
HAL Id: tel-00511981
https://theses.hal.science/tel-00511981

Submitted on 26 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Information Retrieval of Text, Structure and Sequential
Data in Heterogeneous XML Document Collections

Eugen Popovici

To cite this version:
Eugen Popovici. Information Retrieval of Text, Structure and Sequential Data in Heterogeneous XML
Document Collections. Computer Science [cs]. Université de Bretagne Sud; Université Européenne de
Bretagne, 2008. English. �NNT : �. �tel-00511981�

https://theses.hal.science/tel-00511981
https://hal.archives-ouvertes.fr

THÈSE
SOUTENUE DEVANT

L’UNIVERSITÉ EUROPÉENNE DE BRETAGNE

pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ EUROPÉENNE DE BRETAGNE

Mention :

SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA
COMMUNICATION

par

EUGEN-COSTIN POPOVICI

Information Retrieval of Text, Structure and Sequential Data in

Heterogeneous XML Document Collections

Recherche et filtrage d’information multimédia (texte, structure et

séquence) dans des collections de documents XML hétérogènes

Présentée le 10 janvier 2008 devant la commission d’examen composée de :

M. BOUGHANEM Professeur, Université Paul Sabatier, Toulouse III Rapporteur
P. GROS Directeur de Recherche, INRIA, Rennes Examinateur
M. LALMAS Professeur, Queen Mary University of London Rapporteur
P.-F. MARTEAU Professeur, Université de Bretagne-Sud Directeur
G. MÉNIER Maître de Conférences, Université de Bretagne-Sud Co-directeur

Abstract

Nowadays digital documents represent a complex and heterogeneous mixture of text,
structure, meta-data and multimedia information. The XML description language
is now the standard used to represent such documents in digital libraries, product
catalogs, scientific data repositories and across the Web. The management of semi
structured data requires the development of appropriate indexing, filtering, searching
and browsing methods and tools. In particular, the filtering and searching functions
of the retrieval systems should be able to answer queries having an incomplete, im-
precise or even erroneous knowledge about both the structure and the content of the
XML documents. Moreover, these functions should maintain an algorithmic complex-
ity compatible with the complexity of the data while maintaining the scalability of the
system.

In this thesis, we explore methods for managing and searching collections of het-
erogeneous multimedia XML documents. We focus on the flexible searching of struc-
ture, text, and sequential data embedded in heterogeneous XML document databases.
Based on the structural part of the XML documents, we propose a flexible model for
the representation, indexing and retrieval of heterogeneous types of sequential data.
The matching mechanism simultaneously exploits the structural organization of the
sequential/textual data as well as the relevance and the characteristics of the unstruc-
tured content of the indexed documents. We also design and evaluate methods both
for the approximate matching of structural constraints in an XML Information Re-
trieval (IR) framework and for the detection of best entry points to locate given topics
in XML Documents. Finally, we explore the use of dedicated hardware architecture to
accelerate the most expensive processing steps of our XML IR application.

iii

Résumé

Les documents numériques sont aujourd’hui des données complexes qui intègrent
d’une manière hétérogène des informations textuelles, structurelles, multimédia ainsi
que des méta-données. Le langage de balisage générique XML s’est progressivement
imposé comme support privilégié non seulement pour l’échange des données mais
aussi pour leur stockage. La gestion des documents stockés sous les formats XML
nécessite le développement de méthodes et d’outils spécifiques pour l’indexation, la
recherche, le filtrage et la fouille des données. En particulier, les fonctions de recherche
et de filtrage doivent prendre en compte des requêtes disposant de connaissances in-
complètes, imprécises, parfois même erronées sur la structure ou le contenu des doc-
uments XML. Ces fonctions doivent par ailleurs maintenir une complexité algorith-
mique compatible avec la complexité des données et surtout avec leur volume toujours
en forte croissance, ceci pour assurer le passage à l’échelle des solutions informatiques.

Dans cette thèse, nous étudions des méthodes et développons des outils pour in-
dexer et rechercher des informations multimédia hétérogènes stockées dans des ban-
ques de documents XML. Plus précisément, nous abordons la question de la recherche
par similarité sur des données composites décrites par des éléments structurels, textuels
et séquentiels. En s’appuyant sur la partie structurelle des documents XML, nous
avons défini un modèle de représentation, d’indexation et d’interrogation flexible pour
des types hétérogènes de données séquentielles. Les principes que nous développons
mettent en oeuvre des mécanismes de recherche qui exploitent simultanément les
éléments des structures documentaires indexées et les contenus documentaires non
structurés. Nous évaluons également l’impact sur la pertinence des résultats re-
tournés par l’introduction de mécanismes d’alignement approximatif des éléments
structurels. Nous proposons des algorithmes capables de détecter et de suggérer
les « meilleurs points d’entrée » pour accéder directement à l’information recherchée
dans un document XML. Finalement, nous étudions l’exploitation d’une architecture
matérielle dédiée pour accélérer les traitements les plus coûteux du point de vue de la
complexité de notre application de recherche d’information structurée.

v

Acknowledgments

Many people have accompanied my long journey to this dissertation. To all of them I
give my deepest thanks.

I am especially grateful to my thesis committee members: Prof. Mounia Lalmas,
Prof. Mohand Boughanem and Senior Researcher Patrick Gros, for accepting to be on
my committee and for the feedback they gave on the manuscript.

I owe gratitude to my PhD supervisors, Prof. Pierre-François Marteau and Assist.
Prof. Gildas Ménier, for their continuous guidance, support, critical, yet constructive
remarks, infinite understanding, and belief in my work. This thesis would not have
been written without their constant encouragement.

I would like to thank all the members of the VALORIA laboratory for assuring an
enjoyable and fruitful working atmosphere.

I am also grateful to the whole INEX community, for creating the test collection for
the evaluation of XML IR which is extensively used in this work.

Last but not the least, I want to thank, Didier Hoareau and Chouki Tibermacine,
my work office colleagues for four long years, Alla Silkina, Xiaoqun Zhang and all the
other PhD students, for interesting discussions and their friendship.

Finally, I want to thank all my friends and family, for their patience and under-
standing, and especially my parents and my brother Emil, for his example.

This research was partially supported by the ACIMD – ReMIX (Reconfigurable
Memory for Indexing Mass of Data) French grant.

vii

Contents

I Introduction 1

1 Introduction 3
1.1 Context and Motivation . 3
1.2 Thesis Contribution . 4
1.3 Thesis Outline . 4

II XML Information Retrieval 7

2 XML Information Retrieval 9
2.1 Introduction . 10

2.1.1 Document and Collection of Documents 11
2.1.2 Unstructured, Structured and Semi-Structured Documents . . . 11
2.1.3 Documents Markup . 11
2.1.4 A Brief History of Markup Languages 13
2.1.5 eXtensible Markup Language (XML) 14
2.1.6 Data-Centric vs. Document-Centric XML Data 14

2.2 Conceptual Model for XML IR . 15
2.3 Precursors of XML IR . 17

2.3.1 Passage Retrieval . 17
2.3.2 Web Information Retrieval . 19

2.4 XML IR Challenges . 21
2.4.1 Term and element statistics . 21
2.4.2 Structure Statistics . 21
2.4.3 Relationships Statistics . 22
2.4.4 Relevance Propagation . 23
2.4.5 Overlapping Elements – Removing Nested Redundant Information 24
2.4.6 Structure Constraints . 25
2.4.7 XML IR Interfaces . 25

2.5 Indexing XML Documents . 26
2.5.1 Indexing Process . 26
2.5.2 Index Layers . 27
2.5.3 Indexing Term Weights . 27
2.5.4 Index Structures . 28
2.5.5 Indexing Unit . 28
2.5.6 Indexing the Structural Information 30

2.6 XML Retrieval Models . 33
2.6.1 Vector Space Model . 33

ix

x CONTENTS

2.6.2 Language Model . 34
2.6.3 Probabilistic Model . 36
2.6.4 Machine Learning . 36

2.7 XML IR Evaluation . 37
2.8 Conclusion . 38

3 SIRIUS XML IR System 39
3.1 Introduction . 40

3.1.1 Document Structure and IR . 40
3.1.2 Strict and Vague Interpretation of XML-Retrieval Queries 40
3.1.3 Approximate Structure Matching 41

3.2 Document Model . 43
3.2.1 XML Context . 43

3.3 The Index Model . 43
3.4 The Retrieval Scheme . 47

3.4.1 Approximate Path Search . 47
3.4.2 Textual Content Ranking Scheme 50
3.4.3 Computing Element RSV . 50
3.4.4 Lexical Semantic Enrichment . 51

3.5 The SIRIUS Query Language . 52
3.5.1 Path Constraints . 52
3.5.2 Attributes Constraints . 53
3.5.3 Complex Requests . 55

3.6 Prototype Implementation . 57
3.6.1 System General Architecture . 57
3.6.2 GUI . 57

3.7 Conclusions . 58

4 Experimental Evaluation Framework 61
4.1 Introduction . 61
4.2 INEX Evaluation Campaigns . 62

4.2.1 Document Collections . 63
4.2.2 Topics . 63
4.2.3 Pertinence Judgments . 69
4.2.4 Retrieval Tasks . 69
4.2.5 Evaluation Measures . 70

4.3 SIRIUS @ INEX . 72
4.3.1 Indexing the INEX 2005 and INEX 2006 Collections 72
4.3.2 Structural Weighting Scheme for INEX 74
4.3.3 Translating NEXI to SIRIUS Query Language 75
4.3.4 Processing NEXI Requests . 75

4.4 Conclusion . 77

5 Approximate Structural Matching for XML IR 79
5.1 Introduction . 79
5.2 Retrieval Strategies . 80
5.3 Evaluating the Efficiency of Different Retrieval Strategies 82
5.4 Evaluating the Effectiveness of Text Matching Strategies 82

CONTENTS xi

5.5 Evaluating the Effectiveness of Approximate Structural Matching Strate-
gies . 83

5.6 Evaluating the Effectiveness of Approximate Structural Matching for
Focused XML IR . 88

5.7 Conclusion . 93

6 Retrieving Best Entry Points in Semi-Structured Documents 95
6.1 Introduction . 96
6.2 Focused Retrieval Strategy . 97

6.2.1 Elements Scores Aggregation . 97
6.2.2 Removing Overlapping Elements 98

6.3 BEPs Selection Heuristic . 98
6.4 Google @ INEX 2006 Best In Context Task 99

6.4.1 Retrieval Settings . 99
6.4.2 Flat Runs . 99
6.4.3 Approximate Matching of Snippets to BEPs 100

6.5 Evaluation Framework . 102
6.5.1 Best In Context Task Evaluation Metrics 102

6.6 Experimental Results . 103
6.6.1 INEX 2006 Best In Context Task Official Results 103
6.6.2 Evaluating Different Focused Retrieval Strategies for the Auto-

matic Detection of BEPs . 104
6.6.3 BEPs versus Document Retrieval 104
6.6.4 Real Application-Case . 108

6.7 Conclusion . 109

III XML Multimedia IR 111

7 IR of Sequential Data in Heterogeneous XML Databases 113
7.1 Introduction . 114
7.2 Background and Related Works . 115
7.3 Challenges in XML Sequential Data IR 117
7.4 Data Model . 118

7.4.1 XML Context . 118
7.4.2 Sequential Data . 119

7.5 Sequence Extraction . 123
7.6 Indexing Scheme . 126

7.6.1 Main Repository . 126
7.6.2 Sequence Repository . 127

7.7 Searching Scheme . 128
7.7.1 Sequence Structural Approximate Matching 128
7.7.2 Sequence Approximate Matching 129
7.7.3 The Fusion of Structural and Sequential Approximate Matching

Scores . 131
7.8 Extracting and Querying Sequential Data by Examples 131
7.9 Evaluation . 133

7.9.1 Prototype . 133
7.9.2 Experimental Dataset . 135

xii CONTENTS

7.9.3 Early Evaluations . 136
7.10 Conclusions . 137

7.10.1 Main Contributions . 138
7.10.2 Future Work . 138

IV XML IR on Specialized Hardware 141

8 ReMIX – Reconfigurable Memory for Indexing Mass of Data 143
8.1 Introduction . 144
8.2 ReMIX Project Objectives . 145
8.3 ReMIX Idea . 145

8.3.1 Reconfigurable Resources . 146
8.3.2 FLASH Technology . 146

8.4 ReMIX Architecture . 146
8.4.1 ReMIX System . 146
8.4.2 RMEM Board . 146
8.4.3 ReMIX Memory Specificity . 148

8.5 Programming the ReMIX cluster . 148
8.5.1 Framework . 148
8.5.2 Operator Synthesis . 148
8.5.3 ReMIX Query Processing Model . 149
8.5.4 ReMIX API . 149

8.6 Conclusion . 151

9 Approximate Search of Semi-Structured Documents Using Dedicated
FLASH Memory and FPGA Components 153
9.1 Introduction . 153
9.2 General Notes on ReMIX Programming Philosophy 154
9.3 Approximate Structural Filtering for XML IR using the ReMIX Archi-

tecture . 154
9.4 Specifying the Application Characteristics 155
9.5 Indexing . 156
9.6 Searching . 158
9.7 Current Implementation Status . 160
9.8 Early Experimental Results . 161
9.9 Discussion . 161
9.10 Conclusion . 162

V Conclusions 165

10 Conclusions 167
10.1 Conclusions . 167
10.2 Summary of Contributions . 167
10.3 Future Research . 169

Bibliography 173

List of Figures

2.1 Three Layer Structure for XML Document Collections: Semantical, Log-
ical, and Presentation Markup [231]. 12

2.2 Example of a document marked up in XML. 15
2.3 Conceptual Model for XML Information Retrieval. 16
2.4 Index Layers. 27
2.5 Encoding XML Document Regions using Pre/Post Order Traversal. . . . 32

3.1 An excerpt of an XML document extracted from the Reuters Corpus. . . 44
3.2 The ordered tree representation of the XML document from Figure 3.1. 45
3.3 Approximate path search with conditions on attributes and attributes

values. 49
3.4 The enriched version of the ’European countries’ request expressed in

the SIRIUS query language. 52
3.5 Simple path constraint. 53
3.6 XML elements with attributes and attributes values. 53
3.7 BNF grammar for attribute constraints. 54
3.8 Example of complex constraints on attributes and attributes values. . . 54
3.9 SIRIUS General Architecture . 58
3.10 SIRIUS system oriented graphical interface. 59
3.11 SIRIUS user oriented graphical interface. 59

4.1 An excerpt of an XML document extracted from the INEX IEEE docu-
ment collection associated with its XML tree representation. 64

4.2 An excerpt of an XML document extracted from the Wikipedia XML Cor-
pus. 65

4.3 The XML tree of the document from Figure 4.2. 66
4.4 INEX 2005 CAS topic 280. 68
4.5 INEX 2006 topic 289. 68
4.6 INEX 2006 topic 406. 69
4.7 Indexing Time for the inex-1.8 IEEE Collection. 73
4.8 Example of distances between structural contexts. 74
4.9 Translating a simple CAS topic to SIRIUS query language. 75
4.10 Translating a complex CAS topic to SIRIUS query language. 76

5.1 Translating INEX 2005 CAS topic 280 to SIRIUS query language for
different interpretations of structural constraints. 81

5.2 Average response time for different degrees of structural constraints ap-
proximation. 82

xiii

xiv LIST OF FIGURES

5.3 SIRIUS evaluation results compared with the INEX 2005 VVCAS task
official results. Metric: ep/gr – top & nxCG – bottom, Quantization:
strict, Overlap: off. 84

5.4 Evaluating different degrees of structural constraints approximation (Task:
VVCAS, Metric: ep/gr, Quantization: strict, Overlap: off). 85

5.5 Evaluating different degrees of structural constraints approximation (Task:
VVCAS, Metric: nxCG, Quantization: strict, Overlap: off). 87

5.6 Evaluation results for the SIRIUS focused retrieval approach compared
with the official results of the INEX 2005 COS Focused task. 89

5.7 Evaluation results for the SIRIUS focused retrieval approach compared
with the official results of the INEX 2006 Focused task. 91

5.8 Evaluation results for topic 406 of the INEX 2006 campaign. 93

6.1 Example of XML element with mixed content extracted from the Wikipedia
XML corpus [59]. 97

6.2 XML document with mixed content and term weights. 98
6.3 Example of a BEPs retrieval strategy. 98
6.4 Using the Google search engine to answer INEX 2006 CO topics. 99
6.5 An excerpt of a retrieved result using the Google SOAP Search API. . . 100
6.6 An example of snippet composed of several semantically contiguous text

parts . 101
6.7 INEX 2006 Best In Context Task Official Results, Metric:EPRUM-BEP-

Exh-BEPDistance, A=0.01. 104
6.8 Precision at recall r values – top; and Precision at rank k values – bot-

tom; for different methods of relevance node aggregation and overlap
removing. Metric: EPRUM-BEP-Exh-BEPDistance, A=0.01. 105

6.9 Precision at recall r values – top; and Precision at rank k values –
bottom; for the avgMRD focused strategy and the baseline runs based
on the Google search engine. Metric:EPRUM-BEP-Exh-BEPDistance,
A=0.01. 107

7.1 An excerpt of an MidiXML [4] file. 119
7.2 The XML tree representation for the MidiXML file from Figure 7.1 show-

ing a document level sequence. 120
7.3 An excerpt of an annotated protein sequence extracted from the Swiss-

Prot database. 121
7.4 The XML tree representation of the annotated protein sequence from

Figure 7.3. 122
7.5 The sequence model. 123
7.6 The sequence extraction process. 124
7.7 makeSEQ sequence extraction operator. 125
7.8 The index model. 127
7.9 sameSEQ sequence similarity search operator. 133
7.10 RETURN operator. 133
7.11 Complex request. 134
7.12 Subsequence match in SIRIUS GUI. 135
7.13 Basic scheme used to randomly generate meta-structures for the MidiXML

test collection. 136

LIST OF FIGURES xv

7.14 XML data indexing time / Sequence extraction and indexing time as the
size of the index dataset. 136

7.15 Average response time for structural, sequential, and complex requests. 137

8.1 ReMIX System Architecture. 147
8.2 ReMIX Memory Board. 147
8.3 ReMIX generic query processing model [182]. 150
8.4 The ReMIX programming framework API [182]. 151

9.1 A simple XML document. 156
9.2 XML document tree and set of root-to-leaf paths representation for the

XML excerpt from Figure 9.1. 156
9.3 Index construction and loading on the ReMIX architecture. 157
9.4 Index partitioning. 158
9.5 Complex request build of elementary requests and Boolean operators. . 158
9.6 Dispatching and processing elementary requests. 159
9.7 Input and output files for the XML IR application adapted for the ReMIX

architecture. 160

List of Tables

4.1 Indexing rules for the Wikipedia collection 73

5.1 Gain in % for the text matching strategies evaluated by using a vague in-
terpretation of the structural constraints. (Task: VVCAS, Quantization:
strict, Overlap: off). 83

5.3 nxCG[i] and MAep evaluation results for different degrees of structural
constraints approximation (Task: VVCAS, Quantization: strict, Overlap:
off). 86

5.5 Gain in % introduced by the different degrees of structural constraints
approximation (VV, VS, SV, SS) compared with the plain CO retrieval
strategy evaluated on the INEX 2005 VVCAS task. 88

5.6 nxCG[i] and MAep evaluation results for different degrees of structural
constraints approximation evaluated on the INEX 2005 COS Focused task. 90

5.7 Gain in % introduced by the different degrees of structural constraints
approximation compared with a plain retrieval strategy evaluated on
the INEX 2005 COS Focused task. 90

5.8 nxCG[i] evaluation results for the SIRIUS focused retrieval strategy
evaluated on the INEX 2006 Focused Task. 92

5.9 Gain in % introduced by a vague interpretation of structural constraints
compared with a plain retrieval strategy and by a flexible vs. a strict
sequence matching strategies. Evaluation on the INEX 2006 Focused
Task. 92

6.1 INEX 2006 Best In Context Task official evaluation results for the avgMRD
strategy. The ranks / 77 submissions are given in parentheses. 103

6.2 BEP-Distance results for different methods of relevance node aggrega-
tion and overlap removing. 106

6.3 EPRUM-BEP-Exh-BEPDistance results for different methods of rele-
vance node aggregation and overlap removing. 106

6.4 BEP-Distance results and gains in % between the ’bep’ and the ’flat’ runs
for the avgMRD focused retrieval strategy and for the baseline runs. 106

6.5 EPRUM-BEP-Exh-BEPDistance results and gains in % between the ’bep’
and the ’flat’ runs for the avgMRD focused retrieval strategy and for the
baseline runs. 106

xvii

xviii LIST OF TABLES

6.7 Gains in % between the avgMRD focused retrieval strategy and the base-
line runs using the Google search engine. 108

Part I

Introduction

1

Chapter 1

Introduction

"It has taken mankind three hundred thousands years to collect twelve ex-
abytes of data. This volume will be doubled within two years."

— How Much Information [137]

Contents
1.1 Context and Motivation . 3
1.2 Thesis Contribution . 4
1.3 Thesis Outline . 4

1.1 Context and Motivation

Digital data is expanding every day at an increasing rate, both in our business and
in our personal activities. This has unprecedented consequences as ”our ability to
store and communicate information has far outpaced our ability to search, retrieve
and present it” [137].

The time and financial efforts spent to store, manage and organize the ever increas-
ing amount of digital data take a more and more important role in any organization
and in our daily activities. The degree to which individuals, rather than organizations,
are responsible for generating data has increased. ”We not only have mass production
of information, but also the production of information by the masses" [137].

The user have to take control over the deluge of emails, photos, office documents,
web and news content. There is a critical need for appropriate tools able to help the
users to look, search, organize, arrange, manage, control and find relevant information
in the growing data chaos.

Our work is placed in the context of information retrieval (IR). Information re-
trieval is the science of searching for information in documents, searching for doc-
uments themselves, searching for metadata which describe documents, or search-
ing within databases, whether relational stand-alone databases or hypertextually-
networked databases such as the World Wide Web1.

1Wikipedia – The Free Encyclopedia http://wikipedia.org/

3

http://wikipedia.org/

4 CHAPTER 1. INTRODUCTION

An information retrieval process begins with a user entering a query into the sys-
tem. Queries are formal statements of information needs, for example search strings
in web search engines. The information retrieval system matches the query with the
documents from the collection and returns a ranked list of relevant documents to the
query.

Nowadays, the adoption of XML (eXtensible Markup Language) [164] as a stan-
dard for the interchange and publication of structured data has created the oppor-
tunity to design more focused information retrieval systems. XML documents have
a self-describing structure. This is a consequence of the W3C specification require-
ments which states that the structure should be ”human-legible and reasonably clear”
[164]. Focusing on the text-rich documents published in the XML format, the informa-
tion retrieval community has enriched query languages for structured documents with
text-retrieval concepts like term weighting and relevance ranking. This gave birth to
a new research field: Document Centric XML Retrieval or XML Information Retrieval.

To better use the structural information available in the XML documents, the in-
formation retrieval systems must be adapted to take into account both its semantic
and logical levels. In long documents such as novels or technical manuals, only a small
part of a document may be relevant to the user’s query. By making document structure
explicit, XML allows information retrieval systems to extract portions of documents.
This should ”improve the perceived precision” by allowing the user to avoid a complete
scan through each result document in order to locate the relevant material [62]. This
is the specific context of our work. We address the problem of information retrieval of
document-centric heterogeneous XML multimedia documents. More precisely we focus
on text-rich documents that do not have a fixed structure, but a flexible one, and that
may include multimedia data like sequences or time series data.

1.2 Thesis Contribution

In this dissertation we explore methods for managing and searching collections of
heterogeneous multimedia XML documents. More precisely, we focus on the flexible
searching of structure, text, and sequential data embedded in heterogeneous XML
document databases [173]. We also design and evaluate methods for i) approximate
matching of structural constraints in an XML IR framework [177, 176, 179, 178], and
ii) detecting best entry points for starting to read an XML document [179, 174] on a
given topic. Finally, we adapt the proposed approach for approximate search of semi-
structured documents on a dedicated hardware memory developed in the context of
the ReMIX2 project [175].

1.3 Thesis Outline

In this section we introduce the structure of the thesis and make a short overview of
the content of each chapter.

2Reconfigurable Memory for Indexing Mass of Data (ReMIX) http://www.irisa.fr/remix

http://www.irisa.fr/remix

1.3. THESIS OUTLINE 5

Part One: ”Introduction”

• Chapter 1: Introduction presents the main research subject and shows a brief
outline of the structure of the thesis.

Part Two: ”XML Information Retrieval”

• Chapter 2: XML Information Retrieval presents a non-exhaustive review of
the state of the art work in XML IR research field. It describes the influence, the
main issues and the specificity introduced by the use of the structure of the XML
documents all along the indexing and the retrieval processes starting from the
query formulation to the results presentation stage.

• Chapter 3: SIRIUS XML IR System describes our approach to XML infor-
mation retrieval and its implementation in the SIRIUS3 prototype developed by
the VALORIA laboratory of University of South-Brittany. As its main charac-
teristics SIRIUS merges 1) flexible matching of the XML structure based on an
Levenshtein editing distance on the XML tree paths 2) a relevance ranking al-
gorithm for the textual content based on the vector space model and 3) a query
enrichment mechanism based on a thesaurus of semantic rules.

• Chapter 4: Experimental Evaluation Framework is dedicated to the SIRIUS
experimental evaluation within the INEX evaluation campaign. We describe
in details the INEX evaluation benchmark and show the specific configuration
settings used to tune the SIRIUS XML IR system to participate at INEX 2005
and INEX 2006 ad hoc retrieval tasks.

• Chapter 5: Approximate Structural Matching for XML IR evaluates the in-
fluence of the strict and approximate structural matching mechanisms to access
relevant information in semi-structured databases.

• Chapter 6: Retrieving Best Entry Points in Semi-Structured Documents
describes a simple, efficient and effective method for finding the Best Entry Point
(BEP) to start reading an XML document on a given topic

Part Three: ”XML Multimedia IR”

XML Multimedia Information Retrieval focuses on methods and techniques for search-
ing multimedia information published as XML documents, and more particularly on
sequential data embedded in heterogeneous collections of XML documents.

• Chapter 7: IR of Sequential Data in Heterogeneous XML Databases intro-
duces our approach for representing, extracting, indexing and retrieving hetero-
geneous sequential data from collections of heterogeneous XML documents.

Part Four: ”XML IR on Specialized Hardware”

To manage, search and analyze important volumes of data within a reasonable re-
sponse time, scalable/specialized methods and systems are required. The ReMIX

3SIRIUS XML IR System www-valoria.univ-ubs.fr/APRIM/Sirius

www-valoria.univ-ubs.fr/APRIM/Sirius

6 CHAPTER 1. INTRODUCTION

project sustained by the national french initiative ACI Masse de données4 studied,
implemented and validated a framework (both hardware and software) dedicated to
query large databases.

• Chapter 8: ReMIX – Reconfigurable Memory for Indexing Mass of Data
presents an original hardware memory architecture for both storing very large
indexed data structures and allowing fast information retrieval.

• Chapter 9: Approximate Search of Semi-Structured Documents Using
Dedicated FLASH Memory and FPGA Components focuses on the process of
designing and implementing an approximate search method for semi-structured
documents adapted to the dedicated hardware memory developed in the context
of the ReMIX project.

Part Five: ”Conclusions”

• Chapter 10: Conclusions finally closes the thesis by summarizing the main
results and contributions and by providing some directions for future work.

4ACI Masse de Données http://acimd.mabri.fr

http://acimd.mabri.fr

Part II

XML Information Retrieval

7

Chapter 2

XML Information Retrieval

This chapter presents a non-exhaustive review of the state of the art work in XML IR
research field. We describe the influence, the main issues and the specificities intro-
duced by the use of the structure of the XML documents all along the indexing and
the retrieval processes starting from the query formulation to the results presentation
stage.

Contents
2.1 Introduction . 10

2.1.1 Document and Collection of Documents 11
2.1.2 Unstructured, Structured and Semi-Structured Documents . . 11
2.1.3 Documents Markup . 11
2.1.4 A Brief History of Markup Languages 13
2.1.5 eXtensible Markup Language (XML) 14
2.1.6 Data-Centric vs. Document-Centric XML Data 14

2.2 Conceptual Model for XML IR . 15
2.3 Precursors of XML IR . 17

2.3.1 Passage Retrieval . 17
2.3.2 Web Information Retrieval . 19

2.4 XML IR Challenges . 21
2.4.1 Term and element statistics . 21
2.4.2 Structure Statistics . 21
2.4.3 Relationships Statistics . 22
2.4.4 Relevance Propagation . 23
2.4.5 Overlapping Elements – Removing Nested Redundant Infor-

mation . 24
2.4.6 Structure Constraints . 25
2.4.7 XML IR Interfaces . 25

2.5 Indexing XML Documents . 26
2.5.1 Indexing Process . 26
2.5.2 Index Layers . 27
2.5.3 Indexing Term Weights . 27
2.5.4 Index Structures . 28

9

10 CHAPTER 2. XML INFORMATION RETRIEVAL

2.5.5 Indexing Unit . 28
2.5.6 Indexing the Structural Information 30

2.6 XML Retrieval Models . 33
2.6.1 Vector Space Model . 33
2.6.2 Language Model . 34
2.6.3 Probabilistic Model . 36
2.6.4 Machine Learning . 36

2.7 XML IR Evaluation . 37
2.8 Conclusion . 38

2.1 Introduction

Rapid advances in electronics and computer technology have brought in what we call
an information age. The exponential growth of the Internet and the Web has flooded
us with huge quantities of data in different formats on a wide variety of subjects. To
manage this colossal amount of data and extract useful information out of it, we need
efficient and effective means of organizing and indexing the data. Though these data
are available in different forms and the amount of available multimedia data is rapidly
increasing, textual data continues to be a fundamental and very widely prevalent form
of storing information.

Not only the volume and the availability of the textual information is increasing,
but also the efforts made to organize this information – as denoted by the increas-
ing number of documents published by using the eXtended Markup Language (XML)
[164]. One major purpose of the XML markup is the explicit representation of the
logical structure of a document.

From an information retrieval point of view, accessing this new type of documents
is a challenging task as both the structure and the textual content coexist in the same
document. Relying on the structural context should help to better fulfill the users
information needs as it allows to retrieve more focused information and, therefore, to
increase the precision of the retrieved results. However, along with these uncontested
advantages, this also brings in discussion several challenging issues.

This chapter aims to highlight the main challenges related to structured docu-
ment retrieval and to provide a brief overview of the state of the art solutions used to
handle these challenges. In Section 2.1, we introduce preliminary notions like the doc-
ument, the collection of documents and the characteristics of unstructured, structured
and semi-structured data. Next, we present the different document markup types
and trace a brief history of the markup languages. An introduction to the XML lan-
guage follows. We end with the identification of two different views of XML data that
lead to two applications fields with distinct requirements: data-centric approaches and
document-centric approaches. In this work, we focus on document-centric approaches
– which are described further in detail. In Section 2.2, we introduce the conceptual
model for XML information retrieval while in Section 2.3 we review previous related
works in passage retrieval and Web search. Section 2.4 highlights the main issues
and challenges involved in designing XML information retrieval systems and surveys
current research approaches to solve them. Section 2.5 focuses on indexing XML doc-
uments for XML ranked retrieval while Section 2.6 surveys some of the most effective

2.1. INTRODUCTION 11

models adapted for XML IR. Finally in Section 2.7 we briefly tackle the specific re-
quirements for XML IR evaluation, and conclude the chapter in Section 2.8.

2.1.1 Document and Collection of Documents

At its simplest, a document collection can be any grouping of static flat text-based
documents. At its more complex, a document collection becomes a large set of dynamic
multimedia hyper-documents, physically distributed on some networking architecture.
An illustration of a typical real-world document collection is Wikipedia1, the biggest
multilingual free-content encyclopedia on the Internet.

A document can be defined as a unit of multimedia (generally text) discrete data
within a collection. Within the context of a particular document collection a document
can be further described based on its representation of a similar class of entities that
defines a framework within that collection. Nevertheless, a document can (and gener-
ally does) exist in any number or type of collections – from the very formally organized
to the very ad hoc. Furthermore, a document is potentially an ubiquitous entity as
it can be a member of different document collections, or different subsets of the same
document collection, and can exist in these different collections at the same time.

2.1.2 Unstructured, Structured and Semi-Structured Documents

Textual information can be broadly classified into three categories based on their
structure : (i) unstructured data (ii) structured data and (iii) semi-structured data.

Documents that have relatively little typographical, layout, or markup indicators
to denote structure – like most scientific research papers, business reports, legal mem-
orandum, and news stories – are sometimes referred to as free-format, weakly struc-
tured or unstructured documents. To the opposite side we have the structured data
that refers commonly to data stored in relational databases. On the other hand, doc-
uments with extensive and consistent format elements in which field-type metadata
can be more easily inferred – such as some e-mail, HTML Web pages, XML documents,
PDF files, and word-processing files with heavy document templates or style-sheet
constraints – are described as semi-structured documents.

2.1.3 Documents Markup

Markup has its beginnings in the publishing and printing industry where instructions
were written on a document to provide the typesetter with instructions as to how
things should look. In the electronic world, markup is a code that is included when a
document is created, often to provide display instructions, but also to provide meaning
or semantics to words or phrases or to provide processing instructions.

The markup code or element is made up of a start and end tag and usually some
included text. For instance <i> and </i> would make the text between the start and
the end markups to appear as italicized2.

1Wikipedia – The Free Encyclopedia http://wikipedia.org/
2Accordingly to the conventions defined by the HyperText Markup Language (HTML) http://www.

w3.org/MarkUp/MarkUp.html.

http://wikipedia.org/
http://www.w3.org/MarkUp/MarkUp.html
http://www.w3.org/MarkUp/MarkUp.html

12 CHAPTER 2. XML INFORMATION RETRIEVAL

Figure 2.1: Three Layer Structure for XML Document Collections: Semantical, Logi-
cal, and Presentation Markup [231].

Presentation, Logical and Semantic Markup. Chiaramella et al. introduced in
[47] a three levels taxonomy for the structural markup: physical, logical and semantic.

The Physical Markup of a document defines the way it is presented to the user in
terms of page presentation, font sizes and so on. It may be assimilated with an
external view of the document.

The Logical Markup express the way a document is logically organized and reflects
the discourse structure of the author(s). For instance a document contains a title,
then a chapter having a title and several subchapters and so on, each of these
parts containing an element of the discourse and having its own internal orga-
nization. The logical structure may be seen as an internal view of the document
structure.

The Semantic Markup is defined relatively to its meaning for the author of the doc-
ument or for a specific reader. It corresponds to an organization of the underlying
knowledge that constitutes the document content.

More recently, van Zwol et al. [231] used an equivalent three levels classification for
the markup of the XML documents: presentation, logical and semantic tags. (see Fig-
ure 2.1). The authors used this classification as a basis for a visual query formulation
technique for XML retrieval called Bricks. Bricks exploits this three layer structure
in the retrieval process by adding a priority to each class of structural elements. Se-
mantical elements will receive a high priority, followed by the logical elements, while
the presentation elements are given a low priority. Their results showed that this ap-
proach may reduce the complexity of the query formulation process and the required
knowledge of the underlying document structure for the user.

One difficult problem is to automatically detect the class of each XML tag in or-
der to be used in the information retrieval process. The same tag may have different
meanings in different contexts. In an heterogeneous environment, the XML tags se-
mantic/class may be dependent of the specific collection.

2.1. INTRODUCTION 13

Recent approaches [213, 215] use natural language processing techniques and col-
lection statistics to automatically detect between soft3, hard4 and jump5 tags. These
approaches are dependent on the collection characteristics and are not yet extended to
manage heterogeneous collections of XML documents.

Identifying the tags class may help to determinate if a particular structural ele-
ment is meaningful for the final user. It may also help in filtering or transforming the
structure of the XML documents into a logical and semantically valid structure. Under
this hypothesis, using the structural information should bring a positive contribution
to the information retrieval process.

In [233] the authors plead for a more meaningful and semantic structure in XML
documents. They indicate how this can be achieved by adding additional semantic
tags using named entity recognition techniques. They show that XML retrieval sys-
tems can effectively exploit the additional structure as it allows for identifying and
retrieving more relevant XML elements in the top of the ranking. This is especially
true, when the users specify semantically structured clues in the information request
on the semantic collection.

2.1.4 A Brief History of Markup Languages

Modern markup languages had their beginnings at a government meeting in Ottawa
in 1967 when an American, William Tunnicliffe, made a presentation titled The Sep-
aration of Information Content of Documents from their Format. A project named
GenCode stemmed from this work and was expanded upon by a group at IBM that de-
veloped Generalized Markup Language (GML) in 1969. Standard Generalized Markup
Language (SGML) was the next iteration on GML and was accepted as an ISO stan-
dard in 19866.

SGML is a metalanguage for tagging text defining rules for a markup language
based on tags. Each instance of SGML includes a description of the document struc-
ture called a document type definition. Hence, an SGML document is defined by a de-
scription of the structure of the document and the text itself marked with tags which
describe the structure. SGML is the precursor of all markup languages, but it is more
complicated and more powerful than needed for most applications.

In 1992, the World Wide Web Consortium (W3C)7 propose the HyperText Markup
Language (HTML). HTML is a simple language based on SGML using predefined tags
specified in the HTML Document Type Definition. The HTML language allows to for-
mat the way a document is presented into a web browser and facilitates the creation of
hyperlinks between documents. Most documents on the web are stored and transmit-
ted in HTML format. One of the main critics brought to the HTML language is that
it mixes the documents content with the presentation layer. This makes the updates
difficult and reduces its usability as a data exchange format.

3Soft tags identify significant parts of a text, like quotations, appearance effects, but become "trans-
parent" while reading the text – i.e. presentation markup.

4Hard tags interrupt the "linearity" of a text and contribute to the structuring of the document. Ex-
amples of this type are ’titles’, ’chapters’ and ’paragraphs’ – i.e. logical markup.

5Jump tags are used to represent particular elements, like margin notes, references to bibliography, or
glosses. They are detached from the surrounding text. For example the elements ’comment’ and ’footnote’
may be considered as jump tags.

6See A History of Markup Languages http://careo.prn.bc.ca/losc/mod1t1.html
7The World Wide Web Consortium (W3C) http://www.w3.org/

http://careo.prn.bc.ca/losc/mod1t1.html
http://www.w3.org/

14 CHAPTER 2. XML INFORMATION RETRIEVAL

The complexity of the Web has grown significantly since that time and the need
for a more powerful markup language to provide structure and meaning within doc-
uments, and to facilitate the exchange of data, became apparent. A subset of SGML
which should be less complicated than SGML, but more powerful than HTML was
seen as a promising candidate. The result was eXtensible Markup Language or XML,
which became a W3C specification in 1998.

2.1.5 eXtensible Markup Language (XML)

The Extensible Markup Language (XML) is a general-purpose markup language. It
is classified as an extensible language because it allows its users to define their own
tags. Its primary purpose is to facilitate the sharing of structured data across different
information systems, particularly via the Internet. It is used both to encode documents
and serialize data.

It started as a simplified subset of the Standard Generalized Markup Language
(SGML), and is designed to be relatively human-legible. By adding semantic con-
straints, application languages can be implemented in XML. These include XHTML,
RSS, MathML, GraphML, Scalable Vector Graphics (SVG) , MusicXML, and many
others. Moreover, XML is sometimes used as the specification language for such appli-
cation languages.

XML does not have many of the restrictions imposed by HTML but on the other
hand imposes a more rigid syntax on the markup, which becomes important at pro-
cessing time. Each document must have a single root element. An element begins
with a start-tag and ends with an end-tag enclosed in angle brackets. Both tags must
have the same name. In XML, ending tags cannot be omitted. Also, tags for elements
that do not have any content, like BR and IMG, are specially marked by a slash before
closing angle bracket. All elements and text passages between the start-tag and the
end-tag of an element make up its content. An element can have certain attributes
that are listed within its start-tag. An attribute is a pair consisting of a name and
a value. In Figure 2.2 we show an example of a document marked up in XML . The
document starts with a preamble that specifies the version of the XML specification
and the name of the character set used within the document. The preamble is followed
by the start-tag of the root element document. All other elements are nested within
that root element. The names for elements and attributes may be freely chosen by the
users. Optionally, a Document Type Definition (DTD) or a schema language such as
XSD or Schematron can be used to formalize the relationships between elements.

2.1.6 Data-Centric vs. Document-Centric XML Data

Making the distinction between data-centric and document-centric XML data is im-
portant in order to settle the context in which the work presented in this thesis is
conducted.

Data-centric XML documents are generally for machine-to-machine inter-change of
machine-readable data. It is characterized as being highly structured.

Document-centric XML documents are generally human readable, and may con-
tain some markup to help a person understand the text (e.g., markup indicating
italics or footnotes).

2.2. CONCEPTUAL MODEL FOR XML IR 15

<?xml version="1.0" encoding="ISO-8859-1"?>
<document>

<title> Slant </title>
<author> G.Bear </author>
<text>

<chapter num="1" >
Omphalos dominates ...

</chapter>
<chapter num="2" >

Alice Grale believes ...
</chapter>

</text>
</document>

Figure 2.2: Example of a document marked up in XML.

This distinction is important, as generally, the techniques for processing and querying
XML vary depending on its usage; more structured XML documents rely more on its
structure to relay or filter information, whereas document-centric XML relies more on
content (i.e., the values of data).

In document centric XML retrieval the queries are user information needs that
vaguely specify the context of the desired answers. This is different from well-structured
XML queries where one tightly specifies what he/she is looking for using a very con-
straining query language.

2.2 Conceptual Model for XML IR

A standard information retrieval process begins by a user entering a query into the
system. Queries are formal statements of information needs, for example search
strings in web search engines. In information retrieval a query does not uniquely
identify a single object in the collection. Instead, several objects may match the query,
perhaps with different degrees of relevancy. To manage this problem, most IR systems
compute a numeric score on how well each object in the database match the query, and
rank the objects according to this value. The top ranking objects are then shown to
the user. The process may then be iterated if the user wishes to refine the query.

Traditional IR uses this paradigm to find relevant documents, e.g. entire books, to
a user’s information need – in this case the indexed objects are indivisible.

In structured document retrieval (SDR) the documents structure is exploited to
identify which document components to retrieve. The motivation is that the structure
of the documents may improve the search precision by exploiting the visual memory
of the users. Therefore structured document retrieval8 allows the users to retrieve
document components that are more focused to their information need, e.g. a chapter,

8{Structured|Semi-Structured|XML} {Information|Document} Retrieval are used interchangeably in
this thesis to denote the task of retrieving relevant information from a collections of semi-structured doc-
uments as opposed to Data Retrieval which describes the task of accessing the data, usually as database
records.

16 CHAPTER 2. XML INFORMATION RETRIEVAL

Figure 2.3: Conceptual Model for XML Information Retrieval.

a section, a page, several paragraphs of a book, instead of an entire book – here also
fragments of the indexed objects may be retrieved [10, 41].

In particularly, the XML language is becoming an ubiquitous format for informa-
tion interchange over the Internet due to its powerful structured representation for
storing information. In contrast to HTML, which is mainly layout-oriented, XML fol-
lows the fundamental concept of separating the logical structure of a document from
its layout. XML thus offers the opportunity to exploit the logical structure of docu-
ments to allow more precise searching [122].

Indexing, Searching and Ranking XML Documents. Previously, XML docu-
ments were data-centered and used to store rich-structured data which did not contain
much amount of text. But now-a-days, document-centric XML documents are being
used to store information in the form of structures as well as text. We concentrate on
such XML documents from an information retrieval point of view. That is, we study
and emphasize problems related to the effective and – in a less measure – efficient
access to XML documents repositories.

An XML information retrieval system retrieves document components (i.e. XML
elements) rather than whole documents in response to a user’s query by exploting the
logical structure of the documents. This process is illustrated in Figure 2.3.

Extracting information from such documents requires that a query contains both
textual keywords as well as structured information. Therefore, the index structures
for such XML collections must be adapted to index the structured parts as well as the
textual parts of the documents. This may be done at different granularity levels that
will directly affect the systems ability to answer focused requests.

Ranking methods must sort the elements so as to return the most relevant results
to the given query. They must take into account the keywords relevance, the structural

2.3. PRECURSORS OF XML IR 17

similarity, the unit of result, the nested information and the global relevance of the
documents .

The XML query processing algorithms must be efficient. The most important
performance-enhancing factors are the existence of appropriate index structures de-
signed for faster content and structure query processing and top-k query optimization
techniques.

2.3 Precursors of XML IR

Long before the emergence of the XML language, studies related to the granularity of
the retrieved information for a more focused document access have been conducted. Al-
ternative and earlier technology exist for identifying relevant parts of documents [221]
– i.e. passage retrieval [38, 99, 105, 194].

Second, works that identify means to exploit the fixed structure of the documents
like the weblinks and HTML tags to improve the retrieval effectiveness were pro-
posed in the context of Web information retrieval. Even if the structure of the XML
documents is not static and these approaches can not be applied directly to XML in-
formation retrieval [33], these may be considered as its precursors [198, 206].

Next, we present early approaches for passage and Web information retrieval as
surveyed by Sauvagnat [198] and Sigurbjörnsson [206].

2.3.1 Passage Retrieval

In the area of classical document retrieval, passage retrieval [38, 99, 105, 194] can
be seen as a document retrieval extension of a rudimentary data retrieval approach.
The aim of passage retrieval is to increase the precision of the retrieved answers and
to reduce the cognitive load on the user by filtering relevant from irrelevant content
within a document. However, passage retrieval lacks the structural dynamic contexts
to which ranking is applied in semi-structured retrieval [33].

Moffat et al. [152] investigate approaches for passage retrieval starting from arbi-
trary divisions of running text into pieces of similar length, or by taking the document
structure into consideration – i.e. the documents are split into sections based on their
internal markup. Their whole set of experimental results are difficult to interpret but
show that section and document retrieval can improve retrieval performance.

Starting from the observation that most text items are naturally subdividable
into recognizable units, such as text sections, paragraphs, and sentences, –Salton et
al. [194] evaluate paragraph and section passage retrieval. They use similarity at
sentence level for local matching. They provide experiments on an encyclopedia collec-
tion and show that section and paragraph retrieval can improve document retrieval
performance.

Callan [38] describes experiments with paragraph-based and window-based meth-
ods of defining passages. In their experiments, passages based upon paragraph bound-
aries were less efective than passages based upon overlapping text windows of varying
sizes. This result held for both document retrieval based on a single best passage, and
document retrieval based upon combining document-level and passage-level evidence.
The experimental results also showed that, for document ranking, the combination
of passage and document-level evidence was more effective than using passage-level
evidence alone.

18 CHAPTER 2. XML INFORMATION RETRIEVAL

Kaszkiel and Zobel [105] explored several passage retrieval approaches: fixed-
length passages, variable-length passages, discourse structures (e.g., sections and para-
graphs), and text tiles9 [88]. The authors show how passage-level evidence can be used
to retrieve documents and compare the effectiveness of the different approaches. In
their experiments the fixed-length passages obtained the best results.

