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Resune

Ce document a pour vocation deepenter mon travail de ése sur les resommations en
Chromo-Dynamique Quantique (QCD) pour la production hadronique iespde jaugi-
nos.

Dans le premier chapitre, nous introduisons quelques motivation&€pndre le Modle
Standard (MS) de la physique des particules, telles que legorabdle Herarchie et I'absence
de candidat pour former la mate noire obseie dans l'univers. Parmi les extensions
possibles, nous mentionnons I'ajout de la supeiyi® (SUSY) qui permet, en plus de
résoudre les probmes pecedemment cés, 'unification des trois couplages de jauges du
MS. Le MS Supersygtriqgue Minimal (MSSM) est I'extension la plus simple du MS qui
inclut la SUSY. Ainsi, nous fsentons les limites et contraintes actuelles sur les gdram
du MSSM provenard la fois des donges cosmologiques sur la n&at noire et des diverses
experiences aux collisionneurs.

Le second chapitre traite du MSSM. Tout d’abord, nous introduisonf&J&YSvia la
superal@bre. Puis, nous nous concentrons sur le MSSM @s$ertons son contenu en
particule, sa dengitde Lagrange et la brisure douce de la SUSY. Enfin, néagwbns les
états propres de masse et leslamges induits par la brisure de la Stne €lectrofaible, en
particulier, ceux deétats neutralinos et charginos.

Les techniquesétessaires aux resommations pour la production de paires de jauginos
sont pésenges dans le troisme chapitre. Les notations sont introduites via Espntation
de tésultats majeurs de la QCD perturbative que sont la Bessymptotique et le 8oeme
de factorisation. Nous&aillons ensuite les formalismes de resommations au seuil et en
impulsion transverse, abordant les éifntes refactorisations quiementa la resomma-
tion des logarithmes dominants. Plusieurs techniques éliamations des formalismes de
resommations sont aussi expes.

Les chapitres 4 et 5 sonédiésa la production hadronique des paires de jauginos. Dans
le chapitre 4, nous psentons nos calculs perturbatifs aux ordres dominant et sous-déminan
en QCD. A 'ordre dominant, nous donnons lésultats analytiques des sections efficaces
partoniques polarées, et nous psentons unétude nurrique des sections efficaces to-
tales et des asy@tries simple/double-spin pour la production deétiintes paires de jaug-
inos aux collisionneurs RHIC, Tevatron et LHC. A I'ordre sous-dominks corrections
QCD supersyratriques sonktudiees. Nous gsentons tout d’abord notre calcul des correc-
tions virtuelles en gcisant le scbma de renormalisation des masses, des fonction d’'onde
et des matrices de@mange des quarks et des squarks (partenaires SUSY des qlrariss).
nous ctaillons le traitement des correctioreelies par les &thodes de soustractions des
dipbles et des contributions dues aux squarks sur couche de masseérigliement, nous
trouvons que les corrections sont importantes et positives aux collisichaetuels.

Notre analyse nugrique des effets de resommations au seuil et en impulsion transverse
pour la production de paires de jauginos e&sgnée au chapitre 5. Alors que les effets
de seuil n"augmentent que peu la distribution en masse invariante et la seffitace to-
tale, ils stabilisent grandement nosgictions visa-vis des é@pendances auxchelles de
renormalisation et de factorisation. Concernant la distribution en impulsioavigese, la
resommation permet d’obtenir dessultats convergents pour des petites impulsions trans-
verses, contrairement augsultats perturbatifs. Nous avons con@aos distributions avec



celles obtenues avec degrgrateurs Monte-Carlo et nous avogtsidié en cktail I'impact
des incertitudes dus aux fonctions de distributions de partons et ats mfieperturbatifs.
Finalement, le chapitre 6 conclut sur I'apport de nesuttats pour la @ouverte des
paires de jauginos et les perspectives futures quant avelappements desgerateurs
Monte-Carloa I'ordre sous-dominant et des techniques de resommation.
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1
Introduction

The Standard Model of particle physics is based on the gauge gro®)SYSU(2), x
U(1)y and includes both the strong and electroweak interactions [1, 2, 3, At Bresent,
there are experimental evidences for all of its particles except for thgsHigson, which
continues to defy the scientific community. It is the last necessary pieceddluethe ob-
served electroweak symmetry breaking and is supposed to couple toneassiwe particle
[6, 7]. Despite its great success in describing Nature, the StandarélNeaves several
questions unanswered. From the point of view of particle physics, thé gqunosed argu-
ment is probably the hierarchy problem. It originates from the large difiez between
the electroweak scale @ (100 GeV) and the Planck scale 6110'° GeV). This leads to
unnaturally large radiative corrections to the scalar masses in the theory (in the Standar
Model there is only one scalar boson, the Higgs boson). TherefareStdmdard Model
parameters have to be fine-tuned to respect all electroweak preciseon@iathe cosmo-
logical side, the Standard Model does not include the dark matter, whidiséeed in the
Universe. These considerations are taken as hints of new physiict) might appear at
the scale o7/(1 TeV).

Many models propose to extend the Standard Model in order to solve cseveral
of these problems. Among them, supersymmetry is probably the best-knacegainly
the best studied extension [8, 9]. Linking bosons and fermions in anrgléganalism,
supersymmetry allows for a natural solution of the hierarchy problem@rakcturate uni-
fication of the three Standard Model gauge couplings at a high unificatada ef &'(10
GeV). Furthermore, ilR-parity is conserved, it provides a convincing candidate for the
large amount of cold dark matter observed in the Universe. In the Mining@iSymmetric
Standard Model, this is generally the lightest neutraliﬁ@),(one of the spin-1/2 super-
symmetric partners of the electroweak gauge bosons (gauginos) anel idfgbs bosons
(Higgsinos), which mix to form four neutral (neutralino) and two charfgthrgino) mass
eigenstates. The gaugino/Higgsino decomposition of the neutralinos/absrgamtains
important information about the supersymmetry-breaking mechanism ansl legucial
role in the determination of the dark matter relic dens¥ypy. With the precision mea-
surements of the Cosmic Microwave Background, the satellites COBE and RVivike
imposed strong limits o2cpm [10, 11], thus allowing for dramatic discriminations be-
tween different supersymmetric scenarios [12]. In Fig. 1.1, we shearakconstraints for
minimal supergravity scenarios in tima —my , plane,my andmy, being the universal
scalar and gaugino mass, respectiveRhe region allowed by the WMAP constraint is in-

1The minimal supergravity parameters and supersymmetric particleisatessed in Sec. 2.2.3.
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Figure 1.1: Theny —my , plane for tar = 10 andu > 0 [12]. The pre-WMAP (light blue),
post-WMAP (dark blue) and, — 2 (pink) favoured regions are shown as welloas: sy
(green) and charged dark matter (brown) excluded regions. Thezetifflines indicate the
LEP constraints on the Higgs boson mass (red), chargino mass (blatkgkttron mass
(blue).

deed a very narrow band, and several regions are preferredulthesgion at smaling and
my >, the focus point at very largeo, and the co-annihilation region just above the region
excluded because of a charged dark matter (usually this is the lightest stau

Unfortunately, the collider constraints are less severe, and supersyimipestticles
have yet to be found at high-energy accelerators. The Large HleBositron (LEP)
and Tevatron colliders have constrained the gauginos and scalarrpasfribe fermions
(squarks/sleptons) to be heavier than a few tens and hundreds ofr&gpéctively. In
Fig. 1.2, we show the present limits for the search of the associated picdo€ light-
est charginon) and next-to-lightest neutralind(g) at the DO and CDF experiments. The
current Tevatron searches exclude only the low mass region of theetaaspace (roughly
mp < 150 GeV andn » < 250 GeV), and the search for supersymmetric particles has thus
become one of the defining tasks of the Large Hadron Collider (LHC) &\CHn spite of
difficulties in September 2008, due to a serious fault between two sukrciimg bending
magnets, the proton beams were finally circulating in the LHC and first collisvens ob-
served in November 2009. At present, the LHC is running with a centreasis energy of
7 TeV and should collect 1 fi by the end of 2011. A feW andZ bosons have already
been seen, and the very fitsevents are being analysed as you are reading this manuscript.
Concerning supersymmetry, ATLAS and CMS should have enough déta and of run
one to double today’s sensitivity to certain new discoveries, pushing thewdis/ range
up to masses of 620 GeV [16]. The end of run one will see a longer shotttowoutine
maintenance and repair completion, the goal being to reach first a cémtrass energy
of 10 TeV, and then the LHC design energy and luminosity of 14 TeV adtid@ 2s 1,
respectively.

In this document, we present precision calculations for gaugino-paiuptimn at cur-
rent hadron colliders. In the second chapter of this thesis, we introslysersymmetry

2
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Figure 1.2: Region in they —my, plane excluded by the DO analyses (green), by LEP
searches for charginos (light grey) and sleptons (dark grey) §i] by CDF (black line)
[14]. The assumed minimal supergravity parametersfgre 0 GeV, tar3 = 3 andu > 0
[15].

and concentrate on the simplest realistic model, the Minimal Supersymmetric $tandar
Model. We therefore present its particle content, its Lagrange densityhancesulting
mass eigenstates of the theory, emphasising the neutralino and chargineigeassates.
In chapter three, we present important features of perturbative @@Boaus on threshold
and transverse-momentum resummations. The pioneering work of Colliper Sod Ster-
man on all-order resummations [17, 18] as well as more recent improvenmerdstailed.
Chapter four is devoted to our fixed-order calculations for gauginograiduction. We
study the polarised total cross sections and the supersymmetric QCD mdatiections
to the unpolarised cross sections. In chapter 5, we apply the resummatitadigons to the
production of the gaugino pairs. Analytical and numerical results ardettfacusing on
the transverse-momentum spectra, invariant-mass distributions, and t#slsections at
both the Tevatron and the LHC. Our conclusion and outlook are presientedpter 6.
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2
Supersymmetry

The Standard Model (SM) of particle physics, developed in the 70% khawn a great
success in describing Nature. Based on the gauge-symmetry grolBcStSU(2), x
U(1)v, it consistently includes both the electroweak and the strong interactio@s314,
5]. At present, its only missing piece is the discovery of the Higgs bosspprsible for
the generation of the electroweak gauge-boson masses and the fermgms ithaisugh its
Yukawa couplings [6, 7].

However, there are still several fundamental open questions, and $Mmxtensions
propose to solve some of them. Among these extensions, the Minimal Supersionme
SM (MSSM) is probably the most famous and best studied [8, 9]. Wedk sapersym-
metry (SUSY) is indeed one of the most appealing extensions of the SMn Ibreak
the electroweak symmetry radiatively, allows for its grand unification with thal igauge
symmetry of strong interactions, offers a natural explanation of the |laegarbhy between
electroweak and gravitational interactions and appears naturally in steéogegh. From a
theoretical point of view, the main motivation for SUSY is that it is the only wayxtersd
the Poincag symmetry with internal symmetries (as discussed in the next section).

This chapter is devoted to the presentation of the MSSM. We first introdusd 8self
and then focus on the MSSM with its field content and its symmetries, brokeotoamd
finally its mass spectrum.

2.1 The superalgebra

It is known that Poincdr symmetry is realised in Nature and that symmetries play an im-
portant role in particle physics. Therefore, one may ask whether it Eledo extend the
Poincaé group with internal symmetries. Recall that the generators of the Peialtgbra
satisfy the commutation relations

[P;u Mvp] =i(9uvPo — 9upPy), (2.2)
Myuv,Mpg] = =i(9upMve — GuoMvp +MupQve — MueQup), (2.3)

wheregyy = diag(1,—1,—1,—1) is the Minkowski metric,P, is the energy-momentum
operator andM,, are the generators of angular momenta and Lorentz boosts.

In 1967, Coleman and Mandula published their so-caitedo theorem, where starting
from an interacting four-dimensional quantum field theory with massivepaintcle states

5



2 SQupersymmetry

and assuming some non-zero scattering amplitudes, they proved that agnplypewhich
contains both the PoindaigroupZ” and an internal symmetry grou$ must be a trivial
direct productZ x ¢ [19]. This is well-known nowadays and it is actually realised in the
SM with gauge symmetries, whose generators trivially commute with those of thedfo
group. For instance, concerning the gauge groupNgUits generatord @, with 1 < a <

N2 — 1, satisfy the following commutation relations

[T TP =if¥eTC, (2.4)
(T8 Py =0=[T* My, (2.5)

where f3¢ are the structure constants of the gauge group. And this would be thé #med o
story if nobody had managed to bypass this no-go theorem.

In 1975, Haag, Lopuszanski and Sohnius extended the Coleman-Mahdorem by
allowing not only commuting, but also anticommuting symmetry generators. Tlosggr
that there is a unique non-trivial extension of the Poia@dgebra which is called superalge-
bra [20]. The superalgebra is defined by the usual relations of the&eialgebra together
with the new (anti)commutation relations

{Qh Q) =2(0%) 45Pu8), (2.6)
{Q Qh} = apZ", 2.7)
Qs Pu] =0, (2.8)
Qs Myv] = ()&’ Q, (2.9)
[Q,,TY =0, (2.10)

whereQ,,, with 1 <i < .4/, are the#” SUSY generatorsZ'! = —Z!' are central charges
which commute with all the generators of the superalgebraggnes the two-dimensional
antisymmetric tensor witlg;» = 1. Note that the SUSY generators carry a spinorial index
(a = 1,2 in Weyl notation), thus changing the spin of the state they act on by dheCha
conventions for the matrices”, o# andg*" are

(0")aa = (1,0x, 0y, 07)aar, (2.11)

(Eﬂ)da — 81:7!3805(0-“)!3[-3’ (212)
1 _

(0" d = Z(G“Evfava“)aﬁ, (2.13)

wherel is the identity matrix andy , are the usual Pauli matrices.

The particle states lie in the irreducible representations of the above Kgiee name-
ly the supermultiplets. Each of them contains an equal humber of bosonieamidnic
degrees of freedom. As can be seen from Egs. (2.8) and (2.10)UB¥ §enerators com-
mute with both the squared mass oper&dand the generators of the gauge transforma-
tions. Thus, particles in the same supermultiplet have equal mass, elecuge chaak
isospin and colour quantum numbers. In principle, there cantbel 4] distinct sets of
SUSY generators, whetedenotes the maximal spin of the particles involved in the theory.
For instance for renormalisable gauge theories wherd, one should in principle consider
the cases ¥ .4 < 4. However, for./” > 2, left-handed and right-handed fermionic states
belong to the same supermultiplet and have equal weak isospin quantumrnuBiree
we know that parity is violated by the weak interactions, only the caSe- 1 is viable
phenomenologically.



2.2 The Minimal Supersymmetric Sandard Model

Names \ Superfield‘ Spin 0 \ Spin 1/2 ‘
Squarks/Quarks Q 6= (OL,dL) | qu=(u,,d)
U fi% u%
Sleptons/Leptons L L= (V,8) L= (v,&)
E & ] e
Higgs/Higgsinos Hiy hy = (H),H]) | hy= (H)H[)
Ha ha = (H5 ,HY) | ho = (H;,HY)

Table 2.1: Chiral supermultiplets of the MSSM.

Names Superfield| Spin 1/2| Spin1 |
Gluinos/Gluons G g g
WinosW-bosons| W W WO | wE wo

Bino/B-boson B BO BO

Table 2.2: Vector supermultiplets of the MSSM.

2.2 The Minimal Supersymmetric Standard Model

Although SUSY had appeared before in some articles published in the &bvimt [21,
22], it was the work of Wess and Zumino in 1974 that triggered the greaestten SUSY
[23]. It is fair to say that most of the SUSY extensions of the SM like the MS&ive
followed the path set by their work [24, 25]. For a complete introduction t&%fleld
theory with an emphasis on the MSSM see Refs. [9, 26].

2.2.1 Field Content of the MSSM

The MSSM is the minimal model which includes both the SM afid= 1 SUSY. It is
built on two kinds of supermultiplets. The first one is called the chiral supiptai. It is
composed of a complex scalar field and a Weyl fermion. The second on&ir® also a
Weyl fermion, but associated with a vector boson. It is called a vectarsugtiplet.

The SM fermions, the quarks and the leptons, are incorporated in cniratraultiplets,
thus getting scalar partners called squarks and sleptons, respedtiagition, to preserve
SUSY and avoid gauge anomalies, two Higgs doublets are needed in the Migiiéd the
SM. They are organised in chiral supermultiplets together with their fermiariogrs, the
Higgsinos. Finally, all the SM gauge bosons are associated with vecterrsufiiplets,
and we call their SUSY partners the gauginos. The MSSM content ofl @rndavector
supermultiplets is summarised up in Tabs. 2.1 and 2.2 respectively.

2.2.2 Supersymmetric Lagrange density

In order to be more concise, we will denote the complex scalar and Wewglderwithin
the chiral supermultiplets by andy, while the gauge bosons and the gauginos from vec-
tor supermultiplets will be denoted By, andA respectively. The Lagrange density of a

7



2 SQupersymmetry
renormalisable SUSY theory is then given by

Lsusy= (Du(p)iT(D“(p)i +igioy(DHY)i+ i)\aO'“(D“X)a— }Fa L (FHHY
1

;
20 F JLll.t,uj+hc Via,g). (2.14)

[ |g\[l.U| aTa(Pj
The first line contains all the kinetic terms and the gauge interactions invohg@ntpv
bosons. These interactions are hidden either in the covariant degilgfiv= d;, +igA; T?,
which ensures the gauge invariance of the Lagrangian, or in the fiefijttreensolF, =
OuAS — 0,A% — gfaCADAS. The first term in the second line involves the interactions be-
tween scalars and fermions, and the second term, namely the scalar poiemt&ined
by

2
1 tra a
+§Z(g(g Tog + K22, (2.15)

ow
V((R,(P;L):Z‘a(n
|

where the Fayet-lliopoulos terkd is non-zero for U(1) gauge fields only [27].

Having fixed the list of the chiral and vector supermultiplets in the previoctiose the
MSSM is then specified by the choice of its superpotential written in terms ofttinal ¢
superfields

Wwussm = —EyeLH; — DypQH;1 +Uyy QHz — pH i Ho. (2.16)

For brevity, we have suppressed the possible flavour and gaugesniiloefirst three terms
correspond to the Yukawa couplings and give rise to the (s)fermion siafhe last term,
so-called theu-term, is related to the Higgs(ino) masses.

