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Trust only movement.

Life happens at the level of events, not of words.

Trust movement.

Alfred Adler, Austrian psychologist
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Introduction

Au cours des dix dernières années, les ordinateurs et l’Internet ont influencé nos vies

d’une manière fondamentale. Les ordinateurs effectuent des calculs intenses et répétitifs

sur des bases de données très larges. De cette manière ils ont étendu nos possibilités de

travailler et communiquer. Avec les progrès technologiques récents, les données vidéo sont

devenues de plus en plus accessibles et jouent un rôle de plus en plus important dans notre

vie quotidienne. Aujourd’hui, même des matériels éléctroniques couramment utilisés, tels

que les ordinateurs portables, les téléphones mobiles et les appareils photo numériques,

permettent de créer des vidéos. Simultanément, un accès plus rapide à l’Internet et des

capacités de stockage de plus en plus élevées permettent de publier et partager des vidéos

de manière instantanée. Par exemple, 36 millions d’internautes allemands (44% de la

population) ont regardé plus de 6 milliards de vidéos en ligne en août 2009. Par rapport à

août 2008, cela représente une augmentation de 38%. Un autre example est le nombre de

vidéo téléchargé sur YouTube par minute qui est passé de six heures en 2007 à 20 heures

en 2009—soit une augmentation d’environ 330% sur deux ans.

Cependant, malgré l’importance croissante des données vidéo, les possibilités de les anal-

yser d’une façon automatisée sont plutôt limitées. Les systèmes de vision par ordinateur

sont loin d’être à l’hauteur de la vision humaine. Par exemple, la recherche de vidéos dans

les archives de bases de données à grande échelle est actuellement uniquement possible

grace à l’annotation manuelle par des humains. Des moteurs de recherche pour vidéo, tels

que YoutTube, reposent essentiellement sur des données textuelles, telles que la descrip-

tion ou des étiquettes, afin de récupérer des vidéos pertinentes. Un autre exemple est le

domaine de la vidéo-surveillance. Jusqu’à aujourd’hui, la ville de Londres a installé env-

iron 1 million de caméras vidéo. En ce qui concerne un rapport interne, il a été souligné

que “les caméras de surveillance conduisent à des dépenses massives avec une efficacité

minimale”.

Ces exemples montrent qu’il existe une forte demande pour des systèmes de vision par

ordinateur afin de pouvoir traiter des données vidéo d’une manière automatisée. Ces

technologies de vision par ordinateur auront vraisemblablement un fort impact sur notre

avenir.

Enoncé du problème

Cette dissertation se concentre sur le problème de la reconnaissance d’actions simples et

génériques dans des vidéos réalistes, tels que les films, les vidéos sur Internet et les vidéos

de surveillance. La figure 1.1 illustre différentes actions dans des films, et la figure 1.2

montre des détections d’actions examplaires que nous sommes en mesure de localiser dans

des films réalistes.



Contributions

La première partie de notre travail se base sur des primitives locales pour la classifica-

tion d’action. Pour cela, les approches existantes sont étudiées et de nouvelles méthodes

élaborées. La deuxième partie présente une nouvelle méthode pour la localisation d’action

dans des vidéos. Ci-dessous, nous résumons nos contributions:

• Nous introduisons un nouveau descipteur local pour des séquences d’images basé sur les

histogrammes d’orientations de gradients spatio-temporels (HOG3D). Nous proposons

une approche efficace afin de calculer des gradients 3D à des échelles arbitraires et

nous dévéloppons un algorithme pour la quantification d’orientations 3D basé sur des

polyèdres réguliers. Les paramètres de notre descripteur sont évalués en profondeur

et ils sont optimisés pour la reconnaissance d’actions en utilisant la représentation

sac-de-mots. Ce travail est présenté dans le chapitre 3. Le travail a été effectué en

collaboration avec Marcin Marsza lek et il a été publié dans Kläser et al. [2008].

• Nous évaluons et comparons plusieurs méthodes existantes de détection et description

de characteristiques locales pour la reconnaissance d’action dans des vidéos. En total,

quatre détecteurs et six descripteurs sont étudiés en utilisant une approche standard

par sac-de-mots avec une machine à vecteurs de support (SVM) comme classifieur.

Nous évaluons la performance sur un total de 25 classes d’action réparties sur trois

bases de données avec différents niveaux de difficulté. Cette contribution est discuté

en détail dans le chapitre 4. Elle a été publiée dans [Wang et al., 2009] en collaboration

avec Wang Heng et Mohammed Muneeb Ullah.

• Nous développons un nouveau descripteur pour la reconnaissance d’action basé sur

des trajectoires de points locaux pertinents. Contrairement aux méthodes existantes,

nous étendons la description d’une trajectoire avec l’information sur l’apparence et

le mouvement de son entourage. Pour cela, nous introduisons également un nouveau

descripteur basée sur des histogrammes de frontière de mouvement. Les paramètres

de ce descripteur sont étudiés et optimisées pour la tâche de reconnaissance d’action

dans des vidéos réalistes. Ce travail a été effectué en collaboration avec Heng Wang et

il est détaillée dans le chapitre 5.

• Nous étudions la combinaison de la représentation par sac-de-mots avec la localisation

de personnes et nous quantifions ses améliorations pour la reconnaissance d’action.

Pour ce faire, nous évaluons d’abord le gain en performance par la réduction de

l’attention uniquement sur des personnes dans les vidéos. Puis, nous montrons com-

ment intégrer des contraintes spatiales dans le modèle sac-de-mots pour améliorer la

classification. Ce travail est détaillé dans le chapitre 6.

• Nous proposons une nouvelle approche afin de détecter et localiser des actions hu-

maines dans des films. Pour cela, nous développons un détecteur de personnes adapté

à ce type de données et étant en mesure de faire face à un large éventail de postures,

articulations, mouvements et points de vue de caméra. Pour la représentation d’action,

nous introduisons un descripteur spatio-temporel qui est adapté à la détection de per-

sonne. Des résultats sont montrés pour les actions “boire”, “fumer”, “téléphoner” et “se

lever”. Cette contribution est présentée dans le chapitre 7. Elle a été un travail en

collaboration avec Marcin Marsza lek et elle a été publiée dans [Kläser et al., 2010].
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Over the past decade, computers and world-wide networks have influenced our lives

tremendously. Computers perform repetitive and data intensive computational tasks and

extend fundamentally our possibilities to communicate. Along with recent technological

advances of computers in general, video data has become more and more accessible and

plays an increasingly important role in our everyday life. Today, even commonly used

consumer hardware, such as notebooks, mobile phones, and digital photo cameras, allow

to create videos. At the same time, faster internet access and growing storage capacities

enable to direcly publish and share videos with others. For example, 36 million German

internet users (44% of the population) watched more than 6 billion videos online in Au-

gust 2009 1. Compared to August 2008, this is an increase of 38%. The amount of video

uploaded to YouTube every minute increased from six hours in mid-2007 to 20 hours in

May 2009 2, i.e., an increase of about 330% over two years.

However, despite the increasing importance of video data, the possibilities to analyze it

in an automated fashion are rather limited. Computer vision systems are far behind the

capabilities of human vision. For instance, video search in large scale databases archives is

currently only feasible with costly manual annotation. Web search engines commonly rely

mainly on textual data, such as descriptions or tags, in order to retrieve relevant videos.

Another example are surveillance applications. Up to today, the city of London has in-

stalled about 1 million closed-circuit television (CCTV) cameras at the cost of approx-

imately 200 million British pounds. However, in 2008, surveillance cameras helped to

solve only one crime per 1,000 cameras 3. With respect to an internal report, it has been

pointed out that “CCTV leads to massive expense and minimum effectiveness”4. Research

1. Source: http://www.comscore.com

2. Source: http://youtube-global.blogspot.com

3. Source: http://news.bbc.co.uk

4. Source: http://www.telegraph.co.uk

http://www.comscore.com
http://youtube-global.blogspot.com
http://news.bbc.co.uk
http://www.telegraph.co.uk
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Running Drinking Smoking

Answering phone Standing up Kissing

Eating Shaking hand Punching

Figure 1.1: Sample actions in videos.

commissioned by the Home Office 5 concluded that CCTV virtually has not helped cutting

down crime, it showed to be most effective for preventing vehicle crimes in car parks. In

fact, given the vast amount of video data, one major bottleneck is the necessity to acquire

the data (analog cameras store data on video tapes) and analyze it manually.

A further application area is computer games, for which video analysis has gained a lot of

attention as sophisticated human-computer interface. One on-going project is Microsoft’s

Project Natal 6. The project’s framework allows for full-body 3D motion capture, facial

recognition, voice recognition, and acoustic source localization. This is achieved by com-

bining information from several sensors: a video camera, a depth sensor (based on infrared

patterns), and a multi-array microphone. This allows users to play video games without

controller devices and to interact in a virtual world using their full bodies in a natural

way.

Motion capturing of human actors has evolved to a de facto standard for character anima-

tion in computer animated movies as well as for movie special effects 7. Otherwise, human

motion analysis can also play an important role in medical applications (e.g., rehabilita-

tion, medical examination) as well as in the analysis and optimization of movements of

sport athletics or in dance choreography.

5. The Home Office is the United Kingdom government department responsible for immigration control,

security and order, thus also including the police.

6. http://www.xbox.com/projectnatal/

7. http://www.motioncapturesociety.com

http://www.xbox.com/projectnatal/
http://www.motioncapturesociety.com
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Drinking Drinking Smoking

Standing up Answering phone Answering phone

Figure 1.2: Sample detections of particular actions in common movies (cf. chapter 7).

These examples show that there is a large demand for computer vision systems to un-

derstand and process video in an automated fashion. They also illustrate that computer

vision technologies have a high potential to influence our future.

1.1 Problem statement

This dissertation focuses on the problem of action recognition in realistic video material,

such as movies, internet and surveillance videos. Figure 1.1 illustrates various actions

in movies, and figure 1.2 shows sample detections of actions that we are able localize in

challenging movie material (cf. chapter 7). In order to be more precise about our goal, we

clarify the meaning of action and action recognition by an analogy to languages.

Human language is composed of sentences which are themselves structured with subjects,

verbs, and objects. In order to describe the visual content of a video in an automatic

fashion, a structure similar to that of a language is necessary. From an algorithmic point

of view, this translates to the detection of (a) subjects (or actors) which most commonly

are humans; (b) objects which can be other humans, they can be objects, and they also

include environments in which the subject is operating; (c) verbs which describe actions

of the subject as well as interactions between subjects and objects.

In this sense, an action can be precisely localized in a short interval in time, yet it can

also refer to an event that lasts for a rather long time period. For clarification, an action

taxonomy can be defined as in [Moeslund et al., 2006]: action primitive (or movement),

action, and activity. An action primitive describes a basic and atomic motion entity out of

which actions are built. An activity is a set of several actions. Activities can be understood

as larger scale events that often depend on the context and the environment in which the

action happens.
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Figure 1.3: Motion capture for movie production in a studio (courtesy of Sony Pictures

Imageworks).

Considering the example of playing tennis, “Playing tennis” itself can be seen as an activity.

It involves several actions, such as“serving”,“returning ball”, or“taking a break”. “Serving”

could be split into the action primitives “throwing the ball up”, “swinging racket back”,

and “hitting the ball”. A different activity such as “drinking coffee” might involve actions

including, e.g., “drinking”, “filling cup”, “taking cup”, “putting back cup”, and maybe also

other actions like “smoking”, “reading”, “talking”. “Drinking” could be decomposed into

action primitives such as “raising cup to mouth”, “drinking from cup”, “lowering cup”.

Interestingly, some action primitives are intrinsically linked to an object. Only “raising

arm” alone is not sufficient to be part of the action “drinking”. Instead of drinking, one

can also raise the arm towards the mouth in order to smoke. Therefore, “raising cup with

arm” is a more appropriate term as action primitive for “drinking”.

Apart from actions and action primitives that are closely related to a particular activity

(e.g., “returning ball” for “playing tennis”), there is a set of rather generic actions or action

primitives which are independent of the context. Entities of this set include “walking”,

“running”, “jumping”, “standing up”, “sitting down”, “shaking hands”, “hugging a person”,

“drinking”, “smoking” etc.

In this dissertation, we focus on the detection of visible low-level action primitives and

actions of a rather generic type. Figure 1.1 gives some examples. In the remainder of this

work, we will refer to this task as action recognition.

1.2 Context

Numerous works and methods have been proposed in the past within the field of action

and activity recognition. Since recognizing actions in videos is a challenging problem, a lot

of approaches have considered simplified settings. For a broader view, we discuss existing

works according to the type of video data that they employ. For this, we distinguish the

categories “controlled video data”, “constrained video data”, “uncontrolled video data”.

Controlled video data. Controlled video data is acquired in a way to facilitate its

automated processing. For instances, markers can be attached on human actors for de-

tecting joints and limbs, e.g., Medina-Carnicer et al. [2009], Li et al. [2008] (see figure 1.3);
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Figure 1.4: Action recognition in a multi-camera setup (courtesy of Weinland et al. [2007]).

Figure 1.5: Analysis of shape masks obtained via background substraction for a video

surveillance system (courtesy of Haritaoglu et al. [2000]).

lighting conditions can be controlled to better detect markers and human bodies; multiple

cameras can be placed in order to cover a necessary range of view points for 3D recon-

struction, e.g., Fleuret et al. [2008], Weinland et al. [2007] (see figure 1.4). A prominent

example are commercial high-end motion capture systems for film productions. These use

extensively optical markers and a large set of cameras to record motion up to the level of

facial gestures and finger movements, e.g., [Havaldar, 2006].

Constrained video data. Applications that operate on constrained video data are able

to influence environmental parameters to a limited degree. This is the case for commercial

video game platforms based on visual interfaces, such as the Project Natal [Microsoft,

2009]; certain assumptions can be made, e.g., a single person fully visible or favorable

lighting conditions. However, a certain robustness is necessary with respect to other visual

conditions (e.g., varying size of humans, different clothing, motion variability) that cannot

be influenced.

Another very common application area is video surveillance [Hu et al., 2004, Senior, 2009]

for which camera placement and parameters are fixed and known, e.g., Fleuret et al.

[2008]. Since cameras are in general static, techniques such as background substraction

are commonly applied to compute human shape masks. These masks are then further

analyzed to recognize human behavior and actions [Haritaoglu et al., 2000] (see figure 1.5).

Nevertheless, certain aspects cannot be controlled: the clothes that humans wear, the way

they move, or weather and lighting conditions.

In this sense, we also consider an environment with a rather limited set of expected actions

– such as dancing, ballet, or sports [Urtasun et al., 2006, Ramasso et al., 2009] – to belong

to this category of constrained data.
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Uncontrolled video data. Uncontrolled video data is recorded under conditions which

cannot be influenced. This is the case for, e.g., TV and cinema style movie data, sports

broadcasts, music videos, or personal amateur clips. Only very few assumptions, if any, of

a rather general nature can be made, such as humans are present and relative well visible.

The main challenges for this more realistic data include changes of viewpoint, scale, and

lighting conditions, partial occlusion of humans and objects, cluttered backgrounds, abrupt

movement etc.

Earlier work on human action recognition in video [Bobick and Davis, 2001, Blank et al.,

2005, Efros et al., 2003, Dollár et al., 2005, Niebles et al., 2006, Jhuang et al., 2007, Wong

and Cipolla, 2007, Scovanner et al., 2007, Schindler and van Gool, 2008, Weinland and

Boyer, 2008, Willems et al., 2008] employed image data with mainly static cameras, simple

and homogeneous backgrounds, and humans fully visible. The most popular datasets are

the KTH [Schüldt et al., 2004] and the Weizmann [Blank et al., 2005] actions dataset, cf.

sections 2.2.2 and 2.2.1, respectively. This enabled to explore classifiers with variations

in actors and actions. However, it did not take into account added complexity for more

realistic data, such as movies, music videos, or personal amateur clips.

With recently published action datasets based on generic movie data [Laptev and Perez,

2007, Laptev et al., 2008, Marsza lek et al., 2009], YouTube video sequences [Liu et al.,

2009], or sports broadcasts [Rodriguez et al., 2008], the field of action recognition has

in general moved towards less controlled and much more challenging type of data. For

this task, methods that use local features [Laptev et al., 2008, Mikolajczyk and Hirofumi,

2008, Marsza lek et al., 2009, Liu et al., 2009, Willems et al., 2009, Gilbert et al., 2009, Han

et al., 2009] have shown excellent results. A common representation used in the literature

is bag-of-features (cf. section 2.1.3) in which video sequences are represented as occurrence

histograms of quantized local features.

Some approaches [Laptev and Perez, 2007, Ke et al., 2007a, Hu et al., 2009, Willems et al.,

2009] have also addressed the problem of localizing actions spatially as well as temporally

in more realistic video settings. As opposed to action classification where sequences of

pre-defined temporal extent are classified as belonging to one of n action classes, action

localization is a much more difficult task.

1.3 Main contributions

The goal of this dissertation is the recognition of rather simple, low-level actions in un-

controlled, realistic video data. The first part of our work is based on local features which

are employed for action classification. For this, existing approaches to describe local in-

formation in videos are investigated and new methods are developed. The second part

of this work introduces a new method for action localization in videos. To this end, we

develop a human detection system as well as a method to describe and localize actions in

Hollywood-style movies.

To summarize, we provide the following main contributions:
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• We introduce a novel local desciptor for image sequences based on histograms of spatio-

temporal gradient orientations (HOG3D). Our approach is based on a memory-efficient

algorithm to compute 3D gradients for arbitrary scales and a generic 3D orientation

quantization based on regular polyhedrons. Descriptor parameters are evaluated in

depth and optimized for action recogition using bag-of-features representation. This

joint work with Marcin Marsza lek was published in [Kläser et al., 2008] and is presented

in chapter 3.

• We evaluate and compare several existing local space-time features for action recog-

nition. In total, four different feature detectors and six local feature descriptors are

investigated using a standard bag-of-features SVM approach. We investigate their per-

formance on a total of 25 action classes distributed over three datasets with varying

difficulty. This contribution was published in [Wang et al., 2009] in collaboration with

Heng Wang and Muhammad Muneeb Ullah. It is discussed in detail in chapter 4.

• We develop a novel descriptor for action recognition based on local feature trajectories.

Contrary to existing methods, we extend the trajectory descriptor with appearance

and motion information in the local neighborhood of the trajectory. For this, we

also introduce a new descriptor based on motion boundary histograms. Descriptor

parameters are studied and optimized for the task of action recognition in realistic

video settings. This joint work with Heng Wang is detailed in chapter 5.

• We investigate combining bag-of-features models with person localization and quan-

tify the improvements for action recognition. For this, first, we evaluate the gain in

performance by narrowing down the attention to human actors. Second, we show

how to incorporate spatial constraints in BoF models to improve accuracy for action

recognition. This work is detailed in chapter 6.

• We propose a novel human-centric approach to detect and localize human actions in

Hollywood-style movie data. To achieve this, we develop a human upper-body detec-

tor and tracker for movie data which is able to cope with a wide range of postures,

articulations, motions and camera viewpoints. For the action representation, we intro-

duce a spatio-temporal HOG3D based descriptor adapted to human tracks. Results

are included for the actions “drinking”, “smoking”, “phoning”, and “standing-up”. This

contribution was joint work with Marcin Marsza lek. It was published in [Kläser et al.,

2010] and is presented in chapter 7.





État de l’art et base de données

Ce chapitre passe en revue l’état de l’art des méthodes de reconnaissance d’action dans

des vidéos réalistes. Nous répartissons les travaux existants en trois catégories:

• Les méthodes basées sur un modèle du corps humain (section 2.1.1) emploient un mo-

dèle 3D (ou 2D) sur les parties du corps humain. La reconnaissance d’action s’effectue

alors en utilisant des informations sur le positionnement et le mouvement des parties

du corps.

• Les méthodes holistiques (section 2.1.2) utilisent la connaissance sur la localisation

des personnes dans la vidéo. Par conséquent, elles apprennent un modèle d’action à

partir des mouvements caractéristiques du corps entier sans aucune notion de parties

du corps.

• Les méthodes basées sur des caractéristiques locales (section 2.1.3) utilisent uniquement

des descripteurs locaux de vidéo. Aucune connaissance préalable sur le positionnement

des personnes dans la vidéo ou sur celui de leurs membres n’est utilisée.

En outre, nous présentons dans ce chapitre des bases de données pour la reconnaissance

d’action utilisées dans cette thèse (sections 2.2.1-2.2.5). Au-delà de leur description,

nous comparons également les meilleurs résultats qui ont été publiés dans la littérature.
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2.1 Related work

This section reviews the state-of-the-art methods for action recognition in realistic, un-

controlled video data. To this end, we structure existing works into three categories:

• Human model based methods (section 2.1.1) employ a full 3D (or 2D) model of human

body parts, and action recognition is done using information on body part positioning

as well as movements.

• Holistic methods (section 2.1.2) use knowledge about the localization of humans in

video and consequently learn an action model that captures characteristic, global body

movements without any notion of body parts.

• Local feature methods (section 2.1.3) are entirely based on descriptors of local regions

in a video, no prior knowledge about human positioning nor of any of its limbs is given.

Surveys on generic action and activity recognition as well as motion analysis and body

tracking include Weinland et al. [2010], Poppe [2010], Moeslund et al. [2006], Buxton [2003],

Moeslund and Granum [2001], Gavrila [1999], Aggarwal and Cai [1999]. Furthermore, Hu

et al. [2004] present a survey for video surveillance, and Turaga et al. [2008] review the

state-of-the-art for high level activity analysis. Most relevant in our context are the surveys

by Weinland et al. [2010] and Poppe [2010] which focus on the recognition of actions and

action primitives.



14 2. Related work and datasets

Figure 2.1: Examples of motions with a few moving light displays (MLD) attached to the

human body (courtesy of Johansson [1973]).

2.1.1 Human model based methods

Human model based methods recognize actions by employing information such as body

part positions and movements. A significant amount of research [Moeslund et al., 2006] is

devoted to action recognition using trajectories of joint positions, body parts, or landmark

points on the human body with or without a prior model of human kinematics, e.g., [Ali

et al., 2007, Parameswaran and Chellappa, 2006, Yilmaz and Shah, 2005b]. Approaches

in this field can be related to psychophysical work on visual interpretation of biological

motion [Johansson, 1973] which shows that humans are able to recognize actions soley

from the motion of a few moving light displays (MLD) attached to the human body (see

figure 2.1).

The localization of body parts in movies has been investigated in the past (e.g., Ramanan

et al. [2007], Ferrari et al. [2008]) and some works have shown impressive results. How-

ever, the detection of body parts is a difficult problem in itself, and results especially for

the case of realistic and less constrained video data remain limited in their applicability.

Some recent approaches that are able to provide more robust results (e.g., Agarwal and

Triggs [2006], Urtasun et al. [2006]), use strong prior knowledge by assuming particular

motion patterns in order to improve tracking of body parts. However, this also limits their

application to action recognition.

2.1.2 Holistic methods

Holistic methods do not require the localization of body parts. Instead, global body

structure and dynamics are used to represent human actions. Polana and Nelson [1994]

refered to this approach as “getting your man without finding his body parts”. The key

idea is that, given a region of interest centered on the human body, global dynamics are

discriminative enough to characterize human actions.

Compared to approaches that explicitely use a kinematic model or information about

body parts, holistic representations are much simpler since they only model global motion
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Figure 2.2: Shape masks for recognizing tennis actions (courtesy of Yamato et al. [1992]).

Figure 2.3: Shape masks from difference images for computing motion history images

(MHI) and motion energy images (MEI) (courtesy of Bobick and Davis [2001]).

and appearance information. Therefore their computation is in general more efficient as

well as robust. This aspect is especially important for realistic videos in which background

clutter, camera ego-motion, and occlusion render the localization of body parts particularly

difficult.

In general, holistic approaches can be roughly divided into two categories. The first cate-

gory employs shape masks or silhouette information, stemming from background substrac-

tion or difference images, to represent actions. The second category is mainly based on

shape and optical flow information.

Shape mask and silhouette based methods

Several approaches for action recognition use human shape masks and silhouette infor-

mation to represent the human body and its dynamics. Yamato et al. [1992] are among

the first to propose silhouette images (cf. figure 2.2). Their representation computes a

grid over the silhouette and computes for each cell the ratio of foreground to background

pixels. The grid representations are quantized into a vocabulary, and tennis actions are

then learned as sequences of “words” using hidden Markov models (HMM) [Rabiner, 1989].

Bobick and Davis [2001] use shape masks from difference images to detect human actions.

