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Goal of this thesis

● Actions: focus on visible low-level action 
primitives and actions of a rather generic type
– e.g.: running, drinking, smoking, answering phone, 

standing up, hugging, shaking hand, punching, ...

● Realistic video: uncontrolled video data, such 
as movies or internet videos

Recognizing actions in realistic videos
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Goal of this thesis

Task 1: Action Classification
● Label a given video sequence as belonging to a 

particular action or not
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Goal of this thesis

Task 2: Action Localization
● Determine the beginning, end, and spatial extent of an 

action in a video sequence

● Much more challenging !

– ... as for for object localization in images (VOC)

– Certain type of actions are rare

t_start t_end
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Why it is challenging ?

Video-specific: 
camera ego-motion, shot boundaries, 
motion blur, interlacing, compression 
artifacts etc.

Typical problems:
intra/inter class variations, pose 
variations, background clutter, 
occlusions/cropping, illumination 
conditions, rareness etc.
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Motivation & applications
● More and more growing amount of video data...

– Videos uploaded per minute on YouTube increased from 6h in 
2007 to 20h in 2009 (+330%)

● Many works still use simplistic video data (no clutter, 
simple background, artificial actions etc.)

● Applications

– Video search + indexing (e.g., for film archives, websites), 
commonly based on text (e.g., YouTube)

– Surveillance applications

– Human-computer interfaces, computer games (e.g., Microsofts 
Project Natal)

– Film industry (animation, special effects, video editting)

– Analysis of sport athletics, dance choreography



7

Simplistic vs. realistic data: KTH

● 6 action classes, 2391 video samples in total 
● Homogeneous background, artificial actions
● State-of-the-art: 94.5% [Gilberts09], 94.1% [Han09]
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Simplistic vs. realistic data: HW2

● 12 action classes, 1707 samples from 69 Hollywood movies

● Large intra-class variations, clutter, camer ego-motion etc.

● State-of-the-art: 50.9% [Gilbert10], 42.1% [Han09]
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Outline

● Bag-of-features
● Local spatio-temporal HOG3D descriptor
● Evaluation of local feature detectors & 

descriptors
● Human focused action localization in space-

time
● Summary & conclusion
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Outline

● Bag-of-features
– History, overview, motivation

● Local spatio-temporal HOG3D descriptor
● Evaluation of local feature detectors & 

descriptors
● Human focused action localization in space-

time
● Summary & conclusion
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Short history of bag-of-features

● Origin from text documents [Salton68]

– Bag-of-words counts the occurrence of words

– Common representation for text documents

● Application to images [Culana01,Sivic03,Csurka04,Sivic05]

– Local image feature descriptors replace “words”
=> bag-of-features (BoF)

– Current state-of-the-art for image classification [VOC09]

● Application to action classification in videos 
[Schüldt04,Dollár05,Niebles06]
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Bag-of-features overview
Feature detection

Quantization of  local
space-time patches

Histogram representation

● Detection and description of local 
space-time features

● Codebook generation via 
clustering of training features 
(e.g., k-means, k=4000)

● Representation with occurrence 
histogram

– Each feature is assigned to its 
closest cluster center (visual word)

● Classification of histograms 
(e.g., SVM with χ2-kernel)
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Motivation

● No prior knowledge needed (human position, body 
parts, clutter) ☺

– Depending on the video data, human / limb detection might 
not be feasible

● BoF can be applied to challenging data ☺
● Straightforward approach ☺
● Works well in practice ☺
● No separation between background and foreground ☹
● No notion of geometry (extensions exist) ☹
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Outline

● Bag-of-features
● Local spatio-temporal HOG3D descriptor 

– Motivation, approach, parameter optimization

● Evaluation of local feature detectors & 
descriptors 

● Human focused action localization in space-
time

● Summary & conclusion

[A. Kläser, M. Marszalek, and C. Schmid. A spatio-temporal descriptor 
based on 3D-gradients. In BMVC, 2008]
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Motivation

● Many concepts have been sucessfully extended from static 
images to videos

– Feature detectors/descriptors, BoF representations, voting 
approaches etc.

