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CHAPTER I

INTRODUCTION

1.1 Foreword

Friction is often considered by engineers as detrimental to the design of mechanisms

with moving parts, but it has long been established that it can also provide a very efficient

means of damping out vibrations in elastic structures. In applications such as turbomachin-

ery bladed disks, where structural damping is negligible, dry-friction damping has been

widely used to reduce the resonant response of the blades so as to limit the occurrence

of wear and premature failure. In such systems, friction is obtained either by appending

special passive devices (friction dampers) to selected locations of the elastic structure to

be damped, or by direct frictional interaction between two or more of its constitutive parts.

Once properly modeled, the parameters describing these frictional interfaces can be opti-

mized so as to maximize the benefits of friction damping, namely reducing the vibratory

response.

The figures 1.1 and 1.2 depict a complete bladed disk assembly and the typical compo-

nents of a cyclic sector for such a structure. Both models are provided by the Société Na-

tionale d’Étude et de Construction de Moteurs d’Aviation (SNECMA). Friction dampers

are usually inserted in specifically designed cavities located under the platforms of the

blades. Since these dampers straddle two adjacent sectors of the assembly, the relative

1
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Figure 1.1: Model of bladed disk assembly. (Model provided by SNECMA.)
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Blade

Platform

Disk

Figure 1.2: Model of a single sector of a bladed disk assembly. The sector is comprised
of the blade and a section of the disk. The entire bladed disk can be deduced
by successive rotations of this sector due to its properties of cyclic symmetry.
Friction dampers are usually located in specially designed cavities or grooves
underneath the platforms. (Model provided by SNECMA.)
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motion of these two sectors due to the vibration of the entire structure generates friction at

the damper/platform interfaces. Although they are not structurally connected to the blades,

the centrifugal force created by the rotation of the engine presses them against the plat-

forms and thus provides positive normal contact forces at the frictional damper/platform

interfaces. In addition to these interfaces, friction can also occur directly between the con-

tacting parts of two adjacent platforms, and between two adjacent blades if these blades

feature shrouds or if their design includes interlocking teeth at their tip. Finally, most

bladed disk assemblies can experience frictional interactions between the blades and the

disk and the blades and the casing of the engine; such interactions are however beyond the

scope of this work and are not investigated.

The benefits of an intentional friction damping mechanism is illustrated in Fig. 1.3,

which presents the forced response of a simple dry-friction damped beam for various val-

ues of the normal contact load characterizing the frictional interface. This behavior shows

that a careful analysis of the parameters that define a frictional interface can lead to a sub-

stantial reduction of the response of the friction-damped structure. In the case of friction

dampers the design parameters that can be optimized usually include their stiffness, the

centrifugal force applied to them, and the friction coefficient of their interfaces with the

blade. These parameters are derived from the dampers geometry and material, and the

location of the frictional interfaces. For direct contact - such as between two adjacent

platforms - the design parameters are limited to the friction coefficient of the contacting

components of the assembly.

However, the optimization of such parameters is hampered by the highly nonlinear be-

havior of friction-damped systems, which makes their modeling and analysis complicated.

Difficulties stem from the modeling of the frictional interactions as well as from the highly

nonlinear nature of the resulting set of equations of motion. Since an accurate description



5

Frequency

A
m

p
li

tu
d

e 
o

f 
th

e 
fo

rc
ed

 r
es

p
o

n
se

0 N (Forced response in the

absence of friction)

40 N 

80 N 

120 N 

160 N 

Optimal normal load: 200 N 

360 N 

600 N 

840 N 

1080 N 

Figure 1.3: Typical forced response of a dry-friction damped beam subject to a periodic
excitation, for various values of the normal contact load characterizing the
frictional interface.

of the forced response of realistic systems is usually not amenable to the traditional means

of analysis (e.g. closed-form solutions or direct time-integration methods) because of the

complexity of these systems and/or the computational costs involved, most of the research

efforts to date have yielded approximate methods sacrificing one or more of the following

aspects of the modeling: (1) realism of the modeling of the friction-damped structures, (2)

realism of the models of friction dampers, (3) accuracy of the kinematics of the contact

interfaces, (4) ability of the modeling method to capture accurately the complexity of the

forced response of the damped system.

The objective of this dissertation is to introduce new methods of analysis that overcome

some of these obstacles. This research is aimed at the development and implementation of

methods of analysis and models of dampers adapted to the study of the steady-state, forced
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response of realistic friction-damped structures. It is based on the Alternating Frequency-

Time (AFT) method originally proposed by Cameron and Griffin [1], which parallels the

Fast Galerkin (FG) method introduced by Ling and Wu [2]. Guillen and Pierre [3–6] have

further developed this theoretical approach – also known as the Hybrid Frequency-Time

(HFT) method.

In this doctoral work, Guillen’s approach is modified and extended so as to be applied

to large-scale, industrial structural systems. Complex models of elastic, structure-like

under-platform dampers are introduced, and the modeling of direct friction (e.g. without a

friction damper) between two contacting parts of the same structure is also investigated.

1.2 Literature review

Friction has been an extremely active field of research since the early studies by den

Hartog [7] of a simple friction-damped system. Recent survey papers by Ibrahim [8, 9] and

Feeny et al. [10] show the variety and complexity of friction-related mechanisms, which

blend contact mechanics, tribology and nonlinear dynamics. Friction damping modeling

and its applications have been reviewed by Ferri [11]. Given the scope of this research,

it is of particular interest to note that the existing works on dry-friction damping can be

broadly divided into two categories: (1) research efforts undertaken to model and analyze

the nonlinear behavior of friction-damped systems and (2) studies that have principally

focused on the modeling of the friction dampers.

1.2.1 Nonlinear methods for the analysis of friction-damped systems

Early studies have focused on exact solution methods. den Hartog [7] was first to

propose the exact steady-state solution for a simple single degree of freedom (DOF) os-

cillator subject to harmonic excitation. His work was further extended by Levitan [12] to

the same model subject to a harmonic base excitation, and by Hundal [13] to a different
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frictional configuration. Yeh [14] investigated the dynamics of a two-DOF system with

friction, and Pratt and Williams [15] introduced a mixed analytical/numerical procedure

for the study of two spring-mass systems contacting each other. The rapid increase of the

complexity of the solutions for the dynamics of systems involving friction has however

limited closed-form solutions to extremely simplified models.

Early on it has also been recognized that the conceptually opposite approach based

on direct time integration methods was leading to almost intractable computational issues

when realistic models where studied. Ferri [11] noted that time integration can be very

inefficient if one is primarily interested in the steady-state response to periodic excitation,

since the very low amount of structural damping present in turbomachinery structures

requires one to perform the integration of the system equations over hundreds of periods,

until the transient response dies out. Furthermore, several authors have underscored the

significant difficulties involved in the implementation of the transition criteria between the

various states of the contact interfaces – stick, slip or separation –, usually leading to the

costly choice of unusually small time steps to detect these phase changes accurately. As

a consequence, exact time integration methods have been mainly used for (1) the study of

small frictional oscillators, (2) verifications of the results produced by faster, approximate

solutions for the dynamics of larger systems and (3) parametric studies (often coupled with

experimental investigations) of the dynamics of specific systems. Among the works falling

in the last category, Korkmaz et al. [16] have analyzed the behavior of a cantilever beam

damped by a dry friction damper using Newmark’s method, Whiteman and Ferri [17] have

investigated the interactions between bending-torsion flutter and friction for gas turbines,

and Toufine et al. have focused on the dynamics of a simple friction-damped mechanical

system [18] and a more complex structure with flexion-torsion coupling [19].

Since closed-form solutions are available only for extremely simplified models, and
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direct time integration techniques lead to prohibitive computational costs, approximate

methods have been continuously introduced over the past 20 years. Among them, the

Harmonic Balance Method (HBM) developed by Nayfeh and Mook’s [20] has been suc-

cessfully applied to various friction-damped structures. It is based on the assumption that

the forced response of the system is mainly harmonic. Using this approximation, the be-

havior of cantilevered beams subject to the action of friction dampers has been studied

by Dowell [21], Dowell and Schwartz [22, 23], Ferri and Dowell [24], Ferri and Binde-

mann [25], Menq and Griffin [26], Whiteman and Ferri [27, 28], and Go et al. [29], among

others. Bazan et al. [30] extended the approach to linear structures with multiple fric-

tional interfaces. In the context of turbomachinery, Griffin [31], Srinivasan and Cutts [32],

Muszyńska and Jones [33], Sinha and Griffin [34] and Sanliturk et al. [35] have applied

the Harmonic Balance Method (or equivalent approximation techniques) to the study of

the forced response of jet engine blades. Sinha and Griffin [36–39] also extensively in-

vestigated the effect of friction damping on various flutter configurations and analyzed

the dynamics of mistuned bladed disk assemblies with friction dampers [40]. Cha and

Sinha [41–43] investigated the influence of white noise and narrow band excitations on the

computation of the normal load applied to friction dampers featured in mistuned bladed

disks.

The Harmonic Balance Method has been later used for the modeling of systems in-

volving friction dampers of increased complexity, as shown in the following section. Yet,

it has also been noted that its inability to represent accurately the periodic waveform of the

nonlinear forced response as well as the contact friction force could be a significant source

of error, especially when hysteretic models of dampers were considered.

In order to overcome the modeling limitations of the Harmonic Balance Method, multi-

harmonic techniques have been developed. They can be traced back to the introduction
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by Lau et al. [44–46] of the Incremental Harmonic Balance method (IHB) to solve for

the nonlinear periodic and quasi-periodic vibrations of continuous systems. Ferri [47]

showed the equivalence of the IHB and the Galerkin/Newton-Raphson (GNR) form of

the Harmonic Balance Method. Pierre and Dowell [48], and Pierre et al. [49] used an

extended IHB approach to analyze the steady state of systems featuring perfectly plas-

tic friction dampers, and Ferri and Dowell [50] used a multiharmonic GNR method to

model damped systems where Coulomb’s friction law was approximated by a ramp. Wei

and Pierre [51] applied a similar approach to the modeling of mistuned assemblies with

several rigid dampers. Shiau et al. [52, 53] combined a multi-harmonic approach with a

trigonometric collocation method to investigate the behavior of frictionally-damped com-

posite blades.

A significant breakthrough was made by Ling and Wu [2] (Fast Galerkin Method),

Cameron and Griffin [1] (Alternating Frequency-Time domain Method), as well as Kim

and Noah [54] and Cardona [55], when it was realized that the nonlinearities due to the

friction force could be accurately described in the time domain over a single period of

motion of the structure, and then transformed back in the frequency domain using a Fast

Fourier Transform, to form a set of nonlinear equations which can be solved by a Newton-

Raphson or a Broyden procedure. Berthillier et al. [56, 57] applied this procedure to the

forced response of turbomachinery blades with an approximation of Coulomb’s friction

law. Guillen and Pierre [3–6] further expanded the capabilities of the method to study the

forced and free response of systems with multiple friction dampers, and clearly demon-

strated that (1) approximations of Coulomb’s friction law were no longer required and (2)

complex models of dampers were compatible with this method, referred to herein as the

Hybrid Frequency-Time (HFT) domain method.

Other methods of less general scope have been introduced for the modeling of spe-
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cific nonlinear systems. A multi-harmonic method associated with an exact, analytical

expression of the friction force has been developed by Wang and Chen [58] for the study

of a single-DOF system with a hysteretic model of damper, but this approach becomes

rather cumbersome for larger systems, and is not applicable to more complex frictional

configurations (e.g., variable normal load). Ren and Beards [59] introduced a receptance-

based multi-harmonic method that is almost as costly as a direct time integration. Ge and

Leung [60, 61] developed a method based on Toeplitz Jacobian Matrices, which so far

has not been applied to frictional systems. The stick-slip motion of frictionally-damped

turbine airfoils has been studied by Wang [62] using a Finite Element in Time approach

applied to a single-DOF system. A simple hysteretic model of damper was used, yet it was

noted that the computation of the friction force contributed to a significant portion of the

overall computation time, and therefore this approach did not seem as appropriate as the

HFT method to study systems involving more complex frictional mechanisms. The same

author [63] proposed an analytical solution for the periodic response of elastic friction-

damped systems, yet again the procedure was applied to a single DOF system with simple

dampers. Ferri and Heck [64] recently used the Singular Perturbation Theory to investi-

gate the effect of the mass of the friction damper on a spring-mass-dashpot system, but

significant deviations from the exact solution were observed. A similar investigation was

carried out by Berger and Krousgrill [65] with bilinear hysteresis elements to model the

frictional interfaces.

Finally, specially tailored analytical techniques have been developed for the analysis

of mistuned bladed disk systems, which involve as many frictional interfaces as there are

friction-damped blades. Chen and Sinha [66] investigated the behavior of a mistuned

bladed disk with friction dampers attached, while Lin and Mignolet [67] increased the

complexity of such systems by considering an additional mistuning of the characteristics
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of the dampers.

1.2.2 Models of dampers

As mentioned above, the development of further-refined means of analysis of the dy-

namics of nonlinear systems has been paralleled by the increase in the complexity of the

modeling of the frictional interfaces. It must be noticed, however, that the description

of the friction mechanisms has evolved somewhat faster than the ability of the methods

of analysis to solve the resulting nonlinear systems. Practically, the harmonic balance

method (i.e., with a single temporal harmonic) has been overwhelmingly used for the

study of complex frictional interfaces, notwithstanding the noted limited accuracy of the

method for realistic configurations.

The frictional interfaces encountered in the literature on friction damping can be clas-

sified according to the following criteria:

1. Type of friction interface. Possible friction sources are (1) the contact between

the root of the blade and the disk, (2) blade-to-ground dampers, (3) blade-to-blade

under-platform dampers and their variant called wedge – or cottage-roof – dampers,

and (4) shroud-to-shroud or similar direct contact between two parts of the bladed

disk assembly.

2. Type of friction law used. Although Hertzian contact may have been used occa-

sionally, there is a widespread consensus on the ability of Coulomb’s classical law

of dry friction to capture the mechanisms of interest for friction damping. Yet, many

approximations have been made for its implementation. Among them, one can note

(1) the choice of a constant normal load over that of a variable normal load, and

(2) the approximation of the hysteretic relation between the tangential displacement

and the friction force by simplified laws, such as ramp or sign functions, usually
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involving arbitrary numerical coefficients.

3. Type of frictional mechanism. Micro- or macroslip approaches have to be consid-

ered, according to the complexity of the contact interfaces.

4. Type of kinematics at the friction interfaces. It can be one-dimensional (1-D), but

in general the contacting interfaces have a complex, two-dimensional (2-D) or three-

dimensional (3-D) relative motion – an extended 2-D case with variable normal load

and possibly separation.

Works based on single-harmonic approximations have investigated several of these

characteristics. Menq et al. have examined a 1-D microslip approach applied to the vi-

bratory response of a single-DOF system [68], the influence of a variable normal load on

the forced vibration of a similar system [69], and the particular case of 2-D (circular or

elliptic) relative motion. The effect of a variable load, including separation, was later ana-

lyzed by Yang and Menq [70] for the 1-D frictional interaction of shrouded blades. Wang

and Shieh [71] have investigated the influence of a variable friction coefficient for the 1-D

friction-damped motion of a single-DOF system. Also considering a single DOF system,

Anderson and Ferri [72] have studied the influence of various generalized friction laws.

Griffin and Menq [73] also developed a circular model of friction damping, and applied

it to a 2-DOF system. They later suggested that this elliptical model could be applied

to a new damping mechanism involving friction dampers located within internal cavities

of hollow airfoils [74]. Sanliturk and Ewins [75] proposed a more complex 2-D model

of friction damper, which does not rely on the analytical approximations of the previous

models for the computation of the friction force. Menq and Yang [76] reexamined Menq’s

first 2-D model and also proposed a refined version based on a step-by-step, time-domain

evaluation of the friction force when the relative motion of the contacting interfaces is
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elliptic.

Still under the assumption that the forced response of the system is mono-harmonic,

the modeling of 3-D frictional constraints has been developed by Yang and Menq [77–79]

for the analysis of shroud contact. Csaba [80–82], Jareland and Csaba [83] and Jare-

land [84] investigated various 1-D and 2-D models of under-platform and wedge dampers

combining macroslip and microslip approaches. Sanliturk and Ewins [85] also proposed a

non-flexible wedge damper, whose contact interfaces with the platforms are described by

a microslip model whose characteristics are deduced from experimental data.

Other non-flexible models of wedge dampers have been studied with time integration

methods by Pfeiffer and Hajek [86] and more recently by Kaiser et al. [87]. Panning et

al. [88] also used a direct time integration and a non-flexible model of wedge damper

to investigate various possible geometric configurations, but he augmented his model by

assuming that Hertzian contact represents the frictional interfaces with the platform.

Finally, the most advanced works on friction damping have been based on the multi-

harmonic HFT method or variations thereof. Guillen et al. [6] introduced a simplified flex-

ible structure-like damper model featuring four contact points, where each of the contact

points experiences Coulomb friction with a constant normal load along a fixed direction,

and studied the free response and stability of simple friction-damped systems. Chen and

Menq [89–91] extended Yang’s model of 3-D shroud contact to several harmonics. Nacivet

et al. [92, 93] introduced a variant of the HFT method based on Dynamic Lagrangians so as

to model the dynamics of periodic frictional contact in finite elements models. Seinturier

et al. [94] as well as Petrov and Ewins [95–97] presented several successful applications of

multi-harmonic methods to the analysis of the forced response of realistic bladed disk as-

semblies for various contact configurations, including ones that include mistuned damper

characteristics [98]. Finally, recent work by Nacivet [99], Charleux et al. [100, 101] and
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Petrov and Ewins [102, 103] have focused on applying these methods to the analysis of

the friction phenomena occuring at the dovetail attachments of the blades on the disks.

These studies strongly suggest that the multi-harmonic HFT technique is now the

method of choice for the modeling of complex periodic frictional interactions in realis-

tic structures.

1.3 Research topics addressed in this dissertation

In this research, extensions of the multi-harmonic HFT method are proposed for the ef-

ficient study of the forced response of realistic, complex structures featuring displacement-

dependent nonlinearities, such as the friction and impact phenomena that may occur in the

presence of friction dampers or when two parts of the same structure periodically contact

each other. Particular attention is paid to the theoretical formulation of the method for

large scale, realistic industrial bladed disk structures that may feature cyclic symmetry or

that may be mistuned. Two analysis techniques are developed for the modeling of such

displacement-dependent nonlinearities. The first technique corresponds to the modeling

of the friction dampers as nonlinear operators representing the contact forces acting on

the bladed disk assembly, from the simple case of mono-directional friction with constant

normal load to the more complex case of three dimensional contact with variable normal

load. The analysis of the forced response of several nonlinear systems illustrates the ca-

pabilities of this approach as well as the complexity of the typical behavior exhibited by

friction damped structures. The second technique introduced helps analyze structures ex-

periencing intermittent contact or friction between two parts or sub-components of these

structures. This method is applied to the study of the forced response of several simple

systems and is used with great efficiency to predict the nonlinear behavior of a beam with a

crack. This second technique also allows the dampers to be modeled realistically as stand-
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alone components appended to the bladed disk assembly. In this approach the bladed disk

assembly as well as the friction dampers are modeled as independent structures that in-

teract at their contacting interfaces. This allows the exact elastic properties of the friction

dampers to be retained without making assumptions regarding their geometry. These two

methods are applied to the study of the nonlinear forced response a realistic bladed disk

assembly featuring a wedge damper model and a structure-like damper model.

1.4 Dissertation outline

The remaining chapters of this dissertation are based on five technical papers that have

been prepared for submission to the scientific community. As a consequence, some back-

ground information as well as some theoretical developments are repeated in various chap-

ters. These chapters are organized as follows:

In chapter II the theoretical formulation of the multi-harmonic HFT method is pre-

sented. Modifications of the original HFT method are introduced to allow the accurate

and efficient analysis of the nonlinear forced response of large-scale, realistic structures

with or without cyclic symmetry. The specific features of the response exhibited by struc-

tures with cyclic symmetry and subject to a traveling excitation are investigated. In par-

ticular, the special relationship between the temporal harmonics of the forcing and the

spatial harmonics of the response of the structure is highlighted. The concept of mod-

eling friction dampers as nonlinear operators is presented, as well as a detailed analysis

of the procedures used to calculate the time-domain, periodic waveforms of the contact

efforts for damper models. These procedures are delineated for models of dampers which

feature either mono-directional friction with constant normal load or more complicated

three-dimensional contact with variable normal load.

In chapter III a series of numerical examples that illustrate the capabilities of the multi-
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harmonic HFT method is presented. The forced response of simple systems is obtained

for different types of damper models, in the case of structures which are tuned (that is,

structures with cyclic symmetry), or mistuned (that is, structures that require the modeling

of a large number of frictional interfaces).

In chapter IV, a variation of the multi-harmonic HFT method is proposed to analyze

the periodic forced response of structural systems undergoing intermittent contact and fric-

tional interactions between some of their components. In this new approach, the dynamics

of the structure is still described by a set of Fourier coefficients representing the motion

of the nonlinear DOFs where impact or friction occur, but the corresponding forces are

no longer taken into account in the resulting set of nonlinear equations to be solved. In-

stead, this method is based on the nonlinear kinematic conditions associated with the con-

tact forces, that is, it solves directly for the nonlinear DOFs displacements which satisfy

the friction and non-penetration conditions associated with these nonlinear forces. Simple

spring-mass systems with displacement-dependent, non-smooth nonlinearities are studied,

as well as an application of the method to a more realistic finite element model represent-

ing two example shrouded blades impacting each other. The robustness and accuracy of

the method is demonstrated.

In chapter V, the multi-harmonic HFT method is extended so as to allow for the anal-

ysis of structures with cracks. The method is applied to a finite element model of cracked

beam, and the influence of the method’s parameters on the accuracy of the prediction of

the crack-induced frequency shift is investigated. The results highlight the importance of

the modeling of the crack interface, and they demonstrate the method’s ability to handle

with great accuracy and at a very low computational cost the dynamics of such complex

structures.

In chapter VI, the forced response of a realistic bladed disk assembly is investigated
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for various frictional and contact configurations that highlight the capabilities of the ex-

tensions of the multi-harmonic HFT method introduced in the previous chapters. Using

the nonlinear-operator approach, a new model of flexible wedge damper is introduced and

a parametric study of its influence on the overall response of the bladed disk assembly is

carried out. Then, the behavior of the structure with a new model of structure-like damper

featuring several contact points under the blades’ platform is analyzed. In this case the

damper is modeled as a flexible structure independent from the bladed disk, and it is only

subject to the centrifugal load due to the rotation of the engine and the boundary conditions

at the contact interfaces under the blades platforms. The analysis exhibits the complexity

of the nonlinear forces at the contact points, which feature friction with variable normal

load.

Finally, chapter VII summarizes the main contributions of this research and investi-

gates possible ways to further extend them in future investigations, both in terms of theo-

retical advancements as well as in terms of possible applications.



CHAPTER II

HYBRID FREQUENCY-TIME DOMAIN METHODS
FOR THE ANALYSIS OF COMPLEX STRUCTURAL

SYSTEMS WITH DRY FRICTION DAMPING

2.1 Introduction

Many studies on the dynamics of periodically excited structural systems with friction

damping use the Harmonic Balance Method (HBM) introduced By Nayfeh and Mook

[20]. This method is based on the representation of the dynamics of the structure using a

linear combination of temporal harmonics, and it is particularly well suited to the analysis

of the steady state response of nonlinear systems. If a sufficient number of harmonics are

retained, both the motion of selected degrees of freedom of the structure and the friction

force at the contact points can be approximated with excellent accuracy. Early studies

on the subject of dry-friction damping were limited to single harmonic approximations.

Among them, work by Dowell and Schwartz [22], Ferri et al. [24, 25] and Whiteman and

Ferri [27] on cantilevered beams; and Griffin [31], Srinivasan and Cutts [32], and Sinha

and Griffin [37] on simple turbomachinery applications have successfully focused on mod-

els of dampers of increasing complexity. Menq et al. studied the effect of microslip [68]

and variable normal load [69]. An elliptic motion of the contact point was later consid-

ered by Griffin and Menq [73], Sanliturk and Ewins [75], and Menq and Yang [76]. The

18
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case of three-dimensional (3-D) contact kinematics has also been investigated by Yang et

al. [104]. However, it was also noted that the single harmonic approximation used in these

studies was often unable to accurately capture the periodic waveforms of the nonlinear

response and the friction force.

This issue was first addressed by the introduction of an incremental variant of the HBM

introduced by Lau [45] and Ferri [47], but the first multi-harmonic studies still required

complicated analytical work to calculate the nonlinear force, as shown by Pierre et al. [49].

A significant breakthrough was made possible when the Alternating Frequency-Time do-

main method was introduced in 1989 by Cameron and Griffin [1]. It was realized that the

nonlinearities due to the friction force can be accurately evaluated in the time domain and

transformed back in the frequency domain, so as to form a set of nonlinear equations which

can be solved by a Newton-Raphson-like procedure. Guillen and Pierre [5] recently pro-

posed a variant of the AFT method, called Hybrid Frequency-Time (HFT) domain method,

and confirmed that large scale, friction-damped systems can be efficiently studied with

this approach. Finally, the most recent works show that the HFT method is adapted to

the study of systems featuring complex frictional nonlinearities with an accurate, multi-

harmonic approach. Guillen et al. [6] introduced a flexible, structure-like damper model.

Chen and Menq [91] developed a three-dimensional model of shroud contact, and Nacivet

et al. [92, 93] introduced an alternative to the HFT method based on dynamic lagrangians.

Recently, Petrov introduced a multi-harmonic method for the study of realistic turboma-

chinery applications for various frictional configurations [95–98, 102, 103]

This chapter presents two extensions of the Hybrid Frequency-Time domain method:

The first one is based on Lagrange’s work on the modeling of the forced response of

spatially cyclic structures with friction dampers [105]. Previous works on this subject

assumed that the sectors of the assembly are structurally independent, that is, they are
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represented by independent structures connected to a rigid support. Coupling between

these structures was assumed to occur only through the nonlinear forces, which depend

from the motion of two adjacent sectors, such as the forces created by shroud-to-shroud

contact or by under-platform dampers. In other words, these studies considered that for a

bladed-disk assembly subject to nonlinear forces applied to the blades only, the coupling

between two adjacent sectors due to the flexibility of the disk is zero. The theory presented

here is based a contrario on the exact derivation of the properties of fully flexible, cyclic

systems. It allows one to reduce the study of the structure to the analysis of the behavior

of one of its sectors. It also shows that there exists a special relation between the spatial

modes of vibration of the structure and the temporal harmonics of the excitation.

The second extension of the HFT method concerns the generation of the equations

of motion derived from the Harmonic Balance Method. More precisely, a new method of

condensation of the equations of motion on the set of nonlinear degrees of freedom (DOFs)

is introduced. This new method, based on a modal analysis of the part of the structure that

is not subject to the nonlinear forces, allows one to study without incurring time penalties

systems featuring a high ratio of linear DOFs to nonlinear DOFs.

In addition, this chapter introduces the theoretical analysis underlying the modeling of

friction dampers. These dampers are defined in the HBM as nonlinear operators, and a

detailed analysis of the time-domain calculation methods required to obtain the periodic

waveform of the corresponding nonlinear forces is presented.

2.2 HBM for non-cyclic structures

The general equations of motion of a n-DOF elastic structure are

Mẍ(t) + Cẋ(t) + Kx(t) = fl(t) + fnl[x](t), (2.1)
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where M, K and C are, respectively, its mass, stiffness and viscous damping matrices; fl

is a periodic, external force, and fnl is an external, nonlinear force modeled as an operator

acting on the displacement of the structure. x is the vector representing the DOFs of the

system.

2.2.1 Equations of motion in complex form

When the steady-state response of the structure is assumed to be periodic, the dis-

placement x and the linear force fl can be written as Fourier series of harmonic functions.

