Learning human actions in video

Alexander Kläser INRIA Grenoble, LJK

PhD thesis defense, 31 July 2010

Thesis advisor: Cordelia Schmid

Goal of this thesis

Recognizing actions in realistic videos

- Actions: focus on visible low-level action primitives and actions of a rather generic type
 - e.g.: running, drinking, smoking, answering phone, standing up, hugging, shaking hand, punching, ...
- Realistic video: uncontrolled video data, such as movies or internet videos

Goal of this thesis

Task 1: Action Classification

 Label a given video sequence as belonging to a particular action or not

Goal of this thesis

Task 2: Action Localization

- Determine the beginning, end, and spatial extent of an action in a video sequence
- Much more challenging!
 - ... as for for object localization in images (VOC)
 - Certain type of actions are rare

t_start

▶ t_end

Why it is challenging?

Video-specific:

camera ego-motion, shot boundaries, motion blur, interlacing, compression artifacts etc.

Typical problems:

intra/inter class variations, pose variations, background clutter, occlusions/cropping, illumination conditions, rareness etc.

Motivation & applications

- More and more growing amount of video data...
 - Videos uploaded per minute on YouTube increased from 6h in 2007 to 20h in 2009 (+330%)
- Many works still use simplistic video data (no clutter, simple background, artificial actions etc.)
- Applications
 - Video search + indexing (e.g., for film archives, websites),
 commonly based on text (e.g., YouTube)
 - Surveillance applications
 - Human-computer interfaces, computer games (e.g., Microsofts Project Natal)
 - Film industry (animation, special effects, video editting)
 - Analysis of sport athletics, dance choreography

Simplistic vs. realistic data: KTH

- 6 action classes, 2391 video samples in total
- Homogeneous background, artificial actions
- State-of-the-art: 94.5% [Gilberts09], 94.1% [Han09]

Simplistic vs. realistic data: HW2

- 12 action classes, 1707 samples from 69 Hollywood movies
- Large intra-class variations, clutter, camer ego-motion etc.
- State-of-the-art: 50.9% [Gilbert10], 42.1% [Han09]

Outline

- Bag-of-features
- Local spatio-temporal HOG3D descriptor
- Evaluation of local feature detectors & descriptors
- Human focused action localization in spacetime
- Summary & conclusion

Outline

- Bag-of-features
 - History, overview, motivation
- Local spatio-temporal HOG3D descriptor
- Evaluation of local feature detectors & descriptors
- Human focused action localization in spacetime
- Summary & conclusion

Short history of bag-of-features

- Origin from text documents [Salton68]
 - Bag-of-words counts the occurrence of words
 - Common representation for text documents
- Application to images [Culana01,Sivic03,Csurka04,Sivic05]
 - Local image feature descriptors replace "words"=> bag-of-features (BoF)
 - Current state-of-the-art for image classification [VOC09]
- Application to action classification in videos [Schüldt04,Dollár05,Niebles06]

Bag-of-features overview

- Detection and description of local space-time features
- Codebook generation via clustering of training features (e.g., k-means, k=4000)
- Representation with occurrence histogram
 - Each feature is assigned to its closest cluster center (visual word)
- Classification of histograms (e.g., SVM with χ^2 -kernel)

Feature detection

Histogram representation

Motivation

- No prior knowledge needed (human position, body parts, clutter)
 - Depending on the video data, human / limb detection might not be feasible
- BoF can be applied to challenging data
- Straightforward approach ⁽³⁾
- Works well in practice [©]
- No separation between background and foreground ⁽³⁾
- No notion of geometry (extensions exist)

Outline

- Bag-of-features
- Local spatio-temporal HOG3D descriptor
 - Motivation, approach, parameter optimization
- Evaluation of local feature detectors & descriptors
- Human focused action localization in spacetime
- Summary & conclusion

Motivation

- Many concepts have been sucessfully extended from static images to videos
 - Feature detectors/descriptors, BoF representations, voting approaches etc.
- Few spatio-temporal descriptors exist that combine spatial with temporal information:
 - Optical flow and (spatial) gradient orientations [Laptev08]
 - Spatio-temporal gradient magnitudes [Laptev04,Dollár05]
 - Spatio-temporal SIFT [Scovanner07]
 - Extended SURF descriptor [Willems08]
- Histograms of Oriented Gradients (HOG) work well for images [Dalal06, Lowe04]

Overview HOG3D

- Main idea: extension of HOG using 3D gradients
 - Spatial orientation captures appearance information and temporal orientation captures velocity
 - Gradients are straight forward to compute

What is new?

