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Université Paul Sabatier
Laboratoire d’Analyse et d’Architecture des Systèmes - CNRS
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Avant-propos

Depuis le début de ce travail de recherche, notre but principal a été de concevoir

un correcteur pour un biofiltre de dénitrification décrit par un ensemble d’équations

en dérivées partielles. Dans un premier temps, nous avons profité de l’expertise

du groupe Méthodes et Algorithmes en Commande du Laboratoire d’Analyse et

d’Architecture des Systèmes - CNRS dans la commande et la résolution de problèmes

d’optimisation sous des inégalités matricielles linéaires. Ainsi, nous avons pu synthétiser

des correcteurs par retour de sortie formés par une loi de commande par retour d’état

complétée par un observateur de Luenberger.

Durant mon séjour au Service d’Automatique de l’Université de Mons en 2008, j’ai

travaillé sur la modélisation, la réduction du modèle et la simulation des systèmes à

paramètres distribués pour représenter le biofiltre sous une forme classique en espace

d’état en considérant les modes, représentant l’information temporelle du système, les

plus importants. Ainsi, cette nouvelle représentation a été utilisée pour synthétiser

un correcteur par retour de sortie à partir d’un système d’ordre réduit.

Finalement, nous avons fusionné les méthodologies de simulation des équations

à dérivées partielles et la commande non-linéaire mâıtrisées par les deux groupes de

recherche précédents. Comme résultat, nous avons conçu une loi de commande à

retour qui linéarise les dynamiques du biofiltre en boucle fermée complétée par un

observateur à paramètres distribués.

Il ne me reste donc qu’á remercier les MAC pour l’accueil et le support durant

ces trois ans et demi, spécialement Isabelle qui m’a guidé et qui m’a beaucoup appris

et conseillé lors du développement de mon travail de recherche. Le premier groupe

de thésards, Wilfried, Christophe, Yassine et Pauline (même si elle est DISCO) qui

m’ont super bien accueilli dès mon arrivée à Toulouse. Giorgio, Luiz et Thomas pour

leur amitié pendant mon séjour au LAAS. Sandy qui a donné la touche féminine au

bureau et qui m’a beaucoup aidé à rédiger en français et en anglais. Tous les autres
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jeunes du groupe, Nedia, Carlos, Fernando, Mounir, Bogdan, Josep, Carlo, Akin,

Tung et Jean François qui ont fait l’ambiance dans le LAAS, skyMAC et seaMAC.

Enfin, les permanents, M. Calvet, Didier, Germain, Denis, Fred, Sophie, Dimitri,

Lucie, les deux Christophe, les deux Vincent, tous très sympa et toujours prêts à

discuter lorsque l’on est bloqué.

Je tiens également à remercier toute l’équipe du Service d’Automatique de l’Université

de Mons, surtout Alain qui m’a beaucoup appris durant mon séjour à Mons et Carlos

Vilas qui m’a beaucoup aidé à acquérir les aspects techniques des méthodes FEM et

POD. Cristina et Francisca pour leur amitié pendant mon séjour à Mons. Enfin, les

autres doctorants, Johan, Oleksandr, Guillaume, Laurent et Bob, tous très sympa.

Je suis très reconnaissant à M. Frédéric Mazenc de SUPELEC-CNRS et M. An-

tonio. A. Alonso de IIM-CSIC pour avoir accepté d’examiner cette thèse et d’en être

les rapporteurs.

J’adresse mes plus grands remerciements au CONACyT pour le soutien financier

lors du développement de cette thèse de doctorat, á l’UPS pour le soutien financier

lors de mon séjour à Mons, au LAAS-CNRS pour l’accueil dans le laboratoire et á

tout le personnel qui m’a aidé à résoudre les différentes situations auxquelles j’ai dû

faire face.

Je n’oublierai jamais tous les copains de l’équipe de foot-ball du LAAS, de l’équipe

de snowboard de l’UPS, les amis bolivariens et les interminables discussions dont Juan

Pablo, Anibal, Eduardo, David, Hugo et Gibran. Tous les amis du monde avec qui

j’ai passé des bons moments et appris le meilleur que j’ai pu de leur cultures, et très

chaleureusement ma polola, qui a rendu la dernière année en France très spéciale.

Je ne peux pas finir sans faire mention à la France, ce beau pays que je tiendrai

toujours au coeur. Sa campagne, ses vins et sa cuisine me manqueront toujours.

Il est ainsi, dans cet environnement et avec la motivation de commander un

procédé de traitement des eaux usées que ce travail de recherche est arrivé à bon

port.
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Résumé

1. Introduction

Le nitrate est un contaminant présent dans les nappes aquifères et dans les

rivières qui n’a cessé d’augmenter ces dernières décennies principalement en raison

de l’utilisation intensive d’engrais azotés et de traitement inadéquat des eaux usées

issues de l’activité humaine. La dénitrification (réduction de l’azote nitrique en azote

gazeux) est alors une étape importante dans le traitement biologique des eaux usées

des systèmes d’élimination de nutriments. Elle peut être classiquement menée dans

des systèmes complets de nitrification-dénitrification par boues activées ou par biofil-

tration. La biofiltration est une technologie basée sur une réaction biologique qui

utilise des micro-organismes immobilisés formant des biofilms ou couches biologiques,

où les bioréactions sont mises en place autour de particules solides. Ces partic-

ules immobilisées sont emballées dans une colonne connue sous le nom de biofiltre.

Le développement de la biofiltration a été favorisé par ses avantages par rapport à

d’autres technologies alternatives. En effet, il s’agit d’une méthode environnemen-

tale effective, facile à mettre en oeuvre et rentable du fait de à sa compacité, de

son efficacité et de sa faible consommation d’énergie. Avec l’avènement de normes

plus strictes pour rejeter des eaux usées, dans le but de leur réutilisation en eau

potable ou non, une meilleure compréhension et l’amélioration des performances d’un

tel réacteur est une étape primordiale. C’est dans ce contexte que le développement

des correcteurs efficaces pour optimiser la conduite de ces procédés doit être envisagé.

Plusieurs modèles mathématiques ont été proposés pour décrire la dynamique

d’un biofiltre sous la forme d’un système d’équations différentielles en fonction des

variables de réaction (concentrations des substrats, de biomasse, etc). Par ailleurs,

il faut identifier différents paramètres (porosité, cinétiques des réactions, constantes

de saturation, etc). Les variables d’état du biofiltre peuvent être distribuées dans

le temps et dans l’espace. Par conséquent, il faut les décrire par des équations aux

dérivées partielles (EDP). L’ensemble d’équations aux dérivées partielles obtenu à
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partir du bilan de masse pour toutes les variables d’état constitue un système à

paramètres distribués (SPD).

Dans cette thèse, nous nous intéressons à la transformation des concentrations de

nitrate et de nitrite en azote gazeux lors de la traversée d’un réacteur de dénitrification,

en présence de perturbations externes. Le réacteur considéré est un biofiltre modélisé

par un ensemble d’équations aux dérivées partielles. Le modèle le plus général con-

sidère à la fois un terme de diffusion (dérivée spatiale de deuxième ordre) et un terme

de convection (dérivée spatiale de premier ordre), conduisant à un système d’EDP

paraboliques. Toutefois, le terme de diffusion est parfois négligé, auquel cas le système

devient un système d’EDP hyperboliques.

2. Biofiltre de dénitrification

La biofiltration est une technologie prometteuse pour le traitement des eaux usées

[24], [63] ou de l’eau potable [58], [12], mais aussi dans l’aquaculture ou pour le

contrôle de la pollution atmosphérique. La biofiltration est effectuée par un réacteur

tubulaire appelé biofiltre. Un tel dispositif est compact, relativement simple à con-

struire et à exploiter. Par ailleurs, il montre une bonne efficacité pour le traitement

biologique associée également à une faible consommation d’énergie. Un biofiltre est

caractérisé par la distribution spatiale des micro-organismes fixés sur un support

solide [66]. Il est décrit mathématiquement par un système à paramètres distribués

(SPD) et est donc représenté par des équations aux dérivées partielles (EDP) [22].

Le procédé de dénitrification auquel nous sommes intéressés est un biofiltre rempli

d’un matériau poreux pouzzolane. Des concentrations de nitrate et de nitrite émis

par des eaux usées sont considérées à l’entrée du réacteur. Une source supplémentaire

d’approvisionnement d’éthanol peut être utilisée comme une action de commande

d’entrée ou pour assurer un rapport suffisamment élevé de carbone source par les

nitrates (C/N), tel que la composante carbonée ne limite pas la croissance. La

dénitrification est realisée dans des conditions anaérobies, cela signifie, en absence

d’O2 dans l’état gazeux. La réaction biologique est une réaction en deux étapes. La
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première étape est la dénitration qui transforme les nitrates (NO3) en nitrites (NO2),

tandis que la deuxième phase transforme le nitrite en azote gazeux (N2). La pop-

ulation de micro-organismes (bactéries) est impliquée dans les deux étages, avec de

l’éthanol en tant que co-substrat. Cette biomasse s’accumule sur le support solide de

surface, due à la filtration des bactéries présentes dans l’eau d’alimentation et à la

croissance nette. Ainsi, la biomasse constitue un biofilm autour des particules du fil-

tre, qui s’épaissit avec le temps. Nous considérons alors que toute la biomasse est fixe

et ne bouge pas au long du réacteur. Au contraire, les composés solubles (nitrates,

nitrites et l’éthanol) sont transportés tout le long du biofiltre.

L’objectif est d’éliminer les nitrates et les nitrites tout au long du biofiltre. Les

bactéries utilisées prennent le carbone organique comme source d’énergie. La route

métabolique de la dénitrification est constituée de plusieurs réactions d’oxydoréduction

consécutives, elle implique une accumulation transitoire de nitrite dans le biofiltre.

Elle peut être dissociée en deux étapes:

NO−3
(1)−→ NO−2

(2)−→ N2

Selon que l’on tient compte du phénomène de diffusion ou qu’on le néglige, le

système d’EDP résultant de la modélisation du réacteur de dénitrification est parabolique

ou hyperbolique. Le système d’EDP hyperbolique considère un terme de trans-

port qui implique un opérateur différentiel spatial de premier ordre. Par ailleurs, le

système d’EDP parabolique considère un terme de diffusion qui implique un opérateur

différentiel spatial de deuxième ordre.

Associées aux équations dynamiques du procédé de dénitrification, nous con-

sidérons des conditions initiales et des conditions aux limites appropriées au biofiltre.

Le système hyperbolique utilise généralement des conditions aux limites de Dirichlet

à l’entrée du réacteur. Le système parabolique prend en compte des conditions aux

limites de Robin en entrée et de Neumann en sortie du réacteur. Toutefois, des con-

ditions aux limites dynamiques en sortie devraient plutôt être utilisées pour exprimer

les phénomènes de transport à la frontière. Ces conditions dynamiques imitent le
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modèle hyperbolique en ce point. Par ailleurs, une troisième condition a également

été considérée qui se compose de conditions aux limites de Dirichlet + Robin (ou

équivalente Dirichlet + Neumann) en entrée du réacteur. Cet ensemble de conditions

nous permet de traiter le problème de la commande du biofiltre modelisé par un

ensemble d’EDP paraboliques avec des stratégies différentes.

Une analyse de sensibilité effectuée sur le modèle parabolique nous permet de

déterminer l’influence des paramètres les plus importants.

3. Simulation du procédé de dénitrification

La première étape du travail consiste à simuler le SPD. Cela implique qu’il faut

résoudre numériquement les équations aux dérivées partielles d’un tel système. Les

méthodes disponibles dépendent du type d’EDP à résoudre.

La méthode des lignes est une technique très générale pour résoudre numériquement

différents types d’EDP. Cette méthode consiste à faire la discrétisation du domaine

spatial et à approcher les dérivées spatiales afin d’obtenir un système d’equations

differentielles ordinaires (EDO) [71]. Ce nouveau système d’EDO est intégré par rap-

port au temps pour pouvoir calculer la solution finale. Afin d’approcher les dérivées

spatiales d’ordre N , nous considérons la méthode des éléments finis et la méthode

aux différences finies. Ces deux méthodes peuvent être utilisées pour approcher le

terme de diffusion et le terme de convection. La méthode des lignes peut ainsi être

utilisée pour résoudre les deux systèmes d’EDP (hyperbolique et parabolique).

Par ailleurs, la méthode des caractéristiques est une méthode classique pour

résoudre numériquement les équations aux dérivées partielles hyperboliques. Une

EDP hyperbolique peut être séparée en une EDO qui varie dans le temps et en une

autre EDO appelée caractéristique. Cette dernière EDO est résolue pour obtenir une

courbe caractéristique afin de savoir comment la première EDO varie par rapport à

l’espace [95].
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Toutes les méthodes précédentes produisent des systèmes en espace d’état non

linéaires d’ordre élevé qui pourraient ne pas convenir dans les futures stratégies de

commande. La décomposition modale est une manière pratique et utile d’analyser

les EDP en ne tenant compte que des modes du système les plus importants [95].

De cette façon, un système en espace d’état non linéaire d’ordre réduit est obtenu.

Cette forme d’analyse est toujours possible lorsque les opérateurs spatiaux ont un

spectre discret de valeurs propres réelles. Ce n’est pas le cas pour l’opérateur spatial

de convection qui a, dans sa forme ordinaire, un spectre de valeurs propres complexes

[60]. Par contre, c’est le cas de l’opérateur spatial de diffusion. Nous envisageons

donc l’analyse modale du modèle parabolique du biofiltre. La décomposition Lapla-

cienne est une technique très utile pour analyser les modes d’un système. Toutefois,

cette décomposition n’est appropriée que s’il n’y a pas de terme de convection. Une

autre technique classique pour analyser les modes d’un système est la méthode de

la décomposition orthogonale propre qui a démontré son efficacité pour les systèmes

d’EDP avec conditions aux limites non homogènes et terme de convection [85], tel

que le système d’EDP paraboliques décrivant le réacteur de dénitrification.

La méthode des lignes est utilisée pour résoudre le modèle hyperbolique en ap-

prochant les dérivées spatiales par la méthode des différences finies (FDM). Le modèle

parabolique est ensuite résolu par la même méthode, avec en revanche, les dérivés spa-

tiales approchées par la méthode des éléments finis (FEM). Les matrices d’approximation

spatiale résultant de la méthode des éléments finis seront utilisées plus tard, dans

l’analyse modale, pour résoudre un problème de valeur propre, en approchant l’intégrale

et les termes différentiels par des matrices FEM. Nous appliquons ensuite la méthode

des caractéristiques sur le modèle hyperbolique et un ensemble d’équations aux différences

est obtenu. Nous réalisons enfin une analyse modale sur le modèle parabolique afin

de simuler le biofiltre de dénitrification en utilisant seulement les modes les plus im-

portants.
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4. Techniques basées sur l’approche early lumping

Suite aux approches de discrétisation spatiale, nous abordons le problème de la

commande du procédé de dénitrification. La recherche en matière de la commande

des bioprocédés a été principalement axée sur l’approche early lumping qui consiste

à discrétiser spatialement le système d’EDP original avant de faire la synthèse du

correcteur. La principale raison est que les stratégies de commande les plus impor-

tantes ont été développées pour les systèmes décrits par des modèles linéaires ou non

linéaires représentés par des équations différentielles ordinaires (EDO).

Nous sommes intéressés par la régulation de la concentration de nitrate et de

nitrite en sortie du réacteur à une valeur inférieure à la norme européenne. Du point

de vue biologique, cela signifie qu’il faut que les micro-organismes consomment le

nitrate pour produire du nitrite qui doit être lui-même consommée pour produire de

l’azote gazeux. L’objectif est que les variations de charge en nitrate à l’entrée du

réacteur se voient le moins possible en sortie du réacteur. Du point de vue de la

commande, cela signifie qu’il faut atténuer l’énergie de la perturbation à l’entrée du

réacteur (SNO3,in).

La norme H2 permet de mesurer l’énergie d’un système [69], [93]. Dans ce

contexte, nous choisissons la commande H2 comme stratégie de commande afin de

faire face au problème de l’atténuation des variations de la concentration de nitrate

(SNO3,in) en entrée du biofiltre. L’objectif est donc de synthétiser des correcteurs par

retour de sortie afin de minimiser l’énergie de la fonction de transfert définie entre la

perturbation en entrée du réacteur et la sortie mesurée. Il faut donc que le problème de

la commande du procédé de dénitrification soit exprimé sous la forme d’un problème

de commande classique d’un système d’EDO linéaire après une discrétisation spatiale

puis une linéarisation du système d’EDP original.

Nous nous intéressons aux méthodes de commande linéaire pour deux raisons

principales:
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• la première raison est que le système d’origine est simplifié lorsqu’il est décrit

par des équations différentielles ordinaires. La transformation du système peut

être poursuivie par une linéarisation autour d’un état stationnaire opérationnel,

ce qui permet alors d’accéder au vaste monde de la commande linéaire, dans

notre cas la commande H2.

• la deuxième raison est liée à la facilité de comprendre et de manipuler les

stratégies de commande linéaire. L’un des objectifs cachés de cette thèse est de

renforcer l’interface entre la communauté de la commande et la communauté

du génie des procédés. Les outils de commande linéaires sont plutôt des outils

standards, indépendants de la forme du système d’origine et peuvent être décrits

dans un cadre unifié qui pourrait être appliqué à d’autres classes de procédés

biochimiques.

Puisque la commande H2 a été développée pour les systèmes linéaires, il faut

donc représenter le système d’EDP original sous forme linéaire en espace d’état en

numérisant les dérivées spatiales puis en linéarisant autour d’un point d’opération.

Ensuite, des lois de commande par retour d’état et des observateurs de Luenberger

sont synthétisés. Des correcteurs robustes par retour de sortie basés sur observa-

teur sont ansi obtenus à la fois dans leurs versions en temps discret et en temps

continu en tenant compte du principe de séparation. Ces deux cas sont considérés

car le système ODE concerné (en temps discret ou en temps continu) dépend de

l’approche de discrétisation spatiale. Pour obtenir un modèle en espace d’état pour le

système d’EDP hyperboliques nous considérons la méthode des caractéristiques. Pour

le système d’EDP paraboliques, nous considérons la méthode de la décomposition or-

thogonale propre, ce qui permet de manipuler un modèle en espace d’état d’ordre

réduit.

5. Techniques basées sur l’approche late lumping

D’autre part, dans les deux dernières décennies, plusieurs stratégies de commande

ont été proposées en utilisant une approche dite late lumping basée sur la théorie de la
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commande non-linéaire. Contrairement à l’approche early lumping, dans l’approche

late lumping l’idée est de garder autant que possible la nature distribuée du modèle.

En s’appuyant sur les travaux passés concernant la stabilité des systèmes décrits par

des EDP [86] et la théorie de la commande non-linéaire [60] [35] [39], différents types de

correcteurs non linéaires par retour de sortie ont été développés, selon que l’action de

commande est distribuée dans l’espace [18], intervient dans les conditions aux limites

[40] ou sur un terme dérivé [31]. Dans ce contexte, il est possible de synthétiser des

correcteurs non-linéaires complétés par des observateurs non linéaires. Ils sont donc

conçus directement sur les EDP non-linéaires. Afin de mettre en oeuvre le correcteur

par retour de sortie basé sur observateur, les équations aux dérivées partielles obtenues

sont résolues par des méthodes numériques, telles que celles présentées dans le chapitre

3.

Nous considérons donc des stratégies distribuées non linéaires en vue de synthétiser

des correcteurs par retour de sortie basés sur observateur en linéarisant les dynamiques

de sortie du biofiltre, d’abord pour le modèle d’EDP hyperboliques, puis pour celui

d’EDP paraboliques. Il faut donc analyser le degré relatif du système afin de proposer

un nouveau système de coordonnées [31]. Des stratégies de la commande linéarisante

sont ensuite utilisées pour synthétiser une loi de commande pour linéariser les dy-

namiques de sortie, en assurant la stabilité asymptotique de la boucle fermée [35],

[67]. Le correcteur à retour linéarisant est complété par un observateur à paramètres

distribués [89], pour estimer l’ensemble des variables d’état réparties sur la longueur

du réacteur. Cet observateur a ainsi le double rôle de montrer l’évolution de l’état le

long du réacteur et de fournir au correcteur linéarisant les états dont il a besoin. Il

est mis en oeuvre en résolvant les équations aux dérivées partielles par la méthode de

lignes et en approchant les dérivées spatiales par des différences finies.

6. Conclusions

Dans cette thèse, la simulation et la commande d’un biofiltre de dénitrification

décrit par un système d’EDP sont présentées. Un système d’EDP parabolique et un
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système d’EDP hyperbolique ont été utilisés selon que l’on tient compte ou que l’on

néglige la diffusion.

Une fois que le modèle du biofiltre de dénitrification a été défini, il est simulé afin

de connâıtre ses dynamiques et de représenter le système sous forme d’espace d’état.

Plusieurs méthodes sont disponibles pour résoudre numériquement un système d’EDP.

La méthode des lignes est une technique générale qui peut être appliquée à toutes les

classes d’EDP en rapprochant les dérivées spatiales, par des différences finies ou par

des éléments finis. La méthode des différences finies est une technique très simple,

basée sur une série de Taylor tronquée. Bien entendu, pour obtenir une approximation

correcte des dérivées, il faut considérer un nombre suffisant de points de discrétisation

dans l’espace. Une approximation des différences finies de quatrième ordre a démontré

d’excellents résultats. D’autre part, la méthode des éléments finis est basée sur des

séries de Fourier tronquée pour séparer les variables en une fonction du temps et une

fonction de l’espace. Cette technique a pour résultat un ensemble de matrices qui

approchent les termes dérivés et intégral. Toutefois, même si la synthèse des matrices

FEM est plus complexe que la synthèse des matrices FDM, les résultats de simulation

sont presque identiques. Les deux méthodes donnent un ensemble d’EDO à intégrer

par rapport au temps.

Une autre technique utilisée pour résoudre numériquement le système d’EDP qui

décrit le biofiltre est la méthode des caractéristiques. Toutefois, cette méthode ne

peut être utilisée que pour le modèle hyperbolique, ce qui signifie qu’il faut négliger

le terme de diffusion. La solution qui en résulte est un système d’équations aux

différences à résoudre dans le temps. Les résultats de simulation sont très proches de

ceux obtenus avec la méthode des lignes. Étant donné que cette méthode conduit à

des équations en temps discret, la période de discrétisation utilisée pour calculer la

solution finale est un point clé à considérer. Bien sûr, plus la période de temps est

petite, plus la solution finale est précise.

L’opérateur spatial du modèle parabolique a des valeurs propres réelles, une anal-

yse modale peut donc être effectuée en considérant une série de Fourier tronquée pour
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séparer la variable d’état originale en une fonction de l’espace et en une fonction du

temps. Les fonctions spatiales ont été calculées hors ligne en résolvant un problème de

valeur propre avec les opérateurs intégraux et différentiels approximés par des matri-

ces FEM. Elles ont également été utilisées pour définir un opérateur afin de projeter

les variables d’état sur le domaine spatial. De cette façon, un système d’EDO pour

calculer les modes du système (l’information temporelle) a été obtenu. Les résultats

des simulations en tenant compte uniquement des modes les plus importants se sont

avérés très proches de ceux obtenus en considérant la méthode des lignes.

Pour ce qui est de la commande du procédé, une approche early lumping basée sur

la commande H2 et le cadre des LMI a d’abord été considérée afin de réduire l’effet

des variations de la concentration de nitrate en entrée du biofiltre et de maintenir la

concentration d’azote en sortie sous une limite supérieure. Un système d’équations

aux différences issu de la méthode des caractéristiques a été considéré pour synthétiser

un correcteur par retour d’état en temps discret. Il a été complété par un observateur

de Luenberger d’ordre plein ou d’ordre réduit. L’observateur d’ordre plein filtre mieux

le bruit présent dans les mesures. Celui d’ordre réduit a l’avantage d’une plus petite

dimension, ce qui est un aspect essentiel dans le cadre des LMI. Une stratégie très

semblable a aussi été présentée pour commander le modèle parabolique. Cependant,

on considère maintenant un ensemble d’EDO d’ordre réduit construit à partir des

modes les plus importants du système et une version en temps continu de la stratégie

de commande précédente. Un avantage important de cette stratégie est que le système

décrit par les modes les plus importants et l’observateur associé sont d’un ordre

beaucoup plus petit que ceux obtenus à partir des modèles issus de MOL ou de la

méthode des caractéristiques. Ceci plaide pour l’utilisation du modèle parabolique du

biofiltre, c’est-à-dire, tenant compte du phénomène de diffusion, plutôt que d’utiliser

une a priori plus simple description du procédé, sans dérivées de second ordre. Les

résultats, très similaires à ceux obtenus avec un modèle d’ordre supérieur du biofiltre,

ont démontré que la loi de commande synthétisée en tenant compte des modes les

plus importants atteint les objectifs de contrôle.
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Le principal avantage de cette approche early lumping est qu’il en résulte une

loi de commande facile à mettre en oeuvre (un système dynamique linéaire composé

par une loi de commande par retour d’état + un observateur de l’état), mais au

détriment de plusieurs manipulations (discrétisation, linéarisation, etc.) du système

d’EDP original qui doivent être réalisées avant la synthèse du correcteur final. Il faut

souligner que le principe de séparation n’est vérifié que dans la version qui ne tient

pas compte des incertitudes sur le système linéarisé. Des stratégies plus complexes

devront donc être considérées pour tenir compte des contraintes supplémentaires telles

que les incertitudes du modèle. Les résultats obtenus ici ouvrent la voie, toutefois,

pour l’utilisation des stratégies de commande linéaire pour ces systèmes d’EDP non

linéaires.

