N
N

N

HAL

open science

Un modele générique pour la capture de préférences
dans les bases de données a base ontologique

Dilek Tapucu

» To cite this version:

Dilek Tapucu. Un modeéle générique pour la capture de préférences dans les bases de données a
base ontologique. Sciences de l'ingénieur [physics]. ISAE-ENSMA Ecole Nationale Supérieure de

Mécanique et d’Aérotechique - Poitiers, 2010. Francais. NNT: . tel-00518476

HAL Id: tel-00518476
https://theses.hal.science/tel-00518476
Submitted on 17 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00518476
https://hal.archives-ouvertes.fr

THESE

pour I’obtention du grade de

DOCTEUR DE L’ECOLE NATIONALE SUPERIEURE DE MECANIQUE ET
D’ AEROTECHNIQUE

(Dipléme National — Arrété du 7 Aotit 2006)

Secteur de Recherche : INFORMATIQUE et APPLICATIONS
Présentée par :

Dilek TAPUCU
skofeckskokock koo koskskosskosks s sesk ok sk e sk sk s ko s s e s s e sie s e sl sl sk sk she s sl e s sl e sl sl e sl sl ke sk
A generic model for handling preferences in Ontology Based

Databases
khckshckchcskchshchshckhshchhshhshshshchshskshshchshchshshshshshshshshchshshshshshshchshskshskshskshskshsksksk

Directeurs de These
Yamine AIT-AMEUR et Murat Osman UNALIR

desfeskockokciehefeck koo skt ek e skt ek e sk e sk e ek

Soutenu le 02 Juillet 2010

Devant la Commission d’Examen
e sfe sfe sfe s sk ol s sfe o sk sk sk s sfe st s sk sk o s s s sk e ofe s ofe s sk sk oo sfe oo sk sk sk s s sfe sk sk sk sk s st s sk sk ks s sk ok

Président : Oguz DIKENELLI Professeur, Ege University, [zmir
Rapporteurs : Djamal BENSLIMAN Professeur, Université Claude Bernard, Lyon

Ismail Sitkt AYTAC Professeur, Izmir Yiiksek Teknoloji Enstitiisii, [zmir
Examinateurs :

Chihab HANACHI Professeur, Université de Toulouse 1, Toulouse

Yamine AIT-AMEUR Professeur, ENSMA, Futuroscope

Murat Osman UNALIR Asst. Prof, Ege University, Izmir

Thanks

First and foremost, | would like to thank my supervisors - Prof. YAMINE AIT AMEUR. It is no more
than luck to have his to guide me through my Ph.D research. He is not only knowledgeable but precise,
always being able to find my problems in the first time and teach me how to correct them. Under the
supervision of him, | have learned "how to work the plan, and plan the work". | deeply believe that | can
benefit from it in my whole life. - Ass. Prof. MURAT OSMAN UNALIR. He inspired me to discover

my research interests, supported my gradual change of topic. He has spent a lot of time, informing me
the latent problems and advising me the right methods in conducting research.

Thanks to all at IYTE and EGE, in particular my colleagues in the laboratory LISI, for the cooperative
and stimulating working atmosphere. And thanks to LADJEL BELLATRECHE and STEPHANE JEAN,
who were always open for discussions and provided much feedback with their experience and knowledge.

| am grateful to GUY PIERRA and SITKI AYTAGC, always optimistic and positive, with a sharp eye
for improvements and real-world insight.

This thesis is dedicated to my family who have always provided me with the highest degree of love
and support.

My Family.

Table of Contents

Table of Contents

Table of Contents

[Résumd 95
m 107
|Appendix A Preference Model with Express Languagd 113
Bpmﬂxﬂﬂemm&Modﬂ.wﬁh_Exmmﬂguagel 117

m Complete syntax of the OntoQL language 119

Listlof Figures 133

List of Tables] 135
L]

Part 1

INTRODUCTION

Chapter

Introduction
Contents
1 Research Comtexf . « « v v v v v v v e e e e e e et e et e e e e e 5
R OurPropesal 6
B ThesisStructurd 6

Abstract. In this thesis, we propose a sharable, formal and generic model to represent user’s
preferences. The model gathers several preference types proposed in the Database and Se-
mantic Web communities. The novelty of our approach is that the defined preferences are
attached to the ontologies, which describe the semantic of the data manipulated by the ap-
plications. Moreover, the proposed modékeos a persistence mechanism and a dedicated
language. It is implemented by using an extended Ontology Based Databases (OBDBS)
system in order to take preferences into account. The implemented preference model is
formally defined by using th&€XPRESS data modeling language, which ensures a non-
ambiguous definition and the approach is illustrated through a case study in the tourism
domain.

1. Research Context

1 Research Context

TheWeb has grown from a tool for communication into an indispensable form of communication. Al-
though essentially developed to facilitate knowledge management, the reuse of information on the Web
is limited. The lack of reuse is the result of data hidden inside relational databases: closed systems with
a rigid schema structure, lack of universal, reusable identifiers, and lack of expressive and extensible
schemas. The Semantic Web improves the Web infrastructure with formal semantics and interlinked
data. It enables flexible, reusable, and open knowledge management systems.

The move towards open and interlinked data on the Web and the Semantic Web results in more
open systems. In contrast to traditional database-driven applications, open systems liberate the data
that they operate on. Sources are decentralised, data can be semi-structured with arbitrary vocabulary
and contributions can be published anywhere. Opening up existing applications and their data would
improve knowledge management but raises challenges. These challenges are:

programmatic problems about the access and manipulation of linked data over the web,

visualization and manipulation of the information graph,

guidance of user provided content,

finding relevant data in distributed sources.

Our work mainly addresses the last two questions. In this context, the interrogation, exchange and
integration of data, contained in databases have become critical issues. At the heart of these problems
there is the need to clarify the semantics in databases. To solve the first problem, the solution is to
embed ontologies within databases. This approach allows us to increase the database, by which ontolo-
gies describe the semantics of concepts they represent. This enrichment of classical databases has led
to Ontology Based Databases (OBDESs) [Dehainsala et al., 2007a]. The semantics of the data contained
in these databases are provided by the ontologies they retain. Database is containing both data and on-
tologies that describe data meanings are called OEDB [Alexaki et al.| 2001], [Broekstra et al., 2002]
and query languages [Prud'hommeaux and Seaborne] 2006], [Jean et al}, 2005a], that have been asso-
ciated, can manipulate both ontologies and ontology-based data. However, OBDB and ontology query
languages don’t assist users in finding relevant results to their queries.

Preferences express the sense of wishes and preference based search is a popular approach for helping
users to find relevant items. Users would like to find the best match between their wishes and the reality.
Preferred terms presumably require less merftarteto process and reduce the energy expended in the
interactive information-seeking process. Modeling preferencedtisudi, because human preferences
are complex, multiple, heterogeneous, changing, and even contradictory. Moreover, they are hard to
evaluate and according to the user’s goals anth@iscurrent task, they should be evaluated in the context
they have been expressed.

Capturing and exploiting user’'s preferences have been proposed as a solution to this problem in
many domains, including database systems [Kief3ling and Kostler, 2000; Kief3ling, 2002; Chomicki,
2003; Agrawal and Wimmers, 2000; Koutrika and loannidis, 2004; Viappiani et al., 2006; Das et al.,
2006], Data Warehouse [Bellatreche et al., 2005], the Semantic Web [Siberski et al., 2006; Gursky et al.,

5

Chapter 1. Introduction

2008; Toninelli et al., 2008], Information Retrieval [Daoudakt 2007] and Human Computer Interaction
[Cherniack et al., 2003]. Although preferences are defined by using an ontology in some approaches,
most of the previously cited work, and particularly in the Database domain defined the preferences and
their model according to the logical model underlying the targeted system. The use of the preferences
requires having knowledge of this logical model. Within most existing information systems, even the
notion of preference has been integrated in various application domains. However, preferences are not
explicitly modeled. They are often encoded witffidulty and disseminated throughout the applications

that exploit these information systems. Therefore, they can not be shared and must be defined and
updated for each application. This is a burden for users, and yields to another layer of heterogeneous
modeling.

2 Our Proposal

The area of semantics for functional specifications has already been well understood for quite a long
time. In contrast, for non-functional specifications, there exists no commonly accepted understanding
of what constitutes a definition of semantics. Various specialized approaches can be found in literature
(e.g., [Staehli et al., 1995]; [Sabata et al., 1997]), but they are either incomplete or domain specific.
Preferences are known as non-functional properties of information systems (e.g. security, quality).

Rather than extending a specific ontology model, the research presented in this thesis consists in in-
troducing a side model to describe the non-functional concepts together with the ontology model inside
an Ontology Based Database. The advantage of this approach is the possibility to adapt non-functional
descriptions to any ontology model keeping the definition of this ontology model unchanged. We patrtic-
ularly study the notion of preference in this context. Technically, this extension is possible, only if the
meta-model, that allow us to describe the ontology model, can be manipulated.

The main contributions of our work are the following:

¢ asharable and formal model of preferences is defined. This model includes preference constructors
of other models. It is formally defined usi®XPRESS language,

e a link between the proposed preference model and ontology model is defined. It allows to link
preferences to class and property of a ontology,

¢ an extension of OBDB with the proposed preference model is defined. It is realised through the
manipulation of the meta-model level,

e an extension of ontology query languages wWitPREFERRING operator is proposed. It allows to
express preference-based queries.

3 Thesis Structure

This thesis is organized in three parts. The first part comprises research context and describes the moti-
vations of our proposal.

3. Thesis Structure

The second part concerns the context of the study. The purpbies gection are to present relevant
studies to our research and to explain concepts used throughout the study. This part is composed of the
following chapters;

Chapter 2 describes required background information and results of other relevant studies. Prefer-
ence and personalization concepts are summarized in the context of Database, Semantic Web, and other
research areas. Query operators, which were developed for implementation of preference-based query,
are also investigated in this chapter.

Chapter 3 introduces thEXPRESS data modeling language that is used to establish Preference
Model. This language combines ideas from the entity-attribute relationship family of modeling languages
with object modeling ideas of the late 1980s. The major advantage of this language is its capability to
describe structural, descriptive and procedural concepts in a common data model and semantics.

Chapter 4 presents the motivation of Ontology-Based Databases. It details a model of architecture
for OBDB called OntoDB that was used in this study. Moreover, it introduces the OntoQL an ontology
query language than has been associated to the ontoDB OBDB.

From the requirements defined in the second part, the third part describes the proposed model. Ad-
ditionally, thePREFERRING operator that was developed for preference-based queries is explained and
its implementation is illustrated in this part. This part is composed of the following chapters;

Chapter 5 presents the Preference Model which was developed to address the research problem. First,
Resource Definition is explained. The ontology’s instances are taken into account by referring to their
corresponding ontology’s entities. Next, Preference Model, that was established by the collection of the
different preferences is defined. The generic characteristic of this model is provided by the capability
to define a relationship with any ontology of a given domain. Finally, Preference Link, which was
constituted by the Resource Definition and Preference Model is represented.

Chapter 6 demonstrates the integration of the Preference Model that was explained in Chapter 5
into the architecture of OntoDB. Functions of the OntoQL language are used to carry out the mentioned
integration. How OntoQL Query Language was extended witPREFERRING operator for preference-
based querying is explained in this chapter.

Chapter 7 explains the approach of Preference Model and implementation of the preference-based
query on OntoDB architecture, by using two applied examples. These examples were given over a
tourism scenario.

Lastly, we conclude this thesis by an overall conclusion and presents interesting future work opened
by the work done. This thesis has three appendixes. Appendix A shows Preference Model with EPRESS
code, Appendix B gives UML diagrams of Preference Model. Finally Appendix C provides the complete
syntax of the OntoQL language.

Part 11

CONTEXT OF THE STUDY

Chapter

Preference Driven Personalization Approaches

Contents
L Intreduction.ttt 13
R ConceptofPreferencd 14
B Persomalization 14
B1 UserProfilinly oo 15
B2 SearchENgines o v oo 16
3.3 RecommenderSystdms 17
|4 Personalizationin Databasedttt 18
4.1 Preference Formulas in Relational Quéries 19
4.2 Preference Based SIOL oot 19
IS___Ontology Based Knowledge Personalizationl « . . . oo v v et 20
5.1 Preferencesin SemanticWeb 21
5.2 Preference-driven Query Processing in Semanti¢ Web 21
[OtherResearchAreado, 22
. Comclusiono oo 23

Abstract. Both the Web and Semantic Web can be seen as environments for knowledge
management, and both have been influenced by the vision of the personalization for personal
knowledge management. This chapter explains the required background information for
preference, personalization concepts, and summarifisetlit research areas about this
context. The chapter finishes with comparisons between preference definition approaches
in Database, Semantic Web, Data Warehouse and a list of missing points in the literature in
the context of Ontology Based Databases.

11

1. Introduction

1 Introduction

Therapid growth and the wide adoption of internet technology made a huge amount of data managed
by various information systems available. When searching over these disseminated data, users are often
encountered by the numerous returned results in response to their requests. These results must often be
sorted and filtered in order to identify the relevant information. Despite the fact that the "one size fits all”
approach has shown its limitation in many applications, most information systems do not take the variety

of user’s needs and preferences into account.

Preferencesepresent the basic notion for any decision support activity. One of the principal tasks
within a decision aiding process is to model preferences in such a way that it is possible to derive a
final recommendation for the decision maker. The problem is that quite often the decision maker adopts
preference statements in "natural language" which do not necessarily have a straightforward modeling.
Within many domains including the Database Systeéms [Kiesling and Kostler, 2000], [Kiesling, 2002],
[Chomicki, 20038], [Agrawal and Wimmers, 2000], [Koutrika and loannidis, 2004], [Viappiani et al.,
2006], Data Warehouse |Bellatreche et al., 2005], Semantic WWeb [Siberski et all, 2006], [P. Gursky
and Vanekova, 2008][[Toninelli et al., 2008], Information Retrieval [Daoud et al., 2007] and Human
Computer Interaction [Cherniack et al., 2003] capturing and exploiting user’s preferences have been
proposed as a solution to this problem.

Preference-based queriesn be used in order to increase the expressivity of queries, helping users
to describe their wishes more accurately and interests and retftesiergly optimal matches according
to the user preferences discarding the rest.

Personalizations a process of adapting and filtering an information flow. It gives feedback interac-
tively at real-time, according to the individual’s preferences [Aland H., R003]. Personalization technolo-
gies gained significance in the 90’s, with the boost of large-scale computing networks which enabled the
deployment of services to massive, heterogeneous, and less predictable end consumer audiences. As the
number of services and the volume of content (text and multimedia; public, commercial and personal) in
these networks keeps growing, personalization is more than ever a critical enabler in helping consumers
to manage capacity and complexity, and help vendors (content providers, managers, brokers, distributors,
technology providers) to reach their target users.

According to Adomavicius and Tuzhilin J[Adomavicius and Tuzhilin,] the goals of a personalization
system are to:

e provide precise and related content, based on each user’s preferences,
e provide user satisfaction, by understanding the user needs and trying to meet them successfully,
e determine user’s preferences with minimal participation of them,

e recommend products in real time, so that users can react quickly. And this increases the user
loyalty and encourages them to re-use thered services.

This chapter describes a personalization system that has been developed in this perspective and ad-
dresses the state of the art. Section 2 gives the preference concept with definitions. Section 3 presents the
personalization approaches in a generic way. In Section 4 preference based researches in the Database

13

Chapter 2. Preference Driven Personalization Approaches

research domain are overviewed and in Section 5 Semantic Wearchsarea and preference concept
are explained together. In Section 6 a brief summary of all research works is given. Finally, Section 7
concludes this chapter.

2 Concept of Preference

The notion of preference is becoming more and more ubiquitous in present day information systems.
Preferences are primarily used to filter and personalize the information, which reaches the users of
such systems. Although preferences have traditionally been studied in fields such as economic decision
making, social choice theory, and operations research, they have nowadays found significant interest in
computational fields such as Artificial Intelligence, Databases, and Human-computer interaction. This
broadened scope of preferences leads to new types of preference models, new problems for applying
preference structures, and new kinds of benefits.

There are many preference definitions. In Philosophical definition, "preferences are used to reason
about values, desires, and duties” [Hansson, 2001]. In Mathematical Decision Theory, "preferences
(often expressed as utilities) are used to model people’s economic behavior” [Fishburh, 1988]. For
Databases concept, "preferences help in reducing the amount of information returned in response to
user queries"| [Lacroix and Lavency, 1987] and for Atrtificial Intelligence, "preference relations serve
to establish an intervention goal of an agent” [Dubois et al., /1998]. Although, all these definitions are
separated from each other, they have also common valug&tb decision making process.

Preference based systems allow finer-grained control over computation and new ways of interactiv-
ity, and therefore provide more satisfactory results and outcomes. Preference models provide a clean
understanding, analysis and validation of heuristic knowledge used in existing systems such as heuristic
orderings, dominance rules, and heuristic rules.

Preference modeling is a popular approach for helping consumers to find their desired items. Clas-
sical models are utility functions that map the possible outcomes of the decisions to numeric values
and thus allow the comparison and sorting of those outcomes. Explicit preference modeling provides
a declarative way to choose among alternatives, like solutions of problems to find answers to database
gueries, decisions of a computational agent, plans of a robot, and so on. Weak preference orders is
another model that describes which outcome is the least preferred. This model shows user’'s negative
preferences. Atrtificial intelligence researches bring new alternative application fields to these classic
preference models.

3 Personalization

Personalization in the World Wide Web can be compared to creating individual views on Web data
according to the special interests, needs, requirements, goals, access-context, etc. of the current beholder.
In general, the goal of personalization is to accommodate user preferences, to impratieidres of

the interaction with users, and to make complex systems more usable [Fischér, 2001].

Query personalization is another process of dynamically enhancing a query with related user prefer-

14

3. Personalization

ences stored in a user profile, with the purpose of providing paliged results.

From the utility perspective, personalization is important when significdéfgrdnces between users
are observed. An important form of personalization is interface customization. Interface customization
is to customize user’s online experience by adapting the user interface to suit their preferences.

Personalization techniques make it possible to change the structure and content delivered to the users
in order to match the needs and preferences of users based on a user profile, which is stored and updated
dynamically.

According to Jorstad and Tharjh [Jorstad et al., 2006] "Personalization is the process where services
are adapted to fit each individual user’s requirements (needs and preferences)”, and personalization en-
tails the following steps:

¢ collecting information about the user to build services preference profile. These preferences could
be gathered by subscription process or user-rating mechanism,

e storing and keeping regular updates for this information,

e recommending personalized services to a targeted user.

Personalization is of type explicit or implicjt [Klusch et al., 2003]. Explicit personalization calls for a
direct participation of users in the adjustment of applications. Users clearly indicate the information that
needs to be treated or discarded. Implicit personalization does not call for any user involvement and can
be built upon learning strategies that track users’ behaviors. Personalization is dependent on the features
of the environment in which it happens. These features can be related to computing resources (e.g., fixed
device, mobile device), time periods (e.g., in the afternoon, in the morning), and physical locations (e.g.,
meeting room, cafeteria). The gathering and refinement of an environment’s features permit defining its
context. Context is the information that characterizes the interaction between humans, applications, and
the surrounding environmerit [Brézillon, 2003]. There are many personalization techniques, three most
useful of them are described below.

3.1 User Profiling

User profile construction is an important component of any personalization system. The concept of a user
profile usually refers to a set of preferences, information, rules and settings that are used by a product or
service to deliver customized capabilities to the user. The term user profiling is used to refer to a software
module that acquires personal data of a user, processes these data to obtain additional information, and
uses it to modify either content aspects or navigation capabilities of web pages. The more common
techniques are explicit and implicit profiling [Buono et al., 2001].

e Explicit profiling: each user is asked to fill in a form when visiting the web site; this method has
the advantage of letting users specify their interests directly.

e Implicit profiling: the user’s behavior is tracked automatically by the system. This method is
generally transparent to the user. Often, user registration is saved in what is called a cookie that

15

Chapter 2. Preference Driven Personalization Approaches

is kept within the browser and updated at each visit. Behaviornmation is generally stored in a
log file.

Personalization exploits profiles of the users interacting with the system. An individual user profile
includes assumptions about their knowledge, beliefs, goals, preferences, interests, misconceptions, plans,
tasks, abilities, work context, etc [Kobsa, 2001]. The forms that a user profile may take are as varied
as the purposes for which user models are formed. User models may seek to describe: the cognitive
processes that underlie the user’s actions; tfferdinces between the user’s skills and expert skills; the
user’s behavioral patterns or preferences; or the user’s characteristics. With referénce to [Kobsa, 2001],
author suggests distinguishing adaptation to user data, usage data, and environment data. User data
comprise the adaptation target, various characteristics of the users. Usage data comprise data about user
interaction with the systems that cannot be resolved to user characteristics. Environment data comprise
all aspects of the user environment that are not related to the users themselves (e.g., user location and the
user platform). Brusilovsky [Brusilovsky, 2001] defines uses data by dividing it into:

e user characteristics (user’s ggtasks, knowledge, background, experience, and preferences),
e user interests (long-term interests such as a passion and short-term interest such as search goal),
¢ user’s individual traits (e.g. personality factors, cognitive factors, and learning styles.).

e user groups and stereotypes model. They are the representation of relevant common characteristics
of users pertaining to specific user subgroups of the application syistem [Kobsa, 2001].

Profiles promise to ease the conflict between the benefits of common technology deployments versus
diverse social and cultural demands, and variations in individual physical and cognitive abilities and
preferences. To achievetective personalization, profiles should distinguish between long-term and
short-term interests and include a model of the user’s context, i.e., the task in which the user is currently
engaged and the environment in which they are situated. Several systems have attempted to provide
personalized search that are tailored based upon user profiles.

3.2 Search Engines

Information on the Web is huge and growing rapidly. Afeetive search engine is an important means

for users to find the desired information from billions of Web pages. Users tend to issue short queries
when searching, resulting in tremendous ambiguity about their informational goals. In order to achieve
this web search engines are beginning fi@iopersonalization capabilities to users. Personalization of
search results is very important to the future success of any search engine.

Some search engine Web site$eo personalization and others provide customization, or both. In
personalization, a user created profile decides the personalizable solution whereas in customization, the
user is allowed to select from a predefined set of solutions. Though personalization seems to be a simple
concept to understand, it is not easy to implement. Problems include, personalization solution which
means that the solution which works for one individual will not necessarily be a personalization solution

16

3. Personalization

for another. Thus, it’s diicult to provide a personalization solution that is complete for each user. Search
engine Web sites can provide a generic set of personalizable features.

Currently Web sites rely heavily on the user’s inputs for a personalization solutlon [Mobasher et al.,
2000] propose a general architecture for Automatic Web personalization. The architecture attempts
to automate the personalization process by tracking the user’s preference from the Web server logs.
Perkowitz and Etzion{ [Weld et al., 2003] addressed this problem by designing an adaptive Web site that
relies heavily on the user’s navigation pattern and tries to anticipate the user’s need based on his past
navigation history.[[Damiani et al., 2001] describe the WBI (Web Browser Intelligence) architecture for
personalizing Web sites. The previous two approaches rely on a server for the personalization process,
but the WBI architecture can be used on the client side, middleware or the server side. Few studies have
surveyed the nature and extent of search engine Web sites that include personalization features. There
has been a growing interest in making the personalization process completely automated. Presently the
Web sites rely heavily on the user’s inputs for presenting them a personalizable solutlon [Manber et al.,
2000] discuss the applications for personalization that exists on the Web and the use of profiles in the
personalization process.

Adapting a search engine to cater for specific users and queries is an important research problem
and has many applications. In general, there are two aspects of search engine adaptation that need to be
addressed. The first aspect is query specific adaptation; that is, how to return the best results for a query
from the underlying search engines that havéedént coverage and focuses. The second aspect is user
specific adaptation that aims to meet the diversified preferencef@fatit users in the search results.

3.3 Recommender Systems

Recommender systems are one of the most popular applications of personalisation technlques [Adomavicius
and Tuzhilin,] Basically, the aim of the recommender system is to suggest mterestlng items to the users’
automatically, based on their preferences. Many e-commerce sites have successfully uffizedtdi

types of recommending systems as a meandtar personalised customer service and to improve the

online shopping experience [Prassas, 2001].

The collaborative (social) recommender systeams the most well known type of recommender
systems. These systems aggregate data about customers’ purchasing habits or preferences, and make
recommendations to other users based on similarity in overall purchasing patterns. For example, in the
Ringo music recommender system [U. Shardanand,|1995], users express their musical preferences by
rating various artists and albums, and get suggestions of groups and recordings that have similar features.

The content-based recommender systamesclassifier systems derived from machine learning re-
search. These systems use supervised machine learning to induce a classifier, that can discriminate
between items likely to be of interest to the user and those likely to be uninteresting.

The personal logic recommender systestier a dialog, that #ectively walks the user down a dis-
crimination tree of product features. Others have adapted quantitative decision support tools for this task
[H. K. Bhargava and Herrick, 1997].

17

Chapter 2. Preference Driven Personalization Approaches

4 Personalization in Databases

Hardling preferences in the database domain has been addressed in many research studies ([Kiesling
and Kostler, 2000]|[K|esI|ng 2002],|Chomicki, 2003], [Agrawal and Wimmers, 2000] [Koutrlka and
loannidis, 2004] |[Viappiani et al., 2006]). Preferences in this context are defined on the logical model
level of the database, specifically on the column values of the tables. According to the type of used
metric, two diferent ways of expressing preferences have been proposed: qualitative and quantitative
approaches.

Qualitative approachegKiesling, 2002],[Chomicki, 2003] allow users to define (relative) prefer-
ences between tuples. The preferences are defined on the content and define a binary relation between
tuples [Chomicki, 2003]. For example, if we consider two tuples t1 and t2 , the expreaskiont2
means that the user prefers the tuple rather thant2 . Kief3ling and Kostler follow a qualitative ap-
proach as well, named constructor approach. The preferences are expressed by a strict partial order and
are formally described by first order logical formulas [Kiesling, 2002]. The defined constructors are
integrated within the Preference SQL relational language [Kiesling and Kostler, 2000]. For instance, the
constructoighest(c) is used to express that for 2 tuples andt2 , we prefer the tuple having the
higher value for the column c. This approach is referred as the BMO (Best Match Only) query model
and is identical to th@innow operator defined by ChomicKi [Chomicki, 2003].

Quantitative approachesn the other hand allow users to define scoring functions to compute a
numeric score or an absolute preference for each tuple [Agrawal and Wimmers, 2000] [Koutrika and
loannidis, 2004] The results are sorted according to this score. In this context, Agrawal and Wimmers
define preferences by introducing a preferred value for each column in the database’s tables [Agrawal
and Wimmers, 2000]. For instance, let us consider the table Hotel defitied eb(name, pr'iceMin,
priceMax). The preference *,40,80 > indicates that preferred hotels are those having room price
between 40 and 80. This preference is then used to compute a score between 0 and 1 for each ho-
tel. Koutrika and loannidis introduce the notion of atomic preferences by specifying a set &f pair
condition, score > where condition is a condition on the values of columns and score is the degree
of interest between 0 and 1 of this condition [Koutrika and loannidis, [2004]. Atomic preferences can
be combined and used to derive implicit preferences. For example, considering the same table Hotel,
the expressior Hotel.name = Sophitel, 0.8 > indicates that the interest degree of Sophitel Ho-
tels is 0.8. Also the quantitative approaches propose a presentation based preference of user profiling.
These preferences define an order relation between the tuples returned by a given query. In this case,
two tuples are compared after accessing data sources. The comparison is based on a set of selected at-
tributes. The presentation is expressed by the selection of a set of relevant attributes and by displaying
the corresponding tuples in the tables and ranked according to their importance.

These approaches are strongly linked to the logical model of the database. Building a logical model
for a database system is a fundamental problem in many database related applications, such as data in-
tegration [Giacomo and Lenzerini, 1995], knowledge representation, and data warehouse, etc. Logical
model for a database system transforms each database system into a logical system with enriched se-
mantics and enhanced reasoning mechanism. Operations in database systems, such as query processing,
could be done based on the logical inference mechanism. Therefore, a good knowledge of this logical
model is required for anfgcient exploitation of these models.

18

4. Personalization in Databases

4.1 Preference Formulas in Relational Queries

Database queries are often exploratory and users often find that their queries return too many answers,
many of which are irrelevant. Existing studies either categorize or rank the results to help users locate
interesting results. The success of both approaches depends on the utilization of user preferences. How-
ever, most existing studies assume that all users have the same user preferences, but in fesklife di

users often have fierent preferences.

Firstly, Lacroix and Lavency [Lacroix and Lavency, 1987] addressed composability in showing, how
multiple preference conditions could be combined and prioritized. As their extended query language
inherits the same first order logic definition as the DRC (Domain Relational Calculus), their language
has declarative semantics. The approach is limited in expressiveness, though. Each preference condition
is evaluated in a Boolean manner: either there are answers that satisfy the query or there are not (and so
the query is evaluated as without that preference).

Personalization of database queries is an increasingly important issue. User preferences can be
embedded into database query languages in sevdfafaiit ways. To provide mordfective search
capabilities, query languages like SQL over relational databases have been extended to facilitate prefer-
ence based retrieval algorithms. In this section, we briefly present various operators including winnow
[Chomicki, 20038], Skyline[[Borzsonyi et al., 2001] [Theobald et al., 2004] and Pareto [Viappiani et al.,
2006] which are applied on the database tables’ columns. '

The Winnow operatois proposed by Chomicki for composing preference relations in the relational
algebra. They introduced a general logical framework for preferences, as preference formulas.

The Skyline operatowas introduced to the database context by applying the problem of finding the
maxima of a set of points. Given several aspects for ranking data items, the skyline of a given data set is
defined as that subset which contains exactly all "interesting” items.

Pareto and prioritized preferenceonstruction preserves strict partial orders, which instantly solves cru-
cial well known problems for preference queries.

