

Façonnage d'impulsions dans l'UV Contrôle cohérent

Sébastien Weber

Introduction

Le contrôle cohérent

Proposé dans les années 80 pour contrôler les produits d'une réaction chimique en utilisant les propriétés de cohérence de la lumière.

➢2 possibilités :

Modifier les surfaces de potentiel : Stolow *et al.* Science **314**, 278 (2006)
 Modifier les paramètres de l'impulsion : énergie, longueur d'onde, phase spectrale....

Introduction

Le contrôle cohérent

Proposé dans les années 80 pour contrôler les produits d'une réaction chimique en utilisant les propriétés de cohérence de la lumière.

➤2 possibilités :

Modifier les surfaces de potentiel : Stolow *et al.* Science 314, 278 (2006)
 Modifier les paramètres de l'impulsion : énergie, longueur d'onde, phase spectrale...

Introduction

Introduction

Introduction

Plan de l'exposé

≻Blabla blabla:
D
D
≻Reblabla
D
D
_

Etat de l'art

Ligne 4f

Masque acousto-optique

M. Roth *et al.* Appl. Phys. B **80**, 441-444 (2005)
 B. J. Pearson *et al.* Optics Express **15**, 4385 (2007)

MEMs (matrice de micromiroirs) Hacker et al. Appl. Phys. B 76, 711 (2003)

Cristaux liquides

J. Zhu et al. Applied Optics 49 350 (2010)

. Z. Kozma *et al.* Opt. Express **11**, 3110 - 3115 (200

 $E_{S}(t)$

M(X)

 $E_{E}(t)$

Etat de l'art

Femto groupe - LCAR - Toulouse

Femto groupe - LCAR - Toulouse

Interaction acousto-optique

Interaction acousto-optique

Acoustique et déformation

Onde acoustique $\boldsymbol{u} = u_0 \boldsymbol{e}_y \cos(\Omega t - K_x x - K_z z)$

Déformation S selon xy et yz

$$S = \begin{pmatrix} S_{xx} & S_{yx} & S_{zx} \\ S_{xy} & S_{yy} & S_{zy} \\ S_{xz} & S_{yz} & S_{zz} \end{pmatrix} = \begin{pmatrix} 0 & S_6 & 0 \\ S_6 & 0 & S_4 \\ 0 & S_4 & 0 \end{pmatrix}$$

Déformation et optique

Variation de la permittivité $\Delta \epsilon$

Déformation S

$$\left(\frac{1}{\varepsilon}\right)_{ij} = p_{ijkl}S_{kl} \quad \bigstar \quad \Delta \varepsilon = \varepsilon(p:S)\varepsilon$$

Interaction acousto-optique

Acoustique et déformation

Onde acoustique $\boldsymbol{u} = u_0 \boldsymbol{e}_y \cos(\Omega t - K_x x - K_z z)$

Déformation S selon xy et yz

$$S = \begin{pmatrix} S_{xx} & S_{yx} & S_{zx} \\ S_{xy} & S_{yy} & S_{zy} \\ S_{xz} & S_{yz} & S_{zz} \end{pmatrix} = \begin{pmatrix} 0 & S_6 & 0 \\ S_6 & 0 & S_4 \\ 0 & S_4 & 0 \end{pmatrix}$$