Finalement, une approche late lumping basée sur la commande linéarisante a été

considérée. L’objectif de commande, a été défini comme un problème de poursuite

de référence (concentration d’azote en sortie) et d’atténuation d’une perturbation

(concentration de nitrate en entrée). La stratégie suivie a été de synthétiser un

correcteur qui linéarise les dynamiques du système en boucle fermée complété par

un observateur à paramètres distribués. Il faut noter que la stabilité du système

bouclé formé du correcteur linéarisant par retour de sortie basé sur observateur n’est

pas garantie a priori car le principe de séparation ne s’applique pas aux systèmes

non linéaires. Par ailleurs, cette stratégie de commande n’est pas très robuste aux

incertitudes des paramètres du modèle. Son avantage est cependant qu’elle permet

très simplement de proposer une stratégie directe sans beaucoup d’effort pour l’étape

de synthèse. En particulier, seuls quelques paramètres doivent être calibrés.
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Chapter 1

Introduction

Nitrate is a contaminant in groundwater aquifers and rivers which has been increasing

in recent years mainly due to the extensive use of nitrogen fertilizers and improper

treatment of wastewater from the industrial sites. Denitrification (reduction of nitrate

nitrogen into nitrogen gas) is then an important step in biological wastewater treat-

ment nutrient removal systems. It may be classically processed in full nitrification-

denitrification activated sludge systems or by biofiltration. Biofiltration is a tech-

nology based on a biological reaction using micro-organisms which are immobilized

forming biofilms or biolayers, where the bioreactions take place, around solid parti-

cles. These immobilized particles are packed in a column known as a biofilter [92].

The development of biofiltration has been promoted by its advantages over other al-

ternative technologies. It is an environmentally, friendly and cost-effective method

thanks to its compactness, efficiency and low energy consumption. With the advent of

more and more stringent norms for water reject, reuse or for drinking water, the need

for better understanding and improvement of reactor performance naturally comes to

mind. This paves the way towards the development of efficient controllers to optimize

the use of these processes.

Many mathematical models of biofilters have been proposed to understand and

improve the reactor performance [20]. In order to model a biofilter, a system of

differential equations based on the reaction variables (concentrations, biomass, etc.)
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must be deduced to describe its dynamics. In addition, several parameters (porosity,

kinetics of reaction, saturation constants, etc.) must be identified. The biofilter state

variables may be distributed in both time and space. Therefore, they have to be

described by means of partial differential equations (PDE). The set of PDEs from the

mass balance of each component state variable constitutes a distributed parameter

system (DPS).

Distributed parameter systems is a research area in control developed since the

1960s when the first works about the subject appeared, for example: in [14] the au-

thors derived a general maximum principle for a class of DPS. In [87] the authors

attempted to give precise mathematical description of DPS in term of a partial dif-

ferential equation (PDE) set, the concepts of controllability and observabillity were

also discussed. Another important work, [86], addressed the problem of stability of

DPS with feedback controllers directly in the framework of PDEs, using Lyapunov

techniques. More recently, several interesting works were developed. In [57], stabil-

ity and stabilizability problems of infinite-dimensional systems were discussed. In

[56], a Lyapunov stability analysis technique for DPS represented by hyperbolic or

parabolic PDEs was presented. Controllability and observability issues were also

considered and come up with a finite order feedback control formulation. However,

the most important contributions in the DPS research area have been developed in

the last two decades. Around the control strategies of interest in this thesis, we can

mention several works: in [4], a decentralized control strategy based on linear ma-

trix inequality theory for multi-dimensional but linear DPS is presented. In [61], a

frequency domain input-output approach has been proposed for linear time invari-

ant distributed parameter systems, based on a generalization of H∞ control and the

finite-dimensional approximation of LTI systems with distributed nature. In [19],

[17] a robust finite distributed control design technique for DPS represented by hy-

perbolic and parabolic PDEs respectively are proposed. In the parabolic case, the

Galerkin approach is used to come up with a suitable ODE system by keeping the

lowest dynamics and by neglecting the fastest ones. In both cases, a nonlinear output
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feedback control law that guarantees stability while making the system follows a de-

sired reference is designed. Many of the innovative ideas about these robust control

techniques are summarized in [18]. In [31], the problem of controlling a flow sys-

tem described by a set of first-order PDEs with a single characteristic variable using

the inverse system is addressed. In [15], the geometric theory of output regulation

presented in [35], is extended for solving the state and output feedback regulation

problems for infinite-dimensional linear control systems, assuming bounded control

and observation operators. In [90], the output regulation of flow systems described by

a class of two-time-scale nonlinear PDE system using the reduced-order slow model

and geometric control is addressed. In [73], a feedback control method over the spatial

interval that yields improved performance for DPS modelled by first-order hyperbolic

PDEs has been designed. In [55], an optimal dynamic inversion strategy for DPS has

been proposed by considering the combination of dynamic inversion principle and

optimization theory for a class of one-dimensional nonlinear distributed parameter

systems. In [75], a general procedure for parabolic PDEs with spatially continuous

backstepping based boundary control is introduced. The backstepping method is

formally proposed in [40] where the method is also applied to first-order hyperbolic

PDEs.

In this thesis, we are interested in the reduction of nitrate and nitrite concentration

throughout a denitrification reactor in spite of the external disturbances. The reactor

under study is a biofilter modeled by a set of PDEs. The general model considers both

a diffusion term (second-order spatial derivative) and a convection term (first-order

spatial derivative), resulting in a parabolic PDE system. However, the diffusion term

is sometimes neglected, resulting in an hyperbolic PDE system.

Hyperbolic PDE equations are sometimes called transport equations because they

often describe the propagation of waves (for example into a reactor). They require

initial conditions (where the waves start from) as well as boundary conditions (to

describe how the wave and the boundary interact; for instance, the wave can be scat-

tered or absorbed). The advection equation represents the hyperbolic PDE described
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before:

∂ζ

∂t
= −v∂ζ

∂z

It is easy to see that equation above is a first-order PDE, however it is called

hyperbolic because the methods used to solve it are the same as the ones used to

solve second-order hyperbolic PDEs.

Parabolic PDE equations are often called diffusion equations because they describe

the diffusion and convection of some substance (such as water into a reactor). These

equations require initial conditions (what the initial concentration of the substance

is) as well as boundary conditions (to specify, for instance, whether the substance can

cross the boundary or not). For example, the Fourier equation describes the diffusion

phenomena in a parabolic PDE:

∂ζ

∂t
= k

∂2ζ

∂z2

In order to know the dynamics of the DPS to control, it has to be simulated. This

implies that the PDEs of such system must be numerically solved. The allowable

methods depend of the type of the PDE system to solve. A general solution method

is the method of lines, which consists in approximating the spatial derivative by using

some approach like finite differences or finite elements and then integrate the resulting

ODE system. On the other hand, there exist specific solution methods. The method

of characteristics is a popular method useful for solving hyperbolic PDEs. The modal

analysis is useful when the derivative operator has a set of real eigenvalues, which is

normally the case for parabolic PDEs.

In order to control a DPS, two strategies are commonly used: early lumping

approach and late lumping approach. In the first one, the partial differential equations

are discretized to obtain an ordinary differential equation (ODE) system and then,

ODE-based control strategies for nonlinear or linear systems may be applied (see for

example [60]). On the other hand, in the second approach, control strategies have

30



been developed, based on the non-linear control theory, to design a controller for the

PDE system so as to keep as much as possible its distributed nature (see for example

[7], [19], [17]).

The research concerning control of bioprocesses was mainly focused on the early

lumping approach. This is because the most important control strategies have been

developed to control systems described by either linear or non-linear systems repre-

sented by ODEs. In this context, several works have been developed, for instance:

[21] applied adaptive control schemes to nonlinear distributed parameter bioreactors

by using an orthogonal collocation method to reduce the original PDE model to ODE

equations. In [3] the authors dealt with the linear boundary control problem in an

anaerobic digestion process by using the solution at steady state.

On the other hand, in the last two decades, several control strategies using a late

lumping approach based on the non-linear control theory have been proposed. In [10],

the authors have applied variable structure control to fixed bed reactors described by

nonlinear hyperbolic PDEs. The authors of [2] have designed a nonlinear multivariable

controller for an anaerobic digestion system described by a set of PDEs and consisting

of an observer and two nonlinear control laws on the boundary conditions.

A DPS may be controlled either by a parameter in the derivative terms (see

[31], [12], [2]), by a space distributed variable (see [19], [17]) or by the boundary

conditions (see [12], [40]). Thus, state feedback controllers are synthesized by taking

this constraint into account. However, due to their infinitely dimension nature, it

is necessary to estimate also some of the states by using observation techniques.

Observer-based output feedback controllers are therefore developed.

This thesis is then organized as follows: in chapter 2 the reactor under study is

presented. First, the chemical equations inside the micro-organism metabolic path are

described, then, the parabolic PDE model obtained by the mass balance is presented.

By neglecting the diffusion term an hyperbolic PDE model is obtained; the difference

between the two models is discussed. Next, the sensitivity of the parabolic PDE model
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is analysed using the local sensitivity approach. At the end of the chapter, the problem

to address is stated and the different control approaches to follow are presented. In

chapter 3, the different strategies to numerically solve the PDE system are presented.

Depending on the class of PDE is the method to use, but there also exist general

methods that may be applied to both PDE systems. Normally, numerical solutions

consist in discretizing the spatial derivative to transform the PDE into a high-order

ODE. This is integrated to obtain the final solution. Modal analysis methods are

further discussed to reduce the order of the ODE to integrate by keeping the most

important modes of the original PDE system. At the end of each methodology,

simulations will allow us to discuss the results obtained. In the following chapters,

the control problem is addressed, first by an early lumping approach and then by a

late lumping one. In chapter 4, the control problem is addressed by considering H2

control techniques and the LMI framework as control strategy. Because H2 control

has been developed for linear systems, the original PDE system has to be represented

in the classical state space form by discretizing the spatial derivative and linearizing

the non-linear resulting ODE around an operating point. Following this early lumping

approach, state feedback linear control laws and Luenberger observers are synthesized.

By using the Separation Principle, they are complemented to obtain an observer-based

feedback controller. In order to obtain a state space form for the hyperbolic PDE

model the method of characteristics is used. On the other hand, for the parabolic PDE

model the proper orthogonal decomposition method is used, and therefore, a reduced-

order state space form is obtained. In chapter 5, the control problem is addressed

by considering linearizing control in order to synthesize a feedback control law. This

law is complemented by a distributed parameter observer to estimate the overall set

of states needed. In this way, an observer-based feedback linearizing controller is

obtained and it is implemented by solving the PDEs using the method of lines and

approximating the spatial derivatives by finite differences. Finally, in chapter 6 some

conclusions about the work developed and perspectives of future works not only in

control engineering but also in human-machine interfaces, microcontroller architecture

and data acquisition systems are presented.
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Chapter 2

Denitrification biofilter

2.1 Introduction

Biofiltration has proven to be a promising reaction system for wastewater [24], [63]

or drinking water treatment [58], [12], but also in aquaculture or for control of air

pollution. Biofiltration is performed by a biofilter tubular reactor. Such a device is

compact, fairly simple to build and operate, and has shown good efficiency for bio-

logical treatment associated to low energy consumption. Such biofiltration units are

characterized by spatial distribution of micro-organisms which are fixed on a solid

support [66]. They are mathematically described as distributed parameter systems

(DPS) and represented by partial differential equations (PDE) to explain their dis-

tributed nature [22].

In this chapter the denitrification biofilter under study is presented. First, a

brief description about the denitrification process and the variables involved in such

process is presented. Following, the boundary conditions are deeply discussed and

interpreted. The importance of the diffusion phenomenon is also pointed out because

it determines the nature of the resulting PDE model, namely an hyperbolic or a

parabolic one. Next, those two PDE models are described with the values of the

parameters used in both models. Following, a sensitivity analysis is performed on the

parabolic model to determine the influence of the most important parameters. Such
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a study on the hyperbolic model would conclude exactly to the same results. Finally,

the problems to be treated throughout this work are stated by describing the different

control strategies to study.

2.2 Denitrification process

The denitrification process under study is a biofilter, shown in figure 2-1, filled with a

porous pouzzolane material. Nitrate and nitrite nitrogen issued from some wastewater

are considered at the reactor input. An additional ethanol supply source may be used

as a control input action or at least to ensure a sufficiently high ratio C/N (Carbon

source per Nitrate) such that carboneous component does not become the limiting

source for the growth. Denitrification is performed in anaerobic conditions, it means,

in absence of O2 in gaseous form. The biological reaction is a two-stage reaction.

The first stage is the denitration which transforms nitrate (NO3) into nitrite (NO2)

while the second phase transforms nitrite into gaseous nitrogen (N2). The same

micro-organism population (bacteria) is involved in both stages, with ethanol as co-

substrate. This biomass accumulates on the solid media surface due to filtration of

bacteria present in the feeding water (if any) and to net growth. Thus, the biomass

forms a biofilm around the filter particles, which thickens with time. One can then

consider that all the biomass is fixed and does not move along the reactor. On the

contrary, the soluble compounds (nitrate, nitrite and ethanol) are transported along

the biofilter.

The objective is to eliminate the nitrate and the nitrite while going through the

biofilter. The used bacteria take the organic carbon as source of energy. The den-

itrification metabolic path consists of several consecutive oxydoreduction reactions

and it implies a transitory accumulation of nitrite into the biofilter [32]. It may be

dissociated in two steps:

NO−3
(1)−→ NO−2

(2)−→ N2
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Figure 2-1: Denitrification biofilter.

The dynamics of the biofilter can be deduced from mass balance considerations

for the four different components, considering the following assumptions:

• The detachment of biofilm and particles retained by filtration is neglected;

• Once the biofilm reaches a critical ’per unit’ surface thickness, the deeper part

of the biofilm is considered as inactivated, and a maximum active biomass

concentration Xamax is reached [11]. Then, after some transition period, the

growth of micro-organisms just balances the death and inactivation process;

• The decay of biomass is neglected, hidden in the notion of maximum active

biomass concentration;

• Radial dispersion is negligible. Axial dispersion obeys Fick’s diffusion law.

Remark 1 The assumptions described above deserve a few comments. Theorically,

the dynamical reactions inside the biofilm should be taken into account. Biological

reactions would be the same like those ones along the biofilter, and the diffusion phe-

nomenon would be the main cause of mouvement inside the biofilm [32, p.158]. In this

study, such phenomenon has been however neglected inside the biofilm by considering
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a more overall description of a maximum active biomass. This simplification is sup-

ported by two considerations. First, it has been shown experimentally that, after the

startup of the process, the activity converges to some sort of steady-state level since,

after each washing out (necessary to avoid plugging due to the bacterial growth), it

comes back to this level almost instantaneously [37]. This observation promoted the

idea that the overall activity inside the biofilm was limited to a maximal capability,

represented here as a maximal concentration of organisms. Second, the examination

of biofilm models shows exactly the same behavior: growth is accompanied by an in-

crease of the size of the biofilm but the internal loyers are limited by the nutritional

elements (consumed in surface quicker than diffusion) [32, p.175]. Then, unless the

subject of the study is the biofilm itself, it is reasonnable to neglect the internal activity

of the biofilm in the description of the biofilter.

From a mathematical point of view, by taking into account the diffusion phe-

nomenon, the model results in parabolic PDEs, while, on the other hand, by neglect-

ing it the model results in hyperbolic PDEs. Both models have distinctive properties

and derive in the difficulty to solve them numerically and the control strategies to

consider. However, as will be shown in the following, simulation and control results

by considering both PDE systems are very similar.

2.3 Denitrification reactor model

As above-mentioned, by considering or not the diffusion phenomenon the resulting

PDE system of the denitrification reactor can be either a parabolic one or an hyper-

bolic one. In the hyperbolic PDE system a transport term implies a first-order spatial

differential operator. In addition, in the parabolic PDE system, a diffusion term im-

plies a second-order spatial differential operator. In this way, the initial boundary

problem to solve is different [49].

Taking into account the diffusion phenomenon, the denitrification reactor is mod-

eled by the following parabolic PDE system:
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∂SNO3(z, t)

∂t
= Df

∂2SNO3(z, t)

∂z2
−v
ε

∂SNO3(z, t)

∂z
− 1− Yh1

1.14Yh1ε
µ1(SNO3(z, t), SC(z, t))Xa(z, t)

(2.1)

∂SNO2(z, t)

∂t
=Df

∂2SNO2(z, t)

∂z2
− v

ε

∂SNO2(z, t)

∂z
+

1− Yh1

1.14Yh1ε
µ1(SNO3(z, t), SC(z, t))Xa(z, t)

− 1− Yh2

1.71Yh2ε
µ2(SNO2(z, t), SC(z, t))Xa(z, t)

(2.2)

∂SC(z, t)

∂t
=Df

∂2SC(z, t)

∂z2
− v

ε

∂SC(z, t)

∂z
− 1

Yh1ε
µ1(SNO3(z, t), SC(z, t))Xa(z, t)

− 1

Yh2ε
µ2(SNO2(z, t), SC(z, t))Xa(z, t)

(2.3)

∂Xa(z, t)

∂t
= (µ1(SNO3(z, t), SC(z, t))Xa(z, t) + µ2(SNO2(z, t), SC(z, t))Xa(z, t))(

1− Xa(z, t)

Xamax

)
(2.4)

In the equations above, z is the axial space variable, SNO3(z, t), SNO2(z, t), SC(z, t)

andXa(z, t) represent the nitrate (g[N ]/m3), nitrite (g[N ]/m3), ethanol (g[DCO]/m3)

and active biomass concentrations. Df , v, Yh1 , Yh2 , µ1 and µ2 represent the diffusion

term m2/h, the flow rate m/h (the ratio between the feeding rate (m3/h) at the reac-

tor input and the biofilter cross-section area (m2)), micro-organisms yield coefficients

and population specific rates which transform nitrate into nitrite, then nitrite into

gas nitrogen (1/h) respectively.

The nitrate and nitrite specific growth rates µ1 and µ2 depend both on the mi-

croorganism used and on environmental parameters of the culture like composition,

temperature, pH, Eh, thermodynamic activity of the water, etc. These parameters

are however often neglected and the growth rates are typically described by the model
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of Monod, in this application represented as [11]:

µ1(SNO3(z, t), SC(z, t)) = ηgµ1max
SNO3

SNO3
+KNO3

SC
SC+KC

µ2(SNO2(z, t), SC(z, t)) = ηgµ2max
SNO2

SNO2
+KNO2

SC
SC+KC

where ηg, µ1max , µ2max , KNO3 , KNO2 and KC are the correction factor for the anaerobic

growth, the maximum specific growth rates of biomass on nitrate and nitrite and the

affinity constants with respect to nitrate, nitrite and ethanol, respectively. However,

it must be pointed out that this model does not always represent the data suitably,

especially when the culture media is complex and contain several carbon and nitrogen

sources [1].

Associated to the dynamical equations for the denitrification process, appropriate

initial spatial profile at t = 0 for 0 ≤ z ≤ L expresses that the biomass and the

substrate are homogeneously distributed along the biofilter:

SNO3(z, 0) = SNO3,0(z) (2.5)

SNO2(z, 0) = SNO2,0(z) (2.6)

SC(z, 0) = SC,0(z) (2.7)

Xa(z, 0) = Xa,0(z) (2.8)

Remark 2 Such an initial profile is considered, without loss of generality, only to

simplify the numerical initialization of the simulations. Any other initial profiles could

be considered with only slight transient differences in the forthcoming simulations, but

without changing any of the conclusions drawn from the simulations.

In the numerous literature on biofilter modelling including diffusion phenomenon

[23], [44], [92], boundary conditions have been considered both at the input and the
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output of the biofilter. Most generally, the literature suggests:

• Robin boundary conditions for SNO3 , SNO2 and SC at z = 0 (input) for t > 0 :

∂SNO3(0, t)

∂z
=

v

εDf

(SNO3(0, t)− SNO3,in(t)) (2.9)

∂SNO2(0, t)

∂z
=

v

εDf

(SNO2(0, t)− SNO2,in(t)) (2.10)

∂SC(0, t)

∂z
=

v

εDf

(SC(0, t)− SC,in(t)) (2.11)

• Neumann boundary conditions at z = L (output) for t > 0:

∂SNO3(L, t)

∂z
= 0 (2.12)

∂SNO2(L, t)

∂z
= 0 (2.13)

∂SC(L, t)

∂z
= 0 (2.14)

where SNO3,in(t), SNO2,in(t) and SC,in(t) represent the nitrate, the nitrite and the

ethanol at the biofilter input respectively.

However, in this thesis, we would like to discuss those boundary conditions. Neu-

mann boundary conditions had been originally proposed for the heat equation to

stress that the temperature profile becomes flat at the outlet (in the heat equation,

it corresponds to an insulated beam). Even if the diffusion phenomenon which takes

place in the biofilter model assimilates to the heat diffusion, such boundary conditions

are in fact not well adapted to the biofilter. As a matter of fact, considering that

the concentration is asymptotically constant at the output limit of the biofilter (or,

more exactly, at the limit of the packed material colonized by the microorganisms) is
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no sense. This is true only if limitations by the nutriments occur before the output

of the biofilter such as the reaction rates converge toward 0. A dynamic boundary

condition, similar to that one proposed by Schiesser in [72], would then be more ap-

propriate to take into account the transport and reaction phenomena at the output

frontier of the biofilter. This leads, instead of using Neumann boundary conditions

(2.12)-(2.14), to consider:

• Dynamic boundary conditions at z = L (output) for t > 0:

∂SNO3(L, t)

∂t
=− v

ε

∂SNO3(L, t)

∂z
− 1− Yh1

1.14Yh1ε
µ1(SNO3(L, t), SC(L, t))Xa(L, t)

(2.15)

∂SNO2(L, t)

∂t
=− v

ε

∂SNO2(L, t)

∂z
+

1− Yh1

1.14Yh1ε
µ1(SNO3(L, t), SC(L, t))Xa(L, t)

− 1− Yh2

1.71Yh2ε
µ2(SNO2(L, t), SC(L, t))Xa(L, t)

(2.16)

∂SC(L, t)

∂t
=− v

ε

∂SC(L, t)

∂z
− 1

Yh1ε
µ1(SNO3(L, t), SC(L, t))Xa(L, t)

− 1

Yh2ε
µ2(SNO2(L, t), SC(L, t))Xa(L, t)

(2.17)

Remark 3 Such a dynamic boundary condition signifies that, at the boundary, the

parabolic biofilter problem mimics that one of the hyperbolic biofilter problem where

diffusion is neglected.

Moreover, to go further, one can also conceive of transforming such two-point

boundary-value problems into an initial-value problem, where space boundary condi-

tions are all set at the input of the biofilter. Historically, classical boundary conditions

have been proposed at the two extremal points to evaluate analytical solutions of

PDEs problems. However, even if it is not Hadamard-correctly posed [34], it is legiti-

mate and relevant for the applications to consider initial-boundary conditions formed
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with Dirichlet boundary conditions associated with the Robin boundary conditions

described above.

• Dirichlet boundary conditions at z = 0 (input) for t > 0:

SNO3(0, t) = SNO3,in(t) (2.18)

SNO2(0, t) = SNO2,in(t) (2.19)

SC(0, t) = SC,in(t) (2.20)

Remark 4 The idea behind the terminology of Hadamard-correctly posed stresses that

the Cauchy problem (existence and unicity of a solution to a PDEs problem) may be

weakened, especially from a numerical simulation point of view [34]. In that sense,

the wave equation problem in two variables with boundary conditions all set at the

same point is correctly posed in the sense of Hadamard [34], [62]. Moreover, it has

been recently shown that, using ideas issued from flatness, the heat equation problem

may also be associated to boundary conditions at the same point [41].

In the sequel, any of those combinations of boundary conditions may be used to

numerically simulate the parabolic PDEs biofilter (Chapter 3). They all give the same

results (especially since a Neumann condition at z = 0 is hidden in the initialization

of the Robin condition). On the other hand, we will see in Chapter 5 that, in order

to build linearizing controllers, it is preferable to consider the case with Dirichlet +

Robin conditions at z = 0.

For simulation, the parameters are set to the values given in table 2.1, issued from

[11] and [68].

Figure 2-2 shows the time evolution at several locations for the parabolic PDE

system (2.1)-(2.4). The PDE system was solved using the method of lines using 151
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(a) NO3 solution. (b) NO2 solution.