Assuming that keeping nh harmonics provides an accurate approximation of the dynamics

of the structure, they can be written as

x(t) ≈ Re
[ nh∑

k=0

xke
jkωt
]

(2.2)

fl(t) ≈ Re
[ nh∑

k=0

f l,ke
jkωt
]
, (2.3)

where ω
2π

is the frequency of excitation of fl. Similarly, the expression of the nonlinear

force fnl as a function of the displacement x is given by:

fnl[x](t) ≈ Re
[ nh∑

k=0

fnl,k(x0, . . . ,xnh
)ejkωt

]
. (2.4)

Then, applying the Harmonic Balance Method to equation (2.1) yields a set of nh complex,

nonlinear, coupled equations

Λkxk − f l,k − fnl,k(x0, . . . ,xnh
) ≈ 0, (2.5)

where

Λk = −(kω)2M + jkωC + K. (2.6)

2.2.2 Condensation of the system

Since industrial, realistic structures are in general represented by very large finite el-

ement models, it is usually not possible to solve efficiently the set of nonlinear equa-
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tions (2.5) when the unknowns xk consist of the harmonic components of all the physical

degrees of freedom present in the finite element (FE) model. In lieu thereof, models of

significantly smaller size are used to represent the structure. Assuming that the structure’s

DOFs can be classified as nonlinear DOFs (i.e., DOFs where a nonlinear external force is

applied), and linear DOFs (i.e., all the other DOFs of the structure), these reduced-order

models are usually obtained from component mode synthesis techniques, which substitute

most of the linear DOFs of the structure by a few modal coordinates and leave the nonlin-

ear DOFs unchanged. Therefore, when the nonlinearities are localized (i.e., the number of

nonlinear DOFs is a small fraction of the total number of DOFs), significant gains in term

of size reduction are achieved.

In turbomachinery applications, such localized nonlinearities are exhibited by bladed

disk assemblies with dry friction dampers attached to adjacent blades. Applying the Craig-

Bampton condensation method [106] to these systems yields reduced-order models in

which DOFs are partitioned as described in Fig. 2.1. These reduced-order models con-

sist in:

• A subset of the physical DOFs of the original FE model. It is made of the non-

linear friction DOFs as well as any other physical DOFs (referred to as retained,

linear DOFs) of particular importance for the analysis and the understanding of the

dynamics of the structure.

• A subset of modal coordinates corresponding to the free vibration normal modes of

the structure fixed at the retained, linear and nonlinear DOFs.

This condensation of the FE model is computationally costly and is usually done once

and for all. As a consequence, when for instance parametric studies are carried out to

optimize the characteristics of the dampers, it is necessary to make sure that the subset of
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Figure 2.1: Partition of physical, FE model DOFs and reduced-order model DOFs.

retained physical DOFs of the reduced-order model is large enough, so that various fric-

tional configurations can be tested without performing the condensation of the FE model

for each configuration. For bladed-disk assemblies with underplatform friction dampers,

one might retain for instance several candidate friction DOFs under each platform to as-

sess the benefits of various locations of the damper. Similarly, it is usually beneficial to

keep a relatively large number of normal modes of vibration so as to approximate best the

dynamics of the structure.

Therefore, although the size of the reduced-order model can be several orders of mag-

nitude smaller than the size of the original FE model, the ratio of the actual nonlinear DOFs

– for a given frictional configuration – to the other DOFs of the reduced-order model (i.e.,

the other candidate friction DOFs not considered in this configuration, the retained linear

DOFs, and the modal coordinates) can still be rather small, and makes solving the set of

equations (2.5) difficult.

The Harmonic Balance Method provides an elegant means of reducing the system to

the actual nonlinear DOFs. Let the superscript r denote the retained DOFs (i.e., the DOFs

actually subject to a nonlinear force for a given friction configuration), and let d denote the

deleted DOFs, i.e., all the other DOFs of the reduced-order model. Since the DOFs in the
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d set are not subject to a nonlinear force, the set of equations (2.5) can be written asΛdd
k Λdr

k

Λrd
k Λrr

k


xd

k

xr
k

−
fd

l,k

f r
l,k

−
 0

fnl,k

 = 0. (2.7)

This set of equations can be expressed as a function of xr
k only

Λred
k xr

k − f red
l,k − fnl,k(x

r
0, . . . ,x

r
nh

) = 0, (2.8)

where the reduced quantities Λred
k and f red

l,k are defined as:

Λred
k = Λrr

k −Λrd
k Λdd−1

k Λdr
k (2.9)

f red
l,k = f r

l,k −Λrd
k Λdd−1

k fd
l,k. (2.10)

If required, a simple backsubstitution allows one to express the value of the harmonic

components of the deleted DOFs, xd
k, as a function of the harmonic components of the

retained nonlinear DOFs, xr
k:

xd
k = Λdd−1

k [fd
l,k −Λdr

k xr
k]. (2.11)

As a consequence of this transformation, the set of nonlinear equations (2.8) does not

involve a combination of linear and nonlinear variables anymore. It is made of the nh

harmonic components of the nr retained nonlinear DOFs only, resulting in a compact

system of nr(2nh − 1) real, nonlinear variables1.

Traditional implementations of the HBM generate the nh reduced matrices Λred
k by

a direct application of Eq. (2.9). When the response of the structure is desired over a

range of frequencies, the steps described in Eqs. (2.9) and (2.10) must be repeated for

each frequency. In particular, the matrices Λdd
k have to be inverted for each value of ω,

1For each DOF, the coefficients of the Fourier series are complex (they are represented by a real and
an imaginary part corresponding to the cosine and sine components of the series), except the coefficient
corresponding to the harmonic 0, which is always real.
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and these inversions can become very costly as the fidelity of the reduced-order model

increases, i.e., as the ratio of nonlinear DOFs to deleted DOFs decreases. In some cases,

the CPU time consumed by these linear operations significantly exceeds the CPU time

required to solve the condensed, nonlinear problem.

The reduced matrices Λred
k can be generated in a simple way which alleviates this

problem. Assuming that the damping matrix C is proportional to the mass and stiffness

matrices of the structure, that is,

C = αK + βM, (2.12)

and defining the complex scalars εk and δk as

εk = 1 + jkωα (2.13)

δk = −(kω)2 + jkωβ, (2.14)

Λdd
k can be written as

Λdd
k = εkK

dd + δkM
dd, (2.15)

with similar expressions available for Λrr
k , Λrd

k and Λdr
k . Then, solving the eigenproblem

[Kdd + λMdd]xd = 0 (2.16)

yields

Mdd−1

Kdd = PDP−1, (2.17)

where D is a diagonal matrix. Now, defining the diagonal matrices Θk as

Θk = εkD + δkI, (2.18)

where I is the identity matrix, and combining Eqs. (2.15), (2.17) and (2.18), one obtains

the following expression for the inverse of Λdd
k :

Λdd−1

k = PΘ−1
k P−1Mdd−1

. (2.19)
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Introducing the constant matrices U, U′, V, and V′ defined as

U = KrdP (2.20)

U′ = MrdP (2.21)

V = P−1Mdd−1

Kdr (2.22)

V = P−1Mdd−1

Mdr, (2.23)

and substituting these expressions in equation (2.9), the reduced matrices Λred
k can finally

be expressed as:

Λred
k = Λrr

k −U[ε2
kΘ

−1
k V + εkδkΘ

−1
k V′]

−U′[δkεkΘ
−1
k V + δ2

kΘ
−1
k V′].

(2.24)

The advantage of this formulation is that U, U′, V, and V′ can be computed once and for

all (they are independent of ω), and that the inversion of the matrices Λdd
k is replaced by

the trivial inversion of the diagonal, complex matrices Θk. When large models are con-

sidered (e.g., mistuned bladed disk assemblies with as many friction dampers as blades),

significant CPU-time gains ensue.

2.3 HBM for cyclic structures

Unlike the general structures described in the previous section, a typical friction-

damped, bladed disk is a structure which exhibits a cyclic symmetry. In other words,

the geometry of the complete assembly (i.e., the disk, the blades and the underplatform

dampers) can be deduced by successive rotations of one of its sectors. Such a structure

can be fully described by (1) the geometry and the mechanical properties of a single sector,

and (2) the number of sectors ns of the assembly.

As the bladed disk rotates, it is subject to a constant, non-uniform pressure field, and

the variations of pressure experienced by the sectors due to the rotation of the structure
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result in a vibratory response of the assembly.

2.3.1 Temporal periodicity of the response

For the sake of clarity, we introduce the two following reference frames:

• (R) is a reference frame fixed with respect to the structure. In this frame, the position

of a point Q of the structure is expressed in polar coordinates as Q(r, α, z), where

z corresponds to the axis of rotation of the disk.

• (R′) is a reference frame fixed with respect to the pressure field. The position of a

point Q′ fixed with respect to (R′) is expressed in polar coordinates as Q′(r, θ, z).

It is somehow more convenient to carry out the analysis of the response of the structure by

considering that the disk is fixed in space and that the pressure field rotates, resulting in a

traveling excitation which excites the bladed disk assembly, as shown in Fig. 2.2.

Since the pressure field is time invariant in (R′), the pressure observed at any point

Q′(r, θ, z) fixed in (R′) can be described by an infinite Fourier series:

P
(
Q′) = Re

[ ∞∑
k=0

p
k
(r, z)ejkθ

]
. (2.25)

In most turbomachinery applications however, the pressure field features a spatial period-

icity defined by an integer eo, referred to as “engine order”. That is, the pressure field can

be fully described by any angular sector of size 2π/eo repeated eo times, and P
(
Q′) is

given by:

P
(
Q′) = Re

[ ∞∑
k=0

p
k
(r, z)ejkeoθ

]
. (2.26)

Figure 2.2 shows an example of traveling excitation when eo – also referred to as the

number of nodal diameters of the excitation – is equal to 4.

Now, defining Ω as the angular velocity of (R′) with respect to (R), and assuming that

the two reference frames coincide at t = 0, the angular coordinates of two points Q (fixed
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Figure 2.2: Model of a rotating structure with cyclic symmetry subject to a traveling exci-
tation.

in (R)) and Q′ (fixed in (R′)) coinciding at t must satisfy:

θ = Ωt− α. (2.27)

As a consequence, the pressure observed at t at a fixed point Q(r, α) of the structure is

expressed as:

P
(
Q, t
)

= Re
[ ∞∑

k=0

p
k
(r, z)ejkeo(Ωt−α)

]
. (2.28)

Then, defining ω as

ω = Ωeo, (2.29)
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and integrating Eq. (2.28) over the elements of the structure, one obtains the expression of

the linear, traveling excitation in the reference frame (R):

f̃l(t) = Re
[ ∞∑

k=0

f̃ l,ke
jkωt
]
. (2.30)

Thus, the spatial harmonics which define the constant, rotating pressure field correspond to

the temporal harmonics of the linear excitation acting on the bladed disk, and the pulsation

of the fundamental temporal harmonic of f̃l is ω.

Now, assuming that gyroscopic effects are neglected, the equations of motions of the

complete structure can be expressed as

M̃¨̃x(t) + C̃ ˙̃x(t) + K̃x̃(t) = f̃l(t) + f̃nl[x̃](t), (2.31)

where ˜ indicates that the variable refers to all the ñ DOFs of the structure, ñ being defined

as the product of ns by the number n of DOFs per sector. As in the previous section, f̃nl

represents the nonlinear forces due to the friction dampers.

Labeling the ns sectors of the assembly as indicated in Fig. 2.2, the displacement of

the structure as well as the linear and nonlinear forces can be written as

x̃(t) =
[
x0T

(t), . . . ,xns−1T

(t)
]T (2.32)

f̃l(t) =
[
f0T

l (t), . . . , fns−1T

l (t)
]T (2.33)

f̃nl[x̃](t) =
[
f0T

nl [x̃](t), . . . , fns−1T

nl [x̃](t)
]T

, (2.34)

and in the following, the sector numbered “0” will be referred to as the reference sector.

Since f̃l corresponds to a wave rotating at the angular velocity Ω, the external excita-

tions applied at time t to two adjacent sectors differ only by a simple temporal phase φt,

defined as:

φt =
2π

Ωns

. (2.35)
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Thus, the excitation applied to the q-th sector of the assembly can be fully deduced from

the excitation applied to the reference sector:

f q
l (t) = f0

l (t− qφt). (2.36)

Now, assuming that the response of the structure exhibits the same temporal phase, the

displacement of the whole structure can also be expressed as a function of the displacement

of the reference sector, that is,

xq(t) = x0(t− qφt). (2.37)

As a consequence, the definition of the nonlinear forces f q
nl as operators acting on x̃ can

be modified so as to involve x0 only,

f q
nl[x̃](t) = f q

nl[x
0](t), (2.38)

and the phase relation (2.37) yields:

f q
nl[x̃](t) = f0

nl[x
0](t− qφt). (2.39)

2.3.2 Equations of motion in complex form

Since the pulsation of the excitation f̃l is ω, and assuming that nh-harmonic Fourier se-

ries are accurate enough to approximate the dynamics of the structure, the phase relations

(2.36), (2.37) and (2.39) allow one to write in complex form x̃, f̃l, and f̃nl as:

x̃(t) =

nh∑
k=0

[
x0T

k ejkωt, . . .

. . . ,x0T

k ejkω(t−(ns−1)φt)
]T

,

(2.40)

f̃ l(t) =

nh∑
k=0

[
f0T

l,ke
jkωt, . . .

. . . , f0T

l,ke
jkω(t−(ns−1)φt)

]T
,

(2.41)
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and

f̃nl[x̃](t) =

nh∑
k=0

[
f0T

nl,k(x
0
0, . . . ,x

0
nh

)ejkωt, . . .

. . . , f0T

nl,k(x
0
0, . . . ,x

0
nh

)ejkω(t−(ns−1)φt)
]T

.

(2.42)

These equations can be written in a more compact form,

x̃(t) =

nh∑
k=0

[
ueo

k ⊗ x0
k

]
ejkωt (2.43)

f̃ l(t) =

nh∑
k=0

[
ueo

k ⊗ f0
l,k

]
ejkωt (2.44)

f̃nl[x̃](t) =

nh∑
k=0

[
ueo

k ⊗ f0
nl,k(x

0
0, . . . ,x

0
nh

)
]
ejkωt, (2.45)

where the Kronecker product ⊗ and the vector ueo
k are defined in Appendix A.

Then, using Eqs. (2.43-2.45), introducing the matrices Λ̃k as

Λ̃k = −(kω)2M̃ + jkωC̃ + K̃, (2.46)

and applying the harmonic balance method to Eq. (2.31), one obtains:

Λ̃k(u
eo
k ⊗ x0

k)− ueo
k ⊗ f0

l,k

− ueo
k ⊗ f0

nl,k(x
0
0, . . . ,x

0
nh

) = 0.

(2.47)

The last step in this analysis is based on the definition and properties of the extended

Fourier matrix presented in Appendix B. In particular, since the bladed disk is spatially

cyclic, (i.e., M̃, K̃ and C̃ are block-circulant matrices), the trivial transformation

Ẽ
∗
Λ̃kẼẼ

∗
(ueo

k ⊗ x0
k)− Ẽ

∗
(ueo

k ⊗ f0
l,k)

− Ẽ
∗
(ueo

k ⊗ f0
nl,k(x

0
0, . . . ,x

0
nh

)) = 0

(2.48)

yields the block-diagonal form of Eq. (2.47):

BDiag[Λ0
k, . . . ,Λ

ns−1
k ](E∗ ⊗ In)(ueo

k ⊗ x0
k)

− (E∗ ⊗ In)(ueo
k ⊗ f0

l,k)

− (E∗ ⊗ In)(ueo
k ⊗ f0

nl,k(x
0
0, . . . ,x

0
nh

)) = 0,

(2.49)
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Table 2.1: Relation between the spatial harmonics of the response of a 13-sector cyclic
structure and the temporal harmonics of the excitation applied to one of its
sectors, for various engine orders.

where

Λq
k = −(kω)2Mq + jkωCq + Kq. (2.50)

Then, the distributivity property of the Kronecker product allows one to rewrite Eq. (2.49)

as:

BDiag[Λ0
k, . . . ,Λ

ns−1
k ](E∗ueo

k )⊗ x0
k

− (E∗ueo
k )⊗ f0

l,k

− (E∗ueo
k )⊗ f0

nl,k(x
0
0, . . . ,x

0
nh

)) = 0.

(2.51)

Finally, the property of the product E∗ueo
k explained in the appendix yields the most com-

pact form of the nh equations of motion:

Λ
q(k,eo)
k x0

k − f0
l,k − f0

nl,k(x
0
0, . . . ,x

0
nh

) = 0, (2.52)

where

q(k, eo)− keo ≡ 0 [ns]. (2.53)

If required, this set of nonlinear equations can be reduced to the nonlinear DOFs of the

reference sector, in a fashion strictly similar to the method previously presented.
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2.3.3 Comments

Although the set of nonlinear equations (2.52) obtained for a cyclic system shares

many similarities with the set of equations (2.5) obtained in the general, non-cyclic case,

some important differences should be noted:

• The unknowns involved in the set of equations (2.52) consist of the Fourier coeffi-

cients of the DOFs of the reference sector only. They represent the actual motion

of the nodes of the reference sector. The gain in terms of reduction of the size of

the nonlinear system is therefore extremely important, since the DOFs of the other

sectors can be ignored.

• A simple temporal phase φt exists between the response of two adjacent sectors.

This phase relation applies to the displacement of the structure, the linear and the

nonlinear forces as well, and it depends on (1) the pulsation ω of the linear exci-

tation applied on the reference sector, (2) the spatial repetitivity eo of the traveling

excitation; and (3), the number of sectors ns of the assembly. φt is given by:

φt =
2π

ωeons

. (2.54)

• Although the nonlinear force applied to the reference sector depends on the DOFs

of this sector as well as the DOFs of other sectors of the assembly - as it is the case

for underplatform friction dampers which straddle consecutive sectors – it can be

expressed as a function of the motion of the reference DOFs only.

• The matrices Mq, Kq and Cq appearing in the definition of the matrices Λq
k are com-

plex, and they represent the structural matrices associated to the modes of vibrations

of the reference sector when the response of the complete structure exhibits a spatial
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cyclicity of order q. Since the complete structure features ns sectors, the maximum

value of q is ns − 1.

The set of equations (2.52) is best understood by realizing that the nonlinear response

of the complete structure is actually approximated by a finite series of linear responses.

The set of nonlinear equations (2.52) is indeed made of nh coupled linear systems, where

each linear system corresponds to the equations of motion of the reference sector when the

complete cyclic structure is subject to a mono-harmonic traveling wave. The nonlinearity

of the complete set of equations stems from the coupling of the solutions of these linear

systems by the nonlinear force.

For instance, for the linear system associated to k = 1, the structure is subject to

a rotating, mono-harmonic traveling wave of spatial cyclicity e0, or, in other words, the

structure is subject to a rotating wave made of the spatial harmonic eo only. The response

of the structure is therefore a traveling wave of same characteristics, i.e., it features the

spatial harmonic eo only. This response is obtained for the reference sector – from which

the response over all the assembly can be deduced – by selecting the structural matrices

M1, K1, and C1 which correspond to the modes of vibrations with one nodal diameter.

As long as the inequality keo < ns is verified, the spatial harmonic of the response

matches exactly the spatial harmonic of the traveling excitation. However, when keo ≥ ns,

the response of the structure cannot exhibit a spatial cyclicity of keo, since it is made of ns

sectors. Instead, the response of the structure exhibits a spatial harmonic q(k, eo), where

q(k, eo) is defined in Eq. (2.53). Eq. (2.53) is of course also valid when keo is lower than

ns.

Since the spatial harmonic waves of the excitation are each associated to a temporal

harmonic of the forcing applied to the reference sector, Eq. (2.53) can therefore be under-

stood as the relation between the temporal harmonics of the linear and nonlinear forces
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applied to the reference sector, and the spatial harmonics present in the response of the

complete structure. This relation is illustrated in Table 2.1 for a 13-sector cyclic structure.

One should also note that although the linear excitation f0
l (t) is approximated by a

relatively low number of harmonics – less than 3 in general –, the nonlinear force f0
nl[x

0](t)

has usually a much richer harmonic content. As a consequence, the number of spatial

harmonics which are present in the response of the structure is in most cases not limited

by the number of temporal harmonics, and it is determined by eo and ns only. For instance,

considering a 160-sector assembly subject to a force featuring 64 nodal diameters, the only

spatial harmonics potentially present are: 0, 32, 64, 128, and 96.

2.4 Solution method

As mentioned above, the equations of motion of both cyclic and non-cyclic structures

are governed by a set of nh similar matrix equations. They can also be written in real form

and combined into a single nonlinear matrix equation, so that the harmonic coefficients

that describe the dynamics of the system are solution of a nonlinear function F, defined as

F(u) = Λu− f − fnl(u), (2.55)

where u consists of the harmonic cosine and sine coefficients of the motion of all or part

of the nonlinear DOFs of the structure (depending on whether it is cyclic or not).

2.4.1 Hybrid Frequency-Time domain method

The nonlinear equation F(u) = 0 is solved using a nonlinear solver based on an

implementation of the hybrid Powell algorithm [107] proposed by Garbow et al[108] .

Given an initial approximation u(0) of the solution, this algorithm generates successive

estimations u(1), u(2), . . ., u(m), until satisfactory convergence of this series towards the
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solution is detected. This algorithm requires one to evaluate the nonlinear function F and

its jacobian J for any input motion u.

In the Hybrid Frequency-Time domain method, this evaluation is performed by ap-

plying, to the displacement and the nonlinear force, alternate transformations from the

frequency domain to the time domain. Its principal steps are outlined as follows:

1. Inverse Fast Fourier Transforms are applied to the harmonic coefficients stored in u,

so as to obtain the periodic time histories of the motion of the nonlinear DOFs of

the structure.

2. The time histories of the nonlinear forces resulting from this imposed displacement

are calculated.

3. Fast Fourier Transforms are applied to the time histories of the nonlinear forces, and

they yield the harmonic coefficients stored in fnl(u).

4. F(u) is evaluated according to Eq. (2.55).

The advantage of the HFT method is that the evaluation of the nonlinear forces is per-

formed in the time domain. Therefore, the nonlinearities associated with these forces can

be calculated with a very high accuracy. Also, evaluating these forces in the time domain

allows one to capture complex hysteretic nonlinearities, such as the stick/slip behavior of

friction dampers.

As a consequence, the accuracy of the HFT method is only limited by (1) the number

of harmonics used in the HBM to generate the equations of motion, and (2), the ability of

the nonlinear solver to converge towards the solution.
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2.4.2 Structures with multiple frictional interfaces

For structures featuring several frictional interfaces, that is, non-cyclic structures with

several friction dampers attached, or cyclic structures which feature more than one friction

damper per sector, the jacobian of Eq. (2.55) can be computed in a very efficient way.

Mistuned bladed disks are examples of such structures: since they do not satisfy the cyclic

symmetry hypothesis, their dynamics cannot be deduced from the study of one sector

only, and therefore their analysis must consider the complete assembly and all the friction

dampers.

For such systems, the components of u can be ordered as:

u =
{
u1T

, . . . ,unT
d

}T

, (2.56)

where up consists of the cosine and sine harmonic coefficients of the nonlinear DOFs

corresponding to the p-th friction damper, that is:

up =
{
upT

0 ,upT

1,c,u
pT

1,s, . . . ,u
pT

nh,c,u
pT

nh,s

}T

. (2.57)

Since the nonlinear friction forces exerted by the dampers depend on the motion of the

corresponding frictional interfaces only, fnl is expressed as:

fnl(u) =
{
f1T

nl (u1), . . . , fnd
T

nl (und)
}T

. (2.58)

Thus, the jacobian of the nonlinear function F is given by:

J = Λ− BDiag
[
J1, . . . ,Jnd

]
, (2.59)

where

Jp =
∂fp

nl(u
p)

∂up
. (2.60)

Λ is the linear part of the jacobian. As observed in the derivation of the equations

of motion obtained by the harmonic balance method, it depends only on the structural

matrices and the frequency of excitation ω.
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Therefore, when Eq. (2.55) is solved for a given frequency, Λ can be computed once

and for all at the beginning of the solution process. If the nonlinear solver needs a new

estimate of the jacobian as it converges towards the solution, Λ does not need to be recal-

culated, and only a new, simple evaluation of the blocks Jp is necessary. These blocks are

easily calculated by finite differences with successive evaluations of the nonlinear func-

tions fp
nl.

Thus, when nd is very large, namely, when the structure features a large number of

independent frictional interfaces, J is obtained in a very efficient fashion that does not

penalize, in terms of CPU time, the solving of the nonlinear function F.

The algorithm used for the HFT method is summarized in Fig. 2.3.

2.5 Time-domain analysis of nonlinear forces

The Hybrid Frequency-Time domain method is well suited for the analysis of struc-

tures featuring displacement-based nonlinear forces, such as the hysteretic forces produced

at the structure interfaces which are subject to friction. The method’s only requirement is

that it must be possible to calculate these nonlinear forces for any type of periodic displace-

ment of the structure DOFs, since the HFT method is based on the iterative generation of

approximations of the correct periodic motion of the structure. In other words, one must

be able to model these nonlinearities as nonlinear operators that act on the time-domain

periodic waveforms of the DOFs of the structure, and that produce a time-domain periodic

waveform of the corresponding nonlinear forces.

A consequence of this approach is that in the case of friction dampers for instance,

the dampers can be modeled by a set of simple numerical parameters which define their

stiffness, the friction coefficient and the contact pressure they have at their interface with

the structure. In this approach it is not necessary to include a finite element representation
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Figure 2.3: Algorithm of the Hybrid Frequency-Time domain method. The parameters
of the method are the total number of harmonics Nh used to approximate the
forced response of the structure, and the number of sample points in the time
domain Nt. A real representation of the nonlinear quantities is used here: for
instance, uk

q,ch
corresponds to the cosine components of the h-th harmonic of

the DOFs of the q-th contact interface, for the k-th guess generated by the
nonlinear solver.
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of the damper alongside with that of the structure in the nonlinear analysis. However, one

should note that usually the numerical parameters defining the friction dampers character-

istics are derived from independent, stand-alone analysis based on such FE models.

Another consequence of this approach is that the DOFs associated to the dampers do

not need to be part of the set of nonlinear equations of the friction-damped structure. The

complete structure-damper interface is usually described by two geometric points: the

first one corresponds to the exact position of the contact point between the damper and

the structure, while the second one is usually part of the finite element definition of the

structure. With the exception of particular friction configurations, these two points do

not always coincide in space when the structure-damper assembly responds to an exter-

nal forcing, as the relative motion of the damper and the structure creates the frictional

phenomena. However, since the order of magnitude of the relative displacement of the

damper with respect to the structure is small (with respect to the typical mesh size of a

finite element model), one can make the reasonable assumption that the nonlinear contact

forces applied by the damper to the structure can be localized to that very point defined

in the FE model. Therefore, the displacement in space of the actual contact point is not a

quantity that explicitly appears in the set of nonlinear, frequency-domain equations of the

system. It is instead a quantity that is calculated in the time domain to help create the time

domain representation of the contact forces.

Depending on the type of nonlinear interaction modeled, the time domain calculation

of these forces can be performed in two ways: for simple models of nonlinear forces, (e.g.,

simple models of friction dampers) a fast time-marching procedure can be used, whereas

more complicated nonlinear interactions (such as those produced by friction damper mod-

els with complex contact kinematics) require a time-integration procedure to calculate the

corresponding nonlinear forces.
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2.5.1 Time-marching procedure

The simplest models of hysteretic friction dampers correspond to those that assume

that the relative motion at the friction interface is rectilinear (1-D), and that the normal

contact force between the damper and the rest of the structure is constant. Figure 2.4

depicts such a damper.