● Few spatio-temporal descriptors exist that combine spatial 
with temporal information:

– Optical flow and (spatial) gradient orientations [Laptev08]

– Spatio-temporal gradient magnitudes [Laptev04,Dollár05]

– Spatio-temporal SIFT [Scovanner07]

– Extended SURF descriptor [Willems08]

● Histograms of Oriented Gradients (HOG) work well for 
images [Dalal06, Lowe04]



16

Overview HOG3D

● Main idea: extension of HOG using 3D gradients

– Spatial orientation captures appearance information and 
temporal orientation captures velocity 

– Gradients are straight forward to compute

● What is new ?

– Quantization of 3D gradients with regular polyhedra

– Gradient computation using integral videos [Ke05, Willems08]

– Efficient gradient computation for arbitrary scales

– Optimization of descriptor parameters

– Extensive evaluation on different datasets
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(1) Local descriptor

● Describes local neighborhood around sampling position

– Sampling point is given by x, t, y position and characteristic spatial 
and temporal scale σ, τ

– Spatial and temporal scales need to be separated

● Width/height and length given by:  

● Local neighborhood is divided into M x M x N cells

● For each cell, histograms are computed, normalized, and 
concatenated

h=w=0 , l=0
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(2) Histogram of oriented gradients

● A cell is divided into S x S x S sub-blocks
● For each sub-block, mean gradients are 

computed and quantized
● All votes are summed up for final histogram
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(3) Orientation quantization

● Gradient orientation is more robust to 
illumination changes than magnitude [Freeman95]

● Quantization for 3D gradients
– Spherical coordinates (longitude and latitude)

– Regular polyhedra (each face is one bin)
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(3) Spherical coordinates

● Azimuth (θ) and 
elevation angle (φ) are 
quantized into a regular 
grid

● Spatial and temporal 
resolution can be 
controlled separately ☺

● Leads to singularities at 
poles ☹

● Size of bins varies ☹
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(3) Regular polyhedra

● Also called Platonic solids, there exist only 5

● Faces (used as bins) are congruent and evenly distributed ☺
● Quantization by projecting gradients on axes through 

polyhedron center and face center

● We use dodecahedron (12 bins) and icosahedron (20 bins) 
in our experiments
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(4) Gradient computation

● Gradients need to be computed for different spatial 
and temporal scales 

● Approximate gradients via integral videos

–

– Constant computation time for gradients at arbitrary 
scale
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Parameter optimization

● Descriptor parameters are optimized via cross-fold-
validation on the training set

– Spatial/temporal support, number of spatial/temporal cells, 
number of sub-blocks, full/half orientation

– For spherical coordinates: number of spatial/temporal bins

● Optimization via gradient descent

– Division of parameter space into rough grid

– Caching of results, optimization on mean

● Separate optimization on two datasets

– Simple dataset with uncluttered background (KTH)

– Realistic dataset based on Hollywood movies (Hollywood2)
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Outline

● Bag-of-features
● Local spatio-temporal HOG3D descriptor 
● Evaluation of local feature detectors & descriptors

– Motivation & goal, detectors, descriptors, results, 
conclusion

● Local feature trajectory descriptor
● Human focused action localization in space-time
● Summary & conclusion

[H. Wang, M. M. Ullah, A. Kläser, I. Laptev, and C. Schmid. Evaluation of 
local spatio-temporal features for action recognition. In BMVC, 2009]
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Motivation & goal
● Motivation

– Local features have become popular for action recognition

– Several methods exist for detection/description of local 
features

– Existing comparisons are limited [Laptev04, Dollar05, Scovanner07, 
Jhuang07, Kläser08, Laptev08, Willems08]

– Different experimental settings and datasets

– Evaluations limited to only few descriptors

● Main idea: thorough evaluation of local video features

– Systematic evaluation of detector-descriptor combinations

– Same datasets (varying difficulty): KTH, UCF sports, 
Hollywood2

– Same classification method
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Evaluated feature detectors

● Harris 3D [Laptev03]