In principle, when impaosing only renormalisability and gauge invariance oueldhave
included four additional terms in the superpotential. However, three of thaelate lepton
number and the fourth violates baryon number, leading to serious problgimthe/present
limits on proton decay. To avoid these, one must assume one or sevdtareddymme-
tries. Usually, it isR-parity which is chosen. It is defined by

R— (_1)3B+L+28, (217)

B andL being the baryon and lepton numbers &ttie spin of the particle. Under this new
guantum number, the SM particles heRe= 1, while their SUSY partners ha= —
SinceR is multiplicative, only vertices with an even number of SUSY particles are allowed
They can therefore only be produced by pairs and may decay only iatsfates containing
an odd number of SUSY particles. Consequently, the Lightest SUSY Pt is stable
and can only interact via (co-)annihilation processes. If in addition tHe is®lectrically
neutral and colourless, it can be a viable Dark Matter (DM) candidate pbthe missing
pieces of the SM.

2.2.3 Supersymmetry breaking

At this stage, the action obtained from the Lagrange density of Eq. (2.Inaisant under
global SUSY transformations. Therefore all the SUSY patrticles havedahesame mass
as their SM partners. This is in contradiction with the observation that SUS$fCIpa
have not been discovered so far, meaning that SUSY must be brokese t8e breaking
mechanism is not known, we parameterise it by adding terms which break 8kjfcitly.

8



2.3 Mass eigenstates

At present, the consensus is that these terms must not introduce quddm@tiEnces in
quantum corrections. In the MSSM, the soft SUSY-breaking terms aea iy [28]

1, am
Zsoft =~ 5 (M1BB -+ MWW + M3gg + h.c.)
— meh!hy —mghihy + (bhyhy +h.c.)

— (- &haeli hy — dhapdhy + GhaudLhy + h.c.)
— &ymér — I i — dgmB dr — R O — G MG, (2.18)

where the gaugino-, Higgs- and sfermion-mass terms are shown in theséicsind and
last lines, respectively. The third line involves the trilinear scalar interagtibiere again,
summations over possible flavour and gauge indices are understood.

The explicit breaking of SUSY, as presented in Eq. (2.18), may appelegint. One
would prefer to break SUSY spontaneously, so that the action is still imtamader SUSY
transformations, but the ground state of the theory is not. A mechanism, wiidts
directly in the MSSM, is unfortunately not known. In present models, sp@wous SUSY
breaking has to happen in a hidden sector and is mediated to the visible SectdSSM,
through a shared interaction. Unfortunately, neither the particle coritém bidden sector
nor the mediation with the visible sector are known.

The most popular SUSY-breaking model is called minimal SUperGRAvity (mMSAGR
[29, 30, 31]. In this framework, the hidden and visible sectors communibadeigh the
gravitational interactions. The effective soft terms in Eq. (2.18) are tletarmined by
only five parameters, which are the universal scalar and gaugino smagsedm ,, the
universal trilinear coupling\g, the sign of theu-parameter and the ratio of the vacuum
expectation values of the Higgs fields fndiscussed in Sec. 2.3.1. At the unification
scale, we assume the following relations

f = 1§ = 1 = = ¢ = g =, .19
my/p =My =Mz = Mg, (2.20)
Aoye =ag, Aogyp=ap and Agyy =auy. (2.21)

Then, the parameters at low energy are obtained through their renotialigeoup equa-
tions (RGE). In the work presented here, we only consider mSUGRAasosn even if
several other mediations have been proposed in the literature, e.g. megiiatmmgh gauge
interactions or the super-Weyl anomaly.

2.3 Mass eigenstates

In order to give masses to thg- andZ-bosons, electroweak symmetry has to be broken.
Consequently, all particles with the same spin, electric and colour chargasrie, theB®-
andW0-bosons in the SM. In the following, we will focus on the ElectroWeak Symmetry
Breaking (EWSB) and the resulting mixings which occur in the Higgs, gadgdiggsino
and sfermion sectors.



2 SQupersymmetry

2.3.1 Higgs sector

As already mentioned in the previous section, the MSSM contains two HigdpedsuThe
scalar Higgs potential is then given by

Vhiiggs = (|H[%+ M) |he|? + (| u|? + mB)|na|? — (bhyhp + h.c.)

+ (@ @) (P~ o2+ @i, (2.22)
where we have included the contributions from both the SUSY scalar pdterq. (2.15)

and the soft breaking terms in Eq. (2.18). The standard proceduresge ® 82), trans-
formation to rotate away any vacuum expectation values (vevs) of thgehétiggs fields.

We simply get(H5,) = 0 which allows for electric charge conservation in the theory. The
next step is to choose tHeparameter real and positive (by redefining the phases of the
Higgs fields if necessary). HendgP symmetry is not spontaneously broken, and the scalar
Higgs mass eigenstates are a¥®eigenstates. EWSB is achieved, if the following condi-
tions are fulfilled:

(Iu?+md)(Jul>+mB) <b® and (|u|>+mg)+ (|u|*+mp) > 2b. (2.23)

This enforces the neutral components of the Higgs doublets to acquireanishing vevs
(H?,) = vi5/v2. Traditionally, the two vevs are parameterised by the SM-like vacuum
expectation valug and the angl¢8 defined by

Vv =Vi+Vv3 and tarﬁz¥, Belo, (2.24)
1

2k

After EWSB, among the eight degrees of freedom present in the two Higgfslets,
three become the massless Nambu-Goldstone bds®ris The other five become two
neutralCP-even (h,H?), oneCP-odd A° and two charged* Higgs bosons. They are
related to the interaction eigenstates through

HO\ [ cosa sina ) (v2RegH?) -
h ) \—sina cosa/ \ vV2ReHS
G%\ _ [—cosB sinB) (v2Im(Hp)
<Ao> - ( sinf3 COSB) <\@Im(H§)> (2.26)

G"\ [(—cosB sinB) (H;~
<H+> B ( sinf cosB> <H2+>’ (2.27)

wherea is the Higgs mixing angle. At tree level, the Higgs-boson masses are then

Vl) (2.25)

— V2

1
mﬁoﬁo = E[m,qu‘f‘m%:F\/(nﬁo+nﬁ)2_4nﬁon%C0§(2B)]v (2.28)
2b
M3 = Sn2B) and m@. =mi, +mg, (2.29)
where, as in the SM, thé&/- andZ-boson masses are
2 2 | 2
g, = gzv2 and mg = g :g V. (2.30)

10



2.3 Mass eigenstates

2.3.2 Sfermion sector

In the most general case, the sfermions mass eigenstates are obtaiiegbioalising 6< 6

matrices, because left- and right-handed sfermions of the three families nssunfng
that no mixing occurs between sfermions of different flavours redingeproblem into the
diagonalisation of three 2 2 matrices. The mass term for sfermions of flavéuran then

be written as
€%  fx Lt LRy 1?IL
25— (f ) (( EERf)* )\ 7 (2.31)

with the following mass matrix entries:

meL, = Me gy, + (T — e sin’ 8w)mg cos B+ n;, (2.32)
M&r, = Mg oy, + €f Si Byms cos B+, (2.33)
mERf =MiAlEpuy, — mf#(tanﬁ)izTe (2.34)

We denotem;, ef ande3 the mass, electric charge and weak isospin quantum number of the
sfermion of flavourf. The diagonalisation of the mass matrix is performed with the unitary
matrix Rf, and the resulting sfermion mass eigenstates are given by

fiy i fL
() - (£) oo

where by conventiom; < mg,. Attree level, the mass eigenvalues are given by

1

M, =5 [mfl_f + mgeRf F \/(mELf - m%zRf)z‘F‘””'ERPJ- (2.36)

2.3.3 Gaugino/Higgsino sector

The electroweak gauginos and the Higgsinos with same electric charge alsd imeixe-
sulting neutral and charged mass eigenstates are named the neutraliribe ahdrginos
respectively.
For the neutral eigenstates, the mass term in the Lagrange defis#tyZsusy+ -Zsoft IS
given by
1
Z> fé(wO)TYgu% h.c. (2.37)
It is bilinear in the (two-component) fermionic partners
@ = (—iB%, WP, HY H)T with j=1,....4 (2.38)
of the neutral electroweak gauge and Higgs bosons and proporticthed, tgenerally com-
plex and necessarily symmetric, neutralino mass matrix

M, 0 —mzsinBycosB mzsinBy sinf
v — 0 M mz cosBy cosB  —myzcosBy sinf
—mysinBycosB Mz cosBy cosP 0 —u ’
mzsinBysin3  —mzcosBy sinB —U 0
(2.39)

11



2 SQupersymmetry
where8yy is the electroweak mixing angle. After diagonalisation of the mass m#iixe
obtains the neutralino mass eigenstates
xP =Ny, i=1....4 (2.40)
whereN is a unitary matrix satisfying the relation
N*YN~* = diag(mys, Myo, Mgo, Myo). (2.41)

In four-component notation, the Majorana-fermionic neutralino mass sigts can be

written as
<0 X°
Xi = <—0> . (2.42)

At tree level, the application of projection operators leads to relatively cotrgpzalytic
expressions for the mass elgenvalugs < Mgo < Mgo < Mgo [32]. As we choose them to
be real and non-negative, our unitary ‘matixs generally complex [33].

The chargino mass term in the Lagrange density

1 N AYS
$3—§<w+ w)()( O><w>+hc (2.43)

is bilinear in the (two-component) fermionic partners
@i = (—IW*, Hy)T with j=1,2 (2.44)

of the charged electroweak gauge and Higgs bosons and propottidhal generally com-
plex, chargino mass matrix

_ ( M, rrwﬂsinﬁ)

/3 cos . (2.45)

SinceX is not symmetric, it must be diagonalized by two unitary matrideendV, which
satisfy the relation
U*XV = diag(mg., my) (2.46)

and define the chargino mass eigenstates
Xi =Vijg" and X =Ujy;. (2.47)

In four-component notation, the Dirac-fermionic chargino mass eigesstatebe written
as
+
- Xi
Xt = (%) : (2.48)
Xi

VXTxv—1= diag(m)z?li,n"r)z?zi), (2.49)

As Eq. (2.46) implies

the hermitian matriX X can be diagonalized using on¥; and its eigenvalues

m. = \Mz\2+\u\2+2rr6v¢\/\Mz|2+\u|2+2nf6v ~4JuMg — Mg spp2|  (2.50)

12



2.3 Mass eigenstates

are always real. If we take also the mass eigenvah)@s< Mg to be real and non-negative,
the rotation matrix _
cosb sinf, e '%
V= U M (2.51)
—sinf, €% cosf,

can still be chosen to have real diagonal elements, but the off-diagbasée™ #- is needed
to rotate away the imaginary part of the off-diagonal matrix elemek'ix,

Im[(M3sg + picg)€%] = 0. (2.52)

The rotation anglé,. € [0, 1] is uniquely fixed by the two conditions

2v2my(Mjsg + pcg)e?
tan20, = Mol — |2+ 272, and (2.53)
B
—2v2my (M3 g
sin20, — V2w (M3sy + 1) (2.54)

\/(“V'zfz — | K2+ 2mG )2 + 8 [(M3sp + picp )€+ |2
OnceV is known, the unitary matrik) can be obtained easily from

U= diag(mxi,m)?(i)V*XT. (2.55)
2

1
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3
Resummation

In this chapter, we present all the formulae needed to apply the threshblolaansverse-
momentum resummation formalisms to the production of gaugino pairs. To fix the no-
tations, we recall some of the major results of perturbative QCD in Sec. Jign, we
present the formalisms of threshold resummation and transverse-momentummrason

in Sec. 3.3 and Sec. 3.4, respectively. Finally, since both formalisms &inedién con-
jugate spaces, some subtleties to switch back to the physical spaces #desl dietSec.

3.5.

3.1 Perturbative QCD

Let us consider the production of a non-coloured syskemith massM and transverse
momentumpr in the collision of two hadroné andB,

A+B— F(M2, p2)+X (3.1)

(see Fig. 3.1). For exampl&, can be a vector boson, a Higgs boson, a lepton pair or a
gaugino pair. At largei?, the differential cross section for the productionFofcan be
written in the collinear-factorised form [34]

> dopg (T:Nj)
dM2dp2 S

_ ; /0 " ixaoizia Faya(Xa, 1)) [ fo/s (%0, 1))

X 20ay(2, M?,M?/ pF,M?/ 1?8 (T — XaXo2), (3.2)

where fy/5 and fy/g are the parton distribution functions (PDF) of partb in hadron

A,B. We denote/Sthe hadronic centre-of-mass energy, the longitudinal momentum
fractions of the two partons andthe factorisation scale. For the time being, the renormali-
sation scale is set equal o In Eq. (3.2), the PDFs are convoluted with the hard-scattering
function 4, Which is usually evaluated as a power series in the strong coupling constan

as = as(l-lz),

a
Gan(2, M, M?/DF, M7/ 1) = 5 (52)"00p) (2. M7, M7/ . M2/ 1)

a2 D (z,M2,M?/p2 M2/ 1?). (3.3)

ZMS (\DMs
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3 Resummation

Figure 3.1: Schematic representation of Eq. (3.2) for the production albartess system
F, balanced by a gluon emission, in the collision of two hadrdasdB.

In the second line, we have taken the opportunity to specify the reducguingas(u?)
employed for the rest of this chapter. Its dependence on the renormalisaéte is deter-
mined by the very well-known renormalisation group equation

das(u
din uz N

Z)B n+2 (3_4)

where the minus sign on the right-hand side makes explicit that QCD is an agigalbto
free theory [4, 5]. The first expansion coefficieftsand3; [35] are given by

11Ca — 2Ng 17C% — 5CaN¢ — 3C Ns
Po 5 and f3 5

These coefficients depend on the number of active light flavlurgnd the Casimir oper-
ators of SUN;) in the fundamental and adjoint representations. Nt 3, they take the
values

(3.5)

2
N;Ncl = g and Ca=N;=3. (3.6)
Note that the coefficient§y and B, are independent of the renormalisation scheme unlike
the higher coefficients.

At leading order (LO), where no additional partons are producettiégB, the hard

scattering function

O (2. M2 M2/ 07 M2/ 12%) = G, (M2 M?/12)3(1-28(pF)  (3.7)

has its support entirely @&= 1 andp2 = 0. At higher order in QCD, it develops more
complicated structures that we will discuss in the next sections.

In the following, instead of working withi- andz-dependent cross sections in Eqg. (3.2),
we will prefer their Mellin moments. We define the Mellin transform of a funcédr) by

Cr =

_ /O o1 (x). (3.8)
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3.1 Perturbative QCD

where for economy of notation, we denote the transforti(@d with respect to its variable
X by changing its argument td. After a Mellin transform, the convolution in Eqg. (3.2)
simplifies to a simple product

2 dUAB
dM2dp2

(N - 1) = ; fa/A(N7 IJZ) fb/B(N> I-lz)aab(Nv sz Mz/p%>M2/IJ2)' (39)

We also define the partonic cross section by

(N-1) = gdcpc/a<N7u2><pd/b<N7u2>acd<N, M2 ,M?/p%,M?/%),  (3.10)

whereg/a(Xe, u?) and ey p(Xd, u?) are parton-in-parton distributions of partans in par-
tonsa,b, respectively. Like the PDFs, they are defined at fixed longitudinal manren
fractionXc .

When pr # 0, the remaining collinear singularities 06,/dM?/dp? are absorbed in
the parton-in-parton distribution functions leaving the hard-scatteringtifumd,, infrared
safe order by order in perturbation theory. This procedure, called faatorisation, con-
tains some degrees of freedom. One can actually shift any finite part batdescattering
function into theg-distributions. This introduces the factorisation scale dependence into
the definition of both the parton-in-parton distributions and the hard-sicejtiemction. In
the following, we will stick to theMS factorisation scheme, in which the parton-in-parton
distributions are “pure counterterms”, i.e. a series of poles-in2 —D/2 in D space-time
dimensions (together with the usual constant terniérh— y, y being the Euler con-
stant).

The dependence @/, on the factorisation scale is governed by the so-called Altarelli-
Parisi (AP) equation [36]

a a N7 2
W - %Pcb(N’as(“z)><Po/a(N7u2), (3.11)

where the splitting functionBy, (N, as) = ¥ ,alP(N) are calculable order-by-order in per-
turbation theory. At LO irgs, they are given by

(1) B 3 1 N 1
Paa’ (N) =Cr [2+N(N+l) —Zglk], (3.12)
W L[ 2+N-+N?
2
Pss (N) = Cr [W] : (3.14)
D) 1 1 N1
Fag” (N) _BO+2CA[N(N_1) T INTDINT2) _k;k]' (3.15)

In order to write the solution of Eq. (3.11) in a compact form, it is convertieimtroduce
the QCD evolution operatdq (N, y?, ug) defined as the solution of the equation

aEab(N;IJZa “5)

gz 2 Pac(N, as(14%))Eco(N, %, 15).- (3.16)
C
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3 Resummation

Then the solution of Eg. (3.11), written in terms of the evolution operator, islgimp
%/a(NvlJZ) = %Ecb(NaH2>Ug)%/a(Nvﬂg) (317)

Note that the expression of the evolution oper&gyris in general quite complicated. How-
ever, it can be considerably simplified by working in the quark/flavourlstr@nd non-
singlet basis. For instance, by solving the LO approximation of Eq. (3.16)

OE (N, 112, 1)
dlnu?

= a5y P (N, as(1?)EG) (N, 112, 1), (3.18)
C
one is able to write the LO evolution operaﬁﬁf’) in a closed exponential form [37].

3.2 Resummation philosophy

As can be seen in Eq. (3.2), to compute the differential cross sectiondqurtdtess in
Eqg. (3.1), we need two different parts. The first part is the knowledghe PDFs. The
PDFs are non-perturbative functions and must be obtained fromimgues. Fortunately,
they are universal and obey the evolution equations in Eg. (3.11), swéhean reuse the
PDFs obtained in an experiment to get predictions for another experimbatother part

is the hard-scattering functiodyy,. It is a highly process-dependent function and must be
calculated as a power seriesan The first coefficient of the serie%ég) is often not too
hard to compute for 2» m processes, witim small. However, as grows, the number of
Feynman diagrams one must compute toc@é)[ increases factorially. Current calculations
reach typicallyn = 0 or 1 and very rarely = 2.

For the evaluation 06;;), one must consider real-emission contributions and virtual-
loop corrections, and one has to deal with different kinds of singularifiég ultraviolet
singularities, present in the virtual contributions, are removed by themelisation pro-
cedure. The infrared singularities are present in both the virtual ategengission contri-
butions. The cancellation of the these singularities is guaranteed by the-Btdsieck
mechanism [38] and the resulting cross section is infrared safe.

Although infrared safefra(lé) still contains singular distributions at the phase space
boundaries, e.g. &= 1 andpt = 0. In such kinematical configurations, the cancella-
tion of the infrared singularities between virtual and real-emission diagraocmn&rained
by the requirements that the real gluon is either soft or collinear, leavisg (petentially)
large terms in the hard-scattering function. Note that because of theirddfogigin, those
singular structures take the form of logarithmic distributions. That is why iffierential
Cross sectiordaAB/dMZ/dp% is sometimes called an infrared sensitive quantity. Fortu-
nately, these logarithmic terms have a definite structure. They can therefamgdnised
and summed to all orders @ using resummation formalisms.