A time marching procedure is a very effective way of calculating the contact efforts

for this type of damper. Following the classic Coulomb friction law, the damper can have

only two distinct states:

1. Stick state. In this state there is no relative motion between the damper and the

structure, and the contact force and DOFs verify

T = −kxd, (2.61)

‖T‖ ≤ µN, (2.62)

and

ẋd = ẋs, (2.63)

where xd represents the position of the contact point, and xs is the nonlinear DOF

of the structure.

2. Slip state. In this state the tangential force applied by the damper to the structure is

T = −µN if ẋs > 0 or T = µN if ẋs < 0, (2.64)

and the position of the contact point satisfy

xd = µN/k if ẋs > 0 or xd = −µN/k if ẋs < 0. (2.65)
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Figure 2.4: Simple model of a hysteretic friction damper. The friction is defined here
as being mono-directional, with a constant normal load N . The damper is
characterized by its stiffness k and by the friction coefficient µ. The tangential
contact effort applied by the damper to the structure is T .
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In addition to these two states, the behavior of the damper is also characterized by the

mathematical conditions that describe the transitions between these states. Again, these

transition criteria are simply derived from the laws of Coulomb friction:

1. Stick-slip transition. This type of transition occurs when the following conditions

are met:

xd = µN/k and ẋs > 0, (2.66)

or

xd = −µN/k and ẋs < 0, (2.67)

according to the direction of the relative motion between the damper and the struc-

ture.

2. slip-stick transition. This type of transition occurs when the damper is in the slip

state and the structure DOF reverts its direction of motion:

xd = µN, ẋs = 0 and ẍs < 0, (2.68)

or

xd = −µN, ẋs = 0 and ẍs > 0. (2.69)

Now, assuming that the entire period waveform of the guessed nonlinear displacement

xs(t1), . . . , xs(tNT
), is available – in other words, when the nonlinear solver calculates

a new approximate solution and when this guessed solution is transported into the time

domain by discrete fast Fourier transforms – the friction force can be iteratively evaluated

as follows:

1. Choice of initial conditions. For the first iteration at t = t1, the initial conditions

regarding the state of the damper must be selected. Selecting the position of the
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damper such as xd = 0 and assuming that the damper is in the stick state ensures

that the friction laws are satisfied and that the initial tangential effort is zero.

2. Procedure for the i-th step, i > 1. One assumes that between the time steps ti−1

and ti the damper is in the stick state (irrespectively of its actual state at ti−1). This

means that if this assumption is valid the position of the damper at ti should be

xd(ti) = xd(ti−1) + (xs(ti)− xs(ti−1)), (2.70)

since in the stick state the damper follows the displacement of the structure. Now,

a simple examination of the value of the tangential force kxd(ti) helps assess the

validity of the initial assumption:

• If ‖kx(ti)‖ > µN , then the assumption was not valid, and therefore the damper

is in the slip state at ti, and the displacement and force values are:

xd(ti) = µN/k and T (ti) = −µN if xs(ti) > xs(ti−1), (2.71)

or

xd(ti) = −µN/k and T (ti) = µN if xs(ti) < xs(ti−1). (2.72)

• If ‖kx(ti)‖ ≤ µN , then the assumption was valid, and the contact force is

defined by:

T (ti) = −kxd(ti). (2.73)

3. Repeat until a steady state is reached by the damper DOF. This time marching

procedure needs to be repeated until at most the 2Nt-th step (that is, over at most

two periods of the excitation applied to the structure), or until the displacement of

the damper DOF (and therefore the contact force) reaches a periodic state.
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This time-marching procedure takes advantage of the simple form of the state and tran-

sition equations to substitute the integration of the equations of motion of the damper by

a simple analysis of the contact force and of the direction of motion of the DOF of the

structure, a substitution which is only made possible by the 1-D character of the relative

motion between the damper and the structure. The calculation of the contact effort is there-

fore extremely fast and efficient, a noteworthy advantage when, for instance, the analysis

of complex structures with a large number of dampers attached is performed2.

2.5.2 Time-integration procedure

When the models of dampers are more elaborate, the calculation of the contact efforts

in the time domain needs to follow a less simplified time-integration procedure. In general,

the absence of a known direction of friction (in the case of contact not restricted to a 1-

D relative motion of the structure and the damper), or the presence of a variable normal

contact load (produced by the normal component of the displacement of the structure)

makes the motion of the contact point difficult to analyze with a simple time-marching

procedure. Instead, the exact state equations describing the behavior of the damper need

to be carefully integrated, while monitoring the mathematical transition criteria between

these states.

The need for a precise integration of the equations of motion (as well as the need for an

accurate evaluation of the mathematical criteria governing the state transitions) means that

the discrete, time domain representation [u
(k)
q,ti , i = 1, . . . , Nt] of the nonlinear interface

2Two precautions need to be taken with this method. The first one is that the size of the step in the
time domain should be small enough to prevent the occurrence of two state transitions or more between two
consecutive points in time. Selecting a high value for Nt, such as 512 or 1024 is usually more than enough
to avoid this rare problem. The second one concerns the calculation of the contact effort when the damper is
always stuck and do not slip. In this case, the initial conditions presented here lead to a contact force which
is not centered on 0 – that is, the Fourier transform of the force exhibits on a non-zero constant coefficient. In
this case, the constant Fourier coefficient can be forced to zero before forming the set of nonlinear equations
in the frequency domain.
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Figure 2.5: Examples of polynomial interpolation of the discrete values provided by the
nonlinear solver to represent the time-domain, periodic waveforms of the non-
linear DOFs of the structure. The advantage of a third degree polynomial
interpolation of these discrete values is the ability to represent their derivative
as a smooth, continuous function over the entire period of motion.

DOFs presented in Fig. 2.3 is no longer adapted. More often than not, the integration of

the equations of motion requires a step size much smaller than the time increment used by

the Fourier transforms. Moreover, the fact that the state transitions usually occur at times

different than the Nt fixed sample points used in these transforms mean than a different

approach is required.

This need for precision can however be achieved by substituting the discrete represen-

tation [u
(k)
q,ti , i = 1, . . . , Nt] of the nonlinear structure DOFs by an equivalent interpolation

function, so that u
(k)
q (t) can be evaluated for any time 0 < t < 2π/ω, where ω is the

period of the excitation applied to the structure. As seen on Fig. 2.5, a simple third degree

polynomial approximation of the discrete values provided by the nonlinear solver ensures

a smooth and continuous representation of their first derivative over the entire period of

motion. This important characteristic makes the numerical and computational analysis of

the equations of motion of the damper much easier to handle.

The general case of a damper that models a three-dimensional (3-D) friction interface

illustrates the principles of such a time-integration analysis. Figure 2.6 depicts such a 3-D
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Figure 2.6: Model of 3-D friction damper. The damper is characterized by a 3-by-3 stiff-
ness matrix K, a constant normal load P and a friction coefficient µ. The
forces transmitted to the structure by the damper are the variable normal con-
tact force N , which is a function of the motion of the damper and of P , and
the tangential component T. The motion of the contact point is described
by ud = (xd, yd, zd), while the motion of the structure is represented by
us = (xs, ys, zs).

friction damper and its interaction with the structure. The position of the contact point

(ud), and the position of the node of the FE model of the structure at which the contact

forces are applied (us) are described by three coordinates each. This allows for the most

general relation between the damper and the structure: the tangential friction forces are

within a plane of constant orientation, and the normal load varies – and possibly vanishes

if the damper separates from the structure.

Considering the reference frame (0, ex, ey, ez), this friction interface is fully described

by:

• The displacement of the contact point: ud = (xd, yd, zd),
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• The displacement of the node of the structure: us = (xs, ys, zs),

• The contact forces applied by the damper to the structure: Fnl = (Tx, Ty, N),

• The constant load that represents the centrifugal effects (or any other constant force)

applied to the damper: P = (0, 0, P ),

• The friction coefficient µ,

• The stiffness matrix of the damper:

K =


kxx kxy kxz

kxy kyy kyz

kxz kyz kzz

 . (2.74)

Although the general form of K is presented here, it has been noted by Cho and Bar-

ber [109, 110] that many stability problems occur when the tangential and normal

components of the motion of the contact point are coupled through the correspond-

ing terms of the stiffness matrix. In particular, the unicity of the response of the

damper for a given input displacement of the structure is not always guaranteed.

This can lead to serious numerical difficulties when analyzing the response of the

damper, and it is therefore preferable to describe the damper by a simplified stiffness

matrix where normal and tangential components are decoupled:

K =


kxx kxy 0

kxy kyy 0

0 0 kzz

 . (2.75)

Depending on the motion of the structure, the damper can be in three distinct states:

stick, slip, and separation. These states are governed by the following equations:
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• Stick state. In this state the motion of the damper follows the motion of the structure,

which means that

ẋd = ẋs, (2.76)

ẏd = ẏs, (2.77)

zd = zs, (2.78)

and the contact forces applied to the structure are given by:

Tx = −kxxxd − kxyyd, (2.79)

Ty = −kxyxd − kyyyd, (2.80)

N = −kzzzd + P. (2.81)

• Slip state. In the slip state, the normal contact load applied to the structure as well

as the normal component of the motion of the damper are governed by the same

equations as in the stick state:

zd = zs, (2.82)

N = −kzzzd + P. (2.83)

The direction of the tangential contact force is dictated by the relative slip motion

of the damper and the structure, while its norm is a function of the normal load.

The state equation for the tangential component of the motion of the damper is

an algebraic differential equation that expresses the quasi-static equilibrium of the

damper:kxx kxy

kxy kyy


xd

yd

 = − µN√
(ẋd − ẋs)2 + (ẏd − ẏs)2

ẋd − ẋs

ẏd − ẏs

 , (2.84)
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which simply indicates that the restoring force due do the stiffness of the damper is

equal (in norm) to the normal contact force and opposed (in direction) to the relative

slip between the damper and the structure. Finally, the tangential forces applied by

the damper to the structure are expressed as in the stick state:

Tx = −kxxxd − kxyyd, (2.85)

Ty = −kxyxd − kyyyd. (2.86)

• Separation state. When the damper and the structure are no longer in contact, the

state equations are trivially written as:

xd = 0, (2.87)

yd = 0, (2.88)

zd = P/kzz, (2.89)

(2.90)

and the contact forces are

Tx = 0, (2.91)

Ty = 0, (2.92)

N = 0. (2.93)

The description of this 3-D model of damper is completed by the criteria that describe the

mathematical conditions required for a state transition. There are six possible transitions:

separation-to-stick, separation-to-slip, stick-to-slip, stick-to-separation, slip-to-stick and

slip-to-separation:

• separation-to-stick transition. This transition is characterized by the fact that normal
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contact between the damper and the platform resumes in a sustained fashion, that is,

zs = P/kzz and żs > 0. (2.94)

These conditions are necessary but not sufficient to validate the separation-to-stick

transition: additionally, in order to maintain successfully the stick state at the mo-

ment of transition, it is also necessary to compare the relative rate of increase of both

the tangential and normal components of the contact force, which is expressed by

the condition

µ
d
dt
‖N‖ >

d
dt
‖T‖ at the instant of transition, (2.95)

where the derivatives of ‖N‖ and ‖T‖ are calculated using the stick state assump-

tion.

• separation-to-slip transition. This transition is also characterized by the fact that

normal contact resumes in a sustained fashion

zs = P/kzz and żs > 0, (2.96)

but this time the rate of increase of the norm of the tangential force (assuming a stick

state) should be greater than that of the norm of the normal force times µ:

µ
d
dt
‖N‖ ≤ d

dt
‖T‖ at the instant of transition, (2.97)

where the derivatives of ‖N‖ and ‖T‖ are calculated using the stick state assump-

tion.

• stick-to-slip transition. The stick-to-slip transition is reached when the norm of the

tangential contact force equals the norm of the normal force times µ (and tends to
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exceed it immediately after the transition time), which translates into these condi-

tions:

µ|N | = ‖T‖ and µ
d
dt
‖N‖ <

d
dt
‖T‖ at the instant of transition, (2.98)

where the derivatives of ‖N‖ and ‖T‖ are calculated using the stick state assump-

tion.

• stick-to-separation transition. The stick-to-separation transition occurs when there

is a sustained loss of contact between the damper and the structure, and this transi-

tion can be described by the following equations:

zs = P/kzz and żs < 0. (2.99)

• slip-to-stick transition. The slip-to-stick transition occurs when the relative speed

velocity of the contact point with respect to the structure vanishes:

ẋd = ẋs and ẏd = ẏs. (2.100)

Additionally, the normal and tangential components of the contact force must verify

a condition stating that it is impossible for the damper to resume slipping:

µ
d
dt
‖N‖ >

d
dt
‖T‖ at the instant of transition. (2.101)

• slip-to-separation transition. The slip-to-separation transition is identical to the

stick-to-separation transition:

zs = P/kzz and żs < 0. (2.102)

The calculation of the contact force applied by the damper to the structure can be

performed by carefully integrating the state equations described above, while monitoring
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all the possible transition criteria. The resulting numerical algorithm that performs such

a calculation can become very complicated, as great care need to be taken regarding the

appropriate detection of the transitions. This is true in particular for Eq. 2.84, which

is a set of algebraic differential equations for xd and yd representing the motion of the

contact point in the slip state. After each state transition, the proper initial conditions for

the integration of the equations of motion corresponding to the next state need also to be

precisely determined. The integration of the equations of motion needs to be done – just as

in the case of a time-marching procedure – over several periods of motion, until the steady

state of the damper is reached.

This time-integration approach is very effective to analyze the behavior of particularly

complicated models of dampers. It is however computationally more demanding than the

simpler time-marching procedure.

2.5.3 Damper models

The time-marching and time-integration procedures described in the previous sections

can be applied to model many different types of nonlinear forces. Table 2.2 lists example

damper models that have been modeled using one of these approaches. Although the

previous section illustrates the time-domain methods for models of dampers that connect

the ground to the structure, models of dampers that interact with two elastic structures (or

two components of the same elastic structure) can be easily deduced from these ground-to-

structure damper models, by considering the relative displacement of the structure DOFs

instead of their absolute values.

2.5.4 Special case of cyclic symmetry

When modeling friction dampers that act on cyclic assemblies, a special situation arises

when these dampers straddle two adjacent cyclic sectors of such structures, as shown on
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Model of damper Time-domain procedure
1-D, ground-to-structure cubic spring Time-marching procedure
1-D, structure-to-structure cubic spring for
cyclic or non-cyclic structures

Time-marching procedure

1-D, ground-to-structure linear spring stop
with gap

Time-marching procedure

1-D, structure-to-structure linear spring stop
with gap for cyclic or non-cyclic structures

Time-marching procedure

1-D, ground-to-structure friction damper with
constant normal load

Time-marching procedure

1-D, structure-to-structure friction damper
with constant normal load, for cyclic or non-
cyclic structures

Time-marching procedure

1-D, ground-to-structure friction damper with
variable normal load

Time-marching procedure or
time-integration procedure

1-D, structure-to-structure friction damper
with variable normal load, for cyclic or non-
cyclic structures

Time-marching procedure or
time-integration procedure

3-D, ground-to-structure friction damper with
variable normal load

Time-integration procedure

3-D, structure-to-structure friction damper
with variable normal load, for cyclic or non-
cyclic structures

Time-integration procedure

Table 2.2: List of damper models and other nonlinear forces that can be analyzed with the
methodology presented in this chapter. This list could be easily extended to
include many other displacement-dependent nonlinearities, such as for instance
linear or nonlinear dashpots.

Fig. 2.7. This configuration is typical of bladed disk assemblies which feature under-

platform friction dampers: friction dampers of the same physical characteristics are ap-

pended to the bladed disk, and therefore the overall cyclic symmetry of the system is

preserved. As a consequence, the theoretical results obtained in section 2.3 are still valid,

that is, the forced response of the entire cyclic structure can be deduced from the study of

the reference cyclic sector.

This also means that the nonlinear forces acting on the structure can only be derived

from the motion of the nonlinear DOFs that belong to the reference sector, since only

these DOFs are featured in the set of nonlinear equations that govern the forced response
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Figure 2.7: Simplified representation of a cyclic structure which features friction dampers
straddling adjacent sectors of the assembly. Since all the the dampers have
the same characteristics, the cyclic symmetry of the system is preserved. The
cyclic sectors may or may not be elastically coupled – the later case being
typical of an industrial bladed disk structure.

of the full assembly. In the simple example shown in Fig. 2.7, which features a series of

1D, structure-to-structure dampers with constant normal load, each cyclic sector has only

two nonlinear DOFs. Let x
(0)
s,1 and x

(0)
s,2 represent the two nonlinear DOFs associated to

the reference sector, and let f
(0)
nl,1 and f

(0)
nl,2 denote the respective nonlinear contact forces

applied by the dampers. Because of the geometry of the assembly, f
(0)
nl,1 is obviously a

function of the displacement of the two nonlinear DOFs x
(0)
s,1 and x

(1)
s,2. Now, using the

phase property obtained in section 2.3, the following relations can be written:

f
(1)
nl,2(t) = f

(0)
nl,2(t− φt), and (2.103)

x
(1)
s,2(t) = x

(0)
s,2(t− φt). (2.104)

Therefore, the nonlinear force f
(0)
nl,1(t) can be deduced from x

(0)
s,1(t) and x

(0)
s,2(t − φt), that

is, from two quantities directly derived from the information available for the reference

sector of the cyclic assembly. These calculations of the nonlinear forces can be made
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by a time-marching or time-integration procedure similar to that used for the non-cyclic

systems. The workflow of the HFT method is therefore slightly altered to take into account

this particular property of structures with cyclic symmetry:

1. A guess of the Fourier coefficients of the nonlinear DOFs x
(0)
s,1 and x

(0)
s,2 is provided

by the nonlinear solver.

2. Inverse Fast Fourier transforms are applied to these coefficients to calculate the time

domain, periodic waveforms of the displacement of x
(0)
s,1 and x

(0)
s,2 over a period of

motion.

3. The periodic waveform of x
(0)
s,2 is shifted in time with a phase φt so as to obtain the

periodic waveform of x
(1)
s,2.

4. Using a time-marching or a time-integration procedure, the time domain, periodic

waveforms of the nonlinear forces f
(0)
nl,1 and f

(1)
nl,2 are deduced from that of x

(1)
s,2 and

x
(0)
s,1.

5. The periodic waveform of f
(1)
nl,2 is shifted in time with a phase −φt so as to obtain

the periodic waveform of f
(0)
nl,2.

6. Fast Fourier transforms are applied to the time-domain representation of f
(0)
nl,1 and

f
(0)
nl,2. The corresponding Fourier coefficients help build the set of nonlinear equa-

tions that describe the forced response of the structure, and depending on the con-

vergence towards the solution of this system, a new guess may be provided and this

algorithm starts a new iteration.

This approach can be generalized to any kind of displacement-dependent nonlinearity or

friction dampers that involve nonlinear DOFs that belong to adjacent sectors of the same

cyclic structure.
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2.6 Conclusion

A comprehensive theoretical analysis as well as several extensions and generalizations

of the Hybrid Frequency Time domain method have been presented. A new method of re-

duction of the equations of motion of the nonlinear DOFs of systems with friction dampers

has been introduced. It allows the study of stuctures represented by reduced order-models

of relatively high size. These reduced-order models feature a high number of normal

modes of vibration and a large number of physical DOFs. Therefore, they offer a better

approximation of the dynamics of the structure, and they are of greater interest for para-

metric studies aimed at optimizing the characteristics and configurations of the dampers.

Another significant extension to the HFT method was the exact derivation of the equa-

tions of motion for flexible, cyclic structures subject to linear and nonlinear, displacement-

dependent forces. It allows one to take into account the elastic coupling existing between

the sectors of the structure. A special relation between the temporal harmonics and the

spatial harmonics of the response is exhibited.

In addition, the principles governing the modeling of friction dampers as well as the

modeling of other types of displacement-dependent nonlinearities were introduced with

two example of friction dampers, including one which features a 3-D contact interface.

Finally, a detailed analysis of the methods allowing the calculation of the nonlinear forces

in the time domain – a requirement of the HFT method – was presented.

Sample results obtained with these extensions to the HFT method are presented in the

next chapter.



CHAPTER III

SELECTED RESULTS

3.1 Introduction

In this chapter, the method presented in Chapter I for the Hybrid Frequency-Time do-

main analysis of the forced response of elastic structures with attached friction dampers

is applied to several nonlinear systems. The forced response of simple stand-alone struc-

tures, as well as the case of structures with cyclic symmetry or mistuning is considered.

The models of dampers selected for these studies include simple 1-D friction dampers as

well as more elaborate 3-D models that allow for variable normal load and friction with a

direction that is not fixed in space. The results obtained illustrate the complicated features

exhibited by the forced response of such systems. The need to approximate the dynamics

of friction-damped structures with a large number of harmonics in the HFT method is evi-

denced by the complexity of the periodic waveforms representing the contact efforts at the

structure-damper interfaces.

3.2 Forced response of a beam with a 3-D friction damper with con-
stant normal load

The dynamics of a simple beam with an attached 3-D damper is considered in this

section. The response of the system is obtained for two types of external forcing.
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Figure 3.1: Simple beam model with a friction damper attached.

3.2.1 Model description

The friction-damped system considered is a 6-DOF, symmetric, cantilevered beam

shown in Fig. 3.1. Since this model takes into account transverse vibrations in the ex

and ey directions and ignores the normal component of the vibration of the beam, the fric-

tion point on the platform has a planar trajectory. The beam is 1.33 m long and the friction

point is located at 0.318 m from the clamped end.

The first DOF of the beam is the ex component of the displacement of the friction

point on the platform, and the fourth one corresponds to the ey component of the same

point. The second and the fifth DOFs correspond to the displacement of the tip of the

beam, respectively, in the ex and ey directions. Finally, the third and sixth DOF represent

the modal coordinates associated to the first bending modes of the beam in the ex and

ey directions. The mass, stiffness and damping properties of the beam are presented in

Table 3.1.

The model of friction damper selected for this study is a simple ground-to-structure,
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M =


6.679 1.021 0.634 0 0 0
1.021 1.222 0.232 0 0 0
0.634 0.232 0.122 0 0 0

0 0 0 6.679 1.021 0.634
0 0 0 1.021 1.222 0.232
0 0 0 0.634 0.232 0.122

 kg.

K = 104


443 −37.7 0 0 0 0
−37.7 6.96 0 0 0 0

0 0 18.5 0 0 0
0 0 0 443 −37.7 0
0 0 0 −37.7 6.96 0
0 0 0 0 0 18.5

 N.m−1.

C = αK + βM, where α = 2.6 · 10−5 s and β = 7.49 s−1.

Table 3.1: Mass, stiffness and damping matrices of the beam studied in section 3.2.

3-D model where the normal load is constant, due to the absence of normal DOFs in the

model of the beam. The coefficient of friction of the contact interface is µ = 1, and

the normal load ensuring contact between the damper and the platform of the beam is

N = 250 N. The stiffness matrix of the damper is

[K] =

2.0 · 107 0

0 2.0 · 107

N.m−1.

3.2.2 First case study

For this first case, the excitation applied to the beam is chosen so as to produce a true

two-dimensional motion of the beam:

Fx = 20 N

Fy = 15 N

The results of this calculation are presented in Figs. 3.2, 3.3, 3.4, and 3.5, which depict

the frequency response of the beam at the tip and damper locations, along the ex and ey
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Figure 3.2: Free, stuck and stick-slip forced responses of the ex component of the tip of
the beam, in the first case study.
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Figure 3.3: Free, stuck and stick-slip forced responses of the ey component of the tip of
the beam, in the first case study.
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Figure 3.4: Free, stuck and stick-slip forced responses of the ex component of the contact
point, in the first case study.
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Figure 3.5: Free, stuck and stick-slip forced responses of the ey component of the contact
point, in the first case study.
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Figure 3.6: Influence of the number of harmonics on the forced response of the beam, in
the first case study.

directions, when 15 harmonics are kept. The two linear responses (when the damper is

fully stuck, or fully free) are also included. The stick-slip response of the beam features an

overall 90% reduction of amplitude of motion at the tip with respect to the free response,

and an average 94% reduction of amplitude of motion at the damper location. The in-

fluence of the number of harmonics is presented in Fig. 3.6, which shows the nonlinear

forced responses of the beam obtained with 1, 3, 9 and 15 harmonics. The converged re-

sponse is reached very quickly: it seems that in this case three harmonics are sufficient to

describe accurately the dynamics of the beam. The various results presented hereafter are

however calculated with 15 harmonics, which corresponds to the number of harmonics of

the reference, converged solution.

In order to assess the increase of accuracy derived from the use of a 3-D model of

damper over a simpler 1-D model, the forced response of the beam with a 1-D friction

damper attached is calculated. Figure 3.7 shows a comparison of the effects of the 1-D
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Figure 3.7: Comparison of the effects of a 1-D damper and a 3-D damper on the forced
response of the beam, in the first case study.

damper and the 3-D damper on the beam response. The 1-D damper is chosen to act

on the first DOF of the system, in the ex direction, which corresponds to the direction

exhibiting the largest amplitude of response. Its stiffness is 2.0 · 107N.m−1, its coefficient

of friction is 1.0 and the value of the normal load applied to it is 250N. The same number of

harmonics (i.e., 15) is kept for this comparison. The results show the effect of the coupling

of the ex and ey motions of the beam due to the 3-D damper: when a simple 1-D damper

is used, it cannot capture the correct response of the beam, leading to a large overestimate

of the maximum response of the system.

The analysis of the behavior of the 3-D damper is presented in the Figs. 3.8 and 3.9.

Figure 3.8 shows the percentage of slip time of the damper over one period of motion, for

the complete range of frequencies computed. Interestingly, most of the nonlinear frequen-

cies computed feature a 100% slipping time, that is, the contact point is in constant motion

on the plateform of the beam: from 27 Hz up to 42 Hz, the damper is always slipping,
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Figure 3.8: Percentage of slip time of the 3-D damper over one period of motion, for the
entire frequency range considered in the first case study.

and no stick-slip phenomenon is observed. The plot in Figure 3.9 describes the state of

the damper at a frequency near the resonant peak, and as mentioned above the damper is

always slipping over the period of motion simulated. This behavior is also clearly depicted

in Fig. 3.10, which shows the motion of the 3-D damper and the motion of the platform at

32.9 Hz in the friction plane. At this frequency the damper is always slipping. Since its

stiffness matrix is symmetric with identical stiffnesses in both directions, the motion of the

contact point must be a circle. This is due to the fact that the norm of the friction force –

which depends on the position of the damper –, must be equal to the product of the normal

load and the friction coefficient – which is constant in this study. This is confirmed by the

trajectory of the damper. One should also note that the motion of the platform is almost

an ellipse: this is a consequence of the fact that in this study the number of harmonics

required to accurately describe the response of the system is relatively small.

The Figs. 3.11 and 3.12 further depicts the low-harmonic content of the response. The

time histories of the nonlinear force at the same frequency of 32.9 Hz are shown in the
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Figure 3.9: Time history of the state of the damper over one period of motion at 32.9 Hz
obtained in the first case study. The convention used to represent the state of
the damper is that -1 corresponds to stick and 0 corresponds to slip.
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Figure 3.10: Motion of the beam and motion of the contact point at 32.9 Hz obtained in
the first case study.



67

0 0.01 0.02 0.03

-250

-200

-150

-100

-50

0

50

100

150

200

250

Time (s)

e
x
 c

o
m

p
o
n
en

t 
(N

)

 

Figure 3.11: Time history of the ex component of the friction force obtained at 32.9 Hz in
the first case study.

ex and ey directions. The two components of the friction force oscillate between the

maximum absolute value allowed (250 N) in an almost harmonic behavior. Since no slip-

to-stick or stick-to-slip transitions occur, the system is not really perturbed by a sudden

change of behavior of the damper, and the nonlinear friction force is rather smooth.