– Space-time corner detector

– Based on Harris cornerness criterion

● Gabor [Dollár05]

– Combination of spatial Gaussian filter and temporal Gabor filters

– Detection of salient regions undergoing a complex motion

● Hessian 3D [Willems08]

– Spatio-temporal extension of Hessian saliency measure

– Approximation with integral videos

– Detection of spatio-temporal “blobs”

● Dense sampling (in x, y, t and σ, τ)
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Evaluated feature descriptors

● HOG/HOF [Laptev08]

– Based on histograms of oriented (spatial) gradients 
(HOG) + histograms of optical flow (HOF)

● Gradient [Dollár05]

– PCA on concatenated pixel gradient values (i.e., spatio-
temporal magnitudes)

● Extended SURF [Willems08]

– Extension of SURF descriptor to videos

– Weighted sums of axis-aligned 3D Haar Wavelets

● HOG3D (as presented earlier)
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Evaluated datasets

● KTH actions

– 6 action classes, 2391 video samples

– Homogenous background, artifial actions

– State-of-the-art: 94.5% [Gilberts09], 94.1% [Han09] (accuracy)

● UCF sport actions

– 10 action classes, 150 video samples

– State-of-the-art: 69.2% [Rodriguez'08] (accuracy)

● Hollywood human actions (2)

– 12 action classes, 1707 samples from 69 different Hollywood 
movies (spatially subsampled)

– State-of-the-art: 50.9% [Gilbert10], 42.1% [Han09] (mAP)
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KTH actions – results

● Best results for Harris3D + HOG3D

– HOG3D parameters learned on KTH training set

● Good results for Harris3D & Gabor detector and HOG/HOF & 
HOG3D descriptor

● Dense features worse than interest points 

– Large number of features on static background

Detectors
Harris3D Gabor Hessian Dense

D
es

cr
ip

to
rs

HOG3D 92.4% 91.4% 88.1% 88.5%
HOG/HOF 91.8% 88.7% 88.7% 86.1%
HOG 80.9% 82.3% 77.7% 79.0%
HOF 92.1% 88.2% 88.6% 88.0%
Gradient - 89.1% - -
ESURF - - 81.4% -
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UCF sports – results

● Best results for Dense / Gabor + HOG3D

– HOG3D parameter set learned on KTH

● Good results for Dense and HOG/HOF

Detectors
Harris3D Gabor Hessian Dense

D
es

cr
ip

to
rs

HOG3D 77.6% 85.0% 78.9% 84.8%
HOG/HOF 78.1% 77.7% 79.3% 81.6%
HOG 71.4% 72.7% 66.0% 77.4%
HOF 75.4% 76.7% 75.3% 82.6%
Gradient - 76.6% - -
ESURF - - 77.3% -
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Hollywood2 actions – results

● Best results for Dense + HOG/HOF

● Good results for HOG/HOF and Gabor in general

● HOG3D + Gabor performs well

– Parameters learned on HW2 train set in full resolution

– For full resolution videos HOG3D + Harris3D yield 48.8% and 
HOG/HOF + Harris3D 47.6%

Detectors
Harris3D Gabor Hessian Dense

D
es

cr
ip

to
rs

HOG3D 44.3% 46.1% 43.5% 44.8%
HOG/HOF 45.2% 46.2% 46.0% 47.4%
HOG 32.8% 39.4% 36.2% 39.4%
HOF 43.3% 42.9% 43.0% 45.5%
Gradient - 45.0% - -
ESURF - - 38.2% -
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Conclusion

● Dense sampling outperforms tested detectors in realistic 
settings (UCF + Hollywood2)

– Importance of realistic video data

– Limitations of current feature detectors

– Note: large number of features (15-20 times more)

● Detectors: Harris3D, Gabor, and Hessian provide 
comparable results (interest points better than Dense on 
KTH)

● Descriptors overall ranking:

– HOG3D & HOG/HOF > Gradient > ESURF & HOG

– Combination of gradients + optical flow seems good choice
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Outline

● Bag-of-features
● Local spatio-temporal HOG3D descriptor
● Evaluation of local feature detectors & 

descriptors
● Human focused action localization in space-

time 
– Overview, tracking, action description, results

● Summary & conclusion

[A. Kläser, M. Marszalek, C. Schmid, and A. Zisserman. Human focused 
action localization in video. SGA 2010]
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Overview

● Goal: action localization in realistic video

● Main idea: actions are performed by actors

– Actor's position generically determines spatial location of action

– Determine temporal extent after spatial location

– More efficient and more accurate

● What is new ?

