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A B S T R A C T

Useful knowledge discovery processes can be based on patterns ex-
tracted from large datasets. Designing ef�cient data mining algorithms
to compute collections of relevant patterns is an active research do-
main. Many datasets record whether some properties hold for some
objects, e. g., whether an item is bought by a customer or whether a
gene is over-expressed in a biological sample. Such datasets are binary
relations and can be represented as0/ 1 matrices. In such matrices, a
closed itemset is a maximal rectangle of '1's modulo arbitrary permuta-
tions of the lines (objects) and the columns (properties). Thus, every
closed itemset supports the discovery of a maximal subset of objects
sharing the same maximal subset of properties. Ef�ciently extracting
every closed itemset satisfying user-de�ned relevancy constraints has
been extensively studied. Despite its success across many application
domains, this framework often turns out to be too narrow. First of all,
many datasets are n-ary relations, i. e., 0/ 1 tensors. Reducing their
analysis to two dimensions is ignoring potentially interesting additional
dimensions, e. g., where a customer buys an item (localized analysis)
or when a gene expression is measured (kinetic analysis). The presence
of noise in most real-life datasets is a second issue, which leads to the
fragmentation of the patterns to discover.

Generalizing the de�nition of a closed itemset to make it suit relations
of higher arity and tolerate some noise is straightforward (maximal
hyper-rectangle with an upper bound of ' 0's tolerated per hyper-plan).
On the contrary, generalizing their extraction is very hard. Indeed, clas-
sical algorithms exploit a mathematical property (the Galois connection)
of the closed itemsets that none of the two generalizations preserve.
That is why our extractor browses the candidate pattern space in an
original way that does not favor any dimension. This search can be
guided by a very broad class of relevancy constraints the patterns must
satisfy. In particular, this thesis studies constraints speci�cally designed
for mining almost-persistent cliques in dynamic graphs. Our extractor
is orders of magnitude faster than known competitors focusing on exact
patterns in ternary relations or on noise-tolerant patterns in binary
relations. Despite these results, such an exhaustive approach often
cannot, in a reasonable time, tolerate as much noise as the dataset
contains. In this case, complementing the extraction with a hierarchical
agglomeration of the (insuf�ciently noise-tolerant) patterns increases
the quality of the returned collection of patterns.
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R É S U M É

Les processus de découverte de connaissances nouvelles peuvent
être fondés sur des motifs locaux extraits de grands jeux de données.
Concevoir des algorithmes de fouille de données ef�caces pour calculer
des collections de motifs pertinents est un domaine actif de recherche.
Beaucoup de jeux de données enregistrent si des objets présentent ou
non certaines propriétés; par exemple si un produit est acheté par un
client ou si un gène est sur-exprimé dans un échantillon biologique. Ces
jeux de données sont des relations binaires et peuvent être représentés
par des matrices 0/ 1. Dans de telles matrices, un ensemble fermé est
un rectangle maximal de ' 1's modulo des permutations arbitraires des
lignes (objets) et des colonnes (propriétés). Ainsi, chaque ensemble
fermé sous-tend la découverte d'un sous-ensemble maximal d'objets
partageant le même sous-ensemble maximal de propriétés. L'extraction
ef�cace de tous les ensembles fermés, satisfaisant des contraintes de
pertinences dé�nies par l'utilisateur, a été étudiée en profondeur. Mal-
gré son succès dans de nombreux domaines applicatifs, ce cadre de
travail se révèle souvent trop étroit. Tout d'abord, beaucoup de jeux de
données sont des relationsn-aires, c'est à dire des tenseurs0/ 1. Ré-
duire leur analyse à deux dimensions revient à ignorer des dimensions
additionnelles potentiellement intéressantes; par exemple où un client
achète un produit (analyse spatiale) ou quand l'expression d'un gène
est mesurée (analyse cinétique). La présence de bruit dans la plupart
des jeux de données réelles est un second problème qui conduit à la
fragmentation des motifs à découvrir.

On généralise facilement la dé�nition d'un ensemble fermé pour
la rendre applicable à des relations de plus grande arité et tolérante
au bruit (hyper-rectangle maximal avec une borne supérieure de ' 0's
tolérés par hyper-plan). Au contraire, généraliser leur extraction est
très dif�cile. En effet, les algorithmes classiques exploitent une pro-
priété mathématique (la connexion de Galois) des ensembles fermés
qu'aucune des deux généralisations ne préserve. C'est pourquoi notre
extracteur parcourt l'espace des motifs candidats d'une façon originale
qui ne favorise aucune dimension. Cette recherche peut être guidée
par une très grande classe de contraintes de pertinence que les motifs
doivent satisfaire. En particulier, cette thèse étudie des contraintes spéci-
�quement conçues pour la fouille de quasi-cliques presque-persistantes
dans des graphes dynamiques. Notre extracteur est plusieurs ordres de
grandeurs plus ef�cace que les algorithmes existants se restreignant à
la fouille de motifs exacts dans des relations ternaires ou à la fouille de
motifs tolérants aux erreurs dans des relations binaires. Malgré ces ré-
sultats, une telle approche exhaustive ne peut souvent pas, en un temps
raisonnable, tolérer tout le bruit contenu dans le jeu de données. Dans
ce cas, compléter l'extraction avec une agglomération hiérarchique des
motifs (qui ne tolèrent pas suf�samment de bruit) améliore la qualité
des collections de motifs renvoyées.
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Intellectus humanus fertur ad abstracta propter naturam
propriam; atque ea, quae �uxa sunt, �ngit esse constantia.

Melius autem est naturam secare, quam abstrahere; id
quod Democriti schola fecit, quae magis penetravit in

naturam, quam reliquae. Materia potius considerari debet,
et ejus schematismi, et meta-schematismi, atque actus

purus, et lex actus sive motus; formae enim commenta
animi humani sunt, nisi libeat leges illas actus formas

appellare.

— Sir Francis Bacon [4]

The human understanding is, by its own nature, prone to
abstraction, and supposes that which is �uctuating to be

�xed. But it is better to dissect than abstract nature; such
was the method employed by the school of Democritus,

which made greater progress in penetrating nature than
the rest. It is best to consider matter, its conformation, and

the changes of that conformation, its own action, and the
law of this action or motion, for forms are a mere �ction

of the human mind, unless you will call the laws of action
by that name.

— translation by William Wood [ 56]

background

The aphorism, starting this thesis, is part of the Novum Organum.
This work, by Francis Bacon, is more a scienti�c method than a philoso-
phy. It argues for both the reductionismand the inductive reasoning. The
inductive reasoning is at work in data mining. It proceeds from facts to
laws; from data to models. The reductionism, “employed by the school
of Democritus”, was later developed by David Hume in his bundle
theory. In this pluralist (rather than monist) theory, an object consists
of its properties and nothing else. For instance, a wine is its origin, its
aromas, its color, its acidity, its viscosity, the grape varieties making it,
etc. Considering a set of properties P (e. g., f“from Bourgogne” ;“from
Alsace”; : : : ;“earthy” ;“herbaceous” ;“peppery” ; : : : ;“very acid” ; : : :g), an
object (e. g., a wine) translates to a subset ofP (e. g., a wine can be
f“from Alsace” ;“earthy” ;“�oral” ;“garnet” ;“made of resling” ;“made of
gewurztraminer” ;“very acid” g). In this way, a set of objects O, described
with the properties in P, constitutes a binary relation B � O� P, which
encodes whether an object hasa property. An interesting problem,
which hopefully helps in “penetrating nature”, is the search of patterns
in a relation that gathers objects involved in a phenomenon to under-
stand. Nevertheless, in the quoted aphorism, Francis Bacon warns us:
“forms are a mere �ction of the human mind”. Algorithms, such as the
data mining methods, do not suffer from the weaknesses of the human
mind. The patterns they detect are all the more trusty as their “form”
is formally speci�edand the algorithms at work are exact. The formal
speci�cation of a data mining task is expressed in mathematical terms.
Given a dataset, exactapproaches output, without any approximation,
thepattern(s) matching the mathematical expression.
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Following the bundle theory, consider a dataset represented by a
binary relation B � O� P. To “dissect” it, it may be interesting to list
every subset of properties that describe, together, at least ten objects.
If B represents wines, it may be discovered, in this way, that more
than ten wines (in the dataset) are, at the same time, “from Alsace”,
“earthy” and “very acid”. In this example, the formal speci�cation of
the patterns is f(O; P) 2 2O � 2P j O � P � B ^ j Oj > 10g, i. e., the data
mining task consists in listing every subset of properties P � P shared
by a subset of objectsO � O (“ O � P � B”), which must be at least
ten (“ jOj > 10”). This problem, namely the (10)-frequent itemset mining,
is NP-hard. Nevertheless, exact algorithms (aka complete extractors
because they extracteverypattern matching the formal speci�cation)
are ef�cient enough to be tractable on rather large relations. Other
famous “forms” cannot be discovered exactly in a reasonable time.
Clustering (e. g., partitioning the wines into homogeneous groups w.r.t.
their properties) and classifying (e. g., learning/predicting the origin of
a wine from its other properties) are famous examples of such “forms”.
Their optimal solutions can be formally de�ned but, given a large
dataset, computing them takes ages. Heuristics allow to approximately
solve them though. Interestingly, complete extractors may be useful in
a �rst step towards solving these dif�cult problems. E. g., a classi�er
can be based on rules whose bodies are frequent itemsets. fitcare

[CGSB08, GCSFB10] is such a classi�er 1. Although it is arguable, we
believe that delaying the lossy heuristics as far as possible (i. e., as
far as tractable) in the knowledge discovery process makes the whole
process trustier. This trust is particularly important with unsupervised
learning (like itemset mining or clustering; unlike classi�cation), where,
by de�nition, the computed pattern(s) cannot be tested.

constraint -based specification

By de�nition, constraint-based methods outline the “form” of the
computed pattern(s) via constraints. Consider, again, the formal spec-
i�cation of 10-frequent itemsets. It consists of two constraints: (a)
encompassing only couples present in the relation and (b) involving
at least ten objects. The relevancy of these constraints, therefore that
of the discovered patterns, is arguable. Algorithms do not suffer from
the weaknesses of the human mind but the choice of the “form” they
recognize does! Depending on the actual application, other constraints
may match more interesting patterns. E. g., in an attempt to draw con-
clusions about wines, itemsets may be useless unless they contain an
origin (i. e., a property “from [region]”) or unless the standard deviation
of their acidity remains below a user-de�ned threshold (what requires
this numerical information for each wine). Nevertheless over-specifying
the patterns is not good either: surprising patterns, which usually are
the most valuable, could be missed. Anyway, beyond their ability to
select the most relevant patterns, additional constraints often are in-
dispensable to the practical computation of these patterns. Indeed a
constraint, with good mathematical properties, guidesthe algorithm
towards the solution(s). I. e., regions of the search space, where the
constraint is violated, are pruned. That means shorter running times
and the tractable discovery of patterns in larger datasets. Constraints
are grouped in classes w.r.t. the enumeration principles (how the search

1. We have chosen to not present it in this thesis.
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space is traversed) that are required to take advantage of them, i. e., to
prune the search space. The complete extractors in this thesis handle
a very expressive class of constraints. As a consequence, although
these approaches are very general, they can take advantage of many
constraints and mine application-speci�c patterns precise constraints
�nely outline.

Rather than itemset mining, this thesis generalizes closeditemset
mining. The additional adjective translates to an additional constraint
on the patterns. An itemset, associating a set of objects with a set of
properties, is closed if and only if no other (and necessarily larger)
frequent itemset has all these properties anddescribe all these objects.
E. g., ten wines that are both “from Alsace” and “very acid” form
a 10-frequent itemset. This pattern is not closed if there exists at
least an eleventh wine which is both “from Alsace” and “very acid”
(a larger pattern associates eleven wines with the properties “from
Alsace” and “very acid”). It is not closed either if the ten wines are all
“earthy” (a larger pattern associates the ten wines with the properties
“from Alsace”, “very acid” and “earthy”). The closedness constraint
condenses collections of frequent itemsets by only keeping the most
informative ones. Without it, the returned collections usually are too
large to be interpreted. That is why, when generalizing itemset mining,
a close attention is paid to the ability to the preservation of a useful
closedness property. On one hand, its de�nition should still support
a lossless condensation of the patterns. On the other hand, it must be
ef�ciently computed, i. e., in the class of constraints the generalized
extractors handle. These two orthogonal concerns are not speci�c to
the closedness constraint. They are actually found across any data
mining task and respectively relate to their declarative and procedural
semantics.

generalization towards n -ary relations

Discovering that more than ten wines are, at the same time, “from
Alsace”, “earthy” and “very acid” makes us hypothesize that these
three properties are semantically related, e. g., that wines from Alsace
generally are earthy and very acid. However, “the human understand-
ing is, by its own nature, prone to abstraction, and supposes that
which is �uctuating to be �xed”. Are we drawing a general conclu-
sion too quickly? Indeed, the “conformation” of a wine changes a lot
w.r.t. its vintage date. A �rst idea consists in appending f“vintage
1988” ;“vintage 1989” ; : : :gto the set of properties. Nevertheless, a wine
has only one vintage date, e. g., a wine “vintage 1988” cannot be, at the
same time, “vintage 1989” or “vintage 1990”. Notice that it also has
only one origin, e. g., a wine cannot be, at the same time, “from Bour-
gogne” and “from Alsace”. As a consequence, no itemset can support
the discovery that, between 1988and 1990, the wines from Bourgogne
and from Alsace were all earthy. Indeed, by de�nition, no object shares
two (or more) properties that are self-exclusive. Anyway, such patterns
obviously are interesting. To mine them, this thesis proposes to split the
one-dimensional set of properties P into several orthogonal dimensions
of analysis D1 , D2 , D3 , etc. The dataset is then expressed in terms of
elements in D1 � D2 � D3 � : : : , i. e., it is an n-ary relation, where n is
the number of dimensions. E. g., to analyze wines w.r.t. their origins,
their aromas and their vintage dates, these three orthogonal attributes
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constitute three dimensions of analysis: Dorigins = f“from Bourgogne” ;
“from Alsace” ; : : :g, Daromas = f“earthy” ;“herbaceous” ;“peppery” ; : : :g
and Dvintage = f“vintage 1988” ;“vintage 1989” ; : : :g. The dataset is
a ternary relation Rwines � Dorigins � Daromas � Dvintage . It contains
(“from Alsace” ;“earthy” ;“vintage 1988” ) if and only if the wines har-
vested in Alsace in 1988usually are earthy.

The data mining group led by Pr. Jean-François Boulicaut currently
works on the systematic generalization of data mining tasks (clustering,
classi�cation, etc.) towards n-ary relations. This thesis exposes the
�rst results. It considers the complete extraction of generalized closed
itemsets. E. g., the algorithms presented in this thesis can discover
patterns such as the one discussed in the previous paragraph, i. e.,
(f“vintage 1988” ;“vintage 1989” ;“vintage 1990” g; f“from Bourgogne” ;
“from Alsace” g; f“earthy” g). Generalizing the de�nition of closed item-
sets, to make them suit n-ary relations, is trivial. Generalizing their
complete extraction is much harder. Indeed, an essential mathematical
property, namely the Galois connection, is lost. Our proposal iteratively
builds candidate patterns. At every iteration, any element, from any
attribute domain, can be chosen to enlarge the current candidate. This
freedom allows the design of an enumeration strategy that avoids large
regions of the search space but discovers all patterns. It outperforms,
by orders of magnitude, related work designed for ternary relation
mining.

Real-life dynamic graphs are particular ternary relations (nodes �
nodes � timestamps). They are found in many application domains.
E. g., they support the kinetic analysis of biological networks such as
protein-protein interactions. Cross-graph closed cliques are sets of
nodes that are completely connected across several graphs. They are
relevant patterns for the local analysis of dynamic graphs. This is all
the more true when the graphs supporting a pattern are grouped in
time, i. e., their timestamps are close to each other. It turns out that both
the symmetry constraint on the two node attributes (tails and heads of
the edges) and the almost-contiguity constraint on the time attribute
are ef�ciently enforced by our extractors. I. e., the general approaches,
detailed in this thesis, can ef�ciently mine every almost-contiguous
cross-graph closed clique. This illustrates the winning combination of a
general extractor and an expressive class of constraints making it useful
for speci�c applications.

generalization towards noise tolerance

Real-life datasets are noisy. In the context of a relation, tuples that
should be absent from it are present and vice versa. There are many
sources of noise. One of them is due to the all-or-nothing aspect of the
property encoded by a relation. E. g., it was written, in the previous
section, that Rwines contains (“from Alsace” ;“earthy” ;“vintage 1988” ) if
and only if the wines harvested in Alsace in 1988usually are earthy. If
these wines sometimesare earthy, the related 3-tuple may (or not) end up
in the relation. Among other sources of noise, let us mention erroneous
measures (e. g., the oenologist was sick), subjective measures (e. g.,
the oenologist was in a good/bad mood), stochastic phenomena (e. g.,
the wine was corked), too small samples (e. g., only the best/worse
wines of a kind were tasted), etc. Mining the closed itemsets in a noisy
relation only allows to recover logarithmic fragments of the patterns
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that would be discovered in the same relation but deprived of noise.
Indeed, closed itemsets are, by de�nition, not allowed to encompass
anything but tuples present in the relation. Their counterparts in n-ary
relations raise even more troubles because they usually encompass
more tuples. E. g., assume(f“vintage 1988” ;“vintage 1989” ;“vintage
1990” g; f“from Bourgogne” ; “from Alsace” g; f“earthy” g) is a pattern to
discover in Rwines . Imagine that both (“from Alsace” ;“earthy” ;“vintage
1988” ) and (“from Bourgogne” ;“earthy” ;“vintage 1990” ), affected by
noise, are absent fromRwines . Then, instead of one, �ve (unconstrained)
closed patterns are discovered.

To recover the patterns that were affected by noise (or, at least, larger
fragments of those patterns), the formal speci�cation of closed itemset
mining (actually, of its generalization towards n-ary relations) cannot
be kept as is. Noise tolerance parameters generalize it. They are upper-
bounds of the number of n-tuples that every element (in every attribute)
of every pattern is allowed to encompass. E. g., despite the two ab-
sent 3-tuples, (f“vintage 1988” ;“vintage 1989” ;“vintage 1990” g; f“from
Bourgogne” ; “from Alsace” g; f“earthy” g) can be discovered in Rwines .
The analyst only needs to specify the tolerance of one absent3-tuple
per origin (one absent 3-tuple involves the Bourgogne, another involves
the Alsace), one per vintage (both the vintages 1988and 1989reach this
upper-bound) and two per aroma (both missing 3-tuples involve earthy
wines). Because larger patterns are discovered when missing tuples are
allowed, constraints on their sizes can be stronger and the supernumer-
ary tuples, present in the relation because of noise, are avoided. From a
procedural point of view, an ef�cient incremental computation of the
quantity of noise, which candidate patterns tolerate, is not trivial. By
implementing it underneath the enumeration principles developed for
discovering closed itemsets generalized to n-ary relation, their noise
tolerant counterparts are ef�ciently listed. Furthermore the same broad
class of constraints is available to both fasten the extraction and fo-
cus it on the most relevant patterns. For example, almost-contiguous
cross-graph closedquasi-cliques can be discovered.

Nevertheless, in large datasets, it often remains intractable to tolerate
enough noise so that the real patterns are recovered. Following the
philosophy “completeness as far as possible”, the obtainable fragments
are used as a basis and a heuristics complements the knowledge discov-
ery process. It consists of a hierarchical agglomeration of the patterns
followed by a selection of the relevant agglomerates. To compute the
distance between two patterns, it makes sense to come back to the
relation. In this way, the tuples encompassed by the considered ag-
glomerate (minimal envelope containing the two clustered patterns) but
absent from the patterns composing it, are also taken into account. The
selection step is indispensable to make the returned pattern collection
smaller, hence more interpretable. This collection is forced to cover the
seminal pool of patterns. In this way, the completeness of the initial
extraction is, somehow, preserved. The selected patterns are the ones
showing the best trade-offs between a small proportion of (supposedly)
noise inside them and a great distance to the outside patterns.

organization of the thesis

In the next chapter, the extraction of every closed itemset under
constraints is surveyed. The most famous classes of constraints are
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detailed along the enumeration principles that enable their ef�cient
enforcements. In particular, the expressive class of constraints, that
our complete extractors handle, is de�ned, studied and illustrated.
Chapter 2 details the dif�culties in generalizing closed itemset min-
ing towards noise tolerance on one hand, and towards n-ary relations
on the other hand. The state-of-the-art approaches, that tackle these
problems, are presented and discussed. Chapter 3 exposes the �rst
algorithm listing every closed pattern in arbitrary n-ary relations. Af-
ter experiments showing its excellent time performances, a pre and
a post-processing are described. Both make an original use of the
supernumerary attributes (to force a certain robustness to binarization
on one hand; to minimize multi-valued logic functions on the other
hand). Chapter 4 discusses the additional tolerance to noise. After de-
tailing the fundamental implementation details, the approach is shown
to provide, within a reasonable time, only fragments of the hidden
patterns. However, agglomerating the fragments heuristically recovers
the hidden patterns. Chapter 5 details this step and the following
one, i. e., the selection of the relevant agglomerates. Chapter6 shows
how the symmetry and the almost-contiguity constraints specialize our
algorithms in the complete extraction of almost-contiguous cross-graph
closed quasi-cliques in dynamic networks. These constraints are part
of the ones that are ef�ciently enforceable thanks to the enumeration
principles at work. Nevertheless, it is explained how and why speci�c
implementations enable greater gains in running times. Chapter 7
details a speci�c application, which aims at understanding how the
Vélo'v network is used. This bicycle rental service, run by the urban
community of Lyon, logged, along the two studied years, more than
ten millions rides. The chapter details how these data are turned into
a 4-ary relation of more than 100000tuples. Despite weak minimal
size constraints, a few hours are enough for our algorithms to discover
relevant patterns. Finally, a short summary and a few perspectives
conclude this thesis.
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O U T L I N E

One of the earliest and most successful type of local pattern is the
itemset. Itemsets are extracted from binary relations. Generically, a
binary relation encodes Boolean properties that objects have (the couple
(object;property ) is in the relation) or not (the related couple is not
in the relation). In such binary relations, an itemset is a subset of
properties associated with the objects sharing all these properties. A
closedness property allows a lossless condensation of all itemsets by
keeping only the most informative patterns. Nevertheless, complete
collections of closed itemsets remain huge, hence tedious to interpret,
and extracting them is intractable unless additional constraints are
enforced. Constraints express the relevancy of the closed itemsets
to keep. The class of constraints an extractor can use to prune the
search space, depends on its enumeration principles. After presenting
what is a closed itemset, Chapter 1 lists the classes of constraints
(de�nition and related enumeration principles) that are found in the
literature. In particular, this chapter explains how the reverse-search
paradigm enables a depth-�rst extraction of patterns under a loose anti-
monotone constraint, shows that the primitive-based and the piecewise
(anti)-monotone constraints are the same and emphasizes, through
examples, how large this class is. Those are new contributions, which
have not been published yet. Chapter 1 ends with a brief study of
the closedness constraint. It details generalizations of it that aim at
restricting the output to the anomalous patterns. The link between the
strong closedness and the stability index is shown.

Noise alters most datasets. In particular, a relation may miss some
tuples and closed itemsets, which cannot cover such tuples, only de-
scribe fragments of the hidden patterns. Furthermore, when available,
more than two attributes should be simultaneously taken into consider-
ation for a �ner analysis. Chapter 2 presents these two generalizations
of closed itemset mining: towards noise tolerance and towards n-ary
relations. In both cases, the Galois connection is lost, what prevents
simple adaptations of closed itemset extractors. To tolerate noise, the
�rst challenge is to de�ne the noise tolerance. It looks more natural to
tolerate proportions of noise (w.r.t. the sizes of the patterns). Nev-
ertheless, extractions with an absolute tolerance to noise scale much
better and allow an ef�cient enforcement of a closedness constraint.
Agglomerating itemsets is another (heuristic) way to tolerate noise. On
the contrary, generalizing closed itemsets towards n-ary relations is
straightforward. Generalizing their complete extraction is much harder.
Two algorithms were speci�cally designed to extract closed patterns in
ternary relations. Minimizing logic functions is a related topic, which
is brie�y presented too. In n-ary relations, complete collections of local
patterns suffer even more from noise. A few proposals tackle both
problems at a time and are discussed at the end of the chapter.
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1C O N S T R A I N T- B A S E D C L O S E D I T E M S E T M I N I N G

1 mining closed itemsets

1.1 Context

Given a �nite set of objects O and a �nite set of properties P, let
B � O � P a binary relation on these domains. Table 1 represents an Binary relations

associate objects with
properties. They are
useful across many
applicative domains.

example of such a relation BE � fo1 ; o2 ; o3 ; o4g� fp1 ; p2 ; p3g. In this
table, every '1' at the intersection of an object (a row) and a property
(a column) stands for the presence of the related couple in BE , i. e.,
the objectshasthe property. For example the bold ' 1', in Table 1, is at
the intersection of the object o1 and the property p1 . It represents the
presence of(o1 ; p1 ) in BE , i. e., the objecto1 has the property p1 . On
the contrary a ' 0' in Table 1 is at the intersection of two elements which
form a couple absent from BE . For example the bold ' 0' in Table 1
means (o2 ; p3 ) =2 BE , i. e., the objecto2 does not have the property p3 .

Binary relations are present in many application domains. For in-
stance,BE could represent customers (o1 , o2 , o3 and o4 ) buying items
(p1 , p2 and p3 ). In this context, the bold ' 1' in Table 1 would mean that
the customer c1 bought the item p1 . The bold '0' would be understood
as “customer c2 did not buy item p3 ”.

1.2 De�nition

Given a binary relation B � O� P, a closed itemset is a maximal set
of objects sharing the same maximal set of properties. Considering the
tabular representation of the binary relation (such as Table 1), it is a
maximal rectangle of ' 1's modulo arbitrary permutations of the rows
and the columns. Here is a formal de�nition. Closed itemsets (a)

cover only couples
present in the binary
relation; (b) cannot be
enlarged without
violating (a).

De�nition 1 (Closed itemset) 8(O; P) 2 2O � 2P , (O; P) is a closed item-
set iff:

– Cconnected(O; P) � O � P � B;
– Cclosed(O; P) � 8 (O0; P0) 2 2O � 2P ,�

O � O0^ P � P0^ C connected(O0; P0)
�

) (O0; P0) = ( O; P).

With this de�nition, an itemset is a set of objects anda set of properties.
It differs a little from the data-mining literature, where an itemset only
is a subset of properties (the next section explains how the “supporting”
set of objects is deducible). The unusual de�nition, chosen in this

p1 p2 p3

o1 1 1 1

o2 1 1 0

o3 0 1 0

o4 0 0 1

Table 1: BE � fo1 ; o2 ; o3 ; o4g� fp1 ; p2 ; p3g.
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chapter, helps its generalization towards n-ary relations and noise
tolerance. The �rst constraint, Cconnected, speci�es that every object in
O must have all the properties in P, otherwise (O; P) is not a closed
itemset. More precisely it is not (completely) connected. The second
constraint, Cclosed, forces any strictly larger pattern (more objects, more
properties or both) to violate Cconnected. It is, w.r.t. Cconnected, a closure
property on the sets of objects and properties altogether. It can easily
be proved that an equivalent closedness constraint only forces the
patterns with onemore element (either an object or a property) to break
Cconnected. Furthermore, becauseCconnected ensures the presence inB of
every couple in O � P, the closedness constraint can be reduced to the
search of absent couples involving the additional element only.

De�nition 2 (Closed itemset (equivalent de�nition)) 8(O; P) 2 2O �
2P , (O; P) is a closed itemset iff:

– Cconnected(O; P) � O � P � B;

– Cclosed(O; P) �

8
<

:
8o 2 O nO; :C connected(fog; P), i. e.,fog� P 6� B

8p 2 P nP;:C connected(O; fpg), i. e.,O � fpg6� B

Example 1 In BE , represented in Table1, (fo1 ; o2g; fp1 ; p2g) is a closed
itemset:

– fo1 ; o2g� fp1 ; p2g� BE (in Table1 there are '1's at the intersection of
all the related rows and columns);

– Every pattern with one more element violatesCconnected:
– :C connected(fo3g; fp1 ; p2g), i. e.,fo3g� fp1 ; p2g6� BE ;
– :C connected(fo4g; fp1 ; p2g), i. e.,fo4g� fp1 ; p2g6� BE ;
– :C connected(fo1 ; o2g; fp3g), i. e.,fo1 ; o2g� fp3g6� BE .

(fo1 ; o4g; fp3g) and(fo1 ; o2 ; o3 ; o4g; ; ) are other examples of closed itemsets
in BE .

If, again, the binary relation stands for customers buying items,
a closed itemset is a maximal subset of customers buying the same
maximal subset of items. Such a pattern is useful for analyzing buying
behaviors. The closedness constraint �lters out all strict “sub-patterns”
(i. e., patterns where some elements are removed and none are added)
of the largest ones that are extracted. It reduces the size of the output
collection (what is necessary when it comes to interpreting it). Whatever
the dataset, two arguments justify the choice for closed patterns. The
�rst argument is a theorem stating that the closed patterns always are
more informative (lower p-value) that any of its “sub-patterns” (proof
in [ 26], which extends [ 25]). The second argument is the fact that allThe closedness

constraint provides a
lossless

condensation of all
itemsets by only

keeping themost
informative ones.

(closed and unclosed) connected itemsets are deducible from all closed
itemsets only [13], i. e., the latter collection is a condensed representation
[53] of the former. It means that, given any subset of properties P0 � P
(resp. objectsO0 � O), all objects (resp. properties) that share these
properties (resp. objects) can be derived from the closed itemsets only.
They are the largest set of objects (resp. properties) a closed itemset
associates with a superset ofP (resp. O).

1.3 Complete Extraction

1.3.1 Research Directions

One of the oldest (if not theoldest) algorithms, that list every closed
itemset in a binary relation, was published in 1969 [20]. The formal
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concept analysis, introduced in 1982[91] (see [27] for a state-of-the-art
reference), studies the mathematical properties of the closed itemsets
(aka formal concepts). After discovering ef�cient strategies for enumerat-
ing (both closed and unclosed) itemsets under frequency constraints
(in particular Apriori [ 1] in 1994), data miners (re)discovered, in 1999
[61], the relevancy of a condensed representation of such collections
by listing the closed itemsets only. This research community focuses
on problems such as scalability, constraint handling, generalization to-
wards noise and n-ary relations (that do not preserve the mathematical
foundation of formal concept analysis, i. e., the Galois connection). They
are topics this thesis treats. That is why this state of the Art focuses on
data mining approaches. Nevertheless, the two communities are not
ignoring each other and interesting closed itemset extractors, such as
Titanic [81], were designed at the interface between formal concept
analysis and data mining.

1.3.2 Enumerating the Subsets of One Domain

This section does not aim at detailing the differences, in ef�ciency,
between the many closed itemset miners. In the opposite, it focuses on
their similarities. Indeed, the fundamental mechanisms, brought into
the complete (i. e., everyclosed itemset is found) extraction of the closed
itemsets, usually remain the same. This observation was formalized
in [ 7]. The closed itemset extractors, like most local pattern complete
extractors (such as frequent itemset miners), traverse the candidate
pattern space,2O � 2P , by only enumerating the subsets of one of the
two domains (either the subsets of objects or the subsets of properties).
Despite its title, it can even be argued that [ 38] implicitly proceeds
to such an enumeration. Traditionally, the subsets of properties are
enumerated. The mathematical reason behind this ability in reducing
the traversal of the candidates in 2O � 2P to that of 2P (or 2O ) is a
bijection between the closed itemsets (O; P) and their sets of properties
P (or objects O). Stated with the terminology of formal concept analysis, There is a bijection

between the closed
itemsets and their
subsets of properties
(or objects). Thus,
almost all closed
itemset extractors
enumerate subsets of
one domain.

an upper/lower adjoint of a Galois connection uniquely determines
the other. In our context, the Galois connection is the pair of functions
(f; g ) de�ned as follows:

– 8O � O; f (O) = fp 2 P j O � fpg� Bg.
– 8P � P; g(P) = fo 2 O j fog� P � Bg;

It is easily proved that if (O; P) is a closed itemset then g(P) = O (and
f (O) = P). That is why enumerating the subsets P of P is equivalent
to enumerating the patterns (g(P); P) among which are found every
closed itemset (those that havef (g(P)) = P).

Example 2 In BE , represented in Table1, when fp1g is enumerated, it is
associated withg(fp1g) = fo1 ; o2g. However(fo1 ; o2g; fp1g) is not a closed
itemset becausef (fo1 ; o2g) = fp1 ; p2g 6= fp1g. A closed itemset is found
whenfp1 ; p2gis enumerated:(fo1 ; o2g; fp1 ; p2g).

With the publication of [ 59] and [71] in 2003, the data mining com-
munity rediscovered that the extraction of every closed itemset actually
is symmetric w.r.t. the domain in which subsets are enumerated. In
other terms, applying a closed itemset extractor on a 0/ 1 matrix such
as Table1 or on its transpose provides the same collection of closed
itemsets (the couples(P; O) being reversed in (O; P)). As a consequence,
it is faster to extract every closed itemset by enumerating the subsets of
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the smallest domain. Indeed, they are less numerous (j2D j increasing
with jDj). From now on, let us assume that there are less properties
than objects. As a consequence, the subsets ofP are chosen to be
enumerated, i. e., the considered patterns are of the form (g(P); P).

The closed itemset extractors do not actually aim at listing every
closed itemset but only those satisfying a relevancy constraint. Since
the �rst local pattern miners, and until today, one constraint has been
clearly favored to play this role: the frequency constraint. Given a
user-de�ned threshold 
 2 N , a closed itemset (g(P); P) is frequent
if and only if jg(P)j > 
 . The success of this constraint is twofold:
(a) it actually keeps relevant patterns (the discovered conjunction of
properties, shared by a great number of objects, is more relevant) and (b)
it allows to prune large regions of the search space (hence a reduction of
the running times) when the enumerated subsets of properties are larger
and larger along the computation. That is why most closed itemsetBy enumerating

growing subsets of
properties, the closed
itemsets involving at
least
 objects can be
listed while ignoring

many candidate
patterns.

extractors actually are frequentclosed itemset extractors and enumerate
growing subsets of properties. If a candidate pattern (g(P); P) is not
frequent, every closed itemset (g(P0); P0) with P � P0 is not frequent
either becauseg(P0) � g(P). The region of the search space where
candidate patterns have a superset of P is empty of frequent closed
itemset. That is why the extractors do not traverse it. It is said to be
pruned.

It is important to understand what can mean “enumerating larger
and larger subsets of properties”. It can mean a breadth-�rst traversal of
the search space (à la Apriori [1]) that is space-consuming. For example,
the �rst closed itemset extractor, Close [ 61], does so. Nevertheless, it
can mean a depth-�rst traversal of the search space (à la DF [65]) too.
Indeed, to optimally take advantage of the frequency constraint, when
a candidate (g(P); P) violates it, the patterns (g(P0); P0) with P � P0

should not have been traversed earlier. This is the case with a depth-
�rst traversal of the search space too. The �rst depth-�rst closed itemset
extractor was ChARM [ 95].

1.3.3 A Typical Frequent Closed Itemset Extractor

Extract is an example of a simple closed itemset extractor based on
the fundamental principles detailed in the previous section and shared
by most closed itemset extractors. This recursive algorithm enumerates
subsets of properties in a depth-�rst way and forces the closed itemsets
to have at least 
 2 N objects (frequency constraint). Figure 1 expresses
it with a formalism that will be used all along this thesis. Extract is
initially called with (UP ; VP ) = ( ; ; P). Here is the semantics behind
these two variables:

– UP � P contains properties that will always be present in ev-
ery closed itemset recursively discovered from the current call of
Extract . Previous works sometimes talk about a “conditional
base”.

– VP � P contains properties that may or may not be present in
the closed itemset recursively discovered from the current call
of Extract . In other terms, 2V P

is the search space given the
“conditional base”. If VP = ; then the search space is reduced to
j2; j = 1 pattern, (g(UP ); UP ), that is output if it is closed.

UP is the smallest possible set of properties that may be output from
the current call of Extract . It is considered in the branch of the
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Input: (UP ; VP ) 2 (2P )2

Output: Every closed itemset having all properties in UP , potentially
some properties in VP and satisfying C
 -frequent

if jg(UP )j > 
 ^ 8s 2 P n(UP [ VP ); g(UP ) � fsg6� B then
if VP = ; then

output ((g(UP ); UP ))
else

Choosee 2 VP

Extract (UP [ feg; VP n feg)
Extract (UP ; VP n feg)

end if
end if

Figure 1: The Extract closed itemset extractor (under a frequency constraint).

Figure 2: Enumeration of any property e 2 VP .

enumeration tree where every property in VP is refused in UP (second
recursive call of Extract in Figure 1). UP [ VP is the largest possible set
of properties that may be output from the current call of Extract . It is
considered in the branch of the enumeration tree where every property
in VP is moved to UP (�rst recursive call of Extract in Figure 1).
Cclosed is tested against the extensions ofUP with every property s that
is neither in UP nor in VP . If s extends (g(UP ); UP ) without violating
Cconnected (i. e., g(U) � fsg6� B) then it extends any pattern recursively
discovered from the current call of Extract . Indeed, its objects always
are a subset ofg(UP ). It can be written that Cclosed, like the frequency
constraint, prunes the search space. This will be further discussed in
Section 2.4.1.

A binary tree can represent the enumeration (of the subsets of proper-
ties) performed by Extract . A left (resp. right) child relates to the �rst
(resp. second) recursive call where the closed itemsets having (resp. not
having) the last enumerated property e will be listed. Figure 2 depicts,
in this way, the partition of the search space performed by Extract .
Figure 3 is an enumeration tree Extract could traverse when applied
on BE (represented in Figure 1) with a frequency constraint, C2-frequent ,
forcing at least two objects. The previous sentence uses the conditional
mood because the function “Choose” in Figure 1 was not speci�ed.
Notice that this choice of the property to enumerate does not need to
rely on a global ordering of P. For example, the enumeration order is At every iteration,

any property can be
chosen to enlarge the
current candidate
pattern.

different in the different branches of the tree in Figure 3. In this tree,
the dashed leaves are enumeration nodes where a closed itemset is
output. The dotted leaves are pruned.
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An original algorithm, named COBBLER [ 60], proposes to further
exploit the freedom to “choose” the element to enumerate at every
recursive call. Because the collection of closed itemsets mathematically
is stable by transpose of the binary relation B, COBBLER dynamically
switches between the enumeration of properties and objects. The
work presented in this thesis reuses this idea that becomes a key for
the tractable extraction of closed patterns in n-ary relations (n > 2).
COBBLER uses a switching condition, between enumerating properties
and objects, that is based on a number of enumeration nodes estimated
in simpli�ed enumeration trees. We believe this is the cause for a time
performance that could have been much better. Our approach uses
another switching condition.

Figure 1 only aims at presenting, with the notations of this thesis, a
simple algorithm based on the fundamental principles shared by most
closed itemset extractors. Extract is not a state-of-the-art algorithm. It
can be improved. In particular:

– Becauseg(UP ) only loses properties at every recursive call, it could
be recursively computed (it would become an additional argument
of Extract ). This would avoid the scan of all objects, O, at every
recursive call.

– When enforcing Cclosed, every tested extension could be taken in
fs 2 P n (UP [ VP ) j Cconnected(g(UP [ VP ); fsg)g(the other proper-
ties in P n (UP [ VP ) cannot prevent the closedness of any recur-
sively computed pattern) and this set could be recursively com-
puted too. This would reduce the time spent enforcing Cclosed.

– Every property v0 2 VP such that Cconnected(g(UP ); fv0g) could be
directly moved to UP . Indeed, such a property v0 must be in
every closed itemset recursively discovered from the current call
otherwise this itemset would be extensible with v0, hence unclosed.
This improvement would reduce the enumeration tree and the
running time.

Analog improvements will be discussed in the thesis in the more general
context of closed pattern mining in arbitrary n-ary relations.

