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General Introduction

You’re resting on your sofa, watching your favorite series on your HQ television. At the same

time, you’re reading your electronic version of the New York Times on your laptop, downloading

a new song on your smart phone. Suddenly, you remember one of the “Charlie Chaplin” black

and white movies. You open the Youtube web page, type few words, and instantly get it and start

viewing it... While watching, memories take you back to the past, to the first time you watched

color TV, the first time you used mobile phone, the first time you recorded a CD... What? like

a zillion years ago?... That is how fast are the advances in data capturing, storage, indexing,

and communication technologies!

1 Context

Since many decades, the multimedia technologies have facilitated the way delivering data to

customers, and connecting with banks of audio, image, text and video information. Actually,

billions of video files are viewed1 and thousands of them are created every day. However, there

are still limited tools to index, characterize, organize and manage these data. Thus, there are still

limited applications that allow users interacting with them. Manually generating a description

of audiovisual content of data is not only very expensive, but sometimes, time consuming,

subjective and inaccurate.

It was obvious that many laboratories and scientist started giving the domain of multimedia

indexing a special attention, and joining the efforts to propose new algorithms that enable

fast and accurate access to the information the consumer is asking for. Since an audiovisual

document is basically multimodal, and since the content of those media are generally correlated,

recent research activities are focusing on finding ways to combine useful information coming

from audio, video, image and text to enhance the content based multimedia indexing.

1Youtube hits one billion views per day in October 2009
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The SAMOVA2 team of the IRIT3 laboratory was born in 2002 with the goal of exploiting the

audio and video media, and to study the correlation between them. In the audio domain, we may

include works carried on speech activity detection [PRAO03], language recognition [RFPAO05],

singing detection and music characterization [LAOP09], etc. In the video domain, we may

include works carried on human shape analysis [FJ06], person labeling using clothing [Jaf05], etc.

In audiovisual domain, we may include works carried on dynamic organization of database using

a user-defined similarity [PPJC08], similarity measures between audiovisual documents [HJC06],

etc4. During this process, it has been found that person characterization was not paid enough

attention except the orphan work on clothing.

In almost every audiovisual document, persons appear, interact and talk. Thus detecting,

tracking, classifying and identifying them have very significant impacts on the knowledge of that

document, and enable a huge amount of applications.

The work of this thesis is essentially focused on video indexing based on audiovisual charac-

terization of persons. To be as generic and training-free as possible, we decide solving this task

with an unsupervised manner.

2 Characterization of persons

The characterization of persons within an audiovisual document is one of the challenging prob-

lems in current research activities. Many of them have addressed this problem with only one

modality.

From the audio point of view, the characterization of persons is generally known as speaker

diarization: it aims to segment the audio stream into turns of speakers and then cluster all turns

that belong to the same speaker. In other meanings, its goal is to answer the questions “who

talk? and when?”.

From the video point of view, the characterization of persons is generally known as people

detection, tracking and recognition. In other words, it aims to answer the questions “who

appear? and when?”.

2Structuration, Analyse et Modelisation des documents Video et Audio.
3Institut de Recherche en Informatique de Toulouse: http://www.irit.fr
4http://www.irit.fr/recherches/SAMOVA/

2



3. Our Contribution

A few other research activities have addressed the problem of persons characterization from

a multimodal point of view. However their applications are generally limited and constrained.

Thus, we may define this task by trying to answer the following questions:

- “Who talk and appear? and when?”

- “Who talk without appearing? and when?”

- “Who appear without talking? and when?”

3 Our Contribution

Our main contribution in this Ph.D, financed by the French Ministry of Education, can be

divided into three parts:

• Propose an efficient audio indexing system that aims to split the audio channel into

homogeneous segments, discard the non-speech segments, and group the segments into

clusters, that each corresponds ideally to one speaker. This system must process without

a priori knowledge (unsupervised learning) and must be suitable to any kind of data:

TV/radio broadcast news, TV/radio debates, movies, etc.

• Propose an efficient video indexing system that aims to split the video channel into

shots, detect and track people in every shot, and group all faces into clusters, that each

corresponds ideally to one person. This video system must process without a priori

knowledge and may be suitable to any kind of data.

• Propose an efficient audiovisual indexing system that aims to combine audio and video

indexing systems in order to deliver an audiovisual characterization of each person talking

and/or appearing in the audiovisual document, and a robustified audio indexing output

(respectively video indexing output) using the help of video (respectively the aid of audio).

4 Organization of this report

This report is composed of three main parts:

1. Part I considers the audio channel: state-of-the-art methods for speaker diarization are

reviewed in chapter 1, our proposed audio indexing system is described in chapter 2, and

the experiments and the results are detailed in chapter 3.
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2. Part II considers the video channel: existing methods for people detection, tracking and

recognition are reviewed in chapter 4, our proposed face-and-clothing based people index-

ing system is presented in chapter 5, and the experiments and the results are described in

chapter 6.

3. Part III considers the fusion between audio and video descriptors: existing works on

audiovisual fusion are detailed in chapter 7, our proposed audiovisual association system

is described in chapter 8, and the experiments and the results are shown in chapter 9.
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Part I

Audio speaker indexing
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Introduction

Most of works in audio indexing are leading to annotate an input audio signal with information

that attributes temporal regions of signal to their specific sources/classes and then to give a

special ID to each class. These IDs may identify particular speakers, music, background noise

or other signal sources like animal voices, applause, etc. Even though we are only interested in

the issue of speaker indexing, it is very important to have a good processing way to get rid of

the non speech segments.

The audio speaker indexing aims to detect speaker identity changes in a multi-speaker audio

recording and classifies each detected segment according to the identity of the speaker. It

is sometimes confused with speaker diarization that consists in answering the question “Who

spoke when?”. In another meaning, its purpose is to locate each speaker turn and to assign it

to the appropriate speaker cluster. The output of the corresponding system is a set of segments

with a unique ID assigned to each person. Another definition of speaker diarization is speaker

segmentation and clustering. On one hand, the speaker segmentation aims to detect speaker

changes in an audio recording. On the second hand, the speaker clustering aims to group

segments corresponding to the same speaker into homogeneous clusters.

The general architecture of the speaker indexing system is illustrated in Fig.1.

Domains that receive special research attention are telephone speech, broadcast news (radio,

TV) and meetings (lectures, conferences and debates). The corresponding speaker diarization

systems have been evaluated by organizations like NIST (National Institute for Standards and

Technology) and AFCP (Association Francophone de la Communication Parlée).

Hypotheses

In this work, many hypotheses were taken in order to make the problem of speaker diarization

the most general and the most useful.
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Figure 1: The general architecture of a speaker indexing system.

• Unknown number of speakers. Unlike telephone conversations where almost two

people talk, a more realistic case considers that the number of speakers is unknown and

one of the final goals is to determine this number.

• No a priori knowledge about speakers and language. We consider that the identity

of the speakers in the documents is unknown and that there are no trained models for each

8



speaker and each language. However, a knowledge about the background is allowed i.e. a

universal model separating “studio clean” recording from “outdoor noisy” recording can

be trained.

• Not only speech. Recording speech data contain generally in addition to speech, music

and other non-speech sources. Thus, the realistic choice is to build a system that first

detects the speech and non speech regions in order to enable processing on the speech

regions on later stages.

• People may talk simultaneously. In many existing systems, this hypothesis was ne-

glected or at least not paid a special attention. Effectively, this is not very important if the

data processed are broadcast news: in this case, the speech is even prepared previously and

then read, or at least “speakers are polite”. But in some meeting or translation conditions,

it is obvious that we should take care of this assumption.

Applications

Audio speaker indexing is very useful in many types of applications because it provides extra

information according to the speakers. By adding this knowledge to speech transcripts, it

becomes easier for humans to localize relevant information and for speech translation systems

to process it. Some of those applications may be:

• Indexing audio recording databases. Effectively, this is its first goal because it may

be used as a preliminary step in every task of Information Retrieval. Typical automatic

uses of such system output might be speech summarization and translation. Coupled with

the speaker identification process, it allows, for example, retrieving all speeches of a certain

political leader. It may be useful to know the speech duration of each candidate during a

presidential campaign. Also, it may be used to retrieve the speech of a journalist in order

to identify the topics addressed in a broadcast news recording.

• Automatic Speech Recognition. Speaker segmentation algorithms are used to split the

audio recording into small homogeneous segments. Speaker clustering algorithms are also

used to cluster the input data into speakers towards model adaptation that is successfully

used to improve ASR systems performance.
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• Speaker tracking, speaker recognition. Speaker diarization can be used as a pre-

processing low-cost module for speaker-based algorithms by splitting the whole data into

individual speakers. Thus, the decision is more reliable because it is taken on relatively

long segments and huge clusters instead of only some tens of milliseconds.

This part is organized as follows: Chapter 1 presents the state-of-the-art works on speaker

diarization. In chapter 2, we detail our proposed methods for speaker segmentation and speaker

clustering. Chapter 3 describes the experiments and the results.
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Chapter 1

State-of-the-art of Speaker

Diarization
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In this chapter, the main existing techniques for speaker diarization are reviewed. First, the

acoustic features that have been found useful for speaker diarization are listed in section 1.1.

In section 1.2, a brief look on the audio event segmentation is presented. Then, the different

approaches used for speaker segmentation and speaker clustering are respectively described in

sections 1.3 and 1.4. Some of the famous existing systems are presented in section 1.5. The

databases used in our work are described in section 1.6.

1.1 Acoustic Features

Acoustic features extracted from the audio recording provide information on the speakers during

their conversation. This information allow the system to separate them correctly.

As for many speaker-based processing techniques, the cepstral features are the mostly used in

speaker diarization systems. These parametrization features are: the Mel Frequency Cepstrum

Coefficients (MFCC), the Linear Frequency Cepstrum Coefficients (LFCC), the Linear Predictive

Coding (LPC), etc.

Moreover, in the area of audio event segmentation (speech, music, noise and silence), features

like the energy or the 4 Hertz modulation energy were shown to be useful for speech detection.

Other features like the number and the duration of the stationary segments obtained from a

forward/backward segmentation [AO88] are used for example for music detection.

In addition, some frequential information like the pitch frequency and the harmonical fre-

quencies are used to separate for example males from females in the speech part.

In the following subsections, the acoustic features used in our work are detailed:

• Mel Frequency Cepstrum Coefficients. The ceptral information of an audio signal

allows to separate the glottal excitation and the resonance of the vocal tract. By filtering

the signal, only the contribution of the vocal tract is kept. MFCCs were introduced

in [Mer76]. They are generally derived as seen in Fig.1.1. After windowing the signal

using Hamming approximation, the Fourier transform is computed on every window, then

the powers of the spectrum are mapped onto the MEL scale using triangular overlapping

windows. After that, the logs of the powers of each of the MEL frequencies are taken.

Finally the inverse of the fast Fourier transform of the list of Mel log powers are computed.
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1.2. Audio event segmentation

Thus, the MFCCs are the amplitudes of the resulting spectrum. Practically, a MFCC

vector is extracted every 10 milliseconds on a shifted Hamming window of 20 milliseconds.

Figure 1.1: Creating the MFCC features of a signal x.

• 4 hertz modulation energy. Unlike the music signal, the speech signal has an energy

modulation peak around the 4 Hz syllabic rate (4 syllables per second). This property

was used in [PRAO03] to separate speech from music, but also can be used to distinguish

clean speech from noisy speech, or mono-speaker speech from interaction zones where two

or more people talk simultaneously. Typically, a value of the 4 Hz modulation energy is

computed every 16 milliseconds.

• Pitch frequency. This feature characterizes the gender of the speaker. The pitch fre-

quency of the voice is generally around 150 Hertz for a man. In opposite, it is around

250 hertz for a woman and around 350 hertz for children. This property can be used to

help the clustering process. Moreover, algorithms used to estimate this pitch can help the

speech detection and music detection because unlike instrumental voices, a normal human

voice cannot be less than 60 Hz and higher than 400 Hz. In this work, we used the pitch

estimators of The Snack Sound Toolkit5.

• Number and duration of segments provided by the forward/backward segmentation

method [AO88]. This segmentation method estimates the boundaries of every phonetic

unit present in the acoustic signal. Unlike speech signal, music signal is characterized by

a relative lower number of those units and a higher value of their duration.

1.2 Audio event segmentation

Known as “Segmentation en Evénements Sonores”(SES) by the french community, the output

of such a segmentation is a list containing the starting and the ending times of all the audio

5http://www.speech.kth.se/snack/
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events that occur in the audio recording. Those events are: speech, non-speech, music, non-

music and (speech + music). Typically, a SES system is used as a preprocessing step for the

speaker diarization system and, to the best of our knowledge, all existing methods build those

two systems completely separatly. That is why the results of the second system are directly

related to the output of the first one: if the turns of speaker X were not detected as speech

by the SES system, X will be missed and there is no possibility to find it again. As seen in

section 2.3, we describe a framework to handle this weakness by proposing an iterative system

that enables both audio event segmentation and speaker diarization.

The task of audio event segmentation can be divided into two main issues:

On one hand, algorithms used for speech activity detection are often based on Gaussian

Mixtures Models (GMMs) for both Speech and Non-Speech components [GL94] using the MFCC

vectors. Those models need learning and depend on the training data. However, unsupervised

methods use robust features like the 4Hz modulation energy described in the previous section

that practically is affected by the database variation.

On the other hand, algorithms used for music detection are also based on both supervised

methods using GMMs on MFCCs and unsupervised methods using the number and the duration

of segments as explained previously.

The fusion of supervised and unsupervised methods was developed at the IRIT Laboratory

and gave results among the best on ESTER-1 database (cf. section 1.6.1 [GGM+05]. For more

details about those methods, please refer to [PRAO03]. Recently, methods bases on Support

Vector Machine (SVM) are shown to provide a slightly better performance [TMN07].

1.3 Audio speaker segmentation

Speaker segmentation consists in segmenting the audio recording into homogeneous segments.

Each segment must be as long as possible and must contain the speech of one speaker. This

segmentation is closely related to acoustic change detection as it will be pointed out later on

(cf. section 2.3).

Two main categories of speaker segmentation can be found in the literature: the segmentation

by silence detection and the segmentation by speaker change detection. Those two techniques

are explained in the following subsections.
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1.3.1 Segmentation by silence detection

It is the intuitive and trivial solution to separate turns of speaker in the audio recording.

It assumes that changes between speakers happen through a silence segment. A silence is

characterized by a low energy level. For some types of data like telephone conversations where

the noise is strongly present, this hypothesis is not realistic. Most existing methods for silence

detection use:

- the mean power of the signal. This is the simplest way to detect silence [NA99]. This

method encounters two main problems. First, the choice of the threshold used to isolate

silence is not very stable because it depends on the processed data. Then, the boundaries

are not well detected because the mean average of the power is computed every 0.5 or 1

second.

- the histogram of the energy. This method [MC98] splits the audio recording into

segments of 15 seconds. The histogram of each segment is approximated by a Gaussian

distribution. If the segment is shown to be homogeneous in terms of the probability

density function, it is indexed as silence or non-silence. If it is not the case, the segment is

splitted by using the k-means algorithms that computes the average mean and the standard

deviation of both silence and non-silence parts.

- the variability of the energy. This method [GSR91] consists in computing the vari-

ability of the energy for a signal portion. If the variability is low, then this portion is

considered as silence. If this variability is high, it is considered as speech.

- the zero-crossing rate. The silence, besides being characterized by a low-level energy,

has a high zero-crossing rate [TP99]. This rate represents the number of times the signal

has zero amplitude by temporal unit.

All approaches for speaker segmentation by silence detection need a threshold that depends

on the audio document. Furthermore, there is no efficient method to determine optimally this

threshold.

1.3.2 Segmentation by speaker change detection

The speaker change detection (SCD) is the most common method used for speaker segmentation.

It aims to detect boundaries for each speaker turn within the audio recording even if there is
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no silence between two consecutive speakers. That explains the numerous existing methods for

SCD and why speaker segmentation has sometimes been referred to as SCD.

Technically, two main types of SCD systems can be found in the bibliography. The first kind

are systems that perform a single processing pass of the audio recording. The second kind are

systems that perform two-pass algorithms: in the first pass, many points of change are suggested

with a high false alarm rate. Then, in the second pass, those points are re-evaluated and some

are discarded in order to converge into an optimum speaker segmentation output.

In the following sections are presented some existing methods that were successfully used

for SCD. Those methods were applied for either a single processing pass or multiple processing

passes. Moreover, they can be classified into three categories: metric-based approaches like

the symmetric Kullbach-Leibler (KL2) distance, model-based approaches like the Generalized

Likelihood Ratio (GLR) and the Bayesian Information Criterion (BIC), and mixed approaches

like the Hotelling T 2-Statistics and BIC.

1.3.2.1 Symmetric Kullbach-Leibler divergence

The Kullbach-Leibler [KL51] measures the difference between the probability distributions of

two continuous random variables. It is given by:

D(p1, p2) =

∫ +∞

−∞
p1(x)ln(

p1(x)

p2(x)
)dx (1.1)

Because this expression is not symmetric in respect to the two variables, the symmetric KL

(KL2) is proposed:

∆ =
D(p1, p2) +D(p2, p1)

2
(1.2)

When the distributions are Gaussian N1(µ1,σ1) and N2(µ2,σ2), it becomes:

∆ =
1

2
[
σ21
σ22

+
σ22
σ21

+ (µ1 − µ2)2(
1

σ21
+

1

σ22
)] (1.3)

where µi represent the mean average and σi the covariance of a Gaussian distribution Ni.

In [SJRS97], the KL2 is used as follows: for every point of the audio recording, the two

adjacent windows from both sides are considered. The duration of each window is fixed to 2

seconds. The mean and the covariance are estimated on each window. Thus, the KL2 distance

can be easily computed. This process is repeated for every point so a distance curve is drawn

and the local maxima are detected. Those local maxima correspond ideally to points of speaker

changes.
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1.3.2.2 Generalized Likelihood Ratio

For genericity reasons that will be addressed later in this chapter, we will describe this method

using an unknown signal that may be an acoustic signal, a video signal or an audiovisual signal.

Let X = x1, . . . , xNx be the sequence of observation vectors of dimension d to be modeled and

M the estimated parametrical model and L(X,M) the likelihood function. The GLR introduced

by Gish et al. [GSR91] considers the two following Hypotheses:

- H0: This hypothesis assumes that the sequence X corresponds to only one homogeneous

segment (in the case of audio signal, it corresponds to only one audio source). Thus, the

sequence is modeled by only one multi-Gaussian distribution.

(x1, . . . , xNx) v N(µX , σX) (1.4)

- H1: This hypothesis assumes that the sequence X corresponds to two different homogeneous

segments X1 = x1, . . . , xi and X2 = xi+1, . . . , xNx (in the case of audio signal, it corre-

sponds to two different audio sources or more particularly to two different speakers). Thus,

the sequence is modelled by two multi-Gaussian distributions.

(x1, . . . , xi) v N(µX1 , σX1) (1.5)

and

(xi+1, . . . , xN ) v N(µX2 , σX2) (1.6)

The generalized likelihood ratio between the hypothesis H0 and the hypothesis H1 is given by:

GLR =
P (H0)

P (H1)
(1.7)

In terms of likelihood, this expression becomes:

GLR =
L(X,M)

L(X1,M1)L(X2,M2)
(1.8)

If this ratio is lower than a certain threshold Thr, we can say that H1 is more probable, so

a point of change in the signal is detected.

By passing through the log:

R(i) = −logGLR (1.9)
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and by considering that the models are Gaussian, we obtain:

R(i) =
NX

2
log |ΣX | −

NX1

2
log |ΣX1 | −

NX2

2
log |ΣX2 | (1.10)

where ΣX , ΣX1 and ΣX2 are the covariance matrices of X, X1 and X2 and NX , NX1 and

NX2 , are respectively the number of the acoustic vectors of X, X1 and X2.

Thus, the estimated value of the point of change by maximum likelihood is given by:

î = argmax
i
R(i) (1.11)

If î is higher than the threshold T = −logThr, a point of speaker change is detected. The major

disadvantage resides in the presence of the threshold T that depends on the data. That is why,

Rissanen [Ris89] introduced the Bayesian Information Criterion (BIC).

1.3.2.3 Bayesian Information Criterion

For a given model M, the BIC is expressed by:

BIC(M) = logL(X,M)− λ

2
n logNX (1.12)

where n denotes the number of the observation vectors of the model. The first term reflects

the adjustment of the model to the data, and the second term corresponds to the complexity of

the data. λ is a penalty coefficient theoretically equal to 1. [Ris89].

The hypotheses test of Equ.1.7 can be viewed as the comparison between two models: a

model of data with two Gaussian distributions (H1) and a model of data with only one Gaussian

distribution (H0). The subtraction of BIC expressions related to those two models is:

∆BIC(i) = R(i)− λP (1.13)

where the log-likelihood ratio R(i) is already defined in Equ.1.10, and the complexity term

P is given by:

P =
1

2
(d+

1

2
d(d+ 1)) logNX (1.14)

d being the dimension of the feature vectors.

The BIC can be also viewed as the thresholding of the log-likelihood distance with an

automatic threshold equal to λP .
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Thus if ∆BIC(i) is positif, the hypothesis H1 is privileged (two different speakers). There

is a change if:

{max
i

∆BIC(i) ≥ 0} (1.15)

The estimated value of the point of change can also be expressed by:

î = argmax
i

∆BIC(i) (1.16)

Chen et al [CG98] used this criterion to segment the data of the DARPA evaluation campaign.

They said that the BIC procedure has the advantage of not using a threshold, because at that

time, the existing methods used thresholds and the retrieving of the optimal thresholds was so

complicated. But they forgot the penalty coefficient λ that is practically not necessarily equal

to 1.

Many multi-points detection algorithms based on BIC were then developed. In [TG99],

Tritschler used a shifted variable size window to detect the points of speaker change in a

broadcast news audio recording. Then, the authors of [Cet00], [DW00], [SFA01] and [CV03]

proposed improvements in order to obtain either more accurate detection or faster computational

time. Fig.1.2 illustrates the segmentation process used in [SFA01] and [CV03]: it shows that

there are 8 parameters that should be carefully tuned and that depend from the processed data.

This weakness motivated us to propose a parameters-free method as seen later in section 2.1.

1.3.2.4 Hotteling T 2-Statistics with BIC

It can be easily shown that the segmentation algorithms based only on BIC have a quadratic

complexity. Even if we can improve the time machine by sampling the audio signal, the com-

putational cost stays relatively high because we should compute two full covariance matrices in

each shifted variable size window.

Moreover, when estimating the mean and the covariance, the segmentation error is relatively

high if the acoustic events have short durations. That is why, Zhou et al. [ZH05] used an

approach for SCD using the T 2−statistics and BIC.
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Figure 1.2: The multiple change detection algorithm used by [SFA01] and [CV03].

The T 2−statistics expression is given by:

T 2 =
i(NX − i)

NX
(µX1 + µX2)′Σ−1(µX1 − µX2) (1.17)

where i corresponds to the point of change, Σ the common covariance matrix, µX1 and µX2 the

estimated mean average of the Gaussian models of the two sub-windows separated by the point

i. For more details about the combination between the T 2−statistics and the BIC, please refer

to [ZH05].

In addition to the above techniques, there are few works that use the dynamic program-

ming to find the speaker change points [VCR03], the Maximum Likelihood (ML) coupled with

BIC [ZN05], or genetic algorithm [SSGALMBC06] where the number of segments is estimated

via the Walsh basis function and the location of change points is found using a multi-population

genetic procedure.
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1.4 Audio speaker clustering

At the end of the speaker segmentation process, segments that contain the speech of only one

speaker are provided. The next step aims to agglutinate together all segments that belong to the

same speaker. This step of clustering can be used in many applications: for example, Automatic

Speech Recognition (ASR) systems use homogeneous clusters to adapt the acoustic models using

MAP (Maximum A Posteriori) to the speaker and so increase recognition performance.

This blind speaker clustering with no a priori information about the number of people

and their identities, can be viewed as an unsupervised classification problem. In general,

unsupervised classification methods use a hierarchical clustering.

Hierarchical clustering

The goal of the hierarchical clustering is to gather iteratively a set of elements. There are two

approaches illustrated in Fig.1.3: the bottom-up clustering and the top-down clustering.

The first one considers at the beginning every element as a cluster and merge after each iteration

the two most similar clusters in terms of a merging criterion. This process is repeated until

a defined stopping criterion is verified. Contrarily, the top-down clustering considers at the

beginning the whole set of elements as only one cluster and then, after each iteration, splits the

cluster in terms of a splitting criterion. This process is repeated until the stopping criterion

is verified.

Figure 1.3: The hierarchical bottom-up or top-down clustering.
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The Bottom-up clustering known also as agglomerative clustering is by far the mostly used in

the literature because it uses the output speaker segmentation techniques to define a clustering

starting point.

In the design of such systems for speaker clustering, the merging/splitting criterion C

corresponds to the distance/similarity between clusters. And sometimes, instead of defining

an individual value pair, a distance/similarity matrix is described, which is created with the

distance/similarity from any possible pair.

More precisely, the criterion C between two clusters of elements G1 and G2 can be expressed

in different possibilities:

• single linkage: also known as minimum pair, the clustering criterion C is defined as the

minimum criterion separating two elements, each belonging to one cluster.

C(G1, G2) = min
i∈G1,j∈G2

C(i, j) (1.18)

• complete linkage: also known as maximum pair, the clustering criterion C is defined as

the maximum criterion separating two elements, each belonging to one cluster.

C(G1, G2) = max
i∈G1,j∈G2

C(i, j) (1.19)

• average linkage: also known as average pair, the clustering criterion C is defined as the

mean average criterion of all pairs of elements, each belonging to one cluster. N1 and N2

denote the number of elements respectively of G1 and G2 in the following formula.

C(G1, G2) =
Σi∈G1,j∈G2C(i, j)

N1N2
(1.20)

• full linkage: unlike the above linkage methods, this method considers a class of elements

as only one element ( in our case, a cluster of segments is considered as only one segment

obtained by the concatenation of all the segments in the cluster). The characteristics of

each class are re-computed at the end of every iteration. That involves a huge computa-

tional cost of the clustering process unlike previous methods.

The following subsections review the main systems existing in the literature for speaker clus-

tering. Even though some of them may be suitable for online configuration where no information

on the complete recording is available, the systems listed below were initially developed for an

offline configuration where they have access to the whole recording file before processing it.

22



1.4. Audio speaker clustering

1.4.1 BIC based approaches

The Bayesian Information Criterion that was well explained for speaker segmentation is by far

the most commonly used distance and merging criterion for speaker clustering. It was initially

proposed for clustering by Chen et al. in [CG98]. The pair-wise distance matrix is computed

for each iteration and the pair with the lowest ∆BIC value is merged. The process finishes

when all pairs have a ∆BIC > 0. Considering two clusters G1 and G2, each of those clusters is

modeled by a multi-Gaussian distribution. The ∆BIC distance is given by:

∆BIC(G1, G2) = (n1+n2) log |Σ|−n1 log |Σ1|−n2 log |Σ2|−
λ

2
(d+

d(d+ 1)

2
)log(n1+n2) (1.21)

where n1, n2 are the sizes of G1 and G2. Σ1, Σ2 and Σ are respectively the covariance matrices

of G1, G2 and G1
⋃
G2. d is the dimension of the feature vectors.

1.4.2 Eigen Vector Space Model approach

This method proposed by Tsai [TCCW05] uses the vector space model, which was originally

developed in document-retrieval research, to characterize each utterance as a tf-idf -based vector

of acoustic terms, thereby deriving a reliable measurement of similarity between utterances.

Fig.1.4 describes the EVSM algorithm.

Figure 1.4: The EVSM-based algorithm.

To begin, a “universal GMM” is created using all the segments to be clustered. The training

method is based on the k-means clustering initialization followed by Expectation-Maximization

(EM). An adaptation of universal GMM is then performed for each of the utterances using max-

imum a posteriori (MAP) estimation. This gives N utterance-dependent GMMs λ1, λ2, ..., λN .

23



Chapter 1. State-of-the-art of Speaker Diarization

The use of such a model adaptation instead of a direct EM-based training of GMM has two-

fold advantages. One is to produce a more reliable estimate of the GMM parameters for short

utterances than it can be done with direct EM-based training. The other is to force the mixtures

of all the utterance-dependent GMMs to be of the same order.