(c) SC solution. (d) Xa solution.

Figure 2-2: Time and space (at six locations) evolution of the parabolic PDE system
by using MOL-FDM.
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Parameter Value Parameter Value
Yh1 0.56 Yh2 0.54
µ1max 0.36 1/h µ2max 0.32 1/h
KNO3 1.5 g[N ]/m3 KNO2 1.0 g[N ]/m3

KC 40 g[COD]/m3 Xamax 800 g[COD]/m3

ng 0.8 ε 0.52
Df 0.4756 m2/h L 2.1 m

Table 2.1: Physical and biological parameters of the denitrification biofilter, issued
from [11] and [68].

Condition Value Condition Value
SNO3,in(t) 16.93 g[N ]/m3 SNO2,in(t) 0 g[N ]/m3

SC,in(t) 111.5 g[COD]/m3 v 4 m/h

Table 2.2: Influent conditions (case 1).

discretization points uniformly distributed along the reactor. The derivative terms

were approximated by considering the finite difference method. In Chapter 3 we will

discuss in detail this methodology to numerically solve PDE systems. For the sake of

clarity, the solution is shown only at six points along the reactor.

Two different operating conditions are succesively applied. During the first 15

hours and from 30 hours to the end of the simulation, the influent operating condi-

tions are those of Table 2.2. Between 15 hours and 30 hours, the influent operating

conditions are those of Table 2.3. The simulation is initialized with homogeneous

values for the state variables along the reactor given in Table 2.4.

Let us now consider the case when the diffusion phenomenon is neglected. In that

case, the denitrification reactor model results in an hyperbolic PDE system, which

is different from a parabolic one because the second derivative term in equations

(2.1)-(2.4) disappears and therefore there exist only (Dirichlet) boundary conditions

at z = 0 (input) for t > 0.

Condition Value Condition Value
SNO3,in(t) 18.93 g[N ]/m3 SNO2,in(t) 0 g[N ]/m3

SC,in(t) 203 g[COD]/m3 v 16 m/h

Table 2.3: Influent conditions (case 2).
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Condition Value Condition Value
SNO3,0(z) 16.93 g[N ]/m3 SNO2,0(z) 0 g[N ]/m3

SC,0(z) 111.5 g[COD]/m3 Xa,0(z) Xamax/2 g[COD]/m3

Table 2.4: Initial homogeneous conditions in the biofilter.

(a) NO3 solution. (b) NO2 solution.

(c) SC solution. (d) Xa solution.

Figure 2-3: Time and space (at six locations) evolution of the hyperbolic PDE system
by using MOL-FDM.
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Figure 2-3 shows the time evolution at several locations for the resulting hyperbolic

PDE system. Again, the PDE system was solved using the method of lines using 151

discretization points uniformly distributed along the reactor. The derivative terms

were approximated by considering the finite difference method. For sake of clarity,

the solution is shown only at six points along the reactor. The simulation conditions

are those ones used for the parabolic model.

A few comments can be made about those simulations (the parabolic PDE and

the hyperbolic PDE systems). Considering the first set of influent conditions, with

a concentration of biomass initially present in the reactor corresponding to a partial

colonization of the biofilter (Xa,0(z) = Xamax/2), it may be seen that the biomass

concentration evolves towards the limit Xamax. However, the influent concentrations

are not high enough to ensure a sufficient concentration of nutriments until the top

locations of the biofilter. It results that the concentration of biomass in the upper

locations evolves slowly and cannot converge to its maximal value. On the other hand,

if non limiting influent conditions are provided, the biomass concentration converges

to its maximum value all along the reactor (between 15h and 30h). Then, even if the

influent conditions are reduced to their first values, the biomass concentration remains

at its maximum value and the system becomes independent of this variable. The

idea is therefore to apply non-limiting conditions to the system from the beginning

(Table 2.3) such as to saturate the concentration of biomass. Variations of influent

conditions will be then easier to absorb in more standard operating conditions (Table

2.2). From this discussion, as soon as Xa(z, t) = Xamax, it has no more influence

on the reactions and may be neglected. In accordance to the conclusion of [11], the

dynamical evolution of Xa is then neglected and, without loss of generality, only the

three first equations of the original parabolic PDE system will be consider in the

remainder of the document.

Finally, the system (2.1)-(2.3) may be rewritten in matrix form as:

∂S

∂t
= A1

∂2S

∂z2
+ A2

∂S

∂z
+ h(S) (2.21)
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where S = [SNO3 SNO2 SC ]T is the state vector, defined on the domain D = V ×

B × T where V ⊂ R is the spatial domain with boundary B and T is the semiopen

time interval [0,∞). Matrices A1, A2 ∈ R3×3 are diagonal square matrices whose

diagonal elements are Df and v/ε respectively, and h(S) ∈ R3 is a vector of non-

linear functions. Note that the hyperbolic case corresponds to Df = 0, and that the

associated boundary conditions are different.

Considering now the biofilter PDE system of dimension 3, with Xa(z, t) = Xamax

for all z and t, the simulations of both parabolic and hyperbolic cases using the

same numerical method (method of lines using 151 discretization points uniformly

distributed along the reactor and derivative terms approximated by the finite differ-

ence method) are plotted in figure 2-4. Parameters are taken from Table 2.1, influent

conditions from Table 2.2 and initial condition of the three soluble components from

Table 2.4. It illustrates the similarity on both solutions. Even if the evolution of every

state variable is not exactly the same for both models, the systems at steady state

are very close, considering the diffusion or not. The main difference between both

simulations comes from the different boundary condition at z = 0, visible mainly at

the vicinity of the input of the biofilter.

2.4 Sensitivity analysis of the denitrification biofil-

ter model

Sensitivity analysis allows to evaluate how the variation in the output of a dynamic

system model can be apportioned to different sources of variation, but also, how the

given model depends upon the information fed into it. Indeed, sensitivity analysis

was created to deal with uncertainties in the input variables and model parameters.

As a whole, sensitivity analysis is used to increase the confidence in the model and

its predictions, by providing an understanding of how the model variables respond to

changes in the inputs, be the data used to calibrate it, model structures or factors,

i.e. the model-independent variables. The sensitivity analysis is thus closely linked
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(a) NO3 solution of the hyperbolic PDE. (b) NO3 solution of the parabolic PDE.

(c) NO2 solution of the hyperbolic PDE. (d) NO2 solution of the parabolic PDE.

(e) SC solution of the hyperbolic PDE. (f) SC solution of the parabolic PDE.

Figure 2-4: Time and space (at six locations) comparison of both PDE models by
using MOL-FDM.
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to uncertainty analysis which aims at quantifying the overall uncertainty associated

with the response as a result of uncertainties in the original model [65], [78].

Different sensitivity analysis strategies may be applied, depending on the setting:

• Factor screening, where the task is to identify influencial factors in a system

with many factors. It may be useful as a first step when dealing with a model

containing a large number of factors. Often, only a few of the parameters have

a significant effect on the model output.

• Local sensitivity analysis, where the emphasis is on the local (point) impact of

the factors on the model. It is usually carried out by computing the variation

of the state variables of the original system with respect to the input factors.

The local sensitivity approach is practicable when the variation around the

midpoint of the input factors is small; in general, the input - output relationship

is assumed to be linear.

• Global sensitivity analysis, where the emphasis is on apportioning the output

uncertainty to the uncertainty in the input factors. Global sensitivity analysis

typically considers a sampling approach, and the uncertainty range given in the

inputs reflects our imperfect knowledge of the model factors. Distributions for

each factor provide the input for the analysis.

Equations (2.1)-(2.3), representing the denitrification reactor dynamics, depend

on several parameters (factors) which are generally not easy to estimate and which

may vary in real applications. It is therefore desirable to determine the sensitivity

of the system with respect to the most important model parameters. Such sensitiv-

ity information can be used to estimate which parameters are the most influential

in affecting the simulation behavior, to evaluate robustness in control design or to

investigate their estimation for model calibration [59]. Local sensitivities provide the

slope of the calculated model output in the parameter space at a given set of values.

Moreover, local sensitivity analysis is a computationally efficient technique that al-
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lows a rapid preliminary exploration of the model. This strategy, and in particular

the direct method, is then selected in this work [65].

Let us consider the distributed parameter system:

∂S

∂t
= A1

∂2S

∂z2
+ A2

∂S

∂z
+ h(S, p) (2.22)

where S is a n-vector of state variables and p is the m-vector of system parameters.

Note that n = 3 in the case of the system (2.1)-(2.3).

Differentiation of equation (2.22) with respect to pk gives the following system of

sensitivity differential equations:

∂

∂t

∂S

∂pk
= A1

∂2

∂z2

∂S

∂pk
+ A2

∂

∂z

∂S

∂pk
+
∂h

∂S

∂S

∂pk
+
∂h

∂pk
; k = 1, . . . ,m (2.23)

The sensitivity matrix with respect to the model parameters is then defined as

the Jacobian matrix:

s(t) = JS(p) =
∂S

∂p

In the denitrification biofilter system, Monod laws involving the nitrate and ni-

trite are the main terms which may affect the model’s sensibility. In this way, the

influence of the parameters, ηgµ1max , ηgµ2max , KNO3 , mainly, KNO2 and KC , has to

be analyzed in order to evaluate the confidence in the models which are manipulated

in the following chapters. Note however that a similar sensitivity analysis could be

conducted for the other parameters.

Let p = [ηgµ1max ηgµ2max KNO3 KNO2 KC ]T = [p1 p2 p3 p4 p5]T be the vector of

parameters to analyze. The elements of the sensitivity matrix with respect to the

model parameters satisfy the following sensitivity equation:

∂sik
∂t

= Df
∂2sik
∂z2

− v

ε

∂sik
∂z

+
n∑
j=1

∂hi(S)

∂Sj
sjk +

∂hi(S)

∂pk
(2.24)
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for i = 1, 2, 3 and k = 1, 2, 3, 4, 5.

The sensitivity differential equations for each state variable are summarized in the

appendix A. They are solved using the method of lines considering 151 discretization

points uniformly distributed along the reactor. The derivative terms were approxi-

mated by considering the finite difference method. Parameters used in the simulations

are taken from Table 2.1. Operating conditions are taken from Table 2.2, with initial

conditions along the reactor given in Table 2.4. Recall that Xa(z, t) = Xamax.

2.4.1 Parametric sensitivity analysis of the nitrate concen-

tration

Figure 2-5 shows the sensitivity normalized time evolution of nitrate with respect to

the vector p defined above. For the sake of clarity, the figures show the time evolution

of the nitrate sensitivity at six positions along the reactor only.

As expected, the nitrate concentration is not sensitive to parameters ηgµ2max and

KNO2 because these parameters do not appear in equation (2.1). On the other hand

the nitrate concentration is very sensitive to parameters ηgµ1max and KC , while sen-

sitivity to KNO3 is rather small.

2.4.2 Parametric sensitivity analysis of the nitrite concentra-

tion

Figure 2-6 shows the sensitivity normalized time evolution of nitrite with respect to

the vector p defined above at the same six positions along the reactor as in the section

2.4.1.

It can be observed that nitrite concentration is really sensitive to both parameters

ηgµ1max and ηgµ2max (sensitivity value over the unity). The sensitivity to the param-

eter KNO3 is important too. On the other hand, the sensitivity to the parameters

KNO2 and KC is less important.
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(a) Sensitivity of NO3 with respect to ηgµ1max . (b) Sensitivity of NO3 with respect to ηgµ2max .

(c) Sensitivity of NO3 with respect to KNO3 . (d) Sensitivity of NO3 with respect to KNO2 .

(e) Sensitivity of NO3 with respect to KC .

Figure 2-5: Sensitivity of the nitrate concentration for the parabolic PDE system.
Time evolution at six location points with respect to the different parameters (figures
2-5a to 2-5e).
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(a) Sensitivity of NO2 with respect to ηgµ1max . (b) Sensitivity of NO2 with respect to ηgµ2max .

(c) Sensitivity of NO2 with respect to KNO3 . (d) Sensitivity of NO2 with respect to KNO2 .

(e) Sensitivity of NO2 with respect to KC .

Figure 2-6: Sensitivity of the nitrite concentration for the parabolic PDE system.
Time evolution at six location points with respect to the different parameters (figures
2-6a to 2-6e).
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2.4.3 Parametric sensitivity analysis of the ethanol concen-

tration

Figure 2-7 shows the sensitivity normalized time evolution of ethanol with respect to

the vector p defined above at the same six positions along the reactor as in section

2.4.1.

The ethanol sensitivity is not important with respect to the overall set of param-

eters. It can be observed that the maximum sensitivity value is −0.27 with respect

to ηgµ1max .

2.5 Statement of problem

The control strategies for nonlinear distributed parameter systems may be divided

into two main classes: the late lumping approaches and the early lumping approaches.

In the late lumping approaches, the idea is to keep as much as possible the distributed

nature of the process. In this way, the design of the controller is done directly on

the nonlinear PDEs. Then, the discretization only occurs at the implementation (or

simulation) step [60], [18], [89].

On the other hand, in the early lumping approach the nonlinear PDEs are simpli-

fied by discretizing the space operators in order to obtain a high-order semi-discrete

time-depending ODE set. Alternatively and if the PDE system is well posed, modal

analysis may be used to obtain a reduced-order semi-discrete time-depending ODE

set. Then, by using any nonlinear control strategy, the design of the controller may

be done [60], [89], [53]. Since many classical control strategies have been developed

for linear systems, it is also possible to linearize the nonlinear ODE system around

an operating point to obtain its linear state space representation. Linear control

strategies may then be applied [60].

Once the approach has been selected and by considering several features of the

system such as its dynamics, its controlabillity and the states measured, different
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(a) Sensitivity of SC with respect to ηgµ1max . (b) Sensitivity of SC with respect to ηgµ2max .

(c) Sensitivity of SC with respect to KNO3 . (d) Sensitivity of SC with respect to KNO2 .

(e) Sensitivity of SC with respect to KC .

Figure 2-7: Sensitivity of the ethanol concentration for the parabolic PDE system.
Time evolution at six location points with respect to the different parameters (figures
2-7a to 2-7e).
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controller design strategies can be investigated:

• Static state feedback;

• Static output feedback;

• Dynamic output feedback;

• Dynamic observer-based output feedback.

In this work we are interested in simulating distributed parameter systems and

designing state feedback controllers for them. However, in real applications it is

very difficult to access all the states of the system. This is especially the case for

biotechnological systems where either the sensors are expensive or some of them are

not available but also for PDE systems where their distributed nature forces to take a

large number of states into account. Therefore, the problem of state estimation is also

addressed in this thesis in order to complement the state feedback control strategies

and to design observer-based output feedback controllers.

The objective of the denitrification reactor is to transform the nitrate from the

input wastewater stream into gaseous nitrogen to maintain the nitrogen concentration

at the output water stream lower than some norm. In this context, the denitrification

process may be controlled either by the flow rate F (t)/A or by the ethanol concen-

tration at the reactor input SC,in(t), that is, by a parameter in a derivative term or

by a boundary condition, respectively [11]. In those contexts, several control strate-

gies have been developed by using either early lumping or late lumping approaches

[60], [89], [53]. This work considers the flow rate as the control input and the nitrate

concentration at reactor input SNO3,in as an external disturbance to be rejected.

2.6 Conclusion

In this chapter, the denitrification process under study has been presented. Several

aspects have been brought to the fore:
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• The biofilter process, preliminary described by four state variables, has been

reduced to a model with only the three soluble concentrations. This is justified

by the fact that there are no more significant variations of the active biomass

concentration as soon as the filter is fully colonized by the microbial population.

• It has been shown that, according to the negligence of the diffusion phenomenon

or not, the PDE system which describes the biofilter dynamics is an hyperbolic

or a parabolic PDE system. Even if it does not change much the space and

time evolutions of the process variables, we will see in the sequel that it allows

to use (or not) different strategies for simulation and control.

• The boundary conditions classically considered in the literature of biofilter sim-

ulation through parabolic PDEs are the combination of Robin at the input and

Neumann at the output conditions. It has been shown that this choice is ques-

tionable and that an admissible and more relevant choice in the context of the

application is to consider Robin + Dirichlet conditions at the input.

• The sensitivity analysis has shown the importance of the growth rate param-

eters, and, in particular, to ηgµ1max , to simulate the biofilter dynamics. This

analysis will be useful in the sequel to analyze the performance of nonlinear

controllers and observers.

Finally, this chapter has ended stating the different problems which will be ad-

dressed in this work:

• simulation of the denitrification biofilter;

• design of state feedback controllers following both early lumping and late lump-

ing approaches;

• design of state observers to bypass the lack of measurements (especially in the

late lumping context).
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Chapter 3

Simulation of the denitrification

process

3.1 Introduction

In order to design and to implement control strategies for distributed parameter sys-

tems, the first task to perform is to simulate the PDE system. By considering the

class of PDE system and their characteristics, there exist several methods to numer-

ically solve them. In this thesis, the denitrification reactor described by a parabolic

PDE system taking the diffusion phenomenon into account or by an hyperbolic one

neglecting it, is considered.

The method of lines is a very general technique to numerically solve several types

of PDEs. This method consists in descretizing the spatial domain and then approx-

imating the spatial derivatives to obtain a system of ordinary differential equations

(ODE) [71]. This ODE system is integrated to compute the PDE final solution. In

order to approximate the N-order spatial derivatives, finite element method and fi-

nite difference method may be considered. Both of them can be used therefore to

approximate diffusion and convection terms. In this way, the method of lines may be

used to solve both hyperbolic and parabolic PDE systems.

On the other hand, the method of characteristics is a classical method to nu-
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merycally solve hyperbolic PDEs. They may be separated in a time-varing ODE and

a charateristic ODE. This last ODE is solved to obtain a characteristic curve to know

how the first ODE varies with respect to the space [95].

All these methods produce high-order nonlinear state space systems that may be

unsuitable to future control strategies. Modal decomposition is a convenient and use-

ful form of analysis for simulating PDEs by considering the most important system

modes [95]. In this way, a reduced-order nonlinear state space system may be ob-

tained. This form of analysis is possible when spatial operators have a real discrete

spectrum of eigenvalues. It is not the case for the convection term spatial opera-

tor which has, in its regular form, a complex spectrum of eigenvalues [60]. On the

other hand, this is the case for the diffusion term spatial operator. Modal analysis

of the parabolic PDE biofilter model may therefore be considered. The Laplacian

decomposition is a very useful technique to analyse the system modes. However, this

decomposition is only suitable if there is no convection term. Another classical tech-

nique to analyse the system modes is the proper orthogonal decomposition method

which has shown to be efficient for PDE systems with non-homogeneous boundary

conditions and convection term [85], such as the parabolic PDE system describing

the denitrification reactor.

In this chapter, the method of lines, the method of characteristics and the modal

analysis are investigated and their application to simulate the denitrification reactor

is presented. First, the method of lines is used to solve the hyperbolic model approx-

imating the spatial derivatives by the finite difference method. Then, the parabolic

model is solved by the same method but now, the spatial derivatives are approximated

by the finite element method. The spatial approximation matrices resulting from the

finite element method will be used later to solve an eigenproblem, by approximating

both the integral and the differential terms by FEM matrices in the modal analysis.

Following, the method of characteristics is used to solve the hyperbolic model, result-

ing in a set of difference equations. Finally, a modal analysis of the parabolic model

is performed to simulate the denitrification biofilter using only the most important
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modes.

3.2 Method of lines

The method of lines (MOL) is a general technique to numerically solve PDEs. The

idea behind this method is the substitution of derivatives with respect to the space

variable by an approximation using either finite difference or finite element relation-

ships and numerical integration with respect to time of the resulting semi-discrete

ODE system (discrete in space - continuous in time). In this way, the method of lines

may be applied both to hyperbolic and to parabolic PDEs [95].

In order to exemplify the method of lines, the finite difference approach is used

to numerically solve the hyperbolic PDE system and the finite element approach

is used to numerically solve the parabolic one. The spatial approximation matrices

resulting from the finite element method will be used later to compute the eigenvectors

associated to the PDE system in order to derive its modes and then, to reduce the

order of the ODE system to integrate.

3.2.1 The finite difference approximation

The finite difference technique consists in replacing the spatial derivatives appearing

in the PDE by finite difference approximations. The most basic approach uses a finite

difference based only on values of each state variable at a number of points close to

the discretization points and the standard definition of the derivative. Further, Taylor

series may also be used to derive an appropriate finite difference formula, using the

method of undetermined coefficients. For example, the spatial variation of the nitrate

concentration (SNO3(z)), may be approximated by a Taylor series [42] with respect

to z as:

SNO3(z) = a0 + a1(z − zi) + a2(z − zi)2 + a3(z − zi)3 + . . . (3.1)

where zi is a value of z to be specified and a0, a1, a2, a3, . . . are constants to be
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determined.

To determine the first constant, let z = zi and immediately it is obtained a0 =

SNO3(zi). Next, by differentiating equation (3.1) with respect to z:

dSNO3(z)

dz
= a1 + 2a2(z − zi) + 3a3(z − zi)2 + . . .

from which, with z = zi, it is obtained the second constant a1 =
dSNO3

(zi)

dz
. Successive

differentiations, followed by setting z = zi, give a2 = 1
2!

d2SNO3
(zi)

dz2
, a3 = 1

3!

d3SNO3
(zi)

dz3
,

etc. In general:

an =
1

n!

dnSNO3(zi)

dzn
(3.2)

By replacing (3.2) into (3.1) it is obtained the following Taylor series:

SNO3(z) =
∞∑
n=0

1

n!

dnSNO3(zi)

dzn
(z − zi)n (3.3)

The spatial first derivative of SNO3(zi, t) is then approximated by an algebraic

formula of dSNO3(zi)/dz:

The most basic spatial approximation uses two points, for example:

dSNO3(zi)

dz
=
SNO3(zi)− SNO3(zi−1)

∆z

However, in order to obtain a good approximation of the state variables, a larger

number of points on the spatial grid are generally used to build the spatial first

derivative. In particular, four-order finite difference approximation is classically used,

in which the values of SNO3(z, t) at five points zi−2, zi−1, zi, zi+1 and zi+2 into the

spatial grid are used. By considering the same interval ∆z between any two succesive

points, Taylor series (3.3) for grid points i−2, i−1, i+1 and i+2 are then rewritten

as [71]:
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SNO3(zi−2) = SNO3(zi) +

(
dSNO3(zi)

dz

)
(−2∆z) +

1

2!

(
d2SNO3(zi)

dz2

)
(−2∆z)2 + . . .

(3.4)

SNO3(zi−1) = SNO3(zi)+

(
dSNO3(zi)

dz

)
(−∆z)+

1

2!

(
d2SNO3(zi)

dz2

)
(−∆z)2 + . . . (3.5)

SNO3(zi+1) = SNO3(zi) +

(
dSNO3(zi)

dz

)
(∆z) +

1

2!

(
d2SNO3(zi)

dz2

)
(∆z)2 + . . . (3.6)

SNO3(zi+2) = SNO3(zi) +

(
dSNO3(zi)

dz

)
(2∆z) +

1

2!

(
d2SNO3(zi)

dz2

)
(2∆z)2 + . . . (3.7)

Now, a linear combination of equations (3.4)-(3.7) is taken so as to keep the

derivative of interest, dSNO3(zi)/dz, and drop as many of the higher derivative terms

as possible.

If equation (3.4) is multiplied by a constant a, equation (3.5) by a constant b,

equation (3.6) by a constant c and equation (3.7) by a constant d, and using the sum

of the resulting equations, the first derivative term, dSNO3(zi)/dz, may be retained

by imposing the condition:

−2a− b+ c+ 2d = 1 (3.8)

The equality of equation (3.8) ensures that when equations (3.4)-(3.7) are added

with the values a, b, c and d, still to be determined, the first derivative term re-

mains. Similary, in order to eliminate the second derivative term, d2SNO3(zi)/dz
2,

the following condition may be imposed:
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4a+ b+ c+ 4d = 0 (3.9)

The equality of equation (3.9) ensures that when equations (3.4)-(3.7) are added

with the values a, b, c and d, still to be determined, the second derivative term is

eliminated.

In the same way, to eliminate the third- and fourth-order derivative terms the

following conditions may be imposed:

−8a− b+ c+ 8d = 0 (3.10)

16a+ b+ c+ 16d = 0 (3.11)

The set of equations (3.8)-(3.11) gives a unique solution for a, b, c and d. The

sum of equations (3.4)-(3.7) with their respective coefficients a − d, allows to finally

compute:

dSNO3(zi)

dz
=

(
1

12∆z

)
(SNO3(zi−2)− 8SNO3(zi−1) + 0SNO3(zi) + 8SNO3(zi+1)

−SNO3(zi+2)) +O(∆z4)

(3.12)

Equation (3.12) is a central difference approximation since values of SNO3(z) lo-

cated symmetrically around SNO3(zi) are used to calculate dSNO3(zi)/dz. However,

equation (3.12) cannot be applied at grid points i = 1, 2 because SNO3(z−1) and

SNO3(z0) would be required; similary, equation (3.12) cannot be applied at grid points

i = N − 1, N because SNO3(zN+1) and SNO3(zN+2) would be required.