4.2 Preference Based SQL

In personalized database applications a cooperative query model is needed which supplements the exact-
match query of SQL or XPath. KieRling [Kiesling, 2002] has taken an algebraic approach to construct a
rich preference query language as an extension to SQL, that is akddrence SQL .Preference

SQL allows users to write best-match queries by composing their preference criteria, via the preference
operators. Preference SQL has been on the market since 1999, and is used in several commercial ven-
tures. The system compiles preference queries into SQL for evaluation. In [H. Stefan and Kiesling,
2003] Kiel3ling and Koestler investigate further how to extend SQL and XPATH foPtlederence

SQL operators, and present rich examples of the types of queries that can be composed. A partial syntax
of the extended query language is given below:

SELECT <projection-list>
FROM <table-reference>
WHERE <hard-conditions>

19

Chapter 2. Preference Driven Personalization Approaches

PREFERRING <soft-conditions>
ORDER BY <attribute-list>

Using this syntax, the user can express their preferences as soft constraints and will receive tuples
which best match those constraints. This approach is referred to 8WgBest Match Only) query
model, in which a tuple will find its way into the final result set if there aren’t other tuples which dominate
it, i.e. better satisfies the preference constraints, do not exist.

Preference SQL introduces many new constructs. And how to realize thierargly is a challenge.
The current system translates queries into SQL. It would be hard to integrate the preference mechanisms
within a relational engine, because of the extensive additions. Preference SQL has an operational se-
mantics, but not a defined declarative semantics. In particular, composition of the preference operators
can raise dficulties. The intended semantics is that the preference relation be a partial order, but cer-
tain compositions can violate this. Kief3ling proposes the concept of substitutable values (SVs) and SV
relations to address sound composition of Preference SQL's Pareto and prioritized preferences.

5 Ontology Based Knowledge Personalization

Semantic-based techniques enable to infuse software systems with a more precise understanding of
application-domain knowledge, and henceforth, provide better means to define user needs, preferences,
and activities within or with regards to the system.

In this context, the Semantic Web [Gruber, 1993], |Berners-Lee et al.,| 2001] enables automated
information access and use based on machine-processable semantics of data. It can be regarded as
an extension of the existing Web, whose information is mostly human-readable. The Semantic Web
allows for finer granularity of machine-readable information afigre mechanisms to reuse agreed-
upon meaning. It simplifies knowledge discovery, reuse, and management by explicitly and formally
representing information about online data sources.

Ontologies|[Gruber and Olsen, 1994] are the backbone technology for the Semantic Web and - more
generally - for the management of formalized knowledge in the context of distributed systems. They
provide machine-processable semantics of data and information sources that can be communicated be-
tween diferent agents (software and people). In other words, information is made understandable for the
computer, thus assisting people to search, extract, interpret and process information.

To provide a personalized environment to a user, a consistent domain ontology is important. The
goal of ontology based knowledge search personalization is to tailor search results to a particular user
based on that user’s interests and preferencéfective personalization of information access involves
two important challenges: accurately identifying the user context and organizing the information in such
a way that matches the particular context. Thanks to the semantic movement of the last years, a wide
variety of both specific and more general ontologies exists today. This abundance of knowledge enriches
our central domain ontology and gives possibility to make use of it.

20

5. Ontology Based Knowledge Personalization

5.1 Preferences in Semantic Web

The objective of the Semantic Web is a content-aware navigation of the resources. This means being
able, by means of proper mechanisms, to identify those resources, that better satisfy the requests not
only on the basis of descriptive keywords but also on the basis of knowledge. There is, in fact, a general
agreement that the use of knowledge increases the precision of the answers. Such knowledge represents
different things, such as information about the user, the user’s intentions and the context. One of the key
features that characterize the Semantic Web is that its answers are always personalized or adapted so as
to meet specific requirements. It will not be the case that the answer to a query about 'book’ will contain
links to bookshops and links to travel agencies. This Web of knowledge is currently being built on top of
the more traditional World Wide Web and requires the definition of proper languages and mechanisms.

The goal of personalization in the Semantic Web is to make the access to the right resources easier.
This task entails two orthogonal processes: retrieval and presentation. Retrieval consists of finding or
constructing the right resources when they are needed, either on demand or (as by the use of automatic
updates) when the information arises in the network. Once the resources have been defined, they are
presented in the most suitable way to the user with taking into accoyhehiswn characteristics and
preferences. To these aims, it is necessary to have a model of the user, that is, a representation of those
characteristics according to which personalization will occur. It is also necessary to apply inference
techniques which, depending on the task, might range from the basic ontology reasoning mechanisms
supplied by Description Logics (like subsumption and classification) to the most various reasoning tech-
niques developed in Artificial Intelligence. In this research ar&emint models of preferences have
beeq proposed in the literature [Siberski et al., 2006], [P. Gursky and Vanekova, |2008], [Toninelli et al.,
2008].

The Local Preference Model is proposed by Gursky et al. in order to model complex user preferences
[P. Gursky and Vanekova, 2008]. They consider that complex preferences reflect real life preferences
more accurately. They use a fuzzy based approach for preference description. Firstly, nominal and ordi-
nal attributes are used to define local preferences. Then, their combination with user’s local preferences
produces global preferences. For example, the global prefegedehotel (x) can be defined by the
combination of the two local preferences expresgiood price(x) andgood starRating(x).

Toninelli et al. introduce the Ontology Based Preference Model approach, by defining a meta model
[Toninelli et al., 2008]. In this approach, value and priority preferences are specified. For example, to
find high standard hotels, the quality of the service must be a priority.

Sieg et al. present an ontology based approach for personalising Web information access [Sieg et al.,
2004]. The user interests are captured implicitly by a context, defined through the notion of ontological
user profiles. This context model for a user is represented as an instance of reference domain ontology.
The concepts of the ontology are annotated by interest scores derived and updated implicitly according
to the user’s behavior.

5.2 Preference-driven Query Processing in Semantic Web

The SPARQL query language allows queries over RDF Graphs using Triple Pattern Matching by intro-
ducing variables and binding the appropriate RDF resources to the variables. In a similar fashion to the

21

Chapter 2. Preference Driven Personalization Approaches

way that Kief3ling extended SQL to enable database queryingpséterences, [Siberski et al., 2006]
presents an extension to SPARQL to query ontological information with preferences. The fundamental
idea here is similar; a new query element is introduced to allow the construction of preferences as soft
constraints. The extended syntax of SPARQL is given below:

SELECT <projection-var-list>
FROM <ontology-reference>
WHERE <var-bindings>

FILTER <hard-conditions>
PREFERRING <soft-conditions>
ORDER BY <var-list>

In thePREFERRING, every filter operator supported by SPARQL can be used as well as two scoring
operatorsHIGHEST/LOWEST with similar semantics as Preference- SQL. Also, similarly to Preference
SQL, two complex preference assembly methods are implemented, i.e. the Pareto operator for treating
two preference operators as equally important and the Cascade operator to prioritize one preference
operator over the other. Finally, in this work the BMO (Best Match Only) query model was adopted
where a solution binding is a best match if there is no other solution binding dominating it (i.e., strictly
preferred). Each solution binding competes against every other solution binding where a solution binding
will find its way into the final result set if it is a "best match" under this definition.

6 Other Research Areas

This overview of the use of preferences in information system is not complete. Also the studies about
Information Retrieval[[Fuhr et al., 1909], Data Warehouse areas [Bellatreche et al., 2005] and Human-
Computer Interaction Systems must be examined.

Human Interaction

User modeling started in the early 80’s and human-computer interaction [Cherniack et al., 2003] in the
60’s. In a computer assisted solution of corporate memory management, the interaction with users has
to be studied. The two fields are extremely linked both historically and in their research objectives; in
human-computer interactiorthe human is quite often a user, whose model must be taken into account
to improve the behavior of the system. Ikiaowledge managemepérspective, the user is part of the
context, and the context is an important factor when knowledge is handled. Therefore, user modeling
has a role to play in knowledge management solutions. On the other side, the problem of modeling hu-
mans and their cognitive activities will raise considerations that fall within the competence of knowledge
representation and knowledge-based systems. Those two domains can complement each other.

Data Warehouse

There are few studies about the preferences in the data warehouse context compared to database and
Semantic Web. Ir [Bellatreche et al., 2005] a personalization framework for OLAP queries is presented.

22

7. Conclusion

They give end user the possibility to specify s preferences (e.g., the presence of a given dimension

of a data warehouse in the final result) and/isrvisualisation constraint to display the result of an
OLAP query. The visualisation constraint represents the size of device (PDA, mobile phone, etc.) used
to display the result of a query. The authors present some issues on the impact of preferences on physical
design of a data warehouse (data partitioning, index and materialized view selection). This work did not
present query operator handling preferences.

7 Conclusion

In this chapter, previously published researches are reviewed in terms of personalization and preference
concepts. The presented approaches are summarized in[Tdble 2.1. They are classified according to
five criteria. The first criterion indicates whether the considered approach is presented in the context
of Database (DB), Semantic Web (SW) or Data Warehouse (DW). The second criterion indicates the
followed approach (qualitative, quantitative, etc.). The third criterion indicates at what level (physical,
logical, semantic) preferences are defined. The fourth criterion indicates whether there is a specific oper-
ator for querying with preferences. Finally, the last criterion indicates whether the considered approach
offers the possibility to store physically the preferences model. As a result,

e personalization approach in the area of Ontology Based Database which is between the research
area of Database and Semantic Web, was not investigated in literature. Also, there was no Prefer-
ence Model or Preference Based Query implementation,

e there is no generalized model that gathefedent preference types found in Databases and Se-
mantic Web communities that were defined in other studies to establish a preference model,

e there exist not an established preference model used to develop a preference operator that will be
used in preference based queries and

e it was also observed that preference based query was not carried out by using preference types that
were defined on preference model.

These observations lead us to define a new Preference Model that can be attached to ontologies,
stored in OBDB and exploited in ontology-based queries. To avoid ambiguities this models is formally
defined withEXPRESS language presented in the next chapter.

23

Chapter 2. Preference Driven Personalization Approaches

Table 2.1: Preference definition approaches in DatabasesnBeMé&b and Data Warehouses domains

Author Domain | Approach Preferences | Query Operator | Storage of
(DB/SW/DW) Model Level Preferences Model

Kiebling DB Qualitative Logical Preference No

(2002-2003) SQL

Chomicki BD Qualitative Logical Winnow No

(2003)

Agrawal-Wimmers | DB Quantitative Logical No No

(2000)

Koutrica-lonnidis DB Quantitative Logical No No

(2006)

Das et al. DB Qualitative Logical No No

(2002-2003)

— OBDB | — — — —

Siberski et al. SW Boolean-Scoring| Semantic SPARQL, Clause | No

(2006) Preferences Preferring

Sieg et al. SW Ontological Semantic No No

(2007) User Profiles

Gursky et al. SW Fuzzy based Semantic No No

(2008) Ontology

Tonielli et al. SW Middleware Semantic No No

(2008) Meta Model

Bellatreche et al. DW Qualitative Logical No No

(2005)

Mouloudi et al.

(2006)

24

Chapter

The EXPRESS Modeling Language

Contents
L Intreduction.ttt 26
2 EXPRESSBUIINGBIOCKE . « « v v o v vt et e e e e e e 28
B EXPRESS-G . ..ottt it e 32
4 Why is EXPRESS Used in ThesisModel vvvvvnnnnn... 33

Abstract. In this chapter, the main features of tBEPRESS modeling language are de-
scribed because this language is used in the realization of the Preference EXRRESS

is a standard data modeling language initially defined for product data. This language is
similar to UML but provides a powerful and integrated constraints language.

25

Chapter 3. The EXPRESS Modeling Language

1 Introduction

EXPRESS [IS010303.02, 1994]/ [Schenk and Wilson, 1994] is a data modeling language that combines
ideas from the entity-attribute-relationship family of modeling languages with object modeling ideas

of the late 1980s. It became an international standard (ISO 10303-11) in 1994 for use in engineering
data exchange. It is formalized in the ISO Standard for the Exchange of Product model STEP (ISO
10303). STEP (STandard for the Exchange of Product model Data) is an international standard (ISO-
10303, Industrial automation systems and integration Product data representation and exchange) for the
computer interpretable representation and the exchange of product model data. The major advantage of
this language is its capability to describe structural, descriptive and procedural knowledge in a common
data model and semantics.

EXPRESS contains object oriented and procedural concepts as well as data base concepts. It enables
the complete and non-ambiguous description of a mainly static product model. This language specifies
an information domain in terms of entities, i.e. classes of objects sharing common properties which are
represented by associated attributes and constrairiXPRESS , constraints are written using a mixture
of declarative and procedural language elements. As in object modefXPaASS entity instance is
considered to have an identity distinct from its modeled attributes and properties. TRHEPRESS
does not consider any attribute value or the set of attribute values to denote the entity instance. An entity
instance is considered to be an object, which is partly represented by the modeled attributes, and has an
unmodeled unique identifier.

EXPRESS is similar to programming languages suchPASCAL. Within a SCHEMA, various data
types can be defined together with structural constraints and algorithmic rules. A main feature of
EXPRESS is the possibility to formally validate a population of data types - this is to check for all the
structural and algorithmic rules. Talple 3.1, consider the FaRXiBRESS schema presented above.

SCHEMA Family;
ENTITY Person
ABSTRACT SUPERTYPE OF (ONEOF (Male, Female));
name: STRING;
mother: OPTIONAL Female;
father: OPTIONAL Male;
END ENTITY;
ENTITY Female
SUBTYPE OF (Person);
END ENTITY;
ENTITY Male
SUBTYPE OF (Person);
END ENTITY;
END_SCHEMA;

Table 3.1: Family EXPRESS schema

It contains a super type entity Person with the two subtypes Male and Female. Since Person is
declared to b&BSTRACT only occurrences of eitheD{EOF) the subtype Male or Female can exist.

26

1. Introduction

Every occurrence of a person has a mandatory name attributgoadally attributes mother and father.
There is a fixed style of reading for attributes of some entity type, a Female can play the role of mother
and a Male can play the role of father for a Person.

Table[3.2 shows the entity B with three attributes: a real, a list of strings and a relationship with an-
other entity A which has only one integer attribute. att_1 is an inverse attribute of entity A, corresponding
to the inverse link defined by attribute att_3 in entity B.

Entities may have instances. Each instance is identified by an OID (Object IDentifier: #i). Itis
characterized by name of the class instantiated. An example of the model extension associated to the
previous entity definitions is shown in the same Table. The #2 instance of the entity B, where att_1
evaluates to 4.0, att_2 is the list (hello’, 'bye’) and att_3 points the particular instance #1 of the Entity
A where its att_A attribute evaluates to 3.

Entity Definition
ENTITY A
att_A(?) :INTEGER;
INVERSE;
att_1:B FOR att_3;
END ENTITY;
ENTITY B
att_1:REAL;
att_2: LIST [0:?] OF STRING;
att_3:A;
END ENTITY;
Entity Instance
#1=A(3);
#2=B(4.0, ('HELLO’,’BYE’), #1);

Table 3.2: Entity Definition and Instantiation BXPRESS

An EXPRESS data model can be defined in two ways, textually and graphically. For formal verifi-
cation and as input for tools such as SDAI the textual representation within an ASCII file is the most
important one. The graphical representation caliI€PRESS-G on the other hand is often more suitable
for human use such as explanation and tutorials (e.g. Figure 3.1).

(ABS) name | STRING I

Person

I I
father | | mother

bod o

Male Female

Figure 3.1: EXPRESS-G notation for Family example.

27

Chapter 3. The EXPRESS Modeling Language

This chapter gives the main features of E¥®RESS modeling language. In the following, graphical
representation diXPRESS is described first. Then some background informatioEXPRESS is given.
Finally, the reason dEXPRESS usage in this thesis is explained. At the end, some conclusions are drawn
and an outlook is given.

2 EXPRESS Building Blocks

Th building blocks ofEXPRESS are entities, attributes, type declarations and hierarchies of inheritance
and they are represented by usiEXPRESS-G . EXPRESS-G is a diagrammatic modeling notation for

the purpose of an object oriented information modeling. This notation is based on the standardized
EXPRESS-G notation, which is itself described in ISO 10303-11 (Industrial Automation Systems Prod-
uct Data Representation and Exchange Part 11 Description MethodBXFRESS Language Reference
Manual). An introduction t&XPRESS andEXPRESS-G can be found in [Schenck and Wilson 1994].

ﬁ******‘*

Entity_name ‘ Enumerated_type_name | STRING BINARY
ffffff |
Entity Data Type Symbol Enumerated Data Type Symbol LOGICAL BOOLEAN
(A) B)
- — — — e i
Define_type_name | [| Select_type_name NUMBER INTEGER REAL
Lo - - — - - - -
Defined Data Type Symbol Select Data Type Symbol Simple Data Type Symbol
(€) (D) (E)

Figure 3.2: Data type symbols of the EXPRESS-G notafion [SchaedRWilson, 1994].

Entity Data Type (Figure 3.2+A):
The primaryEXPRESS concept is the entity type, which models a domain of conceptual or real-world

objects and the collection of information units that describe them. In the diagrammatic modeling nota-
tion, an entity is shown as a rectangular box in Fidguré 3.2-A, the entity name is written inside the box.

Enumeration Data Type (Figure 3.2-B):
A data type enumeration expresses the existence of a range of values belonging to this attribute. Only

one of the enumerated values may be chosen. Higure 3.2-B depicts the symbol with a dashed box having
a vertical bar on the right side of the box.

28

2. EXPRESSuilding Blocks

Def ned Data Type (Figure 3.2-C):

EXPRESS supports defined types (Figurel3.2-C), which are new data types defined by the modeler to be
represented by values of any of the other data types. E.g. it is possible to define the data type positive
which is of type integer with a value 0.

Select Data Type (Figure 3.2-D):

Selects define a choice or an alternative betwedierdnt options. Most commonly used are selects
between dierent entity types. More rarely are selects which include defined types. In the case that an
enumeration type is declared to be extensible it can be extended in other schemas. Like ih Higure 3.2-
D the name of the data type is written within a dashed box having a vertical bar on the left side of the box.

Simple Data Type (Figure 3.2LE):

e String: This is the most often used simple typEXPRESS strings can be of any length and can
contain any character (ISO 106W&icode).

e Binary: This data type is only very rarely used. It covers a number of bits (not bytes). For some
implementations the size is limited to 32 bit.

e Logical: Similar to the Boolean data type a logical has the possible values TRUE and FALSE and
in addition UNKNOWN.

e Boolean: With the Boolean values TRUE and FALSE.

e Number: The number data type is a supertype of both, integer and real. Most implementations
take uses a double type to represent a real_type, even if the actual value is an integer.

e Integer: EXPRESS integers can have in principle any length, but most implementations restricted
them to a signed 32 bit value.

e Real: Ideally anEXPRESS real value is unlimited in accuracy and size. But in practice a real value
is represented by a floating point value of type double.

e Aggregation data type: The possible kinds of aggregation_types are SET, BAG, LIST and AR-
RAY. While SET and BAG are unordered, LIST and ARRAY are ordered. A BAG may contain
a particular value more than once, this is not allowed for SET. An ARRAY is the only aggregate
which may contain unset members. This is not possible for SET, LIST, BAG. The members of an
aggregate may be of any other data type (Figure 3.2-E).

A few general things are to be mentioned for data types.

29

Chapter 3. The EXPRESS Modeling Language

e Constructed data types can be defined withiEXPRESS schema. They are mainly used to define
entities, and to specify the type of entity attributes and aggregate members.

e Data types can be used in a recursive way to build up more and more complex data types. E.qg. itis
possible to define a LIST of an ARRAY of a SELECT of either some entities or other data types.
Whether it makes sense to define such data types eaetit question.

e EXPRESS defines a couple of rules how a data type can be further specialized. This is important
for re-declared attributes of entities.

e GENERIC data types can be used for procedures, functions and abstract entities.

Attribute (Figure 3.3-F-G):

An entity has attributes, describing the characteristics of this object. Attributes model the descriptive
information units, and each attribute has a data type, which specifies the nature and values of the in-
formation unit. Data types can be the common computational types (Boolean, integer, real, string, enu-
meration), or entity types, or aggregates (set, list, array) of any of these. Also thiererdikinds of
attributes exist. These are explicit, derived and inverse attributes.

e Explicit attributes are those which have direct values visible in a STEP-File.

e Derived attributes get their values from an expression. In most cases the expression refers to other
attributes of THIS instance. The expression may alsEXBBESS functions.

e Inverse attributes do not add "information” to an entity, but only name and constrain an explicit
attribute to an entity from the other end.

Lines (Figure 3.3):

Lines which are shown in the figure are used to connect the entity with its attributes. The names of the
attributes are written above and along the lines.

Relationship (Figure 3.3):

Relationships are modeled as attributes whose data type is an entity type or an aggregate of an entity
type. Some relationships are reified as entity types with role attributes whose values are the participating
entities. A relationship expresses a dependency or interaction between two entities. A relationship has
cardinality, which indicates the number of objects in each of the entities at either end of the relationship
that may be involved in a particular instance of that relationship. A relationship also has a name. In the
diagrammatic modeling notation in Figlirel3.3, a relationship is shown as a solid or dashed thin line which
is terminated by a circular arrowhead; the relationship name is written next to the line. The direction of a

30

2. EXPRESSuilding Blocks

From_Entity | attribute_name To_Entity
name 1 name Supertype_
entity _
Attibute Symbol name
(F)
Supertype/subtype Symbol
(K)
. optional_attribute_name ; Subtype
From_Entity_ |~ — " a To_Entity s
name name bl

Optional Attribute Symbol
(G)

Figure 3.3: Express-G Line Symboals [Schenk and Wilson, 1994].

relationship is towards the arrowhead, which is important in that the name of the relationship must reflect
its direction. A solid line indicates a compulsory relationship, whereas a dashed line indicates optional
relationship.

Cardinality (Figure 3.4)

A cardinality string may be added to the relationship name, in which case it can take one of a number
of forms. If a relationship has no cardinality string included in its name, then the cardinality is assumed
to be exactly one. Cardinalities can be expressed in terms of sets, bags, lists and arrays. A set is an
unordered variable length collection of unique items. A bag is an unordered variable length collection
of not necessarily unique items. A list is an ordered variable length collection of not necessarily unique
items; however there are possibilities to constraint the list to a list of unique items. An array is a fixed
size collection of not necessarily unique items which can be accessed by an index. A cardinality can be
shown as a string in the form C[m n], where C is one of S(set), B(bag), L(list) or A(array), where m is
the lowest number of items allowed in the aggregation, and where n is the highest number of items al-
lowed. If the cardinality is shown as m:n, then it is assumed to be as set (S). If the cardinality is shown as
a single number (n), then it is assumed to be S[n n]. Note that an upper limit of "?" indicates 'unbounded'.

Inverse Relationship (Figure 3.4)

In most cases, an inverse relationship can be inferred directly from the original relationship. This rela-
tionship is indicated by writing (INV) in front of the name of the relationship (Figuré 3.4).

31

Chapter 3. The EXPRESS Modeling Language

Supertypes and Subtypes (Figure 3.3-K):

An entity can be defined to be a subtype of one or several other entities (multiple inheritance is allowed).
A supertype can have any number of subtypes. Itis very common practice in STEP to build very complex
sub-supertype graphs (Figurel3.3-K). An entity instance can be constructed for either a single entity (if
not abstract) or for a complex combination of entities in such a sub-supertype graph. For the big graphs
the number of possible combinations is likely to grow in astronomic ranges. To restrict the possible com-
binations special supertype constraints got introduced such as ONEOF and TOTALOVER. Furthermore
an entity can be declared to be abstract to enforce that no instance can be constructed of just this entity
but only if it contains a non-abstract subtype. Algorithmic constraints.

Entity generalisation and specialisation: Two or more entities which have some (but not all) charac-
teristics angbr behavior in common may be generalised into a supertype. Each of the entities that the
supertype generalises is known as a subtype. Another interpretation of subtypes and supertypes is to
consider that a supertype entity is specialised into a series of subtypes. Each of the subtypes is a speciali-
sation which inherits all of the characteristics and behavior of the supertype, but adds new characteristics
andor behavior of its own. Note that it is possible for an entity to be both a supertype and a subtype
simultaneously.

Rules: Entities and defined data types may be further constraint WHBERE rules. WHERE rules are

also part of global rules. AVHERE rule is an expression, which must evaluateTRUE, otherwise a
population of arEXPRESS schema, is not valid. Like derived attributes these expressions may invoke
EXPRESS functions, which may further invok@XPRESS procedures. The functions and procedures
allow formulating complex statements with local variables, parameters and constants - very similar to a
programming language. Example shows that week value cannot exceed 7.

TYPE day_in_week_number = INTEGER;

WHERE
WR1: (1 <= SELF) AND (SELF <= 7);
END_TYPE; -- day_in_week_number

3 EXPRESS-G

EXPRESS-G is a standard graphical notation for information models [Schenk and Wilson), 1994]. Itis a
useful companion to thEXPRESS language for displaying entity and type definitions, relationships and
cardinality. This graphical notation supports a subset oEXRRESS language. One of the advantages

of using EXPRESS-G over EXPRESS is that the structure of a data model can be presented in a more
understandable manner. A disadvantag&@X®RESS-G is that complex constraints cannot be formally
specified. FigurE3l4 is an example.

Explanation: Figure[3:4 shows the visualisation of a concept PersdiXRBRESS-G notation. Here,
a person has several characteristics like a first name and a last name, an optional nickname, a special

32

4. Why is EXPRESS Used in Thesis Model

Children sfo:2y -~

Hair | T
(INV) Parents S[0:2] ’—O Hair Type | !
[

BirthDate | |
Person) Date : A[1:3]

,,,,,,,,,,,,,,,,

FirstName

LastName dq STRING I

O
INTEGER I
Male Female MaidenName a STRING

*Husband [Wife
Married

Figure 3.4: Concept Person in EXPRESS-G.

NickName

(DER) Age

type of hair, a date of birth and implicitly a certain age. Age has been prefixed with (DER), for derived,

to denote that it is a derived attribute. The enumeration HairType : bald, dyed, natural, wig has to be
noted outside the diagram. In the example, a person is either female or male. If female, the person
optionally has a maiden name. (This relation surely depends on the country’s laws and can be regarded
being sexistic.) A person may have children and up to two (living) parents, who naturally are persons,
too. The attribute parents is defined as being inverse to children by a preceding (IN'WPRBSS-G

an inverse attribute denotes a bi-directional relationship between two entities: an inverse attribute of an
entity A references an entity B that itself references entity A [ProSTEP 1994].

A man and a woman may be married whereby in the chosen example polygamy as well as (for
equality reasons) polyandry are forbidden through uniqueness constraints, i.e. that the values of husband
and wife must be unique across all instances of entity Marrie8XRRESS-G , only the pure existence
of these constraints can be displayed by prefixing Husband and Wife with an asterisk while the constraints
(no_polyandry and no_polygamy) themselves have to be noted and defined outside the diagram, i.e. in
EXPRESS .

4 Why is EXPRESS Used in Thesis Model

The aim of this thesis is to propose a model to represent user preferences. The purpose of this model is
to be shared and generic. To make it sharable, it must be formally defined in order to remove ambiguities
from its definition. We explain in this section wiXPRESS is well suited for this definition.

TheEXPRESS modeling language is equipped with a powerful constraints language allowing to de-
fine precisely the semantics of the mod&KPRESS language is a data modeling language. It allows
checking of properties, the correctness of defined limitations, establishing prototype, and provides op-
portunity to test the established prototype.

And by this means, for the Preference Model that was established for this research;

33

Chapter 3. The EXPRESS Modeling Language

e required new types were established using "User Defined Type" definition which is a new ad-
vantage provided byEXPRESS language. Required properties were defined for the determined
preference types, and relevant limitations were established,

e tests of the established prototype were substantiated,
o finally, providing global access to ontology model which was one of the aims of this research thesis

was demonstrated on a model.

Preference model which was established by using the abilities of this language is explained in Chap-
ter 5. RelatedEXPRESS code that was established for the model is represented in Appendix. Thus,
Preference Model whose execution was demonstrated on OntoDB is shown as an authentic and working
model in Chapter 6. Before presenting these chapters we introduce the chapter of OBDB.

34

Chapter

Ontology Based Databases: OBDB

Contents

Abstract. In the last decade, the notion of ontology based database (OBDB) has been devel-
oped in order to ffer an infrastructure allowing management of both ontologies and their
instances. This chapter describes in detail a model of architecture OBDB called OntoDB.
Its implementation in an environment, consisting of BEXPRESS language and the PLIB
ontology model is also briefly described.

35

Chapter 4. Ontology Based Databases: OBDB

1 Introduction

The Semantic Web is anfkort by the W3C to enable integration of data sources across the Web. Ontolo-
gies have been defined to make the semantics of data explicit. In order to capture information semantics
in a machine processable way, Web resources are described as ontology individuals. Such ontology
individuals are called ontological data. As Semantic Web technologies become mature and standard-
ized, they are applied to real-world applications. As a consequence, an increasing amount of ontological
data is becoming available on the Web. To manage such data, Ontology Based DataBases (OBDBS)
[Dehainsala et al., 2007b], [Dehainsala et al., 2007c], that store ontologies and their instance data in the
same repository have been proposed.

OBDBs store both ontologies and ontology-based data in database schemas to get benefit of the func-
tionalities dfered by DBMSs (query performance, data storage, transaction management, etc.). Recently,
several approaches and systems were proposed to store data and the ontologies describing their meanings
(e.g. Sesamé [Broekstra et al., 2002], RDFSuite [Alexaki et al.,|2001], Jena [B.McBridé, 2001], [Carroll
etal., zoozmmzmk etal.,
2002]) in the same database. They have two characteristics. First, they allow manage both the ontologies
and the data. On the other hand, they allow associating each data to the ontological concept, that defines
its meaning.

In this chapter, Section 2 presents$telient Ontology Based Database (OBDB) approaches. Section
3 presents the OBDB model addressed in this thesis and introduces the OntoQL exploitation language.
Section 4 explains why OntoDB is used in this thesis work. Section 5 concludes this chapter.

2 OBDBs Approaches

In the last decade, the notion of ontology based database (OBDB) has been developed [Dehainsala et al.,
2007b] |Pierra et al., 2005] in order tdter an infrastructure, allows management of ontologies and
their instanced [Chong et al., 20054&], [Petrini and Risch, 2007]. At least these models store the ontology
and its instances, but some of them also store the ontology model and extensively use meta modeling
techniques. In this section fterent OBDB approaches are analyzed by presenting their architecture.
They are classified into three main categories according to the number of schemas used.

2.1 Type I architecture

In OBDB:s of Type 1, information is represented in a single schema composed of a unique triple table
(subject, predicate, object) [Chong et al., 2005b], [Petrini and Risch, 2007]. This table, catliedl

table, may be used for both ontology descriptions and instance data. For ontology descriptions, the three
columns of this table represent respectively subject ontology element identifier, predicate and object
ontology element identifier.

