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Docteur de l’Université Pierre et Marie Curie

Sujet:

A NEW LHC SEARCH CHANNEL FOR A LIGHT HIGGS

BOSON AND ASSOCIATED QCD CALCULATIONS

Soutenue le 21 juin 2010 devant le jury composé de
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Abstract

This thesis addresses various topics related to LHC studies and predictions. We were
first interested in a boosted (pt > 200 GeV) light Higgs boson at the LHC (MH ≃ 120
GeV) in the pp → WH and pp → ZH search channels with H → bb̄. We showed how
these challenging channels can be recovered as promising search channels using a subjet
analysis procedure in two steps: a “mass-drop” analysis, which allows one to reduce the
large QCD backgrounds, and a “filtering” analysis, which improves the resolution on the
reconstructed Higgs jet mass. Then we focused on the filtering analysis, which allows one
to suppress the diffuse background from the underlying-event and pile-up, which are mainly
responsible for the bad Higgs mass resolution. We optimised its parameters using semi-
analytical calculations which led us to examine the structure of the non-global logarithms
that appear in this problem. Finally, we studied some processes whose perturbative series
converges poorly at next-to-leading (NLO) order for some observables, a property that we
had noticed in the Z+jet and W+jet processes at high-pt during our Higgs analysis. This is
important because it leads to questions about the reliability of the predictions resulting from
perturbative calculations. It thus becomes necessary to examine higher-order corrections.
The method that we developed, called “LoopSim”, consists in approximating these higher-
order corrections by merging different orders of perturbation theory such that all infra-red
and collinear divergences are cancelled.
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Résumé

Cette thèse a pour objet l’étude de divers sujets liés à la physique du LHC et à ses
prédictions. Nous nous sommes dans un premier temps intéressés à la recherche au LHC
d’un boson de Higgs léger (MH ≃ 120 GeV) et “boosté” (pt,H > 200 GeV) dans le canal
pp → WH et pp → ZH avec H → bb̄. Nous avons montré comment, à partir d’une anal-
yse de la sous-structure des jets en deux étapes respectivement appelées “mass-drop” et
“filtering”, il est possible de réduire de manière significative les divers fonds (mass-drop)
et d’améliorer la résolution en masse lors de la reconstruction du Higgs (filtering). Cela
nous a permis de rendre prometteur ce canal de recherche au LHC, longtemps considéré
comme trop difficile. A partir de là nous nous sommes concentrés plus particulièrement sur
la procédure du “filtering”, qui permet de supprimer autant que possible l’effet du bruit
diffus que constituent l’underlying-event et le pile-up, en majeur partie responsable de la
dégradation de la résolution. Nous avons optimisé ses paramètres à partir d’une analyse
semi-analytique, ce qui nous a conduits à l’étude de la structure des “non-global” logarithms
qui interviennent lors du calcul de la distribution en masse du Higgs. Finalement, nous nous
sommes penchés sur les processus dont la série perturbative présente une mauvaise conver-
gence au next-to-leading (NLO) order pour certaines observables, une caractéristique que
nous avions en particulier remarquée pour les processus Z+jet et W+jet à grand pt lors de
notre première étude sur le Higgs. Cet aspect est important car cette mauvaise convergence
induit une perte de confiance sur les prédictions résultant des calculs perturbatifs. Il devient
donc nécessaire d’examiner les ordres supérieurs, ce que permet de façon approximative un
nouvel outil que nous avons élaboré, appelé “LoopSim”, qui combine divers ordres de la
théorie des perturbations de manière à annuler les divergences molles et collinéaires qui
apparaissent inévitablement.
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supporté tout ce temps à tes côtés! Mais au final, on se sera bien amusés!

Bien évidemment, je ne peux oublier les courageuses copines des thésards sus-mentionnés
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Introduction

During much of the 20th century, considerable effort has been devoted to understanding the
three forces that are dominant at infinitesimal length scales, namely electromagnetism, the
weak interaction and the strong interaction. Various theoretical developments and exper-
imental results eventually led to the combination of these forces into a single framework,
which is a quantum field theory now known as the Standard Model of particle physics. It has
been widely tested and verified at various colliders and precision experiments, and though
some questions remain unanswered, it currently gives very accurate predictions for a huge
array of experimental measurements.

The Large Hadron Collider (LHC), which is a 27 kilometer proton-proton collider built
roughly 100 meters underground near Geneva, is designed to find the one particle of the
Standard Model that has not yet been observed, the so-called Higgs boson, and to probe
very small-distance phenomena in order to possibly discover new physics, i.e. phenomena
that cannot be explained within the framework of the Standard Model.

In the search for new physics at the LHC, one may want to reconstruct a new massive
particle P . In this case, one has to adequately tag the expected decay products of P in
order to possibly find it in LHC events. In general, the major issue is to reduce the Standard
Model background as much as possible while enhancing the signal for P . This may usually
be achieved only if one understands the properties of both the background and the expected
signal in order to know how to distinguish them efficiently. New physics may also be seen
in differential cross-section measurements as an excess with respect to the Standard Model
expectations. In this case, one has to ensure that the observed deviation is really a signal
for something new and not, for instance, a manifestation of higher order effects from the
Standard Model itself that are not yet accounted for theoretically. Our confidence in a new
physics explanation may depend on the accuracy to which we know the Standard Model
backgrounds.

This thesis has been concerned with these two different aspects of the search for new
physics at the LHC. Chapter 1 gives an introductory review of the basic properties of the
Standard Model that are relevant for this work. In the two following chapters, we consider
boosted massive particles at the LHC, like the W and the Higgs bosons, and in particular
their hadronic decays. In this case, the strong interactions lead to final state configurations in
the LHC events that can be difficult to analyse. We thus review some methods to identify
them in such a “dirty” environment. Chapter 2 can be seen as an introduction to these
concepts, and in chapter 3 we develop a new powerful strategy based on jet substructure that
allows one to efficiently reconstruct massive particles decaying hadronically while reducing
the large background from strong interactions. We apply it to the case of light Higgs searches
at the LHC, where we show how the very challenging WH and ZH production modes can be
recovered as promising search channels for a light Higgs. In chapter 4 we semi-analytically

1



2 INTRODUCTION

optimize the reconstruction strategy used in the preceding chapter. The calculations are
carried out in the leading single-logarithmic large-Nc approximation. Finally, chapter 5
deals with higher order corrections of the Standard Model. Many calculations have already
been performed at NLO but only a few are available at NNLO. However, we have found
that some processes can be highly enhanced at NLO compared to LO calculations, which
raises the question of the reliability of the predictions one makes for these processes at the
LHC. Would the NNLO calculation reveal a further large enhancement too? And what
about theoretical uncertainties on the calculation? We will present in this chapter a new
calculational tool which will help investigate these questions by merging in a novel way
different orders of perturbation theory.



Chapter 1

The Standard Model at the LHC

In this introductory chapter, we review the fundamental aspects of the Standard Model that
are relevant to understand the various topics and issues that we will address throughout
this thesis. Section 1.1 gives a brief overview of the electroweak interactions. We focus more
precisely on the electroweak symmetry breaking mechanism, at the origin of the Higgs boson,
for which we discuss the current experimental constraints and expectations for the LHC.
In section 1.2, we study the theoretical aspects of the strong interaction, which induces the
main backgrounds to many LHC searches for new physics. The concept of jets is introduced
in section 1.3. Jets are important objects to consider when studying hadronic events in any
collider experiment, and they constitute the central part of this thesis. Finally, section 1.4
describes some fundamental non-perturbative aspects of strong interactions relevant for the
LHC.

1.1 Electroweak (EW) interactions

There are many very good textbooks that introduce in a pedagogical way the electroweak
interactions as well as quantum field theories in general (see for instance [1–5]). Here we
summarise the main ideas, useful in the context of this thesis, that constitute the theory of
electroweak interactions, but without entering into much detail.

1.1.1 The SU(2)L × U(1) theory

With the success of quantum electrodynamics (QED), offering a relativistic and quantum
description of the interaction between electrons and photons in terms of fields through
abelian U(1) symmetry, physicists were led to examine various possibilities of quantum field
theories to unify electroweak interactions with electromagnetism. The model which is now
known as the Standard Model of electroweak interactions was originally proposed by S. L.
Glashow in 1961 [6], and later extended by S. Weinberg in 1967 [7] and A. Salam in 1968 [8]
who both incorporated the Higgs mechanism (section 1.1.2) into the model. We are going
to present its modern formulation.

In 1956, Lee and Yang predicted that parity was violated in weak interactions [9], which
was later confirmed by Wu et al. [10] in a famous experiment involving β decay. It was
then established that only left-handed neutrinos, i.e. neutrinos with negative helicity, are
sensitive to weak interaction. These helicity eigenstates are referenced with a subscript L

3
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or R, for instance:

νL =
1− γ5

2
ν , (1.1)

νR =
1 + γ5

2
ν , (1.2)

where the {γi=0...3, γ5} are the usual Dirac matrices. Therefore, the simplest idea that was
found was to introduce a weak isospin, i.e. doublets of SU(2)L, where L serves as a reminder
that only left-handed fermions appear in the doublet. We introduce lepton spinors UL and
quark spinors QL. For instance:

UL =

(

νeL

e−L

)

QL =

(

uL

dL

)

,

and similarly for the two other families. The right-handed fermions belong to singlets of
SU(2).

The lagrangian LEW of the electroweak interactions, invariant under the SU(2)L×U(1)
symmetry which mixes weak and electromagnetic interactions,1 can then be written in the
following form:

LEW = L0 + Lgauge + Lint + LEWSB . (1.3)

L0 corresponds to the free propagation of the fields:

L0 = ŪL

(

i/∂
)

UL + ēR
(

i/∂
)

eR + Q̄L

(

i/∂
)

QL + ūR

(

i/∂
)

uR + d̄R

(

i/∂
)

dR , (1.4)

where /∂ ≡ γµ∂µ. Lgauge corresponds to the gauge bosons’ propagation and interactions:

Lgauge = −1

4
W µν

i W i
µν −

1

4
BµνB

µν , (1.5)

where the B and W i fields are related to the physical photon, W± and Z0 fields by some
simple transformations that we do not describe here (see for instance [2]). We will return
to this type of term in the simpler case of strong interactions in section 1.2. Lint concerns
the interactions between the fermions and the gauge bosons:

Lint = g
(

W+
µ J

µ+
W +W−

µ J
µ−
W + Z0

µJ
µ
Z

)

+ eAµJ
µ
A , (1.6)

where the vector currents can be expressed in terms of fermions fields as:

Jµ+
W =

1√
2

(ν̄eL
γµeL + ūLγ

µdL) , (1.7)

Jµ−
W =

1√
2

(

ēLγ
µνeL

+ d̄Lγ
µuL

)

. (1.8)

The constant g is the coupling of the SU(2)L group, while e is the electromagnetic coupling.
The reader is referred to [2] for the other currents. LEWSB corresponds to the electroweak
symmetry breaking that will be explained in section 1.1.2. We only considered the first
family in the expression of the Lagrangian, but we can include the two other families in a
very similar way. The 3 families are completely independent unless we introduce mixing
terms, which is done through the Cabibbo-Kobayashi-Maskawa (CKM) matrix, but this goes
beyond the scope of this thesis and we will not enter into details here.

1We do not discuss the weak hypercharge Y corresponding to the U(1) part of the group because it will
be irrelevant for the rest of this thesis.
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1.1.2 The Higgs mechanism as a model for electroweak symmetry break-
ing

The problem with the Lagrangian L0 + Lint is the absence of mass terms for the fermions
and the gauge bosons. If we take the electron as an example, one could imagine introducing
a simple mass term of the form:

Lmass = −meēe ,

= −me(ēLeR + ēReL) . (1.9)

Unfortunately, this term breaks the SU(2)L × U(1) symmetry because eL and eR belong
to different SU(2) representations. But experiments have revealed that almost all particles
have a mass. So how can we deal with these two apparent contradictions?

The answer is given in the LEWSB term. It incorporates the idea of the Higgs mechanism
which was proposed in a series of famous papers in 1964 by three different teams [11,12] and
also [13] (for a review, see [14]) We introduce a new complex SU(2) doublet field φ which
couples to the fermions:2

Lφ = −λeŪLφeR + h.c. , (1.10)

where λe is called the Yukawa coupling of the electron, with similar terms for the other
fermions. The LEWSB part of the lagrangian can then be written as:

LEWSB = (Dµφ)†Dµφ+ Lφ − V (φ) . (1.11)

The first term corresponds to the free propagation of the field φ and its interaction with the
gauge bosons, summarised in the covariant derivative Dµ, that we do not express for brevity.
Lφ covers the φ terms for all the fermions whereas V (φ) corresponds to the self-coupling of
φ, which, due to renormalisability constraints, is usually expressed as:

V (φ) = −µ2φ†φ+ λ
(

φ†φ
)2

. (1.12)

The starting point of the Higgs mechanism is to say that the expectation value of φ in the
vacuum is a certain value, usually denoted by v√

2
, different from 0. This is possible if µ2 > 0

in eq. (1.12), in which case v is given by:

v =

√

µ2

λ
. (1.13)

The idea is to expand the field φ around its ground state:

φ(x) =

(

0
v√
2

)

+
1√
2
U(x)

(

0

h(x)

)

, (1.14)

where we choose a particular direction around the circle of minima of the potential (fig. 1.1).
h(x) is a real field with 〈h(x)〉 = 0 in the vacuum. U(x) is a general SU(2) transformation
that allows one to obtain any doublet:

U(x) = ei~α(x).~σ , (1.15)
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Figure 1.1: The Higgs potential, eq. (1.12), also known as the “Mexican hat”. There are an
infinite number of minima, all obtained by a simple rotation of the φ components from one
given equilibrium position.

with ~α a three-dimensional real vector depending on the space-time position x, and ~σ corre-
sponds to the usual three Pauli matrices, which form the basis of the SU(2) algebra. With
this parametrisation, eq. (1.10) is rewritten as:

Lφ = −meēe−
me

v
hēe+ h.c , (1.16)

with

me = λe
v√
2
, (1.17)

and similar terms for quarks. Notice that U(x) was removed by a simple gauge transforma-
tion.

Eq. (1.16) introduces 2 important terms. The first one is a mass term for fermions, which
was one of the motivations for the Higgs mechanism, and the second one is a coupling term
of the fermions to a new field, called the Higgs field, corresponding to a new particle. The
stronger the coupling λ, the larger the mass of the particle. Expanding the kinetic term in
eq. (1.11) also results in mass terms for the W and Z bosons as well as couplings of these
bosons to the Higgs. As we started from an explicitly gauge invariant expression (eq. (1.10)),
the result of eq. (1.16) is also gauge invariant, contrary to the simple mass term of eq. (1.9).
But the gauge invariance is not manifest: it is hidden by the non-zero expectation value in
the vacuum of the Higgs field. In this case, we say that the SU(2)L × U(1) symmetry is
spontaneously broken into a U(1) symmetry corresponding to electromagnetism.

Concerning the gauge bosonsW and Z, they acquire a mass through the term (Dµφ)†Dµφ
in eq. (1.11). It can be written in terms of the fields h(x), W± and Z in the following
form [14]:

(Dµφ)†Dµφ =
1

2
(∂µh)

2 +M2
WW+

µ W
µ− + 2

M2
W

v
hW+

µ W
µ− +

1

2
M2

ZZµZ
µ +

1

2

M2
Z

v
hZµZ

µ ,

(1.18)

2h.c. means “hermitian conjugate”.
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where g′ is the coupling constant of the U(1)Y group. The quantities MW and MZ are mass
terms for the W and Z bosons:

MW =
1

2
vg , (1.19)

MZ =
1

2
v
√

g2 + g′2 . (1.20)

The massive gauge bosons couple to the Higgs field with a strength proportional to their
mass squared.

1.1.3 Constraints on the Higgs boson

As eq. (1.16) reveals, giving mass to fermions and gauge bosons implies the existence of a
new scalar particle h which couples to fermions via the Yukawa couplings λi. Up to now, this
particle has never been observed in any collider experiment. It might be worth wondering
whether there is a chance that it is observed in a near future for instance at the LHC, or if
it might be completely out of reach. For that, we have to know if the Higgs boson should
be relatively light (< O(1 TeV)), or if it must be very massive (≫ 1 TeV). The Standard
Model does not predict its mass. But some theoretical constraints can be derived, that rely
on some assumptions. The most important one concerns WW scattering at high energy. As
discussed in [15], if one computes the WW scattering cross-section in perturbation theory
taking into account the Higgs coupling with the W , one finds an upper limit on the Higgs
mass:

MH <

√

8
√

2π

3GF
≈ 1 TeV , (1.21)

that comes from the application of the optical theorem. If the Higgs mass is above this
limit, this means that perturbative unitarity is violated. This is not unitarity itself. The
consequence would be that perturbative theory cannot be applied at high energies, i.e. weak
interactions become strong. By itself, this is an important motivation to build hadronic
colliders running at some TeV scales: At O(1 TeV), either we see a Higgs boson, or we
see strong interactions of the electroweak bosons, or maybe both, but at least we ought
to see something new. Another constraint can be derived from the running of the Higgs
self-coupling λ [16–20]. On the one hand, if λ is large enough, then it increases with the
scale and we do not want to reach the Landau pole before ΛNP , the scale at which new
physics appear. One can show that if ΛNP ∼MPlanck, then MH < 175 GeV, but if ΛNP ∼ 1
TeV, then MH ∼ 1 TeV also. On the other hand, if the Higgs boson is light, so if λ is small
(MH =

√
2λv), then λ can become negative because of top loops, leading to an unstable

vacuum. To avoid it, the Higgs boson cannot be too light, and more precisely MH > 70
GeV or MH > 130 GeV assuming no new physics respectively below 1 TeV or below the
Planck scale. If the vacuum is metastable, then this lower limit is reduced.

There are also experimental constraints. In 2003, from the study of various Higgs pro-
duction processes, LEP and LEP2 excluded with 95% confidence level a Higgs boson with
a mass below 114 GeV [21].3 Another very important constraint comes from electroweak
precision measurements. Indeed, the radiative corrections to some Standard Model quanti-
ties, like the W mass, can be computed, which involve the Higgs boson mass as a parameter

3Though some studies envisage the possibility of an “hidden Higgs sector” that would still allow it to be
lighter than 114 GeV, e.g. [22].
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of the result. These expressions can then be fitted to experimental measurements of the
related quantities. The current best fit is MH = 87+35

−26 GeV with an upper limit of 157 GeV
at 95% confidence level [23]. It is also worth noticing that the CDF and D0 experiments
at the Tevatron were recently able to exclude a Higgs with a mass between 162 and 166
GeV [24,25], though a more recent study [26] questions these exclusion limits.

10
-4

10
-3

10
-2

10
-1

100 120 140 160 180 200
Higgs boson mass (GeV)

br
an

ch
in

g 
ra

tio bb WW

ZZ
gluons

ττ

γγ Zγ

Figure 1.2: The various branching ratios for the Higgs boson depending on its mass com-
puted using HDECAY 2.0 [27] (picture taken from [28]).

Therefore, if the Standard Model Higgs boson exists, it seems that it is light enough to be
seen at the current hadronic colliders, either at the Tevatron or at the LHC. Fig. 1.2 shows
the computed branching ratios of the Higgs boson as a function of its mass, assumed to be
relatively light, between 100 and 200 GeV. However, the current experimental constraints
on the Higgs mass MH favours a Higgs with a mass just above the LEP2 exclusion limit, i.e.
around 120 GeV. In this case, the Higgs is not heavy enough to decay into vector bosons.
Therefore, it mainly decays into fermions, the most massive of which below this scale is
the b quark. It can also decay into γγ, γZ and gluon-gluon via quantum loops. The Higgs
coupling with a fermion is proportional to the fermion’s mass (eq. (1.16)), which explains
why the branching ratio into bb̄ is so important (around 70%). In this thesis, we will be
mainly interested in a light Higgs boson, as it is the most probable scenario for a Standard
Model Higgs, and we will thus particularly focus on the Higgs decaying into bb̄ in order
to possibly discover it through this decay channel and also be able to measure its Yukawa
coupling λb to the b quark.

1.1.4 New physics at the LHC

One has to be aware that the Higgs mechanism formulated in the Standard Model is not
the only way that one might find to explain electroweak symmetry breaking, i.e. the pos-
sibility for particles to acquire a mass without spoiling gauge invariance. Actually, though
theoretically consistent and experimentally very well verified, the Standard Model in its
present formulation has some deficiencies (for instance too many free parameters, natural-
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ness,...) and some unsolved issues (dark matter, neutrino mass,...) which lead theorists to
think about more fundamental theories beyond it. For instance, to explain electroweak sym-
metry breaking, one can also consider supersymmetric Higgs [29], little Higgs models [30],
gauge-Higgs unification scenarios [31,32] and Higgsless extra-dimension scenarios [33].

With its unprecedented centre of mass energy reach of 14 TeV in proton-proton colli-
sions,4 the LHC is now the ideal machine to examine the electroweak breaking sector as well
as theories beyond the Standard Model in general. However, since the LHC is a hadronic col-
lider operating at high luminosity, one major difficulty that will be encountered in studying
LHC events arises from the large importance of strong interactions. For each event, they
may produce hundreds of hadrons that make data hard to analyse. Strong interactions,
though interesting by themselves, thus also appear as a large background to many LHC
studies involving for instance the search for new particles or the measurement of fundamen-
tal Standard Model parameters. It is therefore mandatory to control and to understand
as well as possible these hadronic backgrounds in order to have a chance to extract any
interesting information in the LHC data. The three remaining sections of this chapter will
thus describe the theory of strong interactions, emphasising the aspects that will be used
throughout this thesis (section 1.2) and that are moreover fundamental in hadronic colliders
experiments in general (sections 1.3, 1.4). Some important results derived later in this thesis
will show how we can deal with strong interaction issues when reconstructing hadronically
decaying boosted massive particles.

1.2 Strong interactions (QCD)

1.2.1 The SU(3) theory of colour

M. Gell-Mann [34] and G. Zweig [35,36] introduced the idea of quarks bound inside hadrons
to explain the observed hadron spectrum. But it was soon realised that the 3 quarks in
spin-3

2 baryons have to be in a completely symmetric state, which is in contradiction with
Fermi-Dirac statistics, which imposes the total antisymmetry of the wave-function. To solve
this problem, a new degree of freedom was introduced, called colour. The minimal number
of colours required is 3 in order for the wave function of the 3 quarks to be antisymmetric
in the colour indexes. Many experiments have confirmed the hypothesis of 3 colours [37].

The question that arose was to understand how the colour degree of freedom could
explain the strong interactions, i.e. the dynamical role of colour. The simplest way to
implement it was to consider a new symmetry group SU(Nc), where Nc = 3 stands for the
number of colours, and to build a quantum field theory based on invariance under local
transformations of this symmetry group, as was done for electroweak interactions. This
theory was called quantum chromodynamics (QCD). The QCD lagrangian, invariant under
SU(3), can be written in the following way [38]:5

LQCD = −1

4
FA

µνF
µν
A +

∑

j

q̄j,a
(

i /D −mj

)

ab
qj,b . (1.22)

In this expression, the index j refers to the various quark flavours, a, b refer to the Nc = 3
quark colours, and A refers to the N2

c − 1 = 8 colours of the gauge bosons. The form of

4Currently 7 TeV, but which should be increased to 14 TeV in the next years.
5We do not consider the gauge-fixing and ghost terms in the lagrangian. Although important in general,

they will not bring us any insight in the context of this thesis.
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the lagrangian is similar to that of the electroweak one, except that we do not include any
symmetry breaking term, because SU(3) is seen as an exact symmetry of nature. The first
term corresponds to the propagation and self-interactions of the gauge bosons, called gluons,
with an implicit sum over the N2

c − 1 = 8 degrees of freedom of the gluon field A:

FA
µν = ∂µAA

ν − ∂νAA
µ − gs f

ABCAB
µAC

ν . (1.23)

gs is the coupling constant of the strong interactions, and fABC corresponds to the structure
constants of the group SU(3): if we denote by tA the 8 matrices generating the SU(3)
algebra, then

[tA, tB ] = ifABCtC . (1.24)

The second term of the lagrangian deals with free quark propagation and interactions be-
tween quarks and gluons. The important terms are all included in the covariant derivative
D of the quark field:6

Dµq = ∂µq + igs t
AAA

µ q . (1.25)

The mass term in eq. (1.22) does not break the fundamental symmetry, contrary to the case
of electroweak interactions. Though added in QCD as an input, one should be aware that this
mass actually comes from the electroweak symmetry breaking mechanism (section 1.1.2).

Let us mention that the lagrangian of eq. (1.22) can be rewritten under the form:

LQCD = L0 + Lint , (1.26)

where L0 involves the propagation terms of the free fields, and Lint groups all the interaction
terms, which are proportional to gs or g2

s .

1.2.2 Perturbative QCD

Once the lagrangian is known, the next step is to compute cross-sections, which are the
main measurable quantities in particle physics. We usually start from a scattering process
involving 2 particles in an initial state |i〉, and we want to compute the probability to reach
a given final state denoted by |f〉. If these particles are only sensitive to strong interactions,
then we have to calculate the following quantity:

Sif = 〈f |Tei
R

d4xLint |i〉 , (1.27)

which is the scattering amplitude from state i to state f through strong interactions (Lint

was defined in the previous section and T corresponds to the time-ordered product of op-
erators). The ultimate goal is to be able to compute all the elements Sif of the so-called
scattering matrix S, that are the basic quantities that give us access to cross-sections. Un-
fortunately, we do not know yet how to do such a calculation exactly. We have to resort
to approximations, whose main one considers that the coupling constant gs is small enough
so that we can expand the exponential operator in powers of gs. This is the perturbative
theory of strong interactions, or perturbative QCD:

Sif ≃ δif + i

∫

d4x 〈f | Lint(x) |i〉 −
1

2

∫

d4x d4y 〈f |T (Lint(x)Lint(y)) |i〉+ . . . (1.28)

6This derivative ensures that the lagrangian is invariant under transformations of SU(3).
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p

p

p

q

r

a, i

b, j

b, j

c, k

A, µ

A, µ

A, µ

A, µ

B, ν

B, ν

B, ν

C, ρ

C, ρD, η

δAB−igµν

p2+iǫ

δab i
/p−m+iǫ

−igs(t
A)cb(γ

µ)kj

−gsf
ABC [(p− q)ρgµν + (q − r)µgνρ + (r − p)νgρµ]

−ig2
sf

XACfXBD(gµνgρη − gµηgνρ)

−ig2
sf

XADfXBC(gµνgρη − gµρgνη)

−ig2
sf

XABfXCD(gµρgνη − gµηgνρ)

Figure 1.3: Feynman rules for propagators and vertices in QCD where gluons are represented
by curly lines and quarks by solid lines. Notice that the gluon’s propagator is written in the
Feynman gauge, but we do not consider the ghosts that appear in loop diagrams to suppress
the unphysical gluon polarizations as we will never use them.
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where the remaining (non-written) terms are at least of order O(g3
s). To deal with all

these terms, Feynman invented a diagrammatic picture of the interactions, where particles
propagate along lines and interaction points are represented as vertices of the diagrams. We
will not enter the details of how the calculations are implemented in practice because this
is done in many textbooks in quantum field theory (see for instance [1–3]) and also because
we will use them later in particular cases. We limit ourselves to giving in fig. 1.3 the main
Feynman rules for QCD.

In explicit QCD cross-sections calculations, one always has to deal with some colour al-
gebra involving the structure constants or the fundamental matrices of the SU(3) group. As
an example, we present in fig. 1.4 some one-loop Feynman diagrams whose colour structure
calculation gives the two fundamental constants of the SU(Nc) group, denoted by CF and
CA. These 2 constants are present in almost every QCD calculation.

a b c

A

A

BC D

∝ tAcbtAba = CF δca, CF =
N2

c−1
2Nc

∝ fABCfABD = CAδ
CD, CA = Nc

Figure 1.4: The CF and CA constants for a general SU(Nc) group which appear when we
apply the Feynman rules of fig. 1.3 at the vertices of the diagrams. Here we only consider
the colour structure of the Feynman diagrams, and not their spinor structure.

For the particular QCD case Nc = 3, these constants become:

CF =
4

3
, (1.29)

CA = 3 . (1.30)

It should be noted that in perturbative QCD the asymptotic states are quarks and
gluons, which have never been seen in any collider.7 But in non-perturbative QCD, which
corresponds to solving directly eq. (1.27) without any approximation, the asymptotic states
are the hadrons that we observe in nature. We will return to this important point in
section 1.4.

1.2.3 Running coupling

When one applies the Feynman rules to loop diagrams like those presented in fig. 1.5 that
appear at higher orders in perturbation theory, one has to deal for instance with integrals
of the form

Iµν(p) ∝
∫

d4k
kµkν

k2(k − p)2 , (1.31)

7Though we have many sources of indirect experimental evidence for their existence.
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which correspond to the spinor part of diagram (a) if quarks are supposed massless. One
immediately notices that this integral diverges quadratically when k becomes large. To
subtract this divergence, one has to renormalise the theory, which unavoidably leads to the
introduction of a new scale µ, the point where the subtraction procedure is performed. The
parameters of the theory, like masses and couplings, then depend on µ. This is the case for
the strong coupling αs, which is defined as:

αs =
g2
s

4π
, (1.32)

in analogy with the fine structure constant of QED. However, physical cross-sections should
not depend on this unphysical arbitrary scale µ. This would indeed be the case if we could
compute them directly from eq. (1.27). However, when carrying out perturbative calcula-
tions, the truncation of the perturbative series to a given order introduces a dependence
on µ, and the size of this dependence gives an idea of the importance of the neglected
higher-order corrections. This will be essential for the last chapter.

(a) (b)

pp

kk

Figure 1.5: Example of one loop diagrams contributing to the β function.

The coupling αs itself depends on µ, and this dependence is controlled by the β function:

µ2∂αs

∂µ2
= β(αs) . (1.33)

Fig. 1.5 shows some of the diagrams that contribute to the calculation of the β function at
one loop. The result is the following:

β(αs) = −β0α
2
s +O(α3

s) , (1.34)

with

β0 =
11CA − 2nf

12π
, (1.35)

where nf is the number of active light flavours, i.e. the number of quark flavours with
masses much smaller than the scale µ at which αs is computed. Solving eq. (1.34) leads to
the evolution of αs at one loop with respect to a reference scale µ0:

αs(µ
2) =

αs(µ
2
0)

1 + β0αs(µ2
0) ln µ2

µ2
0

. (1.36)

For nf ≤ 16 (which is actually the case) one notices that β0 > 0 in QCD, so that αs decreases
when µ increases. This means that the strong interactions become weak at small distances,
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and are really strong at large distances. This property, called asymptotic freedom, seems to
be at the heart of confinement, i.e. the fact that quarks are bound into hadrons8 and cannot
propagate freely on macroscopic distances. In practical calculations, one usually considers
µ = Q, where Q is some characteristic scale of the problem, like the centre of mass energy
of the collision. We say that the coupling αs runs with the scale Q, i.e. αs is a running
coupling constant. This property has been verified experimentally (fig. 1.6).

Figure 1.6: The running of the strong coupling αs, measured by various experiments, and
compared to the theoretical expectation (figure taken from [39])

We can rewrite eq. (1.36) as (µ = Q):

αs(Q
2) =

1

β0 ln Q2

Λ2

, (1.37)

introducing a new parameter Λ. Λ represents the scale at which αs(µ) diverges, i.e. when

1 + β0αs(µ
2
0) ln µ2

µ2
0

= 0, assuming one could apply perturbation theory at such a scale. This

scale is measured to be roughly a couple of hundred MeV:

Λ ∼ 200 MeV . (1.38)

Perturbation theory is valid only when Q≫ Λ.

1.2.4 Angular ordering

We are now going to derive the very important property of angular ordering [40–44], which
we will often use in the following chapters. To explain it, we start with a concrete example

8And behave as free particles inside the hadrons.
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of a calculation where angular ordering is manifest. Let us assume that we study the Higgs
boson decaying into bb̄. We have already mentioned this decay in section 1.1.3, which is
by far the dominant one if the Higgs has a mass around 115 GeV, and which is also at the
heart of various chapters of this thesis. We would like to compute the probability P (E0, E1)
to emit one gluon with energy E from the bb̄ dipole, with E in a given range [E0, E1].

9

b
H

b

b
H

b

+

Figure 1.7: Feynman diagrams for Higgs decaying into bb̄ and subsequent one-gluon emission
from the bb̄ dipole.

For that, we first have to sum the 2 amplitudes depicted in fig. 1.7 using the Feynman
rules. If the gluon is soft, i.e. if its energy is significantly smaller than that of the b quarks,
then one can easily show that this amplitude squared can be written [40]:

M(k) = 4παsCF
2pb.pb̄

(pb.k)(pb̄.k)
, (1.39)

with pb, pb̄ and k being respectively the momenta of b, b̄ and the gluon. From there, the
probability P (E0, E1) is simply:

P (E0, E1) =

∫

d3~k

(2π)32|~k|
M(k)Θ(|~k| − E0)Θ(E1 − |~k|) ,

=
αsCF

π

∫ E1

E0

d|~k|
|~k|

∫

d2Ω

4π

2(bb̄)

(bk)(b̄k)
,

=
αsCF

π
ln
E1

E0

∫

d2Ω

4π

2(bb̄)

(bk)(b̄k)
. (1.40)

We have introduced the notation:

(ij) ≡ 1− cos θij , (1.41)

and d2Ω is the integration over all the angular phase space. Let us now rewrite:

2(bb̄)

(bk)(b̄k)
= Ib(k) + Ib̄(k) , (1.42)

with

Ib(k) =
1

(bk)

(

1 +
(bb̄)− (bk)

(b̄k)

)

, (1.43)

Ib̄(k) =
1

(b̄k)

(

1 +
(bb̄)− (b̄k)

(bk)

)

. (1.44)

9This observable is not collinear safe (cf section 1.3.1), as we should introduce a cut-off for emitting a
gluon too close to the b quarks, or to compute instead the probability to emit a third jet. But as we will not
do the full angular integration, we will just hide this problem for now, returning to it later.
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As a first step, using angular coordinates (θbk, φbk) with respect to the b quark direction,
i.e. d2Ω = d cos θbkdφbk, we carry out the φbk integration for the Ib(k) part of eq. (1.40):10

∫ 2π

0

dφbk

2π
Ib(k) =

1

(bk)

(

1 +
cos θbk − cos θbb̄

2π

∫ 2π

0

dφbk

1− cos θbb̄ cos θbk + sin θbb̄ sin θbk cosφbk

)

,

=
1

(bk)

(

1 +
cos θbk − cos θbb̄

| cos θbk − cos θbb̄|

)

,

=
2

(bk)
Θ(θbb̄ − θbk) . (1.45)

Now defining the angular variables with respect to b̄, we can do exactly the same thing for
the Ib̄ part of eq. (1.40). This leads to the following expression for P (E0, E1):

P (E0, E1) =
αsCF

2π
ln
E1

E0

(
∫

d cos θbk

1− cos θbk
Θ(θbb̄ − θbk) +

∫

d cos θb̄k

1− cos θb̄k

Θ(θbb̄ − θb̄k)

)

.

(1.46)
This remarkable result shows that the probability P (E0, E1) does not receive any contribu-
tion from soft gluons emitted outside 2 cones of radius θbb̄ centred respectively on b and b̄
(fig. 1.8). This is the angular ordering property.

b

b
H

Figure 1.8: The part of the perturbative radiation from the bb̄ dipole emitted inside the
2 cones is the one that contributes most to physical observables. The angular ordering
approximation neglects gluons emitted at larger angles.

Here, we studied a simple observable which is independent of the angular region. For
more complicated observables, one does not find strict angular ordering, but only an ap-
proximate version: as a first approximation, one can neglect soft gluons emitted outside the
2 cones of fig. 1.8 when computing physical observables.

The angular ordering property of soft emission is an example of a coherence effect: a
gluon emitted at large angle with respect to the splitting angle θbb̄ does not resolve the
splitting into bb̄, it only sees the Higgs colour charge, which is 0. Therefore, our previous
calculation is also valid for any colour neutral qq̄ dipole. We could have for instance also
considered γ∗, Z → qq̄, which would have worked identically. If we do the same calculation

10We use (b̄k) = a + b cos φbk with a = 1 − cos θbb̄ cos θbk and b = sin θbb̄ sin θbk, which is easy to derive,
and then the integration over φbk is performed with:

Z 2π

0

dφ

2π

1

a + b cos φ
=

1√
a2 − b2

,

if |a| > |b| .
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for a gluon g1 splitting into qq̄, then the radiation pattern from this colour field can be
shown to have contributions outside the 2 bremsstrahlung cones of fig. 1.8. But the angular
ordering property states that a second gluon g2 emitted outside these 2 cones only sees the
overall qq̄ colour charge, which is that of g1.

1.2.5 Large-Nc limit

Let us now introduce another approximation that reveals itself very useful for calculating
higher order corrections. The large-Nc limit was proposed by ’t Hooft [45] as a way to help
understand the strong interactions. The idea is to consider the limit Nc → ∞ with αsNc

fixed. In this limit, ’t Hooft found that a considerable simplification occurs: one is left only
with planar Feynman diagrams (see below). One might think that this approximation is
not good for QCD where Nc = 3, which is not really greater than 1. But, as we will see in
the following examples, the large-Nc limit actually corresponds to an expansion in powers of
1/N2

c , which is close to the perturbative QCD expansion at the MZ scale: αs(MZ) ≃ 0.12.
Furthermore, as Witten pointed out in [46], if one examines the value of e in QED, with
e2/4π ≃ 1/137, one finds e ≃ 0.302, not much smaller than 1/Nc.

i
i i

j
jj

k
k k

l
ll

= + 2
1
Nc

Figure 1.9: Diagrammatic view of the Fierz identity eq. (1.47).

To understand the large-Nc limit, let us start with the Fierz identity, which is valid for
any SU(Nc) group (see appendix A):

δi
jδ

l
k =

1

Nc
δi
kδ

l
j + 2(tA)ik(t

A)lj . (1.47)

This identity is the decomposition of the N2
c colour states of a qq̄ system into the colour

singlet and colour octet representations. Using the colour part of the Feynman rules in
fig. 1.3, one finds the corresponding pictorial representation of this identity, presented in
fig. 1.9.

When Nc →∞, the 1/Nc singlet term disappears, and we can then deduce with fig. 1.9
the colour representation of the gluon in the large-Nc limit:11

≡

This means that the gluon is represented by a qq̄ pair with different colours. Fig. 1.10
shows a few examples of Feynman diagrams and their corresponding large-Nc limit repre-
sentation. The computation of their colour factor is done in appendix A. Here we only
comment on the results.

11The factor of 2 is just a normalisation factor of the tA matrices that are present at the two vertices
(2 = 1/TR, see appendix A).
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(a)

(b)

(c)

Figure 1.10: Some Feynman diagrams and their corresponding colour representation in the
large-Nc approximation. The Feynman diagrams represent either virtual gluon loops, or
real gluons emission amplitudes squared.

If we average over the Nc colours of the incoming quark and we sum over the colours of
the final quark, we obtain (appendix A):

(a) =
αs

Nc
Tr(tAtA) = O(αsNc) , (1.48)

(b) =
α2

s

Nc
Tr(tAtBtC)ifABC = O(α2

sN
2
c ) , (1.49)

(c) =
α2

s

Nc
Tr(tAtBtAtB) = O(α2

s) . (1.50)

Diagrams (a) and (b) are both planar. Each one gives a leading contribution in the large-Nc

limit: for each power of αs we obtain one power of Nc. On the contrary, diagram (c) is an
example of a non-planar graph. To see why, one can first notice that the emitted gluons
correspond to qq̄ pairs of the same colour, which is never the case for planar diagrams.
Another way to see this is to draw diagram (c) in a slightly different but equivalent way.
This is the diagram of fig. 1.11. One notices that one of the gluon has to “jump” over the
other one, i.e. we cannot draw a colour flow in one continuous line. This graph is thus
non-planar and this is manifest in the colour factor: it is a next-to-leading contribution
because a factor N2

c is missing with respect to diagram (b).

Figure 1.11: Diagram (c) of fig. 1.10 drawn such that it becomes explicitly non-planar.
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1.3 Jet physics at the LHC

Though possible in some cases, it is usually hard to talk about the potential discovery of new
physics at the LHC without considering jets. Jets are a direct consequence of 2 fundamental
properties of QCD: asymptotic freedom and infra-red limit of QCD (soft and collinear). We
have already studied asymptotic freedom in section 1.2.3, and section 1.3.1 will introduce
the latter property. Jets form an essential part of any event study at collider experiments,
and especially at the LHC where the hadronic activity is very important.

1.3.1 Origin of jets: the soft and collinear limit of QCD

As an introduction, let us first consider an explicit QCD calculation: the total hadronic
cross-section in e+e− annihilation at next-to-leading order (NLO). For that, one has to sum
the real and virtual part of the cross-section whose diagrams are represented in fig. 1.12.

p
1

p
2

e−

e+

q

k

(a)

(b)

+

+ + +

q

Figure 1.12: Diagrams entering in the calculation of the total NLO hadronic cross-section
in e+e− annihilation. (a) LO + virtual NLO diagrams, (b) real NLO diagrams.

Using the Feynman rules for the real diagrams (b), integrating over the momenta of the
q, q̄ and the gluon g, and summing over all the final state colours and gluon’s polarisations,
one finds the real NLO contribution to the total cross-section when mq = 0 [47,48]:

σqq̄g = σ0Nc

∑

f

Q2
f

∫ 1

0
dx1

∫ 1

0
dx2

αsCF

2π

x2
1 + x2

2

(1− x1)(1− x2)
, (1.51)

where Qf is the electromagnetic charge of quark flavour f , and:

x1 =
2Eq√
s
, (1.52)

x2 =
2Eq̄√
s
, (1.53)

σ0 =
4πα2

3s
. (1.54)
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s is the total centre of mass energy of the e+e− collision, α is the fine structure constant of
QED, and Ei is the energy of particle i. We notice that the integrals in eq. (1.51) diverge
at xi = 1. As one can show that

1− x1 =
x2Eg(1− cos θ1g)√

s
, (1.55)

1− x2 =
x1Eg(1− cos θ2g)√

s
, (1.56)

this means that the divergence occurs either when the gluon is collinear to q or q̄ (θig → 0),
or when the gluon is soft, i.e. its energy is very low (Eg → 0). To understand where this
divergence comes from, let us zoom on one of the real NLO diagrams in fig. 1.12, which leads
to fig. 1.13. Using the Feynman rules (fig. 1.3), the expression for the quark propagator in
red is roughly (m = 0):

i

/p1
+ /k

=
i(/p1

+ /k)

(p1 + k)2
, (1.57)

with:
(p1 + k)2 = 2Ep1Ek(1− cos θ1k) . (1.58)

When the gluon becomes either soft or collinear to the quark, the propagator thus diverges
and this is what we observe in eq. (1.51).

p
1

p
2

k

Figure 1.13: When the gluon becomes either soft or collinear to the quark, the quark internal
line drawn in red becomes on-shell, and its propagator thus diverges.

This divergence is not actually a problem because it will cancel with the virtual diagrams
that have exactly the same soft and collinear divergences in the gluon loop. As in the context
of renormalisation, we have to regularise this expression, for instance using a space-time
dimension 4− 2ǫ with ǫ < 0 (called dimensional regularisation [49–52]). We thus obtain for
the virtual and real parts at NLO [38]:

σqq̄g(ǫ) = σ0Nc

∑

f

Q2
f

αsCF

2π
H(ǫ)

[

2

ǫ2
+

3

ǫ
+

19

2
− π2 +O(ǫ)

]

, (1.59)

σqq̄(ǫ) = σ0Nc

∑

f

Q2
f + σ0Nc

∑

f

Q2
f

αsCF

2π
H(ǫ)

[

− 2

ǫ2
− 3

ǫ
− 8 + π2 +O(ǫ)

]

. (1.60)

where H(ǫ) = 1 + O(ǫ). One notices on eqs. (1.59,1.60) that the divergences manifest
themselves as poles in 1/ǫ. But the physical cross-section, which is obtained by adding the
real and virtual parts, is regular in the limit ǫ→ 0:

σNLO
tot = σ0Nc

∑

f

Q2
f

(

1 +
αs

π
+O(α2

s)
)

, (1.61)
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where we used CF = 4/3. This cancellation of divergences between real and virtual diagrams
is a particular case of a more general theorem which states that suitably defined inclusive
quantities will indeed be free of singularities in the massless limit. This theorem was first
demonstrated in the case of QED by Bloch and Nordsieck [53] (soft singularities only) and
in more general cases, including QCD, by Kinoshita [54] and Lee and Nauenberg [55] (soft
and collinear singularities). But what do suitably defined inclusive quantities mean?

To answer this question, let us consider a simple example. Assume that we want to
compute the probability to have 3 partons in the final state. In this case, only the diagrams
(b) in fig. 1.12 contribute, and the expression for the probability is proportional to eq. (1.59),
which diverges in 4 dimensions, i.e. when ǫ → 0. The result is thus meaningless, or non-
physical. This example shows that we cannot compute everything in perturbative QCD:
the probability to obtain 3 partons in the final state is not a suitably defined inclusive
quantity. In fact, the derivation of the Kinoshita-Lee-Nauenberg theorem assumes that
we can sum over degenerate final and initial states configurations. So we are led to the
fundamental concept of infra-red and collinear safety, which is a simple way to be sure that
we suitably define inclusive quantities [38]: for an observable’s distribution to be calculable
in perturbation theory, the observable should be infra-red and collinear safe, i.e. insensitive
to the emission of soft and collinear gluons. In particular, if ~pi is any momentum occurring
in its definition, it must be invariant under the branching ~pi → ~pj + ~pk whenever ~pj and ~pk

are parallel (collinear safety) or one of them is very soft (infra-red safety).