To obtain an approximation for dSNO3(z1)/dz Taylor series for SNO3(z2), SNO3(z3),

SNO3(z4) and SNO3(z5) are used, with respective multiplicative coefficients a, b, c and

d.

A similar procedure is applied to calculate the new coefficients a, b, c and d
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which will allow to compute dSNO3(z1)/dz. They are solution of the following set of

equations:

a+ 2b+ 3c+ 4d = 1

a+ 4b+ 9c+ 16d = 0

a+ 8b+ 27c+ 64d = 0

a+ 16b+ 81c+ 256d = 0

(3.13)

The first derivative term dSNO3(z1)/dz is then computed as:

dSNO3(z1)

dz
=

(
1

12∆z

)
(−25SNO3(z1) + 48SNO3(z2)− 36SNO3(z3) + 16SNO3(z4)

−3SNO3(z5)) +O(∆z4)

(3.14)

Similarly, for an approximation of dSNO3(z2)/dz, four Taylor series for SNO3(z1),

SNO3(z3), SNO3(z4) and SNO3(z5) are used, resulting in parameters a, b, c and d

solution to:

−a+ b+ 2c+ 3d = 1

a+ b+ 4c+ 9d = 0

−a+ b+ 8c+ 27d = 0

a+ b+ 16c+ 81d = 0

(3.15)

which are used to compute the first derivative term dSNO3(z2)/dz as:

dSNO3(z2)

dz
=

(
1

12∆z

)
(−3SNO3(z1)− 10SNO3(z2) + 18SNO3(z3)− 6SNO3(z4)

+SNO3(z5)) +O(∆z4)

(3.16)

For an approximation of dSNO3(zN−1)/dz, four Taylor series for SNO3(zN−4),

SNO3(zN−3), SNO3(zN−2) and SNO3(zN) are used and, with the respective multiplica-

tive coefficients a, b, c and d solution to:
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−3a− 2b− c+ d = 1

9a+ 4b+ c+ d = 0

−27a− 8b− c+ d = 0

81a+ 16b+ c+ d = 0

(3.17)

the first derivative term dSNO3(zN−1)/dz is computed as:

dSNO3(zN−1)

dz
=

(
1

12∆z

)
(−SNO3(zN−4) + 6SNO3(zN−3)− 18SNO3(zN−2) + 10SNO3(zN−1)

+3SNO3(zN)) +O(∆z4)

(3.18)

Finally, for an approximation of dSNO3(zN)/dz, four Taylor series for SNO3(zN−4),

SNO3(zN−3), SNO3(zN−2) and SNO3(zN−1) are used and, with the respective multi-

plicative coefficients a, b, c and d solution to:

−4a− 3b− 2c− d = 1

16a+ 9b+ 4c+ d = 0

−64a− 27b− 8c− d = 0

256a+ 81b+ 16c+ d = 0

(3.19)

the first derivative term dSNO3(zN)/dz is computed as:

dSNO3(zN)

dz
=

(
1

12∆z

)
(3SNO3(zN−4)− 16SNO3(zN−3) + 36SNO3(zN−2)− 48SNO3(zN−1)

+25SNO3(zN)) +O(∆z4)

(3.20)

Equations (3.12), (3.14), (3.16), (3.18) and (3.20) may be summarized in terms of

a differentiation matrix as:

dx1

dz
= Dzx1 (3.21)

where Dz ∈ RN×N is a matrix with the coefficients resulting from the application of

64



the fourth-order finite differences method (FDM). The vector x1 ∈ RN is the space

discretized nitrate concentration. The same discretization is performed for the nitrite

and the ethanol to obtain spatial derivative approximations as:

dx2

dz
= Dzx2 (3.22)

dx3

dz
= Dzx3 (3.23)

where x2 is the space discretized nitrite concentration and x3 is the space discretized

ethanol concentration.

These spatial discretizations are then used to numerically solve the hyperbolic

PDE model, with N points uniformly distributed throughout the reactor. The result-

ing system, with space discretized state variable xi ∈ RN (i = 1, 2, 3), can be solved

by a finite procedure 1:

dx1(t)

dt
= −v

ε
Dzx1(t)− 1− Yh1

1.14Yh1ε
µ1(x1, x3)Xamax (3.24)

dx2(t)

dt
= −v

ε
Dzx2(t) +

1− Yh1

1.14Yh1ε
µ1(x1, x3)Xamax −

1− Yh2

1.71Yh2ε
µ2(x2, x3)Xamax (3.25)

dx3(t)

dt
= −v

ε
Dzx3(t)− 1

Yh1ε
µ1(x1, x3)Xamax −

1

Yh2ε
µ2(x2, x3)Xamax (3.26)

Figure 3-1 shows the time evolution of the concentrations of nitrate (2-4a), ni-

trite (2-4c) and ethanol (2-4e) at only six positions along the reactor (input, 42cm.,

84cm., 126cm., 168cm. and output) to improve clarity. The hyperbolic model is spa-

tially discretized with 50 intervals (N = 51 in solid blue), with 100 intervals (N = 101

in dashed red), with 150 intervals (N = 151 in pointed black) and with 200 inter-

1µ1(x1, x3) and µ2(x2, x3) now represent a vector of dimension N .
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(a) NO3 solution. (b) NO2 solution.

(c) SC solution.

Figure 3-1: Time and space (at six positions) evolution of the hyperbolic PDE system
using MOL-FDM.

vals (N = 201 in pointed-dashed cyan) using the method of lines and derivatives

approximated by the four-order finite difference method described above.

It can be observed in figure 3-1 that the time and space evolution of the state

variables depends on the number of discretization points. However, it is observed

that the time and space evolution are so close with 150 and 200 intervals, that is,

N = 151 may be considered as a sufficient number of discretization points to simulate

the PDE system describing the denitrification biofilter. Such a behavior has also

been observed in other simulation conditions and with the Finite Element Method

(see section 3.2.2). It explains why the simulations presented in chapter 2 considered
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150 intervals, and why the remaining of this document considers 150 intervals for the

simulations.

It must be pointed out that this strategy may be used on the parabolic PDE

model of the denitrification reactor (as shown in chapter 2). In that case, the second

derivative term ∂2SNO3(z, t)/∂z
2 must also be approximated, in a similar way, by new

algebraic formulas computed from Taylor series.

3.2.2 The finite element approximation

Another technique to approximate spatial derivatives is the finite element method

(FEM), which allows, in addition, to approximate spatial integrals by matrix opera-

tions. It is presented and illustrated in this section with the parabolic PDE model of

the denitrification biofilter.

Let us consider the vector S = [SNO3 SNO2 SC ]T = [S1 S2 S3]T . Each state

variable Si(z, t) may be expanded in a Fourier series of the form:

Si(z, t) =
∞∑
j=1

rji (t)ϕ
j
i (z) (3.27)

where Φi =
{
ϕji (z)

}∞
j=1

forms an orthonormal basis on a Hilbert space L2 [85].

The state variable Si(z, t) is then approximated by truncating the series (3.27) as:

S̃i(z, t) =
N∑
j=1

rji (t)ϕ
j
i (z) (3.28)

Because S̃i is an approximation, by replacing it into (2.21) a residual is obtained

as:

Ri(z, t) =
∂S̃i
∂t
−Df

∂2S̃i
∂z2

+
v

ε

∂S̃i
∂z
− hi(S̃) (3.29)

In FEM, such as in other methods of weighted residuals (MWR), Ri(z, t) must be

made zero, thus:
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∫
V
Ri(z, t)ψ

j
i (z)dz = 0 (3.30)

where Ψi =
{
ψji (z)

}N
j=1

are the weighting functions to be chosen [60].

The choice of the weighting functions leads to several criteria. In this work the

Galerkin’s method is considered, in which, the weighting functions ψji coincide with

the basis functions ϕji which form a complete set for the N dimensional subspace

where the approximated solution is found. This has the advantage that the residual

is made orthogonal to each basis function and is, therefore, the best solution possible

in the space made up of the N functions ϕji (z) [85].

The finite element formulation of a PDE problem is obtained through a number of

steps (see [94] for details). Firstly, the spatial domain of (2.21) must be divided into

N finite discrete elements (finite element mesh), so as to define a basis set. Secondly,

the system (2.21) is represented in a new mathematical representation called the weak

form derived by multiplying it by an arbitrary test function ψi and integrating the

result over the spatial domain. Thus, from (3.29) and (3.30):

∫
V
ψi
∂Si
∂t

dz +
v

ε

∫
V
ψi
∂Si
∂z

dz = Df

∫
V
ψi
∂2Si
∂z2

dz +

∫
V
ψihi(S)dz (3.31)

By using the Green’s first identity, the first term of the right hand size of equation

(3.31) may be expressed as:

Df

∫
V
ψi
∂2Si
∂z2

dz = Df

∫
B
ψi
∂Si
∂z

dz −Df

∫
V

∂ψi
∂z

∂Si
∂z

dz (3.32)

where B is the boundary of the spatial domain V . By sustituting the last equation

into (3.31) it is obtained:

∫
V
ψi
∂Si
∂t

dz +
v

ε

∫
V
ψi
∂Si
∂z

dz +Df

∫
V

∂ψi
∂z

∂Si
∂z

dz = Df

∫
B
ψi
∂Si
∂z

dz +

∫
V
ψihi(S)dz

(3.33)
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and by introducing the boundary conditions (2.9)-(2.11) into the previous equation,

it is obtained:

∫
V
ψi
∂Si
∂t

dz +
v

ε

∫
V
ψi
∂Si
∂z

dz +Df

∫
V

∂ψi
∂z

∂Si
∂z

dz +
v

ε

∫
B
ψiSidz

=
v

ε

∫
B
ψiSindz +

∫
V
ψihi(S)dz

(3.34)

Thirdly, Si(z, t) is approximated using (3.28) and because the FEM is based on

the Galerkin approach the test functions ψi are choosen so as to coincide with the

basis functions ϕi. In this way, the following set of N equations is obtained:

∫
V
ϕki (z)

∂
∑N

j=1 r
j
i (t)ϕ

j
i (z)

∂t
dz +

v

ε

∫
V
ϕki (z)

∂
∑N

j=1 r
j
i (t)ϕ

j
i (z)

∂z
dz

+Df

∫
V

∂ϕki (z)

∂z

∂
∑N

j=1 r
j
i (t)ϕ

j
i (z)

∂z
dz +

v

ε

∫
B
ϕki (z)

N∑
j=1

rji (t)ϕ
j
i (z)dz

=
v

ε

∫
B
ϕki (z)Sindz +

∫
V
ϕki (z)hi(S)dz

(3.35)

for k = 1, 2, . . . , N . In a more compact form, the last equation may be rewritten as:

N∑
j=1

Mkj
Mi

∂rji (t)

∂t
+

N∑
j=1

(v
ε
Mkj

Ci +DfM
kj
Di +

v

ε
Mkj

Bi

)
rji (t) =

v

ε
Gk
i +Hk

i (3.36)

where the matrices in the former expression are:

Mkj
Mi =

∫
V
ϕki (z)ϕji (z)dz (3.37)

Mkj
Ci =

∫
V
ϕki (z)

∂ϕji (z)

∂z
dz (3.38)

Mkj
Di =

∫
V

∂ϕki (z)

∂z

∂ϕji (z)

∂z
dz (3.39)
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Mkj
Bi =

∫
B
ϕki (z)ϕji (z)dz (3.40)

Gk
i =

∫
B
ϕki (z)Sindz (3.41)

Hk
i =

∫
V
ϕki (z)hi(S)dz (3.42)

In the FEM, the basis functions ϕi are selected to be algebraic polynomials. In

general the higher is the order of the polynomial, the better is the approximation.

However, it also produces a larger number of equations. For simplicity, the value of

ϕ is often taken as the unity on one node of an element V and zero on the others (see

figure 3-2) [85].

ϕki (ξj) =

 1 if k = j

0 if k 6= j
(3.43)

Figure 3-2: Typical basis function of the FEM. The white circles represent the element

nodes. (a) 1D domains and first order polynomials and (b) 1D domains and second

order polynomials.

Thus, with the application of the finite element method, the following matrices

are obtained: the mass matrix MMi ∈ RN×N , the convection matrix MCi ∈ RN×N ,

the diffusion matrix MDi ∈ RN×N and the boundary conditions matrix MBi ∈ RN×N

to approximate the spatial derivatives like:
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v

ε

∂

∂z
=
v

ε
M−1

MiMCi

Df
∂2

∂z2
= −M−1

Mi

(
DfMDi +

v

ε
MBi

)
Therefore, the following semi-discrete ODE system is obtained for each spatially

discretized state variable xi ∈ RN , defined as in subsection 3.2.1:

dxi(t)

dt
= −M−1

Mi(DfMDi +
v

ε
(MCi +MBi))xi +

v

ε
M−1

MiGi(xi,in) + hi(x) (3.44)

for i = 1, 2, 3. The resulting system of semi-discrete ODEs is then integrated in time

to compute the final solution.

Remark 5 MBi involves information about the homogeneous part of the Robin bound-

ary conditions (2.9)-(2.11) and the Gi(xi,in) vector contains information about the

non-homogeneous part, specifically in its first element (the element at the boundary

z = 0).

Figure 3-3 shows the time evolution of the concentration of nitrate (3-3a), nitrite

(3-3b) and ethanol (3-3c) issued from (2.1)-(2.3). The finite element method described

above is applied with N = 151 discretization points uniformly distributed along the

reactor. For greater clarity, the figures show only the time evolution at the same six

positions along the reactor as in the section 3.2.1.

It can be observed when comparing figure 2-4 (simulations using MOL-FDM) and

figure 3-3 (simulations using MOL-FEM) that the time and space evolution of the

parabolic PDE system is exactly the same for both discretization approaches.
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(a) NO3 solution. (b) NO2 solution.

(c) SC solution.

Figure 3-3: Time and space (at six positions) evolution of the parabolic PDE system
using MOL-FEM.
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3.3 Method of characteristics

The hyperbolic model is a quasilinear PDE system. It can then be transformed,

through the method of characteristics (MOC), into a set of ODEs that defines the

characteristics and a set of ODEs describing how the solution changes along any

specific characteristic [95].

The nitrate hyperbolic equation has been previously given by:

∂SNO3(z, t)

∂t
+
v

ε

∂SNO3(z, t)

∂z
= − 1− Yh1

1.14Yh1ε
µ1(SNO3(z, t), SC(z, t))Xamax (3.45)

If SNO3(z, t) is differentiated with respect to the variable r, then one obtains:

dSNO3

dr
=
∂SNO3

∂z

dz

dr
+
∂SNO3

∂t

dt

dr
=
dt

dr

∂SNO3

∂t
+
dz

dr

∂SNO3

∂z
(3.46)

By comparing (3.45) and (3.46), it can be observed that:

dt

dr
= 1 (3.47)

dz

dr
=
v

ε
(3.48)

By solving (3.47) and (3.48), with r = t, it may be concluded that:

z =
1

ε

∫ t

0

v(τ)dτ + z0 (3.49)

dSNO3(z, t)

dt
= − 1− Yh1

1.14Yh1ε
µ1(SNO3(z, t), SC(z, t))Xamax (3.50)

Therefore, the solution to (3.50) along a characteristic curve defined by (3.49) may

be found. The repeated solution of (3.50) at different values of z0 will give the entire

solution for the original PDE equation [60].

In the same way, one can express for the nitrite and the ethanol their time evolution
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as:

dSNO2(z, t)

dt
=

1− Yh1

1.14Yh1ε
µ1(SNO3(z, t), SC(z, t))Xamax

− 1− Yh2

1.71Yh2ε
µ2(SNO2(z, t), SC(z, t))Xamax

(3.51)

dSC(z, t)

dt
=− 1

Yh1ε
µ1(SNO3(z, t), SC(z, t))Xamax

− 1

Yh2ε
µ2(SNO2(z, t), SC(z, t))Xamax

(3.52)

along the characteristic curve (3.49).

Equations (3.50)-(3.52) can also be written in the state-space representation form,

which is suitable for the simulation and application of a broad variety of control

algorithms.

First, let us define the constants:

a =
(1− Yh1)ngµNO3max

1.14Yh1ε

b =
(1− Yh2)ngµNO2max

1.71Yh2ε

c = −
ngµNO3max

Yh1ε

d = −
ngµNO2max

Yh2ε

e = ngµNO3max

f = ngµNO2max

and the functions:
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fS1(SNO3) =
SNO3

SNO3 +KNO3

fS2(SNO2) =
SNO2

SNO2 +KNO2

fS3(SC) =
SC

SC +KC

Therefore, equations (3.50), (3.51) and (3.52) are rewritten as:

ṠNO3 = −afS1fS3Xamax (3.53)

ṠNO2 = afS1fS3Xamax − bfS2fS3Xamax (3.54)

ṠC = cfS1fS3Xa + dfS2fS3Xamax (3.55)

The system (3.53)-(3.55) is numerically solved by approximating the differentials

by finite differences to obtain [52]:

∆SNO3 = −aTfS1fS3Xamax (3.56)

∆SNO2 = aTfS1fS3Xamax − bTfS2fS3Xamax (3.57)

∆SC = cTfS1fS3Xamax + dTfS2fS3Xamax (3.58)

where T is the sample period.

In general, the solution of (3.49) is not a linear equation and steps in space are

not the same as those ones in time, as shown in figure 3-4. For sufficiently small T ,

the characteristic curve C can be approximated by line segments between kT and
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(k + 1)T as shown in figure 3-4. It is then easy to see that 2:

SNO3(j, k + 1)− SNO3(j − ψ, k) = −aTfS1(j − ψ, k)fS3(j − ψ, k)Xamax (3.59)

SNO2(j, k + 1)− SNO2(j − ψ, k) =aTfS1(j − ψ, k)fS3(j − ψ, k)Xamax

− bTfS2(j − ψ, k)fS3(j − ψ, k)Xamax

(3.60)

SC(j, k + 1)− SC(j − ψ, k) =cTfS1(j − ψ, k)fS3(j − ψ, k)Xamax

+ dTfS2(j − ψ, k)fS3(j − ψ, k)Xamax

(3.61)

for k ≥ 0 and 0 ≤ j ≤ N − 1.

Figure 3-4: Illustration of the characteristic curve.

By linear interpolation [48], SNO3 can be calculated as:

2The classical abusive notation SNO3(j, k) is used instead of SNO3(j∆z, kT ) to simplify the
equations which follow.
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SNO3(z, k)− SNO3(j, k) =

(
SNO3(j − 1, k)− SNO3(j, k)

(j − 1)∆z − j∆z

)
(z − zj)

=
(SNO3(j − 1, k)− SNO3(j, k))(z − zj)

−∆z

(3.62)

If T is sufficiently small, v(t) may be considered to remain constant between kT

and (k+ 1)T . A solution to (3.49) for each segment between kT and (k+ 1)T is then

obtained as:

z − j∆z =
v(k)

ε
(t− kT − T )

If z = (j − ψ)∆z, then:

(j − ψ)∆z − j∆z =
v(k)

ε
(kT − kT − T ) = −v(k)

ε
T

Therefore, from (3.62), relation above and by replacing SNO3(z, k) = SNO3(j −

ψ, k), we have:

SNO3(j − ψ, k) = SNO3(j, k) +

(
v(k)T

∆zε

)
(SNO3(j − 1, k)− SNO3(j, k))

Let us consider γ(k) = v(k)T
∆zε

. By developing the equation above, it is obtained:

SNO3(j − ψ, k) = γ(k)SNO3(j − 1, k) + (1− γ(k))SNO3(j, k) (3.63)

In the same way, similar expresions to compute SNO2(j − ψ, k), SC(j − ψ, k),

fS1(j − ψ, k), fS2(j − ψ, k) and fS3(j − ψ, k) may be obtained.

Let us define the space discretized state variable xi ∈ RN (i = 1, 2, 3) as in

subsection 3.2.1. By using (3.63) and the others similar expresions into (3.59)-(3.61),

it is obtained:
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x1(j, k + 1) =[γ(k)x1(j − 1, k) + (1− γ(k))x1(j, k)]

− aT [γ(k)fS1(j − 1, k) + (1− γ(k))fS1(j, k)]

[γ(k)fS3(j − 1, k) + (1− γ(k))fS3(j, k)]Xamax

(3.64)

x2(j, k + 1) =[γ(k)x2(j − 1, k) + (1− γ(k))x2(j, k)]

+ aT [γ(k)fS1(j − 1, k) + (1− γ(k))fS1(j, k)]

[γ(k)fS3(j − 1, k) + (1− γ(k))fS3(j, k)]Xamax

− bT [γ(k)fS2(j − 1, k) + (1− γ(k))fS2(j, k)]

[γ(k)fS3(j − 1, k) + (1− γ(k))fS3(j, k)]Xamax

(3.65)

x3(j, k + 1) =[γ(k)x3(j − 1, k) + (1− γ(k))x3(j, k)]

+ cT [γ(k)fS1(j − 1, k) + (1− γ(k))fS1(j, k)]

[γ(k)fS3(j − 1, k) + (1− γ(k))fS3(j, k)]Xamax

+ dT [γ(k)fS2(j − 1, k) + (1− γ(k))fS2(j, k)]

[γ(k)fS3(j − 1, k) + (1− γ(k))fS3(j, k)]Xamax

(3.66)

for 2 ≤ j ≤ N .

Furthermore, by considering boundary conditions, it is obtained:

x1(1, k + 1) =[γ(k)x1,in(k) + (1− γ(k))x1(1, k)]

− aT [γ(k)fS1,in(k) + (1− γ(k))fS1(1, k)]

[γ(k)fS3,in(k) + (1− γ(k))fS3(1, k)][(1− γ(k))Xamax]

(3.67)
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x2(1, k + 1) =[γ(k)x2,in(k) + (1− γ(k))x2(1, k)]

+ aT [γ(k)fS1,in(k) + (1− γ(k))fS1(1, k)]

[γ(k)fS3,in(k) + (1− γ(k))fS3(1, k)][(1− γ(k))Xamax]

− bT [γ(k)fS2,in(k) + (1− γ(k))fS2(1, k)]

[γ(k)fS3,in(k) + (1− γ(k))fS3(1, k)][(1− γ(k))Xamax]

(3.68)

x3(1, k + 1) =[γ(k)x3,in(k) + (1− γ(k))x3(1, k)]

+ cT [γ(k)fS1,in(k) + (1− γ(k))fS1(1, k)]

[γ(k)fS3,in(k) + (1− γ(k))fS3(1, k)][(1− γ(k))Xamax]

+ dT [γ(k)fS2,in(k) + (1− γ(k))fS2(1, k)]

[γ(k)fS3,in(k) + (1− γ(k))fS3(1, k)][(1− γ(k))Xamax]

(3.69)

Figure 3-5 shows the time evolution of the concentration of nitrate (3-5a), nitrite

(3-5b) and ethanol (3-5c), solution to the hyperbolic PDE system describing the

biofilter, for N = 151 by using the method of characteristics. For greater clarity, the

figures show only the solution at the same six positions along the reactor as in section

3.2.1.

When the same hyperbolic PDE biofilter model is considered, the space and time

evolution of the system dynamics simulated with the method of characteristics shows,

as expected, the same behavior like that one obtained using the method of lines (figure

3-1). Note however that, by using the method of lines an ODE system to integrate is

obtained and by using the method of characteristics a difference equation system is

obtained. Unfortunately, this method cannot be applied to parabolic PDEs because

their form is not suitable for separating them in a new ODE and its characteristic

curve.
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(a) NO3 solution. (b) NO2 solution.

(c) SC solution.

Figure 3-5: Time and space (at six locations) evolution of the hyperbolic PDE system
using MOC.
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3.4 Proper orthogonal decomposition method

In many cases, especially in highly nonlinear systems, in order to obtain a good

precision of the simulation, the method of lines induces a high order semi-discrete

ODE system, which may be unsuitable for future use in control design strategies [85].

Modal decomposition is then a convenient and useful form of analysis for solving

PDEs. This form of analysis is however possible only when PDEs have a spatial

operator which can be made self-adjoint and which have a real discrete spectrum of

eigenvalues [60]. This is generally the case for parabolic PDE systems.

Again, let us consider the vector S = [SNO3 SNO2 SC ]T = [S1 S2 S3]T . The state

variable Sξi(ξ, t) : RN×T → R, where T being the semiopen time interval [0,∞), may

be expanded in a truncated Fourier series (as in FEM, but now the basis functions

will be different), thus:

Sξi(ξ, t) ≈
Nm∑
j=1

φji (ξ)m
j
i (t) ; i = 1, 2, 3 (3.70)

where {φji (ξ)}
Nm
j=1 is a set of functions to be determined off-line and {mj

i (t)}
Nm
j=1 is a

set of functions to be computed from a reduced order ODE system.

In this section a modal analysis is used in order to transform the PDEs (2.1)-(2.3)

into a reduced order ODE system using the proper orthogonal decomposition (POD)

method [74], [8]. The method was first proposed both in [38] and in [46] independently,

this is why this technique is also called as Karhunen-Loeve (K-L) expansion. It has

shown to be efficient in PDE systems with non-homogeneous boundary conditions

and convection term [85]. The power of POD method lies in the fact that it creates

problem oriented basis funtions, which leads to a very low dimensional representation

of the PDE systems with high accuracy [53].

