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Introduction

Motivations
La réduction de la masse des panneaux solaires d’un satellite entraine une flexibilité qui de-
vient non négligeable. Ces panneaux, soumis à des vibrations de la base durant la phase de
lancement, peuvent s’entrechoquer en provoquant un endommagement de la structure. Ainsi,
en prévention, des cales sont fixées dans des endroits bien choisis sur la structure; ils jouent
le rôle d’un ressort élastique unilatéral. Cependant, cet ajout a une conséquence négative sur
la compréhension du phénomène car la dynamique de ces panneaux devient non-linéaire.
De nombreux logiciels industriels sont conçus pour traiter des problèmes de vibrations linéaires
donc ne peuvent pas prévoir le comportement non-linéaire de la structure. L’objet de cette
étude est de fournir un modèle mathématique validé expérimentalement qui pourra traiter
le problème de contact entre ces panneaux et les cales unilatérales. On considère alors un
problème unidimensionel de contact élastique.
L’analyse modale de ce système apporte une bonne compréhension de la dynamique, d’ou la
motivation pour l’étude des modes normaux non-linéaires (MNN), une notion introduite par
des mécaniciens pour étendre le concept des modes normeaux du cas linéaire.

Problèmes de contact
Si le contact unilatéral dans le cas statique est largement étudié en mathématiques et en
mćanique, le cas dynamique est moin étudié. L’existence et l’unicité des solutions dans
le cas rigide ont fait l’objet de plusieurs travaux mathématiques dont on cite ici quelques
références.
G.Lebeau et M.Schatzman ont montré l’existence et l’unicité pour le problème de propaga-
tion d’onde avec une condition unilatérale au bord du domaine [1]; M.Schatzman a aussi
montré l’existence d’une solution pour des systèmes unidimensionels en présence d’un im-
pact [2]. C. Pozzolini et A.Léger ont présenté un résultat de stabilité dans un problème
d’obstacle avec une plaque. Ils ont établit un théorème de stabilité qui relie les évolutions de
la zone de contact à celles des forces extérieures [3, 4].

Modes normaux non-linéaires
Les modes normaux non-linéaires sont présentés comme une extension naturelle des modes
normaux linéaires. Le calcul des ces modes non-linéaires donne accès à une meilleure com-
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préhension de la dynamique des systèmes mécaniques en étudiant l’effet de la non-linéarité
sur ses modes propres (linéaires). Un mode normal non-linéaire est défini comme une so-
lution périodique de toutes les composantes du système mécanique de même phase; cette
solution peut être trouvée en excitant le système par un vecteur particulier de condition ini-
tiale en position et en vitesse; cette condition initiale est à déterminer. Une introduction
détaillée est présentée au Chapitre 3.

Travail présenté dans la thèse
La thèse est composée des deux parties majeures présentées en quatre chapitres. La première
partie traite de la modélisation, des simulations et des validations expérimentales d’un mod-
èle de poutre en contact unilatéral avec un ressort unilatéral sous une excitation périodique.
Le travail correspondant est présenté aux Chapitres 1 et 2.
La deuxième partie est concentrée sur les modes normaux non-linéaires des systèmes mé-
caniques. Un algorithme numérique est présenté au Chapitre 3. La méthode des échelles
multiples est utilisée dans le Chapitre 4 pour traiter le cas d’un contact unilatéral.
Chaque chapitre commence par une introduction motivant le travail et décrivant le contenu.
On ne donnera donc ici qu’une brève description.
Dans le Chapitre 1, on présente un modèle de poutre en contact unilatéral avec un ressort
linéaire modélisant respectivement un panneau solaire et une cale élastique. Le système est
soumis à une excitation harmonique du support donnée sous forme d’une accélération im-
posée. Le modèle est validé expérimentalement par des séquences d’essais sur une poutre en
aluminium en contact avec une cale en Solithane. Les résultats montrent une cohérence avec
les solutions numériques obtenues.
Dans le Chapitre 2, un modèle équivalent à celui du Chapitre 1 est étudié, l’excitation du
support est remplacée par une force excitatrice ponctuelle. Une validation expérimentale a
été également réalisée et a confirmé le modèle.
Dans le Chapitre 3, une nouvelle formulation est présentée pour trouver ces modes comme
zéros d’une application non-linéaire. Un algorithme utilisant des algorithmes existants, basé
sur la continuité des solutions périodiques, est développé pour le calcul des modes normaux.
Dans le dernier chapitre, on introduit la technique de développement asymptotique par échelles
multiples pour le calcul d’une solution analytique approchée d’une équation différentielle
avec un terme unilatéral. Le petit paramètre est la rigidité du ressort unilatéral. On utilise en-
suite cette technique pour le calcul des modes normaux non-linéaires d’un système autonome
à un nombre n de degrés de liberté avec un contact unilatéral. L’algorithme du Chapitre 3
est ainsi validé pour le cas d’une non-linéarité de type contact. Ceci nous donne un outils
mathématiques validé pour le calcul des modes non-linéaires du système traité en Chapitre
1 et 2.
On traite aussi le cas d’un système forcé. Cette démarche abouti à une procédure numérique
simple pour le calcul des modes normaux; elle donne aussi une interprétation expérimentale
de ce concept.
Cette thèse est financée par Thales Alenia Space, Cannes, France.
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Chapter 1

Numerical and experimental study for a
beam with unilateral elastic contact
under a support excitation

1.1 Introduction
The mass reduction of satellite solar arrays results in significant panel flexibility. When
such structures are launched in a packed configuration there is a possible striking one with
another dynamically, leading ultimately to structural damage during the launch stage. To
prevent this, rubber snubbers are mounted at well chosen points of the structure and they act
as a one sided linear spring. A negative consequence is that the dynamics of these panels
becomes nonlinear and it cannot be treated with the classical tools of linear systems. The
aim of this study is to provide an efficient numerical model which can predict the nonlinear
behaviour produced by the unilateral spring.

1.1.1 State of the problem
A simplified model of the satellite solar arrays with the snubbers will be considered and
studied, it can help to understand the effect of the unilateral contact, then one can deduce
useful information for the whole structure. In this study a solar array and a snubber are
simply modelled as a linear Euler-Bernoulli beam with a one sided linear spring respectively.
Rubbers are strongly nonlinear in general with a complicated behaviour law, but it is assumed
to behave linearly for small displacement; the results show the relevance of the choice. The
whole system is under a support periodic excitation given as an imposed acceleration, the
magnitude depends then on the excitation frequency. The modelling does not take in account
any friction during the contact between the beam and the spring, moreover the spring is
massless and its own dynamics is not taken in account. This is done to simplify the problem
since any friction can lead to a non differentiable velocity at the time of impact and then the
classical equation of motion does not hold because we cannot calculate the acceleration as
a classical derivative of the velocity. Note that the displacement is vertical and the motion
takes place in a one dimensional space, it is also assumed that the velocity direction does not
change as in shock problems.
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1.1.2 State of the art
The study of the nonlinear behaviour of structures with a nonlinear contact or support is
a relatively new research field of interest for many structural dynamicists. It is a branch
of nonlinear dynamics with a special form of nonlinearity: the system has two linear local
components and the nonlinearity comes from the interaction between one with the other. A
crack in a structure, a fissure or a defect can be modeled as a unilateral linear or cubic spring;
this kind of problems can be encountered in the nondestructive testing (NDT) and in wave
propagation problems with unilateral constraint.

The effect of a unilateral element to the dynamic of a beam was also studied with an en-
gineering point of view [5–7] where the focus was to study the stability using sweep tests
experimentally and comparing numerical simulations, the latter computation uses special
packages for nonlinear simulations. Other aspects of the unilateral contact have been studied
such as in [8–10]. The vibrations of a beam with a unilateral contact under a force excitation
have also been studied in a simple case [11–14]. The interest of the authors was to study
the nonlinear systems in both the frequency and the time domains, as well as the internal
properties of the systems like nonlinear normal modes (NNM) which is an extension of the
well-known linear normal modes (LNM) (see [15–22]) .

1.1.3 The present contribution
In this study a model of a cantilevered Euler-Bernoulli beam which strikes a one sided lin-
ear spring at the free end is presented, the system is under a periodic excitation of the base
given as an imposed acceleration. A finite element numerical model was produced and was
validated with subsequent experimental tests.
The spring and the beam can be in contact in three configurations: a point one sided con-
tact, a contact with a pre-stress and a contact in the presence of backlash. The model takes
in account all these configurations. Both numerical and experimental approaches are stud-
ied and completed, the experimental setup and the rig are briefly presented. The numerical
results are presented and studied in both the frequency and the time domain. The experimen-
tal sequences consisted of exciting the system at different frequencies in an interval which
contains the first two natural frequencies of the system, where a significant effect of the uni-
lateral spring is expected to occur. A frequency sweep has also been performed to detect the
frequencies of the nonlinear system, it is a classical method for detecting such frequencies.
An alternative calculation of these frequencies can be obtained using the concept of the non-
linear normal modes studied in Chapters 3 and 4.
Note that no signal analysis is done by the acquisition system, as the problem is nonlinear
and the standard transfer function calculation is only really applicable and useful for linear
systems and its use could lose the nonlinearity being investigated. The time signal was ac-
quired and the processing performed using external software (Scilab [23]). The numerical
predictions are compared to experimental results and show very good agreement. The study
finishes by a general conclusion and perspectives.
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1.2 Modelling
The present study deals with the behaviour of a beam which strikes a snubber under a peri-
odic excitation. It is a simplified model of a satellite solar array striking a snubber during the
launch phase. The vibration of the base is modelled as an imposed harmonic acceleration of
the support; the bumper (snubber) is modelled as a unilateral linear spring at the free end of
the beam. The contact between the spring and the beam takes three possible positions: a one
sided contact, a pre-stressed contact and a contact with a backlash.
The model is presented first, then an equivalent adimensional model is produced to avoid
technical problems encountered during the numerical integration of the differential equations
obtained after finite element approximation. Finally, a description of the finite elements used
for the discretization is discussed as well as the numerical methods used for the computation
of periodic solutions.

d(t)

Shaker

Clamped−Free beam with a unilateral elastic contact

u(x,t): vertical displacement

Adaptative 
spring support

Possible pre−stress
or backlash

Figure 1.1. Beam system in unilateral contact with a bumper modeled as a linear spring.

1.2.1 Partial differential equation of the motion
The equations of motion of an Euler-Bernoulli linear beam in contact with a unilateral spring
for the three positions of the spring can be expressed as

ρS∂2
su(y, s) + ξ∂su(y, s) + EI∂4

yu(y, s) = 0, (1.2.1)

where s is the time, ρ, S, E, I and ξ are respectively the beam density, cross-sectional area,
Young’s modulus of elasticity, second moment of area and the beam structural damping co-
efficient. Cantilevered beam boundary conditions assume zero slope at the fixed end and
zero bending moment at the free end.
The whole system is under a periodic imposed acceleration − a

ω2 d(s); when the elastic uni-
lateral spring is in contact then a force is present due to the reaction from the spring, it is
considered as a boundary force,

u(0, s) = d(s) = a sin(ωs), ∂yu(0, s) = 0, EI∂2
yu(L, s) = 0,
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EI∂3
yu(L, s) = [kr(d(s)− u(L, s) + z)]+ − ξr

[(
1− sign(u(L, s))

2

)
∂su(L, s)

]
.

z = 0 for a one sided contact, z > 0 for a pre-stressed contact and z < 0 for a backlash
contact. kr and ξr are the spring stiffness and damping coefficient respectively. The function
x+ is defined as follows,

x+ =

{
x if x ≥ 0
0 if x ≤ 0

the spring is assumed to be massless, hence its own dynamics is neglected.

1.2.2 Adimensional analysis
The space finite element discretization of equation (1.2.1) yields a mass and a stiffness ma-
trix with high coefficients leading to classical numerical problems. The solution is to find
an adimensional equation of motion and then returning to the real physical state after the
numerical computation.
The technique consists on changing the time scale and normalizing the displacement by the
length of the beam. Consider then the normalized displacement v =

u

L
, x =

y

L
and the

time t =
s

T
, where T is the new time scale which has to be determined in order to obtain

a convenient equation of motion. Let us write equation (1.2.1) using the new variables, to
realize this we have to find the time and the space derivatives with respect to the new scales.
The time derivative of u can be expressed as:

∂su =
du

ds
=

d(Lv)

ds
= L

dv

dt

dt

ds
=

L

T

dv

dt
=

L

T
∂tv,

and

∂2
su = ∂s(∂su) =

d(L
T
∂tv)

ds
=

L

T 2
∂2

t v.

On the other hand, the derivative of u with respect to y can be expressed as:

∂yu =
du

dy
=

d(Lv)

dy
= L

dv

dx

dx

dy
=

L

L

dv

dx
= ∂xv.

The same procedure is repeated to find the fourth derivative with respect to y:

∂4
yu =

1

L3

d4v

dx4
.

By taking
T 2EI

L4ρS
= 1, the following partial differential equation can be obtained

∂2
t v(x, t) + ξn∂tv(x, t) + ∂4

xv(x, t) = 0. (1.2.2)

The boundary conditions follow with the change of variables to obtain the updated condi-
tions:

v(0, t) = d1(t) = ax sin(ωtt), ∂xv(0, t) = 0, ∂2
xv(1, t) = 0,
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∂3
xv(1, t) = [krn(d1(t)− v(1, t) + zx)]+ − ξrn

[(
1− sign(v(1, t))

2

)
∂tv(1, t)

]
.

krn and ξrn are the spring adimensional stiffness and damping coefficient, zx =
z

L
and

ax =
a

L
. Equation (1.2.2) is discretizated by finite element to obtain a nonlinear system of

differential equations, this is explained in the next section.

1.2.3 Finite Element approximations
Many mechanical problems use the finite element approximations to solve the equations
governing their dynamics. The basis functions used herein are cubic polynomials of Hermite
type, the elementary stiffness and mass matrices of each element are respectively given as
follows [24]:

Ke = EI
l3




12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2


 and Me = ml

420




156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2


,

where l and m are the length and the mass of each finite element respectively. A classi-
cal assembly process was performed to get the global mass and stiffness matrices of the
system. The unilateral spring is incorporated at the node in contact, i.e. in the free end of the
beam. Finally, equation (1.2.2) yields the following nonlinear differential system:

Mq̈ + Cq̇ + Kq =

[
krn(d1(t)− qr + zx)+ − ξrn

(
1− sign(qr)

2

)
q̇r

]
er (1.2.3)

where M and K are respectively the assembled mass and stiffness matrices of size n, C is
the damping matrix. q is the vector of degrees of freedom of the beam,

(qi)i=1,...,n = (vi, ∂xvi)i=1,...,n,

r is the index of the node where the spring is in contact with the beam. Numerical time inte-
gration was performed using the Scilab routine ’ODE’ for ’stiff’ problems based on the BDF
method (backward differentiation formula) which is a second order scheme for nonlinear
systems [23].

1.2.4 Existence of the solutions
By applying Theorem 3.4.4, system (1.2.3) has a unique solution since the function u+ is
Lipschitzian.

1.3 Experimental validations
In this section, the instrumentation used for the experiment sequences is described and illus-
trated with schematic and photos. The Solithane rubber used had unknown Young’s modulus,
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hence a mixture of a numerical and an experimental procedure was performed to characterize
it. The natural frequencies of a cantilever beam were tested to ensure the boundary condi-
tions. Finally the damping coefficients of the system and the rubber were identified using the
experimental data.

1.3.1 Experimental setup and instruments
The instrumentation includes an electromagnetic shaker, an aluminum cantilever beam built
in a box-section frame to ensure a perfect clamping, four accelerometers, a sine wave gener-
ator and a multi channel acquisition system (see Figures 1.3 and 1.4).
The shaker control system was not able to ensure a perfect sine wave imposed acceleration,
the signals contained some noise and, in particular cases, some harmonics. This classical
technical problem can be solved by the modelling of the shaker behaviour and incorporat-
ing its own dynamic into the numerical model. This problem can also be solved by using
the measured acceleration of the base as the input of the numerical model, this technique
is well explained in Chapter 2; another problem can be produced in this case because the
model becomes weak mathematically and the theoretical investigations meet another kind of
difficulties. To conserve a coherent model, the imposed acceleration was always modeled as
a sine wave and the shaker motion was not taken in account; the cases where the measured
acceleration was not harmonic was processed subsequently in Section 1.5.1

Figure 1.2. Schematic of the cantilever Beam and the unilateral contact, the snubber was
modelled as a linear spring.
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Beam Beam Beam Beam Young’s Beam Spring
length width thickness modulus density stiffness

0.27m 0.05m 0.005m 69× 109N/m2 2700kg/m3 559.625KN/m

Table 1.1. The physical properties of the beam and the spring. The spring stiffness was
evaluated using an algorithm described in Section 1.3.3.

Figure 1.3. Photo of the cantilever aluminum beam on a shaker with four accelerometers.

Figure 1.4. The cantilever aluminum beam in contact with the Solithane snubber at the free
end. The whole system is based on a shaker which produces a harmonic motion of support
given as an imposed acceleration a(s) = − a

ω2 d(s).
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1.3.2 Highlights on the linear states of the system
The dynamic behaviour of a cantilever beam is well-known, it is presented here to check
the boundary conditions of the system and to evaluate the spring stiffness using Algorithm
1. It is also important for the determination of the accelerometers mass effect, this is solved
by adding the mass of each accelerometer (45 grams) to the mass matrix of the finite ele-
ment model. The system has another linear state when the spring is permanently in contact
with the beam, the natural frequencies can be found by applying a classical sine sweep or a
random noise test. Tables 1.2 and 1.3 show the first three measured and predicted eigenfre-
quencies of the cantilever beam of the system with bilateral spring; The results show very
good agreement.

Natural frequencies f1 f2 f3

Predicted 52.7 Hz 328.5 Hz 931.3 Hz

Measured 51.9 Hz 329.4 Hz 934.4 Hz

Percentage difference 1.5% 0.2% 0.3%

Table 1.2. The natural frequencies of the clamped-free beam.

Natural frequencies F1 F2 F3

Predicted 196 Hz 447.1 Hz 966 Hz

Measured 196.5 Hz 448 Hz 969.5 Hz

Percentage difference 0.2% 0.2% 0.3%

Table 1.3. The natural frequencies of the beam with a spring permanently in contact at the
free end. The spring stiffness used to compute these frequencies is evaluated using Algorithm
1

1.3.3 Characterization of the Solithane snubber
The physical properties of the snubber used for the test sequences were unknown, we present
here a mixed method to determine the snubber stiffness. Note that the behaviour of this kind
of material depends on the frequency, the temperature and on many other factors. Herein,
we assume that for small displacements and for the range of excitation frequencies used, the
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material behaves linearly hence it is modelled as a linear spring.
The shift of the frequencies is due to adding a spring to the free end of the beam, this fact
can be introduced by adding a coefficient in the stiffness matrix of the finite element model
corresponding to the node of contact. Mathematically, the problem is to find, by iterating,
a coefficient value kr which shifts the first eigenfrequency f1 of the system without spring
to F1, the first eigenfrequency of the system with a spring permanently in contact with the
beam. Proposition 1.3.1 proves the uniqueness of a such coefficient. Algorithm 1 has been
performed to find kr, it explains the details of the method.
The spring stiffness obtained by this algorithm is: kr = 559.625KN/m, the corresponding

Algorithm 1 Characterization of the rubber
Input: 1 f1: The first eigenfrequency of the linear system without spring.
Input: 2 F1: The first eigenfrequency of the linear system with a spring permanently in

contact.
Output: kr: The stiffness of the spring to be determined.

1: Initialize k = 0.01
2: Compute the first eigenfrequency f of the obtained matrices
3: if |f − F1| ≤ ε then
4: kr = k
5: else
6: k = 1.01× k
7: end if
8: Er = hkr

b
, h is the height of the rubber, b is the area of the section.

Young’s modulus is: Er = 44.77× 106N/m2.

Proposition 1.3.1. Let A be a n×n real square matrix which has n eigenvalues (βk)k=1,...,n,
(uk)k=1,...,n are the corresponding eigenvectors and λ is a mapping from [0,∞[ in R

[0,∞[ −→ R
αk −→ λ(αk) = βk,

(1.3.1)

where (αk)k=1,...,n are the diagonal coefficient of A then

λ(αk) = βk =t ukAuk,

and

∂αk
λ(αk) =t uk∂αk

(A)uk = ||uk||2.

As results, the mapping λ is one to one from [0,∞[ in R.

In practice, the proposition proves that there exists a unique kr which can shift the first
eigenfrequency from f1 to F1.
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1.3.4 Parameters identifications and model adjustments
The data was measured at the middle, the three quarter point and at the free end of the
cantilever beam. In this chapter, we take care about the data measured at the free end above
the elastic contact where the acceleration is the greatest, hence we do not mention this choice
in rest of the text. The Fast Fourier Transform FFT was applied to the measured and to the
predicted time signals of this finite element node; the frequency axis was normalized by the
excitation frequency. The FFT axis scale was presented in dB which is 20 log 10(X) where

X is equal to the FFT

(
x(t)

max(x(t))

)
, x(t) is the considered time signal. The data measured

at the other positions showed similar behaviour and it is not presented.
The measured data fits the numerical simulations for a beam structural damping coefficient
ξ equal to 1% and a spring damping coefficient ξr = 2%. These parameters were fixed for
all the subsequent simulations.
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1.4 Beam in a one sided contact with a spring
We present here an experimental validation of the model in the case of a one sided contact
between the spring and the beam at different excitation frequency. As mentioned in previous
sections, the data is measured above the contact point, i.e. the free end of the beam. The
magnitude of the imposed acceleration was a = 2g for all the subsequent simulations and
experiments. There was no focus for different excitation magnitude in this case since the
system is not energy dependent (see Section 2.13 ). The integration time is equal to the
measured time data length of 0.8s for the whole cases , it is 5 times greater than the largest
period of the linearized system.

1.4.1 Comparison in the frequency domain
Figures 1.5, 1.6, 1.7 and 1.8 show the frequency contents of the measured and the predicted
accelerations for excitation frequencies at 45 Hz, 65 Hz, 78 Hz, and 160 Hz respectively.
The input frequency was split into the odd and the even superharmonics. The results show
very good agreement in the peak positions and in their magnitude as well as in the damping
effect. Figure 1.8 shows however many subharmonics of the main excitations at 160 Hz, this
behaviour is not encountered in the other cases. Remark that there was no signal processing
of the measured time signals as the transfer function were no longer valid since the time
signals were nonlinear.