2 constraining the itemsets

2.1 Why Are Constraints Wanted?

2.1.1 Focusing on Relevant Itemsets

The collection of all closed itemsets in a binary relation B � O � P
usually is huge. In the worst case it has 2min ( jOj ; jPj ) patterns 1. Stating
a minimal number of objects 
 2 N , under which the closed itemsets
are not listed, is a progress. Indeed, conjunctions of properties must
apply to enough objects to be statistically relevant. Nevertheless the
frequency constraint is not the only relevant constraint. Depending
on the actual semantics behind B, many various constraints are useful. Constraints provide a

declarative semantics
of therelevant
(closed) itemsets.

For example, in the context of customers buying products, the analyst
could be interested in subsets of items:

– that are often bought together (by at least 
 2 N customers),
– but not too often either (at most � 2 N customers involved),
– have an average gross pro�t (for the retailer) above 1  ,

1. This maximum derives from the bijection between the closed itemsets and either
their sets of objects (2 2O ) or their sets of properties (2 2P ). See Section1.3.2.
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– and with at least one item whose gross pro�t is below 1  and at
least one item whose gross pro�t is above 2  .

In this speci�cation of what is a relevant (closed) itemsets, the �rst
part, “often bought together”, is a frequency constraint. The second
part, “not too often bought together”, is an infrequency constraint. The
two last parts are more complex constraints. The “average gross pro�t
above 1  ” is based on the mean of values that are functions of the items
or even of both the items and the customers if the gross pro�t of a same
item varies from one sell in B to another. Considering all applications
that may be of interest, an in�nite quantity of relevancy constraints can
be imagined.

2.1.2 Reducing Extraction Times

Obviously, any constraint may be handled as a post-processing step,
i. e., the collection of all closed itemsets is extracted and a sub-collection,
on which the constraint is satis�ed, is �ltered afterwards. Unless there
are few (unconstrained) closed itemsets of the binary relation B, such
an approach is not tractable. Section 2.1.1 mentioned that, at worst,
there are 2min ( jOj ; jPj ) closed itemsets of B. The problem of listing
them all is NP-hard [ 94] (and so is the veri�cation of a constraint on
them all). Beyond the relevancy intrinsically expressed by a constraint,
such constraints must be handled at extraction to prune the pattern
search space, reduce the extracted collection of closed itemsets (while
keeping all those satisfying the constraint) and decrease the running
time. Ideally, only the closed itemsets satisfying the constraint shouldFor some constraints,

regions of the search
space where it is

violated can be
avoided, hencefaster

extractions.

be extracted. The frequency constraint is such an ideal constraint, i. e., it
is integrated into the extractor that directly returns the closed itemsets
having enough objects and only them. In fact, the possible integration
of a constraint in an extractor depends on the enumeration principles of
this extractor. In other terms, classes of constraints are de�ned w.r.t. the
enumeration principles that allow to integrate them so that the search
space is pruned and the running time lowered.

2.2 What is a Constraint?

A constraint is a propositional function of the patterns, i. e., a state-
ment that uses, as a variable, a pattern(O; P) 2 2O � 2P and returns
either true or false. For example, the frequency constraint forcing at
least 
 2 N objects in every extracted closed itemset is formally de�ned
as the propositional function C
 -frequent below:

C
 -frequent (O; P) � jOj > 
 .

The infrequency constraint forcing at most � 2 N objects in every
closed itemset is:

C� -infrequent (O; P) � jOj 6 � .

The constraint forcing every closed itemset to represent an average
gross pro�t above 1  (see Section2.1.1) requires the use of a function
gp : P ! R+ that returns the gross pro�t on any item. The constraint
is de�ned as:

Cavg-gp> 1 (O; P) �

P
p 2 P gp(p)

jPj
> 1 .
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If the gross pro�t varies from one sell in B to another, there is a need
for a function gp 0 : B ! R+ that returns the gross pro�t made when
any customer o 2 O bought an item p 2 P (gp 0 is de�ned on O � P
because the closed itemset(O; P) satis�es Cconnected). The constraint
Cavg-gp> 1 becomesCavg-gp' > 1 :

Cavg-gp' > 1 (O; P) �

P
( o;p ) 2 O � P gp 0(o; p)

jO � Pj
> 1 .

The constraint forcing every closed itemset to contain at least one item
whose gross pro�t is under 1  and at least one item whose gross pro�t
is above 2  only accommodates a function gp of the items:

C9gp 6 1^ 9gp > 2 (O; P) � 9 (o; o0) 2 O2 j gp(o) 6 1^ gp(o0) > 2 .

2.3 Classes of Constraints

2.3.1 Monotone and Anti-Monotone Constraints

Like the frequency constraint, several constraints allow, when, at
some point of the extraction, they are violated by (g(P); P), to prune
every pattern (g(P0); P0) with P � P0. These constraints are said anti-
monotone: If an itemset violates

an anti-monotone
constraint then
itemsets with
additional properties
violate it too.

De�nition 3 (Anti-monotonicity) A constraint C is said anti-monotone

iff 8(P; P0) 2 (2P )2 ;
�

P � P0
�

)
�

C(g(P0); P0) ) C(g(P); P)
�

.

For example, C2-frequent is anti-monotone, i. e., if a pattern is frequent
then every pattern having a subset of its properties is frequent as well.

To prune the search space thanks to an anti-monotone constraint
Canti-monotone , a closed itemset extractor that enumerates larger and
larger subset of properties (like Extract in Figure 1) considers the
smallest possible property set that may be recursively considered from
the current call. Using the notations of Extract , Canti-monotone is tested
on (g(UP ); UP ). The recursive computation can safely be aborted if the
test fails.

Example 3 Consider the execution ofExtract on BE and under the anti-
monotone constraintC2-frequent (see Figure3). At every call,Extract tests
C2-frequent(g(UP ); UP ). When, at the bottom-left corner of Figure3, Ex-
tract is called with(UP ; VP ) = ( fp1 ; p2g; fp3g), this test succeeds (because
jg(fp1 ; p2g)j = jfo1 ; o2gj> 2). As a consequence, a closed itemset satisfying
C2-frequentmay recursively be extracted and the computation goes on. Indeed,
(fo1 ; o2g; fp1 ; p2g) is discovered in a descendant enumeration node.

If an itemset violates
a monotone
constraint then
itemsets with some
properties removed
violate it too.

On the contrary, if a pattern (g(P); P) allows, when it violates a
constraint, to af�rm its violation by every pattern (g(P00); P00) with
P0 � P, then the constraint is said monotone:

De�nition 4 (Monotonicity) A constraintC is said monotone iff

8(P; P00) 2 (2P )2 ;
�

P00� P
�

)
�

C(g(P00); P00) ) C(g(P); P)
�

.

For example, C2-infrequent is monotone, i. e., if a pattern is infrequent
then every pattern having a superset of its properties is infrequent as
well. Notice that negations of anti-monotone constraints are monotone
and vice versa.
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Input: (UP ; VP ) 2 (2P )2

Output: Every closed itemset having all properties in UP , potentially
some properties in VP and satisfying Cmonotone ^ C anti-monotone
if Canti-monotone (g(UP ); UP ) ^ C monotone(g(UP [ VP ); UP [ VP ) ^
8s 2 P n(UP [ VP ); g(UP ) � fsg6� B then

if VP = ; then
output ((g(UP ); UP ))

else
Choosee 2 VP

Extract ++(UP [ feg; VP n feg)
Extract ++(UP ; VP n feg)

end if
end if

Figure 4: The Extract ++ closed itemset extractor (under any conjunction of
monotone and anti-monotone constraints).

To prune the search space thanks to a monotone constraintCmonotone

and without changing the enumeration, (g(UP [ VP ); UP [ VP ) must
be considered, i. e., the pattern with the largest possible property set
(every property in VP is accepted in UP ). If this pattern satis�es
Cmonotone then the enumeration must go on, otherwise the search space
can be pruned.

Example 4 Consider the execution ofExtract on BE and under the mono-
tone constraintC2-infrequent. When Extract is called with (UP ; VP ) =
(; ; fp2g), C2-infrequent(g(UP [ VP ); UP [ VP ) is false. As a consequence,
recursive calls would not allow the extraction of any closed itemset satisfying
C2-infrequent and the search space can be pruned, i. e., the two enumeration
nodes in the bottom-right corner of Figure3 are not to be traversed. Indeed,
neither(fo1 ; o2 ; o3g; fp2g) nor (fo1 ; o2 ; o3 ; o4g; ; ) (that are extracted when
C2-infrequent is not enforced) satis�esC2-infrequent.

Obviously any conjunction of monotone (resp. anti-monotone) con-
straints is a monotone (resp. anti-monotone) constraint. As a conse-
quence, any conjunction of monotone and anti-monotone constraints
can be reduced to a conjunction Cmonotone ^ C anti-monotone . The extrac-
tion of every closed itemset under Cmonotone ^ C anti-monotone is achieved
by the algorithm Extract ++ in Figure 4. This extractor generalizes
Extract and enforces Cmonotone ^ C anti-monotone as explained in the pre-
vious paragraphs.If the itemset with the

smallest (resp.
greatest) possible set
of properties violates

an anti-monotone
(resp. monotone)

constraint, the search
space can be pruned.

The duality between (g(UP ); UP ) and (g(UP [ VP ); UP [ VP ) was
understood and exploited in [ 16]. The presented algorithm, DualMiner,
extracts (not necessarily closed) itemset by simultaneously taking ad-
vantage of both monotone and anti-monotone constraints to prune the
search space. The work presented in this thesis extends the class of
constraints DualMiner can ef�ciently handle but the same duality is
exploited.

A constraint that is neither monotone nor anti-monotone is harder to
integrate into the extraction (to reduce extraction times). Automatically
pre-processing such a constraint to turn it into a Boolean expression
of monotone and anti-monotone constraints is a key to a theory of
data-mining but remains an open problem. See [ 70] for a seminal paper
on the subject and [55] for a speci�c case study (though, in both cases,
the considered patterns are strings rather than itemsets). Even if a
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relaxation of the tough constraint is strictly weaker than the original
one, its integration may greatly reduce the extraction times and the
original constraint can then �lter the supernumerary patterns in a
post-processing step.

[58] is a key article in the de�nition of classes of constraints for itemset
mining. It introduced the concepts anti-monotonicity and succinctness
(de�ned in the next section). The enforcement of monotone constraints
along the extraction was achieved later [34].

2.3.2 Succinct Constraints

Succinct constraints reduce the search space before the extraction
starts, i. e., the candidate pattern set is not 2O � 2P anymore. In other
terms, the satisfaction of a succinct constraint does not depend on the
binary relation B and rede�nes what is a syntactically relevant pattern. A succinct constraint

de�nes “positive” and
“negative” subsets of
properties. It forces
the properties of a
closed itemset to be
included in one
“positive” set and not
included in any
“negative” set.

The enforcement of a succinct constraint is handled by a modi�ed
enumeration that only generates the candidate patterns that satisfy the
constraint. The considered enumeration is that of most closed itemset
extractors, i. e., the enumeration of the subsets of one property domain
(see Section1.3.2), traditionally the properties. As a consequence
succinct constraints relate to selections of relevant elements in 2P .

De�nition 5 (Succinctness) A constraintC is said succinct iff there exists
(k; l ) 2 N 2 , (Pi ) i = 1..k 2 (2P )k and (Q j ) j = 1..l 2 (2P ) l such that the
patterns(g(P); P) satisfyingC are those withP 2 [ k

i = 12Pi n [ l
j = 12Q j .

For example, C9gp 6 1^ 9gp > 2 (de�ned in Section 2.2) is succinct. Indeed
the patterns (g(P); P) satisfying it are those with P 2 2P n (2� gp 6 2 ( P ) [
2� gp > 1 ( P ) ), where � gp 6 2 (P) = fp 2 P j gp(p) 6 2g(the items with a
gross pro�t below 2  ) and � gp > 1 (P) = fp 2 P j gp(p) > 1g(the items
with a gross pro�t above 1  ).

The succinct constraints are, historically, handled by a modi�ed enu-
meration. However, a closed itemset extractor, such as Extract ++, able
to enforce conjunctions of monotone and anti-monotone constraints,
can handle any succinct constraint. Indeed, a succinct constraint C, as
de�ned above, is equivalent to Csuccinct anti-monotone ^ C succinct monotone,
where:

– Csuccinct anti-monotone (O; P) � P 2 [ k
i = 12Pi is anti-monotone;

– Csuccinct monotone(O; P) � P =2 [ l
j = 12Q j is monotone.

2.3.3 Convertible Constraints

Convertible constraints were introduced in [ 62]. This class of con-
straints lies on abandoning the freedom to enumerate any remaining
property (in VP according to the notations of Figure 4) at any recursive
call. Ordering the properties makes, on every branch of the enumeration
tree, the sequence of larger and larger subsets of properties determinis-
tic. Some constraints, which are not monotone (resp. anti-monotone),
can become monotone (resp. anti-monotone) for a particular order (i. e.,
a particular Choose function in Figure 4) of the enumerated properties.
In other terms, the properties are enumerated in a well-chosen order
that makes the constraint monotone (resp. anti-monotone) on every
branch of the enumeration tree. Such constraints are called convertible The convertibility is

the monotonicity
(resp.
anti-monotonicity)
for an arbitrary total
order on the subsets
of properties.

monotone (resp. anti-monotone).

De�nition 6 (Convertible monotonicity) A constraintC is said convert-
ible monotone iff there exists a total order� of the properties inP such
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that 8(P; P00) 2 (2P )2 ;
�

P00 � P ^ 8(p00; p) 2 P00� P n P00; p00 � p
�

)
�

C(g(P00); P00) ) C(g(P); P)
�

.

De�nition 7 (Convertible anti-monotonicity) A constraintCis said con-
vertible anti-monotone iff there exists a total order� of the properties inP

such that8(P; P0) 2 (2P )2 ;
�

P � P0^ 8(p; p 0) 2 P � P0n P; p � p0
�

)
�

C(g(P0); P0) ) C(g(P); P)
�

.

Cavg-gp> 1 is an example of a convertible monotone constraint. Indeed,
by enumerating the items by increasing gross pro�t, i. e., 8(p; p 0) 2
P2 ; p � p0 , gp(p) 6 gp(p0), Cavg-gp> 1 is monotone on every branch
of the enumeration tree, i. e., once satis�ed at some point of the enumer-
ation tree it remains true in the whole sub-tree recursively built from
this point. Indeed, the average only increases when a greater value
(than those previously considered) is added. Notice that Cavg-gp> 1
is convertible anti-monotone too (items ordered by decreasing gross
pro�t). However not every convertible monotone constraint is convert-
ible anti-monotone as well.

When the analyst speci�es a convertible constraint, the Choose func-
tion of Figure 4 must be the one that always enumerates the smallest
property w.r.t. the order � related to the constraint, i. e., Choose returns
e 2 VP such that 8f 2 VP ; e � f . Then, the constraint is treated as a
monotone constraint if it is convertible monotone; as an anti-monotone
constraint if it is convertible anti-monotone. This way of handling
convertible constraints has two drawbacks:

– It is impossible to enforce several convertible constraints unless
they rely on the same order of properties (in other terms, the
convertibility is not preserved by conjunction);

– Because the Choose function is imposed by the convertible con-
straint, it cannot be de�ned so that the extraction time is heuristi-
cally lowered.Convertibility �xes

the search space
traversal. Losing this

degree of freedom
prevents some

performance
improvements.

When no convertible constraint is speci�ed, a popular heuristic lowering
the extraction time is the enumeration of properties by increasing den-
sity, i. e., Choose returns a property e 2 VP minimizing the expression
below:

j(O � feg) \ Bgj .

This heuristic was rediscovered in [ 43] for (not necessarily closed)
itemset mining. However, it was already used in [ 76] for the older
related problem of identifying prime implicants in CNF propositional
logic expressions. The algorithms presented in this thesis generalizes
this heuristic when it comes to choose an element to enumerate.

2.3.4 Loose Anti-Monotone Constraints

Loose anti-monotonicity was introduced in [ 12]. If a candidate pat-
tern (g(P); P) with jPj > 2 satis�es a loose anti-monotone constraint
then one of its properties p can be removed and (g(P n fpg); P n fpg)
satis�es it too.If an itemset satis�es

a loose anti-monotone
constraint then at

least one itemset with
one property removed

satis�es it too.

De�nition 8 (Loose anti-monotonicity) A constraintC is said loose anti-

monotone iff8P � P;
�

jPj > 2 ^ C (g(P); P)
�

) 9 p 2 P j C(g(P n fpg); P n

fpg).
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Input: L � 2P

Output: Every closed itemset having a superset of the properties of
any element in L and satisfying Canti-monotone ^ C LAM
L0  ;
for all UP 2 L do

if Canti-monotone (g(UP ); UP ) ^ C LAM (g(UP ); UP ) then
if 8s 2 P nUP ; g(UP ) � fsg6� B then

output ((g(UP ); UP ))
end if
for all e 2 P nUP do

L0  L0[ fUP [ fegg
end for

end if
L  L n fUP g

end for
if L0 6= ; then

Extract #(L0)
end if

Figure 5: The Extract # closed itemset extractor (under any loose anti-
monotone constraint).

Consider the constraint Cstd-gp6 1 specifying a standard deviation below
1  for the gross pro�ts of the items involved in a relevant pattern.

Cstd-gp6 1 (O; P) �

s P
p 2 P (gp(p) - � )2

jPj
6 1, where � =

X

p 02 P

gp(p0)
jPj

.

This constraint is loose anti-monotone: if a pattern (g(P); P) satis�es
Cstd-gp6 1 then there exists an item p 2 P such that (g(P n fpg); Pn fpg)
satis�es Cstd-gp6 1 as well. Indeed, removing the item with the gross
pro�t that is (one of) the farthest from � always decreases the standard
deviation. More formally, this item p 2 P is such that 8p0 2 P;jgp(p0) -
� j 6 jgp(p) - � j.

With a loose anti-monotone constraint CLAM the candidate patterns is
traversed breadth-�rst. In this way, it is natural to check the existence of
a pattern with a subset of the properties and satisfying CLAM . Figure 5
gives a simple closed itemset extractor Extract # that handles such a
loose anti-monotone constraint CLAM (and an anti-monotone constraint
Canti-monotone ). It is initially called with the �rst level of the enumeration
tree, i. e., L = ff; gg. Notice that, whatever UP � P, any property
e 2 P n UP may be appended to it. As a consequence, there is no
need to store the search spaceVP anymore. However the number of
generated patterns potentially is much larger and duplicates may be
considered. To address this issue, L0 only keeps one occurrence of An enumeration only

taking advantage of
loose
anti-monotonicity is
far less ef�cient.

identical sets of properties.
In the literature, the few proposals that handle a loose anti-monotone

constraint prune the search space in a more complex way than Extract #.
To avoid the costly change in candidate enumeration (i. e., to maintain
a search spaceVP � P), they assume the patterns are always mined
under an anti-monotone constraint too. In this way, pruning thanks to
the loose anti-monotone constraint can be done on top of the classical
enumeration, where the anti-monotone constraint is fully exploited (i. e.,
contrary to Extract #, if (g(P0); P0) is considered then every(g(P); P)
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Input: UP � P
Output: Every closed itemset having all properties in UP and satis-
fying Canti-monotone ^ C LAM
if Canti-monotone (g(UP ); UP ) ^ C LAM (g(UP ); UP ) then

if 8s 2 P nUP ; g(UP ) � fsg6� B then
output ((g(UP ); UP ))

end if
for all e 2 P nUP do

if max(UP [ feg) = e then
Extract ##(UP [ feg)

end if
end for

end if

Figure 6: The Extract ## closed itemset extractor (under a loose anti-monotone
constraint with a known max function).

with P � P0 satis�es the anti-monotone constraint). Moreover, they
can enforce monotone constraints. Nevertheless, their enumeration
remains breadth-�rst, hence potential space issues (dominated by the
storage of the greatest level denotedL in Figure 5). A more fundamental
drawback of the class of loose anti-monotone constraints is that, like
that of convertible constraints, it is not stable under conjunction. Thus,
it is generally impossible to ef�ciently enforce conjunctions of loose
anti-monotone constraints.

Notice that any convertible anti-monotone constraint is loose anti-
monotone. Indeed, a consequence of the de�nition of a convertible
anti-monotone constraint C is that there exists a total order � of the
properties such that 8P � P; C(g(P); P) ) C(g(P n fpg); P n fpg), where
p 2 P is the greatest property in P w.r.t. � , i. e., 8p0 2 P; p0 � p. This
statement still holds if the greatest property w.r.t. � is de�ned locally
(i. e., w.r.t. a speci�c P � P) rather than globally, i. e., if there exists
a function max : 2P ! P that takes as input any P � P and such
that C(g(P); P) ) C(g(Pn fmax(P)g); Pn fmax(P)g). The related class of
constraints actually is the loose anti-monotonicity. Nevertheless, such a
reformulation presupposes an a priori knowledge of the function max
(and the ability to quickly compute it). It is often the case. For example
the max function related to Cstd-gp6 1 is:

max : P ! argmaxp 2 P (jgp(p) - � j), where � =
X

p 02 P

gp(p0)
jPj

.

More precisely, there is a need for an additional arbitrary order on
the properties such that max returns a unique element (for example
the smallest w.r.t. this arbitrary order) among those that minimize
jgp(p) - � j.

Integrating to the algorithm the knowledge of the function max,
related to the loose anti-monotone constraint CLAM , helps the extraction.A depth-�rst

candidate
enumeration is

possible for some
loose anti-monotone

constraints.

In particular, it becomes possible to traverse the search space depth-�rst
by only considering as a child a pattern where the newly added element
is the maximal one. This technique is called reverse search[3]. Figure 6
gives such an extractor, namely Extract ##.
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Flexible constraints F Operators Argument(s)

C1 � C2 � 2 f^ ; _g (C1 ; C2 ) 2 F2

:C - C 2 F

e1 �e 2 � 2 f<; 6 g (e1 ; e2 ) 2 E2

X1 �X 2 � 2 f� ; � g (X1 ; X2 ) 2 S2

constant b - b 2 ftrue;falseg

Aggregate expressionsA Operators Argument(s)

a1 �a 2 � 2 f+ ; - ; � ; =g (a1 ; a2 ) 2 A2

jXj - X 2 S

� x 2 X val (x) � 2 f
P

; max; min g X 2 S

constant r - r 2 R+

Syntactic expressionsS Operators Argument(s)

X1 �X 2 � 2 f[ ; \ ; ng (X1 ; X2 ) 2 S2

g(X) - X 2 S

variable P - P � P

constant P - P � P

Table 2: Flexible constraints.

2.3.5 Flexible constraints

The �exible constraints were introduced in [ 78]. They are recursively
de�ned. A �xed set of

primitives recursively
de�nes �exibility.De�nition 9 (Flexibility) A constraint C is said �exible if it is in F that

Table2 recursively de�nes.

Contrary to convertible or loose anti-monotone constraints, the �exi-
ble constraints are, by de�nition (the �rst line de�ning F in Table 2),
stable under conjunction (and disjunction). The class of �exible con-
straints is very broad. Although it was not previously shown, even
Cstd-gp6 1 is �exible. With its expression based on the de�nition of the
variance, it does not look so:

Cstd-gp6 1 (O; P) �

s P
p 2 P (gp(p) - � )2

jPj
6 1, where � =

X

p 02 P

gp(p0)
jPj

.

However, the theorem of König-Huyghens proves the equivalence of
this de�nition with the following:

Cstd-gp6 1 (O; P) �

s P
p 2 P gp(p)2

jPj
- � 2 6 1, where � =

X

p 02 P

gp(p0)
jPj

.

Both sides of the inequality are positive. As a consequence, they can be
raised to the power 2 and an equivalent expression is obtained:

Cstd-gp6 1 (O; P) �

P
p 2 P gp(p)2

jPj
- � 2 6 1, where � =

X

p 02 P

gp(p0)
jPj

.

This time, a �exible constraint is recognized. Here is how to recursively
build it from the primitives in Table 2 (the �rst level lists primitives; then,
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every expression has at least one argument taken from the previous
level):

1. – variable P1 � P (2 S).
– variable P2 � P (2 S).
– variable P3 � P (2 S).
– variable P4 � P (2 S).
– constant 1 2 R+ (2 A).

2. –
P

x 2 P1
val (x), with val : x ! gp(x)2 (2 A).

– jP2 j (2 A).
–

P
x 2 P3

val (x), with val : x ! gp(x) (2 A).
– jP4 j (2 A).

3. –
� P

x 2 P1
val (x)

�
=jP2 j, with val : x ! gp(x)2 (2 A).

– � =
� P

x 2 P3
val (x)

�
=jP4 j, with val : x ! gp(x) (2 A).

4. – � 2 = � � � (2 A).

5. –
�� P

x 2 P1
val (x)

�
=jP2 j

�
- � 2 , with val : x ! gp(x)2 (2 A).

6. –
�� P

x 2 P1
val (x)

�
=jP2 j

�
- � 2 > 1, with val : x ! gp(x)2 (2 F,

i. e., Cstd-gp6 1 2 F).

2.3.6 Primitive-Based/Piecewise (Anti)-Monotone Constraints

In [ 79], the authors notice that the �exible constraints only are a
subset of a more general class constraints, which are analogously en-
forced. These constraints, namely the primitive-based constraints, are
those recursively de�ned by a list of primitives (such as Table 2) that
are increasing or decreasing w.r.t. each of their arguments (the others
considered �xed). A constraint is increasing or decreasing w.r.t. the
order ffalse� trueg. An aggregate expression is increasing or decreasing
w.r.t. the order 6 on real numbers. Finally, a syntactic expression is
increasing or decreasing w.r.t. the order � on sets. Every primitive inPrimitive-based

constraints are
recursively de�ned

from arbitrary
primitives that either

increase or decrease
w.r.t. each of their

arguments.

Table 2 is increasing or decreasing on each of their arguments. As a
consequence, the �exible constraints are primitive based. The converse
does not hold.

Consider the constraint Cavg-gp' > 1 de�ned in Section 2. It is not
�exible because the function gp 0 is de�ned over B � O� P and Table 2
does not allow such a multivariable calculus. Nevertheless, Cavg-gp' > 1
is primitive-based. Consider, the following aggregate expression:

X

( x 1 ;x 2 ) 2 X 2

val (x1 ; x2 ) (X 2 S and val : (O[ P)2 ! R+ )

This primitive can be added to Table 2 to de�ne a set of constraints F 0 �
F. Every constraint in F 0 is primitive based because, like the primitives
in Table 2, the additional aggregate expression is increasing with X,

i. e., 8(X1 ; X2 ) 2 (2O[ P )2 ,
�

X1 � X2 )
P

( x 1 ;x 2 ) 2 X 2
1

val (x1 ; x2 ) 6
P

( x 1 ;x 2 ) 2 X 2
2

val (x1 ; x2 )
�

. It can now be proved that Cavg-gp' > 1 is in F 0,

hence primitive-based:

1. – variable P1 � P (2 S).
– variable P2 � P (2 S).
– constant 1 2 R+ (2 A).

2. – g(P1 ) (2 S).
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– g(P2 ) (2 S).
– jP2 j (2 A).

3. – g(P1 ) [ P1 (2 S).
– jg(P2 )j (2 A).

4. –
P

( x 1 ;x 2 ) 2 ( g ( P1 ) [ P1 ) 2 val (x1 ; x2 ),

with val : (x1 ; x2 ) !

8
<

:
gp 0(x1 ; x2 ) if (x1 ; x2 ) 2 B

0 otherwise
(2 A).

– jP2 j � jg(P2 )j (2 A).

5. –
� P

( x 1 ;x 2 ) 2 ( g ( P1 ) [ P1 ) 2 val (x1 ; x2 )
�

=
�

jP2 j � jg(P2 )j
�

,

with val : (x1 ; x2 ) !

8
<

:
gp 0(x1 ; x2 ) if (x1 ; x2 ) 2 B

0 otherwise
(2 A).

6. –
� P

( x 1 ;x 2 ) 2 ( g ( P1 ) [ P1 ) 2 val (x1 ; x2 )
�

=
�

jP2 j � jg(P2 )j
�

< 1 ,

with val : (x1 ; x2 ) !

8
<

:
gp 0(x1 ; x2 ) if (x1 ; x2 ) 2 B

0 otherwise
(2 F 0).

7. – :
�� P

( x 1 ;x 2 ) 2 ( g ( P1 ) [ P1 ) 2 val (x1 ; x2 )
�

=
�

jP2 j � jg(P2 )j
�

< 1
�

,

with val : (x1 ; x2 ) !

8
<

:
gp 0(x1 ; x2 ) if (x1 ; x2 ) 2 B

0 otherwise
(2 F 0, i. e.,

Cavg-gp' > 1 2 F 0).

As illustrated above, it may be tedious to prove that a particular
constraint is primitive-based. Indeed, the required primitives must
be intuitively found, proved increasing or decreasing w.r.t. each of
their arguments (the others considered �xed) and must be combined so
that an equivalent expression of the constraint is found (e. g., the last
expression proving Cavg-gp' > 1 2 F 0 is equivalent to Cavg-gp' > 1 but is not
syntactically identical).

Piecewise (anti)-monotone constraints apply to patterns that hold
in arbitrary n-ary relations (n > 2). Although it was not understood
earlier, this class of constraints actually is, when restricted to binary
contexts, that of primitive-based constraints. At �rst sight, this equality Piecewise

(anti)-monotone and
primitive-based are
synonymous.

is not obvious because the piecewise (anti)-monotonicity was de�ned so
that it is quite easy to prove a particular constraint belongs to this class.
The basic common principle is the monotonicity/anti-monotonicity per
argument. To introduce the piecewise (anti)-monotonicity, this only
needs to be de�ned on constraints.

De�nition 10 ((Anti)-monotonicity per argument) A constraintCis said
monotone (resp. anti-monotone) w.r.t. thei th argument iff it is monotone
(resp. anti-monotone) when all its arguments but thei th are considered con-
stant.

The de�nition of piecewise (anti)-monotonicity relies on attributing
a separate argument to every occurrence of every variable and, then,
proving that the obtained constraint is (anti)-monotone w.r.t. each of
its arguments. It can be written that the de�nition of piecewise (anti)- Piecewise

(anti)-monotone
constraints are either
monotone or
anti-monotone w.r.t.
each occurrence of a
variable in their
expressions.

monotonicity is the top-down counterpart of the bottom-up de�nition
of primitive-based constraints.

De�nition 11 (Piecewise (anti)-monotonicity) A constraint C is piece-
wise (anti)-monotone iff the rewritten constraintC0, attributing a separate
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argument to every occurrence of every variable in the expression ofC, is
(anti)-monotone w.r.t. each of its arguments.

Given a particular constraint, the de�nition of piecewise (anti)-
monotonicity makes it easier to prove it primitive-based/piecewise
(anti)-monotone. Consider Cavg-gp' > 1 again. Its expression is:

Cavg-gp' > 1 (O; P) �

P
( o;p ) 2 O � P gp 0(o; p)

jO � Pj
> 1 .

By attributing a separate argument to every occurrence of O and P,
Cavg-gp' > 1 is rewritten as follows:

C0
avg-gp' > 1 (O1 ; O2 ; P1 ; P2 ) �

P
( o;p ) 2 O 1 � P1

gp 0(o; p)

jO2 � P2 j
> 1 .

C0
avg-gp' > 1 is monotone on its �rst and third arguments. It is anti-

monotone on its second and fourth arguments. As a consequence,
Cavg-gp' > 1 is, by de�nition, primitive-based/piecewise (anti)-monotone.
In the remaining of this thesis, the term “piecewise (anti)-monotone”
is preferred because its de�nition translates the approach the thesis
follows: useful constraints are �rst identi�ed, then proved to be part
of the class of constraints the proposed algorithms ef�ciently handle.
The de�nition of primitive-based constraints translates the reversed
approach, i. e., designing a SQL-like language to query patterns.

Extract *, in Figure 7, extracts every closed itemset under a piecewise
(anti)-monotone constraint CP(A)M . Apart from the enforcement of
CP(A)M , it is identical to Extract ++ (in Figure 4). To enforce CP(A)M ,
Extract * needs the constraint C0

P(A)M where every occurrence of every
variable in CP(A)M is attributed a separate argument on which C0

P(A)M
is (anti)-monotone. At any call, every argument on which C0

P(A)M is
monotone is instantiated:

– if the argument ranges in 2O , with the largest object set that may
be considered from the current call, i. e., g(UP ) (g is decreasing
w.r.t. its argument and UP is the smallest property set that may be
considered from the current call);

– if the argument ranges in 2P , with the largest property set that
may be considered from the current call, i. e., UP [ VP .

Dually, every argument on which C0
P(A)M is anti-monotone is instanti-

ated:
– if the argument ranges in 2O , with the smallest object set that

may be considered from the current call, i. e., g(UP [ VP ) (g is
decreasing w.r.t. its argument and UP [ VP is the largest property
set that may be considered from the current call);

– if the argument ranges in 2P , with the smallest property set that
may be considered from the current call, i. e., UP .A piecewise

(anti)-monotone
constraint is

instantiated for some
variables with the

smallest, for the
others with the

greatest, possible set
of properties. If

violated the search
space can be pruned.

If this instantiation is false then no pattern recursively considered from
the current call satis�es CP(A)M (and Extract * prunes the search space).
This implication directly follows the de�nition of piecewise (anti)-
monotonicity and the fact that g(UP [ VP ) and UP are the smallest
object and property sets that may be considered from the current call;
g(UP ) and UP [ VP the largest.

Example 5 Consider the execution ofExtract * on BE and under the piece-
wise (anti)-monotone constraintCavg-gp'> 1 , where Table3 de�nes the function
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Input: (UP ; VP ) 2 (2P )2

Output: Every closed itemset having all properties in UP , potentially
some properties in VP and satisfying CP(A)M
if C0

P(A)M is satis�ed when instantiated as detailed in the text ^ 8s 2

P n(UP [ VP ); g(UP ) � fsg6� B then
if VP = ; then

output ((g(UP ); UP ))
else

Choosee 2 VP

Extract *(UP [ feg; VP n feg)
Extract *(UP ; VP n feg)

end if
end if

Figure 7: The Extract * closed itemset extractor (under any piecewise (anti)-
monotone constraint).

p1 p2 p3

o1 0.2 1 0.2

o2 0 0.5 (0)

o3 (0) 2 (0)

o4 (0) (0) 1.5

Table 3: gp 0 : BE ! R+ .

gp 0 : BE ! R+ . At every call,Extract * testsC0
avg-gp'> 1 (g(UP ); g(UP [

VP ); UP [ VP ; UP ), whereC0
avg-gp'> 1 is the constraint, (anti)-monotone on

each of its arguments, that was introduced earlier to prove the piecewise (anti)-
monotonicity ofCavg-gp'> 1 . When Extract * is called with (UP ; VP ) =
(fp1 ; p2g; fp3g), this tests fails:

P
( o;p ) 2 g ( f p 1 ;p 2 g) � f p 1 ;p 2 ;p 3 g gp 0( o;p )

jg ( f p 1 ;p 2 ;p 3g) � f p 1 ;p 2gj > 1

�
P

( o;p ) 2 f o 1 ;o 2 g� f p 1 ;p 2 ;p 3 g gp 0( o;p )

jf o 1g� f p 1 ;p 2gj > 1

� 0.2+ 1+ 0.2+ 0+ 0.5+ 0
2 > 1

� 0.95 > 1

� false

As a consequence, recursive calls would not allow the extraction of any closed
itemset satisfyingCavg-gp'> 1 and the search-space can be pruned, i. e., the two
enumeration nodes in the bottom-left corner of Figure3 are not to be traversed.
Interestingly, at the parent node, where(UP ; VP ) = ( fp1g; fp2 ; p3g), the
piecewise (anti)-monotone constraintCavg-gp'> 1 does not prune the search
space although no connected pattern, that may be recursively considered from
it, satis�esCavg-gp'> 1 . The reason isC0

avg-gp'> 1 is not instantiated with a real
pattern. Instead, each of its arguments is instantiated with the objects or the
attributes of either the smallest or the largest pattern that may be recursively
considered from the current call.

In fact, the enforcement of piecewise (anti)-monotone constraints gen-
eralizes that of conjunctions of monotone and anti-monotone constraints
(see Section2.3.1). Like Extract ++, Extract * enforces a monotone
(resp. anti-monotone) constraint by instantiating its �rst argument with
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Figure 8: Classes of constraints preserving the freedom to enumerate any prop-
erty anytime.

g(UP [ VP ) (resp. g(UP )) and its second with UP [ VP (resp. UP ).
Indeed, an anti-monotone constraint (see De�nition 3) is a two-variable
constraint that is monotone w.r.t. the �rst argument (the objects) and
anti-monotone w.r.t. the second argument (the properties). Conversely,
a monotone constraint (see De�nition 4) is anti-monotone w.r.t. the �rst
argument and monotone w.r.t. the second argument.

Interestingly, both constraints Cconnected and Cclosed are piecewise
(anti)-monotone. Cconnected is monotone w.r.t. both its arguments and
Cclosed is proved piecewise (anti)-monotone in the next section. Because
conjunctions of piecewise (anti)-monotone constraints are piecewise
(anti)-monotone, “being a closed itemset” is piecewise (anti)-monotone“Being a closed

itemset” is piecewise
(anti)-monotone.

too. As a consequence, the separation between the de�nition of a closed
itemset, and an additional relevancy constraint C it must satis�es,
somehow disappears if C only needs to be piecewise (anti)-monotone.

2.3.7 Relations Between the Classes

Inclusions between classes of constraints were mentioned earlier. Fig-
ure 8 and 9 depict them. The enforcement of a convertible or of the
loose (anti)-monotone constraint require more constrained enumera-
tion principles. That prevents the use of some heuristics to improve
the extraction performance. Furthermore, that make their respective
classes unstable under conjunction. That is why they were, graphically,
separated from the other classes, which do not impose any constraints
on the enumeration.
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Figure 9: Classes of constraints generalizing anti-monotone constraints but
whose enforcements require modi�ed enumeration principles.
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2.4 On Closedness

2.4.1 Closedness

Because only subsets of properties are enumerated and the support-
ing objects are all obtained thanks to the g function (see Section1.3.2),
the closedness constraintCclosed, as stated in De�nition 2, can be re-
duced to testing whether a property can extend the pattern:

Cclosed(g(P); P) � 8 s 2 P nP;:C connected(g(P); fsg), i. e., g(P) � fsg6� B .

In Extract (see Figure1), Extract ++ (see Figure4) and Extract *
(see Figure7), this constraint prunes the search space if it is false when
instantiated as follows:

– the �rst occurrence of P (8s 2 P. . . ) is instantiated with the greatest
subset of properties that may be recursively considered from the
current call, i. e., UP ;

– the second occurrence ofP (. . .g(P) � fsg6� B) is instantiated with
the smallest subset of properties that may be recursively considered
from the current call, i. e., UP [ VP .

This procedure exactly follows the enforcement of a piecewise (anti)-
monotone constraint. Indeed, Cclosed belongs to this class of constraint
and is neither monotone, nor anti-monotone, nor succinct, nor convert-
ible, nor loose (anti)-monotone.

CCI Miner [ 11] is an ef�cient closed itemset extractor which takes
advantage of conjunctions of monotone and anti-monotone constraints.
Discussing the technical reasons behind its ef�ciency is out of the scope
of this thesis. Beyond these aspects, this article points out the ambiguity
behind the quest for closed itemsets under constraints. Indeed, two
interpretations are possible:

– The returned collection must be the one that would be obtained by
listing every (unconstrained) closed itemset and, then, removing
those that do not satisfy the constraints;

– The returned collection must be the one that would be obtained
by listing every (not necessarily closed) itemset under constraint
and, then, removing those that have both subsets (of objects and
properties) included in another extracted pattern.

The toy algorithms illustrating this chapter, like most closed itemset
extractors, adopt the �rst interpretation. CCI Miner uses the secondIn this thesis, the

closedness constraint
is a closure property

w.r.t. to all
unconstrained

patterns.

interpretation. In BE , represented in Table 1, the complete collection of
the closed itemsets under the anti-monotone constraint “having at most
one property” includes (fo1 ; o2g; fp1g) with the second interpretation
but not with the �rst one. The authors of CCI Miner talk about a loss
of information. However, in this example, the analyst does not want
to look at (fo1 ; o2g; fp1g). Indeed, the objectso1 and o2 actually share
strictly more than one property. Furthermore, it is interesting to notice
that the stability of the constrained pattern collection by transpose of the
binary relation (see Section 1.3.2) is preserved by the �rst interpretation
but not by the second one. To sum up, Cclosed is the closedness con-
straint w.r.t. Cconnected alone and a different closedness constraint can be
de�ned with respect to another constraint, e. g., Cconnected ^ C 6 1 property .