As action representation, the authors employ so-called motion energy images (MEI) and

motion history images (MHI), as illustrated in figure 2.3. More precisely, MEIs are binary

masks that indicate regions of motion, and MHIs weight these regions according to the

point in time when they occurred (the more recent, the higher the weight). This approach

is the first to introduce the idea of temporal templates for action recognition.

Sullivan and Carlsson [2002] detect tennis forehand strokes by matching a set of hand-

drawn key postures together with annotated body joint positions to edge information in a

video sequence. Positions of joints are then tracked between the keyframes using silhouette
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Figure 2.4: Space-time volumes for action recognition based on silhouette information

(courtesy of Blank et al. [2005]).

information of the tennis player. This approach allows to infer positions of body parts

which can be applied to, e.g., 3D animation.

An action model based on space-time shapes from silhouette information is introduced

by Blank et al. [2005], Gorelick et al. [2007]. Silhouette information is computed using

background substraction. Figure 2.4 illustrates some examples of space-time shapes. The

authors use properties of the solution to the Poisson equation to extract features such

as local saliency, action dynamics, shape structure and orientation. Chunks of 10 frames

length are then described by a high-dimensional feature vector. During classification, these

chunks are matched in a sliding window fashion to space-time shapes in test sequences.

Another work that uses space-time shapes of humans, is proposed by Yilmaz and Shah

[2005a]. Spatio-temporal shapes are obtained from contour information using background

substraction, similar to Blank et al. [2005]. For a robust representation, actions are then

represented by sets of characteristic points (such as saddle, valley, ridge, peak, pit points)

on the surface of the shape. In order to recognize actions, the authors propose to match

spatio-temporal shapes by computing a homography using point-to-point correspondences.

Weinland and Boyer [2008] introduce an orderless representation for action recognition us-

ing a set of silhouette exemplars. Action sequences are represented as vectors of minimum

distance between silhouettes in the set of exemplars and in the sequence. Final classifica-

tion is done using Bayes classifier with Gaussians to model action classes. In addition to

silhouette information, the authors also employ the Chamfer distance measure to match

silhouette exemplars directly to edge information in test sequences.

Foreground shape masks based on motion information in chunks of video data are em-

ployed by Zhang et al. [2008], cf. figure 2.5. A Motion Context descriptor is computed

over consistent regions of motion by using a polar grid. Each cell in the grid is de-

scribed with a histogram over quantized SIFT [Lowe, 2004] features. The final descriptor

for a sequence is a sum over all chunk descriptors. For classification, support vector ma-

chines (SVM) [Burges, 1998] and different models for probabilistic latent semantic analysis

(PLSA) [Hofmann, 1999] are employed.

Silhouettes are also a popular representation for surveillance applications [Haritaoglu et al.,

2000, Hu et al., 2004, Senior, 2009]. Since cameras are in general static, background

substraction techniques can be employed to compute silhouette information. As illustrated
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Figure 2.5: Illustration of the Motion Context descriptor for the actions hand waving

and jogging: motion images are computed over groups of images; the Motion Context

descriptor is computed over consistent regions of motion (courtesy of Zhang et al. [2008]).

Figure 2.6: A human centric grid of optical flow magnitudes to describe actions (courtesy

of Polana and Nelson [1994]).

in figure 1.5, silhouettes can be analyzed to recognize running and walking actions, but also

people carrying backpacks or heavy objects. In order to cope with more challenging video

data and camera motion, Ramasso et al. [2009] employ a human tracker and camera motion

estimation to compute shape information. However, to deal with noisy and imprecise

segmentation information, a more robust classification method is used as well.

Another way to match space-time shape models to cluttered image data with heterogeneous

background is demonstrated by Ke et al. [2007b]. The authors oversegment video sequences

using color information. Volumetric and optical flow features are then matched to action

templates in form of space-time shapes. To account for occlusion and actor variability, Ke

et al. extend their template to an action part model using pictorial structures.

Silhouettes provide strong cues for action recognition. Nevertheless, they are difficult to

compute in the presence of clutter and camera motion. Furthermore, they only describe

the outer contours of a person and thus lack discriminative power for actions that include

self-occlusions.

Optical flow and shape based methods

Human-centric approaches based on optical flow and generic shape information form an-

other sub-class of holistic methods. As one of the first works in this direction, Polana and

Nelson [1994] propose a human tracking framework along with an action representation

using spatio-temporal grids of optical flow magnitudes as shown in figure 2.6. The action

descriptor is computed for periodic motion patterns. By matching against reference mo-

tion templates of known periodic actions (e.g., walking, running, swimming, skiing) the

final action can be determined.

In another approach purely based on optical flow, Efros et al. [2003] track soccer players

in videos and compute a descriptor on the stabilized tracks using blurred optical flow.
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Their descriptor separates x and y flow as well as positive and negative components into

four different channels, as can be seen in figure 2.7. For classification, a test sequence

is frame-wise aligned to a database of stored, annotated actions. Further experiments

include tennis and ballet sequences as well as synthesis experiments.

The same human-centric representation based on optical flow and human tracks for ac-

tion recognition is employed by Fathi and Mori [2008]. As classification framework, the

authors use a two-layered AdaBoost [Freund and Schapire, 1999] variant. In a first step,

intermediate features are learned by selecting discriminative pixel flow values in small

spatio-temporal blocks. The final classifier is then learned from a all previously aggregated

intermediate features. Evaluations are carried out on four datasets: KTH , Weizmann, a

soccer, and a ballet dataset.

Rodriguez et al. [2008] propose an approach using flow features in a template matching

framework. Spatio-temporal regularity flow information is used as feature type. Regularity

flow shows improvement over optical flow since it globally minimizes the overall sum of

gradients in the sequence. Rodriguez et al. learn cuboid templates by aligning training

samples via correlation. For classification, test sequences are correlated with the learned

template via generalized Fourier transform that allows for vectorial values. Results are

demonstrated on the KTH dataset, for facial expressions, as well as on custom movie and

sports actions.

To localize humans performing actions such as sit down, stand up, grab cup and close lap-

top, Ke et al. [2005] use a forward features selection framework and learn a classifier based

on optical flow features. Spatio-temporal Haar features on optical flow components are

efficiently computed using an integral video structure. During learning, a discriminative

set of features are greedily chosen to optimally classify actions which are represented as

spatio-temporal cuboidal regions. For classification, the authors perform a sliding window

approach and classify each position as containing a particular action or not.

A method purely based on shape information is presented in [Lu and Little, 2006]. In

their experiments, Lu and Little track soccer or ice-hockey players and represent each

frame by a descriptor using histograms of oriented gradients. They then employ principal

component analysis (PCA) [Pearson, 1901] to reduce dimensionality. An HMM with a few

states models actions such as running/skating left, right etc.

Hybrid representations combine optical flow with appearance information. Schindler and

van Gool [2008] use optical flow information and Gabor filter responses in a human-centric

framework. For each frame, both types of information are weighted and concatenated.

PCA over all pixel values is applied to learn the most discriminative feature information.

Majority voting yields a final class label for a full sequence in multi-class experiments.

Results are carried out on the KTH and Weizmann dataset.

Another recent hybrid representation yields promising results on more realistic video data.

Laptev and Perez [2007] demonstrate the localization of drinking actions in movies by

learning a cuboid classifier that combines a set of appearance (histograms of oriented

gradients) and motion features (histograms of optical flow) as illustrated in figure 2.8.

To avoid an exhaustive spatio-temporal search and to improve performance for localizing
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(a) (b) (c) (d)

Figure 2.7: Motion descriptor using optical flow: (a) Original image, (b) Optical flow, (c)

Separating the x and y components of optical flow vectors, (d) Half-wave rectification and

smoothing of each component (courtesy of Efros et al. [2003]).

actions, the authors propose to pre-filter possible action localizations with a human key-

pose detector trained on keyframes of the action.

Human centric approaches necessitate a method for localizing humans, therefore they rely

intrinsically on the quality of human detections. To cope with imperfect localizations

from weakly labeled training data and an automatic human tracker, Hu et al. [2009]

introduce an approach based on multiple instance learning. In the neighborhood around

an annotated action or a human detection, a bag of possible action localization hypotheses

(i.e., instances) is generated. An initial classifier is learned on all positive and negative

instances. Iteratively, instances in bags are relabeled using the previously learned classifier

and the classifier is retrained on the new data. Hu et al. apply a simulated annealing

strategy to ensure convergence. Feature types that are used are histograms of oriented

gradients, foreground segmentation, and motion history images [Bobick and Davis, 2001].

Results are presented on simple actions in crowded sequences as well as in more challenging

data recorded in a shopping mall.

Albeit holistic approaches have been shown suitable for action recognition in more realistic

video data, certain points are important to note. Holistic representations are in general

not invariant to camera view direction. This needs to be accounted for, either by learning

different models for particular views (frontal, lateral, rear), or by providing a sufficiently

large amount of training data. Additionally, humans can appear at different scales (distant

view, close-up view) such that certain parts of the body might not be visible in the image.

However, human localizations reduce the computational complexity of detecting actions

in time substantially.

2.1.3 Local feature methods

Local space-time features capture characteristic shape and motion information for a local

region in video. They provide a relatively independent representation of events with

respect to their spatio-temporal shifts and scales as well as background clutter and multiple

motions in the scene. Such features are usually extracted directly from video and therefore

avoid possible failures of other pre-processing methods such as motion segmentation or

human detection.

In the following, we first discuss existing space-time feature detectors and feature descrip-

tors. Methods based on feature trajectories are presented separately since their conception
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Figure 2.8: (left) A drinking action represented by a set of basic motion and appearance

features with varying position and size; (right) each basic feature can have different spatial

and temporal layouts internally (courtesy of Laptev and Perez [2007]).

differs from space-time point detectors. We then review approaches which employ the or-

derless bag-of-features representation and which build spatio-temporal action models based

on local features. Finally, methods for localizing actions in videos are discussed.

Feature detectors

Feature detectors usually select characteristic spatio-temporal locations and scales in

videos by maximizing specific saliency functions. Laptev and Lindeberg [2003], Laptev

[2005] are the first to propose a feature detector based on a spatio-temporal extension of

the Harris cornerness criterion [Harris and Stephens, 1988]. The cornerness criterion is

based on the eigenvalues of a spatio-temporal second-moment matrix at each video point.

Local maxima indicate points of interest. The authors note the importance of using sep-

arate spatial and temporal scale values since spatial and temporal extent of events are

in general independent. Results of detecting Harris interest points in an outdoor image

sequence of a person walking is illustrated in figure 2.9.

Dollár et al. [2005] argue that in certain cases, true spatio-temporal corner points (accord-

ing to the Harris criterion) are relatively rare, while enough characteristic motion is still

present. Therefore, they design their interest point detector to yield denser coverage in

videos. Their method employs spatial Gaussian kernels and temporal Gabor filters. As

for 3D Harris, local maxima give final interesting positions.

A space-time extension of a salient region detector using entropy, is introduced by Oikonomopou-

los et al. [2006]. Entropy is computed in a cylindric neighborhood around a given space-

time position for the temporal derivative of a video sequence. To obtain a sparse repre-

sentation and more stable interest points, local maxima candidates are thresholded and

clustered.

The Hessian3D detector is proposed by Willems et al. [2008] as spatio-temporal extension

of the Hessian saliency measure applied for blob detection in images [Beaudet, 1978].

The authors aim at a rather dense, scale-invariant, and computationally efficient interest
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Figure 2.9: Spatio-temporal interest points from the motion of the legs of a walking

person; (left) 3D plot of a leg pattern (upside down) and the detected local interest points;

(right) interest points overlaid on single frames in the original sequence (courtesy of Laptev

[2005]).

Figure 2.10: Feature detection with global information; (left) spatial feature positions are

given by 2D detections in subspace images, (middle) the temporal position is given by

maxima in the coefficient matrix; (right) final positions in a waving sequence. (courtesy

of Wong and Cipolla [2007]).

point detector. Their detector measures saliency using the determinant of the 3D Hessian

matrix. An integral video structure allows to speed up computations by approximating

derivatives with box-filter operations. A non-maximum suppression algorithm selects joint

extrema over space, time and different scales.

Most feature detectors determine the saliency of a point with respect to its local neigh-

borhood. Wong and Cipolla [2007] suggest to determine salient features by considering

global information. For this, video sequences are represented as dynamic texture with a

latent representation and a dynamic generation model. This allows to synthesize motion,

but also to identify important regions in motion. The dynamic model is approximated

as linear transformation. A sub-space representation is computed via non-negative ma-

trix factorization. Local 2D interest in the sub-space images and temporal maxima in

their coefficient matrix indicate localizations of globally salient positions, as illustrated in

figure 2.10.
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Feature descriptors

Feature descriptors capture shape and motion information in a local neighborhood sur-

rounding interest points. Among the first works on local descriptors for videos, Laptev and

Lindeberg [2004] develop and compare different descriptor types: single- and multi-scale

higher-order derivatives (local jets), histograms of optical flow, and histograms of spatio-

temporal gradients. Histograms for optical flow and gradient components are computed

for each cell of a M ×M ×M grid layout describing the local neighborhood of an interest

point. A different variant describes the surrounding of a given position by applying PCA

to concatenated optical flow or gradient components of each pixel. The resulting descriptor

uses the dimensions with the most significant eigenvalues. In their experiments, Laptev

and Lindeberg report best results for descriptors based on histograms of optical flow and

spatio-temporal gradients.

In a similar work, Dollár et al. [2005] evaluate different local space-time descriptors based

on brightness, gradient, and optical flow information. They investigate different descriptor

variants: simple concatenation of pixel values, a grid of local histograms, and a single global

histogram. Finally, PCA reduces the dimensionality of each descriptor variant. Overall,

concatenated gradient information yields best performance.

HOG and HOF descriptors are introduced by Laptev et al. [2008]. To characterize local

motion and appearance, the authors combine histograms of oriented spatial gradients

(HOG) and histograms of optical flow (HOF) in a late fusion approach. The histograms

are accumulated in the space-time neighborhood of detected interest points. Each local

region is subdivided into a N×N×M grid of cells; for each cell, 4-bin HOG histograms and

a 5-bin HOF histogram are computed. The normalized cell histograms are concatenated

into the final HOG and HOF descriptors.

An extension of the image SIFT descriptor [Lowe, 2004] to 3D was proposed by Scovanner

et al. [2007]. For a set of randomly sampled positions, spatio-temporal gradients are

computed in the local neighborhood of each position. Each pixel in the neighborhood is

weighted by a Gaussian centered on the given position and votes into a M ×M ×M grid

of histograms of oriented gradients. For orientation quantization, the authors represent

gradients in spherical coordinates φ, ψ that are divided into a 8 × 4 histogram. To be

rotation-invariant, the axis corresponding to φ = ψ = 0 is aligned with the dominant

orientation of the local neighborhood.

Willems et al. [2008] propose the extended SURF (ESURF) descriptor which extends the

image SURF descriptor [Bay et al., 2006] to videos. Like in previous approaches, the

authors divide 3D patches into a grid of local M × M × M histograms. Each cell is

represented by a vector of weighted sums of uniformly sampled responses of Haar-wavelets

along the three axes.

Feature trajectories

Feature trajectories are based on spatial interest points tracked in time—as opposed to

spatio-temporal interest points. Trajectory shapes encode information about local motion



2.1. Related work 23

Figure 2.11: Matikainen et al. [2009] obtain feature trajectories by detecting and tracking

spatial interest points. Trajectories are quantized to a library of trajectons which are used

for action classification (courtesy of Matikainen et al. [2009]).

patterns and can thus be directly used as local feature. Messing et al. [2009] represent fea-

ture trajectories of varying length as sequences of log-polar quantized velocities. Activities

are modeled using a generative mixture of Markov chain models.

In a different approach, Matikainen et al. [2009, 2010] employ feature trajectories of a fixed

length in a bag-of-features framework for action classification (cf. figure 2.11). Trajectories

of a video are clustered together, and for each cluster center an affine transformation matrix

is computed. In addition to displacement vectors, the final trajectory descriptor contains

elements of the affine transformation matrix for its assigned cluster center.

Bag of features

A popular representation based on local features is the bag-of-features (BoF) model. It

originates from document retrieval applications where orderless methods are a popular

choice for representing textual data. The bag-of-words model describes text documents

as frequency distributions over words and has been applied extensively in this domain

[Salton, 1968].

For visual recognition tasks, Cula and Dana [2001], Sivic and Zisserman [2003], Csurka

et al. [2004], Sivic et al. [2005] are among the first authors to extend this concept to visual

classification with applications for texture classification, object/scene retrieval, image cat-

egorization, and object localization, respectively. Schüldt et al. [2004], Dollár et al. [2005],

Niebles et al. [2006] propose the first extensions to action recognition.

For the BoF representation in videos, feature detectors determine a set of salient posi-

tions in the sequences. Feature descriptors compute a vector representation for the local

neighborhood of a given position. The visual vocabulary (or codebook) is then computed

by applying a clustering algorithm (e.g., k-means) on feature descriptors obtained from

training sequences; each cluster is referred to as visual word. Descriptors are quantized by

assignment to their closest visual word, and video sequences are represented as occurrence

histogram of visual words. A non-linear SVM with χ2 kernel is a popular classifier that
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Figure 2.12: Laptev et al. [2008] incorporate weak geometric information in the bag-of-

features model by introducing rough spatio-temporal grids overlayed on video sequences

(courtesy of Laptev et al. [2008]).

is used throughout different works, e.g., Schüldt et al. [2004], Dollár et al. [2005], Laptev

et al. [2008], Willems et al. [2008]. Such histograms only contain global statistics about the

type of descriptors that are present in the video sequence. Any information of temporal

or spatial relations between the descriptors is ignored.

Spatio-temporal action models

Since the BoF model does not incorporate any geometrical information between features,

recent works propose methods to build stronger action models based on local features. For

instance, Laptev et al. [2008] include weak geometric information by introducing rough

spatio-temporal grids overlayed on video sequences as shown in figure 2.12. Grid layouts

as well as shape and motion descriptors are combined by kernel fusion using a non-linear

SVM. A greedy optimization strategy learns the best combination of grids and feature

types per action class. The authors demonstrate the effectiveness of their approach on the

KTH dataset and a large set of sample actions obtained from Hollywood movies.

Han et al. [2009] combine different local features with varying layouts and types (his-

tograms of oriented gradients, histograms of optical flow, histograms of oriented spatio-

temporal gradients) by fusing multiple kernels using Gaussian processes. By employing

various object detectors (for full person, upper body, chairs, cars), they additionally in-

clude information about the absence or presence of objects in the sequences. Results on

different datasets (KTH , Hollywood1 , Hollywood2 ) demonstrate state-of-the-art classifi-

cation results.

A hierarchical approach based on SIFT feature trajectories is suggested by Sun et al.

[2009]. The authors introduce different levels of context information: the local spatial

neighborhood of a trajectory is represented with an averaged SIFT descriptor; a series of

state transitions related to quantized orientation and magnitude bins encodes trajectory

information; a cuboidal neighborhood captures the relation among adjacent trajectories.

In order to capture dynamics of the different levels, Sun et al. use stationary Markov

distribution vector. Multiple kernel learning (MKL) [Bach et al., 2004] is employed to

combine the different levels of information.

Gilbert et al. [2009] introduce a hierarchical combination of features along with an effi-

cient data mining technique to recognize actions. First, Harris corner points are detected

on (x, y), (x, t), (y, t) planes. Detected points are described by their scale and dominant
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Figure 2.13: Examples of object-action category detections using an approach based on

local features (courtesy of Mikolajczyk and Hirofumi [2008]).

gradient orientation. Then, frequent feature combinations that occurr in a local spatio-

temporal neighborhood are learned. These features are combined again in a hierarchical

manner. Gilbert et al. propose also a voting scheme to localize actions in video sequences.

Action localization by voting

Combined with a voting scheme, local features can also be employed to spatially as well as

temporally localize actions in videos. For instance, Niebles et al. [2006] perform a latent

topic discovery and model the posterior probability of each quantized feature for a given

action class. In order to localize actions, features are spatially clustered in each frame

using k-means.

Mikolajczyk and Hirofumi [2008] propose a voting approach to localize objects that per-

form a particular action. The authors use a forest of tree classifiers for fast feature quan-

tization. The GLOH image descriptor [Mikolajczyk and Schmid, 2005] together with its

dominant motion orientation is used as local descriptor type. Features in motion cast

intial hypotheses for position and scale of objects performing an action. Maxima in the

voting space indicate detections, and static features refine their intial localization. For the

final pose estimation, the object’s global orientation is computed from the orientation of

voting features. Figure 2.13 illustrates results of object/action detections.

In order to localize actions in YouTube video sequences, Liu et al. [2009] propose an

approach based on pruning local features. First, spatio-temporal features are detected

and their mean position over a range of neighboring frames is computed. Features that

are too far away from the center position are pruned. Second, static features are computed

over all frames. By applying the PageRank algorithm over a graph for feature matches in

a video sequence, the authors are able to identify discriminative features. For this, similar

background features are assumed to by less frequently visible than foreground features.

Finally, static and motion features are combined with an AdaBoost classifier. Action

localization is carried out with a temporal sliding window over spatio-temporal candidate

regions defined by the center and the second moments of motion as well as static features.

Willems et al. [2009] model actions as space-time cubes. They localize drinking actions in

movies by casting localization hypotheses for the strongest visual codebook entries of an

action. Weak hypotheses are pruned, and a non-linear χ2 SVM evaluates the BoF repre-

sentations of remaining ones. Local maxima in the voting space indicated the final action

positions. Different action hypotheses and the final detection are shown in figure 2.14.
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Figure 2.14: Localization of drinking actions based on local features and hypotheses casting

(courtesy of Willems et al. [2009]).

A related approach by Yuan et al. [2009] employs the branch-and-bounds algorithm to

localize actions in video sequences. Actions are, again, represented as cuboid volumes.

The volumes themselves are scored based on mutual information and a Gaussian kernel

for density estimation. For a more efficient density estimation, the authors introduce

an approximated nearest neighbor search based on local sensitive hashing. Experimental

results are shown for the KTH and the CMU actions dataset.

A key advantage of local features based approaches is their flexibility with respect to the

type of video data. They can be applied to videos for which the localization of humans or

their body parts is not feasible. More recent works demonstrate its successful application

to real world video data, such as Hollywood movies and YouTube video sequences [Laptev

et al., 2008, Mikolajczyk and Hirofumi, 2008, Marsza lek et al., 2009, Liu et al., 2009].

2.2 Datasets

We present in this section some of the state-of-the-art action recognition datasets that

are used in the following. Along with dataset descriptions, we also compare the best

results that have been published so far. For this, we distinguish between results for BoF

frameworks and overall best results, regardless of the method used.

Subsections 2.2.1 and 2.2.2 describe the Weizmann and KTH actions dataset, respectively.

Both datasets have been used extensively in research, however both represent only a set

of rather artificial actions with a homogeneous background. Additionally, the Weizmann

dataset is about one order of magnitude smaller than KTH . The UCF sports dataset

(subsection 2.2.3) is a collection of TV sport events. It offers a large variety of action

classes while being limited in its size. The most challenging and extensive datasets that

have been published in the literature are the YouTube and Hollywood2 datasets which

are presented in subsections 2.2.4 and 2.2.5. They offer an extensive amount of video

sequences in realistic setups: YouTube videos and Hollywood movies, respectively.

2.2.1 Weizmann actions

The Weizmann actions dataset [Blank et al., 2005] 1 consists of ten different types of

action classes: bending downwards, running, walking, skipping, jumping-jack, jumping

1. Available at http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
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Bending JumpingJack JumpingFoward JumpingInPlace Running

GallopingSide Skipping Walking Waving1Hand Waving2Hands

Figure 2.15: Sample frames from the Weizmann actions dataset.

Reference Method Accuracy

B
oF

chapter 3 Harris3D + HOG3D 90.7%

Niebles et al. [2008] Gabor filters + gradients, PLSA 90.0%

Liu et al. [2008] Spin + ST Features 90.4%

Kläser et al. [2008] Harris3D + HOG3D 84.3%

Scovanner et al. [2007] 3D-SIFT 82.6%

Niebles and Fei-Fei [2007] Shape Context + Gradients + PCA 72.8%

ot
h

er
s

Fathi and Mori [2008] smoothed optical-flow + silhouettes

+ human tracks + AdaBoost

100%

Weinland and Boyer [2008] exemplar-based embedding + sil-

houettes

100%

Schindler and van Gool [2008] Gabor filters + optical flow + hu-

man tracks

100%

Gorelick et al. [2007] Poisson equation + silhouettes 97.8%

Wang and Suter [2007] kernel PCA + factorial CRFs + sil-

houettes

97.8%

Zhang et al. [2008] motion context + foreground seg-

mentation

92.9%

Ali et al. [2007] chaotic invariants + silhouettes 92.6%

Table 2.1: State-of-the-art results on Weizmann actions reported as avg. class accuracy.
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forward, jumping in place, galloping sideways, waving with two hands, and waving with

one hand (cf. fig. 2.15). Each action class is performed once (sometimes twice) by 9 subjects

resulting in 93 video sequences in total. The background in the videos is homogeneous

and static. Blank et al. advocate to test using leave-one-out cross-fold validation, i.e.,

testing is performed for one sequence at a time while training is executed on all remaining

sequences. Performance is given in terms of average accuracy (error rate).