Figure[4.1 illustrates this approach. The triplel (Student, subClassOf, Person) represents a subsump-
tion relationship between classes Student and Person. For instance data, the three columns of this table
represent respectively instance identifier, characteristic of an instance (i.e, property or class belonging)

36

2. OBDBs Approaches

and value of that characteristic. For example, the triple (Pgtade, PhD) represents the fact that Peter

has a PhD grade. Figure ¥.1(a) presents a toy example of an ontology (upper part) with some instances
(bottom part) as a graph. An extract of the corresponding vertical table is shown in Eigure 4.1 (b).This
approach raises serious performance issues, when queries require many self-joins over this table. The
database structure is frozen. Since inseftieletion operations of properties and instances are done eas-

ily. This representation is very simple but, itters from weak data typing and poor performance caused

by several auto-join operations over the unique table. To optimize this architecture, clustering techniques
need to be used [Agrawal et al., 2001]. This may dramatically cause maintenance overhead. Moreover,
the ontology model being implicit, it needs to be hard encoded in the query language interpreter.

ontology

string TRIPLES

subject |predicate [object
Person rdf:type |rdfs:Class

Student | rdf:type |rdfs:Class g

Student |rdfs:Subclassqf Person >§

X o

_______________________________________ name rdf:type rdf:Property e

instance name rdfs:range| xsd:String

--------- Student#1| rdf:type | Student

/, N
’ name.”” \salary country Student#1| name Peter
s \

o
aQ
a
=
o
®
»
>
a
a
=
®
73
1]
*
=
AN

RN
name .” \\ grade

v
aouejsul

’ 1 -France Student#1| grade Phd

Worker#1 | address |Address#1
J

Legend: | . l—_—t
— > subclassOf (a)
—9 property (b)
_____ . property value
—> instanceOf

Figure 4.1: Type 1 OBDBs approach [Fankam et al., 2008].

2.2 Type II architecture

OBDBs of Type 2 store ontology descriptions and instance data in tvfeint schemas [Alexaki et al.,

2001'], |Broekstra et al., 2002] separately. The schema for ontology descriptions dépends upon the ontol-
ogy model used to represent ontologies (e.g., RDFS, OWL, PLIB). Itis composed of tables, that are used
to store each ontology modeling primitive such as classes, properties and subsumption relationships. For
instance data, tierent schemas have been proposedehical tablecan be used to store instance data

as triples. An alternative is to use a binary representation where each class is represented by an unary ta-
ble and each property by a binary table. Recently, table per class representations (also called class-based
representations) have been proposed. Table having a column for each property associated with value for
at least one instance of a class is associated to each class.

Figure[4:2 presents an example of type 2 OBDBs that stores data of our previous example (see
Figure[4.1). In this example, ontology descriptions are stored using a schema for RDFS ontologies.

37

Chapter 4. Ontology Based Databases: OBDB

It still has some drawbacks: (1) the ontology schema is baseldeouriderlying ontology model and
thus is static, and as a consequence (2) introduction of concepts originated from other ontology models
is not allowed. In Sesame, for example, the structure of the ontology part is based on RDFS (tables
include: class, property, domain, range, etc.), where@srdnt representations can be used for the data
part: (1) A unique table of triples (like in type | architecture), which contains extensions of all concepts
(classes and properties) of the local ontology. (2) A unary distinct table for each class of the ontology
and a binary table for each property of the ontology. In this approach, the management of the ontology
part and the data part isftirent. This architecture is mordfieient. The second data representation
scales quite well, especially, when queries refer to a small number of properties. Contrarywise, when

each instance is described by a large number of properties, it does not scale.

ontology
Class SubClassOf Property Domain Range
ID Name Sub Sup ID Name prop class prop type
1 Person 2 1 1 name 1 1 1 xsd:string
2 Student 3 1 2 age 2 1 2 xsd:integer
3 Worker 3 grade 3 2 3 xsd:string
4 Address
instances
Person Student Name Grade
D ID ID Value ID Value
Student#1 Student#1 Peter Student#1 Peter
Worker#1 John
Address Worker Name Country
ID ID ID Value ID Value
Adress#1 Worker#1 Student#1 Peter Address#1 France

Figure 4.2: Type 2 OBDBs approach [Fankam et al., 2008].

2.3 Type III architecture

OBDBs of Type 3 architecture has been proposed for OntoDB [Dehainsala et al., [2007a, Pierra et al.,
2005, Dehainsala, 2007], with PLIB as the underlying ontology model. An additional part, called the
meta schemaart, is introduced in Figule 4.3. Thus the database structure is defined by three schemas.
The presence of the meta schema péigrs flexibility of the ontology part, since it is represented as

an instance of the meta schema. For the ontology schema, the meta-schema plays the same role as the
one played by the system catalog in traditional databases. Indeed, meta-schema may allow: (1) generic
access to the ontology, (2) support of evolution of the used ontology model, and (3) storafjerehtli
ontology models (OWL, DAMLOIL, PLIB, etc.). The possibility (2) is crucial for our work inorder to

extend OBDB with preferences.

38

3. OntoDB Ontology Based Database Model

Meta-Schema

Entity Attribute Type
ID Name SuperEntity ID | Name | Domain | Range ID Name
1 Resource 1 1 name 1 1 1 String
2 Class 1 2 | domain 3 2 2 Entity#2
3 Property T | e |]

Figure 4.3: Type 3 OBDBs approach [Fankam et al., 2008].

3 OntoDB Ontology Based Database Model

In the 90s, to allow the exchange of electronic catalogues of industrial components, an ontology model
for technical domain was developed and then published as an international standard known as PLIB
[ISO13584, 1998],[[Pierra, 2003a]. Then a model to exchange objects described in terms of such on-
tologies, was developed [Pierra, 2003a] and also standardized (ISO 13584). In the beginning of 2001,
the PLIB model was finished and a new project called OntogDB [Dehainsala et al.,| 2007a, Pierra et al.,
2005'] was launched. It is aimed to store, exchange, integrate and process industrial catalogues modeled
as ontology-based data, associated with a formal ontology. PLIB-based ontologies were first targeted.
These ontologies are domain ontologies: they describe, by means of classes and properties, all the con-
sensual entities of the target domain. Each property is defined in the context of a class, that constitutes
its domain, and it has a meaning only for this class and its possible subclass(es). Then, the decision, to
support also other ontology models like OWL or DAMDIL has been taken.

OntoDB is implemented on top of the PostgreSQL 8.1 DBMS and the PLIB ontology model (POM),
specified in the EXPRESS language, is used as underlying ontology model.

3.1 The PLIB ontology model

The PLIB ontology model [Pierra, 2003b] is designed to describe the entities existing in a field, through
properties that characterize all entities of the domain. Some properties have a meaning only for a subset
of objects in the area, classes are introduced, provided they are necessary to define the domain of cer-
tain properties. Each property is defined in a class entity, and only makes sense for this class and any
subclasses. Class can be linked through the usual is-a subsumption relationship but also with a special
relationship called caseof (is-a-case-of). This relationship allows a user to define its own ontology from
an ontology shared and explicit correspondence (mapping [Bernstein et al., 00]) between these two on-
tologies. The PLIB ontology model is itself defined in the EXPRESS data modeling language [Schenck
and Wilson, 1994]. '

A PLIB ontology has the following characteristics.

— Conceptual each entry is unique and completely defined. The words that appear in its description
clarify its meaning.

— Multilingual: each entry is associated with a code which is a universal identifier for identifying

39

Chapter 4. Ontology Based Databases: OBDB

the corresponding concept. Textual description aspects gaaam any number of languages.

— Modular. an ontology can referenced an another ontology for importing entities and properties
without duplicating them.

— Multi-representation once defined, a concept can be associated with an unlimited number of rep-
resentation. A view that characterizes each representation is a concept represented in the ontology.

— Consensualthe conceptual model of ontologies PLIB has reached an international consensus and
published under form of ISO and IEC standards. Ontologies conform to this model are developed
either through a standard that requires an international consensus on the content, or by industrial
consortia grouping a large number of partners.

3.2 OntoDB Architecture

The aim of OntoDB is to provide a scalable and evoluatative system to manage ontologies and their in-
stances. OntoDB ensures models and their instance’s persistency, whereas it associated language named
OntoQL [Jean et al., 2005b4a], [Jean et al., 2006b],[Jean,|2007] allows to manage and query ontologies. Its
architecture is composed of two main parts. Bhéology partand thecontent part

The ontology parstores ontology definitions. It gathers the basic shared constructions of the PLIB
[ISO13584, 1998], RDFS [Brickley and Guha, 2004] and OWL [Dean and Schreiber, 2004] ontology
models. To implement the ontology part, the PLIB ontology model has been mapped to a logical schema
by a program generator. It is based on defined transformation rules between EXPRESS concepts and
SQL/DDL. The logical schema of the meta schema part is also generated automatically by re-using an
object relational generator. Concretely, the generator receives as input parameter an EXPRESS meta
model and returns a set of tables representing the meta model. Then the meta schema part is populated
with the PLIB ontology model and with itself as data.

The content parstores the instances which descriptions and semantics are described by the stored
ontologies. The data represents the objects in the area, who are described in terms of a class of belonging
and a set of property values for this class.

Figure[4.4 shows the logical architecture of OntoDB. This architecture represents domain ontologies
described in terms of classes and properties, and objects in the field, defined in terms of these ontologies.
It is composed of four parts. Parts 1 and 2 are traditional parts available in all RDBMSs, namely the data
part that contains instance data and meta-base part that contains the system catalog. Parts 3 (ontology)
and 4 (meta-schema) specific our OntoDB.

e Metabase Part (1). This part, often called system catalog, is a part of traditional classical database.
It consists of all system tables. These tables are those which the DBMS uses to manage and op-
erate all data contained in the database. In OntoDB, it contains in particular the description of all
tables and columns defined in the other three parts of this architecture.

e Data Part (2). The data part contains description of object instances (belonging to the ontology
domain) described in terms of ontology class belonging and ontology property values. But, unlike

40

3. OntoDB Ontology Based Database Model

Ontology structure

(meta schema) (4)

Data structure

(metabase) (1)

—— _—_——

DB Content
(data) (2)

Data Meaning

(ontology) (3)

e
BN

Figure 4.4: OntoDB Architecture.

individuals of description logic that may be described by any number of class belonging and by
any existing properties (if they are not associated with specific constraints) thus makiogtdi
storage indexing. In the OntoDB model instance, data must obey to two assumptions. (Al) Each
instance must belong to one class, only called its base class (and to all of its superclasses). (A2)
Each instance may be only described by properties that are applicable for its base class. With these
two assumptions, each class may be associated with a table a view of which each row describes an
instance that defines this class as its base class, and of which columns are the subset of applicable
properties that were selected to constitute the schema of this class.

e Ontology Part (3). This part contains ontology definition as instances of the ontology model (that
may be PLIB or any other model represented as a set of objets).

e The Meta-Schema part (4). The main objective of the meta-schema is ftepa programming
interface allowing to access the current ontology model. This makes it generic according to ontol-
ogy models. This part records the ontology model into a reflexive meta model. For the ontology
part, the meta schema part plays the same role as the one played by the meta-base in traditional
DBs. Indeed, this part may allow: (1) generic access to the ontology part, (2) support of evolution
of the used ontology model, and (3) storage dfetent ontology models (OWL, DAMLOIL,

PLIB, etc.).

To conclude this section, we can see that OntoDB'’s architecture has strong OBDB similarities with
the architecture of metadata MOF (Meta Object Facility) [Kobryn, 99]. This architecture consists of four
layers. Layer model MO MOF architecture contains of the domain defined as instance of ontologies.
Layer model M1 MOF architecture is OntoDB’s conceptual model, subset of the ontology. The meta-
model layer M2 corresponds to the ontology model, the layer meta-meta-model M3 (MOF model) is
the meta-model of the ontology, itself reflexive. This architecture allows us integrate automatically
[Bellatreche et al, 2003] [Bellatreche et al, 2004], to migrate and exchange bodies not necessarily defined
in the ontology model. Moreover, it allows us to use the results of work performed under the MOF.

41

Chapter 4. Ontology Based Databases: OBDB

3.3 OntoQL Query Language for OntoDB

OnboQL [Jean, 2007],[Jean et al., 2005b], [Jean et al., 2006a] has been defined as an extension of SQL
to exploit OBDBs. This languagefters the possibility to query ontologies, contents (instances) and
both ontology and content in parallel. Also it allows the modification of the meta-model level (i.e. the
ontology model used to define ontologies) and ensures that such changes comply with the semantics of
the system. This section gives specifications of this language.

3.3.1 The Data Def nition Language

The Data Definition Language (DDL) is used to create and destroy in an OBDB ontologies and the
conceptual model of data subset of an ontologies. In OntoQLCRAATE, ALTER and DROP TYPE
whereTYPE is a type of class, help to define the user classes and their properties. The syntax for creating
a class and its properties is given by:

<class definition> ::= CREATE <entity id> <class id> [<under clause>]
[<descriptor clause>] [<properties clause list>]

<under clause> ::= UNDER <class id list>

<descriptor clause> ::= DESCRIPTOR (<attribute value list>)
<attribute value> ::= <attribute id> = <value expression>

<properties clause> ::= <entity id> (<property definition list>)
<property definition> ::= <prop id> <datatype> [<descriptor clause>]

Syntax explanation. The header of the instruction begins with the keyw@REATE. The element
<entity id> specify the type of the class created. It is followed by the identifier of the crealed<
<class id>) and the possible list of its super-classes after the keyWwtdiER. The body of this
instruction is composed of several optional clausBBSCRIPTOR clause can be used to describe the
created class by specifying the attribute valuestfribute value>). Other clauses<properties
clause>) create, together propertiespirop id>) defined on this class. These clauses begin with
<entity id> which supports the specification of the type of created properties.

The syntax for creating the extension of a class, i.e the conceptual model for its instances, is as
follows:

<extension definition> ::= CREATE EXTENT OF <class id> (
<property id list>) [<logical clause>]

<logical clause> ::= TABLE [<table and column name>]

<table and column name> ::= <table name> [(<column name list>)]

Syntax explanation. Several type tables can be associated with a user type, the direction of creating a table
requires typed name the table created. This is not necessary for the instruction of creating a extension
since it is unique for a given class. Accordingly, the header of this instruction can define an extension
indicating only the class nameK <class id~). The body of this instruction is composed of the element
<property id list-. By default, the interpreter of such an instruction implements the extension created by

42

3. OntoDB Ontology Based Database Model

the logic level thenorizontal representation, that is to say by a table (currently non-standard) including a
column for each property of the extension.

TheALTER statement to modify existing classes has the following syntax:

<alter class statement> ::= ALTER <class id>

[<descriptor clause>] [<alter class action>]
<alter class action> ::= <add property definition> |
<drop property definition>

<add property definition> ::= ADD [<entity id>]
<property definition> [<descriptor clause>]

<drop property definition> ::= DROP <property id>

Syntax explanation. This instruction addsAPD) or deletes BROP) a property defined on a class. It
allows users to change the description of a class DESCRIPTOR clause. The values of attributes
specified in this clause override those that may have been previously defined. The semantics of this
instruction is similar to editing a user type. Thus, deletion of an inherited property is not allowed.
Similarly, it is not possible to delete a property if it is the only property defined on a class. The syntax to
delete a class and the associated properties is as follows:

<drop class definition> ::= DROP <class id>

Syntax explanation. This statement removes the class identifietass id> and proprieetes defined
over the class. This class must not have sub-classes or extension and should not be used in a reference

type.

3.3.2 The Data Manipulation Language

The Data Manipulation Language (DML) can be used to modify a user type througlN§ERT,
DELETE and UPDATE clauses. The syntax of tH&SERT clause is as follows:

<insert statement> ::= INSERT INTO <class id> <insert description and source>
<insert description and source> ::= <from subquery> | <from constructor>
<from subquery> ::= [(<property id list>)] <query expression>

<from constructor> ::= [(<property id list>)] <values clause>

<values clause> ::= VALUES (<values expression list>)

Syntax explanation. This syntax allows to create one or more instances of a class. In SQL, as several
table types can be associated with a user type INSERT statement requires to specify the name of

the table type in which the bodies will be inserted. Since a class has only a single extension, only the
identifier kclass id>) is required to determine the extension in which bodies should be inserted.

Modifying instances is same throught WBDATE statement using the following the syntax:

43

Chapter 4. Ontology Based Databases: OBDB

<update statement> ::= UPDATE <class id polymorph> SET <set clause list>
[WHERE <search condition>]

<class id polymorph> ::= <class id> | ONLY (<class id>)

<set clause> ::= <property id> = <value expression>

Syntax explanation. Direct instances of a clas8NLY <class id>) or all instances of a class€{lass
id>) and values properties¢et clause>) can be modified.

TheDELETE statement removes instances using the following the syntax:
<delete statement> ::= DELETE FROM <class id polymorph> [WHERE <search condition>]

Syntax explanation. As theUPDATEclauseDELETE clause focuses only direct instances of a class or its
subclasses. Deleting an instance is possible if it is not referenced by a type reference.

3.3.3 The Ontology Def nition Language (ODL)

The ODL can create, modify and delete entities and attributes in the ontology model, that is considered
by OntoQL. This language makes it possible to change the model of used ontologies.

<entity definition> ::= CREATE ENTITY <entity id> [<under clause>] <attribute clause>
<under clause> ::= UNDER <entity id list>

<attribute clause< ::= <attribute definition list>

<attribute definition> ::= <attribute id> <datatype> [<derived clause>]

<derived clause> ::= DERIVED BY <function name>

Syntax Explanation. This statement creates a new entity in the ontology model OntoQL as the creation
of a user type. Thus, this new entity can be created as sub-entity of one or more other &NDERS (

). Itis defined with a list of attributes, that can characterize its instances. By default, the values of these
attributes are defined by a user. This instruction makes it possible to define attributes derived through
the provision<derived clause>.The function of derivation of such attribute is indicated by the name

of a user function{function name>). It must be defined with language programming (S@LSM)
associated to the DBMS on which the OBDB is located.

The modification of entities and attributes of the OntoQL ontologies can be achieved by the following
syntax:

<alter entity statement> ::= ALTER ENTITY <entity id> <alter entity action>

<alter entity action> ::= <add attribute definition> | <drop attribute definition>
<add attribute definition> ::= ADD [ATTRIBUTE] <attribute definition>

<drop attribute definition> ::= DROP [ATTRIBUTE] <attribute id>

Syntax explanation. An entity can thus be modified by addingpp) or removing DROP) attribute. The
core ontology model is the basis on which the semantics of language OntoQL is based. It is not possible
to delete an attribute of this model.

44

3. OntoDB Ontology Based Database Model

The removal of entities and attributes in the ontology modetiseved by the following syntax :
<drop entity statement> ::= DROP ENTITY <entity id>

Syntax explanation. This statement removes the entitgntity id> and all its attributes. An entity can

not be deleted if it is not the core model and if it is not referenced by an other entity. This is the case, if
it has sub-entities or whether it is used to define a co-domain attribute. It can not be deleted if that entity
is a sub-entity and a Class # their bodies are associated with an extension.

3.3.4 The Ontology Manipulation Language (OML)

The OML should allow to create, edit and delete elements of an ontology such as its classes and proper-
ties. Having already a syntax defined for creating classes and properties of ontology (DDL for data-based
ontological), this must be taken into account while analyzing the remaining needs. Use a OML to create

a class and a property would require several instructi?iSERT . Note that it would in a normal DBMS,

create a table by performing insertions tables in the metabase.

The OML can create elements in an ontology using the following syntax:

<insert statement> ::= INSERT INTO <entity id> >insert description and source>
<insert description and source> ::= <from subquery> | <from constructor>
<from subquery> ::= [(<attribute id list>)] <query expression>

<from constructor> ::= [(<attribute id list>)] <values clause>

<values clause> ::= VALUES (<values expression list>)

Syntax explanation. This can add instances to the entigntity id> . These instances can be defined
by specifying the set of values of attributesffom constructor>). They can also be the result
of a request OntoQL<(from subquery>). The entities and attributes used are either those model
ontologies summarized in Talile ¥.1 for the main entities.

Entity Attributes

#0ntology #o0id, #namespace

#Concept #o0id, #code, #name, #definition, #definedBy

#Class #oid, #code, #name, #definition, #directSuperclasses, #definedBy
#Property #o0id, #code, #name, #definition, #scope, #range, #definedBy
#Datatype #oid

#RefType #oid, #onClass

#PrimitiveType | #oid

#CollectionType | #0id, #ofDatatype, #maxCardinality

Table 4.1: The main entities of the ONTOQL

Theitems created in an ontology can be modified by using the following syntax:

<update statement> ::= UPDATE <entity id polymorph> SET <set clause list>

45

Chapter 4. Ontology Based Databases: OBDB

[WHERE <search condition>]
<entity id polymorph> ::= <entity id> | ONLY (<entity id>)
<set clause> ::= <attribute id> = <value expression>

Syntax explanation. This syntax allows to update the direct instan@®i.§) or also indirect by allows
without the word KeyONLY assigning new attribute values to an entity.

The elements of ontologies can be deleted using the following syntax:
<delete statement> ::= DELETE FROM <entity id polymorph> WHERE <search condition>

Syntax explanation. This statement eliminates entity also directly or indirectly with respect to a given
predicate €search conditioning>).

4 Why OntoDB Is Used in Thesis Model

In order to validate our thesis proposition we needed to have an infrastructure allowing to encode on-
tologies with a manipulation language. The OntoDB ontology based database and the OntoQL language
have been chosen for this purpose. OntoDB ensures models and their instances’ persistency, whereas
OntoQL allows to manage and query ontologies. We chose the OBDB OntoDB for two main reasons.

1- The first reason is that, as previously observed, other existing OBDBs only deal with a single ontology
model (RDFS, OWL, PLIB,...), or, with possible semantic-compatible ontology models (RDWS).
Therefore, none of them is a good candidate for fields, where applications require constructs from
ontology-models with dferent semantics. OntoDB provides a more adequate environment, i.e, based
on an ontology model integrating constructs from several ontology models like RDFS, OWL and PLIB.
Based on the classification Section 2 type Il architecture is more flexible. Thus this architecture seems
a good candidate for our proposed approach.

2- The second reason is that the currently defined OBDB does not deal with the representation of the
non-functional aspects related to the ontology models. By non-functional aspects, we mean concepts
that are capable to describe externally defined properties like quality, preferences or security are meant.
Indeed, most of the well known ontology models like OWL, PLIB, etc. do not provide with such re-
sources to represent such concepts. Each time, non-functional concepts are introduced, ad hoc concepts
or extensions are introduced in the ontology models like OWL, PLIB, etc. Specific attributes, like note or
remark or a particular property, are used to encode these non-functional aspects. Rather than extending a
specific ontology model, our proposal consists in introducing a side model to describe the non-functional
concepts related to preferences together with the ontology model inside an OBDB.

5 Conclusion

In this chapter we first presented the ontology based database that support the description of an ontology
together with its instances. Then we particularly focus on the OntoDB ontology based database. OntoDB

46

5. Conclusion

has there main functionalities:

(1) a storage of a domain ontology and database content in the same repository, (2) the possibility of
querying databases at ontology level, and (3) an automatic integration of hetero- geneous data sources
referencingextending the same domain ontology.

Finally, were explained the usage of the ontology based database OntoDB. OntoDB architecture is
an OBDB Type 3 architecture. Thus it provides a meta-schema structure. Before presenting the idea of
the extension of meta-schema structure, Preference Model is proposed in Chapter 5. This model which
is an external model, is created independently of the ontology model.

a7

Part 111

OUR PROPOSAL: HANDLING
PREFERENCES AT THE ONTOLOGY
LEVEL

49

Chapter

Proposed Model of Preferences

Contents
[l Infroduction. 53
2 Resource Defmition. . . . o v v v i ittt e e e 54
i - M) ... 54
2.2 Resource Definition in Preference Model 56
3 Preference Model for User Preferenced v oo vvvovnnnnn.. 57
[B.1 Preference URI 57
3.2 Interpreted Preferenteso 59
3.3 Uninterpreted Preferenkes oo 64
3.4 Context Based Preference Definition 64
4 Resource Preference Relationshifl . - « « o« v v v v v v v v vieee e e e 65
B Comcusion - . vttt e 66

Abstract. Providing personalized access to information is fundamental, especially in the
context of the Web where a huge amount of data is available. Many approaches have been
tried to represent and exploit user preferences. Usually these approaches focus on a par-
ticular application leading to fficulties to share and reuse the captured preferences. In
this chapter we propose a generic model based on various models proposed in the Database
and Semantic Web communities. The idea consists in raising preference handling at the
ontology model level instead of at the logical model level.

51

1. Introduction

1 Introduction

Curent Web information systems have to manage a huge amount of data. This is particularly the case
in domains such as the Semantic Web or engineering sciences where numerous digital data have been
defined. Indeed, because standard ontology models exist (OWL , RDF Schema [Brickley and Guha,
2004], PLIB [Pierra, 2003a]) more and more ontologies have been designed and as a consequence,
the amount of data described by ontologies (ontological data) has increased. Usually Semantic Web
information systems return numerous results in response to user requests that must be sorted and filtered
in order to find the relevant ones. This problem is fundamental for many applications especially in the
e-commerce domain. As a solution to this problem, many approaches have proposed to capture and
exploit user preferences in order to adapt to the user results produced by query processing.

Preferences represent the basic notion for any decision support activity. One of the principal tasks
within a decision aiding process is to model preferences in such a way that it is possible to derive a
final recommendation for the decision maker. Moreover, they are complex to evaluate and according
to the user goals and a current task, they should be evaluated in the context where they are expressed.
Preference modeling and preference-based search is a popular approach for helping consumers to find
their desired items. The user preference modeling plays an important role in current web applications.
Users make decisions by considering a set of criteria that involve attributes. For example, a criterion
could be as tiring as a trip is likely to be, or how well its schedule fits the tasks to be accomplished. Each
criterion is a function of one or several attributes. Many criteria are simple functions of a single attribute:
for example, whether the arrival time is early enough for a 18:00 meeting, or whether the airline fits the
user’s preference. Others can be more complex: for example, how tiring a trip is depends on the total
travel time, the departure and arrival times, the number of stops, etc.

In decision-making and decision-support tasks, a model of the user’ s preferences is required to
make good decisions or to suggest good alternatives. Representations for preference models have been
studied extensively in the literature on multi-attribute utility theory (e.g. Keeney anfiaRabB76),
which provides compact representations and elicitation techniques for preference models, but generally
assumes that the model is built by a human expert. Problem solvers like Al planning algorithms generally
assume that the complete preference model is provided as an input, but this is not a good approach
to interactive problem solving in complex domains. Ahead-of-time elicitation demands a tremendous
amount of information from the user, most of which will be irrelevant to solving the particular problem
at hand. An alternative approach has been to infer a user model automatically over multiple interactions
with the user that is used to support decision making and information filtering|(e.g. [Gerhard et al., 1997]
and [Mostafa et al., 1996]). The ontology modeling approaches solve the important part of capturing the
requestor’s preference by formally specifying the considered selection criteria with semantic vocabulary
and a classification structure[Chaari et al., 2008].

However, in most existing information systems, preferences are not modeled explicitly. They are
often hard coded and disseminated through applications that exploit these information systems. As a
consequence, user preferences can not be shared between web information systems. Users preferences
have to be defined and updated for each application, which is a burden for users and yields to another
layer of heterogeneous modeling.

In this chapter we will describe our proposal of a model for representing preferences in a declarative,

53

Chapter 5. Proposed Model of Preferences

domain independent and machine interpretable way. In ordeptesent user’s preferences, we propose
a modular, sharable and generic model to:

— make it sharable. We have defined it formally usingRRBRESS modeling language in order to
remove ambiguities from its definition. Indeed,#®¥PRESS modeling language is equipped with
a powerful constraints language allowing to define the semantics of the model precisely;

— show it is generic. We have studiedfdrent approaches that have been proposed in the Database
as well as in the Semantic Web communities and we have generalized them to define the proposed
model,

— present modularity.We have chosen to define the preference model separated from the data and
instances of the exploited information system.

Next section defines resources we need to defined our Preference Model. They are named Preference
Model Resource Definition. Section 3 presents our Preference Model, and Section 4 explains the link
between preference and ontological data. Section 5 concludes this chapter by summarizing the main
results.

2 Resource Def nition

The termresourcewas first introduced to refer to targets of "Uniform Resource Locators” (URLS), but
its definition has been further extended to include the reference to any Resource ldentifier (RFC 3987 &
RFC 3986). It is used often, specifically in relation with the World Wide Web and the W3C'’s semantic
web activity (in standards such as Resource Description Framework (RDF), Uniform Resource Identifier
(URI) and others). Nowadays, thesourceterm represents any identified object on the Web: a Web site,

a Web page, a part of a Web page or Ontology concepts identified by URI. In this section, firstly we will
give generic ontological resource definition, then we will explain our resource definition.

2.1 Resource Def nition in Ontology Def nition Meta-Model(ODM)

Ontologies are formal organization of domain knowledge to formally describe the semantic concepts
in terms of classes and propertieés [Gruber and Olsen,| 1994]. One of the most important components
of ontologies is concept hierarchy. It models the information on the domain of interest in terms of
concepts and subsumption relationships between them. The Ontology Definition Meta-Model (ODM)
has been used as a basis for ontology development [Djuric et al., 2003],[Dragan Gasevic, 2006]. The
corresponding ODM concepts are modeled by (MOF) [OMG, 2002]. MOF is a self-defined language
intended for defining meta models. In term of Model Driven Architecture (MDA) a meta model makes
statements about what can in the valid models of a certain modeling language be expressed.

MDA provides a solid basis for defining meta models of any modeling language, so it is the straight
choice to define an ontology-modeling language in MOF. In fact, a meta model is a model of a modeling
language. The MDA's meta model layer is shown on Fiduré 5.1. It is usually marked as M3, M2, M1,
MO.

— M3: the MOF,

54

2. Resource Definition

linguistic instantiation

M3 Meta-metamodel (MOF)

M2 Metamodel

M1 Model, model instances

MO Real word things

ontological instantiation

Figure 5.1: The four-layer Model Driven Architectufe [Dragaasévic, 2006].

Resource

+id: String
+label: String
+comment: String

1

Ontology Classifier Property Instance
DataType AbstractClass DataValue Individual

Figure 5.2: The Hierarchy of Basic Ontology Concepts |Bricikdeg Guha, 2004].