Liu and Croft [133] explore the use of generative language models and relevance
models to improve document retrieval by using passage retrieval. They show that in
the case in which the documents are long and span several topics, the passage retrieval
can significantly outperform document retrieval.

More recently, Jiang and Zhai [99] present a method for detecting coherent relevant
passages of variable lengths using hidden Markov models (HMMs). The HMM-based
method naturally captures the topical boundaries between passages relevant and non
relevant to the query. Pseudo-feedback mechanisms can be naturally incorporated into
such an HMM-based framework to improve parameter estimation. They show how the
HMM method can be applied on top of any basic passage extraction method to improve
passage boundaries detection.

As a conclusion, retrieving relevant passages as opposed to whole documents im-
proves retrieval accuracy in general. This technique may be particularly useful when
the documents are long and lack the semantic mark-up [221].

Passage vs. Element Retrieval

Although, at first sight, XML retrieval and passage retrieval appear quite different,
they share much in common. As with traditional document-centric information re-
trieval, the user need is loose, linguistic variations are frequent, and answers are a
ranked list of relevant results. Furthermore, in focused retrieval, the size of the unit
of information retrieved is variable and results within a single document may natu-
rally overlap [222].

In case of marked up documents, the explicit divisions of the document can be
used as retrieval units. For semi-structured data such as XML, the retrieval systems
have at their disposal an explicit set of logical units, e.g. paragraphs, sections – that
can be used as potential answers. In element retrieval the search engine is expected
to identify not only which documents are relevant, but also which structures (or ele-
ments) within those documents are relevant to an information need. In XML element
retrieval, the retrieval units are set exclusively to marked-up XML elements. This is
the main difference to other focused tasks such as passage retrieval [38, 99, 105, 194]
where the systems can freely choose the best retrieval unit [40].

One of the current research trend in XML IR community concerns the relations
between passage retrieval and element retrieval in the context of answering an XML
retrieval task. Even if at first view XML retrieval is mostly based on element retrieval,
experimental studies of the users relevance judgments show that the relation between
passage and element retrieval is not a trivial one.

The need for returning ”range results in XML retrieval” rather then single XML
elements is first introduced and discussed by Clarke in [48]. The author analyzed the

9TextTiling [88] is a technique for subdividing texts into multi-paragraph units that represent pas-
sages, or subtopics. To detect a passage, for each phrase, it computes the phrase similarity with its k
previous and k next phrases. A rapid change of the similarity between phrases should point a thematic
change and delimit a new passage.

2.3. PRECURSORS OF XML IR 19

INEX 2004 ad hoc task relevance judgments, e.g. based on the IEEE collection10, and
found that out of the 5229 elements judged as highly exhaustive and specific 11, at least
1700 (32%) are part of a larger range of elements with identical tag names. Since then,
more recent studies tackled the relationships between the XML element retrieval and
passage retrieval [101, 97, 221, 21, 20].

Itakura and Clarke [97] believe that passages (or elements derived from passages)
are better results than XML elements. They propose ranking every possible passage
in a document and converting them into elements for comparison to other element
retrieval systems. To go from passages to elements either additional content must
be added, or some content must be lost. By analyzing the relevance results of 39
INEX 2005 topics on the INEX IEEE collection, they found that element retrieval out
performed passage retrieval. Their conclusion was that, the best elements to return
are those that best fit the user expected results. Since the results tend to be passages
it may be necessary to return multiple consecutive elements to cover a passage.

In [101], Kamps and Koolen analyzed the the INEX 2006 assessments on the
Wikipedia collection to find how the relevant text inside a document (i.e. highlighted
passages) relates to the document structure (i.e. XML elements). They find that rel-
evant passages may span a range of elements. They specifically look at the relation
between passages and container elements – i.e. the shortest XML element containing
the whole passage. Container elements are twice as long as the average passage. They
show that passages tend to start at the container element’s start but passages ended
somewhat earlier than the container element. On the other hand, half of the passages
have a closely fitting container element (the passage covers 95-100% of the element).
Best fitting container elements were paragraphs, sections, list-items, titles and the
whole articles. The authors conclude that as half of the passages fit closely with an
XML element this seems to support retrieving XML elements, but the fact that the
corresponding elements are twice the length of the relevant passage seems to support
passages results.

Overall, as the start of a relevant passage coincides with the start of an element,
and assuming that the results are displayed in the context of the article (i.e. the users
presumably start reading at the beginning of the element, and returning trailing non-
relevant text is not penalized) retrieval of XML elements seems a good approach [101].

2.3.2 Web Information Retrieval

Using the Web Link Structure

The web links carry implicit useful information about the relevance of the web pages
they point to. This can provide a mean to rank and filter the web pages. For instance
a link from page A to page B may be considered in most cases as a recommendation
of the page B by the author of the page A. In addition, even if the primary aim of the
links is to provide a mean to navigate through the structure of a website, they can also
be seen as indications of semantic proximity between web pages [44].

A number of works exists that propose ways to use the hyperlink structure between
documents to improve retrieval effectiveness. We briefly survey here some of the most

10See a description of the IEEE collection in section 4.2.1 on page 63.
11See a description of the two different dimensions: exhaustivity and specificity used to judge the perti-

nence of the result elements in section 4.2.3 on page 69.

20 CHAPTER 2. XML INFORMATION RETRIEVAL

common Web IR methods for analyzing the hyperlink structure: Page Rank [34, 162]
and HITS (Hypertext Induced Topic Search) [112].

Brin and Page [34] use the notion of popularity propagation as the base of their
PageRank algorithm successfully implemented into the Google search engine. PageR-
ank uses the hyperlink structure of the Web to view inlinks into a page as a recom-
mendation of that page from the author of the inlinking page. However, inlinks from
good pages (highly revered authors) should carry much more weight than inlinks from
marginal pages. Each web page can be assigned an appropriate PageRank score, which
measures the importance of that page.

Another popular approach is the Kleinberg’s HITS [112] algorithm. The HITS al-
gorithm improves the popularity propagation by introducing the notion of page rele-
vance within the method used to compute the web search results relevance. The HITS
IR method defines authorities and hubs. Authority value estimates the value of the
content of the page (inlinks); hub value estimates the value of its links to other pages
(outlinks). The HITS thesis is that good hubs point to good authorities and good au-
thorities are pointed to by good hubs. HITS assigns both a hub score and authority
score to each web page. To compute the relevance of pages to the users query, HITS is
applied at querying and not at indexing time as opposed to the PageRank algorithm.

In Web information retrieval [35], link analysis has been successfully applied to dif-
ferent tasks such as pages ranking, pages crawling, pages classification/categorization
and as source of evidence for detecting related or duplicated pages. A more detailed
description of current link analysis algorithms can be found in [123].

Using the Structural Markup

In [244], Wilkinson uses a structured collection with assessments at element level to
compare document retrieval and element retrieval. It shows that element retrieval
can be used to improve the overall performances of document retrieval. He also shows
that ranking documents first, and then selecting the elements to retrieve is not a good
strategy. Finally, the mixture of local and global evidence is proposed as an effective
strategy to obtain better results for both document and element retrieval.

In [153], Myaeng et al. propose a retrieval model based on inference networks
that allows to retrieve parts of SGML documents. The appropriate unit of retrieval
is defined by the user as a structural constraint. Their experiments show that the
system can handle a variety of structural queries and that both element-based passage
retrieval and specific weights associated to elements-type can ameliorate the retrieval
effectiveness at document level.

In [31], Bordogna and Pasi propose a flexible query language for Web pages that
allows to express both conditions on the documents structure and conditions on the
topics of interest. The first condition acts as a soft filter so as to reduce the set of doc-
uments on which to evaluate the second condition. The main idea is to use the logical
structure of the documents when computing the weights of the indexed terms. First,
the terms are indexed according to the documents sections. Each section is associated
with a fuzzy membership function, and the terms weights in the main sections are
computed by using aggregate functions. Flexibility is achieved by allowing users to
specify both a linguistic quantifier such as ’most’ for qualifying the global composition
of the documents into a number of sections and preferences on the desired documents
sections.

2.4. XML IR CHALLENGES 21

2.4 XML IR Challenges

Although the structure of the XML documents can be used as a backbone to answer
more specific and focused results – i.e. that contain the information sought by the
users and the least amount of irrelevant information – deciding which level of the
tree is the right unit of retrieval (for instance the whole book, a chapter, a section, a
paragraph, a table, a figure, etc.) for answering a query with regard to both content
and structure represents a challenging problem [16].

In this section, we discuss the main challenges associated with scoring and return-
ing XML documents elements as answers for user’s focused information needs. We also
briefly illustrate how these challenges have been or are currently being addressed by
the XML IR research community as surveyed by Amer-Yahia and Lalmas [16], Baeza-
Yates and Lalmas [24] and Amer-Yahia et al. [10].

2.4.1 Term and element statistics

Most retrieval approaches rely on term distribution statistics to determine the rele-
vance of a document. The most common measures being term frequency, tf, and doc-
ument frequency df. tf is the number of occurrences of a term in a document and df
is the number of documents in which the term appears. In XML retrieval the indexed
statistics must be adapted to the granularity level of the indexing and retrieval units.
The problem arise when one needs to compute the importance of a term within an ele-
ment, since elements in XML documents are nested. The importance of a term within
an element is dependent on the importance of the term within the elements composing
that element or even of the term importance within the neighboring elements [110].
For instance, suppose that a section element is composed of two paragraph elements.
How should we compute the element term frequency, etf and element frequency ef
values of a term in the paragraphs and the section?

One approach in [142] is to compute statistics for predefined element types spec-
ified at indexing time independently. This avoids problems arising from nested ele-
ments as elements of different types are treated separately. – see Section 2.5.5 for a
more comprehensive description of this approach.

Another approaches [77, 201, 234] gather term statistics only for the leaf-elements.
The scores are then propagated in the XML tree to compute the relevance scores of the
inner-nodes. To this end various propagation weights dependent of the tree distance
between the current node and its leaf-elements descendants may be used. The aim
is to gradually attenuate the contribution of the leaf-elements to the score of their
ancestors.

Other approaches consider all the elements of the collection [207], or classes of el-
ements of the same type [218] to compute the terms statistics. When computing the
element term frequency, the textual content of the current node and of all its descen-
dants are usually merged [157, 218]. Finally document frequency is used in [50].

2.4.2 Structure Statistics

In a collection of XML (heterogeneous) documents we have generally a large number of
XML tags. Not all elements are equally relevant to an information need. How can we
find which type of element is a satisfactory answer? The structure in XML documents

22 CHAPTER 2. XML INFORMATION RETRIEVAL

should be used to decide which elements are likely to produce higher user satisfaction.
This is usually done by computing some statistics on the structure itself [16].

One approach [142, 50] is to index and/or retrieve only those element types with the
highest distribution of relevant elements in (available) relevance assessment sets. For
instance, section, abstract, sub-section, and paragraph element types are assessed as
relevant elements for a test collection composed of a subset of IEEE Computer-Society
scientific articles.

Another approach is to take the element length into account. This can be done
either by using a fixed threshold (usually expressed in terms of number of words)
either by using the average length of the elements [207].

Both strategies discard from the result list elements which are often considered to
be ”too small” to act as a meaningful retrieval unit. For instance presentation tags
such as italics that delimit only a few words. This has to be done carefully, as [201]
showed, that even if the small elements should not be returned to the users, they
might still influence the scoring of their enclosing elements.

2.4.3 Relationships Statistics

The logical structure of the XML markup describes explicit relationships between the
XML documents components. In the XML tree, a node may have a parent, children,
ancestors, descendants, preceding and following nodes. This rich structural relation-
ships information should be exploited when computing the XML elements relevance
scores. The challenge is than to determine how to estimate (or learn) relevant rela-
tionships statistics and what parameters to use (e.g. size, number of children, depth,
distance, the relevance of the root element, the relevance of the previous/following or
surrounding nodes).

A simple but effective method is to integrate the global relevance of the article (i.e.
the relevance of the root element) in the XML elements score computation. Several
approaches (e.g. pivot [143], root-based contextualization [19] or article level language
model [207]) obtained significant improvements when using this particular relation-
ship.

The structural organization of the collection – i.e. the structural relationships be-
tween the documents, like their distributions in different folders or sub-collections –
can also be used to increase the retrieval performances [183].

In [184] the structural relationships between the elements returned by the re-
trieval system and highly relevant elements from the assessment set are analyzed.
The discovered links are introduced in the retrieval model as virtual propagation/re-
inforcement paths between specific elements types and used to improve the ranking.

Some approaches, like those based on Bayesian networks [170, 235], or hierarchi-
cal language modeling [157] can capture the strength of the structural relationships
through learning.

These models need extensive training, which is computationally expensive. A sim-
plified hierarchical language model that reduces the parameter estimation complexity
was proposed in [158].

Other approaches propagate terms statistics in the XML tree by using propagation
weights that depend on the elements relationships [77, 78, 201, 75]. Several propaga-
tion methods are described more in details in the next paragraphs but all share the
characteristic that the parameters used to weight the different elements relationships

2.4. XML IR CHALLENGES 23

are usually empirically determined, which consist by itself a rather difficult task.

2.4.4 Relevance Propagation

In the case where the XML nodes are considered as disjoint-nodes – see Section 2.5.5 –
techniques able to aggregate term statistics and to propagate the relevance of the leaf-
nodes to the upper-levels in the XML tree are required. This may raise several ques-
tions: How to aggregate term and/or relationship statistics? Which sub-element(s)
contribute best to the content of its parent element and vice versa? How to propagate
scores between relevant elements? Is there any influence between sibling or neighbor-
ing elements?

In the HyRex system [78], Govert and al. introduce an augmentation method for
dealing with XML documents. In their approach, standard term weighting formulas
are used to index the so called index nodes of the document. Index nodes are not neces-
sarily leaf nodes, because this structure is considered to be too fine-grained. However,
index nodes are disjoint. In order to allow the nesting of nodes, in case of high-level in-
dex nodes comprising other index nodes, only the text that is not contained within the
other index nodes is indexed. For computing the indexing weights of inner nodes, the
weights from the most specific index-nodes are propagated towards the inner nodes.
During propagation, however, the weights are down-weighted by multiplying them
with a so-called augmentation factor. In case where a term at an inner node receives
propagated weights from several leaves, the overall term weight is calculated by as-
suming a probabilistic disjunction of the leaf term weights. This way, most specific
elements are preferred during retrieval.

The approach applied in the XFIRM system [199, 198] is also based on an aug-
mentation method. However, in theirs approach, all leaf nodes are indexed, because
the authors start from the assumption that even the smallest leaf node may contain
relevant information. The propagation of relevance values in the document tree is
function of the distance that separates the nodes in the tree. Furthermore, each node
in the document tree is assigned a relevance value which is function of the relevance
values of the leaf nodes it contains. Nodes containing a larger number of relevant
leaf-nodes are favored in the final ranking. Terms that occur close to the root of a
given sub-tree are considered to be more significant for the root element then terms
occurring at deeper levels of the sub-trees. Also the nodes containing a larger number
of relevant leaf-nodes are favored in the final ranking.

The GPX [76, 77], the B3−SDR [229] and the XSee [234] systems use an approach
based on the construction of a collection sub-tree that consists of all elements (nodes)
containing one or more of the query terms. Leaf nodes are assigned a score using a
simple tf ·idf variant, and scores are propagated upwards in the document XML tree,
so that all ancestor XML elements are ranked. The approach implemented in the
GPX system, even if ”heuristic-based” [77], proved to be versatile and to consistently
produce good performance results for a variety of retrieval tasks. For this reason,
[229, 234] extended the GPX system approach to reward elements that partly fulfill
the structural constraints of the information needs and to penalize those elements
that contain excessive elements in their path.

Yet, another approach exist. The so-called reading paths [75] are used to propagate
information – i.e. relevance – from each section to the following section, where the
importance of a section decrease with the distance between sections. This conforms

24 CHAPTER 2. XML INFORMATION RETRIEVAL

with the human reading memory hypothesis. That is, generally a reader is assumed
to read the sections of a document in their appearing order. Therefore, the information
that is read at the beginning of the reading path has more importance than the others,
considering that it is used afterward as reading memory. Thus far, the evaluation
results for this approach were not conclusive.

2.4.5 Overlapping Elements – Removing Nested Redundant Informa-
tion

In an XML retrieval setting, to identify the most appropriate elements to return to the
user is not an easy task. The system has to find out which are the most exhaustive –
i.e. highly relevant – and specific – i.e. not discussing unrelated topics – elements in
the tree. Given an XML document collection, a structured document retrieval system
could present to the user any of the marked up elements. The possible retrieval units
vary widely in size and type; from small elements like italics and section titles to large
elements like document bodies or whole articles.

Due to the inherent nested structure of the XML documents – i.e. logical markup
(paragraph, section, article) overlaps with presentation markup (italics, emphasize) –
the result lists may contain a large number of overlapping elements. This is because
when a specific element contain the query terms, all of its ancestors will contain them
too. Thus all elements in the same path that contain that element may be relevant
(with different degrees) to the query. This is known as the overlap problem [109].

Presenting a list of overlapping XML element retrieval results to a user is not a
reasonable thing to do. Empirical evaluation has shown that users are irritated by
receiving a ranked list of overlapping elements [220]. It is the task of the system
to decide which units are the most suitable in order to produce results lists without
overlapping elements.

Several types of approaches have been applied to remove the redundant nested
information from the results list. Common approaches return recursively the high-
est scored element from each path [77, 201] as long as it does not overlap with an
already selected result, or discard elements of a given structural type [235]. In these
approaches, the information retrieval systems rely completely on the underlying re-
trieval models to produce the best rankings. Thus, the assumption is that the most
appropriate element in a path has been assigned a higher score than the rest. The
structure is not considered when selecting the nonoverlapping elements.

In [50, 143], the structural relationships between elements are taken into account
when removing the overlapping information. [50] iteratively adjust the score of those
elements contained in or containing higher ranked elements in the result list while
in [143] the elements are selected by using heuristics based on the distribution in the
tree structure of the relevant elements.

Another approach [151] merges the relevance score of the elements, their size and
the amount of irrelevant information contained by their children elements into an
utility function. An element whose utility value is higher to that of the sum of the util-
ity value of its children is selected as best element, otherwise, the children elements
whose utility values are above some threshold are selected.

2.4. XML IR CHALLENGES 25

2.4.6 Structure Constraints

Specifying an information need including both content and structural constraints is
not an easy task for an end user, in particular for semi-structured data with a wide
variety of tag names. This is a valid assumption in the context of heterogeneous XML
collections as the ones currently available on the Web.

Even if both strict and vague interpretations of the structural constraints were
proposed [223], the vague interpretation is prefered as considered most suited to the
user’s both, information needs, and its own knowledge of the collection structural or-
ganization. The motivation for this states in the fact that ”although the users may
think they have a clear idea of the structural properties of the collection, there are
likely to be aspects to which they are unaware” [16]. In this case, even if the result
elements do not exactly meet the structural conditions expressed in the query, they
must be returned if they can satisfy the user information need .

To answer structural constraints in a vague manner, a common and effective ap-
proach is to to manually build a dictionary of tag synonyms [143, 201, 200].

A more extreme case is to simply ignore the structural constraints in either the
support elements, the target elements, or both [19]. More details about the current
approximate structure matching schemes for vague interpretation of structural re-
quests can be found in Section 3.1.3 while a survey of automatic schema matching
approaches is available in [181].

2.4.7 XML IR Interfaces

Results Presentation

The presentation of results may also pose a number of problems. For multiple rele-
vant fragments, possibly originating from different documents, an unified visualiza-
tion method must be found. Since several elements may belong to the same document
some results may contain others and the presentation as a simple ranked list may not
be appropriate. For a single result element one has to decide whether the element
should be shown out of context, or within the context of the document it belongs to. In
the latter case, one has to decide how this context should be displayed [66].

Up to now, few approaches tackled this issues. Among them we may cite the Hy-
GATE interface of the HyREX IR system [81] that uses a treemap-based visualization
method to present the document structure and TextBars – an extension of Hearts’s
TileBars [87] – to present the relative relevance of elements within in a document.
HyGATE use the so-called Partial Treemaps which display results by omitting nodes
that are not a retrieved node or an ancestor of a retrieved node. Similar with the
treemap concept, a DocBall is used in [53] to represent the structure of a single struc-
tured document.

Daffodil [67] and the XMLFind systems [104, 209, 206] display lists of ranked XML
fragments. The XML fragments are clustered per article and presented in their origi-
nal document order. The relevance in the XML tree is shown by using a heat-map [209]
while a table of contents provides easy access to different document granularity levels.

We cited here only interfaces that were specifically designed for XML retrieval.
For a brief presentation of information retrieval interfaces providing access to sub-
document-level results we refer to [206, page 143]. Additionally, INEX Interactive
track investigates users behaviors when interacting with elements of XML documents.

26 CHAPTER 2. XML INFORMATION RETRIEVAL

An overview can be found in [220].

Query Formulation

The presence of the structure in XML documents allowed more complex and precise
searching paradigms. Nonetheless, this enhancement brought a new burden to the
end-user as the structured query languages such as XQuery and XPath became more
and more complex. These query languages are rather intended for experts and not for
the end-users.

To help the user formulate their requests, a query language usually based on a
subset of XPath navigational axes and standard IR keywords operators may be used –
e.g. NEXI [226]. Also, some approaches use form-based interfaces that provide hints
about the presentation, logical or semantic relevance classes of the different structural
tags from the collection [231]. A rather different approach is taken by the systems
that allow the users to specify their content and structure information needs using
the natural language [214, 247].

In this section we have presented some of the main issues and challenges arising
when designing XML information retrieval systems. We have also presented some
approaches to manage these challenges, mainly the ones introduced within the INEX
initiative for the evaluation of XML retrieval [64, 68, 70, 69, 71].

2.5 Indexing XML Documents

The indexing process allows to extract the search keys or terms out of the document
collection. For flat, unstructured documents, the textual content is processed in order
to find and weight the most significant terms in the collection. For XML documents,
the structure has to be taken into account. This process raises several research ques-
tions: i) What is the influence of the structure on the terms statistics and weights
used in the retrieval models? ii) What is the appropriate granularity for an indexing
unit? iii) How do we index the structural features of the XML documents? iv) How
do we represent and preserve the nested hierarchical relations between the indexed
elements? v) What kind of indexing structures are the most appropriate to index both
content and structure for relevance ranking?

2.5.1 Indexing Process

The straight sequential search strategy may not be efficient enough to access vast
amounts of information within acceptable response times. To solve this access problem
an index may be created to improve the access time and/or to ensure a different or
more complex access patterns to the sought piece of information. The goal of storing
an index is to optimize the speed and performance of finding relevant documents to a
search query. Without an index the search engine would scan every document in the
corpus, which would take a considerable amount of time and computing power. The
trade offs for the time saved during information retrieval are the additional computer
storage required to store the index and a considerable increase in the time required
for an update of the index to take place.

2.5. INDEXING XML DOCUMENTS 27

Figure 2.4: Index Layers.

2.5.2 Index Layers

An index is intimately related with the retrieval model used to access the data since
the later is based on information produced by the former. This relation concerns both
the index capability to answer correctly to the search operators defined by the retrieval
model and space-time optimizations for frequent access/update patterns.

A retrieval system efficiency is determined by several different layers: the retrieval
model, the index model, the index structures, the physical data organization and ac-
cess method, and the physical storage medium (i.e. hard-disk, RAM memory, FLASH
disk, etc) – see Figure 2.4. None of these layers are independent since each model or
layer is constrained and/or optimized by/for the specificity and characteristics of the
underneath layers.

Conversely, a designer aiming to optimize a specific retrieval model had to opti-
mize the layers stack from top to bottom, down to the physical storage medium. For
instance, an attempt to use specialized hardware for XML IR is presented in Chapter
9. This case is not common as the design and implementation costs are high.

2.5.3 Indexing Term Weights

In classical document retrieval, indexing is the process in which a document collection
is parsed, assigning an identifier to each document and keeping track of the number
of times each term is observed within a document (tf or term frequency). Other pa-
rameters of statistical value like the document length or number of unique words per
document are extracted in this step as well.

Most retrieval approaches rely on term distribution statistics to determine the rele-
vance of a document. A term is a word or number found within the text of a document,
or just the stem of a word. Stemming words and thus, mapping multiple different
words into a single stem has proven useful to compensate for semantically equivalent,
but syntactically different word forms. One common practice in information retrieval
is to extract the stems from the indexed terms by applying the Porter12 stemming
algorithm [180].

Term distributions and in particular values such as the inverse document fre-
quency idf may vary widely throughout a document collection. Hence, the significance

12The Porter Stemming Algorithm http://tartarus.org/~martin/PorterStemmer/

http://tartarus.org/~martin/PorterStemmer/

28 CHAPTER 2. XML INFORMATION RETRIEVAL

of a term within a document and thus, its relevance, highly depends on the context. In
most existing retrieval approaches, the context is always the complete document col-
lection. For example, the idf is a static value determined when the document collection
is indexed.

In XML retrieval the indexed statistics must be adapted to the granularity level
of the indexing and retrieval units. Among the different approaches, computing and
indexing term statistics per element, selected type/category of elements, document and
collection levels is a common design decision. We have presented several approaches
for computing term statistics adapted to XML IR in Section 2.4.1.

2.5.4 Index Structures

The standard index format for storing term frequencies is the inverted file format [245].
An inverted file is an indexed sequential file that maps term identifiers to lists of pairs
of document identifiers and counters. These lists are also called postings lists.

In document retrieval, the relatively simple inverted file access structure has proven
superior [26, Chapter 8] to more complex structures like B-trees, hashtables, signature
files, suffix trees or suffix arrays for indexing, index storage, and query processing, in
particular for large amounts of data [245, page 109] or even data at Web scale [34].

A plethora [136] of alternative indexing models and structures were designed for
indexing semi-structured data, both within the DB and IR communities. The main
concern in databases approach being the optimization of complex structural requests,
efficient storage and updates and so on.

In IR community and among the XML information retrieval systems providing
content-oriented relevance ranking, the popularity of the inverted lists remained un-
contested. A straightforward approach is to expand the postings list with information
about the context of occurrence of the indexed terms in the XML tree [76]. Other
popular approach consist in combining the inverted lists with different structural in-
dexes – see Section 2.5.6. Efficient implementations of XML retrieval ranking based
on inverted lists and top-k query processing algorithms can be found in [106, 219].

2.5.5 Indexing Unit

The document retrieval unit assumption does not hold anymore in the case of XML
documents. The XML documents are trees that have a hierarchical structure of nested
elements (sub-trees). To what extent the information contained in an XML element
will influence its ancestors, its descendants or its neighbors? This problem echos on
the choice of the indexing unit granularity.

We note here that the granularity of the retrieval unit may be different of the
granularity of the indexing unit. A retrievable unit may be an indexing unit or be
composed of several indexing units. The reverse is not true. The granularity of the
indexing unit determines the smallest granularity level for the retrieved results. For
instance, if we decide to index an XML document at section level, we will not be able
to retrieve results at paragraph level.

There is no established technique of choosing what a good indexing or retrieval unit
is. The indexing process may be additive – the terms of the leafs nodes are considered
as valid index terms for all their ancestors – or disjunctive – the index terms are local
to their nearest XML element in the tree hierarchy.

2.5. INDEXING XML DOCUMENTS 29

Next we present some of the the current indexing approaches by following the
classification introduced in [24, 10].

XML Sub-Trees

A first approach is to index and retrieve separately XML sub-trees [8, 103, 208]. This
is close to traditional IR – each XML element is a bag of words consisting of itself
and its descendants and can be scored as an ordinary plain text document [10]. This
approach has the advantage that it is a well-understood problem and applying the
ranking function is straightforward. On the negative side, indexing XML sub-trees
leads to a large amount of redundant information in the index. Another problem is
the fact that the terms statistics computed at sub-tree level may not reflect the real
retrieval significance of search terms. This is due to the fact that in the case of struc-
tured documents, the terms occurrences within the XML sub-trees may not conform
to the Zipfs [253] and Luhn [135] distribution laws [214].

Disjoint Elements

Another approach consist in considering the XML elements as disjoint indexing units
[65, 78, 157]. The index terms are local to their nearest XML element in the tree
hierarchy. Therefore, the textual content of the elements can be retrieved as the union
of one or more disjoint indexing units. The major advantage of this approach is the fact
that it avoids redundancy in the index. One of its main difficulties is the computation
of a score at a higher – i.e. non-leaf – level in the XML tree. For this purpose relevance
propagation13 [76, 77, 229, 234] or augmentation [78, 168] methods and mixture of
element specific language models have been proposed [157].

Distributed Units

A third type of approaches indexes separately particular types of elements [142, 143,
141] – e.g. create separate indexes for articles, abstracts, sections, subsections, subsub-
sections, paragraphs, etc. This allows to compute statistics tailored to particular types
of structural elements. The queries are submitted to all the indexes and the retrieved
results are merged and combined after score normalization. The main advantages of
this approach compared with the disjoint element strategy is that it avoids score com-
putation and propagation which can be expensive at retrieval time. From this point
of view the index redundancy may be seen as a way of pre-computing propagation at
indexing time. Also, the XML specific relevance propagation strategies [77, 234] re-
quires nontrivial parameters settings that may need training data. In contrast, the
indexing and retrieval models used in this framework can use standard and well-
known IR techniques. As a negative side, the retrieval model is completely dependent
of the particular types of elements retained beforehand at indexing time. This deci-
sion is manually made per application and collection basis and it can not evolve with
the collection structural characteristics. To cope with this problem, an algorithm to
automatically detect the component types for any given collection with respect to the
minimum size of the components to be indexed and to the number of indices to create
was introduced in [141].

13An early suggestion for a multimedia retrieval model allowing upward and downward attributes
values propagation in structured documents was made by Chiaramella et al. in [47].

30 CHAPTER 2. XML INFORMATION RETRIEVAL

2.5.6 Indexing the Structural Information

Indexing the structural information of documents is of major importance for the XML
IR process. This is due to the fact that the structural expressivity power of the query
languages and the whole retrieval process depends – or at least should depend – on
the structure.

We present and discuss in this section a non exhaustive XML document indexes
taxonomy. It is useful to classify the indexing methods based on their structure, query
expressivity and processing strategy. A straight relation exists between the strategy
used to index the structural components and the power and expressivity of the struc-
tured query language. We present the indexing paradigms in the increasing order
of the amount of structural information that they take into account by following the
classifications introduced by Luk et al. [136] and more recently by Catania et. al. [43].

Flat-File Indexing

XML documents can be treated as simple (flat) text files and the indexing process
is similar to indexing in conventional IR systems. In this view the XML tags are
discarded and only the content of the XML documents is indexed [136]. The obvious
advantage is the fact that any standard IR system can be employed for this task.
Nevertheless, the structural part of the document can not be used either in the request
– i.e. keyword-only queries – or in an implicit manner in the retrieval process if the
user does not want to add structural features to his queries.

An alternative approach is to use the XML tags as indexed terms – i.e. <author>
– or to completely ignore the surrounding angle brackets – for instance <author> will
be indexed as author. Anyway, the additional index terms of the XML tags may influ-
ence the document terms statistics used in the retrieval model which can be either a
desirable or undesirable effect [136].

Tag-Based Indexing

This is perhaps the simplest semi-structured indexing method for XML documents [136].
Tag-based indexing is an approach that links each indexed term with the structural
field in which it occurs. This allows to maintain a structural trace at a single depth-
level of the context from which the structural term was extracted. In this case the
overall tree structural organization of the document is lost. The XML document is
represented as a bag of words in context.

To allow searching restricted to certain tags, index terms are constructed by com-
bining the tag name with the terms from the content – i.e. tag and keyword queries.
For instance XSEarch engine [52] use the following syntax ”author: Bayeza-Yates” to
search for Bayeza-Yates in the <author> context. XSEarch may also consider semanti-
cally related tags as query results.

Path-Based Indexing

The path-based indexing techniques have as objective to efficiently retrieve documents
or documents fragments containing known sequences of values for elements/attributes
tags or certain attributes values. Each index term is associated with its XML context
or path starting from the root of the tree to the deepest node containing the term. For

2.5. INDEXING XML DOCUMENTS 31

instance, Bayeza-Yates which is the name of the author of an article will be indexed as
”/article/author/name/Bayeza-Yates”. For efficiency purpose, the tag names or the
whole path can be replaced by OIDS (Object Identifiers).

To answer path and keywords queries, a common approach is to mix structural
path-based indexing with text indexing techniques like the inverted lists [245, 26].
This allows to associate each word entry with its path position in the host document.
This approach may sustain sophisticated conditions on structure ”ala” XPath [45] or
NEXI Content-And-Structure (CAS) queries [226]. Nevertheless, finding ancestor-
descendant relationships among the nodes of the indexed terms is less efficient than
in the tree-based indexing approaches.

Tree-Based Indexing

In tree-based indexing an unique object id is associated with each node or element of
the XML tree. The indexed terms point to the object id of the element that contains
them. This allows to precisely locate where the indexed terms occurred at indexing
time and to recreate the hierarchical relations of the elements [205].

For instance, the GPX system [77] uses the complete XPath specification of the
nodes locations within the XML tree – including their order position – as OID for the
indexed elements. In this case, the Bayeza-Yates term points to the unique XPath
context – ”/article[1]/author[2]/name[1]” within the given document. Furthermore,
this is associated with a reference to the document id and to the position of the indexed
term within the current XML element in order to allow the processing of content and
structure requests.

The tree-based approach supports twig queries by performing structural joins be-
tween the indexed nodes. Most of approaches process each of the root-to-leaf paths
in the query twig separately and then merge the results. One of the most efficient
method for processing twig patterns is the holistic twig join algorithm [36]. The effi-
ciency of the joins are determined by dedicated node encoding schemes. These schemes
can determine the position of the indexed nodes in the XML documents tree structure
without accessing the original XML documents.

Labeling Schemes. Many labeling and encoding schemes for XML nodes were pro-
posed to define a trade off between space occupancy, information content and suitabil-
ity to updates [51]. Among them we can cite ORDPATHs [160] implemented in the MS
SQL Server14 or Dewey IDs [85].

One common labeling node scheme is the region-based approach that encodes each
element by its position based on the tree preorder and postorder traversal algorithm
– see Figure 2.5 a) . The graphic on the left sketches the derivation of postorder ranks
(red numbers) for an example tree.

This encoding allows to efficiently characterize XML axis regions: – i.e. ancestor,
descendant, following and preceding node relationships – by simple algebraic opera-
tions. For instance, v’ is an ancestor of v if pre(v′) < pre(v) ∧ post(v′) < post(v).

This characterization is illustrated in Figure 2.5 b) , where the nodes of the XML
tree from the previous figure have been mapped into the two-dimensional pre/post
plane, using their pre and post values as coordinates. Each node in this plane induces
a partitioning into four disjoint regions (illustrated for node f): 1) the ancestors of f,

14Microsoft SQL Server http://www.microsoft.com/sql/

http://www.microsoft.com/sql/

32 CHAPTER 2. XML INFORMATION RETRIEVAL

a) b)

Figure 2.5: Encoding XML Document Regions using Pre/Post Order Traver-
sal.Encoding XML Document Regions using Pre/Post Order Traversal a) Derivation
of Post Order Traversal Ranks b) The Pre/Post Plane [82].

2) the descendants of f, 3) the following nodes of f and 4) the nodes preceding f. This
characterization of document regions applies to all nodes in the plane. This means that
we may pick any node v and use its location in the plane to efficiently solve structural
relationships [82].

Grust et al. equally use references to the label and to the parent of the current node
to efficiently compute XPath location steps in their XPath Accelerator approach [82].
XPath Accelerator can also answer partial structural queries – i.e. queries that do
not start with the root node of the XML document. An example of a system that uses
region-based labeling scheme in an XML IR framework with relevance ranking is the
XFIRM system [201].

Sequence-Based Indexing

Recently, a new indexing paradigm was proposed in order to increase the efficiency of
processing branching queries on XML documents – the sequence-based indexing [241,
185, 240]. In sequence-based indexes, XML documents and branching queries are rep-
resented as sequences, and subsequence matching provides the query answers. Thus,
unlike other approaches, sequence based XML indexing uses the tree structure as the
basic query unit, thus avoiding the need to disassemble a structured query into mul-
tiple subqueries [43].

Two approaches were used to transform twig queries and structured XML data into
sequences, namely the tree depth-first traversal implemented in the Virtual Suffix
Tree approach [241] and the Prüfer codes [185]. A virtual suffix tree [241] codifies
XML documents and queries as sequences of pairs, each representing a node and the
path (including node content) to reach it, according to a tree preorder visit. In [185],
the XML documents and queries are coded as sequences of labels, corresponding to
Prüfer sequences.

False hits can be generated when querying XML tree structures using sequence-
based representations. That is, a subsequence match will not always correspond to
a subtree match between the query and the documents. Therefore, a suplimentary
refinement step is needed to eliminate the false hits. To avoid this problem [240] pro-

2.6. XML RETRIEVAL MODELS 33

posed classes of sequencing methods to preserve query equivalence between a struc-
tural match and a subsequence match.

However, sequence-based indexes do not directly support queries with selection
conditions over internal nodes and they are not yet extended to include content rele-
vance ranking.

For more information on indexing, searching and querying XML documents, we
suggest the comprehensive survey of Luk et al. [136]. A more recent XML document
indexes classification is introduced by Catania et al. in [43], while Amer-Yahia and
Lalmas [16] provide a classification and brief description of the expressivity of XML
search languages and current challenges in scoring XML elements.

2.6 XML Retrieval Models

One central problem for information retrieval systems is to predict which documents
are relevant and which are not. A ranking algorithm that establishes an order based
on the relevance of the retrieved documents operates according to distinct premises
about the notion of document relevance. The way these different assumptions are
modeled within the IR system, the way the relevance scores are derived and inter-
preted constitutes a retrieval model [26].

In classical information retrieval, to determine relevance, a numerical weight is
assigned to each term-document pair in a document collection. The weight represents
the term’s significance within the document content. The relevance-based ordering of
documents with respect to a query, also called ranking, is obtained by aggregating the
query term weights for every document and determining the highest value. Most doc-
ument retrieval approaches use the bag-of-words paradigm as their underlying model.
The main assumption of the bag-of-words model is that the documents are represented
by independent terms and their multiple occurrences within a single document.

Standard document retrieval and its underlying ranking models are discussed in
detail in the classical books by van Rijsbergen [228], Salton [196], and Baeza-Yates and
Ribeiro-Netto [26]. In this section we survey some of the existing extensions of clas-
sical document retrieval approaches to support semi-structured documents retrieval.
These extensions try to take into account the structure or, more often the impact of the
structure on the information unit characteristics [214]. We focus mainly on the (most
successfully) retrieval approaches introduced within the INEX evaluation campaigns.

2.6.1 Vector Space Model

The vector space model [197, 196] (VSM) is a well-known IR model for representing
text documents as vectors of identifiers, such as, for example, index terms. The simi-
larity in vector space models is determined by using associative coefficients based on
the inner product of the document vector and query vector, where word overlap indi-
cates similarity. The inner product is usually normalized. The most popular similarity
measure is the cosine coefficient, which measures the angle between the document
vector and the query vector.

To apply the vector space model to XML documents, a similarity score must be
computed between the request and each XML element from the document. Also, the

34 CHAPTER 2. XML INFORMATION RETRIEVAL

similarity measure must be extended in order to evaluate relations between structure
and content. In this case, each index term should be encapsulated by one or more
elements. An usual approach is to index XML sub-trees – see Section 2.5.5 – by propa-
gating the terms of the leaf nodes in the document tree.

An attempt made as early as 1993 by Fuller et al. in [72] generalized the vector
space model with the aggregation of relevance scores in the documents hierarchy. The
basic idea is that the extended vector space model can be applied recursively to ev-
ery sub-tree in a hierarchy to aggregate scores. The authors also suggested that the
contribution of the content of the child and current node could be weighted differently.

Schlieder and Meuss introduce in [203], a query model based on VSM and tree
matching techniques: this allows to express queries without perfectly knowing the
document structure. The document collection is seen as a single tree where documents
are sub-trees. Query is also a tree and every logical document rooted at a node with
the same label as the query root is a potential candidate to be returned as result.
But instead of returning a ranked list of document elements, a ranked list of whole
documents was returned.

In [79], Grabs et Scheck propose a modified VSM that evaluate the importance –
i.e. ief cat inverse element frequency – of an indexed term from a given element as a
function of its importance within the elements of the same type or category.

One of the successful aplication of VSM to XML retrieval is the JuruXML search
engine [142] developed by the IBM research lab at Haifa. Instead of keeping term
statistics at the document level they stored them at XML component level – see Sec-
tion 2.5.5. Each component was thus separately ranked by the similarity measure
with its own kind of tf-idf. When using fine-grained indexes, data that is outside their
scope, but which is not indexed, may be required to obtain a better ranking. As a solu-
tion to this problem, [143] applied a document pivot scaling [208] for which the scores
of the elements from each index is scaled by the score of their parent article. One ma-
jor drawback of this approach is the fact that the above algorithm requires some prior
knowledge on the collection such as the element types to index in each of the indexes.
Therefore, the authors extended their work by providing in [141] a ”component index-
ing algorithm” for creating a small number of indexes for any given collection. The
system can also handle vague structural constraints by integrating a context resem-
blance function between the users requests represented as XML fragments [41] and
the XML documents.

The XXL system [216] uses a ranking function based on the tf and idf term statis-
tics. It allows vague path conditions on the XML structure integrated in a SQL syntax
flavor (select-from-where). More flavors and extensions of the VSM model applied to
XML IR can be found in [86, 93, 75, 76, 54, 130, 179, 229, 234].

2.6.2 Language Model

Statistical language models were first introduced for information retrieval by Ponte
and Croft [172]. A language model estimate the relevance of a document by calcu-
lating the probability that the document generates the query terms. This is done by
using two different probability distributions: the foreground and background mod-
els. In XML element retrieval, the documents in the retrieval model correspond to
elements. The foreground model P (ti|ej) estimates the probability of a term ti given
a particular element ej , and P (ti) estimates the probability of the term ti in natural

2.6. XML RETRIEVAL MODELS 35

language. These two distributions are linearly combined to give a final score. The
likelihood for a query q = (t1, t2, ..., tn) to be generated from an element ej it is given
by:

P (q|ej) = P (t1, t2, ..., tn|ej)
=
∏n

i=1(λ · P (ti|ej) + (1− λ) · P (ti))

where n is the query length.
In order to avoid assigning a value of 0 to the entire product of probabilities when a

single query term ti does not occur in the document (i.e. the sparse data problem [91]),
a linear combination of the probabilities, also known as linear interpolation smoothing,
can be applied. The Jelinek-Mercer smoothing [91] parameter in the above formula
controls the emphasis given to the evidence collected by the model (foreground) or
by the collection model (background). Background probabilities assure that common
terms contribute less to the final ranking. In XML retrieval the smoothing parameter
may also introduce a length bias. For instance, larger elements are returned when
using higher lambda values [100].

The foreground and background probabilities, P (ti|ej) and P (ti) are defined as max-
imum likelihood estimators and computed using specific collection statistics. For the
foreground probability, usually a maximum-likelihood estimator based on term fre-
quency (the number of times a term ti occurs in an element ej) is used. For estimating
the background probability, common estimators are collection or document frequencies
(the number of times a term ti occurs in the collection/unique documents).

The language modeling approach allows to combine ”non-content” features of ele-
ments (or documents) with the scoring mechanism by using element prior probabilities
P (ej). The ranking is produced by computing the relevance of an element ej to a given
query q as follows:

P (ej |q) ∝ P (ej) · P (q|ej)

where P (ej) is the prior probability of relevance for element ej and P (q|ej) as de-
fined above.

A very simple, yet effective approach is to use the element size as a length prior
(P (ej) = size(ej)). Different lengths priors and their effects for XML retrieval are
analyzed in [103]. Structural features, like the overall organization of the documents
within the collection are introduced in [183].

Recent approaches [20, 21] use discourse features, like semantic passages, as source
of evidence for enhancing language models for XML retrieval. The authors use a topic
segmentation algorithm based on lexical cohesion and develop the notion of the so-
called topic shifts. A topic-shift is detected as changes in the vocabulary of adjacent
text segments occurs. These are used as priors to tune their language model for XML
retrieval.

Another popular technique in language modeling approaches is the so called hier-
archical language models [157] or mixture models [206]. In these models relevancy is
estimated as a linear interpolation of different language models.

Sigurbjörnsson et al. [207] studied the effect of selective indexing strategies by
using a multinomial language model as a linear interpolation of three language models
for element, document and collection.

Ogilvie and Callan [156, 157, 158] applied a hierarchical language model to XML
retrieval. For each node in the XML document tree (e.g. title, abstract, body, section,

36 CHAPTER 2. XML INFORMATION RETRIEVAL

sub-section etc.) a language model is considered. For leaf nodes, the language model
is based only on the text contained by the nodes itselfs. For nodes situated at upper
levels in the XML tree, the language model is estimated by the linear interpolation of
the language model formed from the text in the node itself and that formed from its
children [156]. In [157] they extend their approach by adding a language model for the
element’s parent into the linear interpolation. Interpolation parameters are estimated
using a generalized expectation maximization algorithm in [158].

The language model is used in the TIJAH system [150, 151] on a three-level database
architecture composed of conceptual, logical and physical levels. The language model
is implemented at the conceptual level, then at the logical level it is translated into
expressions constructed on a probabilistic region algebra and executed at the physical
level using the MonetDB database kernel.

2.6.3 Probabilistic Model

In the traditional probabilistic model [190] retrieval is considered as a two class Bayesian
decision problem, and ranking is based on the binary independence model [136]. The
probabilistic model is applied to XML documents in [117, 66].

Lalmas [117] extends the FERMI structured multimedia information retrieval model
introduced in [47] by applying the Dempster-Shafer’s theory [204] to combine differ-
ent evidence sources. In this paradigm, we search to find evidence that the document
is relevant to a query. Each occurrence of a query term in the document is partial
evidence that the document is relevant. It is shown that the theory provides a rule,
the Dempster’s combination rule, that allows the expression of the uncertainty with
respect to parts of a document. Each piece of evidence is weighted by a belief of rele-
vance, which can be specified in the query. The Dempster-Shafer combination of those
belief weights sets the total relevance of the document [136].

Another example is the HyREX system [78] that uses probabilistic inference and
path algebra to transform queries into facts and rules in pDatalog – i.e. probabilis-
tic Datalog. The XIRQL query language [66] implemented in HyREX extends the
XPath operators with operators for relevance-oriented search and vague searches on
non-textual content. Documents are then sorted by decreasing probability that their
content is relevant to the one specified by the user.

A fusion approach for multiple probabilistic searches against different XML compo-
nents combined and weighted using a logistic regression-based algorithm is presented
in [124, 125]. Finally, OKAPI-based models adapted for XML IR are presented in
BM25E [134], TopX [217, 219] and TReX [9].