One may argue that due to finite detector resolutions in angle and energy, experiments
always measure infra-red and collinear (IRC) safe quantities. This is true, but theoretical
IRC safety is crucial as soon as we want to compare theoretical predictions with measure-
ments.

As an example, the probability to emit a gluon in the energy range [E0, E1] that we
considered in section 1.2.4 is an infra-red safe quantity (for E0 > 0) but is not collinear
safe. This was manifest in the divergent integrals over θbk and θb̄k (eq. (1.46)). Event
shape variables such as thrust [56, 57], spherocity [58], energy correlations [59–61] and C-
parameter [62] are examples of IRC safe quantities. A jet, that we are going to study now,
is an example of an IRC safe way to view a parton.

1.3.2 An approach to jets

We saw in the previous section that the probability to find 3 partons in the final state is
ill-defined because if is not IRC safe. Sterman and Weinberg made one of the first attempts
to define a related probability in an IRC safe way. Instead of considering the 3-parton
cross-section, they computed the 3-jet cross-section [63]. In their approach, a final state is
classified as two-jet-like (or two-“parton”-like) if all but a fraction ε of the total available
energy is contained in a pair of cones of half-angle δ. The 3-jet cross-section is an IRC safe
observable because emitting a soft or collinear gluon does not change the number of jets
(fig. 1.14).

Sterman and Weinberg found a 3-jet cross-section equal to:

σNLO
3 = σNLO

tot

4CFαs

π

[

ln
1

δ
ln

(

1

2ε
− 1

)

+ ln
1

δ

(

−3

4
+ 3ε

)

+
π2

12
− 7

16
− ε+

3

2
ε2 +O(δ2 ln ε)

]

,

(1.62)
where σNLO

tot is given in eq. (1.61). We now obtain a finite cross-section, because divergences
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qδ2q

g

(a) (b)

Figure 1.14: (a) Examples of 2-jet events in the Sterman and Weinberg approach: the gluon
is either too soft or too collinear to be accounted as a separate jet; (b) Example of a 3-jet
event where the gluon is energetic enough and sufficiently separated in angle to be seen as
an additional jet.

are regularised using the ε and δ parameters. However, one notices that if δ ≪ 1 or
ε≪ 1, the cross-section becomes enhanced by logarithms of 1/δ and 1/ε. This means that
the O(αs) term can become as large as we want. This is a manifestation of the soft and
collinear divergences: though being cancelled, if we reduce δ or ε, we also reduce the phase
space region in which this cancellation occurs.

If we compute the higher-order corrections, we can find a leading term of the form

Jn(δ, ε) = αn
s lnn 1

δ
lnn 1

ε
, (1.63)

which can be even larger than the O(αs) term for δ and ε small enough. An immediate
consequence of this enhancement is a breakdown of the perturbative expansion: we cannot
trust it if higher order corrections become so important. Therefore, one has to take into
account at least the dominant term at all-orders. This procedure is called resummation.
We will return to this very important point later, but for now, we are going to see the
phenomenological implication for a collider experiment of such an enhancement.

1.3.3 The parton shower

The higher order enhancement of the cross-section observed in the previous section becomes
manifest if we compute the probability to emit a gluon with energy E at an angle θ from a
quark (fig. 1.15). In the soft and collinear limit, one can easily show the following property:

dσ3 = dσ2
2CFαs

π

dE

E

dθ

θ
. (1.64)

The quantity dσ2 is the differential cross-section to produce a qq̄ pair, which depends on
the details of the process. The quantity dσ3 is the differential cross-section to produce an
additional gluon. Therefore, the expression

dΦg ≡
2CFαs

π

dE

E

dθ

θ
, (1.65)
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q q

E
θ

Figure 1.15: Production of a qq̄ pair via an unspecified process (cross) with subsequent
emission of a gluon with energy E at an angle θ from qq̄. The propagator of the quark (in
red) goes on shell when E, θ → 0.

can be viewed as the probability we were looking for. Notice that the coupling αs should be
computed at the emission’s energy scale, which is roughly given by the transverse momen-
tum kt ≃ Eθ of the gluon with respect to the quark. So, when E → 0 or θ → 0, not only do
we observe a divergent logarithmic enhancement of the emission probability, but also the
coupling αs enters the non-perturbative regime (cf discussion about asymptotic freedom in
section 1.2.3). As already stated in the previous section, this means that perturbation the-
ory is not suited to describe very soft or collinear emissions, which belong to large-distance
physics. In spite of that, the enhancement of the emission probability has an observable
consequence, usually referred as parton-showering: once a parton (quark or gluon) is pro-
duced in a hard scattering process (for instance e+e− → qq̄), it undergoes many successive
soft and/or collinear splittings. This “cascade” of partons results, after hadronisation, in
collimated sprays of hadrons that have often been observed in experiments. This is what we
usually call jets (figs. 1.16, 1.17). The first experimental evidence for these jets was reported
by SLAC in 1975 [64]. One should be aware that a parton-showering process can occur on
initial state as well as final state partons. In the former case, we talk about Initial State
Radiation (ISR), and in the latter case, we talk about Final State Radiation (FSR).

This picture gives an intuitive view of a jet, but jets can only be suitably defined using
jet algorithms (see next section). The original definition of a jet from Sterman and Weinberg
(section 1.3.2) can actually be seen as the first jet algorithm, i.e. a way to see the event as
“two-parton-like” or more depending on the choice of the parameters ε and δ. However, it
turned out experimentally and theoretically that this definition was not well suited to study
multijet events, and alternative jet algorithms were thus proposed, that we are now going
to describe.

1.3.4 Jet algorithms

Fig. 1.17 showed an example of 2 and 3 jet events at LEP. For these events, it seems to
be rather clear how many jets there are, especially for the 2-jet event. But for the 3-jet
case, how can we be sure that there are really 3 jets and not 4? Maybe there are 2 jets
close to each other that we do not distinguish well on the picture. Therefore, we need a
good definition of what we call a jet, that can be used to compute cross-sections as in the
Sterman-Weinberg approach. Moreover, the events shown come from LEP, which was a
leptonic collider. We expect much more hadronic activity from a hadronic collider like the
LHC, leading to final states far more complex where it can be impossible to distinguish any
jet by eye.

The goal of a jet algorithm is to solve this issue in a fully automated way so as to be
able to deal with millions of events. More precisely, given a set of N hadrons with momenta
{pi}, a jet algorithm returns a set of n jets, n ≤ N . As we saw in section 1.3.1, the
procedure to obtain the final jets should be IRC safe, in order for the theoretical results to
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hadronisation flow of hadronsparton−shower

One jet (or more)

Figure 1.16: The parton-showering process from an initial quark. After hadronisation, it
results in a flow of hadrons that gives one jet or more according to the jet algorithm chosen
(see section 1.3.4).

(a) (b)

Figure 1.17: Pictures taken from the website of the OPAL experiment at LEP [65]: (a)
two-jet event interpreted as a hard process e+e− → qq̄; (b) three-jet event interpreted as a
hard process e+e− → qq̄g.
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be comparable with experimental data. This means that the addition of a soft particle, or
the splitting of a particle into 2 collinear particles, should change neither the number of jets
nor their momentum. One example of class of jet algorithms is provided by the sequential
recombination algorithms, defined here for hadronic colliders:12 let {i}i=1..N be the set of
all hadrons produced in an event. Define 2 distances dij and diB respectively between
2 particles i and j and between a particle i and the beam. Then iterate the following
procedure [66,67]:13

1. Find the minimum dmin of all the distances dij and diB .

2. If dmin is a dij , merge particles i and j into a new particle (or “pseudo-jet”) k. If it is
a diB , declare particle i to be a final state jet and remove it from the list.

3. Repeat from step (1) until no particles are left.

The distance measures should be chosen longitudinally invariant, i.e. they do not change
if we make a boost along the beam axis. When dij is the smallest distance found, one
has to decide how to recombine particles i and j into a new particle k, which is called the
recombination scheme. The simplest way to do it is to sum the 4 momenta:

pk = pi + pj . (1.66)

This is the E-scheme, which is the most widely used nowadays. Other schemes exist but we
will not consider them. An inclusive sequential recombination algorithm as defined above is
necessarily IR unsafe, because the emission of an arbitrarily soft particle can become a jet.
Therefore, one also has to provide a cut on the minimal transverse momentum for a jet.

Important examples of IRC safe sequential recombination algorithms in hadronic collid-
ers14 are the kt [66, 67] and Cambridge/Aachen (C/A, [71,72]) algorithms whose longitudi-
nally invariant distance measures are given by:

kt : dij = min(p2
ti , p

2
tj )

∆R2
ij

R2
, (1.67)

diB = p2
ti , (1.68)

C/A : dij =
∆R2

ij

R2
, (1.69)

diB = 1 , (1.70)

where pt is the transverse momentum with respect to the beam. The angular distance ∆Rij

in the (y, φ) plane between particles i and j is defined as:

∆R2
ij ≡ (yi − yj)

2 + (φi − φj)
2 . (1.71)

12For an e+e− collider, the diB distance is useless because partons cannot be emitted from the beam.
13We present only the inclusive version of the algorithm, defined in [67]. The exclusive version is described

in [66].
14The first example of a sequential recombination algorithm was provided by the JADE collaboration in

e+e− collisions [68, 69]. Though IRC safe, it suffered from some bad issues and was progressively replaced
by the e+e− version of the kt algorithm [70]
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R is a parameter of the algorithm, called the jet radius. If R is reduced, then we analyse the
event on a finer scale and we resolve more “partons” that participated to the hard process.
R is equivalent to the δ parameter of the Sterman-Weinberg’s approach. This implies that
there is a non-unique way to see an event. This ambiguity seems disturbing at first sight
but actually reveals a great richness of the physics: what you see clearly depends on the
scale at which you look at things. One should be aware that the possibility to look at an
event at different scales reveals itself very powerful to understand its structure and we will
intensively use this opportunity to reduce the QCD background and enhance possibly new
physics signals in the following chapters.

The kt and C/A algorithms provide physically relevant descriptions of a parton-shower
because their distance measures are closely related to the soft and collinear divergences of
QCD. The C/A algorithm essentially measures the angle between 2 partons and recombines
them if they are close enough, and the kt distance is related to the emission probability of
a gluon, because eq. (1.65) can be equivalently rewritten, in the collinear limit (θ ≪ 1), as:

dΦg =
2CFαs

π

dptg d∆Rqg

ptg ∆Rqg
, (1.72)

where ptg is the gluon transverse momentum with respect to the beam axis.
Another important class of jet algorithms is the so-called cone algorithms. The Sterman-

Weinberg definition of a jet can be seen as one of that kind. Contrary to the sequential
recombination algorithms, they give a top-down approach: the goal is to find coarse regions
of energy flow (represented as stable cones) and define them as jets. This is a simple
and maybe more intuitive view of a parton-shower, which should work well because QCD
only modifies energy flow on small angular scales. But cone algorithms are more difficult
to implement in practice, and the various definitions that have long been used were all
infra-red and/or collinear unsafe. This was revealed by the work of [73, 74], and [74] also
implemented a new IRC safe cone algorithm called SISCone. We will not say more about
cone algorithms because we will hardly use them in this thesis, but the reader is referred to
section 2.1 of [75] for a review.

One major problem of all the sequential recombination jet algorithms was the time
required to cluster one event. For each of them, this was of the order of N3 where N is the
number of hadrons in the event, and this was found too large for the LHC, where N ∼ 1000.
However, in 2005, Cacciari and Salam found a clever way to reduce this time to O(N lnN)
for the kt algorithm [76], which is far more attractive for practical use at the LHC. They
also developed a new tool, FastJet [77], which implements this method in a C++ program
that is now widely used among the experimental community. In FastJet, one can find the kt,
C/A and SISCone algorithms, as well as plugins to various other jets algorithms. But there
is also another new jet algorithm that will be useful for chapter 4 of this thesis, called the
anti-kt algorithm [78]. It is a sequential recombination algorithm with distance measures:

dij = min

(

1

p2
ti

,
1

p2
tj

)

∆R2
ij

R2
, (1.73)

diB =
1

p2
ti

. (1.74)

Contrary to kt, the anti-kt algorithm clusters hard particles first, so that the hardest jets
are usually circular.
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1.3.5 Splitting functions

We saw in section 1.3.3 that there is a high probability to emit a soft and collinear gluon.
The enhancement of the emission probability manifests itself as a parton-shower, whose
main consequence is to develop a jet structure that is experimentally analysed using jet
algorithms (section 1.3.4). This can also be analytically described thanks to resummation
that consists in extracting the logarithmically enhanced terms at each order of perturbation
theory. This was briefly mentioned in section 1.3.2 where we noticed that the dominant
terms have powers of logarithms that counterbalance the smallness of αs. Given an IRC
safe observable τ that we study in the region τ ≪ 1, we talk about leading-logarithmic (LL)
resummation if one considers only the leading term at each order of the expansion of its
integrated distribution Σ(τ):

Σ(τ) =
∞
∑

k=0

ckα
k
s ln2k τ . (1.75)

For each power of αs, one has up to two large logarithms: one for soft emissions, one
for collinear emissions. This is a double-log resummation. At this accuracy, one can use
eq. (1.65) for the emission probability of a gluon, because this expression contains the
leading part of the soft and collinear divergences.

However, in resummation, one sometimes has to face observables that only give rise
either to a collinear large logarithm, or to a soft large logarithm, but not both. It is also
possible that one may want to go beyond the double leading-log approximation and thus
consider next-to-leading-log (NLL) corrections with down to only one large logarithm for
each power of αs. In chapter 4, we will have an example of such an observable, for which
we will resum the leading soft logarithms only and treat angular distributions using as few
approximations as possible. In this case, we talk about single-log resummation. However,
at this accuracy, eq. (1.65) cannot be used anymore, because it does not take into account
the full energy or angular distributions. In chapter 4, we will study the matrix elements in
the soft approximation. Therefore we will not examine them in this section. Instead, we are
going to study the collinear approximation without assuming that the emitted gluons are
soft. The collinear approximation is important for Monte-Carlo programs that usually use
it to simulate the parton-showering process (see next section).

To study the collinear approximation for a splitting i→ jk where i, j and k are quarks
or gluons, we define 2 kinematic variables: z and t. The variable z is the fraction of parton
i’s energy carried by parton j:

Ej = zEi , (1.76)

Ek = (1− z)Ei , (1.77)

and t is the virtuality of parton i:

t ≡ p2
i = (pj + pk)

2 . (1.78)

The problem is to compute, in the collinear limit, the probability d2P
dt dzdt dz for a parton i to

split into j and k with invariant mass squared t and with j carrying the fraction z of parton
i’s energy. One can show that this splitting probability is process independent, and that we
can always write in the final state [79]:

dσn+1 = dσn
d2P

dt dz
dt dz , (1.79)
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where dσn is the differential cross-section to produce n particles in the final state from a
certain process. All the information about the process is contained within dσn, d2P

dt dz does
not depend on it. This is a particular case of factorisation that allows one to separate short
and long distance physics, a collinear emission being part of the long-distance physics (see
section 1.4.1 for more details about factorisation).

The LO splitting probability can be written in the following form:

d2P

dt dz
= Sji

αs

2π

Pji(z)

t
, (1.80)

where Sji = 1/2 for i and j identical and Sji = 1 otherwise. Pji(z) is called a splitting
function. In QCD, there are 4 splitting functions represented in fig. 1.18.15

Pgq Pqg

Pqq Pgg

z z

zz

θ

Figure 1.18: The QCD branchings at LO in the collinear approximation (θ ≪ 1) and their
corresponding splitting functions.

At LO, the splitting functions can be written as [79]:

Pqq(z) = CF
1 + z2

1− z , (1.81)

Pgq(z) = CF
1 + (1− z)2

z
, (1.82)

Pqg(z) = TR

(

z2 + (1− z)2
)

, (1.83)

Pgg(z) = 2CA

(

1− z
z

+
z

1− z + z(1− z)
)

. (1.84)

The factor Sji in eq. (1.80) is 1/2 only for Pgg and 1 otherwise. One can notice interest-
ing symmetries among these splitting functions [80], for instance if we permute the decay
products:

Pqq(z) = Pgq(1− z) , (1.85)

Pqg(z) = Pqg(1− z) , (1.86)

Pgg(z) = Pgg(1− z) , (1.87)

or the crossing relations:

Pji(z)

Cji
= (−1)2sj−2si+1 1

z

Pij

(

1
z

)

Cij
, (1.88)

15This is true at LO, though at higher orders one must also distinguish quarks and antiquarks as well as
the various quark flavours.
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where sk is the spin of parton k and Cji = CF , TR or CA, is the colour factor related to the
splitting function Pji.

1.3.6 Numerical tools for the LHC

To analyse data, or to predict how well a particular kind of new physics can be seen at the
LHC, one usually needs to calculate cross-sections. For instance, if one wants to compute
the distribution dσ/dx of an observable X at the LHC, one has to carry out the following
integration:

dσ

dx
=
∑

k

1

k!

∫

d3~p1

(2π)32|~p1|
. . .

∫

d3~pk

(2π)32|~pk|
M(p1, . . . , pk)δ(X(p1, . . . , pk)− x) , (1.89)

where the sum over k actually runs over all the processes pp → p1 . . . pk at the LHC and
M(p1, . . . , pk) is the matrix element squared. Unfortunately, this kind of integration is very
complex to perform in general, in part because one often also wants to add some particular
kinematic cuts, for example |yi| < 2.5,16 to simulate the detector’s range.

The Monte-Carlo method is a particularly suited tool for multi-dimensional integrations
with phase space cuts as complex as one can imagine. In principle, it is simple to implement.
One first chooses a particular process and randomly generates some momenta p1 . . . pk (that
we call an “event”). Then, one checks if the event passes the various kinematic cuts. If not,
one generates another event. If yes, one computes the matrix element squared M(p1, . . . , pk)
for this process and defines the weight of the event as being the matrix element times the
phase space factors. Eventually, one obtains the differential distribution dσ/dx by defining
an histogram for X, computing the value X(p1, . . . , pk), and filling the corresponding bin of
the histogram with the event weight. If needed, one can do the same for different processes
and sum the resulting histograms. With this method, one can thus obtain any desired
distribution.

Unfortunately, in general, life is not as easy as the simple description we have just given.
For instance, one would like to generate more events in phase space regions where the
event weight is enhanced. Moreover, we have seen in section 1.3.1 that the matrix element
can diverge in the soft or collinear limits, so that one usually has to face with numerical
instabilities. Therefore, the integration has to be carried out in a clever way in order to
obtain reliable results in a sufficiently short computing time.

Various Monte-Carlo programs have already been implemented to study different kinds of
processes. One class of programs corresponds to the fixed-order Monte-Carlo programs. This
means that the matrix element is computed exactly at LO, NLO, and nowadays up to NNLO.
Beyond LO, we know that the real and virtual parts are separately divergent (section 1.3.1),
but their sum is finite. To deal with these kinds of integrals, some methods have been found
among which the Catani-Seymour dipole subtraction method [81] and the Frixione-Kunszt-
Signer (FKS) approach [82,83] are the most commonly used in NLO Monte-Carlo programs,
whereas sector decomposition (see [84] for a review) and antenna subtraction [85–87] are
preferred for NNLO calculations. Sector decomposition first disentangles all the singularities
before extracting the poles and subtracting them. The dipole and antenna subtraction
methods as well as the FKS methods use the fact that a real matrix element can only become
singular when one final state parton becomes soft or when 2 partons become collinear, in

16yi ≡ 1
2

ln
Ei+pz,i

Ei−pz,i
is called the rapidity of particle i.
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which case the singular behaviour becomes universal and very well-known (see for instance
the previous section on splitting functions). These methods are implemented in various
Monte-Carlo programs at NLO, for instance MCFM [88, 89] and NLOJET++ [90] that
we will both later use, FeynCalc/FormCalc [91], GOLEM [92], and a new generation of
programs like Rocket [93], BlackHat [94], and HELAC/CutTools [95, 96] that allow one to
compute diagrams with an arbitrary number of external legs at one-loop.

Another class of programs is parton-shower Monte-Carlo event generators. In this
case, each parton in the initial state undergoes successive branchings to simulate ISR (sec-
tion 1.3.3), and each final state parton is also “showered” in order to simulate FSR. For
that, one has to compute a Sudakov form factor ∆(τ0, τ) which gives the probability that
there is no emission between scales τ0 and τ . This form factor simply sums all the virtual
diagrams and can be roughly written under the following form:17

∆q(τ0, τ) = e
−αs

2π

R τ
τ0

dτ
τ

R 1−z0
z0

dz Pqq(z)
, (1.90)

∆g(τ0, τ) = e
−αs

2π

R τ
τ0

dτ
τ

R 1−z0
z0

dz (Pqg(z)+ 1
2
Pgg(z))

, (1.91)

for the quark and gluon form factors respectively. This is simply the exponentiation of the
one gluon-emission probability that depends on the splitting functions (eq. 1.80). z0 and τ0
define the cut-offs for long-distance physics, or so called unresolvable emissions below which
a gluon is too soft or too collinear to be detected. To take into account effect of coherent
branching which manifests itself as angular ordering that we derived in section 1.2.4, one
can define the scale τ to be related to the angle of the emission, for instance [97]

τ =
pj.pk

EjEk
= 1− cos θjk , (1.92)

for a branching i→ jk with j and k massless, and impose angular-ordered emissions τn+1 <
τn for successive emissions. In this case, eqs. (1.90,1.91) correctly describe collinear emissions
and the coherence property of soft emissions. The parton-showering process expressed in
terms of Sudakov form factors ∆q and ∆g is implemented in parton-showers Monte-Carlo
like HERWIG [97,98] which uses eq. (1.92) as the ordering variable, and like PYTHIA [99]
and Sherpa [100] which both take a different approach to angular ordering.

Another important issue is the possibility of merging parton-showers with fixed-order
Monte-Carlo programs beyond LO. The problem is that when a parton-shower Monte-Carlo
simulates the parton-showering process from a LO configuration, it also generates a part of
the higher-order contributions, those that are soft or collinear enhanced. Therefore, one has
to find a way to avoid double counting. How to achieve this requirement at NLO is nicely
explained through a toy-model in [101]. This led to the creation of the MC@NLO program
that we will also use later.

1.4 Some non-perturbative aspects of QCD

In sections 1.2−1.3, we mainly considered perturbative QCD. However, many important
properties of QCD cannot be derived within the perturbative framework. In spite of that,
they can usually be studied using a combination of theoretical understanding and experi-
mental analysis. In this part, we review the non-perturbative aspects of QCD relevant for
hadronic colliders, and in particular for LHC studies.

17αs should depend on the emission’s scale but, for this simple explanation, we do not take it into account.
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1.4.1 Parton distribution functions

The Feynman rules studied in section 1.2.2 involve point-like objects, which are the quarks
and gluons. So, to make an explicit perturbative QCD calculation, we assume we have
incoming quarks or gluons, and we compute the amplitude to obtain a certain final state.
However, in hadronic colliders, we always have hadrons and not quarks or gluons in the
initial state. Said another way, the asymptotic states of perturbative QCD are not the
same as those of the full QCD theory. To take this property into account, we usually
define parton distribution functions q(x,Q2), which are non-perturbative objects. We can
introduce parton distribution functions for each hadron, but with the LHC in mind, we will
only consider the proton as the reference hadron. q(x,Q2) is then defined as the probability
to find a quark with flavour q carrying a longitudinal fraction x of the proton’s momentum
when the proton is probed at scale Q2. One can similarly define g(x,Q2) for the gluon
distribution. These distributions can be studied for instance in Deep Inelastic Scattering
(DIS) experiments, where electrons scatter off protons (fig. 1.19).

k’

γ ∗

p

q

xp

k
e

e

P
X

Figure 1.19: DIS event in the Feynman’s parton model: the exchanged virtual photon hits
one of the quarks that constitute the proton. The momentum fraction x carried by the
hit quark can be calculated within the framework of the Feynman’s parton model to be

x = Q2

2(p.q) , with Q2 = −q2. This can be experimentally measured using only the deviation

of the electron because q = k − k′.

The parton distribution functions were first introduced by Feynman [102] to explain
Bjorken scaling [103] of the structure functions of the proton (for example, see [3,5]), which
can be translated by the independence of the functions q with respect to Q2 when Q2 →∞.
However, in QCD, this scaling can only be approximate. Indeed, a quark can emit a gluon,
thus acquiring a large transverse momentum kt with a probability αsdkt/kt. The integration
of this quantity up to scale ∼ Q2 leads to contributions that behave like αs lnQ2 and are
at the origin of the Bjorken scaling violation. The QCD picture of this effect is shown in
fig. 1.20.

From a theoretical point of view, one can derive the evolution equation with Q2 of the
parton distribution functions. They are known as the Dokshitzer-Gribov-Lipatov-Altarelli-
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Figure 1.20: A more realistic picture of DIS in which the struck quark has acquired a
non-zero transverse momentum due to successive parton splittings.

Parisi (DGLAP) equations [79,104–106] and can be written in the following way:

Q2 ∂qi
∂Q2

(x,Q2) =
αs

2π

∫ 1

x

dz

z

∑

j

(

Pqiqj

(x

z
, αs(Q

2)
)

qj(z,Q
2) + Pqig

(x

z
, αs(Q

2)
)

g(z,Q2)
)

,

(1.93)

Q2 ∂g

∂Q2
(x,Q2) =

αs

2π

∫ 1

x

dz

z

∑

j

(

Pgqj

(x

z
, αs(Q

2)
)

qj(z,Q
2) + Pgg

(x

z
, αs(Q

2)
)

g(z,Q2)
)

.

(1.94)

The sum over j takes into account all the quarks and antiquarks flavours, so that we have
to deal with 2nf − 1 coupled equations. The functions Pji are called the evolution kernels,
or the splitting functions, that we have already encountered in section 1.3.5. Here, the
difference is that we take into account the virtual corrections, and therefore these functions
become distributions whose expressions at LO are:18

Pqq(x) = CF

[

1 + x2

(1− x)+
+

3

2
δ(1 − x)

]

, (1.95)

Pgq(x) = CF

[

1 + (1− x)2
x

]

, (1.96)

Pqg(x) = TR

[

x2 + (1− x)2
]

, (1.97)

Pgg(x) = 2CA

[

x

(1− x)+
+

1− x
x

+ x(1− x)
]

+ 2πβ0δ(1 − x) , (1.98)

with β0 given by eq. (1.35). We use the same notation as in eqs. (1.81−1.84) because, away
from x = 1, they are the same functions which can still be interpreted as a probability

18TR = 1
2

is the usual normalisation factor of the tA matrices in QCD, see appendix A.
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density for partons splitting. The “plus” prescription has the following meaning: for every
smooth function f , we get

∫ 1

0
dx

f(x)

(1− x)+
=

∫ 1

0
dx

f(x)− f(1)

1− x , (1.99)

and for x < 1,
f(x)

(1− x)+
=

f(x)

1− x . (1.100)

Eqs. (1.95−1.98) give only the first order terms of a series expansion in αs. The evolution
kernels are actually known at NLO [107–109] and up to NNLO in the unpolarised case
[110,111].

In contrast to the QED case, we cannot find the exact physical solution when solving
these differential equations because the initial condition q(x,Q2

0) at a given scale Q = Q0

is non-perturbative, thus analytically unknown, and has to be extracted from experiment.
An analytical formula can be guessed for q(x,Q2

0) and fitted with the experimental results.
This is done by different fitting collaborations like CTEQ [112] and MRST/MRSW [113].
With this in hand, one can solve the DGLAP equations to obtain q(x,Q2) at any value of
Q2 large enough to remain in the perturbative region. The DGLAP equations led to many
discussions about its numerical solutions (see for instance [114–118]). The reason for such a
keen interest is because the parton distribution functions are at the heart of the predictions
one can make in collisions involving hadrons, so that an accurate analytical or numerical
knowledge is required. The main property that is used to compute physical cross-sections is
called factorisation. It means that we can separate the long and short distance physics, i.e.
the perturbative and non-perturbative parts of QCD. This has been proved to all-orders in
perturbation theory using 2 different methods (see [119] for a review).

In DIS where a proton with momentum P collides with an electron of momentum k at a
characteristic scattering scale Q, this property translates mathematically as the expression
of the corresponding total cross-section σ(P, k):

σ(P, k) =
∑

f=qi,g

∫ 1

0
dx f(x, µ2

F )σ̂f

(

xP, k,
Q2

µ2
F

)

. (1.101)

f runs over all the partons flavours. σ̂ is the cross-section calculated from perturbative
QCD, with a parton of momentum xP in the initial state instead of the proton itself. µF

is called the factorisation scale, which separates the long and short distance physics. The
long-distance physics reveals itself in the perturbative evolution of the parton distribution
functions as collinear singularities. Because they arise in the initial state, they are not
taken into account by the Kinoshita-Lee-Nauenberg theorem and remain at the end of the
calculation. Roughly speaking, we factorise them in the f(x, µ2

F ) function if they involve a
transverse momentum smaller than µF . Of course, physical cross-sections should not depend
on µF but, as we truncate the perturbative series, we actually observe a dependence on it
that we have to examine when computing uncertainties.

One of the most important concepts for parton distribution functions is that of univer-
sality. It means that if we extract the functions f(x, µ2

F ) from DIS experiments, we can
use these functions to study hadron-hadron collisions. In other words, parton distribution
functions should not depend on the process under study. For instance, if we collide 2 protons
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p with momenta P1 and P2, the resulting total cross-section σ(P1, P2) for some hard process
pp→ X (X = Z, WW , 2 jets,...) is:

σ(P1, P2) =
∑

f1,f2=qi,g

∫ 1

0

∫ 1

0
dx1dx2 f1(x1, µ

2
F )f2(x2, µ

2
F )σ̂f1f2→X

(

x1P1, x2P2,
Q2

µ2
F

)

,

(1.102)
where f1 and f2 can be extracted from DIS experiments.

1.4.2 Hadronisation

In section 1.3.3, we examined the parton-showering process that develops both in the initial
state and the final state of the hard collision. In Monte-Carlo generators, the final-state
parton-shower is implemented until a scale Q0 is reached, below which we enter the non-
perturbative regime where the final state partons are transformed into the observed hadrons.
This process is called hadronisation. It is fundamentally a non-perturbative property of QCD
as it involves the transition from partons to hadrons. It may be seen as the inverse process
of extracting a parton from the proton using parton distribution functions. Here, we have to
deal with fragmentation functions Dh

i instead. Dh
i (z) represents the probability for a parton

i to fragment into a particular hadron h carrying the fraction z of the parton’s energy. These
functions obey DGLAP like equations, i.e. their evolution with energy is controllable using
perturbation theory. We will not enter into details here.

Perturbation theory seems to work rather well down to very low scales of ∼ 1 GeV, i.e.
a few times ΛQCD. This leads to the hypothesis of local parton-hadron duality [120], which
states that the flow of momentum and quantum numbers at the hadron level tends to follow
the flow established at the parton level. Of course, this is only an approximation because
the formation of hadrons induces an irreducible smearing of order ΛQCD.

The string model [121–124] is one of the two important hadronisation models that follow
the local parton-hadron duality. The basic property of this model is the following: when
a colour connected qq̄ pair separates itself, it loses some energy to the colour field which
is supposed to collapse into a stringlike configuration. The string finally breaks up into
hadron-sized pieces through spontaneous qq̄ pair production in its intense colour field. Each
gluon that remains at the end of the parton showering process produces a kink on the string
which changes the angular distribution of hadrons in a way which is in good agreement with
experiment (see for instance [125]).

Another important hadronisation model is the cluster model [126–128], which relies
on the formation, after the parton-showering process, of colour singlet clusters of partons
which further decay into hadrons. An example of such clusters can be colour-connected
neighbouring qq̄ pairs (assuming all the final state gluons split into qq̄). This model also
usually leads to good agreement with experiment.

1.4.3 Underlying-event and pile-up

Underlying event (UE) and pile-up (PU) are important aspects of QCD specific to hadronic
colliders. They are really simple to describe in an intuitive way but very hard to understand
analytically: UE and PU concern soft interactions and therefore cannot be dealt with using
perturbative QCD. As for the hadronisation process, one thus has to rely on models that are
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fitted to experimental data. For the purpose of this thesis, it will be sufficient to describe
UE and PU without entering into the details of these models.

Let us first consider the UE. When two protons collide, we saw in section 1.4.1 that
two partons participate in the hard interaction, one from each proton. The probability for
one particular parton to interact is proportional to the corresponding parton distribution
function. However, it seems very unlikely that only one parton from each proton interacts.
Several other partons can also interact between the two protons. So one has to face with
multiple parton interactions. But it is also very unlikely that 2 different parton interactions
lead to a hard process in the same proton-proton collision. Instead, these additional interac-
tions result in soft emissions of a few GeV. Several models exist to simulate them [129–133].
Each model usually has a certain number of free parameters in it that have to be tuned
in order to give an accurate description of the experimental data (see for instance [134]).
The simulation of multi-parton interactions with their tunes is implemented in Monte-Carlo
event generators like PYTHIA [99], HERWIG with JIMMY [130], SHERPA [100], and Pho-
jet [135].

We now turn to PU. At the LHC, the proton beam consists of bunches of protons.
Therefore, if the beam is sufficiently collimated or dense, it often happens that several
protons interact during the same bunch crossing. As for the UE, it is very unlikely that two
different proton-proton interactions give rise to a hard interaction in one bunch crossing, so
that PU is also made of soft particles. But it is believed that one PU collision results in less
hadronic activity than UE. Indeed, it seems logical to state that the collision which leads to
the hard interaction is more central than the other ones, i.e. UE involves the whole proton
structure whereas PU interactions are more peripheral (fig. 1.21). However, there can be
many different proton-proton collisions in the same bunch crossing. PU will become very
important during the high luminosity running of the LHC: PU activity is expected to reach
values up to 10− 20 GeV per unit area (in the (y, φ) plane) [136,137] whereas UE activity
will range around 2− 3 GeV per unit area [138]. Notice that this PU activity corresponds
to roughly 20 collisions per bunch crossing [138]. PU interactions are modelled to be of the
minimum-bias type in PYTHIA (see [99] for more details).

UE and PU are very important sources of noise at the LHC. They can really distort
jet mass reconstructions for instance by adding a large amount of additional activity in the
jet’s neighbourhood. An important aspect of this thesis concerns the way one can remove
this kind of noise using a subjet analysis procedure.
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Figure 1.21: (a) Central proton-proton collision involving multiple parton interactions lead-
ing to the hard process and to several UE interactions; (b) Peripheral proton-proton collision
leading to one PU interaction whereas the other partons do not participate in any interac-
tion.



Chapter 2

Boosted massive particles decaying
hadronically

One major issue at the LHC, and at any collider in general, is to identify (new) massive
particles in order to study their properties (mass, spin, couplings,...) or to tag an event
(see later). Many of the particles of interest nowadays have a very short lifetime and decay
before reaching the detectors. Therefore, the question that arises is to know how to identify
them using their decay products. There are essentially two kinds of decays:

• leptonic decays where the massive particle decays into leptons and/or neutrinos (like
Z → µ+µ− or W+ → e+ν)

• hadronic decays where the massive particle decays into quarks (like H → bb̄ or W+ →
ud̄)

A particle can undergo a 3-body decay (or even more), like in the case of the top quark
where we have for instance t→ bW+ → be+ν.

Leptonic decays are usually more easily tagged because electrons and muons can be very
efficiently reconstructed in the detectors [139, 140]. To recognise a Z boson decaying into
µ+µ−, one just has to compute the invariant mass of the pair and if it is around MZ ≃ 91
GeV, then they likely originated from a Z boson. In contrast, hadronic decays are much
harder to study. The first reason is that there is often a large number of hadrons in an
event coming from the parton showering process (cf section 1.3.3), and reconstructing the
branching history1 is not an easy task (jet algorithms do such a job, but there’s an ambiguity
in the one to use, with all their parameters which should be chosen adequately according
to the process under study [141]). Moreover, there is also noise from soft particles due to
pile-up and underlying events (see section 1.4.3), which is very difficult to suppress, although
some methods already exist [138].2 Finally, there is a very large QCD background from hard
processes like, for instance, g → bb̄ which can look similar to Z → bb̄. All of these make
hadronic decays difficult to study.

1Of course, this is a classical point of view. Due to quantum interferences, there is not really a branching
history, but it can be thought of this way.

2The filtering analysis that we will discuss in the next chapter is another method to reduce the effect of
this kind of noise.

37
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In this chapter we are going to explain how hadronic decays can be treated, considering at
the moment only the reduction of the hard QCD background.3 In section 2.1 we examine the
general method to implement this reduction, and in section 2.2 we focus more particularly
on the light Higgs boson when it decays into bb̄.

2.1 Jets from a massive particle vs QCD jets

2.1.1 A simple introductory example

We first take as an example non-boosted tt̄ production, which has been very well studied
at Tevatron [142–144], in order to show the generality of this topic and to emphasise the
differences with boosted processes that are a central part of this thesis. The top quark
decays before it can hadronise. Therefore, to recognise a tt̄ event, one has to study the
possible decays of the top. This leads us to consider 3 different final state configurations for
tt̄ production, usually called 3 different search channels (fig. 2.1):

The all-leptonic channel: the 2 W ’s decay leptonically, so that the final state consists of
2 b quarks (seen as jets after parton-showering and hadronisation), 2 leptons (where we only
consider electrons and muons because τ leptons are massive enough to decay hadronically
and thus need separate study in general), and 2 neutrinos identified as missing energy whose
transverse momentum can be computed using momentum conservation. This channel has
a clean signature and backgrounds are not very large (with respect to QCD backgrounds
[144,145]), but it suffers from a low branching ratio (∼ 5%, if we do not take the τ leptons
into account) and the fact that the 2 W ’s cannot be fully reconstructed.

The semi-leptonic channel: one W decays leptonically and the other one hadronically.
So what we want to see in the detector is 1 lepton, missing energy, and roughly 4 jets (2
from the b’s and 2 from the W ). This channel usually gives the best results with its large
branching ratio (∼ 30%) and its rather clean signature. But if we look at a 4 jet event like
the one in fig. 2.2, we see that we get a combinatorial background due to the fact that we
do not know which jets come from the W decay, and which ones come from the b quarks.4

So, to reconstruct the W , do we have to recombine jet 1 with jet 2, or jet 1 with jet 3, or
...?

The all-hadronic channel: the 2 W ’s decay hadronically. So we expect to see up to 6
jets. This channel is interesting in the sense that we can in principle fully reconstruct both
of the W bosons, but in spite of its large branching ratio (∼ 44%), it is a challenging channel
for tt̄ studies because the QCD background is very large and the combinatorial background
is important.

This non-boosted example allowed us to review some different ways to tag an event. We
are now going to focus on channels involving hadronic decays, like in the semi-leptonic and
fully hadronic channels in tt̄. There are two reasons for that. Firstly, as several studies have
already shown [146–148],5 hadronic decays will play a very important role at the LHC and
it will become necessary to be able to deal with them. Secondly, we will describe in the
next chapter a new method using jet substructure that allows an efficient reconstruction of

3The other aspects will be seen in the next chapter.
4b-tagging is used to solve this problem, but for more general processes involving no b-quarks, this would

not be the case.
5plus many other references that will be given in the following chapters.
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Figure 2.1: tt̄ production from a gg process and its analysis through (a) the dilepton channel,
(b) the semi-leptonic channel, and (c) the all-hadronic channel
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Figure 2.2: (a) Example of a four jet event from SLAC and (b) its schematic representation
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boosted massive particles decaying hadronically as well as an efficient reduction of the QCD
background. Therefore, this chapter can be seen as an introduction to that topic.

2.1.2 Considering boosted massive particles

With the LHC starting, we will be able to reach centre of mass energies of several TeV
in the hard parton-parton interaction. Therefore, LHC events may either produce very
massive new particles, like SUSY ones, or very boosted Standard Model (SM) objects like
vector bosons, “very boosted” meaning a large transverse momentum pt compared to the
particle’s mass M , pt ≫ M . Concerning the new particles, most models predict that they
will decay into SM particles.6 A large difference of mass between the new massive particles
and the SM ones, or the Lightest Supersymmetric Particle (LSP), also implies that SM
particles are very boosted. Therefore, in many cases, we will have to face high-pt (massive)
objects at the LHC. At first sight it can seem that it is a problem as jets from boosted
massive particles are collimated and therefore look similar to QCD splittings (because of
the collinear divergence of QCD, see section 1.3.1). However, as a high-pt splitting usually
results in only one jet instead of two if the radius of the jet algorithm is large enough,7 one
avoids the combinatorial background mentioned above.

So, henceforth, we will essentially consider high-pt jets. The goal of this analysis is to
be able to distinguish jets from a boosted massive particle from QCD jets.

2.1.3 Use of a discriminating variable: the jet mass

Hadronic decays are challenging because QCD backgrounds can swamp the signal. For
example, W+ → ud̄ which gives 1 jet in the final state (boosted case), can be very hard
to distinguish from a QCD jet that contains for instance a hard splitting g → gg. One
variable that can be used to gain an information is to compute the mass of the jets, which
is a powerful discriminator as the mass distribution is of course very different for a QCD jet
and a W jet (fig. 2.3).

As can be seen on these plots, approximately 10% and 16% of the quark and gluon jets
respectively are kept in a mass range around the W mass (MW ± 10 GeV) while 60% of the
W jets are kept. Notice the tails in the W plot: the tail on the left, towards low masses,
results from the loss of perturbative radiation as well as from events where the W decays into
2 separated jets, whereas the tail towards high masses is due to hadrons entering the jet and
which have nothing to do with it (essentially initial state radiation here, though in real life
underlying event and pile-up can deeply change the shape of the mass distribution, see next
chapter). This cut on the jet mass is a first important step to reduce the background but is
not enough, as the QCD background cross-section is usually orders of magnitude above the
signal cross-section.8 So we need to go further, using another discriminating variable.

6with the exception of the dark matter candidate, which should be stable.
7For a splitting i → jk, the angular distance Rjk between j and k is O

“

Mi

pti

”

, see eq. (2.7) later.
8for instance, with a minimum pt of 200 GeV, the WH signal that will be studied later has a cross-section

around 70 fb, whereas W+ jet, which is its major background for a low mass Higgs boson, has a cross-section
around 180000 fb. Of course, b-tagging and adequatly chosen cuts on transverse momentum or rapidity are
also used to reduce this large difference.
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Figure 2.3: Mass distribution for (a) W jets, and (b) QCD jets. To generate these plots,
we used PYTHIA 6.4 with ptmin

= 200 GeV, and kt algorithm with R = 1. Notice that the
underlying event was switched off. For each event, only the hardest jet was considered.

2.1.4 Another discriminating variable

After averaging over the azimuthal angle φ, only 2 independent variables remain to charac-
terise a branching i→ jk: the energy fraction z and the angle θ (fig. 2.4), where z is defined
as

z = min

(

Ej

Ei
,
Ek

Ei

)

, (2.1)

with El the energy of particle l. This definition implies 0 < z < 1
2 , and in the boosted limit,

when particles j and k become almost collinear, it can be equivalently written in terms
of transverse momenta (sometimes more convenient because invariant under longitudinal
Lorentz boosts):

z =
min(ptj , ptk)

ptj + ptk

. (2.2)

i

j

θ

k

z

φ

Figure 2.4: kinematic variables for a branching 1→ 2

With the help of a jet algorithm, eq. (2.1) can be used in Monte-Carlo studies or experi-
mentally. However, for theoretical studies, it can be sometimes more convenient to consider
z as the energy fraction carried by a particular decay product (like the b quark as opposed
to b̄, or the gluon as opposed to a quark), as we did for instance in section 1.3.5 when we
talked about splitting functions. In this case, z can be in the range 0 < z < 1. In all this
chapter, we may switch from one definition to another, but the physics obviously remains
the same.
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Coming back to the mass variable, we can write it as a combination of z and θ:

M2 = 2z(1 − z)E2(1− cos θ) . (2.3)

Therefore, once M is known, we can either choose z or θ, or any other combination of
these two variables different from M . This variable must have a powerful discriminating
strength. For instance, due to the collinear divergence of QCD and the fact that the massive
particles are boosted, θ is not very convenient because it will be small for both QCD jets
and boosted massive jets. However, we can use instead the soft divergence of QCD, which
tells us that z is small most of the time when a gluon is emitted, which means that the z
distribution is peaked towards 0 for QCD jets whereas it is not the case for massive particles
jets (fig. 2.5(a)). z is convenient because directly related to splitting functions.
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Figure 2.5: (a) z distribution for W , quark, and gluon jets respectively using PYTHIA with
a large ptmin

of 1000 GeV in order not to be constrained by kinematic limits. For each
event, we considered the hardest jet and we applied to it a Mass Drop (MD) analysis (but
with ycut = 0), whose details will be described in the next chapter. We then computed the
z fraction for each event whose hardest jet after the MD has a mass within [MW − 10 GeV,
MW + 10 GeV]. The clustering was done using the C/A algorithm with R = 0.8. Notice
that PYTHIA does not take into account spin correlations for the W decay in the WW
process that was used to generate the W distribution, so its distribution is like the one for a
massive scalar particle; (b) fraction of events which would pass a cut z > zcut as a function
of zcut for W , quark, and gluon jets.