55

Chapter 5. Proposed Model of Preferences

— M2: a MOF class model, specifying the classes and associatfahe system being modeled.
— MZ1: an instance of a M2 model, describing a particular instance of the system being modeled.

— MO: ground individuals. A population of instances of the classes.

A detailed description of MOF can be found in OMG’s MOF specification document [OMG, 2002],
[Dragan Gasevic, 2006]. RDF, RDFS and their concepts are described in detail in W3C documents

[Brickley and Guha, 2004].

Figure[5.2 briefly overviews the basic ODM concepts. In this figure the corresponding ODM con-
cepts are modeled by MOF.

RESOURCE. Resource is one of the basic RDF concepts. It represents all things described by RDFS.
Compared to ontology concepts, it can be viewed as a root concept, the Thing. In RDFS, Resource is
defined as an instance of MOF Class. It is the root class of most other basic ODM concepts that will be
described: Ontology, Classifier, Property, Instance, etc.

ONTOLOGY . Ontology is a concept that aggregates other concepts (Classes, Properties, etc.). It groups
instances of other concepts that represent similar or related knowledge.

CLASSIFIER. Classifier describes some general concept that hasdtsances (Individuals and DataVal-
ues).On the other hand, a Property describes some generic characteristics that can describe that Classifier
and possibly other Classifiers.

PROPERTY. Ontology Class attributes or associations are represented through properties. A property is a
relation between a subject resource and an object resource. Therefore, it might look similar to a concept
of attribute and association in traditional, object oriented sense. In ODM, Property is an instance of MOF
Class that inherits from Resource .

2.2 Resource Def nition in Preference Model

The first part of our model definition consists of resource definitions usefull to define our Preference
Model. The first definition calle@®ROPERTY_OR_CLASS resource, is introduced in order to attach a
preference to an ontology. The seconed definiBROPERTY_OR_CLASS_INSTANCE resource is used to
define specific instances of the ontology.

[T ——~===——=——- r

| PROPERTY_OR_CLASS_INSTANCE| |

. 1 PROPERTY_OR_CLASS_INSTANCE

1 TYPE PROPERTY_OR_CLASS_INSTANCE
L l_ SELECT (PROPERTY_VALUE, CLASS_VALUE);

[mTT T r T TTTm .
| PROPERTY VALUE | | | CLASS VALUE | | END_TYPE;
[-1 e e |

Figure 5.3: Ontology Resource Definition

Model. In Figure[5.B, our resource definition is described aE®PRESS entity. As it is shown, it

is a select type (union of types) between te\SS_VALUE type andPROPERTY_VALUE type. These

types are in any existing ontology model. Thus, preferences are expressed on generic property or class
instancesCLASS_VALUE is used to define a set of individuals and these individuals are defined by a class

56

3. Preference Model for User Preferences

identifier (an URI reference). AISBROPERTY_VALUE is used to describe some generic characteristic
with their value and identifier.

Example. Let’s suppose a Tourism Ontology with a class Hotel and a property starRate.

e HotelMercury,an instance of an hotel is an exampleChASS_VALUE.
#1=CLASS_VALUE ('HotelMercury")

e starRate-5, property value of an hotel is an exampleP®ROPERTY_VALUE.
#2=PROPERTY_VALUE ('starRate’, 5)

3 Preference Model for User Preferences

With the previous defined resources, we are now able to define our proposed Preference Model. This
model collects dterent preference types from literature. In this section we propose our preference
modeling approach by defining and illustrating each of its components EXRRESS-G.

An overview of our approach is shown in Figure 5.4. The root entity of the Preference Model is
PREFERENCE . And eachPREFERENCE entity is associated withBREFERENCE_URI.

The left part of the figure show&ONTEXT_PREFERENCE_DEFINITION.Context is a general term
used to capture any information that can be used to characterize the situation of an entity. In this figure
context is modeled as a set of multidimensional attributes. The formal definition of this model is given
in Section 3.4.

The right part of the figure illustrates hoOPREFERENCE_DEFINITION can be resolved according
to an interpretation. An interpretation is an explanation of the meaning of some object of interest. In
Preference Mode[NTERPRETED_PREFERENCEsare those preferences that can be given an interpretation
by means of an evaluation. The nature of their definition depends on the attached interpretation function.
Also UNINTERPRETED_PREFERENCES are used to define as an enumeration of a set of properties and
classes values that are picked from an ontology without any constraint on the chosen values.

The following subsection details the Preference Model in order to express preferences on any set of
data semantically described by an ontology.

3.1 Preference URI

In our model each preference is associated with an URI defin@REJERENCE_URI entity. Its speci-
fication iNnEXPRESS (PREFERENCE_URI) is shown in Table5]1.

Model. ThePREFERENCE_URI entity characterizes a preference with a set of attributes. These attributes
arecode, namandclassification

— the attribute codgives a unique code e.g. any http address PREFERENCE_URT ;
— the attribute namés a linguistic term in nature describing tARREFERENCE_URI;

— the attribute classificatiomssociates a category (e.g. cost, star rating, or distance) to a preference.

57

Chapter 5. Proposed Model of Preferences

PREFERENCE pref_attributes L1 :?fL PREFERENCE_URI
code
name
L l} classsification
CONTEXT_PREFERENCE_ preference (ABS)PREFERENCE_
DEFINITION (INV) contextual DEFINITION
has_context UNINTERPRETED_PREFERENCE INTERPRETED_PREFERENCE
pref_values L[1:7] min value
D - ® INTERVAL_PREFERENCE
. max_value O—
PROPERTY_OR_CLASS O’
INSTANCE :
. number_value (O)—— NUMERIC_PREFERENCE

pref_values L[1:?]

prob_value O—

pref_values L[1:?]

pref values L[1:?]

FUZZY_PREFERENCE

O—
O—
BOOLEAN_PREFERENCE |
O——
O—

ENUMERATED_PREFERENCE

Figure 5.4: Preference Model Representation in EXPRESS-G

58

3. Preference Model for User Preferences

Table 5.1: Preference URI.
ENTITY PREFERENCE_URI

code: INTEGER;

name: STRING;
classification STRING;
END_ENTITY;

#2= PREFERENCE_URI (100, ’'cheap’,’cost’);

#3= PREFERENCE_URI (101, ’expensive’,’cost’);

#7= PREFERENCE_URI (84, low level’,’starRating’);
#8= PREFERENCE_URI (85, 'high level’,’starRating’);

ThePREFERENCE_URI ertity is separately defined and could be introduced by a more general knowl-
edge model in order to be reused. An ontology for example can be used to give a more precise description
of the semantic annotation of a preference. Indeed, the classification attribute could be a reference to an
ontology describing the ffierent preference classifications.

Example. Lower part of Tabl€ 5]1 presents sample ®REFERENCE_URI .

e #2 and #3are twoPREFERENCE_URI with code 100 and 101 means "cheap" and "expensive" and
"cost" classification.

e #7 and #8are twoOPREFERENCE_URI with code 84 and 85 means "low level" and "high level" and
"starRating" classification.

3.2 Interpreted Preferences

Preferences may be either interpretable or non-interpretable. Interpreted preferences are those prefer-
ences that can be associated to an evaluation or interpretation procedure. For example, we can interpret
the preferenceheap(x)as beingprice(x)<=20. The idea is to define preferences that are associated to
data types that are valuable and to whom there exists an order relation. Before we can model interpreted
preferences we have to consider the various possibilities. We have identified five types of preferences.
Let us go through the identified interpreted preferences.

3.2.1 Enumerated Preference

Enumeration allows to declare a class by extension, it shows the population instances in a set. In mathe-
matics and theoretical computer science, the broadest and most abstract definition of an enumeration of
a set is an exact listing of all of its elements (perhaps with repetition). TaBle 5.2 gives the definition of
ENUMERATED_PREFERENCE with examples.

Model. In our modelENUMERATED_PREFERENCE type corresponds to the enumeration of individuals
taken in an ontology that interprets a given preference.

59

Chapter 5. Proposed Model of Preferences

Table 5.2: Enumerated_Preference.
ENTITY ENUMERATED_PREFERENCE

SUBTYPE OF (INTERPRETED_PREFERENCE);

pref_values: LIST [1:?] PROPERTY_OR_CLASS_INSTANCE;

pref_attributes: LIST[1:?] OF PREFERENCE_URI;
END_ENTITY;

#40= ENUMERATED_PREFERENCE ([CLASS_VALUE(’HotelFormulel’),
CLASS_VALUE(’HotelPremiere’)], [(#2), (#7)1);

#41= ENUMERATED_PREFERENCE ([CLASS_VALUE(’HotelHilton’),
CLASS_VALUE(’HotelMercury’)], [(#3), (#8)1);

— The attribute pref_valuetskes value frorPROPERTY_OR_CLASS_INSTANCE resource defined in
Section 2.2.

— The attribute pref_attributeassociates aENUMERATED_PREFERENCE with list of Preference_URI
identifier.

Example. In Table[5.2,HotelFormule] HotelPremiere HotelHilton and HotelMercuryare shown as
domain ontology instances. First two hotels (both of them are 2 stars and they have only airCond and tv.)
and last two hotels (both of them are 5 stars and they have golf and casino) have similar characteristics.

e #2and#7 are twoOPREFERENCE_URI. They are used to descriloheapandlow levelpreferences.
In this example we could defirdneap and low level hoteds beingHotelFormulel,HotelPremiere
#40is given as example tBNUMERATED_PREFERENCE

e #3 and#8 are other twPREFERENCE_URI. They are used to descril@xpensiveandhigh level
preferences. In this example we could de#mpensive and high level hotels beingHotelHilton,
HotelMercury #41is given as example G&NUMERATED_PREFERENCE.

3.2.2 Numeric Preference
Numeric type can be discrete, meaning that the possible values are constrained to be one of a fixed set of
values.

Model. In this modeIlNUMERIC_PREFERENCE are interpreted by numeric values. This type of preference
is specified in Table5l 3.

— number_values a defined type based on integer.
— The attribute interpreted_bgssociates RUMERIC_PREFERENCE with a set olumber_value

— The attribute pref_attributeassociates RUMERIC_PREFERENCE with a list of PREFERENCE_URI
identifier.

Example. In this example we assume that the rating of a hotel cah, & 3, 4 5 or 6 starsn a given
tourism domaininterpreted_byattribute takes value from this rating list aPREFERENCE_URI attribute
describes the definition of preference.

60

3. Preference Model for User Preferences

Table 5.3: Numeric_Preference.

TYPE NUMBER_VALUE= NUMBER;
END_TYPE;

ENTITY NUMERIC_PREFERENCE

SUBTYPE OF (INTERPRETED_PREFERENCE);
LIST[1:?] OF NUMBER_VALUE;
LIST[1:?] OF PREFERENCE_URI;

interpreted_by:
pref_attributes:
END_ENTITY;

#27= NUMERIC_PREFERENCE([1,2], [(#7)1);
#29= NUMERIC_PREFERENCE([5,6], [(#8)1);

e #7iSPREFERENCE_URI. Itis used to describlw levelpreference. In this example we could de-
finelow levelhotel as beind. star and 2 star hotelsg#27is given as example t@@UMERIC_PREFERENCE.

e #8is alsOPREFERENCE_URI. Itis used to describkigh levelpreference. In this example we could
definehigh level hotelss being star and 6 star#29is given as example MUMERIC_PREFERENCE.

3.2.3 Interval Preference

In mathematics, interval is a set of real numbers with the property that any number that lies between two
numbers in the set is also included in the set. They are meaningful in any (totally or partially) ordered

set.

Table 5.4: Interval_Preference.

END_ENTITY;

ENTITY INTERVAL_VALUE
min_value: REAL;
max_value: REAL;

WHERE min_value<max_value;

END_ENTITY;

interpreted_by:
pref_attributes:

ENTITY INTERVAL_PREFERENCE
SUBTYPE OF (INTERPRETED_PREFERENCE);

INTERVAL_VALUE;

LIST[1:7]

OF PREFERENCE_URI;

#12= INTERVAL_VALUE(45, 60);
#17= INTERVAL_VALUE(90, 100);
#100= INTERVAL_PREFERENCE((#12), [(#2)1);
#110= INTERVAL_PREFERENCE((#17), [(#3)1);

Model. In our modelINTERVAL_PREFERENCE are used to interpret a low and up values of preferences.

Its definition is modeled on Table®.4.

— The typeINTERVAL_VALUE represents an interval using the two integer attributes.

61

Chapter 5. Proposed Model of Preferences

— The attribute interpreted_bgssociates adNTERVAL_PREFERENCE with a INTERVAL_VALUE.
- The attribute pref_attributes associate with list of PREFERENCE_URI identifier.

Example. In this example, theheapandexpensiv@references can be respectively defined by the [45-60]
and [90-100] intervals for "cost" classification RREFERENCE_URI .

e #2is aPREFERENCE_URI. Itis used to describeheappreference.Cheap hoteprice is defined
as[45-60]. #100is given as example tONTERVAL_PREFERENCE.

e #3is otherPREFERENCE_URI. It is used to describexpensivereference Expensive hotgbrice
is defined a$90-100]. #110is given as example tbNTERVAL_PREFERENCE.

3.2.4 Fuzzy Preference

Sometimes preferences can be defined using probabilistic values. So we integrate fuzzy logic approaches
in our model.Fuzzy_Preferences associate probability values to a given preference.

Table 5.5: Fuzzy Preference.
TYPE PROB_VALUE= REAL;
WHERE ((SELF>0) AND (SELF<1));
END_TYPE;

ENTITY FUZZY_PREFERENCE
SUBTYPE OF (INTERPRETED_PREFERENCE);
interpreted_by: PROB_VALUE;
pref_values: LIST [1:?] PROPERTY_VALUE;
pref_attributes: LIST[1:?] OF PREFERENCE_URI;
END_ENTITY;

#91=FUZZY_PREFERENCE((PROB_VALUE(0.10),
[PROPERTY_VALUE(’starRate’, 1)1, [(#7)1);
#92=FUZZY_PREFERENCE ((PROB_VALUE(0.95),
([PROPERTY_VALUE(’starRate’, 5),
PROPERTY_VALUE(’golf’, ’True’)]), [(#3),(#8)1));

Model. The extension of boolean space by fuzzy logic makes possible the use of the weights assigned
to the terms to evaluate their arguments. The result is no longer boolean, but a value between 0 and 1
corresponding to the estimated degree to which the given logical expression matches the given domain.
Its EXPRESS definition is given on Tablg5.5.

— The defined typ8ROB_VALUE has float value between 0 and 1.
— The attribute interpreted_bgssociates BUZZY_PREFERENCE with aPROB_VALUE.

— The attribute pref_valueskes value fronPROPERTY_OR_CLASS_INSTANCE resource defined
in Section 2.2.

62

3. Preference Model for User Preferences

- The attribute pref_attributes associates a FUZZY_PREFERENCE with list of PREF-
ERENCE_URI identifier.

Example. In this example,

e #7is aPREFERENCE_URI. Itis used to describ®w levelpreference Low level hotels defined
with starRatingproperty value as 1. This example associates with 0.10 probability value in order
to complete user’s weak preference.

e #3is aPREFERENCE_URI which is used to describexpensiveand #8 is used to shohigh level
preferencesHigh level hotelis defined withstarRateproperty value aé and Expensive hotebk
defined withgolf property value as TRUE. Thu#92is given as example tBUZZY_PREFERENCE
with 0.95 probability valueto indicate user’s strongest preferenbglslevel and expensive hatel

3.2.5 Boolean Preference

BOOLEAN_PREFERENCE is discrete, with possible values of 1 and 0. The aliases 'TRUE’ and 'Yes' are
accepted for the value 1, and 'False’ and 'No’for O.

Table 5.6: Boolean Preference.
ENTITY BOOLEAN_PREFERENCE

SUBTYPE OF (INTERPRETED_PREFERENCE) ;

interpreted_by: LIST[1:?] OF PROPERTY_VALUE;

pref_attributes: LIST[1:?] OF PREFERENCE_URT;
END_ENTITY;

#21= BOOLEAN_PREFERENCE ([PROPERTY_VALUE(C’tv’, 'TRUE’),
PROPERTY_VALUE(’airConditioner’, TRUE’)]),[(#2)]);

#22= BOOLEAN_PREFERENCE ([PROPERTY_VALUE(’casino’, 'TRUE’),
PROPERTY_VALUE(’golf’, TRUE’)]), [(#3)1;

Model. BOOLEAN_PREFERENCE is specified on Table®5.6. In the model this preference type expresses a
list of property values that a user prefers. It corresponds to the availability of this property.

— The attribute interpreted_btakes values frorRROPERTY_VALUE. It is defined in Section 2.2.

— The attribute pref_attributeassociates BOOLEAN_PREFERENCE with a list of PREFERENCE_URI
identifier.

Example. The proposed example in Talile]5.6 defineBOALEAN_PREFERENCE on hotel room. This
preference is defined as the presence of same values for the prapestpodatior(with or withoutTV,
airConditioner, golf, jakuzietc.).

e #2is used to describeheappreference.Cheap hotels defined with onlytv andairConditioner
property values#21is given as example GOOLEAN_PREFERENCE .

63

Chapter 5. Proposed Model of Preferences

e #3is used to describexpensivepreference. Expensive hoteis defined withgolf and casino
property values#22is given as example (fOOLEAN_PREFERENCE .

3.3 Unlnterpreted Preferences

By uninterpreted preferences, we mean those preferences that are enumerated by a given user or a system
designer without any associated interpretation procedure.

UNINTEPRETED_PREFRENCE type corresponds to a set of property or class values (instances) of an
ontology that are selected as being preferred. There is no rationale for choosing these instances. They
may be chosen, for filerent purposes TIEXPRESS resources describing such a preference are described
on Tabld5.y.

Table 5.7: Uninterpreted_Preference.
ENTITY UNINTERPRETED_PREFERENCE
interpreted_by: LIST[1:?] OF PROPERTY_OR_CLASS_INSTANCE;
pref_attributes: LIST[1:?] OF PREFERENCE_URI;
END_ENTITY;

#47= UNINTERPRETED_PREFERENCE (([CLASS_VALUE(’HotelIBIS’),
PROPERTY_VALUE(’pizza_margarita’, 'TRUE’)]1), [(#2)]1);

Model. Table[5.F defines attributes of tdtBINTERPRETED_PREFERENCE entity.

— The attribute interpreted_bipkes value fronPROPERTY_OR_CLASS_INSTANCE resource defined
in Section 2.2.

— The attribute pref_attributeassociates aiNINTERPRETED_PREFERENCE . with list of PREFERENCE_URT
identifier.

Example. In Table[5.V, atUNINTERPRETED_PREFERENCES (#47) correspond to set of property or class
values of an ontology that are selected as being prefered is defined according to the addressed domain:
HotellBISandpizza margarita

3.4 Context Based Preference Def nition

Context is a general term used to capture any information, that can be used to characterize the situations
of an entity. The definition of preferences may depend on the context, where they are interpreted. For
example, someone may interpreffdrently the cheap preference for the price of a hotel according to the
location of the hotel (e.g. London, Paris).

Model. In our work, we don’t address the study of context, but we provide with resource capable to refer
to any explicit model of context. In our case, context is modeled as a set of multi dimensional attributes.
To handle these preferences, B¥PRESS data model contains the resource presented on [able 5.8.

— The attribute context_valuis aPROPERTY_OR_CLASS_INSTANCE Resource.

64

4. Resource Preference Relationship

Table 5.8: Context_Based_Preference.
ENTITY CONTEXT_PREFERENCE_DEFINITION

SUBTYPE OF (PREFERENCE);

context_value: PROPERTY_OR_CLASS_INSTANCE;

preference: PREFERENCE_ DEFINITION;
END_ENTITY;

#48= CONTEXT_PREFERENCE_DEFINITION (PROPERTY_VALUE(’location’,
"London’), (#110));
#49= CONTEXT_PREFERENCE_DEFINITION (PROPERTY_VALUE (’location’,
"Paris’), (#120));

— The attribute preferencassociates wittPeference_Definition.

Example. In this example, someone may interprefeliently the same price range value for the price of
a hotel if it is localized inLondonor Paris. Thus,INTERVAL_PREFERENCE definition is examined (e.g.
#110 and #120).

#110= INTERVAL_PREFERENCE((#17), [(#3)1);
#120= INTERVAL_PREFERENCE((#17), [(#2)1);

In the first case #17 is used to defiepensivereference.

#17= INTERVAL_VALUE(90,100);
#3= PREFERENCE_URI(101, ’expensive’, ’cost’);

But in the second case, same interval value (#17) is used to ciesppreference.

#17= INTERVAL_VALUE(90,100);
#2= PREFERENCE_URI(101, ’cheap’, ’cost’);

Finally, in Tabld5.B according to context valuRagis or Londor) thecheap or expensivereferences
are interpreted dlierently.

4 Resource Preference Relationship

In the previous section we have described our proposed Preference Model. In this section we present
the last part of our model definition consists of linking the Preference Model to the Ontology Model.
The representation of an ontology requires a model of ontologies that provides the primitives needed to
express the entities and relationships. It contains operators to deal with them. Many ontology models
have been proposed in the literature [Kalinichenko et al., 2003], [Fankam et al], 2008]. They come
from different fieldsanddisciplines, the main ones being the descriplmgics the logic of frames and
datbases. For example,the ontology model PLIB is issued the database area, OWL and RDF-Schema

65

Chapter 5. Proposed Model of Preferences

associated_Property_or_class L[0:?] associated_?reference L[0:?]

r——————7—7 I .
| PROPERTY_OR_CLASS | {>— PREF_Link PREFERENCE
L L

Figure 5.5: EXPRESS-G Representation of Preference Link Agmbro

models are respectively used from the description logics and semantic networks and F-Logic from the
logic of frames.

Our approach associates any preference model to any ontology resource model that allows to manipu-
late the model of the ontology through its meta-model. Indeed, according to Figure PBEHRERENCE
abstract entity of the preference model is associated tBROBERTY_OR_CLASS resource entity. The
PROPERTY_OR_CLASS resource represents data elements of the ontology model we refer to. It repre-
sents data and domain knowledge independently of any implementation model. Moreover, it is modeled
independently from any ontology model (e.g. OWL, F-Logic, PLIB).

5 Conclusion

Users usually have varying preferences for the non-functional criteria depending on the situation they
find themselves in, and of coursdférent requestors will haveftitrent preferences. A good mechanism
should not only allow to express values for each property, but preferably also represent the relations
among the preferences. For example, a user may consider the price property as more important than
location when requesting a reservation service (I prefer cheap hotel than high quality). Hence, the se-
lection approach needs to provide mechanisms for users to specify their preferences, that is which of the
non-functional properties they feel more strongly about and also relations between these properties.

As we discussed in this chapter, it idftbult to predict how many non-functional properties will be
available, and additionally the type of these properties. For example, the evaluation function to compute
the price criteria will be very dierent from the function to calculate the location criteria. It is very dif-
ficult to define a universal evaluation function for all kinds of non-functional properties. Non-functional
properties exhibit constraint over the functionality. These properties involve qualitative or quantitative
features. A model for non-functional properties, that can be used in preference descriptions (cheap, ex-
pensive, near...) is required. Due to the versatility of non-functional properties (and the fact that new ones
might be required at any time) it is unlikely that a complete standard set can be identified. Furthermore,
criteria should dter depending on the domain.

In this chapter designed the formal, shared and generic preference model is designed. Set up for
handling preference for ontological data is realized. In this model firstly, the ontology’s instances are
taken into account by referring to their corresponding ontology’s entities. Then the preference model
has been inspired by the ones defined. This model is composed of several kinds of preferences identified
in the literature. These preferences are independent of any logical model of data. They are defined a
posteriori by providing the interpretation of each preference, if required. The generic characteristic of
this preference model is provided by the capability to define a relationship with any ontology of a given

66

5. Conclusion

domain. And finally, the Preference Link is introduced. Thi&lis used to attach preference model to
the ontology model.

This model has been formally formalized in tiPRESS data modeling technique. A set of prefer-
ences validating this proposal has been defined. The Eco Toolkit has been used to operationally validate
this model. The whol&XPRESS model together with a validation file @XPRESS instances are given
in Appendix A.

In the next chapter, we focus on the integration of our preference model in ontology based databases.
The OntoDB OBDB is used for this propose and the OntoQL language is used for manipulating and
querying the resulting database model and data.

67

Chapter

Extending Ontology Based Databases with Preferences

Contents
[l Infroduction. 70
ing and Querying PreferencesinOntoDB 70

2.1 Ontology Representationin OntoDB 70
2.2 OntoDB Extension with Preferentes 72
2.3 Linking Ontologies and Preferences at the Ontology Model | evel 75

3 Preference-driven Query Processingin OntoDB 76
[3.1 _ Syntaxof Preferring Operafor 76
|3.2 Query Inte[p[etatid)n 77
[3.3 SPARQLInterpretatibno oo 78

4 Comclusiono vt 79

Abstract. The purpose of this chapter is to propose an extension to an existing OBDB,
cdled OntoDB in order to support semantic description of preferences. In this chapter,
firstly we describe how our proposed Preference Model can be attached to an ontology
model through the manipulation of the Meta-model level. Then, how a specific Preference
Model is linked to the concept of class or property of the ontology model is shown. Finally,
how we can use these information to query OBDB with preferences is described.

69

Chapter 6. Extending Ontology Based Databases with Preferences

1 Introduction

In the previous chapter, we have proposed a model to represent user preferences and show how this
model can be related to ontologies and ontological data is shown. In this chapter, an extension of an
existing OBDB, called OntoDB, through the extension of its ontology model in order to support semantic
description of preferences is proposed.

In Chapter 4 Section 2, the main elements of the OntoDB architecture has been presented. In the
same chapter the OntoQL language with an Ontology and Data definition lanGCREATE, ALTER,
DROP clauses),a manipulation languag€INSERT INTO, DELETE, UPDATE clauses) and query
language(SELECT) is also described.

In this chapter, both OntoDB and OntoQL will be used to show how preferences can be handled in
OBDB. To extend the OntoDB architecture with preferences, we focused on the metaschema (2) and
ontology (4) parts. In the following sections, we present the proposed extension for both parties. In
section 6.2 handling and querying preferences in OntoDB are described. Then we will present how
the OntoQL Language is used to generate this extension. finally, in section 6.4 we define the OntoQL
PREFERRING operator extending the query language parts.

2 Handling and Querying Preferences in OntoDB

OntoDB dfers the necessary resources to store both the ontological model and the preference model in
the same infrastructure. Thanks to the possibility to instantiate the meta-schema part and to the use of
the OntoQL language, the manipulation of thedtedeént components becomes possible. In this section,

we first explain ontology representation in OntoDB then show how the OntoDB architecture is extended
with preferences.

STRING name Class_and_Property Class_and_Property_e
-enerop rid _ name

_|‘
9 PZARBAN

I I Class_e Property e
scope rid name rid name scope
OIS P | Propery I:> 1 Hotel 10 | title | 100

Property_2_scope

; Inheritance
Entity
At T Association rid rid_s | tablename_s rid_d | tablename_d
omic Type
100 10 Property 1 Class
Ontology Model Logic Model

Figure 6.1: Ontology and Logic Model on OntoDB

2.1 Ontology Representation in OntoDB

In OntoDB, tables and columns are named by using the internal identifiers of classes and properties. On
the left side of the FigurE_ 8.1 a simple ontology model is represented with EXPRESS. This ontology
model consists of three entities. The entifiass_and_Property has a single attributeame. This
attribute indicates the name of a class or propetthass_and_Property is the super-entity Entity for

70

2. Handling and Querying Preferences in OntoDB

Class andProperty.ltis used to represent the classes and properties of ontologies. Both entities are
linked by the association, to represent domain (a class) area of a property.

On the right hand side of Figuke 6.1, the logic model used by OntoDB for storing ontologies is pre-
sented. A table is created for each entity of the ontology model. Each table possesses the attribute rid
providing internal identification of database classes and properties. According to the hierarchy of enti-
ties in the model of ontologies, tld ass_e Property_e table inherits Class_and_Property e tables.
Finally, to represent the associatiscope the switch tabl®roperty _2_scope was created. It makes
the link between a property and a class. The identifier of this property (by class) and the table where it is
stored are shown in colummdd_s andtablename_s .

To give a sample of ontology representation, we usklatel ontology This ontology is illustrated
by using OntoQL syntax in Table ®.1.

Table 6.1: Hotel Ontology.

CREATE #Class Hotel(
DESCRIPTOR (#name[fr] = 'hotel’),
#property(

name STRING,

city STRING,

starRate STRING));
CREATE EXTENT OF Hotel (

(name, city, starRate);

INSERT INTO Hotel (name, city, starRate)
VALUES (’HotelFormulel’, ’Paris’, 2);
INSERT INTO Hotel (name, city, starRate)
VALUES (’HotelIBIS’, ’Paris’, 3);

INSERT INTO Hotel (name, city, starRate)
VALUES (’HotelMercure’, ’Paris’, 5);

Table[6.1 shows the statement to create the Hotel ClassDER@RIPTOR clause is used to describe
this class. Itis assumed that French (FR) and English (EN) are the only natural language used to describe
the concepts and institutions of the Hotel Ontology. Th@roperty clause is used to create properties
together with the class. TI@REATE EXTENT OF statement is used to define the extension of class (i.e.,
the set of properties used to describe instances of Hotel).

Table 6.2: Hotel Ontology Instances.

‘ oid ‘name city ‘ starRate‘ price‘
23 HotelFormulel | Paris 2 30
28 HotelIBIS Paris 3 85
29 HotelIBIS Poitiers 3 65

Example. In the exampleame, city starRate and pricatributes are instantiated according to their prim-
itive types (e.gSTRING andinteger (INT)). Inthe Tabld6.R the representationtdtel Ontology
instances are shown with their internal identifiedid) .

71

Chapter 6. Extending Ontology Based Databases with Preferences

2.2 OntoDB Extension with Preferences

The extension of OntoDB to handle the preferences consists in describing a GREAYE OntoQL
clauses that extend the ontology model with preferences. The symbol (#) is used to precise that the
creation is at the entity Meta-model level. For example, creating a preference concept at the ontology
model level is performed by adding another new concept ilERTETY Meta-model resource using the
following OntoQL clause.

CREATE ENTITY #Preference (
oid int,

);
In this section the creation process of all the entities of the Preference Model, which is presented in
Chapter 5, is shown.

