

Soutenance de thèse de doctorat

ETUDES MORPHOLOGIQUES ET CINÉTIQUES DE L'ÉLABORATION DE NANO-OBJETS (SI, SIGE) PAR RT-CVD

Thèse soutenue publiquement par Clément PRIBAT

Direction technique: Didier DUTARTRE (STMicroelectronics) Direction universitaire: Gilbert VINCENT (UJF)

Thèse préparée à STMicroelectronics (Crolles) et au LTM (CNRS)

Contexte Etudes cinétiques Etudes morphologiques Applications Conclusion Plan • Contexte

- Résultats cinétiques
- Résultats morphologiques
- Applications technologiques
- Conclusion

Etudes cinétiques Etudes morphologiques

Plan

• Contexte

Contexte

- La miniaturisation des composants
- L'épitaxie par CVD
- Intérêt des cinétiques et de la morphologie
- Résultats cinétiques
- Résultats morphologiques
- Applications technologiques
- Conclusion

Conclusion

Applications

Etudes cinétiques Etudes morphologiques Applications

La miniaturisation des composants

- **Evolution technologique** des composants \rightarrow Loi de Moore
 - Evolution : réduction des **dimensions**
 - Densité d'intégration (*d*) et performances 🗡
 - Coût d'1 dispositif 🖌
- Dimension des dispositifs avancés réalisés industriellement : •
 - $-L_g \rightarrow 20-28$ nm

Contexte

- $d \rightarrow 10^9$ composants/cm²
- A cette échelle apparaissent des limitations de : ۲
 - Fabrication → Litho, siliciuration, dépôt diélectrique
 - Fonctionnement \rightarrow Effets de canaux courts, effets quantiques, dopage
- Nécessité de développer : •
 - Nouvelles architectures (SON, FinFET, FD-SOI...)
 - Nouveaux procédés (Epi sélective, gravure...)
 - Nouveaux matériaux (s-Si, SiGe, SiC...)

UNIVERSITE JOSEPH FOURIER

SCIENCES TECHNOLOGIE

Conclusion

L'épitaxie par CVD

- <u>Historiquement</u> → Fabrication/préparation de **substrat** (dépôt pleine plaque HT (>1000°C))
- <u>Aujourd'hui :</u>
 - Dépôt BT (400°C 900°C)
 - Dépôt sélectif
 - Dépôt de faible épaisseur (<10nm)
 - Dépôt sur \neq (hkl) (001), (110), (111)
 - Gravure sèche par HCl
- Exemples de **solutions** offertes par les procédés d'épitaxie par CVD

Problèmes :

- Modification architecture
- Augmentation performances dispositifs

UNIVERSITE OSEPH FOURIER

- Siliciuration difficile sur films minces (<20nm)

Procédés adaptables et intégrables dans

Applications

les techno avancées :

Excellents candidats pour la miniaturisation

Solutions :

- → Procédé SON Association de dispos de \neq (hkl) (HOT)
- \rightarrow Canal SiGe canal contraint (s-Si)
- → Sources (drains) surélevées

Intérêt des cinétiques et de la morphologie

Etudes cinétiques Etudes morphologiques Applications

Conclusion

- Réalisation de nano-objets cristallins par techniques CVD :
 - Mécanismes de croissances et cinétiques des procédés (Epitaxie ou Gravure)
 - Morphologie obtenue :

Contexte

- Facettage (croissance cristalline en bord du film non contrôlée)
- Contrainte élastique pour SiGe (Stransky-Krastanov, S-K)
- Budget thermique reçu (minimisation $S.\gamma_s$, diffusion, minimisation de la courbure)

Contexte Etudes cinétiques Etudes morphologiques Applications Conclusion Plan

• Contexte

- Résultats cinétiques
 - Généralités
 - L'épitaxie du silicium
 - L'épitaxie de l'alliage Si_{1-x}Ge_x
 - Les effets de charge lors de l'épitaxie sélective
 - La gravure du silicium
- Résultats morphologiques
- Applications technologiques
- Conclusion

UNIVERSITE JOSEPH FOURIER

SCIENCES TECHNOLOGIE

Contexte

Etudes morphologiques

Généralités

- 2 régimes de croissance : GR=Growth Rate
 HT : Transfert de matière dans la phase gazeuse
 BT : Réactions chimiques à la surface du film
- Mécanismes limitant mis en jeu :

UNIVERSITE JOSEPH FOURIER

CIENCES TECHNOLOGIE

- **Diffusion** en phase gazeuse des réactifs (HT)
- Adsorption des espèces réactives (HT/BT)
- Décomposition des radicaux (BT)
- Désorption des produits volatils (BT)

Applications

Conclusion

Présentation des modèles de croissance pour :

- Deux matériaux \rightarrow Si et Si_{0.8}Ge_{0.2}
- Deux types de chimies \rightarrow Hydrure (SiH₄) et chlorée (SiH₂Cl₂ DCS)
- − Deux types de procédés → Non sélectif et sélectif