Next, all the mean vectors of each utterance-dependent GMM are concatenated in the order of

mixture index to form a super-vector, with dimension ofD. Then, Principal Component Analysis

(PCA) is applied to the set of N super-vectors, V1, V2, ..., VN , obtained from N utterance-

dependent GMMs. This yields D eigenvectors, e1, e2, ..., eD, ordered by the magnitude of their

contribution to the between-utterance covariance matrix:

B =
1

N

N∑
i=1

(Vi − V )(Vi − V )′ (1.22)

where V is the mean vector of all Vi for 1 < i < N . The D eigenvectors constitute an

eigenspace, and each of the supervectors can be represented by a point on the eigenspace:

Vi = V +
D∑
d=1

φi,ded (1.23)

where φi,d, 1 ≤ d ≤ D, is the coordinate of Vi on the eigenspace. Then, the authors

use the cosine formula for each pair of vectors in order to quantify the similarity between the

corresponding pair of segments/clusters.

Si,j(Vi, Vj) =
Wi ·Wj

‖Wi‖ ‖Wj‖
(1.24)

where Wi and Wj are the vector Vi and Vj obtained after the reduction of the dimension.

1.4.3 Cross Likelihood Ratio clustering

The Cross Likelihood Ratio (CLR) clustering was used as a final step of a posteriori clustering in

many speaker diarization systems as in [RSC+98] and [ZBMG05]. After a first step of clustering

(using for example the BIC clustering), the background environment contribution in the cluster

models must be reduced and normalized in order to allow additional clustering for speakers

whose environmental conditions change during their speech. Moreover, the size of the clusters

is good enough to allow building a more complex and robust speaker model, such as Gaussian

Mixture Model (GMM), for each cluster. Thus, a universal background model (UBM) should
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be learned and then adapted for each cluster, providing the initial speaker model. After each

iteration, the clusters that maximize the Cross Likelihood Ratio (CLR) are merged:

CLR(G1, G2) =
L(G1/M2)

L(G1/UBM)
× L(G2/M1)

L(G2/UBM)
(1.25)

Where M1,M2 are the models associated to the clusters G1 and G2, and UBM is the universal

background model and L(.) is the likelihood. When the CLR(G1, G2) is greater than an a priori

threshold thr, the clustering step stops to merge.

The UBM results from the fusion of four models which are gender (male/female) and band-

width (narrow/wide bands) dependent models with 128 diagonal covariance components. Then,

the cluster model is derived from the UBM by MAP adaptation (means only).

Although the UBM model could be learned once, the evaluation of CLR clustering done in [BZMG06]

shows that the threshold may depend on the corpus.

1.4.4 Hidden Markov Model approach

The Hidden Markov Model (HMM) was also used for speaker clustering. Every state in the

model represents a cluster and the transitions between states characterize the changes between

speakers.

In [ALM02], the clustering is composed of several sub-states to impose the minimum duration

constraints considering that the HMM is ergodic in nature. The probability density function

(PDF) of each state is represented by a GMM. The process starts by over-clustering the data

(larger number of clusters than the expected number of speakers). The parameters of the HMM

are then trained using the EM algorithm. The merging between two clusters is done using log

likelihood ratio (LLR) distance.

In [MBI01], the clustering does not belong to the hierarchical category as all the methods

described above. The speaker diarization is done with only one path unlike most of the existing

systems that generally separate the segmentation step from the clustering step. The HMM is

generated using an iterative process, which detects and adds a new state (i.e. a new speaker) at

each iteration. The speaker detection process is composed of four steps:

1. Initialization: a first speaker model S0 is trained on the whole speech recording.
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2. Adding a new speaker: a new speaker model is trained using 3 seconds of the recording

that maximizes the sum of likelihood ratios of model S0. A new state S1 related to that

new model is added to the HMM configuration.

3. Adaptation speaker model: the models are adapted after each iteration where new state

are created.

4. Assessing the stopping criterion: This criterion is based on the comparison of the proba-

bility along the Viterbi path between two iterations of the process.

1.4.5 Other clustering techniques

Unlike the systems described above, there are some clustering methods that define metrics to

determine the optimum number of clusters and then to find the optimum clustering given that

number.

In [TW07], the optimum amount of speakers is computed using BIC and the optimum clus-

tering that optimizes the overall model likelihood is obtained by a genetic algorithm. In [Roy97],

a speaker indexing algorithm is proposed to dynamically generate and train a neural network

to model each postulated speaker found within a recording. Each neural network is trained to

differentiate the vowel spectra of one specific speaker from all other speakers. In [Lap03], self-

organizing maps are proposed for speaker clustering using a Vector Quantization (VQ) algorithm

for training the code-books representing each of the speakers.

1.5 Examples of state-of-the-art speaker diarization systems

Many systems exist in the literature and were evaluated in international/national competitions.

In the following subsections, we choose to review three of those famous systems.

1.5.1 The LIMSI speaker diarization system

The Speaker Diarization (SD) system described here was used by the LIMSI6 in the Rich

Transcription (RT) evaluation conducted by NIST in 2007 on meeting and lecture recordings.

This system [ZBLG08] is built upon the baseline diarization system designed for broadcast news

data and it combines an agglomerative clustering based on BIC with a second clustering using

6http://www.limsi.fr/
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state-of-the-art speaker identification (SID) techniques. This system is similar to the LIUM7

system that gives the best results in the last ESTER competition.

Speech is extracted from the signal by using a Log-Likelihood Ratio (LLR) based speech

activity detector (SAD). The LLR of each frame is computed between the speech and non-

speech models with some predefined prior probabilities. To smooth LLR values, two adjacent

windows with a same duration are located at the left and right sides of each frame and the

average LLR is computed over each window. Thus, a frame is considered as a possible change

point when a sign change is found between the left and right average LLR values.

Initial segmentation of the signal is performed by a local divergence measure between two

adjacent sliding windows. A Viterbi re-segmentation is applied to adjust segments boundaries.

A first agglomerative clustering is processed using BIC. Then, speaker recognition methods

are used: feature warping normalization is performed on each segment in order to map the

cepstral feature distribution to a normal distribution and reduce the non-stationary effects of

the acoustic environment. The GMM of each remaining cluster is obtained by maximum a

posteriori (MAP) adaptation of the means of a universal background model (UBM) composed

of 128 diagonal Gaussians. The second stage of agglomerative clustering is carried out on the

segments according to the cross log-likelihood ratio.

1.5.2 The IBM speaker diarization system

The SD system described here was used by the IBM8 in the RT07. In summary, the sys-

tem [HMVP08] has the 3 following characteristics:

• the use of an SAD algorithm based on a speech/non-speech HMM decoder, set to an

optimal operating point for “missed speech / false alarm speech” on development data.

• the use of word information generated from Speech to Text (STT) decoding by means of a

speaker-independent acoustic model. Such information is useful for two reasons: it filters

out short silence, background noise, and vocal noise that do not discriminate speakers and

it provides more accurate speech segments to the speaker clustering step.

• the use of the GMM-based speaker models that are built from the SAD segmentation.

The labels of each frame are refined using these GMM models, followed by smoothing

7http://www-lium.univ-lemans.fr/
8http://www.research.ibm.com/
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the labeling decision with its neighbors. This method was used to detect change points

accurately within the speech segments.

1.5.3 The LIA speaker diarization system

The SD system described here was also used by the LIA9 in the RT07. This system [FE08] is

structured of 4 main steps:

1. a speech/non-speech detection using the Linear Frequency Cepstrum Coefficients (LFCC)

is based on a two state HMM. Those two states represent speech and non-speech events.

Each of those states is initialized with a 32-component GMM model trained using Expectation-

Maximization (EM) and Maximum Likelihood (ML) algorithms.

2. a pre-segmentation based on the GLR criterion is used in order to initialize and speed-up

the later segmentation and clustering stages.

3. a unique algorithm for both speaker segmentation and clustering is performed using an

evolutive hidden Markov model (E-HMM) where each E-HMM state characterizes a single

speaker and the transitions represent the speaker turns.

4. a post-normalization and re-segmentation is applied to facilitate the estimation of the

mean and variance on speaker-homogeneous segments.

Table 1.1 illustrates the main difference between the three above systems.

Even though the robustness of those system shown by their performance, there are still some

points that can be improved:

- preprocessing by removing all non-speech parts using thresholding methods. First, it will

be better to split the stream into homogenous zones, and then make the decision on those

zones: this decision will be more confident. Second, the use of diarization information (i.e.

audio clusters) is helpful to make decision on regions of doubt where the values are on

borders (i.e. close to the threshold).

- there is generally reverse connections between the different steps of the system: it will be

better to use, for example, not only the segments in order to create the clusters, but also

the clusters in order to rectify the segments (by splitting or changing borders).

9http://www.lia.univ-avignon.fr/
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Table 1.1: Comparison between three state-of-the-art systems.

LIMSI IBM LIA

Acoustic features MFCC + (their 1st

and 2nd derivatives)

+ (1st and 2nd

derivatives of the

energy)

MFCC LFCC

Speech Acoustic

Detection

LLR using

256-components

GMM for speech

and non-speech

HMM decoder using

3-components GMM

for speech and

non-speech

HMM decoder using

32-components

GMM for speech

and non-speech

Speaker

segmentation

Gaussian divergence

measure + Viterbi

re-segmentation

using 8-components

GMM

Speech to Text

decoding for

segments

purification

GLR with fixed

threshold

Speaker clustering BIC clustering +

SID clustering using

128-components

GMM

Estimation of the

initial number of

clusters + BIC

clustering +

refinement using

10-components

GMM

E-HMM where every

state characterizes a

speaker

(128-components

GMM)

Performance at

RT’07 on lecture

sessions

26% 31% 31%

We will propose in chapter 2 some solutions to overcome those weaknesses without any

adaptation on any kind of data (e.g. news, debates and movies).
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1.6 Databases

In order to test our proposed methods and compare them to the state-of-the-art ones, we use

three audio recording databases.

1.6.1 ESTER-1 Corpus

ESTER10 which is the French acronym for “Evaluation des Systèmes de Transcription Enrichie

d’émissions Radiophonique is an evaluation campaign of French broadcast news transcription

systems”. The ESTER-1 Corpus (years 2003-2005) includes 100 hours of manually annotated

recordings and 1,677 hours of non transcribed data. The manual annotations include the detailed

verbatim orthographic transcription, the speaker turns and identities, information about acoustic

conditions, and name entities.

The acoustic resources come from six different radio sources, namely: France Inter, France

Info, Radio France International (RFI), Radio Télévision Marocaine (RTM), France Culture and

Radio Classique. For more details on that corpus please refer to [GGM+05].

1.6.2 ESTER-2 Corpus

The ESTER-2 Corpus (years 2008-2009) was recorded with the same conditions than the

ESTER-1 corpus. It includes 100 hours of manually annotated recordings that come from 5

different radio sources, namely: France Inter, France Info, TVME, Radio Africa 1 and 45 of

EPAC-ESTER corpus. Table 1.2 indicates the amount in hours of the annotated data for

training, development and test tasks.

1.6.3 EPAC-ESTER Corpus

EPAC11 is the French acronym of “Exploration de masse de documents audio pour l’extraction

et le traitement de la parole conversationnelle”. It is a french ANR-MDCA project (years 2006 -

2009) that gathers four laboratories (IRIT12 , LIA13, LIUM14 , LI15) in order to investigate new

techniques for automatic speech processing specially in the context of mono-channel meeting

10http://www.afcp-parole.org/ester
11http://epac.univ-lemans.fr/
12http://www.irit.fr
13http://www.lia.univ-avignon.fr/
14http://www-lium.univ-lemans.fr/
15http://www.li.univ-tours.fr/
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Table 1.2: Amount of transcribed and non transcribed recordings of ESTER-2.

Source Training Set Development Set Test Set

France Inter 26 h 2 h 3h40

RFI 69 h 40 min 1h10

Africa 1 10 h 2h20 1h

TVME - 1 h 1h30

EPAC-ESTER 45 h - -

Total 150 h 6 h 7h20

recordings. The EPAC corpus includes 100 hours of manually annotated data. These conver-

sational data were selected from the 1,677 hours of the non-transcribed broadcast recording of

ESTER-1 Corpus.
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Chapter 2

Proposed System for speaker

diarization
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In this thesis, we investigate new techniques and propose improvements for speaker segmen-

tation and speaker clustering. We try to make those techniques the most robust and the most

portable for all kind of database (broadcast News, meetings, films, series, TV games).

On one hand, we present a new technique for speaker segmentation. This technique combines

the generalized likelihood ratio (GLR) and the Bayesian information criterion (BIC). Although

this method is firstly proposed for speaker segmentation within the audio recording, we show

during our work, that it can be used for other modalities (video, images). That is why, this

method is described in a generic segmentation framework.
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On the other hand, we investigate the Eigen-Vector-Space-Model based technique for speaker

clustering and propose some improvements by adding the “pitch constraint”. Then, we review

the existing BIC clustering and we propose some modifications by applying a “local-and-global

clustering” and by enhancing the cluster purity.

Finally, we propose an iterative scheme to improve not only the speaker segmentation and

the speaker clustering, but also the speech activity detection and the music activity detection.

That is what makes our speaker diarization system original.

2.1 Proposed Generic GLR-BIC segmentation

A well-known BIC speaker segmentation was proposed by Sivakumaran et al. to detect multi-

points changes in audio recordings [SFA01]. It was then improved by Cettolo et al. in [CV03].

In our work we applied this method and we figure out some limitations. Although the amount

of parameters to be tuned is important, the penalty coefficient is not as stable as expected and

there is a possible cumulative error due to the sequential segmentation process: if a point is

erroneously detected, the next point might be affected by this error and might not be detected

correctly. All those limitations encouraged us to propose a new segmentation based on GLR

and BIC.

2.1.1 Proposed Method

Fig.2.1(a) illustrates a signal where the theoretic segmentation is represented by the points

R1, R2, ..., Rn. The proposed segmentation method follows four main steps.

1. Splitting step. It consists in splitting the signal into equal size windows. Then, we

detect the most probable point of change in each window. This step is shown in Fig.2.1(b).

Mathematically, this point corresponds to the maximum of the GLR expression (or to the

maximum of ∆BIC). The advantage of this step is that there is no need to fix a threshold

as for the standard use of GLR described in section 1.3.2.2.

2. Most probable point detection step. In the first step, we have obtained points of

change P1, P2, ..., Pm which separate the best way the two mono-Gaussian models existing

in every window. However, those models are not very representative because they are

influenced only by local data in a window with a fixed size and fixed boundaries. Thus,
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we repeat the first step using windows that are chosen as seen in Fig.2.1(c): to detect a

point of change P ′i , we use the window [Pi−1, Pi+1]. The resulting models will be quite

close to Gaussian distributions. If two consecutive windows vote for the same point, or for

two close points (difference < 0.2sec), we decide to merge those two points by considering

their mean and consequently, the number of detected points will decrease.

3. Re-Adjustment step. This step illustrated in Fig.2.1(d) consists in repeating the sec-

ond step several times until that the repartition of change points is stabilized i.e. the

convergence to Gaussian distributions is accomplished. The obtained points are annotated

q1, q2, ..., qt where t < m.

4. Definitive change detection step. At this stage, the points q1, q2, ..., qt represent the

most probable locations of change. Thus the BIC criterion is applied to select only the

points that are effectively points of source changes. This step is illustrated in Fig.2.1(e).

The algorithm applied in step 4 is implemented as follows:

Let m = number of points qi,

i = 1,

initialize W = [q0, q2],

while ( i 6 m)

in W, search ∆BICmax ,

if ∆BICmax > 0 then

qi = argmax∆BICmax, S = qi

increment i,

else

increment i,

End if

E= qi+1 , W=[S, E]

End while

When this algorithm is applied for speaker segmentation, the choice of the analysis window

size should be given a special attention. On the first hand, if this window is too large, it may

contain more than two sources, and consequently yield a high number of missed detections. On

the other hand, if the window is too short, the lack of data will cause poor Gaussian estimation
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and accordingly, poor segmentation accuracy. That is why we choose a typical value of 2 seconds

for the initial window size in the splitting step.

Tests done on broadcast news show the efficiency of this method compared to the one used

by [SFA01] and [CV03] where only BIC is applied on a shift variable size window. Please refer

to the results obtained in section 3.

However, when applying this method on meeting data, some errors occurred in regions

containing multiple speakers. For example, in the scenario illustrated in the ground truth

of Fig.2.2 where “Spkr1 continues speaking even when Spkr2 starts his turn”, the GLR-BIC

segmentation may fall in detecting speaker change because the theoretical boundary region is

still experiencing some homogeneity.

In the following subsections, two hypotheses are proposed to solve this problem.

2.1.2 Bidirectional segmentation

Due to the shifted variable size window used in the GLR-BIC algorithm, processing from “left to

right”may detect different points of change than processing from “right to left”, and therefore,

there is a chance that a missed boundary in the first direction can be detected in the other

direction and vice versa. Figures 2.2, 2.3 and 2.4 illustrate the three possible corrections: S1

(respectively S2) corresponds to the set of boundaries provided by the “left to right ”segmenta-

tion (respectively “right to left”) and S1
⋃

S2 is the resulting union. Those corrections can be

divided into two types: perfect and partial corrections. Practically, we have noticed that partial

corrections outnumber the perfect ones.

2.1.3 Penalty coefficient decreasing technique

In Equation 1.12, we notice that when the penalty λ decreases, ∆BIC increases and conse-

quently, it is possible that ∆BIC becomes positive and an additional point of change is detected

in this case. However, the diminution of λ in an unsupervised manner can be harmful to the

system performance because it may introduce many false alarms. That is why we must be sure

that the region under investigation is unstable i.e. it contains an interaction zone. In section

2.3, a framework is proposed to handle the detection of the unstable segments.
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2.1. Proposed Generic GLR-BIC segmentation

Figure 2.1: GLR-BIC segmentation.
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Figure 2.2: Correction due to S1 and S2 (perfect correction).

Figure 2.3: Correction due to S1 (partial correction).

Figure 2.4: Correction due to S2 (partial correction).

2.1.4 Other applications of the method

Because this segmentation method is based on an acoustic homogeneity criterion, it has the

ability of segmenting the audio stream into different sources: different types of music, different

speakers and silence. This advantage is used to help speech/non-speech separation as well as

music/non-music (cf. 2.3).
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Moreover, at a more general level, this proposed segmentation method was also tested on

other modalities: as for shot boundary detection using visual features (cf. chapter 5), for

programs boundary detection using audiovisual features (cf. Appendix A).

2.2 Proposed clustering

In the following subsections two unsupervised clustering techniques are proposed. The first one

is a vector space based technique and the second one is a BIC based technique. Moreover, a

supervised clustering technique based on the cross likelihood ratio (CLR) is investigated and

then improved.

2.2.1 Improved EVSM clustering

This clustering method is based on the work of Tsai and al. [TCCW05] that uses Eigen Vector

Space Model (EVSM) with a hierarchical bottom-up clustering. Figure 2.5 presents the different

steps: from all the segments S1, S2, ..., SN a universal Gaussian Mixture Model (GMM) Λ is

created. This GMM is then adapted on each segment Si to obtain the GMM Λi. From each Λi,

a super-vector Vi is created by concatenating the mean vectors of each gaussian distribution of

that Λi. Then, PCA (Principal Component Analysis) is applied to obtain for each vector Vi, a

vector Wi with a lower dimension. Then, the cosine formula computes the similarity between

each couple of vectors (Wi,Wj). The stopping criterion is based on a threshold comparison: if

the cosine is higher than this threshold, the two segments are grouped.

A stronger merging criterion. Our contribution consists in choosing a stronger merging

criterion based both on the previous similarity measure and on prosodic information. The pitch

F0 feature is estimated every 10ms on voiced regions with the ESPS signal processing software

which utilizes the normalized cross correlation function and dynamic. Then, a difference (called

∆F0) between the averages of the F0 values of each couple of segments is computed. We have

to notice that, whatever the chosen softwares, some pure music segments will be considered

erroneously as voiced regions of the signal; but they will never be grouped with speakers segments

because the cosine similarity will separate them. The new merging criterion becomes: two

clusters correspond to the same speaker if 1) the similarity (cosine formula) is higher than a
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Chapter 2. Proposed System for speaker diarization

threshold th1, and 2) ∆F0 is lower than a threshold th2. Those thresholds were tuned on the

training set of ESTER-1 as well as the number of Gaussians that was optimally fixed to 128.

Figure 2.5: EVSM-based hierarchical clustering.

Results obtained on ESTER-1 [EKSAO07] show that the EVSM-based method is very

competitive to the state-of-the-art speaker diarization systems dedicated for broadcast news.

However, in some cases where the duration of the segment is small, the corresponding GMM is

not well modeled. This weakness encourages us to use the BIC clustering in order to deal with

the conversational data.

2.2.2 BIC clustering

The BIC clustering was previously described in section 1.4.1. But in this case, X1 and X2 denote

the clusters under investigation and X the resulting cluster.

But for some kinds of recording data as meetings, there is high interaction between speakers:
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2.2. Proposed clustering

Table 2.1 shows that the average length of speaker turns is relatively lower than the one of

broadcast news, and the regions where many people talk simultaneously are more numerous.

Table 2.1: Comparison between broadcast news (ESTER-1) and meetings (EPAC-ESTER)

corpora.

TEST ESTER-1 TEST EPAC-ESTER

Average length of speaker turns 20.22 sec 8.33 sec

Time ratio of multi-speakers turns 0.21 % 5.26 %

The two factors mentioned above decrease the segments purity, and so introduce a risk of

cumulative errors in the clustering process. It is obvious that homogeneous segments with long

duration are more confident and provide better clustering. To deal with this problem, two

contributions were proposed:

• Local-global clustering. In the standard hierarchical clustering, the initial clusters

correspond to segments, and as described above for meeting data, those segments have

relatively small duration. Due to the iterative structure of the clustering, it is very probable

that the comparison is done between clusters of very different sizes. In this case, the BIC-

based inter-cluster similarity is not precise as explained in [HN07], and may introduce

cumulative errors in the clustering process. Our solution to cure this weakness is to do a

local clustering every N consecutive segments (practically N = 20) before processing the

global one. The reason behind this proposition is to build a first level of confident clusters

with balanced sizes.

• Similarity matrix and clusters updating. At the end of a clustering process, each seg-

ment is theoretically assigned to the cluster providing the highest BIC similarity. However,

due to the hierarchical bottom up manner, there are some segments that do not respect

this hypothesis. To correct these errors and therefore enhance the clusters purity, we

propose to compute the similarity matrix between segments Si and clusters Cj and then

reclassify segments regarding this matrix. For example, in Fig.2.6, the similarity matrix

shows that the segment S8 will be assigned to the cluster C3 (−∆BIC = 0.7) instead of

C1 (−∆BIC = 0.1) as in the previous clustering.
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Figure 2.6: Similarity matrix between segments and clusters.

2.2.3 CLR Post-Clustering

The CLR clustering is already described in 1.4.3. This clustering was historically used with

a fixed threshold (ThrCLR = 1.5) and without additional constraint like in [BZMG06]. In

the following subsections, we propose some improvements by using an adaptive threshold that

depends on the recording file duration and by reducing the background effect and adding the

BIC measure constraint.

A. Adaptative thresholding. During our work to find the optimum threshold, we studied

the duration time of the recording file: we have noticed that the range of the optimum thresholds

is generally higher for the recordings of short duration as seen in Fig.2.2.

Table 2.2: Optimal ranges for two recording files of different duration time.

the optimal margin of the ThrCLR

File 1 (60 minutes) [1.00; 1.55]

File 2 (20 minutes) [1.45; 4.00]

In [EKMS08], the dependency between the threshold and the file duration is modeled by a

linear equation:

ThrCLR = aL+ b (2.1)

where L is the duration time (in minutes) of the recording audio file. a and b two parameters

that were tuned on 30 files of the training data of ESTER-1 (a = −0.013 and b = 2.22).
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2.2. Proposed clustering

But during the ESTER-2 competition, we used a more complex dependency curve. Fig.2.7

shows the curve tuned on the development set of ESTER-2. It illustrates the threshold value in

respect to the duration time.

Figure 2.7: The threshold ThrCLR in respect to the duration time.

B. CLR+BIC fixed thresholding. Also, we observed that during the CLR clustering pro-

cess, there are some errors due to the fact that 2 different speakers with the same background

may be merged because their CLR distance value is high. That is why we propose to reduce the

background effect by eliminating regions where the background is dominant and then use the

BIC distance as an additional constraint between those clusters.

First, the reduction of the background effect is achieved using the software (ESPS) that

computes the F0 Feature. In fact, this software provides a F0 value if this value is between 60

and 400 Hz, otherwise it is set to zero. In another sense, if there is noise or background music,

the F0 value is probably equal to zero.
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After reducing the background effect, the CLR clustering can be applied. In the ESTER

competition, the CLR clustering was applied with a fixed threshold.

Second, the BIC distance is computed another time at this level. Here, the BIC is used only

to validate the merging between the clusters candidate or to reject it. In fact, although the CLR

distance between 2 clusters is good enough (less than a fixed threshold) to merge those clusters,

the BIC distance between them might be very high. In this case, the merging is rejected. Results

described later in section 3 show the profits of those improvements.

2.3 System architecture

After reviewing the strengths and the weaknesses of each essential component of a speaker

diarization, we propose our iterative system (cf. Fig.2.8). It can be summed up by the following

algorithm:

1. Parameters extraction where the MFCCs, the 4Hz modulation energy, the number of

segments, their duration, and the log-likelihoods of speech, non-speech, music and non-

music GMMs are computed.

2. First Bidirectional GLR/BIC segmentation using a penalty coefficient λ = λ1 (practically

λ1 = 1).

3. Speech/non-speech separation by using the 4Hz modulation Energy (ME) and speech and

non-speech GMM scores for each segment.

4. Music/non-music separation by using the number and the duration of segments as well as

the music and non-music GMM scores.

5. Local BIC clustering applied every N consecutive segments.

6. Global BIC clustering based on clusters provided from previous step.

7. Computation of the similarity matrix between segments Si (i=1 to Ns) and clusters Cj

(j=1 to Nc) where Ns is the number of segments and Nc is the number of clusters.

8. Updating clusters by assigning each segment Si to argmaxCi(−∆BIC(Si, Sj)) when j

varies from 1 to Nc.
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9. Splitting unstable segments using the bidirectional GLR/BIC segmentation with λ = λ2,

λ2 < λ1 (practically λ2 = 0.8) as explained in subsection 2.1.3. Unstable segments are

segments for which −∆BIC(Si, Sj)) < 0 i.e. the similarity between segment Si and its

corresponding cluster is low.

10. Stop loop if no more splitting can be done. Otherwise, do a speech/non-speech separation

and a music/non-music separation and go back to step 7 and so on.

11. Final CLR clustering in order to group clusters corresponding to the same speaker but

under different backgrounds.

We notice that the number of segments Ns and the number of clusters Nc are dynamic: Ns

can decrease at the end of step 3 and increase at the end of step 9. However Nc can only decrease

at the end of step 8 due to the segments re-assignment.
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Figure 2.8: Standard vs Proposed Speaker Diarization systems.
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Experiments and Results
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Experiments are done in order to see the impact of our contribution. Four types of evaluation

are described in the following subsections:

3.1 Evaluation of the speaker segmentation

This evaluation is done by computing the recall, the precision and the F-measure. In general,

the number of false positives (FP), false negatives (FN ), true positives (TP), and true negatives

(TN ) are considered with respect to positive (P) and negative (N ) instances manually annotated

in the ground truth. Then, the precision (Prec) and the recall (Rec) are defined as:

Prec =
TP

(TP + FP )
(3.1)
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and

Rec =
TP

P
(3.2)

Prec decreases when the number of FP increases. Rec decreases as the number of FN

increases. We observe in many occasions that Prec decreases when Rec increases. That is why

the F-measure F is defined as:

F =
2

1
Prec + 1

Rec

(3.3)

A new metric approach based on maximum overlap between extracted segments was proposed

in [JBPKQ07] for the ARGOS16 evaluation campaign. This metric was initially used for “Shot

Boundary Detection” in the context of video indexing. In our work, we use it for speaker

segmentation because it takes into account the homogeneity of the temporal instances (segments)

unlike other methods that favor transition detection between instances.

