d
∈

U

U
=

(T
1
,
N

1
∪

{n
t
a
i
l
},

N
1
∪

{n
h
e
a
d
,
m

h
e
a
d
})

V
=

(T
2
,
N

2
∪

{m
t
a
i
l
},

N
2
)

m
h
e
a
d
∈

U

m
t
a
i
l
∈

U

U
=

(T
1
,
N

1
∪

{n
t
a
i
l
},

N
1
∪

{n
h
e
a
d
})

V
=

(T
2
,
N

2
∪

{m
t
a
i
l
},

N
2
)

m
h
e
a
d

/∈
U

m
t
a
i
l

/∈
U

(b
)

Sy
m

m
et

ry
ha

nd
le

d
by

a
m

od
ifi

ed
en

um
er

at
io

n.

Fi
gu

re
5

8
:H

an
dl

in
g

th
e

sy
m

m
et

ry
co

ns
tr

ai
nt

.

6 mining dynamic graphs 133

4.3 Constraining the Enumeration

Let Ntail = (ntail
i)i=1..|N| and Nhead = (nhead

i)i=1..|N| its counterpart,
i. e., ∀i = 1..|N|, ntail

i and nhead
i stand for the same node. (T,Ntail, Nhead)

being symmetric is a constraint that can be expressed as this list of, so
called, enumeration constraints:

ntail
1 ∈ N

tail ⇒ nhead
1 ∈ Nhead nhead

1 ∈ Nhead ⇒ ntail
1 ∈ N

tail

ntail
2 ∈ N

tail ⇒ nhead
2 ∈ Nhead nhead

2 ∈ Nhead ⇒ ntail
2 ∈ N

tail

...
...

ntail
i ∈ N

tail ⇒ nhead
i ∈ Nhead nhead

i ∈ Nhead ⇒ ntail
i ∈ N

tail

...
...

ntail
|N|
∈ Ntail ⇒ nhead

|N|
∈ Nhead nhead

|N|
∈ Nhead ⇒ ntail

|N|
∈ Ntail

We actually made Fenster handle a more general class of constraints: A set of constraints
defines “being a
clique”. They belong
to a larger class of
constraints efficiently
handled via
occasional
modifications of
Fenster’s
enumeration.

Definition 44 (Enumeration constraint) Cenum is said to be an enumera-
tion constraint iff, given an ET-3-set (T,Ntail, Nhead), it is of the form:

Cenum(T,N
tail, Nhead) ≡ ∧i=1..kai ⇒ ak+1,

where k ∈N and ∀i = 1..(k+ 1), ai is of the form e ∈ A or e 6∈ A, e being
an arbitrary element from an arbitrary attribute domain A ∈ {T,Ntail, Nhead}.

Example 35 Here are three examples of enumeration constraints that can be
enforced on any ET-3-set (T,Ntail, Nhead):

– t1 ∈ T ⇒ t8 /∈ T
– t1 /∈ T ∧ntail

1 ∈ N
tail ⇒ t2 ∈ T

– true⇒ t1 /∈ T (k = 0 in Definition 44)
Notice that the last constraint is not equivalent to removing the element t1
from the data. Indeed, a closed ET-3-set in the dataset deprived of t1 may not
be closed in the dataset containing t1. In the latter case, it must not be ex-
tracted (and it is not extracted when the enumeration constraint is enforced).

Before choosing the element to enumerate (see Figure 32), Fenster

browses the set of enumeration constraint, and tests whether the left
parts of them are true or not. Considered as constraints, these left
parts are, again, piecewise (anti)-monotone. Indeed, when there is a
term of the form e ∈ A (resp. e /∈ A), the left part of the constraint
is anti-monotone (resp. monotone) in this occurrence of A. Given the
3-sets U and V attached to the current enumeration node, three cases
may arise:

1. The left part will never be fulfilled in the sub-tree rooted by the
current enumeration node:
– if an element in the left part is to be present but it is neither in
U not in V .

– if an element in the right part is to be absent but it is in U.

2. The left part is fulfilled by at least one (but not every) node
descending from the current enumeration node.

3. The left part is fulfilled by every node descending from the current
enumeration node:
– if an element in the left part is to be present, it is in U.

134 application to dynamic graph mining

– if an element in the left part is to be absent, it is neither in U
nor in V .

Fenster reacts differently at each of these cases:

1. This enumeration constraint is removed from the set of enumera-
tion constraints when traversing the sub-tree rooted by the current
enumeration node. Indeed, it never applies in this sub-tree. Use-
lessly checking it for every descendant enumeration node would
only decrease Fenster’s performance.

2. This enumeration constraint is kept.

3. The right part of this enumeration constraint is considered.

When the right part of an enumeration constraint is considered, three
new cases may arise:

3.1 The right part is already fulfilled:
– if its element is to be present and is already in U.
– if its element is to be absent and is already neither in U nor in
V .

3.2 The right part can be fulfilled: if its element is in V .

3.3 The right part cannot be fulfilled:
– if its element is to be present and is neither in U nor in V .
– if its element is to be absent and is in U.

Fenster differently reacts at each of these cases:

3.1 This enumeration constraint is removed from the set of enumera-
tion constraints when traversing the sub-tree rooted by the current
enumeration node. Indeed, it is satisfied for all ET-3-sets in this
sub-tree. Uselessly checking it for every descendant enumeration
node would only decrease Fenster’s performance.

3.2 The element on the right part of the constraint can be enumerated
as specified (one child only).

3.3 The sub-tree rooted by the current enumeration node is pruned.
Indeed, none of the ET-3-sets in this sub-tree verifies the con-
straint.

In Case 3.2, we write “the element can be enumerated” because, at a
given enumeration node, several enumeration constraint may be in this
case but only one can be applied.

4.4 Contraposition of Enumeration Constraints

If an enumeration constraint holds, its contraposition, logically, holds
too. In the general case (conjunction of terms in the left part), the
contraposition of an enumeration constraint is not an enumeration
constraint (disjunction of terms in the right part). In the particular case
of enumeration constraints of the form a1 ⇒ a2 (see Definition 44), e. g.,
those generated from Csymmetric (see Section 4.3), their contrapositions
are enumeration constraints too. Thus, Fenster enforces a larger set
of enumeration constraints (the original set of enumeration constraints
and the contrapositions of those of the form a1 ⇒ a2) for even faster
extractions. Figure 59 gives a more technical definition of how this
larger set is computed.

Example 36 Among the enumeration constraints of Example 35, only the
first one (t1 ∈ T ⇒ t8 /∈ T) admits a contraposition (t8 ∈ T ⇒ t1 /∈ T) that
is, itself, an enumeration constraint.

6 mining dynamic graphs 135

Input: Set E of enumeration constraints
Input: Set E enlarged with contrapositions
E ′ ← E

for a1 ∧ a2 ∧ · · ·∧ ak ⇒ ak+1 ∈ E do
if k = 1 then
E ′ ← E ′ ∪ {¬a2 ⇒ ¬a1}

end if
end for
return E ′

Figure 59: Append_contraposition.

4.5 Enforcing the Symmetric τ-Closedness

Fenster can enforce the constraint Csym-δ-closed (see Definition 42) at
extraction time. Indeed, it is piecewise (anti)-monotone. The closedness

constraint remains
piecewise

(anti)-monotone for
almost-contiguous

cross-graph
quasi-cliques.

Proof 4 Let C ′sym-δ-closed the following constraint:

C ′sym-δ-closed(T1, T2, T3, N
tail
1 , N

tail
2 , N

tail
3 , N

head
1 , Nhead

2 , Nhead
3)

≡

∀t ∈ T \ T1,(

∃t ′ ∈ T2 s.t. |t− t ′| 6 τ⇒ ¬Cε-connected({t}, N
tail
1 , N

head
1)

)
∀n ∈ N \ (Ntail

2 ∩N
head
2),¬Cε-connected(T,N

tail
3 ∪ {n}, N

head
3 ∪ {n})

C ′sym-δ-closed is anti-monotone on its second argument (T2) and monotone on
all its other arguments. Therefore, by definition, Csym-δ-closed is piecewise
(anti)-monotone.