3.2.3 Second case study

The excitation considered in this second study is chosen so as to produce a highly

asymmetric system response in the ex and ey directions. Whereas previously the tip exci-

tation had the same order of magnitude in the ex and ey directions, the values chosen here

reflect a preponderant direction of excitation:

Fx = 20 N

Fy = 2 N

The plot in Fig. 3.13 shows the frequency response of the beam when an increasing
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Figure 3.12: Time history of the ey component of the friction force obtained at 32.9 Hz in
the first case study.

number of harmonics is retained to describe the dynamics of the system. Only the ex

component of the response, which corresponds to the primary direction of the excitation,

is presented here. The difference with the previous case study is striking: whereas 3 har-

monics were sufficient in the previous study, the calculations made with the strongly non-

symmetric forcing show that at least 15 harmonics are required to capture the converged

solution with the same accuracy. Figure 3.14 shows that for the excitation considered,

the behavior of the 3-D damper converges to that of an equivalent 1-D damper. This 1-D

equivalent damper has the same physical properties as that of the damper used previously.

The agreement between the responses obtained with the 1-D and 3-D dampers is very

good. It shows that for a ratio Fx/Fy equal to 10, the coupling of the two directions of

vibration due to the 3-D damper is negligible.

In the rest of the calculations presented here, a 21-harmonic approximation is used. It

corresponds to the converged, reference solution beyond which no noticeable improvement
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Figure 3.13: Influence of the number of harmonics on the forced response of the beam, in
the second case study.

of the accuracy of the response with respect to the number of harmonics can be detected.

Unlike the previous case, the behavior of the damper presented here shows that the

percentage of slipping time during a period of motion is never 100 %. The damper ex-

periences a typical stick-slip behavior over most of the frequency range, except when the

amplitude of the response of the beam is too low to prevent the damper from sticking to

the platform all the time. This is well illustrated in Fig. 3.15, which describes the time

history of the state of the damper near the nonlinear resonant frequency, at 32.9 Hz. This

plot highlights the complex stick-slip behavior of the damper: the state of the damper al-

ternates 12 times during one period of motion, with some of the slipping phases being very

short.

These alternating stick/slip phases lead to a very complex motion of the contact point

between the damper and the platform. Figure 3.16 depicts the trajectory of the beam and of

the damper. The path followed by the contact point is very complicated. The time history
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Figure 3.14: Comparison of the effects of a 1-D damper and a 3-D damper on the forced
response of the beam, in the second case study.
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Figure 3.15: Time history of the state of the damper over one period of motion at 32.9 Hz
obtained in the second case study. The convention used to represent the state
of the damper is that -1 corresponds to stick and 0 corresponds to slip.
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Figure 3.16: Motion of the beam and motion of the contact point at 32.9 Hz obtained in
the second case study.
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Figure 3.17: Time history of norm of the contact force, obtained at 32.9 Hz in the second
case study.
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Length = 1.0 m
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Figure 3.18: Model of cantilevered beam with attached friction damper allowing for vari-
able normal load.

of the norm of the contact force, presented in Fig. 3.17, also exhibits a similar complexity.

The slip phases experienced by the damper are clearly indicated by the norm of the contact

force being equal to 250 N.

3.3 Forced response of a beam subject to friction with variable nor-
mal load

The second application of the HFT method consists in the analysis of the forced re-

sponse of a beam with a 3-D damper attached, when the physical parameters of the beam as

well as the characteristics of the damper allow for variable normal load. This cantilevered

beam – fully described in Fig. 3.18 – is excited at its tip by a harmonic force of amplitude

100 N in the X direction. The platform of the beam is subject to the action of a friction

damper.

The model of friction damper considered allows for both tangential (along the X di-

rection) and normal (along the Z direction) motion. It is characterized by its tangential

stiffness kt and its normal stiffness kn. In this example, kt = kn = 2 × 107 N.m−1. The
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Figure 3.19: Linear and nonlinear forced responses of the cantilevered beam presented in
Fig. 3.18.

flexibility of the damper in the Z direction implies that any normal motion of the platform

produces a variation of the normal load applied by the damper to the platform. Also, when

the displacement of the platform is zero in the Z direction, the normal contact force exerted

by the damper on the platform is chosen to be equal to 2000 N.

The beam is condensed out using the Craig-Bampton component mode synthesis. The

19-DOF reduced-order model obtained is made of (1) the X and Z DOFs associated to the

node of the tip where the blade is excited, (2) the X and Z DOFs associated to the friction

point, and (3), 15 modal coordinates corresponding to the normal modes of vibration of

the blade when the physical DOFs mentioned above are fixed.

For this system, the nonlinear analysis is carried out with the harmonics 0, 1, 2, . . .,

11, corresponding to a converged solution. Two forced responses observed at the tip of the

blade are described in Fig. 3.19. The first one corresponds to the mono-harmonic, linear

case where the friction damper is always attached to the platform, that is, its action on
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Figure 3.20: Percentage of slip time and separation time over a period of motion of the
platform.

the blade is analog to the effect of an additional stiffness. The second forced response

corresponds to the nonlinear case where the damper can alternate stick, slip and separation

phases over a period of motion. It coincides with the linear response for the lowest ampli-

tudes of motions, since the tangential motion of the platform at these low response levels

is not large enough to make the damper slip.

As shown in Fig. 3.20, there exists a large range of frequencies for which the behavior

of the damper is highly nonlinear. Near the resonant peak of the nonlinear response, around

22 Hz, the damper spends 30% of the period of motion in the slip state, and also 30% of

the period in the separation state where it is no longer in contact with the platform. This

is further illustrated in Fig. 3.21 where the time histories of the tangential and normal

contact forces, calculated at 22 Hz, show the complexity of the interaction between the

damper and the platform.

Despite the strong nonlinearity exhibited by this friction-damped structure, the Hybrid

Frequency-Time domain method is able to calculate the solution of the nonlinear system
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Figure 3.21: Time histories of the tangential and normal components of the contact force
at 22 Hz.

over the selected range of frequencies without being hindered by convergence problems.

The combination of the HFT method and the hybrid Powell algorithm seems therefore

effectively adapted to the study of the dynamics of systems featuring complex nonlinear

contact forces.

3.4 Forced response of a simple model of mistuned structure

In this example, a structure made of 108 beams with 108 ground-to-blade friction

dampers is considered. The forced response of a system of 36 beams with similar charac-

teristics has been studied by Nacivet et al. [92, 93]. As partially depicted in Fig. 3.22, the

beams of this system are attached to a fixed, rigid support. The mass and stiffness matrices

of the i-th beam are defined as:

Mi = M

Ki = δiK,
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Figure 3.22: Partial view of a simple model of bladed disk assembly.

where M and K are 3-by-3 matrices provided by SNECMA, which correspond to a

reduced-order model of blade described in Berthillier et al [57]. The mistuning coeffi-

cients δi follow a normal distribution centered at 1 with a standard deviation of 7%.

A stiffness kc of 4.5 × 103 N couples the tips of two adjacent beams. This stiffness

can be interpreted as the flexibility of the disk or as a shroud for more realistic bladed-disk

assemblies.

Each beam is subject to the action of a ground-to-blade friction damper, and all the

dampers share the same characteristics. They are modeled as simple hysteretic dampers

of stiffness kd = 2.4 × 107 N.m−1. They follow the law of dry friction of Coulomb, with

a friction coefficient of 1. The contact point at the platform/damper interface is allowed to

move along one direction, and the dampers are pressed under the platforms with a constant

normal load of 250 N. Therefore, the dampers exert a nonlinear friction force on only one

DOF of each of the beams.

Finally, the tips of the beams are subject to a mono-harmonic traveling excitation of

amplitude 20 N with an engine order of 5.

The forced response of the structure is depicted in Fig. 3.23. It shows the strong lo-

calization of the energy due to the mistuning. The characteristics of the set of equations

solved by the HFT method are given below:
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Figure 3.23: Forced response of the nonlinear friction DOFs of a 7% mistuned, 108 beam
assembly. The response of the structure is approximated with the harmonics
1, 3, 5, . . ., 21.

• The structure is represented by 324 DOFs, among which 108 are nonlinear.

• The forced response of the system has been calculated with the harmonics 1, 3, 5,

7,. . ., 19 and 21, since it can be proven that the even harmonics of the friction forces

are exactly zero for the type of nonlinearity considered here. Therefore, the motion

of each DOF is represented by 22 real coefficients.

As a consequence, the dynamics of the structure is represented by 7128 harmonic coeffi-

cients, which lead to a reduced nonlinear system of 2376 unknowns, corresponding to the

harmonic coefficients of the nonlinear DOFs only.

A Gateway computer with a 2 GHz Pentium IV processor has been used to calculate

this forced response. The CPU time required to solve the nonlinear system near the reso-

nant peak at 200 rad.s−1 is 110 seconds. At the same frequency, the CPU time dedicated to

the condensation of the system on the nonlinear DOFs represents about 1.5 second. This
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means that the number of linear DOFs of the structure could be greatly increased without

penalizing the CPU time required to solve the nonlinear system. In particular, a greater

number of normal modes could be included in the reduced-order models that represent the

beams so as to increase the accuracy of the calculation.

This study shows that the HFT method is applicable to the calculation of the forced

response of systems having a large number of nonlinear friction DOFs, without sacrificing

the number of harmonics retained in the analysis and the accuracy of the results.

3.5 Forced response of a simple model of tuned (cyclic) structure

The characteristics of the structure presented in the previous example are now slightly

modified: The number of beams of the assembly is reduced to 36, and the mistuning

coefficients δi are all set to 0, so that the structure is spatially cyclic. Therefore, the cyclic

symmetry theory developed in Chapter I can be directly applied to this structure. The

properties of the dampers as well as the value of the inter-sector elastic coupling remain

unchanged.

The forced response of the structure is studied for two different excitations. The first

excitation is a traveling wave of engine order eo = 4, which rotates with the angular

velocity Ω. It is approximated by a series of three spatial harmonics of cyclicity eo, 2eo

and 3eo. As these waves rotate, they excite the reference sector of the structure at the

pulsations ω, 2ω and 3ω, where ω = eoΩ. The first linear excitation applied to the tip of

the beam of the reference sector is therefore defined as:

f 1
l (t) = 20 cos(ωt) + 15 sin(2ωt)

+ 4 cos(3ωt) + 3 sin(3ωt)

One should note that the amplitudes of the second and third harmonic waves are de-

signed so that they correspond respectively to 75% and 25% of the amplitude of the fun-



79

damental wave. These values are common in turbomachinery applications.

The second excitation studied is simply the mono-harmonic approximation of the first

one, that is:

f 2
l (t) = 20 cos(ωt).

For these two excitations, the forced responses of the friction DOF of the reference

sector have been computed with the harmonics 0, 1, 2, . . ., 20 and 21. The comparison of

these two responses is shown in Fig. 3.24. It illustrates the dramatic change of behavior of

the system when one neglects to take into account all the harmonics of the linear excitation.

When subject to a mono-harmonic excitation, the structure exhibits a response with

only one resonant peak, around 200 rad/s. When subject to the three-harmonic excitation,

a second resonant peak appears around 100 rad/s. This peak is due to the presence of the

second spatial harmonic of engine order 2eo, which excites the reference sector at twice the

frequency of the fundamental temporal harmonic. One should also expect a third resonant

peak around 70 rad/s; however, the amplitude of the third harmonic of the excitation is not

large enough to produce a significant contribution in the response, and the response of the

structure at this frequency is largely dominated by the second component of the excitation.

Figure 3.25 shows the time history of the friction force applied to the nonlinear DOF of

the reference sector. The highly nonlinear character of the friction force is obvious, as the

damper switches from the stick state to the slip state twice over a period of motion. The

Fourier harmonics of the friction force corresponding to this time history are presented in

Fig. 3.26. They show that, although the fundamental harmonic is dominant, neglecting the

other harmonics would lead to a significant loss of accuracy.

Finally, the correspondence between the temporal harmonics of the force applied to

the reference sector and the spatial harmonics exhibited by the response of the complete

structure shows that only 9 spatial modes of vibration are present.
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Figure 3.24: Forced response of the nonlinear friction DOF of the reference sector of a 36-
beam cyclic assembly. 21 harmonics are retained to describe the dynamics of
the structure.

Since the cyclic symmetry theory allows one to deduce the dynamics of the structure

from the study of the response of the 3-DOF reference sector, the CPU time associated with

solving the nonlinear set of equations of motion is extremely small. In this example, at

200 rad.s−1, this CPU time is 0.04s. This must be compared with the CPU time required to

study the response of the complete structure without using its property of cyclic symmetry:

in this case, the solution at the same frequency is obtained in 65s.

3.6 Intentional friction damper mistuning

The effect of blade mistuning on bladed-disk dynamics as been extensively investi-

gated in the field of turbomachinery applications. In particular, a well known consequence

of mistuning is the localization of the vibrational energy to a few blades, which can double

or triple the amplitude of the response of some blades. This effect can be quantified by

defining two quantities, as follows:
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• The amplification factor, Af , defined as Af = maxi

{
ui

utuned
, i = 1, N

}
, where N is

the number of sectors of the bladed disk, utuned the amplitude of the response of the

tuned system, and ui the amplitude of the response of the i-th sector in the mistuned

case.

• The dispersion factor, Df , defined as Df = maxi,j

{
ui−uj

utuned
, i, j = 1, N

}
Under certain conditions, mistuned systems may feature values of Af as high as 300%,

and the consequence of high amplification factors can be dramatic, leading to accelerated

fatigue and possibly to premature blade failure. Moreover, localization can take place

for very small values of mistuning, and is present despite the use of high precision ma-

chining for the blades. As a consequence, minimizing the effects of small, unavoidable

mistuning is of great importance to increase the reliability of these turbomachinery struc-

tures. Among the ideas proposed to reduce or at least control these dramatic effects, the

introduction of intentional blade mistuning in the design of blade assemblies has been

considered by Castanier and Pierre [111], among others. Intentional mistuning can be

achieved by introducing a relatively simple pattern for the blade properties, for example

with two of three types of different blades. However promising, these techniques have the

considerable drawback of requiring distinct designs for the blades, which can be costly to

implement.

More recently, Petrov and Ewins [98] have presented the idea that the mistuning of

the physical characteristics of the dampers can also be modeled and analyzed, and that in

some cases specific mistuning design patterns applied to the dampers could bring benefits

to the dispersion of the individual forced reponse of the blades of a mistuned bladed disk

assembly. The idea that the mistuning pattern of a set of dampers can be optimized to

minimize the dispersion of the response of the blades of a structure of known mistuning
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characteristics has however not been explored.

This section briefly illustrates the benefits that can be derived from the HFT method’s

speed and robustness for this new concept of intentionally optimizing the mistuning of

dampers so as to match it to the mistuning of the bladed disk assembly.

3.6.1 System investigated

The dynamics of a simple 10-blade assembly is investigated. The blade model used is

a 3-DOF beam which stiffness and mass matrices M and K as well as the viscous damping

matrix C = αK+βM are similar to that of the cyclic structure described above. The disk

is modeled by springs of stiffness kc = 5.105 N.m−1, which couple adjacent beams. Each

beam is subject to the action of a ground-to-blade, 1-D damper. The system is excited at

the tip of each beam by a 20N , engine order 2 forcing.

This optimization is conducted by retaining only one harmonic of the temporal re-

sponse of the structure. A 7 % random blade mistuning is introduced by randomly per-

turbing the stiffness of the springs that connect the adjacent sectors of the assembly.

Figure 3.27 shows the frequency response of the blade assembly, both without friction

dampers and with a set of identical dampers. When the system is not friction damped, the

amplification and dispersion factors are found to be Af = 14 % and Df = 51 %.

In this example, a 83 % reduction of the largest blade amplitude is observed when

identical friction dampers are used.

3.6.2 Optimization problem and results

The objective of the optimization process is to find a spatial configuration of (non-

identical) friction dampers, which leads to a reduction in both the largest blade amplitude

(similar to that previously observed) and the dispersion of blade amplitudes.

The design variables are the ten values of the stiffness of the dampers and the ten values
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Figure 3.27: Linear forced response of the mistuned system without friction dampers.
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Figure 3.28: Nonlinear forced response of the mistuned, friction-damped system with
identical dampers of characteristics [stiffness k = 2 106 N.m−1, normal load
N = 200 N].
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of the normal loads. Thus, the optimization problem can be stated as:

Find: min
Ni,ki

{
10∑

j=1

(
max

ω
{uj} − u?

)2
, i = 1 . . . 10

}

Such that: Nmin < Ni < Nmax, i = 1 . . . 10

kmin < k < kmax, i = 1 . . . 10

ω1 < ω < ω2

Where: u? is the response of the tuned, uniformly damped system.

The upper and lower bounds of the 20 design variables are chosen such that large variations

about their nominal, tuned values are allowed.

The optimal configuration found for the friction dampers is described in Table 3.2, and

the corresponding mistuned, friction-damped frequency response of the assembly is shown

in Fig. 3.29. The dispersion of the resonant blade amplitudes is considerably reduced,

without lessening the positive effect of friction damping on the largest blade amplitude.

The magnification and dispersion factors in the optimal case are:

Af,optimum = 0.6 % and Df,optimum = 1.1 %

These results prove that the initial concept is valid: non-identical friction dampers can

be used to simultaneously reduce blade amplitudes and counteract the effects of blade

mistuning. In other words, once the mistuning pattern of a bladed disk assembly is iden-

tified, an associated optimized set of friction dampers can be calculated. Thus, critical

applications requiring a perfectly tuned bladed disk assembly could take advantage of this

cost-effective design strategy which do not require different blades designs.
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Initial solution Converged solution
k1 = 200 N.m−1 k?

1 = 213.3421 N.m−1

k2 = 200 N.m−1 k?
2 = 211.4026 N.m−1

k3 = 200 N.m−1 k?
3 = 179.5341 N.m−1

k4 = 200 N.m−1 k?
4 = 216.5225 N.m−1

k5 = 200 N.m−1 k?
5 = 170.8149 N.m−1

k6 = 200 N.m−1 k?
6 = 228.4019 N.m−1

k7 = 200 N.m−1 k?
7 = 185.3555 N.m−1

k8 = 200 N.m−1 k?
8 = 191.9482 N.m−1

k9 = 200 N.m−1 k?
9 = 213.1507N.m−1

k10 = 200 N.m−1 k?
10 = 195.1022 N.m−1

Initial solution Converged solution
N1 = 200 N N?

1 = 227.8156 N
N2 = 200 N N?

2 = 189.6255 N
N3 = 200 N N?

3 = 233.7462 N
N4 = 200 N N?

4 = 203.1638 N
N5 = 200 N N?

5 = 204.2310 N
N6 = 200 N N?

6 = 175.7614 N
N7 = 200 N N?

7 = 200.2310 N
N8 = 200 N N?

8 = 240.1072 N
N9 = 200 N N?

9 = 203.4475N
N10 = 200 N N?

10 = 207.7661 N

Table 3.2: Converged values of the design variables. Left: optimal damper stiffnesses.
Right: optimal normal loads.
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Figure 3.29: Frequency response of the mistuned assembly with the optimal set of friction
dampers.
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3.7 Conclusion

A selection of results for the nonlinear behavior of various structures with friction

dampers attached has been presented. The forced responses of simple systems with 1-D

as well as 3-D dampers have been investigated, in the case of constant and variable nor-

mal contact efforts. The examples considered were chosen so as to represent the three

possible types of configuration for friction-damped structures, namely (1) stand-alone as-

semblies with a limited number of contact interfaces; (2) structures with cyclic symmetry;

(3) mistuned (that is, non-cyclic) assemblies with a very large number of friction dampers.

The Hybrid Frequency-Time domain method has been applied very successfully to

these nonlinear systems. It has been shown that the complex dynamics of these systems

can be analyzed very accurately and at a very low computational cost. The time histories of

the periodic waveforms of the contact forces obtained show very clearly that the dynamics

of such systems can only be captured accurately if a large number of harmonics is retained.

Finally, the efficiency and speed of the method allows one to conduct parametric stud-

ies to determine the optimal design and characteristics the friction dampers, even for com-

plex configurations.



CHAPTER IV

HYBRID FREQUENCY-TIME DOMAIN METHOD
FOR THE FORCED VIBRATION OF ELASTIC
STRUCTURES WITH DIRECT FRICTION AND

INTERMITTENT CONTACT

4.1 Introduction

The study of the dynamics of structures subjected to periodic excitations and nonlinear

contact forces, such as those stemming from friction or impact phenomena, is a complex

theoretical and numerical endeavor. In particular, the direct methods of time integration of

the equations of motion are often hampered by (1) the complexity of these nonlinearities,

which requires one to select extremely small time steps, and (2), the very low amount of

damping encountered in most industrial structures – especially in turbomachinery applica-

tions – which requires one to integrate the equations of motion over a very long period of

time until any transient behavior dies out. In order to circumvent these problems, approxi-

mate methods of analysis have been regularly proposed over the past 25 years, and among

them the Harmonic Balance Method (HBM) introduced by Nayfeh and Mook [20] has

proven to be particularly suited for the study of the dynamics of structures with nonlinear

damping. As mentioned in the literature review in Chapter I, recent multi-harmonic, al-

ternating time-domain techniques derived from the HBM have made the study of complex

88
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nonlinear structures possible with a very high accuracy.

Still, most of the works found in the literature have focused on nonlinearities that stem

from operators which are modeled independently from the structure they are applied to,

such as the flexible friction dampers found in the context of turbomachines. The case

of nonlinearities resulting from interactions between the structure and an infinitely rigid

obstacle, as well as the case of nonlinearities stemming from the reciprocal interactions of

two contacting parts of the same structure, have received little attention in comparison.

The direct friction interaction that may occur between two parts of the same bladed

disk assembly has been studied in the case of shroud-to-shroud contact by mono-harmonic

approximations, by Srinivasan and Cutts [32], Griffin and Sinha [40], and Yang et al. [79].

The introduction of multi-harmonic methods suited for this type of analysis is relatively

new and parallels the development of this dissertation work: multi-harmonic analysis of

shroud-to-shroud contact or platform-to-platform contact have been recently proposed by

Chen et al. [90], Nacivet et al. [93] and Petrov et al. [95–98]. The most advanced appli-

cations of such methods have been dedicated to the analysis of the dovetail root attache-

ment of the disk-blade interface, as featured in works by Petrov and Ewins [102, 103],

Nacivet [99], and Charleux et al. [100, 101].

In this chapter, a new multi-harmonic method derived from the Hybrid Frequency Time

(HFT) domain method presented earlier in this dissertation is proposed for the analysis of

the periodic forced response of systems with impact and friction between some of their

components. This new method is adapted to the study of systems that do not require the

modeling of friction dampers as external, nonlinear operators. The nonlinear boundary

conditions at the contact interfaces are calculated in the time domain, and the presence of

the Fourier coefficients of the nonlinear forces in the frequency-domain nonlinear equa-

tions is not necessary anymore. A robust solution algorithm is developed so as to form in
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the frequency domain a new set of nonlinear equations which involve the displacements

of the nonlinear degrees of freedom only. It is shown that the system formed of these new

equations possesses better numerical properties than those obtained when traditional HFT

techniques are used.

A brief introductory example highlights the theoretical difficulties encountered when

the traditional HFT method is used to study structures with direct contact interactions

between some of their parts. Then, the method of analysis is presented from both the

frequency-domain and the time-domain points of view. Finally, the dynamics of simple

systems are investigated so as to illustrate the capabilities of the new method.

4.2 Introductory example

The notation conventions, as well as the nomenclature of the variables used for the

theoretical development of the method presented herein are summarized in table 4.1.

4.2.1 Intrinsic limitation of the HFT method

The Hybrid Frequency-Time (HFT) domain method presented in chapter II is adapted

to the study of the periodic response of nonlinear systems where the nonlinear force can be

explicitly expressed as a function of the displacement of its degrees of freedom (DOFs).

A very simple illustration of such systems is presented in Fig. 4.1. For this spring-mass

example subjected to a periodic linear excitation F and impacting an elastic stop, the

nonlinear force Fnl[x] can be expressed as1:

a. if x(t) ≤ g, Fnl[x](t) = 0

b. if x(t) > g, Fnl[x](t) = −k∗(x(t)− g),

(4.1)

1The operator notation Fnl[x] is adopted so as to highlight the fact that although the nonlinear force
depends on the displacement x only, the value of the nonlinear force at time t do not necessarily depend on
the value x(t) only. For instance, in the case of a hysteretic nonlinearity such as Coulomb friction, the value
of the nonlinear force at t depends on x(t) and on the state (stick or slip) of the system at the same time.
Therefore, Fnl must be interpreted as a functional of x, and Fnl[x] as a function of t.
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General variables
t time
ω, T frequency and period of excitation
nh number of harmonics
nt number of sampling points in the time domain, over a period of motion

Variables used for the example systems
x, x1, x2 degrees of freedom (DOFs)
m, m1, m2 mass coefficients
c, c1, c2 viscous damping coefficients
k, k1, k2 stiffness coefficients
F, F1, F2 linear excitation
Fnl nonlinear impact or friction force
x∗ additional nonlinear DOF
k∗ nonlinear interface stiffness
g clearance
N normal load
µ friction coefficient

Variables describing general structures
x,u DOFs (before and after change of coordinates)
M,K,C mass, stiffness and viscous damping matrices
fl linear, external forces
fnl nonlinear impact or friction forces
x∗ additional nonlinear DOFs
x∗,bc additional nonlinear DOFs which respect exactly the nonlinear boundary

conditions
k∗ nonlinear interface stiffness coefficient
P matrix of change of coordinates
I identity matrix
Λ linear part of the jacobian of system of nonlinear, frequency-domain

equations
Subscripts, superscripts and accents

k harmonic number
g ground contacting DOFs
m, s master and slave DOFs
l linear DOFs
c contact DOFs
˜ accent used to specify augmented variables that take into account the

additional nonlinear DOFs

Table 4.1: Nomenclature. Roman letters represent scalar variables (F , t, etc.). Bold-faced,
lower-case letters represent vector variables (x, u, etc.). Bold-faced, capital
letters represent matrices (M, K, C, etc.). Underlined letters represent complex
variables.
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Figure 4.1: Simple system with external, displacement-dependent nonlinear force.

where g corresponds to the initial clearance and k∗ is the stiffness of the elastic obstacle.

In Eq. (4.1) the nonlinear force is defined for any possible value of x. This of crucial

importance for the HFT method, since it is based on successive evaluations over a period

of motion of Fnl[x] for iteratively guessed values of x which do not necessarily represent

the exact dynamics of the system. That is, the two sides of the equation of motion

mẍ(t) + cẋ(t) + kx(t)− F (t) = Fnl[x](t) (4.2)

are evaluated for guessed, periodic time histories of x until the agreement between the

two sides is sufficient – this being determined by comparing the Fourier coefficients of the

periodic time histories representing each side of Eq. (4.2).

Because of this requirement, the HFT method is not directly applicable to the study of

systems where a nonlinear force can be defined for certain values of x only. This happens

for instance when the elastic structure interacts with an infinitely stiff obstacle, as shown

in Fig. 4.2. Here, the nonlinearity defining the contact interaction between the mass and

the obstacle can be characterized by:

a. if x(t) ≤ g, Fnl[x](t) = 0

b. x(t) > g has no physical meaning

c. ẋ(t+impact) = −ẋ(t−impact) when purely

elastic impact occurs at timpact.

(4.3)

Although the system is described by a simple equation of motion,

mẍ(t) + cẋ(t) + kx(t)− F (t) = 0, (4.4)
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Figure 4.2: Simple system impacting an infinitely stiff obstacle.

its dynamics can become very complex as Eq. (4.4) must be verified on contiguous time

domains satisfying the initial conditions (b) and (c) when impacts occur. Therefore, the

nonlinear behavior of the system does not stem from the presence of a nonlinear term in the

equation of motions: it depends only on kinematics conditions applied to the displacement

x. As a consequence, the absence of an explicit nonlinear force Fnl[x] in Eq. (4.4) hinders

the direct application of the HFT method to the study of such systems.