This “ARGOS” metric considers a “reference segmentation” and a “system segmentation”.

From both reference and system segmentations, a “maximum intersection” segmentation is

extracted: it must completely be present in a reference segment and in a system segment as seen

in Fig.3.1. Then, the precision, the recall and the F-measure F are defined by:

Prec =
|Intersection|
|System|

(3.4)

Rec =
|Intersection|
|Reference|

(3.5)

F =
2.|Intersection|

|Reference|+ |System|
(3.6)

where |.| denotes the sum of the lengths of the segments.

3.1.1 Experiments and Results

Three different methods were tested to show the improvements we made throughout our work:

1) the existing method [CV03] that uses a shift variable size window with BIC criterion, 2) the

proposed GLR-BIC segmentation method and 3) the overall iterative speaker diarization system

16www.irit.fr/argos
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3.1. Evaluation of the speaker segmentation

Figure 3.1: The Argos precision and recall measures in respect to the ground truth segmentation

and the system segmentation.

where speaker segmentation and speaker clustering help each other. The experiments were done

on both broadcast news and broadcast meetings.

Broadcast news In this evaluation, the corpus used was the ESTER-2 development set. This

set contains 20 audio recording files from 4 different radio stations.

First, table 3.1 shows the results of the existing BIC method in terms of Recall, Precision

and F-measure for the 4 different sources. It can be seen that the best segmentation is obtained

on RFI radio station with a F-measure of about 85% and the worse one is obtained on France

Inter radio station eventhough the two radio sources seem of the same difficulty on listening.

Table 3.2 our proposed GLR-BIC segmentation method, we can denote an absolute improve-

ment of 12.46 % (the mean average F-measure raises from 72.91% to 85.37%).

When using the proposed iterative segmentation-clustering process, we achieve an additional

relative improvement of 3.15% that corresponds to an absolute improvement of 2.73%. Another

thing to notice is the rise of scores on Inter radio with an overall absolute improvement of
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Table 3.1: Results of BIC segmentation on the 4 different radio stations of the ESTER-2

development set.

Recall (%) Precision (%) F-measure (%)

Africa 72.92 72.26 72.61

RFI 86.47 83.56 84.99

France Inter 66.24 65.24 65.74

TVME 81.02 71.29 75.84

mean weighted average 74.25 71.62 72.91

Table 3.2: Results of GLR-BIC segmentation on the 4 different radio stations of the ESTER-2

development set.

Recall (%) Precision (%) F-measure (%)

Africa 84.98 85.47 85.22

RFI 94.6 92.71 93.65

France Inter 82.04 83.13 82.58

TVME 85.74 84.27 85.00

mean weighted average 85.36 85.37 85.37

21.43% (from 65.74% to 87.14%). It shows that the segmentation process is more stable and less

dependent from the penalty coefficient unlike the BIC segmentation where 9 parameters must

be tuned.

Table 3.3: Results of the iterative process on the 4 different radio stations of the ESTER-2

development set.

Recall (%) Precision (%) F-measure (%)

Africa 88.44 88.63 88.53

RFI 95.03 92.80 93.90

France Inter 86.55 87.73 87.14

TVME 85.48 85.83 85.65

mean wieghted average 87.95 88.26 88.10

50



3.1. Evaluation of the speaker segmentation

Moreover, Fig.3.2 and Fig.3.3 show respectively the precision and the recall of the three

methods on the 20 audio files. The GLR-BIC and iterative system are almost better than the

BIC segmentation on all files. However, the iterative process is slightly better than the GLR-BIC

segmentation on only 12 files.

Figure 3.2: Comparison between the precision of BIC, GLR-BIC and Iterative system segmen-

tation methods on the 20 files of ESTER-2 development set.

Moreover, the three above methods were tested on the EPAC meeting corpus. Table 3.4

shows that the BIC segmentation provides a low F-measure of 51.26%. Results are improved by

6.93% when GLR-BIC segmentation is used. An additional gain of 10.83% is obtained with the

iterative segmentation and clustering process.

Table 3.4: Results of the 3 methods on EPAC broadcast meetings.

Recall (%) Precision (%) F-measure (%)

BIC segmentation 50.44 52.11 51.26

GLR-BIC segmentation 55.73 60.87 58.19

Iterative System 66.13 72.18 69.02
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Figure 3.3: Comparison between the recall of BIC, GLR-BIC and Iterative system segmentation

methods on the 20 files of ESTER-2 development set.

3.2 Evaluation of the acoustic events detection

The evaluations of the speech detection and the music detection are made by computing the

error rate and the F-measure F for both tasks.

• The error rate for speech activity detection is defined by:

ErrorRate =
sum(FalseNeg) + sum(FalseAlarm)

sum(T (Speech)) + sum(T (nonSpeech))
(3.7)

where

FalseNeg is the false negative time i.e. the time when the speech was missed.

FalseAlarm is the false alarm time i.e. the time when the speech was erroneously

detected.
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T (Speech) is the time when the speech was present

T (nonSpeech) is the time when the speech was not absent.

• The F-measure F is defined in the same way as for Equ.3.3. But in this case the recall

and the precision are given by:

Rec =
sum(TP )

sum(T (c))
(3.8)

Prec =
sum(TP )

sum(TP ) + sum(FA)
(3.9)

where TP is the true positive time i.e. the time when the speech is correctly detected.

3.2.1 Experiments and results

The experiments are done on the test corpus of ESTER-2. Those results are the official

results published at the competition where each team could submit many runs.

For speech/non-speech detection, were submitted 2 meaningful runs. The first run pro-

cesses on the output of the GLR-BIC segmentation by computing the likelihood of the

speech and the non-speech GMMs of each segment and by computing the mean average of

the 4 Hz energy modulation on each segment. Table 3.5 shows an error rate of 1.8% and

a F-measure of 99.03%.

Table 3.5: Results of the 1st run for IRIT speech detection at ESTER-2 competition.

Error Rate (%) Recall (%) Precision (%) F-measure (%)

africa 04.18 96.75 98.92 97.82

France Inter 00.90 99.56 99.44 99.50

RFI 00.97 99.88 99.13 99.50

TVME 02.25 98.62 98.89 98.75

mean average 01.80 98.87 99.20 99.03
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The second run is the output of the iterative segmentation and clustering scheme described

in section 2.3. The new results are shown in table 3.6. The error rate becomes 1.31% (best

system: 1.08%) and the F-measure becomes 99.29% (best system: 99.42%).

Table 3.6: Results of the 2nd run for IRIT speech detection at ESTER-2 competition.

Error Rate (%) Recall (%) Precision (%) F-measure (%)

africa 02.05 98.58 99.31 98.94

France Inter 00.85 99.61 99.45 99.53

RFI 00.65 99.92 99.42 99.67

TVME 02.47 98.57 98.70 98.64

mean average 01.31 99.28 99.30 99.29

For music/non-music detection, three meaningful runs were submitted: the first system

processes the output of the GLR-BIC segmentation by computing the likelihood of the

music and non-music models and by computing the mean average of the number of sub-

segments and their durations on each segment. Table 3.7 shows an error rate of 9.6% and

a F-measure of 25.79%.

Table 3.7: Results of the 1st run for IRIT music detection at ESTER-2 competition.

Error Rate (%) Recall (%) Precision (%) F-measure (%)

africa 10.82 03.82 88.05 07.32

France Inter 11.30 16.78 96.66 28.59

RFI 07.17 09.24 99.37 16.90

TVME 05.20 32.75 92.71 48.40

mean average 09.60 14.91 95.41 25.79

The second one uses the same features as than the first one. The only difference is the

iterative scheme. The new error rate becomes 6.42% and the F-measure is absolutely

improved of 44.01% as seen in table 3.8.

The last submitted system uses additional features proposed in [Lac09]. The mean average

error rate becomes 5.51% (best system: 5.25 %) with a F-measure equal to 69.8% (best

system: 78.85%) as seen in table 3.9.
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Table 3.8: Results of the 2nd run for IRIT music detection at ESTER-2 competition.

Error Rate (%) Recall (%) Precision (%) F-measure (%)

africa 07.44 36.09 93.33 52.05

France Inter 06.50 52.39 98.79 68.47

RFI 06.40 19.46 97.36 32.44

TVME 04.80 40.76 88.65 55.84

mean average 06.42 44.16 96.69 60.63

Table 3.9: Results of the 2nd run for IRIT music detection at ESTER-2 competition.

Error Rate (%) Recall (%) Precision (%) F-measure (%)

africa 06.63 43.60 93.88 59.54

inter 05.17 70.10 89.27 78.53

RFI 05.93 25.66 97.14 40.60

TVME 04.63 43.03 89.18 58.05

mean average 05.51 56.87 90.34 69.80

3.3 Evaluation of the speaker clustering

The speaker clustering is evaluated by computing the errors where speaker turns of the automatic

system do not match the expected speaker in the ground truth. In other words, the evaluation

is made by computing the speaker time attributed to the wrong speaker (called speaker error

time).

SpkrErr =

∑
AllSegs(dur(seg) ∗ (min(NRef (seg), NSys(seg))−NCorrect(seg)))∑

AllSegs(dur(seg).NRef (seg))
(3.10)

where the speech data file is divided into contiguous segments at all speaker change points and

where, for each segment seg :

dur(seg)=the duration of seg,

NRef (seg)= the number of reference speakers speaking in seg,
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NSeg(seg)= the number of system speakers speaking in seg,

NCorrect(seg)= the number of reference speakers speaking in seg for whom their

matching (mapped) system speaker are also speaking in seg. The results of speaker clustering

will be detailed in next section.

3.4 Evaluation of the speaker diarization system

The diarization error rate (DER) is the sum of three error rates: the speaker error rate (cf.

section 3.3), the missed detection rate and the false alarm rate.

DER = SpkrErr +Miss+ False (3.11)

where the missed detection rate is given by:

Miss =

∑
AllSegs(dur(seg) ∗ (NRef (seg)−NSys(seg)))∑

AllSegs(dur(seg).NRef (seg))
(3.12)

and the false alarm rate is given by:

False =

∑
AllSegs(dur(seg) ∗ (NSys(seg)−NRef (seg)))∑

AllSegs(dur(seg).NRef (seg))
(3.13)

3.4.1 Experiments and results

In this section, we describe the evolution of our system by detailing the results after every

step. First, the baseline system uses the GLR-BIC segmentation with a first speech/non-speech

detection and then the local-global clustering. Table 3.10 shows a missed detection rate of 1.4%,

a false alarm rate of 0.7% and a speaker error rate of 15.3%. Thus, the overall DER is 17.42%.

Table 3.10: Results of the baseline speaker diarization system at ESTER-2 competition.

Miss False SpkrErr DER

africa 01.40 00.70 12.30 14.47

France Inter 01.80 00.60 19.80 22.24

RFI 00.00 00.60 05.30 05.88

TVME 01.30 01.40 16.90 19.60

mean average 01.40 00.70 15.30 17.42
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Second, the iterative process provides an absolute SpkrErr improvement of 0.9% and the

overall DER becomes 16.40% (cf. Fig. 3.11).

Table 3.11: Baseline + iterative process) results at ESTER-2 competition.

Miss False SpkrErr DER

Africa 01.50 00.60 12.40 14.48

France Inter 02.00 00.50 17.40 19.90

RFI 00.10 00.40 05.30 05.78

TVME 01.30 01.10 17.80 20.19

mean average 01.50 00.60 14.40 16.40

Third, the CLR clustering with an adaptive threshold is applied. This provides an additional

improvement of 2.40% as seen in table 3.12.

Table 3.12: Baseline + iterative process + adaptative CLR results at ESTER-2 competition.

Miss False SpkrErr DER

Africa 01.40 00.60 12.80 14.84

France Inter 01.90 00.50 12.00 14.40

RFI 00.10 00.40 05.00 05.51

TVME 01.30 01.30 18.50 21.10

mean average 01.40 00.60 12.00 14.01

Instead of doing an adaptative threshold, we use fixed thresholds on both CLR and BIC

similarity matrices in a last system. Table 3.13 shows an overall DER of 11.01% (best system:

10.80%). Recently, a better implementation of our system is done and the actual score is 9.85%.

Finally, Table 3.14 shows the performance of our improved system on the EPAC meeting

corpus compared to the baseline standard system (a gain of about 8%). Table 3.15 shows the

scores when excluding zones when two or more speakers are talking at the same time.
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Table 3.13: IRIT-4 speaker diarization system results at ESTER-2 competition.

Miss False SpkrErr DER

Africa 2.10 00.60 05.60 08.32

France Inter 01.90 00.50 10.80 13.22

RFI 00.10 00.40 02.50 03.02

TVME 01.30 01.10 14.50 17.00

mean average 01.50 00.60 08.90 11.01

Table 3.14: IRIT speaker diarization system results vs Standard diarization system for EPAC-

ESTER.

Miss False SpkrErr DER

Standard System 9.7 0.6 14.5 24.77

Improved System 8.9 0.1 7.6 16.72

Table 3.15: IRIT speaker diarization system results vs Standard diarization system at EPAC-

ESTER exluding multi-speaker turns.

Miss False SpkrErr DER

Standard System 3.9 0.7 15.0 19.55

Improved System 3.1 0.2 8.4 11.66
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Conclusion

After reviewing the state-of-the-art of speaker diarization systems and methods existing for

speaker segmentation and speaker clustering, we proposed an original method for, not only

speaker segmentation, but also for audio event segmentation. This method is based on GLR

and BIC criteria. It was applied as a pre-processing step for speech/non-speech detection and

music/non-music detection as well as for speaker segmentation in the speech part. Improvements

of the baseline GLR-BIC segmentation were proposed to deal with the problem of short segments

and multi-speaker boundaries detection by proposing coupled bi-directional segmentation and

penalty coefficient decreasing techniques.

Then, we proposed improvement for EVSM speaker clustering methods by using additional

pitch constraint. Because this clustering uses GMMs that need relatively good amount of data

to be well modeled, we drop out this method and we use the BIC clustering to deal with

meeting data. The state-of-the-art BIC clustering was improved by proposing a local-and-

global clustering and by applying an update of clusters after computing the segments-to-clusters

similarity matrix. In addition to the BIC clustering, we used the CLR post-clustering that deal

with the background variation. Instead of applying the ordinary fixed threshold that highly

depends on the type of the data, we propose both the adaptative thresholding technique that

takes into account the file size, and the fixed thresholding method with additional BIC distance

constraints.
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Introduction

Most works in video indexing are sequentially analyzing a video document to produce a video

index by attaching content-based labels to that document. Some of these processes aim to

extract from the video data the temporal location of some more or less semantic features (e.g.

car, bridge, dog, person, or colors, shapes, velocity).

Indexing video data is essential for providing content based access. It has typically been

viewed either from a manual annotation perspective or from an image sequence processing

perspective. The indexing effort is directly proportional to the granularity of video access.

As applications need finer grain access to video, automation of the indexing process becomes

essential.

More particularly, visual people indexing aims to annotate video documents according to

people occurring in those documents using only visual (image) information. It is one of the

important techniques for accessing video data effectively and for perceiving the user interacting

in a Human Computer Interaction (HCI) context. It becomes important since it enables many

applications of such “intelligent fast-forwards” where the video document is browsed for example

by the shots containing a particular actor from the hundreds of short video sequences available

for that document.

Practically, unsupervised visual people indexing must pass through different steps: people

detection, people tracking and people clustering. Fig. 1 illustrates the general architecture of a

visual people indexing system:

Hypotheses

In order to make the people indexing techniques as workable and portable as possible, many

hypotheses were taken.
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Figure 1: General steps for unsupervised visual people indexing.

• The video document may contain frames in black and white.

• A frame may contain more than one person.

• The number of people appearing in the video document is unknown.

• There is no a priori knowledge about the identity of the people appearing in the video.

• a person is considered as appearing in a shot if at least his frontal or profile face appears

theoretically for more than 200 milliseconds (corresponding to 5 consecutive frames if
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the frequency is 25 images/second) in the video document. In addition the minimum

dimensions box in which the face is detected is supposed equal to 20x20.

• a person may change clothing during the video document. Although this problem seems

very rare to occur in some video data as broadcast news and talk show programs, it is

very common in TV series and movies.

• two different people may wear the same costume. This case is very recurrent in team

sports like soccer and basketball.

• lightning conditions may change along the video.

Applications

Video people indexing can be present in many kinds of products used by both professionals and

amateur consumers. Those applications are listed in the following items.

• Automated authoring of Web content. Media organizations and TV broadcasting

companies have shown considerable interest in representing their information on the Web

because the number of people who obtained their news on the Internet is growing at

an astonishing rate. One of the main issues people are searching for is the presence of

celebrities. It will be important to be able to access directly to the shots where those

celebrities appear.

• Searching and browsing large video TV archives. Another professional application

of people-based video indexing is in organizing and indexing large volumes of video data

to facilitate efficient and effective use of these resources for internal use. Major news

agencies and TV broadcasters own large archives of video that have been accumulated

over many years. Traditionally, the indexing information used to organize these large

archives has been limited to titles, dates, and human-generated synopses. Intelligent video

segmentation and sampling techniques can reduce the visual contents of the video program

to a small number of static images. Higher-level analysis is then used to extract information

relevant to the presence of humans in the video such as anchors, politicians, etc. in TV

broadcast news.
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• Searching and browsing movies. This kind of application aims to provide an automatic

cast listing in movies as well as the utterances where the corresponding persons appear.

• Searching and browsing large video internet database. It is a more ambitious

application of the people indexing task. It can be used by both professionals and amateurs.

Here, the major differences from the above applications are the relative bad resolution of

the video data and the real time constraints.

• Automatic visual surveillance in dynamic scenes (both in indoor and outdoor envi-

ronment) by monitoring human activities. It has two major components: detecting people

and tracking them in sequence of video images. The goal of such a system understanding

high-level events and complex actions such as detection of walking, running, dancing. For

example, we invite you to review the work done in our team on human shape analy-

sis [FJ06].

This part is organized as follows: in chapter 4, we review the existing visual features, and the

state-of-the-art works for people detection, tracking, clustering and recognition. In chapter 5,

we describe our proposed people indexing system starting from the shot boundaries detection,

passing through the people detection and tracking and finally describing the people clustering

algorithm using both face and clothing information. Experiments and results are detailed in

chapter 6.

66



Chapter 4

State-of-the-art
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In this chapter, the main existing techniques related to the task of visual people indexing

are reviewed. Initially, the visual features that have been found useful for people indexing are

described. Then, a brief look on people detection, tracking and clustering techniques is done.

4.1 Low-level visual features

The only basic information an image is carrying are the R, G and B values of each pixel within

this image. Other color spaces like YCbCr, YUV and HSV were defined either for encoding
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purposes or for highlighting special characteristics of the pixel, but in all cases, we can convert

from one space to another. Using that information as well as the position of each pixel, many low-

level features were historically extracted in order to characterize that image. In video scenarios,

the time can be added to that information to help extracting features related to movement and

action in sequences.

The “low-level features” contain usually color, shape, texture and motion information. The

most interesting ones are listed below, from the very simple to the very complicated.

• Average color. This is the simplest feature that can be extracted from an image. It is a

triplet that is equal to the mean averages of the R, G and B values of all the pixels within

the image or sub-image/blob (e.g. an image can be divided into 4 parts).

• Average luminance. The average luminance value is often computed on basic units used

in video encoding (e.g. blocks of 8x8 pixels) of the image. It is equal to the mean average

of the luminance values of all the pixels within the blob. The luminance of a pixel is given

by:

Lp = 0.2126Rp + 0.7152Gp + 0.0722Bp (4.1)

and the average luminance:

Laverage =
N∑
p=1

Lp
N

(4.2)

where N is the number of pixels within the block.

• Dominant color. This feature is used in MPEG-7 standard. A set of dominant colors

in an image provides a compact description that is easy to index. The feature descriptor

consists of representative colors, their percentages in the image, their spatial coherency,

and their color variances. In [LJH03], authors proposed an efficient and fast method based

on JPEG standard and some statistical parameters of DCT coefficients to extract dominant

color feature from the compressed bit stream. In [HJC06], authors used an easier way to

compute the first dominant color of an image. This method will be improved in our work

and used for extracting dominant color of the clothing (cf. section 5.6.2).

• Normalized r and b colors for skin. According to skin color theory, under certain light-

ing conditions, a skin color distribution can be modeled by a 2D-Gaussian model [VSA03].

In order to reduce the lighting effects of the human skin, the original RGB color images

68



4.1. Low-level visual features

are converted to the chromatic color images. If we suppose that X(R,G,B) and X
′
(r, g, b)

are pixels in the original color image and the chromatic color image respectively, r, b, and

g are expressed by: 
r = R

R+B+G

b = B
R+B+G

g = G
R+B+G

As r + b + g = 1, the g component is omitted. The 2D-Gaussian distribution is then

expressed by:

p(x) =
1

2π |Σ|
1
2

exp[−1

2
(x− µ)TΣ−1(x− µ)] (4.3)

where µ is the mean vector and Σ is the covariance matrix for r and b. Those values are

generally estimated on a large training dataset of hand-segmented images. The resulting

skin color model was used to localize and detect possible faces in images [HVB06] and to

detect naked images [LKCC07].

• Gray-scale and Color histograms. They represent the distribution of gray-scale levels

or colors in an image. They are obtained by counting the number of pixels of each intensity

value for each channel if the histogram is mono-dimensional. Some works use a 2D or 3D

histograms to take into account the correlation between color channels.

• Color moments. Those features were introduced in [SO95]. For each color channel i (i

may be R, G or B), the first three color moments are computed as follow:

Ei =
1

N

N∑
j=1

pij (4.4)

σi = (
1

N

N∑
j=1

(pij − Ei)2)
1
2 (4.5)

si = (
1

N

N∑
j=1

(pij − Ei)3)
1
3 (4.6)

where pij is the j-th pixel of the i-th channel and N is the total number of pixels of that

image.
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• Texture features. Texture is a measure of the intensity variation of a surface which quan-

tifies the appearance characteristics of an object such as smoothness, roughness, waviness,

lay, flaws, etc. There are various texture descriptors such as “gray-level co-occurrence

matrices” [HDS73], Law’s texture measures [Law80] and Gabor wavelets [MM96].

In [MM96], authors define the Gabor wavelet transform of a given image I(x,y) by:

Wmn(x, y) =

∫
I(x1, y1)g

∗
mn(x− x1, y − y1)dx1dy1 (4.7)

where

gmn(x, y) = a−mg(x′, y′) (4.8)

with a > 1 , m,n = integer and

x′ = a−m(x cos θ + y sin θ) (4.9)

y′ = a−m(−x sin θ + y cos θ) (4.10)

where θ = nπ/k and g∗mn indicates the complex conjugate of gmn.

The mean µmn and standard deviation σmn of the magnitude of the transform coefficients

are used to represent the region for classification and retrieval purposes:

µmn =

∫ ∫
|Wmn(xy)| dxdy (4.11)

σmn =

√∫ ∫
(|Wmn(x, y)| − µmn)2dxdy (4.12)

A feature vector is then reconstructed using those µmn and σmn.

F = [µ00, σ00, µ01, σ02, ..., µNM , σNM ] (4.13)

where N and M are respectively equal to 3 and 5 in [MM96].

• Interest points. Interest points are used in the problems of image segmentation, object

detection, recognition and tracking. They have an expressive texture in their respective lo-

calities. A good interest point is a point that is invariant to lighting and camera viewpoint.

Many detectors were proposed to detect the interest points such as:
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- Moravec’s point of interest operator [Mor79] that is based on intensity variation

computation,

- Harris point of interest detector [HS88] that computes the first order image derivatives

to highlight the directional intensity variation and the second moment matrix that

encodes this variation,

- KLT detector [TK91] that uses, in addition to the second moment variation, the

eigenvalues of this matrix to compute an interest point confidence,

- SIFT feature descriptor introduced by Lowe [Low04] and that will be detailed later

in section 4.4.3.

• Video features. In addition to the image features described above many video features

were also used in the literature. In [HSH07], authors defined four low-level video features

that are used to classify films into three broad categories: action, dramas, and thriller

films.

- Average shot length feature. It represents the tempo of a scene. In a film, the director

can control the speed at which the attention of the audience is directed by varying

the tempo of the scene. A shot is defined as a sequence of frames taken by a single

camera continuously along the time. It generally does not show any major change in

the color content.

- Color variance. It can be intuitively seen that comedy films tend to have a large

variety of bright colors, whereas horror films generally adopt only darker hues. Thus,

color variance may be a good discriminator for some kind of applications as the films

classifications. As a consequence, it affects negatively algorithms for people indexing.

- Lighting key. Generation of film makers has exploited luminance to induce emotions.

Therefore, a correlation exists between the lighting and the gender of a film.

- Motion content. This feature represents the amount of activity in a film. For example,

action films would have higher values for such a measure contrarily to dramatic or

romantic movies for example. To find the disturbance in the scene, a structure tensor

was used in [HSH07] to provide an orientation angle θ. This angle will be constant

for all pixels if there is no motion in the shot. If there is a global motion as camera
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translation, the values of θ will be equal or similar. However, in the case of local

motion, pixels will have different orientations, thus, different values of θ.

Wang et al. [WDV+03] listed additional video features, used especially in the compressed-

domain (MPEG technologies). They group them into 3 main categories: spatial visual features,

motion features and video coding features.

The above listed features are mostly used in many of video indexing methods: detection,

tracking and recognition. Additional visual features can be reviewed in Appendix B.

4.2 People detection

People detection in images is a challenging problem that was widely explored in the literature.

It consists in identifying and locating humans in an image regardless of their position, scale

and illumination. Many methods that aim to detect people were proposed in the literature,

they are often based on full-body detection, partial body detection (upper-body and lower-

body) or face detection. The full-body detection is generally used in Video Surveillance Systems

([IF01], [VJS03], [ARS08]) for detecting and tracking people in indoor or outdoor scenes where

real-time constraints are mandatory. As we are interested in TV videos, the following subsections

will focus on detecting face and upper-body parts as they are more occuring in that kind of data.

4.2.1 Face detection

Face detection is often used as a salient cue to detect people in images or videos. It is also strongly

used to search for other body parts. Moreover, it is the first step of any fully automatic system

that analyzes the information contained in faces (e.g. identity, gender, expression, age, race and

pose). Many conditions make the face detection task difficult like the pose (frontal, 45 degree,

profile and upside down), presence or absence of structural components (beards, moustaches

and glasses), facial expression, occlusions, orientation (in-plane rotation) and imaging conditions

(lighting, camera characteristics and resolution).

From a practical point of view, the face detection paradigm is: given an arbitrary image,

the goal is to determine whether or not there are any faces in the image, and in a positive case,

return the location and size of each face.
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Historically, many approaches were proposed to detect faces in images and sequence of

images. They can be classified into four categories: knowledge-based detection [YH94], Feature-

based detection [LBP95], Template-based [LTEA95] and Appearance-based detection ([RBK98], [VJ04]).

Most of them carry out the task by extracting certain properties (e.g. local features) of a set

of training images acquired at a fixed pose (e.g., upright frontal pose) in an offline setting. To

reduce the effects of illumination change, these images are processed with histogram equaliza-

tion [RBK98] or standardization (i.e., zero mean unit variance) [VJ04]. Based on the extracted

properties, the face detection system scan through the entire tested image at every possible

location and scale in order to locate faces.

The most recent and interesting approaches for detecting faces are the appearance-based ap-

proaches. They generally use Neural Network [RBK98], Principal Component Analysis (PCA),

Factor Analysis, Support Vector Machine (SVM), Mixture of PCA, Mixture of factor analyzers,

Distribution-based method, Näıve Bayes classifier, Hidden Markov model (HMM), Sparse net-

work of winnows (SNoW), Kullback relative information and AdaBoost technique [VJ04]. For

more details about those techniques, please refer to [hYKMA02], [hY09] and [HL01b].

In our work, we choose to use the AdaBoost method to detect frontal faces thanks to the

OpenCV toolbox17. This method contains three major phases: a rectangular feature extraction,

a classifier training using boosting techniques and a multi-scale detection algorithm [VJ04].