Demanding a z greater than zcut allows one to significantly reduce the QCD background
with respect to the signal, here W boson production. If z is too small, i.e. z < zcut, then we
say it’s background, otherwise we keep it as signal. For instance, using zcut = 0.1, fig. 2.5(b)
shows that 79% of the signal remains whereas we only keep about 34% and 48% of the quark
and gluon jets respectively. In the next section, we will see what this implies in terms of
signal significance.

One should be aware that we can imagine other variables to study a splitting [149] but
they are almost all equivalent for a 1 → 2 process. In spite of that, let us mention the kt

distance djk (eq. (1.67)) which may be used instead of z. Applying eq. (2.7), which will be
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seen in the next section, we find in the boosted limit:

djk ≡ min
(

p2
tj , p

2
tk

)

∆R2
jk ,

≃ z2p2
ti

1

z(1− z)
M2

i

p2
ti

,

≃ z

1− zM
2
i . (2.4)

Therefore, the dimensionless variable

yjk ≡
djk

M2
i

, (2.5)

is equivalent to z when pti ≫Mi at leading order.

2.1.5 Theoretical consequence of the z cut

Before continuing discussing the importance of the z cut, we derive a very simple but useful
formula that we will often refer to in this thesis. For that we consider a splitting i → jk
of a massive particle i into 2 massless particles j and k. Let Mi and pt respectively be the
mass and the transverse momentum of particle i. We define z to be the energy fraction of
particle i carried by particle j. We can write:

M2
i = 2z(1 − z)p2

t (cosh ∆yjk − cos ∆φjk) , (2.6)

with ∆yjk = yj − yk and ∆φjk = φj − φk. In the boosted limit, Mi ≪ pt, or equivalently
∆yjk,∆φjk ≪ 1, one can deduce:

Rjk(z) ≃
1

√

z(1− z)
Mi

pt
, (2.7)

where we remind the reader that Rjk is the angular distance in the (y, φ) plane between j
and k (eq. (1.71)):

R2
jk = ∆y2

jk + ∆φ2
jk . (2.8)

We now return to the cut on z analysed in section 2.1.4. The question that arises is the
following: what do we really gain in terms of reduction of QCD backgrounds by using a
cut on z? More precisely, given a mass M0, we want to compute the probability to find a
quark jet with a mass M in the range

[

M0 − Γ
2 ,M0 + Γ

2

]

, Γ ≪ M0, depending on whether
we impose a z cut or not. For this purpose, we recall that the probability for a quark with
(virtual) invariant mass squared t to split into a quark and a gluon with energy fraction z
is given by (eq. (1.80)):

d2P

dtdz
=
αs

2π

Pgq(z)

t
, (2.9)

so that
d2P

dMdz
=
αs

π

Pgq(z)

M
. (2.10)

We assume that we cluster the event using a jet algorithm with a certain radius R0 ∼ 1.
As we still work in the boosted limit, we require the quark and the gluon to be in the same
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jet. Thus, if we define M and pt to be respectively the jet mass and the jet transverse
momentum, eq. (2.7) implies in a sufficiently boosted limit where M2

R2
0p2

t
≪ 1:

z >
M2

R2
0p

2
t

. (2.11)

Therefore:

1

σ

dσ

dM0
=

∫

dMdz
d2P

dMdz
δ(M −M0) ,

=
αsCF

π

∫

dM

M

∫ 1

M2

R2
0p2

t

dz
1 + (1− z)2

z
δ(M −M0) . (2.12)

The upper bound should be 1− M2

R2
0p2

t
with our current definition for z, but replacing it with 1

leads to small corrections scaling like O
(

M2

p2
t

)

that we neglect here. Without any additional

cut on z, we thus obtain:

1

σ

dσ

dM
=
αsCF

π

1

M

(

4 ln

(

R0pt

M

)

− 3

2
+O

(

M2

p2
t

))

. (2.13)

Therefore, the probability PΓ(M0) for the quark jet to be in an interval of width Γ around
M0 can be approximately written

PΓ(M0) ≃
αsCF

π

Γ

M0

(

4 ln

(

R0pt

M0

)

− 3

2

)

. (2.14)

As Γ≪M0, we can write the result as the product of the interval width with the differential
distribution evaluated at M0. Now, if we impose z > zcut, with zcut >

M2

4p2
t
, then eq. (2.12)

has to be replaced by:

1

σ

dσ

dM0
=
αsCF

π

∫

dM

M

∫ 1

zcut

dz
1 + (1− z)2

z
δ(M −M0) . (2.15)

Once again, we neglect terms of order zcut, so that the upper bound for the integral is 1
instead of 1− zcut. This leads to

1

σ

dσ

dM
=
αsCF

π

1

M

(

2 ln

(

1

zcut

)

− 3

2
+O (zcut)

)

. (2.16)

We immediately notice that the effect of the z cut is to replace the large logarithm ln
(

R2
0p2

t

M2

)

in the limit pt ≫M by ln
(

1
zcut

)

. This effect is shown in fig. 2.6.

Consequently, the probability for a quark jet to be in a mass range of width Γ around
M0 and also pass the z cut is given by:

PΓ(M0, zcut) ≃
αsCF

π

Γ

M0

(

2 ln

(

1

zcut

)

− 3

2

)

. (2.17)

As pt increases, the probability to find a quark jet that passes both cuts on mass and z does
not change much, whereas it increases logarithmically if we only impose the mass cut.
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Figure 2.6: Mass distribution for quark jets at ptmin
= 1000 GeV, obtained with PYTHIA

in the same way as for fig. 2.5. We compare the full mass distribution to the curve obtained
when we only consider the jets that fulfil the condition z > zcut, with zcut = 0.1.

Consequently, selecting jets with z > zcut among all the QCD jets that passed the mass
cut implies that we only keep a fraction f of background events given by

f =
PΓ(M0, zcut)

PΓ(M0)

≃
2 ln

(

1
zcut

)

− 3
2

4 ln
(

R0pt

M0

)

− 3
2

(2.18)

This very simple analysis would have to be supplemented with a resummed calculation for
very high pt

M values, but here we get the main idea, which is that the cut on z kills one large
logarithm, as long as zcut not too small.

2.2 Application to light Higgs searches for the LHC: an in-
troduction

In this section, we would like to apply these ideas to Higgs searches at the LHC. When
it is light (i.e. MH around 120 GeV, just above the LEP2 exclusion limit [21]), we saw
in section 1.1.3 that it mainly decays hadronically, roughly 70% of the time according to
HDECAY [27]. After reviewing the main search channels at the LHC, we will focus on Higgs
production in association with a vector boson in order to estimate an optimal zcut in this
case. This is in view of the following chapter which will use the basic concepts that will be
introduced here.

2.2.1 Higgs boson studies for the LHC

As was explained in section 1.1.2, the Higgs boson plays a very important role in the
Standard Model as it is the remnant of electroweak symmetry breaking, allowing particles
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to acquire a mass. Moreover, since it is the only particle of the Standard Model that is
still to be observed, there has been a large amount of work in computing more precisely
its production cross-sections (because of the information we want to extract from them),
while refining the procedures that should allow one to observe it, if it exists, at high energy
colliders experiments.

There are essentially 4 ways to produce a Higgs at hadron colliders [14], as depicted in
figure 2.7. Fig. 2.8 shows their respective cross-sections at the LHC. All production modes
have been computed exactly at NLO in QCD: gluon-gluon fusion [150, 151], vector boson
fusion [152,153], associated production with a vector boson [154] and with a tt̄ pair [155,156].
It is worth noticing that the gluon-gluon fusion process has been calculated up to NNLO in
the heavy top quark limit [157–159] with NLO electroweak corrections [160–163], and that
theWH/ZH production modes have been computed exactly at NNLO in QCD [157,164,165]
with also NLO electroweak corrections [166]. Monte-Carlo programs have been written
dedicated to NNLO Higgs production (see for instance the program HNNLO [167] or FEHiP
[168]). This illustrates how much importance is given to the Higgs search.

Because it is so important in the Standard Model, we saw in section 1.1.3 that high-
energy experiments at LEP or Tevatron have devoted significant resources to searching for
the Higgs boson over the past years, leading to various constraints on its mass. In the
meantime, two of the LHC experiments, ATLAS and CMS, have devoted part of their
studies to predicting their respective sensitivity to a potential Higgs discovery [140, 169].
This sensitivity depends on the experimental apparatus (resolution of the detectors, LHC
luminosity,...) as well as on theoretical considerations (how well the properties of QCD allow
one to distinguish signal from backgrounds).

To do that, the ATLAS and CMS experiments rely on Monte-Carlo programs like
PYTHIA or HERWIG to simulate signal and backgrounds in realistic events, and on other
programs like Geant4 [170] to simulate the response and the geometry of the various detec-
tors. Combining these programs leads to realistic predictions of the observations that may
be made at the LHC. During the last few years, the two experiments published technical
reports on the results of such simulations for many physics topics [140,169], and in particular
for Higgs searches. For instance, the results for the ATLAS experiment can be summed up
in fig. 2.9.

The high significance that one can notice in fig. 2.9 when MH = 150 − 180 GeV comes
from the large H → WW branching ratio in this mass range and the clean signature of
such a process when the 2 W ’s decay leptonically. On the other hand, the Higgs boson
seems far more difficult to observe when its mass is below 130 GeV. The reason for that
is the dominant decay mode into bb̄ of the Higgs when it has a low mass (fig. 1.2): such
a signal being completely swamped by very large continuum bb̄ production from QCD, it
is not easily recognisable. That is why, in spite of their low branching ratios, experiments
instead rely on H → γγ, H → ττ and H → ZZ∗ decay modes to efficiently tag the Higgs
decay products, as they have a much cleaner signature.

Nevertheless, if the Higgs mass is low (below 130 GeV, which we recall is favoured
by precision electroweak fits), this picture is not so satisfactory. Not only the combined
significance is not large, but also the Hbb̄ coupling, which drives the main decay channel,
cannot be measured experimentally [171].9 With this in mind, one could imagine recovering

9One could think of diffractive Higgs production to measure the coupling, but the conclusion from the
ATLAS Forward Report concerning the H → bb̄ decay is pretty definitive: “Our current understanding
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Figure 2.8: Higgs production cross-sections at exact NLO in QCD as a function of the Higgs
mass (plot taken from [14]). The NNLO QCD corrections as well as the NLO electroweak
corrections are also included for the WH and ZH production modes.
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Figure 2.9: The predicted ATLAS significance for the search of the Higgs boson with a
luminosity of 10 fb−1 at the LHC as a function of the Higgs mass. H → ZZ∗, H → γγ,
and H → WW0j involve Higgs production via gluon-gluon fusion. H → ττ involves Higgs
production via vector boson fusion. The last one WW2j involves both gluon-gluon fusion
and vector boson fusion.

the H → bb̄ signal using associated production of the Higgs boson with vector bosons (W
and Z) or tt̄. These processes have smaller cross-sections than the 2 dominant ones, gg
fusion and VBF (see fig. 2.8), but they offer a cleaner signature because we also have the
decay products of the W , Z, or tt̄ that can help identify these events. Of course, CMS and
ATLAS simulated what would be expected for these studies, and the fact that the results
do not appear on the plot 2.9 means that they were not found good enough.

However H → bb̄ is the main decay when the Higgs boson is light, and there are many
motivations for going further into this study (see next chapter). In this section, as in the next
chapter, we consider boosted light Higgs searches, and we are going to carry out a leading
order (LO) analysis on the ZH channel so as to optimise the use of the z cut introduced
in the previous section. This analysis will be very approximate but will give us an idea of
which zcut one should use.

2.2.2 Signal and Backgrounds

The signal H → bb̄ suffers from large QCD background due to parton branchings which
result in a jet with a mass around the Higgs mass (fig. 2.10).

Even though a splitting like g → gg looks very similar to H → bb̄ at high pt in the
final state (after parton-shower and hadronisation), the two can actually be distinguished
thanks to b-tagging. Indeed, b quarks hadronise into B-mesons which have a long lifetime
and therefore, they can travel a lot before decaying. This results in a secondary vertex, i.e.
a vertex point displaced with respect to the beam axis, from where the decay products of

after detailed studies is consistent with the previous generator-level studies, namely that under realistic
assumptions, the enhanced cross sections predicted by BSM Higgs models are required to observe the Higgs
Boson in the H → bb̄ channel” [172]
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Figure 2.10: Higgs signal vs QCD backgrounds

the B meson come from. If we could always perfectly find this secondary vertex without a
mistake, i.e. if the b-tagging was perfect, then the only background to H → bb̄ at LO would
be g → bb̄ as we would have to see a double b-tagged jet. Unfortunately this is not the case,
and one usually defines 2 numbers related to this:

1. the probability r to identify a B-hadron produced in an event,

2. the probability f to tag a jet as containing a B-hadron even though there’s no B in
it.

r is called the b-tag efficiency, and f the fake tag rate. These rates depend on what we are
considering. Values often used by experimentalists range up to 70% for the b-tag efficiency,
and down to 1% for the fake tag rate. The fact that r is not 1 implies that some signal will
be lost as it will not be seen as containing 2 b’s. The fact that f is not 0 means that all the
three backgrounds mentioned in fig. 2.10 have to be considered. This is all the more true
given that the splitting g → gg occurs much more often than g → bb̄.

With this in hand, we now focus on the process qq̄ → ZH with H → bb̄, which will be
studied in more detail in the next chapter. The ultimate goal will be to improve the results
obtained by ATLAS and CMS on this search channel. For the moment, we are going to
make use of b-tagging in order to find an optimal zcut to discriminate this signal against
backgrounds.

2.2.3 z distribution for the Higgs boson

To find the optimal zcut, one has to know the distribution of z for the signal and the
backgrounds. At LO, we have already seen that the z distribution for the background in the
collinear limit is given by the splitting functions (section 1.3.5). Therefore, we now have to
know the probability for a high-pt Higgs boson to decay into a quark with energy fraction z
in the lab frame. In a first place, and for more generality, we do not need to suppose that
the Higgs is boosted, and thus we do not consider the effect of the jet radius, even if we will
come back to that point later.
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Figure 2.11: Higgs decay (a) in its rest frame, (b) in the lab frame (up to a longitudinal
boost which does not matter as the result does not depend on it).

The Higgs is a scalar particle, so it decays uniformly in its rest frame. Given that,
we just make a boost of this decay from the rest frame into the lab frame (fig. 2.11).
A straightforward calculation using a massless b quark shows that, if we start from the
configuration of fig. 2.11(a) in the Higgs rest frame, the momenta of b and b̄ can be written
in the lab frame under the following form:
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(2.19)
where

x =
M2

H

p2
t

, (2.20)

with MH the mass of the Higgs boson, and pt its transverse momentum. Therefore, the
energy fraction z of the Higgs splitting in the lab frame according to the definition of eq. 2.1
is

z =
1

2

(

1− 1√
1 + x

| cos θ0|
)

. (2.21)

Using this equation and the uniform decay of the scalar Higgs in its rest frame (which is
equivalent to (cos θ0, φ0) uniformly distributed), we obtain the property that the z distribu-
tion is uniform in the range

1

2

(

1− 1√
1 + x

)

< z <
1

2
. (2.22)

Said another way:

dσ

dz
= 2
√

1 + xΘ

(

z − 1

2
+

1

2
√

1 + x

)

Θ

(

1

2
− z
)

. (2.23)
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This equation is valid for any value of the Higgs transverse momentum. Returning to the
boosted case (x ≪ 1), one can evaluate the effect of choosing a jet radius R0 to cluster
the event. If we demand the b and b̄ to be in the same jet, then eq. (2.7) tells us that the
reconstructed Higgs boson has a uniform distribution in the range:

M2
H

R2
0p

2
tH

< z <
1

2
. (2.24)

The z distribution for the Higgs looks like that of the W boson plotted in fig. 2.5(a) because
PYTHIA is lacking spin correlations and the W thus appears as a scalar particle. The drop
of the distribution at small z is due to kinematic limits (finite pt).

2.2.4 Optimising the use of the z cut

Choosing an adequate zcut depends on the process under study and all its possible back-
grounds as well as their relative importance. That’s why we have to be more specific here,
and we decide to study ZH events with a low mass Higgs boson (so that its main decay is
into a bb̄ pair). The reason for that is because this process as well as WH will be studied in
more depth in the next chapter. The problem is now the following: we want to discriminate
as much as possible the ZH signal against the Zq and Zg backgrounds at high pt

10 using
the “best” zcut. “The best” means that the ratio NS√

NB
, i.e. the number of signal events

over the square root of background events passing the z cut, is maximised. For that, we
suppose that the mass of the QCD jets are roughly equal to MH , which means that they
have already successfully passed the mass cut. Moreover, we require 2 b tags in the jets.

Given a number NS and NB respectively of signal and background events that passed
the mass cut, we have to compute the significance ω(zcut) which is the ratio

ω(zcut) =
NsS(zcut)
√

NBB(zcut)
,

= C
S(zcut)
√

B(zcut)
, (2.25)

where S(zcut) and B(zcut) are respectively the fraction of signal and background events that
pass the z cut for a given zcut, and C is a constant independent of zcut. The goal is thus to
maximise ω(zcut).

S(zcut) is computed using the uniform z distribution of the Higgs decay in the lab frame.
If we take z to be the energy fraction carried for instance by the b quark, we obtain

S(zcut) = r2
∫ 1−zcut

zcut

dz ,

= r2(1− 2zcut) . (2.26)

The r2 factor comes from the fact that we have to recognise 2 b quarks in the event, this
being done with a probability r for each b (cf section 2.2.2).

Concerning B(zcut), we have to distinguish Bq(zcut) and Bg(zcut), i.e. the fraction of
quark and gluon jets respectively that pass the z cut. We first consider Bq. The Zb

10There are other possible backgrounds like tt̄ or dijets, but these should be reducible in a large part using
leptonic cuts on the Z decay.
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background can lead to a jet that is similar to the Higgs jet when b splits into bg where b is
adequately tagged as a real b jet whereas g is mistagged as a b jet. The Zq background (with
q 6= b) can also lead to a jet that is similar to the Higgs jet when q splits into qg where the q
and g are both mistagged as b jets. We thus have to make a difference between a b jet and
another flavor jet11 (q = u, d, s, c) because they will not have the same influence depending
on the b tag efficiency r and the fake tag rate f . If we remember that the probability for
the splitting q → qg to occur with energy fraction z is given by the splitting function Pgq(z)
(section 1.3.5), then Bq can be written as:12

Bq(zcut) =
1

σZb +
∑

q σZq

∫ 1−zcut

zcut

dz

(

rfPgb(z)σZb +
∑

q

f2Pgq(z)σZq

)

, (2.27)

where the sum over q only concerns light flavours (q ∈ {u, d, s, c}). For the first term
concerning b → bg splitting, the factor rf means that we have to properly tag the b quark
(factor r) and that we have to mistag the gluon as a b quark (factor f). For the second
term, we have no b quark produced, so we have to double mistag the jet (factor f2). We
also include the cross-sections σZb and σZq to produce a Z boson with respectively a b quark
and a light quark at LO, in order to have their relative importance.

The reasoning is similar for Bg and we obtain:

Bg(zcut) =

∫ 1−zcut

zcut

dz

(

r2Pbg(z) +
∑

q

f2Pqg(z) + f2Pgg(z)

)

. (2.28)

We can now combine everything and write:
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1
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]

,

(2.29)

with nf = 5 is the number of quark flavours to be taken into account. In this expression,
we explicitly wrote the normalisation factor ΣZ+jet =

∑

q σZq +σZb +σZg, even though it is
not very useful because it will only change the constant C in eq. (2.25). In the second line,
we used the expressions for the splitting functions eqs. (1.81−1.84) and integrated them.

Eq. (2.29) can be understood in a more familiar way by taking the limit zcut → 0. In
this case, a term proportional to ln 1

zcut
survives, which is a manifestation of the gluon soft

divergence. A constant term D also survives, which can be written:

D = −3

2
CF

(

f2
∑

q

σZq + rfσZb

)

− f2

(

11

6
CA −

2

3
(nf − 1)TR

)

σZg +
2

3
r2TRσZg . (2.30)

11As Mtop > MH , top quark is not considered as a background here.
12up to an overall normalisation factor entering the constant C in eq. (2.25). We thus do not write for

instance the αs factor that appears in all the splitting functions.
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The first term is the well-known −3
2CF from quark splitting, the second and third terms

are the other well-known 11
6 CA − 2

3(nf − 1)TR from gluon splitting, separated because of
b-tagging.

At this stage, we still have to know the cross-sections σZg,
∑

q σZq, and σZb at LO. These
can be obtained using PYTHIA or HERWIG. If we take the HERWIG values for pt > 200
GeV, we obtain:

σZg ≃ 7.8 pb , (2.31)
∑

q

σZq ≃ 47 pb , (2.32)

σZb ≃ 1.9 pb . (2.33)

These values can be a little different according to the generator chosen or the parton distri-
bution function set used. But this is not so important here as we just would like to get an
idea of the optimal zcut.

Now, we have all the elements to determine ω(zcut) depending on the value of κ ≡ f
r .

In fig. 2.12, we take as an example some particular values for r and f , where the choice
(r, f) = (60%, 2%) will be used in the next chapter. Here only the shape is important
because the overall normalisation is not included.
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Figure 2.12: (a) The significance of the signal as a function of zcut for 3 different values of
the couple (r, f); (b) S

B as a function of zcut for the same values of (r, f).

So the optimal zcut values are found to be:

• For (r, f) = (70%, 1%), zopt ≃ 0.026.

• For (r, f) = (60%, 2%), zopt ≃ 0.055.

• For (r, f) = (60%, 4%), zopt ≃ 0.086.

As we can see, there is a trade-off: if zcut is too small, then we keep too much of the
backgrounds with fake tags.13 If zcut is too large, then we lose too much of signal. But,
actually, with the values used for f and r, the optimal zcut is still small, roughly between

13if the b-tagging was perfect, the optimal zcut would be 0.
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0.02 and 0.1. If we considered a worse b-tagging, i.e. κ increasing, then the optimal zcut

would also increase as we would have to reject more and more backgrounds from fake tags,
which are essentially the ones with a soft divergence.14

Of course, the values given above for zopt are to be taken with care. They give an
idea about which zcut we can choose, but are not very precise. The first reason for that is
experimental. In experiments, one also has to deal with systematic uncertainties. One of
these uncertainties comes from the fact that the ratio S/B can be low, even if S/

√
B is rather

large. In fig. 2.12(b), one sees that taking larger zcut increases S/B, and thus decreases the
systematic uncertainties. Another reason is that in a real analysis, there would be other
kind of reducible backgrounds like dijets for instance that would come into the game, also
favouring larger zcut. Finally, one has to be aware that we only did a LO analysis. At NLO,
one would obtain diagrams like the ones in fig. 2.13. Therefore, even with perfect b-tagging,
the branchings q → qg and g → gg would have to be considered, leading to an even larger
zcut.

bb

b b

Figure 2.13: NLO background diagrams that can be suppressed thanks to the z cut.

As a conclusion, we would say that zcut should be roughly chosen between 0.05 and 0.15,15

but of course it depends on the physical process we are studying and on the importance of
systematic uncertainties.

2.2.5 Effect of the jet radius

In the previous section we chose the zcut according to a LO analysis depending on the
parameters of the b-tagging. But in real studies, we have to deal with parton-showering,
initial state radiation, underlying event and pile-up that enter the game and complicate a
lot the analysis. The basic question that one has to face before any data analysis is the
following: which jet algorithm and which jet radius should we choose to reconstruct the
event? This question is relevant for the studies of the previous sections because the ability
to compute the mass of a jet or the fraction z of a splitting obviously depends on the way
the event is first reconstructed. Concerning the jet algorithm, this depends on the analysis
and will be explained in detail in the next chapter. But let us say a few words about the
jet radius which is closely related to the cut imposed on z.

Let R0 be the radius of the jet algorithm used to cluster the event. We recall (eq. (2.7))
that if the b quark resulting from the Higgs splitting into bb̄ carries a fraction z of the Higgs
energy, then we can write:

Rbb(z) ≃
1

√

z(1 − z)
MH

ptH

. (2.34)

14with the exception of g → qq̄, q 6= b.
15if the only background was arising from the splitting g → gg for instance, then the optimal zcut would

be 0.14.



2.3. CONCLUSION 55

For now, eq. (2.34) tells us that b and b̄ are clustered together only if R0 > Rbb(z). Therefore,
besides the zcut parameter, the radius R0 of the clustering naturally cuts on small z and we
would like to understand the interplay that exists between R0 and zcut. The analysis of the
previous section did not actually take R0 into account.

Let us assume that the pt of the Higgs boson is fixed. In this case, if we choose R0 <
Rbb(zcut), then we will not reconstruct the Higgs splittings that occur with a fraction z such
that zcut < z < z0, where z0 is defined by R0 = Rbb(z0). Therefore, one could equivalently
take zcut = z0, which has the advantage that it is more discriminative against backgrounds.
On the other hand, if we choose R0 > Rbb(zcut), then we will reconstruct Higgs splittings
with z0 < z < zcut that will be later cut by the zcut parameter, and they are thus useless.
Moreover, with R0 large, we increase the importance of the background because we capture
a larger noise from ISR, UE, and PU. Therefore, for pt fixed, it seems that one should choose
R0 = Rbb(zcut) for better efficiency.

Now the pt of the Higgs boson is not the same from one event to the next, and the
interplay between R0 and zcut becomes much more difficult to study. In the next chapter,
we will introduce the Mass Drop Analysis procedure that allows us to be very flexible
concerning the choice of R0. Indeed, it significantly reduces the effect of the background on
the Higgs jet and therefore we can reconstruct it using large R0 values, so that the interplay
between R0 and zcut does not play a major role anymore.

2.3 Conclusion

The ability to tag an event and recognise signal amidst its backgrounds is dependent on
the signature that we are expecting. At a hadronic collider like LHC, dealing with hadronic
decays reveals itself to be a hard task because of the very large QCD background. In this
chapter, we have considered the case of boosted massive particles that decay into a single
jet and we have shown how variables like the jet mass and the z fraction of the splitting
(eq. (2.1)) can greatly help us to reconstruct the signal while rejecting backgrounds. An
important aspect of the cut on z is that it kills one large logarithm in the relatively low-mass
distribution of the quark and gluon jets in the boosted limit.

We applied these considerations to the particular case of the light Higgs boson, whose
main decay is into bb̄. We showed that the z distribution of its decay is uniform within
some kinematic limits, which allowed us to make a simple but insightful LO analysis on the
optimal zcut that should be chosen in order to maximise the significance of the ZH signal
with respect to its main backgrounds depending on the parameters of the b-tagging. This
analysis revealed that a good value for zcut should be around 0.1 in presence of both tagged
and mis-tagged light jets. We finally roughly examined the important interplay between the
initial radius R0 of the clustering and zcut, which may in general be non-trivial. The Mass
Drop analysis that will be studied in the following chapter will however suppress a large
part of their interaction, essentially the R0 dependence.
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Chapter 3

Light Higgs searches at the LHC
using jet substructure

In the previous chapter we studied how to reconstruct boosted massive particles decaying
hadronically, where the most important difficulty arises from the ability to distinguish them
from QCD jets. We also focused on a particular case: the Higgs boson decaying into bb̄
in the ZH channel. In this chapter, we are going to apply these considerations to a full
analysis of the WH and ZH search channels at the LHC, where we have to deal not only
with very large QCD backgrounds, but also with underlying event (UE) and pile-up (PU).
After having examined these channels in more details (section 3.1), we will show how it is
possible to efficiently reconstruct the Higgs boson using a subjet analysis procedure that
we will describe (section 3.2). Sections 3.3 and 3.4 will present the numerical Monte-Carlo
study that validates our Higgs reconstruction procedure and improves significantly on the
previous results concerning WH and ZH channels. Finally, in section 3.5 we will estimate
the NLO corrections to this analysis.

3.1 A challenging search channel at the LHC

In chapter 2, we saw that the associated production of a light Higgs boson with W or Z was
found not to be a good search channel at the LHC by the ATLAS and CMS experiments.
In this section we analyse it more deeply: we start by examining in detail the old approach
from ATLAS (similar to that of CMS) before giving some ideas that led us to go further.

3.1.1 Previous studies on the WH/ZH channels

We would like to briefly review the original study on WH/ZH channels in order to under-
stand why it was found so difficult to deal with (cf section 2.2.1). When we talk about WH
and ZH channels with H decaying into bb̄, we actually consider 3 different search channels:

1. the dilepton channel: pp→ ZH with Z → l+l−,

2. the missing-Et channel: pp→ ZH with Z → νν̄,

3. the semi-leptonic channel: pp→ WH with W → lνl,

57



58 CHAPTER 3. LIGHT HIGGS SEARCHES USING JET SUBSTRUCTURE

where l is either electron or muon. The ATLAS study [139] focused on the semi-leptonic
channel. This is because the dilepton channel suffers from a rate that is 6 times lower, and
despite its cleaner signature it seems it cannot improve the results. And concerning the
ZH → νν̄bb̄ channel, it cannot be efficiently tagged, as the missing-Et (≡ /Et) required is
too small, leading to very large experimental backgrounds.

We thus focus on WH → lνlbb̄ events. The expected signature is 1 lepton (taken with
pt > a few GeV), a small missing-Et and 2 tagged b-jets (pt > 15 GeV for each of them).
Unfortunately, many kind of backgrounds can look similar to this signature, like continuum
Wbb̄ production, single top pp→W ∗ → tb→Wbb̄, W with 2 jets where at least one of the
jets is mistagged, i.e. seen as a b-jet whereas there’s no b inside, and tt̄→WWbb̄ where one
of the leptons from the decay of the two W ’s is not seen in the detector, or where one W
decays hadronically but both resulting jets are soft. To suppress as much as possible these
backgrounds, beyond the above-mentioned cuts on transverse momenta, one usually vetoes
events with additional leptons and jets.

Higgs mass (GeV) 100 120

WH, H → bb̄ 416 250
WZ, Z → bb̄ 545 220
Wbb̄ 3650 2000
tt̄→WWbb̄ 3700 3700
tb, tbq 740 740
Wbj, Wjj 7600 4160
Total background 16235 10820
S/B 2.5% 2.3%

S/
√
B 3.3 2.4

S/
√
B incl. syst. 1.9 1.7

Table 3.1: Expected WH, H → bb̄ signal and background rates inside a mass window of
±22 GeV around the Higgs mass for two different Higgs boson masses, assuming a b-tagging
efficiency of 60% and an integrated luminosity of 30 fb−1 (table taken from [139]).

Despite all these cuts, table 3.1 shows that the backgrounds were found to remain very
large with respect to the signal, an important fraction coming from mistagged light QCD
jets in Wbj and Wjj, though Wbb̄ and tt̄ are important too. This is also due to a poor
detector acceptance: it often happens that one of the decay products reaches the detector
in a region where it cannot be well measured. The presence of the Z peak (Z → bb̄ in
the WZ background) also degrades the visibility of the Higgs mass peak. Eventually, the
background shape shown in fig. 3.1(a) makes it hard to identify the Higgs signal above the
summed backgrounds. If we impose an additional cut on the rapidity separation between b
and b̄, for instance |yb− yb̄| < 1, the systematics uncertainties resulting from this particular
shape can be reduced. Indeed, imposing |yb−yb̄| < 1 leads to the dashed curve of fig. 3.1(b)
for the tt̄ background, to be compared with the one obtained with the ATLAS cuts only
(using a simple LO analysis with MCFM 5.3 [88,89]). We notice that the background shape
is significantly flattened.

The significance found by ATLAS was below 2σ with 30 fb−1 for Higgs masses around
120 GeV, which is far too small to be a competitive search channel at the LHC or to
allow precision measurements of the Hbb̄, WWH and ZZH couplings. At this point, the
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Figure 3.1: (a) WH signal above the summed backgrounds, represented by a dashed line
(picture taken from [139]). The Higgs mass is assumed to be 100 GeV; (b) The tt̄ background
simulated at LO with MCFM using the ATLAS cuts (solid curve) or imposing an additional
cut on the rapidity separation between b and b̄ (|yb − yb̄| < 1) (dashed curve).

conclusion from the ATLAS TDR published in 1999 about WH and ZH production reveals
a lot: “The extraction of a signal from H → bb̄ decays in the WH channel will be very
difficult at the LHC, even under the most optimistic assumptions [...]” [139].

However, this search channel is important, and it can be worth trying to analyse it more
deeply. We are thus going to show how the difficulties encountered by CMS and ATLAS
in their analysis can be overcome, and that we can recover the WH and ZH channels as
promising search channels at the LHC for a low-mass Higgs boson [173]. Notice that the
same kind of analysis was later done for the tt̄H channel [174] using methods similar to
those that will be described here.

3.1.2 Some ideas for improvement

Looking for boosted Higgs bosons

When considering the ATLAS analysis, and as already touched on in section 2.2, an idea
that one might have would be to see what happens at higher Higgs pt.

1 At high pt the
problem of detector acceptance is almost eliminated because the W and the Higgs bosons
mainly decay in the central region of the detector (fig. 3.2).

But this is not the whole story. At high pt, the b and b̄ from the Higgs decay are close
to each other because, we recall, the angular distance Rbb between them can be written
(eq. 2.7):

Rbb ≃
1

√

z(1− z)
MH

ptH

, (3.1)

with z the energy fraction carried by the b or b̄. Therefore, one can require the b and b̄ to
be in the same jet. The cut-induced background shape that was observed in the ATLAS

1This is not a new idea as works on boosted Higgs searches go back to the 80’s [175], there in the context
of H → τ+τ−.
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Figure 3.2: Higgs and W bosons decay (a) at small pt and (b) at high pt.

study (fig. 3.1(a)) may thus be suppressed (cf fig. 3.1(b)). Moreover, the backgrounds
cross-sections fall somewhat more quickly with pt than signal: in fig. 3.3 are represented
the pt distributions of the signal and backgrounds cross-sections when we impose the cut
Rbb < R0 = 1.2. With this cut, the tt̄ background is actually greatly suppressed. This is
due to kinematical constraints: it is very unlikely that the b and b̄ resulting from the decay
of 2 boosted tops flying in opposite directions will be in the same phase space region, and
this explains the sharp drop in the tt̄ cross-section at high-pt. Concerning the signal at low
pt, there’s no chance for the bb̄ pair from the Higgs decay to be within angular distance 1.2
from each other because of eq. (3.1), which explains why the WH cross-section is null in
this region. Notice that on this plot we did not require the mass of the bb̄ jet to be around
the Higgs mass, which would reduce the backgrounds even more with respect to the signal.
Finally, going to high-pt makes it possible to tag more efficiently the Z → νν̄ decay because
of the large missing-Et expected (no experimental background anymore).
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distributions for the WH channel and its major backgrounds at

high pt: W+jets and tt̄. The only cut required is that b and b̄ are within angular distance
R0 = 1.2 from each other.

One might think that using a large pt cut, i.e. ptH > ptmin
with ptmin

of at least a couple
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of hundred GeV, would result in too important a loss of signal events. This is partially
true: there is a very important drop of the signal cross-section. However, the problem in
the ATLAS study was not a lack of signal events, but a very large number of background
events. Therefore, it seems that this idea of working in the boosted regime might be worth
exploiting.

All the arguments given here only result from boosted kinematics. But one can also use
the knowledge of the QCD soft divergence mentioned in the previous chapter in order to
further reduce the backgrounds.

Using the discriminating power of the zcut parameter

From now on, we assume that the Higgs is sufficiently boosted such that the b and b̄ resulting
from its decay are clustered into the same jet. Such a jet is called a Higgs candidate.

The most important noise present in the ATLAS study was due to mistagged light QCD
jets. At high-pt, these jets mostly come from a splitting, quark → quark-gluon or gluon →
gluon-gluon, hard enough to give rise to a jet mass around MH . If one or two of the final
partons are wrongly tagged as b, such a jet can look very similar to a Higgs jet. We know
that the energy fraction z carried by the partons are different for light QCD jets and Higgs
jets: we recall that z ≪ 1 usually for a QCD splitting whereas z ∼ 1/2 for a Higgs splitting.
And thanks to eq. (2.18), we also know that this fundamental property leads to a significant
reduction of the QCD backgrounds when using an adequate cut on z.

The problem is now: once a Higgs candidate is identified, how can we measure the energy
fraction z? The main idea, which goes back to the work of [146, 147], is to look into the
substructure of the jets.2 One method is to cluster the event using the kt algorithm, which
has the property, due to its kt ordering, that it clusters the hardest splitting at the last step
of the clustering. Therefore, it is enough to undo the last stage of the clustering in order to
obtain the 2 separated b-tagged jets. One can then easily measure z and discriminate signal
against QCD background.3

This is a good starting point but is not enough. Indeed, at the LHC there will be an
important contamination from non-perturbative effects like underlying event (UE) and pile-
up (PU). And we would like to get rid of these too. We are now going to see how a deeper
analysis into the substructure of the jets can help us achieve this.

3.2 The Mass Drop and Filtering Analysis

Though we will discuss the full event selection procedure for the WH and ZH channels in
the next section, we are now going to examine the main step of this selection concerning
the hadronic part of the event. As before, we assume that we clustered our event and found
a Higgs candidate, i.e. a jet with 2 b’s inside. The first question that one might ask is the
following: is it a Higgs jet or a background QCD jet?

We would like to find a subjet analysis procedure on the Higgs candidate jet that helps
one to answer this question and improve the mass resolution on the Higgs signal. In this
section, we first show how the reduction of the background can be achieved by what we

2 [146] was the first to talk about subjets to reconstruct hadronic decays, but the present formulation
using also the zcut parameter (in its more or less equivalent form ycutp

2
t ) was first introduced by [147].

3as mentioned in the previous chapter, only the QCD splitting g → bb̄ is not distinguishable from H → bb̄
with this method. But it has a low rate compared to the g → gg splitting.
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call the Mass Drop analysis (MD), which is the first part of the procedure. Then, we study
the Filtering analysis whose aim is to “clean” the Higgs jet from a large number of UE/PU
particles present in it. We finally conclude by examining the effects of this subjet analysis
procedure on both the background and the signal.

3.2.1 The Mass Drop Analysis (MD)

The reduction of the QCD background is similar in spirit to what was explained before:
we cut on small z energy fractions because they are more likely to come from a pure soft
QCD splitting. However, a novel aspect in our reduction strategy is to be aware of the large
importance of the UE at the LHC which can greatly spoil the Higgs jet. Therefore one
should make a distinction between the soft particles from the UE and the soft perturbative
radiation from the original bb̄ pair. Because the Higgs is colour neutral, the important
property of angular ordering [40–44] implies that almost all the perturbative radiation from
the bb̄ dipole is present in 2 cones of radius Rbb respectively centred on b and b̄. Consequently,
once a Higgs candidate jet is observed in an event, one should find a strategy that gets rid
of all the particles outside these cones, because we know that they are not related to the
Higgs (but to UE, PU, or Initial State Radiation). And in our study, this will also be very
important for the filtering analysis (see next subsection).4

The idea is to go back into the clustering history of the jet, as was explained above for
the kt algorithm. But instead of considering only the last stage of the clustering, one can
go deeper in the jet’s clustering history. Figure 3.4 and its caption explain why the method
using the kt algorithm is not suited for very “dirty” environments like the ones that will be
encountered at the LHC. The fact that the kt-algorithm dij distance involves the particles’
transverse momentum and that the b and b̄ are the hardest objects imply that they are
clustered together after all the other particles in their neighbourhood were clustered, and
therefore, when we go back into the clustering history, we separate them before we could
treat all the junk particles. Instead, if we consider for instance the C/A algorithm, then the
major part of the particles that are outside the 2 cones will cluster after the b and b̄ jets get
unified, as they are all at a distance from b and b̄ greater than Rbb.

That is a nice idea, but how do we know that the b and b̄ jets were separated? This is
crucial to measure z, and thus to be able to reduce the QCD background if we find it below
zcut. Of course, thanks to b-tagging, we can answer this question.5 But it is a particular
case, and we would like to find a general way to do it, that could work for instance to
reconstruct a W boson decaying hadronically at the LHC, for instance W+ → ud̄. Here,
there is no particular means to tag the u and d quarks. The central part of the MD analysis,
where its name comes from, is to realise that the splitting responsible for the large jet mass
is precisely the Higgs decaying into bb̄. All the splittings that occur afterwards (i.e. the
parton showering) give a mass to the b and b̄ jets respectively, but small compared to the
Higgs mass (figure 3.5). This works the same way for QCD jets, W jets and Z jets.

Once the “hard” splitting is identified, one can measure its energy fraction z (eq. (2.1)).
If z > zcut, the splitting is considered to be more or less symmetric and we keep the jet
as a good Higgs candidate. Otherwise, it looks like a mistagged QCD jet and we reject
it. These are the main ideas. In [173], we formulated it using a different variable: instead

4Moreover, we get more precisely the relevant quantities like z, pt or Rbb, whose measurement can be
distorted by all the additional UE/PU particles entering into the jet.

5Notice that experiments need individual b jets to do the tagging.
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b b
(1)

(2)

Figure 3.4: An idealised view in the (y, φ) plane of the Higgs candidate jet just after the
whole event was clustered (largest dashed circle) and its 2 main regions: (1) the 2 cones
around b and b̄ where one can find almost all the perturbative radiation and (2) the dashed
region outside these 2 cones composed almost exclusively from UE/PU/ISR particles. The kt

algorithm separates this jet roughly along the broken line when going back into the clustering
history. The C/A algorithm first eliminates all the dashed region before separating the 2
cones.

of measuring z, we measure the kt distance6 dj1,j2 ≡ min(p2
tj1
, p2

tj2
)∆R2

j1,j2
between the 2

subjets j1 and j2 and we check the condition dj1,j2 > ycutM
2
j where ycut is a dimensionless

parameter. However, thanks to formula eq. (2.4), we know that it is equivalent to z > zcut

with

ycut =
zcut

1− zcut
, (3.2)

at least at LO.

We now describe the MD analysis more precisely. Let us suppose we found a hard jet7

j reconstructed when clustering the event using the C/A algorithm with some radius R0.
We then use the following iterative procedure in order to recognise if j is a boosted heavy
particle or a pure QCD jet:

1. Break the jet j into two subjets by undoing its last stage of clustering. Label the two
subjets j1 and j2 such that mj1 > mj2.

2. If there was a significant mass drop, mj1 < µMj, and the splitting is not too asym-
metric, dj1,j2 > ycutM

2
j , then deem j to be the heavy-particle neighbourhood and exit

the loop.

3. Otherwise redefine j to be equal to j1 and go back to step 1.

In the MD analysis, we introduce two parameters: µ and ycut. Using section 2.2.4, we know
that ycut should be chosen somewhere between 0.05 and 0.18 in order to efficiently reduce
the QCD background. In [173], we decided to take ycut = 0.09. Concerning the mass drop
threshold itself, controlled by µ, there is also the question of how one should choose it: if

6As usual, ∆R2 = ∆y2 + ∆φ2.
7b-tagged or not, this can work for boosted W decaying hadronically for instance.
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Figure 3.5: The origin of the MD analysis. Regardless of whether the Higgs candidate jet
j is really a Higgs jet or a QCD jet satisfying Mj ≃ MH , there usually is a splitting hard
enough, denoted by s on the figure, that gives rise to the major part of the jet mass Mj . The
2 subjets j1 and j2 acquire their mass due to soft and collinear emissions from the parton
showering.

too large (∼ 1) then any splitting gives a significant mass drop and this parameter becomes
useless, but if too small then the mass drop condition will be hard to obtain because the b
and b̄ subjets acquire mass due to parton showering, and we will thus lose too much signal.
At the very least, we decided that the mass drop condition should be fulfilled if the Higgs
decays into a Mercedes bb̄g configuration in its rest frame, i.e. µ > 1/

√
3. But to be a little

more precise, we made a plot (fig. 3.6) for the signal reconstruction efficiency depending on
this parameter µ, and also on the original jet algorithm radius R0, which is supposed to be
large enough to cluster together the b and b̄ at moderately high pt thus allowing one to find
the Higgs candidate jet.

This figure was originally designed not only to find efficient µ and R0 parameters, but also
to distinguish between 2 kind of MD analysis. The “ycut after” curves mean that we check
only the mass-drop condition while we go back into the clustering history, and then, once we
find a splitting with a sufficient mass-drop, we check the ycut condition: if it succeeds, we
say that it is signal, otherwise we reject the event. This is different from the procedure given
above where we do not reject the event if the ycut condition fails: instead we continue to go
back into the clustering history of the jet. When we started thinking about this analysis,
we were doing it the first way. And by doing so, we saw that if R0 is large (> 1.2), there
is a drop in the efficiency, which was unexpected (the “ycut after” curves in fig. 3.6).8 This
can be explained in the following way: when R0 is large, the jet captures a large amount of
UE/PU/ISR and there is a large probability that a fake mass drop occurs before we would
expect it. Being aware of that, this is the reason why we decided to slightly modify the
procedure: if the ycut condition fails, this can be because we see a fake mass-drop due to
UE/PU particles (which are usually soft like perturbative radiation and therefore the z cut

8The same behaviour is observed when R0 is too small (< 1), because in this case the b and b̄ are often
too far away from each other to be clustered together.
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Figure 3.6: Reconstruction efficiency of the Higgs candidate jet in the best 10 GeV mass
window with respect to the original clustering radius R0 for 2 values of the mass drop
threshold and for 2 different MD procedures: we examine the ycut condition either after we
find a sufficient mass-drop (“ycut after”), or while testing the mass-drop condition (“with
ycut”). We take ycut = 0.09 in both cases.

should also reject them efficiently). We thus continue our descent into the clustering history
of the heaviest jet as it is presented above. The consequence of such a subtle modification
is represented by the curves “with ycut” in fig. 3.6: we not only improve the efficiency of the
reconstruction procedure at intermediate R0, but we keep it efficient even at larger values
of R0, which is important because we do not want our procedure to depend too much on
R0, and we want it to be robust even in a very noisy environment, for instance during the
high luminosity running of the LHC. This modification ensures that these 2 conditions are
satisfied and that we reduce much of the interplay between ycut and R0 which was mentioned
in section 2.2.5.