One should also note that the same kind of limitation holds for structures directly

rubbing on infinitely stiff obstacles.

4.2.2 Overview of the proposed approach

In order to extend the applicability of the HFT method to systems with elastic impact

or Coulomb friction, a simple modification is proposed. Since the behavior of the sys-

tem presented in Fig. 4.1 must converge towards the behavior of the system presented in

Fig. 4.2 when the stiffness of the elastic stop tends towards infinity, the method of analysis

introduced hereafter adds to the system’s DOF x an additional, artificial DOF x∗ associated

with a stiffness k∗, whose value is iteratively increased towards infinity. In other words,

the goal of the method is to study systems with nonlinearities of decreasing flexibility until

they converge towards the actual system interacting with infinitely stiff obstacles.

As mentioned above, the HFT method is readily applicable to systems similar to the

one depicted in Fig. 4.1. However, strong numerical difficulties arise when the stiffness

k∗ of the elastic stop increases and reaches values several orders of magnitude higher
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Figure 4.3: New equivalent nonlinear system adopted in the proposed approach.

that the stiffness k of the system itself, that is, values required to accurately capture the

behavior of a system impacting an infinitely stiff obstacle. Because of this, the dynamics

of the system – described by the frequency-domain representation of Eq. (4.2) – cannot

be solved numerically in most cases. Among the main reasons behind these difficulties,

one should mention the fact that as the additional stiffness k∗ increases, (1) the nonlinear

force Fnl[x] resembles more a dirac impulse, which is very hard to accurately represent by

a truncated Fourier series, and (2), the right-hand side of Eq. (4.2) becomes very sensitive

to small variations of x, which makes the nonlinear system representing Eq. (4.2) in the

frequency domain unstable.

In order to circumvent the difficulties stemming from the Fourier representation of

the nonlinear contact forces, the system is augmented with an additional DOF and an

additional stiffness in a way that differs slightly from the previous approach discussed,

as depicted in Fig. 4.3. Again, as k∗ increases towards infinity, the behavior of this new

system converges towards the behavior of the system presented in Fig. 4.2.

Now, although a nonlinear contact force Fnl[x
∗] can still be defined as required by the

regular HFT method, the equations of motions are solved in a way that directly enforces

the nonlinear kinematic contact conditions, instead of deducing them from the effect of

the nonlinear contact force. In other words, instead of iteratively adjusting the value of

x so as to make x and Fnl[x] satisfy Eq. (4.2) – which in this case would raise the same

kind of numerical difficulties as the ones mentioned above – a new equation that does not
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involve the nonlinear force is solved in the frequency domain. The generation of this new

equation can be outlined as follows:

1. The frequency-domain, Fourier coefficients of the periodic time history of the addi-

tional DOF x∗ are guessed. This step can be performed arbitrarily during the first

iteration of the solution process, otherwise the Fourier coefficients are usually gener-

ated by taking into account the convergence history observed at previous iterations.

One should note that this guess is not subject to kinematic constraints, that is, x∗

can be generated without respecting the boundary conditions. This means that in

the example presented above, it is possible for x∗ to reach values greater than the

clearance g.

2. The frequency-domain, Fourier coefficients of the periodic time histories of the lin-

ear DOF of the system x are deduced from those of x∗. As further explained in

the following section of this chapter, this step involves only trivial linear calcula-

tions and it is a natural consequence of the frequency-domain representation of the

equations of motion of the system.

3. The time history of x is deduced from the coefficients obtained at step (2) by an

Inverse Fast Fourier Transform (IFFT).

4. Taking into account the time history of x and the nonlinear boundary conditions, a

new time history of x∗ is calculated. Let x∗,bc denote this new time history, where

the superscript bc stands for “boundary conditions”.

5. The frequency domain, Fourier coefficients of x∗,bc are computed by applying a Fast

Fourier Transform (FFT) to the corresponding time history calculated at step (4).
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6. The equation to be solved can now be formed: it is the frequency domain represen-

tation of the equality

x∗ = x∗,bc, (4.5)

that is, it consists in comparing the values of the Fourier coefficients calculated pre-

viously for x∗ and x∗,bc. If this equation is not satisfactorily satisfied, the nonlinear

algorithm used to solve it generates a better guess for the Fourier coefficients of x∗,

and restarts at step (1).

When convergence is achieved, x∗ tends towards x∗,bc, which always satisfies the bound-

ary conditions; x∗ might still violate these nonlinear boundary conditions, however, the

amplitude of these violations is directly controlled by the degree of precision requested

for solving Eq. (4.5) and can be made as small as desired.

Since the displacement of the structure always has better continuity and derivability

properties than the acceleration and the nonlinear force, Eq. (4.5) is much easier to handle

on a numerical point of view than Eq. (4.2). That is, the set of nonlinear equations made

of the Fourier coefficients of x∗ and x∗,bc representing Eq. (4.5) in the frequency domain

is more stable than the set of equations representing Eq. (4.2) when the unmodified HFT

method is considered, as illustrated later in this chapter.

The following section extends these introductory concepts and remarks to the case of

elastic structures experiencing intermittent contact and friction, these nonlinear interac-

tions occurring either between adjacent components of the structure or between the struc-

ture and an infinitely rigid obstacle.
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4.3 Method of analysis

4.3.1 Time domain equations of motion

The general equations of motion of an elastic structure are expressed as

Mẍ(t) + Cẋ(t) + Kx(t) = fl(t) + fnl[x](t), (4.6)

where M, C and K are respectively its mass, damping and stiffness matrices; fl represents

a periodic, external excitation which is linear, that is, it does not depend on the response

of the structure it is applied to; and fnl[x] represents the nonlinear contact forces that stem

from the motion of the structure. The work presented herein limits its scope to the case of

localized nonlinear contact forces representing Coulomb friction and purely elastic impact

interactions, but the method of analysis presented hereafter is readily applicable to other

kinds of displacement-dependent nonlinearities.

Since the nonlinearities considered in this chapter are localized, the degrees of freedom

of the structure can be re-ordered as

x(t) =



xg(t)

xm(t)

xs(t)

xl(t)


, (4.7)

where each of these groups of DOFs corresponds to a specific type of nonlinear interaction:

• xg represents the DOFs contacting an infinitely rigid surface, referred to hereafter

as ground. The ground can be viewed as a very stiff obstacle the elastic structure

might contact while vibrating.

• xm and xs correspond to the vectors of DOFs that contact each other directly, that

is, they represent pairs of master and slave DOFs of the structure. For instance,
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they might represent DOFs of two adjacent components of the structure which are

separated by a clearance but which might contact each other when the system is

excited.

• xl represents all the other DOFs of the structure. Since the contact interactions

considered here necessarily fall into one of the previous two categories, xl contains

linear DOFs only.

Therefore, considering this ordering of the structure DOFs, and taking into account the law

of action and reaction for the pairs of master and slave DOFs, the vector of the nonlinear

forces can be written as

fnl[x](t) =



f g
nl[x

g](t)

fm
nl [x

m − xs](t)

−fm
nl [x

m − xs](t)

0


. (4.8)

In order to simplify the analysis, a trivial transformation is applied to the equations

of motion of the structure so as to transform the pairs of master and slave DOFs into

equivalent ground-contacting DOFs. Defining the transformation matrix

P =
1

2



2 Ig 0 0 0

0 Im Im 0

0 −Im Im 0

0 0 0 2 Il


, (4.9)

and introducing a new set of DOFs u that represents the relative displacement of the master
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DOFs xm with respect to the slave DOFs xs,

u(t) =



ug(t)

um(t)

us(t)

ul(t)


= P−1x(t) =



xg(t)

xm(t)− xs(t)

xm(t) + xs(t)

xl(t)


, (4.10)

Eq. (4.6) becomes

P−1 MP



üg(t)

üm(t)

üs(t)

ül(t)


+ P−1 CP



u̇g(t)

u̇m(t)

u̇s(t)

u̇l(t)


+

P−1 KP



ug(t)

um(t)

us(t)

ul(t)


= P−1 fl(t) +



f g
nl[u

g](t)

2 · fm
nl [u

m](t)

0

0


. (4.11)

This change of coordinates eliminates the need of distinguishing the ground-contacting

DOFs from the pairs of contacting master and slave DOFs, as the expressions of the non-

linear forces acting on ug and um take similar forms. Furthermore, since there are no

longer nonlinear contact forces acting on us, the size of the nonlinear system is reduced,

which yields substantial benefits in terms of the numerical handling of these equations.

Thus, the study of the dynamics of a structure featuring these two types of DOFs can

be reduced to the study of an equivalent structure featuring ground-contacting DOFs only,

where relative DOFs displacement are substituted to the original pairs of contacting DOFs.

Therefore, the equations of motion of such a structure can always be written – without loss
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of generality – in the following form2,Mcc Mcl

Mlc Mll


ẍc(t)

ẍl(t)

+

Ccc Ccl

Clc Cll


ẋc(t)

ẋl(t)

+

Kcc Kcl

Klc Kll


xc(t)

xl(t)

 =

f c
l (t)

f l
l (t)

+

f c
nl[x

c](t)

0

 , (4.12)

where xc represents the vector of the nonlinear, ground-contacting DOFs – possibly ob-

tained with the aforementioned change of coordinates –, and xl is the vector of the linear

DOFs.

4.3.2 Augmented equations of motion

In order to handle the nonlinear contact interactions – now reduced to interactions of

the structure-to-ground type –, the degrees of freedom of the system are augmented by a

set of additional DOFs, x∗, as discussed in the introductory example:

x̃(t) =


x∗(t)

xc(t)

xl(t)

 . (4.13)

The vector x∗ of the additional DOFs has the same size as xc, since the additional DOFs

are uniquely associated with each of the contact DOFs. The equations of motion of the

augmented system are now

M̃¨̃x(t) + C̃ ˙̃x(t) + K̃x̃(t) = f̃l(t) + f̃nl[x̃](t) (4.14)

where the new mass and damping matrices are simply filled with extra zeros

M̃ =


0 0 0

0 Mcc Mcl

0 Mlc Mll

 , C̃ =


0 0 0

0 Ccc Ccl

0 Clc Cll

 , (4.15)

2Note that for the sake of generality the DOFs of the structure are referred to as x again, instead of u.
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and where the stiffness matrix is augmented so as to take into account the additional stiff-

nesses associated with the DOFs grouped in x∗:

K̃ =


k∗Ic −k∗Ic 0

−k∗Ic Kcc + k∗Ic Kcl

0 Klc Kll

 . (4.16)

Similarly, the expressions of the linear and nonlinear forces are modified so as to accom-

modate the new DOFs:

f̃l(t) =


0

f c
l (t)

f l
l (t)

 , f̃nl(t) =


f∗nl[x

∗](t)

0

0

 . (4.17)

One should note that the nonlinearities due to the contact interactions are transferred from

the original contact DOFs xc to the additional DOFs x∗.

These modifications yield equations of motions for x∗ that correspond to the quasi-

static equilibrium

k∗(x∗(t)− xc(t)) = f∗nl[x
∗](t) (4.18)

from which it can be deduced that, as the values of the stiffnesses k∗ tend towards infinity,

the additional DOFs x∗ and the original contact DOFs xc converge towards each other:

x∗(t) −−−−→
k∗→∞

xc(t). (4.19)

Therefore, the nonlinear contact force deduced from the displacement of x∗ tends towards

the actual contact force that would be applied to the DOFs xc should the system interact

directly with the ground:

f∗nl[x
∗](t) −−−−→

k∗→∞
f c
nl[x

c](t). (4.20)

In other words, the dynamics of the augmented system tends toward the dynamics of the

original ground-contacting structure as the value of the stiffness increases.
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4.3.3 Frequency-domain equations of motion

Now that the equivalence of the dynamics of the augmented and original systems has

been established when k∗ tends towards infinity, the equations of motion of the augmented

system can be expressed in the frequency domain. When the steady-state response of the

structure is assumed to be periodic, the displacement x̃ and the linear force f̃l can be written

as Fourier series of harmonic functions. Assuming that keeping nh harmonics guarantees

an accurate approximation of the dynamics of the structure, they can be expressed as:

x̃(t) = Re


nh∑

k=0


x∗k

xc
k

xl
k

 ejkωt

 , (4.21)

f̃l(t) = Re


nh∑

k=0


0

f c
l,k

f l
l,k

 ejkωt

 . (4.22)

Similarly, the nonlinear forces acting on the augmented system can be written as:

f̃∗nl[x
∗](t) = Re


nh∑

k=0


f∗nl,k(x

∗
0, . . .x

∗
nh

)

0

0

 ejkωt

 . (4.23)

Now, applying the Harmonic Balance Method to Eq. (4.14) yields a set of nh complex,

nonlinear, coupled equations:
Λ∗,∗

k Λ∗,c
k Λ∗,l

k

Λc,∗
k Λc,c

k Λc,l
k

Λl,∗
k Λl,c

k Λl,l
k




x∗k

xc
k

xl
k

−


0

f c
l,k

f l
l,k

 =


f∗nl,k(x

∗
0, . . .x

∗
nh

)

0

0

 (4.24)

where the (l, c) block of the linear part of the jacobian of this system of equations is defined

as:

Λl,c
k = −(kω)2Ml,c + jkωCl,c + Kl,c, (4.25)
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with similar expressions for Λl,l
k ,Λl,∗

k etc.

4.3.4 Solution algorithm

As briefly explained in the introductory example, the algorithm used to solve the non-

linear dynamics of the system is based on both the frequency-domain and the time-domain

representations of Eq. (4.24).

When the traditional HFT method is used, Eq. (4.24) is the set of nonlinear equations

being directly solved. This requires extracting the Fourier coefficients of the nonlinear

forces (the right-hand side of Eq. (4.24)) from the calculation of its time history in the time

domain; the right-hand side of Eq. (4.24) is indeed the frequency-domain representation

of the nonlinearities applied to the structure.

The modification of the HFT proposed here pushes even further the dichotomies that

can be defined between the linear and nonlinear parts of the system and the frequency and

time domains of analysis. It is based on a new nonlinear equation that stems from (1) the

study of the linear dynamics of the system in the frequency domain – the left-hand side

of Eq. (4.24) –, and (2) a strict enforcement in the time domain of the nonlinear boundary

conditions – the time domain representation of the right-hand side of Eq. (4.24).

The solution algorithm unfolds as follows:

1. An initial value is given to k∗. At the beginning of the algorithm, this value can be

chosen to be very low so as to “soften” the nonlinearity and avoid possible numerical

convergence problems.

2. The frequency-domain, Fourier coefficients of the nonlinear additional DOFs x∗ are

guessed.

When this is done for the first time, an arbitrary guess must be provided. In partic-

ular, if k∗ is very small, it makes sense to choose for x∗ the linear solution obtained



104

when the nonlinearities are not taken into account, since it is necessarily very close

from the solution sought.

Otherwise, a guess that takes into account the evolution of the convergence over

the previous iterations is automatically provided by the nonlinear solver. A mod-

ified version of the hybrid Powell algorithm [107, 108] has been found to produce

excellent results in terms of speed and convergence qualities.

Finally, one should note that no constraints are placed upon the generation of the

guess x∗. In particular, these coefficients can lead to time histories of the nonlinear

displacements that violate the nonlinear boundary conditions associated with non-

penetration or Coulomb friction. However, these violations are expected to become

smaller as the algorithm makes these guesses converge towards displacements that

respect the boundary conditions.

3. The frequency-domain, Fourier coefficients of the periodic time histories of the lin-

ear DOFs xc and xl are deduced from those of x∗. This is done by substituting the

coefficients x∗k into the subsets of equations of Eq. (4.24) which are associated with

the coefficients xc
k and xl

k:xc
k

xl
k

 =

Λc,c
k Λc,l

k

Λl,c
k Λl,l

k


−1 f c

l,k −Λc,∗
k x∗k

f l
l,k −Λl,∗

k x∗k

 . (4.26)

As a physical interpretation of this step, one can observe that the Fourier coefficients

xc
k and xl

k correspond to the motion of the linear part of the structure when the linear

force and the displacements at the nonlinear interface are imposed.

4. The time histories of the original contact DOFs xc are deduced from the coefficients

obtained at the previous step by IFFTs.
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5. Now, quasi-static calculations are performed in the time domain to find the time his-

tories of x∗,bc that are compatible with (1) the imposed time histories of xc obtained

at the previous step, and (2) the nonlinear boundary conditions3.

6. The Fourier coefficients x∗,bck describing the time histories of x∗,bc calculated above

are obtained by FFT.

7. The nonlinear equations to be solved can now be formed. They are functions of the

nonlinear unknowns x∗k, and are expressed as:

Fk(x
∗
0, . . . ,x

∗
nh

) = x∗k − x∗,bck = 0 (4.27)

As stated previously, these equations do not involve the nonlinear forces. Actually,

the calculation of the nonlinear forces is not necessary with this approach, which

emphasises the effects of the nonlinearities on the displacement of the boundary

DOFs only.

When these equations are verified, the Fourier coefficients x∗0 . . .x∗nh
match exactly

the coefficients x∗,bc0 . . .x∗,bcnh
obtained from the time histories of the additional DOFs

when the boundary conditions are enforced.

8. If these equations are not satisfied, new Fourier coefficients x∗k are provided by the

nonlinear solver, and the algorithm restarts at step (3).

9. When convergence is reached, the value of the additional stiffness k∗ is increased4

and the algorithm restarts at step (3), unless the results obtained show that k∗ has

3Details of these calculations for systems with impact or Coulomb friction are presented later in this
chapter.

4A simple geometric progression can be used for k∗ in most cases. The choice of the geometric ratio
of the series is a trade off between speed (large ratios) and robustness (low ratios for which the solution
obtained at the end of an iteration is close from the solution sought at the following iteration).
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Figure 4.4: Simple two-DOF structure impacting an infinitely stiff obstacle and its equiv-
alent, augmented representation. F1 and F2 are linear, periodic functions of t
and represent an external excitation. g is the clearance between the DOF x2

and the obstacle.

already reached a value high enough to consider that the dynamics of the augmented

system coincides with the dynamics of the original system.

When the algorithm successfully stops, the DOFs computed in steps (1) to (9) satisfy

the following relations:

• The dynamics of the linear DOFs xc is consistent with the displacements of the

guessed DOFs x∗, this being a trivial consequence of Eq. (4.26).

• The displacements of the nonlinear DOFs x∗,bc are consistent with the displacements

of the linear DOFs xc and with the nonlinear boundary conditions.

• The displacements of the nonlinear DOFs x∗ and x∗,bc are identical.

• As k∗ increases towards infinity, xc tends towards x∗.

This algorithm can therefore be summarized by a double convergence:

xc −−−−−−−−→
k∗ →∞

x∗ −−−−−−−−→
As Eqs. (4.27) are
being solved

x∗,bc (4.28)
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x1 x2

m1 m2

F1 F2

k1,c1 k2,c2

x1 x2 x*
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Figure 4.5: Simple two-DOF structure with friction and its equivalent, augmented repre-
sentation. F1 and F2 are linear, periodic functions of t and represent an external
excitation. N represents the normal load applied to the friction DOF, and µ is
the friction coefficient of the contact interface.

The first one corresponds to the convergence of the behavior of the augmented system

towards the behavior of the original system as k∗ increases, and the second reflects the en-

forcement of the nonlinear boundary conditions applied to the additional nonlinear DOFs.

4.3.5 Time-domain treatment of the boundary conditions

A critical part of the algorithm outlined above is the calculation of the effect of the

nonlinear boundary conditions on the nonlinear DOFs, performed during step 5. During

this step, the time histories of the nonlinear DOFs are calculated so as to be consistent with

(1) the time histories of the linear DOFs and (2), with the nonlinear boundary conditions.

The time-domain treatment of the boundary conditions is presented here for both im-

pact and Coulomb friction. The simple systems depicted in Figs. 4.4 and 4.5 are used here

to illustrate this treatment; a detailed analysis of their behavior is presented later in this

chapter.
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Impact against an infinitely stiff obstacle

When the algorithm enters step 5, the time histories of the linear DOFs xc are known

since they are deduced from the guess made on x∗. Since they are obtained from inverse

fast Fourier transforms, these time histories are represented by a finite set of values equally

spaced in the time interval [0, T ], where T is the period of motion of the structure, given

by T = 2π/ω. For instance, assuming that the period of motion is sampled with nt points,

the time history of the DOF x2 of the augmented system presented in Fig. 4.4 is a set of

values x2(t1), . . . , x2(tnt), where ti is given by:

ti =
T

nt

(i− 1). (4.29)

In this case, the time history of x∗,bc – that is, the time history of x∗ that satisfies the

boundary conditions – is computed in a very simple way:

if xc(ti) ≤ g then x∗,bc(ti) = xc(ti),

if xc(ti) > g then x∗,bc(ti) = g.

(4.30)

The nt discrete values x∗,bc(t1), . . . , x
∗,bc(tnt) are therefore easily calculated, and step 6

of the algorithm simply consists in applying a fast Fourier transform to them in order to

compute the corresponding Fourier coefficients.

Coulomb friction

The case of nonlinearities involving Coulomb friction is more complicated than the

nonlinearities associated with impacts, because of the hysteretic nature of the friction

forces. The calculation of the time history of x∗,bc is therefore more algorithmic:

1. As in the previous example, the time history of the linear DOF x2 of the augmented

system shown in Fig. 4.5 is represented by a series of discrete values x2(ti). When
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i = 1, x∗,bc(t1) is chosen as follows:

x∗,bc(t1) = x2(t1). (4.31)

This ensures that the tangential component of the contact force applied to x∗, defined

as

Ft(ti) = k∗(x∗,bc(ti)− x2(ti)) (4.32)

is null. In other words, the system is forced to be in the “stick” state when i = 1.

2. When i is greater than 1:

• If the system was in the “stick” state at ti−1:

– If k∗(x∗,bc(ti−1)− x2(ti)) > µN , the “stick” assumption is not valid any-

more, and x∗,bc(ti) is given by:

x∗,bc(ti) = x2(ti) + µN/k∗, (4.33)

which corresponds to a “slip” state where ẋ∗,bc < 0.

– If k∗(x∗,bc(ti−1) − x2(ti)) < −µN , the “stick” assumption is not valid

anymore, and x∗,bc(ti) is given by:

x∗,bc(ti) = x2(ti)− µN/k∗, (4.34)

which corresponds to a “slip” state where ẋ∗,bc > 0.

– If none of the conditions above are verified, the friction point stays in the

“stick” state, i.e.:

x∗,bc(ti) = x∗,bc(ti−1). (4.35)

• If the system was in the “slip” state at ti−1:
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– If ẋ∗,bc(ti−1) < 0 and ẋ2(ti) < 0, the damper stays in the “slip” state, and

x∗,bc(ti) is given by:

x∗,bc(ti) = x2(ti) + µN/k∗. (4.36)

– Similarly, if ẋ∗,bc(ti−1) > 0 and ẋ2(ti) > 0, the damper stays in the “slip”

state, and x∗,bc(ti) is given by:

x∗,bc(ti) = x2(ti)− µN/k∗. (4.37)

– Otherwise, if ẋ2 changes its sign, i.e. ẋ2(ti−1) · ẋ2(ti) < 0, the friction

point switches to the “stick” state, and therefore

x∗,bc(ti) = x∗,bc(ti−1). (4.38)

3. The operations described in step (2) are performed until i is equal to 2nt, i.e., the

quasi-static calculations described above are performed over two periods of motion.

This is necessary because the choice of the initial condition in step (1) leads to a tran-

sient behavior that disappears after the first period of motion: it can be shown indeed

that the exact steady cycle (that is, the periodic time history of x∗,bc) is completely

described by the calculations made over the second period of motion, and that this

steady cycle is independent of the initial conditions imposed at the beginning of the

first period of motion.

Then, the nt discrete values x∗,bc(tnt+1), . . . , x
∗,bc(t2nt) are used in step (6) of the solution

algorithm to compute the Fourier coefficients of the time history of x∗,bc.

4.4 Results

This section presents results obtained from the application of the modified HFT method

to the study of (1) the dynamics of simple, spring-mass systems, and (2) the dynamics of
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Figure 4.6: Time history over a period of motion of the nonlinear DOF x of the system
presented in Fig. 4.3, at ω = 1 rad/s−1.

a more realistic finite element model of complex structure.

4.4.1 Simple one-DOF system with impact

A few results obtained with the simple system shown in Fig. 4.3 are presented first to

illustrate the potential difficulties that arise when the traditional HFT method is used, that

is, when the Fourier coefficients of the nonlinear contact force are present in the set of

frequency-domain nonlinear equations.

The parameters of this simple one-DOF, spring-mass system are given as follows:

m = 2 kg, c = 1 kg.s−1,

k = 2 N.m−1, g = 0.05 m.

The linear excitation applied to the mass is chosen as:

F (t) = 1.5 cos(ωt) + sin(ωt).

The periodic response of the system is calculated with 100 harmonics at the frequency
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Figure 4.7: Norm of the Fourier coefficients of the nonlinear DOF x at ω = 1 rad/s−1.

ω = 1 rad.s−1. The additional stiffness k∗ is set to 2.0 · 105 N.m−1.

The time histories of the contact DOF x and the nonlinear force Fnl[x] are presented in

Figs. 4.6 and 4.8. The corresponding Fourier coefficients obtained from the FFTs applied

to these time histories are shown in Figs. 4.7 and 4.9.

As expected, the nonlinear force is zero when the system does not contact the obstacle,

and it looks like a dirac function when x becomes greater than g for a short period of time.

Therefore, almost all the harmonics are present in its time history, as shown in Fig. 4.9.

On the other hand, although the time history of x is characteristic of a system that impacts

elastically a stiff obstacle – the time history features a typical symmetric kink at t = T/10

–, the number of harmonics necessary to approximate it accurately is rather limited: 20

harmonics seem sufficient to obtain a precise representation of x over a period of motion.

For the contact force, the same number would yield a gross approximation only.

As a consequence, traditional HFT methods are hindered by the necessity to handle a

very large number of harmonics to describe accurately the nonlinear contact force, whereas
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the modified method presented here achieves the same accuracy at a lower cost, since the

effect of the nonlinear boundary conditions is taken into account in the time domain only.

4.4.2 Two-DOF system with impact

A more complex, two-DOF system with impact is now studied. The system is depicted

in Fig. 4.4. It consists in two spring-mass systems impacting an infinitely rigid wall. Its

parameters are given as follows:

m1 = m2 = 2 kg, c1 = c2 = 1 kg.s−1,

k1 = k2 = 2 N.m−1, g = 0.05 m.

The linear excitations applied to m1 and m2 are chosen as:

F1(t) = 1.5 cos(ωt) + sin(ωt)

F2(t) = 0.

The frequency response of the system is shown in Fig. 4.10. It is calculated with 20

harmonics, and the value of the additional stiffness of the augmented system is k∗ =

2.0 · 106 N.m−1.

The behavior exhibited is somewhat complicated. For frequencies greater than 2.4

rad.s−1, the amplitude of x2 is smaller than 0.05, that is, it is smaller than the clearance

g, and therefore the system behaves linearly. Then, as ω decreases from 2.4 rad.s−1, the

system begins to impact the obstacle. For values close from 2.4 rad.s−1, one impact per

period of motion is observed. Then the number of impacts per period gradually increases

as ω further decreases: at 0.2 rad.s−1 the time history of the contact force exhibits seven

impacts, as shown in Fig. 4.115.

5Again, one should note that in the method of analysis proposed the calculation of the time history of the
nonlinear force is not necessary; it is given here for illustration purposes only.



115

Frequency (rad/s)

A
m

p
li

tu
d
e 

o
f 

re
sp

o
n
se

 (
m

)

0

0.0

0.2

0.4

0.6

0.8

1 2 3 4

x1

x2

Figure 4.10: Frequency response of the DOFs of the system with impact presented in
Fig. 4.4.

