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Chapter 1

Introduction and overview

A semiconductor heterostructure is an artificial material, basically obtained by epi-

taxial growth and/or chemical etching of two or more different semiconductors. The

size reduction achieved in one, two or three dimensions in heterostructures at the

nanoscale level leads to electronic ground and excited states widely different from

those of the bulk crystals, and has opened the way to a new generation of optoelec-

tronic and photonic devices.

If we consider the evolution of an electronic state from a bulk crystal to a nanos-

tructure, essentially three phenomena occur. First, the band-offsets at the interfaces

act as effective potential barriers, which confine the carriers, both the electrons and

the holes, in one, two or three dimensions. Second, for an artificial periodic system,

e.g. a superlattice, the supercell is made up by joining a number Nc of primitive cells

of the underlying bulk lattices. Hence, in the reciprocal space Nc k-points in the

Brillouin zone of the bulk are folded onto the same k-point in the smaller Brillouin

zone of the nanostructure, and the artificially superimposed potential induces a cou-

pling between previously independent bulk states. Third, the artificial combination

of different materials usually leads to a reduction of the originally higher symmetry

of the constituent bulk materials.

Quantum confinement and confinement-induced mixing affect the energy and the

dimensionality of electronic levels, the lowering in the crystal symmetry is responsi-

ble for the removal of level degeneracies. In practice, to take advantage of all these

modifications in the electronic states, we have to consider how they are reflected in
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8 Chapter 1. Introduction and overview

modifications of the quantities of interest. In particular, the optical properties are

of the utmost importance, as they lie at the basis of many new technological appli-

cations. Among the already well-established applications we can cite the multiple

quantum well (MQW) lasers [1, 2], the quantum cascade lasers [3], the Schottky

barriers [1, 2], the modulation-doped heterostructures [1, 2], like the high electron

mobility transistors (HEMT). Dielectric superlattices are developed for their non-

linear properties, which induce effects such as the optical bistability or the nonlinear

frequency conversion [4]. Those effects are also found in semiconductor heterostruc-

tures based on GaAs, which has by itself important nonlinear optical properties [5].

The optical bistability has for instance been observed in a photoexcited GaAs/AlAs

superlattice [6]. In search of new optical sources, in GaAs/oxidized-AlAs super-

lattices the optical anisotropy has been exploited to achieve phase matching for

second-harmonic generation, the enhanced dielectric contrast has produced a break-

through in the construction of Bragg reflectors for MQW lasers and microcavities

and birefringent waveguides have been proposed [7].

Let us analyze more in details the physical effects involved in the above mentioned

applications. Interband absorption spectra of bulk tetrahedral semiconductors (like

Silicon, GaAs, AlAs, . . .) are dominated by two prominent features, denoted E1 and

E2 [8, 9]. The E1 peak originates from band-to-band transitions along the Γ − L

direction, where valence and conduction bands are nearly parallel: this results in

a M1-type critical point, i.e. a saddle point in the joint density of states, which

also gives a strong excitonic character to the transition. The E2 peak, instead, has

contributions from different parts of the Brillouin zone, but mainly from a region

centered around the special point (3
4
, 1

4
, 1

4
) (in units of 2π/a, where a is the lattice

constant). Starting from a basic level of analysis, in a nanostructure the confine-

ment of the carriers, as the simplistic exercise of the particle in a box can teach,

leads to a blue shift and a sharpening of the absorption peaks. In addition, re-

moval of level degeneracies can induce the subdivision of the transitions in groups,

leading to splittings of the absorption peaks. In the past, most experimental inves-

tigations have focused on the energy region of the fundamental gap, which is easily

accessible by photoluminescence and photoluminescence excitation spectroscopies

and yields a variety of interesting physical phenomena related to bound excitonic
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states. Relatively few studies of confinement effects on high-energy transitions have

been presented. Blue shifts and splittings of the E1 and E2 transitions were mea-

sured in GaAs/AlAs superlattices [10, 11]. More recently, a quantum confinement

induced shift of E1 and E2 was measured in Ge nanoparticles embedded in a glassy

matrix [12, 13]. Concerning theory, confined electronic levels close to band edges,

excitonic effects and the resulting optical properties can be calculated rather simply

and accurately by the envelope-function method [14]. The theoretical problem of

determining optical spectra of semiconductor heterostructures in the whole visible

region is much more complex and beyond the reach of effective-mass methods, as it

requires a description of the effects of confinement and coupling on electronic states

in the whole Brillouin zone.

Yet, there is still a remarkable effect of the reduction of symmetry to be consid-

ered, which obliges us to move to a deeper level of analysis of the problem. The

original point group of most of the bulk semiconductors which constitute the studied

heterostructures is the cubic group of the diamond or zinc-blend structure, which

yields an isotropic optical response of the medium. The lowering in the crystal

symmetry gives rise to an optical anisotropy in the real part of the dielectric con-

stant (birefringence) and in the imaginary part (absorption anisotropy or dichroism).

Even at zero-frequency, birefringence can be large, like in nanostructured silicon sur-

faces [15], or of moderate amplitude, as in GaAs/AlAs superlattices [16], where it

also shows a non-trivial dependence on the superlattice period. The basic picture

in terms of transitions between one-electron states, mainly used up to now, ignores

contributions from many-body effects which may play a crucial role, and which tend

to be especially important when the scale of the system is reduced and the inhomo-

geneity of the medium is more pronounced. Self-energy and electron-hole interaction

(i.e. excitonic) effects can have a significant contribution to the absorption spectra

of even simple bulk semiconductors. The former corrects the ground state exchange-

correlation potential, the latter describes the variations of the exchange-correlation

potential upon excitation. Of course, there are also contributions stemming from

variations of the Hartree potential, including the so-called local field effects, which

express the fact that these variations reflect the charge inhomogeneity of the re-

sponding material. Therefore, local field effects can be of moderate importance,
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compared to the exchange-correlation contributions, in the absorption spectra of

simple bulk semiconductors, but show up increasingly when one considers more

inhomogeneous systems.

Most of the today technologically interesting systems are strongly inhomoge-

neous, and their potential applications might even be based on their inhomogeneity

- superlattices are one of the best examples. As a first conclusion, we can now

designate the nearly lattice-matched GaAs/AlAs superlattices as the ideal proto-

type systems for the understanding of artificial structures. Many reference data

are available, since their optical properties have been thoroughly investigated both

experimentally [10, 17, 18] and theoretically [19, 20, 21, 22, 23, 24, 25]. In this

thesis we will study the electronic states all over the Brillouin zone and the optical

properties, with a special care for the optical anisotropy, of two specific kinds of

systems: (GaAs)p/(AlAs)p superlattices and free-standing GaAs layers, which are

simulated by (GaAs)p/(vacuum)p superlattices. Both these systems consist in the

periodic alternation of layers of two different materials (or also an empty lattice)

with an original zinc-blend structure. Each layer is composed by the same number

p of (001) planes: 2p planes compose the supercell. An example of GaAs/AlAs

tetragonal supercell is shown in Fig. 1.1 on page 11. Besides the obvious choice of

GaAs/AlAs systems, the motivation for studying GaAs/vacuum superlattices is to

analyze how confinement effects act in a system where the electronic states are truly

confined in GaAs layers, even at high energies. In GaAs/AlAs superlattices, in fact,

the band structures of the two constituents far away from the fundamental band

edges are rather similar and strong banding effects occur in short-period structures,

i.e. the electronic states become delocalized along the superlattice. A comparison

between the two systems should therefore elucidate the respective roles of quantum

confinement and superlattice band formation in determining the optical properties.

However, free-standing GaAs films are not only an ideal model system, as they can

be produced by chemical etching [26], and, moreover, GaAs/vacuum superlattices

can be a model for superlattices made of GaAs and a wide-gap oxide, like Al2O3 or

oxidized AlAs (AlOx).

GaAs/AlAs superlattices have been the subject of various theoretical studies.

Most of the approaches well established for bulk band structure calculations reveal
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Figure 1.1: Tetragonal supercell for a (GaAs)2/(AlAs)2 (001) superlattice. Red small circles

indicate As atoms, blue circles and green circles indicate respectively Ga and Al atoms.
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some weaknesses, when applied to a low-dimensional system. A completely satisfac-

tory method should describe accurately, all over the Brillouin zone, both intervalley

coupling and confinement effects, in systems of any scale, constituted by few-atom

to million-atom supercells. In literature, only the electronic structure of very-short-

period (GaAs)p/(AlAs)p superlattices has been calculated from first principles by

Density Functional Theory (DFT) and norm-conserving pseudopotentials (see Sec-

tion 3.5). DFT calculations benefit of a high degree of precision, which cannot be

reached by empirical calculations. Nevertheless, the computation time grows rapidly

with the number p of monolayers, making the method impractical for large scale sys-

tems. Thus, many empirical methods have been developed in the last decades to

study large-scale superlattices (see Section 2.1). While reaching a simplification of

the problem, they often fail to describe correctly all the physical effects involved.

Concerning the optical properties, only a few calculations of absorption spectra

for very-small period superlattices exist. Moreover, very few information is known

about the dielectric properties and the anisotropy at zero frequency of GaAs/AlAs

superlattices. First, the refractive index has been neither measured nor calculated,

and it is commonly estimated from the dielectric constants of bulk GaAs and AlAs

in the framework of the effective medium approach [27]. This classical theory may

fail for small period superlattices, where the delocalization of the electronic states

over the superlattice implies that the use of the bulk dielectric constants is not

justified anymore. In fact, theoretical calculations have shown for ultrathin (001)

(GaAs)p/(AlAs)p SL’s that an effective medium model cannot explain the behav-

ior from p=1 to p=3 [11]. Second, the change in the refractive index with light

polarization – the static birefringence – has been measured for large period (001)

(GaAs)p/(AlAs)p SL’s and a remarkable drop has been observed (see Fig 4.9 on page

90) as the period decreases. This behavior has been suggested to depend on local

fields [16]. Ab initio methods for ultrathin SL’s [11], and a semi-empirical approach

for larger ones [28], have been applied neglecting local field effects and did not ac-

count for the observed value of the birefringence, nor for its decrease with decreasing

p, even qualitatively.

After having defined the systems we are going to study, and after clarifying the

reasons for their interest and the variety of physical phenomena that they show, we
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want to discuss the objectives of this thesis work. We aim at attaining:

(i) A detailed analysis of the electronic band structure of superlattices; in partic-

ular a comprehension of how different physical effects, i.e. confinement, super-

lattice potential-induced couplings, lowering of crystal symmetry, influence the

evolution from the bulk electronic states to the superlattice states.

(ii) An insight in the advantages and disadvantages and an instructive comparison

of two powerful models for electronic calculations in solids, namely the pseu-

dopotential Linear Combination of Bulk Bands (LCBB) method [29] and the

Density Functional Theory (DFT), used in the Local Density Approximation

(LDA), with norm-conserving pseudopotentials and a plane wave basis set. The

first of them is based on a semi-empirical parameterization of the pseudopoten-

tial, which involves a fitting on experimental data, the second relies completely

on first principles. Concerning the LCBB method, we have developed a code

based on this method to study superlattice states and optical properties.

(iii) A detailed determination of the dielectric properties of superlattices, both in

the isotropic approximation and considering the anisotropy of the dielectric

tensor for light polarizations along growth or in-plane directions. We will focus

on the behavior under confinement of the peaks in the absorption curves and

on the anisotropy of the optical response, in particular calculating the dielectric

tensor components and the zero-frequency birefringence. These properties will

be analyzed as a function of the superlattice period p. Once again, the discus-

sion will follow the two parallel roads of a semi-empirical and a first-principle

Time-Dependent DFT (TDDFT) approach to the problem. The two methods

will be applied, on one hand, within the same approximation, to judge the

consistency of the corresponding results. On the other hand, we will try to

differentiate the calculations in order to cast light on all the possible physical

effects presented above. As a first step, we will discuss to what extent confine-

ment and folding-induced modifications on the electronic states are sufficient

in reproducing experimental data. This kind of analysis will be carried out in

a semi-empirical approach, within the semplified picture of Fermi’s golden rule

for one-particle states and independent particle transitions. Afterwards, we will
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compare the obtained results with totally analogous independent-transition ab

initio calculations. Then, we will introduce local field effects in the ab initio

TDDFT calculations, to understand whether they give a relevant contribution

to the optical anisotropy, as it can be expected intuitively. We will finally

conjecture, in view of the obtained results, how many-body effects can further

contribute to the results. We will test two different approximations (RPA and

TDLDA) for the inclusion of the exchange-correlation contributions. To in-

clude quasi-particle and excitonic effects, within a many-body Green’s function

formulation is out of reach for the existing computational tools, except in case

of very-thin superlattices.

(iv) An innovative investigation of the optical spectra of bulk GaAs and AlAs sys-

tems. The application of an improved TDDFT model recently elaborated by

Reining et al. [30] and up to now only applied to Si bulk crystals, allows to

include the many-body effects in the optical spectra in a computational very

efficient way. We will establish if it succeeds in reproducing, besides Si spectra,

bulk GaAs and AlAs spectra as well. The continuum exciton effect is known

to be considerably strong in this kind of systems. An application to superlat-

tices is at the moment premature; nevertheless the quality of the results will

be discussed also in view of a future application to heterostructures.

The thesis is organized as follows. In Chapter 2 we introduce the pseudopo-

tential semi-empirical techniques, and in particular the LCBB method: we apply

them to calculate bulk (i.e. GaAs and AlAs) and superlattice (i.e. GaAs/AlAs

and GaAs/vacuum) band structures. The Density Functional Theory formalism for

ground state calculations is described and applied in Chapter 3. The results ob-

tained in the two different approaches are compared at the end of the Chapter 3. In

Chapter 4 and 5 we present, respectively, the semi-empirical and ab initio calcula-

tions of the dielectric properties, with a particular interest in the optical anisotropy.

Chapter 6 contains the summary and the discussion of the present findings, also

in view of extensions of this work. Finally, in Appendix A we discuss some basic

approximations and in Appendix B we present a description of the semi-empirical

and norm-conserving ab initio pseudopotentials.



Chapter 2

Semi-empirical calculations of

superlattice band structures

The first step to face the tasks that we have just presented in the introduction to our

work, is the search for a reliable approach to the calculation of the electronic states of

quantum nanostructures. Although the problem is more general, we are interested

in focusing on the study of (GaAs)/(AlAs) and (GaAs)/(vacuum) superlattices,

grown in the [001] direction. In the present and the following chapters, we will

analyze two different choices among the big variety of methods developed within

the independent-particle scheme. At the end of the next chapter we will be able to

compare the band structures obtained by means of the two different methods. Here

we start dealing with semi-empirical calculations. We will present a rapid overview

of the empirical/semi-empirical methods usually adopted in literature, underlining

their advantages and disadvantages. Then, we will motivate the choice of one of

this methods, namely the Linear Combination of Bulk Bands (LCBB) method [29,

31]. In particular, we will explain the details of the formalism and how we have

applied it to build a computational code. The application of the method requires

the availability of good semi-empirical pseudopotentials. The procedure to construct

semi-empirical atomic pseudopotentials is discussed in Appendix B. Finally, the

calculated superlattice band structures will be compared to the experiment and to

the constituent bulk band structures. It is especially interesting to discuss how the

bulk states evolve into the superlattice ones.
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16 Chapter 2. Semi-empirical calculations of superlattice band structures

2.1 The choice of an empirical model

A method is called empirical when the electronic Hamiltonian (see Appendix A),

which characterizes the physical system, depends on a set of parameters, to be fit-

ted on experimental data. In this sense, we will see that it is more correct to define

the method we apply semi-empirical, because the fitting procedure considers also

numerical data coming from first-principle calculations. If one aims at approaching

complex large scale systems, first principle parameter-free techniques often reach

their limits: these kind of calculations are not feasible, because of practical compu-

tational limitations in time and in memory. In these cases, the choice of one among

the many existing empirical or semi-empirical techniques represents a low computa-

tional cost solution to investigate, with satisfying reliability, some particular aspects

of the problem. It must be clear from the beginning that, to keep reasonably low

the number or fitting parameters, it is necessary to give up reaching a too high

precision in band structure calculations, especially far from the band gap and the

high symmetry points. To compete with the ab initio quasi-particle calculations an

empirical method should involve a small computational effort and allow to study

very large scale systems.

In order to develop and improve the empirical techniques, a considerable effort

has been devoted in the last 15 years to go beyond the “standard model”, i.e.

the k · p envelope-function approach [32, 33, 14]. The envelope function method

represents the highest degree of simplification of the problem: it substitutes the true

microscopic potential and the real band structure with simpler constant potentials

and parabolic bands. In a way which reminds the k ·p model for a bulk crystal, the

representation for the Bloch superlattice states ψi,q is made of bulk eigenfunctions

in k0,
{

un,k0
(r) eik0·r

}

n
, (usually k0 = Γ = 0):

ψi,q(r) =
∑

n,GSL

c
(i,q)
n,GSL

[

un,Γ(r) eiGSL·r
]

eiq·r , (2.1)

where GSL are superlattice reciprocal lattice vectors and n is the bulk band index.

This type of representation suggests an intuitive criterion to select the band indices

n to include in the finite sum in Eq. (2.1): only the bulk states not too far in energy

from the searched state ψi,q are physically important. While eminently successful in

describing states in wide quantum wells, this approach encounters strong limitations
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in modeling small systems with more complex geometries, like short/medium period

superlattices, wires and dots. The band structure far from k0 cannot be reproduced

in a satisfactory way, as it already happened in a k · p calculation for a bulk solid,

unless an extremely high number of basis function are considered. The mixing effects

between states labelled by k-points connected by a nanostructure reciprocal vector,

and thus coupled by the mesoscopic periodicity of the superlattice potential, are not

accounted for and must be introduced artificially. As a result, the application of

this method is advised only if one is interested in the dispersion of a single band

edge of the heterostructure, which originates from states of the bulk material coming

from a region close to the selected point k0. On the other hand, excitonic effects

and external fields can be easily modeled to be included, as an approximation, in

calculations. The more sophisticated and accurate k · p generalizations, which can

include multiband coupling throughout all the Brillouin zone, have been discussed

in many recent works (see for example Ref. [34, 35, 36, 37]). A semi-quantitative

description of superlattices has been obtained by Dandrea and Zunger [21] within a

virtual-crystal approximation. This model represents a further step in the direction

of relating the superlattice levels to those of their constituents.

The search for improvements is intended to avoid the drastic solution of a “direct

diagonalization”, which gives accurate results, but is, from a computational point of

view, as expensive as the ab initio approaches. The direct diagonalization approach

comes from an antithetic starting point: it consists in expanding the nanostructure

wave functions on a large basis, usually made of plane waves or localized atomic

states. The empirical tight-binding model [38, 39, 40, 41] expresses the ionic po-

tential V (r) of the nanostructure as a superposition of atomic empirical potentials.

The nanostructure wave functions are expanded on a set of localized atomic orbitals.

The variational flexibility of the basis is quite limited and the calculations usually

do not include more than the second or third nearest-neighbor interactions. The

computational time is fairly high for an empirical method: the dimension of the ba-

sis scales as the number N of atoms of the cell, in its turn the diagonalization time

scales as N3, making the method impractical already for a system made of a few

thousands of atoms. A more flexible basis is offered by a plane wave set, to be used

in connection with atomic empirical pseudopotentials (EPM) [42, 20]. Nevertheless,
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the choice of a delocalized basis set does not change the limit size of 103 atoms. The

advantage of these two methods, in comparison to the standard envelope function

model, is the ability to study a system characterized by whatever complex geometry,

without losing symmetry information.

The Linear Combination of Bulk Bands (LCBB) method, proposed some years

ago by Wang, Franceschetti and Zunger [29] allows a gathering of the advantages of

many different methods. This approach has proved to be able to face the problem

of the electronic structure all over the Brillouin zone, for a nanostructure made of

up to million atoms supercells, characterized by any geometry. In fact, it needs a

small computational expense and includes naturally all the folding and confinement

effects. As the name of the method suggests, it consists in expanding the electronic

wavefunctions of the nanostructure as a linear combination of the eigenfunctions of

the bulk constituent materials. Unlike tight-binding or standard plane wave expan-

sions, a basis of bulk states allows to pre-select intuitively the physically important

states which may mix in the formation of the nanostructure state, hence the dimen-

sion of the basis can be reduced as much as to make possible to approach large scale

systems. By contrast with the k·p envelope function method, off-Γ states un,k 6=0e
ik·r

are directly considered, permitting a correct treatment of multiband confinement-

induced couplings within the Brillouin zone, without the need for a large basis of

k = 0 bulk states. Moreover, a technique whose starting points are the bulk states is

the most suitable tool to understand how the bulk states evolve into the superlattice

ones, allowing to study further which effects contribute to the differences between

the optical spectra of the superlattices and their constituent bulk materials. All

these motivations have lead us to choose the semi-empirical LCBB method.

2.2 The Linear Combination of Bulk Bands method

The LCBB method, as presented in Refs. [29, 31] can be easily applied to every

kind of nanostructure. Although more general, from now on we restrict the presen-

tation of the formalism to (A)p/(B)p superlattices, made of alternating layers of two

different materials characterized by an original zinc-blend structure, grown in the

direction [001]. In practice, two specific kinds of periodic systems have been studied:
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(GaAs)p/(AlAs)p and (GaAs)p/(vacuum)p superlattices, with a superlattice period

p ranging from 4 to 20. We choose to constrain the width d/2 = p/2a of the A layers

to be equal to the width of B layers. In GaAs/vacuum superlattices a is simply the

experimental GaAs lattice constant, whereas in GaAs/AlAs superlattices a is the

average of the experimental lattice constants of the the almost lattice-matched GaAs

and AlAs crystals. In fact, the lattice mismatch is so small (about 0.15% [43]) that

it can be neglected for our purposes, thus allowing to use the strain-free formalism

[31].

According to the LCBB approach, the superlattice electronic wave functions are

expressed as linear combinations over band indices n and wave vectors k = q+GSL
1

of full-zone Bloch eigenstates of the constituent bulk materials:

ψi,q(r) =
∑

σ=A,B

Nb,NGSL
∑

n,GSL

c
(i,q)
n,GSL,σ u

σ
n,q+GSL

(r) ei(q+GSL)·r . (2.2)

In the expression (2.2) the first sum runs over the two constituent bulk materials,

A=GaAs and B=AlAs,vacuum, the second sum runs over the band indices n and

the supercell reciprocal lattice vectors GSL, belonging to the first Brillouin zone of

the underlying bulk lattice. Because of the supercell periodicity, the superimposed

superlattice potential mixes up only bulk states labelled by k = q + GSL vectors

which differ by a superlattice reciprocal lattice vector GSL: the number of coupled

states is hence always equal to 2p, because exactly 2p vectors GSL are contained in

the fcc Brillouin zone. The maximum dimension of the basis set is then given by

2p multiplied by the number Nb of selected bulk bands indices. The classification

of the bulk states by means of the band index n and the dispersion of the bands

as a function of k allow an intuitive selection of the bands to be retained in the

basis: the physically relevant states belong to energy bands close in energy to the

superlattice states we are interested in calculating. For example, if one is aiming at

studying the optical absorption in an energy range close to the gap, the bulk states

to be included in the basis are those close to the optical gap. We know that, for each

independent point k = q + GSL, the bulk eigenfunctions of type σ form an infinite

orthonormal set. In the ideal case of an infinite representation for the superlattice
1From now on we will indicate with q a reciprocal space vector inside the tetragonal Brillouin zone of the

superlattice, with k a vector inside the bulk Brillouin zone, with GSL a superlattice reciprocal lattice vector which

is contained inside the first Brillouin zone of the underlying bulk lattice, and with G a bulk reciprocal lattice vector.
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wavefunctions, it would be equivalent to use the bulk set of type A or B, whereas

it would be an error to merge them in a unique set, which would obviously yield

an overcomplete basis. Nevertheless, using a small set of bulk eigenfunctions, it is

more convenient to create a mixed set of A and B eigenstates, provided that the

resulting basis is orthonormalized before being used.

Local semi-empirical continuous atomic pseudopotentials have been picked out

from literature [44] to build the pseudopotential term in the one-particle Hamilto-

nian. These pseudopotentials have been used to perform all the semi-empirical band

structure calculations, first for the bulk constituent materials and then for the het-

erostructures. A detailed description of the pseudopotential method is presented in

Appendix B. Since the adopted pseudopotentials are designed for a kinetic-energy

cutoff of 5 Ry, [44] bulk eigenfunctions are expanded on a plane wave basis set

truncated at about 60 plane-waves at each k-point:

φσ
n,k(r) =

1√
Ω

∑

G

Bσ
n,k(G) ei(k+G)·r , (2.3)

where Ω is the bulk fcc cell volume. This means that, as a consequence, also the

superlattice states are a linear combination of the same small set of plane waves.

However, the method is much more powerful than a simple direct diagonalization

on the plane wave basis, because the first diagonalization step concerning the bulk

constituents furnishes a set of conveniently weighted plane waves to face the more

complex superlattice problem. Instead, a standard plane wave expansion would

require a much larger plane wave basis, whose dimension would continue growing

proportionally to the number of atoms in the supercell. At this stage we have decided

to neglect the spin-orbit interaction, even if it is possible to include it, as explained

in Ref. [44]. In Figs. 2.2 and 2.3 we show the band structures of GaAs and AlAs

calculated with these pseudopotentials. More details are discussed in the following

section.

Moving finally to the superlattice one-particle Hamiltonian, we observe that the

pseudopotential term is built as a superposition of screened, spherical atomic local

pseudopotentials vα:

H = − h̄
2∇2

2m
+
∑

α

∑

R∈DL

vα (r − R− dα) Wα (R) , (2.4)
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where R is a fcc direct lattice (DL) vector and dα the displacement of the atom of

type α in the bulk primitive cell. The index α can assume four different values for a

GaAs/AlAs superlattice, because an As atom in the GaAs environment is considered

different from an As atom in the AlAs environment. In case of GaAs/vacuum

superlattices only three constituents are admitted: Ga, As (in GaAs environment)

and empty lattice sites. To preserve a correct description of interfaces in GaAs/AlAs

superlattices, an As atom bound to two Al and two Ga atoms has been attributed

a symmetrized pseudopotential, which is the average of the As pseudopotential

functions in GaAs and AlAs environments.