A way to enforce Cτ-local-ε-closed follows from the proof of its piece-
wise (anti)-monotonicity: an enumeration node, i. e., its attached 3-sets
U = (Utimes, UNtail

, UNhead
) and V = (V times, VNtail

, VNhead
), may lead

to some local-closed ET-3-set if (Utimes ∪ V times, UNtail ∪ VNtail
, UNhead ∪

VNhead
):

– cannot be extended by any element in T \ (Utimes ∪ V times) distant,
by at most τ, from an element in Utimes;

– cannot be simultaneously extended by any element in N \ (UNtail ∪
VNtail

) (row of the adjacency matrices) and its related element in
N \ (UNhead ∪ VNhead

) (column of the adjacency matrices).
In a similar way to what was done with Cτ-local-ε-closed (see Sec-

tion 3.3), Fenster maintains the 3-set S = (Stimes, SN
tail
, SN

head
) con-

taining only the elements that may prevent the closure of the ET-3-
sets descending from the current enumeration node and prunes the
sub-tree descending from it if (Utimes ∪ V times, UNtail ∪ VNtail

, UNhead ∪
VNhead

) can be extended by any element in Stimes ∩ [min(Utimes) −

τ,max(Utimes) + τ] or by any element in SN
tail

and its related element
in SN

head
. Thus, when SN

tail
(respectively SN

head
) is purged from an ele-

ment (because it cannot extend (Utimes ∪ V times, UNtail ∪ VNtail
, UNhead ∪

VNhead
) without violating Cε-connected), the related element in SN

head

(respectively SN
tail

) is removed as well.
An overall view of the complete extraction of the τ-contiguous closed

ET-3-cliques under constraint can now be presented. The details and

136 application to dynamic graph mining

Input: (At)t∈T ∈ {0, 1}T×N×N, ε ∈ N3, τ ∈ R+ and a user-defined
piecewise (anti)-monotone constraint C
Output: Every τ-contiguous closed ET-3-clique in (At)t∈T satisfying
C

E← Enumeration constraints pertaining to Csymmetric (see Section 4.3)

E ′ ← Append_contraposition(E)
Fenster((∅, ∅, ∅), (T,N,N), (∅, ∅, ∅))

Figure 60: main.

justifications of how every identified constraint is handled are present
within the two previous sections, hence proving its correctness. Fig-
ure 60 shows the main procedure solving the problem stated in Sec-
tion 1.3. It calls the algorithm in Figure 61 which can be regarded as a
specialization of that of Fenster (see Figure 32).

5 conclusion

Together a symmetry and a contiguity constraints specialize Fenster

to make it extract every τ-contiguous closed ET-3-clique in a dynamic
graph. Because these constraints are piecewise (anti)-monotone, the
expressive power of this class of constraints is emphasized and they
could be enforced on the top of a “plain-vanilla” Fenster. However,
to scale up to very large dynamic graphs, these constraints must be
enforced more cleverly. Interestingly, the idea, which is carried out, is
the same for the two constraints (and for the connection constraint too):
they must be used as soon as possible in the enumeration tree. The
symmetry constraint has even been split into many small enumeration
constraints that are individually exploited as soon as possible. Enu-
meration constraints are particular since they change the structure of
the enumeration, which is not binary anymore. This chapter focuses
on extracting τ-contiguous closed ET-3-cliques. However, Fenster is
not restricted to ternary relations. Thus, it can mine graphs that are
parametrized with more than one attribute. The next chapter studies
the patterns in such a graph. Notice also that several τ-contiguity
constraints can be enforced if there are several real-valued attributes.

6 mining dynamic graphs 137

Input: U,V, S
Output: Every τ-contiguous closed ET-3-clique containing every
element in U, possibly some elements in V , and satisfying C

Purge_Vtimes

Purge_Stimes

if Cε-connected(Ut V) then
U← Ut V
V ← (∅, . . . , ∅)

end if
if C∧ Cτ-contiguous ∧Csym-δ-closed may be satisfied by an ET-3-set de-
scending from this node then

Process E ′ as detailed in Section 4.3
if Case 3.3 was never encountered then

if V = (∅, ∅, ∅) then
output(U)

else
if Case 3.2 was encountered with an enumeration constraint
concluding on ak+1 (see Definition 44) then

if ak+1 is of the form e ∈ A then
Fenster(U ∪ {e}, {v ∈ V \ {e} | Cε-connected(U ∪ {e} ∪
{v})}, {s ∈ S | Cε-connected(U∪ {e}∪ {s})})

else
ak+1 is of the form e 6∈ A
Fenster(U,V \ {e}, S∪ {e})

end if
else

Choose e ∈ V
Fenster(U∪ {e}, {v ∈ V \ {e} | Cε-connected(U∪ {e}∪ {v})}}, {s ∈
S | Cε-connected(U∪ {e}∪ {s})})
Fenster(U,V \ {e}, S∪ {e})

end if
end if

end if
end if

Figure 61: Fenster specialization for τ-contiguous closed ET-3-clique mining.

7M I N I N G T H E V É L O ’ V U S A G E N E T W O R K

1 dataset

Vélo’v is a bicycle rental service run by the urban community of
Lyon, France. Vélo’v stations are spread over Lyon and its nearby. One
of them is depicted in Figure 62

1. At any of these stations, the users
can take a bicycle and return it to any other station. Whenever a bicycle Vélo’v logs are

timestamped rides
between 327 stations
and during two years.

is rented or returned, this event is logged. Our research group obtained
parts of these logs (e. g., no user identification to preserve privacy)
recorded between May 27th 2005 (when the system was opened to the
public) and December 17th 2007. They represent more than 13.1 million
rides. The earliest records relate to the users discovering Vélo’v and
how useful it may be in their daily mobility. To study the network
usage in “normal” conditions, these earliest records were ignored. The
chosen date, after which the considered dataset starts, is December 17th
2005. In this way, two full years are kept and aggregations do not favor
any part of the year (along which the network usage evolves). Many
records stand for rides from a station to itself. These rides usually last
a few seconds. They can be mainly explained by users who are not
satisfied by the quality of the bicycle they have just rent (e. g., a flat
tire) or who have changed their mind (e. g., a bus arrives). Because,
from a given station, the most frequent rides are to itself, keeping these
records influence a lot any normalization procedure. That is why these
records are removed but, after the post-processing steps, the related
routes are all claimed frequent, i. e., appended to the relation. A few The dataset is cleaned.

Rides from/to a same
station are removed
before normalizing
but considered
frequent in the end.

more records were removed. They relate to abnormal rides (incoherent
dates) or rides implying stations that are not opened to the public (e. g.,
where bicycles are repaired). About 10.2 million records remain after
these first steps.

To discover patterns that depend on both the time and the day of the
week, the data are aggregated w.r.t. these two scales. More precisely,
one directed graph is built per period of time (a one-hour period was
chosen) and per day of the week. For instance, one of these graphs
presents the rides between nine o’clock and ten o’clock on Mondays.
The vertices correspond to the Vélo’v stations. The edges are labeled
with the total number of rides from the head vertex (departure station)
to the tail vertex (arrival station) during the considered period of time
and day of the week. The global activity of the Vélo’v network varies
a lot between the different days of the week. For instance, there are
51.3% more rides on Fridays than on Sundays. This difference is even
greater between the time periods. For instance, there are about 22 times
more rides between 6 pm and 7 pm than between 5 am and 6 am.
This global behavior is known. To ignore it, the data are normalized
so that the sum of the labels is the same whatever the graph. In The data are

normalized such that
every pair (day,time
period) has the same
importance.

this way, when the data are binarized, the Boolean predicate decides
whether routes that are frequent w.r.t. the period of time and the day

1. © 2005 Frédéric Bonifas (from Wikimedia Commons)
This picture is licensed under the Creative Commons Attribution ShareAlike 3.0

License.

139

140 application to dynamic graph mining

Figure 62: A Vélo’v station.

of the week. The distribution of the rides w.r.t. the stations is far
from being constant too. One reason is structural. Some stations can
contain/receive many more bicycles than others. Because no bicycle
can be rented from an empty station and no bicycle can be returned
to a full station, the largest stations imply more rides. Furthermore
they are better known by the users (who want to minimize the risk of
finding an empty or a full station). Another reason is the progressive
installation of the stations. In December 17th 2005, there were 172

stations in activity. In December 17th 2007, they were 315. Because
some stations were closed, there are 327 different stations involved in
the dataset. Obviously a station that opened little before December
17th 2007 cannot be implied in as many records as another one that
has been in activity since the beginning. A local binarization partially
handles these differences. The computation of a p-value inspires theThe binarization is

local, i. e., the
relevant routes are
frequent for the
departure or the
arrival station.

details of this technique. It considers the vertices one by one, computes
the sum S of the labels of both its incoming and outgoing edges, and
claims frequent the routes related to the edges with the greatest values
and whose sum is just beyond 0.1× S. By definition, this procedure
keeps at least one edge involving each station. In average, 191 edges
per station are kept (still excluding the reflexive routes). The resulting
4-ary relations contains 117411 4-tuples (including the reflexive routes,
which were previously put to one side), hence a 117411

7×24×327×327 = 0.7%
density. This relation is named RVélo’v. In the following, it is always
mined under this conjunction of minimal size constraints:

– at least two days of the week;
– at least three time periods;
– at least three departure stations;
– at least three arrival stations.
The results of every experiment in this chapter are obtained on an

Intel® processor cadenced at 2.8GHz, 3 Gb of RAM and running a
GNU/Linux™ operating system.

7 mining the vélo’v usage network 141

ε Number of patterns Symmetry

w/o Csymmetric with Csymmetric w/o Csymmetric

(0, 0, 0, 0) 13 11 84.62%

(1, 1, 1, 1) 111 63 54.05%

(3, 2, 2, 2) 743 342 41.05%

(4, 3, 3, 3) - 1163 -

Table 10: Number of patterns in RVélo’v.