1.4.2 Comparison in the time domain
The electrodynamic shaker and the instruments used for the experiment sequences were not
ideal for a time-data analysis, this will complicate the time comparison of the experiments
and the simulations. But the time signal data, which reflect the general dynamic behaviour
of the system, can be simulated and compared to the measured. The results were presented
in separated figures to avoid the phase difference problems.
Figures 1.9, 1.10, 1.11 and 1.12 show the predicted and the measured accelerations for exci-
tation frequencies at 45 Hz, 65 Hz, 78 Hz, and 160 Hz respectively. For an excitation at 45
Hz, the maximum of the measured and the predicted acceleration was at 10g which is a factor
5 of the input acceleration (a = 2g). This maximum rises when approaching the excitation
frequency at 78 Hz (20g for an excitation at 65Hz and 60g for an excitation at 78Hz). The
rise of the magnitude has an important significance here, it provides evidence of a nonlinear
mode of the system when approaching 78 Hz. The concept of the nonlinear normal modes
and their properties as well as a new numerical method for their computation are the main
topics of Chapter 3.

1.4.3 Numerical predictions
The displacement of the beam free end

After the experimental validation, the model is used to predict the displacements and other
useful information to get more insight in the understanding of the system. Figures 1.13 and
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1.14 show the numerical displacements of the free end of the beam (above the spring) for an
excitation at 45 Hz, 65 Hz, 78 Hz and 160 Hz respectively and for an imposed acceleration
magnitude of 2g. At 78 Hz, the displacement is much greater than the other excitation
points because it is close to the first nonlinear mode of the system; this case should be
carefully taken in account because the structure may be damaged as the elastic applied force
is important.

The contact force

The point applied force at the contact point has an important impact on the beam structure.
As the stiffness of the snubber is much greater than the stiffness of the beam in flexure, it can
then produce an important damage when the acceleration is high at the free end. This force
is produced by the spring and it is computed following the Hooke law of elasticity:

f(t) = −kr[d(t)− qr(t)]+,

where kr is the spring stiffness, d(t) is the displacement induced from the sine imposed ac-
celeration and qr(t) is the displacement of the free end of the beam. Note that the spring is
active only when the spring meets the beam; the spring is assumed to be massless so its own
dynamics is not taken in account.
Figures 1.15 and 1.16 illustrate the time signal of the point applied force for an excitation at
65 Hz, 45 Hz, 78 Hz and 160 Hz respectively and for an imposed acceleration magnitude of
2g, these signals are continuous, periodic and vanish when the spring leaves the beam.

One of the difficulties encountered when dealing with nonlinear systems is to localize the
resonance frequencies as well as their superharmonics and subharmonics. The frequency
sweep is very well used to detect such frequencies but it is not enough to study to magnitude
dependence and other features; the Non Linear Normal Modes can be an efficient approach to
get more insight, it will be the topic of Chapter 4. Finally, to prevent any structural damage,
the nonlinear frequencies and their harmonics have to be found and the corresponding forces
have to be taken in account.

1.4.4 Frequency sweep
Frequency sweep tests have been done to detect the frequencies of the system and to study
the effect of the unilateral spring on the natural frequencies. The sweep used is logarithmic
with a velocity of 2 octave/min. The frequency interval cover the first two natural frequen-
cies where the impact of the spring is relevant. At each frequency point, the maximum
of the displacement of the beam free end, i.e. above the spring support, is saved. Finally
these values are plotted against the frequency axis. Figure 1.17 shows the maximum of the
displacements of the system with unilateral contact and without spring. The effect of the
unilateral contact has shifted the first natural frequency of the system from 52.7 Hz to 82 Hz,
the latter is called the nonlinear frequency. There is also a generation of harmonics of the
new nonlinear frequency which is a typical feature of nonlinear system. The second linear
frequency is shifted from 328 Hz to 352 Hz, there is also a presence of subharmonics of this
second nonlinear frequency. Figure 1.18 shows the first nonlinear frequency of the system
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with two of its harmonics as well as the first natural frequency. This curve are obtained by a
frequency sweep around the nonlinear frequency and its expected harmonics. The curve are
normalized by the maximum.

1.4.5 Conclusion
The case of a point one sided contact is interesting as the system does not depend on the
amplitude of excitation, i.e. when the input excitation magnitude increases linearly then the
responses also increases linearly. The model has shown to have a very good agreement with
the experiments for different excitation frequencies covering the first and the second natural
modes of the system. The effect of the spring contact raises the natural frequency, hence the
time responses are important when the excitation is near the new frequency of resonance.
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Figure 1.5. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 45 Hz and for a magnitude of 2g. The data are measured
above the elastic support, the frequency axis is normalized by the excitation frequency.
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Figure 1.6. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 65 Hz and for a magnitude of 2g. The data are measured
above the elastic support, the frequency axis is normalized by the excitation frequency.
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Figure 1.7. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 78 Hz and for a magnitude of 2g. The data are measured
above the elastic support, the frequency axis is normalized by the excitation frequency.
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Figure 1.8. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 160 Hz and for a magnitude of 2g. The data are mea-
sured above the elastic support, the frequency axis is normalized by the excitation frequency.

0.70 0.72 0.74 0.76 0.78 0.80

−6

−4

−2

0

2

4

6

8

10

(a)

Time (s)

Ac
ce

le
ra

tio
n 

(g
)

0.70 0.72 0.74 0.76 0.78 0.80

−6

−4

−2

0

2

4

6

8

10

(b)

Tilme (s)

Ac
ce

le
ra

tio
n 

(g
)

Figure 1.9. the predicted (a) and the measured (b) acceleration for an excitation at 45 Hz and
for a magnitude of 2g; the data are measured above the elastic support
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Figure 1.10. the predicted (a) and the measured (b) acceleration for an excitation at 65 Hz
and for a magnitude of 2g; the data are measured above the elastic support
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Figure 1.11. the predicted (a) and the measured (b) acceleration for an excitation at 78 Hz
and for a magnitude of 2g; the data are measured above the elastic support
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Figure 1.12. the predicted (a) and the measured (b) acceleration for an excitation at 160 Hz
for a magnitude of 2g; the data are measured above the elastic support
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Figure 1.13. The numerical displacement of the free end of the beam for an excitation at 45
Hz and 65 Hz, the magnitude of excitation is 2g.
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Figure 1.14. The numerical displacement of the free end of the beam for an excitation at 78
Hz and 160 Hz, the magnitude of excitation is 2g
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Figure 1.15. The predicted force time signal for an excitation at 45 Hz and 65 Hz, the
magnitude of excitation is 2g. The force is induced by the spring contact.
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Figure 1.16. The predicted force time signal for an excitation at 78 Hz and 160 Hz, the
magnitude of excitation is 2g. The force is induced by the spring contact.
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Figure 1.17. Frequency sweep of the system with unilateral contact (solid line) compared to
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of the linear system is shifted to the right to become the first nonlinear frequency. The
harmonics of this nonlinear frequency also appear as well as the subharmonics of the second
nonlinear frequency.
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Figure 1.18. Frequency sweep around the position of the first linear normal mode and the
corresponding nonlinear normal modes with its harmonics.

1.5 Beam in contact with a pre-Stressed spring

The comparison of the measured data with the simulations is discussed in the frequency do-
main. The harmonic imposed acceleration of the base yields a relative displacement d(t)
which depends on the excitation frequency d(t) = a

(2πf)2
sin(2πft). In the case of a pre-

stressed spring, the responses depend on the imposed acceleration magnitude and the fre-
quency for a given level of pre-stress z. The simulations and the experiments showed two
general behaviour for a given level of pre-stress and for a given excitation frequency: the
responses remain linear for low amplitudes, and behave nonlinearly for high amplitudes. In
general, it is difficult to find the excitation amplitude where the system changes its behaviour,
however an amplitude sweep can be performed to analyze the system for a given excitation
frequency. The same procedure can be performed to find the frequency where the beam re-
mains in contact with the spring, i.e. when it behaves linearly.

1.5.1 Comparison in the frequency domain

The results discussed in this section deal with a pre-stress z = 5mm. The data was measured
above the contact point. Different magnitudes of the imposed acceleration was used for the
subsequent simulations and experiments. The integration time is equal to the measured time
data length of 0.8s for the whole cases, it is 5 times greater than the largest period of the
linearized system.
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Linear behaviour

For low amplitudes, the system behaves linearly and the frequency responses contain a sin-
gle peak corresponding to the excitation frequency. However, the input signal is not a single
sine wave as the shaker control is not good enough to reduce the harmonics coming from
the shaker. To avoid a modelling of the shaker motion and to keep a sine excitation in the
numerical model, the frequency contents of the excitations and the responses are presented
to show that the peaks in the responses are coming from the input excitation and not from the
system itself. Note that the measured accelerations and input excitations have similar fre-
quency contents. The predicted acceleration contains a single output as the sine excitation;
it is a standard feature of linear systems.
Figures 1.19 and 1.21 show the frequency contents of the measured and the predicted accel-
erations for excitation frequencies at 465 Hz and 90 Hz and for an excitation amplitude of
1g and 0.5g respectively. Figures 1.20 and 1.22 show the frequency contents of the experi-
mental imposed acceleration at 465 Hz and 90 Hz, which shows that the excitation was not a
single sine wave. When eliminating the harmonics coming from the shaker, we can see that
the predicted response match very well the measured one.

Nonlinear behaviour

The system had nonlinear behaviour for high amplitude of excitation as the beam could lose
contact with the spring; the excitation frequency is split into all superharmonics, the results
are very similar to those presented in Section 1.4. Figures 1.24, 1.23, 1.25 and 1.26 show
the frequency contents of the measured and the predicted displacement for an excitation
frequency at 90 Hz, 160 Hz, 220 Hz and 465 Hz respectively. The results also show very
good agreements.

1.5.2 Numerical predictions
The main difference between a pre-stressed spring and the other configurations is that the
beam is permanently subjected to an static elastic force at the free end, this force depends on
the level of the applied pre-stress z. The displacements and the forces have different shapes
from the one sided contact case, they can be differentiable and behave linearly if the spring
stays in contact with the beam, they behave nonlinearly when the beam loses the contact with
the spring.

The displacement of the beam free end

Figures 1.28 and 1.27 show the displacements of the free end of the beam above the spring
contact for an excitation frequency/magnitude at (90Hz, 0.5g) and (465 Hz,1g) respectively;
The responses are linear as the spring is permanently in contact with the beam and the mean
is not zero as the static position is positive. However, for a greater excitation magnitude and
for the same excitation frequencies, the displacements behave non-linearly as the beam can
lose contact with the spring. Figures 1.29, 1.30 and 1.31 represent the displacements of the
free end of the beam for an excitation frequency/magnitude at (45 Hz, 3g), (90 Hz, 3g) and
(160 Hz, 5g) respectively. The signals are strictly non linear and periodic, this is due to the
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presence of the harmonics generated from the contact. Note that the displacements and the
accelerations have the same frequency content.

The contact force

The elastic forces coming from the reaction of the spring to the beam during the contact take
two different shapes depending on the behaviour of the responses. If the system behaves lin-
early then the forces are also linear with a positive means, however they behave nonlinearly
when the responses are nonlinear.
Figures 1.32 and 1.33 show the elastic forces for excitations frequency/magnitude at (90Hz,
0.5g) and (465 Hz,1g) respectively; the signals are clearly linear with the same period of
their corresponding predicted displacements.
Figures 1.34, 1.35 and 1.36 show the elastic force time signals for excitation frequency/magnitude
at (45 Hz, 3g), (90 Hz, 3g) and (465 Hz, 15g) respectively. The signals are nonlinear since
the beam can loose contact with the spring, and periodic with the same periods as the cor-
responding predicted accelerations. The forces take similar shapes to those presented in
Section 1.4.

1.5.3 Conclusion
For this case it is not easy to understand the behaviour of the system, especially because the
responses depend on the magnitude of excitation and the level of the pre-stress. The results
has shown two major components, a linear behaviour when the beam remains in contact with
the spring, i.e. for low amplitude of excitations; it responds nonlinearly for high amplitude
and the behaviour is similar to the responses of the one sided contact configuration. The
model has also shown its performance for this case.
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Figure 1.19. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 465 Hz and for a magnitude of 1g. The data is measured
above the elastic support, the frequency axis is normalized by the excitation frequency. The
response contains a single peak which mean that the system responds linearly.
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Figure 1.20. The input imposed acceleration frequency contents measured on the shaker for
an excitation at 465 Hz and a magnitude of 1g, it is not a single sine wave excitation as there
is some noise. The small peaks appears also in the response corresponding to this excitation.
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Figure 1.21. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 90 Hz and for a magnitude of 0.5g. The data is measured
above the elastic support, the frequency axis is normalized by the excitation frequency. The
response contains a single peak which mean that the system responds linearly.
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Figure 1.22. The input imposed acceleration frequency contents measured on the shaker for
an excitation at 90 Hz and a magnitude of 0.5g, it is not a single sine wave excitation as there
is some noise. The small peaks appears also in the response corresponding to this excitation.
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Figure 1.23. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 160 Hz and for a magnitude of 5g. The data is measured
above the elastic support, the frequency axis is normalized by the excitation frequency. The
response contains all the harmonics which means that the system responds nonlinearly.
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Figure 1.24. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 90 Hz and for a magnitude of 3g. The data is measured
above the elastic support, the frequency axis is normalized by the excitation frequency. The
response contains all the harmonics which means that the system responds nonlinearly.
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Figure 1.25. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 220 Hz and for a magnitude of 8g. The data is measured
above the elastic support, the frequency axis is normalized by the excitation frequency. The
response contains all the harmonics which means that the system responds nonlinearly.
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Figure 1.26. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 465 Hz and for a magnitude of 15g. The data is mea-
sured above the elastic support, the frequency axis is normalized by the excitation frequency.
The response contains all the harmonics which means that the system responds nonlinearly.
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Figure 1.27. The numerical displacement of the free end of the beam for an excitation at 90
Hz, the magnitude of excitation is 0.5g. The signal corresponds to a linear system with a
positive mean.
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Figure 1.28. The numerical displacement of the free end of the beam for an excitation at
465 Hz, the magnitude of excitation is 1g. The signal corresponds to a linear system with a
positive mean.
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Figure 1.29. The numerical displacement of the free end of the beam for an excitation at 45
Hz, the magnitude of excitation is 3g. The signal corresponds to a nonlinear system with a
positive mean.
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Figure 1.30. The numerical displacement of the free end of the beam for an excitation at 90
Hz, the magnitude of excitation is 3g. The signal corresponds to a nonlinear system with a
positive mean.
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Figure 1.31. The numerical displacement of the free end of the beam for an excitation at 160
Hz, the magnitude of excitation is 5g. The signal corresponds to a nonlinear system with a
positive mean.
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Figure 1.32. The predicted force time signal for an excitation at 90 Hz, the magnitude of
excitation is 0.5g. The force is induced by the spring contact, it is linear with the same
period as the corresponding acceleration and it is permanently positive.

0.70 0.72 0.74 0.76 0.78 0.80

9.0

9.5

10.0

10.5

11.0

Acc=1g, Freq=465Hz.

Time [s]

Fo
rce

 [N
]

Figure 1.33. The predicted force time signal for an excitation at 465 Hz, the magnitude of
excitation is 1g. The force is induced by the spring contact, it is linear with the same period
as the corresponding acceleration and it is permanently positive.
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Figure 1.34. The predicted force time signal for an excitation at 45 Hz, the magnitude of
excitation is 3g. The force is induced by the spring contact, it is nonlinear with the same
period as the corresponding acceleration and it is permanently positive.
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Figure 1.35. The predicted force time signal for an excitation at 90 Hz, the magnitude of
excitation is 3g. The force is induced by the spring contact, it is nonlinear with the same
period as the corresponding acceleration and it is permanently positive.
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Figure 1.36. The predicted force time signal for an excitation at 465 Hz, the magnitude of
excitation is 15g. The force is induced by the spring contact, it is nonlinear with the same
period as the corresponding acceleration and it is permanently positive.
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1.6 Beam in contact with a spring in the presence of back-
lash

In this section the spring is in a backlash position with the beam, the system has then shown
a linear behaviour when the beam does not strike the spring; it behaves nonlinearly when
the beam realizes a contact with the spring for a range of excitation magnitudes. Hence, the
system has a magnitude dependency. The case where there is not contact between the beam
and the spring is reduced to the case of a cantilever beam under periodic excitation which
is obvious. The attention is in the case where the beam strikes the spring. The level of the
backlash is fixed for all the simulation at z = −5mm. The data are measured at the free end
of the beam.

1.6.1 Comparison in the frequency domain
Figures 1.37, 1.38, 1.39 show the FFT of the measured and the predicted accelerations for
excitation frequencies/magnitude at (45 Hz,2g), (65 Hz, 3g) and (110 Hz, 13g) respectively.
The main input excitation frequency is split into all the harmonics putting in evidence the
impact of the unilateral contact. The results show a similar behaviour to the results presented
in Section 1.4.

1.6.2 Numerical predictions
Figures 1.40 and 1.41 represent the displacements of the free end of the beam for excitations
frequency/magnitude at (65 Hz, 3g) and (110 Hz, 13g) respectively, the signals are nonlinear
and similar to the responses in the case of a one sided contact. The corresponding elastic
force are illustrated in Figures 1.38 and 1.39.
A frequency sweep test has been done to detect the frequency of the system in presence of the
unilateral contact. The sweep procedure is described in Section 1.4.4. Figure 1.44 represents
the maximum of the displacement of the beam free end for both linear and nonlinear system
(system with unilateral spring). The curve which corresponds to the nonlinear system rises
to put in evidence a nonlinear frequency, but at a frequency point the magnitude of the
displacement becomes small and the beam loses the contact with the unilateral spring. Then
the system behaves as a linear cantilever beam and the curve joins the curve of the maximum
displacements of the linear system. This frequency point depends on the magnitude of the
excitation.

1.6.3 Conclusion
In this case, the system has shown two different behaviours and it depends on the amplitude
of excitation. When the amplitude is low the beam cannot reach the spring and the system is
similar to a cantilever beam where the dynamics is obvious. For high amplitude, the beam
can reach the spring and the responses are similar to the case of a one sided contact. The
model is also valid for this configuration.
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Figure 1.37. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 45 Hz and for a magnitude of 2g for 5mm of backlash.
The data is measured above the elastic support, the frequency axis is normalized by the
excitation frequency. The response contains all the harmonics which means that the system
responds nonlinearly.

0 2 4 6 8 10 12
−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency

dB

Figure 1.38. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 65 Hz and for a magnitude of 3g for 5mm of backlash.
The data is measured above the elastic support, the frequency axis is normalized by the
excitation frequency. The response contains all the harmonics which means that the system
responds nonlinearly.
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Figure 1.39. The frequency contents of the measured (dashed line) and the predicted (solid
line) acceleration for an excitation at 110 Hz and for a magnitude of 13g for 5mm of back-
lash. The data is measured above the elastic support, the frequency axis is normalized by the
excitation frequency. The response contains all the harmonics which means that the system
responds nonlinearly.
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Figure 1.40. The numerical displacement of the free end of the beam for an excitation at 65
Hz, the magnitude of excitation is 3g. The signal corresponds to a nonlinear system.
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Figure 1.41. The numerical displacement of the free end of the beam for an excitation at 110
Hz, the magnitude of excitation is 13g. The signal corresponds to a nonlinear system.
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Figure 1.42. The predicted force time signal for an excitation at 65 Hz, the magnitude of
excitation is 3g. The force is induced by the spring contact.
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Figure 1.43. The predicted force time signal for an excitation at 110 Hz, the magnitude of
excitation is 13g. The force is induced by the spring contact.
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Figure 1.44. Frequency sweep of the system with unilateral spring in a backlash position
(solid line) compared to the sweep of the linear free beam (dashed line). Both curves overlay
at the frequency where the beam looses contact with the spring. This frequency point depends
on the excitation magnitude.
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1.7 General conclusion and perspectives
A simplified model of satellite solar panels which consists of a linear beam with an elas-
tic support has been performed and validated with experimental sequences. The model has
shown very good agreement in all the possible configurations giving a good insight into the
system behaviour. The effect of the unilateral contact is to generate all the harmonics of a
sine excitation, this can complicate the analysis of these signals because they are nonlinear.
The unilateral contact has also an impact on the natural frequencies of the beam, the latter
are shifted and generated harmonics which put the structure under a risk of damage when
exciting at these frequencies. The solution is then to compute or predict these nonlinear fre-
quencies with its harmonics, this can be done by using a frequency sweep or by using the
numerical method for the calculation of the nonlinear normal modes discussed in Chapters 3
and 4.
The responses of the model are in the time domain, this gives an access to the node dis-
placements, the contact force, the accelerations and the energy of the system, the frequency
responses are then obtained by the FFT. To avoid a nonlinear response, we can apply a pre-
stress between the beam and the spring, this yields a linear behaviour for a range of low
amplitudes of excitation. But the spring will put the beam under a continuous stress even in
a static position. The spring position can play a role in the beam dynamics, special positions
like the nodes of the second or the third linear modes reduces the effect of the unilateral
contact on the system when it is excited at frequencies near the corresponding modes. The
model can be easily performed to model a plate in contact with unilateral springs or with a
two dimensional rubber. This can be done by using a mass and a stiffness matrices which
correspond to a plate and by tacking in account the boundary conditions. One can work on
the numerical methods used for the integration of the differential equations of the F.E. model.
No major difficulties is expected if one wants to use a composite or a carbon beam instead of
the aluminum beam used in this work. The Solithane rubber was modeled as a linear spring
as the displacement was expected to be small, the model is flexible with another nonlinearity
types (quadratic or cubic for example).
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Chapter 2

The vibration of a beam with a local
unilateral elastic contact

This chapter is a version of [11] submitted for publication in an international journal. The
paper deals with a simple model of a beam with unilateral contact at the free end and excited
by a periodic force. This model is similar to that presented in Chapter 1 where the support
excitation is replaced by a punctual force but the results have shown similar behaviour. The
effect of the spring positions have been studied which can help to localize the perfect posi-
tion to fixe the rubber on the solar panel.
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2.1 Introduction

The study of the nonlinear behaviour of structures with a nonlinear contact or support is a
relatively new research field of interest for many structural dynamicists. It is a branch of
nonlinear dynamics with a special form of nonlinearity; the system has two linear local com-
ponents and the nonlinearity comes from the interaction between one with the other. It is a
non differentiable nonlinearity and it could be non continuous if one or two components has
a strong damping coefficient. Some papers have been published to study such systems [5–7],
where the focus was to study the stability using sweep tests experimentally and comparing
numerical simulations, the latter computation using special packages for nonlinear simula-
tions.
In general, non linear dynamics is a very interesting area of modern research for many rea-
sons; the limited application of the linear theory being one of them. The complexity of
the systems studied and used in the new generation of space structures and many other me-
chanical systems, needs a theory which can deal with the nonlinear behaviour encountered.
Unfortunately, there is no complete theory for nonlinear systems such as for the linear case,
but there exists many studies which could be applied for many particular cases by themselves
and from a particular point of view. The interest of the authors was to study the nonlinear
systems in both the frequency and the time domains, as well as the internal properties of the
systems like nonlinear normal modes (NNM) which is an extension of the well known linear
normal modes (LNM) (see [15–19]) .