The weight function Wα (R) selects the atom basis which lies on each lattice site,

defining the geometrical details and the symmetry of the structure: in the vacuum

layers its value is zero. In the following calculations we assume ideal sharp interfaces,

which are described by a step-like weight function Wα (R). However, the interfacial

roughness, which is always present in real samples, can be easily simulated by a

segregated profile of Wα (R), as discussed in Ref. [29]. The Hamiltonian matrix

elements on the bulk basis set are given by

〈σ′, n′,G′
SL + q|H |σ, n,GSL + q〉 =

∑

G,G′

[

Bσ′

n′,G′

SL
+q(G

′)
]∗

[

h̄2

2m
|q + GSL + G|2 δGSL,G′

SL
δG,G′ +

∑

α

vα(|GSL + G − G′
SL −G′|)

ei dα·(GSL+G−G′

SL
−G′) Wα(GSL − G′

SL)

]

[

Bσ
n,GSL+q(G)

]

.

(2.5)

They depend on the Fourier transform of the pseudopotentials (i.e. a continuum

form factor) vα (r):
∫

Ω
dr ei(GSL+G)·r vα(r) = Ω vα(|GSL + G|) , (2.6)

and the Fourier transform of the weight function Wα (R):

Wα(GSL) =
1

Np

∑

R∈DL

Wα(R) eiGSL·R , (2.7)

where Np equals the number of bulk lattice points in the crystal volume.

It is evident that the few discrete pseudopotential form factors (i.e. the Fourier

transform coefficients of the pseudopotential vα (r), evaluated at the smallest G vec-
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tor shells of the reciprocal lattice), which are sufficient to calculate the bulk band

structure, are no longer enough to obtain the matrix elements for the superlattice

Hamiltonian. The Fourier transform (2.6) is needed at all the superlattice reciprocal

lattice vectors GSL. When the superlattice period p grows, the superlattice recipro-

cal lattice becomes denser and denser and, in the limit of an infinitely large supercell,

we need to know the Fourier transform of the pseudopotential vα (x) for all the real

values x = |G + GSL|, as a continuum function. We use the continuous-space func-

tions vα (x) proposed by Mäder and Zunger [44]. Details on the construction of

the semi-empirical pseudopotentials and a table of the parameters can be found in

Appendix B. In Ref. [44], the empirical parameters of the pseudopotential function

are adjusted in order to fit both the measured electronic properties of bulk GaAs

and AlAs and some DFT-Local Density Approximation (LDA) results for superlat-

tices. This last requirement is the reason why we have called these pseudopotential

“semi-empirical”, instead of simply “empirical”. It has been verified that the wave

functions of bulk and p=1-superlattice systems calculated with these pseudopoten-

tials are close to those obtained in rigorous first principles LDA calculations [44].

These pseudopotentials are adjusted to reproduce the experimental GaAs/AlAs va-

lence band offset (0.50 eV). As bulk and superlattice energy levels are provided in

the same absolute energy scale, their eigenvalues can be compared directly. The

Fourier transform of the weight function Wα can be calculated analytically in the

case of abrupt interfaces. Its expression reveals a proportionality to the inverse of

the superlattice period p [45]:

Wα(GSL) =
1

4p

p
∑

l=1

2 ei(l−1)πj

p α = Ga, As (in GaAs) , (2.8)

Wα(GSL) =
1

4p

2p
∑

l=p+1

2 ei(l−1)πj

p α = Al,As (in AlAs) , (2.9)

Wα(GSL) = 0 α = empty lattice site ; (2.10)

where

GSL = Γ +
2π

pa
(0, 0, j) j ∈ (−p, p] . (2.11)

As a result, the coupling between bulk wavefunctions coming from k-points in the

fcc Brillouin zone connected by a superlattice vector GSL becomes less relevant as

the superlattice period p grows. Moreover, a different behavior for even or odd p is
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detected.

2.3 From bulk to superlattice states

The first step to study the superlattice band structures by the LCBB method is the

calculation of the bulk energy levels and eigenfunctions all over the Brillouin zone.

The dispersions of the energy levels along the high symmetry directions in the fcc

Brillouin zone, for GaAs and AlAs crystals, are shown respectively in Figs. 2.2 and

2.3. The energy zero is fixed at the top of the valence band of GaAs, for both GaAs

and AlAs band structures. This choice is meant to emphasize the advantages offered

by the semi-empirical pseudopotentials parametrized in Ref. [44]: the electronic

energies extracted by the diagonalization of the Hamiltonian (2.5) lie on an absolute

energy scale, thus the energy levels of GaAs and AlAs can be directly compared

and the difference between the highest occupied levels of the two materials at Γ

gives the 0.5 eV valence band offset without further adjustments. The fit of s-like

conduction-band edges at the high symmetry points Γ, X, L is excellent, especially

in the case of GaAs. Yet, we will notice that the error remains relevant, even 0.7

eV with respect to the experiment for the p-like GaAs Γ15c (see Tables 3.2 and

3.3). The numeric values of the energy levels at the high symmetry points will be

further discussed in the comparative tables mentioned above, after the presentation

of the analogous ab initio band structure calculations in Section 3.5. It is worth

remembering that the semi-empirical pseudopotential implemented here is local,

whereas the norm-conserving pseudopotential accounts for non-local contributions.

Hence it is expected that the quality of first principle band structure is higher.

Starting from a bulk basis set to expand the superlattice wavefunctions obliges

to think about the way in which the bulk states couple to evolve to the superlattice

states. The cubic symmetry of the bulk lattices is reduced when the superlattice is

built and the growth direction z is no longer equivalent to the orthogonal in-plane

directions x and y. The ideal structure for a lattice-matched system with abrupt

interfaces is a simple tetragonal Bravais lattice, with a supercell defined by the basis

vectors (1, 1, 0)a/2, (−1, 1, 0) a/2, (0, 0, 1) pa, where a is the bulk lattice constant.

The reciprocal lattice is also simple tetragonal, with basis vectors (1, 1, 0) (2π)/a,
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Figure 2.1: Brillouin zone for simple tetragonal (GaAs)p/(AlAs)p and (GaAs)p/(vacuum)p (001)

superlattices, included in bulk conventional cubic cell. The figure shows high symmetry points

positions.

(−1, 1, 0) (2π)/a and (0, 0, 1) (2π)/(pa). The first Brillouin zone is shown in Fig. 2.1.

Superlattice high symmetry points are distinguished from their bulk counterparts

by putting a bar over the symbol. An additional symmetry point L̄ is defined as

follows: L̄ = X̄ if p is even, L̄ = R̄ if p is odd. The most important zinc-blend

k-points are folded onto superlattice points as follows:

Γ,

{

j

p
Xz

}

j=−p+1,p

−→ Γ̄ ,

Xy,

{

j

p
Xz

}

j=−p+1,p

−→ M̄ ,

L111,

{

j

p
Xz

}

j=−p+1,p

−→ L̄ . (2.12)

In the case of a common anion structure like (GaAs)p/(AlAs)p the point group isD2d,

otherwise it is C2v: the latter is the case of (GaAs)p/(vacuum)p superlattices [46]. In

Fig. 2.1 we show the tetragonal Brillouin zone and the high-symmetry-points. First

of all, we consider the case of GaAs/AlAs superlattices, where two different bulk

materials constitute the alternating layers. We can observe that GaAs and AlAs

band structures are very similar, thus we do expect to still be able to recognize
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Figure 2.2: Bulk band structure of a GaAs crystal along the high symmetry directions, obtained

by the semi-empirical pseudopotentials of Ref. [44]. The energy zero is taken at the valence band

maximum of bulk GaAs.
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in the superlattice band dispersion the characteristic features present in the bulk

dispersions. However, comparing directly the GaAs/AlAs band dispersion, shown

e.g. in Fig. 2.6, with the bulk band structures in Figs. 2.2 and 2.3 is misleading

and cannot reveal these expected similarities. Before being instructively compared,

the two band structure must be referred to the same Brillouin zone. The tetragonal

supercell contains 2p bulk fcc Wigner-Seitz cells, as a consequence, in the reciprocal

space the tetragonal Brillouin zone is contained in the bulk octahedron Brillouin

zone (see Fig. 2.1). The bulk states outside the superlattice tetragonal Brillouin

zone can be folded into it, by adding tetragonal reciprocal lattice vectors. The

result is a 2p times denser band dispersion along the tetragonal symmetry direc-

tions. The (GaAs)2p band structure showed, for p=10, in Fig. 2.4 is completely

equivalent to the more usual picture in Fig. 2.2. We remember that in the bulk fcc

crystal the directions [001] and [100] are equivalent, hence the bulk band dispersion

is the same along the Γ̄-M̄ and Γ̄- Z̄ lines. Now, if we compare the (GaAs)20 band

structure in the tetragonal Brillouin zone with the (GaAs)10/(AlAs)10 superlattice

band structure in Fig. 2.6, we are struck by their similarity. However, they are not

equal, because beside the consequences of folding, also coupling effects occur when

a superlattice is built. Starting from a simple perturbation picture, when the super-

lattice potential is switched on, it couples the previously independent bulk bands,

relative to the same superlattice point q, but coming from non-equivalent points

q+GSL in the bigger fcc Brillouin zone. The effect is an overall modification of the

energy levels. In particular, since the superlattice potential has a lower symmetry,

it can remove level degeneracies. It is time to observe that there are some slight,

but relevant, differences in the bulk band structures of GaAs and AlAs: they differ

with regard to the first conduction band. The conduction minimum of GaAs is in

Γ, the minimum of AlAs is in X instead. Thanks to the absolute energy scale, we

can compare directly the distance in energy of the two edges, which measures only

0.2 eV. Moreover, we know that the bulk k-points Γ and X can be connected by

a superlattice reciprocal lattice vector GSL. Starting again from the perturbation

theory picture, we can easily see that the bulk GaAs eigenfunctions in Γ can be

strongly coupled to the AlAs eigenfunctions in X. This effect is known in literature

as Γ-X coupling and has remarkable consequences on the properties of the minimum
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Figure 2.3: Bulk band structure of AlAs along the high symmetry directions, obtained by the

semi-empirical pseudopotentials of Ref. [44]. The energy zero is always taken at the valence band

maximum of bulk GaAs, hence the valence band offset between GaAs and AlAs is 0.5 eV.
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Figure 2.4: Bulk band structure of a (GaAs)20, i.e. p=10, obtained by folding the GaAs bands

in Fig. 2.2 along the high symmetry directions of the tetragonal Brillouin zone. The energy zero

is taken at the valence band maximum of bulk GaAs. The dotted top valence band is the Fermi

level.
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conduction state in Γ̄ at different superlattice sizes [45, 47, 48]. The coupling be-

tween Γ̄(Γ1c) and Γ̄(X1c,3c) states, i.e. the lowest superlattice conduction states at

Γ̄, which come respectively from Γ and X band-edge states of the constituent bulk

materials (see the state labels in Figs. 2.2 and 2.3), leads to a reciprocal repulsion

between these two levels. Since all zinc-blend X states lie higher in energy than the

GaAs Γ conduction minimum, this symmetry coupling pushes down the Γ̄(Γ1c) state,

contrasting the upward shift due to confinement. This competition between poten-

tial symmetry and kinetic energy effects results in a non-monotonic Γ̄ (Γ1c) /Γ̄ (X1c)

splitting for small p. For large periods, symmetry induced repulsions rapidly attenu-

ate, as the weight function Wα becomes smaller, and confinement effects dominate,

even though they also decrease as the well width grows. All this determines the

transition form a pseudo-direct (i.e. Γ̄ (X1c) is the conduction minimum) to a direct

(i.e. Γ̄ (Γ1c) is the conduction minimum) gap at a superlattice period p = 11 ± 1

[49].

We have also determined (see the table in Fig. 2.5) the electron effective masses

m∗ from the definition:

E(k) − E0 =
h̄2 |k − k0|2

2m∗ , (2.13)

where E0 is the energy of the band extreme at k0 and k must not be too far from

k0, in order to validate the parabolic approximation. The quality of the obtained

effective masses is particularly important, in view of describing correctly another

important effect, besides the mixing effects: the carrier confinement. We give in

Fig. 2.5 a schematic image of the confinement of an electron in a multilayered struc-

ture. We consider an electron in a conduction band (but the same considerations

are valid for a hole in a valence band) in a GaAs/AlAs superlattice, lying in a state

which comes from a bulk band edge state: it can be represented by a particle of

mass m∗ which feels a rectangular potential, given by the level alignment of the bulk

energy bands along the growth direction z (see the schematic picture in Fig. 2.5).

This corresponds to nothing more than the simple quantum mechanic exercise of a

particle in a periodic repetition of boxes. The AlAs layers act as barriers for the

carriers (both electrons in conduction band and holes in valence band), confined in

the wells made of GaAs. The result is a shift of both the valence and the conduction

energy levels, which makes the gap wider. The effective mass values are related to
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Figure 2.5: Conduction and valence band edge profiles in the GaAs/AlAs superlattice. Both Γ

and X minima are shown.
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the curvature of the bands: the semi-empirical pseudopotentials give satisfactory

effective masses if compared to experiments, as discussed in Ref. [44].

Concerning GaAs/vacuum superlattices, the same considerations are valid, ex-

cept for the fact that there are no AlAs states and thus only GaAs states can mix

with each other. For the vacuum barriers are ideally infinite in height, confinement

effects are significantly stronger and, accordingly, the band gaps are wider than in

GaAs/AlAs systems. If we now compare the GaAs band structure in the tetragonal

Brillouin zone with the GaAs/vacuum superlattice band structure in Fig. 2.7, they

still show similar dispersions. However, as the GaAs/vacuum superlattice has only

half the number of electrons if compared to the bulk GaAs, also the superlattice

band structure has only half the number of bulk bands.

2.4 Calculated superlattice electronic levels

Finally, we show the results of the application of the method LCBB to the single-

particle band structures of (001) (GaAs)p/(AlAs)p and (GaAs)p/(vacuum)p super-

lattices. In practice, the period d = pa has been varied from 4a to 20a. We do not

consider smaller supercells because the superlattice electronic states differ more and

more from bulk states while the layer width decreases, making the expansion on the

bulk states less reliable.

In the case of a GaAs/vacuum superlattice we decide to include the 4 valence

bands and the 4 lowest conduction bands in the basis set. In the case of a GaAs/AlAs

superlattice the roughest selection is to take both GaAs and AlAs bulk states at each

mixed k and n, orthonormalizing at the end the basis set obtained. As GaAs and

AlAs band structures are very similar except for the lowest conduction band (see

again Figs. 2.2 and 2.3 and details of calculation below), we have verified that it is

enough to include only GaAs states for n from 1 to 8 together with the 5th band of

AlAs (i.e. the lowest conduction band). The resulting set must be orthonormalized.

It can easily be seen that the final dimension of the basis is always small (40× 9 for

the largest supercell). When a sufficiently large number of bulk states is used as a

basis set for the LCBB method, the results must converge to those obtained with

a direct diagonalization of the Hamiltonian for the corresponding number of plane
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waves. A comparison of LCBB results with the conventional supercell approach was

presented in Ref. [29]. Here we have performed a convergence test, which consists

in calculating the energy levels with four different bulk basis sets of increasing size.

Selected results are shown in Tab. 2.1 for (GaAs)10/(AlAs)10 and (GaAs)6/(AlAs)6

superlattices. As far as valence states are concerned, dependence of the energy levels

on the basis set is below 10−3 eV; for the lowest conduction levels the dependence

on the basis set is generally below 0.05 eV, and falls below 10−2 eV when the 5th

band of AlAs is included in the basis. The results of Tab.2.1 justify the use of basis

3), namely n = 1 to 8 for GaAs and n = 5 for AlAs.

Table 2.1: Comparison of energy levels (in eV) at the symmetry points for (GaAs)n/(AlAs)n

superlattices with period n = 6 and n = 10. We show highest valence levels and lowest conduction

levels: the energy zero is taken at the valence band maximum. Four different choices are considered

for the basis set: 1) five GaAs bands for n from 1 to 5, no AlAs bands; 2) eight GaAs bands for n

from 1 to 8, no AlAs bands; 3) eight GaAs bands for n from 1 to 8, the 5th band of AlAs; 4) eight

GaAs bands for n from 1 to 8, four AlAs bands for n from 5 to 8.

basis valence band maximum conduction band minimum

Γ̄ Z̄ R̄ M̄ X̄ Γ̄ Z̄ R̄ M̄ X̄

n=10

1) 0.0000 -0.0004 -0.8992 -2.1127 -0.8992 1.8318 1.8303 2.0069 1.9048 2.0063

2) 0.0000 -0.0004 -0.8990 -2.1129 -0.8990 1.8173 1.8190 2.0057 1.9014 2.0049

3) 0.0000 -0.0004 -0.8990 -2.1131 -0.8990 1.7949 1.8008 1.9911 1.8588 1.9881

4) 0.0000 -0.0003 -0.8985 -2.1130 -0.8985 1.7884 1.7957 1.9904 1.8590 1.9874

n=6

1) 0.0000 -0.0118 -0.8488 -2.0968 -0.8489 1.9766 1.9940 2.1730 1.9961 2.1561

2) 0.0000 -0.0115 -0.8481 -2.0970 -0.8482 1.9526 1.9567 2.1694 1.9940 2.1535

3) 0.0000 -0.0115 -0.8481 -2.0973 -0.8482 1.9062 1.9109 2.1451 1.9618 2.1053

4) 0.0000 -0.0113 -0.8468 -2.0967 -0.8468 1.9042 1.9098 2.1440 1.9626 2.1043

In Figs. 2.6 and 2.7 we show the superlattice energy bands for p=10: the elec-

tron energy levels are plotted along the highest symmetry lines in the tetragonal

Brillouin zone. All trends in the superlattice states obtained by LCBB method were

shown to be reproduced [29], with a surprising accuracy (10-20 meV) and a small
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Figure 2.6: Band structure of a (GaAs)10/(AlAs)10 (001) superlattice along the high symmetry

directions. The length of the Γ̄ − Z̄ line is multiplied by ten for clarity. The energy zero is taken

at the bulk GaAs valence band maximum.
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computational effort, down to thin superlattices and up to large periods. Since 2p

k-points in the fcc Brillouin zone are always folded onto the same point q in the

smaller tetragonal Brillouin zone, the number of occupied superlattice bands is 2p

times the number of bulk bands for GaAs/AlAs, p times the number of bulk bands

for GaAs/vacuum superlattices. The dispersion along the direction Γ̄-M̄ is similar

to the dispersion along the direction Γ-X in the bulk, while the other two directions

Γ̄-R̄ and Γ̄-X̄ have no counterpart in the band structures of Figs. 2.2 and 2.3. In

GaAs/AlAs, the dispersion along the growth direction Γ̄-Z̄ is much smaller than in

the other directions, as expected for superlattice minibands; in GaAs/vacuum the

bands along Γ̄-Z̄ are flat as tunneling through the vacuum has a negligible effect.

We have discussed how the main differences in the superlattice band structures

compared to the bulk (compare again to Fig. 2.4) can be interpreted in terms of

zone folding and quantum confinement effects; it is also interesting to compare the

band structures of the two superlattices. The superlattice gaps are larger than the

bulk gaps: in particular the GaAs/vacuum gaps are larger than the GaAs/AlAs

ones, as a result of a stronger confinement; moreover the superlattice band gap

widths increase as the superlattice period decreases. The lowering in the crystal

symmetry is responsible for the removal of level degeneracies: as an example in the

GaAs/AlAs D2d superlattice the threefold degenerate valence states at Γ (spin-orbit

is neglected) are split in a twofold-degenerate and a non-degenerate state, while in

the GaAs/vacuum C2v superlattices the degeneracy is completely removed.

In GaAs/vacuum bands we clearly see the appearance of states lying in the for-

bidden energy gaps. The lowest one lies in the gap from -10 to -6 eV, while two other

ones lie in the optical gap from 0 to about 2 eV. A fourth state can be recognized at

-5 eV around the point M̄ , while in other regions of the Brillouin zone it resonates

with the energy bands. Indeed, four surface states or resonances are expected from

the presence of two dangling bonds at the two interfaces of each GaAs layers. We

can identify the surface states by studying the behavior of the probability |ψ|2 to

find an electron along the growth direction z, averaged over the in-plane x, y co-

ordinates. Taking as an example the conduction miniband states at Γ, where the

potential profile is characterized by 0.5 eV deep wells in GaAs layers, we observe

(see Fig. 2.8) that an electron in a surface state (j = 39 in the exemplified case)
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Figure 2.7: Band structure of a (GaAs)10/ (vacuum)10 (001) superlattice along the high symmetry

directions. The energy zero is taken at the bulk GaAs valence band maximum. The uppermost

occupied band is number 40 (dotted).
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Figure 2.8: Planar averaged probability along the growth direction z to find an electron at Γ in

the 36th and the 39th band of a (GaAs)10/(vacuum)10 (001) superlattice.

has a high probability to be localized on the surface and a decaying probability to

enter the GaAs layer; on the other hand an electron in a bulk state (j = 36 in the

figure) has an oscillating probability to be found in the GaAs layers. Both states

are obviously evanescent in vacuum. From the position of the uppermost occupied

band (j = 40) it follows that GaAs/vacuum superlattices have a metallic behavior:

this is an artifact of the model, as our aim is to simulate insulating multilayers made

of GaAs and a wide-gap oxide or H-saturated free standing films. When calculating

optical spectra, we will get rid of the problem by excluding surface states as initial

or final states in interband transitions. This simulates the formation of interface
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states or defects in a GaAs/oxide superlattice, which would saturate the dangling

bonds. The surface resonance cannot be easily eliminated, but it produces small

effects on the spectra, since it lies deep in the valence band.

In this chapter we have discussed the LCBB approach to study the superlattice

band structures. This approach, which expands the electronic states of the super-

lattice on the basis of bulk states, calculated by semi-empirical pseudopotentials, is

found to be adequate and practical for superlattices characterized by medium to in-

termediate periods. It has revealed to be particularly suitable for calculating how the

band structures of the bulk materials are modified when an artificial confining po-

tential is applied. We have written a computational code to calculate the electronic

states in superlattices. We have applied the code to study the evolution of a bulk

state into a superlattice state, gaining a clear insight on the role played by the con-

finement, the bulk states-coupling and the reduction of the symmetry, all involved in

the formation of a superlattice. The superlattice gaps result larger: in particular the

GaAs/vacuum gaps are larger than the GaAs/AlAs ones. Moreover, the superlattice

gaps become larger when the confinement increases, as a consequence of the size re-

duction. The lowering in the crystal symmetry and the mixing of bulk states induce

a modification of the energy levels and remove level degeneracies.
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Chapter 3

Ab-initio calculations of

superlattice band structures

In this chapter we present our second choice for band structure calculations of bulk

and nanostructure semiconductor systems. We move from the semi-empirical ap-

proach to a well-known first principle theory: the Density Functional Theory (DFT).

If compared to the LCBB method presented in the previous chapter, the first strik-

ing difference in the ab initio DFT approach is the total absence of experimental

inputs. Within a pseudopotential approach, starting from the mere knowledge of the

atomic numbers, atomic pseudopotentials can be fitted to calculations for the iso-

lated atoms. Next, an hypothesis on the geometric structure of the system is all we

need to build up the Hamiltonian operator. The most stable structure can be found

among all the different hypothesized structures, by searching for the minimum of the

calculated total energy. It is evident that the development of ab initio techniques has

given a much stronger predictive character to the theory of electronic properties in

the matter. Details on the procedure we have followed to construct norm-conserving

ab initio pseudopotentials can be found in Appendix B. In the following sections,

at first, we will present the fundamentals of the Density Functional Theory. They

are intended to be a practical guide to accompany the immediately successive ex-

position of our results, namely the electronic ground state properties and the band

structures of bulk (i.e. GaAs and AlAs) and superlattice (i.e. GaAs/AlAs) systems.

We have analyzed the structural properties and the electronic band structures of

39
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GaAs and AlAs crystals. Results in agreement with both the experiment and anal-

ogous calculations existing in literature are a reassuring proof about the quality of

the norm-conserving pseudopotentials we have built. In addition, a good bulk band

dispersion is promising concerning the quality of further calculations of the optical

response. However, we are essentially interested in (GaAs)p/(AlAs)p superlattices.

For superlattices with a very short period, the expansion over bulk states becomes

unreliable (unless using a very large basis) and LCBB calculations have not been

pushed to periods p smaller than 4. Some results for the band structure of small to

medium size (1 ≤ p ≤ 8) systems will be presented in the last section. Analogous ab

initio calculations are available in literature only for the smallest periods p. Thus,

we will focus on the comparison of the DFT band structure for the superlattice

period p=8 to the corresponding semi-empirical band structure.

We will adopt atomic units, as it is usually done in literature: h̄ = e2 = me = 1.

The spin and space coordinates are abbreviated by x ≡ (r, σ).

3.1 Density Functional Theory

The Density Functional Theory (DFT), in the Kohn-Sham formalism, provides a

powerful computational scheme, which allows to determine exactly the ground-state

properties even of complex systems of interacting particles, simply solving a single-

particle-like equation. Let us consider a system made of N fermions (let us say elec-

trons), interacting with each other via the Coulomb potential v (ri, rj) = 1/ |ri − rj|.
The system experiences an external potential w(r), which is supposed at the mo-

ment to be time-independent. In the specific case of electrons in an infinite periodic

solid, this external potential is due to the Coulomb interaction between electrons

and ion cores, fixed on the lattice sites. The Hamiltonian operator

H = T +W + V

=
N
∑

i=1

(

−1

2
∇2

ri
+ w (ri)

)

+
1

2

N
∑

i6=j

v (ri, rj) (3.1)

is the main ingredient in the time-dependent Schrödinger equation, which determines

the time evolution of the system:

H (x1,x2, . . . ,xN) Ψ (x1,x2, . . . ,xN , t) = i
∂Ψ (x1,x2, . . . ,xN , t)

∂t
. (3.2)
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The stationary states are the eigenstates of the time-independent Schrödinger equa-

tion:

H (x1,x2, . . . ,xN )ψ (x1,x2, . . . ,xN) = Eψ (x1,x2, . . . ,xN) . (3.3)

An analytical solution of the Eq. (3.3) is not feasible, except for some extremely

simple model systems. Among the variety of possible approaches to tackle the

problem, Thomas and Fermi [50, 51] were the first to designate the charge density

ρ (r), instead of the many-body wavefunction, as the basic quantity to describe

the ground state properties of the system. The advantage is evident: the electron

density,

ρ (r) = N
∫

dx2 . . .
∫

dxNψ
∗ (r,x2, . . . ,xN)ψ (r,x2, . . . ,xN) , (3.4)

is much easier to manage: it reduces the degrees of freedom from 3N to 3 and it is

a measurable physical quantity.

3.1.1 The Hohenberg-Kohn theorem

The formal bases of DFT are the theorems formulated in 1964 by Hohenberg and

Kohn [52]. The original proof is valid for a non-degenerate ground state and a

w-representable particle density, i.e. the ground state density belongs to a system

which undergoes an external local potential w. For the proofs of the theorems

and their generalization (to, e.g., degenerate ground states, bosons, non-adiabatic

systems, magnetic systems, fully relativistic systems, superconducting systems, N -

representation of the particle density, etc. . . .) we suggest to see Ref. [53]. Here we

present the physical contents of the original theorems.