Table 2.1 summarizes current state-of-the-art results on the Weizmann dataset. In the

literature, several authors report 100% performance for this dataset [Fathi and Mori,

2008, Weinland and Boyer, 2008, Schindler and van Gool, 2008], all employing silhouette

information obtained via background substraction. Works based on BoF representations

that do not use foreground segmentation have reported results at about 90% [Niebles et al.,

2008, Liu et al., 2008]. With our spatio-temporal HOG descriptor, we achieve in a BoF

setup comparable results (cf. chapter 3).

2.2.2 KTH actions

The KTH actions dataset 2 has been introduced by Schüldt et al. [2004]. It consists of six

different human action classes: walking, jogging, running, boxing, waving, and clapping

(cf. fig. 2.16). Each action class is performed several times by 25 subjects. The sequences

were recorded in four different scenarios: outdoors, outdoors with scale variation, outdoors

with different clothes, and indoors. The background is homogeneous and static in most

sequences. In total, the data consists of 2391 video samples. In the original experimental

setup of the authors, samples are divided into a test set (9 subjects: 2, 3, 5, 6, 7, 8, 9, 10,

and 22) and training set (the remaining 16 subjects). Evaluation on this dataset is done

via multi-class classification. Classification performance is evaluated as average accuracy

over all classes.

Current state-of-the-art approaches are given in table 2.2. Gilbert et al. [2009], Han

et al. [2009] achieve overall best performance with about 94%. Wong and Cipolla [2007]

obtain best results among BoF approaches. With features based on local trajectories (cf.

chapter 5), we are able to improve significantly over the state-of-the-art for BoF methods

and are on par with the overall best results reported in the literature.

There is other work that uses the KTH datasets for evaluation, e.g., Fathi and Mori

[2008], Jhuang et al. [2007], Wong et al. [2007], Schindler and van Gool [2008], Kim et al.

[2007], Uemura et al. [2008], Bregonzio et al. [2009], Liu and Shah [2008], Liu et al. [2008].

However, we cannot compare to them since their results are based on non-standard setups.

They reported results either using more training data or splitting the problem into simpler

tasks.

2. Available at http://www.nada.kth.se/cvap/actions/

http://www.nada.kth.se/cvap/actions/
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Walking Jogging Running Boxing Waving Clapping

Figure 2.16: Sample frames for all different action classes (columns) in the different sce-

narios (rows) from the KTH actions dataset.

Reference Method Accuracy

B
oF

chapter 5 feature trajectories + HOG-HOF-

MBH

94.2%

chapter 3 Harris3D + HOG3D 92.6%

chapter 4, Wang et al. [2009] Harris3D + HOF 92.1%

chapter 4, Wang et al. [2009] Harris3D + HOG-HOF 91.8%

Kläser et al. [2008] Harris3D + HOG3D 91.4%

Wong and Cipolla [2007] non-negative matrix factorization +

gradients

86.7%

Willems et al. [2008] Hessian3D + extended SURF 84.3%

Niebles et al. [2008] Gabor filters + gradients, PLSA 83.3%

Dollár et al. [2005] Gabor filters + gradients 81.2%

Schüldt et al. [2004] Harris3D + local jets 71.7%

ot
h

er
s

Gilbert et al. [2009] hierarchical data mining 94.5%

Han et al. [2009] different local features + grid lay-

outs + object detectors

94.1%

Yuan et al. [2009] mutual information for sets of un-

quantized local features

93.3%

chapter 6 dense + HOG3D + human tracks 92.1%

Laptev et al. [2008] Harris3D + HOG + HOF + grid

layouts

91.8%

Table 2.2: State-of-the-art results on the KTH dataset reported as average class accuracy.
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Reference Method Accuracy

BoF chapter 4 Gabor + HOG3D 85.0%

others
chapter 6 dense + HOG3D + human tracks 90.1%

Rodriguez et al. [2008] MACH template matching 69.2%

Table 2.3: State-of-the-art results on the UCF dataset reported as average class accuracy.

2.2.3 UCF sport actions

The UCF sport actions dataset [Rodriguez et al., 2008] 3 contains ten different types of

human actions: swinging (on the pommel horse and on the floor), diving, kicking (a

ball), weight-lifting, horse-riding, running, skateboarding, swinging (at the high bar), golf

swinging and walking (cf. figure 2.17). The dataset consists of 150 video samples which

show a large intra-class variability. The performance criterion for the multi-class task is

the average accuracy over all classes. The original setup employs leave-one-out for testing.

The only published results that are known to use for UCF are given by Rodriguez et al.

[2008]. They report 69.2% accuracy which we outperform significantly in our experiments

(chapters 4 and 6).

2.2.4 YouTube actions

The YouTube dataset has been introduced by Liu et al. [2009] 4 and contains 11 action

categories: basketball shooting, biking/cycling, diving, golf swinging, horse back riding,

soccer juggling, swinging, tennis swinging, trampoline jumping, volleyball spiking, and

walking with a dog (in Figure 2.18). This dataset is challenging due to large variations in

camera motion, object appearance and pose, object scale, viewpoint, cluttered background,

illumination conditions etc. The dataset contains a total of 1600 sequences. In the original

setting, the evaluation is carried out using cross validation for a set of 25 folds that is

defined by the authors. Average accuracy over all classes is used as performance measure.

To the best of our knowledge, Liu et al. [2009] are the only authors so far to evaluate on

this dataset. They obtain 71.2% which is slightly better than we obtain with our spatio-

temporal HOG descriptor (chapter 3). With local feature trajectories (chapter 5), we yield

a significant improvement of over 8.5%.

2.2.5 Hollywood actions

There exist two versions of the Hollywood actions dataset: Hollywood1 [Laptev et al., 2008]

and Hollywood2 [Marsza lek et al., 2009]. To avoid exhaustive manual annotation of several

hundreds of hours of movie data, the authors use in both cases movie scripts which provide

textual description of the movie content, such as scenes, characters, transcribed dialogues,

3. Available at http://www.cs.ucf.edu/vision/public_html/

4. Available at http://www.cs.ucf.edu/~liujg/YouTube_Action_dataset.html

http://www.cs.ucf.edu/vision/public_html/
http://www.cs.ucf.edu/~liujg/YouTube_Action_dataset.html


2.2. Datasets 31

Diving Kicking Weight-lifting Horse-riding

Running Skateboarding High-bar swinging Swinging

Golf swinging Walking

Figure 2.17: Sample frames for all action classes of the UCF sport action datasets.

Basketball Biking Diving Horse riding Golf swinging

Soccer juggling Swinging Tennis Trampoline Volleyball

Walking

Figure 2.18: Sample frames from the YouTube action dataset; two samples are given for

each of the eleven action classes.
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Reference Method Accuracy

BoF

chapter 5 feature trajectories + HOG-HOF-

MBH

79.8%

chapter 3 Harris3D + HOG3D 68.3%

others
Liu et al. [2009] motion/static features + pruning +

grouping + AdaBoost

71.2%

Table 2.4: State-of-the-art results on the YouTube dataset reported as avg. class accuracy.

Reference Method AP

B
oF

Willems et al. [2009] Hessian3D + HOG3D variant 29.6%

Laptev et al. [2008] Harris3D + HOG 27.0%

Kläser et al. [2008] Harris3D + HOG3D 24.7%

Laptev et al. [2008] Harris3D + HOF 21.5%

ot
h

er
s

Gilbert et al. [2009] hierarchical data mining 53.5%

Han et al. [2009] different local features + grid lay-

outs + object detectors

47.5%

Sun et al. [2009] hierarchical context model, feature

trajectories

47.1%

Laptev et al. [2008] Harris3D + HOG + HOF + grid

layouts

38.4%

chapter 6 dense + HOG3D + human tracks 36.4%

Table 2.5: State-of-the-art results on the Hollywood1 dataset reported as mean AP.

and human actions. In a first step, scripts are aligned to movie subtitles since they usually

come without time information. In a second step, classifiers are trained on a bag-of-words

representation of the scene description for different action classes. Several features are

used: bag-of-words over single words, over adjacent pairs of words, as well as over pairs

of words in a small neighborhood. This allows to cope with significant variations in the

text and to retrieve action samples. The authors manually ensure the visual integrity of

annotations in the train and test set and additionally provide a noisy training set.

The first version, Hollywood1 , has been published by Laptev et al. [2008] 5. It contains

eight different action classes: answering the phone, getting out of the car, hand shaking,

hugging, kissing, sitting down, sitting up, and standing up. Action samples have been

collected from in total 32 different Hollywood movies. The full dataset contains 663

video samples, divided into a clean training set (219 sequences) and a clean test set (211

sequences), where training and test sequences were obtained from different movies. The

additional noisy training set consists of 233 sequences.

Hollywood2 is the extended version introduced by Marsza lek et al. [2009] 6. In total it

consists of samples from 69 different Hollywood movies. The initial eight action classes

5. Available at http://www.irisa.fr/vista/actions/

6. Available at http://www.irisa.fr/vista/actions/hollywood2

http://www.irisa.fr/vista/actions/
http://www.irisa.fr/vista/actions/hollywood2
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AnswerPhone DriveCar Eat FightPerson

GetOutCar HandShake HugPerson Kiss

Run SitDown SitUp StandUp

Figure 2.19: Sample frames from the Hollywood2 action dataset; two samples are given

for each of the twelve action classes.

Reference Method AP

B
oF

chapter 5 feature-trajectories + HOG-HOF-

MBH

52.5%

chapter 3 Harris3D + HOG3D 48.6%

chapter 4, Wang et al. [2009] Harris3D + HOG/HOF 47.6%

ot
h

er
s Gilbert et al. [2009]⋆ hierarchical data mining 50.9%

Han et al. [2009] different local features + grid lay-

outs + object detectors

42.1%

⋆Unpublished results, personal communication with the authors.

Table 2.6: State-of-the-art results on the Hollywood2 dataset reported as mean AP.
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were extended by adding four additional ones: driving car, eating, fighting, and running.

Action samples for all classes are illustrated in figure 2.19. In total, there are 2517 action

samples split into a manually cleaned training set (823 sequences) and a test set (884

sequences). The noisy training set contains 810 sequences. Train and test sequences are

obtained from different movies.

The performance for both, Hollywood1 and Hollywood2 , is evaluated by computing the

average precision (AP) for each of the action classes and reporting the mean AP over all

classes (mAP). Note that this follows the evaluation procedure which has been established

by the Pascal Visual Object Class Challenge [Everingham et al., 2008].

For both variants of this dataset, Gilbert et al. [2009] yield current state-of-the-art results:

53.5% on Hollywood1 and 50.9% on Hollywood2 . In chapter 5, we show that we outperform

their results by 1.6% (i.e., 52.5%) with local descriptors based on feature trajectories. We

cannot compare to Marsza lek et al. [2009], since they only report results for classifiers

trained on the noisy dataset.



Un descripteur basé sur des gradients spatio-temporels

En suivant l’évolution récente de la reconnaissance visuelle des images statiques, de nom-

breux concepts ont été étendus et appliqués à des séquences vidéo Par exemple: des

détecteurs des points pertinents, des descripteurs locaux, le modèle sac-de-mot et la lo-

calisation d’actions en utilisant des caractéristiques locales. Cependant, malgré le progrès

récent, il existe relativement peu de descripteurs locaux en vidéos qui bénéficient conjoin-

tement de l’information spatiale et temporelle.

Ce chapitre présente un nouveau descripteur spatio-temporel de caractéristiques locales

en vidéo. S’appuyant sur le succès des histogrammes de gradients orientés (HOG) pour

des images statiques [Dalal et al., 2006, Lowe, 2004], nous généralisons les concepts clés

du HOG à la 3D. À cette fin, nous étudions les polyèdres réguliers et les coordonnées

sphériques afin de discrétiser l’orientation des gradients spatio-temporels. En outre, nous

employons des vidéos intégrales pour rendre le calcul des gradients plus efficace. Les

paramètres de notre descripteur sont évalués sur quatre bases de données différentes (KTH ,

Weizmann, YouTube et Hollywood2 ) et ils sont optimisés pour la reconnaissance d’action

dans des vidéos.
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Based on recent developments of visual recognition in static images, many concepts have

been successfully extended to video sequences, for instance: feature detectors, feature

descriptors, bag-of-features (BoF) representations, local features based voting for localiza-

tion. However, despite recent developments, relatively few local descriptors in videos exist

that benefit from combined spatial and temporal information.

This chapter introduces a novel spatio-temporal descriptor for local features in video.

Building on the success of descriptors based on histograms of oriented gradients (HOG)

for static images [Dalal et al., 2006, Lowe, 2004], we view videos as spatio-temporal vol-

umes and generalize the key HOG concepts to 3D. To this end, we investigate regular

polyhedrons and spherical coordinates for 3D orientation quantization and employ inte-

gral videos for efficient computation of gradients. Descriptor parameters are evaluated

on four action datasets (KTH , Weizmann, YouTube, Hollywood2 ) and are optimized for

action recognition.
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3.1 Introduction

Different types of descriptors have been investigated in the past. Dollár et al. [2005]

compare descriptors based on pixel values, brightness gradients, and optical flow. Laptev

and Lindeberg [2004] evaluate single- and multi-scale higher oder derivatives, histograms of

optical flow, and histograms spatio-temporal gradients. Overall, the authors find gradient

and optical flow based methods to yield best results in their experiments. However, in

both works, descriptors are based on gradient magnitude components which are shown to

suffer from sensitivity to illumination changes [Freeman and Roth, 1995].

At the same time, representations based on histograms of oriented gradients (HOG) have

been shown suitable representations for images since orientation information is robust to

changes in illumination [Freeman and Roth, 1995]. HOG is successfully used for local

feature representations [Lowe, 2004, Mikolajczyk and Schmid, 2005] as well as for dense

description of objects in images [Dalal and Triggs, 2005, Felzenszwalb et al., 2010].

Laptev et al. [2008] use orientation information to recognize actions. The authors combine

histograms of optical flow (HOF) and HOG descriptors to capture motion and appearance

information. However, they only consider spatial gradients and employ for gradients and

optical flow a rough orientation quantization into only four bins. Unlike Laptev et al.,

we base our descriptor on histograms of spatio-temporal 3D gradient orientation. Spatio-

temporal gradients are fast and cheap to compute, as opposed to optical flow. In addition

to this, they combine motion as well as appearance information in one representation.

The closest work to our descriptor is an extension of the popular SIFT image descriptor

[Lowe, 2004] to the spatio-temporal domain proposed by Scovanner et al. [2007]. To quan-

tize gradient orientations the authors use regular binning based on spherical coordinates.

However, quantization and descriptor parameters are not evaluated and experiments are

only carried out on a small dataset (Weizmann actions) with static background.

In our work, we evaluate descriptor parameters in depth on several datasets of varying

degree of difficulty and optimize them for BoF-based action recognition. Furthermore we

compare different gradient quantization strategies: orientation quantization with up to 20

bins using regular polyhedrons and spherical coordinates for which the amount of bins

can be controlled separately for spatial and temporal gradient orientations. In addition

to this, we employ integral histograms for memory-efficient computation of features at

arbitrary spatial and temporal scales. This technique shows advantages over common

approaches that need to precompute descriptor information for a coarse set of predefined

spatio-temporal scales [Laptev et al., 2008, Dollár et al., 2005]. Integral videos are related

to Willems et al. [2008] as well as Ke et al. [2005]. Both works employ integral histograms

for videos to compute spatio-temporal Haar wavelets.

3.2 Spatio-temporal descriptor

A sampling point (x, y, t, σ, τ)T is located in the video sequence at position (x, y, t)T. Its

characteristic spatial and temporal scale are given by σ and τ , respectively. The spatial
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Figure 3.1: Overview of the descriptor computation; (a) the support region around a point

of interest is divided into a grid of gradient orientation histograms; (b) each histogram is

computed over a grid of mean gradients; (c) each gradient orientation is quantized using

regular polyhedrons; (d) each mean gradient is computed using integral videos.

scale (σ) accounts for similar structures appearing at a different size in the image plane.

The temporal scale (τ) models similar motion happening at a different speed, i.e., over a

different length of time. σ and τ determine the spatial and temporal neighborhood size of

the descriptor at position (x, y, t).

Figure 3.1 illustrates the different steps for computing our 3D gradient orientation descrip-

tor. Each step is discussed in detail in the following. Section 3.2.1 explains the proposed

efficient computation of 3D gradients with arbitrary spatial and temporal scales (fig. 3.1d).

The orientation quantization of 3D gradients is presented in section 3.2.2 (fig. 3.1c). Sec-

tion 3.2.3 summarizes the computation of orientation histograms (fig. 3.1b), and finally

the construction of the descriptor itself is explained in section 3.2.4 (fig. 3.1a).

3.2.1 Gradient computation

A video sequence v is given as a function v : R2 × R → R. To account for space-

time structures at different scales, its scale-space representation L : R2 × R × R2
+ → R

is constructed by its convolution with an anisotropic Gaussian kernel with independent

spatial and temporal variance (σ, τ) [Laptev, 2005]:

L(·;σ, τ) = G(·;σ, τ) ∗ v(·), (3.1)

where the spatio-temporal separable Gaussian kernel is defined as

G(x, y, t;σ, τ) =
1

√

(2π)3σ4τ2
exp

(

−(x2 + y2)

2σ2
− t2

2τ2

)

. (3.2)

In order to compute histograms over 3D gradient orientations for different spatio-temporal

scales, gradient vectors need to be computed efficiently for cuboid regions of different size

(cf. fig. 3.1d).
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One strategy to improve computational efficiency is to use spatio-temporal “pyramids”.

Such a pyramid is defined by a set of combinations of different temporal and spatial

scales, and gradients could be precomputed for each scale combination. This approach is

in the spirit of work by Dollár et al. [2005], Laptev [2005], Laptev et al. [2008]. However,

for each given spatio-temporal scale, the video sequence needs to be rescaled and stored.

Precisely, given N scale steps in total as well as a spatial and a temporal scaling factor

sσ, sτ , this amounts in a factor z =
∑N−1

i=0

∑N−1
j=0 s−2i

σ s−j
τ of additional data that needs to

be stored as well as processed. For instance, if we assume a fine spatial and temporal scale

grid with sσ = sτ = 4
√

2 over six octaves in total, i.e., N = 24, one will need to compute

24 × 24 different video scales. This results in a factor z ≈ 21 of extra data. Therefore,

only a rough representation of the scale space with a few scale combinations is commonly

chosen in practice.

As memory-efficient yet still flexible alternative, we propose to use integral videos for

computing mean gradient vectors. For this, we compute the gradient vector (dx, dy, dt)

in the scale-space representation L of the video sequence v as

∇Lσ,τ = ∇(Gσ,τ ∗ v) = Gσ,τ ∗ ∇v ≈ Bσ,τ ∗ ∇v, (3.3)

with

Lσ,τ = L(·;σ, τ), Gσ,τ = G(·;σ, τ) (3.4)

and we approximate the Gaussian kernel G with the box filter B. 3D gradients are thus

first computed for all pixel positions in the original video sequence. By calculating their

integral video representation (see below), the box filter can be computed for any arbitrary

cuboid and thus for any arbitrary x-, y-, and t-scale in constant time.

The concept of integral images has been popularized by Viola and Jones [2001]. They

used integral images as an intermediate representation for efficient computation of Haar

features. We extend integral images to integral videos on gradient vectors. Given the

video sequence v(x, y, t) and its gradient representation ∇v = ( ∂v∂x ,
∂v
∂t ,

∂v
∂t )

T
, its integral

video representation can be described as

∇V (x, y, t) =
∑

x′≤x,y′≤y,t′≤t

∇v(x′, y′, t′). (3.5)

For any 3D cuboid b = (x, y, t, w, h, l)T described by its position (x, y, t)T and its width

(w), height (h), and length (l), we can compute the its mean gradient ḡb = (ḡbx, ḡby, ḡbt)
T

as

ḡb = [∇V (x+w, y+h, t+ l)−∇V (x, y+h, t+ l)−∇V (x+w, y, t+ l) +∇V (x, y, t+ l)]

− [∇V (x+ w, y + h, t) −∇V (x, y + h, t) −∇V (x+ w, y, t) + ∇V (x, y, t)] . (3.6)
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Figure 3.2: Illustration of quantization of 3D gradient orientations using spherical coordi-

nates with azimuth (θ) and elevation angle (ϕ).

3.2.2 Orientation quantization

Given the 3D gradient ḡb, we seek to quantize its orientation into a histogram qb of

discrete bins (cf. figure 3.1c). This can be seen as quantizing the surface of a unit sphere.

In the following, we investigate two different aproaches. First, we discuss how to quantize

the orientation of a 3D gradient using spherical coordinates with azimuth and elevation

angle. Second, we propose a quantization strategy using regular polyhedrons.

Spherical coordinate based quantization. The orientation of a spatio-temporal gra-

dient can be quantized using its spherical coordinate representation with azimuth (θ) and

elevation angle (ϕ), as illustrated in figure 3.2. The spherical coordinate representation

(r, θ, ϕ) for the gradient ḡb is given by

r = ||ḡb||2 (3.7)

θ = arc tan

(

ḡby
ḡbx

)

(3.8)

ϕ = arc cos
( ḡbt
r

)

. (3.9)

In order to compute a weighted histogram of gradient orientations, θ and ϕ are divided

into Bθ and Bϕ equally sized bins. This is similar to a division with meridians and parallels

on a unit sphere. A gradient votes with its magnitude r into its four closest bins using

bilinear interpolation: each entry into a bin is multiplied by a weight of 1 − d; d is the

distance of the sample to the central value of the bin measured in units of the histogram

bin spacing.
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Figure 3.3: Illustration of the different existing regular polyhedrons (courtesy of Wikipedia

[2010]).

Polyhedron based quantization. A n-bin histogram of gradient orientations in 2D

(i.e., for static images) can be interpreted as an approximation of a circle (i.e., the con-

tinuous space of orientations) with a regular n-sided polygon. Each side of the polygon

corresponds to a histogram bin. The equivalent of a two-dimensional polygon is a poly-

hedron for the three dimensional space. Regular polyhedrons with congruent faces are

referred to as platonic solids; only five of them exist: the tetrahedron (4-sided), cube

(6-sided), octahedron (8-sided), dodecahedron (12-sided), and icosahedron (20-sided) (cf.

fig. 3.3). In our experiments, we consider the dodecahedron and the icosahedron for 3D

gradient quantization since they result in the largest number of orientation bins.

Given a regular n-sided polyhedron, let its center of gravity lie at the origin of a three-

dimensional Euclidean coordinate system. In order to quantize a 3D gradient vector ḡb
w.r.t. its orientation, we first project ḡb on the axes running through the origin of the

coordinate system and the center positions of all faces. This can be done with matrix

multiplication. Let P be the matrix of the center positions p1, . . . ,pn of all n faces

P = (p1,p2, . . . ,pn)T with pi = (xi, yi, ti)
T . (3.10)

For instance, the icosahedron can be described with the following 20 center points:

(±1,±1,±1) (0,±1/φ,±φ) (±1/φ,±φ, 0) (±φ, 0,±1/φ) (3.11)

with the golden ratio φ = 1+
√
5

2 . The projection q̂b of ḡb is obtained through:

q̂b = (q̂b1, . . . , q̂bn)T =
P · ḡb
‖ḡb‖2

. (3.12)

Thus, each q̂bi of q̂b holds the normalized projection of the gradient vector ḡb onto the

axes through the face center pi, i.e.,

q̂bi = ‖pi‖2 · cos∠(pi, ḡb) = ‖ḡb‖−1
2 · pi

T · ḡb. (3.13)

For a histogram with half orientation, opposite directions can be associated into the same

bin by halving the set of face centers and taking the absolute value of q̂bi.
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Next, the resulting vector q̂b of the projection is thresholded. This is done, since ḡb is

expected to vote into only one bin in case it is perfectly aligned with the corresponding

axis running through the origin and the face center. By comparing two neighboring axes

pi and pj , this threshold value is given by t = pi
T ·pj . For the icosahedron given in (3.11)

t ≈ 1.29107. Threshold t is subtracted from q̂b and all negative elements are set to zero.