The objectives of the current study is to simulate the dynamics of a beam under periodic
excitation when it strikes a linear spring. A finite element numerical model was produced
and was validated with subsequent experimental tests.
The study of the total dynamic behaviour of solar arrays in a folded position with snubbers
are so complicated (see Figure 2), that to simplify, a solar array is modeled by a clamped-free
Bernoulli beam with a one-sided linear spring. This system is subjected to a periodic excita-
tion force. The real configuration of the problem is similar to a beam with a unilateral contact
subjected to a periodic imposed displacement of the base, but the dynamical behaviour of the
system does not change significantly if the imposed displacement is replaced by a periodic
force excitation. The configuration used was easiest to be realized from a technical point of
view as the experimental validation rig is very simple to build.

The experimental setup and the rig are briefly presented. The numerical results are also
presented and studied in both the frequency and the time domains. It is expected that some
similarities to a linear system behaviour will be observed.
The effect of the spring location has also been studied. It is important to look for particular
points to locate the spring, the aim being to reduce the nonlinear effect as much as possible.
The spring was introduced at a point corresponding to the node of the second linear beam
mode. In this case it is expected that the system will show a linear behaviour for an excitation
near the second natural frequency; however a nonlinear behaviour is expected for different
excitation frequencies though. Note that no signal analysis is done by the acquisition sys-
tem, as the problem is nonlinear and the standard transfer function calculation is only really
applicable and useful for linear systems. The time signal was acquired and the processing
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performed using external software (Scilab [23]). The numerical predictions are compared to
experimental results and show very good agreement.

2.2 Numerical modelling
The present study simulated the behaviour of a beam which strikes a snubber under a periodic
excitation. As the frequency range of interest was to consider the first three linear eigen
frequencies, the beam was modelled using ten linear Euler Bernoulli beam finite elements.
The numerical simulations are presented and compared in the frequency domain. The Fast
Fourier Transform was applied to the predicted and the experimental displacements at the
free end, i.e. corresponding to the last node of the beam finite element model. The mass
effect of the force transducer used for experimental validation was also taken into account in
the finite element model.
The beam equation of motion with an elastic snubber can be expressed as:

ρSü(x, t) + EIu(iv)(x, t) = F (t)δx0 − (kru(x1, t)−)δx1 (2.2.1)

where ρ, S, E, I , F and kr are respectively the beam density, cross-sectional area, Young’s
modulus of elasticity, second moment of area, point applied harmonic force at position x0

and an elastic spring attached at position x1.
Cantilevered beam boundary conditions assume zero displacement and slope at the fixed end
and zero bending moment at the free end. When the elastic unilateral spring is in contact
then a shear force is present due to the reaction from the spring,

u(0, t) = 0, ∂xu(0, t) = 0; u(x, 0) = 0, ∂tu(x, 0) = 0, ∂2
xu(l, t) = 0.

The compression of the spring is given by

u(x, t)− =

{
u(x, t) if u ≤ 0

0 if u > 0
(2.2.2)

The classical Hermite cubic finite element approximation was used to solve the PDE (see
[24]), it yields an ordinary nonlinear differential system in the form:

Mq̈ + Kq = −[kr(qn1)−]en1 + F (t)en2 (2.2.3)

where M and K are respectively the assembled mass and stiffness matrices, q is the vector
of degrees of freedom of the beam, qi = (ui, ∂xui), i = 1, ..., n, where n is the size of M , n1

and n2 are the indices of the nodes where the spring and the excitation force are applied to
the beam respectively. Numerical time integration was performed using an ODE numerical
integration for ’stiff’ problems, the package ODEPACK was used based on the BDF method
(backward differentiation formula, see [23]). Small damping was introduced in the spring,
there is no damping assumed in the beam structure.
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2.3 Experimental validation

In this section, the experimental setup is briefly presented. The instrumentation used for the
measurement exercises are not cited in detail as they are standard. The principal instruments
used are shown in Figures 2.3 and 2.19 and include accelerometers on the beam, an elec-
trodynamic shaker driving the beam through a force transducer and a multichannel signal
analyser (Data Physics).
The physical rig consists of a cantilevered aluminum beam in contact with an elastic rubber
at the free end. The beam was excited at one point with an applied periodic excitation. The
beam properties and the rubber stiffness are given in Table 2.1.
In practice, the use of a small electrodynamic shaker yields a technical problem due to the
reaction of the beam. It is difficult to realize an input force F (t) which is a simple sine wave
unless the impedance of the shaker is significantly higher than the beam impedance . To deal
with this problem, a force transducer was fixed between the shaker and the beam to measure
the actual supplied excitation force to the beam. The numerical simulations use the actual
measured force signal coming from the acquisition system which was periodic. This method
is an alternative to modelling the electrodynamic shaker motion. Figure 2.8 shows typical
examples of the input force signals with the corresponding spectral content.
From a simulation and comparison shown later, using the actual measured force is appro-
priate given the simplified excitation system without any feedback control which would be
necessary to produce a strict harmonic signal.

k

Shaker

Excitation Force

u(x,t): verticale displacement

Clamped−Free beam with a unilateral elastic contact

Amplifier
Sine Generator

Force transducer

Acquisition system 

Post processing:

Scilab and Matlab
Time signals

No presstress or backlash

Accelerometers

Figure 2.1. A schematic of the experimental setup.

63



2.4 Beam piecewise linear system dynamics
The system has two linear configurations or states. The first consists of the beam without the
spring in contact and the second when the beam is permanently in contact with the elastic
support, which is modeled as a linear spring. The advantage of these two states is to give an
idea on the effect of the spring on the overall system dynamics.
Usually, adding a spring to a simple beam model at one point raises the eigen frequency
sequence for the system; this shift is realized numerically by adding the spring stiffness to
the coefficient corresponding to the contact point in the stiffness matrix of the system. The
spring is massless, so the mass matrix of the F.E. model is intact.
Some experimental problems were encountered; one of these problems is to implement a per-
fect clamping for the beam, which is impossible in practice but can be reasonably assumed.
Another issue is that the Young’s modulus of the rubber spring used for the experiments
was unknown. An algorithm was developed to determine the stiffness of the rubber for
small displacements. This was subsequently used in the numerical simulations performed
for comparison with experiments.

2.4.1 The two linear states
Firstly, predictions of the forced response of the cantilever beam without a point elastic
support were produced and compared with the experiments. Good agreement showed that
the model reasonably accurately represents the cantilever beam and its boundary conditions.
The results for the natural frequencies are shown in Table 2.2. On the other hand, predictions
of the cantilever beam with a spring permanently in contact at the free end were produced
and compared with the experiments, good agreement was found (see Table 2.3). The last
state was used to determine the stiffness of the spring using an algorithm described in the
next subsection.

2.4.2 Characterization of the spring support stiffness
After initially finding the natural frequencies of the system for the two states of linearity
mentioned in the pervious subsection, an algorithm was developed to find a suitable spring
stiffness by iteration.
The shift of the frequencies due to adding a spring at the free end of the beam were recorded.

Beam Beam Beam Beam Young’s Beam Spring
length width thickness modulus density stiffness

0.35m 0.0385m 0.003m 69× 109N/m2 2700kg/m3 57.14 KN/m

Table 2.1. The physical properties of the beam and the spring. The spring stiffness was
evaluated using an algorithm described in (2.4.2).
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The stiffness matrix of the finite element model incorporated a point spring at the node in
contact. Mathematically, the problem is to find a coefficient value kr which shifts the first
eigen frequency f0 of the system without spring to f1, the first eigen frequency of the same
system with a spring permanently in contact. The method is based on the uniqueness of the
sequence of the generalized eigen frequencies of the stiffness and mass matrices.
The subsequent value obtained for the point stiffness by this algorithm was kr equal to
57.14KN/m. The corresponding Young’s modulus Er, assumes the stiffness kr equals to
the product of the Young’s modulus with the spring area divided by the spring length. The
estimated Young’s modulus for the rubber spring being 4× 106N/m2.

2.5 Comparison of simulations with experiments

In this section the simulations are compared to the measured data in the frequency domain;
the acquisition system provides just the time signals of the accelerations and the input force.
The processing of these signals and the numerical results were done using external software
(Scilab [23]).
The total length of data predicted corresponds to an integration time which is fixed at t equal
to 1s for all of the simulations and the acquired experiment of samples. It is five times the
fundamental (lowest) period of the system. The data are measured immediately above the
support and the frequency axis is normalized by the excitation frequency
For the industrial application it was necessary to consider the response in the first three

1th natural freq 2th natural freq 3th natural freq

Predicted 19.97 Hz 122.2 Hz 318.8Hz

Measured 19.38 Hz 118.6 Hz 314.47 Hz

Percentage difference 3% 3% 1.4%

Table 2.2. The natural frequencies of the clamped-free beam

1th natural freq 2th natural freq 3th natural freq

Predicted 84.57 Hz 246.14 Hz 443.53Hz

Measured 84.47 Hz 243.5 Hz 440 Hz

Percentage difference 0.1% 1% 0.7%

Table 2.3. The natural frequencies of the clamped beam with a permanently attached spring
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modes, hence the beam was modelled using ten equal length finite elements. In principle,
the model is able to be applied to higher frequency excitations but typically any fatigue or
damage in practice is likely to occur in the lower order modes.

2.5.1 Comparison in the frequency domain

The effect of the unilateral contact is clear, the input frequency is split into its all harmonics.
From an energetic point of view, the input energy is split, each subharmonic of the main
excitation takes its part thus the contribution of each harmonic is evident.
Figures 2.5, 2.6 and 2.7 show the FFT of the numerical and the experimental displacements
for an excitation signal at 32 Hz, 124 Hz and 100 Hz respectively. The height of the peaks
are normalized by the maximum. The predicted frequencies found are exactly the same as
measured for a large number of harmonics. However, a small shift in the height of these
peaks appears for the fifth harmonic; the peak in Figure 2.5 appears at a multiple of 5 times
the original main excitation frequency, i.e. at approximately 160Hz in the acceleration re-
sponse. At this frequency there is no guarantee that the actual support of the beam and the
spring is itself rigid, as it might have its own dynamics as would the bench that supports
the rig, so there might be some influence of that on the response. Other tests with random
excitations have shown good agreement. Figures 2.8 and 2.9 show the input excitation force
and the measured acceleration at 32 Hz and 124 Hz respectively. It is clear from the time
signal and from the frequency content that the forces are not pure harmonic single frequency
sine waves, but they are periodic.
Figures 2.10, 2.11 and 2.12 show the predicted displacement for an excitation at 32 Hz, 124
Hz and 100 Hz respectively. The displacements are almost always positive so they have
positive means. This is due to the high stiffness of the spring, but the time response is still
periodic.

2.5.2 Magnitude-Energy dependence

The magnitude-energy dependence is a typical dynamical feature of nonlinear systems under
excitation; the maximum of the solution plotted against the input energy can take different
shapes depending on the form of the nonlinearity. For linear systems under periodic exci-
tation, the maximum of the solution is proportional to the input energy. The model studied
in this paper is a piecewise linear system, the numerical and the experimental results is ex-
pected to exhibit a linear behaviour for different levels of input energy.
The magnitude-energy dependence can be represented by different ways. Herein, a math-
ematical and an experimental proof are presented to demonstrate the magnitude-energy in-
dependence. From a mathematical point of view, the level of excitation energy depends on
the magnitude of the excitation force F (t). The idea here is to examine the variations of the
solution in the time domain as the amplitude of the excitation force F (t) changes linearly.
Consider then equation (2.2.1) and multiply both sides by a constant λ ≥ 0 the equation
becomes:

λ[ρSü(x, t) + EIu(iv)(x, t)] = λ[F (t)δx0 − (kru(x1, t)−)δx1 ] (2.5.1)
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In general, the only problem to substitute the parameter λ in the equation is the nonlinear
term; in this case, λ[kru(x1, t)−] = kr[λu(x1, t)]− (see definition of u−). Equation (2.5.1)
can then be written as follow:

ρSv̈(x, t) + EIv(iv)(x, t) = λ[F (t)δx0 ]− kr(v(x1, t)−)δx1 (2.5.2)

such that v = λu. In conclusion, the solution v of the PDE governing the motion is propor-
tional to the excitation force F (t).
Note that this substitution for the parameter λ is not generally possible, e.g. if a prestress
is applied between the spring and the beam; it is the case for many other nonlinearities too
(λx3 6= (λx)3).
Experimentally, the mean square responses of each harmonic is plotted against the power
spectral density Gxx of the input force for three levels of excitation. The mean square re-
sponse of the mode is calculated approximately by using the Mean Square Bandwidth πζωn.
The experimental estimate of the equivalent viscous damping ratio is ζ = ω2−ω1

2ωn
, where ωn

is the resonance frequency, ω1 and ω2 are the frequencies corresponding to the half-power
points (-3dB below the maximum peak response).
Usually, this method is used to approximate the mean square response at the natural fre-
quency of a linear system. Herein, it is used at the first resonance frequency of the nonlinear
system (32 Hz) which can be calculated as the inverse of the mean of the linear periods of the
two piecewise linear systems; it is also applied to its harmonics. Figure 2.13 shows the mean
square responses for the fundamental mode and for the first two harmonics normalized by
the excitation mean square level, against three different input levels. As the excitation level
increases the response at the excitation frequency and its harmonics increases proportion-
ally, the relationship between the fundamental mode and its harmonics is linear; this linear
behaviour is due to the linearity of the spring and the beam.

2.6 Numerical simulations

In this section, some further numerical simulations are presented in order to investigate and
understand better the system behaviour. Figures 2.14 and 2.15 show the displacement for a
sine excitation at 32 Hz and 124 Hz respectively; Figure 2.16 shows the frequency content
of the displacement for a sine excitation at 32 Hz; the results cannot be compared to the
experiments as it is not easy to realize a simple sine excitation. The dynamic behaviour of
the system is similar to those presented in the previous section. The main response is split
into all the subharmonics of the excitation frequency.
The elastic force from the spring is applied to the free end of the beam and should be taken
in account as it can damage the structure; this force is non differentiable as the spring is only
on contact when the beam has a negative displacement and its magnitude is proportional to
the spring compression. Figure 2.17 and 2.18 show the predicted time signal of the force
applied to the beam for a sine excitation at 32 Hz and 124 Hz respectively. Note that in case
of a bilateral spring (spring attached to the beam), the time signal should be differentiable
and periodic with a zero mean.
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2.7 The effect of the unilateral spring position
An aim of this work is to provide a model which can predict the dynamic behaviour of a beam
striking an elastic support. It is also necessary to choose the preferable points of the structure
to position the support. In this section, the spring is moved to the node of the second linear
beam mode which corresponds to a particular node of the F.E. model (see Figure 2.19). The
subsequent numerical results show a linear behaviour of the system for an excitation near
the second eigen frequency. They show a nonlinear behaviour as in the previous case for any
other frequency of excitation. The results are presented in the frequency domain as before
taking in account the new spring’s position. Figure 2.20 shows the FFT of the numerical and
the experimental displacements for an excitation at 122 Hz, very close to the second eigen
frequency of the linearized system (see Table 2.2). It is clear that the response primarily has
a single frequency content as the input signal (Figure 2.21), which is a fundamental property
of a linear system.
Figure 2.22 shows the FFT of the experimental and the numerical displacements for an ex-
citation of 32 Hz. The input frequency is split into all subharmonics, the behaviour of the
beam is the same as described in the previous section, as the system is no longer linear.

Conclusions
A numerical and experimental study of a beam with a unilateral elastic contact has been
presented, the model used for the predictions having been validated by experiments. The
comparison was performed in the frequency domain for different excitation frequencies; the
results showed a very good agreement.
The comparison in the time domain needs a sophisticated processing of the time domain
signals to eliminate or reduce the contribution from higher order frequencies not involved in
the motion; this aspect will be in the scope of the future.
The results showed the effect of the spring position on the dynamic behaviour; other positions
could be of interest if the system is subjected to high frequency excitation as the number of
nodes increase with respect to the excited modes. Some experimental results for a pres-
stressed contact is currently under investigation, this will be reported in the future. Also,
future work will consider other types of excitation such as broadband random base excitation
which might be present for the practical application of launching stacked solar array panels.

Acknowledgements
This work was conducted for a PhD project of the first author with a scholarship from Thales
Alenia Space, France. The authors also gratefully acknowledge the financial support of the
“Conseil Générale des Alpes Maritimes” to realize this project.

68



Figure 2.2. Left: Solar array of a satellite under a test on a shaker. Right: A solar array from the
folded to the final position

Clamped−Free beam with a unilateral elastic contact

Shaker

Excitation Force

u(x,t): vertical displacement

No presstress or backlash

Figure 2.3. beam system with an unilateral spring under a periodic excitation
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Figure 2.4. The rig used for the experiments: a linear clamped-free beam in contact with a rubber
support (enlarged photograph on the right).
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Figure 2.5. Predicted (solid) and measured displacements (dashed) (dB) for an excitation at
32 Hz applied to the beam with unilateral support stiffness. The displacement is normalized
by the peak value and is measured immediately above the support and the frequency axis is
normalized by the excitation frequency.
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Figure 2.6. Predicted (solid) and measured displacements (dashed) (dB) for an excitation at
124 Hz applied to the beam with unilateral support stiffness. The displacement is normalized
by the peak value and is measured immediately above the support and the frequency axis is
normalized by the excitation frequency.
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Figure 2.7. Predicted (solid) and measured displacements (dashed) (dB) for an excitation at
100 Hz applied to the beam with unilateral support stiffness. The displacement is normalized
by the peak value and is measured immediately above the support and the frequency axis is
normalized by the excitation frequency.
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Figure 2.8. Measured excitation force (a) and its frequency contents (b), measured accelera-
tion response (c) and its frequency content (d) for an excitation at 32 Hz. Strictly the force
is not harmonic.
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(a)    The experimental force at 124 Hz, tf=1s.
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(b)    The FFT of the experimental force at 124 Hz.
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(c)    The experimental acceleration at 124 Hz.
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(d)    The FFT of the experimental acceleration at 124 Hz.
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Figure 2.9. Measured excitation force (a) and its frequency contents (b), the measured ac-
celeration response (c) and its frequency content (d) for an excitation at 124 Hz. Strictly the
force is not harmonic.
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Figure 2.10. The predicted displacements for an excitation at 32 Hz; the displacement is
measured immediately above the support. The high unilateral stiffness yields almost a posi-
tive displacement.
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Figure 2.11. The predicted displacements for an excitation at 124 Hz, the displacement is
measured immediately above the support.
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Figure 2.12. The predicted displacements for an excitation at 100 Hz, the displacement is
measured immediately above the support.

Figure 2.13. The normalized mean square responses (mean square displacement divided by
the mean square excitation force) in each harmonic for inputs at three different mean square
force levels. The excitation frequency is 32 Hz, the acceleration is measured immediately
above the support.
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Figure 2.14. The predicted displacements for a sine excitation at 32 Hz, The acceleration
magnitude is a = 1 m/s2. The displacement is measured immediately above the support.
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Figure 2.15. The predicted displacements for a sine excitation at 124 Hz. The acceleration
magnitude is a = 1 m/s2. The displacement is measured immediately above the support.
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Figure 2.16. The frequency content of the predicted numerical displacement for sine excita-
tion at 32 Hz, the displacement is measured immediately above the support. The excitation
frequency is split into all its harmonics.
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Figure 2.17. The predicted elastic force of the spring support for an excitation at 32 Hz. The
acceleration magnitude is a = 0.1m/s2 and the spring is only in contact at times where the
beam displacement is negative.
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Figure 2.18. The predicted elastic force of the spring support for an excitation at 124 Hz.
The acceleration magnitude is a = 0.1m/s2 and the spring is only in contact at times where
the beam displacement is negative.
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Figure 2.19. beam system with an unilateral spring under a periodic excitation
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Figure 2.20. Predicted (solid) and measured displacements (dB) for an excitation at 122 Hz
applied to the beam with unilateral support stiffness. The displacement is measured imme-
diately above the support and the frequency axis is normalized by the excitation frequency.
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Figure 2.21. The time signal and its FFT of the input force for an excitation at 122 Hz.

80



Figure 2.22. Predicted (solid) and measured displacements (dB) for an excitation at 32 Hz
applied to the beam with unilateral support stiffness. The displacement is measured imme-
diately above the support and the frequency axis is normalized by the excitation frequency.
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Chapter 3

A numerical method to compute
nonlinear normal modes of mechanical
systems

The concept of nonlinear normal modes is discussed in this paper. A new formulation is
given to find these modes as a zero of a nonlinear mapping. An algorithm based on the con-
tinuation of periodic solution is performed using optimization methods. Finally, numerical
results are presented for a mass-spring model with a cubic nonlinearity. The algorithm is also
used for the calculation of the nonlinear normal modes of the mechanical system of Chapter
1 without proof, but an asymptotic approach is studied in Chapter 4 to validate the numerical
results via multiple scales method.
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3.1 Introduction

The concept of nonlinear normal modes has been the main topic of many structural dynamists
during the last twenty years. These modes are presented to be a natural extension of the
well-known linear normal modes of linear mechanical systems. The linear theory has shown
its limits especially because nonlinearities are encountered in most of mechanical systems
and structures with different types. Any sophisticated modelling of a real situation cannot
be done without incorporating the nonlinearity coming from the comportment law of the
structure or from an interaction between its components and etc... The linear theory cannot
predict bifurcations, instabilities, harmonics, jumps and many other features of nonlinear
systems. However there is not a complete theory to deal with all this phenomena such as the
linear one, therefore the need of new theoretical tools able to clarify the nonlinear behavior
of systems which cannot be treated and analyzed with linear tools. The nonlinear normal
modes can clarify and get more insight in the understanding of nonlinear behaviour of a
wide range of mechanical systems.
A linear normal mode is defined to be a periodic solution of all the components of the system
with the same phase. This normal mode can be obtained by providing an eigenvector as initial
condition to the system and the solution will remain in the subspace which corresponds to this
eigenvector with the corresponding period. It is easy to prove this fact since a linear system
can be decoupled in the eigenvector basis. The second main property of a linear system is
the superposition of solutions: the solution of a system excited by an initial condition which
is a linear combination of many eigenvectors can be written as a linear combination of the
solutions given by each eigenvector. The superposition of the solutions does not hold for a
nonlinear system, in contrast a periodic solution can be found, this is proved in this paper for
smooth nonlinearities.