We have already mentioned that the factorisation procedure in Eqg. (3.46) imique
and involves some degrees of freedom. Resummation formalisms make heavfythis
property. The starting point is the refactorisation of the cross section ikitieenatical
regions that give rise to the logarithms. To sketch the resummation procézture take an
infrared sensitive quantitR(M?, m?), which depends on two scales: the hard sé4land
a scalem, which measures the distance from the critical region. One must showt iand
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3.3 Threshold resummation

highly non-trivial, that in the limitm? < M2, R can be factorised as
R(M?,m?) = H(M?/p®)S(n?/p?), (3.19)

where we have separated the two scalfeandm by introducing a factorisation scaje.
We see that the functiontd andS contain potentially large ratios, depending on the value
we assign tou. Note that this refactorisation does not necessarily hold in the original
momentum space, but more often in a “conjugate” space, e.g. Mellin or impeatapter
space.

From the independence Bfon i, we get the evolution equations

dinH dInS

—_— 2 = -
dlnuz VS(IJ ) dlnuz' (320)
Solving the equation foB naturally leads to the following exponentiation
2 wdg?
i /) = Smyexp| — [ (). (321)
With the specific choicgt = M, Eq. (3.19) becomes
2 M dg® 5
RIMZ,1P) = (DD exp| — [ <3 ws(@?)]. (3.22)

We see that the potentially large ratios in the functibh@nd S are no longer present.
They can therefore be computed safely using perturbation theory amdltdependences
on the two scales are now in the exponential, sometimes called the Sudakofafiiom
Computing the anomalous dimensigyto a specific order ias resums the large logarithmic
terms to a given accuracy.

In the next sections, we present two resummation formalisms. More pre@sely3.3
is devoted to the threshold resummation [18, 39] which reorgamise$ singularities. In
Sec. 3.4 we present the formalism of transverse-momentum resummatiofiL]A@hich
controls thepr = 0 singularities.

3.3 Threshold resummation

Close to partonic threshold, i.e. when: Mz/s is close to one, the hard-scattering function
reveals potentially large logarithmic structures. The threshold resummatipogE® to
organise the terms of the forad[(1—z)~In™(1— 2)],, with m < 2n— 1, which appear in
Oap- In Mellin space, these terms turn into large logarithms of the Mellin varidble

m

('r‘(l_z)> ™ IN (3.23)
1-z n

and it is thus possible, in tHé — co limit, to retain only the leading power iN. In particu-

lar, one can neglect parton mixing contributions since they contribut& BtN). This can

be seen already @t(as): Taking the largeN limit in Egs. (3.12)—(3.15), one can see that

the AP splitting functions behave as

. 3 _ 1 . 1

PR (N) = e (5 -2+ 0(). PN~ .

G 1
Péé)(N)NWF and P9<91>(N):Bo—2cA|nN+ﬁ(N), (3.24)
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3 Resummation

with N = Ne¥* andye being the Euler constant.
Consequently, after the integration of Eq. (3.10) opgrnd the removal of the parton-
mixing contributions, the partonic cross section becomes

do, A 1
Mzr,vfﬁ(N —1) = @ya(N, 1?) @ p(N, 1?) Gap(N, M2 M?/pi?) + o(5) (3.25)

3.3.1 Refactorisation

As mentioned above, this factorisation exhibits singular distributiorzs=all.. To control
them, we follow the work of Sterman [18] and refactorise the partonic @estson as

do,
M2 gz (N — 1) = Han(M?, M?/11%)

< (N M)y (N, M2) S (N, M2/ 14%) £ (). (3.26)

The hard functiorHg, organises infrared-safe coefficients independent éind can be
therefore computed as power seriegdn

Hap(M2, M2/ p12) = Z}aQHé?(MZ,MZ/uZ). (3.27)
n=

The parton-in-parton distributiong, ;, are defined at measured fraction of energy rather
than at usual longitudinal momentum fraction (agin,). They satisfy the evolution equa-
tion

dWa/a(N7 IJZ)

olnpz Va(as(l-lz))Ll/a/a(NaHZ), (3.28)

where the anomalous dimensions of the fi@lgl(as) = 1/Z20Z,/0 In u? = znasyén), cor-
respond in the axial gauge [42] to theindependent (virtual) parts ¢a(N,as). Finally,
the functionS,, describes the large-angle emission of soft gluons and can thus be cdmpute
in the eikonal approximation.

To perform mass factorisation, we include Eq. (3.26) in Eqg. (3.25) ahd ge

Gan(N,M? M?/ 1i?) =
QUa/a(Na Mz)Wb/b(Na Mz)
@/a(N, 142) @y p(N, 42)

Hap (M2, M2/ 12) S(N.M?/12) + (). (3.29)

3.3.2 Exponentiation

Using gauge invariance and renormalisation group arguments, the evagtiations sat-
isfied by @/, and /5 (Egs. (3.11) and (3.28) respectively) can be solved near threshold,
and together with the property of exponentiation of the eikonal fun@&igf43], the cross
section can be cast in the exponential form

n 1
Gan(N,M?, M?/?) = Hap(M?, M?/ 1%) explGan(N, M? M2/ u?)] + & (

S (330)
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3.3 Threshold resummation

where the functioiG,, can be written [39 as

Gan(N,M?, M?/i?) =
INAa(N, M2, M2/112) + InAp(N,M?, M?/14%) + InA (N, M?).  (3.31)

The radiation factord’s are given by integrals of the running coupling constant

InBa(N, M2, M2/ 112) / a2 / . Z)zMzc('qqz (@as(@), (332
“2
InA (N, M2) / 42 LD (a((1— 22M2)). (3.33)

The functionAy collects the effects of collinear soft-gluon radiation off the initial-state
partona, and the functio 4, collects the process-dependent contributions from large-angle
soft-gluon emissions. Both can be expanded as power sergs in

0] 00

Aa(as) = ZasAa and Dap(as) = 3 alDy . (3.34)

= n=1

After the integrations in Egs. (3.32) and (3.33) have been performebatidescattering
function in Eqg. (3.30) becomes

Ban(N,M?, M2/ 11?) = 4 (M?, M?/ 1?) expiFan (N, M2, M2/ 11?)] + ﬁ(%» (3.35)
Here, the perturbative coefficients of the hard function
(M2 M2 /) = ;awa@wz, M2/ ) (3.36)
n=

have been redefined with respect to those in Eq. (3.27) in order tasiheanon-logarithmic
terms resulting from the integration, i.e.

Ay (M2 M2/ %) = HE (M2, M/ 12), (3:37)
7.[2
Ay (MP M2/ %) = HE (M2 M?/ %) + (A + AT H (M), (3.38)

The function¥,, takes the form

Gan(N, M2, M2/ 1) = Ly (M) + gle (A, M?/p?) +asgy) (A, M2/p?) + -+ (3.39)

with A = asBoL andL = InN. The first term in Eq. (3.39) collects the leading logarithmic
(LL) large-N contributionsL(asL)" and depends oAél) only. The coefficientsAéZ), Aél)
and D;t) determine the functiogg}) which resums the next-to-leading logarithmic (NLL)
terms(asL)". Similarly, the functiongg'g”) resum the NLL and depend on the coefficients
AY, AY andD® with 1 <k <n.

1we prefer to present the functi@y, as in Ref. [39] rather than the one described in Ref. [18]. Of course
it has been shown that both formulations are equivalent [44].
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3 Resummation

3.3.3 NLL approximation

The LL and NLL logarithmic contributions are resummed thanks to the functions
22 Bogi(A) = (AP + AlM) [24 + (1—22) In(1—22)], (3.40)

26002 (0, M2/12) = (AL + AD)in(1—22)n ™

+ (A + A [2)\+In(1 22) + %Inz(l—Z/\)]
O

— (AP +Ab) [2A+|n(1 20)]+DYIn(1-21),  (3.41)

where the needed coefficients are found to be [39]

67 n2>

18 6

AY =2c, A? 2ca[( 5

CA—5nf] and D) =o0. (3.42)

The colour factor€, areCq = Cr andCy = Ca.
The comparison ofiy, in both Eqg. (3.3) and Eq. (3.35) yields

A (M2 M2/ p2) = 60 (M2, M2/ ), (3.43)
A (M2 M2/ 12) = 60 (M2 M2/ ?)
M2 P
x ;z/o+(5P§§)+6Péé))lnﬁ+€(Aél)+Aé1))}, (3.44)

wheredPY is the coefficient of thé(1 — x) term in the LO splitting functiols) (x). The
coefficientesy represents the IR-finite part of the renormalised virtual correction

MO O L he =

A\ r(1—¢) (o p -
as< s ) r((l_zg))< 2 l+d>]//l 2+ o), (3.45)

where.#© and.#V) are the Born and one-loop amplitudes of the proass> F(M?),
summed over spins and colours. Eq. (3.45) is obtained using the pres@ipfite MS
scheme irD = 4 — 2¢ dimensions.

3.3.4 Improvement of the threshold resummation

Up to this point, we have systematically neglected all termg(df/N). However, since the
dominant ¥N-terms, i.e. those of the formlL?"~%/N, stem from the universal collinear
radiation of initial state partons, they are expected to exponentiate as wedlhdfhbeen
proven to next-to-next-to-leading order for deep-inelastic scatteriddagll-Yan type pro-
cesses [45] and can be achieved by making the replacement (cf..&5). li&low)

A — D+ 9 AP + AV LN, (3.46)

i.e. by including the corresponding subleading terms of the diagonal splitiincfibns
Paabb(N) in Egs. (3.12) and (3.15). Carrying on with this argument, it is even posible

22



3.3 Threshold resummation

resum the terms of’(1/N) coming from the diagonal and non-diagonal splitting functions
by identifying the terms [46]

@D, AD
exp| — LAa;OAb IN(1—2A )] C exp[ngi) (A )} (3.47)

with the LL approximation of the QCD evolution operatdtg, defined in Eq. (3.17) and
then promoting the LL to the full one-loop approximatiﬁgﬁ). The resummed cross sec-
tion, Eg. (3.35), can then be written in a collinearly improved form as

Gan(N,M?, M? /%) = Zﬁcd<M2,Mz/uz)exp[écd<N,M2,M2/u2)]
Cl
x E& (N, M?/N2, L) E{L) (N, M? /N2, 112), - (3.48)
where the collinearly improved hard coefficient functibig, is expanded as usual as a
power series ims(4?) and its LO and NLO coefficients read now
Fap (M?M2/1?) = Gyg) (M, M?/11%), (3.49)
~ . e
A (M2, M2/ 12) = 6.0 (M2 M2/1?) [+ = (AL + A . (3.50)
The Sudakov exponential functidBy, is expanded in the same way &g, in Eq. (3.39)
with

22 By (M) = (ALY + AY 24 +In(1—22)], (3.51)
260G (A, M2/ 1?) = (AL + AY) [22 +In(1—2A)] |n'\£
+(Aél>+Agl))§§[2/\ +In(1—2)\)+%|n2(1—2)\)]

—(AY +A§f))Blo [2A +In(1—22)]
+ B +BY + D) In(1-22). (3.52)

Here the coefficientBél) have been introduced to cancel NLL terms in the one-loop ap-

proximationE;tlf of the evolution operators. They can be directly relatedl%&) and their

values are [47, 48]
Bl = —3C; and B{Y = —2B. (3.53)

3.3.5 Matching procedure

As mentioned above, the large logarithms, which spoil the convergence petturbative
series and must be resummed to all orders, appear close to productsiotidreConversely,
the perturbative cross section should be valid far from this thresholabiin a reliable

prediction in all kinematic regions, both results must be consistently matchadythro
6= 67 + 630 — 6157, (3.54)

i.e. by subtracting from the sum of the resummed (res) cross section i3 28) énd the
fixed order (f.0) cross section their overlap. The latter can be obtainedpg®nding (exp)
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3 Resummation

the resummed cross section to the same orday @3 the perturbative result. &t(as), one
then obtains

G (N, M2 M2/ 11%) = °< 2/u>+asH”< M2, M2/1?)

—as( 2) AR (M2 ) P (N) R ) (2, 1)

—af §b>< M2/ LAY + A +LBYY +BY)]. (3.55)
3.4 Transverse-momentum resummation

‘ <

The transverse-momentum resummation proposes to organise the largeftérengemeric
form a2[p72IN™(M?/p3)],, with m < 2n— 1. To correctly take into account the kinemat-
ical constraints of transverse-momentum conservation, we will follow Cols$aper and
Sterman (CSS) [48]and work with the Fourier transfori#y, of the partonic cross section
defined by

do; d%b
2 ab
dM2dp2 (N)= Am

~— Py (N+ 1, M2 M2b?, M2/ 14?) (3.56)
:/ dbiJo(pr)V/ab(N+1,M2,M262,M2/u2), (3.57)
0

whereb is the impact parametéi = be¥t /2 and the Bessel functialy comes from the an-
gular integration. In impact-parameter space jthe- 0 singularities give rise to logarithms
which get large in the limiMb — o

1 m M2 M1\ 12112
—Zln — —1In M“b*+--- (3.58)
PT Pt/ +

3.4.1 Refactorisation

In their paper, CSS refactorise the cross section and absorb the regnedtlinear sin-
gularities in the parton-in-parton distributiong/,(x, k% ,M?/k?). These distributions are
defined at longitudinal momentum fracti@rand at fixed parton transverse-momentim
The resulting factorisation takes the form

Wab(N,MZ 2b2 2/“ ;Hcd(MZ’MZ/MZ)

X Peja(N, b2, M2b?) 24 (N, 6%, M?b?) S (N, M?0) + 6(—>),  (3.59)

M2p2””
whereSy4 is a pure eikonal function that describes coherent soft-gluon emissiiixed

transverse momentum. The functiblyy is a short-distance function which absorbs the
hard gluon corrections independentxxdind can therefore be computed as a power series in

as
Hea(M?, M2/ pi?) = zba;‘HéQRMZ,MZ/uZ). (3.60)
Nn=

2The CSS formalism was first developed for the production of backaticfets inete~ annihilation [49,
50] because of a debate whether Drell-Yan like processes (like Hq) {&ctorise.
SHere,b describes the minimal distance of the two incident particles in the limit of ncsictien.
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3.4 Transverse-momentum resummation

Here we use same notations as in the previous section to show that both resmiora
malisms are very similar. However, one must keep in mind that the fundgnand &4
in Eg. (3.60) are not exactly the same as those in Eqg. (3.26).

3.4.2 Exponentiation

By solving the evolution equations 6f¢/, and using the eikonal exponentiation3j, one
obtains the equation

Wan(N, M, M2b2 M?/ i) = Z{Hcdwz,wlz/uz)
C
X Peja(N,0% 1) Py (N, 0%, 1) expGea (M?, M?0%, M?/p?)]. (3.61)
The Sudakov exponefy has the integral representation

GCd(M27 |\/|2t._)27 MZ/”Z) —

! MZd—qz 2 Miz 2 -
2 )iy P [Ac(as(q ))In 7 +Be(as(q7))| + (c—d) (3.62)

and the, ,-distributions can be related to the uskadintegrated parton-in-parton distri-
bution functionsg, /5 by

Poja(N,b%,1) = 5 Coo(N, 8s(L1/b?)) @/a(N, 1/b%). (3.63)
[
We now apply the mass-factorisation procedure and get the resummedgormu
Gap(N, M2, M?/pF, M?/ %) =
00 b —
/ db(bpr) ¥ Heg (M2, M2/ 1) explGoa (M2, M2D2, M2/ 112)]
0 ef
% Cee(N, as(1/b%))Cqr (N, as(1/b?))Eea(N, 1/b?, u?)Efp(N,1/0b%, u?) (3.64)
where we have used Eqg. (3.17) to evolve the parton distribgiigrfrom the factorisation
scaleu to the natural scale of the procesl

As for the threshold resummation, the needed functign8, andC,, can be calculated
perturbatively in powers Mg,

Aalas) = 3 alAY, Ba(as) = Y alBy, (3.65)
n=1 n=1
and Cap(N,as) =&+ Y alCl (). (3.66)
n=1

The resummation of the logarithms is completely achieved by computing the fouiciusic
Hap, Aa, Ba andCy, at a given order ims. The knowledge of the coefficierftgfg), Aél) leads
to the resummation of the LL contributions. Analogously, the coefficiblﬁié Aéz), Bél)
andCé%) give the NLL termsHéﬁ), AY, BY andCéf)) give the NNLL terms, and so forth.
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3 Resummation

3.4.3 NLL approximation
By performing the integral in Eq. (3.62), the expon&gf can be expanded as

Gap(M2, M20%, M2/ 1i2) = Lgiy) (A) + i) (A, M?/p?) + - - (3.67)

with A = asBoL andL = InM2b2. Again, the first term of the expansion collects the LL
contributions and the second term collects the NLL contributions presésg,inThe two

functionsgé‘f)’2> have the following explicit expressions

2A oy () = (AL + A [A +In(1—2)], (3.68)
2600 (A, M?/1?) = (AL +AYY) | £ AA+In1 M w
+ (AP +AY) Bl[”'l"“AM; n(1-))]
— (AD +A? )—[—Hnl A)]
+BY +BM)In(1- 1), (3.69)

where the coefficientA;(,l), Aéz) and Bgl) are known [47, 48] and are actually the same as
for the threshold resummation in Eq. (3.42) and Eg. (3.53).

As was shown in Ref. [51], there is actually some freedom in how onerestig indi-
vidual contributions tcb-léé), Cékl)) andBfg. A choice for one coefficient uniquely determines
the others. For instance, in the original CSS formulation, the funétigns fixed to

Ha(M?, M2/ 1i2) = 8. (M? M2/ 112). (3.70)
With this specific choice, the coeﬁicierﬁz) andCéé) are given by [52, 53]
w1
Ca (N) = n[Ca'y + 55| —F3“(N). @)
21
Bgz) = —25P5(1§) +Bo [?Ca‘F JZ{O] ) (3.72)
where Péé)’s is the & (&) term in the AP splitting kerneldP? is the coefficient of the
0(1—x) term in the two-loop AP splitting function, anel is the finite part of the one-loop
virtual contributions defined in Eq. (3.45). We see that with this choice @aimenation
scheme, even the Sudakov exponent depends on hard contributraimgydoom the one-
loop amplitude. That is why, in the following we will prefer a more “physicaldicte for
which the full «%-dependence of the coefﬁcierﬁz) and C;é) is absorbed in the short-
distance functiony

Hap(M?, M2/ %) = G35 (M2, M?/1i?) [1+ 8s] + 0(&2). (3.73)
Given this choice, the needed coefficié]éi) to achieve NLL accuracy becomes

cW(N) —CaIézdab—Péé)’e(N), (3.74)
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3.4 Transverse-momentum resummation

where
P(1)7e N) = F P(l),e N)y= -~
-G
Pl € (N) = N+F1’ P £ (N) =0. (3.75)

3.4.4 Improvements of the resummation formalism

In the implementation of Eq. (3.64), the resummation of the large logarithmic cotidrisu
L=In M?2b?, affects not only the smalpr region (Mb — ) but also the region of larger

(Mb — 0) where resummation is not justified. This problem can be solved by implementing
the following change [41]

b2 —b% with b2=Db%+ % (3.76)
Note that this replacement is legitimate to arbitrary logarithmic accuracy beoatise
small-pr region, INM262) = L+ ¢(1/M2/b?). However, at larger, the resummed cross
section has a far better behaviour. Furthermore, this change allowseroicer the corre-
sponding fixed-order total cross section upon integration pyga1].