In the POD method, a set of basis functions are computed as those which minimize

the distance between a set of measurements of the system (snapshots) and the sub-

space built with such basis. The solution of this optimization leads to the following
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eigenvalue problem [74]:

φi(ξ) = λi

∫
V
Ki(ξ, ξT )φi(ξ

T )dξT (3.71)

where the kernel Ki is defined, in its discrete version, as:

Ki =
1

kf

kf∑
k=1

Xi(k)Xi(k)T (3.72)

Xi ∈ RN are measurements of the original state variable Si(z, t) at a finite number

N > Nm of spatial points and at a specific time tk [85].

The FEM mass matrix MMi (defined and used in section 3.2.2) can be also em-

ployed for approximating spatial integrals by algebraic operations (see [94] for de-

tails). In this way, the eigenproblem (3.71) may be approximated to compute a

matrix Φi = [φ1
i φ

2
i . . . φ

Nm
i ] ∈ RN×Nm as:

Φi = ΛiKiMMiΦi (3.73)

with Ki constructed as in (3.72). The eigenvectors contain the spatial information

of the solution (3.70). In order to be able to reconstruct the solution, the modes mi

(time information) have to be computed. To that purpose, the spatially discretized

state variable xi ∈ RN , defined as in subsection 3.2.1, are approximated by using

Fourier series (3.70), the matrix of eigenvectors Φi and the modes mi as:

xi(t) = Φi(ξ)mi(t) (3.74)

In addition, let us define a spatial projection operator as Pi = ΦT
i MMi. Ap-

plying this operator to (3.44) and because the set of eigenvectors forms a complete

orthonormal basis set [85], the following equation system is obtained:

dmi(t)
dt

= −ΦT
i (DfMDi +

v

ε
(MT i +MBi))Φimi(t) + Pi

(v
ε
M−1
MiGi(xi,in) + hi(x)

)
(3.75)
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where mi = [m1
i m

2
i . . . mNm

i ] ∈ RNM are the time dependent modes of xi, for

i = 1, 2, 3.

It is important to point out that the number of discretization points N has no

significant influence both on the number of modes (Nm) which will be kept after

reduction and on their values. Thus, a state space model may be obtained using

only a small number N of discretization points and it will allow to build an almost

identical modal system as that one (more realistic) which would be obtained by using

a higher number of discretization points.

Figure 3-6 shows the modes related to nitrate, nitrite and ethanol, computed for

N = 151 discretization points by using the proper orthogonal decomposition described

above. The first six modes are the most important because the remaining ones evolve

so fast to zero that their contribution to the solution may be neglected.

Figure 3-7 shows the time and space (at six location points) of the original

parabolic PDEs (2.1)-(2.3) computed by (3.74) using the first six modes Nm = 6.

As expected, the solution is very similar to that one obtained by using FEM (see

figure 3-3). It must be pointed out that the FEM simulation of section 3.2.2 imposed

the integration of a 3N = 3 × 151 vector field when the POD one only needs the

integration of a 3Nm = 3× 6 vector field.

3.5 Conclusion

This chapter was devoted to the simulation of the denitrification reactor. As men-

tioned in chapter 2, the PDEs describing the reactor may be either parabolic if the

diffusion phenomenon is considered or hyperbolic if it is neglected.

From the PDE characteristics, the numerical solution method may be selected.

Table 3.1 shows a comparative issue about the different methods used here to simulate

the reactor model. As previously mentioned, the method of lines is a very general
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(a) NO3 modes. (b) NO2 modes.

(c) SC modes.

Figure 3-6: Modes of the parabolic system computed using POD.
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(a) NO3 solution. (b) NO2 solution.

(c) SC solution.

Figure 3-7: Time and space (at six locations) evolution of the parabolic PDE system
using POD.
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Method Parabolic PDEs Hyperbolic PDEs
Method of lines-FDM Yes Yes
Method of lines-FEM Yes Yes
Method of characteristics No Yes
Proper orthogonal decomposition Yes If real eigenvalues

Table 3.1: Comparative table about the methods to numerically solve PDEs.

method to solve PDEs. Indeed, one can discretize the space variable and then, use fi-

nite differences or finite elements to approximate the n-order spatial derivative terms.

On the other hand, the method of characteristics is a specific approach to solve

hyperbolic PDEs because they may be represented by a time-dependent ODE and a

characteristic curve which determines how the solution of the first ODE changes with

respect to the space.

Finally, the proper orthogonal decomposition may be used to simulate the parabolic

PDE model because it has a real discrete spectrum of eigenvalues. In this way, the

semi-discrete high-order ODE system obtained by the method of lines can be reduced

by considering only the most important modes of the system. This pleads for the use

of parabolics PDE description of the biofilter (i.e. including diffusion phenomenon)

instead of hyperbolic PDE description (which from a mathematical point of view,

looks simpler), since a low order description of the system may then be used in future

control strategies.

The boundary conditions affect the simulations, since they are not the same for the

parabolic and the hyperbolic models. Results are not the same even if the simulation

conditions are equal. As expected, in the hyperbolic model simulation, at the input it

is observed the value xi,in. On the other hand, in the parabolic model, at the input it is

observed the solution of the differential equation representing the boundary condition

at this position. This condition affects the results along the reactor in both models.

Next chapters will be devoted to the control and estimation of the denitrification

reactor. In the next chapter, we will use early lumping approaches to design state

feedback controllers and Luenberger observers, both for the hyperbolic and for the
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parabolic models. Then, in the last chapter, late lumping control strategies will be

investigated.
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Chapter 4

Early lumping approach techniques

4.1 Introduction

Following the spatial discretization approaches proposed in the previous chapter to

simulate a distributed parameter system, the control problem of the denitrification

process can be addressed. As mentioned in the problem statement, we are interested

in regulating the nitrate and the nitrite concentrations at the reactor output lower

than the european norm. From a biological point of view, it means that the nitrate

has to be consumed by the micro-organisms to produce nitrite and then, the nitrite

has to be consumed to produce gaseous nitrogen as much as possible, according to a

specific micro-organism metabolic path. From a control point of view, it means that

the energy of the perturbation at the reactor input SNO3,in has to be attenuated along

the reactor.

The H2 norm allows to measure the energy of a system [69], [93]. In this context,

H2 control techniques may be chosen as the control strategy to cope with the atten-

uation problem of the variations of influent nitrate (SNO3,in). The objective in this

chapter is therefore to synthesize feedback controllers in order to minimize the energy

of the transfer function defined between the perturbation at the reactor input and

the measured output. The control problem of the denitrification process has then to

be cast as a classical control problem of an ODE system after a preliminary spatial
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discretization of the original PDE system. Such control strategies are named early

lumping approaches.

In general, once a PDE system is described as a set of ODEs, any control strategy

may be applied. In this chapter we are interested with linear control approaches for

two main reasons:

• the first reason is that the original system is simplified when described by ODEs.

The transformation of the system may be continued through a linearization

around an operational steady state, which then allows to access the wide world

of linear control, in our case the H2 control.

• the second reason is yet related to the facility to understand and manipulate

linear control strategies. One hidden objective of this thesis is to reinforce the

interface between the control community and the process engineering commu-

nity. Linear control tools are rather standard tools, independent of the original

system form and may be described in a unified framework which could be ap-

plied to many other classes of biochemical process.

In this chapter, robust observer-based output feedback controllers are synthesized

both in their digital and in their continuous time versions by using the separation

principle. Those two cases are considered since the class (discrete-time or continuous-

time) of the ODE system depends on the spatial discretization approach.

The chapter is organized as follows. First, a preliminary background about H2

control techniques with main focus on Linear Matrix Inequalities (LMI) constraints

is presented. Next, a discrete-time form of the control law is employed to control the

denitrification process for the case where the hyperbolic PDE system is numerically

solved by the method of characteristics. Since we are interested in observer-based

output feedback controllers, the separation principle is then stated. The continuous-

time form of the control law follows from a modal analysis made over the parabolic

PDE system. A discusion about both case studies is provided in the conclusion of

the chapter.
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4.2 Background on H2 control and the LMI frame-

work

Linear Matrix Inequalities (LMI ) have been developed as a tool for control analysis

and synthesis based on the determination of Lyapunov funtionals. Such LMIs, as-

sociated with convex optimization algorithms, benefit from powerful numerical tools

[50], [27], [76], and friendly interfaces [27], [47]. A brief summary of the concepts used

in the sequel for the control of the biofilter are presented in this section.

The use of matrix inequalities to demonstrate certain properties of dynamical

systems takes its origin from the initial work on stability by Lyapunov who established

the well-known stability method and its direct representation in the linear case. By

taking advantages from quadratic Lyapunov stability and stabilization approaches,

later followed in the eigthies, with the apparition of associated numerical tools [9],

[13], several LMI -based optimization problems have been proposed. They deal with

additive disturbances [26], [36], parametric uncertainties [30], [51], but also non-linear

isolated elements [77], [33] or new classes of pseudo-linear systems (bilinear, hybrid,

etc.). The results are generally established for state feedback control, but many

extensions have been proposed for output feedback control [25], [54], observer-based

output feedback [70], [45], both in continuous-time and in dicrete-time context.

This brief summary only gives a very partial view of the numerous results produced

in this research area. In the sequel, we will be concerned with observer-based output

feedback control strategies, both for continuous-time and discrete-time systems.

4.2.1 Linear state space representation

Consider the non-linear system of the form:

δ[χ(τ)] = F (χ(τ), u(τ), w(τ)) ; χ(0) = χ0 (4.1)

with δ[χ(τ)] ≡ dχ(t)/dt, τ ≡ t, for continuous-time systems, and δ[χ(τ)] ≡ χ(k + 1),

91



τ ≡ k, for dicrete-time systems. F (χ, u, w) ∈ Rn is a vector of nonlinear functions,

χ(τ) ∈ Rn is a vector of state variables, u(τ) ∈ Rm is a vector of control inputs and

w(τ) ∈ Rq is a vector of disturbances.

System (4.1) is classicaly linearized by Taylor series developed around an operating

point formed by the vectors χ∗ ∈ Rn, u∗ ∈ Rm, w∗ ∈ Rq such that, for the discrete-

time case F (χ∗, u∗, w∗) = χ∗ and, for the continuous-time case F (χ∗, u∗, w∗) = 0

[64].

After linearization, system (4.1) may be rewritten in the classic state space form

as:

δ[χ̄(τ)] = Aχ̄(τ) +Buū(τ) +Bww̄(τ) ; χ(0) = χ0 (4.2)

where A ∈ Rn×n is the Jacobian matrix JF (χ,u,w)(χ), Bu ∈ Rn×m is the Jacobian

matrix JF (χ,u,w)(u) and Bw ∈ Rn×q is the Jacobian matrix JF (χ,u,w)(w). Furthermore,

χ̄ = χ− χ∗, ū = u− u∗ and w̄ = w − w∗.

In order to complete the linear state space representation of the system, the con-

trolled output z(τ) ∈ Rp is defined as:

z(τ) = Czχ̄(τ) +Dzū(τ) (4.3)

where Cz ∈ Rp×n and Dz ∈ Rp×m. On the other hand, the measured output ȳ(τ) ∈ Rl

is defined as:

ȳ(τ) = Cyχ̄(τ) (4.4)

where Cy ∈ Rl×n.

4.2.2 Nominal stability of linear systems

Let us first consider the linear autonomous system:
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δ[χ̄(τ)] = Aχ̄(τ) (4.5)

where A ∈ Rn×n. We are interested in investigating the stability of (4.5) at the

operating point χ∗. The positive definite quadratic function V : Rn → R defined by:

V (χ̄) = χ̄TP χ̄ (4.6)

for P = P T ∈ Rn×n, serves as a quadratic Lyapunov function.

For the continuous-time case, the derivative of V (χ̄) with respect to time, given

by:

V̇ (χ̄) = χ̄T [ATP + PA]χ̄ (4.7)

and for the discrete-time case, the difference Vk+1(χ)− Vk(χ) given by:

Vk+1(χ̄)− Vk(χ̄) = χ̄T [ATPA− P ]χ̄ (4.8)

have to be negative to guarantee that χ∗ is an asymptotically stable operating point

of (4.5) in the continuous-time and in the discrete-time cases, respectively.

Moreover, if the following LMIs :

P > 0

ATP + PA < 0
(4.9)

for the continuous-time case, or:

P > 0

ATPA− P < 0
(4.10)

for the discrete-time case, are feasible, then the operating point χ∗ of the nonlinear

system (4.1) is locally asymptotically stable [69]. By denoting W = P−1, conditions

(4.9) and (4.10) are equivalently written as:
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W > 0

WAT +AW < 0
(4.11)

for the continuous-time case, and:

W > 0 −W AW

WAT −W

 < 0
(4.12)

for the discrete-time case.

4.2.3 Stability regions for LTI systems

As well known, the autonomous linear system (4.5) is asymptotically stable if and only

if all the eigenvalues of A lie in the open left half complex plane for continuous-time

systems and inside the origin centered unit circle in the complex plane for discrete-

time systems. However, the system dynamics may be improved, in synthesis problems,

by placing the closed-loop poles into specific complex plane regions. In this context,

we are also interested in particular stability regions, often defined as D-stable regions

[16], [28].

Let us define a stability region as a subset D ⊆ C with the following two properties

[69]:

• λ ∈ D =⇒ λ̄ ∈ D;

• D is convex.

In addition to the general stability regions for continuous-time and discrete-time

systems described above, we are interested in three particular stability regions and

their LMI representation described by [16], [28]:

• The vertical strip D1 = {s ∈ C | Re(s) < −d}, with d ∈ R, represented by the

LMI :

AW +WAT + 2dW < 0 (4.13)
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• The disk centered at origin D2 = {s ∈ C | |s| < r}, with r ∈ R, represented by

the LMI :  −rW AW

WAT −rW

 < 0 (4.14)

• The intersection between the vertical strip and the disk centered at origin D3 =

D1 ∩ D2 shown in figure 4-1.

Figure 4-1: Stability region D3

4.2.4 H2 nominal performance

Let us now consider the system:

δ[χ̄(τ)] = Aχ̄(τ) +Bww̄(τ)

ζ = Cζ χ̄(τ)
(4.15)

where ζ ∈ Rnζ and Cζ ∈ Rnζ×n. In addition, its transfer function is defined as

T (ς) = Cζ(Iς − A)−1Bw, with ς ≡ s for the continuous-time case and ς ≡ z for

the discrete-time case. We wish to minimize the effect of the disturbance w on the

error indicator ζ. To do this, we consider the H2 norm of T (ς), which allows indeed
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to compute the total ’output energy’ in the impulse response of the system denoted

||T (ς)||2.

Proposition 1 [69] Suppose that the system (4.1) is asymptotically stable in χ∗ and

let T (ς) = Cζ(Iς−A)−1Bw denote its transfer function, then the following statements

are equivalent:

• ||T (ς)||2 < ρ, with ρ ∈ R.

• There exists W > 0 such that trace(CζWCTζ ) < ρ2 and the following LMI:

AW +WAT +BwB
T
w < 0 (4.16)

for the continuous-time case, or:

 −W AW

WAT −W +BwB
T
w

 < 0 (4.17)

for the discrete-time case, is feasible.

4.3 Digital observer-based output feedback linear

control

In this section, an observer-based dynamic output feedback controller for the den-

itrification reactor described by an hyperbolic PDE system is synthesized. First, a

state feedback control law is designed. Following, both a full-order observer and a

reduced-order observer are designed. Finally, by using the separation principle, the

state feedback controller is complemented with any of the observers. Different results

about the topics developed are presented in each subsection. The results presented

in this section were published in [79] and [80].

In chapter 3 the method of characteristics was used to solve the hyperbolic PDE
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system. The resulting equation system (3.64)-(3.66) represents a nonlinear state space

system of the form:

x(k + 1) = Fξ(x(k), ū(k), w̄(k)) ; x(0) = x0 (4.18)

where Fξ ∈ R3N is a vector of nonlinear functions constructed as:

Fξ(x(k), ū(k), w̄(k)) =
[
f 1
ξ1 f

1
ξ2 f

1
ξ3 . . . f

N
ξ1 f

N
ξ2 f

N
ξ3

]T
x ∈ R3N is the vector of state variables constructed as:

x =
[
x1

1 x
1
2 x

1
3 . . . x

N
1 xN2 xN3

]T
u ∈ Rm is the vector of control inputs and w ∈ Rq is the vector of external distur-

bances. After linearization around the operating point (x∗, u∗, w∗), (4.18) may be

rewritten in the classic state space form as:

x̄(k + 1) = Ax̄(k) +Buū(k) +Bww̄(k) (4.19)

In all the numerical applications provided in this section, the linear state space

model (4.19) is built with eleven discretization points (N = 11). It means that

one considers only a rough description of the original model to apply control and

observation strategies.

The control objective is to maintain the nitrogen concentration (nitrate + ni-

trite) at the reactor output around a constraint lower than the European norm

(5.65g[N ]/m3) while limiting as much as possible the activity of the controlled in-

put. In this study, the flow rate v(k) = F (k)/A is considered as the controlled input.

It means ū(k) = v(k) around a nominal regime determined by v = 4m/h with m = 1.

Remark 6 The controlled input could be either the flow rate v or the ethanol con-

centration at the reactor input SC,in [11]. The fundamental difference between these

two potential control inputs is that SC,in is present in the system through the boundary
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condition only. However, as soon as an early lumping approach is addressed, this does

not change the definition of the control problem, but only the elements involved in the

matrix Bu.

On the other hand, the nitrate concentration at the reactor input SNO3,in is

considered as a disturbance, it means w̄(k) = SNO3,in(k) which values may vary

between 14.93g[N ]/m3 and 18.93g[N ]/m3 around a nominal regime determined by

SNO3,in = 16.93g[N ]/m3 with q = 1.

4.3.1 Digital state feedback H2 controller

The linear state space equation (4.19) is complemented by a controlled output equa-

tion of the form (4.3), to obtain the system:

x̄(k + 1) = Ax̄(k) +Buū(k) +Bww̄(k)

z(k) = Czx̄(k) +Dzū(k)
(4.20)

According to the control objective related to the nitrogen concentration at the

reactor output, Cz is defined as:

Cz = [0 . . . 0 1 1 0]

and therefore, p = 1.

On the other hand, Dz is used as a degree of freedom to calibrate the compromise

between the energy of the permissible control and the quality of the regulation. The

idea behind the choice of Dz is to take it as small as possible to reach a good closed-

loop performance, but large enough to avoid saturation problems which could be

expected if the energy of the controlled output is not limited. In this section, a

preliminary choice is Dz = 0.15.

A feedback control law ū(k) = Kx̄(k) is then proposed to decrease the influence of

the disturbance w on the controlled output z. By replacing it in (4.20), the following

system is obtained:
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x̄(k + 1) = (A+BuK)x̄(k) +Bww̄(k)

z(k) = (Cz +DzK)x̄(k)
(4.21)

The transfer function of the closed loop system (4.21) from w to z is given by:

Twz =
Z(z)

W (z)
= (Cz +DzK)(zI − (A+BuK))−1Bw (4.22)

Proposition 1 with (4.17) is then used to state the following convex optimal H2

problem to compute a static feedback controller K ∈ Rm×3N for stabilizing the closed-

loop dynamics:

min
W1,W2,W3

trace(W3)

under

W1 > 0 −W1 AW1 +BuW2

W1A
T +W T

2 B
T
u −W1 +BwB

T
w

 ≤ 0

 W1 W1C
T
z +W T

2 D
T
z

CzW1 +DzW2 W3

 ≥ 0

(4.23)

where W1 ∈ R3N×3N , W2 ∈ Rm×3N and W3 ∈ Rp×p. The controller gain, solution

of the optimization problem (4.23), may then be calculated as K = W2W
−1
1 and

‖Twz‖2 = trace(W3) [6], [69].

In order to simulate the closed-loop system, the PDEs are solved yet by the method

of characteristics using 151 discretization points. The flow rate v(k) = Kx̄(k) is then

computed at each sampling instant considering the values of the state vector x at the

space locations corresponding to the N = 11 discretization points used for the control

synthesis.

Figure 4-2b shows the open-loop response of the system according to the distur-

bance input w̄(k) evolution shown in figure 4-2a. A composed sine signal to simulate

nitrate inlet variations has been used. It was above mentioned that the control ob-
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(a) Time-evolution of SNO3,in(t). (b) Time-evolution of the nitrogen concentration
at the output of the biofilter. In red the output
reference and in blue the real nitrogen concentra-
tion.

Figure 4-2: Open-loop time-evolution of the system.

jective is to maintain the nitrogen concentration at reactor output below than the

European norm. However, it is suggested here as the objective to remain below

4mg[N ]/m3. It is clear that the nitrogen concentration at the reactor output in

open-loop does not remain below the allowable limit.

After solving the optimization problem (4.23) using the YALMIP matlab interface

with the SDPA solver [47], a gain K ∈ R1×3N was computed. The system was then

simulated in closed-loop. The state feedback control strategy intends to maintain the

state of the nonlinear system close to its nominal state, which implicitly corresponds

to maintain the output of the system below 4mg[N ]/m3. Figures 4-3a and 4-3b

respectively show the time evolution of the nitrogen concentration at the output of

the biofilter and the time evolution of the flow rate. It can be seen that the constraint

is well respected. However, when the disturbance is maximal, the control input ū(k)

comes near to zero and the nitrogen concentration at the reactor output is not well

regulated around a constant value. A higher control gain would perhaps improve this

performance, but to the detriment of input saturation, which, being not considered

in the control problem, should preferably be avoided.
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(a) Time-evolution of the nitrogen concentration
at the biofilter output. In red the output reference
and in blue the real nitrogen concentration.
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(b) Time-evolution of the flow rate.

Figure 4-3: Closed-loop time-evolution by considering the state feedback controller.

4.3.2 Digital H2 full-order observer

In real applications, unfortunately, the overall set of states is not available, especially

in biotechnological applications where the sensors would have to be distributed at

several locations of the biofilter. Therefore, unless output feedback strategies are

investigated, the state vector has to be estimated.

By using the linear representation (4.19) of the denitrification reactor, let the

linear Luenberger observer be defined as:

x̂(k + 1) = Ax̂(k) +Buū(k) + Γ(ȳ(k)− ŷ(k)) (4.24)

where x̂ ∈ R3N is the vector of estimated state variables constructed as:

x̂ =
[
x̂1

1 x̂
1
2 x̂

1
3 . . . x̂

N
1 x̂N2 x̂N3

]T
u ∈ Rm is the vector of control inputs, y ∈ Rl is the vector of measured outputs

defined in its discrete version as:

ȳ(k) = Cyx̄(k) (4.25)
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and the estimated measured output ŷ ∈ Rl defined as:

ŷ(k) = Cyx̂(k) (4.26)

By replacing (4.25) and (4.26) in (4.24) the estimated state vector may be calcu-

lated by [5]:

x̂(k + 1) = (A− ΓCy)x̂(k) +Buū(k) + ΓCyx̄(k) (4.27)

Let e = x̄− x̂ be the error between the real state vector and the estimated state

vector, then from (4.20) and (4.27):

e(k + 1) = x̄(k + 1)− x̂(k + 1) = (A− ΓCy)e(k) +Bww̄(k) (4.28)

The transfer function from w to e is given by:

Twe =
E(z)

W (z)
= (zI − (A− ΓCy))

−1Bw (4.29)

An observer gain Γ with the objective to decrease the influence of the disturbance

w on the estimation error e is then searched. In addition, we can accelerate its

dynamics by placing the poles of the observer into a stability region defined by a

disk, smaller than the unit circle, centered at origin. Proposition 1 with (4.17),

and (4.14) are then used to state the following convex optimal H2 problem for the

observation problem, dual of the control problem, to compute the gain Γ:
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min
W1,W2,W3

trace(W3)

under
−W1 ATW1 − CT

yW
T
2 0

W1A−W2Cy −W1 W1Bw

0 BT
wW1 −I

 ≤ 0

 −rW1 W1A−W2Cy

ATW1 − CT
yW

T
2 −rW1

 ≤ 0

 W1 I

I W3

 ≥ 0

(4.30)

where r is the radius of the disk, W1 ∈ R3N×3N , W2 ∈ R3N×l and W3 ∈ R3N×3N .

The observer gain, solution of the optimal solution of (4.30), can be calculated as

Γ = W−1
1 W2 and ‖Twe‖2 = trace(W3) [16], [69].

To solve the optimization problem (4.30), the matrix Cy is constructed according

to the observability test described in appendix B. Considering that only nitrate and

nitrite concentrations are accesible to measurements, an observability test has shown

that at least six measurement points have to be considered for those two variables

to achieve complete observability of the state vector (of dimension 3N). The pole

placement constraint is a disk of radius r = 0.8 centered at the origin. Using the

YALMIP matlab interface with the SEDUMI solver [47], a gain Γ was computed.