Concerning the precise value of µ, we can see on the plot that taking µ = 0.667 or
µ = 0.8 (but still larger than 1/

√
3) does not change anything for the most efficient version

of the MD analysis. Therefore we decided to take µ = 0.667, which worked better for the
old version, and is also more discriminative. Note that we finally chose R0 = 1.2.

3.2.2 The Filtering analysis

We have just presented the MD analysis, which is an iterative subjet analysis procedure
that allows one to identify boosted massive particles decaying hadronically while rejecting
a large part of the backgrounds made up by QCD jets. At the end of the MD procedure,
one should be left with 2 subjets, each of them originating from one of the partons of the
hard splitting (these are represented by the 2 cones of the figure 3.4). These 2 subjets are
called the “Higgs neighbourhood”.

At the LHC, we know that this procedure will not be sufficient as the UE/PU particles
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that are present in the Higgs neighbourhood will significantly degrade the mass resolution
on the Higgs jet. Their effect on the reconstructed Higgs mass scales as R4

bb [176]. Therefore,
the idea is to recluster (“filter”) the particles resulting from the MD analysis in the Higgs
neighbourhood with a radius Rfilt < Rbb and to take the 3 hardest jets obtained. By doing so,
we reduce the effect of the UE/PU particles on the reconstructed Higgs mass to O

(

R2
filtR

2
bb

)

(see next chapter). Unfortunately, we also lose some perturbative radiation from the bb̄ pair.
So there is a compromise to make between these 2 effects.

The filtering procedure is the following:

1. Define Rfilt = min
(

0.3, Rbb

2

)

.

2. Cluster the Higgs neighbourhood using the C/A algorithm with Rfilt.

3. Sum the 3 highest-pt jets obtained: this is the final Higgs jet.

Using some numerical simulations, this choice for Rfilt was found to be rather effective in
suppressing the UE effect while keeping as much perturbative radiation as possible from the
bb̄ dipole. Taking the 3 hardest jets ensures that we capture the dominant O(αs) radiation
from the Higgs decay as well as the b and b̄ jets. The whole subjet analysis procedure is
summed up in fig. 3.7.

b Rbb
Rfilt

Rbbg

b

mass drop filter

R0

Figure 3.7: The Mass Drop and Filtering analysis (picture taken from [173]). First, we
cluster the event with a large radius R0. Then we do the MD analysis until we separate the
b and b̄. Eventually, we filter the Higgs neighbourhood with a smaller radius Rfilt in order
to get rid of many UE particles while keeping the major part of the perturbative radiation.

An important consideration in this analysis, already discussed in [146], is the possibility
to flexibly adapt the reconstruction strategy to the pt of the Higgs boson, which is related
to Rbb by eq. (3.1). The MD analysis reduces the size of the Higgs candidate jet to a
O(Rbb) which is just large enough to contain (almost) all the QCD radiation from the Higgs
decay. And the filtering analysis uses a radius that depends on Rbb, and so on ptH . This
is an important aspect of our procedure and is fundamental for the LHC as it will involve
different energy and angular scales from one event to the next.

One last point that one should be aware of concerns the difference between the kt and
the C/A algorithms for the MD analysis, discussed in the previous subsection, but which
is also related to the filtering. Indeed, if we use the kt algorithm instead of C/A for the
MD analysis, then we keep all the UE particles from the original jet. Therefore, applying
the filtering procedure to this structure would mean that the third hardest jet, which is
supposed to correspond to the O(αs) perturbative radiation at an angular distance ∼ Rbb/2
from the Higgs boson direction, may instead be composed by UE particles at an angular
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distance ∼ O(R0) from the Higgs, thus leading to a distortion of the reconstructed Higgs
mass measurement. This would result in a loss of efficiency for this procedure.

Now that our MD and filtering procedures are well defined, let us examine their practical
impact on Higgs jets and background QCD jets before considering the actual event genera-
tion and selection procedures for the boosted Higgs search in the WH and ZH channels in
section 3.3.

3.2.3 Effects of the Mass Drop and Filtering analysis on Higgs and back-
ground jets

First, we would like to check that we effectively gain something using our analysis with
respect to more standard ones. In table 3.2 taken from [173], we compare our procedure
(MD+filtering) with the original subjet analysis proposal using the kt algorithm, instead of
C/A, with the same ycut as was described previously. We also compare it with an analysis
using SISCone based only on the jet mass. We generate parton showered events using
HERWIG [97, 98], and we add UE with the JIMMY program [130]. For the C/A and kt

algorithms, we require each subjet to be b-tagged. For SISCone, that does not take the
underlying substructure into account, we require 2 b’s inside the jet. In the first column we
determine, for each of these analysis, the cross section for identified Higgs decays in a mass
window around the Higgs boson mass (taken as 115 GeV) in ZH events. In the second
column we compute the cross-section for tagging QCD jets as Higgs jets in Z + bb̄ events in
the same mass window. The significance S/

√
B is calculated in the third column. All these

cross sections were obtained for a roughly optimal R0 value that depends on the analysis.

Jet definition σS/fb σB/fb S/
√
B · fb

C/A, R0 = 1.2, MD-F 0.57 0.51 0.80
kt, R0 = 1.0, ycut 0.19 0.74 0.22
SISCone, R0 = 0.8 0.49 1.33 0.42

Table 3.2: Cross section for the Z + H signal and the Z + jets background for 200 <
ptZ (GeV) < 600 and 110 < mJ (GeV) < 125, with perfect b-tagging; shown for the
MD+filtering procedure and other standard ones at near optimal R0 values.

Due to the use of the ycut, the kt algorithm performs well on background rejection, but
it cannot get rid of the UE particles that degrade the Higgs peak, and therefore it loses
many signal events (so S is small and B is small). On the contrary, SISCone takes fewer
UE particles and therefore can more efficiently reconstruct the signal. But as it ignores the
underlying substructure of the jet, it cannot distinguish it from QCD background (so S is
large and B is large). Concerning our MD+filtering procedure, it does well on both fronts
(S is large and B is small). So we really gain in term of significance.

To go a little further, we compare the effect of the MD and filtering analysis respectively
on Higgs jets and QCD light jets at high pt. For that we generate parton showered ZH and
dijet events using HERWIG and we still add UE with the JIMMY program. In figure 3.8
we plot the mass distributions obtained for the hardest jet at various stages of the analysis.
First, let us comment on the signal distributions. If we just cluster the event using the
C/A algorithm with a radius R0 = 1.2 (“raw jet” curves) and compute the resulting Higgs
candidate jet mass, one observes that the Higgs mass peak is broadened towards higher
masses. This simply means that the UE greatly spoils the Higgs neighbourhood and thus
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Figure 3.8: (a) Effect of the subjet analysis procedure on the signal: ZH events (MH = 115
GeV) with UE were generated using HERWIG and JIMMY, with a pt cut of 200 GeV,
and clustered using C/A with R0 = 1.2. We plot the Higgs candidate jet mass distribution
before any subjet analysis (solid curve), after MD analysis (dotted curve), and after filtering
analysis (dashed curve). We assumed perfect b-tagging. (b) The same for a generic dijet
background, where the hardest jet mass distributions are plotted (we do not apply any
b-tagging requirement).

degrades the mass resolution. Then, if we only do the MD analysis without filtering (“after
MD” curves), we gain a little in mass resolution because we get rid of all the UE particles
outside the angular ordering region corresponding to the Higgs decay (see section 3.2.1).
But, the dispersion of the distribution still remains very important. Finally, thanks to the
filtering analysis (“after Filt” curves), we clearly recover a nice peak, relatively narrow (68%
of events contained within a window of ∼ 14 GeV). Notice the small tail towards low masses
which comes from the unavoidable loss of perturbative radiation during the filtering process.
In chapter 4, we will see how it is possible to optimise this procedure in order to obtain the
narrowest possible peak centred on MH .

We now turn to the effect of the whole procedure on QCD jets. Without the MD and
filtering analysis, high-pt QCD jets have a very broad distribution centred around 80 GeV.
This explains why the QCD background is so important around the Higgs mass region. If we
apply the MD procedure to these jets, we significantly reduce this background (by roughly
a factor of 3 around 115 GeV): the major part of the distribution is shifted towards very
low masses of a few GeV. This means that the cut on dij is efficient. Applying the filtering
analysis does not significantly change the light QCD jet mass distribution around the Higgs
mass, though it seems to reduce it even more at higher masses (by a factor of 5 around 200
GeV).

Therefore, the MD analysis works well in reducing the QCD background, whereas the
filtering analysis essentially results in a major improvement for the Higgs mass resolution.
We are now going to describe the signal and background events generation for the boosted
WH and ZH channels. We recall that they are our original motivation for developing the
MD and filtering analysis, which we are now going to incorporate into the event selection
procedure.
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3.3 Event generation and selection

3.3.1 Event generation

Now that we know how to identify a hadronically decaying Higgs boson in a complex en-
vironment, let us return to the original problem, which is to look for a light Higgs boson
at the LHC in the WH and ZH channels. We recall (see section 3.1) that we focus on 3
different search channels, each of them involving H → bb̄ decay:

(a) ZH with Z → l+l−, l = e, µ.

(b) ZH with Z → νν̄.

(c) WH with W → lνl.

We do not consider the possible hadronic decay of the vector bosons, though they could
perhaps be investigated with the same MD and filtering analysis used for the Higgs, which
may be an interesting topic for future work in order to possibly further improve the results
that will be obtained in this chapter.

We used HERWIG and JIMMY to simulate signal and background events with UE,
Fastjet to cluster each event, and PYTHIA to cross-check the results. For each of the 3
search channels, the backgrounds considered were WW , WZ, ZZ, Zj, Wj, jj, tt̄, single
top. Notice that in our original analysis, we only considered the single-top production via
qq̄ → W ∗ → tb and qg → qtb, but as the ATLAS collaboration later pointed out (see
section 3.4.3), we actually missed the Wt background, which is important for our study.
The WZ and ZZ backgrounds (Z → bb̄) are only critical when the Higgs mass is too close
to the Z mass, otherwise the mass peaks of the 2 bosons can be separated. But as our Higgs
boson is light (MH ≥ 115 GeV), this has to be carefully examined. All the samples were
generated with a luminosity ≥ 30 fb−1, except for the dijet background where the very high
cross-section makes this impractical. Instead, we assumed that the selection efficiency of a
leptonically-decaying boson factorises from the hadronic Higgs selection. This assumption
was tested and found to be a good approximation in the signal region of the mass plot.

The main results that will be plotted in this chapter correspond to a b-tag efficiency of
60% and a mistag rate of 2%. However, as these parameters have an important impact on
our results, we will mention what happens if they are varied.

3.3.2 Event selection

Once events are generated, the important point is to be able to recognise a Higgs boson
decaying into bb̄ while discarding as much as possible all the other backgrounds.

Leptonic cuts

Before looking for the Higgs boson, we need to tag a W or a Z boson that is produced in
association with the Higgs. This greatly helps us to reduce the very large QCD background
from dijet events for instance. As we mentioned in section 3.1.2 and used for the Higgs subjet
analysis in the previous one, we study boosted Higgs and vector bosons, with pt > ptmin

. In
the main analysis we use ptmin

= 200 GeV, though the effect of raising this cut to ptmin
= 300

GeV will also be considered later. Depending on the search channel, we require:
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(a) a Z candidate in the dilepton channel: an e+e− or µ+µ− pair with an invariant mass
80 GeV < m < 100 GeV and ptZ > ptmin

. Each lepton is required to have pt > 30 GeV.

(b) a Z candidate in the missing-Et channel: /ET > ptmin
.

(c) a W candidate in the semi-leptonic channel: one lepton e or µ with pt > 30 GeV and
/ET > 30 GeV, consistent with a W of nominal mass (see below) with ptW > ptmin

.

In order to be within detector acceptance, we also cut on the leptons’ rapidity: |y| < 2.5
(channels (a) and (c)). We add another cut for background rejection: we require no other
leptons than the ones necessary to identify the signal with |y| < 2.5 and pt > 30 GeV.
This cut also ensures that the 3 channels are completely independent from one another.
Notice that in the original analysis of [173], the cut on the additional lepton was forgotten
in channel (b), so that some events from channel (c) were actually considered as part of
channel (b) and not of channel (c).

Concerning channel (c), we cannot reconstruct the W mass exactly because we lack
the information about the neutrino direction, and more precisely pzν . We only know its
transverse momentum ~ptν . However, for a given ~ptν , only two pzν values would solve the
equation

(pe + pν)
2 = M2

W . (3.3)

Expanding this equation implies:

4(m2
e + p2

te)p
2
zν
− 4pzeAeνpzν −A2

eν + 4E2
ep

2
tν = 0 , (3.4)

with

Aeν = M2
W −m2

e + 2 ~pte . ~ptν . (3.5)

This quadratic equation in pzν has solutions only if its discriminant is positive, which is
equivalent to

M2
W + 2 ~pte . ~ptν ≥ 2pteptν . (3.6)

This condition, expressed in terms of measurable quantities in the event, is the one we check
when we say that the lepton and missing-Et must be consistent with a W of nominal mass.

Hadronic cuts

Once the vector boson was identified with all the previous requirements, we look at the
hadronic part of the event. We now require the presence of a good Higgs candidate jet
J , that is a jet with 2 b-tagged subjets, satisfying pt > ptmin

and passing the MD and
filtering analysis procedures explained in section 3.2. Notice that J is accepted only if the
2 hardest subjets coming from the filtering analysis are b-tagged. Here again, in order to
reject backgrounds, we require no other b-tagged jets in the range |y| < 2.5 with pt > 50
GeV (ZH channels (a) and (b)). For channel (c) (WH), where the tt̄ background is severe,
these cuts are strengthened: we do not want to see any other jet with |y| < 3 and pt > 30
GeV, b-tagged or not.
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Figure 3.9: Signal and background for bb̄ jet mass distributions in channels (a), (b) and (c)
respectively for a luminosity of 30 fb−1 at the LHC with MH = 115 GeV. A b-tag efficiency
of 60% is assumed as well as a mistag rate of 2%. The qq̄ sample includes dijets and tt̄, of
which the latter dominates. The errors reflect the statistical uncertainty on the simulated
samples, and correspond to integrated luminosities > 30 fb−1.



72 CHAPTER 3. LIGHT HIGGS SEARCHES USING JET SUBSTRUCTURE

3.4 Results

3.4.1 Each channel separately

Generating all the signal and background events for each channel, and using the cuts de-
scribed previously, one arrives at the plots shown in fig. 3.9 for the bb̄ jet mass distributions
at hadron level. The significance is computed by summing the number of signal (S) and
background (B) events in the mass range 112 − 128 GeV, and then calculating S/

√
B. On

each plot, we can clearly see the Z peak coming from WZ and ZZ backgrounds near the
Higgs one. However, it seems that it is not a critical background for our analysis as it hardly
reaches the Higgs mass region. For the dilepton channel (a), the largest (and almost only)
background is from Z+jets. Such a channel has a very clean signature which leads to very
few backgrounds, but suffers from a low cross-section because of a small branching ratio
Z → l+l−, l = e, µ (6.8%). This is why the significance of 2.1σ is the lowest of the 3 search
channels. On the contrary, the missing-Et channel (b) has a cross-section which is 3 times
greater, but the backgrounds are also very important because of a less clean signature. No-
tice that in this channel, the V+jets background is in fact equally shared between W+jets
and Z+jets. A W+jets event looks like the signal topology when the lepton from the W is
below the leptonic cut and when the single neutrino is highly boosted. This is almost the
same for the tt̄ background which also contributes significantly: in principle, it should result
in 2 leptons, b, b̄, and missing-Et, but if the 2 leptons are either not seen or not energetic
enough to be cut, then it can look like what we expect for the signal.9 The significance of
3.1σ that we found was actually overestimated compared to the other channels, because as
explained in section 3.3.2, some events from channel (c) were considered as belonging to this
channel. Concerning the semi-leptonic channel (c), the 2 most important backgrounds are
tt̄ and W+jets. Such a channel is intermediate between the 2 first ones: it offers a relatively
clean signature and the branching ratio W → lνl, l = e, µ is large (22.2%).

3.4.2 Combined results

The sum of the 3 search channels is shown in figure 3.10. The major backgrounds are tt̄,
Z+jets and W+jets. The conclusion of our study is that a Higgs with MH = 115 GeV
is visible with a significance of 4.5σ, which is a great improvement compared to previous
studies on the same search channels, and validates our subjet analysis procedure. However,
different b-tagging efficiencies as well as larger Higgs masses can have an important impact
on these results, and that’s why we also examined their effect (fig. 3.11). Most scenarios are
above 3σ, but to be a significant discovery channel, our approach requires decent b-tagging,
low-mass Higgs, and good experimental resolution.

We also looked at what happens if we take ptmin
= 300 GeV instead of 200 GeV. As ptmin

is increased, the background is reduced even more with respect to the signal and it becomes
more and more probable to reconstruct the decay H → bb̄ into a single jet. However, the
signal cross-section itself decreases by a factor of ∼ 3−4, so that the number of signal events
become very small. Fig. 3.11 indicates that this trade-off seems to be in favour of a lower
ptmin

.

9If one of the W decays hadronically, then the tt̄ event results in 1 lepton, 1 jet, b, b̄, missing-Et. If the
jet and the lepton are not tagged, then it also looks like a signal event.
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Figure 3.10: Signal and backgrounds bb̄ jet mass distributions for the sum of the 3 search
channels, when the luminosity is 30 fb−1 at the LHC. The Higgs mass was taken as 115
GeV. We assumed a b-tag efficiency of 60% and a mistag rate of 2%.
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Figure 3.11: (a) Expected significance as a function of the mistag rate for different b-tag
efficiencies and ptmin

(shown at optimal R0 values). (b) Expected significance as a function
of the Higgs mass.
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3.4.3 ATLAS results

Motivated by these promising results, the ATLAS collaboration repeated this analysis in-
cluding a full simulation of their detectors10 and a more sophisticated statistical combination
of the different channels in order to check if it remains viable in a more realistic environ-
ment [177]. Some of the cuts were slightly changed, experimental cuts were added (like
isolation criteria), but the main analysis was kept very similar to what we presented here.
However, they also took into account the Wt background that we neglected, but which can
lead to a topology close to the signal. Indeed we obtain one W on one side and a top quark
on the other side decaying into bW . If the W decays into a c or b jet (and another one not
detected), than it can fake the Wbb̄ signal in the WH channel. A c quark can be mistagged
as b because the D mesons resulting from the hadronisation of the c quark have a long
lifetime, not that much smaller than that of B mesons. The results for each channel are
presented in figure 3.12 (taken from [177]).

An important point to notice is the result of roughly 1.6σ for channel (b), to be compared
with our 3.1σ. As explained in section 3.3.2, this comes from the cut on the additional lepton
that was not considered in the missing-Et channel of [173], thus increasing the relative
significance of channel (b) with respect to channel (c) in our original analysis.

The ATLAS conclusion is that a 120 GeV Higgs boson can be seen with a significance of
3.7σ, which is a little less good than our results but is still promising. Including systematics,
this significance can drop to 3σ. But in all cases it remains comparable to the ATLAS
sensitivity for the other Higgs search channels in this low-mass region [169].

3.4.4 Possible improvements

The method that we used to recover the Higgs signal from the WH and ZH channels is
designed to be efficient while remaining simple. But it can be improved in various ways.

On the one hand, we may be able to enhance the reconstructed signal a little more if we
filter the Higgs neighbourhood with an optimally chosen radius Rfilt for the filtering. This
way will be explored in the next chapter. On the other hand, we can further reduce the
background by employing specific top vetoes [147, 149, 174, 178, 179]. One can also try to
reconstruct hadronically decaying Z and W bosons, using the MD and filtering procedure.
Indeed, almost 70% of the vector bosons decays are hadronic. It has therefore the potential
to significantly increase the number of reconstructed signal events. But as we would then
have to deal with purely hadronic events, we would have to check that the rejection of
background events still remains efficient. Finally, one could separate the high-pt region into
various bins like [200 GeV, 300 GeV], [300 GeV, 400 GeV] and so on, and then do a complete
analysis in each of these bins. Combining the various results obtained in a clever way could
lead to increased significance.

From an experimental point of view, the ATLAS collaboration also mentioned some
improvements that can be expected in their analysis. For instance the b-tagging efficiency
can be optimised for boosted b quarks, the background can be directly extracted from the
data, and one can use sophisticated multivariate techniques.

10Actually, they did a full simulation of the ATLAS inner detector and muon system and a fast simulation
of the calorimeter in its full granularity. But the WH signal was passed through a full detector simulation
and it was shown that the differential distributions are correctly reproduced.
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Figure 3.12: ATLAS results from (almost) full detector simulation for the distribution of
the invariant mass of the Higgs candidate (MH = 120 GeV) in (a) the dilepton channel, (b)
the missing-Et channel, (c) the semi-leptonic channel. The “top” background in the legend
of channel (c) is a combination of tt̄ and Wt.
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All this suggests that better results may be possible for these channels, though further
studies would be of value to check that explicitly.

3.5 Effect of NLO corrections

All the results that were obtained in this chapter are LO+parton-shower (with of course
UE and hadronisation). But to be confident with these results, one should check how NLO
corrections can change them. In fig. 3.13 we plot the differential pt distribution of the Higgs
candidate jet at LO and NLO for the Z + H and Z + jet processes with MCFM [88, 89].
Though our main backgrounds come from Zbb̄ and Wbb̄, some of the issues that arise are
more simply understood in Z + jet as a first step.
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Figure 3.13: (a) pt,H distribution for the ZH process at LO and NLO, with or without
the requirement that ptZ should be greater than the pt of the second hardest jet of the
event (the hardest jet is required to be the Higgs jet). We cluster events with the C/A
algorithm using a radius R = 1.2 and we require the hardest jet to be double b-tagged
(perfect b-tagging). We used MCFM 5.3 with CTEQ6L1 for LO and CTEQ6M for NLO.

The factorisation and renormalisation scales are set to µ =
√

M2
Z + p2

t,Z ; (b) The same for

the main Zj background concerning the pt distribution of the hardest jet, except that we

have no b-tagging requirement and the scale used is µ =
√

M2
Z + p2

t,j1.

We define the K-factor, as a function of pt, to be the following quantity:

K(pt) =

(

dσ
dpt

)

NLO
(

dσ
dpt

)

LO

, (3.7)

i.e. σNLO/σLO for the differential pt distribution. Concerning Z +H, we observe that the
K-factor is around 1.4 − 1.5 for pt,H > 200 GeV, which is in the general ballpark that we
would expect. However, when we did this study for the first time, the bad surprise came
from the Z + j distribution without the pt,Z cut. Here, the K-factor becomes large at high-
pt, up to 6. Of course, if it were the definitive answer, it would then importantly reduce
the significance. Nevertheless, such a large K-factor has to be understood: where does it
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come from? Actually, this K-factor results from electroweak double logarithms, when the
Z+2j process, which is the real NLO part of Z+ j, is seen as an electroweak correction to a
dijet process (fig. 3.14). This correction leads to soft and collinear logarithms ln

pt,j1

MZ
when

MZ , pt,Z ≪ pt,j1, which do not have any virtual counterpart in Z + j at one-loop (QCD
higher-order corrections only). To check this interpretation, we also plotted in fig. 3.13 the
NLO differential distributions when we force the Z to be more energetic than the second
hardest jet of the event (pt,Z > pt,j2). This cut is designed to kill the contribution from the
diagram 3.14(b). We see that the background K-factor is then greatly reduced and is more
under control (∼ 2), whereas that for the signal is almost unchanged.

Z

jet

(a)

Z

jet

jet

(b)

Figure 3.14: (a) One of the diagrams contributing to Z + j at LO in which pt,Z = pt,j1.
(b) One of the dominant real NLO diagrams in which pt,Z ≪ pt,j1, which leads to a large
K-factor.

These K-factors for signal and backgrounds only concern the differential pt distributions.
To see the effect on our results, one should perform the NLO calculation including all the
analysis (MD+filtering as well as the various selection cuts) ideally with parton-showering,
UE and hadronisation for the signals ZH and WH as well as for the main backgrounds
Zbb̄, Wbb̄ and tt̄. We did it for the signal using MC@NLO v3.3 [101], which matches NLO
computations with parton-showers. The K-factor of around 1.5 found in the pt distribution
was confirmed for a mass of the Higgs candidate jet in [110 GeV, 126 GeV].

Unfortunately, the Zbb̄ and Wbb̄ backgrounds are not available in MC@NLO v3.3. What
we did is that we first compared the MCFM LO results for Zbb̄ and Wbb̄ with HERWIG
after applying all selection cuts and found a good agreement between the 2 results (see
table 3.3 as an example). This is not unexpected since the background has a continuum mbb̄

distribution, which means that the MCFM LO results should not be significantly modified
by the parton showering process.

This agreement reinforces the idea that we can estimate theK-factor for the backgrounds
by applying all the selection cuts directly on MCFM LO and NLO events. One should be
aware that this part demanded substantial work because we had to enter deep into the
MCFM program in order to include our analysis, which is of course not available within the
default MCFM options. The results for W−bb̄, W+bb̄ and Zbb̄ are shown in fig. 3.15.

Consequently, for the Higgs candidate jet around 120 GeV, we find a K-factor of 1.6 for
Zbb̄, 2.6 for W+bb̄ and 2.8 for W−bb̄. We think that the larger K-factors that one observes
without the MD procedure come from jets with a large mass and a collimated bb̄ pair (i.e.
the b+ b̄ is not responsible for the jet mass). Concerning tt̄, we only checked the total cross-
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Figure 3.15: (a,b) K-factors for the W−bb̄ and W+bb̄ processes respectively. In each case,
require a jet with pt > 200 GeV containing a b+ b̄ pair and plot the mass of the jet without
the MD procedure (red curve), then do the same with the leptonic cuts (green curve), i.e.
|ylep| < 2.5, ptlep

> 30 GeV, /Et > 30 GeV, ptW > 200 GeV, and finally plot the mass of
the jet after the MD analysis (blue curve); (c) The same for the Zbb̄ process, where the
leptonic cuts are replaced by: |ylep| < 2.5, ptlep

> 30, ptZ > 200 GeV. As before, we used
CTEQ6L1 for LO and CTEQ6M for NLO. The factorisation and renormalisation scales are

set to µ =
√

M2
Z + p2

t,jet.
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HERWIG MCFM LO MCFM NLO
110 < mbb < 125, all cuts 110 < mbb < 125, all cuts 110 < mbb < 125, all cuts

0.51 fb 0.49 fb 0.82 fb

Table 3.3: Cross-sections including Z → e+e−, µ+µ− branching ratios for the Higgs can-
didate jet to have a mass in [110 GeV, 125 GeV], computed with HERWIG at LO, and
MCFM at LO and NLO for the Zbb̄ background. We assume perfect b-tagging and include
all the selection cuts except the jet veto cut. CTEQ6L1 is used for LO cross-sections and
CTEQ6M for NLO cross-sections. The renormalisation and factorisation scales are set to

µ =
√

M2
Z + p2

t,Z .

section, and found a K-factor of roughly 1.5− 2. We can thus conclude that the impact of
the NLO corrections on our estimates for the significance S/

√
B seems to be small, but the

ratio S/B which controls a part of the systematic uncertainties is somewhat reduced for the
WH channel.

3.6 Conclusion

The Higgs boson is the only particle of the Standard Model that has not been observed yet.
The ATLAS and CMS experiments, which are the two main LHC experiments involved in
Higgs hunting, have devoted a large amount of time to developing optimal strategies in order
to find it (if it exists). It is difficult to observe when its mass is below 130 GeV because
the main decay of the Higgs into bb̄ is hidden behind the large QCD backgrounds. First
analyses from ATLAS and CMS separately revealed that the decay H → bb̄, which might
be possible to observe in the WH, ZH and tt̄H channels, was out of reach at a luminosity
of 30 fb−1 at the LHC.

In this chapter we showed, contrary to what was believed, that theWH and ZH channels
with H → bb̄ are actually promising search channels at the LHC for a low-mass Higgs boson.
Indeed, at high-pt we are able to recover the Higgs signal with a significance of 4.5σ at 30 fb−1

(3.7σ with a full detector simulation). These channels not only greatly help in observing
the Higgs boson, but they also provide very important information on WWH, ZZH and
bb̄H couplings [171]. The main point in this study is the ability to reconstruct the Higgs
decaying into bb̄ thanks to a new subjet analysis procedure which can be decomposed in 2
steps: a mass-drop analysis that allows one to reduce the large QCD background, and a
filtering analysis that is designed to suppress as much as possible the effect of UE on the
jet mass, thus improving mass resolution on jets. This procedure reconstructs the expected
angular pattern of the perturbative radiation from the Higgs splitting and is able to adapt
itself to the Higgs pt, which can be substantially different from one event to the next, leading
to different angular scales. We finally estimated the various NLO corrections that we expect
for our analysis and we found that they do not strongly affect our S/

√
B estimates based

on LO results.

In this work we aimed to perform a simple analysis, and we thus observe that there is
still room left for theoretical and experimental improvements. Our methods can also be used
to identify a W or a Z boson for instance, as well as any new colourless resonance decaying
hadronically that might be found at the LHC, and they can therefore have an important
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impact in many other phenomenological studies that will be carried out.



Chapter 4

Non-global logarithms in filtered
jet algorithms

In the previous chapter, we have shown how it is possible to recover the signal from a light
Higgs boson decaying into bb̄ at the LHC using a deep analysis into the substructure of the
Higgs candidate jet. This kind of jets study has been widely used in recent years in order to
identify more generally a boosted massive particle decaying hadronically, for instance the W
boson [146,147,180,181], top quarks [149,174,178,179], supersymmetric particles [148,182]
and heavy resonances [183–185] (see also [186] for related work on general massive jets).
Let us briefly recall our approach. After having clustered the event with a radius R0 large
enough to catch the b and b̄ from the Higgs decay into a single jet,1 this jet can be analysed
in two steps:

• A Mass Drop (MD) analysis that allows one to identify the splitting responsible for
the large jet mass, i.e. separate the b and b̄ and thus measuring the angular distance
Rbb between them, while suppressing as much QCD background as possible.

• A Filtering analysis where one reclusters the 2 resulting subjets with a smaller radius
and takes the 3 highest-pt subjets obtained in order to keep the major part of the
perturbative radiation while getting rid of as many underlying event (UE) and pile-up
(PU) particles as possible (which was later used also in [141, 174, 187], and a variant
is proposed in [188]).

Concerning the MD analysis, the only thing we need to know is that we end up with 2
b-tagged jets, each with a radius roughly equal to Rbb. Notice that due to angular ordering
[40–44], these 2 jets should capture most of the perturbative radiation from the bb̄ dipole.
The whole procedure is depicted in fig. 3.7.

In this chapter, we are going to focus on the filtering analysis. One can generalise it with
respect to its original definition using 2 parameters, nfilt and ηfilt (as discussed also in [188]):
after the MD analysis was carried out, one reclusters the 2 resulting subjets with a radius
Rfilt = ηfiltRbb and takes the nfilt hardest jets obtained. Obviously, the larger the value of
ηfilt the more perturbative radiation we keep, but also the more the UE/PU degrades the
Higgs peak. The same holds for nfilt. So there is a compromise to make between losing
too much perturbative radiation and being contaminated by soft particles from UE/PU. In

1The value chosen was R0 = 1.2.
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the previous chapter, we used for example nfilt = 3 and ηfilt = min(0.3/Rbb, 1/2). However,
these values had been chosen based on a brief Monte-Carlo event generator study and
one would like to gain a little more analytical control over them. One question would be
for instance to understand even approximately how the optimal (nfilt,ηfilt) values change
when one increases the Higgs ptH cut, or when the PU becomes more and more important
during the high luminosity running of the LHC. Though the MD and Filtering analysis
were originally designed to identify a light Higgs boson, one should be aware that similar
calculations may apply in other uses of filtering, for instance to study any boosted colourless
resonance decaying hadronically, including W and Z bosons.

This chapter will be devoted in large part to the study of the dependence of the pertur-
bative radiation loss with respect to the filtering parameters. As usual in this kind of work,
large logarithms arise due to soft or collinear gluon emissions, and one is forced to deal with
them in order to obtain reliable results in the region where the observable is sensitive to this
kind of emission. We will thus compute analytically the two first orders in the leading soft
logarithmic (LL) approximation when nfilt = 2 and to all-orders in the large-Nc limit2 when
nfilt = 2 or 3 for small enough values of ηfilt (section 4.1). With these in hand, and using
a program that allows one to carry out all-orders leading-log calculations in the large-Nc

approximation, we check the analytical results and examine if the small-ηfilt limit and/or the
truncation of the LL expansion can be trusted to estimate the loss of perturbative radiation
in practice (section 4.2). Finally, in section 4.3, we will analyse the Higgs mass peak width
due respectively to the loss of perturbative radiation and to the presence of UE/PU, before
combining them in a simple and approximate but physically reasonable way in order to be
able to conclude about the optimal parameters choices.

4.1 Non-Global structure: analytical insights

4.1.1 The filtered Higgs mass: a Non-Global observable

It is now very well known [189–204] that soft or collinear gluons can give rise, in multiscale
problems, to the appearance of large logarithms in the perturbative expansion of an observ-
able, and more precisely in a region of phase space where it is sensitive to the soft or collinear
divergences of QCD. In this chapter, the observable considered is ∆M = MH −Mfiltered jet,
where Mfiltered jet is the reconstructed Higgs-jet mass and MH is its true mass. ∆M has the
property that it is 0 when no gluon is emitted. We are interested in Σ(∆M), the probability
for the difference between the reconstructed and true Higgs masses to be less than a given
∆M . In this case, large soft logarithms have to be resummed at all-orders to obtain a
reliable description of the small ∆M distribution.

Note that ∆M is taken to be positive definite, which is justified by the fact that we
neglect Initial State Radiation (ISR). This is partially for a question of simplicity of the
analysis, but also because the results of work such as [141,176] suggest that for LHC processes
whose hard scales are few hundred GeV, the crucial interplay is that between Final State
Radiation (FSR) and UE/PU. This is evident in the preference for small R values in dijet
mass reconstructions in those references, where ISR is not playing a major role. Similarly we
believe that the optimal values of ηfilt that we will determine here will have limited impact

2Nc = 3 denotes as usual the number of QCD colours, see section 1.2.5 for more details about the large-Nc

limit.
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from ISR, though we shall not check this explicitly.

For the ∆M observable, soft gluons emissions lead to powers of ln MH

∆M , whereas collinear

gluons emissions leads to powers of ln Rbb

Rfilt
. In this study, gluons are strongly ordered in

energy (the first emitted gluon being the most energetic one, and so on), and we aim to

control the
(

αs ln MH

∆M

)k
series, in a region where

ln
MH

∆M
≫ ln

Rbb

Rfilt

. (4.1)

Therefore, at leading-log accuracy, one has to resum terms like

Ik(∆M) = fk

(

Rbb

Rfilt

)(

αs ln
MH

∆M

)k

, (4.2)

where all the fk are functions to be computed. We thus disregard all the sub-leading terms,
i.e. those suppressed by at least one power of ln MH

∆M . Unfortunately, such a calculation
is highly non-trivial due to the fact that the observable is non-global. This property, first
studied in [199], means that it is sensitive to radiation in only a part of the phase space.
In the case of ∆M , only emissions of gluons outside the filtered jets region contribute
to the observable (cf figure 4.1). As a consequence of this property, one must consider

b

Rfilt

H

b

2 1

(a)

b

Rfilt

H

b

1

2

(b)

Figure 4.1: Configurations leading to non-global logarithms when (a) nfilt = 2 and (b)
nfilt = 3. In each case, the hardest gluon 1, which is inside the filtered jet region, emits a
softer gluon 2 outside the filtered jet region.

soft gluons emissions not just from the bb̄ dipole (usually called primary emissions, the
only ones that would be present in QED) but also from the whole ensemble of already
emitted gluons [199, 205]. As the number of gluons is increased, the geometry and the
colour structure of all these gluons become rapidly too complex to perform an analytical
calculation. Therefore, to deal with this, one is forced to apply numerical Monte-Carlo
calculations that can easily take care of the geometry. But the colour structure remains
prohibitive, and one must usually also resort to the large-Nc approximation in order to
go beyond the 2 first orders in perturbation theory [199, 205–207] (though some authors
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have derived some analytical results in special cases [208, 209] and others have examined
contributions beyond the leading large-Nc approximation [210,211]).

However, before considering numerical calculations, some results can be derived analyt-
ically at 2nd order for nfilt = 2 (where f1 and f2 are computed exactly) and nfilt = 3 (where
only the leading behaviour of the fk in ln Rbb

Rfilt
and Nc is looked for).

4.1.2 Some results for nfilt = 2

Perturbatively, one can write Σ(∆M) as

Σ(∆M) = 1 +

∞
∑

k=1

Ik(∆M) , (4.3)

where Ik(∆M) is the O
(

αk
s

)

contribution to the observable. To simplify the calculation,
Σ(∆M) will be computed using the anti-kt algorithm [78], even if the numerical study
will be done using the C/A algorithm [71, 72] to be in accordance with the choice made
in the previous chapter. However, the anti-kt algorithm is enough to catch the dominant
behaviour of the leading-log series, in the sense that it does not affect the leading large
collinear logarithm in the function fk at small Rfilt:

fk

(

Rbb

Rfilt

)

= ak lnk

(

Rbb

Rfilt

)

+O
(

lnk−1

(

Rbb

Rfilt

))

, (4.4)

i.e. ak is unchanged when moving from C/A to anti-kt.
3 This jet algorithm gives simpler

results because the gluons outside the filtered jet region tend not to cluster with the ones
inside. It is this property which ensures that the hardest jets in an event are generally perfect
cones, as particles usually cluster with the hardest ones in their neighbourhood first [78].

As a first step, primary emissions are considered, defined to be those one would obtain
if gluons were only emitted from the bb̄ dipole (as for photons in QED).

Primary emissions

Due to the use of the anti-kt algorithm, the result of the primary emissions can be easily
shown to exponentiate, as will be roughly seen in the next section with the O

(

α2
s

)

analysis.
Here, we just review the very well known result that the contribution to Σ(∆M) from
primary emissions, denoted Σ(P )(∆M), can be written as:4

Σ(P )(∆M) = eI1(∆M) , (4.5)

with:

I1(∆M) =

∫

d3~k1

(2π)32|~k1|
M(k1)

(

Θ
(

~k1 ∈ Jbb̄

)

+ Θ
(

~k1 /∈ Jbb̄

)

Θ
(

∆M −∆M(~k1)
)

− 1
)

.

(4.6)

3When Rfilt ∼ Rbb

2
, the discarding of the O

“

lnk−1
“

Rbb

Rfilt

””

terms is not a priori justified, but fig. 4.4,

which compares numerical results obtained using C/A with analytical estimates using anti-kt, supports the
dominance of the leading collinear logarithms.

4The superfix (P ) serves as a reminder that only primary emissions are being accounted for.
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M(k1) is the matrix element squared for emitting one soft gluon from the bb̄ dipole (the b
quark is taken to be massless):

M(k1) = 4παsCF
2(pb.pb̄)

(pb.k1)(k1.pb̄)
. (4.7)

Concerning the notations, Θ
(

~k1 ∈ Jbb̄

)

equals 1 when gluon 1 is emitted inside the jet

regions around b and b̄, denoted by Jbb̄ (and is 0 otherwise), which, for Rfilt < Rbb, is just
2 cones of radius Rfilt centred on b and b̄ (figure 4.1(a)). Then, concerning the expression
in brackets in eq. (4.6), we separate the 2 different regions where the gluon can be: either
inside or outside the filtered Higgs jet. The first term Θ(~k1 ∈ Jbb̄) means that the gluon
does not contribute to the observable (as it is kept in the Higgs jet, the reconstructed Higgs
mass is the true Higgs mass: ∆M(k1) = 0). If the gluon is outside the filtered jet region
(second term), then it does contribute to the observable:

∆M(k) ∼ kt
MH

ptH

, (4.8)

up to prefactors that can be neglected in the leading-log approximation, see appendix B.
Finally, the −1 stands for the virtual corrections, for which there’s obviously no loss of mass
for the Higgs, and whose matrix element is just the opposite of the soft real one.5 One thus
obtains:

I1(∆M) = −
∫

~k1 /∈Jbb̄

d3~k1

(2π)32|~k1|
M(k1)Θ (∆M(k1)−∆M) . (4.9)

The computation of this integral in the boosted regime, where ptH ≫ MH , or equivalently
Rbb ≪ 1, is done in appendix B. From now on, we will essentially use ηfilt = Rfilt/Rbb instead
of Rfilt and we define n ≡ nfilt and η ≡ ηfilt for more clarity in mathematical formulae. In
order to keep in mind that it depends on the 2 parameters of the Filtering analysis, the
distribution Σ(∆M) is renamed Σ(n)(η,∆M). What we obtain at fixed coupling is the
following:6

Σ(2),(P )(η,∆M) = e−
αsCF

π
J(η) ln

MH
∆M , (4.10)

with

J(η) = 2 ln

(

1− η2

η2

)

if η <
1

2
, (4.11)

=
8

π

∫ +∞

η

du

u(u2 − 1)
arctan

(

u− 1

u+ 1

√

2u+ 1

2u− 1

)

if
1

2
< η < 1 . (4.12)

We give the value of J(1), a quantity that is important to discuss some aspects of the results
obtained in the following sections:

J(1) ≃ 0.646 . (4.13)

5Even if the result seems obvious here, this way of doing the calculation can be easily generalised to higher
orders and other kinds of jet algorithms.

6To obtain the result at running coupling, one simply makes the replacement (see eqs. (4.31,4.32) later in
this chapter):

αs ln
MH

∆M
→ 1

2β0
ln

 

1

1 − 2β0αs(MH) ln MH

∆M

!

.
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Notice that the case η > 1 will not be used in this study, but is mentioned in appendix B.
The function J(η) is plotted in figure 4.2.

 0
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 20

 0  0.2  0.4  0.6  0.8  1

J(
η)

η

Figure 4.2: The coefficient J(η) in front of the primary soft logarithm ln MH

∆M .