Déformation et optique

Polarisation du terme source

Terme source
$$\nabla^2 \tilde{E}(r, \omega) + \mu_0 \omega^2 \varepsilon(r, \omega) \tilde{E}(r, \omega) = -\mu_0 \omega^2 \Delta \varepsilon(r, \omega) \tilde{E}(r, \omega)$$
Terme source $\Delta \varepsilon \tilde{E} \propto \varepsilon(p; S) \varepsilon \cdot e_i$ $\mathcal{E} = \begin{pmatrix} n_o^2 & 0 & 0 \\ 0 & n_o^2 & 0 \\ 0 & 0 & n_e^2 \end{pmatrix}$ $p_{\text{KDP}} : S = \begin{pmatrix} 0 & p_{66}S_6 & 0 \\ p_{66}S_6 & 0 & p_{44}S_4 \\ 0 & p_{44}S_4 & 0 \end{pmatrix}$ $\mathbf{E} = \begin{pmatrix} n_o^4 p_{66}S_6 \\ 0 \\ n_e^2 n_e^2 p_{44}S_4 \end{pmatrix}$ $\mathbf{E} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $\Delta \varepsilon \tilde{E} \propto \begin{pmatrix} n_o^4 p_{66}S_6 \\ 0 \\ n_e^2 n_e^2 p_{44}S_4 \end{pmatrix} \perp e_i$ La polarisation du champ diffracté est modifiée par le choix de la polarisation et de la propagation de l'onde acoustique

Dispositif expérimental

AOPDF commercial : Dazzler (Fastlite) T-UV-260-410/T2 (cristal de KDP L=78mm)

3 sources UV

SHG @ 404 nm
BBO 200 μm, FWHM=7 nm, E=10 μJ

SFG @ 300-360 nm BBO 200 μm NOPA+IR FWHM=3 nm, E=4 μJ

THG @270 nm BBO 200μm+ BBO150μm FWHM=2 nm, E=25 μJ

Techniques de caractérisation

- >XFROG par somme ou différence de fréquence
- Cross-corrélation

Caractérisation Spatio-temporelle dans la continuité de cette thèse

Exemple de façonnage à 270 nm

➤Augmentation progressive du nombre d'impulsions.

Les impulsions externes sont en bord de cristal.

Avec 17 impulsions, le contrôle en amplitude est plus complexe.

Femto groupe - LCAR - Toulouse

Exemple de façonnage à 270 nm

➤Augmentation progressive du nombre d'impulsions.

Les impulsions externes sont en bord de cristal.

Avec 17 impulsions, le contrôle en amplitude est plus complexe.

Temps (fs)

Spectrogramme théorique

Femto groupe - LCAR - Toulouse

Efficacité de diffraction à 270 nm

L'efficacité dépend du façonnage

Façonnage

>Accordabilité du dispositif sur une large fenêtre spectrale [250nm- 410nm].

Fenêtre temporelle estimée expérimentalement de 5 à 6 ps selon la longueur d'onde.

L'efficacité de diffraction est comprise entre 20% et 40% selon la longueur d'onde et l'énergie à l'entrée (absorption à deux photons à 270 nm)

► Résolution spectrale typique de 0.02 nm à 270 nm

Femto groupe - LCAR - Toulouse

Perspectives

Construction d'un NOPA UV accordable et façonnable

Caractérisation des couplages spatio-temporels
 Interférométrie spatio-spectrale
 Mesures SPIDER UV
 Collaboration avec Oxford

Expérience pompe-sonde sur des molécules organiques
 Transitions dans l'UV
 Contrôle par des impulsions UV façonnées

M. Kotur *et al.* J. Chem. Phys. **130**, 134311 (2009)

Plan de l'exposé

V. Conclusion

Expérience Pompe-Sonde

Signal détecté

- >On mesure la fluorescence de l'état f proportionnelle à $|f(\tau)|^2 = |f(t \to \infty, \tau)|^2$
- ➤En régime perturbatif :

$$f(\tau) = -\frac{\mu_{ge}\mu_{ef}}{4\hbar^2} \int_{-\infty}^{\infty} dt' E_s(t'-\tau) e^{i\omega_{fe}(t'-\tau)} \int_{-\infty}^{t'} dt'' E_p(t'') e^{i\omega_{eg}t''}$$

➢ Dans le domaine spectral : $f(\tau) \propto \pi \tilde{E}_{p}(\omega_{eg}) \tilde{E}_{s}(\omega_{fe}) + iP \int d\omega \frac{\tilde{E}_{p}(\omega + \omega_{eg}) \tilde{E}_{s}(\omega_{fe} - \omega)}{\sqrt{2}} e^{-i\omega\tau}$ Terme résonnant
Terme non-résonnant