2 symmetry between departure and arrival stations

2.1 Avoiding False Positive Noise

Table 10 lists, with and without the symmetry constraint (see Sec-
tion 1.2.3 in Chapter 6), the number of patterns (verifying the minimal
size constraints) in RVélo’v. The parameters for noise tolerance, given
in the first column, follow the order (εday, εtime, εdep, εarr). The last
column gives the proportion of closed 4-sets that actually are symmetric
(when Csymmetric is not enforced). In other terms, it is the proportion
of closed 4-sets that are discovered as well when Csymmetric is enforced.
With a low tolerance to noise, this proportion is very large: the closed
4-sets, in RVélo’v, naturally are symmetric. When tolerating more noise, The patterns in the

Vélo’v usage network
naturally are

symmetric.

the proportion of symmetric closed 4-sets decreases. Nevertheless:
– it remains much larger than what would be obtained with a ran-

dom distribution of the frequent routes;
– most of the closed 4-sets remain “almost” symmetric (i. e., most of

the departure stations are arrival stations and reciprocally);
– part of the tendency is due to closed 4-sets that false positive noise

enlarges (more departure or arrival stations).
Given the number of Vélo’v stations (327), the first point is quite

obvious. A formal test could be: randomize RVélo’v (see [33] for such a
method designed for binary relations), extract the closed 4-sets, com-
pute the proportion of symmetric ones and compare it to the value
obtained with the non-randomized version of RVélo’v. The “almost”
symmetry, the second point mentions, is easy to quantify. E. g., the

Jaccard index, (Xdep, Xarr)→ |Xdep∩Xarr|

|Xdep∪Xarr|
, measures, for every extracted

closed 4-set, the similarity between its departure and arrival stations.
With ε = (3, 2, 2, 2), its average, over all extracted patterns, is 0.63,
hence an “almost” symmetry. The last point will be granted more
attention because it relates to a topic this thesis discusses. It states
that the proportion of symmetric closed 4-sets decreases because some
“naturally” symmetric patterns are extended with additional depar-
ture or arrival stations that false positive noise affects. Section 1.1.1
in Chapter 2 explains how minimal size constraints prevent this phe-
nomenon. When mining RVélo’v, these constraints are quite weak and
the positive noise becomes problematic when much noise is tolerated.
Strengthening the minimal size constraints is a solution. Enforcing the
symmetry constraint is another one. Indeed, in a closed ET-4-clique, The symmetry

constraints fights
against false positive
noise.

every station must be both a departure and an arrival station. On the
contrary, without Csymmetric, a station can be only a departure (resp.
arrival) station. That makes twice less 4-tuples involved in the process

142 application to dynamic graph mining

ε Running time Variation

w/o Csymmetric with Csymmetric

(0, 0, 0, 0) 3’59s 3’51s -3.6%

(1, 1, 1, 1) 1:16’15s 33’32s -56.02%

(3, 2, 2, 2) 19:29’06s 3:09’00s -79.52%

(4, 3, 3, 3) - 3:59’29s -

Table 11: Running times of Fenster on RVélo’v.

of extending a pattern. That also means twice less 4-tuples the positive
noise needs to affect so that the station erroneously extends the pattern.

2.2 Decreasing the Running Times

Table 11 gives the time it takes Fenster to extract the patterns Table 10

counts. When much noise is tolerated, Csymmetric greatly reduces the
running times. The effect of Csymmetric on the false positive noiseThe symmetry

constraint
significantly

decreases the running
times.

explains, again, the relatively weak gain observed with little noise
tolerance. Indeed, in this setting, the chosen size constraints are enough
to fight against positive noise and, even without enforcing Csymmetric, a
station usually is declared irrelevant both as a departure and an arrival
station. With more noise tolerance, it may be kept for one of these two
roles and the size constraints may not prune the search space (or prune
it later in the enumeration).

It has been shown that RVélo’v naturally contains patterns that are
symmetric w.r.t. the departure and arrival stations. This justifies, in the
remaining of this chapter, the enforcement of Csymmetric. This constraint
guides the search for the relevant patterns, helps in fighting against
positive noise and allows to tolerate quite a lot of noise while remaining
tractable.

3 effect of a τ-contiguity constraint

The effect of a τ-contiguity constraint on the time attribute is tested.
To do so, a different real value must substitute every time period.
However, in RVélo’v, the time is cyclic. Replacing every time period by its
starting hour (for instance) and enforcing a 1-contiguity would not allow
the discovery of a pattern that holds between 22 pm and 1 am because
|22− 0| > 1 and |23− 0| > 1. Here is a workaround: clone the 4-tuples
such that (xday, xtime, xdep, xarr) ∈ R ⇔ (xday, xtime + 24, xdep, xarr) ∈
Rclone and mine R ∪Rclone with enumeration constraints that specify
that whatever the time element xtime in U, every time element lower
than xtime − 24 or greater than xtime + 24 must not be in U. In this
experiment, the time was simply kept acyclic but the “cutting” date
was set between the 4am-5am and 5am-6am time periods. This choice
is justified by the expected absence of closed 4-sets running across 5 am.
Indeed, the users behaves very differently before and after the public
transportation services restart (at about 5 am).

The chosen noise tolerance is (3, 2, 2, 2). To test the effect of the
τ-contiguity constraint, τ varies between 0 and 8. Figure 63 gives the
number of closed 4-cliques and the times to extract them. Notice that

7 mining the vélo’v usage network 143

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5 6 7 8 9
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

nb
 o

f c
lo

se
d

4-
cl

iq
ue

s

tim
e

(h
ou

r)

tau

Size of the collection
Running time

Figure 63: Effect of a τ-contiguity on the number of closed 4-cliques and the
time to extract them.

the number of closed 4-cliques satisfying the 8-contiguity constraint is
342, i. e., the same number as without any contiguity constraint (see
Table 10). As a consequence, the assumption that there is no closed
4-set running across 5 am is true. Of course, a normal discovery process,
under a τ-contiguity constraint, could not ensure that. Notice also that
even with τ = 8 (and the same output collection), forcing the closed
4-sets to be almost-contiguous decreases the extraction time of 8.6%. The

almost-contiguity
constraint

significantly
decreases the running

times.

Of course a smaller τ provides a higher reduction and filters out some
poorly relevant closed 4-sets. For example, with a 3-contiguity, the
extraction lasts less than two hours. This is to be compared with the
three hours that are required without this constraint and the 19 hours
and a half with the minimal size constraints only. The 296 3-contiguous
closed 4-cliques are chosen for the next step: Alpha (see Chapter 5).

4 agglomeration, selection and interpretation

4.1 Agglomeration and Selection

Within a few seconds, Alpha agglomerates the 296 3-contiguous
closed 4-cliques in RVélo’v. After its selection procedure (see Section 2

in Chapter 5), 125 patterns remain. Notice each of these patterns
remains symmetric, i. e., its departure stations and arrival stations are
the same. Indeed, an interesting property of the n-clique agglomeration Agglomerates of

symmetric patterns
are symmetric.

is the preservation of Csymmetric. It trivially derives from the definition
of this constraint (Definition 41) and that of that of the merging operator
(Definition 22).

The selection procedure of Alpha is rather conservative. Indeed, it
assumes that “all the initially extracted closed ET-n-sets are fragments
of some relevant local pattern” (see Section 2.2 in Chapter 5). Because
RVélo’v contains many small patterns, the number of patterns is reduced
by “only” 58%. This remains a welcome gain and the larger patterns
that Alpha outputs are more relevant than those at its input. To discuss

144 application to dynamic graph mining

Figure 64: Mining RVélo’v.

some of them, the patterns that involve at least four stations and five
time periods were selected in a final post-processing step. Figure 64

presents the whole process in the form of a KNIME workflow.

4.2 Seven Patterns

The final post-processing step keeps seven patterns. Red dots in
Figures 65 to 71

2 indicate the geographic positions of the stations
involved in the patterns. The captions give the related days of the week
and time periods. Remember that every pattern stands for frequent
rides between every pair of stations and in both directions. The figures
are ordered by decreasing relevancy (see Definition 35) of the patterns
they depict. In this way, Figure 65 represents the most relevant pattern.The largest discovered

patterns make sense. It clearly stands for pleasure trips during the week-end afternoons,
inside the “Parc de la Tête d’Or” (the main square of Lyon), on the
Rhône river side and up to the historical center of the city. In Figure 66,
the stations that are involved are among the largest ones in and around
the historical center. This pattern holds during the afternoons on
Fridays, Saturdays, Sundays and Mondays. Like the most relevant
pattern, the one Figure 67 describes clearly relates to pleasure trips
during the week-end afternoons. This times the rides takes place more
to the south of of the Rhône river side. Figure 68 depicts, gain, pleasure
trips during the week-end afternoon. It indicates that the Vélo’v users
also like riding in the very touristic “Vieux Lyon” (the oldest district
of Lyon) and up to (or from) the closest entrance to the “Parc de la
Tête d’Or”. On the contrary, the pattern depicted in Figure 69 only
stands during the working days. The related rides are earlier in the
afternoon too. The involved stations are almost that of second pattern
(Figure 66) but the new station is the closest to the universities Lyon
2 and Lyon 3, hence the working days only. The red dots in Figure 70

are more to the east of Lyon, i. e., in the newer part of the city. Three of
them follow one of the main axises of the city: the “Cours Gambetta”.
The outlying station is close to the largest inner-city shopping center in
Europe, which is, in average, visited more than 80000 times a day. Its
reduced activity on Sundays probably explains that the patterns holds
every afternoon but on this day of rest. Finally, Figure 70 represents a
pattern that is observable every day from midday to 9 pm. It describes
frequent rides between the largest stations in and at the close periphery
of the historical center.