2.4.2 Strong Closedness and Stability

According to David J. Hand, here is the de�nition of a local pattern
[39]:
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A local pattern is a data vector serving to describe an anoma-
lously high local density of data points.

The closedness constraints on itemsets loosely enforces the anomalous
aspect. Indeed, in practice, many of them are very similar to each
other. Furthermore, although the closed itemsets are a condensed Strongly closed

itemsets areisolated
from the other
patterns.

representation of all (closed and unclosed) itemsets (see Section1.2),
complete collections of closed itemsets remain huge. [22] proposed
to strengthen the closedness on properties. In this way, the anomalous
aspect of a local is enforced and the size of the extracted collection of
pattern is reduced. A closed itemset (O; P) 2 2O � 2P is � -tolerant closed
if, whatever p 2 P nP, there always is strictly more than a proportion �
of O that does not have p. If � = 0, the � -tolerant closed itemsets are
closed itemsets. In other terms, De�nition 2 is generalized.

De�nition 12 (� -tolerance closed itemset) 8� 2 [0; 1[ and 8(O; P) 2
2O � 2P , (O; P) is a � -tolerance closed itemset iff:

– Cconnected(O; P) � O � P � B;

– Crel-� -closed(O; P) �

8
<

:
8o 2 O nO; fog� P 6� B

8p 2 P nP;j(O � fpg) n Bj > � jOj
.

[9] proposed a similar reinforcement of the closedness on properties
but with an absolute parametrization. A closed itemset (O; P) 2 2O � 2P The strong closedness

is de�ned absolutely
or in proportion to
the number of objects
in the itemset.

is � -closed if, whatever p 2 P nP, there is strictly more than � objects in
O that do not have p. Again, if � = 0, the � -closed itemsets are closed
itemsets and De�nition 2 is generalized.

De�nition 13 (� -closed itemset) 8� 2 N and8(O; P) 2 2O � 2P , (O; P)
is a � -closed itemset iff:

– Cconnected(O; P) � O � P � B;

– C� -closed(O; P) �

8
<

:
8o 2 O nO; fog� P 6� B

8p 2 P nP;j(O � fpg) n Bj > �
.

Notice that allowing � < 0 would make the � -closedness always satis-
�ed. In this way, the itemsets, which are matched, are connected but
not necessarily closed. The same notice can be made with De�nition 12
modi�ed so that � < 0 is allowed.

The � -closedness of a closed itemset(O; P) can alternatively be de-
�ned as a stability index of the (jOj - � )th level equal to 1.

De�nition 14 (Stability index) 8j 2 N and (O; P) a closed itemset, its
stability index of thej th level is:

jfO0 � O j jO0j = j ^ f (O0) = Pgj
� jO j

j

� .

[47] �rst de�ned and studied the stability index. It quanti�es to what
extent the � -closedness is satis�ed. Every de�nition of this section
strengthen/quantify the closedness w.r.t. the properties. Applying
them to the transpose of B would strengthen/quantify the closedness
w.r.t. the objects.

3 conclusion

This chapter mainly aims at presenting related works and at easing
the introduction of generalizations of closed itemset mining this thesis
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propose. However, it is also, by itself, a contribution. First of all, some of
the presented results (the reverse-search paradigm helping extractions
under any loose anti-monotone constraint, piecewise (anti)-monotone
as a synonym of primitive-based, link between strong-closedness and
stability) are, to the best of our knowledge, new. Then, this chapter
hopefully clari�es a global view of the extraction of closed itemsets
under constraints. In this regard, it follows a tradition of thesis, such as
that of Hannu Toivonen [ 83], Francesco Bonchi [10], Sau Dan Lee [48]
and Arnaud Soulet [ 77].



2G E N E R A L I Z I N G C L O S E D I T E M S E T M I N I N G

1 mining noise -tolerant itemsets

1.1 Theoretical Aspects

1.1.1 False Positive/Negative Noise

It was mentioned that many of the closed itemsets are very similar to
each other (see Section2.4.2 in Chapter 1). This problem stems from
the noisy aspect of most real-life datasets. Noise is an alteration of
the data that prevents pattern discovery tasks from directly returning
the relevant regularities. There are many possible sources of noise.
It may be intrinsic to the studied system (e. g., stochastic biological
processes) or be the result of erroneous measures. It can be imputed
to mis-parameterized (or even mis-chosen) pre-processing steps too.
In particular, when a binary relation B � O � P is derived from a
numerical dataset, there is a cumbersome need to choose a threshold
beneath/beyond which an encoded Boolean property is claimed sat-
is�ed. [ 82] theoretically and empirically shows that the number of
frequent itemsets exponentially grows with the level of noise while
their sizes exponentially decrease with it.

The noise can have two opposite effects on the Boolean propertiesB
encodes:

false positive noise Boolean properties are satis�ed but should
be violated (supernumerary couples in B);

false negative noise Boolean properties are violated but should
be satis�ed (missing couples in B).

Noise adds or
removes couples from
the relation. Large
enough closed
itemsets do not
encompass the
additional couples but
should tolerate a few
removed couples.

Size constraints (e. g., a minimal number of objects and a minimal
number of properties) usually are enough to avoid encompassing false
positive couples. Indeed, the noise is, by de�nition, randomly dis-
tributed. As a consequence, false positive couples usually are in small
patterns only. On the opposite, the de�nition of a closed itemset (more
precisely, of Cconnected) prevents a pattern from encompassing false
negative couples.

Example 6 Assume thatBE , represented in Table1, actually is affected by
noise. Deprived of noise, this relation could beBhiddenE , represented in Ta-
ble 4. Extracting, in BE , closed itemsets with at least two objects and as
many properties, provides only(fo1 ; o2g; fp1 ; p2g). It is a fragment of the
hidden pattern(fo1 ; o2 ; o3g; fp1 ; p2g), which would be found if(o3 ; p2 ) was
not affected by false negative noise (or if the pattern would tolerate some false
negative noise).

The false positive noise inserted the couple(o1 ; p3 ) in BE . Neverthe-
less, thanks to the frequency constraint “at least two objects”,(o1 ; p3 ) is
not enough to appendp3 to the patterns. (o2 ; p3 ) would be required too.
However, thanks to the minimal size constraints and assuming a random dis-
tribution of the noise, this is unlikelyo4 or p4 would extend a fragment of
(fo1 ; o2 ; o3g; fp1 ; p2g). Unfortunately, this might happen if there is much
noise in the relation. In such a context, the fragments of the hidden patterns

37
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p1 p2 p3

o1 1 1 0

o2 1 1 0

o3 1 1 0

o4 0 0 1

Table 4: Bhidden E � fo1 ; o2 ; o3 ; o4g� fp1 ; p2 ; p3g.

are small. Strong size constraints would discard them all. As a consequence,
these constraints must remain weak and false positive noise may be encom-
passed. Interestingly, in the presence of noise, a small hidden pattern, such
as(fo4 ; p3g) in BhiddenE , cannot be discovered. Indeed, it is of the size of the
meaningless patterns the false positive noise randomly generates.

1.1.2 Absolute vs. Relative Tolerance

To tolerate false negative noise, closed itemsets (see De�nition 1)
needs to be generalized in closed ET-itemsets1. Either an absolute or
a relative tolerance to noise can be chosen. With a relative toleranceCouples absent from

the relation are
tolerated either
absolutely or in

proportion to the size
of the closed itemset.

to noise, every object (resp. property) in a closed ET-itemset (O; P) 2
2O � 2P can miss at most a proportion � P

rel (resp. � O
rel) of the properties

in P (resp. objects in O).

De�nition 15 (Closed (relative) ET-itemset) 8� rel = ( � O
rel; � P

rel) 2 [0; 1]2

and8(O; P) 2 2O � 2P , (O; P) is a closed (relative) ET-itemset iff:

– Crel-� -connected(O; P) �

8
<

:
8o 2 O; j(fog� P) n Bj 6 � P

reljPj

8p 2 P;j(O � fpg) n Bj 6 � O
reljOj

;

– Crel-� -closed(O; P) � 8 (O0; P0) 2 2O � 2P ,�
O � O0^ P � P0^ C rel-� -connected(O0; P0)

�
) (O0; P0) = ( O; P).

With an absolute tolerance to noise, every object (resp. property) in
a closed ET-itemset(O; P) 2 2O � 2P can miss at most � P (resp. � O )
properties in P (resp. objects in O).

De�nition 16 (Closed (absolute) ET-itemset) 8� = ( � O ; � P ) 2 N 2 and
8(O; P) 2 2O � 2P , (O; P) is a closed (absolute) ET-itemset iff:

– C� -connected(O; P) �

8
<

:
8o 2 O; j(fog� P) n Bj 6 � P

8p 2 P;j(O � fpg) n Bj 6 � O
;

– C� -closed(O; P) � 8 (O0; P0) 2 2O � 2P ,�
O � O0^ P � P0^ C � -connected(O0; P0)

�
) (O0; P0) = ( O; P).

Considering the tabular representation of the binary relation B (such
as Table1), an ET-itemset is a rectangle (modulo permutations of the
rows/columns), with upper-bounded proportions (resp. numbers in
De�nition 16) of ' 0's on any row and on any column. The upper-bounds
on rows and on columns can be different. The closedness constraint
further forces any extension of a pattern to exceeds these noise toler-
ance thresholds. With � rel = ( 0; 0) or � = ( 0; 0), both de�nitions are
equivalent to De�nition 1. In other terms, closed ET-itemsets generalize
closed itemsets.

1. Like in [ 93], ET stands for Error-Tolerant.
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Example 7 Consider a relative tolerance to noise� rel = ( 0.4; 0.5). In BE ,
represented in Table1, (fo1 ; o2 ; o3g; fp1 ; p2g) is a closed ET-itemset:

– Every object info1 ; o2 ; o3g(resp. property infp1 ; p2g) misses, at most,
half of the properties infp1 ; p2g(resp.40% of the objects info1 ; o2 ; o3g):
– j(fo1g� fp1 ; p2g) n BE j = j; j = 0 6 0.5jfp1 ; p2gj;
– j(fo2g� fp1 ; p2g) n BE j = j; j = 0 6 0.5jfp1 ; p2gj;
– j(fo3g� fp1 ; p2g) n BE j = jf(o3 ; p1 )gj= 1 6 0.5jfp1 ; p2gj;
– j(fo1 ; o2 ; o3g� fp1g) n BE j = jf(o3 ; p1 )gj= 1 6 0.4jfo1 ; o2 ; o3gj;
– j(fo1 ; o2 ; o3g� fp2g) n BE j = j; j = 0 6 0.4jfo1 ; o2 ; o3gj.

– Every “super-pattern” violatesCrel-� -connected:
– :C rel-� -connected(fo1 ; o2 ; o3 ; o4g; fp1 ; p2g)

(becausej(fo4g� fp1 ; p2g) n BE j = 2 > 0.5jfp1 ; p2gj);
– :C rel-� -connected(fo1 ; o2 ; o3g; fp1 ; p2 ; p3g)

(because, e. g.,j(fo3g� fp1 ; p2 ; p3g) n BE j = 2 > 0.5jfp1 ; p2gj);
– :C rel-� -connected(fo1 ; o2 ; o3 ; o4g; fp1 ; p2 ; p3g)

(because, e. g.,j(fo3g� fp1 ; p2 ; p3g) n BE j = 2 > 0.5jfp1 ; p2gj).
(fo1 ; o2 ; o4g; fp2 ; p3g) and (fo1 ; o3 ; o4g; fp2 ; p3g) are two other closed ET-
itemsets inBE .

Following the example above, the veri�cation of Crel-� -closed on an ET-
itemset (O; P) involves 2j( On O ) [ ( Pn P) j checks of Crel-� -connected. With a
relative tolerance to noise, it is impossible to de�ne the closedness w.r.t.
the patterns with one more element (either an object or a property).
Indeed a closed ET-itemset (according to De�nition 7) does not imply
each of its “sub-patterns” satis�es Crel-� -connected. As a consequence,
enforcing Crel-� -closed does not provide a lossless condensation of all
ET-itemsets. That is why, with a relative tolerance to noise, most With absolute

numbers (resp.
proportions) of absent
couples,closed
ET-itemsets are (resp.
are not) a lossless
condensation of all
ET-itemsets.

extractors of ET-itemsets do not force them to be closed. Therefore, the
output collections of ET-itemsets are very large, carry much redundant
information and interpreting them is tedious.

On the contrary, with an absolute tolerance to noise, C� -closed provides
a lossless condensation of the collection of all (closed and unclosed)
ET-itemsets. It can easily be proved that an equivalent closedness
constraint only forces the patterns with one more element (either an
object or a property) to violate C� -connected.

De�nition 17 (Closed (absolute) ET-itemset (equivalent de�nition))
8� = ( � O ; � P ) 2 N 2 and 8(O; P) 2 2O � 2P , (O; P) is a closed (absolute)
ET-itemset iff:

– C� -connected(O; P) �

8
<

:
8o 2 O; j(fog� P) n Bj 6 � P

8p 2 P;j(O � fpg) n Bj 6 � O
;

– C� -closed(O; P) �

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

8o 2 O nO;

8
>>><

>>>:

j(fog� P) n Bj > � P

or

9p 2 P j j((O [ fog) � fpg) n Bj > � O

8p 2 P nP;

8
>>><

>>>:

j(O � fpg) n Bj > � O

or

9o 2 O j j(fog� (P [ fpg)) n Bj > � P

Example 8 Consider an absolute tolerance to noise� = ( 1; 1). In BE , rep-
resented in Table1, (fo1 ; o2 ; o3g; fp1 ; p2g) is a closed ET-itemset:

– Every object info1 ; o2 ; o3g(resp. property infp1 ; p2g) misses, at most,
one properties infp1 ; p2g(resp. one object info1 ; o2 ; o3g):
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– j(fo1g� fp1 ; p2g) n BE j = j; j = 0 6 1;
– j(fo2g� fp1 ; p2g) n BE j = j; j = 0 6 1;
– j(fo3g� fp1 ; p2g) n BE j = jf(o3 ; p1 )gj= 1 6 1;
– j(fo1 ; o2 ; o3g� fp1g) n BE j = jf(o3 ; p1 )gj= 1 6 1;
– j(fo1 ; o2 ; o3g� fp2g) n BE j = j; j = 0 6 1.

– Every pattern with one more element violatesC� -connected:
– :C � -connected(fo1 ; o2 ; o3 ; o4g; fp1 ; p2g)

(becausej(fo4g� fp1 ; p2g) n BE j = 2 > 1);
– :C � -connected(fo1 ; o2 ; o3g; fp1 ; p2 ; p3g)

(because, e. g.,j(fo3g� fp1 ; p2 ; p3g) n BE j = 2 > 1);
(fo1 ; o2 ; o4g; fp2 ; p3g) and (fo1 ; o3 ; o4g; fp2 ; p3g) are two other closed ET-
itemsets inBE .

The constraints Crel-� -connected, Crel-� -closed, C� -connected and C� -closed
are piecewise (anti)-monotone. Because conjunctions of piecewise (anti)-
monotone constraints are piecewise (anti)-monotone, “being a closed
ET-itemset” is piecewise (anti)-monotone. A relative tolerance to noise“Being a closed

ET-itemset” is
piecewise

(anti)-monotone.

looks more natural. Nevertheless, ET-itemsets are much easier to extract
with an absolute tolerance to noise. There are several ways to under-
stand it. One of them is comparing the enforcement of Crel-� -connected
and C� -connected as piecewise (anti)-monotone constraints. C� -connected
does not need to be rewritten to be proved piecewise (anti)-monotone.
Indeed, it is anti-monotone w.r.t. each of its arguments. As a con-
sequence, when an extractor enforcesC� -connected, it instantiates its
two arguments with a pattern (O; P) that may be recursively consid-
ered from the current call. On the opposite, to be proved piecewise
(anti)-monotone Crel-� -connected needs to be rewritten in C0

rel-� -connected:

C0
rel-� -connected(O1 ; O2 ; O3 ; P1 ; P2 ; P3 )

�

8
<

:
8o 2 O1 ; j(fog� P1 ) n Bj 6 � P

rel jP2 j

8p 2 P3 ; j(O2 � fpg) n Bj 6 � O
rel jO3 j

.

C0
rel-� -connected is monotone w.r.t. its third and sixth arguments and anti-

monotone w.r.t. its other arguments. As a consequence, Crel-� -connected
is, by de�nition, piecewise (anti)-monotone. When an extractor enforces
it, depending on the argument, C0

rel-� -connected is partly instantiated with
the smallest subset of objects (or properties), that may be considered
from the current call, and partly with the largest. In other terms,
the instantiation is not related to a pattern and C0

rel-� -connected may be
satis�ed even if none of the patterns, that may be recursively considered
from the current call, satis�es Crel-� -connected.

1.1.3 Loss of the Galois Connection

Contrary to closed itemset mining, extracting every closed ET-itemset
cannot rely on a Galois connection (f; g ) (see Section1.3.2 in Chapter 1).
Indeed, generalizing f (resp. g) towards noise tolerance makes it possi-
bly return several subsets of properties (resp. objects) from one subset
of objects (respectively properties). For instance, both Examples7 and
8 mention that, with the chosen noise tolerances, (fo1 ; o2 ; o4g; fp2 ; p3g)
and (fo1 ; o3 ; o4g; fp2 ; p3g) are closed ET-itemsets in BE . As a conse-
quence,g(fp2 ; p3g) must be both fo1 ; o2 ; o4gand fo1 ; o3 ; o4g.
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1.1.4 Other De�nitions

The �rst ET-itemset complete extractors de�ned the connectedness
in other ways. [ 93] proposed these two de�nitions:

De�nition 18 (Weak (relative) connection) 8� rel 2 [0; 1] and8(O; P) 2
2O � 2P , Crel-� -weakly-connected(O; P) � j(O � P) n Bj 6 � reljO � Pj.

De�nition 19 (Strong (relative) P-connection) 8� P
rel 2 [0; 1], 8(O; P) 2

2O � 2P , Crel-� P
rel-strongly-P -connected(O; P) � 8 o 2 O; j(fog� P) n Bj 6 � P

reljPj.

The following analog de�nition could be added:

De�nition 20 (Strong (relative) O-connection) 8� O
rel 2 [0; 1], 8(O; P) 2

2O � 2P , Crel-� O
rel-strongly-O-connected(O; P) � 8 p 2 P;j(O � fpg) n Bj 6 � O

reljOj.

Crel-� -weakly-connected forces a maximal proportion � rel of couples absent
from B among those any ET-itemset covers. Crel-� P

rel -strongly- P -connected

and Crel-� O
rel -strongly- O-connected actually are special cases ofCrel-� -connected

(see De�nition 15):
– 8� P

rel 2 [0; 1], Crel-� P
rel -strongly- P -connected � Crel-( 1;� P ) -connected;

– 8� O
rel 2 [0; 1], Crel-� O

rel -strongly- O-connected � Crel-( � P ;1 ) -connected.

None of these de�nitions is satisfactory. Indeed, they match patterns
with objects (resp. properties) that do not have any property (resp.
object) of the pattern. If the tolerated noise

is bounded per object
(resp. attribute) only,
some irrelevant closed
itemsets are
extracted.

Example 9 In BE , represented in Table1, consider(fo1 ; o2 ; o4g; fp1 ; p2g).
The objecto4 obviously has nothing to do withfp1 ; p2g since it does not
have any of these properties. However,(fo1 ; o2 ; o4g; fp1 ; p2g) satis�es both
Crel-0.4-weakly-connectedandCrel-0.4-strongly-O-connected.

[74] worded this critic. In fact, with any of these three de�nitions and
large enough patterns, completely disconnected elements (either objects
or attributes) can be part of an ET-itemset whatever the noise tolerance
(as far as it is not 0). With an absolute tolerance to noise, the analog
de�nitions raise the same issue. Several works, mentioned in the next
section, use the absolute counterpart of De�nition 19:

De�nition 21 (Strong (absolute) P-connection) 8� P 2 N , 8(O; P) 2
2O � 2P , C� P -strongly-P -connected(O; P) � 8 o 2 O; j(fog� P) n Bj 6 � P .

1.2 State of the Art

1.2.1 ET-Itemset Complete Extractors

Several research groups have considered the complete extraction of
ET-itemsets in binary relations (see [37] for a survey). None of them
is fully satisfactory. As explained in Section 1.1.2, a relative tolerance Every state-of-the-art

ET-itemset extractor
suffers from several of
the following
troubles: discovery of
some irrelevant
patterns, no (or
strange) closedness
constraint, scalability
issues, compulsory
additional
constraints, lossy
heuristics.

to noise makes the extraction task very hard and a closedness con-
straint does not provide a lossless condensation of the ET-itemsets. As
a consequence, the extractors toleratingproportionsof noise, suffer from
great scalability issues and they output large collections of ET-itemsets
carrying much redundant information, hence a dif�cult interpretation.
Furthermore, until the very recent publication of [ 68] (excluded), every
proposal was either relying on lossy heuristics or imposing additional
constraints. Among the extractors relying on lossy heuristics, AFI [ 52]



42 state of the art and theoretical basis

was the �rst algorithm to use the connection constraint of De�nition 15
(but no closedness constraint) but approximates the number of objects
involved in a pattern. Among the approaches that impose additional
constraints, AC-Close [21] is signi�cant. Indeed, it is the only closed
ET-itemset extractor with a relative tolerance to noise (De�nition 15
is used). Furthermore the experiments show it runs much faster than
AFI. These results are possible thanks to a frequency constraint on an
exactclosed itemset every ET-itemset must contain. Thus, AC-Close

requires an awkward minimal number of objects exactclosed itemsets
(by opposition to ET-itemset) must involve. It extracts them and, in a
second step, extends them in closed ET-itemsets. Despite the perfor-
mance improvement w.r.t. AFI, Section 5.3 in Chapter 4 empirically
shows AC-Close is intractable on medium-size relations.

To completely extract ET-itemsets in larger relations, the algorithms
with an absolute tolerance to noise remains. FT- Apriori [63] extracts
every frequent ET-itemset matching De�nition 21. As detailed in Sec-
tion 1.1.4, such a de�nition raises issues. To avoid extracting ET-itemsets
with some properties that almost every object (in the pattern) misses,
each of these properties is forced to hold for at least 
 2 N objects of
the pattern. This frequency constraint, restricted to the objects of the
ET-itemset, �lters out some of the least relevant patterns. However,
because it deals with couples present in (rather than absent from) B,
ET-itemsets with many objects may still gather properties that many
objects of the pattern do not have. Furthermore, because no closedness
constraint is enforced, the extracted collections contain redundant in-
formation. VB-FT-Mine [ 46] builds upon FT- Apriori and signi�cantly
improves both the running times (thanks to the use of bit vectors) and
the space requirements (thanks to a depth-�rst enumeration). The au-
thors of [ 66] consider different de�nitions of an ET-itemset. All of them
tolerate noise in an absolute way. To extract them, the BIAS framework
enumerates growing subsets of properties and words the noise toler-
ance w.r.t. every enumerated property as an inequality. Integer linear
programming allows to derive (one of) the largest set of objects that
satis�es every inequality. [ 67] optimizes this procedure and generalizes
the de�nition of an ET-itemset. Its objects are either those that have (or
miss) at most, at least, or exactly a given number of properties among
those in the pattern. Thus, De�nition 21 is generalized (but remains the
de�nition of interest to tolerate noise). The authors propose a recursive
equation that computes the number of objects in an ET-itemset from
those of the ET-itemsets with one property less. Beyond the absence
of a constraint bounding the noise tolerance w.r.t. properties and the
absence of a closedness constraint, this approach requires much space.
Indeed, it stores all subsets of properties that were previously consid-
ered and the associated numbers of objects. On the positive side, the
approach can easily be implemented in any frequent itemset extractor
and its running time does not increase much w.r.t. the extraction of
exactitemsets. DR-Miner [6] extracts complete collections of closed
ET-itemsets (De�nition 7) but its closedness constraint is differently
and, somehow, oddly de�ned. It forces every element (either an object
or a property) “outside” a closed ET-itemset to gather strictly more
couples absent from the mined relation than any element “inside” it.
This excludes some ET-itemsets that would be closed if some additional
couples were missing outsidethe pattern.
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1.2.2 Agglomerating Itemsets

A popular heuristic to tolerate noise consists in extracting exact
patterns that are, in a second step, clustered. The most fundamental
parameter is the choice of a relevant metric. [84] proposes to cluster Agglomerating exact

patterns to tolerate
noise is a popular

heuristics. It requires
the de�nition of a

metric.

complete collection of association rules. The involved distance simply
is the number of objects covered by one rule (i. e., by the itemset union
of its left and right parts) and not the other. [ 36] somehow makes this
measure relative to the number of objects covered by both association
rules. [8] also proposes the use of such a relative measure but on
both the objects and the properties. A generalization of this metric
enables a fuzzy hierarchical clustering. Initially, every closed itemset
is associated with two Boolean vectors where a '0' (respectively ' 1')
stands for the absence (respectively the presence) of an element (either
an object or a property) in the closed itemset. Then classical fuzzy
operators and a 1-norm are used to compute the distance between two
clusters and a fuzzy union agglomerates them if they are the closest
pair at the current iteration. MicroCluster [ 98] discovers complete
collections of local patterns in real-valued matrices. In particular, it
can extract the closed itemsets. A post-processing step is proposed to
handle noise by deleting or merging some of the extracted patterns.
The involved distances are based on counts of couples. For example,
two patterns are merged when the number of couples covered by at
least one of the two patterns is greater than 
 times the number of
couples belonging to the envelope of the two patterns but not to any of
the two patterns. Until now, every approach presented in this section
uses a metric (in the pattern space) that is solely based on the patterns,
i. e., the agglomeration ignores the regions of the data that are not in the
relation subspaces described by any of the two itemsets. In particular,
the number and the repartition of the couples absent from B, but
covered by the agglomerated patterns, is not taken into consideration.
On the contrary, [ 92] argues for using not only the information the
patterns directly express but the binary relation they were extracted
from too. The proposed metrics quanti�es the entropy in the clusters
considered as sets of independent Boolean vectors. Thus, the two
attributes are not symmetric.

2 mining closed patterns in n -ary relations

2.1 Theoretical Aspects

2.1.1 N-ary Relations

Given an arity n 2 N and n �nite sets (D i ) i = 1..n , let R � � i = 1..n D i

the n-ary relation where patterns are to be discovered. All along the N -ary relations
generalize binary
relations by
associating elements
from n attribute
domains.

remaining of this thesis, R denotes this dataset. Table5 represents
an example of such a relation RE � f�; �; 
 g� f1; 2; 3; 4g� fA; B; Cg,
hence a ternary relation. In this table, every ' 1' at the intersection of
three elements stands for the presence of the related triplet in RE . For
example the bold ' 1', in Table 5, is at the intersection of the elements
� , 1 and A. It represents the presence of (�; 1; A ) in RE . On the
contrary a ' 0' in Table 5 is at the intersection of three elements which
form a triplet absent from RE . For example the bold ' 0' in Table 5
means (�; 2; C ) =2 RE . In practice, the relations we are interested in are
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A B C A B C A B C

1 1 1 1 1 1 1 1 1 0

2 1 1 0 1 0 0 1 1 0

3 0 1 0 0 0 1 1 0 1

4 0 0 1 1 0 1 1 1 1

� � 


Table 5: RE � f�; �; 
 g� f1; 2; 3; 4g� fA; B; Cg.

much larger than RE . Anyway, RE is enough to illustrate most of the
examples in Parts iii and iv.

N-ary relations are present in many application domains. For in-
stance,RE could represent customers (1, 2, 3 and 4) buying items ( A, B
and C) along three months (� , � and 
 ). In this context, the bold ' 1' in
Table 5 would mean that the customer 1 bought the item A during the
�rst month. The bold ' 0' would be understood as “customer 2 did not
buy item C during the �rst month”.

2.1.2 A Natural De�nition

The patterns in � i = 1..n 2D i
are called n-sets. They associaten sub-

sets of elements from the n domains of the relation. To simplify the
exposition of this thesis, an n-set (Si ) i = 1..n will often be assimilated
with [ i = 1..n Si (without loss of generality, the attribute domains D i are
considered disjoint). For example, given an n-set A = ( A i ) i = 1..n and
an element e 2 [ i = 1..n D i , we write:

– e 2 A instead of e 2 [ i = 1..n A i ;

– A n feginstead of

8
>>><

>>>:

(A1 n feg; A2 ; : : : ; An ) if e 2 D1

...

(A1 ; : : : ; An - 1 ; An n feg) if e 2 Dn

.

Nevertheless, to avoid too much abuse of notation, the union and the
inclusion of n-sets are formally de�ned below.

De�nition 22 (n-set union t ) 8A = ( A i ) i = 1..n 2 � i = 1..n 2D i
and8B =

(Bj ) j = 1..n 2 � j = 1..n 2D j
, A t B = ( A1 [ B1 ; : : : ; An [ Bn ).

De�nition 23 (n-set inclusion v ) 8A = ( A i ) i = 1..n 2 � i = 1..n 2D i
and

8B = ( Bj ) j = 1..n 2 � j = 1..n 2D j
, A v B , A1 � B1 ^ � � � ^ An � Bn .

Notice that, by de�nition, the union of two n-sets is the n-set with
the minimal envelope enclosing both of them. The inclusion of n-sets
is useful to de�ne a closedness constraint. Closed n-sets in n-ary
relations (n > 2) generalize closed itemsets in binary relations. In
other terms, closed 2-sets are closed itemsets. The generalization of
De�nition 1 towards n-ary relations is natural. Considering the 0/ 1
representation of the n-ary relation (such as Table 5), a closedn-set is a
maximal hyper-rectangle of ' 1's modulo arbitrary permutations of the
hyper-plans. Here is a more formal de�nition:Closedn -sets (a)

cover only tuples
present in the

relation; (b) cannot be
enlarged without

violating (a).

De�nition 24 (Closed n-set) 8X = ( Xi ) i = 1..n 2 � i = 1..n 2D i
, X is a

closedn-set iff:
– Cconnected(X) � � i = 1..n Xi � R;
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– Cclosed(X) � 8 X0 2 � j = 1..n 2D j
,
�

X v X0^ C connected(X0)
�

) X0 = X.

According to the �rst constraint, Cconnected, taking one element from
each of the subsets constituting a closedn-set is constructing an n-tuple
that is in R. The second constraint, Cclosed, tells that X is closed if
any strictly larger pattern (more elements from any domains) violates
Cconnected. It is, for Cconnected, a closure property on the n subsets ofD1 ,
D2 , : : : and Dn altogether. It can easily be proved that an equivalent
closedness constraint only forces the patterns with onemore element
(from any domain) to break Cconnected. Furthermore, becauseCconnected
ensures the presence inR of every n-tuple in � i = 1..n Xi , checking the
closedness constraint can be reduced to searching for absentn-tuples
involving one additional element only.

De�nition 25 (Closed n-set (equivalent de�nition)) 8X = ( Xi ) i = 1..n 2
� i = 1..n 2D i

, X is a closedn-set iff:
– Cconnected(X) � � i = 1..n Xi � R;
– Cclosed(X) � 8 i = 1..n; 8s 2 D i n Xi ,

:C connected(X1 ; : : : ; fsg; : : : ; Xn ), i. e.,X1 � � � � � fsg� � � � � Xn 6� R.

Example 10 In RE , represented in Table5, (f�; 
 g; f1; 2g; fA; Bg) is a closed
3-set:

– f�; 
 g� f1; 2g� fA; Bg� RE (in Table5 there are '1's at the intersection
of all the related hyper-plans);

– Every pattern with one more element violatesCconnected:
– :C connected(f� g; f1; 2g; fA; Bg), i. e.,f� g� f1; 2g� fA; Bg6� RE ;
– :C connected(f�; 
 g; f3g; fA; Bg), i. e.,f�; 
 g� f3g� fA; Bg6� RE ;
– :C connected(f�; 
 g; f4g; fA; Bg), i. e.,f�; 
 g� f4g� fA; Bg6� RE ;
– :C connected(f�; 
 g; f1; 2g; fCg), i. e.,f�; 
 g� f1; 2g� fCg6� RE .

(f�; �; 
 g; f1; 2g; fAg) and (f�; �; 
 g; f1; 2; 3; 4g; ; ) are two other examples of
closed3-sets.

If, again, a ternary relation stands for customers buying items along
three months, a closed 3-set is a maximal subset of customers buying
the same maximal subset of items during a maximal subset of months.
Such a pattern is useful for analyzing buying behaviors. The closedness
constraint �lters out all strict “sub-patterns” (i. e., patterns where some
elements are removed and none are added) of the largest ones that are
extracted. The justi�cation for this constraint is the same as with itemset
mining: a lossless (and necessary w.r.t. the interpretation) reduction of
the output, which keeps the most informative pattern of every equiva-
lence class. With collections of n-sets, a “lossless condensation” means The closedness

constraint provides a
lossless
condensation of all
n -sets by only
keeping themost
informative ones.

that, whatever j = 1..n and given any (n - 1)-set X 2 � i = 1..n ^ i 6= j 2D i
,

all elements in D j that relate with every combination of n - 1 elements
taken from the n - 1 subsets ofX can be derived from the closed n-sets
only. They are the largest set of elements in D j a closedn-set associates
with an (n - 1)-set larger than X (w.r.t. the v order).

2.1.3 Loss of the Galois Connection

Unless R is a binary relation (i. e., n = 2), extracting every closed
n-set cannot rely on a Galois connection (see Section1.3.2 in Chapter 1).
Indeed, several closed n-sets can share a same subset of elements
from one attribute domain. For instance, Example 10 mentions both
(f�; 
 g; f1; 2g; fA; Bg) and (f�; �; 
 g; f1; 2g; fAg) are closed 3-sets in RE .
They both involve the subset f1; 2g of the second attribute domain.
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Nevertheless,n - 1 “components” of a closed n-set uniquely determines
the last one. For instance, in RE , there exists only one closed3-set that
involves exactly f�; 
 gand f1; 2g(or f�; 
 gand fA; Bgor f1; 2gand fA; Bg).
The related functions are not injective. As a consequence, they are not
part of Galois connections.

There does not seem to exist any “simple” bijection between n-ary
relations and binary ones helping for the extraction of closed n-sets.Extracting every

closedn -set does not
look reducible to

mining closed
itemsets or

multi-relational
patterns.

Such a transformation would certainly lead to a combinatorial explosion
of the number of elements. Indeed the attributes of the binary relation
should combine several elements of the different domains to encompass
the n-ary relation. It is trivial to turn an n-ary relation into n binary
relations: give an id to every n-tuple and relate this id with each of
the n elements. This transformation does not help the extraction of
patterns. Indeed, in any of the constructed binary relations, every id is
related to one and only one element in D i (i = 1..n). In particular, in
these binary relations, the only closed itemsets, with frequencies strictly
greater than 0, have at most one element in D i (i = 1..n). Anyway, the
complete extraction of closed patterns in multi-relational settings is an
interesting but dif�cult task. In particular, de�ning the closedness is
problematic (see, e. g., [69] and [18]).

2.2 State of the Art

2.2.1 Ad-hoc Methods for Ternary Relations

[41] proposes two algorithms to extract every closed 3-set in ternary
relations. The �rst one, called Representative slice mining, is simple and
very inef�cient. It consists in enumerating all subsets of the smallest
attribute domain. For each of them, a binary relation is computed by
bitwise and operations between the elements of the subset. Then, any
closed itemset extractor can be used on each of these relations and a
post-processing step removes the3-sets (the closed itemsets associated
with the subset of elements that were used to generate the binary
relation) that are not closed. The second algorithm, called CubeMiner ,
directly operates on the ternary relation R. It consists in using the 3-setsCubeMiner and

Trias extract every
closed3-set

satisfying minimal
size constraints. Both
suffer from scalability

issues.

(X; Y; Z), called cutters, presenting the following particularity: none of
the 3-tuples they cover are in R. Thus, the authors generalize the notion
of cutter introduced in [ 5] for closed itemset mining. CubeMiner �rst
considers the whole ternary relation as a candidate pattern. Along a
depth-�rst enumeration, the cutters are recursively applied to generate
three candidate children containing less tuples absent from R than the
parent: a �rst one without the elements in X, a second one without
the elements in Y and a third one without the elements in Z. For each
child pattern, several checks are required to ensure its closedness and
uniqueness. For the pattern to be unique, its newly removed elements
must not be included in a cutter previously applied on this branch
of the enumeration tree. To verify this, every formerly applied cutter
is intersected with the current one. For the pattern to be closed, the
elements of these formerly applied cutters should not extend it. Thus,
every candidate pattern is twice compared to the formerly applied
cutters. The related computational cost, at every enumeration node,
grows linearly with the height of the enumeration tree (and, naturally,
most of its nodes are at the bottom of it). Furthermore, the cutters
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are not ordered in a particular way that could reduce the size of the
enumeration tree and the running time.

Trias [40] extracts every closed 3-set in a ternary relations R �
D1 � D2 � D3 . It relies on closed itemset extractions. Assuming D1 is
the attribute domain with the smallest cardinality, Trias �rst constructs
the binary relation B1 � D1 � (D2 � D3 ) where (x1 ; x2 ; x3 ) 2 R ,
(x1 ; (x2 ; x3 )) 2 B. Every closed itemset (X1 ; B2 ) is extracted from this
relation. Let us name D2 (resp. D3 ) the elements in D2 (resp. D3 )
that are in at least one couple of B2 . Usually, B2 is different from
D2 � D3 , i. e., (X1 ; D2 ; D3 ) is not connected. That is why, in a second
step, Trias extracts every closed itemset in B2 (considered as a binary
relation on D2 � D3 ). Every closed itemset (X2 ; X3 ) in B2 form, with
X1 , a connected 3-set in R. However, (X1 ; X2 ; X3 ) is not necessarily
closed w.r.t. D1 . To �nally output or �lter out the 3-set, Trias checks
whether (X2 ; X3 ) is connected in any of the binary relations related to
the elements in D1 nX1 . The more elements, in average, inD1 nX1 , the
more unclosed 3-set that are generated before being discarded. That is
why the running time of Trias is much dependent on the size of the
smallest attribute domain.

2.2.2 Minimizing Relations
Closedn -sets
somehow summarize
parts of the relation.
That is why mining
them relates to
simplifying
multi-valued logic
functions.

Considering the n sets(D i ) i = 1..n as the domains of n multi-valued
variables, the relation R can be seen as the truth table of a multi-
valued logic function with f0; 1g as a range. Boolean functions are
a specialization of this framework where every domain gathers two
elements (usually bound to the semantics “true” and “false”). The
Karnaugh map[44] is a tool to simplify such Boolean functions. This
method is to be applied by hand (“by eye” would be more correct
since it exploits the human capability to discern geometrical patterns).
For this reason, it works well for up to four variables but becomes
unpractical for more than six variables. It relies on organizing the
truth table in such a way that every maximal rectangle of ' 1' gives
a prime implicant(a disjunction of conjunctions) tiling the part of the
Boolean function responsible for the ' 1's in the rectangle. Once every
'1' is covered by at least one prime implicant, the disjunction of the
prime implicants is a simpli�cation of the original Boolean function.
The Quine-McCluskey algorithm[54] was designed to deal with more
variables. The procedure basically remains the same. However, the
organization of the truth table, used in the Karnaugh map, is substituted
by a tabular form, which better suits computers' way of processing
data. This algorithm always returns the minimal form of the Boolean
function to the cost of �nding all prime implicants. Espresso [14] uses
a different approach. The returned function is not always the minimal
form (but close to it) and the computation is reduced (in both space and
time) by orders of magnitude. It is still heavily used, in particular in
Programmable Logic Devices. Espresso was generalized in Espresso-
MV [73] to deal with multi-valued logic functions. Indeed, multiple-
valued logic functions have applications in several areas. The most
successful one probably is the enhancement of circuit performances in
terms of chip area, operation speed and power consumption (see, e. g.,
[24]).