Contexte

Etudes morphologiques Applications

Conclusion

Epitaxie du silicium

- Régime BT :
 - Peu d'effet de P_i sur GR
 - Chimie hydrure (SiH_4) : $SiH_{4(g)} \xrightarrow{(2)} Si_{(s)} + 2\underline{H} + H_2$ $GR \xrightarrow{} désorption de H_2$
 - Chimie chlorée (DCS) : $SiH_2Cl_{2(g)} + 4 \longrightarrow Si_{(s)} + 2\underline{H} + 2\underline{Cl}$
 - GR → désorption de H₂, HCl et SiCl₂
- Régime HT :

GRENOBLE

- GR α P_i diffusion dans le gaz (D)
- $D \alpha M^{-0.5}$ (Loi de Graham)
- $M_{\text{DCS}} > M_{\text{SiH4}} \rightarrow GR_{\text{DCS}} < GR_{\text{SiH4}}$

UNIVERSITE JOSEPH FOURIER

SCIENCES, TECHNOLOGIE

Silane : chimie plus simple et plus rapide

C. PRIBAT – 21 juillet 2010

types de chimie lors de dépôts non-sélectifs

Contexte Etudes cinétiques Etudes morphologiques Applications Conclusion Epitaxie du SiGe Incorporation du Ge $GeH_{4(g)} + (2 \rightarrow Ge_{(s)} + 2\underline{H} + H_2$

• $GR_{SiGe} > GR_{Si}$ @ BT

Ge \rightarrow catalyseur

Ge **7** désorption H₂ (HCl et SiCl₂)

• $GR_{SiGe} < GR_{Si}$ @ HT

 σ_{GeH4} et σ_{SiH4} plus faible sur SiGe_(s) que sur Si_(s)

• Incorporation du Ge 🖌 quand T 🗡 (θ_{surf} 🖌)

SCIENCES TECHNOLOGIE

Cl_{ad} ≯ incorporation du Ge
 E_{dCl} plus faible sur Ge_(s) que sur Si_(s)
 DCS : meilleure incorporation du Ge

Contexte

Epitaxie sélective: les effets de charge (1/2)

Etudes morphologiques Applications

- Epi sélective → Effets de charge : caractéristiques dépôt = f(Surf.Epi / Surf.totale)
- Variations de l'épaisseur des dépôts (Si, SiGe) et %Ge
- 2 contributions : thermique & chimique
- Contribution thermique :
 - Chauffage par radiation (lampes halogènes)

Etudes cinétiques

- Contrôle de T_{dep} : mesure de ε_{Si} face arrière
- Variation de la nature de la surface au cours du dépôt :
 - $\Delta \varepsilon_{surf} \rightarrow \Delta T_{surf} \rightarrow \Delta GR$
- Exemple :
 - Dépôt sélectif multicouches $Si SiH_4$
 - Chimie identique pour chaque film
 - $\Delta \varepsilon_{surf} \rightarrow \Delta T_{surf} \rightarrow GR \uparrow$

UNIVERSITE OSEPH FOURIER

SCIENCES TECHNOLOGIE

Conclusion

Epitaxie sélective: les effets de charge (2/2)

Etudes morphologiques Applications

- Contribution chimique :
 - Effets augmentent avec élévation de T
 - P_i & diffusion des espèces (phase gazeuse)

Etudes cinétiques

• Epitaxie sélective :

Contexte

- Masque dur \rightarrow Variation spatiale de [P_i]
- ZA : zone de consommation
- Diffusion latérale des espèces réactives vers ZA
- $P_i \nearrow \rightarrow GR \nearrow (\%Ge \nearrow)$
- Illustration :
 - Dépôt multicouches sélectif $Si_{0.8}Ge_{0.2}$ DCS
 - Chimie identique pour chaque film

UNIVERSITE JOSEPH FOURIER

CIENCES TECHNOLOGIE

- Perte de sélectivité \rightarrow homogénéisation de P_i à la surface

\rightarrow GR qui diminue

Conclusion

Contexte

Etudes cinétiques

Etudes morphologiques Applications

Conclusion

La gravure du silicium

- Régime basse température :
 - Mécanismes de surfaces
 - $2HCl_{(g)} + Si_{(s)} \xrightarrow{k_1} SiCl_{2(g)} + H_{2(g)}$
 - ER \rightarrow désorption de HCl et SiCl₂
 - HP $\rightarrow \theta$ $\uparrow \rightarrow d\acute{e}calage$ du régime vers HT
- Régime haute température :
 - Basse pression (20Torr)
 - **ER** = $K_1 P_{HCl}^2$

GRENOBLE

- Haute pression (600Torr)
 - $P_{HCl} x 40 \rightarrow ER x 15$

UNIVERSITE

JOSEPH FOURIER

SCIENCES TECHNOLOGIE

 $\mathbf{ER} = \mathbf{K}_{2}\mathbf{P}_{\mathbf{HCl}} \cdot \mathbf{L}_{\mathbf{diff}}$ Diffusion de HCl \ dans enceinte HCl/H₂