Two remarks can be made:

1. The result does not depend on the energy fraction z of the Higgs splitting into bb̄.

2. When η ≪ 1, another large logarithm ln 1
η appears due to collinear enhancement.

Non-global contributions

Now, we turn to the O
(

α2
s

)

term, and more precisely to the contribution of the non-
global terms that have to be added to the primary logarithms computed in the previous
section. That corresponds to the analysis of I2(∆M) in the perturbative expansion of
Σ(∆M) from eq. (4.3). The matrix element squared for 2 real gluons emission is expressed
as [40,199,212,213]:

M(k1 real, k2 real) = (4παs)
2(W1 +W2) , (4.14)

with

W1 = 4C2
F

(pb.pb̄)

(pb.k1)(k1.pb̄)

(pb.pb̄)

(pb.k2)(k2.pb̄)
, (4.15)

W2 = 2CFCA
(pb.pb̄)

(pb.k1)(k1.pb̄)

(

(pb.k1)

(pb.k2)(k2.k1)
+

(pb̄.k1)

(pb̄.k2)(k2.k1)
− (pb.pb̄)

(pb.k2)(k2.pb̄)

)

. (4.16)

This expression is valid when there is a strong energy ordering between the two real gluons
1 and 2, either E1 ≫ E2 or E2 ≫ E1 (the formula is completely symmetric under the
interchange k1 ↔ k2). For the cases with one or both gluons being virtual, the following
matrix elements are obtained, valid only when E1 ≫ E2 [213]:

M(k1 real, k2 virt) = −(4παs)
2(W1 +W2) , (4.17)

M(k1 virt, k2 real) = −(4παs)
2W1 , (4.18)

M(k1 virt, k2 virt) = (4παs)
2W1 . (4.19)
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Using these properties, separating the 4 phase space regions depending on whether the
gluons are inside or outside the filtered jet region in the same way as was done for I1, and
defining dk as:

dk =
d3~k

(2π)32|~k|
, (4.20)

we can then write I2 in the following form:

I2 =

∫

dk1dk2(4παs)
2Θ(E1 − E2)

{

Θ(k1 ∈ Jbb̄)Θ(k2 ∈ Jbb̄)
(

(W1 +W2)− (W1 +W2)−W1 +W1

)

+ Θ(k1 ∈ Jbb̄)Θ(k2 /∈ Jbb̄)
(

(W1 +W2)Θ(∆M −∆M(k2))− (W1 +W2)−W1Θ(∆M −∆M(k2)) +W1

)

+ Θ(k1 /∈ Jbb̄)Θ(k2 ∈ Jbb̄)
(

(W1 +W2)Θ(∆M −∆M(k1))− (W1 +W2)Θ(∆M −∆M(k1))−W1 +W1

)

+ Θ(k1 /∈ Jbb̄)Θ(k2 /∈ Jbb̄)
(

(W1 +W2)Θ(∆M −∆M(k1, k2))− (W1 +W2)Θ(∆M −∆M(k1))

−W1Θ(∆M −∆M(k2)) +W1

)}

. (4.21)

For each phase space region, the 4 terms

(k1, k2) = (real,real) − (real,virt) − (virt,real) + (virt,virt)

are considered. The strong energy ordering E1 ≫ E2 implies that ∆M(k1, k2) = ∆M(k1),
and one immediately gets:

I2 =

∫

dk1dk2(4παs)
2Θ(E1 − E2)Θ(k1 /∈ Jbb̄)Θ(k2 /∈ Jbb̄)W1Θ(∆M(k2)−∆M)

−
∫

dk1dk2(4παs)
2Θ(E1 − E2)Θ(k1 ∈ Jbb̄)Θ(k2 /∈ Jbb̄)W2Θ(∆M(k2)−∆M) ,

= I
(P )
2 (∆M) + I

(NG)
2 (∆M) , (4.22)

where I
(P )
2 (∆M) corresponds to the first integral containing the function W1 whereas

I
(NG)
2 (∆M) corresponds to the second integral with the function W2. I

(P )
2 is just the second

order contribution to the primary emissions, already computed above. To be convinced, one
can notice that (4παs)

2W1 can be expressed as the product of 2 one-gluon matrix elements
M(k1)M(k2) and, when E1 ≫ E2,

Θ (∆M(k2)−∆M) = Θ (∆M(k2)−∆M) Θ (∆M(k1)−∆M) , (4.23)

if k1 and k2 belong to the same phase space region. Therefore I
(P )
2 can be written in a more

symmetric way:

I
(P )
2 (∆M) =

1

2

∫

dk1dk2(4παs)
2Θ(k1 /∈ Jbb̄)Θ(k2 /∈ Jbb̄)W1Θ(∆M(k1)−∆M)Θ(∆M(k2)−∆M) ,

=
1

2

(∫

dkΘ(k /∈ Jbb̄)M(k)Θ(∆M(k) −∆M)

)2

,

=
1

2
(I1(∆M))2 , (4.24)

so that it corresponds to the second order perturbative expansion of the result eq. (4.5),
obtained with primary emissions only.
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The important term for this section is the one containing W2, denoted by I
(NG)
2 . As

mentioned in section 4.1.1, it receives a non-zero contribution when the hardest gluon 1 is
emitted inside the filtered jet region whereas the softest gluon 2 is emitted outside. For the
opposite configuration, there is an exact cancellation between gluon 2 being real and virtual.

Here again the computation of I
(NG)
2 is postponed to appendix B, giving directly what will

help to interpret some results later. S2 is defined such that

I
(NG)
2 (η,∆M) =

1

2
CFCA

(

αs

π
ln

(

MH

∆M

))2

S2(η) , (4.25)

where we explicitly introduce the dependence on η and we factorise out the soft divergence,
still revealed in the large logarithm ln MH

∆M . When η < 1/2, the result for S2 can be written
as:

S2(η) = −π
2

3
+ 8

∫ 1

0

du1

u1

∫ 1

0

du2

u2

(

1
√

(1 − η2(u2
1 + u2

2))
2 − 4η4u2

1u
2
2

− 1

1− η2(u2
1 + u2

2)

)

,

= −π
2

3
+ 4η4 + 12η6 +O

(

η8
)

. (4.26)

The important point to notice in this result is the absence of collinear logarithms, which
would appear as ln 1

η , contrary to the primary emission case (eq. (4.11)). So that the primary
emissions dominate for this observable, at least for η sufficiently small.

As mentioned in previous studies [199, 214], one notices the presence of “π2 terms” in
non-global results at second order.

4.1.3 Some results for nfilt = 3

The goal in this section is to have an estimate of the analytical behaviour in the large Nc

limit of Σ(n)(η,∆M) for n = 3, which is the probability of having no second gluon emission
leading to a ∆M ′ greater than ∆M . Notice that, contrary to the previous part where we
obtained the function Σ(2), only the leading behaviour in L = ln 1

η and Nc will be derived,

so that in this context Σ(2) can be simply written:7

Σ(2)(L, t) = e−4NcLt (4.27)

where for further convenience we introduce the parameter t = αs

2π ln MH

∆M and we change the

arguments of Σ which becomes now a function of L and t. In this formula, 2L = 2 ln Rbb

Rfilt

can be interpreted as the “logarithmic size” of the bb̄ dipole, i.e. the allowed phase space in
rapidity for an emission from this dipole (in its centre of mass frame) outside the jet region.
The parameter t means that this emission cannot occur with a t′ between 0 and t.

Now we turn to Σ(3)(L, t). To have no second gluon emission in [0, t], either there is no
first gluon emission in [0, t] outside the jet region (which corresponds to Σ(2)(L, t)), or there
is such an emission but the new dipole configuration is prohibited from emitting a second
gluon in [0, t] outside the jet region. This is depicted in figure 4.3. As the calculation is
done in the large-Nc limit, after the emission of a first gluon, the second one cannot be

7This results simply from the combination of equations (4.10) and (4.11) with η ≪ 1, and CF = Nc

2
in

the large Nc limit.
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b bbb
+Σ(3)(L, t) ≃ 2L

2L
2l

∫

dldt′

g(t′)

Figure 4.3: How to compute the leading behaviour of Σ(3)(L, t) from Σ(2)(L, t) when L≫ 1
and Nc ≫ 1. In the second term, t′ is the gluon’s emission scale.

emitted from the bb̄ dipole, but only from the bg and b̄g ones. Fig. 4.3 can be translated
mathematically as:

Σ(3)(L, t) ≃ Σ(2)(L, t) +

∫ t

0
dt′4NcΣ

(2)(L, t′)
∫ L

0
dl Σ(2)(L, t− t′)Σ(2)(l, t− t′) . (4.28)

Notice that Lbg, the logarithmic size of the bg dipole in figure 4.3, does not depend on l
in the leading collinear log approximation.8 In this expression, 4NcLΣ(2)(L, t′)dt′ is the
probability not to emit the first gluon in [0, t′] and to emit it only at t ∈ [t′, t′ + dt′]. The

remaining part 1
L

∫ L
0 dlΣ(2)(L, t− t′)Σ(2)(l, t− t′) is the probability to emit no second gluon

from the bg and b̄g dipoles in [t′, t]. Using eq. (4.27) for Σ(2), Σ(3) is then given by:

Σ(3)(L, t) ≃ e−4NcLt

(

1 +

∫ 4NcLt

0
dt′

1− e−t′

t′

)

. (4.29)

Two limits can be considered:

Σ(3)(L, t) ≃







1− 3
4(4NcLt)

2 +O
(

(4NcLt)
3 +Nct

)

if 4NcLt≪ 1 ,

e−4NcLt (ln (4NcLt) +O(1)) if 4NcLt≫ 1 .
(4.30)

The limit 4NcLt≪ 1 reveals two important aspects:

1. One can notice the absence of the O(Lt) term, which is indeed the goal of the filtering
analysis as it was presented in its original version (section 3.2.2): it is intended to
catch the major part of the O(αs) perturbative radiation. It cannot catch all the

8One can easily show the following relation:

Lbg = 2L + O
“

el−L
”

.

If we introduce the neglected component of Lbg in the Σ(3) calculation eq. (4.28), then we have to compute
an integral of the form

Z L

0

dl
1 − e(l+O(el−L))t

l + O(el−L)
.

Expanding the exponential and keeping the term of order k gives

Z L

0

dl
“

l + O(el−L)
”k−1

tk =
(Lt)k

k
+ O(Lk−2tk) .

The leading O
`

(Lt)k
´

term is already taken into account in eq. (4.29). Therefore, including the l dependent

component of Lbg gives rise to terms of the form Nk
c Lk−2tk at order k, suppressed by 2 powers of L with

respect to the leading one.
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O(αs) contribution because a hard gluon emitted at an angle θ > Rbb from the b and
b̄ escapes the filtering process as it is rejected by the Mass Drop analysis. Therefore,
when 4NcLt≪ 1, the expansion eq. (4.30) misses a term O(Nct), but this is legitimate
in a leading collinear log estimate. Notice that the missing term is simply −J(1)Nct
where J(η) was given in eq. (4.12).

2. it shows that the purely non-global result for n = 3 contains large collinear logarithms
L, contrary to the case n = 2 (eq. (4.26)). Indeed, the primary result for n = 3 at
second order can be proved to behave as9 −32C2

F (Lt)2 at order α2
s, so that the S2

term for n = 3 should be equivalent to −8CFCA(Lt)2 at large L.

Having understood some analytical features of the Filtering analysis, we now examine
what can be learnt from a numerical calculation of the reconstructed Higgs mass observable.

4.2 Non-Global structure: numerical results

In all that follows t is defined so as to gather all the information about the soft logarithms
in a running coupling framework:

t =
1

2π

∫ ptH

0

dkt

kt
αs

(

kt
MH

ptH

)

Θ (∆M(k)−∆M) ,

=
1

2π

∫ ptH

ptH
∆M
MH

dkt

kt
αs

(

kt
MH

ptH

)

,

=
1

4πβ0
ln

(

1

1− 2β0αs(MH) ln MH

∆M

)

, (4.31)

where the last equality holds at the one-loop level and β0 =
11CA−2nf

12π . The argument of αs

was taken as the gluon’s transverse momentum with respect to the Higgs boson direction,
of order kt

MH

ptH
, kt being its transverse momentum with respect to the beam. In the case of

a fixed coupling constant αs, the definition for t here coincides with that of section 4.1.3:

t =
αs

2π
ln
MH

∆M
. (4.32)

But from now on, and unless stated otherwise, t is given in the running coupling framework,
eq. (4.31), and the function Σ(η,∆M) is rewritten as Σ(η, t).

To get an idea of the range of values covered by t, table 4.1 presents a few t values
corresponding to a given ∆M for a Higgs mass of 115 GeV (αs(MH) = 0.114). It reveals
that the physical values for t are below 0.15.

To numerically investigate non-global observables, two approaches can be followed:

9In fact, one can show the following general estimate for the primary emissions in the leading soft and
collinear approximations:

Σ(n)(L, t) = e−8CF Lt
n−2
X

k=0

(8CF Lt)k

k!
.
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∆M (GeV) 1 2 5 10 20 50 115

t 0.141 0.108 0.075 0.054 0.036 0.016 0

Table 4.1: Correspondence between ∆M and t for some particular values.

• an all-orders approach where one resums the leading-logs at all-orders in the large-
Nc limit, the output being the function Σ(t), i.e. the probability that the loss of
perturbative emission results in a Higgs mass in the range [MH −∆M(t),MH ], with

∆M(t) = MHe
− 1

2β0αs
(1−e−4πβ0t) , (4.33)

simply obtained by inverting the relation eq. (4.31).

• a fixed-order approach where the first few coefficients from the expansion of Σ(t) are

computed in the large-Nc limit. More precisely, if Σ(t) =
∞
∑

k=0

ck

k! (Nct)
k, then the

program returns the first few coefficients ck.

From a numerical point of view, the way to write a fixed-order and all-orders programs is
explained in appendix D. A result at fixed-order may be obtained by developing a systematic
approach like the one presented at second order in eq. (4.21). For the filtered Higgs jet mass
observable, we used the Fastjet package [76] to perform the clustering (and mass-drop +
filtering) with the C/A algorithm, consistently with the choice made in section 3.2.

As the all-orders program gives immediately what we are looking for, which is Σ(t), we
will use it (section 4.3.1) to compute the perturbative Higgs width. But in order to check it
and be confident with the results obtained, we compare them with the previous analytical
estimates and see how well the perturbative leading log series fits them. This leads us
to study the behaviour of the higher order terms and to gain a better understanding of
the convergence and structure of the non-global series. Though treated in more details in
appendix E, the main points are mentioned in this section.

4.2.1 Comparison with analytics

Using the all-orders Monte-Carlo program, a comparison between the all-orders numerical
curves obtained using the C/A algorithm and their corresponding analytical estimates ob-
tained previously with anti-kt in eqs. (4.27,4.29) can be done. The results are presented in
figure 4.4 and show good agreement, at least in the region of physical t values.

Notice that the slight discrepancy between analytical estimations and numerics starts to
occur at t > 0.1, which is at the edge of the physical region (cf table 4.1), beyond which ∆M
would be below the perturbative scale of around 1 GeV. This agreement manifests that:

• In the physical region, the leading terms in (αsLt)
k, with L = ln 1

η seem to completely
dominate and we do not need to compute the sub-leading corrections.

• One can use these analytical expressions to get an accurate estimate of the recon-
structed Higgs peak width.
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Figure 4.4: Comparison between numerical all-orders result (obtained using C/A algorithm)
and leading collinear logarithm estimate of Σ(t) derived with anti-kt for (a) n = 2 and (b)
n = 3 for 2 values of η: 0.1 and 0.5.

4.2.2 Comparison with fixed-order results

The structure of the non-global series at fixed-order is now examined so as to independently
cross-check the all-orders program and to understand if the perturbative leading-log series
can be usefully truncated.

As an example, figure 4.5 compares the all-orders result to the fixed-order ones up to α5
s

for n = 2 and two different values of η (only the coefficients with an uncertainty of at most
a few percent are plotted10). The curves are represented up to t = 0.3, which is far beyond
the physical region but is instructive to study the convergence of the series.

The left plot for η = 0.3 shows a nice convergence of the perturbative series eq. (4.3), as
the t range for which the all-orders and fixed-order curves coincide grows with k. However,
the second plot for η = 0.9 gives an unexpected result: the fourth order diverges with
respect to the third one, in the sense that the point of disagreement is shifted to smaller
t. The question arises whether this divergence will remain at higher orders. To answer it,
one needs to go further in perturbation theory. In appendix E, a parallel is made between
the filtered Higgs jet observable and the slice observable, studied for instance in [205], for
which, due to computational speed, it is possible to obtain reliable coefficients up to order
6. The same effect is observed and is even enhanced at orders 5 and 6. Therefore, it seems
that the fixed-order information cannot be safely used in general: one has to be aware that
the leading-log large-Nc non-global series may be divergent for any value of t.

4.3 Choice of the filtering parameters

In the previous sections we examined the structure and convergence of the perturbative
leading-log series, analytically and numerically. We could then cross-check the analytical
expressions and the fixed-order approach with the all-orders program, which we are going

10This uncertainty obviously increases with the perturbative order, but also with η because at small η, the
coefficients are sensitive to the large logarithm ln 1

η
, which is easy to compute.
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Figure 4.5: Comparison between fixed-order (FO) expansion and all-orders result when
n = 2 for (a) η = 0.3 and (b) η = 0.9. Both fixed-order and all-orders results were obtained
using the C/A algorithm.

to use throughout this part.

We would like to decide how one should choose the filtering parameters (n,η) depending
on the level of UE and PU as well as the pt of the Higgs boson. Here, we do not claim
to make an exact and complete analysis, but we want to obtain some estimates. First, we
consider the width of the Higgs mass distribution separately in presence of perturbative
radiation (using the all-orders results) and UE/PU (using a simple model for it). Then,
we try to minimise the Higgs width in presence of both of these effects. Finally, we will
estimate hadronisation corrections.

In all this part, we set the Higgs mass MH at 115 GeV, as in the previous chapter.

4.3.1 Study of the Higgs perturbative width

As we could see in the previous sections, even without considering additional particles from
UE/PU, ∆M ≡ MH −Mfiltered jet 6= 0 because of the loss of perturbative radiation. The
Higgs boson thus acquires a perturbative width, denoted δMPT . At first sight, knowing the
distributions Σ(n)(η,∆M), one might simply define it as:

δMPT = 2
√

〈∆M2〉 − 〈∆M〉2 , (4.34)

as we do for gaussian distributions for instance. Unfortunately, if we simply take n = 2 as
an example and if we consider the primary emission result eq. (4.10), we can deduce the
following distribution for ∆M :

dΣ(2)(η,∆M)

d∆M
=

αsC(η)

M
αsC(η)
H

1

∆M1−αsC(η)
, (4.35)

with

C(η) =
CFJ(η)

π
. (4.36)
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Computing 〈∆M〉 and 〈∆M2〉 implies dealing with integrals of the form

∫ MH

0

d∆M

∆M1−αsC(η)
∆M =

∫ MH

0
d∆M ∆MαsC(η) , (4.37)

∫ MH

0

d∆M

∆M1−αsC(η)
∆M2 =

∫ MH

0
d∆M ∆M1+αsC(η) . (4.38)

Such integrals give a large importance to the ∆M ∼ MH/2 region, where there should be
very few events, and do not describe what happens in the neighbourhood of the peak near
∆M = 0. Therefore, the definition eq. (4.34) does not seem adequate for the perturbative
width. That’s why we shall adopt another definition, adapted from [215]. The Higgs per-
turbative width is defined as the size δMPT for which a given fraction f of events satisfy
0 < ∆M < δMPT . Using the all-orders function previously computed, this is equivalent to
solving the equation Σ(n)(η,∆M) = f . This leads to the width function δMPT (n, η, f).
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Figure 4.6: Perturbative width of the Higgs boson (in GeV) as a function of η for several
values of n when (a) f = 0.68 and (b) f = 0.95.

Fig. 4.6 shows δMPT as a function of η for n = 2 . . . 6. When ∆M ∼ 50 GeV (i.e.
∼ MH/2), one should be aware that soft approximation loses sense and results on these
plots should no longer be taken seriously. We chose the values f = 0.68 and f = 0.95,
corresponding respectively to full widths of 2σ and 4σ for gaussian distributions, to show
that the Higgs mass perturbative distribution is not gaussian (otherwise, going from 2σ to
4σ would have multiplied the width by a factor of 2, see also eq. (4.35)). One important
thing to notice is a kind of “saturation” effect that one observes for η close enough to 1 for
every fraction f . It manifests itself as a flat curve at a value δMPT = δMsat(f), independent
of n. For instance, δMsat(f = 0.68) ≃ 1 GeV and δMsat(f = 0.95) ≃ 33 GeV. This can be
understood simply by considering that when the radius of the filtering is large enough, say
η > ηsat(n), it captures (almost) all the particles resulting from the Mass Drop analysis,
i.e. all those that are within angular distance Rbb from b or b̄, but it still fails to capture
particles outside the Mass Drop region.11 Of course, the larger n, the smaller ηsat(n) as
we keep more jets. This saturation property is equivalent to saying that all the functions
Σ(n)(η,∆M) become independent of n and η when η > ηsat(n).

11The probability to emit a gluon outside the MD region in [0, t] is roughly given by 1 − e−J(1)Nct.
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For the rest of this analysis we keep the value f = 0.68, even if it is not clear which
value should be chosen, and more generally what should be the relevant definition of the
Higgs perturbative width. However, we will mention in section 4.3.4 what happens if we
vary f between f = 0.5 and f = 0.8, so as to obtain a measure of the uncertainty of the
calculations.

The curves in figure 4.6 only give us an overview of the scales involved in the Higgs
boson width. But one can go a little further. At small η, we should get a large collinear
enhancement revealing itself as a large logarithm L = ln 1

η multiplying t. The perturbative

expansion is thus a series in (NcLt)
k. As a direct consequence, at small η, the all-orders

function Σ(n)(η, t) can be written as a function of a single variable Σ(n)(NcLt). Solving the
“width equation”

Σ(n)(NcLt) = f , (4.39)

gives

tPT =
CPT (n, f)

L
, (4.40)

where tPT is simply related to δMPT by

tPT =
1

4πβ0
ln

(

1

1− 2β0αs(MH) ln MH

δMPT

)

, (4.41)

and where CPT (n, f) is a function, independent of η, which increases with n and decreases
when f increases. This is confirmed by figure 4.7(a) which shows that tPTL is indeed
independent of η as long as η and n are not too large.

As an example, for n = 2, let us take the simple result Σ(2)(L, t) = e−4NcLt from
eq. (4.27) in the small η limit. It was shown in section 4.2.1 that this result is very close to
the all-orders one in the physical t region. Solving Σ(2)(L, t) = f immediately implies

CPT (2, f) =
ln 1

f

4Nc
, (4.42)

which, for f = 0.68, gives CPT ≃ 0.032 in accordance with figure 4.7(a).
One observes that tPTL is not strictly speaking a constant for higher n values. This may

be due to the saturation effects discussed above. Indeed, even at large L, the perturbative
expansion is not only a function of Lt but also of t for the lowest orders, as mentioned at
the end of section 4.1.3:

Σ(n)(L, t) = 1 +

n−2
∑

k=1

akt
k +

+∞
∑

k=n−1

(

ak(Lt)
k +O

(

Lk−1tk
))

, (4.43)

If we only had QED like emissions, i.e. primary ones, with the use of the anti-kt jet algorithm,

we would obtain ak = (−J(1)Nc)k

k! for k ≤ n− 2, where J(η) was derived in section 4.1.2. As
n increases, the term a1t becomes more and more important with respect to an−1(Lt)

n−1,
leading to larger and larger deviations from the simple law tPTL = constant. However, until
n = 5, assuming tPTL is a constant at small η seems a good approximation. Therefore,
using eq. (4.41), one can model the Higgs perturbative width in the following form:

δMPT (n,L, f) =















MHe
− 1

2β0αs

„

1−e−4πβ0
CPT (n,f)

L

«

if η < ηsat(n, f) ,

δMsat(f) if η > ηsat(n, f) .

(4.44)
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Figure 4.7: (a) tPTL as a function of η for f = 0.68 and different values of n. The saturation
curve simply comes from the fact that all widths saturate to the same constant δMsat for
η large enough, and its equation is therefore given by tsatL (with tsat(f = 0.68) ≃ 0.136).
(b) δMPT as a function of η for f = 0.68 and different values of n (curves with points). For
each n is also represented the corresponding approximate width (lines) given by eq. (4.44).

n 2 3 4 5

CPT 0.032 0.078 0.117 0.149

ηsat 0.79 0.56 0.42 0.34

Table 4.2: CPT and ηsat as a function of n when f = 0.68.

ηsat(n, f) is given by the intersection between the curve tPT = CPT/L and tPT = tsat.
Therefore:

ηsat(n, f) = e
−CPT (n,f)

tsat . (4.45)

Table 4.2 shows CPT and ηsat for f = 0.68 and different n values. Figure 4.7(b) shows the
curves corresponding to the parametrisation eq. (4.44). We can see that it works rather
well for all values of n except n = 2 in the region η ∼ 0.4 − 0.6. This can be improved
using the relation J(η)tPT = constant, which works better for n = 2 because it is exact for
primary emissions with anti-kt. But implementing it would not change the main conclusions
presented in sections 4.3.3-4.3.5. Therefore, for the sake of simplicity, we will not use it here:
we keep eq. (4.44) as the expression for δMPT for the rest of this study.

Of course, were it only for the perturbative radiation, it would be nicer to choose η ≥ ηsat

in order to catch as many gluons as possible, leading to δMPT → δMsat. But we also have
to take into account Initial State Radiation (ISR) and non-perturbative effects like PU and
UE that can spoil our Higgs neighbourhood, thus increasing the jet mass.

Note that for the purpose of this analysis, as already mentioned previously, we will only
add UE and PU to the Final State Radiation (FSR) effect studied above, and thus ignore
ISR.
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4.3.2 Study of the Higgs width due to underlying event and pile-up

For this simple analysis, which does not aim to give precise numbers but only an estimate
of the influence of the UE/PU on the mass of the Higgs jet when we vary for instance η, n,
or when the Higgs boson becomes more and more boosted, we model the UE and PU as soft
particles uniformly distributed in the (y, φ) plane [216,217], and with transverse momentum
per unit area denoted by ρ. In order to get this estimate, we consider the simple case of
a symmetric (z = 1/2) Higgs decay along the x axis. In the limit MH ≪ ptH , the Higgs
momentum pH is given by:

pH =

(

ptH +
M2

H

2ptH

, ptH , 0, 0

)

. (4.46)

The UE/PU momentum, denoted pUE,12 is simply the sum of all the UE/PU particles g
belonging to the filtered jet J . Still in the limit MH ≪ ptH , we recall the following formula
(eq. (3.1)):

Rbb ≃
1

√

z(1− z)
MH

ptH

. (4.47)

Throughout this section, we will apply it with z = 1/2. We can now write ∆M =
Mfiltered jet −MH as:

∆M =
1

2MH

(

(pH + pUE)2 −M2
H

)

,

≃ 1

MH

∑

g∈J

ptgptH

(

θ2
gH

2
+
M2

H

2p2
tH

)

,

≃ MH

ptH

∑

g∈J

ptg . (4.48)

In the last line we used the approximation:

θgH ∼ θbH =
Rbb

2
, (4.49)

which comes from the fact that the UE and PU particles tend to cluster around the pertur-
bative radiation, which is usually close to the b and b̄ because of the collinear logarithmic
divergence of QCD. As all the filtered UE/PU particles flow approximately in the same
direction, the remaining sum is just the total transverse momentum of the UE which, by
definition of ρ, is equal to ρA, A being the total area of the filtered jets.13 We thus obtain

∆M ≃ ρAMH

ptH

, (4.50)

with

〈A〉 ≃ nπη2R2
bb , (4.51)

12For brevity, we define pUE to be the sum of the UE and/or PU particles’ momentum but without
referencing the PU dependence, which will always be implicit.

13in the active sense, see [216].
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for the C/A jet algorithm, taking into account the anomalous dimension that comes from
the fact that there should be some perturbative radiation in the jets (cf figure 14 in [216]).
Notice that eq. (4.51) is only true if all the jets do not overlap, so usually when η is small
enough. But this is sufficient for the purpose of our study, and we shall use this formula in
all the following calculations. The correction eq. (4.50) for ∆M only induces a shift towards
higher masses of the Higgs mass peak. However, there are 3 sources of fluctuations that give
a width to this Higgs peak:

1. ρ is not strictly uniform in the (y, φ) plane in a given event.

2. ρ is not the same from one event to the next.

3. The jets’ area fluctuates.

Following [216], we can write the total UE/PU transverse momentum contributing to the
Higgs pt as

ptUE
= ρA±

(√
Aσ +Aδρ + ρΣ

)

, (4.52)

where

σ =
√

〈ρ2〉 − 〈ρ〉2 with 〈...〉 a spatial average in a given event , (4.53)

δρ =
√

〈ρ2〉 − 〈ρ〉2 with 〈...〉 an average over events , (4.54)

Σ =
√

〈A2〉 − 〈A〉2 with 〈A〉 the average over events of the filtered jets’ area . (4.55)

For pure UE events, i.e. without PU, these terms can be estimated [216,217]:

ρUE ≃ 2− 3 GeV/area , (4.56)

σUE ≃ 0.6ρUE , (4.57)

δρUE ≃ 0.8ρUE , (4.58)

Σ ≃ 0.26
√
nπη2R2

bb . (4.59)

Though ρUE seems to be around 2 GeV/area, the tuning used in [173] was closer to 3
GeV/area, the value that we choose here. In presence of PU, i.e. when there is more
than 1 pp collision per bunch crossing at the LHC (thus leading to the emission of other
soft particles), ρ, σ and δρ have to be modified. We define NPU to be the number of pp
collisions in a bunch crossing except the one at the origin of the hard interaction. We use a
simple model to write the parameters of the UE/PU as:

ρ ≃
(

1 +
NPU

4

)

ρUE , (4.60)

σ ≃
√

1 +
NPU

4
σUE , (4.61)

δρ ≃
√

1 +
NPU

4
δρUE . (4.62)

Some comments are needed: since ρ measures the level of noise, it should grow like NPU .
In the expression 1 + NPU/4, the 1 corresponds to the pp collision that leads to the UE
and to the hard interaction, whereas the NPU/4 term simply corresponds to the other pp
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interactions and could be derived from the numbers given in [138]. The intra and inter
events fluctuations of ρ are modelled as growing like

√
ρ: we thus just give σ and δρ the

factor
√

1 +NPU/4, though further studies might be of value to parametrise these terms in
a more adequate manner. Notice that the value given for δρ ignores the fluctuations in the
number of PU events from one bunch crossing to the next, but this is beyond the accuracy
of our model here. At high luminosity at LHC, NPU is expected to be ∼ 20, which implies
ρ ∼ 10− 20 GeV [136–138].

Assuming gaussian distributions for these three kinds of fluctuations, one can deduce
the Higgs width due to the presence of UE/PU,14 δMUE = 2

√

〈∆M2〉 − 〈∆M〉2:

δMUE = 2
√

Aσ2 +A2δρ2 + ρ2Σ2
MH

ptH

. (4.63)

For a gaussian peak, defining a 2σ width means that we keep roughly 68% of the events
around the average, which is in correspondence with the value f = 0.68 chosen for the
perturbative calculation.

We now have all the important results in hand to consider both UE/PU and FSR simul-
taneously.

4.3.3 Study of the Higgs width in presence of both UE/PU and pertur-
bative radiation

The purpose of this part is to give an estimate of how one should choose the couple of filtering
parameters (n,η). For that, one has to convolute the effects of UE/PU and perturbative
radiation and compute the resulting reconstructed Higgs peak width, and then minimise it
with respect to the filtering parameters. This is highly non trivial to do analytically and we
leave it for future work. The simple choice made here is to say that, for a given n, the optimal
η, denoted ηopt, is the one for which the two widths are equal. This is obviously not true in
general, but seems reasonable to obtain an estimate (figure 4.8) and to understand how ηopt

changes when we vary ptH and NPU . Notice that, using this method, we have to impose
ηopt < ηsat where ηsat is the saturation point (eq. (4.45)), because beyond ηsat, increasing
η makes δMUE larger without decreasing δMPT , thus solving the equation δMPT = δMUE

has no sense in this region. Finally, we numerically minimise
√

δM2
PT + δM2

UE , calculated

at η = ηopt(n), with respect to n in order to find nopt.

First, we would like to understand how ηopt evolves with respect to the physical param-
eters. The equality δMPT = δMUE gives an equation in L = ln 1

η :

MHe
− 1

2β0αs

„

1−e−4πβ0
CPT

L

«

= 2
√

c2σe
−2L + c2δρe

−4L + c2Σe
−4LρUE

MH

ptH

, (4.64)

14Here again, for brevity, we define δMUE to be the Higgs width in presence of UE and/or PU without
referencing the PU dependence. Actually it serves only to distinguish the width due to UE/PU from the
perturbative width δMPT .
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Figure 4.8: The Higgs width due to UE/PU and loss of perturbative radiation, combined

as if the 2 distributions were gaussian, i.e. δMtot =
√

δM2
PT + δM2

UE when n = 3. In this

case, ηopt, though slightly larger, is approximately given by the intersection of the 2 curves,
at least as long as η is not in the saturation region.

where the coefficients cσ , cδρ and cΣ can be easily calculated using eqs. (4.51,4.56-4.62,4.63):

cσ(n,NPU , Rbb) ≃ 0.6
√
π
√
nRbb

√

1 +
NPU

4
, (4.65)

cδρ(n,NPU , Rbb) ≃ 0.8πnR2
bb

√

1 +
NPU

4
, (4.66)

cΣ(n,NPU , Rbb) ≃ 0.26π
√
nR2

bb

(

1 +
NPU

4

)

. (4.67)

If the solution of eq. (4.64) for a given n is found to be above ηsat(n, f), then ηopt = ηsat(n, f)
in order to take the saturation of δMPT into account. We start by solving this equation
numerically. In figure 4.9 we show ηopt as a function of ptH and NPU for different values of
n. As it should, ηopt increases with ptH at fixed NPU . Indeed, if ptH grows at fixed η, Rbb

decreases and so does the effect of UE/PU, whereas the perturbative radiation is kept fixed
(no dependence on Rbb). Notice also, for n = 3, that the values obtained for ηopt are roughly
consistent with the choice made in the previous chapter where we had η = min(0.3/Rbb, 1/2).
The saturation comes into effect at relatively low ptH , around 400 − 500 GeV. Above this
value, the total width is small and hadronisation corrections start to become relevant, so
that the results presented on these plots become not very reliable. However, for pt >∼ 500
GeV and η > ηsat, the Higgs width due to perturbative radiation and UE/PU vary slowly
with η and we thus believe that the precise value chosen for η is not so important: one can
take any value above ηsat without changing the result too much. The decrease of ηopt with
NPU seems to be weaker than one might have expected a priori. However, in fig. 4.8, we can
see that the negative slope of the perturbative width is very large, and therefore increasing
the noise from PU will not change too much the ηopt value.

It would be interesting to understand analytically the evolution of ηopt with respect to
the physical parameters ptH and NPU . Unfortunately, eq. (4.64) cannot be easily dealt with.
That’s why we have to make an approximation: in this equation, one of the 3 terms under
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Figure 4.9: The numerical solutions (points) of eq. (4.64) shown for different values of n: (a)
as a function of ptH when NPU = 0, and (b) as a function of NPU when ptH = 200 GeV. We
also show the corresponding approximate analytical solutions (lines) derived in eq. (4.75).

the square root may be dominant when η = ηopt. At first sight, one would expect that at
low ηopt, the c2σe

−2L term, which scales like η2, should be the largest, whereas at large NPU ,
it should be the c2Σe

−4L term that is the largest one as it scales like N2
PU . But figure 4.10

for n = 3 reveals that the cδρ term surprisingly brings the largest contribution to δMUE

for physical values of the parameters (the same holds for other values of n). Therefore, to
simplify things a little, one can consider eq. (4.64) and put cσ = cΣ = 0. However, to be
more general, and to consider the possible situation where one of the other terms might be
dominant,15 we rewrite eq. (4.64) in the following approximate form:

MHe
− 1

2β0αs

„

1−e−4πβ0
CPT

L

«

= CUEρUEe
−pLRp

bb

MH

ptH

, (4.68)

where p = 1 if the cσ term dominates and p = 2 otherwise. Moreover:

CUE(n,NPU) =



















1.2
√
π
√
n
√

1 + NPU

4 , if the cσ term is dominant,

1.6πn
√

1 + NPU

4 , if the cδρ term is dominant,

0.52π
√
n
(

1 + NPU

4

)

, if the cΣ term is dominant.

(4.69)

Eq. (4.68) can be written in a slightly different way:

BPT

L
= ln

(

1

BUE − 2β0αspL

)

, (4.70)

with:

BPT = 4πβ0CPT , (4.71)

BUE = 1− 2β0αs ln

(

ptH

CUEρUER
p
bb

)

. (4.72)

15The subtraction procedure proposed in [138] seems to eliminate most of the fluctuations from the cδρ

and cΣ terms, so that the remaining cσ term would be dominant in this case.
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Figure 4.10: δMUE computed at η = ηopt with respect to (a) ptH whenNPU = 0 and (b)NPU

when ptH = 200 GeV. On these plots is also represented the contribution to δMUE of each
term separately. When the UE/PU width falls below the saturation line δMUE = δMsat,
then ηopt = ηsat.

Despite its simpler form, eq. (4.70) for L cannot be solved analytically. Here comes the
second approximation, which is to make a perturbative expansion:

BPT

L
= ln

1

BUE
+

2β0αsp

BUE
L+O

(

(αsL)2
)

. (4.73)

Neglecting the O
(

(αsL)2
)

term, the resulting quadratic equation immediately implies

Lopt =
−BUE ln 1

BUE
+
√

B2
UE ln2 1

BUE
+ 8β0αspBUEBPT

4β0αsp
. (4.74)

Taking into account the saturation effect, ηopt is then given by:

ηopt =

{

e−Lopt , if Lopt > − ln ηsat ,
ηsat , otherwise .

(4.75)

We used this expression with CUE corresponding to the δρ term in eq. (4.69) and p = 2 in
order to plot the approximate solutions in figure 4.9. This reveals that the above relation
for ηopt (eq. (4.75)) works rather well, within a few %.

As a second step, we would like to find the optimal n, denoted nopt. This also should
depend on the way UE/PU and perturbative radiation are combined. However, as a simple
approximation, one can combine them as if they were both gaussian distributions. Therefore,
one should minimise

δMtot(n) =
√

δM2
PT (n) + δM2

UE(n) , (4.76)

computed at η = ηopt(n) for a given ptH and NPU .
The results are plotted in figure 4.11. We can notice that the larger n, the narrower

the peak, and thus the better the result. However, one should keep in mind that when n
increases, the optimal Rfilt = ηRbb becomes small, and we have to deal with hadronisation
corrections that grow as 1/Rfilt [176] as well as detector resolution and granularity δη×δφ =
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Figure 4.11: δMtot computed at η = ηopt as a function of (a) ptH and (b) NPU for different
values of n.

0.1 × 0.1 that both start to have an important impact on the reconstructed Higgs width,
and thus degrade the results presented here. In section 4.3.5 we will examine what happens
when we include a very rough estimate for hadronisation corrections. However, at first sight,
it seems that one should definitely not take n = 2. The value n = 3 chosen in the previous
chapter is good, but it may be possible to do better with n = 4. Beyond this value, the
optimal Rfilt falls below ∼ 0.2 (cf figure 4.9), which is too small for this study to be fully
reliable, as we shall see in section 4.3.5.

4.3.4 Variations of the results with z and f

Until now, we have only presented some results for f = 0.68 and z = 1/2, z being defined
as

z = min

(

Eb

EH
,
Eb̄

EH

)

, (4.77)

with Ei the energy of particle i in the Higgs splitting into bb̄. What happens if we change
these values?

Let us start with z. Though the Higgs splitting into bb̄ is more often symmetric than
in QCD events (and this is what we used in chapter 3 to distinguish it from pure QCD
splittings), it still has a distribution in z that is uniform in the range:

1

2









1− 1
√

1 +
M2

H

p2
tH









< z <
1

2
, (4.78)

which is simply eq. (2.22). But in order to reduce the large QCD background, one usually
cuts on small z, so that

zcut < z <
1

2
, (4.79)

with zcut ∼ 0.1. As an example, assume the b quark carries the fraction z of the Higgs
splitting. In such a case, b and b̄ are not equidistant from the Higgs direction: they are



104 CHAPTER 4. NON-GLOBAL LOGARITHMS IN FILTERED JET ALGORITHMS

respectively at an angular distance (1− z)Rbb and zRbb from H (see for instance figure B.1
in appendix B). Therefore, as UE/PU particles tend to cluster around the perturbative
radiation, eq. (4.49) has to be modified:

θgH ∼ zRbb or θgH ∼ (1− z)Rbb , (4.80)

for a given UE/PU particle g in the filtered jet. This leads to the modification of eq. (4.48)
according to g being relatively close to b (region called “J1”) or b̄ (region called “J2”):

∆M ≃ ptH

MH





∑

g∈J1

ptg

(

(1− z)2R2
bb

2
+
M2

H

2p2
tH

)

+
∑

g∈J2

ptg

(

z2R2
bb

2
+
M2

H

2p2
tH

)



 ,

≃ MH

2ptH





1

z

∑

g∈J1

ptg +
1

1− z
∑

g∈J2

ptg



 ,

=
MH

2ptH

(

1

z
ρA1 +

1

1− z ρA2

)

. (4.81)

In this calculation we used eq. (4.47). To compute the dependence of the fluctuations on z,
we take the simplest case n = 2. For the σ and Σ fluctuations, the terms ρA1 and ρA2 vary
independently, leading to the following contribution to δMUE :16

δM2
UE,σ,Σ = 4

(

MHρUE

2ptH

)2( 1

z2
δ21,σ,Σ +

1

(1− z)2 δ
2
2,σ,Σ

)

, (4.82)

where

δ21,σ,Σ = δ22,σ,Σ = c2σe
−2L + c2Σe

−4L , (4.83)

with cσ and cΣ given by eqs. (4.65,4.67) for n = 1. Concerning the δρ fluctuations, the 2
terms ρA1 and ρA2 vary the same way from one event to another. Therefore, if it were only
for the δρ term, we would write ρA1 = ρA2 leading to:

δM2
UE,δρ = 4

(

MHρUE

2ptH

)2 1

z2(1− z)2 δ
2
δρ , (4.84)

where

δ2δρ = c2δρe
−4L , (4.85)

with cδρ given by eq. (4.66) for n = 1. Adding all these contributions,

δM2
UE = δM2

UE,σ,Σ + δM2
UE,δρ , (4.86)

this apparently leads to an enhancement of the width by a factor of 1/z. But we have to
take into account that the coefficients cδρ and cΣ also contain a factor R2

bb (eqs. (4.65,4.66))
leading to another factor 1/z, and thus an enhancement 1/z2 at small z.17 Therefore, we
can conclude that the effect of z 6= 1/2 is to broaden the reconstructed Higgs peak. Such a
factor may partly explain the width of ∼ 14 GeV that was observed in [218], to be compared
with the various widths found in the previous subsection (see for instance figure 4.11), and
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Figure 4.12: (a) ηopt as a function of ptH when f = 0.68 and z = 0.2 for different values of n.
The points correspond to the numerical determination of ηopt, found solving eq. (4.64) whose
z dependence is derived in appendix C, whereas the curves correspond to its approximate

analytical solutions. (b) δMtot =
√

δM2
PT + δM2

UE computed at η = ηopt as a function of

ptH for f = 0.68 and z = 0.2.

should also lead to decreasing ηopt. This is illustrated in fig. 4.12, which was obtained with
the results derived in appendix C, where we carry out the above analysis for a general n.

Now, we turn to the f value. As we explained in section 4.3.1, the choice f = 0.68
was made to correspond to a 2σ gaussian width, as we did for δMUE , which is somewhat
arbitrary. We would like to estimate how the results change when f is modified. We thus
also consider a range of values for f between 0.5 and 0.8. In this case the CPT (n, f) constants
characterising δMPT are changed (see for instance eq. (4.42)), and δMUE is also changed,
i.e. eqs. (4.63,4.64,4.69) have to be slightly modified:

δMUE = 2
√

2 erf−1(f)
√

Aσ2 +A2δρ2 + ρ2Σ2
MH

ptH

, (4.87)

= 2
√

2 erf−1(f)
√

c2σe
−2L + c2δρe

−4L + c2Σe
−4LρUE

MH

ptH

, (4.88)

where erf(x) is the usual error function:

erf(x) =
2√
π

∫ x

0
e−u2

du . (4.89)

Notice that the constants cσ, cδρ and cΣ are left unchanged with this convention. However

16the factor of 4 comes from the fact that we compute the width at 2σ.
17This is valid when ptH

> 1√
z(1−z)

MH

R0
, with R0 the radius of the initial clustering of the event, in order

for the b and b̄ to be clustered together. For lower ptH
, there is a kinematic cut on z and the enhancement

is less strong.
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CUE becomes:

CUE(n, f,NPU) =



















2
√

2 erf−1(f) 0.6
√
π
√
n
√

1 + NPU

4 , if the cσ term is dominant,

2
√

2 erf−1(f) 0.8πn
√

1 + NPU

4 , if the cδρ term is dominant,

2
√

2 erf−1(f) 0.26π
√
n
(

1 + NPU

4

)

, if the cΣ term is dominant.

(4.90)
The bands corresponding to the uncertainties on ηopt that we obtain including these mod-
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Figure 4.13: Uncertainty on ηopt when f varies from 0.5 to 0.8, for different values of n as
a function of (a) ptH when NPU = 0 and (b) NPU when ptH = 200 GeV. The results for
f = 0.68 are also plotted as a reference.

ifications are presented in figure 4.13. The uncertainty that we get, ∼ 20 − 30%, is not
larger than the precision of the whole study, which limits itself to a large-Nc leading-log
calculation. Notice that the variation with NPU remains small.

One finally observes that ηsat(n, f) is almost independent of f for n = 3. In appendix C,
we will show that it can be approximately written as:

ηsat ≃ e−0.58

(

1 + 0.044

(

f − 1

2

)

+O
(

(

f − 1

2

)2
))

. (4.91)

Because of the small coefficient of its first order correction, ηsat = e−0.58 is a good approxi-
mation within less than 1% for a large range of f values. But this seems to be a coincidence
with no deep physical reason.

4.3.5 Hadronisation corrections

It is difficult to calculate what happens during the process of hadronisation, though some
analytical results can be found concerning jet studies for instance [176,219,220]. In particu-
lar, it was shown in [176] that such non-perturbative corrections lead to a pt shift for QCD
jets equals on average ∼ −Λ/RfiltCi where Λ = 0.4 GeV and Ci = CF or CA depending on
whether it is a quark jet or a gluon jet. This can be translated in our study by the following
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averaged pt shift for the filtered jet:

〈δpt〉had = − (2CF + (n− 2)CA)
Λ

Rfilt

,

≃ −(n− 1)NcΛ

Rfilt

, (4.92)

where the second equality holds in the large Nc limit. Unfortunately, there is no result
concerning the dispersion of the pt distribution, which is the relevant quantity to compute
in our case. Therefore, we are going to assume that the spread is of the same order of
magnitude as the shift. This is in principle a crude approximation, but the only aim here is
to illustrate the consequences of including hadronisation corrections in order to emphasise
the fact that taking n too large is certainly not a good choice. Therefore, we use eq. (4.48)
to estimate very roughly the hadronisation corrections to the reconstructed Higgs mass peak
width:

δMhad ∼
(n− 1)NcΛ

Rfilt

MH

ptH

=
(n− 1)NcΛ

2η
, (4.93)

when z = 1/2. As before, one should know how to combine perturbative radiation with
UE/PU and hadronisation corrections in order to minimise the resulting combined width.
However, we simply choose to minimise the quantity

δMtot =
√

δM2
PT + δM2

UE + δM2
had , (4.94)

with respect to η and plot the resulting minimal δMtot for different values of n (fig. 4.14).
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Figure 4.14: δMtot including hadronisation corrections computed at η = ηopt as a function
of (a) ptH and (b) NPU for different values of n.