The gradient magnitude is distributed according to the thresholded histogram q̂′
b:

qb =
||ḡb||2 · q̂′

b

||q̂′
b
||2

. (3.14)

In our experiments (see section 3.3.2 for details) we have found that the type of quantiza-

tion is dataset dependend.

3.2.3 Histogram computation

A histogram of gradient orientations is computed over a set of gradient vectors. Given a

particular cell in our descriptor (cf. figure 3.1b), denoted as c = (xc, yc, tc, wc, hc, lc)T, we

divide c into S ×S ×S subblocks bi. These S3 subblocks form the set over which the cell

histogram is computed. For each of the subblocks bi, the corresponding mean gradient

ḡbi
is computed using integral videos as defined in equation (3.6). ḡbi

is subsequently

quantized as qbi
employing a regular polyhedron (see equation (3.14)). The histogram

hc for the region c is then obtained by summing the quantized mean gradients qbi
of all

subblocks bi:

hc =
S3

∑

i=1

qbi
. (3.15)

With a fixed number of supporting mean gradient vectors (S3), and by using integral

videos for computing mean gradients of subblocks, a histogram can be computed for any

arbitrary scale at x, y, t. At the same time the memory requirements for storage are linear

in the number of pixels in the video sequence. They do not depend on a number of

predefined spatio-temporal scales.

Our experiments on two different datasets show (see section 3.3.2 for details) that S =

4, resulting in 64 supporting mean gradient vectors yields best performance for action

recognition irrespective of the dataset.

3.2.4 Descriptor computation

A sampling point s = (xs, ys, ts, σs, τs)
T is located in the video sequence at (xs, ys, ts)

T

with characteristic spatial and temporal scale (σs, τs), respectively. The final descriptor ds
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for s is computed for a local support region rs = (xr, yr, tr, wr, hr, lr)
T around the position

s (see figure 3.1a) with width (ws), height (hs), and length (ls) given by

ws = hs = σ0σs , ls = τ0τs . (3.16)

The parameters σ0 and τ0 characterize the relative size of the support region around s.

Similar to other approaches [Dollár et al., 2005, Laptev, 2005, Laptev and Lindeberg, 2004,

Laptev et al., 2008, Scovanner et al., 2007], the local support region rs is divided into a

set of M ×M ×N cells ci. For each cell, an orientation histogram is computed (see equa-

tion (3.15)). Each cell histogram is finally normalized by its L2-norm and concatenated

to one feature vector ds = (d1, . . . , dM2N )T.

For different datasets, we found the scale parameters of σ0 = [16, 24] and τ0 = [4, 12] to

yield satisfying results (cf. section 3.3.2). The number of spatial cells showed to be more

dependent on a specific dataset with values in the range M = [2, 5]. For the number

temporal divisions, N seemed to be relatively insensitive to different values. In practice

N = 4, 5 obtained best performance.

3.3 Experimental results

In the following sections, we present experimental results for our descriptor. Section 3.3.1

details the setup for experiments and section 3.3.2 presents results for learning parameters.

Section 3.3.3 compares results on four datasets to current state-of-the-art approaches.

3.3.1 Experimental setup

Bag-of-features. We evaluate the performance of our descriptor on the task of action

recognition by employing the bag-of-features setup as detailed in section A.1 (k-means for

codebook generation, codebook size 4000, χ2-kernel SVM). For interest point detection, we

use the Harris3D feature detector [Laptev et al., 2008] (cf. section 4.2.1). When learning

the parameter settings (section 3.3.2), we employ random sampling on training features

for codebook generation in order to speed up computations (also codebook size 4000).

Baseline features. As baseline method, we use the HOG (histograms of oriented spatial

gradients) and HOF (histograms of optical flow) descriptors proposed by Laptev et al.

[2008]. Their HOG and HOF variant use rough orientation binning (4 bins) in a 3 ×
3 × 2 grid layout (for more details see section 4.2.2). Their HOG description only uses

spatial gradients. In our experiments, we report results for each descriptor separately

and combined (HOG-HOF) via concatenation of their feature vectors. Descriptors are

computed for the same Harris3D interest points as used for our method.
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Datasets. For a better insight into the descriptor’s performance, we employ different

datasets in our experiments. We perform parameter optimization on the training sets of

KTH and Hollywood2 (cf. sections 2.2.2 and 2.2.5). Their size proofed to be large enough

to optimize the parameter settings. For the comparison to the state-of-the-art, we run

additional experiments on Weizmann and YouTube datasets (cf. sections 2.2.1 and 2.2.4).

3.3.2 Parameter learning

In order to determine an appropriate set of parameters for the descriptor introduced in

this chapter, we optimize parametric settings on the training data of two datasets: KTH

actions and Hollywood2 human actions. Subject to optimization is for KTH the average

class accuracy on the training set obtain via leave-one-person-out cross-validation, i.e., all

training sequences belonging to the same person are associated with the same fold. For

Hollywood2 , we optimize the mean average precision (mAP) on the training set over all

action classes using leave-one-movie-out cross-validation, i.e., all actions coming from the

same movie are assigned to one fold.

For parameter learning, the following parameters are optimized jointly: spatial and tem-

poral support (σ0, τ0), number of histogram cells (M,N), number of supporting mean

gradients (S), orientation type (full or half orientation), quantization type (icosahedron

or dodecahedron). We then learn optimal values for the number of spatial and tempo-

ral quantization bins (Bθ, Bϕ) for spherical coordinates. For this, the previously learned

parameters are applied and fixed.

To limit the number of parameters during optimization, we fix the codebook size to V =

4000—which has empirically shown good performance over a range of datasets Laptev

et al. [2008]. We report values for different sizes after optimization.

For the parameter learning, we divide the parameter space into a rough grid and start

at a meaningful manually chosen point. The optimization is a gradient ascent method

that evaluates for each parameter its two neighboring values of the current position on

the grid. To account for a sometimes significantly large variance, we perform for each

point in the parameter space three runs separately. By caching results of previous runs,

the approximation of the true mean becomes more precise with each iteration. For each

new iteration, the point with the highest mAP among all results previously computed is

chosen as the current maximum. The optimization is stopped on convergence, when the

maximum remains stable for three consecutive runs.

Table 3.1 summarizes separately for KTH and Hollywood2 the final set of parameters

obtained with our optimization strategy. The influence of each parameters evaluated at

the optimal settings is shown in figures 3.4 and 3.5. Error bars indicate the standard

deviation of several separate runs. In both figures, we show the performance for cross-

validation on the training set (denoted as train) and, for completness, also on the test set

(denoted as test).

Overall, we can observe that the parameters most sensitive to changes are the grid layout,

the type of quantization as well as the codebook size. The number of spatial grid cells (M)
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Figure 3.4: Parameter evaluation on the KTH dataset for neighboring values around the

optimized parameter settings; the average class accuracy on the training set and on the

testing set is plotted against different parameter settings, standard deviation denoted by

error bars.
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Figure 3.5: Parameter evaluation on the Hollywood2 dataset for neighboring values around

the optimized parameter settings; the mean average precision (mAP) on the training set

and on the testing set is plotted against different parameter settings, standard deviation

denoted by error bars.
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parameter KTH Hollywood2

spatial support σ0 16 24

temporal support τ0 4 12

number of spatial cells M 5 2

number of temporal cells N 4 5

number of mean gradients S 4 4

orientation type half half

quantization type icosahedron spherical quant.

spatial coordinate bins Bθ – 5

temporal coordinate bins Bσ – 3

descriptor dimensionality 1000 300

Table 3.1: Optimized parameter settings obtained separately on KTH and Hollywood2 .

reaches optimal performance on KTH for M = 5 and on Hollywood2 for M = 2. This

can be explained due to the much lower inter- and intra-class variability for the different

actions and actors on KTH . The finer spatial grid layout presumably helps to distinguish

better between different action classes since more spatial information is encoded. As for

the number of temporal divisions (N), the grid layout seems relatively stable. On both

datasets, results are in favor of a higher number of temporal divisions, presumambly in

order to capture more motion information.

The type of quantization varies significantly between both datasets. Where on KTH the

icosahedron yields best results for quantization, on Hollywood2 quantization based on

spherical coordinates has the edge. For spherical coordinates, interesting to note is that

with Bθ = 5 for half spatial orientation and Bϕ = 3 for temporal orientation, more spatial

information is encoded in the histogram. Information about velocity of action elements

seems thus to play a less important role.

The codebook size as well as the number of mean gradients show across both datasets the

most consistent behaviour. The performance increases with increasing codebook size and

saturates at about V = 4000. The number of mean gradients shows best performance for

S = 4 which corresponds to 4 · 4 · 4 = 64 gradient vector votes per histogram cell. For

higher values, results drop slightly. Lowest results are obtained for S = 1 with only one

gradient vote per histogram cell.

On both datasets, one can observe that the scale parameters for the descriptor support size

(σ0, τ0) seem to favor a smaller temporal (τ0 = [4, 12] pixels) than spatial (σ0 = [16, 24]

pixels) support. This presumably helps to better describe fast changes in motion. Espe-

cially for KTH , action classes like jogging, running, and walking can necessite descriptors

that are able to distinguish between similar types of motion at different velocities.

3.3.3 Comparison to state-of-the-art

By learning parameter values on two distinct datasets, we obtain settings that are suit-

able for different types of video sequences: rather simple sequences with homogenous
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KTH Weizmann YouTube Hollywood2

ours (KTH optimized) 92.6%(±0.2) 90.7%(±1.0) 68.3% (±1.0) 45.1% (±0.3)

ours (Hollywood2 opt.) 89.5% (±0.7) 85.6% (±3.2) 68.1% (±1.2) 48.6%(±0.5)

HOGHOF 91.1% (±0.6) 85.6% (±1.1) 71.2%(±0.7) 47.7% (±0.1)

HOG 81.9% (±1.1) 75.3% (±3.5) 68.0% (±0.4) 38.2% (±0.2)

HOF 92.7%(±0.8) 88.8% (±1.7) 63.9% (±0.5) 43.8% (±0.6)

Table 3.2: Performance comparison over all datasets. Results are shown for our de-

scriptor in combination with Harris3D and our baseline (Harris3D with HOG and HOF

descriptors). Performance measure is mean AP for Hollywood2 and average class accuracy

otherwise.

background and low amount of clutter as well as realistic sequences with a large amount

of clutter and complex motion patterns. In the following, we apply both settings (denoted

as KTH and Hollywood2 optimized) additionally on the YouTube and Weizmann dataset

and compare our results to the baseline (Harris3D with HOG and HOF descriptor) and the

state-of-the-art. For the state-of-the-art, we limit our comparison mainly to local features

evaluated in a standard bag-of-features (BoF) framework.

Table 3.2 (first column) shows results on the KTH dataset. The difference between the

two parameter settings are at about 3%. This shows the importance of adapted parameter

values. We are on par (92.6%) with the best results of our baseline (HOF, 92.7%). In-

teresting to note for baseline results is that the combination of shape (HOG) and motion

information (HOF) decreases results by 1.6%. This can be explained by the fact that

the background is static and actors as well as actions visually similar. In comparison to

the state-of-the-art (cf. table 2.2), higher results for mere BoF approaches have not been

published to the best of our knowledge. Overall best results, irrespective of the method

used, have been reported by Gilbert et al. [2009] with 94.5%. They use an approach that

incorporates hierarchically context information.

On the Weizmann dataset, we outperform (90.7%) results of the baseline (88.8%) with

the set of parameters learned on KTH . Results are shown in table 3.2 (second column).

In these experiments, we employed a smaller codebook size (1000) than for previous ones

in order to account for its limited size (we obtain ca. 19,000 interest points in total).

This improves results over a codebook size of 4000 (ca. 6% for our descriptor). For the

baseline, the HOF descriptor alone yields best results (88.8%) and its combination with

HOG degrades performance by 3.2% to 85.6%. The reason is presumably similar to KTH :

static background and visually similar actions/actors. Among reported results for BoF

approaches (cf. table 2.1), Liu et al. [2008] obtain the best accuracy known to us (90.4%)

by combining and weighting multiple feature types. Our results with only one descriptor

type shows comparable performance. Overall best results have been reported with 100%

by several authors [Fathi and Mori, 2008, Weinland and Boyer, 2008, Schindler and van

Gool, 2008]. All these works employ additional information via foreground masks obtained

with background substraction.
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ours ours HOGHOF HOG HOF

HW2 opt. KTH opt.

Eat 55.8% (±1.7) 52.1% (±0.8) 63.1%(±0.9) 43.4% (±6.3) 58.6% (±0.9)

Phone 16.3% (±0.6) 18.0%(±0.3) 15.3% (±1.0) 11.8% (±0.8) 11.6% (±0.4)

Run 71.7%(±0.8) 67.8% (±0.6) 67.2% (±0.2) 62.1% (±0.6) 68.5% (±0.2)

SitDown 47.6% (±0.5) 47.6% (±3.0) 57.3%(±1.9) 30.3% (±1.2) 56.4%(±0.8)

HugPerson 47.9%(±2.2) 32.1% (±4.0) 38.6% (±1.2) 29.6% (±1.1) 30.9% (±1.8)

SitUp 22.2%(±0.6) 18.4% (±2.7) 22.5%(±2.0) 16.1% (±0.2) 8.5% (±0.4)

GetOutCar 35.7%(±2.3) 35.0%(±1.7) 32.3% (±1.6) 24.9% (±2.5) 19.6% (±3.4)

DriveCar 86.3%(±0.7) 81.6% (±0.1) 85.8%(±0.4) 79.0% (±0.4) 84.8% (±0.3)

Kiss 51.1%(±1.2) 49.1%(±2.0) 49.3%(±1.5) 43.5% (±1.0) 45.1% (±1.4)

StandUp 15.6% (±4.4) 18.6%(±0.8) 20.4%(±2.5) 20.9%(±4.7) 18.9%(±1.2)

HandShake 55.7%(±1.6) 52.1% (±1.5) 49.5% (±1.5) 36.3% (±2.7) 50.2% (±0.9)

Fight 77.2%(±0.5) 69.4% (±0.3) 71.3% (±0.5) 60.4% (±0.4) 72.1% (±1.0)

Average 48.6%(±0.5) 45.1% (±0.3) 47.7% (±0.1) 38.2% (±0.2) 43.8% (±0.6)

Table 3.3: Average precision on the Hollywood2 dataset separately for each action class.

Results are shown for our descriptor in combination with Harris3D, our baseline (Harris3D

with HOG and HOF descriptors).

Results on the YouTube dataset (table 3.2 (third column)) show similar performance for

both parameter settings of our descriptor (68.1%, 68.3%) and as well for the baseline

HOG descriptor (68.0%). Best results (71.2%) are achieved with the baseline’s HOG-HOF

combination. On this dataset, the HOG-HOF combination improves over both single

descriptors and matches the performance that was published by the authors [Liu et al.,

2009]. Other results have not been reported in the literature to the best of our knowledge.

For Hollywood2 , table 3.2 (fourth column) resumes average recognition results and table 3.3

details results per class. Overall, our descriptor parameters learned on the Hollywood2

training set compare favorably (48.6%) to the baseline (HOG-HOF, 47.7%). Per class,

it outperforms the baseline in 5, loses in 2, and is on par in 5 out of 12 action classes.

Parameters learned on the training set of KTH obtain only 45.1% mAP, i.e., 3.5% lower.

Due to its more realistic videos and richer set of action classes, the adaptation of descriptor

parameters to this dataset shows to be important. For the baseline, we can note that the

HOG-HOF descriptor combination improves performance by 3.9% over the best single

descriptor (HOF, 43.8%). Currently best results have been published by Gilbert et al.

[2009], as for KTH .

3.4 Summary

In this chapter, we have introduced a video descriptor based on histograms of 3D gradient

orientations 1. For this, we have extended the concept of integral images to integral videos

for efficient 3D gradient computation, and we have developed a quantization method for

3D orientation based on regular polyhedrons. All descriptor parameters were thoroughly

1. The descriptor software can be downloaded at: http://lear.inrialpes.fr/software.

http://lear.inrialpes.fr/software
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evaluated and optimized for the task of action recognition in videos. We obtained two op-

timized parameter settings: one for video sequences with static, homogeneous background

and another one for Hollywood-style movies exhibiting complex motions, background clut-

ter, camera ego-motion etc. Finally, the performance of the proposed descriptor was eval-

uated on a total of four different datasets on which it showed excellent results.





Évaluation de caractéristiques spatio-temporelles locales pour la reconnais-

sance d’actions

Au cours des dernières années, différentes méthodes pour la détection de points pertinents

et pour la description de caracteristiques locales en vidéo ont été proposées dans la lit-

térature (cf. section 2.1.3). Toutefois, à cause de limitations et de différences dans les

évaluations expérimentales publiées (au niveau des bases de données, des définitions des

données d’apprentissage et d’évaluation, des méthodes comparées, des méthodes de clas-

sification, etc.), une comparaison équitable de ces méthodes n’est en général pas possible.

Afin de permettre une meilleure comparaison, ce chapitre étudie les différentes méthodes

pour localiser et décrire des caractéristiques locales dans des vidéos, en se plaçant dans

une configuration expérimentale fixe, sur diverses bases de données et avec divers degrés

de difficulté.
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Over the past years, different methods for feature localization and description in video

sequences have been proposed in the literature (cf. section 2.1.3). However, given the

strongly varying experimental settings under which their evaluations have been carried

out, a fair comparison is in general not possible. To allow a better comparison, this chapter

studies different methods for localizing and describing local spatio-temporal features in a

common experimental setup and on various datasets.
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4.1 Introduction

Several different space-time feature detectors [Laptev and Lindeberg, 2003, Dollár et al.,

2005, Willems et al., 2008, Jhuang et al., 2007, Wong and Cipolla, 2007, Oikonomopoulos

et al., 2006] and descriptors [Laptev et al., 2008, Willems et al., 2008, Kläser et al., 2008,

Scovanner et al., 2007, Laptev and Lindeberg, 2004] have been proposed in the past few

years. Feature detectors usually select spatio-temporal locations and scales in video by

maximizing specific saliency functions. The detectors differ in the type and the sparsity

of selected points. Feature descriptors capture shape and motion in the neighborhoods

of selected points using image measurements such as spatial or spatio-temporal image

gradients and optical flow.

While specific properties of detectors and descriptors have been advocated in the literature,

their justification is often insufficient due to the limited and non-comparable experimental

evaluations used in current papers. For example, results are frequently presented for

different datasets such as the KTH dataset [Schüldt et al., 2004, Kläser et al., 2008,

Laptev et al., 2008, Willems et al., 2008, Dollár et al., 2005, Wong and Cipolla, 2007,

Jhuang et al., 2007], the Weizmann dataset [Blank et al., 2005, Scovanner et al., 2007] or

the aerobic actions dataset [Oikonomopoulos et al., 2006]. For the common KTH dataset

[Schüldt et al., 2004], results are often non-comparable due to the different experimental

settings used. Schüldt et al. [2004], Kläser et al. [2008], Laptev et al. [2008], Willems et al.

[2008] use the standard training/test split of samples defined by Schüldt et al. [2004], other

papers [Dollár et al., 2005, Wong and Cipolla, 2007] report results for a simpler leave-one-

out setting or a different training and test split [Jhuang et al., 2007]. The comparison is

further complicated by the different recognition methods used.

Furthermore, most of the previous evaluations were reported for actions in controlled

environments such as in KTH and Weizmann datasets. It is therefore unclear how these

methods generalize to action recognition in realistic setups [Laptev et al., 2008, Rodriguez

et al., 2008] which are especially of interest for the present disseration.

A few evaluations of local space-time features have been reported in the past. Laptev [2004]

evaluated the repeatability of space-time interest points as well as the associated accuracy

of action recognition under changes in spatial and temporal video resolution as well as

under camera motion. Similarly, Willems et al. [2008] evaluated repeatability of detected

features under scale changes, in-plane rotations, video compression and camera motion.

Local space-time descriptors were evaluated by Laptev and Lindeberg [2004], where the

comparison included families of higher-order derivatives (local jets), image gradients and

optical flow. Dollár et al. [2005] compared local descriptors in terms of image brightness,

gradient and optical flow. Scovanner et al. [2007] evaluated the 3D-SIFT descriptor and

its two-dimensional variants. Jhuang et al. [2007] evaluated local descriptors in terms of

the magnitude and orientation of space-time gradients as well as optical flow. Kläser et al.

[2008] compared a spatio-temporal HOG3D descriptor with HOG and HOF descriptors

[Laptev et al., 2008]. Willems et al. [2008] evaluated the extended SURF descriptor. In

general, however, evaluations in these works are usually limited to a single detection or

description method as well as to a single dataset.
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The main contribution of this chapter is an evaluation and fair comparison for a number

of local space-time detectors and descriptors. We evaluate performance of three space-

time interest point detectors and six descriptors along with their combinations on three

datasets with varying degree of difficulty and a total of 25 action classes. Moreover, we

compare with dense features obtained by regular sampling of local space-time patches,

as excellent results were obtained by dense sampling in the context of object recognition

[Jurie and Triggs, 2005, Nowak et al., 2006]. We, furthermore, investigate the influence

of spatial video resolution as well as shot boundaries on the performance and compare

methods in terms of their sparsity. All experiments are reported for the same bag-of-

features SVM recognition framework. Among interesting conclusions, we demonstrate

that regular sampling consistently outperforms all tested space-time detectors for human

actions in realistic setups. We also demonstrate a consistent ranking for the majority of

methods across datasets.

4.2 Local spatio-temporal video features

This section describes the local feature detectors and descriptors used in the following

evaluation. Methods were selected based on their use in the literature as well as the

availability of the implementation. In all cases we use the original implementation and

parameter settings provided by the authors.

4.2.1 Detectors

Harris3D. The Harris3D detector was proposed by Laptev and Lindeberg [2003] as a

space-time extension of the Harris detector [Harris and Stephens, 1988]. The authors

compute a spatio-temporal second-moment matrix at each video point as

µ(·; σ, τ) = G(·; sσ, sτ) ∗





L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t ,



 (4.1)

using independent spatial and temporal scale values σ, τ , a separable Gaussian smoothing

function G, and a parameter s that relates the integration scale for G to the local scales

σ, τ . The first-order derivatives of the video sequence v are defined as

Lx(·;σ, τ) = ∂x(G ∗ v), (4.2)

Ly(·;σ, τ) = ∂y(G ∗ v), (4.3)

Lt(·;σ, τ) = ∂t(G ∗ v). (4.4)

The final locations of space-time interest points are given by local maxima of

H = det(µ) − k trace3(µ), H > 0. (4.5)
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Figure 4.1: Illustration of the response function for interest point detection proposed by

Dollár et al. [2005] and given in equation (4.7) (courtesy of Dollár et al. [2005]).

The authors proposed also a mechanism for spatio-temporal scale selection based on the

scale-normalized spatio-temporal Laplacian operator:

∇2L = σ2τ1/2(Lxx + Lyy) + στ3/2Ltt. (4.6)

Final interest points are required to be local maxima with respect to the Harris corner-

ness criterion, i.e., equation 4.5, as well as to be local extrema with respect to the scale

normalized Laplacian operator. Following Laptev et al. [2008], we do not perform scale

selection, but we use points extracted at multiple scales based on a regular sampling of the

scale parameters σ, τ . We use the original implementation available on-line 1 and standard

parameter settings k = 0.0005, σ2 = 4, 8, 16, 32, 64, 128, τ2 = 2, 4. Figure 4.3(second row)

shows example detections on consecutive video frames.

Gabor. The Gabor detector is based on temporal Gabor filters and was proposed by

Dollár et al. [2005]. The response function is given by

R = (I ∗G ∗ hev)2 + (I ∗G ∗ hod)2, (4.7)

with a 2D spatial Gaussian smoothing kernel G(x, y;σ) and a quadrature pair of 1D Gabor

filters hev and hod which are applied temporally. The Gabor filters are defined by

hev(t; τ, ω) = − cos(2πtω)e−t2/τ2 (4.8)

hod(t; τ, ω) = − sin(2πtω)e−t2/τ2 (4.9)

with ω = 4/τ . Figure 4.1 illustrates the response function. The two parameters σ and

τ of the response function R correspond roughly to the spatial and temporal scale of the

1. http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip

http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip
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Figure 4.2: Illustration of spatio-temporal interest points detected using the Hessian

saliency measure used by Willems et al. [2008] for different thresholds (courtesy of Willems

et al. [2008]).

detector. Interest points are the local maxima of the response function R. We use the code

from the authors’ website 2 and detect features using standard scale values σ = 2, τ = 4.