– We develop a robust actor detector and tracker
– Good human detector and tracker is crucial

– We propose a track-aligned action descriptor
– Action localization via sliding window on tracks

– New localization dataset based on Hollywood movies
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Related work

● Keyframe priming [Laptev07]

– Cuboid classifier

– Adaboost learns combinations of HOG and HOF features within cuboid 
region

– Pre-filtering by action specific pose detector

● Local features based voting [Willems09]

– Strongest video words vote for action hypotheses

– Strong hypotheses are evaluated with full BoF cuboid representation

● Shape matching [Ke07]

– Shape templates are matched to over-segmented videos

– Combination of shape and optical flow

● Other works concentrate on static cameras [Hu09, Yuan09] or 
simplified settings [Efros03, Lu06]
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Our approach (illustration)

1. Load the Beatles video
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Our approach (illustration)

2. Detect and track Beatles
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Our approach (illustration)

3. Find Paul standing up

t_start

t_end
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Human detection & tracking

● HOG detector [Dalal05] trained for upper bodies

– Training samples from Hollywood movies

● Tracking-by-detection [Everingham09]

– KLT tracker yields feature trajectories

– Detections are clustered together (agglomerative clustering) 
based on connectivity score

– Smoothing + interpolation for continuous tracks
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Human detection & tracking

● The procedure works well despite articulations, 
viewpoint and lighting changes, occlusions
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Tracks post-processing

● Improve precision at high recall with final 
classification stage of tracks

● SVM classifier is learned on 12 different measures 
characterizing a track

● For each measure we compute (if applicable min, max, 
average)

– Track length (false tracks are often short)

– Upper body SVM detection score

– Scale and position variability (those often reveal artificial 
detections)

– Occlusion by other tracks (patterns in the background often 
generate a number of overlapping detections)
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Tracks post-processing



43

Action descriptor

● Grid layout of N x N x M cells
● Cells overlap spatially with 50%
● Each temporal slice is aligned

to the track (follow movement)
● Each cell 3D HOG histogram

– Icosahedron for orientation 
quantization (half orientation)

● Layout optimization to 5x5x5
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Action localization

● Sliding window approach 
– Exhaustive search over all tracks, track positions 

and action lengths

– Very efficient in fact, in practice linear in video time

● 2-stage classification [Harzallah09]

– Linear SVM as first classifier, generate hypotheses 
via non-maxima suppression

– Re-evaluation of final hypotheses with non-linear 
SVM (RBF)
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Dataset: Coffee and Cigarettes

● We use the original split by stories [Laptev07]

– Annotation via bounding box at key frame + start/end position

Ttraining: 6 stories, 40min, 106 drinking, 90 smoking actions 
(+”Sea of Love” and “Lab” videos)

– Test-drinking: 2 stories, 24min, 38 drinking actions

– Test-smoking: 3 stories, 21min 46 smoking actions (originally 
validation set)

● Average Precision is used for evaluation
training test-smoking test-drinking
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Results for drinking
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Top 9 results for drinking

1 2 3

4 5 6

7 8 9
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Results for drinking
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Do tracks really help?