Excitation par une impulsion chirpée

Transitoires

Mise en évidence des transitoires cohérents avec une sonde ultracourte (thèse S. Zamith)

 Contrôle des transitoires par une pompe façonnée. Nombreux résultats : lentille de Fresnel temporelle, holographie quantique ...
 J. Degert et al. PRL 89, 203003 (2002)

- A. Monmayrant et al PRL 96, 103002 (2006)
- A. Monmayrant et al Opt. Com. 264, 256-263 (2006)

Motivations

Transitoires

Le rôle de la sonde dans les expériences de contrôle

➤ Influence de :

sa longueur d'onde Katsuki *et al.* Science 2006
 sa polarisation Sokell *et al.* JPB 2000

Pompe et sonde façonnées pour contrôler l'évolution et l'état final de Li₂
 Dai et Leone JCP 2007

Intérêt dans les expériences CARS pour améliorer la résolution spectrale et temporelle
 Dudovitch *et al.* Nature 2002
 Polli *et al.* CLEO 2009

Premier résultat : sonde chirpée

Transitoires

Dispositif expérimental

Transitoires

27

05/07/2010

Femto groupe - LCAR - Toulouse

Evolution avec la phase de la pompe

Les oscillations disparaissent progressivement

Reste un pic de cross-corrélation dû aux désaccord aux résonances

Dynamique similaire à celle obtenue avec des impulsions limitées TF

Forte influence de la sonde sur la dynamique mesurée.

Cas extrême :

- \Box Sonde fortement chirpée (-1.4 10⁵ fs²) Δ t=14 ps
- \Box Pompe fortement chirpée (1.4.10⁵ fs²) Δ t=12 ps

Evolution rapide de la population de l'état final : le temps de montée est inférieur à 100 fs!!

Phase globale du système

Transitoires

$$f(\tau) \propto \pi \tilde{E}_{p}(\omega_{eg}) \tilde{E}_{s}(\omega_{fe}) + iP \int d\omega \frac{A_{p}(\omega + \omega_{eg})e^{i\phi_{p}(\omega + \omega_{eg})}A_{s}(\omega_{fe} - \omega)e^{i\phi_{s}(\omega_{fe} - \omega)}}{\omega}e^{-i\omega\tau}$$

$$\phi_{p}(\omega + \omega_{eg}) + \phi_{s}(\omega_{fe} - \omega) = 0$$

$$\Leftrightarrow \frac{\phi_{p}^{(2)}}{2} (\omega - \delta_{p})^{2} + \frac{\phi_{s}^{(2)}}{2} (-\omega - \delta_{s})^{2} = 0$$

$$\delta_{p} = \omega_{0p} - \omega_{0s} - \omega_{0s$$

 \mathcal{D}_{eg} D_{fe}

Resonance a 2 photons

Phase globale du système

Transitoires

$$f(\tau) \propto \pi \tilde{E}_{p}(\omega_{eg}) \tilde{E}_{s}(\omega_{fe}) + iP \int d\omega \frac{A_{p}(\omega + \omega_{eg})e^{i\phi_{p}(\omega + \omega_{eg})}A_{s}(\omega_{fe} - \omega)e^{i\phi_{s}(\omega_{fe} - \omega)}}{\omega}e^{-i\omega\tau}$$

$$\phi_{p}(\omega + \omega_{eg}) + \phi_{s}(\omega_{fe} - \omega) = 0$$

$$\Leftrightarrow \frac{\phi_{p}^{(2)}}{2} (\omega - \delta_{p})^{2} + \frac{\phi_{s}^{(2)}}{2} (-\omega - \delta_{s})^{2} = 0$$

$$\delta_{p} = \omega_{0p} - \omega_{p}$$

$$\delta_{s} = \omega_{0s} - \omega_{p}$$

$$\Rightarrow \phi_{p}^{(2)} = -\phi_{s}^{(2)} \text{ et } \delta_{p} = -\delta_{s}$$
Bésonance à 2 phot