Figure 4.3(third row) shows example detections on consecutive video frames.

Hessian3D. The Hessian3D detector was proposed by Willems et al. [2008] as a spatio-

temporal extension of the Hessian saliency measure used by Beaudet [1978] and Lindeberg

[1998] for blob detection in images. The detector measures the saliency with the determi-

nant of the 3D Hessian matrix:

H(·;σ, τ) =





Lxx Lxy Lxt

Lyx Lyy Lyt

Ltx Lty Ltt



 . (4.10)

The strength of each interest point at a certain scale is given by the determinant of its

Hessian matrix |det(H)|. For the case of perfect Gaussian blobs, the determinant can be

approximated with its first term as det(H) ≈ LxxLyyLtt. By using the scale-normalized

spatio-temporal Laplacian, Willems et al. localize final interest points in the 5D scale

space as local maxima of

S = σ2pτ2qLxxLyyLtt. (4.11)

In order to speed up the detector, the authors used approximative box-filter operations on

an integral video structure. Responses for different scales are computed by upscaling the

box-filters. The determinant of the Hessian is computed over several octaves of both the

spatial and temporal scales. A non-maximum suppression algorithm selects joint extrema

over space, time and scales: (x, y, t, σ, τ). Figure 4.2 illustrates some detected interest

points for different thresholds. We use the executables from the authors’ website 3 and

employ the default parameter setting. Figure 4.3(fourth row) shows example detections

on consecutive video frames.

Dense sampling. Dense sampling extracts video blocks at regular positions and scales

in space and time. There are 5 dimensions to sample from: (x, y, t, σ, τ), where σ and

2. http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

3. http://homes.psat.kuleuven.be/~gwillems/research/Hes-STIP/

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://homes.psat.kuleuven.be/~gwillems/research/Hes-STIP/
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Figure 4.3: Visualization of interest points detected by the different detectors: Harris3D

(second row), Gabor (third row), Hessian3D (fourth row).

τ are the spatial and temporal scale, respectively. After evaluating different spatial patch

sizes for dense sampling (cf. section 4.3.7), we set for our experiments the minimum size of

a 3D patch to 18× 18 pixels and 10 frames. Spatial and temporal sampling are done with

50% overlap. Multi-scale patches are obtained by multiplying σ and τ by a factor of
√

2

for consecutive scales. In total, we use 8 spatial and 2 temporal scales since we consider

the spatial scale to be more important than the time scale. We consider all combinations

of spatial and temporal scales, i.e., we sample a video 16 times with different σ and τ

parameters.

4.2.2 Descriptors

For each given sample point (x, y, t, σ, τ), a feature descriptor is computed for a 3D video

patch centered at (x, y, t). Its spatial size ∆x(σ),∆y(σ) is a function of σ and its temporal

length ∆t(τ) a function of τ .

Gradient. Dollár et al. [2005] proposed the Gradient descriptor along with the Gabor

detector. The size for the descriptor is given by

∆x(σ) = ∆y(σ) = 2 · ceil(3σ) + 1, (4.12)

∆t(τ) = 2 · ceil(3τ) + 1. (4.13)
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Figure 4.4: Illustration of the HOG/HOF descriptor: an interest point is described by

a cuboid region divided into a grid of cells; for each cell, a histogram of oriented spatial

gradients (HOG) as well as a histogram of optical flow (HOF) is computed; for the final

descriptor, all cell HOG and HOF descriptors are concatenated (courtesy of Laptev et al.

[2008]).

We follow the authors’ setup and concatenate the gradients computed for each pixel in

the patch into a single vector. Principal component analysis (PCA) is computed on the

training samples and is used to project the feature vector to a lower dimensional space.

The descriptor size after PCA projection is 100. We download the code from the authors’

website 2 and use its default settings.

HOG/HOF. The HOG and HOF descriptors were introduced by Laptev et al. [2008].

To characterize local motion and appearance, the authors combine histograms of oriented

spatial gradients (HOG) and histograms of optical flow (HOF) in a late fusion approach.

The histograms are accumulated in the space-time neighborhood of detected interest

points, where the descriptor region is given by a cuboid of the size ∆x(σ) = ∆y(σ) = 18σ

and ∆t(τ) = 8τ . Each cuboid region is subdivided into a nx × ny × nt grid of cells; for

each cell, 4-bin HOG histograms and a 5-bin HOF histogram (with 4 directions and an

additional zero-bin) are computed. The normalized cell histograms are concatenated into

the final HOG and HOF descriptor. We investigate in our experiments the performance

of the combined HOG/HOF descriptor (by concatenation) as well as its HOG and HOF

parts. In our evaluation we used the grid parameters nx, ny = 3, nt = 2 as suggested by

the authors. We use the original implementation available on-line 1.

For computing HOG/HOF descriptors with scale parameters σ, τ returned by the Hes-

sian3D detector, we optimize ∆x,∆y to yield best performance. Our final cuboid size is

then given by ∆x(σ) = ∆y(σ) = 13σ and ∆t(τ) = 8τ . The Gabor detector computes inter-

est points only for a single spatio-temporal scale. For it combination with the HOG/HOF

descriptor, we fix the region size to ∆x = ∆y = 36 and ∆t = 11.

HOG3D. The HOG3D descriptor was proposed originally in [Kläser et al., 2008] and

further extended in chapter 3. It is based on histograms of 3D gradient orientations

and can be seen as an extension of the SIFT descriptor [Lowe, 2004] to video sequences.

Gradients are computed using an integral video representation. Both, regular polyhedrons

and spherical coordinates are used to quantize the orientation of spatio-temporal gradients.
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Figure 4.5: Two types of box filter approximations for the Gaussian second order partial

derivatives employed by Willems et al. [2008] (courtesy of Willems et al. [2008]).

The descriptor therefore describes shape and motion information at the same time. A given

3D patch is divided into nx × ny × nt cells. The corresponding descriptor concatenates

3D gradient histograms of all cells which are normalized separately. The executable is

available on-line 4.

For this descriptor, two different parametric settings were proposed (cf. section 3.3.2).

The first one has been obtained via optimization on the training set of KTH (in the

following denoted by HOG3D[1]). It is applicable to more controlled datasets containing

video sequences with a static and rather homogeneous background. The descriptor size is

given as ∆x(σ) = ∆y(σ) = 16σ,∆t(τ) = 4τ . The number of spatial and temporal cells is

nx = ny = 5, nt = 4, and icosahedron with half orientation is used as polyhedron type for

quantizing orientations. The resulting dimensionality of the descriptor is 5·5 ·4·10 = 1000.

We employ these settings for our experiments on the KTH and UCF dataset.

The second setting was learned on the training set of Hollywood2 (denoted as HOG3D[2]in

our experiments). This set of parameters is adapted to datasets that include more chal-

lenging type of video data featuring cluttered background, complex motion patterns,

camera ego-motion, and a large variety of actions. The descriptor size is defined by

∆x(σ) = ∆y(σ) = 24σ and ∆t(τ) = 12τ . The number of spatial and temporal cells is

nx = ny = 2, nt = 5, and spherical coordinates for half orientation with 5 spatial and 3

temporal bins are used for orientation quantization. The resulting dimensionality of the

descriptor is 2 · 2 · 5 · 10 = 300. This set of parameters is applied for our experiments on

the Hollywood2 dataset.

Extended SURF. Willems et al. [2008] proposed the extended SURF (ESURF) de-

scriptor which extends the image SURF descriptor [Bay et al., 2006] to videos. Like for

previous descriptors, the authors divide 3D patches into nx×ny ×nt cells. The size of the

3D patch is given by ∆x(σ) = ∆y(σ) = 3σ and ∆t(τ) = 3τ . For the feature descriptor,

each cell is represented by a vector of weighted sums v = (
∑

dx,
∑

dy,
∑

dt) of uniformly

sampled responses of the Haar-wavelets dx, dy, dt along the three axes (illustration in fig-

ure 4.5). We use the executables from the authors’ website 3 with the default parameters

defined in the executable.

4. http://lear.inrialpes.fr/software

http://lear.inrialpes.fr/software
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HOG3D[1] HOG/HOF HOG HOF Gradient ESURF

Harris3D 92.4% 91.8% 80.9% 92.1% – –

Gabor 91.4% 88.7% 82.3% 88.2% 89.1% –

Hessian3D 88.1% 88.7% 77.7% 88.6% – 81.4%

Dense 88.5% 86.1% 79.0% 88.0% – –

Table 4.1: Average accuracy for various detector/descriptor combinations on KTH actions.

4.3 Experimental results

This section presents experimental results for various detector/descriptor combinations.

We start with the details for our experimental setup (section 4.3.1). Results are presented

for the different datasets in sections 4.3.2-4.3.4. Sections 4.3.5-4.3.8 evaluate the influence

of shot boundaries, the influence of subsampling, different parameters for dense sampling,

and compare the density of the different detection methods.

4.3.1 Experimental setup

For the experiments, we evaluate the different features in a bag-of-features based action

classification task. The exact experimental setup follows the description of section A.1.

We employ k-means for vocabulary construction and fix the codebook size to 4000. Due

to random initialization of k-means used for codebook generation, we observed a standard

deviation of approximately 0.5% in our experiments.

We carry out experiments on three different action datasets: KTH , UCF sports, and

Hollywood2 actions datasets. We follow the original experimental setups of the authors

as described in section 2.2. For the evaluation, we report average accuracy over all classes

for the KTH and UCF dataset and mean average precision (mAP) over all classes for the

Hollywood2 dataset.

Due to high memory requirements of some descriptor/detector code, we subsample original

UCF and Hollywood2 sequences to half spatial resolution in all our experiments. This

enables us to compare all methods on the same data. We evaluate the effect of subsampling

for the Hollywood2 data set in section 4.3.4. The ESURF and Gradient descriptors are not

evaluated for other detectors than those used in original papers. Unfortunately, separate

implementations of these descriptors were not available.

4.3.2 KTH actions dataset

Our results for different combinations of detectors and descriptors evaluated on KTH are

presented in table 4.1. Overall, the best results are obtained with Harris3D as interest

point detector and HOG3D, HOF, as well as HOG/HOF for description. This is less

surprising considering the fact that both descriptors, HOG/HOF and HOG3D, have been

engineered to work well with this detector.
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HOG3D[1] HOG/HOF HOG HOF Gradient ESURF

Harris3D 77.6% 78.1% 71.4% 75.4% – –

Gabor 85.0% 77.7% 72.7% 76.7% 76.6% –

Hessian3D 78.9% 79.3% 66.0% 75.3% – 77.3%

Dense 84.8% 81.6% 77.4% 82.6% – –

Table 4.2: Average accuracy for various detector/descriptor combinations on the UCF

dataset.

Among the detector/descriptor combinations, best results are obtained for Harris3D +

HOG3D (92.4%). This is a clear improvement over the results previously reported in

[Wang et al., 2009] due to updated parameter settings as given in chapter 3. Comparable

results are achieved with Harris3D + HOF (92.1%) and HOG/HOF (91.8%) which match

the 91.8% published in [Laptev et al., 2008] for Harris3D + HOG/HOF.

For the Gabor detector, the best result (91.4%) is obtained with the HOG3D descriptor. In

its combination with the Gradient descriptor, we reach 89.1% which is significantly higher

than published in the original work by Dollár et al. [2005] (81.2%). This is presumably

due to their different classification method (SVM with RBF kernel).

The performance of Hessian3D and Dense detectors are below Harris3D and Gabor. Our

results for Hessian3D with ESURF are ca. 3% below the performance as reported by

Willems et al. [2008]. In contrast to our BoF implementation, the authors employed a soft

voting strategy to build BoF histograms. The low performance of dense sampling on KTH

may be explained by the large number of features corresponding to the static background.

The large number of uninformative background features may have an unfavorable influence

on the distance computation. For a comparison with the state-of-the-art, see section 2.2.2.

4.3.3 UCF sports dataset

The results for different combinations of detectors and descriptors evaluated on UCF sport

actions are illustrated in table 4.2. The best result over different detectors is obtained by

with Gabor detector (85.0%) and dense sampling (84.8%). For dense features, this can be

explained by the fact that they capture different types of motions as well as background

which may provide useful context information. Scene context information can indeed

help for to classifiy sports actions which often involve specific equipment and scene types

as illustrated in figure 2.17. The Gabor detector is, compared to the other two feature

detectors, the one that provides the densest number of features (cf. section 4.3.8). As

can be seen in figure 4.3(bottom), features include more background and thus context

information than for the other detectors.

Also above 80% are dense points in combination with HOG/HOF and HOF. Harris3D

and Hessian3D detectors perform similar at the level of 80%. Among different descriptors,

HOG3D provides best results for Gabor and dense sampling and is on par with HOG/HOF

for Harris3D and Hessian3D. The authors of the original paper, Rodriguez et al. [2008],
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HOG3D[2] HOG/HOF HOG HOF Gradient ESURF

Harris3D 44.3% 45.2% 32.8% 43.3% – –

Gabor 46.1% 46.2% 39.4% 42.9% 45.0% –

Hessian3D 43.5% 46.0% 36.2% 43.0% – 38.2%

Dense 44.8% 47.4% 39.4% 45.5% – –

Table 4.3: Mean AP for various detector/descriptor combinations on the Hollywood2

dataset.

report 69.2% for this dataset. However, note that their result does not correspond to the

version of UCF dataset available on-line (cf. section 2.2.3) used in our evaluation.

4.3.4 Hollywood2 dataset

Evaluation results for Hollywood2 actions are presented in table 4.3. As for the UCF

dataset, the best results are obtained for dense sampling (47.4%) and the Gabor detector

(46.1% for HOG3D and 46.2% for HOG/HOF). In addition to this, the Hessian3D detector

achieves in combination with HOG/HOF results also comparable results (46.0%). We

assume dense sampling and Gabor again benefits from a more complete description of

motions and the rich context information.

Among the different evaluated descriptors, HOG/HOF performs best. Unlike in results

for KTH actions, here the combination of HOF and HOG improves over HOF by about

2 percent. The HOG3D descriptor performs best in combination with the Gabor detector

and interestingly performs worse in combination with dense sampling. Still dense sampling

performs sligthly better than Harris3D on which the descriptor parameters were optimized.

4.3.5 Shot boundary features

Since action samples in Hollywood2 are collected from movies, they contain many shot

boundaries which cause artificial interest point detections. To investigate the influence of

shot boundaries on recognition results, we compare in table 4.4 the performance of the

Harris3D detector with and without shot boundary features. Results for HOG demonstrate

2% improvement when removing shot boundar features, and changes for HOG/HOF are

negligible. HOG3D shows a significant performance drop without using features at shot

boundaries. This can have to do with its parameter optimization that included features

at shot boundary positions. In fact, shot boundaries hold context information that can

help classification. Given these results, we can conclude that shot boundary features do

not harm action classification.

4.3.6 Influence of subsampling

We also investigate the influence of reduced spatial resolution adopted in our Hollywood2

experiments. In table 4.4 recognition results are reported for videos with full and half
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HOG3D[2] HOG/HOF HOG HOF

reference 44.3% 45.2% 32.8% 43.3%

w/o shot boundary features 42.1% 45.7% 35.3% 43.4%

full resolution videos 48.8% 47.6% 39.7% 43.9%

Table 4.4: Comparison of the Harris3D detector on (top) videos with half spatial resolution,

(middle) with removed shot boundary features, and (bottom) on the full resolution videos.

Spatial Hollywood2 UCF

Size HOG3D[2] HOG/HOF HOG HOF HOG3D[1] HOG/HOF HOG HOF

18 × 18 44.8% 47.4% 39.4% 45.5% 84.8% 81.6% 77.4% 82.6%

24 × 24 46.0% 47.7% 39.4% 45.8% 86.1% 81.4% 76.8% 84.0%

36 × 36 46.1% 47.3% 36.8% 45.6% 83.2% 79.1% 76.5% 82.4%

48 × 48 44.4% 46.5% 35.8% 45.5% 81.7% 78.6% 73.9% 79.0%

72 × 72 42.2% 45.2% 32.2% 43.0% 78.7% 78.8% 69.6% 78.4%

Table 4.5: Average accuracy for dense sampling with varying minimal spatial sizes on the

Hollywood2 and UCF sports dataset.

spatial resolution using the Harris3D detector. The performance is consistently and sig-

nificantly increased for all tested descriptors for the case of full spatial resolution. Espe-

cially the HOG3D detector shows a large gain in this experiment and sligthly outperforms

HOG/HOF (by 1.2%). Note that for full resolution, we obtain approximately 3 times

more features per sequence than for half resolution.

4.3.7 Dense sampling parameters

Given the best results obtained with dense sampling, we further investigate the perfor-

mance as a function of different minimal spatial sizes of dense descriptors (cf. table 4.5).

As before, further spatial scales are sampled with a scale factor of
√

2. As in sections 4.3.3

and 4.3.4, we present results for Hollywood2 and UCF videos with half spatial resolution.

We observed no significant improvements for different temporal lengths, therefore we fixed

the temporal length to 10 frames. The overlapping rate for dense patches is set to 50%.

We can see that the performance increases with smaller spatial size, i.e., when we sample

denser. However, the performance saturates in general at a spatial size of 24 × 24 for

Hollywood2 and 18 × 18 for UCF .

4.3.8 Feature density

We compare the tested detectors by the number of detected interest points. The compari-

son was performed on a set of videos from Hollywood2 with spatial resolution of 360×288

pixels (half resolution) and about 8000 frames length in total. Table 4.6 presents results

for the three detectors and dense sampling in terms of average number of features per

frame. Among the detectors, Gabor extracts the densest features (44 features/frame) and
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Harris3D Hessian3D Gabor Dense

Features/frame 31 19 44 643

Table 4.6: Average number of generated features for different detectors.

Hessian3D extracts the sparsest set features (19 features/frame). Obviously, dense sam-

pling extracts many more features than interest point detectors, for this particular setup

roughly 20 times more features are extracted than for the interest point detectors.

4.4 Conclusion

Among the main conclusions, we note that dense sampling overall outperforms interest

point detectors in realistic video settings, but performs worse on the simple KTH dataset.

This indicates both (a) the importance of using realistic experimental video data as well as

(b) the limitations of current interest point detectors. Note, however, that dense sampling

also produces a very large number of features (usually 15-20 times more than feature

detectors). This is more difficult to handle than the relatively sparse number of interest

points. We also note a rather similar performance of interest point detectors for each

dataset. Across datasets, Harris 3D performs better on KTH dataset, while the Gabor

detector gives better results for UCF and Hollywood2 datasets.

Among the tested descriptors, the combination of gradient based and optical flow based

descriptors seems to be a good choice. The combination of dense sampling with the

HOG/HOF descriptor provides best results for the most challenging Hollywood2 dataset.

On the UCF dataset, the HOG3D descriptor performs best in combination with dense

sampling as well as with the Gabor detector. On KTH , both descriptors, HOG3D and

HOG/HOF, show comparable results, with HOG3D having a slight edge. This also moti-

vates further investigations of optical flow based descriptors.





La reconnaissance d’actions à l’aide de trajectoires locales

Dans le chapitre précédent, nous avons évalué différents détecteurs et descripteurs de carac-

téristiques locales. Tous les détecteurs que nous avons étudiés sont basés sur des critères de

pertinence spatio-temporelle afin de détecter des points d’intérêt dans des vidéos. Comme

approche plus intuitive pour les vidéos, nous proposons dans ce chapitre une représentation

de caractéristiques locales basée sur des trajectoires. Contrairement aux points d’intérêt

spatio-temporels, les trajectoires permettent une représentation plus adaptée pour la vidéo

et elles sont en mesure de bénéficier de l’information de mouvement, car elles suivent le

mouvement des points locaux (cf. figure 5.1).
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In the previous chapter, we have evaluated various feature detectors and descriptors. All

of the feature detectors that we investigated are based on spatio-temporal saliency criteria

to detect interesting 3D positions in video. As a more intuitive approach to videos, we

propose in this chapter a local feature representation for video sequences based on feature

trajectories. In contrast to spatio-temporal interest points, feature trajectories allow for

a more adapted representation and are able to benefit from the rich motion information

captured by the trajectories (cf. figure 5.1).
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Figure 5.1: Feature trajectories for sample actions of the Hollywood2 dataset. Left column:

sample sequence for the action “StandUp” where the person on the right side stands up,

and the trajectories accurately capture the body motion. Right column: sample frames

from a “Kiss” action. The motion of two persons approaching each other can be clearly

deduced from the trajectories. Red dots indicate trajectory position in the current frame.

5.1 Introduction

Tracking is a natural way of capturing moving objects, and it is widely used for motion

analysis [Gavrila, 1999]. Many traditional approaches in action recognition are based

on tracking human body models or segmenting human silhouettes [Blank et al., 2005].

However, tracking humans in realistic video settings is difficult and prone to errors: object

parts may be occluded or simply out of view, and actions can contain strong and abrupt

motions that make tracking infeasible. Local feature trajectories combine the concept of

local features with traditional tracking approaches which makes them suitable for realistic

videos.

A significant amount of research has been devoted to action recognition using trajectory

information [Moeslund et al., 2006] (cf. section 2.1.1). Some recent methods [Messing et al.,

2009, Sun et al., 2009, Matikainen et al., 2009, 2010] show promising results on challenging
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human actions datasets by employing trajectories as local features (cf. section 2.1.3).

While these approaches only use the shape information of feature trajectories, we propose

to augment the trajectory description by additionally appearance and motion information

in the local neighborhood surrounding the trajectory. For this, we introduce a novel local

descriptor based on histograms of motion boundaries. The final descriptor is based on a

combination of histograms of oriented gradients (HOG) to encode appearance information

and histograms of optical flow (HOF) as well as motion boundary histograms (MBH) to

encode motion information. Employing our full trajectory descriptor in a standard BoF

representation, we evaluate its parameters and demonstrate a significant improvement for

video classification. We outperform the current state-of-the-art on two benchmark datasets

and are on par for a third one.

5.2 Feature trajectory description

5.2.1 Extraction of feature trajectories

Feature trajectories are obtained with a pyramidal implementation [Bouguet, 1999] of the

Lucas-Kanade feature tracker [Lucas and Kanade, 1981]. Interest points are extracted

with the detector proposed by Shi and Tomasi [1994] at multiple spatial scales {σi} with

σ0 = 1 and σi+1 =
√

2 ·σi. We fix the number of spatial scales to 8. For both, the interest

point detector as well as the feature tracker, we use the implementations provided by the

OpenCV library 1.

For a given frame, we track trajectories from the previous frame [Bouguet, 1999]. Fur-

thermore, we detect additional interest points [Shi and Tomasi, 1994], but discard points

that lie in the direct neighborhood (i.e., , with a distance smaller than 3 pixels) of an

existing trajectory. All remaining points are added as new trajectory seeds to the tracking

process. Since trajectories tend to drift away from their original position over time, we

limit the length of a trajectory to L frames. As soon as the trajectory length exceeds L,

it is removed from the tracking process. Consequently, this allows new interest points in

its neighborhood to be detected and tracked again.

Since, for action recognition, we are mainly interested in dynamic information of a video

sequence, static trajectories are pruned in a pre-processing stage. Trajectories with a

sudden large displacement, most likely to be erroneous, are also removed.

5.2.2 Trajectory descriptor

To encode shape and motion information surrounding the local neighborhood of a given

feature trajectory, we extend the trajectory shape descriptor by appearance and motion

information. To this end, descriptors based on gradient (HOG), optical flow (HOF), and

motion boundary information (MBH) are computed. The process of feature extraction in

the vicinity of the trajectory is shown in figure 5.2 (right). We detail the computation of

descriptors in the following.

1. http://opencv.willowgarage.com/wiki/

http://opencv.willowgarage.com/wiki/
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Figure 5.2: An overview of the feature trajectory description. Interest points are detected

and tracked at multiple spatial scales {σi}. New interest points are detected in each frame

and their trajectory is limited to a length of L frames. The description of the trajectory

shape is encoded by its displacement vectors. Static as well as motion appearance are

described by histograms of oriented gradients (HOG), histograms of optical flow (HOF),

and motion boundary histograms (MBH). Given a trajectory extracted for spatial scale

σi, descriptors are computed for a supporting neighborhood of N · σi ×N · σi pixels along

the trajectory. The trajectory neighborhood is split into a spatio-temporal grid of size

nσ × nσ × nτ .