2.6.4 Machine Learning

A retrieval model for XML documents based on Bayesian Networks is proposed by Pi-
wowarski et al. in [169, 170]. The structure of the Bayesian networks reflects directly
the documents hierarchy. Each document node X is associated with a random variable
that can be in any of the three states: Irrelevant, Big or Exact. The retrieval process
starts from the root node of the document and propagates downwards. The probability
that a node X has a particular state v given a query q, P (X = vx|q) is calculated as
a linear combination of conditional probabilities of its parent nodes and various lo-
cal baseline models. Conditional probabilities are learned from a labeled collection of
structured documents – which is composed of documents, queries and their associated

2.7. XML IR EVALUATION 37

assessments – using a cross-entropy training criterion and by minimizing the entropy
function via gradient descent method. An approach to structured document retrieval
based on a generalization of Bayesian Networks – influence diagrams – is presented
in [56].

Vittaut and Gallinari propose in [235, 236] a machine learning ranking model for
XML element retrieval. The model is used to automatically learn a set of weighted
parameters. These weights are used to combines features characterizing the elements
to be ranked which depend on the element itself, its parent element and the docu-
ment containing that element. The model learns how to combine these features in an
optimal way according to a loss function from a set of examples composed of query
and assessed elements pairs. The proposed approach shown to effectively improve the
results of a baseline OKAPI model adapted to XML retrieval.

In this section we have introduced some of the existent retrieval models for struc-
tured IR. More information about the past and recent retrieval approaches for XML
retrieval can be found in [119, 136, 163, 198] and in the annual INEX workshop pro-
ceedings [64, 68, 70, 69, 71].

We note here that there is not a clear winner for any of these retrieval approaches.
As stated in [16], an uniform and controllable platform on which all the proposed
retrieval approaches and their various parameters could be studied and compared is
required in order to obtain fundamental results regarding the best practices in XML
retrieval. Unfortunately, this still represents a major challenge for XML IR research.

2.7 XML IR Evaluation

The predominant approach to evaluate a system retrieval effectiveness is to make
use of test collections and appropriate effectiveness scoring methods. A test collection
consist of a set of documents, a set of user requests (the so-called topics, or queries)
and relevance assessments of the documents with respect to the queries.

The implicit assumption in traditional test collections is that the atomic retrieval
unit is at document level. This is not a valid assumption in the case of XML retrieval
systems that may return document components instead of full documents as response
to a user’s information need.

In order to evaluate how effective an XML IR system is, we need to dispose of a test-
bed that integrates the new granularity of the retrieval unit defined by the structural
aspects in the evaluation paradigm [16].

Since 2002, the INitiative for the Evaluation of XML Retrieval15 (INEX) started to
address this issue. The aim of the INEX initiative is ”to establish an infrastructure and
provide means, in the form of large test collections and appropriate scoring methods,
for evaluating content-oriented XML retrieval systems” [122]. We provide on overview
of the evaluation methodology developed in INEX and a detailed description of the test
collection, the topics, the retrieval tasks, the relevance judgments and the evaluation
measures in Chapter 4.

15The INitiative for the Evaluation of XML Retrieval (INEX) http://inex.is.informatik.
uni-duisburg.de/

http://inex.is.informatik.uni-duisburg.de/
http://inex.is.informatik.uni-duisburg.de/

38 CHAPTER 2. XML INFORMATION RETRIEVAL

2.8 Conclusion

We have presented past and current work in XML IR by highlighting the main chal-
lenges of the field. We have also taken a close look at the indexing process and retrieval
models and at the way they were adapted and enhanced to handle semi-structured in-
formation retrieval.

We present our proposals for managing and searching semi-structured documents
and their implementation within the SIRIUS XML IR system [177, 179] in the next
chapter, while the evaluation settings and the experimental investigations that we
conducted in order to validate our approach are described in Chapters 4, 5 and 6.

Chapter 3

SIRIUS XML IR System

”This much is already known: for every sensible line of straightforward
statement, there are leagues of senseless cacophonies, verbal jumbles and
incoherences. [...] The certitude that some shelf in some hexagon held pre-
cious books and that these precious books were inaccessible, seemed almost
intolerable. [...] There are official searchers, inquisitors.”

— Jorge Luis Borges, The Library of Babel

In this chapter we present our approach to XML IR and its implementation within
SIRIUS – a lightweight indexing and search engine for XML documents developed at
the VALORIA laboratory of the University of South-Brittany. Preliminary versions of
the approach presented in the current chapter were published in [177, 176, 179, 178].

Contents
3.1 Introduction . 40

3.1.1 Document Structure and IR . 40
3.1.2 Strict and Vague Interpretation of XML-Retrieval Queries . . . 40
3.1.3 Approximate Structure Matching 41

3.2 Document Model . 43
3.2.1 XML Context . 43

3.3 The Index Model . 43
3.4 The Retrieval Scheme . 47

3.4.1 Approximate Path Search . 47
3.4.2 Textual Content Ranking Scheme 50
3.4.3 Computing Element RSV . 50
3.4.4 Lexical Semantic Enrichment 51

3.5 The SIRIUS Query Language . 52
3.5.1 Path Constraints . 52
3.5.2 Attributes Constraints . 53
3.5.3 Complex Requests . 55

3.6 Prototype Implementation . 57
3.6.1 System General Architecture . 57
3.6.2 GUI . 57

3.7 Conclusions . 58

39

40 CHAPTER 3. SIRIUS XML IR SYSTEM

3.1 Introduction

The widespread use of XML in digital libraries, product catalogs, scientific data repos-
itories and across the Web prompted the development of appropriate searching and
browsing methods for XML documents. XML IR should provide the possibility of
querying the information acquired by a system having an incomplete or imprecise
knowledge about both the structure and the content of the XML documents [66]. The
purpose of an XML IR system is to retrieve a ranked list of relevant - i.e. the most
specific and the most exhaustive – XML elements.

In this chapter we describe our approach to XML IR and its implementation in the
SIRIUS prototype developed by the VALORIA laboratory of the University of South-
Brittany. As its main characteristics SIRIUS merges i) flexible matching of the XML
structure based on an Levenshtein editing distance on the XML tree paths ii) a rel-
evance ranking algorithm for the textual content based on the vector space model
and iii) a query enrichment mechanism based on a thesaurus of semantic rules. Fi-
nally we present the evaluation results for the proposed approach obtained within the
INEX 20051 and INEX 20062 evaluation campaigns.

3.1.1 Document Structure and IR

XML documents are semi structured documents that contain structural annotations in
contrast with plain - i.e. unstructured - documents used in classical IR. This structure
reflects (at least partially3) the logical structure of the documents and therefore should
be taken into account in the retrieval process. This is expected to improve the quality
of the retrieved results [26]. More, mixing content and structure in the IR process
will allow the users to express more powerful queries and to search not only whole
documents, but also relevant document components [198].

3.1.2 Strict and Vague Interpretation of XML-Retrieval Queries

When looking for information including structural constraints, we perform a content
and structure (CAS) query [226]. When specifying these structural constraints users
may have a clear picture of what they mean. For example when searching for Baeza-
Yates as the author of an article they do not consider as relevant answers articles citing
Baeza-Yates. However, when searching for sections of articles about string processing
they are likely to be satisfied with a subsection of an article on the topic. The interpre-
tation of the structural constraints may be strict, or vague - i.e. they are considered as
structural hints [226, 223].

XML data-centric approaches like XPath [60] and XQuery [63] uses a strict match
of the structure and of the content of XML documents.

Currently, the World Wide Web Consortium (W3C)4 propose XQuery 1.0 and XPath 2.0
Full-Text [42, 193, 11] that extends data-centric query languages with full-text search

1INitiative for the Evaluation of XML Retrieval (INEX), April 2005 - December 2005 http://inex.
is.informatik.uni-duisburg.de/2005/

2INitiative for the Evaluation of XML Retrieval (INEX), March 2006 - December 2006 http://inex.
is.informatik.uni-duisburg.de/2006/

3If this is not the case, we should preprocess and classify the tags according to their real semantic for
the end user (see Section 2.1.3 on page 12).

4The World Wide Web Consortium (W3C) http://www.w3.org

http://inex.is.informatik.uni-duisburg.de/2005/
http://inex.is.informatik.uni-duisburg.de/2005/
http://inex.is.informatik.uni-duisburg.de/2006/
http://inex.is.informatik.uni-duisburg.de/2006/
http://www.w3.org

3.1. INTRODUCTION 41

capabilities like relevance weighting and ranking. Nevertheless, the matching of the
structural constraints remains strict.

In the context of a heterogeneous environment, like the web, XML documents may
have multiple sources and serve different purposes. In this view, it is unlikely that a
user has a perfect knowledge of the structure of the documents to be queried. Even
in cases when the structure of the documents from the target collection is completely
known - i.e. available DTD or XML Schema [28, 138] - the common users have dif-
ficulties to formulate queries about the structure of the documents [223, 159, 226].
As a consequence, the structural constraints expressed by the users may be seen as
structural hints. These are hardly intended to dictate the exact structure of the query
result; rather they provide a loose example of the information the user is interested
in [32]. Their strict interpretation may ignore potentially useful information and neg-
atively influence the relevance of the retrieved results. At the extreme, no result will
be returned at all - resulting in silence. Therefore, in an XML information retrieval
process the structural constraints should be in general interpreted vaguely.

3.1.3 Approximate Structure Matching

”A fool sees not the same tree that a wise man sees.”

— William Blake

Considerable effort was spent in the IR community, starting with the SIGIR work-
shops on XML IR [23, 22, 192, 6] and with the INEX evaluation campaigns [64, 68, 70,
69, 225] for designing new approaches for XML IR. Among them, several approaches
include specific algorithms for integrating the structure and the structural organiza-
tion of the XML tags in an approximate way within the relevance ranking process.

A first approach is to use the structural constraints as simple filtering conditions.
[216, 208].

Most of the systems implementing a vague approach for the structural constraints
use classes of equivalent tags. These classes are manually generated starting from
the DTD(s) of the collection [201]. Additionally, specific heuristics (i.e. statistics of the
relevant results [151], structural enforcement [143]) are added to weight the relative
importance of the tags in the collection. In [86] the XML tags are transformed using
manually built mappings to meta data with relevant semantic for the user, while [19]
replace them with ∗ - i.e. any element.

To cope with the heterogeneity of the tags in the collections, some approaches [216,
80] consider the use of dictionaries, thesaurus or ontologies to extract semantic related
terms or concepts for building the XML tags equivalence classes.

[230] introduces path factor extension to account for the number of structural tags
matched and request penalty factor to penalize excessive elements in the retrieved
answer path not specified in the user query. Their approach does not handle the hier-
archical organization of the XML tags.

In [249] the structural heterogeneity is handled by using distances reflecting the
notion of structural proximities (i.e. horizontal distance - number of intermediary
sibling nodes, and vertical distance - the number of nested levels).

Another level of vagueness allowed on the structural constraints concerns the
switch or equivalence between the role of XML elements names and the XML at-
tributes or between the XML element content and attributes values [25, 66]. This

42 CHAPTER 3. SIRIUS XML IR SYSTEM

approximation may be regarded as a design decision which is application dependent.
One reason is the fact that the XML standard [164] defines no specific order for the
pairs of attributes and attributes values associated to the same XML element. Con-
versely, the XML elements and their content must respect the document order. This
difference is important in a document-centric context as the document order is highly
relevant for the information retrieval process.

Anyhow, in all the previous approaches, the organization of the structural tags is
not regarded as flexible.

More elaborate methods explore the structural organization of the XML tags by
using graph [55, 139], tree [32, 203, 15] or path [41] based approximate matching.

We cite here only methods integrating hierarchical structure approximation and
textual content ranking. Early seminal work for approximate match of semi-structured
data modeled as graphs is the OEM model implemented in the Lore system [145].

The approaches trying to approximately match complete trees are based on clas-
sical tree edit distances [212] and have a high complexity - i.e. O(| N1 | · | N2 |
·depth(T1) · depth(T2)), where | Ni | is the number of nodes of the tree Ti - for ordered
trees5 [202]. In [251], Zhang et al. gave a proof that unordered tree embedding prob-
lem is NP − Hard. This complexity may be reduced depending on the assumptions
about the XML trees and of the operations allowed [13]. The high computational com-
plexity of this kind of tree matching is not suited for the data sets sizes we intend to
process.

Amer-Yahia et al. explored in [12] the complexity and the expressivity of path
scoring and tree based queries for XML IR. They experimentally showed that the path
based scoring provides very high precision while improving score computation time.

In our approach we introduce algorithms designed to manage approximate search
in heterogeneous XML Document databases. We propose specific data structures de-
signed to the indexing and retrieval of information elements in heterogeneous XML
data bases (originated from a set of WEB pages for instance). The indexing scheme is
well suited to the management of various contextual searches, expressed either at a
structural level or at an information content level. We design an approximate query
language that merges a matching process based on a modified editing distance with a
text ranking model at a low-level, and provides boolean and fuzzy merging operators
for answering complex requests at a higher level. The complexity of main algorithms
is studied and the performance is analyzed. The implementation described highlights
the mixing of structured information presented as field/value instances and free text
elements. Further, we evaluate its effectiveness and efficiency for a variety of XML
IR tasks within the framework provided by the INEX 2005 [69] and INEX 2006 [71]
evaluation campaigns.

The work presented in this chapter has similarities with the XML fragment ap-
proach [41]. In addition we introduce extensions for managing attributes and at-
tributes values as well as semantic similarity between the structural tags. Also, the
prototype implementation including the index structures, the definition of the query
language and the processing scheme for complex requests is quite different.

5A tree is ordered if the left-to-right order of sibling nodes is fixed.

3.2. DOCUMENT MODEL 43

3.2 Document Model

XML documents are generally represented as rooted, ordered, and labeled trees in
which each node corresponds to an element and each edge represents a parent-child
relationship.

Each XML element in an XML document may be composed of a set of possible
nested XML elements, textual pieces of information (TEXT or CDATA), unordered
< attribute, value > pairs, or a mixture of such items.

An example of an XML document extracted from the Reuters Corpus6 together
with its ordered tree representation are given in Figure 3.1. and Figure 3.2.

3.2.1 XML Context

According to the tree structure, every node n inherits a path p(n) composed with the
nodes that link the root n0 to node n. This path is an ordered sequence of XML ele-
ments potentially associated to unordered < attribute, value > pairs A(n), that deter-
mines the XML context in which the node is occurring. This path can be represented
as follows:

p(n) =< n0, A(n0) >< n1, A(n1) > ... < n,A(n) >

Let n be named the terminal node of p(n). A tree node n containing textual/mixed
information can be decomposed into textual sub-elements or strings. Each textual
terminal t (or token, word, lemma, string...) is also linked to p(n) and may be seen as
a terminal node without any attribute. In this case the contextual occurrence of t will
be the sequence:

p(t|t ∈ n) =< n0, A(n0) >< n1, A(n1) > ... < n, A(n) >< t,� >

3.3 The Index Model

The indexing process is based on the creation of an enriched inverted list designed for
the management of the XML contexts. For this model, the entries of the inverted lists
are all the valid textual terminals t of tree nodes. A textual terminal t of a node n is
associated with a list of reference locators {rli}. Each reference locator rl has attached
four pieces of information:

rl →< docId >,< startNodeId, endNodeId >,< wordOffset >,< ctxtId >

• a link to the URI of the document , – this is used in order to retrieve the original
XML document;

• a range-based labeling scheme that assigns to each node n two numbers that
denote the start and end points of an interval < startNodeId, endNodeId >. The
two values form a range (order, order+size). The labels are assigned such that
a child’s interval is contained in all it’s parents’ intervals. An example is given

6Reuters Corpus, Volume 1, English language, 1996-08-20 to 1997-08-19 (Release date 2000-11-03,
Format version 1, correction level 0) http://trec.nist.gov/data/reuters/reuters.html

http://trec.nist.gov/data/reuters/reuters.html

44 CHAPTER 3. SIRIUS XML IR SYSTEM

<?xml version="1.0" encoding="iso-8859-1" ?>

<newsitem itemid="15569" id="root" date="1996-08-27" xml:lang="en">

<copyright> (c) Reuters Limited 1996

</copyright>
<title> UK: UK shares start weaker as Wall Street weighs.

</title>
<headline> UK shares start weaker as Wall Street weighs.

</headline>
<dateline> LONDON 1996-08-27

</dateline>
<text>

<p> London shares started sharply lower on Tuesday after the long holiday
weekend as a disappointing performance on Wall Street and technical
positions in the market sparked an early markdown, traders said.

</p>
<p> The FTSE 100 opened some 18.0 points lower at 3,889.5 as shares re-

trenched after the string of all-time highs last week.
</p>

</text>
<metadata>

<codes class="bip:countries:1.0">
<code code="UK">

<editdetail attribution="Reuters BIP Coding Group" ac-
tion="confirmed" date="1996-08-27" />

</code>
</codes>
<dc element="dc.date.created" value="1996-08-27" />
<dc element="dc.publisher" value="Reuters Plc" />
<dc element="dc.date.published" value="1996-08-27" />
<dc element="dc.source" value="Reuters" />
<dc element="dc.creator.location" value="LONDON" />
<dc element="dc.creator.location.country.name" value="UK" />

</metadata>

</newsitem>

Figure 3.1: An excerpt of an XML document extracted from the Reuters Corpus.

3.3. THE INDEX MODEL 45

Figure 3.2: The ordered tree representation of the XML document from Figure 3.1.

in Figure 3.2. This labeling scheme was introduced in the XISS system [132]
and used to accelerate the computation steps for the path constraints involving
ancestor-descendant relationships between elements.

• an index specifying the location of the token t within the document < wordOffset >,
– this index is used to perform various operations involving the words positions
like phrase search or proximity words search within a given word distance inter-
val;

• a link < ctxtId > toward its XML context p(n), – this context is used to apply and
compute the structural constraints.

To each < ctxtId > we associate an XML context p(n) defined by:

• the ordered sequence of XML tags id < tagId >,

ctxId →< tagId >0< tagId >1 ... < tagId >m

• the ordered sequence of unordered sets of < attributeId, valueId > pairs associ-
ated with each XML element of the first sequence. If no attributes are associated
to an XML element, the null value � is used to maintain the correspondence
between the indexes of the two sequences.

ctxId →< {(attributeId, valueId)k} >0< � >1 < � >m

46 CHAPTER 3. SIRIUS XML IR SYSTEM

Example For the XML document from Figure 3.1 the inverted list associated with
the london and points entries are:

london → [< 0 >,< 4, 4 >,< 21 >,< 4 >], [< 0 >,< 6, 6 >,< 23 >,< 6 >]

points → [< 0 >,< 7, 7 >,< 48 >,< 6 >]

where we consider that the < fileId > associated with the XML document is 0.
The london entry appears in two different locations in the document content at

word offsets 21 and 23 counting from the beginning of the text, in the nodes labeled
dateline [4, 4] and p [6, 6] respectively (see Figure 3.1 and Figure 3.2). It also occurs
as an attribute value in the node labeled dc [16, 16], but this occurrence is not indexed
by default as the XML node contains no valid textual data.

The XML contexts <ctxtId> starts to be numbered at the root of the XML tree. This
assigns the 0 value to the /newsitem context. The pairs of attributes and attributes
values are indexed relatively to the position of the tag element in the XML context as
shown below. The XML contexts referred by the london entry in the inverted list are
/newsitem/dateline (<ctxtId>=4) and /newsitem/text/p (<ctxtId>=6).

For space efficiency purposes, an XML context is indexed by using a dictionary
mechanism and it is related to a unique ctxtId key value. For instance, the XML
contexts associated with the nodes p [6, 6] and p [7, 7] are identical (i.e. - /newsitem/-
text/p) and will refer to the same key <ctxtId>=6. Therefore, the inverted list entry
located in the node labeled p [7, 7] (i.e. points) refers to <ctxtId>=6. There is no di-
rect link between the preorder position of the node in the XML tree and its ctxtId key
value.

0 →< newsitemId >0

0 →
〈

(itemidId, 15569Id), (idId, rootId),
(dateId, 1996− 08− 27Id), (xml : langId, enId)

〉
0

1 →< newsitemId >0< copyrightId >1

1 →
〈

(itemidId, 15569Id), (idId, rootId),
(dateId, 1996− 08− 27Id), (xml : langId, enId)

〉
0

< � >1

...

4 →< newsitemId >0< datelineId >1

4 →
〈

(itemidId, 15569Id), (idId, rootId),
(dateId, 1996− 08− 27Id), (xml : langId, enId)

〉
0

< � >1

...

6 →< newsitemId >0< textId >1< pId >2

6 →
〈

(itemidId, 15569Id), (idId, rootId),
(dateId, 1996− 08− 27Id), (xml : langId, enId)

〉
0

< � >1< � >2

...

3.4. THE RETRIEVAL SCHEME 47

3.4 The Retrieval Scheme

Most of the time, for large heterogeneous databases, one cannot assume that the user
knows all of the structures - even in the very optimistic case, when all the structural
properties are known. Some straightforward approaches (such as the XPath [60] or
XQuery [63] search scheme) may not be efficient in these cases. As the user cannot be
aware of the complete XML structure of the data base due to its heterogeneity, efficient
searching should involved exact and approximate search mechanisms.

The main structure used in XML is a tree: It seems acceptable to express a search
in term of tree-like requests and approximate matching. The matching tree process in-
volves mainly elastic matching or editing distance [212]. As described in Section 3.1.3
the matching complexity is too high to let these approaches perform well for large
heterogeneous databases with documents with a high number of elements (as nodes).
Ménier and Marteau proposed in [148] to focus on path matching rather than on tree
matching - in a similar way with the XML fragment approach [41]. The request should
be expressed as a set of path p(r) that is matched with the set of sub-path p(n) in the
document tree. This breaks the algorithmic complexity of the tree matching tech-
niques while still providing high precision results [12]. This low-level matching only
manage sub path similarity search with conditions on the elements and attributes
matching. This process is used to design a more higher-level request language: a full
request is a tree of low-level matching goals (as leafs) with set operators as nodes.
These operators are used to merge leaf results. The whole tree is evaluated to provide
a set of ranked answers. The operators are classical set operators (intersection, union,
difference) or dedicated fuzzy merging processors.

3.4.1 Approximate Path Search

Let R be a low-level request, expressed as a path goal pR ended with a textual terminal
t, in which the tuples < attribute, value > are replaced by conditions or constraints.
These constraints Ct set conditions to be fulfilled on the attributes and attributes
values (for instance, Ct may indicate that the attribute date should have a date value
> 2005).

pR =< n0, Ct(n0) >< n1, Ct(n1) > ... < ni, Ct(ni) >< t,� >

To allow a flexible interpretation of the structural constraints, we propose to eval-
uate the similarity σ between pR (coding a path with constraints) and pD

i (a path of
the tree TD associated to an index document D) as follows:

σ(pR, pD
i) =

1
1 + δL(pD

i , pR)

where δL is a dedicated editing distance (see [239]).
The aim of our approach is to provide a vague interpretation of the structural con-

straints by combining tags name matching techniques, nodes attributes conditions
evaluation, and path edit distances. For this purpose, we designed an editing pseudo-
distance using a customized cost matrix to compute the similarity σ(pR, pD

i) between
the request path pR and an indexed path pD

i . This scheme, also known as modified Lev-
enshtein distance [131], computes a minimal sequence of elementary transformations
to transform pD

i into pR. The elementary transformations are described below:

48 CHAPTER 3. SIRIUS XML IR SYSTEM

Substitution: a node n in the path pD
i is replaced by a node nR from pR for a cost

Csubst(nR, n). Since a node n not only stands for an XML element, but
also for attributes or attribute relations Ct , we compute Csubst(nR, n) as
follows:

Csubst(nR, n) = h(µ(nR, n), α(nR, n))

where:

• µ(nR, n) is the substitution cost for the nodes nR and n (i.e. strict
match or by using the semantic similarity between the nodes names
– see Section 3.4.4) – without taking into account the attributes con-
ditions, µ(nR, n) ∈ [0, 1],

• α(nR, n) stands for the degree of satisfaction of the conditions stated
in the node nR related to the attributes values in n, α(nR, n) ∈ [0, 1],

• h is the merging function for the element substitution and the satis-
fied conditions on attributes. By design, h(µ(nR, n), α(nR, n)) ∈ [0, 1],
so, Csubst(nR, n) varies between Cmin

subst = 0 (perfect matching) and
Cmax

subst = 1 (no matching at all).

We use a linear merging function to mix µ(nR, n) and α(nR, n):

h(µ(nR, n), α(nR, n)) = (1− λ1) · (1− µ(nR, n)) + λ1 · (1− α(nR, n)))

with λ1 ∈ [0, 1]. The value of λ1 can be tweaked to emphasize the impor-
tance of the constraints on the attributes and attributes values.

Deletion: a node n in pD
i is deleted for a cost Cdel(n) between Cmin

del = 0 and Cmax
del = 1.

Insertion: a node n is inserted in pD
i for a cost Cins(n) between Cmin

ins = 0 and Cmax
ins =

1.

Let T pD
i →pR the set of all the possible transformations (seen as sequences of elemen-

tary transformations: substitution, deletion, insertion) to transform pD
i into pR. Each

transformation τ from T pD
i →pR has a global cost C(τ) computed as the sum of the costs

of each elementary operation.
For example, when matching the path request /doc/article(>= id 1)/bib/ with the

indexed path /ieee/article(id=1)/ref/bib/ the minimum global cost is given by the
substitution between the ieee and doc tag elements and the deletion of the ref tag
(see Figure 3.3). We note here that a deletion operation in one of the contexts can be
viewed as an insertion operation in the other context and vice versa. In this example,
the article tag in the request has associated an attribute constraint article(>= id 1)
that is satisfied by the attribute value of the article element in the index path arti-
cle(id=1). Therefore, no supplementary cost is added to the global cost of matching the
two contexts.

The Wagner and Fisher algorithm [239] computes the minimum cost C∗
k among the

costs for the transformations belonging to T pD
i →pR :

3.4. THE RETRIEVAL SCHEME 49

Figure 3.3: Approximate path search with conditions on attributes and attributes val-
ues.

δL(pD
i , pR) = C∗

k = Minτ ∈ TpD
i →pR

C(τ) = C(τ∗)

Let τ∗be the optimal transformation (with a minimal cost). Finally the similarity
σ between a pR (coding a path with constraints) and pD

i is given by:

σ(pR, pD
i) =

1
1 + C(τ∗)

This approximate path search mechanism has a complexity of O(length(pR)·length(pD
i))

[239] where:

• length(pR) stands for the length of the request path pR

• length(pD
i) stands for the length of the indexed path pi associated with the docu-

ment D.

This complexity remains acceptable for this application since 99% of the XML docu-
ments available on the web have fewer than 8 levels and their average depth depth(TD)
is 4 [149].

Given pR and pD
i , the similarity between the two contexts σ(pR, pD

i) → 0 when the
number of mismatching nodes and attribute conditions between pR and pD

i increases.
More precisely, in the worst case, when the two contexts have no single node in com-
mon, the similarity is given by:

σ(pR, pD
i) = 1 / (1 + Min

{
length(pR), length(pD

i)
}
· Csubst(nR, n)+∣∣length(pR)− length(pD

i)
∣∣ ·Min {Cdel(n), Cins(n)}) .

This corresponds with the operation of matching by substitution all the nodes from
the shorter context and either deleting or inserting (whichever operation is less ex-
pensive) the remaining/required nodes. For a perfect match σ(pR, pD

i) = 1, i.e. all the
elements and the conditions on attributes from the request pR match XML elements
and attributes in pD

i .

50 CHAPTER 3. SIRIUS XML IR SYSTEM

3.4.2 Textual Content Ranking Scheme

Extensions of the main classical retrieval models were brought by the IR commu-
nity in order to index and search semi-structured documents. Of the main retrieval
models applied to XML IR we may cite: probabilistic models [117, 66], language mod-
els [157, 151] or the vector space models [41, 216, 203]. A Bayesian framework for
XML document retrieval is presented in [171, 237].

Our purpose here is not to design a new relevance ranking formula, but to integrate
an approximate structure matching scheme in an XML IR framework. Secondly, we
want to evaluate its benefits and drawbacks in both effectiveness and efficiency.

With this in mind, we choose to use a simplification of the TFIDF ranking for-
mula [195] to compute the relevance (i.e. rsv stands for relevance status value) of a
textual XML node n to a content oriented (or content only - CO) request coR:

rsv(coR|n) = ν ·
k∑

i=0

Max
t∈n

{µ(tRi , t)} · idf(tRi)

where:

• k is the number of terms tRi in the content only request coR,

• µ(tRi , t) is the substitution cost (i.e. strict match or by using the semantic simi-
larity – see Section 3.4.4) between the request token tRi and the index term t,

• ν is a normalization constant:

ν =
1

k∑
i=0

idf(tRi)

• idf(t) is a weighting factor specifying the discriminant power of the term t in the
collection of XML documents:

idf(t) = 1− ln
1 + |D(t)|
1+ | D |

• | D | is the number of documents in the collection,

• |D(t)| is the number of documents in the collection containing the term t.

3.4.3 Computing Element RSV

The first task in XML ranked retrieval is to produce the relevance scores values for
all the nodes in the XML collection starting with the lowest-level in the tree hierarchy
(i.e. the leaf nodes) and up to the document level (i.e. the root node).

As a request R may relate to both the structure pR and the content coR of an
XML element it is quite natural that both axes be involved when computing the rele-
vance score rsv(R|n) of an XML node n. Therefore, we need an aggregation method to
merge the relevance scores obtained on the structure σ(pR, pD

i) and the textual content
rsv(coR|n). We use a weighted linear combination as for the merging of XML elements
and attributes conditions:

3.4. THE RETRIEVAL SCHEME 51

rsv(R|n) = h(rsv(coR|n), σ(pR, pD
i))

where

h(rsv(coR|n), σ(pR, pD
i)) = (1− λ2) · rsv(coR|n) + λ2 · σ(pR, pD

i)

with λ2 ∈ [0, 1]. The value of λ2 can be tuned to emphasize the importance of the
structural versus textual content matching.

3.4.4 Lexical Semantic Enrichment

The µ heuristic is designed to take into account some semantic variations (for instance,
’paper’ is semantically near to ’document’ or ’article’) for the XML elements names
µ(nR, n) or between the query terms and the content of the textual nodes µ(tRi , t). It
involves the following semantic/terminology relations to set up a request enrichment
process or to define custom costs for matching semantic related XML tags:

equivalence : eq arg1, arg2, ..., argn

states that arg1, arg2, ... and argn are considered as identical or equivalent terms
in the context of a specific application.

synonymy : sy arg1, arg2, ..., argn

where arg1, arg2, ..., argn belong to the same synonymy class.

hyponymy : ho arg1(arg2, ..., argn)
where ho specifies that arg1 has arg2, ... and argn as hyponyms (terms more spe-
cialized and more precise than arg1). For instance

ho EuropeanCountry (UK, Germany, France, Italy...)

states that the concept ’EuropeanCountry’ has ’UK ’, ’Germany’, ’France’, ’Italy’...,
as specializations.

hyperonymy : hr arg1(arg2, ..., argn)
where hr states that arg1 has hyperonyms arg2, ... and argn (i.e. more general
terms than arg1). For instance

hr Brittany (France, Celtic Area, ...)

states that the concept ’Brittany’ has ’France’ and ’Celtic Area’ as generalizations.

Using these relations, it is possible to tune the normalized substitution costs wi ∈ [0..1]
as follow:

µ(nR, n) = weq if nR and n are equivalent,

µ(nR, n) = wsy if nR and n belong to the same synonymy class,

µ(nR, n) = whr if nR is hyperonym of n,

µ(nR, n) = who if nR is hyponym of n.

52 CHAPTER 3. SIRIUS XML IR SYSTEM

1 (OR
2 (SEQ European countries)/1.0
3 (SEQ European states)/0.8
4 (SEQ United kindom)/0.7
5 UK/0.7 France/0.7 Germany/0.7 Italy/0.7 ...
6)

Figure 3.4: The enriched version of the ’European countries’ request expressed in the
SIRIUS query language.

In the current implementation, the weights can be defined by the user. The default val-
ues are issued from previous experimentations aiming to integrate natural language
techniques into the information retrieval process [57]. We use the following costs to
model the XML tags substitution or to account for the conceptual relations between
the textual terms of the XML nodes:

µ(nR, n) = weq = 1.0 if nR and n are equivalent,

µ(nR, n) = wsy = 0.8 if nR and n are synonyms,

µ(nR, n) = whr = 0.7 if nR is hyperonym of n,

µ(nR, n) = who = 0.1 if nR is hyponym of n.

More complex heuristics can be used to assign the semantic weights by taking into
account:

• an attenuated distance between the concepts associated to nR and n [188],

• or the global context of occurrence - i.e. the XML path or the semantic context
itself.

For instance <it> or <italic> may be considered as equivalent elements if they have an
<html> element as ancestor.

For text or linguistic values, specific heuristics µ(tRi , t) (similarly to µ(nR, n)) can
be used. In addition, some rewriting rules defining simple automata are proposed to
encode more complex synonymy relations. For instance, ’state’ and ’country’ can be
considered as synonyms in the context of adjectives like ’united’ or ’European’. This
allows to extend the synonymy notion to expressions or association of lexical concepts.

The expanded version of the content only request ’European countries’ expressed
in the SIRIUS query language (see Section 3.5) is given in Figure 3.4. A file contain-
ing ’European states’ can thus be retrieved, with a similarity score depending on the
weight given to synonymy, hyponymy and hyperonymy relations.

3.5 The SIRIUS Query Language

3.5.1 Path Constraints

The path constraints can be expressed by using an ordered sequence of elements
names separated by slashes ”/”. They are delimited by square brackets and begin

3.5. THE SIRIUS QUERY LANGUAGE 53

[/newsitem/metadata/dc/]

Figure 3.5: Simple path constraint.

and end with a "/". The use of wild-card ’*’ operator for matching exactly one tag name
is allowed. An example of a simple path constraint is shown in Figure 3.5.

Each tag name may be followed by complex constraints on attributes and attributes
values – see the next section.

3.5.2 Attributes Constraints

The µ(nR, n) heuristic weights the element names semantic similarity, whereas α(nR, n)
manages the fulfillment evaluation of the constraints on attributes.

For numerical values, the use of fuzzy operators inspired by the fuzzy logic [250]
may be adequate. For attributes with linguistic values, models based on heuristics like
µ(nR, n) could be implemented. We note here that α(nR, n) is a composite function
that merges the degrees of satisfaction of the attributes conditions specified on the nR

node.
Some XML elements may have associated unordered pairs of < attribute, values >

as shown in the excerpt from Figure 3.6 extracted from the Reuters corpus.

<dc element="dc.date.created" value="1996−08−27" />

<dc element="dc.date.published" value="1996−08−27" />

Figure 3.6: XML elements with attributes and attributes values.

When searching for information in a specific XML context, it may be quite useful
to be able to filter the results using the attribute and/or the attribute values. This
may be used in order to rank the retrieved results or to eliminate those that are not
corresponding to a strict selection criterion. For instance, the ’date’ field may be used
to extract only articles written after ’1996-08-01’.

The BNF grammar of the attributes and attributes values constraints language is
given in Figure 3.7.

This is not an exhaustive list, but gives a basic set of operators that can be easily
extended. The degree of fulfillment of the attributes constraints Cti(n) for a node n is
recursively evaluated using the α heuristic as follows:

α (and Ct1 (n) , Ct2 (n) , ..., Ctk (n)) = Mini {α (Cti (n))}

α (or Ct1 (n) , Ct2 (n) , ..., Ctk (n)) = Maxi {α (Cti (n))}

α (not Cti (n)) = 1− α (Cti (n))

α (exist _attribute) = 1 if the ’_attribute’ exists for the node n, else 0.

α (== _attribute _value) = 1 if ’_attribute’ exists and has the ’_value’, else 0. The
same principle applies for >, <, ≥ and ≤.

54 CHAPTER 3. SIRIUS XML IR SYSTEM

Constraint ::= Opn−ary Sequence_Of_Constraints | Opunary Constraint | Op1 At-
tribute Value | Op2 Attribute | Op3 Sequence_Of_Values

Sequence_Of_Constraints ::= Constraint | Constraint Sequence_Of_Constraints

Sequence_Of_Values ::= Value | Value Sequence_Of_Values

Opn−ary ::= and | or

Opunary ::= not

Op1 ::= > | < | >= | <= | == | near

Op2 ::= exist

Op3 ::= in

Attribute ::= Attribute_Name

Value ::= integer | real | char | string

Figure 3.7: BNF grammar for attribute constraints.

1 [/newsitem
2 /metadata
3 /dc (AND (OR ((== element dc.date.published)
4 (== element dc.date.created))
5 (>= value 1996-08-27))
6 /]

Figure 3.8: Example of complex constraints on attributes and attributes values.

α (in _attribute _value1 _value2... _valuej) = 1 if ’_attribute’ exists for the node n
and if its value belongs to the set { _value1 _value2... _valuej}, else 0.

α (near _attribute _value) =M (value (attribute) , _value) if ’_attribute’ exists for the
node n, else 0.

M (value (attribute) , _value) is a similarity function with values in [0..1] expressing
the proximity between the value ’_value’ and the value of the attribute ’_attribute’.

For M (value (attribute) , _value), we use a simple editing distance normalized by
the value Max (length (_value) , length (value (attribute))).

Using these operators, we may express more elaborate constraints on attributes
and attributes values associated to an XML element. For instance, the constraint
from Figure 3.8 applied to the XML document from Figure 3.1 select documents that
have been either published or created after ’1996-08-27’.

3.5. THE SIRIUS QUERY LANGUAGE 55

3.5.3 Complex Requests

Complex requests Rcomplex are built using the low-level request R described in Sec-
tion 3.4.1 and merging operators (boolean or specialized operators). Namely a com-
plex request is a tree of low-level requests R as leafs. Each node supports an operator
performing the merging of the descendant results. Currently, the following merging
operators are implemented in the system for the low-levels management:

or, and : n-booleans or n-set. (or R R′) merges the set of solutions for R and R′.
(and R R′) selects only the answers belonging to both answer sets.

without : this operator can be used to remove solutions from a set. For instance,
(without R R′) delivers the set of solutions for R minus the solutions for R′.

seq : merges some of the inverted list to provides a simple sequence management. For
instance, (seq warning ∗ error) express the search of a sequence of texts items.

same+ : should be related to the or operator. The or operator is a simple set merg-
ing operator, whereas same+ is a dedicated operator that takes into account
the number and the discriminating power of the retrieved terms/elements in
the collection. We used a dedicated (see Section 3.4.2.) TFIDF-like function for
this purpose (TFIDF stands for Term Frequency / Inverse Document Frequency,
see [195]).

in : express boolean contextual relations (in = inside elements with the specified path
pR),

in+ : add structural matching information to the set of solutions. The structural
conditions are interpreted vaguely as described in Section 3.4.1. It performs a
weighted linear aggregation between the conditions on structure and the set of
solutions (see Section 3.4.3).

filter : takes into account the relevance of the global context of occurrence of an ele-
ment answer. The current implementation works at a document level, but arbi-
trary levels in the tree hierarchy may be defined. Filter is a binary set operator.
It selects from the second set received as argument all the elements coming from
document trees containing at least one relevant answer in the first set. The rel-
evance of a returned element is computed as the arithmetic average between its
relevance in the second set and the weight associated with the most relevant
answer of the same document in the first set.

The system analyzes a complex request Rcomplex and produce a set of weighted results.
Let r(Rcomplex) = {(ni, wi)} the set of weighted results produced by the system, where
ni is a an XML element node and wi ∈ [0..1] a weight showing its relevance to the
request. Let Ri be a complex request Rcomplex , or a simple (low level) R request. The
similarity computation for a complex request involves modifications of the relevance
associated with a result element (i.e. wi ∈ [0..1]) and is performed recursively starting
at the leafs of the request tree:

r(or (R0, ..., Rn)) = {(ni, wi)} with wi = Maxk (wk) where (ni, wk) ∈
n⋃
j

r (Rj);

56 CHAPTER 3. SIRIUS XML IR SYSTEM

r(and (R0, ..., Rn)) = {(ni, wi)} with wi = Mink (wk) where (ni, wk) ∈
n⋃
j

r (Rj);

r(without (R0, R1)) = {(ni, wi)} where wi ∈ r (R0) and wi /∈ r (R1);

r(seq (t0, t1, ..., tn)) = {(ni, wi)} where wi = 1 if the request terms t0, t1, ..., tn occurs in
sequence and belong to the same context/leaf – i.e. {t0, t1, ..., tn} ∈ ni – else 0.

r(in (pR, R0, ..., Rn)) = {(ni, wi)} with wi = Min
{
Mink (wk) ,∆

(
pR, p (ni)

)}
where:

• p(ni) the XML context of the XML element ni ; and

• ∆
(
pR, p (ni)

)
= 1 if pR ≡ p(ni), 0 if not; and

• (ni, wk) ∈
n⋃
j

r (Rj);

r(in + (pR, R0, ..., Rn)) = {(ni, wi)} with

wi = (1− λ2) ·Mink (wk) + λ2 ·∆
(
pR, p (ni)

)
where:

• p(ni) the XML context of the element ni ; and

• ∆
(
pR, p (ni)

)
= σ(pR, p (ni)) representing the structural similarity between the

two XML contexts (see Section 3.4.1); and

• λ2 ∈ [0..1] a parameter used to emphasize the importance of the structural versus
textual content matching; and

• (ni, wk) ∈
n⋃
j

r (Rj);

r(same + (R0, ..., Rn)) = {(ni, wi)} where wi = rsv(coR|ni) (see Section 3.4.2) and (ni, wi) ∈
n⋃
j

r (Rj);

Let nD be a result element descendant of document D.

r(filter (R0, R1)) = {(ni, wi)} with wi = wj+Maxk(wk)
2 where

∀D

(
∀i

(
nD

i , wj

)
∈ r (R1) and ∀k

(
nD

k , wk

)
∈ r (R0)

)
.

3.6. PROTOTYPE IMPLEMENTATION 57

3.6 Prototype Implementation

This section reports on SIRIUS, a lightweight indexing and search engine for XML
documents. The retrieval approach implemented is document oriented. It involves
an approximate matching scheme of the structure and textual content. Instead of
managing the matching of whole XML trees, SIRIUS splits the documents structure
in a set of paths. In this view, the request is a path-like expression with conditions on
the attribute values. We present and discuss the system architecture together with its
main functionalities and characteristics.

3.6.1 System General Architecture

The general organization of the system is shown in Figure 3.9. During the indexing
process, the structure of the XML documents is extracted by using the Ælfred XML
parser7. The extracted paths are used in order to construct the inverted lists and
stored within repositories based on the QDBM8 and Berkeley9 database libraries. The
XML contexts are coded to serve in the analysis phase of the retrieval process. The
requests are expressed in a specialized language and their content enriched based on a
thesaurus of semantic rules. The structural part of the requests is compared with the
indexed structures using a mechanism inspired by the techniques for computing edit-
ing distances. The weights of the cost matrix are adapted to the search process and
allow matching the elements and attributes specified in the request with the struc-
ture of the indexed XML documents. The matching process may eventually include
information fetched in the enrichment process. In perspective, a relevance feedback
algorithm could be used to tune the XML contexts cost matrix.

3.6.2 GUI

In this section we present the main characteristics of a graphical user interface (GUI)
aiming at providing end users with focused access to relevant information. We show
an example of a straightforward web implementation of the SIRIUS system oriented
graphical interface in Figure 3.10.

Similarly to popular search engines like Google or Yahoo! the interface displays a
ranked lists of elements sorted accordingly to their relevance to the user request. Each
result refers to the XML document from which it was extracted and its position within
the document as an XML fragment. The relevance score is indicated both as a color
code and a numerical value. To provide the users with an indication about the reasons
for which the elements were selected, query dependent text snippets are associated
with each retrieved element and the searched terms are highlighted.

Within the above example, the output of the XML retrieval system was assumed to
be a ranked list of XML elements, ordered by their presumed relevance to the query,
whether overlapping elements were allowed or not. However, user studies [220] sug-
gested that users were expecting to be returned elements grouped per document, and
to have access to the overall context of an element. For this purpose we rank and
display the relevant documents (the fetching phase) and then the elements within the
fetched documents (the browsing phase). In the fetching phase, documents had to be

7The Ælfred XML Parser http://saxon.sourceforge.net/aelfred.html
8QDBM: Quick Database Manager http://qdbm.sourceforge.net/
9Oracle Berkeley DB http://www.oracle.com/database/berkeley-db/db/

http://saxon.sourceforge.net/aelfred.html
http://qdbm.sourceforge.net/
http://www.oracle.com/database/berkeley-db/db/

58 CHAPTER 3. SIRIUS XML IR SYSTEM

Figure 3.9: SIRIUS General Architecture

ranked according to their global relevance to the user request. In the browsing phase,
ranking had to be done according to the relevance of the retrieved elements in the doc-
ument compared to other elements in the same document. However, for presentation
purposes, the selected relevant elements are returned in their original document or-
der and they are not allowed to contain overlapping information. The selection process
may imply the use of a minimum threshold value for the elements relevance score, a
maximum number of retrieved elements per document; or both. In Figure 3.11 we
show a snapshot of the SIRIUS user oriented graphical interface. In the example we
use a limit of five relevant elements per document and a Max function to compute the
documents global relevance score from the scores of its components.

3.7 Conclusions

Our main contributions are:

• We have proposed specific data structures dedicated to the indexing and re-
trieval of information elements embedded within heterogeneous XML databases.
The indexing scheme is well suited to the characterization of various contextual
searches, expressed either at a structural level or at an information content level.

3.7. CONCLUSIONS 59

Figure 3.10: SIRIUS system oriented graphical interface.

Figure 3.11: SIRIUS user oriented graphical interface.

60 CHAPTER 3. SIRIUS XML IR SYSTEM

• We have implemented and evaluated a new search mechanism based on a set of
tree paths matching that involves a modified Levenshtein editing distance and
information fusion heuristics.

• We have developed a fully functional XML IR system. The implementation that
is described highlights the mixing of structured information presented as field/-
value instances and free text elements.

• We have experimentally evaluated the proposed approach and the system im-
plementation within the INEX 2005 and INEX 2006 evaluation campaigns with
encouraging results. Details about the experimental setup, the retrieval tasks
and the evaluation results can be found in the next three chapters.

Chapter 4

Experimental Evaluation
Framework

This chapter is dedicated to the SIRIUS experimental evaluation within the INEX
evaluation campaign. We present the INEX evaluation benchmark and how we tuned
the SIRIUS XML IR system to participate to INEX 2005 and INEX 2006 ad hoc re-
trieval tasks.