2. These figures were created from OpenStreetMap project data.
© 2004-2010 OpenStreetMap contributors

These maps are licensed under Creative Commons Attribution ShareAlike 2.0
License.

7 mining the vélo’v usage network 145

Figure 65: During the week-end from 3 pm to 8 pm.

Figure 66: On Fridays, Saturdays, Sundays and Mondays from 3 pm to 8 pm.

146 application to dynamic graph mining

Figure 67: During the week-end from 3 pm to 8 pm.

Figure 68: During the week-end from 3 pm to 8 pm.

7 mining the vélo’v usage network 147

Figure 69: On Mondays, Tuesdays, Wednesdays, Thursdays and Fridays from
12 noon to 5 pm.

Figure 70: Everyday but Sunday from 3 pm to 8 pm.

148 application to dynamic graph mining

Figure 71: All week long from 12 noon to 9 pm.

4.3 General Observations

4.3.1 Predominance of Large Stations

In the computed patterns, the largest stations clearly occur more
often than the smaller ones. Several reasons explain their popularity.The largest stations

often are in patterns. First of all, they are geographically positioned at key places. E. g.,
the two stations that occur the most, in the patterns discussed in the
previous section, are at intersections of subway lines (for multimodal
mobility). As a consequence, many users want to go there. Then, the
largest stations are better known. That is why a user who wishes to
rent (resp. return) a bicycle usually goes to such a station. Furthermore,
even if the user is aware of the presence of a small station in the nearby,
he/she may not take the higher risk of finding it empty (resp. full) and
directly heads to a farther but larger station. The local binarization
(see Section 1) does not favor the largest stations when it comes to
deciding the significant rides from/to them. Nevertheless, when the
same procedure is applied to the other stations, the routes from/to the
large stations around usually are claimed frequent.

4.3.2 Predominance of Day-Time

Almost all closed ET-4-cliques, which Fenster extracts, take place at
day-time. The reason for that is the absence of key places at night. UsersAlmost all patterns

take place at day-time. rent bicycles to go home and residences are spread all over Lyon and
its nearby. That is why, even though the time periods are normalized
(see Section 1), frequent route occur at day-time. To a lesser extent, the
same phenomenon applies to the morning rides. Indeed, they usually
are from the residence to the working place.

7 mining the vélo’v usage network 149

4.3.3 Short Trips

The stations involved in a pattern are, in terms of trip duration, quite
close to each other. In particular many patterns have stations aligned on The stations in a

pattern often are
aligned and quite

close to each other.

roads that were developed (e. g., the Rhône river side) or redeveloped
(e. g., the “Cours Gambetta”) taking into consideration the bicycle
riders. Therefore, the land settlement obviously plays an essential
role in the Vélo’v usage. A query on the raw data constitutes an easy
verification of the Vélo’v users preferring short trips. Indeed, every
bicycle was equipped with a milometer. Among the rides that were used
to obtain RVélo’v (excluding the reflexive routes), the median distance
is below two kilometers. That explains why some agglomerations are
less relevant that what we could expect. E. g., the patterns depicted
in Figure 65 and 67 share the same days of the week, the same time
periods and two stations. However their agglomeration would group
two stations that are at about four kilometers from each other. For the
slower riders (e. g., who stop for a drink on the river side), that may
even mean a trip that is not free (Vélo’v is free for rides below half an
hour).

4.3.4 A Natural Symmetry?

The natural symmetry of the patterns in RVélo’v (see Section 2) in-
dicates that, whatever the day of the week or the time period, there
exists groups of stations, in which bicycles flow between any pair of
stations and in both directions. It may look surprising. The preference
for short rides, which has just been mentioned, may be the main reason.
Consider, for example, the rides from/to the square (during the week-
end afternoons) or the rides in the historical center (in the evening).
These short rides are more pleasure trips than daily migrations from/to
work/residence. For a specific time period, the former take place in
both directions, whereas the latter are one-way. The limited number
of bicycles a station can contain/receive also favors the presence of
symmetric patterns. Indeed, at every station involved in such patterns, The natural

symmetry of the
patterns is partly
explained by the
limited capacity of
every station.

the bicycles are, the same day and during the same time period, both
rented and returned. In this way, the stations rarely are empty or full
and more bicycles can be rented or returned. In other terms, the Vélo’v
is used as much as wanted from/to these stations and both incoming
and outgoing edges are claimed frequent in RVélo’v. In the opposite, if,
a given day and during a given time period, every user wants to rent
(resp. return) a bicycle at a given station, this station is soon empty
(resp. full), the flow stops and the number of rented (resp. returned)
bicycles, limited by the number of bicycles the station can contain (resp.
receive), may not be great enough to claim the related outgoing (resp.
ingoing) edges frequent in RVélo’v. To study the desired (rather than
actual) Vélo’v mobility, the number of rides from (resp. to) a station,
a given day and during a given time period, could be divided by the
total time this station was not empty (resp. full). Unfortunately this
information was not logged.

4.3.5 A Natural Contiguity

The same arguments as those given in favor of a natural symmetry
(see Section 2) could have been used to claim, right after the complete
extraction, a natural contiguity of the patterns in RVélo’v. However, this The patterns in the

Vélo’v usage network
naturally are
contiguous.

150 application to dynamic graph mining

fact is even more obvious after Alpha proceeds. All seven patterns,
presented in Section 4.2, are 1-contiguous. Without the final post-
processing step, 74% of the 125 patterns, at Alpha’s outputs, are 1-
contiguous (against 67% at its input). When it is expected, beforehand,
that the patterns are naturally contiguous, the τ-contiguity, with a
higher τ than what a hidden pattern should tolerate, can be seen as
another way to tolerate false negative noise. By agglomeration, Alpha

may, then, recover the hidden, and “more contiguous”, patterns.

5 conclusion

The methods, presented in this thesis, support the discovery of
relevant patterns. They remain tractable even in a difficult context (four
attributes, more than 100000 tuples, weak minimal size constraints,
etc.), which no other complete extractor can handle. The symmetry and
the almost-contiguity constraints significantly reduce the running times
without much limiting the discovery of unexpected patterns. Indeed,
many datasets, in the manner of RVélo’v, naturally contains symmetric
and/or contiguous patterns and enforcing the related constraints simply
guides the search towards those patterns.

Part VI

C O N C L U S I O N

conclusion 153

from closed itemsets to closed et-n-sets

Summary

The broad applicability of closed itemset mining is often praised.
Indeed, binary relations can represent whether customers buy some
products (and an itemset is a group of customers buying a same subset
of products) as well as whether genes are over-expressed in different
biological samples (and an itemset is a synexpression group, i. e., genes
that are involved together in some biological processes). The complete
extractors presented in this thesis further extend the scope of itemset
mining. Generalizing it towards n-ary relation (n > 2) makes it pos-
sible to take into consideration n orthogonal dimensions of analysis
altogether. It enables, for example, a localized analysis of buying be-
haviors (ternary relations binding customers, products and places) or
a kinetic analysis of gene expressions (ternary relation binding genes,
biological samples and timestamps). To list every closed itemset in
a binary relation, the state-of-the-art extractors enumerate subsets of
properties and derive the supporting subsets of objects. This is possible
because the subsets of the two attribute domains (partially ordered
by ⊆) form a Galois connection. Closed patterns in n-ary relations,
i. e., closed n-sets, do not have this convenient property. That is why
Data-Peeler relies on original enumeration principles that do not fa-
vor any attribute. When enlarging the current candidate pattern, the
freedom to choose any element in any attribute domain allows to make
a choice that heuristically maximizes search space pruning. Together
with other procedural innovations (e. g., to fasten the enforcement of
the closedness constraint), this original enumeration strategy explains
the excellent performance of Data-Peeler. Indeed, all experiments
show it runs orders of magnitude faster than its competitors, which
were specifically designed for closed 3-set mining.

Generalizing Data-Peeler towards noise tolerance is fighting against
a plague that affects most datasets. Indeed, by simply defining noise as
an unwanted perturbation of the data, many phenomena are sources
of noise. E. g., sold out products may have an undesired effect on
transactional data that are aimed at understanding buying behaviors
on a grand scale. Genetic datasets are, somehow, even worse because
they often represent intrinsically stochastic processes. The perfectibility
of knowledge discovery processes is source of noise too. In partic-
ular, when relations are derived from numerical datasets there is a
cumbersome need to fix thresholds beneath/beyond which a Boolean
property is claimed satisfied. State-of-the-art approaches, which com-
pute noise tolerant itemsets (aka ET-itemsets), show a wide range of
definitions. Indeed, the mere declarative specification of noise toler-
ance raises discussions. Fenster tolerates, in every hyper-plan of a
pattern, an upper-bounded number of n-tuples that are absent from
the relation. The choice of upper-bounds for every element in every at-
tribute domain avoids matching patterns in which some elements are
much disconnected. The choice of an absolute tolerance to noise allows
a closedness constraint to restrict the output pattern collection to a
lossless condensation of all ET-n-sets. Furthermore, from a procedu-
ral point of view, absolute parameters enable far more search space
pruning than relative ones. Although Data-Peeler’s enumeration prin-
ciples are largely reused, Fenster’s time performance fundamentally

154 conclusion

depends on efficient enforcements of the generalized constraints be-
neath. That is why an incremental computation of the quantity of noise,
which candidate patterns tolerate, is implemented. Nevertheless, it
usually remains intractable to tolerate enough noise so that Fenster

recovers the real patterns. That is Alpha’s raison d’être. It heuristically
complements Fenster by hierarchically agglomerating the fragments a
complete extraction returns. Then, among the agglomerated patterns,
the most relevant ones are selected. They are those covering the seminal
collection of closed ET-n-sets and showing the best trade-offs between a
small proportion of (supposedly) noise inside them and a great distance
to the outside patterns.