Trajectory shape. The shape of a trajectory encodes local motion patterns. For a

given trajectory and a fixed length L, we describe its shape at time t by a sequence s =

(∆xt, . . . ,∆xt+L−1) of displacement vectors ∆xj with ∆xj = xj+1−xj and xj = (xj , yj).

The resulting vector is normalized by the sum over the magnitudes of its displacement

vectors:

s′ =
(∆xt, . . . ,∆xt+L−1)
∑t+L−1

j=t ||∆xj ||
. (5.1)

Appearance and motion description. Static appearance information as well as mo-

tion information provide important cues for recognizing actions [Bobick and Davis, 2001,

Jhuang et al., 2007, Schindler and van Gool, 2008, Laptev et al., 2008]. We propose to aug-

ment the trajectory description with histograms of oriented gradients (HOG) [Dalal and

Triggs, 2005], histograms of optical flow (HOF) [Laptev et al., 2008], and motion boundary

histograms (MBH) [Dalal et al., 2006] (cf. figure 5.3). Motion boundary histograms were

introduced in the context of pedestrian detection in video sequences to capture motion

information. The MBH description separates the optical flow field Ix, Iy into its x and y

component and computes for both Ix and Iy a separate HOG descriptor. Since it repre-

sents the gradient of the optical flow, constant motion information—and thus also camera

ego motion—is suppressed and only information on changes of the flow field (i.e., motion

boundaries) is kept (see figure 5.3 (right)). Therefore, the MBH descriptor can be seen as

complementary to HOG and HOF descriptors.

A description is computed for a space-time volume around a feature trajectory where we

align the volume at each frame with the feature trajectory, see figure 5.2 (right). Given
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Figure 5.3: Illustration of the information captured by HOG, HOF, and MBH descriptors.

For each image, gradient/flow orientation is indicated by color (hue) and magnitude is in-

dicated by saturation. Motion boundary information is computed as gradient information

separately on the x and y flow components. Compared to optical flow, motion boundaries

suppress most camera motion in the background and highlight foreground motion.

a trajectory for a spatial scale σi, i.e., its initial interest point is detected at this scale,

descriptors are computed for a support region of N ·σi×N ·σi pixels along the trajectory,

as illustrated in figure 5.2. The support region is split into a spatio-temporal grid of size

nσ × nσ × nτ . We evaluate parameters (cf. section 5.3.2) and use for our experiments

N = 32, nσ = 2, nτ = 3.

For each grid cell, HOG, HOF, and MBH histograms are extracted over all contributing

frames (cf. figure 5.2 (right, bottom)). For all descriptors, orientations are quantized into

8 bins using full orientation, with an additional zero bin for HOF (i.e., in total 9 bins).

The three descriptors are separately normalized with their L2 norm. The final descriptor

is the concatenation of the HOG, HOF, and MBH descriptors with the trajectory shape

descriptor.

5.3 Experimental results

Before discussing the results, we detail our experimental setup along section 5.3.1. A study

of descriptor parameters is then given in section 5.3.2. Section 5.3.3 shows final results on

three benchmark datasets and compares them to the state-of-the-art in section 5.3.4.

5.3.1 Experimental setup

In order to evaluate the performance of our descriptor, we use the bag-of-features rep-

resentation as presented in section A.1. The visual vocabulary is created using k-means

with the number of visual words fixed to 4000. As baseline for comparison, we employ

spatio-temporal 3D Harris points in combination with HOG-HOF features as detailed in

sections 4.2.1 and 4.2.2.
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Figure 5.4: Evaluation of the influence of the descriptor parameters on training and test

set of the Hollywood2 dataset: (top) spatio-temporal grid layout nσ×nσ×nτ , (bottom left)

trajectory length L, (bottom right) patch size for descriptor computation support region

around a trajectory N . We optimize the descriptor parameters based on the training set

to L = 15, N = 32, nσ = 2, nτ = 3.

In our evaluation, we employ the three different datasets: KTH , YouTube, and Holly-

wood2 . KTH actions (cf. section 2.2.2) has been a popular dataset for action classification

over the past years. Since the complexity of the video sequences is rather limited on this

dataset, we include YouTube (cf. section 2.2.4) as well as Hollywood2 datasets (cf. sec-

tion 2.2.5) which feature more realistic setups. Especially Hollywood2 consists of rich type

of video data with close-up and distant views, camera ego-motion as well as background

clutter.

5.3.2 Evaluation of the descriptor parameters

In this section we investigate the performance of our descriptor on the Hollywood2 dataset

with respect to the values of the different parameter. We optimize the parameters on the

training set using 10 fold cross-validation (figure 5.4, results in red). For completeness, we

also report results on the test set (figure 5.4, results in green).

The descriptor grid layout (cf. section 5.2.2) controls the spatio-temporal resolution of

HOG, HOF, and MBH descriptors. Figure 5.4 (top) shows the performance of our descrip-

tor as a function of the grid layout. It can be observed that the performance improves for

a higher number of temporal splits. With respect to the spatial division, a layout of 2× 2

cells seems most appropriate. Overall, the layout with 2 × 2 × 3 cells, i.e., nσ = 2, nτ = 3,

yields highest performance on both, train and test set.
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The trajectory length defines for how many frames a feature point is tracked in a video

sequence (cf. section 5.2.1). Figure 5.4 (bottom, left) illustrates the performance for

different lengths in the range from 5 to 30 frames. According to the training set, optimal

performance is achieved with a length of L = 15. For longer trajectories, performance

drops. This can be explained by the fact that long trajectories tend to drift away from

the initial interest point or get lost due to occlusion and rapid motion.

The scale factor N regulates the size of the support region surrounding the the trajectory

(cf. section 5.2.2). This region is encoded by HOG, HOF, and MBH descriptors. According

to the results (figure 5.4 (bottom, right)) we can observe that this parameter is not very

sensitive to the parameter setting and that results for train and test set behave similarly.

An optimum is achieved for N = 32, i.e., a supporting size of 32 × 32 pixels.

These best parameters are used for the remained of our experimental results.

5.3.3 Experimental results

Table 5.1 presents the results for the different descriptors (Trajectory, HOG, HOF, MBH)

on three benchmark dataset (results reported as average over at least three separate runs).

We give results obtained with each descriptor separately, but also for all possible combi-

nations. We can observe that trajectory information alone does not suffice to give an

improvement over our baseline method using Harris3D and HOG-HOF features (table 5.1

(second last row)). The HOG+HOF descriptor combination of our trajectory features

compares favorably to the baseline (with the same type of descriptors). With the full de-

scriptor combination, results improve even further. This suggests (i) that a representation

based on local feature trajectories is in general beneficial for BoF based action recogni-

tion; (ii) that our descriptors for trajectory shape and motion boundaries (MBH) help to

improve recognition results even further.

Moreover it can be seen that our proposed MBH descriptor shows excellent results. Using

MBH alone achieves state-of-the-art results on Hollywood2 and gives even slightly better

results than the full combination on KTH and YouTube. This clearly shows the advantage

of motion boundaries: static background clutter and camera ego motion are suppressed and

only information at boundaries of motion fields is retained in the description. Presumably

due to simpler background and less clutter, MBH has the edge on KTH and YouTube over

the full descriptor combination. However, the combination proofs beneficial on Hollywood2

since video sequences contain more complex motion patterns, camera ego-motion, and

strongly cluttered background.

Some partial combinations show sligthly better performance then the full one. On KTH ,

any sub-set of descriptors that includes MBH achieves similar results. For YouTube, we

can observe that the combination of MBH with the trajectory descriptor outperforms

the full descriptor, and on Hollywood2 this is the case for the concatenation of trajec-

tory+MBH+HOF descriptors. Nevertheless, it is the full combination of all descriptor

types that shows overall the best and the most stable results.

The number of features computed with our method in comparison to the baseline, shows

that both are comparable. The average number of features per frame on Hollywood2
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KTH YouTube Hollywood2

Trajectory 87.8% 64.5% 47.6%

HOG 85.2% 73.9% 40.7%

HOF 92.5% 70.3% 48.1%

MBH 94.3% 80.8% 50.6%

Trajectory+HOG 86.5% 73.9% 42.4%

Trajectory+HOF 92.5% 71.0% 49.9%

Trajectory+MBH 94.3% 81.3% 51.4%

HOG+HOF 92.9% 79.2% 51.1%

HOG+MBH 94.3% 80.7% 47.3%

HOF+MBH 93.4% 76.6% 52.0%

Trajectory+HOG+HOF 93.1% 78.0% 51.1%

Trajectory+HOG+MBH 94.3% 81.0% 48.4%

Trajectory+HOF+MBH 93.8% 75.4% 52.9%

HOG+HOF+MBH 93.9% 80.5% 52.3%

Full combination 94.2% 79.8% 52.5%

Baseline [Laptev et al., 2008] 92.0% 68.7% 47.3%

State-of-the-art 94.5% 71.2% 50.9%

[Gilbert et al., 2009] [Liu et al., 2009] [Gilbert et al., 2009]

Table 5.1: Classification results of our method on KTH , YouTube, and Hollywood2

datasets. Row 1 to 14 show the performance of all possible descriptor combinations.

The sixth row gives the performance with a combination of all descriptors (Trajec-

tory+HOG+HOF+MBH). The last two rows report baseline results with Harris3D +

HOG-HOF and the current state-of-the-art. All results are presented as an average over

at least three separate runs.

sequences is for our method about 77.2 and for the baseline with Harris3D about 52.4

features per frame.

5.3.4 Comparison to the state-of-the-art

We can observe that our proposed descriptor, i.e., the combination of shape, appearance

and motion, significantly outperforms the state of the art on YouTube and Hollywood2 and

is on par with it for KTH . Note that for all experiments we used a common parameter

setting that was optimized on the training set of Hollywood2 .

Results on the KTH actions dataset are presented in Table 5.1, first column. We also refer

to section 2.2.2 for a more complete listing of current state-of-the-art results. Our combi-

nation of trajectory, HOG, HOF, and MBH descriptors (94.2%) significantly outperforms

the HOG-HOF descriptor of the baseline by 2.2%. In comparison to the state-of-the-art

(cf. section 2.2.2), our method is able to be on par with previously reported results. Gilbert

et al. Gilbert et al. [2009] achieved (94.5%), however, they use higher level knowledge with

an hierarchical approach.

Table 5.1, second column, summarizes results on the YouTube actions dataset. Our combi-

nation of trajectory, HOG, HOF, and MBH descriptors improves results over our baseline
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by 11.1% to 79.8%. Our results also improve over the originally reported 71.2% accuracy

by the authors of the dataset [Liu et al., 2009]. However, note that we cannot directly

compare to their results since Liu et al. carried out experiments on a smaller version of

the dataset containing 11 categories with 1168 sequences.

Results for the Hollywood2 actions dataset are presented in Table 5.1, last column. Hol-

lywood2 contains a large amount of camera motion which renders feature tracking more

difficult. The combined descriptor gives 52.5% which is an improvement of 5.2% over our

baseline. Our combined trajectory descriptor proves to outperform significantly previously

reported results in the literature on this most challenging dataset. As for KTH , the cur-

rent state-of-the-art for this dataset (see also section 2.2.5) has been obtained by Gilbert

et al. [2009] with 50.9% 2.

5.4 Conclusion

This chapter introduced a novel descriptor based on feature trajectories and evaluated its

performance for bag-of-features based action recognition in videos. Our descriptor com-

bines trajectory information with motion and appearance information using histograms of

oriented gradients, optical flow, and motion boundary histograms. Experimental results

demonstrate its effectiveness on three benchmark datasets. Our method outperforms the

current state of the art on YouTube and Hollywood2 datasets and is on par for KTH .

Furthermore, we introduced a motion boundary descriptor for action recognition. This

descriptor can cope with camera ego-motion as well as cluttered background and gives

excellent results on all datasets.

2. Unpublished results, personal communication with the authors.





La détection de personnes, peut-elle aider la reconnaissance d’actions?

Dans les chapitres précédents, nous avons étudié des méthodes existantes et de nouvelles

méthodes basées sur la représentation par sac-de-mots dans le cadre de vidéos réalistes.

Toutefois, une limitation de cette représentation est qu’elle ne tient pas explicitement

compte d’objets ou d’acteurs en raison de sa représentation non-ordonnée et basée unique-

ment sur des caractéristiques locales. Par conséquent, ce manque de connaissances ex-

plicites d’objets empêche la modélisation de l’information structurale qui peut améliorer

la performance en classification [Dalal and Triggs, 2005, Lazebnik et al., 2006]. En outre,

le modèle sac-de-mots est comme représentation globale intrinsèquement sensible au bruit

de fond [Zhang et al., 2007]. D’un autre côté, les approches holistiques (section cf. 2.1.2)

modélisent par définition l’information structurale et elles sont robustes aux variations de

fond car elles sont centrées sur l’homme.

Afin de bénéficier des avantages de ces deux approches, nous examinerons dans ce chapitre

une méthode qui combine un modèle sac-de-mots avec une approche holistique. Pour ce

faire, nous examinons comment et dans quelle mesure la détection et le suivi des acteurs

en vidéo peut améliorer la reconnaissance d’actions (cf. figure 6.1).
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In previous chapters, we have investigated existing as well as new methods based on bag-

of-features (BoF) representations for realistic video settings. However, one limitations of

BoF is that it has no explicit notion of objects or actors due to its orderless representation.

Consequently, this lack of explicit object knowledge prevents modeling of spatial layout in-

formation which has been shown to increase performance [Dalal and Triggs, 2005, Lazebnik

et al., 2006]. Furthermore, BoF provides a global video representation which is inherently

sensitive to background clutter [Zhang et al., 2007]. On the other hand, human-centric

(or holistic) approaches (cf. section 2.1.2) inherently model spatial layout information and

are robust to background variations since they are based on human detections or tracks.

In order to benefit from the strength of both approaches, we explore in this chapter a

method that combines a “loose” bag-of-features model with a human centric approach.

For this, we investigate how tracking of human actors can address the aforementioned

deficiencies of the bag-of-features representation and to which extent it can improve action

recognition performance (cf. figure 6.1).
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Figure 6.1: This chapter analyzes the importance of human-centered attention for bag-of-

features based action recognition. We use human tracks to suppress background (middle)

and improve spatial modeling of human actions (right).

6.1 Introduction

The contribution of this chapter is two-fold. First, we treat human tracks as an approx-

imate actor-background segmentation to suppress clutter (cf. middle part of figure 6.1).

Intuitively, narrowing down the attention to actors should benefit action recognition accu-

racy. The result is nevertheless worth quantifying, since in natural settings context might

play an important role in recognition.

Second, we incorporate human layout information in our action models (cf. right part of

figure 6.1). For this, we make the hypothesis that narrowing down the attention to the

actor will allows us to enforce more spatial constraints in the model, which in turn should

result in better accuracy for action recognition. We propose to control the amount of

layout information by varying the resolution of spatial grids [Lazebnik et al., 2006] and

verify our hypothesis experimentally.

To obtain human tracks for the experiments mentioned above, we use off-the-shelf pedes-

trian and upper body detectors [Dalal and Triggs, 2005, Ferrari et al., 2008] and com-

bine detection into tracks according to Everingham et al. [2006]. We also use “ground-

truth” tracks emulating an “ideal” detector. This allows us to make conclusions regarding

desirable system designs which might concern both current and future systems. Fur-

thermore, we run our experiments on three datasets of varying complexity—basic KTH

(cf. section 2.2.2), realistic UCF (cf. section 2.2.3) and challenging Hollywood1 (cf. sec-

tion 2.2.5)—in order to investigate how our conclusions might depend on the task.

6.2 Action description

In the following, we give details of our action description and how we combine orderless

BoF representations with information on human localization. Subsection 6.2.1 discusses

how human tracks are obtained for the three different datasets that we investigate (KTH ,

UCF , and Hollywood1 ) and how features are computed. Details on how we gradually

incorporate human layout information in the bag-of-features representation are given in

section 6.2.2.
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6.2.1 Human tracks

Human tracks are constructed from a set of bounding-boxes connected in time. In this

work, bounding boxes are obtained either automatically using off-the-shelf pedestrian and

upper-body detectors [Dalal and Triggs, 2005, Ferrari et al., 2008] or they are provided

as ground-truth. In order to obtain features on the foreground (actors and their closest

vicinity), we reuse features from the full videos and keep only those that fall into the

bounding box of a human track.

Automatic tracks. For the KTH dataset we use the pedestrian detector of Dalal and

Triggs [2005] and apply it to all frames. Since only one person is visible per sequence, we

obtain tracks by applying a simple outlier removal strategy along with temporal smoothing

and interpolation. Results are shown in the top row of figure 6.2.

Since the UCF dataset often involves several people in the scene, we run the same pedes-

trian detector [Dalal and Triggs, 2005] and link detections into tracks using agglomerative

clustering as proposed by Everingham et al. [2006]. We exploit temporal consistency to

improve detection results by (i) removing short tracks (ii) filling in missing detections

within tracks and (iii) applying temporal smoothing of detections. UCF sequences con-

tain high variation of the background and highly articulated human poses, which results

in a decreased precision and recall of human detection. Example detections are shown in

the middle row of figure 6.2.

On Hollywood1 , humans are in general visible only with their upper body. Therefore, we

employ the same detector [Dalal and Triggs, 2005] as for KTH and UCF , but trained

for upper bodies as proposed by Ferrari et al. [2008]. We also use the same temporal

association [Everingham et al., 2006] as for UCF . Figure 6.2, bottom row, shows several

sample frames of our final tracks.

Ground truth tracks. We do not use ground truth tracks for KTH since our auto-

matic ones are of a sufficiently good quality. For the UCF dataset, tracks of the person

performing an action are provided with the dataset (cf. figure 6.3, top). For Hollywood1 ,

we manually annotate upper body tracks (cf. figure 6.3, bottom). Training is performed

using all tracks with humans performing a given action, and for testing, all visible humans

are annotated and used, mimicking a perfect human detector.

6.2.2 Spatial bags-of-words

To encode layout information within the BoF representation, we employ spatial grids

[Laptev et al., 2008, Lazebnik et al., 2006], see figure 6.4. The video sequence is split

into (spatial) subsequences, and a histogram is computed for each subsequence. The final

histogram is obtained by concatenating histograms of all cells in the grid. In order to

compare to the performance with tracks, we introduce as our baseline method a standard

BoF over the whole video using the same grid layouts as for the tracks. For human tracks,
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Figure 6.2: Examples of automatic tracks on KTH (top) UCF (middle) and Hollywood1

(bottom) action datasets.

Figure 6.3: Ground-truth tracks for UCF (top) and Hollywood1 (bottom) datasets.

the grid position of a feature is defined relatively to the position of the track’s bounding box

at the corresponding time instant (cf. figure 6.1(right)). In the case of multiple tracks,

BoF histograms of all tracks in the sequence are summed up. Features that belong to

different overlapping tracks can vote multiple times into the final histogram, i.e., once for

each track.

For our experiments, we need to quantify the “amount” of layout information used for

action recognition. For this, the first n of the following grid layouts are combined (cf. fig-

ure 6.4):

L = {Li} = {1×1, 2×1, 2×2, 3×2, 3×3, 4×3, 4×4, 5×4, 5×5}. (6.1)

The larger n, the more layout information is incorporated into the action model. Note

that we slightly prefer vertical divisions to horizontal ones. This is motivated by the fact

that naturally vertical variations are smaller than horizontal variations (i.e., a person in

an image is rather upright than upside-down). For classification, we combine the different

grid layouts with a non-linear SVM with multi-channel kernel, as detailed in section A.1.
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Figure 6.4: Human layout information is encoded through spatial grids. We use a se-

quence of grids of increasing density to control the amount of spatial information (spatial

constraints) included. We combine the first n grid layouts, in this example n = 4.

6.3 Experimental results

Our goal is to quantify the improvement in human action recognition when extending the

BoF representation with knowledge about actor localization. In the following subsections,

we compare the performance of our baseline BoF system (cf. section 6.2) with the same

system, but with background features removed based on human tracks. We show a separate

figure for each dataset. The recognition accuracy is given as a function of the amounts

of spatial constraints. We compare results for the BoF baseline (red squares) and each

of the track types used to select features (blue triangles for tracks automatically obtained

from person detections; green circles for ground-truth tracks)—see figures 6.5-6.7. For

each of the datasets, we draw two types of observations. First, we evaluate the gain due

to background suppression by comparing the performance of the orderless representation

(only one “grid” level, leftmost measurement on each plot, highlighted). Second, we assess

the gain due to stronger layout (indicated by the tangent of each plot).

In the following, we give implementation details in section 6.3.1 and discuss then results

on the datasets employed for our experiments one by one: KTH actions (section 6.3.2,

UCF sports (section 6.3.3 and Hollywood1 datasets (section 6.3.4).

6.3.1 Implementation details

For our experiments, we employ as local feature descriptor the spatio-temporal HOG3D

descriptor (see chapter 3) with the parameter settings as given in [Kläser et al., 2008].

Since HOG3D quantizes 3D gradient orientations, it enables us to account for appearance

and motion information at the same time.Feature positions are sampled within a video

sequence in a dense manner following our earlier setup described in section 4.2.1. We

employ dense sampling with a spatial stride of 12× 12 (for UCF and Hollywood1 ) as well

as 6 × 6 pixels (for KTH due to its smaller resolution) and a temporal stride of 3 frames

throughout all our experiments. This allows for a sufficient coverage on tracks for experi-

ments using human position information (section 6.2.1). Other parameters correspond to

section 4.2.1. For vocabulary construction, we fix its size to 4000 and use random sam-

pling (cf. section A.1). All experiments are repeated three times, each time with a new
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Figure 6.5: Performance plots for the KTH actions dataset. Bars indicate standard devi-

ation from the mean.

randomly created codebook. This allows us to estimate mean and standard deviation in

the experiments.

6.3.2 KTH actions

Results for the KTH dataset are plotted in figure 6.5. Comparing the values for orderless

BoF (highlighted measurements in the leftmost column of the plot) allows to estimate

the gain in recognition accuracy due to background suppression. For the KTH dataset

the reduction of background clutter using automatically detected human tracks leads to a

small accuracy gain of about 0.5%.

A more significant improvement of over 2% is possible by increasing the number of grids

and encoding more layout information. Note, however, that this only holds for the features

obtained using tracks, not for the full video where results degrade; the difference between

the tracks and the baseline reaches almost 4% for the full combination. This demonstrates

that layout information can help to learn a better action model if tracks are used.

The confusion matrix in table 6.1 shows that the main source of confusion is an inherent

overlap between jogging and running. Looking at examples of these classes, we have

observed that there is no visual difference between some sequences of the two classes.

We refer the reader to section 2.2.2 for a detailed overview of the current state-of-the-

art for the KTH actions dataset. The currently best result on this dataset has been

reported for the hierarchical data mining approach by Gilbert et al. [2009] which achieved

94.5%. Han et al. [2009] obtained 94.1% accuracy with a multi-kernel classifier. Among

the results that have been reported with a pure BoF representation, the combination of

Harris3D interest points together with HOF (92.1%) as well as HOG-HOF (91.8%) gave

highest results [Wang et al., 2009] in the literature.

Our average accuracy over three runs (for our full method, i.e., using automatic detections

to suppress background and combining all 9 grid layouts) is 92.1%. In general, our results

are situated among the state-of-the-art results. However, our method is not optimized

for high performance, yet rather for a fair comparison with the baseline. We showed that
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boxing 98.4 0.0 0.0 1.6 0.0 0.0

clapping 3.9 96.1 0.0 0.0 0.0 0.0

waving 0.2 4.4 95.4 0.0 0.0 0.0

walking 0.0 0.0 0.0 96.5 3.5 0.0

jogging 0.0 0.0 0.0 3.0 93.3 3.7

running 0.0 0.0 0.0 0.0 18.5 81.5

Table 6.1: Confusion matrix for the KTH dataset. Classification was performed using our

full system, i.e., features from detected actors and combining all 9 grid layouts. Note the

confusion between running and jogging.

performance on KTH can be improved significantly using layout information on the tracks.

Therefore our approach shows the potential to improve the performance of other methods,

as well.

6.3.3 UCF Sports

Experimental results for the UCF dataset are presented in figure 6.6. If we compare the

results for orderless BoF (highlighted measurements on the left of the plot), we clearly

see a gain due to suppressing background features and narrowing down attention. The

recognition accuracy improves significantly by 4% with “ideal” tracks provided as ground-

truth. The off-the-shelf pedestrian detector is also able to out-perform the baseline by

over 2%.
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Figure 6.6: Performance plots for the UCF sport actions dataset. Bars indicate standard

deviation from the mean.

Further interesting conclusions can be drawn from the evaluation of layout information.