Applications

Plan

- Contexte
- Résultats cinétiques
- Résultats morphologiques
 - Evolution morphologique lors de l'épitaxie (non sélective et sélective)
 - Evolution morphologique lors de la gravure sélective (horizontale et latérale)
 - Evolution morphologique lors de recuits (Si, film SOI et SiGe)
- Applications technologiques

Conclusion

UNIVERSITE JOSEPH FOURIER

SCIENCES TECHNOLOGIE

Contexte

Plan

- Contexte
- Résultats cinétiques
- Résultats morphologiques
 - Evolution morphologique lors de l'épitaxie (non sélective et sélective)
 - Evolution morphologique lors de la gravure sélective (horizontale et latérale)
 - Evolution morphologique lors de recuits (Si, SiGe et film SOI)
- Applications technologiques

UNIVERSITE JOSEPH FOURIER

SCIENCES TECHNOLOGIE

Conclusion

Contexte

Etudes morphologiques

Conclusion

Applications

Le facettage en épitaxie

Comparaison de :

- Différents procédés
- non sélectif et sélectif \rightarrow
- Différents matériaux

 \rightarrow

- Différents masques durs
- Différentes **faces cristallines** →

\bullet 0.0 1	- 0.0

nitrure de silicium et oxyde $\{001\} - \{110\} - \{111\} - \{113\}$

Epitaxie sélective Dépôts multicouches sur plaques à motifs <110>	→ Procédés
Chimie chlorée :	
DCS et SiH ₄ + HCl	→ Matériaux
Addition GeH ₄ pour Si _{0.8} Ge _{0.2}	
2 types de substrats :	
Masque dur oxyde (SiO ₂)	\rightarrow Substrats
Masque dur nitrure de silicium (Si_3N_4)	
	Epitaxie sélectiveDépôts multicouches sur plaques à motifs <110>Chimie chlorée : DCS et SiH ₄ + HCl Addition GeH ₄ pour Si _{0.8} Ge _{0.2} 2 types de substrats : Masque dur oxyde (SiO ₂)

Procédés identiques pour un matériau donné et un type de substrat

UNIVERSITE JOSEPH FOURIER SCIENCES, TECHNOLOGIE,

GRENOBLE

Etudes cinétiques **Etudes morphologiques**

Conclusion

Epitaxie non sélective : HT vs BT

Dépôt Si_{0.8}Ge_{0.2} sur P2 {001}-{111}-{113}-{001} @ 750°C (HT) et 500°C (BT)

Haute Température :

- Epaisseur du film dépend de (hkl)
- Effet S-K sur (001)
- Facette (111) avec des petits ilots S-K
- Facette (113) étendue
- \rightarrow Pas de création de facette

Basse Température :

- Quasi-polycristal sur (111)
- Croissance quasi isotropique entre (111) & (113)
- Epaisseur (113) > Epaisseur (001)
- Facette (113) présente des marches (S-K)

(111) \rightarrow quasi polycristal @ BT Effet S-K important sur \neq (hkl) \rightarrow Morphologie = f(T)

 $Si_{0.8}Ge_{0.2} - SiH_4$ 300nm

Applications

Epitaxie non sélective : Si vs Si_{0.8}Ge_{0.2}

Etudes morphologiques

Dépôt sur P1 {001}-{110}-{001} →

Etudes cinétiques

Si @ BT & HT (SiH₄)

Si_{0.8}Ge_{0.2} @ BT & HT (SiH₄)

Conclusion

Applications

Basse Température :

Contexte

- Bonne épi. sur (001)
- Quasi polycristal en bord de motif :
 → GR "isotropique"
- Pas de formation de facette évidente

Haute Température :

- Création de facettes / surface initiale
- Si : morphologie multi-facettée
- SiGe : présence marquée de (113)

UNIVERSITE OSEPH FOURIER

- Effet S-K sur (001)

Epitaxie non sélective : cinétiques des plans denses

Applications

Conclusion

linéaire

12,0

12

12,5

13,0

11

10

11,5

12,0

Etudes cinétiques **Etudes morphologiques**

Contexte

Contexte

Epitaxie non sélective : origine du facettage

- Facettage lors de l'épitaxie :
 - plans les plus lents visibles
 - Δ important entre **GR**_{hkl} $r_{hkl} \ll 1 \rightarrow$ création de facettes
- Densité de liaisons \neq entre les plans •
 - \rightarrow BT: réaction de surface
 - 650°C : bon accord des valeurs
 - 600°C : défauts 🕇 GR
- Haute Température : transport de matière •
 - Cinétique des gaz \rightarrow F_i=f(angle solide Ω_{hkl})
 - Diffusion dans la phase gazeuse

UNIVERSITE JOSEPH FOURIER

SCIENCES TECHNOLOGI

- Dépôt SiGe @ 600°C •
 - Teneur **Ge** = **f**(**hkl**)
 - Mécanismes d'incorporation \neq en fct (hkl)