The data mining community recently granted some attention to
tiling binary relations (i. e., 2-variable multi-valued logic functions). In
particular, [ 30] de�ned several problems related to the minimization of
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binary relations through collections of large enough (area constraint)
patterns. “Itemsets that compress” [ 75] now are a new paradigm of data
mining. They were used to classify [ 85], to derive emerging patterns
[88], to anonymize data [ 89], to treat missing values [ 87], to �nd groups
[86], etc.

3 mining closed patterns in noisy n-ary relations

3.1 Tolerating Noise Is a Must

When mining relations of higher arity, noise becomes more and more
problematic. First of all, the patterns to discover encompass exponen-On relations of higher

arity, noise scourges
more and more the

collections of closed
n -sets.

tially more n-tuples. As a consequence, there is a higher probability
that some of them were affected. Moreover, at a �xed number of false
negative n-tuples, the number of closed n-sets linearly increases with
n (Cclosed is a maximality constraint w.r.t. everyattribute). When n-ary
relations are derived from numerical data, the samples of data that de-
cide whether a property holds (i. e., whether the related n-tuple should
be in the relation) gets smaller. For example, in a transactional context,
deciding whether a category of customers frequently buys an item (bi-
nary relation binding categories of customers and items) is less prone
to noise than deciding whether a category of customers from a particular
country frequently buys an item (ternary relation binding categories of
customers, countries and items) because the former decision is based
on more data. Despite this growing necessity to tolerate noise when
mining relations of higher arity, the topic has not been much studied in
the literature yet.

3.2 State of the Art

3.2.1 Complete Extractors

DCE [31] extracts, from real-valued tensors, every densen-set. HavingDCE extracts dense
patterns in tensors.

The chosen de�nition
matches some

irrelevant patterns
and the condensation

by closure is lossy.

a density greater than � 2 R is a constraint similar to Cavg-gp' > � , de-
�ned in Section 2.2 of Chapter 1 and proved piecewise (anti)-monotone
in Section 2.3.6 of the same chapter. This constraint can also be seen
as the weak connection (see De�nition 18) generalized to real-valued
tensors. It suffers from the same relevancy problem, i. e., an element
can be part of a pattern but disconnected or very weakly connected
with the other attributes of the pattern. DCE does not exploit the
piecewise (anti)-monotonicity of the minimal density constraint but
some kind of generalized loose anti-monotonicity (see Section 2.3.4 in
Chapter 1). Indeed, given a dense n-set, there exists a “sub-pattern”
with one element less that is dense. This element, from any attribute
domain (hence, the “generalization”), relates to the hyper-plan of the
pattern with the smallest sum of the real values it contains, hence the
de�nition of the max function (see Section 2.3.4 in Chapter 1). Thus,
DCE is depth-�rst and, at every recursive call, enumerates n-sets with
such an additional element. In this way, every candidate pattern is
traversed once, the minimal density constraint becomes anti-monotone
on any enumeration branch and prunes the search space. Because the
tolerance to noise is relative, a closedness constraint would not provide
a lossless condensation of the densen-sets and reducing its test to the
patterns with one additional element (from any attribute domain) is
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not correct. Anyway, the authors propose such a procedure to reduce
the problematic sizes of the output collections.

Given an n-ary relation, a subspace clusteris a local pattern(rather
than cluster) of the form (Xi ) i = 1..m where every Xi is a subset of a
different attribute domain and m 6 n. It constrains the data restricted
to every pair of elements to be strongly connected. Besides the number Closed ET-n -sets are

less constrained than
subspace clusters
(with one constraint
perpair of elements).
However, the latter
does not necessarily
haven dimensions.

of tests required to be a subspace cluster (product of the number of
elements per attribute), these tests involve the whole relation. More
precisely, in a subspace cluster, every pair of elements (whatever the
attribute domain(s) they belong to) must frequently appear together in
the relation. This frequency is de�ned w.r.t. its expected value obtained
by making the assumption of a uniform distribution of the n-tuples in
the relation. CACTUS [ 28] and Clicks [96] extract maximal(closedness
constraint) subspace clusters from arbitrary n-ary relations. The latter
generalizes the former that only mines a restricted class of subspace
clusters.

3.2.2 Agglomerating3-Sets

Tri Cluster [99] is an extension of MicroCluster, described in Sec-
tion 1.2.2. It discovers complete collections of local patterns in real- Heuristic

agglomerations of
closed itemsets are
easily generalized to
closedn -sets.

valued tensors. In particular, it can extract the closed 3-sets. A post-
processing step is proposed to handle noise by deleting or merging
some of the extracted patterns. The involved distances are based on
counts of 3-tuples. For example, two patterns are merged when the
number of 3-tuples covered by at least one of the two patterns is greater
than 
 times the number of tuples belonging to the envelope of the
two patterns but not to any of the two patterns. Notice that this metric
(in the pattern space) is solely based on the patterns, i. e., the agglom-
eration ignores the regions of the data that are not in the relation
subspaces described by any of the two patterns. In particular, the
number and the repartition of the couples absent from R, but covered
by the agglomerated patterns, is not taken into consideration.

4 conclusion

Generalizing closed itemset mining towards noise tolerance and n-
ary relations (n > 2) is challenging. To avoid matching irrelevant
patterns, the noise tolerance sets upper-bounds for the number (or the
proportion) of couples absent from the relation in everyrestriction of
the patterns to its individual elements (objects and properties). On
the contrary, de�ning a closed n-set is rather natural. Nevertheless,
in both cases, complete extractors cannot rely on Galois connections
and running times are problematic. To tolerate more noise than what
complete extractors can achieve (while remaining tractable), patterns
can be heuristically agglomerated. To do so, a notion of distance
between the patterns must be de�ned.





Part III

M I N I N G N - A RY R E L AT I O N S





O U T L I N E

The previous chapter argued for two needed generalizations of closed
itemset mining: towards noise tolerance and towards n-ary relations.
This thesis eventually proposes a solution to both issues together. For
the time, this part focus on generalizing (exact) closed itemset mining
towards relations of higher arity. Thus, it deals with the complete
extraction of closed patterns that hold in n-ary relations. This type
of pattern, namely the closed n-set, was de�ned in Section 2 of the
previous chapter. This section also emphasized that none of the previ-
ous work on local pattern extraction can ef�ciently deal with relations
having an arity beyond 3. Data -Peeler is the �rst algorithm that
was designed to extract closed n-sets whatever n > 2. It does not
make any assumption on the proportions of the dataset either. In fact,
Data -Peeler does not favor, a priori, any attribute or set of attributes.
Despite its generic scope, Data -Peeler turns out to be, on ternary
relations, orders of magnitude faster than its competitors. Section 2 in
Chapter 1 emphasized that the enumeration principles of an extractor
determines the class of constraints it can ef�ciently enforce. In the case
of Data -Peeler , this class, namely the piecewise (anti)-monotone con-
straints, is very broad and the analyst can choose among many useful
relevancy constraints. Both Data -Peeler and the class of piecewise
(anti)-monotone constraints were �rst published in [ CBRB08]. However
some improvements to Data -Peeler 's enumeration were added in an
extended article [CBRB09].

When the original data are numerical, they need, in a pre-processing
step, to be converted into Boolean properties so that Data -Peeler can
be used. Different binarization methods lead to different perspectives
on the data. Considering several methods altogether (they form an
additional dimension to the dataset) and mining, with Data -Peeler ,
patterns that are frequent across them, is a way to specify a certain
robustness w.r.t. binarization. [ CBRB09] introduced this idea. This
article also presents a heuristic method to globally model the dataset
by post-processing the local patterns it contains. It is about obtaining a
tiling, i. e., a coverage of the whole dataset by a minimal collection of
patterns. In the context of n-ary relations, this problem is equivalent
to the minimization of multi-valued logic functions. Some previous
works ensure the optimality of the minimization but are intractable on
medium-size datasets. That is why a greedy procedure is proposed. It
provides, in reasonable times, tilings (of arbitrary n-ary relations) that
are better than the state of the Art Espresso-MV.
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3DATA-PEELER: THE FIRST CLOSED N-SET EXTRACTOR

1 data -peeler

1.1 A Closedn-Set Extractor

Data -Peeler extracts every closedn-set in an arbitrary n-ary relation
R � � i = 1..n D i . Section 2.1.2 in Chapter 2 discussed the (natural) Data -Peeler

extracts every closed
n -set.

de�nition of a closed n-set. Let us recall it. An n-set X = ( Xi ) i = 1..n 2
� i = 1..n 2D i

is a closedn-set if and only if:
– Cconnected(X) � � i = 1..n Xi � R;
– Cclosed(X) � 8 i = 1..n; 8s 2 D i n Xi ,

:C connected(X1 ; : : : ; fsg; : : : ; Xn ), i. e., X1 � � � � � fsg� � � � � Xn 6� R.

1.2 Enumeration

Like many complete algorithms for constraint-based local pattern
mining, Data -Peeler is based on enumerating candidates in a way
that can be represented by a binary tree where (a) at every node, an
element e is enumerated; (b) every pattern extracted from the left child
does containe; (c) every pattern extracted from the right child does not
contain e. This leads to a partition of the search space, i. e., the union The enumeration

follows a binary tree.
At every node, both
the smallest and the
greatestn -set in the
sub-tree are known
and any element from
any attribute domain
can be chosen to
extend the smallest
n -set.

of the closed n-sets found in both enumeration sub-trees are exactly
the closed n-sets to be extracted from the parent node (correctness) and
each of these closedn-sets is found only once (uniqueness). In the case
of Data -Peeler , the enumerated element e can always be freely chosen
among all the elements (from all attribute domains D1 , D2 , : : : , Dn )
remaining in the search space.

Each node N in the enumeration tree is a pair (U; V) where U and V
are two n-sets. N representsall the n-sets containing all the elements of
U and a subset of the elements ofV. In other words, this is the search
space of the n-sets (X1 ; : : : ; Xn ) s.t. 8i = 1..n, U i � Xi � U i [ V i .
The root node, (( ; ; : : : ; ; ); (D1 ; : : : ; Dn )) , represents all possible n-sets.
On the contrary, nodes such that 8i = 1..n, V i = ; represent a single
n-set, (U1 ; : : : ; Un ). More generally, a node (U; V) represents2

P n
i = 1 jV i j

n-sets.

Example 11 The nodeM = ( U; V) = (( f� g; ; ; fCg); (f
 g; f1; 4g; fA; Bg))
represents25 (i. e., 32) 3-sets. E. g., it represents the3-sets(f� g; ; ; fCg),
(f� g; f4g; fCg) and (f�; 
 g; f1; 4g; fA; B; Cg). On the contrary, it represents
neither(f� g; ; ; ; ) (C must be in the3-set) nor(f�; �; 
 g; f4g; fCg) (� must
not be in the3-set).

At a node N = ( U; V), Data -Peeler chooses an elemente from V
(the selection criterion is discussed in Section 1.6) and generates two
new nodes, NL = ( UL ; VL ) = ( U [ feg; V n feg) and NR = ( UR; VR) =
(U; V n feg). NL (resp. NR) represents the n-sets of N that contain (resp.
do not contain) e. Figure 10 depicts this simple partitioning of the
search space.
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Figure 10: Enumeration of any element e 2 V.

Figure 11: Enumeration of the element 4 2 V2 from node M (Example 12).

Example 12 Considering the nodeM of Example11, the selection of the ele-
ment4 2 V2 leads to the two nodesM L = (( f� g; f4g; fCg); (f
 g; f1g; fA; Bg))
andM R = (( f� g; ; ; fCg); (f
 g; f1g; fA; Bg)) (see Figure11).

1.3 Ef�cient Enforcement ofCconnected

Cconnected allows to reduce the search space of the left child, i. e., the
size of VL . In other terms, some n-sets, that are represented by theCconnectedreduces the

search space when an
element is claimed

present.

parent node, are not to be represented by the left child. Indeed, the
elements of V that violate Cconnected if added to UL can be removed from
VL . Formally, these elements arefv 2 VL j U1

L � � � � � fvg� � � � � Un
L 6� Rg.

They are found in the following way: 8v 2 V, whenever an element e is
moved from V to U, if U1 � � � � � feg� � � � � fvg� � � � � Un 6� R then v is
removed from V. In this way, at any enumeration node, U can “receive”
any element from V without violating Cconnected. Figure 12 depicts this
enforcement of Cconnected, which ensures that every n-set satisfying this
constraint is browsed once (and only once).

Figure 12: Enumeration of any element e 2 V. Cconnected removes elements
from V.
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Figure 13: Enumeration of the element 4 2 V2 from node M (Example 13).

Example 13 In our running example, according toRE (see Table5), neither
the elementA nor the elementB can be added toUL = ( f� g; f4g; fCg) to form
a 3-set satisfyingCconnected. Indeed,(�; 4; A ) =2 RE and(�; 4; B ) =2 RE . As a
consequence,Cconnectedremoves those two elements fromV3 : we �nally obtain
M L = (( f� g; f4g; fCg); (f
 g; f1g; ; )) (see Figure13).

Until now, we discussed how to extract all n-sets satisfying Cconnected
in n-ary relations. We now need to enforce the closedness property.

1.4 Ef�cient Enforcement ofCclosed

For a better performance, the closedness constraint must be handled
during the enumeration process (safe pruning) rather than in a post-
processing phase. At a given enumeration node N, if there exists an An enumeration

sub-tree is pruned
when its largest
closedn -set can be
extended by an
element out of the
search space.

element s 2 D j n (U j [ V j ) such that Cconnected(U t V [ fsg) is satis�ed,
then every n-set represented by N can be extended with s to form a
larger n-set satisfying Cconnected. Indeed, 8V 0 v V, 8s 2 D j n (U j [ V j ),
Cconnected(U t V [ fsg) ) Cconnected(U t V 0 [ fsg). None of the n-sets
N represents being closed, the whole enumeration sub-tree rooted
by N is safely pruned. Data -Peeler does not miss the closed n-sets
“containing” U: they are found in the part of the enumeration tree
where s 2 U.

Given an element s that potentially extends every n-set represented
by the current node, there is no need to browse the whole subspace of
the relation related to U t V [ fsg. Indeed, becauseCconnected(U t V) is
always true (see Section1.3), all its n-tuples absent from R involve s.
As a consequence, browsing(U1 [ V1 ) � � � � � fsg� � � � � (Un [ Vn ) is
enough. Furthermore, as soon as one of itsn-tuples is found missing
from R, the check is aborted (s does not prevent the closure of every
n-set represented by the current node).

Furthermore, one the most interesting advantage of our enumera-
tion strategy is that there is actually no need to check whether every
element in ([ i = 1..n D i ) n ([ i = 1..n U i [ V i ) may prevent the closure. In-
deed, any element that has been removed from V thanks to Cconnected
(see Section1.3) cannot. Indeed, the reason of the removal of such an el- Only the elements

refused “by
enumeration” may
prevent the
closedness.

ement f from V is that Cconnected(U [ ff g) is false. In such circumstances,
Cconnected(U t V [ ff g) cannot be true either. When checking Cclosed the
only elements that need to be tried as extensions are those that were
previously chosen to be enumerated but refused (right child). These
elements are stored in an n-set that will always be denoted S. Figure 14
complements Figure 12 with this n-set S. Given the three n-setsU, V
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Figure 14: Enumeration of any element e 2 V. Cconnected removes elements
from V. Cclosed is checked on U t V extended with every element in
S.

Figure 15: Enumeration of the element 4 2 V2 from node M (Example 14).

and S attached to an enumeration node, the closedness constraint is
checked as follows:

8s 2 S, U1 [ V1 � � � � � fsg� � � � � Un [ Vn 6� R .

Example 14 Still using the running example, assume thatS = ( f� g; ; ; ; ) is
bound to the enumeration nodeM . NeitherM L nor M R satis�esCclosed. In-
deed(f� g; f1; 4g; fCg) is connected and so is(f� g; f1g; fA; B; Cg) (see Table5).
Figure15 depicts the enumeration aborted for the two children nodes. To con-
clude, among the32 3-sets represented byM , none are both connected and
closed.

1.5 Algorithm

Data -Peeler is a depth-�rst search algorithm. It takes three argu-
ments: U, V and S. It starts with U0 = ( ; ; : : : ; ; ), V0 = ( D1 ; : : : ; Dn )
and S0 = ( ; ; : : : ; ; ). Its major steps are presented in the pseudo-code of
Figure 16, which can be seen as a translation of the diagram of Figure 14.
First of all, the closedness property is checked (see Section1.4). If it
is satis�ed and no element remains to be enumerated, the n-set U is
output. Otherwise an element e of V is chosen (Section1.6 discusses
this step) and the search space is split between then-sets that contain
e and those that do not (see Section1.2). Finally, Data -Peeler is re-
cursively called on the two related enumeration nodes. Notice that the
n-set S is only fed by the elements e that are chosen to be enumerated
but refused (right child). The elements that Cconnected removes from
the search spaceV are not moved to S since they cannot prevent the
descendant nodes to be closed.
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Input: U; V; S
Output: Every closed n-set represented by (U; V)
if Cclosed(U t V) then

if V = ( ; ; : : : ; ; ) then
output (U)

else
Choosee 2 V
Data -Peeler (U [ feg; fv 2 V n feg j Cconnected(U [ feg[ fvg)g; S)
Data -Peeler (U; V n feg; S[ feg)

end if
end if

Figure 16: The Data -Peeler algorithm.

1.6 Choosing the Element to Enumerate

As explained in Section 1.2, an element e 2 V must be chosen to
be enumerated. Its choice determines the two nodes NL and NR
deriving from the current one. The more elements their V n-sets
contain, the greater the remaining search space. VR always contain
jVj - 1 elements. That is why Data -Peeler 's selection strategy for e
focuses on minimizing the number of elements in VR, i. e., it aims at
maximizing the number of elements Cconnected removes from the search
space when e is set present. The enumerated

element is
heuristically chosen
such that the search

space at the left node
is minimized.

Whenever an element is enumerated, Cconnected removes some el-
ements if (a) they are in V and (b) elements from the n - 1 other
attributes are in U. The following formula gives the maximum number
of n-tuples in R that are browsed when enforcing Cconnected after an
element from Vd is enumerated:

X

k 6= d

�
jVk j �

Y

l=2 f d;k g

jU l j
�

.

Data -Peeler enumerates an element on the attribute domain d maxi-
mizing this formula. The choice for an element e 2 Vd remains. It is
the one (or one of those) presenting the lowest density in R, i. e., an
element e 2 Vd minimizing the expression below:

j(D1 � � � � � feg� � � � � Dn ) \ Rj .

This heuristic generalizes the one presented in Section2.3.3 of Chapter 1
and can be justi�ed as follows: the less elements are connected in R,
the more likely Cconnected removes elements from V to build VL . The
experiment in Section 5.2 empirically shows that the proposed choice
criterion outperforms other sensible criteria.

Example 15 In our running example, at nodeM , the choice of enumerating
4 2 V2 actually follows the heuristic stated above:

choice of v2 :
P

k 6= d

�
jVk j �

Q
l=2 f d;k g jU l j

�
is maximized ford = 2:

d = 1: (jV2 j � jU3 j) + ( jV3 j � jU2 j) = ( 2 � 1) + ( 2 � 0) = 2;

d = 2: (jV1 j � jU3 j) + ( jV3 j � jU1 j) = ( 1 � 1) + ( 2 � 1) = 3;

d = 3: (jV1 j � jU2 j) + ( jV2 j � jU1 j) = ( 1 � 0) + ( 2 � 1) = 2.

choice of 4: j(f�; �; 
 g� feg� fA; B; Cg) \ Rj is minimized fore = 4:
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Figure 17: Enumeration of any element e 2 V. Cconnected removes elements
from V and S. Cclosed is checked on U t V extended with every
element in S.

e = 1: jf(�; 1; A ); (�; 1; B ); (�; 1; C ); (�; 1; A ); (�; 1; B ); (�; 1; C );
(
; 1; A ); (
; 1; B )gj= 8;

e = 4: jf(�; 4; C ); (�; 4; A ); (�; 4; C ); (
; 4; A ); (
; 4; B ); (
; 4; C )gj
= 6.

2 improvements to the enumeration

2.1 Removing Elements fromS

Every n-set represented by a nodeN = ( U; V) “contains” U. As a
consequence, the elements inS that violate Cconnected when added to
U, will not enlarge any n-set represented by N. They can be removed
from S. Formally, these elements, which are safely removed fromGiven an

enumeration sub-tree,
the elements that
cannot extend its

smallestn -set,
cannot prevent any of

them to be closed.

S, are fs 2 S jU1 � � � � � fsg� � � � � Un 6� Rg. They are found in the
following way: 8s 2 S, whenever an element e is moved from V to U, if
U1 � � � � � feg� � � � � fsg� � � � � Un 6� R then s is removed from S. This
process is similar to the enforcement of Cconnected (see Section1.3) but
applied on S instead of V. This optimization speeds up the enforcement
of Cclosed for all the nodes deriving from N. The gain is two-fold:

– S containing less elements, the global cost pertaining to the en-
forcement of Cclosed is lowered;

– When enforcing Cclosed, there is no need to browse fU1 � � � � � fsg�
� � � � Un j s 2 Sg: all these tuples are present otherwise somes 2 S
would have been removed by this optimization.

This improvement slightly modi�es Data -Peeler 's enumeration. The
enumeration taking advantage of it is depicted in Figure 17.

Example 16 Given the node(U; V) = (( f�; 
 g; f1; 2g; fBg); (; ; ; ; fAg)) and
the relationRE represented in Table5, assume thatS = ( f� g; ; ; ; ). � is
removed fromS1 becauseCconnected(f� g; f1; 2g; fBg) is false (see Figure18).

2.2 Moving Elements fromV to U

Every n-set represented by a nodeN = ( U; V) is “included in” (see
De�nition 23) U t V. As a consequence, an element ofV i which, in R,
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Figure 18: Illustration of Example 16.

Figure 19: Enumeration of any element e 2 V. Cconnected removes elements
from V and S. The elements of V that are necessarily present are
moved to U. Cclosed is checked onU t V extended with every element
in S.

is associated to all the elements of� j 6= i U j [ V j is necessarily element
of every closed n-set represented by N. It can be moved to U. Thus, Given an

enumeration sub-tree,
the elements that
extend its largest

n -set are in every
closed n -set.

these elements, which can be moved toU, are fv 2 V j U1 [ V1 � � � � �
fvg� � � � � Un [ Vn � Rg. In the worst case (all the elements of V can
extend N), given N, �nding the elements of this set means checking the
presence in R of this number of n-tuples:

nX

k = 1

�
jVk j �

Y

l 6= k

jU l [ V l j
�

.

This cost may look high. However, recall that the enumeration sub-tree
whose root is N contains, at worse (no pruning), 21+

P n
i = 1 jV i j - 1 nodes.

That is why removing elements from V as soon as possible signi�cantly
reduces the number of nodes to consider and, as a consequence, the
running time of D ata -Peeler .

Again, this improvement modi�es the enumeration of Data -Peeler .
Figure 19 depicts the enumeration taking advantage of the two im-
provements that have just been described.



62 mining n -ary relations

Figure 20: Illustration of Example 17.

Example 17 Consider the node(( f�; 
 g; f1; 2g; fBg); (; ; ; ; fAg)) obtained in
Example16. The elementA is safely moved fromV3 to U3 (see Figure20).
Indeed,(f�; 
 g; f1; 2g; fAg) satis�esCconnected(see Table5). Once this second
improvement applied,(f�; 
 g; f1; 2g; fBg) is claimed closed3-set. IndeedV
does not contain any element and neither doesS, hence the closedness.

2.3 Improved Algorithm

Figure 21 details, at a high level of abstraction, how Data -Peeler
recursively extracts every closed n-set. It is similar to Figure 16 but
includes the two improvements that have just been presented. In this
respect, it can be seen as a pseudo-code translation of Figure19. A
constraint CP(A)M was added too. This user-de�ned constraint aims at
focusing Data -Peeler on the relevant closed n-sets, i. e., every closed
n-set that satis�es CP(A)M . Furthermore, along the extraction, CP(A)M
guides the search, i. e., the search space is pruned when it is certain
the related region (the n-sets represented by the current enumeration
node) is empty of n-set satisfying CP(A)M . In many practical settings
with large domain sizes and/or high densities, the use of constraints is
a key to extraction tractability. At any call the smallest and the largest
n-set that may be recursively considered are known (respectively U
and U t V). As a consequenceData -Peeler can handle any piecewise
(anti)-monotone constraint (see Section2.3.6 in Chapter 1), i. e., CP(A)M
can be any constraint in this very broad class.Data -Peeler

ef�ciently handles
any piecewise

(anti)-monotone
constraint.

The de�nition of piecewise (anti)-monotonicity (i. e., De�nition 11),
given in Chapter 1, is suf�ciently generic to apply to n-sets. It is not
recalled here. The enforcement of CP(A)M in Data -Peeler is analog
with the one presented in Section 2.3.6 of Chapter 1, i. e., C0

P(A)M is
CP(A)M rewritten such that every occurrence of its variables is attributed
a separate argument that is instantiated with the largest (if C0

P(A)M
is monotone w.r.t. this argument) or the smallest (if C0

P(A)M is anti-
monotone w.r.t. this argument) subset of the same attribute domain
that may be recursively considered from the current call. In other terms,
every argument of C0

P(A)M that ranges in 2D i
(i = 1..n) is instantiated

with:
– U i [ V i if C0

P(A)M is monotone w.r.t. this argument;

– U i if C0
P(A)M is anti-monotone w.r.t. this argument.

Example 18 Consider the following constraint forcing the extracted closed
n-sets to be globally large:

C� -volume(X
1 ; : : : ; Xn ) � jX1 � � � � � Xn j > � .
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Input: U; V; S
Output: Every closed n-set represented by (U; V) and satisfying
CP(A)M
if C0

P(A)M is satis�ed when instantiated as detailed in the text
^C closed(U t V) then

if V = ( ; ; : : : ; ; ) then
output (U)

else
Choosee 2 V
U 0  U [ feg
V 0  fv 2 V n feg j Cconnected(U [ feg[ fvg)g
S0  fs 2 S j Cconnected(U [ feg[ fsg)g
W 0  fv0 2 V 0 j Cconnected(U 01 [ V 01 ; : : : ; fv0g; : : : U 0n [ V 0n )g
Data -Peeler (U 0[ W 0; V 0n W 0; S0)
V 00 V n feg
S00 S[ feg
W 00 fv002 V 00j Cconnected(U1 [ V 001 ; : : : ; fv00g; : : : Un [ V 00n )g
Data -Peeler (U [ W 00; V 00n W 00; S00)

end if
end if

Figure 21: The Data -Peeler improved algorithm.

Because every argument ofC� -volume occurs exactly once in the above ex-
pression, attributing a separate argument to every occurrence actually pro-
vides the same expression. Anyway, without any transformation,C� -volume
is (anti)-monotone w.r.t. each of its arguments. For example, it is mono-
tone w.r.t. the �rst argument: 8(X1 ; : : : ; Xn ) 2 2D 1

� � � � � 2D n
and

8X1 0
� D1 ,

�
X1 � X1 0

) jX1 � � � � � Xn j > � ) jX1 0
� � � � � Xn j > �

�
.

As a consequenceC� -volume is piecewise (anti)-monotone. Because, it actually
is monotone w.r.t. each of its arguments,Data -Peeler tests, at every recur-
sive call,C� -volume(U t V). If the test succeeds at leastU t V, the current
node represents, satis�esC� -volume. If the test fails the search space is pruned.
Indeed, everyn-set, the current node represents, violatesC� -volume.

Example 19 Consider the following constraint forcing the extracted closed
n-sets to approximately gather the same number of elements in the �rst at-
tribute as in the second attribute.

C� -square(X1 ; X2 ) �
jX1 j
jX2 j

-
jX2 j
jX1 j

6 � ^
jX2 j
jX1 j

-
jX1 j
jX2 j

6 � ^ X1 6= ; ^ X2 6= ;

The parameter� 2 R+ tunes the approximation: the smaller� , the stronger
the constraint (� = 0 forcesjX1 j = jX2 j). C� -squarehas two arguments,X1

and X2 , but each of them occurs four times in the expression of the con-
straint. To prove the piecewise (anti)-monotonicity ofC� -square, the constraint
is rewritten in C0

� -squarewith a separate argument for each of the eight occur-
rences:

C0
� -square(X

1
1 ; X1

2 ; X1
3 ; X1

4 ; X1
5 ; X2

1 ; X2
2 ; X2

3 ; X2
4 ; X2

5 )

� jX 1
1 j

jX 2
1 j

- jX 2
2 j

jX 1
2 j

6 � ^ jX 2
3 j

jX 1
3 j

- jX 1
4 j

jX 2
4 j

6 � ^ X1
5 6= ; ^ X2

5 6= ; .

C0
� -squareis (anti)-monotone w.r.t. each of its arguments, what proves, by de�-

nition, the piecewise (anti)-monotonicity ofC� -square. More precisely,C0
� -square

is monotone w.r.t.X1
3 , X1

4 , X1
5 , X2

1 , X2
2 andX2

5 and anti-monotone w.r.t.X1
1 ,
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X1
2 , X2

3 and X2
4 . As a consequence, to enforceC� -square, Data -Peeler tests,

at every recursive call,C0
� -square(U

1 ; U1 ; U1 [ V1 ; U1 [ V1 ; U1 [ V1 ; U2 [

V2 ; U2 [ V2 ; U2 ; U2 ; U2 [ V2 ). If the test fails the search space is pruned.
Indeed, everyn-set, the current node represents, violatesC� -square.

3 example of computation

Figure 22 depicts a part of the computation of Data -Peeler on RE
(represented in Table 5) where every closed 3-set satisfying C5-volume
(introduced in Example 18) is to be extracted. The dashed leaf is a such
a pattern. The dotted leaves are pruned. The choice of the element to
enumerate follows the rule enunciated in Section 1.6.
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4 data structures

In this section, the size (in bits) of an element ID is denoted a and
the size (in bits) of a pointer is denoted b.

4.1 Storing the Dataset

Unlike for binary relation mining algorithms, it is not possible to
store the projection (usually called “tidset”) of the input dataset R
on each element e 2 D1 [ � � � [ Dn . The use of sophisticated data
structures like FP-trees [38] remains an open problem because of the
multiple attributes to consider and the required ability to enumerate
any of them all along the enumeration. As a consequence, the whole
dataset must be stored in main memory so that Cconnected and Cclosed
can be enforced.

Two classes of data structures were investigated, namely a bitset-
based structure, and a list-based structure. In both cases, the dataset
is stored in a complete pre�x tree of height n - 1 corresponding to
the n - 1 �rst attributes. The nodes at depth i = 0..n - 2 always have
jD i + 1 j children, one for every element of Dn + 1 . From depth 0 to n - 2,
the edges binding a node to its children are pointers. Each leaf stands
for a pre�x of size n - 1 of every element of D1 � � � � � Dn - 1 . The
difference between the two studied structures relies in how the last
attribute elements are stored.

4.1.1 Bitset-Based Structure

In such a structure, every leaf of the pre�x tree points to a bitset
representing the last attribute elements. A “ 0” (respectively “ 1”) in the
bitset stands for the absence (respectively the presence) of the related
element of R. The presence of such an element is tested in constant
time. The space occupied by the dataset is:

b
n - 1X

i = 0

iY

j = 1

jD i j

| {z }
the depths from 0 to n - 1

+
nY

j = 1

jD j j

| {z }
the bitsets

.

4.1.2 List-Based Structure

Here, every leaf points to a list of IDs of elements of Dn . Each of
them represents an element of R. The presence of such an element is
tested in O(log jDn j). Choosing Dn to be the smallest attribute domain

minimizes the access time. If d = jRjQ n
i = 1 jD i j denotes the density of the

dataset, the space requirement is:

b
n - 1X

i = 0

iY

j = 1

jD j j

| {z }
the depths from 0 to n - 1

+ a � d
nY

j = 1

jD j j

| {z }
the lists

.

Compared to the bitset-based structure, a space gain occurs if and
only if d < 1

a . Taking a = 64 (size of an integer on modern hardware),
the density of the dataset must be under 1.56% for the list-based struc-
ture to present a space advantage over the bitset-based structure. Thus,
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the bitset-based structure is always better in data access time and, in
most cases, in space requirement too. Therefore, this structure was
chosen for our implementation. The dataset is stored

in a bitset-based
structure for faster
accesses and space

gains unless the
relation is very

sparse.

Notice that other sparser structures were theoretically investigated.
They consist in using an incomplete pre�x tree. Of course, the time
access cost increases (O(

P n
i = 1 log jD i j) for a totally sparse tree). Fur-

thermore, the space requirement can be greater since we need to add an
element ID to each node. Indeed the child node addressed by a pointer
cannot be identi�ed from the position of the child in the list of children
(some are “missing”). It can be shown that a space gain occurs only
when, in average, a node at depth i has less than b

a + b jD i + 1 j children.
Unless the dataset is very sparse and/or non-homogeneous, even depth
n - 2 does not satisfy such a property. This justi�es the fact that we
focused on the list-based structurewhere only the deepest level is sparse.

4.2 Storing the Enumeration Nodes

Both U and S can be statically stored in stacks. At every recursive
call, one single element is pushed in either U (when constructing NL )
or S (when constructing NR) and popped once this recursive call is
completed.

Any element of V can be removed when Cconnected is enforced. As a
result, V cannot be statically stored. The construction of the enumer-
ation tree being depth-�rst, the worst case is bound to reaching the
deepest node. At worst, the depth of the enumeration tree is

P n
i = 1 jD i j

where each recursive call removes only one element from V. In this
case, the required space to storeV is:

a

P n
j = 1 jD j jX

i = 1

i =
a
2

nX

j = 1

jD j j � (
nX

j = 1

jD j j - 1) .

4.3 Space Complexity

Combining the results from Section 4.1 and Section 4.2, the space
complexity of Data -Peeler is linear in the size of the input relation
(
Q n

i = 1 jD i j). More precisely it is: Unless the relation is
binary, its storage
dominates the space
complexity.

– O(( jD1 j + jD2 j)2 ) if n = 2 (the space requirement for the V set
predominates);

– O(
Q n

i = 1 jD i j) if n > 2 (the space requirement for the dataset pre-
dominates).

5 experimental results

Every experiment, this section describes, has been performed on
a GNU/Linux ™ system equipped with an AMD Sempron ™ 2600+
processor and 512MB of RAM. Data -Peeler is implemented in C++
and compiled with GCC 4.1.2.

5.1 Quest -Generated Datasets

To study the behavior of Data -Peeler and compare it to competi-
tors in different situations, we have used the IBM Quest data gener-
ator [2]. Various synthetic basket datasets with prede�ned attributes
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and densities have been generated. Three attributes are considered: the
customers, the bought items, and the time periods (in months).

To test the scalability of Data -Peeler w.r.t. the arity of the relation
(the size of the input data remaining constant), three kinds of uniformly
random datasets are generated:

1. 16 attributes with 2-valued domains (Boolean attributes);

2. 8 attributes with 4-valued domains;

3. 4 attributes with 16-valued domains.

In such a relation, every tuple has a given probability to be in R. When

generating a large dataset, its density d = jRjQ n
i = 1 jD i j is close to this

probability. Datasets built in this way usually do not contain any large
closed n-sets: the extraction problem is known to be hard.

5.2 Impact of the Enumeration Strategy

Let us �rst empirically compare the enumeration strategy presented
in Section 1.6 with two other sensible strategies:

1. For each node(U; V), the attribute j is chosen such that it has the
smallest non-empty V j . Among the elements in V j , the element
with the smallest density in R is enumerated.

2. For each node (U; V), the enumerated element e 2 V is chosen
such that (D1 � : : : � feg� : : : � Dn ) n R has the largest cardinality.

The �rst strategy enumerates every element of the n - 2 domains
with the smallest cardinalities. Then, when enumerating elements
from the two remaining attributes, Cconnected may �nally succeed in
reducing the V n-set. Indeed, n - 1 attributes need to be set (U i 6= ; )
for Cconnected to, hopefully, remove elements from the last attribute. The
second strategy globally sorts the elements of all domains. If every
attribute domain has the same cardinality, this order follows a growing
density. Otherwise, an element e from a small attribute domain size is
favored since D1 � : : : � feg� : : : � Dn is larger.

Tests have been performed on the datasets generated byQuest .
Whereas Data -Peeler 's enumeration strategy scales very well, the
other strategies force us to choose small size attributes to be able to
plot results: 36 customers buying in average 6 items out of 18 (density
of about 33%) per month. The number of months vary from 6 to 36 and
we enforce the constraint that every closed 3-set must involve at least
three customers, two items and three months.

Figure 23 presents the results. Data -Peeler 's enumeration strategy
largely outperforms the two other strategies. The performance of Enu-Compared to other

sensible choices,
Data -Peeler 's

enumeration strategy
supports extractions

that are orders of
magnitude faster.

meration 1 mainly depends on the size of the smallest attribute domain
(above 18 months, the smallest attribute domain becomes the set of
items that is constant). As mentioned earlier, the complete enumera-
tion of the smallest domain causes this behavior. The performance of
Enumeration 2 emphasizes the need, when choosing the element to
enumerate, to take into account the characteristics of the current node.

5.3 Comparison with Competitors

Data -Peeler is compared to both CubeMiner [41] and Trias [40] on
3-ary relations. Their implementations were kindly provided by their
respective authors. The comparison is achieved on Quest -generated
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datasets. 144customers buying in average 6 items out of 72 (density of
about 8.3%) per month have been generated. We make the number of
months vary from 6 to 66 and constrain every closed 3-set to involve at
least two customers, two items and two months.

Figure 24 presents the results. Data -Peeler outperforms its competi-
tors by several orders of magnitude. The growing number of months Data -Peeler

outperforms its
competitors by
several orders of
magnitude.

(the smallest domain) signi�cantly alters Trias ' performance, whereas
it has less effect onCubeMiner . For example, considering data along
48 months, to extract all the 5801closed 3-sets,CubeMiner takes 1 hour
and 50 minutes, Trias 3 hours and 14 minutes, whereas Data -Peeler
only needs 2.5 seconds. Unlike its competitors, even with 600months,
Data -Peeler is still able to extract all closed 3-sets in a reasonable time,
i. e., 1 minute and 21 seconds for 431892closed 3-sets.

5.4 Scalability w.r.t. the Arity

The three kinds of uniformly random datasets, presented in Sec-
tion 5.1, are generated with densities varying between 0 and 0.5. Given
a density, the sizes of the input data are the same for all three datasets.
The extracted closedn-sets are forced to contain at least four tuples (this
constraint depends neither on the arity of the relation nor on the sizes
of its domains). The results are plotted in Figure 25. When the datasets
are sparse (e. g., a0.05 density), a high arity has a negative impact
on Data -Peeler 's performance. With greater densities, the extraction
times, on the three datasets, are of the same order of magnitude.
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6 robustness w .r .t . binarization

Many relations are derived from numerical datasets. To decide
which tuples eventually are in R, several binarization methods exist
and/or, for a given method, various parameter settings are possible. Binarizations turn

numerical datasets
into relations.

Consider, e. g., gene expression data analysis. This application domain
has motivated the design of many closed pattern extractors (e. g., [59]
and [99]). The gene expression is a real number that needs to be
turned into a Boolean value, i. e., a yes/no answer to a question like “Is
this gene over-expressed in this experiment?”. Transformations from
numerical datasets to Boolean ones are calledbinarizations.

Given a numerical dataset (that may have been normalized earlier),
a simple binarization consists in deriving a value � from the whole
dataset and de�ning R as the tuples associated to a value greater
(or smaller) than � . For example, � could be chosen as one quarter
of the maximal value in the dataset and R would contain every tuple
associated with a value greater than �

4 . The same kind of procedure can
be separately applied on different subspaces of the dataset. For example,
to decide whether a given gene is over-expressed, there is no reason to
consider the expressions of the other genes, andR could be the couples
(gene; sample) such that “gene” has, in “sample”, an expression level
above its own average. Many other transformations, from numerical
datasets to a Boolean ones, have been proposed [64]. Anyway, the Choosing a

binarization is taking
up a perspective on
the data.

simple examples, that have just been given, already provide many
different sensible choices depending on whether or how to normalize
the numerical data, how local/global the binarization should be, how
to derive a threshold, etc.