 \mathcal{O}_{eg} ω_{fe}

Resonance a 2 photons

Phase globale du système

Transitoires

$$f(\tau) \propto \pi \tilde{E}_{p}(\omega_{eg}) \tilde{E}_{s}(\omega_{fe}) + iP \int d\omega \frac{A_{p}(\omega + \omega_{eg})e^{i\phi_{p}(\omega + \omega_{eg})}A_{s}(\omega_{fe} - \omega)e^{i\phi_{s}(\omega_{fe} - \omega)}}{\omega}e^{-i\omega\tau}$$

 \mathcal{O}_{eg}

$$\phi_{p}(\omega + \omega_{eg}) + \phi_{s}(\omega_{fe} - \omega) = 0$$

$$\Leftrightarrow \frac{\phi_{p}^{(2)}}{2} (\omega - \delta_{p})^{2} + \frac{\phi_{s}^{(2)}}{2} (-\omega - \delta_{s})^{2} = 0$$

$$\delta_{p} = \omega_{0p} - \omega_{eg}$$

$$\delta_{s} = \omega_{0s} - \omega_{fe}$$

$$\Rightarrow \phi_{p}^{(2)} = -\phi_{s}^{(2)} \text{ et } \delta_{p} = -\delta_{s}$$
Résonance à 2 photons

>Les phases spectrales s'annulent mutuellement.

Accès à une dynamique courte avec pompe et sonde fortement façonnées!

> Peut être utilisé pour mesurer la phase d'une impulsion inconnue

Perspectives : transitions vers un continuum

Transitoires

Plan de l'exposé

>Blabla blabla: □_____ >Reblabla □_____

I. Introduction

- II. Façonnage dans l'ultraviolet
- III. Expérience Pompe-Sonde

IV. Factorisation de grands nombres

- 1. Factorisation et somme de Gauss
- 2. Expériences et résultats
- 3. Proposition théorique
- 4. Conclusion
- V. Conclusion

Factorisation de grands nombres

Proposition théorique de W. Schleich sur l'utilisation de somme de Gauss pour la factorisation, alternative au calcul quantique.

>Les similarités de ces sommes avec nos travaux sur les phases quadratiques ont donné

lieu à une forte collaboration théorique et expérimentale:

- □ W. Merkel *et al.* Fortschr. Phys. 2006
- UW. Merkel et al. PRA 2007
- □ Bigourd et al. PRL 2008

Amélioration de la technique par des phases aléatoires Weber et al. Europhys. Lett. 2008

Factorisation

05/07/2010

35

Femto groupe - LCAR - Toulouse

Les expériences de factorisation

Théorie :

- □ W. Merkel *et al.* Fortschr. Phys. (2006)
- □ M. Stefanak *et al.* New Journal of Physics (2007)

► RMN :

- □ M. Mehring *et al.* Phys. Rev. Lett. (2007)
- □ T. S. Mahesh *et al.* Phys. Rev. A (2007)
- □ X. Peng et al. Europhysics Letters (2008)
- Atomes froids: M. Gilowski et al. Phys. Rev. Lett. (2008)
- BEC : M. Sadgrove et al. Phys. Rev. Lett. (2008)
- Train d'impulsions femtosecondes
 - D. Bigourd *et al.* Phys. Rev. Lett. (2008)
 - S. Weber *et al.* Europhysics Letters (2008)

La somme de Gauss

La somme de Gauss

$$A_{N}^{(l)}(l) = \sum_{m=0}^{l-1} \rho_{m} \exp\left\{2i\pi m^{2} \frac{N}{l}\right\}$$

Particularités : troncation et pré-calcul

$$A_{N}^{(M)}(l) = \frac{1}{M+1} \sum_{m=0}^{M} \exp\left\{2i\pi m^{2} \frac{N}{l}\right\}$$

➢ En pratique, seuls les premiers termes de la somme sont suffisant pour discriminer facteurs et non-facteurs. : M. Stefanak et al. New Journal of Physics 9, 370 (2007)

➤La troncation M est ajustable

Mais : apparition de « fantômes » (non-facteurs difficilement discriminables)

> Dans toutes les expériences, les termes de phases de la somme sont pré-calculés.