Time

F
o

rc
e 

(N
)

0

0

-2

-4

-6

-8

-10

-12

-14

-16

T

Fnl[x
*]

Figure 4.11: Time history of the nonlinear force applied to the two-DOF system with im-
pact, at ω = 0.2 rad.s−1.



116

Time

D
is

p
la

ce
m

en
t 

(m
)

x1

x2

x*

x*,bc

0 T

-1.0

-0.5

0.0

0.5

Figure 4.12: Time history of the DOFs of the system with impact presented in Fig. 4.4,
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The corresponding time histories of the DOFs of the system are shown in Fig. 4.12. It

is harder to deduce from this figure the number of impacts over a period of motion, but the

enforcement of the nonlinear condition on the contact DOF appears very clearly.

The time histories shown in Fig. 4.12 also show clearly that for the value of k∗ chosen,

the DOFs x2 and x∗ behave virtually identically. In other terms, x2 verifies the non-

penetration condition. The behavior of the augmented system is therefore an accurate

approximation of the behavior of the original system.

4.4.3 Two-DOF system with friction

The dynamics of the same two-DOF system is now investigated when the nonlinear

force is a Coulomb friction force, as depicted in Fig. 4.5. Instead of impacting an obstacle,

the DOF x2 directly rubs onto the ground. A constant load N = 1 N is applied in the

normal direction, and the friction coefficient chosen is µ = 1. The frequency response of

the system is shown in Fig. 4.13.



117

Frequency (rad/s)

A
m

p
li

tu
d
e 

o
f 

re
sp

o
n
se

 (
m

)

0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4

x1

x2

Stick

Stick-slip

Figure 4.13: Frequency response of the DOFs of the simple system with friction of
Fig. 4.5.

Time

D
is

p
la

ce
m

en
t 

(m
)

0

-0.6

-0.4

-0.2

-0.0

0.2

0.4

0.6 x1

x2

x*

x*,bc

T

Slip

Stick

Figure 4.14: Time history of the DOFs of the two-DOF system with friction, at ω =
1.0 rad.s−1.



118

The system exhibits clearly two distinct behaviors depending on the value of ω. When

ω < 0.5 rad.s−1 or when ω > 1.8 rad.s−1, the amplitude of oscillation of x1 is too small

to make x2 start slipping, and therefore x2 is zero. When the amplitude of x1 reaches

0.5 at ω = 0.5 or 1.8 rad.s−1, the slip condition |k2(x2 − x1)| = µN is verified, and x2

experiences both stick and slip over a period of motion, as observed in Fig. 4.14.

Again, as noted for the two-DOF system with impact, the perfect agreement between

x2 and x∗ justifies (a posteriori) the value chosen for k∗.

4.4.4 Study of the influence of k∗∗∗

The values chosen for k∗ in the two previous examples where high enough to ensure

that x2 (that is, the nonlinear DOF of the non-augmented systems) and x∗ are identical.

However, since the method of analysis is based on an algorithm that iteratively increases

k∗, it is crucial to know the threshold above which k∗ yield accurate results, so as to mini-

mize the computational cost associated with the calculations performed at each iteration.

In this section, the dynamics of the two-DOF system with impact is investigated for

various values of k∗. The periodic forced response of the system is calculated at ω =

1 rad.s−1, which yields one impact per period of motion, as shown in Fig. 4.15. Three

kinds of calculations are presented:

• A reference calculation obtained with Mathematica by solving the exact dynamics

of the non-augmented system.

• Calculations performed with 20 harmonics, with k∗ varying from 2.0 · 101 to 2.0 ·

106 N.

• A calculation performed with 100 harmonics, for k∗ = 2.0 · 106 N

The accuracy of the method is indeed a function of the number of harmonics – which
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controls how accurately the nonlinear DOFs respect the kinematic boundary conditions –

and a function of k∗, which controls how close the dynamics of the original and augmented

systems are.

The time histories of x2 are shown in Fig. 4.15. There is an excellent agreement be-

tween the reference calculation and the results obtained with 100 harmonics and k∗ =

2.0 · 106 N.m−1. When only 20 harmonics are used, the variations of k∗ for values above

2.0 · 104 N.m−1 have a negligible impact on the evolution of the time history, and a small

difference (less than 5% in amplitude) is observed with the reference calculation. As a

consequence, reducing this difference requires increasing the number of harmonics and

keeping the value of k∗ at 2.0 · 104 N.m−1.

The results shown in Fig. 4.16 illustrate this convergence from a different point of

view. In this figure, the amplitudes of response of the DOFs x2 and x∗ are plotted as a

function of k∗ . In other words, Fig. 4.16 describes how the augmented system converges

towards the original system as k∗ increases, as opposed to the results shown in Fig. 4.15

which describe how the response of the system converges towards the exact solution.

Again, there is no noticeable difference between x2 and x∗ when k∗ is greater than

2.0 · 104 N.m−1, which seems to be the value – for this system – that provides accurate

results.

4.4.5 Finite element model of two blades with impact

In this example, a more complicated structure – more representative of typical indus-

trial systems – is considered. As shown in Fig. 4.17, it consists of two adjacent blades

fixed on an elastic support. The blades have platforms which can potentially contact each

other. At rest, the upper and lower platforms have a clearance of 1 mm. The overall height

of the system is 0.5 m.
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Figure 4.17: Example of realistic structure studied with the modified HFT method. Three
pairs of nodes are selected on the adjacent upper-platforms of the blades. The
study focuses on the nonlinear behavior of the structure when these nodes
impact each other without friction.
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An external, linear forcing is applied to the tips of the blades, so as to make the upper

platforms contact each other. The mode of vibration which is investigated corresponds to

the first bending mode of the system, around ω = 500 rad.s−1.

Since the finite element model features more than 5000 DOFs, a reduced-order model

is used for the calculations. The system is condensed out using Craig-Bampton component

mode synthesis. The reduced-order model obtained is made of 18 3-DOF nodes (which

include the contact DOFs and the DOFs where the linear forcing is applied, among others),

and 20 modal coordinates corresponding to the normal modes of vibration of the structure

when the physical DOFs mentioned above are fixed. It is assumed here that the nonlinear

interactions occur at the upper platforms only and are of the impact type, that is, friction

between the platforms is not considered. Three pairs of nonlinear DOFs are chosen, and a

change of coordinates is performed so as to obtain the relative displacement of the DOFs

of the left upper-platform with respect to the DOFs of the right upper-platform. The fre-

quency response of the system is calculated with 20 harmonics. Following the guidelines

suggested in the previous section, the value of k∗ is set to 2.0 · 108 N.m−1.

Two sets of results are presented in Fig. 4.18, where the nonlinear dynamics of the

structure is compared to its dynamics when the non-penetration conditions at the platform

DOFs are ignored.

As expected, when the amplitude of vibration is small, the linear and nonlinear be-

haviors coincide, since the platform DOFs vibrates freely without impacting each other.

Then, for ω in the interval [467-538] rad.s−1, the structure exhibits a strong reduction of

the amplitude of motion, which is typical of such nonlinear systems.
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4.5 Conclusion

A new formulation of the hybrid frequency/time domain method has been proposed in

this chapter. It extends the applicability of the traditional HFT method to the study of the

periodic forced response of systems with friction or intermittent contact. The nonlinear-

ities handled by the method must be displacement-dependent, and can stem (1) from the

interaction between the structure and an infinitely stiff obstacle, or (2), from the reciprocal

actions of two parts of the structure contacting each other.

The method is still based on a mixed frequency-domain/time-domain representation

of the equations of motion of the system. However, unlike the traditional implementa-

tion of the HFT method, it does not require the calculation of the Fourier coefficients of

the nonlinear contact forces. Actually, the nonlinear equations that are solved in the fre-

quency domain do not involve such coefficients. As a consequence, a major hindrance

to the efficient numerical analysis of systems with stiff nonlinearities is overcome. The

evaluation of the Fourier coefficients of the nonlinear contact forces is indeed replaced by

the enforcement in the time domain of the nonlinear boundary conditions.

In addition to the fact that the nonlinear forces do not appear in the nonlinear

frequency-domain equations to be solved, the advantages of the method are the follow-

ing:

• The method can easily be extended to other types of displacement-dependent non-

linearities, such as elastic stops with cubic nonlinear stiffness, friction with variable

normal load, etc.

• The augmented systems used by the method are trivially deduced from the original

nonlinear systems.

• It is easy to assess the precision of the solution obtained with respect to the number
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of harmonics retained to describe the dynamics of the system and with respect to the

value of k∗.

• The nonlinear boundary conditions can be captured very accurately in the time do-

main.

• The method is applicable to systems with many nonlinear nodes, since the corre-

sponding DOFs are handled independently from each other.

• Solving numerically a set of nonlinear equations always requires a relatively ac-

curate initial guess. For complex nonlinear systems, finding such a guess can be

a daunting task and a source of numerical problems. However, in the method of

analysis introduced in this chapter, it is always possible to use as an initial guess the

solution of the linear system (that is, the system for which the effect of the nonlinear-

ities is ignored), and to build a series of solutions (indexed by the value of k∗) which

converge more or less continuously towards the solution of the non-augmented sys-

tem.

Finally, numerical examples have demonstrated the accuracy of the method as well as

its applicability to realistic, industrial-like structures.



CHAPTER V

A NEW METHOD FOR THE ANALYSIS OF THE
NONLINEAR DYNAMICS OF STRUCTURES WITH

CRACKS

5.1 Introduction

The nonlinear dynamics of structures with cracks are examined in this chapter. Cracks

are usually induced by the high-cycle fatigue that results from excessive vibration levels.

Monitoring the evolution of such damaged structures requires predictive tools able to cal-

culate accurately their behavior in the presence of the nonlinear boundary conditions that

result from the repetitive opening and closing of the crack interfaces. Direct methods of

analysis of the periodic forced response of such structures – such as time integration meth-

ods – are however hindered by (1) the complexity of the nonlinear contact forces at the

crack interfaces, (2) the low amount of damping encountered in most industrial structures

– especially in turbomachinery applications –, and (3) the size of the nonlinear systems

that stem from the study of realistic structures. As a consequence, most of the methods of

analysis developed for structures with cracks have been based on simplified geometries,

such as the work by Shen and Pierre [112, 113] on Euler-Bernoulli beams featuring dif-

ferent types of cracks. Although many works have focused on such simplified systems,

there are on the other hand hardly any studies available regarding the analysis of realistic

125
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structures with cracks. This is particularly true of studies carried out without simplifying

modeling assumptions and without the use of direct time-integration methods.

On the other hand, significant advances regarding the modeling and analysis of the

periodic forced response of structures with displacement-dependent nonlinearities have

been recently made, as mentioned in the previous chapters. These techniques have been

applied to complex systems, mostly in the field of turbomachinery bladed disks, and have

not been considered for the analysis of structures with cracks.

The analysis method introduced here is a modification of the multi-harmonic, hybrid

frequency/time domain methods presented earlier in this dissertation. It allows for an

efficient handling of arbitrary complex structures with cracks, and it can be viewed as an

application of the well-known penalty method to these multi-harmonic techniques. The

method is based on a frequency domain representation of the dynamics of the structure,

and a time domain enforcement of the nonlinear boundary conditions.

This new method of analysis is applied here to the finite element models of two cracked

beams. The accuracy of the method is first established by comparing its results with that

obtained with a direct time-integration approach. Then, the influence of the method pa-

rameters on the accuracy of the prediction of the nonlinear forced response is investigated.

5.2 Theoretical analysis

5.2.1 Equations of motion in the time domain

The general equations of motion of a linear elastic structure with cracks can be ex-

pressed as

Mẍ(t) + Cẋ(t) + Kx(t) = f(t) + fnl[x](t), (5.1)

where M, C and K represent the mass, stiffness and damping matrices, f is a time-

dependent forcing applied to the structure, and fnl[x] is a displacement-dependent non-
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linear force. Let us assume, for the sake of clarity, that the structure features only one

crack, and that this crack is modeled by two nodes potentially contacting each other as

the crack opens and closes1. Furthermore, we assume that any friction phenomenon oc-

curring at the crack interface can be neglected, and that only the normal displacement of

these two nodes needs to be taken into account2. Under these assumptions, the structure

features only two nonlinear degrees of freedom (DOFs), and the equations of motion can

be written as:

M


ẍnl,1(t)

ẍnl,2(t)

ẍl(t)

+ C


ẋnl,1(t)

ẋnl,2(t)

ẋl(t)

+ K


xnl,1(t)

xnl,2(t)

xl(t)

 = f(t) +


fnl,1[xnl,1, xnl,2](t)

fnl,2[xnl,1, xnl,2](t)

0

 , (5.2)

where the subscript l is used for the other linear DOFs of the structure. Since the principle

of action and reaction applied to the nonlinear DOFs yields

fnl,1[xnl,1, xnl,2](t) = −fnl,2[xnl,1, xnl,2](t), (5.3)

performing the following change of coordinatesunl

v

 =
1√
2

xnl,2 − xnl,1

xnl,2 + xnl,1

 (5.4)

results in eliminating one of the nonlinear DOF and retaining only the nonlinear DOF, unl,

corresponding to the relative normal displacement of the crack nodes. Therefore, updating

the definitions of M, C, K and f in the new coordinate system, the general equations of

motion of the system can be written as3:

M

ünl(t)

ül(t)

+ C

u̇nl(t)

u̇l(t)

+ K

unl(t)

ul(t)

 = f(t)−

√2fnl,1[xnl,1, xnl,2](t)

0

 , (5.5)

1The general case of structures with several cracks and with several nonlinear nodes is trivially deduced
from the equations presented here.

2Taking into account the tangential friction and its possible dependence with respect to the normal relative
displacement of the contacting nodes can also be easily included in the method.

3Underlined symbols represent complex quantities. Bold symbols denote vectors or matrices.
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where ul
T = [v xl

T ] contains all the linear DOFs of the new system of equations.

The method presented in this chapter can be described as a Hybrid Time-Frequency

domain version of the well-known penalty method often used in direct time integration

techniques. The nonlinear force applied to the relative normal displacement is expressed

as:

fnl,1[xnl,1, xnl,2](t) = k∗ min[0, xnl,2(t)− xnl,1(t)], (5.6)

where k∗ is a coefficient that penalizes the relative normal penetration of the DOFs4. The

nonlinear set of equations describing the motion of the system can therefore be written as:

M

ünl(t)

ül(t)

+ C

u̇nl(t)

u̇l(t)

+ K

unl(t)

ul(t)

 = f(t) +

fnl[unl](t)

0

 , (5.7)

where

fnl[unl](t) = −2k∗ min[0, unl(t)]. (5.8)

5.2.2 Equations of motion in the frequency domain

When the steady-state forced response of the system is assumed to be periodic, the

displacements as well as the forces acting on the structure can be written as Fourier se-

ries of harmonic functions. Assuming that keeping Nh harmonics guarantees an accurate

approximation of the dynamics of the structure, the displacements can be expressed as:unl(t)

ul(t)

 = Re

 Nh∑
k=0

unlk

ulk

 ejkωt

 and f(t) = Re

(
Nh∑
k=0

fke
jkωt

)
, (5.9)

where ω is the frequency of the periodic excitation. Similarly, the nonlinear force can be

written as:

fnl[unl](t) = Re

(
Nh∑
k=0

fnlk
[unl0

, . . . , unlNh
]ejkωt

)
. (5.10)

4It is assumed here that the orientation of the two nonlinear normal DOFs at the crack is such that the
crack is considered open when xnl,2(t) > xnl,1(t).



129

Now, applying the Harmonic Balance Method to Eq. (5.7) yields a set of Nh + 1 complex,

nonlinear, coupled equations:Λnl,nl
k Λnl,l

k

Λl,nl
k Λl,l

k


unlk

ulk

 = fk +

fnlk
[unl0

, . . . , unlNh
]

0

 , (5.11)

where the (l, l) block of the linear part of the jacobian of this system of equation is defined

as:

Λl,l
k = −(kω)2Ml,l + jkωCl,l + Kl,l, (5.12)

with similar expressions for Λl,nl
k , Λnl,l

k and Λnl,nl
k . 5

5.2.3 Solution method

The set of Nh + 1 coupled nonlinear equations (5.12) is solved iteratively with the

following algorithm:

1. An initial value is given to the penalty coefficient k∗. The higher the value is, the

greater the accuracy is. One should note however that, if iterations on the values of

k∗ are needed because the set of nonlinear equations cannot be solved directly for

the desired value of k∗ without knowing a sufficiently close guess of its solution,

then a very low value can be used as a starting point, since the extreme case k∗ = 0

corresponds to an easily solvable linear case.

2. The Fourier coefficients of the nonlinear DOF are guessed. When this is done for the

first time, an arbitrary guess can be provided. However, if k∗ is very small, it makes

sense to choose for unl the linear solution obtained when the nonlinear boundary

conditions are not taken into account. In other cases, a guess that takes into account

the history of the previous guesses and the evolution of the convergence towards the

5This nonlinear set of equations can be further reduced so as to involve the Fourier coefficient of the
nonlinear DOF only, and therefore reduce the size of the system to be solved.
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solution is automatically provided by the nonlinear solver. A nonlinear solver based

on a modified hybrid Powell method was found to provide the required speed and

robustness necessary to handle such complicated nonlinear systems.

3. The time history of the nonlinear DOF unl is deduced from the guessed Fourier

coefficients unlk
using an inverse fast Fourier transform.

4. The time history of the penalty force is deduced from the time history of unl, using

Eq. (5.8).

5. A fast Fourier transform applied to the time history of the nonlinear penalty force

yields the Fourier coefficients fnlk
.

6. Now, the residue of the nonlinear set of equations (5.12) can be evaluated, and the

convergence towards its solution assessed. If these equations are not satisfied, new

approximate Fourier coefficients unlk
are provided by the nonlinear solver, and the

algorithm restarts at step (3).

7. When convergence is reached, the value of k∗ is increased and the algorithm restarts

at step (3), unless the results show that the penalty coefficient has reached a value

high enough to consider that the dynamics of the system has been accurately cap-

tured.

5.3 Nonlinear dynamics of cracked beam models

In this section, the nonlinear forced responses of two models of cracked cantilevered

beams are studied. The accuracy of the method is established with the first model by

comparing the results with that obtained with a direct time-domain method, using the

commercial code ANSYS. The second beam model is then used to assess the influence
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Figure 5.1: Geometric representation of the cracked cantilevered beam studied. At rest,
the crack opening is zero, that is, the two interfaces of the crack contact each
other.

that the numerical parameters of the analysis method have on the accuracy of the results.

Finally, a simple parametric study shows the effect of the crack length on the dynamics of

this beam model.

5.3.1 Reference calculation

In order to establish the accuracy of the method, a simple model of cracked cantilevered

beam is studied. The physical characteristics of the beam – shown in Fig. 5.1 – are:

• The length of the beam is L = 0.72 m, its width is w = 0.016 m and its height is

H = 0.032 m.

• The crack is located at approximately one-eighth of the length of the beam, since

Lc = 0.08 m. The crack length in the z direction is Hc = 0.018 m, and the crack
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spreads across the entire width of the beam in the y direction. At rest, the crack

opening is zero, that is, the two interfaces of the crack contact each other.

• The material properties of the beam are E = 206 GPa, ρ = 7650 kg/m3, and

ν = 0.29.

• The beam is excited by a harmonic forcing F (t) = 1.0 cos(ωt) which is applied at

its tip in the z direction. The structure damping of the beam is defined by C = αK,

where α = 5.0× 10−4 s.

The cracked beam is represented by a 13000-DOF finite element (FE) model, in order

to (1) capture accurately the linear behavior of the beam and (2) describe the crack with a

sufficient number of nodes. Since the mode of vibration of interest is the first bending

mode in the x-z plane, the FE model contains only the DOFs corresponding to these

directions. As a consequence, the model of the crack is also planar and it is described

by 10 pairs of nodes uniformly distributed in the z direction that can contact each other or

separate, depending on the relative motion of the two faces of the crack in the x direction.

In order to alleviate the computational cost of the analysis that would stem from ma-

nipulating such a large nonlinear system, a reduced order model of the cracked beam is

created. A Craig-Bampton component mode synthesis procedure is used to condense out

the FE model into a 62-DOF system made of (1) 40 physical DOFs associated to the 20

nodes describing the crack, (2) two physical DOFs at the tip of the beam, where the ex-

citation is applied, and (3) 20 modal coordinates corresponding to the normal modes of

vibration of the structure when all the previous 42 physical DOFs are constrained.

The forced response of the beam is obtained by applying the method presented above

to the reduced order model. In this analysis the first seven harmonics are retained and the

penalty coefficient is chosen as k∗ = 1.09 N.m−1. The reference forced response results are
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obtained by a time-integration analysis obtained with the commercial code ANSYS on the

finite element model6. In this case, the numerical parameters used for the reference study

with ANSYS allow for a maximum penetration p of 0.01, that is, the maximum penetration

allowed at the nodes describing the crack is at most one-hundredth of the x dimension of

the finite elements modeling the crack interface. Results with a less stringent penetration

condition p = 0.1 are also obtained.

Figure 5.2, which depicts the forced response of the beam, shows how the results ob-

tained with the analysis method developed in this chapter compare to the reference anal-

ysis provided by ANSYS. These results show an excellent agreement between the two

methods. The comparison of the computational cost incurred when performing these two

analysis show the outstanding benefits that stem from the use of the HFT method: on av-

erage, the CPU time required by ANSYS (with p = 0.01) to obtain the forced response

for a given frequency of the interval studied is 5000 times higher than that required by

the HFT method. This comparison clearly demonstrates that the exact dynamics of com-

plicated, realistic nonlinear structures can be captured extremely accurately at a very low

computational cost.

5.3.2 Influence of the parameters of the method

The accuracy of the forced response is a function of the numerical parameters that

characterize the new analysis method. These parameters are listed below:

• Physical parameters

– The number Ncm of component modes retained in the reduced order model.

The greater Ncm is, the higher the accuracy of the reduced order model is.

6The author wishes to extend hereby his sincere gratitude to his colleague Akira Saito for his expertise
and help for carrying out the time-integration analysis with ANSYS.
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Figure 5.2: Forced response at the tip of the first model of beam studied, in the z direc-
tion. The results derived from the analysis method developed in this chapter
are compared to the reference calculations obtained with ANSYS. The forced
response corresponding to the two limiting linear cases – that is, (1) the linear
forced response of the beam without crack, and (2) the linear forced response
of the cracked beam without taking into account the nonlinear boundary con-
ditions at the crack interface – are also presented.

– The number of nodes Nn used to model the crack. A high number of nonlinear

nodes ensures an accurate description of the local deformation of the crack

interfaces.

• Numerical parameters

– The penalty coefficient k∗, which controls the enforcement of the boundary

conditions.

– The number of the highest harmonic Nh retained to describe the dynamics of

the system. For instance, if the harmonics retained are 0,1,. . . 9, then Nh = 9.

– The number of sample points Nt over one period of motion used for the fast

Fourier transforms.
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Ideally, the method presented here allows one to capture the exact nonlinear dynamics

of the system when all these parameters tend towards infinity. Practically, however, it

is of great interest to determine realistic values that would maintain the accuracy of the

predicted forced response without compromising the computational cost of solving the

nonlinear equations. Since the CPU cost of the method is roughly proportional to the cube

of Nh and Nn, and proportional to Nt and k∗, it is important to find optimal values of the

parameters beyond which no significant improvement of the solution can be found.

A model of a cracked beam slightly different from the one studied above is used to

analyze the influence of the method parameters. In particular, the structural damping of

the beam is chosen to be smaller than the one used for the first study, so as to maximize

the nonlinear damping effect due to the crack. The new properties of the beam are listed

below:

• The length of the beam is L = 0.99 m, its width is w = 0.01 m and its height is

H = 0.04 m.

• The crack is located at approximately one-third of the length of the beam, since

Lc = 0.38 m. The crack length in the z direction is Hc = 0.02, m, which is half the

height of the beam, and the crack spreads across the entire width of the beam in the

y direction. At rest, the crack opening is zero, that is, the two interfaces of the crack

contact each other.

• The material properties of the beam are E = 200 GPa, ρ = 7800 kg/m3, and

ν = 0.3.

• The beam is excited by a harmonic forcing F (t) = 0.0316 cos(ωt) + 0.0244 sin(ωt)

which is applied at its tip in the z direction. The structure damping of the beam is

defined by C = αK + βM, where α = 1.0× 10−5 s and β = 1.0 s−1.
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Ncm = 20 Nn = 20 k∗ = 1012 N.m−1 Nh = 9 Nt = 1024

Table 5.1: Reference calculation parameters.

This beam is represented by a finite element model featuring 21000 DOFs, and a Craig-

Bampton component mode synthesis procedure yields a reduced order model featuring the

same characteristics as those of the beam used for the previous calculations: the number

of DOFs of the reduced order model, the number of component modes retained as well as

the number of physical DOFs describing the crack interface are the same.

The accuracy of the reduced order model is first demonstrated by its capability to

capture the natural frequency of the linear bending mode of vibration of the beam with a

crack, that is, the resonant frequency obtained when the beam’s stiffness is affected by the

crack and when the actual nonlinear boundary conditions at the crack interface are ignored.

In other words, it is the resonant frequency of the beam when the mutual penetration of the

crack nodes is allowed. In this case, the reduced order model predicts with less than 0.001

percent of error the frequency obtained by conducting the modal analysis on the full FE

model. This reduced order model can therefore be used with confidence for the nonlinear

analysis.

The calculation of the nonlinear forced response of the beam is carried out for various

parameter values. The converged calculation with the set of parameters beyond which no

noticeable improvement can be observed is referred to as the reference calculation, which

is defined by the parameters shown in table (5.1). For this calculation the crack spreads

across one half of the beam’s section, and 20 contact nodes are considered. Since each pair

of contact nodes is associated to a nonlinear DOF corresponding to their relative motion in

the x direction, and since all the harmonics from 0 to 9 are considered, the nonlinear set of

equations representing the system at a given frequency is made of 190 nonlinear variables.
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Figure 5.3: Amplitude of the forced response at the tip of the beam, in the z direction.

The frequency response curves obtained with the reference parameters are shown in

Fig. (5.3). The nonlinear reference calculation exhibits a resonant peak at 203.48 rad.s−1.

Two linear calculations are also shown in Fig. (5.3). They correspond to the linear limiting

cases obtained (1) when the beam doesn’t feature a crack, and (2) when the beam does fea-

ture a crack for which the corresponding nonlinear boundary conditions are ignored, thus

allowing for mutual penetration of the contacting nodes. The frequencies of the resonant

peaks found for these limiting cases are respectively 209.61 rad.s−1 and 197.69 rad.s−1.

The frequency shift FS – that is, the relative variation of the resonant frequency due to the

presence of the crack with respect to the natural frequency of the structurally sound beam

– is -2.93 %.

The nonlinear behavior occurring at the crack interfaces is illustrated in Fig. (5.4),

where the time histories of the x-component of the displacement of the contacting nodes

#1 and #11 are shown. They clearly indicate that for this type of excitation and for the

mode of vibration considered, the crack opens for nearly half the period of motion, and
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Figure 5.4: Time history of the displacement over one period of motion of the contacting
crack nodes #1 and #11 (that is, the nodes located at the free edge of the crack)
in the x direction, at the resonant nonlinear frequency (203.47 rad.s−1).

Value of Nt 1024 512 256 128 64
Error on FS - 0.37 % 0.39 % 0.34 % 0.62 %

Table 5.2: Influence of Nt on the accuracy of the prediction of the frequency shift FS.

closes during the other half.