Contents
4.1 Introduction . 61
4.2 INEX Evaluation Campaigns . 62

4.2.1 Document Collections . 63
4.2.2 Topics . 63
4.2.3 Pertinence Judgments . 69
4.2.4 Retrieval Tasks . 69
4.2.5 Evaluation Measures . 70

4.3 SIRIUS @ INEX . 72
4.3.1 Indexing the INEX 2005 and INEX 2006 Collections 72
4.3.2 Structural Weighting Scheme for INEX 74
4.3.3 Translating NEXI to SIRIUS Query Language 75
4.3.4 Processing NEXI Requests . 75

4.4 Conclusion . 77

4.1 Introduction

Much of the research and development in information retrieval is aimed at improving
the effectiveness and efficiency of retrieval.

In a system designed for data retrieval, the efficiency aspects are fundamantal and
are usually measured in terms of the computer resources used, such as the storage
space and the C.P.U. time.

In a system designed for providing information retrieval, the user query request
is inherently vague, the retrieved documents are not exact answers and have to be

61

62 CHAPTER 4. EXPERIMENTAL EVALUATION FRAMEWORK

ranked according to their relevance to the query. Such relevance ranking introduces
a component which is not present in data retrieval systems and which requires to
evaluate the effectiveness of the answer set [26].

Such an evaluation is usually based on a test reference collection and on an evalua-
tion measure. The test reference collection consists of a collection of documents, a set of
example information requests, and a set of relevant documents (provided by experts)
for each example of information request. Given a retrieval strategy, the evaluation
measure quantifies the similarity between the set of documents retrieved and the set
of relevant documents provided by the experts.One of the most consistent and pop-
ular benchmark for evaluating information retrieval systems is the TREC collection
for Text REtrieval Conference1. The goal of the TREC conference series is to encour-
age research in information retrieval from large text applications by providing a large
test collection, uniform scoring procedures, and a forum for organizations interested
in comparing their results.

Typically, the retrieval systems compare their approaches based on their appropri-
ate retrieval of objects (documents, concepts, etc.) that should be retrieved and the
non-retrieval of those that should not. The effectiveness of the information retrieval
systems is commonly measured in terms of precision and recall. The precision is the
ratio of the number of relevant documents retrieved to the total number of documents
retrieved, and recall is the ratio of the number of relevant documents retrieved to the
total number of relevant documents (both retrieved and not retrieved).

For evaluating the effectiveness of content-oriented semi-structured documents re-
trieval, specialized test collections, tasks and metrics were introduced by the INEX –
for INitiative for the Evaluation of XML Retrieval2) – evaluation campaigns started in
2002.

This chapter is dedicated to the SIRIUS experimental evaluation within the INEX 2005
and INEX 2006 evaluation campaigns. We present the INEX evaluation benchmark
and relate on our experience on adapting and using the SIRIUS XML IR system for
participating at the INEX ad hoc retrieval tracks.

4.2 INEX Evaluation Campaigns

The INitiative for the Evaluation of XML Retrieval (INEX) is an international cam-
paign that provides a benchmark in the form of large test collections and appropriate
scoring methods for evaluating the effectiveness of content-oriented XML retrieval
systems.

Evaluation is carried out using test collections assembled specifically for evaluat-
ing particular retrieval tasks. A test collection consists of a document collection, a set
of user requests (i.e. topics) and relevance assessments. The characteristics of tra-
ditional test collections have been adjusted to appropriately evaluate XML retrieval
effectiveness: the document collection comprises documents marked up in XML, the
topics specify requests relating to both content and structure, and the relevance as-
sessments are made at element level. In addition, relevance is measured such that it
appropriately quantifies the system’s ability to return the correct granularity of XML
elements.

1Text REtrieval Conference (TREC) http://trec.nist.gov/
2INitiative for the Evaluation of XML Retrieval (INEX) http://inex.is.informatik.

uni-duisburg.de/

http://trec.nist.gov/
http://inex.is.informatik.uni-duisburg.de/
http://inex.is.informatik.uni-duisburg.de/

4.2. INEX EVALUATION CAMPAIGNS 63

Since its start in 2002, INEX has provided a forum for the discussion of XML re-
trieval related issues. In the past five years INEX has constantly grown and evolved to
incorporate new retrieval tasks, scenarios, and collections.We make use of the INEX 2005
and INEX 2006 data sets to evaluate our retrieval approach. This section briefly de-
scribes the settings used in INEX 2005 and INEX 2006 regarding collection, tasks,
topics, assessments, and evaluation metrics. We focus our explanation on the retrieval
tasks used to evaluate the approach presented in this thesis. Detailed information on
these and other tasks can be found in the workshop proceedings [69, 71].

4.2.1 Document Collections

The IEEE Collection. The inex-1.8 document collection contains 16819 articles
taken from 24 IEEE Computer Society journals, covering the period of 1995-2004. The
total size of the source files in their canonical form is about 750 MB. The collection
contains 141 different tag-names composing 7948 unique XML contexts by ignoring
the attributes and the attributes values. The maximum length of an index path is 20,
while the average length is 8. These statistics are computed from the viewpoint of the
retrieval system. That is, we use the XML tag equivalence classes3 in concordance
with [210]. Also, the XML contexts associated to empty elements or containing only
stop words do not count in our statistics.

The structure of an XML document extracted from the INEX IEEE document col-
lection is given as example in Figure 4.1.

The Wikipedia Collection. The INEX 2006 document collection for the ad hoc
track is based on the main English collection of the Wikipedia XML Corpus4 [59].
The INEX 2006 collection consists of 4.6 GB of text marked-up in XML. The collec-
tion is made of 659,388 English articles extracted from the Wikipedia5 project. The
structural part of the collection corresponds to the Wikipedia templates (about 5000
different tags). On average an article contains 161.35 XML nodes, where the average
depth of an element is 6.72.

An excerpt of an XML document extracted from the Wikipedia XML Corpus is given
as example in Figure 4.2 while its XML tree representation is shown in Figure 4.3.

4.2.2 Topics

The INEX campaigns distinguished two types of topics: Content-Only (CO) topics and
Content-And-Structure (CAS) topics. These topic types reflect two types of users with

3We create structural equivalence classes for the tags defined as interchangeable in a request. In
the INEX IEEE collection there are several tags used interchangeably (for historical paper-publishing
reasons). Tags belonging to the following groups are considered to be equivalent and can be used inter-
changeable in a query.

Paragraphs: ilrj, ip1, ip2, ip3, ip4, ip5, item-none, p, p1, p2, p3

Sections: sec, ss1, ss2, ss3

Lists: dl, l1, l2, l3, l4, l5, l6, l7, l8, l9, la, lb, lc, ld, le, list, numeric-list, numeric-rbrace, bullet-list

Headings: h, h1, h1a, h2, h2a, h3, h4

4Wikipedia XML Corpus http://www-connex.lip6.fr/~denoyer/wikipediaXML/
5Wikipedia - The Free Encyclopedia http://en.wikipedia.org/

http://www-connex.lip6.fr/~denoyer/wikipediaXML/
http://en.wikipedia.org/

64 CHAPTER 4. EXPERIMENTAL EVALUATION FRAMEWORK

<?xml version="1.0" encoding="ISO
−8859−1"?>

<article>
<fm> ...

<ti>IEEE Transactions on</ti>
<atl>Tries for ... </atl>
<au>

<fnm>Ricardo</fnm>
<snm>Baeza−Yates</snm>
<aff>University of ...</aff>

</au>
<au>...</au>
...

</fm>
<bdy>
<sec>

<st>String Matching</st>
<p>...approximate algorithm...</p>

...
</sec>
<sec>

<st>...</st>
...
<ss1>...</ss1>
<ss1>...</ss1>
...

</sec>
...

</bdy>
<bm>

<bib>
<bb>

<au>...</au>
<ti> ... </ti>
...

</bb>
...

</bib>
</bm>

</article>

Figure 4.1: An excerpt of an XML document extracted from the INEX IEEE document
collection associated with its XML tree representation.

4.2. INEX EVALUATION CAMPAIGNS 65

<?xml version="1.0" encoding="ISO−8859−1"?>
<article>

<name id="13772">History of Poland</name>
<body>

...
<section>

<title>Early history of Poland...</title>
</section>
<section>

<title>The Jagiellon Era...</title>
</section>
<section>

<title>The Polish−Lithuanian Commonwealth...</title>
</section>
<section>

<title>Partitioned Poland (
<collectionlink xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"

xlink:href="35799.xml"> 1795 </collectionlink>
−
<collectionlink xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"

xlink:href="34594.xml"> 1918 </collectionlink>
)

</title>
...
<p>Polish independence ...</p>
<p>Following the

<collectionlink xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"
xlink:href="10581.xml">French</collectionlink>

emperor
<collectionlink xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"

xlink:href="69880.xml">Napoleon I</collectionlink>
‘s defeat of Prussia, a Polish state was again set up in
<collectionlink xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"

xlink:href="34745.xml">1807</collectionlink>
under French tutelage as the
<collectionlink xmlns:xlink="http://www.w3.org/1999/xlink" xlink:type="simple"

xlink:href="366190.xml">Duchy of Warsaw</collectionlink>
...

</p>
<p>With Napoleon‘s defeat...</p>

</section>
...

</body>
</article>

Figure 4.2: An excerpt of an XML document extracted from the Wikipedia XML Cor-
pus.

66 CHAPTER 4. EXPERIMENTAL EVALUATION FRAMEWORK

Figure 4.3: The XML tree of the document from Figure 4.2.

4.2. INEX EVALUATION CAMPAIGNS 67

varying levels of knowledge about the structure of the searched collection. The first
type relates to ignorant users who do not have any knowledge of the document struc-
ture or who choose not to use such knowledge. The latter type relates to users that are
likely to use any knowledge about the document structure that they may possess.

Content-Only (CO) topics contain search terms as in the traditional requests used
in information retrieval test collections. These topics do not include any specific
reference to the document structure.

Content-And-Structure (CAS) topics are requests that contain conditions referring
both to content and structure of a document. CAS topics are topic statements
that contain explicit references to the XML structure, and explicitly specify the
contexts of the user’s interest (e.g. target elements) and/or the contexts of cer-
tain search concepts (e.g. containment conditions). More precisely, a CAS query
contains two kinds of structural constraints: where to look (i.e. the support ele-
ments), and what to return (i.e. the target elements).

An INEX topic consists of title, description and narrative fields. For CO topics, the title
is a sequence of terms. For CAS topics, the castitle is expressed using the NEXI query
language [226], which is a variant of XPath defined for content-oriented XML retrieval
evaluation.

Both CO and CAS titles are made of terms, i.e. words or phrases, where the latter
are encapsulated in double quotes. Furthermore the terms can have either the prefix
’+’ or ’-’, where ’+’ is used to emphasize an important concept, and ’-’ is used to denote
an unwanted concept. An example of a CAS topic is given in Figure 4.4. This is a stand
alone CAS topic that has no CO equivalence as the title field is empty.

INEX 2005. At INEX 2005 the CO topics were extended to Content-Only+Structure
(CO+S) topics. The aim was to enable the comparison of system performance across
two retrieval scenarios (on the same topic): when structural hints are taken into ac-
count and when these hints are ignored [118].

Content-Only+Structure (CO+S) topics are CO topics that include an additional
field called castitle, which is a representation of the same information need con-
tained in the title field of the CO topic but including additional knowledge in the
form of structural constraints.

For the ad hoc track of the INEX 2005 campaign a total of 40 CO and 47 CAS topics
were selected by the organizers.

None of the 47 official CAS topics contained references to attributes or attributes
values. This may be explained by the fact that the INEX IEEE document collection is
considered to have no attribute or attribute value with practical interest for a real end
user – see ”A Note on Attributes” in [226].

INEX 2006. In the INEX 2006 campaign, the topics have a uniform format (see
Figure 4.5). An official INEX 2006 topic must contain a CO formulation (i.e. the
title element must be completed) and may have a CAS formulation as required for
the INEX 2005 CO+S topics. We note here that a CO formulation can be translated
with no loss of semantics into a CAS formulation [226]. The reverse is not true. The

68 CHAPTER 4. EXPERIMENTAL EVALUATION FRAMEWORK

<?xml version="1.0" encoding="ISO−8859−1" ?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd" >
<inex_topic topic_id="280" query_type="CAS" ct_no="137" >

<InitialTopicStatement>find sections describing ways to use approximate string
matching.</InitialTopicStatement>

<title></title>
<castitle>

// article [about (.// bb, Baeza−Yates) and about(.//sec, string matching)]//sec[about(.,
approximate algorithm)]

</castitle>
<description>find sections about approximate algorithms in works about string matching

citing Baeza−Yates.</description>
<narrative>I am interested in fast ways to use approximate string matching in the

context of text searching. I hope to increase the flexibility of a search engine I am
implementing − and am looking for novel ways to solve the string edit problem. I
noticed that Baeza−Yates has published extensively on text searching and expect
works citing Baeza−Yates to be more relevant than works not citing him. Sections
focusing on approximate string matching algorithms will be considered relevant.

</narrative>
</inex_topic>

Figure 4.4: INEX 2005 CAS topic 280.

<?xml version="1.0" encoding="ISO−8859−1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="289" ct_no="2">

<title>
emperor ‘‘Napoleon I‘‘ Polish

</title>
<castitle>

//∗[about(., emperor ‘‘Napoleon I‘‘ Polish)]
</castitle>
<description>I want to know everything about the emperor Napoleon I and Polish people.

</description>
<narrative>Polish history is closely related to Napoléon I of France. But also, Napoléon I

knew very well some Polish people (among which Marie Laczynska and the Prince
Poniatowski). I want to know about the big History (how Napoléon had influence on
the history of Poland) and the ‘‘small‘‘ history (Napoléon mistress, marshals, etc.). My
aim is simply to know better the ins and outs of the question, and to understand how
much personal relationships of Napoleon influenced his behaviour as a head of state.
Relevant elements should make me able to give a summary of this subject.</narrative
>

<ontopic_keywords>‘‘duchy of Warsaw‘‘, ‘‘Marie Laczynska‘‘, ‘‘countess Malewski‘‘, Eylau,
‘‘Prince Poniatowski‘‘, Russia</ontopic_keywords>

</inex_topic>

Figure 4.5: INEX 2006 topic 289.

4.2. INEX EVALUATION CAMPAIGNS 69

<?xml version="1.0" encoding="ISO−8859−1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="406" ct_no="198">

<title>
book architecture

</title>
<castitle>

// template[about(.//@name,book reference)]//∗[about(.,architecture)]
</castitle>
<description>Show me books about architecture</description>
<narrative>After coming home from a trip to venice, the user is intrigued to read more

about architecture and city planning. He wants to find books about architecture and is
therefor looking for references including the author and title. The user is not interested
in landscaping and even less in computing.

</narrative>
<ontopic_keywords>+house</ontopic_keywords>

</inex_topic>

Figure 4.6: INEX 2006 topic 406.

INEX 2006 format also provides the possibility to add relevant ontopic_keywords for a
request.

From the set of 125 official INEX 2006 topics on the Wikipedia collection, only
topic 406 includes a constraint on attribute and attribute values – see Figure 4.6.

4.2.3 Pertinence Judgments

At INEX 2005 the relevance judgments are given in two different dimensions: exhaus-
tivity (E) and specificity (S). The exhaustivity dimension reflects the degree to which an
element covers a topic and the specificity dimension reflects how focused the element
is on that topic. Thus, to assess an XML element, participants are asked to highlight
the relevant parts of each element (specificity) and to use a three-level scale [0, 1, 2]
to define how much of the topic that element covers (exhaustivity). For later usage in
the evaluation metrics, the specificity dimension is automatically translated to a value
in a continuous scale [0...1], by calculating the fraction of highlighted (relevant) infor-
mation contained by that element. The combination of the two dimensions is used to
quantify the relevancy of the XML elements. Thus, a highly relevant element is one
that is both, highly exhaustive and highly specific to the topic of request. The follow-
ing year, INEX 2006 dropped the exhaustivity dimension, and relevance was defined
only along the specificity dimension.

4.2.4 Retrieval Tasks

The main retrieval task to be performed in INEX is ad hoc retrieval. This can be
described as a simulation of how a library might be used, and involves the searching
of a static set of documents using a set of topics. In INEX, the library consists of XML
documents, the queries may contain both content and structural conditions, and in
response to a query, arbitrary XML elements may be retrieved.

Two ad hoc retrieval sub-tasks that depend on how the structural constraints are
expressed were identified. In the content-only (CO) sub-task, it is left to the retrieval

70 CHAPTER 4. EXPERIMENTAL EVALUATION FRAMEWORK

system to identify the most appropriate XML elements to return to the user. For the
CAS sub-task,

the most specific document components, which are relevant to the topic of request
and match, either strictly or vaguely, the structural constraints specified in the CAS
topic, had to be retrieved. Three different strategies have been defined, depending on
the preferred output format of an XML retrieval system.

The Focused Task. In the focused task, the goal is to find the most exhaustive
and specific elements on a path. Once the element is identified and returned, none
of the remaining elements in the path should be returned. In other words, the result
list should not contain overlapping elements. This is a user-oriented task since the
underlying assumption is that users do not want to see the same information twice.

The Thorough Task. In the thorough task, the aim is to retrieve all highly ex-
haustive and specific elements in the collection, regardless whether they overlap or
not. Hence, retrieval systems are simply asked to return elements ranked by their
relevancy to the topic of request. This is a system-oriented task and its goal is to eval-
uate whether retrieval systems are capable of locating all the relevant elements in the
collection.

The Fetch & Browse Task. In a fetch & browse strategy, we assume that a
user is interested in highly relevant elements contained within highly relevant doc-
uments. The fetch & browse task aim is to first identify relevant documents (the
fetching phase), and then to identify the most exhaustive and specific elements within
the fetched documents (the browsing phase). In the fetching phase, documents had to
be ranked according to how exhaustive and specific they were. In the browsing phase,
ranking had to be done according to how exhaustive and specific the relevant elements
in the document were, compared to other elements in the same document [122].

In 2005, no explicit constraints were given regarding whether returning overlap-
ping elements within a document was allowed. The rationale was that there should
be a combination of how many documents to return, and within each document, how
many relevant elements to return.

In 2006, the same task, renamed the relevant in context sub-task, required systems
to return for each article an unranked set of non-overlapping elements, covering the
relevant material in the document. In addition, a new task was introduced in 2006, the
best in context sub-task, where the aim was to find the best-entry-point, here a single
element, from where a user should start reading articles with relevant information.
This sub-task can be viewed as the extreme case of the fetch & browse approach, where
only one element is returned per article [122].

4.2.5 Evaluation Measures

Since its launch in 2002, INEX has been challenged by the issue of how to measure an
XML information access system’s effectiveness. Due to the lack of an atomic predefined
unit of retrieval as well as the increased richness of the user’s interaction with the
system (i.e., browsing), users have access to other, structurally related components
from a returned result element. Near-misses are elements, which may be themselves
not exactly relevant to the user’s query, but from where users can access relevant

4.2. INEX EVALUATION CAMPAIGNS 71

content. Starting from this observation, XML retrieval approaches should be partially
rewarded by the evaluation measure for finding such elements, as it is still better to
return near-misses than irrelevant elements [16].

Overlapping is another specific issue to be considered with care when evaluating
XML retrieval approaches. In INEX, the recall-base (the set of relevant elements for
each given query) consists of a large proportion of overlapping elements (if an element
is relevant, so is its parent element). This so-called overpopulated recall-base can
lead to misleading effectiveness results because the recall-base contains more relevant
elements than an ideal system should in fact retrieve. In fact, perfect recall can only be
reached by systems that return all the relevant elements of the recall-base, including
all the overlapping elements [16].

To manage these specific challenges, the INEX 2005 and INEX 2006 evaluation
campaigns used the eXtended Cumulated Gain (XCG) metrics [108]. These measures
are specially designed for evaluating XML element retrieval and therefore, unlike tra-
ditional IR evaluation measures, they address XML element retrieval issues such as
overlap and near-misses. In this section, we briefly outline their main characteristics,
and refer to [69, 71] and [122] for a more detailed description.

The XCG metrics are an extension of the Cumulated Gain (CG) metrics [98] that
consider dependency between XML elements (e.g., overlap and near-misses). The XCG
metrics include a user-oriented measure called normalized extended cumulated gain
(nxCG) and a system-oriented measure called effort-precision/gain-recall (ep/gr).

User-oriented measures allow to reason about a system’s ability to satisfy users.
These metrics typically focus on the early ranks of a system’s output as users are
more likely to limit their search to these results.

System-oriented measures allow system developers to obtain an overall picture of
the system retrieval performance.

In comparison to the common IR evaluation measures, nxCG corresponds to a pre-
cision measure at a fixed cut-off, and ep/gr provides a summary measure related to
mean average precision (MAP) .

To apply the metrics, the two relevance dimensions, exhaustivity and specificity,
are mapped to a single relevance scale by using two different quantization functions.
These functions model different user preferences. The strict one models a user who
only wants to see highly relevant elements (E = 2 , S = 1) and the generalized one
allows different degrees of relevance. More formally:

quantstrict (e, s) =
{

1 if e = 2 and s = 1,
0 otherwise.

quantgen (e, s) = e · s
For example, a strict quantisation function is used to evaluate retrieval methods

with respect to their capability of retrieving highly relevant elements. A generalised
function is used to credit retrieved elements according to their degree of relevance,
thus also allowing to reward less relevant elements. The latter is important as it
allows considering near-misses when calculating effectiveness performance.

In INEX 2006, as the exhaustivity dimension was dropped, the quantization func-
tion simply maps an element to its specificity value s. Only the results using the
generalized function were reported.

72 CHAPTER 4. EXPERIMENTAL EVALUATION FRAMEWORK

Reporting Results. For the experiments presented in this thesis, we report the
following numbers:

nxCG[i]: For a given rank i, the value of nxCG[i] reflects the relative gain the user
accumulated up to that rank, compared to the gain he/she could have obtained if
the system would have produced the optimum best ranking.

MAep: is the uninterpolated mean average effort-precision and is calculated by aver-
aging the effort-precision values obtained for each rank where a relevant docu-
ment component is returned.

4.3 SIRIUS @ INEX

In this section we relate on our experience on adapting and using the SIRIUS XML IR
system in the INEX 2005 and INEX 2006 ad hoc retrieval tracks.

4.3.1 Indexing the INEX 2005 and INEX 2006 Collections

Indexing the IEEE Collection. The collection is pre-processed by removing the
volume.xml files and transforming all the XML documents in their canonical form6 .

At indexing time, the least significant words are eliminated using a stop list. The
terms are stemmed using the Porter algorithm [180]. We index only the ALPHANU-
MERIC words as defined in [226] (like iso- 8601). We did not index the attributes,
the attributes values, and empty XML elements. This allowed important performance
gains both in indexing and querying time as well as disk space savings. The index size
is about 1.28 times the size of the initial collection.

The index model – see Section 3.3 – is implemented on top of the Berkeley DB
library7 using a combination of BTrees and Hashtables structures.

Figure 4.7 shows the evolution of the indexing time using a computer with a P IV
at 2.4 GH processor and 1.5 GB of RAM in function of the volume of the indexed
data set. The time required to create the inverted lists for about 750 MB of data
(the inex-1.8 IEEE collection in its canonical form) is about 38 Mn. The index size is
about 1.28 times the size of the initial collection. This quasi-linear evolution shows
that the indexing of large document XML databases is a conceivable objective in the
given hypothesis. Nevertheless, we must underline the fact that taking into account
the attributes and their values multiplies the number of structural contexts to be in-
dexed (7948 in the current configuration). This may have as consequence a significant
increase in the indexing time and space.

Indexing the Wikipedia Collection. SIRIUS has the capability of using indexing
profiles for a specific collection. The indexing profiles are composed of rules defining
how the structure and the content of each specified XML tag should be indexed. By
default, all the non empty XML tags are fully indexed. Using these profiles we may
decide or not to index the attributes associated to a given tag, to index only the content
of the presentation tags or jump tags – see Section 2.1.3 on page 12, or to completely
ignore some logical tags for a specific collection. The use of indexing profiles may

6Canonical XML Processor http://www.elcel.com/products/xmlcanon.html
7Berkeley DB Library http://www.oracle.com/database/berkeley-db/index.html

http://www.elcel.com/products/xmlcanon.html
http://www.oracle.com/database/berkeley-db/index.html

4.3. SIRIUS @ INEX 73

Figure 4.7: Indexing Time for the inex-1.8 IEEE Collection.

Ignore tags Ignore tag attributes
Presentation

tags
emph2, emph3, emph4, sup table, tr, td, font

Jump tags collectionlink, unknownlink,
outsidelink, languagelink

Logical tags title, name, image, caption

Table 4.1: Indexing rules for the Wikipedia collection

reduce significantly the volume of the requested disk space for the index and improves
the system performances both in indexing and retrieval time.

We use the rules shown in Table 4.1 to index the Wikipedia collection. This index-
ing profile was manually defined as we assumed that the jump and presentation tags
contained information that should not be retrieved out of their context. The logical
tags <name>, <title> and <caption> are of a particular importance for the Wikipedia
collection, as this will ensure that the <title> of a <section> will always be retrieved
with the <section> itself, that the <name> of an <article> will be retrieved with the
whole <article>, and that the <caption> of a <figure> or <table> will be retrieved only
associated to the element to which they are referring to.

The Wikipedia collection is processed using an XML SAX parser and standard
methods for stop words removal and stemming. At indexing time, the most frequent
words are eliminated using a stop list. The XML elements containing no valid textual
content after stop words removal are not indexed. The index terms are stemmed using
the Porter algorithm [180].

The inverted file index was constructed in parallel on a 4 computer cluster by using
a Physical Document Partitioning approach [26]. The index time has a linear depen-
dence relative to the number of indexed documents and unique attribute values. The
total size of the index is situated between 4 GB and - 6.6 GB (i.e between 86% and
122% of the initial database size). The difference shows the storage space savings that
can be attained when the above indexing rules are used.

74 CHAPTER 4. EXPERIMENTAL EVALUATION FRAMEWORK

δL(//article//bb, /article/bm/bib/bibl/bb/au/snm) = 0
δL(//article//bb, /article/bm/app/bib/bibl/bb/au/snm) = 0
δL(//article//bb, /article/fm/au/snm) = 1

Figure 4.8: Example of distances between structural contexts.

4.3.2 Structural Weighting Scheme for INEX

The NEXI language [226] allows only the descendant relationship between the nodes
in a path. Therefore the XML path expressed in the request is interpreted as a sub-
sequence of an indexed path, where a subsequence need not necessary consist of con-
tiguous nodes.

To model this, we relaxed in [177] the weights of the path editing distance δL(pD
i , pR)

– see Section 3.4.1 in order to allow node deletions in the indexed paths pD
i without

any penalty:

Deletion: a node n in pD
i is deleted for a cost Cdel(n) = Cmin

del = 0,

Insertion: a node n is inserted in pD
i for a cost Cins(n) = Cmax

ins = 1, and

Substitution: a node nR in the path pR is replaced by a node n from pD
i for a cost

Csubst(nR, n). Since a node n not only stands for an XML element, but
also for attributes or attribute constraints Ct, we compute Csubst(nR, n) as
follows:

Csubst(nR, n) =


Cmax

subst = 1 if
(
nR 6= n

)
CCt

subst = 1
2 if

(
nR = n

)
∧
(
∃Cti ∈

{
Ct
(
nR
)}

, Cti (n) = false
)

Cmin
subst = 0 if

(
nR = n

)
∧
(
∀Cti ∈

{
Ct
(
nR
)}

, Cti (n) = true
)

where:

• Cmax
subst is the substitution cost for the nodes nR and n – without taking into account

the attributes conditions and without allowing any semantically relaxation for
the tag names (i.e. full substitution),

• CCt
subst represents the cost associated with a valid match at element level but

unsatisfied attribute constraints Ct stated in the request for nR that should apply
to the attributes and attributes values in n (i.e. attribute substitution),

• Cmin
subst stands for a perfect match, both at element and attributes levels. The

XML tags are strictly equivalent and all the attribute constraints Ct stated in
the request for the node nRare satisfied by the attributes and attributes values
in n (i.e. perfect matching, no substitution).

To illustrate the alignment mechanism we show in Figure 4.8 the distances between
the path requested in the INEX 2005 CAS topic 277 //article[about(.//bb, Baeza-
Yates)] searching works citing Baeza-Yates and three paths extracted from the IEEE
collection (an excerpt showing the structure of the documents in the collection is given
in Figure 4.1).

In the first two cases the requested path //article//bb is a subsequence of the
indexed paths and therefore the editing distance is 0 independently of the fact that

4.3. SIRIUS @ INEX 75

the paths have a different number of nodes. In the last case, where Baeza-Yates is
the author of the article, the editing distance is 1 highlighting the mismatch of the
requested bb node from the indexed path.

The weights used to compute the structural similarity relate to an end user having
precise but incomplete information about the XML tags of the indexed collection and
about their ancestor-descendant relationships.

The structural similarity takes into account the order of occurrence of the matched
nodes and the number of nodes with no matching in the request. It heavily penalizes
any mismatch relatively to the information provided by the user but it is independent
to mismatches/extra information extracted from the indexed paths.

4.3.3 Translating NEXI to SIRIUS Query Language

We use automatic transformation of the INEX topics expressed in NEXI [226] to SIR-
IUS recursive query language.

To translate CO topics we use the same+ operator for weighting the textual content,
the seq operator for strict phrase match and the without operator for the ’-’ sign in a
straight forward way – see Section 3.5.3 for definitions of the operators. The ’+’, sign
and the numerical expressions are ignored.

For CAS topics, we have two cases:

1. simple queries of the form //A[B] and

2. complex queries of the form //A[B]//C[D].

For the simple CAS type queries, the translation process involves the in+ operator
to approximate match the structural constraints and the same+ and seq8 operators
for processing the textual content. A translation example for INEX 2005 topic 277 is
shown in Figure 4.9.

Figure 4.9: Translating a simple CAS topic to SIRIUS query language.

For translating complex queries of the form //A[B]//C[D] we introduce the filter
operator aiming to solve element containment relationships (see Subsection 3.5.3 and
Subsection 4.3.4). An exemple is shown is Figure 4.10

4.3.4 Processing NEXI Requests

Processing CO requests. CO queries are INEX topics containing only textual search
terms (i.e. see the title part in Figure 4.4). We compute the relevance score for all the
leaves elements of the XML tree containing at least one of the searched terms using a
variant of the TF-IDF ranking scheme (see Section 3.4.2). In our approach we consider

8The seq operator is used to translate both the quotes ” ” and the dashes.

76 CHAPTER 4. EXPERIMENTAL EVALUATION FRAMEWORK

Figure 4.10: Translating a complex CAS topic to SIRIUS query language.

the XML element containing a searched term as the basic and implicitly valid unit of
retrieval regardless of its size.

Processing CAS requests. For CAS topics, we have two cases: (1) simple queries
of the form //A[B] – i.e. the request specifies only the target elements; and (2) complex
queries of the form //A[B]//C[D] – i.e. the request specifies both target (i.e. //C[D])
and support (i.e. //A[B]) elements.

Processing the Support and Target Elements. For simple type queries of
the form //A[B] like //template//*[about(.,architecture)] (see topic in Figure 4.4),
we rank the textual content of the nodes using the same ranking scheme as for the CO
requests. The structural constraints from the requests are interpreted as structural
hints [226].

We compute the similarity between the structural constraints expressed in the
request – i.e. //template//* – and the XML paths of the candidate fragments using a
modified editing distance (see Section 3.4.1) involving specific heuristics for attributes
and attributes values [179]. Finally we merge the content and structural match scores
using a weighted linear aggregation method (see Section 3.4.3).

Processing the Containment Conditions. To process complex queries of the
form //A[B]//C[D] (see the castitle part in Figure 4.4) we compute the relevance for
both the support elements //A[B] and target elements //C[D].

We note here, that the structural position of the target elements relative to the
support elements – //A//C, is explicitly taken into account when evaluating the rel-
evance of the target elements //A//C[D].

If the structural constraints for the support elements – //A are evaluated vaguely,
there are cases in which the support elements are not necessarily ancestors of the tar-
get elements. Therefore, we select for the final set of answers, only the target elements
that have at least a relevant support element occurring in the same document. This
is a relaxation from the strict ancestor-descendant relation between the support and
target elements. In this case, a support element is considered to be be any relevant
element, where the relevance is evaluated on both content and structure in either a
strict or vague manner, to the query //A[B]. The logic behind this is that if a relevant
support element exists in a document, its weight should be propagated using a Max
function to the root node of the XML tree that is an ancestor – i.e. support element –
for all the elements of the tree. This rule applies inclusively to all the target elements.

The similarity computation for a complex request involves modifications of the rel-
evance associated with a result element. The relevance of a result element is computed

4.4. CONCLUSION 77

as the arithmetic average between the relevance of the target element and the maxi-
mum relevance of its support elements.

Formally, let {(ei, wi)} the set of target results, {(ej , wj)} the set of support ele-
ments, where ei is a an element of the result and wi ∈ [0..1] its relevance weight. Let
eD a descendant of document D. The set of weighted results produced by the system
is
{(

eD
i , w

′
i

)}
with w

′
i = (wi + Maxj(wj))/2 where ∃eD

j ∈ {(ej , wj)}.
Using this approach, the target elements without support elements are discarded

from the final answers, while the ones supported by highly relevant elements are
boosted in the final ranking. The final results are sorted by relevance values and
the top N results returned.

4.4 Conclusion

In this chapter we have focused on the evaluation of XML information retrieval sys-
tems. We have introduced the INEX evaluation benchmark and detailed the SIRIUS
XML IR system experimental settings used for the INEX ad hoc retrieval tracks.

In the next two chapters we evaluate the relevance gain to information access
brought by the use of structural approximate matching mechanisms. We also show
that, despite the lightweight characteristics of SIRIUS, we are able to retrieve highly
relevant non overlapping XML elements and to obtain quite good results for low values
of recall. Finally, we present and evaluate a simple, efficient and effective approach
for retrieving best entry points in semi structured documents.

Chapter 5

Approximate Structural
Matching for XML IR

In this chapter we evaluate the influence of the strict and approximate structural
matching mechanisms to access relevant information in semi-structured databases.
Preliminary versions of the results presented in this chapter were published in [176,
178].

Contents
5.1 Introduction . 79
5.2 Retrieval Strategies . 80
5.3 Evaluating the Efficiency of Different Retrieval Strategies . . . 82
5.4 Evaluating the Effectiveness of Text Matching Strategies . . . 82
5.5 Evaluating the Effectiveness of Approximate Structural Match-

ing Strategies . 83
5.6 Evaluating the Effectiveness of Approximate Structural Match-

ing for Focused XML IR . 88
5.7 Conclusion . 93

5.1 Introduction

Our aim is to determine to what extent the structural constraints should be taken
into account in an XML IR process. We present and evaluate both the response time
efficiency and the effectiveness of different retrieval approaches with emphasis on the
structural approximate matching strategies. We report the retrieval performances of a
lightweight XML indexing and approximate search scheme currently implemented in
the SIRIUS XML IR system for different degrees of structural constraints relaxations.
SIRIUS retrieves relevant XML elements by approximate matching both the content
and the structure of the XML documents. Finally, we compare the evaluation results
of the SIRIUS vague structural approach against the official results of the INEX 2005
and INEX 2006 campaigns.

79

80 CHAPTER 5. APPROXIMATE STRUCTURAL MATCHING FOR XML IR

5.2 Retrieval Strategies

We evaluate the following structural retrieval scenarios on the same topic set: the first
one takes into account explicit structural constraints using different degrees of struc-
tural constraints relaxations; the second one ignores the explicit structural constraints
while the information about the hierarchical organization of the searched information
is maintained.

For all the evaluated runs we use the same basic retrieval approach, namely:

• Automatic transformation of the title and castitle part of the INEX topics ex-
pressed in NEXI [226] to SIRIUS recursive query language (see Figure 5.1).

• The XML elements directly containing the search terms are considered as inde-
pendent and the only valid units of retrieval;

• IDF-like weighting for the leaf nodes containing the researched terms (see Sec-
tion 3.4.2 on page 50);

• Strict and approximate structural match using a modified editing distance on the
XML paths with conditions on attributes and attributes values (see Section 3.4.1
on page 47 and Section 4.3.2 on page 74);

• Weighted linear aggregation for content and structure matching scores1.

Text Matching Strategies

We evaluate two retrieval strategies for matching the textual content:

SAMEPLUS: – flexible sequence matching – we implemented a relaxed sequence
search based only on the same+ operator. These runs rank as best results the
XML elements that contain all the researched terms without taking into account
their order of occurrence. XML elements that contain only a part of the research
terms are also retrieved and ranked based on the number and the discriminating
power of the enclosed terms.

SEQ: – strict sequence matching – we used a strict seq operator for phrase matching
inside the same+ operator – where strict stands for all the words appearing in
sequence in the textual content (ignoring the stop list words) of the same XML
node.

Structural Matching Strategies

In the CAS requests the structural constraints are explicitly stated in the topics and
can refer to where to look for the relevant elements (i.e. support elements) and what
types of elements to retrieve (i.e. target elements). Structural constraints can be
interpreted as either strict – S, or vague – V, and these interpretations can be applied
to both support and target elements, giving a total of four strategies:

VVCAS: the structural constraints in both the target elements and the support ele-
ments are interpreted as vague.

1We use equal weights for all the reported runs.

5.2. RETRIEVAL STRATEGIES 81

SVCAS: the structural constraints in the target elements are interpreted as strict
and the structural constraints in the support elements are interpreted as vague.

VSCAS: the structural constraints in the target elements are interpreted as vague
and the structural constraints in the support elements are interpreted as strict.

SSCAS: the structural constraints in both the target elements and the support ele-
ments are interpreted as strict.

The strategies employing different degrees of structural relaxations are compared
with a strategy that uses only content only (CO) information extracted from the CAS
topics.

COCAS: the explicit structural constraints in both the target elements and the sup-
port elements are ignored. The hierarchical organization of the searched infor-
mation is preserved. We note here that the containment conditions of the support
and target elements are processed in the same manner for all the strategies (see
Section 4.3.4 on page 76).

According to the different interpretations of the structural constraints for each search
strategy, we automatically translate the CAS topics expressed in NEXI [226] to SIR-
IUS query language. An example of translation for the INEX 2005 CAS topic 280
(given in Figure 4.4 on page 68) is shown in Figure 5.1. The vague/strict interpreta-
tion of the structural constraints are translated using the in+, respectively in opera-
tors, while the containment conditions are translated using the filter operator.

Figure 5.1: Translating INEX 2005 CAS topic 280 to SIRIUS query language for dif-
ferent interpretations of structural constraints.

82 CHAPTER 5. APPROXIMATE STRUCTURAL MATCHING FOR XML IR

5.3 Evaluating the Efficiency of Different Retrieval Strate-
gies

The graphic from Figure 5.2 shows the average response time for different degrees
of structural constraints approximation and text matching strategies. The evaluation
results are obtained on a computer equipped with a Pentium IV processor at 2.4 GHz
and with 1.5 GB of RAM memory. The set of requests is composed of 17 complex CAS
topics2. The requests are evaluated on the inex-1.8 IEEE collection (i.e. 750 MB).

Figure 5.2: Average response time for different degrees of structural constraints ap-
proximation.

The average response time takes values between 0.88 s for a strict sequential
search ignoring the structural constraints and 3.89 s for a flexible sequential search
requiring to approximate match the structural constraints expressed in the request
with the structure of the indexed XML documents. The computing time associated
with the complexity of the approximate search algorithms on the documents structure
can not be neglected, but is not prohibitive – particularly in the perspective of the
parallelization of the algorithms in a context aiming to manage large databases.

5.4 Evaluating the Effectiveness of Text Matching Strate-
gies

We report results for the system-oriented and user-oriented INEX 2005 official eval-
uation measures: the effort-precision/gain-recall (ep/gr) metric using the MAep value
and the normalized extended cumulated gain (nxCG) metric at ranks 10, 25 and 50.
All the results are calculated using a strict quantization function and by allowing the
occurrence of overlapping elements.

2These are the INEX 2005 official topics used for evaluating the CAS runs.

5.5. EVALUATING THE EFFECTIVENESS OF APPROXIMATE STRUCTURAL MATCHING 83

By analyzing the SIRIUS evaluation results from Table 5.1 and by comparing them
with the INEX 2005 official results (see Figure 5.3) we observe that the system has a
good precision for low values of recall. This behavior is due to the fact that the runs
used strict constraints for phrase searching and the topic set was rich (7 among the 10
assessed topics used sequence search) in this kind of hints. The restrictive interpre-
tation of the seq operator improved the system precision for the first ranked results.
In the same time, this behavior has penalized the system overall quality performance.
One explanation is that the system stops to return elements when running out of good
answers. This has important implications, as the system is not increasing its informa-
tion gain until reaching the limit of 1500 allowed answers by returning imprecise/less
perfect results.

The flexible phrase search strategy based only on the same+ operator looses be-
tween 13.38% of the system precision for nxCG@10 and 41.08% for nxCG@50 ver-
sus the strict sequence search strategy, but we obtain an obviously improved over-
all effort-precision/gain-recall curve (gain of 14.57% on the MAep metric (overlap=off,
quant=strict)). We could further improve these results by defining a new operator
combining same+ ranking with seq ranking strategies.

When compared with the INEX 2005 official results (see Figure 5.3), the SIRIUS
evaluation results are rather encouraging. In particular, the best values reported for
nxCG@{10,25,50} (overlap=off, quant.=strict) could be ranked unofficially on the first
three positions (from 28 submissions) for the INEX 2005 VVCAS task. The best overall
performance is obtained by the flexible matching sequence strategy with MAep=0.0558
(overlap=off, quant= strict) that is equivalent with a non official 5th place.

nxCG@10 nxCG@25 nxCG@50 MAep
VVCAS_SAMEPLUS 0.1444 0.2022 0.1889 0.0558
VVCAS_SEQ 0.1667 0.1689 0.1339 0.0487
Gain in % -13.38 19.72 41.08 14.58

Table 5.1: Gain in % for the text matching strategies evaluated by using a vague inter-
pretation of the structural constraints. (Task: VVCAS, Quantization: strict, Overlap:
off).

5.5 Evaluating the Effectiveness of Approximate Struc-
tural Matching Strategies

The objective of our study is to evaluate the influence of the strict and approximate
structural matching mechanisms to access relevant information in semi-structured
databases. To evaluate the different retrieval strategies against the same users’ ex-
pectations, we use the non filtered pertinence judgments of the INEX 2005 VVCAS
task.

We present in Figure 5.4, Figure 5.5 and Table 5.3 the evaluation results for dif-
ferent degrees of structural constraint relaxations for the target and support elements
(VV, VS, SV, SS). The effectiveness of the results are compared with a retrieval strat-
egy searching for nested CO relevant information (see Table 5.5).

By analyzing the data from Table 5.3 we observe that the strategies implementing
a strict interpretation of the target elements – i.e. SV and SS – returned identical

84 CHAPTER 5. APPROXIMATE STRUCTURAL MATCHING FOR XML IR

Figure 5.3: SIRIUS evaluation results compared with the INEX 2005 VVCAS task
official results. Metric: ep/gr – top & nxCG – bottom, Quantization: strict, Overlap:
off.

5.5. EVALUATING THE EFFECTIVENESS OF APPROXIMATE STRUCTURAL MATCHING 85

Figure 5.4: Evaluating different degrees of structural constraints approximation
(Task: VVCAS, Metric: ep/gr, Quantization: strict, Overlap: off).

86 CHAPTER 5. APPROXIMATE STRUCTURAL MATCHING FOR XML IR

values. This observation is supported by the experiments conducted in [223] on the
totality of the INEX 2005 submissions for the CAS sub-task. As a consequence, and
to simplify the further analysis of the results we will refer from now on only to the SV
strategy.

The strict interpretation of the structural constraints seems to have a negative ef-
fect on the quality of the retrieved results in our approach – globally relevant elements
(as considered by the users) may be rejected from the list of the retrieved answers be-
cause they partially match or do not match at all the structural constraints. The
recorded global performance degradation evaluated by the MAep measure is about -
51% for the SV strategy and stands between -20.09% to -29.14% for the VS strategy
using the seq and respectively the same+ operators (see Table 5.1). These results can
be explained by the fact that the users, even experts, are particularly bad at formu-
lating topics involving the structure of the XML documents [224]. Another possible
explanation is the fact that the users may have a poor knowledge of the exact struc-
tural location of the information they are interested in.

Using vague structural constraints for both the target and the support elements
– i.e. the VV strategy – augments the quality of the retrieved results compared with
the CO strategy. The most significant improvement is obtained for the first retrieved
answers evaluated with the nxCG@10 measure – i.e. a gain of 18.7% for the flexible
sequence search strategy – VVCAS_SAMEPLUS, and of 15.44% for the strict sequence
search strategy – VVCAS_SEQ. The overall gain recorded by the MAep measure and
calculated with a strict quantization function was of 6.28% for the VVCAS_SAMEPLUS
strategy and of 8,7% for the VVCAS_SEQ strategy.

As an overall conclusion, the approximate structural matching mechanisms seem
more appropriate then the strict matching techniques to answer to the user structured
information needs.

nxCG@10 nxCG@25 nxCG@50 MAep
SEQ SSCAS 0.0556 0.0711 0.0644 0.0217

SVCAS 0.0556 0.0711 0.0644 0.0217
VSCAS 0.1111 0.1022 0.0939 0.0358
COCAS 0.1444 0.16 0.1273 0.0448
VVCAS 0.1667 0.1689 0.1339 0.0487

SAMEPLUS SSCAS 0.0556 0.0711 0.0644 0.0259
SVCAS 0.0556 0.0711 0.0644 0.0259
VSCAS 0.0889 0.0933 0.0889 0.0372
COCAS 0.1222 0.1933 0.1822 0.0525
VVCAS 0.1444 0.2022 0.1889 0.0558

Table 5.3: nxCG[i] and MAep evaluation results for different degrees of structural
constraints approximation (Task: VVCAS, Quantization: strict, Overlap: off).

5.6. EVALUATING THE EFFECTIVENESS OF APPROXIMATE STRUCTURAL MATCHING 87

Figure 5.5: Evaluating different degrees of structural constraints approximation
(Task: VVCAS, Metric: nxCG, Quantization: strict, Overlap: off).

88 CHAPTER 5. APPROXIMATE STRUCTURAL MATCHING FOR XML IR

nxCG@10 nxCG@25 nxCG@50 MAep
SV, SS vs. CO SAMEPLUS -54.5 -63.22 -64.65 -50.67

SEQ -61.5 -55.56 -49.41 -51.56

VS vs. CO SAMEPLUS -27.25 -51.73 -51.21 -29.14
SEQ -23.06 -36.13 -26.24 -20.09

VV vs. CO SAMEPLUS 18.17 4.6 3.68 6.29
SEQ 15.44 5.56 5.18 8.71

Table 5.5: Gain in % introduced by the different degrees of structural constraints ap-
proximation (VV, VS, SV, SS) compared with the plain CO retrieval strategy evaluated
on the INEX 2005 VVCAS task.