3.1.1 State of the Art

The nonlinear normal mode of a nonlinear undamped autonomous system was first defined
by Rosenberg as a motion in unison of the system in early sixties [25,26]. Rand also studied
the nonlinear normal modes for a two-degree-of-freedoms oscillator [27]. In the nineties an
important progress was recorded thanks to the work of Vakakis and Pierre and Shaw. The
Ph.D. dissertation of the first was focused on the analysis and identifications of linear and
nonlinear normal modes in vibrating systems, he also published other papers on the NNM
[28]. Pierre and Shaw defined the nonlinear normal mode as a motion which takes place on
a two-dimensional invariant manifold in the system’s phase space [18, 29]. G.Iooss and E.
Lombardi published a recent paper on the normal forms and the invariant manifold, the paper
deals with general nonlinear differential systems with a rigorous proof [30]. S.Junca and
B.Rousselet submitted a paper on the nonlinear normal modes using asymptotic expansion
[31], it is a fundamental reference for Chapter 4. Nayfeh et al also worked on the calculation
of the nonlinear normal modes via asymptotic approach by treating the partial differential
equation governing the dynamic of the continuous system [32, 33]. Asymptotic expansion
has been used to evaluate nonlinear normal modes for a piece wise linear two d-o-f system
[34]. Bellizzi et al worked on the normal modes and provided different methods [35–38].
In 2009, G.Kerschen et al published a two parts paper on the nonlinear normal mode, they
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presented an overview about the previous works and about the use of these modes in the
modern mechanical engineering. They also presented a numerical methods to compute the
nonlinear normal modes using a shooting and continuous methods [17, 39]. The authors
recommend these papers and its citations for more insight and for a general state of the art.

3.1.2 In this paper
We present an algorithm for the computation of the nonlinear normal modes using existing
numerical methods. The method presented here is based on the fact that the nonlinear normal
modes are a natural extension of the linear normal modes. The paper is structured as follow-
ing, a new definition and formulation of the nonlinear normal modes are presented, then an
algorithm for the calculation of these modes are presented with some applications. An inter-
est of the authors is the study of nonlinearities of contact type, the algorithm is then used to
calculate the nonlinear normal modes of discrete systems with a unilateral contact; the proof
of existence in this non smooth case is in progress. Alternatively a multiple scales method is
improved to compute the response of a system with a unilateral contact for autonomous and
for forced systems, see Chapter 4.
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3.2 Mechanical system and normal modes
Consider the non linear undamped autonomous differential system

MẌ + KX + G(X) = 0 G(0) = 0, G′(0) = 0, (3.2.1)

where X ∈ R, K and M are two m×m symmetric and positive definite matrices, G(X) ∈
Rm is a nonlinear term which depends only on X . We denote by (ω2

i )i=1,...,m and (vi)i=1,...,m

the generalized eigenvalues and the generalized eigenvectors of M and K respectively

Kvi = ω2
i Mvi.

In general, this system does not have an explicit solution for any given G. The goal of this
study is to calculate a periodic solution of the system based on the non linear normal modes
(NNM) concept which is an extension of the normal modes of the linear system.

3.2.1 Normal Modes of the linearized system
The linearized system of (3.2.1) can be written as

MẌ + KX = 0. (3.2.2)

If the system is excited by an eigenvector as initial condition with a zero velocity, then the
solution will be periodic with a period which corresponds to the considered eigenvalue. If vi

is a generalized eigenvector of M and K, Ti = 2π
ωi

the corresponding linear period, then we
have a solution of the system given by

Xi = vi cos(ωit), (3.2.3)

Xi(0) = vi and

Xi(Ti) = vi cos(ωiTi) = vi cos(ωi
2π

ωi

) = vi, Ẋi(Ti) = 0.

The couple [vi, Ti] is a linear normal mode of system (3.2.1). The solution can also be found
by writing the system in the eigenvector basis and solving it component by component.
This technique does not hold for nonlinear systems as nonlinear terms will be present in all
components.

3.2.2 Nonlinear Normal Modes (NNM) of the nonlinear system
We cite the two main definitions of the nonlinear normal modes. The definition given in the
next section is inspired from the Rosenberg’s definition.

Definition 3.2.1. [Rosenberg’s definition] During the normal mode motion of a linear con-
servative system, each component moves with the same frequency and with a fixed ratio
amongst the displacement of the components. An NNM is a vibration in unison of the sys-
tem. This definition require that all material points of the system reach their extreme values
and pass through zero simultaneously and allow all displacements to be expressed in terms
of a single reference displacement.
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Definition 3.2.2. [Pierre and Shaw definition] A normal mode of motion for a non-linear,
autonomous and undamped system is a motion which takes place on a two-dimensional
invariant manifold in the system’s phase space. This manifold has the following properties:
it passes through the stable equilibrium point (x, y) = (0, 0) of the system and at this point,
it is tangent to a plane which is an eigenspace of the system linearized about (x, y) = (0, 0).

3.3 Nonlinear normal modes: mathematical formulation
We present in this section the mathematical formulation used to calculate the nonlinear nor-
mal modes.

3.3.1 Nonlinear differential system

We consider the parametric differential system associated to system (3.2.1) and written in
the eigenvector basis,

Ẍ + Ω2X + εF (X) = 0 F (0) = 0, F ′(0) = 0, (3.3.1)

where ε is a continuation parameter, Ω2 = diag(ω1, . . . , ωn) and F (X) is a non linear term
depending only on X . The idea is to find, corresponding to the linear normal mode (vi,

2π
ωi

),
initial condition vectors in position (X i

0) and in velocity (X i
1) which yield a periodic solution

(X i(t)) of system (3.3.1) of a period Ti to be determined, ∀i ∈ {1, . . . , m}.

Definition 3.3.1. ∀i ∈ {1, . . . , m}, (X i
0, X

i
1, Ti) is the nonlinear normal mode of system

(3.3.1) corresponding to the linear normal mode such as

1. X i
0 → vi and Ti → 2π

ωi
when ε → 0,

2. X i(Ti) = X i
0,

3. Ẋ i(Ti) = X i
1.

For convenience, system (3.3.1) is written as a first order differential system in Z,

Ż = AZ + εf(Z) (3.3.2)

with Z = [X, Ẋ], A =

(
0 In

−Ω2 0

)
and f(Z) = [0, F (X)].

We denote by [Z0, T ] the nonlinear normal mode for i=1 and by Y0 = [ZT0 , T0] = [[v1, 0], 2π
ω1

]
the corresponding linear normal mode, there is no restriction to deal with the other nonlinear
modes.

Remark 3.3.2. The nonlinear normal mode is defined with a vector and an associated period
which ensure a periodic solution of all the degree of freedom of a nonlinear system with no
phase delay. This is in agreement with the Rosenberg’s definition.
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3.3.2 Formulation
We will present an algorithm to calculate then nonlinear normal mode (Z0, T ), the same
technique can be used to calculate the other modes. The continuation of periodic solutions
will play an important part in this approach because the algorithms may not converge for a
large ε. Two major difficulties are encountered to solve our problem, the first is to prove the
existence of a periodic solution and the second is to perform a robust numerical method to
calculate this nonlinear mode. In both cases, a convenient mathematical formulation should
be in place to allow the use of existent theorems and algorithms. The unknowns Z0 and T
are then considered as the zeros of a mapping Φ defined as following

Definition 3.3.3.

Φ : R× Rn × R−→Rn+1

(ε, Z0, T ) −→ Φ(ε, Z0, T ) =

(
Z(T, Z0, ε)− Z0

E(Z0)− c

)
,

(3.3.3)

where

1. Z(T, Z0, ε) is the solution of system (3.3.2) integrated numerically on [0, T ] with Z0

as initial condition and evaluated at T , it depends on ε implicitly by the nonlinear term,

2. E is the total energy of the initial condition, E =t Z0NZ0, where N =

(
Ω2 0
0 In

)
,

3. c is a level of energy.

To find the nonlinear normal mode (Z0, T ) the following nonlinear system of equations
has to be solved {

Z(T, Z0, ε)− Z0 = 0,
E(Z0)− c = 0.

(3.3.4)

3.4 Theoretical investigation in the smooth case

3.4.1 Useful theorems
In this section, we will cite some useful theorems for the existence and the uniqueness of
solutions of ordinary differential systems and for nonlinear systems of equations without
proof. Let E be a Banach space, I an open set in the field R, H an open subset of E, f a
continuously differentiable mapping of I×H into E. A differentiable mapping u of an open
ball J ⊂ I into H is called a solution of the differential equation

x′ = f(t, x) (3.4.1)

if, for any t ∈ J , we have
u′(t) = f(t, u(t)). (3.4.2)

It follows at once from (3.4.2) that u is then continuously differentiable in J .
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Proposition 3.4.1. In order that, in the ball J ⊂ I of center t0, the mapping u of J into H
be a solution of (3.4.1) such that u(t0) = x0 ∈ H , it is necessary and sufficient that u be
continuous in J and such that

u(t) = x0 +

∫ t

t0

f(s, u(s))ds

This follows from the definition of a primitive.

Theorem 3.4.2. [Cauchy’s existence theorem]
If f is continuously differentiable in I × H , for any t0 ∈ I and any x0 ∈ H there exists an
open ball J ⊂ I of center t0 such that there is in J one and only one solution u of equation
(3.4.1) such that u(t0) = x0.

Definition 3.4.3.
A mapping f(t, x) satisfies a Lipschitz condition in a I × H , when, for some constant L
(Lipschitz constant), it satisfies the inequality

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖ (3.4.3)

for all point-pairs (t, x) and (t, y) in I ×H .

Theorem 3.4.4. [Uniqueness theorem] [40]
If f satisfies a Lipschitz condition in a domain H , then there is at most one solution u(t) of
equation (3.4.1) such that u(t0) = x0 in H .

Theorem 3.4.5. [Dependence of the solution on initial conditions]
Let f be locally Lipschitzian in I ×H . Then for any point (a, b) ∈ I ×H:

1. There exists an open ball J ⊂ I of center a and an open ball V ⊂ H of center b such
that, for every point (t0, x0) ∈ J × V , there exists a unique solution t −→ u(t, t0, x0)
of (3.4.1) defined in J , taking its values in H and such that u(t0, t0, x0) = x0.

2. The mapping (t, t0, x0) −→ u(t, t0, x0) is uniformly continuous in J × J × V

3. There is an open ball W ⊂ V of center b such that, for any point (t, t0, x0) ∈ J × J ×
W , the equation x0 = u(t0, t, x) has a unique solution x = u(t, t0, x0) in V .

Theorem 3.4.6. With the notation of Theorem 3.4.5, suppose that f is continuously differ-
entiable (resp. p times continuously differentiable) in I × H . Then it is possible to take J
and V such that the function (t, t0, x0) −→ u(t, t0, x0) is continuously differentiable (resp.
p times continuously differentiable) in J × J × V .

Theorem 3.4.7. [The implicit function theorem]
Let E, F , G be three Banach spaces, f a continuously mapping of an open subset A of E×F
into G, Let (x0, y0) be a point of A such that f(x0, y0) = 0 and that the partial derivative
D2f(x0, y0) be a linear homeomorphism of F into G. Then, there is an open neighborhood
U0 of x0 in E such that, for every open connected neighborhood U of x0, contained in U0,
there is a unique continuous mapping u of U into F such that u(x0) = y0, (x, u(x)) ∈ A
and f(x, u(x)) = 0 for any x ∈ U . Furthermore, u is continuously differentiable in U , and
its derivative is given by u′(x) = −(D2f(x, u(x)))−1 ◦ (D1f(x, u(x))).
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A classical optimization routine will be used to minimize J but the method may not con-
verge directly for strong nonlinearities. An algorithm based on the continuation of periodic
solutions is then proposed.

3.5 An algorithm to compute the nonlinear normal modes
In this section, we will recall an algorithm to compute the nonlinear normal modes introduced
in [31] based on the formulation already studied in the previous section. In practice, we will
solve the problem by the least square method to allow the use of optimization methods and
to benefit of the large number of existing algorithms. In this case, the classical challenge
is to find an accurate gradient of the function being optimized. Herein, two semi-analytical
methods for the calculation of the gradient were developed [41, 42].

3.5.1 A relaxed problem
We use the notation of Section 3.3.2. System (3.3.4) is solved by the least square method.
Consider then the following function to be minimized

Jε(Z0, T ) = ‖Zε(T )− Z0‖2 + ‖E − c‖2. (3.5.1)

3.5.2 The algorithm
The main idea of the algorithm is to minimize J for small ε and for a given level of energy
c with the linear normal mode Y0 as initial guess. The solution found will then be used as
an initial guess point of the optimization algorithm after a small increase of ε and so on. If
the algorithm does not converge for the updated ε then we go back and we choose again a
smaller ε. We repeat the procedure until reaching a needed level of nonlinearity. Algorithm
2 illustrates the steps.

3.5.3 Energy dependence
The energy dependence is an important feature of nonlinear mechanical systems. The nonlin-
ear normal mode can take different shapes when increasing the level of energy of the system.
This form depends on the nonlinearity, it is then useful to study its effect to get more insight
in the understanding of the dynamic behaviour. The algorithm used to calculate the nonlinear
normal mode allows easily the calculation of the mode for different levels of energy. The
idea is to recalculate Z0 and T by increasing the energy level c after the calculation of the
nonlinear mode for a given level of nonlinearity εmax. Algorithm 3 illustrates the steps.
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Algorithm 2 Calculation of the nonlinear normal mode
Input: f(Z), the nonlinear term.
Input: ε, a small parameter in the neighborhood of 0.
Input: Y0, the first guess point and c =t ZT0NZT0 .
Input: δε the increment step.
Output: (Z0, T ), the nonlinear normal mode.

1: while ε ≤ εmax do
2: Solve Ż = AZ + εf(Z) with Z0 as initial condition on [0, T ].
3: Compute E =t Z0NZ0.
4: Calculate the gradient of Jε (see the method later).
5: Minimize Jε(Z0, T ) = ‖Zε(T )−Z0‖2+‖E−c‖2 using a conjugate gradient algorithm

with the guess point Y0 = (ZT0 , T0).
6: Update Y0 = (Z0, T )
7: if The optimization converge then
8: Update ε: ε = ε + δε.
9: else

10: ε = ε− δε
2
.

11: end if
12: end while

Algorithm 3 Energy dependence
Input: (Z0, T ) the nonlinear normal mode already computed using Algorithm 2.
Input: c the energy of the linear part of the system.
Input: δc the increment step.
Output: (Zc, Tc), the nonlinear normal mode for different levels of energy.

1: while c ≤ cmax do
2: Solve Ż = AZ + εf(Z) with Z0 as initial condition numerically on [0, T ].
3: Compute E =t Z0NZ0.
4: Calculate the gradient of Jε (see the method later).
5: Minimize Jε(Z0, T ) = ‖Zε(T )−Z0‖2 +‖E−c‖2 with the guess point Y0 = (Z0, T0).
6: Update Y0 = (Z0, T ).
7: if The optimization converge then
8: Update c: c = c + δc.
9: else

10: c = c− δc
2
.

11: end if
12: end while
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3.5.4 Calculation of the gradient in the smooth case
As mentioned before, one major challenge in optimization problems is to provide a precise
gradient of the function being optimized. This gradient has to be computed fast as it will
be called at each iteration of the optimization algorithm. We provide herein a direct semi-
analytical calculation of the gradient of the function Jε in the smooth case. It requires the
integration of n differential systems which takes a long time for the computation. In turn, we
calculate the gradient with the adjoint state of the problem which is much faster as it requires
the integration of just one differential system. Both methods are performed and compared to
the numerical calculation of the gradient based on the finite difference methods.

Proposition 3.5.1. Let ∇Jε be the gradient of Jε computed directly, N as in Definition 3.3.3
and h = (ϕ, 1) a vector of Rn+1 then,

〈∇Jε, h〉 =
∑

j

〈 ∂J

∂Z0j

, ϕj〉+ 〈∂J

∂T
, 1〉

=
∑

j

2t(Z(T )− Z0)

(
∂Z(T )

∂Z0j

ϕj − ϕj

)
+ 4 (E − c) (tZ0Nϕj)

+t (Z(T )− Z0)

(
∂Z(T )

∂T

)
.

(3.5.2)

Proof.
Let us begin with the derivative of Jε with respect to Z0j, ∀j ∈ {1, . . . , n}:

〈
∂Jε

∂Z0j

, ϕj

〉
=

〈
2t(Z(T )− Z0)

(
∂Z(T )

∂Z0j

− ∂Z0

∂Z0j

)
+ 2 (E − c)

(
∂E

∂Z0j

)
, ϕj

〉

= 2t(Z(T )− Z0)

(
∂Z(T )

∂Z0j

ϕj − ϕj

)
+ 4 (E − c)

(
tZ0Nϕj

)
.

(3.5.3)

as
∂E

∂Z0j

=
∂(tZ0NZ0)

∂Z0j

= 2tZ0Nϕæ.

The derivation with respect to T is given as:
〈

∂J

∂T
, 1

〉
= 2t(Z(T )− Z0)

(
∂Z(T )

∂T
− ∂Z0

∂T

)
+ 2t(E − c)

(
∂E

∂T

)

= 2t(Z(T )− Z0)

(
∂Z(T )

∂T

)
,

since E depends only on Z0 which does not depend on T .

Finally, to achieve the computation of ∇Jε, we need to compute
∂Z(T )

∂Z0j

The last term to

compute is
∂Z(T )

∂T
which can be found easily as it is equal to (AZ + εf(Z))t=T .

Proposition 3.5.2. [Gradient with the adjoint state]
The derivative of Jε with respect to Z0j , ∀j ∈ {1, . . . , n}, can be expressed as

〈
∂Jε

∂Z0j

, ϕj

〉
= −2 (Z(T )− Z0) (ϕj) + 4(E − c)(tZ0Nϕj)− tpj(0)ϕj, (3.5.4)
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ϕ ∈ Rn, tp is the adjoint state and it is solution of the following differential system

tṗ + tpA + εtp
∂f(Z)

∂Z
= 0, tp(T ) = −2 (Z(T )− Z0) . (3.5.5)

Proof. We consider again the following equation by taking in account
∂f(Z)

∂Z0j

=
∂f(Z)

∂Z

∂Z

∂Z0j

,

we have
d

dt

[
∂Z

∂Z0j

]
= A

[
∂Z

∂Z0j

]
+ ε

∂f(Z)

∂Z

[
∂Z

∂Z0j

]
,

∂Z

∂Z0j

(0) = ej, (3.5.6)

we take its inner product with a function tp to be determined later and we integrate by parts
between zero and T , we get:

tp(T )
∂Z(T )

∂Z0j

ϕj − tp(0)
∂Z(0)

∂Z0j

ϕj −
∫ T

0

[
tṗ + tpA + εtp

∂f(Z)

∂Z

]
∂Z

∂Z0j

ϕjdt = 0. (3.5.7)

Assume that tp verifies the following differential equation with the final condition

tṗ + tpA + εtp
∂f(Z)

∂Z
= 0,

tp(T ) = −2t(Z(T )− Z0).
(3.5.8)

Then tpj(0)ϕj = −2 (Z(T )− Z0)
∂Z(T )

∂Z0j

ϕj . Finally, we replace in equation (3.5.3), we get

directly the proof of the proposition.

Corollary 3.5.3. The gradient of Jε is given as

〈∇Jε, h〉 = −2 (Z(T )− Z0) ϕ + 4(E − c)
(

tZ0Nϕ
)−t p(0)ϕ

+ 2 (Z(T )− Z0)

(
∂Z(T )

∂T

)
.

(3.5.9)

h is like in proposition 3.5.1. This can provide a gradient of Jε by solving two differential
systems instead of n differential systems involved in a direct calculation.
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3.6 Numerical results
We present numerical results obtained by the use of Algorithm 2. A mass-spring model with
a cubic or a unilateral spring is presented as it is important from an engineering point of
view. A beam with a unilateral spring at the free end is also studied. Note that, in the uni-
lateral case, there is no proof of the existence of the nonlinear normal modes, moreover the
calculation of the gradient uses a nonclassical derivation of the nonlinear term. But multiple
scales method is presented in Chapter 4 where a comparison between the numerical and the
analytical solutions has shown a good agreement.
In each case, the algorithm used for the integration of the differential equation as well as the
algorithm used for the optimization are described with all the parameters. All the computa-
tions are performed using Scilab [23].

3.6.1 Mass-spring model with a cubic spring
Consider a discrete model of six mass-spring with only a cubic component (see Figure 3.1).
The equation of motion can be written as

Ẍ + KX + εF (X) = 0, (3.6.1)

where ε is a positive number, X = [X1, . . . , X6], K = tridiag(−1, 2,−1) of size 6× 6 and
(F (X))i = X3

5δ5i.
The natural frequencies and their corresponding periods are given in Table 3.1. For this
classical model, we will show the fourth nonlinear normal mode for a large ε in the time and
in the frequency domain, we will also show the solution in the phase and the configuration
spaces to compare with the linear one. Finally the frequencies will be plotted against the
nonlinearity level.
The differential equations are solved using a Runge-Kutta 4th order method with 20 points
in the time interval for the first optimization iterations and then 1000 points for the last
iterations. dε of Algorithm 2 is equal to 0.1 with ε0 = 0.1. The optimization uses a conjugate
gradient algorithm as the nonlinearity is differentiable.