Plan	(001)	(119)	(113)	(111)	(110)
Densité de liaison	$\frac{4}{a_{Si}^2} = A$	$\frac{8}{9}A$	$\frac{4}{3\sqrt{3}}A$	$\frac{1}{\sqrt{3}}A$	$\frac{1}{\sqrt{2}}A$
Densité normalisée	1	~0,89	~0,77	~0,58	~0,71
r _{hkl} (Si 850°C)	1	0.67	0.4	0.28	0.28
r _{hkl} (Si 650°C)	1	0,84	0,73	0,62	(0,7)
r _{hkl} (Si 600°C)	1	0,89	0,82	(0,70)	0,78

Plan	001	111	113
%Ge	20	24	22
r _{hkl} %Ge	1	1,2	1,1

Epitaxie sélective : SiH₄ (HCI) vs DCS

Etudes morphologiques

Dépôt sélectif Si et $Si_{0.8}Ge_{0.2}$ à travers le masque dur Si_3N_4 à HT

Légère différence du facettage :
 SiGe (SiH₄): • (-111) jonction

Contexte

• (111) plus étendue

Etudes cinétiques

- Si (SiH₄) : (113) plus étendue Pas de Si sur Si₃N₄
- $S_{111} \not \to GR_{113} \not \to S_{113} \not \to GR_{111} \not \to$
 - − SiH₄ → Mécanismes réactionnels simples
 - SiH₄ → L_{diffusion gaz} plus élevée
 ≠ Flux de Ω_{hkl} négligeable
- Accumulation sur Si SiH₄ (001) :
 - Diffusion de surface des atomes importante

Applications

Conclusion

SiH₄ : favorise le facettage (111) à HT & mobilité adatomes à la surface JOSEPH FOURIER C. PRIBAT – 21 juillet 2010

Epitaxie sélective : Si₃N₄ vs SiO₂

Etudes morphologiques

Dépôts Si et Si_{0.8}Ge_{0.2} sélectifs à travers les 2 types de masques durs et à HT

• <u>Morphologie de la structure sur SiO₂ :</u> Si : (-111)-(111)-(113)-(119)-(001) Si_{0 8}Ge_{0 2} : (-111)-(111)-(113)-(001)

Contexte

Etudes cinétiques

- Morphologie de la structure sur Si_3N_4 : Si : (hkl)-(111)-(113)-(119)-(001) $Si_{0.8}Ge_{0.2}$: (hkl)-(111)-(113)-(001) Plan de jonction indéfini \rightarrow nombreux défauts
- <u>Différence entre diélectriques :</u> Plan de jonction

SiO₂: (-111) ou (111)

UNIVERSITE JOSEPH FOURIER

Si₃N₄ : indéfini

С. Р

Applications

Conclusion

Epitaxie sélective : cinétiques des plans denses

Etudes morphologiques

• Cinétiques sur Si₃N₄ 5% plus rapides que sur SiO₂ : $\rightarrow \varepsilon_{Si-Si3N4} \neq \varepsilon_{Si-SiO2}$

Etudes cinétiques

• <u>DCS :</u>

Contexte

<u>HT Si :</u>	<u>HT SiGe :</u>	BT Si & SiGe :
-GR ₀₀₁ ~2GR ₁₁₁	-GR ₀₀₁ ~2.5GR ₁₁₁	- GR ₀₀₁ <gr<sub>hkl</gr<sub>
$-GR_{001} \sim 1.5GR_{113}$	$-GR_{001} \sim 2GR_{113}$	→ nombreux défauts

• $\underline{\text{SiH}}_{4} + \text{HCl}$:

 $\mathrm{HT} \rightarrow \mathrm{GR}_{111} {<} \mathrm{GR}_{113} {<} \mathrm{GR}_{001}$

Applications

Conclusion

Applications

Conclusion

Plan

- Contexte
- Résultats cinétiques
- Résultats morphologiques
 - Evolution morphologique lors de l'épitaxie (non sélective et sélective)
 - Evolution morphologique lors de la gravure sélective (horizontale et latérale)
 - Evolution morphologique lors de recuits (Si, film SOI et SiGe)
- Applications technologiques

Conclusion

UNIVERSITE JOSEPH FOURIER

SCIENCES TECHNOLOGIE

Contexte

Contexte Etudes cinétiques **Etudes morphologiques** Applications Conclusion Gravure horizontale : Effet de la pression totale

P _{i HCl} (Torr)	P _t (Torr)	P_t/P_t	d=dist.lat/prof.
4	20	0,2	3,5
18	60	0,3	1,57
76	250	0,3	1,23
360	600	0,6	0,66

<u>P_{HCl}=4Torr & P_T=20Torr :</u> Anisotropie remarquable → ER₀₀₁<< ER₁₁₁ Epi Si HT DCS → r_{111} ~0.5 & r_{311} ~0.7

 P_T augmente → distance latérale diminue P_T et P_{HCl} augmentent : → diffusion dans enceinte (H₂/HCl) plus difficile