- Quantization of 3D gradients with regular polyhedra
- Gradient computation using integral videos [Ke05, Willems08]
 - Efficient gradient computation for arbitrary scales
- Optimization of descriptor parameters
- Extensive evaluation on different datasets

(1) Local descriptor

- Describes local neighborhood around sampling position
 - Sampling point is given by x, t, y position and characteristic spatial and temporal scale σ, τ
 - Spatial and temporal scales need to be separated
- Width/height and length given by: $h = w = \sigma_0 \sigma$, $l = \tau_0 \tau$
- Local neighborhood is divided into M x M x N cells
- For each cell, histograms are computed, normalized, and concatenated

(2) Histogram of oriented gradients

- A cell is divided into S x S x S sub-blocks
- For each sub-block, mean gradients are computed and quantized
- All votes are summed up for final histogram

$$\mathbf{h}_i = \left[\begin{array}{c} \mathbf{q}_i \\ \mathbf{q}_i \end{array} \right] = \sum_{j=1}^{S^3} \mathbf{q}_j \qquad \mathbf{q}_j = \left[\begin{array}{c} \mathbf{q}_i \\ \mathbf{q}_i \end{array} \right]$$

(3) Orientation quantization

- Gradient orientation is more robust to illumination changes than magnitude [Freeman95]
- Quantization for 3D gradients
 - Spherical coordinates (longitude and latitude)
 - Regular polyhedra (each face is one bin)

(3) Spherical coordinates

- Azimuth (θ) and elevation angle (φ) are quantized into a regular grid
- Spatial and temporal resolution can be controlled separately [©]
- Leads to singularities at poles
- Size of bins varies

(3) Regular polyhedra

- Also called Platonic solids, there exist only 5
- Faces (used as bins) are congruent and evenly distributed ©
- Quantization by projecting gradients on axes through polyhedron center and face center
- We use dodecahedron (12 bins) and icosahedron (20 bins) in our experiments

(4) Gradient computation

- Gradients need to be computed for different spatial and temporal scales
- Approximate gradients via integral videos

$$-\nabla L_{\sigma,\tau} = \nabla (G_{\sigma,\tau} * v) = G_{\sigma,\tau} * \nabla v \approx B_{\sigma,\tau} * \nabla v$$

Constant computation time for gradients at arbitrary scale

Parameter optimization

- Descriptor parameters are optimized via cross-foldvalidation on the training set
 - Spatial/temporal support, number of spatial/temporal cells, number of sub-blocks, full/half orientation
 - For spherical coordinates: number of spatial/temporal bins
- Optimization via gradient descent
 - Division of parameter space into rough grid
 - Caching of results, optimization on mean
- Separate optimization on two datasets
 - Simple dataset with uncluttered background (KTH)
 - Realistic dataset based on Hollywood movies (Hollywood2)

Outline

- Bag-of-features
- Local spatio-temporal HOG3D descriptor
- Evaluation of local feature detectors & descriptors
 - Motivation & goal, detectors, descriptors, results, conclusion
- Local feature trajectory descriptor
- Human focused action localization in space-time
- Summary & conclusion

Motivation & goal

Motivation

- Local features have become popular for action recognition
- Several methods exist for detection/description of local features
- Existing comparisons are limited [Laptev04, Dollar05, Scovanner07, Jhuang07, Kläser08, Laptev08, Willems08]
 - Different experimental settings and datasets
 - Evaluations limited to only few descriptors
- Main idea: thorough evaluation of local video features
 - Systematic evaluation of detector-descriptor combinations
 - Same datasets (varying difficulty): KTH, UCF sports, Hollywood2
 - Same classification method