• Feature extraction. Those features are reminiscent from the Haar basis functions which

have been used in [POP98a] for object detection. But authors used three kinds of features

as seen in Fig.4.1: 1) the value of two-rectangle feature that is the difference between the

sum of the pixels within two rectangular regions, 2) a three-rectangle feature that computes

the sum within two outside rectangles subtracted from the sum in a center rectangle, 3) a

four-rectangle feature computes the difference between diagonal pairs of rectangles.

• Learning classifiers. Given a feature set and a training set of positive and negative

images, authors used a variant of AdaBoost technique [FS97] in order to select the features

and to train the classifier by boosting the classification performance of a simple learning

algorithm: the AdaBoost algorithm combines a collection of weak classification functions

to form a stronger classifier.

17OpenCV is a free computer vision library originally developed by Intel. It focuses mainly on real-time image

processing. Webpage: http://opencvlibrary.sourceforge.net/
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Figure 4.1: Examples of rectangle features: (A) and (B) show two-rectangle feature, (C) shows

a three-rectangle feature, (D) shows a four-rectangle feature [VJ01].

• Multi-scale detection algorithm. Viola and Jones proposed an algorithm for con-

structing a cascade of classifiers which achieves good performance while radically reducing

computation time. The algorithm detailed in [VJ04], aims to reject many of the negative

sub-windows using very simple classifiers while detecting almost all positive instances, and

then using more complex classifiers to achieve low false positive rates.

4.2.2 Upper-body detection

Although successful frontal face detectors are available, faces may not be clearly visible in some

TV shows and movies. To cope with this situation, we can use an upper-body detector.

As for face detection, the AdaBoost algorithm explained above can also be used to detect

upper-body [MOB06]. Another technique was proposed by Ferrari et al. in [FMJZ08]: it uses

the Histograms of Oriented Gradients (HOG) [DT05] to detect the upper-body. This detector is

designed to detect the region between the top of the head and the upper half of the torso. This

near-frontal detector works well for viewpoints up to 30 degrees away from straight frontal, and

also detects back views.

74



4.3. People tracking

4.3 People tracking

People tracking is a key task in many promising computer vision applications, such as smart

video surveillance (prosecution, intelligence gathering, crime prevention, traffic statistics), people

indexing in video (movies, news), motion-based human recognition (person identification based

on gait), synthesis (games, movies), driving assistance systems, or biomechanics (spot diseases).

However, basic difficulties should be expected. The people tracking system should deal with:

non-rigid or articulated nature of targets, partial targets occlusion, scene illumination changes,

small targets size, noise in images, and real-time constraints especially for visual surveillance

systems.

The following section presents a brief survey of non-rigid object (such as person) tracking

methods.

4.3.1 Existing methods for people tracking

Numerous approaches for non-rigid object (such as human) tracking have been proposed in the

literature. They generally differ on the way the object is represented and the image features are

selected, and on the algorithm the tracking is processed.

Object representation.

The object shape representations commonly employed for tracking are:

- a single point that is generally the centroid of the object or a set of points of interest

within the object,

- primitive geometric shapes such as rectangle [FJ06], ellipse [CRM03],etc,

- object silhouette and contour where the silhouette is defined as the region inside the

contour [YS04],

- articulated shape models where objects are composed of body parts that are held together

with joints,

- skeletal models where skeleton is obtained by applying medial axis transform to the object

silhouette.
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Feature selection for tracking.

Feature selection is a crucial step in tracking. The features that were investigated for people

tracking are edges, optical flow, texture and color. The last one is the most widely used feature

for tracking. Mostly those features are chosen depending on the application domain even though

some methods were proposed to handle the automatic feature selection like the filter methods

that use a general criterion (for example: the features should be uncorrelated) and the wrapper

methods that select the features based on their usefulness.

The tracking.

Object tracking aims to generate the trajectory of an object over time by locating its position

in every frame of the video. The tasks of detecting the object and tracking it can either be

performed separately or jointly [ARS08]. Historically, the object tracking methods can be

divided into three categories depending on the chosen object representation:

1. Point tracking methods that are either deterministic such as the GOA tracker [VRB01] or

statistical such as the Kalman filter [BC86] and the particle filter [Kit87].

2. Kernel tracking methods where the shape and the appearance of the object are taken into

consideration in order to track it. These methods use either the Template and density

based appearance models like Mean-shift [CRM03] or the Multi-view appearance models

like the SVM tracker [Avi01].

3. Silhouette tracking methods that provide an accurate shape description for objects. These

methods are based either on contour evolution like the variational methods [BSR00] or

matching shapes like the hough transform [SA04].

After reviewing methods for people tracking, we will focus on tracking faces and clothes

because unlike video surveillance, scenes in movies, TV talk-shows, TV games and TV News

often contain people whose upper-bodies are the only visible parts.

4.3.2 Face tracking

Tracking, which is a crucial part of most face processing systems, is essentially motion estimation.

However, general motion estimation has fundamental limitations such as the aperture problem.

In face recognition systems, it is necessary to track each face over the video sequence in order to
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extract the appropriate information. Tracking is also necessary for 3D model-based recognition

systems where the 3D model is estimated from the input video [RcG05], but the tracking is

computationally intensive in this case. Many applications may be derived from face tracking

such as video surveillance, biometrics, face modeling and video communications and multimedia

systems (MPEG technology).

Historically, many methods were proposed for face tracking. They can be divided into

three categories: (1) head tracking where the entire face is tracked as a single rigid entity (such

in [ASHP93]); (2) facial features tracking (such in [TW93]) where features like eyes, ears, mouth,

nostrils, eyebrow, lips, and nose are limited by the anatomy of the head that is supposed here as a

non-rigid object influenced with motion due to speech or facial expressions; (3) complete tracking

which involves tracking both the head and the facial features (such in [SKK08]). Besides, many

of those methods are able to handle challenging situations such as facial deformations, changes

of lighting, partial occlusions, pose variation and facial resolution.

4.3.3 Clothing tracking

The clothing is also used to help tracking people in videos. Even though researchers do not give

it a special attention in many of their publications, it remains one of the most important cues

for people tracking since a good amount of color information related to it are used by the system

trackers like in [LAMA05].

In [HE09], authors used cloth tracking in order to re-texture it for real-time virtual clothing

applications. A more sophisticated work for tracking clothed people can be found in [RKP+07]

where authors used it for motion capture.

4.4 People clustering

4.4.1 Drawback of people clustering methods

The issue of visual persons clustering is relatively new. Some researchers generally view it as a

recognition problem such in [AZ05] and [BLGT06] or a classification problem such in [ESZ06]

and [PL08]. In both cases, a set of face exemplars is generally used. This task can be used

for indexing purpose of the video data ([CMM03]) as well as for organizing consumers album

photos [CLY09] since the basic technique remains the same for sequence images or still images.

In [FZ02], authors introduced a distance metric for clustering and classification which is invariant
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to affine transformation including priors. They apply it for face clustering in order to produce

an automatic cast listing in movies.

Arandjelovic and Zisserman develop in [AZ05] a recognition method based on a cascade of

processing steps that normalize the effects of the changing environment: they first suppressed

the background surrounding the face, enabling the maximum area of the face to be retained.

Then, they added a pose refinement step to optimize the registration (using facial features like

eyes and mouth detected using SVM) between the test image and face exemplar. They used a

distance to a subspace to allow for partial occlusion and expression change. This method was

tested and evaluated on two episodes of “Buffy the Vampire Slayer”.

In [ESZ06], both visual and textual information are combined. Visual information relies

on face and clothing. Each unlabelled face track is represented as a set of face and clothing

descriptors f, c . Exemplar sets λi have the same representation but are associated with a

particular name obtained by aligning subtitles and transcripts. For a given track F, the quasi-

likelihood that the face corresponds to a particular name λi is defined by:

p(F/λi) =
1

Z
e

{
−
df (F,λi)

2σ2
f

2
}
e

{
− dc(F,λi)

2σ2c

2
}

(4.14)

where

df (F, λi) = min
fj∈F

min
fk∈λi

‖fj − fk‖ (4.15)

and the clothing distance dc(F, λi) is similarly defined.

In [CMM03], after detecting faces using an iterative algorithm that gives a confidence mea-

sure for the presence or absence of faces within video shots, authors process the clustering

of those faces using a PCA-based dissimilarity measure in conjunction with spatio-temporal

correlation. Experiments were done on a broadcast news test corpus.

In [HWS08], a new method for multi-view face clustering in video sequence is proposed: first,

a “pose clustering” is done followed by a clustering for different individuals within each “pose

group”. The eyes are detected using Gabor filters. Their location is then used to perform the

“pose clustering”. Finally, images of the similar pose are clustered using Principal Component

Analysis and Local Binary Pattern and kmeans algorithms. Experiments were done only on a

database containing only 8 persons. Each person has a short sequence that includes 7 poses:

±60◦,±45◦,±30◦, 0◦.
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Chu and al. proposed in [CLY09] a face clustering method in consumer photos by matching

images using local features. They represented matching situations using visual sentences. Then,

visual language models are constructed to describe the dependency of image patches on faces.

4.4.2 The use of hair descriptors

The hair was studied and analyzed in [YD06]. In this paper, authors proposed an automatic

hair detection algorithm that can be summarized in four steps:

• Face detection where they employ the algorithm of Viola-Jones [VJ04],

• Eye detection using the same cascade of boosted classifiers in order to train eye detectors

to localize eyes within the face region. Face and eye allow normalizing face sizes so hair

representations can be compared.

• Skin color modeling based on the automatic selection of three regions: two are below

the eyes and one at the forehead.

• Head hair color modeling by assuming that the hair is present at one or more of three

principal locations adjacent to facial skin: the right, middle and left sides of the upper

face.

After hair detection, authors define a list of hair characteristics that are used to recognize

and index people:

• the hair color by assuming that it is lambertian,

• the hair-split location that appears at either a darker shade of the hair region or as

revealed skin within the hair region,

• the hair volume that might be very important to differentiate people,

• the hair length which is defined as the largest vertical distance between the hair boundary

point and the vertical coordinate of the ear,

• the surface area covered by hair which is computed for the top of the head i.e. the

region above the eye-level,

• the hair symmetry which is defined as the ratio of the volumes of hair in the left and

right sides,
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• the inner and outer hairlines that also can be helpful,

• the hair texture where authors used the Gabor wavelets to compute the distance between

two subjects.

Authors show some successful results when taking each characteristic alone and then when

doing the fusion between all characteristics.

We should notice that this work cannot be applied in our case because:

• the face resolutions are quite different 1600x1200 and 768x576 in the paper and from

120x120 to 20x20 in our case,

• the subject may have no frontal appearance in our case unlike in the paper where the faces

are all in frontal symmetrical view,

• the authors do not give special attention on variations in hair appearances, lightning

conditions, etc.

Due to all these reasons, the tasks of hair detection and hair description in our case are more

difficult than the one implemented in [YD06].

4.4.3 The use of SIFT features

The Scale Invariant Feature Transform (SIFT) was introduced by Lowe in 2004 [Low04]. These

features are invariant to image scale and rotation, and are shown to provide robust matching

across a substantial range of affine distortion, change in illumination, addition of noise and

change in 3D view-point. The major stages of extracting the SIFT features are:

1. Scale-space extrema detection. This first stage identifies potential points of interest

(called keypoints in the SIFT framework) that are invariant to scale and orientation. It

is implemented efficiently by using a difference-of-Gaussian (DoG) function applied on

different scales of the image. Then, each sample point is compared to its eight neighbors

in the current image, nine neighbors in the scale above and nine neighbors in the scale

below. It is selected only if it is larger than all of these neighbors or smaller than all of

them.

2. Accurate keypoint localization. At each location of a candidate keypoint, a detailed

model is fit to determine location and scale. This model allows points to be rejected based
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on measures of their stability i.e. when having low contrast, being sensitive to noise or

being poorly localized along an edge.

3. Orientation assignment. To determine the keypoint orientation, a gradient orientation

histogram is computed in the neighborhood of the keypoint. Peaks in the histogram

correspond to dominant orientations. A separate keypoint is created for the direction

corresponding to the histogram maximum. Then another keypoint is created for every

other direction within 80% of the maximum value. Therefore, for location with multiple

peaks of similar magnitude, there will be multiple keypoints created at the same location

and scale but different orientation. All the properties of the keypoints are then measured

relative to the keypoint orientation, this provides invariance to rotation.

4. Keypoint descriptor. Once a keypoint orientation has been selected, the feature de-

scriptor is computed as a set of orientation histograms on 4x4 pixel neighborhoods. The

orientation information come from the Gaussian image closest in scale to the scale of

the keypoint. Each histogram contains 8 bins. This leads to a SIFT feature vector

with 4x4x8=128 elements. This vector is normalized to enhance invariance to change

in illumination.

Large numbers of features can be extracted from typical images with this algorithm. A

typical image size 500x500 pixels will give rise to about 2000 stable features. Furthermore,

those features are highly distinctive, which allows only few features to be correctly matched

with high probability against a large database of features, providing a basis for object and scene

recognition. That explains why those features were recently used for face recognition.

Fig.4.2 illustrates an image on which the SIFT features were extracted using the code im-

plemented by Lowe 18: for each keypoint, is associated a vector that contains the scale and the

orientation information.

The SIFT features was successfully applied for object recognition. Many strategies were

proposed in order to match the SIFT features computed in the test image with the SIFT features

of the template image.

In [Low04], the best candidate match for each keypoint is found by identifying its nearest

neighbor in the template image (or more generally in the database of keypoints from training

18http://www.cs.ubc.ca/ lowe/keypoints.
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Figure 4.2: A face image and its corresponding sift features.

images). The nearest neighbor that is defined as the keypoint with the minimum Euclidean dis-

tance for the invariant descriptor vector is computed using the Best-Bin-First (BBF) algorithm

that returns the closest neighbor with high probability: bins in feature space are searched in the

order of the their closest distance from the query location.

Moreover, many features that generally correspond to the background clutter are discarded

because they do not have any correct match in the training images. An efficient way to get rid

of those features is by computing the ratio of distances to the closest neighbor and the second

closest neighbor in the feature space. Lowe has chosen a threshold of 0.8: if the distance ratio

is greater than this threshold, matches are rejected. Experimentally, this eliminates about 90%

of the false matches and discards less than 5% of the correct matching.

In order to maximize the performance of object recognition, Lowe found that reliable recog-

nition is possible with as few as 3 features. In order to reduce the outliers, he used the Hough

transform that allow clustering features in pose space. The Hough transform identifies clusters

of features with a consistent interpretation by using each feature to vote for all object poses that

are consistent with that feature.

In [ANP07], authors introduced a method to create a dissimilarity matrix using the number

of matching between each couple of faces (Ai, Aj). The dissimilarity distance is defined by:

DR(i, j) = DR(j, i) = 100(1− Mij

min(Ki,Kj)
) (4.16)

where Mij is the maximum number of keypoint matches found between Ai and Aj , and Ki, Kj

are the numbers of keypoints found in Ai and Aj respectively. Experiments were carried only

on the feature length movie “Two weeks Notice”. One thing that was not mentioned is that
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the processing is done on all detected faces even within the same face track that corresponds

to a sequence of consecutive images that contain the same face (generally a shot). That is time

consuming due to the explosive amount of time needed to compute the SIFT features of every

face.

Three more focused and simplest methods for recognizing faces were proposed in [BLGT06]:

• Minimum pair distance. It consists in computing the distance between all pairs of

keypoint descriptors in the test image (Itest) and the template image (Itemp), and use as

matching score the minimum distance.

MPD(Itest, Itemp) = min
i,j

(d(F (kItestj ), F (k
Itemp
i )) (4.17)

where the sets of features for test and template images are respectively:

K(Itest) =
{
kItest1 , kItest2 , ..., kItestM1

}
and

K(Itemp) =
{
k
Itemp
1 , k

Itemp
2 , ..., k

Itemp
M2

}
• Matching eyes and mouth. The most discriminate part of face information is located

around the eyes and the mouth [NPAA97]. Bicego et al. used this fact to consider only

SIFT features belonging to this image areas. So in this case, the eyes and mouth regions

must be found. Then they compute the average distance as follows:

DEM (Itest, Itemp) =
1

2
MPD(Ieyestest , I

eyes
temp) +

1

2
MPD(Imouthtest , Imouthtemp ) (4.18)

• Matching on a regular grid. This is the best among the three methods proposed

in [BLGT06] since it takes into consideration the location of the features (by comparison

with the first method), and also, features located on the right eye could not be matched

any more with features located on the left one (by comparison to the second method). The

matching between two images is performed by computing the average distance between all

pairs of corresponding sub-images of dimensions 1/4 and 1/2 of width and height.

DRG(Itest, Itemp) =
1

N

N∑
n=1

MPD(Intest, I
n
temp) (4.19)
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After reviewing the most interesting works for people indexing, we detail in this chapter our

person indexing system using only visual information: we present our proposed methods for

shot boundary detection, face detection, our clothing extraction, our forward/backward people

tracking based on face tracking and clothing tracking. Finally, we describe our most interesting

contribution that was done for people clustering using both face an clothing cues.
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5.1 System Architecture

Fig.5.1 illustrates the general architecture of our people indexing system. After extracting low-

level information from every frame in the video sequence, shot boundary detection is processed

in order to split the sequence into homogeneous chunks. Then, a face-based people detection is

done on each shot. Tracking of every person is processed within this shot thanks to the skin of

the face and the color histogram of the clothing in order to improve the people detection results.

Finally, a people clustering method is applied by combining distances on local features and skin

color model of the face, 3D color histogram and texture of the cloth.

Figure 5.1: General architecture of the people indexing system.

In our team, this work was introduced by Jaffre [Jaf05] who developed a system that first

detects people and then uses clothing information to track those people. Our contribution

is a mature and complete solution of that problem by adding different components (as shot

boundary detection, people tracking and hierarchical people clustering), different descriptors

(as SIFT, skin color and clothing texture), different clustering criteria (simple linkage, average

linkage and complete linkage). All those allow us to reduce false alarms and missed detections.

One clear improvement is that our old system confuses between different people that wear the

same clothing, our new system will not make this confusion because it uses the face descriptor

that is related to the person identity.

5.2 Shot Boundary Detection

Historically, the first studied video segmentation task is the “shot boundaries detection” which

aims to break the massive volume of video into smaller chunks. Shots are concatenated by

editing effects such as hard cuts, fades, dissolves and wipes. A reliable shot detection algorithm

should identify such short breaks.

Because it is an important preprocessing task for video analysis, quite a lot of approaches were

proposed in the literature [TDV00], [LGZ+07]. See for example the report of TRECVid [SOD09]

for a review and a comparison of the state-of-the-art systems.
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In this work, we tried to apply our GLR-BIC method that was used for audio segmentation

and that aims to split the audio stream into homogeneous zones by assuming that a shot is a

homogeneous sequence that contains more or less identical images. In order to fit the model

selection problem, a feature vector is extracted as follows: each image provided every 40ms (25

images/second) is divided into 4 equivalent parts. The mean values of R, G and B colors are

computed in each part. Therefore, the feature vector of dimension d is composed of those values

(d = 3∗4). Then, the GLR-BIC algorithm is applied as explained in the section 2.1 of chapter 2.

In order to eliminate some false alarm detections (improvements of about 5 to 10%), a final

step of histograms comparison is applied on the detected boundaries using the Manhattan (or

City-Block) distance:

dManhattan =

255∑
i=0

|h1,i − h2,i| (5.1)

where h1 and h2 are the histograms of two compared 8-bits images. Tab.5.1 shows the results

of the proposed system compared to the average system and the best system at the ARGOS

French competition using both ARGOS and TRECVid evaluation metrics.

Table 5.1: Comparison between the proposed system, the average system and the best system

at the ARGOS competition using both ARGOS and TRECVid metrics.

Proposed system Average system Best system

ARGOS F-measure 93.3% 87% 94%

TRECVid F-measure 91% 88.9% 89.9%

5.3 Face based detection

In this work, we used the face detector proposed by Viola and Jones [VJ04] due to its high

accuracy and speed. This method is implemented in OpenCV toolbox. We use it to detect

frontal faces in still images as seen in Fig.5.2. Then, a trivial improvement was done in [Jaf05]

on sequence of images by taking into account that a face must be present in at least 5 consecutive

frames in order to be visible. Accordingly, many false alarm detections are removed.
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Figure 5.2: Multi-face frontal detection on a still image.

5.4 Clothing extraction

Once the face is detected and located, the second goal is to extract the most interesting clothing

part in order to use it as a discriminate descriptor for recognition on next stages.

For frontal faces, the clothing of the upper-body since in TV broadcast (movies, debates,

news, etc.) usually the face and the upper-body are generally the most appearing parts of the

body. Thus, the clothing is extracted as seen in Fig.5.3: the width of the clothing is considered

as equal to 2.3 times the width of the face, and its height equal to 2.6 times the height of the

face.

5.5 People tracking

After localizing frontal and profiles faces and their corresponding clothing locations, a tracking

step is needed to follow the face in order to detect people in regions where the face detector
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Figure 5.3: Extraction of clothing using frontal faces.

fails. We proposed two tracking systems: the first is based on face tracking and the second is

based on clothing tracking.

5.5.1 Face-based people tracking

As the size of the face is relatively small, we consider the face as an single non-rigid entity

with no need to track the face features (eyes, lips, etc.). Based on skin tracking, two tracking

processes are done using face: a backward tracking and a forward tracking.

Fig.5.4 resumes the extraction and the modeling of the skin color of the face: since the face

is detected and localized, the purpose is to extract the skin part of that face and to model it in

order to help tracking people in cases where the face detectors fail. This can be summarized in

2 steps:
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Figure 5.4: Extracting and modeling the color of the skin within the face.

1. Skin extraction. The RGB image is converted to YCrCb and HSV spaces. Then,

thresholding is applied on the Cr, Cb components that are coded on 1 byte, and the hue

H is normalized between 0 and 1, using the following expressions:

135 ≤ Cr ≤ 170

130 ≤ Cb ≤ 200

0.01 ≤ H ≤ 0.1

 (5.2)

Those thresholds were chosen in order to allow detecting from the very light to the very

dark skin. Fig.5.5 shows some examples of skin detection within the face region.

2. Skin modeling. Once the skin is extracted, the corresponding normalized r and b are

computed as explained in section 4.1. Then, they are used to train a 2D Gaussian model.

This model is used to help forward and backward tracking. It has been shown [VSA03]

the rgb normalized space is better than RGB, YCrCb and HSV spaces since it handles the

lighting variation.

The backward-forward tracking. For each detected face, two points are computed as il-

lustrated in Fig.5.4. The first point Pt1 denotes the top-left corner of the rectangle in which

the face is detected and the second one Pt2 denotes the bottom-right corner. Supposing that a

shot contains n frames and that the face is only detected in a sequence of frames Fs, ..., Fe, the

purpose is to see if that face is also present in Fs−1, Fs−2, ..., F1 on the left side, and present in

Fe+1, Fe+2, ..., Fn on the right side as seen in Fig.5.6.

The proposed algorithm is an iterative process and can be divided into 4 steps:
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Figure 5.5: Examples of skin color extraction within the face: For each face image, the corre-

sponding extracted skin part image appears below it.
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Figure 5.6: The backward-forward tracking scheme.

1. For the backward (respectively forward) tracking, two points are estimated in the frame

Fs−1 (respectively Fe+1) as follows:

Pt′1 = Pt1 − α(Pt2 − Pt1)

Pt′2 = Pt2 + α(Pt2 − Pt1)
(5.3)

where Pt1 and Pt2 are the corners of the face box obtained on the starting frame Fs

(respectively Fe) and α a fixed coefficient (for example α = 0.1).

Pt′1 and Pt′2 delimit the estimated box in which the candidate face may be present.

2. each pixel (i,j) within the box is evaluated using the probability function:

p(x) =
1

2π |Σ|
1
2

exp[−1

2
(x− µ)TΣ−1(x− µ)] (5.4)

where x = (i, j), and the mean µ and covariance Σ are adapted on the skin color of the

frame Fs (respectively Fe).

3. Because the face is considered as a single entity, pixels are processed using the dilation

and erosion morphological filters.

4. if the Ratio of the Skin Part (RSP) within the box is higher than a certain threshold Thr

(e.g. Thr = 0.6 means that the skin is detected in more than 60% of the face region),
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the face is considered as present and the points Pt1 and Pt2 are updated according to the

proper box in the candidate image, the 2D Gaussian model is also updated with the new

data and the process is repeated for frame Fs−2 (respectively Fe+2) starting from step 1.

If RSP is lower than Thr or if the boundaries of the shot are reached, the iterative process

is stopped.

We find a method to compute the threshold Thr according to the coefficient α by con-

sidering some assumptions: we suppose that theoretically, that the skin part occupy an

area As of more than 0.7 of the face box. The ratio of the skin part can be computed as

follows:

RSP =
As
xy

(5.5)

If we assume that there is no change in the face aperture and movement, the RSP in the

new estimated box that depends from α will be:

RSP ′ =
As

(1 + 2α)x(1 + 2α)y
=

As
(1 + 2α)2xy

=
RSP

(1 + 2α)2
(5.6)

Therefore, the adapted threshold Thr will be equal to 0.7
(1+2α)2

(e.g. Thr = 0.4861 for

α = 0.7).

5.5.2 Clothing-based people tracking

In some cases, the face tracking fails because the face may be occluded or the skin color model

is not well estimated. In this case, we can use clothing feature to enable the tracking.

After extracting the clothing (cf. section 5.4), the image is converted to HSV system, and

then a 3D or 2D histogram (in some works, the V component is not considered in orded to

reduce the lighting effect) is computed on the clothing zones as seen in Fig.5.7.

The backward-forward tracking of the clothing is iteratively done using histograms compar-

ison between the clothing box of Fs (respectively Fe) and the estimated clothing box of Fs−1

(respectively Fe+1) computed using equations 5.3. The distance used for comparison is the

Bhattacharyya distance:

DBhattacharyya = − ln

[∑
i

∑
i

∑
k

h1(i, j, k)(h2(i, j, k)

]
(5.7)
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Figure 5.7: 2D histogram for the H and S components computed on the clothing zone.

Finally, the new value of Pt1 and Pt2 are updated by computing the optimal values that

correspond to the following expression:

arg min
(Pt

′
1,P t

′
2)

[D(cloths, cloths−1(Pt
′
1, P t

′
2)] (5.8)

where cloths corresponds to the clothing extracted in frame Fs and cloths−1 corresponds to the

estimated box delimited by Pt
′
1 and Pt

′
2 (Pt

′
1 and Pt

′
2 are chosen in the neighbors of the old

Pt1 and Pt2).

5.6 Proposed methods for people clustering

The visual clustering consists in grouping all sequences of images that contain the same appearing

person. It is obvious that the most reliable descriptor for doing that is the face. But also, other

visual features can be helpful like the clothing and the background. In the following sections,

we will present our proposed methods for face-based clustering using SIFT features, for clothing

based clustering and then the hierarchical bottom-up algorithm.

5.6.1 Face-based clustering

Face is a very important discriminate high level feature: the skin color, the hair, the geomet-

rical layout, the ears, the eyes, the mouth, the nose are all descriptors that might be used to

recognize people. But the variation in illumination between the video documents or even within

the document, the different kinds of face scales we may have, the pose variation, the partial

occlusions, etc. are constraints that make the task of face-based clustering difficult.
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In this work, we decide to study three face descriptors: the skin color that was analyzed

in section 5.5.1, the hair and the SIFT descriptors. Moreover, instead of processing the whole

sequence of faces which is time consuming, we decide to work only on key-faces: for every

sequence of frames, we choose one face that must be the most representative containing the

maximum amount of information.

5.6.1.1 Choice of the key-face

We define a list of criteria that the key-face must respect:

1. The area (w ∗ h) of the face box must be as large as possible (cf. Fig. 5.8 (a)), In our

experiments, we found that the use of [min(w, h)]2 is slightly better than w ∗ h.

2. The ratio of skin part (RSP ) within the face box must be as high as possible (cf. Fig.5.8

(b)).

RSP =
number of skin pixels

total number of pixels
(5.9)

3. The width (w) to height (h) ratio must be as close as possible to 3/4 which is used in

many face recognition databases [SH94] [BHaPHK96] (cf. Fig.5.8 (c)).