Nécessite un système physique dans lequel la somme de Gauss est calculée automatiquement pour l variant entre 2 et \sqrt{N}

Expérience de principe

Premiers résultats

Troncation => fantômes

Factorisation

Comment tuer les « fantômes »?

Nouvelle approche aléatoire

Résultats expérimentaux

Estimation de la troncation

Densité de probabilité
$$P_n(\mathbf{r}) \approx \frac{1}{\pi na^2} \exp\left\{-\frac{r^2}{na^2}\right\}$$

Troncation

Factorisation

Troncation

$$M + 1 = \frac{1}{2S} \ln N - \frac{1}{S} \ln \varepsilon = \frac{1}{2S} \ln \left(\frac{N}{\varepsilon^2}\right)$$

Exemple

$$\varepsilon = 0.01$$

 $S = 0.5$
 $N = 2 \ 499 \ 200 \ 063$ $M \approx 31$

≻Loi d'échelle améliorée pour la troncation : logarithmique
>Nombres de 10 et 13 chiffres factorisés ≈33 et 43 bits
>La phase est pré-calculée
>Nécessite \sqrt{N} expériences

Proposition théorique

$$\begin{array}{ccc} 1 & \frac{N}{l} = \frac{\tau^2}{\pi \left| \phi^{(2)} \right|} & 3 & \left(\frac{N}{l} \right)_{\min} = \sqrt{N} \\ 2 & \left| \phi^{(2)} \right| \ge \frac{4}{3} \Delta t_0 M \tau & 4 & \left(\frac{N}{l} \right)_{\max} = N \end{array}$$

Proposition théorique

Proposition théorique

Chirp constant – délai variable

$$(1) |\phi^{(2)}| = \frac{19\pi}{9} \Delta t_0^2 M^2 N$$
 (2) $\tau_{\min} = \frac{4\pi}{3} \Delta t_0 M N^{3/4}$ (3) $\tau_{\max} = \frac{4\pi}{3} \Delta t_0 M N$ $\Delta t_0 = 50 \text{ fs}$

Chirp constant – délai variable

$$(1) |\phi^{(2)}| = \frac{19\pi}{9} \Delta t_0^2 M^2 N$$
 (2) $\tau_{\min} = \frac{4\pi}{3} \Delta t_0 M N^{3/4}$ (3) $\tau_{\max} = \frac{4\pi}{3} \Delta t_0 M N$ $\Delta t_0 = 50 \text{ fs}$

Simulation de factorisation

Factorisation

Conclusion

Factorisation de grands nombres de l'ordre de 13 chiffres

>Amélioration de la loi d'échelle des « fantômes » (en log) par choix aléatoire des phases

Proposition théorique d'un système calculant directement la somme de Gauss

➢ Mise en œuvre expérimentale prochainement

> Mais nécessite encore la répétition de \sqrt{N} expériences

Considérations générales

Contrôle cohérent en boucle ouverte

Façonnage et caractérisation d'impulsions

Systèmes variés

Système pompe-sonde

Rôle de la sonde dans un système à 3 niveaux

Influence et compensation de la phase quadratique

Dynamique courte avec des impulsions longues

Façonnage dans l'UV

Façonnage par interaction acousto-optique
 Diverses mises en forme (train d'impulsions, phases...)
 Fenêtre temporelle de l'ordre de 6 ps
 Efficacité de l'ordre de 20 à 40 %

Factorisation par somme de Gauss

 Rôle de la somme de Gauss
 Mise en œuvre expérimentale et proposition théorique
 Méthode dite « aléatoire »
 Factorisation de nombre à 10 et 13 chiffres