1st HK Theorem: Let us consider a system of N electrons, described by the

Hamiltonian:

H =
N
∑

i=1

(

−1

2
∇2

ri
+ w (ri)

)

+
1

2

N
∑

i6=j

v (ri, rj) . (3.5)

The electrons are thus subjected to an external potential w (r) and the ground

state charge density is ρ0(r). If we substitute the potential w′ (r) for the po-

tential w (r) in 3.5 and we observe that the new electron density ρ′0(r), relative

to the ground state, is equal to ρ0(r), then w (r) and w′ (r) can only differ by



42 Chapter 3. Ab-initio calculations of superlattice band structures

a constant:

w′ (r) = w (r) + const . (3.6)

2nd HK Theorem: Let us define the energy functional of the density E [ρ] in the

form

E [ρ] = 〈N | − 1

2
∇2

ri
+

1

2

N
∑

i6=j

v (ri, rj) |N〉 +
∫

w (r) ρ (r) dr

= F [ρ] +
∫

w (r) ρ (r) dr , (3.7)

where F is a universal functional of the density. Once the external potential

w (r) has been fixed, the energy functional E [ρ] has its minimum, the ground

state energy E0, at the physical ground state density ρ0 (r):

E0 = E [ρ0] . (3.8)

The first theorem states that there is a bijective relation between the external

potential w (r) (to within a constant) and the ground state density ρ (r): this implies

that the Hamiltonian is completely described by knowing the ground state density,

thus all the ground state properties of the N-electrons system (e.g. the total energy)

are functionals of ρ (r). The Hohenberg-Kohn (HK) theorems have the limited

purpose to prove that a universal functional of the electron density exists, they

do not derive its actual expression. A direct minimization of the functional (3.7)

is usually not applicable, because no good expression for the kinetic energy as a

functional of ρ is known, except for simple metals. The Kohn-Sham (KS) scheme,

a reformulation of the theory based on the KS orbitals instead of the mere density,

is the starting-point of most of the actual calculations.

3.1.2 The Kohn-Sham scheme

The variational scheme proposed by Kohn and Sham [54] is an useful tool to clarify

the physical contents of the theory. Let us consider the system of N interacting

electrons, described by the Hamiltonian (3.1):

H = T +W + V .
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We introduce now an auxiliary system composed by N non-interacting particles in

an external potential W ′, described by the one-particle Hamiltonian H ′:

H ′ = T +W ′ . (3.9)

The KS scheme is based on the hypothesis that it exists such a local potential W ′,

that makes the ground state electronic density ρ′(r) of the non-interacting system

equal to the ground state electronic density ρ(r) of the interacting system:

ρ (r) = ρ′ (r) . (3.10)

It is clear that if a non-interacting system with the required characteristics exists,

then, according to the HK theorems, it must be unique. At the moment, we assume

that it is always possible to find such a potential W ′; its existence is formally proved

for w-representable densities (see Ref. [55]) and generalized to N -representable den-

sities (see Ref. [53]). The charge density of the non-interacting system can be ex-

pressed as a sum of single-particle charge densities; this holds also for the real charge

density thanks to the equality (3.10):

ρ (r) = ρ′ (r) =
N
∑

i=1

|φi (r)|2 . (3.11)

The sum includes the eigenfunctions φi relative to the N lower eigenvalues, coming

from the solution of the Schrödinger equation for the non-interacting system:
[

−1

2
∇2

ri
+ w′ (r)

]

φi (r) = ǫiφi (r) . (3.12)

The HK functional associated to the auxiliary system is:

E ′ [ρ] = T ′ [ρ] +
∫

w′ (r) ρ (r) dr , (3.13)

where also the kinetic energy of the non-interacting electrons T ′ [ρ] is a functional

of the density ρ(r) , as a consequence of the fact that the eigenfunctions φi are

functionals of the density:

T ′ [ρ] =
N
∑

i=1

∫

φ∗
i (r)

[

−1

2
∇2

ri

]

φi (r) dr . (3.14)

We can now rewrite the HK functional for the real system in a more profitable way:

E [ρ] = T ′ [ρ] +
1

2

∫

dr
∫

dr′ρ (r) ρ (r′) v (r, r′) +
∫

w (r) ρ (r) dr + Exc [ρ] . (3.15)
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The kinetic energy T ′ [ρ] is now the kinetic energy of a non-interacting electron gas

and the second term gives the Coulomb energy due to the classic interaction of an

electron gas of density ρ(r). By comparing the expression (3.7) and (3.15), we get

a definition for the functional Exc, which accounts for the many-body exchange and

correlation effects among electrons:

Exc [ρ] = F [ρ] − 1

2

∫

dr
∫

dr′ρ (r) ρ (r′) v (r, r′) − T ′ [ρ] . (3.16)

The form of the still unknown external potential W ′ can be fixed minimizing the

energy functional E [ρ] in (3.15), by imposing that his first variation vanishes:

δE [ρ] = 0 . (3.17)

It results that the searched potential for the non-interacting system is a function

of the real external potential, the Coulomb potential and the so called exchange-

correlation (xc) potential:

w′ (r) = w (r) +
∫

dr′ρ (r′) v (r, r′) + vxc ([ρ], r) , (3.18)

where the xc potential is defined as

vxc ([ρ], r) =
δExc [ρ]

δρ (r)
. (3.19)

If we now introduce the potential w′ from Eq. (3.18) into the Schrödinger equation

(3.12), we obtain the Kohn and Sham equations:

heff
KS φi =

[

−1

2
∇2 + w′

]

φi = ǫi φi . (3.20)

The KS equations (3.20) and the expression of w′(r) (3.18) have both a functional

dependence on ρ(r), which imposes a simultaneous self-consistent solution. The

exchange-correlation term is a functional of the density, local in space, which makes

the resolution of the equations easier than the solution of e.g. analogous Hartree-

Fock equations. Looking at the form of the one-body potential w′(r), we can see

that the external ionic attractive potential w is modified by the screening due to the

interaction between charges: this suggests to interpret it as the effective potential

felt by one electron in the mean field created by the other electrons. Thanks to

its construction, the effective potential w′(r) of the non-interacting system gives the
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correct density ρ(r) of the interacting system. This quantity, together with the total

energy of the electron system, has a real physical meaning within the KS scheme.

The solutions of the KS equations, i.e. the one-particle wavefunctions φi and the

eigenvalues ǫi, are instead, strictly speaking, nothing more than the eigenstates

and energy levels of the non-interacting system. We remark that the HK theorems

concern only the ground state properties of stationary systems: it is not correct to

extract from the DFT, at least without further formal justifications, any information

about the excited states or about time-dependent transitions. Nevertheless, we will

see that the theory has proved to be a good basis for a perturbation approach and

for time-dependent extensions, aiming at treating this kind of problems.

This scheme allows in principle the exact determination of the ground state en-

ergy. In practice, it is inevitable to make an approximation for the xc potential.

The exchange-correlation functional is a universal functional, in the sense that once

it is known for a model system, it can be simply transferred to all the others sys-

tems with the same internal interaction potential, whatever the external field is.

Unfortunately, there are no solved models for arbitrary densities ρ (r). The only

available solution is the extremely accurate calculation for the electron jellium at

the constant density ρ (r) = ρ0 [56, 57, 58]. Being the exchange-correlation energy

Exc in general unknown, the possibility to describe physical systems relies on the

effective substitution of a simple and realistic approximation for this functional.

3.1.3 The Local Density Approximation

The Local Density Approximation (LDA) consists in expressing the functional de-

pendence of the exchange-correlation energy on the density with a simple dependence

on the local value of the density. It is defined by:

ELDA
xc [ρ] =

∫

ρ (r) ǫxc (ρ (r)) dr , (3.21)

where ǫxc is the exchange-correlation energy for a particle in an interacting ho-

mogeneous electron gas, which is known with a very satisfactory precision from

many-body Monte Carlo numerical simulations [56, 57, 58]. The correlation energy

occurring in our calculations has been parametrized as follows [57]:

ǫhom
xc [ρ (r)] = γ/ (1 + β1

√
rs + β2rs) , (3.22)
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for rs ≥ 1, where

ρ (r) =
(

4

3
πr3

s

)−1

, (3.23)

and

γ = −0.14230 , β1 = 1.05290 , β2 = 0.3334 . (3.24)

Since the LDA is exact in case of homogeneous systems, it has been thought to be

suitable to describe those physical systems where the charge density varies slowly,

like metals. This is a strong restriction, but the approximation has surprisingly

turned out to be valid in a vaster range of circumstances, like in semiconductors.

Such an unexpected success is due to the fact that the LDA, even in case of strongly

inhomogeneous systems, satisfies exactly some sum rules which must hold for the real

pair correlation function of the system. In general, quantities derived by comparing

total energies, like ground state geometries, phonon frequencies, and moments of

the density are well reproduced [59] within this simple approximation. These topics

will be discussed further in Section 3.3. There are some possible generalizations of

the LDA: including a correction dependent on the gradient of the density ρ (r), as

already suggested by Hohenberg and Kohn [52], we get the Gradient Density Approx-

imation (GDA). Some other approaches beyond LDA, like the Generalized Gradient

Approximation (GGA) [60, 61], the Average-Density Approximation (ADA), and

the Weighted Density Approximation (WDA) [62], have been object of increasing

interest in the last years. However exactly satisfied within the LDA, the sum rules

are not satisfied within its generalizations. That’s why an improvement of the LDA

is not as straightforward as it might appear [59]. It is not clear yet if it exists an

alternative non-local scheme which is able to guarantee better results if compared

to the LDA. Up to now the LDA is widely applied in literature. The extension to

spin-polarized systems is called Local Spin-Density Approximation (LSDA). In this

work, however, we will always deal with spin-paired electrons.
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3.2 Technical aspects

3.2.1 Plane wave basis

When studying an infinite system composed by a repeated periodic unit, both a cell

or a supercell, the most natural choice for the expansion of the wavefunctions is the

plane wave representation
{

eiG·r
}

G∈RL
. In fact, according to the Bloch theorem,

the single electron wavefunction can be expanded as follows:

φn,k (r) =
1√
Ω
eik·r∑

G

cn,k (G) eiG·r , (3.25)

where Ω is the volume of the Wigner-Seitz cell (or of the supercell in case of super-

lattices) and G are the reciprocal lattice vectors. The wave-vectors k, lying inside

the first Brillouin zone, label the electronic states together with the band index n.

The choice of a plane wave basis presents some advantages:

• They simplify the evaluation of derivatives and integrals, making easier to cal-

culate the matrix elements of the Hamiltonian.

• They allow the application of Fast Fourier Transform (FFT) formalism, allow-

ing to move rapidly from the direct to the reciprocal space and vice-versa.

• They form a complete and orthonormal set.

• For open systems with some “vacuum”, like cluster and surfaces or, in a future

perspective, GaAs/vacuum superlattices, it is convenient that the set does not

depend on the atomic positions.

• The truncation of the in principle infinite basis set is given by a cutoff in energy:

1

2
|k + G|2 ≤ Ecutoff , (3.26)

which is linked to the number of plane waves NPW in the basis by the relation

NPW ≃ Ω (Ecutoff)
3/2 . (3.27)

The achievement of convergence for total energy calculations can be controlled

without ambiguity by increasing the cutoff.
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A plane wave basis set is particularly suitable in case of a pseudopotential approach

(see Appendix B). In such a case only the valence wavefunctions, which are less

localized than the core ones, have to be calculated. Localized basis sets, on the

other hand, should be preferred when one is interested in highly localized electronic

states (e.g. core atomic-like states).

In our calculations, the convergence has been achieved working with plane waves

up to a kinetic energy cutoff of 25 Ry for both GaAs and AlAs bulk crystals. Con-

cerning the superlattices GaAs/AlAs, an higher cutoff of 35 Ry is needed to achieve

the same degree of accuracy. We have proved that these sets guarantee an error

within a few meV both for the total energy and for the KS eigenvalues.

3.2.2 Sets of k-points for integration over the Brillouin zone

All sums over the allowed k-points in the Brillouin zone become integrals in the

limit of an infinite periodic crystal. In particular, the central quantity which defines

the system, the charge density,

ρ (r) =
1

Nk

occ
∑

n

BZ
∑

k

|φn,k (r)|2 , (3.28)

is transformed in:

ρ (r) =
Ω

(2π)3

∫

BZ
dk

occ
∑

n

|φn,k (r)|2 . (3.29)

To perform a numerical calculation, in practice, the integral must be turned back into

a sum over a set of weighted k-points. If the function to be integrated, as it happens

in expression (3.29), is symmetric in the reciprocal coordinates, these points, called

special points can be chosen exploiting the symmetry properties. The introduction

of the concept of special points is due to Baldereschi [63]. Then, Chadi and Cohen

[64] and, later, Monkhorst and Pack [65] have elaborated his idea. Their methods

are now widely used. In comparison with an arbitrary grid of points, which does

not reflect the symmetries of the Brillouin zone, the special points reduce drastically

the number of points needed to attain a specific precision in calculating integrals.

In the numerical computation of charge densities for bulk fcc GaAs and AlAs

we have performed sums over a grid of 10 special k-points in the irreducible part

of the Brillouin zone. This grid of points has been built following the procedure of
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Monkhorst and Pack. Regarding the superlattices, we have used the tetrahedron

integration scheme, as presented by Jepsen and Andersen [66, 67, 68]. In that case

the biggest set which we have employed is a set of 30 k-points in the irreducible

wedge of the tetragonal reciprocal supercell. The set of special points have been

selected to guarantee the convergence of the total energy (the error is always smaller

than a few tenths of meV). To solve the integrals occurring in the calculations of

optical properties, much more points are needed, as we will precise discussing the

convergence of the spectra.

3.3 Results for ground-state properties

The results of DFT-LDA calculations on atoms, molecules and solids (even ionic

and covalent solids), collected in the last decades show without uncertainties that

this theory is a powerful tool to study the structural properties of the matter.

To perform ground state calculations in this thesis, we have used the pseudopotential

plane wave package PWSCF [69], originally developed by Baroni and Giannozzi.

This code computes the electronic band structure, the electronic charge density and

the total energy of a periodic crystal, characterized by a given Bravais lattice and

a given space group symmetry. The algorithm is based on DFT and relies on two

basic approximations: the frozen-core approximation (see Appendix B) and the local

density approximation (though a gradient correction is available, it has not been used

in our calculations). The use of a plane wave basis allows the transformation of the

partial differential self-consistent KS equations into an algebraic eigenvalue problem,

which is solved thanks to iterative techniques [70]. The choice of a plane wave

representation, together with an efficient use of the Fast Fourier Transform, reduces

drastically the computational time. The PWSCF code exploits the symmetries of the

solid, to cut down the number of operations necessary to obtain the charge density

and the total energy with a given precision. The computation of these quantities

allows the study of structural (lattice constants, bulk modulus and elastic constants)

and dynamical (zone-center phonon frequencies) properties, the study of structural

phase transitions and the effects of pressure on the properties of the solids.

The equilibrium structural parameters (i.e. the Bravais lattice type and the lat-



50 Chapter 3. Ab-initio calculations of superlattice band structures

tice parameters in solids) can be determined ab initio, by inspecting the minimum

of the total energy. In practical applications, the absolute convergence of the total

energy is not very important. The most important quantities are the energy differ-

ences between different states of the solid. Since energy differences converge more

rapidly than the energy itself, it is usually possible to obtain a precision higher than

the total energy error (in our case about a few meV). To illustrate this point, we

have studied two structural properties: the lattice constant a0 and the bulk modulus

B0. These quantities are related to the curvature of the function E(Ω) around the

equilibrium volume Ω0. The theoretical lattice constant has the value a0, which

corresponds to Ω0, while the bulk modulus is related to the curvature of the energy

curve at its minimum:

B0 = −Ω
∂2E

∂Ω2

∣

∣

∣

∣

∣

Ω=Ω0

. (3.30)

With respect to our bulk material, it is known that both GaAs and AlAs at zero

pressure have a cubic structure, based on tetrahedral units. Phase diagrams under

pressure have been studied both experimentally and theoretically [71, 72, 73, 74,

75, 76, 77]. We have therefore imposed the zinc-blend structure and minimized the

total energy as a function of the primitive cell volume Ω. Starting from the curves

of the total energy E(Ω) and the pressure P (Ω) due to internal hydrostatic stress

at a non-equilibrium volume, the cohesion energy and the bulk modulus can be

easily determined, interpolating the values E(Ω) or P (Ω) with suitable equations of

state. There are many choices for the interpolating curves. Close to the minimum

the curve is a parabola, but the points deviate rapidly from the quadratic law and,

at a large distance from a0, it is necessary to fit the points to something more

sophisticated. One of the most popular fitting curves is the Murnaghan equation

[78], which depends on three parameters: Ω0, B0, B
′
0 (the derivative of the bulk

modulus with respect to pressure):

E(Ω) =
Ω0B0

B′
0

[

1

B′
0 − 1

(

Ω0

Ω

)B′

0
−1

+
Ω

Ω0

]

+ const . (3.31)

Often, it is preferred to adjust the pressure P, via the Birch-Murnaghan [79] equation

of state:

P =
3

2
B0

(

(

Ω

Ω0

)−7/3

−
(

Ω

Ω0

)−5/3
)[

1 +
3

4
(B′

0 − 4)

(

(

Ω

Ω0

)−2/3

− 1

)]

. (3.32)
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Figure 3.1: Pressure (a) and total energy (b) of GaAs for different values of the primitive cell

volume. The numerical values (circles) are interpolated, respectively, with a Birch-Murnaghan

equation and a Murnaghan equation (continuous lines). Both the curves (a) and (b) correspond

to a cutoff of 25 Ry.
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An example of interpolation is illustrate in Fig. 3.1. In Table 3.1 we summarize the

obtained fitting parameters, in comparison with experimental measurements and

analogous results found in literature. When the interpolating function is specified

in the articles, the values in literature has to be compared with quantities we have

obtained by the same equations of state.

We have shown these results, because a comparison with similar ab initio calcu-

lations and experimental values is extremely important to evaluate the reliability

of the norm-conserving pseudopotential that we have generated. Some tests that

can be executed directly on the atom, to assess the quality of the pseudopotentials,

are discussed in Appendix B. Nevertheless, after executing the atomic tests, a final

validation is still needed: the calculation of the structural properties for an infinite

bulk crystal is, certainly, a proving test. An agreement within 1%-3% with the

experiment for the lattice constant and an agreement within 5%-10% for the bulk

modulus indicate that the calculations are reliable. In our case the agreement is

even better. In LDA the errors on the lattice constants are systematic: all the bond

strengths are overestimated [81], thus calculated lattice constants are too small.

At last, before applying calculations to superlattice systems, we have reproduced the

ground state calculations of the bulk GaAs, choosing to describe the cubic structure

in terms of simple tetragonal supercells, like (GaAs)2, (GaAs)4, (GaAs)6, by lower-

ing the symmetry of the fcc cubic point group. It is obvious that two different views

of the same problem must lead to the same results. Thus, the test is intended to

verify that the passage from the cubic symmetry of the bulk to the tetragonal sym-

metry of the superlattice does not introduce an additional font of numerical error

in calculations. This occurrence has been excluded, by checking the convergence of

the k-points set, assuring that the difference in the total energy between the fcc and

the tetragonal description is less than 1 meV.

3.4 Kohn-Sham eigenstates and quasi-particle states

We are now leaving the study of structural properties to focus on the transitions

to excited states. When dealing with an interacting particle system, the easier

one-particle description can be retained at the price to introduce the concept of
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Table 3.1: Structural parameters at zero pressure for the zinc-blend structure of GaAs and AlAs:

equilibrium cell volume Ω0 (in r3

b ), bulk modulus B0 (in kbar), and pressure derivative of the

bulk modulus B′
0 (dimensionless). Our results are compared with experimental measurements and

analogous ab initio calculations.

GaAs AlAs

Ω0 (r3

b )

Present work 297.0a 298.9a

294.6b 297.2b

Expt. 305.12e 306.3b,g

304.89f

Other theoretical works 298.1 c,e 300.7c,e

297.0 a,f 308.8a,f

B0 (kbar)

Present work 731a 743a

757b 765b

Expt. 754b,d 740 ± 40b,g

Other theoretical works 740c,e 750c,e

708a,f 710a,f

B′
0

Present work 4.8a 4.3a

4.6b 4.2b

Expt. 4.5b,d 5.0 ± 1b,g

Other theoretical works 4.6c,e 4.3c,e

3.36a,f 3.3a.f

a Murnaghan equation of state

b Birch-Murnaghan equation of state

c Chebyshev polynomial fit

d Reference [72]

e Reference [77]

f Reference [71]

g Reference [75]
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quasi-particle (QP) states. A quasi-electron differs from a bare electron because it

moves dressed by the interaction with a cloud of surrounding electrons. The screen-

ing change its effective mass and makes finite its lifetime. The quasi-particle energies

are given by the energies needed to add/subtract an electron to/from the system.

These quasi-particle levels can be measured respectively in inverse-photoemission

or photoemission spectroscopy and can be calculated within a coherent many-body

theory framework. The many-body problem can be approached thanks to the Green

function formalism. We will not discuss this subject in this work. For further infor-

mation about many-particle physics we suggest to read Ref. [82], and in particular

for solid state applications Ref. [83]

The one-electron band structure is given by the dispersion of the energy level n,

as a function of the wave-vector k, which varies along the high symmetry directions

inside the first Brillouin zone. The excited states are not a priori accessible through

static ground state DFT: the eigenstates φn,k and the energies ǫn,k, solutions of

the KS equations, are not the “true” levels, i.e. the quasi-particle energies, of the

electron in the solid. Only the highest occupied DFT-KS eigenvalue ǫ
(N)
N,DFT of an

N-electron system, if obtained with the exact xc potential, equals the true ioniza-

tion potential [80, 84], which in case of infinite systems is the chemical potential µ.

Though a many-body calculation is the only means to calculate a completely reliable

band structure, it is quite common to interpret the solutions of the KS equations to

be electronic energies, and the results are sometimes a reasonably good representa-

tion of the energy levels, in particular concerning band dispersions. A justification

can be found in the correct many-body approach. In fact, the Green-function theory

yields a Schrödinger-like equation for the quasi-particles, which is extremely similar

to the KS equation. The two equations differ for the substitution of the xc po-

tential for a non-local and energy-dependent operator, called self-energy. One can

then consider the KS equations as an approximation of the quasi-particle equations,

where the self-energy operator Σ
(

r, r′, ǫQP
n,k

)

is approximated by the simpler local

xc potential Vxc (r). The KS orbitals φn,k are thus usually considered a zero-order

approximation of the wavefunctions of the interacting system. Hybertsen and Louie

[85] have shown that this approximation has a very high precision for bulk states:
∣

∣

∣〈φQP
n,k|φLDA

n,k 〉
∣

∣

∣

2 ≃ 0.999. This result, together with the good qualitative agreement
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of the DFT-LDA occupied density of states with the quasi-particle calculations and

the experiments, gives a valid motivation to interpret the KS eigenstates in terms of

one-electron wavefunctions and energies for the electron in the solid. Nevertheless,

it is well known that a DFT band structure calculation always leads to a strong

underestimation of band gaps, often by more than 50% [85, 86, 87, 88, 89, 90, 91].

There has been an interesting dispute about the origin of this gap problem. The

more accredited idea is now that this is an intrinsic limit of DFT-KS [92, 93] and

does not derive from the LDA. It is possible to show that the real gap and the KS

gap are connected by the relation:

ǫgap = ǫKS
gap + ∆xc , (3.33)

where the calculated DFT-LDA gap,

ǫKS
gap = ǫ

(N)
N+1,DFT − ǫ

(N)
N,DFT , (3.34)

is the difference between the energies of the lower empty state and the higher occu-

pied state of the N -electron system and

∆xc = V (N+1)
xc (r) − V (N)

xc (r) . (3.35)

In fact, the discontinuity of order one experienced when an electron is added can only

be due to the exchange-correlation term, which is not necessarily analytical in the

number of electrons N , while the Hartree and the external potential are analytical.

It could be thought that ∆xc is small and that the LDA is the main cause of the

band gap error. This does not seem to be the case, at least not for all the systems

[59]: a rigorous model for monodimensional semiconductors [94] shows that ∆xc is a

significant fraction of the energy gap. Concerning real solids, in particular Si, GaAs

and AlAs, there is evidence that the discontinuity is responsible for about 80% of

the total error [87, 92, 95]. It is clear that the only satisfying solution of the gap

problem goes through the many-body theory and the precise definition of the energy

gap as the difference in the chemical potentials of an (N + 1)-electron system and

an N -electron system:

Egap = E
(N+1)
tot − E

(N)
tot −

(

E
(N)
tot −E

(N−1)
tot

)

. (3.36)
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The many-body calculations are finally in good agreement with the experiments,

but they have the disadvantage to require a very high computational effort. Quasi-

particle calculations are usually carried out within the GW approximation [96]: for

this reason the differences between DFT eigenvalues and quasi-particle energies are

called GW corrections. In case of GaAs, AlAs, and some other simple materials,

it has been observed that the GW corrections shift the conduction bands almost

rigidly upwards 1 [86]. This result justify the “scissor operator” approximation,

which consists in obtaining the quasi-particle band structure within an error of

0.1-0.2 eV in all the Brillouin zone, simply by adding a constant value to all the

conduction band levels. It is worth reminding that this approximation is not valid for

all kinds of materials. Some authors have applied the scissor operator to GaAs/AlAs

superlattices [21], considering that the energy shift for the two bulk material is

almost the same. We will get deeper into this subject in the following section, while

presenting the DFT-LDA band dispersions.

3.5 Bulk band structure by DFT-LDA calculations

We are finally ready to provide a more detailed analysis of the bulk band structure

obtained by means of the DFT-LDA, with norm-conserving pseudopotentials and a

plane wave basis set. The diagonalization of the KS equations for bulk GaAs and

AlAs has been done at the theoretical lattice constants calculated in section 3.3. In

Figs. 3.2 and 3.3 we show the band structures obtained by interpreting the Kohn-

Sham eigenvalues to be electronic energies, without applying any scissor operator.