5.6 Evaluating the Effectiveness of Approximate Struc-
tural Matching for Focused XML IR

In this section we evaluate the influence of the strict and approximate structural
matching mechanisms to access relevant information in semi-structured document
collections using a focused retrieval strategy. In focused XML retrieval, information
retrieval systems have to find out which are the most appropriate retrieval units and
return only these to the user, avoiding overlapping elements in the result lists. For a
brief description of the focused retrieval strategies implemented in the SIRIUS XML
IR system, see Section 6.2 on page 97.

We evaluate two approaches: one when structural constraints are taken into ac-
count using different degrees of structural constraint relaxations and the other when
the explicit structural constraints are ignored. The COS requests are equivalent with
the CAS ones. Therefore we can use the same structural interpretations of the struc-
tural constraints for the target and support elements as for the evaluation of the
VVCAS task (VV, VS, SV and SS). The difference appears at the COCOS strategy that
uses genuine CO topics containing only textual keywords as in the standard search
engine queries. The COCOS topics make absolutely no reference to the structure of
the XML documents.

INEX 2005 COS Focused Task Results

We evaluate the approximate structural match for the the maxHA3 focused retrieval
strategy. This strategy performed among the best focused strategies implemented in
the SIRIUS XML IR system during the INEX 2005 evaluation campaign (see [177]
for more detailed evaluation results). We present in Figure 5.6 and Table 5.6 the
evaluation results for different degrees of structural constraint relaxations for the
target and support elements (VV, VS, SV, SS). The effectiveness of the results are
compared with a content only (CO) retrieval strategy – see Table 5.7.

All the strategies are evaluated against an ideal recall database that includes no
overlapping information (see [122] for details on the methodology used to build the
ideal recall database).

3See Section 6.2 on page 97 for a description of the focused retrieval strategies implemented in SIR-
IUS.

5.6. EVALUATING THE EFFECTIVENESS OF APPROXIMATE STRUCTURAL MATCHING 89

Figure 5.6: Evaluation results for the SIRIUS focused retrieval approach compared
with the official results of the INEX 2005 COS Focused task. Metric: ep/gr – top &
nxCG – bottom, Quantization: strict, Overlap: on.

90 CHAPTER 5. APPROXIMATE STRUCTURAL MATCHING FOR XML IR

By analyzing the data from Table 5.6 we observe that the strategies implementing
a strict interpretation of the target elements – i.e. SV and SS – returned identical
values.

As for the VVCAS task, the strict interpretation of the structural constraints seems
to have a negative effect on the quality of the retrieved results in our approach. The
recorded global performance degradation evaluated by the MAep measure is about -
86.5% for the SV/SS strategies. A small increase on the MAep values may be observed
for the VS and VV strategies versus the CO strategy (1.53% for the VS strategy and
4.58% for the VV strategy when using the same+ operator – see Table 5.7).

Using vague structural constraints for both the target and the support elements –
i.e. the VV strategy – augments the quality of the first retrieved results compared with
the plain CO strategy. The most significant improvement is obtained on the nxCG@25
and nxCG@50 measure – i.e. a gain of 22.63% respectively of 21.16% for the flexible
sequence search strategy.

The negative evaluation results recorded for the strict interpretation can be ex-
plained by the fact that the structural constraints used for the INEX 2005 COS topics
did not seem to correspond to actual hints; instead they appear to be a function of the
document collection rather than the query [224].

This behavior was confirmed by the experimental results obtained within the INEX
2005 VVCAS task [177]. This indicates (usual disclaimers apply) that the structural
hints, and jointly, the modified editing distance on the XML paths improves the system
retrieval performances. This is according to other results [200] from the literature that
also reported improvements for the use of vague structural constraints on the INEX
2005 test collection.

nxCG@10 nxCG@25 nxCG@50 MAep
SAMEPLUS SSCOS 0.0118 0.0235 0.0224 0.0115

SVCOS 0.0118 0.0235 0.0224 0.0115
VSCOS 0.1059 0.162 0.1853 0.0865
COCOS 0.1 0.1321 0.1668 0.0852
VVCOS 0.1059 (4) 0.162 (3) 0.2021 (2) 0.0891 (2)

Table 5.6: nxCG[i] and MAep evaluation results for different degrees of structural
constraints approximation for the SAMEPLUS strategy (Task: COS Focused, Quanti-
zation: strict, Overlap: on). The best results are emphasized and compared with the
INEX 2005 official results. The ranks/27 submissions are given in parentheses.

nxCG@10 nxCG@25 nxCG@50 MAep
SAMEPLUS SV, SS vs. CO -88.2 -82.21 -86.57 -86.5

VS vs. CO 5.9 22.63 11.09 1.53
VV vs. CO 5.9 22.63 21.16 4.58

Table 5.7: Gain in % introduced by the different degrees of structural constraints ap-
proximation (VV, VS, SV, SS) compared with the plain CO retrieval strategy evaluated
on the INEX 2005 COS Focused task.

When comparing the proposed strategy with the INEX 2005 COS focused task offi-
cial evaluation results (see Figure 5.6), the results are rather encouraging. In particu-

5.6. EVALUATING THE EFFECTIVENESS OF APPROXIMATE STRUCTURAL MATCHING 91

lar, the best values reported for nxCG@{10, 25, 50} (overlap=on, quant.=strict) could be
ranked unofficially on the 4th, 3rd and 2nd positions (from 27 submissions). Looking at
the system global retrieval performance measured with the MAep metric (overlap=on,
quant= strict), we could obtain a 2nd place for the flexible matching sequence strategy
(see Table 5.6 – the ranks/27 submissions are given in parantheses).

INEX 2006 Focused Task Results

In INEX 2006 evaluation campaign the CO, CAS and COS topics received an uniform
format (see Figure 4.5 on page 68). A single generalized quantization measure is used
as only the specificity dimension was maintained to evaluate the relevance of the re-
trieved elements. The quantization function simply maps an element to its specificity
value s. Official evaluation results for the INEX 2006 Focused task were reported only
for the nxCG metric using the generalized quantization function.

The results reported in Figure 5.7 and Table 5.8 are obtained by using the SIRIUS
maxMRD4 focused retrieval approach and evaluated using the Wikipedia XML collec-
tion. The SIRIUS focused evaluation results are compared against the official results
of the INEX 2006 Focused task (see [179] for more detailed evaluation results).

Figure 5.7: Evaluation results for the SIRIUS focused retrieval approach compared
with the official results of the INEX 2006 Focused task. Metric: nxCG , Quantization:
generalized, Overlap: on.

By analyzing the overall comportment of nxCG curves from Figure 5.7 we observe
that SIRIUS runs have a good recall. The results show the system ability to retrieve

4See Section 6.2 on page 97 for a description of the focused retrieval strategies implemented in SIR-
IUS.

92 CHAPTER 5. APPROXIMATE STRUCTURAL MATCHING FOR XML IR

nxCG@5 nxCG@10 nxCG@25 nxCG@50
SEQ CO 0.2840 (46) 0.2679 (28) 0.2469 (10) 0.2211 (7)

VV 0.2301 (64) 0.2196 (61) 0.2004 (33) 0.1709 (32)
SAMEPLUS CO 0.2832 (48) 0.2752 (23) 0.2475 (9) 0.2289 (4)

VV 0.2297 (66) 0.2218 (59) 0.2039 (31) 0.1782 (23)

Table 5.8: nxCG[i] evaluation results for the SIRIUS focused retrieval strategy using a
content only – CO, and a vague interpretation of structural constraints – VV (Quanti-
zation: generalized, Overlap: on). The ranks compared with 85 official submissions for
the INEX 2006 Focused task are given in parantheses. Best results are emphasized.

nxCG@5 nxCG@10 nxCG@25 nxCG@50
VV vs. CO SAMEPLUS -18.89 -19.4 -17.62 -22.15

SEQ -18.98 -18.03 -18.83 -22.7
SAMEPLUS vs. SEQ VV -0.17 1 1.75 4.27

CO -0.28 2.72 0.24 3.53

Table 5.9: Gain in % introduced by a vague interpretation of structural constraints
(VV) compared with a plain content only (CO) approach. Gain in % for a flexible
(SAMEPLUS) versus a strict (SEQ) sequence matching strategies. Results are evalu-
ated within the INEX 2006 Focused task using a maxMRD focused retrieval strategy.

highly relevant non overlapping XML elements. SIRIUS obtained several best top ten
rankings out of 85 official submissions for the 25-50 first retrieved answers using the
nxCG@25 and nxCG@50 metrics (see Table 5.8).

The results from Table 5.9 show that the runs using structural constraints were
consequently outperformed by the runs using content only conditions, while the runs
using strict constraints for phrase searching were outperformed by their relaxed vari-
ants.

The improvement brought by the use of the structural hints observed on the INEX
2005 test collection and topics [177] was not confirmed by the evaluation results of
the INEX 2006 Focused task [179]. We note here that, even if improvements could
not be recorded on the average retrieval performances of the system when using all
the topics, specific topics get their effectiveness boosted by the use of the structural
constraints. For instance, topic 406 – the only INEX 2006 topic that has specified
structural constraints on attributes and attributes values (see Figure 4.6 on page 69 –
shows more effective retrieval curves for the runs using a vague approximation of the
structural constraints (i.e. VV) versus their CO competitors – see Figure 5.8.

In this example we used different weightings – i.e. 0.1 and 0.5 – to emphasize the
importance/weight of the structural hints in the score of the retrieved results. The
curves shows that the approach using equal weights to fusion the content and struc-
tural matching scores (i.e. w0.5) get better results than the approach that emphasize
the textual matching (i.e. w0.1) – which outperforms the approach that completely
ignores the structural constraints (i.e. CO). This behavior shows that, at least for
some CAS topics, the structural hints may increase significantly the effectiveness of
the content only approach.

5.7. CONCLUSION 93

Figure 5.8: Evaluatin results for topic 406 of the INEX 2006 campaign. Task: Focused,
Metric: nxCG, Quantization: generalized, Overlap: on, Focused retrieval approach:
avgMRD, Text matching operator: SAMEPLUS.

5.7 Conclusion

In this chapter we have evaluated the relevance gain to information access brought by
the use of structural approximate matching mechanisms. Our experiments at INEX
2005 have showed that taking into account the structural constraints improved the re-
trieval performances of the system and jointly showed the effectiveness of the proposed
weighted editing distance on the XML paths for the VVCAS and COS Focused tasks.
We have also showed that the approximate structural matching mechanisms are more
effective than the strict matching techniques for answering to the user structured in-
formation needs.

Further, we have evaluated our approach for the structural constraints approx-
imate matching using the INEX 2006 test collection and topics. With the new ex-
perimental settings for the Focused task, we observed a decrease in the average re-
trieval effectiveness of the approach using structural hints versus the plain CO ap-
proach [179]. We note here that, even if improvements could not be recorded for all
the topics on average, specific topics got their effectiveness boosted by the use of the
structural constraints. This behavior shows that, at least for some topics, the struc-
tural hints may significantly increase the effectiveness of the content only approach.

It is not yet clear if these results are due to changes brought to the evaluation
method between the INEX 2005 and INEX 2006 campaigns – i.e. different quanti-
zation functions, different relevance scales, different strategies to compute the ideal
recall database – either due to the users ”clumsiness” in adding valid and useful struc-

94 CHAPTER 5. APPROXIMATE STRUCTURAL MATCHING FOR XML IR

tural constraints to the CO topics.
More detailed experimental studies analyzing and comparing the use of the struc-

tural hints within the XML IR requests of the INEX 2005 and INEX 2006 campaigns
are necessary to better understand the reasons for this behavior.

The experiments have also showed that the approximate search inside XML ele-
ments implemented using our same+ operator improves the overall performance of the
ranking, compared to a strict sequence search (seq operator), except for low recall val-
ues. The complementarity of the two operators call for the design of a new matching
operator based on their combination to further improve the retrieval performance.

Compared with the official results of the INEX evaluation campaigns, the lightweight
indexing and approximate search scheme implemented in the SIRIUS XML IR system,
obtained good quality results in the range of the 10-25-50 first ranked answers. This is
encouraging since the first ranked elements are the ones end users will most probably
browse.

Chapter 6

Retrieving Best Entry Points in
Semi-Structured Documents

Focused structured document retrieval tries to make use of the concept of best en-
try point (BEP) which is intended to define from a user’s perspective the starting-
point from which browsing relevant document components should be optimally initi-
ated [121]. In this chapter we describe a simple, efficient and effective method for
providing BEPs candidates in XML documents. Experiments conducted within the
framework of INEX 2006 evaluation campaign ranked the proposed approach on the
1st place out of 77 official submissions for the Best In Context Task. Secondly we com-
pare the effectiveness of the approach with a standard ’flat’ document retrieval system
that returns document snippets as BEPs based on the Google search engine. Prelim-
inary versions of the approach and results presented in this chapter were published
in [179, 174].

Contents
6.1 Introduction . 96
6.2 Focused Retrieval Strategy . 97

6.2.1 Elements Scores Aggregation . 97
6.2.2 Removing Overlapping Elements 98

6.3 BEPs Selection Heuristic . 98
6.4 Google @ INEX 2006 Best In Context Task 99

6.4.1 Retrieval Settings . 99
6.4.2 Flat Runs . 99
6.4.3 Approximate Matching of Snippets to BEPs 100

6.5 Evaluation Framework . 102
6.5.1 Best In Context Task Evaluation Metrics 102

6.6 Experimental Results . 103
6.6.1 INEX 2006 Best In Context Task Official Results 103
6.6.2 Evaluating Different Focused Retrieval Strategies for the Au-

tomatic Detection of BEPs . 104
6.6.3 BEPs versus Document Retrieval 104
6.6.4 Real Application-Case . 108

6.7 Conclusion . 109

95

96 CHAPTER 6. RETRIEVING BEST ENTRY POINTS IN SEMI-STRUCTURED DOCUMENTS

6.1 Introduction

In traditional (flat) information retrieval, query results that are presented to the user
have typically the form of a list of matching documents. For structured (from weakly to
semi-structured) or focused information retrieval in large hyper document collections
this alone is not a satisfactory option: the user also needs to know where into the
documents he can find relevant text fragments.

Structured document retrieval makes use of document components as the basis
of the retrieval process, rather than complete documents. Within this context the
concept of Best Entry Points (BEPs) has been defined as document components from
which the user can initiate its browsing to get optimal access to relevant document
components [186].

The basic characteristics of BEPs are presented in [186] while [187] investigates
different types of best entry points in structured document retrieval and their usage
and effectiveness in real information search tasks. Algorithms for automatic iden-
tification of BEPs were implemented and empirically evaluated in [110, 121] on ex-
perimental data from the Shakespeare dataset1. The overall effectiveness of the algo-
rithms was found to yield poor results [186]. Also the size of the test collection used for
evaluation was rather modest for a real application-case (i.e. less than 10 MB). This pi-
oneer experimental dataset may not provide enough information about the scalability
of the proposed algorithms.

In this chapter we focus on automatic detection of the one ”true” BEP – i.e. a
unique BEP per semi-structured document given a query as required in the Best In
Context task of INEX 2006. The aim of the task is to first identify relevant articles
(the fetching phase), and then to identify the element corresponding to the best entry
points for the fetched articles (the browsing phase). In the fetching phase, articles
should be ranked according to their topical relevance. In the browsing phase, we have
a single element whose opening tag corresponds to the best entry point for starting to
read the relevant information in the article [49].

Recent BEPs studies [107] suggested that the users have a strong preference for
the most specific, most focused components that contain the most amount of relevant
information and the least amount of irrelevant content. They also identified several
types of BEPs of which ”Start reading here” BEPs – i.e. a leaf level entry point, repre-
senting the point where the users would prefer to be directed to and where they would
likely appreciate to start reading the text. This is the BEP type the most related to the
INEX 2006 Best In Context task requirements. This was the most popular BEP type
occurring in the Shakespeare collection. 62% of the ”Start reading here” BEPs were
the first leaf nodes occurring in a sequence of relevant leaf nodes. This confirms the
findings from [209] in which a focused access experiment on the Wikipedia collection2

was carried out. The experiment showed that 55% of the users’ accesses went to the
first section of the articles. This emphasizes the importance of the document order
for the automatic detection of BEPs. Starting from these experimental observations
we propose an algorithm for detecting the BEPs that returns the first most relevant
non-overlapping focused elements to the requested topic.

1Shakespeare Plays Dataset http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
2Wikipedia, the free encyclopedia http://wikipedia.org/

http://metalab.unc.edu/bosak/xml/eg/shaks200.zip
http://wikipedia.org/

6.2. FOCUSED RETRIEVAL STRATEGY 97

<p>
This event marked the beginning of the period known as "Nobles’ Common-
wealth" when the state was ruled by the "free and equal" Polish nobility
(szlachta). The Lublin Union of 1569 constituted the

<collectionlink xmlns:xlink=http://www.w3.org/1999/xlink
xlink:type="simple" xlink:href="343234.xml">
Polish-Lithuanian Commonwealth

</collectionlink>

as an influential player in Europe ?

</p>

Figure 6.1: Example of XML element with mixed content extracted from the Wikipedia
XML corpus [59].

6.2 Focused Retrieval Strategy

The aim of the Focused retrieval strategy is to find the most exhaustive and specific
element in a path. In other words, the result list should not contain any overlap-
ping elements. In our approach we consider the XML element directly containing a
searched term as the basic and implicitly valid unit of retrieval regardless of its size.
This approach implements ”naturally” a focused strategy as it returns the most fo-
cused elements containing the search terms. However, for XML nodes with mixed
content – like paragraphs or sections including presentation tags (i.e. italics, empha-
sized) or jump tags (i.e. collectionlink, outsidelink) – overlapping elements may occur
in the result list.

For instance, both the p (paragraph) and the collectionlink elements of the excerpt
from Figure 6.1 will be retrieved by a request aiming to extract relevant XML elements
for the term ’Polish’.

In order to remove the overlapping elements from the results list we have imple-
mented a two phases post filtering process [177].

6.2.1 Elements Scores Aggregation

First, we aggregate the relevance of the elements in the answer list in order to reflect
the relevance of their descendant elements (if any). The weights are calculated in a
bottom-up manner starting from leaves to the highest non overlapping nodes compos-
ing the answer by using two strategies:

max – the max relevance value is propagated recursively to the highest non overlap-
ping elements; and

avg – the relevance of a node is computed as the arithmetic average of all its descen-
dant relevant nodes including its own relevance.

98 CHAPTER 6. RETRIEVING BEST ENTRY POINTS IN SEMI-STRUCTURED DOCUMENTS

Figure 6.2: XML document with mixed content and term weights.

Figure 6.3: Example of a BEPs retrieval strategy. a) Elements score aggregation using
the avg strategy b) Removing overlapping elements using the MRD strategy c) BEPs
selection heuristic.

6.2.2 Removing Overlapping Elements

Second, to select the non-overlapping elements we experiment with the following strate-
gies:

HA – the highest ancestor in the answer list is selected among the relevant overlap-
ping elements;

MR – the most relevant answer is selected recursively from the answer list as long as
it does not overlap with an already selected element – i.e. for equally relevant
overlapping elements we choose either the descendant (MRD) or the ancestor
(MRA).

6.3 BEPs Selection Heuristic

After the overlap removing process, the first most relevant element in the document
order is selected as the BEP for the document. Its weight is propagated at the docu-
ment level and used to rank the files by relevance.

We illustrate the process of detecting a BEP using the avgMRD focused retrieval
strategy in Figure 6.3 for the ’x y z’ request on the XML document given as example in
Figure 6.2.

For instance, by applying the proposed method on the XML document presented
in Figure 4.2 on page 65, the path /article[1]/body[1]/section[4]/p[2] was selected as
BEP for the INEX 2006 topic 289 presented in Figure 4.5 on page 68.

6.4. GOOGLE @ INEX 2006 BEST IN CONTEXT TASK 99

emperor "Napoleon I" Polish site:http://en.wikipedia.org/wiki

Figure 6.4: Using the Google search engine to answer INEX 2006 CO topics.

6.4 Google @ INEX 2006 Best In Context Task

To show the benefits brought by our BEPs detection method we define as our baseline
a standard ’flat’ document retrieval system based on the Google3 search engine that
retrieves documents and document snippets as BEPs. The ’flat’ runs are composed
only of results at document level while the ’bep’ runs try to match the snippets asso-
ciated with the retrieved documents to BEPs. We then compare the effectiveness of
the proposed approach against the baseline runs. The evaluation is performed on a
snapshot of the Wikipedia collection.

6.4.1 Retrieval Settings

We retrieve results for the INEX 2006 CO topics using the Google search engine re-
stricted to the English part of the Wikipedia collection. For instance, the INEX 2006
CO topic 289 from Figure 4.5 on page 68 is transformed and submitted to Google
search engine as shown in Figure 6.4.

The implementation is based on the Google SOAP Search API4 . This service al-
lows querying a maximum of 1000 requests per day, where a request may retrieve 10
results at most. The maximum depth that can be reached for a given topic is limited
to 1000 results. The ’Automatic Filtering’5 of the results was set to ’false’ in our exper-
iment which allowed us to obtain all the relevant results for the requested topic. The
retrieved experimental datasets are available online6.

6.4.2 Flat Runs

The ’flat’ runs are composed only with results having the BEPs set to document or
/article[1] level (see an exemple of the structure of the XML document in Figure 4.2
and Figure 4.3 on page 66). From the set of results returned by Google we remove
all the answers that do not refer to a valid document id in the INEX 2006 ad hoc
collection [59]. The valid answers are selected using the title of the articles (i.e. ’/ar-
ticle[1]/name[1]’) and ranked starting from 1 to MAX by preserving their original re-
trieval order.

We identified a number of 14832 valid documents out of 31517 retrieved by Google
(i.e. 47%) for all the 111 assessed CO topics of INEX 2006 (i.e. this represents an
average of 133.6 valid results at document level per topic).

3Google www.google.com
4Google SOAP Search API http://code.google.com/apis/soapsearch/
5When enabled, filtering takes the following actions: i) Near-Duplicate Content Filter = If multiple

search results contain identical titles and snippets, then only one of the documents is returned; and ii)
Host Crowding = If multiple results come from the same Web host, then only the first two are returned
(see http://code.google.com/apis/soapsearch/reference.html).

6Google @ INEX 2006 Datasets http://www-valoria.univ-ubs.fr/APRIM/Sirius/
Resources.php

www.google.com
http://code.google.com/apis/soapsearch/
http://code.google.com/apis/soapsearch/reference.html
http://www-valoria.univ-ubs.fr/APRIM/Sirius/Resources.php
http://www-valoria.univ-ubs.fr/APRIM/Sirius/Resources.php

100 CHAPTER 6. RETRIEVING BEST ENTRY POINTS IN SEMI-STRUCTURED DOCUMENTS

{
TM = 0.172802
Q = "emperor Napoleon I Polish site:http://en.wikipedia.org/wiki"
CT = ""
TT = ""
CATs =
{
<EMPTY>
}
Start Index = 1
End Index = 10
Estimated Total Results Number = 379
Document Filtering = false
Estimate Correct = false
Rs =
{
...
[
URL = "http://en.wikipedia.org/wiki/History_of_Poland"
Title = "History of Poland - Wikipedia, the free encyclopedia"
Snippet = "Following the French emperor Napoleon I's defeat
of Prussia, a Polish state was
 again set up in 1807 under
French tutelage as the Duchy of Warsaw. ..."
Directory Category = {SE="", FVN=""}
Directory Title = ""
Summary = ""
Cached Size = "75k"
Related information present = true
Host Name = ""
],
...
}
}

Figure 6.5: An excerpt of a retrieved result using the Google SOAP Search API.

6.4.3 Approximate Matching of Snippets to BEPs

The ranked list of documents returned as results by standard web search engines such
as Google provides the users with a ’snippet’ summarizing the relevant text found in
the document. We provide in Figure 6.5, an example including a snippet obtained by
using the Google SOAP Search API. The retrieved result, answers the INEX topic 289,
which searches information about the emperor Napoleon I and the Polish people (see
Figure 4.5 on page 68 and Figure 6.4).

We use the content of the snippet to approximately match a text region in the re-
trieved document. A snippet is mainly a query-biased summary formed by several
semantically contiguous text parts surrounding the search terms – see Figure 6.6. To
match a snippet to a BEP we first parse and extract the original contiguous text seg-
ments from the snippet7. The content of both the extracted text segment, and the XML

7In the example given in Figure 6.6 the text segments are delimited by

6.4. GOOGLE @ INEX 2006 BEST IN CONTEXT TASK 101

"Napoleon I, Emperor of the French, King of

Italy, Mediator of the Swiss Confederation
 and ...

Napoleon, in an attempt to gain increased support from

Polish ..."

Figure 6.6: An example of snippet composed of several semantically contiguous text
parts .

document content are normalized – i.e. the punctuation marks, the presentation and
the XML markup, as well as the stop words are ignored. Next, we perform a search of
the text extracted from the snippet within the content of the XML document and select
the index position of the first matching character. We use this index position to search
within the stacks constructed while parsing and normalizing the XML document con-
tent. The stacks keep information about the index position of the normalized textual
content starting character for each XML path. Finally, we set the BEP path as the
most focused XML element containing the index position of the first matching char-
acter. If no match is found for the current text segment, we advance to the following
segment until either a match occurs or all the content of the snippet is discarded.

This is very similar with selecting the first relevant character [102] from the docu-
ment as a BEP. As Kamps et al. show in [102] by analyzing the relevance assessments
of the INEX 2006 BEPs task, many of the best entry points coincide with the first
relevant character. This shows a strong relation between the BEPs and relevant text,
where the text relevance is decided by the topic assessors that highlight relevant text
passages.

The approach described above, naturally reproduces the behavior of an user that
submit a keyword query to a standard search engine, that decides of the relevance
of the fetched documents by reading the document snippets, and that uses the local
search functionality of its browser to find short phrases extracted from the snippet in
order to be pointed directly to the relevant information. Furthermore, this approach
may take advantage of the eventually more evolved natural language techniques used
by the current search engines to extract document snippets. The capacity of the search
engines to process and extract the relevant text surrounding the search terms may also
simulate the role of the real topic assessors that highlight relevant text passages.

For instance, using this method, we were able to match the snippet from Figure 6.5
to the ’/article[1]/body[1]/section[4]/p[2]’ path in the file id 13772 of the Wikipedia
XML corpus [59] given as example in Figure 4.2 on page 65.

Only 5241 BEPs were identified for 14832 valid results at document level using
the described method (i.e. 35%). This may be due to the fact that the content of the
Wikipedia articles are changing at a higher rate than their main subject – i.e. the
article titles. If no valid match could be detected, the BEP path was set by default to
’/article[1]’. Another problem may appear if a match is found at a different structural
position than its original location in the XML document. This may occur due to a
significant change between the two snapshots of the collection used for evaluation,
and may have a negative effect on the ’document snippet → BEP’ strategy evaluation
results.

102 CHAPTER 6. RETRIEVING BEST ENTRY POINTS IN SEMI-STRUCTURED DOCUMENTS

6.5 Evaluation Framework

A preliminary evaluation [179] of the proposed approach was conducted within the
framework of the Best In Context task [49] of the INEX 2006 evaluation campaign.
INEX 2006 provides an experimental evaluation framework constituted of a test col-
lection, tasks / requests, relevance judgments and evaluation measures.

The test collection [59] is composed of 659,388 English articles in XML format ex-
tracted from Wikipedia and totaling 4.6 GB. A set of 111 content only (CO) and content
and structure (CAS) topics with their associated BEPs assessments were used for eval-
uation. In INEX 2006, the assessors were requested to indicate one and only one BEP
for every document that has relevant content. For example, the BEP assessment for
the topic 289 (see Figure 4.5 on page 68) set the BEP path for the XML document
shown in Figure 4.2 on page 65 to ’/article[1]/body[1]/section[4]/p[2]’.

6.5.1 Best In Context Task Evaluation Metrics

Runs for the BIC task are evaluated with two metrics [120]:

• a set based measure, BEPD (For BEP-Distance); and

• an extension of precision recall (EPRUM).

Both metrics use a base score for an element x, which is defined as 0 if x does not
appear in a relevant document, i.e. a document containing a Best Entry Point (BEP).
Otherwise, there exists a BEP b in the x’s document and the measure is:

s(x, b) = A·L
A·L+d(x,b)

which is between 0 and 1 where:

• d(x, b) is the distance (in number of characters) between the beginning of element
x and the beginning of element b,

• L is the average document length (in characters), and

• A > 0 is a parameter.

Note that high values of A (e.g. 10) tend to give a score of 1 to any answer in a relevant
document, hence the score does not discriminate whether x is near to or far from the
BEP (b). Whereas, low values of A (e.g. 0.1) favor runs that return elements (b) very
close to a BEP [120]. Official evaluation results at INEX 2006 were evaluated with A
equal to 0.01, 0.1, 1, 10, 100.

BEP-D

The BEP-D metric is the sum of all the single scores s(x, b) over elements x of the run
divided by the total number of best entry points. The measure is then averaged over
runs (queries).

6.6. EXPERIMENTAL RESULTS 103

Metric A=0.01 A=0.1 A=1 A=10 A=100
BEPD 0.1959 (1) 0.2568 (2) 0.3642 (6) 0.5596 (6) 0.7556 (7)

EPRUM 0.0407 (1) 0.0579 (8) 0.0873 (13) 0.1489 (16) 0.2193 (35)

Table 6.1: INEX 2006 Best In Context Task official evaluation results for the avgMRD
strategy. The ranks / 77 submissions are given in parentheses.

EPRUM-BEP-Exh-BEPDistance

The EPRUM metric is an extension of precision recall that can capture the scenario
of a user consulting the context of the retrieved elements. This is modeled with a
parameter, which is the probability that a user goes from a returned element x to a
BEP b.

In the context of the BIC task, this probability is defined as s(x, b) for any BEP b.
This behavior is defined stochastically, that is we only know that the user has seen the
BEP with probability s(x, b).

Precision at recall r is defined as the ratio, for the user to achieve a recall r, of
the minimum expected search length for the ideal run to the run’s minimum expected
search length.

Precision at rank k is defined as the expected search length (for the ideal run) for a
user to achieve the same recall as the one achieved by the evaluated run divided by k.

In both cases the ideal run is the list of BEP. Both definitions reduce to the classical
precision and recall when the standard user model is assumed, where the parameters
(i.e. the probabilities) are either 0 or 1.

6.6 Experimental Results

We first present the INEX 2006 Best In Context task official evaluation results. Then
we evaluate the efficiency of different focused retrieval strategies for the automatic
detection of BEPs. Next, we have two objectives: first to evaluate the gain brought by
the use of BEPs versus a standard ’flat’ document retrieval approach; and second to
compare the performance of our system with a well-known commercial search engine
like Google on a realistic application-case.

The runs use no constraints for phrase matching and the documents were prepro-
cessed for stop words removal and stemming. At indexing time the most frequent
presentation tags and jump tags (i.e. emph, collectionlink, languagelink, etc.) were
ignored (see Table 4.1 on page 73).

6.6.1 INEX 2006 Best In Context Task Official Results

We present in Figure 6.7 and Table 6.1 the INEX 2006 Best In Context task official
results compared with the avgMRD focused retrieval strategy (see Section 6.2) for de-
tecting the BEPs. The submitted run obtained several top ten results and was ranked
on the 1st place out of 77 official submissions by both the BEPD and EPRUM metrics
when using A=0.01 – which rewards methods retrieving elements very close to a BEP.

104 CHAPTER 6. RETRIEVING BEST ENTRY POINTS IN SEMI-STRUCTURED DOCUMENTS

Figure 6.7: INEX 2006 Best In Context Task Official Results, Metric:EPRUM-BEP-
Exh-BEPDistance, A=0.01.

6.6.2 Evaluating Different Focused Retrieval Strategies for the Auto-
matic Detection of BEPs

We experimented with different settings for aggregating the elements relevance score
while selecting the non overlapping answers (see Tables 6.2, 6.3 and Figure 6.8). With
the exception of the avgMRA focused retrieval strategy that recorded a maximum gain
of 1.4% on BEPD and 2.25% on the EPRUM measure for A=0.1, the other settings did
not perform better than the run officially submitted to the INEX 2006 Best In Context
task. The best performing strategies, avgMRD and avgMRA seem to have a similar
behavior as shown in Figure 6.8. Therefore, in the following experiments we choose to
use the run officially submitted to INEX 2006 for the comparison against the baseline.
As a general observation, it seems that the avg aggregation strategy produces better
results than the max aggregation independently of the strategy used to select the non-
overlapping elements.

6.6.3 BEPs versus Document Retrieval

In Table 6.4, Table 6.5 and Figure 6.9 we present experimental results that show the
superiority of the ’bep’ approach versus its ’flat’ competitor. The gain obtained by
the avgMRD focused retrieval strategy is situated between 193.26% for A=0.01 and
20.36% for A=100 on the BEPD metric (see Table 6.4), – and 347.25% for A=0.01 and
41.21% for A=100 on the EPRUM metric (see Table 6.5). These experimental results
seem to validate the utility of the focused approach from the users’ point of view.

Surprisingly, slightly negative gains (with a maximum of -5.03% for the BEPD met-
ric and -15.14% for the EPRUM metric) are recorded by the google-bep run versus the

6.6. EXPERIMENTAL RESULTS 105

Figure 6.8: Precision at recall r values – top; and Precision at rank k values – bottom;
for different methods of relevance node aggregation and overlap removing. Metric:
EPRUM-BEP-Exh-BEPDistance, A=0.01.

106 CHAPTER 6. RETRIEVING BEST ENTRY POINTS IN SEMI-STRUCTURED DOCUMENTS

A=0.01 A=0.1 A=1 A=10 A=100
avgMRA 0.197 0.2604 0.3689 0.562 0.7558
avgMRD 0.1959 0.2568 0.3642 0.5596 0.7556
maxMRD 0.1642 0.2272 0.3315 0.4993 0.6453
maxMRA 0.1448 0.2377 0.3571 0.507 0.6427
avgHA 0.1518 0.2373 0.3473 0.4882 0.6161

Table 6.2: BEP-Distance results for different methods of relevance node aggregation
and overlap removing.

A=0.01 A=0.1 A=1 A=10 A=100
avgMRA 0.0412 0.0591 0.0873 0.1498 0.2195
avgMRD 0.0407 0.0578 0.0784 0.1489 0.2193
maxMRD 0.0313 0.0475 0.0743 0.136 0.1941
avgHA 0.0301 0.0486 0.0863 0.1132 0.1471
maxMRA 0.0234 0.0476 0.3473 0.1391 0.1919

Table 6.3: EPRUM-BEP-Exh-BEPDistance results for different methods of relevance
node aggregation and overlap removing.

A=0.01 A=0.1 A=1 A=10 A=100
avgMRD 0.1959 0.2568 0.3642 0.5596 0.7556

avgMRDflat 0.0668 0.1579 0.2749 0.4395 0.6278
Gain in % 193.26 62.63 32.48 27.33 20.36

google-bep 0.0522 0.0974 0.1415 0.2105 0.2914
google-flat 0.0446 0.0992 0.149 0.2142 0.2949
Gain in % 17.04 -1.81 -5.03 -1.73 -1.19

Table 6.4: BEP-Distance results and gains in % between the ’bep’ and the ’flat’ runs
for the avgMRD focused retrieval strategy and for the baseline runs.

A=0.01 A=0.1 A=1 A=10 A=100
avgMRD 0.0407 0.0578 0.0873 0.1489 0.2193

avgMRD-flat 0.0091 0.0259 0.0488 0.0888 0.1553
Gain in % 347.25 123.17 78.89 67.68 41.21

google-bep 0.0201 0.0471 0.0732 0.1156 0.1757
google-flat 0.0212 0.0555 0.0844 0.1234 0.1787
Gain in % -5.19 -15.14 -13.27 -6.32 -1.68

Table 6.5: EPRUM-BEP-Exh-BEPDistance results and gains in % between the ’bep’
and the ’flat’ runs for the avgMRD focused retrieval strategy and for the baseline runs.

6.6. EXPERIMENTAL RESULTS 107

Figure 6.9: Precision at recall r values – top; and Precision at rank k values – bottom;
for the avgMRD focused strategy and the baseline runs based on the Google search
engine. Metric:EPRUM-BEP-Exh-BEPDistance, A=0.01.

108 CHAPTER 6. RETRIEVING BEST ENTRY POINTS IN SEMI-STRUCTURED DOCUMENTS

A=0.01 A=0.1 A=1 A=10 A=100
BEPD bep 275.29 163.66 157.39 165.84 159.3

flat 49.78 59.17 84.5 105.18 112.89

EPRUM bep 102.49 22.72 19.26 28.81 24.82
flat -57.08 -53.33 -42.18 -28.04 -13.09

Table 6.7: Gains in % between the avgMRD focused retrieval strategy and the baseline
runs using the Google search engine.

google-flat run. A single but significant positive exception of 17.04% is recorded for the
BEPD metric when using A=0.01 – which favors runs that return elements very close
to a BEP. This seems to show that the ’document snippet → BEP’ matching strategy
was indeed effective. The gain obtained by the BEPs strategies decreases while the
value assigned to the A parameter increases, as more importance is given to the docu-
ment ranking strategy. When evaluated with the EPRUM metric, the google-flat run
is very competitive at document ranking, and therefore, is quite difficult to improve its
results. This is not the case of the avgMRD-flat strategy that has rather poor results
for document ranking and can fully take advantage of the contribution of the BEPs
retrieval strategy. Nonetheless, the google-bep negative gains may indicate the fact
that our ’document snippet → BEP’ matching strategy is not excelling at detecting
focused relevant information inside the retrieved documents. We remind here that
both the positive and the negative results are due to only 35% of the valid ’document
snippet → BEP’ matches – the rest of the 65% of the results being strictly equivalent.

6.6.4 Real Application-Case

In Table 6.7 and Figure 6.9 we compare the retrieval performances of our XML IR
system against a baseline that uses the Google search engine within the framework of
the Best In Context Task of the INEX 2006 evaluation campaign. We use the English
part of the Wikipedia collection and the Wikipedia XML Corpus [59] (i.e. 4.6 GB) to
retrieve BEPs for 111 CO requests.

The results show a significant overall gain of the proposed focused strategy for
the detection of BEPs against the baseline ’document snippet → BEP’ run. The gain
stands between 275% for the BEPD metric at A=0.01 and 159% at A=100, – and be-
tween 102% for the EPRUM metric at A=0.01 and 24.82% at A=100.

When comparing ’flat’ runs – i.e. at document level – the BEPD measure reports
gains between 49.78% at A=0.01 and 112.89% at A=100, – while EPRUM metric yields
very poor results – i.e. 57.08% at A=0.01 and 13.9% at A=100 (see Table 6.7).

These results emphasize the fact that the proposed focused approach is competi-
tive at detecting the relevant information within a retrieved document but yields poor
performances at ranking the relevant documents. In order to improve the retrieval
performances of the method, the ranking of documents based only on their BEP rele-
vance (see Section 6.3) could be enhanced with a global relevance value computed at
document level – i.e. TFIDF [195] for example.

By analyzing the first 150 results returned (see Figure 6.9) we observe that the
Google runs are rather precision than recall oriented and that they outperform the
focused BEP retrieval for the first 10 results retrieved (see Figure 6.9 – bottom).

6.7. CONCLUSION 109

As far as system efficiency is the concern, the average response time for 125 CO
topics was 2.7 sec. on a computer with a 2.4 Ghz Pentium IV processor and 1.5 GB of
RAM.

An extension of the approach using a vague interpretation of the structural con-
straints specified in the CAS topics is reported in [179]. The evaluation results did not
show an improvement of the retrieval performances of the base method.

6.7 Conclusion

We have described an efficient and effective method to automatically identify BEPs
in semi-structured documents. The method was evaluated on a realistic experimental
dataset based on the Wikipedia collection within the context of the INEX 2006 eval-
uation campaign. The evaluation results were quite encouraging as it was ranked on
the 1st place out of 77 official submissions for the Best In Context task by both the
BEPD and EPRUM metrics for A=0.01 – which rewards methods retrieving elements
very close to a BEP. A comparison with a standard ’flat’ information retrieval system
returning documents snippets as BEPs was performed based on the Google search en-
gine and showed the pertinence of the proposed algorithms for the focused access to
the documents components. This may help users to obtain better access to relevant
information inside XML documents. As a perspective to this work, we will explore
the impact of aggregating BEPs heuristics and document ranking heuristics in order
to better support the users’ information-seeking behavior and to improve the overall
performance of the search strategy.

Part III

XML Multimedia IR

111

Chapter 7

IR of Sequential Data in
Heterogeneous XML Databases

The XML language is a W3C standard sustained by both the industry and the sci-
entific community. Therefore, the available information annotated in XML keeps and
will keep increasing in size. Furthermore, not only the volume of the XML information
is increasing but also the various structures and media described are becaming more
complex. The nowadays documents have evolved from simple plain texts to documents
containing a mixture of textual, multimedia, and meta data information. These doc-
uments may have complex and heterogeneous structures and contents like sequential
or time series data. In this chapter we introduce a retrieval scheme designed to man-
age sequential data in an XML context. The sequence extraction and matching scheme
relies on two levels of approximation: on the structural localization/organization of the
sequential data and on its content. To this end, we merge methods developed in two
different research areas: XML information retrieval and sequence similarity search.
A preliminary version of the approach and results presented in this chapter was pub-
lished in [173].

Contents
7.1 Introduction . 114
7.2 Background and Related Works . 115
7.3 Challenges in XML Sequential Data IR 117
7.4 Data Model . 118

7.4.1 XML Context . 118
7.4.2 Sequential Data . 119

7.5 Sequence Extraction . 123
7.6 Indexing Scheme . 126

7.6.1 Main Repository . 126
7.6.2 Sequence Repository . 127

7.7 Searching Scheme . 128
7.7.1 Sequence Structural Approximate Matching 128
7.7.2 Sequence Approximate Matching 129
7.7.3 The Fusion of Structural and Sequential Approximate Match-

ing Scores . 131

113

114 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

7.8 Extracting and Querying Sequential Data by Examples 131
7.9 Evaluation . 133

7.9.1 Prototype . 133
7.9.2 Experimental Dataset . 135
7.9.3 Early Evaluations . 136

7.10 Conclusions . 137
7.10.1 Main Contributions . 138
7.10.2 Future Work . 138

7.1 Introduction

As mentioned above, the XML language is a W3C standard that has rapidly been
adopted and sustained by both the industry and the research community. In the re-
cent years, we are witnessing an increasing volume of XML digital information pro-
duced through day-to-day or by specialized scientific activities. The XML documents
evolved from plain structured text representations to documents having complex and
heterogeneous structures and contents: multimedia description (MPEG7-DDL [166])
and synchronization (SMIL [2]), mathematical formulas (MathML [3]), time series or
sequences. We focus on the last two mentioned categories that are a ubiquitous form
of data in financial, medical, scientific, musical or biological applications.

Flexible querying of scientific experimental results, patients medical records, fi-
nancial summaries, musical pieces or biological sequences published as XML docu-
ments are only a few examples of applications that involve managing sequential data
in an XML context. We can thus state that there is a real need for high-performance
systems and methods able to extract, index, and query heterogeneous types of sequen-
tial information from heterogeneous collections of XML documents.

In musical and biological fields, special DTDs have been designed for MIDI files
– MidiXML [4], musical scores – MusicXML [5] and biological sequential data [191]
representation. In these cases the applications handle normalized sequential data and
data-centric oriented XML documents. Data-centric documents have usually fairly
regular structure, fine-grained data and little or no mixed content.

A heterogeneous collection of XML documents contains many un-normalized or
various kinds of sequential data. A document-centric view of the collection is well
suited to this kind of data. Document-centric documents have less regular or irregular
structure, larger grained data and lots of mixed content. Furthermore, the order in
which sibling elements and PCDATA occurs is almost always significant.

XML information retrieval is closely related to the document-centric view and pro-
vides the possibility of querying the information acquired by a system having an in-
complete or imprecise knowledge about both the structure and the content of the XML
documents [14, 15, 41, 66].

One basic requirement of an XML query engine based on information retrieval con-
cepts is to dispose of vague predicates/specialized similarity operators to adequately
manage different data types [66] and to improve the precision of the IR system [61].

The approaches proposed in [15, 41, 66] study the flexible querying on both XML
structure and content (usually text), but do not specifically take into consideration

7.2. BACKGROUND AND RELATED WORKS 115

sequential/time series data, nor its organization within the XML documents, which is
the focus of our approach.

7.2 Background and Related Works

Multimedia information systems are widely recognized to be one of the most promis-
ing fields in the area of information management [26, ch. 11]. As the name literally
implies, designing a multimedia (i.e. more than a single media) information retrieval
system requires to mix knowledge, techniques and tools from several domains. For this
reason, the development of a multimedia system is substantially more complex than
a traditional information system. Multimedia systems must have the capabilities to
store, retrieve, transport and present data with very heterogeneous characteristics
such as text, structures, images, sound, video or sequential/time series data [26, ch.
11]. Important research efforts and well established research communities sustained
the development of strong and independent research fields (in text, images, audio,
video, sequences, or time series retrieval). Compared to similarity on individual object
domains, complex multimedia documents that feature many different media objects
have received little attention, so far [211]. Previous research works in multimedia in-
formation retrieval commonly focused on combining textual and image retrieval tech-
niques. A recent survey on indexing and retrieval of multimodal documents for text
and images can be found in [46].

The work most related to ours is mainly in the area of XML retrieval of atomic mul-
timedia objects, and in particular images. We will focus here on approaches that are
able to integrate the structure of the documents in the retrieval process of multimedia
documents/components.

One of the incipient papers that tackled the information retrieval of multimedia
objects in an explicit hierarchical structured context is [47]. The authors proposed a
model for structured multimedia documents and studied the notion and the impact
of the structure on the information retrieval process. They proposed to merge IR and
hypermedia for querying and browsing multimedia documents. Their model allows
to manipulate the logical hierarchical structure of the documents, the semantic con-
tent, the attributes of the document components and the navigation links. They also
introduced the notion of index objects defined as classes of structural objects which,
depending on application requirements, correspond to retrievable objects. In our pro-
posal, the extracted sequences can be seen as an instantiation of the index objects
concept.

POQLMM [89] is a general purpose query language for structured multimedia doc-
uments. It employs regular path expressions to compute sets of objects or sets of
attribute values which can be reached via links in a query and allows the combina-
tion of various feature extraction operators for different media types. The structure of
the documents that should be retrieved can be specified in much detail but a flexible
interpretation is not allowed.