In order to assess the impact that various choices of parameters have on the accuracy

of the solution, a series of calculation is carried out and for each of these, all but one of

the parameters are set to the values that correspond to the reference calculation. Tables

(5.2)-(5.6) give – for various values of the parameter which is not fixed – the percentage of

error found on the value of the frequency shift, with respect to the frequency shift obtained

with the reference calculation.

Value of Nh 9 7 5 3 1
Error on FS - 0.16 % 0.46 % 1.84 % 31.4 %

Table 5.3: Influence of Nh on the accuracy of the prediction of the frequency shift FS.
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Value of k∗ 1012 N.m−1 1011 N.m−1 1010 N.m−1 109 N.m−1

Error on FS - 0.03 % 0.24 % 1.89 %

Table 5.4: Influence of k∗ on the accuracy of the prediction of the frequency shift FS.

The results show that the choice of the parameters chosen for the reference calculation

corresponds indeed to a converged calculation, as slightly lower values of the parameters

yield results with the same accuracy. Overall, the following conclusions can be drawn:

• The influence of Nt is very limited. As shown in Fig. (5.4), the time histories of the

nonlinear degrees of freedom are relatively simple, and therefore a small number of

points in the time domain provides a good description of their periodic waveforms.

One should note however that other types of nonlinearities (contact with friction, for

instance) would probably require large values of Nt.

• Similarly, the importance of the number of component modes Ncm retained in the

reduced order model is very limited.

• The value of the penalty coefficient k∗ plays a more significant role. Higher values

of k∗ ensure that the boundary conditions are efficiently enforced. The results show

that the frequency shift is predicted within 1 % of error for values greater than 1010

N.m−1. One should note that there exists a value of k∗, which, when exceeded,

makes solving the nonlinear system describing the dynamics of the structure more

difficult. This is due to the fact that for extremely high values of k∗, the linear

and the nonlinear components of the nonlinear equations are not properly scaled

with respect to each other. Therefore, the choice of an optimum value for k∗ is

necessarily constrained by the need for accuracy and by the capability of solving the

nonlinear system of equations. For the cracked beam studied here, the higher bound

for k∗ was found around 1014 N.m−1.
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• The number of harmonics retained in the solution is also very important. The cal-

culations show clearly that one-harmonic approximations of the dynamics of the

system lead to grossly inaccurate predictions of the frequency shift. Five harmonics

are enough to capture the periodic waveform of the nonlinear DOFs, and therefore

the frequency shift can be predicted with an error smaller than 1 %.

• Finally, the number of nonlinear nodes describing the interface plays a great role.

Interestingly, it seems that the crack needs to be finely described so that the overall

dynamics of the system is accurately captured. Modeling the crack by a couple of

pairs of nodes only is not sufficient to eliminate the mutual penetration occurring at

the other non-selected nodes of the crack, due to the local modes of deformation of

the crack interfaces.

The computational cost associated with these calculations is very low when compared

to traditional methods such as direct time integration, which must integrate the nonlinear

equations of motion over a very long time until the transient behavior of the structure dies

out.

Results obtained with the parameters set to Ncm = 20, Nt = 256, Nh = 5, k∗ =

1010 N.m−1 and Nn = 20 show that the CPU cost associated to the calculation of the so-

lution of the nonlinear set of equations, for a given frequency near the resonant frequency,

is about 2.7 seconds on a laptop with a 1.8 GHz INTEL processor. Such calculation pa-

rameters yield a frequency shift within 0.5 % of the reference value.

As a consequence, the efficiency and speed of the method allows one to study various

crack configurations very easily. The results presented in Fig. (5.5) show the evolution of

Value of Ncm 20 10 5 3 1
Error on FS - 0.37 % 0.37 % 0.40 % 0.47 %

Table 5.5: Influence of Ncm on the accuracy of the prediction of the frequency shift FS.
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Value of Nn 20(1) 10(2) 8(3) 6(4) 4(5) 2(6) 2(7) 2(8)

Error on FS - 2.0 % 4.1 % 6.6 % 9.3 % 22 % 24 % 66 %

Table 5.6: Influence of the number of nonlinear nodes describing the crack on the accuracy
of the prediction of the frequency shift FS. (1)All the pairs of nodes (1-11), (2-
12), . . . (10,20) are selected. (2)Nodes (1-11), (3-13), (5-15), (7-17) and (9-19).
(3)Nodes (1-11), (4-14), (7,17), and (10-20). (4)Nodes (1-11), (5-15) and (9-19).
(5)Nodes (1-11) and (6-16). (6)Nodes (1-11). (7)Nodes (6-16). (8)Nodes (10-20).
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Figure 5.5: Frequency shift predicted for various crack lengths. The percentage of vari-
ation is calculated with respect to the natural frequency of the beam without
crack.

the frequency shift for various crack length ratios, defined as the crack length Hc divided

by the height H of the beam. A crack length ratio equal to zero corresponds to a beam

without crack. A value of 0.5 corresponds to the reference calculation presented above,

where the frequency shift is equal to -2.93 %.

5.4 Conclusion

A new method for the modeling and the analysis of the complex periodic forced re-

sponse of structures with nonlinear boundary conditions such as cracks has been presented.
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The method, based on (1) a multi-harmonic, frequency domain representation of the dy-

namics of the structure, and (2) a time domain enforcement of the nonlinear boundary

conditions, yields results of excellent accuracy at an extremely low computational cost.

An example of application has been studied. Finite element models of cracked beams

have been used to illustrate the method’s capabilities as well as to investigate the role of

the various parameters defining the method. The results show clearly that mono-harmonic

approximations of the dynamics of the structure cannot accurately predict the frequency

shift due to the presence of the crack, and that a relatively precise description of the crack

interfaces in terms of number of nonlinear nodes is also necessary. The performance of

the method in terms of accuracy and speed makes it compatible with extensive parametric

studies. It is for instance possible to obtain very rapidly the relationship existing between

the frequency shift and the length of the crack, a tool of significant importance for moni-

toring the evolution of damaged, cracked structures.

Although the example of application presented here is relatively simple in terms of

geometry, one should note that the method’s flexibility allows for studies of structures

with more complicated crack characteristics, as well as systems with different types of

displacement dependent nonlinearities, such as friction, impacts, or nonlinear stops, for

instance. The method shows a great potential for the efficient prediction of the nonlinear

forced response of structures represented by complex finite element models featuring a

large number of nodes subject to nonlinear boundary conditions.



CHAPTER VI

THEORETICAL AND NUMERICAL ANALYSIS OF
ADVANCED MODELS OF FRICTION DAMPERS

6.1 Introduction

Predicting with accuracy the forced response of a friction-damped structure requires

the precise modeling of the nonlinear contact interfaces. In the case of bladed-disk assem-

blies with friction dampers attached, this requirement translates into a need for accurately

modeling the physical properties of the friction dampers.

The inherent complexity of nonlinear systems involving friction dampers has however

led most of the studies on the subject to focus on approximate models of dampers that

are more amenable to efficient numerical parametric studies. One of the most common

approximations consists in assuming that the behavior of the dampers can be reduced to

that of a simple hysteretic model represented by a single stiffness value, a friction co-

efficient and a constant or variable normal load. Very few attempts have been made to

take into account the exact structural properties of the dampers, and even in that case the

models developed have still been approximations of the real structure. For instance, in the

structure-like model of damper proposed by Guillen et al. [6], the stiffness of the damper

is represented by a set of coefficients that are not derived from a finite element model

representation of the damper, and therefore are relatively hard to determine. The same

143
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model allows only four contact nodes with constant normal load, and the analysis of the

contact efforts stems from a combinatorial approach of the various states of the damper,

which severely hinders the generalization of this method to the case of dampers with more

contact points.

The theoretical developments and the associated numerical studies addressed in this

chapter show that the two methods developed in this dissertation can be applied to realis-

tic structures featuring complex damper models. First, a new model of a flexible wedge

damper is presented, and the forced response of an industrial turbine bladed disk is investi-

gated. In this case, the nonlinear operator approach outlined in Chapter II is used to model

the effect of the damper on the cyclic structure. Then, using the direct contact approach

developed in Chapter III, a flexible, structure-like model of damper is introduced. In this

case the properties of the dampers are directly derived from the finite element model of

the damper. The DOFs of the damper become in fact part of the system studied, and the

nonlinear behavior of the blade-disk-damper assembly is fully described by contact ele-

ments between the structure and the damper. As a consequence, this approach is readily

applicable to the study of the forced response of friction-damped systems with many con-

tact interfaces, without sacrificing the accuracy of the modeling of any of the components

of such assemblies.

6.2 Nonlinear equations of motion in the frequency domain

Following the theoretical analysis developed in Chapter II, the general equations of

motion for the friction-damper structure can be expressed in the time domain as

M̃¨̃x + C̃ ˙̃x + K̃x̃ = f̃l + f̃nl[x̃], (6.1)

where x̃ represents the DOFs of all the sectors of the complete assembly, and f̃nl[x̃] repre-

sents the displacement-dependent, nonlinear forces due to the contact efforts.
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Using cyclic symmetry properties of the structure, the equations of motion of the non-

linear system can be simplified so as to involve the DOFs of the reference cyclic sector

only, and their formulation in the frequency domain is given by the following set of cou-

pled, nonlinear algebraic equations:

Λ
q(k,eo)
k x0

k − f0
l,k − f0

nl,k(x
0
0, . . . ,x

0
nh

) = 0, with k = 0, · · · , nh, (6.2)

where x0
k is the vector containing the Fourier coefficients describing the k-th harmonics

of the nonlinear DOFs, nh is the total number of harmonics retained to approximate the

dynamics of the structure, q(k, eo) represents the relationship between spatial and temporal

harmonics

q(k, eo)− keo ≡ 0 [ns], (6.3)

and the complex matrices Λq
k are given by

Λq
k = −(kω)2Mq + jkωCq + Kq, (6.4)

where Mq, Kq and Cq represent the complex mass, stiffness and damping matrices asso-

ciated with the normal modes of vibration of the reference sector, where these modes of

vibration feature q nodal diameters.

The calculation of the contact efforts is performed according to the two types of meth-

ods described in Chapters II and IV: in the case of the wedge damper, the nonlinear opera-

tor approach introduced in Chapter II is used, and therefore the damper is not represented

as a structure in the frequency domain equations of motion. The wedge damper DOFs

are only used for the calculations performed in the time domain. For the direct contact

interactions that describe the efforts exerted by a structure-like damper on the platforms,

the DOFs of the damper appear in the frequency domain equations of motions and the

analytical formulation developed in Chapter IV is used.
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Platforms

Blade

Disk

Figure 6.1: Cyclic sector of the turbine studied. Specifically designed slots machined in
the platforms of adjacent blades accommodate the dampers, which are main-
tained in position by the centrifugal load created by the rotation of the engine.
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6.3 Model of turbine bladed-disk assembly

The turbine disk studied features 64 blades. A cyclic sector of the bladed disk assembly

is shown in Fig. 6.1. The original finite element model of a cyclic sector of the assembly

is made of about 130000 DOFs, and this sector is condensed out using a Craig-Bampton

component mode synthesis adapted to structures with cyclic boundary conditions. The

reduced-order mass and stiffness matrices obtained for each nodal diameter of the cyclic

free response of the structure are made of (1) the degrees of freedom associated with the

friction nodes of the platform, (2) the DOFs where the linear excitation representing the

aerodynamic forcing is applied, and (3) 19 modal coordinates corresponding to the normal

modes of vibration of the cyclic sector when the physical DOFs mentioned above are fixed.

The physical DOFs are made of three pairs of nodes located under the platforms – where

the dampers are attached – and two nodes located at the tip of the blade – where the linear

excitation is applied.

Therefore, the condensation of the original structure yields 64 complex, 43-by-43 mass

and stiffness matrices which satisfy the conjugate relations Mp = Mq and Kp = Kq if p+

q = 64, with p, q ∈ [0, . . . , 63]. The eigenfrequencies associated to each couple (Mp,Kp)

– that is, the frequencies of the natural modes of vibration of the complete bladed-disk

when it vibrates with a p nodal-diameter pattern – are shown in Fig. 6.2. Since the modes

of vibration can exhibit a strong dependency on the number of nodal diameters of the

response of the structure – in particular for small nodal diameters – the exact formulation

of the equations of motion of the nonlinear system must take into account these different

mass and stiffness matrices.

The engine order of the linear excitation that represents the aerodynamic forcing due to

the wake flow of upstream stator elements is 43. The set of harmonic components defining
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the linear forcing is Hl = {1, 2, 3}, that is, the linear forcing is written as:

Fl(t) = F1
l e

jωt + F3
l e

j3ωt + F5
l e

j5ωt, (6.5)

where the norm of the third and fifth harmonic components of the excitation are chosen

to be respectively 70% and 30% of the norm of the first harmonic. The frequency of

this forcing is chosen so as to excite the mode of interest for this study, which is the first

bending mode of the blade, found at ω0.

6.4 Analysis of the forced response with a wedge-damper attached

In this section the forced response of the turbine disk with a wedge damper (also re-

ferred to as cottage-roof damper) is analyzed, and the influence of the design parameters

of the damper is investigated.

6.4.1 Model of wedge damper

The model of wedge damper used for this study is shown in Fig. 6.3. It is characterized

by a 4-by-4 stiffness matrix Kd corresponding to the tangential and normal DOFs associ-

ated with the two contact points of the damper with the platform. This stiffness matrix is

derived from the finite element model representation of the damper, and by considering the

fact that the damper can only translate in space in the ex and ey direction. The elimination

of the possible rotation of the damper along the ez axis means that the rank of Kd is 2.

The centrifugal efforts applied to the damper are denoted C1 and C2. They are derived

from the mass properties of the damper, the angular speed of the bladed-disk assembly,

and the distance between the dampers and the axis of rotation of the engine. The geometry

of the damper is characterized by the angles γ1 and γ2, which allows for the study of

non-symmetric configurations.



149

0 10 20 30 40 43 50 60 64
0

1

2

3

4

5

6

7

8

9

10

Nodal diameters of the cyclic modes

0

0

:

:

1

43

2

22

3

1

4

44

5

23

6

2

7

45

8

24

9

3

Harmonic component of the force 

applied to a sector of the assembly

Number of nodal diameters featured by 

the cyclic mode excited by this harmonic

First bending mode

x ω0

Figure 6.2: Top: Normalized frequencies of the cyclic modes of the 64-sector bladed disk
assembly, as a function of the number of nodal diameters featured by these
modes. The mode of interest for this study corresponds to the first bending
mode of the blade associated with an engine-order 43 linear excitation. Bot-
tom: Relation between the harmonics of the linear and nonlinear forces ap-
plied to a cyclic sector of the assembly and the number of nodal diameters
featured by the cyclic modes excited by these harmonics. The first harmonic
corresponds to the frequency of the first bending mode studied, with 43 nodal
diameters. Higher harmonics excite the structure for different nodal diameters,
as illustrated by the dots on the top figure.
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Figure 6.3: Model of wedge friction damper and description of its geometric configuration
with the platforms of the turbine bladed disk.

6.4.2 Time-domain analysis of the contact forces

The contact law used to model the contact interface is a simple, constant coefficient

Coulomb friction law. Denoting by F t
1 , F n

1 , F t
2 and F n

1 the contact efforts exerted by

the damper on the platforms, the following quasi-static equilibrium must be verified at all

time:

−Kd{ut
1, u

n
1 , u

t
2, u

n
2}+ C1 + C2 = {F t

1, F
n
1 , F t

2, F
n
2 }, (6.6)

where ut
1, un

1 , ut
2, and un

2 represent the DOFs of the damper. As described in the method

presented in Chapter II, this equation is evaluated in the time domain for every input mo-

tion provided by the nonlinear solver, and as a consequence the tangential and normal

forces applied to the structure vary as a function of this motion. The contact interfaces can

therefore exhibit complicated behaviors with alternating stick and slip phases on each of

the platforms.

Now, assuming that xt
1, xn

1 , xt
2, and xn

2 represent the nonlinear DOFs of the platforms,

the following state equations entirely characterize the behavior of the damper:

• If the first contact node of the damper is in the slip state, the following relations must
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be satisfied:

F t
1 = µF n

1 and u̇t
1 < ẋt

1 (positive slip) (6.7)

or F t
1 = −µF n

1 and u̇t
1 > ẋt

1 (negative slip), (6.8)

and un
1 = xn

1 , (6.9)

with similar relations existing for the second contact point.

• If the first contact node of the damper is in the stick state, the following relations

must be respected:

u̇t
1 = ẋt

1 and |f t
1| < µ|fn

1 |, (6.10)

and un
1 = xn

1 , (6.11)

with similar relations existing for the second contact point.

One should note that only the stick, positive slip and negative slip states are mentioned

above as possible configurations for the damper: the case of separation is not considered

as it does not correspond to a physically realistic configuration, since the wedge dampers

– due to their specific geometry – maintain contact with both platforms at all time. This

requirement is expressed as an additional condition describing the wedge angles and the

friction coefficient of the interfaces:

µ < 1/ tan γ1 and µ < 1/ tan γ2. (6.12)

The wedge damper can therefore be described by 9 distinct states: stick/stick,

stick/positive slip, stick/negative slip, positive slip/stick, positive slip/positive slip, pos-

itive slip/negative slip, negative slip/stick, negative slip/positive slip and finally, negative

slip/negative slip.
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The description of this model of damper is completed by the mathematical criteria that

govern the transitions between these states. Assuming that t∗ represents the time at which

a transition occurs, these criteria can be expressed as:

• Slip-to-stick transition. This transition is characterized by the fact that the relative

slip velocity is zero. For the first contact point, this can be written as:

t < t∗, ẋt
1(t)− u̇t

1(t) 6= 0 and ẋt
1(t

∗)− u̇t
1(t

∗) = 0. (6.13)

In addition, the transition must be validated by the fact that the relationship between

the contact forces, evaluated at t∗ with the stick assumption, do not allow for slip,

that is:

µ
d
dt
|F n

1 | >
d
dt
|F t

1|. (6.14)

Similar conditions exist for the second contact point.

• Stick-to-slip transition. The conditions for this transition are obtained by comparing

the norm of the tangential and normal components of the contact forces:

t < t∗, |F t
1(t)| < µ|F n

1 (t)| and F t
1(t

∗) = µF n
1 (t∗) (stick/pos. slip), (6.15)

or

t < t∗, |F t
1(t)| < µ|F n

1 (t)| and F t
1(t

∗) = −µF n
1 (t∗) (stick/neg. slip). (6.16)

In addition, the transition must be validated by the fact that the relationship between

the contact forces, evaluated at t∗ with the stick assumption, allows for slip, that is:

µ
d
dt
|F n

1 | <
d
dt
|F t

1|. (6.17)

Similar conditions exist for the second contact point.
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Assuming that simultaneous transitions are not physically realistic (that is, state transi-

tions can not occur on both platforms at the same time) due to the usually non-symmetric

geometry of the damper and motion of the platforms, and assuming that positive-slip to

negative slip and negative-slip to positive-slip transitions are not allowed, the conditions

described above yield a maximum of 24 distinct transitions.

The evaluation of the time-domain periodic waveforms of the contact forces is per-

formed using a variation of the time-integration procedure described in Chapter II. A third

degree polynomial interpolation of the input motion provided at each iteration by the non-

linear solver is used to represent the motion of the platforms. In other words, the motion

of the platforms over the intervals [ti, ti+1] (where t1, · · · , tnt represent the time points for

which displacement values describing the motion of the platforms are obtained by Fourier

transforms) is interpolated as follows:

xt
1(t) = xt

1,i,0 + xt
1,i,1t + xt

1,i,2t
2 + xt

1,i,3t
3 for t ∈ [ti, ti+1], (6.18)

with similar expressions for the other variables xn
1 (t), xt

2(t) and xn
2 (t). The interpola-

tion coefficients xt
1,i,0, xt

1,i,1, xt
1,i,2 and xt

1,i,3 are chosen so that they ensure the following

continuity conditions:

xt
1(t

+
i ) = xt

1(t
−
i ) and ẋt

1(t
+
i ) = ẋt

1(t
−
i ). (6.19)

As a consequence of this formulation, the equations governing the state of the damper as

well as the transition criteria can be expressed, for each of the nt time intervals [ti, ti+1]

of a period of motion, as functions involving these interpolation coefficients. The func-

tions obtained by substituting these interpolation coefficients into the state and transition

equations lead to polynomial equations of maximum degree equal to 3. The solutions of

these equations can therefore be obtained analytically, without actually performing the nu-

merical time-integration of the equations describing the forces and the displacement of the
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damper points. This exact procedure yields significant computational time savings, as it

does not require a step size δt = T/nt as small as that used for a direct time integration.

Furthermore, the exact transition times are detected without using numerical approxima-

tions.

This procedure is repeated over several periods of the input motion of the platforms,

until the steady state of the motion of the damper (and therefore, the steady state of the

contact forces applied to the platforms) is reached.

Finally, the proper phase conditions described in Chapter II are applied to the periodic

waveforms of the contact forces, so as to derive accurately the Fourier coefficients involved

in the frequency-domain equations of motion.

6.4.3 Results

The forced response of the turbine bladed disk has been conducted for several numeri-

cal parameters that directly influence the accuracy of the results, so as to identify the value

of these parameters beyond which no noticeable accuracy improvement is observed.1

• The reduced order matrices obtained for each nodal diameter must represent accu-

rately the dynamics of the structure. This can be controlled by selecting a relatively

high number of component modes cnm in the Craig-Bampton synthesis. One should

note that these reduced order matrices do depend on the nodal diameter featured

by the modes of vibration they represent. Figure 6.2 clearly illustrate how the har-

monics of the linear and nonlinear forces couple modes of vibrations with various

nodal diameters. The method developed herein allows for the accounting of the ex-

act properties of the cyclic structure, instead of taking into account the reduced order

1The physical parameters of this study, such as the values used for the centrifugal load, damper stiffness,
excitation forcing, structural damping, friction coefficient and frequency range are proprietary. The results
are presented here in terms of relative quantities.
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matrices calculated for the engine order of the linear excitation only.

• The Hybrid Frequency-Time domain method requires two parameters. The most

important one is the number of harmonics, nh, which defines the set of harmonics

Hnl = {0, 1, . . . , nh} used to capture the periodic time histories of the contact forces

as well as the time histories of the friction DOFs. The second one is the number of

points, ntime, used in the time domain to perform the FFT operations required by

the method as well as the calculation of the contact forces for a given input motion

of the platforms.

The nonlinear forced responses obtained for various numerical parameters as well as

several wedge damper configurations are presented in Fig. 6.4. It is shown that the HFT

method is numerically converged when the following numerical parameters are chosen:

cnm = 11, Hnl = {0, 1, . . . , 9} and ntime=1024 . These parameters define the reference

nonlinear calculation. The analysis of the results presented yields the following conclu-

sions:

• A very effective damping effect is observed for the nominal wedge damper design.

The resonant peak of the corresponding nonlinear response is about 12 times smaller

than the resonant peak of the forced response of the turbine disk when there are no

dampers.

• A one-harmonic approximation of the dynamics of the structure does not provide an

accurate estimation of the amplitude of the nonlinear forced response, as the relative

error observed with respect to the reference calculation is more than 70%. At least 5

harmonics are required to estimate the value of the resonant peak within a 5% error

margin. One should note that neglecting the higher harmonics of the linear forcing is

also an important source of inaccuracy (15% error). Although the harmonics 3 and
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Figure 6.4: Amplitude of the forced response of the tangential component of the first fric-
tion node, for various numerical parameters as well as for various damper con-
figurations. The reference calculation is performed for the nominal damper
design (Kd

n,γn
1 ,γn

2 ,Cn
1 ,Cn

2 ) with the following numerical parameters: Hl =
{1, 3, 5}, Hnl = {0, 1, 2, . . . , 9}, ncm = 11, and ntime = 1024. The other
results presented in this figure have been obtained by varying one or more of
these parameters, the others remaining unchanged with respect to the refer-
ence calculation. For the sake of clarity, only the nonlinear resonant peaks
corresponding to the forced responses obtained with these modified param-
eters are plotted above; these peaks are identified by a symbol and a letter
which refers to the calculations indicated below. Resonant peaks obtained
for various damper configurations: (a) Kd = Kd

n/10; (b) Kd = Kd
n/5;

(c) Kd = Kd
n/2; (d) C1 = 0.94 × Cn

1 and C2 = 0.94 × Cn
2 ; (e)

γ1 = γn
1 + 1o and γ2 = γn

2 − 1o; (f) γ1 = γn
1 − 1o and γ2 = γn

2 + 1o.
Results obtained for various numerical parameters: (g) Hnl = {0, 1}; (h)
Hnl = {0, 1, 2, 3}; (i) Hl = {1}; (j) resonant peak obtained with the nominal
parameters by assuming that the reduced stiffness and mass matrices of a cyclic
sector of the assembly are independent of the number of nodal diameters, that
is: Mp = M43 and Kp = K43, for p = 0, . . . , 64; (k) Hnl = {0, 1, 2, 3, 4, 5};
(l) Hnl = {0, 1, . . . , 15}, cnm = 16, ntime = 2048; (m) cnm = 1.



157

0 0.2T 0.4T 0.6T 0.8T T

-1

0

-1.5

-0.5

State of the first friction point

State of the second friction point

stick negative slip

negative slip positive slip

positive slipstick

stick st. n. sl.

p. sl.

Time domain (over a period of motion, at 1.1 ω0)

F
1

t

F
2

t

F
2

n

F
1

n

x C1
n
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is characterized by F t = µF n, and negative slip is characterized by F t =
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resonant peak of the nonlinear response with nominal parameters. The time
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the first contact point of the reference sector and the second contact point of
the adjacent sector.
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5 of the linear force do not affect the forced response in the linear case (the modes

they excite are decoupled), they play a significant role in the nonlinear case as the

modes of the structure become coupled by the nonlinear force.

• The damper configurations tested show that the nonlinear forced response is highly

sensitive to the wedge damper design. The response seems most affected by small

changes in the values of the normal loads and the wedge angles, whereas it takes

huge variations of the stiffness of the damper to introduce significant amplitude

differences.

The time histories of the contact forces applied to the bladed disk at the frequency of the

resonant nonlinear peak are shown in Fig. 6.5. They illustrate the complicated nature of

the contact interactions between the damper and the platforms, as eight state transitions

are observed over a single period of motion. The complex periodic waveforms observed

explain why a high number of harmonics is necessary to accurately capture the dynamics

of such systems.

The efficiency of the method developed should also be underscored: the nonlinear

forced response has been calculated for 150 frequencies in less than 15 minutes on a laptop

with a Intel 1.8 GHz processor. The HFT method is therefore a very efficient and accurate

tool for the parametric study of flexible wedge friction dampers.

6.5 Analysis of the forced response with a structure-like damper at-
tached

In this section the forced response of the same cyclic structure is studied; the model of

friction damper is however very different: it is represented by a finite element model, and

the stiffness properties associated to the DOFs of this model are included in the frequency

domain equations of the nonlinear system. The interaction of the damper and the structure
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is modeled by a set of contact elements according to the direct contact approach defined

in Chapter IV.

A simple example is first studied to show the equivalence between the nonlinear oper-

ator approach used to model friction dampers and introduced in Chapter II, and the direct

contact approach which requires the damper DOFs to be part of structure analyzed, and

which was developed in Chapter IV. Then the friction-damped, forced response of the

turbine blade assembly is investigated with a complex damper represented by an elastic

structure having four contact points with the platforms.

6.5.1 Theoretical analysis

Let K̃ denote the stiffness matrix of the system made of all the sectors of a bladed

disk assembly. Assuming that each cyclic sector of the assembly is associated with a local

reference frame deduced by successive rotations of that of the reference sector, and that

the DOFs of each cyclic sector are expressed in these local coordinate systems, K̃ can be

written as:

K̃ =



Ks Kc 0 0 0 · · · Kc

Kc Ks Kc 0 0 · · · 0

0 Kc Ks Kc 0 · · · 0

...
...

...
...

... . . . ...