Enforcing stronger layout models can degrade the performance of the baseline and also of
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Figure 6.7: Performance plots for the Hollywood1 actions dataset. Performance for ground-

truth tracks is a learned combination of ground-truth tracks and the BoF baseline. Bars

indicate standard deviation from the mean.

automatic tracks. For the baseline, the degradation of its results is permanent, while for the

automatic case we can observe only a minor improvement up to three grid combinations.

An ideal detector and tracker, however, allows to significantly and consistently improve the

recognition accuracy when more layout information is included. This shows the importance

of a good human tracker in order to fully exploit the knowledge about actor localization.

It is also interesting to look at the confusion matrices for this dataset. Table 6.2 compares

the matrices obtained for the baseline with an orderless bag model (left) and by using

the ground truth actor annotations and enforcing a stronger layout model (right). In

the first case, note the general confusion for actions such as riding and weight lifting

with other classes. This confusion is significantly reduced in the second case for most

classes. Nevertheless, some confusion remains using tracks—the accuracy for running

even dropped. This is presumably due to the reduced amount of context information,

such as strong camera ego-motion during running. Other actions that remain confused

are skateboarding and walking. This is explainable given their visual similarity.

Works that published results on the UCF sports dataset are Rodriguez et al. [2008] who

also published the dataset and Wang et al. [2009] (cf. section 2.2.3). Rodriguez et al.

reported an accuracy of 69.2% with a template matching approach, and Wang et al.

obtained 85.6% in a BoF setup close to ours. In an “ideal” setup (i.e., with ground truth

tracks), our system achieves 90.1% average accuracy (combining all 9 grid layouts) which is

significantly higher than the current state-of-the-art. For the automatic case with human

detections, we obtain with our features 86.7% by only considering foreground.

6.3.4 Hollywood actions

Experimental results for the Hollywood1 dataset, the most challenging dataset in our setup

are given in figure 6.8. Since the classification task for this dataset consists of multiple

binary tasks, we show results for each class individually. One immediately notices that

(unlike for the previous datasets) the results degrade significantly when using automatic
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golf 0.0 79.6 10.2 10.2 0.0 0.0 0.0 0.0 0.0 0.0

walk 1.6 6.3 82.8 0.0 0.0 1.6 1.6 6.3 0.0 0.0

kick 1.6 8.1 0.0 83.9 1.6 1.6 0.0 3.2 0.0 0.0

run 0.0 8.0 0.0 12.0 76.0 0.0 4.0 0.0 0.0 0.0

lift 6.7 0.0 6.7 6.7 0.0 71.7 8.3 0.0 0.0 0.0

ride 2.6 10.5 6.6 10.5 5.3 5.3 59.2 0.0 0.0 0.0

skateboard 0.0 0.0 11.1 5.6 0.0 0.0 0.0 83.3 0.0 0.0

highbar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0

swing 0.0 0.0 1.7 3.3 0.0 0.0 0.0 0.0 0.0 95.0
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dive 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

golf 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

walk 0.0 2.3 88.6 0.0 0.0 0.0 0.0 9.1 0.0 0.0

kick 0.0 0.0 0.0 95.0 0.0 0.0 0.0 0.0 0.0 5.0

run 7.7 0.0 0.0 23.1 51.3 0.0 17.9 0.0 0.0 0.0

lift 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0

ride 0.0 0.0 8.3 0.0 0.0 0.0 91.7 0.0 0.0 0.0

skateboard 0.0 0.0 23.6 0.0 0.0 0.0 0.0 76.4 0.0 0.0

highbar 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 98.7 0.0

swing 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 95.0

Table 6.2: Confusion matrices for (top) the UCF sports dataset using orderless features

on the full video and (bottom) using (ground truth) actor annotation and spatial grids

(all combinations). Note how the stronger layout model pruned the worst confusions.
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tracks. This is largely due to dynamic camera, clutter and occlusion, which make hu-

man detection in Hollywood1 videos difficult. For instance, people getting out of car are

typically not visible at the beginning of the action and are often occluded by the door

of the car throughout the action. Additional occlusion and non-upright poses render the

detection of people difficult, as well, cf. figure 6.3. Furthermore, even a perfect detector is

not guaranteed to improve recognition accuracy. This is most likely due to the fact that

this dataset better reflects natural conditions where context can play an important role

for action recognition, e.g., for actions such as getting out of a car or kissing. Hollywood1

actions include interactions between different humans and interactions with objects that

might also be harder to interpret without context information [Marsza lek et al., 2009].

Overall, a significant gain can be observed for the classes HugPerson, StandUp and SitUp.

For the classes AnswerPhone and SitDown we can note a slight improvement. However, the

performace decreases for Kiss and GetOutCar, most likely due to the context information

playing an important role for these action classes.

Since track information is not useful for all types of actions, we combine both represen-

tations—baseline and track-based. We employ a simple selector choosing the best represen-

tation for a particular action in an automatic manner. During training, the representation

that performs best on the training set (evaluated via cross-validation) is selected. Fig-

ure 6.7 shows the average AP gain in such setup. The result is consistent with those for

other datasets: the improvement due to background suppression is relatively small, while

enforcing stronger layout information is beneficial.

For the Hollywood1 dataset, our baseline (a single orderless channel) obtains 31.3% mean

AP and outperforms the corresponding orderless HoG (27.0%) and HoF (21.5%) channels

of Laptev et al. [2008]. It is also close to the performance of their best channel (32.2%).

With an “ideal” detector in combination with the BoF on the full video, we improve up to

36.4% with a single feature type. Laptev et al. proposed a method to learn combinations

of different features which they showed to lead to a higher average precision of up to 38.4%

on this dataset. However, combining different feature types is beyond the scope of this

work.

Section 2.2.5 gives an extensive list of recent state-of-the-art results. Similar to KTH ,

Gilbert et al. [2009] (53.5%) and Han et al. [2009] (47.5%) obtain overall highest results.

Note that Han et al. yielded as performance of their best channel alone 33.3% which is

comparable to our results. Compared to existing, standard BoF approaches, best results

have been reported by Willems et al. [2009] (29.6%) by using a Hessian feature detector

along with a variant of HOG3D.

Our results compare favorably to the state-of-the-art with only single feature types. As

stated before, employing human localization offers cues for action recognition that are

complementary to existing approaches, e.g., feature combination [Marsza lek et al., 2009,

Han et al., 2009]. In a combined setup, it can therefore further improve existing state-of-

the-art methods.
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Figure 6.8: Per class results on Hollywood1 . Note that a performance improvement using

human tracks is dependent on the action class. A significant gain can be observed for

the classes HugPerson, StandUp and SitUp. The performance decreases for Kiss and

GetOutCar, most likely due to the context information playing an important role for

these action classes.
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6.4 Summary

In this chapter, we have shown that action recognition can benefit from human localiza-

tions in videos. Quite surprisingly, it turns out that this gain is not due to suppressing

background clutter. Only in the case of simple scenarios, background suppression helps

to improve classification results. However, for realistic settings, removing background can

lead to removal of valuable context. Therefore background suppression resulted in gen-

eral in only minor recognition accuracy improvement. In the case of a few action classes

(getting out of a car, kissing) we observed even a performance degradation.

Furthermore, we have proposed to use human tracks to improve action modeling. We have

redefined a popular spatial pyramid concept as a model with controlled levels of spatial

constraints. We have shown that narrowing down the attention to human actors allows

to incorporate more layout information into the learned model. In general, this positively

benefited recognition accuracy. However, on realistic videos and for some action classes,

we observed no or only minor improvement.



Localisation d’actions humaines dans des vidéos

Alors que les chapitres précédents ont abordé le problème de la classification de séquences

d’action, ce chapitre se concentre sur la localisation d’actions dans l’espace (par une région

2D dans l’image) et le temps (par une plage temporelle). Comme données, nous utilisons

des films réalistes avec des environnements dynamiques et surchargés, avec de l’occlusion

partielle, du mouvement de caméra et du fond bruité. Comme le montrent les résultats

du PASCAL Visual Object Challenge [Everingham et al., 2009b], la localisation est un

problème plus exigeant que la classification.

Pour accomplir cette tâche, nous proposons une approche qui divise explicitement la local-

isation d’action en deux étapes. Dans un premier temps, les personnes dans une séquence

vidéo sont détectées et suivies, ce qui détermine la localisation spatiale de l’action. Compte

tenu de ces détections, nous déterminons dans un deuxième temps si l’action se déroule

et quand (localisation temporelle) en appliquant un classificateur en fenêtre coulissante à

un nouveau descripteur spatio-temporel adapté aux détections humaines.





7
Human focused action localization

in video

Contents

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Datasets and evaluation method . . . . . . . . . . . . . . . . . . 98

7.3 Human detection and tracking . . . . . . . . . . . . . . . . . . . 99

7.3.1 Upper body detection and association by tracking . . . . . . . . 99

7.3.2 Interpolation and smoothing . . . . . . . . . . . . . . . . . . . . 101

7.3.3 Classification post-processing . . . . . . . . . . . . . . . . . . . . 101

7.4 Action localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4.1 HOG-Track descriptor . . . . . . . . . . . . . . . . . . . . . . . . 104

7.4.2 Action classification and localization . . . . . . . . . . . . . . . . 104

7.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5.1 Coffee&Cigarettes . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5.2 Hollywood–Localization . . . . . . . . . . . . . . . . . . . . . . . 110

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

While previous chapters have addressed the problem of classifying action sequences, this

chapter concentrates on localizing human actions both in space (the 2D image region) and

time (the temporal range). As type of data, we employ real-world movies with crowded,

dynamic environment, partial occlusion and cluttered background. As is well known from

the results of the PASCAL Visual Object Classes challenges [Everingham et al., 2009b],

localization is much more demanding than classification.

To accomplish this task, we propose an approach which explicitly splits the action localiza-

tion into two stages. In the first stage, humans are detected and tracked; this determines

the spatial localization of the action. Given the track, we determine in a second stage if

the action occurs and when (temporal localization) by using a sliding window classifier

based on a novel spatio-temporal track-adapted 3D-HOG descriptor.
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7.1 Introduction

While the idea of combining tracking and classification for action localization is not new

(see also section 2.1.2), previously it has mainly been applied to video restricted to a static

camera [Hu et al., 2009, Yuan et al., 2009] or simple background with limited clutter,

as for example soccer or ice hockey fields [Efros et al., 2003, Lu and Little, 2006]. In

such a context, techniques such as background subtraction, image differencing, or color

segmentation (on the soccer field) can be employed to localize the actors. However, in

movie-style video sequences, no such specific techniques can easily be employed to guide

human detection.

A few recent approaches address the problem of localizing natural actions in realistic, clut-

tered videos (cf. section 2.1.2): Laptev and Perez [2007] use an action-pose specific human

detector (e.g. for the moment of drinking) in combination with a spatio-temporal video

block classifier; Willems et al. [2009] employed a voting approach based on discriminative

visual words; Ke et al. [2007b] match spatio-temporal voxels to manually created shape

templates. Unlike these works, our approach uses a generic human detector and tracker

followed by a task-specific action detector. As will be demonstrated in the experiments,

this choice is crucial for both efficiency and recognition accuracy. First, tracks help to

narrow down the focus and thus to simplify the recognition task. And second, as opposed

to a cuboidal action descriptor, tracks enable a more principled description of actions that

is able to follow the actors motion and capture even more articulated actions. As will be

shown in the comparison, our method substantially outperforms current state-of-the-art

results reported by Laptev and Perez [2007], Willems et al. [2009].

7.2 Datasets and evaluation method

For our experiments, we use two movie datasets that differ from those used in previous

chapters: Coffee&Cigarettes (C&C ) on which we additionally evaluate the smoking action

and our new Hollywood–Localization dataset.

Coffee&Cigarettes. The film C&C consists of 11 short stories, each with different

scenes and actors. The dataset C&C introduced by Laptev and Perez [2007] consists of

41 drinking sequences from six short stories for training and 38 sequences from two other

short stories for testing. Additionally, the training set contains 32 drinking samples from

the movie Sea of Love and 33 drinking samples recorded in a lab. This results in a total

of 106 drinking samples for training and 38 for testing. The total time of the testing

sequences is about 24 minutes.

We evaluate additionally on smoking actions. Laptev and Perez [2007] provide with their

dataset also annotations for smoking, however they did not report results for localization.

The smoking training set contains 78 samples: 70 training samples are obtained from six

short stories of C&C (the ones used for training the drinking action) and 8 from Sea of
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Love. 42 samples from three other short stories of C&C are used for testing which amounts

to about 21 minutes of video data.

We use the evaluation protocol of Laptev and Perez [2007] in our experiments: an action

is correctly detected if the predicted spatio-temporal detection has an overlap with the

ground truth annotation O(X,Y ) ≥ 0.2. The overlap between a ground truth cuboid Y

and a track segment X is given by O(X,Y ) = (X ∩ Y )/(X ∪ Y ). Once an annotated

sample has been detected, any further detection is counted as a false positive.

Hollywood–Localization. To evaluate the performance of our approach on challenging

video data, we introduce the Hollywood–Localization dataset based on sequences from

Hollywood movies [Marsza lek et al., 2009]. In total we annotated 130 clips containing

the action answer phone and 278 clips with the action standing-up. The same number

of randomly selected clips not containing the action are used as negatives in each case.

We keep the training/test movies split from Marsza lek et al. [2009] which roughly divides

the samples into two halves. In total, the amount of testing data for answer phone and

standing-up is about 17.5 and 39 minutes.

Since Hollywood–Localization actions are much more dynamic, a cuboid is no longer an

adequate representation for the ground truth. Therefore, the ground truth we provide spec-

ifies an action by its temporal start and end frames, and a spatial localization rectangle for

one of the intermediate frames. For evaluation we adapt the C&C protocol. The overlap

in time is computed as Ot(X,Y ) = O(Xt, Yt), and in space as Os(X,Y ) = O(Xs, Ys),

where Xt and Yt are the temporal extents of the track X and the annotation Y , and Xs

and Ys are the corresponding spatial rectangles in the annotated action frame. The final

overlap is computed as O′(X,Y ) = Ot(X,Y )×Os(X,Y ) and the accuracy threshold is set

to 0.2 as for C&C .

7.3 Human detection and tracking

To detect (i.e. localize) and track human actors we use the tracking-by-detection approach

[Cour et al., 2008, Everingham et al., 2006, Ferrari et al., 2008, Leibe et al., 2007] that has

proved successful in uncontrolled video. This involves detecting humans in every frame,

and then linking the detections using a simple general purpose tracker. We use this method

in combination with human upper body detections based on the HOG descriptor [Dalal

and Triggs, 2005] and a sliding window linear SVM classifier (section 7.3.1). Following

Everingham et al. [2006], we use KLT [Shi and Tomasi, 1994] as the tracker. We extend

the existing tracking approach with a new interpolation of missed detections (section 7.3.2)

and a additional classification stage (section 7.3.3) for the final tracks in order to reduce

false positives.

7.3.1 Upper body detection and association by tracking

Since humans in movies are recorded often in close-up or medium view, upper body de-

tectors [Ferrari et al., 2008, Laptev and Perez, 2007] are suitable for movie. Based on
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Figure 7.1: Upper body detector evaluated on frames from the C&C sequences not used

for training. Average precision is given in parentheses. Note how precision is improved

with detector retraining, and both precision and recall with tracking.

the method by Dalal and Triggs [2005], we train an upper body detector in two stages.

In the initial stage, positive and negative windows are extracted from the Hollywood–

Localization training movies. For this purpose we have annotated heads in keyframes and

automatically extended them to upper bodies. Each annotation window is jittered [Laptev,

2006] and flipped horizontally amounting to over 30k positive training samples in total.

We sample about 55k negative training windows that do not overlap significantly with the

positive annotations. For the second retraining stage, we follow the strategy of Dalal

and Triggs [2005] and look for high ranked false positives using the initial stage detec-

tor. We retrieve additional 150k false positives from the Hollywood–Localization training

movies, and also add over 6k jittered positives and 9k negatives from the C&C training

set.

Figure 7.1 compares the precision-recall plots obtained for the two stages of the detector

and for the final tracker. We evaluate the detectors based on a total of 260 upper bodies

that we annotate in 137 frames taken from the C&C drinking and smoking test sets [Laptev

and Perez, 2007]. A person is considered to be correctly localized when the predicted and

ground truth bounding box overlap (intersection to union) ratio is above 0.5. Re-training

improves the precision for low recalls but with some loss of recall (blue initial and green

retrained lines). However, the recall is largely recovered by the interpolating tracker (red

line) which fills in missing detections (as described in section 7.3.2).

Upper body detections are associated between frames using a KLT [Shi and Tomasi, 1994]

feature tracker. In a similar manner to Everingham et al. [2009a], the number of KLT

features passing through two detections (both forwards and backwards in time) is used to

compute a connectivity score between them, and detections are then linked by agglomer-

ative clustering.
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7.3.2 Interpolation and smoothing

Detections can be missing in some frames, and hence the tracks formed by agglomerative

clustering can have temporal gaps. To construct continuous tracks, it is necessary to

fill in these gaps (otherwise the subsequent computation of the action descriptor is more

difficult). Furthermore, the position and scale of the upper body detections can be noisy.

In order to provide a stable reference frame for the subsequent action classification, we

smooth (and complete by interpolation) the estimated detection window by optimizing

over the track parameters {pt}:

min
{pt}

∑

t∈T

(

||pt − p̄t||2 + λ2||pt − pt+1||2
)

(7.1)

where pt = (xt, yt, wt, ht) denotes the position, width and height of a bounding box at

time instance t for a track T , p̄t = (x̄t, ȳt, w̄t, h̄t) are the detections and λ is a temporal

smoothing parameter. Note that if a detection is missed, then the appropriate term p̄t is

removed from the cost function for that frame. Optimizing (7.1) results in a linear equation

with a tri-diagonal matrix, which can be solved efficiently by Gaussian elimination with

partial pivoting. Setting λ = 4 for 25Hz videos results in a virtual “steadi-cam” with no

adverse oversmoothing.

Figure 7.1 shows the gain from smoothing and completing detections to form tracks.

Exploiting the temporal consistency (tracking) significantly improves the recall of the

retrained human detector.

7.3.3 Classification post-processing

Since the upper body detector considers only a single frame, background clutter can gen-

erate many false positives. Some of these are quite stable and survive tracking to produce

erroneous human tracks that should be removed.

We take a principled approach and in a final stage train a classifier to distinguish correct

from false tracks. To this end, we define 12 track measures based on track length (since false

tracks are often short); upper body SVM detection score (false detections normally have

a lower score than true ones); scale and position variability (those often reveal artificial

detections); and occlusion by other tracks (patterns in the background often generate a

number of overlapping detections). For these measures we compute a number of statistics

(min, max, average) where applicable and form a 12-dimensional feature vector used to

classify the track. We obtain ground-truth for the tracks using 1102 annotated keyframes

from Hollywood–Localization training movies (a track is considered positive if it coincides

with an actor in the annotated keyframe, and negative otherwise) and train an SVM

classifier (linear and RBF). The SVM is then used to classify the tracks.

Table 7.1 compares different methods used to remove erroneous tracks resulting from

background clutter. The detection score turns out to be crucial for recognizing true human

tracks. Nevertheless, training an SVM classifier on all 12 track measures significantly
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recall

0.99 0.95 0.90 0.85 0.80 0.70

RBF-SVM 0.18 0.42 0.60 0.68 0.73 0.78

Lin-SVM 0.19 0.41 0.58 0.68 0.73 0.78

AvgScore 0.18 0.21 0.27 0.35 0.38 0.50

Occlusion 0.14 0.19 0.23 0.24 0.24 0.25

Length 0.14 0.15 0.18 0.22 0.26 0.27

No filtering 0.14 0.14 0.14 0.14 0.14 0.14

Table 7.1: Precision of tracks for various filtering methods at recall rates of interest on

C&C stories not used for training. Note the huge improvement obtained by classifying on

a set of track properties, rather than using the properties individually.

improves recognition precision compared to any heuristics on the individual measures.

Using either a linear or a non-linear SVM, the precision at a useful recall of 0.8 improves

from 0.14 to 0.73, i.e., the number of false positives is reduced by more than two thirds.

The benefits to both precision and recall are evident in figure 7.1.

Overall, the proposed human detection and tracking method copes with a rich set of

articulations, viewing angles and scales, as illustrated in figure 7.2, and results significantly

improve over the individual human detections. Missed actors arise from unusual shots with

camera roll, face close-ups or distant views. In crowded scenes, background actors might

be missed, but most of the foreground characters are detected.

7.4 Action localization

Given a set of human tracks, the goal is to determine which tracks contain a given action

and to localize the action within the track. Our approach is based on a temporal sliding

window, that is, we search for a range of frames which contains the action. Due to the

tracks, the spatial extent of the action is already fixed. Consequently, we only need to

delimit the beginning and length of an action (a two dimensional search space). This is

in contrast with an exhaustive search, which needs to determine also the 2D image region

corresponding to the human, i.e., its position and scale in the case of a sliding window

approach.

Actions are represented by a spatio-temporal window descriptor. Our descriptor extends

the HOG image descriptor [Dalal and Triggs, 2005] to spatio-temporal volumes, and goes

beyond a rigid spatio-temporal cuboid [Laptev and Perez, 2007, Willems et al., 2009], as

it adjusts piecewise to the spatial extent of the tracks. This introduces a more flexible

representation, where the description will remain centred on the deforming human action.

This descriptor is termed HOG-Track , and is described in section 7.4.1. For temporal

localization we use a state-of-the-art two stage sliding window classifier [Harzallah et al.,

2009, Vedaldi et al., 2009] on the tracks.
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Figure 7.2: Upper body detections (left column) and tracks (right column) after classifica-

tion post-processing for a sample test sequence of C&C . The bounding box colours indicate

different tracks. Note the improvement due to the tracking where false positives have been

removed, as well as the high accuracy despite motion, articulations and self-occlusion.
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Figure 7.3: The HOG-Track descriptor: (left) the human tracker detects and tracks a

human upper body; (right) the HOG-Track descriptor divides the track into temporal

slices. Each slice is aligned with the bounding box of its centre frame and is divided into

a spatial grid of cuboid cells.

7.4.1 HOG-Track descriptor

The HOG-Track action descriptor divides a track segment into cells. As in the original

HOG [Dalal and Triggs, 2005], there are cells in the 2D spatial domain, but additionally

the track segment is divided into temporal slices. These slices are aligned with a human

track, as illustrated in figure 7.3. In more detail, a given track segment is defined by a

temporal sequence of bounding boxes. This sequence is divided into equally long temporal

slices and the spatial image region corresponding to the slice is given by the bounding

box of its centre frame. This ensures that our descriptor follows the variation of spatial

position of a human within the spatio-temporal volume of the video.

Each slice is split into a spatial grid of cuboid cells as illustrated in figure 7.3 and each cell

is represented by a histogram of spatio-temporal (3D) gradient orientations, following our

method presented in chapter 3. Orientation is quantized over an icosahedron—a regular

polyhedron with 20 faces. Opposing directions (faces of the icosahedron) are identified into

one bin, i.e., there are a total of 10 orientations. Each gradient votes with its magnitude

into the neighbouring bins, where weights are distributed based on interpolation.

For better invariance to position, we design spatially adjacent cells to have an overlap of

50%. All cell descriptors in a slice are L2 normalized per slice, and the final descriptor

concatenates all cell descriptors. The parameters of the descriptor (the spatial grid and

temporal slice granularity) are determined by cross-validation, as described in section 7.5.

On the drinking and smoking actions the training performance is optimized for a spatial

grid of 5 × 5 and 5 temporal slices. The dimensionality of the resulting descriptor is

10 orientation bins × 52 spatial cells × 5 temporal slices = 1250. This configuration is

used in all our experiments.

7.4.2 Action classification and localization

Our temporal sliding window approach extracts descriptors at varying locations and scales.

To classify these descriptors, we use a state-of-the-art two stage approach [Harzallah et al.,
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2009, Vedaldi et al., 2009] which rejects most negative samples with a linear SVM, and

then uses a non-linear SVM with an RBF kernel to better score the remaining samples.

When training the sliding window classifier, the ground-truth annotations are matched

to the tracks and the action part of the track is used for training. The HOG-Track is

computed for this temporal section, i.e., the temporal slices are aligned with the ground-

truth begin and end time stamps of the action. The spatial regions are obtained from

the track bounding box of the centre frame of each slice. Training is very similar to the

detector training of section 7.3: additional positives are generated here by jittering the

original positives in time, duration, and spatial scale. Initial negative samples are obtained

by randomly sampling positions with varying lengths in the tracks, which do not overlap

with any positive annotations, and in a re-training stage hard negatives are added to the

training set. The C parameter and weight for positive samples are determined on the

training set using a leave-one-video-out cross-validation. The second stage classifier uses

a non-linear SVM with an RBF kernel and is trained on the same training data as the

linear one. Again, we optimize the parameters via cross-validation.