Figure 3.1. A mass-spring model with a cubic component.
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The fourth linear period decreases from T2 = 4.03 s to the fourth nonlinear period
Tn2 = 3.93 s. The corresponding frequency rises from f2 = 0.248 Hz to fn2 = 0.254
Hz.
Figure 3.2 represents the displacements of all nodes for the fourth nonlinear mode for ε = 50.
All the components reach their maximum at the same time and they have the same period.
These results are obtained by the integration of system (3.6.1) using an initial conditions
vector and a period provided by Algorithm 2. Figure 3.3 shows the displacements of the first
and the fifth nodes of the system compared to the linear one without a nonlinear spring. This
can put in evidence the impact of the nonlinearity on the time solutions.
Figure 3.4 shows the periodic solutions in the configuration space, the components are plot-
ted against the fifth node. These curves are straight lines for the linear system, their shapes
depend on the nonlinearity form, they are symmetric and have a unique intersection point.
Figure 3.5 shows the frequency of the system as function of the nonlinearity level. Note that
for ε = 0 this frequency is equal to the linear eigenfrequency f4; it also shows the frequency
contents of the time solution for an integration time of 50 nonlinear periods. The spectrum
content shows the even harmonics which is a typical feature of cubic nonlinearity. Figure
3.6 shows periodic solutions in the phase space for the fifth and the fourth nodes compared
to the corresponding linear phase space solutions.
The fifth nonlinear periodic solution has an important deformation, this is due to the high
stiffness of the cubic spring which is connected to this node. The curves are symmetric and
have the same center, this is not always true for other forms of nonlinearities.

Frequencies fi 0.07 Hz 0.138 Hz 0.198 Hz 0.248 Hz 0.286 Hz 0.31 Hz

Periods Ti 14.11s 7.24s 5.03 s 4.03 s 3.48s 3.22 s

Table 3.1. The natural frequencies of the linearized system with their corresponding periods.
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Figure 3.2. The displacements of the six nodes for the fourth nonlinear normal mode, the pe-
riod is Tn2 = 3.93 s and the corresponding frequency is fn2 = 0.254 Hz. All the components
have the same period and they reach their maximum at the same time. 66 steps in ε to reach
this nonlinearity, The value of the functional Jε at the last iteration is 10(−6) and the average
CPU time is 0.06 s for a calculation of the function and the gradient. The total CPU time is
6.6 minutes.
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Figure 3.3. The displacements of the fifth node (a) and the first node (b) of the linear system
(dashed line) and of the nonlinear system (solid line) for the second nonlinear normal mode.
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Figure 3.4. The displacements of all nodes as function of the fifth one, the curves are not
straight lines and their shapes depend on the form of the nonlinearity.
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Figure 3.5. The second nonlinear frequency of the system as function of the nonlinearity (a),
the FFT of the displacement for an integration time of 50 nonlinear period (b).
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Figure 3.6. The phase space (solid line) compared to the corresponding linear phase space
(dashed line) of the fifth node (a) and the fourth node (b).

3.6.2 Mass-spring model with a unilateral spring
The same model as in Section 3.6.1 is considered but the cubic spring is replaced by a
unilateral one (see Figure 3.7). The equation of motion is the same as equation (3.6.1) but
with different nonlinear term F (X) which is given as following

(F (X))i = (X5)+ δ5i.

The linear periods and eigenfrequencies are given in Table 3.1. The differential equations
are solved using the BDF method (backward differentiation formula) which is a second order
scheme for nonlinear systems and appropriate for stiff problems with 20 points in the time
interval for the first iterations and then 1000 points for the lasts. dε of Algorithm 2 is equal
to 0.1 with ε0 = 0.1, the optimization uses an algorithm for non differentiable optimization.
The simulations showed that for a small ε we can find periodic solutions where all the solu-
tions pass through zero at the same time. For large ε we can find periodic solutions but the
solutions does not pass through zero at the same time. This problem can be of interest as the
solutions are not in phase even if the initial conditions in velocity is zero. We will present
results for both cases.

We deal with the fourth nonlinear mode. Figure 3.8 shows the periodic solutions for all

Figure 3.7. A mass-spring model with a unilateral component.

the components for ε = 0.5. The solutions in the configuration and the phase spaces are
presented in Figure 3.9.
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For ε = 18, the fourth nonlinear frequency and nonlinear period are respectively fn2 = 0.251
Hz and Tn2 = 3.97 s
Figure 3.10 represents the displacements of all nodes for the fourth nonlinear mode for
ε = 18. All the components reach their maximum at the same time and they have the
same period. These results are obtained by the integration of the equation of motion using
an initial condition vector and a period provided by Algorithm 2.
Figure 3.11 shows the displacements of the first and the fifth nodes of the system compared to
the linear one without a unilateral spring, this can put in evidence the impact of the unilateral
contact to the time solutions. Figure 3.12 shows the periodic solutions in the configuration
space, the components are plotted against the fifth node. The curve shapes depend on the
nonlinearity form, they are not symmetric and they do not have a unique intersection point,
this is due to the asymmetry of the system in presence of the unilateral spring.
Figure 3.13 shows the frequency of the system as function of the nonlinearity level. It also
shows the frequency contents of the time solution for an integration time of 50 nonlinear pe-
riods. The spectrum content shows the subharmonics and the superharmonics. Figure 3.14
shows periodic solutions in the phase space for the fifth and the fourth nodes compared to
the corresponding linear phase space solutions. The effect of the unilateral contact on the
fifth nonlinear periodic solution is important as the stiffness of the spring which is in contact
with this node is high. The curves are non symmetric but still periodic.
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Figure 3.8. The displacements of the six nodes for the fourth nonlinear normal mode, the
period is Tn2 = 4.011 s and the corresponding frequency is fn2 = 0.249 Hz. All the com-
ponents have the same period and they reach their maximum at the same time. 35 steps in ε
to reach this nonlinearity, The value of the functional Jε at the last iteration is 10(−6) and the
average CPU time is 0.08 s for a calculation of the functional and the gradient, the total CPU
time of optimization is 4.65 minutes.
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Figure 3.9. The configuration and the phase spaces for the fourth nonlinear normal mode for
ε = 0.5. The lines in the configuration space are not symmetric as for the linear system’s
lines. The ellipse in the phase space (solid line) has a small deformation comparing to the
ellipse of the linear system (dashed line).
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Figure 3.10. The displacements of the six nodes for the second nonlinear normal mode, the
period is Tn2 = 3.97 s and the corresponding frequency is fn2 = 0.251 Hz. 55 steps in ε to
reach this nonlinearity. The value of the functional Jε at the last iteration is 10(−6) and the
average CPU time is 0.09 s for a calculation of the functional and the gradient, the total CPU
time of optimization is 8.25 minutes
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Figure 3.11. The displacements of the fifth node (a) and the first node (b) of the linear system
(dashed line) and of the nonlinear system (solid line) for the second nonlinear normal mode.
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Figure 3.12. The displacements of the nodes as function of the fifth one, the curve are not a
straight line anymore, this shape depends on the form of the nonlinearity.
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Figure 3.13. The second nonlinear frequency of the system as function of the nonlinearity
(a); The FFT of the displacement for an integration time of 50 nonlinear period (b).
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Figure 3.14. The phase space (solid line) compared to the corresponding linear phase space
(dashed line) of the fifth node (a) and the fourth node (b).
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3.6.3 Cantilever beam with a unilateral spring
Consider a cantilever beam with a unilateral elastic contact; we calculate its nonlinear normal
modes. The equation of motion can be written as

Mq̈ + Kq + εkr(qr)+er = 0 (3.6.2)

where Kr is the stiffness of the unilateral spring, r is the index of the node where the spring
is incorporated, M and K are the mass and the stiffness matrices respectively. The physical
properties are given in Table 3.2. This beam was used for experimental validations of a
numerical model studied in Chapter 1. The first three linear frequencies of the beam are
given in Table 3.3. The numerical methods for the integration and for the optimization are
the same as for the mass-spring model with a unilateral contact.
70 points are used in the time interval for the first iterations and then 1000 points for the last
iterations. dε of Algorithm 2 is equal to 0.1 with ε0 = 0.1, the optimization uses an algorithm
for non differentiable optimization.
Figure 3.15 shows the first nonlinear normal mode of the beam for ε = 1 corresponding to the
linear normal mode. Figure 3.16 shows the nonlinear normal mode in the time domain, i.e. a
periodic solution for all the components of the discretized system. The nonlinear frequency
of this nonlinear mode is 57.62 Hz instead of 52.7 Hz. These results are obtained by the use
of Algorithm 2. Figure 3.17 shows the periodic solution in the configuration and the phase
spaces, the nonlinearity effect has curved the straight lines of the linear system. The ellipse
in the phase space is also deformed comparing to the linear system one. Finally, Figures 3.18
and 3.19 show the second nonlinear normal mode of the beam for ε = 0.1 in the space and
the time domains respectively. The nonlinear frequency of this nonlinear mode is 354.91 Hz
instead of 328.5 Hz. The modes of the beam computed with the algorithm are also found by
asymptotic expansion in section 4.4.6 of Chapter 4. This gives a validation of the algorithm
in the unilateral case.

Beam Beam Beam Beam Young’s Beam Spring
length width thickness modulus density stiffness

0.27m 0.05m 0.005m 69× 109N/m2 2700kg/m3 107KN/m

Table 3.2. The physical properties of the beam and the spring.

Natural frequencies f1 f2 f3

Predicted 52.7 Hz 328.5 Hz 931.3 Hz

Table 3.3. The natural frequencies of the clamped-free beam.
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Figure 3.15. The first nonlinear normal mode of the beam with a unilateral contact (solid
line) compared to the linear normal mode (dashed line) for a spring stiffness kr = 107000
N/m and for ε = 1.
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Figure 3.16. The displacements of six nodes for the first nonlinear normal mode, the period
is Tn2 = 0.017 s and the corresponding frequency is fn2 = 57.62 Hz. 75 steps in ε to reach
this nonlinearity, The value of the functional Jε at the last iteration is 10(−5) and the average
time computation is 10 seconds for a calculation of the function and the gradient for ten finite
elements discretization. The total CPU time is 20 hours.
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Figure 3.17. The configuration and the phase spaces for the first nonlinear normal mode for
ε = 1. The lines in the configuration space are not symmetric as for the linear system’s lines.
The ellipse in the phase space (solid line) has a small deformation comparing to the ellipse
of the linear system (dashed line).
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Figure 3.18. The second nonlinear normal mode of the beam with a unilateral contact (solid
line) compared to the linear normal mode (dashed line) for a spring stiffness kr = 107000
N/m and for ε = 0.1.
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Figure 3.19. The displacements of six nodes for the second nonlinear normal mode, the
period is Tn2 = 0.0028 s and the corresponding frequency is fn2 = 354.91 Hz.

3.7 Conclusion and perspectives
A Numerical algorithm to compute these modes was performed and used for models with
cubic and unilateral contact nonlinearity. The proof in the non smooth case of contact type
is in progress. An alternative validation of the numerical algorithm via asymptotic approach
was also performed and discussed in Chapter 4. The numerical algorithm was used to com-
pute the nonlinear normal modes of the beam system with a unilateral spring presented in
Chapter 1, this can help to understand better the dynamic behaviour via modal analysis. The
algorithm can be improved to deal with system of large degrees of freedom;
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Chapter 4

The method of multiple scales for a
model of a unilateral contact

4.1 Introduction
The concept of nonlinear normal modes is discussed in Chapter 3. Since the interest is to
study nonlinearities of contact type, it is necessary to validate the numerical calculation of
the nonlinear normal modes in this case. The perturbation techniques can provide an alter-
native proof by giving analytical solutions but for small nonlinearities.
The asymptotic expansion was used to calculate the nonlinear normal modes for smooth
nonlinearities [32, 33, 43]. S.Junca and B.Rousselet worked on nonlinear normal modes via
Lindstedt-Poincaré technique [31], this paper is a useful support for the current work. The
Lindstedt-Poincaré technique was also used to evaluate the nonlinear normal mode for piece-
wise linear two d-o-f system [34]. Other Ph.D. students work on different vibration problems
via asymptotic approaches [44, 45]
In this chapter, We use the method of multiple scales which is efficient to find asymptotic
solutions for autonomous and for forced n d-o-f system with unilateral contact [46]. The
explicit solutions are proved for a time interval which depends on ε. The solutions are then
compared to those obtained by the numerical algorithm of Chapter 3.
Finally, a procedure to compute the nonlinear normal modes of a system with an excitation
force is performed leading to experimental investigations. Therefore the different numerical
methods can be validated.
The chapter is organized as follows, first the multiple scales method is used to find an analyt-
ical solution of a one d-o-f oscillator with a unilateral term under periodic excitation near the
natural frequency. Then the method is applied to a n d-o-f autonomous system with unilat-
eral contact, the analytical solution is compared to the numerical one obtained by Algorithm
3. Finally, a n d-o-f forced system with a unilateral contact is treated yielding to a direct
calculation of the nonlinear normal modes.
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4.2 One degree of freedom nonlinear forced oscillator
Consider a mass-spring model with a unilateral contact

ü + ω2
0u + 2εξu̇ + εu+ = εg cos(ωt), (4.2.1)
u(0) = a0, u̇(0) = 0, (4.2.2)

where ω0 is the natural frequency of the linearized equation, ξ is the damping coefficient of
the spring, ω is the excitation frequency assumed to be near ω0 and ε is a real small parameter.
The asymptotic expansion gives an approximate analytical solution of equation (4.2.1) which
allows a deep study of the nonlinearity. The disadvantage is that this solution does not hold
for large ε. The method of multiple scales is used in this chapter for a one degree of freedom
oscillator as well as for systems of n degrees of freedom.

4.2.1 The method of multiple scales - First order approximation
We consider three time scales as we will seek a solution of the first order with the remainders,
the new time scales are T0 = t, T1 = εt and T2 = ε2t where T0 represents the fast time and T1

represents the slow time and etc... The derivative with respect to t will be written as function
of the derivative with respect to T0, T1 and T2. The chain rule formula yields:

∂

∂t
=

∂

∂T0

+ ε
∂

∂T1

+ ε2 ∂

∂T2

,

∂2

∂2t
=

∂2

∂2T0

+ 2ε
∂2

∂T0∂T1

+ ε2 ∂2

∂2T1

+ 2ε2 ∂2

∂T0∂T2

+ 2ε3 ∂2

∂T1∂T2

+ ε4 ∂2

∂2T2

.

Instead of determining the solution as a function of t, we determine it as a function of T0,
T1 and T2. To this end, we change the independent variable in the original equation (4.2.1)
from t to T0, T1 and T2.

Proposition 4.2.1. The approximate solution of equation (4.2.1) of order ε2 for t ∈ [0, Tε]

with Tε ∼ 1

ε
is given as

uε(T0, T1, T2) = u0(T0, T1, T2) + εu1(T0, T1, T2) +O(ε2), (4.2.3)

such that

u0(T0, T1, T2) = a(T1, T2) cos(ω0T0 + ϕ(T1, T2)),

u1(T0, T1, T2) = −2|a(T1, T2)|
ω2

0π

+∞∑

k=1

(−1)k

(4k2 − 1)2
cos(2k(ω0T0 + ϕ(T1, T2)))

+ A cos(ω0T0)− |a(T1, T2)|
ω2

0π
,

(4.2.4)

where a and ϕ are a solution of system (4.2.15), and A is given as

A =
|a|
ω2

0π

(
1 + 2

+∞∑

k=1

(−1)k

(4k2 − 1)2

)
.
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We will give some useful propositions and lemma needed for the proof of Proposition
4.2.1 and for the rest of the chapter.

Lemma 4.2.2. [Asymptotic expansion for (u + εv)+ ](Junca-Rousselet [31])
Let be T > 0, M > 0, u, v two real valued functions defined on I = [0, T ],

Jε = {t ∈ I, |u(t)| ≤ εM},
µε(T ) the measure of the set Jε and H be the Heaviside step function, then

(u + εv)+ = (u)+ + εH(u)v + εχε(u, v), with H(u) =

{
1 if u > 0
0 elsewhere ,

and χε(u, v) is a non negative piecewise linear function and 1-Lipschitz with respect to v,
which satisfies for all ε,
if |v(t)| ≤ M for any t ∈ I:

|χε(u, v)| ≤ |v| ≤ M,

∫ T

0

|χε(u(t), v(t))| dt ≤ Mµε(T ). (4.2.5)

Lemma 4.2.3. [Order of µε(T )](Junca-Rousselet [31])
Let u be a smooth periodic function, M be a positive constant and µε(T ) the measure of the
set {t ∈ I, |u(t)| ≤ εM}.
If u has only simple roots on I = [0, T ] then for some positive C,

µε(T ) ≤ Cε× T. (4.2.6)

More generally, if u has also double roots then

µε(T ) ≤ C
√

ε× T. (4.2.7)

Proposition 4.2.4. The Fourier series of | cos(ω0T0+ϕ)| and of H(cos(ω0T0+ϕ), the Heav-
iside function of cos(ω0T0 + ϕ), are given as following, see [47] for instance,

| cos(ω0T0 + ϕ)| = 2

π
− 4

π

+∞∑

k=1

(−1)k

4k2 − 1
cos(2k(ω0T0 + ϕ)), (4.2.8)

H(cos(ω0T0 + ϕ)) =
1

2
+

2

π

+∞∑

k=1

(−1)k

2k + 1
cos((2k + 1)(ω0T0 + ϕ)). (4.2.9)

proof of proposition 4.2.1.
Substituting uε for u into (4.2.1) and taking into account the expansion of (u0 + εu1)+, then
equating each of the coefficients of ε0 and ε1 to zero, we have

∂2u0

∂2T0

+ ω2
0u0 = 0, u0(0) = a0, u̇0 = 0, (4.2.10)

∂2u1

∂2T0

+ ω2
0u1 = g cos(ωt)− 2

∂2u0

∂T0∂T1

− 2ξ
∂u0

∂T0

− (u0)+, u1(0) = 0, u̇1(0) = 0. (4.2.11)
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The solution of equation (4.2.10) is given as

u0 = a(T1, T2) cos(ω0T0 + ϕ(T1, T2)), a(0, 0) = a0, ϕ(0, 0) = 0. (4.2.12)

Then we use this solution in the right hand side of equation (4.2.11) to find

∂2u1

∂2T0

+ ω2
0u1 =g cos(ωt) + 2ω0

(
∂a

∂T1

+ ξa

)
sin(ω0T0 + ϕ)

+ 2ω0a
∂ϕ

∂T1

cos(ω0T0 + ϕ)− (a cos(ω0T0 + ϕ))+.

(4.2.13)

The idea is to collect the terms of each frequency and then to remove the secular ones from
the equation; this means that the coefficients of terms at ω0 will be set to zero to avoid a
resonance phenomena. To accomplish this, the function (a cos(ω0T0 + b))+ is expanded as
well as the frequency of excitation ω which is near ω0

ω = ω0 + εσ,

where σ is a detuning parameter. We have

(a cos(ω0T0 + ϕ))+ =
a cos(ω0T0 + ϕ)

2
+
|a cos(ω0T0 + ϕ)|

2

and
ωT0 = ω0T0 + εσT0 = ω0T0 + σT1,

using a trigonometrical formula, we get

g cos(ωT0) = g cos(ω0T0 + σT1) = g cos(ω0T0 + ϕ + σT1 − ϕ)

= g cos(ω0T0 + ϕ) cos(σT1 − ϕ)− g sin(ω0T0 + ϕ) sin(σT1 − ϕ).

Equation (4.2.13) becomes

∂2u1

∂2T0

+ ω2
0u1 =

(
−g sin(σT1 − ϕ) + 2ω0

∂a

∂T1

+ 2ω0ξa

)
sin(ω0T0 + ϕ)

+

(
gcos(σT1 − ϕ) + 2ω0a

∂ϕ

∂T1

− a

2

)
cos(ω0T0 + ϕ)

− |a|
2
| cos(ω0T0 + ϕ)|.

(4.2.14)

In order to obtain a bounded solution of equation (4.2.14), the secular terms have to be
removed, this yields the following differential system in a and ϕ:





∂a

∂T1

+ ξa =
g

2ω0

sin(σT1 − ϕ),

a
∂ϕ

∂T1

=
a

4ω0

− g

2ω0

cos(σT1 − ϕ).

(4.2.15)
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A change of function γ = σT1 − ϕ yields a simplified differential system in a and γ





∂a

∂T1

= −ξa +
g

2ω0

sin(γ),

∂γ

∂T1

= σ − 1

4ω0

+
g

2aω0

cos(γ).

(4.2.16)

We update equation (4.2.14) and obtain

∂2u1

∂2T0

+ ω2
0u1 = −|a|

2
| cos(ω0T0 + ϕ)|, u1(0) = 0, u̇1 = 0. (4.2.17)

Taking in account the Fourier expansion of | cos(ω0T0 + ϕ)| given in (4.2.8) we get

u1 = −2|a(T1, T2)|
ω2

0π

+∞∑

k=1

(−1)k

(4k2 − 1)2
cos(2k(ω0T0 + ϕ(T1, T2)))

+ A cos(ω0T0)− |a(T1, T2)|
ω2

0π
,

(4.2.18)

where

A =
|a|
ω2

0π

(
1 + 2

+∞∑

k=1

(−1)k

(4k2 − 1)2

)

Note that T0 = t, T1 = εt and T2 = ε2t,

uε = u0(T0, T1, T2) + εu1(T0, T1, T2) +O(ε2).

Finally, we have to find the dependence of a and ϕ on T2 in order to get a bounded error of
order ε2. This is a particular case of Proposition 4.5.6.

4.3 One degree of freedom nonlinear autonomous oscilla-
tor

We consider a particular case of the one degree of freedom oscillator (4.2.1) for ξ = g = 0,
the equation of motion becomes

ẍ + ω2
0x + εx+ = 0, x(0) = a0, ẋ(0) = 0. (4.3.1)

A solution is sought in the following form

xε = x0 + εr, (4.3.2)

the double scales method is used as we seek a solution with one term x0 and a remainder r.
The derivatives are then written as follows
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∂

∂t
=

∂

∂T0

+ ε
∂

∂T1

,

∂2

∂2t
=

∂2

∂2T0

+ 2ε
∂2

∂T0∂T1

+ ε2 ∂2

∂2T1

.