In [113] the authors introduce a method based on XLink and XPath integration
to exploit the intersection of hierarchical and linking information within XML-based
multimedia documents. They define the regional knowledge of a multimedia object as
the combination of the textual content of its surrounding XML elements. They identify
three kinds of such elements: caption or description, sibling text information and hier-
archical text information. The contribution of the different regional knowledge levels

116 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

to the multimedia object description may be weighted by using a relevance strength
function. The function is dependent on the tree level distance between the specific
region and the element containing the multimedia object. They also propose to inte-
grate two kind of linking knowledge: a textual linking which can be used to link the
multimedia object with different textual descriptions or metadata, and a multimedia
linking between low-level feature of similar multimedia objects. The last proposal is
similar to our sequence extraction process that implicitly create virtual links between
the sequence symbols. The difference consists in the fact that we use type compati-
bilities and similarities between the structural locations of the symbols to decide if a
”virtual link” can be created – i.e. the extracted symbols occur in the same sequence.
In their further works [114, 116], the authors investigate the impact of the XML log-
ical structure on the retrieval of XML multimedia objects. More precisely, they eval-
uate the impact of the combination of different disjoint text level regions surrounding
a multimedia element on the retrieval effectiveness of the multimedia objects . The
evaluation was carried out on a test collection that was adapted for XML multimedia
retrieval starting from a subset of the INEX IEEE collection.

Recent XML-related work was carried out as part of the INEX multimedia tracks
[232, 243]. The INEX multimedia track1 provides an evaluation platform for the re-
trieval of multimedia document fragments – i.e text, structure and images. The ob-
jective of the INEX multimedia track is to exploit the XML structure that provides a
logical level at which multimedia objects are connected, to improve the retrieval per-
formance of an XML-driven multimedia information retrieval system [243]. The task
set for the multimedia track is to retrieve relevant document fragments based on an
information need with a structured multimedia character. A structured multimedia
document retrieval approach should be able to combine the relevance of the different
media types into a single (meaningful) ranking that is presented to the user [243].

Simple fusion techniques are used to merge similarity scores for text/structured
and multimedia data. For instance [126] fusion multiple search algorithms on image
low-features with an XML retrieval approach based on a TF-IDF variant. In [96, 95] a
simple linear interpolation is used to merge relevance score from a full-text IR system
(Zettair), a native XML database system (eXist) and the GNU Image Finding Tool
(GIFT).

[92] uses the text surrounding the image and the structure of the documents (i.e.
the descendants nodes, the brothers nodes, the ancestors nodes and the image name)
to judge the relevance of an image element. Finally the relevance values are propa-
gated in the document tree and combined with textual and structural constraints to
obtain a final score for the XML multimedia fragment.

In [230] a principal component analysis (PCA) is used to derive a composite ranking
for a set of XML elements that have a multimedia character. Three strategies are
defined: annotation-based (which uses the caption of an image to find related images
using a keyword-based search), content-based multimedia retrieval (which uses PCA
to derive a composite ranking for text and images present within an XML element)
and a combination of the first two strategies.

In [115] a Bayesian network incorporating element language models for the re-
trieval of a mixture of text and image is proposed. An element language model is
applied upon each XML element. The framework combines the language models asso-

1INEX Multimedia Track http://inex.is.informatik.uni-duisburg.de/2006/mmtrack.
html

http://inex.is.informatik.uni-duisburg.de/2006/mmtrack.html
http://inex.is.informatik.uni-duisburg.de/2006/mmtrack.html

7.3. CHALLENGES IN XML SEQUENTIAL DATA IR 117

ciated with the elements used to perform the retrieval of the multimedia content using
the inference network model. An element-based collection language model is used in
the element language model smoothing. Both the semantic level (i.e. the names of the
elements) and the logical level (i.e. the hierarchical organization of the elements) of
the structure are considered. This approach showed promising results when evaluated
on the INEX 2005 multimedia collection.

All the above XML multimedia approaches concerns the retrieval of multimedia
fragments with focus on images and are not appropriate for the retrieval of heteroge-
neous sequential data.

An interesting related approach is [246] that propose an XML repository for molec-
ular sequence data annotated in XML. The model proposed allows for flexible sequence
search but only strict structural matching for the annotation tags.

Another related works concerns the similarity search of sequential/time series data
and structure approximate search methods [37]. The similarity search of sequences in
biological applications are widely discussed in [83] while [90] survey recent methods
for efficient retrieval of similar time sequences. Some other related works can be found
in [161] which surveys recent research topics in the musical information retrieval field.

7.3 Challenges in XML Sequential Data IR

In this section we try to emphasize the differences between the retrieval of atomic
multimedia objects, e.g. a single image, and sequences of multimedia objects (e.g.
sequential data, musical scores, a sequence of temporal ordered photos). What are the
main differences?

Sequential data is not well defined as an atomic object since:

• it may cross structural boundaries of the XML elements (i.e. Midi XML format),

• it may have a variable number of symbols or atomic units,

• it may be (re-)ordered, or constrained to preserve their original document/collec-
tion order.

Therefore, the sequential data must first be detected and extracted (mined) from
the XML documents. For image retrieval for instance, we have the objects in hand and
we try to extract useful features to obtain a good description of the object. When con-
sidering mining XML documents for sequential data, we had to ”reverse engineering”
this process: since we have to detect and extract the sequential/time series data from
their XML description. Then we can apply specific transformations to extract features
suitable for the indexing and search processes.

After the sequence extraction, we should take into account the structural organiza-
tion of the sequences into the retrieval process. For this purpose we have to preserve
the structural information/organization of the indexed sequences, where the sequences
may have an homogeneous or an heterogeneous structure. Finally, we have to weight
and merge the sequential content and textual or structural information to compute a
final ranking score.

To provide adequate approximate operators for managing sequential/time series
data in a heterogeneous XML environment, in our work, we merge methods developed

118 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

in two different research areas: XML information retrieval and sequence similarity
search.

In Section 7.4 we introduce the underlying data model of our application and we
identify relations between the structure of the XML documents and several common
types of sequential data. In Section 7.6 we present a hybrid indexing scheme allowing
the implementation of semi-structured and sequential searching operators. In Sec-
tion 7.7 we devise an approximate searching scheme for ranking the results by taking
into account similarities between both the structural location and the content of the
sequential data with the user requests. In Section 7.9 we carry out preliminary exper-
iments dedicated to MIDI files retrieval embedded in heterogeneous XML databases.
Finally, in Section 7.10 we summarize our conclusions and present some perspectives
for our work.

7.4 Data Model

An XML document can be represented by an ordered tree whose nodes contain hetero-
geneous pieces of information (TEXT or PCDATA such as (parts of) sequences or time
series). Each XML element may be related to attributes ”name–value” fields, and each
attribute value may contain (a part of) a sequential data.

For instance a phone number (a whole sequence) or a musical note (a sequence
symbol) can be seen either as the content of an XML element node or as an XML
attribute value.

In order to describe a sequence embedded in a heterogeneous XML environment we
concurrently use its structural location in the collection – i.e. the set of XML contexts
associated with the sequence symbols, and its content – i.e. the sequence symbols
values.

7.4.1 XML Context

XML documents are generally represented as rooted, ordered, and labeled trees in
which each node corresponds to an element and each edge represents a parent-child
relationship – see Figure 7.1 and Figure 7.2 for an example.

According to the tree structure, every node n of the XML tree inherits a path p(n)
composed with the nodes that link the root to the node n. More precisely, p(n) is an
ordered sequence of nodes p(n) = n0n1...ni...ndn, where n0 is the root node and d + 2
the length of the sequence. An unordered set of < attribute, value > pairs A(ni) =
{(aj , vj)} may be attached to each node ni of the ordered sequence, so that p(n) can be
represented as follows:

p(n) =< n0, A(n0) >< n1, A(n1) > ... < nn, A(nn) >

A node n in the document tree can be decomposed into structured and unstructured
sub-elements. Moreover, an Unstructured Sub-Element (USE) or an attribute value
vj may be decomposed into tokens ti (or words, symbols). Each token ti is related
to an XML context p(n) that characterizes its occurrence within the document. For
instance, in the example from Figure 7.1 the TextEvent node value ”date : 8− 19− 91”
is associated with the following XML context

7.4. DATA MODEL 119

<?xml version="1.0" encoding="ISO-8859-1"?>
<MIDIFile>

...
<Track Number="0">
...
<Event>

<Absolute>0</Absolute>
<TextEvent>date:8-19-91</TextEvent>

</Event>
...

</Track>
<Track Number="1">
...
<Event>

<Absolute>576</Absolute>
<NoteOn Channel="1" Note="71" Velocity="127" />

</Event>
...
<Event>

<Absolute>768</Absolute>
<NoteOn Channel="1" Note="76" Velocity="127" />

</Event>
...

</Track>
...

</MIDIFile>

Figure 7.1: An excerpt of an MidiXML [4] file.

p(′date : 8− 19− 91′) → < MIDIFile, {Ø} >
< Track, {(Number, 0)} >
< Event, {Ø} >
< TextEvent, {Ø} >

7.4.2 Sequential Data

The XPath 1.0 Recommendation [60] defines the concept of document order as the
order in which the first character of the XML representation of each node occurs in the
XML representation of the document after the expansion of general entities, except for
namespaces and attribute nodes whose document order is application-dependent. This
represent the linear or sequential reading order of the document from left to right by
ignoring the order of the attributes and attributes values which is not specified.

The XML document structure and the document order encode useful and poten-
tially (semantically) rich information about the sequential organization of the data.
We describe and formalize hereinafter our approach in exploiting this kind of informa-
tion for XML sequence extraction and representation.

120 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

Figure 7.2: The XML tree representation for the MidiXML file from Figure 7.1 showing
a document level sequence.

Sequence Definition. Formally, a sequence

S = s0s1...si...sm

is defined relatively to a collection of XML documents as an ordered and finite non-
empty set of symbols si selected from an alphabet Ω. An alphabet symbol si may be
represented by:

• vj ∈ A(ni) an attribute value,

• ti ∈ vj ∈ A(ni) a token composing an attribute value,

• USEi an unstructured sub-element2 of one of the XML nodes ni,

• ti ∈ USEi a token of an unstructured sub-element USEi.

For instance, in the MidiXML file from Figure 7.1, a symbol value may indicate the ”0”
value of the Number attribute – for an attribute value type, or the TextEvent content
– date : 8− 19− 91, for an USE type.

A sequence symbol si is linked with one of the unique indexed reference locators
rl0rl1...rli...rln of the XML collection set. A reference locator rli points to a unique
position into the collection of XML documents and includes a reference to the XML
context p(n) of the symbol.

2In the case of a node having a mixed content, only the unstructured content is considered.

7.4. DATA MODEL 121

A regular sequence symbol si can be associated with an order key oi (e.g. a times-
tamp or an id). The order key has the same characteristics as the sequence symbol
itself. In order to be able to link a sequence symbol with an order key, they must
be associated with the same root-to-leaf path of the XML tree. For instance we can
associate the sequence id value ”01” from Figure 7.3 as an order key for the attribute
name value ”NUCLEAR RIBONUCLEOPROTEIN” or with the content of the residues
element ”SKSESPKEPEQLRKLFIGGLS...”.

<?xml version="1.0" encoding="US-ASCII" ?>
<cluster>

<note>
Collection of sequences from SWISS- PROT

</note>
<seq id="01" name="NUCLEAR RIBONUCLEOPROTEIN">
<dbxref>
<database>SWISS-PROT</database>
<unique_id>P09651</unique_id>

</dbxref>
<residues type="aa">

SKSESPKEPEQLRKLFIGGLS...
</residues>

</seq>
<seq id="02" name="NUCLEAR RIBONUCLEOPROTEIN">
<dbxref>

<database>SWISS-PROT</database>
<unique_id>P04953</unique_id>

</dbxref>
<residues type="aa">

QLRKLFIGGLSSKSESPKEPE...
</residues>
</seq>

</cluster>

Figure 7.3: An excerpt of an annotated protein sequence extracted from the Swiss-Prot
database.

Sequence Structural Types. The above sequence definition allows to describe se-
quences of symbols associated with any arbitrary XML contexts from the collection.
From a more practical point of view, several particular structural types of sequences
frequently occur and prove to be of interest:

node level sequence: the whole sequence is contained in a single XML element or a
single attribute value. The leafs nodes are favorites candidates in this
case. This sequence representation is widely used in bioinformatics [191].
An example of an annotated protein sequence extracted from the Swiss-
Prot database3 is given in Figure 7.3 while its XML tree representation is
shown in Figure 7.4.

3The Swiss-Prot database www.ebi.ac.uk/swissprot/

www.ebi.ac.uk/swissprot/

122 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

Figure 7.4: The XML tree representation of the annotated protein sequence from Fig-
ure 7.3.

document level sequence: these sequences are composed by the symbols associated to
similar XML contexts of a single XML document – i.e. this includes perfect
paths matches (e.g. see the link between the two NoteOn nodes of the XML
tree from Figure 7.2), sibling nodes and nodes having a k-level common
ancestor. For instance, this representation is imposed by the DTD’s used
in the musical field [4, 5],

collection level sequence: the sequences are composed with the symbols associated to
similar XML contexts by crossing the physical boundaries of the XML doc-
uments. This sequence type may be of interest when searching sequences
of information spread among several documents and that are not entirely
dependent on the document order – e.g. for example information that is
extracted from different medical records of a patient by using a social se-
curity ID number and ordered according to the available timestamps.

One of the main advantages of the first two sequence types is the possibility of main-
taining the document order by default when two ordering keys oi and oj , with i 6= j
have identical values or the sequence order relation � is either:

• unspecified (no valid ordering key oi has been extracted and associated with the
sequence symbols si), or

• a partial order (indeterminate for certain cases, such as relationships between
temporal information: durations, dateTime as defined in XML Schema Part 2:

7.5. SEQUENCE EXTRACTION 123

”Datatypes Recomandation” [138].

For sequences constructed from symbols that are extracted from different XML docu-
ments, the document order can be locally applied within each XML document, but no
global order of the symbols in the sequences can be inferred without the use of external
information (i.e. order keys provided by the users) and/or heuristics.

A simple example will be the use of the document creation date for ordering the
documents. We may also consider using the timestamp information associated to the
symbols that are the closest ancestors into the XML trees. In our scheme we make
no assumptions about the global order of the symbols extracted from different XML
documents.

Figure 7.5: The sequence model.

Sequence Model. In this framework, we propose a sequence model – see Figure 7.5
– in which the symbols si are organized in sequences S by taking into account:

• similarities between their structural positions in the XML document tree(s)
(i.e. using the XML context p(n)),

• type compatibility between their values (numbers, dates or strings) and
• a partial order relation �.

A symbol si may occur in more than one sequence S and a sequence may contain
symbols si with identical values.

7.5 Sequence Extraction

The users’ interests in a heterogeneous XML environment can be highly diversified.
Some users could search the chorus of a musical piece while someothers will seek
similarities between the blood pressures curves of several patients’ medical records.

124 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

In these conditions we will probably fail to index all the possible sequences that could
match the user’s subjective and time evolving interests.

We assume that the users or the system administrators detain at least an impre-
cise, incomplete or approximate knowledge of the particular underlying organization
of the sequential data in which they are interested in. This assumption qualifies them
to supervise a sequential data extraction process according to their specific needs – see
Figure 7.6.

Figure 7.6: The sequence extraction process.

The Sequence Extraction Process. The sequence extraction process is based on a
constructor operator makeSeq (see Figure 7.7) that receives three arguments:

• A sequence extraction pattern represented as a path request p
RStrExtrPattern

with the type (number – default value, date, or string) and position of the
requested symbol si and (optionally) of an order key oi (i.e. another symbol).
The path request may be restricted by textual terminals {ti} and merging
operators at element level (SEQ, AND, OR, WITHOUT, SAME, SAME+, etc).

• A minimum accepted threshold τ ∈ [0...1] for the relevance (both at struc-
tural and content levels) of the current XML context relative to the sequence
extraction pattern provided by the user. The current context either is or in-
cludes the path location pD

i of the symbol si in the XML tree of the document
D . The threshold value τ ∈ [0...1] is used to decide if the current detected
symbol si will be included or not within the extracted sequence.

• The sequence structural expected type: node, document (default value), or
collection.

For instance, the Figure 7.7 shows an example that extracts all the notes from
the twelve channel of the track ten of a MidiXML file and builds a strict – i.e. the
structural threshold value is 1.0, no flexibility is allowed for the structural pattern
match – sequence with numeric values at document level. The sequence preserves the
symbols document order as no orderBy clause is specified.

During the extraction process, the compatibility constraints expressed on the sym-
bols values are mandatory and treated strictly while the constraints on the structural
localization of the symbols in the XML tree and their order relation are treated vaguely
(see Figure 7.5).

7.5. SEQUENCE EXTRACTION 125

1 (makeSEQ
2 (OR [/midifile
3 /track(== number 10)
4 /event
5 /noteon(and (RETURN @note NUMBER) (== channel 12))/])
6 1.0 %threshold for the symbols relevance matching
7 DOCUMENT %sequence structural type
8)

Figure 7.7: makeSEQ sequence extraction operator.

If the global matching score between the current XML context and the sequence
extraction path request p

RStrExtrPattern using a customized editing distance is above
a given threshold, the algorithm tries to detect the location of the required symbols
within the current XML context.

The detection process of symbols values trace backwards the dynamic program-
ming distance cumulative table. The purpose is to find one of the possible optimal
paths that obeys the type compatibility constraints for both the symbol si and the
order key oi values (if an order key is specified).

The chosen alignment/transcript tries to concurrently match the positions of the
requested symbol and of the ordering key with the elements of the current XML con-
text. The matching of the two positions may take into consideration both the content
type compatibility (this is mandatory) as well as the degree of satisfaction of a local
structural match criterion at element level. I.e.:

• a "perfect" element match – matching both the XML element names and the
attribute values constraints is necessary for a return @attName operator that
retrieves an attribute value. For instance the query (OR [/MIDIFile/Track-
/Event/NoteOn(AND (RETURN @note NUMBER) (== channel 1))/]) requires
that both the NoteOn element name as well as the attribute meet the match-
ing conditions. That means that we had to extract only @note numeric attribute
values from the first channel.

• only an "acceptable" match – XML element names matching – is necessary for
a return this operator that retrieves an XML element content. For instance,
(OR [/MIDIFile/Track/Event/TextEvent(RETURN THIS STRING)/]) requires
to match only the TextEvent element name and the symbol’s string type compat-
ibility constraint.

The sequence extraction method searches in all the possible optimal path alignments
of the two contexts until the type and structural conditions on the required symbol
and order key are satisfied. The heuristic used to guide the search for the optimal
alignments advantages the matching of the most specialized elements/attributes by
allowing replacing/matching, inserting and deleting operations to occur in the trace-
back process in this particular order. At the end, if no optimal alignment satisfying
simultaneously the required local structural constraints and the compatibility condi-
tions specified on the value types was found, no answer is returned.

Therefore, applying the makeSeq operator to the input XML data – i.e. to the
collection of XML contexts – retrieves a set of (valid type) symbols associated with

126 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

XML contexts
{
si → pD

i

}
that are relevant relative to the sequence extraction pattern

provided by the user p
RStrExtrPattern .

During this phase of the process, the sequences are built as indicated by the se-
quence expected type parameter and are eventually ordered by using the symbols
order keys oi. In the case of a mixture of symbols associated or not to an order key
within the same sequence, the symbols without an order key are discarded.

The time complexity of such a sequence extraction algorithm includes a linear de-
pendence with respect to the number of nodes of the indexed database – i.e. if no
textual terminal is provided, we use a dummy textual terminal that linearly scans all
the path structures found in the database. The dynamic programming table for com-
puting a customized editing distance between the sequence extraction pattern and a
single path associated with an indexed symbol can be filled out in

O
(
length(pRStrExtrPattern) · depth(TD)

)
time [83, page 220], where:

length(pRStrExtrPattern) is the average length of the request path included in the se-
quence extraction pattern and

depth(TD) the average depth of the document trees from the collection.

Once the dynamic programming table has been computed, an optimal edit script can
be found in

O
(
length(pRStrExtrPattern) + depth(TD)

)
time [83, page 222].

As statistical studies on XML documents collections [149] have shown, the average
depth of the XML documents trees is 4. If we consider that the sequence structural ex-
traction patterns have a comparable length, this time complexity remains reasonable
enough.

By summing up, if no textual terminals are used to alleviate or to control the se-
quence extraction process, and if we consider that the product of the average depth of
the XML documents trees (i.e. 4 levels) and of the requests length can be neglected,
the time complexity necessary to extract a sequence may be considered to be linear
with respect to the number of the indexed XML paths of the collection.

7.6 Indexing Scheme

We propose a hybrid index model (see Figure 7.8) designed to merge both types of data:
semi-structured and sequential data.

7.6.1 Main Repository

The main repository uses inverted lists as basic structures to encode textual and struc-
tural information. For this model, the entries of the inverted lists are of three kinds:

• structural entries, i.e. nodes ni of the XML tree,

• tokens of the unstructured sub-elements of the XML tree nodes ti,j ∈ USEi ∈ ni,

7.6. INDEXING SCHEME 127

Figure 7.8: The index model.

• sequential entries, i.e. unique sequence IDs. – USIDs.

Each entry is associated to a list of reference locators rli pointing to a unique node
position in the collection of XML documents. A reference locator rli refers to three
pieces of information:

• a link to the URI of the document,

• a link toward the XML context p(ni), and

• an index specifying the location of the token ti,j within the XML node ni.

For the structural entries (i.e a node n of the XML tree), only the link to the URI of
the document and a link to the XML context p(n) are required.

The inverted list resulting from the indexing process is encoded using binary ran-
domized search trees, namely TREAPS as defined in [140], associated to hashtable
structures. TREAP structures can balance the search tree according to the frequency
of requested items. This provides an access speed-up over the use of regular hashta-
bles [148]. The inverted lists are implemented as disk-resident index structures.

7.6.2 Sequence Repository

A supplementary index structure is used to optimize the management of sequential
data. A well known and efficient data structure for indexing and searching sequential
data in text processing [154] and bioinformatics applications [146, 94] is the general-
ized suffix tree (GST).

In a nutshell, the suffix tree is an indexing structure for all the suffixes of a string
and it can be constructed in linear time and linear space [144]. A suffix-tree is a
data structure that exposes the internal structure of a sequence in a deeper way than
any other data structure such as inverted index. Suffix tree is an important data
structure for indexing text strings and sequences since we can search for patterns in
the data efficiently and the search complexity is independent of the original sequence
size. There exist many practical applications that rely on suffix tree, especially for
processing biological sequence data [83].

128 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

A generalized suffix tree (GST) is a suffix tree for representing all the suffixes of a
set of strings [83]. In our implementation we use the Ukkonen’s on-line construction
algorithm [227] for building a GST.

For each extracted sequence S, all its symbols values si are indexed in the gener-
alized suffix tree structure with respect to the sequence order relation � – see Figure
7.8.

The same sequence of indexed values S can have associated multiple sets of refer-
ence locators as it may occurs in different locations in the collection of XML documents:

S → {rli}0{rli}1...{rli}n

We consider a sequence to occur in two different locations in the XML collection if:

• all its symbols values {si} are equal with the ones of a previously indexed se-
quence with respect to the sequence order relation �, and

• at least one of the reference locators rli associated with the sequence symbols si

are not matching.

Consequently, for each indexed sequence we receive a unique sequence id USID, from
the generalized suffix tree. The USID is further used as an entry key in the inverted
lists to link the multiple sets of reference locators to the referred sequence – see Figure
7.8. The sets of reference locators have all the same cardinality |S| and are stored
contiguously in the inverted list. The order of the reference locators from each set
complies with the order relation � used to build the sequence.

7.7 Searching Scheme

We introduce a searching scheme designed to manage unstructured sequential / time
series data in an XML context based on two levels of approximation:

• on the structural localization/organization of the sequential data, and

• on its content.

7.7.1 Sequence Structural Approximate Matching

Since the user cannot be aware of the exact unstructured content or the complete struc-
ture of the XML documents due to their heterogeneity, the searching process should
involve exact and approximate matching mechanisms. The format of the indexed doc-
uments being XML, it is natural to consider that the structural query itself complies,
at least partially, with the XML standard. If so, the structural searching mechanism
can be handled through approximate tree matching algorithms that try to match the
query XML tree to the XML trees for the corresponding indexed documents.

Tree matching algorithms exist based on editing distance and mappings. This
kind of tree matching is not suited to the task we intend to perform. First of all, the
matching complexity is too high – O(n3) [58] – considering the size of documents and
databases we want to handle. Secondly a sequence may involve paths of more than
one XML tree of the collection. Therefore we have chosen to perform an approximate
search based on the matching of p(n) sub-structures of the indexed XML trees. In other

7.7. SEARCHING SCHEME 129

words, we are rather dealing with approximate root–leaf or root–node path alignment
rather than complete tree matching algorithm.

In particular, a sequence S is defined as an ordered non-empty set of finite symbols
si each of them having attached a path pD

i from the root of the XML tree of the docu-
ment D to the symbol node location in the tree. The ordered set of pD

i sub-structures of
the XML trees represents the structural part of the sequence, while the symbol values
its content – see Figure 7.5. Thus, approximate matching the structural part of an
indexed sequence is based on approximate path alignments.

We choose to use the matching scheme implemented in the SIRIUS XML IR system
(see Section 3.4.1 on page 47) to perform the approximate matching of the structural
part of the sequences.

We evaluate the structural similarity σstr between a path request pR (expressing
an elementary structural query coding a path with constraints) and the set of root-leaf
paths {pS

i } corresponding to an indexed sequence S as follows:

σstr(pR, {pS
i }) = Maxi

(
1

1+δL(pR,pS
i)

)
where δLis a dedicated editing distance (see [239]).
Thus, the sequences which lead to the higher structural matching values are the

sequences pointing to a candidate path that best matches the structural request pR.
Note that the matching value σstr(pR, {pS

i }) belongs to [0..1], ranging from 0 (not ac-
ceptable – no matching) to 1 (perfect matching).

The search complexity for such an algorithm – see [239] for justification – is:

O(length(pR) ·Max
|Dj |
j=0 (depth(TDj))· | {pS

i } |)

where:

• | {pS
i } | is the size of the set {pS

i } – i.e. the number of paths associated with the se-
quence S, where a sequence may be linked with paths from different documents
Dj . The paths start at the root of the document Dj , and lead to the last element
of the path request pR (i.e. the sequence symbol value or the textual terminal),

• length(pR) stands for the length of the request path pR and

• depth(TDj) represents the deepest level of the XML tree T associated with one of
the documents Dj linked to the sequence S.

This complexity remains acceptable for this application as 99% of the XML documents
available on the web have fewer than 8 levels and their average depth depth(TD) is
4 [149]. Conversely, the user’s structural queries are even shallower. As a consequence,
the term that will have the most influence on the response time is the number of paths
associated with the extracted sequences.

7.7.2 Sequence Approximate Matching

We presume that a user has an imprecise, incomplete, or approximate knowledge of
the sequential content extracted from the collection of XML documents. As a direct
consequence, a sequential request SR will represent only a short, probably inaccurate,
fragment of an indexed sequence. These types of queries are usually found in query

130 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

by humming systems [252] or in biological data processing [146, 94, 83]. Under these
conditions, an exact searching scheme for sequence retrieval will fail to respond to
the user information needs. Thus, we choose a retrieval scheme that approximately
matches a sequential request SR with any subsequence Si of the set of indexed se-
quences.

The sequence similarity is based on a distance – obtained by applying a dynamic
programming technique: an editing Levenshtein distance [131] or Dynamic Time
Warping4 (DTW) distance [165]. Both distances have the same computational com-
plexities O(|SR| · |S|) and allow the approximate matching of two sequences or time
series of different lengths.

We want to retrieve all the similar subsequences Si from the database with a user
request SR, having the distance δ less than a specified threshold ξ – the P-against-all
problem [83].

The sequential scan complexity for achieving this goal is expressed as:

O
(
m · |S|2 ·

∣∣SR
∣∣)

where m is the number of data sequences whose average length is |S|.
The use of a hybrid method based on a suffix tree as an index structure and a dy-

namic programming method can reduce the complexity problem and efficiently solves
the similar subsequences retrieval task [83, 146, 165]. The performance gain of the
method comes from:

• the branch-pruning method that reduces the search space using the threshold
value ξ, and

• the suffixes with common prefixes that share the cumulative distance tables dur-
ing the index traversal. The time complexity of this approach is:

O

(
m · |S|2 ·

∣∣SR
∣∣

Rd ·Rp

)
where Rd(≥ 1) is the reduction factor saved by sharing the cumulative distance

tables, and the Rp(≥ 1) is the reduction factor gained from the branch-pruning. In
the worst case where there is no common subsequence and the branch-pruning cannot
help, both values of Rd and Rp are 1, and therefore the complexity becomes the same
as that of the sequential scan [165].

The similarity between a sequential request SR and an indexed subsequence Si is
given by their normalized distance δ and is computed as follows:

σseq

(
SR, Si

)
= b−δ(SR, Si)

where b > 1, usually e and σseq

(
SR, Si

)
∈ [0..1].

The value of the b parameter sets the sensitivity of the sequence similarity indica-
tor. It specifies the distribution of the possible distance values δ in the [0..1] interval
and boost the best matches. The sequence similarity takes values between 0 – for no
correspondence between sequences, and 1 – for a perfect matching.

4DTW is a pseudo-distance as it is not respecting the triangular inequality, see [248] for demonstra-
tion.

7.8. EXTRACTING AND QUERYING SEQUENTIAL DATA BY EXAMPLES 131

The match of a sequential request SR with an index sequence S is defined as the
best match between the query and any subsequence Si of S :

σseq

(
SR, S

)
= Maxi

(
σseq

(
SR, Si

))
7.7.3 The Fusion of Structural and Sequential Approximate Match-

ing Scores

The information fusion is defined as the fusion of complementary information pro-
vided by different sources with the scope of obtaining an information gain due to the
utilization of multiple sources of information vs. a single source.

In our scheme we have chosen the weighted geometric mean to fusion the two levels
of approximation: on the structural localization/organization of the sequential data
and on its content. The geometric mean is a way to construct an aggregate measure
between different indicators that is sensitive to small values. This is appropriate for
our purpose of retrieving sequences with highly similar content and being related to
highly relevant structures to the user query. The weighted geometric mean is defined
as:

Φ
(
σseq

(
SR, S

)
, σstr

(
pR, {pS

i }
))

=α1+α2

√
σseq (SR, S)α2 · σstr

(
pR, {pS

i }
)α1

where α1
α2

= ν is a parameter allowing to specify the relative importance of the
indicators to the final score.

We rewrite the above formula in order to transform the logarithmic scale of the ν
parameter to a linear scale that is more suited to the user common-sense understand-
ing:

Φ
(
σseq

(
SR, S

)
, σstr

(
pR, {pS

i }
))

=1+ν
√

σseq (SR, S) · σstr

(
pR, {pS

i }
)ν

where ν = −log2(1− γ) and γ ∈ [0..1).

• The γ parameter is application dependent: it is used for specifying the degree of
penalty applied to the final score with respect to the structural matching indica-
tor. A γ = 0 value will discard the sequence structural factor from the calculus
of the overall score, while a γ → 1 value will boost its importance at maximum.
At γ = 1

2 the fusion process will equally take in consideration the two similarity
indicators.

7.8 Extracting and Querying Sequential Data by Exam-
ples

We extend the SIRIUS query language introduced in Section 3.5 by adding the follow-
ing sequence based operators, as well as some temporal operators (not described here
but used in an implicit manner) to perform temporal ranking of the retrieved results:

makeSEQ operator – it is equivalent with a contextual pR request including at most
two return statements. One return statement is mandatory and is used to re-
trieve a sequence symbol and the second one is optional and used to associate

132 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

an order key to the extracted symbol. By processing the makeSEQ operator we
extract and index the sequences into a generalized suffix tree. An example is
given in Figure 7.7 and the significance of the required parameters is described
together with the sequence extraction process in Section 7.6 .

sameSEQ operator – searches similar subsequences in the generalized suffix tree.
Indexing more sequences, will provide more redundancy and better overall per-
formance for the suffix tree. Of course this is done at the expense of larger storing
(especially memory) space. As shown in Figure 7.9, the operator receives 3 argu-
ments:

• on the 1st line: the sequential query — here the $ symbol is used to create
a new sequence with the order and the values given as arguments between
the parenthesis - i.e. numerical sequence by default

• on the 2nd line we have the structural request with constraints on attributes
and on the attributes value,

• on the 3rd line we have the minimum threshold value ξ used for selecting
the similar subsequences with respect to both the sequential and structural
patterns.

The most important modification besides the addition of the sequential operators con-
sists in the fact that a path request pR may now include a ”return” statement that
retrieves either an attribute value (using return @attname) or an XML element con-
tent using the return this operator.

The return this operator requires auxiliary indexing structures to store the XML
nodes content for fast retrieval; – otherwise we will have to parse the XML documents
content each time we had to perform this kind of operation. As the XML documents
from the indexed databases may be large (as this is the case for the MidiXML files),
the second option is obviously inefficient. We implemented the first solution by using
a region repository file in which, for each unique (documentId, nodeId) pair, we have
indexed their textual content and associate a reference to their parentId node. The
parentId value is necessary to get access to their ancestors nodes in the XML path.
The retrieved content supported by this additional structure may be further parsed to
extract the sequence symbols or used on an ”as is” basis to build a sequence symbol by
itself.

For instance in Figure 7.10 we have a context and content query with an attribute
value statement (lines 1–6). In this case we use an entry of the inverted list selected
by the request term ′country′ (line 5) to process the request – i.e. we note here that
the requests paths that do not contain content conditions are always terminated with
the path delimiter ′/′ (see line 12) . In Figure 7.10, lines 8-14, we use the return this
operator to retrieve all the contents of the ′textevents′ nodes, where the structural
constraint is interpreted vaguely.

We note here that a structural extraction pattern can specify a maximum of two
return values: one is the value to be returned by the return operator and one is the
value retrieved by the orderBy operator – this configuration extracts pairs of (values,
orderKeys) that are used later on by the sorting procedure.

More complex requests can be formulated by using boolean or fuzzy merging opera-
tors (AND, OR, etc.) and by integrating textual, structural or temporal operators with

7.9. EVALUATION 133

1 (sameSEQ ($ 62 59 55 66 66 67 62 50 67 62 69 69 71 67)
2 [/jazz/Event/NoteOn(= channel 10)/] % str. constraint
3 0.5 % threshold for the similarity value
4)

Figure 7.9: sameSEQ sequence similarity search operator.

1 (OR [/midifile
2 /track(and (RETURN @number NUMBER) (== number 0))
3 /event
4 /textevent
5 /country]
6)
7

8 (OR [/midifile
9 /track(== number 0)

10 /event
11 /textevent(RETURN THIS STRING) %retrieve node content
12 / % no textual terminal
13]
14)

Figure 7.10: RETURN operator.

different granularities. For instace, in Figure 7.11 we show a complex query which pro-
cesses two sequence extractions patterns including textual and temporal constraints
and then performs approximate subsequence similarity search on the extracted se-
quences.

7.9 Evaluation

We present some preliminary experimental results dedicated to midi files retrieval in
a heterogeneous XML MIDI library.

7.9.1 Prototype

We have implemented the approximate sequential matching operators and the fusion
method based on the presented index model in the SIRIUS XML information retrieval
engine [148, 177, 179]. The prototype is entirely developed in Java and uses the dy-
namic time warping [165] algorithm to compute sequence similarity scores. The im-
plementation of the similarity search for sequence retrieval follows the algorithms
introduced in [165].

SIRIUS provides approximate operators for managing textual/sequential/time se-
ries data in a heterogeneous XML environment. The graphical user interface of the
SIRIUS XML IR engine showing a subsequence match is shown in Figure 7.12.

134 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

1 (AND
2 concert %textual keyword
3 (sameSEQ %sequence similarity search
4 ($ 83 76 81) %sample sequence
5 (makeSEQ
6 (OR [/midifile/track(== number 1)/event
7 /noteon(AND (== channel 1)(RETURN @note NUMBER))/])
8 1.0 %threshold for the extracted symbols relevance
9 DOCUMENT %sequence structural type

10) %end_makeSEQ
11 (makeSEQ
12 (AND russia %text keyword
13 (NEAR ’2000-01-01’ MONTH) %temporal constraints
14 (OR [/midifile/track(== number 2)/event
15 /noteon(AND (== channel 2) (RETURN @note NUMBER))/])
16) %end_AND
17 1.0 %threshold for the extracted symbols relevance
18 DOCUMENT %sequence structural type
19) %end_makeSEQ
20 0.5 %similarity threshold for the_sameSEQ operator
21) %end_sameSEQ
22) %end_AND

Figure 7.11: Complex request.

7.9. EVALUATION 135

Figure 7.12: Subsequence match in SIRIUS GUI.

7.9.2 Experimental Dataset

The experimental dataset is formed by a MIDI file collection (32 Disney themes) down-
loaded from the public domain5. The files are transformed in the XML format accord-
ing to the Standard MIDI File DTD [4] version 0.9.

In a MIDI file the sequences of notes are organized in tracks (having a maximum of
16 channels) and events (see Figure 7.2). The ”human readable” information – i.e. the
meta-events – such as lyrics, copyrights, tempo indications, time and key signatures,
markers, etc. are attached to the first track of the file – track 0 (see the Standard MIDI
Files 1.0 specification (SMF) published by the MIDI Manufacturer’s Association6 for
details).

To simulate the heterogeneity of the collection and to validate the approximate
structural localization of the sequential data, we generate and append a meta-structure
for each standard MidiXML file. The meta-structure for each MidiXML file is gener-
ated by randomly selecting structural contexts from a structural pattern that encode
the structure of a website providing MIDI files on the public domain – see Figure 7.13.

5http://themes.mididb.com/anthems/
6MIDI Manufacturers Association (MMA) http://www.midi.org

http://themes.mididb.com/anthems/
http://www.midi.org

136 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

Figure 7.13: Basic scheme used to randomly generate meta-structures for the
MidiXML test collection.

7.9.3 Early Evaluations

We present some early experiments of the XML data indexing and sequence extraction
algorithms on datasets with sizes ranging from 1MB to 15MB. The system used for
experimentation has a 2.4 GHz processor and 512 RAM. The XML data indexing time
represents the elapsed time for the creation of the inverted lists without taking into
consideration the sequential data. The sequence extraction time stands for the time
spent in the process of approximate matching the XML contexts and the time spent to
index the extracted sequences.

Figure 7.14: XML data indexing time / Sequence extraction and indexing time as the
size of the index dataset.

We can observe in Figure 7.14 quasi linear indexing and extraction times with the
size of the indexed datasets (i.e. the total length of the indexed sequences), which is
quite encouraging. The average response time for 90 randomly generated request (30
with structural constraints only, 30 with sequential constraints only, and 30 requests
with constraints on both the structure and the sequence content) are shown in Figure

7.10. CONCLUSIONS 137

Figure 7.15: Average response time for structural, sequential, and complex requests.

7.15. The structural requests seem to have a polynomial behavior. The sequential
queries are less sensitive to the size of the indexed dataset than the structural ones
due to the organization of the GST index structure. A GST scales well to the dataset
size as it uses the common prefixes of the index sequences to reduce the research space
(see Section 7.7.2).

This fact raises interesting perspectives for the optimization of the overall response
time of the complex requests involving both the structure and the sequential content
of the XML documents. We use the sequential queries as a first filter when answering
to complex requests with mixed constraints on both the content and structure. This
improves significantly the overall response time as shown in Figure 7.15. Finally, the
complexity of the alignment algorithms is maintained as low as possible to preserve
the capability of indexing large datasets.

As for the quality of the retrieved results, we could not evaluate it completely, as
the current evaluation framework for the retrieval of multimedia structured document
fragments [232, 243] focuses on images and is not yet adapted to evaluate sequential
data. A general opinion [61] and also our belief is that using similarity operators
adapted to the document content types and to the XML structure in the retrieval pro-
cess should improve the precision of the results.

7.10 Conclusions

In this chapter we have described approximate searching mechanisms to extract,
index and query sequential data from semi-structured information embedded into
XML datasets. Such mechanisms are based on the alignment of root-node paths
that are sub-structures of XML trees. The proposed mechanisms allow to merge
structured data (< attribute, value > pairs) or structural organization of documents
(< MIDIFile >< Track >< Event >< NoteOn > ...) with unstructured data such as
textual (free text) or sequential/time series data.

At the current author knowledge, there is no existing integrated method for ap-
proximate querying specific sequential data in a heterogeneous semi-structured envi-
ronment. Even if each part of the problem was extensively studied and beneficiated
of strong research efforts of well established scientific communities, the fusion of the
methods developed in this two research areas (sequential similarity search and XML

138 CHAPTER 7. IR OF SEQUENTIAL DATA IN HETEROGENEOUS XML DATABASES

information retrieval) was not yet deeply considered. The proposed scheme was de-
signed to cover this gap and to highlight extended and useful querying capabilities for
the user.

7.10.1 Main Contributions

Our main contributions to the field of XML multimedia information retrieval concerns
the introduction of a set of specialized operators designed for the extraction, indexing
and retrieval of sequential/time series data embedded in heterogeneous XML docu-
ments. More precisely:

• We have investigated sequential/time series data and its organization within the
XML documents;

• We have described an approximate sequence extraction scheme guided by struc-
tural patterns for extracting the sequence symbols and contextual information
from heterogeneous XML documents;

• We have proposed a hybrid index model for the indexing of textual, structural
and sequence/time series data;

• We have defined a model for retrieving similar sequences extracted from XML
documents. The matching mechanism allows to aggregate two levels of approxi-
mation: on the structural localization/organization of the sequential data and on
its unstructured content;

• We have developed a complete prototype to evaluate the benefits and the draw-
backs of the proposed approach. Our main experimental contribution so far,
shows that the fusion of structural and sequential search criteria drastically im-
proves the global retrieval performances of the similarity search mechanisms
when exploiting heterogeneous XML databases.

7.10.2 Future Work

The work presented in this chapter can be extended in several directions:

• A first enhancement for the set of the sequential operators implemented in the
system is to make them aware of the temporal aspects of the data;

• Second, we want to experiment with a flexible organization relative to the se-
quence’s symbols order relation, and to measure the impact (both on the effi-
ciency and the effectiveness of the system) for such relaxation;

• Another line of interest is the design of a weighted model for sequential data in
which each symbol of the sequence can be associated with a weight indicating its
contribution/relevance to the current sequence;

• Both, the disk resident organization of the index structures and the paralleliza-
tion of the research algorithms will be a straight forward research direction in
order to validate our approach on larger amount of data;

7.10. CONCLUSIONS 139

• Finally, designing an evaluation framework for the retrieval of sequential data
embedded in heterogeneous XML documents represents a major research chal-
lenge.

Part IV

XML IR on Specialized Hardware

141

Chapter 8

ReMIX – Reconfigurable Memory
for Indexing Mass of Data

In this chapter we make a short overview of the main characteristics of the ReMIX1

project. ReMIX stands for Reconfigurable Memory for Indexing Mass of Data. The
project aimed to design an original memory architecture for both storing very large
indexed data structures, and allowing fast information retrieval. It follows the concept
on-the-fly filtering of huge amounts of data by combining two technologies: FLASH
memories and FPGA components.

Contents
8.1 Introduction . 144

8.2 ReMIX Project Objectives . 145

8.3 ReMIX Idea . 145

8.3.1 Reconfigurable Resources . 146

8.3.2 FLASH Technology . 146

8.4 ReMIX Architecture . 146

8.4.1 ReMIX System . 146

8.4.2 RMEM Board . 146

8.4.3 ReMIX Memory Specificity . 148

8.5 Programming the ReMIX cluster . 148

8.5.1 Framework . 148

8.5.2 Operator Synthesis . 148

8.5.3 ReMIX Query Processing Model 149

8.5.4 ReMIX API . 149

8.6 Conclusion . 151

1Reconfigurable Memory for Indexing Mass of Data (ReMIX) http://www.irisa.fr/remix

143

http://www.irisa.fr/remix

144 CHAPTER 8. THE REMIX PROJECT

8.1 Introduction

Indexing is a well-known technique that accelerates searches within large volumes of
data, such as the ones needed by applications related to genomics, to content-based
image or text retrieval. An index is a data structure designed to organize the data by
mapping a key value onto one or more records containing the key value, thus providing
a mechanism to efficiently locate the storage location of records.

General-purpose computer systems usually feature a hierarchy of memory levels,
each level with its own cost and performance characteristics. At the lowest level, CPU
registers and caches are built with the fastest but most expensive memory. For in-
ternal main memory, dynamic random access memory (DRAM) is typical. At a higher
level, inexpensive but slower magnetic disks are used for external mass storage, and
even slower but larger-capacity devices such as tapes and optical disks are used for
archival storage. Therefore, not all memory references require the same access time.
Large address spaces span multiple levels of the memory hierarchy, and accessing
the data in the lowest levels of memory is orders of magnitude faster than accessing
the data at the higher level [238]. For example, loading a register takes on the order
of a nanosecond (−9 seconds), and accessing internal memory takes tens of nanosec-
onds, but the latency of accessing data from a disk is several milliseconds (−3 seconds),
which is about one million times slower! In applications that process massive amounts
of data, the input/output communication (or simply I/O) between the memory levels is
often the bottleneck.

For massive data sets, the index structures may not fit completely inside the com-
puter’s internal memory and are generally stored on magnetic disks. In this case, the
design of indexes is fully disk-oriented, since minimizing disk I/Os is the key point to
reduce response times. Therefore such indexes are concerned with low level notions
such as pages, fill-factors, tracks, cylinders, etc. In addition, such disk-oriented design
indirectly impacts the search algorithms that navigate within the index since they
have to favor sequential patterns both for processing data in individual disk pages
and for fetching disk pages, avoiding as much as possible any random access to data.

To solve the scalability problem for applications managing massive data sets sev-
eral solutions exist. Among them we may cite the use of dedicated high-end multi-
processor servers or distributed computing using clusters of regular computers. The
last approach is a more cost-effective solution. Some of the benefits of the network of
workstations model are as follow [18]. First, network of workstations has become ex-
traordinarily powerful and offer a better price-performance than parallel computers.
Second, most networks of workstations have a huge amount of memory and very fast
processors, both of which sit idle most of the time. Third, switched networks allow
bandwidth to scale with the number of processors and low overhead communications
protocols have made it possible to do very fast communications among workstations.
Among the drawbacks we may cite significant increases in the costs associated with
the maintenance and administrations tasks such as the required physical space, the
required human resources, the repair cost, the power consumption and the cooling
issues. A successful implementation of this model is the Google cluster architecture
based on a farm of several thousands commodity-class computers using the Linux op-
erating system [27].

Nevertheless, any of the previous approaches bring solutions for the latency limi-
tations of traditional on-disk indexes. One approach is to ignore the disk memory level

8.2. REMIX PROJECT OBJECTIVES 145

completely and to consider only application cases where data management relies ex-
clusively on the main memory – i.e. Main Memory Database Systems MMDBS [73, 39].
A different approach is the design of ”intelligent disks”. In this view several projects
like RDISK [84], Smart Disk [147], Active Disk [189], IDISK [111] or [242] used recon-
figurable hardware closely connected to a hard disk in order to overcome the I/O bus
bottleneck of conventional systems. [242] applies specialized hardware for processing
unstructured data. Data are sniffed on the IDE bus out of one disk drive so that they
can be filtered, compressed or encrypted on-the-fly into a FPGA component.