Perspective

Applications often rely on numerical data. Unfortunately, Fenster

and Alpha only work on n-ary relations. A significant source of noise
directly relates to the pre-process converting real numbers into the
satisfaction or the violation of the encoded Boolean property. Indeed,
by definition, Boolean properties are “all or nothing” (the tuple is in
the relation or not), i. e., any numerical values x ∈ R must go through
an Heaviside step function comparing it with a threshold α ∈ R:

∀α ∈ R, x→

0 if x < α

1 if x > α
.

Because of the discontinuity at α, this conversion numerical/Boolean is
prone to errors. The Heaviside step function is depicted in Figure 72

along with two logistic functions. The logistic functions are smooth
approximation of the Heaviside step function, i. e., the “threshold effect”
is avoided (k ∈ R controls how sharp the transition around α):

∀(α, k) ∈ R2, x→ 1

1+ ek(α−x)
.

Using such a function would return to what extent, a property is satis-
fied, i. e., the related n-tuples would be “member” of the relation to a
certain degree m ∈ [0, 1]. Such a dataset is said probabilistic. Extending
the scope of Fenster and Alpha to probabilistic datasets is a timely
challenge. Sums of 1−m values would be used to quantify the false
negative noise inside a pattern. In this way, the connection constraint
remains anti-monotone w.r.t. each of its variables, the closedness con-
straint still provides a lossless condensation of the patterns, and a
similar performance is expected despite the generalization.

from closed et-n-sets to specific patterns

Summary

In front of an applicative problem, no data mining algorithm can,
blindly, take the data as input and directly return actionable patterns, i. e.,
patterns that directly translate to actions solving the problem. Instead,
the extraction of such patterns requires whole knowledge discovery
processes that are specifically designed for the considered applications.
This thesis has presented a pre-processing which takes advantage of

conclusion 155

 0

 0.5

 1

-10 -5 0 5 10

Heaviside step function (alpha = 0)
Logistic function (alpha = 0, k = 2)
Logistic function (alpha = 0, k = 1)

Figure 72: The Heaviside step function and two logistic functions.

an additional analysis dimension so that Data-Peeler/Fenster mines
patterns that are robust w.r.t. binarization. It also has shown that
post-processing the closed n-sets is a way to efficiently minimize multi-
valued logic functions. The obtained compression rates are even better
than state-of-the-art approaches focusing on this problem. Nevertheless,
in the quest for actionable patterns, the most powerful leverage is the
very expressive constraints Data-Peeler/Fenster efficiently handles.
Not only the piecewise (anti)-monotone constraints can finely outline
the relevant closed ET-n-sets but they also lower the running times.
E. g., listing every closed ET-4-set formed of frequent Vélo’v routes is
about ten times faster if, in addition to minimal size constraints, two
piecewise (anti)-monotone constraints are enforced. These constraints,
namely the symmetry and the almost-contiguity constraints, specialize
Fenster. They translate the relevancy of a pattern in a dynamic graph
(rather than in any n-ary relation). More generally, the background
knowledge of the applicative context can come into the picture as far as
it can be expressed as piecewise (anti)-monotone constraints. Because
this class of constraints is very broad, it can be written that Fenster

both generalizes itemset mining (see the previous section) and makes it
applicable to more specific problems. In fact, the class of constraint is so
broad that there is no need to distinguish the relevancy constraints from
the definition of a basal pattern. Indeed, this definition is a conjunction
of two constraints that were proved piecewise (anti)-monotone.

Perspectives

Dynamic graphs being n-ary relations, Fenster was specialized to
handle this interesting particular case. In the same vein, additional
piecewise (anti)-monotone constraints could be designed to specifically
mine trees, sequences, strings, etc. Like with the symmetry and the
almost-contiguity constraints, ad-hoc implementations may provide
better performance than the ones directly deriving from the proofs of
piecewise (anti)-monotonicity. Anyway, as far as the basic enumera-

156 conclusion

tion principles are left unchanged it can be written that the resulting
extractors specialize Fenster. Future interactions with experts in spe-
cific applicative domains (e. g., in genetics) may lead the design of
specific knowledge discovery processes. Part of the background knowl-
edge would probably be translated into piecewise (anti)-monotone
constraints and, hopefully, Fenster and Alpha would help the dis-
covery of new pieces of knowledge. It may also be useful to pre or
post-process Fenster in new ways. Ongoing developments [NCB10]
deal with generalizing association rules and extracting them from the
closed n-sets Data-Peeler computes. In this attempt, the hardest issue
lies in the mere definition of a descriptive semantics for generalized
association rules. More precisely, if the consequent of a rule contains
elements from attributes that the antecedent does not involve, the
definition of a confidence measure is not clear.

Part VII

B I B L I O G R A P H Y

The bibliography directly related to the work presented in this thesis
is listed on page vii.

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms
for mining association rules in large databases. In VLDB ’94:
Proceedings of the 20th International Conference on Very Large Data
Bases, pages 487–499. Morgan Kaufmann, 1994. (Cited on pages 15

and 16.)

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential
patterns. Technical report, IBM Research Division, Almaden
Reasearch Center, 650 Harry Road, San Jose, CA 95120-6099, 1995.
Introduction of the Quest data generator. (Cited on page 67.)

[3] David Avis and Komei Fukuda. Reverse search for enumera-
tion. Discrete Applied Mathematics, 65(1–3):21–46, 1996. (Cited on
page 26.)

[4] Sir Francis Bacon. Instauratio Magna, chapter Novum Organum -
Liber Primus - APHORISMUS LI. 1620. (Cited on page 3.)

[5] Jérémy Besson, Céline Robardet, Jean-François Boulicaut, and
Sophie Rome. Constraint-based formal concept mining and its
application to microarray data analysis. Intelligent Data Analysis,
9(1):59–82, 2005. (Cited on page 46.)

[6] Jérémy Besson, Céline Robardet, and Jean-François Boulicaut.
Mining a new fault-tolerant pattern type as an alternative to
formal concept discovery. In ICCS ’06: Proceedings of the 14th
International Conference on Conceptual Structures, pages 144–157.
Springer, 2006. (Cited on page 42.)

[7] Jérémy Besson, Céline Robardet, and Jean-Francois Boulicaut.
Un algorithme générique d’extraction de bi-ensembles sous con-
traintes dans des données booléennes. Information - Interaction -
Intelligence, Hors Série:141–160, 2007. (Cited on page 15.)

[8] Sylvain Blachon, Ruggero G. Pensa, Jérémy Besson, Céline Ro-
bardet, Jean-Francois Boulicaut, and Olivier Gandrillon. Cluster-
ing formal concepts to discover biologically relevant knowledge
from gene expression data. In Silico Biology, 7(0033):1–15, 2007.
(Cited on page 43.)

[9] Mario Boley, Tamás Horváth, and Stefan Wrobel. Efficient discov-
ery of interesting patterns based on strong closedness. In SDM
’09: Proceedings of the 9th SIAM International Conference on Data
Mining, page 2009. SIAM, 1002–1013. (Cited on page 35.)

[10] Francesco Bonchi. Frequent Pattern Queries: Language and Opti-
mizations. PhD thesis, Dipartimento di Informatica, Università di
Pisa, December 2003. (Cited on page 36.)

[11] Francesco Bonchi and Claudio Lucchese. On closed constrained
frequent pattern mining. In ICDM ’04: Proceedings of the 4th
IEEE International Conference on Data Mining, pages 35–42. IEEE
Computer Society, 2004. (Cited on page 34.)

[12] Francesco Bonchi and Claudio Lucchese. Pushing tougher con-
straints in frequent pattern mining. In PAKDD ’05: Proceedings

160 bibliography

of the 9th Pacific-Asia Conference on Knowledge Discovery and Data
Mining, pages 114–124. Springer, 2005. (Cited on page 24.)

[13] Jean-François Boulicaut and Artur Bykowski. Frequent closures
as a concise representation for binary data mining. In PAKDD
’00: Proceedings of the 4th Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, pages 62–73. Springer, 2000. (Cited on
page 14.)

[14] Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Curtis T.
McMullen, and Gary D. Hachtel. Logic Minimization Algorithms
for VLSI Synthesis. Kluwer Academic Publishers, 1984. (Cited on
pages 47 and 75.)

[15] Robert Bringhurst. The Elements of Typographic Style. Version 2.5.
Hartley & Marks, Publishers, 2002. (Cited on page 169.)