Equation (4.3.1) is written with the independent variables T0 and T1 as follows

∂2x0

∂2T0

+ ω2
0x

0 = 0, x0(0) = a0, ẋ0(0) = 0, (4.3.3)

and

∂2r

∂2T0

+ ω2
0r = −2

∂2x0

∂T0∂T1

− x0
+ − ε

(
H(x0)r + χ(x0, r)

)

− ε

(
∂2x0

∂2T1

+ 2
∂2r

∂T0∂T1

)
− ε2

(
∂2r

∂2T1

)
, r(0) = 0, ṙ(0) = 0.

The right hand side of the equation of the remainder is obtained by taking into account the
asymptotic expansion of (x0 + εr)+ which is given by Lemma 4.2.2:

(x0 + εr)+ = x0
+ + εH(x0)r + εχ(x0, r), (4.3.4)

such that H(x0) is the Heaviside function of x0 and the remainder is solution of the following
equation

∂2r

∂2T0

+ ω2
0r = Sε(T0, T1) + f ε(T0, T1) + εgε(T0, T1, r), r(0) = 0, ṙ(0) = 0, (4.3.5)

where

Sε(T0, T1) = −2
∂2x0

∂T0∂T1

− x0
+,

f ε(T0, T1, T2) = −ε

(
∂2x0

∂2T1

+ 2
∂2r

∂T0∂T1

+ ε
∂2r

∂2T1

)
,

gε(T0, T1, r) = −(x0 + εr)+ − x0
+

ε
,

The object of this section is to prove that the remainder is bounded for a time t ∈ [0, Tε].
Once the details of the proof are clear, the same technique will be used to prove the asymp-
totic solutions of the autonomous and the forced n degrees of freedom systems in the next
sections.

Proposition 4.3.1. If a and ϕ verify system (4.3.8 ), then there exists ε0 > 0 and γ > 0 such
that, for 0 < ε < ε0, the remainder r is uniformly bounded in W 2,∞ (0, Tε), where Tε =

γ

ε
.
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Proof. The strategy is to remove the secular terms from the expression of Sε(T0, T1) to avoid
a resonance phenomena; by this, we verify the first hypothesis of Lemma 4.4.5 for differen-
tial equations (1 d.d.l). Then we prove that f ε(T0, T1) and gε(T0, T1, r) verify the second and
the third hypothesis.
Step 1: removing secular terms from Sε(T0, T1) and extracting the conditions on the coefficients.
The solution of equation (4.3.3) is given by

x0 = a(T1) cos(ω0T0 + ϕ(T1)), a(0) = a0, ϕ(0) = 0. (4.3.6)

Then Sε is given as follows

Sε = −2
∂2x0

∂T0∂T1

− x0
+ = 2

∂a

∂T1

ω0 sin(ω0T0 + ϕ) + 2aω0
∂ϕ

∂T1

cos(ω0T0 + ϕ)

− a cos(ω0T0 + ϕ)

2
− |a cos(ω0T0 + ϕ)|

2
.

(4.3.7)

By collecting the coefficient of sin(ω0T0 + ϕ) and cos(ω0T0 + ϕ) and setting them to zero,
we get a system of differential equations on a and ϕ





2
∂a

∂T1

ω0 = 0, a(0) = a0,

2aω0
∂ϕ

∂T1

− a

2
= 0, ϕ(0) = 0.

(4.3.8)

The solution is given as a = a0 and ϕ =
1

4ω0

T1.

Then Sε(T0, T1) = −|a cos(ω0T0 + ϕ)|
2

which is not resonant and bounded (see Fourier

series of | cos |), but it is ε dependent.
Step 2:writing the differential equation as function of the independent variable t.
We write all the remaining terms as function of the independent variable t after moving the
derivative of r to the left hand side of the differential equation in r, we have

∂2r

∂2t
+ ω2

0r = S̃ε(t) + f̃ ε(t) + εg̃ε(t, r), r(0) = 0, ṙ(0) = 0, (4.3.9)

where

S̃ε(t) = −|a0 cos(ω0 + ε ε
4ω0

)t|
2

,

f̃ ε(t) = −ε

(
∂2x0

∂2T1

)
= ε

a0

16ω2
0

cos(ω0 +
ε

4ω0

)t,

g̃ε(t, r) = −(x0 + εr)+ − x0
+

ε
,

Step 3: verifying the hypothesis of Lemma 4.4.5.
S̃ε(t) does not contain any term at the frequency ω0 (there is no terms in cos(ω0t) or sin(ω0t)),
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this is done since we have removed the secular terms from the expression of Sε, this is also
true if ε = 0.

f̃ ε(t) is bounded. Moreover, there exists C such that
∫ T

0

|f̃ε(t)|dt ≤ CεT .

We still have to deal with g̃, the function x+ is 1-Lipschitz then easily we have

|g̃ε(t, r)| =
∣∣∣∣−

(x0 + εr)+ − x0
+

ε

∣∣∣∣ ≤ |r|.

then for all R > 0: MR = sup
ε∈(0,1),t>0,r<R

|g̃ε(t, r)| = R < ∞. Lemma 4.4.5 provides the

proof.

Corollary 4.3.2. The conditions which ensure an approximate solution of equation (4.3.1)

with a bounded error are a = a0 and ϕ =
1

4ω
T1 =

ε

4ω
t. This gives the following solution

for x0

x0(t) = a0 cos(ω +
ε

4ω
)t.

and x = x0 + εr such as ||r||W 2,∞(0,Tε) ≤ C.
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4.3.1 A stationary approximate solution [Permanent regime]
The steady state solutions are important for large sets of mechanical problems as they show
the behaviour of the system for a long time. The steady solution does not depend on the initial
conditions as the damping term ξ will reduce its effect. It depends only on the excitation
force and the parameters of the system. To get an approximate steady state solution of
equation (4.2.1), the amplitude of the solution and the phase difference have to be constant

thus
∂a

∂T1

= 0 and
∂γ

∂T1

= 0.

Proposition 4.3.3. The frequency response equation which puts in evidence the dependence
of the response magnitude on the frequency is given as

a2 =
g2

4ω2
0

(
ξ2 + (σ − 1

4ω0
)2

) . (4.3.10)

a is defined as a function of σ hence the solution is stable and there is not a jump phenomenon
for this kind of nonlinearity. This feature is discussed is Section 4.3.2.

Proof. When a and ϕ are constant then system (4.2.16) becomes




−ξa +
g

2ω0

sin(γ) = 0,

σ − 1

4ω0

+
g

2aω0

cos(γ) = 0.

(4.3.11)

A simple calculation gives the magnitude of the stationary solution as function of the natural
frequency and the damping coefficient, thus

a2 =
g2

4ω2
0

(
ξ2 + (σ − 1

4ω0
)2

) .

Proposition 4.3.4. A steady state solution is given as

uε(t) = a cos(ωt− γ) + ε

(
A cos(ω0t)− |a|

ω2
0π

)

− ε

(
2|a|
ω2

0π

+∞∑

k=1

(−1)k

(4k2 − 1)2
cos(2k(ωt− γ))

)
,

(4.3.12)

where ω = ω0 + εσ, a and γ satisfy relation (4.3.11).

Proof. The stationary solution can be obtained from solution (4.4.13) by taking into account
system (4.3.11), i.e. a does not depend on the time, neither γ. Moreover, the solution has
the same frequency as the force excitation with a phase delay γ. The first term u0 can be
expressed as

u0 = a cos(ω0T0 + ϕ) = a cos(ω0T0 + σT1 − γ) = a cos(ω0t + εσt− γ) = a cos(ωt− γ).

The same technique is applied to u1, the proof is then accomplished.
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4.3.2 Stability of the approximate solution
One important feature of nonlinear system is the stability of the solution, see [48] for in-
stance.

Proposition 4.3.5. The solution of a nonlinear differential system is stable if the eigenvalues
of linearized system have negative real parts.

Proposition 4.3.6. The solution of system (4.2.16) is stable and the Jacobian matrix of the
linearized system is given as

[ −ξ a( 1
4ω0

− σ)

− 1
a
( 1

4ω0
− σ) −ξ

]
. (4.3.13)

Proof. Let us denote 



g1 = −ξa +
g

2ω0

sin(γ),

g2 = σ − 1

4ω0

+
g

2aω0

cos(γ).

(4.3.14)

The partial derivative of g1 and g2 with respect to a and γ can be expressed as:

∂ag1 = −ξ, ∂γg1 =
g

2ω0

cos(γ),

∂ag2 = − g

2a2ω0

cos(γ), ∂γg2 = − g

2aω0

sin(γ).

We evaluate this partial derivative at the critical point (g1 = 0 and g2 = 0), we can easily find

∂ag1 = −ξ, ∂γg1 = a(
1

4ω0

− σ),

∂ag2 = −1

a
(

1

4ω0

− σ), ∂γg2 = −ξ.

Therefore the Jacobian matrix has two negative eigenvalues since its trace is negative and its
determinant is positive, this can prove the stability of the system.

4.3.3 Numerics
We present here a comparison between the numerical steady state solution of equation (4.2.1)
and the analytical solution (4.3.12); the results showed good agreement. Figure 4.1 shows the
frequency contents of the numerical solution for ε = 0.1 and for ξ = 1, the frequency axis is
normalized by the excitation frequency

ω

2π
. The solution is at the same excitation frequency

with the presence of even harmonics. This is in agreement with the analytical solution. The
numerical and the analytical displacements are shown in Figure 4.2, good agreement is found
with a small shift when the displacement is positive, this can be produced as ε is not small
enough. Figure 4.3 shows the displacements for ω = 1.1 and ε = 0.01, good agreement is
found.
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Figure 4.1. The frequency contents of the steady state solution for ε = 0.1, ξ = 1 and
ω = 1.1. the frequency axis is normalized by the frequency of excitation, the response
contains peaks corresponding to the excitation frequency and to its even harmonic.
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Figure 4.2. The numerical solution (solid line) and the explicit solution (dashed line) for
ε = 0.1, ξ = 1 and ω = 1.1. The two solutions are close but a small difference appear when
the displacement is positive.
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Figure 4.3. The numerical solution (solid line) and the explicit solution (dashed line) for
ε = 0.01, ξ = 1 and ω = 1.1. The two solutions feet very well.

4.4 Nonlinear normal mode of systems with unilateral con-
tact

The motivation of this study is to calculate the nonlinear normal modes of an undamped
autonomous system with a unilateral contact. This method is also developed to prove the
existence of the nonlinear normal modes for a nonlinearity of contact type. It is an alternative
to the proof presented in Chapter 3. We also compare the solution obtained by Algorithm 2
of Chapter 3 with the analytical solution obtained by the multiple scales method.
Consider the nonlinear autonomous undamped system written in the real space

MŸ + KY + εF (Y ) = 0, (4.4.1)

(F (Y )i)i=1,...,n =

{
0 if i 6= r,
(Yr)+ if i = r.

The choice of this model is not arbitrary, it can be a model of a beam with a unilateral contact
as in Chapter 1 or a mass-spring model with one unilateral spring as in Chapter 3; hence ε
is a small parameter representing a spring stiffness. It is a restrictive case of nonlinearity
but a change of the mass and the stiffness matrices can be done to model many situations of
systems with unilateral contact and with different boundary conditions.

4.4.1 Equation of motion in the eigenvector space

The system is written in the eigenvectors basis, let (φi)i=1,...,n and (ωi)i=1,...,n be the gener-
alized eigenvectors and eigenvalues of M and K respectively, φ is the basis transformation
matrix and Ω2 = diag(ω2

i )i=1,...,n. φ is chosen such that tφMφ = In and tφKφ = Ω2, The

120



basis change then yields the following differential system:

Ẍ + Ω2X + εf(X) = 0, (4.4.2)

where f(X) =t φF (φX). The special form of the nonlinearity in Y takes the following
form in X:

(f(X)i)i=1,...,n =


φri

(
n∑

j=1

φrjXj

)

+




i=1,...,n

.

For convenience, system (4.4.2) is written componentwise to obtain

Ẍi + ω2
i Xi + εφri

(
n∑

j=1

φrjXj

)

+

= 0, ∀i ∈ {1, . . . , n}. (4.4.3)

4.4.2 The method of multiple scales
This method is introduced in Section 4.2.1.As we are seeking a solution of three terms, we
have then to consider three time scales T0, T1, and T2 such that T0 = t, T1 = εt and T2 = ε2t.
The derivation operator with respect to the independent variable t is then written as function
of the other scales:

∂

∂t
=

∂

∂T0

+ ε
∂

∂T1

+ ε2 ∂

∂T2

,

∂2

∂2t
=

∂2

∂2T0

+ 2ε
∂2

∂T0∂T1

+ ε2 ∂2

∂2T1

+ 2ε2 ∂2

∂T0∂T2

+ 2ε3 ∂2

∂T1∂T2

+ ε4 ∂2

∂2T2

.

A solution of system (4.4.3) is sought in the following form

Xε
i = X0

i + εX1
i + ε2ri, ∀i ∈ {1, . . . , n}, (4.4.4)

where ri is the remainder. Using the same technique as in Section 4.2.1, equation (4.4.3) is
written with the independent variables T0, T1 and T2 as follows

Proposition 4.4.1. ∀i ∈ {1, . . . , n}, the terms X0
i and X1

i are solutions of the following
differential equations respectively

∂2X0
i

∂2T0

+ ω2
i X

0
i = 0, (4.4.5)

∂2X1
i

∂2T0

+ ω2
i X

1
i = −2

∂2X0
i

∂T0∂T1

− φri

(
n∑

j=1

φrjX
0
j

)

+

, (4.4.6)

and the remainder ri is a solution of the following differential equation

∂2ri

∂2T0

+ ω2
i ri = Si(T0, T1, T2) + f ε

i (T0, T1, T2) + εgε
i (T0, T1, T2, rj),

ri(0) = 0, ṙi(0) = 0,

(4.4.7)
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where

Si(T0, T1, T2) = −∂2X0
i

∂2T1

− 2
∂2X1

i

∂T0∂T1

− 2
∂2X0

i

∂T0∂T2

− φriH(u)v,

f ε
i (T0, T1, T2) = ε

(
−∂2X1

i

∂T 2
1

− 2
∂2X0

i

∂T1∂T2

− 2ε
∂2X1

i

∂T1∂T2

− 2ε
∂2X1

i

∂T0∂T2

− ε
∂2X0

i

∂2T2

− ε2∂2X1
i

∂2T2

)

− φriχ(u, v)−
(

2ε
∂2ri

∂T0∂T1

+ ε2 ∂2ri

∂2T1

+ 2ε2 ∂2ri

∂T0∂T2

+ 2ε3 ∂2ri

∂T1∂T2

+ ε4 ∂2ri

∂2T2

)
,

gε
i (T0, T1, T2, r

j) = −φri
[(u + εv + ε2w)+ − (u + εv)+]

ε2
.

such that u = φr1X
0
1 , v =

n∑
j

φrjX
1
j , w =

n∑
j

φrjrj .

Proof. We substitute (4.4.4) in equation (4.4.3) and collect the remaining term after identify-
ing the terms of order ε0 and ε1, we obtain easily the equations of X0

i and X1
i . The equation

of ri can be found by writing all the remaining terms of order ε2 and more,

∂2ri

∂2T0

+ ω2
i ri = −∂2X0

i

∂2T1

− 2
∂2X1

i

∂T0∂T1

− 2
∂2X0

i

∂T0∂T2

− φriH(u)(v + εw)− φriχ(u, v + εw)

+ ε

(
−∂2X1

i

∂T 2
1

− 2
∂2X0

i

∂T1∂T2

− 2ε
∂2X1

i

∂T1∂T2

− 2ε
∂2X1

i

∂T0∂T2

− ε
∂2X0

i

∂2T2

− ε2∂2X1
i

∂2T2

)

−
(

2ε
∂2ri

∂T0∂T1

+ ε2 ∂2ri

∂2T1

+ 2ε2 ∂2ri

∂T0∂T2

+ 2ε3 ∂2ri

∂T1∂T2

+ ε4 ∂2ri

∂2T2

)
.

On the other hand, we have

χε(u, v + εw) =
(u + εv + ε2w)+ − [(u)+ + H(u)(εv + ε2w)]

ε

=
(u + εv)+ − [(u)+ + εH(u)v]

ε
+

(u + εv + ε2w)+ − (u + εv)+

ε
− εH(u)w

=χε(u, v)− εH(u)w + εg̃ε(T0, T1, T2, w),

with

g̃ε(T0, T1, T2, w) =
[(u + εv + ε2w)+ − (u + εv)+]

ε2
,

By taking in account that

χε(u, v + εw) + εH(u)w = χε(u, v) + εg̃ε(T0, T1, T2, w)

and separating the terms we get Expression 4.4.7.
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4.4.3 Nonlinear normal mode of the autonomous system with unilateral
contact

Until now, we didn’t mentioned any information about the initial conditions of the system to
be solved. In order to obtain a periodic solution, the initial conditions will be determined in
order to obtain a periodic solution of the system of a period to be determined, i.e. a nonlinear
normal mode of the system. This method is an alternative to the algorithm presented in
Chapter 3 for unilateral nonlinearity; it is preferable to come back to that Chapter for detailed
definitions and formulation of the nonlinear normal modes. Finding a nonlinear normal
modes of system (4.4.2) is equivalent to search for initial conditions and a period which
ensure a periodic solution of the system. Hence, the unknown are (ai)i=1,...,n and a period T
such as

Xε(T ) = Xε(0), Ẋε(T ) = Ẋε(0),

with the initial conditions:
{

Xε
1(0) = X0

1 (0) + εX1
1 (0) = a0 + εa1, Ẋε

1(0) = 0,

Xε
i (0) = X0

i (0) + εX1
i (0) = εai, Ẋε

i (0) = 0, ∀i ∈ {2, . . . , n}. (4.4.8)

a0 is a real number, the conditions above correspond to the nonlinear mode denoted by 1,
the same technique can be reproduced to find the initial conditions needed to obtain the
other nonlinear normal modes without any restriction. The system is then written with the
corresponding initial conditions,

∂2X0
1

∂2T0

+ ω2
1X

0
1 = 0, X0

1 (0) = a0, Ẋ0
1 = 0, (4.4.9)

∂2X1
1

∂2T0

+ ω2
1X

1
1 = −2

∂2X0
1

∂T0∂T1

− φr1

(
n∑

j=1

φrjX
0
j

)

+

, X1
1 (0) = a1, Ẋ1

1 = 0. (4.4.10)

and ∀i ∈ {2, . . . , n}

∂2X0
i

∂2T0

+ ω2
i X

0
i = 0, X0

i (0) = 0, Ẋ0
i = 0, (4.4.11)

∂2X1
i

∂2T0

+ ω2
i X

1
i = −2

∂2X0
i

∂T0∂T1

− φri

(
n∑

j=1

φrjX
0
j

)

+

, X1
i (0) = ai, Ẋ1

i = 0. (4.4.12)

Note that the initial conditions corresponding to X0
1 is not zero but the others are, this is

normal since we are seeking the ”first” normal mode, this means that the initial conditions
vector is tangent to the “first” eigenvector.
The strategy is to use equations (4.4.9) and (4.4.10) to find the period of the normal mode
with its harmonics then to use equations (4.4.11) and (4.4.12) to determine the initial con-
ditions (ai)i=2,...,n. The fact that equation (4.4.11) has a trivial solution X0

i = 0, ∀i ∈
{2, . . . , n} simplifies the calculation.
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Proposition 4.4.2. The solution of equations (4.4.9) and (4.4.10) are respectively

X0
1 (T0, T1, T2) = a cos (ω1T0 + ϕ) ,

X1
1 (T0, T1, T2) = −φr1|φr1a|

ω2
1π

− 2φr1|φr1a|
ω2

1π

+∞∑

k=1

(−1)k

(4k2 − 1)2
cos (2k(ω1T0 + ϕ))

+ A1 cos(ω1T0),

where a = a(T2), ϕ =
φ2

r1

4ω1

T1+ϕ1(T2) and A1 = a1+
φr1|φr1a|

ω2
1π

+
2φr1|φr1a|

ω2
1π

+∞∑

k=1

(−1)k

(4k2 − 1)2
.

a(T2) and ϕ1(T2) will be determined later in order to get a bounded error.

Proof. The proof consists in solving equations (4.4.9) and (4.4.10) to get X0
1 and X1

1 . The
classical solution of (4.4.9) is given as

X0
1 (T0) = a(T1, T2) cos(ω1T0 + ϕ(T1, T2)), a(0, 0) = a0, ϕ0(0, 0) = 0. (4.4.13)

a and ϕ are function of T1 and T2 and they should be calculated in order to get a bounded so-
lution of equation (4.4.10). Equation (4.4.11) has a trivial solution X0

i = 0, ∀i ∈ {2, . . . , n},
we update equation (4.4.10) and get

∂2X1
1

∂2T0

+ ω2
1X

1
1 = 2

∂a

∂T1

ω1 sin(ω1T0 + ϕ) + 2aω1
∂ϕ

∂T1

cos(ω1T0 + ϕ)

− φ2
r1a cos(ω1T0 + ϕ)

2
− φr1

|φr1a cos(ω1T0 + ϕ)|
2

.

(4.4.14)

By collecting the secular terms and equating them to zero, we get the following system of
partial differential equations





2
∂a

∂T1

ω1 = 0, a(0, 0) = a0,

2aω1
∂ϕ

∂T1

− φ2
r1a

2
= 0, ϕ(0, 0) = 0.

(4.4.15)

A simple calculation yields a = a(T2) and ϕ =
φ2

r1

4ω1

T1 + ϕ1(T2). We still need to calculate

X1
1 (T0, T1, T2) from equation (4.4.14) after removing the secular terms

∂2X1
1

∂2T0

+ ω2
1X

1
1 = −φr1

|φr1a cos(ω1T0 + ϕ)|
2

, X1
1 (0) = a1, Ẋ1

1 (0) = 0. (4.4.16)

This equation is similar to equation (4.2.17) then the solution is given as,

X1
1 (T0, T1, T2) = −φr1|φr1a|

ω2
1π

− 2φr1|φr1a|
ω2

1π

+∞∑

k=1

(−1)k

(4k2 − 1)2
cos (2k(ω1T0 + ϕ))

+ A1 cos(ω1T0),

where A1 = a1 +
φr1|φr1a|

ω2
1π

+
2φr1|φr1a|

ω2
1π

+∞∑

k=1

(−1)k

(4k2 − 1)2
, This ends the proof.
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Finally (ai)i=1,...,n have to be determined in order to obtain the initial condition vector
which yields a periodic solution of period T .