Given a numerical dataset, it remains unclear which method to
pick up and how to parametrize it. Different binarized versions of
a same dataset actually are different perspectives on the data. All
these perspectives may be interesting. Focusing on one perspective
may hide relevant patterns which would be present with many other.
As a consequence, the analyst, who wants to discover unexpected
patterns, often does not have any reason to prefer a perspective to
another. We actually suggest him/her not to make any choice. To be
more precise, we suggest him/her to make all the choices at a time
and use Data -Peeler to extract closed patterns that are relevant across
several perspectives on the data.

The most interesting patterns are (at least partially) found across
several versions of the same dataset binarized in different ways. Tagging
the n-tuples with the binarization methods that select it is like adding
a new attribute to our dataset. Geometrically, this process can be A minimal size

constraint on an
attribute gathering
several binarizations
is a formal
speci�cation of
“robustness w.r.t.
perspectives”.

imagined as “stacking” the different Boolean versions of the initially
numerical dataset. In this way, if the initial dataset is a two-dimensional
matrix, the different 0/ 1 versions of it are stacked in a 0/ 1 cube whose
height is the number of different binarizations that were applied. More
generally, if the initial dataset is an n-dimensional tensor, an (n + 1)-ary
relation is built. Extracting, with Data -Peeler , the closed (n + 1)-sets
under a minimal size constraint on the binarization attribute, provides
patterns that are relevant across many perspectives on the data. In other
terms, these closed(n + 1)-sets are robust to the binarization method.
Beyond “real” n-ary relations, this original approach emphasizes how
mining closed n-sets can improve the knowledge discovery processes
on classical numerical matrices.
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7 minimizing multi -valued logic functions

7.1 Problem Setting

A relation is usually represented as a set of tuples. Storing and
retrieving a relation by listing all its tuples one by one is both time
and space consuming. That is why minimizing the expression of an
arbitrary n-ary relation R is an interesting problem. Since a collection
of n-tuples is not a satisfactory solution, we may look for relevant
collections of patterns that, in this context, are generically called tiles.
The tiling task consists in �nding a collection of (possibly overlapping)
tiles that is as compact as possible but still entirely expresses R, i. e.,
the union of the n-tuples in all tiles equals R.

Choosing the tiles to be closed n-sets looks like a clever idea. In-
deed, a closedn-set can be seen as a syntactical summary of a part
of R. Indeed, it is shorter to write a closed n-set than to list all theClosedn -sets

summarize parts of
the relations.

tuples it encompasses. For example, without any loss of information,
we can write that the relation RE , represented in Table 5, contains
(f�; 
 g; f1; 2; 4g; fAg) instead of listing all the tuples this closed 3-set
encompasses:

(�; 1; A ), (�; 2; A ), (�; 4; A ), (
; 1; A ), (
; 2; A ), (
; 4; A )

A collection of well-chosenclosed 3-sets shortly expresses the whole
relation RE :

(f�; 
 g; f1; 2g; fA; Bg)
(f�; 
 g; f3; 4g; fCg)

(f�; � g; f1g; fA; B; Cg)
(f
 g; f1; 2; 4g; fA; Bg)
(f� g; f1; 2; 4g; fA; Cg)
(f�; �; 
 g; f4g; fCg)
(f� g; f1; 2; 3g; fBg)

By de�nition, closed n-sets satisfy both Cconnected and Cclosed. How-
ever, for the sake of minimizing the expression of R, constraining the
tiles to be closed does not make sense. Indeed, in some situations,The closedness

constraint does not
make sense when

tiling.

when two (or more) closed n-sets are overlapping, one of them can be
“cropped” so that the relation is expressed in a shorter way. For exam-
ple, in the collection above, (f� g; f1; 2; 4g; fA; Cg) can be “cropped” in
(f� g; f2; 4g; fA; Cg) if (f�; � g; f1g; fA; B; Cg) is kept (unaltered) in the col-
lection. Indeed, this closed 3-set already encompassesf� g� f1g� fA; Cg.
That is why the tiles are advantageously chosen among the n-sets rather
than the closed n-sets. Then-set domain is a superset of the closedn-
sets domain where Cconnected still needs to be checked but where Cclosed
does not necessarily hold. With tiles in this larger pattern domain, the
previous tiling of RE can be improved into the following one:

(f�; 
 g; f1; 2g; fA; Bg)
(f�; 
 g; f3; 4g; fCg)

(f�; � g; f1g; fA; B; Cg)
(f
 g; f1; 2; 4g; fA; Bg)

(f� g; f2; 4g; fAg)
(f� g; f4g; fCg)
(f� g; f3g; fBg)
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7.2 Simplifying Multi-Valued Logic Functions

Interestingly, the attributes (A i ) i = 1..n can be seen as variables of
a multi-valued logic function whose truth table is given by R. No-
tice that Boolean functions are a specialization of this framework
(8i = 1..n; jD i j = 2). In this perspective, tiling R is equivalent to mini-
mizing (simplifying is used too) the related multi-valued logic function. Minimizing a

multi-valued logic
function is tiling its

truth table.

For example, the tiling of RE written above provides this simpli�ed
expression of the related multi-valued logic function:

(A1 = � _ A1 = 
 ) ^ (A2 = 1_ A2 = 2) ^ (A3 = A _ A3 = B)

_ (A1 = � _ A1 = 
 ) ^ (A2 = 3_ A2 = 4) ^ (A3 = C)

_ (A1 = � _ A1 = � ) ^ (A2 = 1) ^ (A3 = A _ A3 = B _ A3 = C)

_ (A1 = 
 ) ^ (A2 = 1_ A2 = 2_ A2 = 4) ^ (A3 = A _ A3 = B)

_ (A1 = � ) ^ (A2 = 2_ A2 = 4) ^ (A3 = A)

_ (A1 = � ) ^ (A2 = 4) ^ (A3 = C)

_ (A1 = � ) ^ (A2 = 3) ^ (A3 = B)

Given a tiling, its quality can be measured with the number of logic
operators (_ and ^ ) in the simpli�ed expression of the related multi-
valued logic function, the smaller the better. For example, 18 _ and
14 ^ are present in our simpli�ed expression of the multi-valued logic
function related to RE . The quality of this tiling is 18+ 14 = 32.

7.3 A Global Model ofR

The simpli�cation of multi-valued logic functions is an interesting
application of tiling. Nevertheless, this coverage of R can be seen as
a solution to a machine learning problem too. Consider R as a set of
positive examples and (� i = 1..n D i ) n R as a set of negative examples.
A tiling is a consistenthypothesis that complies with the observed
data, i. e., it covers every positive example and no negative example.
With this perspective, minimizing the tiling is searching for the shortest
hypothesis that remains consistent. This relates to the famous minimum Tiling can be seen as

searching for the
shortest hypothesis
that is consistent
with the data.

description length principle coined in [ 72] (see [35] for a comprehensive
and modern reference):

Choose the model that gives the shortest description of data.

In this respect, a tiling is a global model of R. Taking up a framework
“From Local Patterns to Global Models” (see, e. g., [45]), we propose to
derive it from the closed n-sets Data -Peeler lists.

When a user-de�ned relevancy constraint C is applied to the local
patterns, the n-tuples in R that are covered by none of the closed n-
sets may be considered spurious, i. e., they are false-positive examples.
Then, if R is deprived of these n-tuples before being tiled, the obtained
result is a shorter hypothesis that remains correct(it covers no negative
example) but becomes incomplete(it does not cover the false-positive
examples). The “force” of the chosen relevancy constraint C tunes the
trade-off between briefness and completeness. The incompleteness of a
shorter model can be seen as tolerating positive noise and becomes, to
some extent, a wanted feature.

Interestingly, the same post-processing, presented in the next section,
but based on error-tolerant patterns, i. e., patterns that can cover a few
negative examples, also allows to obtain a shorter hypothesis to the
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cost of losing the consistency. More precisely, the hypothesis remains
complete(it covers every positive example) but becomes incorrect(some
negative examples are covered as well). Error-tolerance thresholds tune
the trade-off between briefness and correctness. The incorrectness of
a shorter model can be seen as tolerating negative noise and becomes,
to some extent, a wanted feature. The next part will de�ne such error-
tolerant patterns that hold in n-ary relations.

7.4 A Closedn-Set Greedy Post-Processing

The set of all closed n-sets returned by Data -Peeler (without enforc-
ing any constraint but Cconnected and Cclosed) is a tiling of the relation
since it integrally covers it. Its quality is very poor though: most of the
time, it is far worse than listing every tuple one by one. Nevertheless,
the closed n-sets are here considered a starting point. Post-processing
Data -Peeler will take care of removing useless information from the
computed closed n-sets to obtain a tiling of R with a good quality.

7.4.1 Removing the Complete Sets

Consider a tile (Xi ) i = 1..n . If one of the Xi set equals the whole
attribute domain D i , listing its elements one by one is useless. For ex-
ample, in RE , (f�; � g; f1g; fA; B; Cg) can be shortened into (f�; � g; f1g; -)
meaning that, whatever v 2 fA; B; Cg, the 3-tuples (�; 1; v ) and (�; 1; v )
are in RE . In this way, when a tile has Xi = D i (i = 1..n), the number
of required logic operators to express it is lowered (i. e., the quality is
improved) by jD i j. Let us express the previous example using the multi-If an entire attribute

domain is involved in
a tile, its elements do

not need to be
written.

valued logic form. (A1 = � _ A1 = � ) ^ (A2 = 1) ^ (A3 = A _ A3 =
B _ A3 = C) requires 5 logic operators to be written. Once turned into
(A1 = � _ A1 = � ) ^ (A2 = 1), only 5 - jD3 j = 2 logic operators are
needed.

7.4.2 Tightening the Tiles

Given an element in any set of a tile, consider the tuples encom-
passed by the tile and involving this element. Verifying whether the
previously output tiles encompass them is straightforward. Here isGiven a tile, its

hyper-plans that were
previously

encompassed are
cropped.

how it is achieved: whenever a tile is output, the tuples it encom-
passes are removed from the relation. In this way, the elements
of another tile can be considered one by one and removed if, in
the related hyper-plans, none of the tuples remain in the relation.
E. g., a tile (f�; 
 g; f1; 2; 4g; fAg) can be tightened into (f� g; f2; 4g; fAg) if
(f�; � g; f1g; -) and (f
 g; f1; 2; 4g; fA; Bg) were previously output. Indeed
they already encompass both f�; 
 g� f1g� fAg(hyper-plan related to
the element 1) and f
 g� f1; 2; 4g� fAg(hyper-plan related to the ele-
ment 
 ). The quantity of information safely removed in this way greatly
depends on the order in which the tiles are processed.

7.4.3 Ordering the Tiles

Relying on the order in which n-sets are discovered byData -Peeler
does not provide a good minimization of R. It is advantageously
replaced by the following heuristic:
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Heuristic 1 Output �rst the tile presenting the best ratio between the num-
ber of newly encompassed (i. e., not encompassed by previously output tiles)
tuples and the number of logic operators (_ and^ ) needed to express it.

Tiles with the greatest
ratio newly

encompassed

tuples /
description size

are favored.

To do so, the closed n-sets are stored in main memory instead of
being directly output. Whenever a tile is output, the part of R it
encompasses is removed. Thus a large tile may be moved towards the
end of the sequence (and even never be output) if there are larger tiles
encompassing many of its tuples. The algorithms terminates when R is
completely covered.

Notice that the sequence of remaining tiles is not maintained ordered
at any time. Instead, only the �rst tile is considered. If the quantity of
tuples it encompasses (initialized at extraction time) has decreased it is
moved down the sequence. Otherwise, it is output.

7.4.4 Don't Care Set

Don't care setis the name given to a set RDCS of tuples that can either
be considered as elements ofR or not. Typically they are impossible
combinations of values for the n attributes. The don't care set plays an
interesting role in the minimization problem: its elements can enable
bigger tiles even though they are not required to be part of a tile. Tiling
with Data -Peeler easily takes advantage of a don't care set. The closed A don't care set can

be speci�ed.n-sets are extracted onR [ RDCS. Then the tuples of RDCS are removed
(i. e., they are considered covered) and the post-process, detailed in this
section, is performed unchanged.

7.5 Experimental results

Here again, the experiments have been performed on a GNU/Linux ™
system equipped with an AMD Sempron ™ 2600+ processor and 512
MB of RAM. The performance in minimizing a multi-valued logic
function are evaluated with respect to:

– The time it takes to tile (extraction of the closed n-sets included);
– The number of logic operators (_ and ^ ) in the tiling.

7.5.1 Comparision withEspresso-MV

An implementation of the Espresso-MV algorithm [ 73] (shipped with
the MVSIS 3.0 package [29] for logic synthesis and veri�cation) was
used as a reference in our tests.Espresso-MV is a generalization to
multi-valued functions of the Espresso-II algorithm [ 14], which only
simpli�es Boolean functions (see Section 2.2.2 in Chapter 2).

Data -Peeler and Espresso-MV are compared on the uniformly
random datasets presented in Section 5.1. The dimensions of these
datasets are recalled:

1. 16 attributes with 2-valued domains (Boolean attributes);

2. 8 attributes with 4-valued domains;

3. 4 attributes with 16-valued domains.

Typical results (no signi�cant variation from a random generation to
another) are listed in the Tables 6, 7 and 8 for three different densities
(6.25%, 25% and 50%).
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Time performances in s Quality in number of _ and ^

Dataset E-MV D-P Var. rate E-MV D-P Var. rate

1 2.21 10.62 +380.54% 46068 46518 +0.97%

2 146.88 1.95 -98.67% 23662 23166 -2.09%

3 103.62 0.52 -99.49% 10734 10035 -6.51%

Table 6: Minimizing random multi-valued logic functions (density: 6.25%).

Time performances in s Quality in number of _ and ^

Dataset E-MV D-P Var. rate E-MV D-P Var. rate

1 36.09 19.75 -45.27% 107869 109722 +1.71%

2 957.75 6.34 -99.33% 69460 57014 -17.91%

3 552.11 4.39 -99.20% 28118 23082 -17.91%

Table 7: Minimizing random multi-valued logic functions (density: 25%).

7.5.2 Discussion

boolean attributes Data -Peeler 's simpli�cation is between 0 and
3% worse than Espresso-MV 's. On the positive side, Data -PeelerIn the general case,

our approach
minimizes more and
runs orders of
magnitude faster then
Espresso-MV .

performs faster when the density of the dataset is 15% or more.

multi -valued attributes When the attributes take more than 2
values, Data -Peeler signi�cantly outperforms Espresso-MV both
in quality and running time. The gain in quality grows with the
number of values per attribute and the density of the dataset.
With a 50% density, Data -Peeler builds minimized expressions
of the relation that are more than one third smaller than what
Espresso-MV achieves. The gain in time is impressive: Data -
Peeler performs the task in about 1% of the time required by
Espresso-MV.

7.6 Improving Time Performances

7.6.1 Ck - summary

With some background knowledge about R, some constraints most
closed n-sets will satisfy may be known. If these constraints are piece-
wise (anti)-monotone, Data -Peeler more quickly extracts the closed
n-sets. If every closedn-set actually satis�es the speci�ed constraints,By translating

background
knowledge into

piecewise
(anti)-monotone

constraints, the tiling
can be fasten without
too much degradation

of its quality.

the computed tiling is identical. Otherwise, the constrained closed
n-sets may not totally cover R. In this case, the collection of tiles is
completed by a linear procedure browsing the uncovered dataset and
outputting aggregates of tuples along the largest attribute domain.
Clearly, the quality of the tiling gradually decreases with the stringiness
of the constraints until no closed n-set satis�es them. In this extreme

Time performances in s Quality in number of _ and ^

Dataset E-MV D-P Var. rate E-MV D-P Var. rate

1 122.21 48.81 -60.06% 120170 122452 +1.89%

2 1781.62 25.31 -98.57% 99763 66512 -33.32%

3 1064.33 50.81 -95.22% 45060 27886 -38.11%

Table 8: Minimizing random multi-valued logic functions (density: 50%).
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case, the tiling is the collection of aggregates of tuples along the largest
attribute domain. Depending on the mined relation, some speci�c
constraints may greatly reduce the extraction times while providing
a collection of closed n-sets that allow a good minimization of the
dataset.

With large relations, specifying a constraint may even be compulsory
so that the tiling problem is tractable. This tractability relates to time
but also to space requirements. Indeed, the proposed post-process
stores every tile in main memory. Without any background knowledge
about the relation R to tile, the more natural constraint to enforce is
related to the order in which the tiles are stored: the ratio between the
volume of a closed n-set and the number of logic operators (_ and ^ )
needed to express it must exceed a given threshold k 2 R. Expressed Without any

background
knowledge, a minimal
ratio volume /
description size

decreases time and
space requirements.

formally, the constraint is:

Ck -summary �
nY

i = 1

jXi j > k
nX

i = 1

f (Xi ), where f (Xi ) =

8
<

:
0 if Xi = D i

jXi j otherwise

Ck -summary (k 2 R) is piecewise (anti)-monotone. In RE , the six closed
3-sets satisfying C1.5-summary ^ C 1-volume encompass 17 tuples out of
23. They are completed with aggregates of the remaining tuples along
the attribute having largest domain (the second one for RE ), i. e., with
tiles restricted to one element in every other attribute. Once the steps
detailed in Section 7.4 applied, the tiling is:

(f�; � g; f1g; -)
(- ; f1; 2g; fAg)
(f
 g; - ; fAg)
(- ; f4g; fCg)

(f
 g; f1; 2; 4g; fBg)
(f� g; f2; 3g; fBg)
(f
 g; f3g; fCg)
(f� g; f3g; fCg)
(f� g; f4g; fAg)

The four �rst tiles come from the extracted closed 3-sets. The �ve last
tiles are aggregates of tuples along the second attribute. In this example,
two closed 3-sets do not generate any tile (see Section7.4.3).

7.6.2 Experimental Results

A synthetic Quest -generated dataset (144 customers buying in av-
erage 6 items out of 72 during 144 months) was tiled under the
Ck -summary ^ C 1-volume constraint. The running time (extraction in-
cluded) and the space requirements (estimated by the number of ex-
tracted closed 3-sets) are respectively plotted in Figures 26 and 27.

The Quest -generated dataset is not much prone to be tiled. In other
terms, the 3-sets it contains do not make good summaries. Indeed,
none of them satisfy C2.8-summary ^ C 1-volume . As a consequence the
quality of the tiling of the Quest -generated dataset is not much altered
when k increases. Indeed, when no 3-set is extracted, the tiling (the
conjunction of every aggregate of tuples along the largest attribute
domain), is less than 14% bigger. Thus, enforcing C1.5-summary divides
by two the space requirements against a minor alteration of the quality
of the tiling (+ 0.84% logic operators).
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Figure 26: Time to minimize, under Ck -summary , a Quest -generated dataset.
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Figure 27: Space to minimize, under Ck -summary , a Quest -generated dataset.
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8 conclusion

Whatever the arity of the relation, D ata -Peeler extracts, under con-
straints, every closed n-set in it. Its enumeration principles, which
do not favor any attribute, make it orders of magnitude faster than
its competitors focusing on ternary relations. Furthermore, any piece-
wise (anti)-monotone constraint can guide this enumeration towards
the most relevant patterns. Although many datasets naturally are n-
ary relations, many others are numerical and require a binarization
step before using Data -Peeler . An additional attribute, gathering
different perspectives on the data, and a minimal size constraint on
its elements allow the discovery of patterns that are robust w.r.t. bi-
narization. Another original use of Data -Peeler is as a �rst step to
minimize multi-valued logic functions. A post-process outputting, at
every iteration, the pattern encompassing the more tuples (that have
not been encompassed yet) was designed. It provides better results
than the state-of-the-art Espresso-MV.





Part IV

M I N I N G NOISY N-ARY RELATIONS





O U T L I N E

The previous part dealt with generalizing closed itemset mining to-
wards n-ary relations. An additional challenge is tackled in Chapter 2:
noise tolerance. The good performance of Data -Peeler motivated us to
reuse its principles and add noise tolerance on top of it. Thus, instead
of mining noise tolerant itemsets, the proposed approach, Fenster ,
completely extracts noise tolerant closed patterns from n-ary relations,
i. e., both needed generalizations to closed itemset mining (see Chap-
ter 2) are addressed at a time. This approach was presented in [CBB09].
Chapter 4 de�nes the closed ET-n-set and details how to ef�ciently
mine them. The principles behind Data -Peeler are found unchanged
at a high level of abstraction. The constraints Cconnected and Cclosed are
only rede�ned to tolerate noise. Nevertheless much work was required
to ef�ciently implement the enforcement of these constraints. This
will be emphasized by theoretically comparing the time complexity
of Fenster w.r.t. a similar extractor that would naively verify these
constraints. Empirically, Fenster is fast. No comparison can be made
on relations with an arity greater than three because Fenster is the
only approach tackling such a general task. In the particular case of
binary relations, Fenster is shown to perform orders of magnitude
faster than a state of the Art algorithm.

The collections of patterns Fenster computes have good global qual-
ities, i. e., the closed ET-n-sets altogether cover the dataset deprived of
noise. Ideally, every extracted pattern would be an anomalouslyhigh
local density of n-tuples present in the relation. This follows obser-
vations made in [ BCTB08] and relates to a strengthened closedness
constraint that �lters out the patterns that can be extended without
introducing many n-tuples absent from the relation (see Section2.4.2 in
Chapter 1). However, reinforcing the closedness signi�cantly decreases
the global quality of the collection of patterns Fenster extracts because
individual closed ET- n-sets only are fragment of an hidden pattern
the analyst would like to �nd. Increasing the quantity of noise they
tolerate would theoretically solve this issue. Unfortunately, more noise
tolerance means longer extraction times. Even with relations suffering
from rather low levels of noise, it turns out to be impossible to tolerate
it all while preserving reasonable running times for F enster .

A solution to this problem was detailed in [ CMB09] and is further
developed in Chapter 5. It suggests to revise our completeness demand
downwards. Fenster provides fragments of the patterns dissimulated
under some noise but these patterns globally are relevant. This brings
the idea of agglomerating the fragments. A merging operator and a
metric, which makes use of the relation (and not only of the closed
ET-n-sets), de�ne a hierarchical agglomeration of the patterns. An
additional step selects, among the agglomerates, those that are relevant
according to the intuition behind a local pattern (an anomalously high
local density of n-tuples present in the relation). The experiments show
that the whole approach, namely Alpha , returns small collections
of patterns that are not only globally but also individually of a high
quality.
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4FENSTER EXTRACTS N-SETS TOLERATING ERRORS IN THE
RELATION

1 closed et -n -sets

1.1 Absolute Noise-Tolerance

The de�nition of a closed n-set is too strict to enable the discovery
of relevant patterns in noisy n-ary relations. A closed ET-n-set is a
relaxation of the de�nition of a closed n-set. It is based on absolute
noise-tolerance parameters� = ( � i ) i = 1..n 2 N n . Given those parame- Closed ET-n -sets

tolerate absent
n -tuples up to
absolute
upper-bounds per
element.

ters, the type of pattern that is to be mined is de�ned by a conjunction
of two constraints, C� -connected and C� -closed.

De�nition 26 (C� -connected) 8X = ( X1 ; : : : ; Xn ) 2 2D 1
� � � � � 2D n

,
C� -connected(X) � 8 i = 1..n, 8e 2 Xi , j(X1 � � � � � feg� � � � � Xn ) n Rj 6 � i .

De�nition 27 (C� -closed) 8X = ( X1 ; : : : ; Xn ) 2 2D 1
� � � � � 2D n

,
C� -closed(X) � 8 X0 = ( X01 ; : : : ; X0n ) 2 2D 1

� � � � � 2D n
,�

(8i = 1..n, Xi � X0i ) ^ C � -connected(X0)
�

) X = X0.

De�nition 28 (Closed ET-n-set) 8X 2 2D 1
� � � � � 2D n

, X is a closed
ET-n-set iffC� -connected(X) ^ C � -closed(X).

Let us discuss the meaning of the noise-tolerance parameters on
a closed ET-n-set (X1 ; : : : ; Xn ). The parameter � i quanti�es, on any
element in Xi , the maximal number of n-tuples that are allowed to
be absent from R. In other terms, with a spatial vision of a pattern
(an n-dimensional rectangle in R modulo permutations of the ele-
ments), � i is the maximal number of ' 0's on any hyper-plan of the
i th dimension. Furthermore C� -closed forces (X1 ; : : : ; Xn ) to be closed,
i. e., any extension of it will break C� -connected. If 8i = 1..n; � i = 0 then
C� -connected � Cconnected and C� -closed � Cclosed. It can be written that
the closed ET-n-set is a generalization of the closed n-set.

Since the de�nition of a closed ET- n-set uses an absolute noise-
tolerance (it considers numbers rather than proportions of ' 0's), the
following function helps in referring to counts of n-tuples absent from
R on any element of an n-set.

De�nition 29 (Function 0) 8X = ( X1 ; : : : ; Xn ) 2 2D 1
� � � � � 2D n

, 8i =
1..n, 8e 2 D i , 0(X; e) = j(X1 � � � � � feg� � � � � Xn ) n Rj.

Let us use this function to rewrite De�nition 26 and 27:

De�nition 30 (C� -connected) 8X 2 2D 1
� � � � � 2D n

, C� -connected(X) � 8 i =
1..n, 8e 2 Xi , 0(X; e) 6 � i .

De�nition 31 (C� -closed) 8X 2 2D 1
� � � � � 2D n

, C� -closed(X) � 8 i = 1..n,

8e 2 D i nXi ,

8
>>><

>>>:

0(X; e) > � i

or

9j 6= i , 9f 2 Xj s.t. 0((X1 ; : : : ; Xi [ feg; : : : ; Xn ); f ) > � j

.

85



86 mining noisy n-ary relations

De�nition 30 is a direct rewrite of De�nition 26. De�nition 31 is
more than that. It is equivalent to De�nition 27 because if a pattern
can be extended without violating C� -connected, then there is such an
extension with oneelement only (and the reverse obviously is true too).
Furthermore, De�nition 31 details the two ways to break C� -connected.
Either the element to extend the closed ET-n-set gathers, when projected
on the pattern, too many n-tuples absent from R or this additional
element makes the number of '0's on an orthogonal element (an element
from another domain of the relation) exceed the related noise-tolerance
parameter. Examples taken from RE (see Table5) help in understanding
that:

Example 20 Let � = ( 1; 1; 1). X = ( f�; 
 g; f1; 2; 3g; fBg) is a closed ET-3-
set in RE . X satis�es C� -connectedsince each of its hyper-plans contains, at
most, one3-tuple absent fromRE : 0(X; � ) = 0, 0(X; 
 ) = 1, 0(X; 1) = 0,
0(X; 2) = 0, 0(X; 3) = 1 and 0(X; B) = 1. X satis�es C� -closedbecause
extending it with any additional element either means that the hyper-plan ofX
on this element contains strictly more than one3-tuple absent fromRE (e. g.,
0(X; � ) = 2) or at least one of the hyper-plans on an orthogonal element inX
would contain strictly more than one3-tuple absent fromRE (e. g.,4 cannot
extendX because0(( f�; 
 g; f1; 2; 3; 4g; fBg); B) = 2). (�; �; 
 g; f1; 2g; fA; Bg)
is another closed ET-3-set inRE .

1.2 Relative Noise-Tolerance

The reader may wonder why our de�nition of a closed ET- n-set is
based on absolute parameters and not relative ones. The reasons are the
same as those cited in the binary case (see Section1.1.2 in Chapter 2),
i. e., using a relative tolerance to noise makes the extraction suffer from
great scalability issues and the closedness constraint does not provide
a lossless condensation of all ET-connectedn-sets (and, without it,
output collections are very large and much redundant). Nevertheless,Closed ET-n -sets

are a lossless
condensation of all

ET-n -sets.

thanks to its enumeration principles inherited from Data -Peeler , our
closed ET-n-set extractor, named Fenster , can ef�ciently enforce any
piecewise (anti)-monotone constraints. Such a constraint allows to focus
on a tight range of sizes (for the extracted closed ET-n-sets) where a
user-de�ned relative parametrization can be converted into an absolute
one. Using this constraint, Fenster returns the same collection ofFenster ef�ciently

handles any piecewise
(anti)-monotone

constraint. E. g., it
can focus onthe

region of the search
space where the

absolute noise
tolerance is

equivalent to a
relative one.

patterns as one based on a relative parametrization (in the chosen range
of sizes). Given user-de�ned relative parameters (r i ) i = 1..n 2 [0; 1]n and
absolute tolerances to errors (� i ) i = 1..n 2 N n , here is this constraint:

Cin-region-of-interest (X) �
n̂

i = 1

�
� i 6 r i

Y

j 6= i

jXj j < � i + 1
�

.

The proof of the piecewise (anti)-monotonicity of Cin-region-of-interest is
based on, �rst, splitting the double inequalities, then, showing that the
left ones are anti-monotone and the right ones monotone.

Given a relative parametrization (r i ) i = 1..n and an interesting range
of sizes (i. e., a region of interest), the absolute parameters (� i ) i = 1..n
are easily computed. Figure ??depicts these regions in the case of a
binary relation, i. e., it plots the contour lines of every region related
to every absolute parametrization (� 1 ; � 2 ) (restricted to f0; 1; 2g� f0; 1g
in the �gure). The x-axis (resp. the y-axis) relates to the size of the
extracted closed ET-n-sets on the �rst (resp. second) attribute. The
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Figure 28: Conversion from a relative noise tolerance (r1 ; r2 ) to an absolute one
(� 1 ; � 2 ) depending on the region of interest.

couple of integers inside a region are the absolute parameters Fenster
uses to extract all ET-n-sets whose “geometry” �ts in the region. When
n > 3, analog (but not rectangular anymore) regions can be drawn
in an n-dimensional coordinate system (jX1 j; : : : ; jXn j). When several
regions contain (relatively de�ned) closed ET- n-sets of interest, several
extractions, under the strong constraint Cin-region-of-interest , allow, by
union of their returned collections of patterns, to list them all.

2 fenster

Fenster builds upon the powerful enumeration principles of Data -
Peeler to exhaustively list the closed ET-n-sets. This allows, in par- From an abstract

perspective,Fenster
proceeds like
Data -Peeler .

ticular, to ef�ciently enforce any piecewise (anti)-monotone constraint.
From an abstract perspective, Fenster looks like Data -Peeler with
C� -connected instead of Cconnected and C� -closed instead of Cclosed. Never-
theless, as it will be detailed in Section 3.1, the ef�cient enforcement of
C� -connected and C� -closed requires, at every enumeration node to reuse
counts of absent n-tuples that were previously made and that need to
be updated.

Similarly to Data -Peeler , three n-sets U = ( U1 ; : : : ; Un ), V =
(V1 ; : : : ; Vn ), and S = ( S1 ; : : : ; Sn ) are attached to every enumera-
tion node of Fenster . We recall that all the elements in the n-set
U 2 2D 1

� � � � � 2D n
are contained in any closed ET-n-set extracted

from the node. The n-set V 2 2D 1
� � � � � 2D n

contains the elements
that may be present in the closed ET-n-sets extracted from the node,
i. e., the search space. Finally, then-set S 2 2D 1

� � � � � 2D n
contains

the elements that may prevent the ET-n-sets, extracted from this node,
from being closed.

The enforcement of C� -closed is analog to that of Cclosed by Data -
Peeler (see Section1.4). Figure 29 depicts the enumeration of Fenster .
The n-setsU, V and Sattached to the children nodes are computed from
the parent's analogous n-sets, the enumerated element and the data
(for the left child only). In particular, in a left child, Fenster ensures
that U can receive any element from V without violating C� -connected.
Hence, at every enumeration node, the n-set U is � -connected, i. e.,
C� -connected(U). Furthermore the reduction of S performed by Data -
Peeler (see Section2.1) is applied by Fenster too. In the end, Figure 29
is very similar to Figure 17.

Example 21 Let � = ( 1; 1; 1). Consider thatFenster , working on the
relation RE (represented in Table5), reaches the enumeration node where
U = ( f�; 
 g; ; ; fBg), V = ( ; ; f1; 2; 3; 4g; fAg) andS = ( f� g; ; ; fCg). Fenster
chooses to enumerate the elementA 2 V3 and generates the two children
depicted in Figure30. In the left child,3 and4 are removed fromV2 because
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Figure 29: Fenster enumerating any element e 2 V.

Figure 30: Illustration of Example 21.

neitherC� -connected(f�; 
 g; f3g; fBg) nor C� -connected(f�; 
 g; f4g; fBg) is true. In
this example, none of the elements in theS n-set of the left child can be
removed.

At this point the reader may wonder why Fenster does not take
advantage of the last improvement to Data -Peeler 's enumeration, i. e.,
why an element v 2 V cannot be moved to U when C� -connected(U1 [
V1 ; : : : ; fvg; : : : ; Un [ Vn ) holds. In fact, if 8i = 1..n; � i 6= 0, then
C� -connected(U1 [ V1 ; : : : ; fvg; : : : ; Un [ Vn ) is not suf�cient to entail
the presence of v in every closed ET-n-set represented by the cur-
rent enumeration node (U; V). Stated in mathematical terms, the � -Counts of absent

n -tuples involving
an element in the

search space never
allow to claim this

element present.

closedness of ann-set (U in our extraction context) is not unique(but
all of them are listed by Fenster ). Indeed, given a domain i = 1..n,
while C� -connected(U1 [ V1 ; : : : ; fvg; : : : ; Un [ Vn ) may be true for several
v 2 V i , an orthogonal element f 2 V j 6= i may gather more than � j n-
tuples absent from R in the n-set extended by severalof these elements
in V i . As a consequence, such an elementv does not belong to every
closed ET-n-set represented by (U; V). This is easier to understand via
an example on RE (see Table5).

Example 22 Let � = ( 1; 1; 1). Consider the enumeration node whereU =
(f�; 
 g; f1; 2g; fBg) and V = ( ; ; f3; 4g; ; ). Both C� -connected(f�; 
 g; f3g; fBg)
andC� -connected(f�; 
 g; f4g; fBg) are true. However neither3 nor 4 will be part
of every closed ET-n-set the current node represents:(f�; 
 g; f1; 2; 3g; fBg)
does contain3 but not 4; (f�; 
 g; f1; 2; 4g; fBg) does4 but not 3.

Nevertheless, a weaker improvement was implemented. It consists
in checking whether the elements of V altogethercan extend U while
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Figure 31: Illustration of Example 23.

preserving C� -connected. In other terms, C� -connected(U t V) is tested. If it Given an
enumeration sub-tree,
if its largestn -set is

ET-connected,
Fenster jumps to it.

is satis�ed, a direct jump to the leftmost leaf of the enumeration sub-tree
(rooted by the current node) is performed. This jump is safe, i. e., it does
not “jump over” closed ET- n-sets. Indeed C� -connected(U t V) implies
that every n-set strictly “included in” (see De�nition 23) U t V can be
extended by the missing elements. By de�nition, they are not � -closed.
Because most of the nodes are at the bottom of the enumeration tree (in
a complete binary tree, half of the nodes are leaves), this improvement,
though weaker than its analog in Data -Peeler , signi�cantly reduces
the extraction times.

Example 23 In the left child of Example21, U t V = ( f�; 
 g; f1; 2g; fB; Ag)
andC� -connected(f�; 
 g; f1; 2g; fB; Ag) is true. The improvement is applied (see
Figure31) but the obtained node is not� -closed:� 2 S1 can extend it.

In summary, at a high level of abstraction, Fenster is Data -Peeler
with C� -connected and C� -closed respectively substituting Cconnected and
Cclosed and the second improvement to Data -Peeler 's enumeration
weakened. The pseudo-code for Fenster is displayed in Figure 32.
Fenster , like Data -Peeler , recursively traverses the search space depth-
�rst, is initially called is with U = ( ; ; : : : ; ; ), V = ( D1 ; : : : ; Dn ), and S =
(; ; : : : ; ; ) and CP(A)M can be any piecewise (anti)-monotone constraint
the relevant closed ET-n-sets satisfy.

3 implementation

3.1 C� -connectedandC� -closed

3.1.1 Performance Issue

Even though the enumeration of Fenster was inspired by that of
Data -Peeler , Fenster is not a trivial extension of Data -Peeler . A
naive enforcements of the new constraints C� -connected and C� -closed
would lead to disastrous extraction times. Contrary to Data -Peeler , Contrary to

Data -Peeler , a
naive implementation
of Fenster would
access large parts of
the dataset at every
iteration.

Fenster cannot traverse small subspaces of the dataset in search of
onen-tuple absent from R. When an element e is chosen, the absence
in R of onen-tuple with e, i. e., on one hyper-plan, is not enough to
enforce C� -connected, whereas it is when enforcing Cconnected. Searching
for severaln-tuples absent from R in this hyper-plan is not enough
either. Fenster needs to know the other n-tuples absent from R that
were previously tolerated in every n-set represented by the current
node, i. e., the n-tuples in (� i = 1..n U i ) n R. It needs to know where, i. e.,
on which hyper-plans, they are and how many of them are found on
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Input: U; V; S
Output: Every closed ET-n-set containing every element in U, possi-
bly some elements in V, and satisfying CP(A)M
if C� -connected(U t V) then

U  U t V
V  (; ; : : : ; ; )

end if
if CP(A)M may be satis�ed by an n-set descending from this node
^C � -closed(U t V) then

if V = ( ; ; : : : ; ; ) then
output (U)

else
Choosee 2 V
Fenster (U [ feg;
fv 2 V n feg j C� -connected(U [ feg[ fvg)g;
fs 2 S j C� -connected(U [ feg[ fsg)g)
Fenster (U; V n feg; S[ feg)

end if
end if

Figure 32: The Fenster algorithm.

each of these hyper-plans. The enforcement ofC� -closed raises the same
trouble: given U, V and S, the � -closedness of somen-set represented
by (U; V) cannot be proved by only consulting with the n-tuples in
� i = 1..n U i [ V i involving the elements in S. As a consequence, a naive
enforcement of Cconnected (resp. C� -closed) would, at every iteration,
count the numbers of n-tuples absent from R in every hyper-plan of U
(resp. U t V) and on each of its projections on the elements in V (resp.
S). Such an implementation would be intractable even on rather small
relations.

3.1.2 Noise Counters in Relevant Subspaces of the Relation

To drastically improve the performance, Fenster relies on the fol-
lowing observation: from a parent enumeration node to its children, U
and U t V do not change much. U only grows by one element in theFenster

incrementally
computes counters

helping the
veri�cation of the

constraints de�ning a
closed ET-n -set.

left child and U t V looses one element in the right child, potentially
more in the left child. Instead of traversing � i = 1..n U i [ V i [ Si at every
iteration, Fenster updates counters of absent n-tuples. Focusing on
the symmetric differences between the n-setsUP and VP at the parent
node and the respective n-setsU and V at the child node is enough to
updates such counters. This means a much better time performance
(than the naive approach) to the cost of a worse memory consumption
(to store the counters). Later, it will be formally shown that the time
gain is huge while the space complexity is, in fact, dominated by the
dataset when n > 4.

Let us �nally list the counters that are relevant when enforcing
C� -connected and C� -closed. Keeping in mind their de�nitions while look-
ing at Figure 32 provides the following list:

– To checkC� -closed(U t V):
– 8s 2 S; 0(U t V; s);
– 8s 2 S; 8u 2 U; 0(U t V [ fsg; u).
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– Given e 2 V and UL = U [ feg(the elements that are present in
every n-set descendant of the left child), to compute fv 2 V n
feg j C� -connected(UL [ fvg)gg:
– 8v 2 V; 0(UL ; v);
– 8v 2 V; 8u 2 UL ; 0(UL [ fvg; u).

– Given e 2 V and UL = U [ feg (the elements that are present
in every n-set descendant of the left child), to compute fs 2
S j C� -connected(UL [ fsg)g:
– 8s 2 S; 0(UL ; s);
– 8s 2 S; 8u 2 UL ; 0(UL [ fsg; u).