2.2.1 Preference_URI

In our model each preference is associated RRARFERENCE_URI to give a characterization to a pref-
erence with a set of attributes. These attributes are described in Section 5.1.

Table 6.3: Preference URI.
CREATE ENTITY #Preference_URI(

#code INT,
#name STRING,
#classification STRING);

INSERT INTO #Preference_URI (
#code, #name, #classification)
VALUES (100, ’cheap’,’cost’);
INSERT INTO #Preference_URI(
(#code, #name, #classification)
VALUES (50, ’low level’,’quality’);

Model. In Tabld6.3B the creation of ttRreference_URI entity is described with OntoQL specifications.

Table 6.4: Preference URI Instances.

‘ oid ‘ code‘ name classification
1316 | 100 cheap cost
1315 | 101 expensive cost
1319 | 40 lux StarRate

Example. This entity hasode, name and classificatiattributes assigned to internat in the Data Part
of the OntoDB architecture (Tatle 6.4).

72

2. Handling and Querying Preferences in OntoDB

2.2.2 Numeric_Preference

Numeric preferences are described in Chapter 5 Section 3.2.2. This type of preferences are interpreted
by numeric values.

Table 6.5: Numeric Preference.
CREATE ENTITY #Numeric_Preference(

UNDER #Interpreted_Preference(
#number_value INT,
#REF (#Preference_URI)));

INSERT INTO #Numeric_Preference(
#number_value, #REF (#Preference_URI)
VALUES (5, ’http://....7);

Model. In the Tabld 65 the syntax of themeric_Preference creation is given. This preference is
created undefnterpreted_Preference.

Example. Example values are inserted imomber_valueand URI attributes. URI attribute takes its
value from the relateBREF_URI adress. Sdux hoteltakes the value of star rating which's .

2.2.3 Interval Preference

Interval preferences are interpreted by interval values which is described in Chapter 5 section 3.2.3.

Table 6.6: Interval Preference.
CREATE ENTITY #Interval_Preference(

UNDER #Interpreted_Preference(
#min_value INT,

#max_value INT,

#REF (#Preference_URI)));
INSERT INTO #Interval_Preference(
#min_value, #max_value, #REF(#Preference_URI))
VALUES (90, 100, ’http://....");

Model. In Table[6.6 OntoQL statement is used to crehieerval_ Preference with min_value
max_valueandURI attributes.

Example. In the same table, the interval [90..100] is attached teRpensiveost preference. Itis shown
in Table[6.6.

73

Chapter 6. Extending Ontology Based Databases with Preferences

2.2.4 Boolean_ Preference

Bodlean preferences that are explained in Chapter 5 Section 3.2.5 are interpreted as the presence or the
absence of a given feature.

Table 6.7: Boolean Preference.
CREATE ENTITY #Boolean_Preference(

UNDER #Interpreted_Preference(
#properties (STRING)ARRAY,
#REF (#Preference_URI));

INSERT INTO #Boolean_Preference(
#properties, #REF(#Preference_URI))
VALUES (ARRAY[’casino’,’golf’], ’'http://....");

Model. In the Tabld 6.7 the creation of the entity Boolean Preference is presented.

Example. In the example a number of characteristics of a hotel (e.g. facilities) are taken into consideration
like Internet access, room service, room with a view or facilita@ghe physically disabled. This example
shows onlycasinoandgolf facilities are attached tBreference_URI lux.

2.2.5 Enumerated Preference

Enumerated Preferences show the population preferences in a set. This type of preferences are explained
in Chapter 5 Section 3.2.1

Table 6.8: Enumereted Preference.
CREATE ENTITY #Enumerated_Preference(

UNDER #Interpreted_Preference(
#pref_values REF(STRING) ARRAY)
#REF (#Preference_URI);

INSERT INTO #Enumerated_Preference(
#properties, #REF(#Preference_URI))
VALUES (ARRAY[’HotelFormulel, HotelPrimier’], ’'http://....’°);

Model. The OntoQL syntax of the creatidinumerated_Preference is given in Tabl¢ 6)8. This entity
takes set of values frorfProperty_or_Class_Instance resource. In the OntoDB architecture this
resource is shown asSaring definition.

Example. In the exampléreference_URI cheapis attached to a set of hotel instances vaiti shown
in Table 6.4.

74

2. Handling and Querying Preferences in OntoDB

2.2.6 Fuzzy Preference

Fuzzy Preferences associate probability values to a given preference. It is described in Chapter 5 Section
3.2.4.

Table 6.9: Fuzzy Preference.

CREATE ENTITY #Fuzzy_Preference(
UNDER #Interpreted_Preference(

#prob_value FLOAT,

#properties REF(STRING)ARRAY)

#REF (#Preference_URI));

INSERT INTO #Fuzzy_Preference (

#prob_value, #properties, #REF (#Preference_URI))
VALUES (0.95, ARRAY[’casino’,’jakuzi’], ’http://....");

Model. In Table[6.9 OntoQL statement is used to create Fuzzy Preferencemeithvalueand URI
attributes.

Example. In the example, probability value 0.95 is attachedc&sino and jakuzproperty values to
describdux hotel with ’httpy/....".

2.3 Linking Ontologies and Preferences at the Ontology Model Level

Once the preferences and the ontology have been defined, the next step consists in linking the ontological
entities to the preferences that are expressed on these entities. In OntoDB the preferences containers are
defined at the meta schema level. They need to be linked to their corresponding ontological entity at the

meta schema as well.

Ontology structure + Preference Data structure

(meta schema) (2) (metabase) (1)

Pref_link
concept < preference
[T T I T T]

VAN VAN
el (=]

Data Meaning + Preference

DB Content

(ontology) (4) e (data) (3)

Figure 6.2: Extended OntoDB Architecture.

In Figure[6.2 extended OntoDB architecture is presented. After Preference Model is created with
OntoQL statements, used link it to the ontology model usingf_Link association. The following

75

Chapter 6. Extending Ontology Based Databases with Preferences

OntoQL statement, that BLTER clause is used to create such a link in OntoDB. An aggregate of pref-
erences encoded in the attributpref_link is added to théProperty_or_Class entity.

ALTER ENTITY #concept ADD ATTRIBUTE #PREF_Link
REF (#Preference) ARRAY

We have shown how to create thiotel Ontologyat the preferences. Now we show how to link
preferences to class of the ontology. We useWRDATE clause is used to atta®treference_URI to
#Property_Or_Class_Instance (any instance value of the domain ontology).

Table 6.10: UPDATE Clause.

UPDATE #class
set #PREF_LINK = ARRAY[’cheap’,’standard’, ’full board’]
WHERE #name = ’Hotel’

In the Tabld'6.70 the preferencheap is attached to thelass Hotel. Here, the names are used for
readability but identifiers are in fact used.

3 Preference-driven Query Processing in OntoDB

The ability to model preferences and exploit preferential information to assist users in searching for items
has become an important issue in knowledge representation. The user of an information system rarely
knows exactly what he is looking for, but once shown a piece of information he can quickly tell whether

it is what he needs.

Preferences can be regarded as special kind of soft filter expressions [Kissling 2002]. They take a
set of values and refine this set. In a similar fashion to the way that Kiel3ling extended SQL to enable
database querying with preferences, [Siberski, Pan, and Thaden 2006] presents an extension to SPARQL
to query ontological information with preferences.

In this section our objective is to describe semantic queries that handle preferences expressed at
the semantic level in OntoDB architecture. It is presented as a comprehensive extension of OntoQL
query language which directly supports the expression of preferences. This includes formal syntax and
semantics of preference expressions for OntoQL. An implementation of the querying proposed here have
been completed based on the OntoQL query engine [Jean, 2007] and building on the implementation of
[Siberski et al., 2006] where the iterative processing of preference querying is performed as a solution
modifier (similarly to the way the classical sorting functionalii.TER is done).

Our fundamental idea here is similar; a new query clause is introduced to allow the construction of
preferences as soft constraints. This new query clause is calRREBERRING.

3.1 Syntax of Preferring Operator
OntoQL is based on SQL. The syntax of OntoQL query language is shown below:

76

3. Preference-driven Query Processing in OntoDB

<query specification> ::= <select clause>

<from clause> [<where clause>]

[<group by clause>] [<having clause>] [<order by clause>]
[<namespace clause>] [<language clause>]

The extended syntax of OntoQL WiHREFERRING operator is given below:

<query specification> ::= <select clause>

<from clause> [<where clause>]

[<group by clause>] [<having clause>]

[<order by clause>] [preferring clause]

[<namespace clause>] [<language clause>]

<preferring clause> ::= <boolean preferenceldentifier expression>
<boolean preferenceldentifier expression> ::= <boolean term>
| <boolean value expression> OR <boolean term>

<boolean term> ::= <boolean factor>

| <boolean term> AND <boolean factor>

<boolean factor> ::= [NOT] preferenceldentifier
<preferenceldentifier> ::= <identifier>

In the Preference Model eablteference_URI must be thought asreferenceldentifiers>.
Because of this when using more than epeeferenceldentifier>, boolean operators lik&ND,
OR, NOT should be used.

3.2 Query Interpretation

In order to handle the preferences in the OntoQL queries, a preference interpreter has been developed on
top of the OntoQL engine. This is materialized by addiRREFERRING clause in the OntoQSELECT
clause. First, we show same samples of the proposed syntax.

SELECT ’selection’
FROM ’tableReference’
PREFERRING ’preferenceldentifer’

SELECT ’selection’
FROM ’tableReference’
PREFERRING ’preferenceldentifer’ AND ’preferenceldentifer’

SELECT ’selection’
FROM ’'tableReference’
PREFERRING NOT ’preferenceldentifer’

s

Chapter 6. Extending Ontology Based Databases with Preferences

SELECT ’selection’
FROM ’tableReference’
PREFERRING ’preferenceldentifer’ OR ’'preferenceldentifer’

SELECT ’selection’
FROM ’tableReference’
PREFERRING NOT ’preferenceldentifer’ AND ’preferenceldentifer’

Two example queries, based on the situations presented above, are presented below.

Example Query-1 User’s preference that is related with the cost of the hotel, is specified indirectly by
the termcheap Running this query through OntoQL will have exactly the behavior where any type of
hotel will be considered equal without examining its relationship with the target concept.

List me cheap hotels.
SELECT name, price

FROM Hotel
PREFERRING ’cheap’;

Example Query-2 User is looking for a hotel which hasheap price and lux level equipmeint the
room.

SELECT ’selection’

FROM ’tableReference’
PREFERRING ’cheap’ AND ’lux’;

3.3 SPARQL Interpretation

According to the SPARQL language interpretation the preference is directly specified in FILTER clause.

In this example for theheapproperty, which is on property "price" and whose interval is [45 .. 60],
can be written using OntoQL as seen below.

SELECT name, price, description
FROM Hotel
WHERE price BETWEEN 45 and 60

The previous query can also be written in SPARQL language:
SELECT 7name ?price 7?description
WHERE { ?h rdf:type Hotel . ?h name ?name .
?h price ?price . ?h description ?description }

This query will be rewritten using the FILTER clause of SPARQL:

78

4. Conclusion

SELECT ?name 7price ?description

WHERE { ?h rdf:type Hotel . ?h name 7name .
?h price ?price . ?h description ?description
FILTER(?price >= 45 && ?price <= 60) }

4 Conclusion

This chapter has presented an extension of a database architecture in order to handle preference modeling
and querying with preferences not at the database logical model but at the semantifiézeel loy the
ontology. This extension requires,

¢ the explicit representation of the ontology in the database. As a consequence, we have been able
to attach the preferences to the classes and to the properties of the ontology and not to the columns
of the logical model of the database, where instances or data are stored;

e the possibility to access and to manipulate the ontology model through the access and manipula-
tion to the meta-model;

¢ the availability of an exploitation language allowing to manipulate the instances, their classes and
the meta-model in the case of ontologies.

Our approach is implemented by extending the OntoDB system. Ontd¢leB ¢he necessary facil-
ities to store both ontologies and the preference model. Thanks to the use of the OntoQL language, the
manipulation of these flierent components becomes easier.

As a consequence, semantic queries that handle preferences, expressed at the semantic level have
been described. And thus they are abstracted from the logical model in the same infrastructure. The
usage oPREFERRING operator is to use user preferenceBREFERENCE_URI ’s in the query sentences.

For OntoQL query language this operator is firstly used in OBDBs research area.

In the next chapter we will describe an case studies of the proposed extensions.

79

Chapter

Case Studies

Contents
L Introduction.ttt 82
- Handling Preferences in Ontology 82
2.1 The Domain Ontology: A Vacation Ontology Instantiation 82
2.2 Preference Model Instantiation 83
|2.3 Ontology Preference Lihk 85
B Case Study-2: Preference Based Queryingin OntoDB 86
3.1 Extension of the OntoDB with Preferedces 86
3.2 Querying OntoDB with Preferentes 88
B Conclusion . - v oot e e 89

Abstract. The whole model and operational resources have been defined in Chapter 5 and
Chapter 6. Now it is possible to show, how our approach on a case study works. The fol-

lowing section illustrates it with an example taken from the tourism domain and specifically
an online holiday booking system.

81

Chapter 7. Case Studies

1 Introduction

In order to illustrate our approach, let us consider a research scientist, Marc, who wants to book a hotel
room for his summer holiday. To do this, he uses his favorite online holiday booking system. This
booking system manages a set of hotels disseminated over the world. These flietelarmus leisure
facilities and are rated according to the international hotels rating standard rangingy ftamhotelgo

5 star hotels The number of stars depends on various characteristics including the level of comfort and
the leisure facilities fiered by the hotel. The price of a room depends on the category of the hotel and
of the period. The booking system uses an ontology about the tourism domain. This ontology formally
describes the knowledge about the domain.

Marc would like to minimise the budget, he will spend, for his holiday. He prefers living in cheap
hotels and has a preference for standard room facilities. Regarding this situation, the objective is to
satisfy Marc making sure that his preferences are considered. Two preferences are identified here: the
room facilities’standard’ and the cost descriptioitheap’.

2 Case Study 1 - Handling Preferences in Ontology

The instantiation of our model to this case study is described below. First a fragment of the tourism
ontology is given, the expressed preferences as instances of our preference model on chapter 5 are de-
scribed. Notice that, the instances are shown in two ways: OB&RRESS instances and the other as
triples, to show their possible multiple representations.

—

: Hotel asRoom
string | _name

integer price v
) < Room >
integer starRate —
wifi |
Boolean [«Pool Boolean
i v Boolean
Boolean l«tennisCaurt
airconditioner | Boolean

<— class

i — attribute :
i ==> subClassOf(isA) :
i T primitive data type

Figure 7.1: Tourism Ontology Concepts.

2.1 The Domain Ontology: A Vacation Ontology Instantiation

The Tourism Ontology defines the concepts, describing the accommodation and complementary services
usually dfered by hotels. It defines rooms, characterized as single, double or suite. It also defines the

82

2. Case Study 1 - Handling Preferences in Ontology

Table 7.1: Ontology Instantiation with EXPRESS.
#id= name(tv, wifi, tenniscourt, pool, airconditioner, starRate, pricd);
#50= HotelFormulel(tv, airconditioner, 2, 30);
#51= HotelKyriad(tv, wifi, airconditioner, 3, 55);
#52= HotellBIS(tv, wifi, airconditioner, 4, 75);
#53= HotelMercure(tv, wifi, airconditioner, tennisCourt, pool, 5, 95);

concept reservation and additional services such as roonitiéxcile.g., TV, wifi), provision of meals
(e.g., half board), etc. The main concepts of this ontology are given in Higdre 7.1 and Table 7.1 also
Figure[7.2 shows ontology instantiation part.

¢ HotelFormule?’ 0 ‘ HotellBIS®
@ price(#p2) price(#p2)

ame(#p1) o ame(#p1)
starRate(#p starRate(#p3) @
hasRoom(#p5) hasRoom(#p5)
H HP
Crrusm D)5,
‘{i(#PG) airconditioner (#p8) wifi(#p6) airconditioner (#p8)
@ price(#p2) @ price(#p2) [name(#p1
% ae(to) % STrue)
starRate(#p starRate(#p ennisCourt(#p10)
hasRoom(#p5) / 00l (#p9)
p6) airconditioner (#p8) p6) airconditioner (#p8)

Figure 7.2: Tourism Ontology Instantiation.

2.2 Preference Model Instantiation

The preference model definedfdrent type of preferences. In this case study, it is instantiated to in-
terpretstandardand cheappreferences respectively as Numeric and Interval Preference types. Their
correspondin®REFERENCE_URI definitions are defined in Talle .2 and Tdhld 7.4. These two types of
preferences are examined wittffdrent values.

Firstly for cheappreference in the scenario preference identifiers, dependexisteategory, are
formed.

Table 7.2: Preference_URI Examples.
#1=Preference_ URI(99,very_cheap’, cost’);
#2=Preference_URI(100, cheap’, cost’);
#3=Preference_URI(101, ’expensive’’cost’);
#4=Preference_URI(102'very expensive’,cost’)

83

Chapter 7. Case Studies

ThenINTERVAL_PREFERENCE is defined. This preference type helds interval values (with min and
max values). They are formed fBREFERENCE_URI s, covering intervals likecheap, expensive and
very expensivyehat will be used within a pricing example. (Tablg]7.3).

Table 7.3: Interval Preference Example.
—Interval Values.
#11= Interval_Value(20, 45);
#12= Interval_Value(45, 60);
#13= Interval_Value(60, 90);
#17= Interval_Value(90, 100);

—Interval Preference examples [20..45],...,[90..100].
95= Interval_Preference (#11, [#1]);
#100= Interval_Preference (#12, [#2]);
#105= Interval_Preference (#13, [#31);
#110= Interval_Preference (#17, [#4]);

In Table[7.B’s first part, instances examples fdfaedint interval values are presented. In the second,
related interval values arRREFERENCE_URI values presented in Tadle 7.2 place. Instances, that are
numbered as (#100, #105 and #110) are exampleNITERVAL_PREFERENCE types.

For standard preference usage example, that takes place on second case in scenario, star ratings
of hotels, which is used for quality standar@®EFERENCE_URI connected toStarRat¢ category are
formed (Tabld_Z}).

Table 7.4: Preference_URI Examples.
#7=Preference_ URI(50,low’,’starRating’);
#8=Preference_ URI(51,'standard’,'starRating’)
#9=Preference_ URI(52,’middle’,starRating’);
#10=Preference_URI(53,lux’,starRating’);

NUMERIC_PREFERENCE is defined. This preference type is used for description of numerically
expressable preferences. Numeric preference is matche@REHERENCE_URI for different star rating
values which are illustrated in Talile17.5.

Table 7.5: Numeric Preference Examples.

—Numeric Preferences
#26=Numeric_Preference(2, [#7]);
#27=Numeric_Preference(3, [#8]);

#28=Numeric_Preference(4, [#9]);
#29=Numeric_Preference(5, [#10]);

Instances oPREFERENCE_URI’ s with numbers #26, #27, #28 ve #29, which are used widely for
different star ratings, are illustrated as example#UtiERIC_PREFERENCE .

In the next part two preference types, presented above, will be matched with ontology model in the
OntoDB architecture .

84

2. Case Study 1 - Handling Preferences in Ontology

G x>

code

_<:1a,ssn‘_u:aimn_> tarRating’

preference™\RI

#29 >
A/number_VaIue

&

code name

preference_URI

C#2T >
o number_Value

Cgheap’ >
name o
code . cIaSS|flcat|o

preference "\RI

#1005
interval_val
@ max

qlmgQ ﬁgﬂ!nau!-.
ame e .
code classmcatlo

preference_URI

@10

interval_val
@ =

Numeric_Preference Instantiation

Interval_Preference Instantiation

Figure 7.3: Tourism Ontology Instantiation.

2.3 Ontology Preference Link

The set of links between the ontology instancé=s0(#51, #52, #53 and the preference#26, #27, #28,
#29, #95, #100, #105, #110are defined by providing the set of instances of BREFERENCE_LINK
express entity presented in Chapter 5 Section 4. The set of preferences are definedinlTable 7.6.

starRate(#p5)

price(#p2)
#51

)

HotelKyriad

name(#p1)

PREF_Link

hassRoom(#p5)

airconditioner(#p8)
wifi(#p6)

Figure 7.4: Preference Link Instantiation.

Talde 7.6: Preference Link Instantiation.
‘ Examples:

| #201=PREF_Link (#51, [#27,#1001);

Explication. Forexample#201=PREF_Link(#51, (#27,#100))s expressed that tN&JMERIC_PREFERENCE
andINTERVAL_PREFERENCE are attached to thdotelKyriad in Figure[7.4 .

85

Chapter 7. Case Studies

3 Case Study-2: Preference Based Querying in OntoDB

Theontology, described previously, is defined in the OntoDB system by populatindfisedit entities.
Table[Z.T gives the OntoQL fragment that credtesel class.

Table 7.7: Create Ontology.
‘ Domain Ontology:
CREATE Class Hotel(
#id int,
#name String,

#starRate int,
#price int,
#airCond boolean,
#tv boolean,
#wifi boolean,
#pool boolean,
#jakuzi boolean);

CREATE EXTENT OF Hotel (
id, name, starRate, price, airCond, tv,

wifi, pool, jakuzi, tennisCourt ,casino);

In order to define ontology instances, thRSERT INTO OntoQL clause is used. Talle 7.8 gives
the ONTOQL fragment that instantiates into OntoDB the previously defined Hotel class witiothe
Kyriad andHotel Formulel.

Table 7.8: Ontology Instantiation.
Preference Instantiation Example:

INSERT INTO Hotel (id, name, starRate, price,

airCond, tv, wifi, pool, jakuzi, tennisCourt, casino)

VALUES (51, ’'HotelFormulel’, 2, 30, ’true’, ’true’,’false’, ’false’, ’false’, ’'false’, ’false’);
INSERT INTO Hotel (id, name, starRate, price,

airCond, tv, wifi, pool, jakuzi, tennisCourt, casino)

VALUES (51, ’HotelKyriad ’, 3, 55, ’'true’, ’true’, ’true’, ’'false’, ’'false’, ’false’, ’false’);

3.1 Extension of the OntoDB with Preferences

The preference model definesfidirent types of preferences. In our case study, it is instantiated for
numericandinterval preference types to encode respectively st@dardand cheappreferences like
graphically represented on Figure]7.6. For our illustration, on defining the preferences attached to the
star ratingand to theprice attributes are focused.

In Table 7.9 following OntoQL statement describes the creati®RBFERENCE , PREFERENCE_URI
, Numeric_Preference andInterval_Preference entities. And every created entity has its own

86

3. Case Study-2: Preference Based Querying in OntoDB

Table 7.9: Preference Model Instantiation.
CREATE ENTITY (#Preference_URI(

#code INT,

#name STRING

#classification STRING));

INSERT INTO #Preference_URI)(

#code, #name, #classification STRING));

VALUES (100, ’cheap’,’cost’);
CREATE ENTITY #Preference(

#oid INT,

#URI REF (#Preference_URI));

INSERT INTO #Preference) (

#0id, #URI REF (#Preference_URI)));

VALUES (1001, 1319);

CREATE ENTITY #Numeric_Preference(
UNDER #Interpreted_Preference(
#number_value INT,
#URI REF (#Preference_URI)));
INSERT INTO #Numeric_Preference(
#number_value, #URI REF (#Preference_URI))
VALUES (2, 1319);

CREATE ENTITY #Interval_Preference(
UNDER #Interpreted_Preference(

#min_value INT,

#max_value INT,

#URI REF (#Preference_URI)));
INSERT INTO #Interval_Preference(
#min_value, #max_value, #URI REF (#Preference_URI)
VALUES (45, 60, 1319);

oid . FOrPREFERENCE_URI entity thisoid is called a#URI. This attribute is used iNumeric_Preference
andInterval_Preference .

When the preferences and the ontologies are defined, it is possible to link ontology classes to the
preferences that are expressed on these classes. For this purpose, the manipulated ontology class is
augmented by preferences with the use ofAbBER clause (Chapter 6 Section 2.3).

Table 7.10: Preference Link.
UPDATE #class set #Pref_link=ARRAY [’cheap’,’standard’,’full board’]

WHERE where name=’Hotel’;

A preference is attached to an instance of a hotel. For exanmggreference cheap is attached to the
Kyriad hotel using the followin@PDATE OntoQL clause. Here names are put for readability purposes,
but in practice identifiers are used.

87

Chapter 7. Case Studies

Table 7.11: Update Class Hotel ADD Preference.
name price | star PREFERENCE

Rating | (cost,quality,promotion)
Kyriad | 55 3 [cheap, standard, full board]

The database can be queried, when the preferences to the gntolugepts are linked.

3.2 Querying OntoDB with Preferences

Once the three previous steps are realised, it becomes possible to query the implemented model. Two

examples of queries, with an asserted quality on the data with the BREBERRING clause, are given
below.

SELECT name, starRating, preference
FROM Hotel
PREFERRING 'standard';

SELECT p.#name, pref.#number value
FROM #property p,

unnest (p. #preference) as pref
where pref.#label='standard';

SELECT name, starRating, preference
FROM Hotel
WHERE starRating < 3;

name starRating preference

Hotel Kyriad 3 standard

Figure 7.5: Query for Numeric Preference.

SELECT name, price, preference
FROM Hotel
PREFERRING 'cheap';

SELECT p.#name,
pref.#min value,pref.#max value
FROM #property p,
unnest (p.#preference) as pref
where pref.#label='cheap';

SELECT name, price, preference
FROM Hotel
WHERE price BETWEEN 45 and 60;

name price preference

Hotel Kyriad 55 cheap

Figure 7.6: Query for Interval Preference.

Notice that all the authorised subclauses of $EEECT OntoQL clause can be used in building the
query. The last clause is ttRREFERRING clause used for rewriting the queries into standard OntoQL
queries. This extension preserves upward compatibility with the classitalCT clause. As in the
previous example, the query has to be rewritten according to type of preference HREFERRING

88

4. Conclusion

clause. In this case, the preference cheap has been defined rasraal ipreference attached to the
property price. It takes its values in the interval of [45, 60] which can be interpreted by the clause
BETWEEN. Thus, the query is automatically rewritten as follows. As standard is defined as a numeric
preference attached to the propestyarRate having the value 3, when thBREFERRING clause is
interpreted, the query is automatically rewritten.

4 Conclusion

Scenerio established in this study presents examples derived from Tourism Domain. As described in
the Case Study-1, meta-models themselves do not directly contribute to the development of information
systems, but are the starting point for developing methodically well-founded approaches for information

systems. In this case Preference Meta-model design principles are presented.

The implications of an attempt to use this meta-model on OntoDB, which are the development of a
specification language (symbols for the model constructs of the meta model) and guidelines on their use,
are demonstrated in Case Study-2.

In most existing systems, constraints and preferences are implicit in selections made by the customer.
Most of the search engines support only the specification of hard constraints, i.e. solutions are only
shown if all constraints are matched. If a customer specifies a lot of search preferences, existing online
booking engines will often return no solution. This is called the empty-refiidtte Often the entire
search process has to be repeated over and over again in order to manually find a compromise, causing a
very tedious and frustrating search.

In our solution for Case Study-2 preferences are defined by the Preference Meta-model, which takes
place as a generic side model in the OntoDB architecture, explicitly. For querying the domain knowledge
a PREFERRING operator is implemented. Using this operator a novel preference query is executed (as
in Figure 6.4) and then, with rewriting this query in SQL and SPARQL, the interpretation procedures of
these languages are examined.

Finally, to increase users’ precision in queriBREFERRING operator is used with preference iden-
tifiers together.

89

Conclusion and Future Works

In this thesis in order to represent user’s preferences, we proposed a modular, sharable and generic
model of preferences. We have described how the OntoDB ontology based database framework has been
extended in order to handle preferences at the semantic level instead of handling them on the logical level

of the data. Our model is composed of several types of preferences usually addressed in the literature in

a separate way. These preferences are independent of any logical model of data.

Our contributions are twofold. Firstly, we showed, how preferences model can be attached to an
ontology and be manipulated on the meta-model level. Then, we generated semantic queries that handle
preferences expressed at the semantic level. We believe that the possibility to access the meta-model level
well adapted to define model extensions that preserve upward compatibility with the extended model.

Preference Meta Model

Handling preferences has been addressed in various information systems research areas. By analysing
the literature, we note that the notion of preferences as considered in the databases domain is introduced
mainly at the logical level. Preferences are defined on top of the manipulated models themselves and
consequently, they depend on the model they extend. In the Semantic Web domain, even if an ontology
is used to define preferences, the approaches are static and not enough flexible. It is generic to handle
different preference models and are hardly adaptable to other contexts. This is because these approaches
handle mostly preferences at ontology’s instance level. For the storage issue, any of the approaches
provide a real storage possibility of preferences model. Some of them hard code the models in the appli-
cation (e.g. (Siberski et al, 2006)). None of the previously mentioned approaieesimultaneously

the possibility to define preferences at the semantic level to allow their persistence and to provide a
dedicated language for querying with preferences facilities.

To overcome these drawbacks, we propose an approach of preferences management by introducing
a data model, which is abstracted from the concerned database logical model. Our approach consists in
associating any preference model to any ontology resource model that allows to manipulate the model of
the ontology through its meta-model. The ontology’s instances are taken into account in the preference
model by referring to their corresponding ontology’s entities. Preferences can be expressed on property
or class instances.

91

Conclusion and Future Works

In this work three distinct elements, detailed below, compbsenbhodel: i) the ontology model
resource; ii) the preference model; iii) and finally the link between these 2 resources.

Firstly, to summarize our ontology-based data representation, ontology model resource is created.
The main goal of ontologies is the representation of the semantic of objects of a given domain. This
goal is reached by assigning objects to ontological classes and by describing them using ontological
properties.

Secondly, we compiled fierent definition of the preferences found in the literature. Each preference
is associated with a set of attributes that give a characterisation for this preference. Notice that the
PPREFERENCE_URI entity is separately defined and could be interpreted from a more general knowledge
model. Our model introduced specific resources allowing to define preferences. It was created in a
hierarchical manner that representffatient preference types together and it is possible to extend this
model. Therefore, new preference types can be added to the model and integration with other present
models is possible, like fuzzy approaches or context based modeling approaches.