[16] Cristian Bucila, Johannes Gehrke, Daniel Kifer, and Walker M.
White. DualMiner: a dual-pruning algorithm for itemsets with
constraints. In KDD ’02: Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 42–51. ACM Press, 2002. (Cited on page 22.)

[17] Gemma Casas-Garriga. Discovering unbounded episodes in se-
quential data. In PKDD ’03: Proceedings of the 7th European Confer-
ence on Principles and Practice of Knowledge Discovery in Databases,
pages 83–94. Springer, 2003. (Cited on page 127.)

[18] Gemma Casas-Garriga, Roni Khardon, and Luc De Raedt. On
mining closed sets in multi-relational data. In IJCAI ’07: Pro-
ceedings of the 20th International Joint Conference on Artificial Intel-
ligence, pages 804–809. AAAI Press, 2007. (Cited on page 46.)

[19] Chair for Bioinformatics and Information Mining at the
University of Konstanz, Germany. KNIME, 2004–2010.
http://www.knime.org. (Cited on page 113.)

[20] Michel Chein. Algorithme de recherche des sous-matrices pre-
mières d’une matrice. Bulletin Mathématique de la Société des Sci-
ences Mathématiques de la République Socialiste de Roumanie (Nou-
velle Série), 13(61)(1):21–25, 1969. (Cited on page 14.)

[21] Hong Cheng, Philip S. Yu, and Jiawei Han. AC-Close: Efficiently
mining approximate closed itemsets by core pattern recovery. In
ICDM ’06: Proceedings of the 6th IEEE International Conference on
Data Mining, pages 839–844. IEEE Computer Society, 2006. (Cited
on pages 42, 94, and 99.)

[22] James Cheng, Yiping Ke, and Wilfred Ng. δ-tolerance closed fre-
quent itemsets. In ICDM ’06: Proceedings of the 6th IEEE Interna-
tional Conference on Data Mining, pages 139–148. IEEE Computer
Society, 2006. (Cited on page 35.)

[23] Bolin Ding, David Lo, Jiawei Han, and Siau-Cheng Khoo. Ef-
ficient mining of closed repetitive gapped subsequences from
a sequence database. In ICDE ’09: Proceedings of the 25th Inter-
national Conference on Data Engineering, pages 1024–1035. IEEE
Computer Society, 2009. (Cited on page 127.)

bibliography 161

[24] Elena Dubrova. Multiple-valued logic in VLSI: Challenges and
opportunities. In NORCHIP ’99: Proceedings of the 17th IEEE
Nordic Microelectronics event, pages 340–350. IEEE Computer Soci-
ety, 1999. (Cited on page 47.)

[25] Arianna Gallo, Tijl De Bie, and Nello Cristianini. MINI: Mining
informative non-redundant itemsets. In PKDD ’07: Proceedings of
the 11th European Conference on Principles and Practice of Knowledge
Discovery in Databases, pages 438–445. Springer, 2007. (Cited on
page 14.)

[26] Arianna Gallo, Alessia Mammone, Tijl De Bie, Marco Turchi, and
Nello Cristianini. From frequent itemsets to informative patterns.
Technical Report 123936, University of Bristol, Senate House,
Tyndall Avenue, Bristol BS8 1TH, UK, December 2009. (Cited on
page 14.)

[27] Bernhard Ganter, Gerd Stumme, and Rudolf Wille, editors. For-
mal Concept Analysis, Foundations and Applications, volume 3626

of Lecture Notes in Computer Science, 2005. Springer. (Cited on
page 15.)

[28] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan.
CACTUS—clustering categorical data using summaries. In KDD
’99: Proceedings of the 5th SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 73–83. ACM Press,
1999. (Cited on page 49.)

[29] Minxi Gao, Jie-Hong Jiang, Yunjian Jiang, Yinghua Li, Subarna
Sinha, and Robert Brayton. MVSIS. In Notes of the IEEE Interna-
tional Workshop on Logic Synthesis. IEEE Computer Society, 2000.
(Cited on page 75.)

[30] Floris Geerts, Bart Goethals, and Taneli Mielikäinen. Tiling
databases. In DS ’04: Proceedings of the 7th International Con-
ference Discovery Science, pages 278–289. Springer, 2004. (Cited on
page 47.)

[31] Elisabeth Georgii, Koji Tsuda, and Bernhard Schölkopf. Multi-way
set enumeration in real-valued tensors. In DMMT ’09: Proceedings
of the 2nd ACM SIGKDD Workshop on Data Mining using Matrices
and Tensors, pages 32–41. ACM Press, 2009. (Cited on page 48.)

[32] Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen. Ge-
ometric and combinatorial tiles in 0-1 data. In PKDD ’04: Pro-
ceedings of the 8th European Conference on Principles and Practice of
Knowledge Discovery in Databases, pages 173–184. Springer, 2004.
(Cited on page 112.)

[33] Aristides Gionis, Heikki Mannila, Taneli Mielikäinen, and Panayi-
otis Tsaparas. Assessing data mining results via swap random-
ization. ACM Transactions on Knowledge Discovery from Data, 1(3),
2007. (Cited on page 141.)

[34] Gösta Grahne, Laks V. S. Lakshmanan, and Xiaohong Wang.
Efficient mining of constrained correlated sets. In ICDE ’00:
Proceedings of the 16th International Conference on Data Engineering,
pages 512–521. IEEE Computer Society, 2000. (Cited on page 23.)

162 bibliography

[35] Peter D. Grünwald. The Minimum Description Length Principle.
Adaptive Computation and Machine Learning. MIT Press, 2007.
(Cited on page 73.)

[36] Gunjan K. Gupta, Alexander Strehl, and Joydeep Ghosh. Distance
based clustering of association rules. In ANNIE ’99: Proceedings
of the 9th Intelligent Engineering Systems Through Artificial Neural
Networks, pages 759–764. ASME Press, 1999. (Cited on page 43.)

[37] Rohit Gupta, Gang Fang, Blayne Field, Michael Steinbach, and
Vipin Kumar. Quantitative evaluation of approximate frequent
pattern mining algorithms. In KDD ’08: Proceedings of the 14th
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 301–309. ACM Press, 2008. (Cited on page 41.)

[38] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining fre-
quent patterns without candidate generation: A frequent-pattern
tree approach. Data Mining and Knowledge Discovery, 8(1):53–87,
2004. (Cited on pages 15 and 66.)

[39] David J. Hand. Pattern detection and discovery. In Proceedings
of the ESF Exploratory Workshop on Pattern Detection and Discovery,
pages 1–12. Springer, 2002. (Cited on pages 34, 100, and 107.)

[40] Robert Jaschke, Andreas Hotho, Christoph Schmitz, Bernhard
Ganter, and Gerd Stumme. Trias–an algorithm for mining iceberg
tri-lattices. In ICDM ’06: Proceedings of the 6th IEEE International
Conference on Data Mining, pages 907–911. IEEE Computer Society,
2006. (Cited on pages 47, 68, 94, and 97.)

[41] Liping Ji, Kian-Lee Tan, and Anthony K. H. Tung. Mining fre-
quent closed cubes in 3D data sets. In VLDB ’06: Proceedings of
the 32nd International Conference on Very Large Data Bases, pages
811–822. VLDB Endowment, 2006. (Cited on pages 46, 68, 94,
and 97.)

[42] Daxin Jiang and Jian Pei. Mining frequent cross-graph quasi-
cliques. ACM Transactions on Knowledge Discovery from Data, 2(4):
1–42, 2009. (Cited on page 126.)

[43] Roberto J. Bayardo Jr. Efficiently mining long patterns from
databases. In SIGMOD ’98: Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, pages 85–93. ACM
Press, 1998. (Cited on page 24.)

[44] Maurice Karnaugh. The map method for synthesis of combina-
tional logic circuits. Transactions of American Institute of Electrical
Engineers part I, 72(9):593–599, 1953. (Cited on page 47.)

[45] Arno Knobbe, Bruno Crémilleux, Johannes Fürnkranz, and Mar-
tin Scholz. From local patterns to global models: The LeGo
approach to data mining. In LeGo ’08: Proceedings of the Interna-
tional Workshop From Local Patterns to Global Models, pages 1–16.
Springer, 2008. (Cited on page 73.)

[46] Jia-Ling Koh and Pei-Wy Yo. An efficient approach for mining
fault-tolerant frequent patterns based on bit vector representa-
tions. In DASFAA ’05: Proceedings of the 10th International Confer-
ence on Database Systems for Advanced Applications, pages 568–575.
Springer, 2005. (Cited on page 42.)

bibliography 163

[47] Sergei O. Kuznetsov. On stability of a formal concept. An-
nals of Mathematics and Artificial Intelligence, 49(1–4):101–115, 2007.
(Cited on page 35.)

[48] Sau Dan Lee. Constrained mining of patterns in large databases. PhD
thesis, Institut für Informatik, Alber-Ludwig-Universität Freiburg,
February 2006. (Cited on page 36.)

[49] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph
evolution: Densification and shrinking diameters. ACM Trans-
actions on Knowledge Discovery from Data, 1(1), 2007. (Cited on
page 123.)