Figure 4-4 shows the nitrate, the nitrite and the ethanol estimations. Only five

locations between the eleven locations used to built the linear state space model are

plotted to increase the readability of the figure. These locations are those ones where

the variables were not measured. In blue the true values and in black the estimated

ones. The real values of the original state variables are obtained by simulating the

hyperbolic PDE system using the method of characteristics with ū(k) = u∗ and w̄(k)

as shown in figure 4-2a. Noise level upon 2% on the measured output y(k) was

correctly filtered.
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(a) NO3 estimated. (b) NO2 estimated.

(c) SC estimated.

Figure 4-4: State variables estimated by considering the full-order observer. In blue
the simulated states and in black the estimated ones. Only five locations among the
eleven locations used to built the linear state space model are plotted to increase the
readability of the figure. These locations are those ones where the variables were not
measured.
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As shown in the figure 4-4, nitrate and nitrite are correctly estimated almost

in all measurement points, however, as closer to the biofilter input, they are more

sensitive to noise. On the other hand, ethanol is correctly estimated and is less

sensitive to noise. In addition, it can be seen that the observer rejects appropriately

the disturbance by following the state variables measurements.

4.3.3 Digital H2 reduced-order observer

Because some states are measured, the size of the observation problem may be re-

duced. Therefore, only a subset of the system states of dimension ν = 3N − l is to

be estimated. The strategy presented in the sequel is issued from [5].

In order to design a reduced-order observer, the part of the state vector that is

available by direct measurements is used. First, the state vector is separated in a

first part which is measured (x′1) and a second part which is not measured (x′2). One

considers then, a new matrix C ′y = [Il 0ν ].

Let R be defined as:

R =

 Cy

Ĉy


where Ĉy is such that R is nonsingular. Then, ȳ(k) = CyR

−1Rx̄(k). Therefore, the

measured output (4.4) may be re-defined as:

ȳ(k) = C ′yx̄
′(k) (4.31)

where C ′y = CyR
−1 = [Il 0ν ] and x̄′(k) = Rx̄(k).

In the same way, from (4.20):

Rx̄(k + 1) = RAR−1Rx̄(k) +RBuū(k) +RBww̄(k)

Equation above may be rewritten as:
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x̄′(k + 1) = A′x̄′(k) +B′uū(k) +B′ww̄(k) (4.32)

where A′ = RAR−1, B′u = RBu and B′w = RBw.

Equations (4.31) and (4.32) form a new system used to design a ν-order observer

[5].

The new system can be divided in two parts:

 x̄′1(k + 1)

x̄′2(k + 1)

 =

 A′11 A′12

A′21 A′22

 x̄′1(k)

x̄′2(k)

+

 B′u1

B′u2

 ū(k) +

 B′w1

B′w2

 w̄(k)

ȳ(k) =
[
Il 0ν

] x̄′1(k)

x̄′2(k)


It is easy to see that ȳ(k) = x̄′1(k) ∈ Rl represents the l measured states. It means

that the first part may be obtained directly. Then, only x̄′2 ∈ Rν is to be estimated.

Therefore, the part of the state vector to be estimated is now given by:

x̄′2(k + 1) = A′21x̄
′
1(k) + A′22x̄

′
2(k) +B′u2

ū(k) +B′w2
w̄(k)

x̄′2(k + 1) = A′22x̄
′
2(k) +

[
A′21 B′u2

] x̄′1(k)

ū(k)

+B′w2
w̄(k)

Equation above can be rewritten as:

x̄′2(k + 1) = A′22x̄
′
2(k) + B̃uũ(k) +B′w2

w̄(k) (4.33)

where:
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B̃u =
[
A′21 B′u2

]

ũ(k) =

 x̄′1(k)

ū(k)

 =

 ȳ(k)

ū(k)



Furthermore, it is defined:

ỹ(k) = x̄′1(k + 1)− A′11x̄
′
1(k)−B′u1

ū(k) = A′12x̄
′
2(k) +B′w1

w̄(k)

ỹ is calculated as:

ỹ(k) = ȳ(k + 1)− A′11ȳ(k)−B′u1
ū(k) (4.34)

It can be observed that ỹ is known since it depends on the controlled input ū and

measured output ȳ only.

An observer for x̄′2 can now be constructed in the form:

x̂′2(k + 1) = A′22x̂
′
2(k) + B̃uũ(k) + Γ̃(ỹ(k)− ˆ̃y(k)) (4.35)

with estimated output:

ˆ̃y(k) = A′12x̂
′
2(k) +B′w1

w̄(k) (4.36)

Let e = x′2− x̂′2 be the error between the real state vector and the estimated state

vector. From (4.33), (4.35) and ( 4.36), it is obtained:

e(k + 1) = (A′22 − Γ̃A′12)e(k) +B′w2
w̄(k) (4.37)
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The transfer function from w to e is given by:

Twe =
E(z)

W (z)
= (zI − (A′22 − Γ̃A′12))−1B′w2

(4.38)

An observer gain Γ̃ to decrease the influence of the disturbance w on the estimation

error e is then searched. In addition, we can accelerate its dynamics by placing the

poles of the observer into a stability region defined by a disk, smaller than the unit

circle, centered at origin. Proposition 1 with (4.17), and (4.14) are then used to state

the following convex optimal H2 problem to compute the gain Γ̃:

min
W1,W2,W3

trace(W3)

under
−W1 A′22

TW1 − A′12
TW T

2 0

W1A
′
22 −W2A

′
12 −W1 W1B

′
w2

0 B′w2
TW1 −I

 ≤ 0

 −rW1 W1A
′
22 −W2A

′
12

A′22
TW1 − A′12

TW T
2 −rW1

 ≤ 0

 W1 I

I W3

 ≥ 0

(4.39)

where r is the radius of the origin centered disk, W1 ∈ Rν×ν , W2 ∈ Rν×l and W3 ∈

Rν×ν . The observer gain, solution of the optimization problem (4.39), can be then

calculated as Γ̃ = W−1
1 W2 and ‖Twe‖2 = trace(W3) [16], [69].

In order to build and simulate the reduced-order observer, the same conditions

like in the complete-order observer implementation are used. In addition, the matrix

Ĉy is defined such that matrix R is a square matrix of dimension 3N × 3N and is

non-singular.

Figure 4-5 shows the nitrate, the nitrite and the ethanol estimations. In blue

the true values and in black the estimated ones. The position of the state variables

estimated are those ones that are not directly measured. As before, nitrate and nitrite
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(a) NO3 estimated. (b) NO2 estimated.

(c) SC estimated.

Figure 4-5: State variables estimated by considering the reduced-order observer. In
blue the simulated states and in black the estimated ones. The concentrations are
plotted only at five locations. They correspond to the locations where nothing was
measured.
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are correctly estimated almost in all measurement points, however, as closer to the

biofilter input, they are more sensitive to noise. On the other hand, ethanol estimation

is more sensitive to noise and in this case, the estimation is poor. Therefore, we have

reduced the order of the observer but its filter properties have been degraded by

using real measurements. Again, noise level upon 2% on the measured output y(k)

was correctly filtered.

4.3.4 Digital observer-based output feedback H2 controller

In section 4.3.1 a linear state feedback control law was synthesized. It was implicitly

assumed that the state vector x̄(k) is available for measurement. The values of the

states x̄(k) for k > 0 were fed back and used to generate a control input according

to the relation ū(k) = Kx̄(k). In the denitrification process, however, it is not

practical to measure the nitrate, the nitrite and the ethanol along the reactor. This

has provided the motivation to estimate the overall set of state variables by measuring

only a subset of them. In this way, the state feedback controller may be complemented

by a Luenberger state observer. A natural topic is therefore to investigate the resulting

closed-loop system performance.

The hyperbolic PDE original system is compensated by state feedback using the

control law:

ū(k) = Kx̂(k) (4.40)

where x̂(k) is the output of the Luenberger observer:

x̂(k + 1) = (A+BuK − ΓCy)x̂(k) + Γȳ(k) (4.41)

We wish to analyze the behavior of the compensated system. By replacing (4.40)

in (4.20) and (4.24), we obtain:

x̄(k + 1) = Ax̄(k) +BuKx̂(k) +Bww̄(k)
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and

x̂(k + 1) = ΓCyx̄(k) + (A− ΓCy +BuK)x̂(k)

By rewriting the two expressions above in matrix form:

 x̄(k + 1)

x̂(k + 1)

 =

 A BuK

ΓCy A− ΓCy +BuK

 x̄(k)

x̂(k)

+

 Bw

0

 w̄(k) (4.42)

a representation of the compensated closed-loop system is obtained. Its properties

are more easily studied if an appropriate similarity transformation is used to simplify

the representation, given by:

 I 0

I −I

 x̄(k)

x̂(k)

 =

 x̄(k)

e(k)

 (4.43)

with the estimation error e(k) = x̄(k)− x̂(k). Then, the equivalent representation is:

 x̄(k + 1)

e(k + 1)

 =

 A+BuK −BuK

0 A− ΓCy

 x̄(k)

e(k)

+

 Bw

Bw

 w̄(k) (4.44)

The closed-loop eigenvalues are the roots of the polynomial:

|zI − (A+BuK)||zI − (A− ΓCy)|

Recall that the roots of |zI − (A+BuK)| are the eigenvalues of A+BuK and the

roots of |zI − (A − ΓCy)| are the eigenvalues of A − ΓCy. Furthermore, proposition

1 guarantees that the eigenvalues of both A+ BuK and A− ΓCy are inside the unit

disk centered at origin (the stability region). The above discussion points out that

the design of the control law (4.40) can be carried out independently of the design of

the Luenberger observer (4.41). This is referred to as the Separation Property. Note

however that, for more complex systems, like uncertain ones, this is generally not
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true [5].

The overall control law is, therefore, the aggregation of the state feedback control

(4.40) with the state observer (4.41).

As in section 4.3.1, it is necessary to define a matrix Dz to adjust the compromise

between the energy allowed for the controlled input and the performance requested

on the controlled output. In order to obtain the best performance of the connected

state feedback controller - Luenberger observer, both dynamics are separated as much

as possible without degrading closed-loop stability. The control action on the output

controlled is therefore increased to Dz = 0.35. On the other hand, the poles of the

full-order observer are placed into a smaller disk with radius r = 0.7. Noise level

upon 2% on the measured output y(k) was correctly filtered.

After solving the optimization problems (4.23) and (4.30), using the YALMIP

matlab interface and the SEDUMI solver [47], gains K and Γ were computed respec-

tively. The system was then simulated in closed-loop. Figure 4-6a shows the output

response to the controlled input shown in figure 4-6b. It can be observed that the

constraint imposed is well respected. However, since the states are now estimated, the

state vector used to compute the flow rate is not the true one, therefore, the output

performance is slightly degraded with respect to that one shown in section 4.3.1.

Figure 4-7 shows the open-loop poles in red, the poles of A+BuK in blue and the

poles of A− ΓCy in green. As expected all of them are inside the stability region. In

addition, the poles of the observer, correctly placed into the D2-stability region for

r = 0.7, are faster than those ones of the state feedback.
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(a) Time-evolution of the nitrogen concentration
at the biofilter output. In red the output reference
and in blue the real nitrogen concentration.
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(b) Time-evolution of the flow rate.

Figure 4-6: Closed-loop time-evolution by considering the full-order observer-based
output feedback controller.

Figure 4-7: Poles of the system controlled by a full-order observer-based output feed-

back controller. In red, the open-loop poles; in blue the poles of A + BuK; and in

green the poles of A− ΓCy.

On the other hand, in section 4.3.3 a reduced-order observer has been designed

in order to use the measured state variables and to estimate only the remaining

state variables. Again, using the separation property, the complete control law is the
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aggregation of the state feedback control, but now, with the reduced-order observer.

We know that x̂ = R−1x̂′, thus ū = KR−1x̂′. By defining K ′ = KR−1 = [K ′1 K
′
2],

where K ′1 ∈ Rm×l and K ′2 ∈ Rm×3N−l, it is obtained:

ū(k) = K ′1ȳ(k) +K ′2x̂
′
2(k) (4.45)

By replacing (4.45) in the reduced-order observer (4.35), it is obtained:

x̂′2(k) =Γ̃ȳ(k) + (A′21 − Γ̃A′11 + (B′u2 − Γ̃B′u1)K ′1)ȳ(k − 1)

+ (A′22 − Γ̃A′12 + (B′u2 − Γ̃Bu1)K ′2)x̂′2(k − 1)
(4.46)

Equation (4.46) is used to estimate the part of the system states that is not

measured and equation (4.45) is used to compute the controlled input.

Again, like in section 4.3.1, it is necessary to define the matrix Dz to adjust the

compromise between the energy allowed for the controlled input and the performance

requested on the controlled output. In order to obtain the best performance of the

connected state feedback controller - Luenberger observer, both dynamics are sepa-

rated as much as possible without degrading closed-loop stability. The control action

on the output controlled is therefore increased to Dz = 0.55. On the other hand, the

poles of the reduced-order observer are placed into the same disk with radius r = 0.8.

Noise level upon 2% on the measured output y(k) was correctly filtered.

After solving the optimization problems (4.23) and (4.39), using the YALMIP

matlab inteface and the SEDUMI solver [47], gains K and Γ̃ were computed respec-

tively. The system was then simulated in closed-loop. Figure 4-8a shows the output

response to the controlled input shown in figure 4-8b. It can be observed that the

constraint imposed is almost respected along time, but when the disturbance comes

to its highest value, the nitrogen concentration is a little more important than the

expected objective.

Figure 4-9 shows the open-loop poles in red, the poles of A+BuK in blue and the

poles of A′22 − Γ̃A′12 in green. As expected all of them are inside the stability region.
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(a) Time-evolution of the nitrogen concentration
at the biofilter output. In red the output reference
and in blue the real nitrogen concentration.
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(b) Time-evolution of the flow rate.

Figure 4-8: Closed-loop time-evolution by considering the reduced-order observer-
based output feedback controller.

In addition, the poles of the observer, correctly placed into the D2-stability region for

r = 0.8, are faster than those ones of the state feedback.

Figure 4-9: Poles of the system controlled by a reduced-order observer-based output

feedback controller. In red, the open-loop poles; in blue the poles of A + BuK; and

in green the poles of A′22 − Γ̃A′12.
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4.4 Continuous observer-based output feedback lin-

ear control

In this section, an observer-based dynamic output feedback controller for the deni-

trification reactor described by a parabolic PDE system is synthesized. First, a state

feedback control law is designed. Following, a full-order Luenberger observer is de-

signed. Finally, by using the separation principle, the state feedback controller is

complemented with the observer. Different results about the topics developed are

presented in each subsection. The results presented in this section were published in

[81] and [82].

In chapter 3 a modal analysis was used to transform the parabolic PDE system

(2.1)-(2.3) into an ODE system. The resulting ODE system represents a nonlinear

state-space system of the form:

ṁ(t) = Fξ(m(t), u(t), w(t)) ; m(0) = m0 (4.47)

where Fξ ∈ R3Nm is a vector of functions constructed as:

Fξ(m(t), u(t), w(t)) =
[
f 1
ξ1 f

1
ξ2 f

1
ξ3 . . . f

Nm
ξ1 fNmξ2 fNmξ3

]T
m ∈ R3Nm is the vector of modes constructed as:

m =
[
m1

1 m
1
2 m

1
3 . . . m

Nm
1 mNm

2 mNm
3

]T
u ∈ Rm is the vector of control inputs and w ∈ Rq is the vector of external distur-

bances.

After linearization around the operating point (m∗, u∗, w∗), system (4.47) can be

rewritten in the classic state space form as:

˙̄m(t) = Am̄(t) +Buū(t) +Bww̄(t) (4.48)
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In all the numerical applications provided in this section, the linear state space

model (4.48) is issued from a modal analysis done over the original parabolic PDE

model (2.1)-(2.3) by considering eleven discretization points (N = 11).

As in section 4.3 the control objective is to maintain the nitrogen concentration at

the reactor output around a constraint lower than the European norm while limiting

as much as possible the activity of the controlled input. Again, the flow rate is

considered as the controlled input, it means ū(t) = v(t) around a nominal regime

determined by v = 4m/h with m = 1. The nitrate concentration at the reactor input

is again considered as a disturbance, it means w̄(t) = SNO3,in(t) which values may

vary between 14.93g[N ]/m3 and 18.93g[N ]/m3 around a nominal regime determined

by SNO3,in = 16.93g[N ]/m3 with q = 1.

4.4.1 Continuous state feedback H2 controller

The linear state space equation (4.48) is complemented by (4.3) approximating x̄(t)

as:

x̄(t) = ΦT m̄(t) (4.49)

where ΦT ∈ R3N×3Nm is issued from (3.74), to obtain the system:

˙̄m(t) = Am̄(t) +Buū(t) +Bww̄(t)

z(t) = Czmm̄(t) +Dzū(t)
(4.50)

where Czm = CzΦT ∈ Rp×3Nm .

In order to control the nitrogen concentration at the reactor output Cz is again

defined as:

Cz = [0 . . . 0 1 1 0]

and therefore, p = 1.
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As mentioned in section 4.3.1, matrix Dz is used to tune the closed-loop perfor-

mance. Dz = 0.3 is considered in this section.

A feedback control law ū(t) = Km̄(t) is then proposed to decrease the influence of

the disturbance w on the controlled output z. By replacing it in (4.50) the following

system is obtained:

˙̄m(t) = (A+BuK)m̄(t) +Bww̄(t)

z(t) = (Czm +DzK)m̄(t)
(4.51)

The transfer function of the closed loop system (4.51) from w to z is given by:

Twz =
Z(s)

W (s)
= (Czm +DzK)(sI − (A+BuK))−1Bw (4.52)

Proposition 1 with (4.17) is then used to state the following convex optimal H2

problem to compute a static feedback controller K ∈ Rm×3Nm for stabilizing the

closed-loop dynamics:

min
W1,W2,W3

trace(W3)

under

W1 > 0

AW1 +W1A
T +BW2 +W T

2 B
T +BwB

T
w ≤ 0 W1 W1C

T
zm +W T

2 D
T
z

CzmW1 +DzW2 W3

 ≥ 0

(4.53)

where W1 ∈ R3Nm×3Nm , W2 ∈ Rm×3Nm and W3 ∈ Rp×p. The controller gain, solution

of the optimization problem (4.53), may be then calculated as K = W2W
−1
1 and

‖Twz‖2 = trace(W3) [6], [69].

Figure 4-10a shows the evolution of the first five modes related to nitrate. Note

that, see equation (3.70), the larger the value of j, the faster the convergence of mj
i (t)

to zero. In fact, for j > 5 the modes evolve so fast to zero that their contribution to

the solution may be neglected. A reduced-order model with five modes is considered

118



(a) NO3 modes. (b) NO2 modes.

(c) SC modes.

Figure 4-10: Modes of the state variables for eleven discretization points.

as a good approximation to the real solution. The same behaviour can be shown

for the modes associated with the nitrite and the ethanol, figures 4-10b and 4-10c

respectively. Therefore Nm = 5 is considered in order to compute the state feedback

control law. The optimization problem (4.53) is solved by using the YALMIP matlab

interface with the SEDUMI solver [47]. A gain K ∈ R1×3Nm was computed. The flow

rate is then computed at each sampling instant considering the values of the first five

modes m and the system is simulated in closed-loop.

In order to simulate the closed-loop system, the parabolic PDE system (2.1)-(2.3)

is solved by the method of lines and the derivatives terms are approximated by the

finite element method, using 151 discretization points.
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(a) Time-evolution of the nitrogen concentration
at the biofilter output. In red the output reference
and in blue the real nitrogen concentration.
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(b) Time-evolution of the flow rate.

Figure 4-11: Closed-loop time-evolution by considering the modes-based state feed-
back controller.

Figure 4-11a shows the output response to the controlled input shown in figure

4-11b and the external disturbance shown in figure 4-2a. It is clear that the out-

put in closed-loop is correctly maintained below 4mg[N ]/m3, respecting the imposed

constraint.

4.4.2 Continuous H2 full-order observer

The state feedback control law uses the modes of the system, which cannot be directly

accessible by measurement. It is therefore proposed a full-order observer based on

the system modes by using the original measured output. Furthermore, this observer

may also be used to estimate the original state variables.

A linear Luenberger observer is proposed in a very similar way as in section 4.3.2,

except that, now, for the continuous-time linear representation (4.48) defined as:

˙̂m(t) = Am̂(t) +Buū(t) + Γ(ȳ(t)− ŷ(t)) (4.54)

where m̂ ∈ R3N is the vector of estimated modes constructed as:
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m̂ =
[
m̂1

1 m̂
1
2 m̂

1
3 . . . m̂

N
1 m̂N

2 m̂N
3

]T
u ∈ Rm is the vector of control inputs, y ∈ Rl is the vector of measured outputs

defined as:

ȳ(t) = Cyx̄(t) (4.55)

By considering (4.49), the following representation for the measured output is

obtained:

ȳ(t) = Cymm̄(t) (4.56)

where Cym = CyΦT ∈ Rl×3Nm .

Following the same procedure as in section 4.3.2, but for the continuous-time case,

an observer gain Γ to decrease the influence of the disturbance w on the estimation

error e = m̄ − m̂ is then searched. In addition, we can accelerate its dynamics by

placing the closed-loop poles into the stability region D3. Proposition 1 with (4.17),

(4.13) and (4.14) are then used to state the following convex optimal H2 problem to

compute the gain Γ:

min
W1,W2,W3

trace(W3)

under

W1 > 0 W1A+ ATW1 + 2dW1 −W2Cym − CT
ymW

T
2 W1Bw

BT
wW1 −I

 ≤ 0

 −rW1 W1A−W2Cym

ATW1 − CT
ymW

T
2 −rW1

 ≤ 0

 W1 I

I W3

 ≥ 0

(4.57)
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where W1 ∈ R3Nm×3Nm , W2 ∈ R3Nm×l and W3 ∈ R3Nm×3Nm , d is the distance between

the origin and the vertical strip and r is the radius of the disk. The observer gain,

solution of the optimization problem (4.57), is then calculated as Γ = W−1
1 W2 and

‖Twe‖2 = trace(W3) [69], [16].

To solve the optimization problem (4.57), the matrix Cym is constructed according

to the observability test described in appendix B. Considering that only nitrate and

nitrite concentrations are accessible to measurements, an observability test has shown

that at least six measurement points have to be considered for those two variables

to achieve complete observability of the modes vector (of dimension 3Nm). The pole

placement constraint is the stability region D3 with d = 10 and r = 65. Using the

YALMIP matlab interface with the CSDP solver [47], a gain Γ was computed. The

original discretized state variables are reconstructed by using (3.74).

Figure 4-12 shows the nitrate, the nitrite and the ethanol estimations, in blue the

true values and in black the estimated ones. The real values of the original state

variables are obtained by simulating the parabolic PDE system in open-loop using

the method of lines and approximating the derivatives by the finite element method.

In addition, noise level upon 5% on the measured output y(t) was correctly filtered.

As shown in figure 4-12, the observer correctly rejects the disturbance and the

noise is correctly filtered almost in all positions, except at the reactor input. It can

be observed that the ethanol is the best state variable estimated.

4.4.3 Continuous observer-based output feedback H2 con-

troller

At this moment, a state feedback controller and a full-order observer have been de-

signed. A similar discussion about the separation property like in section 4.3.4 allows

to construct the complete control law as the aggregation of the state feedback control

with the state observer, that is:
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(a) NO3 estimated. (b) NO2 estimated.

(c) SC estimated.

Figure 4-12: State variables estimated by considering the full-order observer. In blue
the simulated states and in black the estimated ones. Only six locations among the
11 locations used to built the linear state space model are plotted to increase the
readability of the figure.
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ū(t) = Km̂(t) (4.58)

with:

˙̂m(t) = (A+BuK − ΓCym)m̂(t) + Γȳ(t) (4.59)

Equation (4.59) is used to estimate the modes of the system and equation (4.58)

is used to compute the flow rate, which is used in order to simulate the closed-loop

parabolic biofilter reactor.

As in section 4.4.1, it is necessary to define a matrix Dz to adjust the compromise

between the energy allowed for the controlled input and the performance requested on

the controlled output. In order to obtain correct performance of the connected state

feedback controller - Luenberger observer, both dynamics are separated as much as

possible without degrading closed-loop stability. The control action on the controlled

output is therefore increased to Dz = 0.43. On the other hand, as in section 4.4.2,

the poles of the full-order observer are placed into the stability region D3, in this case

with d = 5 and r = 170. Furthermore, noise level upon 5% on the measured output

y(t) was correctly filtered.

After solving the optimization problems (4.53) and (4.57), using the YALMIP

matlab inteface with the SEDUMI and CSDP solvers [47] respectively, gains K and

Γ were computed respectively. The system was then simulated in closed loop. Figure

4-13a shows the output response to the controlled input shown in figure 4-13b. It can

be observed that the constraint imposed is well respected and the noise is correctly

filtered.

Figure 4-14 shows the open-loop poles in red, the poles of A + BuK in blue and

the poles of A−ΓCym in green. As expected all of them are inside the stability region.