At test time, a sliding window is used to localize actions. Seven temporal window scales

are evaluated starting from a minimum length of l = 30 frames, and increasing by a factor

of
√

2. The window step size is chosen as one fifth of the current scale. The HOG-Track

descriptor for each window is classified with the linear SVM. Non-maxima suppression

then recursively finds the global maximum in a track and removes all neighbouring positive

responses with an overlap greater than 0.3. The remaining detections are re-evaluated with

the non-linear SVM classifier. As will be seen next, this second re-scoring stage improves

classification results considerably.

7.5 Experimental results

7.5.1 Coffee&Cigarettes

Tracks for action localization. Our action localization method depends on correct

track positions in space and time. When training the sliding window classifier, the ground-

truth is matched to the tracks and the corresponding tracks are used for training. We only

keep samples that have an overlap of at least 0.5. This results in a loss of around 10%

of the training samples. During testing an action can not be detected if the track is not

localized. This reduces the maximum possible recall by again around 10%.

Descriptor evaluation. In order to determine a suitable layout of our HOG-Track

descriptor, we evaluate its parameters using cross-validation on the training set. Best

results are obtained for 5 or 7 temporal slices; we use 5 as it results in a lower dimensional

descriptor. The performance is quite sensitive to the number of spatial cells, best results

are obtained for 5 × 5. This behaviour translates also to the test set which is illustrated

in figure 7.4. The performance is averaged over three independent runs.
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Figure 7.4: HOG-Track descriptor evaluation: for a varying number of spatial cells and

temporal slices for drinking and smoking actions on the C&C test dataset averaged over

three runs.

Localization results & comparison to state of the art. Figure 7.5 presents precision-

recall curves for localizing drinking and smoking actions in C&C . The detectors are trained

on the training part of each dataset and evaluated on the corresponding test sets. Fig-

ure 7.5 (left) evaluates the detection results for localizing drinking actions. Under the

same experimental setup, the linear classifier (51.8%) substantially outperforms the state-

of-the-art, i.e., Willems et al. [2009] (45.2%) and Laptev and Perez [2007] (43.4%). The

non-linear classifier further improves the results (55.4%). Note the excellent precision

(100%) up to a recall of ca. 30%. Figure 7.6 illustrates the corresponding top 12 drink-

ing localizations ordered by their SVM score. Note the variety of camera viewpoints and

lighting.

Figure 7.5 (right) evaluates the detection results for localizing smoking actions. The non-

linear classifier turns out to be crucial, improving the performance by +6.1% to 22.8% in

terms of AP. The noticeably lower performance for smoking (when compared to drinking)

can be explained by the large intra-class variability of this action. Temporal boundaries of

a smoking action can in fact be only loosely defined and smoking often happens in parallel

with other activities (like talking or drinking). Furthermore, a cigarette is smaller and less

distinctive than a cup. Previous action analysis on this dataset [Laptev and Perez, 2007,

Willems et al., 2009] did not include smoking, so no comparisons can be given. The top

12 smoking localizations are shown in figure 7.7. Interestingly, some of the false positives

(e.g., rank 4, 10) include rapid vertical motion of the hand towards head and mouth.

Since drinking and smoking actions seem to be visually similar, it is interesting to assess

the discriminative power of both classifiers. For this, we measure the performance of a

drinking classifier for the task of localizing smoking and vice versa. Table 7.2 displays the

confusion between the actions drinking and smoking. In both cases the performance is

very low (around 5% AP) which shows that both classifiers are able to learn discriminative

models that can distinguish visually similar, yet different actions successfully.

Comparison with other action descriptors. To show the importance of computing

the HOG-Track descriptor on the spatial extent of humans determined by tracks, we
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Figure 7.5: Precision-recall curves on the C&C test set. Human actions evaluated: drink-

ing (left) and smoking (right). We compare our linear and non-linear detectors and report

state-of-the-art results where applicable.

conduct experiments with a number of baseline classifiers. We keep the experimental

setup and descriptor parameters the same.

First, we extract our spatio-temporal descriptor for the entire video frame, i.e., ignore the

tracks. In this case the evaluation criterion only measures the overlap in time, as we do

not determine the spatial extent. The average precision for the linear baseline classifier on

the C&C drinking dataset is 8.1% (vs 51.8% with tracks) and for the non-linear one it is

17.1% (vs 55.4%). Clearly, such baseline is able to localize drinking actions to some extent,

but its performance is inferior without the spatial localization provided by the tracks.

Next, we evaluate the importance of adapting the HOG-Track descriptor to tracks. We

compute the descriptor for a spatio-temporal cuboid region tangent to the track. Precisely,

we align the centre of the cuboid with the track, but do not “bend” it along the track.

The performance for the linear classifier on drinking is 28.9% (vs 51.8% with adaptation)

and this improves to 48.1% (vs 55.4%) with the non-linear classifier. This confirms the

importance of descriptor adaptation.

Finally, we further evaluate the cuboid representation by performing an exhaustive (i.e.,

not using tracks) spatio-temporal search for an action. The non-linear classifier achieves

an AP of 24.3% (vs 55.4%) for drinking. Figure 7.8 compares all these different methods.

We also include results for the exhaustive cuboid search carried out by Laptev and Perez

[2007]. Overall, using tracks to drive the action localization significantly outperforms the

other approaches.

Drinking action Smoking action

Drinking detector 55.4% 5.3%

Smoking detector 5.0% 22.8%

Table 7.2: Performance (AP) of drinking and smoking classifiers when localizing drinking

and smoking actions. Note that the classifiers do not confuse the actions.
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1. (TP) 2. (TP) 3. (TP) 4. (TP)

5. (TP) 6. (FP) 7. (TP) 8. (TP)

9. (TP) 10. (TP) 11. (FP) 12. (FP)

Figure 7.6: The twelve highest ranked drinking detections on C&C .

1. (TP) 2. (TP) 3. (TP) 4. (FP)

5. (TP) 6. (FP) 7. (FP) 8. (FP)

9. (TP) 10. (FP) 11. (TP) 12. (FP)

Figure 7.7: The twelve highest ranked smoking detections on C&C .
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Figure 7.8: Precision-recall curves comparing HOG-Track to other action descriptors on

C&C for the action drinking.

Complexity. In the following we investigate the theoretical and practical time complex-

ity of our localization approach. We also discuss memory requirements and compare to

an exhaustive “sliding cuboid” baseline.

For the theoretical analysis, without loss of generality we assume a linear one-against-

rest classifier. We consider the number of multiplications in classifier evaluation (i.e.,

computing the dot product in the linear case) as the complexity measure. In a standard

sliding window scheme the classifier is evaluated once for each window. Consequently,

the total recognition cost will linearly depend on (a) the number of actions considered,

(b) the number of windows evaluated, and (c) the dimensionality of the descriptor. The

complexity of the“sliding cuboid”baseline can therefore be written as O(a·s2xst·r2xrt) where

a is the number of actions, sx/st denote spatial/temporal size of the problem (video), and

rx/rt correspond to spatial/temporal resolution (dimensionality) of the descriptor.

Our approach combines a spatial sliding window human classifier and a temporal detector.

Its complexity can be written as O(s2xst ·r2x+a·tst ·r2xrt) where t corresponds to the number

of tracks in the video. Note that the above expression is normally dominated by the spatial

search (left term). Compared to the exhaustive approach, we gain from having an action-

agnostic classifier (no factor a) and using a simpler detector first (no factor rt). The

temporal search (right term) is fast since it searches only one dimension and t≪ s2x.

In practice, the difference in the runtime is even more significant due to limited memory.

Computing the video descriptor does not allow for many optimizations which are possible

for a single frame/image – like pre-computing or caching the gradient histograms for

instance. This in practice adds another factor to the sliding cuboid complexity. It does

not affect our method since in our case the complexity is dominated by human detection,

where memory requirements are not a problem.

The theoretical analysis above is confirmed in practice. Processing about 25 minutes of

video using our method takes about 13 hours in total on a standard workstation. Human

detection takes under 10 hours, tracking humans adds 3 hours, action localization is per-

formed in under 10 minutes. For comparison, running an exhaustive cuboid search on the

same data takes over 100 hours.
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Figure 7.9: Precision-recall curves for the actions answering phone and standing-up of the

Hollywood–Localization test set.

7.5.2 Hollywood–Localization

For this dataset we use the same parameters throughout as those used for C&C . Fig-

ure 7.9 (left) evaluates the detection results for localizing phoning actions in our Hollywood–

Localization dataset. Due to the much larger variety of the videos (Hollywood movies),

this dataset is much more challenging than C&C . The difficulty of the task is further

increased by the fact that negative samples contain, without exception, other dynamic

human actions. Some of those actions, like eating for example, might share similar motion

patterns. Nevertheless, the recognition performance is satisfactory. In almost 40 minutes

of video we can correctly localize over 80% of phoning actions and retrieve the top ones

with high precision. The top 12 phoning localizations on the test set are shown in fig-

ure 7.10. The true positive detections cover a large variety of poses and scenes. The top

false positives detections mostly involve a rapid vertical hand movement.

Figure 7.9 (right) evaluates the detection results for localizing standing-up actions, and

figure 7.11 shows the top 12 detections. This action differs from the previous three as it

does not involve the hand moving towards the head. The results are promising; the recall

is worse than for all the other classes, but the precision is satisfactory.

7.6 Conclusion

We have demonstrated the value of using human tracks for visual action localization. In

each dataset the same tracks support localization of different types of actions. This allows

natural human actions to be effectively recognized in challenging environments.

A track introduces a separation between the human foreground and background of a scene,

and either or both may provide information. In this paper we have proposed a robust model

for foreground regions. In the future, given this separation, appropriate descriptors and

classifiers can then be learnt for the foreground and background regions. For example,

if the camera is panning to follow a person, then the motion from the background can

be suppressed. However, for some actions it will be the background (the context) or

background motion that is more informative, e.g. perhaps in the case of a person standing

up.
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Figure 7.10: The twelve highest ranked phoning actions detected on Hollywood–

Localization.
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Figure 7.11: The twelve highest ranked standing-up actions detected on Hollywood–

Localization.





Conclusion

Cette thèse a présenté et évalué plusieurs contributions pour la reconnaissance d’actions

dans des vidéos réalistes. Pour conclure notre travail, nous résumons dans la suite nos

conclusions principales.

Notre première contribution est un descripteur local basé sur des histogrammes

d’orientation de gradients spatio-temporels (HOG3D) que nous avons évalué pour la tâche

de reconnaissance d’actions. Les expériences ont montré l’importance des paramètres

adaptés aux tâches. En comparaison directe avec des descripteurs de pointe, notre ap-

proche a montré de meilleurs résultats sur trois des quatre bases de données considérées.

Nous avons évalué et comparé les méthodes existantes pour la détection et la description de

caractéristiques locales pour pour la tâche de classification d’action. Parmi les détecteurs,

le détecteur de Gabor a montré de bons résultats et il a en général atteint la couverture

spatio-temporelle la plus dense. Parmi les descripteurs, HOG/HOF et notre descripteur

HOG3D ont obtenu les meilleurs résultats.

Une autre contribution est un descripteur pour la reconnaissance d’actions basé sur des

trajectoires locales. Dans nos expériences, l’extension du descripteur de trajectoires avec

des informations d’apparence et de mouvement dans le voisinage local de la trajectoire

a été l’élément clé pour améliorer la performance. En comparaison avec l’état de l’art

actuel, des méthodes de pointe, nous obtenons des résultats comparables pour une base

de données et significativement meilleurs sur deux autres bases.

Nous avons étudié la représentation par sac-de-mots avec la détection de personne et nous

avons quantifié son gain pour la reconnaissance d’actions. De nos expériences, nous avons

conclu que la suppression de fond ne conduit qu’à un gain de performance mineur, car

elle supprime l’information de contexte qui peut pourtant être utile pour la classification.

Pour quelques catégories d’action (sortir de la voiture et embrasser, par exemple), nous

avons même observé une dégradation des performances. En outre, nous avons montré

qu’en général des informations structurelles permettent d’améliorer la précision de recon-

naissance. Seulement pour certaines catégories d’action, nous n’avons observé aucune ou

uniquement une mineure amélioration.

Notre dernière contribution-clé consiste en une approche centrée sur des personnes pour

localiser des actions humaines dans des films hollywoodiens temporellement ainsi que spa-

tialement. Nos expériences ont montré que des détections de personne sont en mesure

d’améliorer non seulement l’efficacité du calcul, mais elles contribuent aussi à augmenter

la précision de la reconnaissance grâce à une description plus sophistiquée. Dans nos éval-

uations, notre approche dépasse l’état de l’art actuel de 9% de précision moyenne, et elle

a montré des résultats prometteurs sur notre nouvelle base de données constituée sur de

films hollywoodiens.
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This dissertation has presented and evaluated several contributions for action recognition

in realistic video data. To conclude our work, we summarize our key contributions and

discuss conclusions from our experiments in section 8.1. Based on these conclusions, we

will then indicate interesting directions for future research in this field (section 8.2).

8.1 Key contributions

Local descriptor based on histograms of 3D gradients. Our first contribution is a

local descriptor based on histograms of oriented spatio-temporal gradients (HOG3D) which

we evaluated for the task of action recognition. In order to quantize gradient orientations,

we introduced an approach using regular polyhedrons which we compared to quantization

based on spherical coordinates. For gradient computation of arbitrary scales, we extended

the concept of integral images to integral videos. Parameters were evaluated in depth and

optimized for action recognition on realistic as well as simplified video data. Experiments

showed the importance of task-specific parameter settings. In direct comparison with a

current state-of-the-art descriptor, our approach improved results on three out of four

datasets.

Evaluation of local space-time features. We have evaluated and compared existing

methods for feature detection and description on action classification tasks. For this, a

standard bag-of-features approach was employed and experiments were carried out on

three different datasets with a total of 25 action classes. Our conclusions are that dense

sampling in general outperforms interest point detectors on realistic data, while Harris3D

works better on simple data (KTH actions dataset). Among the detectors, the Gabor

detector showed good results and provided the densest coverage. Among the descriptors,

HOG/HOF and our HOG3D descriptor showed best results.
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Local feature trajectories. A further contribution is a descriptor for action recog-

nition based on feature trajectories. Contrary to existing methods which solely used

trajectory shape information, we extended the trajectory description with additional de-

scriptors capturing appearance and motion information in the local neighborhood of the

trajectory. In our experiments, this extension showed to be the key element for improving

performance. Furthermore, we have introduced a descriptor based on motion boundary

histograms (MBH). It showed excellent results alone and in combination with descriptors

based on gradient and optical flow orientations. We evaluated the full descriptor on three

different datasets and optimized its parameters for realistic video settings. In compar-

ison with current state-of-the-art methods, we are on par for one dataset and improve

significantly for the two others.

Combination of bag-of-features with human detection. We have investigated the

combination of the bag-of-features representation with person localization (human tracks)

and quantified its benefit for action recognition. To accomplish this, we redefined the

concept of spatial pyramids as a model with controlled levels of spatial constraints. In

a first step, we considered simple background suppression and concluded that it leads

only to a minor performance gain since context information can play an important role in

classifying actions, especially in the case of realistic videos. For a few action classes (getting

out of the car and kissing), we even observed performance degradation. In a second step,

we showed that narrowing down attention to human actors allows to incorporate more

layout information which, in general, helps improving recognition accuracy. However, on

realistic videos and for some action classes, we observed no or only minor improvement.

Action localization in realistic video data. Our last key contribution consists of

a human-centric approach to localize human actions temporally as well as spatially in

Hollywood-style movie data. To allow for robust localization of humans, we have developed

an upper-body human tracker that is able to cope with realistic video settings. For the

action representation, we have introduced a spatio-temporal HOG descriptor adapted to

human tracks. Our experiments have shown that tracks improve not only computational

efficiency, but they also help to increase recognition accuracy due to a more principled

action description. In the evaluations, our approach exceeded the current state-of-the-art

by 9% average precision and showed promising results on our new dataset based on actions

from Hollywood movies.

8.2 Future work

Towards realistic action recognition. In sections 3.3 and 6.3, we discussed classifi-

cation performance per action class and concluded that each class has specific character-

istics that could benefit from an adapted description. This has been especially obvious

for actions in Hollywood movies. Consequently, it seems necessary to adapt the visual

description method to each type of action individually. One aspect is the parametriza-

tion of a specific descriptor. A second aspect is the combination of different information
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cues, such as appearance, motion, structure [Laptev et al., 2008], and context information

[Marsza lek et al., 2009], but also the presence or absence of certain objects [Han et al.,

2009]. Multiple Kernel Learning [Sun et al., 2009, Han et al., 2009] shows promising re-

sults as a late-fusion technique, but also early-fusion approaches can be important (cf.

chapter 5). Other directions included hybrid fusion approaches, e.g., Khan et al. [2009]

use color attention to pre-weight quantized features for shape information.

Action modeling with feature trajectories. One limitation of bag-of-features rep-

resentations is that mutual information of neighboring features cannot be modeled and

is thus lost. Some recent approaches [Sun et al., 2009, Gilbert et al., 2009] propose to

overcome this limitation by combining features in a local context.

In chapter 5, we have shown that local feature trajectories in combination with appear-

ance and motion descriptors yield excellent results. Since trajectories follow local move-

ments over time, they offer interesting possibilities for more principled action modeling.

Matikainen et al. [2009] have shown that trajectories of similar shape can be grouped to-

gether. An interesting possibility is to use this grouping of local features in order to model

relations between local regions with coherent motion.

Motion boundary histograms for action recognition. As motion boundary his-

tograms (MBH) showed excellent results for action recognition using local features (cf.

chapter 5), their application to other problems seems appealing and should certainly be

investigated. A possible application is our system for action localization. Especially in

Hollywood movies, we noted the presence of camera ego-motion which is explicitly encoded

into descriptors based on optical flow and spatio-temporal gradients. In contrast, motion

boundaries are invariant to camera motion and can thus help to improve results.

For the MBH descriptor itself, it has been shown [Dalal et al., 2006] that the underlying

optical flow algorithm can play an important role. Since it is currently not clear to which

extent different algorithms influence the performance for action recognition, this should

be investigated in the future.

Human tracks for action localization. Our approach to localize human actions in

realistic video settings improved results over the current state-of-the-art significantly. An

interesting path for future work can be based on human tracks for multiple body parts,

e.g., for head, upper body, and full body. First, this can help to render the tracking

process more robust since additional constraints for relations between the body parts

are available [Mikolajczyk et al., 2004]. Second, it can also allow for a more principled

action localization: actions can be learned for each body part separately, and they can

be evaluated jointly for localization. A further possibility is to incorporate multi-view

information in action modeling, i.e., explicitly modeling of an action for frontal and lateral

views. This can enable a more discriminative action modeling.
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Common methods

A.1 Bag-of-features

Various contributions that have been proposed in this dissertation make use of the bag-of-

features (BoF) representation for action classification. Since a very similar representation

is employed in the different chapters, we will detail it in the following here.

A bag-of-features representation for video sequence is a loose representation of a set of

local space-time features (cf. section 2.1.3) If not otherwise stated, we obtain a sparse

set of spatio-temporal interest points by applying the space-time extension of the Harris

operator [Laptev, 2005] (cf. section 4.2.1).

The bag-of-features representation requires a visual vocabulary. For this, we apply either

random sampling or k-means on the set of training features. Random sampling has the

advantage that it is very fast since only a subset of V random training features needs

to be computed. For results using k-means, we cluster a subset of 100,000 randomly

selected training features in order to limit computational complexity. We increase precision

by initializing k-means 8 times and keeping the result with the lowest error. Features

are assigned to their closest vocabulary word using Euclidean distance. The resulting

histograms of visual word occurrences are used as video sequence representations.

Unless otherwise stated, we fix the number of visual words to V = 4000 which has shown

to empirically give good results for a wide range of datasets [Laptev et al., 2008]. We

also observed in our experiments, that results using random sampling were close to those

obtained using vocabularies built with k-means.

Classification is done with non-linear support vector machines χ2-kernel [Belongie et al.,

2002]

K(Hi, Hj) = exp

(

− 1

A
D(Hi, Hj)

)

, (A.1)

where Hi = {hik} and Hj = {hjk} are the histograms of word occurrences, D(·) is the

χ2-distance defined as

D(Hi, Hj) =
1

2

∑

k

(hik − hjk)2

hik + hjk
, (A.2)
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and A is the average distance between all N training samples [Zhang et al., 2007]:

A =
1

N2

N
∑

i=1

N
∑

j=1

D(Hi, Hj). (A.3)

For multi-class classification, we use the one-against-rest approach. In our implementation,

we use the code provided by LIBSVM [Chang and Lin, 2001].

Multi-channel classification. In the case of classification with multiple histogram

types, we employ a multi-channel Gaussian kernel [Zhang et al., 2007]

K(Hi, Hj) = exp

(

−
∑

t

1

At
D
(

H
(t)
i , H

(t)
j

)

)

, (A.4)

where H
(t)
i = {h(t)ik } and H

(t)
j = {h(t)jk } are histograms of the type t, At is the average

distance between all training samples for histogram type t.
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Abstract

This dissertation targets the recognition of human actions in realistic video data, such

as movies. To this end, we develop state-of-the-art feature extraction algorithms that

robustly encode video information for both, action classification and action localization.

In a first part, we study bag-of-features approaches for action classification. Recent ap-

proaches that use bag-of-features as representation have shown excellent results in the case

of realistic video data. We, therefore, conduct an extensive comparison of existing meth-

ods for local feature detection and description. We, then, propose two new approaches

to describe local features in videos. The first method extends the concept of histograms

over gradient orientations to the spatio-temporal domain. The second method describes

trajectories of local interest points detected spatially. Both descriptors are evaluated in a

bag-of-features setup and show an improvement over the state-of-the-art for action classi-

fication.

In a second part, we investigate how human detection can help action recognition. Firstly,

we develop an approach that combines human detection with a bag-of-features model.

The performance is evaluated for action classification with varying resolutions of spatial

layout information. Next, we explore the spatio-temporal localization of human actions in

Hollywood movies. We extend a human tracking approach to work robustly on realistic

video data. Furthermore we develop an action representation that is adapted to human

tracks. Our experiments suggest that action localization benefits significantly from human

detection. In addition, our system shows a large improvement over current state-of-the-art

approaches.

Keywords: computer vision, action recognition, video, image, classification, local de-

scriptors, bag-of-features, detection.





Résumé

Cette thèse s’intéresse à la reconnaissance des actions humaines dans des données vidéo

réalistes, tels que les films. À cette fin, nous développons des algorithmes d’extraction de

caractéristiques visuelles pour la classification et la localisation d’actions.

Dans une première partie, nous étudions des approches basées sur les sacs-de-mots pour la

classification d’action. Dans le cas de vidéo réalistes, certains travaux récents qui utilisent le

modèle sac-de-mots pour la représentation d’actions ont montré des résultats prometteurs.

Par conséquent, nous effectuons une comparaison approfondie des méthodes existantes

pour la détection et la description des caractéristiques locales. Ensuite, nous proposons

deux nouvelles approches pour la descriptions des caractéristiques locales en vidéo. La

première méthode étend le concept d’histogrammes sur les orientations de gradient dans

le domaine spatio-temporel. La seconde méthode est basée sur des trajectoires de points

d’intérêt détectés spatialement. Les deux descripteurs sont évalués avec une représenta-

tion par sac-de-mots et montrent une amélioration par rapport à l’état de l’art pour la

classification d’actions.

Dans une seconde partie, nous examinons comment la détection de personnes peut con-

tribuer à la reconnaissance d’actions. Tout d’abord, nous développons une approche qui

combine la détection de personnes avec une représentation sac-de-mots. La performance

est évaluée pour la classification d’actions à plusieurs niveaux d’échelle spatiale. Ensuite,

nous explorons la localisation spatio-temporelle des actions humaines dans les films. Nous

étendons une approche de suivi de personnes pour des vidéos réalistes. En outre, nous

développons une représentation d’actions qui est adaptée aux détections de personnes.

Nos expériences suggèrent que la détection de personnes améliore significativement la lo-

calisation d’actions. De plus, notre système montre une grande amélioration par rapport

à l’état de l’art actuel.

Mots-clés : vision par ordinateur, reconnaissance d’actions, vidéo, image, classification,

descripteurs locals, sac-de-mots, détection.
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