> UNIVERSITE JOSEPH FOURIER

CIENCES, TECHNOLOGIE

Etudes cinétiques **Etudes morphologiques** Applications Conclusion Contexte **Gravure** latérale Gravure Si entre 2 films d'oxydes : 2 procédés - PGL1 : P_t =600Torr / P_{HCl} =360Torr / 700°C - **PGL2** : P_t=20Torr / P_{HCl}=117mTorr / 800°C Deux orientations : • **Plaques SOI** {100} & {110} Résultats cinétiques $Motif < 110 > \rightarrow (110)$ Si PGL1 Motif $<100> \rightarrow (100)$ SiO₂ ER(001) ER_{110} ER_{100} (nm.min⁻¹) $(nm.min^{-1})$ $(nm.min^{-1})$ Résultats morphologiques 1 3.2 12 **PGL1 sur {100} PGL2 sur {110}** 🔪 x 3.8 🗩 SiO₂ PGL2 SiO₂ ER_{100} ER_{110} $\mathbf{ER}_{(001)}$ Si (nm.min⁻¹ $(nm.min^{-1})$ (nm.min⁻¹ Si 19 15,5 45 Gravure latérale Gravure latérale **x 2.9** Plans cristallins {100} Plans cristallins {111} SiO, **Densité de liaisons : DL** Silicium Silicium 300nm <u>300nm</u> DL (110)= $1/\sqrt{2}$ DL (100) Motif $<110> \rightarrow$ Pas de plans (110), facettage (111) **Autre explication :** Motif <100> \rightarrow Pas de facettage, (100) conservé **ER** = f(liaisons entre plans) UNIVERSITI JOSEPH FOURIER C. PRIBAT – 21 juillet 2010

SCIENCES, TECHNOLOGIE,

Plan

- Contexte
- Résultats cinétiques
- Résultats morphologiques
 - Evolution morphologique lors de l'épitaxie (non sélective et sélective)
 - Evolution morphologique lors de la gravure sélective (horizontale et latérale)
 - Evolution morphologique lors de recuits (Si, film SOI et SiGe)
- Applications technologiques

Conclusion

UNIVERSITE JOSEPH FOURIER

SCIENCES TECHNOLOGIE

Recuit du silicium

Etudes morphologiques

Applications

(001)

Conclusion

400nm

{311}

Pilier original

- **Recuit** haute température sous H₂ et basse pression (P_T<100Torr)
- Différents objets cristallins : •
 - Nature (Si & SiGe)

Contexte

Géométrie (pilier, puits, films...)

Etudes cinétiques

- Dimension (10nm à 1µm)
- Transformations morphologiques •
 - Augmentation rayon de courbure (R)
 - Apparition de plans (hkl)
 - \rightarrow Pas de dominance d'1 plan particulier

Mécanismes physiques

 Energie thermique : Evolution d'un état instable vers un état plus stable avec une cinétique significative

Etudes cinétiques **Etudes morphologiques**

- Evolution \rightarrow Transformation morphologique
 - → Déplacement de matière
 - \rightarrow Diffusion de surface *j* et vitesse de transformation *v*

$$j = -\left(\frac{D_{S}\gamma\Omega X_{S}}{k_{B}T}\right)\frac{\partial K}{\partial s} \quad (\text{Mullins}) \qquad \longrightarrow \qquad v = -\frac{\partial j}{\partial s} = \frac{D_{S}\gamma\Omega^{2}X_{S}}{k_{B}T}\frac{\partial^{2}K}{\partial s^{2}} \quad (\text{Mullins})$$

→ Diffusion : élévation locale de \mathbf{R} (R=1/K)

- → Atomes : surfaces **convexes** vers les surfaces **concaves**
- \rightarrow Vitesse de transformation 7 avec la 4 des dimensions

Dispositifs avancés de plus en plus sensibles

Contexte

C. PRIBAT – 21 juillet 2010

Applications Conclusion

Etudes cinétiques

Etudes morphologiques

Conclusion

Recuit SOI

- Recuit 950°C pdt 5min
- Pour 1 budget thermique donné : Evolution ≠ en fct de la largeur
- Films fins : γ =tension de surface
 - Formation d'objets sphériques
 - Etats finaux \rightarrow caractérisation de γ
 - → Anisotropie de γ plutôt faible
- Films épais :

Contexte

D=coefficient de diffusion

- Etats transitoires \rightarrow caractérisation de D
- A' et B symétriques par rapport à <110>
- Directions préférentielles de diffusion
- → Anisotropie de *D* plutôt forte

UNIVERSITE JOSEPH FOURIER

TENCES TECHNOLOGI

Applications

Diffusion anisotrope \rightarrow forme d'équilibre isotropique

Conclusion Contexte Etudes cinétiques Etudes morphologiques **Applications** Plan

- Contexte
- Résultats cinétiques
- Résultats morphologiques
- Applications technologiques
 - Procédé Empty Space under Silicon (ESS)
 - Réalisation d'un canal Si pour le transistor FinFET
 - Réalisation d'un canal SiGe pour les dispositifs avancés
- Conclusion

UNIVERSITE

Contexte Etudes cinétiques Etudes morphologiques Applications Conclusion Plan

- Contexte
- Résultats cinétiques
- Résultats morphologiques
- Applications technologiques
 - Procédé Empty Space under Silicon (ESS)
 - Réalisation d'un canal Si pour le transistor FinFET
 - Réalisation d'un canal SiGe pour les dispositifs avancés
- Conclusion