In addition, the poles of the observer, correctly placed into the D3-stability region for

d = 5 and r = 170, are faster than those of the state feedback.
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(a) Time-evolution of the nitrogen concentration
at the biofilter output. In red the output reference
and in blue the real nitrogen concentration.
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(b) Time-evolution of the flow rate.

Figure 4-13: Closed-loop time-evolution by considering an observer-based output
feedback controller on the system modes.
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Figure 4-14: Poles of the closed-loop mode system controlled by an observer-based

output feedback controller. In red the open-loop poles; in blue the poles of A+BuK;

and in green the poles of A− ΓCym.
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4.5 Conclusions

This chapter presented an early lumping approach to synthesize an observer-based

output feedback controller for both denitrification reactor models, i.e. the hyperbolic

one and the parabolic one. Since the main objective is to maintain the nitrogen

concentration at the reactor output lower than the European norm by reducing the

energy of a disturbance at the reactor input (SNO3,in), the H2 control and the LMI

framework were selected as control strategy. In this context, the PDE system repre-

senting the denitrificacion process has been first rewritten in the classical state-space

form (see chapter 3) before being linearized. Depending on the transformation ap-

proach, i.e. the method of characteristics for the hyperbolic system and the modal

analysis for the parabolic model, the linear state-space model may be discrete-time

or continuous-time. Both H2 control strategies, for discrete-time systems and for

continuous-time systems have been addressed, first in the state feedback context,

then extended to a state estimation context, in order to design observer-based output

feedback controllers.

The early lumping linear strategies presented in this chapter have been illustrated

with a few examples. The main points to be kept in mind are however independent

of the particular cases presented.

First, this chapter intended to illustrate that, considering any semi-discretization

approach to transform a PDE system into an ODE system followed by a linearization

to deal with a linear state space model opens the way to the wide world of (robust)

linear control approaches. By extension, other strategies such as output feedback,

but also taking uncertainties or saturations into account, could be easily investigated

in the same way. The discretization step of the PDE systems results in several forms

of ODE systems (dimension, discrete-time or continuous-time, interpretation of the

state, etc.) but it has no significant influence on the next steps to follow.

Secondly, the number of discretization points is a key factor to obtain a high

performance control law, the more points are taken into account, the better the
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system represents the reality. However, in the LMI framework, the main disadvantage

to face is the matrix dimensions involved in the optimization problem to solve. If the

matrix dimensions are large, the solution can be difficult and sometimes impossible to

find. A compromise between dimension and precision must be managed. In addition,

a reduced-order model may be taken into account. In this context, the nonlinear

model based on the most important modes was used to represent the denitrification

process in a classical state space form. Such modes are not accessible and a full-

order state observer has to be designed. It is however generally of smaller order than

the ones obtained by other discretization strategies. As a matter of fact, although

reduced-order strategies may be easily studied with a state vector which represents

the concentration variables at several locations along the biofilter, the dimension of

the observer is generally much larger than the one which results from modal analysis.

Finally, early lumping approaches have been presented in this chapter, whose main

advantages are that the control law implementation is a rather direct task since it

is provided as a static state-feedback or a dynamic output feedback (state feedback

+ state observer). On the other hand, this easiness of implementation is counter

balanced by the succession of steps which have to be followed to build the control law

with a space discretization plus a linearization around a nominal space profile.

In the next chapter a late lumping approach will be presented to attack the same

problem but stated as a tracking reference one. Again, observer-based output feed-

back controllers will be synthesized but now using feedback linearization strategies

complemented by a distributed parameter Luenberger observer.
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Chapter 5

Late lumping approach techniques

5.1 Introduction

Unlike the early lumping approach, in the late lumping approach the idea is to keep

as much as possible the distributed parameter property. Based on the early PDE

system stability works [86] and non-linear control theory [60] [35] [39], nonlinear

output feedback controllers with control action distributed in the space [18], control

action at the boundaries [40] or control action on a derivative term [31], have been

developed. In this context, nonlinear feedback controllers complemented by nonlinear

observers may be synthesized. Both of them are therefore designed directly on the

nonlinear PDEs. In order to implement the observer-based output feedback controller,

the resulting PDEs are solved by numerical methods as shown in chapter 3.

In this chapter, nonlinear distributed strategies are investigated in order to design

observer-based output feedback controllers by linearizing the output dynamics of the

biofilter, first for the hyperbolic PDE model, then for the parabolic one. The relative

degree of the PDE system must therefore be analyzed in order to propose a new coor-

dinate system [31]. Linearizing control strategies are then used to synthesize a control

law to linearize the output dynamics, assuring closed-loop asymptotic stability [35],

[67]. The linearizing feedback controller is complemented by a distributed Luenberger

observer, as proposed in [89], to estimate the overall set of state variables distributed
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along the reactor, even if at the end, only those ones needed by the nonlinear state

feedback control law will be used.

5.2 Problem formulation

Along the chapter, we will be interested in regulating the nitrogen concentration at

the reactor output around a constraint lower than the European norm (5.65g[N ]/m3)

while limiting as much as possible the activity of the controlled input. Again, the

flow rate v(t) = F (t)/A is considered as the controlled input. An output function is

then defined as the sum of nitrate and nitrite concentrations at the reactor output:

y(t) = ϑ(S) = SNO3(L, t) + SNO2(L, t) (5.1)

On the other hand, the nitrate concentration at the reactor input SNO3,in is consid-

ered as a disturbance, which values may vary between 14.93g[N ]/m3 and 18.93g[N ]/m3.

In order to simulate the closed-loop system, the original (hyperbolic or parabolic)

PDE system will be solved by the Method of Lines (MOL) and the spatial derivatives

will be approximated by fourth-order finite differences (FDM) by considering N = 151

discretization points uniformly distributed throughout the reactor. The values of the

parameters used to mimic the biofilter dynamics are given in Table 2.1, with initial

conditions given in Table 2.4. Furthermore, in the discrete-time version, a sample

period T = 1 min will be considered.

Finally, we will be also interested in evaluating the robustness of the closed-loop

system with respect to the state estimation errors but also to the uncertainties of the

model parameters. According to the sensitivity analysis performed in chapter 2, the

parameters ηgµ1max , ηgµ2max , KNO3 , KNO2 and KC influence the system dynamics.

However, the variations of each parameter are aggregated as a variation of the overall

µ1 and µ2 values. Therefore, in this chapter, we will consider, for all the implemen-

tations of the control laws and observers, modified values for the maximum specific
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growth rates, proposed as µ1max = 0.414 1/h and µ2max = 0.368 1/h.

5.3 Observer-based output feedback linearizing con-

trol applied to the hyperbolic PDE model

In this section, an observer-based output feedback linearizing controller for the den-

itrification reactor described by an hyperbolic PDE system is synthesized. First, a

state feedback linearizing control law is designed. Following, a nonlinear distributed

parameter observer is designed. Finally, the state feedback controller is complemented

with the observer. Different results about the topics developed are presented in each

subsection. The results presented in this section were published in [83].

It has been previously shown in chapter 2 that, except during the initial coloniza-

tion step, the biomass concentration remains almost constant and homogeneously

distributed at a value Xamax along the biofilter, even after a washing out. The dy-

namics of the biomass concentration are then cancelled and it is assumed that this

concentration remains constant at Xamax. Moreover, in the denitrification reactor

model considered in this section, the diffusion phenomenon has been neglected, re-

sulting in the following matrix form hyperbolic PDE system:

∂S

∂t
= A2

∂S

∂z
+ h(S) (5.2)

Here S = [SNO3 SNO2 SC ]T is the state vector, defined on the domain D =

V×B×T where V ∈ R is the spatial domain with boundary B and T is the semiopen

time interval [0,∞). Matrix A2 ∈ Rn×n is a diagonal square matrix whose elements

are v(t)/ε, h(S) ∈ Rn is a vector of non-linear functions and n = 3.

5.3.1 Feedback linearizing controller

Differentiating y(t) with respect to time, it is obtained:

131



ẏ(t) = Lhϑ(S)|z=L −
v(t)

ε

∂ϑ(S)

∂S

∂S

∂z

∣∣∣∣
z=L

(5.3)

where Lhϑ(S) is the Lie derivative of ϑ(S) with respect to h(S).

Since for all t > 0:

∂ϑ(S)

∂S

∂S

∂z

∣∣∣∣
z=L

6= 0

the relative degree of the system (5.2)-(5.1) is r = 1.

In order to feedback linearize the system (5.2)-(5.1), a new system of coordinates

can be introduced [35]:

Φ(S(L, t)) =


ξ1

ξ2

ξ3


with ξ1 = y(t).

Furthermore, because r is strictly less than n, it is always possible to find n−r = 2

additional functions ξ2, ξ3 such that [43, p. 910]:

∂ξi
∂S

∂S

∂z

∣∣∣∣
z=L

= 0

for i = 2, 3. In this way, ξ2 and ξ3 can be obtained by solving the following two PDE:

∂ξ2

∂SNO3

∂SNO3

∂z

∣∣∣∣
z=L

+
∂ξ2

∂SNO2

∂SNO3

∂z

∣∣∣∣
z=L

+
∂ξ2

∂SC

∂SC
∂z

∣∣∣∣
z=L

= 0 (5.4)

∂ξ3

∂SNO3

∂SNO3

∂z

∣∣∣∣
z=L

+
∂ξ3

∂SNO2

∂SNO2

∂z

∣∣∣∣
z=L

+
∂ξ3

∂SC

∂SC
∂z

∣∣∣∣
z=L

= 0 (5.5)

It must be pointed out that solving the two PDEs above is a tedious task because

they depend on the solution of the state equations.

According to (5.3) and denoting:
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a(ξ) = Lhϑ(S)|z=L

b(ξ) =
−1

ε

∂ϑ(S)

∂S

∂S

∂z

∣∣∣∣
z=L

the following representation is obtained:

dξ1

dt
=
∂ξ1

∂S

∂S

∂t
= a(ξ) + b(ξ)v(t) (5.6)

Because ξ2 and ξ3 have been chosen so that

∂ξi
∂S

∂S

∂z

∣∣∣∣
z=L

= 0

one has,

dξi
dt

=
∂ξi
∂S

(
h(S)− v(t)

ε

∂S

∂z

)∣∣∣∣
z=L

= Lhξi|z=L −
v(t)

ε

∂ξi
∂S

∂S

∂z

∣∣∣∣
z=L

= Lhξi|z=L

By setting:

qi(ξ) = Lhξi|z=L (5.7)

for i = 2, 3, the state space description of the original system (5.2)-(5.1) in the new

coordinates may then be written as:

ξ̇1 = a(ξ) + b(ξ)v(t)

ξ̇2 = q2(ξ)

ξ̇3 = q3(ξ)

(5.8)

The objective is to build a control law v(t) which stabilizes the closed-loop system

and such that the output y(t) tracks a given constant reference yr while limiting as

much as possible the activity of the control input. The tracking error e0 is defined as
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y(t)− yr. As soon as the original system (5.2)-(5.1) is locally exponentially minimum

phase and α0 > 0, the state feedback control law:

v(t) =
1
b(ξ)

(−a(ξ)− α0e0)

=

(
−ε

∂SNO3
∂z + ∂SNO2

∂z

)∣∣∣∣∣
z=L

×
(

1− Yh2

1.71Yh2ε
µ2(SNO2 , SC)Xamax − α0 (SNO3 + SNO2 − yr)

)∣∣∣∣
z=L

(5.9)

partially linearizes the original system and results in a (locally) exponentially stable

closed-loop system [67]. Thus, by inspecting (5.8) the resulting closed-loop dynamics

is given by:

ẏ(t) = −α0 (y(t)− yr) (5.10)

because it is sufficient to differentiate once the output function to see explicitly the

control input.

The value of α0 has to be sufficiently small to reject the influence of the SNO3

and SNO2 derivatives at the reactor output in the output dynamics but large enough

to bypass the model uncertainties, especially those that come from µ2(SNO2 , SC). In

addition to this source of uncertainty, one could also consider parameter uncertainties

(on Xamax, ε, Yh2), but in some sense, such uncertainties are hidden in that one of µ2

and therefore they are not directly considered.

The control law is simulated approximating the spatial derivatives by finite dif-

ferences, that is:

v(t) =

(
−ε

∆SNO3
∆z + ∆SNO2

∆z

)∣∣∣∣∣
z=L

×
(

1− Yh2

1.71Yh2ε
µ2(SNO2 , SC)Xamax − α0 (SNO3 + SNO2 − yr)

)∣∣∣∣
z=L

(5.11)
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with v(0) = 4m/h.

As previously mentioned, we are interested in regulating the output y(t) less or

equal than the European norm when the system is submitted to the disturbance (in-

fluent nitrate concentration) shown in figure 4-2a as in chapter 4. In this application

a reference yr = 4.0 is considered.

To calibrate the linearizing controller, a gain α0 = 10 was first proposed. Under

the hypothesis that the system is certain, the output converges quickly towards the

reference and the disturbance is correctly rejected. However, the controller is strongly

susceptible to model uncertainties. α0 was then increased so as to reduce the influence

of model uncertainties. α0 = 75 is then proposed to get robustness over uncertainties

in the original model growth terms µ1 and µ2 without degradating too much the

closed-loop dynamics. A tolerance upon 15% of error on the true µ1 and µ2 values

was observed.

Figure 5-1a shows the output reference (in red) and the nitrogen concentration

at reactor output (in blue) according to the controlled input shown in figure 5-1b

computed by using the state feedback linearizing controller designed. It can be seen

a transition period of more or less four hours before tracking the reference and well

rejecting the disturbance.

5.3.2 Non-linear distributed parameter observer

In order to implement the control law (5.9) it is necessary to know the nitrite and

ethanol concentrations to compute µ2(SNO2 , SC) and the spatial derivatives of both

the nitrate and the nitrite concentrations, at the reactor output. Since DPS dynam-

ics are characterized by an infinite number of modes, the observer design would in

principe require the specification of a large (theoretically infinite) number of tuning

parameters. In order to bypass this high-dimensional design problem, a late lumping

approach to the construction of distributed parameter observers (DPO) was devel-
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(a) Time-evolution of the nitrogen concentration
at the biofilter output. In red the output reference
and in blue the real nitrogen concentration.
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(b) Time-evolution of the flow rate.

Figure 5-1: Hyperbolic PDE system. Closed-loop time-evolution by considering the
state feedback linearizing controller.

oped in [89]. A nonlinear distributed parameter observer (DPO), with a formulation

analog to the Luenberger observer, is then designed so as to assign the error dynamics

to estimate the concentrations not accessible by measurements:

∂Ŝ

∂t
= A2

∂Ŝ

∂z
+ h(Ŝ) + Γ(Ŝ) (ym − ŷm) (5.12)

with initial condition represented by:

Ŝ(z, 0) = Ŝ(z, 0) (5.13)

where Ŝ = [Ŝ1 Ŝ2 Ŝ3]T is the estimated state vector and Γ(Ŝ) is the correction term,

a square matrix ∈ R3×l.

Let us now focus on the measurements to be used for the observer. Nitrate and

nitrite concentrations are assumed to be available by measurements at the output of

the biofilter. In addition, nitrite at the input is known to be zero and the ethanol

concentration is assumed not being accessible at any point of the biofilter. The design

of operator Γ is based on the estimation error equation e(z, t) = Ŝ(z, t)− S(z, t). In

order to construct an error vector along of the space domain for each specific time,
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interpolation of measured values of the available state variables is performed. There-

fore, at least, a pair of state variables measurement is needed [88]. Then, an option

to design an observer with the minimum of information consists in measurement, in

addition of the output, of the concentration of nitrate at the input, that is l = 4. In

this way, measured output is defined as:

ym(t) = [SNO3(0, t) SNO2(0, t) SNO3(L, t) SNO2(L, t)]
T (5.14)

Any other options with the measurement of nitrate and nitrite at two or more

points along of the reactor would be also admissible. By considering the estimation

error e(z, t), its dynamics are given by:

∂e

∂t
= A2

∂e

∂z
+ h(Ŝ)− h(S) + Γ(Ŝ) (ym − ŷm) (5.15)

e(z, 0) = Ŝ(z, 0)− S(z, 0) (5.16)

The linearization of h(S) along the estimated trajectory Ŝ(z, t) can be done to

obtain (see [89]):

∂e

∂t
= A2

∂e

∂z
+
∂h(S)

∂S

∣∣∣∣
Ŝ

e+ Γ(Ŝ) (ym − ŷm) (5.17)

This linearization is justified as soon as the estimation error is assumed sufficiently

small, i.e.:

‖e(z, 0)‖ = ‖Ŝ(z, 0)− S(z, 0)‖ << 1 (5.18)

In order to stabilize the closed-loop dynamics and to cancel the nonlinear term,

physical knowledge about the system is used to design the correction term Γ(Ŝ) (ym − ŷm).

Considering the ith PDE, the ith correction term γi is constructed in terms of error

profile e(z, t) and a tuning parameter row vector αi ∈ R1×2, i.e.:
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γTi (ym − ŷm) =
[
−
(
∂hi(S)
∂SNO3

∣∣∣∣
Ŝ

+ αi1

)
−
(
∂hi(S)
∂SNO2

∣∣∣∣
Ŝ

+ αi2

)
0
]
e(z, t) (5.19)

for i = 1, 2, 3. Initial profile Ŝ0(z) as well as error profile e(z, t) along the space

in equations above are constructed by linear interpolation of known values at the

measurement points.

Remark 7 The correction term (5.19) is used to compensate the nonlinearities of the

ith equation. The resulting observer system is asymptotically stable as soon as αi,j are

positive elements high enough. Since measurements about ethanol are not available

inside the reactor, their error profile cannot be calculated. Therefore, the error related

to this variable is not considered.

In order to show the convergence of the observer, the estimations started only

after a delay of ten hours. In addition, the elements of the matrix α are proposed as:

α =


110 0

100 110

100 100


Figure 5-2 shows the time evolution of the ’real’ concentrations (in blue) and of the

estimated ones (in black), for greated clarity plotted only at six positions along the

reactor. It can be observed an acceptable external disturbance rejection. A tolerance

upon 15% of error on the true µ1 and µ2 values was observed and a noise level upon

1% was well filtered without degradating too much the observer dynamics. It must

be noted, however, that the model errors induce a bias in the estimation which is

never compensated. Only the effect of the perturbation is correctly evaluated by the

observer.
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(a) NO3 concentration. (b) NO2 concentration.

(c) SC concentration.

Figure 5-2: Hyperbolic PDE model. State variables estimated by considering the
distributed parameter observer. In blue the ’real’ concentrations and in black the
estimated ones. Only six locations are plotted to increase the readability of the
figure.
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5.3.3 Observer-based output feedback linearizing controller

At this moment a feedback linearizing controller and a distributed parameter observer

have been developed by using a late lumping approach over the hyperbolic PDE

system (5.2). The overall control law is then the aggregation of the state feedback

linearizing control with the distributed parameter observer, approximating the spatial

derivatives by finite differences, that is:

v(t) =

 −ε
∆ŜNO3

∆z + ∆ŜNO2
∆z

∣∣∣∣∣∣
z=L

×
(

1− Yh2

1.71Yh2ε
µ2(ŜNO2 , ŜC)Xamax − α0

(
ŜNO3 + ŜNO2 − yr

))∣∣∣∣
z=L

(5.20)

with v(0) = 4m/h and the Ŝ(z, t) vector estimated by using (5.12) and (5.19).

Besides the measurements available at the output (z = L), the estimates of the

concentration at the last point before the output is used. The location of this point

depends of the number N of discretization points. However, such an influence is

limited as soon as the variation of the concentrations remains smooth enough at the

end of the biofilter. In the present configuration with N = 151, it is the estimations

of nitrate and nitrite concentrations at z = 2.086m which are used to compute the

spatial derivatives.

We are interested in regulating the output y(t) at a reference yr = 4.0. In order to

keep the distributed parameter observer dynamics faster than the linearizing feedback

controller ones, the elements of the matrix α must be proposed large enough. In this

section the same α matrix as in section 5.3.2 is considered. It must be pointed out

that estimation starts fithteen minutes after the process beginning and the control

action starts once the observer has converged (thirty minutes).

Figures 5-3a and 5-3b show both the nitrate and the nitrite derivatives, in blue

the ’real’ value and in black the estimated one. It can be observed that the estimated
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(a) NO3 derivative at z = L.
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(b) NO2 derivative at z = L.
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(c) SC concentration at z = L.

Figure 5-3: Hyperbolic PDE model. Estimations needed by the linearizing control
law. In blue the ’real’ derivative for 5-3a and for 5-3b or concentration for 5-3c and
in black the estimated ones, at z = L.

values follow correctly the real ones with an expected error because of the estimated

values, the uncertainty influence and the noise. Since the concentrations at the reactor

output are lower than at the point before, negative slope values are computed.

Figure 5-3c shows in blue the ethanol real value and in black the estimated one at

the reactor output. This value is needed to compute the growth term µ2(SNO2 , SC) at

the reactor output. The bias in the estimation is related to the model uncertainties

and the noise.

The calibration of the output feedback linearizing controller mimics that one of
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(a) Time-evolution of the nitrogen concentration
at the biofilter output. In red the output reference
and in blue the real nitrogen concentration.
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(b) Time-evolution of the flow rate.

Figure 5-4: Hyperbolic PDE system. Closed-loop time-evolution by considering the
observer-based output feedback linearizing controller.

section 5.3.1. The gain α0 has to be chosen sufficiently high such as to reduce the

influence of model uncertainty. α0 = 65 is then proposed to get robustness over

uncertainties in the original model growth terms µ1 and µ2 without degradating too

much the closed-loop dynamics. A tolerance upon 15% of error on the prediction of

µ1 and µ2 was observed. In addition, a noise level upon 1% was correctly filtered. It

must be pointed out that parametric uncertainties of the biofilter model is the most

important problem to bypass by the linearizing feedback controller, when the state

estimation is sufficiently accurate.

Figure 5-4a shows the output reference (in red) and the nitrogen concentration at

the reactor output (in blue) according to the controlled input shown in figure 5-4b,

computed by using the observed-based linearizing controller designed. It can be seen

a transition period of more or less three hours before tracking the reference and well

rejecting the disturbance.
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5.4 Observer-based output feedback linearizing con-

trol applied to the parabolic PDE model

In this section, an observer-based output feedback linearizing controller for the deni-

trification reactor described by a parabolic PDE system is synthesized. First, a state

feedback linearizing control law is designed. Following, a nonlinear distributed pa-

rameter observer is designed. Finally, the state feedback controller is complemented

with the observer. Different results about the topics developed are presented in each

subsection. The results presented in this section were published in [84].

It has been previously shown in chapter 2 that, when diffusion phenomenon is

taken into account, the biofilter model is expressed by the following parabolic PDE

system given in matrix form:

∂S

∂t
= A1

∂2S

∂z2
+ A2

∂S

∂z
+ h(S) (5.21)

As in section 5.3, S = [SNO3 SNO2 SC ]T is the state vector, matrices A1, A2 ∈ Rn×n

are diagonal square matrices whose diagonal elements are Df and v/ε respectively,

h(S) ∈ Rn is a vector of non-linear functions and n = 3.

In the next section, the linearizing control strategy presented for the hyperbolic

PDE system is extended to the parabolic PDE system.

5.4.1 Feedback linearizing controller

Differentiating y(t) with respect to time and by considering v(t) as the control vari-

able, it is obtained:

ẏ(t) = Df
∂ϑ(S)

∂S

∂2S

∂z2

∣∣∣∣
z=L

+ Lhϑ(S)|z=L −
v(t)

ε

∂ϑ(S)

∂S

∂S

∂z

∣∣∣∣
z=L

(5.22)

where Lhϑ(S) is the Lie derivative of ϑ(S) with respect to h(S).

If Neumann boundary conditions are not considered at the biofilter output, for all
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t > 0:

∂ϑ(S)

∂S

∂S

∂z

∣∣∣∣
z=L

6= 0

and therefore, the relative degree of the system (5.21)-(5.1) is r = 1.

In order to feedback linearize the system (5.21)-(5.1), a new system of coordinates

can be introduced [35]:

Φ(S(L, t)) =


ξ1

ξ2

ξ3


with ξ1 = y(t).

Furthermore, because r is strictly less than n, it is always possible to find n−r = 2

additional functions ξ2, ξ3 such that [43, p. 910]:

∂ξi
∂S

∂S

∂z

∣∣∣∣
z=L

= 0

for i = 2, 3. In this way, ξ2 and ξ3 can be obtained by solving the following two PDE:

∂ξ2

∂SNO3

∂SNO3

∂z

∣∣∣∣
z=L

+
∂ξ2

∂SNO2

∂SNO3

∂z

∣∣∣∣
z=L

+
∂ξ2

∂SC

∂SC
∂z

∣∣∣∣
z=L

= 0 (5.23)

∂ξ3

∂SNO3

∂SNO3

∂z

∣∣∣∣
z=L

+
∂ξ3

∂SNO2

∂SNO2

∂z

∣∣∣∣
z=L

+
∂ξ3

∂SC

∂SC
∂z

∣∣∣∣
z=L

= 0 (5.24)

It must be pointed out that solving the two PDEs above is a tedious task because

they depend on the solution of the state equations.