[50] Jinyan Li, Haiquan Li, Donny Soh, and Limsoon Wong. A cor-
respondence between maximal complete bipartite subgraphs
and closed patterns. In PKDD ’05: Proceedings of the 9th Euro-
pean Conference on Principles and Practice of Knowledge Discovery in
Databases, pages 146–156. Springer, 2005. (Cited on page 123.)

[51] Guimei Liu and Limsoon Wong. Effective pruning techniques for
mining quasi-cliques. In ECML PKDD ’08: Proceedings of the 12th
European Conference on Machine Learning and Knowledge Discovery
in Databases - Part II, pages 33–49. Springer, 2008. (Cited on
page 126.)

[52] Jinze Liu, Susan Paulsen, Xing Sun, Wei Wang, Andrew B. No-
bel, and Jan Prins. Mining approximate frequent itemsets in the
presence of noise: Algorithm and analysis. In SDM ’06: Pro-
ceedings of the 6th SIAM International Conference on Data Mining,
pages 405–416. SIAM, 2006. (Cited on pages 41, 99, and 108.)

[53] Heikki Mannila and Hannu Toivonen. Multiple uses of frequent
sets and condensed representations. In KDD ’96: Proceedings of
the 2nd International Conference on Knowledge Discovery and Data
Mining, pages 189–194. AAAI Press, 1996. (Cited on page 14.)

[54] Edward J. McCluskey. Minimization of boolean functions. Bell
System Technical Journal, 35(5):1417–1444, 1956. (Cited on page 47.)

[55] Ieva Mitašiūnaitė and Jean-François Boulicaut. Looking for mono-
tonicity properties of a similarity constraint on sequences. In SAC
’06: Proceedings of the 2006 ACM Symposium on Applied Computing,
pages 546–552. ACM Press, 2006. (Cited on page 22.)

[56] Basil Montagu, editor. The Works of Francis Bacon, Lord Chancellor
of England, chapter Novum Organum - Book I - APHORISM 51.
Pickering, 1831. Translation by William Wood. (Cited on page 3.)

[57] Nicolas Méger and Christophe Rigotti. Constraint-based mining
of episode rules and optimal window sizes. In PKDD ’04: Pro-
ceedings of the 8th European Conference on Principles and Practice of
Knowledge Discovery in Databases, pages 313–324. Springer, 2004.
(Cited on page 127.)

[58] Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex
Pang. Exploratory mining and pruning optimizations of con-
strained association rules. In SIGMOD ’98: Proceedings of the 1998
ACM SIGMOD International Conference on Management of Data,
pages 13–24. ACM Press, 1998. (Cited on page 23.)

164 bibliography

[59] Feng Pan, Gao Cong, Anthony K.H. Tung, Joing Yang, and Mo-
hammed J. Zaki. CARPENTER: Finding closed patterns in long bi-
ological datasets. In KDD ’03: Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 637–642. ACM Press, 2003. (Cited on pages 15 and 71.)

[60] Feng Pan, Anthony K. H. Tung, Gao Cong, and Xin Xu. COB-
BLER: Combining column and row enumeration for closed pat-
tern discovery. In SSDBM ’04: Proceedings of the 16th International
Conference on Scientific and Statistical Database Management, pages
21–30. IEEE Computer Society, 2004. (Cited on page 19.)

[61] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal.
Efficient mining of association rules using closed itemset lattices.
Information Systems, 24(1):25–46, 1999. (Cited on pages 15 and 16.)

[62] Jian Pei and Jiawei Han. Can we push more constraints into
frequent pattern mining? In KDD ’00: Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 350–354. ACM Press, 2000. (Cited on page 23.)

[63] Jian Pei, Anthony K. H. Tung, and Jiawei Han. Fault-tolerant
frequent pattern mining: Problems and challenges. In DMKD ’01:
Proceedings of the 6th ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery. ACM Press, 2001. (Cited
on page 42.)

[64] Ruggero G. Pensa and Jean-François Boulicaut. Local Pattern De-
tection, volume 3539/2005, chapter Boolean Property Encoding
for Local Set Pattern Discovery: An Application to Gene Expres-
sion Data Analysis, pages 115–134. Springer, 2005. (Cited on
page 71.)

[65] Wim Pijls and Jan C. Bioch. Mining frequent itemsets in
memory-resident databases. In BNAIC ’99: Proceedings of the 11th
Belgium-Netherlands Conference on Artificial Intelligence, pages 75–
82. Koninklijke Vlaamse Academie van Belie voor Wetenschappen
en Kunsten, 1999. (Cited on page 16.)

[66] Ardian K. Poernomo and Vivekanand Gopalkrishnan. Mining sta-
tistical information of frequent fault-tolerant patterns in transac-
tional databases. In ICDM ’07: Proceedings of the 7th IEEE Interna-
tional Conference on Data Mining, pages 272–281. IEEE Computer
Society, 2007. (Cited on page 42.)

[67] Ardian K. Poernomo and Vivekanand Gopalkrishnan. Efficient
computation of partial-support for mining interesting itemsets.
In SDM ’09: Proceedings of the 9th SIAM International Conference
on Data Mining, pages 1014–1025. SIAM, 2009. (Cited on page 42.)

[68] Ardian K. Poernomo and Vivekanand Gopalkrishnan. Towards
efficient mining of proportional fault-tolerant frequent itemsets.
In KDD ’09: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 697–
706. ACM Press, 2009. (Cited on page 41.)

bibliography 165

[69] Luc De Raedt and Jan Ramon. Condensed representations for
inductive logic programming. In KR ’04: Proceedings of the 9th In-
ternational Conference on Principles of Knowledge Representation and
Reasoning, pages 438–446. AAAI Press, 2004. (Cited on page 46.)

[70] Luc De Raedt, Manfred Jaeger, Sau Dan Lee, and Heikki Mannila.
A theory of inductive query answering. In ICDM ’02: Proceedings
of the 2nd IEEE International Conference on Data Mining, pages 123–
130. IEEE Computer Society, 2002. (Cited on page 22.)

[71] François Rioult, Jean-François Boulicaut, Bruno Crémilleux, and
Jérémy Besson. Using transposition for pattern discovery from
microarray data. In DMKD ’03: Proceedings of the 8th ACM SIG-
MOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, pages 73–79. ACM Press, 2003. (Cited on page 15.)

[72] Jorma Rissanen. Modeling by the shortest data description. Au-
tomatica, 14:465–471, 1978. (Cited on page 73.)

[73] Richard Rudell and Alberto Sangiovanni-Vincentelli. Espresso-
MV: Algorithms for multiple valued logic minimization. In Pro-
ceedings of the 1985 IEEE Custom International Circuit Conference,
pages 230–234. IEEE Computer Society, 1985. (Cited on pages 47

and 75.)

[74] Jouni K. Seppänen and Heikki Mannila. Dense itemsets. In KDD
’04: Proceedings of the 10th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 683–688. ACM
Press, 2004. (Cited on page 41.)

[75] Arno Siebes, Jilles Vreeken, and Matthijs van Leeuwen. Item
sets that compress. In SDM ’06: Proceedings of the 6th SIAM
International Conference on Data Mining, pages 393–404. SIAM,
2006. (Cited on page 48.)

[76] James R. Slagle, Chin Liang Chang, and R. C. T. Lee. A new
algorithm for generating prime implicants. IEEE Transactions on
Computers, 19(4):304–310, 1970. (Cited on page 24.)

[77] Arnaud Soulet. Un cadre générique de découverte de motifs sous
contraintes fondées sur des primitives. PhD thesis, Université de
Caen, November 2006. (Cited on page 36.)

[78] Arnaud Soulet and Bruno Crémilleux. An efficient framework for
mining flexible constraints. In PAKDD ’05: Proceedings of the 9th
Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 661–671. Springer, 2005. (Cited on page 27.)

[79] Arnaud Soulet and Bruno Crémilleux. Exploiting virtual patterns
for automatically pruning the search space. In Knowledge Dis-
covery in Inductive Databases, 4th International Workshop KDID ’05,
Revised Selected and Invited Papers, pages 202–221. Springer, 2005.
(Cited on page 28.)

[80] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequen-
tial patterns: Generalizations and performance improvements.
In EDBT ’96: Proceedings of the 5th International Conference on Ex-
tending Database Technology, pages 3–17. Springer, 1996. (Cited on
page 127.)

166 bibliography

[81] Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and
Lotfi Lakhal. Computing iceberg concept lattices with Titanic.
Data & Knowledge Engineering, 42(2):189–222, 2002. (Cited on
page 15.)

[82] Xing Sun and Andrew B. Nobel. Significance and recovery of
block structures in binary matrices with noise. In COLT ’06: Proc-
ceedings of the 19th Annual Conference on Learning Theory, pages
109–122. Springer, 2006. (Cited on page 37.)

[83] Hannu Toivonen. Discovery of frequent patterns in large data col-
lections. PhD thesis, Tietojenkäsittelytieteen laitos, Helsingin
Yliopisto, November 1996. (Cited on page 36.)

[84] Hannu Toivonen, Mika Klemettinen, Pirjo Ronkainen, Kimmo
Hätönen, and Heikki Mannila. Pruning and grouping discovered
association rules. In Proceedings of the ECML ’95 Workshop on
Statistics, Machine Learning and Knowledge Discovery in Databases,
pages 47–52, 1995. (Cited on page 43.)