Procédé Empty Space under Silicon (1/2)

Etudes morphologiques

- Recuit HT sans gaz réactifs : Diffusion de surface → transport de matière dominant
- Recuit d'un **puits → cavité** sphérique **enterrée**

Etudes cinétiques

Minimisation de la courbure de surface

• Recuit d'une **matrice** de puits \rightarrow cavité (ESS)

- Transformation augmente quand :
- \rightarrow P_{H2} diminue

Contexte

- → Dimensions diminuent
- \rightarrow T augmente

Paramètres :

- Diamètre
- Profondeur
- Espacement (réseau de puits)

Conclusion

Applications → Guide d'onde / SOI localisé

Applications

Contexte Etudes cinétiques Etudes morphologiques Applications Conclusion Plan

- Contexte
- Résultats cinétiques
- Résultats morphologiques
- Applications technologiques
 - Procédé Empty Space under Silicon (ESS)
 - Réalisation d'un canal Si pour le transistor FinFET
 - Réalisation d'un canal SiGe pour les dispositifs avancés
- Conclusion

Canal Si pour le transistor Fin-FET (1/3)

Etudes morphologiques

Applications

Perspective

SIO .

Source

Top View

View, Simplified

BO

Conclusion

SIO.

Drain

Courtesy: T-J. King and C. Hu, UC/Berkeley

*

Objectif : réalisation canal Si par épitaxie

Contexte

Etudes cinétiques

- Procédés CVD optimisés pour dépôts films minces
- Gravure sélective Si/SiO₂ & SiGe/Si
- Enchainement procédés dans même réacteur :
 - Minimise les étapes de nettoyages
 - Minimise l'exposition de la plaque à l'air
- Mode opératoire : Drain • Source *PhysUSA N12 Poly Gate **Gravure selective Si** Film SiGe sacrificiel Grille métallique BOX **Aileron Si Canal Si** - Epaisseur SOI = 100-150nm Procédés de gravure et d'épitaxie @ BT : - Canal Si 20nm de largeur Contrôle des cinétiques avantagé - Film sacrificiel SiGe : 20nm à 25% Minimisation du facettage (Bonne sélectivité lors de la gravure/Si) UNIVERSITE JOSEPH FOURIER C. PRIBAT - September 2009 SCIENCES TECHNOLOGIE

Canal Si pour le transistor Fin-FET (2/3)

Résultats suivant la direction cristallographique <110>

Etudes cinétiques Etudes morphologiques

Gravure facettée (111)

Contexte

Conservation de la (111) lors de l'empilement $Si_{0.75}Ge_{0.25}/Si$

Application d'un recuit pour éliminer facettage (111)

Recuit après gravure à 900°C/20Torr/1min

→ Elimine facettage (111) minimisation de S. γ

Facettage (111) lors de l'empilement Si_{0.75}Ge_{0.25}/Si

Applications

Conclusion

<110>

Formation de facette (111) en bord d'oxyde

- Atome C \rightarrow 1 seule liaison avec son voisin (2 liaisons en (001))
- Atomes D et E → atomes additionnels minimisent la configuration (1 seule liaison dans le plan)

UNIVERSITE JOSEPH FOURIER

C. PRIBAT – September 2009

Contexte Etudes cinétiques Etudes morphologiques Applications Canal Si pour le transistor Fin-FET (3/3)

C. PRIBAT - September 2009

<u>Résultats suivant la direction cristallographique <100></u>

- Gravure non facettée
 - → Conservation du plan (100)
- Empilement Si_{0.75}Ge_{0.25}/Si

→ Conservation du (100) lors de

- Cinétiques de gravures plus faibles qu'en <110>
- Cinétiques de dépôts plus élevées qu'en <110>

UNIVERSITE OSEPH FOURIER

TENCES TECHNOLOGIE

Motifs $<110> \rightarrow$ facettage (111) Motifs $<100> \rightarrow$ pas de facettage

Conclusion

38

Conclusion Contexte Etudes cinétiques Etudes morphologiques **Applications** Plan

- Contexte
- Résultats cinétiques
- Résultats morphologiques
- Applications technologiques
 - Procédé Empty Space under Silicon (ESS)
 - Réalisation d'un canal Si pour le transistor FinFET
 - Réalisation d'un canal SiGe pour les dispositifs avancés
- Conclusion

UNIVERSITE

Contexte Etudes cinétiques Etudes morphologiques Applications Conclusion Plan

- Applications technologiques
- Conclusion

Conclusion

Etudes morphologiques

Applications

Conclusion

• Bonne compréhension des procédés CVD :

Etudes cinétiques

- Etude **approfondie des mécanismes** de croissance :
- Etude des mécanismes de gravure sur une large plage de conditions expérimentales
- Etude complète du facettage lors de procédés CVD :
 - Origine : différence entre les cinétiques des plans denses
 - Diélectrique affecte localement le facettage
- Etude de l'évolution morphologique lors de recuit : Description physique des phénomènes observés
- Applications :

Contexte

- Dispositifs avancés de plus en plus sensibles à la morphologie
- Connaissance des mécanismes essentielle pour la poursuite de la miniaturisation
- Perspectives :
 - Canaux contraints & dispositifs orientés

Remerciements

Didier Dutartre, Gilbert Vincent, Thierry Baron.