By factorizing the last two points, four families of counters are useful:
– 8f 2 S; 0(U t V; f );
– 8f 2 S; 8u 2 U; 0(U t V [ ff g; u);
– 8f 2 V t S; 0(UL ; f );
– 8f 2 V t S; 8u 2 UL ; 0(UL [ ff g; u).
Because any element inV may, in the descendant nodes, belong to

a U or a S n-set, these counters,0(U t V; f ), 0(U t V [ ff g; u), 0(UL ; f )
and 0(UL [ ff g; u), are maintained updated for every (f; u ) 2 (U t V t
S)2 n U2 . In this way, some counters are only used when the element
de�ning the hyper-plan is in a speci�c set (e. g., a counter 0(U t V; f )
is not used until f 2 S). Anyway, it is advantageous to maintain them
updated for every element that may reach a state where they would
be useful (e. g., 0(U t V; f ) is maintained updated even if f 2 V). An
alternative strategy would be to initialize a counter when required.
It would be less ef�cient because, along the enumeration tree, there
are exponentially many states where a given counter is useful. As a
consequence, the cost of an on-demand initialization of the counter
(scan of part of the dataset) multiplied by this number of states exceeds
the cost of maintaining them all updated until used or useless. Thus,
all counters are initialized while storing the dataset and, whenever
elements are moved or removed from V, the counters are updated by
only traversing the symmetric differences between the n-setsUP and
VP at the parent node and the respective n-setsU and V at the child
node. In Fenster , this update is further improved: the counters of the
type 0(UL [ ff g; u) and 0(U t V [ ff g; u) ((f; u ) 2 (U t V t S)2 n U2 ) are
replaced by: Fenster

incrementally
updates counters of
absentn -tuples
involving elements or
pairs of elements.

– 0(UL ; f; u ) = j(U1
L � � � � � ff g� � � � � fug� � � � � Un

L ) n Rj;
– 0(U t V; f; u ) = j(U1 [ V1 � � � � � ff g� � � � � fug� � � � � Un [ Vn ) n

Rj.
The desired quantities 0(UL [ ff g; u) and 0(U t V [ ff g; u) can be com-
puted, still without any access to the relation:

– 0(UL [ ff g; u) = 0(UL ; u) + 0(UL ; f; u );
– 0(U t V [ ff g; u) = 0(U t V; u) + 0(U t V; f; u ).

The new counters involving much smaller subspaces (one dimension
less) than the original ones, they do not need to be updated as often,
hence the additional time gain.

Example 24 Consider, like in Example22, that Fenster , working on the
relation RE (represented in Table5), reaches the enumeration node where
U = ( f�; 
 g; f1; 2g; fBg) and V = ( ; ; f3; 4g; ; ). Consider, moreover, thatS =
(f� g; ; ; fAg). Although this enumeration node is rather small, it is associated
with too many counters to list them all here. Among them,0(U; � ) = 0,
0(U t V; � ) = 1, 0(U; 3) = 1, 0(U t V; 3) = 1, 0(U; A ) = 0, 0(U t V; A) =
2, 0(U; �; 3 ) = 0, 0(U t V; �; 3 ) = 0, 0(U; �; A ) = 0, 0(U t V; �; A ) = 2,
0(U; 3; A) = 1, 0(U t V; 3; A) = 1, etc.
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3.1.3 Time Gain

Consider an enumeration node (U; V), its n-set S and the last enu-
merated element e. With the naive enforcement of C� -connected and
C� -closed, j � i = 1..n U i j + jf� i = 1..n U i [ V i [ fsg js 2 Sgjn-sets would be
traversed at a left child (the �rst term to enforce C� -connected, the second
to enforce C� -closed) and jf� i = 1..n U i [ V i [ fsg js 2 Sgjat a right child
(where only C� -closed is enforced). If, in a left child, � i = 1..n U i is tra-
versed only once to enforce both C� -connected and C� -closed, the time cost
is O(jf� i = 1..n U i [ V i [ fsg js 2 Sgj) for any enumeration node.

The use of the counters, we came up with in the previous section,
restricts the number of n-sets traversed when updating them to jU1 �
� � � � feg� � � � � Un j + jfU1 [ V1 � � � � � feg� � � � � fsg� � � � � Un [ Vn j s 2
Sgjat a left child and jfU1 [ V1 � � � � � feg� � � � � fsg� � � � � Un [ Vn j s 2
Sgjat a right child. Since, in a left child, Fenster actually traverses
U1 � � � � � feg� � � � � Un only once for updating both the counters
related to C� -connected and C� -closed, the time Fenster takes traversing
the dataset to update counters is O(jfU1 [ V1 � � � � � feg� � � � � fsg�
� � � � Un [ Vn j s 2 Sgj) for every enumeration node. By comparison
with the naive approach and supposing e 2 Dd , this is jUd [ Vd j times
less. The enumeration strategy, hence the number of enumeration
nodes, being the same in both cases, it could be written that the use of
counters allows an equivalent division of the total extraction times the
naive implementation would provide.

Nevertheless, this is true only if the time spent using the counters
(to actually enforce C� -connected and C� -closed) is dominated by the time
spent updating them. To study that, the number of counters accessed
at every node is computed. To enforce C� -connected, it is, at worst (none
of the elements in V are removed), jVj + 2

P
i = 1..n jV i j

P
j 6= i jU j j. To

enforce C� -closed, it is, at worst (every element in S extends U t V),
jSj+ 2

P
i = 1..n jSi j

P
j 6= i jU j [ V j j. In both cases, the �rst term relates to

checking whether every hyper-plan v 2 V (resp. s 2 S) contains too
many (resp. enough) n-tuples absent from R to satisfy C� -connected (resp.
C� -closed) and the second term relates to checking whether an hyper-
plan v 2 V (resp. s 2 S), if added to U (resp. U t V) would make any
orthogonal element exceed its noise tolerance threshold. The total num-
ber of counters used to enforce C� -connected and C� -closed is dominated
by 2

P
i = 1..n jSi j

P
j 6= i jU j [ V j j. This number is now compared to the

number of n-sets traversed when updating the counters. When n = 2
it takes more time to use the counters than to update them. The time
taken to use the counters is O(j((U1 [ V1 ) � fS2g) [ (fS1g� (U2 [ V2 )) j),
i. e., similar to the time the naive implementation would take to enforce
C� -connected and C� -closed. When n = 3, the times to update and use
the counters are on the same order, whereas the update dominates
when n > 4. This is deduced from comparing the numbers computedOn n -ary relations

with n > 3, using
counters makes

Fenster as fast as
the naive

implementation on
( n - 1) -ary

relations.

above but here is a more intuitive way to understand it: the number of
n-sets traversed, at every iteration, to update the counters is an hyper-
plan (related to e) of the dataset, i. e., an(n - 1)-dimensional subspace,
whereas the number of used counters, whatever the arity of R, is on the
order of a 2-dimensional subspace of the dataset (the �nest counters are
numbers of n-tuples absent from R at the intersection of two orthogonal
hyper-plans). To conclude, the counters present an advantage over the
naive implementation when n > 3. Fenster , working on such an n-ary
relation, is as fast as the naive implementation processing a relation on
domains of the same sizes but with an arity of n - 1.
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3.2 Choosing the Element to Enumerate

At every recursive call, any element, from any attribute, can be
enumerated (function Choosein Figure 32). Section 5.2 in Chapter 3
empirically showed that different sensible strategies produce different
enumeration trees whose sizes (hence, the time required to traverse
them) varies between several orders of magnitude. Compared to Data -
Peeler , Fenster pro�ts from more information at its disposal when
it comes to choose an element to enumerate: the counters allow a
�ner choice. In this way, Fenster builds smaller enumeration trees. The attribute domain

of the enumerated
element is chosen like

Data -Peeler does.
In this domain, the

chosen element
introduces as many
absentn -tuples as

possible.

Like Data -Peeler (see Section1.6), Fenster chooses the enumerated
element in two stages:

1. The attribute domain, in which the element will be enumerated,
is chosen.

2. The element itself is chosen.

The �rst stage is that of Data -Peeler : the chosen attribute domain
Dd maximizes the following function that increases with the average
number of elements that may be, in the left child, removed from V.

X

k 6= d

�
jVk j �

Y

l=2 f d;k g

jU l j
�

.

Understood with Fenster 's way of enforcing C� -connected, this function
actually computes the number of n-tuples that are browsed to update
the counters 0(UL ; f ) and 0(UL ; f; u ) (f 2 Vk 6= d ; u 2 U l=2 f d;k g) involved
in this process.

Then, Fenster takes advantage of the counters0(UL ; f ). It chooses
the element f 2 Vd providing the greatest 0(UL ; f ). The justi�cation for
this choice is simple: the more n-tuples in U1 � � � � � Un that are absent
from R, the less room for others, hence the smaller the search space of
the left child. For the same reason applied to the left grandchild (and
beyond), when several elements in Vd maximizes 0(U; f ), an element
leading to a greater 0(U t V; f ) is preferred.

Example 25 In the Example21, illustrated by Figure30, the choice of enu-
meratingA 2 V3 actually follows the heuristic stated above:

choice of v3 :
P

k 6= d

�
jVk j �

Q
l=2 f d;k g jU l j

�
is maximized ford = 3:

d = 1: (jV2 j � jU3 j) + ( jV3 j � jU2 j) = ( 4 � 1) + ( 1 � 0) = 4;

d = 2: (jV1 j � jU3 j) + ( jV3 j � jU1 j) = ( 0 � 1) + ( 1 � 2) = 2;

d = 3: (jV1 j � jU2 j) + ( jV2 j � jU1 j) = ( 0 � 0) + ( 4 � 2) = 8.

choice of a : Among the elements inV3 , e = A maximizes the value of
0(( f�; 
 g; ; ; fBg); e) (this value is0 but V3 only containsA).

4 space complexity

The n-setsU, V and S and all the counters associated with the ele-
ments they gather need to be copied whenever a left child enumeration
node is built. In spite of that, the depth-�rst traversal of the search
space makes the space complexity ofFenster be dominated by the
storage of the relation, similar to that of Data -Peeler (see Section4.1
in Chapter 3), when n > 4. In this case, it is O(

Q n
i = 1 jD i j). When Unless the relation is

binary or ternary, its
storage dominates the
space complexity. The
time and space costs
of copying the
counters is
signi�cantly reduced
if the right children
overwrite the parents.

n 2 f2; 3g, the counters occupy most of the memory and the space
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complexity is O(jD i j2 � jD j j), where D i is the largest attribute domain
and D j the second largest.

The time and space requirements are signi�cantly reduced by mak-
ing the right child enumeration nodes overwrite their parent. In this
way, the counters do not need to be copied. Overwriting the parent
enumeration nodes with their left children would not provide as much
gain. Indeed, in a right child enumeration node, the search space V
is only reduced by one element and U stays unchanged. Because of
that, the enumeration sub-tree rooted by a right child node is far less
often pruned (by C� -closed or CP(A)M ) than that of a left child, where,
in particular, the search space V may be greatly reduced. As a conse-
quence, the recursive calls ofFenster (see Figure32), down to a leaf,
usually involve far more right children than left ones and, in practical
settings, overwriting the parent enumeration nodes with their right
children signi�cantly decreases the average number of nodes to be
kept in memory. It even provides substantial gains in terms of average
extraction time because the cost of copying all counters is taken off.

5 empirical study

Fenster was coded in C++ and compiled with GCC 4.3.2. Most
of the following experiments were performed on an Intel ® processor
cadenced at2.8GHz, 3 Gb of RAM and running a GNU/Linux ™ operat-
ing system. BecauseAC-Close only runs on Windows ™, the experiment
involving it was performed on another computer equipped with an
Intel ® processor cadenced at2.26GHz and 3 Gb of RAM. The implemen-
tations of CubeMiner [41], Trias [40] and AC-Close [21] were kindly
provided by their respective authors.

5.1 Synthesizing Datasets

Four, possibly overlapping, n-sets are randomly placed in a cubic
dataset, i. e., all attribute domains have the same cardinality. The ob-
tained relation is named Rhidden . Some noise was added to Rhidden .
In this way we obtain the relation R that is mined. The noise fol-
lows a Bernoulli distribution, i. e., every n-tuple has the same prob-
ability (called “noise level”) to be switched (an n-tuple absent from
Rhidden becomes present in R or the opposite). The experiments are
performed with relations whose noise level varies between 0 and 0.45
(0.5 corresponds to purely random datasets). The mining task being
symmetric w.r.t. the attributes, every tested parametrization satis�es
8i = 1..n; � i = � 2 N .

5.2 Global Quality Results

Let E the set of n-tuples encompassed by at least one closed ET-n-
set. The global qualityof the mined collection of closed ET-n-sets is

measured by: jR hidden \ Ej
jR hidden [ Ej . It will be shown later that this measure doesFenster obtains

goodglobal quality
results, i. e., the

n -tuples
encompassed byall
closed ET-n -sets it

extracts are those in
the hidden patterns.

not re�ect the quality as perceived by analyst. However the good global
qualities Fenster obtains allow, via a post process detailed in the next
chapter, to derive collections of patterns the analyst actually perceives
as good.
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Figure 33: Global qualities of the closed ET-3-sets with at least four elements
per attribute in a 32� 32� 32 dataset.

The global qualities obtained with ternary relations are plotted in
Figure 33. In this setting, the hidden patterns gather eight elements
in every attribute domain (of 32 elements) and Fenster constrains
the closed ET-3-sets to have at least four elements per attribute. The
best parametrization is � = ( 2; 2; 2) for levels of noise below 0.15. At
this point, the quality of the extracted collection of closed ET- 3-sets is
almost perfect, whereas the collection of exact closed patterns shows a
quality of 0.25. The noisiest settings are advantageously mined with
� = ( 3; 3; 3). This con�rms that greater noise tolerances are preferred Closed ET-n -sets in

noisier relations
bene�t from greater
tolerances to noise.

to mine relations suffering from higher levels of noise.
Figures 34 and 35 provide a �ner analysis of these results. In Fig-

ure 34, jEnR hidden j
jEj , i. e., the proportion of false positive 3-tuples (en-

compassed by E and not Rhidden ), is plotted, whereas Figure 35, repre-

sents jR hidden nEj
jR hidden j , i. e., the proportion of false negative 3-tuples (encom-

passed by Rhidden and not E). It becomes clear why, in this experiment,
� = ( 2; 2; 2) is always better than weaker tolerances to noise: it lowers
the false negative rate while keeping the false positive rate null. More
generally, the false positive rate increases with � , whereas the false
negative rate decreases. The quality measure bene�ts from a good
trade-off between these two tendencies. Nevertheless, in critical appli-
cations, lowering the false negative rate may be more important than
maximizing the quality measure. In such cases, it is worth using greater
noise tolerance parameters.

Too loose size constraints provide high false positive rates. Indeed, it
is easier for a small pattern to include an element, outside the hidden
pattern, that is altered by the false positive noise. Reinforcing the size
constraints �lters out these small patterns, i. e., lowers the false positive
rate. To con�rm that, the same datasets were mined under minimal
size constraints raised to �ve elements per attribute. Thanks these
reinforced minimal size constraints, no closed ET- 3-set encompasses
3-tuples absent from Rhidden , i. e., the size constraints have the fore-
cast �ltering effect on the collection of patterns. Unfortunately, these
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Figure 34: False positive rates of the closed ET-3-sets with at least four elements
per attribute in a 32� 32� 32 dataset.
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Figure 35: False negative rates of the closed ET-3-sets with at least four elements
per attribute in a 32� 32� 32 dataset.
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Figure 36: False negative rates of the closed ET-3-sets with at least �ve elements
per attribute in a 32� 32� 32 dataset.

constraints not only �lter out the closed ET- 3-sets that go outside the
hidden patterns, but some closed ET-3-sets that remain inside them too.
As a consequence, the false negative rates in Figure36 are always worse
than their counterparts of Figure 35 and the resulted global qualities
usually are worse too (see Figure 37).

Fenster was tested on 4-ary relations too. The experimental protocol
still follows what was explained in Section 5.1. The hidden patterns
gather four elements in every attribute domain (of 16 elements) and the
closed ET-3-sets are forced to have at least two elements per attribute.
Figure 38 gives the global qualities obtained in this setting. Whatever
the level of noise, the collections of closed ET-4-sets obtained with
� = ( 1; 1; 1; 1) have a better quality than the collections of exactclosed
4-sets (i. e., � = ( 0; 0; 0; 0)). With a noise level of 0.25, the quality of
the collection of exact closed 4-sets is below 0.3, whereas it reaches
0.65 when � = ( 1; 1; 1; 1). Furthermore, because of the loose minimal
frequency constraint, � = ( 2; 2; 2; 2) is too high.

5.3 Comparison with Competitors

SinceFenster is, to the best of our knowledge, the only algorithm
able to deal with both error-tolerance and arbitrary n-ary relations
(n > 3), it is compared to CubeMiner [41], Trias [40] and Data -Peeler
in the particular context of exactclosed 3-set mining. Thus, the ternary
setting, presented in the previous section, was used to compare the
time performance of Fenster with that of these three approaches. The
extraction times are depicted in Figure 39. Even though Fenster has
been designed to tolerate noise, it is about one order of magnitude
faster than both CubeMiner and Trias . Its enumeration principles,
shared with Data -Peeler , grants these good results. Comparing the
performance of Data -Peeler and Fenster allows to quantify the over-
head brought by the tolerance to noise (in particular the update and
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Figure 37: Global qualities of the closed ET-3-sets with at least �ve elements
per attribute in a 32� 32� 32 dataset.
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Figure 38: Global qualities of the closed ET-4-sets extracted with at least two
elements per attribute in a 16� 16� 16� 16 dataset.
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Figure 39: Times to extract the exactclosed 3-sets with at least four elements
per attribute in a 32� 32� 32 dataset.

the use of the counters presented in Section3.1), useless in this exact
context. This overhead remains below one order of magnitude. With no tolerance to

noise, the
performance overhead
of Fenster w.r.t.
Data -Peeler
remains below one
order of magnitude.

Several approaches were designed to extract error-tolerant patterns
from noisy binary relations (see Section1.2.1). Fenster was compared
to AC-Close [21] on this particular (w.r.t. what Fenster can achieve)
task. Two main reasons justi�ed the choice of AC-Close as a competitor.
Like Fenster , this algorithm mines closedET-patterns, whereas most of
the other approaches do not force the returned itemsets to be closed.
Moreover, by constraining the cardinality of the exactsupport of a
pattern to exceed �s (where s is a minimal size constraint on the ET-
pattern and � 2 [0; 1] is a user-de�ned parameter), AC-Close somehow
circumvents the performance issues the other approaches go through.
Indeed, in their experimental section, the authors claim that AC-Close

runs much faster than AFI described in [ 52]. Nevertheless, when
using AC-Close with � = 0.75 and s = 4, the task proposed in this
section was intractable on a 32� 32dataset containing four 8� 8 hidden
patterns. As a consequence, smaller16� 16 datasets containing four
overlapping 4 � 4 patterns were built. The closed patterns extracted
by both Fenster and AC-Close are constrained to gather at least two
elements per attribute 1. � was set to 0.5 and various (relative) noise
tolerance levels � were tested. Like with Fenster , such a level is
applied to both attributes. Figures 40 and 41 respectively plot the
quality results of Fenster and AC-Close . Because the hidden patterns
are small, the best results are obtained with no tolerance to noise. In this
setting AC-Close and Fenster compute the same collections of patterns.
It is noticeable that a relative tolerance to noise allows more subtle
variations of the returned collections. Figure 42 compares the time
performance of Fenster (absent points were measured at 0s and cannot
be plot on the chosen logarithmic scale) and AC-Close . On this small
dataset, Fenster already runs three orders of magnitude faster than

1. AC-Close cannot enforce a minimal size constraint on both attributes. As a conse-
quence the minimal size constraint on one of them is enforced in a post-processing step.
Without this post-process, worse quality measures are obtained.



100 mining noisy n-ary relations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

gl
ob

al
 q

ua
lit

y

noise level

epsilon = (0, 0)
epsilon = (1, 1)

Figure 40: Global quality of the collection of patterns extracted by Fenster in a
16� 16 dataset.

AC-Close . As mentioned earlier, this difference increases with the sizeCompared to one of
the fastest ET-itemset
extractors with a
relative tolerance to
noise,Fenster
outperforms it by
orders of magnitude.

of the dataset (even if the same ratio size of an attribute domain /
minimal size constraint is kept). The choice for an absolute tolerance
to noise is here empirically validated: even the fastest approaches with
a relative tolerance to noise relatively do not scale-up to medium-size
datasets.

6 mining anomalouslydense et -n-sets

6.1 Local Pattern

When extended, a closed ET-n-sets that does not suffer from the
introduction of many n-tuples absent from R may be considered irrele-
vant. Indeed, it does not respect David J. Hand's de�nition of a local
pattern [ 39]:

A local pattern is a data vector serving to describe an anoma-
lously high local density of data points.

According to this de�nition, the closed ET- n-sets that are fragments
of larger regions of the same “density” (of n-tuples present in R) are
undesirable. To avoid their extraction the closedness constraint must be
strengthened, i. e., an ET-n-set should not be considered closed when
some extension of it by one element s does not introduce many more
n-tuples absent from R, either on s itself or on any orthogonal element.
Formally, this change only consists in using different noise tolerances
for the two constraints de�ning a closed ET- n-set (De�nitions 26/ 30and
27/ 31). Let us consider � = ( � i ) i = 1..n 2 N n , the noise tolerance usedSetting higher noise

tolerance parameters
for the closedness
constraint only is
strengthening the

closedness.

to de�ne the � -connectedness of ET-n-sets, and � = ( � i ) i = 1..n 2 Z n ,
the noise tolerance used to de�ne their � -closedness. The particular
case� = � corresponds to C� -closed being the “natural” closedness w.r.t.
C� -closed. It was the setting adopted in this chapter until now. Given
i = 1..n, setting � i > � i strengthens the closedness constraint on the
i th attribute, i. e., �lters out the patterns that can be extended by an
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Figure 41: Global quality of the collection of patterns extracted by AC-Close in
a 16� 16 dataset.
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Figure 43: Enumeration of any element e 2 V.

element (from any attribute domain) without introducing strictly more
than � i n-tuples absent from R on any element in the i th dimension of
the extended pattern.

Example 26 Consider the parametrization� = � = ( 1; 1; 1). It was shown
in Example20 (f�; 
 g; f1; 2; 3g; fBg) is a closed ET-3-set in RE . Setting � 3

to 2 instead of1 �lters this pattern out. Indeed, when extending it with4,
0(( f�; 
 g; f1; 2; 3; 4g; fBg); B) = 2 is not strictly greater than� 3 = 2.

Choosing � i < � i looks useless. However, notice that negative values
for every � i (i = 1..n) makes the de�nition of a � -closed ET-n-set
match every � -connected (but not necessarily closed)n-set. Therefore,
a � -closed ET-n-set generalizes this type of pattern too and Fenster
can extract complete collections of, for instance, frequent ET-n-sets
(minimal size constraints on some attribute).

6.2 Strong Closedness

Extracting every closed ET-n-set with a strong closedness forces
modi�cations in the enumeration of Fenster and, as a consequence, in
the algorithm. More precisely, at a given enumeration node (U; V), an
element in V that cannot extend U without violating C� -connected may
still prevent the � -closedness of some ET-n-sets(U; V) represents. As
a consequence, such an element is, like before, removed fromV but,
this time, it is inserted in S too. With the same argument, in a leftAn element that

cannot extend an
n -set may still

prevent itsstrong
closedness.

child node where e has just been enumerated, an elements 2 S can
be removed from S when :C � -connected(U [ feg[ fsg) (notice the use of
� instead of � ). These are the only differences that must be brought
to Fenster to make it able to extract � -closed ET-n-sets de�ned with
� 6= � . The modi�ed enumeration is depicted in Figure 43. The related
pseudo-code is given in Figure 44. At the implementation level, the
counters presented in Section3.1 still ful�ll the task.

Example 27 Let � = ( 1; 1; 1) and � = ( 2; 1; 1). Contrary to Example21
(where� = � ), the elements3 and 4 from V2 are, in the left child, moved
to S2 instead of being only removed fromV2 . In a second step, element3
is removed fromS2 becauseC� -connected(f�; 
 g; f3g; fB; Ag) is false. Indeed
0(( f�; 
 g; f3g; fB; Ag); 3) = 2 is strictly greater than� 2 = 1. In the opposite,
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Input: U; V; S
Output: Every � -closed ET-n-set containing every element in U,
possibly some elements in V, and satisfying CP(A)M
if C� -connected(U t V) then

U  U t V
V  (; ; : : : ; ; )

end if
if CP(A)M may be satis�ed by an n-set descending from this node
^C � -closed(U t V) then

if V = ( ; ; : : : ; ; ) then
output (U)

else
Choosee 2 V
U 0  U [ feg
V 0  fv 2 V n feg j C� -connected(U [ feg[ fvg)g
S0  S[ fv 2 V n feg j :C� -connected(U [ feg[ fvg)g
Fenster (U 0; V 0; fs 2 S0 j C� -connected(U [ feg[ fsg)g)
Fenster (U; V n feg; S[ feg)

end if
end if

Figure 44: The generalized Fenster algorithm.

Figure 45: Illustration of Example 27.

the element4 is kept in S2 . IndeedC� -connected(f�; 
 g; f4g; fB; Ag) is true.
Figure45 illustrates this example.

6.3 Global Quality Results

The synthetic 32� 32� 32 datasets, presented in Section5, are reused
to test the effect of a parametrization where � 6= � . Identical � i (resp.
� i ) parameters are chosen for every domain. Figure 46 gives the global
qualities obtained with minimal size constraints of four elements per
attribute. Strengthening the closedness usually provides worse results
than adopting a natural closedness, i. e., � = � . The same deterioration With a strong

closedness, the
quality of the closed
ET-n -sets is worse.

of the global quality occurs whatever the arity of the relation. In
fact, the good global qualities obtained with � = � are computed
from collections of hundreds, or, for higher levels of noise, thousands of
closed ET-n-sets that are multiple fragments of the four hidden patterns.
These fragments are larger than with exact closed n-set mining but
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Figure 46: Global quality of the � -closed ET-3-sets extracted with at least four
elements per attribute in a 32� 32� 32 dataset.

they remain fragments, i. e., an � -closed ET-n-set is extensible, with one
of the missing element from the hidden pattern, without introducing
many n-tuples absent from the relation. In other terms, it does not
verify a stronger closedness constraint.

With a strong closedness, a local minimum for the global quality is
always observed at a low level of noise (around 0.05 in our experiments).
Here is the reason for that: at low levels of noise, the tested noise
tolerances � allow, for every hidden pattern, the extraction of large
fragments of it (but not the entire hidden pattern) that almost include
the missing elements to form the hidden pattern (because the noise
level is low). As a consequence, they are often �ltered out by a stronger
closedness constraint. For example, at a noise level of0.05 and with
� = ( 4; 4; 4), the largest closed ET-3-sets are the8� 8� 8 hidden patterns
with two elements missing out of the 24. With a greater tolerance to
noise, i. e.greater � i (i = 1..n) parameters, the entire hidden patterns
would be extracted and strengthening the closedness would, indeed,
implement the notion of local pattern as de�ned by David J. Hand.
Unfortunately, greater � i (i = 1..n) parameters mean longer extractions
and compensating the whole false negative noise usually turns out to
be intractable. Figure 47 gives the times it takes Fenster to extract theTolerating more noise

costs much time.
Fenster can extract

larger fragments of
the hidden pattens;

not the hidden
patterns.

closed ET-3-sets whose global qualities were plotted in Figure 33. A
jump of almost one order of magnitude accompanies every increase of
the � i parameters.

Real-life datasets where the whole false negative noise can be com-
pensated by Fenster , while remaining tractable, are, at least, very rare.
When this cannot be ensured, setting � = � is safer. The tractabil-
ity issue is inherent to the computational task Fenster tackles. The
closed itemset enumeration problem in binary relations is NP-hard
(see, e. g., [94]). Generalizing the de�nition of a closed pattern to make
it noise-tolerant widens the traversed search space because it has a
severe impact on pruning. Consider exact closed n-set mining. When
an n-tuple is, for sure, part of a candidate n-set but absent from the
relation, neither this n-set nor the larger n-sets encompassing it is a
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Figure 47: Times to extract every closed ET-3-sets with at least �ve elements
per attribute in a 32� 32� 32 dataset.

closed n-set and the related search space can be safely pruned. In the
same situation, the search for noise-tolerant patterns cannot be aborted:
either the current candidate n-set or a larger one2 is a closed ET-n-set.
To discover it, the search space must be traversed further.

7 conclusion

Fenster generalizes Data -Peeler to make it tolerate false negative
noise. Thus, n-tuples can be both absent from the relation and en-
compassed by closed ET-n-sets. Like Data -Peeler , Fenster performs
complete extractions under piecewise (anti)-monotone constraints. How
much noise is tolerated is parametrized by as many integers as there
are attributes in the relation. In every closed ET- n-set, these integers
are upper-bounds of the number of n-tuples involving an element from
the related attribute domain, encompassed by the closed ET-n-set but
absent from the relation. Although the generalization towards noise
tolerance looks trivial from an abstract point of view, the implemen-
tation requires, to be ef�cient, to incrementally compute counters of
absent n-tuples in many subspaces of the relation. As far as not too
much noise is tolerated, Fenster remains tractable on relatively large
relations. The gain, in term of global quality (coverage of the hidden
patterns and only them), is obvious. Nevertheless Fenster usually
cannot, in a reasonable time, tolerate as much noise as contained in the
relation. As a consequence, the returned closed ET-n-sets are fragments
(though larger fragments than without noise tolerance) of hidden pat-
terns. Because of that, a strengthened closedness constraint does more
harms than it helps in �nding patterns that are isolated from the others.

2. Even severallarger n -sets may be closed since the closure is not always unique (see
Section 2).





5AGGLOMERATING LOCAL PATTERNS HIERARCHICALLY
WITH ALPHA

1 agglomerating closed et -n -sets

1.1 A Pattern Clustering Scheme

Let us recall the objectives and dif�culties raised in Section 6 of
the previous chapter. The relevant patterns the analyst is in quest for
should comply with David Hand's de�nition of a local pattern[39]:

A local pattern is a data vector serving to describe an anoma-
lously high local density of data points.

Furthermore, because of time complexity issues, a complete extractor
such asFenster usually cannot tolerate as much errors as necessary to
directly list the hidden patterns. Instead, it returns multiple fragments
of these patterns. In such situations, the analyst is either forced to
(a) interpret complete lists of insuf�ciently error-tolerant (hence much-
overlapping) closed n-sets, or (b) revise his/her completeness demand
downwards.

Anybody who has tried to manually interpret long lists of poorly
relevant local patterns knows how counter-productive it can be, and
this is de�nitively not an option. Another possibility can be to mine the
data by means of incomplete (i. e., missing some solution patterns w.r.t.
the speci�ed constraints) but tractable approaches. Nevertheless, it is
also possible to compute, under constraints, all closed and (as much
as possible) noise-tolerant patterns before a post-processing phase that
aims at deriving another collection that would be shorter and that
would contain more relevant patterns. The latter approach appears
appealing because the lossy heuristics are delayed as far as possible in
the knowledge discovery process, hence trustier than a purely heuris-
tic one. It is about inserting an automaticintermediary task between
the complete extraction of patterns and the needed interpretation by
analysts, postponed hence made easier.

Even though the fragments extracted by Fenster are, individually,
far from the hidden patterns, the returned collections globally have
good qualities (see Section5.2). This means that the agglomeration
of the patterns matches the relation deprived of noise. That is why a
pattern agglomeration task was investigated as a way to heuristically
reconstruct the hidden patterns from the fragments listed in a complete
manner. This task can be compared with solving an n-dimensional Following the

philosophy
“completeness as far as
tractable”,A lpha
post-processes
Fenster to tolerate
more noise.

jigsaw puzzle: every piece is a pattern returned during the complete
extraction phase and the image to produce is a perfect version of the
one given on the box (the dataset), which is, contrary to classical jigsaw
puzzle, altered by some noise. The perfect image must be composed of
large (possibly) overlapping hyper-rectangles (modulo any permutation
of the hyper-plans of any dimension) of ' 1' values “embedded” in a
'0' valued hyper-space. It looks like a tough game and an automatic
clustering can help.

Unlike classical clustering approaches, our goal is not to partition the
original dataset but a set of small local patterns so that every cluster

107
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represents a larger local pattern. Global (i. e., at every iteration, a global
clustering re�nes the previous one) and divisive (the complete collec-
tion of local patterns, considered as a whole, is successively divided
into smaller clusters) clustering approaches are not suitable because
of the difference in nature between the elements to cluster (the com-
plete collection of local patterns that tolerate a few errors) and the
resulting clusters (large local patterns tolerating much noise). Using
again the analogy with a jigsaw puzzle, the quality of the constructed
image should not be reduced to how well every piece interlocks with
its neighbors. This image should also match the noisy one on the box.
To take into account this objective, the global and divisive approaches
are, by nature, not much suitable. On the contrary, a bottom-up ag-
glomeration successively merges previously established clusters (the
previously assembled pieces) into larger ones, hence allowing to test
the partial results against the original dataset (the noisy image on the
box). Therefore, we need for a hierarchical agglomerative clustering
scheme. The fact it does not require to �x, a priori, the number ofAlpha hierarchically

agglomerates the
patterns.

clusters is also extremely useful. Indeed, the number of relevant local
patterns to discover usually is unknown.

It should be noticed that, even though the hidden patterns can over-
lap, there is no need for a fuzzy clustering method. Indeed, the closed-
ness constraint on every ET-n-set extracted from the noisy relation
makes it usually be a fragment of one hidden pattern only. If this is
not the case, such a pattern can be associated to any of the overlapping
pattern without much consequence since the n-dimensional space it
occupies, at the intersection of several hidden patterns, must be covered
by many other slightly different closed ET- n-sets.

1.2 Hierarchical Agglomeration

Like any hierarchical agglomeration scheme, Alpha requires an ag-
glomeration operator and a metric. The extracted closed ET-n-sets
being fragments of the searched patterns, the merging operator essen-
tially is a union. It is t (see De�nition 22). De�ning a metric on n-setsThe agglomeration of

patterns is their
minimal envelope.

is not trivial. It should not only depend on the n-sets but also on the
relation they were extracted from. In this way, before agglomerating

The distance between
patterns takes into

account the relation
they locally describe.

two n-sets, the information about the subspaces of the relation out-
side them, but inside the minimal envelope enclosing them, can be
taken into account. The importance of using the initial relation in the
agglomeration process is illustrated by the two relations in Figure 48.
When mining closed 2-sets having at least three elements per attribute
(bold ' 1' in the tables), the two settings are identical if restricted to the
elements covered by these patterns. Nevertheless the closed2-sets of
Figure 48a are obviously better candidates for an agglomeration than
those of Figure 48b. In fact, the reasoning (see, e. g., [52]) to de�ne
how error-tolerant a local pattern is can be applied to the n-set whose
outline is the envelope of the two patterns. Thus, such a de�nition
must be based on the quantity of n-tuples absent from the relation in
the worst hyper-plan of this n-set. Contrary to Fenster whose time
performance could not be reached with a relative tolerance to noise,
Alpha uses a metric based onproportionsof n-tuples absent from R.
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(b)

Figure 48: Two toy binary relations

De�nition 32 (Unweighted metric) Given ann-set X = ( X1 ; : : : ; Xn ),
d(X) denotes its (unweighted) intrinsic distance measure and is computed as
follows:

d(X) =
n

max
i = 1

�
max
x 2 X i

� jK n Rj
jKj

��
;

whereK = X1 � � � � � Xi - 1 � fxg� Xi + 1 � � � � � Xn .

Example 28 It was shown in Example20 X = ( f�; 
 g; f1; 2; 3g; fBg) is a
closed ET-3-set (with � = ( 1; 1; 1)) in RE (represented in Table5). This
pattern would be in the initial collectionAlpha agglomerates. Its intrinsic
distance measure is12 . Indeed, its worst hyper-plan, in terms of proportion
of 3-tuples absent fromRE , is the one related to the element3, i. e., f�; 
 g�
f3g� fBg. It contains two3-tuples,(�; 3; B ) and(
; 3; B ), among which one,
(
; 3; B ), is absent fromRE .

The intrinsic distance is easily generalized to specify to what ex-
tent noise is tolerated in every element. In some speci�c contexts Background

knowledge about the
noise distribution can
parametrized the
metric.

(e. g., when the noise distribution is known and not uniform), such a
parametrization may be useful:

De�nition 33 (Weighted metric) Given ann-setX = ( X1 ; : : : ; Xn ) and a
weight functionw : [ n

i = 1D i ! R+ (a greater weight meaning less tolerance
to noise for the related element),d(X) denotes its weighted intrinsic distance
measure and is computed as follows:

d(X) =
n

max
i = 1

�
max
x 2 X i

�
w(x)

jK n Rj
jKj

��
;

whereK = X1 � � � � � Xi - 1 � fxg� Xi + 1 � � � � � Xn .

The distance between two n-sets is the (weighted or unweighted)
intrinsic distance of their agglomeration. The distance between

two patterns is the
proportion of absent
n -tuples in the worst
hyper-plan of their
agglomeration.

De�nition 34 (Distance between n-sets) Given twon-setsX and Y, the
distance between them isd(X t Y).

Example 29 Alpha initially computes the distance between every pair of
closed ET-n-sets extracted withFenster . Going on with Example28, Al -
pha computes, in particular, the distance betweenX = ( f�; 
 g; f1; 2; 3g; fBg)
and another closed ET-3-set,Y = ( f
 g; f1; 2; 3; 4g; fA; Bg). Their agglomera-
tion would provideX t Y = ( f�; 
 g; f1; 2; 3; 4g; fA; Bg). Its worst hyper-plan,
in terms of proportion of3-tuples absent fromRE , is the one related to the
element3, i. e.,f�; 
 g� f3g� fA; Bg. It contains four3-tuples. Among them,
two, (�; 3; A ) and(
; 3; B ) are absent ofRE . Thus, by de�nition, its intrinsic
distance is2

4 and so is the (unweighted) distance betweenX andY.
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Figure 49: KNIME dendrogram representing the hierarchical agglomeration.

Given the agglomeration operator and the metric, the hierarchical
agglomeration performed by Alpha is now well de�ned. The con-
structed clusters, i. e., the agglomerated n-sets, can be organized into
a binary tree called a dendrogram. For a visual interpretation of the
result, the height of a node, representing a cluster, is advantageously
set to its intrinsic distance measure. Figure 49 depicts a part of such a
tree. Notice that most of the leaves of the dendrogram have an intrinsic
distance that is not 0. Indeed, following the idea “completeness as far
as tractable”, this dendrogram depicts the hierarchical agglomeration
of closed ET-n-sets de�ned with the greatest possible tolerance to noise
and extracted with Fenster . Thus, n-tuples covered by some closed
ET-n-sets may be absent from the mined relation and their intrinsic
distance is strictly positive. Notice also that the intrinsic distance is not
always increasing along the clustering, i. e., an agglomerated n-set may
have an intrinsic distance that is less than those of the two n-sets that
were agglomerated. Indeed, this distance is a proportion of n-tuples
that is not necessarily increasing when the n-set is enlarged.

2 returning the few relevant patterns

The computed dendrogram contains more local patterns than the ini-
tial complete collection of patterns that are not enough noise-tolerant 1.
Nevertheless, some of them now are relevant because they tolerate
enough noise. To support the search for these relevant patterns, Alpha
ranks them and automatically selects only the best, being con�dent that
this process preserves every relevant cluster.

2.1 Cluster Relevancy Measure

David J. Hand's de�nition of a local pattern (see Section 1.1) is a
guideline to assess the relevancy of the clusters. In the context of an
n-ary relation R, a good cluster X describes an “anomalously high local
density” of n-tuples present in R when, simultaneously,:

1. 2N - 1 clusters for N closed ET-n -sets.
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– it is apart from the rest of the data (“anomalously”), i.e., it maxi-
mizes its distance with the other clusters in the tree (but its ances-
tors and descendants);

– it minimizes the proportion of n-tuples absent from R on its worst
hyper-plan (“high local density”).

Both information can be easily quanti�ed from the constructed den-
drogram:

– the minimal distance between a parent cluster and its two children
X and Y, i.e. d(X t Y) - max(d(X); d(Y)) , is how distant X and
Y are from each other and, even more, from the other clusters.
Indeed, these two clusters were agglomerated because they were
the closest at that time of the clustering;

– the intrinsic distance measure of X, i.e. d(X), is the proportion of
n-tuples absent from R on its worst hyper-plan.