Finally, Preference Link is established between Domain Ontologies and Preference Model. When all
types of preferences in our preferences model have been defined, we need to link them to the ontological
model. To do this, we use the ontology preference relationship. This relationship allows to attache a
particular preference to a given ontological entity, being either a class or a property. It represents both the
data and the domain knowledge (described in an ontology) independently of any implementation model.
Moreover, it is modelled independently from any specific model of ontology (e.g. OWL, F-Logic).

The most important contribution of this research thesis is to establish a Meta-Model, that is indepen-
dent from the Domain Ontologies. Also attachment of Domain Ontologies’ values, such as Instance and
Data Values, to preference types was accomplished.

OntoDB and Preference Meta-Model

Our approach is implemented by extending the OntoDB (OBDB) system. OntoDB’s architecture has
strong OBDB similarities with the architecture of MOF (Meta Object Facility) metaflata [Kobryn| 1999].
This architecture consists of four layers. Layer model M1 MOF architecture is OntoDB’s conceptual
model, subset of the ontology. The meta-model layer corresponds to the model M2 ontology, the layer
meta-meta-model M3 (MOF model) is the meta-model of language definition of the ontology. It is
reflexive. This architecture allows us to integrate automaticglly [L.Bellatreche and Dehainsala, 2004],
to migrate and exchange bodies not necessarily defined in the ontology model. It allows us to use the
results of work performed under the MOF.

OntoDB uses its own data model for its ontologies. Such ontologies are represented as sets of in-
stances of an object schema (often called meta-model) expressed in a particular modelling formalism
(XML-schema for OIL et OWL, EXPRESS for PLIB). As a result, this representation provides an ex-
change format for these ontologies (an XML document for OWL, a physical file of EXPRESS instances
for PLIB). In OntoDB, the ontology schema is generated automatically from EXPRESS model (for OWL
for instance, the OWL model only needs to be expressed in EXPRESS). The multi-instantiation and prop-
erty subsumption (subproperty) specific features of OWL are included. It is quite unique and able to keep
track of almost all the sophisticated features of OWL, giving strong inference abilities. In such context,

92

The OntoDB model,

uses a relational database on which the ontologies and their instances are stored.

e supports automatic integration and management of heterogeneous populations whose data, schemas
and ontologies are loaded dynamically;

e offers data access, at the ontology level, whatever the type of the used DBMS (relational, object-
relational or object oriented) is and

e supports evolutions of the used ontologies (adding new classes, new properties, etc.) and their
population schemas.

Other contribution of this thesis is the integration of the Preference Model, that was established as
an explicit side model to OntoDB. The meta-schema part of the OntoDB Meta-model was extended by
adding Pref_Link attribute to the Property Table. Thus, layer M2 on the OntoDB architecture is extended
with preferences by using EXPRESS language skills. Technically, this extension is possible only if the
meta-model allows to describe the ontology model that can be manipulated.

Preference Based Querying

All the described OBDB approaches lack tfiev primitives that are able to represent non-functional
aspects related to the ontology models such as quality of service, preferences or security. Indeed, most
of the well known ontology models including OWL and PLIB do not provide built-in constructors to
represent these notions. To overcome the problem of handling non-functional characteristics, specific
attributes (e.g., note, remark) are introduced or particular properties are defined. The advantage of this
approach is the possibility to adapt non-functional descriptions to any ontology model keeping its def-
inition unchanged and preserving upward compatibility. Technically, this extension is possible only if
the meta-model, that describe the model of the ontology can be manipulated. Indeed, such an extension
requires being able to attach any element of the model of the ontology to the model of the non-functional
elements. However, expressing the personal queries by the non-functional properties (preference quali-
fiers), which are daily used, is an issue, that has not yet been addressed in research area of OBDB.

In this thesis the extension of the ontology model with the Preference Model permits to attach various
types of preferences to the entities of the ontology. We have been able to describe semantic queries
that handle preferences expressed in the semantic level, and thus abstracting from the logical model.
The possibility to access the meta-model level is well adapted for defining some model extensions that
preserve upward compatibility with the extended model.

Last contribution is the addition of the ability of the preference-based query to OntoQL language.
Personal queries on OntoDB architecture were evaluated at semantic level with use of established Pref-
erence Model.

93

Conclusion and Future Works

PREFERRING OPERATOR with OntoQL

In order to handle the preferences in the OntoQL queries, a preference interpreter has been developed
on top of the OntoQL engine. Similar to the SPARQL language, that is used in Semantic Web area and
SQL is used in database applications, preferences were expressed as user’s limitation by qualifiers based
on Preference Model in OntoQL query language. Thus, to query preferences for OntoDB architecture,
PREFERRING operator was defined as a new operator to OntoQL query language. This is materialized
by adding @REFERRING subclause to OntoQEELECT clause.

Query examples were implemented on twfietient chosen preference type. However, other exam-
ples directed to Context and Fuzzy preference types were not demonstrated in the context of this research
thesis.

As demonstrated in the database research area, established Preference Operator should be developed
in a manner that comprises definitigiesms of priority and superiority. But, an application in this
direction was not presented in the context of this research thesis.

Established sample applications disconsider certain overlaps such as querying of distinct preference
types together. Improvement of Preference Model is required to resolve overlaps, which were disconsid-
ered in this research thesis.

Future Work

This work has opened several new directions and perspectives. We propose a model to exploit user
preferences on domain knowledge. We plan to study how our preference model may express preference
dependencies. Another challenging research direction is towards user models that combine multiple user
aspects, e.g. preferences, abilities, demographic data etc. Models of increased expressive power such
as those outlined above require advanced query personalization mechanisms and logic. For example,
combining and reconciling information stored in diverse profiles, and profile hierarchies are challenging
topics that need to be addressed. Finally, we are very interested in methods for the automatic construction
of user profiles based on the preference model described in this work. Existing methods have mainly
focused on construction of simple keyword profiles.

From the Data Warehousing perspective a possible improvement is to extend the Preference Model
in order to take aggregation into account. This will allow users expressing their preferences directly at
the query aggregation level too (Rizzi, 2007). From a performance point of view, the evaluation and
optimisation of preference queries (e.g. cost based optimisation) and the complexity implications of
introducing preferences into queries would be beneficial.

Also it is wanted to develop Pareto preference to show relative importance of personal preference cri-
teria and prioritization queries to arrange preferences according to their priorities. Finally, top-k queries
over uncertain data in the quantitative framework can also be a study.

94

Résumé

Résumé. La prise en compte des préférences utilisateurs a été proposée comme une solu-
tion au probléme de l'accesfieace a la grande quantité de données manipulées par les ap-
plications. Cependant, les approches existantes définissent habituellement les préférences
pour un domaine particulier. Ainsi, il estficile de les partager et de les réutiliser dans
d’autres contextes. Dans cet thése, nous proposons un modele de préférences générique
et partageable. Le modéle integre plusieurs types de préférences proposés dans la littéra-
ture mais traités de maniére séparée. Notre approche, qui définit les préférences au niveau
des ontologies qui décrivent la sémantique des données manipuféesiromécanisme de
stockage du modeéle de préférences et un langage pour I'interrogation avec les préférences.
Elle est implémentée en utilisant une Base de Données a Base Ontologique (BDBO), éten-
due pour prendre en compte les préférences.

95

INTRODUCTION

Le développement et I'adoption rapide d’Internet et des nouvelles technologies de I'information rendent
disponible une grande quantité de données gérées a trafféreilis systemes d’information. En con-
séquence, lors d'une activité de recherche, les utilisateurs sont souvent submergés par les résultats fournis
en réponse a leurs requétes. De plus, parce que la plupart des systémes d’information classiques ne pren-
nent pas en compte les caractéristiques spécifiques de chaque utilisateur, les résultats d'une requéte sont
les mémes quel que soit 'utilisateur qui la soumet. Bien que cette approche ait montré ses limites dans
de nombreuses applications, la plupart des systemes d’information ne prennent pas en compte dans leur
conception la diversité des besoins des utilisateurs et la diversité de leurs préférences.

Les techniques de personnalisation sont une approche alternative pour résoudre ce probléme et rendre
aisé l'acces ala grande quantité de données traitées par les applications. En particulier, la prise en compte
des préférences utilisateurs constitue un des fondements de cette approche. Les préférences expriment
les souhaits des utilisateurs qui veulent trouver dans la réalité ce qui correspond le mieux a leur souhait.

Toutefois, modéliser des préférences est un problefiigild car elles sont par nature complexes,
multiples, hétérogenes, changeantes voire contradictoires. De plus, ellesfBoiesia exploiter et
doivent I'étre selon le contexte dans lequel elles ont été définies. La modélisation des préférences et leur
prise en compte pour la personnalisation de I'information ont été considérées dans plusieurs travaux de
recherche dans les domaines des Bases de Données (BD), Entrepdts de Données (ED), du Web Séman-
tiqgue (WS), de la Recherche d’Information (RI) et de I'Interface Homme Machine (IHM). Cependant,
jusqu’a présent, le traitement des préférences est fortement couplé aux applications soit dans le code de
I'application selon un modéle ad-hoc, soit au niveau de la base de données en fonction de son modeéle
logique, soit au niveau de I'lHM de l'application.

Ceci rend dficile le partage et la réutilisation de préférences entre applications. Pour permettre le
partage et la réutilisation des préférences entre applications, notre approche consiste a les traiter au niveau
des ontologies de domaine qui décrivent le ou les domaines abordés par ces applications. L'utilisation
d’ontologies pour le développement d’applications a pour but d’expliciter la sémantique des données
traitées par les applications afin notamment de faciliter I'interopérabilité. L'approche que nous proposons
repose sur l'utilisation de bases de données a base ontologique (BDBO) qui permettent de gérer dans la
méme infrastructure aussi bien les données que les ontologies qui en explicitent la sémantique. Nous
proposons d’étendre les BDBO pour pouvoir prendre en compte des préférences utilisateurs.

Méme si I'idée du traitement des préférences au niveau sémantique n’est pas nouvelle, en particulier
dans le contexte du WS, a notre connaissance aucune approche ne répond simultanément aux trois be-
soins suivants qui permettent une prise en compte compléte des préférences : - définir un modéle précis
pour représenter les préférences utilisateurs. Ce modeéle doit permettre de reprééraatsdiypes de
préférences et de prendre en compte le contexte dans lequel elles peuvent étre définies; - proposer une
solution de persistance pour stocker les préférences définies selon le modéle précédent. Cette solution
de persistance doit intégrer le fait que le traitement des préférences est intéressant quand on gere un gros
volume de données; - exploiter les préférences pour personnaliser I'accés aux données de I'application
en utilisant un langage d’interrogation dédié.

L'approche présentée dans cet thése répond a ces trois problémes de la maniére suivante : 1) propo-

97

Résumé

sition d'un modéle de préférences basé principalement suypes tde préférences proposés dans les
approches issues des communautés BD et WS. Ce modeéle est formellement spécifié avec le langage EX-
PRESS|[IS010303.02, 1994] de maniére a ce que sa définition soit la plus précise possible; 2) extension
de la BDBO OntoDB[[Dehainsala et al., 2007b][, [Dehainsala et al., 2007a] pour permettre de représenter
les préférences définies. Nous avons choisi cette BDBO carfé#edes facilités pour étendre le modele
d’ontologies utilisé (e.g. OWL [Dean and Schreiber, 2004], PLIB [Pierra, 2003a]). Ceci nous a permis
de lier le modele de préférences au modéle d’'ontologies utilisé; 3) extension du langage d’exploitation
associé a OntoDB, c’est a dire OntoQL et SPARQL pour prendre en compte les préférences utilisateur.
Ces préférences sont simplement spécifiées par un nom. Elles sont ensuite interprétées selon le type de
préférence, ce qui permet de réécrire la requéte de maniére a ne retourner que les résultats pertinents
pour l'utilisateur.

ETAT DE L’ART

Dans cette section, nous faisons une revue des approches de gestion des préférences utilisateurs telles
gu’abordées dans les domaines des BD, du WS et des ED qui sont les plus liés a nos domaines d’intéréts.
Notre but est d’étudier ces approches afin de proposer un modele de préférences le plus générique possi-
ble.

Préférences et Bases de Données

La prise en compte des préférences a été abordée dans plusieurs travaux de recherche dans le domaine
des Bases de Données ([Kiesling and Kostler, 2000], [Kiesling,|2002],[Chomicki] 2003], [Agrawal and
Wimmers, 2000],|[Koutr|ka and loannidis, 2004, [Viappiani et al., 2006]). Les pr'éférences dans ce
contexte sont définies au niveau du modéle logique, en particulier sur les valeurs des colonnes des tables.
Selon le type de métrique, deux maniéres d’exprimer les préférences ont été proposées : I'approche
qualitative et 'approche quantitative. Les approches qualitatives permettent a I'utilisateur de définir des
préférences (relatives) entre les tuples de la Hase [Kiesling,| 2002[,[Chomicki, 2003]. Les préférences
sont définies sur le contenu et a I'aide d’'une relation binaire entre les tuples [ChomicKi, 2003]. Si nous
considérons deux tuples t1 et t2 par exemple; t2 signifie que I'utilisateur préfere le tuple t1 au tuple

t2. Dans ce contexte, Kiel3ling et Kostler proposent une approche qualitative (constructor approach) dans
laquelle les préférences sont exprimées par un ordre partiel strict et sont définies de maniere formelle a
I'aide des formules logiques du premier ordre [Kiesling, 2002]. Les constructeurs définis sont intégrés au
langage relationnel Preference SQL [Kiesling, 2002]. Par exemple, le constructeur Highest(c) exprime
le fait que pour 2 tuples t1 et t2, on préfére le tuple ayant la valeur la plus élevée pour la colonne c.
Cette approche est connue sous le nom de modéle de requéte BMO [Kiesling, 2002]. Elle est similaire
a celle mise en uvre par Chomicki a I'aide de I'opérateur Winriow [Chomicki,|2003]. Notons également
que Skyline, introduit par Borzsonyi et dl. [Borzsonyi et al., 2001] est une variante qui étend I'opérateur
Winnow.

Les approches quantitatives permettent de définir des fonctions de score afin de calculer un score
numérique, encore appelé préférence absolue, pour chaque tuple. Les résultats sont ordonnés selon
ce score calculé. Dans ce contexte, Agrawal et Wimmers définissent les préférences en introduisant une

98

valeur préférée pour chaque colonne des tables de la base dddAgrawal and Wimmers, 2000]. Par
exemple, si nous considérons la table Film définie comme Filmi(titre, prixMin, prixMax), la préférence

<*, 20, 40> indique que les films préférés sont ceux qui ont un prix de vente compris entre 20 et 40.
La préférence ainsi définie est par la suite utilisée pour calculer un score entre 0 et 1 pour chaque film.
Koutrika et loannidis introduisent quant a eux la notion de préférence atomique en spécifiant un ensemble
de couples<condition, score ou condition est une condition sur les valeurs de colonnes et score est le
degré d’intérét entre 0 et 1 de cette condition [Koutrika and loannidis,| 2004]. Les préférences atomiques
peuvent étre combinées et utilisées pour produire des préférences implicites. Par exemple, en considérant
la méme table Film, 'expressionFilm.prixMax =40, 0.8> indique que le degré d’intérét pour les films

ayant un prix maximal de 40 est de 0.8. L'opérateur Top(k) a été introduit dans ce contexte [Koutrika
and loannidis, 20d4]. '

Préférences et Web Sémantique

La notion de préférence est également cruciale dans le domaine du Web SémantiguentSimodeles
ont été proposés pour représentdfédents types de préférences [Siberski et al., 2006], [P. Gursky and
Vanekova, 2008]/ [Toninelli et al., 2008].

Les travaux de Siberski et al. [Siberski et al., 2006] définissent une extension au langage SPARQL
[Toninelli et al., 2008] permettant d’exprimer des préférences. Cette extension consiste en I'ajout au
langage SPARQL de la clause PREFERRING. Deux types de préférences peuvent étre définis. Les
préférences booléennes sont exprimées a l'aide d'une condition booléenne. Les résultats qui satisfont
cette condition sont préférés a ceux ne la respectant pas. Par exemple, la conditicrexattignt
indique que I'on préfére les films ayant une excellente évaluation. Les préférences de score sont définies
par une expression. Les résultats pour lesquels I'évaluation de I'expression conduit a la plus forte valeur
sont préférés. Par exemple, I'expression LOWEST price indique que I'on préféere les films les moins
chers.

Gursky et al. [[P. Gursky and Vanekova, 2008] proposent un modéle de préférences locales basé sur
les logiques floues. Des préférences locales sont d’abord définies a partir de propriétés. Elles sont ensuite
composées pour former des préférences globales. Par exemple, la préférence globale good Movie(x) peut
étre définie par la composition des deux préférences locales good Rating(x) et recentMovie(x). Toninelli
et al. [Toninelli et al., 2008] introduisent un modele de préférences basé sur des ontologies mais qui cette
fois-ci s'appuie sur les priorités. Par exemple, pour trouver les hétels de grand standing, la qualité du
service doit étre une priorité.

Afin de personnaliser la recherche sur internet, Sieg et al. [Sieg et all, 2004] basent leur approche
également sur une ontologie. lls utilisent le contexte de I'utilisateur et re-ordonnent les résultats re-
tournés pour chaque requéte donnée. Ce contexte est représenté comme une instance d’'une ontologie
de domaine appelée ontologie de référence. Les concepts de cette ontologie sont annotés par des scores
d’intéréts dérivés et mis-a-jour implicitement a partir du suivi du comportement de I'utilisateur. Cette
représentation est appelée profil utilisateur ontologique.

99

Résumé

Préférences et Entrepots de Données

Il'y a peu de travauxfiectués dans le domaine des entrepdts de données comparés aux précédents. Bel-
latreche et al.[[Bellatreche et al., 2005] et Mouloudi et[al. [Mouloudi et al.,|2006] ont traité le probléme

de la personnalisation pour les requétes OLAP. lls ont proposé pour cela une plateforme dans laquelle la
possibilité de spécifier ses préférences et ses contraintes de visualisationfichetie des résultats est
donnée al'utilisateur. Ses préférences peuvent étre par exemple, la présence d’'une dimension particuliére
des données d’'un entrep6t. Les contraintes de visualisation représentent la taille du dispositif (PDA, télé-
phone portable, etc.) utilisé pour ffchage du résultat d’une requéte. Les auteurs présentent I'impact
des préférences sur la conception physique d’'un entrepdt (partitionnement des données, sélection des
index et des vues matérialisées). Dans cette approche, aucun opérateur spécifique n’est proposé pour la
prise en compte des préférences lors de l'interrogation. Notons également dans le cadre des Entrep0ts
de Données le travail de Ravat et al. [Ravat et al., 2007]. lls proposent une approche de personnalisation
d’'un systéme décisionnel reposant sur une modélisation multidimensionnelle des données qui consiste a
associer des poids auxfidirents composants d’'un schéma multidimensionnel. lls utilisent pour cela un
langage de type ECA (Evénement-Condition-Action).

Analyse de ces Approches

Nous avons résumé dans le tableau 1 I&&dintes approches présentées ci-dessus. Nous avons utilisé

4 critéres pertinents pour évaluer ces approches. Le premier critére indique dans quel(s) domaine(s)
(BD, WS ou ED) I'approche considérée est applicable. Le deuxiéme critére du tableau indique quel
type d'approche est suivi (qualitative, quantitative, utilisation d’'une ontologie, etc.). Le troisieme critére
caractérise les fliérents modéles proposés selon le niveau sur lequel le modéle de préférences est défini
(physique, logique, sémantique). Le quatrieme critere concerne I'existence d’'un opérateur spécifique
permettant la prise en compte des préférences utilisateurs lors de I'interrogation.

En analysant le tableau 1, nous notons que la notion de préférence, telle que prise en compte dans
le domaine des BD, est introduite principalement au niveau logique des données. Par conséquent, les
préférences ne peuvent étre utilisées que dans le contexte particulier ou elles ont été définies. Elles
dépendent de la maniére dont les données sont encodées ou implémentées dans le modeéle logique. Dans
le domaine du WS, méme si une ontologie est utilisée pour définir les préférences, ces approches sont
statiques et pas fiisamment flexibles et génériques pour prendre en compte des modeles de préférence
différents (e.g.| [P. Gursky and Vanekova, 2008]). Par ailleurs, elles s@intlelinent adaptables dans
d’autres contextes. Ces irfiBances sont souvent causées par le fait que ces approches définissent les
préférences uniqguement au niveau des concepts et instances de I'ontologie. Du point de vue du stockage,
aucune des approches ne fournit un réel mécanisme de stockage du modeéle de préférendégnelles o
plutdt la possibilité de stocker les préférences utilisateurs. Certaines codent le modéle directement dans
I'application (e.g.[[Siberski et al., 2006]).

De maniére globale, aucune des approches proposé@®sionultanément i) la possibilité de définir
des préférences au niveau sémantique; ii) un mécanisme de persistance du modéle de préférences; iii) un
langage dédié pour une interrogation avec la prise en compte des préférences.

Pour répondre a ces infisances, notre approche suggére d'abstraire la représentation logique des

100

Table 1: Récapitulatif des diférentes approches de gestion des préférences

Auteur Domaine | Approche Niveau du Modele | Opérateur de Requéte
(BD/WS/ED) de Préference

Kiebling BD Qualitative Logique Preference

(2002-2003) SQL

Chomicki BD Qualitative Logique Winnow

(2003)

Agrawal-Wimmers | BD Quantitative Logique Non

(2000)

Koutrica-lonnidis BD Quantitative Logique Non

(2006)

Siberski et al. WS Boolean-Scoring Preferences Sémantique SPARQL Clause

(2006) Preferring

Sieg et al. WS Profil Utilisateur Ontologique| Sémantique Non

(2007)

Gursky et al. WS Probabiliste basé ontologies | Sémantique Non

(2008)

Tonielli et al. WS MiddleWare Meta Modéle Semantic Non

(2008)

Bellatreche et al. ED Qualitative Logique Non

(2005)

Mouloudi et al.

(2006)

données en liant le modéle de préférence que nous proposonsritalegies. Elle repose sur I'utilisation
d’'une base de données a base ontologique (BDBO) étendue afin de prendre en compte les préférences.

Bases de Données a Base Ontologique : ’approche OntoDB

Les Bases de Données a Base Ontologique (BDBO) permettent de stocker conjointement les ontologies
et les données qu’'elles décrivent. Ces systemes de persistance bénéficient des avantages des Bases de
Données (par exemple, la scalabilité ou la gestion de la concurrence). OntoDB [Dehainsala et al., 2007b],
[Dehainsala et al., 200[7c] est une approche particuliére qui propose d’introduire un méta-schéma dans
I'architecture des BDBO afin de gérer a l'aide d’'un méta-model réflexif le modéle de I'ontologie qui
décrit la sémantique des données. Les 4 parties de I'architecture OntoDB sont décrites comme suit. La
partie ontologie (4) permet de représenter completement les ontologies de domaines. La partie méta-
schéma (2) permet de représenter, au sein d’'un modele réflexif, a la fois le modele d’ontologie utilisé

et le méta-schéma lui-méme. La partie méta-base (1) permet de représenter le schéma de représentation
des objets du domaine couvert par les ontologies. Enfin la partie données (3) représente les objets du
domaine; ceux ci sont décrits en termes d’une classe d’appartenance et d'un ensemble de valeurs de pro-
priétés applicables a cette classe. Pour le schéma de I'ontologie, le méta-schéma joue le méme rble que
celui du catalogue systéme dans les Bases de Données classiquéet,Bm méta-schéma supporte: i)

un acces générique a l'ontologie; ii) I'évolution du modéle d’'ontologie utilisée; le stockag&éiedis

101

Résumé

PREFERENCE pref_attributes L[1 % PREFERENCE_URI

‘ code
name
g L classsification

CONTEXT_PREFERENCE_ | Preference (ABS)PREFERENCE._
DEFINITION (INV) contextual DEFINITION
has_context UNINTERPRETED_PREFERENCE INTERPRETED_PREFERENCE
pref_values L[1:?] min val
\ -value Oy INTERVAL_PREFERENCE
; max_value O— O
PROPERTY_OR CLASS |
T e number_value O—— NUMERIC_PREFERENCE (O
4
pref_values L[1:7 BOOLEAN_PREFERENCE (O——|
prob_value O—
pref_values L[1:?] FUZZY_PREFERENCE O—
Oo—

pref_values L[1:?] ENUMERATED_PREFERENCE

Figure 1: Vue d’ensemble du modele de préférence

mockles d’ontologies.

Un langage d'interrogation appelé OntoQL [Jean, 2007, [Jean et al., 2005b] est associé a OntoDB. ||
permet de manipuler les trois niveaux de I'architecture OntoDB: le méta-maodéle (e.g., Class et Property),
le modéle (e.g., Movie et Actor) et les instances (e.g., Scarface et Leonardo DiCaprio).

MODELE DE PREFERENCES BASE SUR UNE BDBO

Nous présentons ici les principaux composants du modéle et montrons comment il peut étre intégré a
OntoDB afin d’exprimer des préférences sur n’'importe quel ensemble de données décrit sémantiquement
par une ontologie.

Vue d’ensemble du modele de préférences

Notre modéle de préférences est composé de trois éléments distincts, détaillés dans les sections suivantes:
i) les ressources du modeéle d’'ontologies; ii) leSéients types de préférence du modéle de préférences;

iii) et enfin le lien entre le modéle de préférences et le modéle d’'ontologies. La Figure 1 présente ces
différents éléments. Dans la section suivante, nous détaillondliésedis éléments de notre modele de
préférences.

102

Les ressources du modéle d’ontologies

Notre approche consiste a associer un modele de préférences a n'importe quel modele d’ontologies.

Si nous considérons la figure 1 qui présente le modele de préférences, I'entité Preference du modéle est
associée al'entité Property_Or_Class du modéle d’'ontologies. Les instances de I'ontologie sont prises en
compte dans le modéle de préférences en se référant a leurs entités correspondantes. Les préférences sont
exprimées sur les instances de propriétés ou de classes. Lentité Property_Or_Class_Instance représente
une instance de propriété ou une instance de classe de I'ontologie considérée.

Détail des éléments du modéle de préférences

La définition du modéle de préférences integf&édéents modeéles habituellement traités principalement

dans les communautés BD et WS. Nous avons séparé les préférences qui sont génériques de celles qui
dépendent du contexte ou elles ont été définies. Les préférences peuvent étre interprétables ou non. Nous
désignons par préférences non interprétables, les préférences qui sont énumérées par un utilisateur ou un
concepteur donné sans aucune fonction d’interprétation. Chaque préférence est associée a un ensemble
d’attributs qui caractérisent cette préférence.

Préférences interprétées

Les préférences interprétées (Interpreted_Preference) sont des préférences associées a une procédure
d’évaluation ou d'interprétation. Par exemple, la préférence recent(x) peut étre interprétée comme étant
releaseYear(x)> 2006. Lidée étant de définir des préférences associées aux types de données qui ont
une relation d’ordre.

Les préférences énumérées (Enumerated_Preference): elles correspondent a’énumération
d’'instances d’entités d’une ontologie qui sont préférées. Par exemple, une préférence pour les acteurs de
films d’actions (actionActor) peut étre définie comme étant (Actor(SylvesterStalone), Actor(WesleySnipes)).
Cet ensemble exprime le fait que la préférence actionActor correspond a deux instances de film.

Les préférences numériques (Numeric_Preference): elles correspondent a des préférences

qui sont interprétées par des valeurs numériques. Par exemple, la qualité d'un film peut étre définie par
la moyenne des évaluations qui lui sont associé (sur une échelle de 0 a 5). La relation d’ordre est celle
définie sur les numériques.

Les préférences booléennes (Boolean_Preference): elles correspondent a des préférences
associées a une liste de propriétés a valeurs booléennes dont on préfére que la valeur soit a vrai. Par
exemple, on peut définir une préférence sur des films ayant obtenu un oscar.

Les préférences de type intervalle (Interval_Preference): elles correspondent ades préférences
exprimées par une valeur minimale et maximale. Par exemple, les préférences OldMovie et RecentMovie
peuvent étre associées a la propriété releaseYear. Dans ce cas, la préférence OldMovie définit les dates
de réalisation comprises dans lintervalle [1970,2000] tandis que RecentMovie définit une date de réali-

103

Résumé

sation comprise dans l'intervalle [2001,2009].

Les préférences probabilistes (Fuzzy_Preference): ellespermettent d’exprimer des préférences
a l'aide des valeurs de probabilité. Par exemple une préférence probabiliste peut étre utilisée pour ex-
primer que la probabilité de préférer les films ayant une moyenne d’évaluation de 2, 3 ou 4 est respec-
tivement 0.1, 0.2 et 0.7. Ceci permet de traiter des données ontologiques avec des approches issues des
logiques floues.

Les préférences non interprétées

Les préférences non interprétées (Uninterpreted_Preference) correspondent a un ensemble d’instances
de classes ou de propriétés d’'une ontologie qui sont considérées comme préférées. Il n'y a pas de
rationnel pour choisir ces instances. Par exemple si nous considérons le domaine du cinéma, Leonardo
DiCaprio (instance d’'acteur), Steven Spielberg (instance de réalisateur), romantique (instance de genre)
représentent une préférence qu'un utilisateur peut exprimer dans le domaine du cinéma.

Les préférences dépendantes du contexte

Parfois la définition des préférences peut dépendre du contexte dans lequel elles sont interprétées. Par
exemple, si nous considérons la réglementation liée a la classification des films, une préférence exprimée
sur des films accessibles aux mineures peut varier d’'un pays a un autre selon I'age légal de la majorité.
Dans ce cas, l'interprétation de la préférence dépend de la valeur d'une autre propriété (le pays de local-
isation dans notre cas).

Association du modéle d’ontologies aux préférences

Le dernier élément de notre modéle consiste en un lien entre le modele de préférences et le modéle
d’ontologies. |l s’agit alors d’établir le lien entre les classes et les propriétés du modele d’ontologies

et les préférences du modele de préférences. Ces classes et propriétés sont modélisées a travers une
entité nommeée Property_Or_Class. Le lien est réalisé par une entité nommée PREF_Link (voir figure
1). Aprés la définition des fierents éléments de notre modele, la prochaine étape consiste a le stocker
afin de faciliter son utilisation et son partage. Nous avons choisi comme modéle de stockage la BDBO
OntoDB décrit dans la section 2.5. OntoDB a 'avantage de représenter le modéle d’'ontologies utilisé.
Cependant, comme les autres BDBO, OntoDB ne permet pas de représenter les préférences que notre
modéle propose. Pour répondre a ce besoin, nous l'avons alors étendu. Notre extension de OntoDB a
ainsi consisté a représenter notre modéle de préférences ainsi que le lien avec le modéle d’ontologies.