Evaluated feature detectors

- Harris 3D [Laptev03]
 - Space-time corner detector
 - Based on Harris cornerness criterion
- Gabor [Dollár05]
 - Combination of spatial Gaussian filter and temporal Gabor filters
 - Detection of salient regions undergoing a complex motion
- Hessian 3D [Willems08]
 - Spatio-temporal extension of Hessian saliency measure
 - Approximation with integral videos
 - Detection of spatio-temporal "blobs"
- Dense sampling (in x, y, t and σ, τ)

Evaluated feature descriptors

- HOG/HOF [Laptev08]
 - Based on histograms of oriented (spatial) gradients
 (HOG) + histograms of optical flow (HOF)
- Gradient [Dollár05]
 - PCA on concatenated pixel gradient values (i.e., spatio-temporal magnitudes)
- Extended SURF [Willems08]
 - Extension of SURF descriptor to videos
 - Weighted sums of axis-aligned 3D Haar Wavelets
- HOG3D (as presented earlier)

Evaluated datasets

KTH actions

- 6 action classes, 2391 video samples
- Homogenous background, artifial actions
- State-of-the-art: 94.5% [Gilberts09], 94.1% [Han09] (accuracy)
- UCF sport actions
 - 10 action classes, 150 video samples
 - State-of-the-art: 69.2% [Rodriguez'08] (accuracy)
- Hollywood human actions (2)
 - 12 action classes, 1707 samples from 69 different Hollywood movies (spatially subsampled)
 - State-of-the-art: 50.9% [Gilbert10], 42.1% [Han09] (mAP)

KTH actions – results

Detectors

	Harris3D	Gabor	Hessian	Dense
HOG3D	92.4%	91.4%	88.1%	88.5%
HOG/HOF	91.8%	88.7%	88.7%	86.1%
HOG	80.9%	82.3%	77.7%	79.0%
HOF	92.1%	88.2%	88.6%	88.0%
Gradient	-	89.1%	-	-
ESURF	-	-	81.4%	-

- Best results for Harris3D + HOG3D
 - HOG3D parameters learned on KTH training set
- Good results for Harris3D & Gabor detector and HOG/HOF & HOG3D descriptor
- Dense features worse than interest points
 - Large number of features on static background

UCF sports – results

Detectors

		Harris3D	Gabor	Hessian	Dense
0	HOG3D	77.6%	85.0 %	78.9%	84.8%
	HOG/HOF	78.1%	77.7%	79.3%	81.6%
	HOG	71.4%	72.7%	66.0%	77.4%
	HOF	75.4%	76.7%	75.3%	82.6 %
	Gradient	-	76.6%	-	-
	ESURF	-	-	77.3%	-

- Best results for Dense / Gabor + HOG3D
 - HOG3D parameter set learned on KTH
- Good results for Dense and HOG/HOF

Hollywood2 actions – results

Detectors

	Harris3D	Gabor	Hessian	Dense
HOG3D	44.3%	46.1%	43.5%	44.8%
HOG/HOF	45.2%	46.2%	46.0%	47.4%
HOG	32.8%	39.4%	36.2%	39.4%
HOF	43.3%	42.9%	43.0%	45.5%
Gradient	-	45.0%	-	-
ESURF	-	-	38.2%	-

- Best results for Dense + HOG/HOF
- Good results for HOG/HOF and Gabor in general
- HOG3D + Gabor performs well
 - Parameters learned on HW2 train set in full resolution
 - For full resolution videos HOG3D + Harris3D yield 48.8% and HOG/HOF + Harris3D 47.6%

Conclusion

- Dense sampling outperforms tested detectors in realistic settings (UCF + Hollywood2)
 - Importance of realistic video data
 - Limitations of current feature detectors
 - Note: large number of features (15-20 times more)
- Detectors: Harris3D, Gabor, and Hessian provide comparable results (interest points better than Dense on KTH)
- Descriptors overall ranking:
 - HOG3D & HOG/HOF > Gradient > ESURF & HOG
 - Combination of gradients + optical flow seems good choice

Outline

- Bag-of-features
- Local spatio-temporal HOG3D descriptor
- Evaluation of local feature detectors & descriptors
- Human focused action localization in spacetime
 - Overview, tracking, action description, results
- Summary & conclusion

Overview

- Goal: action localization in realistic video
- Main idea: actions are performed by actors
 - Actor's position generically determines spatial location of action
 - Determine temporal extent after spatial location
 - More efficient and more accurate

What is new?