Proposition 4.4.3. The initial conditions (ai)i=1,...,n which ensure an approximate periodic
solution of system (4.4.2) of period T are given as follows

a1 = −φr1|φr1a|
ω2

1π
− 2φr1|φr1a|

ω2
1π

+∞∑

k=1

(−1)k

(4k2 − 1)2

ai = −φri|φr1a|
ω2

i π
− 2φri|φr1a|

π

+∞∑

k=1

(−1)k

(4k2 − 1)

1

(ω2
i − 4k2ω2

1)

− φriφr1a

2(ω2
i − ω2

1)
, ∀i ∈ {2, . . . , n}.

(4.4.17)

Proof. We set A1 to zero in Proposition 4.4.2, this can give directly a1.
Consider once again equation (4.4.12) by updating X0

i = 0, ∀i ∈ {2, . . . , n}, and X0
1 =

a cos (ω1T0 + ϕ) we obtain

∂2X1
i

∂2T0

+ ω2
i X

1
i = −φriφr1a cos(ω1T0 + ϕ)

2
− φri|φr1a cos(ω1T0 + ϕ)|

2
, (4.4.18)

X1
i (0) = ai, Ẋ1

i = 0. (4.4.19)

By using the same technique as before we get the solution in the following form

X1
i = −φri|φr1a|

ω2
i π

− 2φri|φr1a|
π

+∞∑

k=1

(−1)k

(4k2 − 1)

1

(ω2
i − 4k2ω2

1)
cos (2k(ω1T0 + ϕ))

+ Ai cos(ωiT0)− φriφr1a

2(ω2
i − ω2

1)
cos (ω1T0 + ϕ) ,

(4.4.20)

with

Ai = ai +
φri|φr1a|

ω2
i π

+
2φri|φr1a|

π

+∞∑

k=1

(−1)k

(4k2 − 1)

1

(ω2
i − 4k2ω2

1)
+

φriφr1a

2(ω2
i − ω2

1)
,

(Ai)i=2,...,n has to be set to zero to ensure a periodic solution for all (X1
i )i=2,...,n of period T

therefore

ai = −φri|φr1a|
ω2

i π
− 2φri|φr1a|

π

+∞∑

k=1

(−1)k

(4k2 − 1)

1

(ω2
i − 4k2ω2

1)

− φriφr1a

2(ω2
i − ω2

1)
.

(4.4.21)

Remark 4.4.4. The functions a(T2) and ϕ1(T2) are not defined until now, they have to verify
additional conditions in order to obtain a bounded solution. These additional conditions
come from the hypothesis which should be verified by the source term of the equation of the
remainders 4.4.7.
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4.4.4 Bounds on the remainders
The approximate solutions are valid for small ε, it is important to study the remainders of
these solutions in order to find the conditions which ensure a good approximation, i.e. the
necessary and sufficient conditions to have bounded errors. We will prove that the remainders
are bounded on a time interval which depends on ε, this can be done by writing the differ-
ential equations which involve the remainders with the approximate solutions. We have to
prove that the source term of these equations satisfies the hypothesis of the following lemma
proved in [31].

Lemma 4.4.5. [Bounds for large time for systems](Junca-Rousselet [31])
Let wε = (wε

1, · · · , wε
N) be the solution of the following system:

{
(λ1)

2(wε
k)
′′ + (λk)

2wε
k = Sk(s) + f ε

k(s) + εgε
k(s; wε),

wε
k(0) = 0, (wε

k)
′(0) = 0, k = 1, · · · , N.

(4.4.22)

If source terms satisfy the following conditions where M > 0, C > 0 are fixed constants :

1. non resonance conditions with Sk(s) are 2π-periodic functions and |Sk(s)| ≤ M ,

(a) S1(s) is orthogonal to e±is, i.e.
∫ 2π

0

S1(s)e
±isds = 0,

(b) λk, λ1 are Z independent for all k 6= 1,

2. |f ε
k| ≤ M and for all T ,

∫ T

0

|fε(s)|ds ≤ CεT (respC
√

εT ),

3. for all R > 0: MR = max
k

sup
ε∈(0,1),s>0,w2

1+···+w2
N<R2

|gε
k(s; u)| < ∞,

then, there exists ε0 > 0 and γ > 0 such that, for 0 < ε < ε0, wε is uniformly bounded in
W 2,∞ (0, Tε), where Tε =

γ

ε
( resp

γ√
ε
).

Proposition 4.4.6. if ϕ1(T2) = − φ4
r1

16ω3
1

T2 and a(T2) = a0 then there exists ε0 > 0 and γ > 0

such that, for 0 < ε < ε0, the remainder (ri)i=1,...,n is uniformly bounded in W 2,∞ (0, Tε),
where Tε =

γ

ε
.

Proof. The same strategy as in the proof of Proposition 4.3.1 is used, it consists to remove
the secular terms from the expression of S1(T0, T1, T2) to avoid a resonance phenomena;
then we write all the remaining terms as function of the independent variable t. By this, we
verify the first hypothesis of Lemma 4.4.5. Then we prove that f ε

i (t) and gε
i (t, r

1, . . . , rn)
verify the second and the third hypothesis.
Step 1: removing secular term from S1(T0, T1, T2).
We write again the differential equation which involves the remainders with the other terms,

∂2ri

∂2T0

+ ω2
i ri = Si(T0, T1, T2) + f ε

i (T0, T1, T2) + εgε
i (T0, T1, T2, rj),

ri(0) = 0, ṙi(0) = 0,

(4.4.23)
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where

S1(T0, T1, T2) = −∂2X0
1

∂2T1

− 2
∂2X1

1

∂T0∂T1

− 2
∂2X0

1

∂T0∂T2

− φr1H(u)v,

u = φr1X
0
1 , v =

n∑
j=1

φrjX
1
j . The solution of equation (4.4.9) is given as

X0
1 = a(T2) cos(ω1T0 +

φ2
r1

4ω1

T1 + ϕ1(T2)), a(0) = a0, ϕ1(0) = 0. (4.4.24)

ϕ1(T2) will be determined in order to obtain non resonant terms in the expression of S1. v
does not contain any resonant terms, i.e. any term in cos(ω1T0) or sin(ω1T0), this is obtained
by construction. H(u) also does not contain any resonant terms (see equation (4.2.9)). We
still have

−∂2X0
i

∂2T1

− 2
∂2X0

i

∂T0∂T2

which can have secular terms. A simple calculation gives:

−∂2X0
i

∂2T1

− 2
∂2X0

i

∂T0∂T2

= a(
∂ϕ

∂T1

)2 cos(ω1T0 + ϕ)

+
∂a

∂T2

ω1 sin(ω1T0 + ϕ) + aω1
∂ϕ1

∂T2

cos(ω1T0 + ϕ).

(4.4.25)

The coefficients of the resonant terms in the expression of S1 have to be set to zero to ensure
the first hypothesis of the lemma:





∂a

∂T2

= 0, a(0) = a0,

aω1
∂ϕ1

∂T2

+ a(
∂ϕ

∂T1

)2 = 0, ϕ1(0) = 0.

(4.4.26)

The solution is then given as a = a0 and ϕ1 = − 1

ω1

(
∂ϕ

∂T1

)2T2 = − φ4
r1

16ω3
1

T2.

Step 2:writing the differential equation as function of the independent variable t.
Right now, we express all the terms of Si, f ε

i and gε
i as function of the independent variable

t. We also move the terms in ri to the left hand side of the equation to find a differential
equation in t:

∂2ri

∂2t
+ ω2

i ri = S̃i(t) + f̃ ε
i (t) + εgε

i (t, rj), ri(0) = 0, ṙi(0) = 0, (4.4.27)

S̃i(t) = −2
∂2X1

i

∂T0∂T1

− φriH(u)v,

f̃ ε
i (t) = ε

(
−∂2X1

i

∂T 2
1

− 2
∂2X0

i

∂T1∂T2

− 2ε
∂2X1

i

∂T1∂T2

− 2ε
∂2X1

i

∂T0∂T2

− ε
∂2X0

i

∂2T2

− ε2∂2X1
i

∂2T2

)

− φriχ(u, v),

gε
i (t, r

j) = −φri
[(u + εv + ε2w)+ − (u + εv)+]

ε2
.
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Step 3: verifying the hypothesis of Lemma 4.4.5.

S̃1 = −2
∂2X1

1

∂T0∂T1

− φr1H(u)v, it does not contain any resonant term and it can be expressed

as function of t.
f̃ ε

i (t) involves terms in cosine and sine as well as the function χ(u, v), it can be expressed as
function of t since all the terms are known. Then f̃ ε

i is bounded as it is written as a finite sum
of bounded terms; the function χ(u, v) verifies Lemma 4.2.2 and Lemma 4.2.3 then there

exists C such that
∫ T

0

|f̃ε(s)|ds ≤ CεT .

Finally w =
n∑

j=1

φrjrj and u+ is 1-Lipschitzian then there exists Ci, ∀i ∈ {1, . . . , n} such

that

|gε
i (t, r

1, . . . , rn)| =
∣∣∣∣−φri

[(u + εv + ε2w)+ − (u + εv)+]

ε2

∣∣∣∣
≤ Ci|r|

then for all R > 0: MR = max
k

sup
ε∈(0,1),t>0,r2

1+···+r2
N<R2

|gε
k(t; u)| < ∞. The proof is then

accomplished by the direct use of Lemma 4.4.5.

Corollary 4.4.7. The approximate solution of system 4.4.3 of order ε is given as follows

X1(t) = a0 cos

(
ω1 + ε

φ2
r1

4ω1

− ε2 φ4
r1

16ω3
1

)
t− ε

φr1|φr1a|
ω2

1π

ε

(
−2φr1|φr1a|

ω2
1π

+∞∑

k=1

(−1)k

(4k2 − 1)2
cos

(
2k(ω1 + ε

φ2
r1

4ω1

− ε2 φ4
r1

16ω3
1

)t

))
,

and for i ∈ {2, . . . , n}

Xi(t) = −ε
2φri|φr1a|

π

+∞∑

k=1

(−1)k

(4k2 − 1)

1

(ω2
i − 4k2ω2

1)
cos

(
2k(ω1 + ε

φ2
r1

4ω1

− ε2 φ4
r1

16ω3
1

)t

)

− ε
φri|φr1a|

ω2
i π

− ε
φriφr1a

2(ω2
i − ω2

1)
cos

(
ω1 + ε

φ2
r1

4ω1

− ε2 φ4
r1

16ω3
1

)
t,

The approximate period is then given by

T =
2π

ω1 + ε
φ2

r1

4ω1
− ε2 φ4

r1

16ω3
1

(4.4.28)

4.4.5 Comparison between the numerical solutions and the asymptotic
expansions

We present a comparison of the numerical solutions given by Algorithm 2 and the asymp-
totic expansions discussed in this chapter. We apply both methods to compute the nonlin-
ear normal modes of the discrete system (4.4.29) with the unilateral contact. Note that the
asymptotic expansion is applied to system (4.4.2) where the matrices M and K are arbitrary
and the unilateral contact could be at any point.
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Mass-spring model with a unilateral spring

Consider the discrete model of six mass-springs with only a unilateral contact presented in
Section 3.6.2 of Chapter 3 (see Figure 3.7).

Ẍ + KX + ε̃F (X) = 0, (4.4.29)

Where ε̃ = εkr, kr is the spring stiffness and ε is a positive number, X = [X1, . . . , X6],
K = tridiag(−1, 2,−1) of size 6 × 6 and (F (X))i = (X5)+δ5i. The natural frequencies
and their corresponding periods are given in Table 4.1. We will show the first and the fourth
nonlinear normal modes for a small ε in the time domain and the initial conditions in the
space domain, the results are compared to the numerical solutions obtained by Algorithm 2
of Chapter 3.
Figures 4.4 and 4.6 show respectively the initial conditions vector which ensure the fourth
and the first nonlinear normal modes calculated by the asymptotic expansion and by the
numerical algorithm, the results show good agreement for ε = 0.02 and kr = 1. Figures 4.5
and 4.7 show the fourth and the first nonlinear normal modes respectively for ε = 0.02 and
kr = 1 also calculated by the asymptotic expansion and by the numerical algorithm.

Frequencies fi 0.07 Hz 0.138 Hz 0.198 Hz 0.248 Hz 0.286 Hz 0.31 Hz

Periods Ti 14.11s 7.24s 5.03 s 4.03 s 3.48s 3.22 s

Table 4.1. The natural frequencies of the linearized system with their corresponding periods.
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Figure 4.4. The initial condition vector which ensures the fourth nonlinear normal mode by
asymptotic expansion (solid line) and by the numerical algorithm (dashed line) for ε = 0.02.
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Figure 4.5. The displacement calculated by asymptotic expansion (solid line) and by the
numerical algorithm (dashed line) of the first node (a) and the fifth node (b) for ε = 0.02.
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Figure 4.6. The initial condition vector which ensures the first nonlinear normal mode by
asymptotic expansion (solid line) and by the numerical algorithm (dashed line) for ε = 0.015.
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Figure 4.7. The displacement calculated by asymptotic expansion (solid line) and by the
numerical algorithm (dashed line) of the first node (a) and the fifth node (b) for ε = 0.015.
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4.4.6 Nonlinear normal mode of a beam with a unilateral spring
The main interest is to study the behaviour of a beam striking a one sided spring and to
understand the effect of this unilateral contact to the linear normal modes of the beam via
asymptotic expansion. To realize this, we have to determine the mass and the stiffness ma-
trices of the beam and incorporate the unilateral spring into the finite element model at a
chosen point. We will present results for a cantilever beam with a unilateral spring at the
free end and for a clamped-clamped beam with a unilateral spring in the middle. A spring
stiffness is fixed to kr = 107000 N/m which corresponds to the stiffness of a rubber, it is
high comparing to the stiffness of the beam in flexion. Refer to Chapter 1 and to [11] for
more details about the physical properties and about the equations of both cases.

Cantilevered beam

The model is discussed in Chapter 1 with an experimental validation and a scheme of the
mechanical system. The nonlinear normal modes of this beam are found by the use of the
multiple scales method and they are compared to the linear normal modes to see the effect
of the unilateral spring. Figures 4.8, 4.9 and 4.10 show the three first nonlinear normal
modes respectively compared to their corresponding linear normal modes. the results are in
agreement with those obtained by Algorithm 2 and presented in Section 3.6.3.
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Figure 4.8. The first nonlinear normal mode (solid line) compared to the corresponding linear
normal mode (dashed line) for kr = 107000 N/m and for ε = 1. The spring is localized at
the free end of the beam.
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Figure 4.9. The second nonlinear normal mode (solid line) compared to the corresponding
linear normal mode (dashed line) for kr = 107000 N/m and for ε = 0.1. The spring is
localized at the free end of the beam.
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Figure 4.10. The third nonlinear normal mode (solid line) compared to the corresponding
linear normal mode (dashed line) for kr = 107000 N/m and for ε = 0.1. The spring is
localized at the free end of the beam.
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Clamped-Clamped beam

A change of the boundary conditions and of the spring position leads to a clamped-clamped
Euler-Bernoulli beam with unilateral contact in the middle of the beam, this model is studied
numerically in [12]. We present a calculation of its nonlinear normal modes in the space
domain, i.e. the initial conditions vector which yields a periodic solution of the system.
Figures 4.11 and 4.12 show the second and the third nonlinear normal modes compared to
the linear one for a spring stiffness of kr = 107000 N/m and for ε = 1.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Second linear and nonlinear mode, eps=1.

Beam length

Dis
pla

ce
me

nt

Figure 4.11. The second nonlinear normal mode (solid line) compared to the corresponding
linear normal mode (dashed line) for kr = 107000 N/m and for ε = 1. The spring is
localized in the middle of the beam.
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Figure 4.12. The third nonlinear normal mode (solid line) compared to the corresponding
linear normal mode (dashed line) for kr = 107000 N/m and for ε = 1. The spring is
localized in the middle of the beam.
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4.5 Nonlinear normal modes and forced systems
The aim of the study is to provide efficient tools to deal with nonlinearities encountered
in mechanical engineering from different points of view. The concept of nonlinear normal
modes was then introduced with different methods to compute them. All this methods use
the initial condition arguments to ensure a periodic solution. Unfortunately an experimental
validation of these methods is far from being realizable because it is impossible to excite a
mechanical system with a special modal form of initial conditions. In this section, we study
the feasibility of such experimental validation. We will introduce a force excitation and see
if we can find the nonlinear normal modes. We use the same notation as Section 4.4. We
consider the following differential system written in the eigenvector space

Ẍ + Ω2X + εCẊ + εf(X) = ε(G1 + εG2) cos(ωt), (4.5.1)

where C is a diagonal damping matrix (Cii)i=1,...,n, G1 = (G1
i )i=1,...,n, G2 = (G2

i )i=1,...,n and

ω = ω1 + εσ,

σ is a detuning parameter. We are dealing with the nonlinear normal mode denoted 1 as in
previous sections. The multiple scales method will also be used with the same notation for
the time derivatives. Finally, the system is written componentwise to obtain ∀i ∈ {1, . . . , n}:

Ẍi + ω2
i X + εCiiẊ + εφri

(
n∑

j=1

φrjXj

)

+

= ε(G1
i + εG2

i ) cos(ωt). (4.5.2)

An approximate solution is sought as the first two terms of the asymptotic expansion

Xε
i = X0

i + εX1
i +O(ε2).

4.5.1 Multiple scales expansion of forced system with unilateral contact
The object is to determine initial conditions ai, ∀i ∈ {2, . . . , n} in order to obtain a periodic
solution of system (4.5.2). The triple scales method yields the following equations:

∂2X0
i

∂2T0

+ ω2
i X

0
i = 0, (4.5.3)

∂2X1
i

∂2T0

+ ω2
i X

1
i = −2

∂2X0
i

∂T0∂T1

− φri

(
n∑

j=1

φrjX
0
j

)

+

− Cii
∂X0

i

∂T0

+ G1
i cos(ωT0), (4.5.4)

with the initial conditions:{
Xε

1(0) = X0
1 (0) + εX1

1 (0) = a0 + εa1, Ẋε
1(0) = 0,

Xε
i (0) = X0

i (0) + εX1
i (0) = εai, Ẋε

i (0) = 0, ∀i ∈ {2, . . . , n}. (4.5.5)

Note that ∀i ∈ {2, . . . , n} equation (4.5.3) has a trivial solution X0
i = 0 since X0

i (0) = 0.
However X0

1 = a(T1, T2) cos(ω1T0 +ϕ(T1, T2)) as X0
1 (0) = a0 and Ẋ0

1 (0) = 0. By updating
equation (4.5.4), we have

∂2X1
i

∂2T0

+ ω2
i X

1
i = −φri(φr1X

0
1 )+ + G1

i cos(ωT0), ∀i ∈ {2, . . . , n}. (4.5.6)
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Proposition 4.5.1. The initial conditions ai, ∀i ∈ {2, . . . , n} needed to ensure a periodic
solution of system (4.5.2) are equal to those defined in proposition 4.4.3 if G1

i = 0, ∀i ∈
{2, . . . , n}. This means that systems (4.5.2) and (4.4.2) have the same normal mode if the
first order term of the excitation force G1

1 is tangent to the eigenvector of the linearized
system.

Proof. The proof consists in showing that if G1
i = 0, ∀i ∈ {2, . . . , n}, then the equations

which define ai, ∀i ∈ {2, . . . , n} for system (4.5.2) are equivalent to the equation defining the
initial condition ai for system (4.4.2). This is immediate since equation (4.5.6) is equivalent
to equation (4.4.18) after setting G1

i = 0, ∀i ∈ {2, . . . , n}.

We still need to solve equation (4.5.4) for i = 1 to find the period of the solution

∂2X1
1

∂2T0

+ ω2
1X

1
1 = −2

∂2X0
1

∂T0∂T1

− φr1

(
n∑

j=1

φrjX
0
j

)

+

− C11
∂X0

1

∂T0

+ G1
1 cos(ωT0), (4.5.7)

The same technique as in Section 4.2.1 is used, it consists in removing the secular terms

from the right hand side of the equation. For convenience we denote by ξ =
C11

2
, g = G1

and γ = σT1 − ϕ

Proposition 4.5.2. The first order term of the solution X1
1 is given as,

X1
1 = −φr1|φr1a|

ω2
1π

− 2φr1|φr1a|
ω2

1π

+∞∑

k=1

(−1)k

(4k2 − 1)2
cos (2k(ω1T0 + σT1 − γ))

+ A1 cos(ω1T0),

(4.5.8)

where

A1 = a1 +
φr1|φr1a|

ω2
1π

+
2φr1|φr1a|

ω2
1π

+∞∑

k=1

(−1)k

(4k2 − 1)2
,

a and γ are solution of the following differential system,





∂a

∂T1

= −ξa +
g

2ω1

sin(γ), a(0, 0) = a0,

∂γ

∂T1

= σ − φ2
r1

4ω1

+
g

2aω1

cos(γ) γ(0, 0) = 0.

(4.5.9)

Proof. Substituting X0
1 = a(T1, T2) cos(ω1T0 + ϕ(T1, T2)), ξ =

C11

2
, g = G1 and

(φr1a(T1, T2) cos(ω1T0 + ϕ(T1, T2)))+ = −φr1a cos(ω1T0 + ϕ)

2
− |φr1a cos(ω1T0 + ϕ)|

2

in equation (4.5.7) and factorizing we have
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∂2X1
1

∂2T0

+ ω2
1X

1
1 =

(
−g sin(σT1 − ϕ) + 2ω1

∂a

∂T1

+ 2ω1ξa

)
sin(ω1T0 + ϕ)

(
gcos(σT1 − ϕ) + 2ω1a

∂ϕ

∂T1

− φ2
r1a

2

)
cos(ω1T0 + ϕ)

− φr1 |φr1a cos(ω1T0 + ϕ)|
2

, X1
1 (0) = a1, Ẋ1

1 (0) = 0.