4. The face must be as frontal and vertically aligned as possible (cf. Fig.5.8 (d)). An

indication of the face orientation is given by the image moment mu30 computed on the

normalized gray-scale image Ig:

mu30 =
∑
x

∑
y

(x− x0)3Ig(x, y) (5.10)

where (x, y) the coordinates of a pixel within the image and x0 the mean of x horizontal

values. The face is frontal and symmetric if mu30 is close to 0.

One good way to model the choice of the keyface K is to use the following expression:

K = arg max
k

 RSPk ∗ [min(wk, hk)]
2(

1 +
∣∣∣wkhk − 3

4

∣∣∣) ∗ (1 + |mu30)|

 (5.11)

where k ∈ [1, ..., Nk], Nk is the number of frames within the sequence.

Results detailed in section 6 show that the choice of the keyface using the above formula is

widely better than arbitrary selecting the face of the middle frame within the sequence.
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Figure 5.8: Choice of the key-face.

5.6.1.2 SIFT matching

As described previously in section 4.4.3, the SIFT features are invariant to scale, rotation,

illumination and noise. Nowadays, they are used as a baseline features for object recognition in

most successful systems like the Columbia University system [CHJ+08] presented in TRECVid

2008 evaluation competition where 20 High level different concepts were extracted. Systems

performing this kind of task need huge training on positive and negative data. But in the case

of clustering algorithm, there are two main differences:

1. The system is an unsupervised system where no initial training is allowed.

2. The challenging problem here is not to match between test and template images to see if

there is a face in the tested image (as the above object recognition systems do), but the

issue here is to verify if the two faces are assigned to the same person.

In order to process the matching between SIFT features, we were inspired by the works

of [Low04] and [BLGT06] that were described in section 4.4.3.
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In [Low04], the matching between keypoints in the first keyface and keypoints in the second

keyface is done by computing the ratio of distances of the keypoint to its closest and its second

closest neighbor. If this ratio is under a fixed threshold (0.8), the matching between this keypoint

and its closest neighbor is considered to be correct. Fig.5.9 and Fig.5.10 show examples of correct

and false matching between faces. First, we can notice that if the faces correspond to the same

person, the number of matches is greater than case where the two faces are different. Second,

we can notice that the matching between faces of the same person works even if there are

illumination, scale and head pose changes.

Figure 5.9: Example of good matches under some variation in lighting, orientation and scale.

Figure 5.10: Example of bad matches.

The number of matches gives an idea about the fact that the two faces are identical or not,

but it is not efficient because the number of extracted keypoints may vary from an image to
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another: it is more probable to have more matches between images that both provide great

numbers of keypoints than matching between images if at least one of them has few number of

keypoints.

Moreover, there is some similarity between faces even though they do not correspond to the

same person. There may be matching between features around the eyes, the mouse of those

different faces. That is why in this case, we should find an additional criteria like the minimum

pair distance in order to evaluate this matching.

In [BLGT06], the issue is to recognize/authenticate faces. The distance is computed between

all pairs of keypoints and only the minimum pair distance (MPD) is thresholded to verify if

the two faces correspond to the same person. In order to improve their system, authors used

information about the eyes and the mouth to have location information, and then they divided

the images into sub-images and do the matching between corresponding sub-images. There are

many difficulties in this method of matching using a regular grid:

1. computing the position of the eyes and the mouth is another challenging task especially

on low resolution of faces like in our framework,

2. there might be no extracted keypoints in a sub-image. That will distort the average

minimum pair distance.

3. in some cases, two pairs of matched keypoints taken from the same pair of sub-images

(those pairs correspond to the minimum pair distance and the second minimum pair

distance for that pair of sub-images) may be more distinctive than taking only one pair

from each sub-image.

Our algorithm consists in combining the strong ideas of both [Low04] and [BLGT06] papers.

First, we consider two keyfaces K1 and K2 with the respective set of extracted SIFT features: F1 = fK1
1 , fK1

2 , ..., fK1
L

F2 = fK2
1 , fK2

2 , ..., fK2
M

After applying the Lowe’s matching in terms of ratio of distances to the first and second closest

keypoints in the feature space, a new set of pairs of matched keypoints is provided:

P = {p1, p2, ..., pQ} (5.12)

where pi is a pair of features (fK1
i1
, fK2
i2

) and Q ≤ min(L,M).
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Second, we compute the distance Dpi for each pair of keypoints. Those keypoints are then

sorted ascending (i.e. from the minimum to the maximum distance). After that, only the first

N pairs are selected to compute their average distance value that we call the “Average of the

N -Minimum Pair Distances” ANMPD:

Dsift = ANMPD =
1

N

N∑
i=1

Dpi (5.13)

This average distance is used as a merging criterion in the hierarchical bottom-up clustering (cf.

section 5.6.3).

Experiments show that the best value of N is 5 (cf. Tab.6.4 in chapter 6). An example of

good matching between faces under different conditions using SIFT is shown in Fig.5.11.

Figure 5.11: Example of 13 faces of the same person that were correctly matched using ANMPD

distance: we can notice different facial expressions, lightning conditions, glasses and occlusions.

This example is taken from the AR database [MB98].

5.6.2 Clothing based clustering

Since within video documents like debates, TV games, movies and series, a character is wearing

the same clothing during all the document or on at least a short period of time (especially for

movies), clustering using clothing information of the person is a significant solution. In our

work, we investigate three clothing descriptors: the dominant color, the 3D histograms and the

texture.

Histograms Comparison The comparison of the 3D histograms of the clothing box is done

using the bhattacharyya distance that was previously expressed in equation 5.7. This distance

is used as a merging criterion in the clustering process. However this distance can be influenced

with some noise due to the background clutter or the foreground occlusions like the examples
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shown in 5.12. To eliminate this noise we decide to extract the dominant color and then apply

the histograms comparison on dominant colors.

Figure 5.12: Two people with two different costume box: the noise is due to the background

and to the foreground objects like hands and characters.

Dominant Color The extraction of the dominant color we applied is inspired from the work

of [HJC06]. The main difference is that our method considers that the dominant color is

distributed on a margin of colors in the RGB or HSV space unlike the method used in [HJC06]

where the extracted dominant color is a unique triplet of (R,G,B) or (H,S,V) values. In our

work, we decide to use the HSV space since it gives slightly better results than RGB (about 1

to 2% improvements).

We consider the costume box presented in the image (a) of Fig.5.13.
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Figure 5.13: Extraction of the dominant color.

Five successive steps are done in order to extract the dominant color:

1. In the HSV space, we plot the Hue histogram as seen in figure 5.13.b, then a smoothing

process is done in order to eliminate local minima. The maximum value is found on the

histogram and its two minimum adjacent neighbors are selected. The most represented

hue is located in the margin delimited by those two minima.

2. We return back to the image and we exclude all pixels where the Hue value does not

correspond to the selected margin. In Fig.5.13.c, the eliminated pixels are represented in

black while the pixels left are illustrated in white.

3. On the pixels left, the Saturation histogram is computed. Then, the most represented

saturation is selected like in step 1. (cf. Fig.5.13.d).

4. Again, the pixels that do not correspond to the saturation margin are eliminated as

illustrated in Fig.5.13.e.

5. The same process of searching for the most representative value is done (Fig.5.13.f) and

the corresponding pixels are selected.

Finally, as seen in Fig.5.13.g, the dominant color is extracted from the image box while the

black color corresponds to the eliminated pixels. More examples are shown in Fig.5.14 where

the clothing and its dominant color are shown.
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Figure 5.14: Examples of dominant color areas extracted.

Texture In this work, we use the Gabor texture feature vector [MM96] that was previously

introduced in section 4.1. In order to compute the distance between the textures of two dif-

ferent clothes i and j, we compute the normalized distance in the feature space between the

corresponding feature vectors F i and F j .

 F i = [f i1, f
i
2, ..., f

i
Q]

F j = [f j1 , f
j
2 , ..., f

j
Q]

(5.14)
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The distance is defined by:

D(i, j) =
∑
q

∣∣∣∣∣f iq − f
j
q

α(fq)

∣∣∣∣∣ (5.15)

where α(fq) is the standard deviation of the qth coefficient of the feature vector all over the

database.

5.6.3 Hierarchical bottom-up clustering

After listing the different kinds of face and costume features that can be used to help clustering

tracks that correspond to the same person, the issue here is to find an efficient way to combine

all this information in order to perform the most accurate clustering. It is obvious that tracks

that verify all the merging criteria listed above are favored to be merged. But in some cases

where illumination, background clutter and clothing may change, some of the above criteria will

not be verified. In this case, we give more confidence to some special descriptors. That is why

we decide to do a 3-levels hierarchical clustering:

• First-level hierarchical clustering. This step is illustrated in figure 5.15. After extract-

ing face and clothing features, distance matrices D1 (SIFT), D2 (Skin), D3 (Histogram)

and D4 (Texture) are reconstructed by computing the appropriate distance between every

pair of tracks in terms of the corresponding feature. Then we define a similarity matrix

that combines all the above matrices. Every element of that matrix is computed using the

following expression:

S(i, j) =
A∏
a=1

max(Thra −Da(i, j), 0) (5.16)

where S(i, j) denotes the similarity between the ith track Ti and the jth track Tj where

i and j varies from 1 to N1 which is the number of tracks. S(i, j) may be even positive

if there is good matching or equal to 0 if at least one of the descriptor disagrees the

matching. Da(i, j) is the distance between Ti and Tj in terms of the ath descriptor. Thra

is the threshold that corresponds to the ath descriptor. It is tuned by processing the

clustering method using only this descriptor (cf. table 6.6). In this study, A = 4 since

there are only 4 descriptors.

Then, the clustering is done between tracks/clusters that are similar in terms of the

resulting similarity matrix. It is done in a hierarchical bottom-up manner, i.e. starting
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from the most similar tracks/clusters, using the complete linkage property. After each

merging between two tracks Ti and Tj , the matrices are updated by eliminating the ith

and jth rows and the ith and jth columns and by inserting only a row and a column at the

Ith position where I = min(i, j) and their elements are computed as follows:

At the position k of the Ith row (or column),

- the distance based on the SIFT features of the face uses the single linkage:

Dsift(I, k /∈ {i, j}) = min(Dsift(i, k), Dsift(j, k)) (5.17)

- the distance based on the skin color of the face uses the average linkage:

Dskin(I, k /∈ {i, j}) =
niDskin(i, k) + njDskin(j, k)

ni + nj
(5.18)

where ni and nj are the number of skin pixels of the ith and jth tracks/clusters.

- the distance based on the color histogram of the clothing uses the full linkage:

Dhist(I, k /∈ {i, j}) = Dbhattacharyya(HI , Hk) (5.19)

where

HI =
niHi + njHj

ni + nj

- the distance based on the texture of the clothing uses the average linkage:

Dtexture(I, k /∈ {i, j}) =
Dtexture(i, k) +Dtexture(j, k)

2
(5.20)

The appropriate linkage type for each descriptor is chosen according to the nature and the

behaviour of this descriptor.

Consequently, the updated similarity matrix is computed using equation (5.16). The

clustering is repeated until the stopping criterion is verified i.e. when all similarities are

equal to 0.

At the end of the clustering, a new set of clusters (N2 clusters with N2 < N1) is obtained

with their corresponding distance matrices as seen in figure 5.15.

• Second-level hierarchical clustering. After a first clustering where the merging con-

fidence is very high, a second clustering is done in terms of the clothing similarity. In

this case, two sufficient conditions should be verified:
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Figure 5.15: First-level hierarchical clustering.

- at least one among the two clothing descriptors is working: the second descriptor may

fail if there are partial occlusions (the texture descriptor fails!) or lightning variations

(the color histogram comparison fails!);

- at least one among the two face descriptors is working: it is taken into account in

order to prevent merging between two people that are wearing the same clothing.
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The above constraints are expressed by the following formula:

S(i, j) = max(S13(i, j), S14(i, j), S23(i, j), S24(i, j)) (5.21)

where

Sab(i, j) = min(Da(i, j)− Thra, 0).min(Db(i, j)− Thrb, 0) (5.22)

S13 is the similarity based on the SIFT features of the face and the histogram of the

clothing, S14 is the similarity based on the SIFT features of the face and the texture of

the clothing, S23 is the similarity based on the skin color of the face and the histogram of

the clothing, and S24 is the similarity based on the skin color of the face and the texture

of the clothing.

After each merging between two clusters, the matrices are updated as above. The clustering

is repeated until the stopping criterion is reached, i.e. all similarities are equal to 0.

• Third-level hierarchical clustering. When the illumination varies or the clothing of

the person changes, color-based features and texture features are subject to change. In

this case, the only confident features that will remain useful are the SIFT features on faces.

That is why a final clustering step must be done according only to SIFT features. This

clustering is repeated until the stopping criterion is verified i.e. all similarities are higher

than Thr1.
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6.1 Evaluation tool

After building our face-and-clothing people indexing system, the next step aims to evaluate it.

At the beginning, we must mention that many components of that system can be evaluated each

one apart: the shot boundaries detector (that was tested in section 5.2), the people detector, the

people tracker and the people clustering algorithm. But since our main contribution lies mostly

on the clustering method, and since the rules for manual annotation lead to many ambiguities

in how to consider the presence of a person in a video, we decide in this chapter to evaluate only

the clustering part.

In order to mesure the performance of that clustering, we are inspired by the work done in

the speech processing community to evaluate speaker diarization systems. The tool we use is

defined by the speech group of NIST19.

19http://www.itl.nist.gov/iaui/894.01/
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Thus, the people clustering task is evaluated according to the errors that occur when person

turns detected by the automatic system do not match the expected person turn in the ground-

truth. It means that the error is measured by computing the overall person time that is

attributed to the wrong person.

Err =

∑
Allseqs

(dur(seq) ∗ (min(NR(seq), NS(seq))−NC(seq)))∑
Allseqs

(dur(seq).NR(seq))
(6.1)

where for each sequence seq :

• dur(seq)=the duration of seq,

• NR(seq)= the number of people appearing in seq according to the reference,

• NS(seq)= the number of people appearing in seq according to the system,

• NC(seq)= the number of correct matching, i.e. the number of people appearing in seq

for whom their matching (mapped) system people are also appearing in seq.

6.2 Corpora

Since there is no training step needed in this work but only a step of fixing parameters and

tuning thresholds, we divide our data into 2 sets: a development corpus and a test corpus.

6.2.1 Development corpus

The development corpus contains 520 tracks of a talk show program of about 40 minutes length

where many reports and movie scenes occur. The annotation time for that document took about

12 hours. This is due to the fact that more than one person may appear in the same shot. The

total number of the people appearing in this video is equal to 25: 4 of them appear with two

different clothing and 3 others have the same clothing appearance. The resolution of the images

is 320x240.

6.2.2 Test corpus

The test corpus was chosen in order to cover all the possible types of video data (news, debates

and movies):
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• Table 6.1 describes the broadcast news corpus: two files of American news: “19980104 ABC”

(ABC), “19980202 CNN” (CNN) chosen from TRECVid 2003 corpus, two files of French

news: “JT F2 20h 13 05 03” and “JT F2 20h 18 05 03” (France 2) chosen from the Argos

2007 corpus, one file of Lebanese news: “20041117 200000 LBC LBCNEWS ARB” (LBC)

chosen from TRECVid 2005 corpus and one file of Chinese news: “CCTV 2009” (CCTV)

that was personally recorded. The total duration of those files is 4 hours, 5 minutes and 22

seconds. We annotate semi-automatically those files in terms of people appearing in every

image (we annotate only faces that were detected by our face detector). The clustering

annotation period took about 50 hours of work.

Table 6.1: News corpus.

description main talking

language

duration length number of

people

ABC news American english 1708 sec 79

CNN news American english 1779 sec 55

France2 news (1) French french 2496 sec 145

France2 news (2) French french 2231 sec 117

LBC news Lebanese arabic 3500 sec 156

CCTV news Chinese french 3008 sec 74

• Table 6.2 describes the broadcast debates corpus. All are french programs: two files of the

program “Le Grand Journal”, one file of the program “C’est notre affaire” and one file of

the program “C’est dans l’air”. Their total duration time is 3 hours, 30 minutes and 36

seconds. The manual annotation took about 70 hours of work.

• Table 6.3 describes the movies corpus. This corpus contains excerpts from the following

movies: “Les Choristes”, “Amelie”, “Virgins Suicide” and “Asterix Obelix”. The total

duration of the annotated part is 3 hours 4 minutes and 42 seconds. The annotation

period is estimated to 100 hours of work due to the difficulty of this task in the chosen

movies: many persons with the similar clothing, different lightning conditions, variation

in the face size, pose variation, etc.
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Table 6.2: Debates corpus.

Channel main talking

language

duration

length

number of

people

Le Grand Journal (1) Canal+ french 3599 sec 74

Le Grand Journal (2) Canal+ french 3524 sec 167

C’est notre affaire France 5 french 1602 sec 21

C’est dans l’air France 5 french 3911 sec 49

Table 6.3: Movies corpus.

description main talking

language

duration length number of

people

Les Choristes French french 3600 sec 139

Amelie French french 2645 sec 50

Virgins Suicide American english 2191 sec 93

Asterix Obelix French french 2646 sec 96

6.3 Experiments on the development set

Six experiments are processed on the development set. Their goal is not only to validate the

proposed measures and methods, but also to tune the parameters and the thresholds of the

system.

The first experiment is done in order to choose the best value of N for the proposed ANMPD

method for SIFT (cf. section 5.6.1.2). Tab.6.4 reports the minimum clustering error rate (CER)

obtained for the different values of N . It shows that the CER decreases and then increases with

a minimum value at N=5. In next experiments, we fixed the value of N to 5.

Table 6.4: Clustering Error Rate for different N values used in Equation 6.

N 1 2 3 4 5 6 7 8

CER(%) 55.1 49.1 32.8 31.2 28.4 30.2 33 35.1
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The second experiment aims to study the impact of the keyface selection. Results show that

the arbitrary choice of the middle face gives a CER equal to 43.7%. However, the proposed

method for selecting keyfaces gives a CER equal to 28.4%.

The third experiment aims to compare the ANMPD with Lowe’s matching and Minimum

pair distance matching. Results in Tab.6.5 show that our proposed method outperforms the

Lowe’s matching by an absolute gain of 7.5%, the MPD method by 26.7% and the MPD on

regular grid by 3%.

Table 6.5: Comparison between different sift matching techniques: Lowe’s matching, MPD

matching, MPD matching on regular grid and the proposed ANMPD matching.

Lowe’s matching MPD MPD on regular grid proposed ANMPD

CER(%) 35.9 33.2 31.4 28.4

The fourth experiment aims to compare the clustering using each descriptor alone. Tab.6.6

shows that the descriptor that gives best results is the 3D-Histogram of the clothing with a

CER = 16.8%. The second good results are provided by SIFT matching with CER = 28.4%.

The two other descriptors are consecutively the clothing texture and the skin color of the face.

The corresponding stopping criteria for each descriptor are also reported. These thresholds are

used in equation 5.16 and 5.22 to compute similarity matrices for the hierarchical clustering.

Table 6.6: Minimum clustering error rate for each visual descriptor: 3D-Histogram of the

clothing, texture of the clothing, skin color of the face, and sift features of the face. The

thresholds that correspond to the stopping criterion are also reported.

SIFT Skin Hist Texture Fusion

CER (%) 28.4 56.6 16.8 55.5 13.0

Stopping criterion Thr1 = 0.41 Thr2 = 3.2 Thr3 = 3.3 Thr4 = 0.126 -

The fifth experiment is done to report the behavior of the proposed fusion method compared

to the four descriptors and at different levels of the clustering process. Fig.6.1 shows that the

proposed clustering is better than almost all descriptors each one taken alone. For example:

- when the number of clusters is equal to 400, the proposed clustering outperforms the best

one (skin color descriptor) by an absolute gain of 1.7%.
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- when the number of clusters is equal to 250, the CER of the proposed method is equal to

44.8% however the best of the four descriptors was the SIFT with CER equal to 46.4%.

- when the number of clusters is equal to 25, the CER of the proposed method is equal to

14.5% however the best of the descriptor was the 3D-histogram of the clothing with CER

equal 42.3%.

- the best CER value is 13%. It is obtained for a number of clusters equal to 50.
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Figure 6.1: Comparison between the four features and the proposed clustering method.

The sixth experiment is done in order to evaluate the impact of using the dominant color.

Fig.6.2 shows that at the beginning of the clustering process (number of cluster higher than

200), no real comparison can be made. However, when the number of clusters approaches the

real number of people, the impact of using the dominant color is highest: when the number of

clusters is equal to 50, the absolute gain is 34.9%.

Fig.6.3 and Fig.6.4 illustrate the clusters obtained at the end of the hierarchical clustering.

Each of these clusters corresponds effectively to only one person under different lightning, pose

and scale conditions.

6.4 Results on the test set

In the following experiments, we use the same thresholds as the one fixed for the development set.

Tables Tab.6.7, Tab.6.8 and Tab.6.9 show the CER of the different existing methods for SIFT
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Figure 6.2: Comparison between applying the Histogram comparison directly on the costume

box and applying it on the dominant color area.

Figure 6.3: Example 1 of cluster delivered at the end of the clustering process of “arret sur

image” TV debates.

compared to our proposed method based on ANMPD. For news, the absolute improvements

of our method is 12.26% comparing to Lowe’s matching, 10.41% comparing to MPD matching

113



Chapter 6. Experiments and Results

Figure 6.4: Example 1 of cluster delivered at the end of the clustering process of “arret sur

image” TV debates.

and 10.07% comparing to MPD matching on regular grid. For debates, the proposed ANMPD

method outperforms the old methods by 17%. For movies, the improvement is over 14%. The

error is computed in terms of the weighted average CER because it takes into account the time

of detected faces in each file.

Table 6.7: Comparison between different SIFT matching techniques on broadcast news: Lowe’s

matching, MPD matching, MPD matching on regular grid and the proposed ANMPD matching.

Lowe’s

matching

MPD MPD on

regular grid

proposed

ANMPD

ABC news 10.1 5.86 7.72 5.22

CNN news 31.66 31.36 31.66 26.76

France2 news (1) 18.39 16.31 11.54 4.26

France2 news (2) 25.57 23.94 25.32 4.85

LBC news 26.63 25.00 25.18 15.82

CCTV news 14.10 12.15 11.86 5.27

Weighted average CER (%) 22.22 20.37 20.03 9.96
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Table 6.8: Comparison between different SIFT matching techniques on debates: Lowe’s match-

ing, MPD matching, MPD matching on regular grid and the proposed ANMPD matching.

Lowe’s

matching

MPD MPD on

regular grid

proposed

ANMPD

Le Grand Journal (1) 58.4 49.8 50.7 28.9

Le Grand Journal (2) 44.89 44.18 40.61 27.72

C’est notre affaire 65.98 61.51 62.32 54.91

C’est dans l’air 33.43 40.14 39.54 23.28

Weighted average CER (%) 43.09 44.33 43.27 27.51

Table 6.9: Comparison between different SIFT matching techniques on movies: Lowe’s matching,

MPD matching, MPD matching on regular grid and the proposed ANMPD matching.

Lowe’s

matching

MPD MPD on

regular grid

proposed

ANMPD

Les Choristes 61.70 59.34 59.59 44.48

Amelie 72.04 69.59 69.64 62.33

Asterix Obelix 63.92 63.77 63.75 43.79

Virgin Suicide 48.16 44.21 42.43 31.69

Weighted average CER (%) 61.44 59.30 59.07 44.92

Tables Tab. 6.10, Tab. 6.11 and Tab. 6.12 describe the behavior of the clustering in terms of

each descriptor and each video file. Unlike in the development set, we can deduce that the most

interesting descriptor is the SIFT. Then, come the color histogram descriptor, the skin color

descriptor and the texture descriptor. Moreover, the fusion of those descriptors gives better

results:

- For news, table 6.10 shows that the most confident descriptor is the SIFT descriptor with

a weighted average CER of 9.96%. The influence of other descriptors is not very relevant

because the weighted average CER of the fusion system is 9.10%.

Figures Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig. 6.8, Fig. 6.9 and Fig. 6.10 show that the intra-

variation within the cluster is relatively low.
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Table 6.10: Results of the different descriptors and the fusion clustering on Broadcast news:

SIFT features of the face, skin color of the face, 3D-Histogram of the clothing and texture of

the clothing.

SIFT Skin Hist Texture Fusion

ABC news 5.22 45.05 15.5 18.72 5.18

CNN news 26.76 19.59 42.32 38.44 18.35

France2 news (1) 4.26 24.48 21.04 24.58 3.94

France2 news (2) 4.85 37.92 8.73 15.41 5.22

LBC news 15.82 23.80 28.59 32.10 15.56

CCTV news 5.27 34.65 19.22 16.16 5.27

Weighted average CER (%) 9.96 30.05 21.67 24.22 9.10

Figure 6.5: Example of a cluster delivered at the end of the clustering process on the ABC news.

- For debates, table 6.11 also shows that the SIFT descriptor is by far the best descriptor for

clustering with a weighted average CER of 27.51%. However, the use of other descriptors

give an additional improvement of 11.78%.

Fig.6.11, Fig.6.12, Fig.6.13, Fig.6.14, Fig.6.15 and Fig.6.16 show that the resulting clusters

contain faces that are more heterogeneous than faces in news. However they have generally

the same lightning and the same scale.
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Figure 6.6: Example of a cluster delivered at the end of the clustering process on the CNN news.

Figure 6.7: Example 1 of a cluster delivered at the end of the clustering process on France 2

news.

- For movies, the weighted average CER of the proposed clustering is 43.72% as seen in

Tab.6.12. It is clearly higher than errors obtained on news and debates.

As seen in Fig.6.18, 6.19, Fig.6.20, Fig.6.21, the high CER can be explained by the fact

that there are high variation on many levels: lightening variation, face orientation, face

size, intra-clothing variation (i.e. people are changing clothing), inter-clothing similarity
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Figure 6.8: Example 2 of a cluster delivered at the end of the clustering process on the France

2 news.

Figure 6.9: Example of a cluster delivered at the end of the clustering process on the LBC news.

(i.e. people are wearing similar clothing), etc. Even if our method can handle all those

kinds of variations, the hierarchical clustering remains difficult. In part 3, we will use the

audio information to correct this remaining weakness.
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Figure 6.10: Example of a cluster delivered at the end of the clustering process on the CCTV

news.

Table 6.11: Results of the different descriptors and the fusion clustering on Broadcast news:

3D-Histogram of the clothing, texture of the clothing, skin color of the face, and sift features of

the face.

SIFT Skin Hist Texture Fusion

Le Grand Journal (1) 28.90 33.82 41.98 45.43 14.6

Le Grand Journal (2) 27.72 34.92 50.46 54.04 20.60

C’est notre affaire 54.91 40.75 42.66 69.21 49.75

C’est dans l’air 23.28 72.23 70.65 78.56 8.92

Weighted average CER (%) 27.51 53.16 58.23 65.34 15.73
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Figure 6.11: Example 1 on “le Grand Journal”.

Table 6.12: Results of the different descriptors and the fusion clustering on movies: 3D-

Histogram of the clothing, texture of the clothing, skin color of the face, and sift features

of the face.

SIFT Skin Hist Texture Fusion

Les Choristes 44.48 56.44 53.54% 55.44 43.38

Amelie 62.33 64.03 52.50 60.83 60.37

Asterix Obelix 48.33 48.33 59.49 45.70 42.83

Virgins Suicide 42.47 42.47 39.73 50.17 30.61

Weighted average CER (%) 44.92 53.20 52.22 53.06 43.72
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Figure 6.12: Example 2 on “Le Grand Journal”.

Figure 6.13: Example 3 on “Le Grand Journal”.

121



Chapter 6. Experiments and Results

Figure 6.14: Example 4 on “Le Grand Journal”.

Figure 6.15: Example 5 on “Le Grand Journal”.
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Figure 6.16: Example on “C’est dans l’air”.

Figure 6.17: Example of the movie “Amelie”.
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Figure 6.18: Example 1 of the movie “Asterix et Obelix”.

Figure 6.19: Example 2 of the movie “Asterix et Obelix”.
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Figure 6.20: Example 1 of the movie “Virgins suicide”.