In Eq. (3.64), the variablb is integrated from 0 tee. Whenb 2> 1/Aqcp, the resum-
mation formalism is no longer reliable because of complicated long-distanatseffaich
cannot be computed perturbatively. Nevertheless, due to their long-cbsteture, these
Non-Perturbative (NP) effects are assumed to be universal andecareasured in experi-
ments. Practically, these effects are introduced thanks to the replacement

Ged — Geg + INFRP(N, M2, b?). (3.77)

Global fits of experimental Drell-Yan data allow for different forms of the tfdnctionF.\P,
whose explicit expressiofisan be found in Refs. [54, 55, 56, 57].

3.4.5 Matching procedure

Although resummation is needed at smpl, it is not justified in the largepr-region,
where the usual perturbative calculation is fully reliable. A consistentrgg®n of the
whole phase space requires a matching between the two results that awalids count-
ing. Therefore, we adopt the following matching procedure

Gap = 009 4 60 — 529 (3.78)

Wherec'\f;,;e@ is the resummed hard-scattering function given in Eq. (3.64)@@@ is the

fixed-order perturbative result at a given ordeain Finally, 5§;§Xp> denotes the expansion

of the resummed result to the same ordwsiasﬁg)'o).

4The expressions of the functi(ﬁj\k‘f’ are usually written irx-space rather than in Mellin space as presented
here.
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3 Resummation

The perturbative expansion of the resummed component is easily obtaieggdryding
Eq. (3.64) to the desired accuracy. At ordgfas), we find

G35 (N, M, M2/ p7 M/ %) = HiE (M2, M/ %) + agHgy (MP, M2/ 1?)
MZ
—as(f— n le) 3 [HY (M2, M2/2)PL (N) + P (N)HLD) (M2, M2 /2]
C
+asy [H (M2 M2/p2)CY) (N) + CE (N)HY (M2 M/ ?)|
C

% 7
—aHy (M2 M%)/ ) [ (A + A + S (B + B, (379)

where the full dependence @i is embodied in the Bessel integral

w P .
,ﬂ:/o db_Jo(bpr) In(MZE?). (3.80)

3.5 Inverse transforms

After the resummation has been performedNinand/orb-space, we have to switch back

to the physicak- and/orpr-space in order to achieve phenomenological studies. Special
attention has to be paid to the singularities in the resummed exponents Awhéror 1/2

in Egs. (3.40), (3.41), (3.68) and (3.69)). They are related to thepcexf the Landau pole

in the perturbative running &s and prescriptions for both the Mellin and Fourier inverse
transforms are needed.

For the Fourier inverse transform of Eq. (3.64) we follow Ref. [58{ aleform the
integration contour of the-integral in the complex plane. We define then two integration
branches

b= (cosp tising)t, te [0, (3.81)

where¢ has to be chosen in the raniferr/2[. The Bessel functiod in Eq. (3.64) is then
replaced by the sum of the two auxiliary functions

1 —THHIVIT L
hy(zv) =" /  dgezing, (3.82)
—IVvVTT
1 —ivrT L
ho(zv) = — o= / " dgeizsing, (3.83)
TTHIVTT

The functionshy » are finite for any value of, and their sum, independent afis always
equal toJp(z). Since they distinguish positive and negative phases in the corbgiane,
they can be associated with only one of the two branches.
For the inverse Mellin transform,
dN
FX)= [ =T NF(N 3.84

0= 557 "FON), (3.84)
we choose an integration conto(iy) inspired by the minimal prescription [59] and the
principal value resummation [60], where one again defines two branches

. N=C+zet% ze][0,00]. (3.85)
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3.5 Inverse transforms

The paramete€ must be chosen in such a way that the poles in the Mellin moments of the
PDFs, which are related to the smal{Regge) singularity, lie to the left and the Landau
pole to the right of the integration contour. While formally the anglean be chosen in

the rang€[rt/2, i1, it is advantageous to takg > 11/2 to improve the convergence of the
inverse Mellin transform.
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4
Gaugino-pair production:
Fixed-order calculations

In this chapter, we present our perturbative calculations for gayggitoproduction at
hadron colliders, while we dedicate the next chapter to the results usingmestion tech-
niques.

In Sec. 4.1, we present an exploratory study of gaugino-pair ptimtuim polarised
hadron collisions, focusing on the correlation of beam polarisation andimga/Higgsino
mixing in the general MSSM. Analytical and numerical results for the LOssestion and
spin asymmetries are then given for several hadron colliders. In S&owé present our
NLO SUSY-QCD calculations, focusing on the squark mixing, the ultravi@abrmali-
sation procedure and the dipole substraction method employed for thdladogef the
infrared divergences among virtual and real contributions.

The results presented here have been published in Refs. [61, 62].

4.1 LO cross section and spin asymmetries

Unpolarised cross sections for gaugino pairs have already beetatettin Refs. [63, 64,
65, 66]. Here, we generalise these results by including the effectglofriital-state polar-
isations and mixing of the left- and right-handed squarks. We start by fthkimgotations
for the different couplings we need in order to then compute analyticallydahenmic cross
sections for the pair production of gauginos and Higgsinos.

4.1.1 Coupling definitions

For the electroweak interactions, we define the square of the weak apeplistang? =
€?/sir B in terms of the electromagnetic fine structure constant €/(4m) and the
squared sine of the weak mixing angle’#. The couplings of the neutralinos and
charginosf(io’i to the electroweak gauge bosgn$V andZ are then given by

Lyxi+)~(j+ = —Edj, Ry)?i+)~(j+ = Ly)?i+)~(j+, (4.1)
1 * * 1 * *
Lwgoxy =9 [ - ENMij +Ni2V; 1} » Rwyogr =9 [ﬁ NiUj2 + NiZUil} : (4.2)
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4 Gaugino-pair production: Fixed-order calculations

— N|3NJ*3 -+ N|4NJ*4 5 RZ)?iO)?}:) = —szio)??, (43)

L,so50 = _9 [
ZXiXi T 2cosBy

g * 1 * 'n?
g « 1. :
RZXi+Xr == K[—UilUjl—EUiZsz—i—&jSInz a/\/]7 (44)

where the matriceN, U andV relate to the gaugino/Higgsino mixing (see Sec. 2.3.3).
The coupling strengths of the left- and right-handed quarks to electkogeerye bosons
are proportional to

Lygy = —€€40qq quq’:qum (4.5)
—— (T3 — &Sin 6w)dyq:  Rzaq = osa,veq Sir? B Jqq (4.6)

and Rwug =0, (4.7)

Lygy =
2 cosa,v

I—Wud = - \?é

where the weak isospin quantum numbeTj’s: +1/2 for left-handed up- and down-type
quarks, and their fractional electromagnetic charges are denotegl’bylo simplify the
notations, we have suppressed the generation indices, i.e. the subdcstands for any
pair ud, cs andtb.

The SUSY counterparts of these interactions correspond to the gasmiraok-quark
couplings, which are given by

Lioga = —9v2| (e — T¢) tanBuN; + TENG | RS — yaNaRE,

Ryoga = —9v2| A edtanaNN.l} RS, — VaNiaRey, (4.8)
Lyoau = 92| (&~ T) tan@uNiy + TENG | RS — YuNGRY,

Resgu = —0v/2| — eutan@uNi | Rl — yuNuR, (4.9)
Ly-a,0 = —9ViiR1 +YuVisR,

Ry+g,d = YaUizRi1, (4.10)
L du= _gUiiR‘jil erdUi*zR(jj~ :

Ry .u = YoMioRE. (4.11)

whereR,-f‘j*d are the elements of rotation matrices diagonalising the up- and down-typ& squa
mass matrices presented in Sec. 2.3.2. These general expressiors siamplified by
neglecting the Yukawa couplings

gmy gmy

Vomwsing 0 Y= B coss” (412

Yu=

except for the one of the top quark, whose mass is not small comparag.t®ll other
couplings vanish due to electromagnetic charge conservation.

IHere, we are neglecting the non-diagonal entries of the CKM matrix.
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4.1 LO cross section and spin asymmetries

q Xi 4 \\Mf(z‘ q Xi
I
Y A
I I

q Xj q /‘/%%‘\’“"%%Xj q X

Figure 4.1: Tree-level Feynman diagrams for the production of gaugiis.p

4.1.2 Polarised partonic cross section
The process

A(ha, Pa)@ (Mo, Po) — X" (PR (p2) (4.13)
is induced by initial quarks| and antiquarks) with definite helicitiesh,, and momenta
Pab and is mediated bg-channel electroweak gauge-boson andndu-channel squark
exchanges (see Fig. 4.1). Using a Fierz transformation, its cross seatidoe expressed
generically as

dgha s 2f
o = S { (1= he) (1 ho) [|Q Pugug, + QL Pty +2REQY QLumy ]

+ (1+ha) (1 — hp) [|Qkel?ug; Uz, + |Qkrl’ts ts; + 2REQERQRRIME My, S|
+ (1~ ha) (1~ hp) [|QtRI?ug U, + QLRI g ty, — 2REQIRQLRI (Ut — M M )|
+ (14 ha) (1+ hy) [|QR.|Pux, Uy, + [ QR |ty ty; — 2REQR Qi J (Ut — mE s )] }, (4.14)
i.e. in terms of generalised chargegu, the conventional Mandelstam variables
s=(pa+p)?, t=(pa—p1)® and u=(pa—p2)? (4.15)

the gaugino and squark masse)%i andmg,, and the masses of the neutral and charged

electroweak gauge bosomg, andmz Propagators and scalar products of momenta appear
as mass-subtracted Mandelstam variables,

s,=s Sy=S-M, S=s-ng, (4.16)
tg=t—mg, Ug =u—"g, (4.17)
ty =t—mg, ug=u—m;. (4.18)

The Majorana nature of the neutralinos is taken into account thanks tortimetyy factor
f=1/(1+ 8-
Unpolarised cross sections, averaged over initial spins, can easilgrivedifrom the
expression
dotl+dott4+dott4do 1t
4 ’
while single- and double-polarised cross sections, including the samagavéactor for
initial spins, are given by

do = (4.19)

dotl+dol1xdo 1t —do 11

dAo = ) and (4.20)
11 q4sl-1_ q+-11 11
dAo, — do do fa +do ’ (4.21)
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4 Gaugino-pair production: Fixed-order calculations

where the upper (lower) signs refer to polarised (anti-)quarks. Hn@mc single- and
double-spin asymmetries then become

.~ dAo. ~ dAoi .
A = and A = . 4.22
L do LL do ( )
The generalised charges are given by
Lvarlvig < Shahida
QEL: Z/v qq XXJ _Z Xkaq - 4k ’ (4.23)
V=yW,Z S’\/ Ok uqk
Lvag Rv i LXiqqui"‘ /
V=Y Sv o G
R\/ ’R\/~i~' Rfi" ’Rf('qq
QLFJQR: ZN qq XXJiz Xclkzq~ j Ok ’ (4.25)
V=yW,Z S\/ Ok uqk
RvagLviig RiaalRs g
Ge= 5 g T m (4.26)
V=yW,Z Sv Ok Ok
RS e L cia
Qlr=-y L=, (4.27)
% 2ug,
Ly.g.qRE A
t XiGkQ" % G
=ty —2, (4.28)
qz 2g,
qukq
Qk = xad (4.29)
qZ ZUQk
X|qu X 6! q
b = Z S AAd (4.30)
Ok Ok

After accounting for our harmonisation of generalised charge definjtiwh&h are now
similar for all gaugino channels, our results agree with those publishedfirf@¥¢ The
cross section for chargino-pair productionghe -collisions can be deduced by changing
all the (s)quark masses and coupling to the (s)lepton ones and multiplyingpsesection

by the colour factoN; = 3. Neglecting all Yukawa couplings, we can then reproduce the
calculations of Ref. [65]. In the case of non-mixing squarks with negle¥t&kawa cou-
plings, we agree with the results of Ref. [66] and Ref. [68], providedcarrect a sign in
their EqQ. (2) as described in the Erratum. Note thap?fibp”(j*-production, there is no inter-
ference betweets andu-channel diagrams due to (electromagnetic) charge conservation.

4.1.3 Numerical results

We now present numerical predictions for the cross sections and sargledouble-spin
asymmetries of gaugino-pair production at the polarigedollider RHIC [69] and possible
polarisation upgrades of thep and pp colliders Tevatron [70] and LHC [71]. Thanks to
the QCD factorisation theorem, total unpolarised hadronic cross sections

1 1/2Int tmax daab
One = dr [ dy [ dt (e om0, i) S0 (431)
(my+mg)2/S J=1/2InT " Sy dt
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4.1 LO cross section and spin asymmetries

can be calculated by convolving the relevant partonic cross sediopdt, computed in
Sec. 4.1.2, with universal parton densitigs, and f, g of partonsa, b in the hadrons\, B,
which depend on the longitudinal momentum fractions of the two paxogns: /7€ and

on the unphysical factorisation scale. Polarised cross sections are computed similarly
by replacing either one or both of the unpolarised parton densiig&ap, 1) with their
polarised equivalen®f, ,(Xap, 4 ) and the unpolarised partonic cross section given in

Eqg. (4.19), with its single- or double-polarised equivalent given in E§20) and (4.21).
The hadronic centre-of-mass energy is denoted/8 and the Mandelstam variables
integrated over the range

—(s— m)g(i _m)z?j):':\/(s_ m)z?i _n1)2~(j)2_4”])2~(irn)2?j)

(4.32)

tmin,max =

Efforts over the past three decades have produced extensive elatéoss polarised
deep-inelastic scattering (DIS), resulting in a good knowledge in partiotitae polarised
valence-quark (non-singlet) distributions. For consistency with oummegamtder (LO) QCD
calculation in the collinear approximation, where all squared quark massespt for the
top-quark massoré < s, we employ related sets of unpolarised (GRV [72]) and polarised
(GRSV [73]) LO parton densities. We estimate the theoretical uncertaintyodiie less
well known polarised parton densities by showing our numerical predgfionboth the
GRSV2000 LO standard (STD) and valence (VAL) parameterizationghatheat the po-
larised sea-quarks in a flavour-symmetric or flavour-asymmetric waypdlaeised gluon
density could not be constrained very well in the fits to the DIS data, buttitrfately does
not enter directly in our analysis.

Results from semi-inclusive DIS with an identified hadron in the final state kas
promise to put individual constraints on the various quark flavour digtoibs in the nu-
cleon. In addition, precise asymmetry measurements from RHIC are edpegtet signif-
icant constraints on the polarised gluon distribution. A first step in this direttés been
undertaken very recently by including semi-inclusive DIS data from th€ SNERMES
and COMPASS experiments amd and jet production data from the PHENIX and STAR
collaborations in a global analysis [74].

If not stated otherwise, we set the factorisation sgaleto the average mass of the
final state SUSY particles. The bottom- and top-quark densities in the protosnaall
and absent in the GRV and GRSV parameterizations, as is the charm-auresikyd We
therefore consider for squark exchanges only the SUSY-parth#re tight quark flavours
without mixing and all degenerate in mass. The corresponding uncertaipstiisated
by giving predictions for two different squark masses, one at the massslnity the DO
collaboration at 325 GeV [75] and one for a typical SUSY-breakingeszfal TeV.

Gaugino masses and mixings

We wish to study the correlations of beam polarisations and the gauginoiitiggsctions
of charginos and neutralinos without referring to a particular SUS#ing model. Fur-
thermore, we wish to keep the physical gaugino masses as constansasepasnce the
absolute cross sections depend strongly on them through trivial ppase sffects. We
start therefore by fixing the lightest chargino MEgs to either 80 GeV (for our RHIC pre-
dictions) or 151 GeV (for our Tevatron and LHC predlctlons) The nreddyi strong limit
of 151 GeV has recently been obtained by the CDF collaboration at Rurnhédevatron
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4 Gaugino-pair production: Fixed-order calculations

and holds for a constrained MSSM with light non-mixing sleptons [76]. Omther hand,
charginos with a mass as low as 80 GeV may still be allowed, if they are galikgndheir

mass difference with the lightest neutralino is very small, and if the sneutrieokight

[77, 78]. The second-lightest neutralino usually stays close in mass to thedighargino
(see below) and must be heavier than 62.4 GeV, while the lightest neutratinoechalf as
heavy and is constrained to masses above 32.5-46 GeV, dependingaghaesfermion
masses [79]. The associated production of the second-lightest neutratn the light-

est chargino is usually experimentally easily identifiable through the goldepiatkepton

decay. It has been pointed out that the electroweak precision fits imp#oee including
heavy sfermions as proposed by split-SUSY scenarios, but light gasigirtHiggsinos with
masses close to the current exclusion limits [80].

In the MSSM, the gaugino masses and mixing depend oa finéori unknown SUSY-
breaking parameteid;, M2, u, and on taif8 (see Sec. 2.3.3). Taking t8n= 10 and assum-
ing Bino and Wino mass unification at the GUT scale, so that %tan2 6y M, ~ 0.5M>
at the electroweak scale, we can compute the Higgsino mass paranfeder Eq. (2.50),

MG M2y & My \/(m)%(li — M — 1,2 —ng,c5g

H= MZ 2,

X1

(4.33)

as a function of the only remaining parameltér, once the lightest chargino Maigh - is
fixed. Since the one-loop contribution to the anomalous magnetic mapena(g, —2)/2
of the muon induced by gauginos and sleptons of common iMggsy is approximately
given by [81]

2
ap SV = 13 10—1°(M/) tanfsgn(u), (4.34)
Msusy

negative values oft would increase, not decrease, the disagreement between the recent
BNL measurement and the theoretical SM value{79]. The regionu < 0 is therefore
disfavoured, and we take > 0 unless noted otherwise.

As the off-diagonal matrix elements of the gaugino mass matrices depend®arsih
cosB (see Sec. 2.3.3), one might be tempted toMix e.g. to Zn;(li, and study rather
the variation of the chargino/neutralino masses and gaugino/Higgsino fraetith tars3.
However, this parameter can often be constrained from the Higgs stmter{82], at least if
it is large [83]; otherwise measurements from the sfermion or neutralitorseay still be
necessary [84]. Furthermore, firand co$ vary significantly only for low tas = 2—10.