The first thing one can notice on these plots is that increasing n also increases the
hadronisation corrections. For n = 5 they become so important that it is now clearly not
an optimal filtering parameter contrary to what could be deduced from figure 4.11. The
relevant pt region in our study is roughly 200−400 GeV where we find the major part of the
Higgs cross-section above 200 GeV and where our results are more reliable (see section 4.3.3).
In this region n = 3 gives the best result. And at high PU, n = 3 and n = 4 both seem
optimal, whereas n = 2 is far from being as good.
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To conclude, our estimates seem to indicate within the accuracy of our calculations that
n = 2 is not a good choice, nor is n ≥ 5. Taking n = 3 or n = 4 gives equally good quality
to the mass peak. Increasing the hadronisation effects with respect to eq. (4.93), would lead
to nopt = 3, whereas if we lower them, we would find nopt = 4. The only thing we can say
is that n = 3 and n = 4 both seem to work rather well.

One way to go beyond these results would be to use event generators like HERWIG
[97, 98] or PYTHIA [99], to compute directly the Higgs width in presence of UE/PU, per-
turbative radiation, ISR and hadronisation, and to find for which value of the couple (n, η)
the reconstructed Higgs mass peak width δMH becomes minimal (that would still depend on
ptH and the level of UE/PU). But our study here aimed to understand as much as possible
the physical aspects behind such an optimisation, the price to pay being larger uncertainties
on the result because of the necessary simplifications that were made.

4.4 Conclusion

This work has investigated the effect of QCD radiation on the reconstruction of hadronically
decaying boosted heavy particles, motivated in part by the analysis made in chapter 3 which
uses a boosted search channel for the H → bb̄ decay. Though we took the Higgs boson as an
example, all the results presented here can be applied to the W and Z bosons, as well as any
new colourless resonance decaying hadronically that might be observed at the LHC. The
main effect of the QCD radiation is to distort and spread out the boosted heavy resonance
shape well beyond the intrinsic width of the resonance. The aim therefore is to calculate
the resulting resonance lineshape. This is a function of the parameters of the reconstruc-
tion method, notably of the “filtering” procedure, which aims to limit contamination from
underlying event and pile-up, but which causes more perturbative radiation to be lost than
would otherwise be the case.

Calculations were performed in a leading (single) logarithmic and leading colour ap-
proximation, which is the state of the art for this kind of problem. Analytic results were
provided up to α2

s ln2 MH

∆M for n = 2, and all-orders analytic results for the cases n = 2 and
n = 3 were given for the terms that dominate in the small η limit. Numerical fixed-order
results up to α5

s ln5 MH

∆M and all-orders resummed results were also given and are treated in
more details in appendix E for a range of n and η. For the n = 2 and n = 3 cases there
is quite acceptable agreement between the small-η analytic results and the full numerical
results, even for values of η ≃ 0.5.

One unexpected feature that was observed was the behaviour of order-by-order expansion
as compared to the resummed result: indeed there are indications that the series in αs ln M

∆M
has a radius of convergence that is zero (but in a way that is unrelated to the renormalon
divergence of the perturbative QCD series). This seems to be a general feature of the non-
global logarithm series. Its practical impact seems to be greater for large η, or equivalently
when the coefficients of the “primary” logarithms are small.

With these results in hand, it was then possible to examine how the perturbative width
of the resonance peak depends on the parameters of the filtering. Though this was accessible
only numerically for the full range of filtering parameters, figure 4.7(a) lends itself to a simple
parametrisation for practically interesting parameter-ranges.

This parametrisation was then used in section 4.3.3 together with a parametrisation for
the effect of UE and PU, so as to examine how to minimise the overall resonance width as
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a function of the filtering parameters and of the physical parameters of the problem such
as the resonance pt and the level of UE/PU. The approximations used might be described
as overly simple, yet they do suggest interesting relations between optimal choices of the
filtering parameters and the physical parameters of the problem. Though it is beyond the
scope of this analysis to test these relations in full Monte Carlo simulation, we believe that
investigation of their applicability in realistic conditions would be an interesting subject for
future work. It should also be noticed that the methods introduced in this chapter may be
adapted to other reconstruction procedures like jet pruning [186] and jet trimming [188] as
well as filtering as applied to jets without explicit substructure [141].
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Chapter 5

Addressing giant QCD K-factors at
the LHC

At the LHC, it is widely anticipated that signals of new physics, for example supersymme-
try, may manifest themselves as large excesses of data compared to expected QCD and elec-
troweak backgrounds at high momentum scales [140,169,221–225]. The estimation of these
backgrounds will be one of the elements in ascertaining the presence of any new physics
from such signals. Consequently, considerable effort is being invested across the particle
physics community in the development of methods to understand and predict backgrounds
(some of the issues involved are described nicely in ref. [226]).

Given the QCD methods that are available today, some of the best prospects for obtain-
ing systematic, accurate predictions of backgrounds involve next-to-leading order (NLO)
QCD calculations. By carrying out a systematic expansion in the strong coupling and ob-
taining the first two terms (leading order (LO) and NLO) for a given process, one often
obtains predictions that are accurate to 10 − 20%, there being two ways to help judge the
convergence of the series: the size of the NLO corrections relative to the LO result and
the dependence of the NLO result on renormalisation and factorisation scales. The impor-
tance of NLO predictions in the LHC programme has motivated a large calculational effort
destined to extend the range of processes known at NLO (for reviews, see refs. [227,228]).

While the majority of NLO calculations show some degree of convergence relative to the
LO results, we examined in chapter 3 a particular observable for which this was not the
case: the pt distribution of the highest-pt jet (pt,j1) in the Z+j process leads to K-factors
up to 6 at high pt. Several groups have also commented in recent years on the appearance
of K-factors, that grow dramatically towards high transverse momenta [229–231] (similar
behaviour is visible also in [232]). The problem generally occurs for hadronic observables (jet
transverse momenta, etc.) in processes that involve heavy vector bosons or heavy quarks,
at scales far above the boson or quark mass.

Fig. 5.1 illustrates this for Z+j at LHC (14TeV) energies, which is our benchmark
process. Besides pt,j1, it also shows the distributions of 2 other observables that are non-
zero for configurations involving a Z-boson and 1 or more partons: the transverse momentum
of the Z boson, pt,Z , and the effective mass (scalar sum of transverse momenta) of all jets
(HT,jets). At LO, all three distributions are identical. At NLO, the pt,Z observable is rather
typical of a QCD observable: its distribution has a NLO K-factor of about 1.5, without too
strong a dependence on pt,Z . As already mentioned, the pt,j1 distribution is more unusual,
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Figure 5.1: The LO and NLO distributions obtained with MCFM 5.7 for three observables
in Z+jet production: the Z transverse momentum (upper left plot), the pt of the hardest
jet (upper right plot), and the scalar sum of the transverse momenta of all the jets, HT,jets

(lower plot). The bands correspond to the uncertainty from a simultaneous variation of

µR = µF by a factor of two either side of a default µ0 =
√

p2
t,j1 +m2

Z . The jet algorithm is

anti-kt [78] with R = 0.7 and only events whose hardest jet passes a cut pt > 200GeV are
accepted. The cross sections include the branching ratio Z → e+e−.
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Figure 5.2: A) a LO contribution to Z+jet production; B) and C) two contributions that
are NLO corrections to Z+jet observables but whose topology is that of a dijet event with
additional radiation of a soft or collinear Z-boson either from a final-state quark (B) or an
initial-state one (C).

with K-factors of about 4 − 6 that grow noticeably at high pt.
1 Of the three observables,

HT,jets is by far the most striking: with K-factors of up to 100.
Given that fig. 5.1 involves momentum scales where αs ∼ 0.1, one is driven to ask how

it is that such “giant” K-factors can arise. As touched on in section 3.5, and discussed in
more detail in [229,230] for the pt,j1 case, fig. 5.2 helps provide an answer: at LO the only
event topology (A) is that of a Z-boson recoiling against a quark or gluon jet. At NLO,
new topologies arise involving a dijet event with a Z-boson radiated collinearly or softly off
outgoing (B) or incoming legs (C).

When considering the ptZ distribution, it is easiest to produce a high pt Z-boson from
topologies like (A), because in (B) and (C) the Z-boson carries only part of the transverse
momentum in the event, i.e. the event must have a higher overall momentum exchange in
order to produce a Z with a given pt.

When considering pt,j1, topologies (B) and (C) dominate the NLO contribution at high
pt, because for fixed leading jet pt one is free to integrate over the Z-momentum. This leads
to a double logarithm that is absent from topology A — i.e. the relative size of the NLO
correction is proportional to αs ln2 pt/MZ rather than just αs.

2 Additionally, topologies (B)
and (C) can also be generated by qq scattering, which is important at high pt but does not
contribute to topology (A). The even larger K-factor for HT,jets arises as follows: whereas
in diagrams such as A, HT,jets ≃ pt,j1 ≃ pt,Z , in diagrams like B and C, HT,jets ≃ 2pt,j1.
Thus a given HT,jets can be obtained with a leading jet energy that is half as large at NLO
as it needs to be at LO, vastly increasing the cross section.

While it is reassuring that we can understand the physical origins of the large K-factors
in fig. 5.1, we are still left with doubts as to the accuracy of the NLO Z+jet prediction,
since it is really just dominated by the LO result for the Z+2-parton topologies. One
solution would be to calculate the next-to-next-to-leading order (NNLO) corrections to
the Z+jet process. Since we do not expect further new topologies to arise in the NNLO
contributions, their impact should be modest compared to NLO and should therefore help
bring the perturbative series under control. However, while work is progressing on NNLO
calculations of 2 → 2 processes with QCD final states (see [234] and references therein),
results are not yet available; nor are they likely to become available any time soon for some
of the more complex processes where giant K-factors have been observed (e.g. pp → Wbb̄
as studied in section 3.5).

1Notice that the PDFs for LO and the jet algorithm used in fig. 5.1 are different from that of fig. 3.13.
2This differs from double electroweak (EW) logarithms, which involve terms like αew ln2 pt/MZ , which

is usually much smaller. Examples do exist of “giant” EW effects when tagging flavour [233].
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Alternatively one could simply try to avoid observables like pt,j1 and HT,jets in inclu-
sive event samples. For example, with additional cuts on the vector-boson momentum, we
showed in the Higgs study that the K-factors are significantly reduced (this is also examined
in [230]). Moreover, experimental cuts due to detector acceptances and lepton isolation re-
quirements may also contribute to reducing the K-factors. However, there are good reasons
for not wanting to rely on such restrictions: given the many analyses that are foreseen at
the LHC, it is likely that at least a few will end up probing regions where giant K-factors
are present, even if only inadvertently; should LHC see “fake” excesses of data compared
to predictions, it is not unlikely that some will be for the cases with poorly controlled giant
K-factors. It would be a shame if our QCD toolbox were not able to address these cases
properly, especially as an inability of QCD to reproduce backgrounds in a handful of cases
could affect broader perceptions of QCD’s ability to reliably predict backgrounds.

This brings us to the main question of this chapter: is there any way of improving the
predictions for observables with giant K-factors? Specifically, is there any way of improving
on the NLO Z+j prediction for the pt,j1 and HT,jets distributions, in the absence of a full
NNLO Z+j calculation?

Since in the NLO Z+j calculations these observables are dominated by the LO Z+2j
contribution, we would expect that the NNLO Z+j result would be dominated by the NLO
Z+2j contribution. Of course, we cannot just carry out a NLO Z+2j calculation for pt,j1 and
HT,jets, because the result would include the divergent NNLO real and 1-loop contributions
to topologies of type (A), without corresponding cancellations from the 2-loop and squared
1-loop terms. However if we had a way of cancelling the divergences left over in the NLO
Z+2j result, our remaining ignorance about the finite contribution of the 2-loop diagrams
might well have a small impact, since it would be a finite term associated solely with the
non-enhanced topology (A).

This is the motivation for a new approach that we introduce here (section 5.1), named
LoopSim, which is based on unitarity. If we have an observable that is non-zero starting from
Z+j configurations, then for each tree-level 2 →Z+3-parton and 1-loop 2 →Z+2-parton
contribution that is present in Z+2j at NLO, we will generate related 2→ 2 configurations
with weights such that all soft and collinear divergences are cancelled. The result including
this approximation will be denoted “n̄NLO” for Z+j, where the “n̄” means that we have
simulated the two-loop part of the NNLO result. Correspondingly, n̄LO would mean that
we simulated the one-loop part of a NLO result, n̄n̄LO the one and two-loop parts of a
NNLO result.

Insofar as the LoopSim method is new, it will be important also to have some kind of
independent validation for it. Firstly, for every observable that we calculate at n̄NLO we
will verify whether n̄LO reproduces the NLO result — only for observables where this is the
case should the n̄NLO prediction teach us something new. Secondly, we will identify leptonic
observables in Drell-Yan (DY) production that also have giant K-factors, so that we can le-
gitimately compare the n̄NLO DY result to a full NNLO one [235,236] (section 5.3). Thirdly,
we will compare the LoopSim results with those from a “reference-observable method” (sec-
tion 5.2): for example, in the Z+j case (section 5.4), we will take an observable such as
the pt,Z distribution as a “reference,” since it seems to have a reasonable NLO perturbative
series, and add to it the NLO Z+2j calculation of the difference between the pt,j1 (or HT,jets)
and pt,Z distributions. This should be similar in quality to the n̄NLO result.

Of the various observables that we consider in Z+j production, we will see that those
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belonging to the effective-mass (HT ) class are subject to significant corrections at n̄NLO
compared to NLO. To investigate this point in more detail, we will further examine these
(and other) observables in pure jet production (section 5.5), where the NLO/LO result
should be similar to n̄NLO/NLO for Z+j. As well as casting light specifically on HT type
observables, the jet-study will also serve to illustrate the application of the LoopSim method
to processes other than Z+j and its potential usefulness even in cases with large, but not
“giant” K-factors.

5.1 Estimating higher orders: the LoopSim method

We now introduce the LoopSim method that we will use throughout this chapter. It allows
one to merge different orders of perturbation theory. To understand how the LoopSim
algorithm works, we consider the simple example of Z+j at NLO which was discussed in the
introduction. Then, we give a general overview of the method before analysing in detail the
simpler pure glue case at tree-level accuracy. We then explain how the procedure deals with
flavour (quarks and Z). Finally, we extend the method beyond tree-level accuracy.

5.1.1 Sketch of the method on Z+j at n̄LO

To understand the basic aspects of the LoopSim algorithm, let us start with a simple example
about the aforementioned Z+j process, and let us assume that we want to generate the plots
in fig. 5.1 using only O(αsαew) and O

(

α2
sαew

)

tree-level calculations instead of a dedicated
NLO generator like MCFM. Within our notation, this means that we want to compute Z+j
at n̄LO. We start by noticing that a Z+2j process at LO (written as Z+2j@LO) corresponds
to the real part of the Z+j process at NLO (written as Z+j@NLO). Thus, one has to find
out a way to simulate the virtual part of Z+j@NLO without explicitly computing it. The
goal is to comply with unitarity, i.e. cancel the soft and collinear divergences that arise in
the Z+2j@LO process.

Our procedure is only intended to be accurate in the presence of giant K-factors, so we
expect to be able to reproduce with a good approximation the plots for pt,j1 and HT,jets in
fig. 5.1. For that, we generate tree-level Z+2j events. We noticed that the large correction
comes from topologies like diagrams (B) and (C) in fig. 5.2, where the Z boson is either
soft or collinear to an initial or final state parton. Therefore, our procedure has to consider
these topologies as electroweak corrections to a high-pt dijet process, i.e. generate a loop
of the Z boson over the parton to which it is “mostly collinear” (we will define this aspect
in a precise way below, when examining the general algorithm). Depending on whether
we started with topology (B) or (C), we obtain one of the 1-loop events shown in fig. 5.3.
But one may also face a Z+2j event where the Z boson is hard and one emits a soft gluon:
this event has the topology of a QCD correction to a Z+j process, in which case it seems
more natural that the gluon becomes virtual instead of the Z boson, which corresponds to
topology (A). Therefore, for each Z+2j event, the LoopSim procedure will have to decide
whether this event corresponds to topology (A), (B) or (C).3

Even if the procedure can lead to a “loop” of the Z-boson, one should be aware that
the LoopSim method is not intended to address the issue of virtual electroweak corrections.

3Though not depicted in fig. 5.3, one could also imagine a topology (D) where the gluon is emitted from
the beam, and the LoopSim method has to take care of it.
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Figure 5.3: The 3 topologies (A), (B) and (C) of fig. 5.2 treated by the LoopSim method at
n̄LO, leading to 1-loop events.

In practice, the “virtual” Z is simply removed from the event and our method is used, in
this case, to reveal the main dijet structure of the event. The LoopSim method is instead
relevant to deal with virtual QCD corrections because they serve to cancel all infra-red
and collinear divergences, whereas events where the Z-boson is looped are not considered
because we require the presence of a Z-boson.

Anyway, how do we generate a loop in practice? In the case of diagrams (A) and (B), the
loop of particle j = g, Z with momentum pj over the final state quark with momentum pq

results in a quark with momentum pj + pq, rescaled in a longitudinally boost invariant way
such that it remains massless (this is explained in detail in appendix F.2). The “looped”
particle is then removed from the event. In the case of diagram (C), the loop of the Z boson
over a beam quark also means that we remove it from the event, which leads to a deficit
in the total transverse momentum (that is 0 in proton-proton collision events). We take
it into account by applying a transverse boost that brings the total transverse momentum
to 0 (see also appendix F.2). Finally, to cancel soft and collinear divergences, we give the
virtual event the opposite weight of that of the real one.

5.1.2 Sketch of the method on a general process

Before entering into the details of the LoopSim method, we give a general overview of it that
will help in understanding the origin of each of its various steps. For that, let us assume
that we have to analyse an event with n final state particles.

Firstly, one has to ascribe a structure to the event, i.e. know which particle has been
emitted from whom. For instance, in the case of Z+j, one has to establish whether the gluon
or the Z was emitted from the quark or from the beam. This question can be answered
using a jet clustering. The clustering process recombines particles via “branchings” ij → k
or iB → B where B corresponds to the beam. Therefore, the branching history gives us
a kind of “emission” history: the clustering ij → k can be interpreted as the splitting of
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particle k into particles i and j, whereas iB → B can be interpreted as the emission of
particle i from the beam. The foundation of such a picture relies on the fact that the
splitting of k into i and j usually results in i and j being close in angle to each other.
However, when recombining them, one has to decide which one is the emitter and which
one is emitted, an information which is not given by the clustering process. This is done
using a measure of the particles’ hardness, the general feature being that the emitter is the
harder of the two recombined particles.

Secondly, one has to obtain the structure of the corresponding born event. For instance,
when considering topology (A) in fig. 5.3, the born event is Z+j, whereas for topologies (B)
and (C), the born event is QCD dijet. Based on the hardness of the branchings obtained from
the previous clustering, the LoopSim method will tell us which of the final state particles
are the “born” particles, i.e. the ones that cannot become virtual.

Thirdly, one has to “loop” the non-born particles, i.e. find a procedure to make them
virtual in order to fulfil the unitarity requirement which implies the cancellation of all soft
and collinear divergences. This was already briefly sketched in fig. 5.3. But one also has
to pay attention to “secondary emitters”, i.e. final-state particles which emit something.
Such a particle does not get looped, even if it is not a born particle. This is detailed in
appendix F.1.

Finally, to obtain soft and collinear safe results, one has to adequately combine all the
loop diagrams generated by LoopSim. To avoid double counting in the cases where some
loop calculations are done exactly at NLO (NNLO), we subtract in a soft and collinear safe
way the one-loop (and two-loop) diagrams given by LoopSim.

5.1.3 Merging tree-level calculations: pure glue case

Following the main steps of our procedure given in the previous section, we now examine
the exact procedure in the simple pure glue case. We will see the slight modifications that
we have to make when we include flavour, i.e. quarks and Z bosons, in the next section.
Moreover, we only consider here the combination of tree-level events, i.e. n̄LO, n̄n̄LO and
so on. The way to merge NLO, NNLO,... events will be explained in section 5.1.5.

We introduce the following notation:

• b: number of final-state particles in the lowest order event that will be relevant (i.e.
the number of final-state “Born” particles). For instance b = 2 for Z+j at transverse
momenta pt & MZ .

• En: a generic event with n final state particles. For the Z+j@n̄LO example, a tree-level
Z+j event would be labelled E2, a tree-level Z+2j event would be labelled E3.

• U b
l : an operator that acts on an event En and returns all the events at l loops obtained

from En using the LoopSim method. For instance, fig. 5.3 shows the action of the
operator U b=2

l=1 on three different events E3.

The central part of the LoopSim method relies on the construction of the operator U b
l

acting on En for all l = 0 . . . n− b (l ≤ n− b because the number of real final state particles
cannot be smaller than that of the lowest order event). First, as we previously saw, one
has to decide which particles can be virtual, and which ones will always remain real. To
decide that for a generic event En, one has to ascribe a structure to it. This is done via a
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jet clustering, which makes use of the FastJet package, whose main steps can be described
in the following way:

1. Number the particles in the event En such that each one has a unique index in the
range 1 to n.

2. Run the Cambridge/Aachen (C/A) algorithm [71, 72] using a radius RLS (LS stands
for LoopSim). This means that the distance dij between 2 partons i and j is defined to
be dij = ∆R2

ij/R
2
LS, where ∆R2

ij = (yi−yj)
2 +(φi−φj)

2 is the usual angular distance
squared in the (y, φ) plane. In the case where i and j are recombined into a particle k,
define a special recombination scheme: particle k should acquire the index of particle
i (j) if pti > ptj (pti < ptj ), where pt is the transverse momentum with respect to the
beam.

3. The clustering of the event can be reinterpreted in terms of a set of branchings ij ← k
and iB ← B where B is the beam. Sort these branchings into decreasing relative
transverse momentum between i and j or i and B, which is a measure of the hardness
of the branching.4

4. Work through all the branchings in order of decreasing hardness. For a branching
ij ← k, look at the harder of i and j, i.e. the one whose index equals that of k (cf. the
recombination scheme defined above), and mark it as a “born” particle. Do the same
for the softer particle if fewer than b particles have already been marked. If not, label
the softer particle as clustering with the harder. For a branching iB ← B, mark i as a
born particle. Repeat this process until b particles have been labelled as “born”. The
born particles will never become virtual.

5. Once the b born particles are found, continue to work through the branchings in order
of decreasing hardness. For a branching ij ← k, assuming i is the harder particle,
label j as clustering with i and label i as “non-clustering”, which means that i is a
secondary emitter as explained in appendix F.1. For a branching iB ← B, label i as
clustering with the beam. In no case should existing born particles be relabelled, nor
particles that have already been labelled as non-clustering. Repeat until all particles
have been marked. As with born particles, particles labelled as non-clustering will
never become virtual.

Our choice of the C/A algorithm comes from its close connection with angular ordering. It
was shown in [71] to give a clustering sequence that matches well onto QCD divergences
(avoiding the “junk jets” that appear in the kt algorithm [70], and also leading to simpler
resummations for jet rates [237]). In particular it ensures that if a hard parton independently
emits multiple gluons, strongly ordered in angle, then each gluon will cluster with the
hard parton rather than with one of the other gluons. Note also that our procedure for
determining the Born particles, assigning a transverse-momentum measure of the hardness
of branchings, is inspired by the use of separate angular and a transverse momentum distance
measures in the original (full) version of the Cambridge algorithm [71].

4The hardness measure hij that we use between i and j is currently hij = min(p2
ti

, p2
tj

)∆R2
ij , but future

versions of the code will define it as hij = min(p2
ti

, p2
tj

)∆R2
ij/R2

LS while keeping the hardness measure hiB of

a recombination with the beam as hiB = p2
ti

. This will only have an impact on the RLS dependence of the
results (the major part of the results presented in this chapter have RLS = 1).
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The procedure described here allows one to decide which particles can become virtual
when applying the LoopSim operator U b

l : i.e. those particles that are labelled as clustering
with something, whether the beam or another particle. Though the procedure was described
only in the pure glue case, let us consider the simple Z+j@n̄LO calculation as an example
in order to illustrate all these definitions in a concrete case already examined. For diagram
(A) in fig. 5.3, the quark and the Z boson are labelled as born whereas the gluon is labelled
as clustering with the quark. For diagrams (B) and (C), the 2 partons are labelled as born.
In diagram (B) the Z is labelled as clustering with q, whereas in diagram (C) it is labelled
as clustering with the beam. All this seems rather intuitive.

Once every particle is labelled in an event En, one can compute the result of U b
l (En),

which is a set of events En−l. For an event En with respectively b and nc born and non-
clustering particles, we define

v ≡ n− (b+ nc) (5.1)

to be the maximum number of particles that can become virtual in an event. The operator
U b

l , when applied on an event En, generates all the
(v

l

)

diagrams in which l particles become
virtual. For the virtual events to cancel the infra-red and collinear divergences that appear
in the tree-level diagram, we need an infra-red and collinear (IRC) safe procedure to make
particles virtual. For instance, the divergent weight of an event with two collinear partons
i and j has to be cancelled by that of corresponding virtual event (j makes a loop over i)
when computing the distribution of any IRC safe observable; and two collinear partons, if
not virtualised, have to remain collinear when another particle becomes virtual.

There are two ways for a particle j to make a loop:

• If it is labelled as clustering with particle i, then one has to spread the momentum of
particle j over i and all the particles that are labelled as clustering with it but which
were emitted after j according to the C/A clustering sequence. This procedure is
explained in detail in appendix F.2, and is designed to ensure that the recombination
is collinear safe. When j is the only particle that clusters with i, then this procedure
becomes equivalent to adding the momenta of particles i and j: pi + pj = pk. Then,
the momentum pk is rescaled such that its mass is set to 0, leaving its transverse
components px, py and its rapidity unchanged.

• If particle j is labelled as clustering with the beam, then, when it is looped, it is
simply removed from the event. A pt imbalance will result from this “looping” of par-
ticles with the beam, and so we subsequently apply transverse boosts to all remaining
event particles, while conserving their rapidities, so as to bring the total transverse
momentum to zero (see appendix F.2).

The operator U b
l has the following properties

U b
0 = 11 , U b

l (En) = 0 if l > v . (5.2)

Moreover, if wn is the weight of event En, then each of the events generated by the U b
l (En)

operator has a weight

wn−l = (−1)lwn . (5.3)
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In order to illustrate the action of the operator U b
l , we give below some simple examples in

the pure glue case. In each of these examples, the born particles are labelled with numbers

U b=2
l=1


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2




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U b=2
l=3







2

1






= 0 . (5.9)

Eq. (5.4) gives an example of 1-loop diagrams generated by LoopSim when studying QCD
dijet at n̄n̄LO for instance. Eq. (5.5) shows the 2-loop diagrams generated from the same
event. The next equation shows what happens if we still study a born configuration corre-
sponding to dijet events but with one more particle in the final state. If we now put the
number of born particles from the same event to be 3, we obtain only one 2-loop diagram
instead of three, as represented in eq. (5.7). Finally, the last two equalities give a case with
a splitting: the emitter is not looped, even if it is not a born particle.

Once all the U b
l (En) have been calculated for l = 0 . . . n − b, one has to combine them

in order to subtract all the soft and collinear divergences that appear in the calculation of
En and the virtual diagrams generated from it. This is done by the operator U b

∀, which is
defined as

U b
∀ ≡

∞
∑

l=0

U b
l . (5.10)

It generates all the necessary loop diagrams that have the same order in αs as the original
tree-level diagram. It is straightforward to see that the total weight of the diagrams obtained
from the U b

∀ operator is 0. Indeed, if we apply it to an event En whose maximum number
of virtual particles is v, we get

wn

v
∑

l=0

(−1)l
(

v

l

)

= 0 , (5.11)

for v > 0.
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We give here a few examples of the action of this operator:

U2
∀







1

2






=

1

2

−
1

2

−
1

2

+

1

2

, (5.12)

U2
∀







2

1






=

2

1

−
2

1

−
2

1

+

2

1

, (5.13)

U2
∀







1

2






=

1

2

−
1

2

. (5.14)

In the last case, only one particle can become virtual because there are two secondary
emitters which cannot be looped.

5.1.4 Treatment of flavour within LoopSim

In the previous section, we saw how to cancel soft and collinear divergences using a procedure
that generates loops from tree-level events in the pure glue case. We now would like to extend
it to include quarks and Z bosons. This will lead us to define a kind of “flavoured” C/A
algorithm.

1q q2

Figure 5.4: Example of an event where two quarks q1 and q2 get recombined by the C/A
algorithm.

Let us start with quarks and consider the situation depicted in fig. 5.4. In this case,
applying the C/A algorithm as in the previous section will lead to the recombination of the
two quarks q1 and q2, which is clearly not possible: one can only recombine a quark with an
antiquark (giving a gluon), or a quark with a gluon (giving a quark). Therefore, one should
veto on such a clustering by defining for instance the clustering distance dqq between two
quarks to be infinite. But in event generators (like MCFM [88,89] and NLOJet++ [238] that
we used to produce the results presented in this chapter), it is not possible to distinguish
between light quarks and gluons, and one thus has to ignore these fake recombinations and
still define the distance dij between two partons to be ∆R2

ij/R
2
LS, regardless of whether i

and j are quarks, antiquarks, or gluons. This is justified by the fact that these kind of
recombinations should not occur frequently, because the corresponding divergence is very
sub-leading [239]. Therefore, light quarks are treated exactly as gluons and we apply the
procedure described in the pure glue case. However, should we wish to extend the LoopSim
procedure to handle tagged heavy quarks like b or t, then it will become necessary to properly
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take into account quark flavour in the clustering distances, for example through an extension
to the C/A algorithm of the work in [239,240]. This is a possible subject for future work.

What about Z bosons? Normally, a Z can only be emitted from quarks or antiquarks. So
if one could distinguish between quarks and gluons, it would be possible to define the distance
dgZ between a Z and a gluon to be infinite. Since we cannot assume that we will know which
partons are quarks or gluons, we instead adapt Frixione’s isolation procedure [241] to decide
if a Z boson relatively close in angle to a parton i is likely to have been emitted from i.
More precisely, if

pti >
√

p2
tZ

+M2
Z

∆RiZ

RLS
, (5.15)

then we define diZ = ∆R2
iZ/R

2
LS, otherwise diZ =∞. Concerning the recombination scheme:

if i and Z are recombined by the clustering procedure into a particle k, then define the index
of k to be that of i (a quark and a Z give a quark). In practice, besides the particle’s number
in the event, the index of the particle also encodes its flavour (parton or Z).

Finally, for a recombination between a parton i and Z, we define the hardness of the
branching hiZ as5

hiZ ≡ min(p2
ti , p

2
tZ +M2

Z)
∆R2

iZ

R2
LS

, (5.16)

whereas a recombination of a Z with the beam has a hardness

hZB ≡ p2
tZ

+M2
Z . (5.17)

When a particle becomes virtual, the recoil procedure which keeps the total transverse
momentum to 0 is the same as in the pure glue case. However, this procedure becomes more
subtle when the Z decays, because one also has to define a longitudinally boost invariant
way to recoil its decay products. This is described in appendix F.2.

5.1.5 Merging NLO calculations and beyond

Before explaining how we merge exact higher orders calculations, let us mention how we
use the LoopSim method in practice on tree-level events at several different orders. The
LoopSim procedure is simply to act on each of them with the U b

∀ operator. For instance,
one can write

Z@n̄LO = U1
∀(Z@LO) + U1

∀(Z+j@LO) , (5.18)

Z+j@n̄LO = U2
∀(Z+j@LO) + U2

∀ (Z+2j@LO) , (5.19)

Z+j@n̄n̄LO = U2
∀(Z+j@LO) + U2

∀ (Z+2j@LO) + U2
∀ (Z+3j@LO) . (5.20)

Notice that U1
∀ (Z@LO) = Z@LO and U2

∀(Z+j@LO) = Z+j@LO. The terms U1
∀ (Z+j@LO)

and U2
∀(Z+2j@LO) simulate up to one-loop corrections, and U2

∀(Z+3j@LO) simulates up to
two-loop corrections.

Now, let us see how things work beyond tree-level accuracy. As an example we first
consider the case where the one-loop corrections are computed exactly. We define En,l to be
a generic event at l loops (exactly calculated) with n particles in the final state. At one-loop
accuracy, one can still apply the operator U b

∀ on tree-level events En,0, which generates up

5This will be true in a future version of the code, but currently hiZ = min(p2
ti

, p2
tZ

)∆R2
iZ .
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to n−b loops. But to take into account that the one-loop corrections are exactly calculated,
one has to subtract the one-loop part U b

1(En,0) contained in U b
∀(En,0). But one cannot

simply compute U b
∀(En,0)− U b

1(En,0) because that would not be infrared and collinear safe
(the total weight of the events is not zero). To comply with unitarity, we instead perform
the operation U b

∀(En,0) − U b
∀
(

U b
1(En,0)

)

and also apply the U b
∀ operator to En−1,1. To be

more precise, at one-loop accuracy, we define a new operator U b
∀,1 such that:

U b
∀,1(En,0) = U b

∀(En,0)− U b
∀
(

U b
1(En,0)

)

, (5.21)

U b
∀,1(En−1,1) = U b

∀(En−1,1) , (5.22)

the subscript 1 indicating that the calculation is done at one-loop accuracy. The action
of U b

∀,1 depends on the number of loops computed exactly in the event: we subtract the
one-loop contribution returned by LoopSim only in tree-level events. With this notation,
one can compute the higher order corrections of eqs. (5.18−5.20) to one-loop accuracy

Z@n̄NLO = Z@NLO + U1
∀,1(Z+j@NLOonly) , (5.23)

Z+j@n̄NLO = Z+j@NLO + U2
∀,1(Z+2j@NLOonly) , (5.24)

Z+j@n̄n̄NLO = Z+j@NLO + U2
∀,1(Z+2j@NLOonly) + U2

∀,1(Z+3j@NLOonly) , (5.25)

where the “only” subscript on Z+nj@NLOonly means that we take the highest order that
contributes, i.e. here αn+1

s αew, since the LO, αn
sαew, piece of Z+nj@NLO, is already taken

into account in the Z+(n− 1)j@NLO contribution. Note that this implies that one should
use consistent renormalisation and factorisation scale choices across all different orders of
the calculation.

The extension of the procedure beyond one-loop accuracy is simple. For instance, at
two-loop accuracy, one has to subtract the approximated two-loop contribution U b

2(En,0)−
U b

1

(

U b
1(En,0)

)

in eq. (5.21), and the other approximated two-loop contribution U b
1(En,1) in

eq. (5.22), giving

U b
∀,2(En,0) = U b

∀(En,0)− U b
∀
(

U b
1(En,0)

)

− U b
∀
[

U b
2(En,0)− U b

1

(

U b
1(En,0)

)]

, (5.26)

U b
∀,2(En−1,1) = U b

∀(En−1,1)− U b
∀
(

U b
1(En−1,1)

)

, (5.27)

U b
∀,2(En−2,2) = U b

∀(En−2,2) . (5.28)

Therefore, once Z+j@NNLO is calculated, one may compute for instance

Z@n̄NNLO = Z@NNLO + U1
∀,2(Z+j@NNLOonly) . (5.29)

To be complete, let us mention the generalisation of our procedure to m-loop accuracy

U b
∀,m(En−l,l) = U b

∀(En−l,l) +

m−l
∑

j=1

(−1)j
∑

l1, ..., lj ≥ 1
l1 + . . . + lj ≤ m − l

U b
∀ ◦ U b

l1 ◦ . . . ◦ U
b
lj (En−l,l) . (5.30)
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5.1.6 Expected accuracy of the method

Let us briefly explain why the LoopSim method is expected to work in presence of huge K-
factors. We consider an observable A computed respectively at NLO and n̄LO. We define

K
(A)
NLO such that

σ
(A)
NLO = K

(A)
NLOσ

(A)
LO , (5.31)

and we assume that K
(A)
NLO ≫ 1. This huge K-factor may come from logarithmic enhance-

ments in the real NLO diagram or the appearance of new scattering channels in the pertur-

bative expansion. The computation of σ
(A)
n̄LO gives the exact real part of the NLO calculation

as well as the divergent terms of the virtual correction. Therefore

σ
(A)
n̄LO − σ

(A)
NLO = O

(

αsσ
(A)
LO

)

, (5.32)

where, in writing O(αsσ
(A)
LO ), we mean that the term missing in the n̄LO calculation, the

finite part of the 1-loop correction, is not especially enhanced. This leads to

σ
(A)
n̄LO = σ

(A)
NLO

(

1 +O
(

αs

K
(A)
NLO

))

. (5.33)

The relative difference between the approximate and exact NLO calculations is thus sup-
pressed by the inverse K-factor.

Next, consider n̄NLO accuracy. The difference between σ
(A)
n̄NLO and σ

(A)
NNLO comes from

the parts of the two-loop corrections that are finite and associated with the LO topology,
so that they should be free of the enhancements that led to the large NLO K-factor. This
implies

σ
(A)
n̄NLO − σ

(A)
NNLO = O

(

α2
sσ

(A)
LO

)

. (5.34)

If we define K
(A)
NNLO such that σ

(A)
NNLO = K

(A)
NNLOσ

(A)
LO , we can then write

σ
(A)
n̄NLO = σ

(A)
NNLO

(

1 +O
(

α2
s

K
(A)
NNLO

))

. (5.35)

If K
(A)
NLO ≫ 1, one can expect K

(A)
NNLO ≫ 1 too.

5.2 Estimating higher orders: the reference-observable method

Using the large enhancement of the NLO corrections, one can also imagine an alternative

method to compute approximately σ
(A)
NNLO in some particular cases. We will use it for the

Z+j and dijet processes as a powerful cross-check that will help us build our confidence in
results of the LoopSim method.

Let us explain it for Z+j. We assume that we have a reference observable which is
identical to the observable A at LO. For instance, one might consider ref = pt,Z and A = pt,j .
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Figure 5.5: Comparison between simulated n̄LO results from LoopSim (with RLS = 1) with
exact results for Drell-Yan process at NLO. Transverse momentum spectra of the harder
lepton are shown in the left plot while in the right plot the corresponding K-factors w.r.t.
LO are given. The uncertainty bands were obtained by varying µR = µF by a factor of 1

2
and 2 around a default choice of MZ .

We can write the NNLO Z+j prediction for A in terms of the NNLO prediction for the
reference observable plus the NLO Z+2j difference between A and the reference distributions

σ
(A)
Z+j@NNLO = σ

(ref)
Z+j@NNLO + (σ(A) − σ(ref))Z+j@NNLO (5.36)

= σ
(ref)
Z+j@NNLO + (σ(A) − σ(ref))Z+2j@NLO (5.37)

The second equality is possible because 2-loop NNLO corrections to Z+j have the topology
of Z+j at LO. Therefore, their contributions to the observables A and ref are identical and
cancel in the difference in eq. (5.36).

If we have reason to believe that the perturbative expansion of the reference observable

converges well, we can conclude that σ
(ref)
Z+j@NNLO−σ

(ref)
Z+j@NLO is genuinely a small correction.

Therefore

σ
(A)
Z+j@NNLO ≃ σ

(ref)
Z+j@NLO + (σ(A) − σ(ref))Z+2j@NLO , (5.38)

i.e. we approximate the NNLO distribution for A in terms of the NLO distribution for the
ref observable and a NLO calculation for the difference between the A and ref distributions,
both of which are exactly calculable. The missing part is suppressed by 1/K(A) as for the
LoopSim method. For Z+j, one can see on fig. 5.1 that pt,Z seems to be an acceptable
reference observable for pt,j1 and HT,jets.

5.3 Validation: comparison to DY at NNLO

The cross section for the Drell-Yan process is known with exclusive final states up to NNLO
accuracy [235, 236]. Above a certain value of lepton transverse momentum, one finds giant
corrections to the lepton pt spectra when going from LO to NLO and large ones from NLO
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Figure 5.6: Comparison between simulated results from LoopSim (with RLS = 1) at n̄NLO
with available exact results for Drell-Yan process NNLO. Transverse momentum spectra
of the harder lepton are shown in the left plot while in the right plot the corresponding
K-factors w.r.t. NLO are given. The uncertainty bands come from varying the factorisation
and renormalisation scales by factors 1/2 and 2. For n̄NLO, the band related to changing
the RLS parameter from 0.5 to 1.5, at fixed µR = µF = mZ , is also shown.

to NNLO. This gives us an opportunity to directly test the performance of the LoopSim
method by comparing its n̄NLO results to exact NNLO spectra for lepton pair production.

Fig. 5.5 gives the comparison of the n̄LO, NLO and LO results for the production of an
e+e− pair within the mass window of 66 < me+e− < 116 GeV at a proton-proton centre
of mass energy of 14 TeV. The left-hand plot shows the cross section differential in the
transverse momentum of the harder of the two leptons. The right-hand plot gives the corre-
sponding K-factor with respect to LO. The results were obtained with MCFM 5.3 [88,89],
with its default set of electroweak parameters and NNLO MSTW2008 parton distribution
functions. The uncertainty bands in Fig. 5.5 correspond to varying the renormalisation and
factorisation scales µr = µf by a factor of 1

2 and 2 around a default choice of MZ . In the
n̄LO result we fixed the value of the LoopSim radius parameter to be RLS = 1, which nat-
urally places interparticle-state and particle-beam clustering on the same footing (though
the n̄LO result here is actually independent of RLS, because there is at most one isolated
QCD parton in the final state).

There are three relevant regions of transverse momentum in fig. 5.5. For pt,max . 1
2MZ

(low pt) the distribution is dominated by on-shell Z-bosons and its shape is governed by
the angular distribution of the Z decays in their centre-of-mass frame. The peak close to
1
2MZ corresponds to Z-bosons that decay at right-angles to the beam. For 1

2MZ . pt,max <
58GeV (intermediate pt), the LO distribution comes from Z-bosons that are off shell, which
allows the pt of the lepton to be larger than 1

2MZ . The narrow width of the Z causes the
distribution to fall very steeply. The 58GeV upper edge of this region scale is controlled by
our cut on me+e− . Above 58GeV (high pt) the LO distribution is zero.

In the low pt region, the NLO correction is moderate and negative. There is no strong
reason to believe that the LoopSim method should work here, but it turns out that the n̄LO
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result reproduces the structure of the correction, even if its scale dependence remains much
larger than that of the NLO result. In the intermediate pt region, we see a “giant” NLO
K-factor. It comes about because initial-state radiation can give a boost to the Z-boson,
causing one of the leptons to shift to higher pt (it becomes the “max” lepton). The spectrum
of QCD radiation falls much less steeply than the Z-boson lineshape, so this NLO correction
dominates over the LO result. In this region the exact loop correction, proportional to the
LO result, becomes almost irrelevant and we see near perfect agreement between n̄LO and
NLO. In the high-pt region only the real emission diagrams of Z@NLO contribute and n̄LO
becomes identical to NLO (both correspond to the Z+j@LO result). Similar results hold for
the pt,e± distribution, while the pt,min lacks the giant K-factor in the intermediate region.

A similar comparison between n̄NLO and NNLO spectra is shown in fig. 5.6. The NNLO
results were obtained with DYNNLO 1.0 [236,242] used with a set of electroweak parameters
compatible with that of MCFM. When calculating contributions of n̄NLO and NNLO, we
imposed a cut of 1 GeV on the transverse momentum of the Z-boson to avoid configurations
that adversely affect numerical convergence. At lower orders, we used a cut compatible with
zero (0 for MCFM and 0.1 for DYNNLO). All the other parameters are identical with those
adopted earlier at lower orders.

In the low-pt region we find quite good agreement between the n̄NLO and NNLO results
(with somewhat larger uncertainty bands for n̄NLO). Such a result was not guaranteed a
priori. In the intermediate region, where the NNLO/NLO corrections are substantial, the
agreement is excellent. This was expected. At high pt the agreement should be exact, and
does seem to be, within statistical fluctuations. The dependence on RLS (shown in the
right-hand plot) has been estimated by varying its value from 0.5 to 1.5. The effects are
small.

Finally, we note that similar features and a similar level of agreement between n̄NLO
and NNLO are to be found in the pt,min and pt,e± distributions.

5.4 Results for the Z+jet process

In the previous section, we studied the Z production process and showed that our procedure
correctly reproduces the pt distribution of the hardest lepton at NNLO, even unexpect-
edly in regions where the K-factor is not large. In this section we study the Z+j process,
whose NNLO cross-section is not known yet, but which leads to giant K-factors at NLO
for some observables as explained in the introduction. Therefore, its NNLO contribution
is expected to be accurately described by the LoopSim method. Throughout this section
we use MCFM 5.7, including the Z+2j process at NLO [243], with the NLO CTEQ6M
PDFs. We will take three different values for the renormalisation and factorisation scales:
µR = µF = 1

2µ0, µ0 and 2µ0, with

µ0 =
√

M2
Z + p2

t,j1 , (5.39)

where pt,j1 is the transverse momentum of the hardest jet. At high pt, this scale choice should
be quite similar to that used in [244] and has the same pt scaling as those in [229,230]. The
RLS uncertainty is measured at µR = µF = µ0 using three different values for it: RLS = 0.5,
1, 1.5.
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Figure 5.7: Comparison of the n̄LO/LO K-factor with the NLO/LO K-factor, together with
their scale and RLS uncertainties for four observables.