>Blabla blabla: □ _____ >Reblabla □ _____

Considérations générales

Contrôle cohérent en boucle ouverte

Façonnage et caractérisation d'impulsions

≻Systèmes variés

Systemes varies

Système pompe-sonde

Rôle de la sonde dans un système à 3 niveaux

Influence et compensation de la phase quadratique

Dynamique courte avec des impulsions longues

Prope

Façonnage dans l'UV

 Façonnage par interaction acousto-optique
 Diverses mises en forme (train d'impulsions, phases...)
 Fenêtre temporelle de l'ordre de 6 ps
 Efficacité de l'ordre de 20 à 40 %

actorisation par somme de Gauss

 Rôle de la somme de Gauss
 Mise en œuvre expérimentale et proposition théorique
 Méthode dite « aléatoire »
 Factorisation de nombre à 10 et 13 chiffres

>Blabla blabla: □ _____ >Reblabla □ _____

Considérations générales

- Contrôle cohérent en boucle ouverte
- Façonnage et caractérisation d'impulsions

≻Systèmes variés

- Rôle de la sonde dans un système à 3 niveaux
- Influence et compensation de la phase quadratique

Dynamique courte avec des impulsions longues

Façonnage dans l'UV

 Façonnage par interaction acousto-optique
 Diverses mises en forme (train d'impulsions, phases...)
 Fenêtre temporelle de l'ordre de 6 ps
 Efficacité de l'ordre de 20 à 40 %

actorisation par somme de Gauss

 Rôle de la somme de Gauss
 Mise en œuvre expérimentale et proposition théorique
 Méthode dite « aléatoire »
 Factorisation de nombre à 10 et 13 chiffres

>Blabla blabla: □ _____ >Reblabla □ _____

Considérations générales

- Contrôle cohérent en boucle ouverte
- Façonnage et caractérisation d'impulsions

≻Systèmes variés

- Rôle de la sonde dans un système à 3 niveaux
- Influence et compensation de la phase quadratique

Dynamique courte avec des impulsions longues

Façonnage dans l'UV

 Façonnage par interaction acousto-optique
 Diverses mises en forme (train d'impulsions, phases...)
 Fenêtre temporelle de l'ordre de 6 ps
 Efficacité de l'ordre de 20 à 40 %

Factorisation par somme de Gauss

Rôle de la somme de Gauss
Mise en œuvre expérimentale et proposition théorique
Méthode dite « aléatoire »
Factorisation de nombre à 10 et 13 chiffres

Merci à vous

Merci de votre attention !

>Blabla blabla: □ _____ >Reblabla □ _____ □ ____

Différents schémas

Introduction

Expérience : Gerber et al. Science 98 ; Wöste et al. CP 2001

62

Introduction

Outils et techniques

Mise en forme d'impulsions

➢ Façonneur infrarouge haute résolution:

► AOPDF UV

Façonnage et accordabilité Weber et al. APB 98 323 (2010)
 Caractérisation dans le diamant Weber et al. UVX 15 (2009)

Caractérisation

Cross-corrélations
 XFROG
 SPIDER

Domaine femtoseconde

Introduction

Représentation du champ

Enveloppe et phase spectrale $A(\omega)$ et $\phi(\omega)$

Intensité temporelle
$$A^{2}(t)$$

Spectrogramme

$$S(t,\omega) = \left| \int E(t')g(t'-t)\exp(i\omega t')dt' \right|^2$$

Tutorial façonnage et caractérisation

A. Monmayrant, S. Weber et B. Chatel Journal of Physics B **43** 103001 (2010)

Résultats

Résultats @270 nm

Efficacité de diffraction à 270 nm

Variation non linéaire de l'efficacité synonyme d'une absorption à deux photons

Façonnage

Excitation par une impulsion chirpée

Transitoires

Intégrale d'une phase quadratique équivalente à la diffraction de Fresnel

Femto groupe - LCAR - Toulouse

05/07/2010 69

Influence of the pulse number

Proposition théorique

Proposition théorique

➢ Fabry-Perot : la phase varie linéairement avec le délai mτ.
 ➢ Pour obtenir la factorisation il faut des délais multiple de la période T:

$$\tau = pT = p\frac{2\pi}{\omega_c}$$

➢ Nécessite une stabilité interférométrique du Fabry-Pérot et une très bonne précision sur le délai.