Figure 6.21: Example 2 of the movie “Virgins suicide”.
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Conclusion

After reviewing the existing visual features, and the state-of-the-art works for people detection,

tracking, clustering and recognition, we present our proposed people indexing system starting

from the shot boundaries detection, passing through the people detection and tracking and

finally focusing on the people clustering algorithm using both face and clothing information.

For this clustering, we investigate different descriptors especially the SIFT features within

the face box and the histogram color of the clothing part. An adequate matching method that

outperforms the state-of-art techniques was proposed for the SIFT features. The Bhattacharyya

distance was used for computing similarities between clothing parts. Then a similarity measure

that combines all the face and clothing descriptors was defined. The clustering is finally processed

in a hierarchical bottom-up manner.

Experiments were done on broadcast news, debates and movies that were manually anno-

tated. The results show the impact of each technique/descriptor on the whole system as well as

the efficiency and the robustness of that system.
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Introduction

Data fusion is a formal framework in which are expressed the means and tools for the alliance of

data originating from different sources. It consists in using techniques that combine data from

multiple sources and gather that information in order to achieve inferences, which will be more

efficient and potentially more accurate than if they were achieved by means of a single source.

The word “data” in data fusion is taken in a broad sense. It may be replaced by information

fusion.

In [HL01a], authors define “Data fusion” as “a process dealing with the association, correla-

tion and combination of data and information from single and multiple sources to achieve refined

position and identity estimates, and complete and timely assessments of situations and threats,

and their significance.” The process is characterized by continuous refinements of its estimates

and assessments, and the evaluation of the need for additional sources, or modification of the

process itself, to achieve improved results.

The challenge we are facing in this chapter is the fusion issue of audiovisual features. By

its nature, a multimedia document contains a set of information more or less synchronized like

images, sound and sometimes textual information. In previous chapters, we review state-of-the-

art and proposed techniques for handling each of the audio and video media separately both

extracted from an audiovisual stream. In this chapter, we are interested by techniques that allow

taking into account the set of available media in order to represent and analyze a whole multi-

media document. Then, more particularly, we will give special care to the problem of associating

voices from the audio channel to characters from the video channel in an audiovisual document.

We will then use this association to improve results of “only-audio” speaker diarization system

seen in chapter 1, and “only-video” character indexing system seen in chapter 2. Hence, this

association allows building an audiovisual model for each person appearing and talking along

the database without a priori knowledge and that can be dynamically updated.
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Several applications may emerge from associating voices to their corresponding faces in video

sequences. Other than applications seen in part 1 (cf. section I) for an audio speaker diarization

system and in part 2 (cf. section II) for character indexing, the audiovisual association can be

used in many tasks such as:

• Audiovisual automatic speech recognition (ASR). The multimodal modelization

find probably its beginning in the speech recognition. It aims to find what people are saying

using both sound and lips movement. Interested readers are invited to review [PNLM04]

and [LP07].

Having information about speech turns of a specific person within a document is very help-

ful to recognize what that person is saying especially in challenging audiovisual conditions

because the speech and visual models can be adapted on that specific person in order to

improve speech recognition.

• Audiovisual speaker recognition. This task aims to retrieve in the video database

a famous person previously defined [CRPN03a], [CRPN03b]. It is generally used to find

politicians or anchors in TV video archives. This must respond to a query such as: “find

sequences where president Sarkozy is appearing and talking”. In most of audiovisual

speaker recognition systems, positive and negative video sequences containing the person

to search are given in order to train the model. Then, processing on the whole database is

done, shot by shot (or sub-shots), to find whether the tested tracks fit the model or not.

The use of our system of voice-face association as a preprocessing step will improve the

performance of the audiovisual speaker recognition since a very precise analysis is done on

the document level and clusters containing all occurrences that belong to the same person

are collected within each video document. That will ensure more accuracy in the matching

confidence.

• Similarity between documents. Two documents can be considered as similar if we

find that many people occur in both of them. It is for example the case of TV broadcast

debates, News and series where anchors, politicians and actors will potentially re-appear

in a topic of the same gender. This will be helpful to classify programs in an unsupervised

manner (cf. Appendix A).
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• Rushes and video understanding. Having information on people that act (talk and

appear) in the video, on their time-life and their number can be very helpful to understand

and to find a comprehensive summarization of that video. Reader can check [BFP10], [RSJU07]

and [BLSO08].

This part is organized as follows: chapter 7 reviews the fusion architectures, the mathematical

aggregation operators and the existing audiovisual works. Chapter 8 presents our voice-to-face

association method and our audio-visual indexing system that improves iteratively the speaker

indexing system described in part 1, the face-and-clothing based people indexing presented in

part 2 and also the voice-to-face association. Chapter 9 shows some experimental results.

133





Chapter 7

State-of-the-art
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This chapter reviews the fusion architectures and the mathematical aggregation operators.

It also presents some of the existing works in audiovisual fusion.

7.1 Fusion architectures

There are three main fusion architectures: low-level, intermediate-level and high-level fusions;

- Low-level fusion combines several sources of raw data to produce new raw data. The

expectation is that fused data is more informative and synthetic than the original inputs.

But here two major problems are generally faced: 1) the non-balanced dimensionalities of
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the data produced from the different sources and 2) the choice of the “relevant information”

from those sources. In the audiovisual context, we can imagine fusion of the audio wave

and the video signal raw that seems very unrealistic.

- Intermediate-level fusion, also called feature level fusion, combines various features.

Those features may come from several raw data sources (for example: the MFCCs ex-

tracted from the audio wave channel and the SIFT features from the video channel) or

from the same raw data (for example: MFCC and LPCC from the audio channel or SIFT

and color histograms from the video channel). In the latter case, the objective is to find

relevant features among available features that might come from several feature extraction

methods. The purpose is to ensure the use of a limited number of relevant features.

- High-level fusion, also called decision fusion or late fusion combines decisions coming

from several experts or different systems. By extension, it is called decision fusion even if

the experts return confidence scores and not a decision. To distinguish both cases, we call

them “hard” fusion (decision) and “soft” fusion (confidence scores). Methods of decision

fusion include voting methods, statistical methods, fuzzy logic based methods, etc.

One good example of “decision fusion” is the method we implement in part 2 to combine

information coming from different visual descriptors (SIFT features, histograms, skin color

and texture features) in order to find the most efficient way to cluster tracks that corre-

spond to the same appearing character under different lightening, occlusions and clothing

changes conditions.

The above categorization does not encompass all possible fusion paradigms, as input and output

of the fusion process may present different levels of processing. Dasarathy [Das94] expands on

the ideas of low and high level fusion by putting forward an I/O-based characterization. The

five I/O modes are shown in Fig. 7.1:

1. the first fusion takes data as input and delivers data on output (similar to “low level

fusion” in the above categorization),

2. the second fusion takes data as input and delivers features on output,

3. the third fusion takes features as input and delivers features on output,
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4. the fourth fusion takes features as input and delivers measures (e.g. distance, similarity,

likelihood) on output in order to make decision,

5. the fifth fusion combines decisions taken as input to deliver a decision on output (similar

to “high-level fusion” in the above categorization).

Figure 7.1: Different types of fusion defined by Dasarthy [Das94].

7.2 Mathematical aggregation operators

The aggregation operators are mathematical objects that aim to reduce a set of numbers into

a unique representative number. That is why those objects are used to resolve the problem

of data fusion. Detyniecki [Det00] listed those mathematical operators: the arithmetic mean,

the weighted mean, the median, the quasi-arithmetic mean, the symmetric sum, the ordered

weighted averaging operators, the Choquet-Sugeno discrete Fuzzy integrals, the bayesian fusion

approach, the possibilistic fusion approaches, the T-norms, the T-conorms, the compensatory

operators and the uninorms.
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We are especially interested in the T-norms and the T-conorms since they generalize respec-

tively the conjunctive “AND” operator and the disjunctive “OR” operator.

The concept of a triangular norm (t-norm) and its dual (t-conorm) was introduced in [Men42]

and [BS60] in order to generalize the triangular inequality of a metric. A t-norm is a function

T : [0, 1]× [0, 1]− > [0, 1] that is commutative, monotone (increasing), associative, and having 1

as a neutral element. Formally, a t-conorm is also a function T : [0, 1] × [0, 1]− > [0, 1] that is

commutative, monotone (increasing), associative, and having 0 as a neutral element.

The following table 7.1 lists the more common t-norms and their dual t-conorms. Their

definitions are given for two elements but they can be simply generalized to n elements since

these operators are associative. We should notice that x and y ∈ [0, 1] in those examples.

Table 7.1: Common t-norms and their dual t-conorms [Det00].

T-norm T-conorm

Min-Max min(x, y) max(x, y)

Probabilistic x.y x+ y − x.y

Lukasiewicz max(x+ y − 1, 0) min(x+ y, 1)

For more details about the properties of these operators, please refer to [KMP00].

7.3 Existing works in audiovisual fusion

The goal of the multimodal description is to use the different representations of a document in

order to extract reliable information about its content. The difficulty of this task is due to two

main factors. On the first hand, the data to model are often heterogeneous (color histograms,

SIFT features, presence of the face, size of the face, etc...) and correspond to different levels of

granularity. On the other hand, there is the problem of streams synchronization due to the fact

that the extractions of low-level features are not generally done on the same timestamps.

Because manual annotation is time consuming and sometimes inconsistent, many research

efforts have been involved to automate the procedure of video indexing. Even though most of

the existing works were especially focusing on one type of modality, there are some exceptions.
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7.3.1 Audiovisual scene segmentation

Sundaram and Chang [SC00b] model a scene as a semantically consistent chunk of audio-visual

data. Central to the segmentation framework is the idea of a finite-memory model. The audio

and video data are separately segmented into scenes, using data in the memory. The audio

segmentation uses the correlations amongst the envelopes of audio features. The video segmen-

tation uses the correlations amongst shot keyframes. The fusion of the resulting segments is done

using a nearest neighbor algorithm that is further refined using a time-alignment distribution

derived from the ground truth.

Saraceno and Leonardi [SL98] considered segmenting a video into the following basic scene

types: dialogues, stories, actions, and generic. This is accomplished by first dividing a video

into audio and visual shots independently, and then grouping video shots using Learning Vector

Quantization approach, so that audio and visual characteristics within each group follow some

predefined patterns.

Boreczky [BW98] used a hidden Markov model (HMM) framework for video segmentation

using both audio and image features: Video is segmented into regions defined by shots, shot

boundaries, and camera movement within shots. Features for segmentation include an image-

based distance between adjacent video frames, an audio distance (GLR) based on the acoustic

difference in intervals just before and after the frames, and an estimate of motion between the

two frames.

Lienhart et al. [LPE99] proposed a method to segment a video into scenes with similar audio

characteristics and approaches combining multiple modalities in video content scenes with similar

settings, and dialogues. The scheme considers audio features, color features, orientation features,

and face information.

In [KKP07], an enhanced set of eigen-audioframes is created that is related to an audio signal

subspace, where audio background changes are easily discovered, then an additional process is

used to detect audio scene change candidates in this subspace. Visual information is used to

align audio scene change indications with neighboring video shot changes.

7.3.2 Audiovisual video structuring

The video structure parsing relies on the analysis of the temporal interleaving of video se-

quences, with respect to a priori information about video and audio content and editing rules.
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In [KGG+03], authors use the Hidden Markov Models (HMMs) to merge audio and visual cues.

This structuring method is applied on tennis videos in order to identify typical tennis scenes.

In their work, the basic temporal unit used is the video shot. Visual features are used to

characterize the type of shot view. Audio features describe the audio events within the video

shot.

Another type of video structuring can be found in [HJC06] where authors are focusing on

computing the similarities between videos using audiovisual production invariants (APIs). Those

APIs are characterized by invariant segments obtained on a set of low-level features.

Readers are also invited to review our additional work done for unsupervised TV program

boundaries detection based on audiovisual features [EKSJ08].

7.3.3 Audiovisual music video segmentation

In [GER07], a study on the correlation of automatic audio and visual segmentation of music

videos is done. A two-level structuring of the music and the video is achieved separately. Note

onsets are detected from the audio signal, along with section changes. The visual signal is

segmented to detect changes in motion activity, as well as shot boundaries. Based on this

two-level segmentation of both streams, four audio-visual measures are computed using either

Pearson’s correlation or mutual information. Assuming that a(m) and b(m) two sequences of

independent realizations of random variables A and B:

• Pearson’s correlation is defined as:

ρ(A,B) =
E [(A− E [A])(B − E(B))]√

E [(A− E [A])2] E [(B − E [B])2]
(7.1)

where E is the statistical expectation.

• the mutual information for the discrete case is defined as:

I(A,B) =
∑
a

∑
b

P (A,B) log
P (A,B)

P (A)P (B)
(7.2)

Thus four audiovisual correlation measures are deduced:

Consets/shots = ρ(do, ds)

Csections/shots = ρ(dc, ds)
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Consets/motion = I(do, dm)

Csections/motion = ρ(dc, dm)

where do denotes the note onset detection function, dc the detrended section change detection

function, dm the motion activity changes function, and ds the shot boundary detection function.

7.3.4 Spatio-temporal detection of talking person

In [CD00], a method of detecting a talking person (both spatially and temporally) using video

and audio data from a single microphone is described. The audiovisual correlation is learned

using a time-delayed neural networks, which is then used to perform a spatio-temporal search

for a speaking person.

In [BJA02], authors presented a self-calibrated algorithm for audio-visual tracking using

two microphones and a camera. This algorithm uses a parameterized statistical model which

combines simple models of video and audio. Those models are estimated using the EM algorithm.

In [MJV+07], authors proposed a method for learning fundamental multimodal patterns by

defining a model of multimodal signals based on their sparse decomposition over a dictionary

of multimodal structures. This algorithm is applied to audiovisual sequences and is tested on

audiovisual speaker localization.

7.3.5 Audiovisual speaker recognition

In [FLL+03] and [NLFL03] authors investigate the use of coupled hidden Markov models (CHMM)

for the task of audio-visual text dependent speaker identification. The use of CHMM is justified

by the capacity of this model to describe the natural audio and visual state asynchrony as well

as their conditional dependency over time. Their system determines the identity of the user

from a temporal sequence of audio and visual observations obtained from the acoustic speech

and the shape of the mouth. The multimodal observation sequences are then modeled using a

set of CHMMs, one for each phoneme-viseme pair and for each person in the database.

In [LNK03], [LNK04a], [LNK04b], an adaptive speaker identification system which employs

both audio and video cues is proposed for movie content analysis. First, a likelihood-based

approach is applied for speaker identification using pure speech data, and then face detec-

tion/recognition and mouth tracking are applied for talking face recognition using pure visual

data. These two information cues are then effectively integrated under probabilistic framework
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for achieving more robust results. Moreover, an update of the speaker acoustic model is done

by adapting on the fly to their incoming speech data.

Fisher and Darrell [FD04] proposed a speaker association method with signal-level (low-

level) audiovisual fusion technique. A probabilistic multimodal generation model is used to

derive an information theoretic measure of cross-modal correspondence. By comparing the

mutual information between different pairs of signals, authors automatically identified which

person is speaking a given utterance and discount errant motion or audio from other utterances

or non-speech events.

In [ATD05], authors proposed a face recognition system using a combined audiovisual ap-

proach. First, audio and video information are used independently to obtain confidence values

that indicate the likelihood that a specific person occurs in a video shot. Then, a post-classifier is

applied to fuse audio and visual confidence values. The advantage of a post-classifier approach

choice is that it is possible to combine confidence values from different experts, even if their

output falls in different ranges.

A method for multimodal person authentication is presented in [Pal08]. This method uses

speech, face and visual speech modalities. First, the motion information is used to localize the

face region. This face region is then processed in Y CrCb color space to determine the eyes

location. Facial and visual speech features are extracted using multi-scale morphological erosion

and dilation operations. Acoustic features used are the Weighted Linear Prediction Cepstral

Coefficients (WLPCC). Auto-associative neural network (AANN) models are used to capture

the distribution of the extracted acoustic, facial and visual speech features. The evidences from

those modalities are combined using a weighting rule.

7.3.6 Audiovisual synchronization

Bredin and Chollet [BC07] overview transformations that can be applied on audiovisual spaces

with the aim of improving subsequent measure of correspondence between audio and visual

clues:

1. Principal component analysis (PCA) is a well-known linear transformation which is optimal

for keeping the subspace that has the largest variance. It was used in [CMD97] for speaker

identification problem where an assessment of feature fusion-based on audiovisual feature

vector concatenation was done. Also, it was used in our additional work to deal with
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the issue of unsupervised program boundaries detection. Interested readers can review

Appendix A.

2. Independent component analysis (ICA) was originally introduced to deal with the problem

of source separation. It was applied in [SC03] to find an association between the audio

and visual note in an audiovisual recording of a piano session.

3. Canonical correlation analysis (CANCOR) is a multivariate statistical analysis allowing

to jointly transform the audio and visual spaces while maximizing their correlation in the

resulting transformed audio and visual feature spaces [SC00a].

4. Co-inertia analysis (CoIA) is similar to CANCOR. The main difference is that CANCOR

relies on the maximization of the correlation between audio and visual features, and CoIA

is based on the maximization of the covariance. CoIA was used in [EB05] for speaker

independent “liveness” verification method for audiovisual identification system.

In their paper [BC07], authors used the audiovisual synchronization to deal with the issue

of impersonation scenarios in an identity verification system. Impersonation means that an

impostor can use the voice recordings or the picture of the face that belong to the authorized

person.

Kumar et al. [KNM+09] studied the problem of detecting audiovisual synchronization in

video segments containing a speaker in frontal head pose. They proposed a time-evolution

bimodal linear prediction model for AV features to capture the linear dependence between them,

and then derived an analytical approach to capture the notion of synchronization between them.

Finally, they use CANCOR to reduce the AV features dimensionality.

7.3.7 Audiovisual speaker diarization

In [TP98], authors proposed a method that aims to temporally index the video sequence ac-

cording to the actual speaker. Audio analysis leads to the extraction of a speaker identity label

versus time diagram. Visual analysis includes scene cut detection, face detection, mouth region

extraction and tracking, and talking face detection. A combination of the labeling time diagrams

obtained by audio and visual processing is achieved using simple decision rules. Boundaries of a

face shot ensure the existence of a person. Mouth movement detection in this shot implies that

this person speaks. Non-face shot durations cannot be used for speaker detection, since inter-

changeability between speakers cannot be detected by the visual information. Consequently,

143



Chapter 7. State-of-the-art

if the speaker-dependent indexing achieved by the audio processing module, a refinement is

performed in face shots with talking faces. This refinement involves estimation of speaker Si

presence likelihoods in every face shot Fk:

P (Si|Fk) =
Mi

Lk
(7.3)

where Mi is the number of the speech frames assigned to speaker Si and Lk is the total number

of speech frames in face shot Fk. The speaker that exhibits the maximum presence likelihood is

the winner.

Liao and Syu [LS08] proposed an actor-based video segmentation system using visual and

audio information in E-learning by assuming some segmentation rules. A classroom scene can

be classified as following three types: teacher-blackboard, teacher-students and students.

In [HF08], authors implement a real-time and online audiovisual diarization system for group

meetings. Rather than labeling the speaker regions with numbers as traditional speaker diariza-

tion systems do, they are associated with video segments of the corresponding participant. Audio

features used are the well-known MFCC features. However, for visual module, authors estimate

the visual activity of each person by computing the residual coding bit-rate (in MPEG-4 format)

that was found [YR08] to be the most discriminative for speech-visual activity association.

Finally, the distance between video (vi) and audio (aj) streams is quantified using the pair-wise

correlation formula:

ρ(vi, aj) =

∑T
t=0 vi(t).aj(t)∑T

t=0 vi(t)
∑T

t=0 aj(t)
,∀{i, j} (7.4)

where T is the total length of the meeting and t indexes the feature value at each frame which

rate was 5 frames/second.

In [TPC09], authors proposed a system for detecting the active speaker in cluttered and

reverberant environments where more than one person speaks and moves. It uses audiovisual

information from multiple acoustic and video sensors that feed separate audio and video tracking

modules. The audio module tracker is based on a particle filter. The video module tracker is

based on a variation of Stauffer’s adaptive background algorithm [SG00] with spatio-temporal

adaptation of the learning parameters and a Kalman tracker in a feedback configuration. Finally,

the association between audio and video is done by selecting the minimum Euclidean distance

between the active speaker location provided by the audio tracker and every location of every

person in the room provided by the video tracker.
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Name-It [SNK99] is a project aiming at automatically associating faces detected from video

frames and names extracted from closed captions for news video. One novelty of the system is

that it does not rely on any pre-stored face templates for selected names. However, the system

associates faces and names by integrating face sequence extraction and similarity evaluation,

name extraction, and video caption recognition based on their temporal correlation. Besides

the difficulties in detecting faces and names, the association of them also poses a challenge since

multiple faces may appear in one frame and multiple names may be mentioned in one closed

caption sentence.

7.3.8 Major casts list

The work the most similar to our topic is the work done by Liu and Wang [LW01], [LW07] for

detecting the major casts in video. Major casts, for example the anchor persons or reporters in

news programs and principal characters in movies play an important role, and their occurrences

provide good indices for organizing and presenting video content. The users may easily digest

the main scheme of a video by skimming through clips associated with major casts.

In a certain sense, the goal is similar to that in [SNK99]. The difference is that Liu and

Wang associate sound and face to each cast, instead of name and face. In their work, they

assume that the majority of speech that accompanies the appearances of each character is from

the same person. For example, they cannot handle the case where a person appears in silence

or is mostly accompanied with other person’s speech.

Authors found a way to associate speakers to faces using correlation matrix where each

coefficient C(i, j) is computed as follows:

C(i, j) =

Li∑
m=1

lj∑
n=1

OL(sim, f
j
n).FS(f jn) (7.5)

where OL(sim, f
j
n) is the overlapping time of speaker sub-segment sim and face sub-track f jn, and

FS(f jn) is the face size of f jn. Li is the number of segments corresponding to the speaker i, and

lj the number of tracks corresponding to the face j.

This definition considers not only the temporal overlapping among speaker segments and

face tracks, but also takes into account the importance of face size. The consideration of face

size is helpful when more than one face show up during a speech segment, where the face with

bigger size is more likely to be the real speaker.
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Moreover, authors introduced an integrated Speaker-Face clustering. In fact, instead of

clustering the speaker segments and the face tracks independently, performing such clustering

jointly will help to improve the performance. They define an augmented distance matrices based

on not only the distance among speaker segments (respectively face tracks), but also distances

among corresponding face tracks (respectively speaker segments).

D
′
S(i, j) = λf

∑
1≤m,n≤N C(i,m)C(j, n)DF (m,n) + Tfε∑

1≤m,n≤N C(i,m)C(j, n) + ε
+DS(i, j) (7.6)

with l ≤ i, j ≤M

D
′
F (i, j) = λs

∑
1≤m,n≤M C(m, i)C(n, j)DS(m,n) + Tsε∑

1≤m,n≤M C(m, i)C(n, j) + ε
+DF (i, j) (7.7)

with l ≤ i, j ≤ N

where DS(i, j) (respectively DF (i, j)) is the initial distance between speaker segments (re-

spectively face tracks) i and j, C(i, j) is the correlation coefficient between i and j (cf. equation

7.5), N (respectively M) is the total number of speakers (respectively the total number of

faces), Ts and Tf are two thresholds that are used in speaker segments/face tracks independent

clustering, λs and λf are ratios that determine the weighting of distance effect from different

modalities and ε is a small constant to prevent division by zero.

For more details about the integrated clustering procedure, please refer to the papers [LW01]

and [LW07].
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In this chapter, we describe our contribution that aims to associate the audio and the video

indexes. Then, we propose an automatic iterative audiovisual system that enables improvements

of not only both audio indexing system and video indexing system, but also their association.

8.1 Association between audio and video indexes

As seen in previous chapter, existing audiovisual people association methods like in [LW07]

consider that both visual and speech features are simultaneously relevant in video subsequences

and assume that the current voice corresponds to a face in the frame.

In real sequences, this hypothesis is often violated. It is very common to find sequences

where appearing people do not talk during many frames or many shots. Moreover, it is also

possible that the current voice belongs to a person whose face is not in the current frame.

Figure 8.1 presents the appearance durations (in terms of number of frames) of the ten main

persons in a TV talk show, for both audio and video streams. We can see that these probability

distributions are quite different for ground-truth audio and video indexes. For example, person
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1 is the most talking cast with almost 7600 frames, however he appears during only 6200 frames.

On the other side, Person 4 is the most appearing cast with almost 12500 frames, however he talks

only along 3200 frames. If the previous assumptions were verified, the number of occurrences of

each person would be similar in the two indexes.
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Figure 8.1: Number of frames for each character appearance, on a TV talk show.

In this work, we propose to compute co-occurrences between audio and video indexes, i.e.

we match up the voices with the faces. This approach is suitable to handle the cases where the

usual assumptions are not verified.

The scale of audio and video indexes are different: an audio frame is typically extracted

every 10ms. However, a video frame is generally extracted every 40ms (25 images/sec). Thus,

a direct comparison of the two indexes is not possible. That is why we use a common scale for

audio and video indexes in order to be able to directly associate them.

8.1.1 Automatic matching using weighted co-occurrence matrix

The use of co-occurrence matrix was firstly introduced in [Jaf05] and applied in our work pre-

sented in [EKJPS07]. Jaffré et al. proposed a framework to automatically realize the association

between voices and their corresponding appearing characters characterized only by their clothing,
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using a statistical analysis of audio and video indexes. In this section, we describe this method

and then, we present our own contribution in paragraphs 8.1.2 and 8.1.3.

First to validate our matching method, we make the assumption that the two streams are

perfectly segmented, i.e. they are not over-segmented and correspond to the ground truth. So,

each person has only one voice and exactly one visual entity (face). Moreover, each voice is

associated to exactly one face, and conversely. However, in section 8.2, we will show a “real”

framework to deal with over-segmentation.

8.1.1.1 Index intersection

First, we compute a matrix which represents the intersection between audio and video indexes.

We use the following notations:

• na is the number of different voices in the audio index,

• nv is the number of different appearing persons in the video index,

• {Ai}i=1...na is the set of voices of all persons,

• {Vj}j=1...nv is the set of visual features of all persons.

To compute this intersection matrix, we go through the two indexes, frame by frame. For

each frame, if the voice Ai is heard and the visual person Vj is present, the number of occurrences

mij of the pair (Ai, Vj) is incremented. Then, we obtain the following matrix:

m =

V1 V2 . . . Vnv

A1

A2

...

Ana


m11 m12 . . . m1nv

m21 m22 . . . m2nv

...
...

...
...

mna1 mna2 . . . mnanv


(8.1)

In this matrix, the value mij means that in all the frames where the voice Ai is heard, the visual

person Vj appears mij times. Conversely, in all the frames where the person Vj is present, the

voice Ai is heard mij times.

An intuitive idea would be to sort this matrix by rows (or by columns). However, this solution

is often wrong, because it makes the assumption that while a voice is heard, its corresponding

face is the most present in the frames (sorting by rows). Sorting by columns would mean that

for each face its corresponding voice is the most heard while the feature appears.
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In real TV shows, this assumption is often wrong as seen in Fig. 8.1. For instance, in French

TV games, the person who speaks the most is usually the presenter. In this case, his voice can

be the most heard even when the players appear on screen. Thus, even if this intersection matrix

is interesting for the fusion of audio and video, it cannot be directly used. A post-processing is

required: it will be presented in the next section.

8.1.1.2 Index fusion

With some special contents, like TV talk shows and TV games, the matrix m can be directly

read if we have some prior information about the persons. For example, in a TV talk show, if

a person is assumed to be the presenter, his voice is the most heard when he appears on screen

(which is wrong for a guest). Conversely, if the person is assumed to be a guest, his face is the

most seen while he is speaking (which is wrong for a presenter).

With real data, when there is no training stage, we cannot have prior information about this

“class” of persons, which makes direct reading of the matrix m impossible because we cannot

determine for each person if the matrix must be sorted by rows or by columns. Thus, one way to

bypass the problem is to read m both by rows and by columns, and to keep the most significant

information.