In addition to the 3 observables shown in the introduction, pt,Z , pt,j1 and HT,jets =
∑∞

i=1 pt,ji, we will also consider

HT,tot ≡ HT,jets + pt,Z . (5.40)

We only include events for which pt,j1 > 200GeV.

5.4.1 Validation at n̄LO

As a first investigation of the performance of the LoopSim method, let us examine how the
n̄LO approximation compares to the full NLO result. Fig. 5.7 shows the K-factors for the
n̄LO and NLO predictions, with uncertainty bands from scale and RLS variations.

In the upper-left plot, one sees that the n̄LO prediction for the pt,Z distribution gives a
somewhat smaller K-factor than the NLO result. This is because certain genuine loop effects
are not taken into account by the LoopSim method, for example those related to threshold
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logarithms which depend crucially on the factorisation scheme of the parton distribution
functions. The n̄LO result does, however, reproduce the pt dependence of the K-factor,
i.e. the dip towards pt = 200GeV. This dip arises because of the requirement in our event
selection that there should at least one jet with pt > 200GeV. At LO this induces a
step-function in the pt,Z distribution at 200GeV. At NLO, soft and collinear emissions
smoothen out that threshold and the n̄LO calculation correctly reproduces the resulting
interplay between real and virtual terms.

In the three remaining plots of fig. 5.7, for pt,j1, HT,jets and HT,tot, all of which have
giant K-factors, one sees good agreement between the n̄LO and NLO results. This is because
the dominant NLO contribution comes from events in the B and C-type configurations for
which there is no corresponding QCD loop correction. The LoopSim method merely serves to
cancel the divergences that arise from soft and collinear emissions off A-type configurations
and these are not dominant overall.

The RLS dependence, also shown on these four plots, only comes from 1-loop events
generated by LoopSim. Therefore, for an observable A studied in Z+j@n̄LO with two
different values R0 and R1 for RLS, one can write:

σ
(A)
Z+j@n̄LO,R1

− σ(A)
Z+j@n̄LO,R0

= σ
(pt,Z )
Z+j@n̄LO,R1

− σ(pt,Z)
Z+j@n̄LO,R0

(5.41)

as long as A coincides with pt,Z at LO (it does for each of pt,j1, HT,jets and 1
2HT,tot). This

means that the absolute uncertainty due to RLS is the same for A and pt,Z . Therefore,
the relative uncertainty due to RLS is expected to be roughly inversely proportional to the
K-factor for A, in analogy with the discussion of sec. 5.1.6. This explains why the RLS

dependence (solid cyan band) looks significantly smaller for pt,j1, HT,jets and HT,tot than it
does for pt,Z plot.

5.4.2 Results at n̄NLO

Results at n̄NLO are given in fig. 5.8. In the case of pt,Z the result is similar to the NLO
result, and the scale uncertainties remain largely unchanged. In other words, since Z+2j
topologies do not dominate the high-pt,Z distribution, adding NLO corrections to them (i.e.
n̄NLO Z+1j) makes no difference either to the result or the uncertainties. We have also
shown the dependence on the choice of RLS in the LoopSim procedure. It is smaller than
the scale dependence.

The pt,j1 distribution gets a correction that is just within the NLO uncertainty band,
with n̄NLO uncertainties that are about half the size of the NLO band. Adding in the
n̄NLO term has made a real difference. This is precisely what we expect: the observable is
dominated by Z+2-parton configurations, and these were only present at tree-level in the
NLO Z+1j calculation. Our use of n̄NLO provides the additional 1-loop Z+2-parton and
tree-level Z+3-parton configurations that come with NLO Z+2j accuracy.

Given the improvement in scale uncertainty, we need to ask whether the uncertainty due
to RLS variation might somehow eliminate part of this benefit. It is, however, small. The
reasons are similar to those given around eq. (5.41).

TheHT,jets andHT,tot distributions get a significant n̄NLO correction, with a n̄NLO/NLO
K-factor of about 1.7−2 (with some reduction of the uncertainties in the HT,jets case). Abso-
lute scale uncertainties increase slightly compared to NLO, but because of the large K-factor,
relative scale uncertainties diminish. It is somewhat disturbing that the n̄NLO and NLO
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Figure 5.8: Comparison of the n̄NLO/LO K-factor with the NLO/LO K-factor, together
with their scale and RLS uncertainties for four observables.
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Figure 5.9: Comparison between the approximate NNLO/LO K-factor calculated using
respectively the LoopSim and the “reference-observable” method for pt,j1 and HT,jets. As a
reference observable we take the differential cross section for pt,Z .

uncertainty bands don’t overlap. Given the novelty of the LoopSim method, one should
therefore ask whether this is reasonable and whether there is any way of cross-checking the
result. Since n̄NLO Z+1j is really NLO of the dominant Z+2j component, the large n̄NLO
correction that we see is comparable to an O(2) K-factor for going from LO to NLO in the
Z+2j prediction. There are many contexts where NLO and LO results are not compatible
within scale uncertainties, and so it is not unreasonable that the same should be seen here.

Still we would like to have some cross checks. A first option is to consider the alternative
“reference-observable” method presented in section 5.2, which only makes use of standard
NLO calculations to compute the approximate NNLO corrections. The comparison between
the two methods is shown in fig. 5.9 for HT,jets and pt,j1. One notices near perfect agreement
for HT,jets and very good agreement for pt,j1. This gives us some degree of confidence that
the n̄NLO LoopSim results provide an accurate description of the NNLO behaviour for these
observables.

A second option for cross-checking these results is to examine whether HT might gen-
erally be a “difficult” observable. To do so we examine this observable in the case of QCD
jet events.

5.5 QCD jet events as a testing ground

We have seen that the n̄NLO K-factors for the two effective-mass variables, HT,tot and
HT,jets, in Z+jet(s) events are about a factor of two above the NLO K-factor. We have
already commented on the fact that so large an effect is somewhat disturbing and that it is
natural to ask whether one can really trust it.

Since NLO is the first order at which we see the dominant “dijet” topology for the HT

variables in Z+jet(s), fig. 5.2B,C, it might be instructive to establish a correspondence with
a simpler process, QCD dijet production. Having a NLO Z+j prediction is analogous to
a LO dijet prediction; and the n̄NLO Z+j predictions should be analogous to NLO dijet
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predictions. NLO cross sections for dijet observables can be calculated exactly and therefore
we can check whether NLO K-factors of order 2 appear for effective-mass observables in
pure QCD events.

We will consider several effective-mass observables: an HT,n variable, which sums over
the n hardest jets above some threshold (pt,min = 40GeV; such a cut is often imposed
experimentally6)

HT,n =
n
∑

i∈jets with pt,ji > pt,min

pt,ji , (5.42)

where pt,ji is the transverse momentum of the ith hardest jet. Upper limits on the number of
jets included in the effective mass are common in SUSY searches [140,169] (though it is not
clear if that limit is always the same within a given experiment’s search, e.g. compare [169]
with [225]). We also define an effective mass for all jets above the pt,min threshold,

HT ≡ HT,∞ , (5.43)

which is more similar to the HT,jets and HT,tot observables of section 5.4. Finally, for
completeness we consider the distributions of pt,j1, pt,j2 and the inclusive jet spectrum.

At LO the distributions of 1
2HT,n (n ≥ 2), 1

2HT , pt,j1, and pt,j2 will all be identical. The
inclusive jet spectrum will have a distribution that is twice as large (because each of the two
jets contributes). Note that we do not impose any rapidity acceptance limits on the jets:
though such a cut would have been trivial to include in the LoopSim procedure, it would
have complicated somewhat the reference-observable approach that we will consider at the
end of the section.

Figure 5.10(left) shows the distributions for two observables, 1
2HT and pt,j2 at LO (where

they are identical) and at NLO, as determined using NLOJet++ with CTEQ6M PDFs. A first
comment is that HT receives a NLO K-factor of order 2, just like the n̄NLO enhancements in
the Z+j case. This provides supporting evidence as to their legitimacy. A second comment
is that the cross sections are large: these observables will be easily accessible with a few pb−1

of integrated luminosity at a 7TeV LHC, allowing for an early experimental verification of
the large K-factor for HT .

The other observable in the left-hand plot of fig. 5.10, pt,j2, has a very different K-
factor, somewhat below 1. The right-hand plot shows the NLO K-factors for our full range
of observables, focusing on a single bin of the left-hand one, from 400−500GeV. The pattern
that we see here allows us to make some deductions. Firstly, the HT,2 variable, which sums
the pt’s of the two leading jets, is free of large NLO enhancements. It is the addition of the
third jet in HT,3 and HT that brings about the enhancement. A natural interpretation is the
following: it is common for a third, soft jet to be present due to initial state radiation. This
third jet shifts the HT distribution to slightly larger values, and because the distribution
falls very steeply, that leads to a non-negligible enhancement.

The pattern for pt,j1 and pt,j2 can also be explained in similar terms: a soft ISR emission
boosts the hard dijet system, breaking the degeneracy between the pt’s of the two hardest
jets. It is jet 1 that shifts to larger pt (giving a K-factor > 1), while jet 2 shifts to lower pt

and so it gets a K factor below 1. For the inclusive jet spectrum, and for HT,2, this effect

6In section 5.4 we did not apply this kind of cut on the HT variables; one purpose in applying it here is
to ascertain whether the large higher-order effects persist even with it.
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Figure 5.10: Left: differential cross sections for the pt,j2 and 1
2HT observables, at LO, where

they are identical, and at NLO where they have substantially different K-factors. Right:
the NLO K-factors for the 400 < V/GeV < 500 bin for each choice of variable V among the
following: the inclusive jet spectrum, the pt distribution of the hardest (pt,j1) and second
hardest (pt,j2) jets, (half) the effective mass of the two hardest jets (HT,2), three hardest
jets (HT,3) and of all jets above 40GeV (HT ). Also shown on the right are the n̄LO results
for the K-factors. The NLO and n̄LO (µ) widths correspond to the uncertainty due to
simultaneous renormalisation and factorisation scale variation by a factor of two around a
central value µ = pt,j1. The n̄LO(R) width shows the uncertainty from a variation of RLS

in the range 0.5 < RLS < 1.5.
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Figure 5.11: The n̄NLO and NLO K-factors relative to the the LO predictions, as a function
of pt (or 1

2HT , etc.), for the collection of jet observables described in the text.

balances out. In addition, final-state radiation from one of the jets can cause it to shift to
lower pt (becoming the 2nd jet), further reducing the K-factor for its distribution.

Of the different variables, it is only the inclusive jet pt and HT,2 for which there is a
clear reduction in scale uncertainty in going from LO to NLO.

Figure 5.10(right) also shows the n̄LO results (including uncertainties both from scale
variation and from the LoopSim parameter RLS). Despite the fact that none of the K-factors
is parametrically large (except arguably for HT,3 and HT ), the n̄LO results are remarkably
effective at reproducing the pattern of NLO K-factors, albeit with a small systematic shift
and generally larger scale uncertainties. One can also verify that, to within 10 − 20%, the
pt dependence of the NLO K-factors is reproduced at n̄LO.

Given this success of n̄LO, and the observed limited convergence of some of the observ-
ables at NLO, it is interesting to examine what happens at n̄NLO, where the additional
3j@NLO contribution that we require is again obtained with NLOJet++. Results are shown
in fig. 5.11.

For the inclusive jet spectrum and HT,2, which already saw large reductions in scale-
dependence at NLO, the n̄NLO corrections have essentially no meaningful effect: they
neither significantly affect the central values, nor reduce the scale uncertainties. For these
observables, NLO already converged well, and adding a subset of the NNLO corrections
without the 2-loop part cannot improve the result.

For the other effective mass observables, the situation is quite different. With HT,3, the
n̄NLO result is close to the NLO result and the scale uncertainty is much reduced, i.e. this
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Figure 5.12: Comparison of LoopSim based n̄NLO results with those from the reference-
observable method, here using the inclusive jet pt spectrum as the reference observable. In
the LoopSim results (labelled n̄NLO), the uncertainty bar spans the envelope of the scale
and RLS uncertainties. The results are for the 400 < V/GeV < 500 bin for each observable
V , as in fig. 5.10.

observable seems to come under control at n̄NLO. In contrast, HT is subject to quite a large
further correction, with the central value at n̄NLO lying outside the NLO uncertainty band,
and the n̄NLO uncertainty band (dominated by scale variation) only marginally smaller
than at NLO. Why is this? Perhaps we are seeing the effect of a second ISR emission,
which shifts the HT distribution to even higher values? Given that HT,3 converges and HT

does not, such an explanation is not unattractive. It is also consistent with the decrease in
K-factor at low HT , where the 40GeV pt cutoff on the jets contributing to the HT sum will
eliminate the ISR enhancement. A definitive conclusion would however probably require
further study.

For the remaining two observables, pt,j1 and pt,j2, the n̄NLO contribution goes in the
opposite direction from the NLO correction and at low pt it seems that the series fails
to converge. This is, we believe, closely related to observations of insufficiencies of NLO
predictions for dijet cross sections in DIS and photoproduction when identical pt cuts are
imposed on both jets [200, 245–248] (equivalent to integrating the pt,j2 distribution above
that cut). The worse convergence at low pt is probably due to larger fraction subprocesses
that involve gluons in the underlying 2→ 2 scattering so that perturbative corrections tend
to go as (CAαs)

n rather than as (CFαs)
n at higher pt.

Considering that we do not have giant NLO K-factors for the jet processes shown here,
one may question the validity of the information obtained from the LoopSim procedure. An
important cross check comes from a comparison with the reference-observable technique.
Examining fig. 5.10 (right), one sees two natural reference observables: the inclusive jet
spectrum andHT,2, both of which show “perturbative”K-factors and small scale dependence
at NLO. Here we will use (half) the inclusive jet spectrum as the reference observable (results
with HT,2 would be almost identical).
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Figure 5.12 provides a comparison of the LoopSim n̄NLO results (showing the envelope
of the scale and RLS uncertainties) with the reference-observable n̄NLO results. The com-
parison is given for all observables except the reference observable itself. The agreement
between the two methods is striking, with the reference-observable method giving just a
small shift of the K-factors relative to the LoopSim results. The shift is identical for all
the observables, as it has to be: it is simply equal to the difference between the NLO and
n̄NLO results for the reference observable. Insofar as we believe the scale dependence to be
representative of the true NLO uncertainty on the inclusive jet spectrum,7 the results for
the other observables should therefore be good approximations to the full NNLO results.

5.6 Conclusion

Several cases of LHC observables with giant NLO K-factors have come to light in recent
years. They are characterised by the presence at NLO of new partonic scattering topologies
that have large enhancements over the LO topologies. In these cases, NLO calculations,
while important in highlighting the presence of the large K-factors, cannot on their own
provide accurate predictions.

In this chapter we have examined how to address this problem by combining NLO
results for different multiplicities, for example Z+1j@NLO with Z+2j@NLO. Our main,
most flexible method, LoopSim, makes use of unitarity to cancel the infrared and collinear
divergences that appear when one tries, say, to apply Z+2j@NLO calculations to observables
that are non-zero starting from Z+1-parton. We referred to the result as Z+1j@n̄NLO.

In introducing a new approximate method for estimating NNLO corrections, significant
evidence needs to be provided that the method is meaningful.

Firstly, we gave reasons why, in cases with giant K-factors associated with new NLO
topologies, we expect n̄NLO results to be a good approximation to NNLO results.

As a next step, we carried out studies comparing Z/γ∗@n̄NLO (DY) to NNLO predictions
for the pp → Z/γ∗ + X → e+e− + X process. In comparing the DY lepton pt n̄NLO
distributions to NNLO we found near-perfect agreement in the region of giant K-factors.
Interestingly, even in the region where the NLO K-factor was not large, the n̄NLO results
provided a significantly better approximation to NNLO than did the plain NLO result. This
needs not always be the case, but is, we believe, connected to the observation that our n̄LO
results reproduced much of the structure seen at NLO (recall, Z@n̄LO means combining
Z@LO with Z+1j@LO).

For Z+j production, part of our validation procedure was to compare n̄LO and NLO.
All observables with giant K-factors showed good agreement between the two (one with
a moderately large K-factor did not). For those observables, n̄NLO always appeared to
provide extra information: in one case (pt,j1) the n̄NLO result suggested convergence of
the perturbative series, with small corrections beyond NLO and significantly reduced scale
uncertainty; in two other cases, both involving effective-mass type observables (HT ), the
n̄NLO results were almost a factor of 2 larger than the NLO ones, with, at best, limited
reduction in the scale uncertainties. A second part of our validation procedure was to use

7The fact that the n̄NLO uncertainty for the inclusive jet spectrum is larger than the NLO uncertainty
suggests that our symmetric scale variation may well be underestimating somewhat the uncertainties present
at NLO. To be conservative, it might have been safer to vary the renormalisation and factorisation scales
independently.
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an alternative, less flexible “reference-observable” n̄NLO-type estimate.
The poor convergence that we saw for effective mass observables led us to examine a

range of effective-mass and jet observables in pure jet events. The presence of significant a
K-factor for the effective mass in the jet case turned out to depend on the maximal number
of objects included in the HT sum. Including just two, HT,2, the K-factor was close to 1.
But for HT,n with n ≥ 3 the K-factor was O(2). In the Z+j case we did not have an upper
limit and so the n̄NLO/NLO ratios that we saw there are consistent with the NLO/LO
K-factors in the pure jets case.

Even though the observables in the pure jets case did not display giant K-factors we
let ourselves be tempted into an application of the LoopSim method there too. We found
systematically good agreement between n̄LO and NLO results, better than we could perhaps
have expected. At the next order, n̄NLO, the results suggested that HT,2 remains stable,
with n̄NLO providing no extra information as compared to NLO; with our default scale
choice, HT,3 starts to converge at n̄NLO, with a small correction relative to NLO and
reduced scale uncertainties, now commensurate with those of HT,2 at NLO; we also found
that HT,n with n ≥ 4 at best converges slowly. An interpretation of these results was given
in the main text and we also confirmed them with a “reference-observable” n̄NLO-type
estimate.

Overall we have come to believe that n̄NLO results in the LoopSim method provide sig-
nificant information beyond NLO. Not only can we prove this in cases with giant K-factors,
but we saw strong suggestions that it is true in a number of other cases too. Wherever
one can calculate a n̄NLO result one can also examine the n̄LO prediction: its degree of
agreement with NLO provides case-by-case information on the potential usefulness of the
method. Moreover, we are inclined to think that the reference-observable method can often
be adapted, on a case-by-case basis, to provide additional backup.

Let us finally mention the relation that exists between LoopSim and other predictive
methods. Firstly there is a close connection between n̄LO (or n̄n̄LO) and CKKW and
MLM [249, 250] matching, because they also both provide ways of combining tree-level
results with different multiplicities. Of course CKKW and MLM matching provide an
interface with parton showers too, which the LoopSim method does not. On the other hand
it is significantly easier to include multiple loop orders into the LoopSim method than it is
within matrix-element/parton-showering matching procedures (though work is ongoing in
this direction see e.g. [251]).

An interesting cross-check of the LoopSim method will come with the completion of the
NNLO calculations for the Z+j and dijet processes. At that point the method could also,
for example, be used to merge Z@NNLO with Z+j@NNLO, so as to provide an n̄NNLO
prediction for quantities like the Drell-Yan lepton pt spectrum.

The value of the LoopSim method also goes hand-in-hand with progress on 1-loop calcu-
lations, especially with the prospect of automated of NLO calculations now on the horizon
(for example [252–254]).

Note that currently, the LoopSim code can deal with processes involving any number
of light partons and up to one single vector boson. It would benefit from further work to
appropriately include heavy quarks and additional bosons.
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Conclusion

In this thesis we have been interested in various topics related to LHC studies and predic-
tions: light Higgs WH and ZH search channels at the LHC, reconstruction of the Higgs
boson decaying into bb̄, optimised using semi-analytical calculations, and approximation of
higher-order corrections in presence of huge K-factors. This work has led to new tools (Mass
Drop + filtering analysis, LoopSim) that can be used to expand the range of signals that
may be expected to be seen at the LHC, and to gain insight into what happens when we
include higher-order terms for some potentially “dangerous” background processes whose
perturbative convergence is poor at lower orders.

More precisely, we first examined the reconstruction of massive particles decaying hadron-
ically. In the boosted limit, such a decay often leads to one jet in the final state which looks
similar to a QCD splitting. It thus becomes important to distinguish between these two con-
figurations. This issue is relevant for light Higgs searches at the LHC, because in this case
the Higgs boson predominantly decays into bb̄. We showed in particular how the boosted
kinematics allows one to recover the challenging WH and ZH production modes as promis-
ing search channels when the Higgs mass is around 120 GeV. For that, we used a novel
subjet analysis procedure, called Mass Drop and Filtering analysis, which reduces the QCD
background while enhancing the Higgs reconstruction efficiency. The Mass Drop procedure
measures the hardness of the splitting and, to avoid the soft divergence of QCD, requires
it to be large enough if it is to be tagged as a Higgs decay. Its originality relies on its
ability to adapt itself to the pt scale of the event, which is important for the LHC where a
broad range of scales is expected. The Filtering analysis goes one step further as it reduces
the effect of underlying event and pile-up on the jet mass reconstruction, which both lead
to an important amount of additional soft particles in the Higgs jet neighbourhood. The
main result of this part was the significance of 4.5σ obtained for the Higgs signal in the
combined WH and ZH channels for a luminosity of 30 fb−1 at the LHC (14 TeV). The
efficiency of our procedure in reconstructing the Higgs signal was later confirmed by the
Atlas collaboration through a full detector simulation with only moderately smaller signifi-
cance. The NLO corrections surprisingly gave rise to very large K-factors for the Wbb̄ and
Zbb̄ processes but, after applying our procedure, they were found not to significantly affect
the S/

√
B results. It should be noted that our reconstruction method can be applied to

any colourless massive particle decaying hadronically, and variants of it have been used by
a number of authors [141,174,187,188].

We then focused in particular on the filtering analysis. Its role is to balance two opposite
effects: on one hand, soft noise from underlying event and pile-up increases the mass of the
Higgs jet far beyond the nominal Higgs mass; on the other hand, QCD radiation from the
bb̄ dipole tends to decrease the Higgs jet mass. The purpose of this part was to optimise the
parameters of the filtering analysis in order for the combination of these effects to have as

139
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small an impact as possible, i.e. we require the reconstructed Higgs width to be minimal.
To study the effect of QCD radiation on the Higgs jet mass, we performed analytical non-
global calculations up to orderO(α2

s) at leading single-logarithmic accuracy, and we provided
some analytical estimates at all-orders in the large-Nc limit when the radius of the filtering
analysis is small. We also numerically resummed the Higgs jet mass distribution at all-orders
in the large-Nc limit and used the results obtained to model the value of the perturbative
Higgs width as a function of the filtering parameters. We then introduced a simple model to
examine the impact of underlying event and pile-up on the reconstructed Higgs width, which
is a non-perturbative effect. Some approximations were finally needed to combine these two
effects in a simple but physically reasonable way, which led to interesting relations between
the optimal choices of the filtering parameters and the physical scales of the problem.

Finally, motivated by the very large K-factors discovered for some observables in the
Z+j process while studying the WH and ZH search channels, we addressed the more gen-
eral issue of giant K-factors at hadron colliders. The method that we developed, called
“LoopSim”, consists in approximating higher-order corrections by merging different orders
of perturbation theory such that all infra-red and collinear divergences are cancelled. To
validate the LoopSim procedure, we applied it to the DY process and saw a good agreement
between our approximate NNLO and the exact NNLO results, even, surprisingly, in regions
where the K-factor is not large. Encouraged by these results, and also using an alterna-
tive validation procedure called “the reference-observable method”, we returned to the Z+j
process, which was our original motivation for this work, and made our predictions for the
dominant part of its NNLO corrections. We noted different kinds of behaviours depending
on the observable. We focused especially on the effective-mass type observables (HT ) for
which, contrary to pt,j1, we did not observe a convergence of the perturbative series. In
particular, we confirmed these results in the somewhat similar QCD dijet case at NLO and
also showed that the LoopSim method could provide significant results at n̄LO and n̄NLO
for this process in spite of the moderate K-factors involved. The LoopSim code still needs
some extensions to include heavy quarks and multi-boson productions, yet it already pro-
vides useful and interesting insights in higher-order corrections for processes with (even not
necessarily) huge K-factors.
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Appendix A

Colour algebra

In this appendix, we derive the relations eqs. (1.48−1.50).

A.1 Definition of the SU(Nc) algebra

The N2
c − 1 SU(Nc) generators tA are traceless, hermitian, and generate the closed SU(Nc)

algebra:

[tA, tB ] = ifABCtC , (A.1)

where fABC are the structure constants of the algebra, verifying

fABC = −fBAC , (A.2)

fABC = fCAB . (A.3)

The tA matrices are normalised such that:

Tr(tAtB) = TRδ
AB , TR =

1

2
. (A.4)

The basic relations defining CF and CA are:

tAtA = CF 1 , (A.5)

fABCfABD = CAδ
CD . (A.6)

Once TR is fixed, the values for CF and CA are completely determined. We compute them
below.

A.2 The Fierz identity

The Fierz identity is at the heart of many complex relations involving SU(Nc) algebra. We
are going to derive it here.

Let M be a Nc×Nc matrix. It can then be expanded on the basis formed by the identity
matrix 1 and the N2

c − 1 generators tA of the SU(Nc) algebra:

M = D01 +DAt
A . (A.7)
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We take as an example the matrix M = M l
j, whose only non-zero component is the one at

line j and column l:
(

M l
j

)i

k
= δi

jδ
l
k . (A.8)

If we take the trace of eq. (A.7), we obtain:

δi
jδ

l
i = D0Nc , (A.9)

thus leading to

D0 =
1

Nc
δl
j . (A.10)

If we now multiply eq. (A.7) by tB and then we take the trace, we obtain:

(

tB
)l

j
=

1

2
DB , (A.11)

which gives

DA = 2
(

tA
)l

j
. (A.12)

Replacing D0 and DA by their corresponding value implies eq. (1.47), i.e. the Fierz identity:

δi
jδ

l
k =

1

Nc
δi
kδ

l
j + 2(tA)ik(t

A)lj . (A.13)

A.3 Some useful formulae

The first application of the Fierz identity is the value of CF . Contracting indexes i and j,
we find:

Ncδ
l
k =

1

Nc
δl
k + 2

(

tAtA
)l

k
,

=
1

Nc
δl
k + 2CF δ

l
k . (A.14)

Therefore:

CF =
N2

c − 1

2Nc
. (A.15)

Multiplying eq. (A.13) by
(

tB
)j

i
, one finds:

0 =
1

Nc

(

tB
)l

k
+ 2

(

tAtBtA
)l

k
, (A.16)

leading to:

tAtBtA = − 1

2Nc
tB . (A.17)
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We finally derive the value for CA and another important relation in the meantime. On one
side we have:1

ifABCtAtC = ifABC

(

1

2
[tA, tC ] +

1

2
{tA, tC}

)

,

= ifABC 1

2
[tA, tC ] ,

=
1

2
ifABCifACDtD ,

=
CA

2
tB . (A.18)

On the other side, we get:

ifABCtAtC = tA[tA, tB ] ,

= tAtAtB − tAtBtA ,

= CF t
B +

1

2Nc
tB . (A.19)

Therefore:

CA = Nc . (A.20)

A.4 Application to the calculation of colour factors in Feyn-

man diagrams

We return to the diagrams of section 1.2.5. We can now easily derive their precise colour
factor for finite values of Nc. Their topology is recalled on fig. A.1.

Diagram (a) is the simplest one. Averaging over the colour i and summing over the
colour k, one gets (cf the Feynman rules in fig. 1.3):

(a) = αs
1

Nc

∑

i

∑

k

(

tA
)j

k

(

tA
)i

j
,

= αs
1

Nc

∑

i

∑

k

CF δ
i
k ,

= αs
CF

Nc
δi
i ,

= αsCF . (A.21)

The 2 sums over i and k can be equivalently written as a trace over these indexes. We will
use that property for the two other diagrams. This result leads to eq. (1.48) in the large-Nc

limit.

1We use the anticommutator:

{tA, tC} = tAtC + tCtA .
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(a)

(b)

(c)
i

i

i

j

j

j

k

k

k

l

l

m

A

A

A

B

B
C

Figure A.1: The Feynman diagrams of section 1.2.5 with colour indexes explicitly written.

Diagram (b) can be derived in the same way:

(b) = α2
s

1

Nc
Tr
(

(

tB
)k

l

(

tC
)j

k

(

tA
)i

j

)

ifABC ,

= α2
s

1

Nc

(

tB
)k

i

(

−CA

2

)

(

tB
)i

k
,

= −α2
s

CFCA

2
. (A.22)

We used eq. (A.18) in this calculation. In the large-Nc limit, we finally obtain eq. (1.49).
Finally, diagram (c) gives:

(c) = α2
s

1

Nc
Tr
(

(

tA
)l

m

(

tB
)k

l

(

tA
)j

k

(

tB
)i

j

)

,

= α2
s

1

Nc

(

− 1

2Nc

)

(

tB
)j

i

(

tB
)i

j
,

= −α2
s

CF

2Nc
. (A.23)

Here, we applied eq. (A.17), which finally leads to eq. (1.50) in the large-Nc limit.



Appendix B

Analytical considerations on the
non-global structure of the
perturbative expansion

In this appendix, we first briefly recall the difference between a global and a non-global
observable, and then we derive all the results presented in section 4.1.

B.1 Global and non-global observables

In [199], a fundamental distinction is made between global and non-global observables. A
global observable is sensitive to the emission of gluons in the entire phase space, as it is the
case for event shape variables (thrust, C-parameter,...). The calculation that will be carried
out in this appendix concerns a non-global observable at second order. We would like to see
the main difference between these 2 kinds of observables. For that, let us consider a generic
global observable τ . In this case, using eqs (4.14,4.17-4.19,4.20), we can write the second

order contribution I
(G)
2 to the distribution Σ(τ) as:

I
(G)
2 (τ) =

∫

dk1dk2(4παs)
2Θ(E1 − E2)

[

(W1 +W2)Θ(τ − τ(k1, k2))−

− (W1 +W2)Θ(τ − τ(k1))−W1Θ(τ − τ(k2)) +W1

]

, (B.1)

=

∫

dk1dk2(4παs)
2Θ(E1 − E2)W1Θ(τ(k2)− τ) , (B.2)

in the limit E1 ≫ E2. Eq. (B.2) has to be compared with eq. (4.22): the function W2 dis-
appears from the calculation, and one is left with primary emissions only. One can actually
show this result to all-orders: at leading-log (and even next-to-leading log) accuracy, the
distribution of a global observable can be computed using only independent gluon emissions
(primaries) from the original qq̄ dipole.

The observable ∆M considered in chapter 4 is non-global because only the gluons emitted
outside the filtered jet region contribute to it. We are now going to explicitly calculate its
distribution.
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B.2 The variables of the calculation

The Higgs boson is taken to move along the x direction and the angular coordinates (θ, φ)
are defined with respect to the Higgs direction (so that θ = 0 corresponds to the Higgs
direction and φ = 0 to the y axis for instance). As it is very boosted, the b and b̄ resulting
from its decay should be close to the Higgs, i.e. with θb,b̄ ≪ 1. Due to angular ordering,
so will be the major part of the perturbative radiation from bb̄. To take this property into
account, the angular coordinates (θ, φ) are slightly changed into a two-dimensional vector
~α:

~α = θ(cosφ, sinφ) ,

d2~α = θdθdφ . (B.3)

This vector is useful because of the property that, at small θ, one can express the angle θij

between 2 particles i and j as:

θij = |~αi − ~αj | . (B.4)

~Rbb̄ is defined to be the vector from b to b̄ in the ~α plane (see fig. B.1). Even if |~α| < O(1),
the integrations over αx and αy are extended to ∞. By doing so, the error made on a O(1)
result is of order O

(

R2
bb

)

.

bbRη

α

b

bbR

bbR(1−z) bbRz

α

α

r

b

ψ
x

y

H

Figure B.1: The ~α plane, with various variables used in the calculation and all along this
study. In this figure, the b quark is supposed to carry a fraction z of the Higgs energy, and
the centre of the frame coincides with the direction of the Higgs boson momentum.
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B.3 Primary coefficients

Let us go back to the integral of eq. (4.9) and write it in the ~α plane:

I(∆M) = −
∫

~k/∈Jbb̄

d3~k

(2π)32|~k|
|M(k)|2Θ (∆M(k)−∆M)) ,

= −αsCF

2π2

∫ ptH

0

dkt

kt

∫

~α/∈Jbb̄

d2~α
2R2

bb

|~α− z ~Rbb|2|~α+ (1− z)~Rbb|2
Θ (∆M(k)−∆M) .

(B.5)

For ∆M(k) = MH −M one easily finds

∆M(k) = kt
MH

ptH

A (~α) , (B.6)

with

A (~α) =
|~α|2p2

tH

2M2
H

+
1

2
, (B.7)

=
|~α|2

2z(1 − z)R2
bb

+
1

2
, (B.8)

where we used eq. (2.7). With this expression, the integration over kt is straightforward:
∫ ptH

0

dkt

kt
Θ (∆M(k)−∆M) =

∫ ptH

ptH
∆M

MHA(~α)

dkt

kt
,

= ln
MH

∆M
+ lnA(~α) . (B.9)

Notice that |~α| ∼ (1 − z)Rbb or |~α| ∼ zRbb, depending on whether the perturbative gluon
emission is relatively close to b or b̄ (due to the collinear divergence of QCD). Thus, given
that a Higgs splitting is most of the time roughly symmetric (z ∼ 1/2), this leads to
A (~α) = O(1). Therefore:

lnA(~α)≪ ln
MH

∆M
, (B.10)

and the lnA(~α) term can be neglected in a leading-log calculation. One thus obtains:

I(∆M) = −αsCF

π
ln

(

MH

∆M

)

J(η) , (B.11)

with J(η) the remaining angular integral. Introducing the coordinates (r, ψ) defined in
fig. B.1, J(η) can be rewritten in the following form:1

J(η) = J0(η) =
1

π

∫ +∞

ηRbb

dr

r

∫ arccos(−Rbb
2r

)

− arccos(−Rbb
2r

)
dψ

2R2
bb

r2 + 2rRbb cosψ +R2
bb

if
1

2
< η < 1 ,

= J0

(

1

2

)

+
1

π

∫

Rbb
2

ηRbb

dr

r

∫ π

−π
dψ

2R2
bb

r2 + 2rRbb cosψ +R2
bb

if η <
1

2
. (B.12)

1A simple shift of the ~α coordinates gets rid of the z dependence, for instance ~α′ = ~α −
`

z − 1
2

´

~Rbb̄
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Performing the ψ integration and the r one (for η < 1/2), one arrives at the formu-
lae (4.11,4.12), where all the Rbb dependence is cancelled.

One remark: if η > 1, the b and b̄ quarks cluster together, and the result then depends
on the z fraction of the splitting. For instance, if η > 2, J(η) can now be written:2

J(η, z) = ln

(

(η2 + z(1 − z))2
(η2 − z2)(η2 − (1− z)2)

)

. (B.13)

B.4 Non-Global coefficients

The starting point here is eq. (4.22) for ING
2 :

ING
2 (∆M) = −

∫

dk1dk2(4παs)
2Θ(E1 − E2)Θ(k1 ∈ Jbb̄)Θ(k2 /∈ Jbb̄)W2Θ(∆M(k2)−∆M) .

In the same way as the primary case, using the ~α plane and integrating over the energies of
the 2 gluons, one arrives at:

ING
2

(∆M) =
1

2
CFCA

(

αs

π
log

(

MH

∆M

))2

S2(η) , (B.14)

with

S2(η) = −R
2

bb

2π2

∫

~α1∈Jbb̄

d2~α1

∫

~α2 /∈Jbb̄

d2~α2

(

− R2

bb

|~α1 − z ~Rbb|2||~α1 + (1− z)~Rbb|2|~α2 − z ~Rbb|2||~α2 + (1− z)~Rbb|2

+
1

|~α1 + (1− z)~Rbb|2|~α1 − ~α2|2|~α2 − z ~Rbb|2
+

1

|~α1 − z ~Rbb|2|~α1 − ~α2|2|~α2 + (1− z)~Rbb|2

)

.

(B.15)

In all this part, η < 1/2 is assumed. To deal with this integral, the frame is centred around
b̄ for instance, and 2 quantities are computed: Stot where gluon 1 is in the jet region Jb̄

around b̄ and gluon 2 covers the whole phase space except Jb̄, from which is subtracted Sint

where gluon 2 covers Jb, the jet region around b (fig. B.2). Therefore:

S2(η) = 2(Stot(η)− Sint(η)) , (B.16)

where the factor 2 is for the symmetric case (gluon 1 in Jb).

B.4.1 Calculation of Stot

Using the variables
(

u = r
ηRbb

, ψ
)

(fig. B.1), Stot can be written

Stot(η) =− 1

2π2

∫ 1

0
u1du1

∫ +∞

1
u2du2

∫ 2π

0
dψ1

∫ 2π

0
dψ2

(

− 1

u2
1u

2
2(1 + 2ηu1 cosψ1 + η2u2

1)(1 + 2ηu2 cosψ2 + η2u2
2)

+
1

u2
1(1 + 2ηu2 cosψ2 + η2u2

2)(u
2
1 − 2u1u2 cos(ψ1 − ψ2) + u2

2)

+
1

u2
2(1 + 2ηu1 cosψ1 + η2u2

1)(u
2
1 − 2u1u2 cos(ψ1 − ψ2) + u2

2)

)

. (B.17)

2the intermediate case 1 < η < 2 has a more complicated phase space integration and is not presented
here.
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bb

α

α
gluon 1

gluon 2

x

y

(a) Stot

bb

α

α
gluon 1gluon 2

x

y

(b) Sint

Figure B.2: regions of integration (dashed region) for gluon 2 when computing Stot (left)
and Sint (right).

Doing the angular integrations, one arrives at:

Stot(η) = −4

∫ 1

0
du1

u1

1− η2u2
1

∫ 1
η

1

du2

u2

1

u2
2 − u2

1

. (B.18)

2 remarks about this result:

1. The first and second terms have divergences in u1 = 0 and u2 = 1
η , so respectively

when gluon 1 is collinear to b̄ and gluon 2 is collinear to b, but they cancel when adding
these terms.

2. The part of the integral corresponding to u2 >
1
η , i.e. r2 > Rbb, is null, which can be

simply interpreted as a manifestation of the angular ordering.

Performing this integration with Maple for instance gives the following result:

Stot(η) =
π2

2
− 3

2
ln2(1− η) + ln(2η) ln(1− η)− ln 2 ln(1 + η)−

− 2ℜ
(

dilog

(

η

η − 1

))

− 2Li2(1− η)− Li2

(

1

1 + η

)

+ Li2 (−η) + Li2

(

1− η
1 + η

)

− Li2

( −2η

1− η

)

,

(B.19)

where

dilog(x) =

∫ x

1
dt

ln t

1− t , (B.20)

Li2(x) =

∫ 0

x
dt

ln(1− t)
t

. (B.21)
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This is rather complicated, but that expression can be greatly simplified using the relations:

∀x > 0 , dilog(x) = Li2(1− x) , (B.22)

dilog(−x) =
π2

3
− 1

2
ln2(1 + x)− Li2

(

1

1 + x

)

− iπ ln(1 + x) , (B.23)

∀x with 0 < x < 1 , Li2(x) + Li2(1− x) =
π2

6
− ln(x) ln(1− x) , (B.24)

Li2(1− x) + Li2(1− 1/x) = −1

2
ln2 x . (B.25)

The final answer is then:

Stot(η) = −π
2

6
. (B.26)

The remarkable point to notice is of course that Stot does not depend on η. But no simple
explanation was found to interpret this result.

B.4.2 Calculation of Sint

Sint must now be subtracted from Stot. The computation is similar to the previous one and
is not detailed here. However, contrary to Stot, a simple analytical result was not obtained,
only the following expansion:

Sint(η) = −4

∫ 1

0

du1

u1

∫ 1

0

du2

u2

(

1
√

(1− η2(u2
1 + u2

2))
2 − 4η4u2

1u
2
2

− 1

1− η2(u2
1 + u2

2)

)

,

(B.27)

= −2η4 − 6η6 − 31

2
η8 − 40η10 − 1921

18
η12 − 889

3
η14 − 20589

24
η16 − 7643

3
η18 +O(η20) .

(B.28)

Using eq. (B.16) with the 2 previous results, one arrives at the expression eq. (4.26).



Appendix C

Analytical considerations on the
dependence of the results on
z and f

C.1 Dependence on z

It is interesting to understand analytically how ηopt evolves when the decay of the Higgs
boson occurs with a z fraction different from 1/2. In fact, we obtain the same result
as eqs. (4.74,4.75) up to a modification of the constant CUE (more generally, we have to
modify the coefficients cσ, cδρ and cΣ, see eqs. (4.64-4.67)). The starting point is eq. (4.81)
generalised to any value of n:

∆M ≃ MH

2ptH

n
∑

i=1

ai(z)ρAi , (C.1)

where ai(z) is either 1
z or 1

1−z depending on whether subjet i is in the J1 region (around

the b quark) or in the J2 region (around the b̄ quark). This is because the UE/PU particles
tend to cluster around the perturbative radiation, which itself is emitted close to b and b̄.
We call a “configuration” the set of all the coefficients ai(z).

The result on the fluctuations depends on which ones are considered. Let us start
with the fluctuations originating from the σ and Σ terms. In this case the ρAi terms vary
independently, thus leading to a contribution to δMUE similar to that of eq. (4.82) for n = 2:

δM2
UE,σ,Σ,{ai} = 4

(

MHρUE

2ptH

)2 n
∑

i=1

ai(z)
2δ2i,σ,Σ , (C.2)

with (see eq. (4.83)):

δ2i,σ,Σ = c2σe
−2L + c2Σe

−4L ,

≡ δ2σ,Σ . (C.3)

The coefficients cσ and cΣ are still computed for n = 1 in this formula. But eq. (C.2) is
only valid for a given configuration {ai}. We thus have to average over all the 2n−2 possible
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configurations (the b and b̄ subjets are fixed). As the perturbative radiation pattern does
not depend on z (for z not too small), each configuration arises with the same probability.
Therefore, if k is the number of subjets in the J1 region and n−2−k the number of subjets
in the J2 region apart from the b and b̄ subjets, we obtain:

δM2
UE,σ,Σ = 4

(

MHρUE

2ptH

)2 1

2n−2

n−2
∑

k=0

(

n− 2

k

)(

k + 1

z2
+
n− 1− k
(1− z)2

)

δ2σ,Σ , (C.4)

= 4

(

MHρUE

ptH

)2 n

8

1− 2z(1− z)
z2(1− z)2 δ2σ,Σ . (C.5)

We can follow a similar reasoning for the δρ fluctuations, except that the ρAi terms in
eq. (C.1) vary the same way from one event to the next. Therefore, for a given configuration
{ai}, one can deduce the following contribution to δMUE :

δM2
UE,δρ,{ai} = 4

(

MHρUE

2ptH

)2
(

n
∑

i=1

ai(z)

)2

δ2δρ , (C.6)

with δδρ given by eq. (4.85). As before, we have to average this result over all the 2n−2

possible configurations, leading to:

δM2
UE,δρ = 4

(

MHρUE

2ptH

)2 1

2n−2

n−2
∑

k=0

(

n− 2

k

)(

k + 1

z
+
n− 1− k

1− z

)2

δ2δρ , (C.7)

= 4

(

MHρUE

ptH

)2 n2 + (n− 2)(1 − 2z)2

16z2(1− z)2 δ2δρ . (C.8)

One can absorb all the dependence of the resulting δM2
UE in n and z into the coefficients

cσ, cδρ and cΣ, and define new coefficients c′ such that

δMUE = 2
√

c′2σ η2 + c′2δρη
4 + c′2Ση

4
MHρUE

ptH

, (C.9)

with

c′σ(n,NPU , Rbb, z) ≃ 0.6
√
π
√
n

√

1− 2z(1 − z)
2
√

2z(1− z)
Rbb

√

1 +
NPU

4
, (C.10)

c′δρ(n,NPU , Rbb, z) ≃ 0.8π

√

n2 + (n− 2)(1 − 2z)2

4z(1 − z) R2
bb

√

1 +
NPU

4
, (C.11)

c′Σ(n,NPU , Rbb, z) ≃ 0.26π
√
n

√

1− 2z(1 − z)
2
√

2z(1− z)
R2

bb

(

1 +
NPU

4

)

. (C.12)

With these results in hand, we can easily generalise eq. (4.74) for any value z of the Higgs
splitting. One only has to modify the value of CUE . For instance, the curves in fig. 4.12(a)
were obtained using eqs. (4.71−4.75) with:

CUE(n,NPU , z) = 1.6π

√

n2 + (n− 2)(1 − 2z)2

4z(1 − z)

√

1 +
NPU

4
, (C.13)
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where we just use the dominant c′δρ term.