As expected, this approximation always leads to a strong underestimation of band

gaps, even more than 50% for GaAs, while the form of the bands and their width

is correct. We know from literature (see Ref. [86]) that GW quasi-particle energies,

on the other hand, reproduce correctly experimental gaps to within 0.1 - 0.2 eV. We

can have an idea of the real band structure applying a scissor operator: in fact, it

has been proved that the GW corrections shift the conduction bands almost rigidly

in GaAs and AlAs [86]. Displacing the GaAs and AlAs DFT-LDA conduction bands

upwards respectively by 0.8 and 0.9 eV yields an error in comparison to the GW

1Because of the LDA approximation, the valence band maximum is not exact and the actual effect of GW

corrections involve as well a slight shift downwards of the valence bands.
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Figure 3.2: Kohn-Sham LDA scalar-relativistic band structure of GaAs for the valence bands and

the lowest conduction bands. The energy zero is fixed at the valence band maximum.
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Figure 3.3: Kohn-Sham LDA scalar-relativistic band structure of AlAs for the valence bands and

the lowest conduction bands. The energy zero is fixed at the valence band maximum.
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results within 0.1 eV for the bands closest to the gap [86]. In Tables 3.2 and 3.3

we present the numerical values of the ab initio calculated (applying the scissor

operator) energy levels at the high symmetry points together with the empirical

results and experimental data. In the third column GW quasi-particle energies from

Ref. [86] are reported, to better judge the efficacy of the scissor operator. The

spin-orbit interaction is neglected in all the theoretical approaches considered here,

whereas the measured energies present a spin-orbit splitting of the highest valence

levels. We remark again that the KS-LDA eigenvalues are converged to within a few

meV for both GaAs and AlAs crystals.

At last, we have compared our results with previous DFT-LDA calculations found

in literature. We have found that a complete equivalence of the results is not possi-

ble, even within a DFT-LDA pseudopotential calculation, in a plane wave represen-

tation. In fact, considering that it is not known how exactly the different authors

have built their norm-conserving pseudopotentials and sometimes it is not specified

if they work at the experimental or theoretical lattice constant, it is not surprisingly

to detect differences up to 0.25 eV. We find an overall excellent agreement to within

less than 0.1 eV with calculations of Godby et al. , both for GaAs and AlAs, in

Ref. [86]. Also the agreement with Bachelet et al. in Ref. [97] is satisfactory. As dis-

cussed in Ref. [86], the experimental values concerning AlAs conduction band edges,

especially the value of the gap in L, are not obtained from direct measurements and

are not completely reliable. Moreover, we have tried to calculate the band struc-

ture at the experimental lattice constant, showing that the behavior of the critical

points under an hydrostatic pressure is both qualitatively and quantitatively the

same as described by Fiorentini et al. in Ref. [98]. In fact, being the theoretical

LDA lattice constants smaller than the experimental ones, executing calculations

at the experimental values means applying a negative hydrostatic pressure to the

crystal. We observe that the gap widths in Γ and L become smaller, both for GaAs

and AlAs. The gap widths in X grow: this effect is stronger for the first gap X1 in

both materials and it is almost negligible for the second gap X3 in AlAs.
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Table 3.2: GaAs eigenvalues at some high symmetry points as obtained in the present work by

the empirical pseudopotential method and the DFT-LDA ab initio theory. The DFT-LDA values

are corrected by a scissor operator of 0.8 eV [86]. Our results are compared to GW quasi-particle

energies [86] and experiments. The zero of energy is at the top of the valence band. The spin-orbit

interaction term is omitted in all calculations and indicated in parenthesis for experiments.

Energy level EPM DFT-LDA GW Experiment

Γv
1 -12.11 -12.90 -13.10b

Γv
15

0.00 0.00 0.00 0.00 (-0.34)a

Γc
1 1.51 1.37 1.47 1.52a

Γc
15

4.01 4.58 4.52 4.72b

Xv
1 -10.00 -10.45

Xv
3

-6.16 -6.91

Xv
5 -2.31 -2.72 -2.73 -2.78 (-2.85)a

Xc
1

2.02 2.12 2.08 1.98c - 2.01d

Xc
3 2.39 2.39 2.30 2.38e

Lv
1

-10.64 -11.19

Lv
2

-5.98 -6.74

Lv
3

-0.96 -1.15 -1.11 -1.19 (-1.40)a

Lc
1

1.83 1.79 1.82 1.82c - 1.84d

Lc
3

4.84 5.46 5.41

a Reference [99]

b Reference [100]

c Reference [101]

d Reference [102]

e Reference [103]
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Table 3.3: AlAs eigenvalues at some high symmetry points as obtained in the present work by

the empirical pseudopotential method and the DFT-LDA ab initio theory. The DFT-LDA values

are corrected by a scissor operator of 0.9 eV [86]. Our results are compared to GW quasi-particle

energies [86] and experiments. The valence band maxima are aligned. The spin-orbit interaction

term is omitted in all the calculations and indicated in parenthesis for experiments.

Energy level EPM DFT-LDA GW Experiment

Γv
1 -11.67 -12.03

Γv
15

0.00 0.00 0.00 0.00 (-0.28)a

Γc
1 3.03 2.90 3.26 3.11c

Γc
15

4.21 5.11 5.05 4.34b

Xv
1 -9.49 -10.01

Xv
3

-5.62 -5.52

Xv
5 -2.25 -2.23 -2.34 -2.30 (-2.45)d

Xc
1

2.22 2.21 2.09 2.24a

Xc
3 3.20 3.11 2.99 2.68e

Lv
1

-10.14 -10.57

Lv
2

-5.59 -5.69

Lv
3

-0.93 -0.84 -0.88 -1.31 (-1.51)a

Lc
1

2.87 2.99 3.03 2.49c - 2.54d

Lc
3

5.00 5.57 5.48

a Reference [99]

b Reference [104]

c Reference [102]

d Reference [101]

e Reference [105]
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3.6 Superlattice band structure by DFT-LDA calculations

Finally, we present ab initio calculations of (001) GaAs/AlAs superlattice band

structures, obtained by means of the DFT-LDA, with norm-conserving pseudopo-

tentials and a plane wave basis set. These calculations are formally analogous to

the calculations for bulk systems presented in the previous section. The cubic Td

point group is replaced by the smaller tetragonal D2d point group and each super-

cell contains p Ga atoms, p Al atoms and 2p As atoms (see Fig. 1.1 on page 11).

The symmetry of the system is fully described: in particular, the As atoms at the

interface do not entail any artificial asymmetry, because the As norm-conserving

pseudopotential is independent of the environment (Ga or Al neighbors) where the

As atoms are placed. We have studied (001) (GaAs)p/(AlAs)p superlattices with a

superlattice period p ranging from 1 to 8. The number of plane waves involved in the

calculations grows as p, thus the computational expense becomes higher and higher

at large superlattice periods (as a term of comparison, on a NEC SX-5 machine,

to compute 10 × 2p bands relative to p=1 the time needed is 2 minutes, whereas

calculating the corresponding number of bands for p=8 requires a time more than

100 times longer).

The resolution of the KS equations for the almost lattice-matched heterostruc-

tures has been done at the averaged theoretical lattice constants. We do not need

to perform a structural minimization to determine the relaxed geometry of the cell,

since the lattice mismatch is small enough to make negligible stress and strain ef-

fects, which do not affect the band structure, as usually assumed in literature (see,

e.g., [106, 107, 108, 109]). We have however verified that the total energy does not

change significantly when moving from the GaAs lattice constant to the AlAs lattice

constant. Moreover, the total energy is close to its minimum at this averaged value.

In Figs. 3.4 and 3.5 we present the two extreme examples of superlattice bands

for p=1 and p=8: all the 4× 2p valence states and the conduction states up to 8 eV

are shown in the tetragonal Brillouin zone. We remind that, since 2p k-points in the

fcc Brillouin zone are always folded onto the same point q in the smaller tetragonal

Brillouin zone, the number of occupied superlattice bands is 2p times the number

of bulk bands for a GaAs/AlAs superlattice. The p=1 superlattice (see Fig. 3.4)
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Figure 3.4: Kohn-Sham LDA scalar-relativistic band structure of a (GaAs)1/(AlAs)1 (001) su-

perlattice along the high symmetry directions. The energy zero is taken at the valence band

maximum.
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Figure 3.5: Kohn-Sham LDA scalar-relativistic band structure of a (GaAs)8/(AlAs)8 (001) su-

perlattice along the high symmetry directions. The energy zero is taken at the valence band

maximum.
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Figure 3.6: Semi-empirical LCBB band structure of a (GaAs)8/(AlAs)8 (001) superlattice along

the high symmetry directions. The energy zero is taken at the valence band maximum.
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is the more instructive one, because the number of bands is only doubled and the

figure is more readable and easy to compare to the band structure in Fig. 3.2. This

case was not studied within the semi-empirical framework, because a description

in terms of bulk states is not reliable for very short period superlattices. The p=1

Brillouin zone can be obtained by folding once the bulk zone. Hence, the point Γ̄

corresponds to both points Γ and Xz, the point M̄ corresponds to both points Xy

and Xx, and point R̄ corresponds to both points Lz and L−z of the corresponding

bulk Brillouin zone. The lowering in the crystal symmetry is responsible for the

removal of level degeneracies at the high symmetry points. The spin orbit splitting

is not included. The direct LDA band gap measures 1.1 eV: it is almost twice larger

than the bulk GaAs gap, pointing to strong confinement effects. The R̄1c state is the

conduction band minimum, in agreement with the DFT-LDA and quasi-particle re-

sults reported in Refs. [44, 21]. Following the suggestion in Ref. [21], we have applied

a scissor operator of 0.92 eV to calculated conduction band energies and compared

our energies at the high symmetry points with analogous DFT-LDA results, avail-

able only for p=1,2,3, by Dandrea et al. [21]. The differences never exceed 0.1 eV.

The good agreement of short-period results suggests that also the results for larger

periods are reliable. To improve these results, quasi-particle corrections and/or all

electron and/or full relativistic ( including spin-orbit interaction) calculations would

be needed.

Finally, the Fig. 3.6 shows the band structure of the (GaAs)8/(AlAs)8 super-

lattice, as calculated by the semi-empirical LCBB method adopted in the previous

chapter. The Figs. 3.6 and 3.5 are here presented on the same scale, to allow an easy

comparison of the two band dispersions. As expected, the gap is better reproduced

by the semi-empirical calculations. Except for that, the band dispersions and widths

are surprisingly similar, both in valence and in conduction bands.

In conclusions, in this chapter we have presented DFT-LDA calculations for bulk

GaAs, bulk AlAs and GaAs/AlAs superlattices. By calculating the ground states

properties of the bulk materials, we have proved the reliability of the norm-conserving

pseudopotentials we have constructed. The results for bulk LDA energy levels, after

the application of a suitable scissor operator, have been compared with corresponding

results, which we have obtained in the semi-empirical LCBB approach, and with
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experimental and theoretical data found in literature. The ab initio GaAs/AlAs

band structure is compared to the corresponding semi-empirical band structure and

to some data available in literature for short-period superlattices. We have found an

overall agreement of all the different results, which confirms the analysis developed

in Chapter 1 and attests without doubts the high quality of the electronic states,

both semi-empirical and DFT-LDA, which will be the basis of the optical absorption

calculations in the following chapters.
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Chapter 4

Semi-empirical calculations of

optical properties

In a spectroscopic experiment the sample is excited from its ground state: the re-

sponse to the perturbation is the object of both experimental measurements and

theoretical calculations. A big variety of phenomena can occur. In Fig. 4.1 we show

three model excitations: direct photoemission, inverse photoemission, and absorp-

tion. Direct/inverse photoemission processes are one-quasi-particle excitations: a

quantum of energy hν is absorbed/emitted while an electron is ejected/absorbed.

The ejected/incoming electron is supposed to be completely decoupled from the sys-

tem after/before the process takes place. These kinds of experiments give insight,

respectively, on the density of occupied and unoccupied states. Here we are more

interested in absorption processes in solids. In a naive picture, the incoming ra-

diation causes the transition of an electron from an occupied state in the valence

band to an empty state in the conduction band. However, even if one uses quasi-

particle instead of one-electron states, one faces the problem that this process is

not the simple combination of an inverse photoemission and a direct photoemission

process, because the electron does not leave the sample and continues interacting

with it. The electron which has undergone a transition to the conduction band and

the relative hole left in valence band feel each other via a Coulomb interaction: this

is the so-called excitonic effect, which introduces the main complexity in computa-

tions, since it forces to abandon the independent quasi-particle picture, to move to

69
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mission, and absorption.



71

a two-particle excitation picture.

Nevertheless, in the study of the optical properties, independent particle schemes

maintain their usefulness, and are preliminary to full many-body treatments. The

most used approach is the semi-classical theory of interband transitions [9, 110]. In

this chapter, we will discuss how to combine it with semi-empirical band structure

calculations, to gain information about the absorption spectra of semiconductor su-

perlattices. This simple formalism allows to reproduce all the features present in an

absorption spectrum which are connected to one-quasi-particle excitations. More-

over, it allows to describe the absorption process in terms of the intuitive concepts

of joint density of occupied and unoccupied states and of transition probabilities

from occupied to unoccupied states.

As we have already discussed in Section 3.4, strictly speaking, electrons in a

solid are never independent particles. In spite of this, the one-particle picture can

be retained at the price to renormalize the single electron energy levels by the

presence of the surrounding electrons, defining the concept of quasi-particles. This

is sufficient only for situations where the electron-hole interaction is not important.

The quasi-particles are still described by a one-particle Schrödinger-like equation,

where the effective potential has to include the effects due to the electron-electron

interaction. In case of empirical/semi-empirical band structure calculations, these

renormalizations are at least partially included – to what extent it depends by

the complexity of the model – thanks to the parameterization of the Hamiltonian,

which is directly fitted to reproduce the experimental spectra. On the other hand,

excitonic effects lead inevitably to the need of a two-particle description of the

system. Within an empirical/semi-empirical approach, they can be qualitatively

included thanks to an effective mass approximation [111, 112]. Together with the so-

called local field effects, excitonic effects give essential contributions to estimate the

height of the peaks in absorption spectra. In empirical/semi-empirical calculations,

however, the peak positions can be already in good agreement with experiments

(within a few tenth of eV) without the inclusion of these corrections. In fact, the

empirical parameters can be expressly fitted to reproduce the correct peak positions.

Being mainly interested in determining the peak positions and their evolution as a

function of the well/barrier width, we have decided, at this stage, to neglect both the
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contributions of excitons and local fields. We will discuss at the end of the chapter

the limits of this approximation.

One further point of interest is the birefringence. The calculations presented here

yield only the contribution to the birefringence arising from quantum-confinement-

induced modifications of the electronic states; they do not account for the intrinsic

dielectric anisotropy of a multilayer, arising from different boundary conditions for

an electric field parallel or perpendicular to the layers [113, 114]. This second contri-

bution to the birefringence is in fact equivalent to the inclusion of local-field effects

in the dielectric response [115, 116, 117, 118].

In the following section we will organize the results obtained, discussing the

optical properties of GaAs/AlAs and GaAs/vacuum superlattice systems, via the

calculated real and the imaginary parts of the components of their macroscopic

dielectric tensor. We have written a computational code, which adopts the LCBB

technique, as presented in Chapter 2, to perform the calculations of the optical

spectra. We will explain why the method succeeds in reproducing the experimental

behavior of the peak positions under confinement, whereas it fails to describe the

low-frequency optical birefringence of the GaAs/AlAs systems and, in particular, its

behavior as a function of the number of monolayers p.

4.1 Semi-classical theory of interband transitions

The macroscopic dielectric properties of a solid are intimately connected with its

band structure: we want to discuss how the optical spectra can be reproduced, al-

ready to a satisfactory extent even if at a first level of approximation, starting from

the simple knowledge of the one-electron band structure. The discussion which fol-

lows is valid for isotropic materials, like bulk zinc-blend crystals, where a simple

scalar dielectric function (more precisely its real and imaginary parts) is all we need

to determine the optical response of the medium. In case of anisotropic crystals,

like superlattices, it is necessary to define a dielectric tensor: the expressions we

will get for the dielectric functions are easily adaptable for the single components of

the dielectric tensor. We will deal with an electromagnetic field, which is supposed

weak, acting as a perturbation. The wavelength of the incoming radiation is long in
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comparison to the lattice constant and we suppose, at the moment, that the medium

can be considered homogeneous. The theory is called semi-classical because, while

the Bloch electrons are described as a quantum system, the radiation is treated as

a classical field. The core ions are kept “frozen” in their lattice sites, thus excluding

the occurrence of phonon-assisted electronic transitions. Undoubtedly, phonons are

responsible for broadening spectral features: these lifetime effects can be approxi-

mately taken into account by a small imaginary constant added to the absorption

energy.

The complete Hamiltonian, which describes an electron in a solid in presence of

the electromagnetic field, is:

H =
1

2

(

v − A(r, t)

c

)2

+ V PP − Φ(r, t) , (4.1)

where A is the vector potential and Φ the scalar potential of the radiation field. In

the Coulomb gauge (∇ · A = 0, Φ = 0), neglecting non-linear effects, the electron-

radiation interaction term reads:

H loc
e−rad = −1

c
A(r, t) · p . (4.2)

The relation (4.2) is correct only if the potential is local (the semi-empirical pseu-

dopotential is local), otherwise we need to take into account the non-vanishing com-

mutator of the non-local term with the coordinate operator:

Hnon−loc
e−rad = −1

c
(p ·A(r, t) + i [Vnl, r] · A(r, t)) . (4.3)

For an incoming plane wave characterized by a frequency ω, the vector potential A

has the form:

A(r, t) = A0 e ei(q·r−ωt) + c.c. , (4.4)

where e is the polarization unitary vector and c.c. indicates the complex conjugate

of the precedent term. The first term in (4.4) is responsible for absorption, the

second for stimulated emission.

Following Bassani and Pastori Parravicini [110], the probability per unit time

and unit volume that a perturbation of the form H e±iωt induces a transition from

an initial state |i〉 to a final state |f〉 is given by the Fermi’s golden rule:

Wi→f (ω) = 2π |〈f |H|i〉|2 δ (ωf − ωi ∓ ω) , (4.5)
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conductivity σ = σ1 + iσ2

dielectric function ǫ = ǫ1 + iǫ2 ǫ = 1 + (4πiσ) / (ω)

complex refractive index N = n + ik ǫ = N2 ; ǫ1 = n2 − k2 , ǫ2 = 2nk

absorption coefficient α = (2kω) / (c) = (ωǫ2) / (nc)

reflectivity at normal incidence R = [(n − 1)2 + k2]/[(n + 1)2 + k2]

Table 4.1: Relationships between optical response functions [119].

where the sign − refers to absorption and the sign + to emission of a quantum ω. The

absorption and emission rates are the starting points to calculate whatever optical

function, which describes the response of the system to an incoming radiation. Once

a complex response function is known, all the others are related to it by means of the

relations summarized in Table 4.1. Moreover, the real part and the imaginary part

of a complex dielectric function are related by a Kramers-Kronig transformation

[119].

Inserting Eqs. (4.2) and (4.4) in the matrix element of Eq. (4.5), in case of

absorption, we find:

〈c,k′| H |v,k〉 =
A0

c
〈ψck′ | eiq·r e · p |ψv k〉 =

A0

c
e · Mcv , (4.6)

where the spatial integral, which describes the transition probability, is

e · Mcv =
∑

s

∫

Ω
dr e−i(k′−q)·r u∗ck′(r, s) e · (−i∇) eik·r uv k(r, s) . (4.7)

When neglecting the spin-orbit interaction term, the Hamiltonian operator (4.1) is

independent of spin, hence spin states are conserved in the transitions induced by

the electromagnetic radiation. Adding a factor 2 in Eq. (4.7), we can account for the

the spin degeneracies and be free to eliminate the dependence on spin coordinates in
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the matrix element (4.7). The translational invariance of the wavefunction periodic

parts u∗ck′(r, s) and u∗v k(r, s) imposes that, under the hypothesis of long wavelength

λ (q = qrad ≃ 0), only direct transitions, i.e. between valence and conduction states

labelled by the same k vector, are permitted. This selection rule represents the

respect of the momentum conservation in a periodic medium, whereas the energy

conservation is expressed by the presence of the delta function in Eq. (4.5). To

obtain the absorption probability per unit time and per unit volume, it is necessary

to sum over all the possible initial and final states |n,k〉, remembering that the level

occupancy is described by the Fermi function fn,k. We obtain:

Wabs(ω) = 4π
(

A0

c

)2
∑

v,c

∑

k∈BZ

fvk (1 − fck)
∣

∣

∣ e ·Mcv

∣

∣

∣

2
δ
(

ωc(k)− ωv(k)− ω
)

. (4.8)

In a completely analogous way we can get the emission probability per unit time

and unit volume:

Wem(ω) = 4π
(

A0

c

)2
∑

v,c

∑

k∈BZ

fck (1 − fvk)
∣

∣

∣ e ·Mvc

∣

∣

∣

2
δ
(

ωc(k) − ωv(k) + ω
)

. (4.9)

The absorption coefficient is defined as the coefficient α in the relation

I = I0e
−αd , (4.10)

which describes the intensity I of the radiation propagating in the medium at a

distance d from the surface: the intensity decreases from the incoming value I0

on the surface, following an exponential law. The determination of the absorption

spectra requires the knowledge of the absorption coefficient, or equivalently, the

imaginary part of the dielectric function ǫ = ǫ1 + iǫ2:

α =
ω

nc
ǫ2 . (4.11)

Here n is the real part of the refractive index. We can obtain α dividing the difference

between the absorbed and the emitted energy per unit time and per unit volume by

the incident radiation flux:

α(ω) =
(Wabs −Wem)ω

nA2
0 ω

2/ 2π c
. (4.12)

The following equality is verified:

|e ·Mcv(k)|2 = |e · Mvc(k)|2 ; (4.13)
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it is the quantum formulation of the detailed balance principle. Thus, the final result

for the imaginary part of the dielectric function is:

ǫ2(ω) = 2
4π2

ω2

∑

c,v

∫

BZ

dk

8π3
(fv,k − fc,k) |e · Mcv(k)|2 δ (ωc(k) − ωv(k) − ω) . (4.14)

It is usually preferred to calculate ǫ2 rather than α, because it does not depend on

the index of refraction n, which is a function of the energy ω as well. By exploiting

the Kramers-Kronig transformation, the expression of the real part of ǫ can be

immediately derived from the knowledge of the imaginary part over all the frequency

range (4.14):

ǫ1 (ω) = 1 +
2

π
P
∫ ∞

0

ω′ ǫ2 (ω′)

ω′2 − ω2
dω′ . (4.15)

The transition rate depends on the factor |e ·Mcv(k)|2. Close to a critical point, if

the transition is not forbidden, this factor is different from zero and does not vary

significantly with k, so that we can extract it from the integral in (4.14), giving:

ǫ2(ω) =
4π2

ω2

∑

c,v

|e · Mcv(k)|2 Jcv(ω)Acv(ω) , (4.16)

where

Acv(ω) = fv,k − fc,k (4.17)

is the band filling factor and

Jcv(ω) =
∫

BZ

dk

4π3
δ (ωc(k) − ωv(k) − ω) =

1

4π3

∫

S

dS

|∇k (ωc(k) − ωv(k))|ωc−ωv=ω

(4.18)

is the joint density of states (JDOS) for interband transitions. The JDOS shows

strong variations in the neighborhood of the values of ω which satisfy the relation:

∇kωc(k) = ∇kωv(k) . (4.19)

The requirement (4.19) defines the critical points in the Brillouin zone and is usually

satisfied in the high symmetry points or along the symmetry lines. Close to an

extreme k0 of the band dispersion, the energy difference in the denominator of

Eq. (4.18) can be developed in a series of (k − k0), up to the quadratic term in the

expansion. Thanks to this simple analytical procedure, it is possible to deduce the

form of the absorption curves close to the direct gap ωg, in 1, 2 and 3 dimensions:

3D : Jcv(ω) =
1

2π2
(2m∗)3/2 (ω − ωg)

1/2 θ (ω − ωg) , (4.20)
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2D : Jcv(ω) =
m∗

π
θ (ω − ωg) , (4.21)

1D : Jcv(ω) =
1

π

(

m∗

2

)1/2

(ω − ωg)
−1/2 θ (ω − ωg) . (4.22)

With m∗ we indicate the effective mass and θ is a step function. At zero dimension,

the JDOS is obviously equal to a delta function. In Fig. 4.2 we illustrate the behavior

of the JDOS in different semiconductor nanostructures. We will work at a zero

Figure 4.2: Schematic illustration of the joint density of states in semiconductor systems.

temperature: all valence bands are occupied and all conduction states are empty,

thus making the band filling factor Acv(ω) always equal to 1.
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The polarization unitary vector e in Eq. (4.14) can assume whatever direction

in case of an isotropic material, without affecting the physical properties, which are

not dependent on the orientation of the sample. In case of an anisotropic crystal, a

scalar quantity is no more sufficient to define the optical properties of the material: a

dielectric tensor is needed instead. By choosing e, in three successive steps, along the

three principal optical axes, we can calculate the three components of the diagonal

dielectric tensor of the superlattice.

4.2 Results for bulk optical spectra

GaAs and AlAs present similar absorption properties: this is easy to understand,

remembering that the two bulk semiconductors have extremely similar band struc-

tures (see Figs. 2.2 and 2.3 on pages 25 and 27). Interband absorption spectra of

tetrahedral semiconductors are dominated by two prominent features, denoted E1

and E2 [8, 9]. The E1 peak (and its spin-orbit counterpart E1 + ∆1, which is not

present in our calculated spectra) originates from band-to-band transitions along the

Γ-L direction, where valence and conduction bands are nearly parallel: this results

in a M1-type critical point, i.e. a saddle point in the JDOS, which also gives a strong

excitonic character to the transition. The E2 peak, instead, has contributions from

different parts of the Brillouin zone, but mainly from a region centered around the

special point (3
4
, 1

4
, 1

4
) (in units of 2π/a, where a is the lattice constant). The E2

peak has essentially no excitonic character. In a superlattice made of alternating

GaAs and AlAs layers (or GaAs and vacuum layers), on the basis of the analysis we

have presented for the superlattice band structures, we expect to recognize again

the same characteristic features. In particular, in the region along the Γ-L direc-

tion, the electrons which contribute to the E1 peak are confined in GaAs layers (see

Fig. 2.5 on page 30). We are interested in comparing the bulk GaAs E1 peak to

the superlattice E1 peaks at different well/barrier widths. In Fig. 4.3 we show the

calculated real and imaginary parts of dielectric functions for bulk GaAs and AlAs

crystals. Starting from the one-electron semi-empirical band structure, the complex

dielectric function ǫ(ω) = ǫ1 + iǫ2 is evaluated in a straightforward way by means

of the semi-classical theory of interband transitions. The curves can be compared
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Figure 4.3: Calculated semi-empirical dielectric function (real and imaginary parts) of (a) GaAs

and (b) AlAs.
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with analogous measured data [120, 121], shown also later in Figs. 5.5 and 5.6 on

pages 116 and 119. The agreement with the experimental positions of the peaks,

is within a few tenths of an eV: we underline that the semi-empirical approach is

free of the band gap problem. The height of the peaks, especially E1, cannot be

correctly estimated without the inclusion of the excitonic contributions and the local

field effects.