- We develop a robust actor detector and tracker
 - Good human detector and tracker is crucial
- We propose a track-aligned action descriptor
 - Action localization via sliding window on tracks
- New localization dataset based on Hollywood movies

Related work

- Keyframe priming [Laptev07]
 - Cuboid classifier
 - Adaboost learns combinations of HOG and HOF features within cuboid region
 - Pre-filtering by action specific pose detector
- Local features based voting [Willems09]
 - Strongest video words vote for action hypotheses
 - Strong hypotheses are evaluated with full BoF cuboid representation
- Shape matching [Ke07]
 - Shape templates are matched to over-segmented videos
 - Combination of shape and optical flow
- Other works concentrate on static cameras [Hu09, Yuan09] or simplified settings [Efros03, Lu06]

Our approach (illustration)

1. Load the Beatles video

Our approach (illustration)

2. Detect and track Beatles

Our approach (illustration)

3. Find Paul standing up

Human detection & tracking

- HOG detector [Dalal05] trained for upper bodies
 - Training samples from Hollywood movies
- Tracking-by-detection [Everingham09]
 - KLT tracker yields feature trajectories
 - Detections are clustered together (agglomerative clustering) based on connectivity score
 - Smoothing + interpolation for continuous tracks

$$\min_{\{\mathbf{p}_t\}} \sum_{t \in T} (||\mathbf{p}_t - \bar{\mathbf{p}}_t||^2 + \lambda^2 ||\mathbf{p}_t - \mathbf{p}_{t+1}||^2)$$

 $\mathbf{p}_t = (x_t, y_t, w_t, h_t)$ denotes the position $\bar{\mathbf{p}}_t = (\bar{x}_t, \bar{y}_t, \bar{w}_t, \bar{h}_t)$ are the detections λ is a temporal smoothing parameter

Human detection & tracking

 The procedure works well despite articulations, viewpoint and lighting changes, occlusions

Tracks post-processing

- Improve precision at high recall with final classification stage of tracks
- SVM classifier is learned on 12 different measures characterizing a track
- For each measure we compute (if applicable min, max, average)
 - Track length (false tracks are often short)
 - Upper body SVM detection score
 - Scale and position variability (those often reveal artificial detections)
 - Occlusion by other tracks (patterns in the background often generate a number of overlapping detections)

Tracks post-processing

Action descriptor

- Grid layout of N x N x M cells
- Cells overlap spatially with 50%
- Each temporal slice is aligned to the track (follow movement)
- Each cell 3D HOG histogram
 - Icosahedron for orientation quantization (half orientation)
- Layout optimization to 5x5x5

Action localization

- Sliding window approach
 - Exhaustive search over all tracks, track positions and action lengths
 - Very efficient in fact, in practice linear in video time
- 2-stage classification [Harzallah09]
 - Linear SVM as first classifier, generate hypotheses via non-maxima suppression
 - Re-evaluation of final hypotheses with non-linear SVM (RBF)

Dataset: Coffee and Cigarettes

- We use the original split by stories [Laptev07]
 - Annotation via bounding box at key frame + start/end position
 Ttraining: 6 stories, 40min, 106 drinking, 90 smoking actions (+"Sea of Love" and "Lab" videos)
 - Test-drinking: 2 stories, 24min, 38 drinking actions
 - Test-smoking: 3 stories, 21min 46 smoking actions (originally validation set)
- Average Precision is used for evaluation

training test-smoking test-drinking

Results for drinking

Top 9 results for drinking

Results for drinking

Do tracks really help?