Kc 0 0 0 0 Kc Ks


, (6.20)

where Ks and Kc represent, respectively, the stiffness of a sector and the elastic coupling

existing between the adjacent sectors. Now, assuming that an additional, elastic damper

is appended to each of the cyclic sectors, and that it is structurally independent from the

cyclic assembly, then the new stiffness matrix K̃+ of the augmented assembly can be
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written as:

K̃+ =



K+
s K+

c 0 0 0 · · · K+
c

K+
c K+

s K+
c 0 0 · · · 0

0 K+
c K+

s K+
c 0 · · · 0

...
...

...
...

... . . . ...

K+
c 0 0 0 0 K+

c K+
s


, (6.21)

where

K+
s =

Ks 0

0 Kd

 and K+
c =

Kc 0

0 0

 , (6.22)

and where Kd is the stiffness matrix of the damper. Since the dampers are not physically

attached to the rest of the structure, there are no coupling terms between the dampers and

the sectors, and of course there are no coupling terms between the dampers themselves.

The absence of coupling terms also signifies that the dampers retain all of the six DOFs

associated to rigid body motions.

Following the same analysis as the one performed in Chapter II, the set of nonlinear

frequency-domain equations that govern the forced response of the structure can be written

as:

Λ+q(k,eo)
k x+0

k − f+0
l,k − f+0

nl,k(x
+0

k, . . . ,x
+0

nh
) = 0, k = 0, . . . , nh (6.23)

with the following definitions:

• The vector representing the Fourier coefficients of the k-th harmonic of the nonlinear

DOFs of the reference sector, x+0
k, is partitioned as:

x+0
k =

 x0
k

xd
0
k

 (6.24)

• The jacobian matrices Λ+q(k,eo)
k are given by

Λ+q
k = −(kω)2M+q

+ jkωC+q
+ K+q

, (6.25)
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where

M+q
=

Mq 0

0 0

 , C+q
=

Cq 0

0 0

 , K+q
=

Kq 0

0 Kd

 , (6.26)

and where Mq, Cq, Kq correspond to the complex matrices of the cyclic reference

sector alone.

• The relation between the spatial and temporal harmonics is unchanged:

q(k, eo)− keo ≡ 0[ns]. (6.27)

• The Fourier coefficients corresponding to the k-th harmonic of the linear forcing

f+0
l,k are defined as

f+0
l,k =

 f0
l,k

fd
0
l,k

 . (6.28)

Usually, the definition of the linear forcing applied to the dampers only includes the

constant, real terms due to the centrifugal efforts applied to them.

• The Fourier coefficients corresponding to the k-th harmonic of the nonlinear contact

forces are defined as:

f+0
nl,k =

 f0
nl,k

fd
0
nl,k

 . (6.29)

Now, if the dampers attached to the assembly are not straddling adjacent cyclic

sectors, one can derive from the law of action and reaction the following relation:

f0
nl,k = −fd

0
nl,k. (6.30)

However, this relation is usually not verified in the more general – and common –

case of a damper straddling two adjacent cyclic sectors. In this case, the reference

sector is subject to the contact forces created by the damper straddling the reference
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sector (defined as the sector #0) and the sector #Ns− 1, and it is also subject to the

contact forces created by the damping straddling the reference sector and the sector

#1.

Assuming that fDi→Sj
(t) is the force exerted by the damper #i onto the cyclic sector

#j and fSi→Dj
(t) is the force exerted by the sector #i onto the damper #j, and

using the phase φt introduced in Chapter II, the following relations can be written:

fD0→S0(t) = −fS0→D0(t), (6.31)

fD1→S0(t) = −fS0→D1(t), (6.32)

fD1→S0(t) = fD0→SNs−1
(t− φt) = −fDNs−1→S0(t− φt), (6.33)

and the Fourier coefficients of f+0
nl,k reflect the phase differences expressed in these

relations.

Finally, the time-domain calculation of the contact efforts is made by the same type of

time-marching or time-integration procedures as presented in Chapter II.

With this approach, any type of elastic structure can be appended to the matrices rep-

resenting the cyclic sectors of the bladed-disk assembly.

6.5.2 Validation of the direct-contact approach

For simple models of dampers, the nonlinear operator approach and the direct contact

approach should yield the same results. In this study, the forced response of the turbine

bladed disk is analyzed with these two methods when a simple, platform-to-platform fric-

tion damper with constant normal load is attached. The results are presented in Fig. 6.6

The parameters defining the nonlinear operator and the structure-like friction damper

are chosen so that the behavior of the two systems becomes identical when the stiffness k∗

of the contact element required by the direct contact approach tends towards infinity. In
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Figure 6.6: Equivalent analysis techniques for a simple model of friction damper attached
to the cyclic sectors of the turbine bladed disk. Nonlinear operator approach
(top). In this approach the damper is considered as a nonlinear operator pro-
viding the contact efforts at the platform DOFs P1 and P2 as a function of their
displacement. The parameters of the operator are kd, N and µ. Direct contact
approach (Bottom). Here the damper is modeled by a structure – a very simple
spring of stiffness kd – with DOFs associated to its two nodes D1 and D2. In
order to make the comparison with the first method, and in order to eliminate
the rigid body mode of the damper associated with the ex direction, the rel-
ative motion between P1 and D1 is eliminated. The second node D2 directly
rubs onto the platform P2 and the method requires that a contact element must
be inserted between these two DOFs. The behavior of this system converges
towards that of the first, when the stiffness k∗ of the contact element tends
towards infinity.



164

10.9 1.1 1.2
0

1

0.8

0.6

0.4

0.2

Reference

No friction
r = 1/10
r = 1/2
r = 1/1
r = 2
r = 5
r = 10
r = 100

Normalized frequency ω/ω0

N
o
rm

al
iz

ed
 r

es
p
o
n
se

Figure 6.7: Comparison of the forced response of the tangential component of the dis-
placement of one of the friction nodes of the platforms, when calculated with
the nonlinear operator approach and with the direct contact approach. The
reference calculation corresponds to the results obtained with the nonlinear
operator approach, and it is compared to the responses obtained for various
ratios r = k∗/kd with the direct contact approach.

addition, the same number of harmonics is kept in both methods.

The results of this comparison are presented in Fig. 6.7. The forced response obtained

for various ratios r = k∗/kd with the direct contact method is compared to the reference

calculation obtained with the nonlinear operator approach. As expected, the two methods

yield similar results when k∗ tends towards infinity. Actually, an excellent agreement is

already obtained when the value of the stiffness of the contact element is just ten times

that of the damper itself, and when this ratio exceeds 100 the two responses are virtually

indistinguishable. For these values of r, the augmented system (since the cyclic sector

of the blade-disk-damper assembly is now made of 45 DOFs) captures very accurately

the nonlinear behavior due to the damper. The CPU cost for the direct contact method is

similar to that for the nonlinear operator approach: the CPU time required to calculate the
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response at a nonlinear frequency is on average about 0.2s with a personal laptop running

at 1.8GHz.

The benefits of the direct contact approach are obvious: the dampers can now be repre-

sented by finite element models, and no approximations regarding their geometry are nec-

essary anymore. Although the system studied here is indeed simple, since the definition

of the damper as a structure is restricted to its minimum definition (a 2-DOF spring), it is

clear that the technique is readily applicable to models of dampers with many more struc-

tural DOFs, with the advantage that the stiffness properties of these dampers are integrally

part of the system studied. This great flexibility of analysis means that systematic para-

metric studies can be carried out with ease, since they are now based on a finite element

model representation of the dampers. This is of great importance on a design standpoint.

6.5.3 Model of structure-like damper

The forced response of the cyclic assembly with a more complicated structure-like

damper attached is now analyzed. The model of damper is shown in Fig. 6.8.

The damper is represented by a structure whose shape is more or less that of a hollow

cube, with an opening at the bottom surface. The geometry of the damper is defined by

its outer dimensions L, l, and h, and its wall thickness w. The material properties of

the damper are its Young modulus, Poisson ratio and density ρ, as well as the friction

coefficient of the top surface2. The mass of the damper is deduced from its geometry,

and is used to calculate the centrifugal efforts CA, CB, CC and CD. These efforts are

applied in the ez direction on each of the four points of contact between the damper and

the platforms of the structure. The damper straddles two adjacent sectors of the cyclic

assembly: the points of contact A and B are interacting with the platform of the reference

assembly, and the points of contact C and D are interacting with the platform of the sector
2The exact values of the damper parameters are proprietary.
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Figure 6.8: Model of structure-like damper with multiple contact nodes.

#63.

A finite element model that takes into account all these physical properties is con-

structed. Since this FE model contains many more DOFs than necessary for the present

study, a Craig-Bampton condensation method is applied and yields a reduced-order model

made of the 12 physical DOFs associated to the contact nodes, and 10 modal coordinates.

Since the damper is not subject to boundary conditions other than the nonlinear interac-

tions occuring at the platform interfaces, its reduced-order stiffness matrix Kd allows for

all of the six rigid body modes of the damper.

6.5.4 Choice of boundary conditions and contact elements

The augmented system representing the blade-disk-damper assembly features 65 DOFs

and ideally, this friction-damped system can be described without assumptions by enforc-

ing 3-D friction conditions at each of the points of contact between the damper and the

platforms.

This approach allows however the structure-damper assembly to feature the rigid body
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modes associated with the translations of the damper in the ex and ey directions, as well

as the rotation about the ez axis. The presence of these rigid body modes has proved to

be a source of extreme numerical complications and in most cases the nonlinear forced

response could not be calculated. Among the possible explanations for these difficulties,

one can note that (1) allowing for the creep or drift of the damper under the platforms

may prevent the damper to reach a periodic steady state, (2) the full structural coupling

existing between the tangential and normal friction components at each contact point may

not ensure the uniqueness of the response of the damper, and (3) the full structural cou-

pling existing between the contact nodes of the damper prevents the nonlinear solver from

converging towards the solution representing the nonlinear force, because of the intricate

nature of a full 3-D contact at each of the four nodes. These possible explanations are

difficult to investigate independently, even when using exact analysis techniques such as

time integration, due to the overall complexity of the structure studied.

In order to alleviate these problems, a more stringent set of boundary conditions is

used:

• The relative displacement of the damper with respect to the platform is eliminated

in the ex and ey directions for the point A.

• The relative displacement of the damper with respect to the platform is eliminated

in the ex direction for the point B.

These boundary conditions eliminate the rigid body modes corresponding to the transla-

tion of the damper in the ex and ey directions. The rotation of the damper about the ez

axis is also eliminated. The elimination of these relative DOFs is achieved by simple lin-

ear manipulations of the rows and columns of the structural matrices of the augmented

assembly. Thus, the dampers and the structure become structurally coupled with respect
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to these particular DOFs.

This coupling can actually be interpreted as a natural enforcement of the actual bound-

ary conditions applied to the dampers: the dampers usually fit snuggly into cavities under

the platform that precisely accommodate their geometry, thus preventing the rigid body

modes mentioned above, or to the least strongly limiting the corresponding relative dis-

placements.

The three rigid body modes that are not eliminated correspond to the translation of

the damper along the ez axis and to the two rotations about the ex and ey axis. The

presence of these rigid body modes is necessary to allow for the isostatic determination of

the configuration of the damper as a function of the position of the four platform nodes.

For instance, if the four nodes of the platform are at a given time displaced by the same

amount in the ez direction, the damper must be able to follow the same motion to maintain

the contact – thanks to the centrifugal efforts – with the platforms.

The contact elements chosen to model the interaction between the damper and the

platform reflect the computational need for simplification of the complexity of the system:

• The contact element acting on the node A takes into account the variable normal

efforts in the ez direction and this direction only (since there is no relative motion at

this point in the other directions).

• The contact elements chosen for the nodes B,C and D allow for friction along a pre-

determined direction and variable normal load. The direction of friction is deduced

from the study of the linear response of the assembly without damper attached, and

is defined by the direction in which the largest component of the response if ob-

served. In the case studied, and given the type of excitation chosen, this direction

of privileged motion coincides with the ex tangential direction. One should note
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Figure 6.9: Forced response of the tangential component of the node A of the platform.
The reference calculation is obtained with the contact parameter k∗ref . The
ratio r is defined as r = k∗/k∗ref , and the forced responses obtained for various
values of r are calculated.

however that if needed, the choice of another direction could be easily enforced by

rotating these contact elements appropriately.

With these modeling assumptions, the damper/structure interface is modeled by a set of

14 nonlinear DOFs.

6.5.5 Results

The nonlinear forced response of the turbine bladed disk is presented in Fig. 6.9. The

amplitude of the forced response of the ex component of the displacement of the blade at

the contact node A is given for various values of the method parameter k∗. The calculations

are performed with 9 harmonics, a number which corresponds to the converged case. The

forced response presented in Fig. 6.9 shows the convergence of the direct contact method

with respect to k∗. Values of k∗ beyond that used for the reference calculation do not yield

any noticeable improvement of the forced response.
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Figure 6.10: Time histories of the periodic waveforms of the contact forces applied by the
damper to the nodes C and D of the platform. These forces are approximated
by 9 harmonics, and are obtained at the frequency of the resonant nonlinear
peak. CA is the value of the normal load applied to the node A of the damper.
In this study all the normal loads applied to the damper are equal to each
other.

The results illustrate the effectiveness of the friction damper, since the amplitude of

the nonlinear resonant peak is about 0.08 times that of the linear case. The presence of

additional resonances (which were absent in the wedge damper study) also illustrate the

increase of complexity due to the use of a realistic structure-like friction damper. And the

forced responses are obtained very efficiently: the response at each frequency is calculated

in about 0.3s.

The Figure 6.10 shows the time histories of the contact forces obtained with the ref-

erence calculation. The tangential and normal components of the forces applied by the

damper on the structure (at the nodes C and D) are depicted over a period of motion.

These time histories are obtained at the frequency corresponding to the resonant nonlinear

peak. The normal efforts applied by the damper are clearly variable, and they vary around
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Figure 6.11: Time histories of the normal DOFs of the damper and the platform at the
contact nodes A and B, obtained at the nonlinear resonant peak frequency.

the value of the centrifugal forces applied to the four nodes of the damper. One can also

check that at all times, the sum of the normal efforts applied by the damper on the platform

is constant and equal to the sum of the centrifugal forces applied to the damper.

The Figure 6.11 shows the time histories of the normal component of the displacement

of the contact nodes A and B, for the damper and platform DOFs. One can observe that

at all times, there exists a small penetration of the damper nodes in the platform. This is a

consequence of the direct contact approach. The low value of the penetration is due to the

good convergence of the forced response as a function of k∗.

6.6 Conclusion

Two new models of dampers have been presented. The first one is a flexible wedge

damper, which takes advantage of the nonlinear operator approach of modeling the

displacement-dependent forces created by the damper. The second damper is a flexible

structure that is appended to the system it interacts with. The direct contact approach,
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which is based on the definition of contact elements that characterize the relationship be-

tween the damper and the structure, has been applied to this model with great success.

The nonlinear forced responses of an industrial turbine bladed-disk assembly have

been studied with the two models of dampers. In both cases, the complexity of the re-

sponse of the structure as well as the complexity of the contact efforts has been high-

lighted. These examples show that the dynamics of friction damped systems can be ob-

tained very accurately and at a low computational cost. The studies conducted in this

chapter also demonstrate the fact that strong approximations regarding the modeling of

friction dampers are not required anymore. In particular, the flexibility and efficiency of

the direct contact method should allow the investigation of friction damped systems – and

other systems with displacement-dependent nonlinearities – with an unprecedented de-

gree of realism. Since in this method the dampers are represented by their finite element

models, the direct contact approach should also be applicable to many different types of

systems, independently of their geometry or the number of contact points.



CHAPTER VII

CONCLUSIONS

7.1 Dissertation contributions

The main contributions of this work are as follows:

• The formulation of the Hybrid Frequency-Time (HFT) method used for the study of

structures with displacement-dependent nonlinearities has been generalized, and in

particular its application to the theoretical analysis of bladed-disk assemblies with

friction dampers has been extended.

– Modifications of the original HFT method have been introduced in order to

meet the demanding requirements and constraints associated with the study

of the friction-damped, forced response of realistic industrial structures. A

new method of condensation of the frequency-domain, nonlinear equations

has been developed. It is particularly adapted to the study of nonlinear sys-

tems with a large number of degrees of freedom (DOFs). An efficient formu-

lation for the calculation of the jacobian of the nonlinear equations describing

systems with a large number of friction dampers has also been introduced.

– The theoretical analysis of structures with cyclic symmetry has been intro-

duced. It has been shown that the exact forced response of a cyclic assembly

173
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with friction dampers can be deduced rigorously from the analysis of the be-

havior of a single cyclic sector of the assembly. A relation between the spatial

harmonics of the response of the structure and the temporal harmonics of the

excitation has been exhibited. This new modeling technique takes into account

the variation of the elastic properties of cyclic assemblies as a function of the

spatial harmonics of the response and, by extension, as a function of the tem-

poral harmonics of the nonlinear forces.

– The framework for the theoretical modeling of friction dampers as nonlinear

operators as been established. Within this framework, the procedures used

to handle the time-domain representation of the nonlinear forces have been

delineated for several models of dampers, including a 3-D model with variable

normal load, and particular attention has been paid to establish the rigorous

way of calculating these forces in the case of systems with cyclic symmetry.

• These developments have been applied to several case studies. The analysis of the

forced response of stand-alone structures, cyclic and mistuned assemblies has been

carried out for various types of frictional configurations. The results obtained have

highlighted the capability of the HFT method in terms of its accuracy, speed, and its

potential for conducting efficient parametric studies of friction-damped structures.

These studies have shown how complex the dynamics of systems with friction damp-

ing can be, when effects like 3-D contact or localization of energy due to mistuning

are present.

• A new direct contact approach based on the HFT method has been developed, for the

study of the nonlinear forced response of systems experiencing contact phenomena

which are not necessarily due to the action of friction dampers. This new method is
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still based on a dual time-domain/frequency domain representation of the dynamics

of such systems; however, the analysis of the boundary conditions at the contact

interfaces replaces that of the contact efforts used in the regular HFT method, thus

offering a significant advantage when the periodic waveforms of the contact efforts

are complicated. In this method, special contact elements are added to the structure

at the friction or impact interfaces, and the stiffness of these extra contact elements

is iteratively increased. In other words, a series of forced responses derived from

the linear response of the structure – obtained when the nonlinear boundary condi-

tions are ignored, i.e, when the stiffness of the extra contact elements is zero – is

calculated, until satisfactory convergence of the results is observed. The new di-

rect contact approach has been successfully applied to simple nonlinear systems.

The method has also been validated by comparing its results with those obtained by

performing an exact numerical time integration of the nonlinear equations.

• A new method for the modeling and analysis of structures with nonlinear boundary

conditions such as cracks has been presented. The forced response of a beam with

a crack has been investigated with this method. This study has shown that the exact

dynamics of complex nonlinear systems derived from large finite elements can be

captured very accurately at a computational cost which is several orders of magni-

tude lower than that of traditional numerical methods. It has also highlighted the

fact that the accuracy of the response depends significantly on the degree of realism

of the modeling of the crack.

• Two new complex, flexible models of friction dampers have been developed. The

nonlinear forced response of a realistic turbine bladed disk assembly has been stud-

ied for each of these dampers.
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– The first model introduced is a wedge damper developed within the nonlinear

operator framework. The theoretical analysis of the contact forces in the time

domains has been presented and it has been shown that a very efficient nu-

merical implementation of the calculation of the contact forces is possible. A

parametric study of the design parameters of the wedge damper and their effect

on the forced response of the turbine disk has been performed. It has exhibited

the great sensitivity of the response with respect to the geometric and physical

properties of the damper.

– The second model of damper developed takes advantage of the flexibility of

the direct contact approach and is represented by the finite element model of

an elastic structure. The model allows for friction with variable normal load on

each of its contact points. The interaction between the damper and the turbine

disk is fully described by (1) a set of boundary conditions applied to some of

the relative DOFs representing the motion of the damper with respect to the

motion of the platforms, and (2) a choice of contact elements for the damper-

platform interfaces. To the author’s knowledge, this is the first time that a

flexible, structure-like model of damper that allows for the rigid body mode in

the normal direction is developed and applied to a realistic industrial structure

with cyclic symmetry.

The forced responses of the turbine bladed disk obtained with these two types of

dampers have shown the added layer of complexity that a realistic modeling of these

dampers entails. In particular, the complicated nature of the periodic waveforms of

the contact efforts as well as the frequency response of the structure was presented.

These studies have shown that it is now possible to investigate, at a very low compu-
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tational cost and with excellent accuracy, the effect of friction damping when very

realistic modeling assumptions regarding the friction-damped structure as well as

the dampers are made.

7.2 Direction for future research

Following are some ideas for future research that would complement and further ad-

vance the topics addressed in this dissertation.

7.2.1 Friction damper modeling

The results obtained in Chapter VI have shown that it is now possible to use finite

element models to describe the physical properties of friction dampers, and that the exact

stiffness properties of the dampers can be taken into account. However, during the course

of this dissertation work, significant numerical obstacles have been encountered when try-

ing to extend the realism of the modeling of the friction dampers by simultaneously taking

into account (1) their mass properties, (2) the exact 3-D nature of the contact points with

the platforms, (3) the specific constraints associated with systems with cyclic symmetry;

and (4) without enforcing specific boundary conditions regarding some of the relative rigid

body modes of the damper with respect to the structure.

Ideally of course, the periodic forced response of friction damped systems should

be obtained by simply using the finite element models of the structure and the friction

dampers, and by enforcing general 3-D contact conditions on all the contact interfaces

between the dampers and the blades. In other words, the dampers would only be subject

to the periodic motion of the platforms and the centrifugal force. Although the methods

developed in this dissertation theoretically allow to do so, the effective numerical investi-

gation of such a general case has proved to be extremely tedious and difficult and to this

day the reason why is not well understood. Explanations for these difficulties are needed
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and would probably require the investigation of some of the following topics:

• Influence of the mass properties of the dampers. Studies including the inertia prop-

erties of a friction damper are a subject of notorious difficulty. Taking into account

such properties may lead to a loss of the periodic behavior of the damper and may

require a different type of analysis method than the HFT.

• Drift and creep. If no restrictions are applied to some of the relative DOFs between

the damper and the structure, it is possible that the friction dampers may exhibit

drifting or creeping withing the cavities they are inserted in, which may also lead to

the loss of the periodic nature of the behavior of the damper and the contact efforts.

• Nonlinear solver. Although the hybrid Powell algorithm used in this dissertation

work has shown excellent capabilities for the study of complicated friction damped

systems, it may be of interest to assess the capabilities of other nonlinear solvers, and

this may alleviate some of the convergence issues observed when the four modeling

assumptions mentioned above are taken into account simultaneously.

7.2.2 Modeling of structures with a very large number of nonlinear contact DOFs

The most advanced structures that can be currently analyzed while incurring a reason-

able computational cost feature at most a few hundreds nonlinear DOFs. Since the cost of

solving the nonlinear equations derived from the HFT method increases with the cube of

the number of nonlinear variables, the application of the HFT method to systems featuring

more nonlinear DOFs seems impractical.

With the notable exception of mistuned assemblies that require the modeling of a great

number of independent contact interfaces, the structures that require a high number of

nonlinear contact points are usually structures with a few contact interfaces where each

contact interface is described by a precise mesh of many contact nodes.
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In this case, the following modification of the HFT method could be implemented:

• The nonlinear DOFs of the interface would be approximated by a series of inter-

face normal modes similar to that commonly used in component modes techniques.

These interface modes would be represented in the frequency domain by a set of

Fourier coefficients.

• The actual, physical nonlinear DOFs would be used in the time domain to evaluate

the efforts at the contact interface.

• These efforts would be projected back onto the interface modes, in the frequency

domain.

This approach should allow the study of structures featuring thousands or more of non-

linear DOFs, thus preserving the accuracy of the contact interfaces, while limiting the

increase of computational effort currently required for such systems.

7.2.3 New applications of the direct-contact approach

The direct method approach presented herein has been applied to friction damped sys-

tems as well as to a model of beam with a crack. The potential of the method however ex-

pands well beyond these types of applications. In fact, the periodic response of many types

of structural systems with cracks, gaps or plays, impact and friction seems now readily ac-

cessible. The author believes that the study of the behavior of systems of unprecedented

realism is now possible, and that the method offers great research opportunities.
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APPENDIX A

Definition and properties of the Kronecker product

Given a p-by-q matrix A and a matrix B, the Kronecker product of A and B is defined

as:

A⊗B =


A(1, 1)B . . . A(1, q)B

...
...

A(p, 1)B . . . A(p, q)B


It also satisfies the following property:

(A⊗B)(C⊗D) = (AC)⊗ (BD)
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APPENDIX B

Definition and properties of Fourier matrices

The complex Fourier matrix E is defined for a ns-sector cyclic assembly as:

E(p, q) =
1
√

ns

e
2jπ
ns

(p−1)(q−1), (p, q) ∈ [1, ns].

Assuming that the number of DOFs of a cyclic sector of the assembly is n, the block

version Ẽ of the Fourier matrix (referred to as extended Fourier matrix) is given by:

Ẽ = E⊗ In,

where In is the n-by-n identity matrix, and ⊗ represents the Kronecker product. The

inverse of Ẽ is Ẽ
∗
, and E satisfies the following property:

E∗ueo
k =

1
√

ns



0

...

1

...

0


←

line q + 1 such that

q − keo ≡ 0 [ns],

where ueo
k is defined as:

ueo
k =

[
1, . . . , e(2jπpeok)/ns , . . . , e(2jπ(ns−1)eok)/ns

]T
.
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Also, if A is a (n × ns)-by-(n × ns), real, block-circulant matrix with blocks of size

n, then

Ẽ
∗
AẼ = BDiag

[
A0, . . . ,Ans−1

]
,

where A0, . . . ,Ans−1 are n-by-n complex matrices.
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ABSTRACT

MODELING AND ANALYSIS OF THE DYNAMICS OF
DRY-FRICTION-DAMPED STRUCTURAL SYSTEMS

by

Olivier J. Poudou

Chair: Christophe Pierre

The benefits of intentional friction damping to reduce the occurrence of wear and prema-

ture failure of turbomachinery bladed-disk assemblies are well known and many studies

on this topic have focused on the analysis and prediction of the complicated nonlinear

forced response exhibited by these structures. In this research, extensions of the recently

introduced multi-harmonic Hybrid Frequency-Time method are proposed for the efficient

analysis of the response of realistic structures featuring displacement-dependent nonlin-

earities, such as the friction and impact phenomena that may occur in the presence of

friction dampers or when two parts of the same structure periodically contact each other.

These theoretical extensions are adapted to the study of large scale, industrial bladed-disk

structures that may feature cyclic symmetry or mistuning.

Two analysis techniques are developed for the modeling of displacement-dependent

nonlinearities. In the first technique friction dampers are modeled as nonlinear opera-

tors representing the contact forces acting on the blades, from the simple case of mono-

directional friction with constant normal load to the more complex case of three dimen-

sional contact with variable normal load. The analysis of the forced response of several



nonlinear systems illustrates the capabilities of this approach as well as the complexity of

the typical behavior exhibited by friction damped structures. The second technique intro-

duced helps analyze structures experiencing intermittent contact or friction between two

parts or sub-components of the same assembly. This method is applied to the study of the

forced response of several simple systems and is used with great efficiency to predict the

nonlinear behavior of a beam with a crack. This approach also allows the dampers to be

modeled realistically as stand-alone components appended to the bladed disk assembly. In

this case the bladed disk assembly as well as the friction dampers are modeled as indepen-

dent structures that interact at their contacting interfaces. This allows the use of detailed

finite element models of dampers rather than having to make simplifying assumptions

regarding their geometry. These two methods are applied to the study of the nonlinear

forced response a realistic bladed-disk assembly featuring a wedge damper model and a

structure-like damper model.