Yves Campidelli, Benoît Vandelle, Nicolas Loubet, Florence Brossard, Julien Bouvier, Hélène Bourdon, Gaël Borot, Laurent Rubaldo, Luc Pinzelli, Denis Pelissier. Pascal Ribot, Florent Collin, Laurent Cappelo, Frédéric Diette, Patrice Meyer. Rolland Pantel, Germain Servanton, Nadine Bicaïs. Mathieu Lemesle, Vincent Mosnier, Isabelle Houver, Emmanuel Oghdayan. Daniel Bensahel, Olivier Kermarrec, Sebastien Jouan. Thierry Lapergue, Frédéric Gra, François Agut, Vincent Vachellerie, Eric Vandenbosshe, Matthieu Touchet, Laurent Nègre.

GRENOBLE I

UNIVERSIT

Marie Ange Fenix, Michael Mathieu, William Boss

C. PRIBAT – September 2009

L'étape d'épitaxie

Etudes cinétiques Etudes morphologiques Applications

• Préparation de surface

Contexte

- Nettoyages chimiques \rightarrow type RCA suivi d'un bain HF
- **Recuit** in-situ (supprime l'oxyde natif et minimise la rugosité)
- Le procédé d'épitaxie (gravure) :
 - Sélectif ou non sélectif
 - Cinétique adaptée
 - Compatibilité du budget thermique
 - Configuration, masque et environnement
 - Sans défauts et sans facettes

UNIVERSITE JOSEPH FOURIER

SCIENCES TECHNOLOGIE

- Caractérisations
 - Contrôle des procédés (production)
 - Ellipsométrie / HRP / HR-MEB / XRD / XRF

Pour un type de plaque :

- Choix du nettoyage
- Choix de la chimie
- Choix de la caractérisation

Conclusion

Introduction de l'HCl dans la phase gazeuse

Etudes morphologiques Applications

- **7** sélectivité (SiH₄, DCS) :
 - Gravure de Si_{ad} (Ge_{ad}) sur diélectrique par HCl

Etudes cinétiques

- $Si + 2HCl_{(g)} \rightarrow SiCl_{2(g)} + H_{2(g)}$
- **7** $\theta_{\rm H}$ et $\theta_{\rm Cl}$ sur diélectrique
- − ↑ temps d'incubation
- 🖌 TC @ LT

Contexte

- HCl_{ad} \uparrow $\theta_{\rm H}$ et $\theta_{\rm Cl}$
- Réaction de SiCl₂ dans la phase gazeuse $SiCl_{2(g)} + HCl_{(g)} \rightarrow SiHCl_{3(g)}$
- SiHCl₃ participe peu à la croissance (E_{diss} élevée)
- *** %Ge** car Ge_(s) favorise la désorption de Cl

UNIVERSITE JOSEPH FOURIER

CIENCES TECHNOLOGIE

• $\uparrow \theta_{Cl} \rightarrow \uparrow \%$ Ge

Conclusion

Contexte

Epitaxie sélective: les effets de charge (2/2)

- Contribution chimique : Effets 🕇 avec T
 - P_i espèces réactives & diffusion des espèces (gaz)
- Taux d'ouverture important :
 - Variation spatiale de [C_i]
 - Diffusion latérale des espèces réactives vers ZA
 - $P_i \nearrow \rightarrow TC \nearrow (\%Ge \nearrow)$
- Taux d'ouverture faible
 - Surconcontration importante :
 - [Si], [HCl] $\uparrow \rightarrow \theta_{HCl} \uparrow \rightarrow TC_{Si}$
 - L_{diff} << dimension diélectrique :
 - $P_i \searrow \rightarrow TC \checkmark$

Effet remarquable DCS/SiH₄

UNIVERSITE JOSEPH FOURIER

TENCES TECHNOLOGI

- SiGe : L_{diff} importante → TC & %Ge /

Préparation du profil de surface

Etudes morphologiques

• Profil de surface P1 {001}-{110}-{001} : Obtenu par gravure plasma (formation STI)

Etudes cinétiques

• Profil de surface P2 $\{001\}$ - $\{111\}$ - $\{113\}$ - $\{001\}$:

- HCl CVE à travers masque dur SiO_2
- Nettoyage HF pour retirer masque dur
- Epi marqueur SiGe révélant le profil après gravure
- Epi Si HT pour créer plan (113)

Etape	Gravure	Epi HT
Gazutilisé	HCl	DCS
Temp. (°C)	900	850
Pression partielle (Torr)	1,92	3,44
Pression du réacteur (Torr	60	15