Both quantities being proportions of n-tuples absent from R, the
relevancy of X can now be computed by difference. The de�nition of a

local pattern
translates to a
relevancy measure.

De�nition 35 (Relevancy of an n-set) Given an n-set X and its parent
X t Y in the binary tree obtained by hierarchical agglomeration,r(X) denotes
the relevancy ofX and is computed as follows:

r(X) = d(X t Y) - max(d(X); d(Y)) - d(X) .

Figure 49 depicts this computation.

Example 30 Going on with Example29, assumeX = ( f�; 
 g; f1; 2; 3g; fBg)
andY = ( f
 g; f1; 2; 3; 4g; fA; Bg) were actually agglomerated, i. e., at a certain
iteration of the hierarchical clustering, their distanced(X t Y) = 2

4 was the
smallest among all pairs of (previously agglomerated or not)3-sets. The rele-
vancy ofX is 2

4 - max( 1
2 ; 1

2 ) - 1
2 = - 1

2 . This negative value forr(X) means
X is irrelevant. Indeed,X t Y having the same intrinsic distance asX, X is a
fragment of larger pattern (X t Y or maybe a larger one). Instead of studying
X, the analyst had better take a look at this larger pattern (that should receive
a higher relevancy value).

2.2 Selecting the Relevant Clusters

Ranking the clusters from the dendrogram w.r.t. to their relevancy
values allows the analyst to start the interpretation with the most
promising ones. However, the list of patterns he/she has to interpret
is very long and its tail contains poorly relevant clusters. For example,
it contains the initially extracted collection of small patterns (leaves of
dendrogram), which usually do not tolerate enough noise. We explain
how Alpha automatically selects a small collection while keeping every
relevant pattern. It assumes that all the initially extracted closed ET- n-
sets are fragments of some relevant local pattern, i. e., that this complete
extraction has been performed under constraints, like minimal size
constraints, that prevent the false positive noise from being caught.
This ensures that every closed ET-n-set satisfying them is a subset of a
relevant local pattern the analyst is interested in. Thus, Alpha reads,
by decreasing relevancy order, the list of clusters. It outputs the cluster
it reads and removes from the list its sub-patterns (i. e., the patterns
beneath it in dendrogram). Once every initially extracted closed ET-
n-set (leaf of the dendrogram) was removed (i. e., was covered by at
least one previously read cluster), the procedure stops. In this way, the Alpha selects

relevant patterns that
cover the initial
complete collection of
closed ET-n -sets.
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completeness of the �rst extraction is, somehow, preserved. Indeed,
every pattern of this initial collection is part of at least one output
cluster.

The selection procedure, which has just been exposed, presents this
property: “a cluster with a lower relevancy than at least one of its
ancestors is not to be kept”. This makes sense because it must be a frag-
ment of such a larger ancestor cluster. Interestingly, like in hierarchical
tiling [ 32], it remains possible that both a large cluster and one of its
sub-clusters are considered relevant. Whenever it happens the latter has
a greater relevancy than the former, i. e., it describes an “anomalously
high local density” of present n-tuples inside another anomalously
high, but lower, local density of present n-tuples. Another interesting
point relates to the assumption stated in the previous paragraph: “all
the initially extracted closed ET- n-sets are fragments of some relevant
local pattern”. If the initial complete extraction is performed under too
loose constraints, parts of some closed ET-n-sets cover regions of the
dataset that actually are out of any relevant local pattern (but contain
some n-tuples present in the relation because of noise). In other terms
the assumption is not satis�ed. However, this does not matter much.
Indeed, such a closed ET-n-set X, that covers positive noise, receives a
high relevancy value because:

– its distance to the closest cluster Y is high (the worst hyper-plan of
X t Y is out of any relevant pattern, hence it contains many tuples
absent from the relation);

– its intrinsic distance measure is low (the noise it contains was suf�-
ciently low not to prevent its extraction by a complete algorithm).

As a consequence,X is high in the list of ranked clusters and is browsed
before any of its “super-patterns”, which will probably not be selected
(their intrinsic distances being very high). In this way, the list of kept
clusters is not seriously lengthened. Furthermore, X being small (it
is the only pattern in the cluster) it can easily be identi�ed by the
analyst or automatically �ltered out by size constraints in a �nal post-
processing step.

3 empirical study

3.1 Quality Measures

Since the global quality, introduced in the previous chapter, does not
re�ect the quality as perceived by the analyst, it is �nally time, to replace
it with another measure, or, more precisely, with two complementary
measures. Given a small collection of hidden local patterns (the local
patterns in the relation deprived of noise) and another collection of
extracted local patterns, these measures rate how useful the latter is
for discovering the former. The �rst measure is the size of the output
collection of patterns: if it is too large, interpreting it may be too costly.
The second measure is the average similarity between every hidden
pattern and its most similar counterpart in the extracted collection. This
measure is named best-ones quality. It is mathematically expressed as
follows.
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Figure 50: KNIME work�ow when experimenting Alpha on the synthetic
ternary relations.

De�nition 36 (Best-ones quality) Given H a set of hidden patterns,P a
set of extracted patterns ands : H � P ! [0; 1] a similarity measure, the
best-ones quality ofP, denotedq(P; H ) and ranging in[0; 1], is:

q(P; H ) =
1

jHj

X

H 2 H

�
max
P2 P

(s(H; P)
�

.

To de�ne a similarity measure s between two n-sets, several sensible
options exist. We chose the average of a classical distance between the
sets of elements in every attribute domain.

De�nition 37 (Similarity between n-sets) GivenX = ( X1 ; : : : ; Xn ) and
Y = ( Y1 ; : : : ; Yn ) two n-sets,s(X; Y) denotes the similarity betweenX and
Y and is computed as follows:

s(X; Y) =
1
n

nX

i = 1

jXi \ Yi j
jXi [ Yi j

.

3.1.1 Experimental Protocol

This empirical study follows that of the 32� 32� 32 datasets pre-
sented in Section 5 of Chapter 4. The experimental protocol is the
same except that, at every noise level, ten relations are synthesized and
the results presented in this section always are averages on these ten
relations. In this way, they are statistically more relevant. We recall that,
in every relation, four hidden 3-sets, with eight elements per attribute,
are randomly placed (they may overlap). The noise distribution is
uniform. Given one of the relations, an analyst wants to �nd the four
hidden patterns it contains and, if possible, only them. However he/she
does not know, a priori, their exact geometries. To avoid missing some
of them, he/she constrains the output patterns to gather at least �ve
elements per attribute.

Figure 50 presents the experimental protocol in the form of a KNIME
work�ow. Fenster extracts, under constraints, every closed ET-3-set in
the noisy relation read by File Reader . Alpha agglomerates them (see
Section 1.2). Sorter and Selector ranks and selects the most relevant
clusters (see Section2). N-Set Descriptor appends size information to
the output so that the next three Row Filter s keep only those having at
least �ve elements per attribute. Finally, Quality Assessor computes
the best-ones quality measure (see De�nition 36) of the remaining local
patterns by comparison with the hidden patterns, i. e., those in the
initial relation deprived of noise.

The experiments have been performed with a computer running
the GNU/Linux ™ operating system on an AMD Sempron ™ 2600+
processor with 1.25 GBytes of RAM. Alpha was developed within
KNIME [ 19] using Java 6.
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Figure 51: Best-ones qualities of the collections output by Fenster only and by
Fenster + A lpha .

3.2 Assessing the Agglomeration

Extracting, with Fenster , the closed ET-3-sets having at least �ve
elements per attribute and directly interpreting them is, at least, tedious.
Figures 51, and 52 compare the results of Fenster alone to those of
Fenster + Alpha (following the experimental protocol detailed in the
previous section). When run alone, Fenster is tested with �ve different
tolerances to noise (the� i parameters of De�nition 26 and 27). When
used as a pattern collection provider to Alpha , Fenster is parametrized
to extract exactclosed 3-sets, i.e.,(� 1 ; � 2 ; � 3 ) = ( 0; 0; 0). The principle
“completeness as far as tractable”, stated in Section1.1, is not respected
here to support a clear assessment ofAlpha 's added-value. Indeed,
this intermediary task is, in this way, forced to deal with all the noise in
the relations. Even in this disadvantageous setting, Fenster + Alpha
signi�cantly outperforms Fenster alone. As expected, the best-onesThe quality of the

individual patterns
signi�cantly increases
with Alpha w.r.t.
Fenster alone. Their
number signi�cantly
decreases.

quality of the closed ET-3-sets is very poor if little noise is tolerated.
Nevertheless, even with the greatest tested tolerance to noise, which
implies very long extraction times (see Figure 47), the quality of the
collections computed by Fenster clearly is below that of Alpha +
Fenster , which is almost 1 until a noise level of 0.15 (see Figure51).
Furthermore, if there is little noise in the relations, the number of closed
ET-3-sets explodes when Fenster tolerates more noise. For example,
with a noise level of 0.075and an error-tolerance (� 1 ; � 2 ; � 3 ) of (4; 4; 4),
Fenster returns after about 23 minutes of computation, in average,
14475closed ET-3-sets, against4.8 patterns for Fenster + Alpha (see
Figure 52). Among these 4.8 patterns, 4 are those the analyst is in quest
for, i. e., q(P; H ) = 1.

The minimal size constraints on the closed 3-sets that Alpha pro-
cesses have not been discussed yet. These constraints are meant to
provide enough fragmentsto enable the construction of the relevant
patterns by agglomeration. Thus, they are chosen by merely looking at
the number of completely extracted closed 3-sets. At least four elements
per attribute is chosen when the level of noise is strictly below 0.15.
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Figure 52: Sizes of the collections output by Fenster only and by Fenster +
Alpha .

At this point, keeping the same constraints provides, in average, 16.1
closed 3-sets (see Figure52). This is obviously too few to construct,
by agglomeration, the hidden patterns. That is why, in the relations
with levels of noise above 0.15, the closed 3-sets are only constrained
to gather at least three elements per attribute. With these looser size
constraints, Fenster extracts more (much overlapping) closed 3-sets.
Once agglomerated, the hidden patterns in the relations with a 0.15
level of noise are always perfectly found, i. e., q(P; H ) = 1. Furthermore
the selection step (see Section2) retains only these four patterns (see
Figure 52).

3.3 Assessing the Selection

Stated in the terms of Section3.1, the selection step aims at decreasing
the size of the output collections while keeping the best-ones quality
(see De�nition 36) as high as possible. To empirically test it, the Sorter

and Selector node is dropped from the KNIME work�ow depicted in
Figure 50. The results, plotted in Figure 53 and 54, are compared to
those obtained with the selection. Until a noise level of 0.15, the size
of the selected collection remains below 50, i. e., is between one and
two orders of magnitude smaller than its superset obtained without
the selection. At the same time, the best-ones quality almost remains
identical. It can be written that the effect of the selection is, in those
settings, very positive. With noise levels beyond 0.15, the hierarchical
agglomeration constructs patterns that are very similar to the hidden
ones. Unfortunately, the relevancy measure (see De�nition 35) gives
higher scores to the sub-patterns of the ones the analyst would like to
be presented. That is why less than four patterns are, at the same time, In very noisy

relations, the hidden
patterns are found by
agglomeration but the
relevancy measure
does not score them
as well as their
sub-patterns.

selected and with at least �ve elements per attribute. With such very
noisy relations, the selection step does not help and the analyst had
better take a look at the long list of clusters. Indeed, the relevant ones
are almost perfectly constructed up to a noise level of 0.25.
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selection of the relevant patterns.
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Figure 54: Sizes of the output collections with and without the selection of the
relevant patterns.
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4 conclusion

Closed ET-n-sets globally well cover the hidden patterns. However,
unless there is very little noise, Fenster can only extract, in a reasonable
time, fragments of these patterns. Alpha hierarchically agglomerates
these fragments. The involved metric takes into account not only the
patterns but also the relation they were extracted from. Contrary to Fen-
ster , A lpha uses a (more natural) relative tolerance to noise because it
does not pretend to provide a condensed representation of the ET-n-set
(it is heuristic) and because that does not increase its running times
(quadratic in the number of closed ET- n-sets). The hidden patterns are
supposed to be nodes in the constructed dendrogram. Nevertheless,
this dendrogram contains about twice more patterns than the number
of closed ET-n-setsFenster returned. To ease the interpretation, the
output collection needs to be small. To do so, Alpha ranks the agglom-
erated patterns by relevancy. This measure is the difference between
the distance to the other agglomerated patterns (the greater the better)
and the quantity of noise in the pattern (the smaller the better). In
this respect, A lpha complies with David Hand's de�nition of a local
pattern. Finally, a simple cover test cuts off the least relevant patterns.
Experimented on synthetic ternary relations, Alpha presents small lists
of top-quality patterns even when the noise level reaches 15%.





Part V

A P P L I C AT I O N TO D Y N A M I C G R A P H
M I N I N G





O U T L I N E

Until now, the content of this thesis has been consisting in generaliz-
ing closed itemset mining to make it applicable to n-ary relations on
one hand and to noisy contexts on the other hand. The resulting more
generic patterns would be useless if, in addition, the extractor, namely
Fenster , could not deal with the particular aspects of a given dataset.
Fortunately, it has been shown that its enumeration principles allow
the analyst to specify any relevancy constraint as long as it is piecewise
(anti)-monotone. Such constraints are particularly useful on datasets
that are not only ternary relations but dynamic (directed) graphs too.
The beginning of Chapter 6 explains the specialization between ternary
relations and dynamic directed graphs. Then, two constraints, namely
the almost-contiguity and the symmetry constraints, are proved piece-
wise (anti)-monotone. As a consequence, Fenster can use them to
guide the extraction of the related patterns. These results were initially
presented in [CNB09]. To further fasten the extraction of the closed
ET-n-sets under these two constraints, modi�cations of the algorithm
(rather than the generic enforcement of the constraints) are welcome.
Chapter 6 details them.

Every method presented in this thesis was applied to real-life datasets.
In particular, ternary and 4-ary relations derived from the logs of
DistroWatch.com (a comprehensive presentation of the Free, as in free-
dom, operating systems) were mined. This even led to the publication
of results in a two-part article ([ Cer08a] and [Cer08b]) designed for a
general audience. However, we decided to present, in Chapter 7, results
on other data: the usage logs of the Vélo'v network. This network
consists of 327stations, spread over Lyon and its nearby. A rider rents a
bicycle and returns it to any other station. Understanding how Vélo'v is
used is valuable, for example to improve the ful�lled service. To study
it, the routes, between every pair of stations, are tagged frequent (or
not) for some days of the week and some time periods. In the dif�cult
context of this application (four attributes, more than 100000tuples,
weak minimal size constraints, etc.), the algorithms presented in this
thesis remain tractable. The knowledge discovery process, which takes
advantage of them, returns meaningful patterns. In particular, both
the symmetry and the almost-contiguity constraints signi�cantly lower
the running times without much limiting the discovery of unexpected
patterns.
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6M I N I N G D Y N A M I C G R A P H S

1 specializing n -ary relation mining

1.1 Dynamic Graph

Graph mining is a popular topic. Many researchers focus on graph
pattern discovery from one large graph, while others consider large
collections of graphs. Dynamic graphs (e. g., dynamic interaction net-
works or dynamic co-interest graphs) belong to this second category. Dynamic graphs are

useful across many
applicative domains.

Indeed, a dynamic graph is a set of graphs labelled with timestamps.
Two complementary directions of research are observed. On one hand,
the global properties of graphs, like the power-law distribution of node
degrees or diameters, are studied (see, e. g., [49]). On the other hand,
local pattern discovery techniques are used to identify local properties
of the graphs. These local techniques bene�t from the huge research
effort on 0/ 1 data analysis. Indeed a graph can be seen as a particular
bi-partite graph or as an adjacency matrix. This chapter exploits this
analogy and the generic closed ET-n-set extractor Fenster is specialized
in the extraction of relevant local patterns in dynamic graphs.

Let T 2 R jTj a �nite set of timestamps. Let N a set of nodes. A
(possibly directed) graph is uniquely de�ned by its adjacency matrix
A 2 f0; 1gN � N . A dynamic graph involving the nodes of N along T
is uniquely de�ned by the jTj-tuple (A t )t 2 T gathering the adjacency
matrices of the graph at every timestamp t 2 T. Visually, such a stack of
adjacency matrices can be seen as ajTj � jNj � jNj cube of 0/ 1 values. We Dynamic graphs are

particular ternary
relations.

write at;n tail ;n head = 1 (resp. at;n tail ;n head = 0) when, at the timestamp t ,
a link from n tail to nhead is present (resp. absent).

Example 31 Figure 55 depicts a dynamic directed graph. It involves four
nodes:a, b, c andd. Four snapshots of this graph are available at timestamps
0, 0.5, 2 and3. Table9 gives the related4-tuple (A0 ; A0.5 ; A2 ; A3 ).

1.2 A Closed ET-3-Set Under Constraints

1.2.1 Specializing Closed ET-3-Set Mining

In [ 50], the authors noticed that the problem of enumerating all
maximal complete bipartite sub-graphs of a graph is equivalent to

(a) A 0 (b) A 0.5 (c) A 2 (d) A 3

Figure 55: A dynamic (directed) graph ( N = fa; b; c; dg, T = f0; 0.5; 2; 3g).
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a b c d a b c d a b c d a b c d

a 1 1 0 1 1 1 0 1 1 1 1 1 1 0 1 1

b 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 1

c 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

d 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1

A0 A0.5 A2 A3

Table 9: (A0 ; A0.5 ; A2 ; A3 ) related to the dynamic graph depicted Figure 55.

extracting the closed patterns from its adjacency matrix. This chapter
exploits a more general observation: enumerating all maximal cross-
graph quasi-complete bipartite sub-graphs is equivalent to extracting
the closed ET-3-sets (see De�nition 28) in the “stack” of their adjacency
matrices (such as that of Table 55). Thus, Fenster can discover this
type of patterns from dynamic graphs.

Nevertheless, the maximal cross-graph quasi-complete bipartite sub-
graphs usually are too generic to be relevant for knowledge discovery
purposes. In particular, the analyst often is speci�cally interested
in quasi-cliques, i. e., among the quasi-complete bipartite sub-graphs,
he/she wants to focus on those that involve the same set of nodes, both
as tails and heads of the arcs in the pattern. Furthermore, a dynamicCross-graph closed

quasi-cliques can be
de�ned as particular

closed ET-3-sets. The
relevant ones usually

involve timestamps
that are close to each

other.

graph is not a generic set of graphs. It is naturally associated with
a metric that gives how many seconds separate any two graphs, i. e.,
the absolute value of the difference between their timestamps. As a
consequence, the analyst usually is speci�cally interested in patterns
that involves contiguous (or almost-contiguous) timestamps. Indeed,
such patterns described phenomena that are persistent along well
localized time intervals. These two points can be translated into two
constraints on every closed ET-3-set (T; Ntail ; Nhead) 2 2T � 2N � 2N

Fenster extracts from the ternary relation associated with the dynamic
graph. To ease the understanding of this section, every example uses
no tolerance to noise, i. e., � = ( 0; 0; 0).

1.2.2 � -Contiguous Closed ET-3-Set

It has just been argued that closed ET-3-sets that involve timestamps
that are close makes more sense than those that involves timestamps
that are very far from each other. This qualitative constraint now is
quanti�ed: given � 2 R+ , a � -contiguous pattern is such that it is
possible to browse the whole subset of timestamps by jumps from one
timestamp to another without exceeding a delay of � for each of these
jumps.

De�nition 38 (� -contiguity) A pattern(T; Ntail ; Nhead) is � -contiguous, de-
notedC� -contiguous(T; Ntail ; Nhead), iff 8t 2 [min (T); max(T)]; 9t 0 2 T s.t. jt -
t 0j 6 � .

Notice, in De�nition 38, that t does not necessarily belong to T (if
jTj > 2, [min (T); max(T)] is in�nite). C� -connected ^ C � -contiguous being
stronger than C� -connected alone, a related and weaker closedness con-
straint can be de�ned. Intuitively, a local-closed pattern is closed w.r.t.
both N sets and to the timestamps of T in the vicinity of those involved
in the pattern. In other words, a timestamp that is too far away (delay
exceeding � ) from any timestamp inside the pattern, cannot prevent
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its local-closedness. When required, the term � -local-� -closedness, that Mining
almost-contiguous

ET-3-sets, the
closedness in time is

limited to the
timestamps close to

the pattern.

includes the parametrization � 2 R+ of the locality and � 2 N 3 of the
noise tolerance, is used.

De�nition 39 (� -local- � -closedness) A pattern(T; Ntail ; Nhead) is � -local-
� -closed, denotedC� -local-� -closed(T; Ntail ; Nhead), iff
8
>>><

>>>:

8t 2 T nT;
�

9t 0 2 T s. t. jt - t 0j 6 � ) :C � -connected(ft g; N tail ; Nhead)
�

8n tail 2 N n N tail ; :C � -connected(T;fn tailg; Nhead)

8nhead2 N n Nhead; :C � -connected(T; Ntail ; fnheadg)

De�nition 40 (� -contiguous closed ET- 3-set) A pattern (T; Ntail ; Nhead)
is a � -contiguous closed ET-3-set iff it satis�es the conjunctionC� -connected̂
C� -contiguous^ C � -local-� -closed.

Example 32 (f2; 3g; fa; b; c; dg; fdg) is a1.75-contiguous closed3-set in the
toy dataset represented in Table9. However, it is neither0.5-contiguous (the
timestamps2 and3 are not close enough) nor2-closed (0 can extend the set of
timestamps). This illustrates the fact that the number of� -contiguous closed
3-sets is not monotone in� .

A � -contiguous closed ET-3-set is an obvious generalization of a
closed ET-3-set. Indeed, 8� > max(T) - min (T), C� -contiguous � true ^
C� -local-� -closed � C� -closed.

1.2.3 � -Contiguous Closed ET-3-Clique

A relevant pattern should involve oneset of nodes, i. e., every graph
should be considered as such and not as a bipartite graph where the
nodes are duplicated in two disjoint sets (one set that includes the
nodes as heads of the arcs, another where they are tails of the arcs). In
other terms, a pattern (T; Ntail ; Nhead) where N tail 6= Nhead is irrelevant.
That is why a symmetry constraint is added.

De�nition 41 (Symmetry) A pattern(T; Ntail ; Nhead) is symmetric, denoted
Csymmetric(T; Ntail ; Nhead), iff N tail = Nhead.

Again, C� -connected ^ C � -contiguous ^ C symmetric being stronger than
C� -connected ^ C � -contiguous , a related and weaker closedness constraint
can be de�ned. To be said unclosed, a pattern need to be extensible, Mining ET-3-cliques,

the closedness on the
nodes is limited to
those extending the
pattern in both
directions of the
edges.

without breaking C� -connected, by a node that would be botha tail and a
head in the extended pattern.

De�nition 42 (Symmetric � -local- � -closedness) (T; Ntail ; Nhead) is sym-
metric � -local-� -closed, denotedCsym-� -closed(T; Ntail ; Nhead), iff
8
<

:

8t 2 T nT;
�

9t 0 2 T s. t. jt - t 0j 6 � ) :C � -connected(ft g; N tail ; Nhead)
�

8n 2 N n (N tail \ Nhead); :C � -connected(T; Ntail [ fng; Nhead[ fng)

Symmetric � -contiguous closed ET-3-sets are called� -contiguous closed
ET-3-cliquesto shorten a little its denomination. Here is its de�nition:

De�nition 43 (� -contiguous closed ET- 3-clique) (T; Ntail ; Nhead) is a � -
contiguous closed ET-3-clique iff it satis�es the conjunctionC� -connected̂
C� -contiguous^ C symmetric^ C sym-� -closed.
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Example 33 Consider again the dynamic graph represented in Table9. Both
(f2; 3g; fa; c; dg; fa; c; dg) and (f0; 3g; fb; dg; fb; dg) are symmetric. Among
them, (f0.5; 2; 3g; fc; dg; fc; dg) is not closed w.r.t. Cclosedbecause its third
component can be extended witha, i. e.,Cconnected(f0.5; 2; 3g; fc; dg; fag). How-
ever, it is symmetric1.75-closed. Indeed, the nodea cannot simultaneously
extend its second and third components without violatingCconnected.

1.3 Problem Setting

Let (A t )t 2 T 2 f0; 1gT � N � N and � 2 R+ . This chapter deals with com-
puting every � -contiguous closed ET-3-clique that hold in this dataset.
In other terms, every pattern satisfying C� -connected ^ C � -contiguous ^
Csymmetric ^ C sym-� -closed must be listed. In practical settings, such a col-
lection is huge. It makes sense to further constrain the extraction task
by taking into account an application-dependent relevancy constraint C.
Thus, the problem becomes the complete extraction of the � -contiguous
closed ET-3-cliques verifying C.

2 related work

2.1 Cross-Graph Quasi-Clique Mining

Collections of large graphs were built to help in understanding
genetics. These graphs commonly have tens of thousands of nodes
and are much noisy. For about �ve years, extracting knowledge by
crossing such graphs has been a hot topic. For example, there is a need
to extract patterns that remain valid across several co-expression graphs
obtained from microarray data or to cross the data pertaining to physical
interactions between molecules (e. g., protein-protein, protein-gene)
with more conceptual data (e. g., co-expression of genes, co-occurrence
of proteins in the literature). One of the most promising pattern helping
in these tasks is the closed3-clique or, better, the closed quasi-3-clique.
CLAN [ 90] is able to extract closed 3-cliques from collections of large
and dense graphs. Crochet+ [42], Cocain* [97] and Quick [ 51] are the
state-of-the-art extractors of closed quasi-3-cliques. They all use the
same de�nition of noise tolerance: every node implied in a pattern must
have, in every graph independentlyfrom the others, a degree exceeding
a user-de�ned proportion of the maximal degree it would reach if the
clique was exact. Thus, a pattern involving a subset T of the graphsIn the literature,

cross-graph
quasi-cliques tolerate

noise in a more
constrained way: one
constraint per couple

( node;graph) .
Moreover, the graphs

are undirected.

and a subsetN of the nodes needs to satisfy jT � Nj constraints to be a
quasi-3-clique, i. e., one constraint per couple(timestamp; node).

This de�nition of noise tolerance is different from the one involved
in the de�nition of the closed ET- n-setsFenster extracts. Indeed, in
De�nition 26, an upper-bounded number of absent n-tuples (rather
than a proportion) is tolerated per elementinvolved in the pattern, i. e.,
(T; Ntail ; Nhead) is, by de�nition, an ET- 3-set iff:

– 8t 2 T, the dynamic graph contains all 3-tuples in ft g� N tail �
Nhead but � timestamps or less.

– 8n tail 2 N tail , the dynamic graph contains all 3-tuples in T �
fn tail g� Nhead but � tail or less.

– 8nhead 2 Nhead, the dynamic graph contains all 3-tuples in T �
N tail � fnheadgbut � head or less.

In this way, (T; Ntail ; Nhead) needs to satisfy jTj + jN tail j + jNheadj con-
straints to be an ET-3-set. If only symmetric patterns are considered,
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i. e., N tail = Nhead = N, this number becomes jTj + 2jNj. In the speci�c
context of undirected graphs (contrary to Fenster , none of the previ-
ously cited approaches can deal with directed graphs), the constraints
Fenster applies on the tails and on the heads are identical. As a conse-
quence, only jTj + jNj constraints de�nes an ET-3-clique. By comparing
this number to jT � Nj, it can be written that it is easier for a pattern
to be an ET-3-set than a quasi-clique in the sense of Crochet+, Cocain*
or Quick (the patterns involving only one timestamp or one node are
exceptions to this assertion but they are not much interesting). As a
consequence our approach does not scale well to graphs connecting
thousands of nodes. Nevertheless, becauseFenster indifferently enu-
merates timestamps and nodes (no attribute is favored), it can extract
closed ET-3-cliques in large collections of smaller graphs, whereas the
other algorithms cannot (or they must be used with a very strong mini-
mal size constraint on the number of involved graphs). The use of the
� -contiguity constraint further increases this difference.

2.2 Contiguity

The � -contiguity stems from an analogous constraint, called max-gap
constraint, initially applied to sequence mining. It was introduced The

almost-contiguity
constraint comes from
sequence mining.

in the GSP approach [80]. The way the � -contiguity is enforced in
our approach (see Section3) is similar to that of this seminal article.
The min-gap and the window sizeconstraints [80] uses could as well
be enforced in our approach. Nevertheless, in [80], these constraints
modify the enumeration order, whereas, in our approach, they reduce
the search space and let the enumeration strategy unaltered. Further-
more, the nature of the mined patterns is much different. In the context
of [80], the considered datasets are multiple sequences of itemsets
and the extracted patterns are sub-sequences of itemsets whose order
(but not position in time) is to be respected in all ( 1-dimensional) sup-
porting sequences. In our approach, the supporting domain contains
(2-dimensional) graphs and their position in time must be aligned.

Notice that the max-gap constraint was used in other contexts too.
For example, [17] and [57] enforce it to extract episodes (repetition of
sub-sequences in one sequence) and [23] somehow combines sequence
and episode mining by extracting, under a max-gap constraint, frequent
sub-sequences whose support is the sum of the number of repetitions
in all sequences of the dataset.

3 mining � -contiguous closed et -3-set

3.1 A Piecewise (Anti)-Monotone Constraint. . .

Fenster can enforce the constraint C� -contiguous (see De�nition 38) at
extraction time. Indeed, it is piecewise (anti)-monotone. The

almost-contiguity
constraint is
piecewise
(anti)-monotone.

Proof 1 Let C0
� -contiguousthe following constraint:

C0
� -contiguous(T1 ; T2 ; T3 ; N tail ; Nhead)

� 8 t 2 [min (T1 ); max(T2 )]; 9t 0 2 T3 s.t. jt - t 0j 6 � .

The three argumentsT1 , T2 and T3 substitute the three occurrences ofT (in
the de�nition of C� -contiguous). C0

� -contiguous is monotone in on its third ar-
gument and anti-monotone on its �rst and second arguments (T � T1 )
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min (T) > min (T1 ) and T � T2 ) max(T) 6 max(T2 )). Moreover, since
the two last arguments ofC0

� -contiguous do not appear in its expression, this
constraint is both monotone and anti-monotone on them. Therefore, by de�-
nition, C� -contiguousis piecewise (anti)-monotone.

3.2 . . . Partially Handled in Another Way

Given the 3-setsU = ( Utimes; Utail ; Uhead) and V = ( Vtimes; Vtail ; Vhead)
attached to the current enumeration node, the proof in Section 3.1
suggests to check whether it is possible to browse all elements in
[min (Utimes); max(Utimes)] \ (Utimes [ Vtimes) by jumps of, at most, � .

By also taking a look “around” [min (Utimes; max(Utimes)] \ (Utimes [
Vtimes), Fenster can do better than just telling whether there is no
hope in extracting � -contiguous ET-3-sets from the current enumeration
node. Indeed, it can prevent the traversal of some of such nodes. More
precisely, Fenster removes from Vtimes the elements that would, if
enumerated, generate left children violating C� -contiguous . To do so, theGiven an

enumeration sub-tree,
the almost-contiguity

constraint removes
from the search space

the timestamps that
are too far away from
the largest ET-3-set.

delay between t = min (Utimes) and before(t ) = max(ft 0 2 Vtimes j t 0 <
tg) is considered. If it is strictly greater than � then every element in
ft 0 2 Vtimes j t 0 < t gcan be removed from Vtimes. Otherwise, the process
goes on with t = before(t ) until a delay greater than � is found or
until t = min (Vtimes) (in this case no element from Vtimes lesser than
min (Utimes) is removed). In a reversed way, the elements in Vtimes

that are too great to be moved to Utimes without violating C� -contiguous
are removed as well. Figure 56 gives a more technical de�nition of
Fenster 's way to purge Vtimes thanks to C� -contiguous .

In the same way, some elements of Stimes may be too far away
from the extrema of Utimes [ Vtimes to prevent the local-closedness
of any descending ET-3-set. These elements are those that cannot
be added to Utimes without making the current enumeration node
violate C� -contiguous . Fenster removes them by applying a proce-
dure Purge _Stimes to every enumeration node. It is very similar
to Purge _Vtimes (see Algorithm 56) except that it is Stimes which is
browsed backward from before(min (Utimes [ Vtimes)) and forward from
after(max(Utimes [ Vtimes)) .

Example 34 Considering the extraction of1-contiguous3-sets from the ex-
ample dataset represented in Table9, if the �rst enumerated element is0.5,
Figure57 depicts the root enumeration node and its two children. In the left
child, Purge _Vtimes removes2 and 3 from its attachedVtimes set because
2 - 0.5 > 1.

These purges ofV and Sremind the way Fenster handles C� -connected.
Nevertheless C� -connected is anti-monotone on all its arguments, whereas
C� -contiguous is only piecewise (anti)-monotone. That is why some enu-
meration nodes violating C� -contiguous may be generated despite the
calls of Purge _Vtimes (whereas a generated enumeration node always
complies with C� -connected). As a consequence, checking, at every enu-
meration node, whether C� -contiguous holds remains necessary. For the
same reason, some elements in the3-setsV and/or S attached to both
left and right children may be purged thanks to C� -contiguous (whereas
C� -connected cannot reduce the search space of a right child).
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Input: Utimes; Vtimes

if Utimes 6= ; then
Vtimes  sort(Vtimes)
t  min (Utimes)
if t > min (Vtimes) then

before(t )  max(ft 0 2 Vtimes j t 0 < t g) {Binary search in Vtimes}
while before(t ) 6= min (Vtimes) ^ t - before(t ) 6 � do

t  before(t )
before(t )  previous (Vtimes; t ) {Vtimes is browsed backward}

end while
if t - before(t ) > � then

Vtimes  Vtimes n [min (Vtimes); before(t )]
end if

end if
t  max(Utimes)
if t < max(Vtimes) then

after(t )  min (ft 0 2 Vtimes j t 0 > t g) {Binary search in Vtimes}
while after(t ) 6= max(Vtimes) ^ after(t ) - t 6 � do

t  after(t )
after(t )  next(Vtimes; t ) {Vtimes is browsed forward}

end while
if after(t ) - t > � then

Vtimes  Vtimes n [after(t ); max(Vtimes)]
end if

end if
end if

Figure 56: The Purge _Vtimes procedure.

Figure 57: Enumeration of 0.5 2 V during the extraction of 1-contiguous 3-sets
from the dataset represented in Table 9.
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3.3 Enforcing the� -Closedness

The constraint C� -local-� -closed (see De�nition 39) is piecewise (anti)-
monotone.The closedness

constraint remains
piecewise

(anti)-monotone when
limited in time.

Proof 2 Let C0
� -local-� -closedthe following constraint:

C0
� -local-� -closed(T1 ; T2 ; T3 ; T4 ; N tail

1 ; N tail
2 ; N tail

3 ; Nhead
1 ; Nhead

2 ; Nhead
3 )

�

8
>>>>>><

>>>>>>:

8t 2 T nT1 ;
�

9t 0 2 T2 s.t. jt - t 0j 6 � ) :C � -connected(ft g; N tail
1 ; Nhead

1 )
�

8n tail 2 N n N tail
2 ; :C � -connected(T3 ; fn tailg; Nhead

2 )

8nhead2 N n Nhead
3 ; :C � -connected(T4 ; N tail

3 ; fnheadg)

C0
� -local-� -closed is anti-monotone on its second argument and monotone on

all its other arguments. Therefore, by de�nition,C� -local-� -closedis piecewise
(anti)-monotone.

A way to enforce C� -local-� -closed follows from the proof of its piece-
wise (anti)-monotonicity: an enumeration node, i. e., its attached 3-
setsU = ( Utimes; Utail ; Uhead) and V = ( Vtimes; Vtail ; Vhead), may lead to
some local-closed ET-3-set if (Utimes [ Vtimes; Utail [ Vtail ; Uhead [ Vhead):

– cannot be extended by any element in T n(Utimes [ Vtimes) distant,
by at most � , from an element in Utimes;

– cannot be extended by any element in N n (Utail [ Vtail );
– cannot be extended by any element in N n (Uhead [ Vhead).
As done for C� -closed, to avoid useless (and costly) tests, Fenster

maintains the 3-set S = ( Stimes; Stail ; Shead) containing only the ele-
ments that may prevent the closure of the ET-3-sets descending from
the current enumeration node, i. e., the previously enumerated ele-
ments and not those that were removed from V thanks to C� -connected ^
C� -contiguous . Moreover, as explained in Section 3.2, Fenster purges S
before checking C� -local-� -closed. Since it is used in conjunction with
C� -contiguous , C� -local-� -closed can be more strongly enforced: no ele-
ment in Stimes \ [min (Utimes) - �; max(Utimes) + � ] is allowed to ex-
tend (Utimes [ Vtimes; Utail [ Vtail ; Uhead [ Vhead). Indeed, an element
in Stimes \ [min (Utimes) - �; max(Utimes) + � ] may be distant, by strictly
more than � , from any element in Utimes but this will never be the
case at the leaves descending from the current enumeration since
Utimes must then be � -contiguous. All in all, Fenster prunes the
sub-tree descending from the current enumeration node if (Utimes [
Vtimes; Utail [ Vtail ; Uhead [ Vhead) can be extended by any element in
Stimes \ [min (Utimes) - �; max(Utimes) + � ], Stail or Shead.

4 mining � -contiguous closed et -3-cliques

4.1 A Piecewise (Anti)-Monotone Constraint. . .

In an ET-3-clique, both subsets of N are identical. An equivalent de�-
nition to the symmetry constraint (De�nition 41) would be as follows:
Csymmetric (T; Ntail ; Nhead) � N tail � Nhead ^ Nhead � N tail . In this form,
a piecewise (anti)-monotone constraint is identi�ed.“Being a clique” is

piecewise
(anti)-monotone. Proof 3 Let C0

symmetric the following constraint:

C0
symmetric(T; Ntail

1 ; N tail
2 ; Nhead

1 ; Nhead
2 ) � N tail

1 � Nhead
1 ^ Nhead

2 � N tail
2 .
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N tail
1 andN tail

2 substitute the two occurrences ofN tail (in the alternative def-
inition of Csymmetric). In the same way,Nhead

1 and Nhead
2 substitute the two

occurrences ofNhead. C0
symmetric is monotone on its third and fourth argu-

ments (N tail
2 andNhead

1 ) and anti-monotone on its second and �fth arguments
(N tail

1 and Nhead
2 ). Moreover, since the �rst argument (T) does not appear

in the expression ofC0
symmetric, this constraint is both monotone and anti-

monotone on this argument. Therefore, by de�nition,Csymmetric is piecewise
(anti)-monotone.

Being piecewise (anti)-monotone, the symmetry constraint can be
ef�ciently exploited by Fenster . However, the enumeration tree can
be further reduced if this constraint is enforced when choosing the
element to be enumerated.

4.2 . . . Better Handled in Another Way

In this section, a distinction between the nodes considered as tails
(i. e., the rows of the adjacency matrices) and the nodes considered as
heads (i. e., the columns of the adjacency matrices) must be made. They
are respectively named N tail and Nhead. Intuitively, when an element
n tail in Vtail � N tail is chosen to be present (resp. absent) in any ET-3-
clique extracted from the current enumeration node (see Section 1.2 in
Chapter 3), the element nhead in Vhead � Nhead standing for the same
node should be enumerated just after and only to be present (resp.
absent) too. Thus, the enumeration tree is not a binary tree anymore The enumeration of a

node as a head (resp.
tail) follows that of
the same node as a
tail (resp. head) and
either both are
present or both are
absent.

(some enumeration nodes only have one child).
When handled as a piecewise (anti)-monotone constraint, the sym-

metry constraint leads to many more enumeration nodes. When nhead

is chosen to be enumerated, the left (resp. right) child where nhead is
present (resp. absent) is generated even if its counterpart n tail in the
other set was previously set absent (resp. present). Then the symmetry
constraint prunes the sub-tree rooted by this node. Since there is no
reason for nhead to be enumerated just after n tail , the intuition tells us
that the number of such nodes, whose generation could be avoided by
modifying the enumeration (as explained in the previous paragraph),
increases exponentially with the average number of enumeration nodes
between the enumeration of n tail and that of nhead. This is actually
not a theorem becauseCsym-� -closed or C may prune some descendant
sub-trees before nhead is enumerated. Anyway, in practical settings,
handling the symmetry constraint via a modi�cation of the enumera-
tion usually is much more ef�cient than via the general framework for
piecewise (anti)-monotone constraints.