Before calculating superlattice spectra, we have previously calculated bulk spec-

tra for (001) (GaAs)2p, i.e. we have described the cubic material as a periodic

array of tetragonal supercells, repeating the test for different supercell lengths in

the direction z. Integrating over the fcc Brillouin zone and the corresponding folded

tetragonal Brillouin zone, using equivalent sets of Chadi and Cohen special points,

we have verified the exact equivalence of the two results. An empirical Gaussian

broadening of 0.1 eV has been used to produce smooth curves. The spectra obtained

by the two different descriptions of the same system are perfectly superimposable.

This check guarantees now the right to compare the bulk absorption curves with

analogous superlattice curves, knowing that the differences cannot be due to uncon-

trollable errors in the numerical integration.

4.3 Optical spectra for GaAs/AlAs and GaAs/vacuum su-

perlattices

We discuss now the spectra obtained for superlattice systems. Tetragonal Brillouin

zone integrations are performed using Fourier quadrature with 1056 Chadi and Co-

hen special points in the irreducible wedge [64, 122]. The same set of special points

had already been used for bulk (GaAs)2p, to allow a direct comparison of results.

The experimental broadening is simulated again by an empirical Gaussian broaden-

ing of 0.1 eV. The calculated imaginary part of the dielectric function ǫ2 (ω) for both

GaAs/AlAs and GaAs/vacuum systems are shown in Fig. 4.4 for different super-

lattice periods p. At this stage we are not interested in the absorption anisotropy,

thus we average over the three orthogonal polarization directions to obtain a scalar

dielectric function. Like the optical spectra of bulk GaAs and AlAs, superlattice

spectra show two prominent features, namely E1 and E2 peaks (see Fig. 4.3): in
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Figure 4.4: Imaginary part of the dielectric function for (GaAs)p/(AlAs)p and (GaAs)p/(vacuum)p

superlattices, for different values of the period p, by semi-empirical calculations. Different curves

are offset for clarity. E1 splitting cannot be easily seen in the figure: the peak positions have been

determined by an enlargement of the spectral region of interest.
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fact, even if in a superlattice selection rules allow more transitions, as a consequence

of zone-folding, the tetragonal Brillouin zone is smaller and, at last, all transitions

which contribute to superlattice peaks have their equivalent counterparts in the bulk

Brillouin zone. Another way to understand the similarity between bulk and super-

lattice optical spectra is to remember how close the superlattice band dispersion

in Fig. 2.6 on page 33 is to the bulk band dispersion projected on the tetragonal

Brillouin zone in Fig. 2.4 on page 28. As a general remark, the E1 transition is

found to blue shift and to split into two peaks for decreasing superlattice periods;

the confinement-induced shift is larger for the GaAs/vacuum system. On the other

hand the E2 transition is split for large-period GaAs/AlAs superlattices, where the

electronic states are confined in the two bulk layers leading to a superimposition of

the two bulk spectra; the two peaks merge into a single one for small periods. A

single E2 peak with a small blue shift is found for GaAs/vacuum superlattices.

In Fig. 4.5 the peak energies are plotted as a function of the superlattice period

p. First we comment on the behavior of E1: in zinc-blend crystals it comes from

transitions along the Λ line, in a region where bulk bands are almost parallel. When

the system is confined in the [001] direction, it is not intuitive to describe the con-

sequences of folding along 〈111〉 directions. The calculated spectra show that along

the folded Λ line transitions subdivide in two main groups and lead to a splitting

of the E1 peak in the absorption curves. The two peaks have different oscillator

strengths and, except for an intermediate period length, the lowest energy one be-

comes much stronger and covers the other one. Both peaks undergo confinement

effects and are moved towards higher energies in comparison with their bulk posi-

tion: the confinement and the consequent shifts are stronger at smaller well widths.

A splitting of the E1 transition with a blue shift of both peaks was indeed observed

experimentally in GaAs/AlAs superlattices [10]. In the present calculation this is

attributed to a splitting of the bulk valence band at the point L and along the Λ-

line, as indicated by the band energies. The results of Figs. 4.4 and 4.5 show also

that E1 peak displacements are more relevant in GaAs/vacuum superlattices, where

quantum confinement effects are stronger due to the vacuum barrier.

The behavior of the E2 peak is substantially different: its main contribution
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Figure 4.5: E1 and E2 peak positions for GaAs/AlAs (closed symbols) and GaAs/vacuum (open

symbols) as a function of superlattice period p. The horizontal lines represent the peak energies

in the bulk.
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comes from transitions in a region close to the special point k = 2π
a

(

3
4
, 1

4
, 1

4

)

1. At

this k-point the alignment of both valence and conduction GaAs and AlAs bands is

almost flat and the electronic wave functions are completely delocalized all over the

heterostructure. This explains why E2 peak in GaAs/AlAs superlattices is at an

intermediate energy between bulk GaAs and AlAs E2 peak positions and does not

shift when the superlattice period p decreases. Our calculated peak positions are in

good agreement with experimental data [123, 10, 11], and in particular a splitting

of E2 is reported in Ref. [11]. In GaAs/vacuum superlattices the situation changes:

the electrons near the special point are confined in GaAs layers and the superlattice

E2 peak has a weak blue shift at small superlattice periods p, going back to the bulk

GaAs E2 energy when p grows. A single peak obviously arises in this case since

there is no AlAs contribution. At last, we present in Fig. 4.6 some curves for the

real part of the dielectric function ǫ1 for GaAs/AlAs heterostructures. We observe

that the average, or Penn gap (defined as the energy at which ǫ1 goes through

zero) does not depend on the superlattice period. This proves that the center of

gravity of valence and conduction bands is preserved, as suggested in Ref. [16]: this

follows from compensating effects of a blue shift at the bottom of the band (positive

curvature) and a red shift at the top of the band (negative curvature).

4.4 Optical anisotropy and macroscopic dielectric tensor

In (GaAs)p/(AlAs)p (001) superlattices the Td cubic point group of the zinc-blend

structure is replaced by the D2d symmetry group. Cubic crystals present isotropic

optical properties, while in a superlattice the reduction in symmetry leads to optical

anisotropy in the real part of the dielectric constant (birefringence) and in the imag-

inary part (absorption anisotropy, or dichroism). The optical response can no longer

be characterized by a complex dielectric function, in its place a complex dielectric

tensor must be introduced. The GaAs/AlAs system is uniaxial, with the optical

axis directed along the growth direction z, thus the dielectric tensor has the form:

ǫij (ω) = ǫii (ω) δij , (4.23)

1What we call E2 peak may in fact contain weak contributions from the E′

0
transition, which can be clearly

resolved only in derivative spectra. See e.g. Refs.[8, 10].
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Figure 4.6: Real part of dielectric function for (GaAs)p/(AlAs)p (001) superlattices, by semi-

empirical calculations, for different values of the superlattice period p.
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where ǫxx = ǫyy = ǫ⊥ and ǫzz = ǫ‖
2.

However, we do not hide that there are further complications. Besides the effects

of spatial anisotropy, there are effects due to the spatial inhomogeneity of the solid,

independently of his symmetry group. These are the local field effects, which will

be discussed in the next chapter (see Section 5.2). The inclusion of local fields in

calculations allow to account naturally for the intrinsic dielectric anisotropy of a

multilayer, arising from different boundary conditions for an electric field parallel

or perpendicular to the layers [113, 114]. This contribution to birefringence can

be estimated for long wavelength of the incoming radiation and large superlattice

periods p, in a classical effective medium model [27]. If boundaries are assumed

abrupt and the constituent materials are supposed to conserve their bulk dielectric

functions up to the interfaces, we can apply approximate expressions for ǫ⊥ and ǫ‖

in terms of bulk constituent scalar dielectric functions, ǫ1 and ǫ2 [113]:

ǫ⊥ (ω) =
1

l1 + l2
(ǫ1 (ω) l1 + ǫ2 (ω) l2) , (4.24)

ǫ−1
‖ (ω) =

1

l1 + l2

(

l1
ǫ1 (ω)

+
l2

ǫ2 (ω)

)

, (4.25)

where l1, l2 are the layer thicknesses of the two different materials. Using semi-

empirical calculated values of bulk static dielectric constants in expressions (4.24)

and (4.25) we find a rough estimate ∆n ≃ 0.03 for the local field contribution to

birefringence at zero frequency. We know that this sizeable contribution at large

superlattice periods will be missed in our calculations, as long as we neglect local

field effects. Local field effects are known to depend on the superlattice period 3.

At this stage we decide not include local field effects: we directly take into account

only the effects of electronic confinement and band folding on optical transitions.

Comparison with birefringence data from Ref. [16], reported in Fig. 4.9, should allow

to determine if the confinement and the band folding contributions to anisotropy

2In GaAs/vacuum superlattices, where the point group is C2v , the system is biaxial with principal axes along

[110], [11̄0], [001] and the dielectric constant for in-plane polarization has a slight additional anisotropy. The

situation is analogous to heterostructures with no-common atom, where the in-plane anisotropy has been measured

[124].
3The macroscopic treatment remains valid as long as the superlattice period remains much smaller than the

wavelength of light, otherwise the superlattice should better be viewed as a one-dimensional photonic crystal, where

local-field effects embodied in ǫ(G,G′) lead to the formation of a band gap for light propagation [125].
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can be sufficient to explain the behavior of the birefringence, at least when the

superlattice period is intermediate/small.

4.5 Calculations of birefringence

In Fig. 4.7 we present an example of the calculated frequency dispersion of ǫ‖ and

ǫ⊥, both for the real and imaginary parts: the birefringence is dispersionless up to

energies close to the direct gap, while at higher energies it presents resonant con-

tributions. We see, as expected, that folding and confinement can have a greater

influence on the resonant part of the birefringence: indeed, transitions from valence

subbands couple differently with xy or z-polarized electric fields. Note that the in-

terband absorption edge is higher in energy for z-polarized light: this is in agreement

with well known quantum well and superlattice physics, in which the lowest transi-

tion is a heavy hole one and is forbidden for light polarized along z 4. Once again the

effect is greater when confinement is stronger (small superlattice period p). There is

a dispersionless contribution to birefringence at low frequencies of the order of 10−3-

10−2 that cannot be distinguished in Fig. 4.7. As proposed in Ref. [16], we decouple

this low energy background birefringence, describing ∆n (ω) = (ǫ⊥)1/2 − (ǫ‖)
1/2 in

terms of a fitting function,

∆n (ω) = ∆nbg − ∆ngap ln



1 −
(

ω

ωg

)2


 , (4.26)

where ∆nbg is the background contribution we want to isolate, the second term refers

to the resonant contribution and ωg is the gap frequency. In Ref. [16] the three pa-

rameters ∆nbg, ∆ngap and ωg are extracted by fitting with expression (4.26) the

experimental data. We also fit our calculated ∆n (ω) curves by means of expression

(4.26). In Fig. 4.8 we display the fit parameters as a function of the well width: the

graphs can be easily compared with the analogous experimental curves presented in

Fig. 4.9. The gap frequencies we extract by the fit agree both with directly calcu-

lated gaps (barely visible in Fig. 4.4) and with the measured ones [16]. ∆ngap shows

an increase of the resonance for small periods: the theoretical curve reproduces the

4The polarization selection rule follows immediately from k·p theory, although a precise calculation of absorption

spectra close to the fundamental gap should of course include the spin-orbit interaction [126].
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Figure 4.7: (a) Components of the dielectric tensor (real and imaginary parts) for a

(GaAs)4/(AlAs)4 (001) superlattice and (b) linear birefringence ∆n for (GaAs)p/(AlAs)p (001)

superlattices, by semi-empirical calculations.
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Figure 4.8: Parameters of equation (4.26) as a function of well width (half of a superlattice period):

(a) energy gap, (b) ∆ngap and ∆nbg. The results can be compared with the analogous experimental

graphs in Fig. 4.9.
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Figure 4.9: Experimental parameters of equation (4.26) as a function of well width (half of a

superlattice period): (a) energy gap, (b) ∆ngap and ∆nbg from Ref. [16]
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trend of the experimental curve, although the calculated values are significantly

smaller. The sudden decrease of the measured background birefringence ∆nbg be-

low 40 Å, on the other hand, is completely missing in our results. Moreover, the

calculated magnitude of this term above 40 Å is remarkably underestimated. The

fact suggests that folding effects give only a minor contribution, while the origin of

the behavior of ∆nbg must be attributed to local field effects, as already suggested

in Ref. [16]. Similar considerations can be made for the GaAs/vacuum systems.

The magnitude of the background birefringence related to local field effects can

be estimated in the case of a long wavelength of the incident radiation and a not

too small superlattice period p, thanks to the expressions in (4.24) and (4.25). The

obtained value, i.e. 0.03, is much larger than the calculated values in Fig. 4.8, for all

superlattice periods p, and it is of the same order of magnitude as the the experimen-

tal results at intermediate/large p. Only for small periods p, when relations (4.24)

and (4.25) do not hold, the local field correction may not respect the analytic limit

value. Nevertheless, the effects included in calculations fail to describe the small

superlattice period region as well. Further calculations of the optical properties

including local-field effects are obviously required to clarify this point.

In this chapter we have applied the semi-empirical LCBB technique and the semi-

classical theory of interband transitions to cast light on how the optical spectra of

bulk semiconductors evolve to superlattice spectra. We have discussed the adopted

approximations, namely the independent-particle picture neglecting local field effects.

First, we have considered the average dielectric function. Quantum-confinement

induced shifts of the critical point energies are calculated for both kinds of super-

lattices and are found to be larger for the GaAs/vacuum systems, where coupling

between different GaAs layers is only due to quantum-mechanical tunneling and has

a negligible effect. For both GaAs/AlAs and GaAs/vacuum superlattices, the E1

peak in the absorption spectrum splits into two peaks with increasing blue shifts for

decreasing superlattice period. This result agrees with the observations of Ref. [10]

on GaAs/AlAs superlattices, and is attributed to a symmetry splitting of the valence

bands along the line Γ-L. The blue shifts are always larger for the GaAs/vacuum

systems. The E2 transition instead is found to be split for large-period GaAs/AlAs

superlattices, where the electronic states of the bulk are confined in each layer and
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the absorption spectrum is the superimposition of the two bulk ones. The energy of

the E2 peak depends weakly on the superlattice period. The average or Penn gap,

defined as the first zero of the real part of the dielectric constant, does not depend

on the superlattice period, confirming the expectation that a blue shift at the lower

absorption edges is compensated by red shifts in the upper parts of the absorption

spectrum.

Second, we have studied the optical anisotropy. The band contribution to linear

birefringence of GaAs/AlAs superlattices is calculated and compared with recent ex-

perimental results of Ref. [16]. The zero-frequency birefringence is found to be much

smaller than the experimental results: we suppose that the missing contribution to

observed static birefringence may be attributed to local-field effects, as already sug-

gested in the experimental analysis of Ref. [16]. The frequency-dependent part of

the birefringence arising from band folding and quantum confinement increases with

decreasing superlattice period, as found in the experiment, although the calculated

values are smaller. Once again, a better qualitative agreement could be obtained

thanks to the inclusion of local field effects.

The presented results state the validity of the LCBB method, and its underlying

approximations, to describe the averaged optical properties. Nevertheless, a deeper

study is needed to understand optical anisotropy, in particular the origin of the

behavior of the static birefringence as a function of the superlattice period.



Chapter 5

Ab-initio calculations of optical

properties

After having discussed the empirical approach, we are going to turn our interest

to first principle theoretical and computational tools in spectroscopic properties

calculations. We have introduced in the previous chapter the complex problem of

determining optical spectra in the whole visible region. A completely satisfactory

solution of this task requires a description, which takes into account at the same

time not only the detailed electronic structure, but also the many-body effects and

the microscopic inhomogeneity of the medium. Non-trivial systems, like surfaces,

clusters, semiconductor nanostructures, are today successfully treated in the ab ini-

tio framework, most often by constructing the excitation spectrum of the system as a

sum over independent transitions between the states determined in the ground state

calculation (i.e. using the one-electron energies and wavefunctions of the Kohn-Sham

equation). This degree of approximation can be equivalent to the one adopted in

our semi-empirical calculations of the optical spectra, which has provided a detailed

analysis of the effects of band folding and confinement in semiconductor superlat-

tices [28]. However, no quantitative agreement with the experiment has been found

concerning the static birefringence, nor could semi-empirical independent-transition

calculations explain, even qualitatively, the increase of the static birefringence with

increasing superlattice period. One might suspect that the semi-empirical approach

is not sufficiently precise to describe such a small effect as the birefringence. The

93
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other strongly suspected reason for failure is the inadequacy of the basic approx-

imations used to determine the macroscopic dielectric function. In particular, we

expect that the local field effects can play a very important role. Both the points

call for a more detailed investigation into the anisotropy of the optical response.

In order to go beyond the simple independent-transition picture for the descrip-

tion of two-particle excitations, like absorption spectroscopy, the most important

corrections to be included are the full electron-electron and electron-hole interac-

tions and local field effects. Let us discuss now more in detail these effects. Local

field effects express the fact that, related to the inhomogeneity of the material, its

response to an external potential with given spatial frequency will include, in prin-

ciple, all other spatial frequencies determined by the reciprocal lattice vectors of the

periodic system. This implies that, technically, the size of the problem which has to

be dealt with is considerably bigger than for the simple sum of transitions and, in

fact, local field effects are often omitted in calculations. However, superlattices are

intrinsically inhomogeneous, and these effects can therefore be expected to play an

important role in their optical and dielectric properties. The Kohn-Sham eigenvalues

are not meant to describe electron addition and removal energies: only quasi-particle

energies, which can be obtained within the many-body theory, are suitable to de-

scribe the changes in total energy occurring in direct and inverse photoemission

processes. However, quasi-particle corrections are still not enough to describe all

the effects arising in an absorption process, where interacting electron-hole pairs are

created. In fact, another effect, well known to be important for optical spectra, is

the electron-hole interaction, or excitonic effect. This effect is due to the fact that

the created electron-hole pair may interact more or less strongly, leading to bound

states within the gap and/or to strong deformations above the continuum absorption

edge. The importance of these effects depends on the size of the screening of the

electron-hole interaction and on the details of the band structure. In particular for

flat bands, which are linked to the existence of localized (confined) states, this effect

is expected to be very strong. Hence, due to the confinement properties of superlat-

tices, their spectra are expected to show relevant excitonic effects. At the moment

we want to focus on the superlattice birefringence at zero frequency and not on the

whole absorption spectra: as the static birefringence is a ground state property, we
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can expect that neglecting quasi-particle corrections and excitonic effects has not a

dramatic influence on the results. As a matter of fact, we will show that only when

local field effects are included qualitative and even quantitative agreement with the

experiment can be achieved. These results will be discussed in the first part of this

chapter.

In the second part, we will go back to the problem of electron-electron and

electron-hole interactions, to study the line-shape of absorption spectra up to 7

eV for bulk GaAs and AlAs systems. The calculation of optical spectra for bulk

semiconductors is a widely investigated subject. In the last decades the many-

body perturbation theory has produced expressions both for the self-energy and the

electron-hole interaction, which are successfully used in computational physics. The

self-energy Σ is usually obtained within Hedin’s GW approach, starting from DFT

results as a zero-order solution. Similarly, the excitonic effects are well described by

the Bethe-Salpeter equation (BSE), via a functional derivative of the self-energy Σ.

However, the many-body perturbation theory is not the only approach developed

to deal with response properties. The limits of DFT comes from the fact that ex-

cited states, are not accessible through static ground state DFT. In principle, these

problems can be overcome, at least as far as optical excitations are concerned, by

taking into account the fact that in the absorption experiment the system is re-

sponding to a time-dependent external field. Therefore a generalization of static

DFT to Time-Dependent DFT (TDDFT) has been proposed [127, 128], i.e. all po-

tentials are now functionals of the time-dependent density. Besides the potentials,

also their functional derivatives with respect to the density are needed (at least

implicitly), since the system is responding self-consistently to the applied perturba-

tion. As it happened in static DFT, again, the main problem resides in finding a

good approximation to the exchange-correlation contribution. The time-dependent

DFT approach still keeps the advantage of the static one to be computationally

very efficient, and could in principle replace other successful, but more cumbersome

methods like the Bethe-Salpeter approach (BSE)[129, 130, 131, 132]. However, there

are some additional difficulties with respect to the case of static DFT: in the present

chapter we will mainly deal with the determination of reliable approximations for

the time-dependent density variation of the exchange-correlation potential Vxc, i.e.
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the so-called exchange-correlation (xc) kernel, fxc = δVxc/δρ.

Real calculations are dependent on the chosen approximation for the xc kernel

fxc: the lowest level of approximation (RPA) consists in neglecting the kernel, an-

other simple approximation is the adiabatic local density approximation (TDLDA)

[133, 134], where the kernel is calculated from the LDA exchange-correlation po-

tential V LDA
xc . At present, the simple adiabatic local density approximation for the

TDDFT kernel has given promising results for finite systems, but does not succeed

in describing absorption spectra in solids. Improvements might come through the

inclusion of dynamical (memory) effects and/or long-range nonlocal terms [128, 135].

Recently, Reining et al. [30] have shown that a static long-range contribution (LRC)

can simulate the strong continuum excitonic effect in the absorption spectrum of

bulk Silicon. Here we present the results for GaAs and AlAs spectra. We will show

that the optical absorption, which exhibits a strong continuum exciton effect, is

considerably improved with respect to calculations where the adiabatic local den-

sity approximation is used.

We underline that the calculations concerning the superlattice zero-frequency bire-

fringence have been performed within a time-dependent DFT formalism as well.

Also in this case, we will discuss the different approximations adopted to describe

the xc kernel fxc.

5.1 Time Dependent Density Functional Theory

We discuss here the essential formalism of the time-dependent generalization of DFT.

For detailed information on this subject, we suggest to refer to some recent reviews

[128, 136, 137, 138, 139]. The Density Functional Theory, as described in Chapter

3, is a ground state theory, thus unable to account for electronic excitations. These

restrictions can be overcome within the DFT formalism, generalizing it by allowing

a time dependence for the external field. As in classical mechanics, the DFT ground

state is determined by the energy minimum:

δE[ρ]/δρ(r) = 0 . (5.1)

Extending the analogy, as the trajectory of a classical system is given by the extrema

of the classical action
∫ t1
t0
dtL(t), where L is the Lagrangian, the evolution of a
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quantum system, which undergoes an external time-dependent potential Vext(r, t),

is given by the extrema of the quantum mechanical action:

A =
∫ t1

t0
dt〈Ψ(t)|i ∂

∂t
− Ĥ(t)|Ψ(t)〉 . (5.2)

Of course, there are some theorems [127], exactly analogous to the Hohenberg-

Kohn theorems (see Section 3.1.1) and presented within a framework similar to

the Kohn-Sham scheme (see Section 3.1.2). A first theorem proves that there is a

bijective correspondence between time-dependent external potentials Vext(r, t) and

v-representable time-dependent densities ρ(r, t). A second theorem proves that the

evolution of the system is determined by the extrema of the quantum mechanical

action. Van Leeuwen [140] has shown that the time-dependent density, which char-

acterizes a many-body system can be, in principle, reproduced by a time-dependent

external potential, in a many-body system with no two-particle interactions. This

property allows to represent at any time the density of a many-body system by means

of a non-interacting system, which reproduce the exact interacting density ρ(r, t).

The evolution of the system is described by the time-dependent KS-equations:

[

−1

2
∇2 + Veff(r, t)

]

ψi(r, t) = i
∂

∂t
ψi(r, t) , (5.3)

ρ(r, t) =
N
∑

i=1

|ψi(r, t)|2 , (5.4)

where

Veff(r, t) = VH(r, t) + Vxc(r, t) + Vext(r, t) (5.5)

is, as in the static case, the effective potential felt by the electrons. It consists of the

sum of the external time-dependent applied field, the time-dependent Hartree term,

plus the exchange-correlation potential (defined through the equivalence between the

interacting and fictitious non-interacting systems). From the variational principle,

it is possible to define:

Vxc(r, t) =
δAxc[ρ]

δρ(r, t)
, (5.6)

where Axc[ρ] is the exchange-correlation part of the action functional A. Besides its

elegance, the most remarkable quality of the time dependent DFT is in its compu-

tational simplicity, in comparison to other available methods.
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5.1.1 Derivation of an expression for the dielectric function

The linear response of the charge density to an external time-dependent perturbation

is determined by the polarizability χ of the medium:

χ(r, t, r′, t′) =
δρ(r, t)

δVext(r′, t′)

∣

∣

∣

∣

∣

Vext=0

. (5.7)

The Eq. (5.7) means that the density ρ(r, t) and the external potential are related

in the following way :

ρ(r, t) = ρ(r, t0) +
∫

χ(r, t, r′, t′)Vext(r
′, t′)dr′dt′ + O(V 2

ext) . (5.8)

The independent-particle polarization χ0 relates, in a fully equivalent way, the elec-

tron density ρ(r, t) to the effective potential Veff(r, t):

χ0(r, t, r
′, t′) =

δρ(r, t)

δVeff(r′, t′)

∣

∣

∣

∣

∣

Veff =0

. (5.9)

Remembering the definition of the effective-potential, Veff = Vext + VH + Vxc, it is

easy to obtain:

δVeff(r, t)

δVext(r′, t′)
= δ(r − r′)δ(t− t′)+

∫

[

δ(t− t′′)

|r− r′′| + fxc(r, t, r
′′, t′′)

]

χ(r′′, t′′, r′, t′)dr′′dt′′ , (5.10)

where

fxc(r, t, r
′, t′) =

δVxc[ρ(r, t)]

δρ(r′, t′)

∣

∣

∣

∣

∣

Vext=0

(5.11)

is the time-dependent xc kernel and

v(x, x′) = v(r, r′) δ(t− t′) =
δ(t− t′′)

|r − r′′| (5.12)

accounts for the variation of the Hartree potential. After deriving the simple relation:

δρ/δVext = (δρ/δVeff)(δVeff/δVext) ≡ χ0δVeff/δVext , (5.13)

a Dyson-like equation, which connects the two polarizabilities χ and χ0, follows in

a straightforward way:

χ(r, r′;ω) = χ0(r, r
′;ω)+

∫

dr1dr2χ0(r, r1;ω)

[

1

|r1 − r2|
+ fxc(r1, r2, ω)

]

χ(r2, r
′;ω) . (5.14)
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This scheme allows to describe the exact linear response of an interacting system in

terms of the response of a non-interacting system with external potential Veff(r, t).