This fusion is carried out by computing two new matrices, ma and mv, where the frame

numbers are replaced with percentage by rows and by columns:

ma =

V1 V2 . . . Vnv

A1

A2

...

Ana


fa11 fa12 . . . fa1nv

fa21 fa22 . . . fa2nv

. . . . . . . . . . . .

fana1 fana2 . . . fananv


100 % (8.2)

mv =

V1 V2 . . . Vnv

A1

A2

...

Ana


fv11 fv12 . . . fv1nv

fv21 fv22 . . . fv2nv

. . . . . . . . . . . .

fvna1 fvna2 . . . fvnanv


100 %

(8.3)
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Matrix ma gives the probability density of each voice Ai, whereas mv gives the one of each

visual feature Vj . From these matrices, we define the fusion matrix F , by computing, for each

pair (i, j), a fusion between faij and fvij with a fusion operator of conjonction nature (“AND”)

like the minimum or the probabilistic operator. In this work, we use the probabilistic operator

(product operator).

If we note C(Ai, Vj) the fusion coefficient between Ai and Vj , the expression of matrix F is

given by:

F =


C(A1, V1) . . . C(A1, Vnv)

C(A2, V1) . . . C(A2, Vnv)

. . . . . . . . .

C(Ana , V1) . . . C(Ana , Vnv)

 (8.4)

where C(Ai, Vj) = faij × fvij .

This matrix F can be directly used to realize the association: we look for the maximum

value in this matrix (line i, column j). Thus, the voice i is associated with the costume j. Then,

we delete this row and this column, and we repeat this search, to obtain another association,

until having an empty matrix. At the end of this process, we obtain a list of all the persons

like in the example illustrated in Fig.8.2: person P1 is characterized by the voice A1 and the

face V1, person P2 is characterized by the voice A2 and the face V3, P3 is characterized by

the voice A3 and there is no face associated, P4 is characterized by the face V2 and there is

no voice associated, etc. Three main types of errors occur using the above assumptions for the

Figure 8.2: A list containing the output of the association process.

audiovisual association:

- if two or more persons are appearing almost at the same time (i.e. in the same frames),

the choice is not significant. This corresponds in the matrix to the following scenario: in

the same row, we obtain two or more similar frequencies. To solve this problem we will

use information on the face size (cf. section 8.1.2).
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- if a person appears almost with the same voice heard but this person is not talking, we

should not allow the association between face and voice as explained later in section 8.1.3.

Thus, there will be three types of results: talking faces, only faces and only voices.

- if there are over-segmentation errors in the audio processing (respectively video processing),

this will propagate along the association. One way to correct this is to use the mutual

audiovisual information to help the mono-media clustering process. This will be developed

in section 8.2.

8.1.2 The use of the face size

One case that may occur in some scenarios such as TV shows is that two or more people appear

almost in the same frames. In this case an additional cue that takes into account the face size

of each person is very helpful prior to decide which person is talking: as said in [LW07], the

person with a relatively big face is more likely to be the real speaker. A typical example that

occurs in debates is shown in figure 8.3 where the talking person and as well as the people from

the audience appear in the same shot: it is clear that the size of the talking face is greater than

those of that appear in the background.

Figure 8.3: Talking person appearing with the audience in a TV debate.

Unlike in [LW07] where authors used the real value of the face size as a factor that is

multiplied by a corresponding distance, we use a weight value wk (between 0 and 1) that is
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derived from the size of the face fk. This weight takes into account the other faces that appear

in the same image:

wi =
size(fk)
N∑
l=1

size(fl)

(8.5)

where N is the total number of faces within the image.

Figure 8.4 shows an example of three faces appearing in the same image as well as their

corresponding weights.

Figure 8.4: Three faces detected with their corresponding weights.

The choice of weight value rather than size value is justified by the fact that there should

be no priorities in the clustering process between two faces that have different sizes and where

each of them appears alone in its track as seen in Fig.8.5: despite the difference in face sizes,

the person appearing in (b) is talking unlike the one appearing in (a).

Thus, the average weight WAiVj on video frames that contain commonly audio turns of Ai

and video tracks of Vj is:

WAiVj =

NAiVj∑
k=1

wk

NAiVj

(8.6)

where NAiVj is the number of all images that correspond to the common time between Ai and

Vj .
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(a) (b)

Figure 8.5: Two faces with different sizes but similar weights.

If we consider shots, WAiVj becomes:

WAiVj =

NAllShots∑
s=1

Ns∑
k

wk

NAllShots∑
s=1

Ns

(8.7)

where NAllShots is the total number of shots that contain Ai and Vj , and Ns is the number

of frames within the shot s. Instead of computing the weights on each frame which is time

consuming, we assume that the weights are constant for every shot. Thus, weights are computed

only on keyframes, and the expression of WAiVj can be simplified:

WAiVj =

NAllShots∑
s=1

Nswk

NAllShots∑
s=1

Ns

(8.8)

Then the weighted cooccurrence matrix F ′ becomes:

F ′ =


W11.C(A1, V1) . . . W1nv .C(A1, Vnv)

W21.C(A2, V1) . . . W2nv .C(A2, Vnv)

. . . . . . . . .

Wna1.C(Ana , V1) . . . Wnanv .C(Ana , Vnv)

 (8.9)

8.1.3 Lips activity detector

An additional constraint may be added to deal with the case where a person appears when

another one is talking. In this case, and in order to eliminate any confusion, it will be better
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to find an indicator of the lips activity. Even though many works were done in the literature

to detect the activity of the lips, they were generally specified for faces with high resolution to

deal with the problem of audiovisual speech recognition. In this work, and given the range of

face sizes in our data, we suggest an easiest way to estimate the lips activity:

- first, we select the mouth region using some geometrical constraint related to the size of

the face box by assuming that the face is frontal. Fig.8.6 illustrates those constraints: the

mouth is located in the middle-bottom of the face box [PPJ06].

- second, and in order to quantify lips activity, we proceed by pairs of frames to obtain a

global result. Considering two successive frames f1 and f2 containing the face of a same

person, and after mouth localization in the frame f1 represented by regions M1, we build

a searching zone around M1 in frame f2 and we move a window M2 of the same size of M1

in this zone. The matching and the value representing the difference between M1 and M2

pixels are both obtained by the Minimal Mean Square Error (MMSE) on the luminance

channel of the HSV color space.

Figure 8.6: Mouth localization using geometrical constraint.

Fig.8.7 shows a curve of the lips activity for about 1900 consecutive frames: silence regions are

characterized by low values, however, lips and motions are characterized by higher values. Since

head motions are generally related to talking expression, we take the assumption that somebody

who is moving his lips or head is typically talking. Thus, low activity values correspond surely

to non-talking faces.

Moreover, to be more precise, instead of computing the lips activity on the whole frames

where the face appear, we compute it on talking faces i.e. common time between Ai and Vj .
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Figure 8.7: Lips activity curve.

First, the lips activity is estimated on every sequence of images as follows:

las =

Nw−1∑
k=1

mse(k, k + 1)

Nw − 1
(8.10)

Then, the lips activity for each couple (Ai,Vj) is expressed by:

laAiVj =

NAllShots∑
s=1

Ns.las

NAllShots∑
s=1

Ns

(8.11)

If lac is higher than a fixed threshold Thrla, we assume that the corresponding person is talking.

Practically, the threshold Thrla is chosen very low in order to allow the association between

faces and speech even if the person is not talking for a long time.
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Thus, the elements of the matrix F ′ are multiplied by coefficients δAiVj :

δAiVj =


0 if lac < thrla

1 if lac ≥ thrla
(8.12)

and the new matrix F ′′ is equal to:

F ′′ =


δ11.W11.C(A1, V1) . . . δ1nv .W1nv .C(A1, Vnv)

δ21.W21.C(A2, V1) . . . δ2nv .W2nv .C(A2, Vnv)

. . . . . . . . .

δna1.Wna1.C(Ana , V1) . . . δnanv .Wnanv .C(Ana , Vnv)

 (8.13)

Consequently, the association between the face v and the voice a is prohibited if δav = 0.

We notice in the above matrix that δ is a binary value (δ ∈ {0, 1}). However W belongs to

an interval (W ∈ [1, 0]). This can be justified by the facts that:

- if a person is shown to not having labial activity, it is sure he is not talking. Thus the

decision is binary (δ ∈ {0, 1}). However, if the size of the person is greater than others,

we can not make a binary decision but we can combine it to other information to build

stronger decision.

- from the optimization point of view, it will be helpful to discard some of the non-necessary

computation by focusing on faces where the lips activity is significant. Moreover, as said

previously, we may choose tolerated threshold to allow low lips activity rates.

8.2 Audiovisual system for people indexing

At the end of both audio clustering (cf. part 1) and video clustering (cf. part 2), a list of audio

(respectively video) clusters as well as the similarity measures for each couple of clusters are

computed. We have studied in section 8.1 the association between each audio cluster and video

cluster by computing the co-occurrence matrix.

Since the confidence of the bottom-up clustering process decreases gradually as it approaches

to the top of the clustering hierarchy, the use of additional information in later stages such as

the co-occurrence matrix will help improving the clustering performance.

A good way to implement our proposal is to apply the algorithm illustrated in figure 8.8:

157



Chapter 8. Proposed audiovisual fusion methods

1. A first step of confident audio clustering and video clustering is applied using “strong”

thresholds that insure high clusters purity but possibly some additional clusters. The na

audio clusters, the nv video clusters, as well as the similarity matrices Sa and Sv computed

for each couple of clusters, are retained.

2. Using audio clusters and video clusters, compute the co-occurrence matrix m of na × nv

dimension. Then, deduce the matrices ma and mv as explained in section 8.1.

3. Using matrix ma defined in 8.2, update matrix Sa as follows: for each couple of clusters

Ai and Aj , compute α(Ai, Aj):

α(Ai, Aj) =

nv∑
v=1

ma(Ai, Vv).ma(Aj , Vv) (8.14)

If

S
′
a(Ai, Aj) = τ1.Sa(Ai, Aj) + τ2.α(Ai, Aj) (8.15)

Then, merge the couple of audio clusters that correspond to the maximum similarity, only

if that maximum is higher than the threshold Thra. Experimentally, τ1, τ2 and Thra were

fixed respectively to 1
2 , 2 and 1

2 .

(AI , AJ) = arg max
(Ai,Aj)

(S
′
a(Ai, Aj)) if max(S

′
a(AI , AJ)) > Thra (8.16)

Identically, using matrix mv defined in 8.3, update matrix Sv as follows: for each couple

of clusters Vk and Vl, compute β(Vk, Vl):

β(Vk, Vl) =

na∑
a=1

mv(Aa, Vk).mv(Aa, Vl) (8.17)

and then,

S
′
v(Vk, Vl) = ρ1.Sv(Vk, Vl) + ρ2.β(Vk, Vl) (8.18)

Then, merge the couple of video clusters that correspond to the maximum similarity, only

if that maximum is higher than the threshold Thrv. Experimentally, ρ1, ρ2 and Thrv were

fixed respectively to 1
2 , 2 and 1

2 .

(VK , VL) = arg max
(Vk,Vl)

(S
′
v(Vk, Vl)) if max(S

′
v(VK , VL)) > Thrv (8.19)
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After each merging, the number of clusters decreases by 1, thus the matrices Sa, Sv, m,

ma and mv are updated at the end of each iteration.

4. When the stopping criteria for both audio and video clustering are verified, and the final

co-occurrence matrix m is provided, we compute the weighted co-occurrence matrix F ′′

in terms of the face size and the lips activity detection, as explained in previous section.

Using this matrix, we can deduce the voice and/or the face of each person. Three types of

clusters emerge: 1) voice-only clusters where people talk in the video but do not appear.

2) face-only clusters where people appear in the video but do not talk. 3) voice-and-face

clusters where people appear and talk in the video.

Table 8.1 shows an example illustrating the output of the system: row 1 means that person

P1 is talking (voice=1) and appearing (face=1) during 12.35 sec; row 2 means that person P2 is

only talking in the interval [12.350 , 23.475]; row 3 means that nobody is appearing or talking

in the interval [24.474 , 28.325]; rows 4 and 5 mean that P1 is talking (and not appearing) and

P2 is appearing (and not talking) in the interval [28.325 , 31.050], etc.

Figure 8.9 illustrates another possible output where persons are listed with samples of their

voice and face if they exist: P3 corresponds to a non-appearing person, P4 corresponds to

a non-talking person. Moreover, readers are invited to check the format of XML output file

automatically generated described in Appendix C.

Table 8.1: Output 1: index file.

row start time (sec) end time (sec) Identity voice face

1 0.000 12.350 P1 1 1

2 12.350 23.475 P1 1 0

3 23.475 28.325 nobody 0 0

4 28.325 31.050 P1 1 0

5 28.325 31.050 P2 0 1

6 31.050 50.450 P2 1 1

7 50.450 54.275 nobody 0 0

8 54.275 93.525 P3 1 1

... ... ... ... ... ...
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Figure 8.8: Architecture of the audio-visual people indexing system.
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Figure 8.9: Output 2: list of persons with the most representative voices and faces.

P1

P2

P3

P4

... ... ...
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In this chapter, we test our proposed methods. First, we detail the characteristics of our

database. Second, we evaluate the impact of using video information on the audio speaker

diarization output. Then we evaluate the impact of using audio information on the video person

clustering output. Moreover, we evaluate the performance of the audiovisual baseline association

using the cooccurrence matrix. Then, we evaluate the gain of using the face size and the gain

of using the lips activity. Finally we test the performance of the combined association system

that uses the cooccurrence matrix, the face size and the lips activity rate.
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9.1 Database

The audiovisual database is the same as the one used in part II to evaluate the visual indexing

system. Beside the annotation in terms of appearing persons that was already done, we annotate

the audio channel in terms of different speakers talking in each video file, as well as the talking

faces (audiovisual persons), non-talking faces (only-face persons), non-appearing persons (only-

voice persons).

Table 9.1 shows the characteristics of the 14 files used in our test. They can be divided

into three sub-sets: news, debates and movies. For each file, are reported the file duration,

the speech time, the number of speakers in the ground-truth (Ref. spkrs), the time when faces

appear (Faces time), the number of appearing faces in the ground-truth (Ref. faces). We can

deduce that the total number of speakers is 568 and the total number of faces is 1315.

9.2 Results of the speaker diarization

In this section, we mesure the performance of the diarization system before and after using the

video information. To do this, we use the diarization error rate (DER) that was introduced in

part I (cf. section 3.4).

Table 9.2 shows that the overall weighted DER decreases from 25.35% to 19.64% when

applying our audiovisual association. For news, the gain is about 2.83 % (from 18.68% to

15.85%). For debates, the improvement is very important (from 25.96% to 14.89%). This can

be explained by the fact that the clustering while using the audio information is more difficult

than for news, however, the use of video information corrects this problem because the face

clustering is very good in these scenarios (cf. table 6.11). For movies, there is a slight gain of

1.11% (from 40.81% to 39.70%). It can be explained by the fact that both audio and video error

rates are high.

Table 9.2 also reveals that the benefit of the fusion method is shown in 11 over 14 files: we

notice that despite the loss of 2.5% on “CCTV” program, the gain is over 20% on “C’est dans

l’air” talk show.
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Table 9.1: Description of the audiovisual database.

Time (s) Speech

time (s)

Ref.

spkrs

Faces

time (s)

Ref.

faces

ABC news 1708 1362 54 556 79

CNN news 1779 1496 41 629 55

France2 news (1) 2479 2125 86 1142 145

France2 news (2) 2231 1925 50 1454 117

LBC news 3500 2348 46 1773 156

CCTV news 3008 1771 34 925 74

News 14705 11027 311 6479 626

Le Grand Journal (1) 3599 2661 40 987 74

Le Grand Journal (2) 3524 1648 45 1512 167

C’est notre affaire 1602 1495 19 3514 21

C’est dans l’air 3911 3847 25 2677 49

Debates 12636 9651 129 8690 311

Les Choristes 3600 796 21 1566 139

Amelie 2645 1067 35 635 50

Asterix Obelix 2191 1668 33 902 93

Virgins Suicide 2646 840 39 705 96

Movies 11082 4371 128 3808 378

Overall 38423 25049 568 18977 1315

9.3 Results of the video people diarization

In this section, we evaluate our system in regards to the clustering of faces. To do this, we use

the clustering error rate (CER) that was introduced in part II (cf. section 6.1).

Table 9.3 shows the CER before and after using the audio information. The overall CER

decreases from 19.75% to 17.22%. For news, the gain is 1.46% (from 9.10% to 7.64%). For

debates, the gain is 3.32% with a final CER of 12.41%. For movies, the gain is 3.23% but the

CER is still high (40.49%). Although the high CER, figures 9.1 and 9.2 show some cases where

the clustering remains good although the high variation in almost all visual descriptors.
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Table 9.2: Results of the “Only-Audio” and “Audiovisual” processings.

Only-audio processing Audiovisual processing

Sys. spkrs. DER (%) Sys. spkrs. DER (%)

ABC news 49 23.3 43 16.5

CNN news 42 11.5 41 12.2

France2 news (1) 73 18.6 61 16.2

France2 news (2) 69 27.7 56 21.3

LBC news 60 14.3 50 10.1

CCTV news 56 17.3 53 19.7

News 349 18.68 301 15.85

Le Grand Journal (1) 49 14.1 43 9.0

Le Grand Journal (2) 110 16.3 99 12.5

C’est notre affaire 26 48.1 25 43.4

C’est dans l’air 40 29.7 29 8.9

Debates 225 25.96 196 14.89

Les Choristes 71 40.1 63 41.5

Amelie 81 36.6 75 34.7

Asterix Obelix 41 43.4 36 42.2

Virgins Suicide 51 41.7 46 38.4

Movies 244 40.81 220 39.70

Overall 818 25.35 717 19.64

9.4 Results of the audiovisual association

In this section, we test the efficiency of our proposed audiovisual association. To do this, we

compute the precision and the recall of detecting “talking faces”, “non-talking faces”, and “non-

appearing” persons (only voice): for each, the number of false positives (FP), false negatives

(FN ), true positives (TP), and true negatives (TN ) are computed with respect to positive (P)

and negative (N ) people manually annotated in the ground truth.

First, we evaluate the baseline system where only cooccurrence matrix is used (cf. sec-

tion 8.1.1). Then, we test the impact of using “the face size” (cf. section 8.1.2), the “lips
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Table 9.3: Results of the “Only-video” and “Audiovisual” processings.

Only-video processing Audiovisual processing

Sys. faces CER (%) Sys. faces CER (%)

ABC news 99 5.18 94 4.60

CNN news 82 18.35 78 14.24

France2 news (1) 176 3.94 171 3.33

France2 news (2) 145 5.22 141 3.90

LBC news 233 15.56 212 12.87

CCTV news 74 5.27 73 5.25

News 809 9.10 769 7.64

Le Grand Journal (1) 293 14.60 280 10.20

Le Grand Journal (2) 278 20.60 265 15.07

C’est notre affaire 50 49.75 43 35.82

C’est dans l’air 91 8.92 90 8.66

Debates 712 15.73 678 12.41

Les Choristes 370 43.38 360 41.82

Amelie 135 60.37 109 50.12

Asterix Obelix 216 42.83 205 41.82

Virgins Suicide 165 30.61 157 27.36

Movies 886 43.72 831 40.49

Overall 2407 19.75 2278 17.22

activity” (cf. section 8.1.3). Finally, we evaluate the overall system where all those components

are added.

9.4.1 The baseline system

Table 9.4 shows the results obtained for each file and category as well as the weighted overall

scores. We notice that the talking faces are detected with a precision of 80% despite the low

recall score (32%). On the other hand, the non-talking faces are detected with a precision of

65% and a recall of 92%. Besides, the non-appearing persons are detected with a precision of
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Figure 9.1: Example 1 of the movie “Les Choristes”.

Figure 9.2: Example 2 of the movie “Les Choristes”.

43% and a recall of 55%. Another thing to notice is that, as expected, the results obtained for

news are clearly better than for debates and movies.
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9.4. Results of the audiovisual association

Table 9.4: Results of the audiovisual association: detection of the talking faces, non-talking

faces and only-voices.

Talking faces Non-talking faces Only voices

Num. Prec. Rec. Num. Prec. Rec. Num. Prec. Rec.

ABC news 21 0.86 0.56 70 0.80 0.95 10 0.10 0.25

CNN news 16 0.88 0.58 57 0.82 0.96 6 0.17 0.20

France2 news (1) 29 0.90 0.56 124 0.84 0.97 17 0.53 0.82

France2 news (2) 23 0.87 0.54 115 0.85 0.97 19 0.53 0.77

LBC news 22 0.86 0.49 167 0.88 0.98 25 0.52 0.69

CCTV news 21 0.81 0.85 32 0.90 0.89 5 0.40 0.33

News 132 0.87 0.58 565 0.86 0.96 82 0.44 0.45

Le Grand Journal (1) 20 0.55 0.34 175 0.88 0.94 22 0.68 0.65

Le Grand Journal (2) 30 0.43 0.25 137 0.72 0.85 24 0.54 0.50

C’est notre affaire 12 0.92 0.38 29 0.38 0.92 3 0.33 0.50

C’est dans l’air 16 1.0 0.44 46 0.55 1.0 3 0.33 1.0

Debates 78 0.65 0.34 387 0.75 0.91 52 0.57 0.58

Les Choristes 11 1.0 0.12 120 0.32 1.0 19 0.21 0.80

Amelie 14 0.64 0.19 65 0.40 0.54 14 0.21 0.75

Asterix Obelix 12 1.0 0.13 89 0.10 1.0 16 0.56 0.82

Virgins Suicide 15 0.87 0.16 80 0.12 1.0 11 0.18 0.67

Movies 52 0.90 0.15 354 0.23 0.77 60 0.30 0.72

Overall 262 0.80 0.32 1306 0.65 0.92 194 0.43 0.55

9.4.2 The use of the face size

In this section, we test the efficiency of adding the weight of the face size information as explained

in section 8.1.2. Table 9.5 shows slight improvements: we can notice a gain of about 4% on the

precision (from 0.80 to 0.84) and the recall (from 0.32 to 0.36) of detecting the talking faces

compared to the baseline system (cf. table 9.4).
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Table 9.5: Results of the audiovisual association improved by the face size: detection of the

talking faces, non-talking faces and only-voices.

Talking faces Non-talking faces Only voices

Num. Prec. Rec. Num. Prec. Rec. Num. Prec. Rec.

ABC news 19 0.95 0.56 72 0.81 0.98 12 0.17 0.50

CNN news 16 0.88 0.58 57 0.82 0.96 6 0.17 0.20

France2 news (1) 29 0.90 0.56 124 0.84 0.97 17 0.53 0.82

France2 news (2) 23 0.87 0.54 115 0.85 0.97 19 0.53 0.77

LBC news 25 0.88 0.56 164 0.90 0.98 22 0.68 0.79

CCTV news 21 0.81 0.85 32 0.90 0.89 5 0.40 0.33

News 133 0.88 0.59 564 0.86 0.96 81 0.48 0.67

Le Grand Journal (1) 23 0.61 0.47 173 0.91 0.95 20 0.60 0.52

Le Grand Journal (2) 33 0.55 0.35 135 0.75 0.87 22 0.59 0.50

C’est notre affaire 13 1.0 0.45 28 0.43 1.0 2 0.50 1.0

C’est dans l’air 16 1.0 0.44 46 0.55 1.0 3 0.33 1.0

Debates 85 0.72 0.41 382 0.77 0.93 47 0.57 0.52

Les Choristes 11 1.0 0.12 120 0.32 1.0 19 0.21 0.80

Amelie 17 0.71 0.25 62 0.42 0.54 11 0.27 0.50

Asterix Obelix 14 1.0 0.15 88 0.10 1.0 15 0.50 0.73

Virgins Suicide 18 1.0 0.26 78 0.13 1.0 9 0.33 1.0

Movies 60 0.92 0.19 348 0.24 0.77 54 0.32 0.72

Overall 278 0.84 0.36 1294 0.67 0.93 182 0.46 0.62

9.4.3 The use of the lips activity rate

In this section, we test the efficiency of adding, to the baseline cooccurrence matrix, the lips

activity information as explained in section 8.1.3. Table 9.6 shows slight improvements: for

example, we can notice a gain of 3% on the precision (from 0.65 to 0.68) and the recall (from

0.92 to 0.95) of detecting non-talking faces compared to the baseline system (cf. table 9.4).

170



9.4. Results of the audiovisual association

Table 9.6: Results of the audiovisual association using face size: detection of the talking faces,

non-talking faces and only-voices.

Talking faces Non-talking faces Only voices

Num. Prec. Rec. Num. Prec. Rec. Num. Prec. Rec.

ABC news 24 0.92 0.69 67 0.85 0.97 7 0.14 0.25

CNN news 15 0.87 0.54 58 0.81 0.96 7 0.29 0.40

France2 news (1) 29 0.93 0.59 124 0.85 0.98 17 0.59 1.0

France2 news (2) 25 0.84 0.58 113 0.87 0.96 17 0.53 0.82

LBC news 25 0.84 0.58 164 0.91 0.97 22 0.59 0.68

CCTV news 22 0.73 0.80 32 1.0 0.84 5 0.40 0.33

News 140 0.86 0.61 558 0.88 0.97 72 0.49 0.69

Le Grand Journal (1) 21 0.71 0.47 175 0.90 0.96 22 0.59 0.57

Le Grand Journal (2) 34 0.53 0.35 134 0.75 0.86 21 0.52 0.73

C’est notre affaire 13 0.92 0.41 28 0.39 0.92 2 0.50 0.50

C’est dans l’air 17 1.0 0.46 45 0.56 1.0 2 0.50 1.0

Debates 85 0.73 0.39 382 0.77 0.93 47 0.55 0.50

Les Choristes 11 1.0 0.12 120 0.32 1.0 19 0.16 0.67

Amelie 17 0.71 0.27 63 0.63 0.89 12 0.25 0.50

Asterix Obelix 12 0.92 0.12 89 0.10 0.90 16 0.63 0.91

Virgins Suicide 15 1.0 0.18 80 0.15 1.0 11 0.18 0.67

Movies 55 0.89 0.16 352 0.28 0.91 58 0.31 0.72

Overall 280 0.83 0.35 1292 0.68 0.95 177 0.45 0.62

9.4.4 The combined system

In this section, we test the audiovisual association system when adding all above components to

the baseline system as explained in equation 8.13. Results are reported in table 9.7. This table

shows a gain of 10% on the precision of detecting talking faces (from 0.80 to 0.90) compared

to the baseline system, and a gain of 14% on the recall (from 0.32 to 0.46). Similarly there

is a gain of 7% (respectively 4%) on the precision (respectively recall) of detecting non-talking
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faces, and a gain of 35% (respectively 15%) on the precision (respectively recall) of detecting

the non-appearing persons.

Table 9.7: Results of the audiovisual association using face size: detection of the talking faces,

non-talking faces and only-voices.

Talking faces Non-talking faces Only voices

Num. Prec. Rec. Num. Prec. Rec. Num. Prec. Rec.

ABC news 28 0.96 0.84 63 0.92 0.98 3 1.0 0.75

CNN news 20 0.85 0.74 53 0.89 0.94 2 1.0 0.40

France2 news (1) 36 0.97 0.76 117 0.91 0.99 10 0.90 0.82

France2 news (2) 31 0.94 0.78 107 0.93 0.98 11 0.91 0.77

LBC news 32 0.88 0.72 157 0.93 0.97 15 1.0 0.79

CCTV news 23 0.87 1.0 30 1.0 0.91 3 1.0 0.50

News 170 0.92 0.80 527 0.92 0.97 44 0.95 0.72

Le Grand Journal (1) 26 0.73 0.53 169 0.92 0.96 16 0.87 0.61

Le Grand Journal (2) 39 0.72 0.54 128 0.81 0.91 15 0.87 0.50

C’est notre affaire 14 0.93 0.45 27 0.41 0.92 1 1.0 0.50

C’est dans l’air 18 1.0 0.50 44 0.59 1.0 1 1.0 1.0

Debates 97 0.80 0.49 368 0.80 0.93 33 0.88 0.56

Les Choristes 15 1.0 0.16 116 0.34 1.0 15 0.33 1.0

Amelie 24 0.92 0.71 55 0.84 0.96 4 1.0 0.67

Asterix Obelix 14 1.0 0.15 87 0.10 1.0 14 0.79 1.0

Virgins Suicide 16 1.0 0.19 79 0.15 1.0 10 0.30 1.0

Movies 69 0.97 0.23 337 0.32 0.98 43 0.54 0.92

Overall 331 0.90 0.46 1232 0.72 0.96 120 0.78 0.70

Table 9.8 summerizes the overall improvements: the total precision (respectively recall) for

each system adds up the precisions (respectively recalls) of the talking faces, non-talking faces

and non-appearing voices obtained for that system. This table shows that the overall gain is

about 11% on the precision (from 65% to 76%) and about 8% on the recall (from 67% to 75%).
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Table 9.8: Comparison between the baseline audiovisual association system and the improved

systems.