Inspired by the later approaches, the ReMIX project addresses the data access
problem. The idea is to propose a hardware mechanism allowing fast random ac-
cesses to Gbytes of data. In the ReMIX architecture, hard drives are replaced by
FLASH memories whose access times are 2 or 3 orders of magnitude faster. In the
same way, data bandwidth is increased by accessing simultaneously a large number of
FLASH memories. Data are processed on-the-fly by reconfigurable hardware directly
connected to the memory.

8.2 ReMIX Project Objectives

The ReMIX project (Mémoire reconfigurable pour l’indexation des masses de données)
started in 2003 granted by the French initiative ACI Masses de Données2 (ACI MD).
The project involved four research groups:

• Symbiose, Bioinformatic Group, IRISA, Rennes

• R2D2, Computer Architecture Group, IRISA, Rennes

• TexMex, Multimedia Document Group, IRISA, Rennes

• Aprim, HyperText and Database Group, VALORIA, Vannes

and had two main targets:

• first, to identify the necessary features for a dedicated hardware system de-
signed to manage the querying of a large amount of data. The project tackled
content-based search for different applications domains [74] with focus on the
genomics [129, 128, 155, 167, 182], images [17, 29] and semi-structured text pro-
cessing fields [148, 175]. The aim was to propose a conceptual framework able
to manage as efficiently as possible content-based retrieval applications using
indexes.

• second, to design, build and test a specilalized hardware/software framework to
speed up this model.

8.3 ReMIX Idea

The ReMIX project proposes the design of a dedicated and very large index memory
(512 Gbytes) which is big enough to entirely store huge indexes. The use of an almost

2Action Incitative Masse de Données http://www.enseignementsup-recherche.gouv.fr/
appel/2003/acimd.htm

http://www.enseignementsup-recherche.gouv.fr/appel/2003/acimd.htm
http://www.enseignementsup-recherche.gouv.fr/appel/2003/acimd.htm

146 CHAPTER 8. THE REMIX PROJECT

unlimited memory raises completely new issues when designing indexes. Here, within
this scheme, direct access to data, massive parallel processing, huge data redundancy,
pre-computed structures, etc., can be advantageously promoted to speed-up the search.

8.3.1 Reconfigurable Resources

The index memory includes reconfigurable hardware resources to tailor at a hardware
level the memory management to best support the specific properties of each indexing
scheme. It also offers the opportunity to implement at a hardware level application
dependent filtering algorithms having interesting potential parallelism for processing
data directly from the output of the index memory.

8.3.2 FLASH Technology

Characteristics of the index to manage features both a large volume and a relative
stability. Indexing huge amount of data (several hundred Gbytes) takes time and we
make the assumption that is not performed continuously. Consequently, the storage
device only need to support an acceptable number of write operations, while allowing
quasi unlimited read accesses. The FLASH memory technology fit these requirements.
In addition, the memory capacity is high (more than 1 Gbytes per chip) and the ac-
cess time is low (20 microseconds, 10−6 seconds) compared to magnetic disks (several
miliseconds, 10−3 seconds).

8.4 ReMIX Architecture

8.4.1 ReMIX System

The ReMIX system (see Figure 8.1) is composed of a small cluster of five PCs: 4 slaves
and 1 host. The host (or master) acts as a front-end machine and the four others
are the processing nodes, each one housing two PCI boards containing a FPGA and
64 Gbytes of FLASH memory each. The whole system holds 512 Gbytes of FLASH
memory. The nodes are interconnected through an Ethernet switchbox.

8.4.2 RMEM Board

The RMEM (ReMIX MEMory) board (see Figure 8.2) is the core component of the
ReMIX system. It is designed to associate on the same support both a large memory
and reconfigurable components in order to allow on-the-fly filtering of data as soon as
it is read from the memory. An RMEM board is composed of:

• 64 GBytes of FLASH memory

• 1 Xilinx Virtex 2 Pro - XC 2VP30

Depending of the type of query, an adequate hardware filter is first downloaded to the
FPGA component before scanning the banks. The filtering occurs locally and results
are sent back to the front-end computer for further post-processing.

8.4. REMIX ARCHITECTURE 147

Figure 8.1: ReMIX System Architecture.

Figure 8.2: ReMIX Memory Board.

148 CHAPTER 8. THE REMIX PROJECT

8.4.3 ReMIX Memory Specificity

It is important to point out that the ReMIX memory architecture is not only a sim-
ple memory extension to substantially increase the memory capacity of a standard
computer. The reasons are the following:

• The reconfigurable index memory is not a simple storage device. It is enhanced
with additional reconfigurable hardware resources for tailoring its use according
to the index characteristics and to the data it manipulates.

• The reconfigurable index memory does not fit in the addressing space of the pro-
cessor. It is indirectly accessed by specific queries submitted by the processor in
order to execute crucial and costly indexing subroutines.

• The reconfigurable index memory does not hold any cache hierarchy, and there-
fore memory accesses do not have to worry about the data locality. Memory read
operations have a unique cost, whatever the memory address, and whatever the
previous memory accesses.

• Due to the FLASH technology, writing operation are limited. It only aims to
periodicaly store huge volume of data while allowing quasi unlimited read access.

8.5 Programming the ReMIX cluster

8.5.1 Framework

The ReMIX cluster is programmed through a framework. The goal is to simplify the
development of indexing algorithms and to ease the deployment of the application on
the hardware solution. It has been designed with two major requirements: simplicity
and reutilisability [74].

Simplicity comes from a simple master/slave execution model. Furthermore, the
data distribution is explicit and static. Execution, communication and synchro-
nization are fully handled by the programming environment.

Reutilisability both takes place at a software and hardware level. The programming
environment is not linked to any specific application and doesn’t depend of a
dedicated platform. Programs can be executed either on a single PC, a parallel
machine (cluster) or a dedicated platform (ReMIX). This is particularly useful
during the debugging phase.

8.5.2 Operator Synthesis

Most of the time, the critical part of a reconfigurable architecture concerns its pro-
gramming facility. The remix FLASH memory is tightly connected to FPGA compo-
nents housing application dependant hardware filters.

Specifying the filter functionality can be seen as a data flow description: data come
as a regular flow from the ReMIX memory, and are processed on-the-fly. Only data
meeting some requirements are pushed to the RMEM board output. Unfortunately,
the task of specifying an adequate hardware filter for the FPGA processors is quite
complex and currently exclusively reserved to VHDL specialists.

8.5. PROGRAMMING THE REMIX CLUSTER 149

8.5.3 ReMIX Query Processing Model

In this section we take a general look at the query processing model and present the
role and the interaction between the different components of the ReMIX architecture.

In the ReMIX architecture, all the applications follow the client/server of requests
paradigm (see Figure 8.3). In this view we accept that the index and the requests can
be distributed/duplicated on the nodes of the ReMIX cluster. Only the frontal node (i.e.
the host) detains the complete knowledge of the index and requests distributions on
the nodes. The distribution of the index is recorded into a MemoryMap structure. Each
FullQuery submitted to the the host is processed by a QueryServer that splits the
FullQuery in SubQueries. The SubQueries are dispatched and processed in-
dependently on the nodes. Generally the processing phase consist in fetching from
the LocalMemory – i.e. getAt() – the indexed information associated with an in-
dex key entry and computing a similarity distance between the request and all the
objects from the retrieved list. The SubQueries may retrieve none, a single or a
list of partial SubResults. A retrieved result may influence (i.e. stop the process,
or change the threshold minimum value for the top-k retrieved results for instance)
the current processing of the request by using a feedback mechanism. The par-
tial lists of SubResults are collected and merged by the SubResultServer. The
SubResultServer is running on the host and delivers the FullResult to the user.
The whole system operates in parallel and is able to pipeline a flow of queries.

8.5.4 ReMIX API

For this generic client/server of requests application model, the programmer has to
specify:

• how the index is constructed and distributed on the ReMIX nodes,

• the content of the complex request and how the request can be split in elementary
requests,

• the content of an elementary request and how this is processed on the nodes,

• the content and the processing of a partial result list,

• the feedback of a partial result to a request,

• how the partial result lists are merged,

• the content and the processing of the complete result.

Programming with the ReMIX framework API (see Figure 8.4) consists in imple-
menting seven Java abstract classes and interfaces – namely FullQuery, SubQuery,
SubResult, FullResult, GlobalMemory, MemoryEntry and MemoryValue – in or-
der to adapt the ReMIX runtime to the targeted application domain and to control the
query processing.

150 CHAPTER 8. THE REMIX PROJECT

F
igure

8.3:R
eM

IX
generic

query
processing

m
odel[182].

8.6. CONCLUSION 151

Figure 8.4: The ReMIX programming framework API [182].

8.6 Conclusion

In this chapter we have introduced the ReMIX project. We have presented the moti-
vation, the main idea, the technology used, the system architecture, and the program-
ming paradigm. An implementation of an XML retrieval application using the ReMIX
architecture is described in the next chapter.

Chapter 9

Approximate Search of
Semi-Structured Documents
Using Dedicated FLASH Memory
and FPGA Components

In this chapter we adapt a subset of our XML IR operators to the application model de-
veloped in the context of the ReMIX project. The implementation described allows on-
the-fly approximate structural filtering (and relevance ranking) as support for search-
ing relevant information in heterogeneous semi-structured databases. A preliminary
version of the approach proposed in this chapter was presented in [175].

Contents
9.1 Introduction . 153
9.2 General Notes on ReMIX Programming Philosophy 154
9.3 Approximate Structural Filtering for XML IR using the ReMIX

Architecture . 154
9.4 Specifying the Application Characteristics 155
9.5 Indexing . 156
9.6 Searching . 158
9.7 Current Implementation Status . 160
9.8 Early Experimental Results . 161
9.9 Discussion . 161
9.10 Conclusion . 162

9.1 Introduction

Larger and ever increasing volumes of data in XML format are accessible on the Web
through the use of standard search engines. The users drowned in the information

153

154 CHAPTER 9. XML IR ON SPECIALIZED HARDWARE

mass stressed for the development of new enhanced research capabilities allowing for
more focused access to the sought information. XML information retrieval aims to
consider the additional information and rich annotations provided by the structure of
XML documents and their element names to improve the precision of the retrieved
results.

XML IR applications require both adapted storage and access spaces for managing
and searching important volumes of XML data and powerful computing capabilities
to perform approximate structural matches. In this chapter, we propose to investigate
the use of a specialized hardware architecture to perform the expensive computational
steps of the approximate structure matching algorithms introduced in [148]. We used
for this purpose the hardware memory developed by the ReMIX project.

9.2 General Notes on ReMIX Programming Philosophy

In the previous chapter, we have introduced the ReMIX project, its main motivations
and requirements, the technology used and the proposed programming paradigm.

We summarize here some of the characteristics of the ReMIX project that will have
an essential impact in the design of our semi-structured application:

• High (e.g. 512 GB) limit for memory usage – i.e. suited for large redundant index
structures,

• Fast random access to the index key entries,

• The flow of data is processed and filtered. No additional information may be
fetched at retrieval time unless it was specifically associated with the data entry
in the index.

• Fast data filtering and computational capabilities performed in parallel by the
components of the FPGA processors and for each FPGA processor associated with
one of the cluster nodes.

• Joins and ranking of partial results lists can be performed only on the front end.

Summing up, the ReMIX project considers the database as a data stream and performs
fast hardware filtering to select regions of interest for further processing.

9.3 Approximate Structural Filtering for XML IR using
the ReMIX Architecture

Further, we present an application that allows approximate structural filtering and
relevance ranking for semi-structured documents adapted to the ReMIX application
framework.

The application provides structure and content ranking scores at element level
as support for XML information retrieval in heterogeneous collections of XML docu-
ments.

The content score use a variant of tf*idf [195] ranking scheme and basic terms
statistics at document, element and collection level to estimate the relevance of an
XML element, while the structural score computes an editing distance [131] between

9.4. SPECIFYING THE APPLICATION CHARACTERISTICS 155

the path specified in the request and the path of the retrieved XML element. The
structural and content scores are further merged by using a weighted linear approach.
The output of the application consist in a list of XML elements ranked according to
their relevance to the user request, either in a list of documents ranked according to
their relevance to the user request and containing pointers and scores to the relevant
elements inside each document. The system can answer either content only queries or
content and structure queries.

The optimization occurs for the content only queries at the data access level –
i.e. fast random access at the index entries and efficient retrieval of the associated
information from the FLASH memory. For the content and structure queries, the op-
timization includes besides the efficient access and retrieval of the index data, a filter-
ing operation that computes an approximate structural match between the structural
pattern specified in the request and the structure of the retrieved information.This is
processed in parallel by the components of the FPGA processors as soon as the data
are fetched from the FLASH memory. Only the data having a structural similarity
above a given threshold is allowed to pass the filter condition and is sent to the host
for further processing.

9.4 Specifying the Application Characteristics

ReMIX programming framework requires the specification of the following character-
istics for a given application:

Index Construction: The model used is the inverted list model. For each entry in
the posting list we store the document id, the XML path and the term position in
the XML element.

Index Partitioning: We use a global index partitioning equally balanced between
the nodes of the cluster. For each index entry key, the posting list is distributed
in a round-robin strategy on all the nodes of the cluster.

FullQueries: A complex request may be composed of multiple elementary requests
and merging operators at both element and document level – i.e. terms occurring
in the same XML element or results that must occur in the same document.

SubQueries: An elementary request consists of either a simple textual terminal, ei-
ther of an (eventually incomplete) path with conditions on attributes and at-
tributes values ending with a textual terminal. The elementary requests are
considered as independent and therefore they are suitable candidates to be pro-
cessed in parallel.

SubQueries Processing: In the first phase, the set of matches is selected using the
terminal node of the request. If this is equal to an index entry key we get access to
the list of postings. Further, each posting is analyzed and the structural distance
between the request path and the path pointed by the post entry is computed. If
the structural score is above a given threshold the current posting entry is send
to the host for further processing, if not it is discarded.

SubResult: A subresult consist of a list of unsorted elements associated with their
approximate structural matching score. A result specifies its position within the

156 CHAPTER 9. XML IR ON SPECIALIZED HARDWARE

XML element (a number), its position within the XML tree (using an XML path),
and its position within the indexed collection (document id).

Feedback Mechanism: The feedback of a partial result to a request may optionally
change the minimum threshold value used to select the valid structural matches
in the case of top-k results processing.

Merging Partial SubResults Lists: The partial result lists are merged by using the
union of the their sets values. In case of a redundant distributed index, the same
result may be fetched from different nodes or even several times from the same
node. The duplicate values are eliminated in this step.

FullResult Processing: Finally the list of results is sorted either by the relevance
of the XML elements, either by the global relevance of the documents containing
relevant elements. The first top-k results are returned to the user.

9.5 Indexing

<document>
<title> Slant </title>
<author> G.Bear </author>
<text>

<chapter num="1" >
Omphalos dominates ...

</chapter>
<chapter num="2" >

Alice Grale believes ...
</chapter>

</text>
</document>

Figure 9.1: A simple XML document.

Figure 9.2: XML document tree and set of root-to-leaf paths representation for the
XML excerpt from Figure 9.1.

9.5. INDEXING 157

We use an equivalent representation of the XML documents (see Figure 9.1) as for
the one previously described in Chapter 3.

An XML document D can be represented by the tree TD of its XML elements. Each
XML tree TD can be seen as the set of XML paths {pD

i } starting from the root of the
tree to the leafs (see Figure 9.2).

We use a simplified indexing model based on inverted lists. We attach to each index
term its DocID, its XML path in the document tree , and its word position pos within
the XML element.

At implementation level we adapt this model for the ReMIX framework – i.e. we
index all the data in clear and use no encoding for element names or XML paths.
Therefore no secondary access is necessary and more flexibility can be allowed when
computing the path editing distances, both at path level – using the editing distance
– and at element name level – for instance to correct a tag name with typing errors.
An example of a reference locator associated with the ’alice’ entry key from the XML
document from Figure 9.1 is shown below.

′alice′ →< ”doc.xml” >< /document/text/chapter(num = ”2”)/ >< 1 >

Figure 9.3: Index construction and loading on the ReMIX architecture.

Since ReMIX is not designed to perform the indexing, we have to provide the set of
inverted list by a custom external program. The indexing process is shown in Figure
9.3. The XML documents are parsed with a SAX parser and inverted lists structures
that include path locations are created. This process is completely independent of the
ReMIX architecture and requires the creation of a dedicated index. We use the CURIA
distributed hashtables of the QDBM1 database to store the inverted lists. After the
index creation phase, we load and dispatch the information on the ReMIX cluster
nodes.

1QDBM: Quick Database Manager http://qdbm.sourceforge.net/

http://qdbm.sourceforge.net/

158 CHAPTER 9. XML IR ON SPECIALIZED HARDWARE

Figure 9.4: Index partitioning.

Index Partitioning

We take a global index partitioning approach as the complete index is available in its
totality before loading it on the ReMIX nodes – see Figure 9.3. One possible alternative
to partition the documents index is to equally load all the nodes – see Figure 9.4. This
ensure that we have the same amount of workload at query processing phase on each
processor. The indexed data is distributed by using a round-robin strategy on the
inverted lists posting lists. The nodes may contain a different number of entries for
an entry list, but they are globally balanced. For very short posting lists some nodes
may not feature the whole entry key list. This is recorded in the MemoryMap index
and further used in the query distribution phase.

9.6 Searching

A complex request is made of multiple elementary requests and merging operators at
both element and document level – i.e. terms occurring in the same XML element or
path, or results that must occur in the same document. An elementary request con-
sists of an (eventually incomplete) path with conditions on attributes and attributes
values ending with a textual terminal – see Figure 9.5. The elementary requests are
considered as independent and therefore they are suitable candidates to be processed
in parallel.

Figure 9.5: Complex request build of elementary requests and Boolean operators.

The complex request is parsed and the elementary requests are sent to the nodes of
the ReMIX cluster. The requests dispatching process uses a MemoryMap structure that
records all the mappings between the entry keys and the nodes of the cluster having

9.6. SEARCHING 159

a non null posting list for that entry. However, the possibility that all the elementary
requests to be sent to all the nodes is the most likely as the inverted lists postings
are well distributed among the different nodes in the load-balancing process. This is
a consequence of the fact that the loading process aims to have a relatively equally
amount of data charged on each node of the cluster.

The search process for an elementary request consists of two distinct phases:

1. Access and filter the preliminary results on the ReMIX nodes.

2. Fine grained computation and relevance ranking on the server side after merging
the preliminary results. Attribute conditions may be eventually computed at this
step.

In the first phase, the set of matches is selected using the terminal node of the request.
If this is equal to an index entry key we get access to the list of postings. Further, each
posting is analyzed and the structural distance between the request path and the path
pointed by the post entry is computed in parallel by the components included in the
FPGA processors. In our implementation we use a customized editing distance [148]
to compute the path similarity score. If the score is beneath a given threshold, the
result is discarded. Therefore, only a reduced part of the postings are returned to the
server host.

Figure 9.6: Dispatching and processing elementary requests.

In the second phase, we aggregate the lists of sub-results for the elementary re-
quests on the host according to the complex operators specified in the request at el-
ement level. Next we can optionally compute further refinements for attributes and
attributes values matching. Finally we perform the relevance score computation at el-
ement level, rank the results by relevance, merge them at document level (if required)
and return the top-k answers to the user.

160 CHAPTER 9. XML IR ON SPECIALIZED HARDWARE

requests.txt
article/author/model
article/author

answers.txt
The request "?: /article/author/model" gives 198 answer(s)
Node(0) with a score of (0.25) -> ./data/e0019.xml: line(94)
/article/bdy/sec/p/
Node(1) with a score of (0.25) -> ./data/e0032.xml: line(226)
/article/bdy/sec/p/
Node(2) with a score of (0.25) -> ./data/e0050.xml: line(15)
/article/fm/abs/p/
Node(0) with a score of (0.25) -> ./data/e0050.xml: line(15)
/article/fm/abs/p/
Node(1) with a score of (0.25) -> ./data/e0050.xml: line(20)
/article/bdy/sec/p/
...
The request "?: /article/author" gives 81 answer(s)

Node(0) with a score of (0.25) -> ./data/e0019.xml: line(187)
/article/bdy/sec/p/
Node(1) with a score of (0.25) -> ./data/e0061.xml: line(30)
/article/bdy/sec/p/
Node(2) with a score of (0.16) -> ./data/e0061.xml: line(4)
/article/bm/vt/fig/fgc/p/
Node(0) with a score of (0.2) -> ./data/e0061.xml: line(43)
/article/bm/vt/fig/fgc/

...

Figure 9.7: Input and output files for the XML IR application adapted for the ReMIX
architecture.

The steps performed with the current index and search model configurations to re-
trieve a list of ranked results using the ReMIX architecture are shown in Algorithm 1.

9.7 Current Implementation Status

A simplified prototype of the SIRIUS query engine [148] has been implemented and
validated by using the ReMIX API. The prototype manage content only and content
and structure requests for XML contexts without attributes conditions. The similarity
between the context specified in the request and the indexed contexts is computed
using a Levenshtein distance [131] operator.

A dedicated indexing program independently of the ReMIX platform was developed
based on distributed hashtables from the QDBM database. The program produces an
index file compatible with the ReMIX API.

The retrieval system takes as input a file containing the indexed database as dis-
cussed above, and a file containing a list of elementary requests. The output is given
as a file containing the list of documents and XML elements paths and positions asso-
ciated with their relevance scores. The list of results is not sorted.

Since the ReMIX hardware was shared between three different research teams, it
was uneasy to get a full-time access to it. Therefore, we focused on the implementation
of a first subset of SIRIUS operators on the ReMIX API which emulates the hardware.
We show that this subset work on this API but, of course, since this API emulates
ReMIX, the execution results (speed, bandwidth, etc.) cannot be accurate and do not
reflect the hardware performance. For instance, input and output files obtained by our
prototype when using the ReMIX API are given in Figure 9.7.

9.8. EARLY EXPERIMENTAL RESULTS 161

9.8 Early Experimental Results

We used a subset of the INEX IEEE XML corpus to validate our prototype. We in-
dexed 4455 XML documents having a total size of 108 MB. We index only XML con-
texts ended by valid textual terminals where a textual terminal is valid if it does not
occurs in a stop list of common words. The indexing time took 20 Mn on a Pentium IV
processor at 3.2 GHz. The indexing process used exclusively the hard disk as storage
support and the memory use was minimized as far as possible.

The obtained index was used to make a first series of tests with the XML IR ap-
plication based on the ReMIX programming API. We simulated three cluster nodes by
using threads on a single computer. The loading time using the ReMIX API (i.e. index
distribution on the simulated nodes) took less than 4 Mn for 108 MB of indexed data.

9.9 Discussion

The proposed scheme is a straightforward parallelization of the indexing and approxi-
mate structural research scheme introduced in the SIRIUS XML IR engine [148]. This
scheme was based on the inverted list model and path editing distance computations.
The main objective was to validate the general schema proposed by the ReMIX project
in the context of semi-structured information retrieval. In the current status of our
work, a simplified index model and the approximate structure matching scheme was
implemented and validated by using the ReMIX API.

For future works, a better organization of the indexed data is required in order to
make a more efficient use of the capabilities offered by the ReMIX hardware memory.
This can be achieved by constraining the FPGA processors to perform some of the
merging operations at element level (AND,OR, IN, IN+, SEQ, etc.) , including the
content relevance ranking algorithms (SAME+). This should allow:

• to improve the usage percentage of the FPGA accelerating capacities outside the
standard editing distance computation for the structural match, and

• to drastically reduce the amount of information transferred from the FLASH
memory to the host server.

To achieve this, all the information required for the merging and ranking operations
must be available/indexed with the posting entry in order to be processed into a single
pass by the FPGA processor. This is due to the fact that the FPGA processors use
the data-flow paradigm and have no (or very low) capacities (i.e. internal memory) to
fetch supplementary data from the main (FLASH) memory in order to perform a join
operation or to make a ranking of the results list for example.

An index structure that may be suited for this purpose is the signature files [26,
page 205]. Their search complexity is linear with the indexed information and not
sublinear as in the case of the inverted lists. This is one of the reasons for which
the signature files were shown to be outperformed by the inverted list files for most
applications cases [26, page 205]. However, in the particular case of the ReMIX ag-
gressive filtering architecture the signature files may represent an interesting choice
that deserves to be evaluated.

We propose thus to investigate the use of a full redundant index for all the elements
of the XML document tree where each XML element is associated with:

162 CHAPTER 9. XML IR ON SPECIALIZED HARDWARE

• a bit mask signature representing its textual content and

• a path representing its structural position in the tree.

The relevance ranking computation and the merging operators at element level can
thus be performed or at least estimated by using the signature associated with the
XML element content. This may be seen as a more aggressive and efficient filtering
condition that combined with the structural one can be performed in parallel by the
components included in each FPGA processor.

9.10 Conclusion

In this chapter we have described a straightforward implementation of an XML IR
application on the application model developed in the context of the ReMIX project.
The implementation provides on-the-fly approximate structural filtering and textual
relevance ranking for the content of XML elements as support for searching relevant
information in heterogeneous XML databases. We also provide some directions to fur-
ther improve the performances of our implementation. The objective was to make a
better usage of the possibilities offered by the the simultaneous use of FPGA compo-
nents and FLASH memories.

9.10. CONCLUSION 163

Algorithm 1 Content and structure ranking using inverted lists on the ReMIX archi-
tecture.

Input:

• complex request: i.e. elementary requests with merging operators
at both element and document level

• StructuralThreshold, ContentThreshold, minimum threshold values for
structure and content matching scores

Output:

• ranked list of XML elements/documents with respect to both content
and structure conditions

1: (Host) parse the complex request and extract the elementary requests
-- i.e. a path request pR ended with a textual terminal t

2: (Host) dispatch the elementary requests to the slave nodes

3: (Node 1-4) fetch the list of reference locators for the textual
terminal

t → rl0, rl1, ..., rln

4: (Node 1-4) for each path associated with a reference locator prli

5: (Node 1-4) StructuralScore = EdDist(pR, prli)

6: (Node 1-4) if (StructuralScore ≥ StructuralThreshold)

then send the result to (Host),

else discard the result

7: (Host) merge the results at element level

8: (Host) compute the content relevance scores at element level

9: (Host) if (ContentScore ≤ ContentThreshold)

then discard the result

9: (Host) merge content and structure scores at element level

10: (Host) merge elements scores at document level

10. (Host) final ranking of the results list

11: (Host) return top-k results

Part V

Conclusions

165

Chapter 10

Conclusions

Contents
10.1 Conclusions . 167
10.2 Summary of Contributions . 167
10.3 Future Research . 169

10.1 Conclusions

In this dissertation we have introduced methods for managing and searching collec-
tions of heterogeneous multimedia XML documents. More precisely, we have focused
on the flexible searching of structure, text, and sequential data embedded in het-
erogeneous XML document databases [173]. We have also designed and evaluated
methods for i) approximate match of structural constraints in an XML IR framework
[177, 176, 179, 178], and ii) detecting best entry points for starting to read an XML
document on a given topic [179, 174]. Finally, we have adapted and validated the pro-
posed approach for approximate search of semi-structured documents on a dedicated
hardware memory developed in the context of the ReMIX1 project [175].

The following sections summarize the main contributions of the thesis, and point
out open problems and possible directions for future work.

10.2 Summary of Contributions

In this section we summarize the contributions of this thesis with respect to three
main application domains: XML information retrieval, XML multimedia IR and XML
IR on specialized hardware.

XML Information Retrieval

In the second part of this thesis we have tackled the ”XML Information Retrieval” field.
We have mainly focused on indexing, retrieving and evaluating retrieval approaches
for text-rich semi-structured documents with heterogeneous structures.

1Reconfigurable Memory for Indexing Mass of Data (ReMIX) http://www.irisa.fr/remix

167

http://www.irisa.fr/remix

168 CHAPTER 10. CONCLUSIONS

We have proposed, implemented and evaluated a new search mechanism based
on a set of tree paths matching that involves a modified Levenshtein [131] editing
distance and information fusion heuristics.

We have proposed specific data structures dedicated to the indexing and retrieval
of information elements embedded within heterogeneous XML data bases. The index-
ing scheme was found to be well suited for the characterization of various contextual
searches, expressed either at a structural level or at an information content level.

We have developed a fully functional XML IR system. The implementation de-
scribed highlights the mixing of structured information presented as field value in-
stances and free text elements.

We have experimentally evaluated the proposed approach and the system within
the INEX 2005 and INEX 2006 evaluation campaigns [177, 179]. During these eval-
uations we have obtained encouraging results compared with current state of the art
XML IR systems. We have also shown that despite the lightweight characteristics of
SIRIUS we were able to retrieve highly relevant non overlapping XML elements and
to obtain quite good results for low values of recall.

The INEX 2005 and INEX 2006 test collections allowed us to evaluate the rele-
vance gain to information access brought by the use of structural approximate match-
ing mechanisms in an XML IR framework. The experimental results showed that
a vague interpretation of the structural constraints can highly improve the quality
of the retrieved results versus a strict interpretation [176, 178]. We have also shown
that taking the structural constraints into account in an XML IR process may increase
in some cases the effectiveness of the returned answers. This is although dependent
of the quality and the discriminant power of the structural requests relative to the
content and the structure of the test collection being used.

Finally, we have presented and evaluated a simple, efficient and effective approach
for detecting the best entry points (BEPs) that suggest where to start reading a semi-
structured document for a given topic [174]. Experiments conducted within the frame-
work of INEX 2006 evaluation campaign have ranked the proposed approach on the
1st place out of 77 official submissions for the Best In Context task. Furthermore, we
have compared the effectiveness of the approach with a standard ’flat’ document re-
trieval system that returns document snippets as BEPs based on the Google search
engine. The experimental results seem to indicate that the current Web search en-
gines technology could be profitably mixed with BEPs detection strategy in order to
help the users to obtain better access to relevant information inside XML documents.

XML Multimedia IR

In the third part of the thesis, entitled ”XML Multimedia IR”, our main contributions
concerned the introduction of a set of specialized operators designed for the extraction,
indexing and retrieval of sequential/time series data embedded in heterogeneous XML
documents. More precisely:

We have investigated sequential/time series data and their organization within the
XML documents. This allowed us to observe that the XML document structure and
the document order may encode useful and potentially (semantically) rich informa-
tion about the sequential organization of the data. Starting from this observation we
have proposed a structural sequential data types classification based on the structural
properties of the XML documents and of the collection: node level sequence, document

10.3. FUTURE RESEARCH 169

level sequence and collection level sequence. We have also discussed how the implicit
and explicit order relations could be applied to the various sequential structural types.

We have described and formalized a model that allows to represent sequences of
symbols associated with any arbitrary XML context from the collection. The symbols
are organized in sequences by taking into account: the type compatibility between
their values, the similarities between their structural positions in the XML document
trees, and an order relation.

We have also introduced an approximate sequence extraction scheme guided by
structural patterns for extracting the sequence symbols and their corresponding con-
textual information from heterogeneous XML documents.

Further, we have devised and proposed a hybrid index model based on inverted lists
and suffix trees index structures in order to support the storage of textual, structural
and sequential data.

Furthermore, we have defined a model for retrieving similar sequences extracted
from XML documents. The matching mechanism allows to aggregate two levels of
approximation: on the structural localization/organization of the sequential data and
on its unstructured content.

Finally, we have implemented the sequential operators within the SIRIUS XML IR
system in order to evaluate the benefits and the drawbacks of the proposed approach.

XML IR on Specialized Hardware

In the fourth part of this thesis dedicated to ”XML IR on Specialized Hardware” our
main contribution was to explore the use of an original memory architecture for both
storing very large indexed data structures, and allowing fast information retrieval as
support for XML IR. More precisely we have adapted a simplified model of our XML IR
approach to the application model developed in the context of the ReMIX project. The
implementation presented allows on-the-fly approximate structural filtering as sup-
port for searching relevant information in heterogeneous semi-structured databases.

10.3 Future Research

”Success is the ability to go from one failure to another with no loss of en-
thusiasm.”

— Sir Winston Churchill

In this section we point out open problems and suggest interesting directions for future
research.

XML Information Retrieval

We have proposed and evaluated structural approximate matching mechanisms based
on a modified Levenshtein [131] editing distance and information fusion heuristics to
the problem of path matching. Our experiments at INEX showed the pertinence of the
proposed approach for the vague structural match and for focused access to relevant
elements.

When applying this scheme for flexible path matching, we use statically predefined
costs for all the tag names – i.e. no difference is made between the relative importance

170 CHAPTER 10. CONCLUSIONS

of the tag names within the collection. Nonetheless, some of the tag names may occur
more or less frequent in the collection, and therefore, be more or less discriminant
for the retrieval process. A straight research perspective to this work concerns the
extension of the tag weights in order to integrate their discriminant power within
the test collection. For example, we can adapt term frequency models like the well-
known TF-IDF-based [195] weighting schemes to XML to derive the weights. The tag
names weighting schemes should be adapted for both heterogeneous and homogeneous
contexts. The different relationships between elements, and their rareness could also
be taken into consideration. Another possible approach is to automatically adapt the
tag weights during the query evaluation process by taking into account the query
results (or a subset of it) within a structural relevance feedback mechanism.

The experimental results have also showed that the approximate search inside
XML elements implemented using the same+ operator improves the overall perfor-
mance of the ranking, compared to a strict sequence search (seq operator), except for
low recall values. The complementarity of the two operators call for the design of a
new matching operator based on their combination to further improve the retrieval
performance.

Another important direction for future research is to extensively evaluate the be-
havior of the proposed approximate structural matching approach across different doc-
uments and collections.

We have described, implemented and evaluated a simple and effective method to
automatically identify BEPs in semi-structured documents. As a perspective to this
work, we can explore the impact of aggregating BEPs heuristics and document ranking
heuristics in order to better support the users’ information-seeking behavior and to
improve the overall performance of the search strategy.

Finally, future work should also address the optimization of the search algorithms
and index structures in the context of the top-k query processing paradigm, and the
development of a rich graphical interface for browsing and querying large collections
of heterogeneous XML documents. The GUI should be able to assist the user in the
query formulation process by combining the use of structural summaries [9], semantic
concepts2, and the automatic schema matching approaches [181].

XML Multimedia IR

The work presented in this part can be extended in several directions.
One future research direction is to experiment with a flexible organization relative

to the order relation of the symbols in the sequences and to measure the impact on the
efficiency and effectiveness of the system for such relaxation.

Another line of interest is the design of a weighted model for sequential data in
which each symbol of the sequence can be associated with a weight indicating its con-
tribution/relevance to the current sequence.

A different research direction, concerns the design of an integrated index model
that allows precomputed access for the most likely sequential extraction patterns and
sequential similarity queries. The model could extend the nested relational sequence
model presented in [127]. We make here the observation that this index model had to
be extended to allow arbitrary ordering patterns for the sequence symbols (other than

2WordNet http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

10.3. FUTURE RESEARCH 171

the document order currently supported) and to represent sequences that do not fit a
crisp structural pattern.

Both, the disk resident organization of the current index structures and the par-
allelization of the search algorithms will be a straight forward research direction in
order to validate our approach on important volumes of data.

Finally, designing an evaluation framework for the retrieval of sequential data em-
bedded in heterogeneous XML documents represents a major research challenge. We
consider the possibility of reusing and integrating the assessed datasets of two exist-
ing test collections: the first provided by The Music Information Retrieval Evaluation
eXchange (MIREX)3 (more precisely, the collection used in the Symbolic Melodic Simi-
larity Task4), and the second collection provided by the INEX XML Multimedia Track5

[232, 243].

XML IR on Specialized Hardware

One direction to further improve the performances of our implementation is to make
a better usage of the possibilities offered by the simultaneous use of the FPGA compo-
nents and of the FLASH memories – i.e. devise an indexing and retrieval model that
can aggressively filter the data as soon as it leaves the FLASH memory. One possibil-
ity is to use a kind of a bitmask signature for the content of the selected elements and
to attach this signature to each entry in the posting list. The influence of these signa-
tures in terms of storage space requirements as well as their impact in: i) reducing the
volume of transferred data between the FLASH memory and the ReMIX nodes during
the retrieval process and ii) their influence on the quality of the retrieved results, also
deserves to be explored.

A second perspective concerns the study of sequence based tree indexing structures
[241, 185] in the context of on-the-fly filtering paradigm.

In addition, the investigation of the highly parallel computing power of the general
purpose graphics processing units (GPGPU) as support for approximate structural
matching algorithms within an XML IR context represent another appealing future
research direction.

3The Music Information Retrieval Evaluation eXchange (MIREX) http://www.music-ir.org/
mirex2007/index.php/Main_Page

4The MIREX Symbolic Melodic Similarity Task http://www.music-ir.org/mirex2007/index.
php/Symbolic_Melodic_Similarity

5INEX Multimedia Track http://inex.is.informatik.uni-duisburg.de/2007/mmtrack.
html

http://www.music-ir.org/mirex2007/index.php/Main_Page
http://www.music-ir.org/mirex2007/index.php/Main_Page
http://www.music-ir.org/mirex2007/index.php/Symbolic_Melodic_Similarity
http://www.music-ir.org/mirex2007/index.php/Symbolic_Melodic_Similarity
http://inex.is.informatik.uni-duisburg.de/2007/mmtrack.html
http://inex.is.informatik.uni-duisburg.de/2007/mmtrack.html

Bibliography

[1] SIGIR ’98: Proceedings of the 21st Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, August 24-28 1998,
Melbourne, Australia. ACM, 1998.

[2] Synchronized Multimedia Integration Language (SMIL) 1.0 Specification, W3C
Recommendation. Technical report, W3C - The World Wide Web Consortium,
1998.

[3] Mathematical Markup Language (MathML) Version 2.0 (Second Edition), W3C
Recommendation. Technical report, W3C - The World Wide Web Consortium, 21
October 2003.

[4] MidiXML, Standard MIDI File DTD: MIDI XML, Version 1.0 - 13 January 2004.
http://www.recordare.com/dtds/midixml.html, 2004.

[5] MusicXML, MusicXML Definition, Version 1.0, January 2004.
http://www.recordare.com/xml.html, 2004.

[6] Proceedings of ACM SIGIR 2006 Workshop on XML Element Retrieval Method-
ology, Seattle, WA, USA. ACM Press, Aug. 2006.

[7] SIGIR 2006: Proceedings of the 29th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, Seattle, Washing-
ton, USA, August 6-11, 2006. ACM, 2006.

[8] M. Abolhassani and N. Fuhr. Applying the Divergence from Randomness Ap-
proach for Content-Only Search in XML Documents. In S. McDonald and J. Tait,
editors, ECIR, volume 2997 of Lecture Notes in Computer Science, pages 409–
419. Springer, 2004.

[9] M. S. Ali, M. P. Consens, X. Gu, Y. Kanza, F. Rizzolo, and R. K. Stasiu. Efficient,
Effective and Flexible XML Retrieval Using Summaries. In Fuhr et al. [71],
pages 89–103.

[10] S. Amer-Yahia, R. Baeza-Yates, M. Consens, and M. Lalmas. XML Retrieval:
Integrated IR-DB Challenges and Solutions. SIGIR 07 Tutorial, July 2007.

[11] S. Amer-Yahia and P. Case. XQuery 1.0 and XPath 2.0 Full-Text Use Cases. W3C
working draft, W3C, May 2006. http://www.w3.org/TR/2006/WD-xmlquery-full-
text-use-cases-20060501/.

[12] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman. Structure
and Content Scoring for XML. In Böhm et al. [30], pages 361–372.

173

174 BIBLIOGRAPHY

[13] S. Amer-Yahia, N. Koudas, and D. Srivastava. Approximate Matching in XML.
In U. Dayal, K. Ramamritham, and T. M. Vijayaraman, editors, Proceedings of
the 19th International Conference on Data Engineering (ICDE), March 5-8, 2003,
Bangalore, India, page 803. IEEE Computer Society, 2003.

[14] S. Amer-Yahia, N. Koudas, and D. Srivastava. Approximate Matching in XML.
ICDE, 00:803, 2003.

[15] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. FleXPath: Flexible Struc-
ture and Full-Text Querying for XML. In SIGMOD ’04: Proceedings of the 2004
ACM SIGMOD international conference on Management of data, pages 83–94,
New York, NY, USA, 2004. ACM Press.

[16] S. Amer-Yahia and M. Lalmas. XML Search: Languages, INEX and Scoring.
SIGMOD Record, 35(4):16–23, 2006.

[17] L. Amsaleg, P. Gros, and S.-A. Berrani. Robust Object Recognition in Images
and the Related Database Problems. Multimedia Tools Appl., 23(3):221–235,
2004.

[18] T. E. Anderson, D. E. Culler, D. A. Patterson, , and the NOW team. A Case for
NOW (Networks of Workstations). IEEE Micro, 15(1):54–64, 1995.

[19] P. Arvola, J. Kekäläinen, and M. Junkkari. Query Evaluation with Structural
Indices. In Fuhr et al. [69], pages 134–145.

[20] E. Ashoori and M. Lalmas. Using Topic Shifts for Focussed Access to XML
Repositories. In ECIR, pages 444–455, 2007.

[21] E. Ashoori, M. Lalmas, and T. Tsikrika. Examining Topic Shifts in Content-
Oriented XML Retrieval. International Journal on Digital Libraries, 2007. to
appear.

[22] R. Baeza-Yates, N. Fuhr, and Y. S. Maarek, editors. Proceedings of the SIGIR
2002 Workshop on XML and Information Retrieval, 2002.

[23] R. Baeza-Yates, N. Fuhr, R. Sacks-Davis, and R. Wilkinson, editors. Proceedings
of the SIGIR 2000 Workshop on XML and Information Retrieval, 2000.

[24] R. Baeza-Yates and M. Lalmas. XML Information Retrieval. SIGIR 06 Tutorial,
August 2006.

[25] R. Baeza-Yates and G. Navarro. XQL and Proximal Nodes. J. Am. Soc. Inf. Sci.
Technol., 53(6):504–514, 2002.

[26] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press.
Addison-Wesley, New-York, 1999.

[27] L. A. Barroso, J. Dean, and U. Hölzle. Web Search for a Planet: The Google
Cluster Architecture. IEEE Micro, 23(2):22–28, 2003.

[28] D. Beech, N. Mendelsohn, H. S. Thompson, and M. Maloney. XML Schema
Part 1: Structures Second Edition. W3C recommendation, W3C, Oct. 2004.
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

BIBLIOGRAPHY 175

[29] S.-A. Berrani, L. Amsaleg, and P. Gros. Application de la recherche approxi-
mative de plus proches voisins à la recherche d’images par le contenu pour la
détection des copies. In J. L. Maitre, editor, BDA, pages 197–218, 2004.

[30] K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P.-Å. Larson, and B. C. Ooi,
editors. Proceedings of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, August 30 - September 2, 2005. ACM, 2005.

[31] G. Bordogna and G. Pasi. Flexible Querying of WEB Documents. In SAC ’02:
Proceedings of the 2002 ACM symposium on Applied computing, pages 675–680,
New York, NY, USA, 2002. ACM.

[32] D. Braga, A. Campi, E. Damiani, P. Lanzi, and G. Pasi. FXPath: Flexible Query-
ing of XML Documents. In EuroFuse Workshop on Information Systems, Sep.
2002.

[33] J.-M. Bremer. Next-Generation Information Retrieval: Integrating Document
and Data Retrieval Based on XML. PhD thesis, Univerity of California, Davis,
USA, 2003.

[34] S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

[35] A. Broder and M. R. Henzinger. Information Retrieval on the Web. In FOCS
’98: Proceedings of the 39th Annual Symposium on Foundations of Computer
Science, page 6, Washington, DC, USA, 1998. IEEE Computer Society.

[36] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins: Optimal XML
Pattern Matching. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pages 310–321, New York, NY,
USA, 2002. ACM Press.

[37] D. Butler. A Short Survey of Document Structure Similarity Algorithms. In
International Conference on Internet Computing, 2004.

[38] J. P. Callan. Passage-level Evidence in Document Retrieval. In SIGIR ’94: Pro-
ceedings of the 17th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 302–310, New York, NY, USA,
1994. Springer-Verlag New York, Inc.

[39] L. Camargos, F. Pedone, and M. Wieloch. Sprint: A Middleware for High-
Performance Transaction Processing. In 2nd European Conference on Systems
Research (EuroSys’2007), 2007.

[40] G. R. Camps. Structural Features in XML Retrieval. PhD thesis, University of
Amsterdam, 2007.

[41] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and A. Soffer. Searching
XML Documents via XML Fragments. In SIGIR ’03: Proceedings of the 26th
annual international ACM SIGIR conference on Research and development in
informaion retrieval, pages 151–158, New York, NY, USA, 2003. ACM Press.

176 BIBLIOGRAPHY

[42] P. Case, S. Amer-Yahia, M. Holstege, J. Doerre, D. McBeath, J. Shanmugasun-
daram, C. Botev, M. Rys, and S. Buxton. XQuery 1.0 and XPath 2.0 Full-Text.
W3C working draft, W3C, May 2006. http://www.w3.org/TR/2006/WD-xquery-
full-text-20060501/.

[43] B. Catania, A. Maddalena, and A. Vakali. XML Document Indexes: A Classifi-
cation. IEEE Internet Computing, 9(5):64–71, 2005.

[44] S. Chakrabarti, M. van den Berg, and B. Dom. Focused Crawling: A New Ap-
proach to Topic-Specific Web Resource Discovery. In WWW ’99: Proceeding of
the eighth international conference on World Wide Web, pages 1623–1640, New
York, NY, USA, 1999. Elsevier North-Holland, Inc.

[45] D. Chamberlin, M. F. Fernández, S. Boag, J. Siméon, J. Robie, A. Berglund, and
M. Kay. XML Path Language XPath 2.0. Candidate recommendation, W3C,
June 2006. http://www.w3.org/TR/2006/CR-xpath20-20060608/.

[46] N. Chen. A Survey of Indexing and Retrieval of Multimodal Documents: Text
and Images. Technical Report 2006-505, Scholl Of Computing Queen’s Univer-
sity, Kingston, Ontario, Canada, February 2006.

[47] Y. Chiaramella, P. Mulhem, and F. Fourel. A Model for Multimedia Information
Retrieval. Technical Report FERMI ESPRIT BRA 8134, University of Glasgow,
July 1996.

[48] C. Clarke. Range Results in XML Retrieval. In Proceedings of the INEX 2005
Workshop on Element Retrieval Methodology, 2005.

[49] C. Clarke, J. Kamps, and M. Lalmas. INEX 2006 Retrieval Task and Result
Submission Specification. In INEX 2006 Pre-proceedings, pages 381–388, 2006.

[50] C. L. A. Clarke. Controlling Overlap in Content-Oriented XML Retrieval. In
SIGIR, pages 314–321, 2005.