The exact exchange-correlation contributions are of course unknown, and the appli-

cation of the theory relies on some approximations. The lowest level of approxima-

tion (RPA) consists in neglecting the kernel:

fRPA
xc = 0 . (5.15)

Another simple approximation is the adiabatic local density approximation (TDLDA)

[133, 134], where the kernel is calculated from the LDA exchange-correlation poten-

tial used in ground state calculations:

fTDLDA
xc (r) = δ (r, r′)

dV LDA
xc (r)

dρ(r)
. (5.16)

Inverting formally Eq. (5.14), one obtains a compact equation

χ = [1 − χ0(v + fxc)]
−1 χ0 , (5.17)

where v is the Coulomb potential. The inverse dielectric function ǫ−1 measures the

screening in the system:

ǫ−1 (r, t, r′, t′) =
δVeff(r, t)

δVext(r′, t′)
. (5.18)

In practice, we need the inverse dielectric function in the momentum space, which

is related by a Fourier transform to real space:

ǫ−1 (r, r′;ω) =
1

(2π)3

∫

BZ
dq

∑

G,G′

ei(q+G)·r ǫ−1
GG′ (q, ω) e−i(q+G′)·r′ . (5.19)

Some care must be taken in the origin of the induced screening. If the probe is

assumed to be a test particle, it is only affected by the electrostatic Hartree term

in equation (5.10). From Eq. (5.10) it follows that the inverse dielectric function is

connected to the polarizability by the relation:

ǫ−1 = 1 + vχ . (5.20)

The random phase approximation (RPA) response function is obtained, simply

imposing fxc = 0:

ǫ−1
RPA = 1 + v (1 − χ0v)

−1 χ0 . (5.21)
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Then, inverting the matrix relation and using the matrix equality

(1 − χ0v)
−1 χ0 = χ0 (1 − vχ0)

−1 , (5.22)

we obtain:

ǫRPA = 1 − vχ0 . (5.23)

In conclusion, all we need to perform calculations is an explicit formulation of

the polarizability. Application of first-order perturbation theory to the Kohn-Sham

equations (3.20) yields the standard result for the independent-particle polarization

χ0 in the Adler-Wiser formulation [115, 116]:

χ0 (r, r′;ω) = 2
∑

i,j

(fi − fj)
φi(r)φ

∗
j(r)φ

∗
i (r

′)φj(r
′)

ǫi − ǫj − ω − iη
, (5.24)

where fi are the occupation numbers (0, 1) and η is a positive infinitesimal number.

The small imaginary constant added in the denominator accounts for causality,

and describes lifetime effects when it is small, but finite; the factor 2 stems from

spin degeneracy. The explicit Fourier transformation of the independent-particle

polarization results:

χGG′

0 (q, ω) = 2
∑

i,j

(fi − fj)
〈j|e−i(q+G)·r|i〉〈i|ei(q+G′)·r′|j〉

ǫi − ǫj − ω − iη
. (5.25)

5.1.2 RPA approximation without local field effects

It is interesting to establish a link between the formula (4.14) in Section 4.1. for

the imaginary part of the dielectric function and the analogous formula within the

RPA approximation, which we can derive starting from the expression for χ0 in

Eq. (5.25). At this stage, we continue neglecting local field effects, to preserve the

correspondence with the semi-empirical calculations. From Eqs. (5.23) and (5.25)

we obtain:

ǫM (ω) = 1 + 2
4π

Ω

lim
q→0

1

q2

∑

k∈BZ

∑

v,c





|〈nc,k + q|eiq·r|nv,k〉|2

ǫnc,k+q − ǫnv,k − (ω + iη)
+

|〈nc,k − q|e−iq·r|nv,k〉|2

ǫnc,k−q − ǫnv ,k + (ω + iη)



 ,

(5.26)
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where we have used the Fourier transformation of the Coulomb potential:

1

|r| =
4π

Ω

∑

q,G

ei(q+G)·r

|q + G|2
. (5.27)

Since the second term (anti-resonant) does not contribute to the absorption, we can

reject it:

ǫ2 (ω) = 2
4π

Ω
lim
q→0

1

q2

∑

k∈BZ

∑

nv,nc

Im





|〈nc,k + q|eiq·r|nv,k〉|2

ǫnc,k+q − ǫnv ,k − (ω + iη)



 . (5.28)

For a non-local Hamiltonian H , the commutator with the coordinate operator is

given by:
d

dt
ri = i [H, ri] = pi + i [Vnl, ri] , (5.29)

where Vnl is the non-local part of the Hamiltonian. Another way to write the previous

expression is [141]:

vα = lim
q→0

[

H, eiqrα

]

/q , (5.30)

where vα and rα are, for α = x, y, z, the Cartesian components of v and r. Applying

now Eqs. (5.29) and (5.30) to simplify Eq. (5.28), we obtain

lim
q→0

〈nc,k + q|eiq·r|nv,k〉/q =
e · 〈nc,k|∇i + i [Vnl, r] |nv,k〉

ǫKS
c − ǫKS

v

, (5.31)

where e is a polarization unitary vector, pointing in the direction of q. We have indi-

cated explicitly that the eigenvalues in the denominator are Kohn-Sham eigenvalues,

because they derive by the application of the Kohn-Sham Hamiltonian, even if GW

corrections are added. In fact, the use of the quasi-particle Hamiltonian to calculate

the commutator would be much more demanding, because the self-energy operator

Σ is non-local and dynamical. Hence, the final formula in the RPA approximation,

neglecting local field effects is:

ǫ2 (ω) = 2
4π

Ω

lim
q→0

∑

k∈BZ

∑

nv,nc

∣

∣

∣

∣

∣

e · 〈nc,k|∇i + i [Vnl, r] |nv,k〉
ǫKS
c − ǫKS

v

∣

∣

∣

∣

∣

2 [
1

ǫnc,k+q − ǫnv,k − (ω + iη)

]

.

(5.32)

We want to show that the expression (5.28) is equivalent to the expression (4.14):

ǫ2(ω) = 2
4π2

Ω

1

ω2

∑

nc,nv

∑

k∈BZ

|e ·Mcv(k)|2 δ (ωc(k) − ωv(k) − ω) . (5.33)
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Exploiting once again Eqs. (5.29) and (5.30), we can rewrite it in a slightly different

way:

ǫ2(ω) = 2
4π2

Ω
lim
q→0

1

q2

∑

nc,nv

∑

k∈BZ

∣

∣

∣〈nc,k + q|eiq·r|nv,k〉
∣

∣

∣

2
δ (ωc(k) − ωv(k) − ω) ,

(5.34)

which is the imaginary part of Eq. (5.28). In fact:

lim
η→0

1

x± iη
= P

1

x
∓ iπδ (x) . (5.35)

5.2 Local field effects

A solid which possesses lattice-potential symmetry is non-homogeneous on the mi-

croscopic scale, even when it is characterized by a cubic symmetry group, which

yields isotropic optical properties. When an external perturbing field of small wave

vector q and frequency ω is applied to the system, the local field will in general

contain “Bragg reflected” terms, i.e. dependent on the wave vector q + G, where G

is a reciprocal lattice vector. These microscopically varying terms fluctuate on the

wavelength of the interatomic spacing. The frequency ω is not affected, supposing

the homogeneity of the time. The difference between the local and the macroscopic

field constitutes the local-field corrections in the electromagnetic response.

Let us consider an electric field E, incoming on a non-homogeneous medium.

In the linear approximation, the polarization effects are described by the electric

displacement vector D:

D(q + G, ω) =
∑

G′

ǫmic(q + G,q + G′;ω)E(q + G′, ω) . (5.36)

We are interested in a relation which, in the limit of a negligible q, consider only

macroscopic quantities:

DM(ω) = ǫM(ω)EM(ω) . (5.37)

According to Adler [115] and Wiser [116], the macroscopic dielectric tensor can be

related to the inverse of the microscopic dielectric matrix [117, 118]:

ǫM (ω) = lim
q→0

1

ǫ−1
GG′ (q, ω)

∣

∣

∣

∣

∣

G=G′=0

. (5.38)
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The difference between an homogeneous and non-homogeneous medium lies in the

off-diagonal terms. In the direct space this means that the microscopic dielectric

function ε(r, r′) depends explicitly on the positions r and r′, and not simply on

the distance |r − r′|. If the medium were homogeneous, the macroscopic dielectric

function would be

ǫM = lim
q→0

ǫG=0,G′=0 , (5.39)

i.e. the spatial average of the microscopic dielectric function. In case of isotropic

media, the direction in which the limit of the small q vector has to be taken is

non-influent. In case of a GaAs/AlAs superlattice, taking the limit of q in the z or

x/y directions gives respectively the components ǫ‖ and ǫ⊥ of the dielectric tensor,

which include local field effects (LFE).

5.3 Results for the birefringence of GaAs/AlAs superlat-

tices

The reduction of the original cubic symmetry of the diamond or zinc-blend struc-

ture gives rise to an optical anisotropy in GaAs/AlAs superlattices [16]. As we

have already discussed in the previous chapter, the birefringence in perturbed bulk

semiconductors has two well-known contributions [142, 143], namely a dispersionless

term related to virtual direct transitions involving high energy gaps between valence

and conduction bands, and a resonant term which represents the isolated effects of

the virtual transitions associated with the small energy gaps between the top valence

bands and the first conduction bands. We have calculated the static birefringence

of (001) (GaAs)p/(AlAs)p superlattices for the barrier/well period p=1 to p=8, em-

ploying the ab initio DFT approach which should a priori describe details of the

band structure in a more reliable way, if compared to an empirical approach. In

fact, one might suspect that the semi-empirical approach is not sufficiently precise

to describe such a quantity as the birefringence which requires calculations of high

precision, being a very small (of the order of 10−2) difference between two dielectric

constants. However, we will see that this rather technical point turns out not to

be the main source of error in the calculations in Chapter 4. We have proved in

Section 5.1.2 that TDDFT calculations without local field effects, within the RPA
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Figure 5.1: Static birefringence for GaAsp/AlAsp superlattices as a function of p. Circle: exper-

iment from Ref. [16]. Filled square: RPA theoretical values without local fields. Empty square:

semi-empirical theoretical values without local fields. The effective medium value calculated with

the theoretical RPA (with local fields) dielectric constants of bulk GaAs and AlAs is indicated by

the horizontal dashed line (see text).
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approximation for the xc-kernel, yield optical spectra totally equivalent to the ones

we have calculated within the semi-empirical framework. In Fig. 5.1 we compare

ab initio and semi-empirical calculations without local field effects. The two curves

show the same trend as a function of the superlattice period p. The values of the

birefringence are moreover completely compatible: the TDDFT calculations con-

firm hence the semi-empirical results. In our ab initio calculation we have carefully

checked the symmetries of the wavefunctions and of the energy levels. In particular,

the symmetry operation which makes x and y axes equivalent for a tetragonal super-

lattice belongs to a non-symmorfic point group, whereas the codes used can consider

only symmorfic point groups. Thus, we had to work on improving the convergence

of the wavefunctions, to assure that the x and y components of the dielectric tensor

could be equal up to 10−5, and, as a consequence, that the calculated birefringence

could not contain uncontrolled errors due to asymmetries.

It is well known that many-body effects beyond the simple independent-particle

picture often drastically alter the dielectric properties of materials. Self-energy and

excitonic effects can have a significant contribution to the absorption spectra of

even simple bulk semiconductors, and by consequence also change their dielectric

constants. These effects are due to variations of the exchange-correlation potential

upon excitation. Of course, there are also contributions stemming from variations

of the Hartree potential, including the so-called local field effects, which express

the fact that these variations reflect the charge inhomogeneity of the responding

material. Therefore, local field effects can be of moderate importance, compared

to the exchange-correlation contributions, for example in the absorption spectra of

simple bulk semiconductors, but show up increasingly when one considers more in-

homogeneous systems. In electronic spectra of clusters (which are to be considered

as a strong inhomogeneity in empty space), and for spectra involving excitations

from strongly localized states [144], local field effects alone explain already most

of the drastic disagreement between results obtained in the independent-transition

approach, and the experimental spectra. One can hence suspect that, as already

suggested by [16] and indirectly confirmed by the results of the previous chapter,

local field effects play a crucial role for the description of the anisotropy of the di-

electric properties of superlattices, and should not be neglected, independently of
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the fact whether semi-empirical or ab initio approaches are used. Thus, we have

decided to investigate the role of local field effects. The RPA values of the bire-

fringence ∆n =
√
ε⊥ − √

ε‖ calculated without and with local fields (respectively

empty and filled squares) are reported on Fig. 5.2 as a function of the well width,

together with the experimental results of Ref. [16] (filled circles). Once again, we re-

mark that the neglect of local fields leads to an anisotropy much smaller than in the

experiment. The inclusion of the off-diagonal elements in the inversion of ε−1
G,G′ dras-

tically changes the behavior of the birefringence: the amplitude increase up to the

expected effective medium value ∆n = 0.05, calculated with ε⊥ = (εGaAs + εAlAs)/2

and ε−1
‖ = (ε−1

GaAs + ε−1
AlAs)/2 [27]. Since any calculation of the static dielectric

constant within the RPA approximation, increases the dielectric mismatch between

GaAs and AlAs compared to experiment [145], the effective medium plateau calcu-

lated with theoretical dielectric constants has a higher value than the experimental

one. The inclusion of local field effects perfectly reproduces the increase of the

anisotropy with increasing superlattice period, which was completely absent in the

independent-transition calculations. We find that, for p > 3, the optical anisotropy

in (GaAs)p/(AlAs)p superlattices is completely determined by the anisotropy of the

local fields.

It is now interesting to analyze these results more in detail, in order to under-

stand better the importance of local field effects. Eqs. (5.25) and (5.23) show that,

indeed, χ0 and the microscopic RPA dielectric tensor εRPA are sums over indepen-

dent transitions, but the relation between the macroscopic dielectric constant and

χ0 (even in RPA) is much more complicated than the simple linear relation (5.23),

that is used in calculations neglecting local field effects. The inversion (5.38) leads

in fact to an effective mixing of transitions. Therefore, it is worthwhile to see, as

a first step, which transitions determine the anisotropy of the dielectric response.

We explore this idea by examining the effects of the highest valence and lowest con-

duction bands on the birefringence for the well/barrier period p=3 and p=8. In a

first step we consider ”all” the conduction bands (i.e. those necessary to achieve

convergence) as possible final states for the transitions, but we restrict the initial

states to the v first valence bands (Fig. 5.3, lower panel). Note that in order to scale

the results of the three superlattices, the abscissa axis varies from lattice to lattice,
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Figure 5.2: Static birefringence for GaAsp/AlAsp superlattices as a function of p. Circle: ex-

periment from Ref. [16]. Empty square: theoretical values without local fields. Filled square:

theoretical values with local fields. The theoretical values are calculated at the average of the the-

oretical lattice parameters. The effective medium value calculated with the theoretical dielectric

constants of bulk GaAs and AlAs is indicated by the horizontal dashed line (see text).
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with v = ip, p being the well/barrier period and i an integer. The dependence of the

birefringence on the number of valence bands included in the calculation shows the

same behavior for all the studied superlattices. The bands 1 to 2p do not contribute

to the birefringence. A large positive contribution arises from bands 4p to 6p, which

is almost completely canceled by the (folded) light-hole and heavy-hole bands from

6p to 8p. If local field effects are neglected the cancellation is total. Also the con-

tributions of the bands to the birefringence due to the local fields cancel, and even

lead to a change in sign; the final results is dominated by the anisotropy of the local

fields arising from transitions involving the top valence bands.

In a second step, we consider ”all” the valence bands, and restrict final states

to the c upper conduction bands as final states (Fig. 5.3, upper panel). Here the

conduction band number is c = (i − 1)p + 1, and i and p have already been de-

fined. The highest conduction bands do not contribute to the birefringence. The

high step-like positive contribution of the intermediate bands are canceled by the

(folded) last conduction bands. Once again, the local fields are not important but

for the bottom conduction bands. The cancellation effects are essential: in fact,

a calculation involving only the highest valence and the lowest conduction bands

yields a contribution of local field effects which is overestimated by about a factor

10. The observed anisotropy can hence not be explained in a simple model involving

few transitions. The evolution of the top valence region is most characteristic for

what is going on in this system: due to the anisotropy, to be precise the confine-

ment in z-direction, the top valence at Γ splits into a double degenerate heavy-hole

and a single light-hole state. We find that the light hole state at Γ couples to light

polarized along the growth direction, whereas the heavy-hole states respond to light

polarized in-plane. Of course, the order and character of the states change through-

out the Brillouin zone, which prevents a simple one-to-one analysis, but, as it is also

evident from Fig. 5.4, this lifting of degeneracy in the region close to the Fermi level

is sufficient to explain the observed anisotropies in calculations without local field

effects.

A deeper analysis of the birefringence passes through an analysis of its single

components, i.e. the dielectric constant for light polarized in plane and perpendic-

ular to the growth direction. In Fig. 5.4 the upper panel shows the results for ǫ⊥
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Figure 5.3: Contribution to the birefringence of the valence bands (lower panel) and of the conduc-

tion bands (upper panel) for p=3 (filled symbols) and p=8 (empty symbols). Circles: contributions

with LFE; squares: contributions without LFE. The dashed line is a guide to the eyes for the p=3

SL with LFE.
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and ǫ‖ without local field effects, the lower panel including local field effects, as a

function of the superlattice period p. First, ε is essentially increasing with increas-

ing p, which can be directly attributed to the confinement effects: the average gap

between occupied and empty states decreases, due to a decrease of confinement.

Second, for large superlattice periods, ε tends to the average of the bulk dielectric

constants of GaAs and AlAs[145] calculated without local field effects (arrow on the

upper panel of Fig. 5.4). This occurs for both polarizations, so that the birefringence

tends to zero, in consistency with the fact that the weight of the contributions of the

interfaces relative to the weight of the bulk states vanishes for increasing p. Third,

ε⊥ is always closer to the average value than ε‖ for p > 2, which comes from the

fact that the gap is smaller for light polarized in-plane than in growth direction. In

other words, the confinement is rather “seen” in growth, than in in-plane direction,

making the birefringence slightly positive at those p [143].

Turning to the lower panel of Fig. 5.4, which shows the same quantities calculated

with local field effects, we note that as expected, local field effects decrease the

absolute value of the dielectric components, because higher energy transitions are

mixed in the important gap region. The decrease of ε is found to be less effective for

ε⊥ than for ε‖. In growth direction, local field effects increase linearly with the period

(see inset in Fig. 5.4), and ε‖ is consequently always close to the effective medium

value estimated with the theoretical bulk constants ε−1
‖ = (ε−1

GaAs + ε−1
AlAs)/2 (dashed

line) [27, 145]. In the in-plane direction however, the direct effect of quantum

confinement on the independent transitions is found to be larger than its effect on

the local fields. The latter are constant with the period, and the slope of of the

linear behavior of ε⊥ remains unchanged (see inset in Fig. 5.4). Consequently, the

effective medium value ε⊥ = (εGaAs + εAlAs)/2 (dotted line) is reached at 90% for a

period as small as p ≃ 10. The different behaviors of ε‖ and ε⊥ can be understood

either from the transition mixing formalism, the states coupling to light polarized

in growth direction being more sensitive to the presence of an interface, or from the

expression of local field effects through the matrix inversion: in fact, in the latter

case it is clear that the head element of ε alone describes some average homogeneous

medium. The off-diagonal elements bring the inhomogeneity into play. Now, the

screening of the interaction between two charges placed at a characteristic distance



5.3. Results for the birefringence of GaAs/AlAs superlattices 111

0 1 2 3 4 5 6 7 8
SL period p

10.4

10.6

10.8

11

di
el

ec
tr

ic
 te

ns
or

 ε⊥
ε||

11.6

11.8

12

12.2

Without local fields

With local fields

2 4 6 8
-1.6

-1.5

-1.4

-1.3

ε⊥
LF

 - ε⊥
NLF

ε||
LF

 - ε||
NLF

Figure 5.4: Dielectric tensor calculated without (εNLF , upper panel) and with (εLF , lower panel)

LFE and their difference (inset), as a function of the SL period p. Arrow: average of bulk GaAs

and AlAs dielectric constants, calculated without LFE. Dotted (dashed) line: effective medium

value of ε⊥ (ε‖).



112 Chapter 5. Ab-initio calculations of optical properties

d depends only on |d| in a homogeneous medium, but it feels also its direction and

the absolute position of the charges when the medium is inhomogeneous. When d

is put in growth direction, the probability that the charges “see” where they are is

larger than when d is in-plane. Thus, local field effects are stronger on ε‖ than on

ε⊥. Last and most importantly, it remains to explain why local field effects increase

with increasing p in growth direction (see inset in Fig. 5.4), since it is finally this

fact which lets the birefringence tend to a plateau value instead of zero, as for large

superlattice period the lh and hh states are again degenerate. This point can in fact

be understood on the basis of the previous considerations: given a characteristic

interaction length |d| in the system, the bigger p the bigger is the probability that

the two charges are found either entirely in a region of GaAs or in a region of AlAs,

instead of experiencing a screening perfectly averaged over GaAs and AlAs.

All qualitatively observed tendencies can hence be explained. It remains to be

discussed what could be the origin of the remaining small quantitative discrepan-

cies with experiment. Besides possible uncertainties coming from the transmission

measurements, these might be sought on the theoretical side. Apart from various

approximations like the pseudopotential approach and the neglect of spin-orbit split-

ting, one might suspect, first, a contribution from the geometry of the system. In

fact, the band structure of bulk semiconductors has been shown to be very sensi-

tive to a small hydrostatic pressure [98]. This change in band structure could than

have significant effects on the dielectric properties. We have explored this possi-

bility by comparing the above results, obtained using the average theoretical LDA

lattice constant, with a calculation performed at the average experimental lattice

constant. The latter corresponds to a negative pressure of 20 kbar in the calcula-

tion. No improvement is obtained; rather, for p=5 the birefringence has increased

by 17%. There is hence some visible influence of the choice of the geometry in the

calculations on the results, and, although the most straightforward guess (i.e. the

ad hoc correction of the average LDA lattice constant) does not solve the problem,

we cannot exclude that a geometry closer to the exact (unknown) experimental one

might improve the situation. However, another point seems more crucial, namely,

the inclusion of exchange-correlation effects beyond the RPA. One can do this in

principle within the TDDFT scheme; in practice, calculations on realistic extended
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GaAs AlAs

EXP 10.9 8.2

semi-empirical without local fields 10.12 7.63

RPA without local fields 14.19 10.21

RPA with local fields 12.77 8.92

LDA with local fields 13.55 9.52

Table 5.1: Experimental [43] and calculated dielectric constants for the bulk GaAs and AlAs semi-

conductors. We report the results of semi-empirical calculations and RPA-TDDFT calculations,

both without local field effects, and the results of RPA-TDDFT and TDLDA calculations including

local field effects.

systems are at the best done using the TDLDA approximation. It is known that

the inclusion of the LDA xc kernel gives a minor contribution to optical absorption

spectra, but a (on the scale of our problem) significant effect on dielectric constants,

which might well change the birefringence. We have therefore checked this possi-

bility by adding the exchange-correlation effects within TDLDA. In Table 5.1 we

show all the calculated dielectric constants for GaAs and AlAs in comparison to

the experimental values [43]. When working within the TDLDA, the bulk dielectric

constants of both constituent materials increase as by much as 7 % [146]. However,

those changes cancel out in the birefringence, and both the plateau value as well

as the birefringence at intermediate distances remain virtually unchanged. This

does not necessarily imply that exchange-correlation effects are in fact negligible.

TDLDA is an approximation, and the fact that above we have related the bire-

fringence to the near-gap transitions of the optical spectra rises the suspicion that

only a theory which perfectly describes that region would be able to yield precise

quantitative values for the birefringence. Such an approach does today exist for

the ab initio calculation of optical properties, namely the simultaneous solution of

the self-energy Dyson equation and the Bethe-Salpeter equation describing excitonic

effects. It is of course out of reach at present to apply the full theory here.

In conclusion, concerning superlattice optical properties, we have calculated the

dielectric tensor and the static birefringence of GaAs/AlAs superlattices as a func-

tion of the superlattice period. The use of an effective medium theory to describe
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the dielectric tensor is found to be justified in the growth direction. In the in-plane

direction, however, the direct effect of quantum confinement is large and a classical

theory fails. Having learned in the previous chapter that confinement and band-

mixing effects alone are not sufficient to reproduce the experimental data, we have

included local field effects in present calculations. We have pointed out that quan-

tum confinement effects are important to understand the fine structure of the optical

spectra even of relatively weakly confined systems like GaAs/AlAs, but that it is

completely insufficient to take them into account only via the band structure in an

independent-transition picture: local-field effects, which reflect the inhomogeneity of

the superlattice, effectively mix the formerly independent transitions and can there-

fore drastically enhance the anisotropy, up to a factor of 7 even for periods as small

as p = 8. Moreover, we have confirmed the results of previous semi-empirical calcu-

lations based on the independent-transition scheme, by performing ab-initio calcula-

tions in the same approximation (RPA without local fields). Only by including local

field effects experiments [16] can be interpreted even qualitatively. Further exchange-

correlation effects seem to cancel to a large extent on the anisotropy results, and can

therefore be neglected unless a fine quantitative analysis is required. Due to limita-

tions in the computational resources, at the moment a many-body Green’s function

approach, which fully account for electron-electron and electron-hole interaction is

out of reach. This fact calls for the search of an alternative approach to the problem

and makes particularly interesting the following section, in which we are presenting

an alternative way to account for many-body effects.

5.4 Effects of the long-range contribution to the xc kernel

on the bulk spectra

We move now to the problem absorption spectra up to 7 eV, for bulk GaAs and

AlAs systems. We want to discuss the effects of a static long-range contribution

−α/q2 to the xc kernel fxc of time dependent density functional theory. The time

dependent DFT approach still keeps the advantage of the static one to be compu-

tationally very efficient, and could in principle replace other successful, but more

cumbersome methods like the Bethe-Salpeter approach (BSE)[129, 147, 131, 132].
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However, there are two additional difficulties with respect to the case of static DFT:

(i) the approximate Vxc should now in principle not only be good enough to repro-

duce the ground state density and total energy, but the KS equation should also yield

eigenvalues close to the ones that would be obtained using the unknown exact Vxc

(not to be confused with the measurable quasi-particle energies) (ii) also the time-

dependent density variation of Vxc, i.e. the so-called xc kernel fxc = δVxc/δρ, has to

be well described. Here we will mainly deal with the problem (ii). It has turned out

that TDDFT yields good results using the local and adiabatic LDA approximation

(TDLDA) for the xc kernel fxc[128], provided that finite systems are considered.