There is also another source of fluctuations that we haven’t accounted for so far. Indeed,
even if the values of ρ and of the jets area were constant, we should consider the fact that
the filtered subjets can be either in the J1 or in the J2 region. The calculation of its effect is
similar to that of the fluctuations in σ, δρ and Σ. Its contribution on δM2

UE can be written:

δM2
UE,other = 4

(

MHρUE

ptH

)2

c′2otherη
4 , (C.14)

with

c′other(n,NPU , Rbb, z) = π

√
n− 2|1− 2z|
4z(1 − z) R2

bb

(

1 +
NPU

4

)

. (C.15)

But we checked that its effect on δM2
UE is negligible compared to that from the dominant

δρ fluctuation,1 and therefore we did not include it.

C.2 Comments on the uncertainty due to the choice of f

Let us return to the observation of section 4.3.4 that ηsat(n, f) is almost independent of f
for n = 3. To understand why, we have to estimate tsat(f) and CPT (3, f) (cf eq. (4.45)).
tsat can be deduced from the equation:

Σ(n)(η = 1, tsat) = f , (C.16)

for any value of n, as tsat only depends on f (see for instance figs. (4.6,4.7(a))). To be
simple, we can use the function Σ(2) which was widely studied in this paper. Unfortunately
we cannot take the primary emission result eq. (4.10) because the non-global part becomes
important when η = 1. However, as an approximation, we can numerically compute the
second order coefficient a2 ≃ −3 of Σ(2)(η = 1, t) and solve:

1− J(1)Nctsat + a2t
2
sat ≃ f , (C.17)

which simply leads to

tsat(f) ≃ J(1)Nc −
√

J(1)2N2
c − 4a2(1− f)

2a2
. (C.18)

This expression can be shown numerically to give tsat(f) with a precision better than 1%
for f ∈ [0.5, 0.8]. CPT (3, f) is harder to evaluate. One must solve

Σ(3)(L, t) = f , (C.19)

in the limit of large L. Using eq. (4.29), which is valid in this limit, and defining the function
h such that h(4NcLt) = Σ(3)(L, t)− f , we can use Newton’s method with only one iteration

1This effect is strictly null when z = 1/2. When z = 0.2, we obtain:

δM2
UE,δρ ≃ 16.6 δM2

UE,other ,

for ptH
= 200 GeV and NPU = 0.
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on h, evaluated numerically for 4NcLt = 1,2 to solve approximately eq. (C.19):

4NcLt ≃ 1− h(1)

h′(1)
,

≃ 2.543 − 2.334f ,

≡ 4NcCPT (3, f) , (C.20)

which gives CPT (3, f) within a few %. Therefore, eq. (4.45) leads to

ηsat(3, f) = e
−CPT (3,f)

tsat ,

≃ e−0.58

(

1 + 0.044

(

f − 1

2

)

+O
(

(

f − 1

2

)2
))

, (C.21)

which is eq. (4.91).
To be complete, the same analysis can be done when n = 2, using eq. (4.42) for CPT (2, f),

to obtain ηsat(2, f). We will just mention that

lim
f→1

ηsat(2, f) = e−
J(1)

4 ≃ 0.85 . (C.22)

2Starting from 4NcLt ∼ 1 quickly converges to the true solution.



Appendix D

Numerical non-global calculations

This appendix is intended to show how one can construct an all-orders program that resums
the leading non-global logarithms in the large-Nc limit (see section 1.2.5) and a fixed-order
program which gives the coefficients of the first few leading logarithms from the all-orders
expansion, still in the large-Nc approximation.

D.1 The matrix elements squared in the large-Nc limit

The basic thing to know in resummation is the matrix element squared Mn(k1, . . . , kn) to
emit n energy-ordered gluons E1 ≫ E2 ≫ . . .≫ En from the dipole bb̄. Unfortunately, the
colour structure is difficult to deal with in general and one usually resorts to the large-Nc

approximation to calculate the matrix elements at high orders.

D.1.1 Case of n real gluons

In the case of n real gluons, the result was derived a long time ago and can be written as
(see for instance [40,212]):

Mn(k1 real, . . . , kn real) =
(4παsNc)

n

E2
1 . . . E

2
n

(

∑

Πn

(bb̄)

(bi1)(i1i2) . . . (in−1in)(inb̄)
+O

(

1

N2
c

)

)

,

(D.1)
where the sum is over all the n! permutations Πn of {1, . . . , n}, and where we define

(ij) ≡ 1− cos θij . (D.2)

Notice that eq. (D.1) is invariant over the permutation of the n gluons, so that it is valid
for any strong energy-ordering of the n gluons. One can rewrite it in a different way that
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Figure D.1: Real gluon-emission diagrams in the large-Nc limit and their corresponding
weight (products of some W k

ij): (a) gluon 1 emitted from the (bb̄) dipole; (b) gluon 2 emitted

from the dipoles (b1) and (1b̄) respectively (from left to right); (c) gluon 3 emitted from the
dipoles (b2), (21), (1b̄), (b1), (12) and (2b̄) respectively (from left to right).

will be more convenient to deal with. For instance, the 3 first orders are rewritten as:

M1(k1) =
4παsNc

E2
1

(bb̄)

(b1)(1b̄)
, (D.3)

M2(k1, k2) =
(4παsNc)

2

E2
1E

2
2

(bb̄)

(b1)(1b̄)

(

(b1)

(b2)(21)
+

(1b̄)

(12)(2b̄)

)

, (D.4)

M3(k1, k2, k3) =
(4παsNc)

3

E2
1E

2
2E

2
3

(bb̄)

(b1)(1b̄)

[

(b1)

(b2)(21)

(

(b2)

(b3)(32)
+

(21)

(23)(31)
+

(1b̄)

(13)(3b̄)

)

+

+
(1b̄)

(12)(2b̄)

(

(b1)

(b3)(31)
+

(12)

(13)(32)
+

(2b̄)

(23)(3b̄)

)]

.

(D.5)

Eq. (D.4) is the same as eq. (4.14) in the large-Nc limit (CF = Nc/2 and CA = Nc). The
emission of gluon 2 from the (bb̄) dipole is suppressed by powers of 1/Nc so that we do not
consider it at this accuracy.

This rewritting explicitly reveals the dipole structure of the emissions in the large-Nc

limit when they are strongly ordered E1 ≫ . . . ≫ En: 1 is emitted from the dipole bb̄, 2 is
emitted from the dipoles (b1) and (1b̄), 3 is emitted from the dipoles (b2), (21) = (12), (1b̄),
(b1) and (2b̄). And so on for more gluons. Generally, each time a gluon k is emitted from a
dipole (ij), this gives a factor W k

ij with:

W k
ij =

4παsNc

E2
k

(ij)

(ik)(kj)
. (D.6)

In the large-Nc limit, we can draw a diagrammatic picture of these emissions (fig. D.1) in
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terms of colour flows which is very easy to generalize at higher orders and which will reveal
itself useful when examining the virtual corrections in the next section.

Line (a) in fig. D.1 gives simply W 1
bb which is eq. (D.3). The sum of the diagrams in line

(b) gives W 1
bb

(

W 2
b1 +W 2

1b̄

)

, which is simply eq. (D.4). This is similar for line (c). Note that,
in the large-Nc limit, a gluon can only be emitted from colour connected partons, forming a
dipole. In diagram (a) of fig. D.1 for instance, the gluon 1 is colour connected to the quark
b and the anti-quark b̄, but b and b̄ are not connected to each other.

D.1.2 Virtual gluons emission

In the previous section, we saw how to compute the matrix element squared for the emission
of n real gluons in terms of dipoles. We are now going to see how one can compute the
matrix elements in the large-Nc limit when some gluons become virtual. Here, we simply
aim to understand intuitively how this computation can be implemented.

(a) (b)

1

1

bb b̄b̄
W 1

bb̄
−W 1

bb̄

Figure D.2: Real and virtual diagrams at order αs and their corresponding weight.

First we start with the one-gluon emission (fig. D.2). We know that the divergences of
the virtual and real diagrams have to cancel exactly. Therefore, in the soft limit, the virtual
part is simply the opposite of the real part. The O(αs) contribution I1(τ) to the distribution
of a generic observable τ (which is 0 if there is no emission) can thus be written as:1

I1(τ) =

∫

dk1W
1
bb̄

(

Θ(τ − τ(k1))− 1
)

, (D.7)

which is exactly eq. (4.9).

We now examine the virtual diagrams of the two-gluon emission case with E1 ≫ E2.
There are two possible configurations:

1. If gluon 1 is real, then we have to “emit” a virtual gluon 2 from the two dipoles (b1)
and (1b̄) of diagram (a) in fig. D.2, which leads to an additional factor −W 2

b1 and
−W 2

1b̄
respectively, the minus sign accounting for a virtual emission (fig. D.3(b)).

2. If gluon 1 is virtual, then we have to emit a gluon 2 from the configuration (b) in
fig. D.2. And this emission can only occur from the (bb̄) dipole in red. Therefore, a
real or virtual emission of gluon 2 from this configuration leads to an additional factor
±W 2

bb̄
(fig. D.3(c)).

1As usual:

dk =
d3~k

(2π)32|~k|
.
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Figure D.3: (a) The two diagrams for a real emission of gluon 1 followed by a real emission
of gluon 2; (b) The two diagrams for a real emission of gluon 1 followed by a virtual emission
of gluon 2; (c) The two diagrams for a virtual emission of gluon 1 followed by a real or virtual
emission of gluon 2. All these diagrams are given with their corresponding weight.

Therefore, the O(α2
s) contribution I2(τ) to the distribution of τ in the large-Nc limit is

expressed as:

I2(τ) =

∫

dk1dk2 Θ(E1 − E2)W
1
bb̄

(

(W 2
b1 +W 2

1b̄) (Θ(τ − τ(k1, k2))−Θ(τ − τ(k1)))−

−W 2
bb̄ (Θ(τ − τ(k2))− 1)

)

, (D.8)

where τ(ki) means that ki is real and may contribute to the observable τ , but not necessarily,
especially if τ is non-global (one may have to separate the integration into different phase
space regions as was done in eq. (4.21)).2

This approach can be easily generalized to higher orders. A gluon number k (real or
virtual) is emitted coherently from the set of all the previous real gluons. For each pair (ij)
of real colour connected partons, inserting the gluon k costs a factor W k

ij. As an example,

let us write explicitly the O(α3
s) contribution I3(τ) to the distribution of τ in the large-Nc

limit:

I3(τ) =

∫

dk1dk2dk3 Θ(E1 − E2)Θ(E2 − E3)W
1

bb̄

[

W 2

b1

(

W 3

b2(Θ123 −Θ12) +W 3

21
(Θ123 −Θ12) +W 3

1b̄(Θ123 −Θ12 −Θ13 + Θ1)−W 3

b1(Θ13 −Θ1)
)

+W 2

1b̄

(

Wb1(Θ123 −Θ12 −Θ13 + Θ1) +W 3

12
(Θ123 −Θ12) +W 3

2b̄(Θ123 − Θ12)−W 3

1b̄(Θ13 −Θ1)
)

−W 2

bb̄

(

W 3

b2(Θ23 −Θ2) +W 3

2b̄(Θ23 −Θ2)−W 3

bb̄(Θ3 − 1)
)]

, (D.9)

2Eq. (D.8) is the large-Nc limit approximation of eq. (4.21). One simply notices that (4παsNc)
2(W1+W2)

in eq. (4.21) equals to W 1
bb̄(W

2
b1 +W 2

1b̄) in eq. (D.8) and that (4παsNc)
2W1 equals to W 1

bb̄W
2
bb̄ in the large-Nc

limit.
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where

Θi1,...,in ≡ Θ (τ − τ(ki1 , . . . , kin)) . (D.10)

The W 2
b1 and W 2

1b̄
terms (second and third lines) correspond to gluon 1 being real, while the

−W 2
bb̄

term (last line) corresponds to gluon 1 being virtual. In the same way, one separates
in each line the case where gluon 2 is real and where it is virtual (idem for gluon 3).

D.2 The dipole’s frame

Once the matrix elements are known, one has to carry out the integrations. In general, for
a gluon k emitted from a dipole (ij), one will have to face integrals of the form:

Iij =

∫

d3~k

(2π)32|~k|
W k

ij ,

=
αsNc

2π

∫

d|~k|
|~k|

∫

sin θdθ
dφ

2π

(ij)

(ik)(kj)
, (D.11)

cf eqs. (D.2,D.6). Numerically, this kind of integration suffers from instabilities due to the
soft and collinear divergences. Here, we are essentially interested in the angular integrations
because they are at the heart of the non-global property of the observable. To deal with
them, it is convenient to introduce the dipole (ij)’s frame, in which the momentum k can
be written with respect to the momenta pi and pj of partons i and j:

k =
kt

√

2(ui.uj)

(

e−yui + eyuj

)

+ kt cosφut1 + kt sinφut2 , (D.12)

where the 4-vectors ui, uj, ut1 and ut2 can be expressed as:

ui =
pi

Ei
=

(

1,
~pi

|~pi|

)

= (1, ~ui) (similarly for uj) , (D.13)

ut1 =

(
√

1 + ~ui.~uj

1− ~ui.~uj
,

1
√

1− (~ui.~uj)2
(~ui + ~uj)

)

, (D.14)

ut2 =

(

0,
~ui ∧ ~uj

|~ui ∧ ~uj |

)

. (D.15)

One can easily check the following properties:

k2 = 0 , (D.16)

u2
i = u2

j = 0 , (D.17)

u2
t1 = u2

t2 = −1 , (D.18)

ui.ut1 = uj.ut1 = 0 , (D.19)

ui.ut2 = uj.ut2 = 0 . (D.20)
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In terms of the variables (kt, y, φ), one also has:

|~k| = kt√
ui.uj

(√
2 cosh y +

√

2− ui.uj cosφ
)

, (D.21)

(ik) = (ij)
ey

2 cosh y +
√

2
√

2− ui.uj cosφ
, (D.22)

(kj) = (ij)
e−y

2 cosh y +
√

2
√

2− ui.uj cosφ
, (D.23)

(ik) = (kj)e2y , (D.24)

where we recall that (ij) = 1 − cos θij = ui.uj . As a cross-check, one can compute the
rapidity y for φ = 0 as a function of the angle θ between k and j, and θij :

y = − ln





sin θ
2

sin
(

θij−θ
2

)



 , (D.25)

which corresponds to the usual formula y = − ln tan θ
2 when θij = π, i.e. in the dipole’s

center of mass frame.
Now, returning to the integral (D.11), one can express the integration in terms of the

variables (kt, y, φ):

d3~k

|~k|
= ktdkt dy dφ . (D.26)

This leads to the following remarkable property:

d|~k|
|~k|

sin θ dθ dφ
(ij)

(ik)(kj)
=
ktdkt

|~k|2
dy dφ

(ij)

(ik)2
e2y ,

=
dkt

kt
dy dφ

(ij)2

(ik)2
e2y

(√
2 cosh y +

√

2− ui.uj cosφ
)2 ,

= 2
dkt

kt
dy dφ , (D.27)

so that the angular integration is strictly uniform in the (kt, y, φ) variables, and is therefore
easier to deal with numerically. The angular divergence when k is collinear to parton i or j
is shifted to the integration on y, which runs from −∞ to ∞ and has to be regularized via
a cut-off ymax.

D.3 Monte-Carlo programs for non-global calculations

D.3.1 Fixed-order program

Given a dimensionless observable τ , one wants to compute the first few coefficients cn of the
expansion of its distribution Σ(τ):

Σ(τ) =
∞
∑

n=0

cnt
n , (D.28)



D.3. MONTE-CARLO PROGRAMS FOR NON-GLOBAL CALCULATIONS 163

where t is given for instance in eq. (4.31), or, in a fixed coupling framework, by:

t =
αs

2π
ln

1

τ
. (D.29)

Building a fixed-order program simply means computing the integrals given in eqs .(D.7,D.8,D.9)
and similarly for higher orders. In this section, we give the way it was constructed to pro-
duce the results shown in appendix E, though it is certainly possible to find a more efficient
method. We call Dk the dipole (ij) that emitted the gluon number k (for instance D1 always
equals (qq̄)), and we define vk to be the virtuality of gluon k (vk is either “real” or “virtual”).
We call a dipole configuration the knowledge of all the couples (Dk, vk) for k = 1, . . . , n. The
complexity of the fixed-order program grows like O(n!), which roughly corresponds to the
number of dipole configurations when there are n gluons in the final state. In practice, it
was found too hard to go beyond n = 6.

To compute the order n coefficient cn, the principle is simple: one considers all the
possible dipole configurations, and for each of them, one randomly generates the gluons in
the various dipoles’ frames according to the Dk. Then, given all the vk, one checks if the
real gluons configuration changes the observable, i.e. if Θi1,...,ip = 0 or 1 (cf eq. (D.10)),
where p is the number of real gluons.3 Notice that for the program to be relatively efficient,
one has to ensure the cancellation of the collinear divergences event by event, but we will
not enter into details here.

D.3.2 All-orders program

Here, the goal is to compute numerically the whole distribution Σ(t). To build an all-orders
program, one has to know the probability for no emission from a given dipole configuration.
This is given by the sum of all virtual corrections obtained from the configuration. For
instance, let us start with a simple bb̄ dipole. Then the probability that there is no gluon
emission with energy in [E,E′] from bb̄ can be written as (fig. D.4 (a)):

∆(E,E′) = 1−
∫

dk1W
1
bb̄ +

1

2

∫

dk1dk2W
1
bb̄W

2
bb̄ − . . . ,

= e−
R

dk1 W 1
bb̄ ,

= e
−αsNc

2π

R E′

E
d|~k|

|~k|

R

sin θdθ dφ
2π

(bb̄)

(b1)(1b̄) ,

= e−
αsNc

π
ln E′

E

R

dy dφ
2π , (D.30)

where we used eq. (D.27) in the last equality. There is a divergence in the integration on the
rapidity y in the (bb̄) dipole’s frame, so one has to regularise it using cutoffs ymin and ymax.
If we use the variable t = αs

2π ln Q
E (with Q a hard scale in the process) and if we integrate

over φ and y (∆ybb̄ = ymax − ymin), we obtain:

∆(t, t+ ∆t) = e−2Nc∆ybb̄∆t . (D.31)

∆ybb̄ can be seen as the “logarithmic size” of the dipole bb̄, i.e. the allowed phase space
region in rapidity for the emission of a gluon from this dipole.

3In this work the energy integration has already been carried out, giving the factor tn, so that Θi1,...,ip

only depends on the angles now, and not on τ anymore. For example, the ∆M observable in chapter 4 is
changed if one real gluon is outside the filtered jet region.
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Figure D.4: (a) Diagrams up to 2 loops arising in the computation of the probability for
no gluon emission from the bb̄ dipole with their corresponding weight; (b) The same but for
the (b1) + (1b̄) dipole configuration.

If one real gluon 1 has already been emitted, then we now have 2 dipoles: (b1) and
(1b̄). One can also compute the probability that there is no gluon emission from this dipole
configuration (fig. D.4 (b)) between t and t+ ∆t:

∆(t, t+ ∆t) = 1−
∫

dk2

(

W 2
b1 +W 2

1b̄

)

+
1

2

∫

dk2dk3

(

W 2
b1W

3
b1 +W 2

b1W
3
1b̄ +W 2

1b̄W
3
b1 +W 2

1b̄W
3
1b̄

)

− . . . ,

= e−
R

dk2(W 2
b1+W 2

1b̄
) ,

= e−2Nc∆t(∆yb1+∆y1b̄) . (D.32)

For the last line, we introduce the logarithmic sizes ∆yb1 and ∆y1b̄ of the dipoles (b1)
and (1b̄) respectively, as we did for ∆ybb̄. The generalisation of this formula to any dipole
configuration gives:

∆(t,∆t) = e−2Nc∆ytot∆t , (D.33)

where ∆ytot = ∆ybi1 + ∆yi1i2 + . . . + ∆yinb̄ is the total logarithmic size in rapidity of the
dipole configuration.

In practice, we can define for instance the (ij) dipole’s logarithmic size as:

∆yij = 2ymax + ln
(ij)

2
, (D.34)

where ymax is a parameter. This equality means that there is less phase space region for
gluon emission in a narrow dipole. When i and j are too close in angle, there is no possibility
to emit a gluon from (ij).

The algorithm to compute all-orders non-global logarithms is the following:

1. Start from t = 0 and the (bb̄) dipole.

2. Given a configuration of dipoles with size ∆ytot, one increases t according to a distri-
bution proportional to exp(−2Nc∆ytot∆t).

3. Choose a dipole (ij) from the dipole configuration with a probability ∆yij/∆ytot and
emit a gluon from (ij) uniformly in the (y, φ) variables defined with respect to the
dipole’s frame.

4. Repeat steps 2 and 3 until one reaches a value tmax for t (the cutoff for soft emissions),
or the last emitted gluon changes the observable (for instance it is emitted outside the
filtered jet region for the ∆M observable in chapter 4)
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5. Fill the corresponding bin in t for the Σ(t) histogram.
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Appendix E

Convergence of the non-global
series

In this appendix, we go back to the study of the convergence of the non-global series that
was already briefly examined in section 4.2.2, trying to understand a little more what may
be behind the observed behaviour.

E.1 Case n
filt

= 2

First, we start by studying the convergence of the non-global perturbative series when n = 2
for η small, where the primary coefficients are known to be enhanced with respect to the
purely non-global ones because of the presence of large collinear logarithms (cf section 4.1.2).
Figure E.1 compares the fixed-order results to the all-orders one up to α5

s. On these 2 plots
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Figure E.1: Comparison between fixed-order (FO) expansion and all-orders result when
n = 2 for (a) η = 0.1 and (b) η = 0.3.

one can notice that the series seems to converge, as was already shown in section 4.2.2.
In other respects, the convergence looks better when η is larger. This may be understood
using the following simple explanation: if we make an expansion up to order k, then the
series starts to diverge from the exact result when the term of order k+ 1 becomes roughly
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of the same size as the function itself. In the Σ(2)(L, t) case, using the analytic expression
(eq. (4.27)), this can be translated to

(4NcLt)
k+1

(k + 1)!
∼ e−4NcLt , (E.1)

with L = ln 1
η . At large k,1 the solution gives

t ∼ k + 1

4NcL
. (E.2)

So the convergence is better when k and η increase.
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Figure E.2: Comparison between fixed-order (FO) expansion and all-orders result when
n = 2 for (a) η = 0.6 and (b) η = 0.9.

Let us go to larger η, where there is no large collinear logarithm anymore, and check
what happens. This is done for η = 0.6 and η = 0.9 on figure E.2. One striking feature
of these plots is that the convergence seems acceptable up to the third order, but the 4th

order does not give as good a result, and the situation becomes worse as η increases. Said
another way, the perturbative expansion can be trusted until the third order, but then it
starts to diverge. The fact that the convergence looks better for small η may come from the
dominant behavior of the primary series, which converges very well to a nice exponential
function. However, if one could go to sufficiently high orders, it might be possible to observe
the same divergence as in figure E.2, when the purely non-global coefficients become of the
same order of magnitude as the primary ones.

To get an idea of these coefficients, the series of the plots are explicitly written below:

Σ(2)(η = 0.1, t) = 1− 27.57t + 368.8t2 − 3195t3 + 20200t4 − 99300t5 +O
(

t6
)

, (E.3)

Σ(2)(η = 0.3, t) = 1− 13.88t + 87.49t2 − 334t3 + 860t4 − 1500t5 +O
(

t6
)

, (E.4)

Σ(2)(η = 0.6, t) = 1− 4.656t + 6.53t2 − 6.7t3 − 10t4 +O
(

t5
)

, (E.5)

Σ(2)(η = 0.9, t) = 1− 2.320t − 2.27t2 + 1.9t3 − 12t4 +O
(

t5
)

. (E.6)

1the derivation was done at large k, but the result seems to be reasonable even for k = 2.
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For η small, the growth of these coefficients comes from the powers of the large collinear
logarithm L. For η near 1, the small growth that one can start to observe at the 4th order
essentially comes from the purely non-global part. Indeed, at the 4th order, the primary
coefficient is positive, and it is not the case for η > 0.6. This non-global growth will be
confirmed at higher orders for the slice observable in section E.3.

Let us now see what happens if the perturbative series is exponentiated. This means

that instead of plotting g(t) = 1 +
k
∑

i=1
ait

i, which is the perturbative series, one plots ef(t)

where

f(t) =

k
∑

i=1

cit
i and ef(t) = g(t) +O

(

tk+1
)

, (E.7)

so that

c1 = a1 , (E.8)

c2 = a2 −
a2

1

2
, (E.9)

. . .

Notice that the exponentiated first order corresponds to the analytical estimate for n = 2.
One can observe on figure E.3 a nice convergence for η = 0.1 until the 4th order. Concerning
the order 5, it seems that it diverges a little, but if the coefficients of the series are varied
within their respective errors, then it can coincide with the all-orders curve. However, one
can guess that it should not converge at the end because the all-orders function is not
strictly a simple exponential. This will be confirmed later with the slice. When η = 0.9, the
exponentiated 4th order surprisingly almost fits the all-orders result. Even more surprising,
if the 5th order coefficient (not shown here) is varied within its error band, it seems that the
exponentiated fit is still improved. Is it accidental? Here again, the slice example and good
sense lead us to answer yes but we cannot be completely sure.
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Figure E.3: Comparison between exponentiated fixed-order (exp FO) expansion and all-
orders result when n = 2 for (a) η = 0.1 and (b) η = 0.9.
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E.2 Case n
filt

= 3
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Figure E.4: Comparison between fixed-order expansion and all-orders result when n = 3 for
(a) η = 0.3 and (b) η = 0.8.

For small enough η, it was found analytically in section 4.1.3 that the all-orders result
for the Higgs ∆M distribution can be expressed as a simple function of t (eq. (4.29)), which
is of the form g(4NcLt) with:

g(t) = e−t

(

1 +

∫ t

0
dt′

1− et′

t′

)

. (E.10)

The radius of convergence of the Taylor series for g is infinite as the coefficients ak resulting
from its expansion can be shown to be bounded for large k by:

|ak| <
1

k!
(2k +O(1)) . (E.11)

As the expansion of this function converges, one would expect the same to occur for the
curves obtained numerically. However, the expansion does not converge as fast as for the
exponential, so that the t window for which there is a convergence should be smaller than
what was obtained for n = 2. This is indeed what is observed in figure E.4(a) for η = 0.3,
if it is compared for instance with the plot E.1(b).

In other respects, the curves on the plot E.4(b) for η near 1 behave similarly as for n = 2,
i.e. a perturbative series that converges until the 3rd order, and that starts to diverge from
the 4th order. Notice that the same behaviour is observed for n > 3.

E.3 The Slice case

The Slice observable, studied for instance in [205], gives an interesting example of the strange
behaviour of the non-global leading-log series. It is simply defined by the sum of all the
particles’ energy flowing into a region Ω of the phase space corresponding to a rapidity
y ∈ [−y0, y0], with y0 a parameter of the observable (figure E.5). Here, we work in the qq̄
center of mass frame and the quarks are assumed to move along the z axis. This observable
is non-global as shown in fig. E.5, and it is interesting in 2 ways:
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y=−y0 y=y0

qq
Ω

1
2

Figure E.5: The region Ω between the 2 dashed lines, and the gluon’s configuration leading
to the appearance of non-global logarithms.

• A simple change of frame2 shows that it is more or less equivalent in the leading-log
approximation to the ∆M observable in the filtering analysis using anti-kt with n = 2
and η = e−y0 when η ≪ 1, while being faster to compute numerically due to the
absence of clustering.

• When e−y0 ∼ 1, which should very approximately correspond to η = O(1), the strange
behaviour of the non-global series, observed in section 4.2, is clearly confirmed with
the addition of the 5th and 6th orders.

The series are represented in figure E.6 for 2 different values of y0. The plot for y0 = 2.3 is
here for a comparison with figure E.1(a), i.e. when n = 2 and η = 0.1. One can notice that
until order 5 the behaviours of the 2 series are very similar. The slight difference comes from
the fact that the C/A algorithm was used there instead of anti-kt. This can also be seen on
the expansions eqs. (E.3,E.12). However, a remarkable effect is the 6th order curve which
does not improve the fit with the all-orders result anymore (it even makes it worse). When
y0 = 0.5 (fig. E.6(b)), this effect is enhanced: indeed, one notices that the 3rd order gives
the best result, with the 2nd order even worse than the 1st one. And here again, adding
more orders shifts point of disagreement to smaller t.

To get an idea of the coefficients in this case, the series of the plots are given below:

Σ(y0 = 2.3, t) = 1− 27.6t + 351.1t2 − 2673t3 + 13900t4 − 99500t5 + 2106t6 +O(t7) ,
(E.12)

Σ(y0 = 0.5, t) = 1− 6t− 9.108t2 + 114t3 + 1740t4 − 68400t5 + 1.6 106t6 +O(t7) . (E.13)

The growth of the coefficients for y0 = 2.3 until the 5th order essentially comes from the
powers of 4Ncy0 when expanding the primary result, which is the expression of the collinear
divergence near q and q̄, whereas, for y0 = 0.5, it essentially takes its origin from the purely
non-global part. There is no large enhancement due to collinear divergence which can explain
it. As an example, we also show the function S(y0, t), which is defined as in [199, 205] to
contain the purely non-global part of the result:

S(y0, t) ≡
Σ(y0, t)

Σ(P )(y0, t)
, (E.14)

2or more simply comparison between primary results, eq. (2.5) from [205] and eq. (4.10) from this paper.
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Figure E.6: Comparison between all-orders and fixed-order results for the Slice when (a)
y0 = 2.3 and (b) y0 = 0.5.

 0.1

 0.2

 0.6

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

S(
t)

t

Slice, y0=2.3

all-orders
FO k=2
FO k=3
FO k=4
FO k=5
FO k=6

(a)

 0.1

 0.2

 0.6

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

S(
t)

t

Slice, y0=0.5

all-orders
FO k=2
FO k=3
FO k=4
FO k=5
FO k=6

(b)

Figure E.7: Comparison between all-orders and fixed-order results for the purely non-global
part S(t) of the Slice when (a) y0 = 2.3 and (b) y0 = 0.5.
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where, for the slice, the primary contribution Σ(P ) can be written as:

Σ(P )(y0, t) = e−4Ncy0t , (E.15)

in the large-Nc limit. The plots for S(y0, t) are shown in fig. E.7. One observes the saturation
property noticed in [205] which leads to very similar plots for y0 = 0.5 and y0 = 2.3. There
is clearly no convergence of the perturbative series.

Therefore, the non-global leading-log large-Nc series seems to behave badly at high
orders. Does this mean that it is an asymptotic series like the Standard Model is known to
be [255]?3 This study cannot answer such a question but, at least, one should be aware of
the strange behaviour of the non-global series.
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Figure E.8: Comparison between all-orders and exponentiated fixed-order results for the
Slice when (a) y0 = 2.3 and (b) y0 = 0.5.

To finish, let us mention the exponentiated results represented in figure E.8. They show
that the convergence observed in the case n = 2 is clearly only illusory. One point to notice
is that the case y0 = 2.3 is slightly different from its η = 0.1 counterpart as the divergence
starts to be visible at order 4 instead of 5. This may be because using the C/A algorithm in
the filtered Higgs mass observable reduces the impact of the non-global logarithms [206,207]
and the primaries still dominate at order 4, whereas it is not the case anymore for the slice.
Notice also the very nice fit given by the exponentiated 2nd order curve when y0 = 0.5.

3though the origin would be different if it were the case.
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Appendix F

Some key points of the LoopSim
algorithm

This appendix is intended to examine three important points of the LoopSim method ex-
plained in section 5.1: first we see why “non-clustering” particles cannot become virtual,
then we give the details of our recoil procedure, and finally we illustrate why the LoopSim
method is sensible even in the presence of incoming hadrons.

F.1 The non-clustering status

Apart from the born particles, in general one has to take into account possible “secondary
emitters”, i.e. non-born particles which emit something. These kind of particles, whose
status is defined as “non-clustering”, do not get looped. Indeed, when particle j makes a
loop over i, this means that there is a collinear enhancement of the matrix element coming
from i and j being close in angle. But the emission of the same j from the configuration
where i is virtual does not give such a collinear enhancement, so one must not take it into
account.

Another way to understand it might be to consider the example of 2-gluons emission
from a qq̄ dipole. We saw in section 4.1.2 that the squared matrix element for the emission
of 2 real energy-ordered (E1 ≫ E2) gluons, g1, g2, can be expressed as

M(k1, k2) = (4παs)
2(C2

FW1 + CFCAW2) , (F.1)

with

W1 = 4
(pq.pq̄)

(pq.k1)(k1.pq̄)

(pq.pq̄)

(pq.k2)(k2.pq̄)
, (F.2)

W2 = 2
(pq.pq̄)

(pq.k1)(k1.pq̄)

(

(pq.k1)

(pq.k2)(k2.k1)
+

(pq̄.k1)

(pq̄.k2)(k2.k1)
− (pq.pq̄)

(pq.k2)(k2.pq̄)

)

. (F.3)

As the W1 term diverges when g2 is collinear to q or q̄ (unlike the W2 term), it becomes
relevant when g2 is considered to have been emitted from q or q̄ independently of g1. The
W2 term diverges when g2 is collinear to g1 (unlike W1), so it becomes relevant when g2
is considered to have been emitted from g1. This is depicted in fig. F.1, where are also
represented the virtual corrections whose study can be found in [213]. One notices that the

175
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W2 term only appears when g1 is real. The diagrams where g1 is virtual are taken into
account when g2 is emitted from q or q̄. Therefore, g1 cannot become virtual when g2 makes
a loop over it.

+

+ (a)

(b)

(c)

(d)
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Figure F.1: Matrix elements for two gluons emitted from a qq̄ dipole: (a) gluons 1 and 2
real; (b) gluon 1 real and 2 virtual; (c) gluon 1 virtual and 2 real; (d) gluons 1 and 2 virtual.
In each case, when needed, we separate what can be seen as the emission of gluon 2 from
gluon 1, and what can be seen as the emission of gluon 2 directly from qq̄.

F.2 Recoil procedure

We now describe a little more precisely how we perform the recoil of an event when a particle
becomes virtual, and we also consider the decay products of the Z boson. We first examine
the simpler case of a particle making a loop with the beam, then we show how to deal with
a particle that makes a loop with another particle.

F.2.1 A particle recombines with the beam

Let us assume that particle number i0 has to make a loop over the beam. To simulate it,
do the following procedure:

1. For each particle i 6= i0, store its rapidity yi.

2. Perform a separate longitudinal boost on each particle so as to bring its rapidity to 0
(i.e. get a purely transverse event).

3. Compute

Etot =
∑

i6=i0

Ei , (F.4)

where Ei is the energy of particle i in the purely transverse event.
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q

gluon 2 becomes virtual

q
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3

2

1

3
4

Figure F.2: Case where four gluons are emitted from the same quark. Gluon 1 is the last
to be clustered with the quark (which roughly corresponds to an early time emission) and
gluon 4 is the first to be clustered. In the event where gluon 2 makes a loop over the quark,
we spread the gluon 2’s momentum over the quark’s momentum and the momenta of gluons
that were emitted after it, i.e. gluons 3 and 4 (an earlier time emission like gluon 1 cannot
be affected).

4. Define

k = (E = Etot, ~pt = ~pt,i0, pz = 0) , (F.5)

and boost all particles into the rest frame of k (so that the total transverse momentum
balances).

5. Perform a longitudinal boost on each particle so that it recovers its original rapidity
yi.

For the case where two particles are looped with the beam, i0 and i1, replace i 6= i0 with
i 6= i0, i1 and in eq. (F.5) replace ~pt,i0 with ~pt,i0 + ~pt,i1; etc. In the case where the Z decays,
for instance into 2 leptons, the procedure is exactly the same except that we apply to them
the same longitudinal boosts as for the Z (the rapidity of the leptons is thus non necessarily
0 when we apply the transverse boost). This conserves the property that the sum of the
leptons’ momenta is still the Z momentum in the “looped” event.

The logic of the above procedure is that if we had attempted to apply a transverse boost
without stages 3 and 5, we would have found that our choice of transverse boost, and the
corresponding mapping of high-pt particles’ momenta, would be affected by the presence
of energetic particles collinear to the beam. This would have made the procedure collinear
unsafe.

F.2.2 A particle recombines with another particle

Let us consider the situation depicted in fig. F.2: four gluons are emitted from the same
quark, but at different angles:

θ1q ≫ θ2q ≫ θ3q ≫ θ4q , (F.6)

and gluon 2 becomes virtual. The virtualisation of gluon 2 over the quark cannot have an
impact on gluon 1, which was emitted earlier in an angular-ordered picture. But it has an
impact on gluons 3 and 4. More precisely, we define

pt,tot = pt,q + pt,3 + pt,4 . (F.7)
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If we call p the momenta in the original event and p′ the momenta in the event where gluon
2 is virtual, we have:

p′i = pi +
pt,i

pt,tot
p2 for i = q, 3, 4 , (F.8a)

p′1 = p1 . (F.8b)

This procedure is applied as many times as is necessary to account for all the looped particles
(in eqs. (F.7,F.8a) it is always the original particle momenta that are used to determine the
pt,i/pt,tot ratio). Subsequently each particle is rescaled such that its mass is 0 (or MZ if
gluon 3 is replaced with a Z boson for instance), keeping its transverse components px, py

and its rapidity unchanged.

This can be easily generalised to any number of particles recombining on the same hard
one: we spread the looped particle over the hard particle h and over the ones which were
emitted after it and recombine with h. This procedure is designed to ensure collinear safety:
if, for instance, the gluon 4 is collinear to the quark in the original event, then it remains
collinear in the looped event. And in the case where the gluon 2 is collinear to the quark,
this means that it was emitted after all the other gluons, in which case only the quark
momentum is rescaled (and its direction does not change).

In the case where the Z decays into 2 leptons, one applies the following procedure to
each of the leptons:

1. Perform a longitudinal boost of the Z boson respectively in the original event and
the looped event such that it has 0 rapidity in each case. Call the momenta obtained
pZ,0 = (E0, ~pt,0, 0) and pZ,1 = (E1, ~pt,1, 0) respectively.

2. Perform a longitudinal boost of the lepton from the original event into the frame where
the initial Z has 0 rapidity.

3. Define a purely transverse vector k such that pZ,0 is transformed to pZ,1 if it is boosted
into k’s rest frame:

k =

(

E1 + E0,
2

1 + C
(~pt,1 − ~pt,0), 0

)

, (F.9)

with

C =
(~pt,1 − ~pt,0)

2

(E1 + E0)2
. (F.10)

4. Boost the lepton’s momentum into k’s rest frame.

5. Apply to the lepton the longitudinal boost that brings pZ,1 to its true rapidity in the
looped event.

We are aware of the somewhat cumbersome nature of these procedures. A simplification
of the procedures that retained the relevant collinear-safety properties would certainly be
of interest.
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F.3 The LoopSim method and incoming partons

Without going into a full proof, we shall here illustrate why the LoopSim method is sensible
even in the presence of incoming hadrons, by considering what happens at n̄LO. We start
with a LO cross section for a process producing n hard objects

σLO
n =

∫

dxadxb dΦn
dσ̂ij→n(xapa, xbpb)

dΦn
fi/a(xa, µ

2
f
)fj/b(xb, µ

2
f
)C(p1, . . . , pn) (F.11)

For compactness of notation, we have dropped the µr dependence in the differential tree-
level partonic cross section dσ̂ij→n/dΦn. We have also not yet specified our choice for the
factorisation scale µf. We assume that dσ̂ij→n/dΦn contains the necessary constraints to
relate the incoming partonic momenta to the outgoing momenta. We further integrate over
the phase-space dxadxbdΦn, and include a function C(p1, . . . , pn), which is 1 if the momenta
pass our cuts and 0 otherwise.

We now imagine that there is some transverse-momentum scale Q0 below which no
radiation takes place. To O(αs), the PDFs fi/a(xa, µ

2
f
) can be written in terms of PDFs at

scale Q0:

fi/a(xa, µ
2
f
) = fi/a(xa, Q

2
0) +

αs

2π

∑

k

∫ µ2
F

Q2
0

dk2
t

k2
t

∫

dz

z
Pik(z)fk/a(x/z,Q

2
0) (F.12)

where we also define an unregularised splitting function pik(z) such that Pik(z) = pik(z) −
δ(1− z)

∫

dz′p̄ik(z
′), with p̄ik(z

′) embodying the virtual parts of the splitting function (it is
zero for i 6= k).

Next, we can write the LO cross section in terms of a PDF for proton a that has been
evaluated at scale Q0:

σLO
n =

∫

dxadxb dΦn
dσ̂ij→n(xapa, xbpb)

dΦn
fj/b(xb, µ

2
f
)C(p1, . . . , pn)

×
[

fi/a(xa, Q
2
0) +

αs

2π

∫ µ2
f

Q2
0

dk2
t

k2
t

dz

(

pik(z)

z
fk/a(xa/z,Q

2
0)− p̄ik(z)fi/a(xa, Q

2
0)

)

]

. (F.13)

Note that the first term in round brackets on the second line corresponds to real emission
of a parton. However that parton is not taken into account in the C(p1, . . . , pn) factor.

Next we examine the structure of the n̄LO contribution,

σn̄LO
n = σLO

n +

∫

dxadxb dΦn+1
dσ̂ij→n+1(xapa, xbpb)

dΦn+1
fi/a(xa, µ

2
f
)fj/b(xb, µ

2
f
)

×
[

C(p1, . . . , pn+1)− C(pLS
1 , . . . , pLS

n )
]

, (F.14)

where the pLS
1 . . . pLS

n represent the momenta after application of the LoopSim procedure
to pn+1. In the limit in which pn+1 is collinear to incoming parton i, with momentum
pn+1 = (1− z)xapa, the n+ 1-parton differential cross section and phase-space simplify

dxadΦn+1
dσ̂ij→n+1(xapa, xbpb)

dΦn+1
= dx′adΦn

dσ̂kj→n(x′apa, xbpb)

dΦn
· αs

2π

dz

z

dk2
t,n+1

k2
t,n+1

pki(z) (F.15)
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where x′a = zxa. By “collinear” we will mean kt,n+1 ≪ Q where Q is the momentum transfer
in the hard process. In this limit we also have that pLS

i ≃ pi (for i ≤ n). So, still working
within the collinear limit, we can now rewrite eq. (F.14) as

σn̄LO
n ≃ σLO

n +

∫

dx′adxb dΦn
dσ̂kj→n(x′apa, xbpb)

dΦn
fj/b(xb, µ

2
f
)

× αs

2π

∫ Q2

Q2
0

dk2
t,n+1

k2
t,n+1

dz

z
pki(z) [C(p1, . . . , pn+1)− C(p1, . . . , pn)] fi/a(x

′
a/z, µ

2
f
) . (F.16)

Next, we exchange i ↔ k, replace x′a → xa and change the scale µ2
f

in fi/a(x
′
a/z, µ

2
f
) to be

Q2
0, which is allowed because it corresponds to an O

(

α2
s

)

change (while here we consider
only O(αs)):

σn̄LO
n ≃ σLO

n +

∫

dxadxb dΦn
dσ̂ij→n(xapa, xbpb)

dΦn
fj/b(xb, µ

2
f
)

× αs

2π

∫ Q2

Q2
0

dk2
t,n+1

k2
t,n+1

dz

z
pik(z) [C(p1, . . . , pn+1)− C(p1, . . . , pn)] fk/a(xa/z,Q

2
0) . (F.17)

Note now that if we take µ2
f
∼ Q2 then the second term in square brackets in eq. (F.17)

cancels the first term in round brackets in the second line of eq. (F.13). In other words for
initial-state radiation, the action of LoopSim is not so much to provide virtual corrections
as to cancel the real-emission terms already included implicitly through the PDFs in the
leading order cross section. In contrast, the true virtual terms are already included through
the PDFs themselves, i.e. through the second term in round brackets in eq. (F.13).

As an example, consider pp→ Z. At n̄LO we will have events such as gq → Zq, where
the outgoing quark comes from collinear initial-state splitting g → qq̄, with an underlying
hard subprocess q̄q → Z. From these events LoopSim will generate a configuration in which
the outgoing quark is “looped”. This will come in with a PDF weight that is the product
of a gluon distribution and a quark distribution, so it appears that we have a (negative)
gq → Z contribution, which would be unphysical. However in the LO cross section with a
factorisation scale µf ∼ Q, when we write q̄q → Z, part of the q̄ PDF comes from g → q̄q
splitting. If we were just to add the real gq → Zq diagram to the LO cross section alone,
then in the collinear limit we would be double counting the part already included in the
PDF. With the negative “gq → Z” LoopSim contribution, what happens is that we simply
remove the q̄ PDF component, generated from g → q̄q splitting, that was implicitly included
at LO with an incorrect final state (i.e. lacking an outgoing quark), since we are now putting
it in with the correct final state through the real gq → Zq diagram.

Note that we have not yet worked out the full extension of this discussion to higher orders.
The details would depend on the precise higher orders that we have in mind, for example
n̄n̄LO versus n̄NLO. However, regardless of these details, the fundamentally unitary nature
of the LoopSim procedure is important in ensuring that the simulated “loops” simply bring
about an overall consistent set of final states while maintaining the total cross section as
calculated with a sensible factorisation scale choice.
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