Conclusion

Applications

Contexte

UNIVERSITE JOSEPH FOURIER

Epitaxie sélective : HT vs BT

Etudes morphologiques

Dépôt sélectif Si à travers le masque dur Si_3N_4 à 850°C (HT) et 750°C (BT)

 <u>Haute Température :</u> Morpho : (110)-(111)-(113)-(119)-(001)
 Forte présence de la facette (113) (400nm)
 Faible croissance latérale sur l'oxyde

Etudes cinétiques

- Peu de défauts (localisé bord de structure)
- Epaisseur dépend de (hkl)

Contexte

- Basse Température :
 - Morpho : (111)-(001) Pas de facette (113)
- Croissance latérale sur l'oxyde importante
- Plan (111) de mauvaise qualité
- Epaisseur identique en fct (hkl)

UNIVERSITE JOSEPH FOURIER

TENCES TECHNOLOGIE

Morphologie et qualité = f(T)

Applications

Conclusion

Contexte Etudes cinétiques **Etudes morphologiques** Applications Conclusion Les prédictions du facettage

• Etudes cinétiques et morphologiques : prédictions du facettage

Choix d'un procédé adéquate pour un configuration possible

Facettage dépend des cinétiques

Chimie et masque dur affecte le facettage

EI UNIVERSITE JOSEPH FOURIER SCIENCES, TECHNOLOGIE MEDECINE

C. PRIBAT – September 2009

Contexte

Etudes cinétiques

Etudes morphologiques

Conclusion

Formation de macle

C. PRIBAT - 1

- Bord de la structure : défaut plan
- Analyse HR-MET :
 - Bi-cristal (orientation germinale \neq)
 - Révélation d'une macle
- Macle :
 - Faute d'empilement lors de la croissance (ABCACBA)
 - Rotation du cristal de 70.52°
 - Symétrie selon <111>
- Macle :
 - $\{113\} \{100\} \{113\}/(113) (001)$

UNIVERSIT

Applications

Contexte

Etudes cinétiques **Etudes morphologiques**

Conclusion

Résultats cinétiques

Macle :

- $GR_{001} \neq a$ Haute Temp.
- Régime gouverné par transport de matière
- $GR_{001macle} \sim 0.6GR_{001bulk}$
- $\Omega_{\text{macle}} = 0.6 \Omega_{\text{bulk}}$
- → Influence de $L_{dif.}$
- Au bord de l'oxyde : •
 - Atome C \rightarrow 1 seul liaison avec son voisin
 - Atomes D et E \rightarrow atomes additionnels qui stabilise la configuration (1 seule liaison dans le plan)
 - Atome D' \rightarrow configuration de plus faible énergie
 - \rightarrow Formation de macle

Applications

Origine facettage

Etudes morphologiques

- Gravure : plans les plus rapides visibles & épitaxie : plans les plus lents visibles
- Gravure Si → marches atomiques (MA)
 - σ_{Cl} plus élevé sur une MA que sur une site plan (001)
 - MA : puits de potentiel (effet Schwoebel)

Etudes cinétiques

- Plan (311) fait de plans (001) et (111)
- P_{HCl} faible :

Contexte

- $\rightarrow \theta_{HCl}$ faible donc Cl_{ad} peut diffuser facilement vers MA
- → $ER_{113} > ER_{111} = facette (113) plus importante$
- P_{HCl} augmente :
 - θ_{HCl} augmente donc diffusion de Cl_{ad} diminue
 - ER₃₁₁ diminue et ER₁₁₁ augmente

UNIVERSIT

- Lorsque $\text{ER}_{113} < \text{ER}_{111} \rightarrow (111)$ plus importante

Applications

Conclusion

Cinétiques affectent le facettage

Procédé Empty Space under Silicon (1/2)

Etudes morphologiques

- Recuit HT sans gaz réactifs : Diffusion de surface → transport de matière dominant
- Recuit d'un **puits → cavité** sphérique **enterrée**

Etudes cinétiques

Minimisation de la courbure de surface

- Paramètres nécessaires : a diamètre , b profondeur du puits

$$F = \frac{b}{a} \ge 2.75$$

Diamètre de la cavité :

UNIVERSITE OSEPH FOURIER Profondeur du centre de la cavité :

 $D_{\rm s} = 1.4a + 0.11b$

Contexte

$$z = 0.3a + 0.56b$$

Conclusion

Applications

1 μm

Recuit 1100°C/10Torr/10min

C. PRIBAT – September 2009

Résultats expérimentaux convaincants

Procédé Empty Space under Silicon (1/2)

Etudes morphologiques

Applications

Conclusion

• Recuit d'une matrice de puits \rightarrow cavité rectangulaire enterrée (ESS)

Etudes cinétiques

Contexte

Bibliographie

Etudes morphologiques

• Those studies were presented @

Contexte

Etudes cinétiques

- 2 International Conferences as oral speaker & first author
- (ISTDM 2008 ICSI 2009)
- 1 article as first author (SSE 2009)
- 1 article coming as first author (?APL?-2010)
- 4 articles as second author
- (Bopp, Bidal, Geynet, Servanton)

Conclusion

Applications