Also electron energy loss spectra of solids are well described in TDLDA. However,

in both cases the main improvement with respect to the independent-particle KS

spectrum (i.e. with respect to a simple sum over independent transitions between

KS states) comes from the density variation of the Hartree potential (local field

effects in the solid) which is described exactly, and not from fxc. By the way of

contrast, the Hartree contribution is not sufficient to yield good absorption spectra

of solids, and taking into account fxc within TDLDA does not lead to a significant

(if at all) improvement [148]. Therefore, it would be extremely desirable to find a

better, generally applicable, fxc. Improvements might come through the inclusion of

dynamical (memory) effects and/or long-range nonlocal terms [128, 135]. Recently,

Reining et al. [30] have shown that a static long-range contribution (LRC) of the

form fxc(q,G,G
′, ω) = −δG,G′α/|q + G|2 can simulate the strong continuum exci-

ton effect in the absorption spectrum of bulk Si (q is a vector in the first Brillouin

zone (BZ), G and G’ are reciprocal lattice vectors, and α is a material dependent

parameter). Here, we discuss the effects of such a contribution more in detail, by

considering also the real part of the dielectric function ε, for bulk GaAs and AlAs.

Analogous results for Si and other materials are discussed in Refs. [30] and [149].

We show that the real and imaginary parts of ε at low energy are extremely well

reproduced when just this long-range contribution is taken into account. It is pos-

sible to show [149] that the the approximation is not valid for the loss function, for

reasons which will be discussed. We also examine the dependence of the parameter

α on the material.

Before showing the results, we briefly review the origin of the long-range con-
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tribution and its implementation. In TDDFT, the inverse dielectric function of a

periodic system is constructed from ε−1(q,G,G′) = δG,G′+v(q)Gχ(q,G,G′), where

χ obeys the matrix equation

χ = χ0 + χ0 (v + fxc)χ, (5.40)

χ0 being the independent-particle response function and v the bare Coulomb inter-

action. A similar equation can also be written for the macroscopic dielectric function

which describes absorption, namely εM(q,G,G′) = δG,G′ − v(q)Gχ̄(q,G,G′), with

χ̄ = χ0 + χ0 (v̄ + fxc) χ̄. (5.41)

Here, v̄(q)G equals v(q)G for all G, except for the long-range term v̄(q)(G=0) which

is zero. Both the equations for χ and for χ̄ can be transformed to transition space,

as it is often done for χ in the framework of quantum chemistry [136]. This allows

a direct comparison to the BSE, for which this formulation is naturally adopted

[129, 147, 131, 132]. One finds then that a static fxc which yields the same spectrum

as the BSE should be of the form

fxc(q,G,G
′) =

∑

n1n2n3n4

1

(fn1
− fn2

)

Φ−1(n1, n2;G)F(n1n2)(n3n4)(Φ
∗)−1(n3, n4;G

′), (5.42)

with

F(n1n2)(n3n4) =
(

ǫQP
n2

− ǫQP
n1

− ǫDFT
n2

+ ǫDFT
n1

)

δn1n3
δn2n4

+(fn1
− fn2

)FBSE
(n1n2)(n3n4) (5.43)

and

FBSE
(n1n2)(n3n4) = −

∫

drdr′ Φ(n1, n3; r)W (r′, r)Φ∗(n2, n4; r
′),

the matrices Φ being defined as

Φ(n1, n2; r) := ψn1
(r)ψ∗

n2
(r). (5.44)

Here, fn are occupation numbers and ǫDFT are KS eigenvalues. ǫQP are quasi-

particle (QP) eigenvalues, which are supposed to be calculated within Hedin’s GW

approach[96]. W is the statically screened Coulomb interaction, and the ψn are KS
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orbitals, which are assumed to be equal to the QP ones. The matrices Φ can be

invertible if only a subspace of transitions is considered, which is actually the case for

absorption spectra. In a solid, the pairs of indices (n1, n2) are to be understood as a

pair of an occupied and an empty state, with (n1;n2) = (v,k; c,k+q). Φ(v,k, c,k+

q;G = 0) is going to zero as q for small q. Since F(v,c),(v,c) in this limit behaves

as a constant, this implies immediately that fxc(q,G = G′ = 0) behaves as 1/q2.

There is in fact a positive long-range contribution stemming from the QP shift of

eigenvalues (as also predicted in Ref. [152]), and a negative one resulting from the

electron-hole interaction, which is the main point of interest here.

Comparing Eqs. (5.40) and (5.41), one can understand why the long-range contri-

bution is much more important for absorption spectra than for the electron energy

loss spectra of solids: in the former case, in Eq. (5.41) fxc is added to a coulombian

v̄ which does not contain the long-range term, i.e. v(G = 0) is set to zero. Obvi-

ously in that case, a neglect of the divergence in fxc makes an essential difference,

whereas in the case of loss spectra, determined via Eq. (5.40), this argument does

not hold. In order to focus the discussion about the long-range contribution on the

second, i.e. the electron-hole interaction contribution, we assume in the following

that we absorb the first, positive contribution in the energy shift of our starting

χ(0) (since anyway we do not know the eigenvalues of the exact exchange-correlation

potential which would go along with the exact kernel). Furthermore, we suppose

that we have a system where the long-range term is completely dominating the rest

of the exchange-correlation contribution, namely, where we can approximately write

fxc(q,G,G
′) = −δG,G′α/|q + G|2. This long-range approximation for the screened

electron-hole interaction should of course work best for systems with weakly bound

excitons. This does not mean that the excitonic effects themselves are necessarily

weak, since the electron-hole interaction often drastically changes the spectral line-

shape, even when the joint density of states is not affected. In fact, we will consider

two materials that exhibit such a behavior, namely gallium arsenide and aluminum

arsenide. We have first determined their DFT-LDA electronic structure. Second,

we have constructed χ(0), but with the eigenvalues shifted to approximate GW ones,

in order to simulate the first part of the kernel as explained above. The GW eigen-

values are obtained by applying a scissor operator of 0.8 eV and 0.9 eV for GaAs
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Figure 5.6: Imaginary part of the dielectric function of AlAs by ab initio calculations. The dots

are the experimental results (Ref. [121]). The dot-dashed curve is the result of the standard

TDLDA calculation, the dashed curve of the GW-RPA calculation, the continuous curve of our

LRC calculation.
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and AlAs [86], respectively. Third, we have used fxc(r, r
′) = −α/ (4π|r − r′|), with

an empirical value for α fitted to the experiment. The spectra have been obtained

using 864 off-symmetry shifted k-points in the Brillouin zone.

We are ready to discuss the results. Let us first look at absorption spectra.

Figs. 5.5 and 5.6 show the results for GaAs and AlAs. The dots are the experimental

results (Refs. [120] and [121], respectively). The dot-dashed curve stems from a

standard TDLDA calculation (i.e. using DFT-LDA eigenvalues and the static short-

range LDA xc kernel). Like other authors (see e.g. [148]), we find a result close to the

RPA one, showing the well-known discrepancies with experiment: peak positions are

wrong (the spectrum exhibits a redshift), and the intensity of the first main structure

(the E1 peak) is strongly underestimated. The dashed curve is the result obtained

by replacing KS eigenvalues with GW quasi-particle energies in the RPA form of ε.

This calculation, called GW-RPA in the following, corresponds to the first step of

our approach, as outlined above. Again, we find the well-known discrepancies with

experiment: now the calculated spectrum shows a blueshift. Moreover, the intensity

of the E1 structure has not been corrected. Finally, the continuous curve is the

result of our LRC calculation. For all three materials, a very good fit to experiment

is obtained using α = 0.2, 0.35 for GaAs and AlAs, respectively. One parameter is

hence enough for each of the materials in order to correct both the peak positions and

the intensities, which is far from trivial. Moreover, other features of ε are very well

reproduced using the same α, as we will discuss in the following. The next quantity

we can examine is in fact the real part of ε, Re(ε). Figs. 5.7 and 5.8 demonstrates the

failure to reproduce the experimental results (dots) of the RPA (continuous curve),

TDLDA (dot-dashed curve), and the GW-RPA (dashed curve) approaches. Again,

both peak positions and line shapes are wrong. Instead, the LCR result (continuous

curve) is compared to experiment: the improvement with respect to the GW-RPA

situation is clear, for both materials. Alternatively, a similar agreement of both real

and imaginary part of the dielectric function can only be found using the much more

cumbersome BSE approach (see e.g. [147, 131, 132, 150, 151]).

We have discussed the effects of a static long-range contribution −α/q2 to the

exchange-correlation kernel fxc of TDDFT. We have shown that the real and imag-

inary dielectric functions of GaAs and AlAs, exhibiting a strong continuum exciton
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Figure 5.7: Real part of the dielectric function of GaAs by ab initio calculations. The dots

are the experimental results (Ref. [120]). The dot-dashed curve is the result of the standard

TDLDA calculation, the dashed curve of the GW-RPA calculation, the continuous curve of our

LRC calculation.
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Figure 5.8: Real part of the dielectric function of AlAs by ab initio calculations. The dots are

the experimental results (Ref. [121]). The dot-dashed curve is the result of the standard TDLDA

calculation, the dashed curve of the GW-RPA calculation, the continuous curve of our LRC cal-

culation.
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effect, are considerably improved with respect to calculations where the adiabatic local

density approximation is used. The findings allow to conclude that, for these ma-

terials, the problem of absorption spectra can be solved by just determining the one

number α. Of course, the method is neither valid for all kind of materials, nor for

all kind of excitation spectra. In spite of this, the good results for GaAs and AlAs en-

courage a future application of the theory to GaAs/AlAs superlattices, where it could

be an alternative to the too expensive many-body Green’s function formulation.
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Chapter 6

Summary and discussion

Arriving at the end of this work, the easiest way to summarize the results achieved

is first to go back and read the four objectives presented in the introduction, to

follow then in this conclusive discussion how they have been developed in the course

of the chapters.

In Chapters 2 and 4, the energy bands and optical response functions of (001)-

oriented (GaAs)p/(AlAs)p and (GaAs)p/(vacuum)p superlattices, with p from 4 to

20, have been calculated by the LCBB method, introduced in Ref. [29]. This ap-

proach, in which the electronic states of the superlattice are expanded on the basis

of bulk states, calculated by empirical pseudopotentials, is found to be adequate

and practical for superlattices with intermediate to large periods; in particular, it is

useful for calculating how the band structures and the optical spectra of the bulk

materials are modified upon confinement.

In Chapter 2 we have studied the evolution of a bulk state into a superlattice

state, gaining a clear insight on the roles played by the confinement, the bulk states-

coupling and the reduction of the symmetry, all involved in the formation of a

superlattice. The bulk and superlattice band structures are very similar, nevertheless

there are some remarkable differences. The superlattice gaps are larger than the bulk

gaps: in particular the GaAs/vacuum gaps are larger than the GaAs/AlAs ones, as a

result of a stronger confinement; moreover the superlattice band gap widths increase

as the superlattice period decreases. The lowering in the crystal symmetry and the

mixing of the bulk states are responsible for the overall slight modification of the

125
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energy levels and, especially, for the removal of level degeneracies.

In Chapter 4 we have addressed the optical properties. The quantum-confinement

induced shifts of the critical point energies are calculated for both kinds of super-

lattices and are found to be larger for the GaAs/vacuum systems, where couplings

between different GaAs layers are only due to quantum-mechanical tunneling and

have a negligible effect. For both GaAs/AlAs and GaAs/vacuum superlattices,

the E1 peak in the absorption spectrum splits into two peaks with increasing blue

shifts for decreasing superlattice period. This result agrees with the observations

of Ref. [10] on GaAs/AlAs superlattices, and is attributed to a symmetry splitting

of the valence bands along the line Γ-L. The E2 transition is found to be split for

large-period GaAs/AlAs superlattices, where the electronic states of the bulk are

confined in each layer and the absorption spectrum is the superposition of the two

bulk ones. The energy of the E2 peak depends weakly on the superlattice period.

The average (or Penn) gap does not depend on the superlattice period, confirming

the expectation that a blue shift at the lower absorption edge is compensated by

red shifts in the upper part of the absorption spectrum. The band contribution

to linear birefringence of GaAs/AlAs superlattices is calculated and compared with

recent experimental results of Ref. [16]. The zero-frequency birefringence is found to

be much smaller than the experimental findings: this result hints that the missing

contribution to observed static birefringence may be attributed to local-field effects,

as already suggested [16]. The frequency-dependent part of the birefringence, arising

from band folding and quantum confinement, increases with decreasing superlattice

period, as found in the experiment, although the calculated values are smaller.

In Chapter 3 we have presented and applied the DFT-LDA to the calculation

of the ground state properties and the band structures of bulk GaAs and AlAs

systems and GaAs/AlAs superlattices. We have found an overall agreement with

corresponding semi-empirical results, and with experimental and theoretical data

available in literature. These findings confirm the analysis developed in Chapter 1

and attest the high quality of the electronic states, both semi-empirical and DFT-

LDA, which are the bases of the optical absorption calculations.

In Chapter 5 we have presented two different kinds of results. First, TDDFT cal-

culations of the dielectric tensor components and of the zero-frequency birefringence
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of GaAs/AlAs superlattices as a function of the SL period, for p ranging from 1 to 8.

We have shown that the use of an effective medium theory is justified in the growth

direction for all periods but p=1. In the in-plane direction however, the dielectric

constant ε⊥ increases with increasing period, and the classical effective medium value

is reached to 90% for a period as small as p ≃ 10. We have pointed out that the

behavior of the dielectric tensor is completely determined by the interplay between

quantum confinement and local fields effects, and that the birefringence comes from

the anisotropy of the local fields. Quantum confinement effects are important to un-

derstand the fine structure of the optical spectra, even of relatively weakly confined

systems like GaAs/AlAs, but it is completely insufficient to take them into account

only via the band structure in an independent-transition picture: local-field effects,

which reflect the inhomogeneity of the superlattice, effectively mix the formerly in-

dependent transitions and can therefore drastically enhance the anisotropy, up to a

factor of 7 even for periods as small as p = 8. Including local field effects the ex-

periment [16] can be reproduced even quantitatively. Further exchange-correlation

effects seem to cancel to a large extent on the anisotropy results, and can therefore

be neglected unless a fine quantitative analysis is required. Then, we have shown

that, when working within the TDLDA, the bulk dielectric constants of both con-

stituent materials increase by as much as 7 %. However, those changes cancel out

in the birefringence, and both the plateau value as well as the birefringence at in-

termediate periods remain unchanged. In addition, we have confirmed the results

of previous semi-empirical calculations based on the independent-transition scheme,

for 6 ≤ p ≤ 8, by performing ab initio calculations in the same approximation.

Finally, we have presented a TDDFT calculation for bulk GaAs and AlAs, which

includes a static long-range contribution −α/q2 to the exchange-correlation kernel

fxc, as suggested by Reining et al. in Ref. [30]. We have shown that the real and

imaginary parts of the dielectric function, which exhibit strong continuum exciton

effects, are considerably improved with respect to calculations where the adiabatic

local density approximation is used. These findings allow to state that, for these

semiconductor systems, the problem of optical properties up to 10 eV could be solved

by just determining the one number α. This approach has the precious advantage

to reduce significantly the computation time and memory needed, in comparison
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to a many-body Green’s function approach. The good results for GaAs and AlAs

encourage a future application of the theory to GaAs/AlAs superlattices.

The present work can be extended in several other directions. Within the LCBB

scheme, relying on semi-empirical pseudopotentials, a more precise calculation of

the optical properties requires the inclusion of spin-orbit interaction and local-field

effects. On the other hand, a complete description of the E1 and E2 peaks requires,

in the semi-empirical framework as well, the inclusion of excitonic effects, which

account for half of the oscillator strength of the E1 transition in the bulk. Concern-

ing the ab initio approach, it is now possible to move to the study of other, more

complex, superlattice systems of technological interest or even to lower-dimensional

structures – quantum wires or quantum dots –, trying to clarify how the local field ef-

fects are modified and how they affect the anisotropy of the optical properties and/or

investigating the role of excitonic effects, including their effect on the anisotropy of

the optical response. This analysis could be applied to GaAs layers alternated with

an empty lattice, which are expected to show considerably stronger confinement

effects and can, in a first approach, simulate multilayer composites of GaAs and

oxidized-AlAs (GaAs/AlOx) [7]. Moreover, ZnSe/GaAs could be chosen as a repre-

sentative of heterovalent heterojunctions, in view of the good lattice match of the

two constituent materials, and in view of its potential technological importance as

a blue emitter [153]. Also Si/Ge is a system of technological interest, especially

since it has been discovered that short period (i.e. less than 20 interatomic dis-

tances) Si/Ge superlattices have a quasidirect band gap due to band folding, and

that the optical matrix elements between the top of the valence band and the new

band edge states at the center of the Brillouin zone are enhanced by several order

of magnitudes with respect to the ones for the lowest indirect transition, remaining

however at least one order of magnitude smaller than the optical matrix element

in a direct gap semiconductor such as GaAs [154]. Among the one-dimensional

systems in which anisotropy and excitonic effects should play an important role,

the study of silicon wires and gallium arsenide wires embedded in a matrix of alu-

minium arsenide is particularly promising. In fact, the first ones are important due

to their impact on the understanding of porous silicon [155], the latter ones for their

potential enhancement of the photovoltaic efficiency [156]. It would be interesting
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to examine the possibility of matching the ab initio theory to the semi-empirical

method for superlattice periods larger than p = 8, to extrapolate ab initio results on

short/medium periods to qualitative or even semiquantitative predictions for larger

periods. Also one and zero-dimensional systems could be studied within this ap-

proach, which would be based on the introduction of a strongly reduced basis set,

given by the bulk DFT-LDA wavefunctions of the constituent materials, in analogy

with the LCBB scheme.
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Appendix A

Basic approximations

A solid is a many-body system (typically the number of degrees of freedom is of

the order of 1023), whose complete Hamiltonian consists in two terms depending

respectively on the space and spin coordinates of the nuclei Rα, i.e. VN−N , and on

the electronic space and spin coordinates ri, i.e. Ve−e, and a term of electron-nucleus

interaction, i.e. VN−e:

H = Te + TN + VN−N ({Rα}) + VN−e ({ri,Rα}) + Ve−e ({ri}) , (A.1)

where Te and TN represent the nuclear and electronic kinetic terms. Analytic solu-

tions of the Schrödinger equation are possible for a few extremely simple systems,

whereas numerical exact solutions can be calculated for a small number of atoms or

molecules. In the remaining cases, we have to introduce some simplifying hypotheses.

The development of schemes that provide some useful information on real systems

continues nowadays. Among the variety of possible choices, and hence of different

methods of calculations, the actual choice is intimately tied to the nature of the

problem of interest. The aim is to make the problem feasible, without invalidating

the physics of the results. We want to discuss here our specific approximations.

The inertia of a nucleus is much bigger than the inertia of an electron:

me ≪MN , (A.2)

in fact the mass ratio is equal to 1/2000 even in the most unfavorable case of the

hydrogen atom. From a classical point of view, the velocity of a nucleus is negligible

if compared to the velocity of an electron: we can state that an electron responds
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almost instantly to the motion of the nuclei or, the electrons see the nuclei as if they

were still. In the language of the quantum mechanics, this intuition becomes the

rigorous Born-Oppenheimer approximation: after rearranging the terms, in order to

isolate the electronic and ionic degrees of freedom, we write the wavefunction as a

product of an electronic part ψ ({ri,Rα}) and a nuclear part Φ (Rα). If we estimate

reasonable to neglect the term of interaction between the electrons and the lattice

motions (i.e. the electron-phonon interaction), we obtain a Schrödinger equation

where only the nuclear coordinates occur:

[HN + Ee ({Rα})] Φ (Rα) = ET (Rα)Φ (Rα) . (A.3)

The presence of the electrons is included in the “adiabatic term” Ee ({Rα}), which

express the total energy of the electrons, in case the ion cores are “frozen” in the

positions Rα:

[Te ({ri}) + VN−e ({ri,Rα}) + Ve−e ({ri})]ψ ({ri,Rα}) = Ee ({Rα})ψ ({ri,Rα}) .
(A.4)

In short, the problem can be reduced to two independent equations: first, Eq. (A.4)

describes the electrons when the ions are kept in a fixed set of positions, successively

Eq. (A.3) describes the lattice vibrations, considering that the ion cores feel the

electrons around them thanks to the adiabatic term. Concerning the system we are

interested in, the nuclei are finally located on the sites of a Bravais lattice. After the

separation has been put into effect, we can concentrate on the Eq. (A.4) regarding

the electronic degrees of freedom.

We will work within a pseudopotential framework (see Appendix B). When the

solid is built up, the electrons which belong to internal shells in the isolated atoms

(core electrons) remain strongly localized in the proximity of the nuclei, being almost

not affected by the chemical bonding. This is the physical motivation to separate

the core electrons from the valence electrons, by freezing them opportunely in the

core ions (core electrons + nuclei).

In spite of the previous approximations, the two-body electron-electron interac-

tion is still able to make the task formidable. We do not discuss here the big variety

of remedies studied to overcome this problem. In Chapters 2 an 3 we have presented

an empirical and a first-principle approach, which allow to reduce Eq. (A.4) to a
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simpler effective one-particle band structure equation:

H1e φk,n(r) =
( p2

2m
+ V (r)

)

φk,n(r) = Ek,n φk,n(r) . (A.5)

In case of a periodic crystal, the solutions of Eq. (A.5) are Bloch functions

φk,n(r) = ei(k·r)un,k(r) , (A.6)

where un,k(r) has the periodicity of the Bravais lattice. The eigenstates are labelled

by the band indices n and the wavevector k, determined by the symmetry of the

lattice.
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Appendix B

Pseudopotentials

The concept of pseudopotentials was originally proposed in an early work of Fermi,

which dates back to 1934 [157]. In regard to solids, it was introduced as a variant

of the orthogonalized plane wave (OPW) method [158] and developed later in the

form of empirical pseudopotentials [159, 160]. In the 80’s the generalization from

empirical to ab initio norm-conserving pseudopotentials [161, 162, 163, 164] has

led to a widespread use of the method in calculations based on Density Functional

Theory (DFT), allowing empirical parameter free ground state property and band

structure calculations, where the only input data required are the atomic numbers

of the constituent atoms.

In this appendix we give an overview of the concept of pseudopotentials, both in

the empirical/semi-empirical and ab initio norm-conserving forms, and we discuss

their construction and their use.

B.1 What a pseudopotential is

When solving the many-body problem of electrons in a condensed aggregate of

atoms, a strong simplification consists in focusing on the charge density related to

electrons which belong to outermost shells (valence electrons). Many difficulties

come, in fact, from what happens in the inner region (core), but, fortunately, core

electrons are often not concerned in the bonding together of the atoms and can be

“frozen” once and for all in an atomic configuration, in order to restrict the effort

to the study of the valence electrons.
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The starting point is considering an isolated atom. An electron in the core region

feels roughly a Coulomb-like potential, −Zeff/r: the effective charge Zeff is given

by the positive nuclear charge, screened by the presence of the other electrons. An

highly attractive Coulomb term V̂ implies, from the virial theorem

T̂ = −1

2
V̂ , (B.1)

also a high positive kinetic energy T̂ , which reflects a strong spatial variation of the

wavefunctions. This is true both for the core and the valence electrons, though the

valence electrons are far less likely to reach the neighborhood of the nucleus and

thus the amplitude of their oscillations is much smaller. Moreover, the waves have

to interlace in order to give wavefunctions which are orthogonal to each other.

Mathematically and numerically, a plane-wave-basis formalism is one of the sim-

plest and most natural formalism to implement in a computational code for crystals.

However, it is well known that a non-smooth character of the wavefunctions in the

real space correspond to a large number of plane waves to describe their Fourier

transforms. When using a plane wave representation for the wavefunctions, this is

a tough inconvenience, which results in a very high computational effort. A further

problem comes from the fact that the energy of the core states is of the order of

keV, while the relevant bonding energies are in the range of some eV: a high relative

precision for total energies is needed, even if only differences are of interest. The

introduction of pseudopotentials aims at finding a solution to these problems. In

fact, in many systems there is a clear separation between valence and core orbitals.

The core orbitals have energies far below the valence orbitals and their spatial extent

is limited. In this specific case the core does not react to changes in the chemical

environment and does not take part in the formation of bondings. But, in order to

forget about the core electrons, it is necessary to incorporate the effects due to their

presence in an effective potential, namely the pseudopotential, acting on the valence

electrons. This pseudopotential must be built in such a way to guarantee that the

solutions of the new Schrödinger equation have the same energy eigenvalues as the

solutions of the all-electron problem. However, unlike the all-electron wavefunctions,

the pseudowavefunctions should be smooth and nodeless. This is the essential nu-

merical constraint when building pseudopotentials; other requirements can be added
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to give all the different recipes for the different types of pseudopotentials. In fact,

this is a problem whose solution is far from unique.

The core orbitals contribute to the Hartree and exchange-correlation potential

felt by the valence electrons with a repulsive potential, which comes from the fact

that each valence electron state ψ must be orthogonal to all the inner core electron

states ψc. We can write:

ψ = φ−
∑

c

〈ψc|φ〉ψc , (B.2)

where we introduce the pseudowavefunction φ. Following Phillips and Kleinman

[158], substituting the Eq. ( B.2 ) into the the Schrödinger equation for the valence

electrons,

H ψ = E ψ , (B.3)

we obtain

(H + VR)φ = Eφ , (B.4)

where

VR =
∑

c

(E − Ec) 〈ψc|φ〉ψc (B.5)

and Ec is the energy of the core state ψc:

H ψc = Ec ψc . (B.6)

The pseudopotential V PP can now be defined as the sum of the original long-range

attractive local potential VI , due to the Coulomb interaction with the core ions, and

the short-range repulsive potential VR just introduced, which is a memory of the

presence of the core states. The Eq. (B.4) is the wave equation for the pseudowave-

function φ. The resulting pseudopotential is weak and well-behaved, even inside the

core radius rc; this great simplification is obtained at the expense of introducing an

energy-dependent, non-local repulsive potential.

We can exploit the symmetry of the problem to expand the pseudopotential

V PP (r, r′) on a set of spherical harmonic functions: it is the non-locality which

leads to different components V PP
l for the different angular momenta l. As all

components V PP
l at large r reduce to the ionic Coulomb potential, −Zeff/r, getting

independent of l, it is intuitive to write the pseudopotential as the sum of a local
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potential V loc and a few relevant l-dependent terms which vanish beyond rc:

〈r|V PP |r′〉 = V locδ (r − r′) +
lmax
∑

l=0

l
∑

m=−l

Y ∗
lm (Ωr) δV

PP
l (r)

δ (r − r′)

r2
Ylm (Ωr′) , (B.7)

where

δV PP
l = V PP

l − V loc (B.8)

and Ylm are spherical harmonics. Since the radial component δV PP
l (r) is local, it is

more precise to call the whole pseudopotential “semi-local”, instead of non-local.