Figure 58 informally depicts these two approaches (the probable
diminutions of the V sets in the left children and the possible pruning
due to C� -closed or C are ignored). T1 and T2 are subsets ofT. N1 and
N2 are subsets ofN. In both examples, the elementsmhead and nhead of
Nhead are enumerated. The resulting nodes are, of course, the same (the
dotted nodes being pruned). However this result is straightforward
when the enumeration constraint is handled through a modi�cation of
the enumeration (Figure 58b), whereas it usually requires more nodes
when it is handled as an ordinary piecewise (anti)-monotone constraint
(Figure 58a). The number of additional nodes in the latter case grows
exponentially with the number of elements enumerated between n tail

and nhead (e. g.,m tail could be enumerated in between).
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4.3 Constraining the Enumeration

Let N tail = ( n tail
i ) i = 1..jNj and Nhead = ( nhead

i ) i = 1..jNj its counterpart,
i. e., 8i = 1..jNj, n tail

i and nhead
i stand for the same node. (T; Ntail ; Nhead)

being symmetric is a constraint that can be expressed as this list of, so
called, enumeration constraints:

n tail
1 2 N tail ) nhead

1 2 Nhead nhead
1 2 Nhead ) n tail

1 2 N tail

n tail
2 2 N tail ) nhead

2 2 Nhead nhead
2 2 Nhead ) n tail

2 2 N tail

...
...

n tail
i 2 N tail ) nhead

i 2 Nhead nhead
i 2 Nhead ) n tail

i 2 N tail

...
...

n tail
jNj 2 N tail ) nhead

jNj 2 Nhead nhead
jNj 2 Nhead ) n tail

jNj 2 N tail

We actually made Fenster handle a more general class of constraints: A set of constraints
de�nes “being a
clique”. They belong
to a larger class of
constraints ef�ciently
handled via
occasional
modi�cations of
Fenster 's
enumeration.

De�nition 44 (Enumeration constraint) Cenum is said to be an enumera-
tion constraint iff, given an ET-3-set(T; Ntail ; Nhead), it is of the form:

Cenum(T; Ntail ; Nhead) � ^ i = 1..k a i ) ak + 1 ,

wherek 2 N and8i = 1..(k + 1), a i is of the forme 2 A or e 62A, e being
an arbitrary element from an arbitrary attribute domainA 2 fT; Ntail ; Nheadg.

Example 35 Here are three examples of enumeration constraints that can be
enforced on any ET-3-set(T; Ntail ; Nhead):

– t 1 2 T ) t 8 =2 T
– t 1 =2 T ^ n tail

1 2 N tail ) t 2 2 T
– true ) t 1 =2 T (k = 0 in De�nition 44)

Notice that the last constraint is not equivalent to removing the elementt 1
from the data. Indeed, a closed ET-3-set in the dataset deprived oft 1 may not
be closed in the dataset containingt 1 . In the latter case, it must not be ex-
tracted (and it is not extracted when the enumeration constraint is enforced).

Before choosing the element to enumerate (see Figure32), Fenster
browses the set of enumeration constraint, and tests whether the left
parts of them are true or not. Considered as constraints, these left
parts are, again, piecewise (anti)-monotone. Indeed, when there is a
term of the form e 2 A (resp. e =2 A), the left part of the constraint
is anti-monotone (resp. monotone) in this occurrence of A. Given the
3-setsU and V attached to the current enumeration node, three cases
may arise:

1. The left part will never be ful�lled in the sub-tree rooted by the
current enumeration node:
– if an element in the left part is to be present but it is neither in

U not in V.
– if an element in the right part is to be absent but it is in U.

2. The left part is ful�lled by at least one (but not every) node
descending from the current enumeration node.

3. The left part is ful�lled by every node descending from the current
enumeration node:
– if an element in the left part is to be present, it is in U.
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– if an element in the left part is to be absent, it is neither in U
nor in V.

Fenster reacts differently at each of these cases:

1. This enumeration constraint is removed from the set of enumera-
tion constraints when traversing the sub-tree rooted by the current
enumeration node. Indeed, it never applies in this sub-tree. Use-
lessly checking it for every descendant enumeration node would
only decrease Fenster 's performance.

2. This enumeration constraint is kept.

3. The right part of this enumeration constraint is considered.

When the right part of an enumeration constraint is considered, three
new cases may arise:

3.1 The right part is already ful�lled:
– if its element is to be present and is already in U.
– if its element is to be absent and is already neither in U nor in

V.

3.2 The right part can be ful�lled: if its element is in V.

3.3 The right part cannot be ful�lled:
– if its element is to be present and is neither in U nor in V.
– if its element is to be absent and is in U.

Fenster differently reacts at each of these cases:

3.1 This enumeration constraint is removed from the set of enumera-
tion constraints when traversing the sub-tree rooted by the current
enumeration node. Indeed, it is satis�ed for all ET- 3-sets in this
sub-tree. Uselessly checking it for every descendant enumeration
node would only decrease Fenster 's performance.

3.2 The element on the right part of the constraint can be enumerated
as speci�ed (one child only).

3.3 The sub-tree rooted by the current enumeration node is pruned.
Indeed, none of the ET-3-sets in this sub-tree veri�es the con-
straint.

In Case 3.2, we write “the element canbe enumerated” because, at a
given enumeration node, several enumeration constraint may be in this
case but only one can be applied.

4.4 Contraposition of Enumeration Constraints

If an enumeration constraint holds, its contraposition, logically, holds
too. In the general case (conjunction of terms in the left part), the
contraposition of an enumeration constraint is not an enumeration
constraint (disjunction of terms in the right part). In the particular case
of enumeration constraints of the form a1 ) a2 (see De�nition 44), e. g.,
those generated from Csymmetric (see Section4.3), their contrapositions
are enumeration constraints too. Thus, Fenster enforces a larger set
of enumeration constraints (the original set of enumeration constraints
and the contrapositions of those of the form a1 ) a2 ) for even faster
extractions. Figure 59 gives a more technical de�nition of how this
larger set is computed.

Example 36 Among the enumeration constraints of Example35, only the
�rst one (t 1 2 T ) t 8 =2 T) admits a contraposition (t 8 2 T ) t 1 =2 T) that
is, itself, an enumeration constraint.
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Input: SetE of enumeration constraints
Input: SetE enlarged with contrapositions
E0  E
for a1 ^ a2 ^ � � � ^ ak ) ak + 1 2 E do

if k = 1 then
E0  E0[ f: a2 ) : a1g

end if
end for
return E0

Figure 59: Append_contraposition .

4.5 Enforcing the Symmetric� -Closedness

Fenster can enforce the constraint Csym-� -closed (see De�nition 42) at
extraction time. Indeed, it is piecewise (anti)-monotone. The closedness

constraint remains
piecewise

(anti)-monotone for
almost-contiguous

cross-graph
quasi-cliques.

Proof 4 Let C0
sym-� -closedthe following constraint:

C0
sym-� -closed(T1 ; T2 ; T3 ; N tail

1 ; N tail
2 ; N tail

3 ; Nhead
1 ; Nhead

2 ; Nhead
3 )

�

8
>>><

>>>:

8t 2 T nT1 ;
�

9t 0 2 T2 s.t. jt - t 0j 6 � ) :C � -connected(ft g; N tail
1 ; Nhead

1 )
�

8n 2 N n (N tail
2 \ Nhead

2 ); :C � -connected(T; Ntail
3 [ fng; Nhead

3 [ fng)

C0
sym-� -closedis anti-monotone on its second argument (T2 ) and monotone on

all its other arguments. Therefore, by de�nition,Csym-� -closed is piecewise
(anti)-monotone.

A way to enforce C� -local-� -closed follows from the proof of its piece-
wise (anti)-monotonicity: an enumeration node, i. e., its attached 3-sets

U = ( Utimes; UN tail
; UN head

) and V = ( Vtimes; VN tail
; VN head

), may lead

to some local-closed ET-3-set if (Utimes [ Vtimes; UN tail
[ VN tail

; UN head
[

VN head
):

– cannot be extended by any element in T n(Utimes [ Vtimes) distant,
by at most � , from an element in Utimes;

– cannot be simultaneously extended by any element in N n (UN tail
[

VN tail
) (row of the adjacency matrices) and its related element in

N n (UN head
[ VN head

) (column of the adjacency matrices).
In a similar way to what was done with C� -local-� -closed (see Sec-

tion 3.3), Fenster maintains the 3-set S = ( Stimes; SN tail
; SN head

) con-
taining only the elements that may prevent the closure of the ET- 3-
sets descending from the current enumeration node and prunes the

sub-tree descending from it if (Utimes [ Vtimes; UN tail
[ VN tail

; UN head
[

VN head
) can be extended by any element in Stimes \ [min (Utimes) -

�; max(Utimes) + � ] or by any element in SN tail
and its related element

in SN head
. Thus, when SN tail

(respectively SN head
) is purged from an ele-

ment (because it cannot extend(Utimes [ Vtimes; UN tail
[ VN tail

; UN head
[

VN head
) without violating C� -connected), the related element in SN head

(respectively SN tail
) is removed as well.

An overall view of the complete extraction of the � -contiguous closed
ET-3-cliques under constraint can now be presented. The details and
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Input: (A t )t 2 T 2 f0; 1gT � N � N , � 2 N 3 , � 2 R+ and a user-de�ned
piecewise (anti)-monotone constraint C
Output: Every � -contiguous closed ET-3-clique in (A t )t 2 T satisfying
C
E  Enumeration constraints pertaining to Csymmetric (see Section4.3)

E0  Append_contraposition (E)
Fenster ((; ; ; ; ; ); (T; N; N); (; ; ; ; ; ))

Figure 60: main .

justi�cations of how every identi�ed constraint is handled are present
within the two previous sections, hence proving its correctness. Fig-
ure 60 shows the main procedure solving the problem stated in Sec-
tion 1.3. It calls the algorithm in Figure 61 which can be regarded as a
specialization of that of F enster (see Figure32).

5 conclusion

Together a symmetry and a contiguity constraints specialize Fenster
to make it extract every � -contiguous closed ET-3-clique in a dynamic
graph. Because these constraints are piecewise (anti)-monotone, the
expressive power of this class of constraints is emphasized and they
could be enforced on the top of a “plain-vanilla” Fenster . However,
to scale up to very large dynamic graphs, these constraints must be
enforced more cleverly. Interestingly, the idea, which is carried out, is
the same for the two constraints (and for the connection constraint too):
they must be used as soon as possible in the enumeration tree. The
symmetry constraint has even been split into many small enumeration
constraints that are individually exploited as soon as possible. Enu-
meration constraints are particular since they change the structure of
the enumeration, which is not binary anymore. This chapter focuses
on extracting � -contiguous closed ET-3-cliques. However, Fenster is
not restricted to ternary relations. Thus, it can mine graphs that are
parametrized with more than one attribute. The next chapter studies
the patterns in such a graph. Notice also that several � -contiguity
constraints can be enforced if there are several real-valued attributes.
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Input: U; V; S
Output: Every � -contiguous closed ET-3-clique containing every
element in U, possibly some elements in V, and satisfying C
Purge _Vtimes

Purge _Stimes

if C� -connected(U t V) then
U  U t V
V  (; ; : : : ; ; )

end if
if C ^ C � -contiguous ^ C sym-� -closed may be satis�ed by an ET- 3-set de-
scending from this node then

ProcessE0 as detailed in Section 4.3
if Case3.3 was never encountered then

if V = ( ; ; ; ; ; ) then
output (U)

else
if Case3.2 was encountered with an enumeration constraint
concluding on ak + 1 (see De�nition 44) then

if ak + 1 is of the form e 2 A then
Fenster (U [ feg; fv 2 V n feg j C� -connected(U [ feg [
fvg)g; fs 2 S j C� -connected(U [ feg[ fsg)g)

else
ak + 1 is of the form e 62A
Fenster (U; V n feg; S[ feg)

end if
else

Choosee 2 V
Fenster (U [ feg; fv 2 V n feg j C� -connected(U [ feg[ fvg)gg; fs 2
S j C� -connected(U [ feg[ fsg)g)
Fenster (U; V n feg; S[ feg)

end if
end if

end if
end if

Figure 61: Fenster specialization for � -contiguous closed ET-3-clique mining.
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1 dataset

Vélo'v is a bicycle rental service run by the urban community of
Lyon, France. Vélo'v stations are spread over Lyon and its nearby. One
of them is depicted in Figure 621. At any of these stations, the users
can take a bicycle and return it to any other station. Whenever a bicycle Vélo'v logs are

timestamped rides
between327stations
and during two years.

is rented or returned, this event is logged. Our research group obtained
parts of these logs (e. g., no user identi�cation to preserve privacy)
recorded between May 27th 2005(when the system was opened to the
public) and December 17th 2007. They represent more than 13.1 million
rides. The earliest records relate to the users discovering Vélo'v and
how useful it may be in their daily mobility. To study the network
usage in “normal” conditions, these earliest records were ignored. The
chosen date, after which the considered dataset starts, is December17th
2005. In this way, two full years are kept and aggregations do not favor
any part of the year (along which the network usage evolves). Many
records stand for rides from a station to itself. These rides usually last
a few seconds. They can be mainly explained by users who are not
satis�ed by the quality of the bicycle they have just rent (e. g., a �at
tire) or who have changed their mind (e. g., a bus arrives). Because,
from a given station, the most frequent rides are to itself, keeping these
records in�uence a lot any normalization procedure. That is why these
records are removed but, after the post-processing steps, the related
routes are all claimed frequent, i. e., appended to the relation. A few The dataset is cleaned.

Rides from/to a same
station are removed
before normalizing
but considered
frequent in the end.

more records were removed. They relate to abnormal rides (incoherent
dates) or rides implying stations that are not opened to the public (e. g.,
where bicycles are repaired). About 10.2 million records remain after
these �rst steps.

To discover patterns that depend on both the time and the day of the
week, the data are aggregated w.r.t. these two scales. More precisely,
one directed graph is built per period of time (a one-hour period was
chosen) and per day of the week. For instance, one of these graphs
presents the rides between nine o'clock and ten o'clock on Mondays.
The vertices correspond to the Vélo'v stations. The edges are labeled
with the total number of rides from the head vertex (departure station)
to the tail vertex (arrival station) during the considered period of time
and day of the week. The global activity of the Vélo'v network varies
a lot between the different days of the week. For instance, there are
51.3% more rides on Fridays than on Sundays. This difference is even
greater between the time periods. For instance, there are about22 times
more rides between 6 pm and 7 pm than between 5 am and 6 am.
This global behavior is known. To ignore it, the data are normalized
so that the sum of the labels is the same whatever the graph. In The data are

normalized such that
every pair( day;time
period) has the same
importance.

this way, when the data are binarized, the Boolean predicate decides
whether routes that are frequent w.r.t. the period of time and the day

1. © 2005Frédéric Bonifas (from Wikimedia Commons)
This picture is licensed under the Creative Commons Attribution ShareAlike 3.0

License.
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Figure 62: A Vélo'v station.

of the week. The distribution of the rides w.r.t. the stations is far
from being constant too. One reason is structural. Some stations can
contain/receive many more bicycles than others. Because no bicycle
can be rented from an empty station and no bicycle can be returned
to a full station, the largest stations imply more rides. Furthermore
they are better known by the users (who want to minimize the risk of
�nding an empty or a full station). Another reason is the progressive
installation of the stations. In December 17th 2005, there were 172
stations in activity. In December 17th 2007, they were 315. Because
some stations were closed, there are327different stations involved in
the dataset. Obviously a station that opened little before December
17th 2007cannot be implied in as many records as another one that
has been in activity since the beginning. A local binarization partially
handles these differences. The computation of a p-value inspires theThe binarization is

local, i. e., the
relevant routes are
frequent for the
departure or the
arrival station.

details of this technique. It considers the vertices one by one, computes
the sum S of the labels of both its incoming and outgoing edges, and
claims frequent the routes related to the edges with the greatest values
and whose sum is just beyond 0.1 � S. By de�nition, this procedure
keeps at least one edge involving each station. In average,191edges
per station are kept (still excluding the re�exive routes). The resulting
4-ary relations contains 1174114-tuples (including the re�exive routes,
which were previously put to one side), hence a 117411

7� 24 � 327 � 327 = 0.7%
density. This relation is named RVélo'v . In the following, it is always
mined under this conjunction of minimal size constraints:

– at least two days of the week;
– at least three time periods;
– at least three departure stations;
– at least three arrival stations.
The results of every experiment in this chapter are obtained on an

Intel ® processor cadenced at2.8GHz, 3 Gb of RAM and running a
GNU/Linux ™ operating system.
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� Number of patterns Symmetry

w/o Csymmetric with Csymmetric w/o Csymmetric

(0; 0; 0; 0) 13 11 84.62%

(1; 1; 1; 1) 111 63 54.05%

(3; 2; 2; 2) 743 342 41.05%

(4; 3; 3; 3) - 1163 -

Table 10: Number of patterns in RVélo'v .

2 symmetry between departure and arrival stations

2.1 Avoiding False Positive Noise

Table 10 lists, with and without the symmetry constraint (see Sec-
tion 1.2.3 in Chapter 6), the number of patterns (verifying the minimal
size constraints) in RVélo'v . The parameters for noise tolerance, given
in the �rst column, follow the order (� day ; � time ; � dep; � arr ). The last
column gives the proportion of closed 4-sets that actually are symmetric
(when Csymmetric is not enforced). In other terms, it is the proportion
of closed 4-sets that are discovered as well when Csymmetric is enforced.
With a low tolerance to noise, this proportion is very large: the closed
4-sets, in RVélo'v , naturally are symmetric. When tolerating more noise, The patterns in the

Vélo'v usage network
naturally are

symmetric.

the proportion of symmetric closed 4-sets decreases. Nevertheless:
– it remains much larger than what would be obtained with a ran-

dom distribution of the frequent routes;
– most of the closed 4-sets remain “almost” symmetric (i. e., most of

the departure stations are arrival stations and reciprocally);
– part of the tendency is due to closed 4-sets that false positive noise

enlarges (more departure or arrival stations).
Given the number of Vélo'v stations ( 327), the �rst point is quite

obvious. A formal test could be: randomize RVélo'v (see [33] for such a
method designed for binary relations), extract the closed 4-sets, com-
pute the proportion of symmetric ones and compare it to the value
obtained with the non-randomized version of RVélo'v . The “almost”
symmetry, the second point mentions, is easy to quantify. E. g., the

Jaccard index,(Xdep; Xarr ) ! jX dep \ X arr j
jX dep [ X arr j

, measures, for every extracted

closed 4-set, the similarity between its departure and arrival stations.
With � = ( 3; 2; 2; 2), its average, over all extracted patterns, is 0.63,
hence an “almost” symmetry. The last point will be granted more
attention because it relates to a topic this thesis discusses. It states
that the proportion of symmetric closed 4-sets decreases because some
“naturally” symmetric patterns are extended with additional depar-
ture or arrival stations that false positive noise affects. Section 1.1.1
in Chapter 2 explains how minimal size constraints prevent this phe-
nomenon. When mining RVélo'v , these constraints are quite weak and
the positive noise becomes problematic when much noise is tolerated.
Strengthening the minimal size constraints is a solution. Enforcing the
symmetry constraint is another one. Indeed, in a closed ET-4-clique, The symmetry

constraints �ghts
against false positive
noise.

every station must be botha departure and an arrival station. On the
contrary, without Csymmetric , a station can be only a departure (resp.
arrival) station. That makes twice less 4-tuples involved in the process
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� Running time Variation

w/o Csymmetric with Csymmetric

(0; 0; 0; 0) 3'59s 3'51s -3.6%

(1; 1; 1; 1) 1:16'15s 33'32s -56.02%

(3; 2; 2; 2) 19:29'06s 3:09'00s -79.52%

(4; 3; 3; 3) - 3:59'29s -

Table 11: Running times of Fenster on RVélo'v .

of extending a pattern. That also means twice less 4-tuples the positive
noise needs to affect so that the station erroneously extends the pattern.

2.2 Decreasing the Running Times

Table 11gives the time it takes Fenster to extract the patterns Table 10
counts. When much noise is tolerated, Csymmetric greatly reduces the
running times. The effect of Csymmetric on the false positive noiseThe symmetry

constraint
signi�cantly

decreases the running
times.

explains, again, the relatively weak gain observed with little noise
tolerance. Indeed, in this setting, the chosen size constraints are enough
to �ght against positive noise and, even without enforcing Csymmetric , a
station usually is declared irrelevant both as a departure and an arrival
station. With more noise tolerance, it may be kept for one of these two
roles and the size constraints may not prune the search space (or prune
it later in the enumeration).

It has been shown that RVélo'v naturally contains patterns that are
symmetric w.r.t. the departure and arrival stations. This justi�es, in the
remaining of this chapter, the enforcement of Csymmetric . This constraint
guides the search for the relevant patterns, helps in �ghting against
positive noise and allows to tolerate quite a lot of noise while remaining
tractable.

3 effect of a � -contiguity constraint

The effect of a � -contiguity constraint on the time attribute is tested.
To do so, a different real value must substitute every time period.
However, in RVélo'v , the time is cyclic. Replacing every time period by its
starting hour (for instance) and enforcing a 1-contiguity would not allow
the discovery of a pattern that holds between 22 pm and 1 am because
j22- 0j > 1 and j23- 0j > 1. Here is a workaround: clone the 4-tuples
such that (xday ; xtime ; xdep; xarr ) 2 R , (xday ; xtime + 24; xdep; xarr ) 2
Rclone and mine R [ Rclone with enumeration constraints that specify
that whatever the time element xtime in U, every time element lower
than xtime - 24 or greater than xtime + 24 must not be in U. In this
experiment, the time was simply kept acyclic but the “cutting” date
was set between the4am-5am and 5am-6am time periods. This choice
is justi�ed by the expected absence of closed 4-sets running across5 am.
Indeed, the users behaves very differently before and after the public
transportation services restart (at about 5 am).

The chosen noise tolerance is(3; 2; 2; 2). To test the effect of the
� -contiguity constraint, � varies between 0 and 8. Figure 63 gives the
number of closed 4-cliques and the times to extract them. Notice that
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Figure 63: Effect of a � -contiguity on the number of closed 4-cliques and the
time to extract them.

the number of closed 4-cliques satisfying the 8-contiguity constraint is
342, i. e., the same number as without any contiguity constraint (see
Table 10). As a consequence, the assumption that there is no closed
4-set running across 5 am is true. Of course, a normal discovery process,
under a � -contiguity constraint, could not ensure that. Notice also that
even with � = 8 (and the same output collection), forcing the closed
4-sets to be almost-contiguous decreases the extraction time of8.6%. The

almost-contiguity
constraint

signi�cantly
decreases the running

times.

Of course a smaller � provides a higher reduction and �lters out some
poorly relevant closed 4-sets. For example, with a 3-contiguity, the
extraction lasts less than two hours. This is to be compared with the
three hours that are required without this constraint and the 19 hours
and a half with the minimal size constraints only. The 2963-contiguous
closed 4-cliques are chosen for the next step: Alpha (see Chapter5).

4 agglomeration , selection and interpretation

4.1 Agglomeration and Selection

Within a few seconds, Alpha agglomerates the 296 3-contiguous
closed 4-cliques in RVélo'v . After its selection procedure (see Section2
in Chapter 5), 125 patterns remain. Notice each of these patterns
remains symmetric, i. e., its departure stations and arrival stations are
the same. Indeed, an interesting property of the n-clique agglomeration Agglomerates of

symmetric patterns
are symmetric.

is the preservation of Csymmetric . It trivially derives from the de�nition
of this constraint (De�nition 41) and that of that of the merging operator
(De�nition 22).

The selection procedure of Alpha is rather conservative. Indeed, it
assumes that “all the initially extracted closed ET- n-sets are fragments
of some relevant local pattern” (see Section 2.2 in Chapter 5). Because
RVélo'v contains many small patterns, the number of patterns is reduced
by “only” 58%. This remains a welcome gain and the larger patterns
that Alpha outputs are more relevant than those at its input. To discuss
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Figure 64: Mining RVélo'v .

some of them, the patterns that involve at least four stations and �ve
time periods were selected in a �nal post-processing step. Figure 64
presents the whole process in the form of a KNIME work�ow.

4.2 Seven Patterns

The �nal post-processing step keeps seven patterns. Red dots in
Figures 65 to 712 indicate the geographic positions of the stations
involved in the patterns. The captions give the related days of the week
and time periods. Remember that every pattern stands for frequent
rides between every pair of stations and in both directions. The �gures
are ordered by decreasing relevancy (see De�nition 35) of the patterns
they depict. In this way, Figure 65 represents the most relevant pattern.The largest discovered

patterns make sense. It clearly stands for pleasure trips during the week-end afternoons,
inside the “Parc de la Tête d'Or” (the main square of Lyon), on the
Rhône river side and up to the historical center of the city. In Figure 66,
the stations that are involved are among the largest ones in and around
the historical center. This pattern holds during the afternoons on
Fridays, Saturdays, Sundays and Mondays. Like the most relevant
pattern, the one Figure 67 describes clearly relates to pleasure trips
during the week-end afternoons. This times the rides takes place more
to the south of of the Rhône river side. Figure 68 depicts, gain, pleasure
trips during the week-end afternoon. It indicates that the Vélo'v users
also like riding in the very touristic “Vieux Lyon” (the oldest district
of Lyon) and up to (or from) the closest entrance to the “Parc de la
Tête d'Or”. On the contrary, the pattern depicted in Figure 69 only
stands during the working days. The related rides are earlier in the
afternoon too. The involved stations are almost that of second pattern
(Figure 66) but the new station is the closest to the universities Lyon
2 and Lyon 3, hence the working days only. The red dots in Figure 70
are more to the east of Lyon, i. e., in the newer part of the city. Three of
them follow one of the main axises of the city: the “Cours Gambetta”.
The outlying station is close to the largest inner-city shopping center in
Europe, which is, in average, visited more than 80000times a day. Its
reduced activity on Sundays probably explains that the patterns holds
every afternoon but on this day of rest. Finally, Figure 70 represents a
pattern that is observable every day from midday to 9 pm. It describes
frequent rides between the largest stations in and at the close periphery
of the historical center.

2. These �gures were created from OpenStreetMap project data.
© 2004-2010OpenStreetMap contributors

These maps are licensed under Creative Commons Attribution ShareAlike 2.0
License.
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Figure 65: During the week-end from 3 pm to 8 pm.

Figure 66: On Fridays, Saturdays, Sundays and Mondays from 3 pm to 8 pm.
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Figure 67: During the week-end from 3 pm to 8 pm.

Figure 68: During the week-end from 3 pm to 8 pm.
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Figure 69: On Mondays, Tuesdays, Wednesdays, Thursdays and Fridays from
12 noon to 5 pm.

Figure 70: Everyday but Sunday from 3 pm to 8 pm.
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Figure 71: All week long from 12 noon to 9 pm.

4.3 General Observations

4.3.1 Predominance of Large Stations

In the computed patterns, the largest stations clearly occur more
often than the smaller ones. Several reasons explain their popularity.The largest stations

often are in patterns. First of all, they are geographically positioned at key places. E. g.,
the two stations that occur the most, in the patterns discussed in the
previous section, are at intersections of subway lines (for multimodal
mobility). As a consequence, many users want to go there. Then, the
largest stations are better known. That is why a user who wishes to
rent (resp. return) a bicycle usually goes to such a station. Furthermore,
even if the user is aware of the presence of a small station in the nearby,
he/she may not take the higher risk of �nding it empty (resp. full) and
directly heads to a farther but larger station. The local binarization
(see Section1) does not favor the largest stations when it comes to
deciding the signi�cant rides from/to them. Nevertheless, when the
same procedure is applied to the other stations, the routes from/to the
large stations around usually are claimed frequent.

4.3.2 Predominance of Day-Time

Almost all closed ET-4-cliques, which Fenster extracts, take place at
day-time. The reason for that is the absence of key places at night. UsersAlmost all patterns

take place at day-time. rent bicycles to go home and residences are spread all over Lyon and
its nearby. That is why, even though the time periods are normalized
(see Section1), frequent route occur at day-time. To a lesser extent, the
same phenomenon applies to the morning rides. Indeed, they usually
are from the residence to the working place.
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4.3.3 Short Trips

The stations involved in a pattern are, in terms of trip duration, quite
close to each other. In particular many patterns have stations aligned on The stations in a

pattern often are
aligned and quite

close to each other.

roads that were developed (e. g., the Rhône river side) or redeveloped
(e. g., the “Cours Gambetta”) taking into consideration the bicycle
riders. Therefore, the land settlement obviously plays an essential
role in the Vélo'v usage. A query on the raw data constitutes an easy
veri�cation of the Vélo'v users preferring short trips. Indeed, every
bicycle was equipped with a milometer. Among the rides that were used
to obtain RVélo'v (excluding the re�exive routes), the median distance
is below two kilometers. That explains why some agglomerations are
less relevant that what we could expect. E. g., the patterns depicted
in Figure 65 and 67 share the same days of the week, the same time
periods and two stations. However their agglomeration would group
two stations that are at about four kilometers from each other. For the
slower riders (e. g., who stop for a drink on the river side), that may
even mean a trip that is not free (Vélo'v is free for rides below half an
hour).

4.3.4 A Natural Symmetry?

The natural symmetry of the patterns in RVélo'v (see Section2) in-
dicates that, whatever the day of the week or the time period, there
exists groups of stations, in which bicycles �ow between any pair of
stations and in both directions. It may look surprising. The preference
for short rides, which has just been mentioned, may be the main reason.
Consider, for example, the rides from/to the square (during the week-
end afternoons) or the rides in the historical center (in the evening).
These short rides are more pleasure trips than daily migrations from/to
work/residence. For a speci�c time period, the former take place in
both directions, whereas the latter are one-way. The limited number
of bicycles a station can contain/receive also favors the presence of
symmetric patterns. Indeed, at every station involved in such patterns, The natural

symmetry of the
patterns is partly
explained by the
limited capacity of
every station.

the bicycles are, the same day and during the same time period, both
rented and returned. In this way, the stations rarely are empty or full
and more bicycles can be rented or returned. In other terms, the Vélo'v
is used as much as wanted from/to these stations and both incoming
and outgoing edges are claimed frequent in RVélo'v . In the opposite, if,
a given day and during a given time period, every user wants to rent
(resp. return) a bicycle at a given station, this station is soon empty
(resp. full), the �ow stops and the number of rented (resp. returned)
bicycles, limited by the number of bicycles the station can contain (resp.
receive), may not be great enough to claim the related outgoing (resp.
ingoing) edges frequent in RVélo'v . To study the desired(rather than
actual) Vélo'v mobility, the number of rides from (resp. to) a station,
a given day and during a given time period, could be divided by the
total time this station was not empty (resp. full). Unfortunately this
information was not logged.

4.3.5 A Natural Contiguity

The same arguments as those given in favor of a natural symmetry
(see Section2) could have been used to claim, right after the complete
extraction, a natural contiguity of the patterns in RVélo'v . However, this The patterns in the

Vélo'v usage network
naturally are
contiguous.
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fact is even more obvious after Alpha proceeds. All seven patterns,
presented in Section 4.2, are 1-contiguous. Without the �nal post-
processing step, 74% of the 125 patterns, at Alpha 's outputs, are 1-
contiguous (against 67% at its input). When it is expected, beforehand,
that the patterns are naturally contiguous, the � -contiguity, with a
higher � than what a hidden pattern should tolerate, can be seen as
another way to tolerate false negative noise. By agglomeration, Alpha
may, then, recover the hidden, and “more contiguous”, patterns.

5 conclusion

The methods, presented in this thesis, support the discovery of
relevant patterns. They remain tractable even in a dif�cult context (four
attributes, more than 100000tuples, weak minimal size constraints,
etc.), which no other complete extractor can handle. The symmetry and
the almost-contiguity constraints signi�cantly reduce the running times
without much limiting the discovery of unexpected patterns. Indeed,
many datasets, in the manner of RVélo'v , naturally contains symmetric
and/or contiguous patterns and enforcing the related constraints simply
guides the search towards those patterns.
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from closed itemsets to closed et -n -sets

Summary

The broad applicability of closed itemset mining is often praised.
Indeed, binary relations can represent whether customers buy some
products (and an itemset is a group of customers buying a same subset
of products) as well as whether genes are over-expressed in different
biological samples (and an itemset is a synexpression group, i. e., genes
that are involved together in some biological processes). The complete
extractors presented in this thesis further extend the scope of itemset
mining. Generalizing it towards n-ary relation ( n > 2) makes it pos-
sible to take into consideration n orthogonal dimensions of analysis
altogether. It enables, for example, a localized analysis of buying be-
haviors (ternary relations binding customers, products and places) or
a kinetic analysis of gene expressions (ternary relation binding genes,
biological samples and timestamps). To list every closed itemset in
a binary relation, the state-of-the-art extractors enumerate subsets of
properties and derive the supporting subsets of objects. This is possible
because the subsets of the two attribute domains (partially ordered
by � ) form a Galois connection. Closed patterns in n-ary relations,
i. e., closedn-sets, do not have this convenient property. That is why
Data -Peeler relies on original enumeration principles that do not fa-
vor any attribute. When enlarging the current candidate pattern, the
freedom to choose any element in any attribute domain allows to make
a choice that heuristically maximizes search space pruning. Together
with other procedural innovations (e. g., to fasten the enforcement of
the closedness constraint), this original enumeration strategy explains
the excellent performance of Data -Peeler . Indeed, all experiments
show it runs orders of magnitude faster than its competitors, which
were speci�cally designed for closed 3-set mining.

Generalizing Data -Peeler towards noise tolerance is �ghting against
a plague that affects most datasets. Indeed, by simply de�ning noise as
an unwanted perturbation of the data, many phenomena are sources
of noise. E. g., sold out products may have an undesired effect on
transactional data that are aimed at understanding buying behaviors
on a grand scale. Genetic datasets are, somehow, even worse because
they often represent intrinsically stochastic processes. The perfectibility
of knowledge discovery processes is source of noise too. In partic-
ular, when relations are derived from numerical datasets there is a
cumbersome need to �x thresholds beneath/beyond which a Boolean
property is claimed satis�ed. State-of-the-art approaches, which com-
pute noise tolerant itemsets (aka ET-itemsets), show a wide range of
de�nitions. Indeed, the mere declarative speci�cation of noise toler-
ance raises discussions.Fenster tolerates, in every hyper-plan of a
pattern, an upper-bounded number of n-tuples that are absent from
the relation. The choice of upper-bounds for every element in every at-
tribute domainavoids matching patterns in which some elements are
much disconnected. The choice of anabsolutetolerance to noise allows
a closedness constraint to restrict the output pattern collection to a
lossless condensation of all ET-n-sets. Furthermore, from a procedu-
ral point of view, absolute parameters enable far more search space
pruning than relative ones. Although Data -Peeler 's enumeration prin-
ciples are largely reused, Fenster 's time performance fundamentally
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depends on ef�cient enforcements of the generalized constraints be-
neath. That is why an incremental computation of the quantity of noise,
which candidate patterns tolerate, is implemented. Nevertheless, it
usually remains intractable to tolerate enough noise so that Fenster
recovers the realpatterns. That is Alpha 's raison d'être. It heuristically
complements Fenster by hierarchically agglomerating the fragments a
complete extraction returns. Then, among the agglomerated patterns,
the most relevant ones are selected. They are those covering the seminal
collection of closed ET-n-sets and showing the best trade-offs between a
small proportion of (supposedly) noise inside them and a great distance
to the outside patterns.

Perspective

Applications often rely on numerical data. Unfortunately, Fenster
and Alpha only work on n-ary relations. A signi�cant source of noise
directly relates to the pre-process converting real numbers into the
satisfaction or the violation of the encoded Boolean property. Indeed,
by de�nition, Boolean properties are “all or nothing” (the tuple is in
the relation or not), i. e., any numerical values x 2 R must go through
an Heaviside step function comparing it with a threshold � 2 R:

8� 2 R; x !

8
<

:
0 if x < �

1 if x > �
.

Because of the discontinuity at � , this conversion numerical/Boolean is
prone to errors. The Heaviside step function is depicted in Figure 72
along with two logistic functions. The logistic functions are smooth
approximation of the Heaviside step function, i. e., the “threshold effect”
is avoided (k 2 R controls how sharp the transition around � ):

8(�; k ) 2 R2 ; x !
1

1+ ek ( � - x )
.

Using such a function would return to what extent, a property is satis-
�ed, i. e., the related n-tuples would be “member” of the relation to a
certain degree m 2 [0; 1]. Such a dataset is saidprobabilistic. Extending
the scope of Fenster and Alpha to probabilistic datasets is a timely
challenge. Sums of1 - m values would be used to quantify the false
negative noise inside a pattern. In this way, the connection constraint
remains anti-monotone w.r.t. each of its variables, the closedness con-
straint still provides a lossless condensation of the patterns, and a
similar performance is expected despite the generalization.

from closed et -n -sets to specific patterns

Summary

In front of an applicative problem, no data mining algorithm can,
blindly, take the data as input and directly return actionable patterns, i. e.,
patterns that directly translate to actions solving the problem. Instead,
the extraction of such patterns requires whole knowledge discovery
processes that are speci�cally designed for the considered applications.
This thesis has presented a pre-processing which takes advantage of
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Figure 72: The Heaviside step function and two logistic functions.

an additional analysis dimension so that Data -Peeler / Fenster mines
patterns that are robust w.r.t. binarization. It also has shown that
post-processing the closedn-sets is a way to ef�ciently minimize multi-
valued logic functions. The obtained compression rates are even better
than state-of-the-art approaches focusing on this problem. Nevertheless,
in the quest for actionable patterns, the most powerful leverage is the
very expressive constraints Data -Peeler / Fenster ef�ciently handles.
Not only the piecewise (anti)-monotone constraints can �nely outline
the relevant closed ET-n-sets but they also lower the running times.
E. g., listing every closed ET-4-set formed of frequent Vélo'v routes is
about ten times faster if, in addition to minimal size constraints, two
piecewise (anti)-monotone constraints are enforced. These constraints,
namely the symmetry and the almost-contiguity constraints, specialize
Fenster . They translate the relevancy of a pattern in a dynamic graph
(rather than in any n-ary relation). More generally, the background
knowledge of the applicative context can come into the picture as far as
it can be expressed as piecewise (anti)-monotone constraints. Because
this class of constraints is very broad, it can be written that Fenster
both generalizes itemset mining (see the previous section) and makes it
applicable to more speci�c problems. In fact, the class of constraint is so
broad that there is no need to distinguish the relevancy constraints from
the de�nition of a basal pattern. Indeed, this de�nition is a conjunction
of two constraints that were proved piecewise (anti)-monotone.

Perspectives

Dynamic graphs being n-ary relations, Fenster was specialized to
handle this interesting particular case. In the same vein, additional
piecewise (anti)-monotone constraints could be designed to speci�cally
mine trees, sequences, strings, etc. Like with the symmetry and the
almost-contiguity constraints, ad-hoc implementations may provide
better performance than the ones directly deriving from the proofs of
piecewise (anti)-monotonicity. Anyway, as far as the basic enumera-
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tion principles are left unchanged it can be written that the resulting
extractors specialize Fenster . Future interactions with experts in spe-
ci�c applicative domains (e. g., in genetics) may lead the design of
speci�c knowledge discovery processes. Part of the background knowl-
edge would probably be translated into piecewise (anti)-monotone
constraints and, hopefully, Fenster and Alpha would help the dis-
covery of new pieces of knowledge. It may also be useful to pre or
post-processFenster in new ways. Ongoing developments [ NCB10]
deal with generalizing association rules and extracting them from the
closed n-setsData -Peeler computes. In this attempt, the hardest issue
lies in the mere de�nition of a descriptive semantics for generalized
association rules. More precisely, if the consequent of a rule contains
elements from attributes that the antecedent does not involve, the
de�nition of a con�dence measure is not clear.
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