S1: Baseline S2: S1 + Face

size

S3: S1 + Lips

activity

S4: S1 + Face

size + Lips

activity

Precision 65 % 67% 71% 76%

Recall 67% 69% 68% 75%

9.5 Analysis of the errors

After combining all audio and video components, different types of errors still remains. From

the audio point of view, we have found that:

- On broadcast news, the errors are especially due to the confusion between people that

have the same background noise (e.g. interviewees in demonstrations, etc.). Sometimes,

errors are due to the dissimularity between turns of a reporter that is either talking in the

studio or in noisy places.

- On debates, the errors are especially due to the high interaction rate between people

(overlapping voices).

- On movies, the errors are due to the high variations in the background (music, indoor,

outdoor, croud, etc.), the little turns of speech, and the high interaction rate between

actors.

From the video point of view, we have found that:

- On broadcast news, the errors are especially due to the similarity between faces that have

little sizes, similar lightening and for whom the clothes look similar.

- On debates, the errors are especially due to the reports that are shown during the program

(such in “C’est notre affaire” video file).

- On movies, the errors are due to the huge variation in the lightning conditions, the pose

and the size of the face. Moreover, there are the similarity in clothes (especially in Asterix

Obelix) between different actors, and variation in clothes for the same actor.
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Conclusion

In this part, we review the fusion architectures, and we describe some of the existing approaches

in audiovisual fusion. Then, we present our proposed method for audiovisual association us-

ing cooccurrence matrix as well as the enhancements that can be added by using additional

constraints such as the size of the face and the lips activity rate. Moreover, we describe a

framework that improves simultaneously the audio indexing output, the video indexing output,

and the audiovisual association.

Experiments are done on a database that contains news, debates and movies. Results show

the efficiency of the association method, and confirm the gain that video information (respec-

tively audio information) can bring to the audio indexing (respectively the video indexing).
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General Conclusions and

Perspectives

In this work, we propose methods for unsupervised video indexing based on audio, video and

audiovisual characterization of persons. Some of those methods are generic because they may

be applied on other modalities or other kind of features. Those contributions are on different

levels (low, intermediate and high level) of the system architecture, and on different modalities.

Those skills enable us to build an efficient and robust overall system.

More particularly, in the audio domain, we propose a robust and portable audio indexing

that has many strong points:

- It splits the audio stream into homogeneous regions using our proposed bidirectional

GLR/BIC algorithm. Each of these regions corresponds to one audio source (one speaker,

noise, music, etc.).

- After discarding non-speech part, a first local-global hierarchical bottom-up clustering step

is done using BIC criterion.

- An iterative process is done to correct simultaneously the segmentation boundaries and

the clustering purity, and discard the retrieved non-speech segments.

This system is tested on radio broadcast debates and evaluated in ESTER2 competition on radio

broadcast news. Results show the efficiency and the portability of the proposed system.

In the video domain, we propose methods for visual persons indexing that have many

strong points:

- It splits the video stream into shots using the same GLR/BIC method proposed for audio

segmentation.
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- It detects and tracks persons based on face and clothing.

- It clusters the detected persons using SIFT features extracted within the face box, skin

color of the face, 3D color histogram and texture of the clothing part. New similarity

distances were proposed to ensure a robust clustering criterion. The clustering is processed

in a hierarchical bottom-up manner.

Experiments are done on broadcast news, debates and movies that were manually annotated.

The results show the impact of each technique/descriptor on the whole video indexing system

as well as the robustness and the portability of that system.

From the audiovisual fusion point of view, we propose methods for audiovisual fusion system

that has many strong points:

- an association between faces and voices is done using cooccurrence matrix and some

additional priors like the face size and the lips activity.

- an iterative process enhances the only-audio speaker diarization system (respectively the

only-video persons indexing system) with the help of video (respectively the help of audio).

Results obtained on broadcast news, debates and movies show the efficiency of the association

method, and confirm the correlation between audio and video information, and the gain ensured

by using both media.

Perspectives

Because of the diversity and the architecture of the whole audiovisual system, many perspectives

result from this work.

From the architectural, speediness and optimization point of view, many enhance-

ments can be done:

- A parallel processing can be done on audio channel and video channel at early stages

(before the fusion process) in order to speed up the processing computation.

- Optimizations on some proposed algorithms and updating functions can be done (GLR/BIC,

tracking, sampling, etc.) as well as the evaluation of those optimizations. This will enable

real time applications.

178



In the audio domain, we highlight some new directions that aim to improve speaker

diarization system:

- The detection of multi-sources/multi-speakers segments will be very helpful to locate

interaction zones in an audio recording. Many hints can be revealed from our “in deep”

observations of both features and processes behaviors, and can be useful to detect those

zones and identify the speakers interaction in those zones. On the first hand, we have

found that the values of the 4Hz modulation energy on interaction zones are lower than

on clean scenarios. This may be useful to locate regions of simultaneous speakers. On

the second hand, we may identify the speakers talking in these zones by computing the

maximum likelihood between every frame within each zone and the automatic speaker

clusters.

- Additional works can also be done to combine different clustering outputs, or to choose the

best output between two of more different speaker clustering algorithms. Theoretically,

the best of two clustering processes for the same number of clusters (Nc) is the one that

maximizes the intra-cluster similarities and that minimizes the inter-clusters similarities.

In the video domain, many components of the video indexing system can be improved:

- The person detection component can be improved by detecting, not only frontal faces, but

also profile faces, upper-body and full-body.

- The forward-backward tracking component can be improved by using particle or Kalman

filters.

- The clustering process can also be enhanced by adding other descriptors like hair, by

detecting special characteristics (glasses, mustaches, etc.).

In the audiovisual fusion, future works will focus on the dynamic audiovisual model

of each person:

At the end of our association process, we have been able to classify persons into “talking

faces”, “non-talking faces” and “non-appearing persons”. This classification will enable us to

define, within each document (intra-document), audiovisual models for talking persons, visual

models for non-talking person and voice model for non-appearing persons. Those models may

be Gaussian mixture models (GMMs), Eigen vector space models (EVSMs), etc.
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A second step will aim to define similarity measures in order to cluster the persons in the

whole database (inter-document clustering). This measure must handle the huge variations that

may appear on many levels: voice, background noise, lightening, mustaches, glasses, beard,

clothing, etc.

This should contribute, in addition to our work in database structuring, to define a dynamic

unsupervised audiovisual identity for each person within not only the document, but the

whole database, and will help to better index, organize, classify, and browse the documents in

regards to the persons that interact within them.

The last perspective, but not the least, should consider the way to present this work to the

targeted users in exciting tools, because they may encounter difficulties in accepting new ways

of doing things that involves changes in mindset. In all times, users are the ultimate judges of

the usefulness of any technology in meeting their needs!
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Appendix A

Application of the GLR-BIC

segmentation for Program

Boundaries Detection

We consider here that hypothesizes made for shot detection can be extended to program seg-

mentation. It means that a selected set of features during a program behave in an homogeneous

manner so that their values distribution can be modeled by a Gaussian law, and that features of

two consecutive programs follow two rather different Gaussian laws. The last hypothesis is that

a segment is of a minimal duration (in order to fix the size of the window used at the beginning

of the algorithm, and to determine when fusion of boundaries must be operated). In our work,

the goal is to check if typical video and audio features could validate the above hypothesizes.

A.1 Program boundaries detection using visual features

Each TV program has a certain number of visual characteristics that makes this program differ-

ent from the others. For example, the luminance, the dominant colors, the activity rate in a soap

episode are different from those observed on a TV game or a TV News program. As input for the

system, a vector of features is originally provided as follows: every k seconds where k denotes the

approximate value of the most frequent shot duration in seconds (experimentally k=8) for the

tested content set, a frame is extracted and then, the three corresponding 2m-dimension color

histograms (R, G and B) are computed and their 3 ∗ 2m (m = 8 if the images are 8-bits images)
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Figure A.1: Variation of Feature F1 for 3 consecutive programs.

values are concatenated in a vector. Furthermore, the Singular Value Decomposition (SVD)

is applied in order to reduce the vectors dimension. Experimentally, an inertia ratio higher

than 95% is reached with a vector dimension reduced to 12. Finally, the segmentation method

explained above is applied on the sequence of these 12-dimension feature vectors. Results in

table A.1 show a precision of about 78% on 5 days of television (120 hours). The major errors

appear when there are commercial breaks: it may be typically explained because in this type of

programs, in addition to their short duration, the homogeneity hypothesis is not still verified.

The variation and the distribution of the first “video” feature (after SVD) on 3 consecutive

programs are given on figures A.1 and A.2. Figures A.3 and A.4 show the same phenomena for

the third “video” feature obtained after SVD. We can verify that both variation and repartition

are different for the three programs.

A.2 Program boundaries detection using acoustic features.

In this sub-section, we evaluate the ability of our segmentation method to detect program

boundaries using only audio features. The input feature vectors are provided as follows: the

first p Mel Frequency Cepstrum Coefficients (p = 16) are extracted every 10 ms using a sliding

window of 20 ms. Those coefficients are then normalized and quantified between 0 and D − 1

(D = 48). Every k seconds (k = 8), histogram vectors are computed for each MFCC coefficient

and concatenated to build a super-vector of dimension p ∗D. Then, the SVD is applied in order
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A.3. Program boundaries detection using audiovisual features.

Figure A.2: Distribution of Feature F1 for 3 consecutive programs.

to reduce the dimension of those vectors. Practically, an inertia ratio of about 90% is obtained

for a resulting vector dimension of 40. Finally the segmentation is applied. Table A.1 shows

that scores are lower with the acoustic features (75%) than with the visual features.

A.3 Program boundaries detection using audiovisual features.

In order to exploit the complementary information brought by the two different modalities, the

previous audio and video features are simultaneously used. Because we took the same temporal

sampling to produce feature vectors (k = 8) with the same dimensions value (3 ∗ 2m = p ∗D)

reduced by the same processing (SVD, histograms) for the above two methods, it is very easy

to combine them using two kinds of fusion: fusion at the decision level and fusion at the feature

level.

At the decision level, the fusion was done by computing:

∆BICAV = ∆BICA + ∆BICV (A.1)

where ∆BICAV > 0 corresponds ideally to a change between two TV programs.

At the feature level, the early fusion aims to concatenate the visual vector of features

(dimension = 3 ∗ 2m) and the acoustic vector of features (dimension = p ∗ D). SVD is then

applied: a resulting vector of dimension 60 is obtained for an inertia ratio of about 90%. Finally,
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Figure A.3: Variation of Feature F3 for the same 3 consecutive programs.

the segmentation is processed to detect the frames of change. Experimentally, the early fusion

at the features level gives ( 80.7%) better results than the fusion at the decision level (78.5%).

A.4 Experiments

Tests were carried out on 120 hours of TV videos recorded continuously from a general French TV

channel during 5 days (including various kinds of programs such as news, weather forecast, talk-

shows, movies, sports and sitcoms) with a rate of 25 frames/second. The size of the programs

is very variable: from few minutes for weather forecast to 3 hours for a film.

For the segmentation step, we had to define the length of the fixed size window W and the

penalty coefficient which depends on W and the dimension of the feature vectors (12 for video

features, 40 for audio features and 60 for audio/video features). We chose a window size of 4

minutes (corresponding to 30 vectors) as the hypothesis on the minimal duration of a program.

The penalty coefficient λ was tuned to 5 for the Video system, to 1.2 for the Audio system and

1 for the AV system.

To evaluate those systems, the ARGOS F-measure metric, described above, was used: it

highlights the ability of the segmentation tool to gather units belonging to a same segment.

Results in Table A.1 show that the visual system is better ( 78%) than the audio one ( 75%).

With audio features, the majority of errors appear especially when there are commercial breaks.

This might be explained typically because this type of program does not follow the homogeneity
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Figure A.4: Distribution of Feature F3 for the same 3 consecutive programs.

Table A.1: Results of the program boundaries detection (120 hours of test).

Visual sytem Audio system AV system

F −measure 78.04% 75.16% 80.72%

hypothesis. We can see that the two modalities audio and visual bring complementary informa-

tion because the results are better than those obtained with only one modality.

Many improvements can be done while taking into account some knowledge already identified

in the state of the art. For example, on French TV, commercials are separated by a sequence

of monochrome images (white, blue or black). As this kind of effect can be easily detected,

improvements of about 9% (F − measure = 87.34%) can easily be reached while gathering

advertisements in a single program.

Comparison of the above results with those obtained by the state-of-the-art systems is a

difficult task because corpora, units and metrics are different for each experience and cannot

be shared. To our knowledge, there is no international campaign addressing this topic. In this

case, the evaluation we provide here should be considered as a basic reference which can be used

later to evaluate improvements of this method, or to compare with other future approaches.

As our system is almost knowledge-free, it can process any kinds of TV content without any

prior training phase. In this way, it can be seen as a useful pre-processing step in the context of

video indexing for example.
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As part of the project ANR EPAC20, the program boundaries detection was applied on 1700

hours of TV and Radio contents: the processing took less than 16 hours that is lower than

(recording duration * 10−2) with a non optimized version written in Matlab on a classical PC

architecture.

20http://www.epac.univ-lemans.fr/
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Appendix B

Additional visual features

• HMMD Color Histograms. The HMMD (Hue, Min, Max, Diff) [MrOVY01] color

space is used in MPEG-7 standard. It is derived from the HSV and RGB spaces. The

hue component is the same as in the HSV space, and max and min denote the maximum

and the minimum among the R, G, and B values. The diff component is defined as the

difference between max and min.

• Contrast. It is the difference in visual properties that makes an object distinguishable from

other objects and the background21. There are different manners to compute the contrast

of an image like the Weber contrast, the Michelson contrast and the RMS contrast. For

more details about the definition, the measurements and the evaluation of the contrast,

please refer to [Pel90].

• Local edge features. Object boundaries usually generate strong changes in images

intensities. Edge detection is used to identify these changes in image segmentation task.

The most popular edge detection approach is the Canny edge detector [Can86]. In [Per92],

authors used steerable filters to extract local image edge features. Steerable filters [FY91]

can provide any orientations information because they are excellent for the detailed analysis

of boundaries. Those features can be used to detect frontal faces in images [SS04].

• Histogram of edge directions. Low-level shape-based features can be constructed

from the edges in the images. A histogram of edge directions is translation invariant and

21http://en.wikipedia.org/wiki/Contrast (vision)
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it captures the general shape information in the image. Because the feature is global, it is

robust to partial occlusion and local disturbance in the image.

• Fourier and wavelet features. The Fourier and wavelet transforms [BC99] are powerful

tools for pattern recognition. One of their important properties is that a shift in the time

domain causes no change in the magnitude spectrum. This can be used to extract invariant

features in pattern recognition.

• Illumination invariant color histograms. Some undesirable limitations on the use

of color features in content-based applications are due to the variation of the scene illu-

mination conditions. In [OB02], a set of illumination-invariant descriptors is defined in

order to achieve some robustness to variation in lighting conditions. These histograms are

computed using invariant moments of the distribution in the RGB space.

• Haar-like features. These features owe their name to their intuitive similarity with Haar

wavelets. They were introduced by Papageorgiou et al. in [POP98b]. The features set

considers rectangular regions of the image and sums up the pixels in this region. Those

features were used for object recognition ([POP98b], [VJ01]) and more particularly for

face detection [VJ04].

• Optical flow. It is a dense field of displacement vectors which defines the translation

of each pixel in a region. Optical flow is commonly used as a feature in motion-based

segmentation and tracking applications. It is computed using the brightness constraint of

consecutive images [HS92].
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Appendix C

Output XML format of the

audiovisual fusion

In order to deliver a comprehensive and portable output index file, we decide to use the XML

format and we define three important elements as seen in figure C.1:

- the Audio-Visual-People element that contains the list of different persons that have

audiovisual identities. For each person, we define: 1) the Audio element that contains

the different turns where that person is talking, 2) the Video element that contains the

different turns where that person is appearing.

- the Only-Audio-People element that contains the list of different persons that have only

audio identities. For each person, we define the Audio element as above.

- the Only-Video-People element that contains the list of different persons that have only

video identities. For each person, we define the Video element as above.

In the example shown in figure C.1, we incorporate additional information that may be useful

for future use: Pitch, the confidence coefficient POF (Product of frequencies), the keyface (it

corresponds to the maximum similarity between the face and the associated face cluster), the

keyvoice (it corresponds to the maximum similarity between the voice segment and the associated

speaker cluster), etc.
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Appendix C. Output XML format of the audiovisual fusion

! <Document video_filename="19980104_ABC" run_version="IRIT-1"

version_date="2010-02-27" author="Elie El-Khoury">

<Description category="news" language="english"/>

! <Audio-Visual-People>

! <Person id="pers1" name="unknown" type="female" faceId="1" keyFace="face_1.jpg"

voiceId="1" keyVoice="voice_1.wav">

<Fusion POF="0.65" commonTime="19.040 sec"/>

! <Audio time="20.010 sec" Pitch="177 Hz">

<Turn startTime="8.630" endTime="18.700"/>

<Turn startTime="362.290" endTime="372.230"/>

</Audio>

! <Video time="235.760 sec">

! <Clothes>

<Cloth id="cloth_1_1" image="cloth_1_1.jpg"/>

<Cloth id="cloth_1_2" image="cloth_1_2.jpg"/>

</Clothes>

! <Turns>

<Turn startTime="0.000" endTime="8.440"/>

<Turn startTime="9.600" endTime="19.400"/>

<Turn startTime="361.720" endTime="373.040"/>

</Turns>

</Video>

</Person>

+ <Person id="pers2" name="unknown" type="male" faceId="3" keyFace="face_3.jpg"

voiceId="2" keyVoice="voice_2.wav"></Person>

</Audio-Visual-People>

! <Only-Audio-People>

! <Person id="pers3" name="unknown" type="female" voiceId="3"

keyVoice="voice_3.wav">

! <Audio time="51.350 sec" Pitch="190 Hz">

<Turn startTime="181.630" endTime="212.980"/>

<Turn startTime="214.290" endTime="334.290"/>

</Audio>

</Person>

+ <Person id="pers4" name="unknown" type="male" voiceId="4" keyVoice="voice_4.wav">

</Person>

</Only-Audio-People>

! <Only-Video-People>

! <Person id="pers5" name="unknown" type="male" faceId="2" keyFace="face_2.jpg">

+ <Video time="52.200 sec"></Video>

</Person>

</Only-Video-People>

</Document>

Figure C.1: The output file in the XML format.
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Publications

1. Elie El Khoury, Christine Senac, Philippe Joly. Unsupervised segmentation methods of

TV contents. International Journal of Digital Multimedia Broadcasting, accepted with

minor revision, to appear, april 2010.

2. Elie El Khoury, Christine Senac, Philippe Joly. Face-and-Clothing Based People Clustering

in Video Content. ACM Multimedia, Philadelphia, Pennsylvania, ACM, march 2010.

3. Hervé Bredin, Lionel Koenig, Hélène Lachambre, Elie El Khoury. IRIT @ TRECVid

HLF 2009 Audio to the Rescue. TREC Video Retrieval Workshop (TRECVID 2009),

Gaithersburg, MD, National Institute of Standards and Technology (NIST), november

2009.

4. Elie El Khoury, Gaël Jaffré, Julien Pinquier, Christine Senac. People indexing using audio

and video segmentations. International Workshop on Electronics, Control, Modelling,

Measurement and Signals (ECMS 2009), Mondragon, Spain, 2009.

5. Elie El Khoury, Christine Senac, Julien Pinquier. Improved Speaker Diarization System

for Meetings. IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP 2009), Taipei, Taiwan, IEEE, p. 4241-4244, 2009.

6. Shih-Fu Chang, Junfeng He, Yu-Gang Jiang, Elie El Khoury, Chong-Wah Ngo, Akira

Yanagawa, Eric Zavesky. Columbia University/VIREO-CityU/IRIT TRECVID2008 High-

Level Feature Extraction and Interactive Video Search. TREC Video Retrieval Workshop

(TRECVID 2008), NIST in Gaithersburg, MD, National Institute of Standards and Technology

(NIST), 2008.
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7. Elie El Khoury, Christine Senac, Philippe Joly. Unsupervised TV Program Boundaries

Detection Based on Audiovisual Features. International Conference on Visual Information

Engineering (VIE 2008), Xi’an China, IET (The Institution of Engineering and Technology,

2008.

8. Elie El Khoury, Gaël Jaffré, Julien Pinquier, Christine Senac. Association of Audio and

Video Segmentations for Automatic Person Indexing. International Workshop on Content-

Based Multimedia Indexing (CBMI 2007), Bordeaux, France, IEEE, p. 287-294, 2007.

9. Elie El Khoury, Christine Senac, Régine André-Obrecht. Speaker Diarization: Towards a

more Robust and Portable System. IEEE International Conference on Acoustics, Speech,

and Signal Processing (ICASSP 2007), Honolulu, Hawaii, USA, IEEE, p. 489-492, 2007.

10. Elie El Khoury, Sylvain Meigner, Christine Senac. Segmentation et regroupement en

locuteurs pour la parole conversationnelle. Journées d’Etudes sur la Parole (JEP 2008),

Avignon, France, Association Francophone de la Communication Parlée (AFCP), p. 345-

348, 2008.
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Résumé

Cette thèse consiste à proposer une méthode de caractérisation non-supervisée des intervenants

dans les documents audiovisuels, en exploitant des données liées à leur apparence physique

et à leur voix. De manière générale, les méthodes d’identification automatique, que ce soit

en vidéo ou en audio, nécessitent une quantité importante de connaissances a priori sur le

contenu. Dans ce travail, le but est d’étudier les deux modes de façon corrélée et d’exploiter

leur propriété respective de manière collaborative et robuste, afin de produire un résultat fiable

aussi indépendant que possible de toute connaissance a priori.

Plus particulièrement, nous avons étudié les caractéristiques du flux audio et nous avons

proposé plusieurs méthodes pour la segmentation et le regroupement en locuteurs que nous

avons évalué dans le cadre d’une campagne d’évaluation.

Ensuite, nous avons mené une étude approfondie sur les descripteurs visuels (visage, costume)

qui nous ont servi à proposer de nouvelles approches pour la détection, le suivi et le regroupement

des personnes.

Enfin, le travail s’est focalisé sur la fusion des données audio et vidéo en proposant une

approche basée sur le calcul d’une matrice de cooccurrence qui nous a permis d’établir une

association entre l’index audio et l’index vidéo et d’effectuer leur correction. Nous pouvons ainsi

produire un modèle audiovisuel dynamique des intervenants.

Mots-clés: Diarization, Fusion audiovisuel, Segmentation en locuteurs, Regroupement en lo-

cuteurs, Détection des visages, Regroupement des visages, Extraction du costume, GLR-BIC

segmentation.

Abstract

This thesis consists to propose a method for an unsupervised characterization of persons

within audiovisual documents, by exploring the data related for their physical appearance and

their voice. From a general manner, the automatic recognition methods, either in video or audio,

need a huge amount of a priori knowledge about their content. In this work, the goal is to study
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the two modes in a correlated way and to explore their properties in a collaborative and robust

way, in order to produce a reliable result as independent as possible from any a priori knowledge.

More particularly, we have studied the characteristics of the audio stream and we have

proposed many methods for speaker segmentation and clustering and that we have evaluated in

a french competition.

Then, we have carried a deep study on visual descriptors (face, clothing) that helped us to

propose novel approches for detecting, tracking, and clustering of people within the document.

Finally, the work was focused on the audiovisual fusion by proposing a method based on

computing the cooccurrence matrix that allowed us to establish an association between audio

and video indexes, and to correct them. That will enable us to produce a dynamic audiovisual

model for each speaker.

Keywords: Diarization, Audiovisual fusion, Speaker segmentation, Speaker clustering, Face

detection, Face clustering, Clothing extraction, GLR-BIC segmentation.

214


	Cover
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	General Introduction
	Context
	Characterization of persons
	Our Contribution
	Organization of this report


	Part I Audio speaker indexing
	Introduction
	State-of-the-art of Speaker Diarization
	Acoustic Features
	Audio event segmentation
	Audio speaker segmentation
	Segmentation by silence detection
	Segmentation by speaker change detection
	Symmetric Kullbach-Leibler divergence
	Generalized Likelihood Ratio
	Bayesian Information Criterion
	Hotteling T2-Statistics with BIC


	Audio speaker clustering
	BIC based approaches
	Eigen Vector Space Model approach
	Cross Likelihood Ratio clustering
	Hidden Markov Model approach
	Other clustering techniques

	Examples of state-of-the-art speaker diarization systems
	The LIMSI speaker diarization system
	The IBM speaker diarization system
	The LIA speaker diarization system

	Databases
	ESTER-1 Corpus
	ESTER-2 Corpus
	EPAC-ESTER Corpus


	Proposed System for speaker diarization
	Proposed Generic GLR-BIC segmentation
	Proposed Method
	Bidirectional segmentation
	Penalty coefficient decreasing technique
	Other applications of the method

	Proposed clustering
	Improved EVSM clustering
	BIC clustering
	CLR Post-Clustering
	A. Adaptative thresholding.
	B. CLR+BIC fixed thresholding.


	System architecture

	Experiments and Results
	Evaluation of the speaker segmentation
	Experiments and Results

	Evaluation of the acoustic events detection
	Experiments and results

	Evaluation of the speaker clustering
	Evaluation of the speaker diarization system
	Experiments and results



	Conclusion
	Part II Visual people indexing
	Introduction
	State-of-the-art
	Low-level visual features
	People detection
	Face detection
	Upper-body detection

	People tracking
	Existing methods for people tracking
	Face tracking
	Clothing tracking

	People clustering
	Drawback of people clustering methods
	The use of hair descriptors
	The use of SIFT features


	Proposed Face-and-clothing based people indexing
	System Architecture
	Shot Boundary Detection
	Face based detection
	Clothing extraction
	People tracking
	Face-based people tracking
	Clothing-based people tracking

	Proposed methods for people clustering
	Face-based clustering
	Choice of the key-face
	SIFT matching

	Clothing based clustering
	Histograms Comparison
	Dominant Color
	Texture

	Hierarchical bottom-up clustering


	Experiments and Results
	Evaluation tool
	Corpora
	Development corpus
	Test corpus

	Experiments on the development set
	Results on the test set


	Conclusion
	Part III Audiovisual fusion
	Introduction
	State-of-the-art
	Fusion architectures
	Mathematical aggregation operators
	Existing works in audiovisual fusion
	Audiovisual scene segmentation
	Audiovisual video structuring
	Audiovisual music video segmentation
	Spatio-temporal detection of talking person
	Audiovisual speaker recognition
	Audiovisual synchronization
	Audiovisual speaker diarization
	Major casts list


	Proposed audiovisual fusion methods
	Association between audio and video indexes
	Automatic matching using weighted co-occurrence matrix
	Index intersection
	Index fusion

	The use of the face size
	Lips activity detector

	Audiovisual system for people indexing

	Experiments and Results
	Database
	Results of the speaker diarization
	Results of the video people diarization
	Results of the audiovisual association
	The baseline system
	The use of the face size
	The use of the lips activity rate
	The combined system

	Analysis of the errors


	Conclusion
	General Conclusions and Perspectives
	Application of the GLR-BIC segmentation for Program Boundaries Detection
	Program boundaries detection using visual features
	Program boundaries detection using acoustic features.
	Program boundaries detection using audiovisual features.
	Experiments

	Additional visual features
	Output XML format of the audiovisual fusion
	Publications

	Bibliography
	Résumé
	Abstract