(4.5.10)

By setting the secular terms to zeros and denoting by γ = σT1 − ϕ we directly get system
(4.5.9) and the following differential equation

∂2X1
1

∂2T0

+ ω2
1X

1
1 = −φr1 |φr1a cos(ω1T0 + ϕ)|

2
, X1

1 (0) = a1, Ẋ1
1 (0) = 0, (4.5.11)

where the solution is given in the proof of proposition 4.4.2

4.5.2 Bounds on the remainder
As in the previous section, we will study the remainder of the approximate solution to ensure
that it is bounded and then to prove our asymptotic solutions. The equation which relies
the remainder and the approximate solution can be obtained by substituting the following
approximate solution in equation (4.5.2):

Xε = X0
i + εX1

i + ε2ri, ∀i ∈ {1, . . . , n}. (4.5.12)

Proposition 4.5.3. The remainder ri is then solution of the following differential equation

∂2ri

∂2T0

+ ε
∂ri

∂T0

+ ω2
i ri = Si(T0, T1, T2) + f ε

i (T0, T1, T2) + εgε
i (T0, T1, T2, rj),

ri(0) = 0, ṙi(0) = 0,

(4.5.13)

where

Si(T0, T1, T2) = −∂2X0
i

∂2T1

− 2
∂2X1

i

∂T0∂T1

− 2
∂2X0

i

∂T0∂T2

− Cii
∂X0

i

∂T1

− Cii
∂X1

i

∂T0

+ G2
i cos(ωT0)− φriH(u)v,

f ε
i (T0, T1, T2) = ε

(
−∂2X1

i

∂T 2
1

− 2
∂2X0

i

∂T1∂T2

− 2ε
∂2X1

i

∂T1∂T2

− 2ε
∂2X1

i

∂T0∂T2

− ε
∂2X0

i

∂2T2

− ε2∂2X1
i

∂2T2

)

ε

(
−Cii

∂X1
i

∂T1

− Cii
∂X0

i

∂T2

− εCii
∂X1

i

∂T2

)
− φriχ(u, v)

−
(

2ε
∂2ri

∂T0∂T1

+ ε2 ∂2ri

∂2T1

+ 2ε2 ∂2ri

∂T0∂T2

+ 2ε3 ∂2ri

∂T1∂T2

+ ε4 ∂2ri

∂2T2

+ ε
∂ri

∂T1

+ ε2 ∂ri

∂T2

)
,

gε
i (T0, T1, T2, r

1, . . . , rn) = −φri
[(u + εv + ε2w)+ − (u + εv)+]

ε2
.

such that u = φr1X
0
1 , v =

n∑
j

φrjX
1
j and w =

n∑
j

φrjrj .
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The proof is similar to the proof of Proposition 4.4.1. The following Lemma is needed
to proof that the remainder is bounded, it is a general case of Lemma 6.3 of [31] where a
damping term is added.

Lemma 4.5.4. [Bounds for large time ]
Let wε be a solution of

{
w′′

ε + εw′ + wε = S(s) + fε(s) + εgε(s, wε),
wε(0) = 0, w′

ε(0) = 0.
(4.5.14)

If source terms satisfy the following conditions where M > 0, C > 0 are fixed constants :

1. S(s) is a 2π-periodic function orthogonal to e±is, and |S(s)| ≤ M for all s,

2. |fε| ≤ M and for all T ,
∫ T

0

|fε(s)|ds ≤ CεT (resp. C
√

εT ),

3. for all R > 0: MR = sup
ε∈(0,1),s>0,R>|u|

|gε(s, u)| < ∞,

that is to say that gε(s, u) is locally bounded with respect to u
independently from ε ∈ (0, 1) and s ∈ (0, +∞),

then, there exists ε0 > 0 and γ > 0 such that, for 0 < ε < ε0, wε is uniformly bounded in
W 2,∞ (0, Tε), where Tε =

γ

ε
(resp.

γ√
ε
).

Notice that fε and gε are not necessarily continuous. But in previous sections the right
hand side is globally continuous, i.e. S + fε + εgε(., wε) is continuous, so, in this case, wε is
C2.

Proof. First we remove the non resonant periodic source term. Second, we get L∞ bound
for wε and w′

ε with an energy estimate. Third, with equation (4.5.14), we get an uniform
estimate for w′′

ε in L∞(0, Tε) and the W 2,∞ regularity.
Step 1: remove S
It suffices to write wε = w1 + wε

2 where w1 solves the linear problem:

w′′
1 + εw′

1 + w1 = S(s), w1(0) = 0, w′
1(0) = 0. (4.5.15)

w1 and w′
1 are uniformly bounded in L∞(0, +∞) since there is no resonance.

More precisely, w1 = F (s)+Ae
−ε
2

s cos

(√
4− ε2

2
s

)
+Be

−ε
2

s sin

(√
4− ε2

2
s

)
, where F is

2π periodic. F is obtained by Fourier expansion without harmonic n = ±1 since S is never
resonant:

F (s) =
∑

n6=±1

cn

1− n2 + iεn
eins with S(s) =

∑

n 6=±1

cne
ins. (4.5.16)
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F is uniformly bounded, with Cauchy-Schwarz inequality set C2
0 =

∑

n 6=±1

|n2 − 1 − iεn|−2,

we obtain:

‖F‖L∞ ≤
∑

n 6=±1

|cn|
|n2 − 1− iεn| ≤ C0‖S‖L2(0,2π) ≤ C0‖S‖L∞(0,2π). (4.5.17)

Similarly, set D2
0 =

∑

n6=±1

n2|n2 − 1− iεn|−2, we have ‖F ′‖L∞ ≤ D0‖S‖L∞(0,2π).

Furthermore, 0 = w1(0) = F (0) + A, and 0 = (w1)
′(0) = F ′(0) + B, then, A and B are

well defined. w,
1 is also bounded, i.e. there exists M1 > 0 such that ‖w1‖W 1,∞(0,+∞) ≤ M1.

Notice that from equation (4.5.15), w1 belongs in W 2,∞.

Then we get an equation similar to (4.5.14) for wε
2 with S ≡ 0 and the same assumption for

the same fε and the new gε: gε(s, w) = gε(s, w1 + w).
{

(wε
2)
′′ + (wε

2)
′ + (wε

2) = fε(s) + εgε(s, w
ε
2),

(wε
2)(0) = 0, (wε

2)
′(0) = 0.

(4.5.18)

Step 2: energy estimate
Second, we get an energy estimate for wε

2. We fix R > 0 such that R is greater than the
uniform bound M1 obtained for w1

ε , R = M1 + ρ with ρ > 0. Let us define

2E(s) = ((wε
2)
′(s))2 + (wε

2)(s)
2 + ε

1

2

∫ T

0

((wε
2)
′)2dt, E(s) = sup

0<τ<s
E(τ), (4.5.19)

and Tε be the first time T > 0 such that 2E(T ) ≥ ρ2, i.e. ρ estimates the size of (wε
2) and

(wε
2)
′.

Multiplying the differential equation (4.5.18) by (wε
2)
′, we have for all s < T < Tε(ρ) the

following inequalities since sup
0<τ<s

|(wε
2)
′(τ)| ≤

√
2E(s), and

∫ T

0

|fε(s)|ds ≤ CεT ,

E(s) =

∫ s

0

fε(τ)(wε
2)
′(τ)dτ + ε

∫ s

0

gε(τ, (w
ε
2)(τ))(wε

2)
′(τ)dτ,

≤ Cεs

√
2E(s) + εsMR

√
2E(s),

E(T ) ≤ CεT

√
2E(T ) + εTMR

√
2E(T ),

εT ≥

√
E(T )/2

MR + C
.

(4.5.20)

Notice that if 2E(T ) < ρ2 for all T > 0 then Tε = +∞. The critical case is when Tε is
finite and E(T ) approaches ρ2/2 when T goes to Tε(ρ). Thus we have Tε ≥ ρ

2ε(MR + C)

and E(t) ≤ ρ2

2
for t ≤ Tε =

γ

ε
with γ =

ρ

2(MR + C)
.

The proof is similar when
∫ s

0

|fε(τ)|dτ ≤ C
√

εT then Tε ≥ ρ

2
√

ε(
√

εMR + C)
.
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Lemma 4.5.5. [Bounds for large time for systems]
Let wε = (wε

1, · · · , wε
N) be the solution of the following system:

{
(λ1)

2(wε
k)
′′ + ε(wε

k)
′ + (λk)

2wε
k = Sk(s) + f ε

k(s) + εgε
k(s; wε),

wε
k(0) = 0, (wε

k)
′(0) = 0, k = 1, · · · , N.

(4.5.21)

If source terms satisfy the following conditions where M > 0, C > 0 are fixed constants :

1. non resonance conditions with Sk(s) are 2π-periodic functions and |Sk(s)| ≤ M ,

(a) S1(s) is orthogonal to e±is, i.e.
∫ 2π

0

S1(s)e
±isds = 0,

(b) λk, λ1 are Z independent for all k 6= 1,

2. |f ε
k| ≤ M and for all T ,

∫ T

0

|fε(s)|ds ≤ CεT or C
√

εT ,

3. for all R > 0: MR = max
k

sup
ε∈(0,1),s>0,w2

1+···+w2
N<R2

|gε
k(s; u)| < ∞,

then, there exists ε0 > 0 and γ > 0 such that, for 0 < ε < ε0, wε is uniformly bounded in
W 2,∞ (0, Tε), where Tε =

γ

ε
( resp

γ√
ε
).

Proof. The proof of this Lemma is inspired from the proof of Lemma 4.4.5, see Lemma 6.4
of [31] for technical details.

Proposition 4.5.6. If a and γ verify system 4.5.22 and 4.5.9 then There exists ε0 > 0 and γ >
0 such that, for 0 < ε < ε0, the remainder (ri)i=1,...,n is uniformly bounded in W 2,∞ (0, Tε),
where Tε =

γ

ε
.

Proof. The proof is similar to the proof of Proposition 4.4.6. The nonlinear terms f ε
i and gε

i

verify the second and the third conditions of Lemma 4.5.4 after moving the derivative of ri

to the left hand side . We have to find the conditions on S1 which ensure a bounded solution,
i.e. we have to remove the secular terms. To do this, we set G2

1 to zero, it is not a restrictive
case since the term of first order of the excitation force is not zero (G1

1 6= 0). S1 is then given
as

S1(T0, T1, T2) = −∂2X0
i

∂2T1

− 2
∂2X1

i

∂T0∂T1

− 2
∂2X0

i

∂T0∂T2

− Cii
∂X0

i

∂T1

− Cii
∂X1

i

∂T0

− φriH(u)v

X1
1 does not contains any term at the frequency ω1 if we take A1 = 0 in Proposition 4.5.2. v

does not also have any resonant term as well as H(u). We still have

−∂2X0
i

∂2T1

− 2
∂2X0

i

∂T0∂T2

− 2ξ
∂X0

i

∂T1
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which can have secular terms. A simple calculation gives:

− ∂2X0
i

∂2T1

− 2
∂2X0

i

∂T0∂T2

− 2ξ
∂X0

i

∂T1

=
(
− ∂2a

∂2T1

+ a(σ − ∂γ

∂T1

)2 + 2a
∂γ

∂T2

ω1 − 2ξ
∂a

∂T1

)
cos(ω1T0 + σT1 − γ)

+

(
2(

∂a

∂T1

+ ξa)(σ − ∂γ

∂T1

) + a
∂2γ

∂2T1

+ 2
∂a

∂T2

ω1

)
sin(ω1T0 + σT1 − γ)

The coefficients of the secular terms in the expression of S1 have to be set to zero to ensure
the first hypothesis of the lemma:





2a
∂γ

∂T2

ω1 =
∂2a

∂2T1

− a(σ − ∂γ

∂T1

)2 + 2ξ
∂a

∂T1

, γ(0, 0) = 0,

2
∂a

∂T2

ω1 = −2(
∂a

∂T1

+ ξa)(σ − ∂γ

∂T1

)− a
∂2γ

∂2T1

, a(0, 0) = 0.

(4.5.22)

This conditions should be added to the conditions of system 4.5.9 to ensure a bounded solu-
tion.

4.5.3 Approximate steady state solution

A stationary solution for system (4.5.9) can be found for
∂a

∂T1

= 0 and
∂γ

∂T1

= 0, this yields

the following frequency response equation:

a2 =
g2

4ω2
1

(
ξ2 + (σ − φ2

r1

4ω1
)2

)2 (4.5.23)

The steady state solution is then given as

X0
1 = a cos (ωt− γ) ,

X1
1 = −φr1|φr1a|

ω2
1π

− 2φr1|φr1|a
ω2

1π

+∞∑

k=1

(−1)k+1

(4k2 − 1)2
cos(2k(ωt− γ)) + A1 cos(ω1t)).

This shows that the steady state solution has the same period as the excitation force with a
phase delay in addition to the harmonics generated by the nonlinear term. It is in agreement
with the solution of the single degree of freedom oscillator calculated for equation (4.2.1).
Note that the frequency of the responce depends only on the frequency of the excitation
force. This is true as the damping matrix reduces the effect of the natural frequencies of the
system being excited by the force when time goes to infinity.
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4.5.4 Stability of the approximate solution
The steady state solution of equation (4.2.1) was stable. The same technique shows that the
solution of system (4.5.1) is also stable. We will just calculate the Jacobian corresponding to
system (4.5.9) which is given as follows

[ −ξ a0(
φr1

4
− σ)

− 1
a0

(φr1

4
− σ) −ξ

]
. (4.5.24)

It has negative eigenvalues since its trace is negative and its determinant is positive, refer to
the first section for more details.

4.5.5 Alternative Calculation of the nonlinear normal modes with an
excitation force

The amplitude of the steady state response depends only on the excitation frequency and
magnitude, it does not depend on the initial conditions. This amplitude is given in the fre-
quency response in equation (4.5.23). When this amplitude is maximum, it puts in evidence a
resonance phenomena, the solution stays bounded due to the damping term. We deduce that
this amplitude is maximum for a σ value which corresponds to the period of the nonlinear
normal mode of the autonomous system (4.4.28).

Proposition 4.5.7. The amplitude a of the response is maximum if σ =
φ2

r1

4ω1

and then the

excitation frequency which leads to a nonlinear normal mode is

ω = ω1 + εσ = ω1 + ε
φ2

r1

4ω1

.

It is corresponds to the first order approximation of the nonlinear normal mode of the au-
tonomous system (4.4.28)

Proof. We differentiate a in equation (4.5.23) with respect to σ, we find easily

∂a

∂σ
=

−g(σ − φ2
r1

4ω1
)

2ω1

(
ξ2 + (σ − φ2

r1

4ω1
)2

) 3
2

,

which shows that a is maximum when σ =
φ2

r1

4ω1

.

This proposition open the door to the experimental validation, but not completely: the
excitation force used for the calculation of an analytical solution has a special form, it is
of first order in the direction of the first eigenvector with components of order ε on the
other eigenvectors. This form is not workable experimentally and the experiments are more
suitable for a punctual excitation in the real space which leads to non zeros components on all
the eigenvectors. The problem can then be treated by exciting the system with a force which
have components on all the eigenvectors, this can complicate the calculation of an analytical
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solution. But the choice of the form of the excitation force is not capital as the choice of
the excitation frequency! If all components of the system are excited by a frequency near an
eigenfrequency, only the component which corresponds to this frequency will have a large
solution and the other solutions will be neglected. This aspect is not proved mathematically
but we have done numerical simulations to confirm this idea. We give a procedure to find a
nonlinear normal mode using an excitation force:

1. Define the level of the nonlinearity ε.

2. Define which nonlinear normal mode to be found.

3. Find the nonlinear frequency of the system. This can be done by three methods using:
A Frequency sweep, the numerical algorithm of Chapter 3 or the approximate period
by multiple scales of the autonomous system.

4. Excite the system on a point at this frequency for long time to establish the permanent
regime.

5. Extract a time solution long a period of excitation, this is an approximation of the
nonlinear normal mode.

6. The displacement of the nodes can be obtained in the space domain, this gives the
deflexion mode shapes of the structure.

The method use the integration of a nonlinear differential system, it is then simple to be used
in term of computation time and implementation.

143



4.5.6 Numerical results of a cantilever beam with a unilateral elastic
contact

We apply the procedure described above to find the first two approximate nonlinear normal
modes of a the cantilevered beam system studied in Section 4.4.6. The beam is under a
punctual harmonic excitation. Figure 4.13 shows the first nonlinear normal mode of the
beam, the excitation frequency is calculated using the approximate period of the autonomous
system: ω = ω1 + ε

φ2
r1

4ω1
. The nonlinear frequency is 77.58 Hz and the linear one is 52.7 Hz,

and that is for a stiffness kr = 107000 N/m and for ε = 5. Figure 4.15 shows the time
steady state solution for 50 periods of the first nonlinear normal mode. Figure 4.14 shows
the first deflexion mode shape of the beam for two time points corresponding to a period
of excitation. Figure 4.16 shows the second nonlinear normal mode in the time domain for
kr = 107000 N/m and for ε = 5. The nonlinear frequency is 340 Hz and the linear one
is 328.5 Hz. Figure 4.18 shows the time steady state solution for 50 periods of the second
nonlinear normal mode. The second deflexion mode shape is also plotted in Figure 4.17.
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Figure 4.13. The first approximate nonlinear normal mode, the nonlinear frequency is 77.58
Hz for ε = 5 and kr = 107000 N/m.
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Figure 4.14. The first deflexion mode shape for two time points
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Figure 4.15. The displacement of the last node for 50 nonlinear periods for an excitation at
the first nonlinear mode
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Figure 4.16. The second approximate nonlinear normal mode, the nonlinear frequency is
340 Hz for ε = 5 and kr = 107000 N/m.
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Figure 4.17. The second deflexion mode shape for two time points
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Figure 4.18. The displacement of the last node for 50 nonlinear periods for an excitation at
the second nonlinear mode

4.6 conclusion
The multiple scales method has been used to calculate the nonlinear normal modes of me-
chanical system with a unilateral contact. All the asymptotic solutions are proved for a time
intervals [0, T ε] with Tε ∼ 1

ε
. The methods has also been used for system with a force

excitation in presence of a damping term. The results are compared to the numerical solu-
tions computed using the algorithm of Chapter 3, very good agreement is found. A simple
procedure to compute the nonlinear normal modes of a system using a harmonic excitation
is described, this can be usefull for an experimental validation of the different described
methods.
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General conclusion

Two major parts were discussed in the present thesis, the first one dealt with a model of a
cantilever beam with a unilateral elastic contact under periodic excitation; The second part
dealt with the nonlinear normal modes.
The first part consists on Chapters 1 and 2, we have presented a model of a beam sticking
a snubber at the free end in three possible configurations: a simple contact, a contact with
pre-stress and a contact with backlash. The whole system was under a support vibrations
or a punctual excitation force. The models were validated with experimental sequences for
the three configurations, a good agreement was found in all cases. This simple model was
developed to predict the responses of satellite solar arrays in presence of bumpers during the
launch phase.
The developed model can then predict the responses of the structure for different range of
excitations, this can help to understand the effect of the unilateral contact to the whole dy-
namics. The nonlinear normal modes are a natural extension of the linear normal modes
to nonlinear mechanical systems. We have proved the existence of these modes in the dif-
ferentiable case using the implicit functions theorem which yielded a constructive way. An
algorithm was also performed to compute the nonlinear normal modes of nonlinear mechan-
ical systems. This algorithm required a gradient computation which was also done. This
work was presented in Chapter 3.
In chapter 4, an asymptotic method were used to evaluate the nonlinear normal modes and
to compute periodic solutions for mechanical systems with a unilateral elastic contact. The
solution was compared to those obtained by the numerical algorithm of Chapter 3. It gave
then an analytical validation of the numerical method. This perturbation technique was used
also to compute the nonlinear normal modes of forced systems. The nonlinear modes give
then an access to the modal analysis of the mechanical system studied in the first part of the
thesis.
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Vibrations d’une poutre avec un ressort unilatéral. Solutions périodiques.Modes
non-linéaires

Résumé

La thèse est composée de deux parties présentées en quatre chapitres. La première partie
traite de la modélisation, des simulations et des validations expérimentales d’un modèle de
poutre en contact avec un ressort linéaire unilatéral sous une excitation périodique. C’est
un modèle mécanique simplifié d’un panneau solaire d’une satellite et d’une cale élastique
en phase de lancement. Le système est soumis à une excitation harmonique du support
sous forme d’une accélération imposée ou d’une force ponctuelle. Le modèle est validé ex-
périmentalement par des séquences d’essais sur une poutre en aluminium en contact avec
une cale en Solithane. Les résultats montrent une cohérence avec les solutions numériques
obtenues. La deuxième partie est centrée sur les modes normaux non-linéaires des systèmes
mécaniques. Une nouvelle formulation est présentée pour trouver ces modes comme zéros
d’une application non-linéaire. Un algorithme utilisant des algorithmes existants, basé sur la
continuité des solutions périodiques, est développé pour le calcul des modes normaux.
La technique de développement asymptotique par échelles multiples pour le calcul des solu-
tions analytiques approchées d’une équation différentielle avec un terme unilatéral est intro-
duit. On utilise ensuite cette technique pour le calcul des modes normaux non-linéaires d’un
système autonome à un nombre n de degrés de liberté avec un contact unilatéral. On traite
aussi le cas d’un système forcé, on conjecture ainsi que l’on obtient une procedure simple
pour le calcul des modes non linéaires. L’ensemble fournit donc des outils mathématiques
validés pour le calcul des modes non-linéaires du système traité dans la première partie de la
thèse.

Vibrations of a beam with a unilateral spring. Periodic solutions. Nonlinear normal
modes

Abstract
The thesis consists of two parts presented in four chapters. The first one deals with the mod-
elling, the simulations and the experimental validations of a beam model with a unilateral
linear spring under a periodic excitation. It is a simplified mechanical model of a satellite
solar array and an elastic bumper during the launch stage. The system is under a harmonic
excitation given as an imposed acceleration or a punctual force. The model is validated with
experimental sequences on an aluminum beam in contact with a Solithane bumper. The re-
sults show a good agreement with the numerical simulations. The second part is focused on
the nonlinear normal modes of mechanical systems. A new formulation is then presented
to find these modes as zeros of a nonlinear mapping. An algorithm based on the continua-
tion of periodic solutions is performed using existent algorithms. The perturbation technique
using multiple scales method for the calculation of approximate analytical solutions of a dif-
ferential equation with a unilateral term is introduced. We use then this technique for the
calculation of the nonlinear normal modes of n degrees of freedom autonomous system with
a unilateral contact. We also deal with the case of forced systems, thus we obtain a simple
procedure for the calculation of the nonlinear normal modes. All these techniques provide
different validated mathematical tools for a modal analysis of the mechanical system treated
in the first part of the thesis.