104

PRISE EN COMPTE DES PREFERENCES: EXTENSION DE LA BDBO
OntoDB

Pour la prise en compte des préférences, nous devons créer dans OntoDB les entités nécessaires pour la
gestion de notre modéle de préférences. Nous utilisons pour cela le langage OntoQL associé a OntoDB.
Nous détaillons ci-dessous legtérentes étapes.

Création des entités du modele

Nous présentons tout d'abord I'exemple de création dans le systéme des deux entités PREFERENCE et
Preference_URI a I'aide de la clause CREATE de OntoQL. Ensuite pour l'illlustration de I'approche faite
par la suite, nous prenons I'exemple des préférences Numeric_Preference et Interval_Preference qui sont
créées directement sous I'entité PREFERENCE pour simplifier. Le symbole " # " signifie que ces entités
sont créées au niveau méta-modele de OntoDB.

CREATE ENTITY #Preference_URI(
#code int, #name String, #classification String)

CREATE ENTITY #Preference(#id_pref int)

CREATE ENTITY #Numeric_Preference(
UNDER #Interpreted_Preference(
#number_value INT,
#REF (#Preference_URI)));

CREATE ENTITY #Interval_Preference(
UNDER #Interpreted_Preference(
#min_value INT,
#max_value INT,
#REF (#Preference_URI)));

Matérialisation du lien entre modele d’ontologies et modele de préférences

Une fois que les entités principales pour les préférences ont été définies, nous devons les lier a leurs
entités au niveau du modeéle d'ontologies. Ce lien est représenté par I'entité PREF_Link dans la fig-
ure 1. Dans le systtme OntoDB, nous modifions I'entité Property_Or_Class du modéle d’ontologies.
L'instruction OntoQL suivante est utilisée pour cette modification.

ALTER ENTITY #Property_Or_Class
ADD ATTRIBUTE #PREF_Link REF (#Preference) ARRAY

Cette instruction associe a chaque classe ou propriété de I'ontologie un ensemble (Array) de préférences.

105

Résumé

Extension du langage OntoQL pour la prise en compte des préférences

La prise en compte des préférences dans les requétes OntoQL est rendue possible grace au développe-
ment d’un interpréteur pour les préférences. Ceci est matérialisé par l'introduction d’'une sous clause
PREFERING a la clause SELECT de OntoQL. Une fonction d’interprétation est associée a chaque type
de préférence disponible dans notre modéle de préférences. La syntaxe de la clause SELECT ainsi qu’un
exemple pour obtenir les films récents s’écrivent de la sorte :

SELECT ’selection’
FROM ’tableReference’
PREFERRING ’preferenceldentifier’

CONCLUSION et PERSPECTIVES

Nous avons proposé dans cet thése un modele formel et générique pour la prise en compte des préférences
utilisateurs. Nous avons décrit comment la base de données a base ontologique OntoDB et son langage
associé ont été étendus pour geérer les préférences au niveau sémantique et non au niveau logique des
données comme c’est le cas pour la plupart des approches, en particulier dans le domaine des bases
de données. Notre modeéle est indépendant de tout modéle logique de données. La possibilité de le
lier a n'importe quel modéle d’ontologies le rend entierement flexible. Ainsi, notre approche permet

de définir des préférences au niveau sémantique, de stocker le modéle de préférences d&famiten o

ainsi la possibilité de sa réutilisation. Enfin, ffi@ un langage d'interrogation prenant en compte ces
préférences.

Ce travail ouvre plusieurs perspectives. Nous envisageons une évaluation conséquente de I'approche
en considérant de maniére compléte l¢kédents types de préférences proposées en utilisant des critéres
standards de RappBrlécision. Nous envisageons également de coupler notre approche avec un modéle
utilisateur dans le cadre des BDBO dont le travail est en cours. Par ailleurs, une amélioration possible
de notre approche consiste a étendre le modéle de préférences afin de prendre en compte I'agrégation
dans le cadre des entrepdts de données. Cette extension permettra aux utilisateurs de pouvoir exprimer
leurs préférences également au niveau des requétes d’agrégation. Une autre direction serait I'étude des
procédeés de fragmentation fondés sur les préférences.

Sur le plan de la performance, il serait intéressant de faire I'évaluation et I'optimisation des requétes
avec préférences (par exemple I'optimisation basée sur les codts) et de mesurer les conséquences sur la
complexité engendrée par l'introduction des préférences dans les requétes.

106

Bibliography

[OMG, 2002] (2002). Metaobjectfacility(mof) Proceedings of the 8th ACM international
specification v1.4. Technical report. workshop on Data warehousing and OLAP

pages 9-18, New York, NY, USA. ACM.
[Adomavicius and Tuzhilin,] Adomavicius, G.

and Tuzhilin, A. Knowledge and Data Engi-[Berners-Lee et al., 2001] Berners-Lee, T,
neering, IEEE Transactions 9(6):734—749. Hendler, J., and Lassila, O. (2001). The Seman-

tic Web. Scientific American284(5):34—43.
[Agrawal et al., 2001] Agrawal, R., Somani, A.,

and Xu, Y. (2001). Storage and Querying dB.McBride, 2001] B.McBride (2001). Jena: Im-
E-Commerce Data. IRroceedings of the 27th plementing the RDF Model and Syntax Speci-
International Conference on Very Large Data fication. Proceedings of the 2nd International
Bases (VLDB'0l)pages 149-158. Workshop on the Semantic Web

[Agrawal and Wimmers, 2000] Agrawal, R. andBorzsonyi et al., 2001] Borzsonyi, S., Kossmann,
Wimmers, E. L. (2000). A framework for ex- D., and Stocker, K. (2001). The skyline operator.
pressing and combining preferences. SiG- In ICDE, pages 421-430.

MOD Conferencepages 297-306.
[Bozsak et al., 2002] Bozsak, E., Ehrig, M., Hand-

[Aland H., 2003] Al, S. and H., A. (2003). ’'ex- schuh, S., Hotho, A., Maedche, A., Motik, B.,
ploring the impact of customer empowerment Oberle, D., Schmitz, C., Staab, S., Stojanovic,
on marketing strategy and information systems L., Stojanovic, N., Studer, R., Stumme, G., Sure,
effectiveness. ImMhe 4th International Confer- Y., Tane, J., Volz, R., and Zacharias, V. (2002).
ence on Performance Measurement and Man- KAON - Towards a Large Scale Semantic Web.
agementpages 211-19. In Proceedings of the 3rd International Con-

ference on E-Commerce and Web Technologies
[Alexaki et al., 2001] Alexaki, S., Christophides, (EC-WEB'02) pages 304-313, London, UK.
V., Karvounarakis, G., and Tolle, K. (2001).

Managing Voluminous RDF Description Bases.

In Proceedings of the 2nd International WorkfBrézillon, 2003] Brézillon, P. (2003). Focusing

shop on the Semantic Weiages 1-13. on context in human-centered computingEE
Intelligent System<d.8(3):62—-66.

Springer-Verlag.

[Bellatreche et al., 2005] Bellatreche, L., Gi-
acometti, A., Marcel, P., Mouloudi, H.,[Brickley and Guha, 2004] Brickley, D. and Guha,
and Laurent, D. (2005). A personalization R. V. (2004). Rdf vocabulary description lan-
framework for olap queries. IIDOLAP '05: guage 1.0: Rdf schema. W3c recommenda-

107

Bibliography

tion, W3C. http/www.w3.0rgTR/2004REC- [Chong et al., 2005a] Chong, E. I., Das, S., Eadon,

rdf-schema-20040210

[Broekstra et al., 2002] Broekstra, J., Kampman

A Generic Architecture for Storing and Query-
ing RDF and RDF Schema. IRAroceedings of

G., and Srinivasan, J. (2005a). ArfiEient
SQL-based RDF Querying Scheme. Ro-

' ceedings of the 31st International Conference on
A., and van Harmelen, F. (2002). Sesame:

Very Large Data Bases (VLDB’05)ages 1216—
1227.

the 1st International Semantic Web Conferengghong et al., 2005b] Chong, E. I., Das, S., Eadon,

(ISWC’02) pages 54-68.

[Brusilovsky, 2001] Brusilovsky, P. (2001). User
modeling and user-adapted interactionAbtap-
tive Hypermediapages 87-100.

[Buono et al., 2001] Buono, P., Costabile, M. F,
Guida, S., Piccinno, A., and Tesoro, G. (20015.
Integrating user data and collaborative filter-
ing in a web recommendation system. Im

Proceedings of the Third Workshop on AdaFfDean and Schreiber, 2004] Dean

tive Hypertext and Hypermedipages 315-321.
Springer Verlag.

[Carroll et al., 2004] Carroll, J. J., Dickinson, 1.,
Dollin, C., Reynolds, D., Seaborne, A., an
Wilkinson, K. (2004). Jena: Implementing th
Semantic Web Recommendations. Rroceed-
ings of the 13th international World Wide Web
conference on Alternate track papebsposters
(WWW’04) pages 74—-83, New York, NY, USA.
ACM Press.

[Chaatri et al., 2008] Chaari, S., Badr, Y., Biennier,

F., BenAmar, C., and Favrel, J. (2008). Frame-

work for web service selection based on non-
functional properties. Irinternational Journal
of Web Services Practicegolume 3, pages 94—
109.

G., and Srinivasan, J. (2005b). Anfi€ient
SQL-based RDF Querying Scheme. Ro-
ceedings of the 31st international conference on
Very Large Data Bases (VLDB’'03)ages 1216—
1227.

Damiani et al., 2001] Damiani, E., Oliboni, B.,

and Quintarelli, E. (2001). Modeling users’ nav-
igation history.

M. and
Schreiber, G. (2004). OWL Web Ontology
Language Referenc&Vorld Wide Web Consor-
tium. http://www.w3.0org/TR/owl-ref.

ehainsala, 2007] Dehainsala, H. (200Explic-

itation de la sémantique dans les bases de don-
nées : Le modele OntoDB de bases de données
a base ontologique PhD thesis, LISENSMA

et Université de Poitiers.

[Dehainsala et al., 2007a] Dehainsala, H., Pierra,

G., and Bellatreche, L. (2007a). OntoDB:
An Ontology-Based Database for Data Inten-
sive Applications. InProceedings of the 12th
International Conference on Database Systems
for Advanced Applications (DASFAA'QPages
497-508.

[Cherniack et al., 2003] Cherniack, M. GalvegDehainsaIa etal., 2007b] Dehainsala, H., Pierra,

E. F.,, Franklin, M. J., and Zdonik, S. B. (2003).
Profile-driven cache management. IGDE,
pages 645-656. IEEE Computer Society.

[Chomicki, 2003] Chomicki, J. (2003). Preference
formulas in relations querie&CM Transactions
on Database Systeni23:1-39.

108

G., and Bellatreche, L. (2007b). OntoDB:
An Ontology-Based Database for Data Inten-
sive Applications. InProceedings of the 12th
International Conference on Database Systems
for Advanced Applications (DASFAA'QAol-
ume 4443 ofLecture Notes in Computer Sci-
ence pages 497-508. Springer.

http://www.w3.org/TR/owl-ref

[Dehainsala et al., 2007c] Dehainsala, H., Pierf&ruber and Olsen, 1994] Gruber, T. and Olsen,
G., Bellatreche, L., and Ait-Ameur, Y. (2007c). G. (1994). An ontology for engineering math-
Conception de bases de données a partirematics. In Fourth Int'l Conf. Principles
d’ontologies de domaine : Application aux of Knowledge Representation and Reasoning
bases de données du domaine technique. Inpages 258-269.

Actes des lere Journées Francophones sur les
Ontologies (JFO'07)pages 215-230. [Gruber, 1993] Gruber, T. R. (1993). A trans-
lation approach to portable ontology specifica-

[Djuric et al., 2003] Djuric, D., Gasevic, D., and tjons. Knowledge Acquisitiors:199-220.
Devedzic, V. (2003). A mda-based approach to
the ontology definition metamodel. [H. K. Bhargava and Herrick, 1997] H. K. Bhar-

gava, S. S. and Herrick, C. (1997). Beyond

spreadsheets: Tools for building decision sup-

port systems. INEEE, pages 31-39.

[Dragan Gasevic, 2006] Dragan Gasevic, Dra-
gan Djruric, V. D. (2006). The MDA-Based
Ontology Infrastructure

nLjH' Stefan and Kiesling, 2003] H. Stefan, E. M.

and Kiesling, W. (2003). Preference mining: A

novel approach on mining user preferences for

personalized applications.

[Dubois et al., 1998] Dubois, D., Prade, H., a
Sabbadin, R. (1998). Qualitative decision theory
with sugeno integrals. Iim: Proc. 14th Conf. on
Uncertainty in Arti cial Intelligencepages 121—

128. Physica Verlag. [Hansson, 2001] Hansson, S. O. (2001). Prefer-
[Fankam et al., 2008] Fankam, C., Jean, S., and€nce logic.Handbook of Philosophical Logic (2

Pierra, G. (2008). Numeric reasoning in the se- €dition), 2:319-394.

mantic web. I'SeMMA pages 84-103. [1S010303.02, 1994] 1S010303.02 (1994). Prod-

[Fischer, 2001] Fischer, G. (2001). User modeling uct data representation and exchange - part 2:
in human-computer interaction. Wser Model- Express reference manudsO-055

ing and User-Adapted Interactippages 65—68. _
[ISO13584, 1998] 1SO13584 (1998). Industrial

[Fishburn, 1988] Fishburn, P. (1988)Nonlinear automation systems and integration — Parts li-
preference and utility theory Johns Hopkins prary — Part 42: Description methodology:
University Press, Baltimore. Methodology for structuring parts families.

[Fuhr etal., 1999] Fuhr, N., Rittberger, M., and Technical report, International Standards Orga-

Christa, W.-H. (1999). Information Retrieval nization, Geneve.

[Elektronische Ressource] : Materialien ZufJean, 2007] Jean, S. (2000ntoQL, un langage
Herbstschule Bonn. d’exploitation des bases de données a base on-

[Gerhard et al., 1997] Gerhard, C. T., Thomas, tologique PhD thesis, LIJENSMA et Univer-
C. G., and Fischer, G. (1997). Using agents to Sité de Poitiers.
personalize the web. Im Proc. ACM IUI'97,

pages 53-60. ACM Press [Jean et al., 2006a] Jean, S., Ait-Ameur, Y., and

Pierra, G. (2006a). Querying Ontology Based
[Giacomo and Lenzerini, 1995] Giacomo, G. D. Database Using OntoQL. IRroceedings of
and Lenzerini, M. (1995). What’s in an aggre- On the Move to Meaningful Internet Systems
gate: Foundations for description logics with tu- 2006:(ODBASE’06) volume 4275 ofLecture
ples and sets. IRICAI (1), pages 801-807. Notes in Computer Scienc8pringer.

109

Bibliography

[Jean et al., 2006b] Jean, S., Ait-Ameur, Y., and 2782 of Lecture Notes in Computer Science
Piera, G. (2006b). Querying Ontology Based Springer.
Database Using OntoQL (an Ontology Query
Language). InProceedings of On the MovdKobryn, 1999] Kobryn, C. (1999). Uml 2001 : A
to Meaningful Internet Systems 2006: CooplS, Standardization odyssey. ommunications of
DOA, GADA, and ODBASE, OTM Confederated the ACM, vol. 42, no. 10

International Conferences (ODBASE’Q6)ol- _
ume 4275 ofLecture Notes in Computer Scilkobsa, 2001] Kobsa, A. (2001). ~Generic user
ence pages 704—721. Springer. modeling systems.User Modeling and User-

Adapted Interaction11(1-2):49-63.
[Jean et al., 2005a] Jean, S., Pierra, G., and Ait-

Ameur, Y. (2005a). OntoQL: an exploitatior{Koutrika and loannidis, 2004] Koutrika, G. and
language for OBDBs. IrProceedings of the loannidis, Y. E. (2004). Personalization of
VLDB 2005 PhD Workshop. Co-located with the queries in database systems. IGDE, pages
31th International Conference on Very Large 597-608.

Data Bases (VLDB'05)pages 41-45.
[Lacroix and Lavency, 1987] Lacroix, M. and

[Jean etal., 2005b] Jean, S., Pierra, G., .and At | avency, P. (1987). Preferences; putting more
ameur, Y. (2005b). Ontoql: an exploitation lan- oy iedge into queries. In Stocker, P. M., Kent,

guage for obdbs. INLDB Ph.D. Workshap W., and Hammersley, P., editor&/LDB'87,

[Jorstad et al., 2006] Jorstad, I., Thanh, D. V., and Proceedings of 13th International Conference
Dustdar, S. (2006). Personalisation of next gen-On Very Large Data Bases, September 1-4,

eration mobile services. ldMICS 1987, Brighton, England pages 217-225.

Morgan Kaufmann.
[Kalinichenko et al., 2003] Kalinichenko, L., Mis-

sikoff, M., Schiappelli, F., and Skvortsov, NJL.Bellatreche and Dehainsala, 2004]

(2003). Ontological modeling. IRroceedings L.Bellatreche, G.Pierra, D. X. and Dehain-
of the 5th Russian Conference on Digital Li- sala, H. (2004). Integration de sources de
braries RCDL2003 données autonomes par articulations a priori

[Kiesling, 2002] Kiesling, W. (2002). Foundations dontologies. INNFORSID 2004

of preferences in database systems. In Mars'fN/lanber etal., 2000] Manber, U., Patel, A., and

J. |., editor,Knowledge and Data Engineering Robison, J. (2000). The business of personaliza-
pages 311-322. 10S Press, Amsterdam. tion: Experience with personalization of yahoo!
[Kiesling and Kostler, 2000] Kiesling, W. and Communications of the ACM3(8):35-39.

Kostler, G. (2000). Preference sql -design,

implementation, experience. In Mars, N. J. ([Mobasher et al., 2000] Mobasher, B., Dai, H.,

editor, Knowledge and Data Engineeringages ~ -U0: T- Sun, Y., and Zhu, J. (2000). Integrating

778 — 789. 10S Press, Amsterdam. web usage and content mining for moréee-
tive personalization. Itn Ecommerce and Web

[Klusch et al., 2003] Klusch, M., Ossowski, S., Technologies Lecture notes in computer Sciense
Omicini, A., and Laamanen, H., editors (2003). (LNCS) 1875Springer-Verlag.

Cooperative Information Agents VII, 7th Inter-
national Workshop, CIA 2003, Helsinki, FinfMostafa et al., 1996] Mostafa, M., Mukhopad-
land, August 27-29, 2003, Proceedingslume hyay, S., Mostafa, J., Palakal, M., Lam, W., Xue,

110

L., and Hudli, A. (1996). An adaptive multi- et mise en ceuvre. Ingénierie des Systéemes

level information filtering system. IfProceed- d’Information 10(2):91-115.

ings of The Fifth International Conference on

User Modeling pages 21-28. [Prassas, 2001] Prassas, G.; Pramataris, K. P. O.
D. G. (2001). Dynamic recommendations in in-

[Mouloudi et al., 2006] Mouloudi, H., Bella- ternet retailing. IFECIS 2001 pages 27—28.
treche, L., Giacometti, A., and Marcel, P.

(2006). Personalization of mdx queries. IfPrud’hommeaux and Seaborne, 2006]
Laurent, D., editorBDA. Prud’hommeaux, E. and Seaborne, A. (2006).

)) ~ SPARQL Query Language for RDF. W3C
[P. Gursky and Vanekova, 2008] P. Gursky, candidate Recommendation 14 June 2007

T.Horvéth, J. J. and Vanekova, V. (2008). User REEp//waw w3 org/TR/Tdf-sparql-query/l
preference web search. experiments with a

system connecting web and user. Tim appear [Ravat et al., 2007] Ravat, F., Teste, O., and Zur-
in the Computing and Informatics Journal fljyh, G. (2007). Personnalisation de bases
pages 25-32. de données multidimensionnelles. @ongrés
Informatique des Organisations et Systémes
[Parketal,, 2007] Park, M. J., Lee, J. H., Lee, d’Information et de Décision (INFORSID),

C. H., Lin, J., S , O., d Ch , C. W. .
(2007) I,:n éﬁcieirtrZid sca?arl]ble m:::g ement | cros-Guirec, 2B52007-27052007 pages
' g 121-136, httpyinforsid.irit.fr. INFORSID.

of ontology. InProceedings of the 12th Interna-

tional Conference on Database Systems for Al%abata etal., 1997] Sabata, B., Chatterjee, S.
vanced Applications (DASFAA'Q7pages 975~ Davis, M., Sydir, J. J., and Lawrence, T. F.

980. (1997). Taxonomy for qos specifications.

[Petrini and Risch, 2007] Petrini, J. and Risch,
(2007). Semantic Web Abridged Relation
Databases. IRroceedings of the 18th Interna-
tional Conference on Database and Expert Sys-

tems Applications (DEXA'07pages 455-459. gchenk and Wilson, 1994] Schenk, D. and Wil-

Jﬁchenck and Wilson, 1994] Schenck, D. and Wil-
son, P. R. (1994)information Modeling the EX-
PRESS WayOxford University Press.

[Pierra, 2003a] Pierra, G. (2003a). Context- SON: P. (1994) Information Modelling The EX-

explication in conceptual ontologies: the plib PRESS WayOxford University Press.

h. INSPE 243-253.
approac SPE CE pages 243-253 [Siberski et al., 2006] Siberski, W., Pan, J. Z., and

[Pierra, 2003b] Pierra, G. (2003b). Context- Thaden, U. (2006). Querying the semantic web
Explication in Conceptual Ontologies: The With preferences. In Proceedings of the 5th
PLIB Approach. In Jardim-Goncalves, R., Cha, International Semantic Web Conference (ISWC
J., and Steiger-Garcao, A., editoRspceedings ~ Pages 612-624.
of the 10th ISPE International Conference on

Concurrent Engineering (CE'03)pages 243— [Sieg et al., 2004] Sieg, A., Mobasher, B., and
254, Burke, R. (2004). Inferring user’s information

context: Integrating user profiles and concept

[Pierra et al., 2005] Pierra, G., Dehainsala, H., hierarchies. presented at 2004 Meeting of the

Ait-Ameur, Y., and Bellatreche, L. (2005). Base International Federation of Classification Soci-
de Données a Base Ontologique : principes eties.

111

http://www.w3.org/TR/rdf-sparql-query/

Bibliography

[Staehli et al., 1995] Staehli, R., Walpole, J., and
Maier, D. (1995). Quality of service specifica-
tion for multimedia presentationsMultimedia
Systems3:251-263.

[Theobald et al., 2004] Theobald, M., Weikum,
G., and Schenkel, R. (2004). Top-k query evalu-
ation with probabilistic guarantees. IImVLDB,
pages 648-659.

[Toninelli et al., 2008] Toninelli, A., Corradi, A.,
and Montanari, R. (2008). Semantic-based dis-
covery to support mobile context-aware service
accessComputer Communication81(5):935—
949.

[U. Shardanand, 1995] U. Shardanand, P. M.
(1995). Social information filtering: Algo-
rithms for automating 'word of mouth’. In
In Proceedings of the Conference on Human
Factors in Computing Systems (CHI9%®grges
210-217.

[Viappiani et al., 2006] Viappiani, P., Faltings, B.,
and Pu, P. (2006). Preference-based search using
example-critiquing with suggestion3ournal of
Artificial Intelligence Researct27.

[Weld et al., 2003] Weld, D. S., Anderson, C.,
Domingos, P., Etzioni, O., Gajos, K., Lau, T.,
and Wolfman, S. (2003). Automatically person-
alizing user interfaces. lin 1IJCAIO3 pages
1613-1619.

112

Appendix

Preference Model with Express Language

Express Code

SCHEMA PREFERENCE_MODEL;

ENTITY PREFERENCE
ABSTRACT SUPERTYPE OF (ONEOF (PREFERENCE_DEFINITION, CONTEXT_PREFERENCE_DEFINITION));
END_ENTITY;

ENTITY PREFERENCE_DEFINITION
ABSTRACT SUPERTYPE OF (ONEOF (UNINTERPRETED_PREFERENCE, INTERPRETED_PREFERENCE));
END_ENTITY;

ENTITY PREFERENCE_URT;
CODE: INTEGER;

NAME: STRING;
CLASSIFICATION:STRING;
END_ENTITY;

ENTITY INTERPRETED_PREFERENCE
ABSTRACT SUPERTYPE OF (ONEOF (BOOLEAN_PREFERENCE, ENUMERATED_PREFERENCE,NUMERIC_PREFERENCE, IN
END_ENTITY;

ENTITY ENUMERATED_PREFERENCE
SUBTYPE OF (INTERPRETED_PREFERENCE) ;
PREF_VALUES: LIST[1:?] OF PROPERTY_OR_CLASS_INSTANCE;
PREF_ATTRIBUTES: LIST[1:?] OF PREFERENCE_URI;
END_ENTITY;

ENTITY NUMERIC_PREFERENCE

113

Appendix A. Preference Model with Express Language

SUBTYPE OF (INTERPRETED_PREFERENCE);
INTERPRETED_BY: NUMBER_VALUE;
PREF_ATTRIBUTES: LIST[1:7] OF PREFERENCE_URI;
END_ENTITY;

TYPE NUMBER_VALUE= NUMBER;
END_TYPE;

ENTITY BOOLEAN_PREFERENCE
SUBTYPE OF (INTERPRETED_PREFERENCE);
INTERPRETED_BY: LIST[1:?] OF PROPERTY_VALUE;
PREF_ATTRIBUTES: LIST[1:7] OF PREFERENCE_URI;
END_ENTITY;

ENTITY INTERVAL_PREFERENCE

SUBTYPE OF (INTERPRETED_PREFERENCE);
INTERPRETED_BY: INTERVAL_VALUE;
PREF_ATTRIBUTES: LIST [1:?7] OF PREFERENCE_URI;
END_ENTITY;

ENTITY INTERVAL_VALUE;
min_value: REAL;

max_value: REAL;

WHERE min_value < max_value;
END_ENTITY;

ENTITY FUZZY_PREFERENCE

SUBTYPE OF (INTERPRETED_PREFERENCE);
INTERPRETED_BY: PROB_VALUE;
PREF_VALUES: LIST[1:?] OF PROPERTY_VALUE;
PREF_ATTRIBUTES: LIST[1:?7] OF PREFERENCE_URI;

END_ENTITY;

TYPE PROB_VALUE= REAL;
WHERE ((SELF>0) AND (SELF<1));
END_TYPE;

ENTITY UNINTERPRETED_PREFERENCE

SUBTYPE OF (PREFERENCE_DEFINITION);

INTERPRETED_BY: LIST[1:?] OF PROPERTY_OR_CLASS_INSTANCE;
PREF_ATTRIBUTES: LIST[1:?7] OF PREFERENCE_URI;

END_ENTITY;

114

ENTITY CONTEXT_PREFERENCE_DEFINITION
SUBTYPE OF (PREFERENCE);

CONTEXT_VALUE: PROPERTY_OR_CLASS_INSTANCE;
PREFERENCE: PREFERENCE_DEFINITION;
END_ENTITY;

TYPE PROPERTY_OR_CLASS_INSTANCE=
SELECT (CLASS_VALUE, PROPERTY_VALUE);
END_TYPE;

TYPE CLASS_VALUE= STRING;
END_TYPE;

TYPE PROPERTY_VALUE= STRING;
END_TYPE;

END_SCHEMA;

115

Appendix

Preference Model with Express Language

UML Figures

Property_or_Class

<<instance of>>

Property_or_Class_Instance

Property_or_Qlass_]

Instance

it

Property_Value

Class_Value

Figure 1: Resource and Resource Instance with UML

associated_property_or_class

Property_or_Qass

-

Preference_Link

associated_preference

S

Preference

Figure 2: UML Representation of Preference Link Approach

117

Appendix B. Preference Model with Express Language

Preference

+oid: Integer
+URI

1 has_URI 1
o

Preference_URI

+code: Integer
+name: String
+classification: String

Figure 3: Graphical Representation of Preference Model.

PROPERTY_OR_CLASS

PREFERENCE_URI

+code: Integer

+name: String
+calssification: Strin:

INTERPRETED_PREFERENCE

. PREFERENCE
associate_property_or_class PREF_LINK associate_preference 1 takes_Preference_URI
| I @ toid: Integer - -
0.% 1 + propert_orclass_instance_List: List
CONTEXT_PREFERENCE_DEFINITION PREFERENCE_DEFINTION
1 takes_definition 1% ~
+context_name: String +oid: Integer
+preference
+context A
* [
has_context L+ | UNINTERPRETED_PREFERENCE
ke feren i - - R
takes_preference propert_or_class_instance_List: List +oid: Integer
1
ENUMERATED_PREFERENCE
PROPERTY_OR_CLASS_INSTANCE 1 1.

has_preference

Property_Value

Class_Value

A

+propert_or_class_instance_List: List

NUMERIC_PREFERENCE

+number_value: Integer

INTERVAL_PREFERENCE

+min_value: Integer

+max_value: Integer

BOOLEAN_PREFERENCE

+property_value:List
+propert_or class_instance_List: List

FUZZY_PREFERENCE

+prob_value: Float

+ propert_or_class_instance_List: List

Figure 4: UML Representation of Preference Model

118

Appendix

Complete syntax of the OntoQL language

This annex defines the grammatical rules of OntoQL language

Tokens

The following rules specify the tokens used for language definition, manipulation and querying On-

toQL.

The keywords:

This sub-section gives the rules for the keywords of OntoQL language.