- HOG-Track (AP:54.1%)
 - ... Cuboid HOG w/tracks (AP:47.3%)
- --- Cuboid HOG full search (AP:25.8%)
- -- Full search Laptev ['07] (AP:17.9%)

Baselines:

- Laptev's baseline, exhaustive search
- Cuboid classifier, exhaustive search in video
- Cuboid classifier, centered on tracks

Why tracks help

- Classification task is simplified
 - The "action world" gets restricted to actors
- Search space is reduced heavily
 - Less false positives
- Better modeling capability
 - Descriptor follows actor movements

Results for smoking

non-linear SVM (AP:24.5%) linear SVM (AP:19.1%)

Top 9 results for smoking

Dataset: Hollywood localization

- Dataset based on Hollywood2 data and split
 - ~2h of video data in total (~1h training, ~1h test)
- We annotate the spatial and temporal extent of "phoning" and "standing up" actions
 - Annotation via bounding box at key frame + start/end position
 - 153 "phoning" actions (73 training, 80 test)
 - 274 "standing up" actions (129 training, 145 test)
- Average Precision is used for evaluation

Results for standing up

Top 9 results for standing up

Results for phoning

Top 9 results for phoning

Results for phoning

Action detections

Human detections

Human tracks

Outline

- Bag-of-features
- Local spatio-temporal HOG3D descriptor
- Evaluation of local feature detectors & descriptors
- Human focused action localization in spacetime
- Summary & conclusion

Summary

- Several contributions to action recognition (classification and localization) in realistic video settings have been presented
 - Local spatio-temporal HOG3D descriptor
 - Evaluation of local feature detectors/descriptors
 - Action localization based on generic human tracks
 - Local feature trajectory descriptor
 - Improved performance with combination of trajectory and motion / appearance information
 - Novel descriptor based on motion boundary histograms
 - Combination of BoF with human tracks
 - Improved performance for foreground features (class dependent)
 - Spatial layout information can be incorporated

Future work

- Adapted representation for each action
 - Adapting descriptor parameters has been investigated in this thesis
 - Combination of different type of information (MKL, early fusion)
 - Explicit learning of context information
- Action modeling using feature trajectories
 - Since trajectories follow local motion, they offer interesting possibilities for more principled representations [Matikainen09]
 - Trajectories of similar shape can be grouped together to model relations between/within local regions

Future work

- Motion boundary histograms
 - Have shown promising results
 - Invariance to camera ego-motion is important
 - Application to other problems (e.g., action localization)
- Action localization
 - Multiple body parts model can improve robustness of tracking [Mikolajczyk04, Felzenszwalb10]
 - Possibility to model actions at different levels (head, upper body, legs, full body)
 - Incorporate multiple view information in action representation

Thank you for your attention I will be glad to answer your questions

Local feature trajectory descriptor

Motivation & goal, approach, current results

Motivation & goal

- Common feature detectors: detection of 3D positions based on saliency criterion
- In video, however, image structures move over time
 - Tracking is naturally used to capture motion
 - Objects are difficult to track in realistic videos
- Main idea: Local feature trajectories for action recognition [Messing09, Matikainen09, Sun09]
 - Combination of local features + tracking approaches

What is new?

- Combined trajectory descriptor: trajectory shape, HOG, HOF, MBH
- Novel motion boundary descriptor (MBH) for action recognition
- Extensive evaluation, also on realistic data
- Learn parameters from training data

Descriptor computation

- Spatial interest points are detected and tracked
 - Trajectory length limited (15 frames) to cope with drifting
- Descriptors computed for a grid in local neighborhood of trajectory
 - Combination of appearance and motion information
 - Histograms of oriented gradients (HOG) and optical flow (HOF), motion boundary histograms (MBH)
 - MBH computes HOG representations on x/y optical flow components

Descriptors: HOF vs. HOG vs. MBH

- MBH is able to capture complementary information
 - Static clutter vanishes
- Motion boundaries are invariant to camera ego-motion (very important for realistic movies)

Results

Dataset

	KTH	YouTube	Hollywood2
Ours	94.2%	79.8%	52.5 %
Harris3D+HOG/HOF	92.0%	68.7%	47.3%
State-of-the-art	94.5%	71.2%	50.9%
	[Gilbert09]	[Liu09]	[Gilbert10]

- Very promising results, our method outperforms more advanced ones ©
- MBH helps to improve results considerably

Illustration of feature detectors

Harris Cuboid

Hessian

UCF sports – samples

Human tracking in realistic videos