[51] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic XML Trees. In PODS ’02:
Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 271–281, New York, NY, USA, 2002. ACM
Press.

[52] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A Semantic Search
Engine for XML. In VLDB, pages 45–56, 2003.

[53] F. Crestani, P. de la Fuente, and J. Vegas. Design of a Graphical User Interface
for Structured Documents Retrieval. In SPIRE, pages 246–249, 2001.

[54] C. J. Crouch, D. B. Crouch, M. Ganapathibhotla, and V. Bakshi. Dynamic Ele-
ment Retrieval in a Semi-structured Collection. In Fuhr et al. [71], pages 82–88.

[55] E. Damiani and L. Tanca. Blind Queries to XML Data. In Database and Expert
Systems Applications, pages 345–356, 2000.

[56] L. M. de Campos, J. M. Fernández-Luna, and J. F. Huete. Using Context In-
formation in Structured Document Retrieval: An Approach Based on Influence
Diagrams. volume 40, pages 829–847, Tarrytown, NY, USA, 2004. Pergamon
Press, Inc.

BIBLIOGRAPHY 177

[57] C. de Loupy. Évaluation de l’Apport de Connaissances Linguistiques en
Recherche Documentaire et Désambigusation Sémantique. PhD thesis, Univer-
sité d’Avignon et des Pays de Vaucluse, 2000.

[58] E. Demaine, S. Mozes, B. Rossman, and O. Weimann. An Optimal Decomposi-
tion Algorithm for Tree Edit Distance. In Proceedings of the 34th International
Colloquium on Automata, Languages and Programming (ICALP), pages 146–
157, 2007.

[59] L. Denoyer and P. Gallinari. The Wikipedia XML Corpus. SIGIR Forum, 2006.

[60] S. DeRose and J. Clark. XML Path Language (XPath) Version 1.0. W3C recom-
mendation, W3C, Nov. 1999. http://www.w3.org/TR/1999/REC-xpath-19991116.

[61] C. F. Dorneles, C. A. Heuser, A. E. N. Lima, A. S. da Silva, and E. S. de Moura.
Measuring Similarity Between Collection of Values. In A. H. F. Laender, D. Lee,
and M. Ronthaler, editors, WIDM, pages 56–63. ACM, 2004.

[62] D. Egnor and R. Lord. Structured Information Retrieval using XML. In ACM
SIGIR 2000 Workshop On XML and Information Retrieval, Athens, Greece, July
28 2000.

[63] M. F. Fernández, J. Robie, S. Boag, D. Chamberlin, D. Florescu, and J. Siméon.
XQuery 1.0: An XML Query Language. Candidate recommendation, W3C, June
2006. http://www.w3.org/TR/2006/CR-xquery-20060608/.

[64] N. Fuhr, N. Gövert, G. Kazai, and M. Lalmas, editors. Proceedings of the First
Workshop of the INitiative for the Evaluation of XML Retrieval (INEX), Schloss
Dagstuhl, Germany, December 9-11, 2002, 2002.

[65] N. Fuhr and K. Großjohann. XIRQL: A Query Language for Information Re-
trieval in XML Documents. In Research and Development in Information Re-
trieval, pages 172–180, 2001.

[66] N. Fuhr and K. Großjohann. XIRQL: An XML Query Language Based on Infor-
mation Retrieval Concepts. ACM Trans. Inf. Syst., 22(2):313–356, 2004.

[67] N. Fuhr, C.-P. Klas, A. Schaefer, and P. Mutschke. Daffodil: An Integrated Desk-
top for Supporting High-Level Search Activities in Federated Digital Libraries.
In Research and Advanced Technology for Digital Libraries. 6th European Con-
ference, ECDL 2002, pages 597–612, Heidelberg et al., 2002. Springer.

[68] N. Fuhr, M. Lalmas, and S. Malik, editors. Proceedings of the Second Work-
shop of the INitiative for the Evaluation of XML Retrieval, INEX 2002, Schloss
Dagstuhl, Germany, December 15-17 2003, 2004.

[69] N. Fuhr, M. Lalmas, S. Malik, and G. Kazai, editors. Advances in XML Infor-
mation Retrieval and Evaluation, 4th International Workshop of the Initiative
for the Evaluation of XML Retrieval, INEX 2005, Dagstuhl Castle, Germany,
November 28-30, 2005, Revised Selected Papers, volume 3977 of Lecture Notes in
Computer Science. Springer, 2006.

178 BIBLIOGRAPHY

[70] N. Fuhr, M. Lalmas, S. Malik, and Z. Szlávik, editors. Advances in XML Infor-
mation Retrieval, Third International Workshop of the Initiative for the Evalu-
ation of XML Retrieval, INEX 2004, Dagstuhl Castle, Germany, December 6-8,
2004, Revised Selected Papers, volume 3493 of Lecture Notes in Computer Sci-
ence. Springer, 2005.

[71] N. Fuhr, M. Lalmas, and A. Trotman, editors. Comparative Evaluation of XML
Information Retrieval Systems, 5th International Workshop of the Initiative for
the Evaluation of XML Retrieval, INEX 2006, Dagstuhl Castle, Germany, De-
cember 18-20, 2006, Revised Selected Papers, volume 4518 of Lecture Notes in
Computer Science. Springer, 2007.

[72] M. Fuller, E. Mackie, R. Sacks-Davis, and R. Wilkinson. Structured Answers
for a Large Structured Document Collection. In SIGIR ’93: Proceedings of the
16th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 204–213, New York, NY, USA, 1993. ACM Press.

[73] H. Garcia-Molina and K. Salem. Main Memory Database Systems: An
Overview. IEEE Transactions on Knowledge and Data Engineering, 4(6):509–
516, 1992.

[74] G. Georges, S. Derrien, S. Rubini, F. Raimbault, L. Amsaleg, and D. Lavenier.
ReMIX: une architecture pour la recherche dans les masses de donn’ees in-
dexées. In Symposium en Architecture de Machines, Perpignan, France, 2006.

[75] M. Géry. Indexing "Reading Paths" for a Structured Information Retrieval at
INEX 2006. In Fuhr et al. [71], pages 160–164.

[76] S. Geva. GPX - Gardens Point XML Information Retrieval at INEX 2004. In
Fuhr et al. [70], pages 211–223.

[77] S. Geva. GPX - Gardens Point XML IR at INEX 2006. In Fuhr et al. [71], pages
137–150.

[78] N. Gövert, M. Abolhassani, N. Fuhr, and K. Großjohann. Content-Oriented XML
Retrieval with HyRex. In Fuhr et al. [64], pages 26–32.

[79] T. Grabs and H.-J. Schek. ETH Zürich at INEX: Flexible Information Retrieval
from XML with PowerDB-XML. In Fuhr et al. [64], pages 141–148.

[80] J. Graupmann, R. Schenkel, and G. Weikum. The SphereSearch Engine for
Unified Ranked Retrieval of Heterogeneous XML and Web Documents. In VLDB
’05: Proceedings of the 31st International Conference on Very Large Data Bases,
pages 529–540. VLDB Endowment, 2005.

[81] K. Grobjohann, N. Fuhr, D. Effing, and S. Kriewel. Query Formulation and
Result Visualization for XML Retrieval. In Proceedings ACM SIGIR 2002 Work-
shop on XML and Information Retrieval. ACM, 2002.

[82] T. Grust. Accelerating XPath Location Steps. In SIGMOD ’02: Proceedings of
the 2002 ACM SIGMOD international conference on Management of data, pages
109–120, New York, NY, USA, 2002. ACM Press.

BIBLIOGRAPHY 179

[83] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, New York, NY, USA,
1997.

[84] S. Guyetant, M. Giraud, L. L’Hours, S. Derrien, S. Rubini, D. Lavenier, and
F. Raimbault. Cluster of Re-Configurable Nodes for Scanning Large Genomic
Banks. Parallel Comput., 31(1):73–96, 2005.

[85] T. Härder, M. Haustein, C. Mathis, and M. Wagner. Node Labeling Schemes
for Dynamic XML Documents Reconsidered. Data Knowl. Eng., 60(1):126–149,
2007.

[86] M. Hassler and A. Bouchachia. Searching XML Documents - Preliminary Work.
In Fuhr et al. [69], pages 119–133.

[87] M. A. Hearst. TileBars: Visualization of Term Distribution Information in Full
Text Information Access. In CHI, pages 59–66, 1995.

[88] M. A. Hearst. TextTiling: Segmenting Text into Multi-Paragraph Subtopic Pas-
sages. volume 23, pages 33–64, Cambridge, MA, USA, 1997. MIT Press.

[89] A. Henrich and G. Robbert. POQLmm: A query language for structured mul-
timedia documents. In Proceedings 1st International Workshop on Multimedia
Data and Document Engineering (MDDE’01), 2001.

[90] M. L. Hetland. Data Mining in Time Series Databases, chapter A Survey of Re-
cent Methods for Efficient Retrieval of Similar Time Sequences. World Scientific
Press, 2004.

[91] D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis,
Centre for Telematics and Information Technology, University of Twente, 2001.

[92] L. Hlaoua, M. Torjmen, K. Pinel-Sauvagnat, and M. Boughanem. XFIRM at
INEX 2006. Ad-Hoc, Relevance Feedback and MultiMedia Tracks. In Fuhr et al.
[71], pages 373–386.

[93] G. Hubert. Tuning and Evolving Retrieval Engine by Training on Previous
INEX Testbeds. In Fuhr et al. [71], pages 243–252.

[94] E. Hunt, M. P. Atkinson, and R. W. Irving. Database Indexing for Large DNA
and Protein Sequence Collections. volume 11, pages 256–271, Secaucus, NJ,
USA, 2002. Springer-Verlag New York, Inc.

[95] D. N. F. Iskandar, J. Pehcevski, J. A. Thom, and S. M. M. Tahaghoghi. Combining
Image and Structured Text Retrieval. In Fuhr et al. [69], pages 525–539.

[96] D. N. F. A. Iskandar, J. Pehcevski, J. A. Thom, and S. M. M. Tahaghoghi. Social
Media Retrieval Using Image Features and Structured Text. In Fuhr et al. [71],
pages 358–372.

[97] K. Itakura and C. Clarke. From Passages into Elements in XML Retrieval. In
SIGIR 2007 Workshop on Focused Retrieval, pages 17–22. University of Otago,
Dunedin New Zealand, 2007.

180 BIBLIOGRAPHY

[98] K. Järvelin and J. Kekäläinen. Cumulated Gain-Based Evaluation of IR Tech-
niques. ACM Transactions on Information Systems, 20(4):422–446, 2002.

[99] J. Jiang and C. Zhai. Extraction of Coherent Relevant Passages using Hidden
Markov Models. ACM Trans. Inf. Syst., 24(3):295–319, 2006.

[100] J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Length Normalization in XML
Retrieval. In Proceedings of the 27th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pages 80–87. ACM
Press, 2004.

[101] J. Kamps and M. Koolen. On the Relation between Relevant Passages and XML
Document Structure. In SIGIR 2007 Workshop on Focused Retrieval, pages 28–
32. University of Otago, Dunedin New Zealand, 2007.

[102] J. Kamps, M. Koolen, and M. Lalmas. Where to Start Reading a Textual XML
Document? In SIGIR ’07: Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages
723–724, New York, NY, USA, 2007. ACM.

[103] J. Kamps, M. D. Rijke, and B. Sigurbjörnsson. The Importance of Length Nor-
malization for XML Retrieval. Inf. Retr., 8(4):631–654, 2005.

[104] J. Kamps and B. Sigurbjörnsson. What Do Users Think of an XML Element
Retrieval System? In Fuhr et al. [69], pages 411–421.

[105] M. Kaszkiel, J. Zobel, and R. Sacks-Davis. Efficient Passage Ranking for Docu-
ment Databases. volume 17, pages 406–439, New York, NY, USA, 1999. ACM
Press.

[106] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ramakrishnan. On the
Integration of Structure Indexes and Inverted Lists. In SIGMOD ’04: Proceed-
ings of the 2004 ACM SIGMOD international conference on Management of data,
pages 779–790, New York, NY, USA, 2004. ACM Press.

[107] G. Kazai and E. Ashoori. What does Shakespeare have to do with INEX? In
SIGIR 2006 Workshop on XML Element Retrieval Methodology, pages 20–26,
2006.

[108] G. Kazai and M. Lalmas. INEX 2005 Evaluation Measures. In Fuhr et al. [69],
pages 16–29.

[109] G. Kazai, M. Lalmas, and A. P. de Vries. The Overlap Problem in Content-
Oriented XML Retrieval Evaluation. In SIGIR ’04: Proceedings of the 27th
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 72–79, New York, NY, USA, 2004. ACM Press.

[110] G. Kazai, M. Lalmas, and T. Rölleke. Focussed Structured Document Retrieval.
In A. H. F. Laender and A. L. Oliveira, editors, SPIRE, volume 2476 of Lecture
Notes in Computer Science, pages 241–247. Springer, 2002.

[111] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A Case for Intelligent Disks
(IDISKs). SIGMOD Rec., 27(3):42–52, 1998.

BIBLIOGRAPHY 181

[112] J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. Journal
of the ACM, 46(5):604–632, 1999.

[113] Z. Kong and M. Lalmas. Integrating XLink and XPath to Retrieve Structured
Multimedia Documents in Digital Libraries. In RIAO 2004 Conference on Cou-
pling approaches, coupling media and coupling languages for information re-
trieval, 2004.

[114] Z. Kong and M. Lalmas. XML Multimedia Retrieval. In Proceedings of String
Processing and Information Retrieval (SPIRE’05). Argentinean Computer Sci-
ence Society (SADIIO), Buenos Aires, Argentina, 2005. Short Paper.

[115] Z. Kong and M. Lalmas. Combining Multiple Sources of Evidence in XML Mul-
timedia Documents: An Inference Network Incorporating Element Language
Models. In 29th European Conference on Information Retrieval (ECIR’07), pages
716–719, 2007.

[116] Z. Kong and M. Lalmas. Using XML Logical Structure to Retrieve (Multimedia)
Objects. In 11th European Conference on Research and Advanced Technology for
Digital Libraries (ECDL 2007), pages 100–111, Budapest, Hungary, 2007.

[117] M. Lalmas. Dempster-Shafer’s Theory of Evidence Applied to Structured Docu-
ments: Modelling Uncertainty. In SIGIR, pages 110–118. ACM, 1997.

[118] M. Lalmas and G. Kazai. Evaluating XML Retrieval Effectiveness at INEX.
ACM SIGIR Forum, 40(1):49–57, June 2006.

[119] M. Lalmas and G. Kazai. Report on the Ad-hoc Track of the INEX 2005 Work-
shop. SIGIR Forum, 40(1):49–57, 2006.

[120] M. Lalmas, G. Kazai, J. Kamps, J. Pehcevski, B. Piwowarski, and S. Robertson.
INEX 2006 Evaluation Measures. In Fuhr et al. [71], pages 20–34.

[121] M. Lalmas and J. Reid. Automatic Identification of Best Entry Points for Fo-
cused Structured Document Retrieval. In CIKM, pages 540–543, NY, USA, 2003.

[122] M. Lalmas and A. Tombros. Evaluating XML Retrieval Effectiveness at INEX.
ACM SIGIR Forum, 41(1):40–57, June 2007.

[123] A. N. Langville and C. D. Meyer. A Survey of Eigenvector Methods for Web
Information Retrieval. volume 47, pages 135–161, Philadelphia, PA, USA, 2005.
Society for Industrial and Applied Mathematics.

[124] R. R. Larson. Probabilistic Retrieval, Component Fusion and Blind Feedback
for XML Retrieval. In Fuhr et al. [69], pages 225–239.

[125] R. R. Larson. Probabilistic Retrieval Approaches for Thorough and Heteroge-
neous XML Retrieval. In Fuhr et al. [71], pages 318–330.

[126] C. Lau, D. Tjondronegoro, J. Zhang, S. Geva, and Y. Liu. Fusing Visual and Tex-
tual Retrieval Techniques to Effectively Search Large Collections of Wikipedia
Images. In Fuhr et al. [71], pages 345–357.

182 BIBLIOGRAPHY

[127] H. L. Lau and W. Ng. Querying XML Data by the Nested Relational Sequence
Database System. In IDEAS, pages 236–241. IEEE Computer Society, 2003.

[128] D. Lavenier, G. Georges, and X. Liu. A Reconfigurable Index FLASH Memory
tailored to Seed-Based Genomic Sequence Comparison Algorithms. The Journal
of VLSI signal processing systems. Special issue on Computing Architectures and
Acceleration for Bioinformatics Algorithms, 43(4), September 2007.

[129] D. Lavenier, L. Xinchun, and G. Georges. Seed-Based Genomic Sequence Com-
parison using a FPGA/FLASH Accelerator. Field Programmable Technology,
2006. FPT 2006. IEEE International Conference on, pages 41–48, Dec. 2006.

[130] M. Lehtonen and A. Doucet. EXTIRP: Baseline Retrieval from Wikipedia. In
Fuhr et al. [71], pages 115–120.

[131] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady., 10(8):707–710, February 1966.

[132] Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Ex-
pressions. In VLDB ’01: Proceedings of the 27th International Conference on
Very Large Data Bases, pages 361–370, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[133] X. Liu and W. B. Croft. Passage Retrieval Based on Language Models. In CIKM
’02: Proceedings of the eleventh international conference on Information and
knowledge management, pages 375–382, New York, NY, USA, 2002. ACM Press.

[134] W. Lu, S. E. Robertson, and A. MacFarlane. Field-Weighted XML Retrieval
Based on BM25. In Fuhr et al. [69], pages 161–171.

[135] H. P. Luhn. A Statistical Approach to Mechanized Encoding and Searching of
Literary Information. IBM Journal of Research and Development, 1:309–317,
1957.

[136] R. W. P. Luk, H. V. Leong, T. S. Dillon, A. T. S. Chan, W. B. Croft, and J. Allan.
A Survey in Indexing and Searching XML Documents. Journal of the American
Society for Information Science & Technology (JASIST), 53(6):415–437, 2002.

[137] P. Lyman and H. R. Varian. How Much Information, 2003. Retrieved from
http://www.sims.berkeley.edu/how-much-info-2003.

[138] A. Malhotra and P. V. Biron. XML Schema Part 2: Datatypes Second Edi-
tion. W3C recommendation, W3C, 2004. http://www.w3.org/TR/2004/REC-
xmlschema-2-20041028/.

[139] F. Mandreoli, R. Martoglia, and P. Tiberio. Approximate Query Answering for a
Heterogeneous XML Document Base. In X. Zhou, S. Y. W. Su, M. P. Papazoglou,
M. E. Orlowska, and K. G. Jeffery, editors, WISE, volume 3306 of Lecture Notes
in Computer Science, pages 337–351. Springer, 2004.

[140] C. Martínez and S. Roura. Randomized binary search trees. J. ACM, 45(2):288–
323, 1998.

[141] Y. Mass. IBM HRL at INEX 06. In Fuhr et al. [71], pages 151–159.

BIBLIOGRAPHY 183

[142] Y. Mass and M. Mandelbrod. Component Ranking and Automatic Query Refine-
ment for XML Retrieval. In Fuhr et al. [70], pages 73–84.

[143] Y. Mass and M. Mandelbrod. Using the INEX Environment as a Test Bed for
Various User Models for XML Retrieval. In Fuhr et al. [69], pages 187–195.

[144] E. M. McCreight. A Space-Economical Suffix Tree Construction Algorithm. J.
ACM, 23(2):262–272, 1976.

[145] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore:
A Database Management System for Semistructured Data. SIGMOD Rec.,
26(3):54–66, 1997.

[146] C. Meek, J. M. Patel, and S. Kasetty. OASIS: An Online and Accurate Technique
for Local-alignment Searches on Biological Sequences. In VLDB, pages 910–921,
2003.

[147] G. Memik, M. T. Kandemir, and A. Choudhary. Design and Evaluation of a
Smart Disk Cluster for DSS Commercial Workloads. J. Parallel Distrib. Com-
put., 61(11):1633–1664, 2001.

[148] G. Ménier and P.-F. Marteau. Information Retrieval in Heterogeneous XML
Knowledge Bases. In The 9th International Conference on Information Process-
ing and Magement of Uncertainty in Knowledge-Based Systems (IPMU), pages
1399–1405, Annecy, France, July 2002.

[149] L. Mignet, D. Barbosa, and P. Veltri. The XML Web: A First Study. In Proc. of
12th International World Wide Web Conf., pages 500–510, Budapest, Hungary,
May 2003.

[150] V. Mihajlovic, H. E. Blok, D. Hiemstra, and P. M. G. Apers. Score Region Alge-
bra: Building a Transparent XML-R Database. In CIKM ’05: Proceedings of the
14th ACM international conference on Information and knowledge management,
pages 12–19, New York, NY, USA, 2005. ACM Press.

[151] V. Mihajlovic, G. Ramírez, T. Westerveld, D. Hiemstra, H. E. Blok, and A. P.
de Vries. TIJAH Scratches INEX 2005: Vague Element Selection, Image Search,
Overlap, and Relevance Feedback. In Fuhr et al. [69], pages 72–87.

[152] A. Moffat, R. Sacks-Davis, R. Wilkinson, and J. Zobel. Retrieval of Partial Doc-
uments. In Text REtrieval Conference, pages 181–190, 1993.

[153] S.-H. Myaeng, D.-H. Jang, M.-S. Kim, and Z.-C. Zhoo. A Flexible Model for
Retrieval of SGML Documents. In SIGIR [1], pages 138–145.

[154] G. Navarro. A Guided Tour to Approximate String Matching. ACM Comput.
Surv., 33(1):31–88, 2001.

[155] V. Nguyen and D. Lavenier. Recherche dans les banques d’ADN par indexation
parall‘ele. In 4th International Conference on Research, Innovation & Vision for
the Future, Ho Chi Minh Ville, Vietnam, 2006.

184 BIBLIOGRAPHY

[156] P. Ogilvie and J. Callan. Using Language Models for Flat Text Queries in XML
Retrieval. In N. Fuhr, S. Malik, and M. Lalmas, editors, INEX 2003 Workshop
Proceedings, 2003.

[157] P. Ogilvie and J. Callan. Hierarchical Language Models for XML Component
Retrieval. In Fuhr et al. [70], pages 224–237.

[158] P. Ogilvie and J. Callan. Parameter Estimation for a Simple Hierarchical Gen-
erative Model for XML Retrieval. In Fuhr et al. [69], pages 211–224.

[159] R. A. O’Keefe and A. Trotman. The Simplest Query Language That Could Pos-
sibly Work. In Fuhr et al. [68], pages 167–175.

[160] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs:
Insert-Friendly XML Node Labels. In SIGMOD ’04: Proceedings of the 2004
ACM SIGMOD international conference on Management of data, pages 903–908,
New York, NY, USA, 2004. ACM Press.

[161] N. Orio. Music Retrieval: A Tutorial and Review. Foundations and Trends in
Information Retrieval, 1(2):1–90, November 2006.

[162] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical report, Stanford Digital Library Technolo-
gies Project, 1998.

[163] S. Pal. XML Retrieval: A Survey. Technical Report TR/ISI/CVPR/IR07-01,
CVPR, June 2007.

[164] J. Paoli, T. Bray, E. Maler, C. M. Sperberg-McQueen, and F. Yergeau. Extensible
Markup Language (XML) 1.0 (Fourth Edition). W3C recommendation, W3C,
Aug. 2006. http://www.w3.org/TR/2006/REC-xml-20060816.

[165] S. Park, W. W. Chu, J. Yoon, and J. Won. Similarity Search of Time-Warped
Subsequences via a Suffix Tree. Inf. Syst., 28(7):867–883, 2003.

[166] F. Pereira and R. Koenen. MPEG-7: A Standard for Multimedia Content De-
scription. Int. J. Image Graphics, 1(3):527–546, 2001.

[167] P. Peterlongo, L. Noé, D. Lavenier, G. Georges, J. Jacques, G. Kucherov, and
M. Giraud. Protein Similarity Search with Subset Seeds on a Dedicated Recon-
figurable Hardware. In Parallel Bio-Computing, Workshop on Parallel Compu-
tational Biology, Gdansk, Poland, September 2007.

[168] K. Pinel-Sauvagnat and M. Boughanem. A survey on XML Focussed Component
Retrieval. In Large-Scale Semantic Access to Content (Text, Image, Video and
Sound) (RIAO), Pittsburgh, USA, 30/05/07-01/06/07, http://www.le-cid.org,
June 2007. Centre de hautes études internationales d’informatique documen-
taire (C.I.D.).

[169] B. Piwowarski, G.-E. Faure, and P. Gallinari. Bayesian Networks and INEX. In
Fuhr et al. [64], pages 149–154.

BIBLIOGRAPHY 185

[170] B. Piwowarski and P. Gallinari. A Bayesian Framework for XML Informa-
tion Retrieval: Searching and Learning with the INEX Collection. Inf. Retr.,
8(4):655–681, 2005.

[171] B. Piwowarski, H.-T. Vu, and P. Gallinari. Bayesian Networks and INEX’03.
In N. Fuhr, M. Lalmas, and S. Malik, editors, INitiative for the Evaluation of
XML Retrieval (INEX). Proceedings of the Second INEX Workshop, Dagstuhl,
Germany, Dec. 2003.

[172] J. M. Ponte and W. B. Croft. A Language Modeling Approach to Information
Retrieval. In SIGIR [1], pages 275–281.

[173] E. Popovici, P.-F. Marteau, and G. Ménier. Information Retrieval of Sequen-
tial Data in Heterogeneous XML Databases. In Adaptive Multimedia Retrieval:
User, Context, and Feedback: Third International Workshop, AMR 2005, Glas-
gow, UK, July 28-29, 2005, Revised Selected Papers, volume 3877 of Lecture
Notes in Computer Science, pages 236–250. Springer-Verlag, 2006.

[174] E. Popovici, P.-F. Marteau, and G. Ménier. An Effective Method for Finding Best
Entry Points in Semi-Structured Documents. In SIGIR ’07: Proceedings of the
30th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 851–852, New York, NY, USA, 2007. ACM
Press.

[175] E. Popovici, G. Ménier, and P.-F. Marteau. Recherche approchée d’information
dans une base de documents semi-structurés : une application ReMIX. In
Panorama des Recherches Incitatives en STIC (PaRISTIC), LaBRI, Bordeaux,
France, November 2005.

[176] E. Popovici, G. Ménier, and P.-F. Marteau. Recherche approchée d’information
dans une base de documents semi-structurés. In 3éme Conférence en Recherche
d’Informations et Applications (CORIA’06), pages 53–64, Lyon, France, Mars
2006.

[177] E. Popovici, G. Ménier, and P.-F. Marteau. SIRIUS: A Lightweight XML Indexing
and Approximate Search System at INEX 2005. In Fuhr et al. [69], pages 321–
335.

[178] E. Popovici, G. Ménier, and P.-F. Marteau. Interprétation vague des contraintes
structurelles pour la RI dans des corpus de documents XML - Évaluation d’une
méthode approchée de RI structurée. Document Numérique, 10(1):63–88, 2007.
Special Issue on "Recherche d’information dans les documents structurés".

[179] E. Popovici, G. Ménier, and P.-F. Marteau. SIRIUS XML IR System at INEX
2006: Approximate Matching of Structure and Textual Content. In Fuhr et al.
[71], pages 185–199.

[180] M. F. Porter. An Algorithm for Suffix Stripping. Program, 13(3):130–137, 1980.

[181] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. VLDB J., 10(4):334–350, 2001.

186 BIBLIOGRAPHY

[182] F. Raimbault and D. Lavenier. Le projet ReMIX et ses applications en
génomique. In Journées de l’Action Spécifique "Indexation de texte et découverte
de motifs" (ASIM), Réunion thématique, Faculté des Sciences, Nantes, 27-28 mai
2004.

[183] G. Ramírez, T. Westerveld, and A. P. de Vries. Structural Features in Content
Oriented XML Retrieval. In CIKM ’05: Proceedings of the 14th ACM interna-
tional conference on Information and knowledge management, pages 291–292,
New York, NY, USA, 2005. ACM Press.

[184] G. Ramírez, T. Westerveld, and A. P. de Vries. Using Structural Relationships for
Focused XML Retrieval. In Proceedings of the Seventh International Conference
on Flexible Query Answering Systems (FQAS 2006). Springer, 2006.

[185] P. Rao and B. Moon. PRIX: Indexing And Querying XML Using Prüfer Se-
quences. page 288, 2004.

[186] J. Reid, M. Lalmas, K. Finesilver, and M. Hertzum. Best Entry Points for
Structured Document Retrieval: Part I: Characteristics. Inf. Process. Manage.,
42(1):74–88, 2006.

[187] J. Reid, M. Lalmas, K. Finesilver, and M. Hertzum. Best Entry Points for Struc-
tured Document Retrieval: Part II: Types, Usage and Effectiveness. Inf. Process.
Manage., 42(1):89–105, 2006.

[188] J. Revault. Propagation of Pertinence Indicator using Distance Models. In The
9th International Conference on Information Processing and Magement of Un-
certainty in Knowledge-Based Systems (IPMU). IEEE, 1-5 July 2002.

[189] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle. Active Disks for Large-Scale
Data Processing. Computer, 34(6):68–74, 2001.

[190] S. Robertson and K. S. Jones. Relevance Weighting of Search Terms. Journal of
the American Society for Information Science, 27:129–146, 1977.

[191] A. Robinson. "XML’s and DTD’s for Biology", An XML Workshop for Biologists
and Bioinformaticians. http://industry.ebi.ac.uk/ alan/XMLWorkshop/, 2004.

[192] T. Roelleke and A. P. de Vries, editors. Proceedings of the first SIGIR Workshop
on the Integration of Information Retrieval and Databases (WIRD’04), Sheffield,
UK, 2004.

[193] M. Rys and S. Buxton. XQuery and XPath Full-Text Requirements. W3C work-
ing draft, W3C, May 2003. http://www.w3.org/TR/2003/WD-xquery-full-text-
requirements-20030502/.

[194] G. Salton, J. Allan, and C. Buckley. Approaches to Passage Retrieval in Full
Text Information Systems. In SIGIR ’93: Proceedings of the 16th annual in-
ternational ACM SIGIR conference on research and development in information
retrieval, pages 49–58, New York, NY, USA, 1993. ACM Press.

[195] G. Salton and C. Buckley. Term Weighting Approaches in Automatic Text Re-
trieval. Technical report, Ithaca, NY, USA, 1987.

BIBLIOGRAPHY 187

[196] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., New York, NY, USA, 1986.

[197] G. Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic Index-
ing. Commun. ACM, 18(11):613–620, November 1975.

[198] K. Sauvagnat. Modèle flexible pour la Recherche d’Information dans des cor-
pus de documents semi-structurés. PhD thesis, Université Paul Sabatier de
Toulouse, France, Juin 2005.

[199] K. Sauvagnat, M. Boughanem, and C. Chrisment. Searching XML Documents
Using Relevance Propagation. In A. Apostolico and M. Melucci, editors, SPIRE,
volume 3246 of Lecture Notes in Computer Science, pages 242–254. Springer,
2004.

[200] K. Sauvagnat, M. Boughanem, and C. Chrisment. Why Using Structural Hints
in XML Retrieval? In H. L. Larsen, G. Pasi, D. O. Arroyo, T. Andreasen, and
H. Christiansen, editors, FQAS, volume 4027 of Lecture Notes in Computer Sci-
ence, pages 197–209. Springer, 2006.

[201] K. Sauvagnat, L. Hlaoua, and M. Boughanem. XFIRM at INEX 2005: Ad-Hoc
and Relevance Feedback Tracks. In Fuhr et al. [69], pages 88–103.

[202] T. Schlieder. Fast Similarity Search in XML Data. PhD thesis, Freien Univer-
sität Berlin, Germany, December 2002.

[203] T. Schlieder and H. Meuss. Querying and Ranking XML Documents. Jour-
nal of the American Society for Information Science and Technology (JASIST),
53(6):489–503, 2002.

[204] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976.

[205] D. Shin, H. Jang, and H. Jin. BUS: An Effective Indexing and Retrieval Scheme
in Structured Documents. In DL ’98: Proceedings of the third ACM conference
on Digital libraries, pages 235–243, New York, NY, USA, 1998. ACM Press.

[206] B. Sigurbjörnsson. Focused Information Access using XML Element Retrieval.
PhD thesis, University of Amsterdam, 2006.

[207] B. Sigurbjörnsson and J. Kamps. The Effect of Structured Queries and Selective
Indexing on XML Retrieval. In Fuhr et al. [69], pages 104–118.

[208] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. An Element-Based Approach to
XML Retrieval. In Fuhr et al. [68].

[209] B. Sigurbjörnsson, J. Kamps, and M. de Rijke. Focused Access to Wikipedia.
In Proceedings of the 6th Dutch-Belgian Information Retrieval Workshop (DIR
2006), 2006.

[210] B. Sigurbjörnsson, A. Trotman, S. Geva, M. Lalmas, B. Larsen, and S. Malik.
INEX 2005 Guidelines for Topic Development. 2005.

188 BIBLIOGRAPHY

[211] M. Springmann. A Novel Approach for Compound Document Matching. IEEE
TCDL Bulletin, 2(2), 2006.

[212] K.-C. Tai. The Tree-to-Tree Correction Problem. J. ACM, 26(3):422–433, 1979.

[213] X. Tannier. Dealing with XML structure through ”Reading Contexts”. Technical
Report 2005-400-007, Ecole Nationale Supérieure des Mines de Saint-Etienne,
apr 2005.

[214] X. Tannier. Extraction et recherche d’information en langage naturel dans les
documents semi-structurés. PhD thesis, Ecole Nationale Supérieure des Mines
de Saint-Etienne, 2006.

[215] X. Tannier, J.-J. Girardot, and M. Mathieu. Classifying XML Tags through
“Reading Contexts”. In P. R. King, editor, Proceedings of the 2005 ACM Sympo-
sium on Document Engineering, pages 143–145, Bristol, United Kingdom, Nov.
2005. ACM Press, New York City, NY, USA.

[216] A. Theobald and G. Weikum. The Index-Based XXL Search Engine for Query-
ing XML Data with Relevance Ranking. In C. S. Jensen et al., editor, 8th Int.
Conference on Extending Database Technology, volume 2287 of Lecture Notes in
Computer Science, pages 477–495. Springer, 2002.

[217] M. Theobald, A. Broschart, R. Schenkel, S. Solomon, and G. Weikum. TopX -
AdHoc Track and Feedback Task. In Fuhr et al. [71], pages 233–242.

[218] M. Theobald, R. Schenkel, and G. Weikum. TopX and XXL at INEX 2005. In
Fuhr et al. [69], pages 282–295.

[219] M. Theobald, R. Schenkel, and G. Weikum. The TopX DB&IR engine. In SIG-
MOD ’07: Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pages 1141–1143, New York, NY, USA, 2007. ACM Press.

[220] A. Tombros, S. Malik, and B. Larsen. Report on the INEX 2004 Interactive
Track. SIGIR Forum, 39(1):43–49, 2005.

[221] A. Trotman and S. Geva. Passage Retrieval and Other XML-Retrieval Tasks. In
Proceedings of the SIGIR 2006 Workshop on XML Element Retrieval Methodol-
ogy, pages 43–50, 2006.

[222] A. Trotman, S. Geva, and J. Kamps. Report on the SIGIR 2007 Workshop on
Focused Retrieval. SIGIR Forum, 41(2):97–103, 2007.

[223] A. Trotman and M. Lalmas. Strict and Vague Interpretation of XML-Retrieval
Queries. In SIGIR [7], pages 709–710.

[224] A. Trotman and M. Lalmas. Why Structural Hints in Queries do not Help XML
retrieval. In SIGIR [7], pages 711–712.

[225] A. Trotman, M. Lalmas, and N. Fuhr, editors. Proceedings of the INEX 2005
Workshop on Element Retrieval Methodology, Glasgow, Scotland, 30 July 2005.

[226] A. Trotman and B. Sigurbjörnsson. Narrowed Extended XPath I (NEXI). In
Fuhr et al. [70], pages 16–40.

BIBLIOGRAPHY 189

[227] E. Ukkonen. On-Line Construction of Suffix Trees. Algorithmica, 14(3):249–260,
1995.

[228] C. J. van Rijsbergen. Information Retrieval. Butterworths, U.K., 1979.

[229] R. van Zwol. B3-SDR and Effective Use of Structural Hints. In Fuhr et al. [69],
pages 146–160.

[230] R. van Zwol. Multimedia Strategies for B3-SDR, Based on Principal Component
Analysis. In Fuhr et al. [69], pages 540–553.

[231] R. van Zwol, J. Baas, H. van Oostendorp, and F. Wiering. Query Formulation for
XML Retrieval with Bricks. In Proceedings of the INEX 2005 Workshop on Ele-
ment Retrieval Methodology, Glasgow, Scotland, July 2005. University of Glas-
gow, Glasgow, Scotland.

[232] R. van Zwol, G. Kazai, and M. Lalmas. INEX 2005 Multimedia Track. In Fuhr
et al. [69], pages 497–510.

[233] R. van Zwol and T. van Loosbroek. Effective Use of Semantic Structure in XML
Retrieval. In G. Amati, C. Carpineto, and G. Romano, editors, ECIR, volume
4425 of Lecture Notes in Computer Science, pages 621–628. Springer, 2007.

[234] R. van Zwol and W. Weerkamp. XSee: Structure Xposed. In Fuhr et al. [71],
pages 271–283.

[235] J.-N. Vittaut and P. Gallinari. Machine Learning Ranking and INEX’05. In Fuhr
et al. [69], pages 336–343.

[236] J.-N. Vittaut and P. Gallinari. Supervised and Semi-supervised Machine Learn-
ing Ranking. In Fuhr et al. [71], pages 213–222.

[237] J.-N. Vittaut, B. Piwowarski, and P. Gallinari. An Algebra for Structured
Queries in Bayesian Networks. In Fuhr et al. [70], pages 100–112.

[238] J. S. Vitter. External Memory Algorithms and Data Structures: Dealing with
Massive Data. In ACM Computing Surveys, volume 33, pages 209–271, June
2001.

[239] R. A. Wagner and M. J. Fischer. The String-to-String Correction Problem. J.
ACM, 21(1):168–173, 1974.

[240] H. Wang and X. Meng. On the Sequencing of Tree Structures for XML Indexing.
In ICDE ’05: Proceedings of the 21st International Conference on Data Engineer-
ing (ICDE’05), pages 372–383, Washington, DC, USA, 2005. IEEE Computer
Society.

[241] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A Dynamic Index Method for
Querying XML Data by Tree Structures. In SIGMOD ’03: Proceedings of the
2003 ACM SIGMOD international conference on Management of data, pages
110–121, New York, NY, USA, 2003. ACM Press.

190 BIBLIOGRAPHY

[242] B. West, R. D. Chamberlain, R. S. Indeck, and Q. Zhang. An FPGA-based Search
Engine for Unstructured Database. In Proc. of 2nd Workshop on Application
Specific Processors, 2003.

[243] T. Westerveld and R. van Zwol. The INEX 2006 Multimedia Track. In Fuhr
et al. [71], pages 331–344.

[244] R. Wilkinson. Effective Retrieval of Structured Documents. In Research and
Development in Information Retrieval, pages 311–317, 1994.

[245] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images, second edition. Morgan Kaufmann Publishing,
May 1999.

[246] F. G. S. S. W. Wong, R.K.; Lam. An XML Repository for Molecular Sequence
Data. Bio-Informatics and Biomedical Engineering, 2000. Proceedings. IEEE
International Symposium on, pages 35–42, 2000.

[247] A. Woodley and S. Geva. NLPX at INEX 2006. In Fuhr et al. [71], pages 302–
311.

[248] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient Retrieval of Similar Time
Sequences Under Time Warping. In ICDE ’98: Proceedings of the Fourteenth
International Conference on Data Engineering, pages 201–208, Washington, DC,
USA, 1998. IEEE Computer Society.

[249] S. Yoo. An XML Retrieval Model based on Structural Proximities. In Fuhr et al.
[64], pages 125–132.

[250] L. Zadeh. Fuzzy Sets. Information and Control, 3(8):338–353, 1965.

[251] K. Zhang, R. Statman, and D. Shasha. On the Editing Distance between Un-
ordered Labeled Trees. Inf. Process. Lett., 42(3):133–139, 1992.

[252] Y. Zhu and D. Shasha. Warping Indexes with Envelope Transforms for Query
by Humming. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, pages 181–192, New York, NY, USA,
2003. ACM Press.

[253] G. K. Zipf. Human Behaviour and the Principle of Least-Effort. 1949.

	I Introduction
	1 Introduction
	1.1 Context and Motivation
	1.2 Thesis Contribution
	1.3 Thesis Outline

	II XML Information Retrieval
	2 XML Information Retrieval
	2.1 Introduction
	2.1.1 Document and Collection of Documents
	2.1.2 Unstructured, Structured and Semi-Structured Documents
	2.1.3 Documents Markup
	2.1.4 A Brief History of Markup Languages
	2.1.5 eXtensible Markup Language (XML)
	2.1.6 Data-Centric vs. Document-Centric XML Data

	2.2 Conceptual Model for XML IR
	2.3 Precursors of XML IR
	2.3.1 Passage Retrieval
	2.3.2 Web Information Retrieval

	2.4 XML IR Challenges
	2.4.1 Term and element statistics
	2.4.2 Structure Statistics
	2.4.3 Relationships Statistics
	2.4.4 Relevance Propagation
	2.4.5 Overlapping Elements -- Removing Nested Redundant Information
	2.4.6 Structure Constraints
	2.4.7 XML IR Interfaces

	2.5 Indexing XML Documents
	2.5.1 Indexing Process
	2.5.2 Index Layers
	2.5.3 Indexing Term Weights
	2.5.4 Index Structures
	2.5.5 Indexing Unit
	2.5.6 Indexing the Structural Information

	2.6 XML Retrieval Models
	2.6.1 Vector Space Model
	2.6.2 Language Model
	2.6.3 Probabilistic Model
	2.6.4 Machine Learning

	2.7 XML IR Evaluation
	2.8 Conclusion

	3 SIRIUS XML IR System
	3.1 Introduction
	3.1.1 Document Structure and IR
	3.1.2 Strict and Vague Interpretation of XML-Retrieval Queries
	3.1.3 Approximate Structure Matching

	3.2 Document Model
	3.2.1 XML Context

	3.3 The Index Model
	3.4 The Retrieval Scheme
	3.4.1 Approximate Path Search
	3.4.2 Textual Content Ranking Scheme
	3.4.3 Computing Element RSV
	3.4.4 Lexical Semantic Enrichment

	3.5 The SIRIUS Query Language
	3.5.1 Path Constraints
	3.5.2 Attributes Constraints
	3.5.3 Complex Requests

	3.6 Prototype Implementation
	3.6.1 System General Architecture
	3.6.2 GUI

	3.7 Conclusions

	4 Experimental Evaluation Framework
	4.1 Introduction
	4.2 INEX Evaluation Campaigns
	4.2.1 Document Collections
	4.2.2 Topics
	4.2.3 Pertinence Judgments
	4.2.4 Retrieval Tasks
	4.2.5 Evaluation Measures

	4.3 SIRIUS @ INEX
	4.3.1 Indexing the INEX 2005 and INEX 2006 Collections
	4.3.2 Structural Weighting Scheme for INEX
	4.3.3 Translating NEXI to SIRIUS Query Language
	4.3.4 Processing NEXI Requests

	4.4 Conclusion

	5 Approximate Structural Matching for XML IR
	5.1 Introduction
	5.2 Retrieval Strategies
	5.3 Evaluating the Efficiency of Different Retrieval Strategies
	5.4 Evaluating the Effectiveness of Text Matching Strategies
	5.5 Evaluating the Effectiveness of Approximate Structural Matching Strategies
	5.6 Evaluating the Effectiveness of Approximate Structural Matching for Focused XML IR
	5.7 Conclusion

	6 Retrieving Best Entry Points in Semi-Structured Documents
	6.1 Introduction
	6.2 Focused Retrieval Strategy
	6.2.1 Elements Scores Aggregation
	6.2.2 Removing Overlapping Elements

	6.3 BEPs Selection Heuristic
	6.4 Google @ INEX 2006 Best In Context Task
	6.4.1 Retrieval Settings
	6.4.2 Flat Runs
	6.4.3 Approximate Matching of Snippets to BEPs

	6.5 Evaluation Framework
	6.5.1 Best In Context Task Evaluation Metrics

	6.6 Experimental Results
	6.6.1 INEX 2006 Best In Context Task Official Results
	6.6.2 Evaluating Different Focused Retrieval Strategies for the Automatic Detection of BEPs
	6.6.3 BEPs versus Document Retrieval
	6.6.4 Real Application-Case

	6.7 Conclusion

	III XML Multimedia IR
	7 IR of Sequential Data in Heterogeneous XML Databases
	7.1 Introduction
	7.2 Background and Related Works
	7.3 Challenges in XML Sequential Data IR
	7.4 Data Model
	7.4.1 XML Context
	7.4.2 Sequential Data

	7.5 Sequence Extraction
	7.6 Indexing Scheme
	7.6.1 Main Repository
	7.6.2 Sequence Repository

	7.7 Searching Scheme
	7.7.1 Sequence Structural Approximate Matching
	7.7.2 Sequence Approximate Matching
	7.7.3 The Fusion of Structural and Sequential Approximate Matching Scores

	7.8 Extracting and Querying Sequential Data by Examples
	7.9 Evaluation
	7.9.1 Prototype
	7.9.2 Experimental Dataset
	7.9.3 Early Evaluations

	7.10 Conclusions
	7.10.1 Main Contributions
	7.10.2 Future Work

	IV XML IR on Specialized Hardware
	8 ReMIX -- Reconfigurable Memory for Indexing Mass of Data
	8.1 Introduction
	8.2 ReMIX Project Objectives
	8.3 ReMIX Idea
	8.3.1 Reconfigurable Resources
	8.3.2 FLASH Technology

	8.4 ReMIX Architecture
	8.4.1 ReMIX System
	8.4.2 RMEM Board
	8.4.3 ReMIX Memory Specificity

	8.5 Programming the ReMIX cluster
	8.5.1 Framework
	8.5.2 Operator Synthesis
	8.5.3 ReMIX Query Processing Model
	8.5.4 ReMIX API

	8.6 Conclusion

	9 Approximate Search of Semi-Structured Documents Using Dedicated FLASH Memory and FPGA Components
	9.1 Introduction
	9.2 General Notes on ReMIX Programming Philosophy
	9.3 Approximate Structural Filtering for XML IR using the ReMIX Architecture
	9.4 Specifying the Application Characteristics
	9.5 Indexing
	9.6 Searching
	9.7 Current Implementation Status
	9.8 Early Experimental Results
	9.9 Discussion
	9.10 Conclusion

	V Conclusions
	10 Conclusions
	10.1 Conclusions
	10.2 Summary of Contributions
	10.3 Future Research

	Bibliography