(ABS

(ADD)

(ALL)
(ALTER
(AND)
(ANY)
(ARRAY
(AS

(ASG
(ATTRIBUTB
(AVG)
(BETWEEN
(BOOLEAN
(CARDINALITY;
(CASB
(CASTy

abs

add

all

alter

and

any

array

as

asc
attribute
avg
between
boolean
cardinality
case

cast

(CHECK)
(COALESCE
(COLUMN)
(CONSTRAINT
(COUNT)
(CREATB
(CROSS
(DATE)
(DELETE
(DERER
(DERIVED)
(DESG
(DESCRIPTOR
(DISTINCT)
(DROP
(ELSB

119

. check

coalesce
column
constraint
count
create
Cross

date
delete
deref
derived
desc
descriptor
distinct
drop

else

Appendix C. Complete syntax of the OntoQL language

(END)
(ENTITY)
(ESCAPB
(EXCEPT)
(EXISTS
(EXP)
(EXTENT
(FALSB
(FLOAT)
(FLOOR)
(FOR
(FOREIGN)
(FROM)
(FULL)
(GROUP BY
(HAVING)
(IN)
(INNER
(INSERT
(INT)
(INTEGER
(INTERSECTF
(INTO)
(1S

(JOIN)
(KEY)
(LANGUAGE
(LEFT)
(LIKE)
(LN)
(LOWER
(MAX)
(MIN)
(MOD)

end
entity
escape
except
exists
exp
extent
false
float
floor
for
foreign
from
full
group by
having
in
inner
insert
int
integer
intersect
into

is

join
key
language
left
like

In
lower
max

min

mod

(MULTILINGUAL) ::

(NAMESPACE
(NATURAL
(NONB)
(NOT)
(NULL)
(NULLIF)
(OF)

(ON)

(ONLY)
(OR
(ORDER BY
(OUTER
(POWER
(PRIMARY
(PROPERTY
(REAL
(RER

(REFERENCES

(RIGHT)
(SELECT
(SET)
(SIMILAR)
(SOMB
(SQRT
(STRING
(SUBSTRING
(SUM)
(TABLE
(THEN)
(TREAT)
(TRUE)
(TYPEOB
(UNDER

120

multilingual
namespace
natural
none

not

null
nullif
of

on

only

or

order by
outer
power
primary
property
real

ref
references
right
select
set
similar
some

sqrt
string
substring
sum

table
then
treat
true
typeof

under

(UNION) = union (VALUES = values
(UNIQUE) ;’= unique

(VARCHAR »= varchar
(UNNEST ;’= unnest
(UPDATE = update VIEW) w= view
(UPPER ;= upper (WHEN n= when
(USING ’= using (WHERE .»= where

The lexical items

The following rules indicate how certain combinations of characters are interpreted as lexical items

in the language. Numbers:

(unsigned numeric literal ::= (exact numeric literal
| (approximate numeric literal
(exact numeric litergl 2= (unsigned integer| . [(unsigned integer]]
| . <unsigned integer
(unsigned integer = (digity { (digit) }
(digit) m=0]1]121314|5/6]|7]8]9
(approximate numeric literal ::= (exact numeric litergl E (signed integexr
(signed integexr = [(sign] (unsigned integer
(sign n= 4 -

Strings, dates and booleans:

(general litera) ::= (character string litera}
| (date literal
| (boolean litera}

(character string litera} 1= ’ [(character representation lis{ ’

(character representation ::= (nonquote character
| {(quote symbol

(nonquote charactér

alblcldlelflglhli|jlk|l[m[n|o|plalr|s|tlulv|w]|x
lylz

(quote symbol n=

DATE ’ (date value ’

(date literal

(date valug (unsigned integer- {unsigned integer- (unsigned integer

TRUE | FALSE

(boolean litera}

The lexical item identifier used to reference th&eatient elements manipulated by the language

OntoQL:

121

Appendix C. Complete syntax of the OntoQL language

{identifien .= (identifier starp { (identifier par }

(identifier pary ::= (identifier starp
| (identifier extenyl

(identifier starp ::= _|(nonquote character

(identifier exteny ::= $ | (digit)

identif ers

The following rules define the identifiers of thefdrent elements manipulated by the language On-
toQL

(table nameg .= (identifier)
(column namg ::= (identifier
(constraint namg ::= (identifier
(alias name .= (identifier)
{function namg .= (identifier)
(class i0 ::= (identifier
(property id = (identifier)
(entity id) = # (identifier)
(attribute id) = # (identifien
(category id = (table namé¢

| (classid

| (entity id)

(category id polymorph ::= (table nameg
| {classid | ONLY ({class id)
| (entity id) | ONLY ({entity id))

(description id ::= (column namg
| (property id
| (attribute id)
(namespace id .= (identifier)
(identifier

AA | AB | AF | AM | AR | AS | AY | AZ | BA | BE | BG | BH | BI | BN |BO |BR|CA |
CO|CS|CY|DA|DE|DZ|EL|EN|EO|ES|ET|EU|FA|FI|FJ|FO|FR]|
FY|GA|GD|GL|GN|GU|HA|HI |HR|HU|HY|IA|IE|IK|IN|IS|IT|
IW|JA|JI|JW|KA|KK|KL|KM|KN|KO|KS|KU|KY|LA|LN|LO|LT|
LV | MG | MI | MK | ML | MN | MO | MR | MS | MT | MY | NA | NE | NL | NO | OC | OM |
OR|PA|PL|PS|PT|QU|RM|RN|RO|RU|RW|SA|SD|SG|SH|SI|SK|
SL|SM|SN|SO|SQ|SR|SS|ST|SU|SV|SW|TA|TE|TG|TH|TI|TK|
TL|TN|TO|TR|TS|TT|TW|UK|UR|UZ|VI|VO|WO|XH]|YO|ZH|ZU

(namespace alias

(language id

122

Resources

In this section, we define the elements of grammar used by the various languteged by the
language OntoQL.

Data types
(data type .= (predefined type
| (reference type
| (collection type
(predefined type ::= (character string type
| (numeric typg
| (boolean typg
| (date typ¢
(character string type = [MULTILINGUAL] STRING [((integen)]
| [MULTILINGUAL] VARCHAR ({integen)
(numeric typg ;1= (exact numeric type
| (approximate numeric type
(exact numeric type = INT
| INTEGER
(approximate numeric type::= FLOAT [({integel)]
| REAL
(boolean typg ::= BOOLEAN
(date type »= DATE
(reference type = REF ((referenced type)
(referenced type ::= (class id
| (entity id)
(collection typé = (data typ@ ARRAY [[(integel 1]

The values

The following rules define the syntax elements defining the values of types of data presented previ-
ously

(value expression ::= (numeric value expressipn
| (string value expression
| (collection value expressiopn
| (boolean value expressipn

Integer values:

(numeric value expressipn::= (term)
| (numeric value expressipr (term
| (numeric value expressipr (term)

123

Appendix C. Complete syntax of the OntoQL language

(term)

(factor)

(numeric primary

{numeric value function

(cardinality expression

.= (factor)
| (term) * (factor)
| (term) / (factor)

= [-] (numeric primary

.:= (unsigned numeric literal
| (value expression primayy
| (numeric value function

..= (cardinality expression
| (absolute value expressipn
| (modulus expression
| (natural logarithm
| (exponential function
| (power functioi
| (square roof
| (floor function

.:= CARDINALITY ((collection value expression

(absolute value expressiprn:= ABS ({numeric value expressipn

(modulus expression
(natural logarithm
(exponential function

(power function

(square roog

(floor function

Values of type string:

(string value expression
(concatenatiop
(character factoy

(character primary

(string value functiop

.= MOD ((numeric value expressipn{numeric value expressipn
== LN ((numeric value expressipn
.= EXP ({numeric value expressipn

::= POWER ({numeric value expressipn
(numeric value expressidn

= SQRT ((numeric value expressipn

.= FLOOR ((numeric value expressipn

;= {(concatenatiop| (character factoy
::= (string value expression| | {character factoy
::= (character primary

.= (character string litera)
| (value expression primayy
| (string value functioh

::= (character substring function
| (regexpr substring function
| (fold)y

(character substring function::= SUBSTRING ({string value expression

FROM (numeric value expressipn
[FOR {numeric value expressipi)

124

(regexpr substring function

(fold)
(fold op)

Boolean values:

(boolean value expressipn:=

(boolean term

(boolean factoy
(boolean test

(predicate

(comparison predicaje

(equality op
(between predicaje

(in predicate

(in predicate valug
(like predicaté

(null predicate
(quantified predicate
(quantifier op
(exists predicate
(type predicatg
(type lish

(is of type

(boolean predicand

.:= SUBSTRING ((string value expression

SIMILAR (string value expression
ESCAPE (string value expression

.= (fold op) ((string value expression
.:»= UPPER | LOWER

(boolean term
(boolean value expressipOR (boolean term

(boolean factoy
(boolean term AND (boolean factoy

[NOT] (boolean test
(predicate | (boolean predicangd

(comparison predicate
(between predicaje
(in predicate

(like predicaté

(null predicate
(quantified predicate
(exists predicate

(type predicate

(value expressigr{equality op (value expression
=|<>|>>=]<]|<=

(value expression NOT | BETWEEN
(value expressionaAND (value expression

[NOT] IN (in predicate valug

(subquery | ((value expression lis)

(value expression NOT] LIKE (value expression
(value expressionIs [NOT] NULL

(value expressigr{quantifier op ((sub query)
ALL | SOME | ANY

EXISTS (subquery

(value expressionLs [NOT] OF ((type lisp)

[ONLY] (is of type { , [ONLY] (is of type }
(reference typg| (class id | (entity id)

((boolean value expressipi
(boolean litera}
(value expression primayy

125

Appendix C. Complete syntax of the OntoQL language

Values of type collection:

(collection value expression ::= (array concatenatiop

| (array primary)
(array concatenation .:.= (collection value expression | (array primary)
(array primary) .= (value expression primayy

| (array value constructgr

(array value constructor ::= (array value constructor by enumeratipon
| (array value constructor by query

(array value constructor by enumeration:= ARRAY [(value expression list]

(array value constructor by query ::= ARRAY ((query expression)

Expressions producing fiierent types of values:

(value expression primayy .= (par value expression
| (nonpar value expression primary

(par value expression = ((value expression)

(nonpar value expression primary::= (description reference
| (scalar subquery

| (function cal)

| (aggregate function

| (case expression

| (cast specification

| (subtype treatmejt

| (typeof treatment

| (reference resolution
| (null specificatioi

(description reference .= [(identifier) .] (qualified descriptioh

(qualified descriptioh ::= {(column namg

| (property path expression
| (attribute path expression
|

(identifier
(property path expression .= (property id { . (property id) }
(attribute path expression ;.= (attribute id) { . (attribute id) }
(scalar subquery ::= (subquery
(function cal) .= (function namg ([(value expression lisf)
(aggregate function ;= COUNT (*) | (general set function
(general set function ::= (computational operation

([(set quantifiey] (value expression)

126

(computational operation ::= AVG | MAX | MIN | SUM | COUNT

(set quantifiey ::= DISTINCT | ALL
(case expression .:= (case abbreviation
| (case specification
(case abbreviation .= NULLIF ((value expression, (value expression)
| COALESCE ((value expression lisD)
(case specification .= (simple casg
| (searched case
(simple casg .= CASE (value expressior{simple when clause list
[(else clausg] END
(simple when clause ::= WHEN (value expressionTHEN (value expression
(else clausg ::= ELSE (value expression
(searched case ::= CASE (searched when clause lijt{else clausg] END
(searched when clause ::= WHEN (search conditiop THEN (value expression
(search conditioh ::= (boolean value expressipn
(cast specification ;= CAST ((value expressionaS (data type)
(subtype treatmept ;= TREAT ((value expressionAS (target subtypg)
(target subtype .= (reference typg| (class id | {entity id)
(typeof treatment ::= TYPEOF ((value expression)
(reference resolution ::= DEREF ((value expression)
(null specificatiof »= NULL

Data def nition language DDL

The following rules define the syntax of the language data definition language OntoQL. The DDL
level logic:

(table definition

(table element

CREATE TABLE (table name (table element list

{column definitioin
| (table constraint definition

{column definitioin .= (column namg(data type
{ {(column constraint definition}
{column constraint definition ::= NOT NULL
| (unique specification
| (references specificatipn
| (check constraint definition

(unique specification

UNIQUE | PRIMARY KEY

(references specification ::= REFERENCES (table namg[({(column name list)]

127

Appendix C. Complete syntax of the OntoQL language

{check constraint definition CHECK ((search conditioh)

(table constraint definition

[{constraint name definitign (table constraint

(constraint name definition

CONSTRAINT (constraint namg

(table constraint .= (unique constraint definition
| (referential constraint definition
| {check constraint definition

(unigue constraint definition ::= (unique specification({column name list)
(referential constraint definition::= FOREIGN KEY ((column name list) {references specificatipn
(alter table statemet ::= ALTER TABLE (table name (alter table action

(alter table action ::= (add column definition
| (drop column definition
| (add table constraint definition
| (drop table constraint definition

(add column definition ::= ADD (column definitioh

(drop column definitiop ::= DROP (column namg

(add table constraint definition ::= ADD (table constraint definition
(drop table constraint definition::= DROP CONSTRAINT (constraint namg
(drop table statemejt ::= DROP TABLE (table name&

DDL at the ontological level:

(class definitioh = CREATE (entity id) {class id [(view clausg][(under clausg]
[(descriptor clausg] [{properties clause list]

(view clause ::= AS VIEW

{under clausg ::= UNDER (class id lis}

(descriptor clausg ::= DESCRIPTOR ({attribute value lisf)

(attribute value = (attribute id) = (value expression

(properties clause = (entity id) ((property definition list)

(property definition .= (prop id) (datatypée [(descriptor clausg

(alter class statemept ::= ALTER (class i¢ [(descriptor clausg]

[(alter class actioin]

(alter class actioi .= (add property definitiop
| (drop property definitiop

(add property definition ::= ADD [(entity id)] (property definition [(descriptor clausg
(drop property definitioh ::= DROP (property ich
(drop class definition ::= DROP (class id

128

It also helps to define the extensions of classes:

(exension definitioh

(logical clausé

(table and column name ::

(alter extension statement:=

(alter extension action

(add property definitiop
(drop property definitioh

(drop extension statement:=

(entity definition
{under clausg
(attribute clause
(attribute definition
(derived clausg

(alter entity statemeint

(alter entity action

(add attribute definitiop ::
(drop attribute definitioh ::
(drop entity statemeit

CREATE EXTENT OF (class ig ({property id lisp) [¢logical clause]
TABLE [(table and column namg

(table namg[({column name list)]

ALTER EXTENT OF {class ig (alter extent actioh

(add property definitiop
(drop property definitioh

ADD [PROPERTY | (property id) [COLUMN (column namyg
DROP [PROPERTY] (property id
DROP EXTENT OF (class id

CREATE ENTITY (entity id) [(under clausg] (attribute clausg
UNDER (entity id list

(attribute definition list

(attribute id) (datatype [(derived clausg]

DERIVED BY (function namg

ALTER ENTITY (entity id) (alter entity action

(add attribute definitiop
(drop attribute definitioi

ADD [ATTRIBUTE] (attribute definition
DROP [ATTRIBUTE] (attribute id)
DROP ENTITY (entity id)

Language for manipulating data: DML

The following rules define the syntax of the language data manipulation language OntoQL.:

(insert statement

INSERT INTO ({category id {insert description and sourge

(insert description and sourge:= (from subquery| (from constructoy

(from subquery

(insert description list

(from constructoy

(values clausg

= [((insert description list)] (query expression
::= (column name list

| (property id lisp

| <(attribute id list

[((insert description list)] (values clausge

VALUES ((values expression lisd

129

Appendix C. Complete syntax of the OntoQL language

(update statemept .= UPDATE (category id polymorphSET (set clause list
[WHERE (search conditioh]

(set clausg .:.= (description ig = (value expression

(delete statement .:= DELETE FROM (category id polymorph

[WHERE (search conditioh]

Query language of data

The following rules define the syntax of the query language language OntoQL.:

(query expression = {query term
| {query expressionUNION (set quantifiey (query term
| (query expressiOnEXCEPT (set quantifiey (query term

(query term = (query primary
| (query term) INTERSECT (set quantifiey (query primary

(query primary .= (query specification| ((query expression)

(query specification ::= (select clause(from clause [(where clausg]
[(group by clausg] [(having clausg] [(order by clausg]
[(namespace clausé¢[({language clausg]

SELECT Clause:

(select clause ::= SELECT [(set quantifiey] (select lis}
* | (select sublist{ , (select sublist}

(select lisp
(select sublist ::= (value expression (as clausg]

(as clausg = [AS] (alias namé

FROM clause:

(from clause FROM (category reference list

(category referenge

(category primary
| (joined category

(category primary ::= (category or subquepy [AS] (alias nam¢]

| (collection derived catego}yf AS] (alias namé
(category or subquebpy ::= (category id polymorph

| (dynamic iteratoy

| (subquery

(dynamic iteratoy

(identifien | ONLY ((identifier))
(subquery

((query expression)

(collection derived categopy::= UNNEST ((collection value expressipn

130

(joined category

(cross join

(qualified joir)

(join type)
(outer join typé

(join specificatioin

(join condition
(named columns jojn

(natural join)

.= (Cross join

(qualified joir)
(natural join)

:= (category referengeCROSS JOIN (category primary
.= (category referencg (join type] JOIN

(categroy reference(join specification
INNER | (outer join typé [OUTER]
LEFT | RIGHT | FULL

(join condition
(named columns jojn

ON (search conditioh
USING ((description id lis})

(category referenceNATURAL [(join type |
JOIN (category primary

WHERE, GROUP BY, HAVING andORDER BY Clauses:

{(where clausg
(group by clausg
(having clausg
(order by

(sort specificatiop
(sort key

(ordering specification ::

WHERE (search conditioh

GROUP BY [(set quantifiey] (description id lis}
HAVING (search conditioh

ORDER BY (sort specification list

(sort key [(ordering specificatiop]

(value expression

ASC | DESC

NAMESPACE andLANGUAGE Clauses:

{preffering clausé
(group by clausg
(having clausg
(order by

(sort specificatiop
(sort key

(ordering specification ::

PREFERRING (search conditiop

GROUP BY [(set quantifiey] (description id lis}
HAVING (search conditioh

ORDER BY (sort specification list

(sort key [(ordering specificatiop]

(value expression

ASC | DESC

NAMESPACEandLANGUAGE Clauses:

(namespace clause ::= USING NAMESPACE (namespace definition list

131

Appendix C. Complete syntax of the OntoQL language

(namespace definition::

[(namespace alias= | (namespace id

(language clause

USING LANGUAGE (language id

Data View Language : DVL

The following rules define the syntax for defining views with language OntoQL.

(view definition CREATE VIEW (table namég (view specification
AS {(query expression

(view specificatiop

(regular view specification
| (referenceable view specificatipn

(regular view specification = [({column name list)]

(referenceable view specification:= OF (class ig [{property id lisp]

Setting the language The language OntoQL is set by the namespace in which it is to find the elements
of a ontology and the natural language in which it must recognize the names offéremi elements
handled. The syntax for setting the language OntoQL is as follows: rechercher:

(global namespace definitipn:;:= SET NAMESPACE [(namespace alias=] (namespace specificatipn

(namespace specificatipn (namespace id NONE

(global language definition SET LANGUAGE (language specification

(language specification (language idl | NONE

132

List of Figures

- ' ' le. 27
3.2 Data type symbols of the EXPRESS-G notation |[Schenk and Wilson| |1994] 28
3.3 Express-G Line Symbols [Schenk and Wilsom, 1994]. o oo oot 31

SGL e 33

4.1 Type 1 OBDBs approac'h [Fankam et al., 2608]. 37
4.2 Type 2 OBDBs approach [Fankam etal, 2008].« o oo 38
4.3 Type 3 OBDBs approac'h [Fankam et al., adOS]. 39
44 OntoDBArchitecturb. oo 41
5.1 The four-layer Model Driven Architectur"p [Dragan Gasevic, 2b06] 55
5.2 The Hierarchy of Basic Ontology Concepits [Brickley and Guha, |dOO4]. 55
5.3 _Ontology Resource Definition oo o 56
5.4 Preference Model Representation in EXPRESS-Go oo 58
5.5 EXPRESS-G Representation of Preference Link Appfoach 66
6.1 _Ontology and Logic Model on OntoDdB v 70
6.2 Extended OntoDB Architecture. 75
[7.1_ Tourism Ontology Concepts. o v o v v 82
[7.2_Tourism Ontology Instantiation. oo oo v 83
[7.3_ Tourism Ontology Instantiatidn. o 85
[.4_Preference Link Instantiation. 85
[.5__Query for NUmeric Preference. ov oo oo 88
[2.6_Query for Interval Preferenfe. oo 88

List of Figures

us_dlenmmbjr;du_mgdﬂf_diméiéténce 102

lL__ Resource and Resource Instance with UML o oo 117
h_LLMLBepmﬁmalLQnﬂLBLeteLeme_LmkAppLdach 117
b_QLaphjgaLBﬂ;mgmaﬂQn_oLELeteLemedel. 118
M_LLMLBepLesgmalLQn_oLBLef_eLence_Mddel 118

134

List of Tables

2.1 Preference definition approaches in Databases, Semantic Web and Data Warehouses do-
MAINS o e e 24

|5J_ELe_f_e_Len.cs=;J_ﬂ2I. 59
|5.2_Enum.eta1&d=ELef_QLeﬂce. 60
5.3 Numeric_Preferente. 61
.4 Interval Preferende. 61
5.5 Fuzzy Preferente. 62
5.6 _Boolean Preferenbe. 63
5.7 Uninterpreted_Prefererlce. 64
|5_.B_CﬂnlexI=B_a.S_ed=ELe_fﬁmﬂ10e 65

|ﬁ.3_ELe_f_e_Len.cs=;J_ﬂ2I. 72
bA_Emiemnﬁ_e;J_RULmndes. 72
6.5 Numeric_Preferente. 73
l6.6 Interval Preferende. 73
6.7 _Boolean Preferenbe. 74
|Q.B_En.um.e_r£_te_d=|2r_e_fe_lﬁdce. 74

List of Tables

136

Abstract

De ros jours, les systemes d’information gerent de volumineuses données. Avec lI'avenement du Web
Sémantique, la quantité de données ontologiques (ou instances) disponibles s’est accrue. Permettre un
acces personnalisé a ces données est devenue cruciale. Les utilisateurs sont submergés par les nombreux
résultats fournis en réponse a leurs requétes. Pour étre utilisable, ces résultats doivent étre filtrées et
ordonnées. La capture et I'exploitation des préférences utilisateurs ont été proposées comme une solution
a ce probleme. Cependant, les approches existantes définissent habituellement les préférences pour une
application donnée. Il est ainsifficile de partager et réutiliser dans d’autres contextes les préférences
capturées. Nous proposons une approche basée sur plusieurs modeles proposés au sein des communautés
Bases de Données et Web Sémantique. Elle définit un model partageable et générique pour représenter
les préférences utilisateurs, et incorpore plusieurs types de préférences de la littérature qui sont traités de
maniére séparée. L'idée sous-jacente a notre approche est de traiter les préférences de maniére modulaire
en les liant aux ontologies qui décrivent la sémantique des données gérées par les applications. Ainsi leur
prise en compte se fait au niveau ontologique et non au niveau logique des données. La nouveauté de
I'approche est que les préférences définies sont attachées aux ontologies, qui décrivent la sémantique des
données manipulées par les applications. Le modéle de préférence est formellement défini en utilisant
le langage de modélisation des donnBEBRESS de maniére a éviter toute ambiguité du modele. Par
ailleurs, le modéle proposéfee un mécanisme de persistance et un langage d’interrogation dédié. Il est
implémenté en utilisant un systeme de Bases de Données a Base Ontologique (BDBO) qui permet de
gérer a la fois les ontologies et les données instances. Ceci perrffert dioe description sémantique

des préférences. Nous avons étendu le modéle des BDBO afin de supporter la prise en compte des
préférences. Limplémentation a été faite dans le cadre de la BDBO OntoDB pour laquelle nous avons
étendu le langage d’interrogation associé OntoQL. L'approche est illustrée a travers un cas d'étude dans
le domaine du tourisme.

Keywords : Bases de Données a Base Ontologique, Personnalisation, Web Sémantique, Ontologie,
Préférences Utilisateurs.

137

Abstract

Nowadays information systems manage huge amount of data. With the emergence of the Semantic Web,
the amount of available ontological data (or instances) has increased. To allow personalized access to this
information has become a crucial necessity. Users are overwhelmed by the numerous results provided in
response to their requests. In order to be usable, these results must often be sorted and filtered. The cap-
ture and exploitation of user preferences have been proposed as a solution to this problem. However, the
existing approaches usually define preferences for a particular application. Thusflicidtdo share

and reuse the handled preferences in other contexts. Our approach, which defines a sharable and generic
model to represent user preferences, based on several models proposed in the Databases and the Semantic
Web communities. It incorporates several types of preferences proposed in the literature, but are treated
separately. Our idea is to address preferences of a modular way by linking them to ontologies for describ-
ing the semantics of the data, handled by the applications. It is thus to raise the treatment preferences of
logic level (structure) to the ontological level. The novelty of our approach is that the defined preferences
are attached to the ontologies, which describe the semantic of the data manipulated by the applications.
The preference model is formally defined using EXPRESS data modeling language, which ensures

a free ambiguity definition. Moreover, the proposed modtgdrs a persistence mechanism and a dedi-
cated language; which is implemented using Ontology Based Databases (OBDB) system, that manages
both ontologies and extended data instances, in order to support a semantic description of preferences.
These databases are associated with explanation languages, supporting description, querying, etc. on
both ontologies and data. Usually queries return a big amount of data that may be sorted in order to find
the relevant ones. Moreover, in the current situation few approaches are considering user preferences,
when querying has been developed. Yet this problem is fundamental for many applications, especially
in the e-commerce domain. Our second approach, which defines preferences in terms of ontologies that
describe the semantics of handled data, provides a mechanism for querying with preferences. Thus, an
extension to existing ontology based query languages is proposed, for querying ontological data with
preferences. The proposed extension has been implemented onto the OntoDB OBDB associated to the
OntoQL query language and the approach is illustrated through a case study in the tourism domain.

Keywords : Ontology-based Database (OBDB), Personalization, Semantic Web, Ontology, User prefer-
ences.

139

A generic model for handling preferences in
ontology based databases

Presented by:

Dilek TAPUCU

Thesis Advisors :

Yamine AIT-AMEUR and Murat Osman UNALIR

Abstract. Nowadays information systems manage huge amount of data. With the emergence
of the Semantic Web, the amount of available ontological data (or instances) has increased.
To allow personalized access to this information has become a crucial necessity. Users are
overwhelmed by the numerous results provided in response to their requests. In order to be
usable, these results must often be sorted and filtered. The capture and exploitation of user
preferences have been proposed as a solution to this problem. However, the existing
approaches usually define preferences for a particular application. Thus, it is difficult to share
and reuse the handled preferences in other contexts. Our approach, which defines a sharable
and generic model to represent user preferences, based on several models proposed in the
Databases and the Semantic Web communities. It incorporates several types of preferences
proposed in the literature, but are treated separately. Our idea is to address preferences of a
modular way by linking them to ontologies for describing the semantics of the data, handled
by the applications. It is thus to raise the treatment preferences of logic level (structure) to the
ontological level. The novelty of our approach is that the defined preferences are attached to
the ontologies, which describe the semantic of the data manipulated by the applications. The
preference model is formally defined using the EXPRESS data modeling language, which
ensures a free ambiguity definition. Moreover, the proposed model offers a persistence
mechanism and a dedicated language; which is implemented using Ontology Based Databases
(OBDB) system, that manages both ontologies and extended data instances, in order to
support a semantic description of preferences. These databases are associated with
explanation languages, supporting description, querying, etc. on both ontologies and data.
Usually queries return a big amount of data that may be sorted in order to find the relevant
ones. Moreover, in the current situation few approaches are considering user preferences,
when querying has been developed. Yet this problem is fundamental for many applications,
especially in the e-commerce domain. Our second approach, which defines preferences in
terms of ontologies that describe the semantics of handled data, provides a mechanism for
querying with preferences. Thus, an extension to existing ontology based query languages is
proposed, for querying ontological data with preferences. The proposed extension has been
implemented onto the OntoDB OBDB associated to the OntoQL query language and the
approach is illustrated through a case study in the tourism domain.

Keywords: Ontology-based Database (OBDB), Personalization, Semantic Web, Ontology,
User preferences.

	CouvertureDilekTAPUCU.pdf
	these-dilek-tapucu.pdf
	Thanks
	Dedication
	Table of Contents
	Part I INTRODUCTION
	Introduction
	Research Context
	Our Proposal
	Thesis Structure

	Part II CONTEXT OF THE STUDY
	Preference Driven Personalization Approaches
	Introduction
	Concept of Preference
	Personalization
	User Profiling
	Search Engines
	Recommender Systems

	Personalization in Databases
	Preference Formulas in Relational Queries
	Preference Based SQL

	Ontology Based Knowledge Personalization
	Preferences in Semantic Web
	Preference-driven Query Processing in Semantic Web

	Other Research Areas
	Conclusion

	The EXPRESS Modeling Language
	Introduction
	EXPRESS Building Blocks
	EXPRESS-G
	Why is EXPRESS Used in Thesis Model

	Ontology Based Databases: OBDB
	Introduction
	OBDBs Approaches
	Type I architecture
	Type II architecture
	Type III architecture

	OntoDB Ontology Based Database Model
	The PLIB ontology model
	OntoDB Architecture
	OntoQL Query Language for OntoDB

	Why OntoDB Is Used in Thesis Model
	Conclusion

	Part III OUR PROPOSAL: HANDLING PREFERENCES AT THE ONTOLOGY LEVEL
	Proposed Model of Preferences
	Introduction
	Resource Definition
	Resource Definition in Ontology Definition Meta-Model(ODM)
	Resource Definition in Preference Model

	Preference Model for User Preferences
	Preference URI
	Interpreted Preferences
	UnInterpreted Preferences
	Context Based Preference Definition

	Resource Preference Relationship
	Conclusion

	Extending Ontology Based Databases with Preferences
	Introduction
	Handling and Querying Preferences in OntoDB
	Ontology Representation in OntoDB
	OntoDB Extension with Preferences
	Linking Ontologies and Preferences at the Ontology Model Level

	Preference-driven Query Processing in OntoDB
	Syntax of Preferring Operator
	Query Interpretation
	SPARQL Interpretation

	Conclusion

	Case Studies
	Introduction
	Case Study 1 - Handling Preferences in Ontology
	The Domain Ontology: A Vacation Ontology Instantiation
	Preference Model Instantiation
	Ontology Preference Link

	Case Study-2: Preference Based Querying in OntoDB
	Extension of the OntoDB with Preferences
	Querying OntoDB with Preferences

	Conclusion

	Conclusion and Future Works
	Résumé
	Bibliography
	Preference Model with Express Language
	Preference Model with Express Language

	Appendixs
	Complete syntax of the OntoQL language

	List of Figures
	List of Tables
	Abstract
	Abstract

	Couverture4 .pdf