In this range, the gaugino fraction of the lightest negative chargincedses, e.g., from
40% to 20% in the optimal case bf, = 2m)~(i =160 GeV.

In Fig. 4.2 we show the physical masses of the two charginos and theduotralinos as
a function ofM for Mys = 80 GeV (left) and 151 GeV (right). The lightest chargino mass
(short-dashed line) is, of course, constant in both cases. As mentiboed, the mass of the
second-lightest neutralino stays close to it, except ardding 190 GeV (320 GeV), where
an avoided crossing W|th1 zo oceurs, which is typical of Hermitian matrices depending
continuously on a single parameter At this point, these two neutralino eigesstaange
character, as can clearly be seen from the gaugino fractions plotted. id.Bigwhile for
small values oM, < || the lighter neutralinos, diagonalised by the maltixare gaugino-
like, they become Higgsino-like for large valueshd$ > |u|. Furthermore, in this region
the mass difference between the lightest neutralino and chargino becorakgsee Fig.
4.2). It can also be seen from this figure that the heavier chargino amg#viest neutralino
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Figure 4.2: Neutralino and chargino masses as a function of the SUSkxbgeparameter
M, for a fixed lightest chargino mass crt;(F1 = 80 GeV (left) and 151 GeV (right). We

choose taB = 10, u > 0 using Eq. (4.33), and fikl; = 3 tar? ByM..
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Figure 4.3: Gaugino and Higgsino fractions of the four neutralinos asetién of the
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Figure 4.4: Gaugino and Higgsino fractions for charginos as a functiacheo SUSY-
breaking parametevl, for a fixed lightest chargino mass m}tl = 80 GeV (left) and 151

GeV (right). We choose tgh= 10, u > 0 using Eq. (4.33), and fikl; = %tan2 B Ma.

are mass-degenerate for all valuesvipfand that their mass grows linearly wilf,, when

Mz > |u|. The gaugino fractions of the negative and positive charginos, didiged by

the matriced) andV, are shown in Fig. 4.4. They behave similarly to those of the lightest
and heaviest neutralinos. We will frequently refer to these well-knowiatans of the
neutralino/chargino masses and gaugino/Higgsino fractions in the sdrdéasgations when
discussing the behaviour of cross sections and asymmetries.

RHIC cross sections and asymmetries

RHIC is scheduled to operate in the years 2009 through 2012 in its polgmsedde at an
increased centre-of-mass energy = 500 GeV and with a large integrated luminosity
of 266 pb ! during each of the ten-week physics runs [69]. It has been demtetstizat
polarisation loss during RHIC beam acceleration and storage can berkeflf so that a
polarisation degree of about 45% has already been and 65%—70% mayeillfibereached
[85]. Recently, the STAR experiment have shown the first results on tlasunement of
W-boson production in polarizeglp collisions [86]. It is therefore interesting to investigate
the influence of proton beam polarisation on production cross sectidismgitudinal spin
asymmetries for SUSY particle production at the existing polangedollider RHIC.

In the upper left part of Fig. 4.5, we show the total unpolarised cragssefor the pair
production of the lightest chargino of mass 80 GeV (short-dashed lire)henone for its
associated production with the second-lightest neutralino (dot-dashgdtlihepp collider
RHIC, expected to produce a total integrated luminosity of about 1 diring the next two
years [69]. Both cross sections exceed 1 fb (short-dashed htaidore, corresponding
to one produced event) in most of tih range shown and depend little on the squark
mass, indicating that-channel gauge-boson exchanges dominate. From Eqgs. (4.8-4.11)
and (4.23-4.30) we learn indeed that, in the absence of heavy bottom- @ogdaks,
squark exchanges contribute only@;' for chargino pairs and in addition @'r andQl,
for the associated channel. For the latter, we sum both charge conjugatsses, even
though it might be interesting to identify the chargino charge, given thatépertience of
its gaugino fraction o> is slightly different for the two charges (see Fig. 4.4). The pair
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Figure 4.5: Unpolarised gaugino-pair production cross sections (t)pdefgle- (top right)
and double-spin asymmetries (bottom left) for chargino-neutralino assdqgi@oduction,
and single-spin asymmetry for neutralino-pair production (bottom right) m}é}m Mys =
80 GeV inpp collisions at RHIC and/S= 500 GeV using LO GRV [72] and GRSV [73]
parton densities. We choose 2= 10, 4 > 0 using Eq. (4.33), and fik, = gtar? By Mo.
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4 Gaugino-pair production: Fixed-order calculations

production of the second-lightest neutralino (not shown) does resgark contributions
from all generalised charges, but the corresponding cross sectiohdiew 102 fb and
will therefore be invisible at RHIC. As our cross sections are compute@athey depend
to some extent on the factorisation scale Since this scale is unphysical and unknown,
we vary it in the traditional way by a factor of two around the average State mass,
representing the large perturbative scale in the partonic cross sedtametsbands).

Among the bosons exchanged in tiehannel, th&V-boson is most sensitive to the po-
larisation of the initial quarks and antiquarks, and consequently the sspgleasymmetry
for the associated channel, shown in the upper right part of Fig. abhes large values
of around —20%. Note that polarisation of the proton beam(s) will not bbieqte so that
all calculated single-spin (double-spin) asymmetries should be multiplied byetireal of
beam polarisatioRa g ~ 0.7 (squared).

As the mass of the neutralino increases and the gaugino fractions of tiggnchand
neutralino fall up taM, < 200 GeV, the cross section and the absolute value of the asym-
metry decrease, too. For these valueMgf the conditions of the LEP chargino mass limit
still apply. The uncertainty in the scale variation is with 0.5% considerably sniaderthe
variation in the asymmetry of 2%, while the uncertainty coming from the polariagdmp
densities is with 1.5% of almost comparable size. Single-spin asymmetry meaatgeme
for associated chargino-neutralino production at the only existing pethh&dron col-
lider RHIC could therefore be used to determine the gaugino and Higgsimpaeents of
charginos and neutralinos, provided the polarised quark and antideaskties at momen-
tum fractions ok, p, ~ 2 x 80 GeV /500 Ge\= 0.32 are slightly better constrained. For the
double-spin asymmetry (lower left part of Fig. 4.5), the parton densitgniainty exceeds
the variation and leads to a sign change of the relatively small asymmedp{—6%), so
that in this case no useful information on the gaugino/Higgsino mixing cantbecéad.

The single-spin asymmetry for neutralino pairs (lower right part of Fig) #e&ches
similar size as those for the associated channel, since the left- and rigteéehaouplings
of theZ-boson exchanged in treechannel are also different. Althought the corresponding
cross section is unfortunately too small at RHIC, the variation of the asymmeund,
however, be quite dramatiéy changes its sign from -20% to +20% fgk, < 200 GeV.

For chargino pairs, massless photons can be exchangedsrchtamnel which leads to
single- and double-spin asymmetries that vary very little With(as can be seen in Fig.
4.6) and that can therefore not be used to extract information on gadbiggsino mixing.

In addition, these asymmetries depend strongly on the polarised partdtiedens

Tevatron cross sections and asymmetries

The pp collider Tevatron will continue running in 2011 and possibly until 2014, tred
future accelerator program at Fermilab is currently less clear than €kerfeasibility of
polarising the proton beam has been demonstrated many years agot [(@0@lld require
replacing some of the dipoles with higher-field magnets to gain space to instalixthe
required Siberian snakes at a very moderate cost [87] and wouldsexgran interesting
possibility for QCD studies as well as new physics searches. Given ¢katrenpressive
achievements at RHIC, the degree of polarisation should be comparablabaet 65%—
70%. Polarisation of the antiproton beam is, however, much more challenging

In the upper left part of Fig. 4.7, we show the total unpolarised crag®oss for gaugino
production Withm)ﬁt =151 GeV at the Tevatron, which is currently running,&= 1.96
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Figure 4.6: Single- (left) and double-spin asymmetries (right) for chargaioproduction
with Mys = 80 GeV in pp collisions at RHIC and/S= 500 GeV using LO GRV [72]
and GRSV [73] parton densities. We choosefiaa 10, i > 0 using Eq. (4.33), and fix
M; = 2tar? ByM,.

TeV and expected to produce a total integrated luminosity of 1 fecorded per exper-
iment up to 2011. Therefore, besides the pair production of the lightasgiclo (short-
dashed line) and its associated production with the second-lightest neu{ddindashed
line), also pair production of the latter might be visible (long-dashed lindgaast for low
values ofM;, < 300 GeV, where the gaugino component is still large (see Figs. 4.3 and
4.4) and the cross section exceeds 1 fb (short-dashed horizontal Tihe) influence of
squark exchanges and the dependence on the squark mass arevidédeyn this channel,
whereas they are again much smaller (but slightly larger than at RHIC) doottier two
channels. The factorisation scale dependence (shaded bands)semoaiast (10%—13%)

at the Tevatron.

The single-spin asymmetry for chargino-pair production (upper rigtttgiaFig. 4.7)

at a possible proton beam polarisation upgrade of the Tevatron [70] beuvery large
and reach-40%. Since the physical mass has been fixed at 151 GeV and the urgmblaris
cross section stays almost constant, the reduction in absolute value hy6dbdar any
given curve is directly related to the reduction of the gaugino fractiomMaacreases. The
parton density (and factorisation scale) uncertainties are (much) smahehibaariation,
i.e. 2% (or 1%), so that significant information could be extracted from gyimaetry. On
the other hand, the double-spin asymmetry (not shown), although largalvdthit —20%, is
almost insensitive to the gaugino fraction and would furthermore requiegipation of the
antiproton beam, which is a technical challenge.

In contrast to our results for RHIC, the associated channel (loweropdiig. 4.7) is
not very interesting at the Tevatron. While the single- and double-spmrasyries may be
large (about-10% and+-15%, respectively), they are almost constant and would not yield
new information on the gaugino fractions.

The single- and double-spin asymmetries (see Fig. 4.8) for the pair piodwdt the
second lightest neutralino are most sensitive to its gaugino componemnesatd/¢ly mod-
est) mass variation, in particular for the low value$bf< 300 GeV, where the cross section
should be visible. Hereéd, changes sign from-50% to almost-30% and the theoretical
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Figure 4.7: Unpolarised gaugino-pair production cross sections (t)pdiefgle-spin asym-
metries for chargino-pair (top right) and chargino-neutralino produgbottom left), and
double-spin asymmetries for chargino-neutralino production (bottom rigttk) Mo =~
Mys = 151 GeV inpp collisions at the Tevatron andS= 1.96 TeV using LO GRV [72]
and GRSV [73] parton densities. We choosefiaa 10, u > 0 using Eq. (4.33), and fix
M, = %tanz aNMZ-
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Figure 4.8: Single- (left) and double-spin asymmetries for neutralino-padygtion (right)
with myo ~ Mgt = 151 GeV inpp collisions at the Tevatron andS= 1.96 TeV using LO
GRV [72] and GRSV [73] parton densities. We choose@an 10, i > 0 using Eq. (4.33),
and fixM; = 2tarf 6,y M.

uncertainties are extremely small. In the same region, the absolute vafye bicreases
by about 5% and can almost reael35% for the standard GRSV parameterization of the
polarised parton densities. The parton density uncertainty remains maitiestout 3%.
For largeM, > 300 GeV, both asymmetries are constant in this channel.

LHC cross sections and asymmetries

As the LHC is now running, different upgrade scenarios are emergamg,erning foremost
higher luminosity and beam energy [88], but also beam polarisation IfA&]interesting to
remember that a detailed study has been performed some time ago for theS8hg in
a design that had reserved 52 lattice locations for the future installation efi@itsnakes
[87]. Since this is currently not the case at the LHC, its polarisation upgredld require
replacing some of the dipoles with higher-field magnets to create these lo¢cftigtres in
the case of the Tevatron. The number of resonances to be crossaglataeleration would
be considerably larger due to the higher energy of the LHC, requiringglotuning before
ultimately reaching polarisations of up to 65%—70%.

For pp collisions of 14 TeV centre-of-mass energy at the LHC, we show the-unpo
larised total cross sections for a chargino of mass 151 GeV in the upppatebf Fig. 4.9.
With the high luminosity originally expected at the LHC, pair production of the ligthte
chargino (short-dashed line), its associated production with the sdighest neutralino
(dot-dashed line), and pair production of the latter (long-dashed lirm)ldtall be well
visible. Whereas the cross sections for the first two channels are dgaistaonstant and
fairly independent of the squark mass, at least for the Higgsino-likemedM, > 300 GeV,
the neutralino-pair production cross section is again quite sensitive toksexhanges in
the gaugino-like region below that value and stays almost constant abbeetactorisa-
tion scale dependence is very small at the LHC and included in the line widtle ofpiber
left part of Fig. 4.9. Note, however, that with 100 fhof data, the mass of the lightest
chargino will only be measured with an uncertainty46f1% [89]. This induces a very
visible uncertainty (shaded bands) in the total cross sections (lowerlefdpFig. 4.9).
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Figure 4.9: Unpolarised gaugino-pair production cross sections (feftyimgle-spin asym-
metries for neutralino-pair production (right) withxg ~ Mg = 151 GeV inpp collisions

at the LHC andy/S= 14 TeV using LO GRV [72] and GRSV [73] parton densities. The
shaded bands (bottom) show the uncertainty induced by the error ondlgradhmass as
determined with 100 fo! of data [89]. We choose tgh= 10, u > 0 using Eq. (4.33), and
fix My = gtarF aNMZ-
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Figure 4.10: Single-spin asymmetries for neutralino-pair production witfs tarl0 and
U < 0O (top left), tar3 = 2 andp > 0 (top right), andM; = Zmec with ¢ > 0 as a function
of tanB (bottom left) inpp collisions at the LHC and/S= 14 TeV. For the third scenario,
we show also the gaugino and Higgsino fractions of the second-lightesahieo (bottom
right). We fix p using Eq. (4.33) an¥l; = 3tar? 6yMo.

For a possible polarisation upgrade of the LHC [71], we show the siqmieasymmetry
for neutralino-pair production in the right parts of Fig. 4.9, again with tlees@ine width,
top) and chargino mass (shaded bands, bottom) uncertaintyl, &t 300 GeV, where the
gaugino fraction is small, the asymmetry is not very interesting, as it is almostasun
and smaller than 5%. In the gaugino-like regionvit < 300 GeV, it changes sign from
—20% to almost+10%, a variation, that is considerably larger than the parton density
uncertainty of at most 7%, the squark mass dependence of at most 2&mthet invisible
scale dependence, and also the chargino mass uncertainty of 3% to 0&okarised
LHC, a measurement of the single-spin asymmetry for neutralino-pair gtioduwould
therefore yield interesting information about its gaugino fraction.

While the cross sections vary very little when changing the sign of varying tar3,
it is interesting to study further the single-spin asymmetries for neutralino jpathese
alternative scenarios. When comparing the asymmetryiferO, shown in the upper left
part of Fig. 4.10, to the one fqr > 0, shown in the upper right part of Fig. 4.9, one notices
an even steeper rise in the former to more thdrb%, asM, approaches the critical value
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4 Gaugino-pair production: Fixed-order calculations

of 2my v the neutralino changes its character from gaugino to Higgsino, and theusiy
(smaller) absolute value of the Higgsino mass paramebscome of particular importance.

A similar effect is observed when comparing for> 0 the asymmetry with a lower
value of tar3 = 2 in the upper right part of Fig. 4.10 to the one for the standard value of
tanp = 10 in the upper right part of Fig. 4.9. In this case, the asymmetry risesHassly
above zero) towardsl, = 2m)~(fc, where the gaugino/Higgsino decomposition is flipped, the
ratio of the two Higgs vacuum expectation valuesf@as particularly important, and the
absolute value of the Higgsino mass parametés effectively larger than in the standard
scenario.

The dependence on tfrat the critical pointvi, = 2m)~(1+ can be seen more clearly in the
lower left part of Fig. 4.10, and indeed the asymmetry decreases frge tarsmall taif
from distinctively positive values to values at or below zero for all ch®afesquark masses
(1 TeV or 325 GeV) and parton density functions (standard or valeft®8\Gparameter-
izations). This decrease is correlated with a similar decrease in the Birtafrais,;|?
and with an increase in the Wino fractifit,,|? of the second-lightest neutralino, while the
Higgsino fractiongNy3|? and|Np4|? stay almost constant, as can be seen in the lower right
part of Fig. 4.10.

The double-spin asymmetry for neutralino pairs, as well as the one fogiobgpairs
and the associated channel, are always smaller than 4% and 2%, redpeEtirthermore,
they vary by less than 2% and are therefore not shown here. The-sipiglasymmetry for
chargino pairs (not shown) can reach a slightly larger value 2%, but again it varies
by less than 3% as a function bk, which is almost of the same size as the parton density
uncertainty (2%). The situation for the single-spin asymmetry of the assdahtnnel
(not shown, either) is similar with a maximum efL0%, a variation withM, of about 1%
and a parton density uncertainty of less than 1%.

4.2 SUSY-QCD corrections

SUSY-QCD corrections for gaugino-pair production have been filsutated in Ref. [68].
Here, we generalise these results by including the squark mixing effetgasent in detail
the renormalisation scheme and the substraction method we have chosen.

4.2.1 Virtual corrections

At NLO of SUSY-QCD,¢'(as), the cross section for gaugino pair production receives con-
tributions from the interference of the virtual one-loop diagrams showrigs. B.11-4.13
with the tree-level diagrams shown in Fig. 4.1 on the one hand and frongleai (Fig.
4.14) and (anti-)quark emission diagrams on the other hand, where theal&ttebtained

by crossing the final-state gluon in Fig. 4.14 with the initial-state antiquark (F1¢.) 4r
guark (not shown). All diagrams have been evaluated analytically withwsdten FORM
programs and cross-checked independently with self-written MATHEMATprograms.

The virtual self-energy diagrams for left- and right-handed quarks= P rq= 3 (1F
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q Xi 8 OprrrtNi I aporr™oNi 1 T aporPPNi
1 1 1
f * O
1 1 1
q Xj q //Mij q /O/ij q //’Mxy
q Xi 4 Xi 4 Xi 4 Xi
1 1 1
' ' O
1 1 1
q Xj  q Xj  q Xj  q Xj

O—
N 7

[ .

___O___

I
1
1:23
1
+
1
1
1
1
+
+
1
X
1

Figure 4.11: Self-energy insertions (top) and contributions (bottom) to theéuption of
gaugino pairs.