According to (5.22) and denoting:

a(ξ) = Df
∂ϑ(S)

∂S

∂2S

∂z2

∣∣∣∣
z=L

+ Lhϑ(S)|z=L
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b(ξ) =
−1

ε

∂ϑ(S)

∂S

∂S

∂z

∣∣∣∣
z=L

the following representation is obtained:

dξ1

dt
=
∂ξ1

∂S

∂S

∂t
= a(ξ) + b(ξ)v(t) (5.25)

Because ξ2 and ξ3 have been chosen so that

∂ξi
∂S

∂S

∂z

∣∣∣∣
z=L

= 0

one has,

dξi
dt

=
∂ξi
∂S

(
Df

∂2S

∂z2
+ h(S)− v(t)

ε

∂S

∂z

)∣∣∣∣
z=L

= Df
∂ξi
∂S

∂2S

∂z2

∣∣∣∣
z=L

+ Lhξi|z=L −
v(t)

ε

∂ξi
∂S

∂S

∂z

∣∣∣∣
z=L

= Df
∂ξi
∂S

∂2S

∂z2

∣∣∣∣
z=L

+ Lhξi|z=L

By setting:

qi(ξ) = Df
∂ξi
∂S

∂2S

∂z2

∣∣∣∣
z=L

+ Lhξi|z=L (5.26)

for i = 2, 3, the state space description of the original system (5.21)-(5.1) in the new

coordinates may then be written as:

ξ̇1 = a(ξ) + b(ξ)v(t)

ξ̇2 = q2(ξ)

ξ̇3 = q3(ξ)

(5.27)

The objective is to build a control law v(t) which stabilizes the closed-loop system

and such that the output y(t) tracks a given constant reference yr while limiting as

much as possible the activity of the control input. Let us define the tracking error

e0 as y(t) − yr. As soon as the original system (5.21)-(5.1) is locally exponentially

minimum phase and α0 > 0, the state feedback control law:
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v(t) =
1
b(ξ)

(−a(ξ)− α0e0)

=

(
−ε

∂SNO3
∂z + ∂SNO2

∂z

)∣∣∣∣∣
z=L

×
(
Df

∂2SNO3

∂z2
+Df

∂2SNO2

∂z2

+
1− Yh2

1.71Yh2ε
µ2(SNO2 , SC)Xamax − α0 (SNO3 + SNO2 − yr)

)∣∣∣∣
z=L

(5.28)

partially linearizes the original system and results in a (locally) exponentially stable

closed-loop system [67]. Thus, by inspecting (5.27) the resulting closed-loop dynamics

is given by:

ẏ(t) = −α0 (y(t)− yr) (5.29)

because it is sufficient to differentiate once the output function to see explicitly the

control input.

The value of α0 has to be sufficiently small to reject the influence of the SNO3 and

SNO2 derivatives at the reactor output in the output dynamics but large enough to

bypass the model uncertainties, especially those that come from µ2(SNO2 , SC).

By approximating the spatial derivatives, the control law to simulate is:

v(t) =

(
−ε

∆SNO3
∆z + ∆SNO2

∆z

)∣∣∣∣∣
z=L

×
(
Df

∆2SNO3

∆z2
+Df

∆2SNO2

∆z2

+
1− Yh2

1.71Yh2ε
µ2(SNO2 , SC)Xamax − α0 (SNO3 + SNO2 − yr)

)∣∣∣∣
z=L

(5.30)

with v(0) = 4m/h.

The spatial derivative terms at z = L are approximated by finite differences as:

∆SNOi
∆z

∣∣∣∣
z=L

=
SNOi(N)− SNOi(N − 1)

∆z
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∆2SNOi
∆z2

∣∣∣∣
z=L

=
SNOi(N)− 2SNOi(N − 1) + SNOi(N − 2)

∆2z

for i = 2, 3.

It must be pointed out that the parabolic PDE system has to be solved with-

out boundary conditions at the biofilter output since the control law (5.30) needs

to compute both the nitrate and the nitrite first derivatives at the output reactor

different to zero. As suggested in chapter 2 , in this section we consider Dirichlet +

Robin conditions at z = 0, that is, both boundary conditions at the reactor input,

rather than to use the classical Robin + Neumann conditions at z = 0 and z = L,

respectively. Again, a reference yr = 4.0 is considered.

To calibrate the linearizing controller, a gain α0 = 10 was initially proposed.

Under the hypothesis that the system is certain, the output converges quickly towards

the reference and the disturbance is correctly rejected. However, the controller is

strongly susceptible to model uncertainties. α0 was then increased so as to reduce

the influence of model uncertainties. α0 = 50 is then proposed to get robustness over

uncertainties in the original model growth terms µ1 and µ2 without degradating too

much the closed-loop dynamics. A tolerance upon 15% of error on the real µ1 and µ2

values was observed.

Figure 5-5a shows the output reference (in red) and the nitrogen concentration at

the reactor output (in blue) according to the controlled input shown in figure 5-5b

computed by using the state feedback linearizing controller designed. It can be seen

a transition period of more or less two hours before tracking the reference and well

rejecting the disturbance.

5.4.2 Non-linear distributed parameter observer

In this section, as it has been done in section 5.3.2, a distributed parameter observer

[89] is built to compensate for the lack of measurements. The structure of the DPO
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(a) Time-evolution of the nitrogen concentration
at the biofilter output. In red the output reference
and in blue the real nitrogen concentration.
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(b) Time-evolution of the flow rate.

Figure 5-5: Parabolic PDE system. Closed-loop time-evolution by considering the
state feedback linearizing controller.

follows from a direct extension of Luenberger’s approach to infinite dimensional sys-

tems like:

∂Ŝ

∂t
= A1

∂2Ŝ

∂z2
+ A2

∂Ŝ

∂z
+ h(Ŝ) + Γ(Ŝ) (ym − ŷm) (5.31)

Ŝ(z, 0) = Ŝ0(z) (5.32)

where Ŝ = [ŜNO3 ŜNO2 ŜC ]T is the estimated state vector and Γ(Ŝ) ∈ R3×l is the

correction term. The approach mimics what has been presented in section 5.3.2,

but in the current case for the parabolic PDE system. In addition, the same set

of available measurements is considered. The design of operator Γ is based on the

estimation error equation e(z, t) = Ŝ(z, t)− S(z, t). It is then obtained:

∂e

∂t
= A1

∂2e

∂z2
+ A2

∂e

∂z
+ h(Ŝ)− h(S) + Γ(Ŝ) (ym − ŷm) (5.33)

e(z, 0) = Ŝ0(z)− S0(z) (5.34)

The linearization of h(S) along the estimated trajectory Ŝ(z, t) may be done to
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obtain [89]:

∂e

∂t
= A1

∂2e

∂z2
+ A2

∂e

∂z
+
∂h(S)

∂S

∣∣∣∣
Ŝ

e+ Γ(Ŝ) (ym − ŷm) (5.35)

This linearization is justified as soon as the estimation error is assumed sufficiently

small, i.e.:

‖e(z, 0)‖ = ‖Ŝ0(z)− S0(z)‖ << 1 (5.36)

Physical knowledge about the system is used to design the correction term Γ(Ŝ) (ym − ŷm).

Considering the ith PDE, the ith correction term is constructed in terms of error profile

e(z, t) and a tuning parameter row vector αi ∈ R1×2, i.e.:

γTi (ym − ŷm) =

[
−
(
∂hi(S)

∂SNO3

∣∣∣∣
Ŝ

+ αi,1

)
−
(
∂hi(S)

∂SNO2

∣∣∣∣
Ŝ

+ αi,2

)
0

]
e(z, t) (5.37)

for i = 1, 2, 3. Initial profile Ŝ0(z) as well as error profile e(z, t) along the space in

equations above are evaluated by linear interpolation of measurement states.

The remark 7 previously stated relative to the selection of the elements of matrix

α remains valid. In order to show the convergence of the observer, the estimation is

started only after a delay of ten hours. In addition, the elements of the matrix α are

proposed as:

α =


110 0

90 110

100 100


Figure 5-6 shows the time evolution of the ’real’ concentrations (in blue) and the

estimated ones (in black), for greated clarity plotted only for six positions along the

reactor. It can be observed an acceptable external disturbance rejection. A tolerance

upon 15% of error on the true µ1 and µ2 values was observed and a noise level of 1%

was considered without degradating too much the observer dynamics.

149



(a) NO3 concentration. (b) NO2 concentration.

(c) SC concentration.

Figure 5-6: Parabolic PDE model. State variables estimated by considering the
distributed parameter observer. In blue the ’real’ concentrations and in black the
estimated ones. Only six locations are plotted to increase the readability of the
figure.

150



5.4.3 Observer-based output feedback linearizing controller

At this moment a feedback linearizing controller and a distributed parameter observer

have been developed by using a late lumping approach over the hyperbolic PDE

system (5.2). The overall control law is then the aggregation of the state feedback

linearizing control with the distributed parameter observer, that is:

v(t) =

 −ε
∆ŜNO3

∆z + ∆ŜNO2
∆z

∣∣∣∣∣∣
z=L

×

(
Df

∆2ŜNO3

∆z2
+Df

∆2ŜNO2

∆z2

+
1− Yh2

1.71Yh2ε
µ2(ŜNO2 , ŜC)Xamax − α0

(
ŜNO3 + ŜNO2 − yr

))∣∣∣∣
z=L

(5.38)

with v(0) = 4m/h and the Ŝ(z, t) vector estimated by using (5.31) and (5.37).

The spatial derivative terms at z = L are approximated by finite differences as:

∆ŜNOi
∆z

∣∣∣∣∣
z=L

=
ŜNOi(N)− ŜNOi(N − 1)

∆z

∆2ŜNOi
∆z2

∣∣∣∣∣
z=L

=
ŜNOi(N)− 2ŜNOi(N − 1) + ŜNOi(N − 2)

∆2z

for i = 2, 3.

Besides the measurements available at the output (z = L), the estimates of the

concentration at the last two points before the output are used. The location of those

points depend of the number N of discretization points. However, such an influence is

limited as soon as the variation of the concentrations remains smooth enough at the

end of the biofilter. In the present configuration with N = 151, it is the estimations

of nitrate and nitrite concentrations at z = 2.086m and z = 2.072m which are used

to compute the spatial derivatives.

We are interested in tracking a reference yr = 4.0. In order to keep the distributed

parameter observer dynamics faster than the feedback linearizing controller ones, the
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elements of the matrix α must be proposed large enough. In this section the same α

matrix as in section 5.4.2 is considered. It must be pointed out that estimation starts

fithteen minutes after the process beginning and the control action starts once the

observer has converged (thirty minutes).

Figures 5-7a and 5-7b show both the nitrate and the nitrite derivatives, in blue

the real value and in black the estimated one. It can be observed that the estimated

values follow correctly the real ones with an expected error because of the estimated

values, the uncertainty and the noise influence.

Figure 5-7c shows in blue the ethanol real value and in black the estimated one at

the reactor output. This value is needed to compute the growth term µ2(SNO2 , SC) at

the reactor output. The bias in the estimation is related to the model uncertainties

and to the noise.

Keeping in mind the comments done in the previous section 5.4.1, α0 = 50 is se-

lected, large enough to get robustness over uncertainties in the original model growth

terms µ1 and µ2 without degradating too much the closed-loop dynamics. A toler-

ance upon 15% of error on the prediction of µ1 and µ2 was observed. In addition,

a noise level upon 1% was correctly filtered. As previoulsy commented, parametric

uncertainties of the biofilter model is the most important problem to bypass by the

linearizing feedback controller, when the state estimation is sufficiently accurate.

Figure 5-8a shows the output reference (in red) and the nitrogen concentration

at reactor output (in blue) according to the controlled input shown in figure 5-8b

computed by using the state feedback linearizing controller designed. It can be seen a

transition period of more or less two hours before tracking the reference, well rejecting

the disturbance and filtering the noise.

5.5 Conclusions

In this chapter a linearizing state feedback controller complemented by a distributed

parameter observer was synthesized both for the hyperbolic and for the parabolic PDE
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(a) NO3 derivative at z = L.
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(b) NO2 derivative at z = L.
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Figure 5-7: Parabolic PDE model. Estimations needed by the linearizing control law.
In blue the ’real’ derivative for 5-7a and for 5-7b or concentration for 5-7c and in
black the estimated ones, at z = L.
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(a) Time-evolution of the nitrogen concentration
at the biofilter output. In red the output reference
and in blue the real nitrogen concentration.
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(b) Time-evolution of the flow rate.

Figure 5-8: Parabolic PDE system. Closed-loop time-evolution by considering the
observer-based output feedback linearizing controller.

systems. It must be pointed out that, even if the control laws are different because

the diffusion phenomenon is or is not considered, the linear output dynamics resulting

are exactly the same in both cases. It can be observed also that the spatial derivative

terms do not influence the observer correction term, therefore, both observer are

almost the same. The main difference between those two strategies comes from the

boundary conditions. Indeed, in the parabolic case, it must be taken care about such

boundary conditions, since considering boundary conditions at the reactor output

would prevent to apply this strategy.

On the other hand, since it is difficult to demonstrate that both the original

system (5.2)-(5.1) for the hyperbolic PDE model and the original system (5.21)-(5.1)

for the parabolic PDE model are locally exponentially minimum phase, we have been

pragmatics in using the linearizing strategy. Morover, the linearizing control laws

synthesized are sensible to model uncertainties. It is natural because the controller is

based on the original model and therefore, it takes into account the same parameters,

which only approximate the real ones. In addition, large noise perturbating the

measured output is not well filtered. However, the disturbance at the reactor input

is correctly rejected and the nitrogen concentration at the output kept under its
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admissible limit.

Moreover, it must be admitted that, since there is no Separation Principle for

nonlinear systems, the closed-loop stability of the full observer-based linearizing con-

trolled system is not theoretically supported. Such a perspective of study should most

certainly be carried out rather than verify, a posteriori, as it is done here. Anyway,

to tune the parameters α0 and α, it is important to keep in mind that the observer

dynamics must be faster than those ones of the state feedback controller, such as

to separate, as much as possible, the control activity from the convergence of the

observer and to preserve the closed-loop stability of the full system.
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Chapter 6

Conclusions and Perspectives

6.1 General conclusion

In this thesis, simulation and control of a denitrification biofilter described by a PDE

system have been presented. If the biofilter model takes into account both a diffusion

term and a convection term, the resulting model is a parabolic PDE system. On the

other hand, if the diffusion term is neglected, the resulting model is an hyperbolic

PDE system. Each one of the models needs specific initial and boundary conditions.

Hyperbolic PDE systems typically use Dirichlet boundary conditions at the reactor

input. Parabolic PDE systems typically consider Robin boundary conditions at the

reactor input and Neumann boundary conditions at the reactor output. However,

it was discussed that alternative dynamic boundary conditions may be used at the

reactor output, which mimic an hyperbolic model at that point. Furthermore, a

third boundary condition configuration was also considered to solve a parabolic PDE

system, which consisted of Dirichlet + Robin (or equivalently Dirichlet + Neumann)

conditions at the reactor input. This set of conditions has allowed us to address the

control problem of the parabolic PDE biofilter model with different strategies.

Once the denitrification biofilter model has been defined, it is simulated in order to

know its dynamics and to represent the system as an ODE system in state-space form.

Several methods are availables to numerically solve a PDE system. The method of
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lines is a general technique which may be applied to any PDE classes by approximating

the spatial derivatives either by finite differences or by finite elements. The finite

difference method is a very simple technique based on truncated Taylor series. Of

course, to obtain a correct derivative approximation, a large number of points on

the spatial grid must be considered. Fourth-order finite difference approximation has

demonstrated excellent results. On the other hand, the finite element method is based

on truncated Fourier series of time-depending and space-depending functions. This

technique results in a set of matrices to approximate both derivative and integral

terms by matrix operations. However, even if the synthesis of FEM matrices is more

complex than synthesis of FDM matrices, when compared, the simulation results are

almost the same. Both methods result in a set of ODEs to integrate in time.

Another technique used to numerically solve the PDE system describing the biofil-

ter was the method of characteristics. However this method may be used only for

the hyperbolic model, which signifies that the diffusion term has been neglected. The

solution of the PDE system by using the method of characteristics results in a sys-

tem of difference equations to be solved in time. Simulation results are very close to

those obtained with the method of lines. Since this method results in discrete-time

equations to solve, the period of discretization used to develop the final solution is a

key point to consider. Of course, the smaller is the period of time, the better is the

PDE solution.

Since the spatial operator of the parabolic PDE model has a real discrete spectrum

of eigenvalues, a modal analysis can be carried out based on a truncated Fourier

series of both spatial-depending and time-depending functions. The spatial-depending

functions were calculated off-line by solving an eigenproblem. Because FEM matrices

allow to approximate integral and differential operators, the eigenproblem was solved

considering them. They were also used to define an operator to project the state

variables in the space domain. In this way, an ODE system to compute the time-

depending functions (the modes of the system) was obtained. Simulation results by

considering the most important modes have shown to be very similar when compared
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to the method of lines.

Following, an early lumping approach based on H2 control and the LMI framework

was investigated in order to reduce the effect of the influent nitrate concentration

along the biofilter and in this way, to maintain the nitrogen concentration at the

reactor output under some upper limit concentration. Difference equation system

issued from the method of characteristics was considered to synthesize a discrete-

time state feedback controller, complemented by a full-order or by a reduced-order

Luenberger observer. While the full-order observer better filtered the noise present

in the measurements, the reduced-order one presented the advantages of a smaller

dimension of the observer synthesized, wich is a key aspect in the LMI framework.

On the other hand, a very similar strategy has been presented for the control of the

parabolic PDE model, but considering now the reduced-order ODE system issued

from the modes of the system and a continuous-time version of the observed-based

output feedback control strategy. A significant advantage of this strategy is that

both the system described by its modes and the associated observer are of much

lower orders than the other potential strategies with models issued from MOL or

the method of characteristics. This pleads for the use of a parabolic modelling of

the biofilter system, that is, considering diffusion phenomena, rather than to use an a

priori simpler description of the process without second-order derivatives. The results,

very similar to those obtained with a higher order model of the biofilter, demonstrated

that the control law synthesized by considering the most important modes satisfied

the control objectives.

The main advantage of this early lumping approach is that, it results in a control

law easy to implement (linear dynamic system composed by the state-feedback + the

state observer), although to the detriment of several manipulations (discretization,

linearization, etc.) of the original PDE system to be done before the final controller

synthesis. It must be pointed out that the separation principle is verified only in

the proposed version which does not consider uncertainties of the linearized system.

More complex strategies would have to be carried out to explicitly take into account
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additional constraints such as model uncertainty. The results obtained here pave the

way, however, for the use of linear control strategies for such PDE nonlinear systems.

Finally, a late lumping approach based on linearizing control was investigated in

chapter 5. The control objective, as in chapter 4, was to maintain the nitrogen con-

centration at the output of the reactor below some given upper bound, in spite of

the influent nitrate concentration variations. It was then set as a tracking (nitrogen

output reference) and disturbance (influent nitrate concentration) attenuation prob-

lem. The strategy followed was to synthesize a feedback controller to linearize the

closed-loop dynamics complemented by a distributed parameter observer. It has to

be noted that the full observer-based output feedback linearizing control has not been

formally proven to be a stabilizing control strategy since the separation principle does

not apply for nonlinear system. Moreover, such linearizing control strategy is not very

robust to uncertainties of the model parameters, as well associated with a state and

parameter observer or not. Its advantage is however that it easily allows to propose

a direct feedback strategy without much effort for the synthesis step. In particular,

it only involves few parameters to be tuned.

6.2 Perspectives

In this work, two different approaches have been followed in order to synthesize

observer-based output feedback controllers to regulate the nitrogen concentration at

the output of a denitrification biofilter. Several advantages of the approaches have

been brought to the fore, but also several points which will necessitate further investi-

gations. In the case of the early lumping control law based on H2 control, neither the

model parameter uncertainty nor the uncertainty caused by linearization were taken

into account, even if they may be easily modeled as a polytope of uncertainty in the

LMI framework. A short time perspective of this work could then be to consider

alternative robust linear control strategies such as dynamic output feedback to be

able to deal with model uncertainty. Most of the ideas presented in this thesis will

remain valid, but with conditions stated as bilinear matrix inequalities (BMI ) instead
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of LMI. On the other hand, in the case of the control law based on the linearization

strategy, a theoretical robust analysis must be investigated in order to guarantee, a

priori, the stability of the designed controller.

Another subject not handled in this work but also important is the optimal sensor

location and the optimal discretizing points location [91], [88], [29]. As a matter of

fact, it has been slightly mentioned throughout the chapters on control design that

a set of measurements had to be considered to implement state observers, but only

from the observability point of view. It may however be expected that the quality of

the observation is strongly related, not only to the number of measurements but also

to their location.

Finally, in this thesis, the flow rate has been selected as control input. As men-

tioned in chapter 2, the ethanol concentration at the reactor input is another variable

which may be taken into account has control input. This would imply to investigate

boundary control strategies such as backsteping control as an alternative nonlinear

approach [39], [40].

To go further, one can expect to transfer in the industry some of the ideas pre-

sented in this thesis, for process optimization and control of many biological and

chemical processes. However, control implementation will imply to deal with dif-

ferent tasks, from Data-Acquisition Systems (DAQ) to Human-Machine Interfaces

(HMI). All these tasks are included into two great complementary systems: Supervi-

sory Control And Data Acquisition Systems (SCADA) and Digital Control Systems.

A SCADA system generally refers to an industrial control system: a computing sys-

tem monitoring and controlling a process. Its objective is to centralize information

about the process from sensors via industrial networks to data bases in industrial

servers. It also sends information to actuators in order to act over others variables.

It is then some coordinator of the system, but the control is not computed there. On

the other hand, a Digital Control System takes all the information available about

the process, filters it, estimates if necessary non-available variables by using observa-

tion techniques and then, by applying a control strategy like state feedback or output
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feedback, compute the information needed in order to control the process by using a

digital system.

Thus, in this work we have studied various control strategies but keeping in mind

the idea of their future implementation on embedded computing systems. We have

focused in this document on the ”control” part of the stack of tasks to be performed.

This part will have to be surrounded by the several other lines of research and tech-

nological development which have to be considered in the biotechnological process

operation, such as:

• further investigations in modelling, estimation and control of biotechnological

processes;

• development of DAQ systems to measure biochemical variables;

• development of embedded computing systems based on vectorial architecture

processors with standard interfaces (RS-485, USB, Ethernet, etc.) to communi-

cate using standard industrial protocols (Modbus, DNP3, UCA/MMS, TCP/IP,

etc.);

• and, finally, development of HMIs based on Information Technology (IT) to

manage the complete information about the process to control.
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Appendix A

Sensitivity Differential Equations

A.1 Sensitivity equations for the nitrate

The equations describing the nitrate sensitivity with respect to the parameter vector

p are given by:

∂s11

∂t
=Df

∂2s11

∂z2
− v

ε

∂s11

∂z
− 1− Yh1

1.14Yh1ε
p1

(
p3s11

(SNO3 + p3)2

)(
SC

SC + p5

)
Xa

− 1− Yh1

1.14Yh1ε

(
SNO3

SNO3 + p3

)(
SC

SC + p5

)
Xa

(A.1)
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A.2 Sensitivity equations for the nitrite

The equations describing the nitrite sensitivity with respect to the parameter vector

p are given by:
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A.3 Sensitivity equations for the ethanol

The equations describing the ethanol sensitivity with respect to the parameter vector

p are given by:
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Appendix B

Observability Test

B.1 Observability test for the discrete state space

model

The nitrate and the nitrite are variables that can be measured by sensors. An ob-

servability test on the pair (A,Cy) is done, by try and error, in order to know the

minimum number of measurement points needed and their specific position along the

biofilter to be able to estimate the overall set of state variables.

After testing several configurations of the matrix Cy, six measurement points were

determined as the minimum number, homogeneously distributed along the biofilter

from the input to the output as shown in Table B.1, to obtain a pair (A,Cy) observ-

able.

Measurement point Position along the reactor
1 input
2 0.42 m
3 0.84 m
4 1.26 m
5 1.68 m
6 output

Table B.1: Measurement points along the biofilter.
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B.2 Observability test for the continuous state space

model

As mentioned before, the nitrate and the nitrite are variables that can be measured

by sensors. An observability test on the pair (A,Cym) is now done, because the

linear system is described by the modes, in order to know the minimum number of

measurement points needed and their specific position along the biofilter to be able

to estimate the overall set of state variables.

After testing several configurations of the matrix Cy and calculating the matrix

Cym, six measurement points were determined as the minimum number, homoge-

neously distributed along the biofilter from the input to the output as shown in Table

B.1, to obtain a pair (A,Cym) observable.

168



Bibliography

[1] F. Acevedo, J. C. Gentina, and A. Illantes, editors. Fundamentos de ingenieŕıa
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