B.2 Empirical pseudopotentials

The pseudopotentials can be translated in suitable fitting functions, whose param-

eters can be easily determined starting from reflectivity or photoelectronic spectra:

this is the empirical pseudopotential method (EPM), which is by construction par-

ticularly suited to study optical properties. The pseudopotential has always the

periodicity of the Bravais lattice. Assuming cells of volume Ω, which contain Nα

atoms of type α, the local pseudopotential expansion as a Fourier series in the

reciprocal space has the form [9]:

V loc (r) =
∑

G

vαGSαGe
iG·r , (B.9)

where the G-vectors are the reciprocal lattice vectors,

vαG =
1

Ω

∫

Ω
V loc

α (r) e−iG·r dr (B.10)

is the pseudopotential form factor for the atom α and

SαG =
1

Nα

Nα
∑

j=1

e−iG·dα,j (B.11)

is the structure factor, depending on the position dα,j of the j-th atom of type α

in the primitive cell. The form factors are the fitting parameters. If we wish to

include the effects of non-locality we should write further correction terms in the

reciprocal space as a sum of l-dependent components. In the case of GaAs and

AlAs bulk crystals, the inclusion of non-local terms is needed to achieve a better

description of high-energy states: nevertheless, we have verified that only the low-

est conduction bands are responsible for the structures in the optical spectra below
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Figure B.1: Continuous atomic local pseudopotentials vα(q) calculated following Mäder and Zunger

[44].

6 eV and therefore non-local terms can be neglected for our purposes. The first

atomic pseudopotentials were developed in this way more than 30 years ago. Al-

though extremely easy to use, these pseudopotentials were not always adequate to

well reproduce the wavefunctions and their related quantities. Moreover, it did not

exist a reliable procedure to assure the transferability to different crystal structures

or different coordination numbers. In the last decade the request for more accurate

atomic empirical pseudopotentials, to be used in the field of nanostructures calcula-

tions, has grown. In particular, it is no more desirable the solution to have different

sets of form factors for different supercell dimensions. Let us clarify the statement

using as example the superlattices GaAs/AlAs studied in this work: the number of

G-points of the superlattice reciprocal lattice, lying between two reciprocal lattice

points of the bulk crystal, grows linearly with the superlattice period p. As a con-

sequence, to study large systems, we need to know the value of vα
q at a dense grid
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of points q, which define the superlattice reciprocal lattice GSL. To this aim, it is

useful to develop a continuous-space empirical pseudopotential vα (q),

vα(q) =
1

Ω

∫

Ω
dr eiq·r vα(r) , (B.12)

to be used for all the possible different structures based on the same constituents,

including of course the bulk crystals (see Chapter 2). That is exactly what Zunger

et al. have done for different semiconductor compounds, starting from 1994 [44, 165,

166, 167, 168].

Concerning GaAs and AlAs crystals, we refer to the semi-empirical pseudopo-

tential functions proposed in Ref. [44]. We define them “semi-empirical” because

the fitting takes into account not only experiment, but also ab initio calculations.

The procedure adopted to evaluate the function (B.12) consists in the following

operations:

1. The origin of the zinc-blend primitive cell is fixed in the middle of the line

between the anion (As) and the cation (Ga or Al).

2. The bulk form factors vα(G) are adjusted at a small number of reciprocal lattice

vectors G to reproduce bulk band energies and effective masses. The operation

is repeated at different unit cell volumes Ω, to gain informations on the neigh-

borhood of each point G and dispose of a finer mesh which will make the inter-

polation less ambiguous. By inspecting the discrete form factors the algebraic

form selected for the fitting is a linear combination of Gaussians, multiplied by

a smooth function that allows adjustments of the small q components:

vα(q) =
Ωα

Ω

4
∑

i=1

aiα e
−ciα(q−biα)2

[

1 + f0αe
−βαq2

]

. (B.13)

3. At this stage the parameters of Eq. (B.13) are let free to vary independently

(the original form factors may change), to fit: (i) the experimental GaAs/AlAs

valence band offset (0.5 eV), (ii) LDA calculated level splittings in short-period

GaAs/AlAs superlattices of various orientations, (iii) first-principle LDA wave-

functions. In this way, it is possible to explore the region q < 2
√

3π
a

, where a is

the lattice constant: small q form factors are so fitted, rather than extrapolated.

Moreover, the above mentioned problem of previous empirical calculation which

yielded poor wavefunctions is finally solved.
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Ωα aiα biα ciα

(a.u.)3 Ry (a.u.)−1 (a.u)2

Al

111.3 -1.32712 0 1.59819

0.158114 1.77453 2.10827

0.0601648 2.59550 0.527745

0.0168167 2.93581 11.2708

Ga

131.4 -1.24498 0 1.52748

0.0366517 2.09782 0.959082

0.0464357 2.01935 0.574047

-0.0133385 2.93581 11.2708

As (in AlAs)

145.2 -1.10411 0 0.972439

0.0174946 2.46793 6.53147

-0.00368081 1.22845 5.50601

0.0921512 1.35897 1.18638

As (in GaAs)

145.2 -1.05821 0 0.959327

-0.00217627 2.46808 6.53145

-0.0434312 0.851644 2.94679

0.10569 1.22436 0.820922

Table B.1: Atomic pseudopotential parameters in Rydberg units, and volumes Ωα in atomic units.

[44]. The four rows for each atom correspond to the four Gaussian functions (i = 1, 2, 3, 4) in

Eq. (B.13). We further need to define: f0Al = 0.02, βAl = 10 (au)−1, and f0Ga = f0As = 0. These

pseudopotentials are designed for a kinetic-energy cutoff of 5 Ry.
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4. The As potential in GaAs and AlAs are not constrained to be identical, i.e. they

are fitted independently, to account for the local-environment dependence of the

atomic potential, by considering the local electronic charge. This is equivalent

to say that empirical/semi-empirical pseudopotentials are not transferable to

different chemical environments. The pseudopotential for As coordinated by n

Al atoms and (4 − n) Ga atoms is given by the weighted average:

vAs =
n

4
vAs (AlAs) +

4 − n

4
vAs (GaAs) . (B.14)

This means that, to preserve a correct description of interfaces in GaAs/AlAs

superlattices, an As atom bound to two Al and two Ga atoms is attributed a

symmetrized pseudopotential, which is the average of the As pseudopotential

functions in GaAs and AlAs environments.

5. The quality of the final pseudopotentials is widely tested, in the contest of

plane-wave calculations in Ref. [44], in the contest of LCBB calculations in

Ref. [29].

These pseudopotentials are local and, at this stage, do not include spin-orbit terms,

even if in the Appendix of Ref. [44] it is suggested how to include them. Bulk and

superlattice energy levels are provided in the same absolute energy scale, thus su-

perlattice and bulk eigenvalues can be easily compared and the valence band offset

is automatically reproduced. The different q −→ 0 limit values of vα(q) are the

key-points to describe correctly the band alignment. The optimized parameters of

Eq. (B.13) are given in Table B.1. The energy cutoff these pseudopotentials are

designed for is 5 Ry. At last, we should add that the continuous pseudopotentials

presented here are not the only ones in literature. Nevertheless, trusting the compar-

ison table in Ref. [44], these pseudopotentials should be the more efficient, at least

for a superlattice constituted by GaAs and AlAs. Our results, both concerning the

bulk and superlattice systems, confirm the high quality of these pseudopotentials.
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B.3 Ab-initio pseudopotentials

B.3.1 Hamann pseudopotentials

In a full DFT calculation, including explicitly both core and valence electrons, the

valence electrons feel potentials due to the nuclei, the core electrons and the other

valence electrons. The sum of the first two terms gives the true ionic potential.

Within a pseudopotential framework, the true ionic potentials are substituted by

the ionic pseudopotentials: the two potentials differ in a spherical region centered

on the nuclei. We can already underline a basic difference between this definition

of pseudopotentials and the semi-empirical pseudopotentials presented in the last

section: the semi-empirical pseudopotentials are screened, i.e. they include also

the effects due to the electron-electron interaction between valence electrons. This

explains, as we have already remarked, why empirical/semi-empirical pseudopoten-

tials cannot be transferable. In case of ionic pseudopotentials we do not meet this

restriction: it is practical to have a pseudopotential, which can be convenient to

describe the electronic properties in deeply different chemical environments, like an

excited atomic state, a molecule or a solid.

The formulation of modern ab initio pseudopotentials goes beyond the Phillips-

Kleinman scheme, overcoming some problems arising from the imperfect normaliza-

tion of the pseudowavefunction. In fact, if the true wavefunction ψ is normalized to

one, then from the (B.2):

1 = 〈φ|φ〉 − 2
∑

c

〈ψc|φ〉〈φ|ψc〉 +
∑

c

|〈ψc|φ〉 |2 ; (B.15)

it follows that the pseudowavefunction φ has a norm only approximatively equal to

one:

〈φ|φ〉 = 1 +
∑

c

|〈ψc|φ〉 |2 . (B.16)

This is a consequence of the incorrect distribution of the valence charge between the

core and the valence region and would cause serious problems in self-consistent cal-

culations. This inconvenience is eliminated in the formulation of Hamann, Schlüter

and Chiang [161], by imposing the conservation of the norm for the pseudowave-

function. In the framework of this formalism, Bachelet, Hamann and Schlüter have

built systematically all the atomic norm-conserving pseudopotential from H to Pu
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[162]. This is not the only way to solve the problem, another possible way leads to

the soft non-norm-conserving pseudopotentials of Vanderbilt [169].

The construction of the Hamann pseudopotentials starts from an All-Electron

(AE) calculation, within density functional theory, for the isolated atom. The goal

is to build a soft potential without a singularity in the origin, nevertheless the new

potential must not change the physical properties of the system. The procedure can

be summarized in the following steps:

a) the Kohn-Sham equation for the radial part RAE
nl of the atomic wavefunction

is solved self-consistently within an all-electron scheme:
{

−1

2

d2

dr2
+
l (l + 1)

2r2
+ V AE [n; r]

}

r RAE
nl (r) = ǫAE

nl r R
AE
nl (r) , (B.17)

where

V AE [n; r] = −Z
r

+ VH [n; r] + V LDA
xc (n(r)) , (B.18)

Z is the atomic number, VH [n; r] is the Hartree potential and V LDA
xc (n(r)) is

the exchange-correlation potential in the local density approximation.

b) The all-electron radial wavefunctions RAE
nl is modified, by making it smooth and

nodeless in the core region, to obtain the radial pseudowavefunction RPP
nl . The

pseudowavefunction RPP
nl must fulfill the pseudoatom Kohn-Sham equation,

{

−1

2

d2

dr2
+
l (l + 1)

2r2
+ V PP

l [n; r]

}

r RPP
nl (r) = ǫPP

nl r R
PP
nl (r) , (B.19)

To be more precise, the pseudowavefunctions RPP
nl are built, under the con-

straint to fulfill the following requirements:

(i) For the same atomic configuration, the valence eigenvalues of the all-

electron Hamiltonian and the pseudo-Hamiltonian must be equal:

ǫAE
nl = ǫPP

nl . (B.20)

(ii) The pseudowavefunction RPP
nl (r) must coincide with RAE

nl (r) outside the

core region, i.e.

RAE
nl (r) = RPP

nl (r) , (B.21)

for r beyond a cutoff distance called core radius rcl, which depends on the

angular momentum component l. The core radius rcl must include the

more external node of the l-th component of the all-electron wavefunction.
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(iii) The integral
∫ R

0

∣

∣

∣RAE,PP
nl (r)

∣

∣

∣

2
r2dr , (B.22)

with R > rcl, must give the same value for an all-electron wavefunction

and a pseudowavefunction: this relation expresses the conservation of the

norm. From the Eq. (B.22) it follows, thanks to the Gauss theorem, that

the electrostatic potential produced at distances r > rc by the pseudo-

charge distribution is equal to the potential produced by the true charge

distribution. The density functional theory is based on the concept of

charge density, thus it is fundamental to reproduce correctly the true charge

density of the system.

(iv) The logarithmic derivatives of the true wavefunction and the pseudowave-

function and their first derivatives with respect to the energy must converge

to the same values for R > rc:

1

RPP
nl (r, ǫ)

dRPP
nl (r, ǫ)

dr
=

1

RAE
nl (r, ǫ)

dRAE
nl (r, ǫ)

dr
. (B.23)

For a perfect pseudopotential Eq. (B.23) holds for every energy ǫ, not only

for the eigenvalues ǫnl. This equality comes from the theory of scattering

and, together with the point (iii), it is essential to guarantee the transfer-

ability of the atomic pseudopotential to different chemical environments.

The freedom left within the construction rules still allows to play with the

parameters to get a “soft” pseudopotential, i.e. a pseudopotential which leads

to a low cutoff energy for the plane-wave basis.

c) Once we have obtained the pseudowavefunction, the pseudopotential is ob-

tained by the inversion of the Eq. (B.19):

V PP
scr,l (r) = ǫnl −

l (l + 1)

2r2
+

1

2rRPP
nl (r)

d2

dr2

[

rRPP
nl (r)

]

. (B.24)

For a nodeless wavefunction the pseudopotential does not have any singular-

ity, except possibly at the origin, where it can be avoided by imposing the

wavefunction to be proportional to rl, when it is approaching the origin.

d) At this stage, the pseudopotential is screened, i.e. it contains the Hartree and

exchange-correlation potentials due to valence electrons. In this form, it is not
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suitable to be used in a chemical environment which differs from the one in

which it has been generated. We need to remove the screening of the valence

electrons. Although the exchange-correlation energy is a non-linear functional

of the total electron density, in practice the “linearization” of the core-valence

contribution is usual and often adequate [170]. An explicit account of the

core-valence non-linearity of Vxc (non-linear core correction) [171] is sometimes

necessary, in particular if the overlap between the core and valence density is

remarkable. Anyway, whatever approximation has been chosen, the goal is to

subtract from the pseudopotential the contributions to the Hartree potential

and the exchange-correlation potential due to the valence electrons:

V PP
ion,l (r) = V PP

scr,l (r) − VH [nv; r] − Vxc [nv; r] . (B.25)

As a consequence of the process of construction of the “bare” pseudopotential,

we have a final result which depends explicitly on the components of the angular

momentum l :

V PP
ion (r, r′) =

∞
∑

l=0

P̂lδ (r − r′)V PP
ion,l (r) , (B.26)

where P̂l is the projector on the l-th eigenstate of the angular momentum. We

underline that the pseudopotential is local in the radial variables, but non-local

as far as angular coordinates are concerned: this kind of behavior characterized

a semi-local pseudopotential.

e) In the final formulation it is useful to separate a local long-range term from the

non-local short-range l-dependent terms:

V PP
ion (r, r′) := V PP

loc (r) + ∆V PP
l (r, r′) = V PP

loc +
inf
∑

l=0

|l〉∆V PP
l 〈l| . (B.27)

A typical choice is to set Vloc equal to one of the non-local components: the local

component can, in principle, be arbitrarily chosen, but since the summation in

Eq. (B.27) will need to be truncated at some value of l, the local potential should

be chosen such that it adequately reproduces the atomic scattering for all the

higher angular momentum channels. The maximum angular momentum lmax

depends both on the atom and on the electronic environment in which it lies. In

fact, in the solid the atomic electronic charge is redistributed and may be in an
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excited state if compared to the atomic ground state. For the construction of

excited angular momentum components it is necessary to rearrange the valence

charge into excited orbitals, maybe even in a ionic configuration. In Figs. B.3

and B.2 we show an example of the application of the Hamann scheme: the

non-local components of the pseudopotential of Ga are presented in Fig. B.3

on page 148, together with the ionic Coulomb potential. In Fig. B.2 on page

146 we show how the the wiggles in the valence states of Ga are eliminated,

moving from the real wavefunction to the pseudowavefunction.

The transferability and the smoothness of the pseudopotential are both strongly

affected by the choice of the core radius rcl. A high radius reduces the influ-

ence of the oscillating core states and brings to a softer pseudopotential, which

leads in its turn to a smaller energy cutoff of the plane-wave basis. On the

other hand, the transferability is lowered, due to the loss of physical relevant

information in the core region. For each atom the appropriate cutoff radius

must be selected as a compromise between fast convergence and good transfer-

ability. There are practical limits on how far rcl can be decreased: it must be

larger than the outermost node of the all-electron wavefunction; on the other

hand it must be small enough to prevent overlaps of neighboring core regions

when the molecule or the solid is created. Concerning the energy cutoff of the

plane wave basis, certain natural restrictions occur: the atomic size imposes

a length scale to the problem, which influences the extent of the Fourier ex-

pansion needed to accurately describe the pseudowavefunction. Anyway, a soft

pseudopotential prevents from wasting computational effort in unnecessarily

large expansions. The transferability depends critically also on the lineariza-

tion of the core-valence-exchange-correlation and, of course, on the choice of

the states to be included in the core. At last, another worsening to the trans-

ferability properties can come from the transformation of the pseudopotential

from the semi-local into the fully separable form. We will discuss this step in

a following section.

The comparison between the logarithmic derivative in an all-electron or pseu-

dopotential calculation, as already mentioned, gives clear hints on the transfer-

ability of the generated pseudopotentials. An additional quality requirement
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is the check that the all-electron atomic excitation or ionization energies and

the eigenvalues are close to the energy values obtained from the pseudopoten-

tial calculations and the all-electron frozen core calculations. According to this

test, a transferable pseudopotential should lead to the same accuracy as the

frozen-core all-electron calculation. Anyway, a final insight on the quality of

the pseudopotential can only be given by the results of realistic calculations on

different model systems (molecules or solids): the criterion is that a pseudopo-

tential and an all-electron calculation must deliver the same valence electronic

structure and the same total energy differences.

B.3.2 Troullier and Martins pseudopotentials

The prescriptions given in the previous section are not sufficient to define uniquely a

pseudopotential. It may be remarked that the smoothness of the pseudopotential has

never been explicitly required. It has been the objective of much active work trying

to determine some practical atomic criteria for a computational efficient pseudopo-

tential, which reproduces the correct all-electron behavior outside the core region.

Kerker [172] was the first to propose a pseudopotential construction which focused

on the smoothness of the pseudowavefunction. Troullier and Martins [163] gener-

alized and improved Kerker’s method, obtaining smooth pseudopotentials with a

relatively high cutoff radius, but still able to preserve good logarithmic derivatives.

Their recipe has proved to be particularly efficient for systems containing first row

elements, transition metals, and rare-earth elements. The first row elements, for

example, contain no p core electrons, thus their pseudopotential components with

p symmetry are very strong, because there are no inner p states to enforce the or-

thogonality. Transition metals and rare-earth elements have similar problems with d

and f components. Calculations involving atoms of the above type are particularly

demanding and these atoms provide an important test for pseudopotential smooth-

ness. The procedure of Troullier and Martins consists in modeling inside the core

radius the radial wavefunction in the form:

RPP
nl (r) = rlepl(r2) , (B.28)
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where pl is a polynomial of order six in r2. The seven variational coefficients of the

polynomial are chosen to fulfill the seven following conditions:

(i) Norm-conservation of charge within the core radius rcl, like in the Hamann

recipe.

(ii)-(vi) The continuity of the pseudopotential wavefunction and its first four deriva-

tives at rcl, which imposes in effect the continuity of V PP
scr,l (r) and its first two

derivatives at rcl.

(vii) The zero curvature of the screened pseudopotential at the origin: V ′PP
scr,l (0) = 0.

The last point is the criterion to give smooth pseudopotentials. This condition

has been accurately tested in Ref. [163]. Once the pseudowavefunction has been

defined, the procedure which leads to the pseudopotential is the standard method

described in the previous section. Although there are still no absolute criteria for

efficient pseudopotentials, the recipe by Troullier and Martins has been proven to

deliver excellent pseudopotentials, offering high transferability in combination with

fast convergence.

B.3.3 Kleinman-Bylander formulation

Working on a plane-wave representation entails performing some calculations in the

position space and some others in the momentum space, passing from one space to

the other thanks to a Fourier transform. In the reciprocal space the semi-local part

of the pseudopotential is described by the expression:

∑

G,G′

|k + G〉∆V PP
l (k + G,k + G′) 〈k + G′| , (B.29)

which is completely non-local.

For an N -dimensional basis {G} , the semi-local form requires the evaluation and

storage of (N2+N)/2 matrix elements 〈k + G|∆V PP
l |k + G′〉. Kleinman and Bylan-

der (KB) [173] found out that by complicating the expression of the pseudopotential

in real space, it is possible to save time and memory in their manipulation in recip-

rocal space. With the KB form the matrix elements of the non-local pseudopotential

between two states |k + G〉 and |k + G′〉 are expressed as the product of two fac-

tors, requiring only a number proportional to N of projections 〈∆V PP
l φPP

lm |k + G〉
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and then simple multiplications. In fact, following Kleinman and Bylander, we can

rewrite in their separable form the non-local pseudopotential components:

∆V KB
l =

∑

l,m

|∆V PP
l φPP

lm 〉〈∆V PP
l φPP

lm |
〈φPP

lm |∆V PP
l |φPP

lm 〉 , (B.30)

where φPP
lm are the pseudoeigenfunctions of the Hamiltonian, obtained from the

semi-local atomic pseudopotential. The Fourier transform of Eq. (B.30) is:

∑

lm

[

∑

G |k + G〉〈k + G|∆V PP
l φPP

lm 〉
] [

∑

G′ 〈∆V PP
l φPP

lm |k + G′〉〈k + G′|
]

〈φPP
lm |∆V PP

l |φPP
lm 〉 . (B.31)

Of course, if we use the non-local part of the pseudopotential, as written in expres-

sion (B.30), to solve the electronic problem of the atom, we find the same eigenvalues

and eigenvectors we had already found with the pseudopotential expressed in the

semi-local form. This occurrence makes the KB pseudopotential in principle as valid

as the corresponding semi-local pseudopotential. Nevertheless, this procedure has

to be applied cautiously, because it can modify in a non-physical way the chemi-

cal properties of the atoms. The problem, as explained in Ref. [174], comes from

the fact that the KB Hamiltonian does not respect the Wronskian theorem [175].

According to the theorem, the atomic eigenfunctions are energetically ordered such

that, for a given quantum number l, the energies increase with the number of nodes.

Since this condition does not hold for the KB Hamiltonian, “ghost” states. i.e. un-

physical solutions, can show up in the chemically important energy range around

the valence eigenvalues El. There are some practical prescriptions to distinguish

and eliminate the ghost states : besides applying the criterion of Gonze et al. [174],

the logarithmic derivatives as a function of the energy must be accurately inspected,

comparing calculations using the all-electron Hamiltonian, the semi-local Hamilto-

nian and the KB Hamiltonian. If a ghost state is detected, occurring for some l̃,

it may be eliminated: (i) changing the component l which is set as the local part

of the potential, (ii) varying the core cutoff radii rcl of the l̃ component or of the

local component. These changes should be done in such a way to preserve as good

as possible the transferability.
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B.4 The norm-conserving pseudopotentials built to be used

in this work

In this section we want to discuss how we have applied the above explained tech-

niques to create norm-conserving pseudopotentials for Ga, As and Al atoms. The

tool used to perform the numerical calculation is the fhi98PP package [176] by

Fuchs and Scheffler. The code allows to generate norm-conserving pseudopoten-

tials adapted to DFT calculations, for all the interesting elements throughout the

periodic table. The procedure of construction is based on a scalar-relativistic all-

electron calculation of the free atom. Both the scheme by Hamann [177], described

in Section B.3.1, and the scheme by Troullier and Martins [163], described in Sec-

tion B.3.2, are implemented and can be selected by the user to generate the atomic

pseudopotentials. We remark once again that no experimental input is needed. The

exchange-correlation potential can be implemented both in different parameteriza-

tions of the local density approximation and in the generalized gradient approxi-

mation. A partial core density can be included to allow for non-linear core-valence

exchange-correlation. The package includes some facilities to test the quality of the

pseudopotentials directly on the free atom, in particular their softness and their

transferability, examining suitable cutoff energies for plane-wave basis set, scatter-

ing properties, excitation energies and chemical hardness properties. Moreover, the

presence of unphysical states, in case of Kleinman-Bylander separable pseudopoten-

tials, is detected by inspection of the bound spectrum and by the analysis of Gonze

et al. . For further details we suggest to see the Ref. [176].

Our ab initio pseudopotentials are generated using the method of Hamann et

al. [161] for Ga and As atoms, while the method of Troullier and Martins is used

for Al atoms. We have used the Kleinman-Bylander form for the pseudopotential,

after having accurately verified not to have ghost states. We have paid particular

attention to the choice of the reference configurations (see Table B.2), to mimic

as closely as possible the environment in which the atom is placed: this plays an

important role to assure a good description of the solid and, in particular, the lattice

mismatch between GaAs and AlAs. We remind that each atomic pseudopotential

is far from being unique and there are no fixed recipes to know a priori which
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Table B.2: Atomic configurations and core radii used in generating ab initio pseudopotentials.

Elements Atomic configurations

Ga 4s1.54p0.54d0.5

Al 3s2.03p1.03d0.0 s,p components

3s0.753p1.03d0.25 d component

As 4s2.04p3.04d0.0

Elements l rl

Ga 0 1.2

1 1.25

2 1.45

Al 0 1.93

1 2.39

2 2.52

As 0 1.15

2 1.60

method (Hamann or Troullier-Martins), which parameters (rlc, lmax), which atomic

configurations, etc. can ensure the better pseudopotentials. Thus, we have tested

many different atomic Ga, As and Al pseudopotentials, in order to choose the more

suitable. We have also considered the core size effects for all the 3 atoms. Atomic

tests have suggested that the introduction of non-linear core corrections improves

drastically the excitation properties in Ga and Al atoms, but do not vary significantly

the behavior of As energy levels in excited configurations. That is the reason why

we have simply applied the linear approximation to build the As pseudopotential.

The 3d core states in Ga atoms are not completely frozen, this fact leads to errors

of around mRy for atomic excitations. Nevertheless, we estimate that the error is

still reasonable and it is not worth introducing the d states in the valence, increasing

strongly the heaviness of the calculations. A crucial test for the reliability of atomic

pseudopotentials is their use to calculate the ground state property of a bulk crystal.

That is the reason why we refer to the description of ground state calculation on

GaAs and AlAs bulk materials, presented in Section 3.3, as the final validation to

the quality of our pseudopotentials.
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un “parcheggio”, come molti di noi temevano al momento di decidere cosa fare dopo
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