Baselines:
● Laptev's baseline, 

exhaustive search
● Cuboid classifier, 

exhaustive search in 
video

● Cuboid classifier, 
centered on tracks
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Why tracks help

● Classification task is simplified
– The “action world” gets restricted to actors

● Search space is reduced heavily
– Less false positives

● Better modeling capability
– Descriptor follows actor movements
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Results for smoking
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Top 9 results for smoking

1 2 3

4 5 6

7 8 9
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Dataset: Hollywood localization

● Dataset based on Hollywood2 data and split
– ~2h of video data in total (~1h training, ~1h test)

● We annotate the spatial and temporal extent of 
“phoning” and “standing up” actions
– Annotation via bounding box at key frame + 

start/end position

– 153 “phoning” actions (73 training, 80 test)

– 274 “standing up” actions (129 training, 145 test)

● Average Precision is used for evaluation
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Results for standing up
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Top 9 results for standing up

1 2 3

4 5 6

7 8 9
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Results for phoning
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Top 9 results for phoning

1 2 3

4 5 6

7 8 9
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Results for phoning

Human detections Human tracks

Action detections
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Outline

● Bag-of-features
● Local spatio-temporal HOG3D descriptor
● Evaluation of local feature detectors & 

descriptors
● Human focused action localization in space-

time 
● Summary & conclusion
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Summary
● Several contributions to action recognition 

(classification and localization) in realistic video 
settings have been presented

– Local spatio-temporal HOG3D descriptor

– Evaluation of local feature detectors/descriptors

– Action localization based on generic human tracks

– Local feature trajectory descriptor
– Improved performance with combination of trajectory and motion / 

appearance information

– Novel descriptor based on motion boundary histograms

– Combination of BoF with human tracks
– Improved performance for foreground features (class dependent)

– Spatial layout information can be incorporated
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Future work

● Adapted representation for each action

– Adapting descriptor parameters has been investigated in this 
thesis

– Combination of different type of information (MKL, early fusion)

– Explicit learning of context information

● Action modeling using feature trajectories

– Since trajectories follow local motion, they offer interesting 
possibilities for more principled representations [Matikainen09]

– Trajectories of similar shape can be grouped together to model 
relations between/within local regions
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Future work

● Motion boundary histograms

– Have shown promising results

– Invariance to camera ego-motion is important

– Application to other problems (e.g., action localization)

● Action localization

– Multiple body parts model can improve robustness of tracking 
[Mikolajczyk04, Felzenszwalb10]

– Possibility to model actions at different levels (head, upper 
body, legs, full body)

– Incorporate multiple view information in action representation
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Thank you for your attention

I will be glad to answer your questions
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Local feature trajectory descriptor

Motivation & goal, approach, current results

[H. Wang, A. Kläser, C.-L. Liu, and C. Schmid. Action recognition with 
feature trajectories. Unpublished]
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Motivation & goal

● Common feature detectors: detection of 3D positions based on 
saliency criterion

● In video, however, image structures move over time

– Tracking is naturally used to capture motion

– Objects are difficult to track in realistic videos

● Main idea: Local feature trajectories for action recognition 
[Messing09, Matikainen09, Sun09]

– Combination of local features + tracking approaches

● What is new ?

– Combined trajectory descriptor: trajectory shape, HOG, HOF, MBH

– Novel motion boundary descriptor (MBH) for action recognition

– Extensive evaluation, also on realistic data

– Learn parameters from training data
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Descriptor computation

● Spatial interest points are detected and tracked

– Trajectory length limited (15 frames) to cope with drifting

● Descriptors computed for a grid in local neighborhood of trajectory

– Combination of appearance and motion information

– Histograms of oriented gradients (HOG) and optical flow (HOF), motion 
boundary histograms (MBH)

– MBH computes HOG representations on x/y optical flow components
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Descriptors: HOF vs. HOG vs. MBH

● MBH is able to capture complementary information ☺

– Static clutter vanishes

● Motion boundaries are invariant to camera ego-motion 
(very important for realistic movies) ☺
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Results

● Very promising results, our method outperforms 
more advanced ones ☺

● MBH helps to improve results considerably ☺

Dataset
KTH YouTube Hollywood2

Ours 94.2% 79.8% 52.5%
Harris3D+HOG/HOF 92.0% 68.7% 47.3%
State-of-the-art 94.5% 71.2% 50.9%

[Gilbert09] [Liu09] [Gilbert10]
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Illustration of feature detectors
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UCF sports – samples
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Human tracking in realistic videos
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