[85] Matthijs van Leeuwen, Jilles Vreeken, and Arno Siebes. Com-
pression picks item sets that matter. In PKDD ’06: Proceedings of
the 10th European Conference on Principles and Practice of Knowledge
Discovery in Databases, pages 585–592. Springer, 2006. (Cited on
page 48.)

[86] Matthijs van Leeuwen, Francesco Bonchi, Börkur Sigurbjörnsson,
and Arno Siebes. Compressing tags to find interesting media
groups. In CIKM ’09: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, pages 1147–1156. ACM
Press, 2009. (Cited on page 48.)

[87] Jilles Vreeken and Arno Siebes. Filling in the blanks — krimp
minimisation for missing data. In ICDM ’08: Proceedings of the
8th IEEE International Conference on Data Mining, pages 1067–1072.
IEEE Computer Society, 2008. (Cited on page 48.)

[88] Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes. Charac-
terising the difference. In KDD ’07: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 765–774. ACM Press, 2007. (Cited on page 48.)

[89] Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes. Preserv-
ing privacy through data generation. In ICDM ’07: Proceedings
of the 7th IEEE International Conference on Data Mining, pages 685–
690. IEEE Computer Society, 2007. (Cited on page 48.)

[90] Jianyong Wang, Zhiping Zeng, and Lizhu Zhou. CLAN: An
algorithm for mining closed cliques from large dense graph
databases. In ICDE ’06: Proceedings of the 22nd International Con-
ference on Data Engineering, pages 73–82. IEEE Computer Society,
2006. (Cited on page 126.)

[91] Rudolf Wille. Restructuring lattice theory: an approach based on
hierarchies of concepts. In Ivan Rival, editor, Ordered Sets, pages
445–470. D. Reidel Publishing Company, 1982. (Cited on page 15.)

bibliography 167

[92] Andrew K. C. Wong and Gary C. L. Li. Simultaneous pattern
and data clustering for pattern cluster analysis. IEEE Transations
on Knowledge and Data Engineering, 20(7):911–923, 2008. (Cited on
page 43.)

[93] Cheng Yang, Usama Fayyad, and Paul S. Bradley. Efficient dis-
covery of error-tolerant frequent itemsets in high dimensions.
Technical Report 2000-20, Microsoft Research, Microsoft Corpo-
ration, One Microsoft Way, Redmond, WA 98052, February 2000.
(Cited on pages 38 and 41.)

[94] Guizhen Yang. The complexity of mining maximal frequent item-
sets and maximal frequent patterns. In KDD ’04: Proceedings of
the 10th SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 344–353. ACM Press, 2004. (Cited on
pages 20 and 104.)

[95] Mohammed J. Zaki and Ching-Jui Hsiao. ChARM: An efficient
algorithm for closed association rule mining. Technical Report
99-10, Computer Science Department, Rensselaer Polytechnic
Institute, Troy NY 12180, October 1999. (Cited on page 16.)

[96] Mohammed J. Zaki, Markus Peters, Ira Assent, and Thomas Seidl.
Clicks: An effective algorithm for mining subspace clusters in
categorical datasets. Data & Knowledge Engineering, 60(1):51–70,
2007. (Cited on page 49.)

[97] Zhiping Zeng, Jianyong Wang, Lizhu Zhou, and George Karypis.
Out-of-core coherent closed quasi-clique mining from large dense
graph databases. ACM Transactions on Database Systems, 32(2):
13–42, 2007. (Cited on page 126.)

[98] Lizhuang Zhao and Mohammed J. Zaki. MicroCluster: Efficient
deterministic biclustering of microarray data. IEEE Intelligent
Systems, 20(6):40–49, 2005. (Cited on page 43.)

[99] Lizhuang Zhao and Mohammed J. Zaki. triCluster: An effective
algorithm for mining coherent clusters in 3D microarray data. In
SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, pages 694–705. ACM Press,
2005. (Cited on pages 49 and 71.)

0 1 1 1

0 0 11

1111

1

0

111

1

1

1

1

1

0 0

0

1

11 0

1

1 1 1

000

colophon

This thesis was typeset with LATEX using Hermann Zapf’s Palatino
and Euler type faces (Type 1 PostScript fonts URW Palladio L and FPL
were used). The listings are typeset in Bera Mono, originally developed
by Bitstream, Inc. as “Bitstream Vera”. (Type 1 PostScript fonts were
made available by Malte Rosenau and Ulrich Dirr.)

The typographic style was inspired by Bringhurst’s genius as pre-
sented in The Elements of Typographic Style [15]. It is available for LATEX
via CTAN as “classicthesis”.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/

	Abstract
	Résumé
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	State of the Art and Theoretical Basis
	1 Constraint-Based Closed Itemset Mining
	1 Mining Closed Itemsets
	1.1 Context
	1.2 Definition
	1.3 Complete Extraction

	2 Constraining the Itemsets
	2.1 Why Are Constraints Wanted?
	2.2 What is a Constraint?
	2.3 Classes of Constraints
	2.4 On Closedness

	3 Conclusion

	2 Generalizing Closed Itemset Mining
	1 Mining Noise-Tolerant Itemsets
	1.1 Theoretical Aspects
	1.2 State of the Art

	2 Mining Closed Patterns in n-ary Relations
	2.1 Theoretical Aspects
	2.2 State of the Art

	3 Mining Closed Patterns in Noisy n-ary Relations
	3.1 Tolerating Noise Is a Must
	3.2 State of the Art

	4 Conclusion

	Mining n-ary Relations
	3 Data-Peeler: the First Closed n-set Extractor
	1 Data-Peeler
	1.1 A Closed n-Set Extractor
	1.2 Enumeration
	1.3 Efficient Enforcement of Cconnected
	1.4 Efficient Enforcement of Cclosed
	1.5 Algorithm
	1.6 Choosing the Element to Enumerate

	2 Improvements to the Enumeration
	2.1 Removing Elements from S
	2.2 Moving Elements from V to U
	2.3 Improved Algorithm

	3 Example of Computation
	4 Data Structures
	4.1 Storing the Dataset
	4.2 Storing the Enumeration Nodes
	4.3 Space Complexity

	5 Experimental Results
	5.1 Quest-Generated Datasets
	5.2 Impact of the Enumeration Strategy
	5.3 Comparison with Competitors
	5.4 Scalability w.r.t. the Arity

	6 Robustness w.r.t. Binarization
	7 Minimizing multi-valued Logic Functions
	7.1 Problem Setting
	7.2 Simplifying Multi-Valued Logic Functions
	7.3 A Global Model of R
	7.4 A Closed n-Set Greedy Post-Processing
	7.5 Experimental results
	7.6 Improving Time Performances

	8 Conclusion

	Mining Noisy n-ary Relations
	4 Fenster Extracts N-Sets Tolerating Errors in the Relation
	1 Closed ET-n-Sets
	1.1 Absolute Noise-Tolerance
	1.2 Relative Noise-Tolerance

	2 Fenster
	3 Implementation
	3.1 C-connected and C-closed
	3.2 Choosing the Element to Enumerate

	4 Space Complexity
	5 Empirical Study
	5.1 Synthesizing Datasets
	5.2 Global Quality Results
	5.3 Comparison with Competitors

	6 Mining Anomalously Dense ET-n-Sets
	6.1 Local Pattern
	6.2 Strong Closedness
	6.3 Global Quality Results

	7 Conclusion

	5 Agglomerating Local Patterns Hierarchically with Alpha
	1 Agglomerating Closed ET-n-Sets
	1.1 A Pattern Clustering Scheme
	1.2 Hierarchical Agglomeration

	2 Returning the Few Relevant Patterns
	2.1 Cluster Relevancy Measure
	2.2 Selecting the Relevant Clusters

	3 Empirical Study
	3.1 Quality Measures
	3.2 Assessing the Agglomeration
	3.3 Assessing the Selection

	4 Conclusion

	Application to Dynamic Graph Mining
	6 Mining Dynamic Graphs
	1 Specializing n-ary Relation Mining
	1.1 Dynamic Graph
	1.2 A Closed ET-3-Set Under Constraints
	1.3 Problem Setting

	2 Related Work
	2.1 Cross-Graph Quasi-Clique Mining
	2.2 Contiguity

	3 Mining -Contiguous Closed ET-3-Set
	3.1 A Piecewise (Anti)-Monotone Constraint…
	3.2 …Partially Handled in Another Way
	3.3 Enforcing the -Closedness

	4 Mining -Contiguous Closed ET-3-Cliques
	4.1 A Piecewise (Anti)-Monotone Constraint…
	4.2 …Better Handled in Another Way
	4.3 Constraining the Enumeration
	4.4 Contraposition of Enumeration Constraints
	4.5 Enforcing the Symmetric -Closedness

	5 Conclusion

	7 Mining the Vélo'v Usage Network
	1 Dataset
	2 Symmetry Between Departure and Arrival Stations
	2.1 Avoiding False Positive Noise
	2.2 Decreasing the Running Times

	3 Effect of a -Contiguity Constraint
	4 Agglomeration, Selection and Interpretation
	4.1 Agglomeration and Selection
	4.2 Seven Patterns
	4.3 General Observations

	5 Conclusion

	Conclusion
	Bibliography