¥5)q (Fig. 4.11, third line),

gsCF
16m2

~ 2C- 2 - S
20(0) =~ . [PBa(p.mg.ma )RR + myBo(p.mg. ma ) RERG R (4.36)

[(D — 2)pBy(p, My, 0) + DmyBo(p, Mg, 0) | ALk, (4.35)

. 2 2 L -
9 (p)=-2% b3 | PB1(p,my, mg )R R + myBo(p, my, mg )R RY | PR, (4.37)

expanded as usual into vector (V) and scalar (S) (s = [= (p?) p+ Z3(p?)JPL+ (L <
R), as well as those for squarks (Fig. 4.11, fourth line),

2C
z|(1g)(p2) = - gs £ |:p2(BO(p7 n’ﬁi 3 0) - ZBl(pv nhi 3 0) + BZl(pa n’k]i ) 0))

1672
+ DBZZ(pa nh.ao)} d]? (438)
- 2C
39 (p?) = _g4S7T2F { [pZ(Bl(p,mq,rr@) + B21(p, My, Mg)) + DBy p,mq,”b)} A
—rmmgso<p,rm,rr@>(R%R?;+R%R?I)} and (4.39)
o] C . G <0 G* 0
zi(?) ) 2567.; z $$ Ao(mg) with Si=RIR] —RORY, (4.40)

contain ultraviolet (UV) divergences in the scalar integidg ... (p,m,mp) [90], which
exhibit themselves as/% poles inD = 4 — 2¢ dimensions. They must therefore be ab-
sorbed through a suitable renormalisation procedure into the fundameavalfunctions,

2As it is customary, we absorb a factor @ur)*~P in the definition of the scalar integrals, wheug is
the renormalisation scale.
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4.2 SUSY-QCD corrections

mass parameters, and coupling constants of the SUSY-QCD Lagrangian

2
3 (0ue)"(04) ~ & (mp)el| +-- (441

2 = |@idel — Rl + (L - R)| + |

The two components of the unrenormalised squark &i€lcbfrespond originally to the left-
and right-handed chiralities of the unrenormalised SM quark fi¢Jdbut mix due to the
fact that soft SUSY-breaking and Higgs terms render the22dimensional mass matrix
(m‘%)0 non-diagonal (see Sec. 2.3.2). In Eq. (4.41) we have diagonalizeth#tsis matrix
with the squark rotation matriR®, so that the components= 1(2) of the squark field
correspond to the squark mass eigenvahn&s The squark self-energies in Egs. (4.38)—
(4.40) thus also carry indicésj = 1, 2 corresponding to the (outgoing and incoming) squark
mass eigenstates. Multiplicative renormalisation is achieved perturbativedyxganding
the renormalisation constants,

W= <1+ %5zq) AR, Mg = my+ 3m, (4.42)
0 = (85 + 507 ) . (M) = (M) + BBy, (449

with the usual factor of A2 for the (s)quark wave functions. The renormalised self-energies
are then

$(p) = [3Y () + 5 (624 + 52)) | pRL
+ (287 - %(mq&q +6Z{mg) — 3my| R+ (L= R) (4.44)
for quarks and
i (p%) = =i (p?) + %(5Zq,ij +0Z; ) p

[(MB)ik0Zqj + 0Z5 i (ME)kj ] — (ONMB)i;  (4.45)

1

NI =
N

k

for squarks.

We choose to renormalise the wave functions inkt&scheme, so that the definition
of the quark fields corresponds to the one employed in the parton densities éxternal
hadrons. In this scheme, the quark wave function counterterm

524 = 628 + 528 (4.46)
with )
@ _ s-@ _  9Cr 1
oz = oz = —ELA and A= -y +Indm (4.47)

defined as the UV-divergent plus universal finite parts of the oﬂ&hmterterm—Z\L’R(nﬁ)
—MGIZVR(ME) + Zx) ()] — my[ZR(MG) + 2R ()] [91], is hermitian 6Zq = 5Z4) and
the same for left- and right-handed quarks. The supersaiptsd g 'label the gluon and
gluino exchange contributions, respectively, gads the Euler constant. The squark wave
function counterterms . )

6Zqij = 623, + 623 + 62, (4.48)
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824} = oz = ez 0 and 52 =0 (4.49)

fori=jand
5zé%>j =0, (4.50)

g C|: ZA 5 G —
@ _ 9 2Cr

6Zqij 1367'[2 m(21 n.é z m(21 SAS{;J (4.52)

for i # j, defined similarly as the UV-divergent plus universal finite parts of thesteell
counterterms-ReS/;(mg ) for i = j and 2R&;; mg (mg, —mg ) fori # j [91], enter only
through the renormalisation of the squark mixing matrix,

2

2
Z 0Zg ik — 5Zq ki Z |kRkJ’ (4.53)

RO=RI+5R1 with SR =

-b \

since in theMS-scheme the gluon and gluino contributions et j in Eq. (4.49) can-

cel each other. In the last step of Eq. (4.53), we have made use ofdhthé in the
MS-scheme the squark wave-function renormalisation constants areeamitian matri-

ces 0Zgij = —0Z5 ;). The (s)quark masses are renormalised in the on-shell scheme to
make them correspond to the physical masses. The quark mass commisttezn defined

by mZ¥ (mg) + Z5(mg) [91] with the result

smy = omi? + sm (4.54)
and
omf) = 256 Fzmq[(D—z)Bl(mq,mq,O)+DBo(mq,rrh,O)}, (4.55)

md = —256;2 i; | MyBy(mg, Mg, mg ) -+ 2mgBo(my, mg, mg )Re(RERL) | (4.56)

For our numerical results, we will set the masses of external quarksddrzaccordance
with the collinear factorisation of quarks in hadrons. The squark masgederm is de-
fined by RéZ;i(mé ). The resultis

omg = omg® + me? + smE @ (4.57)
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4.2 SUSY-QCD corrections

with
o = B 1z [31(mg.m,0) - Bo(ry mg. 0] (4.58)
o = B [ 8, g g mg) -+ MEBo(, e M)+ Aol
— 2mymgBo(mg;, My, mg)Re(quR?;)} and (4.59)
s = 126nzz| i *Ao(m - (4.60)

Supersymmetric Ward identities link the quark-quark-gauge boson an#l-ggaark-
gaugino vertices to the weak gauge-boson and gaugino self-enefgidhe latter do not
receive strong corrections at NLO, the former require no furtheorraalisation beyond
the one for the (s)quark wave functions discussed above. Howeeeartificial breaking
of supersymmetry by the mismatch of two gaugino &dd- 2) transverse vector degrees
of freedom must be compensated by a finite countertesg[1 — aCr /(81)], effectively
shifting the quark-squark-gaugino scalar coupling congiavith' respect to the weak gauge
coupling constang [92, 93].

4.2.2 Real corrections

Apart from the (now UV-finite) virtual correctiondaég) to the LO cross sectiodo;g)
described above, the NLO cross section

doly (Pa, pb)=/2+ [(doa(b)(pa, pb)) o ( Z dogy (pa pb)®dvd'P°'e> _0}

dipole

(0)

+/ dcrab (Pa; Po) +d0, (Pa, pb)®l}

e=0
! ) aa (0) a,b

+ Z A dx [da (XPa, Po) @ (P+K)™7(X) + do,, (Pa,Xpp) ® (P+K) (x)} o

- -
(4.61)
alsoreceives contributiomma(ls) from real gluon (Fig. 4.14), quark (Fig. 4.15) and antiquark
(not shown) emission diagrams, where the emitted parton carries four-murmes. In
the Catani-Seymour dipole formalism [94], the real contributions are reddefrared (IR)
finite by subtracting from them their soft and collinear limigg - p3 — 0)

doég) (Pa; Pb) ® dVaipole = ) {-@as’b(pla P2, P3; Pa, pb)FJ(Z) (P1, P2; Pas, Po) + (@« b)
|

(4.62)
before integration over the three-patrticle final-state phase spacecahéyen be evaluated
in four dimensions (i.e. witlg = 0). In the case at hand of two initial-state partons and no
coloured final state particles at LO, the only dipole contribution comes fromitial state
emitter and an initial state spectator, e.g.
1 Tp-Tas

— 1,2; a3 b
2pa- psxsabzab< Tz T2,

= EyaDb|1 2:a3,b) 2.4
(4.63)

2735 (p1, P2, P3; Pay Po) = —

51



4 Gaugino-pair production: Fixed-order calculations

q Xi q \WX? q Xii
1 1
Y 4
1 1
q Xj oo WM g . X
q \,\Mf([ q Xi
1 1
¥ 9 A 9
Ifmmw W
Figure 4.14: Gluon emission diagrams contributing to the production of gaygiime at
NLO.
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Figure 4.15: Quark emission diagrams contributing to the production of gaygiins at
NLO.
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4.2 SUSY-QCD corrections

(see Eq. (5.136) of Ref. [94]). The colour chardgs and splitting functiond/23 (Egs.
(5.145)-(5.148) of Ref. [94]) act on Born-like squared matrix elemesmksch are written
here in terms of vectorid, 2;a3, b) o in colour and helicity space. These matrix elements
involve an initial-state partoéé with momentum parallel t@,,

By = Xaapl  Where xgqp— taPo_ParPaz PPy (4.64)
Pa - Po
and rescaled four-momenta of the final-state gauginos
2p12- (K +K) ~ 2p12-K >
ph,=ph, - TR20 T (K KM SER2 KK, 4.65

whereKH = p& + pk — p4 andK* = ph;+ pk. The phase space functiﬁéz)(ﬁl, P2; Pa3, Pb)
tends to zero withp, - p3 and ensures therefore that the LO cross section is IR-finite. To

compensate for the subtracted auxiliary dipole telﬂfég) (Pa; Pb) ® dVgipole: the latter must
be integrated analytically over the full phase space of the emitted parton,

| = Jdvdipolea (4-66)
di;%e 1

and added to the virtual cross section. The integrated dipole term is defipkcitly in Eq.
(10.15) of Ref. [94]; it contains all the simple and double poles imecessary to cancel the

IR singularities irﬁag). The insertion operators

P¥3(py, ..., Pm, Pb; XPa, X; HZ) =

9 patay L [ZT-.T,In HE g T in (4.67)
2n T2 14" % Xpap 7 2Xpa po '
are directly related to the regularized Altarelli-Parisi splitting distributions @ats),>
1+x2 3
a9 (y) — °5(1—
PY(x) =C¢ [(1—x)+ + 25(1 x)], (4.68)
P9(x) = Tr {x2+ (1—x)2] : (4.69)
_W\2
P%I(x) = Cr [H(ixw and (4.70)
1 1-—x
PY(x) = ZCA[ + — l+x(1—x)] +Bod(1—x), (4.71)
(1-%)+ X

wherefy = 11C5/6—2N¢Tr/3 andB; = (17C% — 5CaN¢ — 3C-Ny)/6 are the one- and two-
loop coefficients of the QCD beta-functioBz = 4/3, Tr = 1/2, Ca = 3, andNs is the
number of quark flavours. They cancel the dependence of theiadmoss section on the
factorisation scal@ir up to NLO accuracy. The insertion operators

g
d,a 7% wda N eda a'a . Vl(i 1 -
K (x)_zn{K (09~ KBS0 + 5%y Ti - Tas [(1_X>++5(1 x)}}

O, 7, L gee

oo Tagz K ) (472

SNote that these distributions are simply the inverse Mellin transform of thasegoisly defined in Egs.
(3.12)—(3.15).
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Figure 4.16: Associated production of a gaugino and a virtual squadayihg subse-
guently into a gaugino and a quark.
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Figure 4.17: Tree-level diagram for a squark decaying into a gaugid@auark.
with yi¥ = 3Cr /2 andy" = Bo,

K% (x) = K¥(x) = Cr [<2Inlxx>+— (1+x)|nl;x+(l—x)}

1-x

—5(1-x)(5—m?)Cr, (4.73)

K% (x) = K®(x) = P%(x) In 1%" + Tr2X(1—X), (4.74)
K%(x) = K¥(x) = P¥(x)In 1;)‘ +Cex, (4.75)

K9(x) KI ) +<1XX—1+x(1 x)> |nlxx]
+
—5(1-x) [(590 >CA 196TRNf] (4.76)
K%¥(x) = K¥(x) =0, 4.77)

and

K (x) = P& )In(l—x)+6abT§[(13XIn(1—x))

—nzé(l—x)} (4.78)
+ 3

depend on the factorisation scheme through the Ié,i‘@'(x), which vanishes in th&S-
scheme, and also on the regular parts of the Altarelli-Parisi splitting distrilsugiven by
P2(x) = P®(x), if a+ b, and otherwise by

1_
PH(X) = ~Ce(14+X) and P%(x) = 2C [XX S 14x(1- x)] . (4.79)

The last line in EQ. (4.61) contains therefore the finite remainders thatfaedtés the fac-
torisation of collinear initial-state singularities into the parton densities iMBescheme at

the factorisation scalge. As guaranteed by the Kinoshita-Lee-Nauenberg and factorisation
theorems, the total NLO cross section is then not only UV-, but also IR-finite
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Figure 4.18: K-factors for gaugino-pair production at the Tevatrdt) @ad the LHC (right)
using LO CTEQ6L1 and NLO CTEQ6.6M parton densities [96].

Finally, one subtlety must still be addressed: in Fig. 4.15, the centre andiragrams
of lines one and three proceed through a squark propagator, whichezamme on-shell
if mg > my ands> (mg+ mg)2. The singularity associated with the pole of the on-shell
squark propagator is regularized by a small finite widgh~ 1(szq (the exact value has
little influence numerically) [92, 95]. To avoid double counting, the resoeaontribution

doyd = do(gg — %d) x BR(G— Xq) (4.80)

must be subtracted from the gaugino pair production process using rittsvagidth ap-
proximation, as it is identified experimentally as the associated productionanitarg and
a squark (Fig. 4.16), followed by the decay of the squark into a gaugid@aajuark (Fig.
4.17).

4.2.3 Numerical results

Here we now present numerical results showing the impact of the SUIY-«@@ections
to the total cross section for the gaugino-pair production. In Figs. 4.d8d®, we show

the NLO K-factors, defined by
oNLO

K="r5" (4.81)

as a function of the average gaugino mags= (mg, +myg;)/2 and the universal trilinear
couplingAg, respectively. This is for the Snowmass slope SPS1a, whose mSUGRB#&-par
eters are [97]

mp = —Ag=0.4m 5, tanf=10 and p>0. (4.82)

The low-scale SUSY parameters are obtained with the computer code $18phd88].

The QCD corrections are found to be large and positive at both the devaitp to 25%)
and the LHC (up to 40%), increasing the mass range of neutralino angirehiénat can be
covered by the two colliders.
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Figure 4.19: K-factor for the associated production of a chargino ameugralino at the
Tevatron (left) and the LHC (right) using LO CTEQ6L1 and NLO CTEQ6.6M@aden-

sities [96].

In Fig. 4.19% we compare our predictions to those obtained with the computer code
Prospino2.1 [68]. Since in the latter squark-mixing effects are negleatedlso show
our predictions without squark mixing for comparison. The predictions witmoixing
(dashed) are in very good agreement with the those of Prospino2.tigdbed), whereas
the results with mixing are slightly shifted in the largf&] region. This is expected, because

4 Gaugino-pair production: Fixed-order calculations
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the squark mass splitting is proportionalAg (see Eq. (2.34)).

A careful analysis of factorisation and renormalisation scale depeedeaxwell as

PDF uncertainties will be presented in Sec. 5.4.

4To produce these figures, we had to correct a bug in the mass fatitoriseProspino2.1.
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5
Gaugino-pair production:
Resummed calculations

We now turn to our numerical analysis of transverse-momentum and tihdessammation
effects on the production of various gaugino pairs at the Tevagipoollider (v'S= 1.96
TeV) and the LHCpp-collider (/S= 7, 10 and 14 TeV). For the masses and widths of
the electroweak gauge bosons, we use the current valuss ©f91.1876 GeV andny =
80.403 GeV. The squared sine of the electroweak mixing angle

sinzaN—l—nn%’ (5.1)

and the electromagnetic fine structure constant

g V2GE g, sir? By
T

(5.2)

can be calculated in the improved Born approximation using the world aveedge of
Gr = 1.16637-10° GeV 2 for Fermi's coupling constant [99]. The CKM-matrix is as-
sumed to be diagonal, and the top quark mass is taken to be 173.1 GeV [beG§trdng
coupling constant is evaluated in the one-loop and two-loop approximatiobGoand
NLO/NLL+NLO results, respectively, with a value Afgs corresponding to the employed
LO (CTEQ6L1) and NLO (CTEQ6.6M) parton densities [96].

In Sec. 5.1, we present our choices for the different benchmarkspwirthe MSSM
parameter space. Then, we study the transverse-momentum and inaassspectra of
the gaugino pairs at current hadron colliders in Sec. 5.2 and 5.3 cteghe Finally, the
total cross sections and the effects of the threshold enhanced contifbatie® studied in
Sec. 5.4. The results presented here have been published in Ref0]$.2

5.1 Benchmark points

The running electroweak couplings as well as the physical masses dii 8¢ garticles and
their mixing angles are computed with the computer program SPheno 2.2.3@0&h in-

cludes a consistent calculation of the Higgs boson masses and all oneAldte dominant
two-loop radiative corrections in the renormalisation group equations linkgetstricted
set of SUSY-breaking parameters at the gauge coupling unification tectiie complete
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Scenario SPS1a’| LMO LM1 LM7 LM9 | SU2 SU3

my [GeV] 70 200 60 3000 1450 3550 100
my /> [GeV] 250 160 250 230 175| 300 300
Ag [GeV] -300 | -400 0 0 0 0 -300
tanp 10 10 10 10 50 | 10 6
sgn(u) + + + + + + +
Mgo [GeV] 98 61 96 94 70 | 124 118

Mg %9 [GeV] 184 113 178 176 128| 229 223
Mgo [GeV] 400 313 346 337 263] 355 465
Mg 70 [GeV] 415 329 366 359 284| 384 481
mg [GeV] 550 420 550 3000 1480 3560 650
mg [GeV] 604 409 603 636 487 809 715

Table 5.1: Names, mSUGRA parameters and physical SUSY particle maskesehch-
mark points used in our numerical studies.

set of observable SUSY masses and mixing angles at the electroweak Wéalehoose

the widely used minimal supergravity (NSUGRA) point SPS1a’ [93] as thetbeark for
most of our numerical studies. This point has an intermediate value Bftah0 andu > 0
(favored by the rare decdy— sy and the measured anomalous magnetic moment of the
muon), a light gaugino mass parametenmgf, = 250 GeV, and a slightly lower scalar mass
parametemy = 70 GeV and trilinear couplindyy = —300 GeV than the original point
SPSla [97] in order to render it compatible with low-energy precision dégh-energy
mass bounds, and the observed cold dark matter relic density. It is also ortiar post-
WMAP point B’ (mp = 60 GeV andAy = 0) [103], which has been adopted by the CMS
collaboration as their first low-mass point (LM1) [104]. In the SPS1ahstio, thex? is

the LSP with a mass of 98 GeV, the gauginos producing the trilepton signalrhasses

of My ~ Myo = 184 GeV, and the heavier gauginos, which decay mostly into the lighter
gauglnosW andZ bosons as well as the lightest Higgs boson, have massa/g)of: 400
GeV andm~i ~ Mgo = 415 GeV. The average squark and gluino massem@te550 GeV
andmg = 604 GeV

Apart from the low-mass point LM1, we will also study the points LM7 and LIgifice
all three points have been found by the CMS collaboration to lead to visible-tbpton
signals. For LM7, the direc,ff)?g production cross section exceeds even 70% of the total
SUSY patrticle production cross section [104]. The ATLAS collaboratiaverstudied the
direct production of gauginos at the points SU2 and SU3 with or withoutweejet(denoted
JV, i.e. no jet in the event with transverse momenimm> 20 GeV) in order to suppress the
background from top quark pair production [105]. We also presesults for the common
CMS/ATLAS low-mass point LM0/SU4 with the objective of high cross sectiamd thus
early discovery at the LHC. A summary of all scenarios consideredisigresented in Tab.
5.1. Note that none of these points falls into (but most of them lie relatively d¢tgsthe
regions excluded by the Tevatron collaborations CDF and DO, whichressuowever, a
lower value of taif = 3 and alwayg\q = 0 [14].
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5.2 Transverse-momentum distribution

5.2 Transverse-momentum distribution

For an efficient suppression of the SM background from vectooasd top-quark pro-
duction and a precise determination of the underlying SUSY-breaking nandemasses,
an accurate theoretical calculation of the signal (and backgrouns} sextion is impera-
tive. As the lightest SUSY particle (LSP) escapes undetected, the kapulistn for SUSY
discovery and measurements is the missing transverse-ei&rgygectrum, which is typi-
cally restricted by a cut of 20 GeV at the Tevatron and 30 GeV at the LH@levithe SUSY
particle pair is produced with zero transverse momentpa) in the Born approximation,
the possible radiation of gluons from the quark-antiquark initial state orptitérsy of glu-
ons into quark-antiquark pairs &t(as) in the strong coupling constant induces transverse
momenta extending to quite substantial values and must therefore be takendotm@a
In addition, the perturbative calculation diverges at smallindicating the need for a re-
summation of soft-gluon radiation to all orders. Only after a consistent matafithe
perturbative and resummed calculations an accurate description of thenffhtsansverse
energy spectrum and precise measurements of the SUSY particle masbesachieved.

In the following, we report on the first precision analysis of the trars«enomentum
spectrum of gaugino pairs produced at the Tevatron and the LHC witheeefimass en-
ergies of 1.96 and 10 or 14 TeV, respectively. We briefly recall in the s&ction our im-
plementation of the resummation formalism and present then numerical resuhe foro-
duction of various gaugino pairs at two typical MSSM benchmark pointsaMédiscuss
the impact of the computed precise transverse-momentum spectrum on thmickatien
of SUSY mass parameters and investigate in detail the remaining theoretiealaimies
coming from scale and parton-density function variations and non-pettue effects.

5.2.1 Transverse-momentum resummation

In the Born approximation, the production of neutralinos and charginleadtbn colliders
PP, PP — aq +X — Xi Xj + X (5.3)

is induced by the quarkg and antiquarks( in the initial (anti-)protons and is mediated
by s-channel electroweak gauge-boson &nandu-channel squark exchanges. Its partonic
Cross sectiorﬁ;g) can be expressed in terms of the gaugino and squark ma@s_esand

i,j

mg, the masses of the electroweak gauge bosons, the Mandelstam vasjaldadu, and
generalized charges (see Egs. (4.14)—(4.30)).

As shown in Sec. 4.2, at leading order (LO) in the strong coupling constems),
virtual loop and real parton emission corrections must be taken into accdte latter
induce transverse momenta of the gaugino pair, that extend typically to @ lthes order
of the gaugino mass. In the smaif-region, where the bulk of the events is produced, the
convergence of the perturbative expansion is spoiled due to the pessElarge logarithms
al/p2In™(M?/p2) with m < 2n—1 andas = as/(2m). These must be resummed to all
orders in impact parametdr)(space in order to correctly implement transverse-momentum
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5 Gaugino-pair production: Resummed calculations

conservation. In MellirN-space, the resummed component is deduced from Eq. (3.64),
Gap (N, M2, M/ p7 M? /%) =
/ db2 3 (bpr) > Heg (M2, M2/ 112) explGeg (M2, 202, M2/ 42)]
0 2 cdef

x Cee(N, as(1/b%))Cqt (N, as(1/b?))Eea(N, 1/0%, u?)Esp(N, 1/b% p?). (5.4)

Here,b describes the minimal distance of the two incident particles in the limit of no inter-
action and is the conjugate variable of the transverse momeptydy(x) is the 6"-order
Bessel function anil is the invariant mass of the gaugino pair. Thmdependent function
Hap (see Eq. (3.73)),

Han(M2, M2/ %) = 65 (M? M2/ 1?)[1+ asar] + O(82) (5.5)

includes the IR-finite part of the renormalised virtual corrections as defimé&q. (3.45)
and the exponential form factor

Gap(M?, M20%, M?/1i%) = Ly (asBol) + 9.2 (asfol, M?/ %) + - -, (5.6)

resums the divergent leading and next-to-leading contributions in thetlugar = In(M2b?)
through the functionggﬁz)_. Unphysical logarithmic divergenceslat— 0 are regularized
by replacingL with In(M2b? + 1). TheCyp, function are then given by Eq. (3.74) and, up to
NLL accuracy, the evolution from the factorisation scal® the low scale 1b is achieved
through the one-loop approximatitﬁié) defined in Eqg. (3.18).

To obtain a valid hadronic cross section at all valuegppf the &(as) (LO) and re-
summed (res) partonic cross sections are matched by subtracting frorsutimeine pertur-
batively expanded (exp) resummed cross section,

& = 6110 4 59 _ glem) (5.7)

and by performing numerically the necessary inverse Mellin and Fouriesforans (as
described in Sec. 3.5), kinematic integrations, and parton density convislutio

5.2.2 Numerical results

In this section, we present the transverse-momentum distributions of thengauairs for
the minimal supergravity benchmark points LMO and SPS1a’, defined in5Tab.In the
latter, the lightest chargino and second-lightest neutralino decay alnadssiely to three
charged leptons and missing transverse energy albeit through re@ainslewhich may be
experimentally reconstructed through endpoints in kinematic distributions [93]

In Fig. 5.1, we show the corresponding transverse-momentum spectiaaajino-
neutralino pairs produced at run Il of the Tevatron (top) and the initialouthe LHC
(bottom) with centre-of-mass energiesyd= 1.96 and 10 TeV, respectively. As expected,
the &'(as) predictions (dashed curves) diverge at lpw, but become finite after match-
ing them to the resummed predictions at next-to-leading logarithmic (NLL) acgyfull
curves). In this region, the perturbative expansions of the resumnesticpons (dots)
coincide with those at’(as), while at largepr they coincide with the resummed ones.
Through resummation, the perturbative predictions are considerabéyneatt even at val-
ues of pr, which are of the order of the experimenEat cuts. It is therefore important
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Figure 5.1: Transverse-momentum spectra of chargino-neutralincap#ies Tevatron (left)
and the LHC (right). TheZ(as) calculation (green/dashed) is matched to the resummed
calculation (red/full) by subtracting its fixed-order expansion (dotted§ Scale uncertainty

is shown as a shaded band, the PDF (below) and non-perturbatieet)inscertainties as
separate graphs, and the matched result for the LHC design enexd$-of14 TeV as a
dot-dashed line (bottom).

b (V/S = 1.96 TeV) — LMO |

=

~ SPS1a’ ]

pp (VS :} 10 TeV)

do/dpr [ tb/GeV |

Figure 5.2: Transverse-momentum spectra at NLL accuracy for tloeiatsd production
of charginos and neutralinos (full and dashed) as well as chargottedt and neutralino
(dot-dashed) pairs (dotted) in three different collider modes.
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Figure 5.3: Transverse-momentum spectra at LO+NLL (full), LL (dd$h&nd generated
by the PYTHIA parton shower with default (bars) and tuned (crossasgmeters at the
Tevatron.

to clearly distinguish the effects induced by QCD radiation and by the unadasé& SPs
and neutrinos. By construction, the matched LO+NLL prediction allows toooee the
correctd(as) correction K) factor of the total perturbative cross section after integration
over pr, e.g. of 1.26 at the Tevatron. For comparison, we also show the matchedllO
pr-spectrum (dot-dashed curve) for the 14 TeV design energy of th& ich extends to
considerably larger values gf than at 10 TeV. The theoretical predictions are influenced
by three main sources of uncertainty: scale variations, evaluated in tbaicahrange of
Her/mM=0.5—2 (shaded bands), variations of the parton densities, evaluated through

22
DAppF = \/El(dffiJr - dai)z/(Zda) (5.8)

along the 22 eigenvector directions defined by the CTEQ collaborationr(lawees), and
three choices of non-perturbative (NP) form factors, evaluatedigffiro

do"P—do
do

(insets) [54, 56, 57]. Fopr > 5 GeV, all theoretical uncertainties are smaller than 5%
for the LO+NLL predictions. In particular, the 5% PDF uncertainty is similar t dhe
obtained for weak boson production [96].

In Fig. 5.2, the matchegr-spectra for chargino (dotted) and neutralino (dot-dashed)
pairs are compared to those of the tri-lepton channel (full/dashed) diestadove. While
positive and negative charginos are produced with equal rates @ollisions at the Teva-
tron, their rates differ slightly irpp collisions at the LHC. The cross sections for neutralino
pair production are about one order of magnitude smaller, as the séghtebt neutralino
couples to the-channelz%-boson only through its relatively small Higgsino component.

In experimental analyses, QCD radiation in hadronic collisions is usually sietiéth
tree-level matrix elements and parton showers based on an exponenaib8iddrm fac-
tor, which resums the leading logarithms (LL) and some next-to-leading logexitim Fig.

OAnp = (5.9)
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5.3 Invariant-mass distribution

5.3, we compare therefore our matched LO+NLL prediction (full curvié) aur resummed
prediction at LL order (dashed curve) and the default (bars) aretit(srosses) predictions
of the PYTHIAG6.4 Monte Carlo (MC) generator [106, 107]. While the détfMC predic-
tion is clearly improved beyond the LL approximation and approaches théLD+esult,

it peaks at too small values @ir. Tuning the intrinsicpy of the partons in the proton to
2.1 GeV forz®-bosons (CDF tune AW) and 4 GeV for gaugino pairs (our tune AW’) im-
proves the description of the peak, but still underestimates the intermegiaiegion and
the mean value opr (14 GeV for PYTHIA6.4, 15 GeV for our tune AW’, and 18 GeV
for our LO+NLL prediction). This has, of course, a direct impact ondbtermination of
the gaugino (and slepton) masses through variables derived from tisvd¢rae momenta
of the observed leptongr; andEt, such as the effective madks = 5 pr,i+ Fr [108]

or the stransverse mass [109]. Let us mention that the contribution of saneea(lowpr

or forward) or mismeasured hadronic energy to the “fdgg”is under close scrutiny both
at the Tevatron and at the LHC. The ATLAS trilepton analysis, e.g., doeslantify jets
with pt < 10 GeV, and an optional cut on jets with > 20 GeV reduces the significance
considerably. As the two LSPs are often back-to-back,Rhen the trilepton analysis is
required to be relatively smali(30 GeV). It can then be affected by an error of up to 10%
(Aadet al. [105]).

5.3 Invariant-mass distribution

In this section, we present our results for the invariant-mass distributiotie @augino
pairs at the Tevatron and the LHC within the mSUGRA model. A similar study has bee
previously performed for the trilepton chanrfef)”(g in Ref. [95]. In this work, we ex-
tend and improve this published result in several respects. First, we énnltdonly the
QCD, but the full SUSY-QCD virtual loop contributions in the hard coeffitiinction of
the resummed cross section, which therefore reproduces, wherndexiydine correct NLO
SUSY-QCD cross section in the threshold region. Second, we resuamiyahe diagonal,
but the full matrix contributions coming from the anomalous dimension, therethydimg

all universal subleading terms and full singlet mixing. For the Tevatrencensider not
only the production of{"X9, but also of¥9%2 and X X; pairs. In particular, the latter
can have significantly larger cross sections than trilepton production dihe sechannel
exchange of massless photons. For the LHC, we concentrate on pnegliftioits ini-

tial centre-of-mass energyS= 7 TeV and include also the production of heavy gaugino
(Xzi,)?g4) combinations, where threshold effects and direct gaugino pair prodystm
duction (as opposed to the production from squark and gluino casceagsjevill be more
important. However, we will also show cross sections\@= 14 TeV for comparison.

5.3.1 Threshold resummation

Starting at NLO, i.e. al(as), the cancellation of soft parton emission among virtual and
real corrections is restricted by the phase space boundary of theTdti®leads to logarith-

mic contributionsag[In(1—z) /(1 — z)]; with as = as/(2m) which may become large close

to partonic threshold i.ez close to one. Threshold resummation reorganises and resums
these contributions to all orders & in Mellin (N) space in order to correctly implement
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5 Gaugino-pair production: Resummed calculations

energy conservatiohHence, the resummed component can be obtained from Eq. (3.35),
Gap* (N, M?, M/ 12) = (M2, M2 1?) expldan(N, M?, M/ i2)], (5.10)

where theN-independent functior#y, (see Eq. (3.44)),

Hp(M2M? /%) = 65 (M2 M2/ 112

. M2
+ 856 (M2, M2/ 1i2) %+(6P§§)+5Pk§§))|nF+E(A§)+A§,1>)] (5.11)

The coefficient function”(Y, given by the second line of Eq. (5.11)), agrees with the one
presented in Eq. (115) of Ref. [95] except for the last three termslewHeir last term cor-
responds to the flavour-diagonal collinear improvement already disduis$Sec. 3.3.4, the
two other terms represent leading and next-to-leading logarithms and sheuddore not
be present. Furthermore, the two termglimdriu3 /M2 — y) should be squared individu-
ally, not together, and the virtual correctio&2-" defined in Eq. (116) of Ref. [95] should
include the complete SUSY-QCD contributions and not only their UV-sing@detsp

The exponential form factor

Gap(N,M?/ %) = Lol (asBol) + 0.2 (asBoL) + -+ (5.12)

resums the leading and next-to-leading contributions in the logatitenn(Ne¥) through
the functionsgéf)’z). Futhermore, by following the procedure described in Sec. 3.3.4, the
dominant¢(1/N) terms are also resummed.

The matching with the fixed-order calculation is achieved from Eq. (3.54),

Gap = G479 + 610 — 6109 (5.13)

where agairfrégx") is the truncation of the resummed cross section to the same perturbative

order as3L?. At 6(as), it is given by Eq. (3.55).

In the following, when we present spectra in the invariant n\ss the gaugino pair,
we identify the unphysical scaleg = ur = 1 with M. The remaining theoretical uncer-
tainty is estimated by varying the common scalabout these central values by a factor of
two up and down.

5.3.2 Numerical results

In Ref. [95], the cross section for the associated productioﬁcﬂnd)”(g has been computed
as a function of taf andm, , for mp = 200 and 1000 GeV and assumiAg= 0 andu > 0.
Unfortunately, the exact version of the renormalisation group progrfaheso used there
could not be determined, and we were not able to reproduce the ph§i&Y particle
mass spectra of Ref. [95]. Since we also do not completely agree ankyytictn the
coefficient function%”a(bl)(Mz,uz) of Ref. [95] (see above), we must refrain from a direct
comparison of our numerical results.

In Fig. 5.4 we present invariant mass spedtrfdo /dM for the production of various

combinations off;" and 2 with Mg+ ~ Myo = 184 GeV in the SPS1a’ scenario at the

1in fact, it is the Laplace transform which correctly implement energyseoration. However, close to
threshold, Mellin and Laplace transforms are basically equivalent.
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Figure 5.4: Invariant mass spectra for the production of various lighgigatpairs at the
Tevatron in the SPS1a’ scenario and in the LO (blue), NLO (grey) andHNILO (red)
approximation. The corresponding scale uncertainties are represgnteel band widths.
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Figure 5.5: Same as Fig. 5.4 for the LHC with its current centre-of-masgyenéy/S= 7
TeV.

Tevatron. The spectra startfdt=m;. + Mo = 368 GeV and increase considerably from
LO (blue) to NLO (grey), but much ]Iess from NLO to NLL+NLO (red). Theale uncer-
tainty is considerably reduced from NLO to NLL+NLO, which indicates goodvergence
of the reorganized perturbative series. The cross section is smali@ésefproduction of
two neutralinos, since they are gaugino-like and couple only weakly te-ttannelz-
boson (see Eq. (4.3)). Since the Tevatron jgpecollider, the cross sections are identical
for X9%; and X; X9 pairs. The largest cross section is obtained for chargino pairs due to
the s-channel photon contribution. Threshold resummation should be most impada
M — y/sandz — 1, but its effects on the partonic cross section are, of course, rédice
the hadronic cross section shown here by the parton densities, whictot@rakx, , and
z— 1. Nevertheless, on close inspection one observes that the NLL+Ni<3 section for
two neutralinos no longer overlaps with the one at NLO for relatively largariant masses
of M ~/S/2.

A similar hierarchy of the different production channels is observed in3:for the
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Figure 5.6: Same as Fig. 5.4 for the production of heavy gaugino paire &HEG with its
current centre-of-mass energy¢B= 7 TeV.

LHC with its current centre-of-mass energy\éﬁz 7 TeV. There are, however, two notable
differences. First, the LHC is pp collider, so that the cross section fg[ X5 exceeds
the one for)?l‘)“(g by a factor of two and becomes even larger than the one for chargino
pairs. Second, the NLO band is separated by a wider gap from the L®tban it was
the case at Tevatron, whereas the NLL+NLO and NLO bands overlagidarably more.
This is, of course, due to the fact that the light gauginos are now pealdfucther away
from the threshold of the 7 TeV collider, so that the importance of soft-gtasammation
is reduced. However, one still observes a sizeable reduction of theeigueertainty from
NLO to NLL+NLO.
Heavier gaugino pairs can only be produced with sizeable cross seatithresLHC. We

therefore show in Figs. 5.6 and 5.7 the invariant mass sp¥Cita /dM for the production
of various combinations ¢f3, and¥;" at the LHC with\/S=7 TeV and 14 TeV and with

Mo = 400 GeV andn~i ~ Mgo = 415 GeV in the SPS1a’ scenario. The spectra start at
M ~ 800—830 GeV, and their magnltudes are considerably smaller than in the light gaugin
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Figure 5.7: Same as Fig. 5.4 for the production of heavy gaugino paire &HE8 with its

design centre-of-mass energy\d6= 14 TeV.
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Figure 5.8: Ratio&N" of NLL+NLO over NLO differential cross sections as a function
of the invariant masM of a gaugino pair at the Tevatron (top left) and LHC wiffs= 7
TeV (top right and bottom left) ang¢'S= 14 TeV (bottom right) in the SPS1a’ scenario.

case. However, they are now of comparable size for neutralino angicbgairs due to the
fact that the dominantly higgsing{ and X9 now have sizeable couplings to teehannel
Z-boson (see Eq. (4.3)). The associated production of a neutralina enargino is again
much larger for the positive chargino eigenstate than for its negativaerpant. The cross
sections fory2%5" pairs are very similar to those f3 X5 pairs and therefore not shown.
Higgsino-like neutralinos and charginos with lasgehannel contributions are produced as
Swaves, so that the invariant mass spectra rise more steeply &t tbanP-wave produced
gaugino-like neutralinos and charginos.

From Figs. 5.4-5.7, the impact of threshold resummation effects is difficulttitmate.
We therefore present in Fig. 5.8 the relative size

NLL dO-NLL+NLO
K —

~  dgNLo
of the NLL+NLO prediction with respect to the NLO prediction. As one expethe cor-

(5.14)
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5 Gaugino-pair production: Resummed calculations

| Coliders | oN-NOfp] | gNO[fo] [ 'O [fb] |
pP(VS=196TeV) | 309703 33 | 31293735 | 27.2°3
pp(vS=7TeV) | 2633951133 | 265533 7135 | 2231767
pp(vS=10TeV) | 4707733100 | 4740183 100 | 3874733
pp(vS=14TeV) | 77271387222 | 777573197223 | 623775 ]

Table 5.2: Total cross sections for the productiorp@ff(g pairs in the SPS1a’ scenario
at different hadron colliders and centre-of-mass energies in the ILO, &d NLL+NLO
approximation, together with the corresponding scale and PDF uncertainties

rection is larger at the Tevatron with its lower centre-of-mass energy (ftjgHan at the
LHC (top right) and increases with the invariant mass. The relatively smédreifces
among thekN'L-factors for neutralino pair production and the channels involving at leas
one chargino can be traced to the fact that the former receives mostofttiutions from

t- andu-channel squark exchanges, which are more sensible to strongtemmeethan the
exchanges of electroweak bosons in gkehannel.

The KNt-factors for the production of heavy gaugino pairs at the LHC with= 7
TeV (14 TeV) are presented in Fig. 5.8 bottom left (bottom right). since élugigo masses
as well as the invariant masskkare now closer to the hadronic centre-of-mass energies.
In addition, the result for thﬁg)”(ff channel differs no longer substantially from the other
channels, since the heavy neutralinos are now higgsino-like and thdirgiion is now also
dominated by the-channel exchange of a weak gauge boson.

5.4 Total cross section

The stability of the perturbative series and its reorganization is traditionallgkekeby
varying the factorisation and renormalisation scalesndpur about a central valugy. We
therefore present now the total cross sections for the production obléglgino pairs at the
Tevatron (Figs. 5.9 and 5.10) and at the LHC witis= 7 TeV (Fig. 5.11 and 5.12) as a
function of the ratiour r/ o, Where the central scajg is now chosen to be the average
mass of the produced gaugino pair. The LO prediction (blue, dot-daehta: electroweak
processes under consideration is, of course, independent ofrtbama&isation scalgir
(right part of the figures), whereas the NLO prediction (black, ddstiepends inversely on
the logarithm ofug through the strong couplings(ur). At NLL accuracy (red, full), the
resummed soft corrections attenuate this dependence and introduceaa pigjien, so that
the prediction is stabilized. The factorisation scgfe(central part of the figures) enters
the hadronic cross section already at LO through the largely logarithmeandepce of the
PDFs, which is then attenuated by the factorisation of initial-state singularitiéis@tand
further at NLL accuracy. In all cases, the resulting total NLL+NLOdic#on is thus much
less dependent on the common sqate= ur = u (left part of the figures) than the LO and
NLO estimates.

In Tab. 5.2 we present the total cross sections for the trilepton chanttet iSPS1a’
scenario at the Tevatron/S= 1.96 TeV) and LHC (/S= 7, 10 and 14 TeV). Besides
the central values (in fb) at LO, NLO and NLL+NLO, we also presentstee and PDF
uncertainties. The former are estimated as described above by a comnatiowasf the
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5.4 Total cross section

b — X9XY at /S = 1.96 TeV

1.2

NLLFNLO — NLO —— O o

&
o}
==,
02 1 5 02 1 5 02 1 5
11/ po p1r/ Ho 1R/ Ho
PP — X9XT at /S = 1.96 TeV
53 [NLLNLO — NLO —- LO -
=
&)
20 \MR = K= Kr f |MR = Mo |

0.2 1 5 0.2 1 5 0.2 1 )
11/ ko e/ o 1R/ o

Figure 5.9: Total cross sections for the production of neutralino (top) @rargino-

neutralino (bottom) at the Tevatron withS= 1.96 TeV in the LO (blue, dot-dashed), NLO
(black, dashed) and NLL+NLO (red, full) approximation.
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5 Gaugino-pair production: Resummed calculations

38
36

pp — X0 at VS =1.96 TeV

NLL+NLO

T U

=
S
22 | N i
20 (iR =p=prl [[HR=Ho|
02 1 5 02 1 5 02 1
11/ po e/ o 1R/ Ho
PP — XI X7 at VS = 1.96 TeV
NLL+NLO —
<
S
o L= n=my (=)
02 1 5 02 1 5 02 1
14/ ko e/ o 1R/ o

Figure 5.10: Total cross sections for the production of chargino-akéudr (top) and
chargino pairs (bottom) at the Tevatron wigfS= 1.96 TeV in the LO (blue, dot-dashed),
NLO (black, dashed) and NLL+NLO (red, full) approximation.
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pp — X9X3 at VS =7 TeV

-5 [NLIFNLO — NLO TO ——
7t 14 1 -
6.5
e O \
IS 55 t * + * 1 i
5 B T N -+ =
A [HR = 1= pr | [HR = Mo
02 1 5 02 1 5 02 1 5
11/ 1o 1/ o R/ o
pp — XoX1 at V'S =7 TeV
135 \‘NLL_FNLO _I T NLIO ------ T T LOl — T
£
o}
105 T 1 ]
0 R =0 =] |[BR = o] S
5 L L L 1 I N T I !

0.2 1 5 0.2 1 5 0.2 1 5
14/ ko pr/ o wr/ 1o

Figure 5.11: Same as Fig. 5.9 for the LHC with its current centre-of-masggnfy/S= 7
TeV.
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5 Gaugino-pair production: Resummed calculations

PP — Xi Xy at VS =7 TeV

50 [SLLINIO —
20 |
260 e
950 |
=240 o 1 ]
S0 ) N S RN :
200 = p=prh JlER = to] .
02 1 5 02 1 5 02 1 5
11/ 1o e/ o 1R/ o
PP = XTXT at VS =7 TeV
o0 [NLLINLO — — " NLO = 10—
210
200 ~
2 Wt [ ]
o 180 | L 1 ]
1sg (n = p= b | ke = po] .
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Figure 5.12: Same as Fig. 5.10 for the LHC with its current centre-of-rmasggof\/S=7
TeV.
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5.4 Total cross section

Gaugino pairl oSN [fb] [ oM (o] | 0O [fb] |

X3%3 251793457 | 255'08 157 | 192703
Xi % | 6658'59 7508 | 67L1E° 508 | 5334733
Xo%. | 4333705 Tido | 4369712 1LY | 3483775
X%5 | 7273 RS | TTISY RS | 623775]
X3x8 146759707 | 148733757 | 121792
X3 %o 140705 06 | 142733764 | 117482
X3%; 8500108 | 8695708 | 69753

X3 X5 191737798 | 193793798 | 160%97
X% 78700108 | 7995708 | 64753

X3 X3 177751705 | 178733785 | 149%%¢

Table 5.3: Total cross sections for the production of various gaugiite mathe SPS1a’
scenario at the LHC with its design centre-of-mass energy'®f= 14 TeV. The central
predictions are given at LO, NLO and NLL+NLO together with the coroesiing scale
and PDF uncertainties.

renormalisation and factorisation scales by a factor of two about thegevenass of the
two gauginos, the latter through

22

2
AOppE; = \/Z [max(a+i —0p,0_; — 00,0)} and (5.15)
=

22

AGppr- = \/IZl [max(oo — 04,00 — G—i,o)} i

along the 22 eigenvector directions defined by the CTEQ collaboration.e $iese are
available only for the NLO fit CTEQ6.6M, but not for the LO fit CTEQ6.6lvte do not
present a PDF uncertainty for the LO prediction. Furthermore, the sarkResEnters at
NLO and NLL+NLO, so that the PDF uncertainties for these two predictioimade. The
most important result is again the considerable reduction of the scalgaingefrom LO
to NLO and then to NLL+NLO. The total cross sections increase with the &laitzntre-
of-mass energy due to the higher parton luminosity at smaller valuesfotrude estimate
gives

(5.16)

L 1 16
~ a q 718— ~
/Sdr fq/p(Xq) fa7p(Xq) Oog / /Sdrr — VS

which agrees with the cross sections given in Tab. 5.2 surprisingly well.

In Tab. 5.3 we fix the LHC centre-of-mass energy to its design valug®¥ 14 TeV
and show the total production cross sections for light and heavy gapgiroin LO, NLO
and NLL+NLO together with the corresponding theoretical uncertaintiest was already
mentioned above, the cross section for the higgsinofe] pairs is about as large as the
one for{; X, pairs, and it is in fact not much smaller than the one for the considerably
lighter gaugino-likex9%2 pairs. In general, the heavy gaugino cross sections are, however,
significantly smaller than those for light gauginos.

In Tab. 5.4, we present finally total cross sections for the trilepton chamoar differ-
ent benchmark scenarios at the LHC with its current centre-of-masgyeoie/S= 7 TeV.
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5 Gaugino-pair production: Resummed calculations

Scenario| oNUNWO ] | gNOi] | 0[] |
0.8 +128 58 +128 7.1

LM1 294-6J—r1.4 j14.5 297-0J—r4.8 t14‘5 248 23‘5
2.4 +239 12.8 +24.0 14.0

LM7 538’91_35 t26‘7 5438t10.7 t26.8 4412t14.3

LM9 | 17362"17, *73 | 17503'355 7aq | 13744'15,
SU2 | 1717193788 | 1734735753 | 1450777
Su3 1169707 2% | 1180733729 | 1016735
SU2+JV 170.4th§ fg}g 1720jgzg fgg 145033
0.1 +56 19 +5.6 4.6
SU3+JV| 115475142 | 116671328 | 101655

Table 5.4: Total cross sections for the productioypf2 pairs at the LHC with its current
centre-of-mass energy afS= 7 TeV for different SUSY benchmark points. The central
predictions are given at LO, NLO and NLL+NLO together with the coroesling scale
and PDF uncertainties.

Since the masses ﬁf and)”(gJ are always rather similar, one expects also similar total cross
sections. This is indeed confirmed by &= 7 TeV results in Tab. 5.2 and the numbers
in Tab. 5.4 with the notable exceptions of LM7 and LM9, where the crodssdas about a
factor of two and one order of magnitude larger than for the other poedpectively. This

is partly due to the lower gaugino masses at LM9 and partly to the much hequigrks
masses, which suppress theand u-channels and thus their destructive interference with
thes-channel amplitudes. The additional jet veto (JV), i.e. the rejection ofte\@mtain-
ing jets with transverse momentupg > 20 GeV, envisaged by the ATLAS collaboration
to suppress the background from top quark pair production, hasuglyino consequences
at LO, since gauginos are exclusively produced at this order. Aniawial quark or gluon
can only be present at NLO or NLL+NLO, and restricting its transverseemum to low
values reduces the total cross sections slightly with respect to the urtesbpredictions.
The small reduction of the signal cross section in combination with a largetiedwf the
background should therefore indeed lead to a much better significance.
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3]
Conclusion

Weak-scale supersymmetry is a very well motivated extension of the SMtaflpghysics.
It offers a natural explanation of the large hierarchy between eleetthvand gravita-
tional interactions and allows for the grand unification of the local gaugersstry of the
strong and electroweak interactions. Among the new particles predicte@ b§y35M, the
fermionic partners of the neutral and charged gauge and Higgs hasadlesi neutralinos
and charginos, may be relatively light. Indeed, the lightest neutralinoljizéabby an at
least approximat®&®-symmetry, represents one of the most promising dark matter candi-
dates, whose gaugino/Higgsino decomposition has important consegudencesmology.
The search for SUSY particles and the identification of their properties thas become
defining tasks of the current hadron collider program. Particular atteh@isrsince long
been paid to the production of gauginos, which are produced eithettigimcthrough
squark/gluino decays. Gauginos may decay leptonically and be thus easitifiable at
the Tevatron and at the LHC. Gaugino-pair production is thereforeyaimgrortant SUSY
discovery channel at both currently running hadron colliders.

In this thesis, we have presented the MSSM, with its field content, its Lagidemge
sity and the resulting mass eigenstates and mixing. Then, we have preseestblih
and transverse-momentum resummation techniques with improvements to rdénearco
sub-dominant contributions and the necessary prescriptions to getefigled differential
cross sections. The second part of this document has been dedicétedgaugino-pair
production at presenpp and pp colliders. We have studied the polarisation effects and
the effects of the SUSY-QCD corrections, generalising the existing rdsuliowing the
virtual squarks to mix. We have then performed an extensive analysie oésummation
effects for gaugino-pair production in minimal supergravity scenaridse threshold en-
hanced corrections have been found to increase the invariant-massaraoss sections
only slightly, but stabilised the reorganised perturbative series withcegpthe fixed-order
calculation. We have also calculated the transverse-momentum spectraogaigpairs at
NLL accuracy and investigated in detail the theoretical uncertainties comangdcale and
parton-density function variations. We have found that this rendersafterpative predic-
tion finite, modifies considerably the traditional Monte Carlo predictions, eddaes the
theoretical uncertainties to the level of 5-10%. These calculations havech ichpact on
the extraction of the gaugino masses and properties, which are potentiatsdreo dark
matter properties.

Quite recently, we have entered the era of the NLO Monte Carlo eventageree These
programs are often preferred, especially by experimentalists, bettemysalow to compare
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6 Conclusion

experimental data to theoretical predictions, or to simulate experimental sigsaihen
they are no data yet. It is expected that both the resummation and the parteersim-
plemented in Monte Carlo generators correctly describe the effectsteflaoh emission
from the incoming partons. Nevertheless, resummation techniques prodtigiaformu-
lations, and are therefore complementary to the parton shower technicghessiense that
they allow for testing and improving the latter.

As perspectives, comparisons between resummed NLL+NLO and NLQeVoarlo
predictions would be very interesting in order to improve our understardipgrton show-
ering. This last study would also permit to investigate the relevant cuts faptirisation
of signal to background, including the discriminant cutp, and see what is the real
impact of our calculations on the experimental determination of the gaugipepies.

The resummation of both the threshold enhanced and gmalbntributions have been
incorporated in a single formalism, namely the joint resummation [46, 58, 110imple-
mentation of that formalism is in progress and a comparison with the resulenpedsn
this document will then be performed.

Resummation technigues have already been applied to other SUSY prodesieed,
threshold resummation has been applied to the production of squarks andsgil1,
112]. The soft-gluon enhancements have been found to be larger dhainef gaugino
case, because of larger total colour charges of the produced paicte For slepton-
pair production, transverse-momentum, threshold and joint resummaticanbd&en applied
[113, 114, 115]. A single resummation code for all the SUSY processetdvihen be a
very useful tool.
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Abstract

Weak-scale Supersymmetry (SUSY) is a very well motivated extension oStémedard
Model of particle physics. Linking bosons and fermions in an elegamdtsm, SUSY
allows for a natural solution of the hierarchy problem and for accumaifécation of the

three Standard Model gauge couplings at a high unification scale. Fuadhe if R-parity

is conserved, it provides a convincing candidate for the large amowtldfdark matter
observed in the Universe. In the Minimal Supersymmetric Standard Modlistgener-
ally the lightest neutralino, one of the spin-1/2 supersymmetric partners eféboweak
gauge bosons (gauginos) and of the Higgs bosons (Higgsinos), whicko form four

neutral (neutralino) and two charged (chargino) mass eigenstatest afftatroduction
to supersymmetry, we present the transverse-momentum and threshotdnason for-

malisms. We then consider the gaugino-pair production at current hadHtiters, i.e. at
RHIC, Tevatron and LHC. We study the corresponding effects of {ga@drinitial hadrons
and full SUSY-QCD corrections. We finally apply transverse-momentuiirittareshold re-
summations to gaugino-pair production, and show that they have importanttiompéoe

transverse-momentum and invariant-mass distributions. Throughoutstueles, we also
investigate the theoretical uncertainties coming from scale and partoitydenstion vari-

ations.

Keywords: supersymmetry, neutralino, chargino, resummation, QCD, cross seatian, p
isation, collider.

Réesune

L'ajout de la supersy#irie au Mo@le Standard (MS) de la physique des particules est
tres bien motige. Reliant les bosons aux fermions dans un formaliskgant, la super-
symetrie propose une solution naturelle au pévbé de hérarchie et permet I'unification
des trois constantes de couplages dudfandeechelle dénergie. De plus, si la R-pagit

est conser&e, elle fournit un candidat naturel pour expliquer la grande qéaaititmatre
noire obserée dans l'univers. Dans le MS supersnigque minimal, c’est gréralement

le neutralino, I'un des partenaires supergrigues des bosorectrofaibles (jauginos) et
des bosons de Higgs (Higgsinos), qui sélamgent pour former quatietats propres de
masses neutres (neutralinos) et deux obsr@harginos). Ags une introduction sur la
supersyratrie, nous pesentons les formalismes de resommation au seuil et en impulsion
transverse. Ensuite, nous cor@ions la production de paires de jauginos aux collision-
neurs hadroniques actuellement en marche, i.e. RHIC, Tevatron etNlbl@Getudions les
effets dusa la polarisation des hadrons initiaux et aux corrections QCD supétegues
compktes. Finalement, nous appliquons les resommations au seuil et en impulsgn tran
versea la production de paires de jauginos, et nous montrons qu’elles ont untimysor-

tant sur les distributions de masses invariantes et d'impulsion transvémésau long de
cesétudes, nous analysons egtal les erreurs #oriques venant des variationgdhelles

et des fonctions de densgt de partons.

Mots-clés: supersyratrie, neutralino, chargino, resommation, QCD, section efficace, po-
larisation, collisionneur.



